Bump for snapshot
[gcc.git] / gcc / combine.c
1 /* Optimize by combining instructions for GNU compiler.
2 Copyright (C) 1987, 88, 92-98, 1999 Free Software Foundation, Inc.
3
4 This file is part of GNU CC.
5
6 GNU CC is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2, or (at your option)
9 any later version.
10
11 GNU CC is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GNU CC; see the file COPYING. If not, write to
18 the Free Software Foundation, 59 Temple Place - Suite 330,
19 Boston, MA 02111-1307, USA. */
20
21
22 /* This module is essentially the "combiner" phase of the U. of Arizona
23 Portable Optimizer, but redone to work on our list-structured
24 representation for RTL instead of their string representation.
25
26 The LOG_LINKS of each insn identify the most recent assignment
27 to each REG used in the insn. It is a list of previous insns,
28 each of which contains a SET for a REG that is used in this insn
29 and not used or set in between. LOG_LINKs never cross basic blocks.
30 They were set up by the preceding pass (lifetime analysis).
31
32 We try to combine each pair of insns joined by a logical link.
33 We also try to combine triples of insns A, B and C when
34 C has a link back to B and B has a link back to A.
35
36 LOG_LINKS does not have links for use of the CC0. They don't
37 need to, because the insn that sets the CC0 is always immediately
38 before the insn that tests it. So we always regard a branch
39 insn as having a logical link to the preceding insn. The same is true
40 for an insn explicitly using CC0.
41
42 We check (with use_crosses_set_p) to avoid combining in such a way
43 as to move a computation to a place where its value would be different.
44
45 Combination is done by mathematically substituting the previous
46 insn(s) values for the regs they set into the expressions in
47 the later insns that refer to these regs. If the result is a valid insn
48 for our target machine, according to the machine description,
49 we install it, delete the earlier insns, and update the data flow
50 information (LOG_LINKS and REG_NOTES) for what we did.
51
52 There are a few exceptions where the dataflow information created by
53 flow.c aren't completely updated:
54
55 - reg_live_length is not updated
56 - reg_n_refs is not adjusted in the rare case when a register is
57 no longer required in a computation
58 - there are extremely rare cases (see distribute_regnotes) when a
59 REG_DEAD note is lost
60 - a LOG_LINKS entry that refers to an insn with multiple SETs may be
61 removed because there is no way to know which register it was
62 linking
63
64 To simplify substitution, we combine only when the earlier insn(s)
65 consist of only a single assignment. To simplify updating afterward,
66 we never combine when a subroutine call appears in the middle.
67
68 Since we do not represent assignments to CC0 explicitly except when that
69 is all an insn does, there is no LOG_LINKS entry in an insn that uses
70 the condition code for the insn that set the condition code.
71 Fortunately, these two insns must be consecutive.
72 Therefore, every JUMP_INSN is taken to have an implicit logical link
73 to the preceding insn. This is not quite right, since non-jumps can
74 also use the condition code; but in practice such insns would not
75 combine anyway. */
76
77 #include "config.h"
78 #include "system.h"
79 #include "rtl.h" /* stdio.h must precede rtl.h for FFS. */
80 #include "flags.h"
81 #include "regs.h"
82 #include "hard-reg-set.h"
83 #include "basic-block.h"
84 #include "insn-config.h"
85 /* Include expr.h after insn-config.h so we get HAVE_conditional_move. */
86 #include "expr.h"
87 #include "insn-flags.h"
88 #include "insn-codes.h"
89 #include "insn-attr.h"
90 #include "recog.h"
91 #include "real.h"
92 #include "toplev.h"
93
94 /* It is not safe to use ordinary gen_lowpart in combine.
95 Use gen_lowpart_for_combine instead. See comments there. */
96 #define gen_lowpart dont_use_gen_lowpart_you_dummy
97
98 /* Number of attempts to combine instructions in this function. */
99
100 static int combine_attempts;
101
102 /* Number of attempts that got as far as substitution in this function. */
103
104 static int combine_merges;
105
106 /* Number of instructions combined with added SETs in this function. */
107
108 static int combine_extras;
109
110 /* Number of instructions combined in this function. */
111
112 static int combine_successes;
113
114 /* Totals over entire compilation. */
115
116 static int total_attempts, total_merges, total_extras, total_successes;
117
118 /* Define a default value for REVERSIBLE_CC_MODE.
119 We can never assume that a condition code mode is safe to reverse unless
120 the md tells us so. */
121 #ifndef REVERSIBLE_CC_MODE
122 #define REVERSIBLE_CC_MODE(MODE) 0
123 #endif
124 \f
125 /* Vector mapping INSN_UIDs to cuids.
126 The cuids are like uids but increase monotonically always.
127 Combine always uses cuids so that it can compare them.
128 But actually renumbering the uids, which we used to do,
129 proves to be a bad idea because it makes it hard to compare
130 the dumps produced by earlier passes with those from later passes. */
131
132 static int *uid_cuid;
133 static int max_uid_cuid;
134
135 /* Get the cuid of an insn. */
136
137 #define INSN_CUID(INSN) \
138 (INSN_UID (INSN) > max_uid_cuid ? insn_cuid (INSN) : uid_cuid[INSN_UID (INSN)])
139
140 /* Maximum register number, which is the size of the tables below. */
141
142 static int combine_max_regno;
143
144 /* Record last point of death of (hard or pseudo) register n. */
145
146 static rtx *reg_last_death;
147
148 /* Record last point of modification of (hard or pseudo) register n. */
149
150 static rtx *reg_last_set;
151
152 /* Record the cuid of the last insn that invalidated memory
153 (anything that writes memory, and subroutine calls, but not pushes). */
154
155 static int mem_last_set;
156
157 /* Record the cuid of the last CALL_INSN
158 so we can tell whether a potential combination crosses any calls. */
159
160 static int last_call_cuid;
161
162 /* When `subst' is called, this is the insn that is being modified
163 (by combining in a previous insn). The PATTERN of this insn
164 is still the old pattern partially modified and it should not be
165 looked at, but this may be used to examine the successors of the insn
166 to judge whether a simplification is valid. */
167
168 static rtx subst_insn;
169
170 /* This is an insn that belongs before subst_insn, but is not currently
171 on the insn chain. */
172
173 static rtx subst_prev_insn;
174
175 /* This is the lowest CUID that `subst' is currently dealing with.
176 get_last_value will not return a value if the register was set at or
177 after this CUID. If not for this mechanism, we could get confused if
178 I2 or I1 in try_combine were an insn that used the old value of a register
179 to obtain a new value. In that case, we might erroneously get the
180 new value of the register when we wanted the old one. */
181
182 static int subst_low_cuid;
183
184 /* This contains any hard registers that are used in newpat; reg_dead_at_p
185 must consider all these registers to be always live. */
186
187 static HARD_REG_SET newpat_used_regs;
188
189 /* This is an insn to which a LOG_LINKS entry has been added. If this
190 insn is the earlier than I2 or I3, combine should rescan starting at
191 that location. */
192
193 static rtx added_links_insn;
194
195 /* Basic block number of the block in which we are performing combines. */
196 static int this_basic_block;
197 \f
198 /* The next group of arrays allows the recording of the last value assigned
199 to (hard or pseudo) register n. We use this information to see if a
200 operation being processed is redundant given a prior operation performed
201 on the register. For example, an `and' with a constant is redundant if
202 all the zero bits are already known to be turned off.
203
204 We use an approach similar to that used by cse, but change it in the
205 following ways:
206
207 (1) We do not want to reinitialize at each label.
208 (2) It is useful, but not critical, to know the actual value assigned
209 to a register. Often just its form is helpful.
210
211 Therefore, we maintain the following arrays:
212
213 reg_last_set_value the last value assigned
214 reg_last_set_label records the value of label_tick when the
215 register was assigned
216 reg_last_set_table_tick records the value of label_tick when a
217 value using the register is assigned
218 reg_last_set_invalid set to non-zero when it is not valid
219 to use the value of this register in some
220 register's value
221
222 To understand the usage of these tables, it is important to understand
223 the distinction between the value in reg_last_set_value being valid
224 and the register being validly contained in some other expression in the
225 table.
226
227 Entry I in reg_last_set_value is valid if it is non-zero, and either
228 reg_n_sets[i] is 1 or reg_last_set_label[i] == label_tick.
229
230 Register I may validly appear in any expression returned for the value
231 of another register if reg_n_sets[i] is 1. It may also appear in the
232 value for register J if reg_last_set_label[i] < reg_last_set_label[j] or
233 reg_last_set_invalid[j] is zero.
234
235 If an expression is found in the table containing a register which may
236 not validly appear in an expression, the register is replaced by
237 something that won't match, (clobber (const_int 0)).
238
239 reg_last_set_invalid[i] is set non-zero when register I is being assigned
240 to and reg_last_set_table_tick[i] == label_tick. */
241
242 /* Record last value assigned to (hard or pseudo) register n. */
243
244 static rtx *reg_last_set_value;
245
246 /* Record the value of label_tick when the value for register n is placed in
247 reg_last_set_value[n]. */
248
249 static int *reg_last_set_label;
250
251 /* Record the value of label_tick when an expression involving register n
252 is placed in reg_last_set_value. */
253
254 static int *reg_last_set_table_tick;
255
256 /* Set non-zero if references to register n in expressions should not be
257 used. */
258
259 static char *reg_last_set_invalid;
260
261 /* Incremented for each label. */
262
263 static int label_tick;
264
265 /* Some registers that are set more than once and used in more than one
266 basic block are nevertheless always set in similar ways. For example,
267 a QImode register may be loaded from memory in two places on a machine
268 where byte loads zero extend.
269
270 We record in the following array what we know about the nonzero
271 bits of a register, specifically which bits are known to be zero.
272
273 If an entry is zero, it means that we don't know anything special. */
274
275 static unsigned HOST_WIDE_INT *reg_nonzero_bits;
276
277 /* Mode used to compute significance in reg_nonzero_bits. It is the largest
278 integer mode that can fit in HOST_BITS_PER_WIDE_INT. */
279
280 static enum machine_mode nonzero_bits_mode;
281
282 /* Nonzero if we know that a register has some leading bits that are always
283 equal to the sign bit. */
284
285 static char *reg_sign_bit_copies;
286
287 /* Nonzero when reg_nonzero_bits and reg_sign_bit_copies can be safely used.
288 It is zero while computing them and after combine has completed. This
289 former test prevents propagating values based on previously set values,
290 which can be incorrect if a variable is modified in a loop. */
291
292 static int nonzero_sign_valid;
293
294 /* These arrays are maintained in parallel with reg_last_set_value
295 and are used to store the mode in which the register was last set,
296 the bits that were known to be zero when it was last set, and the
297 number of sign bits copies it was known to have when it was last set. */
298
299 static enum machine_mode *reg_last_set_mode;
300 static unsigned HOST_WIDE_INT *reg_last_set_nonzero_bits;
301 static char *reg_last_set_sign_bit_copies;
302 \f
303 /* Record one modification to rtl structure
304 to be undone by storing old_contents into *where.
305 is_int is 1 if the contents are an int. */
306
307 struct undo
308 {
309 struct undo *next;
310 int is_int;
311 union {rtx r; int i;} old_contents;
312 union {rtx *r; int *i;} where;
313 };
314
315 /* Record a bunch of changes to be undone, up to MAX_UNDO of them.
316 num_undo says how many are currently recorded.
317
318 storage is nonzero if we must undo the allocation of new storage.
319 The value of storage is what to pass to obfree.
320
321 other_insn is nonzero if we have modified some other insn in the process
322 of working on subst_insn. It must be verified too.
323
324 previous_undos is the value of undobuf.undos when we started processing
325 this substitution. This will prevent gen_rtx_combine from re-used a piece
326 from the previous expression. Doing so can produce circular rtl
327 structures. */
328
329 struct undobuf
330 {
331 char *storage;
332 struct undo *undos;
333 struct undo *frees;
334 struct undo *previous_undos;
335 rtx other_insn;
336 };
337
338 static struct undobuf undobuf;
339
340 /* Substitute NEWVAL, an rtx expression, into INTO, a place in some
341 insn. The substitution can be undone by undo_all. If INTO is already
342 set to NEWVAL, do not record this change. Because computing NEWVAL might
343 also call SUBST, we have to compute it before we put anything into
344 the undo table. */
345
346 #define SUBST(INTO, NEWVAL) \
347 do { rtx _new = (NEWVAL); \
348 struct undo *_buf; \
349 \
350 if (undobuf.frees) \
351 _buf = undobuf.frees, undobuf.frees = _buf->next; \
352 else \
353 _buf = (struct undo *) xmalloc (sizeof (struct undo)); \
354 \
355 _buf->is_int = 0; \
356 _buf->where.r = &INTO; \
357 _buf->old_contents.r = INTO; \
358 INTO = _new; \
359 if (_buf->old_contents.r == INTO) \
360 _buf->next = undobuf.frees, undobuf.frees = _buf; \
361 else \
362 _buf->next = undobuf.undos, undobuf.undos = _buf; \
363 } while (0)
364
365 /* Similar to SUBST, but NEWVAL is an int expression. Note that substitution
366 for the value of a HOST_WIDE_INT value (including CONST_INT) is
367 not safe. */
368
369 #define SUBST_INT(INTO, NEWVAL) \
370 do { struct undo *_buf; \
371 \
372 if (undobuf.frees) \
373 _buf = undobuf.frees, undobuf.frees = _buf->next; \
374 else \
375 _buf = (struct undo *) xmalloc (sizeof (struct undo)); \
376 \
377 _buf->is_int = 1; \
378 _buf->where.i = (int *) &INTO; \
379 _buf->old_contents.i = INTO; \
380 INTO = NEWVAL; \
381 if (_buf->old_contents.i == INTO) \
382 _buf->next = undobuf.frees, undobuf.frees = _buf; \
383 else \
384 _buf->next = undobuf.undos, undobuf.undos = _buf; \
385 } while (0)
386
387 /* Number of times the pseudo being substituted for
388 was found and replaced. */
389
390 static int n_occurrences;
391
392 static void init_reg_last_arrays PROTO((void));
393 static void setup_incoming_promotions PROTO((void));
394 static void set_nonzero_bits_and_sign_copies PROTO((rtx, rtx));
395 static int can_combine_p PROTO((rtx, rtx, rtx, rtx, rtx *, rtx *));
396 static int sets_function_arg_p PROTO((rtx));
397 static int combinable_i3pat PROTO((rtx, rtx *, rtx, rtx, int, rtx *));
398 static rtx try_combine PROTO((rtx, rtx, rtx));
399 static void undo_all PROTO((void));
400 static rtx *find_split_point PROTO((rtx *, rtx));
401 static rtx subst PROTO((rtx, rtx, rtx, int, int));
402 static rtx simplify_rtx PROTO((rtx, enum machine_mode, int, int));
403 static rtx simplify_if_then_else PROTO((rtx));
404 static rtx simplify_set PROTO((rtx));
405 static rtx simplify_logical PROTO((rtx, int));
406 static rtx expand_compound_operation PROTO((rtx));
407 static rtx expand_field_assignment PROTO((rtx));
408 static rtx make_extraction PROTO((enum machine_mode, rtx, int, rtx, int,
409 int, int, int));
410 static rtx extract_left_shift PROTO((rtx, int));
411 static rtx make_compound_operation PROTO((rtx, enum rtx_code));
412 static int get_pos_from_mask PROTO((unsigned HOST_WIDE_INT, int *));
413 static rtx force_to_mode PROTO((rtx, enum machine_mode,
414 unsigned HOST_WIDE_INT, rtx, int));
415 static rtx if_then_else_cond PROTO((rtx, rtx *, rtx *));
416 static rtx known_cond PROTO((rtx, enum rtx_code, rtx, rtx));
417 static int rtx_equal_for_field_assignment_p PROTO((rtx, rtx));
418 static rtx make_field_assignment PROTO((rtx));
419 static rtx apply_distributive_law PROTO((rtx));
420 static rtx simplify_and_const_int PROTO((rtx, enum machine_mode, rtx,
421 unsigned HOST_WIDE_INT));
422 static unsigned HOST_WIDE_INT nonzero_bits PROTO((rtx, enum machine_mode));
423 static int num_sign_bit_copies PROTO((rtx, enum machine_mode));
424 static int merge_outer_ops PROTO((enum rtx_code *, HOST_WIDE_INT *,
425 enum rtx_code, HOST_WIDE_INT,
426 enum machine_mode, int *));
427 static rtx simplify_shift_const PROTO((rtx, enum rtx_code, enum machine_mode,
428 rtx, int));
429 static int recog_for_combine PROTO((rtx *, rtx, rtx *));
430 static rtx gen_lowpart_for_combine PROTO((enum machine_mode, rtx));
431 static rtx gen_rtx_combine PVPROTO((enum rtx_code code, enum machine_mode mode,
432 ...));
433 static rtx gen_binary PROTO((enum rtx_code, enum machine_mode,
434 rtx, rtx));
435 static rtx gen_unary PROTO((enum rtx_code, enum machine_mode,
436 enum machine_mode, rtx));
437 static enum rtx_code simplify_comparison PROTO((enum rtx_code, rtx *, rtx *));
438 static int reversible_comparison_p PROTO((rtx));
439 static void update_table_tick PROTO((rtx));
440 static void record_value_for_reg PROTO((rtx, rtx, rtx));
441 static void record_dead_and_set_regs_1 PROTO((rtx, rtx));
442 static void record_dead_and_set_regs PROTO((rtx));
443 static int get_last_value_validate PROTO((rtx *, rtx, int, int));
444 static rtx get_last_value PROTO((rtx));
445 static int use_crosses_set_p PROTO((rtx, int));
446 static void reg_dead_at_p_1 PROTO((rtx, rtx));
447 static int reg_dead_at_p PROTO((rtx, rtx));
448 static void move_deaths PROTO((rtx, rtx, int, rtx, rtx *));
449 static int reg_bitfield_target_p PROTO((rtx, rtx));
450 static void distribute_notes PROTO((rtx, rtx, rtx, rtx, rtx, rtx));
451 static void distribute_links PROTO((rtx));
452 static void mark_used_regs_combine PROTO((rtx));
453 static int insn_cuid PROTO((rtx));
454 \f
455 /* Main entry point for combiner. F is the first insn of the function.
456 NREGS is the first unused pseudo-reg number. */
457
458 void
459 combine_instructions (f, nregs)
460 rtx f;
461 int nregs;
462 {
463 register rtx insn, next;
464 #ifdef HAVE_cc0
465 register rtx prev;
466 #endif
467 register int i;
468 register rtx links, nextlinks;
469
470 combine_attempts = 0;
471 combine_merges = 0;
472 combine_extras = 0;
473 combine_successes = 0;
474 undobuf.undos = undobuf.previous_undos = 0;
475
476 combine_max_regno = nregs;
477
478 reg_nonzero_bits
479 = (unsigned HOST_WIDE_INT *) alloca (nregs * sizeof (HOST_WIDE_INT));
480 reg_sign_bit_copies = (char *) alloca (nregs * sizeof (char));
481
482 bzero ((char *) reg_nonzero_bits, nregs * sizeof (HOST_WIDE_INT));
483 bzero (reg_sign_bit_copies, nregs * sizeof (char));
484
485 reg_last_death = (rtx *) alloca (nregs * sizeof (rtx));
486 reg_last_set = (rtx *) alloca (nregs * sizeof (rtx));
487 reg_last_set_value = (rtx *) alloca (nregs * sizeof (rtx));
488 reg_last_set_table_tick = (int *) alloca (nregs * sizeof (int));
489 reg_last_set_label = (int *) alloca (nregs * sizeof (int));
490 reg_last_set_invalid = (char *) alloca (nregs * sizeof (char));
491 reg_last_set_mode
492 = (enum machine_mode *) alloca (nregs * sizeof (enum machine_mode));
493 reg_last_set_nonzero_bits
494 = (unsigned HOST_WIDE_INT *) alloca (nregs * sizeof (HOST_WIDE_INT));
495 reg_last_set_sign_bit_copies
496 = (char *) alloca (nregs * sizeof (char));
497
498 init_reg_last_arrays ();
499
500 init_recog_no_volatile ();
501
502 /* Compute maximum uid value so uid_cuid can be allocated. */
503
504 for (insn = f, i = 0; insn; insn = NEXT_INSN (insn))
505 if (INSN_UID (insn) > i)
506 i = INSN_UID (insn);
507
508 uid_cuid = (int *) alloca ((i + 1) * sizeof (int));
509 max_uid_cuid = i;
510
511 nonzero_bits_mode = mode_for_size (HOST_BITS_PER_WIDE_INT, MODE_INT, 0);
512
513 /* Don't use reg_nonzero_bits when computing it. This can cause problems
514 when, for example, we have j <<= 1 in a loop. */
515
516 nonzero_sign_valid = 0;
517
518 /* Compute the mapping from uids to cuids.
519 Cuids are numbers assigned to insns, like uids,
520 except that cuids increase monotonically through the code.
521
522 Scan all SETs and see if we can deduce anything about what
523 bits are known to be zero for some registers and how many copies
524 of the sign bit are known to exist for those registers.
525
526 Also set any known values so that we can use it while searching
527 for what bits are known to be set. */
528
529 label_tick = 1;
530
531 /* We need to initialize it here, because record_dead_and_set_regs may call
532 get_last_value. */
533 subst_prev_insn = NULL_RTX;
534
535 setup_incoming_promotions ();
536
537 for (insn = f, i = 0; insn; insn = NEXT_INSN (insn))
538 {
539 uid_cuid[INSN_UID (insn)] = ++i;
540 subst_low_cuid = i;
541 subst_insn = insn;
542
543 if (GET_RTX_CLASS (GET_CODE (insn)) == 'i')
544 {
545 note_stores (PATTERN (insn), set_nonzero_bits_and_sign_copies);
546 record_dead_and_set_regs (insn);
547
548 #ifdef AUTO_INC_DEC
549 for (links = REG_NOTES (insn); links; links = XEXP (links, 1))
550 if (REG_NOTE_KIND (links) == REG_INC)
551 set_nonzero_bits_and_sign_copies (XEXP (links, 0), NULL_RTX);
552 #endif
553 }
554
555 if (GET_CODE (insn) == CODE_LABEL)
556 label_tick++;
557 }
558
559 nonzero_sign_valid = 1;
560
561 /* Now scan all the insns in forward order. */
562
563 this_basic_block = -1;
564 label_tick = 1;
565 last_call_cuid = 0;
566 mem_last_set = 0;
567 init_reg_last_arrays ();
568 setup_incoming_promotions ();
569
570 for (insn = f; insn; insn = next ? next : NEXT_INSN (insn))
571 {
572 next = 0;
573
574 /* If INSN starts a new basic block, update our basic block number. */
575 if (this_basic_block + 1 < n_basic_blocks
576 && BLOCK_HEAD (this_basic_block + 1) == insn)
577 this_basic_block++;
578
579 if (GET_CODE (insn) == CODE_LABEL)
580 label_tick++;
581
582 else if (GET_RTX_CLASS (GET_CODE (insn)) == 'i')
583 {
584 /* Try this insn with each insn it links back to. */
585
586 for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
587 if ((next = try_combine (insn, XEXP (links, 0), NULL_RTX)) != 0)
588 goto retry;
589
590 /* Try each sequence of three linked insns ending with this one. */
591
592 for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
593 for (nextlinks = LOG_LINKS (XEXP (links, 0)); nextlinks;
594 nextlinks = XEXP (nextlinks, 1))
595 if ((next = try_combine (insn, XEXP (links, 0),
596 XEXP (nextlinks, 0))) != 0)
597 goto retry;
598
599 #ifdef HAVE_cc0
600 /* Try to combine a jump insn that uses CC0
601 with a preceding insn that sets CC0, and maybe with its
602 logical predecessor as well.
603 This is how we make decrement-and-branch insns.
604 We need this special code because data flow connections
605 via CC0 do not get entered in LOG_LINKS. */
606
607 if (GET_CODE (insn) == JUMP_INSN
608 && (prev = prev_nonnote_insn (insn)) != 0
609 && GET_CODE (prev) == INSN
610 && sets_cc0_p (PATTERN (prev)))
611 {
612 if ((next = try_combine (insn, prev, NULL_RTX)) != 0)
613 goto retry;
614
615 for (nextlinks = LOG_LINKS (prev); nextlinks;
616 nextlinks = XEXP (nextlinks, 1))
617 if ((next = try_combine (insn, prev,
618 XEXP (nextlinks, 0))) != 0)
619 goto retry;
620 }
621
622 /* Do the same for an insn that explicitly references CC0. */
623 if (GET_CODE (insn) == INSN
624 && (prev = prev_nonnote_insn (insn)) != 0
625 && GET_CODE (prev) == INSN
626 && sets_cc0_p (PATTERN (prev))
627 && GET_CODE (PATTERN (insn)) == SET
628 && reg_mentioned_p (cc0_rtx, SET_SRC (PATTERN (insn))))
629 {
630 if ((next = try_combine (insn, prev, NULL_RTX)) != 0)
631 goto retry;
632
633 for (nextlinks = LOG_LINKS (prev); nextlinks;
634 nextlinks = XEXP (nextlinks, 1))
635 if ((next = try_combine (insn, prev,
636 XEXP (nextlinks, 0))) != 0)
637 goto retry;
638 }
639
640 /* Finally, see if any of the insns that this insn links to
641 explicitly references CC0. If so, try this insn, that insn,
642 and its predecessor if it sets CC0. */
643 for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
644 if (GET_CODE (XEXP (links, 0)) == INSN
645 && GET_CODE (PATTERN (XEXP (links, 0))) == SET
646 && reg_mentioned_p (cc0_rtx, SET_SRC (PATTERN (XEXP (links, 0))))
647 && (prev = prev_nonnote_insn (XEXP (links, 0))) != 0
648 && GET_CODE (prev) == INSN
649 && sets_cc0_p (PATTERN (prev))
650 && (next = try_combine (insn, XEXP (links, 0), prev)) != 0)
651 goto retry;
652 #endif
653
654 /* Try combining an insn with two different insns whose results it
655 uses. */
656 for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
657 for (nextlinks = XEXP (links, 1); nextlinks;
658 nextlinks = XEXP (nextlinks, 1))
659 if ((next = try_combine (insn, XEXP (links, 0),
660 XEXP (nextlinks, 0))) != 0)
661 goto retry;
662
663 if (GET_CODE (insn) != NOTE)
664 record_dead_and_set_regs (insn);
665
666 retry:
667 ;
668 }
669 }
670
671 total_attempts += combine_attempts;
672 total_merges += combine_merges;
673 total_extras += combine_extras;
674 total_successes += combine_successes;
675
676 nonzero_sign_valid = 0;
677
678 /* Make recognizer allow volatile MEMs again. */
679 init_recog ();
680 }
681
682 /* Wipe the reg_last_xxx arrays in preparation for another pass. */
683
684 static void
685 init_reg_last_arrays ()
686 {
687 int nregs = combine_max_regno;
688
689 bzero ((char *) reg_last_death, nregs * sizeof (rtx));
690 bzero ((char *) reg_last_set, nregs * sizeof (rtx));
691 bzero ((char *) reg_last_set_value, nregs * sizeof (rtx));
692 bzero ((char *) reg_last_set_table_tick, nregs * sizeof (int));
693 bzero ((char *) reg_last_set_label, nregs * sizeof (int));
694 bzero (reg_last_set_invalid, nregs * sizeof (char));
695 bzero ((char *) reg_last_set_mode, nregs * sizeof (enum machine_mode));
696 bzero ((char *) reg_last_set_nonzero_bits, nregs * sizeof (HOST_WIDE_INT));
697 bzero (reg_last_set_sign_bit_copies, nregs * sizeof (char));
698 }
699 \f
700 /* Set up any promoted values for incoming argument registers. */
701
702 static void
703 setup_incoming_promotions ()
704 {
705 #ifdef PROMOTE_FUNCTION_ARGS
706 int regno;
707 rtx reg;
708 enum machine_mode mode;
709 int unsignedp;
710 rtx first = get_insns ();
711
712 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
713 if (FUNCTION_ARG_REGNO_P (regno)
714 && (reg = promoted_input_arg (regno, &mode, &unsignedp)) != 0)
715 {
716 record_value_for_reg
717 (reg, first, gen_rtx_fmt_e ((unsignedp ? ZERO_EXTEND
718 : SIGN_EXTEND),
719 GET_MODE (reg),
720 gen_rtx_CLOBBER (mode, const0_rtx)));
721 }
722 #endif
723 }
724 \f
725 /* Called via note_stores. If X is a pseudo that is narrower than
726 HOST_BITS_PER_WIDE_INT and is being set, record what bits are known zero.
727
728 If we are setting only a portion of X and we can't figure out what
729 portion, assume all bits will be used since we don't know what will
730 be happening.
731
732 Similarly, set how many bits of X are known to be copies of the sign bit
733 at all locations in the function. This is the smallest number implied
734 by any set of X. */
735
736 static void
737 set_nonzero_bits_and_sign_copies (x, set)
738 rtx x;
739 rtx set;
740 {
741 int num;
742
743 if (GET_CODE (x) == REG
744 && REGNO (x) >= FIRST_PSEUDO_REGISTER
745 /* If this register is undefined at the start of the file, we can't
746 say what its contents were. */
747 && ! REGNO_REG_SET_P (basic_block_live_at_start[0], REGNO (x))
748 && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT)
749 {
750 if (set == 0 || GET_CODE (set) == CLOBBER)
751 {
752 reg_nonzero_bits[REGNO (x)] = GET_MODE_MASK (GET_MODE (x));
753 reg_sign_bit_copies[REGNO (x)] = 1;
754 return;
755 }
756
757 /* If this is a complex assignment, see if we can convert it into a
758 simple assignment. */
759 set = expand_field_assignment (set);
760
761 /* If this is a simple assignment, or we have a paradoxical SUBREG,
762 set what we know about X. */
763
764 if (SET_DEST (set) == x
765 || (GET_CODE (SET_DEST (set)) == SUBREG
766 && (GET_MODE_SIZE (GET_MODE (SET_DEST (set)))
767 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (set)))))
768 && SUBREG_REG (SET_DEST (set)) == x))
769 {
770 rtx src = SET_SRC (set);
771
772 #ifdef SHORT_IMMEDIATES_SIGN_EXTEND
773 /* If X is narrower than a word and SRC is a non-negative
774 constant that would appear negative in the mode of X,
775 sign-extend it for use in reg_nonzero_bits because some
776 machines (maybe most) will actually do the sign-extension
777 and this is the conservative approach.
778
779 ??? For 2.5, try to tighten up the MD files in this regard
780 instead of this kludge. */
781
782 if (GET_MODE_BITSIZE (GET_MODE (x)) < BITS_PER_WORD
783 && GET_CODE (src) == CONST_INT
784 && INTVAL (src) > 0
785 && 0 != (INTVAL (src)
786 & ((HOST_WIDE_INT) 1
787 << (GET_MODE_BITSIZE (GET_MODE (x)) - 1))))
788 src = GEN_INT (INTVAL (src)
789 | ((HOST_WIDE_INT) (-1)
790 << GET_MODE_BITSIZE (GET_MODE (x))));
791 #endif
792
793 reg_nonzero_bits[REGNO (x)]
794 |= nonzero_bits (src, nonzero_bits_mode);
795 num = num_sign_bit_copies (SET_SRC (set), GET_MODE (x));
796 if (reg_sign_bit_copies[REGNO (x)] == 0
797 || reg_sign_bit_copies[REGNO (x)] > num)
798 reg_sign_bit_copies[REGNO (x)] = num;
799 }
800 else
801 {
802 reg_nonzero_bits[REGNO (x)] = GET_MODE_MASK (GET_MODE (x));
803 reg_sign_bit_copies[REGNO (x)] = 1;
804 }
805 }
806 }
807 \f
808 /* See if INSN can be combined into I3. PRED and SUCC are optionally
809 insns that were previously combined into I3 or that will be combined
810 into the merger of INSN and I3.
811
812 Return 0 if the combination is not allowed for any reason.
813
814 If the combination is allowed, *PDEST will be set to the single
815 destination of INSN and *PSRC to the single source, and this function
816 will return 1. */
817
818 static int
819 can_combine_p (insn, i3, pred, succ, pdest, psrc)
820 rtx insn;
821 rtx i3;
822 rtx pred ATTRIBUTE_UNUSED;
823 rtx succ;
824 rtx *pdest, *psrc;
825 {
826 int i;
827 rtx set = 0, src, dest;
828 rtx p;
829 #ifdef AUTO_INC_DEC
830 rtx link;
831 #endif
832 int all_adjacent = (succ ? (next_active_insn (insn) == succ
833 && next_active_insn (succ) == i3)
834 : next_active_insn (insn) == i3);
835
836 /* Can combine only if previous insn is a SET of a REG, a SUBREG or CC0.
837 or a PARALLEL consisting of such a SET and CLOBBERs.
838
839 If INSN has CLOBBER parallel parts, ignore them for our processing.
840 By definition, these happen during the execution of the insn. When it
841 is merged with another insn, all bets are off. If they are, in fact,
842 needed and aren't also supplied in I3, they may be added by
843 recog_for_combine. Otherwise, it won't match.
844
845 We can also ignore a SET whose SET_DEST is mentioned in a REG_UNUSED
846 note.
847
848 Get the source and destination of INSN. If more than one, can't
849 combine. */
850
851 if (GET_CODE (PATTERN (insn)) == SET)
852 set = PATTERN (insn);
853 else if (GET_CODE (PATTERN (insn)) == PARALLEL
854 && GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == SET)
855 {
856 for (i = 0; i < XVECLEN (PATTERN (insn), 0); i++)
857 {
858 rtx elt = XVECEXP (PATTERN (insn), 0, i);
859
860 switch (GET_CODE (elt))
861 {
862 /* This is important to combine floating point insns
863 for the SH4 port. */
864 case USE:
865 /* Combining an isolated USE doesn't make sense.
866 We depend here on combinable_i3_pat to reject them. */
867 /* The code below this loop only verifies that the inputs of
868 the SET in INSN do not change. We call reg_set_between_p
869 to verify that the REG in the USE does not change betweeen
870 I3 and INSN.
871 If the USE in INSN was for a pseudo register, the matching
872 insn pattern will likely match any register; combining this
873 with any other USE would only be safe if we knew that the
874 used registers have identical values, or if there was
875 something to tell them apart, e.g. different modes. For
876 now, we forgo such compilcated tests and simply disallow
877 combining of USES of pseudo registers with any other USE. */
878 if (GET_CODE (XEXP (elt, 0)) == REG
879 && GET_CODE (PATTERN (i3)) == PARALLEL)
880 {
881 rtx i3pat = PATTERN (i3);
882 int i = XVECLEN (i3pat, 0) - 1;
883 int regno = REGNO (XEXP (elt, 0));
884 do
885 {
886 rtx i3elt = XVECEXP (i3pat, 0, i);
887 if (GET_CODE (i3elt) == USE
888 && GET_CODE (XEXP (i3elt, 0)) == REG
889 && (REGNO (XEXP (i3elt, 0)) == regno
890 ? reg_set_between_p (XEXP (elt, 0),
891 PREV_INSN (insn), i3)
892 : regno >= FIRST_PSEUDO_REGISTER))
893 return 0;
894 }
895 while (--i >= 0);
896 }
897 break;
898
899 /* We can ignore CLOBBERs. */
900 case CLOBBER:
901 break;
902
903 case SET:
904 /* Ignore SETs whose result isn't used but not those that
905 have side-effects. */
906 if (find_reg_note (insn, REG_UNUSED, SET_DEST (elt))
907 && ! side_effects_p (elt))
908 break;
909
910 /* If we have already found a SET, this is a second one and
911 so we cannot combine with this insn. */
912 if (set)
913 return 0;
914
915 set = elt;
916 break;
917
918 default:
919 /* Anything else means we can't combine. */
920 return 0;
921 }
922 }
923
924 if (set == 0
925 /* If SET_SRC is an ASM_OPERANDS we can't throw away these CLOBBERs,
926 so don't do anything with it. */
927 || GET_CODE (SET_SRC (set)) == ASM_OPERANDS)
928 return 0;
929 }
930 else
931 return 0;
932
933 if (set == 0)
934 return 0;
935
936 set = expand_field_assignment (set);
937 src = SET_SRC (set), dest = SET_DEST (set);
938
939 /* Don't eliminate a store in the stack pointer. */
940 if (dest == stack_pointer_rtx
941 /* If we couldn't eliminate a field assignment, we can't combine. */
942 || GET_CODE (dest) == ZERO_EXTRACT || GET_CODE (dest) == STRICT_LOW_PART
943 /* Don't combine with an insn that sets a register to itself if it has
944 a REG_EQUAL note. This may be part of a REG_NO_CONFLICT sequence. */
945 || (rtx_equal_p (src, dest) && find_reg_note (insn, REG_EQUAL, NULL_RTX))
946 /* Can't merge a function call. */
947 || GET_CODE (src) == CALL
948 /* Don't eliminate a function call argument. */
949 || (GET_CODE (i3) == CALL_INSN
950 && (find_reg_fusage (i3, USE, dest)
951 || (GET_CODE (dest) == REG
952 && REGNO (dest) < FIRST_PSEUDO_REGISTER
953 && global_regs[REGNO (dest)])))
954 /* Don't substitute into an incremented register. */
955 || FIND_REG_INC_NOTE (i3, dest)
956 || (succ && FIND_REG_INC_NOTE (succ, dest))
957 #if 0
958 /* Don't combine the end of a libcall into anything. */
959 /* ??? This gives worse code, and appears to be unnecessary, since no
960 pass after flow uses REG_LIBCALL/REG_RETVAL notes. Local-alloc does
961 use REG_RETVAL notes for noconflict blocks, but other code here
962 makes sure that those insns don't disappear. */
963 || find_reg_note (insn, REG_RETVAL, NULL_RTX)
964 #endif
965 /* Make sure that DEST is not used after SUCC but before I3. */
966 || (succ && ! all_adjacent
967 && reg_used_between_p (dest, succ, i3))
968 /* Make sure that the value that is to be substituted for the register
969 does not use any registers whose values alter in between. However,
970 If the insns are adjacent, a use can't cross a set even though we
971 think it might (this can happen for a sequence of insns each setting
972 the same destination; reg_last_set of that register might point to
973 a NOTE). If INSN has a REG_EQUIV note, the register is always
974 equivalent to the memory so the substitution is valid even if there
975 are intervening stores. Also, don't move a volatile asm or
976 UNSPEC_VOLATILE across any other insns. */
977 || (! all_adjacent
978 && (((GET_CODE (src) != MEM
979 || ! find_reg_note (insn, REG_EQUIV, src))
980 && use_crosses_set_p (src, INSN_CUID (insn)))
981 || (GET_CODE (src) == ASM_OPERANDS && MEM_VOLATILE_P (src))
982 || GET_CODE (src) == UNSPEC_VOLATILE))
983 /* If there is a REG_NO_CONFLICT note for DEST in I3 or SUCC, we get
984 better register allocation by not doing the combine. */
985 || find_reg_note (i3, REG_NO_CONFLICT, dest)
986 || (succ && find_reg_note (succ, REG_NO_CONFLICT, dest))
987 /* Don't combine across a CALL_INSN, because that would possibly
988 change whether the life span of some REGs crosses calls or not,
989 and it is a pain to update that information.
990 Exception: if source is a constant, moving it later can't hurt.
991 Accept that special case, because it helps -fforce-addr a lot. */
992 || (INSN_CUID (insn) < last_call_cuid && ! CONSTANT_P (src)))
993 return 0;
994
995 /* DEST must either be a REG or CC0. */
996 if (GET_CODE (dest) == REG)
997 {
998 /* If register alignment is being enforced for multi-word items in all
999 cases except for parameters, it is possible to have a register copy
1000 insn referencing a hard register that is not allowed to contain the
1001 mode being copied and which would not be valid as an operand of most
1002 insns. Eliminate this problem by not combining with such an insn.
1003
1004 Also, on some machines we don't want to extend the life of a hard
1005 register.
1006
1007 This is the same test done in can_combine except that we don't test
1008 if SRC is a CALL operation to permit a hard register with
1009 SMALL_REGISTER_CLASSES, and that we have to take all_adjacent
1010 into account. */
1011
1012 if (GET_CODE (src) == REG
1013 && ((REGNO (dest) < FIRST_PSEUDO_REGISTER
1014 && ! HARD_REGNO_MODE_OK (REGNO (dest), GET_MODE (dest)))
1015 /* Don't extend the life of a hard register unless it is
1016 user variable (if we have few registers) or it can't
1017 fit into the desired register (meaning something special
1018 is going on).
1019 Also avoid substituting a return register into I3, because
1020 reload can't handle a conflict with constraints of other
1021 inputs. */
1022 || (REGNO (src) < FIRST_PSEUDO_REGISTER
1023 && (! HARD_REGNO_MODE_OK (REGNO (src), GET_MODE (src))
1024 || (SMALL_REGISTER_CLASSES
1025 && ((! all_adjacent && ! REG_USERVAR_P (src))
1026 || (FUNCTION_VALUE_REGNO_P (REGNO (src))
1027 && ! REG_USERVAR_P (src))))))))
1028 return 0;
1029 }
1030 else if (GET_CODE (dest) != CC0)
1031 return 0;
1032
1033 /* Don't substitute for a register intended as a clobberable operand.
1034 Similarly, don't substitute an expression containing a register that
1035 will be clobbered in I3. */
1036 if (GET_CODE (PATTERN (i3)) == PARALLEL)
1037 for (i = XVECLEN (PATTERN (i3), 0) - 1; i >= 0; i--)
1038 if (GET_CODE (XVECEXP (PATTERN (i3), 0, i)) == CLOBBER
1039 && (reg_overlap_mentioned_p (XEXP (XVECEXP (PATTERN (i3), 0, i), 0),
1040 src)
1041 || rtx_equal_p (XEXP (XVECEXP (PATTERN (i3), 0, i), 0), dest)))
1042 return 0;
1043
1044 /* If INSN contains anything volatile, or is an `asm' (whether volatile
1045 or not), reject, unless nothing volatile comes between it and I3 */
1046
1047 if (GET_CODE (src) == ASM_OPERANDS || volatile_refs_p (src))
1048 {
1049 /* Make sure succ doesn't contain a volatile reference. */
1050 if (succ != 0 && volatile_refs_p (PATTERN (succ)))
1051 return 0;
1052
1053 for (p = NEXT_INSN (insn); p != i3; p = NEXT_INSN (p))
1054 if (GET_RTX_CLASS (GET_CODE (p)) == 'i'
1055 && p != succ && volatile_refs_p (PATTERN (p)))
1056 return 0;
1057 }
1058
1059 /* If INSN is an asm, and DEST is a hard register, reject, since it has
1060 to be an explicit register variable, and was chosen for a reason. */
1061
1062 if (GET_CODE (src) == ASM_OPERANDS
1063 && GET_CODE (dest) == REG && REGNO (dest) < FIRST_PSEUDO_REGISTER)
1064 return 0;
1065
1066 /* If there are any volatile insns between INSN and I3, reject, because
1067 they might affect machine state. */
1068
1069 for (p = NEXT_INSN (insn); p != i3; p = NEXT_INSN (p))
1070 if (GET_RTX_CLASS (GET_CODE (p)) == 'i'
1071 && p != succ && volatile_insn_p (PATTERN (p)))
1072 return 0;
1073
1074 /* If INSN or I2 contains an autoincrement or autodecrement,
1075 make sure that register is not used between there and I3,
1076 and not already used in I3 either.
1077 Also insist that I3 not be a jump; if it were one
1078 and the incremented register were spilled, we would lose. */
1079
1080 #ifdef AUTO_INC_DEC
1081 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1082 if (REG_NOTE_KIND (link) == REG_INC
1083 && (GET_CODE (i3) == JUMP_INSN
1084 || reg_used_between_p (XEXP (link, 0), insn, i3)
1085 || reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i3))))
1086 return 0;
1087 #endif
1088
1089 #ifdef HAVE_cc0
1090 /* Don't combine an insn that follows a CC0-setting insn.
1091 An insn that uses CC0 must not be separated from the one that sets it.
1092 We do, however, allow I2 to follow a CC0-setting insn if that insn
1093 is passed as I1; in that case it will be deleted also.
1094 We also allow combining in this case if all the insns are adjacent
1095 because that would leave the two CC0 insns adjacent as well.
1096 It would be more logical to test whether CC0 occurs inside I1 or I2,
1097 but that would be much slower, and this ought to be equivalent. */
1098
1099 p = prev_nonnote_insn (insn);
1100 if (p && p != pred && GET_CODE (p) == INSN && sets_cc0_p (PATTERN (p))
1101 && ! all_adjacent)
1102 return 0;
1103 #endif
1104
1105 /* If we get here, we have passed all the tests and the combination is
1106 to be allowed. */
1107
1108 *pdest = dest;
1109 *psrc = src;
1110
1111 return 1;
1112 }
1113 \f
1114 /* Check if PAT is an insn - or a part of it - used to set up an
1115 argument for a function in a hard register. */
1116
1117 static int
1118 sets_function_arg_p (pat)
1119 rtx pat;
1120 {
1121 int i;
1122 rtx inner_dest;
1123
1124 switch (GET_CODE (pat))
1125 {
1126 case INSN:
1127 return sets_function_arg_p (PATTERN (pat));
1128
1129 case PARALLEL:
1130 for (i = XVECLEN (pat, 0); --i >= 0;)
1131 if (sets_function_arg_p (XVECEXP (pat, 0, i)))
1132 return 1;
1133
1134 break;
1135
1136 case SET:
1137 inner_dest = SET_DEST (pat);
1138 while (GET_CODE (inner_dest) == STRICT_LOW_PART
1139 || GET_CODE (inner_dest) == SUBREG
1140 || GET_CODE (inner_dest) == ZERO_EXTRACT)
1141 inner_dest = XEXP (inner_dest, 0);
1142
1143 return (GET_CODE (inner_dest) == REG
1144 && REGNO (inner_dest) < FIRST_PSEUDO_REGISTER
1145 && FUNCTION_ARG_REGNO_P (REGNO (inner_dest)));
1146
1147 default:
1148 break;
1149 }
1150
1151 return 0;
1152 }
1153
1154 /* LOC is the location within I3 that contains its pattern or the component
1155 of a PARALLEL of the pattern. We validate that it is valid for combining.
1156
1157 One problem is if I3 modifies its output, as opposed to replacing it
1158 entirely, we can't allow the output to contain I2DEST or I1DEST as doing
1159 so would produce an insn that is not equivalent to the original insns.
1160
1161 Consider:
1162
1163 (set (reg:DI 101) (reg:DI 100))
1164 (set (subreg:SI (reg:DI 101) 0) <foo>)
1165
1166 This is NOT equivalent to:
1167
1168 (parallel [(set (subreg:SI (reg:DI 100) 0) <foo>)
1169 (set (reg:DI 101) (reg:DI 100))])
1170
1171 Not only does this modify 100 (in which case it might still be valid
1172 if 100 were dead in I2), it sets 101 to the ORIGINAL value of 100.
1173
1174 We can also run into a problem if I2 sets a register that I1
1175 uses and I1 gets directly substituted into I3 (not via I2). In that
1176 case, we would be getting the wrong value of I2DEST into I3, so we
1177 must reject the combination. This case occurs when I2 and I1 both
1178 feed into I3, rather than when I1 feeds into I2, which feeds into I3.
1179 If I1_NOT_IN_SRC is non-zero, it means that finding I1 in the source
1180 of a SET must prevent combination from occurring.
1181
1182 On machines where SMALL_REGISTER_CLASSES is non-zero, we don't combine
1183 if the destination of a SET is a hard register that isn't a user
1184 variable.
1185
1186 Before doing the above check, we first try to expand a field assignment
1187 into a set of logical operations.
1188
1189 If PI3_DEST_KILLED is non-zero, it is a pointer to a location in which
1190 we place a register that is both set and used within I3. If more than one
1191 such register is detected, we fail.
1192
1193 Return 1 if the combination is valid, zero otherwise. */
1194
1195 static int
1196 combinable_i3pat (i3, loc, i2dest, i1dest, i1_not_in_src, pi3dest_killed)
1197 rtx i3;
1198 rtx *loc;
1199 rtx i2dest;
1200 rtx i1dest;
1201 int i1_not_in_src;
1202 rtx *pi3dest_killed;
1203 {
1204 rtx x = *loc;
1205
1206 if (GET_CODE (x) == SET)
1207 {
1208 rtx set = expand_field_assignment (x);
1209 rtx dest = SET_DEST (set);
1210 rtx src = SET_SRC (set);
1211 rtx inner_dest = dest;
1212
1213 #if 0
1214 rtx inner_src = src;
1215 #endif
1216
1217 SUBST (*loc, set);
1218
1219 while (GET_CODE (inner_dest) == STRICT_LOW_PART
1220 || GET_CODE (inner_dest) == SUBREG
1221 || GET_CODE (inner_dest) == ZERO_EXTRACT)
1222 inner_dest = XEXP (inner_dest, 0);
1223
1224 /* We probably don't need this any more now that LIMIT_RELOAD_CLASS
1225 was added. */
1226 #if 0
1227 while (GET_CODE (inner_src) == STRICT_LOW_PART
1228 || GET_CODE (inner_src) == SUBREG
1229 || GET_CODE (inner_src) == ZERO_EXTRACT)
1230 inner_src = XEXP (inner_src, 0);
1231
1232 /* If it is better that two different modes keep two different pseudos,
1233 avoid combining them. This avoids producing the following pattern
1234 on a 386:
1235 (set (subreg:SI (reg/v:QI 21) 0)
1236 (lshiftrt:SI (reg/v:SI 20)
1237 (const_int 24)))
1238 If that were made, reload could not handle the pair of
1239 reg 20/21, since it would try to get any GENERAL_REGS
1240 but some of them don't handle QImode. */
1241
1242 if (rtx_equal_p (inner_src, i2dest)
1243 && GET_CODE (inner_dest) == REG
1244 && ! MODES_TIEABLE_P (GET_MODE (i2dest), GET_MODE (inner_dest)))
1245 return 0;
1246 #endif
1247
1248 /* Check for the case where I3 modifies its output, as
1249 discussed above. */
1250 if ((inner_dest != dest
1251 && (reg_overlap_mentioned_p (i2dest, inner_dest)
1252 || (i1dest && reg_overlap_mentioned_p (i1dest, inner_dest))))
1253
1254 /* This is the same test done in can_combine_p except that we
1255 allow a hard register with SMALL_REGISTER_CLASSES if SRC is a
1256 CALL operation. Moreover, we can't test all_adjacent; we don't
1257 have to, since this instruction will stay in place, thus we are
1258 not considering increasing the lifetime of INNER_DEST.
1259
1260 Also, if this insn sets a function argument, combining it with
1261 something that might need a spill could clobber a previous
1262 function argument; the all_adjacent test in can_combine_p also
1263 checks this; here, we do a more specific test for this case. */
1264
1265 || (GET_CODE (inner_dest) == REG
1266 && REGNO (inner_dest) < FIRST_PSEUDO_REGISTER
1267 && (! HARD_REGNO_MODE_OK (REGNO (inner_dest),
1268 GET_MODE (inner_dest))
1269 || (SMALL_REGISTER_CLASSES && GET_CODE (src) != CALL
1270 && ! REG_USERVAR_P (inner_dest)
1271 && (FUNCTION_VALUE_REGNO_P (REGNO (inner_dest))
1272 || (FUNCTION_ARG_REGNO_P (REGNO (inner_dest))
1273 && i3 != 0
1274 && sets_function_arg_p (prev_nonnote_insn (i3)))))))
1275 || (i1_not_in_src && reg_overlap_mentioned_p (i1dest, src)))
1276 return 0;
1277
1278 /* If DEST is used in I3, it is being killed in this insn,
1279 so record that for later.
1280 Never add REG_DEAD notes for the FRAME_POINTER_REGNUM or the
1281 STACK_POINTER_REGNUM, since these are always considered to be
1282 live. Similarly for ARG_POINTER_REGNUM if it is fixed. */
1283 if (pi3dest_killed && GET_CODE (dest) == REG
1284 && reg_referenced_p (dest, PATTERN (i3))
1285 && REGNO (dest) != FRAME_POINTER_REGNUM
1286 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
1287 && REGNO (dest) != HARD_FRAME_POINTER_REGNUM
1288 #endif
1289 #if ARG_POINTER_REGNUM != FRAME_POINTER_REGNUM
1290 && (REGNO (dest) != ARG_POINTER_REGNUM
1291 || ! fixed_regs [REGNO (dest)])
1292 #endif
1293 && REGNO (dest) != STACK_POINTER_REGNUM)
1294 {
1295 if (*pi3dest_killed)
1296 return 0;
1297
1298 *pi3dest_killed = dest;
1299 }
1300 }
1301
1302 else if (GET_CODE (x) == PARALLEL)
1303 {
1304 int i;
1305
1306 for (i = 0; i < XVECLEN (x, 0); i++)
1307 if (! combinable_i3pat (i3, &XVECEXP (x, 0, i), i2dest, i1dest,
1308 i1_not_in_src, pi3dest_killed))
1309 return 0;
1310 }
1311
1312 return 1;
1313 }
1314 \f
1315 /* Try to combine the insns I1 and I2 into I3.
1316 Here I1 and I2 appear earlier than I3.
1317 I1 can be zero; then we combine just I2 into I3.
1318
1319 It we are combining three insns and the resulting insn is not recognized,
1320 try splitting it into two insns. If that happens, I2 and I3 are retained
1321 and I1 is pseudo-deleted by turning it into a NOTE. Otherwise, I1 and I2
1322 are pseudo-deleted.
1323
1324 Return 0 if the combination does not work. Then nothing is changed.
1325 If we did the combination, return the insn at which combine should
1326 resume scanning. */
1327
1328 static rtx
1329 try_combine (i3, i2, i1)
1330 register rtx i3, i2, i1;
1331 {
1332 /* New patterns for I3 and I3, respectively. */
1333 rtx newpat, newi2pat = 0;
1334 /* Indicates need to preserve SET in I1 or I2 in I3 if it is not dead. */
1335 int added_sets_1, added_sets_2;
1336 /* Total number of SETs to put into I3. */
1337 int total_sets;
1338 /* Nonzero is I2's body now appears in I3. */
1339 int i2_is_used;
1340 /* INSN_CODEs for new I3, new I2, and user of condition code. */
1341 int insn_code_number, i2_code_number, other_code_number;
1342 /* Contains I3 if the destination of I3 is used in its source, which means
1343 that the old life of I3 is being killed. If that usage is placed into
1344 I2 and not in I3, a REG_DEAD note must be made. */
1345 rtx i3dest_killed = 0;
1346 /* SET_DEST and SET_SRC of I2 and I1. */
1347 rtx i2dest, i2src, i1dest = 0, i1src = 0;
1348 /* PATTERN (I2), or a copy of it in certain cases. */
1349 rtx i2pat;
1350 /* Indicates if I2DEST or I1DEST is in I2SRC or I1_SRC. */
1351 int i2dest_in_i2src = 0, i1dest_in_i1src = 0, i2dest_in_i1src = 0;
1352 int i1_feeds_i3 = 0;
1353 /* Notes that must be added to REG_NOTES in I3 and I2. */
1354 rtx new_i3_notes, new_i2_notes;
1355 /* Notes that we substituted I3 into I2 instead of the normal case. */
1356 int i3_subst_into_i2 = 0;
1357 /* Notes that I1, I2 or I3 is a MULT operation. */
1358 int have_mult = 0;
1359
1360 int maxreg;
1361 rtx temp;
1362 register rtx link;
1363 int i;
1364
1365 /* If any of I1, I2, and I3 isn't really an insn, we can't do anything.
1366 This can occur when flow deletes an insn that it has merged into an
1367 auto-increment address. We also can't do anything if I3 has a
1368 REG_LIBCALL note since we don't want to disrupt the contiguity of a
1369 libcall. */
1370
1371 if (GET_RTX_CLASS (GET_CODE (i3)) != 'i'
1372 || GET_RTX_CLASS (GET_CODE (i2)) != 'i'
1373 || (i1 && GET_RTX_CLASS (GET_CODE (i1)) != 'i')
1374 #if 0
1375 /* ??? This gives worse code, and appears to be unnecessary, since no
1376 pass after flow uses REG_LIBCALL/REG_RETVAL notes. */
1377 || find_reg_note (i3, REG_LIBCALL, NULL_RTX)
1378 #endif
1379 )
1380 return 0;
1381
1382 combine_attempts++;
1383
1384 undobuf.undos = undobuf.previous_undos = 0;
1385 undobuf.other_insn = 0;
1386
1387 /* Save the current high-water-mark so we can free storage if we didn't
1388 accept this combination. */
1389 undobuf.storage = (char *) oballoc (0);
1390
1391 /* Reset the hard register usage information. */
1392 CLEAR_HARD_REG_SET (newpat_used_regs);
1393
1394 /* If I1 and I2 both feed I3, they can be in any order. To simplify the
1395 code below, set I1 to be the earlier of the two insns. */
1396 if (i1 && INSN_CUID (i1) > INSN_CUID (i2))
1397 temp = i1, i1 = i2, i2 = temp;
1398
1399 added_links_insn = 0;
1400
1401 /* First check for one important special-case that the code below will
1402 not handle. Namely, the case where I1 is zero, I2 has multiple sets,
1403 and I3 is a SET whose SET_SRC is a SET_DEST in I2. In that case,
1404 we may be able to replace that destination with the destination of I3.
1405 This occurs in the common code where we compute both a quotient and
1406 remainder into a structure, in which case we want to do the computation
1407 directly into the structure to avoid register-register copies.
1408
1409 We make very conservative checks below and only try to handle the
1410 most common cases of this. For example, we only handle the case
1411 where I2 and I3 are adjacent to avoid making difficult register
1412 usage tests. */
1413
1414 if (i1 == 0 && GET_CODE (i3) == INSN && GET_CODE (PATTERN (i3)) == SET
1415 && GET_CODE (SET_SRC (PATTERN (i3))) == REG
1416 && REGNO (SET_SRC (PATTERN (i3))) >= FIRST_PSEUDO_REGISTER
1417 && (! SMALL_REGISTER_CLASSES
1418 || (GET_CODE (SET_DEST (PATTERN (i3))) != REG
1419 || REGNO (SET_DEST (PATTERN (i3))) >= FIRST_PSEUDO_REGISTER
1420 || REG_USERVAR_P (SET_DEST (PATTERN (i3)))))
1421 && find_reg_note (i3, REG_DEAD, SET_SRC (PATTERN (i3)))
1422 && GET_CODE (PATTERN (i2)) == PARALLEL
1423 && ! side_effects_p (SET_DEST (PATTERN (i3)))
1424 /* If the dest of I3 is a ZERO_EXTRACT or STRICT_LOW_PART, the code
1425 below would need to check what is inside (and reg_overlap_mentioned_p
1426 doesn't support those codes anyway). Don't allow those destinations;
1427 the resulting insn isn't likely to be recognized anyway. */
1428 && GET_CODE (SET_DEST (PATTERN (i3))) != ZERO_EXTRACT
1429 && GET_CODE (SET_DEST (PATTERN (i3))) != STRICT_LOW_PART
1430 && ! reg_overlap_mentioned_p (SET_SRC (PATTERN (i3)),
1431 SET_DEST (PATTERN (i3)))
1432 && next_real_insn (i2) == i3)
1433 {
1434 rtx p2 = PATTERN (i2);
1435
1436 /* Make sure that the destination of I3,
1437 which we are going to substitute into one output of I2,
1438 is not used within another output of I2. We must avoid making this:
1439 (parallel [(set (mem (reg 69)) ...)
1440 (set (reg 69) ...)])
1441 which is not well-defined as to order of actions.
1442 (Besides, reload can't handle output reloads for this.)
1443
1444 The problem can also happen if the dest of I3 is a memory ref,
1445 if another dest in I2 is an indirect memory ref. */
1446 for (i = 0; i < XVECLEN (p2, 0); i++)
1447 if ((GET_CODE (XVECEXP (p2, 0, i)) == SET
1448 || GET_CODE (XVECEXP (p2, 0, i)) == CLOBBER)
1449 && reg_overlap_mentioned_p (SET_DEST (PATTERN (i3)),
1450 SET_DEST (XVECEXP (p2, 0, i))))
1451 break;
1452
1453 if (i == XVECLEN (p2, 0))
1454 for (i = 0; i < XVECLEN (p2, 0); i++)
1455 if (SET_DEST (XVECEXP (p2, 0, i)) == SET_SRC (PATTERN (i3)))
1456 {
1457 combine_merges++;
1458
1459 subst_insn = i3;
1460 subst_low_cuid = INSN_CUID (i2);
1461
1462 added_sets_2 = added_sets_1 = 0;
1463 i2dest = SET_SRC (PATTERN (i3));
1464
1465 /* Replace the dest in I2 with our dest and make the resulting
1466 insn the new pattern for I3. Then skip to where we
1467 validate the pattern. Everything was set up above. */
1468 SUBST (SET_DEST (XVECEXP (p2, 0, i)),
1469 SET_DEST (PATTERN (i3)));
1470
1471 newpat = p2;
1472 i3_subst_into_i2 = 1;
1473 goto validate_replacement;
1474 }
1475 }
1476
1477 #ifndef HAVE_cc0
1478 /* If we have no I1 and I2 looks like:
1479 (parallel [(set (reg:CC X) (compare:CC OP (const_int 0)))
1480 (set Y OP)])
1481 make up a dummy I1 that is
1482 (set Y OP)
1483 and change I2 to be
1484 (set (reg:CC X) (compare:CC Y (const_int 0)))
1485
1486 (We can ignore any trailing CLOBBERs.)
1487
1488 This undoes a previous combination and allows us to match a branch-and-
1489 decrement insn. */
1490
1491 if (i1 == 0 && GET_CODE (PATTERN (i2)) == PARALLEL
1492 && XVECLEN (PATTERN (i2), 0) >= 2
1493 && GET_CODE (XVECEXP (PATTERN (i2), 0, 0)) == SET
1494 && (GET_MODE_CLASS (GET_MODE (SET_DEST (XVECEXP (PATTERN (i2), 0, 0))))
1495 == MODE_CC)
1496 && GET_CODE (SET_SRC (XVECEXP (PATTERN (i2), 0, 0))) == COMPARE
1497 && XEXP (SET_SRC (XVECEXP (PATTERN (i2), 0, 0)), 1) == const0_rtx
1498 && GET_CODE (XVECEXP (PATTERN (i2), 0, 1)) == SET
1499 && GET_CODE (SET_DEST (XVECEXP (PATTERN (i2), 0, 1))) == REG
1500 && rtx_equal_p (XEXP (SET_SRC (XVECEXP (PATTERN (i2), 0, 0)), 0),
1501 SET_SRC (XVECEXP (PATTERN (i2), 0, 1))))
1502 {
1503 for (i = XVECLEN (PATTERN (i2), 0) - 1; i >= 2; i--)
1504 if (GET_CODE (XVECEXP (PATTERN (i2), 0, i)) != CLOBBER)
1505 break;
1506
1507 if (i == 1)
1508 {
1509 /* We make I1 with the same INSN_UID as I2. This gives it
1510 the same INSN_CUID for value tracking. Our fake I1 will
1511 never appear in the insn stream so giving it the same INSN_UID
1512 as I2 will not cause a problem. */
1513
1514 subst_prev_insn = i1
1515 = gen_rtx_INSN (VOIDmode, INSN_UID (i2), NULL_RTX, i2,
1516 XVECEXP (PATTERN (i2), 0, 1), -1, NULL_RTX,
1517 NULL_RTX);
1518
1519 SUBST (PATTERN (i2), XVECEXP (PATTERN (i2), 0, 0));
1520 SUBST (XEXP (SET_SRC (PATTERN (i2)), 0),
1521 SET_DEST (PATTERN (i1)));
1522 }
1523 }
1524 #endif
1525
1526 /* Verify that I2 and I1 are valid for combining. */
1527 if (! can_combine_p (i2, i3, i1, NULL_RTX, &i2dest, &i2src)
1528 || (i1 && ! can_combine_p (i1, i3, NULL_RTX, i2, &i1dest, &i1src)))
1529 {
1530 undo_all ();
1531 return 0;
1532 }
1533
1534 /* Record whether I2DEST is used in I2SRC and similarly for the other
1535 cases. Knowing this will help in register status updating below. */
1536 i2dest_in_i2src = reg_overlap_mentioned_p (i2dest, i2src);
1537 i1dest_in_i1src = i1 && reg_overlap_mentioned_p (i1dest, i1src);
1538 i2dest_in_i1src = i1 && reg_overlap_mentioned_p (i2dest, i1src);
1539
1540 /* See if I1 directly feeds into I3. It does if I1DEST is not used
1541 in I2SRC. */
1542 i1_feeds_i3 = i1 && ! reg_overlap_mentioned_p (i1dest, i2src);
1543
1544 /* Ensure that I3's pattern can be the destination of combines. */
1545 if (! combinable_i3pat (i3, &PATTERN (i3), i2dest, i1dest,
1546 i1 && i2dest_in_i1src && i1_feeds_i3,
1547 &i3dest_killed))
1548 {
1549 undo_all ();
1550 return 0;
1551 }
1552
1553 /* See if any of the insns is a MULT operation. Unless one is, we will
1554 reject a combination that is, since it must be slower. Be conservative
1555 here. */
1556 if (GET_CODE (i2src) == MULT
1557 || (i1 != 0 && GET_CODE (i1src) == MULT)
1558 || (GET_CODE (PATTERN (i3)) == SET
1559 && GET_CODE (SET_SRC (PATTERN (i3))) == MULT))
1560 have_mult = 1;
1561
1562 /* If I3 has an inc, then give up if I1 or I2 uses the reg that is inc'd.
