re PR bootstrap/92433 (r276645 breaks bootstrap on powerpc)
[gcc.git] / gcc / combine.c
1 /* Optimize by combining instructions for GNU compiler.
2 Copyright (C) 1987-2019 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 /* This module is essentially the "combiner" phase of the U. of Arizona
21 Portable Optimizer, but redone to work on our list-structured
22 representation for RTL instead of their string representation.
23
24 The LOG_LINKS of each insn identify the most recent assignment
25 to each REG used in the insn. It is a list of previous insns,
26 each of which contains a SET for a REG that is used in this insn
27 and not used or set in between. LOG_LINKs never cross basic blocks.
28 They were set up by the preceding pass (lifetime analysis).
29
30 We try to combine each pair of insns joined by a logical link.
31 We also try to combine triplets of insns A, B and C when C has
32 a link back to B and B has a link back to A. Likewise for a
33 small number of quadruplets of insns A, B, C and D for which
34 there's high likelihood of success.
35
36 LOG_LINKS does not have links for use of the CC0. They don't
37 need to, because the insn that sets the CC0 is always immediately
38 before the insn that tests it. So we always regard a branch
39 insn as having a logical link to the preceding insn. The same is true
40 for an insn explicitly using CC0.
41
42 We check (with modified_between_p) to avoid combining in such a way
43 as to move a computation to a place where its value would be different.
44
45 Combination is done by mathematically substituting the previous
46 insn(s) values for the regs they set into the expressions in
47 the later insns that refer to these regs. If the result is a valid insn
48 for our target machine, according to the machine description,
49 we install it, delete the earlier insns, and update the data flow
50 information (LOG_LINKS and REG_NOTES) for what we did.
51
52 There are a few exceptions where the dataflow information isn't
53 completely updated (however this is only a local issue since it is
54 regenerated before the next pass that uses it):
55
56 - reg_live_length is not updated
57 - reg_n_refs is not adjusted in the rare case when a register is
58 no longer required in a computation
59 - there are extremely rare cases (see distribute_notes) when a
60 REG_DEAD note is lost
61 - a LOG_LINKS entry that refers to an insn with multiple SETs may be
62 removed because there is no way to know which register it was
63 linking
64
65 To simplify substitution, we combine only when the earlier insn(s)
66 consist of only a single assignment. To simplify updating afterward,
67 we never combine when a subroutine call appears in the middle.
68
69 Since we do not represent assignments to CC0 explicitly except when that
70 is all an insn does, there is no LOG_LINKS entry in an insn that uses
71 the condition code for the insn that set the condition code.
72 Fortunately, these two insns must be consecutive.
73 Therefore, every JUMP_INSN is taken to have an implicit logical link
74 to the preceding insn. This is not quite right, since non-jumps can
75 also use the condition code; but in practice such insns would not
76 combine anyway. */
77
78 #include "config.h"
79 #include "system.h"
80 #include "coretypes.h"
81 #include "backend.h"
82 #include "target.h"
83 #include "rtl.h"
84 #include "tree.h"
85 #include "cfghooks.h"
86 #include "predict.h"
87 #include "df.h"
88 #include "memmodel.h"
89 #include "tm_p.h"
90 #include "optabs.h"
91 #include "regs.h"
92 #include "emit-rtl.h"
93 #include "recog.h"
94 #include "cgraph.h"
95 #include "stor-layout.h"
96 #include "cfgrtl.h"
97 #include "cfgcleanup.h"
98 /* Include expr.h after insn-config.h so we get HAVE_conditional_move. */
99 #include "explow.h"
100 #include "insn-attr.h"
101 #include "rtlhooks-def.h"
102 #include "expr.h"
103 #include "params.h"
104 #include "tree-pass.h"
105 #include "valtrack.h"
106 #include "rtl-iter.h"
107 #include "print-rtl.h"
108 #include "function-abi.h"
109
110 /* Number of attempts to combine instructions in this function. */
111
112 static int combine_attempts;
113
114 /* Number of attempts that got as far as substitution in this function. */
115
116 static int combine_merges;
117
118 /* Number of instructions combined with added SETs in this function. */
119
120 static int combine_extras;
121
122 /* Number of instructions combined in this function. */
123
124 static int combine_successes;
125
126 /* Totals over entire compilation. */
127
128 static int total_attempts, total_merges, total_extras, total_successes;
129
130 /* combine_instructions may try to replace the right hand side of the
131 second instruction with the value of an associated REG_EQUAL note
132 before throwing it at try_combine. That is problematic when there
133 is a REG_DEAD note for a register used in the old right hand side
134 and can cause distribute_notes to do wrong things. This is the
135 second instruction if it has been so modified, null otherwise. */
136
137 static rtx_insn *i2mod;
138
139 /* When I2MOD is nonnull, this is a copy of the old right hand side. */
140
141 static rtx i2mod_old_rhs;
142
143 /* When I2MOD is nonnull, this is a copy of the new right hand side. */
144
145 static rtx i2mod_new_rhs;
146 \f
147 struct reg_stat_type {
148 /* Record last point of death of (hard or pseudo) register n. */
149 rtx_insn *last_death;
150
151 /* Record last point of modification of (hard or pseudo) register n. */
152 rtx_insn *last_set;
153
154 /* The next group of fields allows the recording of the last value assigned
155 to (hard or pseudo) register n. We use this information to see if an
156 operation being processed is redundant given a prior operation performed
157 on the register. For example, an `and' with a constant is redundant if
158 all the zero bits are already known to be turned off.
159
160 We use an approach similar to that used by cse, but change it in the
161 following ways:
162
163 (1) We do not want to reinitialize at each label.
164 (2) It is useful, but not critical, to know the actual value assigned
165 to a register. Often just its form is helpful.
166
167 Therefore, we maintain the following fields:
168
169 last_set_value the last value assigned
170 last_set_label records the value of label_tick when the
171 register was assigned
172 last_set_table_tick records the value of label_tick when a
173 value using the register is assigned
174 last_set_invalid set to nonzero when it is not valid
175 to use the value of this register in some
176 register's value
177
178 To understand the usage of these tables, it is important to understand
179 the distinction between the value in last_set_value being valid and
180 the register being validly contained in some other expression in the
181 table.
182
183 (The next two parameters are out of date).
184
185 reg_stat[i].last_set_value is valid if it is nonzero, and either
186 reg_n_sets[i] is 1 or reg_stat[i].last_set_label == label_tick.
187
188 Register I may validly appear in any expression returned for the value
189 of another register if reg_n_sets[i] is 1. It may also appear in the
190 value for register J if reg_stat[j].last_set_invalid is zero, or
191 reg_stat[i].last_set_label < reg_stat[j].last_set_label.
192
193 If an expression is found in the table containing a register which may
194 not validly appear in an expression, the register is replaced by
195 something that won't match, (clobber (const_int 0)). */
196
197 /* Record last value assigned to (hard or pseudo) register n. */
198
199 rtx last_set_value;
200
201 /* Record the value of label_tick when an expression involving register n
202 is placed in last_set_value. */
203
204 int last_set_table_tick;
205
206 /* Record the value of label_tick when the value for register n is placed in
207 last_set_value. */
208
209 int last_set_label;
210
211 /* These fields are maintained in parallel with last_set_value and are
212 used to store the mode in which the register was last set, the bits
213 that were known to be zero when it was last set, and the number of
214 sign bits copies it was known to have when it was last set. */
215
216 unsigned HOST_WIDE_INT last_set_nonzero_bits;
217 char last_set_sign_bit_copies;
218 ENUM_BITFIELD(machine_mode) last_set_mode : 8;
219
220 /* Set nonzero if references to register n in expressions should not be
221 used. last_set_invalid is set nonzero when this register is being
222 assigned to and last_set_table_tick == label_tick. */
223
224 char last_set_invalid;
225
226 /* Some registers that are set more than once and used in more than one
227 basic block are nevertheless always set in similar ways. For example,
228 a QImode register may be loaded from memory in two places on a machine
229 where byte loads zero extend.
230
231 We record in the following fields if a register has some leading bits
232 that are always equal to the sign bit, and what we know about the
233 nonzero bits of a register, specifically which bits are known to be
234 zero.
235
236 If an entry is zero, it means that we don't know anything special. */
237
238 unsigned char sign_bit_copies;
239
240 unsigned HOST_WIDE_INT nonzero_bits;
241
242 /* Record the value of the label_tick when the last truncation
243 happened. The field truncated_to_mode is only valid if
244 truncation_label == label_tick. */
245
246 int truncation_label;
247
248 /* Record the last truncation seen for this register. If truncation
249 is not a nop to this mode we might be able to save an explicit
250 truncation if we know that value already contains a truncated
251 value. */
252
253 ENUM_BITFIELD(machine_mode) truncated_to_mode : 8;
254 };
255
256
257 static vec<reg_stat_type> reg_stat;
258
259 /* One plus the highest pseudo for which we track REG_N_SETS.
260 regstat_init_n_sets_and_refs allocates the array for REG_N_SETS just once,
261 but during combine_split_insns new pseudos can be created. As we don't have
262 updated DF information in that case, it is hard to initialize the array
263 after growing. The combiner only cares about REG_N_SETS (regno) == 1,
264 so instead of growing the arrays, just assume all newly created pseudos
265 during combine might be set multiple times. */
266
267 static unsigned int reg_n_sets_max;
268
269 /* Record the luid of the last insn that invalidated memory
270 (anything that writes memory, and subroutine calls, but not pushes). */
271
272 static int mem_last_set;
273
274 /* Record the luid of the last CALL_INSN
275 so we can tell whether a potential combination crosses any calls. */
276
277 static int last_call_luid;
278
279 /* When `subst' is called, this is the insn that is being modified
280 (by combining in a previous insn). The PATTERN of this insn
281 is still the old pattern partially modified and it should not be
282 looked at, but this may be used to examine the successors of the insn
283 to judge whether a simplification is valid. */
284
285 static rtx_insn *subst_insn;
286
287 /* This is the lowest LUID that `subst' is currently dealing with.
288 get_last_value will not return a value if the register was set at or
289 after this LUID. If not for this mechanism, we could get confused if
290 I2 or I1 in try_combine were an insn that used the old value of a register
291 to obtain a new value. In that case, we might erroneously get the
292 new value of the register when we wanted the old one. */
293
294 static int subst_low_luid;
295
296 /* This contains any hard registers that are used in newpat; reg_dead_at_p
297 must consider all these registers to be always live. */
298
299 static HARD_REG_SET newpat_used_regs;
300
301 /* This is an insn to which a LOG_LINKS entry has been added. If this
302 insn is the earlier than I2 or I3, combine should rescan starting at
303 that location. */
304
305 static rtx_insn *added_links_insn;
306
307 /* And similarly, for notes. */
308
309 static rtx_insn *added_notes_insn;
310
311 /* Basic block in which we are performing combines. */
312 static basic_block this_basic_block;
313 static bool optimize_this_for_speed_p;
314
315 \f
316 /* Length of the currently allocated uid_insn_cost array. */
317
318 static int max_uid_known;
319
320 /* The following array records the insn_cost for every insn
321 in the instruction stream. */
322
323 static int *uid_insn_cost;
324
325 /* The following array records the LOG_LINKS for every insn in the
326 instruction stream as struct insn_link pointers. */
327
328 struct insn_link {
329 rtx_insn *insn;
330 unsigned int regno;
331 struct insn_link *next;
332 };
333
334 static struct insn_link **uid_log_links;
335
336 static inline int
337 insn_uid_check (const_rtx insn)
338 {
339 int uid = INSN_UID (insn);
340 gcc_checking_assert (uid <= max_uid_known);
341 return uid;
342 }
343
344 #define INSN_COST(INSN) (uid_insn_cost[insn_uid_check (INSN)])
345 #define LOG_LINKS(INSN) (uid_log_links[insn_uid_check (INSN)])
346
347 #define FOR_EACH_LOG_LINK(L, INSN) \
348 for ((L) = LOG_LINKS (INSN); (L); (L) = (L)->next)
349
350 /* Links for LOG_LINKS are allocated from this obstack. */
351
352 static struct obstack insn_link_obstack;
353
354 /* Allocate a link. */
355
356 static inline struct insn_link *
357 alloc_insn_link (rtx_insn *insn, unsigned int regno, struct insn_link *next)
358 {
359 struct insn_link *l
360 = (struct insn_link *) obstack_alloc (&insn_link_obstack,
361 sizeof (struct insn_link));
362 l->insn = insn;
363 l->regno = regno;
364 l->next = next;
365 return l;
366 }
367
368 /* Incremented for each basic block. */
369
370 static int label_tick;
371
372 /* Reset to label_tick for each extended basic block in scanning order. */
373
374 static int label_tick_ebb_start;
375
376 /* Mode used to compute significance in reg_stat[].nonzero_bits. It is the
377 largest integer mode that can fit in HOST_BITS_PER_WIDE_INT. */
378
379 static scalar_int_mode nonzero_bits_mode;
380
381 /* Nonzero when reg_stat[].nonzero_bits and reg_stat[].sign_bit_copies can
382 be safely used. It is zero while computing them and after combine has
383 completed. This former test prevents propagating values based on
384 previously set values, which can be incorrect if a variable is modified
385 in a loop. */
386
387 static int nonzero_sign_valid;
388
389 \f
390 /* Record one modification to rtl structure
391 to be undone by storing old_contents into *where. */
392
393 enum undo_kind { UNDO_RTX, UNDO_INT, UNDO_MODE, UNDO_LINKS };
394
395 struct undo
396 {
397 struct undo *next;
398 enum undo_kind kind;
399 union { rtx r; int i; machine_mode m; struct insn_link *l; } old_contents;
400 union { rtx *r; int *i; struct insn_link **l; } where;
401 };
402
403 /* Record a bunch of changes to be undone, up to MAX_UNDO of them.
404 num_undo says how many are currently recorded.
405
406 other_insn is nonzero if we have modified some other insn in the process
407 of working on subst_insn. It must be verified too. */
408
409 struct undobuf
410 {
411 struct undo *undos;
412 struct undo *frees;
413 rtx_insn *other_insn;
414 };
415
416 static struct undobuf undobuf;
417
418 /* Number of times the pseudo being substituted for
419 was found and replaced. */
420
421 static int n_occurrences;
422
423 static rtx reg_nonzero_bits_for_combine (const_rtx, scalar_int_mode,
424 scalar_int_mode,
425 unsigned HOST_WIDE_INT *);
426 static rtx reg_num_sign_bit_copies_for_combine (const_rtx, scalar_int_mode,
427 scalar_int_mode,
428 unsigned int *);
429 static void do_SUBST (rtx *, rtx);
430 static void do_SUBST_INT (int *, int);
431 static void init_reg_last (void);
432 static void setup_incoming_promotions (rtx_insn *);
433 static void set_nonzero_bits_and_sign_copies (rtx, const_rtx, void *);
434 static int cant_combine_insn_p (rtx_insn *);
435 static int can_combine_p (rtx_insn *, rtx_insn *, rtx_insn *, rtx_insn *,
436 rtx_insn *, rtx_insn *, rtx *, rtx *);
437 static int combinable_i3pat (rtx_insn *, rtx *, rtx, rtx, rtx, int, int, rtx *);
438 static int contains_muldiv (rtx);
439 static rtx_insn *try_combine (rtx_insn *, rtx_insn *, rtx_insn *, rtx_insn *,
440 int *, rtx_insn *);
441 static void undo_all (void);
442 static void undo_commit (void);
443 static rtx *find_split_point (rtx *, rtx_insn *, bool);
444 static rtx subst (rtx, rtx, rtx, int, int, int);
445 static rtx combine_simplify_rtx (rtx, machine_mode, int, int);
446 static rtx simplify_if_then_else (rtx);
447 static rtx simplify_set (rtx);
448 static rtx simplify_logical (rtx);
449 static rtx expand_compound_operation (rtx);
450 static const_rtx expand_field_assignment (const_rtx);
451 static rtx make_extraction (machine_mode, rtx, HOST_WIDE_INT,
452 rtx, unsigned HOST_WIDE_INT, int, int, int);
453 static int get_pos_from_mask (unsigned HOST_WIDE_INT,
454 unsigned HOST_WIDE_INT *);
455 static rtx canon_reg_for_combine (rtx, rtx);
456 static rtx force_int_to_mode (rtx, scalar_int_mode, scalar_int_mode,
457 scalar_int_mode, unsigned HOST_WIDE_INT, int);
458 static rtx force_to_mode (rtx, machine_mode,
459 unsigned HOST_WIDE_INT, int);
460 static rtx if_then_else_cond (rtx, rtx *, rtx *);
461 static rtx known_cond (rtx, enum rtx_code, rtx, rtx);
462 static int rtx_equal_for_field_assignment_p (rtx, rtx, bool = false);
463 static rtx make_field_assignment (rtx);
464 static rtx apply_distributive_law (rtx);
465 static rtx distribute_and_simplify_rtx (rtx, int);
466 static rtx simplify_and_const_int_1 (scalar_int_mode, rtx,
467 unsigned HOST_WIDE_INT);
468 static rtx simplify_and_const_int (rtx, scalar_int_mode, rtx,
469 unsigned HOST_WIDE_INT);
470 static int merge_outer_ops (enum rtx_code *, HOST_WIDE_INT *, enum rtx_code,
471 HOST_WIDE_INT, machine_mode, int *);
472 static rtx simplify_shift_const_1 (enum rtx_code, machine_mode, rtx, int);
473 static rtx simplify_shift_const (rtx, enum rtx_code, machine_mode, rtx,
474 int);
475 static int recog_for_combine (rtx *, rtx_insn *, rtx *);
476 static rtx gen_lowpart_for_combine (machine_mode, rtx);
477 static enum rtx_code simplify_compare_const (enum rtx_code, machine_mode,
478 rtx, rtx *);
479 static enum rtx_code simplify_comparison (enum rtx_code, rtx *, rtx *);
480 static void update_table_tick (rtx);
481 static void record_value_for_reg (rtx, rtx_insn *, rtx);
482 static void check_promoted_subreg (rtx_insn *, rtx);
483 static void record_dead_and_set_regs_1 (rtx, const_rtx, void *);
484 static void record_dead_and_set_regs (rtx_insn *);
485 static int get_last_value_validate (rtx *, rtx_insn *, int, int);
486 static rtx get_last_value (const_rtx);
487 static void reg_dead_at_p_1 (rtx, const_rtx, void *);
488 static int reg_dead_at_p (rtx, rtx_insn *);
489 static void move_deaths (rtx, rtx, int, rtx_insn *, rtx *);
490 static int reg_bitfield_target_p (rtx, rtx);
491 static void distribute_notes (rtx, rtx_insn *, rtx_insn *, rtx_insn *, rtx, rtx, rtx);
492 static void distribute_links (struct insn_link *);
493 static void mark_used_regs_combine (rtx);
494 static void record_promoted_value (rtx_insn *, rtx);
495 static bool unmentioned_reg_p (rtx, rtx);
496 static void record_truncated_values (rtx *, void *);
497 static bool reg_truncated_to_mode (machine_mode, const_rtx);
498 static rtx gen_lowpart_or_truncate (machine_mode, rtx);
499 \f
500
501 /* It is not safe to use ordinary gen_lowpart in combine.
502 See comments in gen_lowpart_for_combine. */
503 #undef RTL_HOOKS_GEN_LOWPART
504 #define RTL_HOOKS_GEN_LOWPART gen_lowpart_for_combine
505
506 /* Our implementation of gen_lowpart never emits a new pseudo. */
507 #undef RTL_HOOKS_GEN_LOWPART_NO_EMIT
508 #define RTL_HOOKS_GEN_LOWPART_NO_EMIT gen_lowpart_for_combine
509
510 #undef RTL_HOOKS_REG_NONZERO_REG_BITS
511 #define RTL_HOOKS_REG_NONZERO_REG_BITS reg_nonzero_bits_for_combine
512
513 #undef RTL_HOOKS_REG_NUM_SIGN_BIT_COPIES
514 #define RTL_HOOKS_REG_NUM_SIGN_BIT_COPIES reg_num_sign_bit_copies_for_combine
515
516 #undef RTL_HOOKS_REG_TRUNCATED_TO_MODE
517 #define RTL_HOOKS_REG_TRUNCATED_TO_MODE reg_truncated_to_mode
518
519 static const struct rtl_hooks combine_rtl_hooks = RTL_HOOKS_INITIALIZER;
520
521 \f
522 /* Convenience wrapper for the canonicalize_comparison target hook.
523 Target hooks cannot use enum rtx_code. */
524 static inline void
525 target_canonicalize_comparison (enum rtx_code *code, rtx *op0, rtx *op1,
526 bool op0_preserve_value)
527 {
528 int code_int = (int)*code;
529 targetm.canonicalize_comparison (&code_int, op0, op1, op0_preserve_value);
530 *code = (enum rtx_code)code_int;
531 }
532
533 /* Try to split PATTERN found in INSN. This returns NULL_RTX if
534 PATTERN cannot be split. Otherwise, it returns an insn sequence.
535 This is a wrapper around split_insns which ensures that the
536 reg_stat vector is made larger if the splitter creates a new
537 register. */
538
539 static rtx_insn *
540 combine_split_insns (rtx pattern, rtx_insn *insn)
541 {
542 rtx_insn *ret;
543 unsigned int nregs;
544
545 ret = split_insns (pattern, insn);
546 nregs = max_reg_num ();
547 if (nregs > reg_stat.length ())
548 reg_stat.safe_grow_cleared (nregs);
549 return ret;
550 }
551
552 /* This is used by find_single_use to locate an rtx in LOC that
553 contains exactly one use of DEST, which is typically either a REG
554 or CC0. It returns a pointer to the innermost rtx expression
555 containing DEST. Appearances of DEST that are being used to
556 totally replace it are not counted. */
557
558 static rtx *
559 find_single_use_1 (rtx dest, rtx *loc)
560 {
561 rtx x = *loc;
562 enum rtx_code code = GET_CODE (x);
563 rtx *result = NULL;
564 rtx *this_result;
565 int i;
566 const char *fmt;
567
568 switch (code)
569 {
570 case CONST:
571 case LABEL_REF:
572 case SYMBOL_REF:
573 CASE_CONST_ANY:
574 case CLOBBER:
575 return 0;
576
577 case SET:
578 /* If the destination is anything other than CC0, PC, a REG or a SUBREG
579 of a REG that occupies all of the REG, the insn uses DEST if
580 it is mentioned in the destination or the source. Otherwise, we
581 need just check the source. */
582 if (GET_CODE (SET_DEST (x)) != CC0
583 && GET_CODE (SET_DEST (x)) != PC
584 && !REG_P (SET_DEST (x))
585 && ! (GET_CODE (SET_DEST (x)) == SUBREG
586 && REG_P (SUBREG_REG (SET_DEST (x)))
587 && !read_modify_subreg_p (SET_DEST (x))))
588 break;
589
590 return find_single_use_1 (dest, &SET_SRC (x));
591
592 case MEM:
593 case SUBREG:
594 return find_single_use_1 (dest, &XEXP (x, 0));
595
596 default:
597 break;
598 }
599
600 /* If it wasn't one of the common cases above, check each expression and
601 vector of this code. Look for a unique usage of DEST. */
602
603 fmt = GET_RTX_FORMAT (code);
604 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
605 {
606 if (fmt[i] == 'e')
607 {
608 if (dest == XEXP (x, i)
609 || (REG_P (dest) && REG_P (XEXP (x, i))
610 && REGNO (dest) == REGNO (XEXP (x, i))))
611 this_result = loc;
612 else
613 this_result = find_single_use_1 (dest, &XEXP (x, i));
614
615 if (result == NULL)
616 result = this_result;
617 else if (this_result)
618 /* Duplicate usage. */
619 return NULL;
620 }
621 else if (fmt[i] == 'E')
622 {
623 int j;
624
625 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
626 {
627 if (XVECEXP (x, i, j) == dest
628 || (REG_P (dest)
629 && REG_P (XVECEXP (x, i, j))
630 && REGNO (XVECEXP (x, i, j)) == REGNO (dest)))
631 this_result = loc;
632 else
633 this_result = find_single_use_1 (dest, &XVECEXP (x, i, j));
634
635 if (result == NULL)
636 result = this_result;
637 else if (this_result)
638 return NULL;
639 }
640 }
641 }
642
643 return result;
644 }
645
646
647 /* See if DEST, produced in INSN, is used only a single time in the
648 sequel. If so, return a pointer to the innermost rtx expression in which
649 it is used.
650
651 If PLOC is nonzero, *PLOC is set to the insn containing the single use.
652
653 If DEST is cc0_rtx, we look only at the next insn. In that case, we don't
654 care about REG_DEAD notes or LOG_LINKS.
655
656 Otherwise, we find the single use by finding an insn that has a
657 LOG_LINKS pointing at INSN and has a REG_DEAD note for DEST. If DEST is
658 only referenced once in that insn, we know that it must be the first
659 and last insn referencing DEST. */
660
661 static rtx *
662 find_single_use (rtx dest, rtx_insn *insn, rtx_insn **ploc)
663 {
664 basic_block bb;
665 rtx_insn *next;
666 rtx *result;
667 struct insn_link *link;
668
669 if (dest == cc0_rtx)
670 {
671 next = NEXT_INSN (insn);
672 if (next == 0
673 || (!NONJUMP_INSN_P (next) && !JUMP_P (next)))
674 return 0;
675
676 result = find_single_use_1 (dest, &PATTERN (next));
677 if (result && ploc)
678 *ploc = next;
679 return result;
680 }
681
682 if (!REG_P (dest))
683 return 0;
684
685 bb = BLOCK_FOR_INSN (insn);
686 for (next = NEXT_INSN (insn);
687 next && BLOCK_FOR_INSN (next) == bb;
688 next = NEXT_INSN (next))
689 if (NONDEBUG_INSN_P (next) && dead_or_set_p (next, dest))
690 {
691 FOR_EACH_LOG_LINK (link, next)
692 if (link->insn == insn && link->regno == REGNO (dest))
693 break;
694
695 if (link)
696 {
697 result = find_single_use_1 (dest, &PATTERN (next));
698 if (ploc)
699 *ploc = next;
700 return result;
701 }
702 }
703
704 return 0;
705 }
706 \f
707 /* Substitute NEWVAL, an rtx expression, into INTO, a place in some
708 insn. The substitution can be undone by undo_all. If INTO is already
709 set to NEWVAL, do not record this change. Because computing NEWVAL might
710 also call SUBST, we have to compute it before we put anything into
711 the undo table. */
712
713 static void
714 do_SUBST (rtx *into, rtx newval)
715 {
716 struct undo *buf;
717 rtx oldval = *into;
718
719 if (oldval == newval)
720 return;
721
722 /* We'd like to catch as many invalid transformations here as
723 possible. Unfortunately, there are way too many mode changes
724 that are perfectly valid, so we'd waste too much effort for
725 little gain doing the checks here. Focus on catching invalid
726 transformations involving integer constants. */
727 if (GET_MODE_CLASS (GET_MODE (oldval)) == MODE_INT
728 && CONST_INT_P (newval))
729 {
730 /* Sanity check that we're replacing oldval with a CONST_INT
731 that is a valid sign-extension for the original mode. */
732 gcc_assert (INTVAL (newval)
733 == trunc_int_for_mode (INTVAL (newval), GET_MODE (oldval)));
734
735 /* Replacing the operand of a SUBREG or a ZERO_EXTEND with a
736 CONST_INT is not valid, because after the replacement, the
737 original mode would be gone. Unfortunately, we can't tell
738 when do_SUBST is called to replace the operand thereof, so we
739 perform this test on oldval instead, checking whether an
740 invalid replacement took place before we got here. */
741 gcc_assert (!(GET_CODE (oldval) == SUBREG
742 && CONST_INT_P (SUBREG_REG (oldval))));
743 gcc_assert (!(GET_CODE (oldval) == ZERO_EXTEND
744 && CONST_INT_P (XEXP (oldval, 0))));
745 }
746
747 if (undobuf.frees)
748 buf = undobuf.frees, undobuf.frees = buf->next;
749 else
750 buf = XNEW (struct undo);
751
752 buf->kind = UNDO_RTX;
753 buf->where.r = into;
754 buf->old_contents.r = oldval;
755 *into = newval;
756
757 buf->next = undobuf.undos, undobuf.undos = buf;
758 }
759
760 #define SUBST(INTO, NEWVAL) do_SUBST (&(INTO), (NEWVAL))
761
762 /* Similar to SUBST, but NEWVAL is an int expression. Note that substitution
763 for the value of a HOST_WIDE_INT value (including CONST_INT) is
764 not safe. */
765
766 static void
767 do_SUBST_INT (int *into, int newval)
768 {
769 struct undo *buf;
770 int oldval = *into;
771
772 if (oldval == newval)
773 return;
774
775 if (undobuf.frees)
776 buf = undobuf.frees, undobuf.frees = buf->next;
777 else
778 buf = XNEW (struct undo);
779
780 buf->kind = UNDO_INT;
781 buf->where.i = into;
782 buf->old_contents.i = oldval;
783 *into = newval;
784
785 buf->next = undobuf.undos, undobuf.undos = buf;
786 }
787
788 #define SUBST_INT(INTO, NEWVAL) do_SUBST_INT (&(INTO), (NEWVAL))
789
790 /* Similar to SUBST, but just substitute the mode. This is used when
791 changing the mode of a pseudo-register, so that any other
792 references to the entry in the regno_reg_rtx array will change as
793 well. */
794
795 static void
796 do_SUBST_MODE (rtx *into, machine_mode newval)
797 {
798 struct undo *buf;
799 machine_mode oldval = GET_MODE (*into);
800
801 if (oldval == newval)
802 return;
803
804 if (undobuf.frees)
805 buf = undobuf.frees, undobuf.frees = buf->next;
806 else
807 buf = XNEW (struct undo);
808
809 buf->kind = UNDO_MODE;
810 buf->where.r = into;
811 buf->old_contents.m = oldval;
812 adjust_reg_mode (*into, newval);
813
814 buf->next = undobuf.undos, undobuf.undos = buf;
815 }
816
817 #define SUBST_MODE(INTO, NEWVAL) do_SUBST_MODE (&(INTO), (NEWVAL))
818
819 /* Similar to SUBST, but NEWVAL is a LOG_LINKS expression. */
820
821 static void
822 do_SUBST_LINK (struct insn_link **into, struct insn_link *newval)
823 {
824 struct undo *buf;
825 struct insn_link * oldval = *into;
826
827 if (oldval == newval)
828 return;
829
830 if (undobuf.frees)
831 buf = undobuf.frees, undobuf.frees = buf->next;
832 else
833 buf = XNEW (struct undo);
834
835 buf->kind = UNDO_LINKS;
836 buf->where.l = into;
837 buf->old_contents.l = oldval;
838 *into = newval;
839
840 buf->next = undobuf.undos, undobuf.undos = buf;
841 }
842
843 #define SUBST_LINK(oldval, newval) do_SUBST_LINK (&oldval, newval)
844 \f
845 /* Subroutine of try_combine. Determine whether the replacement patterns
846 NEWPAT, NEWI2PAT and NEWOTHERPAT are cheaper according to insn_cost
847 than the original sequence I0, I1, I2, I3 and undobuf.other_insn. Note
848 that I0, I1 and/or NEWI2PAT may be NULL_RTX. Similarly, NEWOTHERPAT and
849 undobuf.other_insn may also both be NULL_RTX. Return false if the cost
850 of all the instructions can be estimated and the replacements are more
851 expensive than the original sequence. */
852
853 static bool
854 combine_validate_cost (rtx_insn *i0, rtx_insn *i1, rtx_insn *i2, rtx_insn *i3,
855 rtx newpat, rtx newi2pat, rtx newotherpat)
856 {
857 int i0_cost, i1_cost, i2_cost, i3_cost;
858 int new_i2_cost, new_i3_cost;
859 int old_cost, new_cost;
860
861 /* Lookup the original insn_costs. */
862 i2_cost = INSN_COST (i2);
863 i3_cost = INSN_COST (i3);
864
865 if (i1)
866 {
867 i1_cost = INSN_COST (i1);
868 if (i0)
869 {
870 i0_cost = INSN_COST (i0);
871 old_cost = (i0_cost > 0 && i1_cost > 0 && i2_cost > 0 && i3_cost > 0
872 ? i0_cost + i1_cost + i2_cost + i3_cost : 0);
873 }
874 else
875 {
876 old_cost = (i1_cost > 0 && i2_cost > 0 && i3_cost > 0
877 ? i1_cost + i2_cost + i3_cost : 0);
878 i0_cost = 0;
879 }
880 }
881 else
882 {
883 old_cost = (i2_cost > 0 && i3_cost > 0) ? i2_cost + i3_cost : 0;
884 i1_cost = i0_cost = 0;
885 }
886
887 /* If we have split a PARALLEL I2 to I1,I2, we have counted its cost twice;
888 correct that. */
889 if (old_cost && i1 && INSN_UID (i1) == INSN_UID (i2))
890 old_cost -= i1_cost;
891
892
893 /* Calculate the replacement insn_costs. */
894 rtx tmp = PATTERN (i3);
895 PATTERN (i3) = newpat;
896 int tmpi = INSN_CODE (i3);
897 INSN_CODE (i3) = -1;
898 new_i3_cost = insn_cost (i3, optimize_this_for_speed_p);
899 PATTERN (i3) = tmp;
900 INSN_CODE (i3) = tmpi;
901 if (newi2pat)
902 {
903 tmp = PATTERN (i2);
904 PATTERN (i2) = newi2pat;
905 tmpi = INSN_CODE (i2);
906 INSN_CODE (i2) = -1;
907 new_i2_cost = insn_cost (i2, optimize_this_for_speed_p);
908 PATTERN (i2) = tmp;
909 INSN_CODE (i2) = tmpi;
910 new_cost = (new_i2_cost > 0 && new_i3_cost > 0)
911 ? new_i2_cost + new_i3_cost : 0;
912 }
913 else
914 {
915 new_cost = new_i3_cost;
916 new_i2_cost = 0;
917 }
918
919 if (undobuf.other_insn)
920 {
921 int old_other_cost, new_other_cost;
922
923 old_other_cost = INSN_COST (undobuf.other_insn);
924 tmp = PATTERN (undobuf.other_insn);
925 PATTERN (undobuf.other_insn) = newotherpat;
926 tmpi = INSN_CODE (undobuf.other_insn);
927 INSN_CODE (undobuf.other_insn) = -1;
928 new_other_cost = insn_cost (undobuf.other_insn,
929 optimize_this_for_speed_p);
930 PATTERN (undobuf.other_insn) = tmp;
931 INSN_CODE (undobuf.other_insn) = tmpi;
932 if (old_other_cost > 0 && new_other_cost > 0)
933 {
934 old_cost += old_other_cost;
935 new_cost += new_other_cost;
936 }
937 else
938 old_cost = 0;
939 }
940
941 /* Disallow this combination if both new_cost and old_cost are greater than
942 zero, and new_cost is greater than old cost. */
943 int reject = old_cost > 0 && new_cost > old_cost;
944
945 if (dump_file)
946 {
947 fprintf (dump_file, "%s combination of insns ",
948 reject ? "rejecting" : "allowing");
949 if (i0)
950 fprintf (dump_file, "%d, ", INSN_UID (i0));
951 if (i1 && INSN_UID (i1) != INSN_UID (i2))
952 fprintf (dump_file, "%d, ", INSN_UID (i1));
953 fprintf (dump_file, "%d and %d\n", INSN_UID (i2), INSN_UID (i3));
954
955 fprintf (dump_file, "original costs ");
956 if (i0)
957 fprintf (dump_file, "%d + ", i0_cost);
958 if (i1 && INSN_UID (i1) != INSN_UID (i2))
959 fprintf (dump_file, "%d + ", i1_cost);
960 fprintf (dump_file, "%d + %d = %d\n", i2_cost, i3_cost, old_cost);
961
962 if (newi2pat)
963 fprintf (dump_file, "replacement costs %d + %d = %d\n",
964 new_i2_cost, new_i3_cost, new_cost);
965 else
966 fprintf (dump_file, "replacement cost %d\n", new_cost);
967 }
968
969 if (reject)
970 return false;
971
972 /* Update the uid_insn_cost array with the replacement costs. */
973 INSN_COST (i2) = new_i2_cost;
974 INSN_COST (i3) = new_i3_cost;
975 if (i1)
976 {
977 INSN_COST (i1) = 0;
978 if (i0)
979 INSN_COST (i0) = 0;
980 }
981
982 return true;
983 }
984
985
986 /* Delete any insns that copy a register to itself.
987 Return true if the CFG was changed. */
988
989 static bool
990 delete_noop_moves (void)
991 {
992 rtx_insn *insn, *next;
993 basic_block bb;
994
995 bool edges_deleted = false;
996
997 FOR_EACH_BB_FN (bb, cfun)
998 {
999 for (insn = BB_HEAD (bb); insn != NEXT_INSN (BB_END (bb)); insn = next)
1000 {
1001 next = NEXT_INSN (insn);
1002 if (INSN_P (insn) && noop_move_p (insn))
1003 {
1004 if (dump_file)
1005 fprintf (dump_file, "deleting noop move %d\n", INSN_UID (insn));
1006
1007 edges_deleted |= delete_insn_and_edges (insn);
1008 }
1009 }
1010 }
1011
1012 return edges_deleted;
1013 }
1014
1015 \f
1016 /* Return false if we do not want to (or cannot) combine DEF. */
1017 static bool
1018 can_combine_def_p (df_ref def)
1019 {
1020 /* Do not consider if it is pre/post modification in MEM. */
1021 if (DF_REF_FLAGS (def) & DF_REF_PRE_POST_MODIFY)
1022 return false;
1023
1024 unsigned int regno = DF_REF_REGNO (def);
1025
1026 /* Do not combine frame pointer adjustments. */
1027 if ((regno == FRAME_POINTER_REGNUM
1028 && (!reload_completed || frame_pointer_needed))
1029 || (!HARD_FRAME_POINTER_IS_FRAME_POINTER
1030 && regno == HARD_FRAME_POINTER_REGNUM
1031 && (!reload_completed || frame_pointer_needed))
1032 || (FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
1033 && regno == ARG_POINTER_REGNUM && fixed_regs[regno]))
1034 return false;
1035
1036 return true;
1037 }
1038
1039 /* Return false if we do not want to (or cannot) combine USE. */
1040 static bool
1041 can_combine_use_p (df_ref use)
1042 {
1043 /* Do not consider the usage of the stack pointer by function call. */
1044 if (DF_REF_FLAGS (use) & DF_REF_CALL_STACK_USAGE)
1045 return false;
1046
1047 return true;
1048 }
1049
1050 /* Fill in log links field for all insns. */
1051
1052 static void
1053 create_log_links (void)
1054 {
1055 basic_block bb;
1056 rtx_insn **next_use;
1057 rtx_insn *insn;
1058 df_ref def, use;
1059
1060 next_use = XCNEWVEC (rtx_insn *, max_reg_num ());
1061
1062 /* Pass through each block from the end, recording the uses of each
1063 register and establishing log links when def is encountered.
1064 Note that we do not clear next_use array in order to save time,
1065 so we have to test whether the use is in the same basic block as def.
1066
1067 There are a few cases below when we do not consider the definition or
1068 usage -- these are taken from original flow.c did. Don't ask me why it is
1069 done this way; I don't know and if it works, I don't want to know. */
1070
1071 FOR_EACH_BB_FN (bb, cfun)
1072 {
1073 FOR_BB_INSNS_REVERSE (bb, insn)
1074 {
1075 if (!NONDEBUG_INSN_P (insn))
1076 continue;
1077
1078 /* Log links are created only once. */
1079 gcc_assert (!LOG_LINKS (insn));
1080
1081 FOR_EACH_INSN_DEF (def, insn)
1082 {
1083 unsigned int regno = DF_REF_REGNO (def);
1084 rtx_insn *use_insn;
1085
1086 if (!next_use[regno])
1087 continue;
1088
1089 if (!can_combine_def_p (def))
1090 continue;
1091
1092 use_insn = next_use[regno];
1093 next_use[regno] = NULL;
1094
1095 if (BLOCK_FOR_INSN (use_insn) != bb)
1096 continue;
1097
1098 /* flow.c claimed:
1099
1100 We don't build a LOG_LINK for hard registers contained
1101 in ASM_OPERANDs. If these registers get replaced,
1102 we might wind up changing the semantics of the insn,
1103 even if reload can make what appear to be valid
1104 assignments later. */
1105 if (regno < FIRST_PSEUDO_REGISTER
1106 && asm_noperands (PATTERN (use_insn)) >= 0)
1107 continue;
1108
1109 /* Don't add duplicate links between instructions. */
1110 struct insn_link *links;
1111 FOR_EACH_LOG_LINK (links, use_insn)
1112 if (insn == links->insn && regno == links->regno)
1113 break;
1114
1115 if (!links)
1116 LOG_LINKS (use_insn)
1117 = alloc_insn_link (insn, regno, LOG_LINKS (use_insn));
1118 }
1119
1120 FOR_EACH_INSN_USE (use, insn)
1121 if (can_combine_use_p (use))
1122 next_use[DF_REF_REGNO (use)] = insn;
1123 }
1124 }
1125
1126 free (next_use);
1127 }
1128
1129 /* Walk the LOG_LINKS of insn B to see if we find a reference to A. Return
1130 true if we found a LOG_LINK that proves that A feeds B. This only works
1131 if there are no instructions between A and B which could have a link
1132 depending on A, since in that case we would not record a link for B.
1133 We also check the implicit dependency created by a cc0 setter/user
1134 pair. */
1135
1136 static bool
1137 insn_a_feeds_b (rtx_insn *a, rtx_insn *b)
1138 {
1139 struct insn_link *links;
1140 FOR_EACH_LOG_LINK (links, b)
1141 if (links->insn == a)
1142 return true;
1143 if (HAVE_cc0 && sets_cc0_p (a))
1144 return true;
1145 return false;
1146 }
1147 \f
1148 /* Main entry point for combiner. F is the first insn of the function.
1149 NREGS is the first unused pseudo-reg number.
1150
1151 Return nonzero if the CFG was changed (e.g. if the combiner has
1152 turned an indirect jump instruction into a direct jump). */
1153 static int
1154 combine_instructions (rtx_insn *f, unsigned int nregs)
1155 {
1156 rtx_insn *insn, *next;
1157 rtx_insn *prev;
1158 struct insn_link *links, *nextlinks;
1159 rtx_insn *first;
1160 basic_block last_bb;
1161
1162 int new_direct_jump_p = 0;
1163
1164 for (first = f; first && !NONDEBUG_INSN_P (first); )
1165 first = NEXT_INSN (first);
1166 if (!first)
1167 return 0;
1168
1169 combine_attempts = 0;
1170 combine_merges = 0;
1171 combine_extras = 0;
1172 combine_successes = 0;
1173
1174 rtl_hooks = combine_rtl_hooks;
1175
1176 reg_stat.safe_grow_cleared (nregs);
1177
1178 init_recog_no_volatile ();
1179
1180 /* Allocate array for insn info. */
1181 max_uid_known = get_max_uid ();
1182 uid_log_links = XCNEWVEC (struct insn_link *, max_uid_known + 1);
1183 uid_insn_cost = XCNEWVEC (int, max_uid_known + 1);
1184 gcc_obstack_init (&insn_link_obstack);
1185
1186 nonzero_bits_mode = int_mode_for_size (HOST_BITS_PER_WIDE_INT, 0).require ();
1187
1188 /* Don't use reg_stat[].nonzero_bits when computing it. This can cause
1189 problems when, for example, we have j <<= 1 in a loop. */
1190
1191 nonzero_sign_valid = 0;
1192 label_tick = label_tick_ebb_start = 1;
1193
1194 /* Scan all SETs and see if we can deduce anything about what
1195 bits are known to be zero for some registers and how many copies
1196 of the sign bit are known to exist for those registers.
1197
1198 Also set any known values so that we can use it while searching
1199 for what bits are known to be set. */
1200
1201 setup_incoming_promotions (first);
1202 /* Allow the entry block and the first block to fall into the same EBB.
1203 Conceptually the incoming promotions are assigned to the entry block. */
1204 last_bb = ENTRY_BLOCK_PTR_FOR_FN (cfun);
1205
1206 create_log_links ();
1207 FOR_EACH_BB_FN (this_basic_block, cfun)
1208 {
1209 optimize_this_for_speed_p = optimize_bb_for_speed_p (this_basic_block);
1210 last_call_luid = 0;
1211 mem_last_set = -1;
1212
1213 label_tick++;
1214 if (!single_pred_p (this_basic_block)
1215 || single_pred (this_basic_block) != last_bb)
1216 label_tick_ebb_start = label_tick;
1217 last_bb = this_basic_block;
1218
1219 FOR_BB_INSNS (this_basic_block, insn)
1220 if (INSN_P (insn) && BLOCK_FOR_INSN (insn))
1221 {
1222 rtx links;
1223
1224 subst_low_luid = DF_INSN_LUID (insn);
1225 subst_insn = insn;
1226
1227 note_stores (insn, set_nonzero_bits_and_sign_copies, insn);
1228 record_dead_and_set_regs (insn);
1229
1230 if (AUTO_INC_DEC)
1231 for (links = REG_NOTES (insn); links; links = XEXP (links, 1))
1232 if (REG_NOTE_KIND (links) == REG_INC)
1233 set_nonzero_bits_and_sign_copies (XEXP (links, 0), NULL_RTX,
1234 insn);
1235
1236 /* Record the current insn_cost of this instruction. */
1237 if (NONJUMP_INSN_P (insn))
1238 INSN_COST (insn) = insn_cost (insn, optimize_this_for_speed_p);
1239 if (dump_file)
1240 {
1241 fprintf (dump_file, "insn_cost %d for ", INSN_COST (insn));
1242 dump_insn_slim (dump_file, insn);
1243 }
1244 }
1245 }
1246
1247 nonzero_sign_valid = 1;
1248
1249 /* Now scan all the insns in forward order. */
1250 label_tick = label_tick_ebb_start = 1;
1251 init_reg_last ();
1252 setup_incoming_promotions (first);
1253 last_bb = ENTRY_BLOCK_PTR_FOR_FN (cfun);
1254 int max_combine = PARAM_VALUE (PARAM_MAX_COMBINE_INSNS);
1255
1256 FOR_EACH_BB_FN (this_basic_block, cfun)
1257 {
1258 rtx_insn *last_combined_insn = NULL;
1259
1260 /* Ignore instruction combination in basic blocks that are going to
1261 be removed as unreachable anyway. See PR82386. */
1262 if (EDGE_COUNT (this_basic_block->preds) == 0)
1263 continue;
1264
1265 optimize_this_for_speed_p = optimize_bb_for_speed_p (this_basic_block);
1266 last_call_luid = 0;
1267 mem_last_set = -1;
1268
1269 label_tick++;
1270 if (!single_pred_p (this_basic_block)
1271 || single_pred (this_basic_block) != last_bb)
1272 label_tick_ebb_start = label_tick;
1273 last_bb = this_basic_block;
1274
1275 rtl_profile_for_bb (this_basic_block);
1276 for (insn = BB_HEAD (this_basic_block);
1277 insn != NEXT_INSN (BB_END (this_basic_block));
1278 insn = next ? next : NEXT_INSN (insn))
1279 {
1280 next = 0;
1281 if (!NONDEBUG_INSN_P (insn))
1282 continue;
1283
1284 while (last_combined_insn
1285 && (!NONDEBUG_INSN_P (last_combined_insn)
1286 || last_combined_insn->deleted ()))
1287 last_combined_insn = PREV_INSN (last_combined_insn);
1288 if (last_combined_insn == NULL_RTX
1289 || BLOCK_FOR_INSN (last_combined_insn) != this_basic_block
1290 || DF_INSN_LUID (last_combined_insn) <= DF_INSN_LUID (insn))
1291 last_combined_insn = insn;
1292
1293 /* See if we know about function return values before this
1294 insn based upon SUBREG flags. */
1295 check_promoted_subreg (insn, PATTERN (insn));
1296
1297 /* See if we can find hardregs and subreg of pseudos in
1298 narrower modes. This could help turning TRUNCATEs
1299 into SUBREGs. */
1300 note_uses (&PATTERN (insn), record_truncated_values, NULL);
1301
1302 /* Try this insn with each insn it links back to. */
1303
1304 FOR_EACH_LOG_LINK (links, insn)
1305 if ((next = try_combine (insn, links->insn, NULL,
1306 NULL, &new_direct_jump_p,
1307 last_combined_insn)) != 0)
1308 {
1309 statistics_counter_event (cfun, "two-insn combine", 1);
1310 goto retry;
1311 }
1312
1313 /* Try each sequence of three linked insns ending with this one. */
1314
1315 if (max_combine >= 3)
1316 FOR_EACH_LOG_LINK (links, insn)
1317 {
1318 rtx_insn *link = links->insn;
1319
1320 /* If the linked insn has been replaced by a note, then there
1321 is no point in pursuing this chain any further. */
1322 if (NOTE_P (link))
1323 continue;
1324
1325 FOR_EACH_LOG_LINK (nextlinks, link)
1326 if ((next = try_combine (insn, link, nextlinks->insn,
1327 NULL, &new_direct_jump_p,
1328 last_combined_insn)) != 0)
1329 {
1330 statistics_counter_event (cfun, "three-insn combine", 1);
1331 goto retry;
1332 }
1333 }
1334
1335 /* Try to combine a jump insn that uses CC0
1336 with a preceding insn that sets CC0, and maybe with its
1337 logical predecessor as well.
1338 This is how we make decrement-and-branch insns.
1339 We need this special code because data flow connections
1340 via CC0 do not get entered in LOG_LINKS. */
1341
1342 if (HAVE_cc0
1343 && JUMP_P (insn)
1344 && (prev = prev_nonnote_insn (insn)) != 0
1345 && NONJUMP_INSN_P (prev)
1346 && sets_cc0_p (PATTERN (prev)))
1347 {
1348 if ((next = try_combine (insn, prev, NULL, NULL,
1349 &new_direct_jump_p,
1350 last_combined_insn)) != 0)
1351 goto retry;
1352
1353 FOR_EACH_LOG_LINK (nextlinks, prev)
1354 if ((next = try_combine (insn, prev, nextlinks->insn,
1355 NULL, &new_direct_jump_p,
1356 last_combined_insn)) != 0)
1357 goto retry;
1358 }
1359
1360 /* Do the same for an insn that explicitly references CC0. */
1361 if (HAVE_cc0 && NONJUMP_INSN_P (insn)
1362 && (prev = prev_nonnote_insn (insn)) != 0
1363 && NONJUMP_INSN_P (prev)
1364 && sets_cc0_p (PATTERN (prev))
1365 && GET_CODE (PATTERN (insn)) == SET
1366 && reg_mentioned_p (cc0_rtx, SET_SRC (PATTERN (insn))))
1367 {
1368 if ((next = try_combine (insn, prev, NULL, NULL,
1369 &new_direct_jump_p,
1370 last_combined_insn)) != 0)
1371 goto retry;
1372
1373 FOR_EACH_LOG_LINK (nextlinks, prev)
1374 if ((next = try_combine (insn, prev, nextlinks->insn,
1375 NULL, &new_direct_jump_p,
1376 last_combined_insn)) != 0)
1377 goto retry;
1378 }
1379
1380 /* Finally, see if any of the insns that this insn links to
1381 explicitly references CC0. If so, try this insn, that insn,
1382 and its predecessor if it sets CC0. */
1383 if (HAVE_cc0)
1384 {
1385 FOR_EACH_LOG_LINK (links, insn)
1386 if (NONJUMP_INSN_P (links->insn)
1387 && GET_CODE (PATTERN (links->insn)) == SET
1388 && reg_mentioned_p (cc0_rtx, SET_SRC (PATTERN (links->insn)))
1389 && (prev = prev_nonnote_insn (links->insn)) != 0
1390 && NONJUMP_INSN_P (prev)
1391 && sets_cc0_p (PATTERN (prev))
1392 && (next = try_combine (insn, links->insn,
1393 prev, NULL, &new_direct_jump_p,
1394 last_combined_insn)) != 0)
1395 goto retry;
1396 }
1397
1398 /* Try combining an insn with two different insns whose results it
1399 uses. */
1400 if (max_combine >= 3)
1401 FOR_EACH_LOG_LINK (links, insn)
1402 for (nextlinks = links->next; nextlinks;
1403 nextlinks = nextlinks->next)
1404 if ((next = try_combine (insn, links->insn,
1405 nextlinks->insn, NULL,
1406 &new_direct_jump_p,
1407 last_combined_insn)) != 0)
1408
1409 {
1410 statistics_counter_event (cfun, "three-insn combine", 1);
1411 goto retry;
1412 }
1413
1414 /* Try four-instruction combinations. */
1415 if (max_combine >= 4)
1416 FOR_EACH_LOG_LINK (links, insn)
1417 {
1418 struct insn_link *next1;
1419 rtx_insn *link = links->insn;
1420
1421 /* If the linked insn has been replaced by a note, then there
1422 is no point in pursuing this chain any further. */
1423 if (NOTE_P (link))
1424 continue;
1425
1426 FOR_EACH_LOG_LINK (next1, link)
1427 {
1428 rtx_insn *link1 = next1->insn;
1429 if (NOTE_P (link1))
1430 continue;
1431 /* I0 -> I1 -> I2 -> I3. */
1432 FOR_EACH_LOG_LINK (nextlinks, link1)
1433 if ((next = try_combine (insn, link, link1,
1434 nextlinks->insn,
1435 &new_direct_jump_p,
1436 last_combined_insn)) != 0)
1437 {
1438 statistics_counter_event (cfun, "four-insn combine", 1);
1439 goto retry;
1440 }
1441 /* I0, I1 -> I2, I2 -> I3. */
1442 for (nextlinks = next1->next; nextlinks;
1443 nextlinks = nextlinks->next)
1444 if ((next = try_combine (insn, link, link1,
1445 nextlinks->insn,
1446 &new_direct_jump_p,
1447 last_combined_insn)) != 0)
1448 {
1449 statistics_counter_event (cfun, "four-insn combine", 1);
1450 goto retry;
1451 }
1452 }
1453
1454 for (next1 = links->next; next1; next1 = next1->next)
1455 {
1456 rtx_insn *link1 = next1->insn;
1457 if (NOTE_P (link1))
1458 continue;
1459 /* I0 -> I2; I1, I2 -> I3. */
1460 FOR_EACH_LOG_LINK (nextlinks, link)
1461 if ((next = try_combine (insn, link, link1,
1462 nextlinks->insn,
1463 &new_direct_jump_p,
1464 last_combined_insn)) != 0)
1465 {
1466 statistics_counter_event (cfun, "four-insn combine", 1);
1467 goto retry;
1468 }
1469 /* I0 -> I1; I1, I2 -> I3. */
1470 FOR_EACH_LOG_LINK (nextlinks, link1)
1471 if ((next = try_combine (insn, link, link1,
1472 nextlinks->insn,
1473 &new_direct_jump_p,
1474 last_combined_insn)) != 0)
1475 {
1476 statistics_counter_event (cfun, "four-insn combine", 1);
1477 goto retry;
1478 }
1479 }
1480 }
1481
1482 /* Try this insn with each REG_EQUAL note it links back to. */
1483 FOR_EACH_LOG_LINK (links, insn)
1484 {
1485 rtx set, note;
1486 rtx_insn *temp = links->insn;
1487 if ((set = single_set (temp)) != 0
1488 && (note = find_reg_equal_equiv_note (temp)) != 0
1489 && (note = XEXP (note, 0), GET_CODE (note)) != EXPR_LIST
1490 /* Avoid using a register that may already been marked
1491 dead by an earlier instruction. */
1492 && ! unmentioned_reg_p (note, SET_SRC (set))
1493 && (GET_MODE (note) == VOIDmode
1494 ? SCALAR_INT_MODE_P (GET_MODE (SET_DEST (set)))
1495 : (GET_MODE (SET_DEST (set)) == GET_MODE (note)
1496 && (GET_CODE (SET_DEST (set)) != ZERO_EXTRACT
1497 || (GET_MODE (XEXP (SET_DEST (set), 0))
1498 == GET_MODE (note))))))
1499 {
1500 /* Temporarily replace the set's source with the
1501 contents of the REG_EQUAL note. The insn will
1502 be deleted or recognized by try_combine. */
1503 rtx orig_src = SET_SRC (set);
1504 rtx orig_dest = SET_DEST (set);
1505 if (GET_CODE (SET_DEST (set)) == ZERO_EXTRACT)
1506 SET_DEST (set) = XEXP (SET_DEST (set), 0);
1507 SET_SRC (set) = note;
1508 i2mod = temp;
1509 i2mod_old_rhs = copy_rtx (orig_src);
1510 i2mod_new_rhs = copy_rtx (note);
1511 next = try_combine (insn, i2mod, NULL, NULL,
1512 &new_direct_jump_p,
1513 last_combined_insn);
1514 i2mod = NULL;
1515 if (next)
1516 {
1517 statistics_counter_event (cfun, "insn-with-note combine", 1);
1518 goto retry;
1519 }
1520 SET_SRC (set) = orig_src;
1521 SET_DEST (set) = orig_dest;
1522 }
1523 }
1524
1525 if (!NOTE_P (insn))
1526 record_dead_and_set_regs (insn);
1527
1528 retry:
1529 ;
1530 }
1531 }
1532
1533 default_rtl_profile ();
1534 clear_bb_flags ();
1535 new_direct_jump_p |= purge_all_dead_edges ();
1536 new_direct_jump_p |= delete_noop_moves ();
1537
1538 /* Clean up. */
1539 obstack_free (&insn_link_obstack, NULL);
1540 free (uid_log_links);
1541 free (uid_insn_cost);
1542 reg_stat.release ();
1543
1544 {
1545 struct undo *undo, *next;
1546 for (undo = undobuf.frees; undo; undo = next)
1547 {
1548 next = undo->next;
1549 free (undo);
1550 }
1551 undobuf.frees = 0;
1552 }
1553
1554 total_attempts += combine_attempts;
1555 total_merges += combine_merges;
1556 total_extras += combine_extras;
1557 total_successes += combine_successes;
1558
1559 nonzero_sign_valid = 0;
1560 rtl_hooks = general_rtl_hooks;
1561
1562 /* Make recognizer allow volatile MEMs again. */
1563 init_recog ();
1564
1565 return new_direct_jump_p;
1566 }
1567
1568 /* Wipe the last_xxx fields of reg_stat in preparation for another pass. */
1569
1570 static void
1571 init_reg_last (void)
1572 {
1573 unsigned int i;
1574 reg_stat_type *p;
1575
1576 FOR_EACH_VEC_ELT (reg_stat, i, p)
1577 memset (p, 0, offsetof (reg_stat_type, sign_bit_copies));
1578 }
1579 \f
1580 /* Set up any promoted values for incoming argument registers. */
1581
1582 static void
1583 setup_incoming_promotions (rtx_insn *first)
1584 {
1585 tree arg;
1586 bool strictly_local = false;
1587
1588 for (arg = DECL_ARGUMENTS (current_function_decl); arg;
1589 arg = DECL_CHAIN (arg))
1590 {
1591 rtx x, reg = DECL_INCOMING_RTL (arg);
1592 int uns1, uns3;
1593 machine_mode mode1, mode2, mode3, mode4;
1594
1595 /* Only continue if the incoming argument is in a register. */
1596 if (!REG_P (reg))
1597 continue;
1598
1599 /* Determine, if possible, whether all call sites of the current
1600 function lie within the current compilation unit. (This does
1601 take into account the exporting of a function via taking its
1602 address, and so forth.) */
1603 strictly_local
1604 = cgraph_node::local_info_node (current_function_decl)->local;
1605
1606 /* The mode and signedness of the argument before any promotions happen
1607 (equal to the mode of the pseudo holding it at that stage). */
1608 mode1 = TYPE_MODE (TREE_TYPE (arg));
1609 uns1 = TYPE_UNSIGNED (TREE_TYPE (arg));
1610
1611 /* The mode and signedness of the argument after any source language and
1612 TARGET_PROMOTE_PROTOTYPES-driven promotions. */
1613 mode2 = TYPE_MODE (DECL_ARG_TYPE (arg));
1614 uns3 = TYPE_UNSIGNED (DECL_ARG_TYPE (arg));
1615
1616 /* The mode and signedness of the argument as it is actually passed,
1617 see assign_parm_setup_reg in function.c. */
1618 mode3 = promote_function_mode (TREE_TYPE (arg), mode1, &uns3,
1619 TREE_TYPE (cfun->decl), 0);
1620
1621 /* The mode of the register in which the argument is being passed. */
1622 mode4 = GET_MODE (reg);
1623
1624 /* Eliminate sign extensions in the callee when:
1625 (a) A mode promotion has occurred; */
1626 if (mode1 == mode3)
1627 continue;
1628 /* (b) The mode of the register is the same as the mode of
1629 the argument as it is passed; */
1630 if (mode3 != mode4)
1631 continue;
1632 /* (c) There's no language level extension; */
1633 if (mode1 == mode2)
1634 ;
1635 /* (c.1) All callers are from the current compilation unit. If that's
1636 the case we don't have to rely on an ABI, we only have to know
1637 what we're generating right now, and we know that we will do the
1638 mode1 to mode2 promotion with the given sign. */
1639 else if (!strictly_local)
1640 continue;
1641 /* (c.2) The combination of the two promotions is useful. This is
1642 true when the signs match, or if the first promotion is unsigned.
1643 In the later case, (sign_extend (zero_extend x)) is the same as
1644 (zero_extend (zero_extend x)), so make sure to force UNS3 true. */
1645 else if (uns1)
1646 uns3 = true;
1647 else if (uns3)
1648 continue;
1649
1650 /* Record that the value was promoted from mode1 to mode3,
1651 so that any sign extension at the head of the current
1652 function may be eliminated. */
1653 x = gen_rtx_CLOBBER (mode1, const0_rtx);
1654 x = gen_rtx_fmt_e ((uns3 ? ZERO_EXTEND : SIGN_EXTEND), mode3, x);
1655 record_value_for_reg (reg, first, x);
1656 }
1657 }
1658
1659 /* If MODE has a precision lower than PREC and SRC is a non-negative constant
1660 that would appear negative in MODE, sign-extend SRC for use in nonzero_bits
1661 because some machines (maybe most) will actually do the sign-extension and
1662 this is the conservative approach.
1663
1664 ??? For 2.5, try to tighten up the MD files in this regard instead of this
1665 kludge. */
1666
1667 static rtx
1668 sign_extend_short_imm (rtx src, machine_mode mode, unsigned int prec)
1669 {
1670 scalar_int_mode int_mode;
1671 if (CONST_INT_P (src)
1672 && is_a <scalar_int_mode> (mode, &int_mode)
1673 && GET_MODE_PRECISION (int_mode) < prec
1674 && INTVAL (src) > 0
1675 && val_signbit_known_set_p (int_mode, INTVAL (src)))
1676 src = GEN_INT (INTVAL (src) | ~GET_MODE_MASK (int_mode));
1677
1678 return src;
1679 }
1680
1681 /* Update RSP for pseudo-register X from INSN's REG_EQUAL note (if one exists)
1682 and SET. */
1683
1684 static void
1685 update_rsp_from_reg_equal (reg_stat_type *rsp, rtx_insn *insn, const_rtx set,
1686 rtx x)
1687 {
1688 rtx reg_equal_note = insn ? find_reg_equal_equiv_note (insn) : NULL_RTX;
1689 unsigned HOST_WIDE_INT bits = 0;
1690 rtx reg_equal = NULL, src = SET_SRC (set);
1691 unsigned int num = 0;
1692
1693 if (reg_equal_note)
1694 reg_equal = XEXP (reg_equal_note, 0);
1695
1696 if (SHORT_IMMEDIATES_SIGN_EXTEND)
1697 {
1698 src = sign_extend_short_imm (src, GET_MODE (x), BITS_PER_WORD);
1699 if (reg_equal)
1700 reg_equal = sign_extend_short_imm (reg_equal, GET_MODE (x), BITS_PER_WORD);
1701 }
1702
1703 /* Don't call nonzero_bits if it cannot change anything. */
1704 if (rsp->nonzero_bits != HOST_WIDE_INT_M1U)
1705 {
1706 machine_mode mode = GET_MODE (x);
1707 if (GET_MODE_CLASS (mode) == MODE_INT
1708 && HWI_COMPUTABLE_MODE_P (mode))
1709 mode = nonzero_bits_mode;
1710 bits = nonzero_bits (src, mode);
1711 if (reg_equal && bits)
1712 bits &= nonzero_bits (reg_equal, mode);
1713 rsp->nonzero_bits |= bits;
1714 }
1715
1716 /* Don't call num_sign_bit_copies if it cannot change anything. */
1717 if (rsp->sign_bit_copies != 1)
1718 {
1719 num = num_sign_bit_copies (SET_SRC (set), GET_MODE (x));
1720 if (reg_equal && maybe_ne (num, GET_MODE_PRECISION (GET_MODE (x))))
1721 {
1722 unsigned int numeq = num_sign_bit_copies (reg_equal, GET_MODE (x));
1723 if (num == 0 || numeq > num)
1724 num = numeq;
1725 }
1726 if (rsp->sign_bit_copies == 0 || num < rsp->sign_bit_copies)
1727 rsp->sign_bit_copies = num;
1728 }
1729 }
1730
1731 /* Called via note_stores. If X is a pseudo that is narrower than
1732 HOST_BITS_PER_WIDE_INT and is being set, record what bits are known zero.
1733
1734 If we are setting only a portion of X and we can't figure out what
1735 portion, assume all bits will be used since we don't know what will
1736 be happening.
1737
1738 Similarly, set how many bits of X are known to be copies of the sign bit
1739 at all locations in the function. This is the smallest number implied
1740 by any set of X. */
1741
1742 static void
1743 set_nonzero_bits_and_sign_copies (rtx x, const_rtx set, void *data)
1744 {
1745 rtx_insn *insn = (rtx_insn *) data;
1746 scalar_int_mode mode;
1747
1748 if (REG_P (x)
1749 && REGNO (x) >= FIRST_PSEUDO_REGISTER
1750 /* If this register is undefined at the start of the file, we can't
1751 say what its contents were. */
1752 && ! REGNO_REG_SET_P
1753 (DF_LR_IN (ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb), REGNO (x))
1754 && is_a <scalar_int_mode> (GET_MODE (x), &mode)
1755 && HWI_COMPUTABLE_MODE_P (mode))
1756 {
1757 reg_stat_type *rsp = &reg_stat[REGNO (x)];
1758
1759 if (set == 0 || GET_CODE (set) == CLOBBER)
1760 {
1761 rsp->nonzero_bits = GET_MODE_MASK (mode);
1762 rsp->sign_bit_copies = 1;
1763 return;
1764 }
1765
1766 /* If this register is being initialized using itself, and the
1767 register is uninitialized in this basic block, and there are
1768 no LOG_LINKS which set the register, then part of the
1769 register is uninitialized. In that case we can't assume
1770 anything about the number of nonzero bits.
1771
1772 ??? We could do better if we checked this in
1773 reg_{nonzero_bits,num_sign_bit_copies}_for_combine. Then we
1774 could avoid making assumptions about the insn which initially
1775 sets the register, while still using the information in other
1776 insns. We would have to be careful to check every insn
1777 involved in the combination. */
1778
1779 if (insn
1780 && reg_referenced_p (x, PATTERN (insn))
1781 && !REGNO_REG_SET_P (DF_LR_IN (BLOCK_FOR_INSN (insn)),
1782 REGNO (x)))
1783 {
1784 struct insn_link *link;
1785
1786 FOR_EACH_LOG_LINK (link, insn)
1787 if (dead_or_set_p (link->insn, x))
1788 break;
1789 if (!link)
1790 {
1791 rsp->nonzero_bits = GET_MODE_MASK (mode);
1792 rsp->sign_bit_copies = 1;
1793 return;
1794 }
1795 }
1796
1797 /* If this is a complex assignment, see if we can convert it into a
1798 simple assignment. */
1799 set = expand_field_assignment (set);
1800
1801 /* If this is a simple assignment, or we have a paradoxical SUBREG,
1802 set what we know about X. */
1803
1804 if (SET_DEST (set) == x
1805 || (paradoxical_subreg_p (SET_DEST (set))
1806 && SUBREG_REG (SET_DEST (set)) == x))
1807 update_rsp_from_reg_equal (rsp, insn, set, x);
1808 else
1809 {
1810 rsp->nonzero_bits = GET_MODE_MASK (mode);
1811 rsp->sign_bit_copies = 1;
1812 }
1813 }
1814 }
1815 \f
1816 /* See if INSN can be combined into I3. PRED, PRED2, SUCC and SUCC2 are
1817 optionally insns that were previously combined into I3 or that will be
1818 combined into the merger of INSN and I3. The order is PRED, PRED2,
1819 INSN, SUCC, SUCC2, I3.
1820
1821 Return 0 if the combination is not allowed for any reason.
1822
1823 If the combination is allowed, *PDEST will be set to the single
1824 destination of INSN and *PSRC to the single source, and this function
1825 will return 1. */
1826
1827 static int
1828 can_combine_p (rtx_insn *insn, rtx_insn *i3, rtx_insn *pred ATTRIBUTE_UNUSED,
1829 rtx_insn *pred2 ATTRIBUTE_UNUSED, rtx_insn *succ, rtx_insn *succ2,
1830 rtx *pdest, rtx *psrc)
1831 {
1832 int i;
1833 const_rtx set = 0;
1834 rtx src, dest;
1835 rtx_insn *p;
1836 rtx link;
1837 bool all_adjacent = true;
1838 int (*is_volatile_p) (const_rtx);
1839
1840 if (succ)
1841 {
1842 if (succ2)
1843 {
1844 if (next_active_insn (succ2) != i3)
1845 all_adjacent = false;
1846 if (next_active_insn (succ) != succ2)
1847 all_adjacent = false;
1848 }
1849 else if (next_active_insn (succ) != i3)
1850 all_adjacent = false;
1851 if (next_active_insn (insn) != succ)
1852 all_adjacent = false;
1853 }
1854 else if (next_active_insn (insn) != i3)
1855 all_adjacent = false;
1856
1857 /* Can combine only if previous insn is a SET of a REG, a SUBREG or CC0.
1858 or a PARALLEL consisting of such a SET and CLOBBERs.
1859
1860 If INSN has CLOBBER parallel parts, ignore them for our processing.
1861 By definition, these happen during the execution of the insn. When it
1862 is merged with another insn, all bets are off. If they are, in fact,
1863 needed and aren't also supplied in I3, they may be added by
1864 recog_for_combine. Otherwise, it won't match.
1865
1866 We can also ignore a SET whose SET_DEST is mentioned in a REG_UNUSED
1867 note.
1868
1869 Get the source and destination of INSN. If more than one, can't
1870 combine. */
1871
1872 if (GET_CODE (PATTERN (insn)) == SET)
1873 set = PATTERN (insn);
1874 else if (GET_CODE (PATTERN (insn)) == PARALLEL
1875 && GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == SET)
1876 {
1877 for (i = 0; i < XVECLEN (PATTERN (insn), 0); i++)
1878 {
1879 rtx elt = XVECEXP (PATTERN (insn), 0, i);
1880
1881 switch (GET_CODE (elt))
1882 {
1883 /* This is important to combine floating point insns
1884 for the SH4 port. */
1885 case USE:
1886 /* Combining an isolated USE doesn't make sense.
1887 We depend here on combinable_i3pat to reject them. */
1888 /* The code below this loop only verifies that the inputs of
1889 the SET in INSN do not change. We call reg_set_between_p
1890 to verify that the REG in the USE does not change between
1891 I3 and INSN.
1892 If the USE in INSN was for a pseudo register, the matching
1893 insn pattern will likely match any register; combining this
1894 with any other USE would only be safe if we knew that the
1895 used registers have identical values, or if there was
1896 something to tell them apart, e.g. different modes. For
1897 now, we forgo such complicated tests and simply disallow
1898 combining of USES of pseudo registers with any other USE. */
1899 if (REG_P (XEXP (elt, 0))
1900 && GET_CODE (PATTERN (i3)) == PARALLEL)
1901 {
1902 rtx i3pat = PATTERN (i3);
1903 int i = XVECLEN (i3pat, 0) - 1;
1904 unsigned int regno = REGNO (XEXP (elt, 0));
1905
1906 do
1907 {
1908 rtx i3elt = XVECEXP (i3pat, 0, i);
1909
1910 if (GET_CODE (i3elt) == USE
1911 && REG_P (XEXP (i3elt, 0))
1912 && (REGNO (XEXP (i3elt, 0)) == regno
1913 ? reg_set_between_p (XEXP (elt, 0),
1914 PREV_INSN (insn), i3)
1915 : regno >= FIRST_PSEUDO_REGISTER))
1916 return 0;
1917 }
1918 while (--i >= 0);
1919 }
1920 break;
1921
1922 /* We can ignore CLOBBERs. */
1923 case CLOBBER:
1924 break;
1925
1926 case SET:
1927 /* Ignore SETs whose result isn't used but not those that
1928 have side-effects. */
1929 if (find_reg_note (insn, REG_UNUSED, SET_DEST (elt))
1930 && insn_nothrow_p (insn)
1931 && !side_effects_p (elt))
1932 break;
1933
1934 /* If we have already found a SET, this is a second one and
1935 so we cannot combine with this insn. */
1936 if (set)
1937 return 0;
1938
1939 set = elt;
1940 break;
1941
1942 default:
1943 /* Anything else means we can't combine. */
1944 return 0;
1945 }
1946 }
1947
1948 if (set == 0
1949 /* If SET_SRC is an ASM_OPERANDS we can't throw away these CLOBBERs,
1950 so don't do anything with it. */
1951 || GET_CODE (SET_SRC (set)) == ASM_OPERANDS)
1952 return 0;
1953 }
1954 else
1955 return 0;
1956
1957 if (set == 0)
1958 return 0;
1959
1960 /* The simplification in expand_field_assignment may call back to
1961 get_last_value, so set safe guard here. */
1962 subst_low_luid = DF_INSN_LUID (insn);
1963
1964 set = expand_field_assignment (set);
1965 src = SET_SRC (set), dest = SET_DEST (set);
1966
1967 /* Do not eliminate user-specified register if it is in an
1968 asm input because we may break the register asm usage defined
1969 in GCC manual if allow to do so.
1970 Be aware that this may cover more cases than we expect but this
1971 should be harmless. */
1972 if (REG_P (dest) && REG_USERVAR_P (dest) && HARD_REGISTER_P (dest)
1973 && extract_asm_operands (PATTERN (i3)))
1974 return 0;
1975
1976 /* Don't eliminate a store in the stack pointer. */
1977 if (dest == stack_pointer_rtx
1978 /* Don't combine with an insn that sets a register to itself if it has
1979 a REG_EQUAL note. This may be part of a LIBCALL sequence. */
1980 || (rtx_equal_p (src, dest) && find_reg_note (insn, REG_EQUAL, NULL_RTX))
1981 /* Can't merge an ASM_OPERANDS. */
1982 || GET_CODE (src) == ASM_OPERANDS
1983 /* Can't merge a function call. */
1984 || GET_CODE (src) == CALL
1985 /* Don't eliminate a function call argument. */
1986 || (CALL_P (i3)
1987 && (find_reg_fusage (i3, USE, dest)
1988 || (REG_P (dest)
1989 && REGNO (dest) < FIRST_PSEUDO_REGISTER
1990 && global_regs[REGNO (dest)])))
1991 /* Don't substitute into an incremented register. */
1992 || FIND_REG_INC_NOTE (i3, dest)
1993 || (succ && FIND_REG_INC_NOTE (succ, dest))
1994 || (succ2 && FIND_REG_INC_NOTE (succ2, dest))
1995 /* Don't substitute into a non-local goto, this confuses CFG. */
1996 || (JUMP_P (i3) && find_reg_note (i3, REG_NON_LOCAL_GOTO, NULL_RTX))
1997 /* Make sure that DEST is not used after INSN but before SUCC, or
1998 after SUCC and before SUCC2, or after SUCC2 but before I3. */
1999 || (!all_adjacent
2000 && ((succ2
2001 && (reg_used_between_p (dest, succ2, i3)
2002 || reg_used_between_p (dest, succ, succ2)))
2003 || (!succ2 && succ && reg_used_between_p (dest, succ, i3))
2004 || (!succ2 && !succ && reg_used_between_p (dest, insn, i3))
2005 || (succ
2006 /* SUCC and SUCC2 can be split halves from a PARALLEL; in
2007 that case SUCC is not in the insn stream, so use SUCC2
2008 instead for this test. */
2009 && reg_used_between_p (dest, insn,
2010 succ2
2011 && INSN_UID (succ) == INSN_UID (succ2)
2012 ? succ2 : succ))))
2013 /* Make sure that the value that is to be substituted for the register
2014 does not use any registers whose values alter in between. However,
2015 If the insns are adjacent, a use can't cross a set even though we
2016 think it might (this can happen for a sequence of insns each setting
2017 the same destination; last_set of that register might point to
2018 a NOTE). If INSN has a REG_EQUIV note, the register is always
2019 equivalent to the memory so the substitution is valid even if there
2020 are intervening stores. Also, don't move a volatile asm or
2021 UNSPEC_VOLATILE across any other insns. */
2022 || (! all_adjacent
2023 && (((!MEM_P (src)
2024 || ! find_reg_note (insn, REG_EQUIV, src))
2025 && modified_between_p (src, insn, i3))
2026 || (GET_CODE (src) == ASM_OPERANDS && MEM_VOLATILE_P (src))
2027 || GET_CODE (src) == UNSPEC_VOLATILE))
2028 /* Don't combine across a CALL_INSN, because that would possibly
2029 change whether the life span of some REGs crosses calls or not,
2030 and it is a pain to update that information.
2031 Exception: if source is a constant, moving it later can't hurt.
2032 Accept that as a special case. */
2033 || (DF_INSN_LUID (insn) < last_call_luid && ! CONSTANT_P (src)))
2034 return 0;
2035
2036 /* DEST must either be a REG or CC0. */
2037 if (REG_P (dest))
2038 {
2039 /* If register alignment is being enforced for multi-word items in all
2040 cases except for parameters, it is possible to have a register copy
2041 insn referencing a hard register that is not allowed to contain the
2042 mode being copied and which would not be valid as an operand of most
2043 insns. Eliminate this problem by not combining with such an insn.
2044
2045 Also, on some machines we don't want to extend the life of a hard
2046 register. */
2047
2048 if (REG_P (src)
2049 && ((REGNO (dest) < FIRST_PSEUDO_REGISTER
2050 && !targetm.hard_regno_mode_ok (REGNO (dest), GET_MODE (dest)))
2051 /* Don't extend the life of a hard register unless it is
2052 user variable (if we have few registers) or it can't
2053 fit into the desired register (meaning something special
2054 is going on).
2055 Also avoid substituting a return register into I3, because
2056 reload can't handle a conflict with constraints of other
2057 inputs. */
2058 || (REGNO (src) < FIRST_PSEUDO_REGISTER
2059 && !targetm.hard_regno_mode_ok (REGNO (src),
2060 GET_MODE (src)))))
2061 return 0;
2062 }
2063 else if (GET_CODE (dest) != CC0)
2064 return 0;
2065
2066
2067 if (GET_CODE (PATTERN (i3)) == PARALLEL)
2068 for (i = XVECLEN (PATTERN (i3), 0) - 1; i >= 0; i--)
2069 if (GET_CODE (XVECEXP (PATTERN (i3), 0, i)) == CLOBBER)
2070 {
2071 rtx reg = XEXP (XVECEXP (PATTERN (i3), 0, i), 0);
2072
2073 /* If the clobber represents an earlyclobber operand, we must not
2074 substitute an expression containing the clobbered register.
