acconfig.h: _GLIBCPP_USING_THREADS and some workaround types added.
[gcc.git] / gcc / combine.c
1 /* Optimize by combining instructions for GNU compiler.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000 Free Software Foundation, Inc.
4
5 This file is part of GNU CC.
6
7 GNU CC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
11
12 GNU CC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GNU CC; see the file COPYING. If not, write to
19 the Free Software Foundation, 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
21
22 /* This module is essentially the "combiner" phase of the U. of Arizona
23 Portable Optimizer, but redone to work on our list-structured
24 representation for RTL instead of their string representation.
25
26 The LOG_LINKS of each insn identify the most recent assignment
27 to each REG used in the insn. It is a list of previous insns,
28 each of which contains a SET for a REG that is used in this insn
29 and not used or set in between. LOG_LINKs never cross basic blocks.
30 They were set up by the preceding pass (lifetime analysis).
31
32 We try to combine each pair of insns joined by a logical link.
33 We also try to combine triples of insns A, B and C when
34 C has a link back to B and B has a link back to A.
35
36 LOG_LINKS does not have links for use of the CC0. They don't
37 need to, because the insn that sets the CC0 is always immediately
38 before the insn that tests it. So we always regard a branch
39 insn as having a logical link to the preceding insn. The same is true
40 for an insn explicitly using CC0.
41
42 We check (with use_crosses_set_p) to avoid combining in such a way
43 as to move a computation to a place where its value would be different.
44
45 Combination is done by mathematically substituting the previous
46 insn(s) values for the regs they set into the expressions in
47 the later insns that refer to these regs. If the result is a valid insn
48 for our target machine, according to the machine description,
49 we install it, delete the earlier insns, and update the data flow
50 information (LOG_LINKS and REG_NOTES) for what we did.
51
52 There are a few exceptions where the dataflow information created by
53 flow.c aren't completely updated:
54
55 - reg_live_length is not updated
56 - reg_n_refs is not adjusted in the rare case when a register is
57 no longer required in a computation
58 - there are extremely rare cases (see distribute_regnotes) when a
59 REG_DEAD note is lost
60 - a LOG_LINKS entry that refers to an insn with multiple SETs may be
61 removed because there is no way to know which register it was
62 linking
63
64 To simplify substitution, we combine only when the earlier insn(s)
65 consist of only a single assignment. To simplify updating afterward,
66 we never combine when a subroutine call appears in the middle.
67
68 Since we do not represent assignments to CC0 explicitly except when that
69 is all an insn does, there is no LOG_LINKS entry in an insn that uses
70 the condition code for the insn that set the condition code.
71 Fortunately, these two insns must be consecutive.
72 Therefore, every JUMP_INSN is taken to have an implicit logical link
73 to the preceding insn. This is not quite right, since non-jumps can
74 also use the condition code; but in practice such insns would not
75 combine anyway. */
76
77 #include "config.h"
78 #include "system.h"
79 #include "rtl.h"
80 #include "tm_p.h"
81 #include "flags.h"
82 #include "regs.h"
83 #include "hard-reg-set.h"
84 #include "basic-block.h"
85 #include "insn-config.h"
86 #include "function.h"
87 /* Include expr.h after insn-config.h so we get HAVE_conditional_move. */
88 #include "expr.h"
89 #include "insn-flags.h"
90 #include "insn-codes.h"
91 #include "insn-attr.h"
92 #include "recog.h"
93 #include "real.h"
94 #include "toplev.h"
95 #include "defaults.h"
96
97 #ifndef ACCUMULATE_OUTGOING_ARGS
98 #define ACCUMULATE_OUTGOING_ARGS 0
99 #endif
100
101 /* Supply a default definition for PUSH_ARGS. */
102 #ifndef PUSH_ARGS
103 #ifdef PUSH_ROUNDING
104 #define PUSH_ARGS !ACCUMULATE_OUTGOING_ARGS
105 #else
106 #define PUSH_ARGS 0
107 #endif
108 #endif
109
110 /* It is not safe to use ordinary gen_lowpart in combine.
111 Use gen_lowpart_for_combine instead. See comments there. */
112 #define gen_lowpart dont_use_gen_lowpart_you_dummy
113
114 /* Number of attempts to combine instructions in this function. */
115
116 static int combine_attempts;
117
118 /* Number of attempts that got as far as substitution in this function. */
119
120 static int combine_merges;
121
122 /* Number of instructions combined with added SETs in this function. */
123
124 static int combine_extras;
125
126 /* Number of instructions combined in this function. */
127
128 static int combine_successes;
129
130 /* Totals over entire compilation. */
131
132 static int total_attempts, total_merges, total_extras, total_successes;
133
134 /* Define a default value for REVERSIBLE_CC_MODE.
135 We can never assume that a condition code mode is safe to reverse unless
136 the md tells us so. */
137 #ifndef REVERSIBLE_CC_MODE
138 #define REVERSIBLE_CC_MODE(MODE) 0
139 #endif
140 \f
141 /* Vector mapping INSN_UIDs to cuids.
142 The cuids are like uids but increase monotonically always.
143 Combine always uses cuids so that it can compare them.
144 But actually renumbering the uids, which we used to do,
145 proves to be a bad idea because it makes it hard to compare
146 the dumps produced by earlier passes with those from later passes. */
147
148 static int *uid_cuid;
149 static int max_uid_cuid;
150
151 /* Get the cuid of an insn. */
152
153 #define INSN_CUID(INSN) \
154 (INSN_UID (INSN) > max_uid_cuid ? insn_cuid (INSN) : uid_cuid[INSN_UID (INSN)])
155
156 /* Maximum register number, which is the size of the tables below. */
157
158 static unsigned int combine_max_regno;
159
160 /* Record last point of death of (hard or pseudo) register n. */
161
162 static rtx *reg_last_death;
163
164 /* Record last point of modification of (hard or pseudo) register n. */
165
166 static rtx *reg_last_set;
167
168 /* Record the cuid of the last insn that invalidated memory
169 (anything that writes memory, and subroutine calls, but not pushes). */
170
171 static int mem_last_set;
172
173 /* Record the cuid of the last CALL_INSN
174 so we can tell whether a potential combination crosses any calls. */
175
176 static int last_call_cuid;
177
178 /* When `subst' is called, this is the insn that is being modified
179 (by combining in a previous insn). The PATTERN of this insn
180 is still the old pattern partially modified and it should not be
181 looked at, but this may be used to examine the successors of the insn
182 to judge whether a simplification is valid. */
183
184 static rtx subst_insn;
185
186 /* This is an insn that belongs before subst_insn, but is not currently
187 on the insn chain. */
188
189 static rtx subst_prev_insn;
190
191 /* This is the lowest CUID that `subst' is currently dealing with.
192 get_last_value will not return a value if the register was set at or
193 after this CUID. If not for this mechanism, we could get confused if
194 I2 or I1 in try_combine were an insn that used the old value of a register
195 to obtain a new value. In that case, we might erroneously get the
196 new value of the register when we wanted the old one. */
197
198 static int subst_low_cuid;
199
200 /* This contains any hard registers that are used in newpat; reg_dead_at_p
201 must consider all these registers to be always live. */
202
203 static HARD_REG_SET newpat_used_regs;
204
205 /* This is an insn to which a LOG_LINKS entry has been added. If this
206 insn is the earlier than I2 or I3, combine should rescan starting at
207 that location. */
208
209 static rtx added_links_insn;
210
211 /* Basic block number of the block in which we are performing combines. */
212 static int this_basic_block;
213
214 /* A bitmap indicating which blocks had registers go dead at entry.
215 After combine, we'll need to re-do global life analysis with
216 those blocks as starting points. */
217 static sbitmap refresh_blocks;
218 static int need_refresh;
219 \f
220 /* The next group of arrays allows the recording of the last value assigned
221 to (hard or pseudo) register n. We use this information to see if a
222 operation being processed is redundant given a prior operation performed
223 on the register. For example, an `and' with a constant is redundant if
224 all the zero bits are already known to be turned off.
225
226 We use an approach similar to that used by cse, but change it in the
227 following ways:
228
229 (1) We do not want to reinitialize at each label.
230 (2) It is useful, but not critical, to know the actual value assigned
231 to a register. Often just its form is helpful.
232
233 Therefore, we maintain the following arrays:
234
235 reg_last_set_value the last value assigned
236 reg_last_set_label records the value of label_tick when the
237 register was assigned
238 reg_last_set_table_tick records the value of label_tick when a
239 value using the register is assigned
240 reg_last_set_invalid set to non-zero when it is not valid
241 to use the value of this register in some
242 register's value
243
244 To understand the usage of these tables, it is important to understand
245 the distinction between the value in reg_last_set_value being valid
246 and the register being validly contained in some other expression in the
247 table.
248
249 Entry I in reg_last_set_value is valid if it is non-zero, and either
250 reg_n_sets[i] is 1 or reg_last_set_label[i] == label_tick.
251
252 Register I may validly appear in any expression returned for the value
253 of another register if reg_n_sets[i] is 1. It may also appear in the
254 value for register J if reg_last_set_label[i] < reg_last_set_label[j] or
255 reg_last_set_invalid[j] is zero.
256
257 If an expression is found in the table containing a register which may
258 not validly appear in an expression, the register is replaced by
259 something that won't match, (clobber (const_int 0)).
260
261 reg_last_set_invalid[i] is set non-zero when register I is being assigned
262 to and reg_last_set_table_tick[i] == label_tick. */
263
264 /* Record last value assigned to (hard or pseudo) register n. */
265
266 static rtx *reg_last_set_value;
267
268 /* Record the value of label_tick when the value for register n is placed in
269 reg_last_set_value[n]. */
270
271 static int *reg_last_set_label;
272
273 /* Record the value of label_tick when an expression involving register n
274 is placed in reg_last_set_value. */
275
276 static int *reg_last_set_table_tick;
277
278 /* Set non-zero if references to register n in expressions should not be
279 used. */
280
281 static char *reg_last_set_invalid;
282
283 /* Incremented for each label. */
284
285 static int label_tick;
286
287 /* Some registers that are set more than once and used in more than one
288 basic block are nevertheless always set in similar ways. For example,
289 a QImode register may be loaded from memory in two places on a machine
290 where byte loads zero extend.
291
292 We record in the following array what we know about the nonzero
293 bits of a register, specifically which bits are known to be zero.
294
295 If an entry is zero, it means that we don't know anything special. */
296
297 static unsigned HOST_WIDE_INT *reg_nonzero_bits;
298
299 /* Mode used to compute significance in reg_nonzero_bits. It is the largest
300 integer mode that can fit in HOST_BITS_PER_WIDE_INT. */
301
302 static enum machine_mode nonzero_bits_mode;
303
304 /* Nonzero if we know that a register has some leading bits that are always
305 equal to the sign bit. */
306
307 static unsigned char *reg_sign_bit_copies;
308
309 /* Nonzero when reg_nonzero_bits and reg_sign_bit_copies can be safely used.
310 It is zero while computing them and after combine has completed. This
311 former test prevents propagating values based on previously set values,
312 which can be incorrect if a variable is modified in a loop. */
313
314 static int nonzero_sign_valid;
315
316 /* These arrays are maintained in parallel with reg_last_set_value
317 and are used to store the mode in which the register was last set,
318 the bits that were known to be zero when it was last set, and the
319 number of sign bits copies it was known to have when it was last set. */
320
321 static enum machine_mode *reg_last_set_mode;
322 static unsigned HOST_WIDE_INT *reg_last_set_nonzero_bits;
323 static char *reg_last_set_sign_bit_copies;
324 \f
325 /* Record one modification to rtl structure
326 to be undone by storing old_contents into *where.
327 is_int is 1 if the contents are an int. */
328
329 struct undo
330 {
331 struct undo *next;
332 int is_int;
333 union {rtx r; int i;} old_contents;
334 union {rtx *r; int *i;} where;
335 };
336
337 /* Record a bunch of changes to be undone, up to MAX_UNDO of them.
338 num_undo says how many are currently recorded.
339
340 storage is nonzero if we must undo the allocation of new storage.
341 The value of storage is what to pass to obfree.
342
343 other_insn is nonzero if we have modified some other insn in the process
344 of working on subst_insn. It must be verified too.
345
346 previous_undos is the value of undobuf.undos when we started processing
347 this substitution. This will prevent gen_rtx_combine from re-used a piece
348 from the previous expression. Doing so can produce circular rtl
349 structures. */
350
351 struct undobuf
352 {
353 char *storage;
354 struct undo *undos;
355 struct undo *frees;
356 struct undo *previous_undos;
357 rtx other_insn;
358 };
359
360 static struct undobuf undobuf;
361
362 /* Number of times the pseudo being substituted for
363 was found and replaced. */
364
365 static int n_occurrences;
366
367 static void do_SUBST PARAMS ((rtx *, rtx));
368 static void do_SUBST_INT PARAMS ((int *, int));
369 static void init_reg_last_arrays PARAMS ((void));
370 static void setup_incoming_promotions PARAMS ((void));
371 static void set_nonzero_bits_and_sign_copies PARAMS ((rtx, rtx, void *));
372 static int can_combine_p PARAMS ((rtx, rtx, rtx, rtx, rtx *, rtx *));
373 static int sets_function_arg_p PARAMS ((rtx));
374 static int combinable_i3pat PARAMS ((rtx, rtx *, rtx, rtx, int, rtx *));
375 static int contains_muldiv PARAMS ((rtx));
376 static rtx try_combine PARAMS ((rtx, rtx, rtx, int *));
377 static void undo_all PARAMS ((void));
378 static void undo_commit PARAMS ((void));
379 static rtx *find_split_point PARAMS ((rtx *, rtx));
380 static rtx subst PARAMS ((rtx, rtx, rtx, int, int));
381 static rtx combine_simplify_rtx PARAMS ((rtx, enum machine_mode, int, int));
382 static rtx simplify_if_then_else PARAMS ((rtx));
383 static rtx simplify_set PARAMS ((rtx));
384 static rtx simplify_logical PARAMS ((rtx, int));
385 static rtx expand_compound_operation PARAMS ((rtx));
386 static rtx expand_field_assignment PARAMS ((rtx));
387 static rtx make_extraction PARAMS ((enum machine_mode, rtx, HOST_WIDE_INT,
388 rtx, unsigned HOST_WIDE_INT, int,
389 int, int));
390 static rtx extract_left_shift PARAMS ((rtx, int));
391 static rtx make_compound_operation PARAMS ((rtx, enum rtx_code));
392 static int get_pos_from_mask PARAMS ((unsigned HOST_WIDE_INT,
393 unsigned HOST_WIDE_INT *));
394 static rtx force_to_mode PARAMS ((rtx, enum machine_mode,
395 unsigned HOST_WIDE_INT, rtx, int));
396 static rtx if_then_else_cond PARAMS ((rtx, rtx *, rtx *));
397 static rtx known_cond PARAMS ((rtx, enum rtx_code, rtx, rtx));
398 static int rtx_equal_for_field_assignment_p PARAMS ((rtx, rtx));
399 static rtx make_field_assignment PARAMS ((rtx));
400 static rtx apply_distributive_law PARAMS ((rtx));
401 static rtx simplify_and_const_int PARAMS ((rtx, enum machine_mode, rtx,
402 unsigned HOST_WIDE_INT));
403 static unsigned HOST_WIDE_INT nonzero_bits PARAMS ((rtx, enum machine_mode));
404 static unsigned int num_sign_bit_copies PARAMS ((rtx, enum machine_mode));
405 static int merge_outer_ops PARAMS ((enum rtx_code *, HOST_WIDE_INT *,
406 enum rtx_code, HOST_WIDE_INT,
407 enum machine_mode, int *));
408 static rtx simplify_shift_const PARAMS ((rtx, enum rtx_code, enum machine_mode,
409 rtx, int));
410 static int recog_for_combine PARAMS ((rtx *, rtx, rtx *));
411 static rtx gen_lowpart_for_combine PARAMS ((enum machine_mode, rtx));
412 static rtx gen_rtx_combine PARAMS ((enum rtx_code code, enum machine_mode mode,
413 ...));
414 static rtx gen_binary PARAMS ((enum rtx_code, enum machine_mode,
415 rtx, rtx));
416 static rtx gen_unary PARAMS ((enum rtx_code, enum machine_mode,
417 enum machine_mode, rtx));
418 static enum rtx_code simplify_comparison PARAMS ((enum rtx_code, rtx *, rtx *));
419 static int reversible_comparison_p PARAMS ((rtx));
420 static void update_table_tick PARAMS ((rtx));
421 static void record_value_for_reg PARAMS ((rtx, rtx, rtx));
422 static void check_promoted_subreg PARAMS ((rtx, rtx));
423 static void record_dead_and_set_regs_1 PARAMS ((rtx, rtx, void *));
424 static void record_dead_and_set_regs PARAMS ((rtx));
425 static int get_last_value_validate PARAMS ((rtx *, rtx, int, int));
426 static rtx get_last_value PARAMS ((rtx));
427 static int use_crosses_set_p PARAMS ((rtx, int));
428 static void reg_dead_at_p_1 PARAMS ((rtx, rtx, void *));
429 static int reg_dead_at_p PARAMS ((rtx, rtx));
430 static void move_deaths PARAMS ((rtx, rtx, int, rtx, rtx *));
431 static int reg_bitfield_target_p PARAMS ((rtx, rtx));
432 static void distribute_notes PARAMS ((rtx, rtx, rtx, rtx, rtx, rtx));
433 static void distribute_links PARAMS ((rtx));
434 static void mark_used_regs_combine PARAMS ((rtx));
435 static int insn_cuid PARAMS ((rtx));
436 static void record_promoted_value PARAMS ((rtx, rtx));
437 \f
438 /* Substitute NEWVAL, an rtx expression, into INTO, a place in some
439 insn. The substitution can be undone by undo_all. If INTO is already
440 set to NEWVAL, do not record this change. Because computing NEWVAL might
441 also call SUBST, we have to compute it before we put anything into
442 the undo table. */
443
444 static void
445 do_SUBST (into, newval)
446 rtx *into, newval;
447 {
448 struct undo *buf;
449 rtx oldval = *into;
450
451 if (oldval == newval)
452 return;
453
454 if (undobuf.frees)
455 buf = undobuf.frees, undobuf.frees = buf->next;
456 else
457 buf = (struct undo *) xmalloc (sizeof (struct undo));
458
459 buf->is_int = 0;
460 buf->where.r = into;
461 buf->old_contents.r = oldval;
462 *into = newval;
463
464 buf->next = undobuf.undos, undobuf.undos = buf;
465 }
466
467 #define SUBST(INTO, NEWVAL) do_SUBST(&(INTO), (NEWVAL))
468
469 /* Similar to SUBST, but NEWVAL is an int expression. Note that substitution
470 for the value of a HOST_WIDE_INT value (including CONST_INT) is
471 not safe. */
472
473 static void
474 do_SUBST_INT (into, newval)
475 int *into, newval;
476 {
477 struct undo *buf;
478 int oldval = *into;
479
480 if (oldval == newval)
481 return;
482
483 if (undobuf.frees)
484 buf = undobuf.frees, undobuf.frees = buf->next;
485 else
486 buf = (struct undo *) xmalloc (sizeof (struct undo));
487
488 buf->is_int = 1;
489 buf->where.i = into;
490 buf->old_contents.i = oldval;
491 *into = newval;
492
493 buf->next = undobuf.undos, undobuf.undos = buf;
494 }
495
496 #define SUBST_INT(INTO, NEWVAL) do_SUBST_INT(&(INTO), (NEWVAL))
497 \f
498 /* Main entry point for combiner. F is the first insn of the function.
499 NREGS is the first unused pseudo-reg number.
500
501 Return non-zero if the combiner has turned an indirect jump
502 instruction into a direct jump. */
503 int
504 combine_instructions (f, nregs)
505 rtx f;
506 unsigned int nregs;
507 {
508 register rtx insn, next;
509 #ifdef HAVE_cc0
510 register rtx prev;
511 #endif
512 register int i;
513 register rtx links, nextlinks;
514
515 int new_direct_jump_p = 0;
516
517 combine_attempts = 0;
518 combine_merges = 0;
519 combine_extras = 0;
520 combine_successes = 0;
521
522 combine_max_regno = nregs;
523
524 reg_nonzero_bits = ((unsigned HOST_WIDE_INT *)
525 xcalloc (nregs, sizeof (unsigned HOST_WIDE_INT)));
526 reg_sign_bit_copies
527 = (unsigned char *) xcalloc (nregs, sizeof (unsigned char));
528
529 reg_last_death = (rtx *) xmalloc (nregs * sizeof (rtx));
530 reg_last_set = (rtx *) xmalloc (nregs * sizeof (rtx));
531 reg_last_set_value = (rtx *) xmalloc (nregs * sizeof (rtx));
532 reg_last_set_table_tick = (int *) xmalloc (nregs * sizeof (int));
533 reg_last_set_label = (int *) xmalloc (nregs * sizeof (int));
534 reg_last_set_invalid = (char *) xmalloc (nregs * sizeof (char));
535 reg_last_set_mode
536 = (enum machine_mode *) xmalloc (nregs * sizeof (enum machine_mode));
537 reg_last_set_nonzero_bits
538 = (unsigned HOST_WIDE_INT *) xmalloc (nregs * sizeof (HOST_WIDE_INT));
539 reg_last_set_sign_bit_copies
540 = (char *) xmalloc (nregs * sizeof (char));
541
542 init_reg_last_arrays ();
543
544 init_recog_no_volatile ();
545
546 /* Compute maximum uid value so uid_cuid can be allocated. */
547
548 for (insn = f, i = 0; insn; insn = NEXT_INSN (insn))
549 if (INSN_UID (insn) > i)
550 i = INSN_UID (insn);
551
552 uid_cuid = (int *) xmalloc ((i + 1) * sizeof (int));
553 max_uid_cuid = i;
554
555 nonzero_bits_mode = mode_for_size (HOST_BITS_PER_WIDE_INT, MODE_INT, 0);
556
557 /* Don't use reg_nonzero_bits when computing it. This can cause problems
558 when, for example, we have j <<= 1 in a loop. */
559
560 nonzero_sign_valid = 0;
561
562 /* Compute the mapping from uids to cuids.
563 Cuids are numbers assigned to insns, like uids,
564 except that cuids increase monotonically through the code.
565
566 Scan all SETs and see if we can deduce anything about what
567 bits are known to be zero for some registers and how many copies
568 of the sign bit are known to exist for those registers.
569
570 Also set any known values so that we can use it while searching
571 for what bits are known to be set. */
572
573 label_tick = 1;
574
575 /* We need to initialize it here, because record_dead_and_set_regs may call
576 get_last_value. */
577 subst_prev_insn = NULL_RTX;
578
579 setup_incoming_promotions ();
580
581 refresh_blocks = sbitmap_alloc (n_basic_blocks);
582 sbitmap_zero (refresh_blocks);
583 need_refresh = 0;
584
585 for (insn = f, i = 0; insn; insn = NEXT_INSN (insn))
586 {
587 uid_cuid[INSN_UID (insn)] = ++i;
588 subst_low_cuid = i;
589 subst_insn = insn;
590
591 if (INSN_P (insn))
592 {
593 note_stores (PATTERN (insn), set_nonzero_bits_and_sign_copies,
594 NULL);
595 record_dead_and_set_regs (insn);
596
597 #ifdef AUTO_INC_DEC
598 for (links = REG_NOTES (insn); links; links = XEXP (links, 1))
599 if (REG_NOTE_KIND (links) == REG_INC)
600 set_nonzero_bits_and_sign_copies (XEXP (links, 0), NULL_RTX,
601 NULL);
602 #endif
603 }
604
605 if (GET_CODE (insn) == CODE_LABEL)
606 label_tick++;
607 }
608
609 nonzero_sign_valid = 1;
610
611 /* Now scan all the insns in forward order. */
612
613 this_basic_block = -1;
614 label_tick = 1;
615 last_call_cuid = 0;
616 mem_last_set = 0;
617 init_reg_last_arrays ();
618 setup_incoming_promotions ();
619
620 for (insn = f; insn; insn = next ? next : NEXT_INSN (insn))
621 {
622 next = 0;
623
624 /* If INSN starts a new basic block, update our basic block number. */
625 if (this_basic_block + 1 < n_basic_blocks
626 && BLOCK_HEAD (this_basic_block + 1) == insn)
627 this_basic_block++;
628
629 if (GET_CODE (insn) == CODE_LABEL)
630 label_tick++;
631
632 else if (INSN_P (insn))
633 {
634 /* See if we know about function return values before this
635 insn based upon SUBREG flags. */
636 check_promoted_subreg (insn, PATTERN (insn));
637
638 /* Try this insn with each insn it links back to. */
639
640 for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
641 if ((next = try_combine (insn, XEXP (links, 0),
642 NULL_RTX, &new_direct_jump_p)) != 0)
643 goto retry;
644
645 /* Try each sequence of three linked insns ending with this one. */
646
647 for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
648 {
649 rtx link = XEXP (links, 0);
650
651 /* If the linked insn has been replaced by a note, then there
652 is no point in persuing this chain any further. */
653 if (GET_CODE (link) == NOTE)
654 break;
655
656 for (nextlinks = LOG_LINKS (link);
657 nextlinks;
658 nextlinks = XEXP (nextlinks, 1))
659 if ((next = try_combine (insn, XEXP (links, 0),
660 XEXP (nextlinks, 0),
661 &new_direct_jump_p)) != 0)
662 goto retry;
663 }
664
665 #ifdef HAVE_cc0
666 /* Try to combine a jump insn that uses CC0
667 with a preceding insn that sets CC0, and maybe with its
668 logical predecessor as well.
669 This is how we make decrement-and-branch insns.
670 We need this special code because data flow connections
671 via CC0 do not get entered in LOG_LINKS. */
672
673 if (GET_CODE (insn) == JUMP_INSN
674 && (prev = prev_nonnote_insn (insn)) != 0
675 && GET_CODE (prev) == INSN
676 && sets_cc0_p (PATTERN (prev)))
677 {
678 if ((next = try_combine (insn, prev,
679 NULL_RTX, &new_direct_jump_p)) != 0)
680 goto retry;
681
682 for (nextlinks = LOG_LINKS (prev); nextlinks;
683 nextlinks = XEXP (nextlinks, 1))
684 if ((next = try_combine (insn, prev,
685 XEXP (nextlinks, 0),
686 &new_direct_jump_p)) != 0)
687 goto retry;
688 }
689
690 /* Do the same for an insn that explicitly references CC0. */
691 if (GET_CODE (insn) == INSN
692 && (prev = prev_nonnote_insn (insn)) != 0
693 && GET_CODE (prev) == INSN
694 && sets_cc0_p (PATTERN (prev))
695 && GET_CODE (PATTERN (insn)) == SET
696 && reg_mentioned_p (cc0_rtx, SET_SRC (PATTERN (insn))))
697 {
698 if ((next = try_combine (insn, prev,
699 NULL_RTX, &new_direct_jump_p)) != 0)
700 goto retry;
701
702 for (nextlinks = LOG_LINKS (prev); nextlinks;
703 nextlinks = XEXP (nextlinks, 1))
704 if ((next = try_combine (insn, prev,
705 XEXP (nextlinks, 0),
706 &new_direct_jump_p)) != 0)
707 goto retry;
708 }
709
710 /* Finally, see if any of the insns that this insn links to
711 explicitly references CC0. If so, try this insn, that insn,
712 and its predecessor if it sets CC0. */
713 for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
714 if (GET_CODE (XEXP (links, 0)) == INSN
715 && GET_CODE (PATTERN (XEXP (links, 0))) == SET
716 && reg_mentioned_p (cc0_rtx, SET_SRC (PATTERN (XEXP (links, 0))))
717 && (prev = prev_nonnote_insn (XEXP (links, 0))) != 0
718 && GET_CODE (prev) == INSN
719 && sets_cc0_p (PATTERN (prev))
720 && (next = try_combine (insn, XEXP (links, 0),
721 prev, &new_direct_jump_p)) != 0)
722 goto retry;
723 #endif
724
725 /* Try combining an insn with two different insns whose results it
726 uses. */
727 for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
728 for (nextlinks = XEXP (links, 1); nextlinks;
729 nextlinks = XEXP (nextlinks, 1))
730 if ((next = try_combine (insn, XEXP (links, 0),
731 XEXP (nextlinks, 0),
732 &new_direct_jump_p)) != 0)
733 goto retry;
734
735 if (GET_CODE (insn) != NOTE)
736 record_dead_and_set_regs (insn);
737
738 retry:
739 ;
740 }
741 }
742
743 if (need_refresh)
744 {
745 compute_bb_for_insn (get_max_uid ());
746 update_life_info (refresh_blocks, UPDATE_LIFE_GLOBAL_RM_NOTES,
747 PROP_DEATH_NOTES);
748 }
749
750 /* Clean up. */
751 sbitmap_free (refresh_blocks);
752 free (reg_nonzero_bits);
753 free (reg_sign_bit_copies);
754 free (reg_last_death);
755 free (reg_last_set);
756 free (reg_last_set_value);
757 free (reg_last_set_table_tick);
758 free (reg_last_set_label);
759 free (reg_last_set_invalid);
760 free (reg_last_set_mode);
761 free (reg_last_set_nonzero_bits);
762 free (reg_last_set_sign_bit_copies);
763 free (uid_cuid);
764
765 {
766 struct undo *undo, *next;
767 for (undo = undobuf.frees; undo; undo = next)
768 {
769 next = undo->next;
770 free (undo);
771 }
772 undobuf.frees = 0;
773 }
774
775 total_attempts += combine_attempts;
776 total_merges += combine_merges;
777 total_extras += combine_extras;
778 total_successes += combine_successes;
779
780 nonzero_sign_valid = 0;
781
782 /* Make recognizer allow volatile MEMs again. */
783 init_recog ();
784
785 return new_direct_jump_p;
786 }
787
788 /* Wipe the reg_last_xxx arrays in preparation for another pass. */
789
790 static void
791 init_reg_last_arrays ()
792 {
793 unsigned int nregs = combine_max_regno;
794
795 bzero ((char *) reg_last_death, nregs * sizeof (rtx));
796 bzero ((char *) reg_last_set, nregs * sizeof (rtx));
797 bzero ((char *) reg_last_set_value, nregs * sizeof (rtx));
798 bzero ((char *) reg_last_set_table_tick, nregs * sizeof (int));
799 bzero ((char *) reg_last_set_label, nregs * sizeof (int));
800 bzero (reg_last_set_invalid, nregs * sizeof (char));
801 bzero ((char *) reg_last_set_mode, nregs * sizeof (enum machine_mode));
802 bzero ((char *) reg_last_set_nonzero_bits, nregs * sizeof (HOST_WIDE_INT));
803 bzero (reg_last_set_sign_bit_copies, nregs * sizeof (char));
804 }
805 \f
806 /* Set up any promoted values for incoming argument registers. */
807
808 static void
809 setup_incoming_promotions ()
810 {
811 #ifdef PROMOTE_FUNCTION_ARGS
812 unsigned int regno;
813 rtx reg;
814 enum machine_mode mode;
815 int unsignedp;
816 rtx first = get_insns ();
817
818 #ifndef OUTGOING_REGNO
819 #define OUTGOING_REGNO(N) N
820 #endif
821 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
822 /* Check whether this register can hold an incoming pointer
823 argument. FUNCTION_ARG_REGNO_P tests outgoing register
824 numbers, so translate if necessary due to register windows. */
825 if (FUNCTION_ARG_REGNO_P (OUTGOING_REGNO (regno))
826 && (reg = promoted_input_arg (regno, &mode, &unsignedp)) != 0)
827 {
828 record_value_for_reg
829 (reg, first, gen_rtx_fmt_e ((unsignedp ? ZERO_EXTEND
830 : SIGN_EXTEND),
831 GET_MODE (reg),
832 gen_rtx_CLOBBER (mode, const0_rtx)));
833 }
834 #endif
835 }
836 \f
837 /* Called via note_stores. If X is a pseudo that is narrower than
838 HOST_BITS_PER_WIDE_INT and is being set, record what bits are known zero.
839
840 If we are setting only a portion of X and we can't figure out what
841 portion, assume all bits will be used since we don't know what will
842 be happening.
843
844 Similarly, set how many bits of X are known to be copies of the sign bit
845 at all locations in the function. This is the smallest number implied
846 by any set of X. */
847
848 static void
849 set_nonzero_bits_and_sign_copies (x, set, data)
850 rtx x;
851 rtx set;
852 void *data ATTRIBUTE_UNUSED;
853 {
854 unsigned int num;
855
856 if (GET_CODE (x) == REG
857 && REGNO (x) >= FIRST_PSEUDO_REGISTER
858 /* If this register is undefined at the start of the file, we can't
859 say what its contents were. */
860 && ! REGNO_REG_SET_P (BASIC_BLOCK (0)->global_live_at_start, REGNO (x))
861 && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT)
862 {
863 if (set == 0 || GET_CODE (set) == CLOBBER)
864 {
865 reg_nonzero_bits[REGNO (x)] = GET_MODE_MASK (GET_MODE (x));
866 reg_sign_bit_copies[REGNO (x)] = 1;
867 return;
868 }
869
870 /* If this is a complex assignment, see if we can convert it into a
871 simple assignment. */
872 set = expand_field_assignment (set);
873
874 /* If this is a simple assignment, or we have a paradoxical SUBREG,
875 set what we know about X. */
876
877 if (SET_DEST (set) == x
878 || (GET_CODE (SET_DEST (set)) == SUBREG
879 && (GET_MODE_SIZE (GET_MODE (SET_DEST (set)))
880 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (set)))))
881 && SUBREG_REG (SET_DEST (set)) == x))
882 {
883 rtx src = SET_SRC (set);
884
885 #ifdef SHORT_IMMEDIATES_SIGN_EXTEND
886 /* If X is narrower than a word and SRC is a non-negative
887 constant that would appear negative in the mode of X,
888 sign-extend it for use in reg_nonzero_bits because some
889 machines (maybe most) will actually do the sign-extension
890 and this is the conservative approach.
891
892 ??? For 2.5, try to tighten up the MD files in this regard
893 instead of this kludge. */
894
895 if (GET_MODE_BITSIZE (GET_MODE (x)) < BITS_PER_WORD
896 && GET_CODE (src) == CONST_INT
897 && INTVAL (src) > 0
898 && 0 != (INTVAL (src)
899 & ((HOST_WIDE_INT) 1
900 << (GET_MODE_BITSIZE (GET_MODE (x)) - 1))))
901 src = GEN_INT (INTVAL (src)
902 | ((HOST_WIDE_INT) (-1)
903 << GET_MODE_BITSIZE (GET_MODE (x))));
904 #endif
905
906 reg_nonzero_bits[REGNO (x)]
907 |= nonzero_bits (src, nonzero_bits_mode);
908 num = num_sign_bit_copies (SET_SRC (set), GET_MODE (x));
909 if (reg_sign_bit_copies[REGNO (x)] == 0
910 || reg_sign_bit_copies[REGNO (x)] > num)
911 reg_sign_bit_copies[REGNO (x)] = num;
912 }
913 else
914 {
915 reg_nonzero_bits[REGNO (x)] = GET_MODE_MASK (GET_MODE (x));
916 reg_sign_bit_copies[REGNO (x)] = 1;
917 }
918 }
919 }
920 \f
921 /* See if INSN can be combined into I3. PRED and SUCC are optionally
922 insns that were previously combined into I3 or that will be combined
923 into the merger of INSN and I3.
924
925 Return 0 if the combination is not allowed for any reason.
926
927 If the combination is allowed, *PDEST will be set to the single
928 destination of INSN and *PSRC to the single source, and this function
929 will return 1. */
930
931 static int
932 can_combine_p (insn, i3, pred, succ, pdest, psrc)
933 rtx insn;
934 rtx i3;
935 rtx pred ATTRIBUTE_UNUSED;
936 rtx succ;
937 rtx *pdest, *psrc;
938 {
939 int i;
940 rtx set = 0, src, dest;
941 rtx p;
942 #ifdef AUTO_INC_DEC
943 rtx link;
944 #endif
945 int all_adjacent = (succ ? (next_active_insn (insn) == succ
946 && next_active_insn (succ) == i3)
947 : next_active_insn (insn) == i3);
948
949 /* Can combine only if previous insn is a SET of a REG, a SUBREG or CC0.
950 or a PARALLEL consisting of such a SET and CLOBBERs.
951
952 If INSN has CLOBBER parallel parts, ignore them for our processing.
953 By definition, these happen during the execution of the insn. When it
954 is merged with another insn, all bets are off. If they are, in fact,
955 needed and aren't also supplied in I3, they may be added by
956 recog_for_combine. Otherwise, it won't match.
957
958 We can also ignore a SET whose SET_DEST is mentioned in a REG_UNUSED
959 note.
960
961 Get the source and destination of INSN. If more than one, can't
962 combine. */
963
964 if (GET_CODE (PATTERN (insn)) == SET)
965 set = PATTERN (insn);
966 else if (GET_CODE (PATTERN (insn)) == PARALLEL
967 && GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == SET)
968 {
969 for (i = 0; i < XVECLEN (PATTERN (insn), 0); i++)
970 {
971 rtx elt = XVECEXP (PATTERN (insn), 0, i);
972
973 switch (GET_CODE (elt))
974 {
975 /* This is important to combine floating point insns
976 for the SH4 port. */
977 case USE:
978 /* Combining an isolated USE doesn't make sense.
979 We depend here on combinable_i3_pat to reject them. */
980 /* The code below this loop only verifies that the inputs of
981 the SET in INSN do not change. We call reg_set_between_p
982 to verify that the REG in the USE does not change betweeen
983 I3 and INSN.
984 If the USE in INSN was for a pseudo register, the matching
985 insn pattern will likely match any register; combining this
986 with any other USE would only be safe if we knew that the
987 used registers have identical values, or if there was
988 something to tell them apart, e.g. different modes. For
989 now, we forgo such compilcated tests and simply disallow
990 combining of USES of pseudo registers with any other USE. */
991 if (GET_CODE (XEXP (elt, 0)) == REG
992 && GET_CODE (PATTERN (i3)) == PARALLEL)
993 {
994 rtx i3pat = PATTERN (i3);
995 int i = XVECLEN (i3pat, 0) - 1;
996 unsigned int regno = REGNO (XEXP (elt, 0));
997
998 do
999 {
1000 rtx i3elt = XVECEXP (i3pat, 0, i);
1001
1002 if (GET_CODE (i3elt) == USE
1003 && GET_CODE (XEXP (i3elt, 0)) == REG
1004 && (REGNO (XEXP (i3elt, 0)) == regno
1005 ? reg_set_between_p (XEXP (elt, 0),
1006 PREV_INSN (insn), i3)
1007 : regno >= FIRST_PSEUDO_REGISTER))
1008 return 0;
1009 }
1010 while (--i >= 0);
1011 }
1012 break;
1013
1014 /* We can ignore CLOBBERs. */
1015 case CLOBBER:
1016 break;
1017
1018 case SET:
1019 /* Ignore SETs whose result isn't used but not those that
1020 have side-effects. */
1021 if (find_reg_note (insn, REG_UNUSED, SET_DEST (elt))
1022 && ! side_effects_p (elt))
1023 break;
1024
1025 /* If we have already found a SET, this is a second one and
1026 so we cannot combine with this insn. */
1027 if (set)
1028 return 0;
1029
1030 set = elt;
1031 break;
1032
1033 default:
1034 /* Anything else means we can't combine. */
1035 return 0;
1036 }
1037 }
1038
1039 if (set == 0
1040 /* If SET_SRC is an ASM_OPERANDS we can't throw away these CLOBBERs,
1041 so don't do anything with it. */
1042 || GET_CODE (SET_SRC (set)) == ASM_OPERANDS)
1043 return 0;
1044 }
1045 else
1046 return 0;
1047
1048 if (set == 0)
1049 return 0;
1050
1051 set = expand_field_assignment (set);
1052 src = SET_SRC (set), dest = SET_DEST (set);
1053
1054 /* Don't eliminate a store in the stack pointer. */
1055 if (dest == stack_pointer_rtx
1056 /* If we couldn't eliminate a field assignment, we can't combine. */
1057 || GET_CODE (dest) == ZERO_EXTRACT || GET_CODE (dest) == STRICT_LOW_PART
1058 /* Don't combine with an insn that sets a register to itself if it has
1059 a REG_EQUAL note. This may be part of a REG_NO_CONFLICT sequence. */
1060 || (rtx_equal_p (src, dest) && find_reg_note (insn, REG_EQUAL, NULL_RTX))
1061 /* Can't merge a function call. */
1062 || GET_CODE (src) == CALL
1063 /* Don't eliminate a function call argument. */
1064 || (GET_CODE (i3) == CALL_INSN
1065 && (find_reg_fusage (i3, USE, dest)
1066 || (GET_CODE (dest) == REG
1067 && REGNO (dest) < FIRST_PSEUDO_REGISTER
1068 && global_regs[REGNO (dest)])))
1069 /* Don't substitute into an incremented register. */
1070 || FIND_REG_INC_NOTE (i3, dest)
1071 || (succ && FIND_REG_INC_NOTE (succ, dest))
1072 #if 0
1073 /* Don't combine the end of a libcall into anything. */
1074 /* ??? This gives worse code, and appears to be unnecessary, since no
1075 pass after flow uses REG_LIBCALL/REG_RETVAL notes. Local-alloc does
1076 use REG_RETVAL notes for noconflict blocks, but other code here
1077 makes sure that those insns don't disappear. */
1078 || find_reg_note (insn, REG_RETVAL, NULL_RTX)
1079 #endif
1080 /* Make sure that DEST is not used after SUCC but before I3. */
1081 || (succ && ! all_adjacent
1082 && reg_used_between_p (dest, succ, i3))
1083 /* Make sure that the value that is to be substituted for the register
1084 does not use any registers whose values alter in between. However,
1085 If the insns are adjacent, a use can't cross a set even though we
1086 think it might (this can happen for a sequence of insns each setting
1087 the same destination; reg_last_set of that register might point to
1088 a NOTE). If INSN has a REG_EQUIV note, the register is always
1089 equivalent to the memory so the substitution is valid even if there
1090 are intervening stores. Also, don't move a volatile asm or
1091 UNSPEC_VOLATILE across any other insns. */
1092 || (! all_adjacent
1093 && (((GET_CODE (src) != MEM
1094 || ! find_reg_note (insn, REG_EQUIV, src))
1095 && use_crosses_set_p (src, INSN_CUID (insn)))
1096 || (GET_CODE (src) == ASM_OPERANDS && MEM_VOLATILE_P (src))
1097 || GET_CODE (src) == UNSPEC_VOLATILE))
1098 /* If there is a REG_NO_CONFLICT note for DEST in I3 or SUCC, we get
1099 better register allocation by not doing the combine. */
1100 || find_reg_note (i3, REG_NO_CONFLICT, dest)
1101 || (succ && find_reg_note (succ, REG_NO_CONFLICT, dest))
1102 /* Don't combine across a CALL_INSN, because that would possibly
1103 change whether the life span of some REGs crosses calls or not,
1104 and it is a pain to update that information.
1105 Exception: if source is a constant, moving it later can't hurt.
1106 Accept that special case, because it helps -fforce-addr a lot. */
1107 || (INSN_CUID (insn) < last_call_cuid && ! CONSTANT_P (src)))
1108 return 0;
1109
1110 /* DEST must either be a REG or CC0. */
1111 if (GET_CODE (dest) == REG)
1112 {
1113 /* If register alignment is being enforced for multi-word items in all
1114 cases except for parameters, it is possible to have a register copy
1115 insn referencing a hard register that is not allowed to contain the
1116 mode being copied and which would not be valid as an operand of most
1117 insns. Eliminate this problem by not combining with such an insn.
1118
1119 Also, on some machines we don't want to extend the life of a hard
1120 register.
1121
1122 This is the same test done in can_combine except that we don't test
1123 if SRC is a CALL operation to permit a hard register with
1124 SMALL_REGISTER_CLASSES, and that we have to take all_adjacent
1125 into account. */
1126
1127 if (GET_CODE (src) == REG
1128 && ((REGNO (dest) < FIRST_PSEUDO_REGISTER
1129 && ! HARD_REGNO_MODE_OK (REGNO (dest), GET_MODE (dest)))
1130 /* Don't extend the life of a hard register unless it is
1131 user variable (if we have few registers) or it can't
1132 fit into the desired register (meaning something special
1133 is going on).
1134 Also avoid substituting a return register into I3, because
1135 reload can't handle a conflict with constraints of other
1136 inputs. */
1137 || (REGNO (src) < FIRST_PSEUDO_REGISTER
1138 && (! HARD_REGNO_MODE_OK (REGNO (src), GET_MODE (src))
1139 || (SMALL_REGISTER_CLASSES
1140 && ((! all_adjacent && ! REG_USERVAR_P (src))
1141 || (FUNCTION_VALUE_REGNO_P (REGNO (src))
1142 && ! REG_USERVAR_P (src))))))))
1143 return 0;
1144 }
1145 else if (GET_CODE (dest) != CC0)
1146 return 0;
1147
1148 /* Don't substitute for a register intended as a clobberable operand.
1149 Similarly, don't substitute an expression containing a register that
1150 will be clobbered in I3. */
1151 if (GET_CODE (PATTERN (i3)) == PARALLEL)
1152 for (i = XVECLEN (PATTERN (i3), 0) - 1; i >= 0; i--)
1153 if (GET_CODE (XVECEXP (PATTERN (i3), 0, i)) == CLOBBER
1154 && (reg_overlap_mentioned_p (XEXP (XVECEXP (PATTERN (i3), 0, i), 0),
1155 src)
1156 || rtx_equal_p (XEXP (XVECEXP (PATTERN (i3), 0, i), 0), dest)))
1157 return 0;
1158
1159 /* If INSN contains anything volatile, or is an `asm' (whether volatile
1160 or not), reject, unless nothing volatile comes between it and I3 */
1161
1162 if (GET_CODE (src) == ASM_OPERANDS || volatile_refs_p (src))
1163 {
1164 /* Make sure succ doesn't contain a volatile reference. */
1165 if (succ != 0 && volatile_refs_p (PATTERN (succ)))
1166 return 0;
1167
1168 for (p = NEXT_INSN (insn); p != i3; p = NEXT_INSN (p))
1169 if (INSN_P (p) && p != succ && volatile_refs_p (PATTERN (p)))
1170 return 0;
1171 }
1172
1173 /* If INSN is an asm, and DEST is a hard register, reject, since it has
1174 to be an explicit register variable, and was chosen for a reason. */
1175
1176 if (GET_CODE (src) == ASM_OPERANDS
1177 && GET_CODE (dest) == REG && REGNO (dest) < FIRST_PSEUDO_REGISTER)
1178 return 0;
1179
1180 /* If there are any volatile insns between INSN and I3, reject, because
1181 they might affect machine state. */
1182
1183 for (p = NEXT_INSN (insn); p != i3; p = NEXT_INSN (p))
1184 if (INSN_P (p) && p != succ && volatile_insn_p (PATTERN (p)))
1185 return 0;
1186
1187 /* If INSN or I2 contains an autoincrement or autodecrement,
1188 make sure that register is not used between there and I3,
1189 and not already used in I3 either.
1190 Also insist that I3 not be a jump; if it were one
1191 and the incremented register were spilled, we would lose. */
1192
1193 #ifdef AUTO_INC_DEC
1194 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1195 if (REG_NOTE_KIND (link) == REG_INC
1196 && (GET_CODE (i3) == JUMP_INSN
1197 || reg_used_between_p (XEXP (link, 0), insn, i3)
1198 || reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i3))))
1199 return 0;
1200 #endif
1201
1202 #ifdef HAVE_cc0
1203 /* Don't combine an insn that follows a CC0-setting insn.
1204 An insn that uses CC0 must not be separated from the one that sets it.
1205 We do, however, allow I2 to follow a CC0-setting insn if that insn
1206 is passed as I1; in that case it will be deleted also.
1207 We also allow combining in this case if all the insns are adjacent
1208 because that would leave the two CC0 insns adjacent as well.