1563 We used to do this EXCEPT in one case: I3 has a post-inc in an
1564 output operand. However, that exception can give rise to insns like
1565 mov r3,(r3)+
1566 which is a famous insn on the PDP-11 where the value of r3 used as the
1567 source was model-dependent. Avoid this sort of thing. */
1568
1569 #if 0
1570 if (!(GET_CODE (PATTERN (i3)) == SET
1571 && GET_CODE (SET_SRC (PATTERN (i3))) == REG
1572 && GET_CODE (SET_DEST (PATTERN (i3))) == MEM
1573 && (GET_CODE (XEXP (SET_DEST (PATTERN (i3)), 0)) == POST_INC
1574 || GET_CODE (XEXP (SET_DEST (PATTERN (i3)), 0)) == POST_DEC)))
1575 /* It's not the exception. */
1576 #endif
1577 #ifdef AUTO_INC_DEC
1578 for (link = REG_NOTES (i3); link; link = XEXP (link, 1))
1579 if (REG_NOTE_KIND (link) == REG_INC
1580 && (reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i2))
1581 || (i1 != 0
1582 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i1)))))
1583 {
1584 undo_all ();
1585 return 0;
1586 }
1587 #endif
1588
1589 /* See if the SETs in I1 or I2 need to be kept around in the merged
1590 instruction: whenever the value set there is still needed past I3.
1591 For the SETs in I2, this is easy: we see if I2DEST dies or is set in I3.
1592
1593 For the SET in I1, we have two cases: If I1 and I2 independently
1594 feed into I3, the set in I1 needs to be kept around if I1DEST dies
1595 or is set in I3. Otherwise (if I1 feeds I2 which feeds I3), the set
1596 in I1 needs to be kept around unless I1DEST dies or is set in either
1597 I2 or I3. We can distinguish these cases by seeing if I2SRC mentions
1598 I1DEST. If so, we know I1 feeds into I2. */
1599
1600 added_sets_2 = ! dead_or_set_p (i3, i2dest);
1601
1602 added_sets_1
1603 = i1 && ! (i1_feeds_i3 ? dead_or_set_p (i3, i1dest)
1604 : (dead_or_set_p (i3, i1dest) || dead_or_set_p (i2, i1dest)));
1605
1606 /* If the set in I2 needs to be kept around, we must make a copy of
1607 PATTERN (I2), so that when we substitute I1SRC for I1DEST in
1608 PATTERN (I2), we are only substituting for the original I1DEST, not into
1609 an already-substituted copy. This also prevents making self-referential
1610 rtx. If I2 is a PARALLEL, we just need the piece that assigns I2SRC to
1611 I2DEST. */
1612
1613 i2pat = (GET_CODE (PATTERN (i2)) == PARALLEL
1614 ? gen_rtx_SET (VOIDmode, i2dest, i2src)
1615 : PATTERN (i2));
1616
1617 if (added_sets_2)
1618 i2pat = copy_rtx (i2pat);
1619
1620 combine_merges++;
1621
1622 /* Substitute in the latest insn for the regs set by the earlier ones. */
1623
1624 maxreg = max_reg_num ();
1625
1626 subst_insn = i3;
1627
1628 /* It is possible that the source of I2 or I1 may be performing an
1629 unneeded operation, such as a ZERO_EXTEND of something that is known
1630 to have the high part zero. Handle that case by letting subst look at
1631 the innermost one of them.
1632
1633 Another way to do this would be to have a function that tries to
1634 simplify a single insn instead of merging two or more insns. We don't
1635 do this because of the potential of infinite loops and because
1636 of the potential extra memory required. However, doing it the way
1637 we are is a bit of a kludge and doesn't catch all cases.
1638
1639 But only do this if -fexpensive-optimizations since it slows things down
1640 and doesn't usually win. */
1641
1642 if (flag_expensive_optimizations)
1643 {
1644 /* Pass pc_rtx so no substitutions are done, just simplifications.
1645 The cases that we are interested in here do not involve the few
1646 cases were is_replaced is checked. */
1647 if (i1)
1648 {
1649 subst_low_cuid = INSN_CUID (i1);
1650 i1src = subst (i1src, pc_rtx, pc_rtx, 0, 0);
1651 }
1652 else
1653 {
1654 subst_low_cuid = INSN_CUID (i2);
1655 i2src = subst (i2src, pc_rtx, pc_rtx, 0, 0);
1656 }
1657
1658 undobuf.previous_undos = undobuf.undos;
1659 }
1660
1661 #ifndef HAVE_cc0
1662 /* Many machines that don't use CC0 have insns that can both perform an
1663 arithmetic operation and set the condition code. These operations will
1664 be represented as a PARALLEL with the first element of the vector
1665 being a COMPARE of an arithmetic operation with the constant zero.
1666 The second element of the vector will set some pseudo to the result
1667 of the same arithmetic operation. If we simplify the COMPARE, we won't
1668 match such a pattern and so will generate an extra insn. Here we test
1669 for this case, where both the comparison and the operation result are
1670 needed, and make the PARALLEL by just replacing I2DEST in I3SRC with
1671 I2SRC. Later we will make the PARALLEL that contains I2. */
1672
1673 if (i1 == 0 && added_sets_2 && GET_CODE (PATTERN (i3)) == SET
1674 && GET_CODE (SET_SRC (PATTERN (i3))) == COMPARE
1675 && XEXP (SET_SRC (PATTERN (i3)), 1) == const0_rtx
1676 && rtx_equal_p (XEXP (SET_SRC (PATTERN (i3)), 0), i2dest))
1677 {
1678 #ifdef EXTRA_CC_MODES
1679 rtx *cc_use;
1680 enum machine_mode compare_mode;
1681 #endif
1682
1683 newpat = PATTERN (i3);
1684 SUBST (XEXP (SET_SRC (newpat), 0), i2src);
1685
1686 i2_is_used = 1;
1687
1688 #ifdef EXTRA_CC_MODES
1689 /* See if a COMPARE with the operand we substituted in should be done
1690 with the mode that is currently being used. If not, do the same
1691 processing we do in `subst' for a SET; namely, if the destination
1692 is used only once, try to replace it with a register of the proper
1693 mode and also replace the COMPARE. */
1694 if (undobuf.other_insn == 0
1695 && (cc_use = find_single_use (SET_DEST (newpat), i3,
1696 &undobuf.other_insn))
1697 && ((compare_mode = SELECT_CC_MODE (GET_CODE (*cc_use),
1698 i2src, const0_rtx))
1699 != GET_MODE (SET_DEST (newpat))))
1700 {
1701 int regno = REGNO (SET_DEST (newpat));
1702 rtx new_dest = gen_rtx_REG (compare_mode, regno);
1703
1704 if (regno < FIRST_PSEUDO_REGISTER
1705 || (REG_N_SETS (regno) == 1 && ! added_sets_2
1706 && ! REG_USERVAR_P (SET_DEST (newpat))))
1707 {
1708 if (regno >= FIRST_PSEUDO_REGISTER)
1709 SUBST (regno_reg_rtx[regno], new_dest);
1710
1711 SUBST (SET_DEST (newpat), new_dest);
1712 SUBST (XEXP (*cc_use, 0), new_dest);
1713 SUBST (SET_SRC (newpat),
1714 gen_rtx_combine (COMPARE, compare_mode,
1715 i2src, const0_rtx));
1716 }
1717 else
1718 undobuf.other_insn = 0;
1719 }
1720 #endif
1721 }
1722 else
1723 #endif
1724 {
1725 n_occurrences = 0; /* `subst' counts here */
1726
1727 /* If I1 feeds into I2 (not into I3) and I1DEST is in I1SRC, we
1728 need to make a unique copy of I2SRC each time we substitute it
1729 to avoid self-referential rtl. */
1730
1731 subst_low_cuid = INSN_CUID (i2);
1732 newpat = subst (PATTERN (i3), i2dest, i2src, 0,
1733 ! i1_feeds_i3 && i1dest_in_i1src);
1734 undobuf.previous_undos = undobuf.undos;
1735
1736 /* Record whether i2's body now appears within i3's body. */
1737 i2_is_used = n_occurrences;
1738 }
1739
1740 /* If we already got a failure, don't try to do more. Otherwise,
1741 try to substitute in I1 if we have it. */
1742
1743 if (i1 && GET_CODE (newpat) != CLOBBER)
1744 {
1745 /* Before we can do this substitution, we must redo the test done
1746 above (see detailed comments there) that ensures that I1DEST
1747 isn't mentioned in any SETs in NEWPAT that are field assignments. */
1748
1749 if (! combinable_i3pat (NULL_RTX, &newpat, i1dest, NULL_RTX,
1750 0, NULL_PTR))
1751 {
1752 undo_all ();
1753 return 0;
1754 }
1755
1756 n_occurrences = 0;
1757 subst_low_cuid = INSN_CUID (i1);
1758 newpat = subst (newpat, i1dest, i1src, 0, 0);
1759 undobuf.previous_undos = undobuf.undos;
1760 }
1761
1762 /* Fail if an autoincrement side-effect has been duplicated. Be careful
1763 to count all the ways that I2SRC and I1SRC can be used. */
1764 if ((FIND_REG_INC_NOTE (i2, NULL_RTX) != 0
1765 && i2_is_used + added_sets_2 > 1)
1766 || (i1 != 0 && FIND_REG_INC_NOTE (i1, NULL_RTX) != 0
1767 && (n_occurrences + added_sets_1 + (added_sets_2 && ! i1_feeds_i3)
1768 > 1))
1769 /* Fail if we tried to make a new register (we used to abort, but there's
1770 really no reason to). */
1771 || max_reg_num () != maxreg
1772 /* Fail if we couldn't do something and have a CLOBBER. */
1773 || GET_CODE (newpat) == CLOBBER
1774 /* Fail if this new pattern is a MULT and we didn't have one before
1775 at the outer level. */
1776 || (GET_CODE (newpat) == SET && GET_CODE (SET_SRC (newpat)) == MULT
1777 && ! have_mult))
1778 {
1779 undo_all ();
1780 return 0;
1781 }
1782
1783 /* If the actions of the earlier insns must be kept
1784 in addition to substituting them into the latest one,
1785 we must make a new PARALLEL for the latest insn
1786 to hold additional the SETs. */
1787
1788 if (added_sets_1 || added_sets_2)
1789 {
1790 combine_extras++;
1791
1792 if (GET_CODE (newpat) == PARALLEL)
1793 {
1794 rtvec old = XVEC (newpat, 0);
1795 total_sets = XVECLEN (newpat, 0) + added_sets_1 + added_sets_2;
1796 newpat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (total_sets));
1797 bcopy ((char *) &old->elem[0], (char *) XVEC (newpat, 0)->elem,
1798 sizeof (old->elem[0]) * old->num_elem);
1799 }
1800 else
1801 {
1802 rtx old = newpat;
1803 total_sets = 1 + added_sets_1 + added_sets_2;
1804 newpat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (total_sets));
1805 XVECEXP (newpat, 0, 0) = old;
1806 }
1807
1808 if (added_sets_1)
1809 XVECEXP (newpat, 0, --total_sets)
1810 = (GET_CODE (PATTERN (i1)) == PARALLEL
1811 ? gen_rtx_SET (VOIDmode, i1dest, i1src) : PATTERN (i1));
1812
1813 if (added_sets_2)
1814 {
1815 /* If there is no I1, use I2's body as is. We used to also not do
1816 the subst call below if I2 was substituted into I3,
1817 but that could lose a simplification. */
1818 if (i1 == 0)
1819 XVECEXP (newpat, 0, --total_sets) = i2pat;
1820 else
1821 /* See comment where i2pat is assigned. */
1822 XVECEXP (newpat, 0, --total_sets)
1823 = subst (i2pat, i1dest, i1src, 0, 0);
1824 }
1825 }
1826
1827 /* We come here when we are replacing a destination in I2 with the
1828 destination of I3. */
1829 validate_replacement:
1830
1831 /* Note which hard regs this insn has as inputs. */
1832 mark_used_regs_combine (newpat);
1833
1834 /* Is the result of combination a valid instruction? */
1835 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
1836
1837 /* If the result isn't valid, see if it is a PARALLEL of two SETs where
1838 the second SET's destination is a register that is unused. In that case,
1839 we just need the first SET. This can occur when simplifying a divmod
1840 insn. We *must* test for this case here because the code below that
1841 splits two independent SETs doesn't handle this case correctly when it
1842 updates the register status. Also check the case where the first
1843 SET's destination is unused. That would not cause incorrect code, but
1844 does cause an unneeded insn to remain. */
1845
1846 if (insn_code_number < 0 && GET_CODE (newpat) == PARALLEL
1847 && XVECLEN (newpat, 0) == 2
1848 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
1849 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
1850 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) == REG
1851 && find_reg_note (i3, REG_UNUSED, SET_DEST (XVECEXP (newpat, 0, 1)))
1852 && ! side_effects_p (SET_SRC (XVECEXP (newpat, 0, 1)))
1853 && asm_noperands (newpat) < 0)
1854 {
1855 newpat = XVECEXP (newpat, 0, 0);
1856 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
1857 }
1858
1859 else if (insn_code_number < 0 && GET_CODE (newpat) == PARALLEL
1860 && XVECLEN (newpat, 0) == 2
1861 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
1862 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
1863 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) == REG
1864 && find_reg_note (i3, REG_UNUSED, SET_DEST (XVECEXP (newpat, 0, 0)))
1865 && ! side_effects_p (SET_SRC (XVECEXP (newpat, 0, 0)))
1866 && asm_noperands (newpat) < 0)
1867 {
1868 newpat = XVECEXP (newpat, 0, 1);
1869 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
1870 }
1871
1872 /* If we were combining three insns and the result is a simple SET
1873 with no ASM_OPERANDS that wasn't recognized, try to split it into two
1874 insns. There are two ways to do this. It can be split using a
1875 machine-specific method (like when you have an addition of a large
1876 constant) or by combine in the function find_split_point. */
1877
1878 if (i1 && insn_code_number < 0 && GET_CODE (newpat) == SET
1879 && asm_noperands (newpat) < 0)
1880 {
1881 rtx m_split, *split;
1882 rtx ni2dest = i2dest;
1883
1884 /* See if the MD file can split NEWPAT. If it can't, see if letting it
1885 use I2DEST as a scratch register will help. In the latter case,
1886 convert I2DEST to the mode of the source of NEWPAT if we can. */
1887
1888 m_split = split_insns (newpat, i3);
1889
1890 /* We can only use I2DEST as a scratch reg if it doesn't overlap any
1891 inputs of NEWPAT. */
1892
1893 /* ??? If I2DEST is not safe, and I1DEST exists, then it would be
1894 possible to try that as a scratch reg. This would require adding
1895 more code to make it work though. */
1896
1897 if (m_split == 0 && ! reg_overlap_mentioned_p (ni2dest, newpat))
1898 {
1899 /* If I2DEST is a hard register or the only use of a pseudo,
1900 we can change its mode. */
1901 if (GET_MODE (SET_DEST (newpat)) != GET_MODE (i2dest)
1902 && GET_MODE (SET_DEST (newpat)) != VOIDmode
1903 && GET_CODE (i2dest) == REG
1904 && (REGNO (i2dest) < FIRST_PSEUDO_REGISTER
1905 || (REG_N_SETS (REGNO (i2dest)) == 1 && ! added_sets_2
1906 && ! REG_USERVAR_P (i2dest))))
1907 ni2dest = gen_rtx_REG (GET_MODE (SET_DEST (newpat)),
1908 REGNO (i2dest));
1909
1910 m_split = split_insns
1911 (gen_rtx_PARALLEL (VOIDmode,
1912 gen_rtvec (2, newpat,
1913 gen_rtx_CLOBBER (VOIDmode,
1914 ni2dest))),
1915 i3);
1916 }
1917
1918 if (m_split && GET_CODE (m_split) == SEQUENCE
1919 && XVECLEN (m_split, 0) == 2
1920 && (next_real_insn (i2) == i3
1921 || ! use_crosses_set_p (PATTERN (XVECEXP (m_split, 0, 0)),
1922 INSN_CUID (i2))))
1923 {
1924 rtx i2set, i3set;
1925 rtx newi3pat = PATTERN (XVECEXP (m_split, 0, 1));
1926 newi2pat = PATTERN (XVECEXP (m_split, 0, 0));
1927
1928 i3set = single_set (XVECEXP (m_split, 0, 1));
1929 i2set = single_set (XVECEXP (m_split, 0, 0));
1930
1931 /* In case we changed the mode of I2DEST, replace it in the
1932 pseudo-register table here. We can't do it above in case this
1933 code doesn't get executed and we do a split the other way. */
1934
1935 if (REGNO (i2dest) >= FIRST_PSEUDO_REGISTER)
1936 SUBST (regno_reg_rtx[REGNO (i2dest)], ni2dest);
1937
1938 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
1939
1940 /* If I2 or I3 has multiple SETs, we won't know how to track
1941 register status, so don't use these insns. If I2's destination
1942 is used between I2 and I3, we also can't use these insns. */
1943
1944 if (i2_code_number >= 0 && i2set && i3set
1945 && (next_real_insn (i2) == i3
1946 || ! reg_used_between_p (SET_DEST (i2set), i2, i3)))
1947 insn_code_number = recog_for_combine (&newi3pat, i3,
1948 &new_i3_notes);
1949 if (insn_code_number >= 0)
1950 newpat = newi3pat;
1951
1952 /* It is possible that both insns now set the destination of I3.
1953 If so, we must show an extra use of it. */
1954
1955 if (insn_code_number >= 0)
1956 {
1957 rtx new_i3_dest = SET_DEST (i3set);
1958 rtx new_i2_dest = SET_DEST (i2set);
1959
1960 while (GET_CODE (new_i3_dest) == ZERO_EXTRACT
1961 || GET_CODE (new_i3_dest) == STRICT_LOW_PART
1962 || GET_CODE (new_i3_dest) == SUBREG)
1963 new_i3_dest = XEXP (new_i3_dest, 0);
1964
1965 while (GET_CODE (new_i2_dest) == ZERO_EXTRACT
1966 || GET_CODE (new_i2_dest) == STRICT_LOW_PART
1967 || GET_CODE (new_i2_dest) == SUBREG)
1968 new_i2_dest = XEXP (new_i2_dest, 0);
1969
1970 if (GET_CODE (new_i3_dest) == REG
1971 && GET_CODE (new_i2_dest) == REG
1972 && REGNO (new_i3_dest) == REGNO (new_i2_dest))
1973 REG_N_SETS (REGNO (new_i2_dest))++;
1974 }
1975 }
1976
1977 /* If we can split it and use I2DEST, go ahead and see if that
1978 helps things be recognized. Verify that none of the registers
1979 are set between I2 and I3. */
1980 if (insn_code_number < 0 && (split = find_split_point (&newpat, i3)) != 0
1981 #ifdef HAVE_cc0
1982 && GET_CODE (i2dest) == REG
1983 #endif
1984 /* We need I2DEST in the proper mode. If it is a hard register
1985 or the only use of a pseudo, we can change its mode. */
1986 && (GET_MODE (*split) == GET_MODE (i2dest)
1987 || GET_MODE (*split) == VOIDmode
1988 || REGNO (i2dest) < FIRST_PSEUDO_REGISTER
1989 || (REG_N_SETS (REGNO (i2dest)) == 1 && ! added_sets_2
1990 && ! REG_USERVAR_P (i2dest)))
1991 && (next_real_insn (i2) == i3
1992 || ! use_crosses_set_p (*split, INSN_CUID (i2)))
1993 /* We can't overwrite I2DEST if its value is still used by
1994 NEWPAT. */
1995 && ! reg_referenced_p (i2dest, newpat))
1996 {
1997 rtx newdest = i2dest;
1998 enum rtx_code split_code = GET_CODE (*split);
1999 enum machine_mode split_mode = GET_MODE (*split);
2000
2001 /* Get NEWDEST as a register in the proper mode. We have already
2002 validated that we can do this. */
2003 if (GET_MODE (i2dest) != split_mode && split_mode != VOIDmode)
2004 {
2005 newdest = gen_rtx_REG (split_mode, REGNO (i2dest));
2006
2007 if (REGNO (i2dest) >= FIRST_PSEUDO_REGISTER)
2008 SUBST (regno_reg_rtx[REGNO (i2dest)], newdest);
2009 }
2010
2011 /* If *SPLIT is a (mult FOO (const_int pow2)), convert it to
2012 an ASHIFT. This can occur if it was inside a PLUS and hence
2013 appeared to be a memory address. This is a kludge. */
2014 if (split_code == MULT
2015 && GET_CODE (XEXP (*split, 1)) == CONST_INT
2016 && (i = exact_log2 (INTVAL (XEXP (*split, 1)))) >= 0)
2017 {
2018 SUBST (*split, gen_rtx_combine (ASHIFT, split_mode,
2019 XEXP (*split, 0), GEN_INT (i)));
2020 /* Update split_code because we may not have a multiply
2021 anymore. */
2022 split_code = GET_CODE (*split);
2023 }
2024
2025 #ifdef INSN_SCHEDULING
2026 /* If *SPLIT is a paradoxical SUBREG, when we split it, it should
2027 be written as a ZERO_EXTEND. */
2028 if (split_code == SUBREG && GET_CODE (SUBREG_REG (*split)) == MEM)
2029 SUBST (*split, gen_rtx_combine (ZERO_EXTEND, split_mode,
2030 XEXP (*split, 0)));
2031 #endif
2032
2033 newi2pat = gen_rtx_combine (SET, VOIDmode, newdest, *split);
2034 SUBST (*split, newdest);
2035 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
2036
2037 /* If the split point was a MULT and we didn't have one before,
2038 don't use one now. */
2039 if (i2_code_number >= 0 && ! (split_code == MULT && ! have_mult))
2040 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
2041 }
2042 }
2043
2044 /* Check for a case where we loaded from memory in a narrow mode and
2045 then sign extended it, but we need both registers. In that case,
2046 we have a PARALLEL with both loads from the same memory location.
2047 We can split this into a load from memory followed by a register-register
2048 copy. This saves at least one insn, more if register allocation can
2049 eliminate the copy.
2050
2051 We cannot do this if the destination of the second assignment is
2052 a register that we have already assumed is zero-extended. Similarly
2053 for a SUBREG of such a register. */
2054
2055 else if (i1 && insn_code_number < 0 && asm_noperands (newpat) < 0
2056 && GET_CODE (newpat) == PARALLEL
2057 && XVECLEN (newpat, 0) == 2
2058 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
2059 && GET_CODE (SET_SRC (XVECEXP (newpat, 0, 0))) == SIGN_EXTEND
2060 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
2061 && rtx_equal_p (SET_SRC (XVECEXP (newpat, 0, 1)),
2062 XEXP (SET_SRC (XVECEXP (newpat, 0, 0)), 0))
2063 && ! use_crosses_set_p (SET_SRC (XVECEXP (newpat, 0, 1)),
2064 INSN_CUID (i2))
2065 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != ZERO_EXTRACT
2066 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != STRICT_LOW_PART
2067 && ! (temp = SET_DEST (XVECEXP (newpat, 0, 1)),
2068 (GET_CODE (temp) == REG
2069 && reg_nonzero_bits[REGNO (temp)] != 0
2070 && GET_MODE_BITSIZE (GET_MODE (temp)) < BITS_PER_WORD
2071 && GET_MODE_BITSIZE (GET_MODE (temp)) < HOST_BITS_PER_INT
2072 && (reg_nonzero_bits[REGNO (temp)]
2073 != GET_MODE_MASK (word_mode))))
2074 && ! (GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) == SUBREG
2075 && (temp = SUBREG_REG (SET_DEST (XVECEXP (newpat, 0, 1))),
2076 (GET_CODE (temp) == REG
2077 && reg_nonzero_bits[REGNO (temp)] != 0
2078 && GET_MODE_BITSIZE (GET_MODE (temp)) < BITS_PER_WORD
2079 && GET_MODE_BITSIZE (GET_MODE (temp)) < HOST_BITS_PER_INT
2080 && (reg_nonzero_bits[REGNO (temp)]
2081 != GET_MODE_MASK (word_mode)))))
2082 && ! reg_overlap_mentioned_p (SET_DEST (XVECEXP (newpat, 0, 1)),
2083 SET_SRC (XVECEXP (newpat, 0, 1)))
2084 && ! find_reg_note (i3, REG_UNUSED,
2085 SET_DEST (XVECEXP (newpat, 0, 0))))
2086 {
2087 rtx ni2dest;
2088
2089 newi2pat = XVECEXP (newpat, 0, 0);
2090 ni2dest = SET_DEST (XVECEXP (newpat, 0, 0));
2091 newpat = XVECEXP (newpat, 0, 1);
2092 SUBST (SET_SRC (newpat),
2093 gen_lowpart_for_combine (GET_MODE (SET_SRC (newpat)), ni2dest));
2094 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
2095
2096 if (i2_code_number >= 0)
2097 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
2098
2099 if (insn_code_number >= 0)
2100 {
2101 rtx insn;
2102 rtx link;
2103
2104 /* If we will be able to accept this, we have made a change to the
2105 destination of I3. This can invalidate a LOG_LINKS pointing
2106 to I3. No other part of combine.c makes such a transformation.
2107
2108 The new I3 will have a destination that was previously the
2109 destination of I1 or I2 and which was used in i2 or I3. Call
2110 distribute_links to make a LOG_LINK from the next use of
2111 that destination. */
2112
2113 PATTERN (i3) = newpat;
2114 distribute_links (gen_rtx_INSN_LIST (VOIDmode, i3, NULL_RTX));
2115
2116 /* I3 now uses what used to be its destination and which is
2117 now I2's destination. That means we need a LOG_LINK from
2118 I3 to I2. But we used to have one, so we still will.
2119
2120 However, some later insn might be using I2's dest and have
2121 a LOG_LINK pointing at I3. We must remove this link.
2122 The simplest way to remove the link is to point it at I1,
2123 which we know will be a NOTE. */
2124
2125 for (insn = NEXT_INSN (i3);
2126 insn && (this_basic_block == n_basic_blocks - 1
2127 || insn != BLOCK_HEAD (this_basic_block + 1));
2128 insn = NEXT_INSN (insn))
2129 {
2130 if (GET_RTX_CLASS (GET_CODE (insn)) == 'i'
2131 && reg_referenced_p (ni2dest, PATTERN (insn)))
2132 {
2133 for (link = LOG_LINKS (insn); link;
2134 link = XEXP (link, 1))
2135 if (XEXP (link, 0) == i3)
2136 XEXP (link, 0) = i1;
2137
2138 break;
2139 }
2140 }
2141 }
2142 }
2143
2144 /* Similarly, check for a case where we have a PARALLEL of two independent
2145 SETs but we started with three insns. In this case, we can do the sets
2146 as two separate insns. This case occurs when some SET allows two
2147 other insns to combine, but the destination of that SET is still live. */
2148
2149 else if (i1 && insn_code_number < 0 && asm_noperands (newpat) < 0
2150 && GET_CODE (newpat) == PARALLEL
2151 && XVECLEN (newpat, 0) == 2
2152 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
2153 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) != ZERO_EXTRACT
2154 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) != STRICT_LOW_PART
2155 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
2156 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != ZERO_EXTRACT
2157 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != STRICT_LOW_PART
2158 && ! use_crosses_set_p (SET_SRC (XVECEXP (newpat, 0, 1)),
2159 INSN_CUID (i2))
2160 /* Don't pass sets with (USE (MEM ...)) dests to the following. */
2161 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != USE
2162 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) != USE
2163 && ! reg_referenced_p (SET_DEST (XVECEXP (newpat, 0, 1)),
2164 XVECEXP (newpat, 0, 0))
2165 && ! reg_referenced_p (SET_DEST (XVECEXP (newpat, 0, 0)),
2166 XVECEXP (newpat, 0, 1)))
2167 {
2168 /* Normally, it doesn't matter which of the two is done first,
2169 but it does if one references cc0. In that case, it has to
2170 be first. */
2171 #ifdef HAVE_cc0
2172 if (reg_referenced_p (cc0_rtx, XVECEXP (newpat, 0, 0)))
2173 {
2174 newi2pat = XVECEXP (newpat, 0, 0);
2175 newpat = XVECEXP (newpat, 0, 1);
2176 }
2177 else
2178 #endif
2179 {
2180 newi2pat = XVECEXP (newpat, 0, 1);
2181 newpat = XVECEXP (newpat, 0, 0);
2182 }
2183
2184 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
2185
2186 if (i2_code_number >= 0)
2187 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
2188 }
2189
2190 /* If it still isn't recognized, fail and change things back the way they
2191 were. */
2192 if ((insn_code_number < 0
2193 /* Is the result a reasonable ASM_OPERANDS? */
2194 && (! check_asm_operands (newpat) || added_sets_1 || added_sets_2)))
2195 {
2196 undo_all ();
2197 return 0;
2198 }
2199
2200 /* If we had to change another insn, make sure it is valid also. */
2201 if (undobuf.other_insn)
2202 {
2203 rtx other_pat = PATTERN (undobuf.other_insn);
2204 rtx new_other_notes;
2205 rtx note, next;
2206
2207 CLEAR_HARD_REG_SET (newpat_used_regs);
2208
2209 other_code_number = recog_for_combine (&other_pat, undobuf.other_insn,
2210 &new_other_notes);
2211
2212 if (other_code_number < 0 && ! check_asm_operands (other_pat))
2213 {
2214 undo_all ();
2215 return 0;
2216 }
2217
2218 PATTERN (undobuf.other_insn) = other_pat;
2219
2220 /* If any of the notes in OTHER_INSN were REG_UNUSED, ensure that they
2221 are still valid. Then add any non-duplicate notes added by
2222 recog_for_combine. */
2223 for (note = REG_NOTES (undobuf.other_insn); note; note = next)
2224 {
2225 next = XEXP (note, 1);
2226
2227 if (REG_NOTE_KIND (note) == REG_UNUSED
2228 && ! reg_set_p (XEXP (note, 0), PATTERN (undobuf.other_insn)))
2229 {
2230 if (GET_CODE (XEXP (note, 0)) == REG)
2231 REG_N_DEATHS (REGNO (XEXP (note, 0)))--;
2232
2233 remove_note (undobuf.other_insn, note);
2234 }
2235 }
2236
2237 for (note = new_other_notes; note; note = XEXP (note, 1))
2238 if (GET_CODE (XEXP (note, 0)) == REG)
2239 REG_N_DEATHS (REGNO (XEXP (note, 0)))++;
2240
2241 distribute_notes (new_other_notes, undobuf.other_insn,
2242 undobuf.other_insn, NULL_RTX, NULL_RTX, NULL_RTX);
2243 }
2244
2245 /* We now know that we can do this combination. Merge the insns and
2246 update the status of registers and LOG_LINKS. */
2247
2248 {
2249 rtx i3notes, i2notes, i1notes = 0;
2250 rtx i3links, i2links, i1links = 0;
2251 rtx midnotes = 0;
2252 register int regno;
2253 /* Compute which registers we expect to eliminate. newi2pat may be setting
2254 either i3dest or i2dest, so we must check it. Also, i1dest may be the
2255 same as i3dest, in which case newi2pat may be setting i1dest. */
2256 rtx elim_i2 = ((newi2pat && reg_set_p (i2dest, newi2pat))
2257 || i2dest_in_i2src || i2dest_in_i1src
2258 ? 0 : i2dest);
2259 rtx elim_i1 = (i1 == 0 || i1dest_in_i1src
2260 || (newi2pat && reg_set_p (i1dest, newi2pat))
2261 ? 0 : i1dest);
2262
2263 /* Get the old REG_NOTES and LOG_LINKS from all our insns and
2264 clear them. */
2265 i3notes = REG_NOTES (i3), i3links = LOG_LINKS (i3);
2266 i2notes = REG_NOTES (i2), i2links = LOG_LINKS (i2);
2267 if (i1)
2268 i1notes = REG_NOTES (i1), i1links = LOG_LINKS (i1);
2269
2270 /* Ensure that we do not have something that should not be shared but
2271 occurs multiple times in the new insns. Check this by first
2272 resetting all the `used' flags and then copying anything is shared. */
2273
2274 reset_used_flags (i3notes);
2275 reset_used_flags (i2notes);
2276 reset_used_flags (i1notes);
2277 reset_used_flags (newpat);
2278 reset_used_flags (newi2pat);
2279 if (undobuf.other_insn)
2280 reset_used_flags (PATTERN (undobuf.other_insn));
2281
2282 i3notes = copy_rtx_if_shared (i3notes);
2283 i2notes = copy_rtx_if_shared (i2notes);
2284 i1notes = copy_rtx_if_shared (i1notes);
2285 newpat = copy_rtx_if_shared (newpat);
2286 newi2pat = copy_rtx_if_shared (newi2pat);
2287 if (undobuf.other_insn)
2288 reset_used_flags (PATTERN (undobuf.other_insn));
2289
2290 INSN_CODE (i3) = insn_code_number;
2291 PATTERN (i3) = newpat;
2292 if (undobuf.other_insn)
2293 INSN_CODE (undobuf.other_insn) = other_code_number;
2294
2295 /* We had one special case above where I2 had more than one set and
2296 we replaced a destination of one of those sets with the destination
2297 of I3. In that case, we have to update LOG_LINKS of insns later
2298 in this basic block. Note that this (expensive) case is rare.
2299
2300 Also, in this case, we must pretend that all REG_NOTEs for I2
2301 actually came from I3, so that REG_UNUSED notes from I2 will be
2302 properly handled. */
2303
2304 if (i3_subst_into_i2)
2305 {
2306 for (i = 0; i < XVECLEN (PATTERN (i2), 0); i++)
2307 if (GET_CODE (SET_DEST (XVECEXP (PATTERN (i2), 0, i))) == REG
2308 && SET_DEST (XVECEXP (PATTERN (i2), 0, i)) != i2dest
2309 && ! find_reg_note (i2, REG_UNUSED,
2310 SET_DEST (XVECEXP (PATTERN (i2), 0, i))))
2311 for (temp = NEXT_INSN (i2);
2312 temp && (this_basic_block == n_basic_blocks - 1
2313 || BLOCK_HEAD (this_basic_block) != temp);
2314 temp = NEXT_INSN (temp))
2315 if (temp != i3 && GET_RTX_CLASS (GET_CODE (temp)) == 'i')
2316 for (link = LOG_LINKS (temp); link; link = XEXP (link, 1))
2317 if (XEXP (link, 0) == i2)
2318 XEXP (link, 0) = i3;
2319
2320 if (i3notes)
2321 {
2322 rtx link = i3notes;
2323 while (XEXP (link, 1))
2324 link = XEXP (link, 1);
2325 XEXP (link, 1) = i2notes;
2326 }
2327 else
2328 i3notes = i2notes;
2329 i2notes = 0;
2330 }
2331
2332 LOG_LINKS (i3) = 0;
2333 REG_NOTES (i3) = 0;
2334 LOG_LINKS (i2) = 0;
2335 REG_NOTES (i2) = 0;
2336
2337 if (newi2pat)
2338 {
2339 INSN_CODE (i2) = i2_code_number;
2340 PATTERN (i2) = newi2pat;
2341 }
2342 else
2343 {
2344 PUT_CODE (i2, NOTE);
2345 NOTE_LINE_NUMBER (i2) = NOTE_INSN_DELETED;
2346 NOTE_SOURCE_FILE (i2) = 0;
2347 }
2348
2349 if (i1)
2350 {
2351 LOG_LINKS (i1) = 0;
2352 REG_NOTES (i1) = 0;
2353 PUT_CODE (i1, NOTE);
2354 NOTE_LINE_NUMBER (i1) = NOTE_INSN_DELETED;
2355 NOTE_SOURCE_FILE (i1) = 0;
2356 }
2357
2358 /* Get death notes for everything that is now used in either I3 or
2359 I2 and used to die in a previous insn. If we built two new
2360 patterns, move from I1 to I2 then I2 to I3 so that we get the
2361 proper movement on registers that I2 modifies. */
2362
2363 if (newi2pat)
2364 {
2365 move_deaths (newi2pat, NULL_RTX, INSN_CUID (i1), i2, &midnotes);
2366 move_deaths (newpat, newi2pat, INSN_CUID (i1), i3, &midnotes);
2367 }
2368 else
2369 move_deaths (newpat, NULL_RTX, i1 ? INSN_CUID (i1) : INSN_CUID (i2),
2370 i3, &midnotes);
2371
2372 /* Distribute all the LOG_LINKS and REG_NOTES from I1, I2, and I3. */
2373 if (i3notes)
2374 distribute_notes (i3notes, i3, i3, newi2pat ? i2 : NULL_RTX,
2375 elim_i2, elim_i1);
2376 if (i2notes)
2377 distribute_notes (i2notes, i2, i3, newi2pat ? i2 : NULL_RTX,
2378 elim_i2, elim_i1);
2379 if (i1notes)
2380 distribute_notes (i1notes, i1, i3, newi2pat ? i2 : NULL_RTX,
2381 elim_i2, elim_i1);
2382 if (midnotes)
2383 distribute_notes (midnotes, NULL_RTX, i3, newi2pat ? i2 : NULL_RTX,
2384 elim_i2, elim_i1);
2385
2386 /* Distribute any notes added to I2 or I3 by recog_for_combine. We
2387 know these are REG_UNUSED and want them to go to the desired insn,
2388 so we always pass it as i3. We have not counted the notes in
2389 reg_n_deaths yet, so we need to do so now. */
2390
2391 if (newi2pat && new_i2_notes)
2392 {
2393 for (temp = new_i2_notes; temp; temp = XEXP (temp, 1))
2394 if (GET_CODE (XEXP (temp, 0)) == REG)
2395 REG_N_DEATHS (REGNO (XEXP (temp, 0)))++;
2396
2397 distribute_notes (new_i2_notes, i2, i2, NULL_RTX, NULL_RTX, NULL_RTX);
2398 }
2399
2400 if (new_i3_notes)
2401 {
2402 for (temp = new_i3_notes; temp; temp = XEXP (temp, 1))
2403 if (GET_CODE (XEXP (temp, 0)) == REG)
2404 REG_N_DEATHS (REGNO (XEXP (temp, 0)))++;
2405
2406 distribute_notes (new_i3_notes, i3, i3, NULL_RTX, NULL_RTX, NULL_RTX);
2407 }
2408
2409 /* If I3DEST was used in I3SRC, it really died in I3. We may need to
2410 put a REG_DEAD note for it somewhere. If NEWI2PAT exists and sets
2411 I3DEST, the death must be somewhere before I2, not I3. If we passed I3
2412 in that case, it might delete I2. Similarly for I2 and I1.
2413 Show an additional death due to the REG_DEAD note we make here. If
2414 we discard it in distribute_notes, we will decrement it again. */
2415
2416 if (i3dest_killed)
2417 {
2418 if (GET_CODE (i3dest_killed) == REG)
2419 REG_N_DEATHS (REGNO (i3dest_killed))++;
2420
2421 if (newi2pat && reg_set_p (i3dest_killed, newi2pat))
2422 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i3dest_killed,
2423 NULL_RTX),
2424 NULL_RTX, i2, NULL_RTX, elim_i2, elim_i1);
2425 else
2426 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i3dest_killed,
2427 NULL_RTX),
2428 NULL_RTX, i3, newi2pat ? i2 : NULL_RTX,
2429 elim_i2, elim_i1);
2430 }
2431
2432 if (i2dest_in_i2src)
2433 {
2434 if (GET_CODE (i2dest) == REG)
2435 REG_N_DEATHS (REGNO (i2dest))++;
2436
2437 if (newi2pat && reg_set_p (i2dest, newi2pat))
2438 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i2dest, NULL_RTX),
2439 NULL_RTX, i2, NULL_RTX, NULL_RTX, NULL_RTX);
2440 else
2441 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i2dest, NULL_RTX),
2442 NULL_RTX, i3, newi2pat ? i2 : NULL_RTX,
2443 NULL_RTX, NULL_RTX);
2444 }
2445
2446 if (i1dest_in_i1src)
2447 {
2448 if (GET_CODE (i1dest) == REG)
2449 REG_N_DEATHS (REGNO (i1dest))++;
2450
2451 if (newi2pat && reg_set_p (i1dest, newi2pat))
2452 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i1dest, NULL_RTX),
2453 NULL_RTX, i2, NULL_RTX, NULL_RTX, NULL_RTX);
2454 else
2455 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i1dest, NULL_RTX),
2456 NULL_RTX, i3, newi2pat ? i2 : NULL_RTX,
2457 NULL_RTX, NULL_RTX);
2458 }
2459
2460 distribute_links (i3links);
2461 distribute_links (i2links);
2462 distribute_links (i1links);
2463
2464 if (GET_CODE (i2dest) == REG)
2465 {
2466 rtx link;
2467 rtx i2_insn = 0, i2_val = 0, set;
2468
2469 /* The insn that used to set this register doesn't exist, and
2470 this life of the register may not exist either. See if one of
2471 I3's links points to an insn that sets I2DEST. If it does,
2472 that is now the last known value for I2DEST. If we don't update
2473 this and I2 set the register to a value that depended on its old
2474 contents, we will get confused. If this insn is used, thing
2475 will be set correctly in combine_instructions. */
2476
2477 for (link = LOG_LINKS (i3); link; link = XEXP (link, 1))
2478 if ((set = single_set (XEXP (link, 0))) != 0
2479 && rtx_equal_p (i2dest, SET_DEST (set)))
2480 i2_insn = XEXP (link, 0), i2_val = SET_SRC (set);
2481
2482 record_value_for_reg (i2dest, i2_insn, i2_val);
2483
2484 /* If the reg formerly set in I2 died only once and that was in I3,
2485 zero its use count so it won't make `reload' do any work. */
2486 if (! added_sets_2
2487 && (newi2pat == 0 || ! reg_mentioned_p (i2dest, newi2pat))
2488 && ! i2dest_in_i2src)
2489 {
2490 regno = REGNO (i2dest);
2491 REG_N_SETS (regno)--;
2492 if (REG_N_SETS (regno) == 0
2493 && ! REGNO_REG_SET_P (basic_block_live_at_start[0], regno))
2494 REG_N_REFS (regno) = 0;
2495 }
2496 }
2497
2498 if (i1 && GET_CODE (i1dest) == REG)
2499 {
2500 rtx link;
2501 rtx i1_insn = 0, i1_val = 0, set;
2502
2503 for (link = LOG_LINKS (i3); link; link = XEXP (link, 1))
2504 if ((set = single_set (XEXP (link, 0))) != 0
2505 && rtx_equal_p (i1dest, SET_DEST (set)))
2506 i1_insn = XEXP (link, 0), i1_val = SET_SRC (set);
2507
2508 record_value_for_reg (i1dest, i1_insn, i1_val);
2509
2510 regno = REGNO (i1dest);
2511 if (! added_sets_1 && ! i1dest_in_i1src)
2512 {
2513 REG_N_SETS (regno)--;
2514 if (REG_N_SETS (regno) == 0
2515 && ! REGNO_REG_SET_P (basic_block_live_at_start[0], regno))
2516 REG_N_REFS (regno) = 0;
2517 }
2518 }
2519
2520 /* Update reg_nonzero_bits et al for any changes that may have been made
2521 to this insn. */
2522
2523 note_stores (newpat, set_nonzero_bits_and_sign_copies);
2524 if (newi2pat)
2525 note_stores (newi2pat, set_nonzero_bits_and_sign_copies);
2526
2527 /* If I3 is now an unconditional jump, ensure that it has a
2528 BARRIER following it since it may have initially been a
2529 conditional jump. It may also be the last nonnote insn. */
2530
2531 if ((GET_CODE (newpat) == RETURN || simplejump_p (i3))
2532 && ((temp = next_nonnote_insn (i3)) == NULL_RTX
2533 || GET_CODE (temp) != BARRIER))
2534 emit_barrier_after (i3);
2535 }
2536
2537 combine_successes++;
2538
2539 /* Clear this here, so that subsequent get_last_value calls are not
2540 affected. */
2541 subst_prev_insn = NULL_RTX;
2542
2543 if (added_links_insn
2544 && (newi2pat == 0 || INSN_CUID (added_links_insn) < INSN_CUID (i2))
2545 && INSN_CUID (added_links_insn) < INSN_CUID (i3))
2546 return added_links_insn;
2547 else
2548 return newi2pat ? i2 : i3;
2549 }
2550 \f
2551 /* Undo all the modifications recorded in undobuf. */
2552
2553 static void
2554 undo_all ()
2555 {
2556 struct undo *undo, *next;
2557
2558 for (undo = undobuf.undos; undo; undo = next)
2559 {
2560 next = undo->next;
2561 if (undo->is_int)
2562 *undo->where.i = undo->old_contents.i;
2563 else
2564 *undo->where.r = undo->old_contents.r;
2565
2566 undo->next = undobuf.frees;
2567 undobuf.frees = undo;
2568 }
2569
2570 obfree (undobuf.storage);
2571 undobuf.undos = undobuf.previous_undos = 0;
2572
2573 /* Clear this here, so that subsequent get_last_value calls are not
2574 affected. */
2575 subst_prev_insn = NULL_RTX;
2576 }
2577 \f
2578 /* Find the innermost point within the rtx at LOC, possibly LOC itself,
2579 where we have an arithmetic expression and return that point. LOC will
2580 be inside INSN.
2581
2582 try_combine will call this function to see if an insn can be split into
2583 two insns. */
2584
2585 static rtx *
2586 find_split_point (loc, insn)
2587 rtx *loc;
2588 rtx insn;
2589 {
2590 rtx x = *loc;
2591 enum rtx_code code = GET_CODE (x);
2592 rtx *split;
2593 int len = 0, pos, unsignedp;
2594 rtx inner;
2595
2596 /* First special-case some codes. */
2597 switch (code)
2598 {
2599 case SUBREG:
2600 #ifdef INSN_SCHEDULING
2601 /* If we are making a paradoxical SUBREG invalid, it becomes a split
2602 point. */
2603 if (GET_CODE (SUBREG_REG (x)) == MEM)
2604 return loc;
2605 #endif
2606 return find_split_point (&SUBREG_REG (x), insn);
2607
2608 case MEM:
2609 #ifdef HAVE_lo_sum
2610 /* If we have (mem (const ..)) or (mem (symbol_ref ...)), split it
2611 using LO_SUM and HIGH. */
2612 if (GET_CODE (XEXP (x, 0)) == CONST
2613 || GET_CODE (XEXP (x, 0)) == SYMBOL_REF)
2614 {
2615 SUBST (XEXP (x, 0),
2616 gen_rtx_combine (LO_SUM, Pmode,
2617 gen_rtx_combine (HIGH, Pmode, XEXP (x, 0)),
2618 XEXP (x, 0)));
2619 return &XEXP (XEXP (x, 0), 0);
2620 }
2621 #endif
2622
2623 /* If we have a PLUS whose second operand is a constant and the
2624 address is not valid, perhaps will can split it up using
2625 the machine-specific way to split large constants. We use
2626 the first pseudo-reg (one of the virtual regs) as a placeholder;
2627 it will not remain in the result. */
2628 if (GET_CODE (XEXP (x, 0)) == PLUS
2629 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
2630 && ! memory_address_p (GET_MODE (x), XEXP (x, 0)))
2631 {
2632 rtx reg = regno_reg_rtx[FIRST_PSEUDO_REGISTER];
2633 rtx seq = split_insns (gen_rtx_SET (VOIDmode, reg, XEXP (x, 0)),
2634 subst_insn);
2635
2636 /* This should have produced two insns, each of which sets our
2637 placeholder. If the source of the second is a valid address,
2638 we can make put both sources together and make a split point
2639 in the middle. */
2640
2641 if (seq && XVECLEN (seq, 0) == 2
2642 && GET_CODE (XVECEXP (seq, 0, 0)) == INSN
2643 && GET_CODE (PATTERN (XVECEXP (seq, 0, 0))) == SET
2644 && SET_DEST (PATTERN (XVECEXP (seq, 0, 0))) == reg
2645 && ! reg_mentioned_p (reg,
2646 SET_SRC (PATTERN (XVECEXP (seq, 0, 0))))
2647 && GET_CODE (XVECEXP (seq, 0, 1)) == INSN
2648 && GET_CODE (PATTERN (XVECEXP (seq, 0, 1))) == SET
2649 && SET_DEST (PATTERN (XVECEXP (seq, 0, 1))) == reg
2650 && memory_address_p (GET_MODE (x),
2651 SET_SRC (PATTERN (XVECEXP (seq, 0, 1)))))
2652 {
2653 rtx src1 = SET_SRC (PATTERN (XVECEXP (seq, 0, 0)));
2654 rtx src2 = SET_SRC (PATTERN (XVECEXP (seq, 0, 1)));
2655
2656 /* Replace the placeholder in SRC2 with SRC1. If we can
2657 find where in SRC2 it was placed, that can become our
2658 split point and we can replace this address with SRC2.
2659 Just try two obvious places. */
2660
2661 src2 = replace_rtx (src2, reg, src1);
2662 split = 0;
2663 if (XEXP (src2, 0) == src1)
2664 split = &XEXP (src2, 0);
2665 else if (GET_RTX_FORMAT (GET_CODE (XEXP (src2, 0)))[0] == 'e'
2666 && XEXP (XEXP (src2, 0), 0) == src1)
2667 split = &XEXP (XEXP (src2, 0), 0);
2668
2669 if (split)
2670 {
2671 SUBST (XEXP (x, 0), src2);
2672 return split;
2673 }
2674 }
2675
2676 /* If that didn't work, perhaps the first operand is complex and
2677 needs to be computed separately, so make a split point there.
2678 This will occur on machines that just support REG + CONST
2679 and have a constant moved through some previous computation. */
2680
2681 else if (GET_RTX_CLASS (GET_CODE (XEXP (XEXP (x, 0), 0))) != 'o'
2682 && ! (GET_CODE (XEXP (XEXP (x, 0), 0)) == SUBREG
2683 && (GET_RTX_CLASS (GET_CODE (SUBREG_REG (XEXP (XEXP (x, 0), 0))))
2684 == 'o')))
2685 return &XEXP (XEXP (x, 0), 0);
2686 }
2687 break;
2688
2689 case SET:
2690 #ifdef HAVE_cc0
2691 /* If SET_DEST is CC0 and SET_SRC is not an operand, a COMPARE, or a
2692 ZERO_EXTRACT, the most likely reason why this doesn't match is that
2693 we need to put the operand into a register. So split at that
2694 point. */
2695
2696 if (SET_DEST (x) == cc0_rtx
2697 && GET_CODE (SET_SRC (x)) != COMPARE
2698 && GET_CODE (SET_SRC (x)) != ZERO_EXTRACT
2699 && GET_RTX_CLASS (GET_CODE (SET_SRC (x))) != 'o'
2700 && ! (GET_CODE (SET_SRC (x)) == SUBREG
2701 && GET_RTX_CLASS (GET_CODE (SUBREG_REG (SET_SRC (x)))) == 'o'))
2702 return &SET_SRC (x);
2703 #endif
2704
2705 /* See if we can split SET_SRC as it stands. */
2706 split = find_split_point (&SET_SRC (x), insn);
2707 if (split && split != &SET_SRC (x))
2708 return split;
2709
2710 /* See if we can split SET_DEST as it stands. */
2711 split = find_split_point (&SET_DEST (x), insn);
2712 if (split && split != &SET_DEST (x))
2713 return split;
2714
2715 /* See if this is a bitfield assignment with everything constant. If
2716 so, this is an IOR of an AND, so split it into that. */
2717 if (GET_CODE (SET_DEST (x)) == ZERO_EXTRACT
2718 && (GET_MODE_BITSIZE (GET_MODE (XEXP (SET_DEST (x), 0)))
2719 <= HOST_BITS_PER_WIDE_INT)
2720 && GET_CODE (XEXP (SET_DEST (x), 1)) == CONST_INT
2721 && GET_CODE (XEXP (SET_DEST (x), 2)) == CONST_INT
2722 && GET_CODE (SET_SRC (x)) == CONST_INT
2723 && ((INTVAL (XEXP (SET_DEST (x), 1))
2724 + INTVAL (XEXP (SET_DEST (x), 2)))
2725 <= GET_MODE_BITSIZE (GET_MODE (XEXP (SET_DEST (x), 0))))
2726 && ! side_effects_p (XEXP (SET_DEST (x), 0)))
2727 {
2728 int pos = INTVAL (XEXP (SET_DEST (x), 2));
2729 int len = INTVAL (XEXP (SET_DEST (x), 1));
2730 int src = INTVAL (SET_SRC (x));
2731 rtx dest = XEXP (SET_DEST (x), 0);
2732 enum machine_mode mode = GET_MODE (dest);
2733 unsigned HOST_WIDE_INT mask = ((HOST_WIDE_INT) 1 << len) - 1;
2734
2735 if (BITS_BIG_ENDIAN)
2736 pos = GET_MODE_BITSIZE (mode) - len - pos;
2737
2738 if ((unsigned HOST_WIDE_INT) src == mask)
2739 SUBST (SET_SRC (x),
2740 gen_binary (IOR, mode, dest, GEN_INT (src << pos)));
2741 else
2742 SUBST (SET_SRC (x),
2743 gen_binary (IOR, mode,
2744 gen_binary (AND, mode, dest,
2745 GEN_INT (~ (mask << pos)
2746 & GET_MODE_MASK (mode))),
2747 GEN_INT (src << pos)));
2748
2749 SUBST (SET_DEST (x), dest);
2750
2751 split = find_split_point (&SET_SRC (x), insn);
2752 if (split && split != &SET_SRC (x))
2753 return split;
2754 }
2755
2756 /* Otherwise, see if this is an operation that we can split into two.
2757 If so, try to split that. */
2758 code = GET_CODE (SET_SRC (x));
2759
2760 switch (code)
2761 {
2762 case AND:
2763 /* If we are AND'ing with a large constant that is only a single
2764 bit and the result is only being used in a context where we
2765 need to know if it is zero or non-zero, replace it with a bit
2766 extraction. This will avoid the large constant, which might
2767 have taken more than one insn to make. If the constant were
2768 not a valid argument to the AND but took only one insn to make,
2769 this is no worse, but if it took more than one insn, it will
2770 be better. */
2771
2772 if (GET_CODE (XEXP (SET_SRC (x), 1)) == CONST_INT
2773 && GET_CODE (XEXP (SET_SRC (x), 0)) == REG
2774 && (pos = exact_log2 (INTVAL (XEXP (SET_SRC (x), 1)))) >= 7
2775 && GET_CODE (SET_DEST (x)) == REG
2776 && (split = find_single_use (SET_DEST (x), insn, NULL_PTR)) != 0
2777 && (GET_CODE (*split) == EQ || GET_CODE (*split) == NE)
2778 && XEXP (*split, 0) == SET_DEST (x)
2779 && XEXP (*split, 1) == const0_rtx)
2780 {
2781 rtx extraction = make_extraction (GET_MODE (SET_DEST (x)),
2782 XEXP (SET_SRC (x), 0),
2783 pos, NULL_RTX, 1, 1, 0, 0);
2784 if (extraction != 0)
2785 {
2786 SUBST (SET_SRC (x), extraction);
2787 return find_split_point (loc, insn);
2788 }
2789 }
2790 break;
2791
2792 case NE:
2793 /* if STORE_FLAG_VALUE is -1, this is (NE X 0) and only one bit of X
2794 is known to be on, this can be converted into a NEG of a shift. */
2795 if (STORE_FLAG_VALUE == -1 && XEXP (SET_SRC (x), 1) == const0_rtx
2796 && GET_MODE (SET_SRC (x)) == GET_MODE (XEXP (SET_SRC (x), 0))
2797 && 1 <= (pos = exact_log2
2798 (nonzero_bits (XEXP (SET_SRC (x), 0),
2799 GET_MODE (XEXP (SET_SRC (x), 0))))))
2800 {
2801 enum machine_mode mode = GET_MODE (XEXP (SET_SRC (x), 0));
2802
2803 SUBST (SET_SRC (x),
2804 gen_rtx_combine (NEG, mode,
2805 gen_rtx_combine (LSHIFTRT, mode,
2806 XEXP (SET_SRC (x), 0),
2807 GEN_INT (pos))));
2808
2809 split = find_split_point (&SET_SRC (x), insn);
2810 if (split && split != &SET_SRC (x))
2811 return split;
2812 }
2813 break;
2814
2815 case SIGN_EXTEND:
2816 inner = XEXP (SET_SRC (x), 0);
2817
2818 /* We can't optimize if either mode is a partial integer
2819 mode as we don't know how many bits are significant
2820 in those modes. */
2821 if (GET_MODE_CLASS (GET_MODE (inner)) == MODE_PARTIAL_INT
2822 || GET_MODE_CLASS (GET_MODE (SET_SRC (x))) == MODE_PARTIAL_INT)
2823 break;
2824
2825 pos = 0;
2826 len = GET_MODE_BITSIZE (GET_MODE (inner));
2827 unsignedp = 0;
2828 break;
2829
2830 case SIGN_EXTRACT:
2831 case ZERO_EXTRACT:
2832 if (GET_CODE (XEXP (SET_SRC (x), 1)) == CONST_INT
2833 && GET_CODE (XEXP (SET_SRC (x), 2)) == CONST_INT)
2834 {
2835 inner = XEXP (SET_SRC (x), 0);
2836 len = INTVAL (XEXP (SET_SRC (x), 1));
2837 pos = INTVAL (XEXP (SET_SRC (x), 2));
2838
2839 if (BITS_BIG_ENDIAN)
2840 pos = GET_MODE_BITSIZE (GET_MODE (inner)) - len - pos;
2841 unsignedp = (code == ZERO_EXTRACT);
2842 }
2843 break;
2844
2845 default:
2846 break;
2847 }
2848
2849 if (len && pos >= 0 && pos + len <= GET_MODE_BITSIZE (GET_MODE (inner)))
2850 {
2851 enum machine_mode mode = GET_MODE (SET_SRC (x));
2852
2853 /* For unsigned, we have a choice of a shift followed by an
2854 AND or two shifts. Use two shifts for field sizes where the
2855 constant might be too large. We assume here that we can
2856 always at least get 8-bit constants in an AND insn, which is
2857 true for every current RISC. */
2858
2859 if (unsignedp && len <= 8)
2860 {
2861 SUBST (SET_SRC (x),
2862 gen_rtx_combine
2863 (AND, mode,
2864 gen_rtx_combine (LSHIFTRT, mode,
2865 gen_lowpart_for_combine (mode, inner),
2866 GEN_INT (pos)),
2867 GEN_INT (((HOST_WIDE_INT) 1 << len) - 1)));
2868
2869 split = find_split_point (&SET_SRC (x), insn);
2870 if (split && split != &SET_SRC (x))
2871 return split;
2872 }
2873 else
2874 {
2875 SUBST (SET_SRC (x),
2876 gen_rtx_combine
2877 (unsignedp ? LSHIFTRT : ASHIFTRT, mode,
2878 gen_rtx_combine (ASHIFT, mode,
2879 gen_lowpart_for_combine (mode, inner),
2880 GEN_INT (GET_MODE_BITSIZE (mode)
2881 - len - pos)),
2882 GEN_INT (GET_MODE_BITSIZE (mode) - len)));
2883
2884 split = find_split_point (&SET_SRC (x), insn);
2885 if (split && split != &SET_SRC (x))
2886 return split;
2887 }
2888 }
2889
2890 /* See if this is a simple operation with a constant as the second
2891 operand. It might be that this constant is out of range and hence
2892 could be used as a split point. */
2893 if ((GET_RTX_CLASS (GET_CODE (SET_SRC (x))) == '2'
2894 || GET_RTX_CLASS (GET_CODE (SET_SRC (x))) == 'c'
2895 || GET_RTX_CLASS (GET_CODE (SET_SRC (x))) == '<')
2896 && CONSTANT_P (XEXP (SET_SRC (x), 1))
2897 && (GET_RTX_CLASS (GET_CODE (XEXP (SET_SRC (x), 0))) == 'o'
2898 || (GET_CODE (XEXP (SET_SRC (x), 0)) == SUBREG
2899 && (GET_RTX_CLASS (GET_CODE (SUBREG_REG (XEXP (SET_SRC (x), 0))))
2900 == 'o'))))
2901 return &XEXP (SET_SRC (x), 1);
2902
2903 /* Finally, see if this is a simple operation with its first operand
2904 not in a register. The operation might require this operand in a
2905 register, so return it as a split point. We can always do this
2906 because if the first operand were another operation, we would have
2907 already found it as a split point. */
2908 if ((GET_RTX_CLASS (GET_CODE (SET_SRC (x))) == '2'
2909 || GET_RTX_CLASS (GET_CODE (SET_SRC (x))) == 'c'
2910 || GET_RTX_CLASS (GET_CODE (SET_SRC (x))) == '<'
2911 || GET_RTX_CLASS (GET_CODE (SET_SRC (x))) == '1')
2912 && ! register_operand (XEXP (SET_SRC (x), 0), VOIDmode))
2913 return &XEXP (SET_SRC (x), 0);
2914
2915 return 0;
2916
2917 case AND:
2918 case IOR:
2919 /* We write NOR as (and (not A) (not B)), but if we don't have a NOR,
2920 it is better to write this as (not (ior A B)) so we can split it.
2921 Similarly for IOR. */
2922 if (GET_CODE (XEXP (x, 0)) == NOT && GET_CODE (XEXP (x, 1)) == NOT)
2923 {
2924 SUBST (*loc,
2925 gen_rtx_combine (NOT, GET_MODE (x),
2926 gen_rtx_combine (code == IOR ? AND : IOR,
2927 GET_MODE (x),
2928 XEXP (XEXP (x, 0), 0),
2929 XEXP (XEXP (x, 1), 0))));
2930 return find_split_point (loc, insn);
2931 }
2932
2933 /* Many RISC machines have a large set of logical insns. If the
2934 second operand is a NOT, put it first so we will try to split the
2935 other operand first. */
2936 if (GET_CODE (XEXP (x, 1)) == NOT)
2937 {
2938 rtx tem = XEXP (x, 0);
2939 SUBST (XEXP (x, 0), XEXP (x, 1));
2940 SUBST (XEXP (x, 1), tem);
2941 }
2942 break;
2943
2944 default:
2945 break;
2946 }
2947
2948 /* Otherwise, select our actions depending on our rtx class. */
2949 switch (GET_RTX_CLASS (code))
2950 {
2951 case 'b': /* This is ZERO_EXTRACT and SIGN_EXTRACT. */
2952 case '3':
2953 split = find_split_point (&XEXP (x, 2), insn);
2954 if (split)
2955 return split;
2956 /* ... fall through ... */
2957 case '2':
2958 case 'c':
2959 case '<':
2960 split = find_split_point (&XEXP (x, 1), insn);
2961 if (split)
2962 return split;
2963 /* ... fall through ... */
2964 case '1':
2965 /* Some machines have (and (shift ...) ...) insns. If X is not
2966 an AND, but XEXP (X, 0) is, use it as our split point. */
2967 if (GET_CODE (x) != AND && GET_CODE (XEXP (x, 0)) == AND)
2968 return &XEXP (x, 0);
2969
2970 split = find_split_point (&XEXP (x, 0), insn);
2971 if (split)
2972 return split;
2973 return loc;
2974 }
2975
2976 /* Otherwise, we don't have a split point. */
2977 return 0;
2978 }
2979 \f
2980 /* Throughout X, replace FROM with TO, and return the result.
2981 The result is TO if X is FROM;
2982 otherwise the result is X, but its contents may have been modified.
2983 If they were modified, a record was made in undobuf so that
2984 undo_all will (among other things) return X to its original state.
2985
2986 If the number of changes necessary is too much to record to undo,
2987 the excess changes are not made, so the result is invalid.
2988 The changes already made can still be undone.
2989 undobuf.num_undo is incremented for such changes, so by testing that
2990 the caller can tell whether the result is valid.
2991
2992 `n_occurrences' is incremented each time FROM is replaced.
2993
2994 IN_DEST is non-zero if we are processing the SET_DEST of a SET.
2995
2996 UNIQUE_COPY is non-zero if each substitution must be unique. We do this
2997 by copying if `n_occurrences' is non-zero. */
2998
2999 static rtx
3000 subst (x, from, to, in_dest, unique_copy)
3001 register rtx x, from, to;
3002 int in_dest;
3003 int unique_copy;
3004 {
3005 register enum rtx_code code = GET_CODE (x);
3006 enum machine_mode op0_mode = VOIDmode;
3007 register char *fmt;
3008 register int len, i;
3009 rtx new;
3010
3011 /* Two expressions are equal if they are identical copies of a shared
3012 RTX or if they are both registers with the same register number
3013 and mode. */
3014
3015 #define COMBINE_RTX_EQUAL_P(X,Y) \
3016 ((X) == (Y) \
3017 || (GET_CODE (X) == REG && GET_CODE (Y) == REG \
3018 && REGNO (X) == REGNO (Y) && GET_MODE (X) == GET_MODE (Y)))
3019
3020 if (! in_dest && COMBINE_RTX_EQUAL_P (x, from))
3021 {
3022 n_occurrences++;
3023 return (unique_copy && n_occurrences > 1 ? copy_rtx (to) : to);
3024 }
3025
3026 /* If X and FROM are the same register but different modes, they will
3027 not have been seen as equal above. However, flow.c will make a
3028 LOG_LINKS entry for that case. If we do nothing, we will try to
3029 rerecognize our original insn and, when it succeeds, we will
3030 delete the feeding insn, which is incorrect.