2075 As we do not analyze the constraint strings here, we have to
2076 make the conservative assumption. However, if the register is
2077 a fixed hard reg, the clobber cannot represent any operand;
2078 we leave it up to the machine description to either accept or
2079 reject use-and-clobber patterns. */
2080 if (!REG_P (reg)
2081 || REGNO (reg) >= FIRST_PSEUDO_REGISTER
2082 || !fixed_regs[REGNO (reg)])
2083 if (reg_overlap_mentioned_p (reg, src))
2084 return 0;
2085 }
2086
2087 /* If INSN contains anything volatile, or is an `asm' (whether volatile
2088 or not), reject, unless nothing volatile comes between it and I3 */
2089
2090 if (GET_CODE (src) == ASM_OPERANDS || volatile_refs_p (src))
2091 {
2092 /* Make sure neither succ nor succ2 contains a volatile reference. */
2093 if (succ2 != 0 && volatile_refs_p (PATTERN (succ2)))
2094 return 0;
2095 if (succ != 0 && volatile_refs_p (PATTERN (succ)))
2096 return 0;
2097 /* We'll check insns between INSN and I3 below. */
2098 }
2099
2100 /* If INSN is an asm, and DEST is a hard register, reject, since it has
2101 to be an explicit register variable, and was chosen for a reason. */
2102
2103 if (GET_CODE (src) == ASM_OPERANDS
2104 && REG_P (dest) && REGNO (dest) < FIRST_PSEUDO_REGISTER)
2105 return 0;
2106
2107 /* If INSN contains volatile references (specifically volatile MEMs),
2108 we cannot combine across any other volatile references.
2109 Even if INSN doesn't contain volatile references, any intervening
2110 volatile insn might affect machine state. */
2111
2112 is_volatile_p = volatile_refs_p (PATTERN (insn))
2113 ? volatile_refs_p
2114 : volatile_insn_p;
2115
2116 for (p = NEXT_INSN (insn); p != i3; p = NEXT_INSN (p))
2117 if (INSN_P (p) && p != succ && p != succ2 && is_volatile_p (PATTERN (p)))
2118 return 0;
2119
2120 /* If INSN contains an autoincrement or autodecrement, make sure that
2121 register is not used between there and I3, and not already used in
2122 I3 either. Neither must it be used in PRED or SUCC, if they exist.
2123 Also insist that I3 not be a jump; if it were one
2124 and the incremented register were spilled, we would lose. */
2125
2126 if (AUTO_INC_DEC)
2127 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
2128 if (REG_NOTE_KIND (link) == REG_INC
2129 && (JUMP_P (i3)
2130 || reg_used_between_p (XEXP (link, 0), insn, i3)
2131 || (pred != NULL_RTX
2132 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (pred)))
2133 || (pred2 != NULL_RTX
2134 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (pred2)))
2135 || (succ != NULL_RTX
2136 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (succ)))
2137 || (succ2 != NULL_RTX
2138 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (succ2)))
2139 || reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i3))))
2140 return 0;
2141
2142 /* Don't combine an insn that follows a CC0-setting insn.
2143 An insn that uses CC0 must not be separated from the one that sets it.
2144 We do, however, allow I2 to follow a CC0-setting insn if that insn
2145 is passed as I1; in that case it will be deleted also.
2146 We also allow combining in this case if all the insns are adjacent
2147 because that would leave the two CC0 insns adjacent as well.
2148 It would be more logical to test whether CC0 occurs inside I1 or I2,
2149 but that would be much slower, and this ought to be equivalent. */
2150
2151 if (HAVE_cc0)
2152 {
2153 p = prev_nonnote_insn (insn);
2154 if (p && p != pred && NONJUMP_INSN_P (p) && sets_cc0_p (PATTERN (p))
2155 && ! all_adjacent)
2156 return 0;
2157 }
2158
2159 /* If we get here, we have passed all the tests and the combination is
2160 to be allowed. */
2161
2162 *pdest = dest;
2163 *psrc = src;
2164
2165 return 1;
2166 }
2167 \f
2168 /* LOC is the location within I3 that contains its pattern or the component
2169 of a PARALLEL of the pattern. We validate that it is valid for combining.
2170
2171 One problem is if I3 modifies its output, as opposed to replacing it
2172 entirely, we can't allow the output to contain I2DEST, I1DEST or I0DEST as
2173 doing so would produce an insn that is not equivalent to the original insns.
2174
2175 Consider:
2176
2177 (set (reg:DI 101) (reg:DI 100))
2178 (set (subreg:SI (reg:DI 101) 0) <foo>)
2179
2180 This is NOT equivalent to:
2181
2182 (parallel [(set (subreg:SI (reg:DI 100) 0) <foo>)
2183 (set (reg:DI 101) (reg:DI 100))])
2184
2185 Not only does this modify 100 (in which case it might still be valid
2186 if 100 were dead in I2), it sets 101 to the ORIGINAL value of 100.
2187
2188 We can also run into a problem if I2 sets a register that I1
2189 uses and I1 gets directly substituted into I3 (not via I2). In that
2190 case, we would be getting the wrong value of I2DEST into I3, so we
2191 must reject the combination. This case occurs when I2 and I1 both
2192 feed into I3, rather than when I1 feeds into I2, which feeds into I3.
2193 If I1_NOT_IN_SRC is nonzero, it means that finding I1 in the source
2194 of a SET must prevent combination from occurring. The same situation
2195 can occur for I0, in which case I0_NOT_IN_SRC is set.
2196
2197 Before doing the above check, we first try to expand a field assignment
2198 into a set of logical operations.
2199
2200 If PI3_DEST_KILLED is nonzero, it is a pointer to a location in which
2201 we place a register that is both set and used within I3. If more than one
2202 such register is detected, we fail.
2203
2204 Return 1 if the combination is valid, zero otherwise. */
2205
2206 static int
2207 combinable_i3pat (rtx_insn *i3, rtx *loc, rtx i2dest, rtx i1dest, rtx i0dest,
2208 int i1_not_in_src, int i0_not_in_src, rtx *pi3dest_killed)
2209 {
2210 rtx x = *loc;
2211
2212 if (GET_CODE (x) == SET)
2213 {
2214 rtx set = x ;
2215 rtx dest = SET_DEST (set);
2216 rtx src = SET_SRC (set);
2217 rtx inner_dest = dest;
2218 rtx subdest;
2219
2220 while (GET_CODE (inner_dest) == STRICT_LOW_PART
2221 || GET_CODE (inner_dest) == SUBREG
2222 || GET_CODE (inner_dest) == ZERO_EXTRACT)
2223 inner_dest = XEXP (inner_dest, 0);
2224
2225 /* Check for the case where I3 modifies its output, as discussed
2226 above. We don't want to prevent pseudos from being combined
2227 into the address of a MEM, so only prevent the combination if
2228 i1 or i2 set the same MEM. */
2229 if ((inner_dest != dest &&
2230 (!MEM_P (inner_dest)
2231 || rtx_equal_p (i2dest, inner_dest)
2232 || (i1dest && rtx_equal_p (i1dest, inner_dest))
2233 || (i0dest && rtx_equal_p (i0dest, inner_dest)))
2234 && (reg_overlap_mentioned_p (i2dest, inner_dest)
2235 || (i1dest && reg_overlap_mentioned_p (i1dest, inner_dest))
2236 || (i0dest && reg_overlap_mentioned_p (i0dest, inner_dest))))
2237
2238 /* This is the same test done in can_combine_p except we can't test
2239 all_adjacent; we don't have to, since this instruction will stay
2240 in place, thus we are not considering increasing the lifetime of
2241 INNER_DEST.
2242
2243 Also, if this insn sets a function argument, combining it with
2244 something that might need a spill could clobber a previous
2245 function argument; the all_adjacent test in can_combine_p also
2246 checks this; here, we do a more specific test for this case. */
2247
2248 || (REG_P (inner_dest)
2249 && REGNO (inner_dest) < FIRST_PSEUDO_REGISTER
2250 && !targetm.hard_regno_mode_ok (REGNO (inner_dest),
2251 GET_MODE (inner_dest)))
2252 || (i1_not_in_src && reg_overlap_mentioned_p (i1dest, src))
2253 || (i0_not_in_src && reg_overlap_mentioned_p (i0dest, src)))
2254 return 0;
2255
2256 /* If DEST is used in I3, it is being killed in this insn, so
2257 record that for later. We have to consider paradoxical
2258 subregs here, since they kill the whole register, but we
2259 ignore partial subregs, STRICT_LOW_PART, etc.
2260 Never add REG_DEAD notes for the FRAME_POINTER_REGNUM or the
2261 STACK_POINTER_REGNUM, since these are always considered to be
2262 live. Similarly for ARG_POINTER_REGNUM if it is fixed. */
2263 subdest = dest;
2264 if (GET_CODE (subdest) == SUBREG && !partial_subreg_p (subdest))
2265 subdest = SUBREG_REG (subdest);
2266 if (pi3dest_killed
2267 && REG_P (subdest)
2268 && reg_referenced_p (subdest, PATTERN (i3))
2269 && REGNO (subdest) != FRAME_POINTER_REGNUM
2270 && (HARD_FRAME_POINTER_IS_FRAME_POINTER
2271 || REGNO (subdest) != HARD_FRAME_POINTER_REGNUM)
2272 && (FRAME_POINTER_REGNUM == ARG_POINTER_REGNUM
2273 || (REGNO (subdest) != ARG_POINTER_REGNUM
2274 || ! fixed_regs [REGNO (subdest)]))
2275 && REGNO (subdest) != STACK_POINTER_REGNUM)
2276 {
2277 if (*pi3dest_killed)
2278 return 0;
2279
2280 *pi3dest_killed = subdest;
2281 }
2282 }
2283
2284 else if (GET_CODE (x) == PARALLEL)
2285 {
2286 int i;
2287
2288 for (i = 0; i < XVECLEN (x, 0); i++)
2289 if (! combinable_i3pat (i3, &XVECEXP (x, 0, i), i2dest, i1dest, i0dest,
2290 i1_not_in_src, i0_not_in_src, pi3dest_killed))
2291 return 0;
2292 }
2293
2294 return 1;
2295 }
2296 \f
2297 /* Return 1 if X is an arithmetic expression that contains a multiplication
2298 and division. We don't count multiplications by powers of two here. */
2299
2300 static int
2301 contains_muldiv (rtx x)
2302 {
2303 switch (GET_CODE (x))
2304 {
2305 case MOD: case DIV: case UMOD: case UDIV:
2306 return 1;
2307
2308 case MULT:
2309 return ! (CONST_INT_P (XEXP (x, 1))
2310 && pow2p_hwi (UINTVAL (XEXP (x, 1))));
2311 default:
2312 if (BINARY_P (x))
2313 return contains_muldiv (XEXP (x, 0))
2314 || contains_muldiv (XEXP (x, 1));
2315
2316 if (UNARY_P (x))
2317 return contains_muldiv (XEXP (x, 0));
2318
2319 return 0;
2320 }
2321 }
2322 \f
2323 /* Determine whether INSN can be used in a combination. Return nonzero if
2324 not. This is used in try_combine to detect early some cases where we
2325 can't perform combinations. */
2326
2327 static int
2328 cant_combine_insn_p (rtx_insn *insn)
2329 {
2330 rtx set;
2331 rtx src, dest;
2332
2333 /* If this isn't really an insn, we can't do anything.
2334 This can occur when flow deletes an insn that it has merged into an
2335 auto-increment address. */
2336 if (!NONDEBUG_INSN_P (insn))
2337 return 1;
2338
2339 /* Never combine loads and stores involving hard regs that are likely
2340 to be spilled. The register allocator can usually handle such
2341 reg-reg moves by tying. If we allow the combiner to make
2342 substitutions of likely-spilled regs, reload might die.
2343 As an exception, we allow combinations involving fixed regs; these are
2344 not available to the register allocator so there's no risk involved. */
2345
2346 set = single_set (insn);
2347 if (! set)
2348 return 0;
2349 src = SET_SRC (set);
2350 dest = SET_DEST (set);
2351 if (GET_CODE (src) == SUBREG)
2352 src = SUBREG_REG (src);
2353 if (GET_CODE (dest) == SUBREG)
2354 dest = SUBREG_REG (dest);
2355 if (REG_P (src) && REG_P (dest)
2356 && ((HARD_REGISTER_P (src)
2357 && ! TEST_HARD_REG_BIT (fixed_reg_set, REGNO (src))
2358 #ifdef LEAF_REGISTERS
2359 && ! LEAF_REGISTERS [REGNO (src)])
2360 #else
2361 )
2362 #endif
2363 || (HARD_REGISTER_P (dest)
2364 && ! TEST_HARD_REG_BIT (fixed_reg_set, REGNO (dest))
2365 && targetm.class_likely_spilled_p (REGNO_REG_CLASS (REGNO (dest))))))
2366 return 1;
2367
2368 return 0;
2369 }
2370
2371 struct likely_spilled_retval_info
2372 {
2373 unsigned regno, nregs;
2374 unsigned mask;
2375 };
2376
2377 /* Called via note_stores by likely_spilled_retval_p. Remove from info->mask
2378 hard registers that are known to be written to / clobbered in full. */
2379 static void
2380 likely_spilled_retval_1 (rtx x, const_rtx set, void *data)
2381 {
2382 struct likely_spilled_retval_info *const info =
2383 (struct likely_spilled_retval_info *) data;
2384 unsigned regno, nregs;
2385 unsigned new_mask;
2386
2387 if (!REG_P (XEXP (set, 0)))
2388 return;
2389 regno = REGNO (x);
2390 if (regno >= info->regno + info->nregs)
2391 return;
2392 nregs = REG_NREGS (x);
2393 if (regno + nregs <= info->regno)
2394 return;
2395 new_mask = (2U << (nregs - 1)) - 1;
2396 if (regno < info->regno)
2397 new_mask >>= info->regno - regno;
2398 else
2399 new_mask <<= regno - info->regno;
2400 info->mask &= ~new_mask;
2401 }
2402
2403 /* Return nonzero iff part of the return value is live during INSN, and
2404 it is likely spilled. This can happen when more than one insn is needed
2405 to copy the return value, e.g. when we consider to combine into the
2406 second copy insn for a complex value. */
2407
2408 static int
2409 likely_spilled_retval_p (rtx_insn *insn)
2410 {
2411 rtx_insn *use = BB_END (this_basic_block);
2412 rtx reg;
2413 rtx_insn *p;
2414 unsigned regno, nregs;
2415 /* We assume here that no machine mode needs more than
2416 32 hard registers when the value overlaps with a register
2417 for which TARGET_FUNCTION_VALUE_REGNO_P is true. */
2418 unsigned mask;
2419 struct likely_spilled_retval_info info;
2420
2421 if (!NONJUMP_INSN_P (use) || GET_CODE (PATTERN (use)) != USE || insn == use)
2422 return 0;
2423 reg = XEXP (PATTERN (use), 0);
2424 if (!REG_P (reg) || !targetm.calls.function_value_regno_p (REGNO (reg)))
2425 return 0;
2426 regno = REGNO (reg);
2427 nregs = REG_NREGS (reg);
2428 if (nregs == 1)
2429 return 0;
2430 mask = (2U << (nregs - 1)) - 1;
2431
2432 /* Disregard parts of the return value that are set later. */
2433 info.regno = regno;
2434 info.nregs = nregs;
2435 info.mask = mask;
2436 for (p = PREV_INSN (use); info.mask && p != insn; p = PREV_INSN (p))
2437 if (INSN_P (p))
2438 note_stores (p, likely_spilled_retval_1, &info);
2439 mask = info.mask;
2440
2441 /* Check if any of the (probably) live return value registers is
2442 likely spilled. */
2443 nregs --;
2444 do
2445 {
2446 if ((mask & 1 << nregs)
2447 && targetm.class_likely_spilled_p (REGNO_REG_CLASS (regno + nregs)))
2448 return 1;
2449 } while (nregs--);
2450 return 0;
2451 }
2452
2453 /* Adjust INSN after we made a change to its destination.
2454
2455 Changing the destination can invalidate notes that say something about
2456 the results of the insn and a LOG_LINK pointing to the insn. */
2457
2458 static void
2459 adjust_for_new_dest (rtx_insn *insn)
2460 {
2461 /* For notes, be conservative and simply remove them. */
2462 remove_reg_equal_equiv_notes (insn);
2463
2464 /* The new insn will have a destination that was previously the destination
2465 of an insn just above it. Call distribute_links to make a LOG_LINK from
2466 the next use of that destination. */
2467
2468 rtx set = single_set (insn);
2469 gcc_assert (set);
2470
2471 rtx reg = SET_DEST (set);
2472
2473 while (GET_CODE (reg) == ZERO_EXTRACT
2474 || GET_CODE (reg) == STRICT_LOW_PART
2475 || GET_CODE (reg) == SUBREG)
2476 reg = XEXP (reg, 0);
2477 gcc_assert (REG_P (reg));
2478
2479 distribute_links (alloc_insn_link (insn, REGNO (reg), NULL));
2480
2481 df_insn_rescan (insn);
2482 }
2483
2484 /* Return TRUE if combine can reuse reg X in mode MODE.
2485 ADDED_SETS is nonzero if the original set is still required. */
2486 static bool
2487 can_change_dest_mode (rtx x, int added_sets, machine_mode mode)
2488 {
2489 unsigned int regno;
2490
2491 if (!REG_P (x))
2492 return false;
2493
2494 /* Don't change between modes with different underlying register sizes,
2495 since this could lead to invalid subregs. */
2496 if (maybe_ne (REGMODE_NATURAL_SIZE (mode),
2497 REGMODE_NATURAL_SIZE (GET_MODE (x))))
2498 return false;
2499
2500 regno = REGNO (x);
2501 /* Allow hard registers if the new mode is legal, and occupies no more
2502 registers than the old mode. */
2503 if (regno < FIRST_PSEUDO_REGISTER)
2504 return (targetm.hard_regno_mode_ok (regno, mode)
2505 && REG_NREGS (x) >= hard_regno_nregs (regno, mode));
2506
2507 /* Or a pseudo that is only used once. */
2508 return (regno < reg_n_sets_max
2509 && REG_N_SETS (regno) == 1
2510 && !added_sets
2511 && !REG_USERVAR_P (x));
2512 }
2513
2514
2515 /* Check whether X, the destination of a set, refers to part of
2516 the register specified by REG. */
2517
2518 static bool
2519 reg_subword_p (rtx x, rtx reg)
2520 {
2521 /* Check that reg is an integer mode register. */
2522 if (!REG_P (reg) || GET_MODE_CLASS (GET_MODE (reg)) != MODE_INT)
2523 return false;
2524
2525 if (GET_CODE (x) == STRICT_LOW_PART
2526 || GET_CODE (x) == ZERO_EXTRACT)
2527 x = XEXP (x, 0);
2528
2529 return GET_CODE (x) == SUBREG
2530 && SUBREG_REG (x) == reg
2531 && GET_MODE_CLASS (GET_MODE (x)) == MODE_INT;
2532 }
2533
2534 /* Delete the unconditional jump INSN and adjust the CFG correspondingly.
2535 Note that the INSN should be deleted *after* removing dead edges, so
2536 that the kept edge is the fallthrough edge for a (set (pc) (pc))
2537 but not for a (set (pc) (label_ref FOO)). */
2538
2539 static void
2540 update_cfg_for_uncondjump (rtx_insn *insn)
2541 {
2542 basic_block bb = BLOCK_FOR_INSN (insn);
2543 gcc_assert (BB_END (bb) == insn);
2544
2545 purge_dead_edges (bb);
2546
2547 delete_insn (insn);
2548 if (EDGE_COUNT (bb->succs) == 1)
2549 {
2550 rtx_insn *insn;
2551
2552 single_succ_edge (bb)->flags |= EDGE_FALLTHRU;
2553
2554 /* Remove barriers from the footer if there are any. */
2555 for (insn = BB_FOOTER (bb); insn; insn = NEXT_INSN (insn))
2556 if (BARRIER_P (insn))
2557 {
2558 if (PREV_INSN (insn))
2559 SET_NEXT_INSN (PREV_INSN (insn)) = NEXT_INSN (insn);
2560 else
2561 BB_FOOTER (bb) = NEXT_INSN (insn);
2562 if (NEXT_INSN (insn))
2563 SET_PREV_INSN (NEXT_INSN (insn)) = PREV_INSN (insn);
2564 }
2565 else if (LABEL_P (insn))
2566 break;
2567 }
2568 }
2569
2570 /* Return whether PAT is a PARALLEL of exactly N register SETs followed
2571 by an arbitrary number of CLOBBERs. */
2572 static bool
2573 is_parallel_of_n_reg_sets (rtx pat, int n)
2574 {
2575 if (GET_CODE (pat) != PARALLEL)
2576 return false;
2577
2578 int len = XVECLEN (pat, 0);
2579 if (len < n)
2580 return false;
2581
2582 int i;
2583 for (i = 0; i < n; i++)
2584 if (GET_CODE (XVECEXP (pat, 0, i)) != SET
2585 || !REG_P (SET_DEST (XVECEXP (pat, 0, i))))
2586 return false;
2587 for ( ; i < len; i++)
2588 switch (GET_CODE (XVECEXP (pat, 0, i)))
2589 {
2590 case CLOBBER:
2591 if (XEXP (XVECEXP (pat, 0, i), 0) == const0_rtx)
2592 return false;
2593 break;
2594 default:
2595 return false;
2596 }
2597 return true;
2598 }
2599
2600 /* Return whether INSN, a PARALLEL of N register SETs (and maybe some
2601 CLOBBERs), can be split into individual SETs in that order, without
2602 changing semantics. */
2603 static bool
2604 can_split_parallel_of_n_reg_sets (rtx_insn *insn, int n)
2605 {
2606 if (!insn_nothrow_p (insn))
2607 return false;
2608
2609 rtx pat = PATTERN (insn);
2610
2611 int i, j;
2612 for (i = 0; i < n; i++)
2613 {
2614 if (side_effects_p (SET_SRC (XVECEXP (pat, 0, i))))
2615 return false;
2616
2617 rtx reg = SET_DEST (XVECEXP (pat, 0, i));
2618
2619 for (j = i + 1; j < n; j++)
2620 if (reg_referenced_p (reg, XVECEXP (pat, 0, j)))
2621 return false;
2622 }
2623
2624 return true;
2625 }
2626
2627 /* Return whether X is just a single set, with the source
2628 a general_operand. */
2629 static bool
2630 is_just_move (rtx x)
2631 {
2632 if (INSN_P (x))
2633 x = PATTERN (x);
2634
2635 return (GET_CODE (x) == SET && general_operand (SET_SRC (x), VOIDmode));
2636 }
2637
2638 /* Callback function to count autoincs. */
2639
2640 static int
2641 count_auto_inc (rtx, rtx, rtx, rtx, rtx, void *arg)
2642 {
2643 (*((int *) arg))++;
2644
2645 return 0;
2646 }
2647
2648 /* Try to combine the insns I0, I1 and I2 into I3.
2649 Here I0, I1 and I2 appear earlier than I3.
2650 I0 and I1 can be zero; then we combine just I2 into I3, or I1 and I2 into
2651 I3.
2652
2653 If we are combining more than two insns and the resulting insn is not
2654 recognized, try splitting it into two insns. If that happens, I2 and I3
2655 are retained and I1/I0 are pseudo-deleted by turning them into a NOTE.
2656 Otherwise, I0, I1 and I2 are pseudo-deleted.
2657
2658 Return 0 if the combination does not work. Then nothing is changed.
2659 If we did the combination, return the insn at which combine should
2660 resume scanning.
2661
2662 Set NEW_DIRECT_JUMP_P to a nonzero value if try_combine creates a
2663 new direct jump instruction.
2664
2665 LAST_COMBINED_INSN is either I3, or some insn after I3 that has
2666 been I3 passed to an earlier try_combine within the same basic
2667 block. */
2668
2669 static rtx_insn *
2670 try_combine (rtx_insn *i3, rtx_insn *i2, rtx_insn *i1, rtx_insn *i0,
2671 int *new_direct_jump_p, rtx_insn *last_combined_insn)
2672 {
2673 /* New patterns for I3 and I2, respectively. */
2674 rtx newpat, newi2pat = 0;
2675 rtvec newpat_vec_with_clobbers = 0;
2676 int substed_i2 = 0, substed_i1 = 0, substed_i0 = 0;
2677 /* Indicates need to preserve SET in I0, I1 or I2 in I3 if it is not
2678 dead. */
2679 int added_sets_0, added_sets_1, added_sets_2;
2680 /* Total number of SETs to put into I3. */
2681 int total_sets;
2682 /* Nonzero if I2's or I1's body now appears in I3. */
2683 int i2_is_used = 0, i1_is_used = 0;
2684 /* INSN_CODEs for new I3, new I2, and user of condition code. */
2685 int insn_code_number, i2_code_number = 0, other_code_number = 0;
2686 /* Contains I3 if the destination of I3 is used in its source, which means
2687 that the old life of I3 is being killed. If that usage is placed into
2688 I2 and not in I3, a REG_DEAD note must be made. */
2689 rtx i3dest_killed = 0;
2690 /* SET_DEST and SET_SRC of I2, I1 and I0. */
2691 rtx i2dest = 0, i2src = 0, i1dest = 0, i1src = 0, i0dest = 0, i0src = 0;
2692 /* Copy of SET_SRC of I1 and I0, if needed. */
2693 rtx i1src_copy = 0, i0src_copy = 0, i0src_copy2 = 0;
2694 /* Set if I2DEST was reused as a scratch register. */
2695 bool i2scratch = false;
2696 /* The PATTERNs of I0, I1, and I2, or a copy of them in certain cases. */
2697 rtx i0pat = 0, i1pat = 0, i2pat = 0;
2698 /* Indicates if I2DEST or I1DEST is in I2SRC or I1_SRC. */
2699 int i2dest_in_i2src = 0, i1dest_in_i1src = 0, i2dest_in_i1src = 0;
2700 int i0dest_in_i0src = 0, i1dest_in_i0src = 0, i2dest_in_i0src = 0;
2701 int i2dest_killed = 0, i1dest_killed = 0, i0dest_killed = 0;
2702 int i1_feeds_i2_n = 0, i0_feeds_i2_n = 0, i0_feeds_i1_n = 0;
2703 /* Notes that must be added to REG_NOTES in I3 and I2. */
2704 rtx new_i3_notes, new_i2_notes;
2705 /* Notes that we substituted I3 into I2 instead of the normal case. */
2706 int i3_subst_into_i2 = 0;
2707 /* Notes that I1, I2 or I3 is a MULT operation. */
2708 int have_mult = 0;
2709 int swap_i2i3 = 0;
2710 int split_i2i3 = 0;
2711 int changed_i3_dest = 0;
2712 bool i2_was_move = false, i3_was_move = false;
2713 int n_auto_inc = 0;
2714
2715 int maxreg;
2716 rtx_insn *temp_insn;
2717 rtx temp_expr;
2718 struct insn_link *link;
2719 rtx other_pat = 0;
2720 rtx new_other_notes;
2721 int i;
2722 scalar_int_mode dest_mode, temp_mode;
2723
2724 /* Immediately return if any of I0,I1,I2 are the same insn (I3 can
2725 never be). */
2726 if (i1 == i2 || i0 == i2 || (i0 && i0 == i1))
2727 return 0;
2728
2729 /* Only try four-insn combinations when there's high likelihood of
2730 success. Look for simple insns, such as loads of constants or
2731 binary operations involving a constant. */
2732 if (i0)
2733 {
2734 int i;
2735 int ngood = 0;
2736 int nshift = 0;
2737 rtx set0, set3;
2738
2739 if (!flag_expensive_optimizations)
2740 return 0;
2741
2742 for (i = 0; i < 4; i++)
2743 {
2744 rtx_insn *insn = i == 0 ? i0 : i == 1 ? i1 : i == 2 ? i2 : i3;
2745 rtx set = single_set (insn);
2746 rtx src;
2747 if (!set)
2748 continue;
2749 src = SET_SRC (set);
2750 if (CONSTANT_P (src))
2751 {
2752 ngood += 2;
2753 break;
2754 }
2755 else if (BINARY_P (src) && CONSTANT_P (XEXP (src, 1)))
2756 ngood++;
2757 else if (GET_CODE (src) == ASHIFT || GET_CODE (src) == ASHIFTRT
2758 || GET_CODE (src) == LSHIFTRT)
2759 nshift++;
2760 }
2761
2762 /* If I0 loads a memory and I3 sets the same memory, then I1 and I2
2763 are likely manipulating its value. Ideally we'll be able to combine
2764 all four insns into a bitfield insertion of some kind.
2765
2766 Note the source in I0 might be inside a sign/zero extension and the
2767 memory modes in I0 and I3 might be different. So extract the address
2768 from the destination of I3 and search for it in the source of I0.
2769
2770 In the event that there's a match but the source/dest do not actually
2771 refer to the same memory, the worst that happens is we try some
2772 combinations that we wouldn't have otherwise. */
2773 if ((set0 = single_set (i0))
2774 /* Ensure the source of SET0 is a MEM, possibly buried inside
2775 an extension. */
2776 && (GET_CODE (SET_SRC (set0)) == MEM
2777 || ((GET_CODE (SET_SRC (set0)) == ZERO_EXTEND
2778 || GET_CODE (SET_SRC (set0)) == SIGN_EXTEND)
2779 && GET_CODE (XEXP (SET_SRC (set0), 0)) == MEM))
2780 && (set3 = single_set (i3))
2781 /* Ensure the destination of SET3 is a MEM. */
2782 && GET_CODE (SET_DEST (set3)) == MEM
2783 /* Would it be better to extract the base address for the MEM
2784 in SET3 and look for that? I don't have cases where it matters
2785 but I could envision such cases. */
2786 && rtx_referenced_p (XEXP (SET_DEST (set3), 0), SET_SRC (set0)))
2787 ngood += 2;
2788
2789 if (ngood < 2 && nshift < 2)
2790 return 0;
2791 }
2792
2793 /* Exit early if one of the insns involved can't be used for
2794 combinations. */
2795 if (CALL_P (i2)
2796 || (i1 && CALL_P (i1))
2797 || (i0 && CALL_P (i0))
2798 || cant_combine_insn_p (i3)
2799 || cant_combine_insn_p (i2)
2800 || (i1 && cant_combine_insn_p (i1))
2801 || (i0 && cant_combine_insn_p (i0))
2802 || likely_spilled_retval_p (i3))
2803 return 0;
2804
2805 combine_attempts++;
2806 undobuf.other_insn = 0;
2807
2808 /* Reset the hard register usage information. */
2809 CLEAR_HARD_REG_SET (newpat_used_regs);
2810
2811 if (dump_file && (dump_flags & TDF_DETAILS))
2812 {
2813 if (i0)
2814 fprintf (dump_file, "\nTrying %d, %d, %d -> %d:\n",
2815 INSN_UID (i0), INSN_UID (i1), INSN_UID (i2), INSN_UID (i3));
2816 else if (i1)
2817 fprintf (dump_file, "\nTrying %d, %d -> %d:\n",
2818 INSN_UID (i1), INSN_UID (i2), INSN_UID (i3));
2819 else
2820 fprintf (dump_file, "\nTrying %d -> %d:\n",
2821 INSN_UID (i2), INSN_UID (i3));
2822
2823 if (i0)
2824 dump_insn_slim (dump_file, i0);
2825 if (i1)
2826 dump_insn_slim (dump_file, i1);
2827 dump_insn_slim (dump_file, i2);
2828 dump_insn_slim (dump_file, i3);
2829 }
2830
2831 /* If multiple insns feed into one of I2 or I3, they can be in any
2832 order. To simplify the code below, reorder them in sequence. */
2833 if (i0 && DF_INSN_LUID (i0) > DF_INSN_LUID (i2))
2834 std::swap (i0, i2);
2835 if (i0 && DF_INSN_LUID (i0) > DF_INSN_LUID (i1))
2836 std::swap (i0, i1);
2837 if (i1 && DF_INSN_LUID (i1) > DF_INSN_LUID (i2))
2838 std::swap (i1, i2);
2839
2840 added_links_insn = 0;
2841 added_notes_insn = 0;
2842
2843 /* First check for one important special case that the code below will
2844 not handle. Namely, the case where I1 is zero, I2 is a PARALLEL
2845 and I3 is a SET whose SET_SRC is a SET_DEST in I2. In that case,
2846 we may be able to replace that destination with the destination of I3.
2847 This occurs in the common code where we compute both a quotient and
2848 remainder into a structure, in which case we want to do the computation
2849 directly into the structure to avoid register-register copies.
2850
2851 Note that this case handles both multiple sets in I2 and also cases
2852 where I2 has a number of CLOBBERs inside the PARALLEL.
2853
2854 We make very conservative checks below and only try to handle the
2855 most common cases of this. For example, we only handle the case
2856 where I2 and I3 are adjacent to avoid making difficult register
2857 usage tests. */
2858
2859 if (i1 == 0 && NONJUMP_INSN_P (i3) && GET_CODE (PATTERN (i3)) == SET
2860 && REG_P (SET_SRC (PATTERN (i3)))
2861 && REGNO (SET_SRC (PATTERN (i3))) >= FIRST_PSEUDO_REGISTER
2862 && find_reg_note (i3, REG_DEAD, SET_SRC (PATTERN (i3)))
2863 && GET_CODE (PATTERN (i2)) == PARALLEL
2864 && ! side_effects_p (SET_DEST (PATTERN (i3)))
2865 /* If the dest of I3 is a ZERO_EXTRACT or STRICT_LOW_PART, the code
2866 below would need to check what is inside (and reg_overlap_mentioned_p
2867 doesn't support those codes anyway). Don't allow those destinations;
2868 the resulting insn isn't likely to be recognized anyway. */
2869 && GET_CODE (SET_DEST (PATTERN (i3))) != ZERO_EXTRACT
2870 && GET_CODE (SET_DEST (PATTERN (i3))) != STRICT_LOW_PART
2871 && ! reg_overlap_mentioned_p (SET_SRC (PATTERN (i3)),
2872 SET_DEST (PATTERN (i3)))
2873 && next_active_insn (i2) == i3)
2874 {
2875 rtx p2 = PATTERN (i2);
2876
2877 /* Make sure that the destination of I3,
2878 which we are going to substitute into one output of I2,
2879 is not used within another output of I2. We must avoid making this:
2880 (parallel [(set (mem (reg 69)) ...)
2881 (set (reg 69) ...)])
2882 which is not well-defined as to order of actions.
2883 (Besides, reload can't handle output reloads for this.)
2884
2885 The problem can also happen if the dest of I3 is a memory ref,
2886 if another dest in I2 is an indirect memory ref.
2887
2888 Neither can this PARALLEL be an asm. We do not allow combining
2889 that usually (see can_combine_p), so do not here either. */
2890 bool ok = true;
2891 for (i = 0; ok && i < XVECLEN (p2, 0); i++)
2892 {
2893 if ((GET_CODE (XVECEXP (p2, 0, i)) == SET
2894 || GET_CODE (XVECEXP (p2, 0, i)) == CLOBBER)
2895 && reg_overlap_mentioned_p (SET_DEST (PATTERN (i3)),
2896 SET_DEST (XVECEXP (p2, 0, i))))
2897 ok = false;
2898 else if (GET_CODE (XVECEXP (p2, 0, i)) == SET
2899 && GET_CODE (SET_SRC (XVECEXP (p2, 0, i))) == ASM_OPERANDS)
2900 ok = false;
2901 }
2902
2903 if (ok)
2904 for (i = 0; i < XVECLEN (p2, 0); i++)
2905 if (GET_CODE (XVECEXP (p2, 0, i)) == SET
2906 && SET_DEST (XVECEXP (p2, 0, i)) == SET_SRC (PATTERN (i3)))
2907 {
2908 combine_merges++;
2909
2910 subst_insn = i3;
2911 subst_low_luid = DF_INSN_LUID (i2);
2912
2913 added_sets_2 = added_sets_1 = added_sets_0 = 0;
2914 i2src = SET_SRC (XVECEXP (p2, 0, i));
2915 i2dest = SET_DEST (XVECEXP (p2, 0, i));
2916 i2dest_killed = dead_or_set_p (i2, i2dest);
2917
2918 /* Replace the dest in I2 with our dest and make the resulting
2919 insn the new pattern for I3. Then skip to where we validate
2920 the pattern. Everything was set up above. */
2921 SUBST (SET_DEST (XVECEXP (p2, 0, i)), SET_DEST (PATTERN (i3)));
2922 newpat = p2;
2923 i3_subst_into_i2 = 1;
2924 goto validate_replacement;
2925 }
2926 }
2927
2928 /* If I2 is setting a pseudo to a constant and I3 is setting some
2929 sub-part of it to another constant, merge them by making a new
2930 constant. */
2931 if (i1 == 0
2932 && (temp_expr = single_set (i2)) != 0
2933 && is_a <scalar_int_mode> (GET_MODE (SET_DEST (temp_expr)), &temp_mode)
2934 && CONST_SCALAR_INT_P (SET_SRC (temp_expr))
2935 && GET_CODE (PATTERN (i3)) == SET
2936 && CONST_SCALAR_INT_P (SET_SRC (PATTERN (i3)))
2937 && reg_subword_p (SET_DEST (PATTERN (i3)), SET_DEST (temp_expr)))
2938 {
2939 rtx dest = SET_DEST (PATTERN (i3));
2940 rtx temp_dest = SET_DEST (temp_expr);
2941 int offset = -1;
2942 int width = 0;
2943
2944 if (GET_CODE (dest) == ZERO_EXTRACT)
2945 {
2946 if (CONST_INT_P (XEXP (dest, 1))
2947 && CONST_INT_P (XEXP (dest, 2))
2948 && is_a <scalar_int_mode> (GET_MODE (XEXP (dest, 0)),
2949 &dest_mode))
2950 {
2951 width = INTVAL (XEXP (dest, 1));
2952 offset = INTVAL (XEXP (dest, 2));
2953 dest = XEXP (dest, 0);
2954 if (BITS_BIG_ENDIAN)
2955 offset = GET_MODE_PRECISION (dest_mode) - width - offset;
2956 }
2957 }
2958 else
2959 {
2960 if (GET_CODE (dest) == STRICT_LOW_PART)
2961 dest = XEXP (dest, 0);
2962 if (is_a <scalar_int_mode> (GET_MODE (dest), &dest_mode))
2963 {
2964 width = GET_MODE_PRECISION (dest_mode);
2965 offset = 0;
2966 }
2967 }
2968
2969 if (offset >= 0)
2970 {
2971 /* If this is the low part, we're done. */
2972 if (subreg_lowpart_p (dest))
2973 ;
2974 /* Handle the case where inner is twice the size of outer. */
2975 else if (GET_MODE_PRECISION (temp_mode)
2976 == 2 * GET_MODE_PRECISION (dest_mode))
2977 offset += GET_MODE_PRECISION (dest_mode);
2978 /* Otherwise give up for now. */
2979 else
2980 offset = -1;
2981 }
2982
2983 if (offset >= 0)
2984 {
2985 rtx inner = SET_SRC (PATTERN (i3));
2986 rtx outer = SET_SRC (temp_expr);
2987
2988 wide_int o = wi::insert (rtx_mode_t (outer, temp_mode),
2989 rtx_mode_t (inner, dest_mode),
2990 offset, width);
2991
2992 combine_merges++;
2993 subst_insn = i3;
2994 subst_low_luid = DF_INSN_LUID (i2);
2995 added_sets_2 = added_sets_1 = added_sets_0 = 0;
2996 i2dest = temp_dest;
2997 i2dest_killed = dead_or_set_p (i2, i2dest);
2998
2999 /* Replace the source in I2 with the new constant and make the
3000 resulting insn the new pattern for I3. Then skip to where we
3001 validate the pattern. Everything was set up above. */
3002 SUBST (SET_SRC (temp_expr),
3003 immed_wide_int_const (o, temp_mode));
3004
3005 newpat = PATTERN (i2);
3006
3007 /* The dest of I3 has been replaced with the dest of I2. */
3008 changed_i3_dest = 1;
3009 goto validate_replacement;
3010 }
3011 }
3012
3013 /* If we have no I1 and I2 looks like:
3014 (parallel [(set (reg:CC X) (compare:CC OP (const_int 0)))
3015 (set Y OP)])
3016 make up a dummy I1 that is
3017 (set Y OP)
3018 and change I2 to be
3019 (set (reg:CC X) (compare:CC Y (const_int 0)))
3020
3021 (We can ignore any trailing CLOBBERs.)
3022
3023 This undoes a previous combination and allows us to match a branch-and-
3024 decrement insn. */
3025
3026 if (!HAVE_cc0 && i1 == 0
3027 && is_parallel_of_n_reg_sets (PATTERN (i2), 2)
3028 && (GET_MODE_CLASS (GET_MODE (SET_DEST (XVECEXP (PATTERN (i2), 0, 0))))
3029 == MODE_CC)
3030 && GET_CODE (SET_SRC (XVECEXP (PATTERN (i2), 0, 0))) == COMPARE
3031 && XEXP (SET_SRC (XVECEXP (PATTERN (i2), 0, 0)), 1) == const0_rtx
3032 && rtx_equal_p (XEXP (SET_SRC (XVECEXP (PATTERN (i2), 0, 0)), 0),
3033 SET_SRC (XVECEXP (PATTERN (i2), 0, 1)))
3034 && !reg_used_between_p (SET_DEST (XVECEXP (PATTERN (i2), 0, 0)), i2, i3)
3035 && !reg_used_between_p (SET_DEST (XVECEXP (PATTERN (i2), 0, 1)), i2, i3))
3036 {
3037 /* We make I1 with the same INSN_UID as I2. This gives it
3038 the same DF_INSN_LUID for value tracking. Our fake I1 will
3039 never appear in the insn stream so giving it the same INSN_UID
3040 as I2 will not cause a problem. */
3041
3042 i1 = gen_rtx_INSN (VOIDmode, NULL, i2, BLOCK_FOR_INSN (i2),
3043 XVECEXP (PATTERN (i2), 0, 1), INSN_LOCATION (i2),
3044 -1, NULL_RTX);
3045 INSN_UID (i1) = INSN_UID (i2);
3046
3047 SUBST (PATTERN (i2), XVECEXP (PATTERN (i2), 0, 0));
3048 SUBST (XEXP (SET_SRC (PATTERN (i2)), 0),
3049 SET_DEST (PATTERN (i1)));
3050 unsigned int regno = REGNO (SET_DEST (PATTERN (i1)));
3051 SUBST_LINK (LOG_LINKS (i2),
3052 alloc_insn_link (i1, regno, LOG_LINKS (i2)));
3053 }
3054
3055 /* If I2 is a PARALLEL of two SETs of REGs (and perhaps some CLOBBERs),
3056 make those two SETs separate I1 and I2 insns, and make an I0 that is
3057 the original I1. */
3058 if (!HAVE_cc0 && i0 == 0
3059 && is_parallel_of_n_reg_sets (PATTERN (i2), 2)
3060 && can_split_parallel_of_n_reg_sets (i2, 2)
3061 && !reg_used_between_p (SET_DEST (XVECEXP (PATTERN (i2), 0, 0)), i2, i3)
3062 && !reg_used_between_p (SET_DEST (XVECEXP (PATTERN (i2), 0, 1)), i2, i3)
3063 && !reg_set_between_p (SET_DEST (XVECEXP (PATTERN (i2), 0, 0)), i2, i3)
3064 && !reg_set_between_p (SET_DEST (XVECEXP (PATTERN (i2), 0, 1)), i2, i3))
3065 {
3066 /* If there is no I1, there is no I0 either. */
3067 i0 = i1;
3068
3069 /* We make I1 with the same INSN_UID as I2. This gives it
3070 the same DF_INSN_LUID for value tracking. Our fake I1 will
3071 never appear in the insn stream so giving it the same INSN_UID
3072 as I2 will not cause a problem. */
3073
3074 i1 = gen_rtx_INSN (VOIDmode, NULL, i2, BLOCK_FOR_INSN (i2),
3075 XVECEXP (PATTERN (i2), 0, 0), INSN_LOCATION (i2),
3076 -1, NULL_RTX);
3077 INSN_UID (i1) = INSN_UID (i2);
3078
3079 SUBST (PATTERN (i2), XVECEXP (PATTERN (i2), 0, 1));
3080 }
3081
3082 /* Verify that I2 and maybe I1 and I0 can be combined into I3. */
3083 if (!can_combine_p (i2, i3, i0, i1, NULL, NULL, &i2dest, &i2src))
3084 {
3085 if (dump_file && (dump_flags & TDF_DETAILS))
3086 fprintf (dump_file, "Can't combine i2 into i3\n");
3087 undo_all ();
3088 return 0;
3089 }
3090 if (i1 && !can_combine_p (i1, i3, i0, NULL, i2, NULL, &i1dest, &i1src))
3091 {
3092 if (dump_file && (dump_flags & TDF_DETAILS))
3093 fprintf (dump_file, "Can't combine i1 into i3\n");
3094 undo_all ();
3095 return 0;
3096 }
3097 if (i0 && !can_combine_p (i0, i3, NULL, NULL, i1, i2, &i0dest, &i0src))
3098 {
3099 if (dump_file && (dump_flags & TDF_DETAILS))
3100 fprintf (dump_file, "Can't combine i0 into i3\n");
3101 undo_all ();
3102 return 0;
3103 }
3104
3105 /* Record whether i2 and i3 are trivial moves. */
3106 i2_was_move = is_just_move (i2);
3107 i3_was_move = is_just_move (i3);
3108
3109 /* Record whether I2DEST is used in I2SRC and similarly for the other
3110 cases. Knowing this will help in register status updating below. */
3111 i2dest_in_i2src = reg_overlap_mentioned_p (i2dest, i2src);
3112 i1dest_in_i1src = i1 && reg_overlap_mentioned_p (i1dest, i1src);
3113 i2dest_in_i1src = i1 && reg_overlap_mentioned_p (i2dest, i1src);
3114 i0dest_in_i0src = i0 && reg_overlap_mentioned_p (i0dest, i0src);
3115 i1dest_in_i0src = i0 && reg_overlap_mentioned_p (i1dest, i0src);
3116 i2dest_in_i0src = i0 && reg_overlap_mentioned_p (i2dest, i0src);
3117 i2dest_killed = dead_or_set_p (i2, i2dest);
3118 i1dest_killed = i1 && dead_or_set_p (i1, i1dest);
3119 i0dest_killed = i0 && dead_or_set_p (i0, i0dest);
3120
3121 /* For the earlier insns, determine which of the subsequent ones they
3122 feed. */
3123 i1_feeds_i2_n = i1 && insn_a_feeds_b (i1, i2);
3124 i0_feeds_i1_n = i0 && insn_a_feeds_b (i0, i1);
3125 i0_feeds_i2_n = (i0 && (!i0_feeds_i1_n ? insn_a_feeds_b (i0, i2)
3126 : (!reg_overlap_mentioned_p (i1dest, i0dest)
3127 && reg_overlap_mentioned_p (i0dest, i2src))));
3128
3129 /* Ensure that I3's pattern can be the destination of combines. */
3130 if (! combinable_i3pat (i3, &PATTERN (i3), i2dest, i1dest, i0dest,
3131 i1 && i2dest_in_i1src && !i1_feeds_i2_n,
3132 i0 && ((i2dest_in_i0src && !i0_feeds_i2_n)
3133 || (i1dest_in_i0src && !i0_feeds_i1_n)),
3134 &i3dest_killed))
3135 {
3136 undo_all ();
3137 return 0;
3138 }
3139
3140 /* See if any of the insns is a MULT operation. Unless one is, we will
3141 reject a combination that is, since it must be slower. Be conservative
3142 here. */
3143 if (GET_CODE (i2src) == MULT
3144 || (i1 != 0 && GET_CODE (i1src) == MULT)
3145 || (i0 != 0 && GET_CODE (i0src) == MULT)
3146 || (GET_CODE (PATTERN (i3)) == SET
3147 && GET_CODE (SET_SRC (PATTERN (i3))) == MULT))
3148 have_mult = 1;
3149
3150 /* If I3 has an inc, then give up if I1 or I2 uses the reg that is inc'd.
3151 We used to do this EXCEPT in one case: I3 has a post-inc in an
3152 output operand. However, that exception can give rise to insns like
3153 mov r3,(r3)+
3154 which is a famous insn on the PDP-11 where the value of r3 used as the
3155 source was model-dependent. Avoid this sort of thing. */
3156
3157 #if 0
3158 if (!(GET_CODE (PATTERN (i3)) == SET
3159 && REG_P (SET_SRC (PATTERN (i3)))
3160 && MEM_P (SET_DEST (PATTERN (i3)))
3161 && (GET_CODE (XEXP (SET_DEST (PATTERN (i3)), 0)) == POST_INC
3162 || GET_CODE (XEXP (SET_DEST (PATTERN (i3)), 0)) == POST_DEC)))
3163 /* It's not the exception. */
3164 #endif
3165 if (AUTO_INC_DEC)
3166 {
3167 rtx link;
3168 for (link = REG_NOTES (i3); link; link = XEXP (link, 1))
3169 if (REG_NOTE_KIND (link) == REG_INC
3170 && (reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i2))
3171 || (i1 != 0
3172 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i1)))))
3173 {
3174 undo_all ();
3175 return 0;
3176 }
3177 }
3178
3179 /* See if the SETs in I1 or I2 need to be kept around in the merged
3180 instruction: whenever the value set there is still needed past I3.
3181 For the SET in I2, this is easy: we see if I2DEST dies or is set in I3.
3182
3183 For the SET in I1, we have two cases: if I1 and I2 independently feed
3184 into I3, the set in I1 needs to be kept around unless I1DEST dies
3185 or is set in I3. Otherwise (if I1 feeds I2 which feeds I3), the set
3186 in I1 needs to be kept around unless I1DEST dies or is set in either
3187 I2 or I3. The same considerations apply to I0. */
3188
3189 added_sets_2 = !dead_or_set_p (i3, i2dest);
3190
3191 if (i1)
3192 added_sets_1 = !(dead_or_set_p (i3, i1dest)
3193 || (i1_feeds_i2_n && dead_or_set_p (i2, i1dest)));
3194 else
3195 added_sets_1 = 0;
3196
3197 if (i0)
3198 added_sets_0 = !(dead_or_set_p (i3, i0dest)
3199 || (i0_feeds_i1_n && dead_or_set_p (i1, i0dest))
3200 || ((i0_feeds_i2_n || (i0_feeds_i1_n && i1_feeds_i2_n))
3201 && dead_or_set_p (i2, i0dest)));
3202 else
3203 added_sets_0 = 0;
3204
3205 /* We are about to copy insns for the case where they need to be kept
3206 around. Check that they can be copied in the merged instruction. */
3207
3208 if (targetm.cannot_copy_insn_p
3209 && ((added_sets_2 && targetm.cannot_copy_insn_p (i2))
3210 || (i1 && added_sets_1 && targetm.cannot_copy_insn_p (i1))
3211 || (i0 && added_sets_0 && targetm.cannot_copy_insn_p (i0))))
3212 {
3213 undo_all ();
3214 return 0;
3215 }
3216
3217 /* Count how many auto_inc expressions there were in the original insns;
3218 we need to have the same number in the resulting patterns. */
3219
3220 if (i0)
3221 for_each_inc_dec (PATTERN (i0), count_auto_inc, &n_auto_inc);
3222 if (i1)
3223 for_each_inc_dec (PATTERN (i1), count_auto_inc, &n_auto_inc);
3224 for_each_inc_dec (PATTERN (i2), count_auto_inc, &n_auto_inc);
3225 for_each_inc_dec (PATTERN (i3), count_auto_inc, &n_auto_inc);
3226
3227 /* If the set in I2 needs to be kept around, we must make a copy of
3228 PATTERN (I2), so that when we substitute I1SRC for I1DEST in
3229 PATTERN (I2), we are only substituting for the original I1DEST, not into
3230 an already-substituted copy. This also prevents making self-referential
3231 rtx. If I2 is a PARALLEL, we just need the piece that assigns I2SRC to
3232 I2DEST. */
3233
3234 if (added_sets_2)
3235 {
3236 if (GET_CODE (PATTERN (i2)) == PARALLEL)
3237 i2pat = gen_rtx_SET (i2dest, copy_rtx (i2src));
3238 else
3239 i2pat = copy_rtx (PATTERN (i2));
3240 }
3241
3242 if (added_sets_1)
3243 {
3244 if (GET_CODE (PATTERN (i1)) == PARALLEL)
3245 i1pat = gen_rtx_SET (i1dest, copy_rtx (i1src));
3246 else
3247 i1pat = copy_rtx (PATTERN (i1));
3248 }
3249
3250 if (added_sets_0)
3251 {
3252 if (GET_CODE (PATTERN (i0)) == PARALLEL)
3253 i0pat = gen_rtx_SET (i0dest, copy_rtx (i0src));
3254 else
3255 i0pat = copy_rtx (PATTERN (i0));
3256 }
3257
3258 combine_merges++;
3259
3260 /* Substitute in the latest insn for the regs set by the earlier ones. */
3261
3262 maxreg = max_reg_num ();
3263
3264 subst_insn = i3;
3265
3266 /* Many machines that don't use CC0 have insns that can both perform an
3267 arithmetic operation and set the condition code. These operations will
3268 be represented as a PARALLEL with the first element of the vector
3269 being a COMPARE of an arithmetic operation with the constant zero.
3270 The second element of the vector will set some pseudo to the result
3271 of the same arithmetic operation. If we simplify the COMPARE, we won't
3272 match such a pattern and so will generate an extra insn. Here we test
3273 for this case, where both the comparison and the operation result are
3274 needed, and make the PARALLEL by just replacing I2DEST in I3SRC with
3275 I2SRC. Later we will make the PARALLEL that contains I2. */
3276
3277 if (!HAVE_cc0 && i1 == 0 && added_sets_2 && GET_CODE (PATTERN (i3)) == SET
3278 && GET_CODE (SET_SRC (PATTERN (i3))) == COMPARE
3279 && CONST_INT_P (XEXP (SET_SRC (PATTERN (i3)), 1))
3280 && rtx_equal_p (XEXP (SET_SRC (PATTERN (i3)), 0), i2dest))
3281 {
3282 rtx newpat_dest;
3283 rtx *cc_use_loc = NULL;
3284 rtx_insn *cc_use_insn = NULL;
3285 rtx op0 = i2src, op1 = XEXP (SET_SRC (PATTERN (i3)), 1);
3286 machine_mode compare_mode, orig_compare_mode;
3287 enum rtx_code compare_code = UNKNOWN, orig_compare_code = UNKNOWN;
3288 scalar_int_mode mode;
3289
3290 newpat = PATTERN (i3);
3291 newpat_dest = SET_DEST (newpat);
3292 compare_mode = orig_compare_mode = GET_MODE (newpat_dest);
3293
3294 if (undobuf.other_insn == 0
3295 && (cc_use_loc = find_single_use (SET_DEST (newpat), i3,
3296 &cc_use_insn)))
3297 {
3298 compare_code = orig_compare_code = GET_CODE (*cc_use_loc);
3299 if (is_a <scalar_int_mode> (GET_MODE (i2dest), &mode))
3300 compare_code = simplify_compare_const (compare_code, mode,
3301 op0, &op1);
3302 target_canonicalize_comparison (&compare_code, &op0, &op1, 1);
3303 }
3304
3305 /* Do the rest only if op1 is const0_rtx, which may be the
3306 result of simplification. */
3307 if (op1 == const0_rtx)
3308 {
3309 /* If a single use of the CC is found, prepare to modify it
3310 when SELECT_CC_MODE returns a new CC-class mode, or when
3311 the above simplify_compare_const() returned a new comparison
3312 operator. undobuf.other_insn is assigned the CC use insn
3313 when modifying it. */
3314 if (cc_use_loc)
3315 {
3316 #ifdef SELECT_CC_MODE
3317 machine_mode new_mode
3318 = SELECT_CC_MODE (compare_code, op0, op1);
3319 if (new_mode != orig_compare_mode
3320 && can_change_dest_mode (SET_DEST (newpat),
3321 added_sets_2, new_mode))
3322 {
3323 unsigned int regno = REGNO (newpat_dest);
3324 compare_mode = new_mode;
3325 if (regno < FIRST_PSEUDO_REGISTER)
3326 newpat_dest = gen_rtx_REG (compare_mode, regno);
3327 else
3328 {
3329 SUBST_MODE (regno_reg_rtx[regno], compare_mode);
3330 newpat_dest = regno_reg_rtx[regno];
3331 }
3332 }
3333 #endif
3334 /* Cases for modifying the CC-using comparison. */
3335 if (compare_code != orig_compare_code
3336 /* ??? Do we need to verify the zero rtx? */
3337 && XEXP (*cc_use_loc, 1) == const0_rtx)
3338 {
3339 /* Replace cc_use_loc with entire new RTX. */
3340 SUBST (*cc_use_loc,
3341 gen_rtx_fmt_ee (compare_code, GET_MODE (*cc_use_loc),
3342 newpat_dest, const0_rtx));
3343 undobuf.other_insn = cc_use_insn;
3344 }
3345 else if (compare_mode != orig_compare_mode)
3346 {
3347 /* Just replace the CC reg with a new mode. */
3348 SUBST (XEXP (*cc_use_loc, 0), newpat_dest);
3349 undobuf.other_insn = cc_use_insn;
3350 }
3351 }
3352
3353 /* Now we modify the current newpat:
3354 First, SET_DEST(newpat) is updated if the CC mode has been
3355 altered. For targets without SELECT_CC_MODE, this should be
3356 optimized away. */
3357 if (compare_mode != orig_compare_mode)
3358 SUBST (SET_DEST (newpat), newpat_dest);
3359 /* This is always done to propagate i2src into newpat. */
3360 SUBST (SET_SRC (newpat),
3361 gen_rtx_COMPARE (compare_mode, op0, op1));
3362 /* Create new version of i2pat if needed; the below PARALLEL
3363 creation needs this to work correctly. */
3364 if (! rtx_equal_p (i2src, op0))
3365 i2pat = gen_rtx_SET (i2dest, op0);
3366 i2_is_used = 1;
3367 }
3368 }
3369
3370 if (i2_is_used == 0)
3371 {
3372 /* It is possible that the source of I2 or I1 may be performing
3373 an unneeded operation, such as a ZERO_EXTEND of something
3374 that is known to have the high part zero. Handle that case
3375 by letting subst look at the inner insns.
3376
3377 Another way to do this would be to have a function that tries
3378 to simplify a single insn instead of merging two or more
3379 insns. We don't do this because of the potential of infinite
3380 loops and because of the potential extra memory required.
3381 However, doing it the way we are is a bit of a kludge and
3382 doesn't catch all cases.
3383
3384 But only do this if -fexpensive-optimizations since it slows
3385 things down and doesn't usually win.
3386
3387 This is not done in the COMPARE case above because the
3388 unmodified I2PAT is used in the PARALLEL and so a pattern
3389 with a modified I2SRC would not match. */
3390
3391 if (flag_expensive_optimizations)
3392 {
3393 /* Pass pc_rtx so no substitutions are done, just
3394 simplifications. */
3395 if (i1)
3396 {
3397 subst_low_luid = DF_INSN_LUID (i1);
3398 i1src = subst (i1src, pc_rtx, pc_rtx, 0, 0, 0);
3399 }
3400
3401 subst_low_luid = DF_INSN_LUID (i2);
3402 i2src = subst (i2src, pc_rtx, pc_rtx, 0, 0, 0);
3403 }
3404
3405 n_occurrences = 0; /* `subst' counts here */
3406 subst_low_luid = DF_INSN_LUID (i2);
3407
3408 /* If I1 feeds into I2 and I1DEST is in I1SRC, we need to make a unique
3409 copy of I2SRC each time we substitute it, in order to avoid creating
3410 self-referential RTL when we will be substituting I1SRC for I1DEST
3411 later. Likewise if I0 feeds into I2, either directly or indirectly
3412 through I1, and I0DEST is in I0SRC. */
3413 newpat = subst (PATTERN (i3), i2dest, i2src, 0, 0,
3414 (i1_feeds_i2_n && i1dest_in_i1src)
3415 || ((i0_feeds_i2_n || (i0_feeds_i1_n && i1_feeds_i2_n))
3416 && i0dest_in_i0src));
3417 substed_i2 = 1;
3418
3419 /* Record whether I2's body now appears within I3's body. */
3420 i2_is_used = n_occurrences;
3421 }
3422
3423 /* If we already got a failure, don't try to do more. Otherwise, try to
3424 substitute I1 if we have it. */
3425
3426 if (i1 && GET_CODE (newpat) != CLOBBER)
3427 {
3428 /* Before we can do this substitution, we must redo the test done
3429 above (see detailed comments there) that ensures I1DEST isn't
3430 mentioned in any SETs in NEWPAT that are field assignments. */
3431 if (!combinable_i3pat (NULL, &newpat, i1dest, NULL_RTX, NULL_RTX,
3432 0, 0, 0))
3433 {
3434 undo_all ();
3435 return 0;
3436 }
3437
3438 n_occurrences = 0;
3439 subst_low_luid = DF_INSN_LUID (i1);
3440
3441 /* If the following substitution will modify I1SRC, make a copy of it
3442 for the case where it is substituted for I1DEST in I2PAT later. */
3443 if (added_sets_2 && i1_feeds_i2_n)
3444 i1src_copy = copy_rtx (i1src);
3445
3446 /* If I0 feeds into I1 and I0DEST is in I0SRC, we need to make a unique
3447 copy of I1SRC each time we substitute it, in order to avoid creating
3448 self-referential RTL when we will be substituting I0SRC for I0DEST
3449 later. */
3450 newpat = subst (newpat, i1dest, i1src, 0, 0,
3451 i0_feeds_i1_n && i0dest_in_i0src);
3452 substed_i1 = 1;
3453
3454 /* Record whether I1's body now appears within I3's body. */
3455 i1_is_used = n_occurrences;
3456 }
3457
3458 /* Likewise for I0 if we have it. */
3459
3460 if (i0 && GET_CODE (newpat) != CLOBBER)
3461 {
3462 if (!combinable_i3pat (NULL, &newpat, i0dest, NULL_RTX, NULL_RTX,
3463 0, 0, 0))
3464 {
3465 undo_all ();
3466 return 0;
3467 }
3468
3469 /* If the following substitution will modify I0SRC, make a copy of it
3470 for the case where it is substituted for I0DEST in I1PAT later. */
3471 if (added_sets_1 && i0_feeds_i1_n)
3472 i0src_copy = copy_rtx (i0src);
3473 /* And a copy for I0DEST in I2PAT substitution. */
3474 if (added_sets_2 && ((i0_feeds_i1_n && i1_feeds_i2_n)
3475 || (i0_feeds_i2_n)))
3476 i0src_copy2 = copy_rtx (i0src);
3477
3478 n_occurrences = 0;
3479 subst_low_luid = DF_INSN_LUID (i0);
3480 newpat = subst (newpat, i0dest, i0src, 0, 0, 0);
3481 substed_i0 = 1;
3482 }
3483
3484 if (n_auto_inc)
3485 {
3486 int new_n_auto_inc = 0;
3487 for_each_inc_dec (newpat, count_auto_inc, &new_n_auto_inc);
3488
3489 if (n_auto_inc != new_n_auto_inc)
3490 {
3491 if (dump_file && (dump_flags & TDF_DETAILS))
3492 fprintf (dump_file, "Number of auto_inc expressions changed\n");
3493 undo_all ();
3494 return 0;
3495 }
3496 }
3497
3498 /* Fail if an autoincrement side-effect has been duplicated. Be careful
3499 to count all the ways that I2SRC and I1SRC can be used. */
3500 if ((FIND_REG_INC_NOTE (i2, NULL_RTX) != 0
3501 && i2_is_used + added_sets_2 > 1)
3502 || (i1 != 0 && FIND_REG_INC_NOTE (i1, NULL_RTX) != 0
3503 && (i1_is_used + added_sets_1 + (added_sets_2 && i1_feeds_i2_n)
3504 > 1))
3505 || (i0 != 0 && FIND_REG_INC_NOTE (i0, NULL_RTX) != 0
3506 && (n_occurrences + added_sets_0
3507 + (added_sets_1 && i0_feeds_i1_n)
3508 + (added_sets_2 && i0_feeds_i2_n)
3509 > 1))
3510 /* Fail if we tried to make a new register. */
3511 || max_reg_num () != maxreg
3512 /* Fail if we couldn't do something and have a CLOBBER. */
3513 || GET_CODE (newpat) == CLOBBER
3514 /* Fail if this new pattern is a MULT and we didn't have one before
3515 at the outer level. */
3516 || (GET_CODE (newpat) == SET && GET_CODE (SET_SRC (newpat)) == MULT
3517 && ! have_mult))
3518 {
3519 undo_all ();
3520 return 0;
3521 }
3522
3523 /* If the actions of the earlier insns must be kept
3524 in addition to substituting them into the latest one,
3525 we must make a new PARALLEL for the latest insn
3526 to hold additional the SETs. */
3527
3528 if (added_sets_0 || added_sets_1 || added_sets_2)
3529 {
3530 int extra_sets = added_sets_0 + added_sets_1 + added_sets_2;
3531 combine_extras++;
3532
3533 if (GET_CODE (newpat) == PARALLEL)
3534 {
3535 rtvec old = XVEC (newpat, 0);
3536 total_sets = XVECLEN (newpat, 0) + extra_sets;
3537 newpat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (total_sets));
3538 memcpy (XVEC (newpat, 0)->elem, &old->elem[0],
3539 sizeof (old->elem[0]) * old->num_elem);
3540 }
3541 else
3542 {
3543 rtx old = newpat;
3544 total_sets = 1 + extra_sets;
3545 newpat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (total_sets));
3546 XVECEXP (newpat, 0, 0) = old;
3547 }
3548
3549 if (added_sets_0)
3550 XVECEXP (newpat, 0, --total_sets) = i0pat;
3551
3552 if (added_sets_1)
3553 {
3554 rtx t = i1pat;
3555 if (i0_feeds_i1_n)
3556 t = subst (t, i0dest, i0src_copy ? i0src_copy : i0src, 0, 0, 0);
3557
3558 XVECEXP (newpat, 0, --total_sets) = t;
3559 }
3560 if (added_sets_2)
3561 {
3562 rtx t = i2pat;
3563 if (i1_feeds_i2_n)
3564 t = subst (t, i1dest, i1src_copy ? i1src_copy : i1src, 0, 0,
3565 i0_feeds_i1_n && i0dest_in_i0src);
3566 if ((i0_feeds_i1_n && i1_feeds_i2_n) || i0_feeds_i2_n)
3567 t = subst (t, i0dest, i0src_copy2 ? i0src_copy2 : i0src, 0, 0, 0);
3568
3569 XVECEXP (newpat, 0, --total_sets) = t;
3570 }
3571 }
3572
3573 validate_replacement:
3574
3575 /* Note which hard regs this insn has as inputs. */
3576 mark_used_regs_combine (newpat);
3577
3578 /* If recog_for_combine fails, it strips existing clobbers. If we'll
3579 consider splitting this pattern, we might need these clobbers. */
3580 if (i1 && GET_CODE (newpat) == PARALLEL
3581 && GET_CODE (XVECEXP (newpat, 0, XVECLEN (newpat, 0) - 1)) == CLOBBER)
3582 {
3583 int len = XVECLEN (newpat, 0);
3584
3585 newpat_vec_with_clobbers = rtvec_alloc (len);
3586 for (i = 0; i < len; i++)
3587 RTVEC_ELT (newpat_vec_with_clobbers, i) = XVECEXP (newpat, 0, i);
3588 }
3589
3590 /* We have recognized nothing yet. */
3591 insn_code_number = -1;
3592
3593 /* See if this is a PARALLEL of two SETs where one SET's destination is
3594 a register that is unused and this isn't marked as an instruction that
3595 might trap in an EH region. In that case, we just need the other SET.
3596 We prefer this over the PARALLEL.
3597
3598 This can occur when simplifying a divmod insn. We *must* test for this
3599 case here because the code below that splits two independent SETs doesn't
3600 handle this case correctly when it updates the register status.
3601
3602 It's pointless doing this if we originally had two sets, one from
3603 i3, and one from i2. Combining then splitting the parallel results
3604 in the original i2 again plus an invalid insn (which we delete).
3605 The net effect is only to move instructions around, which makes
3606 debug info less accurate.
3607
3608 If the remaining SET came from I2 its destination should not be used
3609 between I2 and I3. See PR82024. */
3610
3611 if (!(added_sets_2 && i1 == 0)
3612 && is_parallel_of_n_reg_sets (newpat, 2)
3613 && asm_noperands (newpat) < 0)
3614 {
3615 rtx set0 = XVECEXP (newpat, 0, 0);
3616 rtx set1 = XVECEXP (newpat, 0, 1);
3617 rtx oldpat = newpat;
3618
3619 if (((REG_P (SET_DEST (set1))
3620 && find_reg_note (i3, REG_UNUSED, SET_DEST (set1)))
3621 || (GET_CODE (SET_DEST (set1)) == SUBREG
3622 && find_reg_note (i3, REG_UNUSED, SUBREG_REG (SET_DEST (set1)))))
3623 && insn_nothrow_p (i3)
3624 && !side_effects_p (SET_SRC (set1)))
3625 {
3626 newpat = set0;
3627 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3628 }
3629
3630 else if (((REG_P (SET_DEST (set0))
3631 && find_reg_note (i3, REG_UNUSED, SET_DEST (set0)))
3632 || (GET_CODE (SET_DEST (set0)) == SUBREG
3633 && find_reg_note (i3, REG_UNUSED,
3634 SUBREG_REG (SET_DEST (set0)))))
3635 && insn_nothrow_p (i3)
3636 && !side_effects_p (SET_SRC (set0)))
3637 {
3638 rtx dest = SET_DEST (set1);
3639 if (GET_CODE (dest) == SUBREG)
3640 dest = SUBREG_REG (dest);
3641 if (!reg_used_between_p (dest, i2, i3))
3642 {
3643 newpat = set1;
3644 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3645
3646 if (insn_code_number >= 0)
3647 changed_i3_dest = 1;
3648 }
3649 }
3650
3651 if (insn_code_number < 0)
3652 newpat = oldpat;
3653 }
3654
3655 /* Is the result of combination a valid instruction? */
3656 if (insn_code_number < 0)
3657 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3658
3659 /* If we were combining three insns and the result is a simple SET
3660 with no ASM_OPERANDS that wasn't recognized, try to split it into two
3661 insns. There are two ways to do this. It can be split using a
3662 machine-specific method (like when you have an addition of a large
3663 constant) or by combine in the function find_split_point. */
3664
3665 if (i1 && insn_code_number < 0 && GET_CODE (newpat) == SET
3666 && asm_noperands (newpat) < 0)
3667 {
3668 rtx parallel, *split;
3669 rtx_insn *m_split_insn;
3670
3671 /* See if the MD file can split NEWPAT. If it can't, see if letting it
3672 use I2DEST as a scratch register will help. In the latter case,
3673 convert I2DEST to the mode of the source of NEWPAT if we can. */
3674
3675 m_split_insn = combine_split_insns (newpat, i3);
3676
3677 /* We can only use I2DEST as a scratch reg if it doesn't overlap any
3678 inputs of NEWPAT. */
3679
3680 /* ??? If I2DEST is not safe, and I1DEST exists, then it would be
3681 possible to try that as a scratch reg. This would require adding
3682 more code to make it work though. */
3683
3684 if (m_split_insn == 0 && ! reg_overlap_mentioned_p (i2dest, newpat))
3685 {
3686 machine_mode new_mode = GET_MODE (SET_DEST (newpat));
3687
3688 /* ??? Reusing i2dest without resetting the reg_stat entry for it
3689 (temporarily, until we are committed to this instruction
3690 combination) does not work: for example, any call to nonzero_bits
3691 on the register (from a splitter in the MD file, for example)
3692 will get the old information, which is invalid.
3693
3694 Since nowadays we can create registers during combine just fine,
3695 we should just create a new one here, not reuse i2dest. */
3696
3697 /* First try to split using the original register as a
3698 scratch register. */
3699 parallel = gen_rtx_PARALLEL (VOIDmode,
3700 gen_rtvec (2, newpat,
3701 gen_rtx_CLOBBER (VOIDmode,
3702 i2dest)));
3703 m_split_insn = combine_split_insns (parallel, i3);
3704
3705 /* If that didn't work, try changing the mode of I2DEST if
3706 we can. */
3707 if (m_split_insn == 0
3708 && new_mode != GET_MODE (i2dest)
3709 && new_mode != VOIDmode
3710 && can_change_dest_mode (i2dest, added_sets_2, new_mode))
3711 {
3712 machine_mode old_mode = GET_MODE (i2dest);
3713 rtx ni2dest;
3714
3715 if (REGNO (i2dest) < FIRST_PSEUDO_REGISTER)
3716 ni2dest = gen_rtx_REG (new_mode, REGNO (i2dest));
3717 else
3718 {
3719 SUBST_MODE (regno_reg_rtx[REGNO (i2dest)], new_mode);
3720 ni2dest = regno_reg_rtx[REGNO (i2dest)];
3721 }
3722
3723 parallel = (gen_rtx_PARALLEL
3724 (VOIDmode,
3725 gen_rtvec (2, newpat,
3726 gen_rtx_CLOBBER (VOIDmode,
3727 ni2dest))));
3728 m_split_insn = combine_split_insns (parallel, i3);
3729
3730 if (m_split_insn == 0
3731 && REGNO (i2dest) >= FIRST_PSEUDO_REGISTER)
3732 {
3733 struct undo *buf;
3734
3735 adjust_reg_mode (regno_reg_rtx[REGNO (i2dest)], old_mode);
3736 buf = undobuf.undos;
3737 undobuf.undos = buf->next;
3738 buf->next = undobuf.frees;
3739 undobuf.frees = buf;
3740 }
3741 }
3742
3743 i2scratch = m_split_insn != 0;
3744 }
3745
3746 /* If recog_for_combine has discarded clobbers, try to use them
3747 again for the split. */
3748 if (m_split_insn == 0 && newpat_vec_with_clobbers)
3749 {
3750 parallel = gen_rtx_PARALLEL (VOIDmode, newpat_vec_with_clobbers);
3751 m_split_insn = combine_split_insns (parallel, i3);
3752 }
3753
3754 if (m_split_insn && NEXT_INSN (m_split_insn) == NULL_RTX)
3755 {
3756 rtx m_split_pat = PATTERN (m_split_insn);
3757 insn_code_number = recog_for_combine (&m_split_pat, i3, &new_i3_notes);
3758 if (insn_code_number >= 0)
3759 newpat = m_split_pat;
3760 }
3761 else if (m_split_insn && NEXT_INSN (NEXT_INSN (m_split_insn)) == NULL_RTX
3762 && (next_nonnote_nondebug_insn (i2) == i3
3763 || !modified_between_p (PATTERN (m_split_insn), i2, i3)))
3764 {
3765 rtx i2set, i3set;
3766 rtx newi3pat = PATTERN (NEXT_INSN (m_split_insn));
3767 newi2pat = PATTERN (m_split_insn);
3768
3769 i3set = single_set (NEXT_INSN (m_split_insn));
3770 i2set = single_set (m_split_insn);
3771
3772 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
3773
3774 /* If I2 or I3 has multiple SETs, we won't know how to track
3775 register status, so don't use these insns. If I2's destination
3776 is used between I2 and I3, we also can't use these insns. */
3777
3778 if (i2_code_number >= 0 && i2set && i3set
3779 && (next_nonnote_nondebug_insn (i2) == i3
3780 || ! reg_used_between_p (SET_DEST (i2set), i2, i3)))
3781 insn_code_number = recog_for_combine (&newi3pat, i3,
3782 &new_i3_notes);
3783 if (insn_code_number >= 0)
3784 newpat = newi3pat;
3785
3786 /* It is possible that both insns now set the destination of I3.
3787 If so, we must show an extra use of it. */
3788
3789 if (insn_code_number >= 0)
3790 {
3791 rtx new_i3_dest = SET_DEST (i3set);
3792 rtx new_i2_dest = SET_DEST (i2set);
3793
3794 while (GET_CODE (new_i3_dest) == ZERO_EXTRACT
3795 || GET_CODE (new_i3_dest) == STRICT_LOW_PART
3796 || GET_CODE (new_i3_dest) == SUBREG)
3797 new_i3_dest = XEXP (new_i3_dest, 0);
3798
3799 while (GET_CODE (new_i2_dest) == ZERO_EXTRACT
3800 || GET_CODE (new_i2_dest) == STRICT_LOW_PART
3801 || GET_CODE (new_i2_dest) == SUBREG)
3802 new_i2_dest = XEXP (new_i2_dest, 0);
3803
3804 if (REG_P (new_i3_dest)
3805 && REG_P (new_i2_dest)
3806 && REGNO (new_i3_dest) == REGNO (new_i2_dest)
3807 && REGNO (new_i2_dest) < reg_n_sets_max)
3808 INC_REG_N_SETS (REGNO (new_i2_dest), 1);
3809 }
3810 }
3811
3812 /* If we can split it and use I2DEST, go ahead and see if that
3813 helps things be recognized. Verify that none of the registers
3814 are set between I2 and I3. */
3815 if (insn_code_number < 0
3816 && (split = find_split_point (&newpat, i3, false)) != 0
3817 && (!HAVE_cc0 || REG_P (i2dest))
3818 /* We need I2DEST in the proper mode. If it is a hard register
3819 or the only use of a pseudo, we can change its mode.
3820 Make sure we don't change a hard register to have a mode that
3821 isn't valid for it, or change the number of registers. */
3822 && (GET_MODE (*split) == GET_MODE (i2dest)
3823 || GET_MODE (*split) == VOIDmode
3824 || can_change_dest_mode (i2dest, added_sets_2,
3825 GET_MODE (*split)))
3826 && (next_nonnote_nondebug_insn (i2) == i3
3827 || !modified_between_p (*split, i2, i3))
3828 /* We can't overwrite I2DEST if its value is still used by
3829 NEWPAT. */
3830 && ! reg_referenced_p (i2dest, newpat))
3831 {
3832 rtx newdest = i2dest;
3833 enum rtx_code split_code = GET_CODE (*split);
3834 machine_mode split_mode = GET_MODE (*split);
3835 bool subst_done = false;
3836 newi2pat = NULL_RTX;
3837
3838 i2scratch = true;
3839
3840 /* *SPLIT may be part of I2SRC, so make sure we have the
3841 original expression around for later debug processing.