1209 It would be more logical to test whether CC0 occurs inside I1 or I2,
1210 but that would be much slower, and this ought to be equivalent. */
1211
1212 p = prev_nonnote_insn (insn);
1213 if (p && p != pred && GET_CODE (p) == INSN && sets_cc0_p (PATTERN (p))
1214 && ! all_adjacent)
1215 return 0;
1216 #endif
1217
1218 /* If we get here, we have passed all the tests and the combination is
1219 to be allowed. */
1220
1221 *pdest = dest;
1222 *psrc = src;
1223
1224 return 1;
1225 }
1226 \f
1227 /* Check if PAT is an insn - or a part of it - used to set up an
1228 argument for a function in a hard register. */
1229
1230 static int
1231 sets_function_arg_p (pat)
1232 rtx pat;
1233 {
1234 int i;
1235 rtx inner_dest;
1236
1237 switch (GET_CODE (pat))
1238 {
1239 case INSN:
1240 return sets_function_arg_p (PATTERN (pat));
1241
1242 case PARALLEL:
1243 for (i = XVECLEN (pat, 0); --i >= 0;)
1244 if (sets_function_arg_p (XVECEXP (pat, 0, i)))
1245 return 1;
1246
1247 break;
1248
1249 case SET:
1250 inner_dest = SET_DEST (pat);
1251 while (GET_CODE (inner_dest) == STRICT_LOW_PART
1252 || GET_CODE (inner_dest) == SUBREG
1253 || GET_CODE (inner_dest) == ZERO_EXTRACT)
1254 inner_dest = XEXP (inner_dest, 0);
1255
1256 return (GET_CODE (inner_dest) == REG
1257 && REGNO (inner_dest) < FIRST_PSEUDO_REGISTER
1258 && FUNCTION_ARG_REGNO_P (REGNO (inner_dest)));
1259
1260 default:
1261 break;
1262 }
1263
1264 return 0;
1265 }
1266
1267 /* LOC is the location within I3 that contains its pattern or the component
1268 of a PARALLEL of the pattern. We validate that it is valid for combining.
1269
1270 One problem is if I3 modifies its output, as opposed to replacing it
1271 entirely, we can't allow the output to contain I2DEST or I1DEST as doing
1272 so would produce an insn that is not equivalent to the original insns.
1273
1274 Consider:
1275
1276 (set (reg:DI 101) (reg:DI 100))
1277 (set (subreg:SI (reg:DI 101) 0) <foo>)
1278
1279 This is NOT equivalent to:
1280
1281 (parallel [(set (subreg:SI (reg:DI 100) 0) <foo>)
1282 (set (reg:DI 101) (reg:DI 100))])
1283
1284 Not only does this modify 100 (in which case it might still be valid
1285 if 100 were dead in I2), it sets 101 to the ORIGINAL value of 100.
1286
1287 We can also run into a problem if I2 sets a register that I1
1288 uses and I1 gets directly substituted into I3 (not via I2). In that
1289 case, we would be getting the wrong value of I2DEST into I3, so we
1290 must reject the combination. This case occurs when I2 and I1 both
1291 feed into I3, rather than when I1 feeds into I2, which feeds into I3.
1292 If I1_NOT_IN_SRC is non-zero, it means that finding I1 in the source
1293 of a SET must prevent combination from occurring.
1294
1295 On machines where SMALL_REGISTER_CLASSES is non-zero, we don't combine
1296 if the destination of a SET is a hard register that isn't a user
1297 variable.
1298
1299 Before doing the above check, we first try to expand a field assignment
1300 into a set of logical operations.
1301
1302 If PI3_DEST_KILLED is non-zero, it is a pointer to a location in which
1303 we place a register that is both set and used within I3. If more than one
1304 such register is detected, we fail.
1305
1306 Return 1 if the combination is valid, zero otherwise. */
1307
1308 static int
1309 combinable_i3pat (i3, loc, i2dest, i1dest, i1_not_in_src, pi3dest_killed)
1310 rtx i3;
1311 rtx *loc;
1312 rtx i2dest;
1313 rtx i1dest;
1314 int i1_not_in_src;
1315 rtx *pi3dest_killed;
1316 {
1317 rtx x = *loc;
1318
1319 if (GET_CODE (x) == SET)
1320 {
1321 rtx set = expand_field_assignment (x);
1322 rtx dest = SET_DEST (set);
1323 rtx src = SET_SRC (set);
1324 rtx inner_dest = dest;
1325
1326 #if 0
1327 rtx inner_src = src;
1328 #endif
1329
1330 SUBST (*loc, set);
1331
1332 while (GET_CODE (inner_dest) == STRICT_LOW_PART
1333 || GET_CODE (inner_dest) == SUBREG
1334 || GET_CODE (inner_dest) == ZERO_EXTRACT)
1335 inner_dest = XEXP (inner_dest, 0);
1336
1337 /* We probably don't need this any more now that LIMIT_RELOAD_CLASS
1338 was added. */
1339 #if 0
1340 while (GET_CODE (inner_src) == STRICT_LOW_PART
1341 || GET_CODE (inner_src) == SUBREG
1342 || GET_CODE (inner_src) == ZERO_EXTRACT)
1343 inner_src = XEXP (inner_src, 0);
1344
1345 /* If it is better that two different modes keep two different pseudos,
1346 avoid combining them. This avoids producing the following pattern
1347 on a 386:
1348 (set (subreg:SI (reg/v:QI 21) 0)
1349 (lshiftrt:SI (reg/v:SI 20)
1350 (const_int 24)))
1351 If that were made, reload could not handle the pair of
1352 reg 20/21, since it would try to get any GENERAL_REGS
1353 but some of them don't handle QImode. */
1354
1355 if (rtx_equal_p (inner_src, i2dest)
1356 && GET_CODE (inner_dest) == REG
1357 && ! MODES_TIEABLE_P (GET_MODE (i2dest), GET_MODE (inner_dest)))
1358 return 0;
1359 #endif
1360
1361 /* Check for the case where I3 modifies its output, as
1362 discussed above. */
1363 if ((inner_dest != dest
1364 && (reg_overlap_mentioned_p (i2dest, inner_dest)
1365 || (i1dest && reg_overlap_mentioned_p (i1dest, inner_dest))))
1366
1367 /* This is the same test done in can_combine_p except that we
1368 allow a hard register with SMALL_REGISTER_CLASSES if SRC is a
1369 CALL operation. Moreover, we can't test all_adjacent; we don't
1370 have to, since this instruction will stay in place, thus we are
1371 not considering increasing the lifetime of INNER_DEST.
1372
1373 Also, if this insn sets a function argument, combining it with
1374 something that might need a spill could clobber a previous
1375 function argument; the all_adjacent test in can_combine_p also
1376 checks this; here, we do a more specific test for this case. */
1377
1378 || (GET_CODE (inner_dest) == REG
1379 && REGNO (inner_dest) < FIRST_PSEUDO_REGISTER
1380 && (! HARD_REGNO_MODE_OK (REGNO (inner_dest),
1381 GET_MODE (inner_dest))
1382 || (SMALL_REGISTER_CLASSES && GET_CODE (src) != CALL
1383 && ! REG_USERVAR_P (inner_dest)
1384 && (FUNCTION_VALUE_REGNO_P (REGNO (inner_dest))
1385 || (FUNCTION_ARG_REGNO_P (REGNO (inner_dest))
1386 && i3 != 0
1387 && sets_function_arg_p (prev_nonnote_insn (i3)))))))
1388 || (i1_not_in_src && reg_overlap_mentioned_p (i1dest, src)))
1389 return 0;
1390
1391 /* If DEST is used in I3, it is being killed in this insn,
1392 so record that for later.
1393 Never add REG_DEAD notes for the FRAME_POINTER_REGNUM or the
1394 STACK_POINTER_REGNUM, since these are always considered to be
1395 live. Similarly for ARG_POINTER_REGNUM if it is fixed. */
1396 if (pi3dest_killed && GET_CODE (dest) == REG
1397 && reg_referenced_p (dest, PATTERN (i3))
1398 && REGNO (dest) != FRAME_POINTER_REGNUM
1399 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
1400 && REGNO (dest) != HARD_FRAME_POINTER_REGNUM
1401 #endif
1402 #if ARG_POINTER_REGNUM != FRAME_POINTER_REGNUM
1403 && (REGNO (dest) != ARG_POINTER_REGNUM
1404 || ! fixed_regs [REGNO (dest)])
1405 #endif
1406 && REGNO (dest) != STACK_POINTER_REGNUM)
1407 {
1408 if (*pi3dest_killed)
1409 return 0;
1410
1411 *pi3dest_killed = dest;
1412 }
1413 }
1414
1415 else if (GET_CODE (x) == PARALLEL)
1416 {
1417 int i;
1418
1419 for (i = 0; i < XVECLEN (x, 0); i++)
1420 if (! combinable_i3pat (i3, &XVECEXP (x, 0, i), i2dest, i1dest,
1421 i1_not_in_src, pi3dest_killed))
1422 return 0;
1423 }
1424
1425 return 1;
1426 }
1427 \f
1428 /* Return 1 if X is an arithmetic expression that contains a multiplication
1429 and division. We don't count multiplications by powers of two here. */
1430
1431 static int
1432 contains_muldiv (x)
1433 rtx x;
1434 {
1435 switch (GET_CODE (x))
1436 {
1437 case MOD: case DIV: case UMOD: case UDIV:
1438 return 1;
1439
1440 case MULT:
1441 return ! (GET_CODE (XEXP (x, 1)) == CONST_INT
1442 && exact_log2 (INTVAL (XEXP (x, 1))) >= 0);
1443 default:
1444 switch (GET_RTX_CLASS (GET_CODE (x)))
1445 {
1446 case 'c': case '<': case '2':
1447 return contains_muldiv (XEXP (x, 0))
1448 || contains_muldiv (XEXP (x, 1));
1449
1450 case '1':
1451 return contains_muldiv (XEXP (x, 0));
1452
1453 default:
1454 return 0;
1455 }
1456 }
1457 }
1458 \f
1459 /* Try to combine the insns I1 and I2 into I3.
1460 Here I1 and I2 appear earlier than I3.
1461 I1 can be zero; then we combine just I2 into I3.
1462
1463 It we are combining three insns and the resulting insn is not recognized,
1464 try splitting it into two insns. If that happens, I2 and I3 are retained
1465 and I1 is pseudo-deleted by turning it into a NOTE. Otherwise, I1 and I2
1466 are pseudo-deleted.
1467
1468 Return 0 if the combination does not work. Then nothing is changed.
1469 If we did the combination, return the insn at which combine should
1470 resume scanning.
1471
1472 Set NEW_DIRECT_JUMP_P to a non-zero value if try_combine creates a
1473 new direct jump instruction. */
1474
1475 static rtx
1476 try_combine (i3, i2, i1, new_direct_jump_p)
1477 register rtx i3, i2, i1;
1478 register int *new_direct_jump_p;
1479 {
1480 /* New patterns for I3 and I2, respectively. */
1481 rtx newpat, newi2pat = 0;
1482 /* Indicates need to preserve SET in I1 or I2 in I3 if it is not dead. */
1483 int added_sets_1, added_sets_2;
1484 /* Total number of SETs to put into I3. */
1485 int total_sets;
1486 /* Nonzero is I2's body now appears in I3. */
1487 int i2_is_used;
1488 /* INSN_CODEs for new I3, new I2, and user of condition code. */
1489 int insn_code_number, i2_code_number = 0, other_code_number = 0;
1490 /* Contains I3 if the destination of I3 is used in its source, which means
1491 that the old life of I3 is being killed. If that usage is placed into
1492 I2 and not in I3, a REG_DEAD note must be made. */
1493 rtx i3dest_killed = 0;
1494 /* SET_DEST and SET_SRC of I2 and I1. */
1495 rtx i2dest, i2src, i1dest = 0, i1src = 0;
1496 /* PATTERN (I2), or a copy of it in certain cases. */
1497 rtx i2pat;
1498 /* Indicates if I2DEST or I1DEST is in I2SRC or I1_SRC. */
1499 int i2dest_in_i2src = 0, i1dest_in_i1src = 0, i2dest_in_i1src = 0;
1500 int i1_feeds_i3 = 0;
1501 /* Notes that must be added to REG_NOTES in I3 and I2. */
1502 rtx new_i3_notes, new_i2_notes;
1503 /* Notes that we substituted I3 into I2 instead of the normal case. */
1504 int i3_subst_into_i2 = 0;
1505 /* Notes that I1, I2 or I3 is a MULT operation. */
1506 int have_mult = 0;
1507
1508 int maxreg;
1509 rtx temp;
1510 register rtx link;
1511 int i;
1512
1513 /* If any of I1, I2, and I3 isn't really an insn, we can't do anything.
1514 This can occur when flow deletes an insn that it has merged into an
1515 auto-increment address. We also can't do anything if I3 has a
1516 REG_LIBCALL note since we don't want to disrupt the contiguity of a
1517 libcall. */
1518
1519 if (! INSN_P (i3) || ! INSN_P (i2) || (i1 && ! INSN_P (i1))
1520 #if 0
1521 /* ??? This gives worse code, and appears to be unnecessary, since no
1522 pass after flow uses REG_LIBCALL/REG_RETVAL notes. */
1523 || find_reg_note (i3, REG_LIBCALL, NULL_RTX)
1524 #endif
1525 )
1526 return 0;
1527
1528 combine_attempts++;
1529 undobuf.other_insn = 0;
1530
1531 /* Save the current high-water-mark so we can free storage if we didn't
1532 accept this combination. */
1533 undobuf.storage = (char *) oballoc (0);
1534
1535 /* Reset the hard register usage information. */
1536 CLEAR_HARD_REG_SET (newpat_used_regs);
1537
1538 /* If I1 and I2 both feed I3, they can be in any order. To simplify the
1539 code below, set I1 to be the earlier of the two insns. */
1540 if (i1 && INSN_CUID (i1) > INSN_CUID (i2))
1541 temp = i1, i1 = i2, i2 = temp;
1542
1543 added_links_insn = 0;
1544
1545 /* First check for one important special-case that the code below will
1546 not handle. Namely, the case where I1 is zero, I2 has multiple sets,
1547 and I3 is a SET whose SET_SRC is a SET_DEST in I2. In that case,
1548 we may be able to replace that destination with the destination of I3.
1549 This occurs in the common code where we compute both a quotient and
1550 remainder into a structure, in which case we want to do the computation
1551 directly into the structure to avoid register-register copies.
1552
1553 We make very conservative checks below and only try to handle the
1554 most common cases of this. For example, we only handle the case
1555 where I2 and I3 are adjacent to avoid making difficult register
1556 usage tests. */
1557
1558 if (i1 == 0 && GET_CODE (i3) == INSN && GET_CODE (PATTERN (i3)) == SET
1559 && GET_CODE (SET_SRC (PATTERN (i3))) == REG
1560 && REGNO (SET_SRC (PATTERN (i3))) >= FIRST_PSEUDO_REGISTER
1561 && (! SMALL_REGISTER_CLASSES
1562 || (GET_CODE (SET_DEST (PATTERN (i3))) != REG
1563 || REGNO (SET_DEST (PATTERN (i3))) >= FIRST_PSEUDO_REGISTER
1564 || REG_USERVAR_P (SET_DEST (PATTERN (i3)))))
1565 && find_reg_note (i3, REG_DEAD, SET_SRC (PATTERN (i3)))
1566 && GET_CODE (PATTERN (i2)) == PARALLEL
1567 && ! side_effects_p (SET_DEST (PATTERN (i3)))
1568 /* If the dest of I3 is a ZERO_EXTRACT or STRICT_LOW_PART, the code
1569 below would need to check what is inside (and reg_overlap_mentioned_p
1570 doesn't support those codes anyway). Don't allow those destinations;
1571 the resulting insn isn't likely to be recognized anyway. */
1572 && GET_CODE (SET_DEST (PATTERN (i3))) != ZERO_EXTRACT
1573 && GET_CODE (SET_DEST (PATTERN (i3))) != STRICT_LOW_PART
1574 && ! reg_overlap_mentioned_p (SET_SRC (PATTERN (i3)),
1575 SET_DEST (PATTERN (i3)))
1576 && next_real_insn (i2) == i3)
1577 {
1578 rtx p2 = PATTERN (i2);
1579
1580 /* Make sure that the destination of I3,
1581 which we are going to substitute into one output of I2,
1582 is not used within another output of I2. We must avoid making this:
1583 (parallel [(set (mem (reg 69)) ...)
1584 (set (reg 69) ...)])
1585 which is not well-defined as to order of actions.
1586 (Besides, reload can't handle output reloads for this.)
1587
1588 The problem can also happen if the dest of I3 is a memory ref,
1589 if another dest in I2 is an indirect memory ref. */
1590 for (i = 0; i < XVECLEN (p2, 0); i++)
1591 if ((GET_CODE (XVECEXP (p2, 0, i)) == SET
1592 || GET_CODE (XVECEXP (p2, 0, i)) == CLOBBER)
1593 && reg_overlap_mentioned_p (SET_DEST (PATTERN (i3)),
1594 SET_DEST (XVECEXP (p2, 0, i))))
1595 break;
1596
1597 if (i == XVECLEN (p2, 0))
1598 for (i = 0; i < XVECLEN (p2, 0); i++)
1599 if ((GET_CODE (XVECEXP (p2, 0, i)) == SET
1600 || GET_CODE (XVECEXP (p2, 0, i)) == CLOBBER)
1601 && SET_DEST (XVECEXP (p2, 0, i)) == SET_SRC (PATTERN (i3)))
1602 {
1603 combine_merges++;
1604
1605 subst_insn = i3;
1606 subst_low_cuid = INSN_CUID (i2);
1607
1608 added_sets_2 = added_sets_1 = 0;
1609 i2dest = SET_SRC (PATTERN (i3));
1610
1611 /* Replace the dest in I2 with our dest and make the resulting
1612 insn the new pattern for I3. Then skip to where we
1613 validate the pattern. Everything was set up above. */
1614 SUBST (SET_DEST (XVECEXP (p2, 0, i)),
1615 SET_DEST (PATTERN (i3)));
1616
1617 newpat = p2;
1618 i3_subst_into_i2 = 1;
1619 goto validate_replacement;
1620 }
1621 }
1622
1623 /* If I2 is setting a double-word pseudo to a constant and I3 is setting
1624 one of those words to another constant, merge them by making a new
1625 constant. */
1626 if (i1 == 0
1627 && (temp = single_set (i2)) != 0
1628 && (GET_CODE (SET_SRC (temp)) == CONST_INT
1629 || GET_CODE (SET_SRC (temp)) == CONST_DOUBLE)
1630 && GET_CODE (SET_DEST (temp)) == REG
1631 && GET_MODE_CLASS (GET_MODE (SET_DEST (temp))) == MODE_INT
1632 && GET_MODE_SIZE (GET_MODE (SET_DEST (temp))) == 2 * UNITS_PER_WORD
1633 && GET_CODE (PATTERN (i3)) == SET
1634 && GET_CODE (SET_DEST (PATTERN (i3))) == SUBREG
1635 && SUBREG_REG (SET_DEST (PATTERN (i3))) == SET_DEST (temp)
1636 && GET_MODE_CLASS (GET_MODE (SET_DEST (PATTERN (i3)))) == MODE_INT
1637 && GET_MODE_SIZE (GET_MODE (SET_DEST (PATTERN (i3)))) == UNITS_PER_WORD
1638 && GET_CODE (SET_SRC (PATTERN (i3))) == CONST_INT)
1639 {
1640 HOST_WIDE_INT lo, hi;
1641
1642 if (GET_CODE (SET_SRC (temp)) == CONST_INT)
1643 lo = INTVAL (SET_SRC (temp)), hi = lo < 0 ? -1 : 0;
1644 else
1645 {
1646 lo = CONST_DOUBLE_LOW (SET_SRC (temp));
1647 hi = CONST_DOUBLE_HIGH (SET_SRC (temp));
1648 }
1649
1650 if (subreg_lowpart_p (SET_DEST (PATTERN (i3))))
1651 lo = INTVAL (SET_SRC (PATTERN (i3)));
1652 else
1653 hi = INTVAL (SET_SRC (PATTERN (i3)));
1654
1655 combine_merges++;
1656 subst_insn = i3;
1657 subst_low_cuid = INSN_CUID (i2);
1658 added_sets_2 = added_sets_1 = 0;
1659 i2dest = SET_DEST (temp);
1660
1661 SUBST (SET_SRC (temp),
1662 immed_double_const (lo, hi, GET_MODE (SET_DEST (temp))));
1663
1664 newpat = PATTERN (i2);
1665 i3_subst_into_i2 = 1;
1666 goto validate_replacement;
1667 }
1668
1669 #ifndef HAVE_cc0
1670 /* If we have no I1 and I2 looks like:
1671 (parallel [(set (reg:CC X) (compare:CC OP (const_int 0)))
1672 (set Y OP)])
1673 make up a dummy I1 that is
1674 (set Y OP)
1675 and change I2 to be
1676 (set (reg:CC X) (compare:CC Y (const_int 0)))
1677
1678 (We can ignore any trailing CLOBBERs.)
1679
1680 This undoes a previous combination and allows us to match a branch-and-
1681 decrement insn. */
1682
1683 if (i1 == 0 && GET_CODE (PATTERN (i2)) == PARALLEL
1684 && XVECLEN (PATTERN (i2), 0) >= 2
1685 && GET_CODE (XVECEXP (PATTERN (i2), 0, 0)) == SET
1686 && (GET_MODE_CLASS (GET_MODE (SET_DEST (XVECEXP (PATTERN (i2), 0, 0))))
1687 == MODE_CC)
1688 && GET_CODE (SET_SRC (XVECEXP (PATTERN (i2), 0, 0))) == COMPARE
1689 && XEXP (SET_SRC (XVECEXP (PATTERN (i2), 0, 0)), 1) == const0_rtx
1690 && GET_CODE (XVECEXP (PATTERN (i2), 0, 1)) == SET
1691 && GET_CODE (SET_DEST (XVECEXP (PATTERN (i2), 0, 1))) == REG
1692 && rtx_equal_p (XEXP (SET_SRC (XVECEXP (PATTERN (i2), 0, 0)), 0),
1693 SET_SRC (XVECEXP (PATTERN (i2), 0, 1))))
1694 {
1695 for (i = XVECLEN (PATTERN (i2), 0) - 1; i >= 2; i--)
1696 if (GET_CODE (XVECEXP (PATTERN (i2), 0, i)) != CLOBBER)
1697 break;
1698
1699 if (i == 1)
1700 {
1701 /* We make I1 with the same INSN_UID as I2. This gives it
1702 the same INSN_CUID for value tracking. Our fake I1 will
1703 never appear in the insn stream so giving it the same INSN_UID
1704 as I2 will not cause a problem. */
1705
1706 subst_prev_insn = i1
1707 = gen_rtx_INSN (VOIDmode, INSN_UID (i2), NULL_RTX, i2,
1708 XVECEXP (PATTERN (i2), 0, 1), -1, NULL_RTX,
1709 NULL_RTX);
1710
1711 SUBST (PATTERN (i2), XVECEXP (PATTERN (i2), 0, 0));
1712 SUBST (XEXP (SET_SRC (PATTERN (i2)), 0),
1713 SET_DEST (PATTERN (i1)));
1714 }
1715 }
1716 #endif
1717
1718 /* Verify that I2 and I1 are valid for combining. */
1719 if (! can_combine_p (i2, i3, i1, NULL_RTX, &i2dest, &i2src)
1720 || (i1 && ! can_combine_p (i1, i3, NULL_RTX, i2, &i1dest, &i1src)))
1721 {
1722 undo_all ();
1723 return 0;
1724 }
1725
1726 /* Record whether I2DEST is used in I2SRC and similarly for the other
1727 cases. Knowing this will help in register status updating below. */
1728 i2dest_in_i2src = reg_overlap_mentioned_p (i2dest, i2src);
1729 i1dest_in_i1src = i1 && reg_overlap_mentioned_p (i1dest, i1src);
1730 i2dest_in_i1src = i1 && reg_overlap_mentioned_p (i2dest, i1src);
1731
1732 /* See if I1 directly feeds into I3. It does if I1DEST is not used
1733 in I2SRC. */
1734 i1_feeds_i3 = i1 && ! reg_overlap_mentioned_p (i1dest, i2src);
1735
1736 /* Ensure that I3's pattern can be the destination of combines. */
1737 if (! combinable_i3pat (i3, &PATTERN (i3), i2dest, i1dest,
1738 i1 && i2dest_in_i1src && i1_feeds_i3,
1739 &i3dest_killed))
1740 {
1741 undo_all ();
1742 return 0;
1743 }
1744
1745 /* See if any of the insns is a MULT operation. Unless one is, we will
1746 reject a combination that is, since it must be slower. Be conservative
1747 here. */
1748 if (GET_CODE (i2src) == MULT
1749 || (i1 != 0 && GET_CODE (i1src) == MULT)
1750 || (GET_CODE (PATTERN (i3)) == SET
1751 && GET_CODE (SET_SRC (PATTERN (i3))) == MULT))
1752 have_mult = 1;
1753
1754 /* If I3 has an inc, then give up if I1 or I2 uses the reg that is inc'd.
1755 We used to do this EXCEPT in one case: I3 has a post-inc in an
1756 output operand. However, that exception can give rise to insns like
1757 mov r3,(r3)+
1758 which is a famous insn on the PDP-11 where the value of r3 used as the
1759 source was model-dependent. Avoid this sort of thing. */
1760
1761 #if 0
1762 if (!(GET_CODE (PATTERN (i3)) == SET
1763 && GET_CODE (SET_SRC (PATTERN (i3))) == REG
1764 && GET_CODE (SET_DEST (PATTERN (i3))) == MEM
1765 && (GET_CODE (XEXP (SET_DEST (PATTERN (i3)), 0)) == POST_INC
1766 || GET_CODE (XEXP (SET_DEST (PATTERN (i3)), 0)) == POST_DEC)))
1767 /* It's not the exception. */
1768 #endif
1769 #ifdef AUTO_INC_DEC
1770 for (link = REG_NOTES (i3); link; link = XEXP (link, 1))
1771 if (REG_NOTE_KIND (link) == REG_INC
1772 && (reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i2))
1773 || (i1 != 0
1774 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i1)))))
1775 {
1776 undo_all ();
1777 return 0;
1778 }
1779 #endif
1780
1781 /* See if the SETs in I1 or I2 need to be kept around in the merged
1782 instruction: whenever the value set there is still needed past I3.
1783 For the SETs in I2, this is easy: we see if I2DEST dies or is set in I3.
1784
1785 For the SET in I1, we have two cases: If I1 and I2 independently
1786 feed into I3, the set in I1 needs to be kept around if I1DEST dies
1787 or is set in I3. Otherwise (if I1 feeds I2 which feeds I3), the set
1788 in I1 needs to be kept around unless I1DEST dies or is set in either
1789 I2 or I3. We can distinguish these cases by seeing if I2SRC mentions
1790 I1DEST. If so, we know I1 feeds into I2. */
1791
1792 added_sets_2 = ! dead_or_set_p (i3, i2dest);
1793
1794 added_sets_1
1795 = i1 && ! (i1_feeds_i3 ? dead_or_set_p (i3, i1dest)
1796 : (dead_or_set_p (i3, i1dest) || dead_or_set_p (i2, i1dest)));
1797
1798 /* If the set in I2 needs to be kept around, we must make a copy of
1799 PATTERN (I2), so that when we substitute I1SRC for I1DEST in
1800 PATTERN (I2), we are only substituting for the original I1DEST, not into
1801 an already-substituted copy. This also prevents making self-referential
1802 rtx. If I2 is a PARALLEL, we just need the piece that assigns I2SRC to
1803 I2DEST. */
1804
1805 i2pat = (GET_CODE (PATTERN (i2)) == PARALLEL
1806 ? gen_rtx_SET (VOIDmode, i2dest, i2src)
1807 : PATTERN (i2));
1808
1809 if (added_sets_2)
1810 i2pat = copy_rtx (i2pat);
1811
1812 combine_merges++;
1813
1814 /* Substitute in the latest insn for the regs set by the earlier ones. */
1815
1816 maxreg = max_reg_num ();
1817
1818 subst_insn = i3;
1819
1820 /* It is possible that the source of I2 or I1 may be performing an
1821 unneeded operation, such as a ZERO_EXTEND of something that is known
1822 to have the high part zero. Handle that case by letting subst look at
1823 the innermost one of them.
1824
1825 Another way to do this would be to have a function that tries to
1826 simplify a single insn instead of merging two or more insns. We don't
1827 do this because of the potential of infinite loops and because
1828 of the potential extra memory required. However, doing it the way
1829 we are is a bit of a kludge and doesn't catch all cases.
1830
1831 But only do this if -fexpensive-optimizations since it slows things down
1832 and doesn't usually win. */
1833
1834 if (flag_expensive_optimizations)
1835 {
1836 /* Pass pc_rtx so no substitutions are done, just simplifications.
1837 The cases that we are interested in here do not involve the few
1838 cases were is_replaced is checked. */
1839 if (i1)
1840 {
1841 subst_low_cuid = INSN_CUID (i1);
1842 i1src = subst (i1src, pc_rtx, pc_rtx, 0, 0);
1843 }
1844 else
1845 {
1846 subst_low_cuid = INSN_CUID (i2);
1847 i2src = subst (i2src, pc_rtx, pc_rtx, 0, 0);
1848 }
1849
1850 undobuf.previous_undos = undobuf.undos;
1851 }
1852
1853 #ifndef HAVE_cc0
1854 /* Many machines that don't use CC0 have insns that can both perform an
1855 arithmetic operation and set the condition code. These operations will
1856 be represented as a PARALLEL with the first element of the vector
1857 being a COMPARE of an arithmetic operation with the constant zero.
1858 The second element of the vector will set some pseudo to the result
1859 of the same arithmetic operation. If we simplify the COMPARE, we won't
1860 match such a pattern and so will generate an extra insn. Here we test
1861 for this case, where both the comparison and the operation result are
1862 needed, and make the PARALLEL by just replacing I2DEST in I3SRC with
1863 I2SRC. Later we will make the PARALLEL that contains I2. */
1864
1865 if (i1 == 0 && added_sets_2 && GET_CODE (PATTERN (i3)) == SET
1866 && GET_CODE (SET_SRC (PATTERN (i3))) == COMPARE
1867 && XEXP (SET_SRC (PATTERN (i3)), 1) == const0_rtx
1868 && rtx_equal_p (XEXP (SET_SRC (PATTERN (i3)), 0), i2dest))
1869 {
1870 #ifdef EXTRA_CC_MODES
1871 rtx *cc_use;
1872 enum machine_mode compare_mode;
1873 #endif
1874
1875 newpat = PATTERN (i3);
1876 SUBST (XEXP (SET_SRC (newpat), 0), i2src);
1877
1878 i2_is_used = 1;
1879
1880 #ifdef EXTRA_CC_MODES
1881 /* See if a COMPARE with the operand we substituted in should be done
1882 with the mode that is currently being used. If not, do the same
1883 processing we do in `subst' for a SET; namely, if the destination
1884 is used only once, try to replace it with a register of the proper
1885 mode and also replace the COMPARE. */
1886 if (undobuf.other_insn == 0
1887 && (cc_use = find_single_use (SET_DEST (newpat), i3,
1888 &undobuf.other_insn))
1889 && ((compare_mode = SELECT_CC_MODE (GET_CODE (*cc_use),
1890 i2src, const0_rtx))
1891 != GET_MODE (SET_DEST (newpat))))
1892 {
1893 unsigned int regno = REGNO (SET_DEST (newpat));
1894 rtx new_dest = gen_rtx_REG (compare_mode, regno);
1895
1896 if (regno < FIRST_PSEUDO_REGISTER
1897 || (REG_N_SETS (regno) == 1 && ! added_sets_2
1898 && ! REG_USERVAR_P (SET_DEST (newpat))))
1899 {
1900 if (regno >= FIRST_PSEUDO_REGISTER)
1901 SUBST (regno_reg_rtx[regno], new_dest);
1902
1903 SUBST (SET_DEST (newpat), new_dest);
1904 SUBST (XEXP (*cc_use, 0), new_dest);
1905 SUBST (SET_SRC (newpat),
1906 gen_rtx_combine (COMPARE, compare_mode,
1907 i2src, const0_rtx));
1908 }
1909 else
1910 undobuf.other_insn = 0;
1911 }
1912 #endif
1913 }
1914 else
1915 #endif
1916 {
1917 n_occurrences = 0; /* `subst' counts here */
1918
1919 /* If I1 feeds into I2 (not into I3) and I1DEST is in I1SRC, we
1920 need to make a unique copy of I2SRC each time we substitute it
1921 to avoid self-referential rtl. */
1922
1923 subst_low_cuid = INSN_CUID (i2);
1924 newpat = subst (PATTERN (i3), i2dest, i2src, 0,
1925 ! i1_feeds_i3 && i1dest_in_i1src);
1926 undobuf.previous_undos = undobuf.undos;
1927
1928 /* Record whether i2's body now appears within i3's body. */
1929 i2_is_used = n_occurrences;
1930 }
1931
1932 /* If we already got a failure, don't try to do more. Otherwise,
1933 try to substitute in I1 if we have it. */
1934
1935 if (i1 && GET_CODE (newpat) != CLOBBER)
1936 {
1937 /* Before we can do this substitution, we must redo the test done
1938 above (see detailed comments there) that ensures that I1DEST
1939 isn't mentioned in any SETs in NEWPAT that are field assignments. */
1940
1941 if (! combinable_i3pat (NULL_RTX, &newpat, i1dest, NULL_RTX,
1942 0, NULL_PTR))
1943 {
1944 undo_all ();
1945 return 0;
1946 }
1947
1948 n_occurrences = 0;
1949 subst_low_cuid = INSN_CUID (i1);
1950 newpat = subst (newpat, i1dest, i1src, 0, 0);
1951 undobuf.previous_undos = undobuf.undos;
1952 }
1953
1954 /* Fail if an autoincrement side-effect has been duplicated. Be careful
1955 to count all the ways that I2SRC and I1SRC can be used. */
1956 if ((FIND_REG_INC_NOTE (i2, NULL_RTX) != 0
1957 && i2_is_used + added_sets_2 > 1)
1958 || (i1 != 0 && FIND_REG_INC_NOTE (i1, NULL_RTX) != 0
1959 && (n_occurrences + added_sets_1 + (added_sets_2 && ! i1_feeds_i3)
1960 > 1))
1961 /* Fail if we tried to make a new register (we used to abort, but there's
1962 really no reason to). */
1963 || max_reg_num () != maxreg
1964 /* Fail if we couldn't do something and have a CLOBBER. */
1965 || GET_CODE (newpat) == CLOBBER
1966 /* Fail if this new pattern is a MULT and we didn't have one before
1967 at the outer level. */
1968 || (GET_CODE (newpat) == SET && GET_CODE (SET_SRC (newpat)) == MULT
1969 && ! have_mult))
1970 {
1971 undo_all ();
1972 return 0;
1973 }
1974
1975 /* If the actions of the earlier insns must be kept
1976 in addition to substituting them into the latest one,
1977 we must make a new PARALLEL for the latest insn
1978 to hold additional the SETs. */
1979
1980 if (added_sets_1 || added_sets_2)
1981 {
1982 combine_extras++;
1983
1984 if (GET_CODE (newpat) == PARALLEL)
1985 {
1986 rtvec old = XVEC (newpat, 0);
1987 total_sets = XVECLEN (newpat, 0) + added_sets_1 + added_sets_2;
1988 newpat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (total_sets));
1989 bcopy ((char *) &old->elem[0], (char *) XVEC (newpat, 0)->elem,
1990 sizeof (old->elem[0]) * old->num_elem);
1991 }
1992 else
1993 {
1994 rtx old = newpat;
1995 total_sets = 1 + added_sets_1 + added_sets_2;
1996 newpat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (total_sets));
1997 XVECEXP (newpat, 0, 0) = old;
1998 }
1999
2000 if (added_sets_1)
2001 XVECEXP (newpat, 0, --total_sets)
2002 = (GET_CODE (PATTERN (i1)) == PARALLEL
2003 ? gen_rtx_SET (VOIDmode, i1dest, i1src) : PATTERN (i1));
2004
2005 if (added_sets_2)
2006 {
2007 /* If there is no I1, use I2's body as is. We used to also not do
2008 the subst call below if I2 was substituted into I3,
2009 but that could lose a simplification. */
2010 if (i1 == 0)
2011 XVECEXP (newpat, 0, --total_sets) = i2pat;
2012 else
2013 /* See comment where i2pat is assigned. */
2014 XVECEXP (newpat, 0, --total_sets)
2015 = subst (i2pat, i1dest, i1src, 0, 0);
2016 }
2017 }
2018
2019 /* We come here when we are replacing a destination in I2 with the
2020 destination of I3. */
2021 validate_replacement:
2022
2023 /* Note which hard regs this insn has as inputs. */
2024 mark_used_regs_combine (newpat);
2025
2026 /* Is the result of combination a valid instruction? */
2027 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
2028
2029 /* If the result isn't valid, see if it is a PARALLEL of two SETs where
2030 the second SET's destination is a register that is unused. In that case,
2031 we just need the first SET. This can occur when simplifying a divmod
2032 insn. We *must* test for this case here because the code below that
2033 splits two independent SETs doesn't handle this case correctly when it
2034 updates the register status. Also check the case where the first
2035 SET's destination is unused. That would not cause incorrect code, but
2036 does cause an unneeded insn to remain. */
2037
2038 if (insn_code_number < 0 && GET_CODE (newpat) == PARALLEL
2039 && XVECLEN (newpat, 0) == 2
2040 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
2041 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
2042 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) == REG
2043 && find_reg_note (i3, REG_UNUSED, SET_DEST (XVECEXP (newpat, 0, 1)))
2044 && ! side_effects_p (SET_SRC (XVECEXP (newpat, 0, 1)))
2045 && asm_noperands (newpat) < 0)
2046 {
2047 newpat = XVECEXP (newpat, 0, 0);
2048 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
2049 }
2050
2051 else if (insn_code_number < 0 && GET_CODE (newpat) == PARALLEL
2052 && XVECLEN (newpat, 0) == 2
2053 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
2054 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
2055 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) == REG
2056 && find_reg_note (i3, REG_UNUSED, SET_DEST (XVECEXP (newpat, 0, 0)))
2057 && ! side_effects_p (SET_SRC (XVECEXP (newpat, 0, 0)))
2058 && asm_noperands (newpat) < 0)
2059 {
2060 newpat = XVECEXP (newpat, 0, 1);
2061 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
2062 }
2063
2064 /* If we were combining three insns and the result is a simple SET
2065 with no ASM_OPERANDS that wasn't recognized, try to split it into two
2066 insns. There are two ways to do this. It can be split using a
2067 machine-specific method (like when you have an addition of a large
2068 constant) or by combine in the function find_split_point. */
2069
2070 if (i1 && insn_code_number < 0 && GET_CODE (newpat) == SET
2071 && asm_noperands (newpat) < 0)
2072 {
2073 rtx m_split, *split;
2074 rtx ni2dest = i2dest;
2075
2076 /* See if the MD file can split NEWPAT. If it can't, see if letting it
2077 use I2DEST as a scratch register will help. In the latter case,
2078 convert I2DEST to the mode of the source of NEWPAT if we can. */
2079
2080 m_split = split_insns (newpat, i3);
2081
2082 /* We can only use I2DEST as a scratch reg if it doesn't overlap any
2083 inputs of NEWPAT. */
2084
2085 /* ??? If I2DEST is not safe, and I1DEST exists, then it would be
2086 possible to try that as a scratch reg. This would require adding
2087 more code to make it work though. */
2088
2089 if (m_split == 0 && ! reg_overlap_mentioned_p (ni2dest, newpat))
2090 {
2091 /* If I2DEST is a hard register or the only use of a pseudo,
2092 we can change its mode. */
2093 if (GET_MODE (SET_DEST (newpat)) != GET_MODE (i2dest)
2094 && GET_MODE (SET_DEST (newpat)) != VOIDmode
2095 && GET_CODE (i2dest) == REG
2096 && (REGNO (i2dest) < FIRST_PSEUDO_REGISTER
2097 || (REG_N_SETS (REGNO (i2dest)) == 1 && ! added_sets_2
2098 && ! REG_USERVAR_P (i2dest))))
2099 ni2dest = gen_rtx_REG (GET_MODE (SET_DEST (newpat)),
2100 REGNO (i2dest));
2101
2102 m_split = split_insns (gen_rtx_PARALLEL
2103 (VOIDmode,
2104 gen_rtvec (2, newpat,
2105 gen_rtx_CLOBBER (VOIDmode,
2106 ni2dest))),
2107 i3);
2108 }
2109
2110 if (m_split && GET_CODE (m_split) == SEQUENCE
2111 && XVECLEN (m_split, 0) == 2
2112 && (next_real_insn (i2) == i3
2113 || ! use_crosses_set_p (PATTERN (XVECEXP (m_split, 0, 0)),
2114 INSN_CUID (i2))))
2115 {
2116 rtx i2set, i3set;
2117 rtx newi3pat = PATTERN (XVECEXP (m_split, 0, 1));
2118 newi2pat = PATTERN (XVECEXP (m_split, 0, 0));
2119
2120 i3set = single_set (XVECEXP (m_split, 0, 1));
2121 i2set = single_set (XVECEXP (m_split, 0, 0));
2122
2123 /* In case we changed the mode of I2DEST, replace it in the
2124 pseudo-register table here. We can't do it above in case this
2125 code doesn't get executed and we do a split the other way. */
2126
2127 if (REGNO (i2dest) >= FIRST_PSEUDO_REGISTER)
2128 SUBST (regno_reg_rtx[REGNO (i2dest)], ni2dest);
2129
2130 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
2131
2132 /* If I2 or I3 has multiple SETs, we won't know how to track
2133 register status, so don't use these insns. If I2's destination
2134 is used between I2 and I3, we also can't use these insns. */
2135
2136 if (i2_code_number >= 0 && i2set && i3set
2137 && (next_real_insn (i2) == i3
2138 || ! reg_used_between_p (SET_DEST (i2set), i2, i3)))
2139 insn_code_number = recog_for_combine (&newi3pat, i3,
2140 &new_i3_notes);
2141 if (insn_code_number >= 0)
2142 newpat = newi3pat;
2143
2144 /* It is possible that both insns now set the destination of I3.
2145 If so, we must show an extra use of it. */
2146
2147 if (insn_code_number >= 0)
2148 {
2149 rtx new_i3_dest = SET_DEST (i3set);
2150 rtx new_i2_dest = SET_DEST (i2set);
2151
2152 while (GET_CODE (new_i3_dest) == ZERO_EXTRACT
2153 || GET_CODE (new_i3_dest) == STRICT_LOW_PART
2154 || GET_CODE (new_i3_dest) == SUBREG)
2155 new_i3_dest = XEXP (new_i3_dest, 0);
2156
2157 while (GET_CODE (new_i2_dest) == ZERO_EXTRACT
2158 || GET_CODE (new_i2_dest) == STRICT_LOW_PART
2159 || GET_CODE (new_i2_dest) == SUBREG)
2160 new_i2_dest = XEXP (new_i2_dest, 0);
2161
2162 if (GET_CODE (new_i3_dest) == REG
2163 && GET_CODE (new_i2_dest) == REG
2164 && REGNO (new_i3_dest) == REGNO (new_i2_dest))
2165 REG_N_SETS (REGNO (new_i2_dest))++;
2166 }
2167 }
2168
2169 /* If we can split it and use I2DEST, go ahead and see if that
2170 helps things be recognized. Verify that none of the registers
2171 are set between I2 and I3. */
2172 if (insn_code_number < 0 && (split = find_split_point (&newpat, i3)) != 0
2173 #ifdef HAVE_cc0
2174 && GET_CODE (i2dest) == REG
2175 #endif
2176 /* We need I2DEST in the proper mode. If it is a hard register
2177 or the only use of a pseudo, we can change its mode. */
2178 && (GET_MODE (*split) == GET_MODE (i2dest)
2179 || GET_MODE (*split) == VOIDmode
2180 || REGNO (i2dest) < FIRST_PSEUDO_REGISTER
2181 || (REG_N_SETS (REGNO (i2dest)) == 1 && ! added_sets_2
2182 && ! REG_USERVAR_P (i2dest)))
2183 && (next_real_insn (i2) == i3
2184 || ! use_crosses_set_p (*split, INSN_CUID (i2)))
2185 /* We can't overwrite I2DEST if its value is still used by
2186 NEWPAT. */
2187 && ! reg_referenced_p (i2dest, newpat))
2188 {
2189 rtx newdest = i2dest;
2190 enum rtx_code split_code = GET_CODE (*split);
2191 enum machine_mode split_mode = GET_MODE (*split);
2192
2193 /* Get NEWDEST as a register in the proper mode. We have already
2194 validated that we can do this. */
2195 if (GET_MODE (i2dest) != split_mode && split_mode != VOIDmode)
2196 {
2197 newdest = gen_rtx_REG (split_mode, REGNO (i2dest));
2198
2199 if (REGNO (i2dest) >= FIRST_PSEUDO_REGISTER)
2200 SUBST (regno_reg_rtx[REGNO (i2dest)], newdest);
2201 }
2202
2203 /* If *SPLIT is a (mult FOO (const_int pow2)), convert it to
2204 an ASHIFT. This can occur if it was inside a PLUS and hence
2205 appeared to be a memory address. This is a kludge. */
2206 if (split_code == MULT
2207 && GET_CODE (XEXP (*split, 1)) == CONST_INT
2208 && (i = exact_log2 (INTVAL (XEXP (*split, 1)))) >= 0)
2209 {
2210 SUBST (*split, gen_rtx_combine (ASHIFT, split_mode,
2211 XEXP (*split, 0), GEN_INT (i)));
2212 /* Update split_code because we may not have a multiply
2213 anymore. */
2214 split_code = GET_CODE (*split);
2215 }
2216
2217 #ifdef INSN_SCHEDULING
2218 /* If *SPLIT is a paradoxical SUBREG, when we split it, it should
2219 be written as a ZERO_EXTEND. */
2220 if (split_code == SUBREG && GET_CODE (SUBREG_REG (*split)) == MEM)
2221 SUBST (*split, gen_rtx_combine (ZERO_EXTEND, split_mode,
2222 XEXP (*split, 0)));
2223 #endif
2224
2225 newi2pat = gen_rtx_combine (SET, VOIDmode, newdest, *split);
2226 SUBST (*split, newdest);
2227 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
2228
2229 /* If the split point was a MULT and we didn't have one before,
2230 don't use one now. */
2231 if (i2_code_number >= 0 && ! (split_code == MULT && ! have_mult))
2232 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
2233 }
2234 }
2235
2236 /* Check for a case where we loaded from memory in a narrow mode and
2237 then sign extended it, but we need both registers. In that case,
2238 we have a PARALLEL with both loads from the same memory location.
2239 We can split this into a load from memory followed by a register-register
2240 copy. This saves at least one insn, more if register allocation can
2241 eliminate the copy.