3031
3032 So force this insn not to match in this (rare) case. */
3033 if (! in_dest && code == REG && GET_CODE (from) == REG
3034 && REGNO (x) == REGNO (from))
3035 return gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
3036
3037 /* If this is an object, we are done unless it is a MEM or LO_SUM, both
3038 of which may contain things that can be combined. */
3039 if (code != MEM && code != LO_SUM && GET_RTX_CLASS (code) == 'o')
3040 return x;
3041
3042 /* It is possible to have a subexpression appear twice in the insn.
3043 Suppose that FROM is a register that appears within TO.
3044 Then, after that subexpression has been scanned once by `subst',
3045 the second time it is scanned, TO may be found. If we were
3046 to scan TO here, we would find FROM within it and create a
3047 self-referent rtl structure which is completely wrong. */
3048 if (COMBINE_RTX_EQUAL_P (x, to))
3049 return to;
3050
3051 /* Parallel asm_operands need special attention because all of the
3052 inputs are shared across the arms. Furthermore, unsharing the
3053 rtl results in recognition failures. Failure to handle this case
3054 specially can result in circular rtl.
3055
3056 Solve this by doing a normal pass across the first entry of the
3057 parallel, and only processing the SET_DESTs of the subsequent
3058 entries. Ug. */
3059
3060 if (code == PARALLEL
3061 && GET_CODE (XVECEXP (x, 0, 0)) == SET
3062 && GET_CODE (SET_SRC (XVECEXP (x, 0, 0))) == ASM_OPERANDS)
3063 {
3064 new = subst (XVECEXP (x, 0, 0), from, to, 0, unique_copy);
3065
3066 /* If this substitution failed, this whole thing fails. */
3067 if (GET_CODE (new) == CLOBBER
3068 && XEXP (new, 0) == const0_rtx)
3069 return new;
3070
3071 SUBST (XVECEXP (x, 0, 0), new);
3072
3073 for (i = XVECLEN (x, 0) - 1; i >= 1; i--)
3074 {
3075 rtx dest = SET_DEST (XVECEXP (x, 0, i));
3076
3077 if (GET_CODE (dest) != REG
3078 && GET_CODE (dest) != CC0
3079 && GET_CODE (dest) != PC)
3080 {
3081 new = subst (dest, from, to, 0, unique_copy);
3082
3083 /* If this substitution failed, this whole thing fails. */
3084 if (GET_CODE (new) == CLOBBER
3085 && XEXP (new, 0) == const0_rtx)
3086 return new;
3087
3088 SUBST (SET_DEST (XVECEXP (x, 0, i)), new);
3089 }
3090 }
3091 }
3092 else
3093 {
3094 len = GET_RTX_LENGTH (code);
3095 fmt = GET_RTX_FORMAT (code);
3096
3097 /* We don't need to process a SET_DEST that is a register, CC0,
3098 or PC, so set up to skip this common case. All other cases
3099 where we want to suppress replacing something inside a
3100 SET_SRC are handled via the IN_DEST operand. */
3101 if (code == SET
3102 && (GET_CODE (SET_DEST (x)) == REG
3103 || GET_CODE (SET_DEST (x)) == CC0
3104 || GET_CODE (SET_DEST (x)) == PC))
3105 fmt = "ie";
3106
3107 /* Get the mode of operand 0 in case X is now a SIGN_EXTEND of a
3108 constant. */
3109 if (fmt[0] == 'e')
3110 op0_mode = GET_MODE (XEXP (x, 0));
3111
3112 for (i = 0; i < len; i++)
3113 {
3114 if (fmt[i] == 'E')
3115 {
3116 register int j;
3117 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3118 {
3119 if (COMBINE_RTX_EQUAL_P (XVECEXP (x, i, j), from))
3120 {
3121 new = (unique_copy && n_occurrences
3122 ? copy_rtx (to) : to);
3123 n_occurrences++;
3124 }
3125 else
3126 {
3127 new = subst (XVECEXP (x, i, j), from, to, 0,
3128 unique_copy);
3129
3130 /* If this substitution failed, this whole thing
3131 fails. */
3132 if (GET_CODE (new) == CLOBBER
3133 && XEXP (new, 0) == const0_rtx)
3134 return new;
3135 }
3136
3137 SUBST (XVECEXP (x, i, j), new);
3138 }
3139 }
3140 else if (fmt[i] == 'e')
3141 {
3142 if (COMBINE_RTX_EQUAL_P (XEXP (x, i), from))
3143 {
3144 /* In general, don't install a subreg involving two
3145 modes not tieable. It can worsen register
3146 allocation, and can even make invalid reload
3147 insns, since the reg inside may need to be copied
3148 from in the outside mode, and that may be invalid
3149 if it is an fp reg copied in integer mode.
3150
3151 We allow two exceptions to this: It is valid if
3152 it is inside another SUBREG and the mode of that
3153 SUBREG and the mode of the inside of TO is
3154 tieable and it is valid if X is a SET that copies
3155 FROM to CC0. */
3156
3157 if (GET_CODE (to) == SUBREG
3158 && ! MODES_TIEABLE_P (GET_MODE (to),
3159 GET_MODE (SUBREG_REG (to)))
3160 && ! (code == SUBREG
3161 && MODES_TIEABLE_P (GET_MODE (x),
3162 GET_MODE (SUBREG_REG (to))))
3163 #ifdef HAVE_cc0
3164 && ! (code == SET && i == 1 && XEXP (x, 0) == cc0_rtx)
3165 #endif
3166 )
3167 return gen_rtx_CLOBBER (VOIDmode, const0_rtx);
3168
3169 new = (unique_copy && n_occurrences ? copy_rtx (to) : to);
3170 n_occurrences++;
3171 }
3172 else
3173 /* If we are in a SET_DEST, suppress most cases unless we
3174 have gone inside a MEM, in which case we want to
3175 simplify the address. We assume here that things that
3176 are actually part of the destination have their inner
3177 parts in the first expression. This is true for SUBREG,
3178 STRICT_LOW_PART, and ZERO_EXTRACT, which are the only
3179 things aside from REG and MEM that should appear in a
3180 SET_DEST. */
3181 new = subst (XEXP (x, i), from, to,
3182 (((in_dest
3183 && (code == SUBREG || code == STRICT_LOW_PART
3184 || code == ZERO_EXTRACT))
3185 || code == SET)
3186 && i == 0), unique_copy);
3187
3188 /* If we found that we will have to reject this combination,
3189 indicate that by returning the CLOBBER ourselves, rather than
3190 an expression containing it. This will speed things up as
3191 well as prevent accidents where two CLOBBERs are considered
3192 to be equal, thus producing an incorrect simplification. */
3193
3194 if (GET_CODE (new) == CLOBBER && XEXP (new, 0) == const0_rtx)
3195 return new;
3196
3197 SUBST (XEXP (x, i), new);
3198 }
3199 }
3200 }
3201
3202 /* Try to simplify X. If the simplification changed the code, it is likely
3203 that further simplification will help, so loop, but limit the number
3204 of repetitions that will be performed. */
3205
3206 for (i = 0; i < 4; i++)
3207 {
3208 /* If X is sufficiently simple, don't bother trying to do anything
3209 with it. */
3210 if (code != CONST_INT && code != REG && code != CLOBBER)
3211 x = simplify_rtx (x, op0_mode, i == 3, in_dest);
3212
3213 if (GET_CODE (x) == code)
3214 break;
3215
3216 code = GET_CODE (x);
3217
3218 /* We no longer know the original mode of operand 0 since we
3219 have changed the form of X) */
3220 op0_mode = VOIDmode;
3221 }
3222
3223 return x;
3224 }
3225 \f
3226 /* Simplify X, a piece of RTL. We just operate on the expression at the
3227 outer level; call `subst' to simplify recursively. Return the new
3228 expression.
3229
3230 OP0_MODE is the original mode of XEXP (x, 0); LAST is nonzero if this
3231 will be the iteration even if an expression with a code different from
3232 X is returned; IN_DEST is nonzero if we are inside a SET_DEST. */
3233
3234 static rtx
3235 simplify_rtx (x, op0_mode, last, in_dest)
3236 rtx x;
3237 enum machine_mode op0_mode;
3238 int last;
3239 int in_dest;
3240 {
3241 enum rtx_code code = GET_CODE (x);
3242 enum machine_mode mode = GET_MODE (x);
3243 rtx temp;
3244 int i;
3245
3246 /* If this is a commutative operation, put a constant last and a complex
3247 expression first. We don't need to do this for comparisons here. */
3248 if (GET_RTX_CLASS (code) == 'c'
3249 && ((CONSTANT_P (XEXP (x, 0)) && GET_CODE (XEXP (x, 1)) != CONST_INT)
3250 || (GET_RTX_CLASS (GET_CODE (XEXP (x, 0))) == 'o'
3251 && GET_RTX_CLASS (GET_CODE (XEXP (x, 1))) != 'o')
3252 || (GET_CODE (XEXP (x, 0)) == SUBREG
3253 && GET_RTX_CLASS (GET_CODE (SUBREG_REG (XEXP (x, 0)))) == 'o'
3254 && GET_RTX_CLASS (GET_CODE (XEXP (x, 1))) != 'o')))
3255 {
3256 temp = XEXP (x, 0);
3257 SUBST (XEXP (x, 0), XEXP (x, 1));
3258 SUBST (XEXP (x, 1), temp);
3259 }
3260
3261 /* If this is a PLUS, MINUS, or MULT, and the first operand is the
3262 sign extension of a PLUS with a constant, reverse the order of the sign
3263 extension and the addition. Note that this not the same as the original
3264 code, but overflow is undefined for signed values. Also note that the
3265 PLUS will have been partially moved "inside" the sign-extension, so that
3266 the first operand of X will really look like:
3267 (ashiftrt (plus (ashift A C4) C5) C4).
3268 We convert this to
3269 (plus (ashiftrt (ashift A C4) C2) C4)
3270 and replace the first operand of X with that expression. Later parts
3271 of this function may simplify the expression further.
3272
3273 For example, if we start with (mult (sign_extend (plus A C1)) C2),
3274 we swap the SIGN_EXTEND and PLUS. Later code will apply the
3275 distributive law to produce (plus (mult (sign_extend X) C1) C3).
3276
3277 We do this to simplify address expressions. */
3278
3279 if ((code == PLUS || code == MINUS || code == MULT)
3280 && GET_CODE (XEXP (x, 0)) == ASHIFTRT
3281 && GET_CODE (XEXP (XEXP (x, 0), 0)) == PLUS
3282 && GET_CODE (XEXP (XEXP (XEXP (x, 0), 0), 0)) == ASHIFT
3283 && GET_CODE (XEXP (XEXP (XEXP (XEXP (x, 0), 0), 0), 1)) == CONST_INT
3284 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
3285 && XEXP (XEXP (XEXP (XEXP (x, 0), 0), 0), 1) == XEXP (XEXP (x, 0), 1)
3286 && GET_CODE (XEXP (XEXP (XEXP (x, 0), 0), 1)) == CONST_INT
3287 && (temp = simplify_binary_operation (ASHIFTRT, mode,
3288 XEXP (XEXP (XEXP (x, 0), 0), 1),
3289 XEXP (XEXP (x, 0), 1))) != 0)
3290 {
3291 rtx new
3292 = simplify_shift_const (NULL_RTX, ASHIFT, mode,
3293 XEXP (XEXP (XEXP (XEXP (x, 0), 0), 0), 0),
3294 INTVAL (XEXP (XEXP (x, 0), 1)));
3295
3296 new = simplify_shift_const (NULL_RTX, ASHIFTRT, mode, new,
3297 INTVAL (XEXP (XEXP (x, 0), 1)));
3298
3299 SUBST (XEXP (x, 0), gen_binary (PLUS, mode, new, temp));
3300 }
3301
3302 /* If this is a simple operation applied to an IF_THEN_ELSE, try
3303 applying it to the arms of the IF_THEN_ELSE. This often simplifies
3304 things. Check for cases where both arms are testing the same
3305 condition.
3306
3307 Don't do anything if all operands are very simple. */
3308
3309 if (((GET_RTX_CLASS (code) == '2' || GET_RTX_CLASS (code) == 'c'
3310 || GET_RTX_CLASS (code) == '<')
3311 && ((GET_RTX_CLASS (GET_CODE (XEXP (x, 0))) != 'o'
3312 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
3313 && (GET_RTX_CLASS (GET_CODE (SUBREG_REG (XEXP (x, 0))))
3314 == 'o')))
3315 || (GET_RTX_CLASS (GET_CODE (XEXP (x, 1))) != 'o'
3316 && ! (GET_CODE (XEXP (x, 1)) == SUBREG
3317 && (GET_RTX_CLASS (GET_CODE (SUBREG_REG (XEXP (x, 1))))
3318 == 'o')))))
3319 || (GET_RTX_CLASS (code) == '1'
3320 && ((GET_RTX_CLASS (GET_CODE (XEXP (x, 0))) != 'o'
3321 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
3322 && (GET_RTX_CLASS (GET_CODE (SUBREG_REG (XEXP (x, 0))))
3323 == 'o'))))))
3324 {
3325 rtx cond, true, false;
3326
3327 cond = if_then_else_cond (x, &true, &false);
3328 if (cond != 0
3329 /* If everything is a comparison, what we have is highly unlikely
3330 to be simpler, so don't use it. */
3331 && ! (GET_RTX_CLASS (code) == '<'
3332 && (GET_RTX_CLASS (GET_CODE (true)) == '<'
3333 || GET_RTX_CLASS (GET_CODE (false)) == '<')))
3334 {
3335 rtx cop1 = const0_rtx;
3336 enum rtx_code cond_code = simplify_comparison (NE, &cond, &cop1);
3337
3338 if (cond_code == NE && GET_RTX_CLASS (GET_CODE (cond)) == '<')
3339 return x;
3340
3341 /* Simplify the alternative arms; this may collapse the true and
3342 false arms to store-flag values. */
3343 true = subst (true, pc_rtx, pc_rtx, 0, 0);
3344 false = subst (false, pc_rtx, pc_rtx, 0, 0);
3345
3346 /* Restarting if we generate a store-flag expression will cause
3347 us to loop. Just drop through in this case. */
3348
3349 /* If the result values are STORE_FLAG_VALUE and zero, we can
3350 just make the comparison operation. */
3351 if (true == const_true_rtx && false == const0_rtx)
3352 x = gen_binary (cond_code, mode, cond, cop1);
3353 else if (true == const0_rtx && false == const_true_rtx)
3354 x = gen_binary (reverse_condition (cond_code), mode, cond, cop1);
3355
3356 /* Likewise, we can make the negate of a comparison operation
3357 if the result values are - STORE_FLAG_VALUE and zero. */
3358 else if (GET_CODE (true) == CONST_INT
3359 && INTVAL (true) == - STORE_FLAG_VALUE
3360 && false == const0_rtx)
3361 x = gen_unary (NEG, mode, mode,
3362 gen_binary (cond_code, mode, cond, cop1));
3363 else if (GET_CODE (false) == CONST_INT
3364 && INTVAL (false) == - STORE_FLAG_VALUE
3365 && true == const0_rtx)
3366 x = gen_unary (NEG, mode, mode,
3367 gen_binary (reverse_condition (cond_code),
3368 mode, cond, cop1));
3369 else
3370 return gen_rtx_IF_THEN_ELSE (mode,
3371 gen_binary (cond_code, VOIDmode,
3372 cond, cop1),
3373 true, false);
3374
3375 code = GET_CODE (x);
3376 op0_mode = VOIDmode;
3377 }
3378 }
3379
3380 /* Try to fold this expression in case we have constants that weren't
3381 present before. */
3382 temp = 0;
3383 switch (GET_RTX_CLASS (code))
3384 {
3385 case '1':
3386 temp = simplify_unary_operation (code, mode, XEXP (x, 0), op0_mode);
3387 break;
3388 case '<':
3389 temp = simplify_relational_operation (code, op0_mode,
3390 XEXP (x, 0), XEXP (x, 1));
3391 #ifdef FLOAT_STORE_FLAG_VALUE
3392 if (temp != 0 && GET_MODE_CLASS (GET_MODE (x)) == MODE_FLOAT)
3393 temp = ((temp == const0_rtx) ? CONST0_RTX (GET_MODE (x))
3394 : immed_real_const_1 (FLOAT_STORE_FLAG_VALUE, GET_MODE (x)));
3395 #endif
3396 break;
3397 case 'c':
3398 case '2':
3399 temp = simplify_binary_operation (code, mode, XEXP (x, 0), XEXP (x, 1));
3400 break;
3401 case 'b':
3402 case '3':
3403 temp = simplify_ternary_operation (code, mode, op0_mode, XEXP (x, 0),
3404 XEXP (x, 1), XEXP (x, 2));
3405 break;
3406 }
3407
3408 if (temp)
3409 x = temp, code = GET_CODE (temp);
3410
3411 /* First see if we can apply the inverse distributive law. */
3412 if (code == PLUS || code == MINUS
3413 || code == AND || code == IOR || code == XOR)
3414 {
3415 x = apply_distributive_law (x);
3416 code = GET_CODE (x);
3417 }
3418
3419 /* If CODE is an associative operation not otherwise handled, see if we
3420 can associate some operands. This can win if they are constants or
3421 if they are logically related (i.e. (a & b) & a. */
3422 if ((code == PLUS || code == MINUS
3423 || code == MULT || code == AND || code == IOR || code == XOR
3424 || code == DIV || code == UDIV
3425 || code == SMAX || code == SMIN || code == UMAX || code == UMIN)
3426 && INTEGRAL_MODE_P (mode))
3427 {
3428 if (GET_CODE (XEXP (x, 0)) == code)
3429 {
3430 rtx other = XEXP (XEXP (x, 0), 0);
3431 rtx inner_op0 = XEXP (XEXP (x, 0), 1);
3432 rtx inner_op1 = XEXP (x, 1);
3433 rtx inner;
3434
3435 /* Make sure we pass the constant operand if any as the second
3436 one if this is a commutative operation. */
3437 if (CONSTANT_P (inner_op0) && GET_RTX_CLASS (code) == 'c')
3438 {
3439 rtx tem = inner_op0;
3440 inner_op0 = inner_op1;
3441 inner_op1 = tem;
3442 }
3443 inner = simplify_binary_operation (code == MINUS ? PLUS
3444 : code == DIV ? MULT
3445 : code == UDIV ? MULT
3446 : code,
3447 mode, inner_op0, inner_op1);
3448
3449 /* For commutative operations, try the other pair if that one
3450 didn't simplify. */
3451 if (inner == 0 && GET_RTX_CLASS (code) == 'c')
3452 {
3453 other = XEXP (XEXP (x, 0), 1);
3454 inner = simplify_binary_operation (code, mode,
3455 XEXP (XEXP (x, 0), 0),
3456 XEXP (x, 1));
3457 }
3458
3459 if (inner)
3460 return gen_binary (code, mode, other, inner);
3461 }
3462 }
3463
3464 /* A little bit of algebraic simplification here. */
3465 switch (code)
3466 {
3467 case MEM:
3468 /* Ensure that our address has any ASHIFTs converted to MULT in case
3469 address-recognizing predicates are called later. */
3470 temp = make_compound_operation (XEXP (x, 0), MEM);
3471 SUBST (XEXP (x, 0), temp);
3472 break;
3473
3474 case SUBREG:
3475 /* (subreg:A (mem:B X) N) becomes a modified MEM unless the SUBREG
3476 is paradoxical. If we can't do that safely, then it becomes
3477 something nonsensical so that this combination won't take place. */
3478
3479 if (GET_CODE (SUBREG_REG (x)) == MEM
3480 && (GET_MODE_SIZE (mode)
3481 <= GET_MODE_SIZE (GET_MODE (SUBREG_REG (x)))))
3482 {
3483 rtx inner = SUBREG_REG (x);
3484 int endian_offset = 0;
3485 /* Don't change the mode of the MEM
3486 if that would change the meaning of the address. */
3487 if (MEM_VOLATILE_P (SUBREG_REG (x))
3488 || mode_dependent_address_p (XEXP (inner, 0)))
3489 return gen_rtx_CLOBBER (mode, const0_rtx);
3490
3491 if (BYTES_BIG_ENDIAN)
3492 {
3493 if (GET_MODE_SIZE (mode) < UNITS_PER_WORD)
3494 endian_offset += UNITS_PER_WORD - GET_MODE_SIZE (mode);
3495 if (GET_MODE_SIZE (GET_MODE (inner)) < UNITS_PER_WORD)
3496 endian_offset -= (UNITS_PER_WORD
3497 - GET_MODE_SIZE (GET_MODE (inner)));
3498 }
3499 /* Note if the plus_constant doesn't make a valid address
3500 then this combination won't be accepted. */
3501 x = gen_rtx_MEM (mode,
3502 plus_constant (XEXP (inner, 0),
3503 (SUBREG_WORD (x) * UNITS_PER_WORD
3504 + endian_offset)));
3505 MEM_VOLATILE_P (x) = MEM_VOLATILE_P (inner);
3506 RTX_UNCHANGING_P (x) = RTX_UNCHANGING_P (inner);
3507 MEM_IN_STRUCT_P (x) = MEM_IN_STRUCT_P (inner);
3508 return x;
3509 }
3510
3511 /* If we are in a SET_DEST, these other cases can't apply. */
3512 if (in_dest)
3513 return x;
3514
3515 /* Changing mode twice with SUBREG => just change it once,
3516 or not at all if changing back to starting mode. */
3517 if (GET_CODE (SUBREG_REG (x)) == SUBREG)
3518 {
3519 if (mode == GET_MODE (SUBREG_REG (SUBREG_REG (x)))
3520 && SUBREG_WORD (x) == 0 && SUBREG_WORD (SUBREG_REG (x)) == 0)
3521 return SUBREG_REG (SUBREG_REG (x));
3522
3523 SUBST_INT (SUBREG_WORD (x),
3524 SUBREG_WORD (x) + SUBREG_WORD (SUBREG_REG (x)));
3525 SUBST (SUBREG_REG (x), SUBREG_REG (SUBREG_REG (x)));
3526 }
3527
3528 /* SUBREG of a hard register => just change the register number
3529 and/or mode. If the hard register is not valid in that mode,
3530 suppress this combination. If the hard register is the stack,
3531 frame, or argument pointer, leave this as a SUBREG. */
3532
3533 if (GET_CODE (SUBREG_REG (x)) == REG
3534 && REGNO (SUBREG_REG (x)) < FIRST_PSEUDO_REGISTER
3535 && REGNO (SUBREG_REG (x)) != FRAME_POINTER_REGNUM
3536 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
3537 && REGNO (SUBREG_REG (x)) != HARD_FRAME_POINTER_REGNUM
3538 #endif
3539 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
3540 && REGNO (SUBREG_REG (x)) != ARG_POINTER_REGNUM
3541 #endif
3542 && REGNO (SUBREG_REG (x)) != STACK_POINTER_REGNUM)
3543 {
3544 if (HARD_REGNO_MODE_OK (REGNO (SUBREG_REG (x)) + SUBREG_WORD (x),
3545 mode))
3546 return gen_rtx_REG (mode,
3547 REGNO (SUBREG_REG (x)) + SUBREG_WORD (x));
3548 else
3549 return gen_rtx_CLOBBER (mode, const0_rtx);
3550 }
3551
3552 /* For a constant, try to pick up the part we want. Handle a full
3553 word and low-order part. Only do this if we are narrowing
3554 the constant; if it is being widened, we have no idea what
3555 the extra bits will have been set to. */
3556
3557 if (CONSTANT_P (SUBREG_REG (x)) && op0_mode != VOIDmode
3558 && GET_MODE_SIZE (mode) == UNITS_PER_WORD
3559 && GET_MODE_SIZE (op0_mode) > UNITS_PER_WORD
3560 && GET_MODE_CLASS (mode) == MODE_INT)
3561 {
3562 temp = operand_subword (SUBREG_REG (x), SUBREG_WORD (x),
3563 0, op0_mode);
3564 if (temp)
3565 return temp;
3566 }
3567
3568 /* If we want a subreg of a constant, at offset 0,
3569 take the low bits. On a little-endian machine, that's
3570 always valid. On a big-endian machine, it's valid
3571 only if the constant's mode fits in one word. Note that we
3572 cannot use subreg_lowpart_p since SUBREG_REG may be VOIDmode. */
3573 if (CONSTANT_P (SUBREG_REG (x))
3574 && ((GET_MODE_SIZE (op0_mode) <= UNITS_PER_WORD
3575 || ! WORDS_BIG_ENDIAN)
3576 ? SUBREG_WORD (x) == 0
3577 : (SUBREG_WORD (x)
3578 == ((GET_MODE_SIZE (op0_mode)
3579 - MAX (GET_MODE_SIZE (mode), UNITS_PER_WORD))
3580 / UNITS_PER_WORD)))
3581 && GET_MODE_SIZE (mode) <= GET_MODE_SIZE (op0_mode)
3582 && (! WORDS_BIG_ENDIAN
3583 || GET_MODE_BITSIZE (op0_mode) <= BITS_PER_WORD))
3584 return gen_lowpart_for_combine (mode, SUBREG_REG (x));
3585
3586 /* A paradoxical SUBREG of a VOIDmode constant is the same constant,
3587 since we are saying that the high bits don't matter. */
3588 if (CONSTANT_P (SUBREG_REG (x)) && GET_MODE (SUBREG_REG (x)) == VOIDmode
3589 && GET_MODE_SIZE (mode) > GET_MODE_SIZE (op0_mode))
3590 return SUBREG_REG (x);
3591
3592 /* Note that we cannot do any narrowing for non-constants since
3593 we might have been counting on using the fact that some bits were
3594 zero. We now do this in the SET. */
3595
3596 break;
3597
3598 case NOT:
3599 /* (not (plus X -1)) can become (neg X). */
3600 if (GET_CODE (XEXP (x, 0)) == PLUS
3601 && XEXP (XEXP (x, 0), 1) == constm1_rtx)
3602 return gen_rtx_combine (NEG, mode, XEXP (XEXP (x, 0), 0));
3603
3604 /* Similarly, (not (neg X)) is (plus X -1). */
3605 if (GET_CODE (XEXP (x, 0)) == NEG)
3606 return gen_rtx_combine (PLUS, mode, XEXP (XEXP (x, 0), 0),
3607 constm1_rtx);
3608
3609 /* (not (xor X C)) for C constant is (xor X D) with D = ~ C. */
3610 if (GET_CODE (XEXP (x, 0)) == XOR
3611 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
3612 && (temp = simplify_unary_operation (NOT, mode,
3613 XEXP (XEXP (x, 0), 1),
3614 mode)) != 0)
3615 return gen_binary (XOR, mode, XEXP (XEXP (x, 0), 0), temp);
3616
3617 /* (not (ashift 1 X)) is (rotate ~1 X). We used to do this for operands
3618 other than 1, but that is not valid. We could do a similar
3619 simplification for (not (lshiftrt C X)) where C is just the sign bit,
3620 but this doesn't seem common enough to bother with. */
3621 if (GET_CODE (XEXP (x, 0)) == ASHIFT
3622 && XEXP (XEXP (x, 0), 0) == const1_rtx)
3623 return gen_rtx_ROTATE (mode, gen_unary (NOT, mode, mode, const1_rtx),
3624 XEXP (XEXP (x, 0), 1));
3625
3626 if (GET_CODE (XEXP (x, 0)) == SUBREG
3627 && subreg_lowpart_p (XEXP (x, 0))
3628 && (GET_MODE_SIZE (GET_MODE (XEXP (x, 0)))
3629 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (XEXP (x, 0)))))
3630 && GET_CODE (SUBREG_REG (XEXP (x, 0))) == ASHIFT
3631 && XEXP (SUBREG_REG (XEXP (x, 0)), 0) == const1_rtx)
3632 {
3633 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (XEXP (x, 0)));
3634
3635 x = gen_rtx_ROTATE (inner_mode,
3636 gen_unary (NOT, inner_mode, inner_mode,
3637 const1_rtx),
3638 XEXP (SUBREG_REG (XEXP (x, 0)), 1));
3639 return gen_lowpart_for_combine (mode, x);
3640 }
3641
3642 /* If STORE_FLAG_VALUE is -1, (not (comparison foo bar)) can be done by
3643 reversing the comparison code if valid. */
3644 if (STORE_FLAG_VALUE == -1
3645 && GET_RTX_CLASS (GET_CODE (XEXP (x, 0))) == '<'
3646 && reversible_comparison_p (XEXP (x, 0)))
3647 return gen_rtx_combine (reverse_condition (GET_CODE (XEXP (x, 0))),
3648 mode, XEXP (XEXP (x, 0), 0),
3649 XEXP (XEXP (x, 0), 1));
3650
3651 /* (ashiftrt foo C) where C is the number of bits in FOO minus 1
3652 is (lt foo (const_int 0)) if STORE_FLAG_VALUE is -1, so we can
3653 perform the above simplification. */
3654
3655 if (STORE_FLAG_VALUE == -1
3656 && XEXP (x, 1) == const1_rtx
3657 && GET_CODE (XEXP (x, 0)) == ASHIFTRT
3658 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
3659 && INTVAL (XEXP (XEXP (x, 0), 1)) == GET_MODE_BITSIZE (mode) - 1)
3660 return gen_rtx_combine (GE, mode, XEXP (XEXP (x, 0), 0), const0_rtx);
3661
3662 /* Apply De Morgan's laws to reduce number of patterns for machines
3663 with negating logical insns (and-not, nand, etc.). If result has
3664 only one NOT, put it first, since that is how the patterns are
3665 coded. */
3666
3667 if (GET_CODE (XEXP (x, 0)) == IOR || GET_CODE (XEXP (x, 0)) == AND)
3668 {
3669 rtx in1 = XEXP (XEXP (x, 0), 0), in2 = XEXP (XEXP (x, 0), 1);
3670
3671 if (GET_CODE (in1) == NOT)
3672 in1 = XEXP (in1, 0);
3673 else
3674 in1 = gen_rtx_combine (NOT, GET_MODE (in1), in1);
3675
3676 if (GET_CODE (in2) == NOT)
3677 in2 = XEXP (in2, 0);
3678 else if (GET_CODE (in2) == CONST_INT
3679 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
3680 in2 = GEN_INT (GET_MODE_MASK (mode) & ~ INTVAL (in2));
3681 else
3682 in2 = gen_rtx_combine (NOT, GET_MODE (in2), in2);
3683
3684 if (GET_CODE (in2) == NOT)
3685 {
3686 rtx tem = in2;
3687 in2 = in1; in1 = tem;
3688 }
3689
3690 return gen_rtx_combine (GET_CODE (XEXP (x, 0)) == IOR ? AND : IOR,
3691 mode, in1, in2);
3692 }
3693 break;
3694
3695 case NEG:
3696 /* (neg (plus X 1)) can become (not X). */
3697 if (GET_CODE (XEXP (x, 0)) == PLUS
3698 && XEXP (XEXP (x, 0), 1) == const1_rtx)
3699 return gen_rtx_combine (NOT, mode, XEXP (XEXP (x, 0), 0));
3700
3701 /* Similarly, (neg (not X)) is (plus X 1). */
3702 if (GET_CODE (XEXP (x, 0)) == NOT)
3703 return plus_constant (XEXP (XEXP (x, 0), 0), 1);
3704
3705 /* (neg (minus X Y)) can become (minus Y X). */
3706 if (GET_CODE (XEXP (x, 0)) == MINUS
3707 && (! FLOAT_MODE_P (mode)
3708 /* x-y != -(y-x) with IEEE floating point. */
3709 || TARGET_FLOAT_FORMAT != IEEE_FLOAT_FORMAT
3710 || flag_fast_math))
3711 return gen_binary (MINUS, mode, XEXP (XEXP (x, 0), 1),
3712 XEXP (XEXP (x, 0), 0));
3713
3714 /* (neg (xor A 1)) is (plus A -1) if A is known to be either 0 or 1. */
3715 if (GET_CODE (XEXP (x, 0)) == XOR && XEXP (XEXP (x, 0), 1) == const1_rtx
3716 && nonzero_bits (XEXP (XEXP (x, 0), 0), mode) == 1)
3717 return gen_binary (PLUS, mode, XEXP (XEXP (x, 0), 0), constm1_rtx);
3718
3719 /* NEG commutes with ASHIFT since it is multiplication. Only do this
3720 if we can then eliminate the NEG (e.g.,
3721 if the operand is a constant). */
3722
3723 if (GET_CODE (XEXP (x, 0)) == ASHIFT)
3724 {
3725 temp = simplify_unary_operation (NEG, mode,
3726 XEXP (XEXP (x, 0), 0), mode);
3727 if (temp)
3728 {
3729 SUBST (XEXP (XEXP (x, 0), 0), temp);
3730 return XEXP (x, 0);
3731 }
3732 }
3733
3734 temp = expand_compound_operation (XEXP (x, 0));
3735
3736 /* For C equal to the width of MODE minus 1, (neg (ashiftrt X C)) can be
3737 replaced by (lshiftrt X C). This will convert
3738 (neg (sign_extract X 1 Y)) to (zero_extract X 1 Y). */
3739
3740 if (GET_CODE (temp) == ASHIFTRT
3741 && GET_CODE (XEXP (temp, 1)) == CONST_INT
3742 && INTVAL (XEXP (temp, 1)) == GET_MODE_BITSIZE (mode) - 1)
3743 return simplify_shift_const (temp, LSHIFTRT, mode, XEXP (temp, 0),
3744 INTVAL (XEXP (temp, 1)));
3745
3746 /* If X has only a single bit that might be nonzero, say, bit I, convert
3747 (neg X) to (ashiftrt (ashift X C-I) C-I) where C is the bitsize of
3748 MODE minus 1. This will convert (neg (zero_extract X 1 Y)) to
3749 (sign_extract X 1 Y). But only do this if TEMP isn't a register
3750 or a SUBREG of one since we'd be making the expression more
3751 complex if it was just a register. */
3752
3753 if (GET_CODE (temp) != REG
3754 && ! (GET_CODE (temp) == SUBREG
3755 && GET_CODE (SUBREG_REG (temp)) == REG)
3756 && (i = exact_log2 (nonzero_bits (temp, mode))) >= 0)
3757 {
3758 rtx temp1 = simplify_shift_const
3759 (NULL_RTX, ASHIFTRT, mode,
3760 simplify_shift_const (NULL_RTX, ASHIFT, mode, temp,
3761 GET_MODE_BITSIZE (mode) - 1 - i),
3762 GET_MODE_BITSIZE (mode) - 1 - i);
3763
3764 /* If all we did was surround TEMP with the two shifts, we
3765 haven't improved anything, so don't use it. Otherwise,
3766 we are better off with TEMP1. */
3767 if (GET_CODE (temp1) != ASHIFTRT
3768 || GET_CODE (XEXP (temp1, 0)) != ASHIFT
3769 || XEXP (XEXP (temp1, 0), 0) != temp)
3770 return temp1;
3771 }
3772 break;
3773
3774 case TRUNCATE:
3775 /* We can't handle truncation to a partial integer mode here
3776 because we don't know the real bitsize of the partial
3777 integer mode. */
3778 if (GET_MODE_CLASS (mode) == MODE_PARTIAL_INT)
3779 break;
3780
3781 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
3782 && TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (mode),
3783 GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))))
3784 SUBST (XEXP (x, 0),
3785 force_to_mode (XEXP (x, 0), GET_MODE (XEXP (x, 0)),
3786 GET_MODE_MASK (mode), NULL_RTX, 0));
3787
3788 /* (truncate:SI ({sign,zero}_extend:DI foo:SI)) == foo:SI. */
3789 if ((GET_CODE (XEXP (x, 0)) == SIGN_EXTEND
3790 || GET_CODE (XEXP (x, 0)) == ZERO_EXTEND)
3791 && GET_MODE (XEXP (XEXP (x, 0), 0)) == mode)
3792 return XEXP (XEXP (x, 0), 0);
3793
3794 /* (truncate:SI (OP:DI ({sign,zero}_extend:DI foo:SI))) is
3795 (OP:SI foo:SI) if OP is NEG or ABS. */
3796 if ((GET_CODE (XEXP (x, 0)) == ABS
3797 || GET_CODE (XEXP (x, 0)) == NEG)
3798 && (GET_CODE (XEXP (XEXP (x, 0), 0)) == SIGN_EXTEND
3799 || GET_CODE (XEXP (XEXP (x, 0), 0)) == ZERO_EXTEND)
3800 && GET_MODE (XEXP (XEXP (XEXP (x, 0), 0), 0)) == mode)
3801 return gen_unary (GET_CODE (XEXP (x, 0)), mode, mode,
3802 XEXP (XEXP (XEXP (x, 0), 0), 0));
3803
3804 /* (truncate:SI (subreg:DI (truncate:SI X) 0)) is
3805 (truncate:SI x). */
3806 if (GET_CODE (XEXP (x, 0)) == SUBREG
3807 && GET_CODE (SUBREG_REG (XEXP (x, 0))) == TRUNCATE
3808 && subreg_lowpart_p (XEXP (x, 0)))
3809 return SUBREG_REG (XEXP (x, 0));
3810
3811 /* If we know that the value is already truncated, we can
3812 replace the TRUNCATE with a SUBREG if TRULY_NOOP_TRUNCATION is
3813 nonzero for the corresponding modes. */
3814 if (TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (mode),
3815 GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0))))
3816 && num_sign_bit_copies (XEXP (x, 0), GET_MODE (XEXP (x, 0)))
3817 >= GET_MODE_BITSIZE (mode) + 1)
3818 return gen_lowpart_for_combine (mode, XEXP (x, 0));
3819
3820 /* A truncate of a comparison can be replaced with a subreg if
3821 STORE_FLAG_VALUE permits. This is like the previous test,
3822 but it works even if the comparison is done in a mode larger
3823 than HOST_BITS_PER_WIDE_INT. */
3824 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
3825 && GET_RTX_CLASS (GET_CODE (XEXP (x, 0))) == '<'
3826 && ((HOST_WIDE_INT) STORE_FLAG_VALUE &~ GET_MODE_MASK (mode)) == 0)
3827 return gen_lowpart_for_combine (mode, XEXP (x, 0));
3828
3829 /* Similarly, a truncate of a register whose value is a
3830 comparison can be replaced with a subreg if STORE_FLAG_VALUE
3831 permits. */
3832 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
3833 && ((HOST_WIDE_INT) STORE_FLAG_VALUE &~ GET_MODE_MASK (mode)) == 0
3834 && (temp = get_last_value (XEXP (x, 0)))
3835 && GET_RTX_CLASS (GET_CODE (temp)) == '<')
3836 return gen_lowpart_for_combine (mode, XEXP (x, 0));
3837
3838 break;
3839
3840 case FLOAT_TRUNCATE:
3841 /* (float_truncate:SF (float_extend:DF foo:SF)) = foo:SF. */
3842 if (GET_CODE (XEXP (x, 0)) == FLOAT_EXTEND
3843 && GET_MODE (XEXP (XEXP (x, 0), 0)) == mode)
3844 return XEXP (XEXP (x, 0), 0);
3845
3846 /* (float_truncate:SF (OP:DF (float_extend:DF foo:sf))) is
3847 (OP:SF foo:SF) if OP is NEG or ABS. */
3848 if ((GET_CODE (XEXP (x, 0)) == ABS
3849 || GET_CODE (XEXP (x, 0)) == NEG)
3850 && GET_CODE (XEXP (XEXP (x, 0), 0)) == FLOAT_EXTEND
3851 && GET_MODE (XEXP (XEXP (XEXP (x, 0), 0), 0)) == mode)
3852 return gen_unary (GET_CODE (XEXP (x, 0)), mode, mode,
3853 XEXP (XEXP (XEXP (x, 0), 0), 0));
3854
3855 /* (float_truncate:SF (subreg:DF (float_truncate:SF X) 0))
3856 is (float_truncate:SF x). */
3857 if (GET_CODE (XEXP (x, 0)) == SUBREG
3858 && subreg_lowpart_p (XEXP (x, 0))
3859 && GET_CODE (SUBREG_REG (XEXP (x, 0))) == FLOAT_TRUNCATE)
3860 return SUBREG_REG (XEXP (x, 0));
3861 break;
3862
3863 #ifdef HAVE_cc0
3864 case COMPARE:
3865 /* Convert (compare FOO (const_int 0)) to FOO unless we aren't
3866 using cc0, in which case we want to leave it as a COMPARE
3867 so we can distinguish it from a register-register-copy. */
3868 if (XEXP (x, 1) == const0_rtx)
3869 return XEXP (x, 0);
3870
3871 /* In IEEE floating point, x-0 is not the same as x. */
3872 if ((TARGET_FLOAT_FORMAT != IEEE_FLOAT_FORMAT
3873 || ! FLOAT_MODE_P (GET_MODE (XEXP (x, 0)))
3874 || flag_fast_math)
3875 && XEXP (x, 1) == CONST0_RTX (GET_MODE (XEXP (x, 0))))
3876 return XEXP (x, 0);
3877 break;
3878 #endif
3879
3880 case CONST:
3881 /* (const (const X)) can become (const X). Do it this way rather than
3882 returning the inner CONST since CONST can be shared with a
3883 REG_EQUAL note. */
3884 if (GET_CODE (XEXP (x, 0)) == CONST)
3885 SUBST (XEXP (x, 0), XEXP (XEXP (x, 0), 0));
3886 break;
3887
3888 #ifdef HAVE_lo_sum
3889 case LO_SUM:
3890 /* Convert (lo_sum (high FOO) FOO) to FOO. This is necessary so we
3891 can add in an offset. find_split_point will split this address up
3892 again if it doesn't match. */
3893 if (GET_CODE (XEXP (x, 0)) == HIGH
3894 && rtx_equal_p (XEXP (XEXP (x, 0), 0), XEXP (x, 1)))
3895 return XEXP (x, 1);
3896 break;
3897 #endif
3898
3899 case PLUS:
3900 /* If we have (plus (plus (A const) B)), associate it so that CONST is
3901 outermost. That's because that's the way indexed addresses are
3902 supposed to appear. This code used to check many more cases, but
3903 they are now checked elsewhere. */
3904 if (GET_CODE (XEXP (x, 0)) == PLUS
3905 && CONSTANT_ADDRESS_P (XEXP (XEXP (x, 0), 1)))
3906 return gen_binary (PLUS, mode,
3907 gen_binary (PLUS, mode, XEXP (XEXP (x, 0), 0),
3908 XEXP (x, 1)),
3909 XEXP (XEXP (x, 0), 1));
3910
3911 /* (plus (xor (and <foo> (const_int pow2 - 1)) <c>) <-c>)
3912 when c is (const_int (pow2 + 1) / 2) is a sign extension of a
3913 bit-field and can be replaced by either a sign_extend or a
3914 sign_extract. The `and' may be a zero_extend. */
3915 if (GET_CODE (XEXP (x, 0)) == XOR
3916 && GET_CODE (XEXP (x, 1)) == CONST_INT
3917 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
3918 && INTVAL (XEXP (x, 1)) == - INTVAL (XEXP (XEXP (x, 0), 1))
3919 && (i = exact_log2 (INTVAL (XEXP (XEXP (x, 0), 1)))) >= 0
3920 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
3921 && ((GET_CODE (XEXP (XEXP (x, 0), 0)) == AND
3922 && GET_CODE (XEXP (XEXP (XEXP (x, 0), 0), 1)) == CONST_INT
3923 && (INTVAL (XEXP (XEXP (XEXP (x, 0), 0), 1))
3924 == ((HOST_WIDE_INT) 1 << (i + 1)) - 1))
3925 || (GET_CODE (XEXP (XEXP (x, 0), 0)) == ZERO_EXTEND
3926 && (GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (XEXP (x, 0), 0), 0)))
3927 == i + 1))))
3928 return simplify_shift_const
3929 (NULL_RTX, ASHIFTRT, mode,
3930 simplify_shift_const (NULL_RTX, ASHIFT, mode,
3931 XEXP (XEXP (XEXP (x, 0), 0), 0),
3932 GET_MODE_BITSIZE (mode) - (i + 1)),
3933 GET_MODE_BITSIZE (mode) - (i + 1));
3934
3935 /* (plus (comparison A B) C) can become (neg (rev-comp A B)) if
3936 C is 1 and STORE_FLAG_VALUE is -1 or if C is -1 and STORE_FLAG_VALUE
3937 is 1. This produces better code than the alternative immediately
3938 below. */
3939 if (GET_RTX_CLASS (GET_CODE (XEXP (x, 0))) == '<'
3940 && reversible_comparison_p (XEXP (x, 0))
3941 && ((STORE_FLAG_VALUE == -1 && XEXP (x, 1) == const1_rtx)
3942 || (STORE_FLAG_VALUE == 1 && XEXP (x, 1) == constm1_rtx)))
3943 return
3944 gen_unary (NEG, mode, mode,
3945 gen_binary (reverse_condition (GET_CODE (XEXP (x, 0))),
3946 mode, XEXP (XEXP (x, 0), 0),
3947 XEXP (XEXP (x, 0), 1)));
3948
3949 /* If only the low-order bit of X is possibly nonzero, (plus x -1)
3950 can become (ashiftrt (ashift (xor x 1) C) C) where C is
3951 the bitsize of the mode - 1. This allows simplification of
3952 "a = (b & 8) == 0;" */
3953 if (XEXP (x, 1) == constm1_rtx
3954 && GET_CODE (XEXP (x, 0)) != REG
3955 && ! (GET_CODE (XEXP (x,0)) == SUBREG
3956 && GET_CODE (SUBREG_REG (XEXP (x, 0))) == REG)
3957 && nonzero_bits (XEXP (x, 0), mode) == 1)
3958 return simplify_shift_const (NULL_RTX, ASHIFTRT, mode,
3959 simplify_shift_const (NULL_RTX, ASHIFT, mode,
3960 gen_rtx_combine (XOR, mode,
3961 XEXP (x, 0), const1_rtx),
3962 GET_MODE_BITSIZE (mode) - 1),
3963 GET_MODE_BITSIZE (mode) - 1);
3964
3965 /* If we are adding two things that have no bits in common, convert
3966 the addition into an IOR. This will often be further simplified,
3967 for example in cases like ((a & 1) + (a & 2)), which can
3968 become a & 3. */
3969
3970 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
3971 && (nonzero_bits (XEXP (x, 0), mode)
3972 & nonzero_bits (XEXP (x, 1), mode)) == 0)
3973 return gen_binary (IOR, mode, XEXP (x, 0), XEXP (x, 1));
3974 break;
3975
3976 case MINUS:
3977 /* If STORE_FLAG_VALUE is 1, (minus 1 (comparison foo bar)) can be done
3978 by reversing the comparison code if valid. */
3979 if (STORE_FLAG_VALUE == 1
3980 && XEXP (x, 0) == const1_rtx
3981 && GET_RTX_CLASS (GET_CODE (XEXP (x, 1))) == '<'
3982 && reversible_comparison_p (XEXP (x, 1)))
3983 return gen_binary (reverse_condition (GET_CODE (XEXP (x, 1))),
3984 mode, XEXP (XEXP (x, 1), 0),
3985 XEXP (XEXP (x, 1), 1));
3986
3987 /* (minus <foo> (and <foo> (const_int -pow2))) becomes
3988 (and <foo> (const_int pow2-1)) */
3989 if (GET_CODE (XEXP (x, 1)) == AND
3990 && GET_CODE (XEXP (XEXP (x, 1), 1)) == CONST_INT
3991 && exact_log2 (- INTVAL (XEXP (XEXP (x, 1), 1))) >= 0
3992 && rtx_equal_p (XEXP (XEXP (x, 1), 0), XEXP (x, 0)))
3993 return simplify_and_const_int (NULL_RTX, mode, XEXP (x, 0),
3994 - INTVAL (XEXP (XEXP (x, 1), 1)) - 1);
3995
3996 /* Canonicalize (minus A (plus B C)) to (minus (minus A B) C) for
3997 integers. */
3998 if (GET_CODE (XEXP (x, 1)) == PLUS && INTEGRAL_MODE_P (mode))
3999 return gen_binary (MINUS, mode,
4000 gen_binary (MINUS, mode, XEXP (x, 0),
4001 XEXP (XEXP (x, 1), 0)),
4002 XEXP (XEXP (x, 1), 1));
4003 break;
4004
4005 case MULT:
4006 /* If we have (mult (plus A B) C), apply the distributive law and then
4007 the inverse distributive law to see if things simplify. This
4008 occurs mostly in addresses, often when unrolling loops. */
4009
4010 if (GET_CODE (XEXP (x, 0)) == PLUS)
4011 {
4012 x = apply_distributive_law
4013 (gen_binary (PLUS, mode,
4014 gen_binary (MULT, mode,
4015 XEXP (XEXP (x, 0), 0), XEXP (x, 1)),
4016 gen_binary (MULT, mode,
4017 XEXP (XEXP (x, 0), 1), XEXP (x, 1))));
4018
4019 if (GET_CODE (x) != MULT)
4020 return x;
4021 }
4022 break;
4023
4024 case UDIV:
4025 /* If this is a divide by a power of two, treat it as a shift if
4026 its first operand is a shift. */
4027 if (GET_CODE (XEXP (x, 1)) == CONST_INT
4028 && (i = exact_log2 (INTVAL (XEXP (x, 1)))) >= 0
4029 && (GET_CODE (XEXP (x, 0)) == ASHIFT
4030 || GET_CODE (XEXP (x, 0)) == LSHIFTRT
4031 || GET_CODE (XEXP (x, 0)) == ASHIFTRT
4032 || GET_CODE (XEXP (x, 0)) == ROTATE
4033 || GET_CODE (XEXP (x, 0)) == ROTATERT))
4034 return simplify_shift_const (NULL_RTX, LSHIFTRT, mode, XEXP (x, 0), i);
4035 break;
4036
4037 case EQ: case NE:
4038 case GT: case GTU: case GE: case GEU:
4039 case LT: case LTU: case LE: case LEU:
4040 /* If the first operand is a condition code, we can't do anything
4041 with it. */
4042 if (GET_CODE (XEXP (x, 0)) == COMPARE
4043 || (GET_MODE_CLASS (GET_MODE (XEXP (x, 0))) != MODE_CC
4044 #ifdef HAVE_cc0
4045 && XEXP (x, 0) != cc0_rtx
4046 #endif
4047 ))
4048 {
4049 rtx op0 = XEXP (x, 0);
4050 rtx op1 = XEXP (x, 1);
4051 enum rtx_code new_code;
4052
4053 if (GET_CODE (op0) == COMPARE)
4054 op1 = XEXP (op0, 1), op0 = XEXP (op0, 0);
4055
4056 /* Simplify our comparison, if possible. */
4057 new_code = simplify_comparison (code, &op0, &op1);
4058
4059 /* If STORE_FLAG_VALUE is 1, we can convert (ne x 0) to simply X
4060 if only the low-order bit is possibly nonzero in X (such as when
4061 X is a ZERO_EXTRACT of one bit). Similarly, we can convert EQ to
4062 (xor X 1) or (minus 1 X); we use the former. Finally, if X is
4063 known to be either 0 or -1, NE becomes a NEG and EQ becomes
4064 (plus X 1).
4065
4066 Remove any ZERO_EXTRACT we made when thinking this was a
4067 comparison. It may now be simpler to use, e.g., an AND. If a
4068 ZERO_EXTRACT is indeed appropriate, it will be placed back by
4069 the call to make_compound_operation in the SET case. */
4070
4071 if (STORE_FLAG_VALUE == 1
4072 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
4073 && op1 == const0_rtx && nonzero_bits (op0, mode) == 1)
4074 return gen_lowpart_for_combine (mode,
4075 expand_compound_operation (op0));
4076
4077 else if (STORE_FLAG_VALUE == 1
4078 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
4079 && op1 == const0_rtx
4080 && (num_sign_bit_copies (op0, mode)
4081 == GET_MODE_BITSIZE (mode)))
4082 {
4083 op0 = expand_compound_operation (op0);
4084 return gen_unary (NEG, mode, mode,
4085 gen_lowpart_for_combine (mode, op0));
4086 }
4087
4088 else if (STORE_FLAG_VALUE == 1
4089 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
4090 && op1 == const0_rtx
4091 && nonzero_bits (op0, mode) == 1)
4092 {
4093 op0 = expand_compound_operation (op0);
4094 return gen_binary (XOR, mode,
4095 gen_lowpart_for_combine (mode, op0),
4096 const1_rtx);
4097 }
4098
4099 else if (STORE_FLAG_VALUE == 1
4100 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
4101 && op1 == const0_rtx
4102 && (num_sign_bit_copies (op0, mode)
4103 == GET_MODE_BITSIZE (mode)))
4104 {
4105 op0 = expand_compound_operation (op0);
4106 return plus_constant (gen_lowpart_for_combine (mode, op0), 1);
4107 }
4108
4109 /* If STORE_FLAG_VALUE is -1, we have cases similar to
4110 those above. */
4111 if (STORE_FLAG_VALUE == -1
4112 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
4113 && op1 == const0_rtx
4114 && (num_sign_bit_copies (op0, mode)
4115 == GET_MODE_BITSIZE (mode)))
4116 return gen_lowpart_for_combine (mode,
4117 expand_compound_operation (op0));
4118
4119 else if (STORE_FLAG_VALUE == -1
4120 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
4121 && op1 == const0_rtx
4122 && nonzero_bits (op0, mode) == 1)
4123 {
4124 op0 = expand_compound_operation (op0);
4125 return gen_unary (NEG, mode, mode,
4126 gen_lowpart_for_combine (mode, op0));
4127 }
4128
4129 else if (STORE_FLAG_VALUE == -1
4130 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
4131 && op1 == const0_rtx
4132 && (num_sign_bit_copies (op0, mode)
4133 == GET_MODE_BITSIZE (mode)))
4134 {
4135 op0 = expand_compound_operation (op0);
4136 return gen_unary (NOT, mode, mode,
4137 gen_lowpart_for_combine (mode, op0));
4138 }
4139
4140 /* If X is 0/1, (eq X 0) is X-1. */
4141 else if (STORE_FLAG_VALUE == -1
4142 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
4143 && op1 == const0_rtx
4144 && nonzero_bits (op0, mode) == 1)
4145 {
4146 op0 = expand_compound_operation (op0);
4147 return plus_constant (gen_lowpart_for_combine (mode, op0), -1);
4148 }
4149
4150 /* If STORE_FLAG_VALUE says to just test the sign bit and X has just
4151 one bit that might be nonzero, we can convert (ne x 0) to
4152 (ashift x c) where C puts the bit in the sign bit. Remove any
4153 AND with STORE_FLAG_VALUE when we are done, since we are only
4154 going to test the sign bit. */
4155 if (new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
4156 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4157 && ((STORE_FLAG_VALUE & GET_MODE_MASK (mode))
4158 == (unsigned HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE(mode)-1))
4159 && op1 == const0_rtx
4160 && mode == GET_MODE (op0)
4161 && (i = exact_log2 (nonzero_bits (op0, mode))) >= 0)
4162 {
4163 x = simplify_shift_const (NULL_RTX, ASHIFT, mode,
4164 expand_compound_operation (op0),
4165 GET_MODE_BITSIZE (mode) - 1 - i);
4166 if (GET_CODE (x) == AND && XEXP (x, 1) == const_true_rtx)
4167 return XEXP (x, 0);
4168 else
4169 return x;
4170 }
4171
4172 /* If the code changed, return a whole new comparison. */
4173 if (new_code != code)
4174 return gen_rtx_combine (new_code, mode, op0, op1);
4175
4176 /* Otherwise, keep this operation, but maybe change its operands.