3842 We should not need I2SRC any more in other cases. */
3843 if (MAY_HAVE_DEBUG_BIND_INSNS)
3844 i2src = copy_rtx (i2src);
3845 else
3846 i2src = NULL;
3847
3848 /* Get NEWDEST as a register in the proper mode. We have already
3849 validated that we can do this. */
3850 if (GET_MODE (i2dest) != split_mode && split_mode != VOIDmode)
3851 {
3852 if (REGNO (i2dest) < FIRST_PSEUDO_REGISTER)
3853 newdest = gen_rtx_REG (split_mode, REGNO (i2dest));
3854 else
3855 {
3856 SUBST_MODE (regno_reg_rtx[REGNO (i2dest)], split_mode);
3857 newdest = regno_reg_rtx[REGNO (i2dest)];
3858 }
3859 }
3860
3861 /* If *SPLIT is a (mult FOO (const_int pow2)), convert it to
3862 an ASHIFT. This can occur if it was inside a PLUS and hence
3863 appeared to be a memory address. This is a kludge. */
3864 if (split_code == MULT
3865 && CONST_INT_P (XEXP (*split, 1))
3866 && INTVAL (XEXP (*split, 1)) > 0
3867 && (i = exact_log2 (UINTVAL (XEXP (*split, 1)))) >= 0)
3868 {
3869 rtx i_rtx = gen_int_shift_amount (split_mode, i);
3870 SUBST (*split, gen_rtx_ASHIFT (split_mode,
3871 XEXP (*split, 0), i_rtx));
3872 /* Update split_code because we may not have a multiply
3873 anymore. */
3874 split_code = GET_CODE (*split);
3875 }
3876
3877 /* Similarly for (plus (mult FOO (const_int pow2))). */
3878 if (split_code == PLUS
3879 && GET_CODE (XEXP (*split, 0)) == MULT
3880 && CONST_INT_P (XEXP (XEXP (*split, 0), 1))
3881 && INTVAL (XEXP (XEXP (*split, 0), 1)) > 0
3882 && (i = exact_log2 (UINTVAL (XEXP (XEXP (*split, 0), 1)))) >= 0)
3883 {
3884 rtx nsplit = XEXP (*split, 0);
3885 rtx i_rtx = gen_int_shift_amount (GET_MODE (nsplit), i);
3886 SUBST (XEXP (*split, 0), gen_rtx_ASHIFT (GET_MODE (nsplit),
3887 XEXP (nsplit, 0),
3888 i_rtx));
3889 /* Update split_code because we may not have a multiply
3890 anymore. */
3891 split_code = GET_CODE (*split);
3892 }
3893
3894 #ifdef INSN_SCHEDULING
3895 /* If *SPLIT is a paradoxical SUBREG, when we split it, it should
3896 be written as a ZERO_EXTEND. */
3897 if (split_code == SUBREG && MEM_P (SUBREG_REG (*split)))
3898 {
3899 /* Or as a SIGN_EXTEND if LOAD_EXTEND_OP says that that's
3900 what it really is. */
3901 if (load_extend_op (GET_MODE (SUBREG_REG (*split)))
3902 == SIGN_EXTEND)
3903 SUBST (*split, gen_rtx_SIGN_EXTEND (split_mode,
3904 SUBREG_REG (*split)));
3905 else
3906 SUBST (*split, gen_rtx_ZERO_EXTEND (split_mode,
3907 SUBREG_REG (*split)));
3908 }
3909 #endif
3910
3911 /* Attempt to split binary operators using arithmetic identities. */
3912 if (BINARY_P (SET_SRC (newpat))
3913 && split_mode == GET_MODE (SET_SRC (newpat))
3914 && ! side_effects_p (SET_SRC (newpat)))
3915 {
3916 rtx setsrc = SET_SRC (newpat);
3917 machine_mode mode = GET_MODE (setsrc);
3918 enum rtx_code code = GET_CODE (setsrc);
3919 rtx src_op0 = XEXP (setsrc, 0);
3920 rtx src_op1 = XEXP (setsrc, 1);
3921
3922 /* Split "X = Y op Y" as "Z = Y; X = Z op Z". */
3923 if (rtx_equal_p (src_op0, src_op1))
3924 {
3925 newi2pat = gen_rtx_SET (newdest, src_op0);
3926 SUBST (XEXP (setsrc, 0), newdest);
3927 SUBST (XEXP (setsrc, 1), newdest);
3928 subst_done = true;
3929 }
3930 /* Split "((P op Q) op R) op S" where op is PLUS or MULT. */
3931 else if ((code == PLUS || code == MULT)
3932 && GET_CODE (src_op0) == code
3933 && GET_CODE (XEXP (src_op0, 0)) == code
3934 && (INTEGRAL_MODE_P (mode)
3935 || (FLOAT_MODE_P (mode)
3936 && flag_unsafe_math_optimizations)))
3937 {
3938 rtx p = XEXP (XEXP (src_op0, 0), 0);
3939 rtx q = XEXP (XEXP (src_op0, 0), 1);
3940 rtx r = XEXP (src_op0, 1);
3941 rtx s = src_op1;
3942
3943 /* Split both "((X op Y) op X) op Y" and
3944 "((X op Y) op Y) op X" as "T op T" where T is
3945 "X op Y". */
3946 if ((rtx_equal_p (p,r) && rtx_equal_p (q,s))
3947 || (rtx_equal_p (p,s) && rtx_equal_p (q,r)))
3948 {
3949 newi2pat = gen_rtx_SET (newdest, XEXP (src_op0, 0));
3950 SUBST (XEXP (setsrc, 0), newdest);
3951 SUBST (XEXP (setsrc, 1), newdest);
3952 subst_done = true;
3953 }
3954 /* Split "((X op X) op Y) op Y)" as "T op T" where
3955 T is "X op Y". */
3956 else if (rtx_equal_p (p,q) && rtx_equal_p (r,s))
3957 {
3958 rtx tmp = simplify_gen_binary (code, mode, p, r);
3959 newi2pat = gen_rtx_SET (newdest, tmp);
3960 SUBST (XEXP (setsrc, 0), newdest);
3961 SUBST (XEXP (setsrc, 1), newdest);
3962 subst_done = true;
3963 }
3964 }
3965 }
3966
3967 if (!subst_done)
3968 {
3969 newi2pat = gen_rtx_SET (newdest, *split);
3970 SUBST (*split, newdest);
3971 }
3972
3973 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
3974
3975 /* recog_for_combine might have added CLOBBERs to newi2pat.
3976 Make sure NEWPAT does not depend on the clobbered regs. */
3977 if (GET_CODE (newi2pat) == PARALLEL)
3978 for (i = XVECLEN (newi2pat, 0) - 1; i >= 0; i--)
3979 if (GET_CODE (XVECEXP (newi2pat, 0, i)) == CLOBBER)
3980 {
3981 rtx reg = XEXP (XVECEXP (newi2pat, 0, i), 0);
3982 if (reg_overlap_mentioned_p (reg, newpat))
3983 {
3984 undo_all ();
3985 return 0;
3986 }
3987 }
3988
3989 /* If the split point was a MULT and we didn't have one before,
3990 don't use one now. */
3991 if (i2_code_number >= 0 && ! (split_code == MULT && ! have_mult))
3992 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3993 }
3994 }
3995
3996 /* Check for a case where we loaded from memory in a narrow mode and
3997 then sign extended it, but we need both registers. In that case,
3998 we have a PARALLEL with both loads from the same memory location.
3999 We can split this into a load from memory followed by a register-register
4000 copy. This saves at least one insn, more if register allocation can
4001 eliminate the copy.
4002
4003 We cannot do this if the destination of the first assignment is a
4004 condition code register or cc0. We eliminate this case by making sure
4005 the SET_DEST and SET_SRC have the same mode.
4006
4007 We cannot do this if the destination of the second assignment is
4008 a register that we have already assumed is zero-extended. Similarly
4009 for a SUBREG of such a register. */
4010
4011 else if (i1 && insn_code_number < 0 && asm_noperands (newpat) < 0
4012 && GET_CODE (newpat) == PARALLEL
4013 && XVECLEN (newpat, 0) == 2
4014 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
4015 && GET_CODE (SET_SRC (XVECEXP (newpat, 0, 0))) == SIGN_EXTEND
4016 && (GET_MODE (SET_DEST (XVECEXP (newpat, 0, 0)))
4017 == GET_MODE (SET_SRC (XVECEXP (newpat, 0, 0))))
4018 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
4019 && rtx_equal_p (SET_SRC (XVECEXP (newpat, 0, 1)),
4020 XEXP (SET_SRC (XVECEXP (newpat, 0, 0)), 0))
4021 && !modified_between_p (SET_SRC (XVECEXP (newpat, 0, 1)), i2, i3)
4022 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != ZERO_EXTRACT
4023 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != STRICT_LOW_PART
4024 && ! (temp_expr = SET_DEST (XVECEXP (newpat, 0, 1)),
4025 (REG_P (temp_expr)
4026 && reg_stat[REGNO (temp_expr)].nonzero_bits != 0
4027 && known_lt (GET_MODE_PRECISION (GET_MODE (temp_expr)),
4028 BITS_PER_WORD)
4029 && known_lt (GET_MODE_PRECISION (GET_MODE (temp_expr)),
4030 HOST_BITS_PER_INT)
4031 && (reg_stat[REGNO (temp_expr)].nonzero_bits
4032 != GET_MODE_MASK (word_mode))))
4033 && ! (GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) == SUBREG
4034 && (temp_expr = SUBREG_REG (SET_DEST (XVECEXP (newpat, 0, 1))),
4035 (REG_P (temp_expr)
4036 && reg_stat[REGNO (temp_expr)].nonzero_bits != 0
4037 && known_lt (GET_MODE_PRECISION (GET_MODE (temp_expr)),
4038 BITS_PER_WORD)
4039 && known_lt (GET_MODE_PRECISION (GET_MODE (temp_expr)),
4040 HOST_BITS_PER_INT)
4041 && (reg_stat[REGNO (temp_expr)].nonzero_bits
4042 != GET_MODE_MASK (word_mode)))))
4043 && ! reg_overlap_mentioned_p (SET_DEST (XVECEXP (newpat, 0, 1)),
4044 SET_SRC (XVECEXP (newpat, 0, 1)))
4045 && ! find_reg_note (i3, REG_UNUSED,
4046 SET_DEST (XVECEXP (newpat, 0, 0))))
4047 {
4048 rtx ni2dest;
4049
4050 newi2pat = XVECEXP (newpat, 0, 0);
4051 ni2dest = SET_DEST (XVECEXP (newpat, 0, 0));
4052 newpat = XVECEXP (newpat, 0, 1);
4053 SUBST (SET_SRC (newpat),
4054 gen_lowpart (GET_MODE (SET_SRC (newpat)), ni2dest));
4055 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
4056
4057 if (i2_code_number >= 0)
4058 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
4059
4060 if (insn_code_number >= 0)
4061 swap_i2i3 = 1;
4062 }
4063
4064 /* Similarly, check for a case where we have a PARALLEL of two independent
4065 SETs but we started with three insns. In this case, we can do the sets
4066 as two separate insns. This case occurs when some SET allows two
4067 other insns to combine, but the destination of that SET is still live.
4068
4069 Also do this if we started with two insns and (at least) one of the
4070 resulting sets is a noop; this noop will be deleted later.
4071
4072 Also do this if we started with two insns neither of which was a simple
4073 move. */
4074
4075 else if (insn_code_number < 0 && asm_noperands (newpat) < 0
4076 && GET_CODE (newpat) == PARALLEL
4077 && XVECLEN (newpat, 0) == 2
4078 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
4079 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
4080 && (i1
4081 || set_noop_p (XVECEXP (newpat, 0, 0))
4082 || set_noop_p (XVECEXP (newpat, 0, 1))
4083 || (!i2_was_move && !i3_was_move))
4084 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) != ZERO_EXTRACT
4085 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) != STRICT_LOW_PART
4086 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != ZERO_EXTRACT
4087 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != STRICT_LOW_PART
4088 && ! reg_referenced_p (SET_DEST (XVECEXP (newpat, 0, 1)),
4089 XVECEXP (newpat, 0, 0))
4090 && ! reg_referenced_p (SET_DEST (XVECEXP (newpat, 0, 0)),
4091 XVECEXP (newpat, 0, 1))
4092 && ! (contains_muldiv (SET_SRC (XVECEXP (newpat, 0, 0)))
4093 && contains_muldiv (SET_SRC (XVECEXP (newpat, 0, 1)))))
4094 {
4095 rtx set0 = XVECEXP (newpat, 0, 0);
4096 rtx set1 = XVECEXP (newpat, 0, 1);
4097
4098 /* Normally, it doesn't matter which of the two is done first,
4099 but the one that references cc0 can't be the second, and
4100 one which uses any regs/memory set in between i2 and i3 can't
4101 be first. The PARALLEL might also have been pre-existing in i3,
4102 so we need to make sure that we won't wrongly hoist a SET to i2
4103 that would conflict with a death note present in there, or would
4104 have its dest modified between i2 and i3. */
4105 if (!modified_between_p (SET_SRC (set1), i2, i3)
4106 && !(REG_P (SET_DEST (set1))
4107 && find_reg_note (i2, REG_DEAD, SET_DEST (set1)))
4108 && !(GET_CODE (SET_DEST (set1)) == SUBREG
4109 && find_reg_note (i2, REG_DEAD,
4110 SUBREG_REG (SET_DEST (set1))))
4111 && !modified_between_p (SET_DEST (set1), i2, i3)
4112 && (!HAVE_cc0 || !reg_referenced_p (cc0_rtx, set0))
4113 /* If I3 is a jump, ensure that set0 is a jump so that
4114 we do not create invalid RTL. */
4115 && (!JUMP_P (i3) || SET_DEST (set0) == pc_rtx)
4116 )
4117 {
4118 newi2pat = set1;
4119 newpat = set0;
4120 }
4121 else if (!modified_between_p (SET_SRC (set0), i2, i3)
4122 && !(REG_P (SET_DEST (set0))
4123 && find_reg_note (i2, REG_DEAD, SET_DEST (set0)))
4124 && !(GET_CODE (SET_DEST (set0)) == SUBREG
4125 && find_reg_note (i2, REG_DEAD,
4126 SUBREG_REG (SET_DEST (set0))))
4127 && !modified_between_p (SET_DEST (set0), i2, i3)
4128 && (!HAVE_cc0 || !reg_referenced_p (cc0_rtx, set1))
4129 /* If I3 is a jump, ensure that set1 is a jump so that
4130 we do not create invalid RTL. */
4131 && (!JUMP_P (i3) || SET_DEST (set1) == pc_rtx)
4132 )
4133 {
4134 newi2pat = set0;
4135 newpat = set1;
4136 }
4137 else
4138 {
4139 undo_all ();
4140 return 0;
4141 }
4142
4143 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
4144
4145 if (i2_code_number >= 0)
4146 {
4147 /* recog_for_combine might have added CLOBBERs to newi2pat.
4148 Make sure NEWPAT does not depend on the clobbered regs. */
4149 if (GET_CODE (newi2pat) == PARALLEL)
4150 {
4151 for (i = XVECLEN (newi2pat, 0) - 1; i >= 0; i--)
4152 if (GET_CODE (XVECEXP (newi2pat, 0, i)) == CLOBBER)
4153 {
4154 rtx reg = XEXP (XVECEXP (newi2pat, 0, i), 0);
4155 if (reg_overlap_mentioned_p (reg, newpat))
4156 {
4157 undo_all ();
4158 return 0;
4159 }
4160 }
4161 }
4162
4163 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
4164
4165 if (insn_code_number >= 0)
4166 split_i2i3 = 1;
4167 }
4168 }
4169
4170 /* If it still isn't recognized, fail and change things back the way they
4171 were. */
4172 if ((insn_code_number < 0
4173 /* Is the result a reasonable ASM_OPERANDS? */
4174 && (! check_asm_operands (newpat) || added_sets_1 || added_sets_2)))
4175 {
4176 undo_all ();
4177 return 0;
4178 }
4179
4180 /* If we had to change another insn, make sure it is valid also. */
4181 if (undobuf.other_insn)
4182 {
4183 CLEAR_HARD_REG_SET (newpat_used_regs);
4184
4185 other_pat = PATTERN (undobuf.other_insn);
4186 other_code_number = recog_for_combine (&other_pat, undobuf.other_insn,
4187 &new_other_notes);
4188
4189 if (other_code_number < 0 && ! check_asm_operands (other_pat))
4190 {
4191 undo_all ();
4192 return 0;
4193 }
4194 }
4195
4196 /* If I2 is the CC0 setter and I3 is the CC0 user then check whether
4197 they are adjacent to each other or not. */
4198 if (HAVE_cc0)
4199 {
4200 rtx_insn *p = prev_nonnote_insn (i3);
4201 if (p && p != i2 && NONJUMP_INSN_P (p) && newi2pat
4202 && sets_cc0_p (newi2pat))
4203 {
4204 undo_all ();
4205 return 0;
4206 }
4207 }
4208
4209 /* Only allow this combination if insn_cost reports that the
4210 replacement instructions are cheaper than the originals. */
4211 if (!combine_validate_cost (i0, i1, i2, i3, newpat, newi2pat, other_pat))
4212 {
4213 undo_all ();
4214 return 0;
4215 }
4216
4217 if (MAY_HAVE_DEBUG_BIND_INSNS)
4218 {
4219 struct undo *undo;
4220
4221 for (undo = undobuf.undos; undo; undo = undo->next)
4222 if (undo->kind == UNDO_MODE)
4223 {
4224 rtx reg = *undo->where.r;
4225 machine_mode new_mode = GET_MODE (reg);
4226 machine_mode old_mode = undo->old_contents.m;
4227
4228 /* Temporarily revert mode back. */
4229 adjust_reg_mode (reg, old_mode);
4230
4231 if (reg == i2dest && i2scratch)
4232 {
4233 /* If we used i2dest as a scratch register with a
4234 different mode, substitute it for the original
4235 i2src while its original mode is temporarily
4236 restored, and then clear i2scratch so that we don't
4237 do it again later. */
4238 propagate_for_debug (i2, last_combined_insn, reg, i2src,
4239 this_basic_block);
4240 i2scratch = false;
4241 /* Put back the new mode. */
4242 adjust_reg_mode (reg, new_mode);
4243 }
4244 else
4245 {
4246 rtx tempreg = gen_raw_REG (old_mode, REGNO (reg));
4247 rtx_insn *first, *last;
4248
4249 if (reg == i2dest)
4250 {
4251 first = i2;
4252 last = last_combined_insn;
4253 }
4254 else
4255 {
4256 first = i3;
4257 last = undobuf.other_insn;
4258 gcc_assert (last);
4259 if (DF_INSN_LUID (last)
4260 < DF_INSN_LUID (last_combined_insn))
4261 last = last_combined_insn;
4262 }
4263
4264 /* We're dealing with a reg that changed mode but not
4265 meaning, so we want to turn it into a subreg for
4266 the new mode. However, because of REG sharing and
4267 because its mode had already changed, we have to do
4268 it in two steps. First, replace any debug uses of
4269 reg, with its original mode temporarily restored,
4270 with this copy we have created; then, replace the
4271 copy with the SUBREG of the original shared reg,
4272 once again changed to the new mode. */
4273 propagate_for_debug (first, last, reg, tempreg,
4274 this_basic_block);
4275 adjust_reg_mode (reg, new_mode);
4276 propagate_for_debug (first, last, tempreg,
4277 lowpart_subreg (old_mode, reg, new_mode),
4278 this_basic_block);
4279 }
4280 }
4281 }
4282
4283 /* If we will be able to accept this, we have made a
4284 change to the destination of I3. This requires us to
4285 do a few adjustments. */
4286
4287 if (changed_i3_dest)
4288 {
4289 PATTERN (i3) = newpat;
4290 adjust_for_new_dest (i3);
4291 }
4292
4293 /* We now know that we can do this combination. Merge the insns and
4294 update the status of registers and LOG_LINKS. */
4295
4296 if (undobuf.other_insn)
4297 {
4298 rtx note, next;
4299
4300 PATTERN (undobuf.other_insn) = other_pat;
4301
4302 /* If any of the notes in OTHER_INSN were REG_DEAD or REG_UNUSED,
4303 ensure that they are still valid. Then add any non-duplicate
4304 notes added by recog_for_combine. */
4305 for (note = REG_NOTES (undobuf.other_insn); note; note = next)
4306 {
4307 next = XEXP (note, 1);
4308
4309 if ((REG_NOTE_KIND (note) == REG_DEAD
4310 && !reg_referenced_p (XEXP (note, 0),
4311 PATTERN (undobuf.other_insn)))
4312 ||(REG_NOTE_KIND (note) == REG_UNUSED
4313 && !reg_set_p (XEXP (note, 0),
4314 PATTERN (undobuf.other_insn)))
4315 /* Simply drop equal note since it may be no longer valid
4316 for other_insn. It may be possible to record that CC
4317 register is changed and only discard those notes, but
4318 in practice it's unnecessary complication and doesn't
4319 give any meaningful improvement.
4320
4321 See PR78559. */
4322 || REG_NOTE_KIND (note) == REG_EQUAL
4323 || REG_NOTE_KIND (note) == REG_EQUIV)
4324 remove_note (undobuf.other_insn, note);
4325 }
4326
4327 distribute_notes (new_other_notes, undobuf.other_insn,
4328 undobuf.other_insn, NULL, NULL_RTX, NULL_RTX,
4329 NULL_RTX);
4330 }
4331
4332 if (swap_i2i3)
4333 {
4334 /* I3 now uses what used to be its destination and which is now
4335 I2's destination. This requires us to do a few adjustments. */
4336 PATTERN (i3) = newpat;
4337 adjust_for_new_dest (i3);
4338 }
4339
4340 if (swap_i2i3 || split_i2i3)
4341 {
4342 /* We might need a LOG_LINK from I3 to I2. But then we used to
4343 have one, so we still will.
4344
4345 However, some later insn might be using I2's dest and have
4346 a LOG_LINK pointing at I3. We should change it to point at
4347 I2 instead. */
4348
4349 /* newi2pat is usually a SET here; however, recog_for_combine might
4350 have added some clobbers. */
4351 rtx x = newi2pat;
4352 if (GET_CODE (x) == PARALLEL)
4353 x = XVECEXP (newi2pat, 0, 0);
4354
4355 /* It can only be a SET of a REG or of a SUBREG of a REG. */
4356 unsigned int regno = reg_or_subregno (SET_DEST (x));
4357
4358 bool done = false;
4359 for (rtx_insn *insn = NEXT_INSN (i3);
4360 !done
4361 && insn
4362 && NONDEBUG_INSN_P (insn)
4363 && BLOCK_FOR_INSN (insn) == this_basic_block;
4364 insn = NEXT_INSN (insn))
4365 {
4366 struct insn_link *link;
4367 FOR_EACH_LOG_LINK (link, insn)
4368 if (link->insn == i3 && link->regno == regno)
4369 {
4370 link->insn = i2;
4371 done = true;
4372 break;
4373 }
4374 }
4375 }
4376
4377 {
4378 rtx i3notes, i2notes, i1notes = 0, i0notes = 0;
4379 struct insn_link *i3links, *i2links, *i1links = 0, *i0links = 0;
4380 rtx midnotes = 0;
4381 int from_luid;
4382 /* Compute which registers we expect to eliminate. newi2pat may be setting
4383 either i3dest or i2dest, so we must check it. */
4384 rtx elim_i2 = ((newi2pat && reg_set_p (i2dest, newi2pat))
4385 || i2dest_in_i2src || i2dest_in_i1src || i2dest_in_i0src
4386 || !i2dest_killed
4387 ? 0 : i2dest);
4388 /* For i1, we need to compute both local elimination and global
4389 elimination information with respect to newi2pat because i1dest
4390 may be the same as i3dest, in which case newi2pat may be setting
4391 i1dest. Global information is used when distributing REG_DEAD
4392 note for i2 and i3, in which case it does matter if newi2pat sets
4393 i1dest or not.
4394
4395 Local information is used when distributing REG_DEAD note for i1,
4396 in which case it doesn't matter if newi2pat sets i1dest or not.
4397 See PR62151, if we have four insns combination:
4398 i0: r0 <- i0src
4399 i1: r1 <- i1src (using r0)
4400 REG_DEAD (r0)
4401 i2: r0 <- i2src (using r1)
4402 i3: r3 <- i3src (using r0)
4403 ix: using r0
4404 From i1's point of view, r0 is eliminated, no matter if it is set
4405 by newi2pat or not. In other words, REG_DEAD info for r0 in i1
4406 should be discarded.
4407
4408 Note local information only affects cases in forms like "I1->I2->I3",
4409 "I0->I1->I2->I3" or "I0&I1->I2, I2->I3". For other cases like
4410 "I0->I1, I1&I2->I3" or "I1&I2->I3", newi2pat won't set i1dest or
4411 i0dest anyway. */
4412 rtx local_elim_i1 = (i1 == 0 || i1dest_in_i1src || i1dest_in_i0src
4413 || !i1dest_killed
4414 ? 0 : i1dest);
4415 rtx elim_i1 = (local_elim_i1 == 0
4416 || (newi2pat && reg_set_p (i1dest, newi2pat))
4417 ? 0 : i1dest);
4418 /* Same case as i1. */
4419 rtx local_elim_i0 = (i0 == 0 || i0dest_in_i0src || !i0dest_killed
4420 ? 0 : i0dest);
4421 rtx elim_i0 = (local_elim_i0 == 0
4422 || (newi2pat && reg_set_p (i0dest, newi2pat))
4423 ? 0 : i0dest);
4424
4425 /* Get the old REG_NOTES and LOG_LINKS from all our insns and
4426 clear them. */
4427 i3notes = REG_NOTES (i3), i3links = LOG_LINKS (i3);
4428 i2notes = REG_NOTES (i2), i2links = LOG_LINKS (i2);
4429 if (i1)
4430 i1notes = REG_NOTES (i1), i1links = LOG_LINKS (i1);
4431 if (i0)
4432 i0notes = REG_NOTES (i0), i0links = LOG_LINKS (i0);
4433
4434 /* Ensure that we do not have something that should not be shared but
4435 occurs multiple times in the new insns. Check this by first
4436 resetting all the `used' flags and then copying anything is shared. */
4437
4438 reset_used_flags (i3notes);
4439 reset_used_flags (i2notes);
4440 reset_used_flags (i1notes);
4441 reset_used_flags (i0notes);
4442 reset_used_flags (newpat);
4443 reset_used_flags (newi2pat);
4444 if (undobuf.other_insn)
4445 reset_used_flags (PATTERN (undobuf.other_insn));
4446
4447 i3notes = copy_rtx_if_shared (i3notes);
4448 i2notes = copy_rtx_if_shared (i2notes);
4449 i1notes = copy_rtx_if_shared (i1notes);
4450 i0notes = copy_rtx_if_shared (i0notes);
4451 newpat = copy_rtx_if_shared (newpat);
4452 newi2pat = copy_rtx_if_shared (newi2pat);
4453 if (undobuf.other_insn)
4454 reset_used_flags (PATTERN (undobuf.other_insn));
4455
4456 INSN_CODE (i3) = insn_code_number;
4457 PATTERN (i3) = newpat;
4458
4459 if (CALL_P (i3) && CALL_INSN_FUNCTION_USAGE (i3))
4460 {
4461 for (rtx link = CALL_INSN_FUNCTION_USAGE (i3); link;
4462 link = XEXP (link, 1))
4463 {
4464 if (substed_i2)
4465 {
4466 /* I2SRC must still be meaningful at this point. Some
4467 splitting operations can invalidate I2SRC, but those
4468 operations do not apply to calls. */
4469 gcc_assert (i2src);
4470 XEXP (link, 0) = simplify_replace_rtx (XEXP (link, 0),
4471 i2dest, i2src);
4472 }
4473 if (substed_i1)
4474 XEXP (link, 0) = simplify_replace_rtx (XEXP (link, 0),
4475 i1dest, i1src);
4476 if (substed_i0)
4477 XEXP (link, 0) = simplify_replace_rtx (XEXP (link, 0),
4478 i0dest, i0src);
4479 }
4480 }
4481
4482 if (undobuf.other_insn)
4483 INSN_CODE (undobuf.other_insn) = other_code_number;
4484
4485 /* We had one special case above where I2 had more than one set and
4486 we replaced a destination of one of those sets with the destination
4487 of I3. In that case, we have to update LOG_LINKS of insns later
4488 in this basic block. Note that this (expensive) case is rare.
4489
4490 Also, in this case, we must pretend that all REG_NOTEs for I2
4491 actually came from I3, so that REG_UNUSED notes from I2 will be
4492 properly handled. */
4493
4494 if (i3_subst_into_i2)
4495 {
4496 for (i = 0; i < XVECLEN (PATTERN (i2), 0); i++)
4497 if ((GET_CODE (XVECEXP (PATTERN (i2), 0, i)) == SET
4498 || GET_CODE (XVECEXP (PATTERN (i2), 0, i)) == CLOBBER)
4499 && REG_P (SET_DEST (XVECEXP (PATTERN (i2), 0, i)))
4500 && SET_DEST (XVECEXP (PATTERN (i2), 0, i)) != i2dest
4501 && ! find_reg_note (i2, REG_UNUSED,
4502 SET_DEST (XVECEXP (PATTERN (i2), 0, i))))
4503 for (temp_insn = NEXT_INSN (i2);
4504 temp_insn
4505 && (this_basic_block->next_bb == EXIT_BLOCK_PTR_FOR_FN (cfun)
4506 || BB_HEAD (this_basic_block) != temp_insn);
4507 temp_insn = NEXT_INSN (temp_insn))
4508 if (temp_insn != i3 && NONDEBUG_INSN_P (temp_insn))
4509 FOR_EACH_LOG_LINK (link, temp_insn)
4510 if (link->insn == i2)
4511 link->insn = i3;
4512
4513 if (i3notes)
4514 {
4515 rtx link = i3notes;
4516 while (XEXP (link, 1))
4517 link = XEXP (link, 1);
4518 XEXP (link, 1) = i2notes;
4519 }
4520 else
4521 i3notes = i2notes;
4522 i2notes = 0;
4523 }
4524
4525 LOG_LINKS (i3) = NULL;
4526 REG_NOTES (i3) = 0;
4527 LOG_LINKS (i2) = NULL;
4528 REG_NOTES (i2) = 0;
4529
4530 if (newi2pat)
4531 {
4532 if (MAY_HAVE_DEBUG_BIND_INSNS && i2scratch)
4533 propagate_for_debug (i2, last_combined_insn, i2dest, i2src,
4534 this_basic_block);
4535 INSN_CODE (i2) = i2_code_number;
4536 PATTERN (i2) = newi2pat;
4537 }
4538 else
4539 {
4540 if (MAY_HAVE_DEBUG_BIND_INSNS && i2src)
4541 propagate_for_debug (i2, last_combined_insn, i2dest, i2src,
4542 this_basic_block);
4543 SET_INSN_DELETED (i2);
4544 }
4545
4546 if (i1)
4547 {
4548 LOG_LINKS (i1) = NULL;
4549 REG_NOTES (i1) = 0;
4550 if (MAY_HAVE_DEBUG_BIND_INSNS)
4551 propagate_for_debug (i1, last_combined_insn, i1dest, i1src,
4552 this_basic_block);
4553 SET_INSN_DELETED (i1);
4554 }
4555
4556 if (i0)
4557 {
4558 LOG_LINKS (i0) = NULL;
4559 REG_NOTES (i0) = 0;
4560 if (MAY_HAVE_DEBUG_BIND_INSNS)
4561 propagate_for_debug (i0, last_combined_insn, i0dest, i0src,
4562 this_basic_block);
4563 SET_INSN_DELETED (i0);
4564 }
4565
4566 /* Get death notes for everything that is now used in either I3 or
4567 I2 and used to die in a previous insn. If we built two new
4568 patterns, move from I1 to I2 then I2 to I3 so that we get the
4569 proper movement on registers that I2 modifies. */
4570
4571 if (i0)
4572 from_luid = DF_INSN_LUID (i0);
4573 else if (i1)
4574 from_luid = DF_INSN_LUID (i1);
4575 else
4576 from_luid = DF_INSN_LUID (i2);
4577 if (newi2pat)
4578 move_deaths (newi2pat, NULL_RTX, from_luid, i2, &midnotes);
4579 move_deaths (newpat, newi2pat, from_luid, i3, &midnotes);
4580
4581 /* Distribute all the LOG_LINKS and REG_NOTES from I1, I2, and I3. */
4582 if (i3notes)
4583 distribute_notes (i3notes, i3, i3, newi2pat ? i2 : NULL,
4584 elim_i2, elim_i1, elim_i0);
4585 if (i2notes)
4586 distribute_notes (i2notes, i2, i3, newi2pat ? i2 : NULL,
4587 elim_i2, elim_i1, elim_i0);
4588 if (i1notes)
4589 distribute_notes (i1notes, i1, i3, newi2pat ? i2 : NULL,
4590 elim_i2, local_elim_i1, local_elim_i0);
4591 if (i0notes)
4592 distribute_notes (i0notes, i0, i3, newi2pat ? i2 : NULL,
4593 elim_i2, elim_i1, local_elim_i0);
4594 if (midnotes)
4595 distribute_notes (midnotes, NULL, i3, newi2pat ? i2 : NULL,
4596 elim_i2, elim_i1, elim_i0);
4597
4598 /* Distribute any notes added to I2 or I3 by recog_for_combine. We
4599 know these are REG_UNUSED and want them to go to the desired insn,
4600 so we always pass it as i3. */
4601
4602 if (newi2pat && new_i2_notes)
4603 distribute_notes (new_i2_notes, i2, i2, NULL, NULL_RTX, NULL_RTX,
4604 NULL_RTX);
4605
4606 if (new_i3_notes)
4607 distribute_notes (new_i3_notes, i3, i3, NULL, NULL_RTX, NULL_RTX,
4608 NULL_RTX);
4609
4610 /* If I3DEST was used in I3SRC, it really died in I3. We may need to
4611 put a REG_DEAD note for it somewhere. If NEWI2PAT exists and sets
4612 I3DEST, the death must be somewhere before I2, not I3. If we passed I3
4613 in that case, it might delete I2. Similarly for I2 and I1.
4614 Show an additional death due to the REG_DEAD note we make here. If
4615 we discard it in distribute_notes, we will decrement it again. */
4616
4617 if (i3dest_killed)
4618 {
4619 rtx new_note = alloc_reg_note (REG_DEAD, i3dest_killed, NULL_RTX);
4620 if (newi2pat && reg_set_p (i3dest_killed, newi2pat))
4621 distribute_notes (new_note, NULL, i2, NULL, elim_i2,
4622 elim_i1, elim_i0);
4623 else
4624 distribute_notes (new_note, NULL, i3, newi2pat ? i2 : NULL,
4625 elim_i2, elim_i1, elim_i0);
4626 }
4627
4628 if (i2dest_in_i2src)
4629 {
4630 rtx new_note = alloc_reg_note (REG_DEAD, i2dest, NULL_RTX);
4631 if (newi2pat && reg_set_p (i2dest, newi2pat))
4632 distribute_notes (new_note, NULL, i2, NULL, NULL_RTX,
4633 NULL_RTX, NULL_RTX);
4634 else
4635 distribute_notes (new_note, NULL, i3, newi2pat ? i2 : NULL,
4636 NULL_RTX, NULL_RTX, NULL_RTX);
4637 }
4638
4639 if (i1dest_in_i1src)
4640 {
4641 rtx new_note = alloc_reg_note (REG_DEAD, i1dest, NULL_RTX);
4642 if (newi2pat && reg_set_p (i1dest, newi2pat))
4643 distribute_notes (new_note, NULL, i2, NULL, NULL_RTX,
4644 NULL_RTX, NULL_RTX);
4645 else
4646 distribute_notes (new_note, NULL, i3, newi2pat ? i2 : NULL,
4647 NULL_RTX, NULL_RTX, NULL_RTX);
4648 }
4649
4650 if (i0dest_in_i0src)
4651 {
4652 rtx new_note = alloc_reg_note (REG_DEAD, i0dest, NULL_RTX);
4653 if (newi2pat && reg_set_p (i0dest, newi2pat))
4654 distribute_notes (new_note, NULL, i2, NULL, NULL_RTX,
4655 NULL_RTX, NULL_RTX);
4656 else
4657 distribute_notes (new_note, NULL, i3, newi2pat ? i2 : NULL,
4658 NULL_RTX, NULL_RTX, NULL_RTX);
4659 }
4660
4661 distribute_links (i3links);
4662 distribute_links (i2links);
4663 distribute_links (i1links);
4664 distribute_links (i0links);
4665
4666 if (REG_P (i2dest))
4667 {
4668 struct insn_link *link;
4669 rtx_insn *i2_insn = 0;
4670 rtx i2_val = 0, set;
4671
4672 /* The insn that used to set this register doesn't exist, and
4673 this life of the register may not exist either. See if one of
4674 I3's links points to an insn that sets I2DEST. If it does,
4675 that is now the last known value for I2DEST. If we don't update
4676 this and I2 set the register to a value that depended on its old
4677 contents, we will get confused. If this insn is used, thing
4678 will be set correctly in combine_instructions. */
4679 FOR_EACH_LOG_LINK (link, i3)
4680 if ((set = single_set (link->insn)) != 0
4681 && rtx_equal_p (i2dest, SET_DEST (set)))
4682 i2_insn = link->insn, i2_val = SET_SRC (set);
4683
4684 record_value_for_reg (i2dest, i2_insn, i2_val);
4685
4686 /* If the reg formerly set in I2 died only once and that was in I3,
4687 zero its use count so it won't make `reload' do any work. */
4688 if (! added_sets_2
4689 && (newi2pat == 0 || ! reg_mentioned_p (i2dest, newi2pat))
4690 && ! i2dest_in_i2src
4691 && REGNO (i2dest) < reg_n_sets_max)
4692 INC_REG_N_SETS (REGNO (i2dest), -1);
4693 }
4694
4695 if (i1 && REG_P (i1dest))
4696 {
4697 struct insn_link *link;
4698 rtx_insn *i1_insn = 0;
4699 rtx i1_val = 0, set;
4700
4701 FOR_EACH_LOG_LINK (link, i3)
4702 if ((set = single_set (link->insn)) != 0
4703 && rtx_equal_p (i1dest, SET_DEST (set)))
4704 i1_insn = link->insn, i1_val = SET_SRC (set);
4705
4706 record_value_for_reg (i1dest, i1_insn, i1_val);
4707
4708 if (! added_sets_1
4709 && ! i1dest_in_i1src
4710 && REGNO (i1dest) < reg_n_sets_max)
4711 INC_REG_N_SETS (REGNO (i1dest), -1);
4712 }
4713
4714 if (i0 && REG_P (i0dest))
4715 {
4716 struct insn_link *link;
4717 rtx_insn *i0_insn = 0;
4718 rtx i0_val = 0, set;
4719
4720 FOR_EACH_LOG_LINK (link, i3)
4721 if ((set = single_set (link->insn)) != 0
4722 && rtx_equal_p (i0dest, SET_DEST (set)))
4723 i0_insn = link->insn, i0_val = SET_SRC (set);
4724
4725 record_value_for_reg (i0dest, i0_insn, i0_val);
4726
4727 if (! added_sets_0
4728 && ! i0dest_in_i0src
4729 && REGNO (i0dest) < reg_n_sets_max)
4730 INC_REG_N_SETS (REGNO (i0dest), -1);
4731 }
4732
4733 /* Update reg_stat[].nonzero_bits et al for any changes that may have
4734 been made to this insn. The order is important, because newi2pat
4735 can affect nonzero_bits of newpat. */
4736 if (newi2pat)
4737 note_pattern_stores (newi2pat, set_nonzero_bits_and_sign_copies, NULL);
4738 note_pattern_stores (newpat, set_nonzero_bits_and_sign_copies, NULL);
4739 }
4740
4741 if (undobuf.other_insn != NULL_RTX)
4742 {
4743 if (dump_file)
4744 {
4745 fprintf (dump_file, "modifying other_insn ");
4746 dump_insn_slim (dump_file, undobuf.other_insn);
4747 }
4748 df_insn_rescan (undobuf.other_insn);
4749 }
4750
4751 if (i0 && !(NOTE_P (i0) && (NOTE_KIND (i0) == NOTE_INSN_DELETED)))
4752 {
4753 if (dump_file)
4754 {
4755 fprintf (dump_file, "modifying insn i0 ");
4756 dump_insn_slim (dump_file, i0);
4757 }
4758 df_insn_rescan (i0);
4759 }
4760
4761 if (i1 && !(NOTE_P (i1) && (NOTE_KIND (i1) == NOTE_INSN_DELETED)))
4762 {
4763 if (dump_file)
4764 {
4765 fprintf (dump_file, "modifying insn i1 ");
4766 dump_insn_slim (dump_file, i1);
4767 }
4768 df_insn_rescan (i1);
4769 }
4770
4771 if (i2 && !(NOTE_P (i2) && (NOTE_KIND (i2) == NOTE_INSN_DELETED)))
4772 {
4773 if (dump_file)
4774 {
4775 fprintf (dump_file, "modifying insn i2 ");
4776 dump_insn_slim (dump_file, i2);
4777 }
4778 df_insn_rescan (i2);
4779 }
4780
4781 if (i3 && !(NOTE_P (i3) && (NOTE_KIND (i3) == NOTE_INSN_DELETED)))
4782 {
4783 if (dump_file)
4784 {
4785 fprintf (dump_file, "modifying insn i3 ");
4786 dump_insn_slim (dump_file, i3);
4787 }
4788 df_insn_rescan (i3);
4789 }
4790
4791 /* Set new_direct_jump_p if a new return or simple jump instruction
4792 has been created. Adjust the CFG accordingly. */
4793 if (returnjump_p (i3) || any_uncondjump_p (i3))
4794 {
4795 *new_direct_jump_p = 1;
4796 mark_jump_label (PATTERN (i3), i3, 0);
4797 update_cfg_for_uncondjump (i3);
4798 }
4799
4800 if (undobuf.other_insn != NULL_RTX
4801 && (returnjump_p (undobuf.other_insn)
4802 || any_uncondjump_p (undobuf.other_insn)))
4803 {
4804 *new_direct_jump_p = 1;
4805 update_cfg_for_uncondjump (undobuf.other_insn);
4806 }
4807
4808 if (GET_CODE (PATTERN (i3)) == TRAP_IF
4809 && XEXP (PATTERN (i3), 0) == const1_rtx)
4810 {
4811 basic_block bb = BLOCK_FOR_INSN (i3);
4812 gcc_assert (bb);
4813 remove_edge (split_block (bb, i3));
4814 emit_barrier_after_bb (bb);
4815 *new_direct_jump_p = 1;
4816 }
4817
4818 if (undobuf.other_insn
4819 && GET_CODE (PATTERN (undobuf.other_insn)) == TRAP_IF
4820 && XEXP (PATTERN (undobuf.other_insn), 0) == const1_rtx)
4821 {
4822 basic_block bb = BLOCK_FOR_INSN (undobuf.other_insn);
4823 gcc_assert (bb);
4824 remove_edge (split_block (bb, undobuf.other_insn));
4825 emit_barrier_after_bb (bb);
4826 *new_direct_jump_p = 1;
4827 }
4828
4829 /* A noop might also need cleaning up of CFG, if it comes from the
4830 simplification of a jump. */
4831 if (JUMP_P (i3)
4832 && GET_CODE (newpat) == SET
4833 && SET_SRC (newpat) == pc_rtx
4834 && SET_DEST (newpat) == pc_rtx)
4835 {
4836 *new_direct_jump_p = 1;
4837 update_cfg_for_uncondjump (i3);
4838 }
4839
4840 if (undobuf.other_insn != NULL_RTX
4841 && JUMP_P (undobuf.other_insn)
4842 && GET_CODE (PATTERN (undobuf.other_insn)) == SET
4843 && SET_SRC (PATTERN (undobuf.other_insn)) == pc_rtx
4844 && SET_DEST (PATTERN (undobuf.other_insn)) == pc_rtx)
4845 {
4846 *new_direct_jump_p = 1;
4847 update_cfg_for_uncondjump (undobuf.other_insn);
4848 }
4849
4850 combine_successes++;
4851 undo_commit ();
4852
4853 rtx_insn *ret = newi2pat ? i2 : i3;
4854 if (added_links_insn && DF_INSN_LUID (added_links_insn) < DF_INSN_LUID (ret))
4855 ret = added_links_insn;
4856 if (added_notes_insn && DF_INSN_LUID (added_notes_insn) < DF_INSN_LUID (ret))
4857 ret = added_notes_insn;
4858
4859 return ret;
4860 }
4861 \f
4862 /* Get a marker for undoing to the current state. */
4863
4864 static void *
4865 get_undo_marker (void)
4866 {
4867 return undobuf.undos;
4868 }
4869
4870 /* Undo the modifications up to the marker. */
4871
4872 static void
4873 undo_to_marker (void *marker)
4874 {
4875 struct undo *undo, *next;
4876
4877 for (undo = undobuf.undos; undo != marker; undo = next)
4878 {
4879 gcc_assert (undo);
4880
4881 next = undo->next;
4882 switch (undo->kind)
4883 {
4884 case UNDO_RTX:
4885 *undo->where.r = undo->old_contents.r;
4886 break;
4887 case UNDO_INT:
4888 *undo->where.i = undo->old_contents.i;
4889 break;
4890 case UNDO_MODE:
4891 adjust_reg_mode (*undo->where.r, undo->old_contents.m);
4892 break;
4893 case UNDO_LINKS:
4894 *undo->where.l = undo->old_contents.l;
4895 break;
4896 default:
4897 gcc_unreachable ();
4898 }
4899
4900 undo->next = undobuf.frees;
4901 undobuf.frees = undo;
4902 }
4903
4904 undobuf.undos = (struct undo *) marker;
4905 }
4906
4907 /* Undo all the modifications recorded in undobuf. */
4908
4909 static void
4910 undo_all (void)
4911 {
4912 undo_to_marker (0);
4913 }
4914
4915 /* We've committed to accepting the changes we made. Move all
4916 of the undos to the free list. */
4917
4918 static void
4919 undo_commit (void)
4920 {
4921 struct undo *undo, *next;
4922
4923 for (undo = undobuf.undos; undo; undo = next)
4924 {
4925 next = undo->next;
4926 undo->next = undobuf.frees;
4927 undobuf.frees = undo;
4928 }
4929 undobuf.undos = 0;
4930 }
4931 \f
4932 /* Find the innermost point within the rtx at LOC, possibly LOC itself,
4933 where we have an arithmetic expression and return that point. LOC will
4934 be inside INSN.
4935
4936 try_combine will call this function to see if an insn can be split into
4937 two insns. */
4938
4939 static rtx *
4940 find_split_point (rtx *loc, rtx_insn *insn, bool set_src)
4941 {
4942 rtx x = *loc;
4943 enum rtx_code code = GET_CODE (x);
4944 rtx *split;
4945 unsigned HOST_WIDE_INT len = 0;
4946 HOST_WIDE_INT pos = 0;
4947 int unsignedp = 0;
4948 rtx inner = NULL_RTX;
4949 scalar_int_mode mode, inner_mode;
4950
4951 /* First special-case some codes. */
4952 switch (code)
4953 {
4954 case SUBREG:
4955 #ifdef INSN_SCHEDULING
4956 /* If we are making a paradoxical SUBREG invalid, it becomes a split
4957 point. */
4958 if (MEM_P (SUBREG_REG (x)))
4959 return loc;
4960 #endif
4961 return find_split_point (&SUBREG_REG (x), insn, false);
4962
4963 case MEM:
4964 /* If we have (mem (const ..)) or (mem (symbol_ref ...)), split it
4965 using LO_SUM and HIGH. */
4966 if (HAVE_lo_sum && (GET_CODE (XEXP (x, 0)) == CONST
4967 || GET_CODE (XEXP (x, 0)) == SYMBOL_REF))
4968 {
4969 machine_mode address_mode = get_address_mode (x);
4970
4971 SUBST (XEXP (x, 0),
4972 gen_rtx_LO_SUM (address_mode,
4973 gen_rtx_HIGH (address_mode, XEXP (x, 0)),
4974 XEXP (x, 0)));
4975 return &XEXP (XEXP (x, 0), 0);
4976 }
4977
4978 /* If we have a PLUS whose second operand is a constant and the
4979 address is not valid, perhaps we can split it up using
4980 the machine-specific way to split large constants. We use
4981 the first pseudo-reg (one of the virtual regs) as a placeholder;
4982 it will not remain in the result. */
4983 if (GET_CODE (XEXP (x, 0)) == PLUS
4984 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
4985 && ! memory_address_addr_space_p (GET_MODE (x), XEXP (x, 0),
4986 MEM_ADDR_SPACE (x)))
4987 {
4988 rtx reg = regno_reg_rtx[FIRST_PSEUDO_REGISTER];
4989 rtx_insn *seq = combine_split_insns (gen_rtx_SET (reg, XEXP (x, 0)),
4990 subst_insn);
4991
4992 /* This should have produced two insns, each of which sets our
4993 placeholder. If the source of the second is a valid address,
4994 we can put both sources together and make a split point
4995 in the middle. */
4996
4997 if (seq
4998 && NEXT_INSN (seq) != NULL_RTX
4999 && NEXT_INSN (NEXT_INSN (seq)) == NULL_RTX
5000 && NONJUMP_INSN_P (seq)
5001 && GET_CODE (PATTERN (seq)) == SET
5002 && SET_DEST (PATTERN (seq)) == reg
5003 && ! reg_mentioned_p (reg,
5004 SET_SRC (PATTERN (seq)))
5005 && NONJUMP_INSN_P (NEXT_INSN (seq))
5006 && GET_CODE (PATTERN (NEXT_INSN (seq))) == SET
5007 && SET_DEST (PATTERN (NEXT_INSN (seq))) == reg
5008 && memory_address_addr_space_p
5009 (GET_MODE (x), SET_SRC (PATTERN (NEXT_INSN (seq))),
5010 MEM_ADDR_SPACE (x)))
5011 {
5012 rtx src1 = SET_SRC (PATTERN (seq));
5013 rtx src2 = SET_SRC (PATTERN (NEXT_INSN (seq)));
5014
5015 /* Replace the placeholder in SRC2 with SRC1. If we can
5016 find where in SRC2 it was placed, that can become our
5017 split point and we can replace this address with SRC2.
5018 Just try two obvious places. */
5019
5020 src2 = replace_rtx (src2, reg, src1);
5021 split = 0;
5022 if (XEXP (src2, 0) == src1)
5023 split = &XEXP (src2, 0);
5024 else if (GET_RTX_FORMAT (GET_CODE (XEXP (src2, 0)))[0] == 'e'
5025 && XEXP (XEXP (src2, 0), 0) == src1)
5026 split = &XEXP (XEXP (src2, 0), 0);
5027
5028 if (split)
5029 {
5030 SUBST (XEXP (x, 0), src2);
5031 return split;
5032 }
5033 }
5034
5035 /* If that didn't work and we have a nested plus, like:
5036 ((REG1 * CONST1) + REG2) + CONST2 and (REG1 + REG2) + CONST2
5037 is valid address, try to split (REG1 * CONST1). */
5038 if (GET_CODE (XEXP (XEXP (x, 0), 0)) == PLUS
5039 && !OBJECT_P (XEXP (XEXP (XEXP (x, 0), 0), 0))
5040 && OBJECT_P (XEXP (XEXP (XEXP (x, 0), 0), 1))
5041 && ! (GET_CODE (XEXP (XEXP (XEXP (x, 0), 0), 0)) == SUBREG
5042 && OBJECT_P (SUBREG_REG (XEXP (XEXP (XEXP (x, 0),
5043 0), 0)))))
5044 {
5045 rtx tem = XEXP (XEXP (XEXP (x, 0), 0), 0);
5046 XEXP (XEXP (XEXP (x, 0), 0), 0) = reg;
5047 if (memory_address_addr_space_p (GET_MODE (x), XEXP (x, 0),
5048 MEM_ADDR_SPACE (x)))
5049 {
5050 XEXP (XEXP (XEXP (x, 0), 0), 0) = tem;
5051 return &XEXP (XEXP (XEXP (x, 0), 0), 0);
5052 }
5053 XEXP (XEXP (XEXP (x, 0), 0), 0) = tem;
5054 }
5055 else if (GET_CODE (XEXP (XEXP (x, 0), 0)) == PLUS
5056 && OBJECT_P (XEXP (XEXP (XEXP (x, 0), 0), 0))
5057 && !OBJECT_P (XEXP (XEXP (XEXP (x, 0), 0), 1))
5058 && ! (GET_CODE (XEXP (XEXP (XEXP (x, 0), 0), 1)) == SUBREG
5059 && OBJECT_P (SUBREG_REG (XEXP (XEXP (XEXP (x, 0),
5060 0), 1)))))
5061 {
5062 rtx tem = XEXP (XEXP (XEXP (x, 0), 0), 1);
5063 XEXP (XEXP (XEXP (x, 0), 0), 1) = reg;
5064 if (memory_address_addr_space_p (GET_MODE (x), XEXP (x, 0),
5065 MEM_ADDR_SPACE (x)))
5066 {
5067 XEXP (XEXP (XEXP (x, 0), 0), 1) = tem;
5068 return &XEXP (XEXP (XEXP (x, 0), 0), 1);
5069 }
5070 XEXP (XEXP (XEXP (x, 0), 0), 1) = tem;
5071 }
5072
5073 /* If that didn't work, perhaps the first operand is complex and
5074 needs to be computed separately, so make a split point there.
5075 This will occur on machines that just support REG + CONST
5076 and have a constant moved through some previous computation. */
5077 if (!OBJECT_P (XEXP (XEXP (x, 0), 0))
5078 && ! (GET_CODE (XEXP (XEXP (x, 0), 0)) == SUBREG
5079 && OBJECT_P (SUBREG_REG (XEXP (XEXP (x, 0), 0)))))
5080 return &XEXP (XEXP (x, 0), 0);
5081 }
5082
5083 /* If we have a PLUS whose first operand is complex, try computing it
5084 separately by making a split there. */
5085 if (GET_CODE (XEXP (x, 0)) == PLUS
5086 && ! memory_address_addr_space_p (GET_MODE (x), XEXP (x, 0),
5087 MEM_ADDR_SPACE (x))
5088 && ! OBJECT_P (XEXP (XEXP (x, 0), 0))
5089 && ! (GET_CODE (XEXP (XEXP (x, 0), 0)) == SUBREG
5090 && OBJECT_P (SUBREG_REG (XEXP (XEXP (x, 0), 0)))))
5091 return &XEXP (XEXP (x, 0), 0);
5092 break;
5093
5094 case SET:
5095 /* If SET_DEST is CC0 and SET_SRC is not an operand, a COMPARE, or a
5096 ZERO_EXTRACT, the most likely reason why this doesn't match is that
5097 we need to put the operand into a register. So split at that
5098 point. */
5099
5100 if (SET_DEST (x) == cc0_rtx
5101 && GET_CODE (SET_SRC (x)) != COMPARE
5102 && GET_CODE (SET_SRC (x)) != ZERO_EXTRACT
5103 && !OBJECT_P (SET_SRC (x))
5104 && ! (GET_CODE (SET_SRC (x)) == SUBREG
5105 && OBJECT_P (SUBREG_REG (SET_SRC (x)))))
5106 return &SET_SRC (x);
5107
5108 /* See if we can split SET_SRC as it stands. */
5109 split = find_split_point (&SET_SRC (x), insn, true);
5110 if (split && split != &SET_SRC (x))
5111 return split;
5112
5113 /* See if we can split SET_DEST as it stands. */
5114 split = find_split_point (&SET_DEST (x), insn, false);
5115 if (split && split != &SET_DEST (x))
5116 return split;
5117
5118 /* See if this is a bitfield assignment with everything constant. If
5119 so, this is an IOR of an AND, so split it into that. */
5120 if (GET_CODE (SET_DEST (x)) == ZERO_EXTRACT
5121 && is_a <scalar_int_mode> (GET_MODE (XEXP (SET_DEST (x), 0)),
5122 &inner_mode)
5123 && HWI_COMPUTABLE_MODE_P (inner_mode)
5124 && CONST_INT_P (XEXP (SET_DEST (x), 1))
5125 && CONST_INT_P (XEXP (SET_DEST (x), 2))
5126 && CONST_INT_P (SET_SRC (x))
5127 && ((INTVAL (XEXP (SET_DEST (x), 1))
5128 + INTVAL (XEXP (SET_DEST (x), 2)))
5129 <= GET_MODE_PRECISION (inner_mode))
5130 && ! side_effects_p (XEXP (SET_DEST (x), 0)))
5131 {
5132 HOST_WIDE_INT pos = INTVAL (XEXP (SET_DEST (x), 2));
5133 unsigned HOST_WIDE_INT len = INTVAL (XEXP (SET_DEST (x), 1));
5134 unsigned HOST_WIDE_INT src = INTVAL (SET_SRC (x));
5135 rtx dest = XEXP (SET_DEST (x), 0);
5136 unsigned HOST_WIDE_INT mask
5137 = (HOST_WIDE_INT_1U << len) - 1;
5138 rtx or_mask;
5139
5140 if (BITS_BIG_ENDIAN)
5141 pos = GET_MODE_PRECISION (inner_mode) - len - pos;
5142
5143 or_mask = gen_int_mode (src << pos, inner_mode);
5144 if (src == mask)
5145 SUBST (SET_SRC (x),
5146 simplify_gen_binary (IOR, inner_mode, dest, or_mask));
5147 else
5148 {
5149 rtx negmask = gen_int_mode (~(mask << pos), inner_mode);
5150 SUBST (SET_SRC (x),
5151 simplify_gen_binary (IOR, inner_mode,
5152 simplify_gen_binary (AND, inner_mode,
5153 dest, negmask),
5154 or_mask));
5155 }
5156
5157 SUBST (SET_DEST (x), dest);
5158
5159 split = find_split_point (&SET_SRC (x), insn, true);
5160 if (split && split != &SET_SRC (x))
5161 return split;
5162 }
5163
5164 /* Otherwise, see if this is an operation that we can split into two.
5165 If so, try to split that. */
5166 code = GET_CODE (SET_SRC (x));
5167
5168 switch (code)
5169 {
5170 case AND:
5171 /* If we are AND'ing with a large constant that is only a single
5172 bit and the result is only being used in a context where we
5173 need to know if it is zero or nonzero, replace it with a bit
5174 extraction. This will avoid the large constant, which might
5175 have taken more than one insn to make. If the constant were
5176 not a valid argument to the AND but took only one insn to make,
5177 this is no worse, but if it took more than one insn, it will
5178 be better. */
5179
5180 if (CONST_INT_P (XEXP (SET_SRC (x), 1))
5181 && REG_P (XEXP (SET_SRC (x), 0))
5182 && (pos = exact_log2 (UINTVAL (XEXP (SET_SRC (x), 1)))) >= 7
5183 && REG_P (SET_DEST (x))
5184 && (split = find_single_use (SET_DEST (x), insn, NULL)) != 0
5185 && (GET_CODE (*split) == EQ || GET_CODE (*split) == NE)
5186 && XEXP (*split, 0) == SET_DEST (x)
5187 && XEXP (*split, 1) == const0_rtx)
5188 {
5189 rtx extraction = make_extraction (GET_MODE (SET_DEST (x)),
5190 XEXP (SET_SRC (x), 0),
5191 pos, NULL_RTX, 1, 1, 0, 0);
5192 if (extraction != 0)
5193 {
5194 SUBST (SET_SRC (x), extraction);
5195 return find_split_point (loc, insn, false);
5196 }
5197 }
5198 break;
5199
5200 case NE:
5201 /* If STORE_FLAG_VALUE is -1, this is (NE X 0) and only one bit of X
5202 is known to be on, this can be converted into a NEG of a shift. */
5203 if (STORE_FLAG_VALUE == -1 && XEXP (SET_SRC (x), 1) == const0_rtx
5204 && GET_MODE (SET_SRC (x)) == GET_MODE (XEXP (SET_SRC (x), 0))
5205 && ((pos = exact_log2 (nonzero_bits (XEXP (SET_SRC (x), 0),
5206 GET_MODE (XEXP (SET_SRC (x),
5207 0))))) >= 1))
5208 {
5209 machine_mode mode = GET_MODE (XEXP (SET_SRC (x), 0));
5210 rtx pos_rtx = gen_int_shift_amount (mode, pos);
5211 SUBST (SET_SRC (x),
5212 gen_rtx_NEG (mode,
5213 gen_rtx_LSHIFTRT (mode,
5214 XEXP (SET_SRC (x), 0),
5215 pos_rtx)));
5216
5217 split = find_split_point (&SET_SRC (x), insn, true);
5218 if (split && split != &SET_SRC (x))
5219 return split;
5220 }
5221 break;
5222
5223 case SIGN_EXTEND:
5224 inner = XEXP (SET_SRC (x), 0);
5225
5226 /* We can't optimize if either mode is a partial integer
5227 mode as we don't know how many bits are significant
5228 in those modes. */
5229 if (!is_int_mode (GET_MODE (inner), &inner_mode)
5230 || GET_MODE_CLASS (GET_MODE (SET_SRC (x))) == MODE_PARTIAL_INT)
5231 break;
5232
5233 pos = 0;
5234 len = GET_MODE_PRECISION (inner_mode);
5235 unsignedp = 0;
5236 break;
5237
5238 case SIGN_EXTRACT:
5239 case ZERO_EXTRACT:
5240 if (is_a <scalar_int_mode> (GET_MODE (XEXP (SET_SRC (x), 0)),
5241 &inner_mode)
5242 && CONST_INT_P (XEXP (SET_SRC (x), 1))
5243 && CONST_INT_P (XEXP (SET_SRC (x), 2)))
5244 {
5245 inner = XEXP (SET_SRC (x), 0);
5246 len = INTVAL (XEXP (SET_SRC (x), 1));
5247 pos = INTVAL (XEXP (SET_SRC (x), 2));
5248
5249 if (BITS_BIG_ENDIAN)
5250 pos = GET_MODE_PRECISION (inner_mode) - len - pos;
5251 unsignedp = (code == ZERO_EXTRACT);
5252 }
5253 break;
5254
5255 default:
5256 break;
5257 }
5258
5259 if (len
5260 && known_subrange_p (pos, len,
5261 0, GET_MODE_PRECISION (GET_MODE (inner)))
5262 && is_a <scalar_int_mode> (GET_MODE (SET_SRC (x)), &mode))
5263 {
5264 /* For unsigned, we have a choice of a shift followed by an
5265 AND or two shifts. Use two shifts for field sizes where the
5266 constant might be too large. We assume here that we can
5267 always at least get 8-bit constants in an AND insn, which is
5268 true for every current RISC. */
5269
5270 if (unsignedp && len <= 8)
5271 {
5272 unsigned HOST_WIDE_INT mask
5273 = (HOST_WIDE_INT_1U << len) - 1;
5274 rtx pos_rtx = gen_int_shift_amount (mode, pos);
5275 SUBST (SET_SRC (x),
5276 gen_rtx_AND (mode,
5277 gen_rtx_LSHIFTRT
5278 (mode, gen_lowpart (mode, inner), pos_rtx),
5279 gen_int_mode (mask, mode)));
5280
5281 split = find_split_point (&SET_SRC (x), insn, true);
5282 if (split && split != &SET_SRC (x))
5283 return split;
5284 }
5285 else
5286 {
5287 int left_bits = GET_MODE_PRECISION (mode) - len - pos;
5288 int right_bits = GET_MODE_PRECISION (mode) - len;
5289 SUBST (SET_SRC (x),
5290 gen_rtx_fmt_ee
5291 (unsignedp ? LSHIFTRT : ASHIFTRT, mode,
5292 gen_rtx_ASHIFT (mode,
5293 gen_lowpart (mode, inner),
5294 gen_int_shift_amount (mode, left_bits)),
5295 gen_int_shift_amount (mode, right_bits)));
5296
5297 split = find_split_point (&SET_SRC (x), insn, true);
5298 if (split && split != &SET_SRC (x))
5299 return split;
5300 }
5301 }
5302
5303 /* See if this is a simple operation with a constant as the second
5304 operand. It might be that this constant is out of range and hence
5305 could be used as a split point. */
5306 if (BINARY_P (SET_SRC (x))
5307 && CONSTANT_P (XEXP (SET_SRC (x), 1))
5308 && (OBJECT_P (XEXP (SET_SRC (x), 0))
5309 || (GET_CODE (XEXP (SET_SRC (x), 0)) == SUBREG
5310 && OBJECT_P (SUBREG_REG (XEXP (SET_SRC (x), 0))))))
5311 return &XEXP (SET_SRC (x), 1);
5312
5313 /* Finally, see if this is a simple operation with its first operand
5314 not in a register. The operation might require this operand in a
5315 register, so return it as a split point. We can always do this
5316 because if the first operand were another operation, we would have
5317 already found it as a split point. */
5318 if ((BINARY_P (SET_SRC (x)) || UNARY_P (SET_SRC (x)))
5319 && ! register_operand (XEXP (SET_SRC (x), 0), VOIDmode))
5320 return &XEXP (SET_SRC (x), 0);
5321
5322 return 0;
5323
5324 case AND:
5325 case IOR:
5326 /* We write NOR as (and (not A) (not B)), but if we don't have a NOR,
5327 it is better to write this as (not (ior A B)) so we can split it.
5328 Similarly for IOR. */
5329 if (GET_CODE (XEXP (x, 0)) == NOT && GET_CODE (XEXP (x, 1)) == NOT)
5330 {
5331 SUBST (*loc,
5332 gen_rtx_NOT (GET_MODE (x),
5333 gen_rtx_fmt_ee (code == IOR ? AND : IOR,
5334 GET_MODE (x),
5335 XEXP (XEXP (x, 0), 0),
5336 XEXP (XEXP (x, 1), 0))));
5337 return find_split_point (loc, insn, set_src);
5338 }
5339
5340 /* Many RISC machines have a large set of logical insns. If the
5341 second operand is a NOT, put it first so we will try to split the
5342 other operand first. */
5343 if (GET_CODE (XEXP (x, 1)) == NOT)
5344 {
5345 rtx tem = XEXP (x, 0);
5346 SUBST (XEXP (x, 0), XEXP (x, 1));
5347 SUBST (XEXP (x, 1), tem);
5348 }
5349 break;
5350
5351 case PLUS:
5352 case MINUS:
5353 /* Canonicalization can produce (minus A (mult B C)), where C is a
5354 constant. It may be better to try splitting (plus (mult B -C) A)
5355 instead if this isn't a multiply by a power of two. */
5356 if (set_src && code == MINUS && GET_CODE (XEXP (x, 1)) == MULT
5357 && GET_CODE (XEXP (XEXP (x, 1), 1)) == CONST_INT
5358 && !pow2p_hwi (INTVAL (XEXP (XEXP (x, 1), 1))))
5359 {
5360 machine_mode mode = GET_MODE (x);
5361 unsigned HOST_WIDE_INT this_int = INTVAL (XEXP (XEXP (x, 1), 1));
5362 HOST_WIDE_INT other_int = trunc_int_for_mode (-this_int, mode);
5363 SUBST (*loc, gen_rtx_PLUS (mode,
5364 gen_rtx_MULT (mode,
5365 XEXP (XEXP (x, 1), 0),
5366 gen_int_mode (other_int,
5367 mode)),
5368 XEXP (x, 0)));
5369 return find_split_point (loc, insn, set_src);
5370 }
5371
5372 /* Split at a multiply-accumulate instruction. However if this is
5373 the SET_SRC, we likely do not have such an instruction and it's
5374 worthless to try this split. */
5375 if (!set_src
5376 && (GET_CODE (XEXP (x, 0)) == MULT
5377 || (GET_CODE (XEXP (x, 0)) == ASHIFT
5378 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT)))
5379 return loc;
5380
5381 default:
5382 break;
5383 }
5384
5385 /* Otherwise, select our actions depending on our rtx class. */
5386 switch (GET_RTX_CLASS (code))
5387 {
5388 case RTX_BITFIELD_OPS: /* This is ZERO_EXTRACT and SIGN_EXTRACT. */
5389 case RTX_TERNARY:
5390 split = find_split_point (&XEXP (x, 2), insn, false);
5391 if (split)
5392 return split;
5393 /* fall through */
5394 case RTX_BIN_ARITH:
5395 case RTX_COMM_ARITH:
5396 case RTX_COMPARE:
5397 case RTX_COMM_COMPARE:
5398 split = find_split_point (&XEXP (x, 1), insn, false);
5399 if (split)
5400 return split;
5401 /* fall through */
5402 case RTX_UNARY:
5403 /* Some machines have (and (shift ...) ...) insns. If X is not
5404 an AND, but XEXP (X, 0) is, use it as our split point. */
5405 if (GET_CODE (x) != AND && GET_CODE (XEXP (x, 0)) == AND)
5406 return &XEXP (x, 0);
5407
5408 split = find_split_point (&XEXP (x, 0), insn, false);
5409 if (split)
5410 return split;
5411 return loc;
5412
5413 default:
5414 /* Otherwise, we don't have a split point. */
5415 return 0;
5416 }
5417 }
5418 \f
5419 /* Throughout X, replace FROM with TO, and return the result.
5420 The result is TO if X is FROM;
5421 otherwise the result is X, but its contents may have been modified.
5422 If they were modified, a record was made in undobuf so that
5423 undo_all will (among other things) return X to its original state.
5424
5425 If the number of changes necessary is too much to record to undo,
5426 the excess changes are not made, so the result is invalid.
5427 The changes already made can still be undone.
5428 undobuf.num_undo is incremented for such changes, so by testing that
5429 the caller can tell whether the result is valid.
5430
5431 `n_occurrences' is incremented each time FROM is replaced.
5432
5433 IN_DEST is nonzero if we are processing the SET_DEST of a SET.
5434
5435 IN_COND is nonzero if we are at the top level of a condition.
5436
5437 UNIQUE_COPY is nonzero if each substitution must be unique. We do this
5438 by copying if `n_occurrences' is nonzero. */
5439
5440 static rtx
5441 subst (rtx x, rtx from, rtx to, int in_dest, int in_cond, int unique_copy)
5442 {
5443 enum rtx_code code = GET_CODE (x);
5444 machine_mode op0_mode = VOIDmode;
5445 const char *fmt;
5446 int len, i;
5447 rtx new_rtx;
5448
5449 /* Two expressions are equal if they are identical copies of a shared
5450 RTX or if they are both registers with the same register number
5451 and mode. */
5452
5453 #define COMBINE_RTX_EQUAL_P(X,Y) \
5454 ((X) == (Y) \
5455 || (REG_P (X) && REG_P (Y) \
5456 && REGNO (X) == REGNO (Y) && GET_MODE (X) == GET_MODE (Y)))
5457
5458 /* Do not substitute into clobbers of regs -- this will never result in
5459 valid RTL. */
5460 if (GET_CODE (x) == CLOBBER && REG_P (XEXP (x, 0)))
5461 return x;
5462
5463 if (! in_dest && COMBINE_RTX_EQUAL_P (x, from))
5464 {
5465 n_occurrences++;
5466 return (unique_copy && n_occurrences > 1 ? copy_rtx (to) : to);
5467 }
5468
5469 /* If X and FROM are the same register but different modes, they
5470 will not have been seen as equal above. However, the log links code
5471 will make a LOG_LINKS entry for that case. If we do nothing, we
5472 will try to rerecognize our original insn and, when it succeeds,
5473 we will delete the feeding insn, which is incorrect.
5474
5475 So force this insn not to match in this (rare) case. */
5476 if (! in_dest && code == REG && REG_P (from)
5477 && reg_overlap_mentioned_p (x, from))
5478 return gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
5479
5480 /* If this is an object, we are done unless it is a MEM or LO_SUM, both
5481 of which may contain things that can be combined. */
5482 if (code != MEM && code != LO_SUM && OBJECT_P (x))
5483 return x;
5484
5485 /* It is possible to have a subexpression appear twice in the insn.
5486 Suppose that FROM is a register that appears within TO.
5487 Then, after that subexpression has been scanned once by `subst',
5488 the second time it is scanned, TO may be found. If we were
5489 to scan TO here, we would find FROM within it and create a
5490 self-referent rtl structure which is completely wrong. */
5491 if (COMBINE_RTX_EQUAL_P (x, to))
5492 return to;
5493
5494 /* Parallel asm_operands need special attention because all of the
5495 inputs are shared across the arms. Furthermore, unsharing the
5496 rtl results in recognition failures. Failure to handle this case
5497 specially can result in circular rtl.
5498
5499 Solve this by doing a normal pass across the first entry of the
5500 parallel, and only processing the SET_DESTs of the subsequent
5501 entries. Ug. */
5502
5503 if (code == PARALLEL
5504 && GET_CODE (XVECEXP (x, 0, 0)) == SET
5505 && GET_CODE (SET_SRC (XVECEXP (x, 0, 0))) == ASM_OPERANDS)
5506 {
5507 new_rtx = subst (XVECEXP (x, 0, 0), from, to, 0, 0, unique_copy);
5508
5509 /* If this substitution failed, this whole thing fails. */
5510 if (GET_CODE (new_rtx) == CLOBBER
5511 && XEXP (new_rtx, 0) == const0_rtx)
5512 return new_rtx;
5513
5514 SUBST (XVECEXP (x, 0, 0), new_rtx);
5515
5516 for (i = XVECLEN (x, 0) - 1; i >= 1; i--)
5517 {
5518 rtx dest = SET_DEST (XVECEXP (x, 0, i));
5519
5520 if (!REG_P (dest)
5521 && GET_CODE (dest) != CC0
5522 && GET_CODE (dest) != PC)
5523 {
5524 new_rtx = subst (dest, from, to, 0, 0, unique_copy);
5525
5526 /* If this substitution failed, this whole thing fails. */
5527 if (GET_CODE (new_rtx) == CLOBBER
5528 && XEXP (new_rtx, 0) == const0_rtx)
5529 return new_rtx;
5530
5531 SUBST (SET_DEST (XVECEXP (x, 0, i)), new_rtx);
5532 }
5533 }
5534 }
5535 else
5536 {
5537 len = GET_RTX_LENGTH (code);
5538 fmt = GET_RTX_FORMAT (code);
5539
5540 /* We don't need to process a SET_DEST that is a register, CC0,
5541 or PC, so set up to skip this common case. All other cases
5542 where we want to suppress replacing something inside a
5543 SET_SRC are handled via the IN_DEST operand. */
5544 if (code == SET
5545 && (REG_P (SET_DEST (x))
5546 || GET_CODE (SET_DEST (x)) == CC0
5547 || GET_CODE (SET_DEST (x)) == PC))
5548 fmt = "ie";
5549
5550 /* Trying to simplify the operands of a widening MULT is not likely
5551 to create RTL matching a machine insn. */
5552 if (code == MULT
5553 && (GET_CODE (XEXP (x, 0)) == ZERO_EXTEND
5554 || GET_CODE (XEXP (x, 0)) == SIGN_EXTEND)
5555 && (GET_CODE (XEXP (x, 1)) == ZERO_EXTEND
5556 || GET_CODE (XEXP (x, 1)) == SIGN_EXTEND)
5557 && REG_P (XEXP (XEXP (x, 0), 0))
5558 && REG_P (XEXP (XEXP (x, 1), 0))
5559 && from == to)
5560 return x;
5561
5562
5563 /* Get the mode of operand 0 in case X is now a SIGN_EXTEND of a
5564 constant. */
5565 if (fmt[0] == 'e')
5566 op0_mode = GET_MODE (XEXP (x, 0));
5567
5568 for (i = 0; i < len; i++)
5569 {
5570 if (fmt[i] == 'E')
5571 {
5572 int j;
5573 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
5574 {
5575 if (COMBINE_RTX_EQUAL_P (XVECEXP (x, i, j), from))
5576 {
5577 new_rtx = (unique_copy && n_occurrences
5578 ? copy_rtx (to) : to);
5579 n_occurrences++;
5580 }
5581 else
5582 {
5583 new_rtx = subst (XVECEXP (x, i, j), from, to, 0, 0,
5584 unique_copy);
5585
5586 /* If this substitution failed, this whole thing
5587 fails. */
5588 if (GET_CODE (new_rtx) == CLOBBER
5589 && XEXP (new_rtx, 0) == const0_rtx)
5590 return new_rtx;
5591 }
5592
5593 SUBST (XVECEXP (x, i, j), new_rtx);
5594 }
5595 }
5596 else if (fmt[i] == 'e')
5597 {
5598 /* If this is a register being set, ignore it. */
5599 new_rtx = XEXP (x, i);
5600 if (in_dest
5601 && i == 0
5602 && (((code == SUBREG || code == ZERO_EXTRACT)
5603 && REG_P (new_rtx))
5604 || code == STRICT_LOW_PART))
5605 ;
5606
5607 else if (COMBINE_RTX_EQUAL_P (XEXP (x, i), from))
5608 {
5609 /* In general, don't install a subreg involving two
5610 modes not tieable. It can worsen register
5611 allocation, and can even make invalid reload
5612 insns, since the reg inside may need to be copied
5613 from in the outside mode, and that may be invalid
5614 if it is an fp reg copied in integer mode.
5615
5616 We allow two exceptions to this: It is valid if
5617 it is inside another SUBREG and the mode of that
5618 SUBREG and the mode of the inside of TO is
5619 tieable and it is valid if X is a SET that copies
5620 FROM to CC0. */
5621
5622 if (GET_CODE (to) == SUBREG
5623 && !targetm.modes_tieable_p (GET_MODE (to),
5624 GET_MODE (SUBREG_REG (to)))
5625 && ! (code == SUBREG
5626 && (targetm.modes_tieable_p
5627 (GET_MODE (x), GET_MODE (SUBREG_REG (to)))))
5628 && (!HAVE_cc0
5629 || (! (code == SET
5630 && i == 1
5631 && XEXP (x, 0) == cc0_rtx))))
5632 return gen_rtx_CLOBBER (VOIDmode, const0_rtx);
5633
5634 if (code == SUBREG
5635 && REG_P (to)
5636 && REGNO (to) < FIRST_PSEUDO_REGISTER
5637 && simplify_subreg_regno (REGNO (to), GET_MODE (to),
5638 SUBREG_BYTE (x),
5639 GET_MODE (x)) < 0)
5640 return gen_rtx_CLOBBER (VOIDmode, const0_rtx);
5641
5642 new_rtx = (unique_copy && n_occurrences ? copy_rtx (to) : to);
5643 n_occurrences++;
5644 }
5645 else
5646 /* If we are in a SET_DEST, suppress most cases unless we
5647 have gone inside a MEM, in which case we want to
5648 simplify the address. We assume here that things that
5649 are actually part of the destination have their inner
5650 parts in the first expression. This is true for SUBREG,
5651 STRICT_LOW_PART, and ZERO_EXTRACT, which are the only
5652 things aside from REG and MEM that should appear in a
5653 SET_DEST. */
5654 new_rtx = subst (XEXP (x, i), from, to,
5655 (((in_dest
5656 && (code == SUBREG || code == STRICT_LOW_PART
5657 || code == ZERO_EXTRACT))
5658 || code == SET)
5659 && i == 0),
5660 code == IF_THEN_ELSE && i == 0,
5661 unique_copy);
5662
5663 /* If we found that we will have to reject this combination,
5664 indicate that by returning the CLOBBER ourselves, rather than
5665 an expression containing it. This will speed things up as
5666 well as prevent accidents where two CLOBBERs are considered
5667 to be equal, thus producing an incorrect simplification. */
5668
5669 if (GET_CODE (new_rtx) == CLOBBER && XEXP (new_rtx, 0) == const0_rtx)
5670 return new_rtx;
5671
5672 if (GET_CODE (x) == SUBREG && CONST_SCALAR_INT_P (new_rtx))
5673 {
5674 machine_mode mode = GET_MODE (x);
5675
5676 x = simplify_subreg (GET_MODE (x), new_rtx,
5677 GET_MODE (SUBREG_REG (x)),
5678 SUBREG_BYTE (x));
5679 if (! x)
5680 x = gen_rtx_CLOBBER (mode, const0_rtx);
5681 }
5682 else if (CONST_SCALAR_INT_P (new_rtx)
5683 && (GET_CODE (x) == ZERO_EXTEND
5684 || GET_CODE (x) == SIGN_EXTEND
5685 || GET_CODE (x) == FLOAT
5686 || GET_CODE (x) == UNSIGNED_FLOAT))
5687 {
5688 x = simplify_unary_operation (GET_CODE (x), GET_MODE (x),
5689 new_rtx,
5690 GET_MODE (XEXP (x, 0)));
5691 if (!x)
5692 return gen_rtx_CLOBBER (VOIDmode, const0_rtx);
5693 }
5694 else
5695 SUBST (XEXP (x, i), new_rtx);
5696 }
5697 }
5698 }
5699
5700 /* Check if we are loading something from the constant pool via float
5701 extension; in this case we would undo compress_float_constant
5702 optimization and degenerate constant load to an immediate value. */
5703 if (GET_CODE (x) == FLOAT_EXTEND
5704 && MEM_P (XEXP (x, 0))
5705 && MEM_READONLY_P (XEXP (x, 0)))
5706 {
5707 rtx tmp = avoid_constant_pool_reference (x);
5708 if (x != tmp)
5709 return x;
5710 }
5711
5712 /* Try to simplify X. If the simplification changed the code, it is likely
5713 that further simplification will help, so loop, but limit the number
5714 of repetitions that will be performed. */
5715
5716 for (i = 0; i < 4; i++)
5717 {
5718 /* If X is sufficiently simple, don't bother trying to do anything
5719 with it. */
5720 if (code != CONST_INT && code != REG && code != CLOBBER)
5721 x = combine_simplify_rtx (x, op0_mode, in_dest, in_cond);
5722
5723 if (GET_CODE (x) == code)
5724 break;
5725
5726 code = GET_CODE (x);
5727
5728 /* We no longer know the original mode of operand 0 since we
5729 have changed the form of X) */
5730 op0_mode = VOIDmode;
5731 }
5732
5733 return x;
5734 }
5735 \f
5736 /* If X is a commutative operation whose operands are not in the canonical
5737 order, use substitutions to swap them. */
5738
5739 static void
5740 maybe_swap_commutative_operands (rtx x)
5741 {
5742 if (COMMUTATIVE_ARITH_P (x)
5743 && swap_commutative_operands_p (XEXP (x, 0), XEXP (x, 1)))
5744 {
5745 rtx temp = XEXP (x, 0);
5746 SUBST (XEXP (x, 0), XEXP (x, 1));
5747 SUBST (XEXP (x, 1), temp);
5748 }
5749 }
5750
5751 /* Simplify X, a piece of RTL. We just operate on the expression at the
5752 outer level; call `subst' to simplify recursively. Return the new
5753 expression.