2242
2243 We cannot do this if the destination of the second assignment is
2244 a register that we have already assumed is zero-extended. Similarly
2245 for a SUBREG of such a register. */
2246
2247 else if (i1 && insn_code_number < 0 && asm_noperands (newpat) < 0
2248 && GET_CODE (newpat) == PARALLEL
2249 && XVECLEN (newpat, 0) == 2
2250 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
2251 && GET_CODE (SET_SRC (XVECEXP (newpat, 0, 0))) == SIGN_EXTEND
2252 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
2253 && rtx_equal_p (SET_SRC (XVECEXP (newpat, 0, 1)),
2254 XEXP (SET_SRC (XVECEXP (newpat, 0, 0)), 0))
2255 && ! use_crosses_set_p (SET_SRC (XVECEXP (newpat, 0, 1)),
2256 INSN_CUID (i2))
2257 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != ZERO_EXTRACT
2258 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != STRICT_LOW_PART
2259 && ! (temp = SET_DEST (XVECEXP (newpat, 0, 1)),
2260 (GET_CODE (temp) == REG
2261 && reg_nonzero_bits[REGNO (temp)] != 0
2262 && GET_MODE_BITSIZE (GET_MODE (temp)) < BITS_PER_WORD
2263 && GET_MODE_BITSIZE (GET_MODE (temp)) < HOST_BITS_PER_INT
2264 && (reg_nonzero_bits[REGNO (temp)]
2265 != GET_MODE_MASK (word_mode))))
2266 && ! (GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) == SUBREG
2267 && (temp = SUBREG_REG (SET_DEST (XVECEXP (newpat, 0, 1))),
2268 (GET_CODE (temp) == REG
2269 && reg_nonzero_bits[REGNO (temp)] != 0
2270 && GET_MODE_BITSIZE (GET_MODE (temp)) < BITS_PER_WORD
2271 && GET_MODE_BITSIZE (GET_MODE (temp)) < HOST_BITS_PER_INT
2272 && (reg_nonzero_bits[REGNO (temp)]
2273 != GET_MODE_MASK (word_mode)))))
2274 && ! reg_overlap_mentioned_p (SET_DEST (XVECEXP (newpat, 0, 1)),
2275 SET_SRC (XVECEXP (newpat, 0, 1)))
2276 && ! find_reg_note (i3, REG_UNUSED,
2277 SET_DEST (XVECEXP (newpat, 0, 0))))
2278 {
2279 rtx ni2dest;
2280
2281 newi2pat = XVECEXP (newpat, 0, 0);
2282 ni2dest = SET_DEST (XVECEXP (newpat, 0, 0));
2283 newpat = XVECEXP (newpat, 0, 1);
2284 SUBST (SET_SRC (newpat),
2285 gen_lowpart_for_combine (GET_MODE (SET_SRC (newpat)), ni2dest));
2286 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
2287
2288 if (i2_code_number >= 0)
2289 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
2290
2291 if (insn_code_number >= 0)
2292 {
2293 rtx insn;
2294 rtx link;
2295
2296 /* If we will be able to accept this, we have made a change to the
2297 destination of I3. This can invalidate a LOG_LINKS pointing
2298 to I3. No other part of combine.c makes such a transformation.
2299
2300 The new I3 will have a destination that was previously the
2301 destination of I1 or I2 and which was used in i2 or I3. Call
2302 distribute_links to make a LOG_LINK from the next use of
2303 that destination. */
2304
2305 PATTERN (i3) = newpat;
2306 distribute_links (gen_rtx_INSN_LIST (VOIDmode, i3, NULL_RTX));
2307
2308 /* I3 now uses what used to be its destination and which is
2309 now I2's destination. That means we need a LOG_LINK from
2310 I3 to I2. But we used to have one, so we still will.
2311
2312 However, some later insn might be using I2's dest and have
2313 a LOG_LINK pointing at I3. We must remove this link.
2314 The simplest way to remove the link is to point it at I1,
2315 which we know will be a NOTE. */
2316
2317 for (insn = NEXT_INSN (i3);
2318 insn && (this_basic_block == n_basic_blocks - 1
2319 || insn != BLOCK_HEAD (this_basic_block + 1));
2320 insn = NEXT_INSN (insn))
2321 {
2322 if (INSN_P (insn) && reg_referenced_p (ni2dest, PATTERN (insn)))
2323 {
2324 for (link = LOG_LINKS (insn); link;
2325 link = XEXP (link, 1))
2326 if (XEXP (link, 0) == i3)
2327 XEXP (link, 0) = i1;
2328
2329 break;
2330 }
2331 }
2332 }
2333 }
2334
2335 /* Similarly, check for a case where we have a PARALLEL of two independent
2336 SETs but we started with three insns. In this case, we can do the sets
2337 as two separate insns. This case occurs when some SET allows two
2338 other insns to combine, but the destination of that SET is still live. */
2339
2340 else if (i1 && insn_code_number < 0 && asm_noperands (newpat) < 0
2341 && GET_CODE (newpat) == PARALLEL
2342 && XVECLEN (newpat, 0) == 2
2343 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
2344 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) != ZERO_EXTRACT
2345 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) != STRICT_LOW_PART
2346 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
2347 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != ZERO_EXTRACT
2348 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != STRICT_LOW_PART
2349 && ! use_crosses_set_p (SET_SRC (XVECEXP (newpat, 0, 1)),
2350 INSN_CUID (i2))
2351 /* Don't pass sets with (USE (MEM ...)) dests to the following. */
2352 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != USE
2353 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) != USE
2354 && ! reg_referenced_p (SET_DEST (XVECEXP (newpat, 0, 1)),
2355 XVECEXP (newpat, 0, 0))
2356 && ! reg_referenced_p (SET_DEST (XVECEXP (newpat, 0, 0)),
2357 XVECEXP (newpat, 0, 1))
2358 && ! (contains_muldiv (SET_SRC (XVECEXP (newpat, 0, 0)))
2359 && contains_muldiv (SET_SRC (XVECEXP (newpat, 0, 1)))))
2360 {
2361 /* Normally, it doesn't matter which of the two is done first,
2362 but it does if one references cc0. In that case, it has to
2363 be first. */
2364 #ifdef HAVE_cc0
2365 if (reg_referenced_p (cc0_rtx, XVECEXP (newpat, 0, 0)))
2366 {
2367 newi2pat = XVECEXP (newpat, 0, 0);
2368 newpat = XVECEXP (newpat, 0, 1);
2369 }
2370 else
2371 #endif
2372 {
2373 newi2pat = XVECEXP (newpat, 0, 1);
2374 newpat = XVECEXP (newpat, 0, 0);
2375 }
2376
2377 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
2378
2379 if (i2_code_number >= 0)
2380 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
2381 }
2382
2383 /* If it still isn't recognized, fail and change things back the way they
2384 were. */
2385 if ((insn_code_number < 0
2386 /* Is the result a reasonable ASM_OPERANDS? */
2387 && (! check_asm_operands (newpat) || added_sets_1 || added_sets_2)))
2388 {
2389 undo_all ();
2390 return 0;
2391 }
2392
2393 /* If we had to change another insn, make sure it is valid also. */
2394 if (undobuf.other_insn)
2395 {
2396 rtx other_pat = PATTERN (undobuf.other_insn);
2397 rtx new_other_notes;
2398 rtx note, next;
2399
2400 CLEAR_HARD_REG_SET (newpat_used_regs);
2401
2402 other_code_number = recog_for_combine (&other_pat, undobuf.other_insn,
2403 &new_other_notes);
2404
2405 if (other_code_number < 0 && ! check_asm_operands (other_pat))
2406 {
2407 undo_all ();
2408 return 0;
2409 }
2410
2411 PATTERN (undobuf.other_insn) = other_pat;
2412
2413 /* If any of the notes in OTHER_INSN were REG_UNUSED, ensure that they
2414 are still valid. Then add any non-duplicate notes added by
2415 recog_for_combine. */
2416 for (note = REG_NOTES (undobuf.other_insn); note; note = next)
2417 {
2418 next = XEXP (note, 1);
2419
2420 if (REG_NOTE_KIND (note) == REG_UNUSED
2421 && ! reg_set_p (XEXP (note, 0), PATTERN (undobuf.other_insn)))
2422 {
2423 if (GET_CODE (XEXP (note, 0)) == REG)
2424 REG_N_DEATHS (REGNO (XEXP (note, 0)))--;
2425
2426 remove_note (undobuf.other_insn, note);
2427 }
2428 }
2429
2430 for (note = new_other_notes; note; note = XEXP (note, 1))
2431 if (GET_CODE (XEXP (note, 0)) == REG)
2432 REG_N_DEATHS (REGNO (XEXP (note, 0)))++;
2433
2434 distribute_notes (new_other_notes, undobuf.other_insn,
2435 undobuf.other_insn, NULL_RTX, NULL_RTX, NULL_RTX);
2436 }
2437 #ifdef HAVE_cc0
2438 /* If I2 is the setter CC0 and I3 is the user CC0 then check whether
2439 they are adjacent to each other or not. */
2440 {
2441 rtx p = prev_nonnote_insn (i3);
2442 if (p && p != i2 && GET_CODE (p) == INSN && newi2pat
2443 && sets_cc0_p (newi2pat))
2444 {
2445 undo_all ();
2446 return 0;
2447 }
2448 }
2449 #endif
2450
2451 /* We now know that we can do this combination. Merge the insns and
2452 update the status of registers and LOG_LINKS. */
2453
2454 {
2455 rtx i3notes, i2notes, i1notes = 0;
2456 rtx i3links, i2links, i1links = 0;
2457 rtx midnotes = 0;
2458 unsigned int regno;
2459 /* Compute which registers we expect to eliminate. newi2pat may be setting
2460 either i3dest or i2dest, so we must check it. Also, i1dest may be the
2461 same as i3dest, in which case newi2pat may be setting i1dest. */
2462 rtx elim_i2 = ((newi2pat && reg_set_p (i2dest, newi2pat))
2463 || i2dest_in_i2src || i2dest_in_i1src
2464 ? 0 : i2dest);
2465 rtx elim_i1 = (i1 == 0 || i1dest_in_i1src
2466 || (newi2pat && reg_set_p (i1dest, newi2pat))
2467 ? 0 : i1dest);
2468
2469 /* Get the old REG_NOTES and LOG_LINKS from all our insns and
2470 clear them. */
2471 i3notes = REG_NOTES (i3), i3links = LOG_LINKS (i3);
2472 i2notes = REG_NOTES (i2), i2links = LOG_LINKS (i2);
2473 if (i1)
2474 i1notes = REG_NOTES (i1), i1links = LOG_LINKS (i1);
2475
2476 /* Ensure that we do not have something that should not be shared but
2477 occurs multiple times in the new insns. Check this by first
2478 resetting all the `used' flags and then copying anything is shared. */
2479
2480 reset_used_flags (i3notes);
2481 reset_used_flags (i2notes);
2482 reset_used_flags (i1notes);
2483 reset_used_flags (newpat);
2484 reset_used_flags (newi2pat);
2485 if (undobuf.other_insn)
2486 reset_used_flags (PATTERN (undobuf.other_insn));
2487
2488 i3notes = copy_rtx_if_shared (i3notes);
2489 i2notes = copy_rtx_if_shared (i2notes);
2490 i1notes = copy_rtx_if_shared (i1notes);
2491 newpat = copy_rtx_if_shared (newpat);
2492 newi2pat = copy_rtx_if_shared (newi2pat);
2493 if (undobuf.other_insn)
2494 reset_used_flags (PATTERN (undobuf.other_insn));
2495
2496 INSN_CODE (i3) = insn_code_number;
2497 PATTERN (i3) = newpat;
2498 if (undobuf.other_insn)
2499 INSN_CODE (undobuf.other_insn) = other_code_number;
2500
2501 /* We had one special case above where I2 had more than one set and
2502 we replaced a destination of one of those sets with the destination
2503 of I3. In that case, we have to update LOG_LINKS of insns later
2504 in this basic block. Note that this (expensive) case is rare.
2505
2506 Also, in this case, we must pretend that all REG_NOTEs for I2
2507 actually came from I3, so that REG_UNUSED notes from I2 will be
2508 properly handled. */
2509
2510 if (i3_subst_into_i2 && GET_CODE (PATTERN (i2)) == PARALLEL)
2511 {
2512 if (GET_CODE (PATTERN (i2)) == PARALLEL)
2513 {
2514 for (i = 0; i < XVECLEN (PATTERN (i2), 0); i++)
2515 if (GET_CODE (SET_DEST (XVECEXP (PATTERN (i2), 0, i))) == REG
2516 && SET_DEST (XVECEXP (PATTERN (i2), 0, i)) != i2dest
2517 && ! find_reg_note (i2, REG_UNUSED,
2518 SET_DEST (XVECEXP (PATTERN (i2), 0, i))))
2519 for (temp = NEXT_INSN (i2);
2520 temp && (this_basic_block == n_basic_blocks - 1
2521 || BLOCK_HEAD (this_basic_block) != temp);
2522 temp = NEXT_INSN (temp))
2523 if (temp != i3 && INSN_P (temp))
2524 for (link = LOG_LINKS (temp); link; link = XEXP (link, 1))
2525 if (XEXP (link, 0) == i2)
2526 XEXP (link, 0) = i3;
2527 }
2528
2529 if (i3notes)
2530 {
2531 rtx link = i3notes;
2532 while (XEXP (link, 1))
2533 link = XEXP (link, 1);
2534 XEXP (link, 1) = i2notes;
2535 }
2536 else
2537 i3notes = i2notes;
2538 i2notes = 0;
2539 }
2540
2541 LOG_LINKS (i3) = 0;
2542 REG_NOTES (i3) = 0;
2543 LOG_LINKS (i2) = 0;
2544 REG_NOTES (i2) = 0;
2545
2546 if (newi2pat)
2547 {
2548 INSN_CODE (i2) = i2_code_number;
2549 PATTERN (i2) = newi2pat;
2550 }
2551 else
2552 {
2553 PUT_CODE (i2, NOTE);
2554 NOTE_LINE_NUMBER (i2) = NOTE_INSN_DELETED;
2555 NOTE_SOURCE_FILE (i2) = 0;
2556 }
2557
2558 if (i1)
2559 {
2560 LOG_LINKS (i1) = 0;
2561 REG_NOTES (i1) = 0;
2562 PUT_CODE (i1, NOTE);
2563 NOTE_LINE_NUMBER (i1) = NOTE_INSN_DELETED;
2564 NOTE_SOURCE_FILE (i1) = 0;
2565 }
2566
2567 /* Get death notes for everything that is now used in either I3 or
2568 I2 and used to die in a previous insn. If we built two new
2569 patterns, move from I1 to I2 then I2 to I3 so that we get the
2570 proper movement on registers that I2 modifies. */
2571
2572 if (newi2pat)
2573 {
2574 move_deaths (newi2pat, NULL_RTX, INSN_CUID (i1), i2, &midnotes);
2575 move_deaths (newpat, newi2pat, INSN_CUID (i1), i3, &midnotes);
2576 }
2577 else
2578 move_deaths (newpat, NULL_RTX, i1 ? INSN_CUID (i1) : INSN_CUID (i2),
2579 i3, &midnotes);
2580
2581 /* Distribute all the LOG_LINKS and REG_NOTES from I1, I2, and I3. */
2582 if (i3notes)
2583 distribute_notes (i3notes, i3, i3, newi2pat ? i2 : NULL_RTX,
2584 elim_i2, elim_i1);
2585 if (i2notes)
2586 distribute_notes (i2notes, i2, i3, newi2pat ? i2 : NULL_RTX,
2587 elim_i2, elim_i1);
2588 if (i1notes)
2589 distribute_notes (i1notes, i1, i3, newi2pat ? i2 : NULL_RTX,
2590 elim_i2, elim_i1);
2591 if (midnotes)
2592 distribute_notes (midnotes, NULL_RTX, i3, newi2pat ? i2 : NULL_RTX,
2593 elim_i2, elim_i1);
2594
2595 /* Distribute any notes added to I2 or I3 by recog_for_combine. We
2596 know these are REG_UNUSED and want them to go to the desired insn,
2597 so we always pass it as i3. We have not counted the notes in
2598 reg_n_deaths yet, so we need to do so now. */
2599
2600 if (newi2pat && new_i2_notes)
2601 {
2602 for (temp = new_i2_notes; temp; temp = XEXP (temp, 1))
2603 if (GET_CODE (XEXP (temp, 0)) == REG)
2604 REG_N_DEATHS (REGNO (XEXP (temp, 0)))++;
2605
2606 distribute_notes (new_i2_notes, i2, i2, NULL_RTX, NULL_RTX, NULL_RTX);
2607 }
2608
2609 if (new_i3_notes)
2610 {
2611 for (temp = new_i3_notes; temp; temp = XEXP (temp, 1))
2612 if (GET_CODE (XEXP (temp, 0)) == REG)
2613 REG_N_DEATHS (REGNO (XEXP (temp, 0)))++;
2614
2615 distribute_notes (new_i3_notes, i3, i3, NULL_RTX, NULL_RTX, NULL_RTX);
2616 }
2617
2618 /* If I3DEST was used in I3SRC, it really died in I3. We may need to
2619 put a REG_DEAD note for it somewhere. If NEWI2PAT exists and sets
2620 I3DEST, the death must be somewhere before I2, not I3. If we passed I3
2621 in that case, it might delete I2. Similarly for I2 and I1.
2622 Show an additional death due to the REG_DEAD note we make here. If
2623 we discard it in distribute_notes, we will decrement it again. */
2624
2625 if (i3dest_killed)
2626 {
2627 if (GET_CODE (i3dest_killed) == REG)
2628 REG_N_DEATHS (REGNO (i3dest_killed))++;
2629
2630 if (newi2pat && reg_set_p (i3dest_killed, newi2pat))
2631 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i3dest_killed,
2632 NULL_RTX),
2633 NULL_RTX, i2, NULL_RTX, elim_i2, elim_i1);
2634 else
2635 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i3dest_killed,
2636 NULL_RTX),
2637 NULL_RTX, i3, newi2pat ? i2 : NULL_RTX,
2638 elim_i2, elim_i1);
2639 }
2640
2641 if (i2dest_in_i2src)
2642 {
2643 if (GET_CODE (i2dest) == REG)
2644 REG_N_DEATHS (REGNO (i2dest))++;
2645
2646 if (newi2pat && reg_set_p (i2dest, newi2pat))
2647 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i2dest, NULL_RTX),
2648 NULL_RTX, i2, NULL_RTX, NULL_RTX, NULL_RTX);
2649 else
2650 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i2dest, NULL_RTX),
2651 NULL_RTX, i3, newi2pat ? i2 : NULL_RTX,
2652 NULL_RTX, NULL_RTX);
2653 }
2654
2655 if (i1dest_in_i1src)
2656 {
2657 if (GET_CODE (i1dest) == REG)
2658 REG_N_DEATHS (REGNO (i1dest))++;
2659
2660 if (newi2pat && reg_set_p (i1dest, newi2pat))
2661 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i1dest, NULL_RTX),
2662 NULL_RTX, i2, NULL_RTX, NULL_RTX, NULL_RTX);
2663 else
2664 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i1dest, NULL_RTX),
2665 NULL_RTX, i3, newi2pat ? i2 : NULL_RTX,
2666 NULL_RTX, NULL_RTX);
2667 }
2668
2669 distribute_links (i3links);
2670 distribute_links (i2links);
2671 distribute_links (i1links);
2672
2673 if (GET_CODE (i2dest) == REG)
2674 {
2675 rtx link;
2676 rtx i2_insn = 0, i2_val = 0, set;
2677
2678 /* The insn that used to set this register doesn't exist, and
2679 this life of the register may not exist either. See if one of
2680 I3's links points to an insn that sets I2DEST. If it does,
2681 that is now the last known value for I2DEST. If we don't update
2682 this and I2 set the register to a value that depended on its old
2683 contents, we will get confused. If this insn is used, thing
2684 will be set correctly in combine_instructions. */
2685
2686 for (link = LOG_LINKS (i3); link; link = XEXP (link, 1))
2687 if ((set = single_set (XEXP (link, 0))) != 0
2688 && rtx_equal_p (i2dest, SET_DEST (set)))
2689 i2_insn = XEXP (link, 0), i2_val = SET_SRC (set);
2690
2691 record_value_for_reg (i2dest, i2_insn, i2_val);
2692
2693 /* If the reg formerly set in I2 died only once and that was in I3,
2694 zero its use count so it won't make `reload' do any work. */
2695 if (! added_sets_2
2696 && (newi2pat == 0 || ! reg_mentioned_p (i2dest, newi2pat))
2697 && ! i2dest_in_i2src)
2698 {
2699 regno = REGNO (i2dest);
2700 REG_N_SETS (regno)--;
2701 }
2702 }
2703
2704 if (i1 && GET_CODE (i1dest) == REG)
2705 {
2706 rtx link;
2707 rtx i1_insn = 0, i1_val = 0, set;
2708
2709 for (link = LOG_LINKS (i3); link; link = XEXP (link, 1))
2710 if ((set = single_set (XEXP (link, 0))) != 0
2711 && rtx_equal_p (i1dest, SET_DEST (set)))
2712 i1_insn = XEXP (link, 0), i1_val = SET_SRC (set);
2713
2714 record_value_for_reg (i1dest, i1_insn, i1_val);
2715
2716 regno = REGNO (i1dest);
2717 if (! added_sets_1 && ! i1dest_in_i1src)
2718 REG_N_SETS (regno)--;
2719 }
2720
2721 /* Update reg_nonzero_bits et al for any changes that may have been made
2722 to this insn. The order of set_nonzero_bits_and_sign_copies() is
2723 important. Because newi2pat can affect nonzero_bits of newpat */
2724 if (newi2pat)
2725 note_stores (newi2pat, set_nonzero_bits_and_sign_copies, NULL);
2726 note_stores (newpat, set_nonzero_bits_and_sign_copies, NULL);
2727
2728 /* Set new_direct_jump_p if a new return or simple jump instruction
2729 has been created.
2730
2731 If I3 is now an unconditional jump, ensure that it has a
2732 BARRIER following it since it may have initially been a
2733 conditional jump. It may also be the last nonnote insn. */
2734
2735 if (GET_CODE (newpat) == RETURN || any_uncondjump_p (i3))
2736 {
2737 *new_direct_jump_p = 1;
2738
2739 if ((temp = next_nonnote_insn (i3)) == NULL_RTX
2740 || GET_CODE (temp) != BARRIER)
2741 emit_barrier_after (i3);
2742 }
2743 }
2744
2745 combine_successes++;
2746 undo_commit ();
2747
2748 /* Clear this here, so that subsequent get_last_value calls are not
2749 affected. */
2750 subst_prev_insn = NULL_RTX;
2751
2752 if (added_links_insn
2753 && (newi2pat == 0 || INSN_CUID (added_links_insn) < INSN_CUID (i2))
2754 && INSN_CUID (added_links_insn) < INSN_CUID (i3))
2755 return added_links_insn;
2756 else
2757 return newi2pat ? i2 : i3;
2758 }
2759 \f
2760 /* Undo all the modifications recorded in undobuf. */
2761
2762 static void
2763 undo_all ()
2764 {
2765 struct undo *undo, *next;
2766
2767 for (undo = undobuf.undos; undo; undo = next)
2768 {
2769 next = undo->next;
2770 if (undo->is_int)
2771 *undo->where.i = undo->old_contents.i;
2772 else
2773 *undo->where.r = undo->old_contents.r;
2774
2775 undo->next = undobuf.frees;
2776 undobuf.frees = undo;
2777 }
2778
2779 obfree (undobuf.storage);
2780 undobuf.undos = undobuf.previous_undos = 0;
2781
2782 /* Clear this here, so that subsequent get_last_value calls are not
2783 affected. */
2784 subst_prev_insn = NULL_RTX;
2785 }
2786
2787 /* We've committed to accepting the changes we made. Move all
2788 of the undos to the free list. */
2789
2790 static void
2791 undo_commit ()
2792 {
2793 struct undo *undo, *next;
2794
2795 for (undo = undobuf.undos; undo; undo = next)
2796 {
2797 next = undo->next;
2798 undo->next = undobuf.frees;
2799 undobuf.frees = undo;
2800 }
2801 undobuf.undos = undobuf.previous_undos = 0;
2802 }
2803
2804 \f
2805 /* Find the innermost point within the rtx at LOC, possibly LOC itself,
2806 where we have an arithmetic expression and return that point. LOC will
2807 be inside INSN.
2808
2809 try_combine will call this function to see if an insn can be split into
2810 two insns. */
2811
2812 static rtx *
2813 find_split_point (loc, insn)
2814 rtx *loc;
2815 rtx insn;
2816 {
2817 rtx x = *loc;
2818 enum rtx_code code = GET_CODE (x);
2819 rtx *split;
2820 unsigned HOST_WIDE_INT len = 0;
2821 HOST_WIDE_INT pos = 0;
2822 int unsignedp = 0;
2823 rtx inner = NULL_RTX;
2824
2825 /* First special-case some codes. */
2826 switch (code)
2827 {
2828 case SUBREG:
2829 #ifdef INSN_SCHEDULING
2830 /* If we are making a paradoxical SUBREG invalid, it becomes a split
2831 point. */
2832 if (GET_CODE (SUBREG_REG (x)) == MEM)
2833 return loc;
2834 #endif
2835 return find_split_point (&SUBREG_REG (x), insn);
2836
2837 case MEM:
2838 #ifdef HAVE_lo_sum
2839 /* If we have (mem (const ..)) or (mem (symbol_ref ...)), split it
2840 using LO_SUM and HIGH. */
2841 if (GET_CODE (XEXP (x, 0)) == CONST
2842 || GET_CODE (XEXP (x, 0)) == SYMBOL_REF)
2843 {
2844 SUBST (XEXP (x, 0),
2845 gen_rtx_combine (LO_SUM, Pmode,
2846 gen_rtx_combine (HIGH, Pmode, XEXP (x, 0)),
2847 XEXP (x, 0)));
2848 return &XEXP (XEXP (x, 0), 0);
2849 }
2850 #endif
2851
2852 /* If we have a PLUS whose second operand is a constant and the
2853 address is not valid, perhaps will can split it up using
2854 the machine-specific way to split large constants. We use
2855 the first pseudo-reg (one of the virtual regs) as a placeholder;
2856 it will not remain in the result. */
2857 if (GET_CODE (XEXP (x, 0)) == PLUS
2858 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
2859 && ! memory_address_p (GET_MODE (x), XEXP (x, 0)))
2860 {
2861 rtx reg = regno_reg_rtx[FIRST_PSEUDO_REGISTER];
2862 rtx seq = split_insns (gen_rtx_SET (VOIDmode, reg, XEXP (x, 0)),
2863 subst_insn);
2864
2865 /* This should have produced two insns, each of which sets our
2866 placeholder. If the source of the second is a valid address,
2867 we can make put both sources together and make a split point
2868 in the middle. */
2869
2870 if (seq && XVECLEN (seq, 0) == 2
2871 && GET_CODE (XVECEXP (seq, 0, 0)) == INSN
2872 && GET_CODE (PATTERN (XVECEXP (seq, 0, 0))) == SET
2873 && SET_DEST (PATTERN (XVECEXP (seq, 0, 0))) == reg
2874 && ! reg_mentioned_p (reg,
2875 SET_SRC (PATTERN (XVECEXP (seq, 0, 0))))
2876 && GET_CODE (XVECEXP (seq, 0, 1)) == INSN
2877 && GET_CODE (PATTERN (XVECEXP (seq, 0, 1))) == SET
2878 && SET_DEST (PATTERN (XVECEXP (seq, 0, 1))) == reg
2879 && memory_address_p (GET_MODE (x),
2880 SET_SRC (PATTERN (XVECEXP (seq, 0, 1)))))
2881 {
2882 rtx src1 = SET_SRC (PATTERN (XVECEXP (seq, 0, 0)));
2883 rtx src2 = SET_SRC (PATTERN (XVECEXP (seq, 0, 1)));
2884
2885 /* Replace the placeholder in SRC2 with SRC1. If we can
2886 find where in SRC2 it was placed, that can become our
2887 split point and we can replace this address with SRC2.
2888 Just try two obvious places. */
2889
2890 src2 = replace_rtx (src2, reg, src1);
2891 split = 0;
2892 if (XEXP (src2, 0) == src1)
2893 split = &XEXP (src2, 0);
2894 else if (GET_RTX_FORMAT (GET_CODE (XEXP (src2, 0)))[0] == 'e'
2895 && XEXP (XEXP (src2, 0), 0) == src1)
2896 split = &XEXP (XEXP (src2, 0), 0);
2897
2898 if (split)
2899 {
2900 SUBST (XEXP (x, 0), src2);
2901 return split;
2902 }
2903 }
2904
2905 /* If that didn't work, perhaps the first operand is complex and
2906 needs to be computed separately, so make a split point there.
2907 This will occur on machines that just support REG + CONST
2908 and have a constant moved through some previous computation. */
2909
2910 else if (GET_RTX_CLASS (GET_CODE (XEXP (XEXP (x, 0), 0))) != 'o'
2911 && ! (GET_CODE (XEXP (XEXP (x, 0), 0)) == SUBREG
2912 && (GET_RTX_CLASS (GET_CODE (SUBREG_REG (XEXP (XEXP (x, 0), 0))))
2913 == 'o')))
2914 return &XEXP (XEXP (x, 0), 0);
2915 }
2916 break;
2917
2918 case SET:
2919 #ifdef HAVE_cc0
2920 /* If SET_DEST is CC0 and SET_SRC is not an operand, a COMPARE, or a
2921 ZERO_EXTRACT, the most likely reason why this doesn't match is that
2922 we need to put the operand into a register. So split at that
2923 point. */
2924
2925 if (SET_DEST (x) == cc0_rtx
2926 && GET_CODE (SET_SRC (x)) != COMPARE
2927 && GET_CODE (SET_SRC (x)) != ZERO_EXTRACT
2928 && GET_RTX_CLASS (GET_CODE (SET_SRC (x))) != 'o'
2929 && ! (GET_CODE (SET_SRC (x)) == SUBREG
2930 && GET_RTX_CLASS (GET_CODE (SUBREG_REG (SET_SRC (x)))) == 'o'))
2931 return &SET_SRC (x);
2932 #endif
2933
2934 /* See if we can split SET_SRC as it stands. */
2935 split = find_split_point (&SET_SRC (x), insn);
2936 if (split && split != &SET_SRC (x))
2937 return split;
2938
2939 /* See if we can split SET_DEST as it stands. */
2940 split = find_split_point (&SET_DEST (x), insn);
2941 if (split && split != &SET_DEST (x))
2942 return split;
2943
2944 /* See if this is a bitfield assignment with everything constant. If
2945 so, this is an IOR of an AND, so split it into that. */
2946 if (GET_CODE (SET_DEST (x)) == ZERO_EXTRACT
2947 && (GET_MODE_BITSIZE (GET_MODE (XEXP (SET_DEST (x), 0)))
2948 <= HOST_BITS_PER_WIDE_INT)
2949 && GET_CODE (XEXP (SET_DEST (x), 1)) == CONST_INT
2950 && GET_CODE (XEXP (SET_DEST (x), 2)) == CONST_INT
2951 && GET_CODE (SET_SRC (x)) == CONST_INT
2952 && ((INTVAL (XEXP (SET_DEST (x), 1))
2953 + INTVAL (XEXP (SET_DEST (x), 2)))
2954 <= GET_MODE_BITSIZE (GET_MODE (XEXP (SET_DEST (x), 0))))
2955 && ! side_effects_p (XEXP (SET_DEST (x), 0)))
2956 {
2957 HOST_WIDE_INT pos = INTVAL (XEXP (SET_DEST (x), 2));
2958 unsigned HOST_WIDE_INT len = INTVAL (XEXP (SET_DEST (x), 1));
2959 unsigned HOST_WIDE_INT src = INTVAL (SET_SRC (x));
2960 rtx dest = XEXP (SET_DEST (x), 0);
2961 enum machine_mode mode = GET_MODE (dest);
2962 unsigned HOST_WIDE_INT mask = ((HOST_WIDE_INT) 1 << len) - 1;
2963
2964 if (BITS_BIG_ENDIAN)
2965 pos = GET_MODE_BITSIZE (mode) - len - pos;
2966
2967 if (src == mask)
2968 SUBST (SET_SRC (x),
2969 gen_binary (IOR, mode, dest, GEN_INT (src << pos)));
2970 else
2971 SUBST (SET_SRC (x),
2972 gen_binary (IOR, mode,
2973 gen_binary (AND, mode, dest,
2974 GEN_INT (~(mask << pos)
2975 & GET_MODE_MASK (mode))),
2976 GEN_INT (src << pos)));
2977
2978 SUBST (SET_DEST (x), dest);
2979
2980 split = find_split_point (&SET_SRC (x), insn);
2981 if (split && split != &SET_SRC (x))
2982 return split;
2983 }
2984
2985 /* Otherwise, see if this is an operation that we can split into two.
2986 If so, try to split that. */
2987 code = GET_CODE (SET_SRC (x));
2988
2989 switch (code)
2990 {
2991 case AND:
2992 /* If we are AND'ing with a large constant that is only a single
2993 bit and the result is only being used in a context where we
2994 need to know if it is zero or non-zero, replace it with a bit
2995 extraction. This will avoid the large constant, which might
2996 have taken more than one insn to make. If the constant were
2997 not a valid argument to the AND but took only one insn to make,
2998 this is no worse, but if it took more than one insn, it will
2999 be better. */
3000
3001 if (GET_CODE (XEXP (SET_SRC (x), 1)) == CONST_INT
3002 && GET_CODE (XEXP (SET_SRC (x), 0)) == REG
3003 && (pos = exact_log2 (INTVAL (XEXP (SET_SRC (x), 1)))) >= 7
3004 && GET_CODE (SET_DEST (x)) == REG
3005 && (split = find_single_use (SET_DEST (x), insn, NULL_PTR)) != 0
3006 && (GET_CODE (*split) == EQ || GET_CODE (*split) == NE)
3007 && XEXP (*split, 0) == SET_DEST (x)
3008 && XEXP (*split, 1) == const0_rtx)
3009 {
3010 rtx extraction = make_extraction (GET_MODE (SET_DEST (x)),
3011 XEXP (SET_SRC (x), 0),
3012 pos, NULL_RTX, 1, 1, 0, 0);
3013 if (extraction != 0)
3014 {
3015 SUBST (SET_SRC (x), extraction);
3016 return find_split_point (loc, insn);
3017 }
3018 }
3019 break;
3020
3021 case NE:
3022 /* if STORE_FLAG_VALUE is -1, this is (NE X 0) and only one bit of X
3023 is known to be on, this can be converted into a NEG of a shift. */
3024 if (STORE_FLAG_VALUE == -1 && XEXP (SET_SRC (x), 1) == const0_rtx
3025 && GET_MODE (SET_SRC (x)) == GET_MODE (XEXP (SET_SRC (x), 0))
3026 && 1 <= (pos = exact_log2
3027 (nonzero_bits (XEXP (SET_SRC (x), 0),
3028 GET_MODE (XEXP (SET_SRC (x), 0))))))
3029 {
3030 enum machine_mode mode = GET_MODE (XEXP (SET_SRC (x), 0));
3031
3032 SUBST (SET_SRC (x),
3033 gen_rtx_combine (NEG, mode,
3034 gen_rtx_combine (LSHIFTRT, mode,
3035 XEXP (SET_SRC (x), 0),
3036 GEN_INT (pos))));
3037
3038 split = find_split_point (&SET_SRC (x), insn);
3039 if (split && split != &SET_SRC (x))
3040 return split;
3041 }
3042 break;
3043
3044 case SIGN_EXTEND:
3045 inner = XEXP (SET_SRC (x), 0);
3046
3047 /* We can't optimize if either mode is a partial integer
3048 mode as we don't know how many bits are significant
3049 in those modes. */
3050 if (GET_MODE_CLASS (GET_MODE (inner)) == MODE_PARTIAL_INT
3051 || GET_MODE_CLASS (GET_MODE (SET_SRC (x))) == MODE_PARTIAL_INT)
3052 break;
3053
3054 pos = 0;
3055 len = GET_MODE_BITSIZE (GET_MODE (inner));
3056 unsignedp = 0;
3057 break;
3058
3059 case SIGN_EXTRACT:
3060 case ZERO_EXTRACT:
3061 if (GET_CODE (XEXP (SET_SRC (x), 1)) == CONST_INT
3062 && GET_CODE (XEXP (SET_SRC (x), 2)) == CONST_INT)
3063 {
3064 inner = XEXP (SET_SRC (x), 0);
3065 len = INTVAL (XEXP (SET_SRC (x), 1));
3066 pos = INTVAL (XEXP (SET_SRC (x), 2));
3067
3068 if (BITS_BIG_ENDIAN)
3069 pos = GET_MODE_BITSIZE (GET_MODE (inner)) - len - pos;
3070 unsignedp = (code == ZERO_EXTRACT);
3071 }
3072 break;
3073
3074 default:
3075 break;
3076 }
3077
3078 if (len && pos >= 0 && pos + len <= GET_MODE_BITSIZE (GET_MODE (inner)))
3079 {
3080 enum machine_mode mode = GET_MODE (SET_SRC (x));
3081
3082 /* For unsigned, we have a choice of a shift followed by an
3083 AND or two shifts. Use two shifts for field sizes where the
3084 constant might be too large. We assume here that we can
3085 always at least get 8-bit constants in an AND insn, which is
3086 true for every current RISC. */
3087
3088 if (unsignedp && len <= 8)
3089 {
3090 SUBST (SET_SRC (x),
3091 gen_rtx_combine
3092 (AND, mode,
3093 gen_rtx_combine (LSHIFTRT, mode,
3094 gen_lowpart_for_combine (mode, inner),
3095 GEN_INT (pos)),
3096 GEN_INT (((HOST_WIDE_INT) 1 << len) - 1)));
3097
3098 split = find_split_point (&SET_SRC (x), insn);
3099 if (split && split != &SET_SRC (x))
3100 return split;
3101 }
3102 else
3103 {
3104 SUBST (SET_SRC (x),
3105 gen_rtx_combine
3106 (unsignedp ? LSHIFTRT : ASHIFTRT, mode,
3107 gen_rtx_combine (ASHIFT, mode,
3108 gen_lowpart_for_combine (mode, inner),
3109 GEN_INT (GET_MODE_BITSIZE (mode)
3110 - len - pos)),
3111 GEN_INT (GET_MODE_BITSIZE (mode) - len)));
3112
3113 split = find_split_point (&SET_SRC (x), insn);
3114 if (split && split != &SET_SRC (x))
3115 return split;
3116 }
3117 }
3118
3119 /* See if this is a simple operation with a constant as the second
3120 operand. It might be that this constant is out of range and hence
3121 could be used as a split point. */
3122 if ((GET_RTX_CLASS (GET_CODE (SET_SRC (x))) == '2'
3123 || GET_RTX_CLASS (GET_CODE (SET_SRC (x))) == 'c'
3124 || GET_RTX_CLASS (GET_CODE (SET_SRC (x))) == '<')
3125 && CONSTANT_P (XEXP (SET_SRC (x), 1))
3126 && (GET_RTX_CLASS (GET_CODE (XEXP (SET_SRC (x), 0))) == 'o'
3127 || (GET_CODE (XEXP (SET_SRC (x), 0)) == SUBREG
3128 && (GET_RTX_CLASS (GET_CODE (SUBREG_REG (XEXP (SET_SRC (x), 0))))
3129 == 'o'))))
3130 return &XEXP (SET_SRC (x), 1);
3131
3132 /* Finally, see if this is a simple operation with its first operand
3133 not in a register. The operation might require this operand in a
3134 register, so return it as a split point. We can always do this
3135 because if the first operand were another operation, we would have
3136 already found it as a split point. */
3137 if ((GET_RTX_CLASS (GET_CODE (SET_SRC (x))) == '2'
3138 || GET_RTX_CLASS (GET_CODE (SET_SRC (x))) == 'c'
3139 || GET_RTX_CLASS (GET_CODE (SET_SRC (x))) == '<'
3140 || GET_RTX_CLASS (GET_CODE (SET_SRC (x))) == '1')
3141 && ! register_operand (XEXP (SET_SRC (x), 0), VOIDmode))
3142 return &XEXP (SET_SRC (x), 0);
3143
3144 return 0;
3145
3146 case AND:
3147 case IOR:
3148 /* We write NOR as (and (not A) (not B)), but if we don't have a NOR,
3149 it is better to write this as (not (ior A B)) so we can split it.
3150 Similarly for IOR. */
3151 if (GET_CODE (XEXP (x, 0)) == NOT && GET_CODE (XEXP (x, 1)) == NOT)
3152 {
3153 SUBST (*loc,
3154 gen_rtx_combine (NOT, GET_MODE (x),
3155 gen_rtx_combine (code == IOR ? AND : IOR,
3156 GET_MODE (x),
3157 XEXP (XEXP (x, 0), 0),
3158 XEXP (XEXP (x, 1), 0))));
3159 return find_split_point (loc, insn);
3160 }
3161
3162 /* Many RISC machines have a large set of logical insns. If the
3163 second operand is a NOT, put it first so we will try to split the
3164 other operand first. */
3165 if (GET_CODE (XEXP (x, 1)) == NOT)
3166 {
3167 rtx tem = XEXP (x, 0);
3168 SUBST (XEXP (x, 0), XEXP (x, 1));
3169 SUBST (XEXP (x, 1), tem);
3170 }
3171 break;
3172
3173 default:
3174 break;
3175 }
3176
3177 /* Otherwise, select our actions depending on our rtx class. */
3178 switch (GET_RTX_CLASS (code))
3179 {
3180 case 'b': /* This is ZERO_EXTRACT and SIGN_EXTRACT. */
3181 case '3':
3182 split = find_split_point (&XEXP (x, 2), insn);
3183 if (split)
3184 return split;
3185 /* ... fall through ... */
3186 case '2':
3187 case 'c':
3188 case '<':
3189 split = find_split_point (&XEXP (x, 1), insn);
3190 if (split)
3191 return split;
3192 /* ... fall through ... */
3193 case '1':
3194 /* Some machines have (and (shift ...) ...) insns. If X is not
3195 an AND, but XEXP (X, 0) is, use it as our split point. */
3196 if (GET_CODE (x) != AND && GET_CODE (XEXP (x, 0)) == AND)
3197 return &XEXP (x, 0);
3198
3199 split = find_split_point (&XEXP (x, 0), insn);
3200 if (split)
3201 return split;
3202 return loc;
3203 }
3204
3205 /* Otherwise, we don't have a split point. */
3206 return 0;
3207 }
3208 \f
3209 /* Throughout X, replace FROM with TO, and return the result.
3210 The result is TO if X is FROM;
3211 otherwise the result is X, but its contents may have been modified.
3212 If they were modified, a record was made in undobuf so that
3213 undo_all will (among other things) return X to its original state.
3214
3215 If the number of changes necessary is too much to record to undo,
3216 the excess changes are not made, so the result is invalid.
3217 The changes already made can still be undone.
3218 undobuf.num_undo is incremented for such changes, so by testing that
3219 the caller can tell whether the result is valid.
3220
3221 `n_occurrences' is incremented each time FROM is replaced.
3222
3223 IN_DEST is non-zero if we are processing the SET_DEST of a SET.
3224
3225 UNIQUE_COPY is non-zero if each substitution must be unique. We do this
3226 by copying if `n_occurrences' is non-zero. */
3227
3228 static rtx
3229 subst (x, from, to, in_dest, unique_copy)
3230 register rtx x, from, to;
3231 int in_dest;
3232 int unique_copy;
3233 {
3234 register enum rtx_code code = GET_CODE (x);
3235 enum machine_mode op0_mode = VOIDmode;
3236 register const char *fmt;
3237 register int len, i;
3238 rtx new;
3239
3240 /* Two expressions are equal if they are identical copies of a shared
3241 RTX or if they are both registers with the same register number
3242 and mode. */
3243
3244 #define COMBINE_RTX_EQUAL_P(X,Y) \
3245 ((X) == (Y) \
3246 || (GET_CODE (X) == REG && GET_CODE (Y) == REG \
3247 && REGNO (X) == REGNO (Y) && GET_MODE (X) == GET_MODE (Y)))
3248
3249 if (! in_dest && COMBINE_RTX_EQUAL_P (x, from))
3250 {
3251 n_occurrences++;
3252 return (unique_copy && n_occurrences > 1 ? copy_rtx (to) : to);
3253 }
3254
3255 /* If X and FROM are the same register but different modes, they will
3256 not have been seen as equal above. However, flow.c will make a
3257 LOG_LINKS entry for that case. If we do nothing, we will try to
3258 rerecognize our original insn and, when it succeeds, we will
3259 delete the feeding insn, which is incorrect.
3260
3261 So force this insn not to match in this (rare) case. */
3262 if (! in_dest && code == REG && GET_CODE (from) == REG
3263 && REGNO (x) == REGNO (from))
3264 return gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
3265
3266 /* If this is an object, we are done unless it is a MEM or LO_SUM, both
3267 of which may contain things that can be combined. */
3268 if (code != MEM && code != LO_SUM && GET_RTX_CLASS (code) == 'o')
3269 return x;
3270
3271 /* It is possible to have a subexpression appear twice in the insn.
3272 Suppose that FROM is a register that appears within TO.
3273 Then, after that subexpression has been scanned once by `subst',
3274 the second time it is scanned, TO may be found. If we were
3275 to scan TO here, we would find FROM within it and create a
3276 self-referent rtl structure which is completely wrong. */
3277 if (COMBINE_RTX_EQUAL_P (x, to))
3278 return to;
3279
3280 /* Parallel asm_operands need special attention because all of the
3281 inputs are shared across the arms. Furthermore, unsharing the
3282 rtl results in recognition failures. Failure to handle this case
3283 specially can result in circular rtl.
3284
3285 Solve this by doing a normal pass across the first entry of the
3286 parallel, and only processing the SET_DESTs of the subsequent
3287 entries. Ug. */
3288
3289 if (code == PARALLEL
3290 && GET_CODE (XVECEXP (x, 0, 0)) == SET
3291 && GET_CODE (SET_SRC (XVECEXP (x, 0, 0))) == ASM_OPERANDS)
3292 {
3293 new = subst (XVECEXP (x, 0, 0), from, to, 0, unique_copy);
3294
3295 /* If this substitution failed, this whole thing fails. */
3296 if (GET_CODE (new) == CLOBBER
3297 && XEXP (new, 0) == const0_rtx)
3298 return new;
3299
3300 SUBST (XVECEXP (x, 0, 0), new);
3301
3302 for (i = XVECLEN (x, 0) - 1; i >= 1; i--)
3303 {
3304 rtx dest = SET_DEST (XVECEXP (x, 0, i));
3305
3306 if (GET_CODE (dest) != REG
3307 && GET_CODE (dest) != CC0
3308 && GET_CODE (dest) != PC)
3309 {
3310 new = subst (dest, from, to, 0, unique_copy);
3311
3312 /* If this substitution failed, this whole thing fails. */
3313 if (GET_CODE (new) == CLOBBER
3314 && XEXP (new, 0) == const0_rtx)
3315 return new;
3316
3317 SUBST (SET_DEST (XVECEXP (x, 0, i)), new);
3318 }
3319 }
3320 }
3321 else
3322 {
3323 len = GET_RTX_LENGTH (code);
3324 fmt = GET_RTX_FORMAT (code);
3325
3326 /* We don't need to process a SET_DEST that is a register, CC0,
3327 or PC, so set up to skip this common case. All other cases
3328 where we want to suppress replacing something inside a
3329 SET_SRC are handled via the IN_DEST operand. */
3330 if (code == SET
3331 && (GET_CODE (SET_DEST (x)) == REG
3332 || GET_CODE (SET_DEST (x)) == CC0
3333 || GET_CODE (SET_DEST (x)) == PC))
3334 fmt = "ie";
3335
3336 /* Get the mode of operand 0 in case X is now a SIGN_EXTEND of a
3337 constant. */
3338 if (fmt[0] == 'e')
3339 op0_mode = GET_MODE (XEXP (x, 0));
3340
3341 for (i = 0; i < len; i++)
3342 {
3343 if (fmt[i] == 'E')
3344 {
3345 register int j;
3346 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3347 {
3348 if (COMBINE_RTX_EQUAL_P (XVECEXP (x, i, j), from))
3349 {
3350 new = (unique_copy && n_occurrences
3351 ? copy_rtx (to) : to);
3352 n_occurrences++;
3353 }
3354 else
3355 {
3356 new = subst (XVECEXP (x, i, j), from, to, 0,
3357 unique_copy);
3358
3359 /* If this substitution failed, this whole thing
3360 fails. */
3361 if (GET_CODE (new) == CLOBBER
3362 && XEXP (new, 0) == const0_rtx)
3363 return new;
3364 }
3365
3366 SUBST (XVECEXP (x, i, j), new);
3367 }
3368 }
3369 else if (fmt[i] == 'e')
3370 {
3371 if (COMBINE_RTX_EQUAL_P (XEXP (x, i), from))
3372 {
3373 /* In general, don't install a subreg involving two
3374 modes not tieable. It can worsen register
3375 allocation, and can even make invalid reload
3376 insns, since the reg inside may need to be copied
3377 from in the outside mode, and that may be invalid
3378 if it is an fp reg copied in integer mode.