4177 This also converts (ne (compare FOO BAR) 0) to (ne FOO BAR). */
4178 SUBST (XEXP (x, 0), op0);
4179 SUBST (XEXP (x, 1), op1);
4180 }
4181 break;
4182
4183 case IF_THEN_ELSE:
4184 return simplify_if_then_else (x);
4185
4186 case ZERO_EXTRACT:
4187 case SIGN_EXTRACT:
4188 case ZERO_EXTEND:
4189 case SIGN_EXTEND:
4190 /* If we are processing SET_DEST, we are done. */
4191 if (in_dest)
4192 return x;
4193
4194 return expand_compound_operation (x);
4195
4196 case SET:
4197 return simplify_set (x);
4198
4199 case AND:
4200 case IOR:
4201 case XOR:
4202 return simplify_logical (x, last);
4203
4204 case ABS:
4205 /* (abs (neg <foo>)) -> (abs <foo>) */
4206 if (GET_CODE (XEXP (x, 0)) == NEG)
4207 SUBST (XEXP (x, 0), XEXP (XEXP (x, 0), 0));
4208
4209 /* If the mode of the operand is VOIDmode (i.e. if it is ASM_OPERANDS),
4210 do nothing. */
4211 if (GET_MODE (XEXP (x, 0)) == VOIDmode)
4212 break;
4213
4214 /* If operand is something known to be positive, ignore the ABS. */
4215 if (GET_CODE (XEXP (x, 0)) == FFS || GET_CODE (XEXP (x, 0)) == ABS
4216 || ((GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))
4217 <= HOST_BITS_PER_WIDE_INT)
4218 && ((nonzero_bits (XEXP (x, 0), GET_MODE (XEXP (x, 0)))
4219 & ((HOST_WIDE_INT) 1
4220 << (GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0))) - 1)))
4221 == 0)))
4222 return XEXP (x, 0);
4223
4224
4225 /* If operand is known to be only -1 or 0, convert ABS to NEG. */
4226 if (num_sign_bit_copies (XEXP (x, 0), mode) == GET_MODE_BITSIZE (mode))
4227 return gen_rtx_combine (NEG, mode, XEXP (x, 0));
4228
4229 break;
4230
4231 case FFS:
4232 /* (ffs (*_extend <X>)) = (ffs <X>) */
4233 if (GET_CODE (XEXP (x, 0)) == SIGN_EXTEND
4234 || GET_CODE (XEXP (x, 0)) == ZERO_EXTEND)
4235 SUBST (XEXP (x, 0), XEXP (XEXP (x, 0), 0));
4236 break;
4237
4238 case FLOAT:
4239 /* (float (sign_extend <X>)) = (float <X>). */
4240 if (GET_CODE (XEXP (x, 0)) == SIGN_EXTEND)
4241 SUBST (XEXP (x, 0), XEXP (XEXP (x, 0), 0));
4242 break;
4243
4244 case ASHIFT:
4245 case LSHIFTRT:
4246 case ASHIFTRT:
4247 case ROTATE:
4248 case ROTATERT:
4249 /* If this is a shift by a constant amount, simplify it. */
4250 if (GET_CODE (XEXP (x, 1)) == CONST_INT)
4251 return simplify_shift_const (x, code, mode, XEXP (x, 0),
4252 INTVAL (XEXP (x, 1)));
4253
4254 #ifdef SHIFT_COUNT_TRUNCATED
4255 else if (SHIFT_COUNT_TRUNCATED && GET_CODE (XEXP (x, 1)) != REG)
4256 SUBST (XEXP (x, 1),
4257 force_to_mode (XEXP (x, 1), GET_MODE (x),
4258 ((HOST_WIDE_INT) 1
4259 << exact_log2 (GET_MODE_BITSIZE (GET_MODE (x))))
4260 - 1,
4261 NULL_RTX, 0));
4262 #endif
4263
4264 break;
4265
4266 default:
4267 break;
4268 }
4269
4270 return x;
4271 }
4272 \f
4273 /* Simplify X, an IF_THEN_ELSE expression. Return the new expression. */
4274
4275 static rtx
4276 simplify_if_then_else (x)
4277 rtx x;
4278 {
4279 enum machine_mode mode = GET_MODE (x);
4280 rtx cond = XEXP (x, 0);
4281 rtx true = XEXP (x, 1);
4282 rtx false = XEXP (x, 2);
4283 enum rtx_code true_code = GET_CODE (cond);
4284 int comparison_p = GET_RTX_CLASS (true_code) == '<';
4285 rtx temp;
4286 int i;
4287
4288 /* Simplify storing of the truth value. */
4289 if (comparison_p && true == const_true_rtx && false == const0_rtx)
4290 return gen_binary (true_code, mode, XEXP (cond, 0), XEXP (cond, 1));
4291
4292 /* Also when the truth value has to be reversed. */
4293 if (comparison_p && reversible_comparison_p (cond)
4294 && true == const0_rtx && false == const_true_rtx)
4295 return gen_binary (reverse_condition (true_code),
4296 mode, XEXP (cond, 0), XEXP (cond, 1));
4297
4298 /* Sometimes we can simplify the arm of an IF_THEN_ELSE if a register used
4299 in it is being compared against certain values. Get the true and false
4300 comparisons and see if that says anything about the value of each arm. */
4301
4302 if (comparison_p && reversible_comparison_p (cond)
4303 && GET_CODE (XEXP (cond, 0)) == REG)
4304 {
4305 HOST_WIDE_INT nzb;
4306 rtx from = XEXP (cond, 0);
4307 enum rtx_code false_code = reverse_condition (true_code);
4308 rtx true_val = XEXP (cond, 1);
4309 rtx false_val = true_val;
4310 int swapped = 0;
4311
4312 /* If FALSE_CODE is EQ, swap the codes and arms. */
4313
4314 if (false_code == EQ)
4315 {
4316 swapped = 1, true_code = EQ, false_code = NE;
4317 temp = true, true = false, false = temp;
4318 }
4319
4320 /* If we are comparing against zero and the expression being tested has
4321 only a single bit that might be nonzero, that is its value when it is
4322 not equal to zero. Similarly if it is known to be -1 or 0. */
4323
4324 if (true_code == EQ && true_val == const0_rtx
4325 && exact_log2 (nzb = nonzero_bits (from, GET_MODE (from))) >= 0)
4326 false_code = EQ, false_val = GEN_INT (nzb);
4327 else if (true_code == EQ && true_val == const0_rtx
4328 && (num_sign_bit_copies (from, GET_MODE (from))
4329 == GET_MODE_BITSIZE (GET_MODE (from))))
4330 false_code = EQ, false_val = constm1_rtx;
4331
4332 /* Now simplify an arm if we know the value of the register in the
4333 branch and it is used in the arm. Be careful due to the potential
4334 of locally-shared RTL. */
4335
4336 if (reg_mentioned_p (from, true))
4337 true = subst (known_cond (copy_rtx (true), true_code, from, true_val),
4338 pc_rtx, pc_rtx, 0, 0);
4339 if (reg_mentioned_p (from, false))
4340 false = subst (known_cond (copy_rtx (false), false_code,
4341 from, false_val),
4342 pc_rtx, pc_rtx, 0, 0);
4343
4344 SUBST (XEXP (x, 1), swapped ? false : true);
4345 SUBST (XEXP (x, 2), swapped ? true : false);
4346
4347 true = XEXP (x, 1), false = XEXP (x, 2), true_code = GET_CODE (cond);
4348 }
4349
4350 /* If we have (if_then_else FOO (pc) (label_ref BAR)) and FOO can be
4351 reversed, do so to avoid needing two sets of patterns for
4352 subtract-and-branch insns. Similarly if we have a constant in the true
4353 arm, the false arm is the same as the first operand of the comparison, or
4354 the false arm is more complicated than the true arm. */
4355
4356 if (comparison_p && reversible_comparison_p (cond)
4357 && (true == pc_rtx
4358 || (CONSTANT_P (true)
4359 && GET_CODE (false) != CONST_INT && false != pc_rtx)
4360 || true == const0_rtx
4361 || (GET_RTX_CLASS (GET_CODE (true)) == 'o'
4362 && GET_RTX_CLASS (GET_CODE (false)) != 'o')
4363 || (GET_CODE (true) == SUBREG
4364 && GET_RTX_CLASS (GET_CODE (SUBREG_REG (true))) == 'o'
4365 && GET_RTX_CLASS (GET_CODE (false)) != 'o')
4366 || reg_mentioned_p (true, false)
4367 || rtx_equal_p (false, XEXP (cond, 0))))
4368 {
4369 true_code = reverse_condition (true_code);
4370 SUBST (XEXP (x, 0),
4371 gen_binary (true_code, GET_MODE (cond), XEXP (cond, 0),
4372 XEXP (cond, 1)));
4373
4374 SUBST (XEXP (x, 1), false);
4375 SUBST (XEXP (x, 2), true);
4376
4377 temp = true, true = false, false = temp, cond = XEXP (x, 0);
4378
4379 /* It is possible that the conditional has been simplified out. */
4380 true_code = GET_CODE (cond);
4381 comparison_p = GET_RTX_CLASS (true_code) == '<';
4382 }
4383
4384 /* If the two arms are identical, we don't need the comparison. */
4385
4386 if (rtx_equal_p (true, false) && ! side_effects_p (cond))
4387 return true;
4388
4389 /* Convert a == b ? b : a to "a". */
4390 if (true_code == EQ && ! side_effects_p (cond)
4391 && rtx_equal_p (XEXP (cond, 0), false)
4392 && rtx_equal_p (XEXP (cond, 1), true))
4393 return false;
4394 else if (true_code == NE && ! side_effects_p (cond)
4395 && rtx_equal_p (XEXP (cond, 0), true)
4396 && rtx_equal_p (XEXP (cond, 1), false))
4397 return true;
4398
4399 /* Look for cases where we have (abs x) or (neg (abs X)). */
4400
4401 if (GET_MODE_CLASS (mode) == MODE_INT
4402 && GET_CODE (false) == NEG
4403 && rtx_equal_p (true, XEXP (false, 0))
4404 && comparison_p
4405 && rtx_equal_p (true, XEXP (cond, 0))
4406 && ! side_effects_p (true))
4407 switch (true_code)
4408 {
4409 case GT:
4410 case GE:
4411 return gen_unary (ABS, mode, mode, true);
4412 case LT:
4413 case LE:
4414 return gen_unary (NEG, mode, mode, gen_unary (ABS, mode, mode, true));
4415 default:
4416 break;
4417 }
4418
4419 /* Look for MIN or MAX. */
4420
4421 if ((! FLOAT_MODE_P (mode) || flag_fast_math)
4422 && comparison_p
4423 && rtx_equal_p (XEXP (cond, 0), true)
4424 && rtx_equal_p (XEXP (cond, 1), false)
4425 && ! side_effects_p (cond))
4426 switch (true_code)
4427 {
4428 case GE:
4429 case GT:
4430 return gen_binary (SMAX, mode, true, false);
4431 case LE:
4432 case LT:
4433 return gen_binary (SMIN, mode, true, false);
4434 case GEU:
4435 case GTU:
4436 return gen_binary (UMAX, mode, true, false);
4437 case LEU:
4438 case LTU:
4439 return gen_binary (UMIN, mode, true, false);
4440 default:
4441 break;
4442 }
4443
4444 /* If we have (if_then_else COND (OP Z C1) Z) and OP is an identity when its
4445 second operand is zero, this can be done as (OP Z (mult COND C2)) where
4446 C2 = C1 * STORE_FLAG_VALUE. Similarly if OP has an outer ZERO_EXTEND or
4447 SIGN_EXTEND as long as Z is already extended (so we don't destroy it).
4448 We can do this kind of thing in some cases when STORE_FLAG_VALUE is
4449 neither 1 or -1, but it isn't worth checking for. */
4450
4451 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
4452 && comparison_p && mode != VOIDmode && ! side_effects_p (x))
4453 {
4454 rtx t = make_compound_operation (true, SET);
4455 rtx f = make_compound_operation (false, SET);
4456 rtx cond_op0 = XEXP (cond, 0);
4457 rtx cond_op1 = XEXP (cond, 1);
4458 enum rtx_code op, extend_op = NIL;
4459 enum machine_mode m = mode;
4460 rtx z = 0, c1;
4461
4462 if ((GET_CODE (t) == PLUS || GET_CODE (t) == MINUS
4463 || GET_CODE (t) == IOR || GET_CODE (t) == XOR
4464 || GET_CODE (t) == ASHIFT
4465 || GET_CODE (t) == LSHIFTRT || GET_CODE (t) == ASHIFTRT)
4466 && rtx_equal_p (XEXP (t, 0), f))
4467 c1 = XEXP (t, 1), op = GET_CODE (t), z = f;
4468
4469 /* If an identity-zero op is commutative, check whether there
4470 would be a match if we swapped the operands. */
4471 else if ((GET_CODE (t) == PLUS || GET_CODE (t) == IOR
4472 || GET_CODE (t) == XOR)
4473 && rtx_equal_p (XEXP (t, 1), f))
4474 c1 = XEXP (t, 0), op = GET_CODE (t), z = f;
4475 else if (GET_CODE (t) == SIGN_EXTEND
4476 && (GET_CODE (XEXP (t, 0)) == PLUS
4477 || GET_CODE (XEXP (t, 0)) == MINUS
4478 || GET_CODE (XEXP (t, 0)) == IOR
4479 || GET_CODE (XEXP (t, 0)) == XOR
4480 || GET_CODE (XEXP (t, 0)) == ASHIFT
4481 || GET_CODE (XEXP (t, 0)) == LSHIFTRT
4482 || GET_CODE (XEXP (t, 0)) == ASHIFTRT)
4483 && GET_CODE (XEXP (XEXP (t, 0), 0)) == SUBREG
4484 && subreg_lowpart_p (XEXP (XEXP (t, 0), 0))
4485 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 0)), f)
4486 && (num_sign_bit_copies (f, GET_MODE (f))
4487 > (GET_MODE_BITSIZE (mode)
4488 - GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (t, 0), 0))))))
4489 {
4490 c1 = XEXP (XEXP (t, 0), 1); z = f; op = GET_CODE (XEXP (t, 0));
4491 extend_op = SIGN_EXTEND;
4492 m = GET_MODE (XEXP (t, 0));
4493 }
4494 else if (GET_CODE (t) == SIGN_EXTEND
4495 && (GET_CODE (XEXP (t, 0)) == PLUS
4496 || GET_CODE (XEXP (t, 0)) == IOR
4497 || GET_CODE (XEXP (t, 0)) == XOR)
4498 && GET_CODE (XEXP (XEXP (t, 0), 1)) == SUBREG
4499 && subreg_lowpart_p (XEXP (XEXP (t, 0), 1))
4500 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 1)), f)
4501 && (num_sign_bit_copies (f, GET_MODE (f))
4502 > (GET_MODE_BITSIZE (mode)
4503 - GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (t, 0), 1))))))
4504 {
4505 c1 = XEXP (XEXP (t, 0), 0); z = f; op = GET_CODE (XEXP (t, 0));
4506 extend_op = SIGN_EXTEND;
4507 m = GET_MODE (XEXP (t, 0));
4508 }
4509 else if (GET_CODE (t) == ZERO_EXTEND
4510 && (GET_CODE (XEXP (t, 0)) == PLUS
4511 || GET_CODE (XEXP (t, 0)) == MINUS
4512 || GET_CODE (XEXP (t, 0)) == IOR
4513 || GET_CODE (XEXP (t, 0)) == XOR
4514 || GET_CODE (XEXP (t, 0)) == ASHIFT
4515 || GET_CODE (XEXP (t, 0)) == LSHIFTRT
4516 || GET_CODE (XEXP (t, 0)) == ASHIFTRT)
4517 && GET_CODE (XEXP (XEXP (t, 0), 0)) == SUBREG
4518 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4519 && subreg_lowpart_p (XEXP (XEXP (t, 0), 0))
4520 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 0)), f)
4521 && ((nonzero_bits (f, GET_MODE (f))
4522 & ~ GET_MODE_MASK (GET_MODE (XEXP (XEXP (t, 0), 0))))
4523 == 0))
4524 {
4525 c1 = XEXP (XEXP (t, 0), 1); z = f; op = GET_CODE (XEXP (t, 0));
4526 extend_op = ZERO_EXTEND;
4527 m = GET_MODE (XEXP (t, 0));
4528 }
4529 else if (GET_CODE (t) == ZERO_EXTEND
4530 && (GET_CODE (XEXP (t, 0)) == PLUS
4531 || GET_CODE (XEXP (t, 0)) == IOR
4532 || GET_CODE (XEXP (t, 0)) == XOR)
4533 && GET_CODE (XEXP (XEXP (t, 0), 1)) == SUBREG
4534 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4535 && subreg_lowpart_p (XEXP (XEXP (t, 0), 1))
4536 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 1)), f)
4537 && ((nonzero_bits (f, GET_MODE (f))
4538 & ~ GET_MODE_MASK (GET_MODE (XEXP (XEXP (t, 0), 1))))
4539 == 0))
4540 {
4541 c1 = XEXP (XEXP (t, 0), 0); z = f; op = GET_CODE (XEXP (t, 0));
4542 extend_op = ZERO_EXTEND;
4543 m = GET_MODE (XEXP (t, 0));
4544 }
4545
4546 if (z)
4547 {
4548 temp = subst (gen_binary (true_code, m, cond_op0, cond_op1),
4549 pc_rtx, pc_rtx, 0, 0);
4550 temp = gen_binary (MULT, m, temp,
4551 gen_binary (MULT, m, c1, const_true_rtx));
4552 temp = subst (temp, pc_rtx, pc_rtx, 0, 0);
4553 temp = gen_binary (op, m, gen_lowpart_for_combine (m, z), temp);
4554
4555 if (extend_op != NIL)
4556 temp = gen_unary (extend_op, mode, m, temp);
4557
4558 return temp;
4559 }
4560 }
4561
4562 /* If we have (if_then_else (ne A 0) C1 0) and either A is known to be 0 or
4563 1 and C1 is a single bit or A is known to be 0 or -1 and C1 is the
4564 negation of a single bit, we can convert this operation to a shift. We
4565 can actually do this more generally, but it doesn't seem worth it. */
4566
4567 if (true_code == NE && XEXP (cond, 1) == const0_rtx
4568 && false == const0_rtx && GET_CODE (true) == CONST_INT
4569 && ((1 == nonzero_bits (XEXP (cond, 0), mode)
4570 && (i = exact_log2 (INTVAL (true))) >= 0)
4571 || ((num_sign_bit_copies (XEXP (cond, 0), mode)
4572 == GET_MODE_BITSIZE (mode))
4573 && (i = exact_log2 (- INTVAL (true))) >= 0)))
4574 return
4575 simplify_shift_const (NULL_RTX, ASHIFT, mode,
4576 gen_lowpart_for_combine (mode, XEXP (cond, 0)), i);
4577
4578 return x;
4579 }
4580 \f
4581 /* Simplify X, a SET expression. Return the new expression. */
4582
4583 static rtx
4584 simplify_set (x)
4585 rtx x;
4586 {
4587 rtx src = SET_SRC (x);
4588 rtx dest = SET_DEST (x);
4589 enum machine_mode mode
4590 = GET_MODE (src) != VOIDmode ? GET_MODE (src) : GET_MODE (dest);
4591 rtx other_insn;
4592 rtx *cc_use;
4593
4594 /* (set (pc) (return)) gets written as (return). */
4595 if (GET_CODE (dest) == PC && GET_CODE (src) == RETURN)
4596 return src;
4597
4598 /* Now that we know for sure which bits of SRC we are using, see if we can
4599 simplify the expression for the object knowing that we only need the
4600 low-order bits. */
4601
4602 if (GET_MODE_CLASS (mode) == MODE_INT)
4603 src = force_to_mode (src, mode, GET_MODE_MASK (mode), NULL_RTX, 0);
4604
4605 /* If we are setting CC0 or if the source is a COMPARE, look for the use of
4606 the comparison result and try to simplify it unless we already have used
4607 undobuf.other_insn. */
4608 if ((GET_CODE (src) == COMPARE
4609 #ifdef HAVE_cc0
4610 || dest == cc0_rtx
4611 #endif
4612 )
4613 && (cc_use = find_single_use (dest, subst_insn, &other_insn)) != 0
4614 && (undobuf.other_insn == 0 || other_insn == undobuf.other_insn)
4615 && GET_RTX_CLASS (GET_CODE (*cc_use)) == '<'
4616 && rtx_equal_p (XEXP (*cc_use, 0), dest))
4617 {
4618 enum rtx_code old_code = GET_CODE (*cc_use);
4619 enum rtx_code new_code;
4620 rtx op0, op1;
4621 int other_changed = 0;
4622 enum machine_mode compare_mode = GET_MODE (dest);
4623
4624 if (GET_CODE (src) == COMPARE)
4625 op0 = XEXP (src, 0), op1 = XEXP (src, 1);
4626 else
4627 op0 = src, op1 = const0_rtx;
4628
4629 /* Simplify our comparison, if possible. */
4630 new_code = simplify_comparison (old_code, &op0, &op1);
4631
4632 #ifdef EXTRA_CC_MODES
4633 /* If this machine has CC modes other than CCmode, check to see if we
4634 need to use a different CC mode here. */
4635 compare_mode = SELECT_CC_MODE (new_code, op0, op1);
4636 #endif /* EXTRA_CC_MODES */
4637
4638 #if !defined (HAVE_cc0) && defined (EXTRA_CC_MODES)
4639 /* If the mode changed, we have to change SET_DEST, the mode in the
4640 compare, and the mode in the place SET_DEST is used. If SET_DEST is
4641 a hard register, just build new versions with the proper mode. If it
4642 is a pseudo, we lose unless it is only time we set the pseudo, in
4643 which case we can safely change its mode. */
4644 if (compare_mode != GET_MODE (dest))
4645 {
4646 int regno = REGNO (dest);
4647 rtx new_dest = gen_rtx_REG (compare_mode, regno);
4648
4649 if (regno < FIRST_PSEUDO_REGISTER
4650 || (REG_N_SETS (regno) == 1 && ! REG_USERVAR_P (dest)))
4651 {
4652 if (regno >= FIRST_PSEUDO_REGISTER)
4653 SUBST (regno_reg_rtx[regno], new_dest);
4654
4655 SUBST (SET_DEST (x), new_dest);
4656 SUBST (XEXP (*cc_use, 0), new_dest);
4657 other_changed = 1;
4658
4659 dest = new_dest;
4660 }
4661 }
4662 #endif
4663
4664 /* If the code changed, we have to build a new comparison in
4665 undobuf.other_insn. */
4666 if (new_code != old_code)
4667 {
4668 unsigned HOST_WIDE_INT mask;
4669
4670 SUBST (*cc_use, gen_rtx_combine (new_code, GET_MODE (*cc_use),
4671 dest, const0_rtx));
4672
4673 /* If the only change we made was to change an EQ into an NE or
4674 vice versa, OP0 has only one bit that might be nonzero, and OP1
4675 is zero, check if changing the user of the condition code will
4676 produce a valid insn. If it won't, we can keep the original code
4677 in that insn by surrounding our operation with an XOR. */
4678
4679 if (((old_code == NE && new_code == EQ)
4680 || (old_code == EQ && new_code == NE))
4681 && ! other_changed && op1 == const0_rtx
4682 && GET_MODE_BITSIZE (GET_MODE (op0)) <= HOST_BITS_PER_WIDE_INT
4683 && exact_log2 (mask = nonzero_bits (op0, GET_MODE (op0))) >= 0)
4684 {
4685 rtx pat = PATTERN (other_insn), note = 0;
4686
4687 if ((recog_for_combine (&pat, other_insn, &note) < 0
4688 && ! check_asm_operands (pat)))
4689 {
4690 PUT_CODE (*cc_use, old_code);
4691 other_insn = 0;
4692
4693 op0 = gen_binary (XOR, GET_MODE (op0), op0, GEN_INT (mask));
4694 }
4695 }
4696
4697 other_changed = 1;
4698 }
4699
4700 if (other_changed)
4701 undobuf.other_insn = other_insn;
4702
4703 #ifdef HAVE_cc0
4704 /* If we are now comparing against zero, change our source if
4705 needed. If we do not use cc0, we always have a COMPARE. */
4706 if (op1 == const0_rtx && dest == cc0_rtx)
4707 {
4708 SUBST (SET_SRC (x), op0);
4709 src = op0;
4710 }
4711 else
4712 #endif
4713
4714 /* Otherwise, if we didn't previously have a COMPARE in the
4715 correct mode, we need one. */
4716 if (GET_CODE (src) != COMPARE || GET_MODE (src) != compare_mode)
4717 {
4718 SUBST (SET_SRC (x),
4719 gen_rtx_combine (COMPARE, compare_mode, op0, op1));
4720 src = SET_SRC (x);
4721 }
4722 else
4723 {
4724 /* Otherwise, update the COMPARE if needed. */
4725 SUBST (XEXP (src, 0), op0);
4726 SUBST (XEXP (src, 1), op1);
4727 }
4728 }
4729 else
4730 {
4731 /* Get SET_SRC in a form where we have placed back any
4732 compound expressions. Then do the checks below. */
4733 src = make_compound_operation (src, SET);
4734 SUBST (SET_SRC (x), src);
4735 }
4736
4737 /* If we have (set x (subreg:m1 (op:m2 ...) 0)) with OP being some operation,
4738 and X being a REG or (subreg (reg)), we may be able to convert this to
4739 (set (subreg:m2 x) (op)).
4740
4741 We can always do this if M1 is narrower than M2 because that means that
4742 we only care about the low bits of the result.
4743
4744 However, on machines without WORD_REGISTER_OPERATIONS defined, we cannot
4745 perform a narrower operation than requested since the high-order bits will
4746 be undefined. On machine where it is defined, this transformation is safe
4747 as long as M1 and M2 have the same number of words. */
4748
4749 if (GET_CODE (src) == SUBREG && subreg_lowpart_p (src)
4750 && GET_RTX_CLASS (GET_CODE (SUBREG_REG (src))) != 'o'
4751 && (((GET_MODE_SIZE (GET_MODE (src)) + (UNITS_PER_WORD - 1))
4752 / UNITS_PER_WORD)
4753 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (src)))
4754 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))
4755 #ifndef WORD_REGISTER_OPERATIONS
4756 && (GET_MODE_SIZE (GET_MODE (src))
4757 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (src))))
4758 #endif
4759 #ifdef CLASS_CANNOT_CHANGE_SIZE
4760 && ! (GET_CODE (dest) == REG && REGNO (dest) < FIRST_PSEUDO_REGISTER
4761 && (TEST_HARD_REG_BIT
4762 (reg_class_contents[(int) CLASS_CANNOT_CHANGE_SIZE],
4763 REGNO (dest)))
4764 && (GET_MODE_SIZE (GET_MODE (src))
4765 != GET_MODE_SIZE (GET_MODE (SUBREG_REG (src)))))
4766 #endif
4767 && (GET_CODE (dest) == REG
4768 || (GET_CODE (dest) == SUBREG
4769 && GET_CODE (SUBREG_REG (dest)) == REG)))
4770 {
4771 SUBST (SET_DEST (x),
4772 gen_lowpart_for_combine (GET_MODE (SUBREG_REG (src)),
4773 dest));
4774 SUBST (SET_SRC (x), SUBREG_REG (src));
4775
4776 src = SET_SRC (x), dest = SET_DEST (x);
4777 }
4778
4779 #ifdef LOAD_EXTEND_OP
4780 /* If we have (set FOO (subreg:M (mem:N BAR) 0)) with M wider than N, this
4781 would require a paradoxical subreg. Replace the subreg with a
4782 zero_extend to avoid the reload that would otherwise be required. */
4783
4784 if (GET_CODE (src) == SUBREG && subreg_lowpart_p (src)
4785 && LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (src))) != NIL
4786 && SUBREG_WORD (src) == 0
4787 && (GET_MODE_SIZE (GET_MODE (src))
4788 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (src))))
4789 && GET_CODE (SUBREG_REG (src)) == MEM)
4790 {
4791 SUBST (SET_SRC (x),
4792 gen_rtx_combine (LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (src))),
4793 GET_MODE (src), XEXP (src, 0)));
4794
4795 src = SET_SRC (x);
4796 }
4797 #endif
4798
4799 /* If we don't have a conditional move, SET_SRC is an IF_THEN_ELSE, and we
4800 are comparing an item known to be 0 or -1 against 0, use a logical
4801 operation instead. Check for one of the arms being an IOR of the other
4802 arm with some value. We compute three terms to be IOR'ed together. In
4803 practice, at most two will be nonzero. Then we do the IOR's. */
4804
4805 if (GET_CODE (dest) != PC
4806 && GET_CODE (src) == IF_THEN_ELSE
4807 && GET_MODE_CLASS (GET_MODE (src)) == MODE_INT
4808 && (GET_CODE (XEXP (src, 0)) == EQ || GET_CODE (XEXP (src, 0)) == NE)
4809 && XEXP (XEXP (src, 0), 1) == const0_rtx
4810 && GET_MODE (src) == GET_MODE (XEXP (XEXP (src, 0), 0))
4811 #ifdef HAVE_conditional_move
4812 && ! can_conditionally_move_p (GET_MODE (src))
4813 #endif
4814 && (num_sign_bit_copies (XEXP (XEXP (src, 0), 0),
4815 GET_MODE (XEXP (XEXP (src, 0), 0)))
4816 == GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (src, 0), 0))))
4817 && ! side_effects_p (src))
4818 {
4819 rtx true = (GET_CODE (XEXP (src, 0)) == NE
4820 ? XEXP (src, 1) : XEXP (src, 2));
4821 rtx false = (GET_CODE (XEXP (src, 0)) == NE
4822 ? XEXP (src, 2) : XEXP (src, 1));
4823 rtx term1 = const0_rtx, term2, term3;
4824
4825 if (GET_CODE (true) == IOR && rtx_equal_p (XEXP (true, 0), false))
4826 term1 = false, true = XEXP (true, 1), false = const0_rtx;
4827 else if (GET_CODE (true) == IOR
4828 && rtx_equal_p (XEXP (true, 1), false))
4829 term1 = false, true = XEXP (true, 0), false = const0_rtx;
4830 else if (GET_CODE (false) == IOR
4831 && rtx_equal_p (XEXP (false, 0), true))
4832 term1 = true, false = XEXP (false, 1), true = const0_rtx;
4833 else if (GET_CODE (false) == IOR
4834 && rtx_equal_p (XEXP (false, 1), true))
4835 term1 = true, false = XEXP (false, 0), true = const0_rtx;
4836
4837 term2 = gen_binary (AND, GET_MODE (src), XEXP (XEXP (src, 0), 0), true);
4838 term3 = gen_binary (AND, GET_MODE (src),
4839 gen_unary (NOT, GET_MODE (src), GET_MODE (src),
4840 XEXP (XEXP (src, 0), 0)),
4841 false);
4842
4843 SUBST (SET_SRC (x),
4844 gen_binary (IOR, GET_MODE (src),
4845 gen_binary (IOR, GET_MODE (src), term1, term2),
4846 term3));
4847
4848 src = SET_SRC (x);
4849 }
4850
4851 /* If either SRC or DEST is a CLOBBER of (const_int 0), make this
4852 whole thing fail. */
4853 if (GET_CODE (src) == CLOBBER && XEXP (src, 0) == const0_rtx)
4854 return src;
4855 else if (GET_CODE (dest) == CLOBBER && XEXP (dest, 0) == const0_rtx)
4856 return dest;
4857 else
4858 /* Convert this into a field assignment operation, if possible. */
4859 return make_field_assignment (x);
4860 }
4861 \f
4862 /* Simplify, X, and AND, IOR, or XOR operation, and return the simplified
4863 result. LAST is nonzero if this is the last retry. */
4864
4865 static rtx
4866 simplify_logical (x, last)
4867 rtx x;
4868 int last;
4869 {
4870 enum machine_mode mode = GET_MODE (x);
4871 rtx op0 = XEXP (x, 0);
4872 rtx op1 = XEXP (x, 1);
4873
4874 switch (GET_CODE (x))
4875 {
4876 case AND:
4877 /* Convert (A ^ B) & A to A & (~ B) since the latter is often a single
4878 insn (and may simplify more). */
4879 if (GET_CODE (op0) == XOR
4880 && rtx_equal_p (XEXP (op0, 0), op1)
4881 && ! side_effects_p (op1))
4882 x = gen_binary (AND, mode,
4883 gen_unary (NOT, mode, mode, XEXP (op0, 1)), op1);
4884
4885 if (GET_CODE (op0) == XOR
4886 && rtx_equal_p (XEXP (op0, 1), op1)
4887 && ! side_effects_p (op1))
4888 x = gen_binary (AND, mode,
4889 gen_unary (NOT, mode, mode, XEXP (op0, 0)), op1);
4890
4891 /* Similarly for (~ (A ^ B)) & A. */
4892 if (GET_CODE (op0) == NOT
4893 && GET_CODE (XEXP (op0, 0)) == XOR
4894 && rtx_equal_p (XEXP (XEXP (op0, 0), 0), op1)
4895 && ! side_effects_p (op1))
4896 x = gen_binary (AND, mode, XEXP (XEXP (op0, 0), 1), op1);
4897
4898 if (GET_CODE (op0) == NOT
4899 && GET_CODE (XEXP (op0, 0)) == XOR
4900 && rtx_equal_p (XEXP (XEXP (op0, 0), 1), op1)
4901 && ! side_effects_p (op1))
4902 x = gen_binary (AND, mode, XEXP (XEXP (op0, 0), 0), op1);
4903
4904 if (GET_CODE (op1) == CONST_INT)
4905 {
4906 x = simplify_and_const_int (x, mode, op0, INTVAL (op1));
4907
4908 /* If we have (ior (and (X C1) C2)) and the next restart would be
4909 the last, simplify this by making C1 as small as possible
4910 and then exit. */
4911 if (last
4912 && GET_CODE (x) == IOR && GET_CODE (op0) == AND
4913 && GET_CODE (XEXP (op0, 1)) == CONST_INT
4914 && GET_CODE (op1) == CONST_INT)
4915 return gen_binary (IOR, mode,
4916 gen_binary (AND, mode, XEXP (op0, 0),
4917 GEN_INT (INTVAL (XEXP (op0, 1))
4918 & ~ INTVAL (op1))), op1);
4919
4920 if (GET_CODE (x) != AND)
4921 return x;
4922
4923 if (GET_RTX_CLASS (GET_CODE (x)) == 'c'
4924 || GET_RTX_CLASS (GET_CODE (x)) == '2')
4925 op0 = XEXP (x, 0), op1 = XEXP (x, 1);
4926 }
4927
4928 /* Convert (A | B) & A to A. */
4929 if (GET_CODE (op0) == IOR
4930 && (rtx_equal_p (XEXP (op0, 0), op1)
4931 || rtx_equal_p (XEXP (op0, 1), op1))
4932 && ! side_effects_p (XEXP (op0, 0))
4933 && ! side_effects_p (XEXP (op0, 1)))
4934 return op1;
4935
4936 /* In the following group of tests (and those in case IOR below),
4937 we start with some combination of logical operations and apply
4938 the distributive law followed by the inverse distributive law.
4939 Most of the time, this results in no change. However, if some of
4940 the operands are the same or inverses of each other, simplifications
4941 will result.
4942
4943 For example, (and (ior A B) (not B)) can occur as the result of
4944 expanding a bit field assignment. When we apply the distributive
4945 law to this, we get (ior (and (A (not B))) (and (B (not B)))),
4946 which then simplifies to (and (A (not B))).
4947
4948 If we have (and (ior A B) C), apply the distributive law and then
4949 the inverse distributive law to see if things simplify. */
4950
4951 if (GET_CODE (op0) == IOR || GET_CODE (op0) == XOR)
4952 {
4953 x = apply_distributive_law
4954 (gen_binary (GET_CODE (op0), mode,
4955 gen_binary (AND, mode, XEXP (op0, 0), op1),
4956 gen_binary (AND, mode, XEXP (op0, 1), op1)));
4957 if (GET_CODE (x) != AND)
4958 return x;
4959 }
4960
4961 if (GET_CODE (op1) == IOR || GET_CODE (op1) == XOR)
4962 return apply_distributive_law
4963 (gen_binary (GET_CODE (op1), mode,
4964 gen_binary (AND, mode, XEXP (op1, 0), op0),
4965 gen_binary (AND, mode, XEXP (op1, 1), op0)));
4966
4967 /* Similarly, taking advantage of the fact that
4968 (and (not A) (xor B C)) == (xor (ior A B) (ior A C)) */
4969
4970 if (GET_CODE (op0) == NOT && GET_CODE (op1) == XOR)
4971 return apply_distributive_law
4972 (gen_binary (XOR, mode,
4973 gen_binary (IOR, mode, XEXP (op0, 0), XEXP (op1, 0)),
4974 gen_binary (IOR, mode, XEXP (op0, 0), XEXP (op1, 1))));
4975
4976 else if (GET_CODE (op1) == NOT && GET_CODE (op0) == XOR)
4977 return apply_distributive_law
4978 (gen_binary (XOR, mode,
4979 gen_binary (IOR, mode, XEXP (op1, 0), XEXP (op0, 0)),
4980 gen_binary (IOR, mode, XEXP (op1, 0), XEXP (op0, 1))));
4981 break;
4982
4983 case IOR:
4984 /* (ior A C) is C if all bits of A that might be nonzero are on in C. */
4985 if (GET_CODE (op1) == CONST_INT
4986 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4987 && (nonzero_bits (op0, mode) & ~ INTVAL (op1)) == 0)
4988 return op1;
4989
4990 /* Convert (A & B) | A to A. */
4991 if (GET_CODE (op0) == AND
4992 && (rtx_equal_p (XEXP (op0, 0), op1)
4993 || rtx_equal_p (XEXP (op0, 1), op1))
4994 && ! side_effects_p (XEXP (op0, 0))
4995 && ! side_effects_p (XEXP (op0, 1)))
4996 return op1;
4997
4998 /* If we have (ior (and A B) C), apply the distributive law and then
4999 the inverse distributive law to see if things simplify. */
5000
5001 if (GET_CODE (op0) == AND)
5002 {
5003 x = apply_distributive_law
5004 (gen_binary (AND, mode,
5005 gen_binary (IOR, mode, XEXP (op0, 0), op1),
5006 gen_binary (IOR, mode, XEXP (op0, 1), op1)));
5007
5008 if (GET_CODE (x) != IOR)
5009 return x;
5010 }
5011
5012 if (GET_CODE (op1) == AND)
5013 {
5014 x = apply_distributive_law
5015 (gen_binary (AND, mode,
5016 gen_binary (IOR, mode, XEXP (op1, 0), op0),
5017 gen_binary (IOR, mode, XEXP (op1, 1), op0)));
5018
5019 if (GET_CODE (x) != IOR)
5020 return x;
5021 }
5022
5023 /* Convert (ior (ashift A CX) (lshiftrt A CY)) where CX+CY equals the
5024 mode size to (rotate A CX). */
5025
5026 if (((GET_CODE (op0) == ASHIFT && GET_CODE (op1) == LSHIFTRT)
5027 || (GET_CODE (op1) == ASHIFT && GET_CODE (op0) == LSHIFTRT))
5028 && rtx_equal_p (XEXP (op0, 0), XEXP (op1, 0))
5029 && GET_CODE (XEXP (op0, 1)) == CONST_INT
5030 && GET_CODE (XEXP (op1, 1)) == CONST_INT
5031 && (INTVAL (XEXP (op0, 1)) + INTVAL (XEXP (op1, 1))
5032 == GET_MODE_BITSIZE (mode)))
5033 return gen_rtx_ROTATE (mode, XEXP (op0, 0),
5034 (GET_CODE (op0) == ASHIFT
5035 ? XEXP (op0, 1) : XEXP (op1, 1)));
5036
5037 /* If OP0 is (ashiftrt (plus ...) C), it might actually be
5038 a (sign_extend (plus ...)). If so, OP1 is a CONST_INT, and the PLUS
5039 does not affect any of the bits in OP1, it can really be done
5040 as a PLUS and we can associate. We do this by seeing if OP1
5041 can be safely shifted left C bits. */
5042 if (GET_CODE (op1) == CONST_INT && GET_CODE (op0) == ASHIFTRT
5043 && GET_CODE (XEXP (op0, 0)) == PLUS
5044 && GET_CODE (XEXP (XEXP (op0, 0), 1)) == CONST_INT
5045 && GET_CODE (XEXP (op0, 1)) == CONST_INT
5046 && INTVAL (XEXP (op0, 1)) < HOST_BITS_PER_WIDE_INT)
5047 {
5048 int count = INTVAL (XEXP (op0, 1));
5049 HOST_WIDE_INT mask = INTVAL (op1) << count;
5050
5051 if (mask >> count == INTVAL (op1)
5052 && (mask & nonzero_bits (XEXP (op0, 0), mode)) == 0)
5053 {
5054 SUBST (XEXP (XEXP (op0, 0), 1),
5055 GEN_INT (INTVAL (XEXP (XEXP (op0, 0), 1)) | mask));
5056 return op0;
5057 }
5058 }
5059 break;
5060
5061 case XOR:
5062 /* Convert (XOR (NOT x) (NOT y)) to (XOR x y).
5063 Also convert (XOR (NOT x) y) to (NOT (XOR x y)), similarly for
5064 (NOT y). */
5065 {
5066 int num_negated = 0;
5067
5068 if (GET_CODE (op0) == NOT)
5069 num_negated++, op0 = XEXP (op0, 0);
5070 if (GET_CODE (op1) == NOT)
5071 num_negated++, op1 = XEXP (op1, 0);
5072
5073 if (num_negated == 2)
5074 {
5075 SUBST (XEXP (x, 0), op0);
5076 SUBST (XEXP (x, 1), op1);
5077 }
5078 else if (num_negated == 1)
5079 return gen_unary (NOT, mode, mode, gen_binary (XOR, mode, op0, op1));
5080 }
5081
5082 /* Convert (xor (and A B) B) to (and (not A) B). The latter may
5083 correspond to a machine insn or result in further simplifications
5084 if B is a constant. */
5085
5086 if (GET_CODE (op0) == AND
5087 && rtx_equal_p (XEXP (op0, 1), op1)
5088 && ! side_effects_p (op1))
5089 return gen_binary (AND, mode,
5090 gen_unary (NOT, mode, mode, XEXP (op0, 0)),
5091 op1);
5092
5093 else if (GET_CODE (op0) == AND
5094 && rtx_equal_p (XEXP (op0, 0), op1)
5095 && ! side_effects_p (op1))
5096 return gen_binary (AND, mode,
5097 gen_unary (NOT, mode, mode, XEXP (op0, 1)),
5098 op1);
5099
5100 /* (xor (comparison foo bar) (const_int 1)) can become the reversed
5101 comparison if STORE_FLAG_VALUE is 1. */
5102 if (STORE_FLAG_VALUE == 1
5103 && op1 == const1_rtx
5104 && GET_RTX_CLASS (GET_CODE (op0)) == '<'
5105 && reversible_comparison_p (op0))
5106 return gen_rtx_combine (reverse_condition (GET_CODE (op0)),
5107 mode, XEXP (op0, 0), XEXP (op0, 1));
5108
5109 /* (lshiftrt foo C) where C is the number of bits in FOO minus 1
5110 is (lt foo (const_int 0)), so we can perform the above
5111 simplification if STORE_FLAG_VALUE is 1. */
5112
5113 if (STORE_FLAG_VALUE == 1
5114 && op1 == const1_rtx
5115 && GET_CODE (op0) == LSHIFTRT
5116 && GET_CODE (XEXP (op0, 1)) == CONST_INT
5117 && INTVAL (XEXP (op0, 1)) == GET_MODE_BITSIZE (mode) - 1)
5118 return gen_rtx_combine (GE, mode, XEXP (op0, 0), const0_rtx);
5119
5120 /* (xor (comparison foo bar) (const_int sign-bit))
5121 when STORE_FLAG_VALUE is the sign bit. */
5122 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5123 && ((STORE_FLAG_VALUE & GET_MODE_MASK (mode))
5124 == (unsigned HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (mode) - 1))
5125 && op1 == const_true_rtx
5126 && GET_RTX_CLASS (GET_CODE (op0)) == '<'
5127 && reversible_comparison_p (op0))
5128 return gen_rtx_combine (reverse_condition (GET_CODE (op0)),
5129 mode, XEXP (op0, 0), XEXP (op0, 1));
5130 break;
5131
5132 default:
5133 abort ();
5134 }
5135
5136 return x;
5137 }
5138 \f
5139 /* We consider ZERO_EXTRACT, SIGN_EXTRACT, and SIGN_EXTEND as "compound
5140 operations" because they can be replaced with two more basic operations.
5141 ZERO_EXTEND is also considered "compound" because it can be replaced with
5142 an AND operation, which is simpler, though only one operation.
5143
5144 The function expand_compound_operation is called with an rtx expression
5145 and will convert it to the appropriate shifts and AND operations,
5146 simplifying at each stage.
5147
5148 The function make_compound_operation is called to convert an expression
5149 consisting of shifts and ANDs into the equivalent compound expression.
5150 It is the inverse of this function, loosely speaking. */
5151
5152 static rtx
5153 expand_compound_operation (x)
5154 rtx x;
5155 {
5156 int pos = 0, len;
5157 int unsignedp = 0;
5158 int modewidth;
5159 rtx tem;
5160
5161 switch (GET_CODE (x))
5162 {
5163 case ZERO_EXTEND:
5164 unsignedp = 1;
5165 case SIGN_EXTEND:
5166 /* We can't necessarily use a const_int for a multiword mode;
5167 it depends on implicitly extending the value.
5168 Since we don't know the right way to extend it,
5169 we can't tell whether the implicit way is right.
5170
5171 Even for a mode that is no wider than a const_int,
5172 we can't win, because we need to sign extend one of its bits through
5173 the rest of it, and we don't know which bit. */
5174 if (GET_CODE (XEXP (x, 0)) == CONST_INT)
5175 return x;
5176
5177 /* Return if (subreg:MODE FROM 0) is not a safe replacement for
5178 (zero_extend:MODE FROM) or (sign_extend:MODE FROM). It is for any MEM
5179 because (SUBREG (MEM...)) is guaranteed to cause the MEM to be
5180 reloaded. If not for that, MEM's would very rarely be safe.
5181
5182 Reject MODEs bigger than a word, because we might not be able
5183 to reference a two-register group starting with an arbitrary register
5184 (and currently gen_lowpart might crash for a SUBREG). */
5185
5186 if (GET_MODE_SIZE (GET_MODE (XEXP (x, 0))) > UNITS_PER_WORD)
5187 return x;
5188
5189 len = GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)));
5190 /* If the inner object has VOIDmode (the only way this can happen
5191 is if it is a ASM_OPERANDS), we can't do anything since we don't
5192 know how much masking to do. */
5193 if (len == 0)
5194 return x;
5195
5196 break;
5197
5198 case ZERO_EXTRACT:
5199 unsignedp = 1;
5200 case SIGN_EXTRACT:
5201 /* If the operand is a CLOBBER, just return it. */
5202 if (GET_CODE (XEXP (x, 0)) == CLOBBER)
5203 return XEXP (x, 0);
5204
5205 if (GET_CODE (XEXP (x, 1)) != CONST_INT
5206 || GET_CODE (XEXP (x, 2)) != CONST_INT
5207 || GET_MODE (XEXP (x, 0)) == VOIDmode)
5208 return x;
5209
5210 len = INTVAL (XEXP (x, 1));
5211 pos = INTVAL (XEXP (x, 2));
5212
5213 /* If this goes outside the object being extracted, replace the object
5214 with a (use (mem ...)) construct that only combine understands
5215 and is used only for this purpose. */
5216 if (len + pos > GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0))))
5217 SUBST (XEXP (x, 0), gen_rtx_USE (GET_MODE (x), XEXP (x, 0)));
5218
5219 if (BITS_BIG_ENDIAN)
5220 pos = GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0))) - len - pos;
5221
5222 break;
5223
5224 default:
5225 return x;
5226 }
5227
5228 /* We can optimize some special cases of ZERO_EXTEND. */
5229 if (GET_CODE (x) == ZERO_EXTEND)
5230 {
5231 /* (zero_extend:DI (truncate:SI foo:DI)) is just foo:DI if we
5232 know that the last value didn't have any inappropriate bits
5233 set. */
5234 if (GET_CODE (XEXP (x, 0)) == TRUNCATE
5235 && GET_MODE (XEXP (XEXP (x, 0), 0)) == GET_MODE (x)
5236 && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
5237 && (nonzero_bits (XEXP (XEXP (x, 0), 0), GET_MODE (x))
5238 & ~ GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
5239 return XEXP (XEXP (x, 0), 0);
5240
5241 /* Likewise for (zero_extend:DI (subreg:SI foo:DI 0)). */
5242 if (GET_CODE (XEXP (x, 0)) == SUBREG
5243 && GET_MODE (SUBREG_REG (XEXP (x, 0))) == GET_MODE (x)
5244 && subreg_lowpart_p (XEXP (x, 0))
5245 && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
5246 && (nonzero_bits (SUBREG_REG (XEXP (x, 0)), GET_MODE (x))
5247 & ~ GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
5248 return SUBREG_REG (XEXP (x, 0));
5249
5250 /* (zero_extend:DI (truncate:SI foo:DI)) is just foo:DI when foo
5251 is a comparison and STORE_FLAG_VALUE permits. This is like
5252 the first case, but it works even when GET_MODE (x) is larger
5253 than HOST_WIDE_INT. */
5254 if (GET_CODE (XEXP (x, 0)) == TRUNCATE
5255 && GET_MODE (XEXP (XEXP (x, 0), 0)) == GET_MODE (x)
5256 && GET_RTX_CLASS (GET_CODE (XEXP (XEXP (x, 0), 0))) == '<'
5257 && (GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))
5258 <= HOST_BITS_PER_WIDE_INT)
5259 && ((HOST_WIDE_INT) STORE_FLAG_VALUE
5260 & ~ GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
5261 return XEXP (XEXP (x, 0), 0);
5262
5263 /* Likewise for (zero_extend:DI (subreg:SI foo:DI 0)). */
5264 if (GET_CODE (XEXP (x, 0)) == SUBREG
5265 && GET_MODE (SUBREG_REG (XEXP (x, 0))) == GET_MODE (x)
5266 && subreg_lowpart_p (XEXP (x, 0))
5267 && GET_RTX_CLASS (GET_CODE (SUBREG_REG (XEXP (x, 0)))) == '<'
5268 && (GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))
5269 <= HOST_BITS_PER_WIDE_INT)
5270 && ((HOST_WIDE_INT) STORE_FLAG_VALUE
5271 & ~ GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
5272 return SUBREG_REG (XEXP (x, 0));
5273
5274 /* If sign extension is cheaper than zero extension, then use it
5275 if we know that no extraneous bits are set, and that the high
5276 bit is not set. */
5277 if (flag_expensive_optimizations
5278 && ((GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
5279 && ((nonzero_bits (XEXP (x, 0), GET_MODE (x))
5280 & ~ (((unsigned HOST_WIDE_INT)
5281 GET_MODE_MASK (GET_MODE (XEXP (x, 0))))
5282 >> 1))
5283 == 0))
5284 || (GET_RTX_CLASS (GET_CODE (XEXP (x, 0))) == '<'
5285 && (GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))
5286 <= HOST_BITS_PER_WIDE_INT)
5287 && (((HOST_WIDE_INT) STORE_FLAG_VALUE
5288 & ~ (((unsigned HOST_WIDE_INT)
5289 GET_MODE_MASK (GET_MODE (XEXP (x, 0))))
5290 >> 1))
5291 == 0))))
5292 {
5293 rtx temp = gen_rtx_SIGN_EXTEND (GET_MODE (x), XEXP (x, 0));
5294
5295 if (rtx_cost (temp, SET) < rtx_cost (x, SET))
5296 return expand_compound_operation (temp);
5297 }
5298 }
5299
5300 /* If we reach here, we want to return a pair of shifts. The inner
5301 shift is a left shift of BITSIZE - POS - LEN bits. The outer
5302 shift is a right shift of BITSIZE - LEN bits. It is arithmetic or
5303 logical depending on the value of UNSIGNEDP.
5304
5305 If this was a ZERO_EXTEND or ZERO_EXTRACT, this pair of shifts will be
5306 converted into an AND of a shift.
5307
5308 We must check for the case where the left shift would have a negative
5309 count. This can happen in a case like (x >> 31) & 255 on machines
5310 that can't shift by a constant. On those machines, we would first
5311 combine the shift with the AND to produce a variable-position
5312 extraction. Then the constant of 31 would be substituted in to produce
5313 a such a position. */
5314
5315 modewidth = GET_MODE_BITSIZE (GET_MODE (x));
5316 if (modewidth >= pos - len)
5317 tem = simplify_shift_const (NULL_RTX, unsignedp ? LSHIFTRT : ASHIFTRT,
5318 GET_MODE (x),
5319 simplify_shift_const (NULL_RTX, ASHIFT,
5320 GET_MODE (x),
5321 XEXP (x, 0),
5322 modewidth - pos - len),
5323 modewidth - len);
5324
5325 else if (unsignedp && len < HOST_BITS_PER_WIDE_INT)
5326 tem = simplify_and_const_int (NULL_RTX, GET_MODE (x),
5327 simplify_shift_const (NULL_RTX, LSHIFTRT,
5328 GET_MODE (x),
5329 XEXP (x, 0), pos),
5330 ((HOST_WIDE_INT) 1 << len) - 1);
5331 else
5332 /* Any other cases we can't handle. */
5333 return x;
5334
5335
5336 /* If we couldn't do this for some reason, return the original
5337 expression. */
5338 if (GET_CODE (tem) == CLOBBER)
5339 return x;
5340
5341 return tem;
5342 }
5343 \f
5344 /* X is a SET which contains an assignment of one object into
5345 a part of another (such as a bit-field assignment, STRICT_LOW_PART,
5346 or certain SUBREGS). If possible, convert it into a series of
5347 logical operations.
5348
5349 We half-heartedly support variable positions, but do not at all
5350 support variable lengths. */
5351
5352 static rtx
5353 expand_field_assignment (x)
5354 rtx x;
5355 {
5356 rtx inner;
5357 rtx pos; /* Always counts from low bit. */
5358 int len;
5359 rtx mask;
5360 enum machine_mode compute_mode;
5361
5362 /* Loop until we find something we can't simplify. */
5363 while (1)
5364 {
5365 if (GET_CODE (SET_DEST (x)) == STRICT_LOW_PART
5366 && GET_CODE (XEXP (SET_DEST (x), 0)) == SUBREG)
5367 {
5368 inner = SUBREG_REG (XEXP (SET_DEST (x), 0));
5369 len = GET_MODE_BITSIZE (GET_MODE (XEXP (SET_DEST (x), 0)));
5370 pos = GEN_INT (BITS_PER_WORD * SUBREG_WORD (XEXP (SET_DEST (x), 0)));
5371 }
5372 else if (GET_CODE (SET_DEST (x)) == ZERO_EXTRACT
5373 && GET_CODE (XEXP (SET_DEST (x), 1)) == CONST_INT)
5374 {
5375 inner = XEXP (SET_DEST (x), 0);
5376 len = INTVAL (XEXP (SET_DEST (x), 1));
5377 pos = XEXP (SET_DEST (x), 2);
5378
5379 /* If the position is constant and spans the width of INNER,
5380 surround INNER with a USE to indicate this. */
5381 if (GET_CODE (pos) == CONST_INT
5382 && INTVAL (pos) + len > GET_MODE_BITSIZE (GET_MODE (inner)))
5383 inner = gen_rtx_USE (GET_MODE (SET_DEST (x)), inner);
5384
5385 if (BITS_BIG_ENDIAN)
5386 {
5387 if (GET_CODE (pos) == CONST_INT)
5388 pos = GEN_INT (GET_MODE_BITSIZE (GET_MODE (inner)) - len
5389 - INTVAL (pos));
5390 else if (GET_CODE (pos) == MINUS
5391 && GET_CODE (XEXP (pos, 1)) == CONST_INT
5392 && (INTVAL (XEXP (pos, 1))
5393 == GET_MODE_BITSIZE (GET_MODE (inner)) - len))
5394 /* If position is ADJUST - X, new position is X. */
5395 pos = XEXP (pos, 0);
5396 else
5397 pos = gen_binary (MINUS, GET_MODE (pos),
5398 GEN_INT (GET_MODE_BITSIZE (GET_MODE (inner))
5399 - len),
5400 pos);
5401 }
5402 }
5403
5404 /* A SUBREG between two modes that occupy the same numbers of words
5405 can be done by moving the SUBREG to the source. */
5406 else if (GET_CODE (SET_DEST (x)) == SUBREG
5407 && (((GET_MODE_SIZE (GET_MODE (SET_DEST (x)))
5408 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
5409 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (x))))
5410 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)))
5411 {
5412 x = gen_rtx_SET (VOIDmode, SUBREG_REG (SET_DEST (x)),
5413 gen_lowpart_for_combine (GET_MODE (SUBREG_REG (SET_DEST (x))),
5414 SET_SRC (x)));
5415 continue;
5416 }
5417 else
5418 break;
5419
5420 while (GET_CODE (inner) == SUBREG && subreg_lowpart_p (inner))
5421 inner = SUBREG_REG (inner);
5422
5423 compute_mode = GET_MODE (inner);
5424
5425 /* Don't attempt bitwise arithmetic on non-integral modes. */
5426 if (! INTEGRAL_MODE_P (compute_mode))
5427 {
5428 enum machine_mode imode;
5429
5430 /* Something is probably seriously wrong if this matches. */
5431 if (! FLOAT_MODE_P (compute_mode))
5432 break;
5433
5434 /* Try to find an integral mode to pun with. */
5435 imode = mode_for_size (GET_MODE_BITSIZE (compute_mode), MODE_INT, 0);
5436 if (imode == BLKmode)
5437 break;
5438
5439 compute_mode = imode;
5440 inner = gen_lowpart_for_combine (imode, inner);
5441 }
5442
5443 /* Compute a mask of LEN bits, if we can do this on the host machine. */
5444 if (len < HOST_BITS_PER_WIDE_INT)
5445 mask = GEN_INT (((HOST_WIDE_INT) 1 << len) - 1);
5446 else
5447 break;
5448
5449 /* Now compute the equivalent expression. Make a copy of INNER
5450 for the SET_DEST in case it is a MEM into which we will substitute;
5451 we don't want shared RTL in that case. */
5452 x = gen_rtx_SET (VOIDmode, copy_rtx (inner),
5453 gen_binary (IOR, compute_mode,
5454 gen_binary (AND, compute_mode,
5455 gen_unary (NOT, compute_mode,
5456 compute_mode,
5457 gen_binary (ASHIFT,
5458 compute_mode,
5459 mask, pos)),
5460 inner),
5461 gen_binary (ASHIFT, compute_mode,
5462 gen_binary (AND, compute_mode,
5463 gen_lowpart_for_combine
5464 (compute_mode,
5465 SET_SRC (x)),
5466 mask),
5467 pos)));
5468 }
5469
5470 return x;
5471 }
5472 \f
5473 /* Return an RTX for a reference to LEN bits of INNER. If POS_RTX is nonzero,
5474 it is an RTX that represents a variable starting position; otherwise,
5475 POS is the (constant) starting bit position (counted from the LSB).
5476
5477 INNER may be a USE. This will occur when we started with a bitfield
5478 that went outside the boundary of the object in memory, which is
5479 allowed on most machines. To isolate this case, we produce a USE
5480 whose mode is wide enough and surround the MEM with it. The only
5481 code that understands the USE is this routine. If it is not removed,
5482 it will cause the resulting insn not to match.
5483
5484 UNSIGNEDP is non-zero for an unsigned reference and zero for a
5485 signed reference.
5486
5487 IN_DEST is non-zero if this is a reference in the destination of a
5488 SET. This is used when a ZERO_ or SIGN_EXTRACT isn't needed. If non-zero,
5489 a STRICT_LOW_PART will be used, if zero, ZERO_EXTEND or SIGN_EXTEND will
5490 be used.
5491
5492 IN_COMPARE is non-zero if we are in a COMPARE. This means that a
5493 ZERO_EXTRACT should be built even for bits starting at bit 0.
5494
5495 MODE is the desired mode of the result (if IN_DEST == 0).
5496
5497 The result is an RTX for the extraction or NULL_RTX if the target
5498 can't handle it. */
5499
5500 static rtx
5501 make_extraction (mode, inner, pos, pos_rtx, len,
5502 unsignedp, in_dest, in_compare)
5503 enum machine_mode mode;
5504 rtx inner;
5505 int pos;
5506 rtx pos_rtx;
5507 int len;
5508 int unsignedp;
5509 int in_dest, in_compare;
5510 {
5511 /* This mode describes the size of the storage area
5512 to fetch the overall value from. Within that, we
5513 ignore the POS lowest bits, etc. */
5514 enum machine_mode is_mode = GET_MODE (inner);
5515 enum machine_mode inner_mode;
5516 enum machine_mode wanted_inner_mode = byte_mode;
5517 enum machine_mode wanted_inner_reg_mode = word_mode;
5518 enum machine_mode pos_mode = word_mode;
5519 enum machine_mode extraction_mode = word_mode;
5520 enum machine_mode tmode = mode_for_size (len, MODE_INT, 1);
5521 int spans_byte = 0;
5522 rtx new = 0;
5523 rtx orig_pos_rtx = pos_rtx;
5524 int orig_pos;
5525
5526 /* Get some information about INNER and get the innermost object. */
5527 if (GET_CODE (inner) == USE)
5528 /* (use:SI (mem:QI foo)) stands for (mem:SI foo). */
5529 /* We don't need to adjust the position because we set up the USE
5530 to pretend that it was a full-word object. */
5531 spans_byte = 1, inner = XEXP (inner, 0);
5532 else if (GET_CODE (inner) == SUBREG && subreg_lowpart_p (inner))
5533 {
5534 /* If going from (subreg:SI (mem:QI ...)) to (mem:QI ...),
5535 consider just the QI as the memory to extract from.
5536 The subreg adds or removes high bits; its mode is
5537 irrelevant to the meaning of this extraction,
5538 since POS and LEN count from the lsb. */
5539 if (GET_CODE (SUBREG_REG (inner)) == MEM)
5540 is_mode = GET_MODE (SUBREG_REG (inner));
5541 inner = SUBREG_REG (inner);
5542 }
5543
5544 inner_mode = GET_MODE (inner);
5545
5546 if (pos_rtx && GET_CODE (pos_rtx) == CONST_INT)
5547 pos = INTVAL (pos_rtx), pos_rtx = 0;
5548
5549 /* See if this can be done without an extraction. We never can if the
5550 width of the field is not the same as that of some integer mode. For
5551 registers, we can only avoid the extraction if the position is at the
5552 low-order bit and this is either not in the destination or we have the
5553 appropriate STRICT_LOW_PART operation available.
5554
5555 For MEM, we can avoid an extract if the field starts on an appropriate
5556 boundary and we can change the mode of the memory reference. However,
5557 we cannot directly access the MEM if we have a USE and the underlying
5558 MEM is not TMODE. This combination means that MEM was being used in a
5559 context where bits outside its mode were being referenced; that is only
5560 valid in bit-field insns. */
5561
5562 if (tmode != BLKmode
5563 && ! (spans_byte && inner_mode != tmode)
5564 && ((pos_rtx == 0 && (pos % BITS_PER_WORD) == 0
5565 && GET_CODE (inner) != MEM
5566 && (! in_dest
5567 || (GET_CODE (inner) == REG
5568 && (movstrict_optab->handlers[(int) tmode].insn_code
5569 != CODE_FOR_nothing))))
5570 || (GET_CODE (inner) == MEM && pos_rtx == 0
5571 && (pos
5572 % (STRICT_ALIGNMENT ? GET_MODE_ALIGNMENT (tmode)
5573 : BITS_PER_UNIT)) == 0
5574 /* We can't do this if we are widening INNER_MODE (it
5575 may not be aligned, for one thing). */
5576 && GET_MODE_BITSIZE (inner_mode) >= GET_MODE_BITSIZE (tmode)
5577 && (inner_mode == tmode
5578 || (! mode_dependent_address_p (XEXP (inner, 0))
5579 && ! MEM_VOLATILE_P (inner))))))
5580 {
5581 /* If INNER is a MEM, make a new MEM that encompasses just the desired
5582 field. If the original and current mode are the same, we need not
5583 adjust the offset. Otherwise, we do if bytes big endian.
5584
5585 If INNER is not a MEM, get a piece consisting of just the field
5586 of interest (in this case POS % BITS_PER_WORD must be 0). */
5587
5588 if (GET_CODE (inner) == MEM)
5589 {
5590 int offset;
5591 /* POS counts from lsb, but make OFFSET count in memory order. */
5592 if (BYTES_BIG_ENDIAN)
5593 offset = (GET_MODE_BITSIZE (is_mode) - len - pos) / BITS_PER_UNIT;
5594 else
5595 offset = pos / BITS_PER_UNIT;
5596
5597 new = gen_rtx_MEM (tmode, plus_constant (XEXP (inner, 0), offset));
5598 RTX_UNCHANGING_P (new) = RTX_UNCHANGING_P (inner);
5599 MEM_VOLATILE_P (new) = MEM_VOLATILE_P (inner);
5600 MEM_IN_STRUCT_P (new) = MEM_IN_STRUCT_P (inner);
5601 }
5602 else if (GET_CODE (inner) == REG)
5603 {
5604 /* We can't call gen_lowpart_for_combine here since we always want
5605 a SUBREG and it would sometimes return a new hard register. */
5606 if (tmode != inner_mode)
5607 new = gen_rtx_SUBREG (tmode, inner,
5608 (WORDS_BIG_ENDIAN
5609 && GET_MODE_SIZE (inner_mode) > UNITS_PER_WORD
5610 ? (((GET_MODE_SIZE (inner_mode)
5611 - GET_MODE_SIZE (tmode))
5612 / UNITS_PER_WORD)
5613 - pos / BITS_PER_WORD)
5614 : pos / BITS_PER_WORD));
5615 else
5616 new = inner;
5617 }
5618 else
5619 new = force_to_mode (inner, tmode,
5620 len >= HOST_BITS_PER_WIDE_INT
5621 ? GET_MODE_MASK (tmode)
5622 : ((HOST_WIDE_INT) 1 << len) - 1,
5623 NULL_RTX, 0);
5624
5625 /* If this extraction is going into the destination of a SET,
5626 make a STRICT_LOW_PART unless we made a MEM. */
5627
5628 if (in_dest)
5629 return (GET_CODE (new) == MEM ? new
5630 : (GET_CODE (new) != SUBREG
5631 ? gen_rtx_CLOBBER (tmode, const0_rtx)
5632 : gen_rtx_combine (STRICT_LOW_PART, VOIDmode, new)));
5633
5634 /* Otherwise, sign- or zero-extend unless we already are in the
5635 proper mode. */
5636
5637 return (mode == tmode ? new
5638 : gen_rtx_combine (unsignedp ? ZERO_EXTEND : SIGN_EXTEND,
5639 mode, new));
5640 }
5641
5642 /* Unless this is a COMPARE or we have a funny memory reference,
5643 don't do anything with zero-extending field extracts starting at
5644 the low-order bit since they are simple AND operations. */
5645 if (pos_rtx == 0 && pos == 0 && ! in_dest
5646 && ! in_compare && ! spans_byte && unsignedp)
5647 return 0;
5648
5649 /* Unless we are allowed to span bytes, reject this if we would be
5650 spanning bytes or if the position is not a constant and the length
5651 is not 1. In all other cases, we would only be going outside
5652 out object in cases when an original shift would have been
5653 undefined. */
5654 if (! spans_byte
5655 && ((pos_rtx == 0 && pos + len > GET_MODE_BITSIZE (is_mode))
5656 || (pos_rtx != 0 && len != 1)))
5657 return 0;
5658
5659 /* Get the mode to use should INNER not be a MEM, the mode for the position,
5660 and the mode for the result. */
5661 #ifdef HAVE_insv
5662 if (in_dest)
5663 {
5664 wanted_inner_reg_mode
5665 = (insn_operand_mode[(int) CODE_FOR_insv][0] == VOIDmode
5666 ? word_mode
5667 : insn_operand_mode[(int) CODE_FOR_insv][0]);
5668 pos_mode = (insn_operand_mode[(int) CODE_FOR_insv][2] == VOIDmode
5669 ? word_mode : insn_operand_mode[(int) CODE_FOR_insv][2]);
5670 extraction_mode = (insn_operand_mode[(int) CODE_FOR_insv][3] == VOIDmode
5671 ? word_mode
5672 : insn_operand_mode[(int) CODE_FOR_insv][3]);
5673 }
5674 #endif
5675
5676 #ifdef HAVE_extzv
5677 if (! in_dest && unsignedp)
5678 {
5679 wanted_inner_reg_mode
5680 = (insn_operand_mode[(int) CODE_FOR_extzv][1] == VOIDmode
5681 ? word_mode
5682 : insn_operand_mode[(int) CODE_FOR_extzv][1]);
5683 pos_mode = (insn_operand_mode[(int) CODE_FOR_extzv][3] == VOIDmode
5684 ? word_mode : insn_operand_mode[(int) CODE_FOR_extzv][3]);
5685 extraction_mode = (insn_operand_mode[(int) CODE_FOR_extzv][0] == VOIDmode
5686 ? word_mode
5687 : insn_operand_mode[(int) CODE_FOR_extzv][0]);
5688 }
5689 #endif
5690
5691 #ifdef HAVE_extv
5692 if (! in_dest && ! unsignedp)
5693 {
5694 wanted_inner_reg_mode
5695 = (insn_operand_mode[(int) CODE_FOR_extv][1] == VOIDmode
5696 ? word_mode
5697 : insn_operand_mode[(int) CODE_FOR_extv][1]);
5698 pos_mode = (insn_operand_mode[(int) CODE_FOR_extv][3] == VOIDmode
5699 ? word_mode : insn_operand_mode[(int) CODE_FOR_extv][3]);
5700 extraction_mode = (insn_operand_mode[(int) CODE_FOR_extv][0] == VOIDmode
5701 ? word_mode
5702 : insn_operand_mode[(int) CODE_FOR_extv][0]);
5703 }
5704 #endif
5705
5706 /* Never narrow an object, since that might not be safe. */
5707
5708 if (mode != VOIDmode
5709 && GET_MODE_SIZE (extraction_mode) < GET_MODE_SIZE (mode))
5710 extraction_mode = mode;
5711
5712 if (pos_rtx && GET_MODE (pos_rtx) != VOIDmode
5713 && GET_MODE_SIZE (pos_mode) < GET_MODE_SIZE (GET_MODE (pos_rtx)))
5714 pos_mode = GET_MODE (pos_rtx);
5715
5716 /* If this is not from memory, the desired mode is wanted_inner_reg_mode;
5717 if we have to change the mode of memory and cannot, the desired mode is
5718 EXTRACTION_MODE. */
5719 if (GET_CODE (inner) != MEM)
5720 wanted_inner_mode = wanted_inner_reg_mode;
5721 else if (inner_mode != wanted_inner_mode
5722 && (mode_dependent_address_p (XEXP (inner, 0))
5723 || MEM_VOLATILE_P (inner)))
5724 wanted_inner_mode = extraction_mode;
5725
5726 orig_pos = pos;
5727
5728 if (BITS_BIG_ENDIAN)
5729 {
5730 /* POS is passed as if BITS_BIG_ENDIAN == 0, so we need to convert it to
5731 BITS_BIG_ENDIAN style. If position is constant, compute new
5732 position. Otherwise, build subtraction.
5733 Note that POS is relative to the mode of the original argument.
5734 If it's a MEM we need to recompute POS relative to that.
5735 However, if we're extracting from (or inserting into) a register,
5736 we want to recompute POS relative to wanted_inner_mode. */
5737 int width = (GET_CODE (inner) == MEM
5738 ? GET_MODE_BITSIZE (is_mode)
5739 : GET_MODE_BITSIZE (wanted_inner_mode));
5740
5741 if (pos_rtx == 0)
5742 pos = width - len - pos;
5743 else
5744 pos_rtx
5745 = gen_rtx_combine (MINUS, GET_MODE (pos_rtx),
5746 GEN_INT (width - len), pos_rtx);
5747 /* POS may be less than 0 now, but we check for that below.
5748 Note that it can only be less than 0 if GET_CODE (inner) != MEM. */
5749 }
5750
5751 /* If INNER has a wider mode, make it smaller. If this is a constant
5752 extract, try to adjust the byte to point to the byte containing
5753 the value. */
5754 if (wanted_inner_mode != VOIDmode
5755 && GET_MODE_SIZE (wanted_inner_mode) < GET_MODE_SIZE (is_mode)
5756 && ((GET_CODE (inner) == MEM
5757 && (inner_mode == wanted_inner_mode
5758 || (! mode_dependent_address_p (XEXP (inner, 0))
5759 && ! MEM_VOLATILE_P (inner))))))
5760 {
5761 int offset = 0;
5762
5763 /* The computations below will be correct if the machine is big
5764 endian in both bits and bytes or little endian in bits and bytes.