5754
5755 OP0_MODE is the original mode of XEXP (x, 0). IN_DEST is nonzero
5756 if we are inside a SET_DEST. IN_COND is nonzero if we are at the top level
5757 of a condition. */
5758
5759 static rtx
5760 combine_simplify_rtx (rtx x, machine_mode op0_mode, int in_dest,
5761 int in_cond)
5762 {
5763 enum rtx_code code = GET_CODE (x);
5764 machine_mode mode = GET_MODE (x);
5765 scalar_int_mode int_mode;
5766 rtx temp;
5767 int i;
5768
5769 /* If this is a commutative operation, put a constant last and a complex
5770 expression first. We don't need to do this for comparisons here. */
5771 maybe_swap_commutative_operands (x);
5772
5773 /* Try to fold this expression in case we have constants that weren't
5774 present before. */
5775 temp = 0;
5776 switch (GET_RTX_CLASS (code))
5777 {
5778 case RTX_UNARY:
5779 if (op0_mode == VOIDmode)
5780 op0_mode = GET_MODE (XEXP (x, 0));
5781 temp = simplify_unary_operation (code, mode, XEXP (x, 0), op0_mode);
5782 break;
5783 case RTX_COMPARE:
5784 case RTX_COMM_COMPARE:
5785 {
5786 machine_mode cmp_mode = GET_MODE (XEXP (x, 0));
5787 if (cmp_mode == VOIDmode)
5788 {
5789 cmp_mode = GET_MODE (XEXP (x, 1));
5790 if (cmp_mode == VOIDmode)
5791 cmp_mode = op0_mode;
5792 }
5793 temp = simplify_relational_operation (code, mode, cmp_mode,
5794 XEXP (x, 0), XEXP (x, 1));
5795 }
5796 break;
5797 case RTX_COMM_ARITH:
5798 case RTX_BIN_ARITH:
5799 temp = simplify_binary_operation (code, mode, XEXP (x, 0), XEXP (x, 1));
5800 break;
5801 case RTX_BITFIELD_OPS:
5802 case RTX_TERNARY:
5803 temp = simplify_ternary_operation (code, mode, op0_mode, XEXP (x, 0),
5804 XEXP (x, 1), XEXP (x, 2));
5805 break;
5806 default:
5807 break;
5808 }
5809
5810 if (temp)
5811 {
5812 x = temp;
5813 code = GET_CODE (temp);
5814 op0_mode = VOIDmode;
5815 mode = GET_MODE (temp);
5816 }
5817
5818 /* If this is a simple operation applied to an IF_THEN_ELSE, try
5819 applying it to the arms of the IF_THEN_ELSE. This often simplifies
5820 things. Check for cases where both arms are testing the same
5821 condition.
5822
5823 Don't do anything if all operands are very simple. */
5824
5825 if ((BINARY_P (x)
5826 && ((!OBJECT_P (XEXP (x, 0))
5827 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
5828 && OBJECT_P (SUBREG_REG (XEXP (x, 0)))))
5829 || (!OBJECT_P (XEXP (x, 1))
5830 && ! (GET_CODE (XEXP (x, 1)) == SUBREG
5831 && OBJECT_P (SUBREG_REG (XEXP (x, 1)))))))
5832 || (UNARY_P (x)
5833 && (!OBJECT_P (XEXP (x, 0))
5834 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
5835 && OBJECT_P (SUBREG_REG (XEXP (x, 0)))))))
5836 {
5837 rtx cond, true_rtx, false_rtx;
5838
5839 cond = if_then_else_cond (x, &true_rtx, &false_rtx);
5840 if (cond != 0
5841 /* If everything is a comparison, what we have is highly unlikely
5842 to be simpler, so don't use it. */
5843 && ! (COMPARISON_P (x)
5844 && (COMPARISON_P (true_rtx) || COMPARISON_P (false_rtx)))
5845 /* Similarly, if we end up with one of the expressions the same
5846 as the original, it is certainly not simpler. */
5847 && ! rtx_equal_p (x, true_rtx)
5848 && ! rtx_equal_p (x, false_rtx))
5849 {
5850 rtx cop1 = const0_rtx;
5851 enum rtx_code cond_code = simplify_comparison (NE, &cond, &cop1);
5852
5853 if (cond_code == NE && COMPARISON_P (cond))
5854 return x;
5855
5856 /* Simplify the alternative arms; this may collapse the true and
5857 false arms to store-flag values. Be careful to use copy_rtx
5858 here since true_rtx or false_rtx might share RTL with x as a
5859 result of the if_then_else_cond call above. */
5860 true_rtx = subst (copy_rtx (true_rtx), pc_rtx, pc_rtx, 0, 0, 0);
5861 false_rtx = subst (copy_rtx (false_rtx), pc_rtx, pc_rtx, 0, 0, 0);
5862
5863 /* If true_rtx and false_rtx are not general_operands, an if_then_else
5864 is unlikely to be simpler. */
5865 if (general_operand (true_rtx, VOIDmode)
5866 && general_operand (false_rtx, VOIDmode))
5867 {
5868 enum rtx_code reversed;
5869
5870 /* Restarting if we generate a store-flag expression will cause
5871 us to loop. Just drop through in this case. */
5872
5873 /* If the result values are STORE_FLAG_VALUE and zero, we can
5874 just make the comparison operation. */
5875 if (true_rtx == const_true_rtx && false_rtx == const0_rtx)
5876 x = simplify_gen_relational (cond_code, mode, VOIDmode,
5877 cond, cop1);
5878 else if (true_rtx == const0_rtx && false_rtx == const_true_rtx
5879 && ((reversed = reversed_comparison_code_parts
5880 (cond_code, cond, cop1, NULL))
5881 != UNKNOWN))
5882 x = simplify_gen_relational (reversed, mode, VOIDmode,
5883 cond, cop1);
5884
5885 /* Likewise, we can make the negate of a comparison operation
5886 if the result values are - STORE_FLAG_VALUE and zero. */
5887 else if (CONST_INT_P (true_rtx)
5888 && INTVAL (true_rtx) == - STORE_FLAG_VALUE
5889 && false_rtx == const0_rtx)
5890 x = simplify_gen_unary (NEG, mode,
5891 simplify_gen_relational (cond_code,
5892 mode, VOIDmode,
5893 cond, cop1),
5894 mode);
5895 else if (CONST_INT_P (false_rtx)
5896 && INTVAL (false_rtx) == - STORE_FLAG_VALUE
5897 && true_rtx == const0_rtx
5898 && ((reversed = reversed_comparison_code_parts
5899 (cond_code, cond, cop1, NULL))
5900 != UNKNOWN))
5901 x = simplify_gen_unary (NEG, mode,
5902 simplify_gen_relational (reversed,
5903 mode, VOIDmode,
5904 cond, cop1),
5905 mode);
5906
5907 code = GET_CODE (x);
5908 op0_mode = VOIDmode;
5909 }
5910 }
5911 }
5912
5913 /* First see if we can apply the inverse distributive law. */
5914 if (code == PLUS || code == MINUS
5915 || code == AND || code == IOR || code == XOR)
5916 {
5917 x = apply_distributive_law (x);
5918 code = GET_CODE (x);
5919 op0_mode = VOIDmode;
5920 }
5921
5922 /* If CODE is an associative operation not otherwise handled, see if we
5923 can associate some operands. This can win if they are constants or
5924 if they are logically related (i.e. (a & b) & a). */
5925 if ((code == PLUS || code == MINUS || code == MULT || code == DIV
5926 || code == AND || code == IOR || code == XOR
5927 || code == SMAX || code == SMIN || code == UMAX || code == UMIN)
5928 && ((INTEGRAL_MODE_P (mode) && code != DIV)
5929 || (flag_associative_math && FLOAT_MODE_P (mode))))
5930 {
5931 if (GET_CODE (XEXP (x, 0)) == code)
5932 {
5933 rtx other = XEXP (XEXP (x, 0), 0);
5934 rtx inner_op0 = XEXP (XEXP (x, 0), 1);
5935 rtx inner_op1 = XEXP (x, 1);
5936 rtx inner;
5937
5938 /* Make sure we pass the constant operand if any as the second
5939 one if this is a commutative operation. */
5940 if (CONSTANT_P (inner_op0) && COMMUTATIVE_ARITH_P (x))
5941 std::swap (inner_op0, inner_op1);
5942 inner = simplify_binary_operation (code == MINUS ? PLUS
5943 : code == DIV ? MULT
5944 : code,
5945 mode, inner_op0, inner_op1);
5946
5947 /* For commutative operations, try the other pair if that one
5948 didn't simplify. */
5949 if (inner == 0 && COMMUTATIVE_ARITH_P (x))
5950 {
5951 other = XEXP (XEXP (x, 0), 1);
5952 inner = simplify_binary_operation (code, mode,
5953 XEXP (XEXP (x, 0), 0),
5954 XEXP (x, 1));
5955 }
5956
5957 if (inner)
5958 return simplify_gen_binary (code, mode, other, inner);
5959 }
5960 }
5961
5962 /* A little bit of algebraic simplification here. */
5963 switch (code)
5964 {
5965 case MEM:
5966 /* Ensure that our address has any ASHIFTs converted to MULT in case
5967 address-recognizing predicates are called later. */
5968 temp = make_compound_operation (XEXP (x, 0), MEM);
5969 SUBST (XEXP (x, 0), temp);
5970 break;
5971
5972 case SUBREG:
5973 if (op0_mode == VOIDmode)
5974 op0_mode = GET_MODE (SUBREG_REG (x));
5975
5976 /* See if this can be moved to simplify_subreg. */
5977 if (CONSTANT_P (SUBREG_REG (x))
5978 && known_eq (subreg_lowpart_offset (mode, op0_mode), SUBREG_BYTE (x))
5979 /* Don't call gen_lowpart if the inner mode
5980 is VOIDmode and we cannot simplify it, as SUBREG without
5981 inner mode is invalid. */
5982 && (GET_MODE (SUBREG_REG (x)) != VOIDmode
5983 || gen_lowpart_common (mode, SUBREG_REG (x))))
5984 return gen_lowpart (mode, SUBREG_REG (x));
5985
5986 if (GET_MODE_CLASS (GET_MODE (SUBREG_REG (x))) == MODE_CC)
5987 break;
5988 {
5989 rtx temp;
5990 temp = simplify_subreg (mode, SUBREG_REG (x), op0_mode,
5991 SUBREG_BYTE (x));
5992 if (temp)
5993 return temp;
5994
5995 /* If op is known to have all lower bits zero, the result is zero. */
5996 scalar_int_mode int_mode, int_op0_mode;
5997 if (!in_dest
5998 && is_a <scalar_int_mode> (mode, &int_mode)
5999 && is_a <scalar_int_mode> (op0_mode, &int_op0_mode)
6000 && (GET_MODE_PRECISION (int_mode)
6001 < GET_MODE_PRECISION (int_op0_mode))
6002 && known_eq (subreg_lowpart_offset (int_mode, int_op0_mode),
6003 SUBREG_BYTE (x))
6004 && HWI_COMPUTABLE_MODE_P (int_op0_mode)
6005 && ((nonzero_bits (SUBREG_REG (x), int_op0_mode)
6006 & GET_MODE_MASK (int_mode)) == 0)
6007 && !side_effects_p (SUBREG_REG (x)))
6008 return CONST0_RTX (int_mode);
6009 }
6010
6011 /* Don't change the mode of the MEM if that would change the meaning
6012 of the address. */
6013 if (MEM_P (SUBREG_REG (x))
6014 && (MEM_VOLATILE_P (SUBREG_REG (x))
6015 || mode_dependent_address_p (XEXP (SUBREG_REG (x), 0),
6016 MEM_ADDR_SPACE (SUBREG_REG (x)))))
6017 return gen_rtx_CLOBBER (mode, const0_rtx);
6018
6019 /* Note that we cannot do any narrowing for non-constants since
6020 we might have been counting on using the fact that some bits were
6021 zero. We now do this in the SET. */
6022
6023 break;
6024
6025 case NEG:
6026 temp = expand_compound_operation (XEXP (x, 0));
6027
6028 /* For C equal to the width of MODE minus 1, (neg (ashiftrt X C)) can be
6029 replaced by (lshiftrt X C). This will convert
6030 (neg (sign_extract X 1 Y)) to (zero_extract X 1 Y). */
6031
6032 if (GET_CODE (temp) == ASHIFTRT
6033 && CONST_INT_P (XEXP (temp, 1))
6034 && INTVAL (XEXP (temp, 1)) == GET_MODE_UNIT_PRECISION (mode) - 1)
6035 return simplify_shift_const (NULL_RTX, LSHIFTRT, mode, XEXP (temp, 0),
6036 INTVAL (XEXP (temp, 1)));
6037
6038 /* If X has only a single bit that might be nonzero, say, bit I, convert
6039 (neg X) to (ashiftrt (ashift X C-I) C-I) where C is the bitsize of
6040 MODE minus 1. This will convert (neg (zero_extract X 1 Y)) to
6041 (sign_extract X 1 Y). But only do this if TEMP isn't a register
6042 or a SUBREG of one since we'd be making the expression more
6043 complex if it was just a register. */
6044
6045 if (!REG_P (temp)
6046 && ! (GET_CODE (temp) == SUBREG
6047 && REG_P (SUBREG_REG (temp)))
6048 && is_a <scalar_int_mode> (mode, &int_mode)
6049 && (i = exact_log2 (nonzero_bits (temp, int_mode))) >= 0)
6050 {
6051 rtx temp1 = simplify_shift_const
6052 (NULL_RTX, ASHIFTRT, int_mode,
6053 simplify_shift_const (NULL_RTX, ASHIFT, int_mode, temp,
6054 GET_MODE_PRECISION (int_mode) - 1 - i),
6055 GET_MODE_PRECISION (int_mode) - 1 - i);
6056
6057 /* If all we did was surround TEMP with the two shifts, we
6058 haven't improved anything, so don't use it. Otherwise,
6059 we are better off with TEMP1. */
6060 if (GET_CODE (temp1) != ASHIFTRT
6061 || GET_CODE (XEXP (temp1, 0)) != ASHIFT
6062 || XEXP (XEXP (temp1, 0), 0) != temp)
6063 return temp1;
6064 }
6065 break;
6066
6067 case TRUNCATE:
6068 /* We can't handle truncation to a partial integer mode here
6069 because we don't know the real bitsize of the partial
6070 integer mode. */
6071 if (GET_MODE_CLASS (mode) == MODE_PARTIAL_INT)
6072 break;
6073
6074 if (HWI_COMPUTABLE_MODE_P (mode))
6075 SUBST (XEXP (x, 0),
6076 force_to_mode (XEXP (x, 0), GET_MODE (XEXP (x, 0)),
6077 GET_MODE_MASK (mode), 0));
6078
6079 /* We can truncate a constant value and return it. */
6080 {
6081 poly_int64 c;
6082 if (poly_int_rtx_p (XEXP (x, 0), &c))
6083 return gen_int_mode (c, mode);
6084 }
6085
6086 /* Similarly to what we do in simplify-rtx.c, a truncate of a register
6087 whose value is a comparison can be replaced with a subreg if
6088 STORE_FLAG_VALUE permits. */
6089 if (HWI_COMPUTABLE_MODE_P (mode)
6090 && (STORE_FLAG_VALUE & ~GET_MODE_MASK (mode)) == 0
6091 && (temp = get_last_value (XEXP (x, 0)))
6092 && COMPARISON_P (temp))
6093 return gen_lowpart (mode, XEXP (x, 0));
6094 break;
6095
6096 case CONST:
6097 /* (const (const X)) can become (const X). Do it this way rather than
6098 returning the inner CONST since CONST can be shared with a
6099 REG_EQUAL note. */
6100 if (GET_CODE (XEXP (x, 0)) == CONST)
6101 SUBST (XEXP (x, 0), XEXP (XEXP (x, 0), 0));
6102 break;
6103
6104 case LO_SUM:
6105 /* Convert (lo_sum (high FOO) FOO) to FOO. This is necessary so we
6106 can add in an offset. find_split_point will split this address up
6107 again if it doesn't match. */
6108 if (HAVE_lo_sum && GET_CODE (XEXP (x, 0)) == HIGH
6109 && rtx_equal_p (XEXP (XEXP (x, 0), 0), XEXP (x, 1)))
6110 return XEXP (x, 1);
6111 break;
6112
6113 case PLUS:
6114 /* (plus (xor (and <foo> (const_int pow2 - 1)) <c>) <-c>)
6115 when c is (const_int (pow2 + 1) / 2) is a sign extension of a
6116 bit-field and can be replaced by either a sign_extend or a
6117 sign_extract. The `and' may be a zero_extend and the two
6118 <c>, -<c> constants may be reversed. */
6119 if (GET_CODE (XEXP (x, 0)) == XOR
6120 && is_a <scalar_int_mode> (mode, &int_mode)
6121 && CONST_INT_P (XEXP (x, 1))
6122 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
6123 && INTVAL (XEXP (x, 1)) == -INTVAL (XEXP (XEXP (x, 0), 1))
6124 && ((i = exact_log2 (UINTVAL (XEXP (XEXP (x, 0), 1)))) >= 0
6125 || (i = exact_log2 (UINTVAL (XEXP (x, 1)))) >= 0)
6126 && HWI_COMPUTABLE_MODE_P (int_mode)
6127 && ((GET_CODE (XEXP (XEXP (x, 0), 0)) == AND
6128 && CONST_INT_P (XEXP (XEXP (XEXP (x, 0), 0), 1))
6129 && (UINTVAL (XEXP (XEXP (XEXP (x, 0), 0), 1))
6130 == (HOST_WIDE_INT_1U << (i + 1)) - 1))
6131 || (GET_CODE (XEXP (XEXP (x, 0), 0)) == ZERO_EXTEND
6132 && known_eq ((GET_MODE_PRECISION
6133 (GET_MODE (XEXP (XEXP (XEXP (x, 0), 0), 0)))),
6134 (unsigned int) i + 1))))
6135 return simplify_shift_const
6136 (NULL_RTX, ASHIFTRT, int_mode,
6137 simplify_shift_const (NULL_RTX, ASHIFT, int_mode,
6138 XEXP (XEXP (XEXP (x, 0), 0), 0),
6139 GET_MODE_PRECISION (int_mode) - (i + 1)),
6140 GET_MODE_PRECISION (int_mode) - (i + 1));
6141
6142 /* If only the low-order bit of X is possibly nonzero, (plus x -1)
6143 can become (ashiftrt (ashift (xor x 1) C) C) where C is
6144 the bitsize of the mode - 1. This allows simplification of
6145 "a = (b & 8) == 0;" */
6146 if (XEXP (x, 1) == constm1_rtx
6147 && !REG_P (XEXP (x, 0))
6148 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
6149 && REG_P (SUBREG_REG (XEXP (x, 0))))
6150 && is_a <scalar_int_mode> (mode, &int_mode)
6151 && nonzero_bits (XEXP (x, 0), int_mode) == 1)
6152 return simplify_shift_const
6153 (NULL_RTX, ASHIFTRT, int_mode,
6154 simplify_shift_const (NULL_RTX, ASHIFT, int_mode,
6155 gen_rtx_XOR (int_mode, XEXP (x, 0),
6156 const1_rtx),
6157 GET_MODE_PRECISION (int_mode) - 1),
6158 GET_MODE_PRECISION (int_mode) - 1);
6159
6160 /* If we are adding two things that have no bits in common, convert
6161 the addition into an IOR. This will often be further simplified,
6162 for example in cases like ((a & 1) + (a & 2)), which can
6163 become a & 3. */
6164
6165 if (HWI_COMPUTABLE_MODE_P (mode)
6166 && (nonzero_bits (XEXP (x, 0), mode)
6167 & nonzero_bits (XEXP (x, 1), mode)) == 0)
6168 {
6169 /* Try to simplify the expression further. */
6170 rtx tor = simplify_gen_binary (IOR, mode, XEXP (x, 0), XEXP (x, 1));
6171 temp = combine_simplify_rtx (tor, VOIDmode, in_dest, 0);
6172
6173 /* If we could, great. If not, do not go ahead with the IOR
6174 replacement, since PLUS appears in many special purpose
6175 address arithmetic instructions. */
6176 if (GET_CODE (temp) != CLOBBER
6177 && (GET_CODE (temp) != IOR
6178 || ((XEXP (temp, 0) != XEXP (x, 0)
6179 || XEXP (temp, 1) != XEXP (x, 1))
6180 && (XEXP (temp, 0) != XEXP (x, 1)
6181 || XEXP (temp, 1) != XEXP (x, 0)))))
6182 return temp;
6183 }
6184
6185 /* Canonicalize x + x into x << 1. */
6186 if (GET_MODE_CLASS (mode) == MODE_INT
6187 && rtx_equal_p (XEXP (x, 0), XEXP (x, 1))
6188 && !side_effects_p (XEXP (x, 0)))
6189 return simplify_gen_binary (ASHIFT, mode, XEXP (x, 0), const1_rtx);
6190
6191 break;
6192
6193 case MINUS:
6194 /* (minus <foo> (and <foo> (const_int -pow2))) becomes
6195 (and <foo> (const_int pow2-1)) */
6196 if (is_a <scalar_int_mode> (mode, &int_mode)
6197 && GET_CODE (XEXP (x, 1)) == AND
6198 && CONST_INT_P (XEXP (XEXP (x, 1), 1))
6199 && pow2p_hwi (-UINTVAL (XEXP (XEXP (x, 1), 1)))
6200 && rtx_equal_p (XEXP (XEXP (x, 1), 0), XEXP (x, 0)))
6201 return simplify_and_const_int (NULL_RTX, int_mode, XEXP (x, 0),
6202 -INTVAL (XEXP (XEXP (x, 1), 1)) - 1);
6203 break;
6204
6205 case MULT:
6206 /* If we have (mult (plus A B) C), apply the distributive law and then
6207 the inverse distributive law to see if things simplify. This
6208 occurs mostly in addresses, often when unrolling loops. */
6209
6210 if (GET_CODE (XEXP (x, 0)) == PLUS)
6211 {
6212 rtx result = distribute_and_simplify_rtx (x, 0);
6213 if (result)
6214 return result;
6215 }
6216
6217 /* Try simplify a*(b/c) as (a*b)/c. */
6218 if (FLOAT_MODE_P (mode) && flag_associative_math
6219 && GET_CODE (XEXP (x, 0)) == DIV)
6220 {
6221 rtx tem = simplify_binary_operation (MULT, mode,
6222 XEXP (XEXP (x, 0), 0),
6223 XEXP (x, 1));
6224 if (tem)
6225 return simplify_gen_binary (DIV, mode, tem, XEXP (XEXP (x, 0), 1));
6226 }
6227 break;
6228
6229 case UDIV:
6230 /* If this is a divide by a power of two, treat it as a shift if
6231 its first operand is a shift. */
6232 if (is_a <scalar_int_mode> (mode, &int_mode)
6233 && CONST_INT_P (XEXP (x, 1))
6234 && (i = exact_log2 (UINTVAL (XEXP (x, 1)))) >= 0
6235 && (GET_CODE (XEXP (x, 0)) == ASHIFT
6236 || GET_CODE (XEXP (x, 0)) == LSHIFTRT
6237 || GET_CODE (XEXP (x, 0)) == ASHIFTRT
6238 || GET_CODE (XEXP (x, 0)) == ROTATE
6239 || GET_CODE (XEXP (x, 0)) == ROTATERT))
6240 return simplify_shift_const (NULL_RTX, LSHIFTRT, int_mode,
6241 XEXP (x, 0), i);
6242 break;
6243
6244 case EQ: case NE:
6245 case GT: case GTU: case GE: case GEU:
6246 case LT: case LTU: case LE: case LEU:
6247 case UNEQ: case LTGT:
6248 case UNGT: case UNGE:
6249 case UNLT: case UNLE:
6250 case UNORDERED: case ORDERED:
6251 /* If the first operand is a condition code, we can't do anything
6252 with it. */
6253 if (GET_CODE (XEXP (x, 0)) == COMPARE
6254 || (GET_MODE_CLASS (GET_MODE (XEXP (x, 0))) != MODE_CC
6255 && ! CC0_P (XEXP (x, 0))))
6256 {
6257 rtx op0 = XEXP (x, 0);
6258 rtx op1 = XEXP (x, 1);
6259 enum rtx_code new_code;
6260
6261 if (GET_CODE (op0) == COMPARE)
6262 op1 = XEXP (op0, 1), op0 = XEXP (op0, 0);
6263
6264 /* Simplify our comparison, if possible. */
6265 new_code = simplify_comparison (code, &op0, &op1);
6266
6267 /* If STORE_FLAG_VALUE is 1, we can convert (ne x 0) to simply X
6268 if only the low-order bit is possibly nonzero in X (such as when
6269 X is a ZERO_EXTRACT of one bit). Similarly, we can convert EQ to
6270 (xor X 1) or (minus 1 X); we use the former. Finally, if X is
6271 known to be either 0 or -1, NE becomes a NEG and EQ becomes
6272 (plus X 1).
6273
6274 Remove any ZERO_EXTRACT we made when thinking this was a
6275 comparison. It may now be simpler to use, e.g., an AND. If a
6276 ZERO_EXTRACT is indeed appropriate, it will be placed back by
6277 the call to make_compound_operation in the SET case.
6278
6279 Don't apply these optimizations if the caller would
6280 prefer a comparison rather than a value.
6281 E.g., for the condition in an IF_THEN_ELSE most targets need
6282 an explicit comparison. */
6283
6284 if (in_cond)
6285 ;
6286
6287 else if (STORE_FLAG_VALUE == 1
6288 && new_code == NE
6289 && is_int_mode (mode, &int_mode)
6290 && op1 == const0_rtx
6291 && int_mode == GET_MODE (op0)
6292 && nonzero_bits (op0, int_mode) == 1)
6293 return gen_lowpart (int_mode,
6294 expand_compound_operation (op0));
6295
6296 else if (STORE_FLAG_VALUE == 1
6297 && new_code == NE
6298 && is_int_mode (mode, &int_mode)
6299 && op1 == const0_rtx
6300 && int_mode == GET_MODE (op0)
6301 && (num_sign_bit_copies (op0, int_mode)
6302 == GET_MODE_PRECISION (int_mode)))
6303 {
6304 op0 = expand_compound_operation (op0);
6305 return simplify_gen_unary (NEG, int_mode,
6306 gen_lowpart (int_mode, op0),
6307 int_mode);
6308 }
6309
6310 else if (STORE_FLAG_VALUE == 1
6311 && new_code == EQ
6312 && is_int_mode (mode, &int_mode)
6313 && op1 == const0_rtx
6314 && int_mode == GET_MODE (op0)
6315 && nonzero_bits (op0, int_mode) == 1)
6316 {
6317 op0 = expand_compound_operation (op0);
6318 return simplify_gen_binary (XOR, int_mode,
6319 gen_lowpart (int_mode, op0),
6320 const1_rtx);
6321 }
6322
6323 else if (STORE_FLAG_VALUE == 1
6324 && new_code == EQ
6325 && is_int_mode (mode, &int_mode)
6326 && op1 == const0_rtx
6327 && int_mode == GET_MODE (op0)
6328 && (num_sign_bit_copies (op0, int_mode)
6329 == GET_MODE_PRECISION (int_mode)))
6330 {
6331 op0 = expand_compound_operation (op0);
6332 return plus_constant (int_mode, gen_lowpart (int_mode, op0), 1);
6333 }
6334
6335 /* If STORE_FLAG_VALUE is -1, we have cases similar to
6336 those above. */
6337 if (in_cond)
6338 ;
6339
6340 else if (STORE_FLAG_VALUE == -1
6341 && new_code == NE
6342 && is_int_mode (mode, &int_mode)
6343 && op1 == const0_rtx
6344 && int_mode == GET_MODE (op0)
6345 && (num_sign_bit_copies (op0, int_mode)
6346 == GET_MODE_PRECISION (int_mode)))
6347 return gen_lowpart (int_mode, expand_compound_operation (op0));
6348
6349 else if (STORE_FLAG_VALUE == -1
6350 && new_code == NE
6351 && is_int_mode (mode, &int_mode)
6352 && op1 == const0_rtx
6353 && int_mode == GET_MODE (op0)
6354 && nonzero_bits (op0, int_mode) == 1)
6355 {
6356 op0 = expand_compound_operation (op0);
6357 return simplify_gen_unary (NEG, int_mode,
6358 gen_lowpart (int_mode, op0),
6359 int_mode);
6360 }
6361
6362 else if (STORE_FLAG_VALUE == -1
6363 && new_code == EQ
6364 && is_int_mode (mode, &int_mode)
6365 && op1 == const0_rtx
6366 && int_mode == GET_MODE (op0)
6367 && (num_sign_bit_copies (op0, int_mode)
6368 == GET_MODE_PRECISION (int_mode)))
6369 {
6370 op0 = expand_compound_operation (op0);
6371 return simplify_gen_unary (NOT, int_mode,
6372 gen_lowpart (int_mode, op0),
6373 int_mode);
6374 }
6375
6376 /* If X is 0/1, (eq X 0) is X-1. */
6377 else if (STORE_FLAG_VALUE == -1
6378 && new_code == EQ
6379 && is_int_mode (mode, &int_mode)
6380 && op1 == const0_rtx
6381 && int_mode == GET_MODE (op0)
6382 && nonzero_bits (op0, int_mode) == 1)
6383 {
6384 op0 = expand_compound_operation (op0);
6385 return plus_constant (int_mode, gen_lowpart (int_mode, op0), -1);
6386 }
6387
6388 /* If STORE_FLAG_VALUE says to just test the sign bit and X has just
6389 one bit that might be nonzero, we can convert (ne x 0) to
6390 (ashift x c) where C puts the bit in the sign bit. Remove any
6391 AND with STORE_FLAG_VALUE when we are done, since we are only
6392 going to test the sign bit. */
6393 if (new_code == NE
6394 && is_int_mode (mode, &int_mode)
6395 && HWI_COMPUTABLE_MODE_P (int_mode)
6396 && val_signbit_p (int_mode, STORE_FLAG_VALUE)
6397 && op1 == const0_rtx
6398 && int_mode == GET_MODE (op0)
6399 && (i = exact_log2 (nonzero_bits (op0, int_mode))) >= 0)
6400 {
6401 x = simplify_shift_const (NULL_RTX, ASHIFT, int_mode,
6402 expand_compound_operation (op0),
6403 GET_MODE_PRECISION (int_mode) - 1 - i);
6404 if (GET_CODE (x) == AND && XEXP (x, 1) == const_true_rtx)
6405 return XEXP (x, 0);
6406 else
6407 return x;
6408 }
6409
6410 /* If the code changed, return a whole new comparison.
6411 We also need to avoid using SUBST in cases where
6412 simplify_comparison has widened a comparison with a CONST_INT,
6413 since in that case the wider CONST_INT may fail the sanity
6414 checks in do_SUBST. */
6415 if (new_code != code
6416 || (CONST_INT_P (op1)
6417 && GET_MODE (op0) != GET_MODE (XEXP (x, 0))
6418 && GET_MODE (op0) != GET_MODE (XEXP (x, 1))))
6419 return gen_rtx_fmt_ee (new_code, mode, op0, op1);
6420
6421 /* Otherwise, keep this operation, but maybe change its operands.
6422 This also converts (ne (compare FOO BAR) 0) to (ne FOO BAR). */
6423 SUBST (XEXP (x, 0), op0);
6424 SUBST (XEXP (x, 1), op1);
6425 }
6426 break;
6427
6428 case IF_THEN_ELSE:
6429 return simplify_if_then_else (x);
6430
6431 case ZERO_EXTRACT:
6432 case SIGN_EXTRACT:
6433 case ZERO_EXTEND:
6434 case SIGN_EXTEND:
6435 /* If we are processing SET_DEST, we are done. */
6436 if (in_dest)
6437 return x;
6438
6439 return expand_compound_operation (x);
6440
6441 case SET:
6442 return simplify_set (x);
6443
6444 case AND:
6445 case IOR:
6446 return simplify_logical (x);
6447
6448 case ASHIFT:
6449 case LSHIFTRT:
6450 case ASHIFTRT:
6451 case ROTATE:
6452 case ROTATERT:
6453 /* If this is a shift by a constant amount, simplify it. */
6454 if (CONST_INT_P (XEXP (x, 1)))
6455 return simplify_shift_const (x, code, mode, XEXP (x, 0),
6456 INTVAL (XEXP (x, 1)));
6457
6458 else if (SHIFT_COUNT_TRUNCATED && !REG_P (XEXP (x, 1)))
6459 SUBST (XEXP (x, 1),
6460 force_to_mode (XEXP (x, 1), GET_MODE (XEXP (x, 1)),
6461 (HOST_WIDE_INT_1U
6462 << exact_log2 (GET_MODE_UNIT_BITSIZE
6463 (GET_MODE (x))))
6464 - 1,
6465 0));
6466 break;
6467
6468 default:
6469 break;
6470 }
6471
6472 return x;
6473 }
6474 \f
6475 /* Simplify X, an IF_THEN_ELSE expression. Return the new expression. */
6476
6477 static rtx
6478 simplify_if_then_else (rtx x)
6479 {
6480 machine_mode mode = GET_MODE (x);
6481 rtx cond = XEXP (x, 0);
6482 rtx true_rtx = XEXP (x, 1);
6483 rtx false_rtx = XEXP (x, 2);
6484 enum rtx_code true_code = GET_CODE (cond);
6485 int comparison_p = COMPARISON_P (cond);
6486 rtx temp;
6487 int i;
6488 enum rtx_code false_code;
6489 rtx reversed;
6490 scalar_int_mode int_mode, inner_mode;
6491
6492 /* Simplify storing of the truth value. */
6493 if (comparison_p && true_rtx == const_true_rtx && false_rtx == const0_rtx)
6494 return simplify_gen_relational (true_code, mode, VOIDmode,
6495 XEXP (cond, 0), XEXP (cond, 1));
6496
6497 /* Also when the truth value has to be reversed. */
6498 if (comparison_p
6499 && true_rtx == const0_rtx && false_rtx == const_true_rtx
6500 && (reversed = reversed_comparison (cond, mode)))
6501 return reversed;
6502
6503 /* Sometimes we can simplify the arm of an IF_THEN_ELSE if a register used
6504 in it is being compared against certain values. Get the true and false
6505 comparisons and see if that says anything about the value of each arm. */
6506
6507 if (comparison_p
6508 && ((false_code = reversed_comparison_code (cond, NULL))
6509 != UNKNOWN)
6510 && REG_P (XEXP (cond, 0)))
6511 {
6512 HOST_WIDE_INT nzb;
6513 rtx from = XEXP (cond, 0);
6514 rtx true_val = XEXP (cond, 1);
6515 rtx false_val = true_val;
6516 int swapped = 0;
6517
6518 /* If FALSE_CODE is EQ, swap the codes and arms. */
6519
6520 if (false_code == EQ)
6521 {
6522 swapped = 1, true_code = EQ, false_code = NE;
6523 std::swap (true_rtx, false_rtx);
6524 }
6525
6526 scalar_int_mode from_mode;
6527 if (is_a <scalar_int_mode> (GET_MODE (from), &from_mode))
6528 {
6529 /* If we are comparing against zero and the expression being
6530 tested has only a single bit that might be nonzero, that is
6531 its value when it is not equal to zero. Similarly if it is
6532 known to be -1 or 0. */
6533 if (true_code == EQ
6534 && true_val == const0_rtx
6535 && pow2p_hwi (nzb = nonzero_bits (from, from_mode)))
6536 {
6537 false_code = EQ;
6538 false_val = gen_int_mode (nzb, from_mode);
6539 }
6540 else if (true_code == EQ
6541 && true_val == const0_rtx
6542 && (num_sign_bit_copies (from, from_mode)
6543 == GET_MODE_PRECISION (from_mode)))
6544 {
6545 false_code = EQ;
6546 false_val = constm1_rtx;
6547 }
6548 }
6549
6550 /* Now simplify an arm if we know the value of the register in the
6551 branch and it is used in the arm. Be careful due to the potential
6552 of locally-shared RTL. */
6553
6554 if (reg_mentioned_p (from, true_rtx))
6555 true_rtx = subst (known_cond (copy_rtx (true_rtx), true_code,
6556 from, true_val),
6557 pc_rtx, pc_rtx, 0, 0, 0);
6558 if (reg_mentioned_p (from, false_rtx))
6559 false_rtx = subst (known_cond (copy_rtx (false_rtx), false_code,
6560 from, false_val),
6561 pc_rtx, pc_rtx, 0, 0, 0);
6562
6563 SUBST (XEXP (x, 1), swapped ? false_rtx : true_rtx);
6564 SUBST (XEXP (x, 2), swapped ? true_rtx : false_rtx);
6565
6566 true_rtx = XEXP (x, 1);
6567 false_rtx = XEXP (x, 2);
6568 true_code = GET_CODE (cond);
6569 }
6570
6571 /* If we have (if_then_else FOO (pc) (label_ref BAR)) and FOO can be
6572 reversed, do so to avoid needing two sets of patterns for
6573 subtract-and-branch insns. Similarly if we have a constant in the true
6574 arm, the false arm is the same as the first operand of the comparison, or
6575 the false arm is more complicated than the true arm. */
6576
6577 if (comparison_p
6578 && reversed_comparison_code (cond, NULL) != UNKNOWN
6579 && (true_rtx == pc_rtx
6580 || (CONSTANT_P (true_rtx)
6581 && !CONST_INT_P (false_rtx) && false_rtx != pc_rtx)
6582 || true_rtx == const0_rtx
6583 || (OBJECT_P (true_rtx) && !OBJECT_P (false_rtx))
6584 || (GET_CODE (true_rtx) == SUBREG && OBJECT_P (SUBREG_REG (true_rtx))
6585 && !OBJECT_P (false_rtx))
6586 || reg_mentioned_p (true_rtx, false_rtx)
6587 || rtx_equal_p (false_rtx, XEXP (cond, 0))))
6588 {
6589 SUBST (XEXP (x, 0), reversed_comparison (cond, GET_MODE (cond)));
6590 SUBST (XEXP (x, 1), false_rtx);
6591 SUBST (XEXP (x, 2), true_rtx);
6592
6593 std::swap (true_rtx, false_rtx);
6594 cond = XEXP (x, 0);
6595
6596 /* It is possible that the conditional has been simplified out. */
6597 true_code = GET_CODE (cond);
6598 comparison_p = COMPARISON_P (cond);
6599 }
6600
6601 /* If the two arms are identical, we don't need the comparison. */
6602
6603 if (rtx_equal_p (true_rtx, false_rtx) && ! side_effects_p (cond))
6604 return true_rtx;
6605
6606 /* Convert a == b ? b : a to "a". */
6607 if (true_code == EQ && ! side_effects_p (cond)
6608 && !HONOR_NANS (mode)
6609 && rtx_equal_p (XEXP (cond, 0), false_rtx)
6610 && rtx_equal_p (XEXP (cond, 1), true_rtx))
6611 return false_rtx;
6612 else if (true_code == NE && ! side_effects_p (cond)
6613 && !HONOR_NANS (mode)
6614 && rtx_equal_p (XEXP (cond, 0), true_rtx)
6615 && rtx_equal_p (XEXP (cond, 1), false_rtx))
6616 return true_rtx;
6617
6618 /* Look for cases where we have (abs x) or (neg (abs X)). */
6619
6620 if (GET_MODE_CLASS (mode) == MODE_INT
6621 && comparison_p
6622 && XEXP (cond, 1) == const0_rtx
6623 && GET_CODE (false_rtx) == NEG
6624 && rtx_equal_p (true_rtx, XEXP (false_rtx, 0))
6625 && rtx_equal_p (true_rtx, XEXP (cond, 0))
6626 && ! side_effects_p (true_rtx))
6627 switch (true_code)
6628 {
6629 case GT:
6630 case GE:
6631 return simplify_gen_unary (ABS, mode, true_rtx, mode);
6632 case LT:
6633 case LE:
6634 return
6635 simplify_gen_unary (NEG, mode,
6636 simplify_gen_unary (ABS, mode, true_rtx, mode),
6637 mode);
6638 default:
6639 break;
6640 }
6641
6642 /* Look for MIN or MAX. */
6643
6644 if ((! FLOAT_MODE_P (mode) || flag_unsafe_math_optimizations)
6645 && comparison_p
6646 && rtx_equal_p (XEXP (cond, 0), true_rtx)
6647 && rtx_equal_p (XEXP (cond, 1), false_rtx)
6648 && ! side_effects_p (cond))
6649 switch (true_code)
6650 {
6651 case GE:
6652 case GT:
6653 return simplify_gen_binary (SMAX, mode, true_rtx, false_rtx);
6654 case LE:
6655 case LT:
6656 return simplify_gen_binary (SMIN, mode, true_rtx, false_rtx);
6657 case GEU:
6658 case GTU:
6659 return simplify_gen_binary (UMAX, mode, true_rtx, false_rtx);
6660 case LEU:
6661 case LTU:
6662 return simplify_gen_binary (UMIN, mode, true_rtx, false_rtx);
6663 default:
6664 break;
6665 }
6666
6667 /* If we have (if_then_else COND (OP Z C1) Z) and OP is an identity when its
6668 second operand is zero, this can be done as (OP Z (mult COND C2)) where
6669 C2 = C1 * STORE_FLAG_VALUE. Similarly if OP has an outer ZERO_EXTEND or
6670 SIGN_EXTEND as long as Z is already extended (so we don't destroy it).
6671 We can do this kind of thing in some cases when STORE_FLAG_VALUE is
6672 neither 1 or -1, but it isn't worth checking for. */
6673
6674 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
6675 && comparison_p
6676 && is_int_mode (mode, &int_mode)
6677 && ! side_effects_p (x))
6678 {
6679 rtx t = make_compound_operation (true_rtx, SET);
6680 rtx f = make_compound_operation (false_rtx, SET);
6681 rtx cond_op0 = XEXP (cond, 0);
6682 rtx cond_op1 = XEXP (cond, 1);
6683 enum rtx_code op = UNKNOWN, extend_op = UNKNOWN;
6684 scalar_int_mode m = int_mode;
6685 rtx z = 0, c1 = NULL_RTX;
6686
6687 if ((GET_CODE (t) == PLUS || GET_CODE (t) == MINUS
6688 || GET_CODE (t) == IOR || GET_CODE (t) == XOR
6689 || GET_CODE (t) == ASHIFT
6690 || GET_CODE (t) == LSHIFTRT || GET_CODE (t) == ASHIFTRT)
6691 && rtx_equal_p (XEXP (t, 0), f))
6692 c1 = XEXP (t, 1), op = GET_CODE (t), z = f;
6693
6694 /* If an identity-zero op is commutative, check whether there
6695 would be a match if we swapped the operands. */
6696 else if ((GET_CODE (t) == PLUS || GET_CODE (t) == IOR
6697 || GET_CODE (t) == XOR)
6698 && rtx_equal_p (XEXP (t, 1), f))
6699 c1 = XEXP (t, 0), op = GET_CODE (t), z = f;
6700 else if (GET_CODE (t) == SIGN_EXTEND
6701 && is_a <scalar_int_mode> (GET_MODE (XEXP (t, 0)), &inner_mode)
6702 && (GET_CODE (XEXP (t, 0)) == PLUS
6703 || GET_CODE (XEXP (t, 0)) == MINUS
6704 || GET_CODE (XEXP (t, 0)) == IOR
6705 || GET_CODE (XEXP (t, 0)) == XOR
6706 || GET_CODE (XEXP (t, 0)) == ASHIFT
6707 || GET_CODE (XEXP (t, 0)) == LSHIFTRT
6708 || GET_CODE (XEXP (t, 0)) == ASHIFTRT)
6709 && GET_CODE (XEXP (XEXP (t, 0), 0)) == SUBREG
6710 && subreg_lowpart_p (XEXP (XEXP (t, 0), 0))
6711 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 0)), f)
6712 && (num_sign_bit_copies (f, GET_MODE (f))
6713 > (unsigned int)
6714 (GET_MODE_PRECISION (int_mode)
6715 - GET_MODE_PRECISION (inner_mode))))
6716 {
6717 c1 = XEXP (XEXP (t, 0), 1); z = f; op = GET_CODE (XEXP (t, 0));
6718 extend_op = SIGN_EXTEND;
6719 m = inner_mode;
6720 }
6721 else if (GET_CODE (t) == SIGN_EXTEND
6722 && is_a <scalar_int_mode> (GET_MODE (XEXP (t, 0)), &inner_mode)
6723 && (GET_CODE (XEXP (t, 0)) == PLUS
6724 || GET_CODE (XEXP (t, 0)) == IOR
6725 || GET_CODE (XEXP (t, 0)) == XOR)
6726 && GET_CODE (XEXP (XEXP (t, 0), 1)) == SUBREG
6727 && subreg_lowpart_p (XEXP (XEXP (t, 0), 1))
6728 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 1)), f)
6729 && (num_sign_bit_copies (f, GET_MODE (f))
6730 > (unsigned int)
6731 (GET_MODE_PRECISION (int_mode)
6732 - GET_MODE_PRECISION (inner_mode))))
6733 {
6734 c1 = XEXP (XEXP (t, 0), 0); z = f; op = GET_CODE (XEXP (t, 0));
6735 extend_op = SIGN_EXTEND;
6736 m = inner_mode;
6737 }
6738 else if (GET_CODE (t) == ZERO_EXTEND
6739 && is_a <scalar_int_mode> (GET_MODE (XEXP (t, 0)), &inner_mode)
6740 && (GET_CODE (XEXP (t, 0)) == PLUS
6741 || GET_CODE (XEXP (t, 0)) == MINUS
6742 || GET_CODE (XEXP (t, 0)) == IOR
6743 || GET_CODE (XEXP (t, 0)) == XOR
6744 || GET_CODE (XEXP (t, 0)) == ASHIFT
6745 || GET_CODE (XEXP (t, 0)) == LSHIFTRT
6746 || GET_CODE (XEXP (t, 0)) == ASHIFTRT)
6747 && GET_CODE (XEXP (XEXP (t, 0), 0)) == SUBREG
6748 && HWI_COMPUTABLE_MODE_P (int_mode)
6749 && subreg_lowpart_p (XEXP (XEXP (t, 0), 0))
6750 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 0)), f)
6751 && ((nonzero_bits (f, GET_MODE (f))
6752 & ~GET_MODE_MASK (inner_mode))
6753 == 0))
6754 {
6755 c1 = XEXP (XEXP (t, 0), 1); z = f; op = GET_CODE (XEXP (t, 0));
6756 extend_op = ZERO_EXTEND;
6757 m = inner_mode;
6758 }
6759 else if (GET_CODE (t) == ZERO_EXTEND
6760 && is_a <scalar_int_mode> (GET_MODE (XEXP (t, 0)), &inner_mode)
6761 && (GET_CODE (XEXP (t, 0)) == PLUS
6762 || GET_CODE (XEXP (t, 0)) == IOR
6763 || GET_CODE (XEXP (t, 0)) == XOR)
6764 && GET_CODE (XEXP (XEXP (t, 0), 1)) == SUBREG
6765 && HWI_COMPUTABLE_MODE_P (int_mode)
6766 && subreg_lowpart_p (XEXP (XEXP (t, 0), 1))
6767 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 1)), f)
6768 && ((nonzero_bits (f, GET_MODE (f))
6769 & ~GET_MODE_MASK (inner_mode))
6770 == 0))
6771 {
6772 c1 = XEXP (XEXP (t, 0), 0); z = f; op = GET_CODE (XEXP (t, 0));
6773 extend_op = ZERO_EXTEND;
6774 m = inner_mode;
6775 }
6776
6777 if (z)
6778 {
6779 machine_mode cm = m;
6780 if ((op == ASHIFT || op == LSHIFTRT || op == ASHIFTRT)
6781 && GET_MODE (c1) != VOIDmode)
6782 cm = GET_MODE (c1);
6783 temp = subst (simplify_gen_relational (true_code, cm, VOIDmode,
6784 cond_op0, cond_op1),
6785 pc_rtx, pc_rtx, 0, 0, 0);
6786 temp = simplify_gen_binary (MULT, cm, temp,
6787 simplify_gen_binary (MULT, cm, c1,
6788 const_true_rtx));
6789 temp = subst (temp, pc_rtx, pc_rtx, 0, 0, 0);
6790 temp = simplify_gen_binary (op, m, gen_lowpart (m, z), temp);
6791
6792 if (extend_op != UNKNOWN)
6793 temp = simplify_gen_unary (extend_op, int_mode, temp, m);
6794
6795 return temp;
6796 }
6797 }
6798
6799 /* If we have (if_then_else (ne A 0) C1 0) and either A is known to be 0 or
6800 1 and C1 is a single bit or A is known to be 0 or -1 and C1 is the
6801 negation of a single bit, we can convert this operation to a shift. We
6802 can actually do this more generally, but it doesn't seem worth it. */
6803
6804 if (true_code == NE
6805 && is_a <scalar_int_mode> (mode, &int_mode)
6806 && XEXP (cond, 1) == const0_rtx
6807 && false_rtx == const0_rtx
6808 && CONST_INT_P (true_rtx)
6809 && ((nonzero_bits (XEXP (cond, 0), int_mode) == 1
6810 && (i = exact_log2 (UINTVAL (true_rtx))) >= 0)
6811 || ((num_sign_bit_copies (XEXP (cond, 0), int_mode)
6812 == GET_MODE_PRECISION (int_mode))
6813 && (i = exact_log2 (-UINTVAL (true_rtx))) >= 0)))
6814 return
6815 simplify_shift_const (NULL_RTX, ASHIFT, int_mode,
6816 gen_lowpart (int_mode, XEXP (cond, 0)), i);
6817
6818 /* (IF_THEN_ELSE (NE A 0) C1 0) is A or a zero-extend of A if the only
6819 non-zero bit in A is C1. */
6820 if (true_code == NE && XEXP (cond, 1) == const0_rtx
6821 && false_rtx == const0_rtx && CONST_INT_P (true_rtx)
6822 && is_a <scalar_int_mode> (mode, &int_mode)
6823 && is_a <scalar_int_mode> (GET_MODE (XEXP (cond, 0)), &inner_mode)
6824 && (UINTVAL (true_rtx) & GET_MODE_MASK (int_mode))
6825 == nonzero_bits (XEXP (cond, 0), inner_mode)
6826 && (i = exact_log2 (UINTVAL (true_rtx) & GET_MODE_MASK (int_mode))) >= 0)
6827 {
6828 rtx val = XEXP (cond, 0);
6829 if (inner_mode == int_mode)
6830 return val;
6831 else if (GET_MODE_PRECISION (inner_mode) < GET_MODE_PRECISION (int_mode))
6832 return simplify_gen_unary (ZERO_EXTEND, int_mode, val, inner_mode);
6833 }
6834
6835 return x;
6836 }
6837 \f
6838 /* Simplify X, a SET expression. Return the new expression. */
6839
6840 static rtx
6841 simplify_set (rtx x)
6842 {
6843 rtx src = SET_SRC (x);
6844 rtx dest = SET_DEST (x);
6845 machine_mode mode
6846 = GET_MODE (src) != VOIDmode ? GET_MODE (src) : GET_MODE (dest);
6847 rtx_insn *other_insn;
6848 rtx *cc_use;
6849 scalar_int_mode int_mode;
6850
6851 /* (set (pc) (return)) gets written as (return). */
6852 if (GET_CODE (dest) == PC && ANY_RETURN_P (src))
6853 return src;
6854
6855 /* Now that we know for sure which bits of SRC we are using, see if we can
6856 simplify the expression for the object knowing that we only need the
6857 low-order bits. */
6858
6859 if (GET_MODE_CLASS (mode) == MODE_INT && HWI_COMPUTABLE_MODE_P (mode))
6860 {
6861 src = force_to_mode (src, mode, HOST_WIDE_INT_M1U, 0);
6862 SUBST (SET_SRC (x), src);
6863 }
6864
6865 /* If we are setting CC0 or if the source is a COMPARE, look for the use of
6866 the comparison result and try to simplify it unless we already have used
6867 undobuf.other_insn. */
6868 if ((GET_MODE_CLASS (mode) == MODE_CC
6869 || GET_CODE (src) == COMPARE
6870 || CC0_P (dest))
6871 && (cc_use = find_single_use (dest, subst_insn, &other_insn)) != 0
6872 && (undobuf.other_insn == 0 || other_insn == undobuf.other_insn)
6873 && COMPARISON_P (*cc_use)
6874 && rtx_equal_p (XEXP (*cc_use, 0), dest))
6875 {
6876 enum rtx_code old_code = GET_CODE (*cc_use);
6877 enum rtx_code new_code;
6878 rtx op0, op1, tmp;
6879 int other_changed = 0;
6880 rtx inner_compare = NULL_RTX;
6881 machine_mode compare_mode = GET_MODE (dest);
6882
6883 if (GET_CODE (src) == COMPARE)
6884 {
6885 op0 = XEXP (src, 0), op1 = XEXP (src, 1);
6886 if (GET_CODE (op0) == COMPARE && op1 == const0_rtx)
6887 {
6888 inner_compare = op0;
6889 op0 = XEXP (inner_compare, 0), op1 = XEXP (inner_compare, 1);
6890 }
6891 }
6892 else
6893 op0 = src, op1 = CONST0_RTX (GET_MODE (src));
6894
6895 tmp = simplify_relational_operation (old_code, compare_mode, VOIDmode,
6896 op0, op1);
6897 if (!tmp)
6898 new_code = old_code;
6899 else if (!CONSTANT_P (tmp))
6900 {
6901 new_code = GET_CODE (tmp);
6902 op0 = XEXP (tmp, 0);
6903 op1 = XEXP (tmp, 1);
6904 }
6905 else
6906 {
6907 rtx pat = PATTERN (other_insn);
6908 undobuf.other_insn = other_insn;
6909 SUBST (*cc_use, tmp);
6910
6911 /* Attempt to simplify CC user. */
6912 if (GET_CODE (pat) == SET)
6913 {
6914 rtx new_rtx = simplify_rtx (SET_SRC (pat));
6915 if (new_rtx != NULL_RTX)
6916 SUBST (SET_SRC (pat), new_rtx);
6917 }
6918
6919 /* Convert X into a no-op move. */
6920 SUBST (SET_DEST (x), pc_rtx);
6921 SUBST (SET_SRC (x), pc_rtx);
6922 return x;
6923 }
6924
6925 /* Simplify our comparison, if possible. */
6926 new_code = simplify_comparison (new_code, &op0, &op1);
6927
6928 #ifdef SELECT_CC_MODE
6929 /* If this machine has CC modes other than CCmode, check to see if we
6930 need to use a different CC mode here. */
6931 if (GET_MODE_CLASS (GET_MODE (op0)) == MODE_CC)
6932 compare_mode = GET_MODE (op0);
6933 else if (inner_compare
6934 && GET_MODE_CLASS (GET_MODE (inner_compare)) == MODE_CC
6935 && new_code == old_code
6936 && op0 == XEXP (inner_compare, 0)
6937 && op1 == XEXP (inner_compare, 1))
6938 compare_mode = GET_MODE (inner_compare);
6939 else
6940 compare_mode = SELECT_CC_MODE (new_code, op0, op1);
6941
6942 /* If the mode changed, we have to change SET_DEST, the mode in the
6943 compare, and the mode in the place SET_DEST is used. If SET_DEST is
6944 a hard register, just build new versions with the proper mode. If it
6945 is a pseudo, we lose unless it is only time we set the pseudo, in
6946 which case we can safely change its mode. */
6947 if (!HAVE_cc0 && compare_mode != GET_MODE (dest))
6948 {
6949 if (can_change_dest_mode (dest, 0, compare_mode))
6950 {
6951 unsigned int regno = REGNO (dest);
6952 rtx new_dest;
6953
6954 if (regno < FIRST_PSEUDO_REGISTER)
6955 new_dest = gen_rtx_REG (compare_mode, regno);
6956 else
6957 {
6958 SUBST_MODE (regno_reg_rtx[regno], compare_mode);
6959 new_dest = regno_reg_rtx[regno];
6960 }
6961
6962 SUBST (SET_DEST (x), new_dest);
6963 SUBST (XEXP (*cc_use, 0), new_dest);
6964 other_changed = 1;
6965
6966 dest = new_dest;
6967 }
6968 }
6969 #endif /* SELECT_CC_MODE */
6970
6971 /* If the code changed, we have to build a new comparison in
6972 undobuf.other_insn. */
6973 if (new_code != old_code)
6974 {
6975 int other_changed_previously = other_changed;
6976 unsigned HOST_WIDE_INT mask;
6977 rtx old_cc_use = *cc_use;
6978
6979 SUBST (*cc_use, gen_rtx_fmt_ee (new_code, GET_MODE (*cc_use),
6980 dest, const0_rtx));
6981 other_changed = 1;
6982
6983 /* If the only change we made was to change an EQ into an NE or
6984 vice versa, OP0 has only one bit that might be nonzero, and OP1
6985 is zero, check if changing the user of the condition code will
6986 produce a valid insn. If it won't, we can keep the original code
6987 in that insn by surrounding our operation with an XOR. */
6988
6989 if (((old_code == NE && new_code == EQ)
6990 || (old_code == EQ && new_code == NE))
6991 && ! other_changed_previously && op1 == const0_rtx
6992 && HWI_COMPUTABLE_MODE_P (GET_MODE (op0))
6993 && pow2p_hwi (mask = nonzero_bits (op0, GET_MODE (op0))))
6994 {
6995 rtx pat = PATTERN (other_insn), note = 0;
6996
6997 if ((recog_for_combine (&pat, other_insn, &note) < 0
6998 && ! check_asm_operands (pat)))
6999 {
7000 *cc_use = old_cc_use;
7001 other_changed = 0;
7002
7003 op0 = simplify_gen_binary (XOR, GET_MODE (op0), op0,
7004 gen_int_mode (mask,
7005 GET_MODE (op0)));
7006 }
7007 }
7008 }
7009
7010 if (other_changed)
7011 undobuf.other_insn = other_insn;
7012
7013 /* Don't generate a compare of a CC with 0, just use that CC. */
7014 if (GET_MODE (op0) == compare_mode && op1 == const0_rtx)
7015 {
7016 SUBST (SET_SRC (x), op0);
7017 src = SET_SRC (x);
7018 }
7019 /* Otherwise, if we didn't previously have the same COMPARE we
7020 want, create it from scratch. */
7021 else if (GET_CODE (src) != COMPARE || GET_MODE (src) != compare_mode
7022 || XEXP (src, 0) != op0 || XEXP (src, 1) != op1)
7023 {
7024 SUBST (SET_SRC (x), gen_rtx_COMPARE (compare_mode, op0, op1));
7025 src = SET_SRC (x);
7026 }
7027 }
7028 else
7029 {
7030 /* Get SET_SRC in a form where we have placed back any
7031 compound expressions. Then do the checks below. */
7032 src = make_compound_operation (src, SET);
7033 SUBST (SET_SRC (x), src);
7034 }
7035
7036 /* If we have (set x (subreg:m1 (op:m2 ...) 0)) with OP being some operation,
7037 and X being a REG or (subreg (reg)), we may be able to convert this to
7038 (set (subreg:m2 x) (op)).
7039
7040 We can always do this if M1 is narrower than M2 because that means that
7041 we only care about the low bits of the result.
7042
7043 However, on machines without WORD_REGISTER_OPERATIONS defined, we cannot
7044 perform a narrower operation than requested since the high-order bits will
7045 be undefined. On machine where it is defined, this transformation is safe
7046 as long as M1 and M2 have the same number of words. */
7047
7048 if (GET_CODE (src) == SUBREG && subreg_lowpart_p (src)
7049 && !OBJECT_P (SUBREG_REG (src))
7050 && (known_equal_after_align_up
7051 (GET_MODE_SIZE (GET_MODE (src)),
7052 GET_MODE_SIZE (GET_MODE (SUBREG_REG (src))),
7053 UNITS_PER_WORD))
7054 && (WORD_REGISTER_OPERATIONS || !paradoxical_subreg_p (src))
7055 && ! (REG_P (dest) && REGNO (dest) < FIRST_PSEUDO_REGISTER
7056 && !REG_CAN_CHANGE_MODE_P (REGNO (dest),
7057 GET_MODE (SUBREG_REG (src)),
7058 GET_MODE (src)))
7059 && (REG_P (dest)
7060 || (GET_CODE (dest) == SUBREG
7061 && REG_P (SUBREG_REG (dest)))))
7062 {
7063 SUBST (SET_DEST (x),
7064 gen_lowpart (GET_MODE (SUBREG_REG (src)),
7065 dest));
7066 SUBST (SET_SRC (x), SUBREG_REG (src));
7067
7068 src = SET_SRC (x), dest = SET_DEST (x);
7069 }
7070
7071 /* If we have (set (cc0) (subreg ...)), we try to remove the subreg
7072 in SRC. */
7073 if (dest == cc0_rtx
7074 && partial_subreg_p (src)
7075 && subreg_lowpart_p (src))
7076 {
7077 rtx inner = SUBREG_REG (src);
7078 machine_mode inner_mode = GET_MODE (inner);
7079
7080 /* Here we make sure that we don't have a sign bit on. */
7081 if (val_signbit_known_clear_p (GET_MODE (src),
7082 nonzero_bits (inner, inner_mode)))
7083 {
7084 SUBST (SET_SRC (x), inner);
7085 src = SET_SRC (x);
7086 }
7087 }
7088
7089 /* If we have (set FOO (subreg:M (mem:N BAR) 0)) with M wider than N, this
7090 would require a paradoxical subreg. Replace the subreg with a
7091 zero_extend to avoid the reload that would otherwise be required.
7092 Don't do this unless we have a scalar integer mode, otherwise the
7093 transformation is incorrect. */
7094
7095 enum rtx_code extend_op;
7096 if (paradoxical_subreg_p (src)
7097 && MEM_P (SUBREG_REG (src))
7098 && SCALAR_INT_MODE_P (GET_MODE (src))
7099 && (extend_op = load_extend_op (GET_MODE (SUBREG_REG (src)))) != UNKNOWN)
7100 {
7101 SUBST (SET_SRC (x),
7102 gen_rtx_fmt_e (extend_op, GET_MODE (src), SUBREG_REG (src)));
7103
7104 src = SET_SRC (x);
7105 }
7106
7107 /* If we don't have a conditional move, SET_SRC is an IF_THEN_ELSE, and we
7108 are comparing an item known to be 0 or -1 against 0, use a logical
7109 operation instead. Check for one of the arms being an IOR of the other
7110 arm with some value. We compute three terms to be IOR'ed together. In
7111 practice, at most two will be nonzero. Then we do the IOR's. */
7112
7113 if (GET_CODE (dest) != PC
7114 && GET_CODE (src) == IF_THEN_ELSE
7115 && is_int_mode (GET_MODE (src), &int_mode)
7116 && (GET_CODE (XEXP (src, 0)) == EQ || GET_CODE (XEXP (src, 0)) == NE)
7117 && XEXP (XEXP (src, 0), 1) == const0_rtx
7118 && int_mode == GET_MODE (XEXP (XEXP (src, 0), 0))
7119 && (!HAVE_conditional_move
7120 || ! can_conditionally_move_p (int_mode))
7121 && (num_sign_bit_copies (XEXP (XEXP (src, 0), 0), int_mode)
7122 == GET_MODE_PRECISION (int_mode))
7123 && ! side_effects_p (src))
7124 {
7125 rtx true_rtx = (GET_CODE (XEXP (src, 0)) == NE
7126 ? XEXP (src, 1) : XEXP (src, 2));
7127 rtx false_rtx = (GET_CODE (XEXP (src, 0)) == NE
7128 ? XEXP (src, 2) : XEXP (src, 1));
7129 rtx term1 = const0_rtx, term2, term3;
7130
7131 if (GET_CODE (true_rtx) == IOR
7132 && rtx_equal_p (XEXP (true_rtx, 0), false_rtx))
7133 term1 = false_rtx, true_rtx = XEXP (true_rtx, 1), false_rtx = const0_rtx;
7134 else if (GET_CODE (true_rtx) == IOR
7135 && rtx_equal_p (XEXP (true_rtx, 1), false_rtx))
7136 term1 = false_rtx, true_rtx = XEXP (true_rtx, 0), false_rtx = const0_rtx;
7137 else if (GET_CODE (false_rtx) == IOR
7138 && rtx_equal_p (XEXP (false_rtx, 0), true_rtx))
7139 term1 = true_rtx, false_rtx = XEXP (false_rtx, 1), true_rtx = const0_rtx;
7140 else if (GET_CODE (false_rtx) == IOR
7141 && rtx_equal_p (XEXP (false_rtx, 1), true_rtx))
7142 term1 = true_rtx, false_rtx = XEXP (false_rtx, 0), true_rtx = const0_rtx;
7143
7144 term2 = simplify_gen_binary (AND, int_mode,
7145 XEXP (XEXP (src, 0), 0), true_rtx);
7146 term3 = simplify_gen_binary (AND, int_mode,
7147 simplify_gen_unary (NOT, int_mode,
7148 XEXP (XEXP (src, 0), 0),
7149 int_mode),
7150 false_rtx);
7151
7152 SUBST (SET_SRC (x),
7153 simplify_gen_binary (IOR, int_mode,
7154 simplify_gen_binary (IOR, int_mode,
7155 term1, term2),
7156 term3));
7157
7158 src = SET_SRC (x);
7159 }
7160
7161 /* If either SRC or DEST is a CLOBBER of (const_int 0), make this
7162 whole thing fail. */
7163 if (GET_CODE (src) == CLOBBER && XEXP (src, 0) == const0_rtx)
7164 return src;
7165 else if (GET_CODE (dest) == CLOBBER && XEXP (dest, 0) == const0_rtx)
7166 return dest;
7167 else
7168 /* Convert this into a field assignment operation, if possible. */
7169 return make_field_assignment (x);
7170 }
7171 \f
7172 /* Simplify, X, and AND, IOR, or XOR operation, and return the simplified
7173 result. */
7174
7175 static rtx
7176 simplify_logical (rtx x)
7177 {
7178 rtx op0 = XEXP (x, 0);
7179 rtx op1 = XEXP (x, 1);
7180 scalar_int_mode mode;
7181
7182 switch (GET_CODE (x))
7183 {
7184 case AND:
7185 /* We can call simplify_and_const_int only if we don't lose
7186 any (sign) bits when converting INTVAL (op1) to
7187 "unsigned HOST_WIDE_INT". */
7188 if (is_a <scalar_int_mode> (GET_MODE (x), &mode)
7189 && CONST_INT_P (op1)
7190 && (HWI_COMPUTABLE_MODE_P (mode)
7191 || INTVAL (op1) > 0))
7192 {
7193 x = simplify_and_const_int (x, mode, op0, INTVAL (op1));
7194 if (GET_CODE (x) != AND)
7195 return x;
7196
7197 op0 = XEXP (x, 0);
7198 op1 = XEXP (x, 1);
7199 }
7200
7201 /* If we have any of (and (ior A B) C) or (and (xor A B) C),
7202 apply the distributive law and then the inverse distributive
7203 law to see if things simplify. */
7204 if (GET_CODE (op0) == IOR || GET_CODE (op0) == XOR)
7205 {
7206 rtx result = distribute_and_simplify_rtx (x, 0);
7207 if (result)
7208 return result;
7209 }
7210 if (GET_CODE (op1) == IOR || GET_CODE (op1) == XOR)
7211 {
7212 rtx result = distribute_and_simplify_rtx (x, 1);
7213 if (result)
7214 return result;
7215 }
7216 break;
7217
7218 case IOR:
7219 /* If we have (ior (and A B) C), apply the distributive law and then
7220 the inverse distributive law to see if things simplify. */
7221
7222 if (GET_CODE (op0) == AND)
7223 {
7224 rtx result = distribute_and_simplify_rtx (x, 0);
7225 if (result)
7226 return result;
7227 }
7228
7229 if (GET_CODE (op1) == AND)
7230 {
7231 rtx result = distribute_and_simplify_rtx (x, 1);
7232 if (result)
7233 return result;
7234 }
7235 break;
7236
7237 default:
7238 gcc_unreachable ();
7239 }
7240
7241 return x;
7242 }
7243 \f
7244 /* We consider ZERO_EXTRACT, SIGN_EXTRACT, and SIGN_EXTEND as "compound
7245 operations" because they can be replaced with two more basic operations.
7246 ZERO_EXTEND is also considered "compound" because it can be replaced with
7247 an AND operation, which is simpler, though only one operation.
7248
7249 The function expand_compound_operation is called with an rtx expression
7250 and will convert it to the appropriate shifts and AND operations,
7251 simplifying at each stage.
7252
7253 The function make_compound_operation is called to convert an expression
7254 consisting of shifts and ANDs into the equivalent compound expression.
7255 It is the inverse of this function, loosely speaking. */
7256
7257 static rtx
7258 expand_compound_operation (rtx x)
7259 {
7260 unsigned HOST_WIDE_INT pos = 0, len;
7261 int unsignedp = 0;
7262 unsigned int modewidth;
7263 rtx tem;
7264 scalar_int_mode inner_mode;
7265
7266 switch (GET_CODE (x))
7267 {
7268 case ZERO_EXTEND:
7269 unsignedp = 1;
7270 /* FALLTHRU */
7271 case SIGN_EXTEND:
7272 /* We can't necessarily use a const_int for a multiword mode;
7273 it depends on implicitly extending the value.
7274 Since we don't know the right way to extend it,
7275 we can't tell whether the implicit way is right.
7276
7277 Even for a mode that is no wider than a const_int,
7278 we can't win, because we need to sign extend one of its bits through
7279 the rest of it, and we don't know which bit. */
7280 if (CONST_INT_P (XEXP (x, 0)))
7281 return x;
7282
7283 /* Reject modes that aren't scalar integers because turning vector
7284 or complex modes into shifts causes problems. */
7285 if (!is_a <scalar_int_mode> (GET_MODE (XEXP (x, 0)), &inner_mode))
7286 return x;
7287
7288 /* Return if (subreg:MODE FROM 0) is not a safe replacement for
7289 (zero_extend:MODE FROM) or (sign_extend:MODE FROM). It is for any MEM
7290 because (SUBREG (MEM...)) is guaranteed to cause the MEM to be
7291 reloaded. If not for that, MEM's would very rarely be safe.
7292
7293 Reject modes bigger than a word, because we might not be able
7294 to reference a two-register group starting with an arbitrary register
7295 (and currently gen_lowpart might crash for a SUBREG). */
7296
7297 if (GET_MODE_SIZE (inner_mode) > UNITS_PER_WORD)
7298 return x;
7299
7300 len = GET_MODE_PRECISION (inner_mode);
7301 /* If the inner object has VOIDmode (the only way this can happen
7302 is if it is an ASM_OPERANDS), we can't do anything since we don't
7303 know how much masking to do. */
7304 if (len == 0)
7305 return x;
7306
7307 break;
7308
7309 case ZERO_EXTRACT:
7310 unsignedp = 1;
7311
7312 /* fall through */
7313
7314 case SIGN_EXTRACT:
7315 /* If the operand is a CLOBBER, just return it. */
7316 if (GET_CODE (XEXP (x, 0)) == CLOBBER)
7317 return XEXP (x, 0);
7318
7319 if (!CONST_INT_P (XEXP (x, 1))
7320 || !CONST_INT_P (XEXP (x, 2)))
7321 return x;
7322
7323 /* Reject modes that aren't scalar integers because turning vector
7324 or complex modes into shifts causes problems. */
7325 if (!is_a <scalar_int_mode> (GET_MODE (XEXP (x, 0)), &inner_mode))
7326 return x;
7327
7328 len = INTVAL (XEXP (x, 1));
7329 pos = INTVAL (XEXP (x, 2));
7330
7331 /* This should stay within the object being extracted, fail otherwise. */
7332 if (len + pos > GET_MODE_PRECISION (inner_mode))
7333 return x;
7334
7335 if (BITS_BIG_ENDIAN)
7336 pos = GET_MODE_PRECISION (inner_mode) - len - pos;
7337
7338 break;
7339
7340 default:
7341 return x;
7342 }
7343
7344 /* We've rejected non-scalar operations by now. */
7345 scalar_int_mode mode = as_a <scalar_int_mode> (GET_MODE (x));
7346
7347 /* Convert sign extension to zero extension, if we know that the high
7348 bit is not set, as this is easier to optimize. It will be converted
7349 back to cheaper alternative in make_extraction. */
7350 if (GET_CODE (x) == SIGN_EXTEND
7351 && HWI_COMPUTABLE_MODE_P (mode)
7352 && ((nonzero_bits (XEXP (x, 0), inner_mode)
7353 & ~(((unsigned HOST_WIDE_INT) GET_MODE_MASK (inner_mode)) >> 1))
7354 == 0))
7355 {
7356 rtx temp = gen_rtx_ZERO_EXTEND (mode, XEXP (x, 0));
7357 rtx temp2 = expand_compound_operation (temp);
7358
7359 /* Make sure this is a profitable operation. */
7360 if (set_src_cost (x, mode, optimize_this_for_speed_p)
7361 > set_src_cost (temp2, mode, optimize_this_for_speed_p))
7362 return temp2;
7363 else if (set_src_cost (x, mode, optimize_this_for_speed_p)
7364 > set_src_cost (temp, mode, optimize_this_for_speed_p))
7365 return temp;
7366 else
7367 return x;
7368 }
7369
7370 /* We can optimize some special cases of ZERO_EXTEND. */
7371 if (GET_CODE (x) == ZERO_EXTEND)
7372 {
7373 /* (zero_extend:DI (truncate:SI foo:DI)) is just foo:DI if we
7374 know that the last value didn't have any inappropriate bits
7375 set. */
7376 if (GET_CODE (XEXP (x, 0)) == TRUNCATE
7377 && GET_MODE (XEXP (XEXP (x, 0), 0)) == mode
7378 && HWI_COMPUTABLE_MODE_P (mode)
7379 && (nonzero_bits (XEXP (XEXP (x, 0), 0), mode)
7380 & ~GET_MODE_MASK (inner_mode)) == 0)
7381 return XEXP (XEXP (x, 0), 0);
7382
7383 /* Likewise for (zero_extend:DI (subreg:SI foo:DI 0)). */
7384 if (GET_CODE (XEXP (x, 0)) == SUBREG
7385 && GET_MODE (SUBREG_REG (XEXP (x, 0))) == mode
7386 && subreg_lowpart_p (XEXP (x, 0))
7387 && HWI_COMPUTABLE_MODE_P (mode)
7388 && (nonzero_bits (SUBREG_REG (XEXP (x, 0)), mode)
7389 & ~GET_MODE_MASK (inner_mode)) == 0)
7390 return SUBREG_REG (XEXP (x, 0));
7391
7392 /* (zero_extend:DI (truncate:SI foo:DI)) is just foo:DI when foo
7393 is a comparison and STORE_FLAG_VALUE permits. This is like
7394 the first case, but it works even when MODE is larger
7395 than HOST_WIDE_INT. */
7396 if (GET_CODE (XEXP (x, 0)) == TRUNCATE
7397 && GET_MODE (XEXP (XEXP (x, 0), 0)) == mode
7398 && COMPARISON_P (XEXP (XEXP (x, 0), 0))
7399 && GET_MODE_PRECISION (inner_mode) <= HOST_BITS_PER_WIDE_INT
7400 && (STORE_FLAG_VALUE & ~GET_MODE_MASK (inner_mode)) == 0)
7401 return XEXP (XEXP (x, 0), 0);
7402
7403 /* Likewise for (zero_extend:DI (subreg:SI foo:DI 0)). */
7404 if (GET_CODE (XEXP (x, 0)) == SUBREG
7405 && GET_MODE (SUBREG_REG (XEXP (x, 0))) == mode
7406 && subreg_lowpart_p (XEXP (x, 0))
7407 && COMPARISON_P (SUBREG_REG (XEXP (x, 0)))
7408 && GET_MODE_PRECISION (inner_mode) <= HOST_BITS_PER_WIDE_INT
7409 && (STORE_FLAG_VALUE & ~GET_MODE_MASK (inner_mode)) == 0)
7410 return SUBREG_REG (XEXP (x, 0));
7411
7412 }
7413
7414 /* If we reach here, we want to return a pair of shifts. The inner
7415 shift is a left shift of BITSIZE - POS - LEN bits. The outer
7416 shift is a right shift of BITSIZE - LEN bits. It is arithmetic or
7417 logical depending on the value of UNSIGNEDP.
7418
7419 If this was a ZERO_EXTEND or ZERO_EXTRACT, this pair of shifts will be
7420 converted into an AND of a shift.
7421
7422 We must check for the case where the left shift would have a negative
7423 count. This can happen in a case like (x >> 31) & 255 on machines
7424 that can't shift by a constant. On those machines, we would first
7425 combine the shift with the AND to produce a variable-position
7426 extraction. Then the constant of 31 would be substituted in
7427 to produce such a position. */
7428
7429 modewidth = GET_MODE_PRECISION (mode);
7430 if (modewidth >= pos + len)
7431 {
7432 tem = gen_lowpart (mode, XEXP (x, 0));
7433 if (!tem || GET_CODE (tem) == CLOBBER)
7434 return x;
7435 tem = simplify_shift_const (NULL_RTX, ASHIFT, mode,
7436 tem, modewidth - pos - len);
7437 tem = simplify_shift_const (NULL_RTX, unsignedp ? LSHIFTRT : ASHIFTRT,
7438 mode, tem, modewidth - len);
7439 }
7440 else if (unsignedp && len < HOST_BITS_PER_WIDE_INT)
7441 tem = simplify_and_const_int (NULL_RTX, mode,
7442 simplify_shift_const (NULL_RTX, LSHIFTRT,
7443 mode, XEXP (x, 0),
7444 pos),
7445 (HOST_WIDE_INT_1U << len) - 1);
7446 else
7447 /* Any other cases we can't handle. */
7448 return x;
7449
7450 /* If we couldn't do this for some reason, return the original
7451 expression. */
7452 if (GET_CODE (tem) == CLOBBER)
7453 return x;
7454
7455 return tem;
7456 }
7457 \f
7458 /* X is a SET which contains an assignment of one object into
7459 a part of another (such as a bit-field assignment, STRICT_LOW_PART,
7460 or certain SUBREGS). If possible, convert it into a series of
7461 logical operations.