3379
3380 We allow two exceptions to this: It is valid if
3381 it is inside another SUBREG and the mode of that
3382 SUBREG and the mode of the inside of TO is
3383 tieable and it is valid if X is a SET that copies
3384 FROM to CC0. */
3385
3386 if (GET_CODE (to) == SUBREG
3387 && ! MODES_TIEABLE_P (GET_MODE (to),
3388 GET_MODE (SUBREG_REG (to)))
3389 && ! (code == SUBREG
3390 && MODES_TIEABLE_P (GET_MODE (x),
3391 GET_MODE (SUBREG_REG (to))))
3392 #ifdef HAVE_cc0
3393 && ! (code == SET && i == 1 && XEXP (x, 0) == cc0_rtx)
3394 #endif
3395 )
3396 return gen_rtx_CLOBBER (VOIDmode, const0_rtx);
3397
3398 #ifdef CLASS_CANNOT_CHANGE_MODE
3399 if (code == SUBREG
3400 && GET_CODE (to) == REG
3401 && REGNO (to) < FIRST_PSEUDO_REGISTER
3402 && (TEST_HARD_REG_BIT
3403 (reg_class_contents[(int) CLASS_CANNOT_CHANGE_MODE],
3404 REGNO (to)))
3405 && CLASS_CANNOT_CHANGE_MODE_P (GET_MODE (to),
3406 GET_MODE (x)))
3407 return gen_rtx_CLOBBER (VOIDmode, const0_rtx);
3408 #endif
3409
3410 new = (unique_copy && n_occurrences ? copy_rtx (to) : to);
3411 n_occurrences++;
3412 }
3413 else
3414 /* If we are in a SET_DEST, suppress most cases unless we
3415 have gone inside a MEM, in which case we want to
3416 simplify the address. We assume here that things that
3417 are actually part of the destination have their inner
3418 parts in the first expression. This is true for SUBREG,
3419 STRICT_LOW_PART, and ZERO_EXTRACT, which are the only
3420 things aside from REG and MEM that should appear in a
3421 SET_DEST. */
3422 new = subst (XEXP (x, i), from, to,
3423 (((in_dest
3424 && (code == SUBREG || code == STRICT_LOW_PART
3425 || code == ZERO_EXTRACT))
3426 || code == SET)
3427 && i == 0), unique_copy);
3428
3429 /* If we found that we will have to reject this combination,
3430 indicate that by returning the CLOBBER ourselves, rather than
3431 an expression containing it. This will speed things up as
3432 well as prevent accidents where two CLOBBERs are considered
3433 to be equal, thus producing an incorrect simplification. */
3434
3435 if (GET_CODE (new) == CLOBBER && XEXP (new, 0) == const0_rtx)
3436 return new;
3437
3438 SUBST (XEXP (x, i), new);
3439 }
3440 }
3441 }
3442
3443 /* Try to simplify X. If the simplification changed the code, it is likely
3444 that further simplification will help, so loop, but limit the number
3445 of repetitions that will be performed. */
3446
3447 for (i = 0; i < 4; i++)
3448 {
3449 /* If X is sufficiently simple, don't bother trying to do anything
3450 with it. */
3451 if (code != CONST_INT && code != REG && code != CLOBBER)
3452 x = combine_simplify_rtx (x, op0_mode, i == 3, in_dest);
3453
3454 if (GET_CODE (x) == code)
3455 break;
3456
3457 code = GET_CODE (x);
3458
3459 /* We no longer know the original mode of operand 0 since we
3460 have changed the form of X) */
3461 op0_mode = VOIDmode;
3462 }
3463
3464 return x;
3465 }
3466 \f
3467 /* Simplify X, a piece of RTL. We just operate on the expression at the
3468 outer level; call `subst' to simplify recursively. Return the new
3469 expression.
3470
3471 OP0_MODE is the original mode of XEXP (x, 0); LAST is nonzero if this
3472 will be the iteration even if an expression with a code different from
3473 X is returned; IN_DEST is nonzero if we are inside a SET_DEST. */
3474
3475 static rtx
3476 combine_simplify_rtx (x, op0_mode, last, in_dest)
3477 rtx x;
3478 enum machine_mode op0_mode;
3479 int last;
3480 int in_dest;
3481 {
3482 enum rtx_code code = GET_CODE (x);
3483 enum machine_mode mode = GET_MODE (x);
3484 rtx temp;
3485 int i;
3486
3487 /* If this is a commutative operation, put a constant last and a complex
3488 expression first. We don't need to do this for comparisons here. */
3489 if (GET_RTX_CLASS (code) == 'c'
3490 && ((CONSTANT_P (XEXP (x, 0)) && GET_CODE (XEXP (x, 1)) != CONST_INT)
3491 || (GET_RTX_CLASS (GET_CODE (XEXP (x, 0))) == 'o'
3492 && GET_RTX_CLASS (GET_CODE (XEXP (x, 1))) != 'o')
3493 || (GET_CODE (XEXP (x, 0)) == SUBREG
3494 && GET_RTX_CLASS (GET_CODE (SUBREG_REG (XEXP (x, 0)))) == 'o'
3495 && GET_RTX_CLASS (GET_CODE (XEXP (x, 1))) != 'o')))
3496 {
3497 temp = XEXP (x, 0);
3498 SUBST (XEXP (x, 0), XEXP (x, 1));
3499 SUBST (XEXP (x, 1), temp);
3500 }
3501
3502 /* If this is a PLUS, MINUS, or MULT, and the first operand is the
3503 sign extension of a PLUS with a constant, reverse the order of the sign
3504 extension and the addition. Note that this not the same as the original
3505 code, but overflow is undefined for signed values. Also note that the
3506 PLUS will have been partially moved "inside" the sign-extension, so that
3507 the first operand of X will really look like:
3508 (ashiftrt (plus (ashift A C4) C5) C4).
3509 We convert this to
3510 (plus (ashiftrt (ashift A C4) C2) C4)
3511 and replace the first operand of X with that expression. Later parts
3512 of this function may simplify the expression further.
3513
3514 For example, if we start with (mult (sign_extend (plus A C1)) C2),
3515 we swap the SIGN_EXTEND and PLUS. Later code will apply the
3516 distributive law to produce (plus (mult (sign_extend X) C1) C3).
3517
3518 We do this to simplify address expressions. */
3519
3520 if ((code == PLUS || code == MINUS || code == MULT)
3521 && GET_CODE (XEXP (x, 0)) == ASHIFTRT
3522 && GET_CODE (XEXP (XEXP (x, 0), 0)) == PLUS
3523 && GET_CODE (XEXP (XEXP (XEXP (x, 0), 0), 0)) == ASHIFT
3524 && GET_CODE (XEXP (XEXP (XEXP (XEXP (x, 0), 0), 0), 1)) == CONST_INT
3525 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
3526 && XEXP (XEXP (XEXP (XEXP (x, 0), 0), 0), 1) == XEXP (XEXP (x, 0), 1)
3527 && GET_CODE (XEXP (XEXP (XEXP (x, 0), 0), 1)) == CONST_INT
3528 && (temp = simplify_binary_operation (ASHIFTRT, mode,
3529 XEXP (XEXP (XEXP (x, 0), 0), 1),
3530 XEXP (XEXP (x, 0), 1))) != 0)
3531 {
3532 rtx new
3533 = simplify_shift_const (NULL_RTX, ASHIFT, mode,
3534 XEXP (XEXP (XEXP (XEXP (x, 0), 0), 0), 0),
3535 INTVAL (XEXP (XEXP (x, 0), 1)));
3536
3537 new = simplify_shift_const (NULL_RTX, ASHIFTRT, mode, new,
3538 INTVAL (XEXP (XEXP (x, 0), 1)));
3539
3540 SUBST (XEXP (x, 0), gen_binary (PLUS, mode, new, temp));
3541 }
3542
3543 /* If this is a simple operation applied to an IF_THEN_ELSE, try
3544 applying it to the arms of the IF_THEN_ELSE. This often simplifies
3545 things. Check for cases where both arms are testing the same
3546 condition.
3547
3548 Don't do anything if all operands are very simple. */
3549
3550 if (((GET_RTX_CLASS (code) == '2' || GET_RTX_CLASS (code) == 'c'
3551 || GET_RTX_CLASS (code) == '<')
3552 && ((GET_RTX_CLASS (GET_CODE (XEXP (x, 0))) != 'o'
3553 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
3554 && (GET_RTX_CLASS (GET_CODE (SUBREG_REG (XEXP (x, 0))))
3555 == 'o')))
3556 || (GET_RTX_CLASS (GET_CODE (XEXP (x, 1))) != 'o'
3557 && ! (GET_CODE (XEXP (x, 1)) == SUBREG
3558 && (GET_RTX_CLASS (GET_CODE (SUBREG_REG (XEXP (x, 1))))
3559 == 'o')))))
3560 || (GET_RTX_CLASS (code) == '1'
3561 && ((GET_RTX_CLASS (GET_CODE (XEXP (x, 0))) != 'o'
3562 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
3563 && (GET_RTX_CLASS (GET_CODE (SUBREG_REG (XEXP (x, 0))))
3564 == 'o'))))))
3565 {
3566 rtx cond, true, false;
3567
3568 cond = if_then_else_cond (x, &true, &false);
3569 if (cond != 0
3570 /* If everything is a comparison, what we have is highly unlikely
3571 to be simpler, so don't use it. */
3572 && ! (GET_RTX_CLASS (code) == '<'
3573 && (GET_RTX_CLASS (GET_CODE (true)) == '<'
3574 || GET_RTX_CLASS (GET_CODE (false)) == '<')))
3575 {
3576 rtx cop1 = const0_rtx;
3577 enum rtx_code cond_code = simplify_comparison (NE, &cond, &cop1);
3578
3579 if (cond_code == NE && GET_RTX_CLASS (GET_CODE (cond)) == '<')
3580 return x;
3581
3582 /* Simplify the alternative arms; this may collapse the true and
3583 false arms to store-flag values. */
3584 true = subst (true, pc_rtx, pc_rtx, 0, 0);
3585 false = subst (false, pc_rtx, pc_rtx, 0, 0);
3586
3587 /* If true and false are not general_operands, an if_then_else
3588 is unlikely to be simpler. */
3589 if (general_operand (true, VOIDmode)
3590 && general_operand (false, VOIDmode))
3591 {
3592 /* Restarting if we generate a store-flag expression will cause
3593 us to loop. Just drop through in this case. */
3594
3595 /* If the result values are STORE_FLAG_VALUE and zero, we can
3596 just make the comparison operation. */
3597 if (true == const_true_rtx && false == const0_rtx)
3598 x = gen_binary (cond_code, mode, cond, cop1);
3599 else if (true == const0_rtx && false == const_true_rtx)
3600 x = gen_binary (reverse_condition (cond_code),
3601 mode, cond, cop1);
3602
3603 /* Likewise, we can make the negate of a comparison operation
3604 if the result values are - STORE_FLAG_VALUE and zero. */
3605 else if (GET_CODE (true) == CONST_INT
3606 && INTVAL (true) == - STORE_FLAG_VALUE
3607 && false == const0_rtx)
3608 x = gen_unary (NEG, mode, mode,
3609 gen_binary (cond_code, mode, cond, cop1));
3610 else if (GET_CODE (false) == CONST_INT
3611 && INTVAL (false) == - STORE_FLAG_VALUE
3612 && true == const0_rtx)
3613 x = gen_unary (NEG, mode, mode,
3614 gen_binary (reverse_condition (cond_code),
3615 mode, cond, cop1));
3616 else
3617 return gen_rtx_IF_THEN_ELSE (mode,
3618 gen_binary (cond_code, VOIDmode,
3619 cond, cop1),
3620 true, false);
3621
3622 code = GET_CODE (x);
3623 op0_mode = VOIDmode;
3624 }
3625 }
3626 }
3627
3628 /* Try to fold this expression in case we have constants that weren't
3629 present before. */
3630 temp = 0;
3631 switch (GET_RTX_CLASS (code))
3632 {
3633 case '1':
3634 temp = simplify_unary_operation (code, mode, XEXP (x, 0), op0_mode);
3635 break;
3636 case '<':
3637 {
3638 enum machine_mode cmp_mode = GET_MODE (XEXP (x, 0));
3639 if (cmp_mode == VOIDmode)
3640 cmp_mode = GET_MODE (XEXP (x, 1));
3641 temp = simplify_relational_operation (code, cmp_mode,
3642 XEXP (x, 0), XEXP (x, 1));
3643 }
3644 #ifdef FLOAT_STORE_FLAG_VALUE
3645 if (temp != 0 && GET_MODE_CLASS (mode) == MODE_FLOAT)
3646 {
3647 if (temp == const0_rtx)
3648 temp = CONST0_RTX (mode);
3649 else
3650 temp = immed_real_const_1 (FLOAT_STORE_FLAG_VALUE (mode), mode);
3651 }
3652 #endif
3653 break;
3654 case 'c':
3655 case '2':
3656 temp = simplify_binary_operation (code, mode, XEXP (x, 0), XEXP (x, 1));
3657 break;
3658 case 'b':
3659 case '3':
3660 temp = simplify_ternary_operation (code, mode, op0_mode, XEXP (x, 0),
3661 XEXP (x, 1), XEXP (x, 2));
3662 break;
3663 }
3664
3665 if (temp)
3666 x = temp, code = GET_CODE (temp);
3667
3668 /* First see if we can apply the inverse distributive law. */
3669 if (code == PLUS || code == MINUS
3670 || code == AND || code == IOR || code == XOR)
3671 {
3672 x = apply_distributive_law (x);
3673 code = GET_CODE (x);
3674 }
3675
3676 /* If CODE is an associative operation not otherwise handled, see if we
3677 can associate some operands. This can win if they are constants or
3678 if they are logically related (i.e. (a & b) & a. */
3679 if ((code == PLUS || code == MINUS
3680 || code == MULT || code == AND || code == IOR || code == XOR
3681 || code == DIV || code == UDIV
3682 || code == SMAX || code == SMIN || code == UMAX || code == UMIN)
3683 && INTEGRAL_MODE_P (mode))
3684 {
3685 if (GET_CODE (XEXP (x, 0)) == code)
3686 {
3687 rtx other = XEXP (XEXP (x, 0), 0);
3688 rtx inner_op0 = XEXP (XEXP (x, 0), 1);
3689 rtx inner_op1 = XEXP (x, 1);
3690 rtx inner;
3691
3692 /* Make sure we pass the constant operand if any as the second
3693 one if this is a commutative operation. */
3694 if (CONSTANT_P (inner_op0) && GET_RTX_CLASS (code) == 'c')
3695 {
3696 rtx tem = inner_op0;
3697 inner_op0 = inner_op1;
3698 inner_op1 = tem;
3699 }
3700 inner = simplify_binary_operation (code == MINUS ? PLUS
3701 : code == DIV ? MULT
3702 : code == UDIV ? MULT
3703 : code,
3704 mode, inner_op0, inner_op1);
3705
3706 /* For commutative operations, try the other pair if that one
3707 didn't simplify. */
3708 if (inner == 0 && GET_RTX_CLASS (code) == 'c')
3709 {
3710 other = XEXP (XEXP (x, 0), 1);
3711 inner = simplify_binary_operation (code, mode,
3712 XEXP (XEXP (x, 0), 0),
3713 XEXP (x, 1));
3714 }
3715
3716 if (inner)
3717 return gen_binary (code, mode, other, inner);
3718 }
3719 }
3720
3721 /* A little bit of algebraic simplification here. */
3722 switch (code)
3723 {
3724 case MEM:
3725 /* Ensure that our address has any ASHIFTs converted to MULT in case
3726 address-recognizing predicates are called later. */
3727 temp = make_compound_operation (XEXP (x, 0), MEM);
3728 SUBST (XEXP (x, 0), temp);
3729 break;
3730
3731 case SUBREG:
3732 /* (subreg:A (mem:B X) N) becomes a modified MEM unless the SUBREG
3733 is paradoxical. If we can't do that safely, then it becomes
3734 something nonsensical so that this combination won't take place. */
3735
3736 if (GET_CODE (SUBREG_REG (x)) == MEM
3737 && (GET_MODE_SIZE (mode)
3738 <= GET_MODE_SIZE (GET_MODE (SUBREG_REG (x)))))
3739 {
3740 rtx inner = SUBREG_REG (x);
3741 int endian_offset = 0;
3742 /* Don't change the mode of the MEM
3743 if that would change the meaning of the address. */
3744 if (MEM_VOLATILE_P (SUBREG_REG (x))
3745 || mode_dependent_address_p (XEXP (inner, 0)))
3746 return gen_rtx_CLOBBER (mode, const0_rtx);
3747
3748 if (BYTES_BIG_ENDIAN)
3749 {
3750 if (GET_MODE_SIZE (mode) < UNITS_PER_WORD)
3751 endian_offset += UNITS_PER_WORD - GET_MODE_SIZE (mode);
3752 if (GET_MODE_SIZE (GET_MODE (inner)) < UNITS_PER_WORD)
3753 endian_offset -= (UNITS_PER_WORD
3754 - GET_MODE_SIZE (GET_MODE (inner)));
3755 }
3756 /* Note if the plus_constant doesn't make a valid address
3757 then this combination won't be accepted. */
3758 x = gen_rtx_MEM (mode,
3759 plus_constant (XEXP (inner, 0),
3760 (SUBREG_WORD (x) * UNITS_PER_WORD
3761 + endian_offset)));
3762 MEM_COPY_ATTRIBUTES (x, inner);
3763 return x;
3764 }
3765
3766 /* If we are in a SET_DEST, these other cases can't apply. */
3767 if (in_dest)
3768 return x;
3769
3770 /* Changing mode twice with SUBREG => just change it once,
3771 or not at all if changing back to starting mode. */
3772 if (GET_CODE (SUBREG_REG (x)) == SUBREG)
3773 {
3774 if (mode == GET_MODE (SUBREG_REG (SUBREG_REG (x)))
3775 && SUBREG_WORD (x) == 0 && SUBREG_WORD (SUBREG_REG (x)) == 0)
3776 return SUBREG_REG (SUBREG_REG (x));
3777
3778 SUBST_INT (SUBREG_WORD (x),
3779 SUBREG_WORD (x) + SUBREG_WORD (SUBREG_REG (x)));
3780 SUBST (SUBREG_REG (x), SUBREG_REG (SUBREG_REG (x)));
3781 }
3782
3783 /* SUBREG of a hard register => just change the register number
3784 and/or mode. If the hard register is not valid in that mode,
3785 suppress this combination. If the hard register is the stack,
3786 frame, or argument pointer, leave this as a SUBREG. */
3787
3788 if (GET_CODE (SUBREG_REG (x)) == REG
3789 && REGNO (SUBREG_REG (x)) < FIRST_PSEUDO_REGISTER
3790 && REGNO (SUBREG_REG (x)) != FRAME_POINTER_REGNUM
3791 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
3792 && REGNO (SUBREG_REG (x)) != HARD_FRAME_POINTER_REGNUM
3793 #endif
3794 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
3795 && REGNO (SUBREG_REG (x)) != ARG_POINTER_REGNUM
3796 #endif
3797 && REGNO (SUBREG_REG (x)) != STACK_POINTER_REGNUM)
3798 {
3799 if (HARD_REGNO_MODE_OK (REGNO (SUBREG_REG (x)) + SUBREG_WORD (x),
3800 mode))
3801 return gen_rtx_REG (mode,
3802 REGNO (SUBREG_REG (x)) + SUBREG_WORD (x));
3803 else
3804 return gen_rtx_CLOBBER (mode, const0_rtx);
3805 }
3806
3807 /* For a constant, try to pick up the part we want. Handle a full
3808 word and low-order part. Only do this if we are narrowing
3809 the constant; if it is being widened, we have no idea what
3810 the extra bits will have been set to. */
3811
3812 if (CONSTANT_P (SUBREG_REG (x)) && op0_mode != VOIDmode
3813 && GET_MODE_SIZE (mode) == UNITS_PER_WORD
3814 && GET_MODE_SIZE (op0_mode) > UNITS_PER_WORD
3815 && GET_MODE_CLASS (mode) == MODE_INT)
3816 {
3817 temp = operand_subword (SUBREG_REG (x), SUBREG_WORD (x),
3818 0, op0_mode);
3819 if (temp)
3820 return temp;
3821 }
3822
3823 /* If we want a subreg of a constant, at offset 0,
3824 take the low bits. On a little-endian machine, that's
3825 always valid. On a big-endian machine, it's valid
3826 only if the constant's mode fits in one word. Note that we
3827 cannot use subreg_lowpart_p since SUBREG_REG may be VOIDmode. */
3828 if (CONSTANT_P (SUBREG_REG (x))
3829 && ((GET_MODE_SIZE (op0_mode) <= UNITS_PER_WORD
3830 || ! WORDS_BIG_ENDIAN)
3831 ? SUBREG_WORD (x) == 0
3832 : (SUBREG_WORD (x)
3833 == ((GET_MODE_SIZE (op0_mode)
3834 - MAX (GET_MODE_SIZE (mode), UNITS_PER_WORD))
3835 / UNITS_PER_WORD)))
3836 && GET_MODE_SIZE (mode) <= GET_MODE_SIZE (op0_mode)
3837 && (! WORDS_BIG_ENDIAN
3838 || GET_MODE_BITSIZE (op0_mode) <= BITS_PER_WORD))
3839 return gen_lowpart_for_combine (mode, SUBREG_REG (x));
3840
3841 /* A paradoxical SUBREG of a VOIDmode constant is the same constant,
3842 since we are saying that the high bits don't matter. */
3843 if (CONSTANT_P (SUBREG_REG (x)) && GET_MODE (SUBREG_REG (x)) == VOIDmode
3844 && GET_MODE_SIZE (mode) > GET_MODE_SIZE (op0_mode))
3845 {
3846 if (GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))) > UNITS_PER_WORD
3847 && (WORDS_BIG_ENDIAN || SUBREG_WORD (x) != 0))
3848 return operand_subword (SUBREG_REG (x), SUBREG_WORD (x), 0, mode);
3849 return SUBREG_REG (x);
3850 }
3851
3852 /* Note that we cannot do any narrowing for non-constants since
3853 we might have been counting on using the fact that some bits were
3854 zero. We now do this in the SET. */
3855
3856 break;
3857
3858 case NOT:
3859 /* (not (plus X -1)) can become (neg X). */
3860 if (GET_CODE (XEXP (x, 0)) == PLUS
3861 && XEXP (XEXP (x, 0), 1) == constm1_rtx)
3862 return gen_rtx_combine (NEG, mode, XEXP (XEXP (x, 0), 0));
3863
3864 /* Similarly, (not (neg X)) is (plus X -1). */
3865 if (GET_CODE (XEXP (x, 0)) == NEG)
3866 return gen_rtx_combine (PLUS, mode, XEXP (XEXP (x, 0), 0),
3867 constm1_rtx);
3868
3869 /* (not (xor X C)) for C constant is (xor X D) with D = ~C. */
3870 if (GET_CODE (XEXP (x, 0)) == XOR
3871 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
3872 && (temp = simplify_unary_operation (NOT, mode,
3873 XEXP (XEXP (x, 0), 1),
3874 mode)) != 0)
3875 return gen_binary (XOR, mode, XEXP (XEXP (x, 0), 0), temp);
3876
3877 /* (not (ashift 1 X)) is (rotate ~1 X). We used to do this for operands
3878 other than 1, but that is not valid. We could do a similar
3879 simplification for (not (lshiftrt C X)) where C is just the sign bit,
3880 but this doesn't seem common enough to bother with. */
3881 if (GET_CODE (XEXP (x, 0)) == ASHIFT
3882 && XEXP (XEXP (x, 0), 0) == const1_rtx)
3883 return gen_rtx_ROTATE (mode, gen_unary (NOT, mode, mode, const1_rtx),
3884 XEXP (XEXP (x, 0), 1));
3885
3886 if (GET_CODE (XEXP (x, 0)) == SUBREG
3887 && subreg_lowpart_p (XEXP (x, 0))
3888 && (GET_MODE_SIZE (GET_MODE (XEXP (x, 0)))
3889 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (XEXP (x, 0)))))
3890 && GET_CODE (SUBREG_REG (XEXP (x, 0))) == ASHIFT
3891 && XEXP (SUBREG_REG (XEXP (x, 0)), 0) == const1_rtx)
3892 {
3893 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (XEXP (x, 0)));
3894
3895 x = gen_rtx_ROTATE (inner_mode,
3896 gen_unary (NOT, inner_mode, inner_mode,
3897 const1_rtx),
3898 XEXP (SUBREG_REG (XEXP (x, 0)), 1));
3899 return gen_lowpart_for_combine (mode, x);
3900 }
3901
3902 /* If STORE_FLAG_VALUE is -1, (not (comparison foo bar)) can be done by
3903 reversing the comparison code if valid. */
3904 if (STORE_FLAG_VALUE == -1
3905 && GET_RTX_CLASS (GET_CODE (XEXP (x, 0))) == '<'
3906 && reversible_comparison_p (XEXP (x, 0)))
3907 return gen_rtx_combine (reverse_condition (GET_CODE (XEXP (x, 0))),
3908 mode, XEXP (XEXP (x, 0), 0),
3909 XEXP (XEXP (x, 0), 1));
3910
3911 /* (ashiftrt foo C) where C is the number of bits in FOO minus 1
3912 is (lt foo (const_int 0)) if STORE_FLAG_VALUE is -1, so we can
3913 perform the above simplification. */
3914
3915 if (STORE_FLAG_VALUE == -1
3916 && GET_CODE (XEXP (x, 0)) == ASHIFTRT
3917 && XEXP (x, 1) == const1_rtx
3918 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
3919 && INTVAL (XEXP (XEXP (x, 0), 1)) == GET_MODE_BITSIZE (mode) - 1)
3920 return gen_rtx_combine (GE, mode, XEXP (XEXP (x, 0), 0), const0_rtx);
3921
3922 /* Apply De Morgan's laws to reduce number of patterns for machines
3923 with negating logical insns (and-not, nand, etc.). If result has
3924 only one NOT, put it first, since that is how the patterns are
3925 coded. */
3926
3927 if (GET_CODE (XEXP (x, 0)) == IOR || GET_CODE (XEXP (x, 0)) == AND)
3928 {
3929 rtx in1 = XEXP (XEXP (x, 0), 0), in2 = XEXP (XEXP (x, 0), 1);
3930
3931 if (GET_CODE (in1) == NOT)
3932 in1 = XEXP (in1, 0);
3933 else
3934 in1 = gen_rtx_combine (NOT, GET_MODE (in1), in1);
3935
3936 if (GET_CODE (in2) == NOT)
3937 in2 = XEXP (in2, 0);
3938 else if (GET_CODE (in2) == CONST_INT
3939 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
3940 in2 = GEN_INT (GET_MODE_MASK (mode) & ~INTVAL (in2));
3941 else
3942 in2 = gen_rtx_combine (NOT, GET_MODE (in2), in2);
3943
3944 if (GET_CODE (in2) == NOT)
3945 {
3946 rtx tem = in2;
3947 in2 = in1; in1 = tem;
3948 }
3949
3950 return gen_rtx_combine (GET_CODE (XEXP (x, 0)) == IOR ? AND : IOR,
3951 mode, in1, in2);
3952 }
3953 break;
3954
3955 case NEG:
3956 /* (neg (plus X 1)) can become (not X). */
3957 if (GET_CODE (XEXP (x, 0)) == PLUS
3958 && XEXP (XEXP (x, 0), 1) == const1_rtx)
3959 return gen_rtx_combine (NOT, mode, XEXP (XEXP (x, 0), 0));
3960
3961 /* Similarly, (neg (not X)) is (plus X 1). */
3962 if (GET_CODE (XEXP (x, 0)) == NOT)
3963 return plus_constant (XEXP (XEXP (x, 0), 0), 1);
3964
3965 /* (neg (minus X Y)) can become (minus Y X). */
3966 if (GET_CODE (XEXP (x, 0)) == MINUS
3967 && (! FLOAT_MODE_P (mode)
3968 /* x-y != -(y-x) with IEEE floating point. */
3969 || TARGET_FLOAT_FORMAT != IEEE_FLOAT_FORMAT
3970 || flag_fast_math))
3971 return gen_binary (MINUS, mode, XEXP (XEXP (x, 0), 1),
3972 XEXP (XEXP (x, 0), 0));
3973
3974 /* (neg (xor A 1)) is (plus A -1) if A is known to be either 0 or 1. */
3975 if (GET_CODE (XEXP (x, 0)) == XOR && XEXP (XEXP (x, 0), 1) == const1_rtx
3976 && nonzero_bits (XEXP (XEXP (x, 0), 0), mode) == 1)
3977 return gen_binary (PLUS, mode, XEXP (XEXP (x, 0), 0), constm1_rtx);
3978
3979 /* NEG commutes with ASHIFT since it is multiplication. Only do this
3980 if we can then eliminate the NEG (e.g.,
3981 if the operand is a constant). */
3982
3983 if (GET_CODE (XEXP (x, 0)) == ASHIFT)
3984 {
3985 temp = simplify_unary_operation (NEG, mode,
3986 XEXP (XEXP (x, 0), 0), mode);
3987 if (temp)
3988 {
3989 SUBST (XEXP (XEXP (x, 0), 0), temp);
3990 return XEXP (x, 0);
3991 }
3992 }
3993
3994 temp = expand_compound_operation (XEXP (x, 0));
3995
3996 /* For C equal to the width of MODE minus 1, (neg (ashiftrt X C)) can be
3997 replaced by (lshiftrt X C). This will convert
3998 (neg (sign_extract X 1 Y)) to (zero_extract X 1 Y). */
3999
4000 if (GET_CODE (temp) == ASHIFTRT
4001 && GET_CODE (XEXP (temp, 1)) == CONST_INT
4002 && INTVAL (XEXP (temp, 1)) == GET_MODE_BITSIZE (mode) - 1)
4003 return simplify_shift_const (temp, LSHIFTRT, mode, XEXP (temp, 0),
4004 INTVAL (XEXP (temp, 1)));
4005
4006 /* If X has only a single bit that might be nonzero, say, bit I, convert
4007 (neg X) to (ashiftrt (ashift X C-I) C-I) where C is the bitsize of
4008 MODE minus 1. This will convert (neg (zero_extract X 1 Y)) to
4009 (sign_extract X 1 Y). But only do this if TEMP isn't a register
4010 or a SUBREG of one since we'd be making the expression more
4011 complex if it was just a register. */
4012
4013 if (GET_CODE (temp) != REG
4014 && ! (GET_CODE (temp) == SUBREG
4015 && GET_CODE (SUBREG_REG (temp)) == REG)
4016 && (i = exact_log2 (nonzero_bits (temp, mode))) >= 0)
4017 {
4018 rtx temp1 = simplify_shift_const
4019 (NULL_RTX, ASHIFTRT, mode,
4020 simplify_shift_const (NULL_RTX, ASHIFT, mode, temp,
4021 GET_MODE_BITSIZE (mode) - 1 - i),
4022 GET_MODE_BITSIZE (mode) - 1 - i);
4023
4024 /* If all we did was surround TEMP with the two shifts, we
4025 haven't improved anything, so don't use it. Otherwise,
4026 we are better off with TEMP1. */
4027 if (GET_CODE (temp1) != ASHIFTRT
4028 || GET_CODE (XEXP (temp1, 0)) != ASHIFT
4029 || XEXP (XEXP (temp1, 0), 0) != temp)
4030 return temp1;
4031 }
4032 break;
4033
4034 case TRUNCATE:
4035 /* We can't handle truncation to a partial integer mode here
4036 because we don't know the real bitsize of the partial
4037 integer mode. */
4038 if (GET_MODE_CLASS (mode) == MODE_PARTIAL_INT)
4039 break;
4040
4041 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4042 && TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (mode),
4043 GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))))
4044 SUBST (XEXP (x, 0),
4045 force_to_mode (XEXP (x, 0), GET_MODE (XEXP (x, 0)),
4046 GET_MODE_MASK (mode), NULL_RTX, 0));
4047
4048 /* (truncate:SI ({sign,zero}_extend:DI foo:SI)) == foo:SI. */
4049 if ((GET_CODE (XEXP (x, 0)) == SIGN_EXTEND
4050 || GET_CODE (XEXP (x, 0)) == ZERO_EXTEND)
4051 && GET_MODE (XEXP (XEXP (x, 0), 0)) == mode)
4052 return XEXP (XEXP (x, 0), 0);
4053
4054 /* (truncate:SI (OP:DI ({sign,zero}_extend:DI foo:SI))) is
4055 (OP:SI foo:SI) if OP is NEG or ABS. */
4056 if ((GET_CODE (XEXP (x, 0)) == ABS
4057 || GET_CODE (XEXP (x, 0)) == NEG)
4058 && (GET_CODE (XEXP (XEXP (x, 0), 0)) == SIGN_EXTEND
4059 || GET_CODE (XEXP (XEXP (x, 0), 0)) == ZERO_EXTEND)
4060 && GET_MODE (XEXP (XEXP (XEXP (x, 0), 0), 0)) == mode)
4061 return gen_unary (GET_CODE (XEXP (x, 0)), mode, mode,
4062 XEXP (XEXP (XEXP (x, 0), 0), 0));
4063
4064 /* (truncate:SI (subreg:DI (truncate:SI X) 0)) is
4065 (truncate:SI x). */
4066 if (GET_CODE (XEXP (x, 0)) == SUBREG
4067 && GET_CODE (SUBREG_REG (XEXP (x, 0))) == TRUNCATE
4068 && subreg_lowpart_p (XEXP (x, 0)))
4069 return SUBREG_REG (XEXP (x, 0));
4070
4071 /* If we know that the value is already truncated, we can
4072 replace the TRUNCATE with a SUBREG if TRULY_NOOP_TRUNCATION
4073 is nonzero for the corresponding modes. But don't do this
4074 for an (LSHIFTRT (MULT ...)) since this will cause problems
4075 with the umulXi3_highpart patterns. */
4076 if (TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (mode),
4077 GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0))))
4078 && num_sign_bit_copies (XEXP (x, 0), GET_MODE (XEXP (x, 0)))
4079 >= GET_MODE_BITSIZE (mode) + 1
4080 && ! (GET_CODE (XEXP (x, 0)) == LSHIFTRT
4081 && GET_CODE (XEXP (XEXP (x, 0), 0)) == MULT))
4082 return gen_lowpart_for_combine (mode, XEXP (x, 0));
4083
4084 /* A truncate of a comparison can be replaced with a subreg if
4085 STORE_FLAG_VALUE permits. This is like the previous test,
4086 but it works even if the comparison is done in a mode larger
4087 than HOST_BITS_PER_WIDE_INT. */
4088 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4089 && GET_RTX_CLASS (GET_CODE (XEXP (x, 0))) == '<'
4090 && ((HOST_WIDE_INT) STORE_FLAG_VALUE & ~GET_MODE_MASK (mode)) == 0)
4091 return gen_lowpart_for_combine (mode, XEXP (x, 0));
4092
4093 /* Similarly, a truncate of a register whose value is a
4094 comparison can be replaced with a subreg if STORE_FLAG_VALUE
4095 permits. */
4096 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4097 && ((HOST_WIDE_INT) STORE_FLAG_VALUE & ~GET_MODE_MASK (mode)) == 0
4098 && (temp = get_last_value (XEXP (x, 0)))
4099 && GET_RTX_CLASS (GET_CODE (temp)) == '<')
4100 return gen_lowpart_for_combine (mode, XEXP (x, 0));
4101
4102 break;
4103
4104 case FLOAT_TRUNCATE:
4105 /* (float_truncate:SF (float_extend:DF foo:SF)) = foo:SF. */
4106 if (GET_CODE (XEXP (x, 0)) == FLOAT_EXTEND
4107 && GET_MODE (XEXP (XEXP (x, 0), 0)) == mode)
4108 return XEXP (XEXP (x, 0), 0);
4109
4110 /* (float_truncate:SF (OP:DF (float_extend:DF foo:sf))) is
4111 (OP:SF foo:SF) if OP is NEG or ABS. */
4112 if ((GET_CODE (XEXP (x, 0)) == ABS
4113 || GET_CODE (XEXP (x, 0)) == NEG)
4114 && GET_CODE (XEXP (XEXP (x, 0), 0)) == FLOAT_EXTEND
4115 && GET_MODE (XEXP (XEXP (XEXP (x, 0), 0), 0)) == mode)
4116 return gen_unary (GET_CODE (XEXP (x, 0)), mode, mode,
4117 XEXP (XEXP (XEXP (x, 0), 0), 0));
4118
4119 /* (float_truncate:SF (subreg:DF (float_truncate:SF X) 0))
4120 is (float_truncate:SF x). */
4121 if (GET_CODE (XEXP (x, 0)) == SUBREG
4122 && subreg_lowpart_p (XEXP (x, 0))
4123 && GET_CODE (SUBREG_REG (XEXP (x, 0))) == FLOAT_TRUNCATE)
4124 return SUBREG_REG (XEXP (x, 0));
4125 break;
4126
4127 #ifdef HAVE_cc0
4128 case COMPARE:
4129 /* Convert (compare FOO (const_int 0)) to FOO unless we aren't
4130 using cc0, in which case we want to leave it as a COMPARE
4131 so we can distinguish it from a register-register-copy. */
4132 if (XEXP (x, 1) == const0_rtx)
4133 return XEXP (x, 0);
4134
4135 /* In IEEE floating point, x-0 is not the same as x. */
4136 if ((TARGET_FLOAT_FORMAT != IEEE_FLOAT_FORMAT
4137 || ! FLOAT_MODE_P (GET_MODE (XEXP (x, 0)))
4138 || flag_fast_math)
4139 && XEXP (x, 1) == CONST0_RTX (GET_MODE (XEXP (x, 0))))
4140 return XEXP (x, 0);
4141 break;
4142 #endif
4143
4144 case CONST:
4145 /* (const (const X)) can become (const X). Do it this way rather than
4146 returning the inner CONST since CONST can be shared with a
4147 REG_EQUAL note. */
4148 if (GET_CODE (XEXP (x, 0)) == CONST)
4149 SUBST (XEXP (x, 0), XEXP (XEXP (x, 0), 0));
4150 break;
4151
4152 #ifdef HAVE_lo_sum
4153 case LO_SUM:
4154 /* Convert (lo_sum (high FOO) FOO) to FOO. This is necessary so we
4155 can add in an offset. find_split_point will split this address up
4156 again if it doesn't match. */
4157 if (GET_CODE (XEXP (x, 0)) == HIGH
4158 && rtx_equal_p (XEXP (XEXP (x, 0), 0), XEXP (x, 1)))
4159 return XEXP (x, 1);
4160 break;
4161 #endif
4162
4163 case PLUS:
4164 /* If we have (plus (plus (A const) B)), associate it so that CONST is
4165 outermost. That's because that's the way indexed addresses are
4166 supposed to appear. This code used to check many more cases, but
4167 they are now checked elsewhere. */
4168 if (GET_CODE (XEXP (x, 0)) == PLUS
4169 && CONSTANT_ADDRESS_P (XEXP (XEXP (x, 0), 1)))
4170 return gen_binary (PLUS, mode,
4171 gen_binary (PLUS, mode, XEXP (XEXP (x, 0), 0),
4172 XEXP (x, 1)),
4173 XEXP (XEXP (x, 0), 1));
4174
4175 /* (plus (xor (and <foo> (const_int pow2 - 1)) <c>) <-c>)
4176 when c is (const_int (pow2 + 1) / 2) is a sign extension of a
4177 bit-field and can be replaced by either a sign_extend or a
4178 sign_extract. The `and' may be a zero_extend and the two
4179 <c>, -<c> constants may be reversed. */
4180 if (GET_CODE (XEXP (x, 0)) == XOR
4181 && GET_CODE (XEXP (x, 1)) == CONST_INT
4182 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
4183 && INTVAL (XEXP (x, 1)) == -INTVAL (XEXP (XEXP (x, 0), 1))
4184 && ((i = exact_log2 (INTVAL (XEXP (XEXP (x, 0), 1)))) >= 0
4185 || (i = exact_log2 (INTVAL (XEXP (x, 1)))) >= 0)
4186 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4187 && ((GET_CODE (XEXP (XEXP (x, 0), 0)) == AND
4188 && GET_CODE (XEXP (XEXP (XEXP (x, 0), 0), 1)) == CONST_INT
4189 && (INTVAL (XEXP (XEXP (XEXP (x, 0), 0), 1))
4190 == ((HOST_WIDE_INT) 1 << (i + 1)) - 1))
4191 || (GET_CODE (XEXP (XEXP (x, 0), 0)) == ZERO_EXTEND
4192 && (GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (XEXP (x, 0), 0), 0)))
4193 == (unsigned int) i + 1))))
4194 return simplify_shift_const
4195 (NULL_RTX, ASHIFTRT, mode,
4196 simplify_shift_const (NULL_RTX, ASHIFT, mode,
4197 XEXP (XEXP (XEXP (x, 0), 0), 0),
4198 GET_MODE_BITSIZE (mode) - (i + 1)),
4199 GET_MODE_BITSIZE (mode) - (i + 1));
4200
4201 /* (plus (comparison A B) C) can become (neg (rev-comp A B)) if
4202 C is 1 and STORE_FLAG_VALUE is -1 or if C is -1 and STORE_FLAG_VALUE
4203 is 1. This produces better code than the alternative immediately
4204 below. */
4205 if (GET_RTX_CLASS (GET_CODE (XEXP (x, 0))) == '<'
4206 && reversible_comparison_p (XEXP (x, 0))
4207 && ((STORE_FLAG_VALUE == -1 && XEXP (x, 1) == const1_rtx)
4208 || (STORE_FLAG_VALUE == 1 && XEXP (x, 1) == constm1_rtx)))
4209 return
4210 gen_unary (NEG, mode, mode,
4211 gen_binary (reverse_condition (GET_CODE (XEXP (x, 0))),
4212 mode, XEXP (XEXP (x, 0), 0),
4213 XEXP (XEXP (x, 0), 1)));
4214
4215 /* If only the low-order bit of X is possibly nonzero, (plus x -1)
4216 can become (ashiftrt (ashift (xor x 1) C) C) where C is
4217 the bitsize of the mode - 1. This allows simplification of
4218 "a = (b & 8) == 0;" */
4219 if (XEXP (x, 1) == constm1_rtx
4220 && GET_CODE (XEXP (x, 0)) != REG
4221 && ! (GET_CODE (XEXP (x,0)) == SUBREG
4222 && GET_CODE (SUBREG_REG (XEXP (x, 0))) == REG)
4223 && nonzero_bits (XEXP (x, 0), mode) == 1)
4224 return simplify_shift_const (NULL_RTX, ASHIFTRT, mode,
4225 simplify_shift_const (NULL_RTX, ASHIFT, mode,
4226 gen_rtx_combine (XOR, mode,
4227 XEXP (x, 0), const1_rtx),
4228 GET_MODE_BITSIZE (mode) - 1),
4229 GET_MODE_BITSIZE (mode) - 1);
4230
4231 /* If we are adding two things that have no bits in common, convert
4232 the addition into an IOR. This will often be further simplified,
4233 for example in cases like ((a & 1) + (a & 2)), which can
4234 become a & 3. */
4235
4236 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4237 && (nonzero_bits (XEXP (x, 0), mode)
4238 & nonzero_bits (XEXP (x, 1), mode)) == 0)
4239 {
4240 /* Try to simplify the expression further. */
4241 rtx tor = gen_binary (IOR, mode, XEXP (x, 0), XEXP (x, 1));
4242 temp = combine_simplify_rtx (tor, mode, last, in_dest);
4243
4244 /* If we could, great. If not, do not go ahead with the IOR
4245 replacement, since PLUS appears in many special purpose
4246 address arithmetic instructions. */
4247 if (GET_CODE (temp) != CLOBBER && temp != tor)
4248 return temp;
4249 }
4250 break;
4251
4252 case MINUS:
4253 /* If STORE_FLAG_VALUE is 1, (minus 1 (comparison foo bar)) can be done
4254 by reversing the comparison code if valid. */
4255 if (STORE_FLAG_VALUE == 1
4256 && XEXP (x, 0) == const1_rtx
4257 && GET_RTX_CLASS (GET_CODE (XEXP (x, 1))) == '<'
4258 && reversible_comparison_p (XEXP (x, 1)))
4259 return gen_binary (reverse_condition (GET_CODE (XEXP (x, 1))), mode,
4260 XEXP (XEXP (x, 1), 0),
4261 XEXP (XEXP (x, 1), 1));
4262
4263 /* (minus <foo> (and <foo> (const_int -pow2))) becomes
4264 (and <foo> (const_int pow2-1)) */
4265 if (GET_CODE (XEXP (x, 1)) == AND
4266 && GET_CODE (XEXP (XEXP (x, 1), 1)) == CONST_INT
4267 && exact_log2 (-INTVAL (XEXP (XEXP (x, 1), 1))) >= 0
4268 && rtx_equal_p (XEXP (XEXP (x, 1), 0), XEXP (x, 0)))
4269 return simplify_and_const_int (NULL_RTX, mode, XEXP (x, 0),
4270 -INTVAL (XEXP (XEXP (x, 1), 1)) - 1);
4271
4272 /* Canonicalize (minus A (plus B C)) to (minus (minus A B) C) for
4273 integers. */
4274 if (GET_CODE (XEXP (x, 1)) == PLUS && INTEGRAL_MODE_P (mode))
4275 return gen_binary (MINUS, mode,
4276 gen_binary (MINUS, mode, XEXP (x, 0),
4277 XEXP (XEXP (x, 1), 0)),
4278 XEXP (XEXP (x, 1), 1));
4279 break;
4280
4281 case MULT:
4282 /* If we have (mult (plus A B) C), apply the distributive law and then
4283 the inverse distributive law to see if things simplify. This
4284 occurs mostly in addresses, often when unrolling loops. */
4285
4286 if (GET_CODE (XEXP (x, 0)) == PLUS)
4287 {
4288 x = apply_distributive_law
4289 (gen_binary (PLUS, mode,
4290 gen_binary (MULT, mode,
4291 XEXP (XEXP (x, 0), 0), XEXP (x, 1)),
4292 gen_binary (MULT, mode,
4293 XEXP (XEXP (x, 0), 1),
4294 copy_rtx (XEXP (x, 1)))));
4295
4296 if (GET_CODE (x) != MULT)
4297 return x;
4298 }
4299 break;
4300
4301 case UDIV:
4302 /* If this is a divide by a power of two, treat it as a shift if
4303 its first operand is a shift. */
4304 if (GET_CODE (XEXP (x, 1)) == CONST_INT
4305 && (i = exact_log2 (INTVAL (XEXP (x, 1)))) >= 0
4306 && (GET_CODE (XEXP (x, 0)) == ASHIFT
4307 || GET_CODE (XEXP (x, 0)) == LSHIFTRT
4308 || GET_CODE (XEXP (x, 0)) == ASHIFTRT
4309 || GET_CODE (XEXP (x, 0)) == ROTATE
4310 || GET_CODE (XEXP (x, 0)) == ROTATERT))
4311 return simplify_shift_const (NULL_RTX, LSHIFTRT, mode, XEXP (x, 0), i);
4312 break;
4313
4314 case EQ: case NE:
4315 case GT: case GTU: case GE: case GEU:
4316 case LT: case LTU: case LE: case LEU:
4317 /* If the first operand is a condition code, we can't do anything
4318 with it. */
4319 if (GET_CODE (XEXP (x, 0)) == COMPARE
4320 || (GET_MODE_CLASS (GET_MODE (XEXP (x, 0))) != MODE_CC
4321 #ifdef HAVE_cc0
4322 && XEXP (x, 0) != cc0_rtx
4323 #endif
4324 ))
4325 {
4326 rtx op0 = XEXP (x, 0);
4327 rtx op1 = XEXP (x, 1);
4328 enum rtx_code new_code;
4329
4330 if (GET_CODE (op0) == COMPARE)
4331 op1 = XEXP (op0, 1), op0 = XEXP (op0, 0);
4332
4333 /* Simplify our comparison, if possible. */
4334 new_code = simplify_comparison (code, &op0, &op1);
4335
4336 /* If STORE_FLAG_VALUE is 1, we can convert (ne x 0) to simply X
4337 if only the low-order bit is possibly nonzero in X (such as when
4338 X is a ZERO_EXTRACT of one bit). Similarly, we can convert EQ to
4339 (xor X 1) or (minus 1 X); we use the former. Finally, if X is
4340 known to be either 0 or -1, NE becomes a NEG and EQ becomes
4341 (plus X 1).