5765 If it is mixed, we must adjust. */
5766
5767 /* If bytes are big endian and we had a paradoxical SUBREG, we must
5768 adjust OFFSET to compensate. */
5769 if (BYTES_BIG_ENDIAN
5770 && ! spans_byte
5771 && GET_MODE_SIZE (inner_mode) < GET_MODE_SIZE (is_mode))
5772 offset -= GET_MODE_SIZE (is_mode) - GET_MODE_SIZE (inner_mode);
5773
5774 /* If this is a constant position, we can move to the desired byte. */
5775 if (pos_rtx == 0)
5776 {
5777 offset += pos / BITS_PER_UNIT;
5778 pos %= GET_MODE_BITSIZE (wanted_inner_mode);
5779 }
5780
5781 if (BYTES_BIG_ENDIAN != BITS_BIG_ENDIAN
5782 && ! spans_byte
5783 && is_mode != wanted_inner_mode)
5784 offset = (GET_MODE_SIZE (is_mode)
5785 - GET_MODE_SIZE (wanted_inner_mode) - offset);
5786
5787 if (offset != 0 || inner_mode != wanted_inner_mode)
5788 {
5789 rtx newmem = gen_rtx_MEM (wanted_inner_mode,
5790 plus_constant (XEXP (inner, 0), offset));
5791 RTX_UNCHANGING_P (newmem) = RTX_UNCHANGING_P (inner);
5792 MEM_VOLATILE_P (newmem) = MEM_VOLATILE_P (inner);
5793 MEM_IN_STRUCT_P (newmem) = MEM_IN_STRUCT_P (inner);
5794 inner = newmem;
5795 }
5796 }
5797
5798 /* If INNER is not memory, we can always get it into the proper mode. If we
5799 are changing its mode, POS must be a constant and smaller than the size
5800 of the new mode. */
5801 else if (GET_CODE (inner) != MEM)
5802 {
5803 if (GET_MODE (inner) != wanted_inner_mode
5804 && (pos_rtx != 0
5805 || orig_pos + len > GET_MODE_BITSIZE (wanted_inner_mode)))
5806 return 0;
5807
5808 inner = force_to_mode (inner, wanted_inner_mode,
5809 pos_rtx
5810 || len + orig_pos >= HOST_BITS_PER_WIDE_INT
5811 ? GET_MODE_MASK (wanted_inner_mode)
5812 : (((HOST_WIDE_INT) 1 << len) - 1) << orig_pos,
5813 NULL_RTX, 0);
5814 }
5815
5816 /* Adjust mode of POS_RTX, if needed. If we want a wider mode, we
5817 have to zero extend. Otherwise, we can just use a SUBREG. */
5818 if (pos_rtx != 0
5819 && GET_MODE_SIZE (pos_mode) > GET_MODE_SIZE (GET_MODE (pos_rtx)))
5820 pos_rtx = gen_rtx_combine (ZERO_EXTEND, pos_mode, pos_rtx);
5821 else if (pos_rtx != 0
5822 && GET_MODE_SIZE (pos_mode) < GET_MODE_SIZE (GET_MODE (pos_rtx)))
5823 pos_rtx = gen_lowpart_for_combine (pos_mode, pos_rtx);
5824
5825 /* Make POS_RTX unless we already have it and it is correct. If we don't
5826 have a POS_RTX but we do have an ORIG_POS_RTX, the latter must
5827 be a CONST_INT. */
5828 if (pos_rtx == 0 && orig_pos_rtx != 0 && INTVAL (orig_pos_rtx) == pos)
5829 pos_rtx = orig_pos_rtx;
5830
5831 else if (pos_rtx == 0)
5832 pos_rtx = GEN_INT (pos);
5833
5834 /* Make the required operation. See if we can use existing rtx. */
5835 new = gen_rtx_combine (unsignedp ? ZERO_EXTRACT : SIGN_EXTRACT,
5836 extraction_mode, inner, GEN_INT (len), pos_rtx);
5837 if (! in_dest)
5838 new = gen_lowpart_for_combine (mode, new);
5839
5840 return new;
5841 }
5842 \f
5843 /* See if X contains an ASHIFT of COUNT or more bits that can be commuted
5844 with any other operations in X. Return X without that shift if so. */
5845
5846 static rtx
5847 extract_left_shift (x, count)
5848 rtx x;
5849 int count;
5850 {
5851 enum rtx_code code = GET_CODE (x);
5852 enum machine_mode mode = GET_MODE (x);
5853 rtx tem;
5854
5855 switch (code)
5856 {
5857 case ASHIFT:
5858 /* This is the shift itself. If it is wide enough, we will return
5859 either the value being shifted if the shift count is equal to
5860 COUNT or a shift for the difference. */
5861 if (GET_CODE (XEXP (x, 1)) == CONST_INT
5862 && INTVAL (XEXP (x, 1)) >= count)
5863 return simplify_shift_const (NULL_RTX, ASHIFT, mode, XEXP (x, 0),
5864 INTVAL (XEXP (x, 1)) - count);
5865 break;
5866
5867 case NEG: case NOT:
5868 if ((tem = extract_left_shift (XEXP (x, 0), count)) != 0)
5869 return gen_unary (code, mode, mode, tem);
5870
5871 break;
5872
5873 case PLUS: case IOR: case XOR: case AND:
5874 /* If we can safely shift this constant and we find the inner shift,
5875 make a new operation. */
5876 if (GET_CODE (XEXP (x,1)) == CONST_INT
5877 && (INTVAL (XEXP (x, 1)) & ((((HOST_WIDE_INT) 1 << count)) - 1)) == 0
5878 && (tem = extract_left_shift (XEXP (x, 0), count)) != 0)
5879 return gen_binary (code, mode, tem,
5880 GEN_INT (INTVAL (XEXP (x, 1)) >> count));
5881
5882 break;
5883
5884 default:
5885 break;
5886 }
5887
5888 return 0;
5889 }
5890 \f
5891 /* Look at the expression rooted at X. Look for expressions
5892 equivalent to ZERO_EXTRACT, SIGN_EXTRACT, ZERO_EXTEND, SIGN_EXTEND.
5893 Form these expressions.
5894
5895 Return the new rtx, usually just X.
5896
5897 Also, for machines like the Vax that don't have logical shift insns,
5898 try to convert logical to arithmetic shift operations in cases where
5899 they are equivalent. This undoes the canonicalizations to logical
5900 shifts done elsewhere.
5901
5902 We try, as much as possible, to re-use rtl expressions to save memory.
5903
5904 IN_CODE says what kind of expression we are processing. Normally, it is
5905 SET. In a memory address (inside a MEM, PLUS or minus, the latter two
5906 being kludges), it is MEM. When processing the arguments of a comparison
5907 or a COMPARE against zero, it is COMPARE. */
5908
5909 static rtx
5910 make_compound_operation (x, in_code)
5911 rtx x;
5912 enum rtx_code in_code;
5913 {
5914 enum rtx_code code = GET_CODE (x);
5915 enum machine_mode mode = GET_MODE (x);
5916 int mode_width = GET_MODE_BITSIZE (mode);
5917 rtx rhs, lhs;
5918 enum rtx_code next_code;
5919 int i;
5920 rtx new = 0;
5921 rtx tem;
5922 char *fmt;
5923
5924 /* Select the code to be used in recursive calls. Once we are inside an
5925 address, we stay there. If we have a comparison, set to COMPARE,
5926 but once inside, go back to our default of SET. */
5927
5928 next_code = (code == MEM || code == PLUS || code == MINUS ? MEM
5929 : ((code == COMPARE || GET_RTX_CLASS (code) == '<')
5930 && XEXP (x, 1) == const0_rtx) ? COMPARE
5931 : in_code == COMPARE ? SET : in_code);
5932
5933 /* Process depending on the code of this operation. If NEW is set
5934 non-zero, it will be returned. */
5935
5936 switch (code)
5937 {
5938 case ASHIFT:
5939 /* Convert shifts by constants into multiplications if inside
5940 an address. */
5941 if (in_code == MEM && GET_CODE (XEXP (x, 1)) == CONST_INT
5942 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT
5943 && INTVAL (XEXP (x, 1)) >= 0)
5944 {
5945 new = make_compound_operation (XEXP (x, 0), next_code);
5946 new = gen_rtx_combine (MULT, mode, new,
5947 GEN_INT ((HOST_WIDE_INT) 1
5948 << INTVAL (XEXP (x, 1))));
5949 }
5950 break;
5951
5952 case AND:
5953 /* If the second operand is not a constant, we can't do anything
5954 with it. */
5955 if (GET_CODE (XEXP (x, 1)) != CONST_INT)
5956 break;
5957
5958 /* If the constant is a power of two minus one and the first operand
5959 is a logical right shift, make an extraction. */
5960 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
5961 && (i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0)
5962 {
5963 new = make_compound_operation (XEXP (XEXP (x, 0), 0), next_code);
5964 new = make_extraction (mode, new, 0, XEXP (XEXP (x, 0), 1), i, 1,
5965 0, in_code == COMPARE);
5966 }
5967
5968 /* Same as previous, but for (subreg (lshiftrt ...)) in first op. */
5969 else if (GET_CODE (XEXP (x, 0)) == SUBREG
5970 && subreg_lowpart_p (XEXP (x, 0))
5971 && GET_CODE (SUBREG_REG (XEXP (x, 0))) == LSHIFTRT
5972 && (i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0)
5973 {
5974 new = make_compound_operation (XEXP (SUBREG_REG (XEXP (x, 0)), 0),
5975 next_code);
5976 new = make_extraction (GET_MODE (SUBREG_REG (XEXP (x, 0))), new, 0,
5977 XEXP (SUBREG_REG (XEXP (x, 0)), 1), i, 1,
5978 0, in_code == COMPARE);
5979 }
5980 /* Same as previous, but for (xor/ior (lshiftrt...) (lshiftrt...)). */
5981 else if ((GET_CODE (XEXP (x, 0)) == XOR
5982 || GET_CODE (XEXP (x, 0)) == IOR)
5983 && GET_CODE (XEXP (XEXP (x, 0), 0)) == LSHIFTRT
5984 && GET_CODE (XEXP (XEXP (x, 0), 1)) == LSHIFTRT
5985 && (i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0)
5986 {
5987 /* Apply the distributive law, and then try to make extractions. */
5988 new = gen_rtx_combine (GET_CODE (XEXP (x, 0)), mode,
5989 gen_rtx_AND (mode, XEXP (XEXP (x, 0), 0),
5990 XEXP (x, 1)),
5991 gen_rtx_AND (mode, XEXP (XEXP (x, 0), 1),
5992 XEXP (x, 1)));
5993 new = make_compound_operation (new, in_code);
5994 }
5995
5996 /* If we are have (and (rotate X C) M) and C is larger than the number
5997 of bits in M, this is an extraction. */
5998
5999 else if (GET_CODE (XEXP (x, 0)) == ROTATE
6000 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
6001 && (i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0
6002 && i <= INTVAL (XEXP (XEXP (x, 0), 1)))
6003 {
6004 new = make_compound_operation (XEXP (XEXP (x, 0), 0), next_code);
6005 new = make_extraction (mode, new,
6006 (GET_MODE_BITSIZE (mode)
6007 - INTVAL (XEXP (XEXP (x, 0), 1))),
6008 NULL_RTX, i, 1, 0, in_code == COMPARE);
6009 }
6010
6011 /* On machines without logical shifts, if the operand of the AND is
6012 a logical shift and our mask turns off all the propagated sign
6013 bits, we can replace the logical shift with an arithmetic shift. */
6014 else if (ashr_optab->handlers[(int) mode].insn_code != CODE_FOR_nothing
6015 && (lshr_optab->handlers[(int) mode].insn_code
6016 == CODE_FOR_nothing)
6017 && GET_CODE (XEXP (x, 0)) == LSHIFTRT
6018 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
6019 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
6020 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT
6021 && mode_width <= HOST_BITS_PER_WIDE_INT)
6022 {
6023 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
6024
6025 mask >>= INTVAL (XEXP (XEXP (x, 0), 1));
6026 if ((INTVAL (XEXP (x, 1)) & ~mask) == 0)
6027 SUBST (XEXP (x, 0),
6028 gen_rtx_combine (ASHIFTRT, mode,
6029 make_compound_operation (XEXP (XEXP (x, 0), 0),
6030 next_code),
6031 XEXP (XEXP (x, 0), 1)));
6032 }
6033
6034 /* If the constant is one less than a power of two, this might be
6035 representable by an extraction even if no shift is present.
6036 If it doesn't end up being a ZERO_EXTEND, we will ignore it unless
6037 we are in a COMPARE. */
6038 else if ((i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0)
6039 new = make_extraction (mode,
6040 make_compound_operation (XEXP (x, 0),
6041 next_code),
6042 0, NULL_RTX, i, 1, 0, in_code == COMPARE);
6043
6044 /* If we are in a comparison and this is an AND with a power of two,
6045 convert this into the appropriate bit extract. */
6046 else if (in_code == COMPARE
6047 && (i = exact_log2 (INTVAL (XEXP (x, 1)))) >= 0)
6048 new = make_extraction (mode,
6049 make_compound_operation (XEXP (x, 0),
6050 next_code),
6051 i, NULL_RTX, 1, 1, 0, 1);
6052
6053 break;
6054
6055 case LSHIFTRT:
6056 /* If the sign bit is known to be zero, replace this with an
6057 arithmetic shift. */
6058 if (ashr_optab->handlers[(int) mode].insn_code == CODE_FOR_nothing
6059 && lshr_optab->handlers[(int) mode].insn_code != CODE_FOR_nothing
6060 && mode_width <= HOST_BITS_PER_WIDE_INT
6061 && (nonzero_bits (XEXP (x, 0), mode) & (1 << (mode_width - 1))) == 0)
6062 {
6063 new = gen_rtx_combine (ASHIFTRT, mode,
6064 make_compound_operation (XEXP (x, 0),
6065 next_code),
6066 XEXP (x, 1));
6067 break;
6068 }
6069
6070 /* ... fall through ... */
6071
6072 case ASHIFTRT:
6073 lhs = XEXP (x, 0);
6074 rhs = XEXP (x, 1);
6075
6076 /* If we have (ashiftrt (ashift foo C1) C2) with C2 >= C1,
6077 this is a SIGN_EXTRACT. */
6078 if (GET_CODE (rhs) == CONST_INT
6079 && GET_CODE (lhs) == ASHIFT
6080 && GET_CODE (XEXP (lhs, 1)) == CONST_INT
6081 && INTVAL (rhs) >= INTVAL (XEXP (lhs, 1)))
6082 {
6083 new = make_compound_operation (XEXP (lhs, 0), next_code);
6084 new = make_extraction (mode, new,
6085 INTVAL (rhs) - INTVAL (XEXP (lhs, 1)),
6086 NULL_RTX, mode_width - INTVAL (rhs),
6087 code == LSHIFTRT, 0, in_code == COMPARE);
6088 }
6089
6090 /* See if we have operations between an ASHIFTRT and an ASHIFT.
6091 If so, try to merge the shifts into a SIGN_EXTEND. We could
6092 also do this for some cases of SIGN_EXTRACT, but it doesn't
6093 seem worth the effort; the case checked for occurs on Alpha. */
6094
6095 if (GET_RTX_CLASS (GET_CODE (lhs)) != 'o'
6096 && ! (GET_CODE (lhs) == SUBREG
6097 && (GET_RTX_CLASS (GET_CODE (SUBREG_REG (lhs))) == 'o'))
6098 && GET_CODE (rhs) == CONST_INT
6099 && INTVAL (rhs) < HOST_BITS_PER_WIDE_INT
6100 && (new = extract_left_shift (lhs, INTVAL (rhs))) != 0)
6101 new = make_extraction (mode, make_compound_operation (new, next_code),
6102 0, NULL_RTX, mode_width - INTVAL (rhs),
6103 code == LSHIFTRT, 0, in_code == COMPARE);
6104
6105 break;
6106
6107 case SUBREG:
6108 /* Call ourselves recursively on the inner expression. If we are
6109 narrowing the object and it has a different RTL code from
6110 what it originally did, do this SUBREG as a force_to_mode. */
6111
6112 tem = make_compound_operation (SUBREG_REG (x), in_code);
6113 if (GET_CODE (tem) != GET_CODE (SUBREG_REG (x))
6114 && GET_MODE_SIZE (mode) < GET_MODE_SIZE (GET_MODE (tem))
6115 && subreg_lowpart_p (x))
6116 {
6117 rtx newer = force_to_mode (tem, mode,
6118 GET_MODE_MASK (mode), NULL_RTX, 0);
6119
6120 /* If we have something other than a SUBREG, we might have
6121 done an expansion, so rerun outselves. */
6122 if (GET_CODE (newer) != SUBREG)
6123 newer = make_compound_operation (newer, in_code);
6124
6125 return newer;
6126 }
6127
6128 /* If this is a paradoxical subreg, and the new code is a sign or
6129 zero extension, omit the subreg and widen the extension. If it
6130 is a regular subreg, we can still get rid of the subreg by not
6131 widening so much, or in fact removing the extension entirely. */
6132 if ((GET_CODE (tem) == SIGN_EXTEND
6133 || GET_CODE (tem) == ZERO_EXTEND)
6134 && subreg_lowpart_p (x))
6135 {
6136 if (GET_MODE_SIZE (mode) > GET_MODE_SIZE (GET_MODE (tem))
6137 || (GET_MODE_SIZE (mode) >
6138 GET_MODE_SIZE (GET_MODE (XEXP (tem, 0)))))
6139 tem = gen_rtx_combine (GET_CODE (tem), mode, XEXP (tem, 0));
6140 else
6141 tem = gen_lowpart_for_combine (mode, XEXP (tem, 0));
6142 return tem;
6143 }
6144 break;
6145
6146 default:
6147 break;
6148 }
6149
6150 if (new)
6151 {
6152 x = gen_lowpart_for_combine (mode, new);
6153 code = GET_CODE (x);
6154 }
6155
6156 /* Now recursively process each operand of this operation. */
6157 fmt = GET_RTX_FORMAT (code);
6158 for (i = 0; i < GET_RTX_LENGTH (code); i++)
6159 if (fmt[i] == 'e')
6160 {
6161 new = make_compound_operation (XEXP (x, i), next_code);
6162 SUBST (XEXP (x, i), new);
6163 }
6164
6165 return x;
6166 }
6167 \f
6168 /* Given M see if it is a value that would select a field of bits
6169 within an item, but not the entire word. Return -1 if not.
6170 Otherwise, return the starting position of the field, where 0 is the
6171 low-order bit.
6172
6173 *PLEN is set to the length of the field. */
6174
6175 static int
6176 get_pos_from_mask (m, plen)
6177 unsigned HOST_WIDE_INT m;
6178 int *plen;
6179 {
6180 /* Get the bit number of the first 1 bit from the right, -1 if none. */
6181 int pos = exact_log2 (m & - m);
6182
6183 if (pos < 0)
6184 return -1;
6185
6186 /* Now shift off the low-order zero bits and see if we have a power of
6187 two minus 1. */
6188 *plen = exact_log2 ((m >> pos) + 1);
6189
6190 if (*plen <= 0)
6191 return -1;
6192
6193 return pos;
6194 }
6195 \f
6196 /* See if X can be simplified knowing that we will only refer to it in
6197 MODE and will only refer to those bits that are nonzero in MASK.
6198 If other bits are being computed or if masking operations are done
6199 that select a superset of the bits in MASK, they can sometimes be
6200 ignored.
6201
6202 Return a possibly simplified expression, but always convert X to
6203 MODE. If X is a CONST_INT, AND the CONST_INT with MASK.
6204
6205 Also, if REG is non-zero and X is a register equal in value to REG,
6206 replace X with REG.
6207
6208 If JUST_SELECT is nonzero, don't optimize by noticing that bits in MASK
6209 are all off in X. This is used when X will be complemented, by either
6210 NOT, NEG, or XOR. */
6211
6212 static rtx
6213 force_to_mode (x, mode, mask, reg, just_select)
6214 rtx x;
6215 enum machine_mode mode;
6216 unsigned HOST_WIDE_INT mask;
6217 rtx reg;
6218 int just_select;
6219 {
6220 enum rtx_code code = GET_CODE (x);
6221 int next_select = just_select || code == XOR || code == NOT || code == NEG;
6222 enum machine_mode op_mode;
6223 unsigned HOST_WIDE_INT fuller_mask, nonzero;
6224 rtx op0, op1, temp;
6225
6226 /* If this is a CALL or ASM_OPERANDS, don't do anything. Some of the
6227 code below will do the wrong thing since the mode of such an
6228 expression is VOIDmode.
6229
6230 Also do nothing if X is a CLOBBER; this can happen if X was
6231 the return value from a call to gen_lowpart_for_combine. */
6232 if (code == CALL || code == ASM_OPERANDS || code == CLOBBER)
6233 return x;
6234
6235 /* We want to perform the operation is its present mode unless we know
6236 that the operation is valid in MODE, in which case we do the operation
6237 in MODE. */
6238 op_mode = ((GET_MODE_CLASS (mode) == GET_MODE_CLASS (GET_MODE (x))
6239 && code_to_optab[(int) code] != 0
6240 && (code_to_optab[(int) code]->handlers[(int) mode].insn_code
6241 != CODE_FOR_nothing))
6242 ? mode : GET_MODE (x));
6243
6244 /* It is not valid to do a right-shift in a narrower mode
6245 than the one it came in with. */
6246 if ((code == LSHIFTRT || code == ASHIFTRT)
6247 && GET_MODE_BITSIZE (mode) < GET_MODE_BITSIZE (GET_MODE (x)))
6248 op_mode = GET_MODE (x);
6249
6250 /* Truncate MASK to fit OP_MODE. */
6251 if (op_mode)
6252 mask &= GET_MODE_MASK (op_mode);
6253
6254 /* When we have an arithmetic operation, or a shift whose count we
6255 do not know, we need to assume that all bit the up to the highest-order
6256 bit in MASK will be needed. This is how we form such a mask. */
6257 if (op_mode)
6258 fuller_mask = (GET_MODE_BITSIZE (op_mode) >= HOST_BITS_PER_WIDE_INT
6259 ? GET_MODE_MASK (op_mode)
6260 : ((HOST_WIDE_INT) 1 << (floor_log2 (mask) + 1)) - 1);
6261 else
6262 fuller_mask = ~ (HOST_WIDE_INT) 0;
6263
6264 /* Determine what bits of X are guaranteed to be (non)zero. */
6265 nonzero = nonzero_bits (x, mode);
6266
6267 /* If none of the bits in X are needed, return a zero. */
6268 if (! just_select && (nonzero & mask) == 0)
6269 return const0_rtx;
6270
6271 /* If X is a CONST_INT, return a new one. Do this here since the
6272 test below will fail. */
6273 if (GET_CODE (x) == CONST_INT)
6274 {
6275 HOST_WIDE_INT cval = INTVAL (x) & mask;
6276 int width = GET_MODE_BITSIZE (mode);
6277
6278 /* If MODE is narrower that HOST_WIDE_INT and CVAL is a negative
6279 number, sign extend it. */
6280 if (width > 0 && width < HOST_BITS_PER_WIDE_INT
6281 && (cval & ((HOST_WIDE_INT) 1 << (width - 1))) != 0)
6282 cval |= (HOST_WIDE_INT) -1 << width;
6283
6284 return GEN_INT (cval);
6285 }
6286
6287 /* If X is narrower than MODE and we want all the bits in X's mode, just
6288 get X in the proper mode. */
6289 if (GET_MODE_SIZE (GET_MODE (x)) < GET_MODE_SIZE (mode)
6290 && (GET_MODE_MASK (GET_MODE (x)) & ~ mask) == 0)
6291 return gen_lowpart_for_combine (mode, x);
6292
6293 /* If we aren't changing the mode, X is not a SUBREG, and all zero bits in
6294 MASK are already known to be zero in X, we need not do anything. */
6295 if (GET_MODE (x) == mode && code != SUBREG && (~ mask & nonzero) == 0)
6296 return x;
6297
6298 switch (code)
6299 {
6300 case CLOBBER:
6301 /* If X is a (clobber (const_int)), return it since we know we are
6302 generating something that won't match. */
6303 return x;
6304
6305 case USE:
6306 /* X is a (use (mem ..)) that was made from a bit-field extraction that
6307 spanned the boundary of the MEM. If we are now masking so it is
6308 within that boundary, we don't need the USE any more. */
6309 if (! BITS_BIG_ENDIAN
6310 && (mask & ~ GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
6311 return force_to_mode (XEXP (x, 0), mode, mask, reg, next_select);
6312 break;
6313
6314 case SIGN_EXTEND:
6315 case ZERO_EXTEND:
6316 case ZERO_EXTRACT:
6317 case SIGN_EXTRACT:
6318 x = expand_compound_operation (x);
6319 if (GET_CODE (x) != code)
6320 return force_to_mode (x, mode, mask, reg, next_select);
6321 break;
6322
6323 case REG:
6324 if (reg != 0 && (rtx_equal_p (get_last_value (reg), x)
6325 || rtx_equal_p (reg, get_last_value (x))))
6326 x = reg;
6327 break;
6328
6329 case SUBREG:
6330 if (subreg_lowpart_p (x)
6331 /* We can ignore the effect of this SUBREG if it narrows the mode or
6332 if the constant masks to zero all the bits the mode doesn't
6333 have. */
6334 && ((GET_MODE_SIZE (GET_MODE (x))
6335 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
6336 || (0 == (mask
6337 & GET_MODE_MASK (GET_MODE (x))
6338 & ~ GET_MODE_MASK (GET_MODE (SUBREG_REG (x)))))))
6339 return force_to_mode (SUBREG_REG (x), mode, mask, reg, next_select);
6340 break;
6341
6342 case AND:
6343 /* If this is an AND with a constant, convert it into an AND
6344 whose constant is the AND of that constant with MASK. If it
6345 remains an AND of MASK, delete it since it is redundant. */
6346
6347 if (GET_CODE (XEXP (x, 1)) == CONST_INT)
6348 {
6349 x = simplify_and_const_int (x, op_mode, XEXP (x, 0),
6350 mask & INTVAL (XEXP (x, 1)));
6351
6352 /* If X is still an AND, see if it is an AND with a mask that
6353 is just some low-order bits. If so, and it is MASK, we don't
6354 need it. */
6355
6356 if (GET_CODE (x) == AND && GET_CODE (XEXP (x, 1)) == CONST_INT
6357 && (unsigned HOST_WIDE_INT) INTVAL (XEXP (x, 1)) == mask)
6358 x = XEXP (x, 0);
6359
6360 /* If it remains an AND, try making another AND with the bits
6361 in the mode mask that aren't in MASK turned on. If the
6362 constant in the AND is wide enough, this might make a
6363 cheaper constant. */
6364
6365 if (GET_CODE (x) == AND && GET_CODE (XEXP (x, 1)) == CONST_INT
6366 && GET_MODE_MASK (GET_MODE (x)) != mask
6367 && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT)
6368 {
6369 HOST_WIDE_INT cval = (INTVAL (XEXP (x, 1))
6370 | (GET_MODE_MASK (GET_MODE (x)) & ~ mask));
6371 int width = GET_MODE_BITSIZE (GET_MODE (x));
6372 rtx y;
6373
6374 /* If MODE is narrower that HOST_WIDE_INT and CVAL is a negative
6375 number, sign extend it. */
6376 if (width > 0 && width < HOST_BITS_PER_WIDE_INT
6377 && (cval & ((HOST_WIDE_INT) 1 << (width - 1))) != 0)
6378 cval |= (HOST_WIDE_INT) -1 << width;
6379
6380 y = gen_binary (AND, GET_MODE (x), XEXP (x, 0), GEN_INT (cval));
6381 if (rtx_cost (y, SET) < rtx_cost (x, SET))
6382 x = y;
6383 }
6384
6385 break;
6386 }
6387
6388 goto binop;
6389
6390 case PLUS:
6391 /* In (and (plus FOO C1) M), if M is a mask that just turns off
6392 low-order bits (as in an alignment operation) and FOO is already
6393 aligned to that boundary, mask C1 to that boundary as well.
6394 This may eliminate that PLUS and, later, the AND. */
6395
6396 {
6397 int width = GET_MODE_BITSIZE (mode);
6398 unsigned HOST_WIDE_INT smask = mask;
6399
6400 /* If MODE is narrower than HOST_WIDE_INT and mask is a negative
6401 number, sign extend it. */
6402
6403 if (width < HOST_BITS_PER_WIDE_INT
6404 && (smask & ((HOST_WIDE_INT) 1 << (width - 1))) != 0)
6405 smask |= (HOST_WIDE_INT) -1 << width;
6406
6407 if (GET_CODE (XEXP (x, 1)) == CONST_INT
6408 && exact_log2 (- smask) >= 0)
6409 {
6410 #ifdef STACK_BIAS
6411 if (STACK_BIAS
6412 && (XEXP (x, 0) == stack_pointer_rtx
6413 || XEXP (x, 0) == frame_pointer_rtx))
6414 {
6415 int sp_alignment = STACK_BOUNDARY / BITS_PER_UNIT;
6416 unsigned HOST_WIDE_INT sp_mask = GET_MODE_MASK (mode);
6417
6418 sp_mask &= ~ (sp_alignment - 1);
6419 if ((sp_mask & ~ mask) == 0
6420 && ((INTVAL (XEXP (x, 1)) - STACK_BIAS) & ~ mask) != 0)
6421 return force_to_mode (plus_constant (XEXP (x, 0),
6422 ((INTVAL (XEXP (x, 1)) -
6423 STACK_BIAS) & mask)
6424 + STACK_BIAS),
6425 mode, mask, reg, next_select);
6426 }
6427 #endif
6428 if ((nonzero_bits (XEXP (x, 0), mode) & ~ mask) == 0
6429 && (INTVAL (XEXP (x, 1)) & ~ mask) != 0)
6430 return force_to_mode (plus_constant (XEXP (x, 0),
6431 INTVAL (XEXP (x, 1)) & mask),
6432 mode, mask, reg, next_select);
6433 }
6434 }
6435
6436 /* ... fall through ... */
6437
6438 case MINUS:
6439 case MULT:
6440 /* For PLUS, MINUS and MULT, we need any bits less significant than the
6441 most significant bit in MASK since carries from those bits will
6442 affect the bits we are interested in. */
6443 mask = fuller_mask;
6444 goto binop;
6445
6446 case IOR:
6447 case XOR:
6448 /* If X is (ior (lshiftrt FOO C1) C2), try to commute the IOR and
6449 LSHIFTRT so we end up with an (and (lshiftrt (ior ...) ...) ...)
6450 operation which may be a bitfield extraction. Ensure that the
6451 constant we form is not wider than the mode of X. */
6452
6453 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
6454 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
6455 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
6456 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT
6457 && GET_CODE (XEXP (x, 1)) == CONST_INT
6458 && ((INTVAL (XEXP (XEXP (x, 0), 1))
6459 + floor_log2 (INTVAL (XEXP (x, 1))))
6460 < GET_MODE_BITSIZE (GET_MODE (x)))
6461 && (INTVAL (XEXP (x, 1))
6462 & ~ nonzero_bits (XEXP (x, 0), GET_MODE (x))) == 0)
6463 {
6464 temp = GEN_INT ((INTVAL (XEXP (x, 1)) & mask)
6465 << INTVAL (XEXP (XEXP (x, 0), 1)));
6466 temp = gen_binary (GET_CODE (x), GET_MODE (x),
6467 XEXP (XEXP (x, 0), 0), temp);
6468 x = gen_binary (LSHIFTRT, GET_MODE (x), temp,
6469 XEXP (XEXP (x, 0), 1));
6470 return force_to_mode (x, mode, mask, reg, next_select);
6471 }
6472
6473 binop:
6474 /* For most binary operations, just propagate into the operation and
6475 change the mode if we have an operation of that mode. */
6476
6477 op0 = gen_lowpart_for_combine (op_mode,
6478 force_to_mode (XEXP (x, 0), mode, mask,
6479 reg, next_select));
6480 op1 = gen_lowpart_for_combine (op_mode,
6481 force_to_mode (XEXP (x, 1), mode, mask,
6482 reg, next_select));
6483
6484 /* If OP1 is a CONST_INT and X is an IOR or XOR, clear bits outside
6485 MASK since OP1 might have been sign-extended but we never want
6486 to turn on extra bits, since combine might have previously relied
6487 on them being off. */
6488 if (GET_CODE (op1) == CONST_INT && (code == IOR || code == XOR)
6489 && (INTVAL (op1) & mask) != 0)
6490 op1 = GEN_INT (INTVAL (op1) & mask);
6491
6492 if (op_mode != GET_MODE (x) || op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
6493 x = gen_binary (code, op_mode, op0, op1);
6494 break;
6495
6496 case ASHIFT:
6497 /* For left shifts, do the same, but just for the first operand.
6498 However, we cannot do anything with shifts where we cannot
6499 guarantee that the counts are smaller than the size of the mode
6500 because such a count will have a different meaning in a
6501 wider mode. */
6502
6503 if (! (GET_CODE (XEXP (x, 1)) == CONST_INT
6504 && INTVAL (XEXP (x, 1)) >= 0
6505 && INTVAL (XEXP (x, 1)) < GET_MODE_BITSIZE (mode))
6506 && ! (GET_MODE (XEXP (x, 1)) != VOIDmode
6507 && (nonzero_bits (XEXP (x, 1), GET_MODE (XEXP (x, 1)))
6508 < (unsigned HOST_WIDE_INT) GET_MODE_BITSIZE (mode))))
6509 break;
6510
6511 /* If the shift count is a constant and we can do arithmetic in
6512 the mode of the shift, refine which bits we need. Otherwise, use the
6513 conservative form of the mask. */
6514 if (GET_CODE (XEXP (x, 1)) == CONST_INT
6515 && INTVAL (XEXP (x, 1)) >= 0
6516 && INTVAL (XEXP (x, 1)) < GET_MODE_BITSIZE (op_mode)
6517 && GET_MODE_BITSIZE (op_mode) <= HOST_BITS_PER_WIDE_INT)
6518 mask >>= INTVAL (XEXP (x, 1));
6519 else
6520 mask = fuller_mask;
6521
6522 op0 = gen_lowpart_for_combine (op_mode,
6523 force_to_mode (XEXP (x, 0), op_mode,
6524 mask, reg, next_select));
6525
6526 if (op_mode != GET_MODE (x) || op0 != XEXP (x, 0))
6527 x = gen_binary (code, op_mode, op0, XEXP (x, 1));
6528 break;
6529
6530 case LSHIFTRT:
6531 /* Here we can only do something if the shift count is a constant,
6532 this shift constant is valid for the host, and we can do arithmetic
6533 in OP_MODE. */
6534
6535 if (GET_CODE (XEXP (x, 1)) == CONST_INT
6536 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT
6537 && GET_MODE_BITSIZE (op_mode) <= HOST_BITS_PER_WIDE_INT)
6538 {
6539 rtx inner = XEXP (x, 0);
6540
6541 /* Select the mask of the bits we need for the shift operand. */
6542 mask <<= INTVAL (XEXP (x, 1));
6543
6544 /* We can only change the mode of the shift if we can do arithmetic
6545 in the mode of the shift and MASK is no wider than the width of
6546 OP_MODE. */
6547 if (GET_MODE_BITSIZE (op_mode) > HOST_BITS_PER_WIDE_INT
6548 || (mask & ~ GET_MODE_MASK (op_mode)) != 0)
6549 op_mode = GET_MODE (x);
6550
6551 inner = force_to_mode (inner, op_mode, mask, reg, next_select);
6552
6553 if (GET_MODE (x) != op_mode || inner != XEXP (x, 0))
6554 x = gen_binary (LSHIFTRT, op_mode, inner, XEXP (x, 1));
6555 }
6556
6557 /* If we have (and (lshiftrt FOO C1) C2) where the combination of the
6558 shift and AND produces only copies of the sign bit (C2 is one less
6559 than a power of two), we can do this with just a shift. */
6560
6561 if (GET_CODE (x) == LSHIFTRT
6562 && GET_CODE (XEXP (x, 1)) == CONST_INT
6563 && ((INTVAL (XEXP (x, 1))
6564 + num_sign_bit_copies (XEXP (x, 0), GET_MODE (XEXP (x, 0))))
6565 >= GET_MODE_BITSIZE (GET_MODE (x)))
6566 && exact_log2 (mask + 1) >= 0
6567 && (num_sign_bit_copies (XEXP (x, 0), GET_MODE (XEXP (x, 0)))
6568 >= exact_log2 (mask + 1)))
6569 x = gen_binary (LSHIFTRT, GET_MODE (x), XEXP (x, 0),
6570 GEN_INT (GET_MODE_BITSIZE (GET_MODE (x))
6571 - exact_log2 (mask + 1)));
6572 break;
6573
6574 case ASHIFTRT:
6575 /* If we are just looking for the sign bit, we don't need this shift at
6576 all, even if it has a variable count. */
6577 if (GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
6578 && (mask == ((unsigned HOST_WIDE_INT) 1
6579 << (GET_MODE_BITSIZE (GET_MODE (x)) - 1))))
6580 return force_to_mode (XEXP (x, 0), mode, mask, reg, next_select);
6581
6582 /* If this is a shift by a constant, get a mask that contains those bits
6583 that are not copies of the sign bit. We then have two cases: If
6584 MASK only includes those bits, this can be a logical shift, which may
6585 allow simplifications. If MASK is a single-bit field not within
6586 those bits, we are requesting a copy of the sign bit and hence can
6587 shift the sign bit to the appropriate location. */
6588
6589 if (GET_CODE (XEXP (x, 1)) == CONST_INT && INTVAL (XEXP (x, 1)) >= 0
6590 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT)
6591 {
6592 int i = -1;
6593
6594 /* If the considered data is wider then HOST_WIDE_INT, we can't
6595 represent a mask for all its bits in a single scalar.
6596 But we only care about the lower bits, so calculate these. */
6597
6598 if (GET_MODE_BITSIZE (GET_MODE (x)) > HOST_BITS_PER_WIDE_INT)
6599 {
6600 nonzero = ~ (HOST_WIDE_INT) 0;
6601
6602 /* GET_MODE_BITSIZE (GET_MODE (x)) - INTVAL (XEXP (x, 1))
6603 is the number of bits a full-width mask would have set.
6604 We need only shift if these are fewer than nonzero can
6605 hold. If not, we must keep all bits set in nonzero. */
6606
6607 if (GET_MODE_BITSIZE (GET_MODE (x)) - INTVAL (XEXP (x, 1))
6608 < HOST_BITS_PER_WIDE_INT)
6609 nonzero >>= INTVAL (XEXP (x, 1))
6610 + HOST_BITS_PER_WIDE_INT
6611 - GET_MODE_BITSIZE (GET_MODE (x)) ;
6612 }
6613 else
6614 {
6615 nonzero = GET_MODE_MASK (GET_MODE (x));
6616 nonzero >>= INTVAL (XEXP (x, 1));
6617 }
6618
6619 if ((mask & ~ nonzero) == 0
6620 || (i = exact_log2 (mask)) >= 0)
6621 {
6622 x = simplify_shift_const
6623 (x, LSHIFTRT, GET_MODE (x), XEXP (x, 0),
6624 i < 0 ? INTVAL (XEXP (x, 1))
6625 : GET_MODE_BITSIZE (GET_MODE (x)) - 1 - i);
6626
6627 if (GET_CODE (x) != ASHIFTRT)
6628 return force_to_mode (x, mode, mask, reg, next_select);
6629 }
6630 }
6631
6632 /* If MASK is 1, convert this to a LSHIFTRT. This can be done
6633 even if the shift count isn't a constant. */
6634 if (mask == 1)
6635 x = gen_binary (LSHIFTRT, GET_MODE (x), XEXP (x, 0), XEXP (x, 1));
6636
6637 /* If this is a sign-extension operation that just affects bits
6638 we don't care about, remove it. Be sure the call above returned
6639 something that is still a shift. */
6640
6641 if ((GET_CODE (x) == LSHIFTRT || GET_CODE (x) == ASHIFTRT)
6642 && GET_CODE (XEXP (x, 1)) == CONST_INT
6643 && INTVAL (XEXP (x, 1)) >= 0
6644 && (INTVAL (XEXP (x, 1))
6645 <= GET_MODE_BITSIZE (GET_MODE (x)) - (floor_log2 (mask) + 1))
6646 && GET_CODE (XEXP (x, 0)) == ASHIFT
6647 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
6648 && INTVAL (XEXP (XEXP (x, 0), 1)) == INTVAL (XEXP (x, 1)))
6649 return force_to_mode (XEXP (XEXP (x, 0), 0), mode, mask,
6650 reg, next_select);
6651
6652 break;
6653
6654 case ROTATE:
6655 case ROTATERT:
6656 /* If the shift count is constant and we can do computations
6657 in the mode of X, compute where the bits we care about are.
6658 Otherwise, we can't do anything. Don't change the mode of
6659 the shift or propagate MODE into the shift, though. */
6660 if (GET_CODE (XEXP (x, 1)) == CONST_INT
6661 && INTVAL (XEXP (x, 1)) >= 0)
6662 {
6663 temp = simplify_binary_operation (code == ROTATE ? ROTATERT : ROTATE,
6664 GET_MODE (x), GEN_INT (mask),
6665 XEXP (x, 1));
6666 if (temp && GET_CODE(temp) == CONST_INT)
6667 SUBST (XEXP (x, 0),
6668 force_to_mode (XEXP (x, 0), GET_MODE (x),
6669 INTVAL (temp), reg, next_select));
6670 }
6671 break;
6672
6673 case NEG:
6674 /* If we just want the low-order bit, the NEG isn't needed since it
6675 won't change the low-order bit. */
6676 if (mask == 1)
6677 return force_to_mode (XEXP (x, 0), mode, mask, reg, just_select);
6678
6679 /* We need any bits less significant than the most significant bit in
6680 MASK since carries from those bits will affect the bits we are
6681 interested in. */
6682 mask = fuller_mask;
6683 goto unop;
6684
6685 case NOT:
6686 /* (not FOO) is (xor FOO CONST), so if FOO is an LSHIFTRT, we can do the
6687 same as the XOR case above. Ensure that the constant we form is not
6688 wider than the mode of X. */
6689
6690 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
6691 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
6692 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
6693 && (INTVAL (XEXP (XEXP (x, 0), 1)) + floor_log2 (mask)
6694 < GET_MODE_BITSIZE (GET_MODE (x)))
6695 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT)
6696 {
6697 temp = GEN_INT (mask << INTVAL (XEXP (XEXP (x, 0), 1)));
6698 temp = gen_binary (XOR, GET_MODE (x), XEXP (XEXP (x, 0), 0), temp);
6699 x = gen_binary (LSHIFTRT, GET_MODE (x), temp, XEXP (XEXP (x, 0), 1));
6700
6701 return force_to_mode (x, mode, mask, reg, next_select);
6702 }
6703
6704 /* (and (not FOO) CONST) is (not (or FOO (not CONST))), so we must
6705 use the full mask inside the NOT. */
6706 mask = fuller_mask;
6707
6708 unop:
6709 op0 = gen_lowpart_for_combine (op_mode,
6710 force_to_mode (XEXP (x, 0), mode, mask,
6711 reg, next_select));
6712 if (op_mode != GET_MODE (x) || op0 != XEXP (x, 0))
6713 x = gen_unary (code, op_mode, op_mode, op0);
6714 break;
6715
6716 case NE:
6717 /* (and (ne FOO 0) CONST) can be (and FOO CONST) if CONST is included
6718 in STORE_FLAG_VALUE and FOO has a single bit that might be nonzero,
6719 which is equal to STORE_FLAG_VALUE. */
6720 if ((mask & ~ STORE_FLAG_VALUE) == 0 && XEXP (x, 1) == const0_rtx
6721 && exact_log2 (nonzero_bits (XEXP (x, 0), mode)) >= 0
6722 && nonzero_bits (XEXP (x, 0), mode) == STORE_FLAG_VALUE)
6723 return force_to_mode (XEXP (x, 0), mode, mask, reg, next_select);
6724
6725 break;
6726
6727 case IF_THEN_ELSE:
6728 /* We have no way of knowing if the IF_THEN_ELSE can itself be
6729 written in a narrower mode. We play it safe and do not do so. */
6730
6731 SUBST (XEXP (x, 1),
6732 gen_lowpart_for_combine (GET_MODE (x),
6733 force_to_mode (XEXP (x, 1), mode,
6734 mask, reg, next_select)));
6735 SUBST (XEXP (x, 2),
6736 gen_lowpart_for_combine (GET_MODE (x),
6737 force_to_mode (XEXP (x, 2), mode,
6738 mask, reg,next_select)));
6739 break;
6740
6741 default:
6742 break;
6743 }
6744
6745 /* Ensure we return a value of the proper mode. */
6746 return gen_lowpart_for_combine (mode, x);
6747 }
6748 \f
6749 /* Return nonzero if X is an expression that has one of two values depending on
6750 whether some other value is zero or nonzero. In that case, we return the
6751 value that is being tested, *PTRUE is set to the value if the rtx being
6752 returned has a nonzero value, and *PFALSE is set to the other alternative.
6753
6754 If we return zero, we set *PTRUE and *PFALSE to X. */
6755
6756 static rtx
6757 if_then_else_cond (x, ptrue, pfalse)
6758 rtx x;
6759 rtx *ptrue, *pfalse;
6760 {
6761 enum machine_mode mode = GET_MODE (x);
6762 enum rtx_code code = GET_CODE (x);
6763 int size = GET_MODE_BITSIZE (mode);
6764 rtx cond0, cond1, true0, true1, false0, false1;
6765 unsigned HOST_WIDE_INT nz;
6766
6767 /* If this is a unary operation whose operand has one of two values, apply
6768 our opcode to compute those values. */
6769 if (GET_RTX_CLASS (code) == '1'
6770 && (cond0 = if_then_else_cond (XEXP (x, 0), &true0, &false0)) != 0)
6771 {
6772 *ptrue = gen_unary (code, mode, GET_MODE (XEXP (x, 0)), true0);
6773 *pfalse = gen_unary (code, mode, GET_MODE (XEXP (x, 0)), false0);
6774 return cond0;
6775 }
6776
6777 /* If this is a COMPARE, do nothing, since the IF_THEN_ELSE we would
6778 make can't possibly match and would suppress other optimizations. */
6779 else if (code == COMPARE)
6780 ;
6781
6782 /* If this is a binary operation, see if either side has only one of two
6783 values. If either one does or if both do and they are conditional on
6784 the same value, compute the new true and false values. */
6785 else if (GET_RTX_CLASS (code) == 'c' || GET_RTX_CLASS (code) == '2'
6786 || GET_RTX_CLASS (code) == '<')
6787 {
6788 cond0 = if_then_else_cond (XEXP (x, 0), &true0, &false0);
6789 cond1 = if_then_else_cond (XEXP (x, 1), &true1, &false1);
6790
6791 if ((cond0 != 0 || cond1 != 0)
6792 && ! (cond0 != 0 && cond1 != 0 && ! rtx_equal_p (cond0, cond1)))
6793 {
6794 /* If if_then_else_cond returned zero, then true/false are the
6795 same rtl. We must copy one of them to prevent invalid rtl
6796 sharing. */
6797 if (cond0 == 0)
6798 true0 = copy_rtx (true0);
6799 else if (cond1 == 0)
6800 true1 = copy_rtx (true1);
6801
6802 *ptrue = gen_binary (code, mode, true0, true1);
6803 *pfalse = gen_binary (code, mode, false0, false1);
6804 return cond0 ? cond0 : cond1;
6805 }
6806
6807 /* See if we have PLUS, IOR, XOR, MINUS or UMAX, where one of the
6808 operands is zero when the other is non-zero, and vice-versa,
6809 and STORE_FLAG_VALUE is 1 or -1. */
6810
6811 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
6812 && (code == PLUS || code == IOR || code == XOR || code == MINUS
6813 || code == UMAX)
6814 && GET_CODE (XEXP (x, 0)) == MULT && GET_CODE (XEXP (x, 1)) == MULT)
6815 {
6816 rtx op0 = XEXP (XEXP (x, 0), 1);
6817 rtx op1 = XEXP (XEXP (x, 1), 1);
6818
6819 cond0 = XEXP (XEXP (x, 0), 0);
6820 cond1 = XEXP (XEXP (x, 1), 0);
6821
6822 if (GET_RTX_CLASS (GET_CODE (cond0)) == '<'
6823 && GET_RTX_CLASS (GET_CODE (cond1)) == '<'
6824 && reversible_comparison_p (cond1)
6825 && ((GET_CODE (cond0) == reverse_condition (GET_CODE (cond1))
6826 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 0))
6827 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 1)))
6828 || ((swap_condition (GET_CODE (cond0))
6829 == reverse_condition (GET_CODE (cond1)))
6830 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 1))
6831 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 0))))
6832 && ! side_effects_p (x))
6833 {
6834 *ptrue = gen_binary (MULT, mode, op0, const_true_rtx);
6835 *pfalse = gen_binary (MULT, mode,
6836 (code == MINUS
6837 ? gen_unary (NEG, mode, mode, op1) : op1),
6838 const_true_rtx);
6839 return cond0;
6840 }
6841 }
6842
6843 /* Similarly for MULT, AND and UMIN, execpt that for these the result
6844 is always zero. */
6845 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
6846 && (code == MULT || code == AND || code == UMIN)
6847 && GET_CODE (XEXP (x, 0)) == MULT && GET_CODE (XEXP (x, 1)) == MULT)
6848 {
6849 cond0 = XEXP (XEXP (x, 0), 0);
6850 cond1 = XEXP (XEXP (x, 1), 0);
6851
6852 if (GET_RTX_CLASS (GET_CODE (cond0)) == '<'
6853 && GET_RTX_CLASS (GET_CODE (cond1)) == '<'
6854 && reversible_comparison_p (cond1)
6855 && ((GET_CODE (cond0) == reverse_condition (GET_CODE (cond1))
6856 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 0))
6857 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 1)))
6858 || ((swap_condition (GET_CODE (cond0))
6859 == reverse_condition (GET_CODE (cond1)))
6860 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 1))
6861 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 0))))
6862 && ! side_effects_p (x))
6863 {
6864 *ptrue = *pfalse = const0_rtx;
6865 return cond0;
6866 }
6867 }
6868 }
6869
6870 else if (code == IF_THEN_ELSE)
6871 {
6872 /* If we have IF_THEN_ELSE already, extract the condition and
6873 canonicalize it if it is NE or EQ. */
6874 cond0 = XEXP (x, 0);
6875 *ptrue = XEXP (x, 1), *pfalse = XEXP (x, 2);
6876 if (GET_CODE (cond0) == NE && XEXP (cond0, 1) == const0_rtx)
6877 return XEXP (cond0, 0);
6878 else if (GET_CODE (cond0) == EQ && XEXP (cond0, 1) == const0_rtx)
6879 {
6880 *ptrue = XEXP (x, 2), *pfalse = XEXP (x, 1);
6881 return XEXP (cond0, 0);
6882 }
6883 else
6884 return cond0;
6885 }
6886
6887 /* If X is a normal SUBREG with both inner and outer modes integral,
6888 we can narrow both the true and false values of the inner expression,
6889 if there is a condition. */
6890 else if (code == SUBREG && GET_MODE_CLASS (mode) == MODE_INT
6891 && GET_MODE_CLASS (GET_MODE (SUBREG_REG (x))) == MODE_INT
6892 && GET_MODE_SIZE (mode) <= GET_MODE_SIZE (GET_MODE (SUBREG_REG (x)))
6893 && 0 != (cond0 = if_then_else_cond (SUBREG_REG (x),
6894 &true0, &false0)))
6895 {
6896 *ptrue = force_to_mode (true0, mode, GET_MODE_MASK (mode), NULL_RTX, 0);
6897 *pfalse
6898 = force_to_mode (false0, mode, GET_MODE_MASK (mode), NULL_RTX, 0);
6899
6900 return cond0;
6901 }
6902
6903 /* If X is a constant, this isn't special and will cause confusions
6904 if we treat it as such. Likewise if it is equivalent to a constant. */
6905 else if (CONSTANT_P (x)
6906 || ((cond0 = get_last_value (x)) != 0 && CONSTANT_P (cond0)))
6907 ;
6908
6909 /* If X is known to be either 0 or -1, those are the true and
6910 false values when testing X. */
6911 else if (num_sign_bit_copies (x, mode) == size)
6912 {
6913 *ptrue = constm1_rtx, *pfalse = const0_rtx;
6914 return x;
6915 }
6916
6917 /* Likewise for 0 or a single bit. */
6918 else if (exact_log2 (nz = nonzero_bits (x, mode)) >= 0)
6919 {
6920 *ptrue = GEN_INT (nz), *pfalse = const0_rtx;
6921 return x;
6922 }
6923
6924 /* Otherwise fail; show no condition with true and false values the same. */
6925 *ptrue = *pfalse = x;
6926 return 0;
6927 }
6928 \f
6929 /* Return the value of expression X given the fact that condition COND
6930 is known to be true when applied to REG as its first operand and VAL
6931 as its second. X is known to not be shared and so can be modified in
6932 place.
6933
6934 We only handle the simplest cases, and specifically those cases that
6935 arise with IF_THEN_ELSE expressions. */
6936
6937 static rtx
6938 known_cond (x, cond, reg, val)
6939 rtx x;
6940 enum rtx_code cond;
6941 rtx reg, val;
6942 {
6943 enum rtx_code code = GET_CODE (x);
6944 rtx temp;
6945 char *fmt;
6946 int i, j;
6947
6948 if (side_effects_p (x))
6949 return x;
6950
6951 if (cond == EQ && rtx_equal_p (x, reg))
6952 return val;
6953
6954 /* If X is (abs REG) and we know something about REG's relationship
6955 with zero, we may be able to simplify this. */
6956
6957 if (code == ABS && rtx_equal_p (XEXP (x, 0), reg) && val == const0_rtx)
6958 switch (cond)
6959 {
6960 case GE: case GT: case EQ:
6961 return XEXP (x, 0);
6962 case LT: case LE:
6963 return gen_unary (NEG, GET_MODE (XEXP (x, 0)), GET_MODE (XEXP (x, 0)),
6964 XEXP (x, 0));
6965 default:
6966 break;
6967 }
6968
6969 /* The only other cases we handle are MIN, MAX, and comparisons if the
6970 operands are the same as REG and VAL. */
6971
6972 else if (GET_RTX_CLASS (code) == '<' || GET_RTX_CLASS (code) == 'c')
6973 {
6974 if (rtx_equal_p (XEXP (x, 0), val))
6975 cond = swap_condition (cond), temp = val, val = reg, reg = temp;
6976
6977 if (rtx_equal_p (XEXP (x, 0), reg) && rtx_equal_p (XEXP (x, 1), val))
6978 {
6979 if (GET_RTX_CLASS (code) == '<')
6980 return (comparison_dominates_p (cond, code) ? const_true_rtx
6981 : (comparison_dominates_p (cond,
6982 reverse_condition (code))
6983 ? const0_rtx : x));
6984
6985 else if (code == SMAX || code == SMIN
6986 || code == UMIN || code == UMAX)
6987 {
6988 int unsignedp = (code == UMIN || code == UMAX);
6989
6990 if (code == SMAX || code == UMAX)
6991 cond = reverse_condition (cond);
6992
6993 switch (cond)
6994 {
6995 case GE: case GT:
6996 return unsignedp ? x : XEXP (x, 1);
6997 case LE: case LT:
6998 return unsignedp ? x : XEXP (x, 0);
6999 case GEU: case GTU:
7000 return unsignedp ? XEXP (x, 1) : x;
7001 case LEU: case LTU:
7002 return unsignedp ? XEXP (x, 0) : x;
7003 default:
7004 break;
7005 }
7006 }
7007 }
7008 }
7009
7010 fmt = GET_RTX_FORMAT (code);
7011 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
7012 {
7013 if (fmt[i] == 'e')
7014 SUBST (XEXP (x, i), known_cond (XEXP (x, i), cond, reg, val));
7015 else if (fmt[i] == 'E')
7016 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
7017 SUBST (XVECEXP (x, i, j), known_cond (XVECEXP (x, i, j),
7018 cond, reg, val));
7019 }
7020
7021 return x;
7022 }
7023 \f
7024 /* See if X and Y are equal for the purposes of seeing if we can rewrite an
7025 assignment as a field assignment. */
7026
7027 static int
7028 rtx_equal_for_field_assignment_p (x, y)
7029 rtx x;
7030 rtx y;
7031 {
7032 if (x == y || rtx_equal_p (x, y))
7033 return 1;
7034
7035 if (x == 0 || y == 0 || GET_MODE (x) != GET_MODE (y))
7036 return 0;
7037
7038 /* Check for a paradoxical SUBREG of a MEM compared with the MEM.
7039 Note that all SUBREGs of MEM are paradoxical; otherwise they
7040 would have been rewritten. */
7041 if (GET_CODE (x) == MEM && GET_CODE (y) == SUBREG
7042 && GET_CODE (SUBREG_REG (y)) == MEM
7043 && rtx_equal_p (SUBREG_REG (y),
7044 gen_lowpart_for_combine (GET_MODE (SUBREG_REG (y)), x)))
7045 return 1;
7046
7047 if (GET_CODE (y) == MEM && GET_CODE (x) == SUBREG
7048 && GET_CODE (SUBREG_REG (x)) == MEM
7049 && rtx_equal_p (SUBREG_REG (x),
7050 gen_lowpart_for_combine (GET_MODE (SUBREG_REG (x)), y)))
7051 return 1;
7052
7053 /* We used to see if get_last_value of X and Y were the same but that's
7054 not correct. In one direction, we'll cause the assignment to have
7055 the wrong destination and in the case, we'll import a register into this
7056 insn that might have already have been dead. So fail if none of the
7057 above cases are true. */
7058 return 0;
7059 }
7060 \f
7061 /* See if X, a SET operation, can be rewritten as a bit-field assignment.
7062 Return that assignment if so.
7063
7064 We only handle the most common cases. */
7065
7066 static rtx
7067 make_field_assignment (x)
7068 rtx x;
7069 {
7070 rtx dest = SET_DEST (x);
7071 rtx src = SET_SRC (x);
7072 rtx assign;
7073 rtx rhs, lhs;
7074 HOST_WIDE_INT c1;
7075 int pos, len;
7076 rtx other;
7077 enum machine_mode mode;
7078
7079 /* If SRC was (and (not (ashift (const_int 1) POS)) DEST), this is
7080 a clear of a one-bit field. We will have changed it to
7081 (and (rotate (const_int -2) POS) DEST), so check for that. Also check
7082 for a SUBREG. */
7083
7084 if (GET_CODE (src) == AND && GET_CODE (XEXP (src, 0)) == ROTATE
7085 && GET_CODE (XEXP (XEXP (src, 0), 0)) == CONST_INT
7086 && INTVAL (XEXP (XEXP (src, 0), 0)) == -2
7087 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
7088 {
7089 assign = make_extraction (VOIDmode, dest, 0, XEXP (XEXP (src, 0), 1),
7090 1, 1, 1, 0);
7091 if (assign != 0)
7092 return gen_rtx_SET (VOIDmode, assign, const0_rtx);
7093 return x;
7094 }
7095
7096 else if (GET_CODE (src) == AND && GET_CODE (XEXP (src, 0)) == SUBREG
7097 && subreg_lowpart_p (XEXP (src, 0))
7098 && (GET_MODE_SIZE (GET_MODE (XEXP (src, 0)))
7099 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (XEXP (src, 0)))))
7100 && GET_CODE (SUBREG_REG (XEXP (src, 0))) == ROTATE
7101 && INTVAL (XEXP (SUBREG_REG (XEXP (src, 0)), 0)) == -2
7102 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
7103 {
7104 assign = make_extraction (VOIDmode, dest, 0,
7105 XEXP (SUBREG_REG (XEXP (src, 0)), 1),
7106 1, 1, 1, 0);
7107 if (assign != 0)
7108 return gen_rtx_SET (VOIDmode, assign, const0_rtx);
7109 return x;
7110 }
7111
7112 /* If SRC is (ior (ashift (const_int 1) POS) DEST), this is a set of a
7113 one-bit field. */
7114 else if (GET_CODE (src) == IOR && GET_CODE (XEXP (src, 0)) == ASHIFT
7115 && XEXP (XEXP (src, 0), 0) == const1_rtx
7116 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
7117 {
7118 assign = make_extraction (VOIDmode, dest, 0, XEXP (XEXP (src, 0), 1),
7119 1, 1, 1, 0);
7120 if (assign != 0)
7121 return gen_rtx_SET (VOIDmode, assign, const1_rtx);
7122 return x;
7123 }
7124
7125 /* The other case we handle is assignments into a constant-position
7126 field. They look like (ior/xor (and DEST C1) OTHER). If C1 represents
7127 a mask that has all one bits except for a group of zero bits and
7128 OTHER is known to have zeros where C1 has ones, this is such an
7129 assignment. Compute the position and length from C1. Shift OTHER
7130 to the appropriate position, force it to the required mode, and
7131 make the extraction. Check for the AND in both operands. */
7132
7133 if (GET_CODE (src) != IOR && GET_CODE (src) != XOR)
7134 return x;
7135
7136 rhs = expand_compound_operation (XEXP (src, 0));
7137 lhs = expand_compound_operation (XEXP (src, 1));
7138
7139 if (GET_CODE (rhs) == AND
7140 && GET_CODE (XEXP (rhs, 1)) == CONST_INT
7141 && rtx_equal_for_field_assignment_p (XEXP (rhs, 0), dest))
7142 c1 = INTVAL (XEXP (rhs, 1)), other = lhs;
7143 else if (GET_CODE (lhs) == AND
7144 && GET_CODE (XEXP (lhs, 1)) == CONST_INT
7145 && rtx_equal_for_field_assignment_p (XEXP (lhs, 0), dest))
7146 c1 = INTVAL (XEXP (lhs, 1)), other = rhs;
7147 else
7148 return x;
7149
7150 pos = get_pos_from_mask ((~ c1) & GET_MODE_MASK (GET_MODE (dest)), &len);
7151 if (pos < 0 || pos + len > GET_MODE_BITSIZE (GET_MODE (dest))
7152 || GET_MODE_BITSIZE (GET_MODE (dest)) > HOST_BITS_PER_WIDE_INT
7153 || (c1 & nonzero_bits (other, GET_MODE (dest))) != 0)
7154 return x;
7155
7156 assign = make_extraction (VOIDmode, dest, pos, NULL_RTX, len, 1, 1, 0);
7157 if (assign == 0)
7158 return x;
7159
7160 /* The mode to use for the source is the mode of the assignment, or of
7161 what is inside a possible STRICT_LOW_PART. */
7162 mode = (GET_CODE (assign) == STRICT_LOW_PART
7163 ? GET_MODE (XEXP (assign, 0)) : GET_MODE (assign));
7164
7165 /* Shift OTHER right POS places and make it the source, restricting it
7166 to the proper length and mode. */
7167
7168 src = force_to_mode (simplify_shift_const (NULL_RTX, LSHIFTRT,
7169 GET_MODE (src), other, pos),
7170 mode,
7171 GET_MODE_BITSIZE (mode) >= HOST_BITS_PER_WIDE_INT
7172 ? GET_MODE_MASK (mode)
7173 : ((HOST_WIDE_INT) 1 << len) - 1,
7174 dest, 0);
7175
7176 return gen_rtx_combine (SET, VOIDmode, assign, src);
7177 }
7178 \f
7179 /* See if X is of the form (+ (* a c) (* b c)) and convert to (* (+ a b) c)
7180 if so. */
7181
7182 static rtx
7183 apply_distributive_law (x)
7184 rtx x;
7185 {
7186 enum rtx_code code = GET_CODE (x);
7187 rtx lhs, rhs, other;
7188 rtx tem;
7189 enum rtx_code inner_code;
7190
7191 /* Distributivity is not true for floating point.
7192 It can change the value. So don't do it.
7193 -- rms and moshier@world.std.com. */
7194 if (FLOAT_MODE_P (GET_MODE (x)))
7195 return x;
7196
7197 /* The outer operation can only be one of the following: */
7198 if (code != IOR && code != AND && code != XOR
7199 && code != PLUS && code != MINUS)
7200 return x;
7201
7202 lhs = XEXP (x, 0), rhs = XEXP (x, 1);
7203
7204 /* If either operand is a primitive we can't do anything, so get out
7205 fast. */
7206 if (GET_RTX_CLASS (GET_CODE (lhs)) == 'o'
7207 || GET_RTX_CLASS (GET_CODE (rhs)) == 'o')
7208 return x;
7209
7210 lhs = expand_compound_operation (lhs);
7211 rhs = expand_compound_operation (rhs);
7212 inner_code = GET_CODE (lhs);
7213 if (inner_code != GET_CODE (rhs))
7214 return x;
7215
7216 /* See if the inner and outer operations distribute. */
7217 switch (inner_code)
7218 {
7219 case LSHIFTRT:
7220 case ASHIFTRT:
7221 case AND:
7222 case IOR:
7223 /* These all distribute except over PLUS. */
7224 if (code == PLUS || code == MINUS)
7225 return x;
7226 break;
7227
7228 case MULT:
7229 if (code != PLUS && code != MINUS)
7230 return x;
7231 break;
7232
7233 case ASHIFT:
7234 /* This is also a multiply, so it distributes over everything. */
7235 break;
7236
7237 case SUBREG:
7238 /* Non-paradoxical SUBREGs distributes over all operations, provided
7239 the inner modes and word numbers are the same, this is an extraction
7240 of a low-order part, we don't convert an fp operation to int or
7241 vice versa, and we would not be converting a single-word
7242 operation into a multi-word operation. The latter test is not
7243 required, but it prevents generating unneeded multi-word operations.
7244 Some of the previous tests are redundant given the latter test, but
7245 are retained because they are required for correctness.