7462
7463 We half-heartedly support variable positions, but do not at all
7464 support variable lengths. */
7465
7466 static const_rtx
7467 expand_field_assignment (const_rtx x)
7468 {
7469 rtx inner;
7470 rtx pos; /* Always counts from low bit. */
7471 int len, inner_len;
7472 rtx mask, cleared, masked;
7473 scalar_int_mode compute_mode;
7474
7475 /* Loop until we find something we can't simplify. */
7476 while (1)
7477 {
7478 if (GET_CODE (SET_DEST (x)) == STRICT_LOW_PART
7479 && GET_CODE (XEXP (SET_DEST (x), 0)) == SUBREG)
7480 {
7481 rtx x0 = XEXP (SET_DEST (x), 0);
7482 if (!GET_MODE_PRECISION (GET_MODE (x0)).is_constant (&len))
7483 break;
7484 inner = SUBREG_REG (XEXP (SET_DEST (x), 0));
7485 pos = gen_int_mode (subreg_lsb (XEXP (SET_DEST (x), 0)),
7486 MAX_MODE_INT);
7487 }
7488 else if (GET_CODE (SET_DEST (x)) == ZERO_EXTRACT
7489 && CONST_INT_P (XEXP (SET_DEST (x), 1)))
7490 {
7491 inner = XEXP (SET_DEST (x), 0);
7492 if (!GET_MODE_PRECISION (GET_MODE (inner)).is_constant (&inner_len))
7493 break;
7494
7495 len = INTVAL (XEXP (SET_DEST (x), 1));
7496 pos = XEXP (SET_DEST (x), 2);
7497
7498 /* A constant position should stay within the width of INNER. */
7499 if (CONST_INT_P (pos) && INTVAL (pos) + len > inner_len)
7500 break;
7501
7502 if (BITS_BIG_ENDIAN)
7503 {
7504 if (CONST_INT_P (pos))
7505 pos = GEN_INT (inner_len - len - INTVAL (pos));
7506 else if (GET_CODE (pos) == MINUS
7507 && CONST_INT_P (XEXP (pos, 1))
7508 && INTVAL (XEXP (pos, 1)) == inner_len - len)
7509 /* If position is ADJUST - X, new position is X. */
7510 pos = XEXP (pos, 0);
7511 else
7512 pos = simplify_gen_binary (MINUS, GET_MODE (pos),
7513 gen_int_mode (inner_len - len,
7514 GET_MODE (pos)),
7515 pos);
7516 }
7517 }
7518
7519 /* If the destination is a subreg that overwrites the whole of the inner
7520 register, we can move the subreg to the source. */
7521 else if (GET_CODE (SET_DEST (x)) == SUBREG
7522 /* We need SUBREGs to compute nonzero_bits properly. */
7523 && nonzero_sign_valid
7524 && !read_modify_subreg_p (SET_DEST (x)))
7525 {
7526 x = gen_rtx_SET (SUBREG_REG (SET_DEST (x)),
7527 gen_lowpart
7528 (GET_MODE (SUBREG_REG (SET_DEST (x))),
7529 SET_SRC (x)));
7530 continue;
7531 }
7532 else
7533 break;
7534
7535 while (GET_CODE (inner) == SUBREG && subreg_lowpart_p (inner))
7536 inner = SUBREG_REG (inner);
7537
7538 /* Don't attempt bitwise arithmetic on non scalar integer modes. */
7539 if (!is_a <scalar_int_mode> (GET_MODE (inner), &compute_mode))
7540 {
7541 /* Don't do anything for vector or complex integral types. */
7542 if (! FLOAT_MODE_P (GET_MODE (inner)))
7543 break;
7544
7545 /* Try to find an integral mode to pun with. */
7546 if (!int_mode_for_size (GET_MODE_BITSIZE (GET_MODE (inner)), 0)
7547 .exists (&compute_mode))
7548 break;
7549
7550 inner = gen_lowpart (compute_mode, inner);
7551 }
7552
7553 /* Compute a mask of LEN bits, if we can do this on the host machine. */
7554 if (len >= HOST_BITS_PER_WIDE_INT)
7555 break;
7556
7557 /* Don't try to compute in too wide unsupported modes. */
7558 if (!targetm.scalar_mode_supported_p (compute_mode))
7559 break;
7560
7561 /* Now compute the equivalent expression. Make a copy of INNER
7562 for the SET_DEST in case it is a MEM into which we will substitute;
7563 we don't want shared RTL in that case. */
7564 mask = gen_int_mode ((HOST_WIDE_INT_1U << len) - 1,
7565 compute_mode);
7566 cleared = simplify_gen_binary (AND, compute_mode,
7567 simplify_gen_unary (NOT, compute_mode,
7568 simplify_gen_binary (ASHIFT,
7569 compute_mode,
7570 mask, pos),
7571 compute_mode),
7572 inner);
7573 masked = simplify_gen_binary (ASHIFT, compute_mode,
7574 simplify_gen_binary (
7575 AND, compute_mode,
7576 gen_lowpart (compute_mode, SET_SRC (x)),
7577 mask),
7578 pos);
7579
7580 x = gen_rtx_SET (copy_rtx (inner),
7581 simplify_gen_binary (IOR, compute_mode,
7582 cleared, masked));
7583 }
7584
7585 return x;
7586 }
7587 \f
7588 /* Return an RTX for a reference to LEN bits of INNER. If POS_RTX is nonzero,
7589 it is an RTX that represents the (variable) starting position; otherwise,
7590 POS is the (constant) starting bit position. Both are counted from the LSB.
7591
7592 UNSIGNEDP is nonzero for an unsigned reference and zero for a signed one.
7593
7594 IN_DEST is nonzero if this is a reference in the destination of a SET.
7595 This is used when a ZERO_ or SIGN_EXTRACT isn't needed. If nonzero,
7596 a STRICT_LOW_PART will be used, if zero, ZERO_EXTEND or SIGN_EXTEND will
7597 be used.
7598
7599 IN_COMPARE is nonzero if we are in a COMPARE. This means that a
7600 ZERO_EXTRACT should be built even for bits starting at bit 0.
7601
7602 MODE is the desired mode of the result (if IN_DEST == 0).
7603
7604 The result is an RTX for the extraction or NULL_RTX if the target
7605 can't handle it. */
7606
7607 static rtx
7608 make_extraction (machine_mode mode, rtx inner, HOST_WIDE_INT pos,
7609 rtx pos_rtx, unsigned HOST_WIDE_INT len, int unsignedp,
7610 int in_dest, int in_compare)
7611 {
7612 /* This mode describes the size of the storage area
7613 to fetch the overall value from. Within that, we
7614 ignore the POS lowest bits, etc. */
7615 machine_mode is_mode = GET_MODE (inner);
7616 machine_mode inner_mode;
7617 scalar_int_mode wanted_inner_mode;
7618 scalar_int_mode wanted_inner_reg_mode = word_mode;
7619 scalar_int_mode pos_mode = word_mode;
7620 machine_mode extraction_mode = word_mode;
7621 rtx new_rtx = 0;
7622 rtx orig_pos_rtx = pos_rtx;
7623 HOST_WIDE_INT orig_pos;
7624
7625 if (pos_rtx && CONST_INT_P (pos_rtx))
7626 pos = INTVAL (pos_rtx), pos_rtx = 0;
7627
7628 if (GET_CODE (inner) == SUBREG
7629 && subreg_lowpart_p (inner)
7630 && (paradoxical_subreg_p (inner)
7631 /* If trying or potentionally trying to extract
7632 bits outside of is_mode, don't look through
7633 non-paradoxical SUBREGs. See PR82192. */
7634 || (pos_rtx == NULL_RTX
7635 && known_le (pos + len, GET_MODE_PRECISION (is_mode)))))
7636 {
7637 /* If going from (subreg:SI (mem:QI ...)) to (mem:QI ...),
7638 consider just the QI as the memory to extract from.
7639 The subreg adds or removes high bits; its mode is
7640 irrelevant to the meaning of this extraction,
7641 since POS and LEN count from the lsb. */
7642 if (MEM_P (SUBREG_REG (inner)))
7643 is_mode = GET_MODE (SUBREG_REG (inner));
7644 inner = SUBREG_REG (inner);
7645 }
7646 else if (GET_CODE (inner) == ASHIFT
7647 && CONST_INT_P (XEXP (inner, 1))
7648 && pos_rtx == 0 && pos == 0
7649 && len > UINTVAL (XEXP (inner, 1)))
7650 {
7651 /* We're extracting the least significant bits of an rtx
7652 (ashift X (const_int C)), where LEN > C. Extract the
7653 least significant (LEN - C) bits of X, giving an rtx
7654 whose mode is MODE, then shift it left C times. */
7655 new_rtx = make_extraction (mode, XEXP (inner, 0),
7656 0, 0, len - INTVAL (XEXP (inner, 1)),
7657 unsignedp, in_dest, in_compare);
7658 if (new_rtx != 0)
7659 return gen_rtx_ASHIFT (mode, new_rtx, XEXP (inner, 1));
7660 }
7661 else if (GET_CODE (inner) == TRUNCATE
7662 /* If trying or potentionally trying to extract
7663 bits outside of is_mode, don't look through
7664 TRUNCATE. See PR82192. */
7665 && pos_rtx == NULL_RTX
7666 && known_le (pos + len, GET_MODE_PRECISION (is_mode)))
7667 inner = XEXP (inner, 0);
7668
7669 inner_mode = GET_MODE (inner);
7670
7671 /* See if this can be done without an extraction. We never can if the
7672 width of the field is not the same as that of some integer mode. For
7673 registers, we can only avoid the extraction if the position is at the
7674 low-order bit and this is either not in the destination or we have the
7675 appropriate STRICT_LOW_PART operation available.
7676
7677 For MEM, we can avoid an extract if the field starts on an appropriate
7678 boundary and we can change the mode of the memory reference. */
7679
7680 scalar_int_mode tmode;
7681 if (int_mode_for_size (len, 1).exists (&tmode)
7682 && ((pos_rtx == 0 && (pos % BITS_PER_WORD) == 0
7683 && !MEM_P (inner)
7684 && (pos == 0 || REG_P (inner))
7685 && (inner_mode == tmode
7686 || !REG_P (inner)
7687 || TRULY_NOOP_TRUNCATION_MODES_P (tmode, inner_mode)
7688 || reg_truncated_to_mode (tmode, inner))
7689 && (! in_dest
7690 || (REG_P (inner)
7691 && have_insn_for (STRICT_LOW_PART, tmode))))
7692 || (MEM_P (inner) && pos_rtx == 0
7693 && (pos
7694 % (STRICT_ALIGNMENT ? GET_MODE_ALIGNMENT (tmode)
7695 : BITS_PER_UNIT)) == 0
7696 /* We can't do this if we are widening INNER_MODE (it
7697 may not be aligned, for one thing). */
7698 && !paradoxical_subreg_p (tmode, inner_mode)
7699 && known_le (pos + len, GET_MODE_PRECISION (is_mode))
7700 && (inner_mode == tmode
7701 || (! mode_dependent_address_p (XEXP (inner, 0),
7702 MEM_ADDR_SPACE (inner))
7703 && ! MEM_VOLATILE_P (inner))))))
7704 {
7705 /* If INNER is a MEM, make a new MEM that encompasses just the desired
7706 field. If the original and current mode are the same, we need not
7707 adjust the offset. Otherwise, we do if bytes big endian.
7708
7709 If INNER is not a MEM, get a piece consisting of just the field
7710 of interest (in this case POS % BITS_PER_WORD must be 0). */
7711
7712 if (MEM_P (inner))
7713 {
7714 poly_int64 offset;
7715
7716 /* POS counts from lsb, but make OFFSET count in memory order. */
7717 if (BYTES_BIG_ENDIAN)
7718 offset = bits_to_bytes_round_down (GET_MODE_PRECISION (is_mode)
7719 - len - pos);
7720 else
7721 offset = pos / BITS_PER_UNIT;
7722
7723 new_rtx = adjust_address_nv (inner, tmode, offset);
7724 }
7725 else if (REG_P (inner))
7726 {
7727 if (tmode != inner_mode)
7728 {
7729 /* We can't call gen_lowpart in a DEST since we
7730 always want a SUBREG (see below) and it would sometimes
7731 return a new hard register. */
7732 if (pos || in_dest)
7733 {
7734 poly_uint64 offset
7735 = subreg_offset_from_lsb (tmode, inner_mode, pos);
7736
7737 /* Avoid creating invalid subregs, for example when
7738 simplifying (x>>32)&255. */
7739 if (!validate_subreg (tmode, inner_mode, inner, offset))
7740 return NULL_RTX;
7741
7742 new_rtx = gen_rtx_SUBREG (tmode, inner, offset);
7743 }
7744 else
7745 new_rtx = gen_lowpart (tmode, inner);
7746 }
7747 else
7748 new_rtx = inner;
7749 }
7750 else
7751 new_rtx = force_to_mode (inner, tmode,
7752 len >= HOST_BITS_PER_WIDE_INT
7753 ? HOST_WIDE_INT_M1U
7754 : (HOST_WIDE_INT_1U << len) - 1, 0);
7755
7756 /* If this extraction is going into the destination of a SET,
7757 make a STRICT_LOW_PART unless we made a MEM. */
7758
7759 if (in_dest)
7760 return (MEM_P (new_rtx) ? new_rtx
7761 : (GET_CODE (new_rtx) != SUBREG
7762 ? gen_rtx_CLOBBER (tmode, const0_rtx)
7763 : gen_rtx_STRICT_LOW_PART (VOIDmode, new_rtx)));
7764
7765 if (mode == tmode)
7766 return new_rtx;
7767
7768 if (CONST_SCALAR_INT_P (new_rtx))
7769 return simplify_unary_operation (unsignedp ? ZERO_EXTEND : SIGN_EXTEND,
7770 mode, new_rtx, tmode);
7771
7772 /* If we know that no extraneous bits are set, and that the high
7773 bit is not set, convert the extraction to the cheaper of
7774 sign and zero extension, that are equivalent in these cases. */
7775 if (flag_expensive_optimizations
7776 && (HWI_COMPUTABLE_MODE_P (tmode)
7777 && ((nonzero_bits (new_rtx, tmode)
7778 & ~(((unsigned HOST_WIDE_INT)GET_MODE_MASK (tmode)) >> 1))
7779 == 0)))
7780 {
7781 rtx temp = gen_rtx_ZERO_EXTEND (mode, new_rtx);
7782 rtx temp1 = gen_rtx_SIGN_EXTEND (mode, new_rtx);
7783
7784 /* Prefer ZERO_EXTENSION, since it gives more information to
7785 backends. */
7786 if (set_src_cost (temp, mode, optimize_this_for_speed_p)
7787 <= set_src_cost (temp1, mode, optimize_this_for_speed_p))
7788 return temp;
7789 return temp1;
7790 }
7791
7792 /* Otherwise, sign- or zero-extend unless we already are in the
7793 proper mode. */
7794
7795 return (gen_rtx_fmt_e (unsignedp ? ZERO_EXTEND : SIGN_EXTEND,
7796 mode, new_rtx));
7797 }
7798
7799 /* Unless this is a COMPARE or we have a funny memory reference,
7800 don't do anything with zero-extending field extracts starting at
7801 the low-order bit since they are simple AND operations. */
7802 if (pos_rtx == 0 && pos == 0 && ! in_dest
7803 && ! in_compare && unsignedp)
7804 return 0;
7805
7806 /* Unless INNER is not MEM, reject this if we would be spanning bytes or
7807 if the position is not a constant and the length is not 1. In all
7808 other cases, we would only be going outside our object in cases when
7809 an original shift would have been undefined. */
7810 if (MEM_P (inner)
7811 && ((pos_rtx == 0 && maybe_gt (pos + len, GET_MODE_PRECISION (is_mode)))
7812 || (pos_rtx != 0 && len != 1)))
7813 return 0;
7814
7815 enum extraction_pattern pattern = (in_dest ? EP_insv
7816 : unsignedp ? EP_extzv : EP_extv);
7817
7818 /* If INNER is not from memory, we want it to have the mode of a register
7819 extraction pattern's structure operand, or word_mode if there is no
7820 such pattern. The same applies to extraction_mode and pos_mode
7821 and their respective operands.
7822
7823 For memory, assume that the desired extraction_mode and pos_mode
7824 are the same as for a register operation, since at present we don't
7825 have named patterns for aligned memory structures. */
7826 class extraction_insn insn;
7827 unsigned int inner_size;
7828 if (GET_MODE_BITSIZE (inner_mode).is_constant (&inner_size)
7829 && get_best_reg_extraction_insn (&insn, pattern, inner_size, mode))
7830 {
7831 wanted_inner_reg_mode = insn.struct_mode.require ();
7832 pos_mode = insn.pos_mode;
7833 extraction_mode = insn.field_mode;
7834 }
7835
7836 /* Never narrow an object, since that might not be safe. */
7837
7838 if (mode != VOIDmode
7839 && partial_subreg_p (extraction_mode, mode))
7840 extraction_mode = mode;
7841
7842 /* Punt if len is too large for extraction_mode. */
7843 if (maybe_gt (len, GET_MODE_PRECISION (extraction_mode)))
7844 return NULL_RTX;
7845
7846 if (!MEM_P (inner))
7847 wanted_inner_mode = wanted_inner_reg_mode;
7848 else
7849 {
7850 /* Be careful not to go beyond the extracted object and maintain the
7851 natural alignment of the memory. */
7852 wanted_inner_mode = smallest_int_mode_for_size (len);
7853 while (pos % GET_MODE_BITSIZE (wanted_inner_mode) + len
7854 > GET_MODE_BITSIZE (wanted_inner_mode))
7855 wanted_inner_mode = GET_MODE_WIDER_MODE (wanted_inner_mode).require ();
7856 }
7857
7858 orig_pos = pos;
7859
7860 if (BITS_BIG_ENDIAN)
7861 {
7862 /* POS is passed as if BITS_BIG_ENDIAN == 0, so we need to convert it to
7863 BITS_BIG_ENDIAN style. If position is constant, compute new
7864 position. Otherwise, build subtraction.
7865 Note that POS is relative to the mode of the original argument.
7866 If it's a MEM we need to recompute POS relative to that.
7867 However, if we're extracting from (or inserting into) a register,
7868 we want to recompute POS relative to wanted_inner_mode. */
7869 int width;
7870 if (!MEM_P (inner))
7871 width = GET_MODE_BITSIZE (wanted_inner_mode);
7872 else if (!GET_MODE_BITSIZE (is_mode).is_constant (&width))
7873 return NULL_RTX;
7874
7875 if (pos_rtx == 0)
7876 pos = width - len - pos;
7877 else
7878 pos_rtx
7879 = gen_rtx_MINUS (GET_MODE (pos_rtx),
7880 gen_int_mode (width - len, GET_MODE (pos_rtx)),
7881 pos_rtx);
7882 /* POS may be less than 0 now, but we check for that below.
7883 Note that it can only be less than 0 if !MEM_P (inner). */
7884 }
7885
7886 /* If INNER has a wider mode, and this is a constant extraction, try to
7887 make it smaller and adjust the byte to point to the byte containing
7888 the value. */
7889 if (wanted_inner_mode != VOIDmode
7890 && inner_mode != wanted_inner_mode
7891 && ! pos_rtx
7892 && partial_subreg_p (wanted_inner_mode, is_mode)
7893 && MEM_P (inner)
7894 && ! mode_dependent_address_p (XEXP (inner, 0), MEM_ADDR_SPACE (inner))
7895 && ! MEM_VOLATILE_P (inner))
7896 {
7897 poly_int64 offset = 0;
7898
7899 /* The computations below will be correct if the machine is big
7900 endian in both bits and bytes or little endian in bits and bytes.
7901 If it is mixed, we must adjust. */
7902
7903 /* If bytes are big endian and we had a paradoxical SUBREG, we must
7904 adjust OFFSET to compensate. */
7905 if (BYTES_BIG_ENDIAN
7906 && paradoxical_subreg_p (is_mode, inner_mode))
7907 offset -= GET_MODE_SIZE (is_mode) - GET_MODE_SIZE (inner_mode);
7908
7909 /* We can now move to the desired byte. */
7910 offset += (pos / GET_MODE_BITSIZE (wanted_inner_mode))
7911 * GET_MODE_SIZE (wanted_inner_mode);
7912 pos %= GET_MODE_BITSIZE (wanted_inner_mode);
7913
7914 if (BYTES_BIG_ENDIAN != BITS_BIG_ENDIAN
7915 && is_mode != wanted_inner_mode)
7916 offset = (GET_MODE_SIZE (is_mode)
7917 - GET_MODE_SIZE (wanted_inner_mode) - offset);
7918
7919 inner = adjust_address_nv (inner, wanted_inner_mode, offset);
7920 }
7921
7922 /* If INNER is not memory, get it into the proper mode. If we are changing
7923 its mode, POS must be a constant and smaller than the size of the new
7924 mode. */
7925 else if (!MEM_P (inner))
7926 {
7927 /* On the LHS, don't create paradoxical subregs implicitely truncating
7928 the register unless TARGET_TRULY_NOOP_TRUNCATION. */
7929 if (in_dest
7930 && !TRULY_NOOP_TRUNCATION_MODES_P (GET_MODE (inner),
7931 wanted_inner_mode))
7932 return NULL_RTX;
7933
7934 if (GET_MODE (inner) != wanted_inner_mode
7935 && (pos_rtx != 0
7936 || orig_pos + len > GET_MODE_BITSIZE (wanted_inner_mode)))
7937 return NULL_RTX;
7938
7939 if (orig_pos < 0)
7940 return NULL_RTX;
7941
7942 inner = force_to_mode (inner, wanted_inner_mode,
7943 pos_rtx
7944 || len + orig_pos >= HOST_BITS_PER_WIDE_INT
7945 ? HOST_WIDE_INT_M1U
7946 : (((HOST_WIDE_INT_1U << len) - 1)
7947 << orig_pos),
7948 0);
7949 }
7950
7951 /* Adjust mode of POS_RTX, if needed. If we want a wider mode, we
7952 have to zero extend. Otherwise, we can just use a SUBREG.
7953
7954 We dealt with constant rtxes earlier, so pos_rtx cannot
7955 have VOIDmode at this point. */
7956 if (pos_rtx != 0
7957 && (GET_MODE_SIZE (pos_mode)
7958 > GET_MODE_SIZE (as_a <scalar_int_mode> (GET_MODE (pos_rtx)))))
7959 {
7960 rtx temp = simplify_gen_unary (ZERO_EXTEND, pos_mode, pos_rtx,
7961 GET_MODE (pos_rtx));
7962
7963 /* If we know that no extraneous bits are set, and that the high
7964 bit is not set, convert extraction to cheaper one - either
7965 SIGN_EXTENSION or ZERO_EXTENSION, that are equivalent in these
7966 cases. */
7967 if (flag_expensive_optimizations
7968 && (HWI_COMPUTABLE_MODE_P (GET_MODE (pos_rtx))
7969 && ((nonzero_bits (pos_rtx, GET_MODE (pos_rtx))
7970 & ~(((unsigned HOST_WIDE_INT)
7971 GET_MODE_MASK (GET_MODE (pos_rtx)))
7972 >> 1))
7973 == 0)))
7974 {
7975 rtx temp1 = simplify_gen_unary (SIGN_EXTEND, pos_mode, pos_rtx,
7976 GET_MODE (pos_rtx));
7977
7978 /* Prefer ZERO_EXTENSION, since it gives more information to
7979 backends. */
7980 if (set_src_cost (temp1, pos_mode, optimize_this_for_speed_p)
7981 < set_src_cost (temp, pos_mode, optimize_this_for_speed_p))
7982 temp = temp1;
7983 }
7984 pos_rtx = temp;
7985 }
7986
7987 /* Make POS_RTX unless we already have it and it is correct. If we don't
7988 have a POS_RTX but we do have an ORIG_POS_RTX, the latter must
7989 be a CONST_INT. */
7990 if (pos_rtx == 0 && orig_pos_rtx != 0 && INTVAL (orig_pos_rtx) == pos)
7991 pos_rtx = orig_pos_rtx;
7992
7993 else if (pos_rtx == 0)
7994 pos_rtx = GEN_INT (pos);
7995
7996 /* Make the required operation. See if we can use existing rtx. */
7997 new_rtx = gen_rtx_fmt_eee (unsignedp ? ZERO_EXTRACT : SIGN_EXTRACT,
7998 extraction_mode, inner, GEN_INT (len), pos_rtx);
7999 if (! in_dest)
8000 new_rtx = gen_lowpart (mode, new_rtx);
8001
8002 return new_rtx;
8003 }
8004 \f
8005 /* See if X (of mode MODE) contains an ASHIFT of COUNT or more bits that
8006 can be commuted with any other operations in X. Return X without
8007 that shift if so. */
8008
8009 static rtx
8010 extract_left_shift (scalar_int_mode mode, rtx x, int count)
8011 {
8012 enum rtx_code code = GET_CODE (x);
8013 rtx tem;
8014
8015 switch (code)
8016 {
8017 case ASHIFT:
8018 /* This is the shift itself. If it is wide enough, we will return
8019 either the value being shifted if the shift count is equal to
8020 COUNT or a shift for the difference. */
8021 if (CONST_INT_P (XEXP (x, 1))
8022 && INTVAL (XEXP (x, 1)) >= count)
8023 return simplify_shift_const (NULL_RTX, ASHIFT, mode, XEXP (x, 0),
8024 INTVAL (XEXP (x, 1)) - count);
8025 break;
8026
8027 case NEG: case NOT:
8028 if ((tem = extract_left_shift (mode, XEXP (x, 0), count)) != 0)
8029 return simplify_gen_unary (code, mode, tem, mode);
8030
8031 break;
8032
8033 case PLUS: case IOR: case XOR: case AND:
8034 /* If we can safely shift this constant and we find the inner shift,
8035 make a new operation. */
8036 if (CONST_INT_P (XEXP (x, 1))
8037 && (UINTVAL (XEXP (x, 1))
8038 & (((HOST_WIDE_INT_1U << count)) - 1)) == 0
8039 && (tem = extract_left_shift (mode, XEXP (x, 0), count)) != 0)
8040 {
8041 HOST_WIDE_INT val = INTVAL (XEXP (x, 1)) >> count;
8042 return simplify_gen_binary (code, mode, tem,
8043 gen_int_mode (val, mode));
8044 }
8045 break;
8046
8047 default:
8048 break;
8049 }
8050
8051 return 0;
8052 }
8053 \f
8054 /* Subroutine of make_compound_operation. *X_PTR is the rtx at the current
8055 level of the expression and MODE is its mode. IN_CODE is as for
8056 make_compound_operation. *NEXT_CODE_PTR is the value of IN_CODE
8057 that should be used when recursing on operands of *X_PTR.
8058
8059 There are two possible actions:
8060
8061 - Return null. This tells the caller to recurse on *X_PTR with IN_CODE
8062 equal to *NEXT_CODE_PTR, after which *X_PTR holds the final value.
8063
8064 - Return a new rtx, which the caller returns directly. */
8065
8066 static rtx
8067 make_compound_operation_int (scalar_int_mode mode, rtx *x_ptr,
8068 enum rtx_code in_code,
8069 enum rtx_code *next_code_ptr)
8070 {
8071 rtx x = *x_ptr;
8072 enum rtx_code next_code = *next_code_ptr;
8073 enum rtx_code code = GET_CODE (x);
8074 int mode_width = GET_MODE_PRECISION (mode);
8075 rtx rhs, lhs;
8076 rtx new_rtx = 0;
8077 int i;
8078 rtx tem;
8079 scalar_int_mode inner_mode;
8080 bool equality_comparison = false;
8081
8082 if (in_code == EQ)
8083 {
8084 equality_comparison = true;
8085 in_code = COMPARE;
8086 }
8087
8088 /* Process depending on the code of this operation. If NEW is set
8089 nonzero, it will be returned. */
8090
8091 switch (code)
8092 {
8093 case ASHIFT:
8094 /* Convert shifts by constants into multiplications if inside
8095 an address. */
8096 if (in_code == MEM && CONST_INT_P (XEXP (x, 1))
8097 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT
8098 && INTVAL (XEXP (x, 1)) >= 0)
8099 {
8100 HOST_WIDE_INT count = INTVAL (XEXP (x, 1));
8101 HOST_WIDE_INT multval = HOST_WIDE_INT_1 << count;
8102
8103 new_rtx = make_compound_operation (XEXP (x, 0), next_code);
8104 if (GET_CODE (new_rtx) == NEG)
8105 {
8106 new_rtx = XEXP (new_rtx, 0);
8107 multval = -multval;
8108 }
8109 multval = trunc_int_for_mode (multval, mode);
8110 new_rtx = gen_rtx_MULT (mode, new_rtx, gen_int_mode (multval, mode));
8111 }
8112 break;
8113
8114 case PLUS:
8115 lhs = XEXP (x, 0);
8116 rhs = XEXP (x, 1);
8117 lhs = make_compound_operation (lhs, next_code);
8118 rhs = make_compound_operation (rhs, next_code);
8119 if (GET_CODE (lhs) == MULT && GET_CODE (XEXP (lhs, 0)) == NEG)
8120 {
8121 tem = simplify_gen_binary (MULT, mode, XEXP (XEXP (lhs, 0), 0),
8122 XEXP (lhs, 1));
8123 new_rtx = simplify_gen_binary (MINUS, mode, rhs, tem);
8124 }
8125 else if (GET_CODE (lhs) == MULT
8126 && (CONST_INT_P (XEXP (lhs, 1)) && INTVAL (XEXP (lhs, 1)) < 0))
8127 {
8128 tem = simplify_gen_binary (MULT, mode, XEXP (lhs, 0),
8129 simplify_gen_unary (NEG, mode,
8130 XEXP (lhs, 1),
8131 mode));
8132 new_rtx = simplify_gen_binary (MINUS, mode, rhs, tem);
8133 }
8134 else
8135 {
8136 SUBST (XEXP (x, 0), lhs);
8137 SUBST (XEXP (x, 1), rhs);
8138 }
8139 maybe_swap_commutative_operands (x);
8140 return x;
8141
8142 case MINUS:
8143 lhs = XEXP (x, 0);
8144 rhs = XEXP (x, 1);
8145 lhs = make_compound_operation (lhs, next_code);
8146 rhs = make_compound_operation (rhs, next_code);
8147 if (GET_CODE (rhs) == MULT && GET_CODE (XEXP (rhs, 0)) == NEG)
8148 {
8149 tem = simplify_gen_binary (MULT, mode, XEXP (XEXP (rhs, 0), 0),
8150 XEXP (rhs, 1));
8151 return simplify_gen_binary (PLUS, mode, tem, lhs);
8152 }
8153 else if (GET_CODE (rhs) == MULT
8154 && (CONST_INT_P (XEXP (rhs, 1)) && INTVAL (XEXP (rhs, 1)) < 0))
8155 {
8156 tem = simplify_gen_binary (MULT, mode, XEXP (rhs, 0),
8157 simplify_gen_unary (NEG, mode,
8158 XEXP (rhs, 1),
8159 mode));
8160 return simplify_gen_binary (PLUS, mode, tem, lhs);
8161 }
8162 else
8163 {
8164 SUBST (XEXP (x, 0), lhs);
8165 SUBST (XEXP (x, 1), rhs);
8166 return x;
8167 }
8168
8169 case AND:
8170 /* If the second operand is not a constant, we can't do anything
8171 with it. */
8172 if (!CONST_INT_P (XEXP (x, 1)))
8173 break;
8174
8175 /* If the constant is a power of two minus one and the first operand
8176 is a logical right shift, make an extraction. */
8177 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
8178 && (i = exact_log2 (UINTVAL (XEXP (x, 1)) + 1)) >= 0)
8179 {
8180 new_rtx = make_compound_operation (XEXP (XEXP (x, 0), 0), next_code);
8181 new_rtx = make_extraction (mode, new_rtx, 0, XEXP (XEXP (x, 0), 1),
8182 i, 1, 0, in_code == COMPARE);
8183 }
8184
8185 /* Same as previous, but for (subreg (lshiftrt ...)) in first op. */
8186 else if (GET_CODE (XEXP (x, 0)) == SUBREG
8187 && subreg_lowpart_p (XEXP (x, 0))
8188 && is_a <scalar_int_mode> (GET_MODE (SUBREG_REG (XEXP (x, 0))),
8189 &inner_mode)
8190 && GET_CODE (SUBREG_REG (XEXP (x, 0))) == LSHIFTRT
8191 && (i = exact_log2 (UINTVAL (XEXP (x, 1)) + 1)) >= 0)
8192 {
8193 rtx inner_x0 = SUBREG_REG (XEXP (x, 0));
8194 new_rtx = make_compound_operation (XEXP (inner_x0, 0), next_code);
8195 new_rtx = make_extraction (inner_mode, new_rtx, 0,
8196 XEXP (inner_x0, 1),
8197 i, 1, 0, in_code == COMPARE);
8198
8199 /* If we narrowed the mode when dropping the subreg, then we lose. */
8200 if (GET_MODE_SIZE (inner_mode) < GET_MODE_SIZE (mode))
8201 new_rtx = NULL;
8202
8203 /* If that didn't give anything, see if the AND simplifies on
8204 its own. */
8205 if (!new_rtx && i >= 0)
8206 {
8207 new_rtx = make_compound_operation (XEXP (x, 0), next_code);
8208 new_rtx = make_extraction (mode, new_rtx, 0, NULL_RTX, i, 1,
8209 0, in_code == COMPARE);
8210 }
8211 }
8212 /* Same as previous, but for (xor/ior (lshiftrt...) (lshiftrt...)). */
8213 else if ((GET_CODE (XEXP (x, 0)) == XOR
8214 || GET_CODE (XEXP (x, 0)) == IOR)
8215 && GET_CODE (XEXP (XEXP (x, 0), 0)) == LSHIFTRT
8216 && GET_CODE (XEXP (XEXP (x, 0), 1)) == LSHIFTRT
8217 && (i = exact_log2 (UINTVAL (XEXP (x, 1)) + 1)) >= 0)
8218 {
8219 /* Apply the distributive law, and then try to make extractions. */
8220 new_rtx = gen_rtx_fmt_ee (GET_CODE (XEXP (x, 0)), mode,
8221 gen_rtx_AND (mode, XEXP (XEXP (x, 0), 0),
8222 XEXP (x, 1)),
8223 gen_rtx_AND (mode, XEXP (XEXP (x, 0), 1),
8224 XEXP (x, 1)));
8225 new_rtx = make_compound_operation (new_rtx, in_code);
8226 }
8227
8228 /* If we are have (and (rotate X C) M) and C is larger than the number
8229 of bits in M, this is an extraction. */
8230
8231 else if (GET_CODE (XEXP (x, 0)) == ROTATE
8232 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
8233 && (i = exact_log2 (UINTVAL (XEXP (x, 1)) + 1)) >= 0
8234 && i <= INTVAL (XEXP (XEXP (x, 0), 1)))
8235 {
8236 new_rtx = make_compound_operation (XEXP (XEXP (x, 0), 0), next_code);
8237 new_rtx = make_extraction (mode, new_rtx,
8238 (GET_MODE_PRECISION (mode)
8239 - INTVAL (XEXP (XEXP (x, 0), 1))),
8240 NULL_RTX, i, 1, 0, in_code == COMPARE);
8241 }
8242
8243 /* On machines without logical shifts, if the operand of the AND is
8244 a logical shift and our mask turns off all the propagated sign
8245 bits, we can replace the logical shift with an arithmetic shift. */
8246 else if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
8247 && !have_insn_for (LSHIFTRT, mode)
8248 && have_insn_for (ASHIFTRT, mode)
8249 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
8250 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
8251 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT
8252 && mode_width <= HOST_BITS_PER_WIDE_INT)
8253 {
8254 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
8255
8256 mask >>= INTVAL (XEXP (XEXP (x, 0), 1));
8257 if ((INTVAL (XEXP (x, 1)) & ~mask) == 0)
8258 SUBST (XEXP (x, 0),
8259 gen_rtx_ASHIFTRT (mode,
8260 make_compound_operation (XEXP (XEXP (x,
8261 0),
8262 0),
8263 next_code),
8264 XEXP (XEXP (x, 0), 1)));
8265 }
8266
8267 /* If the constant is one less than a power of two, this might be
8268 representable by an extraction even if no shift is present.
8269 If it doesn't end up being a ZERO_EXTEND, we will ignore it unless
8270 we are in a COMPARE. */
8271 else if ((i = exact_log2 (UINTVAL (XEXP (x, 1)) + 1)) >= 0)
8272 new_rtx = make_extraction (mode,
8273 make_compound_operation (XEXP (x, 0),
8274 next_code),
8275 0, NULL_RTX, i, 1, 0, in_code == COMPARE);
8276
8277 /* If we are in a comparison and this is an AND with a power of two,
8278 convert this into the appropriate bit extract. */
8279 else if (in_code == COMPARE
8280 && (i = exact_log2 (UINTVAL (XEXP (x, 1)))) >= 0
8281 && (equality_comparison || i < GET_MODE_PRECISION (mode) - 1))
8282 new_rtx = make_extraction (mode,
8283 make_compound_operation (XEXP (x, 0),
8284 next_code),
8285 i, NULL_RTX, 1, 1, 0, 1);
8286
8287 /* If the one operand is a paradoxical subreg of a register or memory and
8288 the constant (limited to the smaller mode) has only zero bits where
8289 the sub expression has known zero bits, this can be expressed as
8290 a zero_extend. */
8291 else if (GET_CODE (XEXP (x, 0)) == SUBREG)
8292 {
8293 rtx sub;
8294
8295 sub = XEXP (XEXP (x, 0), 0);
8296 machine_mode sub_mode = GET_MODE (sub);
8297 int sub_width;
8298 if ((REG_P (sub) || MEM_P (sub))
8299 && GET_MODE_PRECISION (sub_mode).is_constant (&sub_width)
8300 && sub_width < mode_width)
8301 {
8302 unsigned HOST_WIDE_INT mode_mask = GET_MODE_MASK (sub_mode);
8303 unsigned HOST_WIDE_INT mask;
8304
8305 /* original AND constant with all the known zero bits set */
8306 mask = UINTVAL (XEXP (x, 1)) | (~nonzero_bits (sub, sub_mode));
8307 if ((mask & mode_mask) == mode_mask)
8308 {
8309 new_rtx = make_compound_operation (sub, next_code);
8310 new_rtx = make_extraction (mode, new_rtx, 0, 0, sub_width,
8311 1, 0, in_code == COMPARE);
8312 }
8313 }
8314 }
8315
8316 break;
8317
8318 case LSHIFTRT:
8319 /* If the sign bit is known to be zero, replace this with an
8320 arithmetic shift. */
8321 if (have_insn_for (ASHIFTRT, mode)
8322 && ! have_insn_for (LSHIFTRT, mode)
8323 && mode_width <= HOST_BITS_PER_WIDE_INT
8324 && (nonzero_bits (XEXP (x, 0), mode) & (1 << (mode_width - 1))) == 0)
8325 {
8326 new_rtx = gen_rtx_ASHIFTRT (mode,
8327 make_compound_operation (XEXP (x, 0),
8328 next_code),
8329 XEXP (x, 1));
8330 break;
8331 }
8332
8333 /* fall through */
8334
8335 case ASHIFTRT:
8336 lhs = XEXP (x, 0);
8337 rhs = XEXP (x, 1);
8338
8339 /* If we have (ashiftrt (ashift foo C1) C2) with C2 >= C1,
8340 this is a SIGN_EXTRACT. */
8341 if (CONST_INT_P (rhs)
8342 && GET_CODE (lhs) == ASHIFT
8343 && CONST_INT_P (XEXP (lhs, 1))
8344 && INTVAL (rhs) >= INTVAL (XEXP (lhs, 1))
8345 && INTVAL (XEXP (lhs, 1)) >= 0
8346 && INTVAL (rhs) < mode_width)
8347 {
8348 new_rtx = make_compound_operation (XEXP (lhs, 0), next_code);
8349 new_rtx = make_extraction (mode, new_rtx,
8350 INTVAL (rhs) - INTVAL (XEXP (lhs, 1)),
8351 NULL_RTX, mode_width - INTVAL (rhs),
8352 code == LSHIFTRT, 0, in_code == COMPARE);
8353 break;
8354 }
8355
8356 /* See if we have operations between an ASHIFTRT and an ASHIFT.
8357 If so, try to merge the shifts into a SIGN_EXTEND. We could
8358 also do this for some cases of SIGN_EXTRACT, but it doesn't
8359 seem worth the effort; the case checked for occurs on Alpha. */
8360
8361 if (!OBJECT_P (lhs)
8362 && ! (GET_CODE (lhs) == SUBREG
8363 && (OBJECT_P (SUBREG_REG (lhs))))
8364 && CONST_INT_P (rhs)
8365 && INTVAL (rhs) >= 0
8366 && INTVAL (rhs) < HOST_BITS_PER_WIDE_INT
8367 && INTVAL (rhs) < mode_width
8368 && (new_rtx = extract_left_shift (mode, lhs, INTVAL (rhs))) != 0)
8369 new_rtx = make_extraction (mode, make_compound_operation (new_rtx,
8370 next_code),
8371 0, NULL_RTX, mode_width - INTVAL (rhs),
8372 code == LSHIFTRT, 0, in_code == COMPARE);
8373
8374 break;
8375
8376 case SUBREG:
8377 /* Call ourselves recursively on the inner expression. If we are
8378 narrowing the object and it has a different RTL code from
8379 what it originally did, do this SUBREG as a force_to_mode. */
8380 {
8381 rtx inner = SUBREG_REG (x), simplified;
8382 enum rtx_code subreg_code = in_code;
8383
8384 /* If the SUBREG is masking of a logical right shift,
8385 make an extraction. */
8386 if (GET_CODE (inner) == LSHIFTRT
8387 && is_a <scalar_int_mode> (GET_MODE (inner), &inner_mode)
8388 && GET_MODE_SIZE (mode) < GET_MODE_SIZE (inner_mode)
8389 && CONST_INT_P (XEXP (inner, 1))
8390 && UINTVAL (XEXP (inner, 1)) < GET_MODE_PRECISION (inner_mode)
8391 && subreg_lowpart_p (x))
8392 {
8393 new_rtx = make_compound_operation (XEXP (inner, 0), next_code);
8394 int width = GET_MODE_PRECISION (inner_mode)
8395 - INTVAL (XEXP (inner, 1));
8396 if (width > mode_width)
8397 width = mode_width;
8398 new_rtx = make_extraction (mode, new_rtx, 0, XEXP (inner, 1),
8399 width, 1, 0, in_code == COMPARE);
8400 break;
8401 }
8402
8403 /* If in_code is COMPARE, it isn't always safe to pass it through
8404 to the recursive make_compound_operation call. */
8405 if (subreg_code == COMPARE
8406 && (!subreg_lowpart_p (x)
8407 || GET_CODE (inner) == SUBREG
8408 /* (subreg:SI (and:DI (reg:DI) (const_int 0x800000000)) 0)
8409 is (const_int 0), rather than
8410 (subreg:SI (lshiftrt:DI (reg:DI) (const_int 35)) 0).
8411 Similarly (subreg:QI (and:SI (reg:SI) (const_int 0x80)) 0)
8412 for non-equality comparisons against 0 is not equivalent
8413 to (subreg:QI (lshiftrt:SI (reg:SI) (const_int 7)) 0). */
8414 || (GET_CODE (inner) == AND
8415 && CONST_INT_P (XEXP (inner, 1))
8416 && partial_subreg_p (x)
8417 && exact_log2 (UINTVAL (XEXP (inner, 1)))
8418 >= GET_MODE_BITSIZE (mode) - 1)))
8419 subreg_code = SET;
8420
8421 tem = make_compound_operation (inner, subreg_code);
8422
8423 simplified
8424 = simplify_subreg (mode, tem, GET_MODE (inner), SUBREG_BYTE (x));
8425 if (simplified)
8426 tem = simplified;
8427
8428 if (GET_CODE (tem) != GET_CODE (inner)
8429 && partial_subreg_p (x)
8430 && subreg_lowpart_p (x))
8431 {
8432 rtx newer
8433 = force_to_mode (tem, mode, HOST_WIDE_INT_M1U, 0);
8434
8435 /* If we have something other than a SUBREG, we might have
8436 done an expansion, so rerun ourselves. */
8437 if (GET_CODE (newer) != SUBREG)
8438 newer = make_compound_operation (newer, in_code);
8439
8440 /* force_to_mode can expand compounds. If it just re-expanded
8441 the compound, use gen_lowpart to convert to the desired
8442 mode. */
8443 if (rtx_equal_p (newer, x)
8444 /* Likewise if it re-expanded the compound only partially.
8445 This happens for SUBREG of ZERO_EXTRACT if they extract
8446 the same number of bits. */
8447 || (GET_CODE (newer) == SUBREG
8448 && (GET_CODE (SUBREG_REG (newer)) == LSHIFTRT
8449 || GET_CODE (SUBREG_REG (newer)) == ASHIFTRT)
8450 && GET_CODE (inner) == AND
8451 && rtx_equal_p (SUBREG_REG (newer), XEXP (inner, 0))))
8452 return gen_lowpart (GET_MODE (x), tem);
8453
8454 return newer;
8455 }
8456
8457 if (simplified)
8458 return tem;
8459 }
8460 break;
8461
8462 default:
8463 break;
8464 }
8465
8466 if (new_rtx)
8467 *x_ptr = gen_lowpart (mode, new_rtx);
8468 *next_code_ptr = next_code;
8469 return NULL_RTX;
8470 }
8471
8472 /* Look at the expression rooted at X. Look for expressions
8473 equivalent to ZERO_EXTRACT, SIGN_EXTRACT, ZERO_EXTEND, SIGN_EXTEND.
8474 Form these expressions.
8475
8476 Return the new rtx, usually just X.
8477
8478 Also, for machines like the VAX that don't have logical shift insns,
8479 try to convert logical to arithmetic shift operations in cases where
8480 they are equivalent. This undoes the canonicalizations to logical
8481 shifts done elsewhere.
8482
8483 We try, as much as possible, to re-use rtl expressions to save memory.
8484
8485 IN_CODE says what kind of expression we are processing. Normally, it is
8486 SET. In a memory address it is MEM. When processing the arguments of
8487 a comparison or a COMPARE against zero, it is COMPARE, or EQ if more
8488 precisely it is an equality comparison against zero. */
8489
8490 rtx
8491 make_compound_operation (rtx x, enum rtx_code in_code)
8492 {
8493 enum rtx_code code = GET_CODE (x);
8494 const char *fmt;
8495 int i, j;
8496 enum rtx_code next_code;
8497 rtx new_rtx, tem;
8498
8499 /* Select the code to be used in recursive calls. Once we are inside an
8500 address, we stay there. If we have a comparison, set to COMPARE,
8501 but once inside, go back to our default of SET. */
8502
8503 next_code = (code == MEM ? MEM
8504 : ((code == COMPARE || COMPARISON_P (x))
8505 && XEXP (x, 1) == const0_rtx) ? COMPARE
8506 : in_code == COMPARE || in_code == EQ ? SET : in_code);
8507
8508 scalar_int_mode mode;
8509 if (is_a <scalar_int_mode> (GET_MODE (x), &mode))
8510 {
8511 rtx new_rtx = make_compound_operation_int (mode, &x, in_code,
8512 &next_code);
8513 if (new_rtx)
8514 return new_rtx;
8515 code = GET_CODE (x);
8516 }
8517
8518 /* Now recursively process each operand of this operation. We need to
8519 handle ZERO_EXTEND specially so that we don't lose track of the
8520 inner mode. */
8521 if (code == ZERO_EXTEND)
8522 {
8523 new_rtx = make_compound_operation (XEXP (x, 0), next_code);
8524 tem = simplify_const_unary_operation (ZERO_EXTEND, GET_MODE (x),
8525 new_rtx, GET_MODE (XEXP (x, 0)));
8526 if (tem)
8527 return tem;
8528 SUBST (XEXP (x, 0), new_rtx);
8529 return x;
8530 }
8531
8532 fmt = GET_RTX_FORMAT (code);
8533 for (i = 0; i < GET_RTX_LENGTH (code); i++)
8534 if (fmt[i] == 'e')
8535 {
8536 new_rtx = make_compound_operation (XEXP (x, i), next_code);
8537 SUBST (XEXP (x, i), new_rtx);
8538 }
8539 else if (fmt[i] == 'E')
8540 for (j = 0; j < XVECLEN (x, i); j++)
8541 {
8542 new_rtx = make_compound_operation (XVECEXP (x, i, j), next_code);
8543 SUBST (XVECEXP (x, i, j), new_rtx);
8544 }
8545
8546 maybe_swap_commutative_operands (x);
8547 return x;
8548 }
8549 \f
8550 /* Given M see if it is a value that would select a field of bits
8551 within an item, but not the entire word. Return -1 if not.
8552 Otherwise, return the starting position of the field, where 0 is the
8553 low-order bit.
8554
8555 *PLEN is set to the length of the field. */
8556
8557 static int
8558 get_pos_from_mask (unsigned HOST_WIDE_INT m, unsigned HOST_WIDE_INT *plen)
8559 {
8560 /* Get the bit number of the first 1 bit from the right, -1 if none. */
8561 int pos = m ? ctz_hwi (m) : -1;
8562 int len = 0;
8563
8564 if (pos >= 0)
8565 /* Now shift off the low-order zero bits and see if we have a
8566 power of two minus 1. */
8567 len = exact_log2 ((m >> pos) + 1);
8568
8569 if (len <= 0)
8570 pos = -1;
8571
8572 *plen = len;
8573 return pos;
8574 }
8575 \f
8576 /* If X refers to a register that equals REG in value, replace these
8577 references with REG. */
8578 static rtx
8579 canon_reg_for_combine (rtx x, rtx reg)
8580 {
8581 rtx op0, op1, op2;
8582 const char *fmt;
8583 int i;
8584 bool copied;
8585
8586 enum rtx_code code = GET_CODE (x);
8587 switch (GET_RTX_CLASS (code))
8588 {
8589 case RTX_UNARY:
8590 op0 = canon_reg_for_combine (XEXP (x, 0), reg);
8591 if (op0 != XEXP (x, 0))
8592 return simplify_gen_unary (GET_CODE (x), GET_MODE (x), op0,
8593 GET_MODE (reg));
8594 break;
8595
8596 case RTX_BIN_ARITH:
8597 case RTX_COMM_ARITH:
8598 op0 = canon_reg_for_combine (XEXP (x, 0), reg);
8599 op1 = canon_reg_for_combine (XEXP (x, 1), reg);
8600 if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
8601 return simplify_gen_binary (GET_CODE (x), GET_MODE (x), op0, op1);
8602 break;
8603
8604 case RTX_COMPARE:
8605 case RTX_COMM_COMPARE:
8606 op0 = canon_reg_for_combine (XEXP (x, 0), reg);
8607 op1 = canon_reg_for_combine (XEXP (x, 1), reg);
8608 if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
8609 return simplify_gen_relational (GET_CODE (x), GET_MODE (x),
8610 GET_MODE (op0), op0, op1);
8611 break;
8612
8613 case RTX_TERNARY:
8614 case RTX_BITFIELD_OPS:
8615 op0 = canon_reg_for_combine (XEXP (x, 0), reg);
8616 op1 = canon_reg_for_combine (XEXP (x, 1), reg);
8617 op2 = canon_reg_for_combine (XEXP (x, 2), reg);
8618 if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1) || op2 != XEXP (x, 2))
8619 return simplify_gen_ternary (GET_CODE (x), GET_MODE (x),
8620 GET_MODE (op0), op0, op1, op2);
8621 /* FALLTHRU */
8622
8623 case RTX_OBJ:
8624 if (REG_P (x))
8625 {
8626 if (rtx_equal_p (get_last_value (reg), x)
8627 || rtx_equal_p (reg, get_last_value (x)))
8628 return reg;
8629 else
8630 break;
8631 }
8632
8633 /* fall through */
8634
8635 default:
8636 fmt = GET_RTX_FORMAT (code);
8637 copied = false;
8638 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
8639 if (fmt[i] == 'e')
8640 {
8641 rtx op = canon_reg_for_combine (XEXP (x, i), reg);
8642 if (op != XEXP (x, i))
8643 {
8644 if (!copied)
8645 {
8646 copied = true;
8647 x = copy_rtx (x);
8648 }
8649 XEXP (x, i) = op;
8650 }
8651 }
8652 else if (fmt[i] == 'E')
8653 {
8654 int j;
8655 for (j = 0; j < XVECLEN (x, i); j++)
8656 {
8657 rtx op = canon_reg_for_combine (XVECEXP (x, i, j), reg);
8658 if (op != XVECEXP (x, i, j))
8659 {
8660 if (!copied)
8661 {
8662 copied = true;
8663 x = copy_rtx (x);
8664 }
8665 XVECEXP (x, i, j) = op;
8666 }
8667 }
8668 }
8669
8670 break;
8671 }
8672
8673 return x;
8674 }
8675
8676 /* Return X converted to MODE. If the value is already truncated to
8677 MODE we can just return a subreg even though in the general case we
8678 would need an explicit truncation. */
8679
8680 static rtx
8681 gen_lowpart_or_truncate (machine_mode mode, rtx x)
8682 {
8683 if (!CONST_INT_P (x)
8684 && partial_subreg_p (mode, GET_MODE (x))
8685 && !TRULY_NOOP_TRUNCATION_MODES_P (mode, GET_MODE (x))
8686 && !(REG_P (x) && reg_truncated_to_mode (mode, x)))
8687 {
8688 /* Bit-cast X into an integer mode. */
8689 if (!SCALAR_INT_MODE_P (GET_MODE (x)))
8690 x = gen_lowpart (int_mode_for_mode (GET_MODE (x)).require (), x);
8691 x = simplify_gen_unary (TRUNCATE, int_mode_for_mode (mode).require (),
8692 x, GET_MODE (x));
8693 }
8694
8695 return gen_lowpart (mode, x);
8696 }
8697
8698 /* See if X can be simplified knowing that we will only refer to it in
8699 MODE and will only refer to those bits that are nonzero in MASK.
8700 If other bits are being computed or if masking operations are done
8701 that select a superset of the bits in MASK, they can sometimes be
8702 ignored.
8703
8704 Return a possibly simplified expression, but always convert X to
8705 MODE. If X is a CONST_INT, AND the CONST_INT with MASK.
8706
8707 If JUST_SELECT is nonzero, don't optimize by noticing that bits in MASK
8708 are all off in X. This is used when X will be complemented, by either
8709 NOT, NEG, or XOR. */
8710
8711 static rtx
8712 force_to_mode (rtx x, machine_mode mode, unsigned HOST_WIDE_INT mask,
8713 int just_select)
8714 {
8715 enum rtx_code code = GET_CODE (x);
8716 int next_select = just_select || code == XOR || code == NOT || code == NEG;
8717 machine_mode op_mode;
8718 unsigned HOST_WIDE_INT nonzero;
8719
8720 /* If this is a CALL or ASM_OPERANDS, don't do anything. Some of the
8721 code below will do the wrong thing since the mode of such an
8722 expression is VOIDmode.
8723
8724 Also do nothing if X is a CLOBBER; this can happen if X was
8725 the return value from a call to gen_lowpart. */
8726 if (code == CALL || code == ASM_OPERANDS || code == CLOBBER)
8727 return x;
8728
8729 /* We want to perform the operation in its present mode unless we know
8730 that the operation is valid in MODE, in which case we do the operation
8731 in MODE. */
8732 op_mode = ((GET_MODE_CLASS (mode) == GET_MODE_CLASS (GET_MODE (x))
8733 && have_insn_for (code, mode))
8734 ? mode : GET_MODE (x));
8735
8736 /* It is not valid to do a right-shift in a narrower mode
8737 than the one it came in with. */
8738 if ((code == LSHIFTRT || code == ASHIFTRT)
8739 && partial_subreg_p (mode, GET_MODE (x)))
8740 op_mode = GET_MODE (x);
8741
8742 /* Truncate MASK to fit OP_MODE. */
8743 if (op_mode)
8744 mask &= GET_MODE_MASK (op_mode);
8745
8746 /* Determine what bits of X are guaranteed to be (non)zero. */
8747 nonzero = nonzero_bits (x, mode);
8748
8749 /* If none of the bits in X are needed, return a zero. */
8750 if (!just_select && (nonzero & mask) == 0 && !side_effects_p (x))
8751 x = const0_rtx;
8752
8753 /* If X is a CONST_INT, return a new one. Do this here since the
8754 test below will fail. */
8755 if (CONST_INT_P (x))
8756 {
8757 if (SCALAR_INT_MODE_P (mode))
8758 return gen_int_mode (INTVAL (x) & mask, mode);
8759 else
8760 {
8761 x = GEN_INT (INTVAL (x) & mask);
8762 return gen_lowpart_common (mode, x);
8763 }
8764 }
8765
8766 /* If X is narrower than MODE and we want all the bits in X's mode, just
8767 get X in the proper mode. */
8768 if (paradoxical_subreg_p (mode, GET_MODE (x))
8769 && (GET_MODE_MASK (GET_MODE (x)) & ~mask) == 0)
8770 return gen_lowpart (mode, x);
8771
8772 /* We can ignore the effect of a SUBREG if it narrows the mode or
8773 if the constant masks to zero all the bits the mode doesn't have. */
8774 if (GET_CODE (x) == SUBREG
8775 && subreg_lowpart_p (x)
8776 && (partial_subreg_p (x)
8777 || (mask
8778 & GET_MODE_MASK (GET_MODE (x))
8779 & ~GET_MODE_MASK (GET_MODE (SUBREG_REG (x)))) == 0))
8780 return force_to_mode (SUBREG_REG (x), mode, mask, next_select);
8781
8782 scalar_int_mode int_mode, xmode;
8783 if (is_a <scalar_int_mode> (mode, &int_mode)
8784 && is_a <scalar_int_mode> (GET_MODE (x), &xmode))
8785 /* OP_MODE is either MODE or XMODE, so it must be a scalar
8786 integer too. */
8787 return force_int_to_mode (x, int_mode, xmode,
8788 as_a <scalar_int_mode> (op_mode),
8789 mask, just_select);
8790
8791 return gen_lowpart_or_truncate (mode, x);
8792 }
8793
8794 /* Subroutine of force_to_mode that handles cases in which both X and
8795 the result are scalar integers. MODE is the mode of the result,
8796 XMODE is the mode of X, and OP_MODE says which of MODE or XMODE
8797 is preferred for simplified versions of X. The other arguments
8798 are as for force_to_mode. */
8799
8800 static rtx
8801 force_int_to_mode (rtx x, scalar_int_mode mode, scalar_int_mode xmode,
8802 scalar_int_mode op_mode, unsigned HOST_WIDE_INT mask,
8803 int just_select)
8804 {
8805 enum rtx_code code = GET_CODE (x);
8806 int next_select = just_select || code == XOR || code == NOT || code == NEG;
8807 unsigned HOST_WIDE_INT fuller_mask;
8808 rtx op0, op1, temp;
8809 poly_int64 const_op0;
8810
8811 /* When we have an arithmetic operation, or a shift whose count we
8812 do not know, we need to assume that all bits up to the highest-order
8813 bit in MASK will be needed. This is how we form such a mask. */
8814 if (mask & (HOST_WIDE_INT_1U << (HOST_BITS_PER_WIDE_INT - 1)))
8815 fuller_mask = HOST_WIDE_INT_M1U;
8816 else
8817 fuller_mask = ((HOST_WIDE_INT_1U << (floor_log2 (mask) + 1))
8818 - 1);
8819
8820 switch (code)
8821 {
8822 case CLOBBER:
8823 /* If X is a (clobber (const_int)), return it since we know we are
8824 generating something that won't match. */
8825 return x;
8826
8827 case SIGN_EXTEND:
8828 case ZERO_EXTEND:
8829 case ZERO_EXTRACT:
8830 case SIGN_EXTRACT:
8831 x = expand_compound_operation (x);
8832 if (GET_CODE (x) != code)
8833 return force_to_mode (x, mode, mask, next_select);
8834 break;
8835
8836 case TRUNCATE:
8837 /* Similarly for a truncate. */
8838 return force_to_mode (XEXP (x, 0), mode, mask, next_select);
8839
8840 case AND:
8841 /* If this is an AND with a constant, convert it into an AND
8842 whose constant is the AND of that constant with MASK. If it
8843 remains an AND of MASK, delete it since it is redundant. */
8844
8845 if (CONST_INT_P (XEXP (x, 1)))
8846 {
8847 x = simplify_and_const_int (x, op_mode, XEXP (x, 0),
8848 mask & INTVAL (XEXP (x, 1)));
8849 xmode = op_mode;
8850
8851 /* If X is still an AND, see if it is an AND with a mask that
8852 is just some low-order bits. If so, and it is MASK, we don't
8853 need it. */
8854
8855 if (GET_CODE (x) == AND && CONST_INT_P (XEXP (x, 1))
8856 && (INTVAL (XEXP (x, 1)) & GET_MODE_MASK (xmode)) == mask)
8857 x = XEXP (x, 0);
8858
8859 /* If it remains an AND, try making another AND with the bits
8860 in the mode mask that aren't in MASK turned on. If the
8861 constant in the AND is wide enough, this might make a
8862 cheaper constant. */
8863
8864 if (GET_CODE (x) == AND && CONST_INT_P (XEXP (x, 1))
8865 && GET_MODE_MASK (xmode) != mask
8866 && HWI_COMPUTABLE_MODE_P (xmode))
8867 {
8868 unsigned HOST_WIDE_INT cval
8869 = UINTVAL (XEXP (x, 1)) | (GET_MODE_MASK (xmode) & ~mask);
8870 rtx y;
8871
8872 y = simplify_gen_binary (AND, xmode, XEXP (x, 0),
8873 gen_int_mode (cval, xmode));
8874 if (set_src_cost (y, xmode, optimize_this_for_speed_p)
8875 < set_src_cost (x, xmode, optimize_this_for_speed_p))
8876 x = y;
8877 }
8878
8879 break;
8880 }
8881
8882 goto binop;
8883
8884 case PLUS:
8885 /* In (and (plus FOO C1) M), if M is a mask that just turns off
8886 low-order bits (as in an alignment operation) and FOO is already
8887 aligned to that boundary, mask C1 to that boundary as well.
8888 This may eliminate that PLUS and, later, the AND. */
8889
8890 {
8891 unsigned int width = GET_MODE_PRECISION (mode);
8892 unsigned HOST_WIDE_INT smask = mask;
8893
8894 /* If MODE is narrower than HOST_WIDE_INT and mask is a negative
8895 number, sign extend it. */
8896
8897 if (width < HOST_BITS_PER_WIDE_INT
8898 && (smask & (HOST_WIDE_INT_1U << (width - 1))) != 0)
8899 smask |= HOST_WIDE_INT_M1U << width;
8900
8901 if (CONST_INT_P (XEXP (x, 1))
8902 && pow2p_hwi (- smask)
8903 && (nonzero_bits (XEXP (x, 0), mode) & ~smask) == 0
8904 && (INTVAL (XEXP (x, 1)) & ~smask) != 0)
8905 return force_to_mode (plus_constant (xmode, XEXP (x, 0),
8906 (INTVAL (XEXP (x, 1)) & smask)),
8907 mode, smask, next_select);
8908 }
8909
8910 /* fall through */
8911
8912 case MULT:
8913 /* Substituting into the operands of a widening MULT is not likely to
8914 create RTL matching a machine insn. */
8915 if (code == MULT
8916 && (GET_CODE (XEXP (x, 0)) == ZERO_EXTEND
8917 || GET_CODE (XEXP (x, 0)) == SIGN_EXTEND)
8918 && (GET_CODE (XEXP (x, 1)) == ZERO_EXTEND
8919 || GET_CODE (XEXP (x, 1)) == SIGN_EXTEND)
8920 && REG_P (XEXP (XEXP (x, 0), 0))
8921 && REG_P (XEXP (XEXP (x, 1), 0)))
8922 return gen_lowpart_or_truncate (mode, x);
8923
8924 /* For PLUS, MINUS and MULT, we need any bits less significant than the
8925 most significant bit in MASK since carries from those bits will
8926 affect the bits we are interested in. */
8927 mask = fuller_mask;
8928 goto binop;
8929
8930 case MINUS:
8931 /* If X is (minus C Y) where C's least set bit is larger than any bit
8932 in the mask, then we may replace with (neg Y). */
8933 if (poly_int_rtx_p (XEXP (x, 0), &const_op0)
8934 && known_alignment (poly_uint64 (const_op0)) > mask)
8935 {
8936 x = simplify_gen_unary (NEG, xmode, XEXP (x, 1), xmode);
8937 return force_to_mode (x, mode, mask, next_select);
8938 }
8939
8940 /* Similarly, if C contains every bit in the fuller_mask, then we may
8941 replace with (not Y). */
8942 if (CONST_INT_P (XEXP (x, 0))
8943 && ((UINTVAL (XEXP (x, 0)) | fuller_mask) == UINTVAL (XEXP (x, 0))))
8944 {
8945 x = simplify_gen_unary (NOT, xmode, XEXP (x, 1), xmode);
8946 return force_to_mode (x, mode, mask, next_select);
8947 }
8948
8949 mask = fuller_mask;
8950 goto binop;
8951
8952 case IOR:
8953 case XOR:
8954 /* If X is (ior (lshiftrt FOO C1) C2), try to commute the IOR and
8955 LSHIFTRT so we end up with an (and (lshiftrt (ior ...) ...) ...)
8956 operation which may be a bitfield extraction. Ensure that the
8957 constant we form is not wider than the mode of X. */
8958
8959 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
8960 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
8961 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
8962 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT
8963 && CONST_INT_P (XEXP (x, 1))
8964 && ((INTVAL (XEXP (XEXP (x, 0), 1))
8965 + floor_log2 (INTVAL (XEXP (x, 1))))
8966 < GET_MODE_PRECISION (xmode))
8967 && (UINTVAL (XEXP (x, 1))
8968 & ~nonzero_bits (XEXP (x, 0), xmode)) == 0)
8969 {
8970 temp = gen_int_mode ((INTVAL (XEXP (x, 1)) & mask)
8971 << INTVAL (XEXP (XEXP (x, 0), 1)),
8972 xmode);
8973 temp = simplify_gen_binary (GET_CODE (x), xmode,
8974 XEXP (XEXP (x, 0), 0), temp);
8975 x = simplify_gen_binary (LSHIFTRT, xmode, temp,
8976 XEXP (XEXP (x, 0), 1));
8977 return force_to_mode (x, mode, mask, next_select);
8978 }
8979
8980 binop:
8981 /* For most binary operations, just propagate into the operation and
8982 change the mode if we have an operation of that mode. */
8983
8984 op0 = force_to_mode (XEXP (x, 0), mode, mask, next_select);
8985 op1 = force_to_mode (XEXP (x, 1), mode, mask, next_select);
8986
8987 /* If we ended up truncating both operands, truncate the result of the
8988 operation instead. */
8989 if (GET_CODE (op0) == TRUNCATE
8990 && GET_CODE (op1) == TRUNCATE)
8991 {
8992 op0 = XEXP (op0, 0);
8993 op1 = XEXP (op1, 0);
8994 }
8995
8996 op0 = gen_lowpart_or_truncate (op_mode, op0);
8997 op1 = gen_lowpart_or_truncate (op_mode, op1);
8998
8999 if (op_mode != xmode || op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
9000 {
9001 x = simplify_gen_binary (code, op_mode, op0, op1);
9002 xmode = op_mode;
9003 }
9004 break;
9005
9006 case ASHIFT:
9007 /* For left shifts, do the same, but just for the first operand.
9008 However, we cannot do anything with shifts where we cannot
9009 guarantee that the counts are smaller than the size of the mode
9010 because such a count will have a different meaning in a
9011 wider mode. */
9012
9013 if (! (CONST_INT_P (XEXP (x, 1))
9014 && INTVAL (XEXP (x, 1)) >= 0
9015 && INTVAL (XEXP (x, 1)) < GET_MODE_PRECISION (mode))
9016 && ! (GET_MODE (XEXP (x, 1)) != VOIDmode
9017 && (nonzero_bits (XEXP (x, 1), GET_MODE (XEXP (x, 1)))
9018 < (unsigned HOST_WIDE_INT) GET_MODE_PRECISION (mode))))
9019 break;
9020
9021 /* If the shift count is a constant and we can do arithmetic in
9022 the mode of the shift, refine which bits we need. Otherwise, use the
9023 conservative form of the mask. */
9024 if (CONST_INT_P (XEXP (x, 1))
9025 && INTVAL (XEXP (x, 1)) >= 0
9026 && INTVAL (XEXP (x, 1)) < GET_MODE_PRECISION (op_mode)
9027 && HWI_COMPUTABLE_MODE_P (op_mode))
9028 mask >>= INTVAL (XEXP (x, 1));
9029 else
9030 mask = fuller_mask;
9031
9032 op0 = gen_lowpart_or_truncate (op_mode,
9033 force_to_mode (XEXP (x, 0), mode,
9034 mask, next_select));
9035
9036 if (op_mode != xmode || op0 != XEXP (x, 0))
9037 {
9038 x = simplify_gen_binary (code, op_mode, op0, XEXP (x, 1));
9039 xmode = op_mode;
9040 }
9041 break;
9042
9043 case LSHIFTRT:
9044 /* Here we can only do something if the shift count is a constant,
9045 this shift constant is valid for the host, and we can do arithmetic
9046 in OP_MODE. */
9047
9048 if (CONST_INT_P (XEXP (x, 1))
9049 && INTVAL (XEXP (x, 1)) >= 0
9050 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT
9051 && HWI_COMPUTABLE_MODE_P (op_mode))
9052 {
9053 rtx inner = XEXP (x, 0);
9054 unsigned HOST_WIDE_INT inner_mask;
9055
9056 /* Select the mask of the bits we need for the shift operand. */
9057 inner_mask = mask << INTVAL (XEXP (x, 1));
9058
9059 /* We can only change the mode of the shift if we can do arithmetic
9060 in the mode of the shift and INNER_MASK is no wider than the
9061 width of X's mode. */
9062 if ((inner_mask & ~GET_MODE_MASK (xmode)) != 0)
9063 op_mode = xmode;
9064
9065 inner = force_to_mode (inner, op_mode, inner_mask, next_select);
9066
9067 if (xmode != op_mode || inner != XEXP (x, 0))
9068 {
9069 x = simplify_gen_binary (LSHIFTRT, op_mode, inner, XEXP (x, 1));
9070 xmode = op_mode;
9071 }
9072 }
9073
9074 /* If we have (and (lshiftrt FOO C1) C2) where the combination of the
9075 shift and AND produces only copies of the sign bit (C2 is one less
9076 than a power of two), we can do this with just a shift. */
9077
9078 if (GET_CODE (x) == LSHIFTRT
9079 && CONST_INT_P (XEXP (x, 1))
9080 /* The shift puts one of the sign bit copies in the least significant
9081 bit. */
9082 && ((INTVAL (XEXP (x, 1))
9083 + num_sign_bit_copies (XEXP (x, 0), GET_MODE (XEXP (x, 0))))
9084 >= GET_MODE_PRECISION (xmode))
9085 && pow2p_hwi (mask + 1)
9086 /* Number of bits left after the shift must be more than the mask
9087 needs. */
9088 && ((INTVAL (XEXP (x, 1)) + exact_log2 (mask + 1))
9089 <= GET_MODE_PRECISION (xmode))
9090 /* Must be more sign bit copies than the mask needs. */
9091 && ((int) num_sign_bit_copies (XEXP (x, 0), GET_MODE (XEXP (x, 0)))
9092 >= exact_log2 (mask + 1)))
9093 {
9094 int nbits = GET_MODE_PRECISION (xmode) - exact_log2 (mask + 1);
9095 x = simplify_gen_binary (LSHIFTRT, xmode, XEXP (x, 0),
9096 gen_int_shift_amount (xmode, nbits));
9097 }
9098 goto shiftrt;
9099
9100 case ASHIFTRT:
9101 /* If we are just looking for the sign bit, we don't need this shift at
9102 all, even if it has a variable count. */
9103 if (val_signbit_p (xmode, mask))
9104 return force_to_mode (XEXP (x, 0), mode, mask, next_select);
9105
9106 /* If this is a shift by a constant, get a mask that contains those bits
9107 that are not copies of the sign bit. We then have two cases: If
9108 MASK only includes those bits, this can be a logical shift, which may
9109 allow simplifications. If MASK is a single-bit field not within
9110 those bits, we are requesting a copy of the sign bit and hence can
9111 shift the sign bit to the appropriate location. */
9112
9113 if (CONST_INT_P (XEXP (x, 1)) && INTVAL (XEXP (x, 1)) >= 0
9114 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT)
9115 {
9116 unsigned HOST_WIDE_INT nonzero;
9117 int i;
9118
9119 /* If the considered data is wider than HOST_WIDE_INT, we can't
9120 represent a mask for all its bits in a single scalar.
9121 But we only care about the lower bits, so calculate these. */
9122
9123 if (GET_MODE_PRECISION (xmode) > HOST_BITS_PER_WIDE_INT)
9124 {
9125 nonzero = HOST_WIDE_INT_M1U;
9126
9127 /* GET_MODE_PRECISION (GET_MODE (x)) - INTVAL (XEXP (x, 1))
9128 is the number of bits a full-width mask would have set.
9129 We need only shift if these are fewer than nonzero can
9130 hold. If not, we must keep all bits set in nonzero. */
9131
9132 if (GET_MODE_PRECISION (xmode) - INTVAL (XEXP (x, 1))
9133 < HOST_BITS_PER_WIDE_INT)
9134 nonzero >>= INTVAL (XEXP (x, 1))
9135 + HOST_BITS_PER_WIDE_INT
9136 - GET_MODE_PRECISION (xmode);
9137 }
9138 else
9139 {
9140 nonzero = GET_MODE_MASK (xmode);
9141 nonzero >>= INTVAL (XEXP (x, 1));
9142 }
9143
9144 if ((mask & ~nonzero) == 0)
9145 {
9146 x = simplify_shift_const (NULL_RTX, LSHIFTRT, xmode,
9147 XEXP (x, 0), INTVAL (XEXP (x, 1)));
9148 if (GET_CODE (x) != ASHIFTRT)
9149 return force_to_mode (x, mode, mask, next_select);
9150 }
9151
9152 else if ((i = exact_log2 (mask)) >= 0)
9153 {
9154 x = simplify_shift_const
9155 (NULL_RTX, LSHIFTRT, xmode, XEXP (x, 0),
9156 GET_MODE_PRECISION (xmode) - 1 - i);
9157
9158 if (GET_CODE (x) != ASHIFTRT)
9159 return force_to_mode (x, mode, mask, next_select);
9160 }
9161 }
9162
9163 /* If MASK is 1, convert this to an LSHIFTRT. This can be done
9164 even if the shift count isn't a constant. */
9165 if (mask == 1)
9166 x = simplify_gen_binary (LSHIFTRT, xmode, XEXP (x, 0), XEXP (x, 1));
9167
9168 shiftrt:
9169
9170 /* If this is a zero- or sign-extension operation that just affects bits
9171 we don't care about, remove it. Be sure the call above returned
9172 something that is still a shift. */
9173
9174 if ((GET_CODE (x) == LSHIFTRT || GET_CODE (x) == ASHIFTRT)
9175 && CONST_INT_P (XEXP (x, 1))
9176 && INTVAL (XEXP (x, 1)) >= 0
9177 && (INTVAL (XEXP (x, 1))
9178 <= GET_MODE_PRECISION (xmode) - (floor_log2 (mask) + 1))
9179 && GET_CODE (XEXP (x, 0)) == ASHIFT
9180 && XEXP (XEXP (x, 0), 1) == XEXP (x, 1))
9181 return force_to_mode (XEXP (XEXP (x, 0), 0), mode, mask,
9182 next_select);
9183
9184 break;
9185
9186 case ROTATE:
9187 case ROTATERT:
9188 /* If the shift count is constant and we can do computations
9189 in the mode of X, compute where the bits we care about are.
9190 Otherwise, we can't do anything. Don't change the mode of
9191 the shift or propagate MODE into the shift, though. */
9192 if (CONST_INT_P (XEXP (x, 1))
9193 && INTVAL (XEXP (x, 1)) >= 0)
9194 {
9195 temp = simplify_binary_operation (code == ROTATE ? ROTATERT : ROTATE,
9196 xmode, gen_int_mode (mask, xmode),
9197 XEXP (x, 1));
9198 if (temp && CONST_INT_P (temp))
9199 x = simplify_gen_binary (code, xmode,
9200 force_to_mode (XEXP (x, 0), xmode,
9201 INTVAL (temp), next_select),
9202 XEXP (x, 1));
9203 }
9204 break;
9205
9206 case NEG:
9207 /* If we just want the low-order bit, the NEG isn't needed since it
9208 won't change the low-order bit. */
9209 if (mask == 1)
9210 return force_to_mode (XEXP (x, 0), mode, mask, just_select);
9211
9212 /* We need any bits less significant than the most significant bit in
9213 MASK since carries from those bits will affect the bits we are
9214 interested in. */
9215 mask = fuller_mask;
9216 goto unop;
9217
9218 case NOT:
9219 /* (not FOO) is (xor FOO CONST), so if FOO is an LSHIFTRT, we can do the
9220 same as the XOR case above. Ensure that the constant we form is not
9221 wider than the mode of X. */
9222
9223 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
9224 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
9225 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
9226 && (INTVAL (XEXP (XEXP (x, 0), 1)) + floor_log2 (mask)
9227 < GET_MODE_PRECISION (xmode))
9228 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT)
9229 {
9230 temp = gen_int_mode (mask << INTVAL (XEXP (XEXP (x, 0), 1)), xmode);
9231 temp = simplify_gen_binary (XOR, xmode, XEXP (XEXP (x, 0), 0), temp);
9232 x = simplify_gen_binary (LSHIFTRT, xmode,
9233 temp, XEXP (XEXP (x, 0), 1));
9234
9235 return force_to_mode (x, mode, mask, next_select);
9236 }
9237
9238 /* (and (not FOO) CONST) is (not (or FOO (not CONST))), so we must
9239 use the full mask inside the NOT. */
9240 mask = fuller_mask;
9241
9242 unop:
9243 op0 = gen_lowpart_or_truncate (op_mode,
9244 force_to_mode (XEXP (x, 0), mode, mask,
9245 next_select));
9246 if (op_mode != xmode || op0 != XEXP (x, 0))
9247 {
9248 x = simplify_gen_unary (code, op_mode, op0, op_mode);
9249 xmode = op_mode;
9250 }
9251 break;
9252
9253 case NE:
9254 /* (and (ne FOO 0) CONST) can be (and FOO CONST) if CONST is included
9255 in STORE_FLAG_VALUE and FOO has a single bit that might be nonzero,
9256 which is equal to STORE_FLAG_VALUE. */
9257 if ((mask & ~STORE_FLAG_VALUE) == 0
9258 && XEXP (x, 1) == const0_rtx
9259 && GET_MODE (XEXP (x, 0)) == mode
9260 && pow2p_hwi (nonzero_bits (XEXP (x, 0), mode))
9261 && (nonzero_bits (XEXP (x, 0), mode)
9262 == (unsigned HOST_WIDE_INT) STORE_FLAG_VALUE))
9263 return force_to_mode (XEXP (x, 0), mode, mask, next_select);
9264
9265 break;
9266
9267 case IF_THEN_ELSE:
9268 /* We have no way of knowing if the IF_THEN_ELSE can itself be
9269 written in a narrower mode. We play it safe and do not do so. */
9270
9271 op0 = gen_lowpart_or_truncate (xmode,
9272 force_to_mode (XEXP (x, 1), mode,
9273 mask, next_select));
9274 op1 = gen_lowpart_or_truncate (xmode,
9275 force_to_mode (XEXP (x, 2), mode,
9276 mask, next_select));
9277 if (op0 != XEXP (x, 1) || op1 != XEXP (x, 2))
9278 x = simplify_gen_ternary (IF_THEN_ELSE, xmode,
9279 GET_MODE (XEXP (x, 0)), XEXP (x, 0),
9280 op0, op1);
9281 break;
9282
9283 default:
9284 break;
9285 }
9286
9287 /* Ensure we return a value of the proper mode. */
9288 return gen_lowpart_or_truncate (mode, x);
9289 }
9290 \f
9291 /* Return nonzero if X is an expression that has one of two values depending on
9292 whether some other value is zero or nonzero. In that case, we return the
9293 value that is being tested, *PTRUE is set to the value if the rtx being
9294 returned has a nonzero value, and *PFALSE is set to the other alternative.