4342
4343 Remove any ZERO_EXTRACT we made when thinking this was a
4344 comparison. It may now be simpler to use, e.g., an AND. If a
4345 ZERO_EXTRACT is indeed appropriate, it will be placed back by
4346 the call to make_compound_operation in the SET case. */
4347
4348 if (STORE_FLAG_VALUE == 1
4349 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
4350 && op1 == const0_rtx && nonzero_bits (op0, mode) == 1)
4351 return gen_lowpart_for_combine (mode,
4352 expand_compound_operation (op0));
4353
4354 else if (STORE_FLAG_VALUE == 1
4355 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
4356 && op1 == const0_rtx
4357 && (num_sign_bit_copies (op0, mode)
4358 == GET_MODE_BITSIZE (mode)))
4359 {
4360 op0 = expand_compound_operation (op0);
4361 return gen_unary (NEG, mode, mode,
4362 gen_lowpart_for_combine (mode, op0));
4363 }
4364
4365 else if (STORE_FLAG_VALUE == 1
4366 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
4367 && op1 == const0_rtx
4368 && nonzero_bits (op0, mode) == 1)
4369 {
4370 op0 = expand_compound_operation (op0);
4371 return gen_binary (XOR, mode,
4372 gen_lowpart_for_combine (mode, op0),
4373 const1_rtx);
4374 }
4375
4376 else if (STORE_FLAG_VALUE == 1
4377 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
4378 && op1 == const0_rtx
4379 && (num_sign_bit_copies (op0, mode)
4380 == GET_MODE_BITSIZE (mode)))
4381 {
4382 op0 = expand_compound_operation (op0);
4383 return plus_constant (gen_lowpart_for_combine (mode, op0), 1);
4384 }
4385
4386 /* If STORE_FLAG_VALUE is -1, we have cases similar to
4387 those above. */
4388 if (STORE_FLAG_VALUE == -1
4389 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
4390 && op1 == const0_rtx
4391 && (num_sign_bit_copies (op0, mode)
4392 == GET_MODE_BITSIZE (mode)))
4393 return gen_lowpart_for_combine (mode,
4394 expand_compound_operation (op0));
4395
4396 else if (STORE_FLAG_VALUE == -1
4397 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
4398 && op1 == const0_rtx
4399 && nonzero_bits (op0, mode) == 1)
4400 {
4401 op0 = expand_compound_operation (op0);
4402 return gen_unary (NEG, mode, mode,
4403 gen_lowpart_for_combine (mode, op0));
4404 }
4405
4406 else if (STORE_FLAG_VALUE == -1
4407 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
4408 && op1 == const0_rtx
4409 && (num_sign_bit_copies (op0, mode)
4410 == GET_MODE_BITSIZE (mode)))
4411 {
4412 op0 = expand_compound_operation (op0);
4413 return gen_unary (NOT, mode, mode,
4414 gen_lowpart_for_combine (mode, op0));
4415 }
4416
4417 /* If X is 0/1, (eq X 0) is X-1. */
4418 else if (STORE_FLAG_VALUE == -1
4419 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
4420 && op1 == const0_rtx
4421 && nonzero_bits (op0, mode) == 1)
4422 {
4423 op0 = expand_compound_operation (op0);
4424 return plus_constant (gen_lowpart_for_combine (mode, op0), -1);
4425 }
4426
4427 /* If STORE_FLAG_VALUE says to just test the sign bit and X has just
4428 one bit that might be nonzero, we can convert (ne x 0) to
4429 (ashift x c) where C puts the bit in the sign bit. Remove any
4430 AND with STORE_FLAG_VALUE when we are done, since we are only
4431 going to test the sign bit. */
4432 if (new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
4433 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4434 && ((STORE_FLAG_VALUE & GET_MODE_MASK (mode))
4435 == (unsigned HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE(mode)-1))
4436 && op1 == const0_rtx
4437 && mode == GET_MODE (op0)
4438 && (i = exact_log2 (nonzero_bits (op0, mode))) >= 0)
4439 {
4440 x = simplify_shift_const (NULL_RTX, ASHIFT, mode,
4441 expand_compound_operation (op0),
4442 GET_MODE_BITSIZE (mode) - 1 - i);
4443 if (GET_CODE (x) == AND && XEXP (x, 1) == const_true_rtx)
4444 return XEXP (x, 0);
4445 else
4446 return x;
4447 }
4448
4449 /* If the code changed, return a whole new comparison. */
4450 if (new_code != code)
4451 return gen_rtx_combine (new_code, mode, op0, op1);
4452
4453 /* Otherwise, keep this operation, but maybe change its operands.
4454 This also converts (ne (compare FOO BAR) 0) to (ne FOO BAR). */
4455 SUBST (XEXP (x, 0), op0);
4456 SUBST (XEXP (x, 1), op1);
4457 }
4458 break;
4459
4460 case IF_THEN_ELSE:
4461 return simplify_if_then_else (x);
4462
4463 case ZERO_EXTRACT:
4464 case SIGN_EXTRACT:
4465 case ZERO_EXTEND:
4466 case SIGN_EXTEND:
4467 /* If we are processing SET_DEST, we are done. */
4468 if (in_dest)
4469 return x;
4470
4471 return expand_compound_operation (x);
4472
4473 case SET:
4474 return simplify_set (x);
4475
4476 case AND:
4477 case IOR:
4478 case XOR:
4479 return simplify_logical (x, last);
4480
4481 case ABS:
4482 /* (abs (neg <foo>)) -> (abs <foo>) */
4483 if (GET_CODE (XEXP (x, 0)) == NEG)
4484 SUBST (XEXP (x, 0), XEXP (XEXP (x, 0), 0));
4485
4486 /* If the mode of the operand is VOIDmode (i.e. if it is ASM_OPERANDS),
4487 do nothing. */
4488 if (GET_MODE (XEXP (x, 0)) == VOIDmode)
4489 break;
4490
4491 /* If operand is something known to be positive, ignore the ABS. */
4492 if (GET_CODE (XEXP (x, 0)) == FFS || GET_CODE (XEXP (x, 0)) == ABS
4493 || ((GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))
4494 <= HOST_BITS_PER_WIDE_INT)
4495 && ((nonzero_bits (XEXP (x, 0), GET_MODE (XEXP (x, 0)))
4496 & ((HOST_WIDE_INT) 1
4497 << (GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0))) - 1)))
4498 == 0)))
4499 return XEXP (x, 0);
4500
4501 /* If operand is known to be only -1 or 0, convert ABS to NEG. */
4502 if (num_sign_bit_copies (XEXP (x, 0), mode) == GET_MODE_BITSIZE (mode))
4503 return gen_rtx_combine (NEG, mode, XEXP (x, 0));
4504
4505 break;
4506
4507 case FFS:
4508 /* (ffs (*_extend <X>)) = (ffs <X>) */
4509 if (GET_CODE (XEXP (x, 0)) == SIGN_EXTEND
4510 || GET_CODE (XEXP (x, 0)) == ZERO_EXTEND)
4511 SUBST (XEXP (x, 0), XEXP (XEXP (x, 0), 0));
4512 break;
4513
4514 case FLOAT:
4515 /* (float (sign_extend <X>)) = (float <X>). */
4516 if (GET_CODE (XEXP (x, 0)) == SIGN_EXTEND)
4517 SUBST (XEXP (x, 0), XEXP (XEXP (x, 0), 0));
4518 break;
4519
4520 case ASHIFT:
4521 case LSHIFTRT:
4522 case ASHIFTRT:
4523 case ROTATE:
4524 case ROTATERT:
4525 /* If this is a shift by a constant amount, simplify it. */
4526 if (GET_CODE (XEXP (x, 1)) == CONST_INT)
4527 return simplify_shift_const (x, code, mode, XEXP (x, 0),
4528 INTVAL (XEXP (x, 1)));
4529
4530 #ifdef SHIFT_COUNT_TRUNCATED
4531 else if (SHIFT_COUNT_TRUNCATED && GET_CODE (XEXP (x, 1)) != REG)
4532 SUBST (XEXP (x, 1),
4533 force_to_mode (XEXP (x, 1), GET_MODE (x),
4534 ((HOST_WIDE_INT) 1
4535 << exact_log2 (GET_MODE_BITSIZE (GET_MODE (x))))
4536 - 1,
4537 NULL_RTX, 0));
4538 #endif
4539
4540 break;
4541
4542 default:
4543 break;
4544 }
4545
4546 return x;
4547 }
4548 \f
4549 /* Simplify X, an IF_THEN_ELSE expression. Return the new expression. */
4550
4551 static rtx
4552 simplify_if_then_else (x)
4553 rtx x;
4554 {
4555 enum machine_mode mode = GET_MODE (x);
4556 rtx cond = XEXP (x, 0);
4557 rtx true = XEXP (x, 1);
4558 rtx false = XEXP (x, 2);
4559 enum rtx_code true_code = GET_CODE (cond);
4560 int comparison_p = GET_RTX_CLASS (true_code) == '<';
4561 rtx temp;
4562 int i;
4563
4564 /* Simplify storing of the truth value. */
4565 if (comparison_p && true == const_true_rtx && false == const0_rtx)
4566 return gen_binary (true_code, mode, XEXP (cond, 0), XEXP (cond, 1));
4567
4568 /* Also when the truth value has to be reversed. */
4569 if (comparison_p && reversible_comparison_p (cond)
4570 && true == const0_rtx && false == const_true_rtx)
4571 return gen_binary (reverse_condition (true_code),
4572 mode, XEXP (cond, 0), XEXP (cond, 1));
4573
4574 /* Sometimes we can simplify the arm of an IF_THEN_ELSE if a register used
4575 in it is being compared against certain values. Get the true and false
4576 comparisons and see if that says anything about the value of each arm. */
4577
4578 if (comparison_p && reversible_comparison_p (cond)
4579 && GET_CODE (XEXP (cond, 0)) == REG)
4580 {
4581 HOST_WIDE_INT nzb;
4582 rtx from = XEXP (cond, 0);
4583 enum rtx_code false_code = reverse_condition (true_code);
4584 rtx true_val = XEXP (cond, 1);
4585 rtx false_val = true_val;
4586 int swapped = 0;
4587
4588 /* If FALSE_CODE is EQ, swap the codes and arms. */
4589
4590 if (false_code == EQ)
4591 {
4592 swapped = 1, true_code = EQ, false_code = NE;
4593 temp = true, true = false, false = temp;
4594 }
4595
4596 /* If we are comparing against zero and the expression being tested has
4597 only a single bit that might be nonzero, that is its value when it is
4598 not equal to zero. Similarly if it is known to be -1 or 0. */
4599
4600 if (true_code == EQ && true_val == const0_rtx
4601 && exact_log2 (nzb = nonzero_bits (from, GET_MODE (from))) >= 0)
4602 false_code = EQ, false_val = GEN_INT (nzb);
4603 else if (true_code == EQ && true_val == const0_rtx
4604 && (num_sign_bit_copies (from, GET_MODE (from))
4605 == GET_MODE_BITSIZE (GET_MODE (from))))
4606 false_code = EQ, false_val = constm1_rtx;
4607
4608 /* Now simplify an arm if we know the value of the register in the
4609 branch and it is used in the arm. Be careful due to the potential
4610 of locally-shared RTL. */
4611
4612 if (reg_mentioned_p (from, true))
4613 true = subst (known_cond (copy_rtx (true), true_code, from, true_val),
4614 pc_rtx, pc_rtx, 0, 0);
4615 if (reg_mentioned_p (from, false))
4616 false = subst (known_cond (copy_rtx (false), false_code,
4617 from, false_val),
4618 pc_rtx, pc_rtx, 0, 0);
4619
4620 SUBST (XEXP (x, 1), swapped ? false : true);
4621 SUBST (XEXP (x, 2), swapped ? true : false);
4622
4623 true = XEXP (x, 1), false = XEXP (x, 2), true_code = GET_CODE (cond);
4624 }
4625
4626 /* If we have (if_then_else FOO (pc) (label_ref BAR)) and FOO can be
4627 reversed, do so to avoid needing two sets of patterns for
4628 subtract-and-branch insns. Similarly if we have a constant in the true
4629 arm, the false arm is the same as the first operand of the comparison, or
4630 the false arm is more complicated than the true arm. */
4631
4632 if (comparison_p && reversible_comparison_p (cond)
4633 && (true == pc_rtx
4634 || (CONSTANT_P (true)
4635 && GET_CODE (false) != CONST_INT && false != pc_rtx)
4636 || true == const0_rtx
4637 || (GET_RTX_CLASS (GET_CODE (true)) == 'o'
4638 && GET_RTX_CLASS (GET_CODE (false)) != 'o')
4639 || (GET_CODE (true) == SUBREG
4640 && GET_RTX_CLASS (GET_CODE (SUBREG_REG (true))) == 'o'
4641 && GET_RTX_CLASS (GET_CODE (false)) != 'o')
4642 || reg_mentioned_p (true, false)
4643 || rtx_equal_p (false, XEXP (cond, 0))))
4644 {
4645 true_code = reverse_condition (true_code);
4646 SUBST (XEXP (x, 0),
4647 gen_binary (true_code, GET_MODE (cond), XEXP (cond, 0),
4648 XEXP (cond, 1)));
4649
4650 SUBST (XEXP (x, 1), false);
4651 SUBST (XEXP (x, 2), true);
4652
4653 temp = true, true = false, false = temp, cond = XEXP (x, 0);
4654
4655 /* It is possible that the conditional has been simplified out. */
4656 true_code = GET_CODE (cond);
4657 comparison_p = GET_RTX_CLASS (true_code) == '<';
4658 }
4659
4660 /* If the two arms are identical, we don't need the comparison. */
4661
4662 if (rtx_equal_p (true, false) && ! side_effects_p (cond))
4663 return true;
4664
4665 /* Convert a == b ? b : a to "a". */
4666 if (true_code == EQ && ! side_effects_p (cond)
4667 && rtx_equal_p (XEXP (cond, 0), false)
4668 && rtx_equal_p (XEXP (cond, 1), true))
4669 return false;
4670 else if (true_code == NE && ! side_effects_p (cond)
4671 && rtx_equal_p (XEXP (cond, 0), true)
4672 && rtx_equal_p (XEXP (cond, 1), false))
4673 return true;
4674
4675 /* Look for cases where we have (abs x) or (neg (abs X)). */
4676
4677 if (GET_MODE_CLASS (mode) == MODE_INT
4678 && GET_CODE (false) == NEG
4679 && rtx_equal_p (true, XEXP (false, 0))
4680 && comparison_p
4681 && rtx_equal_p (true, XEXP (cond, 0))
4682 && ! side_effects_p (true))
4683 switch (true_code)
4684 {
4685 case GT:
4686 case GE:
4687 return gen_unary (ABS, mode, mode, true);
4688 case LT:
4689 case LE:
4690 return gen_unary (NEG, mode, mode, gen_unary (ABS, mode, mode, true));
4691 default:
4692 break;
4693 }
4694
4695 /* Look for MIN or MAX. */
4696
4697 if ((! FLOAT_MODE_P (mode) || flag_fast_math)
4698 && comparison_p
4699 && rtx_equal_p (XEXP (cond, 0), true)
4700 && rtx_equal_p (XEXP (cond, 1), false)
4701 && ! side_effects_p (cond))
4702 switch (true_code)
4703 {
4704 case GE:
4705 case GT:
4706 return gen_binary (SMAX, mode, true, false);
4707 case LE:
4708 case LT:
4709 return gen_binary (SMIN, mode, true, false);
4710 case GEU:
4711 case GTU:
4712 return gen_binary (UMAX, mode, true, false);
4713 case LEU:
4714 case LTU:
4715 return gen_binary (UMIN, mode, true, false);
4716 default:
4717 break;
4718 }
4719
4720 /* If we have (if_then_else COND (OP Z C1) Z) and OP is an identity when its
4721 second operand is zero, this can be done as (OP Z (mult COND C2)) where
4722 C2 = C1 * STORE_FLAG_VALUE. Similarly if OP has an outer ZERO_EXTEND or
4723 SIGN_EXTEND as long as Z is already extended (so we don't destroy it).
4724 We can do this kind of thing in some cases when STORE_FLAG_VALUE is
4725 neither 1 or -1, but it isn't worth checking for. */
4726
4727 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
4728 && comparison_p && mode != VOIDmode && ! side_effects_p (x))
4729 {
4730 rtx t = make_compound_operation (true, SET);
4731 rtx f = make_compound_operation (false, SET);
4732 rtx cond_op0 = XEXP (cond, 0);
4733 rtx cond_op1 = XEXP (cond, 1);
4734 enum rtx_code op = NIL, extend_op = NIL;
4735 enum machine_mode m = mode;
4736 rtx z = 0, c1 = NULL_RTX;
4737
4738 if ((GET_CODE (t) == PLUS || GET_CODE (t) == MINUS
4739 || GET_CODE (t) == IOR || GET_CODE (t) == XOR
4740 || GET_CODE (t) == ASHIFT
4741 || GET_CODE (t) == LSHIFTRT || GET_CODE (t) == ASHIFTRT)
4742 && rtx_equal_p (XEXP (t, 0), f))
4743 c1 = XEXP (t, 1), op = GET_CODE (t), z = f;
4744
4745 /* If an identity-zero op is commutative, check whether there
4746 would be a match if we swapped the operands. */
4747 else if ((GET_CODE (t) == PLUS || GET_CODE (t) == IOR
4748 || GET_CODE (t) == XOR)
4749 && rtx_equal_p (XEXP (t, 1), f))
4750 c1 = XEXP (t, 0), op = GET_CODE (t), z = f;
4751 else if (GET_CODE (t) == SIGN_EXTEND
4752 && (GET_CODE (XEXP (t, 0)) == PLUS
4753 || GET_CODE (XEXP (t, 0)) == MINUS
4754 || GET_CODE (XEXP (t, 0)) == IOR
4755 || GET_CODE (XEXP (t, 0)) == XOR
4756 || GET_CODE (XEXP (t, 0)) == ASHIFT
4757 || GET_CODE (XEXP (t, 0)) == LSHIFTRT
4758 || GET_CODE (XEXP (t, 0)) == ASHIFTRT)
4759 && GET_CODE (XEXP (XEXP (t, 0), 0)) == SUBREG
4760 && subreg_lowpart_p (XEXP (XEXP (t, 0), 0))
4761 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 0)), f)
4762 && (num_sign_bit_copies (f, GET_MODE (f))
4763 > (GET_MODE_BITSIZE (mode)
4764 - GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (t, 0), 0))))))
4765 {
4766 c1 = XEXP (XEXP (t, 0), 1); z = f; op = GET_CODE (XEXP (t, 0));
4767 extend_op = SIGN_EXTEND;
4768 m = GET_MODE (XEXP (t, 0));
4769 }
4770 else if (GET_CODE (t) == SIGN_EXTEND
4771 && (GET_CODE (XEXP (t, 0)) == PLUS
4772 || GET_CODE (XEXP (t, 0)) == IOR
4773 || GET_CODE (XEXP (t, 0)) == XOR)
4774 && GET_CODE (XEXP (XEXP (t, 0), 1)) == SUBREG
4775 && subreg_lowpart_p (XEXP (XEXP (t, 0), 1))
4776 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 1)), f)
4777 && (num_sign_bit_copies (f, GET_MODE (f))
4778 > (GET_MODE_BITSIZE (mode)
4779 - GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (t, 0), 1))))))
4780 {
4781 c1 = XEXP (XEXP (t, 0), 0); z = f; op = GET_CODE (XEXP (t, 0));
4782 extend_op = SIGN_EXTEND;
4783 m = GET_MODE (XEXP (t, 0));
4784 }
4785 else if (GET_CODE (t) == ZERO_EXTEND
4786 && (GET_CODE (XEXP (t, 0)) == PLUS
4787 || GET_CODE (XEXP (t, 0)) == MINUS
4788 || GET_CODE (XEXP (t, 0)) == IOR
4789 || GET_CODE (XEXP (t, 0)) == XOR
4790 || GET_CODE (XEXP (t, 0)) == ASHIFT
4791 || GET_CODE (XEXP (t, 0)) == LSHIFTRT
4792 || GET_CODE (XEXP (t, 0)) == ASHIFTRT)
4793 && GET_CODE (XEXP (XEXP (t, 0), 0)) == SUBREG
4794 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4795 && subreg_lowpart_p (XEXP (XEXP (t, 0), 0))
4796 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 0)), f)
4797 && ((nonzero_bits (f, GET_MODE (f))
4798 & ~GET_MODE_MASK (GET_MODE (XEXP (XEXP (t, 0), 0))))
4799 == 0))
4800 {
4801 c1 = XEXP (XEXP (t, 0), 1); z = f; op = GET_CODE (XEXP (t, 0));
4802 extend_op = ZERO_EXTEND;
4803 m = GET_MODE (XEXP (t, 0));
4804 }
4805 else if (GET_CODE (t) == ZERO_EXTEND
4806 && (GET_CODE (XEXP (t, 0)) == PLUS
4807 || GET_CODE (XEXP (t, 0)) == IOR
4808 || GET_CODE (XEXP (t, 0)) == XOR)
4809 && GET_CODE (XEXP (XEXP (t, 0), 1)) == SUBREG
4810 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4811 && subreg_lowpart_p (XEXP (XEXP (t, 0), 1))
4812 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 1)), f)
4813 && ((nonzero_bits (f, GET_MODE (f))
4814 & ~GET_MODE_MASK (GET_MODE (XEXP (XEXP (t, 0), 1))))
4815 == 0))
4816 {
4817 c1 = XEXP (XEXP (t, 0), 0); z = f; op = GET_CODE (XEXP (t, 0));
4818 extend_op = ZERO_EXTEND;
4819 m = GET_MODE (XEXP (t, 0));
4820 }
4821
4822 if (z)
4823 {
4824 temp = subst (gen_binary (true_code, m, cond_op0, cond_op1),
4825 pc_rtx, pc_rtx, 0, 0);
4826 temp = gen_binary (MULT, m, temp,
4827 gen_binary (MULT, m, c1, const_true_rtx));
4828 temp = subst (temp, pc_rtx, pc_rtx, 0, 0);
4829 temp = gen_binary (op, m, gen_lowpart_for_combine (m, z), temp);
4830
4831 if (extend_op != NIL)
4832 temp = gen_unary (extend_op, mode, m, temp);
4833
4834 return temp;
4835 }
4836 }
4837
4838 /* If we have (if_then_else (ne A 0) C1 0) and either A is known to be 0 or
4839 1 and C1 is a single bit or A is known to be 0 or -1 and C1 is the
4840 negation of a single bit, we can convert this operation to a shift. We
4841 can actually do this more generally, but it doesn't seem worth it. */
4842
4843 if (true_code == NE && XEXP (cond, 1) == const0_rtx
4844 && false == const0_rtx && GET_CODE (true) == CONST_INT
4845 && ((1 == nonzero_bits (XEXP (cond, 0), mode)
4846 && (i = exact_log2 (INTVAL (true))) >= 0)
4847 || ((num_sign_bit_copies (XEXP (cond, 0), mode)
4848 == GET_MODE_BITSIZE (mode))
4849 && (i = exact_log2 (-INTVAL (true))) >= 0)))
4850 return
4851 simplify_shift_const (NULL_RTX, ASHIFT, mode,
4852 gen_lowpart_for_combine (mode, XEXP (cond, 0)), i);
4853
4854 return x;
4855 }
4856 \f
4857 /* Simplify X, a SET expression. Return the new expression. */
4858
4859 static rtx
4860 simplify_set (x)
4861 rtx x;
4862 {
4863 rtx src = SET_SRC (x);
4864 rtx dest = SET_DEST (x);
4865 enum machine_mode mode
4866 = GET_MODE (src) != VOIDmode ? GET_MODE (src) : GET_MODE (dest);
4867 rtx other_insn;
4868 rtx *cc_use;
4869
4870 /* (set (pc) (return)) gets written as (return). */
4871 if (GET_CODE (dest) == PC && GET_CODE (src) == RETURN)
4872 return src;
4873
4874 /* Now that we know for sure which bits of SRC we are using, see if we can
4875 simplify the expression for the object knowing that we only need the
4876 low-order bits. */
4877
4878 if (GET_MODE_CLASS (mode) == MODE_INT)
4879 {
4880 src = force_to_mode (src, mode, ~(HOST_WIDE_INT) 0, NULL_RTX, 0);
4881 SUBST (SET_SRC (x), src);
4882 }
4883
4884 /* If we are setting CC0 or if the source is a COMPARE, look for the use of
4885 the comparison result and try to simplify it unless we already have used
4886 undobuf.other_insn. */
4887 if ((GET_CODE (src) == COMPARE
4888 #ifdef HAVE_cc0
4889 || dest == cc0_rtx
4890 #endif
4891 )
4892 && (cc_use = find_single_use (dest, subst_insn, &other_insn)) != 0
4893 && (undobuf.other_insn == 0 || other_insn == undobuf.other_insn)
4894 && GET_RTX_CLASS (GET_CODE (*cc_use)) == '<'
4895 && rtx_equal_p (XEXP (*cc_use, 0), dest))
4896 {
4897 enum rtx_code old_code = GET_CODE (*cc_use);
4898 enum rtx_code new_code;
4899 rtx op0, op1;
4900 int other_changed = 0;
4901 enum machine_mode compare_mode = GET_MODE (dest);
4902
4903 if (GET_CODE (src) == COMPARE)
4904 op0 = XEXP (src, 0), op1 = XEXP (src, 1);
4905 else
4906 op0 = src, op1 = const0_rtx;
4907
4908 /* Simplify our comparison, if possible. */
4909 new_code = simplify_comparison (old_code, &op0, &op1);
4910
4911 #ifdef EXTRA_CC_MODES
4912 /* If this machine has CC modes other than CCmode, check to see if we
4913 need to use a different CC mode here. */
4914 compare_mode = SELECT_CC_MODE (new_code, op0, op1);
4915 #endif /* EXTRA_CC_MODES */
4916
4917 #if !defined (HAVE_cc0) && defined (EXTRA_CC_MODES)
4918 /* If the mode changed, we have to change SET_DEST, the mode in the
4919 compare, and the mode in the place SET_DEST is used. If SET_DEST is
4920 a hard register, just build new versions with the proper mode. If it
4921 is a pseudo, we lose unless it is only time we set the pseudo, in
4922 which case we can safely change its mode. */
4923 if (compare_mode != GET_MODE (dest))
4924 {
4925 unsigned int regno = REGNO (dest);
4926 rtx new_dest = gen_rtx_REG (compare_mode, regno);
4927
4928 if (regno < FIRST_PSEUDO_REGISTER
4929 || (REG_N_SETS (regno) == 1 && ! REG_USERVAR_P (dest)))
4930 {
4931 if (regno >= FIRST_PSEUDO_REGISTER)
4932 SUBST (regno_reg_rtx[regno], new_dest);
4933
4934 SUBST (SET_DEST (x), new_dest);
4935 SUBST (XEXP (*cc_use, 0), new_dest);
4936 other_changed = 1;
4937
4938 dest = new_dest;
4939 }
4940 }
4941 #endif
4942
4943 /* If the code changed, we have to build a new comparison in
4944 undobuf.other_insn. */
4945 if (new_code != old_code)
4946 {
4947 unsigned HOST_WIDE_INT mask;
4948
4949 SUBST (*cc_use, gen_rtx_combine (new_code, GET_MODE (*cc_use),
4950 dest, const0_rtx));
4951
4952 /* If the only change we made was to change an EQ into an NE or
4953 vice versa, OP0 has only one bit that might be nonzero, and OP1
4954 is zero, check if changing the user of the condition code will
4955 produce a valid insn. If it won't, we can keep the original code
4956 in that insn by surrounding our operation with an XOR. */
4957
4958 if (((old_code == NE && new_code == EQ)
4959 || (old_code == EQ && new_code == NE))
4960 && ! other_changed && op1 == const0_rtx
4961 && GET_MODE_BITSIZE (GET_MODE (op0)) <= HOST_BITS_PER_WIDE_INT
4962 && exact_log2 (mask = nonzero_bits (op0, GET_MODE (op0))) >= 0)
4963 {
4964 rtx pat = PATTERN (other_insn), note = 0;
4965
4966 if ((recog_for_combine (&pat, other_insn, &note) < 0
4967 && ! check_asm_operands (pat)))
4968 {
4969 PUT_CODE (*cc_use, old_code);
4970 other_insn = 0;
4971
4972 op0 = gen_binary (XOR, GET_MODE (op0), op0, GEN_INT (mask));
4973 }
4974 }
4975
4976 other_changed = 1;
4977 }
4978
4979 if (other_changed)
4980 undobuf.other_insn = other_insn;
4981
4982 #ifdef HAVE_cc0
4983 /* If we are now comparing against zero, change our source if
4984 needed. If we do not use cc0, we always have a COMPARE. */
4985 if (op1 == const0_rtx && dest == cc0_rtx)
4986 {
4987 SUBST (SET_SRC (x), op0);
4988 src = op0;
4989 }
4990 else
4991 #endif
4992
4993 /* Otherwise, if we didn't previously have a COMPARE in the
4994 correct mode, we need one. */
4995 if (GET_CODE (src) != COMPARE || GET_MODE (src) != compare_mode)
4996 {
4997 SUBST (SET_SRC (x),
4998 gen_rtx_combine (COMPARE, compare_mode, op0, op1));
4999 src = SET_SRC (x);
5000 }
5001 else
5002 {
5003 /* Otherwise, update the COMPARE if needed. */
5004 SUBST (XEXP (src, 0), op0);
5005 SUBST (XEXP (src, 1), op1);
5006 }
5007 }
5008 else
5009 {
5010 /* Get SET_SRC in a form where we have placed back any
5011 compound expressions. Then do the checks below. */
5012 src = make_compound_operation (src, SET);
5013 SUBST (SET_SRC (x), src);
5014 }
5015
5016 /* If we have (set x (subreg:m1 (op:m2 ...) 0)) with OP being some operation,
5017 and X being a REG or (subreg (reg)), we may be able to convert this to
5018 (set (subreg:m2 x) (op)).
5019
5020 We can always do this if M1 is narrower than M2 because that means that
5021 we only care about the low bits of the result.
5022
5023 However, on machines without WORD_REGISTER_OPERATIONS defined, we cannot
5024 perform a narrower operation than requested since the high-order bits will
5025 be undefined. On machine where it is defined, this transformation is safe
5026 as long as M1 and M2 have the same number of words. */
5027
5028 if (GET_CODE (src) == SUBREG && subreg_lowpart_p (src)
5029 && GET_RTX_CLASS (GET_CODE (SUBREG_REG (src))) != 'o'
5030 && (((GET_MODE_SIZE (GET_MODE (src)) + (UNITS_PER_WORD - 1))
5031 / UNITS_PER_WORD)
5032 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (src)))
5033 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))
5034 #ifndef WORD_REGISTER_OPERATIONS
5035 && (GET_MODE_SIZE (GET_MODE (src))
5036 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (src))))
5037 #endif
5038 #ifdef CLASS_CANNOT_CHANGE_MODE
5039 && ! (GET_CODE (dest) == REG && REGNO (dest) < FIRST_PSEUDO_REGISTER
5040 && (TEST_HARD_REG_BIT
5041 (reg_class_contents[(int) CLASS_CANNOT_CHANGE_MODE],
5042 REGNO (dest)))
5043 && CLASS_CANNOT_CHANGE_MODE_P (GET_MODE (src),
5044 GET_MODE (SUBREG_REG (src))))
5045 #endif
5046 && (GET_CODE (dest) == REG
5047 || (GET_CODE (dest) == SUBREG
5048 && GET_CODE (SUBREG_REG (dest)) == REG)))
5049 {
5050 SUBST (SET_DEST (x),
5051 gen_lowpart_for_combine (GET_MODE (SUBREG_REG (src)),
5052 dest));
5053 SUBST (SET_SRC (x), SUBREG_REG (src));
5054
5055 src = SET_SRC (x), dest = SET_DEST (x);
5056 }
5057
5058 #ifdef LOAD_EXTEND_OP
5059 /* If we have (set FOO (subreg:M (mem:N BAR) 0)) with M wider than N, this
5060 would require a paradoxical subreg. Replace the subreg with a
5061 zero_extend to avoid the reload that would otherwise be required. */
5062
5063 if (GET_CODE (src) == SUBREG && subreg_lowpart_p (src)
5064 && LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (src))) != NIL
5065 && SUBREG_WORD (src) == 0
5066 && (GET_MODE_SIZE (GET_MODE (src))
5067 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (src))))
5068 && GET_CODE (SUBREG_REG (src)) == MEM)
5069 {
5070 SUBST (SET_SRC (x),
5071 gen_rtx_combine (LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (src))),
5072 GET_MODE (src), XEXP (src, 0)));
5073
5074 src = SET_SRC (x);
5075 }
5076 #endif
5077
5078 /* If we don't have a conditional move, SET_SRC is an IF_THEN_ELSE, and we
5079 are comparing an item known to be 0 or -1 against 0, use a logical
5080 operation instead. Check for one of the arms being an IOR of the other
5081 arm with some value. We compute three terms to be IOR'ed together. In
5082 practice, at most two will be nonzero. Then we do the IOR's. */
5083
5084 if (GET_CODE (dest) != PC
5085 && GET_CODE (src) == IF_THEN_ELSE
5086 && GET_MODE_CLASS (GET_MODE (src)) == MODE_INT
5087 && (GET_CODE (XEXP (src, 0)) == EQ || GET_CODE (XEXP (src, 0)) == NE)
5088 && XEXP (XEXP (src, 0), 1) == const0_rtx
5089 && GET_MODE (src) == GET_MODE (XEXP (XEXP (src, 0), 0))
5090 #ifdef HAVE_conditional_move
5091 && ! can_conditionally_move_p (GET_MODE (src))
5092 #endif
5093 && (num_sign_bit_copies (XEXP (XEXP (src, 0), 0),
5094 GET_MODE (XEXP (XEXP (src, 0), 0)))
5095 == GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (src, 0), 0))))
5096 && ! side_effects_p (src))
5097 {
5098 rtx true = (GET_CODE (XEXP (src, 0)) == NE
5099 ? XEXP (src, 1) : XEXP (src, 2));
5100 rtx false = (GET_CODE (XEXP (src, 0)) == NE
5101 ? XEXP (src, 2) : XEXP (src, 1));
5102 rtx term1 = const0_rtx, term2, term3;
5103
5104 if (GET_CODE (true) == IOR && rtx_equal_p (XEXP (true, 0), false))
5105 term1 = false, true = XEXP (true, 1), false = const0_rtx;
5106 else if (GET_CODE (true) == IOR
5107 && rtx_equal_p (XEXP (true, 1), false))
5108 term1 = false, true = XEXP (true, 0), false = const0_rtx;
5109 else if (GET_CODE (false) == IOR
5110 && rtx_equal_p (XEXP (false, 0), true))
5111 term1 = true, false = XEXP (false, 1), true = const0_rtx;
5112 else if (GET_CODE (false) == IOR
5113 && rtx_equal_p (XEXP (false, 1), true))
5114 term1 = true, false = XEXP (false, 0), true = const0_rtx;
5115
5116 term2 = gen_binary (AND, GET_MODE (src), XEXP (XEXP (src, 0), 0), true);
5117 term3 = gen_binary (AND, GET_MODE (src),
5118 gen_unary (NOT, GET_MODE (src), GET_MODE (src),
5119 XEXP (XEXP (src, 0), 0)),
5120 false);
5121
5122 SUBST (SET_SRC (x),
5123 gen_binary (IOR, GET_MODE (src),
5124 gen_binary (IOR, GET_MODE (src), term1, term2),
5125 term3));
5126
5127 src = SET_SRC (x);
5128 }
5129
5130 #ifdef HAVE_conditional_arithmetic
5131 /* If we have conditional arithmetic and the operand of a SET is
5132 a conditional expression, replace this with an IF_THEN_ELSE.
5133 We can either have a conditional expression or a MULT of that expression
5134 with a constant. */
5135 if ((GET_RTX_CLASS (GET_CODE (src)) == '1'
5136 || GET_RTX_CLASS (GET_CODE (src)) == '2'
5137 || GET_RTX_CLASS (GET_CODE (src)) == 'c')
5138 && (GET_RTX_CLASS (GET_CODE (XEXP (src, 0))) == '<'
5139 || (GET_CODE (XEXP (src, 0)) == MULT
5140 && GET_RTX_CLASS (GET_CODE (XEXP (XEXP (src, 0), 0))) == '<'
5141 && GET_CODE (XEXP (XEXP (src, 0), 1)) == CONST_INT)))
5142 {
5143 rtx cond = XEXP (src, 0);
5144 rtx true_val = const1_rtx;
5145 rtx false_arm, true_arm;
5146
5147 if (GET_CODE (cond) == MULT)
5148 {
5149 true_val = XEXP (cond, 1);
5150 cond = XEXP (cond, 0);
5151 }
5152
5153 if (GET_RTX_CLASS (GET_CODE (src)) == '1')
5154 {
5155 true_arm = gen_unary (GET_CODE (src), GET_MODE (src),
5156 GET_MODE (XEXP (src, 0)), true_val);
5157 false_arm = gen_unary (GET_CODE (src), GET_MODE (src),
5158 GET_MODE (XEXP (src, 0)), const0_rtx);
5159 }
5160 else
5161 {
5162 true_arm = gen_binary (GET_CODE (src), GET_MODE (src),
5163 true_val, XEXP (src, 1));
5164 false_arm = gen_binary (GET_CODE (src), GET_MODE (src),
5165 const0_rtx, XEXP (src, 1));
5166 }
5167
5168 /* Canonicalize if true_arm is the simpler one. */
5169 if (GET_RTX_CLASS (GET_CODE (true_arm)) == 'o'
5170 && GET_RTX_CLASS (GET_CODE (false_arm)) != 'o'
5171 && reversible_comparison_p (cond))
5172 {
5173 rtx temp = true_arm;
5174
5175 true_arm = false_arm;
5176 false_arm = temp;
5177
5178 cond = gen_rtx_combine (reverse_condition (GET_CODE (cond)),
5179 GET_MODE (cond), XEXP (cond, 0),
5180 XEXP (cond, 1));
5181 }
5182
5183 src = gen_rtx_combine (IF_THEN_ELSE, GET_MODE (src),
5184 gen_rtx_combine (GET_CODE (cond), VOIDmode,
5185 XEXP (cond, 0),
5186 XEXP (cond, 1)),
5187 true_arm, false_arm);
5188 SUBST (SET_SRC (x), src);
5189 }
5190 #endif
5191
5192 /* If either SRC or DEST is a CLOBBER of (const_int 0), make this
5193 whole thing fail. */
5194 if (GET_CODE (src) == CLOBBER && XEXP (src, 0) == const0_rtx)
5195 return src;
5196 else if (GET_CODE (dest) == CLOBBER && XEXP (dest, 0) == const0_rtx)
5197 return dest;
5198 else
5199 /* Convert this into a field assignment operation, if possible. */
5200 return make_field_assignment (x);
5201 }
5202 \f
5203 /* Simplify, X, and AND, IOR, or XOR operation, and return the simplified
5204 result. LAST is nonzero if this is the last retry. */
5205
5206 static rtx
5207 simplify_logical (x, last)
5208 rtx x;
5209 int last;
5210 {
5211 enum machine_mode mode = GET_MODE (x);
5212 rtx op0 = XEXP (x, 0);
5213 rtx op1 = XEXP (x, 1);
5214
5215 switch (GET_CODE (x))
5216 {
5217 case AND:
5218 /* Convert (A ^ B) & A to A & (~B) since the latter is often a single
5219 insn (and may simplify more). */
5220 if (GET_CODE (op0) == XOR
5221 && rtx_equal_p (XEXP (op0, 0), op1)
5222 && ! side_effects_p (op1))
5223 x = gen_binary (AND, mode,
5224 gen_unary (NOT, mode, mode, XEXP (op0, 1)), op1);
5225
5226 if (GET_CODE (op0) == XOR
5227 && rtx_equal_p (XEXP (op0, 1), op1)
5228 && ! side_effects_p (op1))
5229 x = gen_binary (AND, mode,
5230 gen_unary (NOT, mode, mode, XEXP (op0, 0)), op1);
5231
5232 /* Similarly for (~(A ^ B)) & A. */
5233 if (GET_CODE (op0) == NOT
5234 && GET_CODE (XEXP (op0, 0)) == XOR
5235 && rtx_equal_p (XEXP (XEXP (op0, 0), 0), op1)
5236 && ! side_effects_p (op1))
5237 x = gen_binary (AND, mode, XEXP (XEXP (op0, 0), 1), op1);
5238
5239 if (GET_CODE (op0) == NOT
5240 && GET_CODE (XEXP (op0, 0)) == XOR
5241 && rtx_equal_p (XEXP (XEXP (op0, 0), 1), op1)
5242 && ! side_effects_p (op1))
5243 x = gen_binary (AND, mode, XEXP (XEXP (op0, 0), 0), op1);
5244
5245 /* We can call simplify_and_const_int only if we don't lose
5246 any (sign) bits when converting INTVAL (op1) to
5247 "unsigned HOST_WIDE_INT". */
5248 if (GET_CODE (op1) == CONST_INT
5249 && (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5250 || INTVAL (op1) > 0))
5251 {
5252 x = simplify_and_const_int (x, mode, op0, INTVAL (op1));
5253
5254 /* If we have (ior (and (X C1) C2)) and the next restart would be
5255 the last, simplify this by making C1 as small as possible
5256 and then exit. */
5257 if (last
5258 && GET_CODE (x) == IOR && GET_CODE (op0) == AND
5259 && GET_CODE (XEXP (op0, 1)) == CONST_INT
5260 && GET_CODE (op1) == CONST_INT)
5261 return gen_binary (IOR, mode,
5262 gen_binary (AND, mode, XEXP (op0, 0),
5263 GEN_INT (INTVAL (XEXP (op0, 1))
5264 & ~INTVAL (op1))), op1);
5265
5266 if (GET_CODE (x) != AND)
5267 return x;
5268
5269 if (GET_RTX_CLASS (GET_CODE (x)) == 'c'
5270 || GET_RTX_CLASS (GET_CODE (x)) == '2')
5271 op0 = XEXP (x, 0), op1 = XEXP (x, 1);
5272 }
5273
5274 /* Convert (A | B) & A to A. */
5275 if (GET_CODE (op0) == IOR
5276 && (rtx_equal_p (XEXP (op0, 0), op1)
5277 || rtx_equal_p (XEXP (op0, 1), op1))
5278 && ! side_effects_p (XEXP (op0, 0))
5279 && ! side_effects_p (XEXP (op0, 1)))
5280 return op1;
5281
5282 /* In the following group of tests (and those in case IOR below),
5283 we start with some combination of logical operations and apply
5284 the distributive law followed by the inverse distributive law.
5285 Most of the time, this results in no change. However, if some of
5286 the operands are the same or inverses of each other, simplifications
5287 will result.
5288
5289 For example, (and (ior A B) (not B)) can occur as the result of
5290 expanding a bit field assignment. When we apply the distributive
5291 law to this, we get (ior (and (A (not B))) (and (B (not B)))),
5292 which then simplifies to (and (A (not B))).
5293
5294 If we have (and (ior A B) C), apply the distributive law and then
5295 the inverse distributive law to see if things simplify. */
5296
5297 if (GET_CODE (op0) == IOR || GET_CODE (op0) == XOR)
5298 {
5299 x = apply_distributive_law
5300 (gen_binary (GET_CODE (op0), mode,
5301 gen_binary (AND, mode, XEXP (op0, 0), op1),
5302 gen_binary (AND, mode, XEXP (op0, 1),
5303 copy_rtx (op1))));
5304 if (GET_CODE (x) != AND)
5305 return x;
5306 }
5307
5308 if (GET_CODE (op1) == IOR || GET_CODE (op1) == XOR)
5309 return apply_distributive_law
5310 (gen_binary (GET_CODE (op1), mode,
5311 gen_binary (AND, mode, XEXP (op1, 0), op0),
5312 gen_binary (AND, mode, XEXP (op1, 1),
5313 copy_rtx (op0))));
5314
5315 /* Similarly, taking advantage of the fact that
5316 (and (not A) (xor B C)) == (xor (ior A B) (ior A C)) */
5317
5318 if (GET_CODE (op0) == NOT && GET_CODE (op1) == XOR)
5319 return apply_distributive_law
5320 (gen_binary (XOR, mode,
5321 gen_binary (IOR, mode, XEXP (op0, 0), XEXP (op1, 0)),
5322 gen_binary (IOR, mode, copy_rtx (XEXP (op0, 0)),
5323 XEXP (op1, 1))));
5324
5325 else if (GET_CODE (op1) == NOT && GET_CODE (op0) == XOR)
5326 return apply_distributive_law
5327 (gen_binary (XOR, mode,
5328 gen_binary (IOR, mode, XEXP (op1, 0), XEXP (op0, 0)),
5329 gen_binary (IOR, mode, copy_rtx (XEXP (op1, 0)), XEXP (op0, 1))));
5330 break;
5331
5332 case IOR:
5333 /* (ior A C) is C if all bits of A that might be nonzero are on in C. */
5334 if (GET_CODE (op1) == CONST_INT
5335 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5336 && (nonzero_bits (op0, mode) & ~INTVAL (op1)) == 0)
5337 return op1;
5338
5339 /* Convert (A & B) | A to A. */
5340 if (GET_CODE (op0) == AND
5341 && (rtx_equal_p (XEXP (op0, 0), op1)
5342 || rtx_equal_p (XEXP (op0, 1), op1))
5343 && ! side_effects_p (XEXP (op0, 0))
5344 && ! side_effects_p (XEXP (op0, 1)))
5345 return op1;
5346
5347 /* If we have (ior (and A B) C), apply the distributive law and then
5348 the inverse distributive law to see if things simplify. */
5349
5350 if (GET_CODE (op0) == AND)
5351 {
5352 x = apply_distributive_law
5353 (gen_binary (AND, mode,
5354 gen_binary (IOR, mode, XEXP (op0, 0), op1),
5355 gen_binary (IOR, mode, XEXP (op0, 1),
5356 copy_rtx (op1))));
5357
5358 if (GET_CODE (x) != IOR)
5359 return x;
5360 }
5361
5362 if (GET_CODE (op1) == AND)
5363 {
5364 x = apply_distributive_law
5365 (gen_binary (AND, mode,
5366 gen_binary (IOR, mode, XEXP (op1, 0), op0),
5367 gen_binary (IOR, mode, XEXP (op1, 1),
5368 copy_rtx (op0))));
5369
5370 if (GET_CODE (x) != IOR)
5371 return x;
5372 }
5373
5374 /* Convert (ior (ashift A CX) (lshiftrt A CY)) where CX+CY equals the
5375 mode size to (rotate A CX). */
5376
5377 if (((GET_CODE (op0) == ASHIFT && GET_CODE (op1) == LSHIFTRT)
5378 || (GET_CODE (op1) == ASHIFT && GET_CODE (op0) == LSHIFTRT))
5379 && rtx_equal_p (XEXP (op0, 0), XEXP (op1, 0))
5380 && GET_CODE (XEXP (op0, 1)) == CONST_INT
5381 && GET_CODE (XEXP (op1, 1)) == CONST_INT
5382 && (INTVAL (XEXP (op0, 1)) + INTVAL (XEXP (op1, 1))
5383 == GET_MODE_BITSIZE (mode)))
5384 return gen_rtx_ROTATE (mode, XEXP (op0, 0),
5385 (GET_CODE (op0) == ASHIFT
5386 ? XEXP (op0, 1) : XEXP (op1, 1)));
5387
5388 /* If OP0 is (ashiftrt (plus ...) C), it might actually be
5389 a (sign_extend (plus ...)). If so, OP1 is a CONST_INT, and the PLUS
5390 does not affect any of the bits in OP1, it can really be done
5391 as a PLUS and we can associate. We do this by seeing if OP1
5392 can be safely shifted left C bits. */
5393 if (GET_CODE (op1) == CONST_INT && GET_CODE (op0) == ASHIFTRT
5394 && GET_CODE (XEXP (op0, 0)) == PLUS
5395 && GET_CODE (XEXP (XEXP (op0, 0), 1)) == CONST_INT
5396 && GET_CODE (XEXP (op0, 1)) == CONST_INT
5397 && INTVAL (XEXP (op0, 1)) < HOST_BITS_PER_WIDE_INT)
5398 {
5399 int count = INTVAL (XEXP (op0, 1));
5400 HOST_WIDE_INT mask = INTVAL (op1) << count;
5401
5402 if (mask >> count == INTVAL (op1)
5403 && (mask & nonzero_bits (XEXP (op0, 0), mode)) == 0)
5404 {
5405 SUBST (XEXP (XEXP (op0, 0), 1),
5406 GEN_INT (INTVAL (XEXP (XEXP (op0, 0), 1)) | mask));
5407 return op0;
5408 }
5409 }
5410 break;
5411
5412 case XOR:
5413 /* If we are XORing two things that have no bits in common,
5414 convert them into an IOR. This helps to detect rotation encoded
5415 using those methods and possibly other simplifications. */
5416
5417 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5418 && (nonzero_bits (op0, mode)
5419 & nonzero_bits (op1, mode)) == 0)
5420 return (gen_binary (IOR, mode, op0, op1));
5421
5422 /* Convert (XOR (NOT x) (NOT y)) to (XOR x y).