7246
7247 We produce the result slightly differently in this case. */
7248
7249 if (GET_MODE (SUBREG_REG (lhs)) != GET_MODE (SUBREG_REG (rhs))
7250 || SUBREG_WORD (lhs) != SUBREG_WORD (rhs)
7251 || ! subreg_lowpart_p (lhs)
7252 || (GET_MODE_CLASS (GET_MODE (lhs))
7253 != GET_MODE_CLASS (GET_MODE (SUBREG_REG (lhs))))
7254 || (GET_MODE_SIZE (GET_MODE (lhs))
7255 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (lhs))))
7256 || GET_MODE_SIZE (GET_MODE (SUBREG_REG (lhs))) > UNITS_PER_WORD)
7257 return x;
7258
7259 tem = gen_binary (code, GET_MODE (SUBREG_REG (lhs)),
7260 SUBREG_REG (lhs), SUBREG_REG (rhs));
7261 return gen_lowpart_for_combine (GET_MODE (x), tem);
7262
7263 default:
7264 return x;
7265 }
7266
7267 /* Set LHS and RHS to the inner operands (A and B in the example
7268 above) and set OTHER to the common operand (C in the example).
7269 These is only one way to do this unless the inner operation is
7270 commutative. */
7271 if (GET_RTX_CLASS (inner_code) == 'c'
7272 && rtx_equal_p (XEXP (lhs, 0), XEXP (rhs, 0)))
7273 other = XEXP (lhs, 0), lhs = XEXP (lhs, 1), rhs = XEXP (rhs, 1);
7274 else if (GET_RTX_CLASS (inner_code) == 'c'
7275 && rtx_equal_p (XEXP (lhs, 0), XEXP (rhs, 1)))
7276 other = XEXP (lhs, 0), lhs = XEXP (lhs, 1), rhs = XEXP (rhs, 0);
7277 else if (GET_RTX_CLASS (inner_code) == 'c'
7278 && rtx_equal_p (XEXP (lhs, 1), XEXP (rhs, 0)))
7279 other = XEXP (lhs, 1), lhs = XEXP (lhs, 0), rhs = XEXP (rhs, 1);
7280 else if (rtx_equal_p (XEXP (lhs, 1), XEXP (rhs, 1)))
7281 other = XEXP (lhs, 1), lhs = XEXP (lhs, 0), rhs = XEXP (rhs, 0);
7282 else
7283 return x;
7284
7285 /* Form the new inner operation, seeing if it simplifies first. */
7286 tem = gen_binary (code, GET_MODE (x), lhs, rhs);
7287
7288 /* There is one exception to the general way of distributing:
7289 (a ^ b) | (a ^ c) -> (~a) & (b ^ c) */
7290 if (code == XOR && inner_code == IOR)
7291 {
7292 inner_code = AND;
7293 other = gen_unary (NOT, GET_MODE (x), GET_MODE (x), other);
7294 }
7295
7296 /* We may be able to continuing distributing the result, so call
7297 ourselves recursively on the inner operation before forming the
7298 outer operation, which we return. */
7299 return gen_binary (inner_code, GET_MODE (x),
7300 apply_distributive_law (tem), other);
7301 }
7302 \f
7303 /* We have X, a logical `and' of VAROP with the constant CONSTOP, to be done
7304 in MODE.
7305
7306 Return an equivalent form, if different from X. Otherwise, return X. If
7307 X is zero, we are to always construct the equivalent form. */
7308
7309 static rtx
7310 simplify_and_const_int (x, mode, varop, constop)
7311 rtx x;
7312 enum machine_mode mode;
7313 rtx varop;
7314 unsigned HOST_WIDE_INT constop;
7315 {
7316 unsigned HOST_WIDE_INT nonzero;
7317 int width = GET_MODE_BITSIZE (mode);
7318 int i;
7319
7320 /* Simplify VAROP knowing that we will be only looking at some of the
7321 bits in it. */
7322 varop = force_to_mode (varop, mode, constop, NULL_RTX, 0);
7323
7324 /* If VAROP is a CLOBBER, we will fail so return it; if it is a
7325 CONST_INT, we are done. */
7326 if (GET_CODE (varop) == CLOBBER || GET_CODE (varop) == CONST_INT)
7327 return varop;
7328
7329 /* See what bits may be nonzero in VAROP. Unlike the general case of
7330 a call to nonzero_bits, here we don't care about bits outside
7331 MODE. */
7332
7333 nonzero = nonzero_bits (varop, mode) & GET_MODE_MASK (mode);
7334
7335 /* If this would be an entire word for the target, but is not for
7336 the host, then sign-extend on the host so that the number will look
7337 the same way on the host that it would on the target.
7338
7339 For example, when building a 64 bit alpha hosted 32 bit sparc
7340 targeted compiler, then we want the 32 bit unsigned value -1 to be
7341 represented as a 64 bit value -1, and not as 0x00000000ffffffff.
7342 The later confuses the sparc backend. */
7343
7344 if (BITS_PER_WORD < HOST_BITS_PER_WIDE_INT && BITS_PER_WORD == width
7345 && (nonzero & ((HOST_WIDE_INT) 1 << (width - 1))))
7346 nonzero |= ((HOST_WIDE_INT) (-1) << width);
7347
7348 /* Turn off all bits in the constant that are known to already be zero.
7349 Thus, if the AND isn't needed at all, we will have CONSTOP == NONZERO_BITS
7350 which is tested below. */
7351
7352 constop &= nonzero;
7353
7354 /* If we don't have any bits left, return zero. */
7355 if (constop == 0)
7356 return const0_rtx;
7357
7358 /* If VAROP is a NEG of something known to be zero or 1 and CONSTOP is
7359 a power of two, we can replace this with a ASHIFT. */
7360 if (GET_CODE (varop) == NEG && nonzero_bits (XEXP (varop, 0), mode) == 1
7361 && (i = exact_log2 (constop)) >= 0)
7362 return simplify_shift_const (NULL_RTX, ASHIFT, mode, XEXP (varop, 0), i);
7363
7364 /* If VAROP is an IOR or XOR, apply the AND to both branches of the IOR
7365 or XOR, then try to apply the distributive law. This may eliminate
7366 operations if either branch can be simplified because of the AND.
7367 It may also make some cases more complex, but those cases probably
7368 won't match a pattern either with or without this. */
7369
7370 if (GET_CODE (varop) == IOR || GET_CODE (varop) == XOR)
7371 return
7372 gen_lowpart_for_combine
7373 (mode,
7374 apply_distributive_law
7375 (gen_binary (GET_CODE (varop), GET_MODE (varop),
7376 simplify_and_const_int (NULL_RTX, GET_MODE (varop),
7377 XEXP (varop, 0), constop),
7378 simplify_and_const_int (NULL_RTX, GET_MODE (varop),
7379 XEXP (varop, 1), constop))));
7380
7381 /* Get VAROP in MODE. Try to get a SUBREG if not. Don't make a new SUBREG
7382 if we already had one (just check for the simplest cases). */
7383 if (x && GET_CODE (XEXP (x, 0)) == SUBREG
7384 && GET_MODE (XEXP (x, 0)) == mode
7385 && SUBREG_REG (XEXP (x, 0)) == varop)
7386 varop = XEXP (x, 0);
7387 else
7388 varop = gen_lowpart_for_combine (mode, varop);
7389
7390 /* If we can't make the SUBREG, try to return what we were given. */
7391 if (GET_CODE (varop) == CLOBBER)
7392 return x ? x : varop;
7393
7394 /* If we are only masking insignificant bits, return VAROP. */
7395 if (constop == nonzero)
7396 x = varop;
7397
7398 /* Otherwise, return an AND. See how much, if any, of X we can use. */
7399 else if (x == 0 || GET_CODE (x) != AND || GET_MODE (x) != mode)
7400 x = gen_binary (AND, mode, varop, GEN_INT (constop));
7401
7402 else
7403 {
7404 if (GET_CODE (XEXP (x, 1)) != CONST_INT
7405 || (unsigned HOST_WIDE_INT) INTVAL (XEXP (x, 1)) != constop)
7406 SUBST (XEXP (x, 1), GEN_INT (constop));
7407
7408 SUBST (XEXP (x, 0), varop);
7409 }
7410
7411 return x;
7412 }
7413 \f
7414 /* We let num_sign_bit_copies recur into nonzero_bits as that is useful.
7415 We don't let nonzero_bits recur into num_sign_bit_copies, because that
7416 is less useful. We can't allow both, because that results in exponential
7417 run time recursion. There is a nullstone testcase that triggered
7418 this. This macro avoids accidental uses of num_sign_bit_copies. */
7419 #define num_sign_bit_copies()
7420
7421 /* Given an expression, X, compute which bits in X can be non-zero.
7422 We don't care about bits outside of those defined in MODE.
7423
7424 For most X this is simply GET_MODE_MASK (GET_MODE (MODE)), but if X is
7425 a shift, AND, or zero_extract, we can do better. */
7426
7427 static unsigned HOST_WIDE_INT
7428 nonzero_bits (x, mode)
7429 rtx x;
7430 enum machine_mode mode;
7431 {
7432 unsigned HOST_WIDE_INT nonzero = GET_MODE_MASK (mode);
7433 unsigned HOST_WIDE_INT inner_nz;
7434 enum rtx_code code;
7435 int mode_width = GET_MODE_BITSIZE (mode);
7436 rtx tem;
7437
7438 /* For floating-point values, assume all bits are needed. */
7439 if (FLOAT_MODE_P (GET_MODE (x)) || FLOAT_MODE_P (mode))
7440 return nonzero;
7441
7442 /* If X is wider than MODE, use its mode instead. */
7443 if (GET_MODE_BITSIZE (GET_MODE (x)) > mode_width)
7444 {
7445 mode = GET_MODE (x);
7446 nonzero = GET_MODE_MASK (mode);
7447 mode_width = GET_MODE_BITSIZE (mode);
7448 }
7449
7450 if (mode_width > HOST_BITS_PER_WIDE_INT)
7451 /* Our only callers in this case look for single bit values. So
7452 just return the mode mask. Those tests will then be false. */
7453 return nonzero;
7454
7455 #ifndef WORD_REGISTER_OPERATIONS
7456 /* If MODE is wider than X, but both are a single word for both the host
7457 and target machines, we can compute this from which bits of the
7458 object might be nonzero in its own mode, taking into account the fact
7459 that on many CISC machines, accessing an object in a wider mode
7460 causes the high-order bits to become undefined. So they are
7461 not known to be zero. */
7462
7463 if (GET_MODE (x) != VOIDmode && GET_MODE (x) != mode
7464 && GET_MODE_BITSIZE (GET_MODE (x)) <= BITS_PER_WORD
7465 && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
7466 && GET_MODE_BITSIZE (mode) > GET_MODE_BITSIZE (GET_MODE (x)))
7467 {
7468 nonzero &= nonzero_bits (x, GET_MODE (x));
7469 nonzero |= GET_MODE_MASK (mode) & ~ GET_MODE_MASK (GET_MODE (x));
7470 return nonzero;
7471 }
7472 #endif
7473
7474 code = GET_CODE (x);
7475 switch (code)
7476 {
7477 case REG:
7478 #ifdef POINTERS_EXTEND_UNSIGNED
7479 /* If pointers extend unsigned and this is a pointer in Pmode, say that
7480 all the bits above ptr_mode are known to be zero. */
7481 if (POINTERS_EXTEND_UNSIGNED && GET_MODE (x) == Pmode
7482 && REGNO_POINTER_FLAG (REGNO (x)))
7483 nonzero &= GET_MODE_MASK (ptr_mode);
7484 #endif
7485
7486 #ifdef STACK_BOUNDARY
7487 /* If this is the stack pointer, we may know something about its
7488 alignment. If PUSH_ROUNDING is defined, it is possible for the
7489 stack to be momentarily aligned only to that amount, so we pick
7490 the least alignment. */
7491
7492 /* We can't check for arg_pointer_rtx here, because it is not
7493 guaranteed to have as much alignment as the stack pointer.
7494 In particular, in the Irix6 n64 ABI, the stack has 128 bit
7495 alignment but the argument pointer has only 64 bit alignment. */
7496
7497 if ((x == frame_pointer_rtx
7498 || x == stack_pointer_rtx
7499 || x == hard_frame_pointer_rtx
7500 || (REGNO (x) >= FIRST_VIRTUAL_REGISTER
7501 && REGNO (x) <= LAST_VIRTUAL_REGISTER))
7502 #ifdef STACK_BIAS
7503 && !STACK_BIAS
7504 #endif
7505 )
7506 {
7507 int sp_alignment = STACK_BOUNDARY / BITS_PER_UNIT;
7508
7509 #ifdef PUSH_ROUNDING
7510 if (REGNO (x) == STACK_POINTER_REGNUM)
7511 sp_alignment = MIN (PUSH_ROUNDING (1), sp_alignment);
7512 #endif
7513
7514 /* We must return here, otherwise we may get a worse result from
7515 one of the choices below. There is nothing useful below as
7516 far as the stack pointer is concerned. */
7517 return nonzero &= ~ (sp_alignment - 1);
7518 }
7519 #endif
7520
7521 /* If X is a register whose nonzero bits value is current, use it.
7522 Otherwise, if X is a register whose value we can find, use that
7523 value. Otherwise, use the previously-computed global nonzero bits
7524 for this register. */
7525
7526 if (reg_last_set_value[REGNO (x)] != 0
7527 && reg_last_set_mode[REGNO (x)] == mode
7528 && (REG_N_SETS (REGNO (x)) == 1
7529 || reg_last_set_label[REGNO (x)] == label_tick)
7530 && INSN_CUID (reg_last_set[REGNO (x)]) < subst_low_cuid)
7531 return reg_last_set_nonzero_bits[REGNO (x)];
7532
7533 tem = get_last_value (x);
7534
7535 if (tem)
7536 {
7537 #ifdef SHORT_IMMEDIATES_SIGN_EXTEND
7538 /* If X is narrower than MODE and TEM is a non-negative
7539 constant that would appear negative in the mode of X,
7540 sign-extend it for use in reg_nonzero_bits because some
7541 machines (maybe most) will actually do the sign-extension
7542 and this is the conservative approach.
7543
7544 ??? For 2.5, try to tighten up the MD files in this regard
7545 instead of this kludge. */
7546
7547 if (GET_MODE_BITSIZE (GET_MODE (x)) < mode_width
7548 && GET_CODE (tem) == CONST_INT
7549 && INTVAL (tem) > 0
7550 && 0 != (INTVAL (tem)
7551 & ((HOST_WIDE_INT) 1
7552 << (GET_MODE_BITSIZE (GET_MODE (x)) - 1))))
7553 tem = GEN_INT (INTVAL (tem)
7554 | ((HOST_WIDE_INT) (-1)
7555 << GET_MODE_BITSIZE (GET_MODE (x))));
7556 #endif
7557 return nonzero_bits (tem, mode);
7558 }
7559 else if (nonzero_sign_valid && reg_nonzero_bits[REGNO (x)])
7560 return reg_nonzero_bits[REGNO (x)] & nonzero;
7561 else
7562 return nonzero;
7563
7564 case CONST_INT:
7565 #ifdef SHORT_IMMEDIATES_SIGN_EXTEND
7566 /* If X is negative in MODE, sign-extend the value. */
7567 if (INTVAL (x) > 0 && mode_width < BITS_PER_WORD
7568 && 0 != (INTVAL (x) & ((HOST_WIDE_INT) 1 << (mode_width - 1))))
7569 return (INTVAL (x) | ((HOST_WIDE_INT) (-1) << mode_width));
7570 #endif
7571
7572 return INTVAL (x);
7573
7574 case MEM:
7575 #ifdef LOAD_EXTEND_OP
7576 /* In many, if not most, RISC machines, reading a byte from memory
7577 zeros the rest of the register. Noticing that fact saves a lot
7578 of extra zero-extends. */
7579 if (LOAD_EXTEND_OP (GET_MODE (x)) == ZERO_EXTEND)
7580 nonzero &= GET_MODE_MASK (GET_MODE (x));
7581 #endif
7582 break;
7583
7584 case EQ: case NE:
7585 case GT: case GTU:
7586 case LT: case LTU:
7587 case GE: case GEU:
7588 case LE: case LEU:
7589
7590 /* If this produces an integer result, we know which bits are set.
7591 Code here used to clear bits outside the mode of X, but that is
7592 now done above. */
7593
7594 if (GET_MODE_CLASS (mode) == MODE_INT
7595 && mode_width <= HOST_BITS_PER_WIDE_INT)
7596 nonzero = STORE_FLAG_VALUE;
7597 break;
7598
7599 case NEG:
7600 #if 0
7601 /* Disabled to avoid exponential mutual recursion between nonzero_bits
7602 and num_sign_bit_copies. */
7603 if (num_sign_bit_copies (XEXP (x, 0), GET_MODE (x))
7604 == GET_MODE_BITSIZE (GET_MODE (x)))
7605 nonzero = 1;
7606 #endif
7607
7608 if (GET_MODE_SIZE (GET_MODE (x)) < mode_width)
7609 nonzero |= (GET_MODE_MASK (mode) & ~ GET_MODE_MASK (GET_MODE (x)));
7610 break;
7611
7612 case ABS:
7613 #if 0
7614 /* Disabled to avoid exponential mutual recursion between nonzero_bits
7615 and num_sign_bit_copies. */
7616 if (num_sign_bit_copies (XEXP (x, 0), GET_MODE (x))
7617 == GET_MODE_BITSIZE (GET_MODE (x)))
7618 nonzero = 1;
7619 #endif
7620 break;
7621
7622 case TRUNCATE:
7623 nonzero &= (nonzero_bits (XEXP (x, 0), mode) & GET_MODE_MASK (mode));
7624 break;
7625
7626 case ZERO_EXTEND:
7627 nonzero &= nonzero_bits (XEXP (x, 0), mode);
7628 if (GET_MODE (XEXP (x, 0)) != VOIDmode)
7629 nonzero &= GET_MODE_MASK (GET_MODE (XEXP (x, 0)));
7630 break;
7631
7632 case SIGN_EXTEND:
7633 /* If the sign bit is known clear, this is the same as ZERO_EXTEND.
7634 Otherwise, show all the bits in the outer mode but not the inner
7635 may be non-zero. */
7636 inner_nz = nonzero_bits (XEXP (x, 0), mode);
7637 if (GET_MODE (XEXP (x, 0)) != VOIDmode)
7638 {
7639 inner_nz &= GET_MODE_MASK (GET_MODE (XEXP (x, 0)));
7640 if (inner_nz
7641 & (((HOST_WIDE_INT) 1
7642 << (GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0))) - 1))))
7643 inner_nz |= (GET_MODE_MASK (mode)
7644 & ~ GET_MODE_MASK (GET_MODE (XEXP (x, 0))));
7645 }
7646
7647 nonzero &= inner_nz;
7648 break;
7649
7650 case AND:
7651 nonzero &= (nonzero_bits (XEXP (x, 0), mode)
7652 & nonzero_bits (XEXP (x, 1), mode));
7653 break;
7654
7655 case XOR: case IOR:
7656 case UMIN: case UMAX: case SMIN: case SMAX:
7657 nonzero &= (nonzero_bits (XEXP (x, 0), mode)
7658 | nonzero_bits (XEXP (x, 1), mode));
7659 break;
7660
7661 case PLUS: case MINUS:
7662 case MULT:
7663 case DIV: case UDIV:
7664 case MOD: case UMOD:
7665 /* We can apply the rules of arithmetic to compute the number of
7666 high- and low-order zero bits of these operations. We start by
7667 computing the width (position of the highest-order non-zero bit)
7668 and the number of low-order zero bits for each value. */
7669 {
7670 unsigned HOST_WIDE_INT nz0 = nonzero_bits (XEXP (x, 0), mode);
7671 unsigned HOST_WIDE_INT nz1 = nonzero_bits (XEXP (x, 1), mode);
7672 int width0 = floor_log2 (nz0) + 1;
7673 int width1 = floor_log2 (nz1) + 1;
7674 int low0 = floor_log2 (nz0 & -nz0);
7675 int low1 = floor_log2 (nz1 & -nz1);
7676 HOST_WIDE_INT op0_maybe_minusp
7677 = (nz0 & ((HOST_WIDE_INT) 1 << (mode_width - 1)));
7678 HOST_WIDE_INT op1_maybe_minusp
7679 = (nz1 & ((HOST_WIDE_INT) 1 << (mode_width - 1)));
7680 int result_width = mode_width;
7681 int result_low = 0;
7682
7683 switch (code)
7684 {
7685 case PLUS:
7686 #ifdef STACK_BIAS
7687 if (STACK_BIAS
7688 && (XEXP (x, 0) == stack_pointer_rtx
7689 || XEXP (x, 0) == frame_pointer_rtx)
7690 && GET_CODE (XEXP (x, 1)) == CONST_INT)
7691 {
7692 int sp_alignment = STACK_BOUNDARY / BITS_PER_UNIT;
7693
7694 nz0 = (GET_MODE_MASK (mode) & ~ (sp_alignment - 1));
7695 nz1 = INTVAL (XEXP (x, 1)) - STACK_BIAS;
7696 width0 = floor_log2 (nz0) + 1;
7697 width1 = floor_log2 (nz1) + 1;
7698 low0 = floor_log2 (nz0 & -nz0);
7699 low1 = floor_log2 (nz1 & -nz1);
7700 }
7701 #endif
7702 result_width = MAX (width0, width1) + 1;
7703 result_low = MIN (low0, low1);
7704 break;
7705 case MINUS:
7706 result_low = MIN (low0, low1);
7707 break;
7708 case MULT:
7709 result_width = width0 + width1;
7710 result_low = low0 + low1;
7711 break;
7712 case DIV:
7713 if (! op0_maybe_minusp && ! op1_maybe_minusp)
7714 result_width = width0;
7715 break;
7716 case UDIV:
7717 result_width = width0;
7718 break;
7719 case MOD:
7720 if (! op0_maybe_minusp && ! op1_maybe_minusp)
7721 result_width = MIN (width0, width1);
7722 result_low = MIN (low0, low1);
7723 break;
7724 case UMOD:
7725 result_width = MIN (width0, width1);
7726 result_low = MIN (low0, low1);
7727 break;
7728 default:
7729 abort ();
7730 }
7731
7732 if (result_width < mode_width)
7733 nonzero &= ((HOST_WIDE_INT) 1 << result_width) - 1;
7734
7735 if (result_low > 0)
7736 nonzero &= ~ (((HOST_WIDE_INT) 1 << result_low) - 1);
7737 }
7738 break;
7739
7740 case ZERO_EXTRACT:
7741 if (GET_CODE (XEXP (x, 1)) == CONST_INT
7742 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT)
7743 nonzero &= ((HOST_WIDE_INT) 1 << INTVAL (XEXP (x, 1))) - 1;
7744 break;
7745
7746 case SUBREG:
7747 /* If this is a SUBREG formed for a promoted variable that has
7748 been zero-extended, we know that at least the high-order bits
7749 are zero, though others might be too. */
7750
7751 if (SUBREG_PROMOTED_VAR_P (x) && SUBREG_PROMOTED_UNSIGNED_P (x))
7752 nonzero = (GET_MODE_MASK (GET_MODE (x))
7753 & nonzero_bits (SUBREG_REG (x), GET_MODE (x)));
7754
7755 /* If the inner mode is a single word for both the host and target
7756 machines, we can compute this from which bits of the inner
7757 object might be nonzero. */
7758 if (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x))) <= BITS_PER_WORD
7759 && (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x)))
7760 <= HOST_BITS_PER_WIDE_INT))
7761 {
7762 nonzero &= nonzero_bits (SUBREG_REG (x), mode);
7763
7764 #if defined (WORD_REGISTER_OPERATIONS) && defined (LOAD_EXTEND_OP)
7765 /* If this is a typical RISC machine, we only have to worry
7766 about the way loads are extended. */
7767 if (LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (x))) == SIGN_EXTEND
7768 ? (nonzero
7769 & (1L << (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x))) - 1)))
7770 : LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (x))) != ZERO_EXTEND)
7771 #endif
7772 {
7773 /* On many CISC machines, accessing an object in a wider mode
7774 causes the high-order bits to become undefined. So they are
7775 not known to be zero. */
7776 if (GET_MODE_SIZE (GET_MODE (x))
7777 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
7778 nonzero |= (GET_MODE_MASK (GET_MODE (x))
7779 & ~ GET_MODE_MASK (GET_MODE (SUBREG_REG (x))));
7780 }
7781 }
7782 break;
7783
7784 case ASHIFTRT:
7785 case LSHIFTRT:
7786 case ASHIFT:
7787 case ROTATE:
7788 /* The nonzero bits are in two classes: any bits within MODE
7789 that aren't in GET_MODE (x) are always significant. The rest of the
7790 nonzero bits are those that are significant in the operand of
7791 the shift when shifted the appropriate number of bits. This
7792 shows that high-order bits are cleared by the right shift and
7793 low-order bits by left shifts. */
7794 if (GET_CODE (XEXP (x, 1)) == CONST_INT
7795 && INTVAL (XEXP (x, 1)) >= 0
7796 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT)
7797 {
7798 enum machine_mode inner_mode = GET_MODE (x);
7799 int width = GET_MODE_BITSIZE (inner_mode);
7800 int count = INTVAL (XEXP (x, 1));
7801 unsigned HOST_WIDE_INT mode_mask = GET_MODE_MASK (inner_mode);
7802 unsigned HOST_WIDE_INT op_nonzero = nonzero_bits (XEXP (x, 0), mode);
7803 unsigned HOST_WIDE_INT inner = op_nonzero & mode_mask;
7804 unsigned HOST_WIDE_INT outer = 0;
7805
7806 if (mode_width > width)
7807 outer = (op_nonzero & nonzero & ~ mode_mask);
7808
7809 if (code == LSHIFTRT)
7810 inner >>= count;
7811 else if (code == ASHIFTRT)
7812 {
7813 inner >>= count;
7814
7815 /* If the sign bit may have been nonzero before the shift, we
7816 need to mark all the places it could have been copied to
7817 by the shift as possibly nonzero. */
7818 if (inner & ((HOST_WIDE_INT) 1 << (width - 1 - count)))
7819 inner |= (((HOST_WIDE_INT) 1 << count) - 1) << (width - count);
7820 }
7821 else if (code == ASHIFT)
7822 inner <<= count;
7823 else
7824 inner = ((inner << (count % width)
7825 | (inner >> (width - (count % width)))) & mode_mask);
7826
7827 nonzero &= (outer | inner);
7828 }
7829 break;
7830
7831 case FFS:
7832 /* This is at most the number of bits in the mode. */
7833 nonzero = ((HOST_WIDE_INT) 1 << (floor_log2 (mode_width) + 1)) - 1;
7834 break;
7835
7836 case IF_THEN_ELSE:
7837 nonzero &= (nonzero_bits (XEXP (x, 1), mode)
7838 | nonzero_bits (XEXP (x, 2), mode));
7839 break;
7840
7841 default:
7842 break;
7843 }
7844
7845 return nonzero;
7846 }
7847
7848 /* See the macro definition above. */
7849 #undef num_sign_bit_copies
7850 \f
7851 /* Return the number of bits at the high-order end of X that are known to
7852 be equal to the sign bit. X will be used in mode MODE; if MODE is
7853 VOIDmode, X will be used in its own mode. The returned value will always
7854 be between 1 and the number of bits in MODE. */
7855
7856 static int
7857 num_sign_bit_copies (x, mode)
7858 rtx x;
7859 enum machine_mode mode;
7860 {
7861 enum rtx_code code = GET_CODE (x);
7862 int bitwidth;
7863 int num0, num1, result;
7864 unsigned HOST_WIDE_INT nonzero;
7865 rtx tem;
7866
7867 /* If we weren't given a mode, use the mode of X. If the mode is still
7868 VOIDmode, we don't know anything. Likewise if one of the modes is
7869 floating-point. */
7870
7871 if (mode == VOIDmode)
7872 mode = GET_MODE (x);
7873
7874 if (mode == VOIDmode || FLOAT_MODE_P (mode) || FLOAT_MODE_P (GET_MODE (x)))
7875 return 1;
7876
7877 bitwidth = GET_MODE_BITSIZE (mode);
7878
7879 /* For a smaller object, just ignore the high bits. */
7880 if (bitwidth < GET_MODE_BITSIZE (GET_MODE (x)))
7881 return MAX (1, (num_sign_bit_copies (x, GET_MODE (x))
7882 - (GET_MODE_BITSIZE (GET_MODE (x)) - bitwidth)));
7883
7884 if (GET_MODE (x) != VOIDmode && bitwidth > GET_MODE_BITSIZE (GET_MODE (x)))
7885 {
7886 #ifndef WORD_REGISTER_OPERATIONS
7887 /* If this machine does not do all register operations on the entire
7888 register and MODE is wider than the mode of X, we can say nothing
7889 at all about the high-order bits. */
7890 return 1;
7891 #else
7892 /* Likewise on machines that do, if the mode of the object is smaller
7893 than a word and loads of that size don't sign extend, we can say
7894 nothing about the high order bits. */
7895 if (GET_MODE_BITSIZE (GET_MODE (x)) < BITS_PER_WORD
7896 #ifdef LOAD_EXTEND_OP
7897 && LOAD_EXTEND_OP (GET_MODE (x)) != SIGN_EXTEND
7898 #endif
7899 )
7900 return 1;
7901 #endif
7902 }
7903
7904 switch (code)
7905 {
7906 case REG:
7907
7908 #ifdef POINTERS_EXTEND_UNSIGNED
7909 /* If pointers extend signed and this is a pointer in Pmode, say that
7910 all the bits above ptr_mode are known to be sign bit copies. */
7911 if (! POINTERS_EXTEND_UNSIGNED && GET_MODE (x) == Pmode && mode == Pmode
7912 && REGNO_POINTER_FLAG (REGNO (x)))
7913 return GET_MODE_BITSIZE (Pmode) - GET_MODE_BITSIZE (ptr_mode) + 1;
7914 #endif
7915
7916 if (reg_last_set_value[REGNO (x)] != 0
7917 && reg_last_set_mode[REGNO (x)] == mode
7918 && (REG_N_SETS (REGNO (x)) == 1
7919 || reg_last_set_label[REGNO (x)] == label_tick)
7920 && INSN_CUID (reg_last_set[REGNO (x)]) < subst_low_cuid)
7921 return reg_last_set_sign_bit_copies[REGNO (x)];
7922
7923 tem = get_last_value (x);
7924 if (tem != 0)
7925 return num_sign_bit_copies (tem, mode);
7926
7927 if (nonzero_sign_valid && reg_sign_bit_copies[REGNO (x)] != 0)
7928 return reg_sign_bit_copies[REGNO (x)];
7929 break;
7930
7931 case MEM:
7932 #ifdef LOAD_EXTEND_OP
7933 /* Some RISC machines sign-extend all loads of smaller than a word. */
7934 if (LOAD_EXTEND_OP (GET_MODE (x)) == SIGN_EXTEND)
7935 return MAX (1, bitwidth - GET_MODE_BITSIZE (GET_MODE (x)) + 1);
7936 #endif
7937 break;
7938
7939 case CONST_INT:
7940 /* If the constant is negative, take its 1's complement and remask.
7941 Then see how many zero bits we have. */
7942 nonzero = INTVAL (x) & GET_MODE_MASK (mode);
7943 if (bitwidth <= HOST_BITS_PER_WIDE_INT
7944 && (nonzero & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
7945 nonzero = (~ nonzero) & GET_MODE_MASK (mode);
7946
7947 return (nonzero == 0 ? bitwidth : bitwidth - floor_log2 (nonzero) - 1);
7948
7949 case SUBREG:
7950 /* If this is a SUBREG for a promoted object that is sign-extended
7951 and we are looking at it in a wider mode, we know that at least the
7952 high-order bits are known to be sign bit copies. */
7953
7954 if (SUBREG_PROMOTED_VAR_P (x) && ! SUBREG_PROMOTED_UNSIGNED_P (x))
7955 return MAX (bitwidth - GET_MODE_BITSIZE (GET_MODE (x)) + 1,
7956 num_sign_bit_copies (SUBREG_REG (x), mode));
7957
7958 /* For a smaller object, just ignore the high bits. */
7959 if (bitwidth <= GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x))))
7960 {
7961 num0 = num_sign_bit_copies (SUBREG_REG (x), VOIDmode);
7962 return MAX (1, (num0
7963 - (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x)))
7964 - bitwidth)));
7965 }
7966
7967 #ifdef WORD_REGISTER_OPERATIONS
7968 #ifdef LOAD_EXTEND_OP
7969 /* For paradoxical SUBREGs on machines where all register operations
7970 affect the entire register, just look inside. Note that we are
7971 passing MODE to the recursive call, so the number of sign bit copies
7972 will remain relative to that mode, not the inner mode. */
7973
7974 /* This works only if loads sign extend. Otherwise, if we get a
7975 reload for the inner part, it may be loaded from the stack, and
7976 then we lose all sign bit copies that existed before the store
7977 to the stack. */
7978
7979 if ((GET_MODE_SIZE (GET_MODE (x))
7980 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
7981 && LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (x))) == SIGN_EXTEND)
7982 return num_sign_bit_copies (SUBREG_REG (x), mode);
7983 #endif
7984 #endif
7985 break;
7986
7987 case SIGN_EXTRACT:
7988 if (GET_CODE (XEXP (x, 1)) == CONST_INT)
7989 return MAX (1, bitwidth - INTVAL (XEXP (x, 1)));
7990 break;
7991
7992 case SIGN_EXTEND:
7993 return (bitwidth - GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))
7994 + num_sign_bit_copies (XEXP (x, 0), VOIDmode));
7995
7996 case TRUNCATE:
7997 /* For a smaller object, just ignore the high bits. */
7998 num0 = num_sign_bit_copies (XEXP (x, 0), VOIDmode);
7999 return MAX (1, (num0 - (GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))
8000 - bitwidth)));
8001
8002 case NOT:
8003 return num_sign_bit_copies (XEXP (x, 0), mode);
8004
8005 case ROTATE: case ROTATERT:
8006 /* If we are rotating left by a number of bits less than the number
8007 of sign bit copies, we can just subtract that amount from the
8008 number. */
8009 if (GET_CODE (XEXP (x, 1)) == CONST_INT
8010 && INTVAL (XEXP (x, 1)) >= 0 && INTVAL (XEXP (x, 1)) < bitwidth)
8011 {
8012 num0 = num_sign_bit_copies (XEXP (x, 0), mode);
8013 return MAX (1, num0 - (code == ROTATE ? INTVAL (XEXP (x, 1))
8014 : bitwidth - INTVAL (XEXP (x, 1))));
8015 }
8016 break;
8017
8018 case NEG:
8019 /* In general, this subtracts one sign bit copy. But if the value
8020 is known to be positive, the number of sign bit copies is the
8021 same as that of the input. Finally, if the input has just one bit
8022 that might be nonzero, all the bits are copies of the sign bit. */
8023 num0 = num_sign_bit_copies (XEXP (x, 0), mode);
8024 if (bitwidth > HOST_BITS_PER_WIDE_INT)
8025 return num0 > 1 ? num0 - 1 : 1;
8026
8027 nonzero = nonzero_bits (XEXP (x, 0), mode);
8028 if (nonzero == 1)
8029 return bitwidth;
8030
8031 if (num0 > 1
8032 && (((HOST_WIDE_INT) 1 << (bitwidth - 1)) & nonzero))
8033 num0--;
8034
8035 return num0;
8036
8037 case IOR: case AND: case XOR:
8038 case SMIN: case SMAX: case UMIN: case UMAX:
8039 /* Logical operations will preserve the number of sign-bit copies.
8040 MIN and MAX operations always return one of the operands. */
8041 num0 = num_sign_bit_copies (XEXP (x, 0), mode);
8042 num1 = num_sign_bit_copies (XEXP (x, 1), mode);
8043 return MIN (num0, num1);
8044
8045 case PLUS: case MINUS:
8046 /* For addition and subtraction, we can have a 1-bit carry. However,
8047 if we are subtracting 1 from a positive number, there will not
8048 be such a carry. Furthermore, if the positive number is known to
8049 be 0 or 1, we know the result is either -1 or 0. */
8050
8051 if (code == PLUS && XEXP (x, 1) == constm1_rtx
8052 && bitwidth <= HOST_BITS_PER_WIDE_INT)
8053 {
8054 nonzero = nonzero_bits (XEXP (x, 0), mode);
8055 if ((((HOST_WIDE_INT) 1 << (bitwidth - 1)) & nonzero) == 0)
8056 return (nonzero == 1 || nonzero == 0 ? bitwidth
8057 : bitwidth - floor_log2 (nonzero) - 1);
8058 }
8059
8060 num0 = num_sign_bit_copies (XEXP (x, 0), mode);
8061 num1 = num_sign_bit_copies (XEXP (x, 1), mode);
8062 return MAX (1, MIN (num0, num1) - 1);
8063
8064 case MULT:
8065 /* The number of bits of the product is the sum of the number of
8066 bits of both terms. However, unless one of the terms if known
8067 to be positive, we must allow for an additional bit since negating
8068 a negative number can remove one sign bit copy. */
8069
8070 num0 = num_sign_bit_copies (XEXP (x, 0), mode);
8071 num1 = num_sign_bit_copies (XEXP (x, 1), mode);
8072
8073 result = bitwidth - (bitwidth - num0) - (bitwidth - num1);
8074 if (result > 0
8075 && (bitwidth > HOST_BITS_PER_WIDE_INT
8076 || (((nonzero_bits (XEXP (x, 0), mode)
8077 & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
8078 && ((nonzero_bits (XEXP (x, 1), mode)
8079 & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0))))
8080 result--;
8081
8082 return MAX (1, result);
8083
8084 case UDIV:
8085 /* The result must be <= the first operand. If the first operand
8086 has the high bit set, we know nothing about the number of sign
8087 bit copies. */
8088 if (bitwidth > HOST_BITS_PER_WIDE_INT)
8089 return 1;
8090 else if ((nonzero_bits (XEXP (x, 0), mode)
8091 & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
8092 return 1;
8093 else
8094 return num_sign_bit_copies (XEXP (x, 0), mode);
8095
8096 case UMOD:
8097 /* The result must be <= the scond operand. */
8098 return num_sign_bit_copies (XEXP (x, 1), mode);
8099
8100 case DIV:
8101 /* Similar to unsigned division, except that we have to worry about
8102 the case where the divisor is negative, in which case we have
8103 to add 1. */
8104 result = num_sign_bit_copies (XEXP (x, 0), mode);
8105 if (result > 1
8106 && (bitwidth > HOST_BITS_PER_WIDE_INT
8107 || (nonzero_bits (XEXP (x, 1), mode)
8108 & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0))
8109 result--;
8110
8111 return result;
8112
8113 case MOD:
8114 result = num_sign_bit_copies (XEXP (x, 1), mode);
8115 if (result > 1
8116 && (bitwidth > HOST_BITS_PER_WIDE_INT
8117 || (nonzero_bits (XEXP (x, 1), mode)
8118 & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0))
8119 result--;
8120
8121 return result;
8122
8123 case ASHIFTRT:
8124 /* Shifts by a constant add to the number of bits equal to the
8125 sign bit. */
8126 num0 = num_sign_bit_copies (XEXP (x, 0), mode);
8127 if (GET_CODE (XEXP (x, 1)) == CONST_INT
8128 && INTVAL (XEXP (x, 1)) > 0)
8129 num0 = MIN (bitwidth, num0 + INTVAL (XEXP (x, 1)));
8130
8131 return num0;
8132
8133 case ASHIFT:
8134 /* Left shifts destroy copies. */
8135 if (GET_CODE (XEXP (x, 1)) != CONST_INT
8136 || INTVAL (XEXP (x, 1)) < 0
8137 || INTVAL (XEXP (x, 1)) >= bitwidth)
8138 return 1;
8139
8140 num0 = num_sign_bit_copies (XEXP (x, 0), mode);
8141 return MAX (1, num0 - INTVAL (XEXP (x, 1)));
8142
8143 case IF_THEN_ELSE:
8144 num0 = num_sign_bit_copies (XEXP (x, 1), mode);
8145 num1 = num_sign_bit_copies (XEXP (x, 2), mode);
8146 return MIN (num0, num1);
8147
8148 case EQ: case NE: case GE: case GT: case LE: case LT:
8149 case GEU: case GTU: case LEU: case LTU:
8150 if (STORE_FLAG_VALUE == -1)
8151 return bitwidth;
8152 break;
8153
8154 default:
8155 break;
8156 }
8157
8158 /* If we haven't been able to figure it out by one of the above rules,
8159 see if some of the high-order bits are known to be zero. If so,
8160 count those bits and return one less than that amount. If we can't
8161 safely compute the mask for this mode, always return BITWIDTH. */
8162
8163 if (bitwidth > HOST_BITS_PER_WIDE_INT)
8164 return 1;
8165
8166 nonzero = nonzero_bits (x, mode);
8167 return (nonzero & ((HOST_WIDE_INT) 1 << (bitwidth - 1))
8168 ? 1 : bitwidth - floor_log2 (nonzero) - 1);
8169 }
8170 \f
8171 /* Return the number of "extended" bits there are in X, when interpreted
8172 as a quantity in MODE whose signedness is indicated by UNSIGNEDP. For
8173 unsigned quantities, this is the number of high-order zero bits.
8174 For signed quantities, this is the number of copies of the sign bit
8175 minus 1. In both case, this function returns the number of "spare"
8176 bits. For example, if two quantities for which this function returns
8177 at least 1 are added, the addition is known not to overflow.
8178
8179 This function will always return 0 unless called during combine, which
8180 implies that it must be called from a define_split. */
8181
8182 int
8183 extended_count (x, mode, unsignedp)
8184 rtx x;
8185 enum machine_mode mode;
8186 int unsignedp;
8187 {
8188 if (nonzero_sign_valid == 0)
8189 return 0;
8190
8191 return (unsignedp
8192 ? (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
8193 && (GET_MODE_BITSIZE (mode) - 1
8194 - floor_log2 (nonzero_bits (x, mode))))
8195 : num_sign_bit_copies (x, mode) - 1);
8196 }
8197 \f
8198 /* This function is called from `simplify_shift_const' to merge two
8199 outer operations. Specifically, we have already found that we need
8200 to perform operation *POP0 with constant *PCONST0 at the outermost
8201 position. We would now like to also perform OP1 with constant CONST1
8202 (with *POP0 being done last).
8203
8204 Return 1 if we can do the operation and update *POP0 and *PCONST0 with
8205 the resulting operation. *PCOMP_P is set to 1 if we would need to
8206 complement the innermost operand, otherwise it is unchanged.
8207
8208 MODE is the mode in which the operation will be done. No bits outside
8209 the width of this mode matter. It is assumed that the width of this mode
8210 is smaller than or equal to HOST_BITS_PER_WIDE_INT.
8211
8212 If *POP0 or OP1 are NIL, it means no operation is required. Only NEG, PLUS,
8213 IOR, XOR, and AND are supported. We may set *POP0 to SET if the proper
8214 result is simply *PCONST0.
8215
8216 If the resulting operation cannot be expressed as one operation, we
8217 return 0 and do not change *POP0, *PCONST0, and *PCOMP_P. */
8218
8219 static int
8220 merge_outer_ops (pop0, pconst0, op1, const1, mode, pcomp_p)
8221 enum rtx_code *pop0;
8222 HOST_WIDE_INT *pconst0;
8223 enum rtx_code op1;
8224 HOST_WIDE_INT const1;
8225 enum machine_mode mode;
8226 int *pcomp_p;
8227 {
8228 enum rtx_code op0 = *pop0;
8229 HOST_WIDE_INT const0 = *pconst0;
8230 int width = GET_MODE_BITSIZE (mode);
8231
8232 const0 &= GET_MODE_MASK (mode);
8233 const1 &= GET_MODE_MASK (mode);
8234
8235 /* If OP0 is an AND, clear unimportant bits in CONST1. */
8236 if (op0 == AND)
8237 const1 &= const0;
8238
8239 /* If OP0 or OP1 is NIL, this is easy. Similarly if they are the same or
8240 if OP0 is SET. */
8241
8242 if (op1 == NIL || op0 == SET)
8243 return 1;
8244
8245 else if (op0 == NIL)
8246 op0 = op1, const0 = const1;
8247
8248 else if (op0 == op1)
8249 {
8250 switch (op0)
8251 {
8252 case AND:
8253 const0 &= const1;
8254 break;
8255 case IOR:
8256 const0 |= const1;
8257 break;
8258 case XOR:
8259 const0 ^= const1;
8260 break;
8261 case PLUS:
8262 const0 += const1;
8263 break;
8264 case NEG:
8265 op0 = NIL;
8266 break;
8267 default:
8268 break;
8269 }
8270 }
8271
8272 /* Otherwise, if either is a PLUS or NEG, we can't do anything. */
8273 else if (op0 == PLUS || op1 == PLUS || op0 == NEG || op1 == NEG)
8274 return 0;
8275
8276 /* If the two constants aren't the same, we can't do anything. The
8277 remaining six cases can all be done. */
8278 else if (const0 != const1)
8279 return 0;
8280
8281 else
8282 switch (op0)
8283 {
8284 case IOR:
8285 if (op1 == AND)
8286 /* (a & b) | b == b */
8287 op0 = SET;
8288 else /* op1 == XOR */
8289 /* (a ^ b) | b == a | b */
8290 {;}
8291 break;
8292
8293 case XOR:
8294 if (op1 == AND)
8295 /* (a & b) ^ b == (~a) & b */
8296 op0 = AND, *pcomp_p = 1;
8297 else /* op1 == IOR */
8298 /* (a | b) ^ b == a & ~b */
8299 op0 = AND, *pconst0 = ~ const0;
8300 break;
8301
8302 case AND:
8303 if (op1 == IOR)
8304 /* (a | b) & b == b */
8305 op0 = SET;
8306 else /* op1 == XOR */
8307 /* (a ^ b) & b) == (~a) & b */
8308 *pcomp_p = 1;
8309 break;
8310 default:
8311 break;
8312 }
8313
8314 /* Check for NO-OP cases. */
8315 const0 &= GET_MODE_MASK (mode);
8316 if (const0 == 0
8317 && (op0 == IOR || op0 == XOR || op0 == PLUS))
8318 op0 = NIL;
8319 else if (const0 == 0 && op0 == AND)
8320 op0 = SET;
8321 else if ((unsigned HOST_WIDE_INT) const0 == GET_MODE_MASK (mode)
8322 && op0 == AND)
8323 op0 = NIL;
8324
8325 /* If this would be an entire word for the target, but is not for
8326 the host, then sign-extend on the host so that the number will look
8327 the same way on the host that it would on the target.
8328
8329 For example, when building a 64 bit alpha hosted 32 bit sparc
8330 targeted compiler, then we want the 32 bit unsigned value -1 to be
8331 represented as a 64 bit value -1, and not as 0x00000000ffffffff.
8332 The later confuses the sparc backend. */
8333
8334 if (BITS_PER_WORD < HOST_BITS_PER_WIDE_INT && BITS_PER_WORD == width
8335 && (const0 & ((HOST_WIDE_INT) 1 << (width - 1))))
8336 const0 |= ((HOST_WIDE_INT) (-1) << width);
8337
8338 *pop0 = op0;
8339 *pconst0 = const0;
8340
8341 return 1;
8342 }
8343 \f
8344 /* Simplify a shift of VAROP by COUNT bits. CODE says what kind of shift.
8345 The result of the shift is RESULT_MODE. X, if non-zero, is an expression
8346 that we started with.
8347
8348 The shift is normally computed in the widest mode we find in VAROP, as
8349 long as it isn't a different number of words than RESULT_MODE. Exceptions
8350 are ASHIFTRT and ROTATE, which are always done in their original mode, */
8351
8352 static rtx
8353 simplify_shift_const (x, code, result_mode, varop, count)
8354 rtx x;
8355 enum rtx_code code;
8356 enum machine_mode result_mode;
8357 rtx varop;
8358 int count;
8359 {
8360 enum rtx_code orig_code = code;
8361 int orig_count = count;
8362 enum machine_mode mode = result_mode;
8363 enum machine_mode shift_mode, tmode;
8364 int mode_words
8365 = (GET_MODE_SIZE (mode) + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD;
8366 /* We form (outer_op (code varop count) (outer_const)). */
8367 enum rtx_code outer_op = NIL;
8368 HOST_WIDE_INT outer_const = 0;
8369 rtx const_rtx;
8370 int complement_p = 0;
8371 rtx new;
8372
8373 /* If we were given an invalid count, don't do anything except exactly
8374 what was requested. */
8375
8376 if (count < 0 || count > GET_MODE_BITSIZE (mode))
8377 {
8378 if (x)
8379 return x;
8380
8381 return gen_rtx_fmt_ee (code, mode, varop, GEN_INT (count));
8382 }
8383
8384 /* Unless one of the branches of the `if' in this loop does a `continue',
8385 we will `break' the loop after the `if'. */
8386
8387 while (count != 0)
8388 {
8389 /* If we have an operand of (clobber (const_int 0)), just return that
8390 value. */
8391 if (GET_CODE (varop) == CLOBBER)
8392 return varop;
8393
8394 /* If we discovered we had to complement VAROP, leave. Making a NOT
8395 here would cause an infinite loop. */
8396 if (complement_p)
8397 break;
8398
8399 /* Convert ROTATERT to ROTATE. */
8400 if (code == ROTATERT)
8401 code = ROTATE, count = GET_MODE_BITSIZE (result_mode) - count;
8402
8403 /* We need to determine what mode we will do the shift in. If the
8404 shift is a right shift or a ROTATE, we must always do it in the mode
8405 it was originally done in. Otherwise, we can do it in MODE, the
8406 widest mode encountered. */
8407 shift_mode
8408 = (code == ASHIFTRT || code == LSHIFTRT || code == ROTATE
8409 ? result_mode : mode);
8410
8411 /* Handle cases where the count is greater than the size of the mode
8412 minus 1. For ASHIFT, use the size minus one as the count (this can
8413 occur when simplifying (lshiftrt (ashiftrt ..))). For rotates,
8414 take the count modulo the size. For other shifts, the result is
8415 zero.
8416
8417 Since these shifts are being produced by the compiler by combining
8418 multiple operations, each of which are defined, we know what the
8419 result is supposed to be. */
8420
8421 if (count > GET_MODE_BITSIZE (shift_mode) - 1)
8422 {
8423 if (code == ASHIFTRT)
8424 count = GET_MODE_BITSIZE (shift_mode) - 1;
8425 else if (code == ROTATE || code == ROTATERT)
8426 count %= GET_MODE_BITSIZE (shift_mode);
8427 else
8428 {
8429 /* We can't simply return zero because there may be an
8430 outer op. */
8431 varop = const0_rtx;
8432 count = 0;
8433 break;
8434 }
8435 }
8436
8437 /* Negative counts are invalid and should not have been made (a
8438 programmer-specified negative count should have been handled
8439 above). */
8440 else if (count < 0)
8441 abort ();
8442
8443 /* An arithmetic right shift of a quantity known to be -1 or 0
8444 is a no-op. */
8445 if (code == ASHIFTRT
8446 && (num_sign_bit_copies (varop, shift_mode)
8447 == GET_MODE_BITSIZE (shift_mode)))
8448 {
8449 count = 0;
8450 break;
8451 }
8452
8453 /* If we are doing an arithmetic right shift and discarding all but
8454 the sign bit copies, this is equivalent to doing a shift by the
8455 bitsize minus one. Convert it into that shift because it will often
8456 allow other simplifications. */
8457
8458 if (code == ASHIFTRT
8459 && (count + num_sign_bit_copies (varop, shift_mode)
8460 >= GET_MODE_BITSIZE (shift_mode)))
8461 count = GET_MODE_BITSIZE (shift_mode) - 1;
8462
8463 /* We simplify the tests below and elsewhere by converting
8464 ASHIFTRT to LSHIFTRT if we know the sign bit is clear.
8465 `make_compound_operation' will convert it to a ASHIFTRT for
8466 those machines (such as Vax) that don't have a LSHIFTRT. */
8467 if (GET_MODE_BITSIZE (shift_mode) <= HOST_BITS_PER_WIDE_INT
8468 && code == ASHIFTRT
8469 && ((nonzero_bits (varop, shift_mode)
8470 & ((HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (shift_mode) - 1)))
8471 == 0))
8472 code = LSHIFTRT;
8473
8474 switch (GET_CODE (varop))
8475 {
8476 case SIGN_EXTEND:
8477 case ZERO_EXTEND:
8478 case SIGN_EXTRACT:
8479 case ZERO_EXTRACT:
8480 new = expand_compound_operation (varop);
8481 if (new != varop)
8482 {
8483 varop = new;
8484 continue;
8485 }
8486 break;
8487
8488 case MEM:
8489 /* If we have (xshiftrt (mem ...) C) and C is MODE_WIDTH
8490 minus the width of a smaller mode, we can do this with a
8491 SIGN_EXTEND or ZERO_EXTEND from the narrower memory location. */
8492 if ((code == ASHIFTRT || code == LSHIFTRT)
8493 && ! mode_dependent_address_p (XEXP (varop, 0))
8494 && ! MEM_VOLATILE_P (varop)
8495 && (tmode = mode_for_size (GET_MODE_BITSIZE (mode) - count,
8496 MODE_INT, 1)) != BLKmode)
8497 {
8498 if (BYTES_BIG_ENDIAN)
8499 new = gen_rtx_MEM (tmode, XEXP (varop, 0));
8500 else
8501 new = gen_rtx_MEM (tmode,
8502 plus_constant (XEXP (varop, 0),
8503 count / BITS_PER_UNIT));
8504 RTX_UNCHANGING_P (new) = RTX_UNCHANGING_P (varop);
8505 MEM_VOLATILE_P (new) = MEM_VOLATILE_P (varop);
8506 MEM_IN_STRUCT_P (new) = MEM_IN_STRUCT_P (varop);
8507 varop = gen_rtx_combine (code == ASHIFTRT ? SIGN_EXTEND
8508 : ZERO_EXTEND, mode, new);
8509 count = 0;
8510 continue;
8511 }
8512 break;
8513
8514 case USE:
8515 /* Similar to the case above, except that we can only do this if
8516 the resulting mode is the same as that of the underlying
8517 MEM and adjust the address depending on the *bits* endianness
8518 because of the way that bit-field extract insns are defined. */
8519 if ((code == ASHIFTRT || code == LSHIFTRT)
8520 && (tmode = mode_for_size (GET_MODE_BITSIZE (mode) - count,
8521 MODE_INT, 1)) != BLKmode
8522 && tmode == GET_MODE (XEXP (varop, 0)))
8523 {
8524 if (BITS_BIG_ENDIAN)
8525 new = XEXP (varop, 0);
8526 else
8527 {
8528 new = copy_rtx (XEXP (varop, 0));
8529 SUBST (XEXP (new, 0),
8530 plus_constant (XEXP (new, 0),
8531 count / BITS_PER_UNIT));
8532 }
8533
8534 varop = gen_rtx_combine (code == ASHIFTRT ? SIGN_EXTEND
8535 : ZERO_EXTEND, mode, new);
8536 count = 0;
8537 continue;
8538 }
8539 break;
8540
8541 case SUBREG:
8542 /* If VAROP is a SUBREG, strip it as long as the inner operand has
8543 the same number of words as what we've seen so far. Then store
8544 the widest mode in MODE. */
8545 if (subreg_lowpart_p (varop)
8546 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (varop)))
8547 > GET_MODE_SIZE (GET_MODE (varop)))
8548 && (((GET_MODE_SIZE (GET_MODE (SUBREG_REG (varop)))
8549 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
8550 == mode_words))
8551 {
8552 varop = SUBREG_REG (varop);
8553 if (GET_MODE_SIZE (GET_MODE (varop)) > GET_MODE_SIZE (mode))
8554 mode = GET_MODE (varop);
8555 continue;
8556 }
8557 break;
8558
8559 case MULT:
8560 /* Some machines use MULT instead of ASHIFT because MULT
8561 is cheaper. But it is still better on those machines to
8562 merge two shifts into one. */
8563 if (GET_CODE (XEXP (varop, 1)) == CONST_INT
8564 && exact_log2 (INTVAL (XEXP (varop, 1))) >= 0)
8565 {
8566 varop = gen_binary (ASHIFT, GET_MODE (varop), XEXP (varop, 0),
8567 GEN_INT (exact_log2 (INTVAL (XEXP (varop, 1)))));;
8568 continue;
8569 }
8570 break;
8571
8572 case UDIV:
8573 /* Similar, for when divides are cheaper. */
8574 if (GET_CODE (XEXP (varop, 1)) == CONST_INT
8575 && exact_log2 (INTVAL (XEXP (varop, 1))) >= 0)
8576 {
8577 varop = gen_binary (LSHIFTRT, GET_MODE (varop), XEXP (varop, 0),
8578 GEN_INT (exact_log2 (INTVAL (XEXP (varop, 1)))));
8579 continue;
8580 }
8581 break;
8582
8583 case ASHIFTRT:
8584 /* If we are extracting just the sign bit of an arithmetic right
8585 shift, that shift is not needed. */
8586 if (code == LSHIFTRT && count == GET_MODE_BITSIZE (result_mode) - 1)
8587 {
8588 varop = XEXP (varop, 0);
8589 continue;
8590 }
8591
8592 /* ... fall through ... */
8593
8594 case LSHIFTRT:
8595 case ASHIFT:
8596 case ROTATE:
8597 /* Here we have two nested shifts. The result is usually the
8598 AND of a new shift with a mask. We compute the result below. */
8599 if (GET_CODE (XEXP (varop, 1)) == CONST_INT
8600 && INTVAL (XEXP (varop, 1)) >= 0
8601 && INTVAL (XEXP (varop, 1)) < GET_MODE_BITSIZE (GET_MODE (varop))
8602 && GET_MODE_BITSIZE (result_mode) <= HOST_BITS_PER_WIDE_INT
8603 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
8604 {
8605 enum rtx_code first_code = GET_CODE (varop);
8606 int first_count = INTVAL (XEXP (varop, 1));
8607 unsigned HOST_WIDE_INT mask;
8608 rtx mask_rtx;
8609
8610 /* We have one common special case. We can't do any merging if
8611 the inner code is an ASHIFTRT of a smaller mode. However, if
8612 we have (ashift:M1 (subreg:M1 (ashiftrt:M2 FOO C1) 0) C2)
8613 with C2 == GET_MODE_BITSIZE (M1) - GET_MODE_BITSIZE (M2),
8614 we can convert it to
8615 (ashiftrt:M1 (ashift:M1 (and:M1 (subreg:M1 FOO 0 C2) C3) C1).
8616 This simplifies certain SIGN_EXTEND operations. */
8617 if (code == ASHIFT && first_code == ASHIFTRT
8618 && (GET_MODE_BITSIZE (result_mode)
8619 - GET_MODE_BITSIZE (GET_MODE (varop))) == count)
8620 {
8621 /* C3 has the low-order C1 bits zero. */
8622
8623 mask = (GET_MODE_MASK (mode)
8624 & ~ (((HOST_WIDE_INT) 1 << first_count) - 1));
8625
8626 varop = simplify_and_const_int (NULL_RTX, result_mode,
8627 XEXP (varop, 0), mask);
8628 varop = simplify_shift_const (NULL_RTX, ASHIFT, result_mode,
8629 varop, count);
8630 count = first_count;
8631 code = ASHIFTRT;
8632 continue;
8633 }
8634
8635 /* If this was (ashiftrt (ashift foo C1) C2) and FOO has more
8636 than C1 high-order bits equal to the sign bit, we can convert
8637 this to either an ASHIFT or a ASHIFTRT depending on the
8638 two counts.
8639
8640 We cannot do this if VAROP's mode is not SHIFT_MODE. */
8641
8642 if (code == ASHIFTRT && first_code == ASHIFT
8643 && GET_MODE (varop) == shift_mode
8644 && (num_sign_bit_copies (XEXP (varop, 0), shift_mode)
8645 > first_count))
8646 {
8647 count -= first_count;
8648 if (count < 0)
8649 count = - count, code = ASHIFT;
8650 varop = XEXP (varop, 0);
8651 continue;
8652 }
8653
8654 /* There are some cases we can't do. If CODE is ASHIFTRT,
8655 we can only do this if FIRST_CODE is also ASHIFTRT.
8656
8657 We can't do the case when CODE is ROTATE and FIRST_CODE is
8658 ASHIFTRT.
8659
8660 If the mode of this shift is not the mode of the outer shift,
8661 we can't do this if either shift is a right shift or ROTATE.
8662
8663 Finally, we can't do any of these if the mode is too wide
8664 unless the codes are the same.
8665
8666 Handle the case where the shift codes are the same
8667 first. */
8668
8669 if (code == first_code)
8670 {
8671 if (GET_MODE (varop) != result_mode
8672 && (code == ASHIFTRT || code == LSHIFTRT
8673 || code == ROTATE))
8674 break;
8675
8676 count += first_count;
8677 varop = XEXP (varop, 0);
8678 continue;
8679 }
8680
8681 if (code == ASHIFTRT
8682 || (code == ROTATE && first_code == ASHIFTRT)
8683 || GET_MODE_BITSIZE (mode) > HOST_BITS_PER_WIDE_INT
8684 || (GET_MODE (varop) != result_mode
8685 && (first_code == ASHIFTRT || first_code == LSHIFTRT
8686 || first_code == ROTATE
8687 || code == ROTATE)))
8688 break;
8689
8690 /* To compute the mask to apply after the shift, shift the
8691 nonzero bits of the inner shift the same way the
8692 outer shift will. */
8693
8694 mask_rtx = GEN_INT (nonzero_bits (varop, GET_MODE (varop)));
8695
8696 mask_rtx
8697 = simplify_binary_operation (code, result_mode, mask_rtx,
8698 GEN_INT (count));
8699
8700 /* Give up if we can't compute an outer operation to use. */
8701 if (mask_rtx == 0
8702 || GET_CODE (mask_rtx) != CONST_INT
8703 || ! merge_outer_ops (&outer_op, &outer_const, AND,
8704 INTVAL (mask_rtx),
8705 result_mode, &complement_p))
8706 break;
8707
8708 /* If the shifts are in the same direction, we add the
8709 counts. Otherwise, we subtract them. */
8710 if ((code == ASHIFTRT || code == LSHIFTRT)
8711 == (first_code == ASHIFTRT || first_code == LSHIFTRT))
8712 count += first_count;
8713 else
8714 count -= first_count;
8715
8716 /* If COUNT is positive, the new shift is usually CODE,
8717 except for the two exceptions below, in which case it is
8718 FIRST_CODE. If the count is negative, FIRST_CODE should
8719 always be used */
8720 if (count > 0
8721 && ((first_code == ROTATE && code == ASHIFT)
8722 || (first_code == ASHIFTRT && code == LSHIFTRT)))
8723 code = first_code;
8724 else if (count < 0)
8725 code = first_code, count = - count;
8726
8727 varop = XEXP (varop, 0);
8728 continue;
8729 }
8730
8731 /* If we have (A << B << C) for any shift, we can convert this to
8732 (A << C << B). This wins if A is a constant. Only try this if
8733 B is not a constant. */
8734
8735 else if (GET_CODE (varop) == code
8736 && GET_CODE (XEXP (varop, 1)) != CONST_INT
8737 && 0 != (new
8738 = simplify_binary_operation (code, mode,
8739 XEXP (varop, 0),
8740 GEN_INT (count))))
8741 {
8742 varop = gen_rtx_combine (code, mode, new, XEXP (varop, 1));
8743 count = 0;
8744 continue;
8745 }
8746 break;
8747
8748 case NOT:
8749 /* Make this fit the case below. */
8750 varop = gen_rtx_combine (XOR, mode, XEXP (varop, 0),
8751 GEN_INT (GET_MODE_MASK (mode)));
8752 continue;
8753
8754 case IOR:
8755 case AND:
8756 case XOR:
8757 /* If we have (xshiftrt (ior (plus X (const_int -1)) X) C)
8758 with C the size of VAROP - 1 and the shift is logical if
8759 STORE_FLAG_VALUE is 1 and arithmetic if STORE_FLAG_VALUE is -1,
8760 we have an (le X 0) operation. If we have an arithmetic shift
8761 and STORE_FLAG_VALUE is 1 or we have a logical shift with
8762 STORE_FLAG_VALUE of -1, we have a (neg (le X 0)) operation. */
8763
8764 if (GET_CODE (varop) == IOR && GET_CODE (XEXP (varop, 0)) == PLUS
8765 && XEXP (XEXP (varop, 0), 1) == constm1_rtx
8766 && (STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
8767 && (code == LSHIFTRT || code == ASHIFTRT)
8768 && count == GET_MODE_BITSIZE (GET_MODE (varop)) - 1
8769 && rtx_equal_p (XEXP (XEXP (varop, 0), 0), XEXP (varop, 1)))
8770 {
8771 count = 0;
8772 varop = gen_rtx_combine (LE, GET_MODE (varop), XEXP (varop, 1),
8773 const0_rtx);
8774
8775 if (STORE_FLAG_VALUE == 1 ? code == ASHIFTRT : code == LSHIFTRT)
8776 varop = gen_rtx_combine (NEG, GET_MODE (varop), varop);
8777
8778 continue;
8779 }
8780
8781 /* If we have (shift (logical)), move the logical to the outside
8782 to allow it to possibly combine with another logical and the
8783 shift to combine with another shift. This also canonicalizes to
8784 what a ZERO_EXTRACT looks like. Also, some machines have
8785 (and (shift)) insns. */
8786
8787 if (GET_CODE (XEXP (varop, 1)) == CONST_INT
8788 && (new = simplify_binary_operation (code, result_mode,
8789 XEXP (varop, 1),
8790 GEN_INT (count))) != 0
8791 && GET_CODE(new) == CONST_INT
8792 && merge_outer_ops (&outer_op, &outer_const, GET_CODE (varop),
8793 INTVAL (new), result_mode, &complement_p))
8794 {
8795 varop = XEXP (varop, 0);
8796 continue;
8797 }
8798
8799 /* If we can't do that, try to simplify the shift in each arm of the
8800 logical expression, make a new logical expression, and apply
8801 the inverse distributive law. */
8802 {
8803 rtx lhs = simplify_shift_const (NULL_RTX, code, shift_mode,
8804 XEXP (varop, 0), count);
8805 rtx rhs = simplify_shift_const (NULL_RTX, code, shift_mode,
8806 XEXP (varop, 1), count);
8807
8808 varop = gen_binary (GET_CODE (varop), shift_mode, lhs, rhs);
8809 varop = apply_distributive_law (varop);
8810
8811 count = 0;
8812 }
8813 break;
8814
8815 case EQ:
8816 /* convert (lshiftrt (eq FOO 0) C) to (xor FOO 1) if STORE_FLAG_VALUE
8817 says that the sign bit can be tested, FOO has mode MODE, C is
8818 GET_MODE_BITSIZE (MODE) - 1, and FOO has only its low-order bit
8819 that may be nonzero. */
8820 if (code == LSHIFTRT
8821 && XEXP (varop, 1) == const0_rtx
8822 && GET_MODE (XEXP (varop, 0)) == result_mode
8823 && count == GET_MODE_BITSIZE (result_mode) - 1
8824 && GET_MODE_BITSIZE (result_mode) <= HOST_BITS_PER_WIDE_INT
8825 && ((STORE_FLAG_VALUE
8826 & ((HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (result_mode) - 1))))
8827 && nonzero_bits (XEXP (varop, 0), result_mode) == 1
8828 && merge_outer_ops (&outer_op, &outer_const, XOR,
8829 (HOST_WIDE_INT) 1, result_mode,
8830 &complement_p))
8831 {
8832 varop = XEXP (varop, 0);
8833 count = 0;
8834 continue;
8835 }
8836 break;
8837
8838 case NEG:
8839 /* (lshiftrt (neg A) C) where A is either 0 or 1 and C is one less
8840 than the number of bits in the mode is equivalent to A. */
8841 if (code == LSHIFTRT && count == GET_MODE_BITSIZE (result_mode) - 1
8842 && nonzero_bits (XEXP (varop, 0), result_mode) == 1)
8843 {
8844 varop = XEXP (varop, 0);
8845 count = 0;
8846 continue;
8847 }
8848
8849 /* NEG commutes with ASHIFT since it is multiplication. Move the
8850 NEG outside to allow shifts to combine. */
8851 if (code == ASHIFT
8852 && merge_outer_ops (&outer_op, &outer_const, NEG,
8853 (HOST_WIDE_INT) 0, result_mode,
8854 &complement_p))
8855 {
8856 varop = XEXP (varop, 0);
8857 continue;
8858 }
8859 break;
8860
8861 case PLUS:
8862 /* (lshiftrt (plus A -1) C) where A is either 0 or 1 and C
8863 is one less than the number of bits in the mode is
8864 equivalent to (xor A 1). */
8865 if (code == LSHIFTRT && count == GET_MODE_BITSIZE (result_mode) - 1
8866 && XEXP (varop, 1) == constm1_rtx
8867 && nonzero_bits (XEXP (varop, 0), result_mode) == 1
8868 && merge_outer_ops (&outer_op, &outer_const, XOR,
8869 (HOST_WIDE_INT) 1, result_mode,
8870 &complement_p))
8871 {
8872 count = 0;
8873 varop = XEXP (varop, 0);
8874 continue;
8875 }
8876
8877 /* If we have (xshiftrt (plus FOO BAR) C), and the only bits
8878 that might be nonzero in BAR are those being shifted out and those
8879 bits are known zero in FOO, we can replace the PLUS with FOO.