9295
9296 If we return zero, we set *PTRUE and *PFALSE to X. */
9297
9298 static rtx
9299 if_then_else_cond (rtx x, rtx *ptrue, rtx *pfalse)
9300 {
9301 machine_mode mode = GET_MODE (x);
9302 enum rtx_code code = GET_CODE (x);
9303 rtx cond0, cond1, true0, true1, false0, false1;
9304 unsigned HOST_WIDE_INT nz;
9305 scalar_int_mode int_mode;
9306
9307 /* If we are comparing a value against zero, we are done. */
9308 if ((code == NE || code == EQ)
9309 && XEXP (x, 1) == const0_rtx)
9310 {
9311 *ptrue = (code == NE) ? const_true_rtx : const0_rtx;
9312 *pfalse = (code == NE) ? const0_rtx : const_true_rtx;
9313 return XEXP (x, 0);
9314 }
9315
9316 /* If this is a unary operation whose operand has one of two values, apply
9317 our opcode to compute those values. */
9318 else if (UNARY_P (x)
9319 && (cond0 = if_then_else_cond (XEXP (x, 0), &true0, &false0)) != 0)
9320 {
9321 *ptrue = simplify_gen_unary (code, mode, true0, GET_MODE (XEXP (x, 0)));
9322 *pfalse = simplify_gen_unary (code, mode, false0,
9323 GET_MODE (XEXP (x, 0)));
9324 return cond0;
9325 }
9326
9327 /* If this is a COMPARE, do nothing, since the IF_THEN_ELSE we would
9328 make can't possibly match and would suppress other optimizations. */
9329 else if (code == COMPARE)
9330 ;
9331
9332 /* If this is a binary operation, see if either side has only one of two
9333 values. If either one does or if both do and they are conditional on
9334 the same value, compute the new true and false values. */
9335 else if (BINARY_P (x))
9336 {
9337 rtx op0 = XEXP (x, 0);
9338 rtx op1 = XEXP (x, 1);
9339 cond0 = if_then_else_cond (op0, &true0, &false0);
9340 cond1 = if_then_else_cond (op1, &true1, &false1);
9341
9342 if ((cond0 != 0 && cond1 != 0 && !rtx_equal_p (cond0, cond1))
9343 && (REG_P (op0) || REG_P (op1)))
9344 {
9345 /* Try to enable a simplification by undoing work done by
9346 if_then_else_cond if it converted a REG into something more
9347 complex. */
9348 if (REG_P (op0))
9349 {
9350 cond0 = 0;
9351 true0 = false0 = op0;
9352 }
9353 else
9354 {
9355 cond1 = 0;
9356 true1 = false1 = op1;
9357 }
9358 }
9359
9360 if ((cond0 != 0 || cond1 != 0)
9361 && ! (cond0 != 0 && cond1 != 0 && !rtx_equal_p (cond0, cond1)))
9362 {
9363 /* If if_then_else_cond returned zero, then true/false are the
9364 same rtl. We must copy one of them to prevent invalid rtl
9365 sharing. */
9366 if (cond0 == 0)
9367 true0 = copy_rtx (true0);
9368 else if (cond1 == 0)
9369 true1 = copy_rtx (true1);
9370
9371 if (COMPARISON_P (x))
9372 {
9373 *ptrue = simplify_gen_relational (code, mode, VOIDmode,
9374 true0, true1);
9375 *pfalse = simplify_gen_relational (code, mode, VOIDmode,
9376 false0, false1);
9377 }
9378 else
9379 {
9380 *ptrue = simplify_gen_binary (code, mode, true0, true1);
9381 *pfalse = simplify_gen_binary (code, mode, false0, false1);
9382 }
9383
9384 return cond0 ? cond0 : cond1;
9385 }
9386
9387 /* See if we have PLUS, IOR, XOR, MINUS or UMAX, where one of the
9388 operands is zero when the other is nonzero, and vice-versa,
9389 and STORE_FLAG_VALUE is 1 or -1. */
9390
9391 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
9392 && (code == PLUS || code == IOR || code == XOR || code == MINUS
9393 || code == UMAX)
9394 && GET_CODE (XEXP (x, 0)) == MULT && GET_CODE (XEXP (x, 1)) == MULT)
9395 {
9396 rtx op0 = XEXP (XEXP (x, 0), 1);
9397 rtx op1 = XEXP (XEXP (x, 1), 1);
9398
9399 cond0 = XEXP (XEXP (x, 0), 0);
9400 cond1 = XEXP (XEXP (x, 1), 0);
9401
9402 if (COMPARISON_P (cond0)
9403 && COMPARISON_P (cond1)
9404 && SCALAR_INT_MODE_P (mode)
9405 && ((GET_CODE (cond0) == reversed_comparison_code (cond1, NULL)
9406 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 0))
9407 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 1)))
9408 || ((swap_condition (GET_CODE (cond0))
9409 == reversed_comparison_code (cond1, NULL))
9410 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 1))
9411 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 0))))
9412 && ! side_effects_p (x))
9413 {
9414 *ptrue = simplify_gen_binary (MULT, mode, op0, const_true_rtx);
9415 *pfalse = simplify_gen_binary (MULT, mode,
9416 (code == MINUS
9417 ? simplify_gen_unary (NEG, mode,
9418 op1, mode)
9419 : op1),
9420 const_true_rtx);
9421 return cond0;
9422 }
9423 }
9424
9425 /* Similarly for MULT, AND and UMIN, except that for these the result
9426 is always zero. */
9427 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
9428 && (code == MULT || code == AND || code == UMIN)
9429 && GET_CODE (XEXP (x, 0)) == MULT && GET_CODE (XEXP (x, 1)) == MULT)
9430 {
9431 cond0 = XEXP (XEXP (x, 0), 0);
9432 cond1 = XEXP (XEXP (x, 1), 0);
9433
9434 if (COMPARISON_P (cond0)
9435 && COMPARISON_P (cond1)
9436 && ((GET_CODE (cond0) == reversed_comparison_code (cond1, NULL)
9437 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 0))
9438 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 1)))
9439 || ((swap_condition (GET_CODE (cond0))
9440 == reversed_comparison_code (cond1, NULL))
9441 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 1))
9442 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 0))))
9443 && ! side_effects_p (x))
9444 {
9445 *ptrue = *pfalse = const0_rtx;
9446 return cond0;
9447 }
9448 }
9449 }
9450
9451 else if (code == IF_THEN_ELSE)
9452 {
9453 /* If we have IF_THEN_ELSE already, extract the condition and
9454 canonicalize it if it is NE or EQ. */
9455 cond0 = XEXP (x, 0);
9456 *ptrue = XEXP (x, 1), *pfalse = XEXP (x, 2);
9457 if (GET_CODE (cond0) == NE && XEXP (cond0, 1) == const0_rtx)
9458 return XEXP (cond0, 0);
9459 else if (GET_CODE (cond0) == EQ && XEXP (cond0, 1) == const0_rtx)
9460 {
9461 *ptrue = XEXP (x, 2), *pfalse = XEXP (x, 1);
9462 return XEXP (cond0, 0);
9463 }
9464 else
9465 return cond0;
9466 }
9467
9468 /* If X is a SUBREG, we can narrow both the true and false values
9469 if the inner expression, if there is a condition. */
9470 else if (code == SUBREG
9471 && (cond0 = if_then_else_cond (SUBREG_REG (x), &true0,
9472 &false0)) != 0)
9473 {
9474 true0 = simplify_gen_subreg (mode, true0,
9475 GET_MODE (SUBREG_REG (x)), SUBREG_BYTE (x));
9476 false0 = simplify_gen_subreg (mode, false0,
9477 GET_MODE (SUBREG_REG (x)), SUBREG_BYTE (x));
9478 if (true0 && false0)
9479 {
9480 *ptrue = true0;
9481 *pfalse = false0;
9482 return cond0;
9483 }
9484 }
9485
9486 /* If X is a constant, this isn't special and will cause confusions
9487 if we treat it as such. Likewise if it is equivalent to a constant. */
9488 else if (CONSTANT_P (x)
9489 || ((cond0 = get_last_value (x)) != 0 && CONSTANT_P (cond0)))
9490 ;
9491
9492 /* If we're in BImode, canonicalize on 0 and STORE_FLAG_VALUE, as that
9493 will be least confusing to the rest of the compiler. */
9494 else if (mode == BImode)
9495 {
9496 *ptrue = GEN_INT (STORE_FLAG_VALUE), *pfalse = const0_rtx;
9497 return x;
9498 }
9499
9500 /* If X is known to be either 0 or -1, those are the true and
9501 false values when testing X. */
9502 else if (x == constm1_rtx || x == const0_rtx
9503 || (is_a <scalar_int_mode> (mode, &int_mode)
9504 && (num_sign_bit_copies (x, int_mode)
9505 == GET_MODE_PRECISION (int_mode))))
9506 {
9507 *ptrue = constm1_rtx, *pfalse = const0_rtx;
9508 return x;
9509 }
9510
9511 /* Likewise for 0 or a single bit. */
9512 else if (HWI_COMPUTABLE_MODE_P (mode)
9513 && pow2p_hwi (nz = nonzero_bits (x, mode)))
9514 {
9515 *ptrue = gen_int_mode (nz, mode), *pfalse = const0_rtx;
9516 return x;
9517 }
9518
9519 /* Otherwise fail; show no condition with true and false values the same. */
9520 *ptrue = *pfalse = x;
9521 return 0;
9522 }
9523 \f
9524 /* Return the value of expression X given the fact that condition COND
9525 is known to be true when applied to REG as its first operand and VAL
9526 as its second. X is known to not be shared and so can be modified in
9527 place.
9528
9529 We only handle the simplest cases, and specifically those cases that
9530 arise with IF_THEN_ELSE expressions. */
9531
9532 static rtx
9533 known_cond (rtx x, enum rtx_code cond, rtx reg, rtx val)
9534 {
9535 enum rtx_code code = GET_CODE (x);
9536 const char *fmt;
9537 int i, j;
9538
9539 if (side_effects_p (x))
9540 return x;
9541
9542 /* If either operand of the condition is a floating point value,
9543 then we have to avoid collapsing an EQ comparison. */
9544 if (cond == EQ
9545 && rtx_equal_p (x, reg)
9546 && ! FLOAT_MODE_P (GET_MODE (x))
9547 && ! FLOAT_MODE_P (GET_MODE (val)))
9548 return val;
9549
9550 if (cond == UNEQ && rtx_equal_p (x, reg))
9551 return val;
9552
9553 /* If X is (abs REG) and we know something about REG's relationship
9554 with zero, we may be able to simplify this. */
9555
9556 if (code == ABS && rtx_equal_p (XEXP (x, 0), reg) && val == const0_rtx)
9557 switch (cond)
9558 {
9559 case GE: case GT: case EQ:
9560 return XEXP (x, 0);
9561 case LT: case LE:
9562 return simplify_gen_unary (NEG, GET_MODE (XEXP (x, 0)),
9563 XEXP (x, 0),
9564 GET_MODE (XEXP (x, 0)));
9565 default:
9566 break;
9567 }
9568
9569 /* The only other cases we handle are MIN, MAX, and comparisons if the
9570 operands are the same as REG and VAL. */
9571
9572 else if (COMPARISON_P (x) || COMMUTATIVE_ARITH_P (x))
9573 {
9574 if (rtx_equal_p (XEXP (x, 0), val))
9575 {
9576 std::swap (val, reg);
9577 cond = swap_condition (cond);
9578 }
9579
9580 if (rtx_equal_p (XEXP (x, 0), reg) && rtx_equal_p (XEXP (x, 1), val))
9581 {
9582 if (COMPARISON_P (x))
9583 {
9584 if (comparison_dominates_p (cond, code))
9585 return VECTOR_MODE_P (GET_MODE (x)) ? x : const_true_rtx;
9586
9587 code = reversed_comparison_code (x, NULL);
9588 if (code != UNKNOWN
9589 && comparison_dominates_p (cond, code))
9590 return CONST0_RTX (GET_MODE (x));
9591 else
9592 return x;
9593 }
9594 else if (code == SMAX || code == SMIN
9595 || code == UMIN || code == UMAX)
9596 {
9597 int unsignedp = (code == UMIN || code == UMAX);
9598
9599 /* Do not reverse the condition when it is NE or EQ.
9600 This is because we cannot conclude anything about
9601 the value of 'SMAX (x, y)' when x is not equal to y,
9602 but we can when x equals y. */
9603 if ((code == SMAX || code == UMAX)
9604 && ! (cond == EQ || cond == NE))
9605 cond = reverse_condition (cond);
9606
9607 switch (cond)
9608 {
9609 case GE: case GT:
9610 return unsignedp ? x : XEXP (x, 1);
9611 case LE: case LT:
9612 return unsignedp ? x : XEXP (x, 0);
9613 case GEU: case GTU:
9614 return unsignedp ? XEXP (x, 1) : x;
9615 case LEU: case LTU:
9616 return unsignedp ? XEXP (x, 0) : x;
9617 default:
9618 break;
9619 }
9620 }
9621 }
9622 }
9623 else if (code == SUBREG)
9624 {
9625 machine_mode inner_mode = GET_MODE (SUBREG_REG (x));
9626 rtx new_rtx, r = known_cond (SUBREG_REG (x), cond, reg, val);
9627
9628 if (SUBREG_REG (x) != r)
9629 {
9630 /* We must simplify subreg here, before we lose track of the
9631 original inner_mode. */
9632 new_rtx = simplify_subreg (GET_MODE (x), r,
9633 inner_mode, SUBREG_BYTE (x));
9634 if (new_rtx)
9635 return new_rtx;
9636 else
9637 SUBST (SUBREG_REG (x), r);
9638 }
9639
9640 return x;
9641 }
9642 /* We don't have to handle SIGN_EXTEND here, because even in the
9643 case of replacing something with a modeless CONST_INT, a
9644 CONST_INT is already (supposed to be) a valid sign extension for
9645 its narrower mode, which implies it's already properly
9646 sign-extended for the wider mode. Now, for ZERO_EXTEND, the
9647 story is different. */
9648 else if (code == ZERO_EXTEND)
9649 {
9650 machine_mode inner_mode = GET_MODE (XEXP (x, 0));
9651 rtx new_rtx, r = known_cond (XEXP (x, 0), cond, reg, val);
9652
9653 if (XEXP (x, 0) != r)
9654 {
9655 /* We must simplify the zero_extend here, before we lose
9656 track of the original inner_mode. */
9657 new_rtx = simplify_unary_operation (ZERO_EXTEND, GET_MODE (x),
9658 r, inner_mode);
9659 if (new_rtx)
9660 return new_rtx;
9661 else
9662 SUBST (XEXP (x, 0), r);
9663 }
9664
9665 return x;
9666 }
9667
9668 fmt = GET_RTX_FORMAT (code);
9669 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
9670 {
9671 if (fmt[i] == 'e')
9672 SUBST (XEXP (x, i), known_cond (XEXP (x, i), cond, reg, val));
9673 else if (fmt[i] == 'E')
9674 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
9675 SUBST (XVECEXP (x, i, j), known_cond (XVECEXP (x, i, j),
9676 cond, reg, val));
9677 }
9678
9679 return x;
9680 }
9681 \f
9682 /* See if X and Y are equal for the purposes of seeing if we can rewrite an
9683 assignment as a field assignment. */
9684
9685 static int
9686 rtx_equal_for_field_assignment_p (rtx x, rtx y, bool widen_x)
9687 {
9688 if (widen_x && GET_MODE (x) != GET_MODE (y))
9689 {
9690 if (paradoxical_subreg_p (GET_MODE (x), GET_MODE (y)))
9691 return 0;
9692 if (BYTES_BIG_ENDIAN != WORDS_BIG_ENDIAN)
9693 return 0;
9694 x = adjust_address_nv (x, GET_MODE (y),
9695 byte_lowpart_offset (GET_MODE (y),
9696 GET_MODE (x)));
9697 }
9698
9699 if (x == y || rtx_equal_p (x, y))
9700 return 1;
9701
9702 if (x == 0 || y == 0 || GET_MODE (x) != GET_MODE (y))
9703 return 0;
9704
9705 /* Check for a paradoxical SUBREG of a MEM compared with the MEM.
9706 Note that all SUBREGs of MEM are paradoxical; otherwise they
9707 would have been rewritten. */
9708 if (MEM_P (x) && GET_CODE (y) == SUBREG
9709 && MEM_P (SUBREG_REG (y))
9710 && rtx_equal_p (SUBREG_REG (y),
9711 gen_lowpart (GET_MODE (SUBREG_REG (y)), x)))
9712 return 1;
9713
9714 if (MEM_P (y) && GET_CODE (x) == SUBREG
9715 && MEM_P (SUBREG_REG (x))
9716 && rtx_equal_p (SUBREG_REG (x),
9717 gen_lowpart (GET_MODE (SUBREG_REG (x)), y)))
9718 return 1;
9719
9720 /* We used to see if get_last_value of X and Y were the same but that's
9721 not correct. In one direction, we'll cause the assignment to have
9722 the wrong destination and in the case, we'll import a register into this
9723 insn that might have already have been dead. So fail if none of the
9724 above cases are true. */
9725 return 0;
9726 }
9727 \f
9728 /* See if X, a SET operation, can be rewritten as a bit-field assignment.
9729 Return that assignment if so.
9730
9731 We only handle the most common cases. */
9732
9733 static rtx
9734 make_field_assignment (rtx x)
9735 {
9736 rtx dest = SET_DEST (x);
9737 rtx src = SET_SRC (x);
9738 rtx assign;
9739 rtx rhs, lhs;
9740 HOST_WIDE_INT c1;
9741 HOST_WIDE_INT pos;
9742 unsigned HOST_WIDE_INT len;
9743 rtx other;
9744
9745 /* All the rules in this function are specific to scalar integers. */
9746 scalar_int_mode mode;
9747 if (!is_a <scalar_int_mode> (GET_MODE (dest), &mode))
9748 return x;
9749
9750 /* If SRC was (and (not (ashift (const_int 1) POS)) DEST), this is
9751 a clear of a one-bit field. We will have changed it to
9752 (and (rotate (const_int -2) POS) DEST), so check for that. Also check
9753 for a SUBREG. */
9754
9755 if (GET_CODE (src) == AND && GET_CODE (XEXP (src, 0)) == ROTATE
9756 && CONST_INT_P (XEXP (XEXP (src, 0), 0))
9757 && INTVAL (XEXP (XEXP (src, 0), 0)) == -2
9758 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
9759 {
9760 assign = make_extraction (VOIDmode, dest, 0, XEXP (XEXP (src, 0), 1),
9761 1, 1, 1, 0);
9762 if (assign != 0)
9763 return gen_rtx_SET (assign, const0_rtx);
9764 return x;
9765 }
9766
9767 if (GET_CODE (src) == AND && GET_CODE (XEXP (src, 0)) == SUBREG
9768 && subreg_lowpart_p (XEXP (src, 0))
9769 && partial_subreg_p (XEXP (src, 0))
9770 && GET_CODE (SUBREG_REG (XEXP (src, 0))) == ROTATE
9771 && CONST_INT_P (XEXP (SUBREG_REG (XEXP (src, 0)), 0))
9772 && INTVAL (XEXP (SUBREG_REG (XEXP (src, 0)), 0)) == -2
9773 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
9774 {
9775 assign = make_extraction (VOIDmode, dest, 0,
9776 XEXP (SUBREG_REG (XEXP (src, 0)), 1),
9777 1, 1, 1, 0);
9778 if (assign != 0)
9779 return gen_rtx_SET (assign, const0_rtx);
9780 return x;
9781 }
9782
9783 /* If SRC is (ior (ashift (const_int 1) POS) DEST), this is a set of a
9784 one-bit field. */
9785 if (GET_CODE (src) == IOR && GET_CODE (XEXP (src, 0)) == ASHIFT
9786 && XEXP (XEXP (src, 0), 0) == const1_rtx
9787 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
9788 {
9789 assign = make_extraction (VOIDmode, dest, 0, XEXP (XEXP (src, 0), 1),
9790 1, 1, 1, 0);
9791 if (assign != 0)
9792 return gen_rtx_SET (assign, const1_rtx);
9793 return x;
9794 }
9795
9796 /* If DEST is already a field assignment, i.e. ZERO_EXTRACT, and the
9797 SRC is an AND with all bits of that field set, then we can discard
9798 the AND. */
9799 if (GET_CODE (dest) == ZERO_EXTRACT
9800 && CONST_INT_P (XEXP (dest, 1))
9801 && GET_CODE (src) == AND
9802 && CONST_INT_P (XEXP (src, 1)))
9803 {
9804 HOST_WIDE_INT width = INTVAL (XEXP (dest, 1));
9805 unsigned HOST_WIDE_INT and_mask = INTVAL (XEXP (src, 1));
9806 unsigned HOST_WIDE_INT ze_mask;
9807
9808 if (width >= HOST_BITS_PER_WIDE_INT)
9809 ze_mask = -1;
9810 else
9811 ze_mask = ((unsigned HOST_WIDE_INT)1 << width) - 1;
9812
9813 /* Complete overlap. We can remove the source AND. */
9814 if ((and_mask & ze_mask) == ze_mask)
9815 return gen_rtx_SET (dest, XEXP (src, 0));
9816
9817 /* Partial overlap. We can reduce the source AND. */
9818 if ((and_mask & ze_mask) != and_mask)
9819 {
9820 src = gen_rtx_AND (mode, XEXP (src, 0),
9821 gen_int_mode (and_mask & ze_mask, mode));
9822 return gen_rtx_SET (dest, src);
9823 }
9824 }
9825
9826 /* The other case we handle is assignments into a constant-position
9827 field. They look like (ior/xor (and DEST C1) OTHER). If C1 represents
9828 a mask that has all one bits except for a group of zero bits and
9829 OTHER is known to have zeros where C1 has ones, this is such an
9830 assignment. Compute the position and length from C1. Shift OTHER
9831 to the appropriate position, force it to the required mode, and
9832 make the extraction. Check for the AND in both operands. */
9833
9834 /* One or more SUBREGs might obscure the constant-position field
9835 assignment. The first one we are likely to encounter is an outer
9836 narrowing SUBREG, which we can just strip for the purposes of
9837 identifying the constant-field assignment. */
9838 scalar_int_mode src_mode = mode;
9839 if (GET_CODE (src) == SUBREG
9840 && subreg_lowpart_p (src)
9841 && is_a <scalar_int_mode> (GET_MODE (SUBREG_REG (src)), &src_mode))
9842 src = SUBREG_REG (src);
9843
9844 if (GET_CODE (src) != IOR && GET_CODE (src) != XOR)
9845 return x;
9846
9847 rhs = expand_compound_operation (XEXP (src, 0));
9848 lhs = expand_compound_operation (XEXP (src, 1));
9849
9850 if (GET_CODE (rhs) == AND
9851 && CONST_INT_P (XEXP (rhs, 1))
9852 && rtx_equal_for_field_assignment_p (XEXP (rhs, 0), dest))
9853 c1 = INTVAL (XEXP (rhs, 1)), other = lhs;
9854 /* The second SUBREG that might get in the way is a paradoxical
9855 SUBREG around the first operand of the AND. We want to
9856 pretend the operand is as wide as the destination here. We
9857 do this by adjusting the MEM to wider mode for the sole
9858 purpose of the call to rtx_equal_for_field_assignment_p. Also
9859 note this trick only works for MEMs. */
9860 else if (GET_CODE (rhs) == AND
9861 && paradoxical_subreg_p (XEXP (rhs, 0))
9862 && MEM_P (SUBREG_REG (XEXP (rhs, 0)))
9863 && CONST_INT_P (XEXP (rhs, 1))
9864 && rtx_equal_for_field_assignment_p (SUBREG_REG (XEXP (rhs, 0)),
9865 dest, true))
9866 c1 = INTVAL (XEXP (rhs, 1)), other = lhs;
9867 else if (GET_CODE (lhs) == AND
9868 && CONST_INT_P (XEXP (lhs, 1))
9869 && rtx_equal_for_field_assignment_p (XEXP (lhs, 0), dest))
9870 c1 = INTVAL (XEXP (lhs, 1)), other = rhs;
9871 /* The second SUBREG that might get in the way is a paradoxical
9872 SUBREG around the first operand of the AND. We want to
9873 pretend the operand is as wide as the destination here. We
9874 do this by adjusting the MEM to wider mode for the sole
9875 purpose of the call to rtx_equal_for_field_assignment_p. Also
9876 note this trick only works for MEMs. */
9877 else if (GET_CODE (lhs) == AND
9878 && paradoxical_subreg_p (XEXP (lhs, 0))
9879 && MEM_P (SUBREG_REG (XEXP (lhs, 0)))
9880 && CONST_INT_P (XEXP (lhs, 1))
9881 && rtx_equal_for_field_assignment_p (SUBREG_REG (XEXP (lhs, 0)),
9882 dest, true))
9883 c1 = INTVAL (XEXP (lhs, 1)), other = rhs;
9884 else
9885 return x;
9886
9887 pos = get_pos_from_mask ((~c1) & GET_MODE_MASK (mode), &len);
9888 if (pos < 0
9889 || pos + len > GET_MODE_PRECISION (mode)
9890 || GET_MODE_PRECISION (mode) > HOST_BITS_PER_WIDE_INT
9891 || (c1 & nonzero_bits (other, mode)) != 0)
9892 return x;
9893
9894 assign = make_extraction (VOIDmode, dest, pos, NULL_RTX, len, 1, 1, 0);
9895 if (assign == 0)
9896 return x;
9897
9898 /* The mode to use for the source is the mode of the assignment, or of
9899 what is inside a possible STRICT_LOW_PART. */
9900 machine_mode new_mode = (GET_CODE (assign) == STRICT_LOW_PART
9901 ? GET_MODE (XEXP (assign, 0)) : GET_MODE (assign));
9902
9903 /* Shift OTHER right POS places and make it the source, restricting it
9904 to the proper length and mode. */
9905
9906 src = canon_reg_for_combine (simplify_shift_const (NULL_RTX, LSHIFTRT,
9907 src_mode, other, pos),
9908 dest);
9909 src = force_to_mode (src, new_mode,
9910 len >= HOST_BITS_PER_WIDE_INT
9911 ? HOST_WIDE_INT_M1U
9912 : (HOST_WIDE_INT_1U << len) - 1,
9913 0);
9914
9915 /* If SRC is masked by an AND that does not make a difference in
9916 the value being stored, strip it. */
9917 if (GET_CODE (assign) == ZERO_EXTRACT
9918 && CONST_INT_P (XEXP (assign, 1))
9919 && INTVAL (XEXP (assign, 1)) < HOST_BITS_PER_WIDE_INT
9920 && GET_CODE (src) == AND
9921 && CONST_INT_P (XEXP (src, 1))
9922 && UINTVAL (XEXP (src, 1))
9923 == (HOST_WIDE_INT_1U << INTVAL (XEXP (assign, 1))) - 1)
9924 src = XEXP (src, 0);
9925
9926 return gen_rtx_SET (assign, src);
9927 }
9928 \f
9929 /* See if X is of the form (+ (* a c) (* b c)) and convert to (* (+ a b) c)
9930 if so. */
9931
9932 static rtx
9933 apply_distributive_law (rtx x)
9934 {
9935 enum rtx_code code = GET_CODE (x);
9936 enum rtx_code inner_code;
9937 rtx lhs, rhs, other;
9938 rtx tem;
9939
9940 /* Distributivity is not true for floating point as it can change the
9941 value. So we don't do it unless -funsafe-math-optimizations. */
9942 if (FLOAT_MODE_P (GET_MODE (x))
9943 && ! flag_unsafe_math_optimizations)
9944 return x;
9945
9946 /* The outer operation can only be one of the following: */
9947 if (code != IOR && code != AND && code != XOR
9948 && code != PLUS && code != MINUS)
9949 return x;
9950
9951 lhs = XEXP (x, 0);
9952 rhs = XEXP (x, 1);
9953
9954 /* If either operand is a primitive we can't do anything, so get out
9955 fast. */
9956 if (OBJECT_P (lhs) || OBJECT_P (rhs))
9957 return x;
9958
9959 lhs = expand_compound_operation (lhs);
9960 rhs = expand_compound_operation (rhs);
9961 inner_code = GET_CODE (lhs);
9962 if (inner_code != GET_CODE (rhs))
9963 return x;
9964
9965 /* See if the inner and outer operations distribute. */
9966 switch (inner_code)
9967 {
9968 case LSHIFTRT:
9969 case ASHIFTRT:
9970 case AND:
9971 case IOR:
9972 /* These all distribute except over PLUS. */
9973 if (code == PLUS || code == MINUS)
9974 return x;
9975 break;
9976
9977 case MULT:
9978 if (code != PLUS && code != MINUS)
9979 return x;
9980 break;
9981
9982 case ASHIFT:
9983 /* This is also a multiply, so it distributes over everything. */
9984 break;
9985
9986 /* This used to handle SUBREG, but this turned out to be counter-
9987 productive, since (subreg (op ...)) usually is not handled by
9988 insn patterns, and this "optimization" therefore transformed
9989 recognizable patterns into unrecognizable ones. Therefore the
9990 SUBREG case was removed from here.
9991
9992 It is possible that distributing SUBREG over arithmetic operations
9993 leads to an intermediate result than can then be optimized further,
9994 e.g. by moving the outer SUBREG to the other side of a SET as done
9995 in simplify_set. This seems to have been the original intent of
9996 handling SUBREGs here.
9997
9998 However, with current GCC this does not appear to actually happen,
9999 at least on major platforms. If some case is found where removing
10000 the SUBREG case here prevents follow-on optimizations, distributing
10001 SUBREGs ought to be re-added at that place, e.g. in simplify_set. */
10002
10003 default:
10004 return x;
10005 }
10006
10007 /* Set LHS and RHS to the inner operands (A and B in the example
10008 above) and set OTHER to the common operand (C in the example).
10009 There is only one way to do this unless the inner operation is
10010 commutative. */
10011 if (COMMUTATIVE_ARITH_P (lhs)
10012 && rtx_equal_p (XEXP (lhs, 0), XEXP (rhs, 0)))
10013 other = XEXP (lhs, 0), lhs = XEXP (lhs, 1), rhs = XEXP (rhs, 1);
10014 else if (COMMUTATIVE_ARITH_P (lhs)
10015 && rtx_equal_p (XEXP (lhs, 0), XEXP (rhs, 1)))
10016 other = XEXP (lhs, 0), lhs = XEXP (lhs, 1), rhs = XEXP (rhs, 0);
10017 else if (COMMUTATIVE_ARITH_P (lhs)
10018 && rtx_equal_p (XEXP (lhs, 1), XEXP (rhs, 0)))
10019 other = XEXP (lhs, 1), lhs = XEXP (lhs, 0), rhs = XEXP (rhs, 1);
10020 else if (rtx_equal_p (XEXP (lhs, 1), XEXP (rhs, 1)))
10021 other = XEXP (lhs, 1), lhs = XEXP (lhs, 0), rhs = XEXP (rhs, 0);
10022 else
10023 return x;
10024
10025 /* Form the new inner operation, seeing if it simplifies first. */
10026 tem = simplify_gen_binary (code, GET_MODE (x), lhs, rhs);
10027
10028 /* There is one exception to the general way of distributing:
10029 (a | c) ^ (b | c) -> (a ^ b) & ~c */
10030 if (code == XOR && inner_code == IOR)
10031 {
10032 inner_code = AND;
10033 other = simplify_gen_unary (NOT, GET_MODE (x), other, GET_MODE (x));
10034 }
10035
10036 /* We may be able to continuing distributing the result, so call
10037 ourselves recursively on the inner operation before forming the
10038 outer operation, which we return. */
10039 return simplify_gen_binary (inner_code, GET_MODE (x),
10040 apply_distributive_law (tem), other);
10041 }
10042
10043 /* See if X is of the form (* (+ A B) C), and if so convert to
10044 (+ (* A C) (* B C)) and try to simplify.
10045
10046 Most of the time, this results in no change. However, if some of
10047 the operands are the same or inverses of each other, simplifications
10048 will result.
10049
10050 For example, (and (ior A B) (not B)) can occur as the result of
10051 expanding a bit field assignment. When we apply the distributive
10052 law to this, we get (ior (and (A (not B))) (and (B (not B)))),
10053 which then simplifies to (and (A (not B))).
10054
10055 Note that no checks happen on the validity of applying the inverse
10056 distributive law. This is pointless since we can do it in the
10057 few places where this routine is called.
10058
10059 N is the index of the term that is decomposed (the arithmetic operation,
10060 i.e. (+ A B) in the first example above). !N is the index of the term that
10061 is distributed, i.e. of C in the first example above. */
10062 static rtx
10063 distribute_and_simplify_rtx (rtx x, int n)
10064 {
10065 machine_mode mode;
10066 enum rtx_code outer_code, inner_code;
10067 rtx decomposed, distributed, inner_op0, inner_op1, new_op0, new_op1, tmp;
10068
10069 /* Distributivity is not true for floating point as it can change the
10070 value. So we don't do it unless -funsafe-math-optimizations. */
10071 if (FLOAT_MODE_P (GET_MODE (x))
10072 && ! flag_unsafe_math_optimizations)
10073 return NULL_RTX;
10074
10075 decomposed = XEXP (x, n);
10076 if (!ARITHMETIC_P (decomposed))
10077 return NULL_RTX;
10078
10079 mode = GET_MODE (x);
10080 outer_code = GET_CODE (x);
10081 distributed = XEXP (x, !n);
10082
10083 inner_code = GET_CODE (decomposed);
10084 inner_op0 = XEXP (decomposed, 0);
10085 inner_op1 = XEXP (decomposed, 1);
10086
10087 /* Special case (and (xor B C) (not A)), which is equivalent to
10088 (xor (ior A B) (ior A C)) */
10089 if (outer_code == AND && inner_code == XOR && GET_CODE (distributed) == NOT)
10090 {
10091 distributed = XEXP (distributed, 0);
10092 outer_code = IOR;
10093 }
10094
10095 if (n == 0)
10096 {
10097 /* Distribute the second term. */
10098 new_op0 = simplify_gen_binary (outer_code, mode, inner_op0, distributed);
10099 new_op1 = simplify_gen_binary (outer_code, mode, inner_op1, distributed);
10100 }
10101 else
10102 {
10103 /* Distribute the first term. */
10104 new_op0 = simplify_gen_binary (outer_code, mode, distributed, inner_op0);
10105 new_op1 = simplify_gen_binary (outer_code, mode, distributed, inner_op1);
10106 }
10107
10108 tmp = apply_distributive_law (simplify_gen_binary (inner_code, mode,
10109 new_op0, new_op1));
10110 if (GET_CODE (tmp) != outer_code
10111 && (set_src_cost (tmp, mode, optimize_this_for_speed_p)
10112 < set_src_cost (x, mode, optimize_this_for_speed_p)))
10113 return tmp;
10114
10115 return NULL_RTX;
10116 }
10117 \f
10118 /* Simplify a logical `and' of VAROP with the constant CONSTOP, to be done
10119 in MODE. Return an equivalent form, if different from (and VAROP
10120 (const_int CONSTOP)). Otherwise, return NULL_RTX. */
10121
10122 static rtx
10123 simplify_and_const_int_1 (scalar_int_mode mode, rtx varop,
10124 unsigned HOST_WIDE_INT constop)
10125 {
10126 unsigned HOST_WIDE_INT nonzero;
10127 unsigned HOST_WIDE_INT orig_constop;
10128 rtx orig_varop;
10129 int i;
10130
10131 orig_varop = varop;
10132 orig_constop = constop;
10133 if (GET_CODE (varop) == CLOBBER)
10134 return NULL_RTX;
10135
10136 /* Simplify VAROP knowing that we will be only looking at some of the
10137 bits in it.
10138
10139 Note by passing in CONSTOP, we guarantee that the bits not set in
10140 CONSTOP are not significant and will never be examined. We must
10141 ensure that is the case by explicitly masking out those bits
10142 before returning. */
10143 varop = force_to_mode (varop, mode, constop, 0);
10144
10145 /* If VAROP is a CLOBBER, we will fail so return it. */
10146 if (GET_CODE (varop) == CLOBBER)
10147 return varop;
10148
10149 /* If VAROP is a CONST_INT, then we need to apply the mask in CONSTOP
10150 to VAROP and return the new constant. */
10151 if (CONST_INT_P (varop))
10152 return gen_int_mode (INTVAL (varop) & constop, mode);
10153
10154 /* See what bits may be nonzero in VAROP. Unlike the general case of
10155 a call to nonzero_bits, here we don't care about bits outside
10156 MODE. */
10157
10158 nonzero = nonzero_bits (varop, mode) & GET_MODE_MASK (mode);
10159
10160 /* Turn off all bits in the constant that are known to already be zero.
10161 Thus, if the AND isn't needed at all, we will have CONSTOP == NONZERO_BITS
10162 which is tested below. */
10163
10164 constop &= nonzero;
10165
10166 /* If we don't have any bits left, return zero. */
10167 if (constop == 0)
10168 return const0_rtx;
10169
10170 /* If VAROP is a NEG of something known to be zero or 1 and CONSTOP is
10171 a power of two, we can replace this with an ASHIFT. */
10172 if (GET_CODE (varop) == NEG && nonzero_bits (XEXP (varop, 0), mode) == 1
10173 && (i = exact_log2 (constop)) >= 0)
10174 return simplify_shift_const (NULL_RTX, ASHIFT, mode, XEXP (varop, 0), i);
10175
10176 /* If VAROP is an IOR or XOR, apply the AND to both branches of the IOR
10177 or XOR, then try to apply the distributive law. This may eliminate
10178 operations if either branch can be simplified because of the AND.
10179 It may also make some cases more complex, but those cases probably
10180 won't match a pattern either with or without this. */
10181
10182 if (GET_CODE (varop) == IOR || GET_CODE (varop) == XOR)
10183 {
10184 scalar_int_mode varop_mode = as_a <scalar_int_mode> (GET_MODE (varop));
10185 return
10186 gen_lowpart
10187 (mode,
10188 apply_distributive_law
10189 (simplify_gen_binary (GET_CODE (varop), varop_mode,
10190 simplify_and_const_int (NULL_RTX, varop_mode,
10191 XEXP (varop, 0),
10192 constop),
10193 simplify_and_const_int (NULL_RTX, varop_mode,
10194 XEXP (varop, 1),
10195 constop))));
10196 }
10197
10198 /* If VAROP is PLUS, and the constant is a mask of low bits, distribute
10199 the AND and see if one of the operands simplifies to zero. If so, we
10200 may eliminate it. */
10201
10202 if (GET_CODE (varop) == PLUS
10203 && pow2p_hwi (constop + 1))
10204 {
10205 rtx o0, o1;
10206
10207 o0 = simplify_and_const_int (NULL_RTX, mode, XEXP (varop, 0), constop);
10208 o1 = simplify_and_const_int (NULL_RTX, mode, XEXP (varop, 1), constop);
10209 if (o0 == const0_rtx)
10210 return o1;
10211 if (o1 == const0_rtx)
10212 return o0;
10213 }
10214
10215 /* Make a SUBREG if necessary. If we can't make it, fail. */
10216 varop = gen_lowpart (mode, varop);
10217 if (varop == NULL_RTX || GET_CODE (varop) == CLOBBER)
10218 return NULL_RTX;
10219
10220 /* If we are only masking insignificant bits, return VAROP. */
10221 if (constop == nonzero)
10222 return varop;
10223
10224 if (varop == orig_varop && constop == orig_constop)
10225 return NULL_RTX;
10226
10227 /* Otherwise, return an AND. */
10228 return simplify_gen_binary (AND, mode, varop, gen_int_mode (constop, mode));
10229 }
10230
10231
10232 /* We have X, a logical `and' of VAROP with the constant CONSTOP, to be done
10233 in MODE.
10234
10235 Return an equivalent form, if different from X. Otherwise, return X. If
10236 X is zero, we are to always construct the equivalent form. */
10237
10238 static rtx
10239 simplify_and_const_int (rtx x, scalar_int_mode mode, rtx varop,
10240 unsigned HOST_WIDE_INT constop)
10241 {
10242 rtx tem = simplify_and_const_int_1 (mode, varop, constop);
10243 if (tem)
10244 return tem;
10245
10246 if (!x)
10247 x = simplify_gen_binary (AND, GET_MODE (varop), varop,
10248 gen_int_mode (constop, mode));
10249 if (GET_MODE (x) != mode)
10250 x = gen_lowpart (mode, x);
10251 return x;
10252 }
10253 \f
10254 /* Given a REG X of mode XMODE, compute which bits in X can be nonzero.
10255 We don't care about bits outside of those defined in MODE.
10256 We DO care about all the bits in MODE, even if XMODE is smaller than MODE.
10257
10258 For most X this is simply GET_MODE_MASK (GET_MODE (MODE)), but if X is
10259 a shift, AND, or zero_extract, we can do better. */
10260
10261 static rtx
10262 reg_nonzero_bits_for_combine (const_rtx x, scalar_int_mode xmode,
10263 scalar_int_mode mode,
10264 unsigned HOST_WIDE_INT *nonzero)
10265 {
10266 rtx tem;
10267 reg_stat_type *rsp;
10268
10269 /* If X is a register whose nonzero bits value is current, use it.
10270 Otherwise, if X is a register whose value we can find, use that
10271 value. Otherwise, use the previously-computed global nonzero bits
10272 for this register. */
10273
10274 rsp = &reg_stat[REGNO (x)];
10275 if (rsp->last_set_value != 0
10276 && (rsp->last_set_mode == mode
10277 || (REGNO (x) >= FIRST_PSEUDO_REGISTER
10278 && GET_MODE_CLASS (rsp->last_set_mode) == MODE_INT
10279 && GET_MODE_CLASS (mode) == MODE_INT))
10280 && ((rsp->last_set_label >= label_tick_ebb_start
10281 && rsp->last_set_label < label_tick)
10282 || (rsp->last_set_label == label_tick
10283 && DF_INSN_LUID (rsp->last_set) < subst_low_luid)
10284 || (REGNO (x) >= FIRST_PSEUDO_REGISTER
10285 && REGNO (x) < reg_n_sets_max
10286 && REG_N_SETS (REGNO (x)) == 1
10287 && !REGNO_REG_SET_P
10288 (DF_LR_IN (ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb),
10289 REGNO (x)))))
10290 {
10291 /* Note that, even if the precision of last_set_mode is lower than that
10292 of mode, record_value_for_reg invoked nonzero_bits on the register
10293 with nonzero_bits_mode (because last_set_mode is necessarily integral
10294 and HWI_COMPUTABLE_MODE_P in this case) so bits in nonzero_bits_mode
10295 are all valid, hence in mode too since nonzero_bits_mode is defined
10296 to the largest HWI_COMPUTABLE_MODE_P mode. */
10297 *nonzero &= rsp->last_set_nonzero_bits;
10298 return NULL;
10299 }
10300
10301 tem = get_last_value (x);
10302 if (tem)
10303 {
10304 if (SHORT_IMMEDIATES_SIGN_EXTEND)
10305 tem = sign_extend_short_imm (tem, xmode, GET_MODE_PRECISION (mode));
10306
10307 return tem;
10308 }
10309
10310 if (nonzero_sign_valid && rsp->nonzero_bits)
10311 {
10312 unsigned HOST_WIDE_INT mask = rsp->nonzero_bits;
10313
10314 if (GET_MODE_PRECISION (xmode) < GET_MODE_PRECISION (mode))
10315 /* We don't know anything about the upper bits. */
10316 mask |= GET_MODE_MASK (mode) ^ GET_MODE_MASK (xmode);
10317
10318 *nonzero &= mask;
10319 }
10320
10321 return NULL;
10322 }
10323
10324 /* Given a reg X of mode XMODE, return the number of bits at the high-order
10325 end of X that are known to be equal to the sign bit. X will be used
10326 in mode MODE; the returned value will always be between 1 and the
10327 number of bits in MODE. */
10328
10329 static rtx
10330 reg_num_sign_bit_copies_for_combine (const_rtx x, scalar_int_mode xmode,
10331 scalar_int_mode mode,
10332 unsigned int *result)
10333 {
10334 rtx tem;
10335 reg_stat_type *rsp;
10336
10337 rsp = &reg_stat[REGNO (x)];
10338 if (rsp->last_set_value != 0
10339 && rsp->last_set_mode == mode
10340 && ((rsp->last_set_label >= label_tick_ebb_start
10341 && rsp->last_set_label < label_tick)
10342 || (rsp->last_set_label == label_tick
10343 && DF_INSN_LUID (rsp->last_set) < subst_low_luid)
10344 || (REGNO (x) >= FIRST_PSEUDO_REGISTER
10345 && REGNO (x) < reg_n_sets_max
10346 && REG_N_SETS (REGNO (x)) == 1
10347 && !REGNO_REG_SET_P
10348 (DF_LR_IN (ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb),
10349 REGNO (x)))))
10350 {
10351 *result = rsp->last_set_sign_bit_copies;
10352 return NULL;
10353 }
10354
10355 tem = get_last_value (x);
10356 if (tem != 0)
10357 return tem;
10358
10359 if (nonzero_sign_valid && rsp->sign_bit_copies != 0
10360 && GET_MODE_PRECISION (xmode) == GET_MODE_PRECISION (mode))
10361 *result = rsp->sign_bit_copies;
10362
10363 return NULL;
10364 }
10365 \f
10366 /* Return the number of "extended" bits there are in X, when interpreted
10367 as a quantity in MODE whose signedness is indicated by UNSIGNEDP. For
10368 unsigned quantities, this is the number of high-order zero bits.
10369 For signed quantities, this is the number of copies of the sign bit
10370 minus 1. In both case, this function returns the number of "spare"
10371 bits. For example, if two quantities for which this function returns
10372 at least 1 are added, the addition is known not to overflow.
10373
10374 This function will always return 0 unless called during combine, which
10375 implies that it must be called from a define_split. */
10376
10377 unsigned int
10378 extended_count (const_rtx x, machine_mode mode, int unsignedp)
10379 {
10380 if (nonzero_sign_valid == 0)
10381 return 0;
10382
10383 scalar_int_mode int_mode;
10384 return (unsignedp
10385 ? (is_a <scalar_int_mode> (mode, &int_mode)
10386 && HWI_COMPUTABLE_MODE_P (int_mode)
10387 ? (unsigned int) (GET_MODE_PRECISION (int_mode) - 1
10388 - floor_log2 (nonzero_bits (x, int_mode)))
10389 : 0)
10390 : num_sign_bit_copies (x, mode) - 1);
10391 }
10392
10393 /* This function is called from `simplify_shift_const' to merge two
10394 outer operations. Specifically, we have already found that we need
10395 to perform operation *POP0 with constant *PCONST0 at the outermost
10396 position. We would now like to also perform OP1 with constant CONST1
10397 (with *POP0 being done last).
10398
10399 Return 1 if we can do the operation and update *POP0 and *PCONST0 with
10400 the resulting operation. *PCOMP_P is set to 1 if we would need to
10401 complement the innermost operand, otherwise it is unchanged.
10402
10403 MODE is the mode in which the operation will be done. No bits outside
10404 the width of this mode matter. It is assumed that the width of this mode
10405 is smaller than or equal to HOST_BITS_PER_WIDE_INT.
10406
10407 If *POP0 or OP1 are UNKNOWN, it means no operation is required. Only NEG, PLUS,
10408 IOR, XOR, and AND are supported. We may set *POP0 to SET if the proper
10409 result is simply *PCONST0.
10410
10411 If the resulting operation cannot be expressed as one operation, we
10412 return 0 and do not change *POP0, *PCONST0, and *PCOMP_P. */
10413
10414 static int
10415 merge_outer_ops (enum rtx_code *pop0, HOST_WIDE_INT *pconst0, enum rtx_code op1, HOST_WIDE_INT const1, machine_mode mode, int *pcomp_p)
10416 {
10417 enum rtx_code op0 = *pop0;
10418 HOST_WIDE_INT const0 = *pconst0;
10419
10420 const0 &= GET_MODE_MASK (mode);
10421 const1 &= GET_MODE_MASK (mode);
10422
10423 /* If OP0 is an AND, clear unimportant bits in CONST1. */
10424 if (op0 == AND)
10425 const1 &= const0;
10426
10427 /* If OP0 or OP1 is UNKNOWN, this is easy. Similarly if they are the same or
10428 if OP0 is SET. */
10429
10430 if (op1 == UNKNOWN || op0 == SET)
10431 return 1;
10432
10433 else if (op0 == UNKNOWN)
10434 op0 = op1, const0 = const1;
10435
10436 else if (op0 == op1)
10437 {
10438 switch (op0)
10439 {
10440 case AND:
10441 const0 &= const1;
10442 break;
10443 case IOR:
10444 const0 |= const1;
10445 break;
10446 case XOR:
10447 const0 ^= const1;
10448 break;
10449 case PLUS:
10450 const0 += const1;
10451 break;
10452 case NEG:
10453 op0 = UNKNOWN;
10454 break;
10455 default:
10456 break;
10457 }
10458 }
10459
10460 /* Otherwise, if either is a PLUS or NEG, we can't do anything. */
10461 else if (op0 == PLUS || op1 == PLUS || op0 == NEG || op1 == NEG)
10462 return 0;
10463
10464 /* If the two constants aren't the same, we can't do anything. The
10465 remaining six cases can all be done. */
10466 else if (const0 != const1)
10467 return 0;
10468
10469 else
10470 switch (op0)
10471 {
10472 case IOR:
10473 if (op1 == AND)
10474 /* (a & b) | b == b */
10475 op0 = SET;
10476 else /* op1 == XOR */
10477 /* (a ^ b) | b == a | b */
10478 {;}
10479 break;
10480
10481 case XOR:
10482 if (op1 == AND)
10483 /* (a & b) ^ b == (~a) & b */
10484 op0 = AND, *pcomp_p = 1;
10485 else /* op1 == IOR */
10486 /* (a | b) ^ b == a & ~b */
10487 op0 = AND, const0 = ~const0;
10488 break;
10489
10490 case AND:
10491 if (op1 == IOR)
10492 /* (a | b) & b == b */
10493 op0 = SET;
10494 else /* op1 == XOR */
10495 /* (a ^ b) & b) == (~a) & b */
10496 *pcomp_p = 1;
10497 break;
10498 default:
10499 break;
10500 }
10501
10502 /* Check for NO-OP cases. */
10503 const0 &= GET_MODE_MASK (mode);
10504 if (const0 == 0
10505 && (op0 == IOR || op0 == XOR || op0 == PLUS))
10506 op0 = UNKNOWN;
10507 else if (const0 == 0 && op0 == AND)
10508 op0 = SET;
10509 else if ((unsigned HOST_WIDE_INT) const0 == GET_MODE_MASK (mode)
10510 && op0 == AND)
10511 op0 = UNKNOWN;
10512
10513 *pop0 = op0;
10514
10515 /* ??? Slightly redundant with the above mask, but not entirely.
10516 Moving this above means we'd have to sign-extend the mode mask
10517 for the final test. */
10518 if (op0 != UNKNOWN && op0 != NEG)
10519 *pconst0 = trunc_int_for_mode (const0, mode);
10520
10521 return 1;
10522 }
10523 \f
10524 /* A helper to simplify_shift_const_1 to determine the mode we can perform
10525 the shift in. The original shift operation CODE is performed on OP in
10526 ORIG_MODE. Return the wider mode MODE if we can perform the operation
10527 in that mode. Return ORIG_MODE otherwise. We can also assume that the
10528 result of the shift is subject to operation OUTER_CODE with operand
10529 OUTER_CONST. */
10530
10531 static scalar_int_mode
10532 try_widen_shift_mode (enum rtx_code code, rtx op, int count,
10533 scalar_int_mode orig_mode, scalar_int_mode mode,
10534 enum rtx_code outer_code, HOST_WIDE_INT outer_const)
10535 {
10536 gcc_assert (GET_MODE_PRECISION (mode) > GET_MODE_PRECISION (orig_mode));
10537
10538 /* In general we can't perform in wider mode for right shift and rotate. */
10539 switch (code)
10540 {
10541 case ASHIFTRT:
10542 /* We can still widen if the bits brought in from the left are identical
10543 to the sign bit of ORIG_MODE. */
10544 if (num_sign_bit_copies (op, mode)
10545 > (unsigned) (GET_MODE_PRECISION (mode)
10546 - GET_MODE_PRECISION (orig_mode)))
10547 return mode;
10548 return orig_mode;
10549
10550 case LSHIFTRT:
10551 /* Similarly here but with zero bits. */
10552 if (HWI_COMPUTABLE_MODE_P (mode)
10553 && (nonzero_bits (op, mode) & ~GET_MODE_MASK (orig_mode)) == 0)
10554 return mode;
10555
10556 /* We can also widen if the bits brought in will be masked off. This
10557 operation is performed in ORIG_MODE. */
10558 if (outer_code == AND)
10559 {
10560 int care_bits = low_bitmask_len (orig_mode, outer_const);
10561
10562 if (care_bits >= 0
10563 && GET_MODE_PRECISION (orig_mode) - care_bits >= count)
10564 return mode;
10565 }
10566 /* fall through */
10567
10568 case ROTATE:
10569 return orig_mode;
10570
10571 case ROTATERT:
10572 gcc_unreachable ();
10573
10574 default:
10575 return mode;
10576 }
10577 }
10578
10579 /* Simplify a shift of VAROP by ORIG_COUNT bits. CODE says what kind
10580 of shift. The result of the shift is RESULT_MODE. Return NULL_RTX
10581 if we cannot simplify it. Otherwise, return a simplified value.
10582
10583 The shift is normally computed in the widest mode we find in VAROP, as
10584 long as it isn't a different number of words than RESULT_MODE. Exceptions
10585 are ASHIFTRT and ROTATE, which are always done in their original mode. */
10586
10587 static rtx
10588 simplify_shift_const_1 (enum rtx_code code, machine_mode result_mode,
10589 rtx varop, int orig_count)
10590 {
10591 enum rtx_code orig_code = code;
10592 rtx orig_varop = varop;
10593 int count, log2;
10594 machine_mode mode = result_mode;
10595 machine_mode shift_mode;
10596 scalar_int_mode tmode, inner_mode, int_mode, int_varop_mode, int_result_mode;
10597 /* We form (outer_op (code varop count) (outer_const)). */
10598 enum rtx_code outer_op = UNKNOWN;
10599 HOST_WIDE_INT outer_const = 0;
10600 int complement_p = 0;
10601 rtx new_rtx, x;
10602
10603 /* Make sure and truncate the "natural" shift on the way in. We don't
10604 want to do this inside the loop as it makes it more difficult to
10605 combine shifts. */
10606 if (SHIFT_COUNT_TRUNCATED)
10607 orig_count &= GET_MODE_UNIT_BITSIZE (mode) - 1;
10608
10609 /* If we were given an invalid count, don't do anything except exactly
10610 what was requested. */
10611
10612 if (orig_count < 0 || orig_count >= (int) GET_MODE_UNIT_PRECISION (mode))
10613 return NULL_RTX;
10614
10615 count = orig_count;
10616
10617 /* Unless one of the branches of the `if' in this loop does a `continue',
10618 we will `break' the loop after the `if'. */
10619
10620 while (count != 0)
10621 {
10622 /* If we have an operand of (clobber (const_int 0)), fail. */
10623 if (GET_CODE (varop) == CLOBBER)
10624 return NULL_RTX;
10625
10626 /* Convert ROTATERT to ROTATE. */
10627 if (code == ROTATERT)
10628 {
10629 unsigned int bitsize = GET_MODE_UNIT_PRECISION (result_mode);
10630 code = ROTATE;
10631 count = bitsize - count;
10632 }
10633
10634 shift_mode = result_mode;
10635 if (shift_mode != mode)
10636 {
10637 /* We only change the modes of scalar shifts. */
10638 int_mode = as_a <scalar_int_mode> (mode);
10639 int_result_mode = as_a <scalar_int_mode> (result_mode);
10640 shift_mode = try_widen_shift_mode (code, varop, count,
10641 int_result_mode, int_mode,
10642 outer_op, outer_const);
10643 }
10644
10645 scalar_int_mode shift_unit_mode
10646 = as_a <scalar_int_mode> (GET_MODE_INNER (shift_mode));
10647
10648 /* Handle cases where the count is greater than the size of the mode
10649 minus 1. For ASHIFT, use the size minus one as the count (this can
10650 occur when simplifying (lshiftrt (ashiftrt ..))). For rotates,
10651 take the count modulo the size. For other shifts, the result is
10652 zero.
10653
10654 Since these shifts are being produced by the compiler by combining
10655 multiple operations, each of which are defined, we know what the
10656 result is supposed to be. */
10657
10658 if (count > (GET_MODE_PRECISION (shift_unit_mode) - 1))
10659 {
10660 if (code == ASHIFTRT)
10661 count = GET_MODE_PRECISION (shift_unit_mode) - 1;
10662 else if (code == ROTATE || code == ROTATERT)
10663 count %= GET_MODE_PRECISION (shift_unit_mode);
10664 else
10665 {
10666 /* We can't simply return zero because there may be an
10667 outer op. */
10668 varop = const0_rtx;
10669 count = 0;
10670 break;
10671 }
10672 }
10673
10674 /* If we discovered we had to complement VAROP, leave. Making a NOT
10675 here would cause an infinite loop. */
10676 if (complement_p)
10677 break;
10678
10679 if (shift_mode == shift_unit_mode)
10680 {
10681 /* An arithmetic right shift of a quantity known to be -1 or 0
10682 is a no-op. */
10683 if (code == ASHIFTRT
10684 && (num_sign_bit_copies (varop, shift_unit_mode)
10685 == GET_MODE_PRECISION (shift_unit_mode)))
10686 {
10687 count = 0;
10688 break;
10689 }
10690
10691 /* If we are doing an arithmetic right shift and discarding all but
10692 the sign bit copies, this is equivalent to doing a shift by the
10693 bitsize minus one. Convert it into that shift because it will
10694 often allow other simplifications. */
10695
10696 if (code == ASHIFTRT
10697 && (count + num_sign_bit_copies (varop, shift_unit_mode)
10698 >= GET_MODE_PRECISION (shift_unit_mode)))
10699 count = GET_MODE_PRECISION (shift_unit_mode) - 1;
10700
10701 /* We simplify the tests below and elsewhere by converting
10702 ASHIFTRT to LSHIFTRT if we know the sign bit is clear.
10703 `make_compound_operation' will convert it to an ASHIFTRT for
10704 those machines (such as VAX) that don't have an LSHIFTRT. */
10705 if (code == ASHIFTRT
10706 && HWI_COMPUTABLE_MODE_P (shift_unit_mode)
10707 && val_signbit_known_clear_p (shift_unit_mode,
10708 nonzero_bits (varop,
10709 shift_unit_mode)))
10710 code = LSHIFTRT;
10711
10712 if (((code == LSHIFTRT
10713 && HWI_COMPUTABLE_MODE_P (shift_unit_mode)
10714 && !(nonzero_bits (varop, shift_unit_mode) >> count))
10715 || (code == ASHIFT
10716 && HWI_COMPUTABLE_MODE_P (shift_unit_mode)
10717 && !((nonzero_bits (varop, shift_unit_mode) << count)
10718 & GET_MODE_MASK (shift_unit_mode))))
10719 && !side_effects_p (varop))
10720 varop = const0_rtx;
10721 }
10722
10723 switch (GET_CODE (varop))
10724 {
10725 case SIGN_EXTEND:
10726 case ZERO_EXTEND:
10727 case SIGN_EXTRACT:
10728 case ZERO_EXTRACT:
10729 new_rtx = expand_compound_operation (varop);
10730 if (new_rtx != varop)
10731 {
10732 varop = new_rtx;
10733 continue;
10734 }
10735 break;
10736
10737 case MEM:
10738 /* The following rules apply only to scalars. */
10739 if (shift_mode != shift_unit_mode)
10740 break;
10741 int_mode = as_a <scalar_int_mode> (mode);
10742
10743 /* If we have (xshiftrt (mem ...) C) and C is MODE_WIDTH
10744 minus the width of a smaller mode, we can do this with a
10745 SIGN_EXTEND or ZERO_EXTEND from the narrower memory location. */
10746 if ((code == ASHIFTRT || code == LSHIFTRT)
10747 && ! mode_dependent_address_p (XEXP (varop, 0),
10748 MEM_ADDR_SPACE (varop))
10749 && ! MEM_VOLATILE_P (varop)
10750 && (int_mode_for_size (GET_MODE_BITSIZE (int_mode) - count, 1)
10751 .exists (&tmode)))
10752 {
10753 new_rtx = adjust_address_nv (varop, tmode,
10754 BYTES_BIG_ENDIAN ? 0
10755 : count / BITS_PER_UNIT);
10756
10757 varop = gen_rtx_fmt_e (code == ASHIFTRT ? SIGN_EXTEND
10758 : ZERO_EXTEND, int_mode, new_rtx);
10759 count = 0;
10760 continue;
10761 }
10762 break;
10763
10764 case SUBREG:
10765 /* The following rules apply only to scalars. */
10766 if (shift_mode != shift_unit_mode)
10767 break;
10768 int_mode = as_a <scalar_int_mode> (mode);
10769 int_varop_mode = as_a <scalar_int_mode> (GET_MODE (varop));
10770
10771 /* If VAROP is a SUBREG, strip it as long as the inner operand has
10772 the same number of words as what we've seen so far. Then store
10773 the widest mode in MODE. */
10774 if (subreg_lowpart_p (varop)
10775 && is_int_mode (GET_MODE (SUBREG_REG (varop)), &inner_mode)
10776 && GET_MODE_SIZE (inner_mode) > GET_MODE_SIZE (int_varop_mode)
10777 && (CEIL (GET_MODE_SIZE (inner_mode), UNITS_PER_WORD)
10778 == CEIL (GET_MODE_SIZE (int_mode), UNITS_PER_WORD))
10779 && GET_MODE_CLASS (int_varop_mode) == MODE_INT)
10780 {
10781 varop = SUBREG_REG (varop);
10782 if (GET_MODE_SIZE (inner_mode) > GET_MODE_SIZE (int_mode))
10783 mode = inner_mode;
10784 continue;
10785 }
10786 break;
10787
10788 case MULT:
10789 /* Some machines use MULT instead of ASHIFT because MULT
10790 is cheaper. But it is still better on those machines to
10791 merge two shifts into one. */
10792 if (CONST_INT_P (XEXP (varop, 1))
10793 && (log2 = exact_log2 (UINTVAL (XEXP (varop, 1)))) >= 0)
10794 {
10795 rtx log2_rtx = gen_int_shift_amount (GET_MODE (varop), log2);
10796 varop = simplify_gen_binary (ASHIFT, GET_MODE (varop),
10797 XEXP (varop, 0), log2_rtx);
10798 continue;
10799 }
10800 break;
10801
10802 case UDIV:
10803 /* Similar, for when divides are cheaper. */
10804 if (CONST_INT_P (XEXP (varop, 1))
10805 && (log2 = exact_log2 (UINTVAL (XEXP (varop, 1)))) >= 0)
10806 {
10807 rtx log2_rtx = gen_int_shift_amount (GET_MODE (varop), log2);
10808 varop = simplify_gen_binary (LSHIFTRT, GET_MODE (varop),
10809 XEXP (varop, 0), log2_rtx);
10810 continue;
10811 }
10812 break;
10813
10814 case ASHIFTRT:
10815 /* If we are extracting just the sign bit of an arithmetic
10816 right shift, that shift is not needed. However, the sign
10817 bit of a wider mode may be different from what would be
10818 interpreted as the sign bit in a narrower mode, so, if
10819 the result is narrower, don't discard the shift. */
10820 if (code == LSHIFTRT
10821 && count == (GET_MODE_UNIT_BITSIZE (result_mode) - 1)
10822 && (GET_MODE_UNIT_BITSIZE (result_mode)
10823 >= GET_MODE_UNIT_BITSIZE (GET_MODE (varop))))
10824 {
10825 varop = XEXP (varop, 0);
10826 continue;
10827 }
10828
10829 /* fall through */
10830
10831 case LSHIFTRT:
10832 case ASHIFT:
10833 case ROTATE:
10834 /* The following rules apply only to scalars. */
10835 if (shift_mode != shift_unit_mode)
10836 break;
10837 int_mode = as_a <scalar_int_mode> (mode);
10838 int_varop_mode = as_a <scalar_int_mode> (GET_MODE (varop));
10839 int_result_mode = as_a <scalar_int_mode> (result_mode);
10840
10841 /* Here we have two nested shifts. The result is usually the
10842 AND of a new shift with a mask. We compute the result below. */
10843 if (CONST_INT_P (XEXP (varop, 1))
10844 && INTVAL (XEXP (varop, 1)) >= 0
10845 && INTVAL (XEXP (varop, 1)) < GET_MODE_PRECISION (int_varop_mode)
10846 && HWI_COMPUTABLE_MODE_P (int_result_mode)
10847 && HWI_COMPUTABLE_MODE_P (int_mode))
10848 {
10849 enum rtx_code first_code = GET_CODE (varop);
10850 unsigned int first_count = INTVAL (XEXP (varop, 1));
10851 unsigned HOST_WIDE_INT mask;
10852 rtx mask_rtx;
10853
10854 /* We have one common special case. We can't do any merging if
10855 the inner code is an ASHIFTRT of a smaller mode. However, if
10856 we have (ashift:M1 (subreg:M1 (ashiftrt:M2 FOO C1) 0) C2)
10857 with C2 == GET_MODE_BITSIZE (M1) - GET_MODE_BITSIZE (M2),
10858 we can convert it to
10859 (ashiftrt:M1 (ashift:M1 (and:M1 (subreg:M1 FOO 0) C3) C2) C1).
10860 This simplifies certain SIGN_EXTEND operations. */
10861 if (code == ASHIFT && first_code == ASHIFTRT
10862 && count == (GET_MODE_PRECISION (int_result_mode)
10863 - GET_MODE_PRECISION (int_varop_mode)))
10864 {
10865 /* C3 has the low-order C1 bits zero. */
10866
10867 mask = GET_MODE_MASK (int_mode)
10868 & ~((HOST_WIDE_INT_1U << first_count) - 1);
10869
10870 varop = simplify_and_const_int (NULL_RTX, int_result_mode,
10871 XEXP (varop, 0), mask);
10872 varop = simplify_shift_const (NULL_RTX, ASHIFT,
10873 int_result_mode, varop, count);
10874 count = first_count;
10875 code = ASHIFTRT;
10876 continue;
10877 }
10878
10879 /* If this was (ashiftrt (ashift foo C1) C2) and FOO has more
10880 than C1 high-order bits equal to the sign bit, we can convert
10881 this to either an ASHIFT or an ASHIFTRT depending on the
10882 two counts.
10883
10884 We cannot do this if VAROP's mode is not SHIFT_UNIT_MODE. */
10885
10886 if (code == ASHIFTRT && first_code == ASHIFT
10887 && int_varop_mode == shift_unit_mode
10888 && (num_sign_bit_copies (XEXP (varop, 0), shift_unit_mode)
10889 > first_count))
10890 {
10891 varop = XEXP (varop, 0);
10892 count -= first_count;
10893 if (count < 0)
10894 {
10895 count = -count;
10896 code = ASHIFT;
10897 }
10898
10899 continue;
10900 }
10901
10902 /* There are some cases we can't do. If CODE is ASHIFTRT,
10903 we can only do this if FIRST_CODE is also ASHIFTRT.
10904
10905 We can't do the case when CODE is ROTATE and FIRST_CODE is
10906 ASHIFTRT.
10907
10908 If the mode of this shift is not the mode of the outer shift,
10909 we can't do this if either shift is a right shift or ROTATE.
10910
10911 Finally, we can't do any of these if the mode is too wide
10912 unless the codes are the same.
10913
10914 Handle the case where the shift codes are the same
10915 first. */
10916
10917 if (code == first_code)
10918 {
10919 if (int_varop_mode != int_result_mode
10920 && (code == ASHIFTRT || code == LSHIFTRT
10921 || code == ROTATE))
10922 break;
10923
10924 count += first_count;
10925 varop = XEXP (varop, 0);
10926 continue;
10927 }
10928
10929 if (code == ASHIFTRT
10930 || (code == ROTATE && first_code == ASHIFTRT)
10931 || GET_MODE_PRECISION (int_mode) > HOST_BITS_PER_WIDE_INT
10932 || (int_varop_mode != int_result_mode
10933 && (first_code == ASHIFTRT || first_code == LSHIFTRT
10934 || first_code == ROTATE
10935 || code == ROTATE)))
10936 break;
10937
10938 /* To compute the mask to apply after the shift, shift the
10939 nonzero bits of the inner shift the same way the
10940 outer shift will. */
10941
10942 mask_rtx = gen_int_mode (nonzero_bits (varop, int_varop_mode),
10943 int_result_mode);
10944 rtx count_rtx = gen_int_shift_amount (int_result_mode, count);
10945 mask_rtx
10946 = simplify_const_binary_operation (code, int_result_mode,
10947 mask_rtx, count_rtx);
10948
10949 /* Give up if we can't compute an outer operation to use. */
10950 if (mask_rtx == 0
10951 || !CONST_INT_P (mask_rtx)
10952 || ! merge_outer_ops (&outer_op, &outer_const, AND,
10953 INTVAL (mask_rtx),
10954 int_result_mode, &complement_p))
10955 break;
10956
10957 /* If the shifts are in the same direction, we add the
10958 counts. Otherwise, we subtract them. */
10959 if ((code == ASHIFTRT || code == LSHIFTRT)
10960 == (first_code == ASHIFTRT || first_code == LSHIFTRT))
10961 count += first_count;
10962 else
10963 count -= first_count;
10964
10965 /* If COUNT is positive, the new shift is usually CODE,
10966 except for the two exceptions below, in which case it is
10967 FIRST_CODE. If the count is negative, FIRST_CODE should
10968 always be used */
10969 if (count > 0
10970 && ((first_code == ROTATE && code == ASHIFT)
10971 || (first_code == ASHIFTRT && code == LSHIFTRT)))
10972 code = first_code;
10973 else if (count < 0)
10974 code = first_code, count = -count;
10975
10976 varop = XEXP (varop, 0);
10977 continue;
10978 }
10979
10980 /* If we have (A << B << C) for any shift, we can convert this to
10981 (A << C << B). This wins if A is a constant. Only try this if
10982 B is not a constant. */
10983
10984 else if (GET_CODE (varop) == code
10985 && CONST_INT_P (XEXP (varop, 0))
10986 && !CONST_INT_P (XEXP (varop, 1)))
10987 {
10988 /* For ((unsigned) (cstULL >> count)) >> cst2 we have to make
10989 sure the result will be masked. See PR70222. */
10990 if (code == LSHIFTRT
10991 && int_mode != int_result_mode
10992 && !merge_outer_ops (&outer_op, &outer_const, AND,
10993 GET_MODE_MASK (int_result_mode)
10994 >> orig_count, int_result_mode,
10995 &complement_p))
10996 break;
10997 /* For ((int) (cstLL >> count)) >> cst2 just give up. Queuing
10998 up outer sign extension (often left and right shift) is
10999 hardly more efficient than the original. See PR70429. */
11000 if (code == ASHIFTRT && int_mode != int_result_mode)
11001 break;
11002
11003 rtx count_rtx = gen_int_shift_amount (int_result_mode, count);
11004 rtx new_rtx = simplify_const_binary_operation (code, int_mode,
11005 XEXP (varop, 0),
11006 count_rtx);
11007 varop = gen_rtx_fmt_ee (code, int_mode, new_rtx, XEXP (varop, 1));
11008 count = 0;
11009 continue;
11010 }
11011 break;
11012
11013 case NOT:
11014 /* The following rules apply only to scalars. */
11015 if (shift_mode != shift_unit_mode)
11016 break;
11017
11018 /* Make this fit the case below. */
11019 varop = gen_rtx_XOR (mode, XEXP (varop, 0), constm1_rtx);
11020 continue;
11021
11022 case IOR:
11023 case AND:
11024 case XOR:
11025 /* The following rules apply only to scalars. */
11026 if (shift_mode != shift_unit_mode)
11027 break;
11028 int_varop_mode = as_a <scalar_int_mode> (GET_MODE (varop));
11029 int_result_mode = as_a <scalar_int_mode> (result_mode);
11030
11031 /* If we have (xshiftrt (ior (plus X (const_int -1)) X) C)
11032 with C the size of VAROP - 1 and the shift is logical if
11033 STORE_FLAG_VALUE is 1 and arithmetic if STORE_FLAG_VALUE is -1,
11034 we have an (le X 0) operation. If we have an arithmetic shift
11035 and STORE_FLAG_VALUE is 1 or we have a logical shift with
11036 STORE_FLAG_VALUE of -1, we have a (neg (le X 0)) operation. */
11037
11038 if (GET_CODE (varop) == IOR && GET_CODE (XEXP (varop, 0)) == PLUS
11039 && XEXP (XEXP (varop, 0), 1) == constm1_rtx
11040 && (STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
11041 && (code == LSHIFTRT || code == ASHIFTRT)
11042 && count == (GET_MODE_PRECISION (int_varop_mode) - 1)
11043 && rtx_equal_p (XEXP (XEXP (varop, 0), 0), XEXP (varop, 1)))
11044 {
11045 count = 0;
11046 varop = gen_rtx_LE (int_varop_mode, XEXP (varop, 1),
11047 const0_rtx);
11048
11049 if (STORE_FLAG_VALUE == 1 ? code == ASHIFTRT : code == LSHIFTRT)
11050 varop = gen_rtx_NEG (int_varop_mode, varop);
11051
11052 continue;
11053 }
11054
11055 /* If we have (shift (logical)), move the logical to the outside
11056 to allow it to possibly combine with another logical and the
11057 shift to combine with another shift. This also canonicalizes to
11058 what a ZERO_EXTRACT looks like. Also, some machines have
11059 (and (shift)) insns. */
11060
11061 if (CONST_INT_P (XEXP (varop, 1))
11062 /* We can't do this if we have (ashiftrt (xor)) and the
11063 constant has its sign bit set in shift_unit_mode with
11064 shift_unit_mode wider than result_mode. */
11065 && !(code == ASHIFTRT && GET_CODE (varop) == XOR
11066 && int_result_mode != shift_unit_mode
11067 && trunc_int_for_mode (INTVAL (XEXP (varop, 1)),
11068 shift_unit_mode) < 0)
11069 && (new_rtx = simplify_const_binary_operation
11070 (code, int_result_mode,
11071 gen_int_mode (INTVAL (XEXP (varop, 1)), int_result_mode),
11072 gen_int_shift_amount (int_result_mode, count))) != 0
11073 && CONST_INT_P (new_rtx)
11074 && merge_outer_ops (&outer_op, &outer_const, GET_CODE (varop),
11075 INTVAL (new_rtx), int_result_mode,
11076 &complement_p))
11077 {
11078 varop = XEXP (varop, 0);
11079 continue;
11080 }
11081
11082 /* If we can't do that, try to simplify the shift in each arm of the
11083 logical expression, make a new logical expression, and apply
11084 the inverse distributive law. This also can't be done for
11085 (ashiftrt (xor)) where we've widened the shift and the constant
11086 changes the sign bit. */
11087 if (CONST_INT_P (XEXP (varop, 1))
11088 && !(code == ASHIFTRT && GET_CODE (varop) == XOR
11089 && int_result_mode != shift_unit_mode
11090 && trunc_int_for_mode (INTVAL (XEXP (varop, 1)),
11091 shift_unit_mode) < 0))
11092 {
11093 rtx lhs = simplify_shift_const (NULL_RTX, code, shift_unit_mode,
11094 XEXP (varop, 0), count);
11095 rtx rhs = simplify_shift_const (NULL_RTX, code, shift_unit_mode,
11096 XEXP (varop, 1), count);
11097
11098 varop = simplify_gen_binary (GET_CODE (varop), shift_unit_mode,
11099 lhs, rhs);
11100 varop = apply_distributive_law (varop);
11101
11102 count = 0;
11103 continue;
11104 }
11105 break;
11106
11107 case EQ:
11108 /* The following rules apply only to scalars. */
11109 if (shift_mode != shift_unit_mode)
11110 break;
11111 int_result_mode = as_a <scalar_int_mode> (result_mode);
11112
11113 /* Convert (lshiftrt (eq FOO 0) C) to (xor FOO 1) if STORE_FLAG_VALUE
11114 says that the sign bit can be tested, FOO has mode MODE, C is
11115 GET_MODE_PRECISION (MODE) - 1, and FOO has only its low-order bit
11116 that may be nonzero. */
11117 if (code == LSHIFTRT
11118 && XEXP (varop, 1) == const0_rtx
11119 && GET_MODE (XEXP (varop, 0)) == int_result_mode
11120 && count == (GET_MODE_PRECISION (int_result_mode) - 1)
11121 && HWI_COMPUTABLE_MODE_P (int_result_mode)
11122 && STORE_FLAG_VALUE == -1
11123 && nonzero_bits (XEXP (varop, 0), int_result_mode) == 1
11124 && merge_outer_ops (&outer_op, &outer_const, XOR, 1,
11125 int_result_mode, &complement_p))
11126 {
11127 varop = XEXP (varop, 0);
11128 count = 0;
11129 continue;
11130 }
11131 break;
11132
11133 case NEG:
11134 /* The following rules apply only to scalars. */
11135 if (shift_mode != shift_unit_mode)
11136 break;
11137 int_result_mode = as_a <scalar_int_mode> (result_mode);
11138
11139 /* (lshiftrt (neg A) C) where A is either 0 or 1 and C is one less
11140 than the number of bits in the mode is equivalent to A. */
11141 if (code == LSHIFTRT
11142 && count == (GET_MODE_PRECISION (int_result_mode) - 1)
11143 && nonzero_bits (XEXP (varop, 0), int_result_mode) == 1)
11144 {
11145 varop = XEXP (varop, 0);
11146 count = 0;
11147 continue;
11148 }
11149
11150 /* NEG commutes with ASHIFT since it is multiplication. Move the
11151 NEG outside to allow shifts to combine. */
11152 if (code == ASHIFT
11153 && merge_outer_ops (&outer_op, &outer_const, NEG, 0,
11154 int_result_mode, &complement_p))
11155 {
11156 varop = XEXP (varop, 0);
11157 continue;
11158 }
11159 break;
11160
11161 case PLUS:
11162 /* The following rules apply only to scalars. */
11163 if (shift_mode != shift_unit_mode)
11164 break;
11165 int_result_mode = as_a <scalar_int_mode> (result_mode);
11166
11167 /* (lshiftrt (plus A -1) C) where A is either 0 or 1 and C
11168 is one less than the number of bits in the mode is
11169 equivalent to (xor A 1). */
11170 if (code == LSHIFTRT
11171 && count == (GET_MODE_PRECISION (int_result_mode) - 1)
11172 && XEXP (varop, 1) == constm1_rtx
11173 && nonzero_bits (XEXP (varop, 0), int_result_mode) == 1
11174 && merge_outer_ops (&outer_op, &outer_const, XOR, 1,
11175 int_result_mode, &complement_p))
11176 {
11177 count = 0;
11178 varop = XEXP (varop, 0);
11179 continue;
11180 }
11181
11182 /* If we have (xshiftrt (plus FOO BAR) C), and the only bits
11183 that might be nonzero in BAR are those being shifted out and those
11184 bits are known zero in FOO, we can replace the PLUS with FOO.