5423 Also convert (XOR (NOT x) y) to (NOT (XOR x y)), similarly for
5424 (NOT y). */
5425 {
5426 int num_negated = 0;
5427
5428 if (GET_CODE (op0) == NOT)
5429 num_negated++, op0 = XEXP (op0, 0);
5430 if (GET_CODE (op1) == NOT)
5431 num_negated++, op1 = XEXP (op1, 0);
5432
5433 if (num_negated == 2)
5434 {
5435 SUBST (XEXP (x, 0), op0);
5436 SUBST (XEXP (x, 1), op1);
5437 }
5438 else if (num_negated == 1)
5439 return gen_unary (NOT, mode, mode, gen_binary (XOR, mode, op0, op1));
5440 }
5441
5442 /* Convert (xor (and A B) B) to (and (not A) B). The latter may
5443 correspond to a machine insn or result in further simplifications
5444 if B is a constant. */
5445
5446 if (GET_CODE (op0) == AND
5447 && rtx_equal_p (XEXP (op0, 1), op1)
5448 && ! side_effects_p (op1))
5449 return gen_binary (AND, mode,
5450 gen_unary (NOT, mode, mode, XEXP (op0, 0)),
5451 op1);
5452
5453 else if (GET_CODE (op0) == AND
5454 && rtx_equal_p (XEXP (op0, 0), op1)
5455 && ! side_effects_p (op1))
5456 return gen_binary (AND, mode,
5457 gen_unary (NOT, mode, mode, XEXP (op0, 1)),
5458 op1);
5459
5460 /* (xor (comparison foo bar) (const_int 1)) can become the reversed
5461 comparison if STORE_FLAG_VALUE is 1. */
5462 if (STORE_FLAG_VALUE == 1
5463 && op1 == const1_rtx
5464 && GET_RTX_CLASS (GET_CODE (op0)) == '<'
5465 && reversible_comparison_p (op0))
5466 return gen_rtx_combine (reverse_condition (GET_CODE (op0)),
5467 mode, XEXP (op0, 0), XEXP (op0, 1));
5468
5469 /* (lshiftrt foo C) where C is the number of bits in FOO minus 1
5470 is (lt foo (const_int 0)), so we can perform the above
5471 simplification if STORE_FLAG_VALUE is 1. */
5472
5473 if (STORE_FLAG_VALUE == 1
5474 && op1 == const1_rtx
5475 && GET_CODE (op0) == LSHIFTRT
5476 && GET_CODE (XEXP (op0, 1)) == CONST_INT
5477 && INTVAL (XEXP (op0, 1)) == GET_MODE_BITSIZE (mode) - 1)
5478 return gen_rtx_combine (GE, mode, XEXP (op0, 0), const0_rtx);
5479
5480 /* (xor (comparison foo bar) (const_int sign-bit))
5481 when STORE_FLAG_VALUE is the sign bit. */
5482 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5483 && ((STORE_FLAG_VALUE & GET_MODE_MASK (mode))
5484 == (unsigned HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (mode) - 1))
5485 && op1 == const_true_rtx
5486 && GET_RTX_CLASS (GET_CODE (op0)) == '<'
5487 && reversible_comparison_p (op0))
5488 return gen_rtx_combine (reverse_condition (GET_CODE (op0)),
5489 mode, XEXP (op0, 0), XEXP (op0, 1));
5490
5491 break;
5492
5493 default:
5494 abort ();
5495 }
5496
5497 return x;
5498 }
5499 \f
5500 /* We consider ZERO_EXTRACT, SIGN_EXTRACT, and SIGN_EXTEND as "compound
5501 operations" because they can be replaced with two more basic operations.
5502 ZERO_EXTEND is also considered "compound" because it can be replaced with
5503 an AND operation, which is simpler, though only one operation.
5504
5505 The function expand_compound_operation is called with an rtx expression
5506 and will convert it to the appropriate shifts and AND operations,
5507 simplifying at each stage.
5508
5509 The function make_compound_operation is called to convert an expression
5510 consisting of shifts and ANDs into the equivalent compound expression.
5511 It is the inverse of this function, loosely speaking. */
5512
5513 static rtx
5514 expand_compound_operation (x)
5515 rtx x;
5516 {
5517 unsigned HOST_WIDE_INT pos = 0, len;
5518 int unsignedp = 0;
5519 unsigned int modewidth;
5520 rtx tem;
5521
5522 switch (GET_CODE (x))
5523 {
5524 case ZERO_EXTEND:
5525 unsignedp = 1;
5526 case SIGN_EXTEND:
5527 /* We can't necessarily use a const_int for a multiword mode;
5528 it depends on implicitly extending the value.
5529 Since we don't know the right way to extend it,
5530 we can't tell whether the implicit way is right.
5531
5532 Even for a mode that is no wider than a const_int,
5533 we can't win, because we need to sign extend one of its bits through
5534 the rest of it, and we don't know which bit. */
5535 if (GET_CODE (XEXP (x, 0)) == CONST_INT)
5536 return x;
5537
5538 /* Return if (subreg:MODE FROM 0) is not a safe replacement for
5539 (zero_extend:MODE FROM) or (sign_extend:MODE FROM). It is for any MEM
5540 because (SUBREG (MEM...)) is guaranteed to cause the MEM to be
5541 reloaded. If not for that, MEM's would very rarely be safe.
5542
5543 Reject MODEs bigger than a word, because we might not be able
5544 to reference a two-register group starting with an arbitrary register
5545 (and currently gen_lowpart might crash for a SUBREG). */
5546
5547 if (GET_MODE_SIZE (GET_MODE (XEXP (x, 0))) > UNITS_PER_WORD)
5548 return x;
5549
5550 len = GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)));
5551 /* If the inner object has VOIDmode (the only way this can happen
5552 is if it is a ASM_OPERANDS), we can't do anything since we don't
5553 know how much masking to do. */
5554 if (len == 0)
5555 return x;
5556
5557 break;
5558
5559 case ZERO_EXTRACT:
5560 unsignedp = 1;
5561 case SIGN_EXTRACT:
5562 /* If the operand is a CLOBBER, just return it. */
5563 if (GET_CODE (XEXP (x, 0)) == CLOBBER)
5564 return XEXP (x, 0);
5565
5566 if (GET_CODE (XEXP (x, 1)) != CONST_INT
5567 || GET_CODE (XEXP (x, 2)) != CONST_INT
5568 || GET_MODE (XEXP (x, 0)) == VOIDmode)
5569 return x;
5570
5571 len = INTVAL (XEXP (x, 1));
5572 pos = INTVAL (XEXP (x, 2));
5573
5574 /* If this goes outside the object being extracted, replace the object
5575 with a (use (mem ...)) construct that only combine understands
5576 and is used only for this purpose. */
5577 if (len + pos > GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0))))
5578 SUBST (XEXP (x, 0), gen_rtx_USE (GET_MODE (x), XEXP (x, 0)));
5579
5580 if (BITS_BIG_ENDIAN)
5581 pos = GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0))) - len - pos;
5582
5583 break;
5584
5585 default:
5586 return x;
5587 }
5588 /* Convert sign extension to zero extension, if we know that the high
5589 bit is not set, as this is easier to optimize. It will be converted
5590 back to cheaper alternative in make_extraction. */
5591 if (GET_CODE (x) == SIGN_EXTEND
5592 && (GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
5593 && ((nonzero_bits (XEXP (x, 0), GET_MODE (XEXP (x, 0)))
5594 & ~(((unsigned HOST_WIDE_INT)
5595 GET_MODE_MASK (GET_MODE (XEXP (x, 0))))
5596 >> 1))
5597 == 0)))
5598 {
5599 rtx temp = gen_rtx_ZERO_EXTEND (GET_MODE (x), XEXP (x, 0));
5600 return expand_compound_operation (temp);
5601 }
5602
5603 /* We can optimize some special cases of ZERO_EXTEND. */
5604 if (GET_CODE (x) == ZERO_EXTEND)
5605 {
5606 /* (zero_extend:DI (truncate:SI foo:DI)) is just foo:DI if we
5607 know that the last value didn't have any inappropriate bits
5608 set. */
5609 if (GET_CODE (XEXP (x, 0)) == TRUNCATE
5610 && GET_MODE (XEXP (XEXP (x, 0), 0)) == GET_MODE (x)
5611 && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
5612 && (nonzero_bits (XEXP (XEXP (x, 0), 0), GET_MODE (x))
5613 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
5614 return XEXP (XEXP (x, 0), 0);
5615
5616 /* Likewise for (zero_extend:DI (subreg:SI foo:DI 0)). */
5617 if (GET_CODE (XEXP (x, 0)) == SUBREG
5618 && GET_MODE (SUBREG_REG (XEXP (x, 0))) == GET_MODE (x)
5619 && subreg_lowpart_p (XEXP (x, 0))
5620 && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
5621 && (nonzero_bits (SUBREG_REG (XEXP (x, 0)), GET_MODE (x))
5622 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
5623 return SUBREG_REG (XEXP (x, 0));
5624
5625 /* (zero_extend:DI (truncate:SI foo:DI)) is just foo:DI when foo
5626 is a comparison and STORE_FLAG_VALUE permits. This is like
5627 the first case, but it works even when GET_MODE (x) is larger
5628 than HOST_WIDE_INT. */
5629 if (GET_CODE (XEXP (x, 0)) == TRUNCATE
5630 && GET_MODE (XEXP (XEXP (x, 0), 0)) == GET_MODE (x)
5631 && GET_RTX_CLASS (GET_CODE (XEXP (XEXP (x, 0), 0))) == '<'
5632 && (GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))
5633 <= HOST_BITS_PER_WIDE_INT)
5634 && ((HOST_WIDE_INT) STORE_FLAG_VALUE
5635 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
5636 return XEXP (XEXP (x, 0), 0);
5637
5638 /* Likewise for (zero_extend:DI (subreg:SI foo:DI 0)). */
5639 if (GET_CODE (XEXP (x, 0)) == SUBREG
5640 && GET_MODE (SUBREG_REG (XEXP (x, 0))) == GET_MODE (x)
5641 && subreg_lowpart_p (XEXP (x, 0))
5642 && GET_RTX_CLASS (GET_CODE (SUBREG_REG (XEXP (x, 0)))) == '<'
5643 && (GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))
5644 <= HOST_BITS_PER_WIDE_INT)
5645 && ((HOST_WIDE_INT) STORE_FLAG_VALUE
5646 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
5647 return SUBREG_REG (XEXP (x, 0));
5648
5649 }
5650
5651 /* If we reach here, we want to return a pair of shifts. The inner
5652 shift is a left shift of BITSIZE - POS - LEN bits. The outer
5653 shift is a right shift of BITSIZE - LEN bits. It is arithmetic or
5654 logical depending on the value of UNSIGNEDP.
5655
5656 If this was a ZERO_EXTEND or ZERO_EXTRACT, this pair of shifts will be
5657 converted into an AND of a shift.
5658
5659 We must check for the case where the left shift would have a negative
5660 count. This can happen in a case like (x >> 31) & 255 on machines
5661 that can't shift by a constant. On those machines, we would first
5662 combine the shift with the AND to produce a variable-position
5663 extraction. Then the constant of 31 would be substituted in to produce
5664 a such a position. */
5665
5666 modewidth = GET_MODE_BITSIZE (GET_MODE (x));
5667 if (modewidth + len >= pos)
5668 tem = simplify_shift_const (NULL_RTX, unsignedp ? LSHIFTRT : ASHIFTRT,
5669 GET_MODE (x),
5670 simplify_shift_const (NULL_RTX, ASHIFT,
5671 GET_MODE (x),
5672 XEXP (x, 0),
5673 modewidth - pos - len),
5674 modewidth - len);
5675
5676 else if (unsignedp && len < HOST_BITS_PER_WIDE_INT)
5677 tem = simplify_and_const_int (NULL_RTX, GET_MODE (x),
5678 simplify_shift_const (NULL_RTX, LSHIFTRT,
5679 GET_MODE (x),
5680 XEXP (x, 0), pos),
5681 ((HOST_WIDE_INT) 1 << len) - 1);
5682 else
5683 /* Any other cases we can't handle. */
5684 return x;
5685
5686 /* If we couldn't do this for some reason, return the original
5687 expression. */
5688 if (GET_CODE (tem) == CLOBBER)
5689 return x;
5690
5691 return tem;
5692 }
5693 \f
5694 /* X is a SET which contains an assignment of one object into
5695 a part of another (such as a bit-field assignment, STRICT_LOW_PART,
5696 or certain SUBREGS). If possible, convert it into a series of
5697 logical operations.
5698
5699 We half-heartedly support variable positions, but do not at all
5700 support variable lengths. */
5701
5702 static rtx
5703 expand_field_assignment (x)
5704 rtx x;
5705 {
5706 rtx inner;
5707 rtx pos; /* Always counts from low bit. */
5708 int len;
5709 rtx mask;
5710 enum machine_mode compute_mode;
5711
5712 /* Loop until we find something we can't simplify. */
5713 while (1)
5714 {
5715 if (GET_CODE (SET_DEST (x)) == STRICT_LOW_PART
5716 && GET_CODE (XEXP (SET_DEST (x), 0)) == SUBREG)
5717 {
5718 inner = SUBREG_REG (XEXP (SET_DEST (x), 0));
5719 len = GET_MODE_BITSIZE (GET_MODE (XEXP (SET_DEST (x), 0)));
5720 pos = GEN_INT (BITS_PER_WORD * SUBREG_WORD (XEXP (SET_DEST (x), 0)));
5721 }
5722 else if (GET_CODE (SET_DEST (x)) == ZERO_EXTRACT
5723 && GET_CODE (XEXP (SET_DEST (x), 1)) == CONST_INT)
5724 {
5725 inner = XEXP (SET_DEST (x), 0);
5726 len = INTVAL (XEXP (SET_DEST (x), 1));
5727 pos = XEXP (SET_DEST (x), 2);
5728
5729 /* If the position is constant and spans the width of INNER,
5730 surround INNER with a USE to indicate this. */
5731 if (GET_CODE (pos) == CONST_INT
5732 && INTVAL (pos) + len > GET_MODE_BITSIZE (GET_MODE (inner)))
5733 inner = gen_rtx_USE (GET_MODE (SET_DEST (x)), inner);
5734
5735 if (BITS_BIG_ENDIAN)
5736 {
5737 if (GET_CODE (pos) == CONST_INT)
5738 pos = GEN_INT (GET_MODE_BITSIZE (GET_MODE (inner)) - len
5739 - INTVAL (pos));
5740 else if (GET_CODE (pos) == MINUS
5741 && GET_CODE (XEXP (pos, 1)) == CONST_INT
5742 && (INTVAL (XEXP (pos, 1))
5743 == GET_MODE_BITSIZE (GET_MODE (inner)) - len))
5744 /* If position is ADJUST - X, new position is X. */
5745 pos = XEXP (pos, 0);
5746 else
5747 pos = gen_binary (MINUS, GET_MODE (pos),
5748 GEN_INT (GET_MODE_BITSIZE (GET_MODE (inner))
5749 - len),
5750 pos);
5751 }
5752 }
5753
5754 /* A SUBREG between two modes that occupy the same numbers of words
5755 can be done by moving the SUBREG to the source. */
5756 else if (GET_CODE (SET_DEST (x)) == SUBREG
5757 /* We need SUBREGs to compute nonzero_bits properly. */
5758 && nonzero_sign_valid
5759 && (((GET_MODE_SIZE (GET_MODE (SET_DEST (x)))
5760 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
5761 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (x))))
5762 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)))
5763 {
5764 x = gen_rtx_SET (VOIDmode, SUBREG_REG (SET_DEST (x)),
5765 gen_lowpart_for_combine
5766 (GET_MODE (SUBREG_REG (SET_DEST (x))),
5767 SET_SRC (x)));
5768 continue;
5769 }
5770 else
5771 break;
5772
5773 while (GET_CODE (inner) == SUBREG && subreg_lowpart_p (inner))
5774 inner = SUBREG_REG (inner);
5775
5776 compute_mode = GET_MODE (inner);
5777
5778 /* Don't attempt bitwise arithmetic on non-integral modes. */
5779 if (! INTEGRAL_MODE_P (compute_mode))
5780 {
5781 enum machine_mode imode;
5782
5783 /* Something is probably seriously wrong if this matches. */
5784 if (! FLOAT_MODE_P (compute_mode))
5785 break;
5786
5787 /* Try to find an integral mode to pun with. */
5788 imode = mode_for_size (GET_MODE_BITSIZE (compute_mode), MODE_INT, 0);
5789 if (imode == BLKmode)
5790 break;
5791
5792 compute_mode = imode;
5793 inner = gen_lowpart_for_combine (imode, inner);
5794 }
5795
5796 /* Compute a mask of LEN bits, if we can do this on the host machine. */
5797 if (len < HOST_BITS_PER_WIDE_INT)
5798 mask = GEN_INT (((HOST_WIDE_INT) 1 << len) - 1);
5799 else
5800 break;
5801
5802 /* Now compute the equivalent expression. Make a copy of INNER
5803 for the SET_DEST in case it is a MEM into which we will substitute;
5804 we don't want shared RTL in that case. */
5805 x = gen_rtx_SET
5806 (VOIDmode, copy_rtx (inner),
5807 gen_binary (IOR, compute_mode,
5808 gen_binary (AND, compute_mode,
5809 gen_unary (NOT, compute_mode,
5810 compute_mode,
5811 gen_binary (ASHIFT,
5812 compute_mode,
5813 mask, pos)),
5814 inner),
5815 gen_binary (ASHIFT, compute_mode,
5816 gen_binary (AND, compute_mode,
5817 gen_lowpart_for_combine
5818 (compute_mode, SET_SRC (x)),
5819 mask),
5820 pos)));
5821 }
5822
5823 return x;
5824 }
5825 \f
5826 /* Return an RTX for a reference to LEN bits of INNER. If POS_RTX is nonzero,
5827 it is an RTX that represents a variable starting position; otherwise,
5828 POS is the (constant) starting bit position (counted from the LSB).
5829
5830 INNER may be a USE. This will occur when we started with a bitfield
5831 that went outside the boundary of the object in memory, which is
5832 allowed on most machines. To isolate this case, we produce a USE
5833 whose mode is wide enough and surround the MEM with it. The only
5834 code that understands the USE is this routine. If it is not removed,
5835 it will cause the resulting insn not to match.
5836
5837 UNSIGNEDP is non-zero for an unsigned reference and zero for a
5838 signed reference.
5839
5840 IN_DEST is non-zero if this is a reference in the destination of a
5841 SET. This is used when a ZERO_ or SIGN_EXTRACT isn't needed. If non-zero,
5842 a STRICT_LOW_PART will be used, if zero, ZERO_EXTEND or SIGN_EXTEND will
5843 be used.
5844
5845 IN_COMPARE is non-zero if we are in a COMPARE. This means that a
5846 ZERO_EXTRACT should be built even for bits starting at bit 0.
5847
5848 MODE is the desired mode of the result (if IN_DEST == 0).
5849
5850 The result is an RTX for the extraction or NULL_RTX if the target
5851 can't handle it. */
5852
5853 static rtx
5854 make_extraction (mode, inner, pos, pos_rtx, len,
5855 unsignedp, in_dest, in_compare)
5856 enum machine_mode mode;
5857 rtx inner;
5858 HOST_WIDE_INT pos;
5859 rtx pos_rtx;
5860 unsigned HOST_WIDE_INT len;
5861 int unsignedp;
5862 int in_dest, in_compare;
5863 {
5864 /* This mode describes the size of the storage area
5865 to fetch the overall value from. Within that, we
5866 ignore the POS lowest bits, etc. */
5867 enum machine_mode is_mode = GET_MODE (inner);
5868 enum machine_mode inner_mode;
5869 enum machine_mode wanted_inner_mode = byte_mode;
5870 enum machine_mode wanted_inner_reg_mode = word_mode;
5871 enum machine_mode pos_mode = word_mode;
5872 enum machine_mode extraction_mode = word_mode;
5873 enum machine_mode tmode = mode_for_size (len, MODE_INT, 1);
5874 int spans_byte = 0;
5875 rtx new = 0;
5876 rtx orig_pos_rtx = pos_rtx;
5877 HOST_WIDE_INT orig_pos;
5878
5879 /* Get some information about INNER and get the innermost object. */
5880 if (GET_CODE (inner) == USE)
5881 /* (use:SI (mem:QI foo)) stands for (mem:SI foo). */
5882 /* We don't need to adjust the position because we set up the USE
5883 to pretend that it was a full-word object. */
5884 spans_byte = 1, inner = XEXP (inner, 0);
5885 else if (GET_CODE (inner) == SUBREG && subreg_lowpart_p (inner))
5886 {
5887 /* If going from (subreg:SI (mem:QI ...)) to (mem:QI ...),
5888 consider just the QI as the memory to extract from.
5889 The subreg adds or removes high bits; its mode is
5890 irrelevant to the meaning of this extraction,
5891 since POS and LEN count from the lsb. */
5892 if (GET_CODE (SUBREG_REG (inner)) == MEM)
5893 is_mode = GET_MODE (SUBREG_REG (inner));
5894 inner = SUBREG_REG (inner);
5895 }
5896
5897 inner_mode = GET_MODE (inner);
5898
5899 if (pos_rtx && GET_CODE (pos_rtx) == CONST_INT)
5900 pos = INTVAL (pos_rtx), pos_rtx = 0;
5901
5902 /* See if this can be done without an extraction. We never can if the
5903 width of the field is not the same as that of some integer mode. For
5904 registers, we can only avoid the extraction if the position is at the
5905 low-order bit and this is either not in the destination or we have the
5906 appropriate STRICT_LOW_PART operation available.
5907
5908 For MEM, we can avoid an extract if the field starts on an appropriate
5909 boundary and we can change the mode of the memory reference. However,
5910 we cannot directly access the MEM if we have a USE and the underlying
5911 MEM is not TMODE. This combination means that MEM was being used in a
5912 context where bits outside its mode were being referenced; that is only
5913 valid in bit-field insns. */
5914
5915 if (tmode != BLKmode
5916 && ! (spans_byte && inner_mode != tmode)
5917 && ((pos_rtx == 0 && (pos % BITS_PER_WORD) == 0
5918 && GET_CODE (inner) != MEM
5919 && (! in_dest
5920 || (GET_CODE (inner) == REG
5921 && (movstrict_optab->handlers[(int) tmode].insn_code
5922 != CODE_FOR_nothing))))
5923 || (GET_CODE (inner) == MEM && pos_rtx == 0
5924 && (pos
5925 % (STRICT_ALIGNMENT ? GET_MODE_ALIGNMENT (tmode)
5926 : BITS_PER_UNIT)) == 0
5927 /* We can't do this if we are widening INNER_MODE (it
5928 may not be aligned, for one thing). */
5929 && GET_MODE_BITSIZE (inner_mode) >= GET_MODE_BITSIZE (tmode)
5930 && (inner_mode == tmode
5931 || (! mode_dependent_address_p (XEXP (inner, 0))
5932 && ! MEM_VOLATILE_P (inner))))))
5933 {
5934 /* If INNER is a MEM, make a new MEM that encompasses just the desired
5935 field. If the original and current mode are the same, we need not
5936 adjust the offset. Otherwise, we do if bytes big endian.
5937
5938 If INNER is not a MEM, get a piece consisting of just the field
5939 of interest (in this case POS % BITS_PER_WORD must be 0). */
5940
5941 if (GET_CODE (inner) == MEM)
5942 {
5943 int offset;
5944 /* POS counts from lsb, but make OFFSET count in memory order. */
5945 if (BYTES_BIG_ENDIAN)
5946 offset = (GET_MODE_BITSIZE (is_mode) - len - pos) / BITS_PER_UNIT;
5947 else
5948 offset = pos / BITS_PER_UNIT;
5949
5950 new = gen_rtx_MEM (tmode, plus_constant (XEXP (inner, 0), offset));
5951 MEM_COPY_ATTRIBUTES (new, inner);
5952 }
5953 else if (GET_CODE (inner) == REG)
5954 {
5955 /* We can't call gen_lowpart_for_combine here since we always want
5956 a SUBREG and it would sometimes return a new hard register. */
5957 if (tmode != inner_mode)
5958 new = gen_rtx_SUBREG (tmode, inner,
5959 (WORDS_BIG_ENDIAN
5960 && (GET_MODE_SIZE (inner_mode)
5961 > UNITS_PER_WORD)
5962 ? (((GET_MODE_SIZE (inner_mode)
5963 - GET_MODE_SIZE (tmode))
5964 / UNITS_PER_WORD)
5965 - pos / BITS_PER_WORD)
5966 : pos / BITS_PER_WORD));
5967 else
5968 new = inner;
5969 }
5970 else
5971 new = force_to_mode (inner, tmode,
5972 len >= HOST_BITS_PER_WIDE_INT
5973 ? ~(HOST_WIDE_INT) 0
5974 : ((unsigned HOST_WIDE_INT) 1 << len) - 1,
5975 NULL_RTX, 0);
5976
5977 /* If this extraction is going into the destination of a SET,
5978 make a STRICT_LOW_PART unless we made a MEM. */
5979
5980 if (in_dest)
5981 return (GET_CODE (new) == MEM ? new
5982 : (GET_CODE (new) != SUBREG
5983 ? gen_rtx_CLOBBER (tmode, const0_rtx)
5984 : gen_rtx_combine (STRICT_LOW_PART, VOIDmode, new)));
5985
5986 if (mode == tmode)
5987 return new;
5988
5989 /* If we know that no extraneous bits are set, and that the high
5990 bit is not set, convert the extraction to the cheaper of
5991 sign and zero extension, that are equivalent in these cases. */
5992 if (flag_expensive_optimizations
5993 && (GET_MODE_BITSIZE (tmode) <= HOST_BITS_PER_WIDE_INT
5994 && ((nonzero_bits (new, tmode)
5995 & ~(((unsigned HOST_WIDE_INT)
5996 GET_MODE_MASK (tmode))
5997 >> 1))
5998 == 0)))
5999 {
6000 rtx temp = gen_rtx_ZERO_EXTEND (mode, new);
6001 rtx temp1 = gen_rtx_SIGN_EXTEND (mode, new);
6002
6003 /* Prefer ZERO_EXTENSION, since it gives more information to
6004 backends. */
6005 if (rtx_cost (temp, SET) < rtx_cost (temp1, SET))
6006 return temp;
6007 return temp1;
6008 }
6009
6010 /* Otherwise, sign- or zero-extend unless we already are in the
6011 proper mode. */
6012
6013 return (gen_rtx_combine (unsignedp ? ZERO_EXTEND : SIGN_EXTEND,
6014 mode, new));
6015 }
6016
6017 /* Unless this is a COMPARE or we have a funny memory reference,
6018 don't do anything with zero-extending field extracts starting at
6019 the low-order bit since they are simple AND operations. */
6020 if (pos_rtx == 0 && pos == 0 && ! in_dest
6021 && ! in_compare && ! spans_byte && unsignedp)
6022 return 0;
6023
6024 /* Unless we are allowed to span bytes or INNER is not MEM, reject this if
6025 we would be spanning bytes or if the position is not a constant and the
6026 length is not 1. In all other cases, we would only be going outside
6027 our object in cases when an original shift would have been
6028 undefined. */
6029 if (! spans_byte && GET_CODE (inner) == MEM
6030 && ((pos_rtx == 0 && pos + len > GET_MODE_BITSIZE (is_mode))
6031 || (pos_rtx != 0 && len != 1)))
6032 return 0;
6033
6034 /* Get the mode to use should INNER not be a MEM, the mode for the position,
6035 and the mode for the result. */
6036 #ifdef HAVE_insv
6037 if (in_dest)
6038 {
6039 wanted_inner_reg_mode
6040 = insn_data[(int) CODE_FOR_insv].operand[0].mode;
6041 if (wanted_inner_reg_mode == VOIDmode)
6042 wanted_inner_reg_mode = word_mode;
6043
6044 pos_mode = insn_data[(int) CODE_FOR_insv].operand[2].mode;
6045 if (pos_mode == VOIDmode)
6046 pos_mode = word_mode;
6047
6048 extraction_mode = insn_data[(int) CODE_FOR_insv].operand[3].mode;
6049 if (extraction_mode == VOIDmode)
6050 extraction_mode = word_mode;
6051 }
6052 #endif
6053
6054 #ifdef HAVE_extzv
6055 if (! in_dest && unsignedp)
6056 {
6057 wanted_inner_reg_mode
6058 = insn_data[(int) CODE_FOR_extzv].operand[1].mode;
6059 if (wanted_inner_reg_mode == VOIDmode)
6060 wanted_inner_reg_mode = word_mode;
6061
6062 pos_mode = insn_data[(int) CODE_FOR_extzv].operand[3].mode;
6063 if (pos_mode == VOIDmode)
6064 pos_mode = word_mode;
6065
6066 extraction_mode = insn_data[(int) CODE_FOR_extzv].operand[0].mode;
6067 if (extraction_mode == VOIDmode)
6068 extraction_mode = word_mode;
6069 }
6070 #endif
6071
6072 #ifdef HAVE_extv
6073 if (! in_dest && ! unsignedp)
6074 {
6075 wanted_inner_reg_mode
6076 = insn_data[(int) CODE_FOR_extv].operand[1].mode;
6077 if (wanted_inner_reg_mode == VOIDmode)
6078 wanted_inner_reg_mode = word_mode;
6079
6080 pos_mode = insn_data[(int) CODE_FOR_extv].operand[3].mode;
6081 if (pos_mode == VOIDmode)
6082 pos_mode = word_mode;
6083
6084 extraction_mode = insn_data[(int) CODE_FOR_extv].operand[0].mode;
6085 if (extraction_mode == VOIDmode)
6086 extraction_mode = word_mode;
6087 }
6088 #endif
6089
6090 /* Never narrow an object, since that might not be safe. */
6091
6092 if (mode != VOIDmode
6093 && GET_MODE_SIZE (extraction_mode) < GET_MODE_SIZE (mode))
6094 extraction_mode = mode;
6095
6096 if (pos_rtx && GET_MODE (pos_rtx) != VOIDmode
6097 && GET_MODE_SIZE (pos_mode) < GET_MODE_SIZE (GET_MODE (pos_rtx)))
6098 pos_mode = GET_MODE (pos_rtx);
6099
6100 /* If this is not from memory, the desired mode is wanted_inner_reg_mode;
6101 if we have to change the mode of memory and cannot, the desired mode is
6102 EXTRACTION_MODE. */
6103 if (GET_CODE (inner) != MEM)
6104 wanted_inner_mode = wanted_inner_reg_mode;
6105 else if (inner_mode != wanted_inner_mode
6106 && (mode_dependent_address_p (XEXP (inner, 0))
6107 || MEM_VOLATILE_P (inner)))
6108 wanted_inner_mode = extraction_mode;
6109
6110 orig_pos = pos;
6111
6112 if (BITS_BIG_ENDIAN)
6113 {
6114 /* POS is passed as if BITS_BIG_ENDIAN == 0, so we need to convert it to
6115 BITS_BIG_ENDIAN style. If position is constant, compute new
6116 position. Otherwise, build subtraction.
6117 Note that POS is relative to the mode of the original argument.
6118 If it's a MEM we need to recompute POS relative to that.
6119 However, if we're extracting from (or inserting into) a register,
6120 we want to recompute POS relative to wanted_inner_mode. */
6121 int width = (GET_CODE (inner) == MEM
6122 ? GET_MODE_BITSIZE (is_mode)
6123 : GET_MODE_BITSIZE (wanted_inner_mode));
6124
6125 if (pos_rtx == 0)
6126 pos = width - len - pos;
6127 else
6128 pos_rtx
6129 = gen_rtx_combine (MINUS, GET_MODE (pos_rtx),
6130 GEN_INT (width - len), pos_rtx);
6131 /* POS may be less than 0 now, but we check for that below.
6132 Note that it can only be less than 0 if GET_CODE (inner) != MEM. */
6133 }
6134
6135 /* If INNER has a wider mode, make it smaller. If this is a constant
6136 extract, try to adjust the byte to point to the byte containing
6137 the value. */
6138 if (wanted_inner_mode != VOIDmode
6139 && GET_MODE_SIZE (wanted_inner_mode) < GET_MODE_SIZE (is_mode)
6140 && ((GET_CODE (inner) == MEM
6141 && (inner_mode == wanted_inner_mode
6142 || (! mode_dependent_address_p (XEXP (inner, 0))
6143 && ! MEM_VOLATILE_P (inner))))))
6144 {
6145 int offset = 0;
6146
6147 /* The computations below will be correct if the machine is big
6148 endian in both bits and bytes or little endian in bits and bytes.
6149 If it is mixed, we must adjust. */
6150
6151 /* If bytes are big endian and we had a paradoxical SUBREG, we must
6152 adjust OFFSET to compensate. */
6153 if (BYTES_BIG_ENDIAN
6154 && ! spans_byte
6155 && GET_MODE_SIZE (inner_mode) < GET_MODE_SIZE (is_mode))
6156 offset -= GET_MODE_SIZE (is_mode) - GET_MODE_SIZE (inner_mode);
6157
6158 /* If this is a constant position, we can move to the desired byte. */
6159 if (pos_rtx == 0)
6160 {
6161 offset += pos / BITS_PER_UNIT;
6162 pos %= GET_MODE_BITSIZE (wanted_inner_mode);
6163 }
6164
6165 if (BYTES_BIG_ENDIAN != BITS_BIG_ENDIAN
6166 && ! spans_byte
6167 && is_mode != wanted_inner_mode)
6168 offset = (GET_MODE_SIZE (is_mode)
6169 - GET_MODE_SIZE (wanted_inner_mode) - offset);
6170
6171 if (offset != 0 || inner_mode != wanted_inner_mode)
6172 {
6173 rtx newmem = gen_rtx_MEM (wanted_inner_mode,
6174 plus_constant (XEXP (inner, 0), offset));
6175
6176 MEM_COPY_ATTRIBUTES (newmem, inner);
6177 inner = newmem;
6178 }
6179 }
6180
6181 /* If INNER is not memory, we can always get it into the proper mode. If we
6182 are changing its mode, POS must be a constant and smaller than the size
6183 of the new mode. */
6184 else if (GET_CODE (inner) != MEM)
6185 {
6186 if (GET_MODE (inner) != wanted_inner_mode
6187 && (pos_rtx != 0
6188 || orig_pos + len > GET_MODE_BITSIZE (wanted_inner_mode)))
6189 return 0;
6190
6191 inner = force_to_mode (inner, wanted_inner_mode,
6192 pos_rtx
6193 || len + orig_pos >= HOST_BITS_PER_WIDE_INT
6194 ? ~(HOST_WIDE_INT) 0
6195 : ((((unsigned HOST_WIDE_INT) 1 << len) - 1)
6196 << orig_pos),
6197 NULL_RTX, 0);
6198 }
6199
6200 /* Adjust mode of POS_RTX, if needed. If we want a wider mode, we
6201 have to zero extend. Otherwise, we can just use a SUBREG. */
6202 if (pos_rtx != 0
6203 && GET_MODE_SIZE (pos_mode) > GET_MODE_SIZE (GET_MODE (pos_rtx)))
6204 {
6205 rtx temp = gen_rtx_combine (ZERO_EXTEND, pos_mode, pos_rtx);
6206
6207 /* If we know that no extraneous bits are set, and that the high
6208 bit is not set, convert extraction to cheaper one - eighter
6209 SIGN_EXTENSION or ZERO_EXTENSION, that are equivalent in these
6210 cases. */
6211 if (flag_expensive_optimizations
6212 && (GET_MODE_BITSIZE (GET_MODE (pos_rtx)) <= HOST_BITS_PER_WIDE_INT
6213 && ((nonzero_bits (pos_rtx, GET_MODE (pos_rtx))
6214 & ~(((unsigned HOST_WIDE_INT)
6215 GET_MODE_MASK (GET_MODE (pos_rtx)))
6216 >> 1))
6217 == 0)))
6218 {
6219 rtx temp1 = gen_rtx_SIGN_EXTEND (pos_mode, pos_rtx);
6220
6221 /* Preffer ZERO_EXTENSION, since it gives more information to
6222 backends. */
6223 if (rtx_cost (temp1, SET) < rtx_cost (temp, SET))
6224 temp = temp1;
6225 }
6226 pos_rtx = temp;
6227 }
6228 else if (pos_rtx != 0
6229 && GET_MODE_SIZE (pos_mode) < GET_MODE_SIZE (GET_MODE (pos_rtx)))
6230 pos_rtx = gen_lowpart_for_combine (pos_mode, pos_rtx);
6231
6232 /* Make POS_RTX unless we already have it and it is correct. If we don't
6233 have a POS_RTX but we do have an ORIG_POS_RTX, the latter must
6234 be a CONST_INT. */
6235 if (pos_rtx == 0 && orig_pos_rtx != 0 && INTVAL (orig_pos_rtx) == pos)
6236 pos_rtx = orig_pos_rtx;
6237
6238 else if (pos_rtx == 0)
6239 pos_rtx = GEN_INT (pos);
6240
6241 /* Make the required operation. See if we can use existing rtx. */
6242 new = gen_rtx_combine (unsignedp ? ZERO_EXTRACT : SIGN_EXTRACT,
6243 extraction_mode, inner, GEN_INT (len), pos_rtx);
6244 if (! in_dest)
6245 new = gen_lowpart_for_combine (mode, new);
6246
6247 return new;
6248 }
6249 \f
6250 /* See if X contains an ASHIFT of COUNT or more bits that can be commuted
6251 with any other operations in X. Return X without that shift if so. */
6252
6253 static rtx
6254 extract_left_shift (x, count)
6255 rtx x;
6256 int count;
6257 {
6258 enum rtx_code code = GET_CODE (x);
6259 enum machine_mode mode = GET_MODE (x);
6260 rtx tem;
6261
6262 switch (code)
6263 {
6264 case ASHIFT:
6265 /* This is the shift itself. If it is wide enough, we will return
6266 either the value being shifted if the shift count is equal to
6267 COUNT or a shift for the difference. */
6268 if (GET_CODE (XEXP (x, 1)) == CONST_INT
6269 && INTVAL (XEXP (x, 1)) >= count)
6270 return simplify_shift_const (NULL_RTX, ASHIFT, mode, XEXP (x, 0),
6271 INTVAL (XEXP (x, 1)) - count);
6272 break;
6273
6274 case NEG: case NOT:
6275 if ((tem = extract_left_shift (XEXP (x, 0), count)) != 0)
6276 return gen_unary (code, mode, mode, tem);
6277
6278 break;
6279
6280 case PLUS: case IOR: case XOR: case AND:
6281 /* If we can safely shift this constant and we find the inner shift,
6282 make a new operation. */
6283 if (GET_CODE (XEXP (x,1)) == CONST_INT
6284 && (INTVAL (XEXP (x, 1)) & ((((HOST_WIDE_INT) 1 << count)) - 1)) == 0
6285 && (tem = extract_left_shift (XEXP (x, 0), count)) != 0)
6286 return gen_binary (code, mode, tem,
6287 GEN_INT (INTVAL (XEXP (x, 1)) >> count));
6288
6289 break;
6290
6291 default:
6292 break;
6293 }
6294
6295 return 0;
6296 }
6297 \f
6298 /* Look at the expression rooted at X. Look for expressions
6299 equivalent to ZERO_EXTRACT, SIGN_EXTRACT, ZERO_EXTEND, SIGN_EXTEND.
6300 Form these expressions.
6301
6302 Return the new rtx, usually just X.
6303
6304 Also, for machines like the Vax that don't have logical shift insns,
6305 try to convert logical to arithmetic shift operations in cases where
6306 they are equivalent. This undoes the canonicalizations to logical
6307 shifts done elsewhere.
6308
6309 We try, as much as possible, to re-use rtl expressions to save memory.
6310
6311 IN_CODE says what kind of expression we are processing. Normally, it is
6312 SET. In a memory address (inside a MEM, PLUS or minus, the latter two
6313 being kludges), it is MEM. When processing the arguments of a comparison
6314 or a COMPARE against zero, it is COMPARE. */
6315
6316 static rtx
6317 make_compound_operation (x, in_code)
6318 rtx x;
6319 enum rtx_code in_code;
6320 {
6321 enum rtx_code code = GET_CODE (x);
6322 enum machine_mode mode = GET_MODE (x);
6323 int mode_width = GET_MODE_BITSIZE (mode);
6324 rtx rhs, lhs;
6325 enum rtx_code next_code;
6326 int i;
6327 rtx new = 0;
6328 rtx tem;
6329 const char *fmt;
6330
6331 /* Select the code to be used in recursive calls. Once we are inside an
6332 address, we stay there. If we have a comparison, set to COMPARE,
6333 but once inside, go back to our default of SET. */
6334
6335 next_code = (code == MEM || code == PLUS || code == MINUS ? MEM
6336 : ((code == COMPARE || GET_RTX_CLASS (code) == '<')
6337 && XEXP (x, 1) == const0_rtx) ? COMPARE
6338 : in_code == COMPARE ? SET : in_code);
6339
6340 /* Process depending on the code of this operation. If NEW is set
6341 non-zero, it will be returned. */
6342
6343 switch (code)
6344 {
6345 case ASHIFT:
6346 /* Convert shifts by constants into multiplications if inside
6347 an address. */
6348 if (in_code == MEM && GET_CODE (XEXP (x, 1)) == CONST_INT
6349 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT
6350 && INTVAL (XEXP (x, 1)) >= 0)
6351 {
6352 new = make_compound_operation (XEXP (x, 0), next_code);
6353 new = gen_rtx_combine (MULT, mode, new,
6354 GEN_INT ((HOST_WIDE_INT) 1
6355 << INTVAL (XEXP (x, 1))));
6356 }
6357 break;
6358
6359 case AND:
6360 /* If the second operand is not a constant, we can't do anything
6361 with it. */
6362 if (GET_CODE (XEXP (x, 1)) != CONST_INT)
6363 break;
6364
6365 /* If the constant is a power of two minus one and the first operand
6366 is a logical right shift, make an extraction. */
6367 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
6368 && (i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0)
6369 {
6370 new = make_compound_operation (XEXP (XEXP (x, 0), 0), next_code);
6371 new = make_extraction (mode, new, 0, XEXP (XEXP (x, 0), 1), i, 1,
6372 0, in_code == COMPARE);
6373 }
6374
6375 /* Same as previous, but for (subreg (lshiftrt ...)) in first op. */
6376 else if (GET_CODE (XEXP (x, 0)) == SUBREG
6377 && subreg_lowpart_p (XEXP (x, 0))
6378 && GET_CODE (SUBREG_REG (XEXP (x, 0))) == LSHIFTRT
6379 && (i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0)
6380 {
6381 new = make_compound_operation (XEXP (SUBREG_REG (XEXP (x, 0)), 0),
6382 next_code);
6383 new = make_extraction (GET_MODE (SUBREG_REG (XEXP (x, 0))), new, 0,
6384 XEXP (SUBREG_REG (XEXP (x, 0)), 1), i, 1,
6385 0, in_code == COMPARE);
6386 }
6387 /* Same as previous, but for (xor/ior (lshiftrt...) (lshiftrt...)). */
6388 else if ((GET_CODE (XEXP (x, 0)) == XOR
6389 || GET_CODE (XEXP (x, 0)) == IOR)
6390 && GET_CODE (XEXP (XEXP (x, 0), 0)) == LSHIFTRT
6391 && GET_CODE (XEXP (XEXP (x, 0), 1)) == LSHIFTRT
6392 && (i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0)
6393 {
6394 /* Apply the distributive law, and then try to make extractions. */
6395 new = gen_rtx_combine (GET_CODE (XEXP (x, 0)), mode,
6396 gen_rtx_AND (mode, XEXP (XEXP (x, 0), 0),
6397 XEXP (x, 1)),
6398 gen_rtx_AND (mode, XEXP (XEXP (x, 0), 1),
6399 XEXP (x, 1)));
6400 new = make_compound_operation (new, in_code);
6401 }
6402
6403 /* If we are have (and (rotate X C) M) and C is larger than the number
6404 of bits in M, this is an extraction. */
6405
6406 else if (GET_CODE (XEXP (x, 0)) == ROTATE
6407 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
6408 && (i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0
6409 && i <= INTVAL (XEXP (XEXP (x, 0), 1)))
6410 {
6411 new = make_compound_operation (XEXP (XEXP (x, 0), 0), next_code);
6412 new = make_extraction (mode, new,
6413 (GET_MODE_BITSIZE (mode)
6414 - INTVAL (XEXP (XEXP (x, 0), 1))),
6415 NULL_RTX, i, 1, 0, in_code == COMPARE);
6416 }
6417
6418 /* On machines without logical shifts, if the operand of the AND is
6419 a logical shift and our mask turns off all the propagated sign
6420 bits, we can replace the logical shift with an arithmetic shift. */
6421 else if (ashr_optab->handlers[(int) mode].insn_code != CODE_FOR_nothing
6422 && (lshr_optab->handlers[(int) mode].insn_code
6423 == CODE_FOR_nothing)
6424 && GET_CODE (XEXP (x, 0)) == LSHIFTRT
6425 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
6426 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
6427 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT
6428 && mode_width <= HOST_BITS_PER_WIDE_INT)
6429 {
6430 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
6431
6432 mask >>= INTVAL (XEXP (XEXP (x, 0), 1));
6433 if ((INTVAL (XEXP (x, 1)) & ~mask) == 0)
6434 SUBST (XEXP (x, 0),
6435 gen_rtx_combine (ASHIFTRT, mode,
6436 make_compound_operation (XEXP (XEXP (x, 0), 0),
6437 next_code),
6438 XEXP (XEXP (x, 0), 1)));
6439 }
6440
6441 /* If the constant is one less than a power of two, this might be
6442 representable by an extraction even if no shift is present.