8880 Similarly in the other operand order. This code occurs when
8881 we are computing the size of a variable-size array. */
8882
8883 if ((code == ASHIFTRT || code == LSHIFTRT)
8884 && count < HOST_BITS_PER_WIDE_INT
8885 && nonzero_bits (XEXP (varop, 1), result_mode) >> count == 0
8886 && (nonzero_bits (XEXP (varop, 1), result_mode)
8887 & nonzero_bits (XEXP (varop, 0), result_mode)) == 0)
8888 {
8889 varop = XEXP (varop, 0);
8890 continue;
8891 }
8892 else if ((code == ASHIFTRT || code == LSHIFTRT)
8893 && count < HOST_BITS_PER_WIDE_INT
8894 && GET_MODE_BITSIZE (result_mode) <= HOST_BITS_PER_WIDE_INT
8895 && 0 == (nonzero_bits (XEXP (varop, 0), result_mode)
8896 >> count)
8897 && 0 == (nonzero_bits (XEXP (varop, 0), result_mode)
8898 & nonzero_bits (XEXP (varop, 1),
8899 result_mode)))
8900 {
8901 varop = XEXP (varop, 1);
8902 continue;
8903 }
8904
8905 /* (ashift (plus foo C) N) is (plus (ashift foo N) C'). */
8906 if (code == ASHIFT
8907 && GET_CODE (XEXP (varop, 1)) == CONST_INT
8908 && (new = simplify_binary_operation (ASHIFT, result_mode,
8909 XEXP (varop, 1),
8910 GEN_INT (count))) != 0
8911 && GET_CODE(new) == CONST_INT
8912 && merge_outer_ops (&outer_op, &outer_const, PLUS,
8913 INTVAL (new), result_mode, &complement_p))
8914 {
8915 varop = XEXP (varop, 0);
8916 continue;
8917 }
8918 break;
8919
8920 case MINUS:
8921 /* If we have (xshiftrt (minus (ashiftrt X C)) X) C)
8922 with C the size of VAROP - 1 and the shift is logical if
8923 STORE_FLAG_VALUE is 1 and arithmetic if STORE_FLAG_VALUE is -1,
8924 we have a (gt X 0) operation. If the shift is arithmetic with
8925 STORE_FLAG_VALUE of 1 or logical with STORE_FLAG_VALUE == -1,
8926 we have a (neg (gt X 0)) operation. */
8927
8928 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
8929 && GET_CODE (XEXP (varop, 0)) == ASHIFTRT
8930 && count == GET_MODE_BITSIZE (GET_MODE (varop)) - 1
8931 && (code == LSHIFTRT || code == ASHIFTRT)
8932 && GET_CODE (XEXP (XEXP (varop, 0), 1)) == CONST_INT
8933 && INTVAL (XEXP (XEXP (varop, 0), 1)) == count
8934 && rtx_equal_p (XEXP (XEXP (varop, 0), 0), XEXP (varop, 1)))
8935 {
8936 count = 0;
8937 varop = gen_rtx_combine (GT, GET_MODE (varop), XEXP (varop, 1),
8938 const0_rtx);
8939
8940 if (STORE_FLAG_VALUE == 1 ? code == ASHIFTRT : code == LSHIFTRT)
8941 varop = gen_rtx_combine (NEG, GET_MODE (varop), varop);
8942
8943 continue;
8944 }
8945 break;
8946
8947 case TRUNCATE:
8948 /* Change (lshiftrt (truncate (lshiftrt))) to (truncate (lshiftrt))
8949 if the truncate does not affect the value. */
8950 if (code == LSHIFTRT
8951 && GET_CODE (XEXP (varop, 0)) == LSHIFTRT
8952 && GET_CODE (XEXP (XEXP (varop, 0), 1)) == CONST_INT
8953 && (INTVAL (XEXP (XEXP (varop, 0), 1))
8954 >= (GET_MODE_BITSIZE (GET_MODE (XEXP (varop, 0)))
8955 - GET_MODE_BITSIZE (GET_MODE (varop)))))
8956 {
8957 rtx varop_inner = XEXP (varop, 0);
8958
8959 varop_inner = gen_rtx_combine (LSHIFTRT,
8960 GET_MODE (varop_inner),
8961 XEXP (varop_inner, 0),
8962 GEN_INT (count + INTVAL (XEXP (varop_inner, 1))));
8963 varop = gen_rtx_combine (TRUNCATE, GET_MODE (varop),
8964 varop_inner);
8965 count = 0;
8966 continue;
8967 }
8968 break;
8969
8970 default:
8971 break;
8972 }
8973
8974 break;
8975 }
8976
8977 /* We need to determine what mode to do the shift in. If the shift is
8978 a right shift or ROTATE, we must always do it in the mode it was
8979 originally done in. Otherwise, we can do it in MODE, the widest mode
8980 encountered. The code we care about is that of the shift that will
8981 actually be done, not the shift that was originally requested. */
8982 shift_mode
8983 = (code == ASHIFTRT || code == LSHIFTRT || code == ROTATE
8984 ? result_mode : mode);
8985
8986 /* We have now finished analyzing the shift. The result should be
8987 a shift of type CODE with SHIFT_MODE shifting VAROP COUNT places. If
8988 OUTER_OP is non-NIL, it is an operation that needs to be applied
8989 to the result of the shift. OUTER_CONST is the relevant constant,
8990 but we must turn off all bits turned off in the shift.
8991
8992 If we were passed a value for X, see if we can use any pieces of
8993 it. If not, make new rtx. */
8994
8995 if (x && GET_RTX_CLASS (GET_CODE (x)) == '2'
8996 && GET_CODE (XEXP (x, 1)) == CONST_INT
8997 && INTVAL (XEXP (x, 1)) == count)
8998 const_rtx = XEXP (x, 1);
8999 else
9000 const_rtx = GEN_INT (count);
9001
9002 if (x && GET_CODE (XEXP (x, 0)) == SUBREG
9003 && GET_MODE (XEXP (x, 0)) == shift_mode
9004 && SUBREG_REG (XEXP (x, 0)) == varop)
9005 varop = XEXP (x, 0);
9006 else if (GET_MODE (varop) != shift_mode)
9007 varop = gen_lowpart_for_combine (shift_mode, varop);
9008
9009 /* If we can't make the SUBREG, try to return what we were given. */
9010 if (GET_CODE (varop) == CLOBBER)
9011 return x ? x : varop;
9012
9013 new = simplify_binary_operation (code, shift_mode, varop, const_rtx);
9014 if (new != 0)
9015 x = new;
9016 else
9017 {
9018 if (x == 0 || GET_CODE (x) != code || GET_MODE (x) != shift_mode)
9019 x = gen_rtx_combine (code, shift_mode, varop, const_rtx);
9020
9021 SUBST (XEXP (x, 0), varop);
9022 SUBST (XEXP (x, 1), const_rtx);
9023 }
9024
9025 /* If we have an outer operation and we just made a shift, it is
9026 possible that we could have simplified the shift were it not
9027 for the outer operation. So try to do the simplification
9028 recursively. */
9029
9030 if (outer_op != NIL && GET_CODE (x) == code
9031 && GET_CODE (XEXP (x, 1)) == CONST_INT)
9032 x = simplify_shift_const (x, code, shift_mode, XEXP (x, 0),
9033 INTVAL (XEXP (x, 1)));
9034
9035 /* If we were doing a LSHIFTRT in a wider mode than it was originally,
9036 turn off all the bits that the shift would have turned off. */
9037 if (orig_code == LSHIFTRT && result_mode != shift_mode)
9038 x = simplify_and_const_int (NULL_RTX, shift_mode, x,
9039 GET_MODE_MASK (result_mode) >> orig_count);
9040
9041 /* Do the remainder of the processing in RESULT_MODE. */
9042 x = gen_lowpart_for_combine (result_mode, x);
9043
9044 /* If COMPLEMENT_P is set, we have to complement X before doing the outer
9045 operation. */
9046 if (complement_p)
9047 x = gen_unary (NOT, result_mode, result_mode, x);
9048
9049 if (outer_op != NIL)
9050 {
9051 if (GET_MODE_BITSIZE (result_mode) < HOST_BITS_PER_WIDE_INT)
9052 {
9053 int width = GET_MODE_BITSIZE (result_mode);
9054
9055 outer_const &= GET_MODE_MASK (result_mode);
9056
9057 /* If this would be an entire word for the target, but is not for
9058 the host, then sign-extend on the host so that the number will
9059 look the same way on the host that it would on the target.
9060
9061 For example, when building a 64 bit alpha hosted 32 bit sparc
9062 targeted compiler, then we want the 32 bit unsigned value -1 to be
9063 represented as a 64 bit value -1, and not as 0x00000000ffffffff.
9064 The later confuses the sparc backend. */
9065
9066 if (BITS_PER_WORD < HOST_BITS_PER_WIDE_INT && BITS_PER_WORD == width
9067 && (outer_const & ((HOST_WIDE_INT) 1 << (width - 1))))
9068 outer_const |= ((HOST_WIDE_INT) (-1) << width);
9069 }
9070
9071 if (outer_op == AND)
9072 x = simplify_and_const_int (NULL_RTX, result_mode, x, outer_const);
9073 else if (outer_op == SET)
9074 /* This means that we have determined that the result is
9075 equivalent to a constant. This should be rare. */
9076 x = GEN_INT (outer_const);
9077 else if (GET_RTX_CLASS (outer_op) == '1')
9078 x = gen_unary (outer_op, result_mode, result_mode, x);
9079 else
9080 x = gen_binary (outer_op, result_mode, x, GEN_INT (outer_const));
9081 }
9082
9083 return x;
9084 }
9085 \f
9086 /* Like recog, but we receive the address of a pointer to a new pattern.
9087 We try to match the rtx that the pointer points to.
9088 If that fails, we may try to modify or replace the pattern,
9089 storing the replacement into the same pointer object.
9090
9091 Modifications include deletion or addition of CLOBBERs.
9092
9093 PNOTES is a pointer to a location where any REG_UNUSED notes added for
9094 the CLOBBERs are placed.
9095
9096 The value is the final insn code from the pattern ultimately matched,
9097 or -1. */
9098
9099 static int
9100 recog_for_combine (pnewpat, insn, pnotes)
9101 rtx *pnewpat;
9102 rtx insn;
9103 rtx *pnotes;
9104 {
9105 register rtx pat = *pnewpat;
9106 int insn_code_number;
9107 int num_clobbers_to_add = 0;
9108 int i;
9109 rtx notes = 0;
9110
9111 /* If PAT is a PARALLEL, check to see if it contains the CLOBBER
9112 we use to indicate that something didn't match. If we find such a
9113 thing, force rejection. */
9114 if (GET_CODE (pat) == PARALLEL)
9115 for (i = XVECLEN (pat, 0) - 1; i >= 0; i--)
9116 if (GET_CODE (XVECEXP (pat, 0, i)) == CLOBBER
9117 && XEXP (XVECEXP (pat, 0, i), 0) == const0_rtx)
9118 return -1;
9119
9120 /* Is the result of combination a valid instruction? */
9121 insn_code_number = recog (pat, insn, &num_clobbers_to_add);
9122
9123 /* If it isn't, there is the possibility that we previously had an insn
9124 that clobbered some register as a side effect, but the combined
9125 insn doesn't need to do that. So try once more without the clobbers
9126 unless this represents an ASM insn. */
9127
9128 if (insn_code_number < 0 && ! check_asm_operands (pat)
9129 && GET_CODE (pat) == PARALLEL)
9130 {
9131 int pos;
9132
9133 for (pos = 0, i = 0; i < XVECLEN (pat, 0); i++)
9134 if (GET_CODE (XVECEXP (pat, 0, i)) != CLOBBER)
9135 {
9136 if (i != pos)
9137 SUBST (XVECEXP (pat, 0, pos), XVECEXP (pat, 0, i));
9138 pos++;
9139 }
9140
9141 SUBST_INT (XVECLEN (pat, 0), pos);
9142
9143 if (pos == 1)
9144 pat = XVECEXP (pat, 0, 0);
9145
9146 insn_code_number = recog (pat, insn, &num_clobbers_to_add);
9147 }
9148
9149 /* If we had any clobbers to add, make a new pattern than contains
9150 them. Then check to make sure that all of them are dead. */
9151 if (num_clobbers_to_add)
9152 {
9153 rtx newpat = gen_rtx_PARALLEL (VOIDmode,
9154 gen_rtvec (GET_CODE (pat) == PARALLEL
9155 ? XVECLEN (pat, 0) + num_clobbers_to_add
9156 : num_clobbers_to_add + 1));
9157
9158 if (GET_CODE (pat) == PARALLEL)
9159 for (i = 0; i < XVECLEN (pat, 0); i++)
9160 XVECEXP (newpat, 0, i) = XVECEXP (pat, 0, i);
9161 else
9162 XVECEXP (newpat, 0, 0) = pat;
9163
9164 add_clobbers (newpat, insn_code_number);
9165
9166 for (i = XVECLEN (newpat, 0) - num_clobbers_to_add;
9167 i < XVECLEN (newpat, 0); i++)
9168 {
9169 if (GET_CODE (XEXP (XVECEXP (newpat, 0, i), 0)) == REG
9170 && ! reg_dead_at_p (XEXP (XVECEXP (newpat, 0, i), 0), insn))
9171 return -1;
9172 notes = gen_rtx_EXPR_LIST (REG_UNUSED,
9173 XEXP (XVECEXP (newpat, 0, i), 0), notes);
9174 }
9175 pat = newpat;
9176 }
9177
9178 *pnewpat = pat;
9179 *pnotes = notes;
9180
9181 return insn_code_number;
9182 }
9183 \f
9184 /* Like gen_lowpart but for use by combine. In combine it is not possible
9185 to create any new pseudoregs. However, it is safe to create
9186 invalid memory addresses, because combine will try to recognize
9187 them and all they will do is make the combine attempt fail.
9188
9189 If for some reason this cannot do its job, an rtx
9190 (clobber (const_int 0)) is returned.
9191 An insn containing that will not be recognized. */
9192
9193 #undef gen_lowpart
9194
9195 static rtx
9196 gen_lowpart_for_combine (mode, x)
9197 enum machine_mode mode;
9198 register rtx x;
9199 {
9200 rtx result;
9201
9202 if (GET_MODE (x) == mode)
9203 return x;
9204
9205 /* We can only support MODE being wider than a word if X is a
9206 constant integer or has a mode the same size. */
9207
9208 if (GET_MODE_SIZE (mode) > UNITS_PER_WORD
9209 && ! ((GET_MODE (x) == VOIDmode
9210 && (GET_CODE (x) == CONST_INT
9211 || GET_CODE (x) == CONST_DOUBLE))
9212 || GET_MODE_SIZE (GET_MODE (x)) == GET_MODE_SIZE (mode)))
9213 return gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
9214
9215 /* X might be a paradoxical (subreg (mem)). In that case, gen_lowpart
9216 won't know what to do. So we will strip off the SUBREG here and
9217 process normally. */
9218 if (GET_CODE (x) == SUBREG && GET_CODE (SUBREG_REG (x)) == MEM)
9219 {
9220 x = SUBREG_REG (x);
9221 if (GET_MODE (x) == mode)
9222 return x;
9223 }
9224
9225 result = gen_lowpart_common (mode, x);
9226 if (result != 0
9227 && GET_CODE (result) == SUBREG
9228 && GET_CODE (SUBREG_REG (result)) == REG
9229 && REGNO (SUBREG_REG (result)) >= FIRST_PSEUDO_REGISTER
9230 && (GET_MODE_SIZE (GET_MODE (result))
9231 != GET_MODE_SIZE (GET_MODE (SUBREG_REG (result)))))
9232 REG_CHANGES_SIZE (REGNO (SUBREG_REG (result))) = 1;
9233
9234 if (result)
9235 return result;
9236
9237 if (GET_CODE (x) == MEM)
9238 {
9239 register int offset = 0;
9240 rtx new;
9241
9242 /* Refuse to work on a volatile memory ref or one with a mode-dependent
9243 address. */
9244 if (MEM_VOLATILE_P (x) || mode_dependent_address_p (XEXP (x, 0)))
9245 return gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
9246
9247 /* If we want to refer to something bigger than the original memref,
9248 generate a perverse subreg instead. That will force a reload
9249 of the original memref X. */
9250 if (GET_MODE_SIZE (GET_MODE (x)) < GET_MODE_SIZE (mode))
9251 return gen_rtx_SUBREG (mode, x, 0);
9252
9253 if (WORDS_BIG_ENDIAN)
9254 offset = (MAX (GET_MODE_SIZE (GET_MODE (x)), UNITS_PER_WORD)
9255 - MAX (GET_MODE_SIZE (mode), UNITS_PER_WORD));
9256 if (BYTES_BIG_ENDIAN)
9257 {
9258 /* Adjust the address so that the address-after-the-data is
9259 unchanged. */
9260 offset -= (MIN (UNITS_PER_WORD, GET_MODE_SIZE (mode))
9261 - MIN (UNITS_PER_WORD, GET_MODE_SIZE (GET_MODE (x))));
9262 }
9263 new = gen_rtx_MEM (mode, plus_constant (XEXP (x, 0), offset));
9264 RTX_UNCHANGING_P (new) = RTX_UNCHANGING_P (x);
9265 MEM_VOLATILE_P (new) = MEM_VOLATILE_P (x);
9266 MEM_IN_STRUCT_P (new) = MEM_IN_STRUCT_P (x);
9267 return new;
9268 }
9269
9270 /* If X is a comparison operator, rewrite it in a new mode. This
9271 probably won't match, but may allow further simplifications. */
9272 else if (GET_RTX_CLASS (GET_CODE (x)) == '<')
9273 return gen_rtx_combine (GET_CODE (x), mode, XEXP (x, 0), XEXP (x, 1));
9274
9275 /* If we couldn't simplify X any other way, just enclose it in a
9276 SUBREG. Normally, this SUBREG won't match, but some patterns may
9277 include an explicit SUBREG or we may simplify it further in combine. */
9278 else
9279 {
9280 int word = 0;
9281
9282 if (WORDS_BIG_ENDIAN && GET_MODE_SIZE (GET_MODE (x)) > UNITS_PER_WORD)
9283 word = ((GET_MODE_SIZE (GET_MODE (x))
9284 - MAX (GET_MODE_SIZE (mode), UNITS_PER_WORD))
9285 / UNITS_PER_WORD);
9286 return gen_rtx_SUBREG (mode, x, word);
9287 }
9288 }
9289 \f
9290 /* Make an rtx expression. This is a subset of gen_rtx and only supports
9291 expressions of 1, 2, or 3 operands, each of which are rtx expressions.
9292
9293 If the identical expression was previously in the insn (in the undobuf),
9294 it will be returned. Only if it is not found will a new expression
9295 be made. */
9296
9297 /*VARARGS2*/
9298 static rtx
9299 gen_rtx_combine VPROTO((enum rtx_code code, enum machine_mode mode, ...))
9300 {
9301 #ifndef ANSI_PROTOTYPES
9302 enum rtx_code code;
9303 enum machine_mode mode;
9304 #endif
9305 va_list p;
9306 int n_args;
9307 rtx args[3];
9308 int j;
9309 char *fmt;
9310 rtx rt;
9311 struct undo *undo;
9312
9313 VA_START (p, mode);
9314
9315 #ifndef ANSI_PROTOTYPES
9316 code = va_arg (p, enum rtx_code);
9317 mode = va_arg (p, enum machine_mode);
9318 #endif
9319
9320 n_args = GET_RTX_LENGTH (code);
9321 fmt = GET_RTX_FORMAT (code);
9322
9323 if (n_args == 0 || n_args > 3)
9324 abort ();
9325
9326 /* Get each arg and verify that it is supposed to be an expression. */
9327 for (j = 0; j < n_args; j++)
9328 {
9329 if (*fmt++ != 'e')
9330 abort ();
9331
9332 args[j] = va_arg (p, rtx);
9333 }
9334
9335 /* See if this is in undobuf. Be sure we don't use objects that came
9336 from another insn; this could produce circular rtl structures. */
9337
9338 for (undo = undobuf.undos; undo != undobuf.previous_undos; undo = undo->next)
9339 if (!undo->is_int
9340 && GET_CODE (undo->old_contents.r) == code
9341 && GET_MODE (undo->old_contents.r) == mode)
9342 {
9343 for (j = 0; j < n_args; j++)
9344 if (XEXP (undo->old_contents.r, j) != args[j])
9345 break;
9346
9347 if (j == n_args)
9348 return undo->old_contents.r;
9349 }
9350
9351 /* Otherwise make a new rtx. We know we have 1, 2, or 3 args.
9352 Use rtx_alloc instead of gen_rtx because it's faster on RISC. */
9353 rt = rtx_alloc (code);
9354 PUT_MODE (rt, mode);
9355 XEXP (rt, 0) = args[0];
9356 if (n_args > 1)
9357 {
9358 XEXP (rt, 1) = args[1];
9359 if (n_args > 2)
9360 XEXP (rt, 2) = args[2];
9361 }
9362 return rt;
9363 }
9364
9365 /* These routines make binary and unary operations by first seeing if they
9366 fold; if not, a new expression is allocated. */
9367
9368 static rtx
9369 gen_binary (code, mode, op0, op1)
9370 enum rtx_code code;
9371 enum machine_mode mode;
9372 rtx op0, op1;
9373 {
9374 rtx result;
9375 rtx tem;
9376
9377 if (GET_RTX_CLASS (code) == 'c'
9378 && (GET_CODE (op0) == CONST_INT
9379 || (CONSTANT_P (op0) && GET_CODE (op1) != CONST_INT)))
9380 tem = op0, op0 = op1, op1 = tem;
9381
9382 if (GET_RTX_CLASS (code) == '<')
9383 {
9384 enum machine_mode op_mode = GET_MODE (op0);
9385
9386 /* Strip the COMPARE from (REL_OP (compare X Y) 0) to get
9387 just (REL_OP X Y). */
9388 if (GET_CODE (op0) == COMPARE && op1 == const0_rtx)
9389 {
9390 op1 = XEXP (op0, 1);
9391 op0 = XEXP (op0, 0);
9392 op_mode = GET_MODE (op0);
9393 }
9394
9395 if (op_mode == VOIDmode)
9396 op_mode = GET_MODE (op1);
9397 result = simplify_relational_operation (code, op_mode, op0, op1);
9398 }
9399 else
9400 result = simplify_binary_operation (code, mode, op0, op1);
9401
9402 if (result)
9403 return result;
9404
9405 /* Put complex operands first and constants second. */
9406 if (GET_RTX_CLASS (code) == 'c'
9407 && ((CONSTANT_P (op0) && GET_CODE (op1) != CONST_INT)
9408 || (GET_RTX_CLASS (GET_CODE (op0)) == 'o'
9409 && GET_RTX_CLASS (GET_CODE (op1)) != 'o')
9410 || (GET_CODE (op0) == SUBREG
9411 && GET_RTX_CLASS (GET_CODE (SUBREG_REG (op0))) == 'o'
9412 && GET_RTX_CLASS (GET_CODE (op1)) != 'o')))
9413 return gen_rtx_combine (code, mode, op1, op0);
9414
9415 /* If we are turning off bits already known off in OP0, we need not do
9416 an AND. */
9417 else if (code == AND && GET_CODE (op1) == CONST_INT
9418 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
9419 && (nonzero_bits (op0, mode) & ~ INTVAL (op1)) == 0)
9420 return op0;
9421
9422 return gen_rtx_combine (code, mode, op0, op1);
9423 }
9424
9425 static rtx
9426 gen_unary (code, mode, op0_mode, op0)
9427 enum rtx_code code;
9428 enum machine_mode mode, op0_mode;
9429 rtx op0;
9430 {
9431 rtx result = simplify_unary_operation (code, mode, op0, op0_mode);
9432
9433 if (result)
9434 return result;
9435
9436 return gen_rtx_combine (code, mode, op0);
9437 }
9438 \f
9439 /* Simplify a comparison between *POP0 and *POP1 where CODE is the
9440 comparison code that will be tested.
9441
9442 The result is a possibly different comparison code to use. *POP0 and
9443 *POP1 may be updated.
9444
9445 It is possible that we might detect that a comparison is either always
9446 true or always false. However, we do not perform general constant
9447 folding in combine, so this knowledge isn't useful. Such tautologies
9448 should have been detected earlier. Hence we ignore all such cases. */
9449
9450 static enum rtx_code
9451 simplify_comparison (code, pop0, pop1)
9452 enum rtx_code code;
9453 rtx *pop0;
9454 rtx *pop1;
9455 {
9456 rtx op0 = *pop0;
9457 rtx op1 = *pop1;
9458 rtx tem, tem1;
9459 int i;
9460 enum machine_mode mode, tmode;
9461
9462 /* Try a few ways of applying the same transformation to both operands. */
9463 while (1)
9464 {
9465 #ifndef WORD_REGISTER_OPERATIONS
9466 /* The test below this one won't handle SIGN_EXTENDs on these machines,
9467 so check specially. */
9468 if (code != GTU && code != GEU && code != LTU && code != LEU
9469 && GET_CODE (op0) == ASHIFTRT && GET_CODE (op1) == ASHIFTRT
9470 && GET_CODE (XEXP (op0, 0)) == ASHIFT
9471 && GET_CODE (XEXP (op1, 0)) == ASHIFT
9472 && GET_CODE (XEXP (XEXP (op0, 0), 0)) == SUBREG
9473 && GET_CODE (XEXP (XEXP (op1, 0), 0)) == SUBREG
9474 && (GET_MODE (SUBREG_REG (XEXP (XEXP (op0, 0), 0)))
9475 == GET_MODE (SUBREG_REG (XEXP (XEXP (op1, 0), 0))))
9476 && GET_CODE (XEXP (op0, 1)) == CONST_INT
9477 && GET_CODE (XEXP (op1, 1)) == CONST_INT
9478 && GET_CODE (XEXP (XEXP (op0, 0), 1)) == CONST_INT
9479 && GET_CODE (XEXP (XEXP (op1, 0), 1)) == CONST_INT
9480 && INTVAL (XEXP (op0, 1)) == INTVAL (XEXP (op1, 1))
9481 && INTVAL (XEXP (op0, 1)) == INTVAL (XEXP (XEXP (op0, 0), 1))
9482 && INTVAL (XEXP (op0, 1)) == INTVAL (XEXP (XEXP (op1, 0), 1))
9483 && (INTVAL (XEXP (op0, 1))
9484 == (GET_MODE_BITSIZE (GET_MODE (op0))
9485 - (GET_MODE_BITSIZE
9486 (GET_MODE (SUBREG_REG (XEXP (XEXP (op0, 0), 0))))))))
9487 {
9488 op0 = SUBREG_REG (XEXP (XEXP (op0, 0), 0));
9489 op1 = SUBREG_REG (XEXP (XEXP (op1, 0), 0));
9490 }
9491 #endif
9492
9493 /* If both operands are the same constant shift, see if we can ignore the
9494 shift. We can if the shift is a rotate or if the bits shifted out of
9495 this shift are known to be zero for both inputs and if the type of
9496 comparison is compatible with the shift. */
9497 if (GET_CODE (op0) == GET_CODE (op1)
9498 && GET_MODE_BITSIZE (GET_MODE (op0)) <= HOST_BITS_PER_WIDE_INT
9499 && ((GET_CODE (op0) == ROTATE && (code == NE || code == EQ))
9500 || ((GET_CODE (op0) == LSHIFTRT || GET_CODE (op0) == ASHIFT)
9501 && (code != GT && code != LT && code != GE && code != LE))
9502 || (GET_CODE (op0) == ASHIFTRT
9503 && (code != GTU && code != LTU
9504 && code != GEU && code != GEU)))
9505 && GET_CODE (XEXP (op0, 1)) == CONST_INT
9506 && INTVAL (XEXP (op0, 1)) >= 0
9507 && INTVAL (XEXP (op0, 1)) < HOST_BITS_PER_WIDE_INT
9508 && XEXP (op0, 1) == XEXP (op1, 1))
9509 {
9510 enum machine_mode mode = GET_MODE (op0);
9511 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
9512 int shift_count = INTVAL (XEXP (op0, 1));
9513
9514 if (GET_CODE (op0) == LSHIFTRT || GET_CODE (op0) == ASHIFTRT)
9515 mask &= (mask >> shift_count) << shift_count;
9516 else if (GET_CODE (op0) == ASHIFT)
9517 mask = (mask & (mask << shift_count)) >> shift_count;
9518
9519 if ((nonzero_bits (XEXP (op0, 0), mode) & ~ mask) == 0
9520 && (nonzero_bits (XEXP (op1, 0), mode) & ~ mask) == 0)
9521 op0 = XEXP (op0, 0), op1 = XEXP (op1, 0);
9522 else
9523 break;
9524 }
9525
9526 /* If both operands are AND's of a paradoxical SUBREG by constant, the
9527 SUBREGs are of the same mode, and, in both cases, the AND would
9528 be redundant if the comparison was done in the narrower mode,
9529 do the comparison in the narrower mode (e.g., we are AND'ing with 1
9530 and the operand's possibly nonzero bits are 0xffffff01; in that case
9531 if we only care about QImode, we don't need the AND). This case
9532 occurs if the output mode of an scc insn is not SImode and
9533 STORE_FLAG_VALUE == 1 (e.g., the 386).
9534
9535 Similarly, check for a case where the AND's are ZERO_EXTEND
9536 operations from some narrower mode even though a SUBREG is not
9537 present. */
9538
9539 else if (GET_CODE (op0) == AND && GET_CODE (op1) == AND
9540 && GET_CODE (XEXP (op0, 1)) == CONST_INT
9541 && GET_CODE (XEXP (op1, 1)) == CONST_INT)
9542 {
9543 rtx inner_op0 = XEXP (op0, 0);
9544 rtx inner_op1 = XEXP (op1, 0);
9545 HOST_WIDE_INT c0 = INTVAL (XEXP (op0, 1));
9546 HOST_WIDE_INT c1 = INTVAL (XEXP (op1, 1));
9547 int changed = 0;
9548
9549 if (GET_CODE (inner_op0) == SUBREG && GET_CODE (inner_op1) == SUBREG
9550 && (GET_MODE_SIZE (GET_MODE (inner_op0))
9551 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (inner_op0))))
9552 && (GET_MODE (SUBREG_REG (inner_op0))
9553 == GET_MODE (SUBREG_REG (inner_op1)))
9554 && (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (inner_op0)))
9555 <= HOST_BITS_PER_WIDE_INT)
9556 && (0 == ((~c0) & nonzero_bits (SUBREG_REG (inner_op0),
9557 GET_MODE (SUBREG_REG (inner_op0)))))
9558 && (0 == ((~c1) & nonzero_bits (SUBREG_REG (inner_op1),
9559 GET_MODE (SUBREG_REG (inner_op1))))))
9560 {
9561 op0 = SUBREG_REG (inner_op0);
9562 op1 = SUBREG_REG (inner_op1);
9563
9564 /* The resulting comparison is always unsigned since we masked
9565 off the original sign bit. */
9566 code = unsigned_condition (code);
9567
9568 changed = 1;
9569 }
9570
9571 else if (c0 == c1)
9572 for (tmode = GET_CLASS_NARROWEST_MODE
9573 (GET_MODE_CLASS (GET_MODE (op0)));
9574 tmode != GET_MODE (op0); tmode = GET_MODE_WIDER_MODE (tmode))
9575 if ((unsigned HOST_WIDE_INT) c0 == GET_MODE_MASK (tmode))
9576 {
9577 op0 = gen_lowpart_for_combine (tmode, inner_op0);
9578 op1 = gen_lowpart_for_combine (tmode, inner_op1);
9579 code = unsigned_condition (code);
9580 changed = 1;
9581 break;
9582 }
9583
9584 if (! changed)
9585 break;
9586 }
9587
9588 /* If both operands are NOT, we can strip off the outer operation
9589 and adjust the comparison code for swapped operands; similarly for
9590 NEG, except that this must be an equality comparison. */
9591 else if ((GET_CODE (op0) == NOT && GET_CODE (op1) == NOT)
9592 || (GET_CODE (op0) == NEG && GET_CODE (op1) == NEG
9593 && (code == EQ || code == NE)))
9594 op0 = XEXP (op0, 0), op1 = XEXP (op1, 0), code = swap_condition (code);
9595
9596 else
9597 break;
9598 }
9599
9600 /* If the first operand is a constant, swap the operands and adjust the
9601 comparison code appropriately, but don't do this if the second operand
9602 is already a constant integer. */
9603 if (CONSTANT_P (op0) && GET_CODE (op1) != CONST_INT)
9604 {
9605 tem = op0, op0 = op1, op1 = tem;
9606 code = swap_condition (code);
9607 }
9608
9609 /* We now enter a loop during which we will try to simplify the comparison.
9610 For the most part, we only are concerned with comparisons with zero,
9611 but some things may really be comparisons with zero but not start
9612 out looking that way. */
9613
9614 while (GET_CODE (op1) == CONST_INT)
9615 {
9616 enum machine_mode mode = GET_MODE (op0);
9617 int mode_width = GET_MODE_BITSIZE (mode);
9618 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
9619 int equality_comparison_p;
9620 int sign_bit_comparison_p;
9621 int unsigned_comparison_p;
9622 HOST_WIDE_INT const_op;
9623
9624 /* We only want to handle integral modes. This catches VOIDmode,
9625 CCmode, and the floating-point modes. An exception is that we
9626 can handle VOIDmode if OP0 is a COMPARE or a comparison
9627 operation. */
9628
9629 if (GET_MODE_CLASS (mode) != MODE_INT
9630 && ! (mode == VOIDmode
9631 && (GET_CODE (op0) == COMPARE
9632 || GET_RTX_CLASS (GET_CODE (op0)) == '<')))
9633 break;
9634
9635 /* Get the constant we are comparing against and turn off all bits
9636 not on in our mode. */
9637 const_op = INTVAL (op1);
9638 if (mode_width <= HOST_BITS_PER_WIDE_INT)
9639 const_op &= mask;
9640
9641 /* If we are comparing against a constant power of two and the value
9642 being compared can only have that single bit nonzero (e.g., it was
9643 `and'ed with that bit), we can replace this with a comparison
9644 with zero. */
9645 if (const_op
9646 && (code == EQ || code == NE || code == GE || code == GEU
9647 || code == LT || code == LTU)
9648 && mode_width <= HOST_BITS_PER_WIDE_INT
9649 && exact_log2 (const_op) >= 0
9650 && nonzero_bits (op0, mode) == (unsigned HOST_WIDE_INT) const_op)
9651 {
9652 code = (code == EQ || code == GE || code == GEU ? NE : EQ);
9653 op1 = const0_rtx, const_op = 0;
9654 }
9655
9656 /* Similarly, if we are comparing a value known to be either -1 or
9657 0 with -1, change it to the opposite comparison against zero. */
9658
9659 if (const_op == -1
9660 && (code == EQ || code == NE || code == GT || code == LE
9661 || code == GEU || code == LTU)
9662 && num_sign_bit_copies (op0, mode) == mode_width)
9663 {
9664 code = (code == EQ || code == LE || code == GEU ? NE : EQ);
9665 op1 = const0_rtx, const_op = 0;
9666 }
9667
9668 /* Do some canonicalizations based on the comparison code. We prefer
9669 comparisons against zero and then prefer equality comparisons.
9670 If we can reduce the size of a constant, we will do that too. */
9671
9672 switch (code)
9673 {
9674 case LT:
9675 /* < C is equivalent to <= (C - 1) */
9676 if (const_op > 0)
9677 {
9678 const_op -= 1;
9679 op1 = GEN_INT (const_op);
9680 code = LE;
9681 /* ... fall through to LE case below. */
9682 }
9683 else
9684 break;
9685
9686 case LE:
9687 /* <= C is equivalent to < (C + 1); we do this for C < 0 */
9688 if (const_op < 0)
9689 {
9690 const_op += 1;
9691 op1 = GEN_INT (const_op);
9692 code = LT;
9693 }
9694
9695 /* If we are doing a <= 0 comparison on a value known to have
9696 a zero sign bit, we can replace this with == 0. */
9697 else if (const_op == 0
9698 && mode_width <= HOST_BITS_PER_WIDE_INT
9699 && (nonzero_bits (op0, mode)
9700 & ((HOST_WIDE_INT) 1 << (mode_width - 1))) == 0)
9701 code = EQ;
9702 break;
9703
9704 case GE:
9705 /* >= C is equivalent to > (C - 1). */
9706 if (const_op > 0)
9707 {
9708 const_op -= 1;
9709 op1 = GEN_INT (const_op);
9710 code = GT;
9711 /* ... fall through to GT below. */
9712 }
9713 else
9714 break;
9715
9716 case GT:
9717 /* > C is equivalent to >= (C + 1); we do this for C < 0*/
9718 if (const_op < 0)
9719 {
9720 const_op += 1;
9721 op1 = GEN_INT (const_op);
9722 code = GE;
9723 }
9724
9725 /* If we are doing a > 0 comparison on a value known to have
9726 a zero sign bit, we can replace this with != 0. */
9727 else if (const_op == 0
9728 && mode_width <= HOST_BITS_PER_WIDE_INT
9729 && (nonzero_bits (op0, mode)
9730 & ((HOST_WIDE_INT) 1 << (mode_width - 1))) == 0)
9731 code = NE;
9732 break;
9733
9734 case LTU:
9735 /* < C is equivalent to <= (C - 1). */
9736 if (const_op > 0)
9737 {
9738 const_op -= 1;
9739 op1 = GEN_INT (const_op);
9740 code = LEU;
9741 /* ... fall through ... */
9742 }
9743
9744 /* (unsigned) < 0x80000000 is equivalent to >= 0. */
9745 else if ((mode_width <= HOST_BITS_PER_WIDE_INT)
9746 && (const_op == (HOST_WIDE_INT) 1 << (mode_width - 1)))
9747 {
9748 const_op = 0, op1 = const0_rtx;
9749 code = GE;
9750 break;
9751 }
9752 else
9753 break;
9754
9755 case LEU:
9756 /* unsigned <= 0 is equivalent to == 0 */
9757 if (const_op == 0)
9758 code = EQ;
9759
9760 /* (unsigned) <= 0x7fffffff is equivalent to >= 0. */
9761 else if ((mode_width <= HOST_BITS_PER_WIDE_INT)
9762 && (const_op == ((HOST_WIDE_INT) 1 << (mode_width - 1)) - 1))
9763 {
9764 const_op = 0, op1 = const0_rtx;
9765 code = GE;
9766 }
9767 break;
9768
9769 case GEU:
9770 /* >= C is equivalent to < (C - 1). */
9771 if (const_op > 1)
9772 {
9773 const_op -= 1;
9774 op1 = GEN_INT (const_op);
9775 code = GTU;
9776 /* ... fall through ... */
9777 }
9778
9779 /* (unsigned) >= 0x80000000 is equivalent to < 0. */
9780 else if ((mode_width <= HOST_BITS_PER_WIDE_INT)
9781 && (const_op == (HOST_WIDE_INT) 1 << (mode_width - 1)))
9782 {
9783 const_op = 0, op1 = const0_rtx;
9784 code = LT;
9785 break;
9786 }
9787 else
9788 break;
9789
9790 case GTU:
9791 /* unsigned > 0 is equivalent to != 0 */
9792 if (const_op == 0)
9793 code = NE;
9794
9795 /* (unsigned) > 0x7fffffff is equivalent to < 0. */
9796 else if ((mode_width <= HOST_BITS_PER_WIDE_INT)
9797 && (const_op == ((HOST_WIDE_INT) 1 << (mode_width - 1)) - 1))
9798 {
9799 const_op = 0, op1 = const0_rtx;
9800 code = LT;
9801 }
9802 break;
9803
9804 default:
9805 break;
9806 }
9807
9808 /* Compute some predicates to simplify code below. */
9809
9810 equality_comparison_p = (code == EQ || code == NE);
9811 sign_bit_comparison_p = ((code == LT || code == GE) && const_op == 0);
9812 unsigned_comparison_p = (code == LTU || code == LEU || code == GTU
9813 || code == LEU);
9814
9815 /* If this is a sign bit comparison and we can do arithmetic in
9816 MODE, say that we will only be needing the sign bit of OP0. */
9817 if (sign_bit_comparison_p
9818 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
9819 op0 = force_to_mode (op0, mode,
9820 ((HOST_WIDE_INT) 1
9821 << (GET_MODE_BITSIZE (mode) - 1)),
9822 NULL_RTX, 0);
9823
9824 /* Now try cases based on the opcode of OP0. If none of the cases
9825 does a "continue", we exit this loop immediately after the
9826 switch. */
9827
9828 switch (GET_CODE (op0))
9829 {
9830 case ZERO_EXTRACT:
9831 /* If we are extracting a single bit from a variable position in
9832 a constant that has only a single bit set and are comparing it
9833 with zero, we can convert this into an equality comparison
9834 between the position and the location of the single bit. */
9835
9836 if (GET_CODE (XEXP (op0, 0)) == CONST_INT
9837 && XEXP (op0, 1) == const1_rtx
9838 && equality_comparison_p && const_op == 0
9839 && (i = exact_log2 (INTVAL (XEXP (op0, 0)))) >= 0)
9840 {
9841 if (BITS_BIG_ENDIAN)
9842 {
9843 #ifdef HAVE_extzv
9844 mode = insn_operand_mode[(int) CODE_FOR_extzv][1];
9845 if (mode == VOIDmode)
9846 mode = word_mode;
9847 i = (GET_MODE_BITSIZE (mode) - 1 - i);
9848 #else
9849 i = BITS_PER_WORD - 1 - i;
9850 #endif
9851 }
9852
9853 op0 = XEXP (op0, 2);
9854 op1 = GEN_INT (i);
9855 const_op = i;
9856
9857 /* Result is nonzero iff shift count is equal to I. */
9858 code = reverse_condition (code);
9859 continue;
9860 }
9861
9862 /* ... fall through ... */
9863
9864 case SIGN_EXTRACT:
9865 tem = expand_compound_operation (op0);
9866 if (tem != op0)
9867 {
9868 op0 = tem;
9869 continue;
9870 }
9871 break;
9872
9873 case NOT:
9874 /* If testing for equality, we can take the NOT of the constant. */
9875 if (equality_comparison_p
9876 && (tem = simplify_unary_operation (NOT, mode, op1, mode)) != 0)
9877 {
9878 op0 = XEXP (op0, 0);
9879 op1 = tem;
9880 continue;
9881 }
9882
9883 /* If just looking at the sign bit, reverse the sense of the
9884 comparison. */
9885 if (sign_bit_comparison_p)
9886 {
9887 op0 = XEXP (op0, 0);
9888 code = (code == GE ? LT : GE);
9889 continue;
9890 }
9891 break;
9892
9893 case NEG:
9894 /* If testing for equality, we can take the NEG of the constant. */
9895 if (equality_comparison_p
9896 && (tem = simplify_unary_operation (NEG, mode, op1, mode)) != 0)
9897 {
9898 op0 = XEXP (op0, 0);
9899 op1 = tem;
9900 continue;
9901 }
9902
9903 /* The remaining cases only apply to comparisons with zero. */
9904 if (const_op != 0)
9905 break;
9906
9907 /* When X is ABS or is known positive,
9908 (neg X) is < 0 if and only if X != 0. */
9909
9910 if (sign_bit_comparison_p
9911 && (GET_CODE (XEXP (op0, 0)) == ABS
9912 || (mode_width <= HOST_BITS_PER_WIDE_INT
9913 && (nonzero_bits (XEXP (op0, 0), mode)
9914 & ((HOST_WIDE_INT) 1 << (mode_width - 1))) == 0)))
9915 {
9916 op0 = XEXP (op0, 0);
9917 code = (code == LT ? NE : EQ);
9918 continue;
9919 }
9920
9921 /* If we have NEG of something whose two high-order bits are the
9922 same, we know that "(-a) < 0" is equivalent to "a > 0". */
9923 if (num_sign_bit_copies (op0, mode) >= 2)
9924 {
9925 op0 = XEXP (op0, 0);
9926 code = swap_condition (code);
9927 continue;
9928 }
9929 break;
9930
9931 case ROTATE:
9932 /* If we are testing equality and our count is a constant, we
9933 can perform the inverse operation on our RHS. */
9934 if (equality_comparison_p && GET_CODE (XEXP (op0, 1)) == CONST_INT
9935 && (tem = simplify_binary_operation (ROTATERT, mode,
9936 op1, XEXP (op0, 1))) != 0)
9937 {
9938 op0 = XEXP (op0, 0);
9939 op1 = tem;
9940 continue;
9941 }
9942
9943 /* If we are doing a < 0 or >= 0 comparison, it means we are testing
9944 a particular bit. Convert it to an AND of a constant of that
9945 bit. This will be converted into a ZERO_EXTRACT. */
9946 if (const_op == 0 && sign_bit_comparison_p
9947 && GET_CODE (XEXP (op0, 1)) == CONST_INT
9948 && mode_width <= HOST_BITS_PER_WIDE_INT)
9949 {
9950 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
9951 ((HOST_WIDE_INT) 1
9952 << (mode_width - 1
9953 - INTVAL (XEXP (op0, 1)))));
9954 code = (code == LT ? NE : EQ);
9955 continue;
9956 }
9957
9958 /* ... fall through ... */
9959
9960 case ABS:
9961 /* ABS is ignorable inside an equality comparison with zero. */
9962 if (const_op == 0 && equality_comparison_p)
9963 {
9964 op0 = XEXP (op0, 0);
9965 continue;
9966 }
9967 break;
9968
9969
9970 case SIGN_EXTEND:
9971 /* Can simplify (compare (zero/sign_extend FOO) CONST)
9972 to (compare FOO CONST) if CONST fits in FOO's mode and we
9973 are either testing inequality or have an unsigned comparison
9974 with ZERO_EXTEND or a signed comparison with SIGN_EXTEND. */
9975 if (! unsigned_comparison_p
9976 && (GET_MODE_BITSIZE (GET_MODE (XEXP (op0, 0)))
9977 <= HOST_BITS_PER_WIDE_INT)
9978 && ((unsigned HOST_WIDE_INT) const_op
9979 < (((unsigned HOST_WIDE_INT) 1
9980 << (GET_MODE_BITSIZE (GET_MODE (XEXP (op0, 0))) - 1)))))
9981 {
9982 op0 = XEXP (op0, 0);
9983 continue;
9984 }
9985 break;
9986
9987 case SUBREG:
9988 /* Check for the case where we are comparing A - C1 with C2,
9989 both constants are smaller than 1/2 the maximum positive
9990 value in MODE, and the comparison is equality or unsigned.
9991 In that case, if A is either zero-extended to MODE or has
9992 sufficient sign bits so that the high-order bit in MODE
9993 is a copy of the sign in the inner mode, we can prove that it is
9994 safe to do the operation in the wider mode. This simplifies
9995 many range checks. */
9996
9997 if (mode_width <= HOST_BITS_PER_WIDE_INT
9998 && subreg_lowpart_p (op0)
9999 && GET_CODE (SUBREG_REG (op0)) == PLUS
10000 && GET_CODE (XEXP (SUBREG_REG (op0), 1)) == CONST_INT
10001 && INTVAL (XEXP (SUBREG_REG (op0), 1)) < 0
10002 && (- INTVAL (XEXP (SUBREG_REG (op0), 1))
10003 < (HOST_WIDE_INT)(GET_MODE_MASK (mode) / 2))
10004 && (unsigned HOST_WIDE_INT) const_op < GET_MODE_MASK (mode) / 2
10005 && (0 == (nonzero_bits (XEXP (SUBREG_REG (op0), 0),
10006 GET_MODE (SUBREG_REG (op0)))
10007 & ~ GET_MODE_MASK (mode))
10008 || (num_sign_bit_copies (XEXP (SUBREG_REG (op0), 0),
10009 GET_MODE (SUBREG_REG (op0)))
10010 > (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (op0)))
10011 - GET_MODE_BITSIZE (mode)))))
10012 {
10013 op0 = SUBREG_REG (op0);
10014 continue;
10015 }
10016
10017 /* If the inner mode is narrower and we are extracting the low part,
10018 we can treat the SUBREG as if it were a ZERO_EXTEND. */
10019 if (subreg_lowpart_p (op0)
10020 && GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (op0))) < mode_width)
10021 /* Fall through */ ;
10022 else
10023 break;
10024
10025 /* ... fall through ... */
10026
10027 case ZERO_EXTEND:
10028 if ((unsigned_comparison_p || equality_comparison_p)
10029 && (GET_MODE_BITSIZE (GET_MODE (XEXP (op0, 0)))
10030 <= HOST_BITS_PER_WIDE_INT)
10031 && ((unsigned HOST_WIDE_INT) const_op
10032 < GET_MODE_MASK (GET_MODE (XEXP (op0, 0)))))
10033 {
10034 op0 = XEXP (op0, 0);
10035 continue;
10036 }
10037 break;
10038
10039 case PLUS:
10040 /* (eq (plus X A) B) -> (eq X (minus B A)). We can only do
10041 this for equality comparisons due to pathological cases involving
10042 overflows. */
10043 if (equality_comparison_p
10044 && 0 != (tem = simplify_binary_operation (MINUS, mode,
10045 op1, XEXP (op0, 1))))
10046 {
10047 op0 = XEXP (op0, 0);
10048 op1 = tem;
10049 continue;
10050 }
10051
10052 /* (plus (abs X) (const_int -1)) is < 0 if and only if X == 0. */
10053 if (const_op == 0 && XEXP (op0, 1) == constm1_rtx
10054 && GET_CODE (XEXP (op0, 0)) == ABS && sign_bit_comparison_p)
10055 {
10056 op0 = XEXP (XEXP (op0, 0), 0);
10057 code = (code == LT ? EQ : NE);
10058 continue;
10059 }
10060 break;
10061
10062 case MINUS:
10063 /* (eq (minus A B) C) -> (eq A (plus B C)) or
10064 (eq B (minus A C)), whichever simplifies. We can only do
10065 this for equality comparisons due to pathological cases involving
10066 overflows. */
10067 if (equality_comparison_p
10068 && 0 != (tem = simplify_binary_operation (PLUS, mode,
10069 XEXP (op0, 1), op1)))
10070 {
10071 op0 = XEXP (op0, 0);
10072 op1 = tem;
10073 continue;
10074 }
10075
10076 if (equality_comparison_p
10077 && 0 != (tem = simplify_binary_operation (MINUS, mode,
10078 XEXP (op0, 0), op1)))
10079 {
10080 op0 = XEXP (op0, 1);
10081 op1 = tem;
10082 continue;
10083 }
10084
10085 /* The sign bit of (minus (ashiftrt X C) X), where C is the number
10086 of bits in X minus 1, is one iff X > 0. */
10087 if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 0)) == ASHIFTRT
10088 && GET_CODE (XEXP (XEXP (op0, 0), 1)) == CONST_INT
10089 && INTVAL (XEXP (XEXP (op0, 0), 1)) == mode_width - 1
10090 && rtx_equal_p (XEXP (XEXP (op0, 0), 0), XEXP (op0, 1)))
10091 {
10092 op0 = XEXP (op0, 1);
10093 code = (code == GE ? LE : GT);
10094 continue;
10095 }
10096 break;
10097
10098 case XOR:
10099 /* (eq (xor A B) C) -> (eq A (xor B C)). This is a simplification
10100 if C is zero or B is a constant. */
10101 if (equality_comparison_p
10102 && 0 != (tem = simplify_binary_operation (XOR, mode,
10103 XEXP (op0, 1), op1)))
10104 {
10105 op0 = XEXP (op0, 0);
10106 op1 = tem;
10107 continue;
10108 }
10109 break;
10110
10111 case EQ: case NE:
10112 case LT: case LTU: case LE: case LEU:
10113 case GT: case GTU: case GE: case GEU:
10114 /* We can't do anything if OP0 is a condition code value, rather
10115 than an actual data value. */
10116 if (const_op != 0
10117 #ifdef HAVE_cc0
10118 || XEXP (op0, 0) == cc0_rtx
10119 #endif
10120 || GET_MODE_CLASS (GET_MODE (XEXP (op0, 0))) == MODE_CC)
10121 break;
10122
10123 /* Get the two operands being compared. */
10124 if (GET_CODE (XEXP (op0, 0)) == COMPARE)
10125 tem = XEXP (XEXP (op0, 0), 0), tem1 = XEXP (XEXP (op0, 0), 1);
10126 else
10127 tem = XEXP (op0, 0), tem1 = XEXP (op0, 1);
10128
10129 /* Check for the cases where we simply want the result of the
10130 earlier test or the opposite of that result. */
10131 if (code == NE
10132 || (code == EQ && reversible_comparison_p (op0))
10133 || (GET_MODE_BITSIZE (GET_MODE (op0)) <= HOST_BITS_PER_WIDE_INT
10134 && GET_MODE_CLASS (GET_MODE (op0)) == MODE_INT
10135 && (STORE_FLAG_VALUE
10136 & (((HOST_WIDE_INT) 1
10137 << (GET_MODE_BITSIZE (GET_MODE (op0)) - 1))))
10138 && (code == LT
10139 || (code == GE && reversible_comparison_p (op0)))))
10140 {
10141 code = (code == LT || code == NE
10142 ? GET_CODE (op0) : reverse_condition (GET_CODE (op0)));
10143 op0 = tem, op1 = tem1;
10144 continue;
10145 }
10146 break;
10147
10148 case IOR:
10149 /* The sign bit of (ior (plus X (const_int -1)) X) is non-zero
10150 iff X <= 0. */
10151 if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 0)) == PLUS
10152 && XEXP (XEXP (op0, 0), 1) == constm1_rtx
10153 && rtx_equal_p (XEXP (XEXP (op0, 0), 0), XEXP (op0, 1)))
10154 {
10155 op0 = XEXP (op0, 1);
10156 code = (code == GE ? GT : LE);
10157 continue;
10158 }
10159 break;
10160
10161 case AND:
10162 /* Convert (and (xshift 1 X) Y) to (and (lshiftrt Y X) 1). This
10163 will be converted to a ZERO_EXTRACT later. */
10164 if (const_op == 0 && equality_comparison_p
10165 && GET_CODE (XEXP (op0, 0)) == ASHIFT
10166 && XEXP (XEXP (op0, 0), 0) == const1_rtx)
10167 {
10168 op0 = simplify_and_const_int
10169 (op0, mode, gen_rtx_combine (LSHIFTRT, mode,
10170 XEXP (op0, 1),
10171 XEXP (XEXP (op0, 0), 1)),
10172 (HOST_WIDE_INT) 1);
10173 continue;
10174 }
10175
10176 /* If we are comparing (and (lshiftrt X C1) C2) for equality with
10177 zero and X is a comparison and C1 and C2 describe only bits set
10178 in STORE_FLAG_VALUE, we can compare with X. */
10179 if (const_op == 0 && equality_comparison_p
10180 && mode_width <= HOST_BITS_PER_WIDE_INT
10181 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10182 && GET_CODE (XEXP (op0, 0)) == LSHIFTRT
10183 && GET_CODE (XEXP (XEXP (op0, 0), 1)) == CONST_INT
10184 && INTVAL (XEXP (XEXP (op0, 0), 1)) >= 0
10185 && INTVAL (XEXP (XEXP (op0, 0), 1)) < HOST_BITS_PER_WIDE_INT)
10186 {
10187 mask = ((INTVAL (XEXP (op0, 1)) & GET_MODE_MASK (mode))
10188 << INTVAL (XEXP (XEXP (op0, 0), 1)));
10189 if ((~ STORE_FLAG_VALUE & mask) == 0
10190 && (GET_RTX_CLASS (GET_CODE (XEXP (XEXP (op0, 0), 0))) == '<'
10191 || ((tem = get_last_value (XEXP (XEXP (op0, 0), 0))) != 0
10192 && GET_RTX_CLASS (GET_CODE (tem)) == '<')))
10193 {
10194 op0 = XEXP (XEXP (op0, 0), 0);
10195 continue;
10196 }
10197 }
10198
10199 /* If we are doing an equality comparison of an AND of a bit equal
10200 to the sign bit, replace this with a LT or GE comparison of
10201 the underlying value. */
10202 if (equality_comparison_p
10203 && const_op == 0
10204 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10205 && mode_width <= HOST_BITS_PER_WIDE_INT
10206 && ((INTVAL (XEXP (op0, 1)) & GET_MODE_MASK (mode))
10207 == (unsigned HOST_WIDE_INT) 1 << (mode_width - 1)))
10208 {
10209 op0 = XEXP (op0, 0);
10210 code = (code == EQ ? GE : LT);
10211 continue;
10212 }
10213
10214 /* If this AND operation is really a ZERO_EXTEND from a narrower
10215 mode, the constant fits within that mode, and this is either an
10216 equality or unsigned comparison, try to do this comparison in
10217 the narrower mode. */
10218 if ((equality_comparison_p || unsigned_comparison_p)
10219 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10220 && (i = exact_log2 ((INTVAL (XEXP (op0, 1))
10221 & GET_MODE_MASK (mode))
10222 + 1)) >= 0
10223 && const_op >> i == 0
10224 && (tmode = mode_for_size (i, MODE_INT, 1)) != BLKmode)
10225 {
10226 op0 = gen_lowpart_for_combine (tmode, XEXP (op0, 0));
10227 continue;
10228 }
10229
10230 /* If this is (and:M1 (subreg:M2 X 0) (const_int C1)) where C1 fits
10231 in both M1 and M2 and the SUBREG is either paradoxical or
10232 represents the low part, permute the SUBREG and the AND and
10233 try again. */
10234 if (GET_CODE (XEXP (op0, 0)) == SUBREG
10235 && ((mode_width
10236 >= GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (XEXP (op0, 0)))))
10237 #ifdef WORD_REGISTER_OPERATIONS
10238 || subreg_lowpart_p (XEXP (op0, 0))
10239 #endif
10240 )
10241 #ifndef WORD_REGISTER_OPERATIONS
10242 /* It is unsafe to commute the AND into the SUBREG if the SUBREG
10243 is paradoxical and WORD_REGISTER_OPERATIONS is not defined.