11185 Similarly in the other operand order. This code occurs when
11186 we are computing the size of a variable-size array. */
11187
11188 if ((code == ASHIFTRT || code == LSHIFTRT)
11189 && count < HOST_BITS_PER_WIDE_INT
11190 && nonzero_bits (XEXP (varop, 1), int_result_mode) >> count == 0
11191 && (nonzero_bits (XEXP (varop, 1), int_result_mode)
11192 & nonzero_bits (XEXP (varop, 0), int_result_mode)) == 0)
11193 {
11194 varop = XEXP (varop, 0);
11195 continue;
11196 }
11197 else if ((code == ASHIFTRT || code == LSHIFTRT)
11198 && count < HOST_BITS_PER_WIDE_INT
11199 && HWI_COMPUTABLE_MODE_P (int_result_mode)
11200 && (nonzero_bits (XEXP (varop, 0), int_result_mode)
11201 >> count) == 0
11202 && (nonzero_bits (XEXP (varop, 0), int_result_mode)
11203 & nonzero_bits (XEXP (varop, 1), int_result_mode)) == 0)
11204 {
11205 varop = XEXP (varop, 1);
11206 continue;
11207 }
11208
11209 /* (ashift (plus foo C) N) is (plus (ashift foo N) C'). */
11210 if (code == ASHIFT
11211 && CONST_INT_P (XEXP (varop, 1))
11212 && (new_rtx = simplify_const_binary_operation
11213 (ASHIFT, int_result_mode,
11214 gen_int_mode (INTVAL (XEXP (varop, 1)), int_result_mode),
11215 gen_int_shift_amount (int_result_mode, count))) != 0
11216 && CONST_INT_P (new_rtx)
11217 && merge_outer_ops (&outer_op, &outer_const, PLUS,
11218 INTVAL (new_rtx), int_result_mode,
11219 &complement_p))
11220 {
11221 varop = XEXP (varop, 0);
11222 continue;
11223 }
11224
11225 /* Check for 'PLUS signbit', which is the canonical form of 'XOR
11226 signbit', and attempt to change the PLUS to an XOR and move it to
11227 the outer operation as is done above in the AND/IOR/XOR case
11228 leg for shift(logical). See details in logical handling above
11229 for reasoning in doing so. */
11230 if (code == LSHIFTRT
11231 && CONST_INT_P (XEXP (varop, 1))
11232 && mode_signbit_p (int_result_mode, XEXP (varop, 1))
11233 && (new_rtx = simplify_const_binary_operation
11234 (code, int_result_mode,
11235 gen_int_mode (INTVAL (XEXP (varop, 1)), int_result_mode),
11236 gen_int_shift_amount (int_result_mode, count))) != 0
11237 && CONST_INT_P (new_rtx)
11238 && merge_outer_ops (&outer_op, &outer_const, XOR,
11239 INTVAL (new_rtx), int_result_mode,
11240 &complement_p))
11241 {
11242 varop = XEXP (varop, 0);
11243 continue;
11244 }
11245
11246 break;
11247
11248 case MINUS:
11249 /* The following rules apply only to scalars. */
11250 if (shift_mode != shift_unit_mode)
11251 break;
11252 int_varop_mode = as_a <scalar_int_mode> (GET_MODE (varop));
11253
11254 /* If we have (xshiftrt (minus (ashiftrt X C)) X) C)
11255 with C the size of VAROP - 1 and the shift is logical if
11256 STORE_FLAG_VALUE is 1 and arithmetic if STORE_FLAG_VALUE is -1,
11257 we have a (gt X 0) operation. If the shift is arithmetic with
11258 STORE_FLAG_VALUE of 1 or logical with STORE_FLAG_VALUE == -1,
11259 we have a (neg (gt X 0)) operation. */
11260
11261 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
11262 && GET_CODE (XEXP (varop, 0)) == ASHIFTRT
11263 && count == (GET_MODE_PRECISION (int_varop_mode) - 1)
11264 && (code == LSHIFTRT || code == ASHIFTRT)
11265 && CONST_INT_P (XEXP (XEXP (varop, 0), 1))
11266 && INTVAL (XEXP (XEXP (varop, 0), 1)) == count
11267 && rtx_equal_p (XEXP (XEXP (varop, 0), 0), XEXP (varop, 1)))
11268 {
11269 count = 0;
11270 varop = gen_rtx_GT (int_varop_mode, XEXP (varop, 1),
11271 const0_rtx);
11272
11273 if (STORE_FLAG_VALUE == 1 ? code == ASHIFTRT : code == LSHIFTRT)
11274 varop = gen_rtx_NEG (int_varop_mode, varop);
11275
11276 continue;
11277 }
11278 break;
11279
11280 case TRUNCATE:
11281 /* Change (lshiftrt (truncate (lshiftrt))) to (truncate (lshiftrt))
11282 if the truncate does not affect the value. */
11283 if (code == LSHIFTRT
11284 && GET_CODE (XEXP (varop, 0)) == LSHIFTRT
11285 && CONST_INT_P (XEXP (XEXP (varop, 0), 1))
11286 && (INTVAL (XEXP (XEXP (varop, 0), 1))
11287 >= (GET_MODE_UNIT_PRECISION (GET_MODE (XEXP (varop, 0)))
11288 - GET_MODE_UNIT_PRECISION (GET_MODE (varop)))))
11289 {
11290 rtx varop_inner = XEXP (varop, 0);
11291 int new_count = count + INTVAL (XEXP (varop_inner, 1));
11292 rtx new_count_rtx = gen_int_shift_amount (GET_MODE (varop_inner),
11293 new_count);
11294 varop_inner = gen_rtx_LSHIFTRT (GET_MODE (varop_inner),
11295 XEXP (varop_inner, 0),
11296 new_count_rtx);
11297 varop = gen_rtx_TRUNCATE (GET_MODE (varop), varop_inner);
11298 count = 0;
11299 continue;
11300 }
11301 break;
11302
11303 default:
11304 break;
11305 }
11306
11307 break;
11308 }
11309
11310 shift_mode = result_mode;
11311 if (shift_mode != mode)
11312 {
11313 /* We only change the modes of scalar shifts. */
11314 int_mode = as_a <scalar_int_mode> (mode);
11315 int_result_mode = as_a <scalar_int_mode> (result_mode);
11316 shift_mode = try_widen_shift_mode (code, varop, count, int_result_mode,
11317 int_mode, outer_op, outer_const);
11318 }
11319
11320 /* We have now finished analyzing the shift. The result should be
11321 a shift of type CODE with SHIFT_MODE shifting VAROP COUNT places. If
11322 OUTER_OP is non-UNKNOWN, it is an operation that needs to be applied
11323 to the result of the shift. OUTER_CONST is the relevant constant,
11324 but we must turn off all bits turned off in the shift. */
11325
11326 if (outer_op == UNKNOWN
11327 && orig_code == code && orig_count == count
11328 && varop == orig_varop
11329 && shift_mode == GET_MODE (varop))
11330 return NULL_RTX;
11331
11332 /* Make a SUBREG if necessary. If we can't make it, fail. */
11333 varop = gen_lowpart (shift_mode, varop);
11334 if (varop == NULL_RTX || GET_CODE (varop) == CLOBBER)
11335 return NULL_RTX;
11336
11337 /* If we have an outer operation and we just made a shift, it is
11338 possible that we could have simplified the shift were it not
11339 for the outer operation. So try to do the simplification
11340 recursively. */
11341
11342 if (outer_op != UNKNOWN)
11343 x = simplify_shift_const_1 (code, shift_mode, varop, count);
11344 else
11345 x = NULL_RTX;
11346
11347 if (x == NULL_RTX)
11348 x = simplify_gen_binary (code, shift_mode, varop,
11349 gen_int_shift_amount (shift_mode, count));
11350
11351 /* If we were doing an LSHIFTRT in a wider mode than it was originally,
11352 turn off all the bits that the shift would have turned off. */
11353 if (orig_code == LSHIFTRT && result_mode != shift_mode)
11354 /* We only change the modes of scalar shifts. */
11355 x = simplify_and_const_int (NULL_RTX, as_a <scalar_int_mode> (shift_mode),
11356 x, GET_MODE_MASK (result_mode) >> orig_count);
11357
11358 /* Do the remainder of the processing in RESULT_MODE. */
11359 x = gen_lowpart_or_truncate (result_mode, x);
11360
11361 /* If COMPLEMENT_P is set, we have to complement X before doing the outer
11362 operation. */
11363 if (complement_p)
11364 x = simplify_gen_unary (NOT, result_mode, x, result_mode);
11365
11366 if (outer_op != UNKNOWN)
11367 {
11368 int_result_mode = as_a <scalar_int_mode> (result_mode);
11369
11370 if (GET_RTX_CLASS (outer_op) != RTX_UNARY
11371 && GET_MODE_PRECISION (int_result_mode) < HOST_BITS_PER_WIDE_INT)
11372 outer_const = trunc_int_for_mode (outer_const, int_result_mode);
11373
11374 if (outer_op == AND)
11375 x = simplify_and_const_int (NULL_RTX, int_result_mode, x, outer_const);
11376 else if (outer_op == SET)
11377 {
11378 /* This means that we have determined that the result is
11379 equivalent to a constant. This should be rare. */
11380 if (!side_effects_p (x))
11381 x = GEN_INT (outer_const);
11382 }
11383 else if (GET_RTX_CLASS (outer_op) == RTX_UNARY)
11384 x = simplify_gen_unary (outer_op, int_result_mode, x, int_result_mode);
11385 else
11386 x = simplify_gen_binary (outer_op, int_result_mode, x,
11387 GEN_INT (outer_const));
11388 }
11389
11390 return x;
11391 }
11392
11393 /* Simplify a shift of VAROP by COUNT bits. CODE says what kind of shift.
11394 The result of the shift is RESULT_MODE. If we cannot simplify it,
11395 return X or, if it is NULL, synthesize the expression with
11396 simplify_gen_binary. Otherwise, return a simplified value.
11397
11398 The shift is normally computed in the widest mode we find in VAROP, as
11399 long as it isn't a different number of words than RESULT_MODE. Exceptions
11400 are ASHIFTRT and ROTATE, which are always done in their original mode. */
11401
11402 static rtx
11403 simplify_shift_const (rtx x, enum rtx_code code, machine_mode result_mode,
11404 rtx varop, int count)
11405 {
11406 rtx tem = simplify_shift_const_1 (code, result_mode, varop, count);
11407 if (tem)
11408 return tem;
11409
11410 if (!x)
11411 x = simplify_gen_binary (code, GET_MODE (varop), varop,
11412 gen_int_shift_amount (GET_MODE (varop), count));
11413 if (GET_MODE (x) != result_mode)
11414 x = gen_lowpart (result_mode, x);
11415 return x;
11416 }
11417
11418 \f
11419 /* A subroutine of recog_for_combine. See there for arguments and
11420 return value. */
11421
11422 static int
11423 recog_for_combine_1 (rtx *pnewpat, rtx_insn *insn, rtx *pnotes)
11424 {
11425 rtx pat = *pnewpat;
11426 rtx pat_without_clobbers;
11427 int insn_code_number;
11428 int num_clobbers_to_add = 0;
11429 int i;
11430 rtx notes = NULL_RTX;
11431 rtx old_notes, old_pat;
11432 int old_icode;
11433
11434 /* If PAT is a PARALLEL, check to see if it contains the CLOBBER
11435 we use to indicate that something didn't match. If we find such a
11436 thing, force rejection. */
11437 if (GET_CODE (pat) == PARALLEL)
11438 for (i = XVECLEN (pat, 0) - 1; i >= 0; i--)
11439 if (GET_CODE (XVECEXP (pat, 0, i)) == CLOBBER
11440 && XEXP (XVECEXP (pat, 0, i), 0) == const0_rtx)
11441 return -1;
11442
11443 old_pat = PATTERN (insn);
11444 old_notes = REG_NOTES (insn);
11445 PATTERN (insn) = pat;
11446 REG_NOTES (insn) = NULL_RTX;
11447
11448 insn_code_number = recog (pat, insn, &num_clobbers_to_add);
11449 if (dump_file && (dump_flags & TDF_DETAILS))
11450 {
11451 if (insn_code_number < 0)
11452 fputs ("Failed to match this instruction:\n", dump_file);
11453 else
11454 fputs ("Successfully matched this instruction:\n", dump_file);
11455 print_rtl_single (dump_file, pat);
11456 }
11457
11458 /* If it isn't, there is the possibility that we previously had an insn
11459 that clobbered some register as a side effect, but the combined
11460 insn doesn't need to do that. So try once more without the clobbers
11461 unless this represents an ASM insn. */
11462
11463 if (insn_code_number < 0 && ! check_asm_operands (pat)
11464 && GET_CODE (pat) == PARALLEL)
11465 {
11466 int pos;
11467
11468 for (pos = 0, i = 0; i < XVECLEN (pat, 0); i++)
11469 if (GET_CODE (XVECEXP (pat, 0, i)) != CLOBBER)
11470 {
11471 if (i != pos)
11472 SUBST (XVECEXP (pat, 0, pos), XVECEXP (pat, 0, i));
11473 pos++;
11474 }
11475
11476 SUBST_INT (XVECLEN (pat, 0), pos);
11477
11478 if (pos == 1)
11479 pat = XVECEXP (pat, 0, 0);
11480
11481 PATTERN (insn) = pat;
11482 insn_code_number = recog (pat, insn, &num_clobbers_to_add);
11483 if (dump_file && (dump_flags & TDF_DETAILS))
11484 {
11485 if (insn_code_number < 0)
11486 fputs ("Failed to match this instruction:\n", dump_file);
11487 else
11488 fputs ("Successfully matched this instruction:\n", dump_file);
11489 print_rtl_single (dump_file, pat);
11490 }
11491 }
11492
11493 pat_without_clobbers = pat;
11494
11495 PATTERN (insn) = old_pat;
11496 REG_NOTES (insn) = old_notes;
11497
11498 /* Recognize all noop sets, these will be killed by followup pass. */
11499 if (insn_code_number < 0 && GET_CODE (pat) == SET && set_noop_p (pat))
11500 insn_code_number = NOOP_MOVE_INSN_CODE, num_clobbers_to_add = 0;
11501
11502 /* If we had any clobbers to add, make a new pattern than contains
11503 them. Then check to make sure that all of them are dead. */
11504 if (num_clobbers_to_add)
11505 {
11506 rtx newpat = gen_rtx_PARALLEL (VOIDmode,
11507 rtvec_alloc (GET_CODE (pat) == PARALLEL
11508 ? (XVECLEN (pat, 0)
11509 + num_clobbers_to_add)
11510 : num_clobbers_to_add + 1));
11511
11512 if (GET_CODE (pat) == PARALLEL)
11513 for (i = 0; i < XVECLEN (pat, 0); i++)
11514 XVECEXP (newpat, 0, i) = XVECEXP (pat, 0, i);
11515 else
11516 XVECEXP (newpat, 0, 0) = pat;
11517
11518 add_clobbers (newpat, insn_code_number);
11519
11520 for (i = XVECLEN (newpat, 0) - num_clobbers_to_add;
11521 i < XVECLEN (newpat, 0); i++)
11522 {
11523 if (REG_P (XEXP (XVECEXP (newpat, 0, i), 0))
11524 && ! reg_dead_at_p (XEXP (XVECEXP (newpat, 0, i), 0), insn))
11525 return -1;
11526 if (GET_CODE (XEXP (XVECEXP (newpat, 0, i), 0)) != SCRATCH)
11527 {
11528 gcc_assert (REG_P (XEXP (XVECEXP (newpat, 0, i), 0)));
11529 notes = alloc_reg_note (REG_UNUSED,
11530 XEXP (XVECEXP (newpat, 0, i), 0), notes);
11531 }
11532 }
11533 pat = newpat;
11534 }
11535
11536 if (insn_code_number >= 0
11537 && insn_code_number != NOOP_MOVE_INSN_CODE)
11538 {
11539 old_pat = PATTERN (insn);
11540 old_notes = REG_NOTES (insn);
11541 old_icode = INSN_CODE (insn);
11542 PATTERN (insn) = pat;
11543 REG_NOTES (insn) = notes;
11544 INSN_CODE (insn) = insn_code_number;
11545
11546 /* Allow targets to reject combined insn. */
11547 if (!targetm.legitimate_combined_insn (insn))
11548 {
11549 if (dump_file && (dump_flags & TDF_DETAILS))
11550 fputs ("Instruction not appropriate for target.",
11551 dump_file);
11552
11553 /* Callers expect recog_for_combine to strip
11554 clobbers from the pattern on failure. */
11555 pat = pat_without_clobbers;
11556 notes = NULL_RTX;
11557
11558 insn_code_number = -1;
11559 }
11560
11561 PATTERN (insn) = old_pat;
11562 REG_NOTES (insn) = old_notes;
11563 INSN_CODE (insn) = old_icode;
11564 }
11565
11566 *pnewpat = pat;
11567 *pnotes = notes;
11568
11569 return insn_code_number;
11570 }
11571
11572 /* Change every ZERO_EXTRACT and ZERO_EXTEND of a SUBREG that can be
11573 expressed as an AND and maybe an LSHIFTRT, to that formulation.
11574 Return whether anything was so changed. */
11575
11576 static bool
11577 change_zero_ext (rtx pat)
11578 {
11579 bool changed = false;
11580 rtx *src = &SET_SRC (pat);
11581
11582 subrtx_ptr_iterator::array_type array;
11583 FOR_EACH_SUBRTX_PTR (iter, array, src, NONCONST)
11584 {
11585 rtx x = **iter;
11586 scalar_int_mode mode, inner_mode;
11587 if (!is_a <scalar_int_mode> (GET_MODE (x), &mode))
11588 continue;
11589 int size;
11590
11591 if (GET_CODE (x) == ZERO_EXTRACT
11592 && CONST_INT_P (XEXP (x, 1))
11593 && CONST_INT_P (XEXP (x, 2))
11594 && is_a <scalar_int_mode> (GET_MODE (XEXP (x, 0)), &inner_mode)
11595 && GET_MODE_PRECISION (inner_mode) <= GET_MODE_PRECISION (mode))
11596 {
11597 size = INTVAL (XEXP (x, 1));
11598
11599 int start = INTVAL (XEXP (x, 2));
11600 if (BITS_BIG_ENDIAN)
11601 start = GET_MODE_PRECISION (inner_mode) - size - start;
11602
11603 if (start != 0)
11604 x = gen_rtx_LSHIFTRT (inner_mode, XEXP (x, 0),
11605 gen_int_shift_amount (inner_mode, start));
11606 else
11607 x = XEXP (x, 0);
11608
11609 if (mode != inner_mode)
11610 {
11611 if (REG_P (x) && HARD_REGISTER_P (x)
11612 && !can_change_dest_mode (x, 0, mode))
11613 continue;
11614
11615 x = gen_lowpart_SUBREG (mode, x);
11616 }
11617 }
11618 else if (GET_CODE (x) == ZERO_EXTEND
11619 && GET_CODE (XEXP (x, 0)) == SUBREG
11620 && SCALAR_INT_MODE_P (GET_MODE (SUBREG_REG (XEXP (x, 0))))
11621 && !paradoxical_subreg_p (XEXP (x, 0))
11622 && subreg_lowpart_p (XEXP (x, 0)))
11623 {
11624 inner_mode = as_a <scalar_int_mode> (GET_MODE (XEXP (x, 0)));
11625 size = GET_MODE_PRECISION (inner_mode);
11626 x = SUBREG_REG (XEXP (x, 0));
11627 if (GET_MODE (x) != mode)
11628 {
11629 if (REG_P (x) && HARD_REGISTER_P (x)
11630 && !can_change_dest_mode (x, 0, mode))
11631 continue;
11632
11633 x = gen_lowpart_SUBREG (mode, x);
11634 }
11635 }
11636 else if (GET_CODE (x) == ZERO_EXTEND
11637 && REG_P (XEXP (x, 0))
11638 && HARD_REGISTER_P (XEXP (x, 0))
11639 && can_change_dest_mode (XEXP (x, 0), 0, mode))
11640 {
11641 inner_mode = as_a <scalar_int_mode> (GET_MODE (XEXP (x, 0)));
11642 size = GET_MODE_PRECISION (inner_mode);
11643 x = gen_rtx_REG (mode, REGNO (XEXP (x, 0)));
11644 }
11645 else
11646 continue;
11647
11648 if (!(GET_CODE (x) == LSHIFTRT
11649 && CONST_INT_P (XEXP (x, 1))
11650 && size + INTVAL (XEXP (x, 1)) == GET_MODE_PRECISION (mode)))
11651 {
11652 wide_int mask = wi::mask (size, false, GET_MODE_PRECISION (mode));
11653 x = gen_rtx_AND (mode, x, immed_wide_int_const (mask, mode));
11654 }
11655
11656 SUBST (**iter, x);
11657 changed = true;
11658 }
11659
11660 if (changed)
11661 FOR_EACH_SUBRTX_PTR (iter, array, src, NONCONST)
11662 maybe_swap_commutative_operands (**iter);
11663
11664 rtx *dst = &SET_DEST (pat);
11665 scalar_int_mode mode;
11666 if (GET_CODE (*dst) == ZERO_EXTRACT
11667 && REG_P (XEXP (*dst, 0))
11668 && is_a <scalar_int_mode> (GET_MODE (XEXP (*dst, 0)), &mode)
11669 && CONST_INT_P (XEXP (*dst, 1))
11670 && CONST_INT_P (XEXP (*dst, 2)))
11671 {
11672 rtx reg = XEXP (*dst, 0);
11673 int width = INTVAL (XEXP (*dst, 1));
11674 int offset = INTVAL (XEXP (*dst, 2));
11675 int reg_width = GET_MODE_PRECISION (mode);
11676 if (BITS_BIG_ENDIAN)
11677 offset = reg_width - width - offset;
11678
11679 rtx x, y, z, w;
11680 wide_int mask = wi::shifted_mask (offset, width, true, reg_width);
11681 wide_int mask2 = wi::shifted_mask (offset, width, false, reg_width);
11682 x = gen_rtx_AND (mode, reg, immed_wide_int_const (mask, mode));
11683 if (offset)
11684 y = gen_rtx_ASHIFT (mode, SET_SRC (pat), GEN_INT (offset));
11685 else
11686 y = SET_SRC (pat);
11687 z = gen_rtx_AND (mode, y, immed_wide_int_const (mask2, mode));
11688 w = gen_rtx_IOR (mode, x, z);
11689 SUBST (SET_DEST (pat), reg);
11690 SUBST (SET_SRC (pat), w);
11691
11692 changed = true;
11693 }
11694
11695 return changed;
11696 }
11697
11698 /* Like recog, but we receive the address of a pointer to a new pattern.
11699 We try to match the rtx that the pointer points to.
11700 If that fails, we may try to modify or replace the pattern,
11701 storing the replacement into the same pointer object.
11702
11703 Modifications include deletion or addition of CLOBBERs. If the
11704 instruction will still not match, we change ZERO_EXTEND and ZERO_EXTRACT
11705 to the equivalent AND and perhaps LSHIFTRT patterns, and try with that
11706 (and undo if that fails).
11707
11708 PNOTES is a pointer to a location where any REG_UNUSED notes added for
11709 the CLOBBERs are placed.
11710
11711 The value is the final insn code from the pattern ultimately matched,
11712 or -1. */
11713
11714 static int
11715 recog_for_combine (rtx *pnewpat, rtx_insn *insn, rtx *pnotes)
11716 {
11717 rtx pat = *pnewpat;
11718 int insn_code_number = recog_for_combine_1 (pnewpat, insn, pnotes);
11719 if (insn_code_number >= 0 || check_asm_operands (pat))
11720 return insn_code_number;
11721
11722 void *marker = get_undo_marker ();
11723 bool changed = false;
11724
11725 if (GET_CODE (pat) == SET)
11726 changed = change_zero_ext (pat);
11727 else if (GET_CODE (pat) == PARALLEL)
11728 {
11729 int i;
11730 for (i = 0; i < XVECLEN (pat, 0); i++)
11731 {
11732 rtx set = XVECEXP (pat, 0, i);
11733 if (GET_CODE (set) == SET)
11734 changed |= change_zero_ext (set);
11735 }
11736 }
11737
11738 if (changed)
11739 {
11740 insn_code_number = recog_for_combine_1 (pnewpat, insn, pnotes);
11741
11742 if (insn_code_number < 0)
11743 undo_to_marker (marker);
11744 }
11745
11746 return insn_code_number;
11747 }
11748 \f
11749 /* Like gen_lowpart_general but for use by combine. In combine it
11750 is not possible to create any new pseudoregs. However, it is
11751 safe to create invalid memory addresses, because combine will
11752 try to recognize them and all they will do is make the combine
11753 attempt fail.
11754
11755 If for some reason this cannot do its job, an rtx
11756 (clobber (const_int 0)) is returned.
11757 An insn containing that will not be recognized. */
11758
11759 static rtx
11760 gen_lowpart_for_combine (machine_mode omode, rtx x)
11761 {
11762 machine_mode imode = GET_MODE (x);
11763 rtx result;
11764
11765 if (omode == imode)
11766 return x;
11767
11768 /* We can only support MODE being wider than a word if X is a
11769 constant integer or has a mode the same size. */
11770 if (maybe_gt (GET_MODE_SIZE (omode), UNITS_PER_WORD)
11771 && ! (CONST_SCALAR_INT_P (x)
11772 || known_eq (GET_MODE_SIZE (imode), GET_MODE_SIZE (omode))))
11773 goto fail;
11774
11775 /* X might be a paradoxical (subreg (mem)). In that case, gen_lowpart
11776 won't know what to do. So we will strip off the SUBREG here and
11777 process normally. */
11778 if (GET_CODE (x) == SUBREG && MEM_P (SUBREG_REG (x)))
11779 {
11780 x = SUBREG_REG (x);
11781
11782 /* For use in case we fall down into the address adjustments
11783 further below, we need to adjust the known mode and size of
11784 x; imode and isize, since we just adjusted x. */
11785 imode = GET_MODE (x);
11786
11787 if (imode == omode)
11788 return x;
11789 }
11790
11791 result = gen_lowpart_common (omode, x);
11792
11793 if (result)
11794 return result;
11795
11796 if (MEM_P (x))
11797 {
11798 /* Refuse to work on a volatile memory ref or one with a mode-dependent
11799 address. */
11800 if (MEM_VOLATILE_P (x)
11801 || mode_dependent_address_p (XEXP (x, 0), MEM_ADDR_SPACE (x)))
11802 goto fail;
11803
11804 /* If we want to refer to something bigger than the original memref,
11805 generate a paradoxical subreg instead. That will force a reload
11806 of the original memref X. */
11807 if (paradoxical_subreg_p (omode, imode))
11808 return gen_rtx_SUBREG (omode, x, 0);
11809
11810 poly_int64 offset = byte_lowpart_offset (omode, imode);
11811 return adjust_address_nv (x, omode, offset);
11812 }
11813
11814 /* If X is a comparison operator, rewrite it in a new mode. This
11815 probably won't match, but may allow further simplifications. */
11816 else if (COMPARISON_P (x))
11817 return gen_rtx_fmt_ee (GET_CODE (x), omode, XEXP (x, 0), XEXP (x, 1));
11818
11819 /* If we couldn't simplify X any other way, just enclose it in a
11820 SUBREG. Normally, this SUBREG won't match, but some patterns may
11821 include an explicit SUBREG or we may simplify it further in combine. */
11822 else
11823 {
11824 rtx res;
11825
11826 if (imode == VOIDmode)
11827 {
11828 imode = int_mode_for_mode (omode).require ();
11829 x = gen_lowpart_common (imode, x);
11830 if (x == NULL)
11831 goto fail;
11832 }
11833 res = lowpart_subreg (omode, x, imode);
11834 if (res)
11835 return res;
11836 }
11837
11838 fail:
11839 return gen_rtx_CLOBBER (omode, const0_rtx);
11840 }
11841 \f
11842 /* Try to simplify a comparison between OP0 and a constant OP1,
11843 where CODE is the comparison code that will be tested, into a
11844 (CODE OP0 const0_rtx) form.
11845
11846 The result is a possibly different comparison code to use.
11847 *POP1 may be updated. */
11848
11849 static enum rtx_code
11850 simplify_compare_const (enum rtx_code code, machine_mode mode,
11851 rtx op0, rtx *pop1)
11852 {
11853 scalar_int_mode int_mode;
11854 HOST_WIDE_INT const_op = INTVAL (*pop1);
11855
11856 /* Get the constant we are comparing against and turn off all bits
11857 not on in our mode. */
11858 if (mode != VOIDmode)
11859 const_op = trunc_int_for_mode (const_op, mode);
11860
11861 /* If we are comparing against a constant power of two and the value
11862 being compared can only have that single bit nonzero (e.g., it was
11863 `and'ed with that bit), we can replace this with a comparison
11864 with zero. */
11865 if (const_op
11866 && (code == EQ || code == NE || code == GE || code == GEU
11867 || code == LT || code == LTU)
11868 && is_a <scalar_int_mode> (mode, &int_mode)
11869 && GET_MODE_PRECISION (int_mode) - 1 < HOST_BITS_PER_WIDE_INT
11870 && pow2p_hwi (const_op & GET_MODE_MASK (int_mode))
11871 && (nonzero_bits (op0, int_mode)
11872 == (unsigned HOST_WIDE_INT) (const_op & GET_MODE_MASK (int_mode))))
11873 {
11874 code = (code == EQ || code == GE || code == GEU ? NE : EQ);
11875 const_op = 0;
11876 }
11877
11878 /* Similarly, if we are comparing a value known to be either -1 or
11879 0 with -1, change it to the opposite comparison against zero. */
11880 if (const_op == -1
11881 && (code == EQ || code == NE || code == GT || code == LE
11882 || code == GEU || code == LTU)
11883 && is_a <scalar_int_mode> (mode, &int_mode)
11884 && num_sign_bit_copies (op0, int_mode) == GET_MODE_PRECISION (int_mode))
11885 {
11886 code = (code == EQ || code == LE || code == GEU ? NE : EQ);
11887 const_op = 0;
11888 }
11889
11890 /* Do some canonicalizations based on the comparison code. We prefer
11891 comparisons against zero and then prefer equality comparisons.
11892 If we can reduce the size of a constant, we will do that too. */
11893 switch (code)
11894 {
11895 case LT:
11896 /* < C is equivalent to <= (C - 1) */
11897 if (const_op > 0)
11898 {
11899 const_op -= 1;
11900 code = LE;
11901 /* ... fall through to LE case below. */
11902 gcc_fallthrough ();
11903 }
11904 else
11905 break;
11906
11907 case LE:
11908 /* <= C is equivalent to < (C + 1); we do this for C < 0 */
11909 if (const_op < 0)
11910 {
11911 const_op += 1;
11912 code = LT;
11913 }
11914
11915 /* If we are doing a <= 0 comparison on a value known to have
11916 a zero sign bit, we can replace this with == 0. */
11917 else if (const_op == 0
11918 && is_a <scalar_int_mode> (mode, &int_mode)
11919 && GET_MODE_PRECISION (int_mode) - 1 < HOST_BITS_PER_WIDE_INT
11920 && (nonzero_bits (op0, int_mode)
11921 & (HOST_WIDE_INT_1U << (GET_MODE_PRECISION (int_mode) - 1)))
11922 == 0)
11923 code = EQ;
11924 break;
11925
11926 case GE:
11927 /* >= C is equivalent to > (C - 1). */
11928 if (const_op > 0)
11929 {
11930 const_op -= 1;
11931 code = GT;
11932 /* ... fall through to GT below. */
11933 gcc_fallthrough ();
11934 }
11935 else
11936 break;
11937
11938 case GT:
11939 /* > C is equivalent to >= (C + 1); we do this for C < 0. */
11940 if (const_op < 0)
11941 {
11942 const_op += 1;
11943 code = GE;
11944 }
11945
11946 /* If we are doing a > 0 comparison on a value known to have
11947 a zero sign bit, we can replace this with != 0. */
11948 else if (const_op == 0
11949 && is_a <scalar_int_mode> (mode, &int_mode)
11950 && GET_MODE_PRECISION (int_mode) - 1 < HOST_BITS_PER_WIDE_INT
11951 && (nonzero_bits (op0, int_mode)
11952 & (HOST_WIDE_INT_1U << (GET_MODE_PRECISION (int_mode) - 1)))
11953 == 0)
11954 code = NE;
11955 break;
11956
11957 case LTU:
11958 /* < C is equivalent to <= (C - 1). */
11959 if (const_op > 0)
11960 {
11961 const_op -= 1;
11962 code = LEU;
11963 /* ... fall through ... */
11964 gcc_fallthrough ();
11965 }
11966 /* (unsigned) < 0x80000000 is equivalent to >= 0. */
11967 else if (is_a <scalar_int_mode> (mode, &int_mode)
11968 && GET_MODE_PRECISION (int_mode) - 1 < HOST_BITS_PER_WIDE_INT
11969 && ((unsigned HOST_WIDE_INT) const_op
11970 == HOST_WIDE_INT_1U << (GET_MODE_PRECISION (int_mode) - 1)))
11971 {
11972 const_op = 0;
11973 code = GE;
11974 break;
11975 }
11976 else
11977 break;
11978
11979 case LEU:
11980 /* unsigned <= 0 is equivalent to == 0 */
11981 if (const_op == 0)
11982 code = EQ;
11983 /* (unsigned) <= 0x7fffffff is equivalent to >= 0. */
11984 else if (is_a <scalar_int_mode> (mode, &int_mode)
11985 && GET_MODE_PRECISION (int_mode) - 1 < HOST_BITS_PER_WIDE_INT
11986 && ((unsigned HOST_WIDE_INT) const_op
11987 == ((HOST_WIDE_INT_1U
11988 << (GET_MODE_PRECISION (int_mode) - 1)) - 1)))
11989 {
11990 const_op = 0;
11991 code = GE;
11992 }
11993 break;
11994
11995 case GEU:
11996 /* >= C is equivalent to > (C - 1). */
11997 if (const_op > 1)
11998 {
11999 const_op -= 1;
12000 code = GTU;
12001 /* ... fall through ... */
12002 gcc_fallthrough ();
12003 }
12004
12005 /* (unsigned) >= 0x80000000 is equivalent to < 0. */
12006 else if (is_a <scalar_int_mode> (mode, &int_mode)
12007 && GET_MODE_PRECISION (int_mode) - 1 < HOST_BITS_PER_WIDE_INT
12008 && ((unsigned HOST_WIDE_INT) const_op
12009 == HOST_WIDE_INT_1U << (GET_MODE_PRECISION (int_mode) - 1)))
12010 {
12011 const_op = 0;
12012 code = LT;
12013 break;
12014 }
12015 else
12016 break;
12017
12018 case GTU:
12019 /* unsigned > 0 is equivalent to != 0 */
12020 if (const_op == 0)
12021 code = NE;
12022 /* (unsigned) > 0x7fffffff is equivalent to < 0. */
12023 else if (is_a <scalar_int_mode> (mode, &int_mode)
12024 && GET_MODE_PRECISION (int_mode) - 1 < HOST_BITS_PER_WIDE_INT
12025 && ((unsigned HOST_WIDE_INT) const_op
12026 == (HOST_WIDE_INT_1U
12027 << (GET_MODE_PRECISION (int_mode) - 1)) - 1))
12028 {
12029 const_op = 0;
12030 code = LT;
12031 }
12032 break;
12033
12034 default:
12035 break;
12036 }
12037
12038 *pop1 = GEN_INT (const_op);
12039 return code;
12040 }
12041 \f
12042 /* Simplify a comparison between *POP0 and *POP1 where CODE is the
12043 comparison code that will be tested.
12044
12045 The result is a possibly different comparison code to use. *POP0 and
12046 *POP1 may be updated.
12047
12048 It is possible that we might detect that a comparison is either always
12049 true or always false. However, we do not perform general constant
12050 folding in combine, so this knowledge isn't useful. Such tautologies
12051 should have been detected earlier. Hence we ignore all such cases. */
12052
12053 static enum rtx_code
12054 simplify_comparison (enum rtx_code code, rtx *pop0, rtx *pop1)
12055 {
12056 rtx op0 = *pop0;
12057 rtx op1 = *pop1;
12058 rtx tem, tem1;
12059 int i;
12060 scalar_int_mode mode, inner_mode, tmode;
12061 opt_scalar_int_mode tmode_iter;
12062
12063 /* Try a few ways of applying the same transformation to both operands. */
12064 while (1)
12065 {
12066 /* The test below this one won't handle SIGN_EXTENDs on these machines,
12067 so check specially. */
12068 if (!WORD_REGISTER_OPERATIONS
12069 && code != GTU && code != GEU && code != LTU && code != LEU
12070 && GET_CODE (op0) == ASHIFTRT && GET_CODE (op1) == ASHIFTRT
12071 && GET_CODE (XEXP (op0, 0)) == ASHIFT
12072 && GET_CODE (XEXP (op1, 0)) == ASHIFT
12073 && GET_CODE (XEXP (XEXP (op0, 0), 0)) == SUBREG
12074 && GET_CODE (XEXP (XEXP (op1, 0), 0)) == SUBREG
12075 && is_a <scalar_int_mode> (GET_MODE (op0), &mode)
12076 && (is_a <scalar_int_mode>
12077 (GET_MODE (SUBREG_REG (XEXP (XEXP (op0, 0), 0))), &inner_mode))
12078 && inner_mode == GET_MODE (SUBREG_REG (XEXP (XEXP (op1, 0), 0)))
12079 && CONST_INT_P (XEXP (op0, 1))
12080 && XEXP (op0, 1) == XEXP (op1, 1)
12081 && XEXP (op0, 1) == XEXP (XEXP (op0, 0), 1)
12082 && XEXP (op0, 1) == XEXP (XEXP (op1, 0), 1)
12083 && (INTVAL (XEXP (op0, 1))
12084 == (GET_MODE_PRECISION (mode)
12085 - GET_MODE_PRECISION (inner_mode))))
12086 {
12087 op0 = SUBREG_REG (XEXP (XEXP (op0, 0), 0));
12088 op1 = SUBREG_REG (XEXP (XEXP (op1, 0), 0));
12089 }
12090
12091 /* If both operands are the same constant shift, see if we can ignore the
12092 shift. We can if the shift is a rotate or if the bits shifted out of
12093 this shift are known to be zero for both inputs and if the type of
12094 comparison is compatible with the shift. */
12095 if (GET_CODE (op0) == GET_CODE (op1)
12096 && HWI_COMPUTABLE_MODE_P (GET_MODE (op0))
12097 && ((GET_CODE (op0) == ROTATE && (code == NE || code == EQ))
12098 || ((GET_CODE (op0) == LSHIFTRT || GET_CODE (op0) == ASHIFT)
12099 && (code != GT && code != LT && code != GE && code != LE))
12100 || (GET_CODE (op0) == ASHIFTRT
12101 && (code != GTU && code != LTU
12102 && code != GEU && code != LEU)))
12103 && CONST_INT_P (XEXP (op0, 1))
12104 && INTVAL (XEXP (op0, 1)) >= 0
12105 && INTVAL (XEXP (op0, 1)) < HOST_BITS_PER_WIDE_INT
12106 && XEXP (op0, 1) == XEXP (op1, 1))
12107 {
12108 machine_mode mode = GET_MODE (op0);
12109 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
12110 int shift_count = INTVAL (XEXP (op0, 1));
12111
12112 if (GET_CODE (op0) == LSHIFTRT || GET_CODE (op0) == ASHIFTRT)
12113 mask &= (mask >> shift_count) << shift_count;
12114 else if (GET_CODE (op0) == ASHIFT)
12115 mask = (mask & (mask << shift_count)) >> shift_count;
12116
12117 if ((nonzero_bits (XEXP (op0, 0), mode) & ~mask) == 0
12118 && (nonzero_bits (XEXP (op1, 0), mode) & ~mask) == 0)
12119 op0 = XEXP (op0, 0), op1 = XEXP (op1, 0);
12120 else
12121 break;
12122 }
12123
12124 /* If both operands are AND's of a paradoxical SUBREG by constant, the
12125 SUBREGs are of the same mode, and, in both cases, the AND would
12126 be redundant if the comparison was done in the narrower mode,
12127 do the comparison in the narrower mode (e.g., we are AND'ing with 1
12128 and the operand's possibly nonzero bits are 0xffffff01; in that case
12129 if we only care about QImode, we don't need the AND). This case
12130 occurs if the output mode of an scc insn is not SImode and
12131 STORE_FLAG_VALUE == 1 (e.g., the 386).
12132
12133 Similarly, check for a case where the AND's are ZERO_EXTEND
12134 operations from some narrower mode even though a SUBREG is not
12135 present. */
12136
12137 else if (GET_CODE (op0) == AND && GET_CODE (op1) == AND
12138 && CONST_INT_P (XEXP (op0, 1))
12139 && CONST_INT_P (XEXP (op1, 1)))
12140 {
12141 rtx inner_op0 = XEXP (op0, 0);
12142 rtx inner_op1 = XEXP (op1, 0);
12143 HOST_WIDE_INT c0 = INTVAL (XEXP (op0, 1));
12144 HOST_WIDE_INT c1 = INTVAL (XEXP (op1, 1));
12145 int changed = 0;
12146
12147 if (paradoxical_subreg_p (inner_op0)
12148 && GET_CODE (inner_op1) == SUBREG
12149 && HWI_COMPUTABLE_MODE_P (GET_MODE (SUBREG_REG (inner_op0)))
12150 && (GET_MODE (SUBREG_REG (inner_op0))
12151 == GET_MODE (SUBREG_REG (inner_op1)))
12152 && ((~c0) & nonzero_bits (SUBREG_REG (inner_op0),
12153 GET_MODE (SUBREG_REG (inner_op0)))) == 0
12154 && ((~c1) & nonzero_bits (SUBREG_REG (inner_op1),
12155 GET_MODE (SUBREG_REG (inner_op1)))) == 0)
12156 {
12157 op0 = SUBREG_REG (inner_op0);
12158 op1 = SUBREG_REG (inner_op1);
12159
12160 /* The resulting comparison is always unsigned since we masked
12161 off the original sign bit. */
12162 code = unsigned_condition (code);
12163
12164 changed = 1;
12165 }
12166
12167 else if (c0 == c1)
12168 FOR_EACH_MODE_UNTIL (tmode,
12169 as_a <scalar_int_mode> (GET_MODE (op0)))
12170 if ((unsigned HOST_WIDE_INT) c0 == GET_MODE_MASK (tmode))
12171 {
12172 op0 = gen_lowpart_or_truncate (tmode, inner_op0);
12173 op1 = gen_lowpart_or_truncate (tmode, inner_op1);
12174 code = unsigned_condition (code);
12175 changed = 1;
12176 break;
12177 }
12178
12179 if (! changed)
12180 break;
12181 }
12182
12183 /* If both operands are NOT, we can strip off the outer operation
12184 and adjust the comparison code for swapped operands; similarly for
12185 NEG, except that this must be an equality comparison. */
12186 else if ((GET_CODE (op0) == NOT && GET_CODE (op1) == NOT)
12187 || (GET_CODE (op0) == NEG && GET_CODE (op1) == NEG
12188 && (code == EQ || code == NE)))
12189 op0 = XEXP (op0, 0), op1 = XEXP (op1, 0), code = swap_condition (code);
12190
12191 else
12192 break;
12193 }
12194
12195 /* If the first operand is a constant, swap the operands and adjust the
12196 comparison code appropriately, but don't do this if the second operand
12197 is already a constant integer. */
12198 if (swap_commutative_operands_p (op0, op1))
12199 {
12200 std::swap (op0, op1);
12201 code = swap_condition (code);
12202 }
12203
12204 /* We now enter a loop during which we will try to simplify the comparison.
12205 For the most part, we only are concerned with comparisons with zero,
12206 but some things may really be comparisons with zero but not start
12207 out looking that way. */
12208
12209 while (CONST_INT_P (op1))
12210 {
12211 machine_mode raw_mode = GET_MODE (op0);
12212 scalar_int_mode int_mode;
12213 int equality_comparison_p;
12214 int sign_bit_comparison_p;
12215 int unsigned_comparison_p;
12216 HOST_WIDE_INT const_op;
12217
12218 /* We only want to handle integral modes. This catches VOIDmode,
12219 CCmode, and the floating-point modes. An exception is that we
12220 can handle VOIDmode if OP0 is a COMPARE or a comparison
12221 operation. */
12222
12223 if (GET_MODE_CLASS (raw_mode) != MODE_INT
12224 && ! (raw_mode == VOIDmode
12225 && (GET_CODE (op0) == COMPARE || COMPARISON_P (op0))))
12226 break;
12227
12228 /* Try to simplify the compare to constant, possibly changing the
12229 comparison op, and/or changing op1 to zero. */
12230 code = simplify_compare_const (code, raw_mode, op0, &op1);
12231 const_op = INTVAL (op1);
12232
12233 /* Compute some predicates to simplify code below. */
12234
12235 equality_comparison_p = (code == EQ || code == NE);
12236 sign_bit_comparison_p = ((code == LT || code == GE) && const_op == 0);
12237 unsigned_comparison_p = (code == LTU || code == LEU || code == GTU
12238 || code == GEU);
12239
12240 /* If this is a sign bit comparison and we can do arithmetic in
12241 MODE, say that we will only be needing the sign bit of OP0. */
12242 if (sign_bit_comparison_p
12243 && is_a <scalar_int_mode> (raw_mode, &int_mode)
12244 && HWI_COMPUTABLE_MODE_P (int_mode))
12245 op0 = force_to_mode (op0, int_mode,
12246 HOST_WIDE_INT_1U
12247 << (GET_MODE_PRECISION (int_mode) - 1),
12248 0);
12249
12250 if (COMPARISON_P (op0))
12251 {
12252 /* We can't do anything if OP0 is a condition code value, rather
12253 than an actual data value. */
12254 if (const_op != 0
12255 || CC0_P (XEXP (op0, 0))
12256 || GET_MODE_CLASS (GET_MODE (XEXP (op0, 0))) == MODE_CC)
12257 break;
12258
12259 /* Get the two operands being compared. */
12260 if (GET_CODE (XEXP (op0, 0)) == COMPARE)
12261 tem = XEXP (XEXP (op0, 0), 0), tem1 = XEXP (XEXP (op0, 0), 1);
12262 else
12263 tem = XEXP (op0, 0), tem1 = XEXP (op0, 1);
12264
12265 /* Check for the cases where we simply want the result of the
12266 earlier test or the opposite of that result. */
12267 if (code == NE || code == EQ
12268 || (val_signbit_known_set_p (raw_mode, STORE_FLAG_VALUE)
12269 && (code == LT || code == GE)))
12270 {
12271 enum rtx_code new_code;
12272 if (code == LT || code == NE)
12273 new_code = GET_CODE (op0);
12274 else
12275 new_code = reversed_comparison_code (op0, NULL);
12276
12277 if (new_code != UNKNOWN)
12278 {
12279 code = new_code;
12280 op0 = tem;
12281 op1 = tem1;
12282 continue;
12283 }
12284 }
12285 break;
12286 }
12287
12288 if (raw_mode == VOIDmode)
12289 break;
12290 scalar_int_mode mode = as_a <scalar_int_mode> (raw_mode);
12291
12292 /* Now try cases based on the opcode of OP0. If none of the cases
12293 does a "continue", we exit this loop immediately after the
12294 switch. */
12295
12296 unsigned int mode_width = GET_MODE_PRECISION (mode);
12297 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
12298 switch (GET_CODE (op0))
12299 {
12300 case ZERO_EXTRACT:
12301 /* If we are extracting a single bit from a variable position in
12302 a constant that has only a single bit set and are comparing it
12303 with zero, we can convert this into an equality comparison
12304 between the position and the location of the single bit. */
12305 /* Except we can't if SHIFT_COUNT_TRUNCATED is set, since we might
12306 have already reduced the shift count modulo the word size. */
12307 if (!SHIFT_COUNT_TRUNCATED
12308 && CONST_INT_P (XEXP (op0, 0))
12309 && XEXP (op0, 1) == const1_rtx
12310 && equality_comparison_p && const_op == 0
12311 && (i = exact_log2 (UINTVAL (XEXP (op0, 0)))) >= 0)
12312 {
12313 if (BITS_BIG_ENDIAN)
12314 i = BITS_PER_WORD - 1 - i;
12315
12316 op0 = XEXP (op0, 2);
12317 op1 = GEN_INT (i);
12318 const_op = i;
12319
12320 /* Result is nonzero iff shift count is equal to I. */
12321 code = reverse_condition (code);
12322 continue;
12323 }
12324
12325 /* fall through */
12326
12327 case SIGN_EXTRACT:
12328 tem = expand_compound_operation (op0);
12329 if (tem != op0)
12330 {
12331 op0 = tem;
12332 continue;
12333 }
12334 break;
12335
12336 case NOT:
12337 /* If testing for equality, we can take the NOT of the constant. */
12338 if (equality_comparison_p
12339 && (tem = simplify_unary_operation (NOT, mode, op1, mode)) != 0)
12340 {
12341 op0 = XEXP (op0, 0);
12342 op1 = tem;
12343 continue;
12344 }
12345
12346 /* If just looking at the sign bit, reverse the sense of the
12347 comparison. */
12348 if (sign_bit_comparison_p)
12349 {
12350 op0 = XEXP (op0, 0);
12351 code = (code == GE ? LT : GE);
12352 continue;
12353 }
12354 break;
12355
12356 case NEG:
12357 /* If testing for equality, we can take the NEG of the constant. */
12358 if (equality_comparison_p
12359 && (tem = simplify_unary_operation (NEG, mode, op1, mode)) != 0)
12360 {
12361 op0 = XEXP (op0, 0);
12362 op1 = tem;
12363 continue;
12364 }
12365
12366 /* The remaining cases only apply to comparisons with zero. */
12367 if (const_op != 0)
12368 break;
12369
12370 /* When X is ABS or is known positive,
12371 (neg X) is < 0 if and only if X != 0. */
12372
12373 if (sign_bit_comparison_p
12374 && (GET_CODE (XEXP (op0, 0)) == ABS
12375 || (mode_width <= HOST_BITS_PER_WIDE_INT
12376 && (nonzero_bits (XEXP (op0, 0), mode)
12377 & (HOST_WIDE_INT_1U << (mode_width - 1)))
12378 == 0)))
12379 {
12380 op0 = XEXP (op0, 0);
12381 code = (code == LT ? NE : EQ);
12382 continue;
12383 }
12384
12385 /* If we have NEG of something whose two high-order bits are the
12386 same, we know that "(-a) < 0" is equivalent to "a > 0". */
12387 if (num_sign_bit_copies (op0, mode) >= 2)
12388 {
12389 op0 = XEXP (op0, 0);
12390 code = swap_condition (code);
12391 continue;
12392 }
12393 break;
12394
12395 case ROTATE:
12396 /* If we are testing equality and our count is a constant, we
12397 can perform the inverse operation on our RHS. */
12398 if (equality_comparison_p && CONST_INT_P (XEXP (op0, 1))
12399 && (tem = simplify_binary_operation (ROTATERT, mode,
12400 op1, XEXP (op0, 1))) != 0)
12401 {
12402 op0 = XEXP (op0, 0);
12403 op1 = tem;
12404 continue;
12405 }
12406
12407 /* If we are doing a < 0 or >= 0 comparison, it means we are testing
12408 a particular bit. Convert it to an AND of a constant of that
12409 bit. This will be converted into a ZERO_EXTRACT. */
12410 if (const_op == 0 && sign_bit_comparison_p
12411 && CONST_INT_P (XEXP (op0, 1))
12412 && mode_width <= HOST_BITS_PER_WIDE_INT)
12413 {
12414 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
12415 (HOST_WIDE_INT_1U
12416 << (mode_width - 1
12417 - INTVAL (XEXP (op0, 1)))));
12418 code = (code == LT ? NE : EQ);
12419 continue;
12420 }
12421
12422 /* Fall through. */
12423
12424 case ABS:
12425 /* ABS is ignorable inside an equality comparison with zero. */
12426 if (const_op == 0 && equality_comparison_p)
12427 {
12428 op0 = XEXP (op0, 0);
12429 continue;
12430 }
12431 break;
12432
12433 case SIGN_EXTEND:
12434 /* Can simplify (compare (zero/sign_extend FOO) CONST) to
12435 (compare FOO CONST) if CONST fits in FOO's mode and we
12436 are either testing inequality or have an unsigned
12437 comparison with ZERO_EXTEND or a signed comparison with
12438 SIGN_EXTEND. But don't do it if we don't have a compare
12439 insn of the given mode, since we'd have to revert it
12440 later on, and then we wouldn't know whether to sign- or
12441 zero-extend. */
12442 if (is_int_mode (GET_MODE (XEXP (op0, 0)), &mode)
12443 && ! unsigned_comparison_p
12444 && HWI_COMPUTABLE_MODE_P (mode)
12445 && trunc_int_for_mode (const_op, mode) == const_op
12446 && have_insn_for (COMPARE, mode))
12447 {
12448 op0 = XEXP (op0, 0);
12449 continue;
12450 }
12451 break;
12452
12453 case SUBREG:
12454 /* Check for the case where we are comparing A - C1 with C2, that is
12455
12456 (subreg:MODE (plus (A) (-C1))) op (C2)
12457
12458 with C1 a constant, and try to lift the SUBREG, i.e. to do the
12459 comparison in the wider mode. One of the following two conditions
12460 must be true in order for this to be valid:
12461
12462 1. The mode extension results in the same bit pattern being added
12463 on both sides and the comparison is equality or unsigned. As
12464 C2 has been truncated to fit in MODE, the pattern can only be
12465 all 0s or all 1s.
12466
12467 2. The mode extension results in the sign bit being copied on
12468 each side.
12469
12470 The difficulty here is that we have predicates for A but not for
12471 (A - C1) so we need to check that C1 is within proper bounds so
12472 as to perturbate A as little as possible. */
12473
12474 if (mode_width <= HOST_BITS_PER_WIDE_INT
12475 && subreg_lowpart_p (op0)
12476 && is_a <scalar_int_mode> (GET_MODE (SUBREG_REG (op0)),
12477 &inner_mode)
12478 && GET_MODE_PRECISION (inner_mode) > mode_width
12479 && GET_CODE (SUBREG_REG (op0)) == PLUS
12480 && CONST_INT_P (XEXP (SUBREG_REG (op0), 1)))
12481 {
12482 rtx a = XEXP (SUBREG_REG (op0), 0);
12483 HOST_WIDE_INT c1 = -INTVAL (XEXP (SUBREG_REG (op0), 1));
12484
12485 if ((c1 > 0
12486 && (unsigned HOST_WIDE_INT) c1
12487 < HOST_WIDE_INT_1U << (mode_width - 1)
12488 && (equality_comparison_p || unsigned_comparison_p)
12489 /* (A - C1) zero-extends if it is positive and sign-extends
12490 if it is negative, C2 both zero- and sign-extends. */
12491 && (((nonzero_bits (a, inner_mode)
12492 & ~GET_MODE_MASK (mode)) == 0
12493 && const_op >= 0)
12494 /* (A - C1) sign-extends if it is positive and 1-extends
12495 if it is negative, C2 both sign- and 1-extends. */
12496 || (num_sign_bit_copies (a, inner_mode)
12497 > (unsigned int) (GET_MODE_PRECISION (inner_mode)
12498 - mode_width)
12499 && const_op < 0)))
12500 || ((unsigned HOST_WIDE_INT) c1
12501 < HOST_WIDE_INT_1U << (mode_width - 2)
12502 /* (A - C1) always sign-extends, like C2. */
12503 && num_sign_bit_copies (a, inner_mode)
12504 > (unsigned int) (GET_MODE_PRECISION (inner_mode)
12505 - (mode_width - 1))))
12506 {
12507 op0 = SUBREG_REG (op0);
12508 continue;
12509 }
12510 }
12511
12512 /* If the inner mode is narrower and we are extracting the low part,
12513 we can treat the SUBREG as if it were a ZERO_EXTEND. */
12514 if (paradoxical_subreg_p (op0))
12515 ;
12516 else if (subreg_lowpart_p (op0)
12517 && GET_MODE_CLASS (mode) == MODE_INT
12518 && is_int_mode (GET_MODE (SUBREG_REG (op0)), &inner_mode)
12519 && (code == NE || code == EQ)
12520 && GET_MODE_PRECISION (inner_mode) <= HOST_BITS_PER_WIDE_INT
12521 && !paradoxical_subreg_p (op0)
12522 && (nonzero_bits (SUBREG_REG (op0), inner_mode)
12523 & ~GET_MODE_MASK (mode)) == 0)
12524 {
12525 /* Remove outer subregs that don't do anything. */
12526 tem = gen_lowpart (inner_mode, op1);
12527
12528 if ((nonzero_bits (tem, inner_mode)
12529 & ~GET_MODE_MASK (mode)) == 0)
12530 {
12531 op0 = SUBREG_REG (op0);
12532 op1 = tem;
12533 continue;
12534 }
12535 break;
12536 }
12537 else
12538 break;
12539
12540 /* FALLTHROUGH */
12541
12542 case ZERO_EXTEND:
12543 if (is_int_mode (GET_MODE (XEXP (op0, 0)), &mode)
12544 && (unsigned_comparison_p || equality_comparison_p)
12545 && HWI_COMPUTABLE_MODE_P (mode)
12546 && (unsigned HOST_WIDE_INT) const_op <= GET_MODE_MASK (mode)
12547 && const_op >= 0
12548 && have_insn_for (COMPARE, mode))
12549 {
12550 op0 = XEXP (op0, 0);
12551 continue;
12552 }
12553 break;
12554
12555 case PLUS:
12556 /* (eq (plus X A) B) -> (eq X (minus B A)). We can only do
12557 this for equality comparisons due to pathological cases involving
12558 overflows. */
12559 if (equality_comparison_p
12560 && (tem = simplify_binary_operation (MINUS, mode,
12561 op1, XEXP (op0, 1))) != 0)
12562 {
12563 op0 = XEXP (op0, 0);
12564 op1 = tem;
12565 continue;
12566 }
12567
12568 /* (plus (abs X) (const_int -1)) is < 0 if and only if X == 0. */
12569 if (const_op == 0 && XEXP (op0, 1) == constm1_rtx
12570 && GET_CODE (XEXP (op0, 0)) == ABS && sign_bit_comparison_p)
12571 {
12572 op0 = XEXP (XEXP (op0, 0), 0);
12573 code = (code == LT ? EQ : NE);
12574 continue;
12575 }
12576 break;
12577
12578 case MINUS:
12579 /* We used to optimize signed comparisons against zero, but that
12580 was incorrect. Unsigned comparisons against zero (GTU, LEU)
12581 arrive here as equality comparisons, or (GEU, LTU) are
12582 optimized away. No need to special-case them. */
12583
12584 /* (eq (minus A B) C) -> (eq A (plus B C)) or
12585 (eq B (minus A C)), whichever simplifies. We can only do
12586 this for equality comparisons due to pathological cases involving
12587 overflows. */
12588 if (equality_comparison_p
12589 && (tem = simplify_binary_operation (PLUS, mode,
12590 XEXP (op0, 1), op1)) != 0)
12591 {
12592 op0 = XEXP (op0, 0);
12593 op1 = tem;
12594 continue;
12595 }
12596
12597 if (equality_comparison_p
12598 && (tem = simplify_binary_operation (MINUS, mode,
12599 XEXP (op0, 0), op1)) != 0)
12600 {
12601 op0 = XEXP (op0, 1);
12602 op1 = tem;
12603 continue;
12604 }
12605
12606 /* The sign bit of (minus (ashiftrt X C) X), where C is the number
12607 of bits in X minus 1, is one iff X > 0. */
12608 if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 0)) == ASHIFTRT
12609 && CONST_INT_P (XEXP (XEXP (op0, 0), 1))
12610 && UINTVAL (XEXP (XEXP (op0, 0), 1)) == mode_width - 1
12611 && rtx_equal_p (XEXP (XEXP (op0, 0), 0), XEXP (op0, 1)))
12612 {
12613 op0 = XEXP (op0, 1);
12614 code = (code == GE ? LE : GT);
12615 continue;
12616 }
12617 break;
12618
12619 case XOR:
12620 /* (eq (xor A B) C) -> (eq A (xor B C)). This is a simplification
12621 if C is zero or B is a constant. */
12622 if (equality_comparison_p
12623 && (tem = simplify_binary_operation (XOR, mode,
12624 XEXP (op0, 1), op1)) != 0)
12625 {
12626 op0 = XEXP (op0, 0);
12627 op1 = tem;
12628 continue;
12629 }
12630 break;
12631
12632
12633 case IOR:
12634 /* The sign bit of (ior (plus X (const_int -1)) X) is nonzero
12635 iff X <= 0. */
12636 if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 0)) == PLUS
12637 && XEXP (XEXP (op0, 0), 1) == constm1_rtx
12638 && rtx_equal_p (XEXP (XEXP (op0, 0), 0), XEXP (op0, 1)))
12639 {
12640 op0 = XEXP (op0, 1);
12641 code = (code == GE ? GT : LE);
12642 continue;
12643 }
12644 break;
12645
12646 case AND:
12647 /* Convert (and (xshift 1 X) Y) to (and (lshiftrt Y X) 1). This
12648 will be converted to a ZERO_EXTRACT later. */
12649 if (const_op == 0 && equality_comparison_p
12650 && GET_CODE (XEXP (op0, 0)) == ASHIFT
12651 && XEXP (XEXP (op0, 0), 0) == const1_rtx)
12652 {
12653 op0 = gen_rtx_LSHIFTRT (mode, XEXP (op0, 1),
12654 XEXP (XEXP (op0, 0), 1));
12655 op0 = simplify_and_const_int (NULL_RTX, mode, op0, 1);
12656 continue;
12657 }
12658
12659 /* If we are comparing (and (lshiftrt X C1) C2) for equality with
12660 zero and X is a comparison and C1 and C2 describe only bits set
12661 in STORE_FLAG_VALUE, we can compare with X. */
12662 if (const_op == 0 && equality_comparison_p
12663 && mode_width <= HOST_BITS_PER_WIDE_INT
12664 && CONST_INT_P (XEXP (op0, 1))
12665 && GET_CODE (XEXP (op0, 0)) == LSHIFTRT
12666 && CONST_INT_P (XEXP (XEXP (op0, 0), 1))
12667 && INTVAL (XEXP (XEXP (op0, 0), 1)) >= 0
12668 && INTVAL (XEXP (XEXP (op0, 0), 1)) < HOST_BITS_PER_WIDE_INT)
12669 {
12670 mask = ((INTVAL (XEXP (op0, 1)) & GET_MODE_MASK (mode))
12671 << INTVAL (XEXP (XEXP (op0, 0), 1)));
12672 if ((~STORE_FLAG_VALUE & mask) == 0
12673 && (COMPARISON_P (XEXP (XEXP (op0, 0), 0))
12674 || ((tem = get_last_value (XEXP (XEXP (op0, 0), 0))) != 0
12675 && COMPARISON_P (tem))))
12676 {
12677 op0 = XEXP (XEXP (op0, 0), 0);
12678 continue;
12679 }
12680 }
12681
12682 /* If we are doing an equality comparison of an AND of a bit equal
12683 to the sign bit, replace this with a LT or GE comparison of
12684 the underlying value. */
12685 if (equality_comparison_p
12686 && const_op == 0
12687 && CONST_INT_P (XEXP (op0, 1))
12688 && mode_width <= HOST_BITS_PER_WIDE_INT
12689 && ((INTVAL (XEXP (op0, 1)) & GET_MODE_MASK (mode))
12690 == HOST_WIDE_INT_1U << (mode_width - 1)))
12691 {
12692 op0 = XEXP (op0, 0);
12693 code = (code == EQ ? GE : LT);
12694 continue;
12695 }
12696
12697 /* If this AND operation is really a ZERO_EXTEND from a narrower
12698 mode, the constant fits within that mode, and this is either an
12699 equality or unsigned comparison, try to do this comparison in
12700 the narrower mode.
12701
12702 Note that in:
12703
12704 (ne:DI (and:DI (reg:DI 4) (const_int 0xffffffff)) (const_int 0))
12705 -> (ne:DI (reg:SI 4) (const_int 0))
12706
12707 unless TARGET_TRULY_NOOP_TRUNCATION allows it or the register is
12708 known to hold a value of the required mode the
12709 transformation is invalid. */
12710 if ((equality_comparison_p || unsigned_comparison_p)
12711 && CONST_INT_P (XEXP (op0, 1))
12712 && (i = exact_log2 ((UINTVAL (XEXP (op0, 1))
12713 & GET_MODE_MASK (mode))
12714 + 1)) >= 0
12715 && const_op >> i == 0
12716 && int_mode_for_size (i, 1).exists (&tmode))
12717 {
12718 op0 = gen_lowpart_or_truncate (tmode, XEXP (op0, 0));
12719 continue;
12720 }
12721
12722 /* If this is (and:M1 (subreg:M1 X:M2 0) (const_int C1)) where C1
12723 fits in both M1 and M2 and the SUBREG is either paradoxical
12724 or represents the low part, permute the SUBREG and the AND
12725 and try again. */
12726 if (GET_CODE (XEXP (op0, 0)) == SUBREG
12727 && CONST_INT_P (XEXP (op0, 1)))
12728 {
12729 unsigned HOST_WIDE_INT c1 = INTVAL (XEXP (op0, 1));
12730 /* Require an integral mode, to avoid creating something like
12731 (AND:SF ...). */
12732 if ((is_a <scalar_int_mode>
12733 (GET_MODE (SUBREG_REG (XEXP (op0, 0))), &tmode))
12734 /* It is unsafe to commute the AND into the SUBREG if the
12735 SUBREG is paradoxical and WORD_REGISTER_OPERATIONS is
12736 not defined. As originally written the upper bits
12737 have a defined value due to the AND operation.
12738 However, if we commute the AND inside the SUBREG then
12739 they no longer have defined values and the meaning of
12740 the code has been changed.
12741 Also C1 should not change value in the smaller mode,
12742 see PR67028 (a positive C1 can become negative in the
12743 smaller mode, so that the AND does no longer mask the
12744 upper bits). */
12745 && ((WORD_REGISTER_OPERATIONS
12746 && mode_width > GET_MODE_PRECISION (tmode)
12747 && mode_width <= BITS_PER_WORD
12748 && trunc_int_for_mode (c1, tmode) == (HOST_WIDE_INT) c1)
12749 || (mode_width <= GET_MODE_PRECISION (tmode)
12750 && subreg_lowpart_p (XEXP (op0, 0))))
12751 && mode_width <= HOST_BITS_PER_WIDE_INT
12752 && HWI_COMPUTABLE_MODE_P (tmode)
12753 && (c1 & ~mask) == 0
12754 && (c1 & ~GET_MODE_MASK (tmode)) == 0
12755 && c1 != mask
12756 && c1 != GET_MODE_MASK (tmode))
12757 {
12758 op0 = simplify_gen_binary (AND, tmode,
12759 SUBREG_REG (XEXP (op0, 0)),
12760 gen_int_mode (c1, tmode));
12761 op0 = gen_lowpart (mode, op0);
12762 continue;
12763 }
12764 }
12765
12766 /* Convert (ne (and (not X) 1) 0) to (eq (and X 1) 0). */
12767 if (const_op == 0 && equality_comparison_p
12768 && XEXP (op0, 1) == const1_rtx
12769 && GET_CODE (XEXP (op0, 0)) == NOT)
12770 {
12771 op0 = simplify_and_const_int (NULL_RTX, mode,
12772 XEXP (XEXP (op0, 0), 0), 1);
12773 code = (code == NE ? EQ : NE);
12774 continue;
12775 }
12776
12777 /* Convert (ne (and (lshiftrt (not X)) 1) 0) to
12778 (eq (and (lshiftrt X) 1) 0).
12779 Also handle the case where (not X) is expressed using xor. */
12780 if (const_op == 0 && equality_comparison_p
12781 && XEXP (op0, 1) == const1_rtx
12782 && GET_CODE (XEXP (op0, 0)) == LSHIFTRT)
12783 {
12784 rtx shift_op = XEXP (XEXP (op0, 0), 0);
12785 rtx shift_count = XEXP (XEXP (op0, 0), 1);
12786
12787 if (GET_CODE (shift_op) == NOT
12788 || (GET_CODE (shift_op) == XOR
12789 && CONST_INT_P (XEXP (shift_op, 1))
12790 && CONST_INT_P (shift_count)
12791 && HWI_COMPUTABLE_MODE_P (mode)
12792 && (UINTVAL (XEXP (shift_op, 1))
12793 == HOST_WIDE_INT_1U
12794 << INTVAL (shift_count))))
12795 {
12796 op0
12797 = gen_rtx_LSHIFTRT (mode, XEXP (shift_op, 0), shift_count);
12798 op0 = simplify_and_const_int (NULL_RTX, mode, op0, 1);
12799 code = (code == NE ? EQ : NE);
12800 continue;
12801 }
12802 }
12803 break;
12804
12805 case ASHIFT:
12806 /* If we have (compare (ashift FOO N) (const_int C)) and
12807 the high order N bits of FOO (N+1 if an inequality comparison)
12808 are known to be zero, we can do this by comparing FOO with C
12809 shifted right N bits so long as the low-order N bits of C are
12810 zero. */
12811 if (CONST_INT_P (XEXP (op0, 1))
12812 && INTVAL (XEXP (op0, 1)) >= 0
12813 && ((INTVAL (XEXP (op0, 1)) + ! equality_comparison_p)
12814 < HOST_BITS_PER_WIDE_INT)
12815 && (((unsigned HOST_WIDE_INT) const_op
12816 & ((HOST_WIDE_INT_1U << INTVAL (XEXP (op0, 1)))
12817 - 1)) == 0)
12818 && mode_width <= HOST_BITS_PER_WIDE_INT
12819 && (nonzero_bits (XEXP (op0, 0), mode)
12820 & ~(mask >> (INTVAL (XEXP (op0, 1))
12821 + ! equality_comparison_p))) == 0)
12822 {
12823 /* We must perform a logical shift, not an arithmetic one,
12824 as we want the top N bits of C to be zero. */
12825 unsigned HOST_WIDE_INT temp = const_op & GET_MODE_MASK (mode);
12826
12827 temp >>= INTVAL (XEXP (op0, 1));
12828 op1 = gen_int_mode (temp, mode);
12829 op0 = XEXP (op0, 0);
12830 continue;
12831 }
12832
12833 /* If we are doing a sign bit comparison, it means we are testing
12834 a particular bit. Convert it to the appropriate AND. */
12835 if (sign_bit_comparison_p && CONST_INT_P (XEXP (op0, 1))
12836 && mode_width <= HOST_BITS_PER_WIDE_INT)
12837 {
12838 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
12839 (HOST_WIDE_INT_1U
12840 << (mode_width - 1
12841 - INTVAL (XEXP (op0, 1)))));
12842 code = (code == LT ? NE : EQ);
12843 continue;
12844 }
12845
12846 /* If this an equality comparison with zero and we are shifting
12847 the low bit to the sign bit, we can convert this to an AND of the
12848 low-order bit. */
12849 if (const_op == 0 && equality_comparison_p
12850 && CONST_INT_P (XEXP (op0, 1))
12851 && UINTVAL (XEXP (op0, 1)) == mode_width - 1)
12852 {
12853 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0), 1);
12854 continue;
12855 }
12856 break;
12857
12858 case ASHIFTRT:
12859 /* If this is an equality comparison with zero, we can do this
12860 as a logical shift, which might be much simpler. */
12861 if (equality_comparison_p && const_op == 0
12862 && CONST_INT_P (XEXP (op0, 1)))
12863 {
12864 op0 = simplify_shift_const (NULL_RTX, LSHIFTRT, mode,
12865 XEXP (op0, 0),
12866 INTVAL (XEXP (op0, 1)));
12867 continue;
12868 }
12869
12870 /* If OP0 is a sign extension and CODE is not an unsigned comparison,
12871 do the comparison in a narrower mode. */
12872 if (! unsigned_comparison_p
12873 && CONST_INT_P (XEXP (op0, 1))
12874 && GET_CODE (XEXP (op0, 0)) == ASHIFT
12875 && XEXP (op0, 1) == XEXP (XEXP (op0, 0), 1)
12876 && (int_mode_for_size (mode_width - INTVAL (XEXP (op0, 1)), 1)
12877 .exists (&tmode))
12878 && (((unsigned HOST_WIDE_INT) const_op
12879 + (GET_MODE_MASK (tmode) >> 1) + 1)
12880 <= GET_MODE_MASK (tmode)))
12881 {
12882 op0 = gen_lowpart (tmode, XEXP (XEXP (op0, 0), 0));
12883 continue;
12884 }
12885
12886 /* Likewise if OP0 is a PLUS of a sign extension with a
12887 constant, which is usually represented with the PLUS
12888 between the shifts. */
12889 if (! unsigned_comparison_p
12890 && CONST_INT_P (XEXP (op0, 1))
12891 && GET_CODE (XEXP (op0, 0)) == PLUS
12892 && CONST_INT_P (XEXP (XEXP (op0, 0), 1))
12893 && GET_CODE (XEXP (XEXP (op0, 0), 0)) == ASHIFT
12894 && XEXP (op0, 1) == XEXP (XEXP (XEXP (op0, 0), 0), 1)
12895 && (int_mode_for_size (mode_width - INTVAL (XEXP (op0, 1)), 1)
12896 .exists (&tmode))
12897 && (((unsigned HOST_WIDE_INT) const_op
12898 + (GET_MODE_MASK (tmode) >> 1) + 1)
12899 <= GET_MODE_MASK (tmode)))
12900 {
12901 rtx inner = XEXP (XEXP (XEXP (op0, 0), 0), 0);
12902 rtx add_const = XEXP (XEXP (op0, 0), 1);
12903 rtx new_const = simplify_gen_binary (ASHIFTRT, mode,
12904 add_const, XEXP (op0, 1));
12905
12906 op0 = simplify_gen_binary (PLUS, tmode,
12907 gen_lowpart (tmode, inner),
12908 new_const);
12909 continue;
12910 }
12911
12912 /* FALLTHROUGH */
12913 case LSHIFTRT:
12914 /* If we have (compare (xshiftrt FOO N) (const_int C)) and
12915 the low order N bits of FOO are known to be zero, we can do this
12916 by comparing FOO with C shifted left N bits so long as no
12917 overflow occurs. Even if the low order N bits of FOO aren't known
12918 to be zero, if the comparison is >= or < we can use the same
12919 optimization and for > or <= by setting all the low
12920 order N bits in the comparison constant. */
12921 if (CONST_INT_P (XEXP (op0, 1))
12922 && INTVAL (XEXP (op0, 1)) > 0
12923 && INTVAL (XEXP (op0, 1)) < HOST_BITS_PER_WIDE_INT
12924 && mode_width <= HOST_BITS_PER_WIDE_INT
12925 && (((unsigned HOST_WIDE_INT) const_op
12926 + (GET_CODE (op0) != LSHIFTRT
12927 ? ((GET_MODE_MASK (mode) >> INTVAL (XEXP (op0, 1)) >> 1)
12928 + 1)
12929 : 0))
12930 <= GET_MODE_MASK (mode) >> INTVAL (XEXP (op0, 1))))
12931 {
12932 unsigned HOST_WIDE_INT low_bits
12933 = (nonzero_bits (XEXP (op0, 0), mode)
12934 & ((HOST_WIDE_INT_1U
12935 << INTVAL (XEXP (op0, 1))) - 1));
12936 if (low_bits == 0 || !equality_comparison_p)
12937 {
12938 /* If the shift was logical, then we must make the condition
12939 unsigned. */
12940 if (GET_CODE (op0) == LSHIFTRT)
12941 code = unsigned_condition (code);
12942
12943 const_op = (unsigned HOST_WIDE_INT) const_op
12944 << INTVAL (XEXP (op0, 1));
12945 if (low_bits != 0
12946 && (code == GT || code == GTU
12947 || code == LE || code == LEU))
12948 const_op
12949 |= ((HOST_WIDE_INT_1 << INTVAL (XEXP (op0, 1))) - 1);
12950 op1 = GEN_INT (const_op);
12951 op0 = XEXP (op0, 0);
12952 continue;
12953 }
12954 }
12955
12956 /* If we are using this shift to extract just the sign bit, we
12957 can replace this with an LT or GE comparison. */
12958 if (const_op == 0
12959 && (equality_comparison_p || sign_bit_comparison_p)
12960 && CONST_INT_P (XEXP (op0, 1))
12961 && UINTVAL (XEXP (op0, 1)) == mode_width - 1)
12962 {
12963 op0 = XEXP (op0, 0);
12964 code = (code == NE || code == GT ? LT : GE);
12965 continue;
12966 }
12967 break;
12968
12969 default:
12970 break;
12971 }
12972
12973 break;
12974 }
12975
12976 /* Now make any compound operations involved in this comparison. Then,
12977 check for an outmost SUBREG on OP0 that is not doing anything or is
12978 paradoxical. The latter transformation must only be performed when
12979 it is known that the "extra" bits will be the same in op0 and op1 or
12980 that they don't matter. There are three cases to consider:
12981
12982 1. SUBREG_REG (op0) is a register. In this case the bits are don't
12983 care bits and we can assume they have any convenient value. So
12984 making the transformation is safe.
12985
12986 2. SUBREG_REG (op0) is a memory and LOAD_EXTEND_OP is UNKNOWN.
12987 In this case the upper bits of op0 are undefined. We should not make
12988 the simplification in that case as we do not know the contents of
12989 those bits.
12990
12991 3. SUBREG_REG (op0) is a memory and LOAD_EXTEND_OP is not UNKNOWN.
12992 In that case we know those bits are zeros or ones. We must also be
12993 sure that they are the same as the upper bits of op1.