6443 If it doesn't end up being a ZERO_EXTEND, we will ignore it unless
6444 we are in a COMPARE. */
6445 else if ((i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0)
6446 new = make_extraction (mode,
6447 make_compound_operation (XEXP (x, 0),
6448 next_code),
6449 0, NULL_RTX, i, 1, 0, in_code == COMPARE);
6450
6451 /* If we are in a comparison and this is an AND with a power of two,
6452 convert this into the appropriate bit extract. */
6453 else if (in_code == COMPARE
6454 && (i = exact_log2 (INTVAL (XEXP (x, 1)))) >= 0)
6455 new = make_extraction (mode,
6456 make_compound_operation (XEXP (x, 0),
6457 next_code),
6458 i, NULL_RTX, 1, 1, 0, 1);
6459
6460 break;
6461
6462 case LSHIFTRT:
6463 /* If the sign bit is known to be zero, replace this with an
6464 arithmetic shift. */
6465 if (ashr_optab->handlers[(int) mode].insn_code == CODE_FOR_nothing
6466 && lshr_optab->handlers[(int) mode].insn_code != CODE_FOR_nothing
6467 && mode_width <= HOST_BITS_PER_WIDE_INT
6468 && (nonzero_bits (XEXP (x, 0), mode) & (1 << (mode_width - 1))) == 0)
6469 {
6470 new = gen_rtx_combine (ASHIFTRT, mode,
6471 make_compound_operation (XEXP (x, 0),
6472 next_code),
6473 XEXP (x, 1));
6474 break;
6475 }
6476
6477 /* ... fall through ... */
6478
6479 case ASHIFTRT:
6480 lhs = XEXP (x, 0);
6481 rhs = XEXP (x, 1);
6482
6483 /* If we have (ashiftrt (ashift foo C1) C2) with C2 >= C1,
6484 this is a SIGN_EXTRACT. */
6485 if (GET_CODE (rhs) == CONST_INT
6486 && GET_CODE (lhs) == ASHIFT
6487 && GET_CODE (XEXP (lhs, 1)) == CONST_INT
6488 && INTVAL (rhs) >= INTVAL (XEXP (lhs, 1)))
6489 {
6490 new = make_compound_operation (XEXP (lhs, 0), next_code);
6491 new = make_extraction (mode, new,
6492 INTVAL (rhs) - INTVAL (XEXP (lhs, 1)),
6493 NULL_RTX, mode_width - INTVAL (rhs),
6494 code == LSHIFTRT, 0, in_code == COMPARE);
6495 break;
6496 }
6497
6498 /* See if we have operations between an ASHIFTRT and an ASHIFT.
6499 If so, try to merge the shifts into a SIGN_EXTEND. We could
6500 also do this for some cases of SIGN_EXTRACT, but it doesn't
6501 seem worth the effort; the case checked for occurs on Alpha. */
6502
6503 if (GET_RTX_CLASS (GET_CODE (lhs)) != 'o'
6504 && ! (GET_CODE (lhs) == SUBREG
6505 && (GET_RTX_CLASS (GET_CODE (SUBREG_REG (lhs))) == 'o'))
6506 && GET_CODE (rhs) == CONST_INT
6507 && INTVAL (rhs) < HOST_BITS_PER_WIDE_INT
6508 && (new = extract_left_shift (lhs, INTVAL (rhs))) != 0)
6509 new = make_extraction (mode, make_compound_operation (new, next_code),
6510 0, NULL_RTX, mode_width - INTVAL (rhs),
6511 code == LSHIFTRT, 0, in_code == COMPARE);
6512
6513 break;
6514
6515 case SUBREG:
6516 /* Call ourselves recursively on the inner expression. If we are
6517 narrowing the object and it has a different RTL code from
6518 what it originally did, do this SUBREG as a force_to_mode. */
6519
6520 tem = make_compound_operation (SUBREG_REG (x), in_code);
6521 if (GET_CODE (tem) != GET_CODE (SUBREG_REG (x))
6522 && GET_MODE_SIZE (mode) < GET_MODE_SIZE (GET_MODE (tem))
6523 && subreg_lowpart_p (x))
6524 {
6525 rtx newer = force_to_mode (tem, mode, ~(HOST_WIDE_INT) 0,
6526 NULL_RTX, 0);
6527
6528 /* If we have something other than a SUBREG, we might have
6529 done an expansion, so rerun outselves. */
6530 if (GET_CODE (newer) != SUBREG)
6531 newer = make_compound_operation (newer, in_code);
6532
6533 return newer;
6534 }
6535
6536 /* If this is a paradoxical subreg, and the new code is a sign or
6537 zero extension, omit the subreg and widen the extension. If it
6538 is a regular subreg, we can still get rid of the subreg by not
6539 widening so much, or in fact removing the extension entirely. */
6540 if ((GET_CODE (tem) == SIGN_EXTEND
6541 || GET_CODE (tem) == ZERO_EXTEND)
6542 && subreg_lowpart_p (x))
6543 {
6544 if (GET_MODE_SIZE (mode) > GET_MODE_SIZE (GET_MODE (tem))
6545 || (GET_MODE_SIZE (mode) >
6546 GET_MODE_SIZE (GET_MODE (XEXP (tem, 0)))))
6547 tem = gen_rtx_combine (GET_CODE (tem), mode, XEXP (tem, 0));
6548 else
6549 tem = gen_lowpart_for_combine (mode, XEXP (tem, 0));
6550 return tem;
6551 }
6552 break;
6553
6554 default:
6555 break;
6556 }
6557
6558 if (new)
6559 {
6560 x = gen_lowpart_for_combine (mode, new);
6561 code = GET_CODE (x);
6562 }
6563
6564 /* Now recursively process each operand of this operation. */
6565 fmt = GET_RTX_FORMAT (code);
6566 for (i = 0; i < GET_RTX_LENGTH (code); i++)
6567 if (fmt[i] == 'e')
6568 {
6569 new = make_compound_operation (XEXP (x, i), next_code);
6570 SUBST (XEXP (x, i), new);
6571 }
6572
6573 return x;
6574 }
6575 \f
6576 /* Given M see if it is a value that would select a field of bits
6577 within an item, but not the entire word. Return -1 if not.
6578 Otherwise, return the starting position of the field, where 0 is the
6579 low-order bit.
6580
6581 *PLEN is set to the length of the field. */
6582
6583 static int
6584 get_pos_from_mask (m, plen)
6585 unsigned HOST_WIDE_INT m;
6586 unsigned HOST_WIDE_INT *plen;
6587 {
6588 /* Get the bit number of the first 1 bit from the right, -1 if none. */
6589 int pos = exact_log2 (m & -m);
6590 int len;
6591
6592 if (pos < 0)
6593 return -1;
6594
6595 /* Now shift off the low-order zero bits and see if we have a power of
6596 two minus 1. */
6597 len = exact_log2 ((m >> pos) + 1);
6598
6599 if (len <= 0)
6600 return -1;
6601
6602 *plen = len;
6603 return pos;
6604 }
6605 \f
6606 /* See if X can be simplified knowing that we will only refer to it in
6607 MODE and will only refer to those bits that are nonzero in MASK.
6608 If other bits are being computed or if masking operations are done
6609 that select a superset of the bits in MASK, they can sometimes be
6610 ignored.
6611
6612 Return a possibly simplified expression, but always convert X to
6613 MODE. If X is a CONST_INT, AND the CONST_INT with MASK.
6614
6615 Also, if REG is non-zero and X is a register equal in value to REG,
6616 replace X with REG.
6617
6618 If JUST_SELECT is nonzero, don't optimize by noticing that bits in MASK
6619 are all off in X. This is used when X will be complemented, by either
6620 NOT, NEG, or XOR. */
6621
6622 static rtx
6623 force_to_mode (x, mode, mask, reg, just_select)
6624 rtx x;
6625 enum machine_mode mode;
6626 unsigned HOST_WIDE_INT mask;
6627 rtx reg;
6628 int just_select;
6629 {
6630 enum rtx_code code = GET_CODE (x);
6631 int next_select = just_select || code == XOR || code == NOT || code == NEG;
6632 enum machine_mode op_mode;
6633 unsigned HOST_WIDE_INT fuller_mask, nonzero;
6634 rtx op0, op1, temp;
6635
6636 /* If this is a CALL or ASM_OPERANDS, don't do anything. Some of the
6637 code below will do the wrong thing since the mode of such an
6638 expression is VOIDmode.
6639
6640 Also do nothing if X is a CLOBBER; this can happen if X was
6641 the return value from a call to gen_lowpart_for_combine. */
6642 if (code == CALL || code == ASM_OPERANDS || code == CLOBBER)
6643 return x;
6644
6645 /* We want to perform the operation is its present mode unless we know
6646 that the operation is valid in MODE, in which case we do the operation
6647 in MODE. */
6648 op_mode = ((GET_MODE_CLASS (mode) == GET_MODE_CLASS (GET_MODE (x))
6649 && code_to_optab[(int) code] != 0
6650 && (code_to_optab[(int) code]->handlers[(int) mode].insn_code
6651 != CODE_FOR_nothing))
6652 ? mode : GET_MODE (x));
6653
6654 /* It is not valid to do a right-shift in a narrower mode
6655 than the one it came in with. */
6656 if ((code == LSHIFTRT || code == ASHIFTRT)
6657 && GET_MODE_BITSIZE (mode) < GET_MODE_BITSIZE (GET_MODE (x)))
6658 op_mode = GET_MODE (x);
6659
6660 /* Truncate MASK to fit OP_MODE. */
6661 if (op_mode)
6662 mask &= GET_MODE_MASK (op_mode);
6663
6664 /* When we have an arithmetic operation, or a shift whose count we
6665 do not know, we need to assume that all bit the up to the highest-order
6666 bit in MASK will be needed. This is how we form such a mask. */
6667 if (op_mode)
6668 fuller_mask = (GET_MODE_BITSIZE (op_mode) >= HOST_BITS_PER_WIDE_INT
6669 ? GET_MODE_MASK (op_mode)
6670 : (((unsigned HOST_WIDE_INT) 1 << (floor_log2 (mask) + 1))
6671 - 1));
6672 else
6673 fuller_mask = ~(HOST_WIDE_INT) 0;
6674
6675 /* Determine what bits of X are guaranteed to be (non)zero. */
6676 nonzero = nonzero_bits (x, mode);
6677
6678 /* If none of the bits in X are needed, return a zero. */
6679 if (! just_select && (nonzero & mask) == 0)
6680 return const0_rtx;
6681
6682 /* If X is a CONST_INT, return a new one. Do this here since the
6683 test below will fail. */
6684 if (GET_CODE (x) == CONST_INT)
6685 {
6686 HOST_WIDE_INT cval = INTVAL (x) & mask;
6687 int width = GET_MODE_BITSIZE (mode);
6688
6689 /* If MODE is narrower that HOST_WIDE_INT and CVAL is a negative
6690 number, sign extend it. */
6691 if (width > 0 && width < HOST_BITS_PER_WIDE_INT
6692 && (cval & ((HOST_WIDE_INT) 1 << (width - 1))) != 0)
6693 cval |= (HOST_WIDE_INT) -1 << width;
6694
6695 return GEN_INT (cval);
6696 }
6697
6698 /* If X is narrower than MODE and we want all the bits in X's mode, just
6699 get X in the proper mode. */
6700 if (GET_MODE_SIZE (GET_MODE (x)) < GET_MODE_SIZE (mode)
6701 && (GET_MODE_MASK (GET_MODE (x)) & ~mask) == 0)
6702 return gen_lowpart_for_combine (mode, x);
6703
6704 /* If we aren't changing the mode, X is not a SUBREG, and all zero bits in
6705 MASK are already known to be zero in X, we need not do anything. */
6706 if (GET_MODE (x) == mode && code != SUBREG && (~mask & nonzero) == 0)
6707 return x;
6708
6709 switch (code)
6710 {
6711 case CLOBBER:
6712 /* If X is a (clobber (const_int)), return it since we know we are
6713 generating something that won't match. */
6714 return x;
6715
6716 case USE:
6717 /* X is a (use (mem ..)) that was made from a bit-field extraction that
6718 spanned the boundary of the MEM. If we are now masking so it is
6719 within that boundary, we don't need the USE any more. */
6720 if (! BITS_BIG_ENDIAN
6721 && (mask & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
6722 return force_to_mode (XEXP (x, 0), mode, mask, reg, next_select);
6723 break;
6724
6725 case SIGN_EXTEND:
6726 case ZERO_EXTEND:
6727 case ZERO_EXTRACT:
6728 case SIGN_EXTRACT:
6729 x = expand_compound_operation (x);
6730 if (GET_CODE (x) != code)
6731 return force_to_mode (x, mode, mask, reg, next_select);
6732 break;
6733
6734 case REG:
6735 if (reg != 0 && (rtx_equal_p (get_last_value (reg), x)
6736 || rtx_equal_p (reg, get_last_value (x))))
6737 x = reg;
6738 break;
6739
6740 case SUBREG:
6741 if (subreg_lowpart_p (x)
6742 /* We can ignore the effect of this SUBREG if it narrows the mode or
6743 if the constant masks to zero all the bits the mode doesn't
6744 have. */
6745 && ((GET_MODE_SIZE (GET_MODE (x))
6746 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
6747 || (0 == (mask
6748 & GET_MODE_MASK (GET_MODE (x))
6749 & ~GET_MODE_MASK (GET_MODE (SUBREG_REG (x)))))))
6750 return force_to_mode (SUBREG_REG (x), mode, mask, reg, next_select);
6751 break;
6752
6753 case AND:
6754 /* If this is an AND with a constant, convert it into an AND
6755 whose constant is the AND of that constant with MASK. If it
6756 remains an AND of MASK, delete it since it is redundant. */
6757
6758 if (GET_CODE (XEXP (x, 1)) == CONST_INT)
6759 {
6760 x = simplify_and_const_int (x, op_mode, XEXP (x, 0),
6761 mask & INTVAL (XEXP (x, 1)));
6762
6763 /* If X is still an AND, see if it is an AND with a mask that
6764 is just some low-order bits. If so, and it is MASK, we don't
6765 need it. */
6766
6767 if (GET_CODE (x) == AND && GET_CODE (XEXP (x, 1)) == CONST_INT
6768 && (unsigned HOST_WIDE_INT) INTVAL (XEXP (x, 1)) == mask)
6769 x = XEXP (x, 0);
6770
6771 /* If it remains an AND, try making another AND with the bits
6772 in the mode mask that aren't in MASK turned on. If the
6773 constant in the AND is wide enough, this might make a
6774 cheaper constant. */
6775
6776 if (GET_CODE (x) == AND && GET_CODE (XEXP (x, 1)) == CONST_INT
6777 && GET_MODE_MASK (GET_MODE (x)) != mask
6778 && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT)
6779 {
6780 HOST_WIDE_INT cval = (INTVAL (XEXP (x, 1))
6781 | (GET_MODE_MASK (GET_MODE (x)) & ~mask));
6782 int width = GET_MODE_BITSIZE (GET_MODE (x));
6783 rtx y;
6784
6785 /* If MODE is narrower that HOST_WIDE_INT and CVAL is a negative
6786 number, sign extend it. */
6787 if (width > 0 && width < HOST_BITS_PER_WIDE_INT
6788 && (cval & ((HOST_WIDE_INT) 1 << (width - 1))) != 0)
6789 cval |= (HOST_WIDE_INT) -1 << width;
6790
6791 y = gen_binary (AND, GET_MODE (x), XEXP (x, 0), GEN_INT (cval));
6792 if (rtx_cost (y, SET) < rtx_cost (x, SET))
6793 x = y;
6794 }
6795
6796 break;
6797 }
6798
6799 goto binop;
6800
6801 case PLUS:
6802 /* In (and (plus FOO C1) M), if M is a mask that just turns off
6803 low-order bits (as in an alignment operation) and FOO is already
6804 aligned to that boundary, mask C1 to that boundary as well.
6805 This may eliminate that PLUS and, later, the AND. */
6806
6807 {
6808 unsigned int width = GET_MODE_BITSIZE (mode);
6809 unsigned HOST_WIDE_INT smask = mask;
6810
6811 /* If MODE is narrower than HOST_WIDE_INT and mask is a negative
6812 number, sign extend it. */
6813
6814 if (width < HOST_BITS_PER_WIDE_INT
6815 && (smask & ((HOST_WIDE_INT) 1 << (width - 1))) != 0)
6816 smask |= (HOST_WIDE_INT) -1 << width;
6817
6818 if (GET_CODE (XEXP (x, 1)) == CONST_INT
6819 && exact_log2 (- smask) >= 0)
6820 {
6821 #ifdef STACK_BIAS
6822 if (STACK_BIAS
6823 && (XEXP (x, 0) == stack_pointer_rtx
6824 || XEXP (x, 0) == frame_pointer_rtx))
6825 {
6826 int sp_alignment = STACK_BOUNDARY / BITS_PER_UNIT;
6827 unsigned HOST_WIDE_INT sp_mask = GET_MODE_MASK (mode);
6828
6829 sp_mask &= ~(sp_alignment - 1);
6830 if ((sp_mask & ~smask) == 0
6831 && ((INTVAL (XEXP (x, 1)) - STACK_BIAS) & ~smask) != 0)
6832 return force_to_mode (plus_constant (XEXP (x, 0),
6833 ((INTVAL (XEXP (x, 1)) -
6834 STACK_BIAS) & smask)
6835 + STACK_BIAS),
6836 mode, smask, reg, next_select);
6837 }
6838 #endif
6839 if ((nonzero_bits (XEXP (x, 0), mode) & ~smask) == 0
6840 && (INTVAL (XEXP (x, 1)) & ~smask) != 0)
6841 return force_to_mode (plus_constant (XEXP (x, 0),
6842 (INTVAL (XEXP (x, 1))
6843 & smask)),
6844 mode, smask, reg, next_select);
6845 }
6846 }
6847
6848 /* ... fall through ... */
6849
6850 case MULT:
6851 /* For PLUS, MINUS and MULT, we need any bits less significant than the
6852 most significant bit in MASK since carries from those bits will
6853 affect the bits we are interested in. */
6854 mask = fuller_mask;
6855 goto binop;
6856
6857 case MINUS:
6858 /* If X is (minus C Y) where C's least set bit is larger than any bit
6859 in the mask, then we may replace with (neg Y). */
6860 if (GET_CODE (XEXP (x, 0)) == CONST_INT
6861 && (INTVAL (XEXP (x, 0)) & -INTVAL (XEXP (x, 0))) > mask)
6862 {
6863 x = gen_unary (NEG, GET_MODE (x), GET_MODE (x), XEXP (x, 1));
6864 return force_to_mode (x, mode, mask, reg, next_select);
6865 }
6866
6867 /* Similarly, if C contains every bit in the mask, then we may
6868 replace with (not Y). */
6869 if (GET_CODE (XEXP (x, 0)) == CONST_INT
6870 && (INTVAL (XEXP (x, 0)) | mask) == INTVAL (XEXP (x, 0)))
6871 {
6872 x = gen_unary (NOT, GET_MODE (x), GET_MODE (x), XEXP (x, 1));
6873 return force_to_mode (x, mode, mask, reg, next_select);
6874 }
6875
6876 mask = fuller_mask;
6877 goto binop;
6878
6879 case IOR:
6880 case XOR:
6881 /* If X is (ior (lshiftrt FOO C1) C2), try to commute the IOR and
6882 LSHIFTRT so we end up with an (and (lshiftrt (ior ...) ...) ...)
6883 operation which may be a bitfield extraction. Ensure that the
6884 constant we form is not wider than the mode of X. */
6885
6886 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
6887 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
6888 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
6889 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT
6890 && GET_CODE (XEXP (x, 1)) == CONST_INT
6891 && ((INTVAL (XEXP (XEXP (x, 0), 1))
6892 + floor_log2 (INTVAL (XEXP (x, 1))))
6893 < GET_MODE_BITSIZE (GET_MODE (x)))
6894 && (INTVAL (XEXP (x, 1))
6895 & ~nonzero_bits (XEXP (x, 0), GET_MODE (x))) == 0)
6896 {
6897 temp = GEN_INT ((INTVAL (XEXP (x, 1)) & mask)
6898 << INTVAL (XEXP (XEXP (x, 0), 1)));
6899 temp = gen_binary (GET_CODE (x), GET_MODE (x),
6900 XEXP (XEXP (x, 0), 0), temp);
6901 x = gen_binary (LSHIFTRT, GET_MODE (x), temp,
6902 XEXP (XEXP (x, 0), 1));
6903 return force_to_mode (x, mode, mask, reg, next_select);
6904 }
6905
6906 binop:
6907 /* For most binary operations, just propagate into the operation and
6908 change the mode if we have an operation of that mode. */
6909
6910 op0 = gen_lowpart_for_combine (op_mode,
6911 force_to_mode (XEXP (x, 0), mode, mask,
6912 reg, next_select));
6913 op1 = gen_lowpart_for_combine (op_mode,
6914 force_to_mode (XEXP (x, 1), mode, mask,
6915 reg, next_select));
6916
6917 /* If OP1 is a CONST_INT and X is an IOR or XOR, clear bits outside
6918 MASK since OP1 might have been sign-extended but we never want
6919 to turn on extra bits, since combine might have previously relied
6920 on them being off. */
6921 if (GET_CODE (op1) == CONST_INT && (code == IOR || code == XOR)
6922 && (INTVAL (op1) & mask) != 0)
6923 op1 = GEN_INT (INTVAL (op1) & mask);
6924
6925 if (op_mode != GET_MODE (x) || op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
6926 x = gen_binary (code, op_mode, op0, op1);
6927 break;
6928
6929 case ASHIFT:
6930 /* For left shifts, do the same, but just for the first operand.
6931 However, we cannot do anything with shifts where we cannot
6932 guarantee that the counts are smaller than the size of the mode
6933 because such a count will have a different meaning in a
6934 wider mode. */
6935
6936 if (! (GET_CODE (XEXP (x, 1)) == CONST_INT
6937 && INTVAL (XEXP (x, 1)) >= 0
6938 && INTVAL (XEXP (x, 1)) < GET_MODE_BITSIZE (mode))
6939 && ! (GET_MODE (XEXP (x, 1)) != VOIDmode
6940 && (nonzero_bits (XEXP (x, 1), GET_MODE (XEXP (x, 1)))
6941 < (unsigned HOST_WIDE_INT) GET_MODE_BITSIZE (mode))))
6942 break;
6943
6944 /* If the shift count is a constant and we can do arithmetic in
6945 the mode of the shift, refine which bits we need. Otherwise, use the
6946 conservative form of the mask. */
6947 if (GET_CODE (XEXP (x, 1)) == CONST_INT
6948 && INTVAL (XEXP (x, 1)) >= 0
6949 && INTVAL (XEXP (x, 1)) < GET_MODE_BITSIZE (op_mode)
6950 && GET_MODE_BITSIZE (op_mode) <= HOST_BITS_PER_WIDE_INT)
6951 mask >>= INTVAL (XEXP (x, 1));
6952 else
6953 mask = fuller_mask;
6954
6955 op0 = gen_lowpart_for_combine (op_mode,
6956 force_to_mode (XEXP (x, 0), op_mode,
6957 mask, reg, next_select));
6958
6959 if (op_mode != GET_MODE (x) || op0 != XEXP (x, 0))
6960 x = gen_binary (code, op_mode, op0, XEXP (x, 1));
6961 break;
6962
6963 case LSHIFTRT:
6964 /* Here we can only do something if the shift count is a constant,
6965 this shift constant is valid for the host, and we can do arithmetic
6966 in OP_MODE. */
6967
6968 if (GET_CODE (XEXP (x, 1)) == CONST_INT
6969 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT
6970 && GET_MODE_BITSIZE (op_mode) <= HOST_BITS_PER_WIDE_INT)
6971 {
6972 rtx inner = XEXP (x, 0);
6973 unsigned HOST_WIDE_INT inner_mask;
6974
6975 /* Select the mask of the bits we need for the shift operand. */
6976 inner_mask = mask << INTVAL (XEXP (x, 1));
6977
6978 /* We can only change the mode of the shift if we can do arithmetic
6979 in the mode of the shift and INNER_MASK is no wider than the
6980 width of OP_MODE. */
6981 if (GET_MODE_BITSIZE (op_mode) > HOST_BITS_PER_WIDE_INT
6982 || (inner_mask & ~GET_MODE_MASK (op_mode)) != 0)
6983 op_mode = GET_MODE (x);
6984
6985 inner = force_to_mode (inner, op_mode, inner_mask, reg, next_select);
6986
6987 if (GET_MODE (x) != op_mode || inner != XEXP (x, 0))
6988 x = gen_binary (LSHIFTRT, op_mode, inner, XEXP (x, 1));
6989 }
6990
6991 /* If we have (and (lshiftrt FOO C1) C2) where the combination of the
6992 shift and AND produces only copies of the sign bit (C2 is one less
6993 than a power of two), we can do this with just a shift. */
6994
6995 if (GET_CODE (x) == LSHIFTRT
6996 && GET_CODE (XEXP (x, 1)) == CONST_INT
6997 /* The shift puts one of the sign bit copies in the least significant
6998 bit. */
6999 && ((INTVAL (XEXP (x, 1))
7000 + num_sign_bit_copies (XEXP (x, 0), GET_MODE (XEXP (x, 0))))
7001 >= GET_MODE_BITSIZE (GET_MODE (x)))
7002 && exact_log2 (mask + 1) >= 0
7003 /* Number of bits left after the shift must be more than the mask
7004 needs. */
7005 && ((INTVAL (XEXP (x, 1)) + exact_log2 (mask + 1))
7006 <= GET_MODE_BITSIZE (GET_MODE (x)))
7007 /* Must be more sign bit copies than the mask needs. */
7008 && ((int) num_sign_bit_copies (XEXP (x, 0), GET_MODE (XEXP (x, 0)))
7009 >= exact_log2 (mask + 1)))
7010 x = gen_binary (LSHIFTRT, GET_MODE (x), XEXP (x, 0),
7011 GEN_INT (GET_MODE_BITSIZE (GET_MODE (x))
7012 - exact_log2 (mask + 1)));
7013
7014 goto shiftrt;
7015
7016 case ASHIFTRT:
7017 /* If we are just looking for the sign bit, we don't need this shift at
7018 all, even if it has a variable count. */
7019 if (GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
7020 && (mask == ((unsigned HOST_WIDE_INT) 1
7021 << (GET_MODE_BITSIZE (GET_MODE (x)) - 1))))
7022 return force_to_mode (XEXP (x, 0), mode, mask, reg, next_select);
7023
7024 /* If this is a shift by a constant, get a mask that contains those bits
7025 that are not copies of the sign bit. We then have two cases: If
7026 MASK only includes those bits, this can be a logical shift, which may
7027 allow simplifications. If MASK is a single-bit field not within
7028 those bits, we are requesting a copy of the sign bit and hence can
7029 shift the sign bit to the appropriate location. */
7030
7031 if (GET_CODE (XEXP (x, 1)) == CONST_INT && INTVAL (XEXP (x, 1)) >= 0
7032 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT)
7033 {
7034 int i = -1;
7035
7036 /* If the considered data is wider then HOST_WIDE_INT, we can't
7037 represent a mask for all its bits in a single scalar.
7038 But we only care about the lower bits, so calculate these. */
7039
7040 if (GET_MODE_BITSIZE (GET_MODE (x)) > HOST_BITS_PER_WIDE_INT)
7041 {
7042 nonzero = ~(HOST_WIDE_INT) 0;
7043
7044 /* GET_MODE_BITSIZE (GET_MODE (x)) - INTVAL (XEXP (x, 1))
7045 is the number of bits a full-width mask would have set.
7046 We need only shift if these are fewer than nonzero can
7047 hold. If not, we must keep all bits set in nonzero. */
7048
7049 if (GET_MODE_BITSIZE (GET_MODE (x)) - INTVAL (XEXP (x, 1))
7050 < HOST_BITS_PER_WIDE_INT)
7051 nonzero >>= INTVAL (XEXP (x, 1))
7052 + HOST_BITS_PER_WIDE_INT
7053 - GET_MODE_BITSIZE (GET_MODE (x)) ;
7054 }
7055 else
7056 {
7057 nonzero = GET_MODE_MASK (GET_MODE (x));
7058 nonzero >>= INTVAL (XEXP (x, 1));
7059 }
7060
7061 if ((mask & ~nonzero) == 0
7062 || (i = exact_log2 (mask)) >= 0)
7063 {
7064 x = simplify_shift_const
7065 (x, LSHIFTRT, GET_MODE (x), XEXP (x, 0),
7066 i < 0 ? INTVAL (XEXP (x, 1))
7067 : GET_MODE_BITSIZE (GET_MODE (x)) - 1 - i);
7068
7069 if (GET_CODE (x) != ASHIFTRT)
7070 return force_to_mode (x, mode, mask, reg, next_select);
7071 }
7072 }
7073
7074 /* If MASK is 1, convert this to a LSHIFTRT. This can be done
7075 even if the shift count isn't a constant. */
7076 if (mask == 1)
7077 x = gen_binary (LSHIFTRT, GET_MODE (x), XEXP (x, 0), XEXP (x, 1));
7078
7079 shiftrt:
7080
7081 /* If this is a zero- or sign-extension operation that just affects bits
7082 we don't care about, remove it. Be sure the call above returned
7083 something that is still a shift. */
7084
7085 if ((GET_CODE (x) == LSHIFTRT || GET_CODE (x) == ASHIFTRT)
7086 && GET_CODE (XEXP (x, 1)) == CONST_INT
7087 && INTVAL (XEXP (x, 1)) >= 0
7088 && (INTVAL (XEXP (x, 1))
7089 <= GET_MODE_BITSIZE (GET_MODE (x)) - (floor_log2 (mask) + 1))
7090 && GET_CODE (XEXP (x, 0)) == ASHIFT
7091 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
7092 && INTVAL (XEXP (XEXP (x, 0), 1)) == INTVAL (XEXP (x, 1)))
7093 return force_to_mode (XEXP (XEXP (x, 0), 0), mode, mask,
7094 reg, next_select);
7095
7096 break;
7097
7098 case ROTATE:
7099 case ROTATERT:
7100 /* If the shift count is constant and we can do computations
7101 in the mode of X, compute where the bits we care about are.
7102 Otherwise, we can't do anything. Don't change the mode of
7103 the shift or propagate MODE into the shift, though. */
7104 if (GET_CODE (XEXP (x, 1)) == CONST_INT
7105 && INTVAL (XEXP (x, 1)) >= 0)
7106 {
7107 temp = simplify_binary_operation (code == ROTATE ? ROTATERT : ROTATE,
7108 GET_MODE (x), GEN_INT (mask),
7109 XEXP (x, 1));
7110 if (temp && GET_CODE(temp) == CONST_INT)
7111 SUBST (XEXP (x, 0),
7112 force_to_mode (XEXP (x, 0), GET_MODE (x),
7113 INTVAL (temp), reg, next_select));
7114 }
7115 break;
7116
7117 case NEG:
7118 /* If we just want the low-order bit, the NEG isn't needed since it
7119 won't change the low-order bit. */
7120 if (mask == 1)
7121 return force_to_mode (XEXP (x, 0), mode, mask, reg, just_select);
7122
7123 /* We need any bits less significant than the most significant bit in
7124 MASK since carries from those bits will affect the bits we are
7125 interested in. */
7126 mask = fuller_mask;
7127 goto unop;
7128
7129 case NOT:
7130 /* (not FOO) is (xor FOO CONST), so if FOO is an LSHIFTRT, we can do the
7131 same as the XOR case above. Ensure that the constant we form is not
7132 wider than the mode of X. */
7133
7134 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
7135 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
7136 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
7137 && (INTVAL (XEXP (XEXP (x, 0), 1)) + floor_log2 (mask)
7138 < GET_MODE_BITSIZE (GET_MODE (x)))
7139 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT)
7140 {
7141 temp = GEN_INT (mask << INTVAL (XEXP (XEXP (x, 0), 1)));
7142 temp = gen_binary (XOR, GET_MODE (x), XEXP (XEXP (x, 0), 0), temp);
7143 x = gen_binary (LSHIFTRT, GET_MODE (x), temp, XEXP (XEXP (x, 0), 1));
7144
7145 return force_to_mode (x, mode, mask, reg, next_select);
7146 }
7147
7148 /* (and (not FOO) CONST) is (not (or FOO (not CONST))), so we must
7149 use the full mask inside the NOT. */
7150 mask = fuller_mask;
7151
7152 unop:
7153 op0 = gen_lowpart_for_combine (op_mode,
7154 force_to_mode (XEXP (x, 0), mode, mask,
7155 reg, next_select));
7156 if (op_mode != GET_MODE (x) || op0 != XEXP (x, 0))
7157 x = gen_unary (code, op_mode, op_mode, op0);
7158 break;
7159
7160 case NE:
7161 /* (and (ne FOO 0) CONST) can be (and FOO CONST) if CONST is included
7162 in STORE_FLAG_VALUE and FOO has a single bit that might be nonzero,
7163 which is equal to STORE_FLAG_VALUE. */
7164 if ((mask & ~STORE_FLAG_VALUE) == 0 && XEXP (x, 1) == const0_rtx
7165 && exact_log2 (nonzero_bits (XEXP (x, 0), mode)) >= 0
7166 && nonzero_bits (XEXP (x, 0), mode) == STORE_FLAG_VALUE)
7167 return force_to_mode (XEXP (x, 0), mode, mask, reg, next_select);
7168
7169 break;
7170
7171 case IF_THEN_ELSE:
7172 /* We have no way of knowing if the IF_THEN_ELSE can itself be
7173 written in a narrower mode. We play it safe and do not do so. */
7174
7175 SUBST (XEXP (x, 1),
7176 gen_lowpart_for_combine (GET_MODE (x),
7177 force_to_mode (XEXP (x, 1), mode,
7178 mask, reg, next_select)));
7179 SUBST (XEXP (x, 2),
7180 gen_lowpart_for_combine (GET_MODE (x),
7181 force_to_mode (XEXP (x, 2), mode,
7182 mask, reg,next_select)));
7183 break;
7184
7185 default:
7186 break;
7187 }
7188
7189 /* Ensure we return a value of the proper mode. */
7190 return gen_lowpart_for_combine (mode, x);
7191 }
7192 \f
7193 /* Return nonzero if X is an expression that has one of two values depending on
7194 whether some other value is zero or nonzero. In that case, we return the
7195 value that is being tested, *PTRUE is set to the value if the rtx being
7196 returned has a nonzero value, and *PFALSE is set to the other alternative.
7197
7198 If we return zero, we set *PTRUE and *PFALSE to X. */
7199
7200 static rtx
7201 if_then_else_cond (x, ptrue, pfalse)
7202 rtx x;
7203 rtx *ptrue, *pfalse;
7204 {
7205 enum machine_mode mode = GET_MODE (x);
7206 enum rtx_code code = GET_CODE (x);
7207 rtx cond0, cond1, true0, true1, false0, false1;
7208 unsigned HOST_WIDE_INT nz;
7209
7210 /* If we are comparing a value against zero, we are done. */
7211 if ((code == NE || code == EQ)
7212 && GET_CODE (XEXP (x, 1)) == CONST_INT && INTVAL (XEXP (x, 1)) == 0)
7213 {
7214 *ptrue = (code == NE) ? const_true_rtx : const0_rtx;
7215 *pfalse = (code == NE) ? const0_rtx : const_true_rtx;
7216 return XEXP (x, 0);
7217 }
7218
7219 /* If this is a unary operation whose operand has one of two values, apply
7220 our opcode to compute those values. */
7221 else if (GET_RTX_CLASS (code) == '1'
7222 && (cond0 = if_then_else_cond (XEXP (x, 0), &true0, &false0)) != 0)
7223 {
7224 *ptrue = gen_unary (code, mode, GET_MODE (XEXP (x, 0)), true0);
7225 *pfalse = gen_unary (code, mode, GET_MODE (XEXP (x, 0)), false0);
7226 return cond0;
7227 }
7228
7229 /* If this is a COMPARE, do nothing, since the IF_THEN_ELSE we would
7230 make can't possibly match and would suppress other optimizations. */
7231 else if (code == COMPARE)
7232 ;
7233
7234 /* If this is a binary operation, see if either side has only one of two
7235 values. If either one does or if both do and they are conditional on
7236 the same value, compute the new true and false values. */
7237 else if (GET_RTX_CLASS (code) == 'c' || GET_RTX_CLASS (code) == '2'
7238 || GET_RTX_CLASS (code) == '<')
7239 {
7240 cond0 = if_then_else_cond (XEXP (x, 0), &true0, &false0);
7241 cond1 = if_then_else_cond (XEXP (x, 1), &true1, &false1);
7242
7243 if ((cond0 != 0 || cond1 != 0)
7244 && ! (cond0 != 0 && cond1 != 0 && ! rtx_equal_p (cond0, cond1)))
7245 {
7246 /* If if_then_else_cond returned zero, then true/false are the
7247 same rtl. We must copy one of them to prevent invalid rtl
7248 sharing. */
7249 if (cond0 == 0)
7250 true0 = copy_rtx (true0);
7251 else if (cond1 == 0)
7252 true1 = copy_rtx (true1);
7253
7254 *ptrue = gen_binary (code, mode, true0, true1);
7255 *pfalse = gen_binary (code, mode, false0, false1);
7256 return cond0 ? cond0 : cond1;
7257 }
7258
7259 /* See if we have PLUS, IOR, XOR, MINUS or UMAX, where one of the
7260 operands is zero when the other is non-zero, and vice-versa,
7261 and STORE_FLAG_VALUE is 1 or -1. */
7262
7263 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
7264 && (code == PLUS || code == IOR || code == XOR || code == MINUS
7265 || code == UMAX)
7266 && GET_CODE (XEXP (x, 0)) == MULT && GET_CODE (XEXP (x, 1)) == MULT)
7267 {
7268 rtx op0 = XEXP (XEXP (x, 0), 1);
7269 rtx op1 = XEXP (XEXP (x, 1), 1);
7270
7271 cond0 = XEXP (XEXP (x, 0), 0);
7272 cond1 = XEXP (XEXP (x, 1), 0);
7273
7274 if (GET_RTX_CLASS (GET_CODE (cond0)) == '<'
7275 && GET_RTX_CLASS (GET_CODE (cond1)) == '<'
7276 && reversible_comparison_p (cond1)
7277 && ((GET_CODE (cond0) == reverse_condition (GET_CODE (cond1))
7278 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 0))
7279 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 1)))
7280 || ((swap_condition (GET_CODE (cond0))
7281 == reverse_condition (GET_CODE (cond1)))
7282 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 1))
7283 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 0))))
7284 && ! side_effects_p (x))
7285 {
7286 *ptrue = gen_binary (MULT, mode, op0, const_true_rtx);
7287 *pfalse = gen_binary (MULT, mode,
7288 (code == MINUS
7289 ? gen_unary (NEG, mode, mode, op1) : op1),
7290 const_true_rtx);
7291 return cond0;
7292 }
7293 }
7294
7295 /* Similarly for MULT, AND and UMIN, execpt that for these the result
7296 is always zero. */
7297 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
7298 && (code == MULT || code == AND || code == UMIN)
7299 && GET_CODE (XEXP (x, 0)) == MULT && GET_CODE (XEXP (x, 1)) == MULT)
7300 {
7301 cond0 = XEXP (XEXP (x, 0), 0);
7302 cond1 = XEXP (XEXP (x, 1), 0);
7303
7304 if (GET_RTX_CLASS (GET_CODE (cond0)) == '<'
7305 && GET_RTX_CLASS (GET_CODE (cond1)) == '<'
7306 && reversible_comparison_p (cond1)
7307 && ((GET_CODE (cond0) == reverse_condition (GET_CODE (cond1))
7308 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 0))
7309 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 1)))
7310 || ((swap_condition (GET_CODE (cond0))
7311 == reverse_condition (GET_CODE (cond1)))
7312 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 1))
7313 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 0))))
7314 && ! side_effects_p (x))
7315 {
7316 *ptrue = *pfalse = const0_rtx;
7317 return cond0;
7318 }
7319 }
7320 }
7321
7322 else if (code == IF_THEN_ELSE)
7323 {
7324 /* If we have IF_THEN_ELSE already, extract the condition and
7325 canonicalize it if it is NE or EQ. */
7326 cond0 = XEXP (x, 0);
7327 *ptrue = XEXP (x, 1), *pfalse = XEXP (x, 2);
7328 if (GET_CODE (cond0) == NE && XEXP (cond0, 1) == const0_rtx)
7329 return XEXP (cond0, 0);
7330 else if (GET_CODE (cond0) == EQ && XEXP (cond0, 1) == const0_rtx)
7331 {
7332 *ptrue = XEXP (x, 2), *pfalse = XEXP (x, 1);
7333 return XEXP (cond0, 0);
7334 }
7335 else
7336 return cond0;
7337 }
7338
7339 /* If X is a normal SUBREG with both inner and outer modes integral,
7340 we can narrow both the true and false values of the inner expression,
7341 if there is a condition. */
7342 else if (code == SUBREG && GET_MODE_CLASS (mode) == MODE_INT
7343 && GET_MODE_CLASS (GET_MODE (SUBREG_REG (x))) == MODE_INT
7344 && GET_MODE_SIZE (mode) <= GET_MODE_SIZE (GET_MODE (SUBREG_REG (x)))
7345 && 0 != (cond0 = if_then_else_cond (SUBREG_REG (x),
7346 &true0, &false0)))
7347 {
7348 if ((GET_CODE (SUBREG_REG (x)) == REG
7349 || GET_CODE (SUBREG_REG (x)) == MEM
7350 || CONSTANT_P (SUBREG_REG (x)))
7351 && GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))) > UNITS_PER_WORD
7352 && (WORDS_BIG_ENDIAN || SUBREG_WORD (x) != 0))
7353 {
7354 true0 = operand_subword (true0, SUBREG_WORD (x), 0, mode);
7355 false0 = operand_subword (false0, SUBREG_WORD (x), 0, mode);
7356 }
7357 *ptrue = force_to_mode (true0, mode, ~(HOST_WIDE_INT) 0, NULL_RTX, 0);
7358 *pfalse
7359 = force_to_mode (false0, mode, ~(HOST_WIDE_INT) 0, NULL_RTX, 0);
7360
7361 return cond0;
7362 }
7363
7364 /* If X is a constant, this isn't special and will cause confusions
7365 if we treat it as such. Likewise if it is equivalent to a constant. */
7366 else if (CONSTANT_P (x)
7367 || ((cond0 = get_last_value (x)) != 0 && CONSTANT_P (cond0)))
7368 ;
7369
7370 /* If X is known to be either 0 or -1, those are the true and
7371 false values when testing X. */
7372 else if (x == constm1_rtx || x == const0_rtx
7373 || (mode != VOIDmode
7374 && num_sign_bit_copies (x, mode) == GET_MODE_BITSIZE (mode)))
7375 {
7376 *ptrue = constm1_rtx, *pfalse = const0_rtx;
7377 return x;
7378 }
7379
7380 /* Likewise for 0 or a single bit. */
7381 else if (mode != VOIDmode
7382 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
7383 && exact_log2 (nz = nonzero_bits (x, mode)) >= 0)
7384 {
7385 *ptrue = GEN_INT (nz), *pfalse = const0_rtx;
7386 return x;
7387 }
7388
7389 /* Otherwise fail; show no condition with true and false values the same. */
7390 *ptrue = *pfalse = x;
7391 return 0;
7392 }
7393 \f
7394 /* Return the value of expression X given the fact that condition COND
7395 is known to be true when applied to REG as its first operand and VAL
7396 as its second. X is known to not be shared and so can be modified in
7397 place.
7398
7399 We only handle the simplest cases, and specifically those cases that
7400 arise with IF_THEN_ELSE expressions. */
7401
7402 static rtx
7403 known_cond (x, cond, reg, val)
7404 rtx x;
7405 enum rtx_code cond;
7406 rtx reg, val;
7407 {
7408 enum rtx_code code = GET_CODE (x);
7409 rtx temp;
7410 const char *fmt;
7411 int i, j;
7412
7413 if (side_effects_p (x))
7414 return x;
7415
7416 if (cond == EQ && rtx_equal_p (x, reg))
7417 return val;
7418
7419 /* If X is (abs REG) and we know something about REG's relationship
7420 with zero, we may be able to simplify this. */
7421
7422 if (code == ABS && rtx_equal_p (XEXP (x, 0), reg) && val == const0_rtx)
7423 switch (cond)
7424 {
7425 case GE: case GT: case EQ:
7426 return XEXP (x, 0);
7427 case LT: case LE:
7428 return gen_unary (NEG, GET_MODE (XEXP (x, 0)), GET_MODE (XEXP (x, 0)),
7429 XEXP (x, 0));
7430 default:
7431 break;
7432 }
7433
7434 /* The only other cases we handle are MIN, MAX, and comparisons if the
7435 operands are the same as REG and VAL. */
7436
7437 else if (GET_RTX_CLASS (code) == '<' || GET_RTX_CLASS (code) == 'c')
7438 {
7439 if (rtx_equal_p (XEXP (x, 0), val))
7440 cond = swap_condition (cond), temp = val, val = reg, reg = temp;
7441
7442 if (rtx_equal_p (XEXP (x, 0), reg) && rtx_equal_p (XEXP (x, 1), val))
7443 {
7444 if (GET_RTX_CLASS (code) == '<')
7445 {
7446 if (comparison_dominates_p (cond, code))
7447 return const_true_rtx;
7448
7449 code = reverse_condition (code);
7450 if (code != UNKNOWN
7451 && comparison_dominates_p (cond, code))
7452 return const0_rtx;
7453 else
7454 return x;
7455 }
7456 else if (code == SMAX || code == SMIN
7457 || code == UMIN || code == UMAX)
7458 {
7459 int unsignedp = (code == UMIN || code == UMAX);
7460
7461 if (code == SMAX || code == UMAX)
7462 cond = reverse_condition (cond);
7463
7464 switch (cond)
7465 {
7466 case GE: case GT:
7467 return unsignedp ? x : XEXP (x, 1);
7468 case LE: case LT:
7469 return unsignedp ? x : XEXP (x, 0);
7470 case GEU: case GTU:
7471 return unsignedp ? XEXP (x, 1) : x;
7472 case LEU: case LTU:
7473 return unsignedp ? XEXP (x, 0) : x;
7474 default:
7475 break;
7476 }
7477 }
7478 }
7479 }
7480
7481 fmt = GET_RTX_FORMAT (code);
7482 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
7483 {
7484 if (fmt[i] == 'e')
7485 SUBST (XEXP (x, i), known_cond (XEXP (x, i), cond, reg, val));
7486 else if (fmt[i] == 'E')
7487 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
7488 SUBST (XVECEXP (x, i, j), known_cond (XVECEXP (x, i, j),
7489 cond, reg, val));
7490 }
7491
7492 return x;
7493 }
7494 \f
7495 /* See if X and Y are equal for the purposes of seeing if we can rewrite an
7496 assignment as a field assignment. */
7497
7498 static int
7499 rtx_equal_for_field_assignment_p (x, y)
7500 rtx x;
7501 rtx y;
7502 {
7503 if (x == y || rtx_equal_p (x, y))
7504 return 1;
7505
7506 if (x == 0 || y == 0 || GET_MODE (x) != GET_MODE (y))
7507 return 0;
7508
7509 /* Check for a paradoxical SUBREG of a MEM compared with the MEM.
7510 Note that all SUBREGs of MEM are paradoxical; otherwise they
7511 would have been rewritten. */
7512 if (GET_CODE (x) == MEM && GET_CODE (y) == SUBREG
7513 && GET_CODE (SUBREG_REG (y)) == MEM
7514 && rtx_equal_p (SUBREG_REG (y),
7515 gen_lowpart_for_combine (GET_MODE (SUBREG_REG (y)), x)))
7516 return 1;
7517
7518 if (GET_CODE (y) == MEM && GET_CODE (x) == SUBREG
7519 && GET_CODE (SUBREG_REG (x)) == MEM
7520 && rtx_equal_p (SUBREG_REG (x),
7521 gen_lowpart_for_combine (GET_MODE (SUBREG_REG (x)), y)))
7522 return 1;
7523
7524 /* We used to see if get_last_value of X and Y were the same but that's
7525 not correct. In one direction, we'll cause the assignment to have
7526 the wrong destination and in the case, we'll import a register into this
7527 insn that might have already have been dead. So fail if none of the
7528 above cases are true. */
7529 return 0;
7530 }
7531 \f
7532 /* See if X, a SET operation, can be rewritten as a bit-field assignment.