10244 As originally written the upper bits have a defined value
10245 due to the AND operation. However, if we commute the AND
10246 inside the SUBREG then they no longer have defined values
10247 and the meaning of the code has been changed. */
10248 && (GET_MODE_SIZE (GET_MODE (XEXP (op0, 0)))
10249 <= GET_MODE_SIZE (GET_MODE (SUBREG_REG (XEXP (op0, 0)))))
10250 #endif
10251 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10252 && mode_width <= HOST_BITS_PER_WIDE_INT
10253 && (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (XEXP (op0, 0))))
10254 <= HOST_BITS_PER_WIDE_INT)
10255 && (INTVAL (XEXP (op0, 1)) & ~ mask) == 0
10256 && 0 == (~ GET_MODE_MASK (GET_MODE (SUBREG_REG (XEXP (op0, 0))))
10257 & INTVAL (XEXP (op0, 1)))
10258 && (unsigned HOST_WIDE_INT) INTVAL (XEXP (op0, 1)) != mask
10259 && ((unsigned HOST_WIDE_INT) INTVAL (XEXP (op0, 1))
10260 != GET_MODE_MASK (GET_MODE (SUBREG_REG (XEXP (op0, 0))))))
10261
10262 {
10263 op0
10264 = gen_lowpart_for_combine
10265 (mode,
10266 gen_binary (AND, GET_MODE (SUBREG_REG (XEXP (op0, 0))),
10267 SUBREG_REG (XEXP (op0, 0)), XEXP (op0, 1)));
10268 continue;
10269 }
10270
10271 break;
10272
10273 case ASHIFT:
10274 /* If we have (compare (ashift FOO N) (const_int C)) and
10275 the high order N bits of FOO (N+1 if an inequality comparison)
10276 are known to be zero, we can do this by comparing FOO with C
10277 shifted right N bits so long as the low-order N bits of C are
10278 zero. */
10279 if (GET_CODE (XEXP (op0, 1)) == CONST_INT
10280 && INTVAL (XEXP (op0, 1)) >= 0
10281 && ((INTVAL (XEXP (op0, 1)) + ! equality_comparison_p)
10282 < HOST_BITS_PER_WIDE_INT)
10283 && ((const_op
10284 & (((HOST_WIDE_INT) 1 << INTVAL (XEXP (op0, 1))) - 1)) == 0)
10285 && mode_width <= HOST_BITS_PER_WIDE_INT
10286 && (nonzero_bits (XEXP (op0, 0), mode)
10287 & ~ (mask >> (INTVAL (XEXP (op0, 1))
10288 + ! equality_comparison_p))) == 0)
10289 {
10290 const_op >>= INTVAL (XEXP (op0, 1));
10291 op1 = GEN_INT (const_op);
10292 op0 = XEXP (op0, 0);
10293 continue;
10294 }
10295
10296 /* If we are doing a sign bit comparison, it means we are testing
10297 a particular bit. Convert it to the appropriate AND. */
10298 if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 1)) == CONST_INT
10299 && mode_width <= HOST_BITS_PER_WIDE_INT)
10300 {
10301 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
10302 ((HOST_WIDE_INT) 1
10303 << (mode_width - 1
10304 - INTVAL (XEXP (op0, 1)))));
10305 code = (code == LT ? NE : EQ);
10306 continue;
10307 }
10308
10309 /* If this an equality comparison with zero and we are shifting
10310 the low bit to the sign bit, we can convert this to an AND of the
10311 low-order bit. */
10312 if (const_op == 0 && equality_comparison_p
10313 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10314 && INTVAL (XEXP (op0, 1)) == mode_width - 1)
10315 {
10316 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
10317 (HOST_WIDE_INT) 1);
10318 continue;
10319 }
10320 break;
10321
10322 case ASHIFTRT:
10323 /* If this is an equality comparison with zero, we can do this
10324 as a logical shift, which might be much simpler. */
10325 if (equality_comparison_p && const_op == 0
10326 && GET_CODE (XEXP (op0, 1)) == CONST_INT)
10327 {
10328 op0 = simplify_shift_const (NULL_RTX, LSHIFTRT, mode,
10329 XEXP (op0, 0),
10330 INTVAL (XEXP (op0, 1)));
10331 continue;
10332 }
10333
10334 /* If OP0 is a sign extension and CODE is not an unsigned comparison,
10335 do the comparison in a narrower mode. */
10336 if (! unsigned_comparison_p
10337 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10338 && GET_CODE (XEXP (op0, 0)) == ASHIFT
10339 && XEXP (op0, 1) == XEXP (XEXP (op0, 0), 1)
10340 && (tmode = mode_for_size (mode_width - INTVAL (XEXP (op0, 1)),
10341 MODE_INT, 1)) != BLKmode
10342 && ((unsigned HOST_WIDE_INT) const_op <= GET_MODE_MASK (tmode)
10343 || ((unsigned HOST_WIDE_INT) - const_op
10344 <= GET_MODE_MASK (tmode))))
10345 {
10346 op0 = gen_lowpart_for_combine (tmode, XEXP (XEXP (op0, 0), 0));
10347 continue;
10348 }
10349
10350 /* ... fall through ... */
10351 case LSHIFTRT:
10352 /* If we have (compare (xshiftrt FOO N) (const_int C)) and
10353 the low order N bits of FOO are known to be zero, we can do this
10354 by comparing FOO with C shifted left N bits so long as no
10355 overflow occurs. */
10356 if (GET_CODE (XEXP (op0, 1)) == CONST_INT
10357 && INTVAL (XEXP (op0, 1)) >= 0
10358 && INTVAL (XEXP (op0, 1)) < HOST_BITS_PER_WIDE_INT
10359 && mode_width <= HOST_BITS_PER_WIDE_INT
10360 && (nonzero_bits (XEXP (op0, 0), mode)
10361 & (((HOST_WIDE_INT) 1 << INTVAL (XEXP (op0, 1))) - 1)) == 0
10362 && (const_op == 0
10363 || (floor_log2 (const_op) + INTVAL (XEXP (op0, 1))
10364 < mode_width)))
10365 {
10366 const_op <<= INTVAL (XEXP (op0, 1));
10367 op1 = GEN_INT (const_op);
10368 op0 = XEXP (op0, 0);
10369 continue;
10370 }
10371
10372 /* If we are using this shift to extract just the sign bit, we
10373 can replace this with an LT or GE comparison. */
10374 if (const_op == 0
10375 && (equality_comparison_p || sign_bit_comparison_p)
10376 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10377 && INTVAL (XEXP (op0, 1)) == mode_width - 1)
10378 {
10379 op0 = XEXP (op0, 0);
10380 code = (code == NE || code == GT ? LT : GE);
10381 continue;
10382 }
10383 break;
10384
10385 default:
10386 break;
10387 }
10388
10389 break;
10390 }
10391
10392 /* Now make any compound operations involved in this comparison. Then,
10393 check for an outmost SUBREG on OP0 that is not doing anything or is
10394 paradoxical. The latter case can only occur when it is known that the
10395 "extra" bits will be zero. Therefore, it is safe to remove the SUBREG.
10396 We can never remove a SUBREG for a non-equality comparison because the
10397 sign bit is in a different place in the underlying object. */
10398
10399 op0 = make_compound_operation (op0, op1 == const0_rtx ? COMPARE : SET);
10400 op1 = make_compound_operation (op1, SET);
10401
10402 if (GET_CODE (op0) == SUBREG && subreg_lowpart_p (op0)
10403 && GET_MODE_CLASS (GET_MODE (op0)) == MODE_INT
10404 && (code == NE || code == EQ)
10405 && ((GET_MODE_SIZE (GET_MODE (op0))
10406 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (op0))))))
10407 {
10408 op0 = SUBREG_REG (op0);
10409 op1 = gen_lowpart_for_combine (GET_MODE (op0), op1);
10410 }
10411
10412 else if (GET_CODE (op0) == SUBREG && subreg_lowpart_p (op0)
10413 && GET_MODE_CLASS (GET_MODE (op0)) == MODE_INT
10414 && (code == NE || code == EQ)
10415 && (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (op0)))
10416 <= HOST_BITS_PER_WIDE_INT)
10417 && (nonzero_bits (SUBREG_REG (op0), GET_MODE (SUBREG_REG (op0)))
10418 & ~ GET_MODE_MASK (GET_MODE (op0))) == 0
10419 && (tem = gen_lowpart_for_combine (GET_MODE (SUBREG_REG (op0)),
10420 op1),
10421 (nonzero_bits (tem, GET_MODE (SUBREG_REG (op0)))
10422 & ~ GET_MODE_MASK (GET_MODE (op0))) == 0))
10423 op0 = SUBREG_REG (op0), op1 = tem;
10424
10425 /* We now do the opposite procedure: Some machines don't have compare
10426 insns in all modes. If OP0's mode is an integer mode smaller than a
10427 word and we can't do a compare in that mode, see if there is a larger
10428 mode for which we can do the compare. There are a number of cases in
10429 which we can use the wider mode. */
10430
10431 mode = GET_MODE (op0);
10432 if (mode != VOIDmode && GET_MODE_CLASS (mode) == MODE_INT
10433 && GET_MODE_SIZE (mode) < UNITS_PER_WORD
10434 && cmp_optab->handlers[(int) mode].insn_code == CODE_FOR_nothing)
10435 for (tmode = GET_MODE_WIDER_MODE (mode);
10436 (tmode != VOIDmode
10437 && GET_MODE_BITSIZE (tmode) <= HOST_BITS_PER_WIDE_INT);
10438 tmode = GET_MODE_WIDER_MODE (tmode))
10439 if (cmp_optab->handlers[(int) tmode].insn_code != CODE_FOR_nothing)
10440 {
10441 /* If the only nonzero bits in OP0 and OP1 are those in the
10442 narrower mode and this is an equality or unsigned comparison,
10443 we can use the wider mode. Similarly for sign-extended
10444 values, in which case it is true for all comparisons. */
10445 if (((code == EQ || code == NE
10446 || code == GEU || code == GTU || code == LEU || code == LTU)
10447 && (nonzero_bits (op0, tmode) & ~ GET_MODE_MASK (mode)) == 0
10448 && (nonzero_bits (op1, tmode) & ~ GET_MODE_MASK (mode)) == 0)
10449 || ((num_sign_bit_copies (op0, tmode)
10450 > GET_MODE_BITSIZE (tmode) - GET_MODE_BITSIZE (mode))
10451 && (num_sign_bit_copies (op1, tmode)
10452 > GET_MODE_BITSIZE (tmode) - GET_MODE_BITSIZE (mode))))
10453 {
10454 op0 = gen_lowpart_for_combine (tmode, op0);
10455 op1 = gen_lowpart_for_combine (tmode, op1);
10456 break;
10457 }
10458
10459 /* If this is a test for negative, we can make an explicit
10460 test of the sign bit. */
10461
10462 if (op1 == const0_rtx && (code == LT || code == GE)
10463 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
10464 {
10465 op0 = gen_binary (AND, tmode,
10466 gen_lowpart_for_combine (tmode, op0),
10467 GEN_INT ((HOST_WIDE_INT) 1
10468 << (GET_MODE_BITSIZE (mode) - 1)));
10469 code = (code == LT) ? NE : EQ;
10470 break;
10471 }
10472 }
10473
10474 #ifdef CANONICALIZE_COMPARISON
10475 /* If this machine only supports a subset of valid comparisons, see if we
10476 can convert an unsupported one into a supported one. */
10477 CANONICALIZE_COMPARISON (code, op0, op1);
10478 #endif
10479
10480 *pop0 = op0;
10481 *pop1 = op1;
10482
10483 return code;
10484 }
10485 \f
10486 /* Return 1 if we know that X, a comparison operation, is not operating
10487 on a floating-point value or is EQ or NE, meaning that we can safely
10488 reverse it. */
10489
10490 static int
10491 reversible_comparison_p (x)
10492 rtx x;
10493 {
10494 if (TARGET_FLOAT_FORMAT != IEEE_FLOAT_FORMAT
10495 || flag_fast_math
10496 || GET_CODE (x) == NE || GET_CODE (x) == EQ)
10497 return 1;
10498
10499 switch (GET_MODE_CLASS (GET_MODE (XEXP (x, 0))))
10500 {
10501 case MODE_INT:
10502 case MODE_PARTIAL_INT:
10503 case MODE_COMPLEX_INT:
10504 return 1;
10505
10506 case MODE_CC:
10507 /* If the mode of the condition codes tells us that this is safe,
10508 we need look no further. */
10509 if (REVERSIBLE_CC_MODE (GET_MODE (XEXP (x, 0))))
10510 return 1;
10511
10512 /* Otherwise try and find where the condition codes were last set and
10513 use that. */
10514 x = get_last_value (XEXP (x, 0));
10515 return (x && GET_CODE (x) == COMPARE
10516 && ! FLOAT_MODE_P (GET_MODE (XEXP (x, 0))));
10517
10518 default:
10519 return 0;
10520 }
10521 }
10522 \f
10523 /* Utility function for following routine. Called when X is part of a value
10524 being stored into reg_last_set_value. Sets reg_last_set_table_tick
10525 for each register mentioned. Similar to mention_regs in cse.c */
10526
10527 static void
10528 update_table_tick (x)
10529 rtx x;
10530 {
10531 register enum rtx_code code = GET_CODE (x);
10532 register char *fmt = GET_RTX_FORMAT (code);
10533 register int i;
10534
10535 if (code == REG)
10536 {
10537 int regno = REGNO (x);
10538 int endregno = regno + (regno < FIRST_PSEUDO_REGISTER
10539 ? HARD_REGNO_NREGS (regno, GET_MODE (x)) : 1);
10540
10541 for (i = regno; i < endregno; i++)
10542 reg_last_set_table_tick[i] = label_tick;
10543
10544 return;
10545 }
10546
10547 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
10548 /* Note that we can't have an "E" in values stored; see
10549 get_last_value_validate. */
10550 if (fmt[i] == 'e')
10551 update_table_tick (XEXP (x, i));
10552 }
10553
10554 /* Record that REG is set to VALUE in insn INSN. If VALUE is zero, we
10555 are saying that the register is clobbered and we no longer know its
10556 value. If INSN is zero, don't update reg_last_set; this is only permitted
10557 with VALUE also zero and is used to invalidate the register. */
10558
10559 static void
10560 record_value_for_reg (reg, insn, value)
10561 rtx reg;
10562 rtx insn;
10563 rtx value;
10564 {
10565 int regno = REGNO (reg);
10566 int endregno = regno + (regno < FIRST_PSEUDO_REGISTER
10567 ? HARD_REGNO_NREGS (regno, GET_MODE (reg)) : 1);
10568 int i;
10569
10570 /* If VALUE contains REG and we have a previous value for REG, substitute
10571 the previous value. */
10572 if (value && insn && reg_overlap_mentioned_p (reg, value))
10573 {
10574 rtx tem;
10575
10576 /* Set things up so get_last_value is allowed to see anything set up to
10577 our insn. */
10578 subst_low_cuid = INSN_CUID (insn);
10579 tem = get_last_value (reg);
10580
10581 if (tem)
10582 value = replace_rtx (copy_rtx (value), reg, tem);
10583 }
10584
10585 /* For each register modified, show we don't know its value, that
10586 we don't know about its bitwise content, that its value has been
10587 updated, and that we don't know the location of the death of the
10588 register. */
10589 for (i = regno; i < endregno; i ++)
10590 {
10591 if (insn)
10592 reg_last_set[i] = insn;
10593 reg_last_set_value[i] = 0;
10594 reg_last_set_mode[i] = 0;
10595 reg_last_set_nonzero_bits[i] = 0;
10596 reg_last_set_sign_bit_copies[i] = 0;
10597 reg_last_death[i] = 0;
10598 }
10599
10600 /* Mark registers that are being referenced in this value. */
10601 if (value)
10602 update_table_tick (value);
10603
10604 /* Now update the status of each register being set.
10605 If someone is using this register in this block, set this register
10606 to invalid since we will get confused between the two lives in this
10607 basic block. This makes using this register always invalid. In cse, we
10608 scan the table to invalidate all entries using this register, but this
10609 is too much work for us. */
10610
10611 for (i = regno; i < endregno; i++)
10612 {
10613 reg_last_set_label[i] = label_tick;
10614 if (value && reg_last_set_table_tick[i] == label_tick)
10615 reg_last_set_invalid[i] = 1;
10616 else
10617 reg_last_set_invalid[i] = 0;
10618 }
10619
10620 /* The value being assigned might refer to X (like in "x++;"). In that
10621 case, we must replace it with (clobber (const_int 0)) to prevent
10622 infinite loops. */
10623 if (value && ! get_last_value_validate (&value, insn,
10624 reg_last_set_label[regno], 0))
10625 {
10626 value = copy_rtx (value);
10627 if (! get_last_value_validate (&value, insn,
10628 reg_last_set_label[regno], 1))
10629 value = 0;
10630 }
10631
10632 /* For the main register being modified, update the value, the mode, the
10633 nonzero bits, and the number of sign bit copies. */
10634
10635 reg_last_set_value[regno] = value;
10636
10637 if (value)
10638 {
10639 subst_low_cuid = INSN_CUID (insn);
10640 reg_last_set_mode[regno] = GET_MODE (reg);
10641 reg_last_set_nonzero_bits[regno] = nonzero_bits (value, GET_MODE (reg));
10642 reg_last_set_sign_bit_copies[regno]
10643 = num_sign_bit_copies (value, GET_MODE (reg));
10644 }
10645 }
10646
10647 /* Used for communication between the following two routines. */
10648 static rtx record_dead_insn;
10649
10650 /* Called via note_stores from record_dead_and_set_regs to handle one
10651 SET or CLOBBER in an insn. */
10652
10653 static void
10654 record_dead_and_set_regs_1 (dest, setter)
10655 rtx dest, setter;
10656 {
10657 if (GET_CODE (dest) == SUBREG)
10658 dest = SUBREG_REG (dest);
10659
10660 if (GET_CODE (dest) == REG)
10661 {
10662 /* If we are setting the whole register, we know its value. Otherwise
10663 show that we don't know the value. We can handle SUBREG in
10664 some cases. */
10665 if (GET_CODE (setter) == SET && dest == SET_DEST (setter))
10666 record_value_for_reg (dest, record_dead_insn, SET_SRC (setter));
10667 else if (GET_CODE (setter) == SET
10668 && GET_CODE (SET_DEST (setter)) == SUBREG
10669 && SUBREG_REG (SET_DEST (setter)) == dest
10670 && GET_MODE_BITSIZE (GET_MODE (dest)) <= BITS_PER_WORD
10671 && subreg_lowpart_p (SET_DEST (setter)))
10672 record_value_for_reg (dest, record_dead_insn,
10673 gen_lowpart_for_combine (GET_MODE (dest),
10674 SET_SRC (setter)));
10675 else
10676 record_value_for_reg (dest, record_dead_insn, NULL_RTX);
10677 }
10678 else if (GET_CODE (dest) == MEM
10679 /* Ignore pushes, they clobber nothing. */
10680 && ! push_operand (dest, GET_MODE (dest)))
10681 mem_last_set = INSN_CUID (record_dead_insn);
10682 }
10683
10684 /* Update the records of when each REG was most recently set or killed
10685 for the things done by INSN. This is the last thing done in processing
10686 INSN in the combiner loop.
10687
10688 We update reg_last_set, reg_last_set_value, reg_last_set_mode,
10689 reg_last_set_nonzero_bits, reg_last_set_sign_bit_copies, reg_last_death,
10690 and also the similar information mem_last_set (which insn most recently
10691 modified memory) and last_call_cuid (which insn was the most recent
10692 subroutine call). */
10693
10694 static void
10695 record_dead_and_set_regs (insn)
10696 rtx insn;
10697 {
10698 register rtx link;
10699 int i;
10700
10701 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
10702 {
10703 if (REG_NOTE_KIND (link) == REG_DEAD
10704 && GET_CODE (XEXP (link, 0)) == REG)
10705 {
10706 int regno = REGNO (XEXP (link, 0));
10707 int endregno
10708 = regno + (regno < FIRST_PSEUDO_REGISTER
10709 ? HARD_REGNO_NREGS (regno, GET_MODE (XEXP (link, 0)))
10710 : 1);
10711
10712 for (i = regno; i < endregno; i++)
10713 reg_last_death[i] = insn;
10714 }
10715 else if (REG_NOTE_KIND (link) == REG_INC)
10716 record_value_for_reg (XEXP (link, 0), insn, NULL_RTX);
10717 }
10718
10719 if (GET_CODE (insn) == CALL_INSN)
10720 {
10721 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
10722 if (call_used_regs[i])
10723 {
10724 reg_last_set_value[i] = 0;
10725 reg_last_set_mode[i] = 0;
10726 reg_last_set_nonzero_bits[i] = 0;
10727 reg_last_set_sign_bit_copies[i] = 0;
10728 reg_last_death[i] = 0;
10729 }
10730
10731 last_call_cuid = mem_last_set = INSN_CUID (insn);
10732 }
10733
10734 record_dead_insn = insn;
10735 note_stores (PATTERN (insn), record_dead_and_set_regs_1);
10736 }
10737 \f
10738 /* Utility routine for the following function. Verify that all the registers
10739 mentioned in *LOC are valid when *LOC was part of a value set when
10740 label_tick == TICK. Return 0 if some are not.
10741
10742 If REPLACE is non-zero, replace the invalid reference with
10743 (clobber (const_int 0)) and return 1. This replacement is useful because
10744 we often can get useful information about the form of a value (e.g., if
10745 it was produced by a shift that always produces -1 or 0) even though
10746 we don't know exactly what registers it was produced from. */
10747
10748 static int
10749 get_last_value_validate (loc, insn, tick, replace)
10750 rtx *loc;
10751 rtx insn;
10752 int tick;
10753 int replace;
10754 {
10755 rtx x = *loc;
10756 char *fmt = GET_RTX_FORMAT (GET_CODE (x));
10757 int len = GET_RTX_LENGTH (GET_CODE (x));
10758 int i;
10759
10760 if (GET_CODE (x) == REG)
10761 {
10762 int regno = REGNO (x);
10763 int endregno = regno + (regno < FIRST_PSEUDO_REGISTER
10764 ? HARD_REGNO_NREGS (regno, GET_MODE (x)) : 1);
10765 int j;
10766
10767 for (j = regno; j < endregno; j++)
10768 if (reg_last_set_invalid[j]
10769 /* If this is a pseudo-register that was only set once, it is
10770 always valid. */
10771 || (! (regno >= FIRST_PSEUDO_REGISTER && REG_N_SETS (regno) == 1)
10772 && reg_last_set_label[j] > tick))
10773 {
10774 if (replace)
10775 *loc = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
10776 return replace;
10777 }
10778
10779 return 1;
10780 }
10781 /* If this is a memory reference, make sure that there were
10782 no stores after it that might have clobbered the value. We don't
10783 have alias info, so we assume any store invalidates it. */
10784 else if (GET_CODE (x) == MEM && ! RTX_UNCHANGING_P (x)
10785 && INSN_CUID (insn) <= mem_last_set)
10786 {
10787 if (replace)
10788 *loc = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
10789 return replace;
10790 }
10791
10792 for (i = 0; i < len; i++)
10793 if ((fmt[i] == 'e'
10794 && get_last_value_validate (&XEXP (x, i), insn, tick, replace) == 0)
10795 /* Don't bother with these. They shouldn't occur anyway. */
10796 || fmt[i] == 'E')
10797 return 0;
10798
10799 /* If we haven't found a reason for it to be invalid, it is valid. */
10800 return 1;
10801 }
10802
10803 /* Get the last value assigned to X, if known. Some registers
10804 in the value may be replaced with (clobber (const_int 0)) if their value
10805 is known longer known reliably. */
10806
10807 static rtx
10808 get_last_value (x)
10809 rtx x;
10810 {
10811 int regno;
10812 rtx value;
10813
10814 /* If this is a non-paradoxical SUBREG, get the value of its operand and
10815 then convert it to the desired mode. If this is a paradoxical SUBREG,
10816 we cannot predict what values the "extra" bits might have. */
10817 if (GET_CODE (x) == SUBREG
10818 && subreg_lowpart_p (x)
10819 && (GET_MODE_SIZE (GET_MODE (x))
10820 <= GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
10821 && (value = get_last_value (SUBREG_REG (x))) != 0)
10822 return gen_lowpart_for_combine (GET_MODE (x), value);
10823
10824 if (GET_CODE (x) != REG)
10825 return 0;
10826
10827 regno = REGNO (x);
10828 value = reg_last_set_value[regno];
10829
10830 /* If we don't have a value or if it isn't for this basic block,
10831 return 0. */
10832
10833 if (value == 0
10834 || (REG_N_SETS (regno) != 1
10835 && reg_last_set_label[regno] != label_tick))
10836 return 0;
10837
10838 /* If the value was set in a later insn than the ones we are processing,
10839 we can't use it even if the register was only set once, but make a quick
10840 check to see if the previous insn set it to something. This is commonly
10841 the case when the same pseudo is used by repeated insns.
10842
10843 This does not work if there exists an instruction which is temporarily
10844 not on the insn chain. */
10845
10846 if (INSN_CUID (reg_last_set[regno]) >= subst_low_cuid)
10847 {
10848 rtx insn, set;
10849
10850 /* We can not do anything useful in this case, because there is
10851 an instruction which is not on the insn chain. */
10852 if (subst_prev_insn)
10853 return 0;
10854
10855 /* Skip over USE insns. They are not useful here, and they may have
10856 been made by combine, in which case they do not have a INSN_CUID
10857 value. We can't use prev_real_insn, because that would incorrectly
10858 take us backwards across labels. Skip over BARRIERs also, since
10859 they could have been made by combine. If we see one, we must be
10860 optimizing dead code, so it doesn't matter what we do. */
10861 for (insn = prev_nonnote_insn (subst_insn);
10862 insn && ((GET_CODE (insn) == INSN
10863 && GET_CODE (PATTERN (insn)) == USE)
10864 || GET_CODE (insn) == BARRIER
10865 || INSN_CUID (insn) >= subst_low_cuid);
10866 insn = prev_nonnote_insn (insn))
10867 ;
10868
10869 if (insn
10870 && (set = single_set (insn)) != 0
10871 && rtx_equal_p (SET_DEST (set), x))
10872 {
10873 value = SET_SRC (set);
10874
10875 /* Make sure that VALUE doesn't reference X. Replace any
10876 explicit references with a CLOBBER. If there are any remaining
10877 references (rare), don't use the value. */
10878
10879 if (reg_mentioned_p (x, value))
10880 value = replace_rtx (copy_rtx (value), x,
10881 gen_rtx_CLOBBER (GET_MODE (x), const0_rtx));
10882
10883 if (reg_overlap_mentioned_p (x, value))
10884 return 0;
10885 }
10886 else
10887 return 0;
10888 }
10889
10890 /* If the value has all its registers valid, return it. */
10891 if (get_last_value_validate (&value, reg_last_set[regno],
10892 reg_last_set_label[regno], 0))
10893 return value;
10894
10895 /* Otherwise, make a copy and replace any invalid register with
10896 (clobber (const_int 0)). If that fails for some reason, return 0. */
10897
10898 value = copy_rtx (value);
10899 if (get_last_value_validate (&value, reg_last_set[regno],
10900 reg_last_set_label[regno], 1))
10901 return value;
10902
10903 return 0;
10904 }
10905 \f
10906 /* Return nonzero if expression X refers to a REG or to memory
10907 that is set in an instruction more recent than FROM_CUID. */
10908
10909 static int
10910 use_crosses_set_p (x, from_cuid)
10911 register rtx x;
10912 int from_cuid;
10913 {
10914 register char *fmt;
10915 register int i;
10916 register enum rtx_code code = GET_CODE (x);
10917
10918 if (code == REG)
10919 {
10920 register int regno = REGNO (x);
10921 int endreg = regno + (regno < FIRST_PSEUDO_REGISTER
10922 ? HARD_REGNO_NREGS (regno, GET_MODE (x)) : 1);
10923
10924 #ifdef PUSH_ROUNDING
10925 /* Don't allow uses of the stack pointer to be moved,
10926 because we don't know whether the move crosses a push insn. */
10927 if (regno == STACK_POINTER_REGNUM)
10928 return 1;
10929 #endif
10930 for (;regno < endreg; regno++)
10931 if (reg_last_set[regno]
10932 && INSN_CUID (reg_last_set[regno]) > from_cuid)
10933 return 1;
10934 return 0;
10935 }
10936
10937 if (code == MEM && mem_last_set > from_cuid)
10938 return 1;
10939
10940 fmt = GET_RTX_FORMAT (code);
10941
10942 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
10943 {
10944 if (fmt[i] == 'E')
10945 {
10946 register int j;
10947 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
10948 if (use_crosses_set_p (XVECEXP (x, i, j), from_cuid))
10949 return 1;
10950 }
10951 else if (fmt[i] == 'e'
10952 && use_crosses_set_p (XEXP (x, i), from_cuid))
10953 return 1;
10954 }
10955 return 0;
10956 }
10957 \f
10958 /* Define three variables used for communication between the following
10959 routines. */
10960
10961 static int reg_dead_regno, reg_dead_endregno;
10962 static int reg_dead_flag;
10963
10964 /* Function called via note_stores from reg_dead_at_p.
10965
10966 If DEST is within [reg_dead_regno, reg_dead_endregno), set
10967 reg_dead_flag to 1 if X is a CLOBBER and to -1 it is a SET. */
10968
10969 static void
10970 reg_dead_at_p_1 (dest, x)
10971 rtx dest;
10972 rtx x;
10973 {
10974 int regno, endregno;
10975
10976 if (GET_CODE (dest) != REG)
10977 return;
10978
10979 regno = REGNO (dest);
10980 endregno = regno + (regno < FIRST_PSEUDO_REGISTER
10981 ? HARD_REGNO_NREGS (regno, GET_MODE (dest)) : 1);
10982
10983 if (reg_dead_endregno > regno && reg_dead_regno < endregno)
10984 reg_dead_flag = (GET_CODE (x) == CLOBBER) ? 1 : -1;
10985 }
10986
10987 /* Return non-zero if REG is known to be dead at INSN.
10988
10989 We scan backwards from INSN. If we hit a REG_DEAD note or a CLOBBER
10990 referencing REG, it is dead. If we hit a SET referencing REG, it is
10991 live. Otherwise, see if it is live or dead at the start of the basic
10992 block we are in. Hard regs marked as being live in NEWPAT_USED_REGS
10993 must be assumed to be always live. */
10994
10995 static int
10996 reg_dead_at_p (reg, insn)
10997 rtx reg;
10998 rtx insn;
10999 {
11000 int block, i;
11001
11002 /* Set variables for reg_dead_at_p_1. */
11003 reg_dead_regno = REGNO (reg);
11004 reg_dead_endregno = reg_dead_regno + (reg_dead_regno < FIRST_PSEUDO_REGISTER
11005 ? HARD_REGNO_NREGS (reg_dead_regno,
11006 GET_MODE (reg))
11007 : 1);
11008
11009 reg_dead_flag = 0;
11010
11011 /* Check that reg isn't mentioned in NEWPAT_USED_REGS. */
11012 if (reg_dead_regno < FIRST_PSEUDO_REGISTER)
11013 {
11014 for (i = reg_dead_regno; i < reg_dead_endregno; i++)
11015 if (TEST_HARD_REG_BIT (newpat_used_regs, i))
11016 return 0;
11017 }
11018
11019 /* Scan backwards until we find a REG_DEAD note, SET, CLOBBER, label, or
11020 beginning of function. */
11021 for (; insn && GET_CODE (insn) != CODE_LABEL && GET_CODE (insn) != BARRIER;
11022 insn = prev_nonnote_insn (insn))
11023 {
11024 note_stores (PATTERN (insn), reg_dead_at_p_1);
11025 if (reg_dead_flag)
11026 return reg_dead_flag == 1 ? 1 : 0;
11027
11028 if (find_regno_note (insn, REG_DEAD, reg_dead_regno))
11029 return 1;
11030 }
11031
11032 /* Get the basic block number that we were in. */
11033 if (insn == 0)
11034 block = 0;
11035 else
11036 {
11037 for (block = 0; block < n_basic_blocks; block++)
11038 if (insn == BLOCK_HEAD (block))
11039 break;
11040
11041 if (block == n_basic_blocks)
11042 return 0;
11043 }
11044
11045 for (i = reg_dead_regno; i < reg_dead_endregno; i++)
11046 if (REGNO_REG_SET_P (basic_block_live_at_start[block], i))
11047 return 0;
11048
11049 return 1;
11050 }
11051 \f
11052 /* Note hard registers in X that are used. This code is similar to
11053 that in flow.c, but much simpler since we don't care about pseudos. */
11054
11055 static void
11056 mark_used_regs_combine (x)
11057 rtx x;
11058 {
11059 register RTX_CODE code = GET_CODE (x);
11060 register int regno;
11061 int i;
11062
11063 switch (code)
11064 {
11065 case LABEL_REF:
11066 case SYMBOL_REF:
11067 case CONST_INT:
11068 case CONST:
11069 case CONST_DOUBLE:
11070 case PC:
11071 case ADDR_VEC:
11072 case ADDR_DIFF_VEC:
11073 case ASM_INPUT:
11074 #ifdef HAVE_cc0
11075 /* CC0 must die in the insn after it is set, so we don't need to take
11076 special note of it here. */
11077 case CC0:
11078 #endif
11079 return;
11080
11081 case CLOBBER:
11082 /* If we are clobbering a MEM, mark any hard registers inside the
11083 address as used. */
11084 if (GET_CODE (XEXP (x, 0)) == MEM)
11085 mark_used_regs_combine (XEXP (XEXP (x, 0), 0));
11086 return;
11087
11088 case REG:
11089 regno = REGNO (x);
11090 /* A hard reg in a wide mode may really be multiple registers.
11091 If so, mark all of them just like the first. */
11092 if (regno < FIRST_PSEUDO_REGISTER)
11093 {
11094 /* None of this applies to the stack, frame or arg pointers */
11095 if (regno == STACK_POINTER_REGNUM
11096 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
11097 || regno == HARD_FRAME_POINTER_REGNUM
11098 #endif
11099 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
11100 || (regno == ARG_POINTER_REGNUM && fixed_regs[regno])
11101 #endif
11102 || regno == FRAME_POINTER_REGNUM)
11103 return;
11104
11105 i = HARD_REGNO_NREGS (regno, GET_MODE (x));
11106 while (i-- > 0)
11107 SET_HARD_REG_BIT (newpat_used_regs, regno + i);
11108 }
11109 return;
11110
11111 case SET:
11112 {
11113 /* If setting a MEM, or a SUBREG of a MEM, then note any hard regs in
11114 the address. */
11115 register rtx testreg = SET_DEST (x);
11116
11117 while (GET_CODE (testreg) == SUBREG
11118 || GET_CODE (testreg) == ZERO_EXTRACT
11119 || GET_CODE (testreg) == SIGN_EXTRACT
11120 || GET_CODE (testreg) == STRICT_LOW_PART)
11121 testreg = XEXP (testreg, 0);
11122
11123 if (GET_CODE (testreg) == MEM)
11124 mark_used_regs_combine (XEXP (testreg, 0));
11125
11126 mark_used_regs_combine (SET_SRC (x));
11127 }
11128 return;
11129
11130 default:
11131 break;
11132 }
11133
11134 /* Recursively scan the operands of this expression. */
11135
11136 {
11137 register char *fmt = GET_RTX_FORMAT (code);
11138
11139 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
11140 {
11141 if (fmt[i] == 'e')
11142 mark_used_regs_combine (XEXP (x, i));
11143 else if (fmt[i] == 'E')
11144 {
11145 register int j;
11146
11147 for (j = 0; j < XVECLEN (x, i); j++)
11148 mark_used_regs_combine (XVECEXP (x, i, j));
11149 }
11150 }
11151 }
11152 }
11153
11154 \f
11155 /* Remove register number REGNO from the dead registers list of INSN.
11156
11157 Return the note used to record the death, if there was one. */
11158
11159 rtx
11160 remove_death (regno, insn)
11161 int regno;
11162 rtx insn;
11163 {
11164 register rtx note = find_regno_note (insn, REG_DEAD, regno);
11165
11166 if (note)
11167 {
11168 REG_N_DEATHS (regno)--;
11169 remove_note (insn, note);
11170 }
11171
11172 return note;
11173 }
11174
11175 /* For each register (hardware or pseudo) used within expression X, if its
11176 death is in an instruction with cuid between FROM_CUID (inclusive) and
11177 TO_INSN (exclusive), put a REG_DEAD note for that register in the
11178 list headed by PNOTES.
11179
11180 That said, don't move registers killed by maybe_kill_insn.
11181
11182 This is done when X is being merged by combination into TO_INSN. These
11183 notes will then be distributed as needed. */
11184
11185 static void
11186 move_deaths (x, maybe_kill_insn, from_cuid, to_insn, pnotes)
11187 rtx x;
11188 rtx maybe_kill_insn;
11189 int from_cuid;
11190 rtx to_insn;
11191 rtx *pnotes;
11192 {
11193 register char *fmt;
11194 register int len, i;
11195 register enum rtx_code code = GET_CODE (x);
11196
11197 if (code == REG)
11198 {
11199 register int regno = REGNO (x);
11200 register rtx where_dead = reg_last_death[regno];
11201 register rtx before_dead, after_dead;
11202
11203 /* Don't move the register if it gets killed in between from and to */
11204 if (maybe_kill_insn && reg_set_p (x, maybe_kill_insn)
11205 && !reg_referenced_p (x, maybe_kill_insn))
11206 return;
11207
11208 /* WHERE_DEAD could be a USE insn made by combine, so first we
11209 make sure that we have insns with valid INSN_CUID values. */
11210 before_dead = where_dead;
11211 while (before_dead && INSN_UID (before_dead) > max_uid_cuid)
11212 before_dead = PREV_INSN (before_dead);
11213 after_dead = where_dead;
11214 while (after_dead && INSN_UID (after_dead) > max_uid_cuid)
11215 after_dead = NEXT_INSN (after_dead);
11216
11217 if (before_dead && after_dead
11218 && INSN_CUID (before_dead) >= from_cuid
11219 && (INSN_CUID (after_dead) < INSN_CUID (to_insn)
11220 || (where_dead != after_dead
11221 && INSN_CUID (after_dead) == INSN_CUID (to_insn))))
11222 {
11223 rtx note = remove_death (regno, where_dead);
11224
11225 /* It is possible for the call above to return 0. This can occur
11226 when reg_last_death points to I2 or I1 that we combined with.
11227 In that case make a new note.
11228
11229 We must also check for the case where X is a hard register
11230 and NOTE is a death note for a range of hard registers
11231 including X. In that case, we must put REG_DEAD notes for
11232 the remaining registers in place of NOTE. */
11233
11234 if (note != 0 && regno < FIRST_PSEUDO_REGISTER
11235 && (GET_MODE_SIZE (GET_MODE (XEXP (note, 0)))
11236 > GET_MODE_SIZE (GET_MODE (x))))
11237 {
11238 int deadregno = REGNO (XEXP (note, 0));
11239 int deadend
11240 = (deadregno + HARD_REGNO_NREGS (deadregno,
11241 GET_MODE (XEXP (note, 0))));
11242 int ourend = regno + HARD_REGNO_NREGS (regno, GET_MODE (x));
11243 int i;
11244
11245 for (i = deadregno; i < deadend; i++)
11246 if (i < regno || i >= ourend)
11247 REG_NOTES (where_dead)
11248 = gen_rtx_EXPR_LIST (REG_DEAD,
11249 gen_rtx_REG (reg_raw_mode[i], i),
11250 REG_NOTES (where_dead));
11251 }
11252 /* If we didn't find any note, or if we found a REG_DEAD note that
11253 covers only part of the given reg, and we have a multi-reg hard
11254 register, then to be safe we must check for REG_DEAD notes
11255 for each register other than the first. They could have
11256 their own REG_DEAD notes lying around. */
11257 else if ((note == 0
11258 || (note != 0
11259 && (GET_MODE_SIZE (GET_MODE (XEXP (note, 0)))
11260 < GET_MODE_SIZE (GET_MODE (x)))))
11261 && regno < FIRST_PSEUDO_REGISTER
11262 && HARD_REGNO_NREGS (regno, GET_MODE (x)) > 1)
11263 {
11264 int ourend = regno + HARD_REGNO_NREGS (regno, GET_MODE (x));
11265 int i, offset;
11266 rtx oldnotes = 0;
11267
11268 if (note)
11269 offset = HARD_REGNO_NREGS (regno, GET_MODE (XEXP (note, 0)));
11270 else
11271 offset = 1;
11272
11273 for (i = regno + offset; i < ourend; i++)
11274 move_deaths (gen_rtx_REG (reg_raw_mode[i], i),
11275 maybe_kill_insn, from_cuid, to_insn, &oldnotes);
11276 }
11277
11278 if (note != 0 && GET_MODE (XEXP (note, 0)) == GET_MODE (x))
11279 {
11280 XEXP (note, 1) = *pnotes;
11281 *pnotes = note;
11282 }
11283 else
11284 *pnotes = gen_rtx_EXPR_LIST (REG_DEAD, x, *pnotes);
11285
11286 REG_N_DEATHS (regno)++;
11287 }
11288
11289 return;
11290 }
11291
11292 else if (GET_CODE (x) == SET)
11293 {
11294 rtx dest = SET_DEST (x);
11295
11296 move_deaths (SET_SRC (x), maybe_kill_insn, from_cuid, to_insn, pnotes);
11297
11298 /* In the case of a ZERO_EXTRACT, a STRICT_LOW_PART, or a SUBREG
11299 that accesses one word of a multi-word item, some
11300 piece of everything register in the expression is used by
11301 this insn, so remove any old death. */
11302
11303 if (GET_CODE (dest) == ZERO_EXTRACT
11304 || GET_CODE (dest) == STRICT_LOW_PART
11305 || (GET_CODE (dest) == SUBREG
11306 && (((GET_MODE_SIZE (GET_MODE (dest))
11307 + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
11308 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest)))
11309 + UNITS_PER_WORD - 1) / UNITS_PER_WORD))))
11310 {
11311 move_deaths (dest, maybe_kill_insn, from_cuid, to_insn, pnotes);
11312 return;
11313 }
11314
11315 /* If this is some other SUBREG, we know it replaces the entire
11316 value, so use that as the destination. */
11317 if (GET_CODE (dest) == SUBREG)
11318 dest = SUBREG_REG (dest);
11319
11320 /* If this is a MEM, adjust deaths of anything used in the address.
11321 For a REG (the only other possibility), the entire value is
11322 being replaced so the old value is not used in this insn. */
11323
11324 if (GET_CODE (dest) == MEM)
11325 move_deaths (XEXP (dest, 0), maybe_kill_insn, from_cuid,
11326 to_insn, pnotes);
11327 return;
11328 }
11329
11330 else if (GET_CODE (x) == CLOBBER)
11331 return;
11332
11333 len = GET_RTX_LENGTH (code);
11334 fmt = GET_RTX_FORMAT (code);
11335
11336 for (i = 0; i < len; i++)
11337 {
11338 if (fmt[i] == 'E')
11339 {
11340 register int j;
11341 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
11342 move_deaths (XVECEXP (x, i, j), maybe_kill_insn, from_cuid,
11343 to_insn, pnotes);
11344 }
11345 else if (fmt[i] == 'e')
11346 move_deaths (XEXP (x, i), maybe_kill_insn, from_cuid, to_insn, pnotes);
11347 }
11348 }
11349 \f
11350 /* Return 1 if X is the target of a bit-field assignment in BODY, the
11351 pattern of an insn. X must be a REG. */
11352
11353 static int
11354 reg_bitfield_target_p (x, body)
11355 rtx x;
11356 rtx body;
11357 {
11358 int i;
11359
11360 if (GET_CODE (body) == SET)
11361 {
11362 rtx dest = SET_DEST (body);
11363 rtx target;
11364 int regno, tregno, endregno, endtregno;
11365
11366 if (GET_CODE (dest) == ZERO_EXTRACT)
11367 target = XEXP (dest, 0);
11368 else if (GET_CODE (dest) == STRICT_LOW_PART)
11369 target = SUBREG_REG (XEXP (dest, 0));
11370 else
11371 return 0;
11372
11373 if (GET_CODE (target) == SUBREG)
11374 target = SUBREG_REG (target);
11375
11376 if (GET_CODE (target) != REG)
11377 return 0;
11378
11379 tregno = REGNO (target), regno = REGNO (x);
11380 if (tregno >= FIRST_PSEUDO_REGISTER || regno >= FIRST_PSEUDO_REGISTER)
11381 return target == x;
11382
11383 endtregno = tregno + HARD_REGNO_NREGS (tregno, GET_MODE (target));
11384 endregno = regno + HARD_REGNO_NREGS (regno, GET_MODE (x));
11385
11386 return endregno > tregno && regno < endtregno;
11387 }
11388
11389 else if (GET_CODE (body) == PARALLEL)
11390 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
11391 if (reg_bitfield_target_p (x, XVECEXP (body, 0, i)))
11392 return 1;
11393
11394 return 0;
11395 }
11396 \f
11397 /* Given a chain of REG_NOTES originally from FROM_INSN, try to place them
11398 as appropriate. I3 and I2 are the insns resulting from the combination
11399 insns including FROM (I2 may be zero).
11400
11401 ELIM_I2 and ELIM_I1 are either zero or registers that we know will
11402 not need REG_DEAD notes because they are being substituted for. This
11403 saves searching in the most common cases.
11404
11405 Each note in the list is either ignored or placed on some insns, depending
11406 on the type of note. */
11407
11408 static void
11409 distribute_notes (notes, from_insn, i3, i2, elim_i2, elim_i1)
11410 rtx notes;
11411 rtx from_insn;
11412 rtx i3, i2;
11413 rtx elim_i2, elim_i1;
11414 {
11415 rtx note, next_note;
11416 rtx tem;
11417
11418 for (note = notes; note; note = next_note)
11419 {
11420 rtx place = 0, place2 = 0;
11421
11422 /* If this NOTE references a pseudo register, ensure it references
11423 the latest copy of that register. */
11424 if (XEXP (note, 0) && GET_CODE (XEXP (note, 0)) == REG
11425 && REGNO (XEXP (note, 0)) >= FIRST_PSEUDO_REGISTER)
11426 XEXP (note, 0) = regno_reg_rtx[REGNO (XEXP (note, 0))];
11427
11428 next_note = XEXP (note, 1);
11429 switch (REG_NOTE_KIND (note))
11430 {
11431 case REG_BR_PROB:
11432 case REG_EXEC_COUNT:
11433 /* Doesn't matter much where we put this, as long as it's somewhere.
11434 It is preferable to keep these notes on branches, which is most
11435 likely to be i3. */
11436 place = i3;
11437 break;
11438
11439 case REG_UNUSED:
11440 /* Any clobbers for i3 may still exist, and so we must process
11441 REG_UNUSED notes from that insn.
11442
11443 Any clobbers from i2 or i1 can only exist if they were added by
11444 recog_for_combine. In that case, recog_for_combine created the
11445 necessary REG_UNUSED notes. Trying to keep any original
11446 REG_UNUSED notes from these insns can cause incorrect output
11447 if it is for the same register as the original i3 dest.
11448 In that case, we will notice that the register is set in i3,
11449 and then add a REG_UNUSED note for the destination of i3, which
11450 is wrong. However, it is possible to have REG_UNUSED notes from
11451 i2 or i1 for register which were both used and clobbered, so
11452 we keep notes from i2 or i1 if they will turn into REG_DEAD
11453 notes. */
11454
11455 /* If this register is set or clobbered in I3, put the note there
11456 unless there is one already. */
11457 if (reg_set_p (XEXP (note, 0), PATTERN (i3)))
11458 {
11459 if (from_insn != i3)
11460 break;
11461
11462 if (! (GET_CODE (XEXP (note, 0)) == REG
11463 ? find_regno_note (i3, REG_UNUSED, REGNO (XEXP (note, 0)))
11464 : find_reg_note (i3, REG_UNUSED, XEXP (note, 0))))
11465 place = i3;
11466 }
11467 /* Otherwise, if this register is used by I3, then this register
11468 now dies here, so we must put a REG_DEAD note here unless there
11469 is one already. */
11470 else if (reg_referenced_p (XEXP (note, 0), PATTERN (i3))
11471 && ! (GET_CODE (XEXP (note, 0)) == REG
11472 ? find_regno_note (i3, REG_DEAD, REGNO (XEXP (note, 0)))
11473 : find_reg_note (i3, REG_DEAD, XEXP (note, 0))))
11474 {
11475 PUT_REG_NOTE_KIND (note, REG_DEAD);
11476 place = i3;
11477 }
11478 break;
11479
11480 case REG_EQUAL:
11481 case REG_EQUIV:
11482 case REG_NONNEG:
11483 case REG_NOALIAS:
11484 /* These notes say something about results of an insn. We can
11485 only support them if they used to be on I3 in which case they
11486 remain on I3. Otherwise they are ignored.
11487
11488 If the note refers to an expression that is not a constant, we
11489 must also ignore the note since we cannot tell whether the
11490 equivalence is still true. It might be possible to do
11491 slightly better than this (we only have a problem if I2DEST
11492 or I1DEST is present in the expression), but it doesn't
11493 seem worth the trouble. */
11494
11495 if (from_insn == i3
11496 && (XEXP (note, 0) == 0 || CONSTANT_P (XEXP (note, 0))))
11497 place = i3;
11498 break;
11499
11500 case REG_INC:
11501 case REG_NO_CONFLICT:
11502 case REG_LABEL:
11503 /* These notes say something about how a register is used. They must
11504 be present on any use of the register in I2 or I3. */
11505 if (reg_mentioned_p (XEXP (note, 0), PATTERN (i3)))
11506 place = i3;
11507
11508 if (i2 && reg_mentioned_p (XEXP (note, 0), PATTERN (i2)))
11509 {
11510 if (place)
11511 place2 = i2;
11512 else
11513 place = i2;
11514 }
11515 break;
11516
11517 case REG_WAS_0:
11518 /* It is too much trouble to try to see if this note is still
11519 correct in all situations. It is better to simply delete it. */
11520 break;
11521
11522 case REG_RETVAL:
11523 /* If the insn previously containing this note still exists,
11524 put it back where it was. Otherwise move it to the previous
11525 insn. Adjust the corresponding REG_LIBCALL note. */
11526 if (GET_CODE (from_insn) != NOTE)
11527 place = from_insn;
11528 else
11529 {
11530 tem = find_reg_note (XEXP (note, 0), REG_LIBCALL, NULL_RTX);
11531 place = prev_real_insn (from_insn);
11532 if (tem && place)
11533 XEXP (tem, 0) = place;
11534 }
11535 break;
11536
11537 case REG_LIBCALL:
11538 /* This is handled similarly to REG_RETVAL. */
11539 if (GET_CODE (from_insn) != NOTE)
11540 place = from_insn;
11541 else
11542 {
11543 tem = find_reg_note (XEXP (note, 0), REG_RETVAL, NULL_RTX);
11544 place = next_real_insn (from_insn);
11545 if (tem && place)
11546 XEXP (tem, 0) = place;
11547 }
11548 break;
11549
11550 case REG_DEAD:
11551 /* If the register is used as an input in I3, it dies there.
11552 Similarly for I2, if it is non-zero and adjacent to I3.
11553
11554 If the register is not used as an input in either I3 or I2
11555 and it is not one of the registers we were supposed to eliminate,
11556 there are two possibilities. We might have a non-adjacent I2
11557 or we might have somehow eliminated an additional register
11558 from a computation. For example, we might have had A & B where
11559 we discover that B will always be zero. In this case we will
11560 eliminate the reference to A.
11561
11562 In both cases, we must search to see if we can find a previous
11563 use of A and put the death note there. */
11564
11565 if (from_insn
11566 && GET_CODE (from_insn) == CALL_INSN
11567 && find_reg_fusage (from_insn, USE, XEXP (note, 0)))
11568 place = from_insn;
11569 else if (reg_referenced_p (XEXP (note, 0), PATTERN (i3)))
11570 place = i3;
11571 else if (i2 != 0 && next_nonnote_insn (i2) == i3
11572 && reg_referenced_p (XEXP (note, 0), PATTERN (i2)))
11573 place = i2;
11574
11575 if (XEXP (note, 0) == elim_i2 || XEXP (note, 0) == elim_i1)
11576 break;
11577
11578 /* If the register is used in both I2 and I3 and it dies in I3,
11579 we might have added another reference to it. If reg_n_refs
11580 was 2, bump it to 3. This has to be correct since the
11581 register must have been set somewhere. The reason this is
11582 done is because local-alloc.c treats 2 references as a
11583 special case. */
11584
11585 if (place == i3 && i2 != 0 && GET_CODE (XEXP (note, 0)) == REG
11586 && REG_N_REFS (REGNO (XEXP (note, 0)))== 2
11587 && reg_referenced_p (XEXP (note, 0), PATTERN (i2)))
11588 REG_N_REFS (REGNO (XEXP (note, 0))) = 3;
11589
11590 if (place == 0)
11591 {
11592 for (tem = prev_nonnote_insn (i3);
11593 place == 0 && tem
11594 && (GET_CODE (tem) == INSN || GET_CODE (tem) == CALL_INSN);
11595 tem = prev_nonnote_insn (tem))
11596 {
11597 /* If the register is being set at TEM, see if that is all
11598 TEM is doing. If so, delete TEM. Otherwise, make this
11599 into a REG_UNUSED note instead. */
11600 if (reg_set_p (XEXP (note, 0), PATTERN (tem)))
11601 {
11602 rtx set = single_set (tem);
11603 rtx inner_dest = 0;
11604 #ifdef HAVE_cc0
11605 rtx cc0_setter = NULL_RTX;
11606 #endif
11607
11608 if (set != 0)
11609 for (inner_dest = SET_DEST (set);
11610 GET_CODE (inner_dest) == STRICT_LOW_PART
11611 || GET_CODE (inner_dest) == SUBREG
11612 || GET_CODE (inner_dest) == ZERO_EXTRACT;
11613 inner_dest = XEXP (inner_dest, 0))
11614 ;
11615
11616 /* Verify that it was the set, and not a clobber that
11617 modified the register.
11618
11619 CC0 targets must be careful to maintain setter/user
11620 pairs. If we cannot delete the setter due to side
11621 effects, mark the user with an UNUSED note instead
11622 of deleting it. */
11623
11624 if (set != 0 && ! side_effects_p (SET_SRC (set))
11625 && rtx_equal_p (XEXP (note, 0), inner_dest)
11626 #ifdef HAVE_cc0
11627 && (! reg_mentioned_p (cc0_rtx, SET_SRC (set))
11628 || ((cc0_setter = prev_cc0_setter (tem)) != NULL
11629 && sets_cc0_p (PATTERN (cc0_setter)) > 0))
11630 #endif
11631 )
11632 {
11633 /* Move the notes and links of TEM elsewhere.
11634 This might delete other dead insns recursively.
11635 First set the pattern to something that won't use
11636 any register. */
11637
11638 PATTERN (tem) = pc_rtx;
11639
11640 distribute_notes (REG_NOTES (tem), tem, tem,
11641 NULL_RTX, NULL_RTX, NULL_RTX);
11642 distribute_links (LOG_LINKS (tem));
11643
11644 PUT_CODE (tem, NOTE);
11645 NOTE_LINE_NUMBER (tem) = NOTE_INSN_DELETED;
11646 NOTE_SOURCE_FILE (tem) = 0;
11647
11648 #ifdef HAVE_cc0
11649 /* Delete the setter too. */
11650 if (cc0_setter)
11651 {
11652 PATTERN (cc0_setter) = pc_rtx;
11653
11654 distribute_notes (REG_NOTES (cc0_setter),
11655 cc0_setter, cc0_setter,
11656 NULL_RTX, NULL_RTX, NULL_RTX);
11657 distribute_links (LOG_LINKS (cc0_setter));
11658
11659 PUT_CODE (cc0_setter, NOTE);
11660 NOTE_LINE_NUMBER (cc0_setter) = NOTE_INSN_DELETED;
11661 NOTE_SOURCE_FILE (cc0_setter) = 0;
11662 }
11663 #endif
11664 }
11665 /* If the register is both set and used here, put the
11666 REG_DEAD note here, but place a REG_UNUSED note
11667 here too unless there already is one. */
11668 else if (reg_referenced_p (XEXP (note, 0),
11669 PATTERN (tem)))
11670 {
11671 place = tem;
11672
11673 if (! find_regno_note (tem, REG_UNUSED,
11674 REGNO (XEXP (note, 0))))
11675 REG_NOTES (tem)
11676 = gen_rtx_EXPR_LIST (REG_UNUSED,
11677 XEXP (note, 0),
11678 REG_NOTES (tem));
11679 }
11680 else
11681 {
11682 PUT_REG_NOTE_KIND (note, REG_UNUSED);
11683
11684 /* If there isn't already a REG_UNUSED note, put one
11685 here. */
11686 if (! find_regno_note (tem, REG_UNUSED,
11687 REGNO (XEXP (note, 0))))
11688 place = tem;
11689 break;
11690 }
11691 }
11692 else if (reg_referenced_p (XEXP (note, 0), PATTERN (tem))
11693 || (GET_CODE (tem) == CALL_INSN
11694 && find_reg_fusage (tem, USE, XEXP (note, 0))))
11695 {
11696 place = tem;
11697
11698 /* If we are doing a 3->2 combination, and we have a
11699 register which formerly died in i3 and was not used
11700 by i2, which now no longer dies in i3 and is used in
11701 i2 but does not die in i2, and place is between i2
11702 and i3, then we may need to move a link from place to
11703 i2. */
11704 if (i2 && INSN_UID (place) <= max_uid_cuid
11705 && INSN_CUID (place) > INSN_CUID (i2)
11706 && from_insn && INSN_CUID (from_insn) > INSN_CUID (i2)
11707 && reg_referenced_p (XEXP (note, 0), PATTERN (i2)))
11708 {
11709 rtx links = LOG_LINKS (place);
11710 LOG_LINKS (place) = 0;
11711 distribute_links (links);
11712 }
11713 break;
11714 }
11715 }
11716
11717 /* If we haven't found an insn for the death note and it
11718 is still a REG_DEAD note, but we have hit a CODE_LABEL,
11719 insert a USE insn for the register at that label and
11720 put the death node there. This prevents problems with
11721 call-state tracking in caller-save.c. */
11722 if (REG_NOTE_KIND (note) == REG_DEAD && place == 0 && tem != 0)
11723 {
11724 place
11725 = emit_insn_after (gen_rtx_USE (VOIDmode, XEXP (note, 0)),
11726 tem);
11727
11728 /* If this insn was emitted between blocks, then update
11729 BLOCK_HEAD of the current block to include it. */
11730 if (BLOCK_END (this_basic_block - 1) == tem)
11731 BLOCK_HEAD (this_basic_block) = place;
11732 }
11733 }
11734
11735 /* If the register is set or already dead at PLACE, we needn't do
11736 anything with this note if it is still a REG_DEAD note.
11737 We can here if it is set at all, not if is it totally replace,
11738 which is what `dead_or_set_p' checks, so also check for it being
11739 set partially. */
11740
11741
11742 if (place && REG_NOTE_KIND (note) == REG_DEAD)
11743 {
11744 int regno = REGNO (XEXP (note, 0));
11745
11746 if (dead_or_set_p (place, XEXP (note, 0))
11747 || reg_bitfield_target_p (XEXP (note, 0), PATTERN (place)))
11748 {
11749 /* Unless the register previously died in PLACE, clear
11750 reg_last_death. [I no longer understand why this is
11751 being done.] */
11752 if (reg_last_death[regno] != place)
11753 reg_last_death[regno] = 0;
11754 place = 0;
11755 }
11756 else
11757 reg_last_death[regno] = place;
11758
11759 /* If this is a death note for a hard reg that is occupying
11760 multiple registers, ensure that we are still using all
11761 parts of the object. If we find a piece of the object
11762 that is unused, we must add a USE for that piece before
11763 PLACE and put the appropriate REG_DEAD note on it.
11764
11765 An alternative would be to put a REG_UNUSED for the pieces
11766 on the insn that set the register, but that can't be done if
11767 it is not in the same block. It is simpler, though less
11768 efficient, to add the USE insns. */
11769
11770 if (place && regno < FIRST_PSEUDO_REGISTER
11771 && HARD_REGNO_NREGS (regno, GET_MODE (XEXP (note, 0))) > 1)
11772 {
11773 int endregno
11774 = regno + HARD_REGNO_NREGS (regno,
11775 GET_MODE (XEXP (note, 0)));
11776 int all_used = 1;
11777 int i;
11778
11779 for (i = regno; i < endregno; i++)
11780 if (! refers_to_regno_p (i, i + 1, PATTERN (place), 0)
11781 && ! find_regno_fusage (place, USE, i))
11782 {
11783 rtx piece = gen_rtx_REG (reg_raw_mode[i], i);
11784 rtx p;
11785
11786 /* See if we already placed a USE note for this
11787 register in front of PLACE. */
11788 for (p = place;
11789 GET_CODE (PREV_INSN (p)) == INSN
11790 && GET_CODE (PATTERN (PREV_INSN (p))) == USE;
11791 p = PREV_INSN (p))
11792 if (rtx_equal_p (piece,
11793 XEXP (PATTERN (PREV_INSN (p)), 0)))
11794 {
11795 p = 0;
11796 break;
11797 }
11798
11799 if (p)
11800 {
11801 rtx use_insn
11802 = emit_insn_before (gen_rtx_USE (VOIDmode,
11803 piece),
11804 p);
11805 REG_NOTES (use_insn)
11806 = gen_rtx_EXPR_LIST (REG_DEAD, piece,
11807 REG_NOTES (use_insn));
11808 }
11809
11810 all_used = 0;
11811 }
11812
11813 /* Check for the case where the register dying partially
11814 overlaps the register set by this insn. */
11815 if (all_used)
11816 for (i = regno; i < endregno; i++)
11817 if (dead_or_set_regno_p (place, i))
11818 {
11819 all_used = 0;
11820 break;
11821 }
11822
11823 if (! all_used)
11824 {
11825 /* Put only REG_DEAD notes for pieces that are
11826 still used and that are not already dead or set. */
11827
11828 for (i = regno; i < endregno; i++)
11829 {
11830 rtx piece = gen_rtx_REG (reg_raw_mode[i], i);
11831
11832 if ((reg_referenced_p (piece, PATTERN (place))
11833 || (GET_CODE (place) == CALL_INSN
11834 && find_reg_fusage (place, USE, piece)))
11835 && ! dead_or_set_p (place, piece)
11836 && ! reg_bitfield_target_p (piece,
11837 PATTERN (place)))
11838 REG_NOTES (place)
11839 = gen_rtx_EXPR_LIST (REG_DEAD,
11840 piece, REG_NOTES (place));
11841 }
11842
11843 place = 0;
11844 }
11845 }
11846 }
11847 break;
11848
11849 default:
11850 /* Any other notes should not be present at this point in the
11851 compilation. */
11852 abort ();
11853 }
11854
11855 if (place)
11856 {
11857 XEXP (note, 1) = REG_NOTES (place);
11858 REG_NOTES (place) = note;
11859 }
11860 else if ((REG_NOTE_KIND (note) == REG_DEAD
11861 || REG_NOTE_KIND (note) == REG_UNUSED)
11862 && GET_CODE (XEXP (note, 0)) == REG)
11863 REG_N_DEATHS (REGNO (XEXP (note, 0)))--;
11864
11865 if (place2)
11866 {
11867 if ((REG_NOTE_KIND (note) == REG_DEAD
11868 || REG_NOTE_KIND (note) == REG_UNUSED)
11869 && GET_CODE (XEXP (note, 0)) == REG)
11870 REG_N_DEATHS (REGNO (XEXP (note, 0)))++;
11871
11872 REG_NOTES (place2) = gen_rtx_fmt_ee (GET_CODE (note),
11873 REG_NOTE_KIND (note),
11874 XEXP (note, 0),
11875 REG_NOTES (place2));
11876 }
11877 }
11878 }
11879 \f
11880 /* Similarly to above, distribute the LOG_LINKS that used to be present on
11881 I3, I2, and I1 to new locations. This is also called in one case to
11882 add a link pointing at I3 when I3's destination is changed. */
11883
11884 static void
11885 distribute_links (links)
11886 rtx links;
11887 {
11888 rtx link, next_link;
11889
11890 for (link = links; link; link = next_link)
11891 {
11892 rtx place = 0;
11893 rtx insn;
11894 rtx set, reg;
11895
11896 next_link = XEXP (link, 1);
11897
11898 /* If the insn that this link points to is a NOTE or isn't a single
11899 set, ignore it. In the latter case, it isn't clear what we
11900 can do other than ignore the link, since we can't tell which
11901 register it was for. Such links wouldn't be used by combine
11902 anyway.
11903
11904 It is not possible for the destination of the target of the link to
11905 have been changed by combine. The only potential of this is if we
11906 replace I3, I2, and I1 by I3 and I2. But in that case the
11907 destination of I2 also remains unchanged. */
11908
11909 if (GET_CODE (XEXP (link, 0)) == NOTE
11910 || (set = single_set (XEXP (link, 0))) == 0)
11911 continue;
11912
11913 reg = SET_DEST (set);
11914 while (GET_CODE (reg) == SUBREG || GET_CODE (reg) == ZERO_EXTRACT
11915 || GET_CODE (reg) == SIGN_EXTRACT
11916 || GET_CODE (reg) == STRICT_LOW_PART)
11917 reg = XEXP (reg, 0);
11918
11919 /* A LOG_LINK is defined as being placed on the first insn that uses
11920 a register and points to the insn that sets the register. Start
11921 searching at the next insn after the target of the link and stop
11922 when we reach a set of the register or the end of the basic block.
11923
11924 Note that this correctly handles the link that used to point from
11925 I3 to I2. Also note that not much searching is typically done here
11926 since most links don't point very far away. */
11927
11928 for (insn = NEXT_INSN (XEXP (link, 0));
11929 (insn && (this_basic_block == n_basic_blocks - 1
11930 || BLOCK_HEAD (this_basic_block + 1) != insn));
11931 insn = NEXT_INSN (insn))
11932 if (GET_RTX_CLASS (GET_CODE (insn)) == 'i'
11933 && reg_overlap_mentioned_p (reg, PATTERN (insn)))
11934 {
11935 if (reg_referenced_p (reg, PATTERN (insn)))
11936 place = insn;
11937 break;
11938 }
11939 else if (GET_CODE (insn) == CALL_INSN
11940 && find_reg_fusage (insn, USE, reg))
11941 {
11942 place = insn;
11943 break;
11944 }
11945
11946 /* If we found a place to put the link, place it there unless there
11947 is already a link to the same insn as LINK at that point. */
11948
11949 if (place)
11950 {
11951 rtx link2;
11952
11953 for (link2 = LOG_LINKS (place); link2; link2 = XEXP (link2, 1))
11954 if (XEXP (link2, 0) == XEXP (link, 0))
11955 break;
11956
11957 if (link2 == 0)
11958 {
11959 XEXP (link, 1) = LOG_LINKS (place);
11960 LOG_LINKS (place) = link;
11961
11962 /* Set added_links_insn to the earliest insn we added a
11963 link to. */
11964 if (added_links_insn == 0
11965 || INSN_CUID (added_links_insn) > INSN_CUID (place))
11966 added_links_insn = place;
11967 }
11968 }
11969 }
11970 }
11971 \f
11972 /* Compute INSN_CUID for INSN, which is an insn made by combine. */
11973
11974 static int
11975 insn_cuid (insn)
11976 rtx insn;
11977 {
11978 while (insn != 0 && INSN_UID (insn) > max_uid_cuid
11979 && GET_CODE (insn) == INSN && GET_CODE (PATTERN (insn)) == USE)
11980 insn = NEXT_INSN (insn);
11981
11982 if (INSN_UID (insn) > max_uid_cuid)
11983 abort ();
11984
11985 return INSN_CUID (insn);
11986 }
11987 \f
11988 void
11989 dump_combine_stats (file)
11990 FILE *file;
11991 {
11992 fprintf
11993 (file,
11994 ";; Combiner statistics: %d attempts, %d substitutions (%d requiring new space),\n;; %d successes.\n\n",
11995 combine_attempts, combine_merges, combine_extras, combine_successes);
11996 }
11997
11998 void
11999 dump_combine_total_stats (file)
12000 FILE *file;
12001 {
12002 fprintf
12003 (file,
12004 "\n;; Combiner totals: %d attempts, %d substitutions (%d requiring new space),\n;; %d successes.\n",
12005 total_attempts, total_merges, total_extras, total_successes);
12006 }