12994
12995 We can never remove a SUBREG for a non-equality comparison because
12996 the sign bit is in a different place in the underlying object. */
12997
12998 rtx_code op0_mco_code = SET;
12999 if (op1 == const0_rtx)
13000 op0_mco_code = code == NE || code == EQ ? EQ : COMPARE;
13001
13002 op0 = make_compound_operation (op0, op0_mco_code);
13003 op1 = make_compound_operation (op1, SET);
13004
13005 if (GET_CODE (op0) == SUBREG && subreg_lowpart_p (op0)
13006 && is_int_mode (GET_MODE (op0), &mode)
13007 && is_int_mode (GET_MODE (SUBREG_REG (op0)), &inner_mode)
13008 && (code == NE || code == EQ))
13009 {
13010 if (paradoxical_subreg_p (op0))
13011 {
13012 /* For paradoxical subregs, allow case 1 as above. Case 3 isn't
13013 implemented. */
13014 if (REG_P (SUBREG_REG (op0)))
13015 {
13016 op0 = SUBREG_REG (op0);
13017 op1 = gen_lowpart (inner_mode, op1);
13018 }
13019 }
13020 else if (GET_MODE_PRECISION (inner_mode) <= HOST_BITS_PER_WIDE_INT
13021 && (nonzero_bits (SUBREG_REG (op0), inner_mode)
13022 & ~GET_MODE_MASK (mode)) == 0)
13023 {
13024 tem = gen_lowpart (inner_mode, op1);
13025
13026 if ((nonzero_bits (tem, inner_mode) & ~GET_MODE_MASK (mode)) == 0)
13027 op0 = SUBREG_REG (op0), op1 = tem;
13028 }
13029 }
13030
13031 /* We now do the opposite procedure: Some machines don't have compare
13032 insns in all modes. If OP0's mode is an integer mode smaller than a
13033 word and we can't do a compare in that mode, see if there is a larger
13034 mode for which we can do the compare. There are a number of cases in
13035 which we can use the wider mode. */
13036
13037 if (is_int_mode (GET_MODE (op0), &mode)
13038 && GET_MODE_SIZE (mode) < UNITS_PER_WORD
13039 && ! have_insn_for (COMPARE, mode))
13040 FOR_EACH_WIDER_MODE (tmode_iter, mode)
13041 {
13042 tmode = tmode_iter.require ();
13043 if (!HWI_COMPUTABLE_MODE_P (tmode))
13044 break;
13045 if (have_insn_for (COMPARE, tmode))
13046 {
13047 int zero_extended;
13048
13049 /* If this is a test for negative, we can make an explicit
13050 test of the sign bit. Test this first so we can use
13051 a paradoxical subreg to extend OP0. */
13052
13053 if (op1 == const0_rtx && (code == LT || code == GE)
13054 && HWI_COMPUTABLE_MODE_P (mode))
13055 {
13056 unsigned HOST_WIDE_INT sign
13057 = HOST_WIDE_INT_1U << (GET_MODE_BITSIZE (mode) - 1);
13058 op0 = simplify_gen_binary (AND, tmode,
13059 gen_lowpart (tmode, op0),
13060 gen_int_mode (sign, tmode));
13061 code = (code == LT) ? NE : EQ;
13062 break;
13063 }
13064
13065 /* If the only nonzero bits in OP0 and OP1 are those in the
13066 narrower mode and this is an equality or unsigned comparison,
13067 we can use the wider mode. Similarly for sign-extended
13068 values, in which case it is true for all comparisons. */
13069 zero_extended = ((code == EQ || code == NE
13070 || code == GEU || code == GTU
13071 || code == LEU || code == LTU)
13072 && (nonzero_bits (op0, tmode)
13073 & ~GET_MODE_MASK (mode)) == 0
13074 && ((CONST_INT_P (op1)
13075 || (nonzero_bits (op1, tmode)
13076 & ~GET_MODE_MASK (mode)) == 0)));
13077
13078 if (zero_extended
13079 || ((num_sign_bit_copies (op0, tmode)
13080 > (unsigned int) (GET_MODE_PRECISION (tmode)
13081 - GET_MODE_PRECISION (mode)))
13082 && (num_sign_bit_copies (op1, tmode)
13083 > (unsigned int) (GET_MODE_PRECISION (tmode)
13084 - GET_MODE_PRECISION (mode)))))
13085 {
13086 /* If OP0 is an AND and we don't have an AND in MODE either,
13087 make a new AND in the proper mode. */
13088 if (GET_CODE (op0) == AND
13089 && !have_insn_for (AND, mode))
13090 op0 = simplify_gen_binary (AND, tmode,
13091 gen_lowpart (tmode,
13092 XEXP (op0, 0)),
13093 gen_lowpart (tmode,
13094 XEXP (op0, 1)));
13095 else
13096 {
13097 if (zero_extended)
13098 {
13099 op0 = simplify_gen_unary (ZERO_EXTEND, tmode,
13100 op0, mode);
13101 op1 = simplify_gen_unary (ZERO_EXTEND, tmode,
13102 op1, mode);
13103 }
13104 else
13105 {
13106 op0 = simplify_gen_unary (SIGN_EXTEND, tmode,
13107 op0, mode);
13108 op1 = simplify_gen_unary (SIGN_EXTEND, tmode,
13109 op1, mode);
13110 }
13111 break;
13112 }
13113 }
13114 }
13115 }
13116
13117 /* We may have changed the comparison operands. Re-canonicalize. */
13118 if (swap_commutative_operands_p (op0, op1))
13119 {
13120 std::swap (op0, op1);
13121 code = swap_condition (code);
13122 }
13123
13124 /* If this machine only supports a subset of valid comparisons, see if we
13125 can convert an unsupported one into a supported one. */
13126 target_canonicalize_comparison (&code, &op0, &op1, 0);
13127
13128 *pop0 = op0;
13129 *pop1 = op1;
13130
13131 return code;
13132 }
13133 \f
13134 /* Utility function for record_value_for_reg. Count number of
13135 rtxs in X. */
13136 static int
13137 count_rtxs (rtx x)
13138 {
13139 enum rtx_code code = GET_CODE (x);
13140 const char *fmt;
13141 int i, j, ret = 1;
13142
13143 if (GET_RTX_CLASS (code) == RTX_BIN_ARITH
13144 || GET_RTX_CLASS (code) == RTX_COMM_ARITH)
13145 {
13146 rtx x0 = XEXP (x, 0);
13147 rtx x1 = XEXP (x, 1);
13148
13149 if (x0 == x1)
13150 return 1 + 2 * count_rtxs (x0);
13151
13152 if ((GET_RTX_CLASS (GET_CODE (x1)) == RTX_BIN_ARITH
13153 || GET_RTX_CLASS (GET_CODE (x1)) == RTX_COMM_ARITH)
13154 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
13155 return 2 + 2 * count_rtxs (x0)
13156 + count_rtxs (x == XEXP (x1, 0)
13157 ? XEXP (x1, 1) : XEXP (x1, 0));
13158
13159 if ((GET_RTX_CLASS (GET_CODE (x0)) == RTX_BIN_ARITH
13160 || GET_RTX_CLASS (GET_CODE (x0)) == RTX_COMM_ARITH)
13161 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
13162 return 2 + 2 * count_rtxs (x1)
13163 + count_rtxs (x == XEXP (x0, 0)
13164 ? XEXP (x0, 1) : XEXP (x0, 0));
13165 }
13166
13167 fmt = GET_RTX_FORMAT (code);
13168 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
13169 if (fmt[i] == 'e')
13170 ret += count_rtxs (XEXP (x, i));
13171 else if (fmt[i] == 'E')
13172 for (j = 0; j < XVECLEN (x, i); j++)
13173 ret += count_rtxs (XVECEXP (x, i, j));
13174
13175 return ret;
13176 }
13177 \f
13178 /* Utility function for following routine. Called when X is part of a value
13179 being stored into last_set_value. Sets last_set_table_tick
13180 for each register mentioned. Similar to mention_regs in cse.c */
13181
13182 static void
13183 update_table_tick (rtx x)
13184 {
13185 enum rtx_code code = GET_CODE (x);
13186 const char *fmt = GET_RTX_FORMAT (code);
13187 int i, j;
13188
13189 if (code == REG)
13190 {
13191 unsigned int regno = REGNO (x);
13192 unsigned int endregno = END_REGNO (x);
13193 unsigned int r;
13194
13195 for (r = regno; r < endregno; r++)
13196 {
13197 reg_stat_type *rsp = &reg_stat[r];
13198 rsp->last_set_table_tick = label_tick;
13199 }
13200
13201 return;
13202 }
13203
13204 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
13205 if (fmt[i] == 'e')
13206 {
13207 /* Check for identical subexpressions. If x contains
13208 identical subexpression we only have to traverse one of
13209 them. */
13210 if (i == 0 && ARITHMETIC_P (x))
13211 {
13212 /* Note that at this point x1 has already been
13213 processed. */
13214 rtx x0 = XEXP (x, 0);
13215 rtx x1 = XEXP (x, 1);
13216
13217 /* If x0 and x1 are identical then there is no need to
13218 process x0. */
13219 if (x0 == x1)
13220 break;
13221
13222 /* If x0 is identical to a subexpression of x1 then while
13223 processing x1, x0 has already been processed. Thus we
13224 are done with x. */
13225 if (ARITHMETIC_P (x1)
13226 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
13227 break;
13228
13229 /* If x1 is identical to a subexpression of x0 then we
13230 still have to process the rest of x0. */
13231 if (ARITHMETIC_P (x0)
13232 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
13233 {
13234 update_table_tick (XEXP (x0, x1 == XEXP (x0, 0) ? 1 : 0));
13235 break;
13236 }
13237 }
13238
13239 update_table_tick (XEXP (x, i));
13240 }
13241 else if (fmt[i] == 'E')
13242 for (j = 0; j < XVECLEN (x, i); j++)
13243 update_table_tick (XVECEXP (x, i, j));
13244 }
13245
13246 /* Record that REG is set to VALUE in insn INSN. If VALUE is zero, we
13247 are saying that the register is clobbered and we no longer know its
13248 value. If INSN is zero, don't update reg_stat[].last_set; this is
13249 only permitted with VALUE also zero and is used to invalidate the
13250 register. */
13251
13252 static void
13253 record_value_for_reg (rtx reg, rtx_insn *insn, rtx value)
13254 {
13255 unsigned int regno = REGNO (reg);
13256 unsigned int endregno = END_REGNO (reg);
13257 unsigned int i;
13258 reg_stat_type *rsp;
13259
13260 /* If VALUE contains REG and we have a previous value for REG, substitute
13261 the previous value. */
13262 if (value && insn && reg_overlap_mentioned_p (reg, value))
13263 {
13264 rtx tem;
13265
13266 /* Set things up so get_last_value is allowed to see anything set up to
13267 our insn. */
13268 subst_low_luid = DF_INSN_LUID (insn);
13269 tem = get_last_value (reg);
13270
13271 /* If TEM is simply a binary operation with two CLOBBERs as operands,
13272 it isn't going to be useful and will take a lot of time to process,
13273 so just use the CLOBBER. */
13274
13275 if (tem)
13276 {
13277 if (ARITHMETIC_P (tem)
13278 && GET_CODE (XEXP (tem, 0)) == CLOBBER
13279 && GET_CODE (XEXP (tem, 1)) == CLOBBER)
13280 tem = XEXP (tem, 0);
13281 else if (count_occurrences (value, reg, 1) >= 2)
13282 {
13283 /* If there are two or more occurrences of REG in VALUE,
13284 prevent the value from growing too much. */
13285 if (count_rtxs (tem) > MAX_LAST_VALUE_RTL)
13286 tem = gen_rtx_CLOBBER (GET_MODE (tem), const0_rtx);
13287 }
13288
13289 value = replace_rtx (copy_rtx (value), reg, tem);
13290 }
13291 }
13292
13293 /* For each register modified, show we don't know its value, that
13294 we don't know about its bitwise content, that its value has been
13295 updated, and that we don't know the location of the death of the
13296 register. */
13297 for (i = regno; i < endregno; i++)
13298 {
13299 rsp = &reg_stat[i];
13300
13301 if (insn)
13302 rsp->last_set = insn;
13303
13304 rsp->last_set_value = 0;
13305 rsp->last_set_mode = VOIDmode;
13306 rsp->last_set_nonzero_bits = 0;
13307 rsp->last_set_sign_bit_copies = 0;
13308 rsp->last_death = 0;
13309 rsp->truncated_to_mode = VOIDmode;
13310 }
13311
13312 /* Mark registers that are being referenced in this value. */
13313 if (value)
13314 update_table_tick (value);
13315
13316 /* Now update the status of each register being set.
13317 If someone is using this register in this block, set this register
13318 to invalid since we will get confused between the two lives in this
13319 basic block. This makes using this register always invalid. In cse, we
13320 scan the table to invalidate all entries using this register, but this
13321 is too much work for us. */
13322
13323 for (i = regno; i < endregno; i++)
13324 {
13325 rsp = &reg_stat[i];
13326 rsp->last_set_label = label_tick;
13327 if (!insn
13328 || (value && rsp->last_set_table_tick >= label_tick_ebb_start))
13329 rsp->last_set_invalid = 1;
13330 else
13331 rsp->last_set_invalid = 0;
13332 }
13333
13334 /* The value being assigned might refer to X (like in "x++;"). In that
13335 case, we must replace it with (clobber (const_int 0)) to prevent
13336 infinite loops. */
13337 rsp = &reg_stat[regno];
13338 if (value && !get_last_value_validate (&value, insn, label_tick, 0))
13339 {
13340 value = copy_rtx (value);
13341 if (!get_last_value_validate (&value, insn, label_tick, 1))
13342 value = 0;
13343 }
13344
13345 /* For the main register being modified, update the value, the mode, the
13346 nonzero bits, and the number of sign bit copies. */
13347
13348 rsp->last_set_value = value;
13349
13350 if (value)
13351 {
13352 machine_mode mode = GET_MODE (reg);
13353 subst_low_luid = DF_INSN_LUID (insn);
13354 rsp->last_set_mode = mode;
13355 if (GET_MODE_CLASS (mode) == MODE_INT
13356 && HWI_COMPUTABLE_MODE_P (mode))
13357 mode = nonzero_bits_mode;
13358 rsp->last_set_nonzero_bits = nonzero_bits (value, mode);
13359 rsp->last_set_sign_bit_copies
13360 = num_sign_bit_copies (value, GET_MODE (reg));
13361 }
13362 }
13363
13364 /* Called via note_stores from record_dead_and_set_regs to handle one
13365 SET or CLOBBER in an insn. DATA is the instruction in which the
13366 set is occurring. */
13367
13368 static void
13369 record_dead_and_set_regs_1 (rtx dest, const_rtx setter, void *data)
13370 {
13371 rtx_insn *record_dead_insn = (rtx_insn *) data;
13372
13373 if (GET_CODE (dest) == SUBREG)
13374 dest = SUBREG_REG (dest);
13375
13376 if (!record_dead_insn)
13377 {
13378 if (REG_P (dest))
13379 record_value_for_reg (dest, NULL, NULL_RTX);
13380 return;
13381 }
13382
13383 if (REG_P (dest))
13384 {
13385 /* If we are setting the whole register, we know its value. Otherwise
13386 show that we don't know the value. We can handle a SUBREG if it's
13387 the low part, but we must be careful with paradoxical SUBREGs on
13388 RISC architectures because we cannot strip e.g. an extension around
13389 a load and record the naked load since the RTL middle-end considers
13390 that the upper bits are defined according to LOAD_EXTEND_OP. */
13391 if (GET_CODE (setter) == SET && dest == SET_DEST (setter))
13392 record_value_for_reg (dest, record_dead_insn, SET_SRC (setter));
13393 else if (GET_CODE (setter) == SET
13394 && GET_CODE (SET_DEST (setter)) == SUBREG
13395 && SUBREG_REG (SET_DEST (setter)) == dest
13396 && known_le (GET_MODE_PRECISION (GET_MODE (dest)),
13397 BITS_PER_WORD)
13398 && subreg_lowpart_p (SET_DEST (setter)))
13399 record_value_for_reg (dest, record_dead_insn,
13400 WORD_REGISTER_OPERATIONS
13401 && word_register_operation_p (SET_SRC (setter))
13402 && paradoxical_subreg_p (SET_DEST (setter))
13403 ? SET_SRC (setter)
13404 : gen_lowpart (GET_MODE (dest),
13405 SET_SRC (setter)));
13406 else
13407 record_value_for_reg (dest, record_dead_insn, NULL_RTX);
13408 }
13409 else if (MEM_P (dest)
13410 /* Ignore pushes, they clobber nothing. */
13411 && ! push_operand (dest, GET_MODE (dest)))
13412 mem_last_set = DF_INSN_LUID (record_dead_insn);
13413 }
13414
13415 /* Update the records of when each REG was most recently set or killed
13416 for the things done by INSN. This is the last thing done in processing
13417 INSN in the combiner loop.
13418
13419 We update reg_stat[], in particular fields last_set, last_set_value,
13420 last_set_mode, last_set_nonzero_bits, last_set_sign_bit_copies,
13421 last_death, and also the similar information mem_last_set (which insn
13422 most recently modified memory) and last_call_luid (which insn was the
13423 most recent subroutine call). */
13424
13425 static void
13426 record_dead_and_set_regs (rtx_insn *insn)
13427 {
13428 rtx link;
13429 unsigned int i;
13430
13431 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
13432 {
13433 if (REG_NOTE_KIND (link) == REG_DEAD
13434 && REG_P (XEXP (link, 0)))
13435 {
13436 unsigned int regno = REGNO (XEXP (link, 0));
13437 unsigned int endregno = END_REGNO (XEXP (link, 0));
13438
13439 for (i = regno; i < endregno; i++)
13440 {
13441 reg_stat_type *rsp;
13442
13443 rsp = &reg_stat[i];
13444 rsp->last_death = insn;
13445 }
13446 }
13447 else if (REG_NOTE_KIND (link) == REG_INC)
13448 record_value_for_reg (XEXP (link, 0), insn, NULL_RTX);
13449 }
13450
13451 if (CALL_P (insn))
13452 {
13453 HARD_REG_SET callee_clobbers
13454 = insn_callee_abi (insn).full_and_partial_reg_clobbers ();
13455 hard_reg_set_iterator hrsi;
13456 EXECUTE_IF_SET_IN_HARD_REG_SET (callee_clobbers, 0, i, hrsi)
13457 {
13458 reg_stat_type *rsp;
13459
13460 /* ??? We could try to preserve some information from the last
13461 set of register I if the call doesn't actually clobber
13462 (reg:last_set_mode I), which might be true for ABIs with
13463 partial clobbers. However, it would be difficult to
13464 update last_set_nonzero_bits and last_sign_bit_copies
13465 to account for the part of I that actually was clobbered.
13466 It wouldn't help much anyway, since we rarely see this
13467 situation before RA. */
13468 rsp = &reg_stat[i];
13469 rsp->last_set_invalid = 1;
13470 rsp->last_set = insn;
13471 rsp->last_set_value = 0;
13472 rsp->last_set_mode = VOIDmode;
13473 rsp->last_set_nonzero_bits = 0;
13474 rsp->last_set_sign_bit_copies = 0;
13475 rsp->last_death = 0;
13476 rsp->truncated_to_mode = VOIDmode;
13477 }
13478
13479 last_call_luid = mem_last_set = DF_INSN_LUID (insn);
13480
13481 /* We can't combine into a call pattern. Remember, though, that
13482 the return value register is set at this LUID. We could
13483 still replace a register with the return value from the
13484 wrong subroutine call! */
13485 note_stores (insn, record_dead_and_set_regs_1, NULL_RTX);
13486 }
13487 else
13488 note_stores (insn, record_dead_and_set_regs_1, insn);
13489 }
13490
13491 /* If a SUBREG has the promoted bit set, it is in fact a property of the
13492 register present in the SUBREG, so for each such SUBREG go back and
13493 adjust nonzero and sign bit information of the registers that are
13494 known to have some zero/sign bits set.
13495
13496 This is needed because when combine blows the SUBREGs away, the
13497 information on zero/sign bits is lost and further combines can be
13498 missed because of that. */
13499
13500 static void
13501 record_promoted_value (rtx_insn *insn, rtx subreg)
13502 {
13503 struct insn_link *links;
13504 rtx set;
13505 unsigned int regno = REGNO (SUBREG_REG (subreg));
13506 machine_mode mode = GET_MODE (subreg);
13507
13508 if (!HWI_COMPUTABLE_MODE_P (mode))
13509 return;
13510
13511 for (links = LOG_LINKS (insn); links;)
13512 {
13513 reg_stat_type *rsp;
13514
13515 insn = links->insn;
13516 set = single_set (insn);
13517
13518 if (! set || !REG_P (SET_DEST (set))
13519 || REGNO (SET_DEST (set)) != regno
13520 || GET_MODE (SET_DEST (set)) != GET_MODE (SUBREG_REG (subreg)))
13521 {
13522 links = links->next;
13523 continue;
13524 }
13525
13526 rsp = &reg_stat[regno];
13527 if (rsp->last_set == insn)
13528 {
13529 if (SUBREG_PROMOTED_UNSIGNED_P (subreg))
13530 rsp->last_set_nonzero_bits &= GET_MODE_MASK (mode);
13531 }
13532
13533 if (REG_P (SET_SRC (set)))
13534 {
13535 regno = REGNO (SET_SRC (set));
13536 links = LOG_LINKS (insn);
13537 }
13538 else
13539 break;
13540 }
13541 }
13542
13543 /* Check if X, a register, is known to contain a value already
13544 truncated to MODE. In this case we can use a subreg to refer to
13545 the truncated value even though in the generic case we would need
13546 an explicit truncation. */
13547
13548 static bool
13549 reg_truncated_to_mode (machine_mode mode, const_rtx x)
13550 {
13551 reg_stat_type *rsp = &reg_stat[REGNO (x)];
13552 machine_mode truncated = rsp->truncated_to_mode;
13553
13554 if (truncated == 0
13555 || rsp->truncation_label < label_tick_ebb_start)
13556 return false;
13557 if (!partial_subreg_p (mode, truncated))
13558 return true;
13559 if (TRULY_NOOP_TRUNCATION_MODES_P (mode, truncated))
13560 return true;
13561 return false;
13562 }
13563
13564 /* If X is a hard reg or a subreg record the mode that the register is
13565 accessed in. For non-TARGET_TRULY_NOOP_TRUNCATION targets we might be
13566 able to turn a truncate into a subreg using this information. Return true
13567 if traversing X is complete. */
13568
13569 static bool
13570 record_truncated_value (rtx x)
13571 {
13572 machine_mode truncated_mode;
13573 reg_stat_type *rsp;
13574
13575 if (GET_CODE (x) == SUBREG && REG_P (SUBREG_REG (x)))
13576 {
13577 machine_mode original_mode = GET_MODE (SUBREG_REG (x));
13578 truncated_mode = GET_MODE (x);
13579
13580 if (!partial_subreg_p (truncated_mode, original_mode))
13581 return true;
13582
13583 truncated_mode = GET_MODE (x);
13584 if (TRULY_NOOP_TRUNCATION_MODES_P (truncated_mode, original_mode))
13585 return true;
13586
13587 x = SUBREG_REG (x);
13588 }
13589 /* ??? For hard-regs we now record everything. We might be able to
13590 optimize this using last_set_mode. */
13591 else if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
13592 truncated_mode = GET_MODE (x);
13593 else
13594 return false;
13595
13596 rsp = &reg_stat[REGNO (x)];
13597 if (rsp->truncated_to_mode == 0
13598 || rsp->truncation_label < label_tick_ebb_start
13599 || partial_subreg_p (truncated_mode, rsp->truncated_to_mode))
13600 {
13601 rsp->truncated_to_mode = truncated_mode;
13602 rsp->truncation_label = label_tick;
13603 }
13604
13605 return true;
13606 }
13607
13608 /* Callback for note_uses. Find hardregs and subregs of pseudos and
13609 the modes they are used in. This can help truning TRUNCATEs into
13610 SUBREGs. */
13611
13612 static void
13613 record_truncated_values (rtx *loc, void *data ATTRIBUTE_UNUSED)
13614 {
13615 subrtx_var_iterator::array_type array;
13616 FOR_EACH_SUBRTX_VAR (iter, array, *loc, NONCONST)
13617 if (record_truncated_value (*iter))
13618 iter.skip_subrtxes ();
13619 }
13620
13621 /* Scan X for promoted SUBREGs. For each one found,
13622 note what it implies to the registers used in it. */
13623
13624 static void
13625 check_promoted_subreg (rtx_insn *insn, rtx x)
13626 {
13627 if (GET_CODE (x) == SUBREG
13628 && SUBREG_PROMOTED_VAR_P (x)
13629 && REG_P (SUBREG_REG (x)))
13630 record_promoted_value (insn, x);
13631 else
13632 {
13633 const char *format = GET_RTX_FORMAT (GET_CODE (x));
13634 int i, j;
13635
13636 for (i = 0; i < GET_RTX_LENGTH (GET_CODE (x)); i++)
13637 switch (format[i])
13638 {
13639 case 'e':
13640 check_promoted_subreg (insn, XEXP (x, i));
13641 break;
13642 case 'V':
13643 case 'E':
13644 if (XVEC (x, i) != 0)
13645 for (j = 0; j < XVECLEN (x, i); j++)
13646 check_promoted_subreg (insn, XVECEXP (x, i, j));
13647 break;
13648 }
13649 }
13650 }
13651 \f
13652 /* Verify that all the registers and memory references mentioned in *LOC are
13653 still valid. *LOC was part of a value set in INSN when label_tick was
13654 equal to TICK. Return 0 if some are not. If REPLACE is nonzero, replace
13655 the invalid references with (clobber (const_int 0)) and return 1. This
13656 replacement is useful because we often can get useful information about
13657 the form of a value (e.g., if it was produced by a shift that always
13658 produces -1 or 0) even though we don't know exactly what registers it
13659 was produced from. */
13660
13661 static int
13662 get_last_value_validate (rtx *loc, rtx_insn *insn, int tick, int replace)
13663 {
13664 rtx x = *loc;
13665 const char *fmt = GET_RTX_FORMAT (GET_CODE (x));
13666 int len = GET_RTX_LENGTH (GET_CODE (x));
13667 int i, j;
13668
13669 if (REG_P (x))
13670 {
13671 unsigned int regno = REGNO (x);
13672 unsigned int endregno = END_REGNO (x);
13673 unsigned int j;
13674
13675 for (j = regno; j < endregno; j++)
13676 {
13677 reg_stat_type *rsp = &reg_stat[j];
13678 if (rsp->last_set_invalid
13679 /* If this is a pseudo-register that was only set once and not
13680 live at the beginning of the function, it is always valid. */
13681 || (! (regno >= FIRST_PSEUDO_REGISTER
13682 && regno < reg_n_sets_max
13683 && REG_N_SETS (regno) == 1
13684 && (!REGNO_REG_SET_P
13685 (DF_LR_IN (ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb),
13686 regno)))
13687 && rsp->last_set_label > tick))
13688 {
13689 if (replace)
13690 *loc = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
13691 return replace;
13692 }
13693 }
13694
13695 return 1;
13696 }
13697 /* If this is a memory reference, make sure that there were no stores after
13698 it that might have clobbered the value. We don't have alias info, so we
13699 assume any store invalidates it. Moreover, we only have local UIDs, so
13700 we also assume that there were stores in the intervening basic blocks. */
13701 else if (MEM_P (x) && !MEM_READONLY_P (x)
13702 && (tick != label_tick || DF_INSN_LUID (insn) <= mem_last_set))
13703 {
13704 if (replace)
13705 *loc = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
13706 return replace;
13707 }
13708
13709 for (i = 0; i < len; i++)
13710 {
13711 if (fmt[i] == 'e')
13712 {
13713 /* Check for identical subexpressions. If x contains
13714 identical subexpression we only have to traverse one of
13715 them. */
13716 if (i == 1 && ARITHMETIC_P (x))
13717 {
13718 /* Note that at this point x0 has already been checked
13719 and found valid. */
13720 rtx x0 = XEXP (x, 0);
13721 rtx x1 = XEXP (x, 1);
13722
13723 /* If x0 and x1 are identical then x is also valid. */
13724 if (x0 == x1)
13725 return 1;
13726
13727 /* If x1 is identical to a subexpression of x0 then
13728 while checking x0, x1 has already been checked. Thus
13729 it is valid and so as x. */
13730 if (ARITHMETIC_P (x0)
13731 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
13732 return 1;
13733
13734 /* If x0 is identical to a subexpression of x1 then x is
13735 valid iff the rest of x1 is valid. */
13736 if (ARITHMETIC_P (x1)
13737 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
13738 return
13739 get_last_value_validate (&XEXP (x1,
13740 x0 == XEXP (x1, 0) ? 1 : 0),
13741 insn, tick, replace);
13742 }
13743
13744 if (get_last_value_validate (&XEXP (x, i), insn, tick,
13745 replace) == 0)
13746 return 0;
13747 }
13748 else if (fmt[i] == 'E')
13749 for (j = 0; j < XVECLEN (x, i); j++)
13750 if (get_last_value_validate (&XVECEXP (x, i, j),
13751 insn, tick, replace) == 0)
13752 return 0;
13753 }
13754
13755 /* If we haven't found a reason for it to be invalid, it is valid. */
13756 return 1;
13757 }
13758
13759 /* Get the last value assigned to X, if known. Some registers
13760 in the value may be replaced with (clobber (const_int 0)) if their value
13761 is known longer known reliably. */
13762
13763 static rtx
13764 get_last_value (const_rtx x)
13765 {
13766 unsigned int regno;
13767 rtx value;
13768 reg_stat_type *rsp;
13769
13770 /* If this is a non-paradoxical SUBREG, get the value of its operand and
13771 then convert it to the desired mode. If this is a paradoxical SUBREG,
13772 we cannot predict what values the "extra" bits might have. */
13773 if (GET_CODE (x) == SUBREG
13774 && subreg_lowpart_p (x)
13775 && !paradoxical_subreg_p (x)
13776 && (value = get_last_value (SUBREG_REG (x))) != 0)
13777 return gen_lowpart (GET_MODE (x), value);
13778
13779 if (!REG_P (x))
13780 return 0;
13781
13782 regno = REGNO (x);
13783 rsp = &reg_stat[regno];
13784 value = rsp->last_set_value;
13785
13786 /* If we don't have a value, or if it isn't for this basic block and
13787 it's either a hard register, set more than once, or it's a live
13788 at the beginning of the function, return 0.
13789
13790 Because if it's not live at the beginning of the function then the reg
13791 is always set before being used (is never used without being set).
13792 And, if it's set only once, and it's always set before use, then all
13793 uses must have the same last value, even if it's not from this basic
13794 block. */
13795
13796 if (value == 0
13797 || (rsp->last_set_label < label_tick_ebb_start
13798 && (regno < FIRST_PSEUDO_REGISTER
13799 || regno >= reg_n_sets_max
13800 || REG_N_SETS (regno) != 1
13801 || REGNO_REG_SET_P
13802 (DF_LR_IN (ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb), regno))))
13803 return 0;
13804
13805 /* If the value was set in a later insn than the ones we are processing,
13806 we can't use it even if the register was only set once. */
13807 if (rsp->last_set_label == label_tick
13808 && DF_INSN_LUID (rsp->last_set) >= subst_low_luid)
13809 return 0;
13810
13811 /* If fewer bits were set than what we are asked for now, we cannot use
13812 the value. */
13813 if (maybe_lt (GET_MODE_PRECISION (rsp->last_set_mode),
13814 GET_MODE_PRECISION (GET_MODE (x))))
13815 return 0;
13816
13817 /* If the value has all its registers valid, return it. */
13818 if (get_last_value_validate (&value, rsp->last_set, rsp->last_set_label, 0))
13819 return value;
13820
13821 /* Otherwise, make a copy and replace any invalid register with
13822 (clobber (const_int 0)). If that fails for some reason, return 0. */
13823
13824 value = copy_rtx (value);
13825 if (get_last_value_validate (&value, rsp->last_set, rsp->last_set_label, 1))
13826 return value;
13827
13828 return 0;
13829 }
13830 \f
13831 /* Define three variables used for communication between the following
13832 routines. */
13833
13834 static unsigned int reg_dead_regno, reg_dead_endregno;
13835 static int reg_dead_flag;
13836 rtx reg_dead_reg;
13837
13838 /* Function called via note_stores from reg_dead_at_p.
13839
13840 If DEST is within [reg_dead_regno, reg_dead_endregno), set
13841 reg_dead_flag to 1 if X is a CLOBBER and to -1 it is a SET. */
13842
13843 static void
13844 reg_dead_at_p_1 (rtx dest, const_rtx x, void *data ATTRIBUTE_UNUSED)
13845 {
13846 unsigned int regno, endregno;
13847
13848 if (!REG_P (dest))
13849 return;
13850
13851 regno = REGNO (dest);
13852 endregno = END_REGNO (dest);
13853 if (reg_dead_endregno > regno && reg_dead_regno < endregno)
13854 reg_dead_flag = (GET_CODE (x) == CLOBBER) ? 1 : -1;
13855 }
13856
13857 /* Return nonzero if REG is known to be dead at INSN.
13858
13859 We scan backwards from INSN. If we hit a REG_DEAD note or a CLOBBER
13860 referencing REG, it is dead. If we hit a SET referencing REG, it is
13861 live. Otherwise, see if it is live or dead at the start of the basic
13862 block we are in. Hard regs marked as being live in NEWPAT_USED_REGS
13863 must be assumed to be always live. */
13864
13865 static int
13866 reg_dead_at_p (rtx reg, rtx_insn *insn)
13867 {
13868 basic_block block;
13869 unsigned int i;
13870
13871 /* Set variables for reg_dead_at_p_1. */
13872 reg_dead_regno = REGNO (reg);
13873 reg_dead_endregno = END_REGNO (reg);
13874 reg_dead_reg = reg;
13875
13876 reg_dead_flag = 0;
13877
13878 /* Check that reg isn't mentioned in NEWPAT_USED_REGS. For fixed registers
13879 we allow the machine description to decide whether use-and-clobber
13880 patterns are OK. */
13881 if (reg_dead_regno < FIRST_PSEUDO_REGISTER)
13882 {
13883 for (i = reg_dead_regno; i < reg_dead_endregno; i++)
13884 if (!fixed_regs[i] && TEST_HARD_REG_BIT (newpat_used_regs, i))
13885 return 0;
13886 }
13887
13888 /* Scan backwards until we find a REG_DEAD note, SET, CLOBBER, or
13889 beginning of basic block. */
13890 block = BLOCK_FOR_INSN (insn);
13891 for (;;)
13892 {
13893 if (INSN_P (insn))
13894 {
13895 if (find_regno_note (insn, REG_UNUSED, reg_dead_regno))
13896 return 1;
13897
13898 note_stores (insn, reg_dead_at_p_1, NULL);
13899 if (reg_dead_flag)
13900 return reg_dead_flag == 1 ? 1 : 0;
13901
13902 if (find_regno_note (insn, REG_DEAD, reg_dead_regno))
13903 return 1;
13904 }
13905
13906 if (insn == BB_HEAD (block))
13907 break;
13908
13909 insn = PREV_INSN (insn);
13910 }
13911
13912 /* Look at live-in sets for the basic block that we were in. */
13913 for (i = reg_dead_regno; i < reg_dead_endregno; i++)
13914 if (REGNO_REG_SET_P (df_get_live_in (block), i))
13915 return 0;
13916
13917 return 1;
13918 }
13919 \f
13920 /* Note hard registers in X that are used. */
13921
13922 static void
13923 mark_used_regs_combine (rtx x)
13924 {
13925 RTX_CODE code = GET_CODE (x);
13926 unsigned int regno;
13927 int i;
13928
13929 switch (code)
13930 {
13931 case LABEL_REF:
13932 case SYMBOL_REF:
13933 case CONST:
13934 CASE_CONST_ANY:
13935 case PC:
13936 case ADDR_VEC:
13937 case ADDR_DIFF_VEC:
13938 case ASM_INPUT:
13939 /* CC0 must die in the insn after it is set, so we don't need to take
13940 special note of it here. */
13941 case CC0:
13942 return;
13943
13944 case CLOBBER:
13945 /* If we are clobbering a MEM, mark any hard registers inside the
13946 address as used. */
13947 if (MEM_P (XEXP (x, 0)))
13948 mark_used_regs_combine (XEXP (XEXP (x, 0), 0));
13949 return;
13950
13951 case REG:
13952 regno = REGNO (x);
13953 /* A hard reg in a wide mode may really be multiple registers.
13954 If so, mark all of them just like the first. */
13955 if (regno < FIRST_PSEUDO_REGISTER)
13956 {
13957 /* None of this applies to the stack, frame or arg pointers. */
13958 if (regno == STACK_POINTER_REGNUM
13959 || (!HARD_FRAME_POINTER_IS_FRAME_POINTER
13960 && regno == HARD_FRAME_POINTER_REGNUM)
13961 || (FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
13962 && regno == ARG_POINTER_REGNUM && fixed_regs[regno])
13963 || regno == FRAME_POINTER_REGNUM)
13964 return;
13965
13966 add_to_hard_reg_set (&newpat_used_regs, GET_MODE (x), regno);
13967 }
13968 return;
13969
13970 case SET:
13971 {
13972 /* If setting a MEM, or a SUBREG of a MEM, then note any hard regs in
13973 the address. */
13974 rtx testreg = SET_DEST (x);
13975
13976 while (GET_CODE (testreg) == SUBREG
13977 || GET_CODE (testreg) == ZERO_EXTRACT
13978 || GET_CODE (testreg) == STRICT_LOW_PART)
13979 testreg = XEXP (testreg, 0);
13980
13981 if (MEM_P (testreg))
13982 mark_used_regs_combine (XEXP (testreg, 0));
13983
13984 mark_used_regs_combine (SET_SRC (x));
13985 }
13986 return;
13987
13988 default:
13989 break;
13990 }
13991
13992 /* Recursively scan the operands of this expression. */
13993
13994 {
13995 const char *fmt = GET_RTX_FORMAT (code);
13996
13997 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
13998 {
13999 if (fmt[i] == 'e')
14000 mark_used_regs_combine (XEXP (x, i));
14001 else if (fmt[i] == 'E')
14002 {
14003 int j;
14004
14005 for (j = 0; j < XVECLEN (x, i); j++)
14006 mark_used_regs_combine (XVECEXP (x, i, j));
14007 }
14008 }
14009 }
14010 }
14011 \f
14012 /* Remove register number REGNO from the dead registers list of INSN.
14013
14014 Return the note used to record the death, if there was one. */
14015
14016 rtx
14017 remove_death (unsigned int regno, rtx_insn *insn)
14018 {
14019 rtx note = find_regno_note (insn, REG_DEAD, regno);
14020
14021 if (note)
14022 remove_note (insn, note);
14023
14024 return note;
14025 }
14026
14027 /* For each register (hardware or pseudo) used within expression X, if its
14028 death is in an instruction with luid between FROM_LUID (inclusive) and
14029 TO_INSN (exclusive), put a REG_DEAD note for that register in the
14030 list headed by PNOTES.
14031
14032 That said, don't move registers killed by maybe_kill_insn.
14033
14034 This is done when X is being merged by combination into TO_INSN. These
14035 notes will then be distributed as needed. */
14036
14037 static void
14038 move_deaths (rtx x, rtx maybe_kill_insn, int from_luid, rtx_insn *to_insn,
14039 rtx *pnotes)
14040 {
14041 const char *fmt;
14042 int len, i;
14043 enum rtx_code code = GET_CODE (x);
14044
14045 if (code == REG)
14046 {
14047 unsigned int regno = REGNO (x);
14048 rtx_insn *where_dead = reg_stat[regno].last_death;
14049
14050 /* If we do not know where the register died, it may still die between
14051 FROM_LUID and TO_INSN. If so, find it. This is PR83304. */
14052 if (!where_dead || DF_INSN_LUID (where_dead) >= DF_INSN_LUID (to_insn))
14053 {
14054 rtx_insn *insn = prev_real_nondebug_insn (to_insn);
14055 while (insn
14056 && BLOCK_FOR_INSN (insn) == BLOCK_FOR_INSN (to_insn)
14057 && DF_INSN_LUID (insn) >= from_luid)
14058 {
14059 if (dead_or_set_regno_p (insn, regno))
14060 {
14061 if (find_regno_note (insn, REG_DEAD, regno))
14062 where_dead = insn;
14063 break;
14064 }
14065
14066 insn = prev_real_nondebug_insn (insn);
14067 }
14068 }
14069
14070 /* Don't move the register if it gets killed in between from and to. */
14071 if (maybe_kill_insn && reg_set_p (x, maybe_kill_insn)
14072 && ! reg_referenced_p (x, maybe_kill_insn))
14073 return;
14074
14075 if (where_dead
14076 && BLOCK_FOR_INSN (where_dead) == BLOCK_FOR_INSN (to_insn)
14077 && DF_INSN_LUID (where_dead) >= from_luid
14078 && DF_INSN_LUID (where_dead) < DF_INSN_LUID (to_insn))
14079 {
14080 rtx note = remove_death (regno, where_dead);
14081
14082 /* It is possible for the call above to return 0. This can occur
14083 when last_death points to I2 or I1 that we combined with.
14084 In that case make a new note.
14085
14086 We must also check for the case where X is a hard register
14087 and NOTE is a death note for a range of hard registers
14088 including X. In that case, we must put REG_DEAD notes for
14089 the remaining registers in place of NOTE. */
14090
14091 if (note != 0 && regno < FIRST_PSEUDO_REGISTER
14092 && partial_subreg_p (GET_MODE (x), GET_MODE (XEXP (note, 0))))
14093 {
14094 unsigned int deadregno = REGNO (XEXP (note, 0));
14095 unsigned int deadend = END_REGNO (XEXP (note, 0));
14096 unsigned int ourend = END_REGNO (x);
14097 unsigned int i;
14098
14099 for (i = deadregno; i < deadend; i++)
14100 if (i < regno || i >= ourend)
14101 add_reg_note (where_dead, REG_DEAD, regno_reg_rtx[i]);
14102 }
14103
14104 /* If we didn't find any note, or if we found a REG_DEAD note that
14105 covers only part of the given reg, and we have a multi-reg hard
14106 register, then to be safe we must check for REG_DEAD notes
14107 for each register other than the first. They could have
14108 their own REG_DEAD notes lying around. */
14109 else if ((note == 0
14110 || (note != 0
14111 && partial_subreg_p (GET_MODE (XEXP (note, 0)),
14112 GET_MODE (x))))
14113 && regno < FIRST_PSEUDO_REGISTER
14114 && REG_NREGS (x) > 1)
14115 {
14116 unsigned int ourend = END_REGNO (x);
14117 unsigned int i, offset;
14118 rtx oldnotes = 0;
14119
14120 if (note)
14121 offset = hard_regno_nregs (regno, GET_MODE (XEXP (note, 0)));
14122 else
14123 offset = 1;
14124
14125 for (i = regno + offset; i < ourend; i++)
14126 move_deaths (regno_reg_rtx[i],
14127 maybe_kill_insn, from_luid, to_insn, &oldnotes);
14128 }
14129
14130 if (note != 0 && GET_MODE (XEXP (note, 0)) == GET_MODE (x))
14131 {
14132 XEXP (note, 1) = *pnotes;
14133 *pnotes = note;
14134 }
14135 else
14136 *pnotes = alloc_reg_note (REG_DEAD, x, *pnotes);
14137 }
14138
14139 return;
14140 }
14141
14142 else if (GET_CODE (x) == SET)
14143 {
14144 rtx dest = SET_DEST (x);
14145
14146 move_deaths (SET_SRC (x), maybe_kill_insn, from_luid, to_insn, pnotes);
14147
14148 /* In the case of a ZERO_EXTRACT, a STRICT_LOW_PART, or a SUBREG
14149 that accesses one word of a multi-word item, some
14150 piece of everything register in the expression is used by
14151 this insn, so remove any old death. */
14152 /* ??? So why do we test for equality of the sizes? */
14153
14154 if (GET_CODE (dest) == ZERO_EXTRACT
14155 || GET_CODE (dest) == STRICT_LOW_PART
14156 || (GET_CODE (dest) == SUBREG
14157 && !read_modify_subreg_p (dest)))
14158 {
14159 move_deaths (dest, maybe_kill_insn, from_luid, to_insn, pnotes);
14160 return;
14161 }
14162
14163 /* If this is some other SUBREG, we know it replaces the entire
14164 value, so use that as the destination. */
14165 if (GET_CODE (dest) == SUBREG)
14166 dest = SUBREG_REG (dest);
14167
14168 /* If this is a MEM, adjust deaths of anything used in the address.
14169 For a REG (the only other possibility), the entire value is
14170 being replaced so the old value is not used in this insn. */
14171
14172 if (MEM_P (dest))
14173 move_deaths (XEXP (dest, 0), maybe_kill_insn, from_luid,
14174 to_insn, pnotes);
14175 return;
14176 }
14177
14178 else if (GET_CODE (x) == CLOBBER)
14179 return;
14180
14181 len = GET_RTX_LENGTH (code);
14182 fmt = GET_RTX_FORMAT (code);
14183
14184 for (i = 0; i < len; i++)
14185 {
14186 if (fmt[i] == 'E')
14187 {
14188 int j;
14189 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
14190 move_deaths (XVECEXP (x, i, j), maybe_kill_insn, from_luid,
14191 to_insn, pnotes);
14192 }
14193 else if (fmt[i] == 'e')
14194 move_deaths (XEXP (x, i), maybe_kill_insn, from_luid, to_insn, pnotes);
14195 }
14196 }
14197 \f
14198 /* Return 1 if X is the target of a bit-field assignment in BODY, the
14199 pattern of an insn. X must be a REG. */
14200
14201 static int
14202 reg_bitfield_target_p (rtx x, rtx body)
14203 {
14204 int i;
14205
14206 if (GET_CODE (body) == SET)
14207 {
14208 rtx dest = SET_DEST (body);
14209 rtx target;
14210 unsigned int regno, tregno, endregno, endtregno;
14211
14212 if (GET_CODE (dest) == ZERO_EXTRACT)
14213 target = XEXP (dest, 0);
14214 else if (GET_CODE (dest) == STRICT_LOW_PART)
14215 target = SUBREG_REG (XEXP (dest, 0));
14216 else
14217 return 0;
14218
14219 if (GET_CODE (target) == SUBREG)
14220 target = SUBREG_REG (target);
14221
14222 if (!REG_P (target))
14223 return 0;
14224
14225 tregno = REGNO (target), regno = REGNO (x);
14226 if (tregno >= FIRST_PSEUDO_REGISTER || regno >= FIRST_PSEUDO_REGISTER)
14227 return target == x;
14228
14229 endtregno = end_hard_regno (GET_MODE (target), tregno);
14230 endregno = end_hard_regno (GET_MODE (x), regno);
14231
14232 return endregno > tregno && regno < endtregno;
14233 }
14234
14235 else if (GET_CODE (body) == PARALLEL)
14236 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
14237 if (reg_bitfield_target_p (x, XVECEXP (body, 0, i)))
14238 return 1;
14239
14240 return 0;
14241 }
14242 \f
14243 /* Given a chain of REG_NOTES originally from FROM_INSN, try to place them
14244 as appropriate. I3 and I2 are the insns resulting from the combination
14245 insns including FROM (I2 may be zero).
14246
14247 ELIM_I2 and ELIM_I1 are either zero or registers that we know will
14248 not need REG_DEAD notes because they are being substituted for. This
14249 saves searching in the most common cases.
14250
14251 Each note in the list is either ignored or placed on some insns, depending
14252 on the type of note. */
14253
14254 static void
14255 distribute_notes (rtx notes, rtx_insn *from_insn, rtx_insn *i3, rtx_insn *i2,
14256 rtx elim_i2, rtx elim_i1, rtx elim_i0)
14257 {
14258 rtx note, next_note;
14259 rtx tem_note;
14260 rtx_insn *tem_insn;
14261
14262 for (note = notes; note; note = next_note)
14263 {
14264 rtx_insn *place = 0, *place2 = 0;
14265
14266 next_note = XEXP (note, 1);
14267 switch (REG_NOTE_KIND (note))
14268 {
14269 case REG_BR_PROB:
14270 case REG_BR_PRED:
14271 /* Doesn't matter much where we put this, as long as it's somewhere.
14272 It is preferable to keep these notes on branches, which is most
14273 likely to be i3. */
14274 place = i3;
14275 break;
14276
14277 case REG_NON_LOCAL_GOTO:
14278 if (JUMP_P (i3))
14279 place = i3;
14280 else
14281 {
14282 gcc_assert (i2 && JUMP_P (i2));
14283 place = i2;
14284 }
14285 break;
14286
14287 case REG_EH_REGION:
14288 /* These notes must remain with the call or trapping instruction. */
14289 if (CALL_P (i3))
14290 place = i3;
14291 else if (i2 && CALL_P (i2))
14292 place = i2;
14293 else
14294 {
14295 gcc_assert (cfun->can_throw_non_call_exceptions);
14296 if (may_trap_p (i3))
14297 place = i3;
14298 else if (i2 && may_trap_p (i2))
14299 place = i2;
14300 /* ??? Otherwise assume we've combined things such that we
14301 can now prove that the instructions can't trap. Drop the
14302 note in this case. */
14303 }
14304 break;
14305
14306 case REG_ARGS_SIZE:
14307 /* ??? How to distribute between i3-i1. Assume i3 contains the
14308 entire adjustment. Assert i3 contains at least some adjust. */
14309 if (!noop_move_p (i3))
14310 {
14311 poly_int64 old_size, args_size = get_args_size (note);
14312 /* fixup_args_size_notes looks at REG_NORETURN note,
14313 so ensure the note is placed there first. */
14314 if (CALL_P (i3))
14315 {
14316 rtx *np;
14317 for (np = &next_note; *np; np = &XEXP (*np, 1))
14318 if (REG_NOTE_KIND (*np) == REG_NORETURN)
14319 {
14320 rtx n = *np;
14321 *np = XEXP (n, 1);
14322 XEXP (n, 1) = REG_NOTES (i3);
14323 REG_NOTES (i3) = n;
14324 break;
14325 }
14326 }
14327 old_size = fixup_args_size_notes (PREV_INSN (i3), i3, args_size);
14328 /* emit_call_1 adds for !ACCUMULATE_OUTGOING_ARGS
14329 REG_ARGS_SIZE note to all noreturn calls, allow that here. */
14330 gcc_assert (maybe_ne (old_size, args_size)
14331 || (CALL_P (i3)
14332 && !ACCUMULATE_OUTGOING_ARGS
14333 && find_reg_note (i3, REG_NORETURN, NULL_RTX)));
14334 }
14335 break;
14336
14337 case REG_NORETURN:
14338 case REG_SETJMP:
14339 case REG_TM:
14340 case REG_CALL_DECL:
14341 case REG_CALL_NOCF_CHECK:
14342 /* These notes must remain with the call. It should not be
14343 possible for both I2 and I3 to be a call. */
14344 if (CALL_P (i3))
14345 place = i3;
14346 else
14347 {
14348 gcc_assert (i2 && CALL_P (i2));
14349 place = i2;
14350 }
14351 break;
14352
14353 case REG_UNUSED:
14354 /* Any clobbers for i3 may still exist, and so we must process
14355 REG_UNUSED notes from that insn.
14356
14357 Any clobbers from i2 or i1 can only exist if they were added by
14358 recog_for_combine. In that case, recog_for_combine created the
14359 necessary REG_UNUSED notes. Trying to keep any original
14360 REG_UNUSED notes from these insns can cause incorrect output
14361 if it is for the same register as the original i3 dest.
14362 In that case, we will notice that the register is set in i3,
14363 and then add a REG_UNUSED note for the destination of i3, which
14364 is wrong. However, it is possible to have REG_UNUSED notes from
14365 i2 or i1 for register which were both used and clobbered, so
14366 we keep notes from i2 or i1 if they will turn into REG_DEAD
14367 notes. */
14368
14369 /* If this register is set or clobbered in I3, put the note there
14370 unless there is one already. */
14371 if (reg_set_p (XEXP (note, 0), PATTERN (i3)))
14372 {
14373 if (from_insn != i3)
14374 break;
14375
14376 if (! (REG_P (XEXP (note, 0))
14377 ? find_regno_note (i3, REG_UNUSED, REGNO (XEXP (note, 0)))
14378 : find_reg_note (i3, REG_UNUSED, XEXP (note, 0))))
14379 place = i3;
14380 }
14381 /* Otherwise, if this register is used by I3, then this register
14382 now dies here, so we must put a REG_DEAD note here unless there
14383 is one already. */
14384 else if (reg_referenced_p (XEXP (note, 0), PATTERN (i3))
14385 && ! (REG_P (XEXP (note, 0))
14386 ? find_regno_note (i3, REG_DEAD,
14387 REGNO (XEXP (note, 0)))
14388 : find_reg_note (i3, REG_DEAD, XEXP (note, 0))))
14389 {
14390 PUT_REG_NOTE_KIND (note, REG_DEAD);
14391 place = i3;
14392 }
14393
14394 /* A SET or CLOBBER of the REG_UNUSED reg has been removed,
14395 but we can't tell which at this point. We must reset any
14396 expectations we had about the value that was previously
14397 stored in the reg. ??? Ideally, we'd adjust REG_N_SETS
14398 and, if appropriate, restore its previous value, but we
14399 don't have enough information for that at this point. */
14400 else
14401 {
14402 record_value_for_reg (XEXP (note, 0), NULL, NULL_RTX);
14403
14404 /* Otherwise, if this register is now referenced in i2
14405 then the register used to be modified in one of the
14406 original insns. If it was i3 (say, in an unused
14407 parallel), it's now completely gone, so the note can
14408 be discarded. But if it was modified in i2, i1 or i0
14409 and we still reference it in i2, then we're
14410 referencing the previous value, and since the
14411 register was modified and REG_UNUSED, we know that
14412 the previous value is now dead. So, if we only
14413 reference the register in i2, we change the note to
14414 REG_DEAD, to reflect the previous value. However, if
14415 we're also setting or clobbering the register as
14416 scratch, we know (because the register was not
14417 referenced in i3) that it's unused, just as it was
14418 unused before, and we place the note in i2. */
14419 if (from_insn != i3 && i2 && INSN_P (i2)
14420 && reg_referenced_p (XEXP (note, 0), PATTERN (i2)))
14421 {
14422 if (!reg_set_p (XEXP (note, 0), PATTERN (i2)))
14423 PUT_REG_NOTE_KIND (note, REG_DEAD);
14424 if (! (REG_P (XEXP (note, 0))
14425 ? find_regno_note (i2, REG_NOTE_KIND (note),
14426 REGNO (XEXP (note, 0)))
14427 : find_reg_note (i2, REG_NOTE_KIND (note),
14428 XEXP (note, 0))))
14429 place = i2;
14430 }
14431 }
14432
14433 break;
14434
14435 case REG_EQUAL:
14436 case REG_EQUIV:
14437 case REG_NOALIAS:
14438 /* These notes say something about results of an insn. We can
14439 only support them if they used to be on I3 in which case they
14440 remain on I3. Otherwise they are ignored.
14441
14442 If the note refers to an expression that is not a constant, we
14443 must also ignore the note since we cannot tell whether the
14444 equivalence is still true. It might be possible to do
14445 slightly better than this (we only have a problem if I2DEST
14446 or I1DEST is present in the expression), but it doesn't
14447 seem worth the trouble. */
14448
14449 if (from_insn == i3
14450 && (XEXP (note, 0) == 0 || CONSTANT_P (XEXP (note, 0))))
14451 place = i3;
14452 break;
14453
14454 case REG_INC:
14455 /* These notes say something about how a register is used. They must
14456 be present on any use of the register in I2 or I3. */
14457 if (reg_mentioned_p (XEXP (note, 0), PATTERN (i3)))
14458 place = i3;
14459
14460 if (i2 && reg_mentioned_p (XEXP (note, 0), PATTERN (i2)))
14461 {
14462 if (place)
14463 place2 = i2;
14464 else
14465 place = i2;
14466 }
14467 break;
14468
14469 case REG_LABEL_TARGET:
14470 case REG_LABEL_OPERAND:
14471 /* This can show up in several ways -- either directly in the
14472 pattern, or hidden off in the constant pool with (or without?)
14473 a REG_EQUAL note. */
14474 /* ??? Ignore the without-reg_equal-note problem for now. */
14475 if (reg_mentioned_p (XEXP (note, 0), PATTERN (i3))
14476 || ((tem_note = find_reg_note (i3, REG_EQUAL, NULL_RTX))
14477 && GET_CODE (XEXP (tem_note, 0)) == LABEL_REF
14478 && label_ref_label (XEXP (tem_note, 0)) == XEXP (note, 0)))
14479 place = i3;
14480
14481 if (i2
14482 && (reg_mentioned_p (XEXP (note, 0), PATTERN (i2))
14483 || ((tem_note = find_reg_note (i2, REG_EQUAL, NULL_RTX))
14484 && GET_CODE (XEXP (tem_note, 0)) == LABEL_REF
14485 && label_ref_label (XEXP (tem_note, 0)) == XEXP (note, 0))))
14486 {
14487 if (place)
14488 place2 = i2;
14489 else
14490 place = i2;
14491 }
14492
14493 /* For REG_LABEL_TARGET on a JUMP_P, we prefer to put the note
14494 as a JUMP_LABEL or decrement LABEL_NUSES if it's already
14495 there. */
14496 if (place && JUMP_P (place)
14497 && REG_NOTE_KIND (note) == REG_LABEL_TARGET
14498 && (JUMP_LABEL (place) == NULL
14499 || JUMP_LABEL (place) == XEXP (note, 0)))
14500 {
14501 rtx label = JUMP_LABEL (place);
14502
14503 if (!label)
14504 JUMP_LABEL (place) = XEXP (note, 0);
14505 else if (LABEL_P (label))
14506 LABEL_NUSES (label)--;
14507 }
14508
14509 if (place2 && JUMP_P (place2)
14510 && REG_NOTE_KIND (note) == REG_LABEL_TARGET
14511 && (JUMP_LABEL (place2) == NULL
14512 || JUMP_LABEL (place2) == XEXP (note, 0)))
14513 {
14514 rtx label = JUMP_LABEL (place2);
14515
14516 if (!label)
14517 JUMP_LABEL (place2) = XEXP (note, 0);
14518 else if (LABEL_P (label))
14519 LABEL_NUSES (label)--;
14520 place2 = 0;
14521 }
14522 break;
14523
14524 case REG_NONNEG:
14525 /* This note says something about the value of a register prior
14526 to the execution of an insn. It is too much trouble to see
14527 if the note is still correct in all situations. It is better
14528 to simply delete it. */
14529 break;
14530
14531 case REG_DEAD:
14532 /* If we replaced the right hand side of FROM_INSN with a
14533 REG_EQUAL note, the original use of the dying register
14534 will not have been combined into I3 and I2. In such cases,
14535 FROM_INSN is guaranteed to be the first of the combined
14536 instructions, so we simply need to search back before
14537 FROM_INSN for the previous use or set of this register,
14538 then alter the notes there appropriately.
14539
14540 If the register is used as an input in I3, it dies there.
14541 Similarly for I2, if it is nonzero and adjacent to I3.
14542
14543 If the register is not used as an input in either I3 or I2
14544 and it is not one of the registers we were supposed to eliminate,
14545 there are two possibilities. We might have a non-adjacent I2
14546 or we might have somehow eliminated an additional register
14547 from a computation. For example, we might have had A & B where
14548 we discover that B will always be zero. In this case we will
14549 eliminate the reference to A.
14550
14551 In both cases, we must search to see if we can find a previous
14552 use of A and put the death note there. */
14553
14554 if (from_insn
14555 && from_insn == i2mod
14556 && !reg_overlap_mentioned_p (XEXP (note, 0), i2mod_new_rhs))
14557 tem_insn = from_insn;
14558 else
14559 {
14560 if (from_insn
14561 && CALL_P (from_insn)
14562 && find_reg_fusage (from_insn, USE, XEXP (note, 0)))
14563 place = from_insn;
14564 else if (i2 && reg_set_p (XEXP (note, 0), PATTERN (i2)))
14565 {
14566 /* If the new I2 sets the same register that is marked
14567 dead in the note, we do not in general know where to
14568 put the note. One important case we _can_ handle is
14569 when the note comes from I3. */
14570 if (from_insn == i3)
14571 place = i3;
14572 else
14573 break;
14574 }
14575 else if (reg_referenced_p (XEXP (note, 0), PATTERN (i3)))
14576 place = i3;
14577 else if (i2 != 0 && next_nonnote_nondebug_insn (i2) == i3
14578 && reg_referenced_p (XEXP (note, 0), PATTERN (i2)))
14579 place = i2;
14580 else if ((rtx_equal_p (XEXP (note, 0), elim_i2)
14581 && !(i2mod
14582 && reg_overlap_mentioned_p (XEXP (note, 0),
14583 i2mod_old_rhs)))
14584 || rtx_equal_p (XEXP (note, 0), elim_i1)
14585 || rtx_equal_p (XEXP (note, 0), elim_i0))
14586 break;
14587 tem_insn = i3;
14588 }
14589
14590 if (place == 0)
14591 {
14592 basic_block bb = this_basic_block;
14593
14594 for (tem_insn = PREV_INSN (tem_insn); place == 0; tem_insn = PREV_INSN (tem_insn))
14595 {
14596 if (!NONDEBUG_INSN_P (tem_insn))
14597 {
14598 if (tem_insn == BB_HEAD (bb))
14599 break;
14600 continue;
14601 }
14602
14603 /* If the register is being set at TEM_INSN, see if that is all
14604 TEM_INSN is doing. If so, delete TEM_INSN. Otherwise, make this
14605 into a REG_UNUSED note instead. Don't delete sets to
14606 global register vars. */
14607 if ((REGNO (XEXP (note, 0)) >= FIRST_PSEUDO_REGISTER
14608 || !global_regs[REGNO (XEXP (note, 0))])
14609 && reg_set_p (XEXP (note, 0), PATTERN (tem_insn)))
14610 {
14611 rtx set = single_set (tem_insn);
14612 rtx inner_dest = 0;
14613 rtx_insn *cc0_setter = NULL;
14614
14615 if (set != 0)
14616 for (inner_dest = SET_DEST (set);
14617 (GET_CODE (inner_dest) == STRICT_LOW_PART
14618 || GET_CODE (inner_dest) == SUBREG
14619 || GET_CODE (inner_dest) == ZERO_EXTRACT);
14620 inner_dest = XEXP (inner_dest, 0))
14621 ;
14622
14623 /* Verify that it was the set, and not a clobber that
14624 modified the register.
14625
14626 CC0 targets must be careful to maintain setter/user
14627 pairs. If we cannot delete the setter due to side
14628 effects, mark the user with an UNUSED note instead
14629 of deleting it. */
14630
14631 if (set != 0 && ! side_effects_p (SET_SRC (set))
14632 && rtx_equal_p (XEXP (note, 0), inner_dest)
14633 && (!HAVE_cc0
14634 || (! reg_mentioned_p (cc0_rtx, SET_SRC (set))
14635 || ((cc0_setter = prev_cc0_setter (tem_insn)) != NULL
14636 && sets_cc0_p (PATTERN (cc0_setter)) > 0))))
14637 {
14638 /* Move the notes and links of TEM_INSN elsewhere.
14639 This might delete other dead insns recursively.
14640 First set the pattern to something that won't use
14641 any register. */
14642 rtx old_notes = REG_NOTES (tem_insn);
14643
14644 PATTERN (tem_insn) = pc_rtx;
14645 REG_NOTES (tem_insn) = NULL;
14646
14647 distribute_notes (old_notes, tem_insn, tem_insn, NULL,
14648 NULL_RTX, NULL_RTX, NULL_RTX);
14649 distribute_links (LOG_LINKS (tem_insn));
14650
14651 unsigned int regno = REGNO (XEXP (note, 0));
14652 reg_stat_type *rsp = &reg_stat[regno];
14653 if (rsp->last_set == tem_insn)
14654 record_value_for_reg (XEXP (note, 0), NULL, NULL_RTX);
14655
14656 SET_INSN_DELETED (tem_insn);
14657 if (tem_insn == i2)
14658 i2 = NULL;
14659
14660 /* Delete the setter too. */
14661 if (cc0_setter)
14662 {
14663 PATTERN (cc0_setter) = pc_rtx;
14664 old_notes = REG_NOTES (cc0_setter);
14665 REG_NOTES (cc0_setter) = NULL;
14666
14667 distribute_notes (old_notes, cc0_setter,
14668 cc0_setter, NULL,
14669 NULL_RTX, NULL_RTX, NULL_RTX);
14670 distribute_links (LOG_LINKS (cc0_setter));
14671
14672 SET_INSN_DELETED (cc0_setter);
14673 if (cc0_setter == i2)
14674 i2 = NULL;
14675 }
14676 }
14677 else
14678 {
14679 PUT_REG_NOTE_KIND (note, REG_UNUSED);
14680
14681 /* If there isn't already a REG_UNUSED note, put one
14682 here. Do not place a REG_DEAD note, even if
14683 the register is also used here; that would not
14684 match the algorithm used in lifetime analysis
14685 and can cause the consistency check in the
14686 scheduler to fail. */
14687 if (! find_regno_note (tem_insn, REG_UNUSED,
14688 REGNO (XEXP (note, 0))))
14689 place = tem_insn;
14690 break;
14691 }
14692 }
14693 else if (reg_referenced_p (XEXP (note, 0), PATTERN (tem_insn))
14694 || (CALL_P (tem_insn)
14695 && find_reg_fusage (tem_insn, USE, XEXP (note, 0))))
14696 {
14697 place = tem_insn;
14698
14699 /* If we are doing a 3->2 combination, and we have a
14700 register which formerly died in i3 and was not used
14701 by i2, which now no longer dies in i3 and is used in
14702 i2 but does not die in i2, and place is between i2
14703 and i3, then we may need to move a link from place to
14704 i2. */
14705 if (i2 && DF_INSN_LUID (place) > DF_INSN_LUID (i2)
14706 && from_insn
14707 && DF_INSN_LUID (from_insn) > DF_INSN_LUID (i2)
14708 && reg_referenced_p (XEXP (note, 0), PATTERN (i2)))
14709 {
14710 struct insn_link *links = LOG_LINKS (place);
14711 LOG_LINKS (place) = NULL;
14712 distribute_links (links);
14713 }
14714 break;
14715 }
14716
14717 if (tem_insn == BB_HEAD (bb))
14718 break;
14719 }
14720
14721 }
14722
14723 /* If the register is set or already dead at PLACE, we needn't do
14724 anything with this note if it is still a REG_DEAD note.
14725 We check here if it is set at all, not if is it totally replaced,
14726 which is what `dead_or_set_p' checks, so also check for it being
14727 set partially. */
14728
14729 if (place && REG_NOTE_KIND (note) == REG_DEAD)
14730 {
14731 unsigned int regno = REGNO (XEXP (note, 0));
14732 reg_stat_type *rsp = &reg_stat[regno];
14733
14734 if (dead_or_set_p (place, XEXP (note, 0))
14735 || reg_bitfield_target_p (XEXP (note, 0), PATTERN (place)))
14736 {
14737 /* Unless the register previously died in PLACE, clear
14738 last_death. [I no longer understand why this is
14739 being done.] */
14740 if (rsp->last_death != place)
14741 rsp->last_death = 0;
14742 place = 0;
14743 }
14744 else
14745 rsp->last_death = place;
14746
14747 /* If this is a death note for a hard reg that is occupying
14748 multiple registers, ensure that we are still using all
14749 parts of the object. If we find a piece of the object
14750 that is unused, we must arrange for an appropriate REG_DEAD
14751 note to be added for it. However, we can't just emit a USE
14752 and tag the note to it, since the register might actually
14753 be dead; so we recourse, and the recursive call then finds
14754 the previous insn that used this register. */
14755
14756 if (place && REG_NREGS (XEXP (note, 0)) > 1)
14757 {
14758 unsigned int endregno = END_REGNO (XEXP (note, 0));
14759 bool all_used = true;
14760 unsigned int i;
14761
14762 for (i = regno; i < endregno; i++)
14763 if ((! refers_to_regno_p (i, PATTERN (place))
14764 && ! find_regno_fusage (place, USE, i))
14765 || dead_or_set_regno_p (place, i))
14766 {
14767 all_used = false;
14768 break;
14769 }
14770
14771 if (! all_used)
14772 {
14773 /* Put only REG_DEAD notes for pieces that are
14774 not already dead or set. */
14775
14776 for (i = regno; i < endregno;
14777 i += hard_regno_nregs (i, reg_raw_mode[i]))
14778 {
14779 rtx piece = regno_reg_rtx[i];
14780 basic_block bb = this_basic_block;
14781
14782 if (! dead_or_set_p (place, piece)
14783 && ! reg_bitfield_target_p (piece,
14784 PATTERN (place)))
14785 {
14786 rtx new_note = alloc_reg_note (REG_DEAD, piece,
14787 NULL_RTX);
14788
14789 distribute_notes (new_note, place, place,
14790 NULL, NULL_RTX, NULL_RTX,
14791 NULL_RTX);
14792 }
14793 else if (! refers_to_regno_p (i, PATTERN (place))
14794 && ! find_regno_fusage (place, USE, i))
14795 for (tem_insn = PREV_INSN (place); ;
14796 tem_insn = PREV_INSN (tem_insn))
14797 {
14798 if (!NONDEBUG_INSN_P (tem_insn))
14799 {
14800 if (tem_insn == BB_HEAD (bb))
14801 break;
14802 continue;
14803 }
14804 if (dead_or_set_p (tem_insn, piece)
14805 || reg_bitfield_target_p (piece,
14806 PATTERN (tem_insn)))
14807 {
14808 add_reg_note (tem_insn, REG_UNUSED, piece);
14809 break;
14810 }
14811 }
14812 }
14813
14814 place = 0;
14815 }
14816 }
14817 }
14818 break;
14819
14820 default:
14821 /* Any other notes should not be present at this point in the
14822 compilation. */
14823 gcc_unreachable ();
14824 }
14825
14826 if (place)
14827 {
14828 XEXP (note, 1) = REG_NOTES (place);
14829 REG_NOTES (place) = note;
14830
14831 /* Set added_notes_insn to the earliest insn we added a note to. */
14832 if (added_notes_insn == 0
14833 || DF_INSN_LUID (added_notes_insn) > DF_INSN_LUID (place))
14834 added_notes_insn = place;
14835 }
14836
14837 if (place2)
14838 {
14839 add_shallow_copy_of_reg_note (place2, note);
14840
14841 /* Set added_notes_insn to the earliest insn we added a note to. */
14842 if (added_notes_insn == 0
14843 || DF_INSN_LUID (added_notes_insn) > DF_INSN_LUID (place2))
14844 added_notes_insn = place2;
14845 }
14846 }
14847 }
14848 \f
14849 /* Similarly to above, distribute the LOG_LINKS that used to be present on
14850 I3, I2, and I1 to new locations. This is also called to add a link
14851 pointing at I3 when I3's destination is changed. */
14852
14853 static void
14854 distribute_links (struct insn_link *links)
14855 {
14856 struct insn_link *link, *next_link;
14857
14858 for (link = links; link; link = next_link)
14859 {
14860 rtx_insn *place = 0;
14861 rtx_insn *insn;
14862 rtx set, reg;
14863
14864 next_link = link->next;
14865
14866 /* If the insn that this link points to is a NOTE, ignore it. */
14867 if (NOTE_P (link->insn))
14868 continue;
14869
14870 set = 0;
14871 rtx pat = PATTERN (link->insn);
14872 if (GET_CODE (pat) == SET)
14873 set = pat;
14874 else if (GET_CODE (pat) == PARALLEL)
14875 {
14876 int i;
14877 for (i = 0; i < XVECLEN (pat, 0); i++)
14878 {
14879 set = XVECEXP (pat, 0, i);
14880 if (GET_CODE (set) != SET)
14881 continue;
14882
14883 reg = SET_DEST (set);
14884 while (GET_CODE (reg) == ZERO_EXTRACT
14885 || GET_CODE (reg) == STRICT_LOW_PART
14886 || GET_CODE (reg) == SUBREG)
14887 reg = XEXP (reg, 0);
14888
14889 if (!REG_P (reg))
14890 continue;
14891
14892 if (REGNO (reg) == link->regno)
14893 break;
14894 }
14895 if (i == XVECLEN (pat, 0))
14896 continue;
14897 }
14898 else
14899 continue;
14900
14901 reg = SET_DEST (set);
14902
14903 while (GET_CODE (reg) == ZERO_EXTRACT
14904 || GET_CODE (reg) == STRICT_LOW_PART
14905 || GET_CODE (reg) == SUBREG)
14906 reg = XEXP (reg, 0);
14907
14908 if (reg == pc_rtx)
14909 continue;
14910
14911 /* A LOG_LINK is defined as being placed on the first insn that uses
14912 a register and points to the insn that sets the register. Start
14913 searching at the next insn after the target of the link and stop
14914 when we reach a set of the register or the end of the basic block.
14915
14916 Note that this correctly handles the link that used to point from
14917 I3 to I2. Also note that not much searching is typically done here
14918 since most links don't point very far away. */
14919
14920 for (insn = NEXT_INSN (link->insn);
14921 (insn && (this_basic_block->next_bb == EXIT_BLOCK_PTR_FOR_FN (cfun)
14922 || BB_HEAD (this_basic_block->next_bb) != insn));
14923 insn = NEXT_INSN (insn))
14924 if (DEBUG_INSN_P (insn))
14925 continue;
14926 else if (INSN_P (insn) && reg_overlap_mentioned_p (reg, PATTERN (insn)))
14927 {
14928 if (reg_referenced_p (reg, PATTERN (insn)))
14929 place = insn;
14930 break;
14931 }
14932 else if (CALL_P (insn)
14933 && find_reg_fusage (insn, USE, reg))
14934 {
14935 place = insn;
14936 break;
14937 }
14938 else if (INSN_P (insn) && reg_set_p (reg, insn))
14939 break;
14940
14941 /* If we found a place to put the link, place it there unless there
14942 is already a link to the same insn as LINK at that point. */
14943
14944 if (place)
14945 {
14946 struct insn_link *link2;
14947
14948 FOR_EACH_LOG_LINK (link2, place)
14949 if (link2->insn == link->insn && link2->regno == link->regno)
14950 break;
14951
14952 if (link2 == NULL)
14953 {
14954 link->next = LOG_LINKS (place);
14955 LOG_LINKS (place) = link;
14956
14957 /* Set added_links_insn to the earliest insn we added a
14958 link to. */
14959 if (added_links_insn == 0
14960 || DF_INSN_LUID (added_links_insn) > DF_INSN_LUID (place))
14961 added_links_insn = place;
14962 }
14963 }
14964 }
14965 }
14966 \f
14967 /* Check for any register or memory mentioned in EQUIV that is not
14968 mentioned in EXPR. This is used to restrict EQUIV to "specializations"
14969 of EXPR where some registers may have been replaced by constants. */
14970
14971 static bool
14972 unmentioned_reg_p (rtx equiv, rtx expr)
14973 {
14974 subrtx_iterator::array_type array;
14975 FOR_EACH_SUBRTX (iter, array, equiv, NONCONST)
14976 {
14977 const_rtx x = *iter;
14978 if ((REG_P (x) || MEM_P (x))
14979 && !reg_mentioned_p (x, expr))
14980 return true;
14981 }
14982 return false;
14983 }
14984 \f
14985 DEBUG_FUNCTION void
14986 dump_combine_stats (FILE *file)
14987 {
14988 fprintf
14989 (file,
14990 ";; Combiner statistics: %d attempts, %d substitutions (%d requiring new space),\n;; %d successes.\n\n",
14991 combine_attempts, combine_merges, combine_extras, combine_successes);
14992 }
14993
14994 void
14995 dump_combine_total_stats (FILE *file)
14996 {
14997 fprintf
14998 (file,
14999 "\n;; Combiner totals: %d attempts, %d substitutions (%d requiring new space),\n;; %d successes.\n",
15000 total_attempts, total_merges, total_extras, total_successes);
15001 }
15002 \f
15003 /* Make pseudo-to-pseudo copies after every hard-reg-to-pseudo-copy, because
15004 the reg-to-reg copy can usefully combine with later instructions, but we
15005 do not want to combine the hard reg into later instructions, for that
15006 restricts register allocation. */
15007 static void
15008 make_more_copies (void)
15009 {
15010 basic_block bb;
15011
15012 FOR_EACH_BB_FN (bb, cfun)
15013 {
15014 rtx_insn *insn;
15015
15016 FOR_BB_INSNS (bb, insn)
15017 {
15018 if (!NONDEBUG_INSN_P (insn))
15019 continue;
15020
15021 rtx set = single_set (insn);
15022 if (!set)
15023 continue;
15024
15025 rtx dest = SET_DEST (set);
15026 if (!(REG_P (dest) && !HARD_REGISTER_P (dest)))
15027 continue;
15028
15029 rtx src = SET_SRC (set);
15030 if (!(REG_P (src) && HARD_REGISTER_P (src)))
15031 continue;
15032 if (TEST_HARD_REG_BIT (fixed_reg_set, REGNO (src)))
15033 continue;
15034
15035 rtx new_reg = gen_reg_rtx (GET_MODE (dest));
15036 rtx_insn *new_insn = gen_move_insn (new_reg, src);
15037 SET_SRC (set) = new_reg;
15038 emit_insn_before (new_insn, insn);
15039 df_insn_rescan (insn);
15040 }
15041 }
15042 }
15043
15044 /* Try combining insns through substitution. */
15045 static unsigned int
15046 rest_of_handle_combine (void)
15047 {
15048 make_more_copies ();
15049
15050 df_set_flags (DF_LR_RUN_DCE + DF_DEFER_INSN_RESCAN);
15051 df_note_add_problem ();
15052 df_analyze ();
15053
15054 regstat_init_n_sets_and_refs ();
15055 reg_n_sets_max = max_reg_num ();
15056
15057 int rebuild_jump_labels_after_combine
15058 = combine_instructions (get_insns (), max_reg_num ());
15059
15060 /* Combining insns may have turned an indirect jump into a
15061 direct jump. Rebuild the JUMP_LABEL fields of jumping
15062 instructions. */
15063 if (rebuild_jump_labels_after_combine)
15064 {
15065 if (dom_info_available_p (CDI_DOMINATORS))
15066 free_dominance_info (CDI_DOMINATORS);
15067 timevar_push (TV_JUMP);
15068 rebuild_jump_labels (get_insns ());
15069 cleanup_cfg (0);
15070 timevar_pop (TV_JUMP);
15071 }
15072
15073 regstat_free_n_sets_and_refs ();
15074 return 0;
15075 }
15076
15077 namespace {
15078
15079 const pass_data pass_data_combine =
15080 {
15081 RTL_PASS, /* type */
15082 "combine", /* name */
15083 OPTGROUP_NONE, /* optinfo_flags */
15084 TV_COMBINE, /* tv_id */
15085 PROP_cfglayout, /* properties_required */
15086 0, /* properties_provided */
15087 0, /* properties_destroyed */
15088 0, /* todo_flags_start */
15089 TODO_df_finish, /* todo_flags_finish */
15090 };
15091
15092 class pass_combine : public rtl_opt_pass
15093 {
15094 public:
15095 pass_combine (gcc::context *ctxt)
15096 : rtl_opt_pass (pass_data_combine, ctxt)
15097 {}
15098
15099 /* opt_pass methods: */
15100 virtual bool gate (function *) { return (optimize > 0); }
15101 virtual unsigned int execute (function *)
15102 {
15103 return rest_of_handle_combine ();
15104 }
15105
15106 }; // class pass_combine
15107
15108 } // anon namespace
15109
15110 rtl_opt_pass *
15111 make_pass_combine (gcc::context *ctxt)
15112 {
15113 return new pass_combine (ctxt);
15114 }