7533 Return that assignment if so.
7534
7535 We only handle the most common cases. */
7536
7537 static rtx
7538 make_field_assignment (x)
7539 rtx x;
7540 {
7541 rtx dest = SET_DEST (x);
7542 rtx src = SET_SRC (x);
7543 rtx assign;
7544 rtx rhs, lhs;
7545 HOST_WIDE_INT c1;
7546 HOST_WIDE_INT pos;
7547 unsigned HOST_WIDE_INT len;
7548 rtx other;
7549 enum machine_mode mode;
7550
7551 /* If SRC was (and (not (ashift (const_int 1) POS)) DEST), this is
7552 a clear of a one-bit field. We will have changed it to
7553 (and (rotate (const_int -2) POS) DEST), so check for that. Also check
7554 for a SUBREG. */
7555
7556 if (GET_CODE (src) == AND && GET_CODE (XEXP (src, 0)) == ROTATE
7557 && GET_CODE (XEXP (XEXP (src, 0), 0)) == CONST_INT
7558 && INTVAL (XEXP (XEXP (src, 0), 0)) == -2
7559 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
7560 {
7561 assign = make_extraction (VOIDmode, dest, 0, XEXP (XEXP (src, 0), 1),
7562 1, 1, 1, 0);
7563 if (assign != 0)
7564 return gen_rtx_SET (VOIDmode, assign, const0_rtx);
7565 return x;
7566 }
7567
7568 else if (GET_CODE (src) == AND && GET_CODE (XEXP (src, 0)) == SUBREG
7569 && subreg_lowpart_p (XEXP (src, 0))
7570 && (GET_MODE_SIZE (GET_MODE (XEXP (src, 0)))
7571 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (XEXP (src, 0)))))
7572 && GET_CODE (SUBREG_REG (XEXP (src, 0))) == ROTATE
7573 && INTVAL (XEXP (SUBREG_REG (XEXP (src, 0)), 0)) == -2
7574 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
7575 {
7576 assign = make_extraction (VOIDmode, dest, 0,
7577 XEXP (SUBREG_REG (XEXP (src, 0)), 1),
7578 1, 1, 1, 0);
7579 if (assign != 0)
7580 return gen_rtx_SET (VOIDmode, assign, const0_rtx);
7581 return x;
7582 }
7583
7584 /* If SRC is (ior (ashift (const_int 1) POS) DEST), this is a set of a
7585 one-bit field. */
7586 else if (GET_CODE (src) == IOR && GET_CODE (XEXP (src, 0)) == ASHIFT
7587 && XEXP (XEXP (src, 0), 0) == const1_rtx
7588 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
7589 {
7590 assign = make_extraction (VOIDmode, dest, 0, XEXP (XEXP (src, 0), 1),
7591 1, 1, 1, 0);
7592 if (assign != 0)
7593 return gen_rtx_SET (VOIDmode, assign, const1_rtx);
7594 return x;
7595 }
7596
7597 /* The other case we handle is assignments into a constant-position
7598 field. They look like (ior/xor (and DEST C1) OTHER). If C1 represents
7599 a mask that has all one bits except for a group of zero bits and
7600 OTHER is known to have zeros where C1 has ones, this is such an
7601 assignment. Compute the position and length from C1. Shift OTHER
7602 to the appropriate position, force it to the required mode, and
7603 make the extraction. Check for the AND in both operands. */
7604
7605 if (GET_CODE (src) != IOR && GET_CODE (src) != XOR)
7606 return x;
7607
7608 rhs = expand_compound_operation (XEXP (src, 0));
7609 lhs = expand_compound_operation (XEXP (src, 1));
7610
7611 if (GET_CODE (rhs) == AND
7612 && GET_CODE (XEXP (rhs, 1)) == CONST_INT
7613 && rtx_equal_for_field_assignment_p (XEXP (rhs, 0), dest))
7614 c1 = INTVAL (XEXP (rhs, 1)), other = lhs;
7615 else if (GET_CODE (lhs) == AND
7616 && GET_CODE (XEXP (lhs, 1)) == CONST_INT
7617 && rtx_equal_for_field_assignment_p (XEXP (lhs, 0), dest))
7618 c1 = INTVAL (XEXP (lhs, 1)), other = rhs;
7619 else
7620 return x;
7621
7622 pos = get_pos_from_mask ((~c1) & GET_MODE_MASK (GET_MODE (dest)), &len);
7623 if (pos < 0 || pos + len > GET_MODE_BITSIZE (GET_MODE (dest))
7624 || GET_MODE_BITSIZE (GET_MODE (dest)) > HOST_BITS_PER_WIDE_INT
7625 || (c1 & nonzero_bits (other, GET_MODE (dest))) != 0)
7626 return x;
7627
7628 assign = make_extraction (VOIDmode, dest, pos, NULL_RTX, len, 1, 1, 0);
7629 if (assign == 0)
7630 return x;
7631
7632 /* The mode to use for the source is the mode of the assignment, or of
7633 what is inside a possible STRICT_LOW_PART. */
7634 mode = (GET_CODE (assign) == STRICT_LOW_PART
7635 ? GET_MODE (XEXP (assign, 0)) : GET_MODE (assign));
7636
7637 /* Shift OTHER right POS places and make it the source, restricting it
7638 to the proper length and mode. */
7639
7640 src = force_to_mode (simplify_shift_const (NULL_RTX, LSHIFTRT,
7641 GET_MODE (src), other, pos),
7642 mode,
7643 GET_MODE_BITSIZE (mode) >= HOST_BITS_PER_WIDE_INT
7644 ? ~(HOST_WIDE_INT) 0
7645 : ((unsigned HOST_WIDE_INT) 1 << len) - 1,
7646 dest, 0);
7647
7648 return gen_rtx_combine (SET, VOIDmode, assign, src);
7649 }
7650 \f
7651 /* See if X is of the form (+ (* a c) (* b c)) and convert to (* (+ a b) c)
7652 if so. */
7653
7654 static rtx
7655 apply_distributive_law (x)
7656 rtx x;
7657 {
7658 enum rtx_code code = GET_CODE (x);
7659 rtx lhs, rhs, other;
7660 rtx tem;
7661 enum rtx_code inner_code;
7662
7663 /* Distributivity is not true for floating point.
7664 It can change the value. So don't do it.
7665 -- rms and moshier@world.std.com. */
7666 if (FLOAT_MODE_P (GET_MODE (x)))
7667 return x;
7668
7669 /* The outer operation can only be one of the following: */
7670 if (code != IOR && code != AND && code != XOR
7671 && code != PLUS && code != MINUS)
7672 return x;
7673
7674 lhs = XEXP (x, 0), rhs = XEXP (x, 1);
7675
7676 /* If either operand is a primitive we can't do anything, so get out
7677 fast. */
7678 if (GET_RTX_CLASS (GET_CODE (lhs)) == 'o'
7679 || GET_RTX_CLASS (GET_CODE (rhs)) == 'o')
7680 return x;
7681
7682 lhs = expand_compound_operation (lhs);
7683 rhs = expand_compound_operation (rhs);
7684 inner_code = GET_CODE (lhs);
7685 if (inner_code != GET_CODE (rhs))
7686 return x;
7687
7688 /* See if the inner and outer operations distribute. */
7689 switch (inner_code)
7690 {
7691 case LSHIFTRT:
7692 case ASHIFTRT:
7693 case AND:
7694 case IOR:
7695 /* These all distribute except over PLUS. */
7696 if (code == PLUS || code == MINUS)
7697 return x;
7698 break;
7699
7700 case MULT:
7701 if (code != PLUS && code != MINUS)
7702 return x;
7703 break;
7704
7705 case ASHIFT:
7706 /* This is also a multiply, so it distributes over everything. */
7707 break;
7708
7709 case SUBREG:
7710 /* Non-paradoxical SUBREGs distributes over all operations, provided
7711 the inner modes and word numbers are the same, this is an extraction
7712 of a low-order part, we don't convert an fp operation to int or
7713 vice versa, and we would not be converting a single-word
7714 operation into a multi-word operation. The latter test is not
7715 required, but it prevents generating unneeded multi-word operations.
7716 Some of the previous tests are redundant given the latter test, but
7717 are retained because they are required for correctness.
7718
7719 We produce the result slightly differently in this case. */
7720
7721 if (GET_MODE (SUBREG_REG (lhs)) != GET_MODE (SUBREG_REG (rhs))
7722 || SUBREG_WORD (lhs) != SUBREG_WORD (rhs)
7723 || ! subreg_lowpart_p (lhs)
7724 || (GET_MODE_CLASS (GET_MODE (lhs))
7725 != GET_MODE_CLASS (GET_MODE (SUBREG_REG (lhs))))
7726 || (GET_MODE_SIZE (GET_MODE (lhs))
7727 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (lhs))))
7728 || GET_MODE_SIZE (GET_MODE (SUBREG_REG (lhs))) > UNITS_PER_WORD)
7729 return x;
7730
7731 tem = gen_binary (code, GET_MODE (SUBREG_REG (lhs)),
7732 SUBREG_REG (lhs), SUBREG_REG (rhs));
7733 return gen_lowpart_for_combine (GET_MODE (x), tem);
7734
7735 default:
7736 return x;
7737 }
7738
7739 /* Set LHS and RHS to the inner operands (A and B in the example
7740 above) and set OTHER to the common operand (C in the example).
7741 These is only one way to do this unless the inner operation is
7742 commutative. */
7743 if (GET_RTX_CLASS (inner_code) == 'c'
7744 && rtx_equal_p (XEXP (lhs, 0), XEXP (rhs, 0)))
7745 other = XEXP (lhs, 0), lhs = XEXP (lhs, 1), rhs = XEXP (rhs, 1);
7746 else if (GET_RTX_CLASS (inner_code) == 'c'
7747 && rtx_equal_p (XEXP (lhs, 0), XEXP (rhs, 1)))
7748 other = XEXP (lhs, 0), lhs = XEXP (lhs, 1), rhs = XEXP (rhs, 0);
7749 else if (GET_RTX_CLASS (inner_code) == 'c'
7750 && rtx_equal_p (XEXP (lhs, 1), XEXP (rhs, 0)))
7751 other = XEXP (lhs, 1), lhs = XEXP (lhs, 0), rhs = XEXP (rhs, 1);
7752 else if (rtx_equal_p (XEXP (lhs, 1), XEXP (rhs, 1)))
7753 other = XEXP (lhs, 1), lhs = XEXP (lhs, 0), rhs = XEXP (rhs, 0);
7754 else
7755 return x;
7756
7757 /* Form the new inner operation, seeing if it simplifies first. */
7758 tem = gen_binary (code, GET_MODE (x), lhs, rhs);
7759
7760 /* There is one exception to the general way of distributing:
7761 (a ^ b) | (a ^ c) -> (~a) & (b ^ c) */
7762 if (code == XOR && inner_code == IOR)
7763 {
7764 inner_code = AND;
7765 other = gen_unary (NOT, GET_MODE (x), GET_MODE (x), other);
7766 }
7767
7768 /* We may be able to continuing distributing the result, so call
7769 ourselves recursively on the inner operation before forming the
7770 outer operation, which we return. */
7771 return gen_binary (inner_code, GET_MODE (x),
7772 apply_distributive_law (tem), other);
7773 }
7774 \f
7775 /* We have X, a logical `and' of VAROP with the constant CONSTOP, to be done
7776 in MODE.
7777
7778 Return an equivalent form, if different from X. Otherwise, return X. If
7779 X is zero, we are to always construct the equivalent form. */
7780
7781 static rtx
7782 simplify_and_const_int (x, mode, varop, constop)
7783 rtx x;
7784 enum machine_mode mode;
7785 rtx varop;
7786 unsigned HOST_WIDE_INT constop;
7787 {
7788 unsigned HOST_WIDE_INT nonzero;
7789 int i;
7790
7791 /* Simplify VAROP knowing that we will be only looking at some of the
7792 bits in it. */
7793 varop = force_to_mode (varop, mode, constop, NULL_RTX, 0);
7794
7795 /* If VAROP is a CLOBBER, we will fail so return it; if it is a
7796 CONST_INT, we are done. */
7797 if (GET_CODE (varop) == CLOBBER || GET_CODE (varop) == CONST_INT)
7798 return varop;
7799
7800 /* See what bits may be nonzero in VAROP. Unlike the general case of
7801 a call to nonzero_bits, here we don't care about bits outside
7802 MODE. */
7803
7804 nonzero = nonzero_bits (varop, mode) & GET_MODE_MASK (mode);
7805 nonzero = trunc_int_for_mode (nonzero, mode);
7806
7807 /* Turn off all bits in the constant that are known to already be zero.
7808 Thus, if the AND isn't needed at all, we will have CONSTOP == NONZERO_BITS
7809 which is tested below. */
7810
7811 constop &= nonzero;
7812
7813 /* If we don't have any bits left, return zero. */
7814 if (constop == 0)
7815 return const0_rtx;
7816
7817 /* If VAROP is a NEG of something known to be zero or 1 and CONSTOP is
7818 a power of two, we can replace this with a ASHIFT. */
7819 if (GET_CODE (varop) == NEG && nonzero_bits (XEXP (varop, 0), mode) == 1
7820 && (i = exact_log2 (constop)) >= 0)
7821 return simplify_shift_const (NULL_RTX, ASHIFT, mode, XEXP (varop, 0), i);
7822
7823 /* If VAROP is an IOR or XOR, apply the AND to both branches of the IOR
7824 or XOR, then try to apply the distributive law. This may eliminate
7825 operations if either branch can be simplified because of the AND.
7826 It may also make some cases more complex, but those cases probably
7827 won't match a pattern either with or without this. */
7828
7829 if (GET_CODE (varop) == IOR || GET_CODE (varop) == XOR)
7830 return
7831 gen_lowpart_for_combine
7832 (mode,
7833 apply_distributive_law
7834 (gen_binary (GET_CODE (varop), GET_MODE (varop),
7835 simplify_and_const_int (NULL_RTX, GET_MODE (varop),
7836 XEXP (varop, 0), constop),
7837 simplify_and_const_int (NULL_RTX, GET_MODE (varop),
7838 XEXP (varop, 1), constop))));
7839
7840 /* Get VAROP in MODE. Try to get a SUBREG if not. Don't make a new SUBREG
7841 if we already had one (just check for the simplest cases). */
7842 if (x && GET_CODE (XEXP (x, 0)) == SUBREG
7843 && GET_MODE (XEXP (x, 0)) == mode
7844 && SUBREG_REG (XEXP (x, 0)) == varop)
7845 varop = XEXP (x, 0);
7846 else
7847 varop = gen_lowpart_for_combine (mode, varop);
7848
7849 /* If we can't make the SUBREG, try to return what we were given. */
7850 if (GET_CODE (varop) == CLOBBER)
7851 return x ? x : varop;
7852
7853 /* If we are only masking insignificant bits, return VAROP. */
7854 if (constop == nonzero)
7855 x = varop;
7856
7857 /* Otherwise, return an AND. See how much, if any, of X we can use. */
7858 else if (x == 0 || GET_CODE (x) != AND || GET_MODE (x) != mode)
7859 x = gen_binary (AND, mode, varop, GEN_INT (constop));
7860
7861 else
7862 {
7863 if (GET_CODE (XEXP (x, 1)) != CONST_INT
7864 || (unsigned HOST_WIDE_INT) INTVAL (XEXP (x, 1)) != constop)
7865 SUBST (XEXP (x, 1), GEN_INT (constop));
7866
7867 SUBST (XEXP (x, 0), varop);
7868 }
7869
7870 return x;
7871 }
7872 \f
7873 /* We let num_sign_bit_copies recur into nonzero_bits as that is useful.
7874 We don't let nonzero_bits recur into num_sign_bit_copies, because that
7875 is less useful. We can't allow both, because that results in exponential
7876 run time recursion. There is a nullstone testcase that triggered
7877 this. This macro avoids accidental uses of num_sign_bit_copies. */
7878 #define num_sign_bit_copies()
7879
7880 /* Given an expression, X, compute which bits in X can be non-zero.
7881 We don't care about bits outside of those defined in MODE.
7882
7883 For most X this is simply GET_MODE_MASK (GET_MODE (MODE)), but if X is
7884 a shift, AND, or zero_extract, we can do better. */
7885
7886 static unsigned HOST_WIDE_INT
7887 nonzero_bits (x, mode)
7888 rtx x;
7889 enum machine_mode mode;
7890 {
7891 unsigned HOST_WIDE_INT nonzero = GET_MODE_MASK (mode);
7892 unsigned HOST_WIDE_INT inner_nz;
7893 enum rtx_code code;
7894 unsigned int mode_width = GET_MODE_BITSIZE (mode);
7895 rtx tem;
7896
7897 /* For floating-point values, assume all bits are needed. */
7898 if (FLOAT_MODE_P (GET_MODE (x)) || FLOAT_MODE_P (mode))
7899 return nonzero;
7900
7901 /* If X is wider than MODE, use its mode instead. */
7902 if (GET_MODE_BITSIZE (GET_MODE (x)) > mode_width)
7903 {
7904 mode = GET_MODE (x);
7905 nonzero = GET_MODE_MASK (mode);
7906 mode_width = GET_MODE_BITSIZE (mode);
7907 }
7908
7909 if (mode_width > HOST_BITS_PER_WIDE_INT)
7910 /* Our only callers in this case look for single bit values. So
7911 just return the mode mask. Those tests will then be false. */
7912 return nonzero;
7913
7914 #ifndef WORD_REGISTER_OPERATIONS
7915 /* If MODE is wider than X, but both are a single word for both the host
7916 and target machines, we can compute this from which bits of the
7917 object might be nonzero in its own mode, taking into account the fact
7918 that on many CISC machines, accessing an object in a wider mode
7919 causes the high-order bits to become undefined. So they are
7920 not known to be zero. */
7921
7922 if (GET_MODE (x) != VOIDmode && GET_MODE (x) != mode
7923 && GET_MODE_BITSIZE (GET_MODE (x)) <= BITS_PER_WORD
7924 && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
7925 && GET_MODE_BITSIZE (mode) > GET_MODE_BITSIZE (GET_MODE (x)))
7926 {
7927 nonzero &= nonzero_bits (x, GET_MODE (x));
7928 nonzero |= GET_MODE_MASK (mode) & ~GET_MODE_MASK (GET_MODE (x));
7929 return nonzero;
7930 }
7931 #endif
7932
7933 code = GET_CODE (x);
7934 switch (code)
7935 {
7936 case REG:
7937 #ifdef POINTERS_EXTEND_UNSIGNED
7938 /* If pointers extend unsigned and this is a pointer in Pmode, say that
7939 all the bits above ptr_mode are known to be zero. */
7940 if (POINTERS_EXTEND_UNSIGNED && GET_MODE (x) == Pmode
7941 && REGNO_POINTER_FLAG (REGNO (x)))
7942 nonzero &= GET_MODE_MASK (ptr_mode);
7943 #endif
7944
7945 #ifdef STACK_BOUNDARY
7946 /* If this is the stack pointer, we may know something about its
7947 alignment. If PUSH_ROUNDING is defined, it is possible for the
7948 stack to be momentarily aligned only to that amount, so we pick
7949 the least alignment. */
7950
7951 /* We can't check for arg_pointer_rtx here, because it is not
7952 guaranteed to have as much alignment as the stack pointer.
7953 In particular, in the Irix6 n64 ABI, the stack has 128 bit
7954 alignment but the argument pointer has only 64 bit alignment. */
7955
7956 if ((x == frame_pointer_rtx
7957 || x == stack_pointer_rtx
7958 || x == hard_frame_pointer_rtx
7959 || (REGNO (x) >= FIRST_VIRTUAL_REGISTER
7960 && REGNO (x) <= LAST_VIRTUAL_REGISTER))
7961 #ifdef STACK_BIAS
7962 && !STACK_BIAS
7963 #endif
7964 )
7965 {
7966 int sp_alignment = STACK_BOUNDARY / BITS_PER_UNIT;
7967
7968 #ifdef PUSH_ROUNDING
7969 if (REGNO (x) == STACK_POINTER_REGNUM && PUSH_ARGS)
7970 sp_alignment = MIN (PUSH_ROUNDING (1), sp_alignment);
7971 #endif
7972
7973 /* We must return here, otherwise we may get a worse result from
7974 one of the choices below. There is nothing useful below as
7975 far as the stack pointer is concerned. */
7976 return nonzero &= ~(sp_alignment - 1);
7977 }
7978 #endif
7979
7980 /* If X is a register whose nonzero bits value is current, use it.
7981 Otherwise, if X is a register whose value we can find, use that
7982 value. Otherwise, use the previously-computed global nonzero bits
7983 for this register. */
7984
7985 if (reg_last_set_value[REGNO (x)] != 0
7986 && reg_last_set_mode[REGNO (x)] == mode
7987 && (reg_last_set_label[REGNO (x)] == label_tick
7988 || (REGNO (x) >= FIRST_PSEUDO_REGISTER
7989 && REG_N_SETS (REGNO (x)) == 1
7990 && ! REGNO_REG_SET_P (BASIC_BLOCK (0)->global_live_at_start,
7991 REGNO (x))))
7992 && INSN_CUID (reg_last_set[REGNO (x)]) < subst_low_cuid)
7993 return reg_last_set_nonzero_bits[REGNO (x)];
7994
7995 tem = get_last_value (x);
7996
7997 if (tem)
7998 {
7999 #ifdef SHORT_IMMEDIATES_SIGN_EXTEND
8000 /* If X is narrower than MODE and TEM is a non-negative
8001 constant that would appear negative in the mode of X,
8002 sign-extend it for use in reg_nonzero_bits because some
8003 machines (maybe most) will actually do the sign-extension
8004 and this is the conservative approach.
8005
8006 ??? For 2.5, try to tighten up the MD files in this regard
8007 instead of this kludge. */
8008
8009 if (GET_MODE_BITSIZE (GET_MODE (x)) < mode_width
8010 && GET_CODE (tem) == CONST_INT
8011 && INTVAL (tem) > 0
8012 && 0 != (INTVAL (tem)
8013 & ((HOST_WIDE_INT) 1
8014 << (GET_MODE_BITSIZE (GET_MODE (x)) - 1))))
8015 tem = GEN_INT (INTVAL (tem)
8016 | ((HOST_WIDE_INT) (-1)
8017 << GET_MODE_BITSIZE (GET_MODE (x))));
8018 #endif
8019 return nonzero_bits (tem, mode);
8020 }
8021 else if (nonzero_sign_valid && reg_nonzero_bits[REGNO (x)])
8022 return reg_nonzero_bits[REGNO (x)] & nonzero;
8023 else
8024 return nonzero;
8025
8026 case CONST_INT:
8027 #ifdef SHORT_IMMEDIATES_SIGN_EXTEND
8028 /* If X is negative in MODE, sign-extend the value. */
8029 if (INTVAL (x) > 0 && mode_width < BITS_PER_WORD
8030 && 0 != (INTVAL (x) & ((HOST_WIDE_INT) 1 << (mode_width - 1))))
8031 return (INTVAL (x) | ((HOST_WIDE_INT) (-1) << mode_width));
8032 #endif
8033
8034 return INTVAL (x);
8035
8036 case MEM:
8037 #ifdef LOAD_EXTEND_OP
8038 /* In many, if not most, RISC machines, reading a byte from memory
8039 zeros the rest of the register. Noticing that fact saves a lot
8040 of extra zero-extends. */
8041 if (LOAD_EXTEND_OP (GET_MODE (x)) == ZERO_EXTEND)
8042 nonzero &= GET_MODE_MASK (GET_MODE (x));
8043 #endif
8044 break;
8045
8046 case EQ: case NE:
8047 case GT: case GTU:
8048 case LT: case LTU:
8049 case GE: case GEU:
8050 case LE: case LEU:
8051
8052 /* If this produces an integer result, we know which bits are set.
8053 Code here used to clear bits outside the mode of X, but that is
8054 now done above. */
8055
8056 if (GET_MODE_CLASS (mode) == MODE_INT
8057 && mode_width <= HOST_BITS_PER_WIDE_INT)
8058 nonzero = STORE_FLAG_VALUE;
8059 break;
8060
8061 case NEG:
8062 #if 0
8063 /* Disabled to avoid exponential mutual recursion between nonzero_bits
8064 and num_sign_bit_copies. */
8065 if (num_sign_bit_copies (XEXP (x, 0), GET_MODE (x))
8066 == GET_MODE_BITSIZE (GET_MODE (x)))
8067 nonzero = 1;
8068 #endif
8069
8070 if (GET_MODE_SIZE (GET_MODE (x)) < mode_width)
8071 nonzero |= (GET_MODE_MASK (mode) & ~GET_MODE_MASK (GET_MODE (x)));
8072 break;
8073
8074 case ABS:
8075 #if 0
8076 /* Disabled to avoid exponential mutual recursion between nonzero_bits
8077 and num_sign_bit_copies. */
8078 if (num_sign_bit_copies (XEXP (x, 0), GET_MODE (x))
8079 == GET_MODE_BITSIZE (GET_MODE (x)))
8080 nonzero = 1;
8081 #endif
8082 break;
8083
8084 case TRUNCATE:
8085 nonzero &= (nonzero_bits (XEXP (x, 0), mode) & GET_MODE_MASK (mode));
8086 break;
8087
8088 case ZERO_EXTEND:
8089 nonzero &= nonzero_bits (XEXP (x, 0), mode);
8090 if (GET_MODE (XEXP (x, 0)) != VOIDmode)
8091 nonzero &= GET_MODE_MASK (GET_MODE (XEXP (x, 0)));
8092 break;
8093
8094 case SIGN_EXTEND:
8095 /* If the sign bit is known clear, this is the same as ZERO_EXTEND.
8096 Otherwise, show all the bits in the outer mode but not the inner
8097 may be non-zero. */
8098 inner_nz = nonzero_bits (XEXP (x, 0), mode);
8099 if (GET_MODE (XEXP (x, 0)) != VOIDmode)
8100 {
8101 inner_nz &= GET_MODE_MASK (GET_MODE (XEXP (x, 0)));
8102 if (inner_nz
8103 & (((HOST_WIDE_INT) 1
8104 << (GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0))) - 1))))
8105 inner_nz |= (GET_MODE_MASK (mode)
8106 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0))));
8107 }
8108
8109 nonzero &= inner_nz;
8110 break;
8111
8112 case AND:
8113 nonzero &= (nonzero_bits (XEXP (x, 0), mode)
8114 & nonzero_bits (XEXP (x, 1), mode));
8115 break;
8116
8117 case XOR: case IOR:
8118 case UMIN: case UMAX: case SMIN: case SMAX:
8119 nonzero &= (nonzero_bits (XEXP (x, 0), mode)
8120 | nonzero_bits (XEXP (x, 1), mode));
8121 break;
8122
8123 case PLUS: case MINUS:
8124 case MULT:
8125 case DIV: case UDIV:
8126 case MOD: case UMOD:
8127 /* We can apply the rules of arithmetic to compute the number of
8128 high- and low-order zero bits of these operations. We start by
8129 computing the width (position of the highest-order non-zero bit)
8130 and the number of low-order zero bits for each value. */
8131 {
8132 unsigned HOST_WIDE_INT nz0 = nonzero_bits (XEXP (x, 0), mode);
8133 unsigned HOST_WIDE_INT nz1 = nonzero_bits (XEXP (x, 1), mode);
8134 int width0 = floor_log2 (nz0) + 1;
8135 int width1 = floor_log2 (nz1) + 1;
8136 int low0 = floor_log2 (nz0 & -nz0);
8137 int low1 = floor_log2 (nz1 & -nz1);
8138 HOST_WIDE_INT op0_maybe_minusp
8139 = (nz0 & ((HOST_WIDE_INT) 1 << (mode_width - 1)));
8140 HOST_WIDE_INT op1_maybe_minusp
8141 = (nz1 & ((HOST_WIDE_INT) 1 << (mode_width - 1)));
8142 unsigned int result_width = mode_width;
8143 int result_low = 0;
8144
8145 switch (code)
8146 {
8147 case PLUS:
8148 #ifdef STACK_BIAS
8149 if (STACK_BIAS
8150 && (XEXP (x, 0) == stack_pointer_rtx
8151 || XEXP (x, 0) == frame_pointer_rtx)
8152 && GET_CODE (XEXP (x, 1)) == CONST_INT)
8153 {
8154 int sp_alignment = STACK_BOUNDARY / BITS_PER_UNIT;
8155
8156 nz0 = (GET_MODE_MASK (mode) & ~(sp_alignment - 1));
8157 nz1 = INTVAL (XEXP (x, 1)) - STACK_BIAS;
8158 width0 = floor_log2 (nz0) + 1;
8159 width1 = floor_log2 (nz1) + 1;
8160 low0 = floor_log2 (nz0 & -nz0);
8161 low1 = floor_log2 (nz1 & -nz1);
8162 }
8163 #endif
8164 result_width = MAX (width0, width1) + 1;
8165 result_low = MIN (low0, low1);
8166 break;
8167 case MINUS:
8168 result_low = MIN (low0, low1);
8169 break;
8170 case MULT:
8171 result_width = width0 + width1;
8172 result_low = low0 + low1;
8173 break;
8174 case DIV:
8175 if (! op0_maybe_minusp && ! op1_maybe_minusp)
8176 result_width = width0;
8177 break;
8178 case UDIV:
8179 result_width = width0;
8180 break;
8181 case MOD:
8182 if (! op0_maybe_minusp && ! op1_maybe_minusp)
8183 result_width = MIN (width0, width1);
8184 result_low = MIN (low0, low1);
8185 break;
8186 case UMOD:
8187 result_width = MIN (width0, width1);
8188 result_low = MIN (low0, low1);
8189 break;
8190 default:
8191 abort ();
8192 }
8193
8194 if (result_width < mode_width)
8195 nonzero &= ((HOST_WIDE_INT) 1 << result_width) - 1;
8196
8197 if (result_low > 0)
8198 nonzero &= ~(((HOST_WIDE_INT) 1 << result_low) - 1);
8199 }
8200 break;
8201
8202 case ZERO_EXTRACT:
8203 if (GET_CODE (XEXP (x, 1)) == CONST_INT
8204 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT)
8205 nonzero &= ((HOST_WIDE_INT) 1 << INTVAL (XEXP (x, 1))) - 1;
8206 break;
8207
8208 case SUBREG:
8209 /* If this is a SUBREG formed for a promoted variable that has
8210 been zero-extended, we know that at least the high-order bits
8211 are zero, though others might be too. */
8212
8213 if (SUBREG_PROMOTED_VAR_P (x) && SUBREG_PROMOTED_UNSIGNED_P (x))
8214 nonzero = (GET_MODE_MASK (GET_MODE (x))
8215 & nonzero_bits (SUBREG_REG (x), GET_MODE (x)));
8216
8217 /* If the inner mode is a single word for both the host and target
8218 machines, we can compute this from which bits of the inner
8219 object might be nonzero. */
8220 if (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x))) <= BITS_PER_WORD
8221 && (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x)))
8222 <= HOST_BITS_PER_WIDE_INT))
8223 {
8224 nonzero &= nonzero_bits (SUBREG_REG (x), mode);
8225
8226 #if defined (WORD_REGISTER_OPERATIONS) && defined (LOAD_EXTEND_OP)
8227 /* If this is a typical RISC machine, we only have to worry
8228 about the way loads are extended. */
8229 if (LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (x))) == SIGN_EXTEND
8230 ? (((nonzero
8231 & (((unsigned HOST_WIDE_INT) 1
8232 << (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x))) - 1))))
8233 != 0))
8234 : LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (x))) != ZERO_EXTEND)
8235 #endif
8236 {
8237 /* On many CISC machines, accessing an object in a wider mode
8238 causes the high-order bits to become undefined. So they are
8239 not known to be zero. */
8240 if (GET_MODE_SIZE (GET_MODE (x))
8241 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
8242 nonzero |= (GET_MODE_MASK (GET_MODE (x))
8243 & ~GET_MODE_MASK (GET_MODE (SUBREG_REG (x))));
8244 }
8245 }
8246 break;
8247
8248 case ASHIFTRT:
8249 case LSHIFTRT:
8250 case ASHIFT:
8251 case ROTATE:
8252 /* The nonzero bits are in two classes: any bits within MODE
8253 that aren't in GET_MODE (x) are always significant. The rest of the
8254 nonzero bits are those that are significant in the operand of
8255 the shift when shifted the appropriate number of bits. This
8256 shows that high-order bits are cleared by the right shift and
8257 low-order bits by left shifts. */
8258 if (GET_CODE (XEXP (x, 1)) == CONST_INT
8259 && INTVAL (XEXP (x, 1)) >= 0
8260 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT)
8261 {
8262 enum machine_mode inner_mode = GET_MODE (x);
8263 unsigned int width = GET_MODE_BITSIZE (inner_mode);
8264 int count = INTVAL (XEXP (x, 1));
8265 unsigned HOST_WIDE_INT mode_mask = GET_MODE_MASK (inner_mode);
8266 unsigned HOST_WIDE_INT op_nonzero = nonzero_bits (XEXP (x, 0), mode);
8267 unsigned HOST_WIDE_INT inner = op_nonzero & mode_mask;
8268 unsigned HOST_WIDE_INT outer = 0;
8269
8270 if (mode_width > width)
8271 outer = (op_nonzero & nonzero & ~mode_mask);
8272
8273 if (code == LSHIFTRT)
8274 inner >>= count;
8275 else if (code == ASHIFTRT)
8276 {
8277 inner >>= count;
8278
8279 /* If the sign bit may have been nonzero before the shift, we
8280 need to mark all the places it could have been copied to
8281 by the shift as possibly nonzero. */
8282 if (inner & ((HOST_WIDE_INT) 1 << (width - 1 - count)))
8283 inner |= (((HOST_WIDE_INT) 1 << count) - 1) << (width - count);
8284 }
8285 else if (code == ASHIFT)
8286 inner <<= count;
8287 else
8288 inner = ((inner << (count % width)
8289 | (inner >> (width - (count % width)))) & mode_mask);
8290
8291 nonzero &= (outer | inner);
8292 }
8293 break;
8294
8295 case FFS:
8296 /* This is at most the number of bits in the mode. */
8297 nonzero = ((HOST_WIDE_INT) 1 << (floor_log2 (mode_width) + 1)) - 1;
8298 break;
8299
8300 case IF_THEN_ELSE:
8301 nonzero &= (nonzero_bits (XEXP (x, 1), mode)
8302 | nonzero_bits (XEXP (x, 2), mode));
8303 break;
8304
8305 default:
8306 break;
8307 }
8308
8309 return nonzero;
8310 }
8311
8312 /* See the macro definition above. */
8313 #undef num_sign_bit_copies
8314 \f
8315 /* Return the number of bits at the high-order end of X that are known to
8316 be equal to the sign bit. X will be used in mode MODE; if MODE is
8317 VOIDmode, X will be used in its own mode. The returned value will always
8318 be between 1 and the number of bits in MODE. */
8319
8320 static unsigned int
8321 num_sign_bit_copies (x, mode)
8322 rtx x;
8323 enum machine_mode mode;
8324 {
8325 enum rtx_code code = GET_CODE (x);
8326 unsigned int bitwidth;
8327 int num0, num1, result;
8328 unsigned HOST_WIDE_INT nonzero;
8329 rtx tem;
8330
8331 /* If we weren't given a mode, use the mode of X. If the mode is still
8332 VOIDmode, we don't know anything. Likewise if one of the modes is
8333 floating-point. */
8334
8335 if (mode == VOIDmode)
8336 mode = GET_MODE (x);
8337
8338 if (mode == VOIDmode || FLOAT_MODE_P (mode) || FLOAT_MODE_P (GET_MODE (x)))
8339 return 1;
8340
8341 bitwidth = GET_MODE_BITSIZE (mode);
8342
8343 /* For a smaller object, just ignore the high bits. */
8344 if (bitwidth < GET_MODE_BITSIZE (GET_MODE (x)))
8345 {
8346 num0 = num_sign_bit_copies (x, GET_MODE (x));
8347 return MAX (1,
8348 num0 - (int) (GET_MODE_BITSIZE (GET_MODE (x)) - bitwidth));
8349 }
8350
8351 if (GET_MODE (x) != VOIDmode && bitwidth > GET_MODE_BITSIZE (GET_MODE (x)))
8352 {
8353 #ifndef WORD_REGISTER_OPERATIONS
8354 /* If this machine does not do all register operations on the entire
8355 register and MODE is wider than the mode of X, we can say nothing
8356 at all about the high-order bits. */
8357 return 1;
8358 #else
8359 /* Likewise on machines that do, if the mode of the object is smaller
8360 than a word and loads of that size don't sign extend, we can say
8361 nothing about the high order bits. */
8362 if (GET_MODE_BITSIZE (GET_MODE (x)) < BITS_PER_WORD
8363 #ifdef LOAD_EXTEND_OP
8364 && LOAD_EXTEND_OP (GET_MODE (x)) != SIGN_EXTEND
8365 #endif
8366 )
8367 return 1;
8368 #endif
8369 }
8370
8371 switch (code)
8372 {
8373 case REG:
8374
8375 #ifdef POINTERS_EXTEND_UNSIGNED
8376 /* If pointers extend signed and this is a pointer in Pmode, say that
8377 all the bits above ptr_mode are known to be sign bit copies. */
8378 if (! POINTERS_EXTEND_UNSIGNED && GET_MODE (x) == Pmode && mode == Pmode
8379 && REGNO_POINTER_FLAG (REGNO (x)))
8380 return GET_MODE_BITSIZE (Pmode) - GET_MODE_BITSIZE (ptr_mode) + 1;
8381 #endif
8382
8383 if (reg_last_set_value[REGNO (x)] != 0
8384 && reg_last_set_mode[REGNO (x)] == mode
8385 && (reg_last_set_label[REGNO (x)] == label_tick
8386 || (REGNO (x) >= FIRST_PSEUDO_REGISTER
8387 && REG_N_SETS (REGNO (x)) == 1
8388 && ! REGNO_REG_SET_P (BASIC_BLOCK (0)->global_live_at_start,
8389 REGNO (x))))
8390 && INSN_CUID (reg_last_set[REGNO (x)]) < subst_low_cuid)
8391 return reg_last_set_sign_bit_copies[REGNO (x)];
8392
8393 tem = get_last_value (x);
8394 if (tem != 0)
8395 return num_sign_bit_copies (tem, mode);
8396
8397 if (nonzero_sign_valid && reg_sign_bit_copies[REGNO (x)] != 0)
8398 return reg_sign_bit_copies[REGNO (x)];
8399 break;
8400
8401 case MEM:
8402 #ifdef LOAD_EXTEND_OP
8403 /* Some RISC machines sign-extend all loads of smaller than a word. */
8404 if (LOAD_EXTEND_OP (GET_MODE (x)) == SIGN_EXTEND)
8405 return MAX (1, ((int) bitwidth
8406 - (int) GET_MODE_BITSIZE (GET_MODE (x)) + 1));
8407 #endif
8408 break;
8409
8410 case CONST_INT:
8411 /* If the constant is negative, take its 1's complement and remask.
8412 Then see how many zero bits we have. */
8413 nonzero = INTVAL (x) & GET_MODE_MASK (mode);
8414 if (bitwidth <= HOST_BITS_PER_WIDE_INT
8415 && (nonzero & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
8416 nonzero = (~nonzero) & GET_MODE_MASK (mode);
8417
8418 return (nonzero == 0 ? bitwidth : bitwidth - floor_log2 (nonzero) - 1);
8419
8420 case SUBREG:
8421 /* If this is a SUBREG for a promoted object that is sign-extended
8422 and we are looking at it in a wider mode, we know that at least the
8423 high-order bits are known to be sign bit copies. */
8424
8425 if (SUBREG_PROMOTED_VAR_P (x) && ! SUBREG_PROMOTED_UNSIGNED_P (x))
8426 {
8427 num0 = num_sign_bit_copies (SUBREG_REG (x), mode);
8428 return MAX ((int) bitwidth
8429 - (int) GET_MODE_BITSIZE (GET_MODE (x)) + 1,
8430 num0);
8431 }
8432
8433 /* For a smaller object, just ignore the high bits. */
8434 if (bitwidth <= GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x))))
8435 {
8436 num0 = num_sign_bit_copies (SUBREG_REG (x), VOIDmode);
8437 return MAX (1, (num0
8438 - (int) (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x)))
8439 - bitwidth)));
8440 }
8441
8442 #ifdef WORD_REGISTER_OPERATIONS
8443 #ifdef LOAD_EXTEND_OP
8444 /* For paradoxical SUBREGs on machines where all register operations
8445 affect the entire register, just look inside. Note that we are
8446 passing MODE to the recursive call, so the number of sign bit copies
8447 will remain relative to that mode, not the inner mode. */
8448
8449 /* This works only if loads sign extend. Otherwise, if we get a
8450 reload for the inner part, it may be loaded from the stack, and
8451 then we lose all sign bit copies that existed before the store
8452 to the stack. */
8453
8454 if ((GET_MODE_SIZE (GET_MODE (x))
8455 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
8456 && LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (x))) == SIGN_EXTEND)
8457 return num_sign_bit_copies (SUBREG_REG (x), mode);
8458 #endif
8459 #endif
8460 break;
8461
8462 case SIGN_EXTRACT:
8463 if (GET_CODE (XEXP (x, 1)) == CONST_INT)
8464 return MAX (1, (int) bitwidth - INTVAL (XEXP (x, 1)));
8465 break;
8466
8467 case SIGN_EXTEND:
8468 return (bitwidth - GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))
8469 + num_sign_bit_copies (XEXP (x, 0), VOIDmode));
8470
8471 case TRUNCATE:
8472 /* For a smaller object, just ignore the high bits. */
8473 num0 = num_sign_bit_copies (XEXP (x, 0), VOIDmode);
8474 return MAX (1, (num0 - (int) (GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))
8475 - bitwidth)));
8476
8477 case NOT:
8478 return num_sign_bit_copies (XEXP (x, 0), mode);
8479
8480 case ROTATE: case ROTATERT:
8481 /* If we are rotating left by a number of bits less than the number
8482 of sign bit copies, we can just subtract that amount from the
8483 number. */
8484 if (GET_CODE (XEXP (x, 1)) == CONST_INT
8485 && INTVAL (XEXP (x, 1)) >= 0 && INTVAL (XEXP (x, 1)) < bitwidth)
8486 {
8487 num0 = num_sign_bit_copies (XEXP (x, 0), mode);
8488 return MAX (1, num0 - (code == ROTATE ? INTVAL (XEXP (x, 1))
8489 : (int) bitwidth - INTVAL (XEXP (x, 1))));
8490 }
8491 break;
8492
8493 case NEG:
8494 /* In general, this subtracts one sign bit copy. But if the value
8495 is known to be positive, the number of sign bit copies is the
8496 same as that of the input. Finally, if the input has just one bit
8497 that might be nonzero, all the bits are copies of the sign bit. */
8498 num0 = num_sign_bit_copies (XEXP (x, 0), mode);
8499 if (bitwidth > HOST_BITS_PER_WIDE_INT)
8500 return num0 > 1 ? num0 - 1 : 1;
8501
8502 nonzero = nonzero_bits (XEXP (x, 0), mode);
8503 if (nonzero == 1)
8504 return bitwidth;
8505
8506 if (num0 > 1
8507 && (((HOST_WIDE_INT) 1 << (bitwidth - 1)) & nonzero))
8508 num0--;
8509
8510 return num0;
8511
8512 case IOR: case AND: case XOR:
8513 case SMIN: case SMAX: case UMIN: case UMAX:
8514 /* Logical operations will preserve the number of sign-bit copies.
8515 MIN and MAX operations always return one of the operands. */
8516 num0 = num_sign_bit_copies (XEXP (x, 0), mode);
8517 num1 = num_sign_bit_copies (XEXP (x, 1), mode);
8518 return MIN (num0, num1);
8519
8520 case PLUS: case MINUS:
8521 /* For addition and subtraction, we can have a 1-bit carry. However,
8522 if we are subtracting 1 from a positive number, there will not
8523 be such a carry. Furthermore, if the positive number is known to
8524 be 0 or 1, we know the result is either -1 or 0. */
8525
8526 if (code == PLUS && XEXP (x, 1) == constm1_rtx
8527 && bitwidth <= HOST_BITS_PER_WIDE_INT)
8528 {
8529 nonzero = nonzero_bits (XEXP (x, 0), mode);
8530 if ((((HOST_WIDE_INT) 1 << (bitwidth - 1)) & nonzero) == 0)
8531 return (nonzero == 1 || nonzero == 0 ? bitwidth
8532 : bitwidth - floor_log2 (nonzero) - 1);
8533 }
8534
8535 num0 = num_sign_bit_copies (XEXP (x, 0), mode);
8536 num1 = num_sign_bit_copies (XEXP (x, 1), mode);
8537 return MAX (1, MIN (num0, num1) - 1);
8538
8539 case MULT:
8540 /* The number of bits of the product is the sum of the number of
8541 bits of both terms. However, unless one of the terms if known
8542 to be positive, we must allow for an additional bit since negating
8543 a negative number can remove one sign bit copy. */
8544
8545 num0 = num_sign_bit_copies (XEXP (x, 0), mode);
8546 num1 = num_sign_bit_copies (XEXP (x, 1), mode);
8547
8548 result = bitwidth - (bitwidth - num0) - (bitwidth - num1);
8549 if (result > 0
8550 && (bitwidth > HOST_BITS_PER_WIDE_INT
8551 || (((nonzero_bits (XEXP (x, 0), mode)
8552 & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
8553 && ((nonzero_bits (XEXP (x, 1), mode)
8554 & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0))))
8555 result--;
8556
8557 return MAX (1, result);
8558
8559 case UDIV:
8560 /* The result must be <= the first operand. If the first operand
8561 has the high bit set, we know nothing about the number of sign
8562 bit copies. */
8563 if (bitwidth > HOST_BITS_PER_WIDE_INT)
8564 return 1;
8565 else if ((nonzero_bits (XEXP (x, 0), mode)
8566 & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
8567 return 1;
8568 else
8569 return num_sign_bit_copies (XEXP (x, 0), mode);
8570
8571 case UMOD:
8572 /* The result must be <= the scond operand. */
8573 return num_sign_bit_copies (XEXP (x, 1), mode);
8574
8575 case DIV:
8576 /* Similar to unsigned division, except that we have to worry about
8577 the case where the divisor is negative, in which case we have
8578 to add 1. */
8579 result = num_sign_bit_copies (XEXP (x, 0), mode);
8580 if (result > 1
8581 && (bitwidth > HOST_BITS_PER_WIDE_INT
8582 || (nonzero_bits (XEXP (x, 1), mode)
8583 & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0))
8584 result--;
8585
8586 return result;
8587
8588 case MOD:
8589 result = num_sign_bit_copies (XEXP (x, 1), mode);
8590 if (result > 1
8591 && (bitwidth > HOST_BITS_PER_WIDE_INT
8592 || (nonzero_bits (XEXP (x, 1), mode)
8593 & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0))
8594 result--;
8595
8596 return result;
8597
8598 case ASHIFTRT:
8599 /* Shifts by a constant add to the number of bits equal to the
8600 sign bit. */
8601 num0 = num_sign_bit_copies (XEXP (x, 0), mode);
8602 if (GET_CODE (XEXP (x, 1)) == CONST_INT
8603 && INTVAL (XEXP (x, 1)) > 0)
8604 num0 = MIN (bitwidth, num0 + INTVAL (XEXP (x, 1)));
8605
8606 return num0;
8607
8608 case ASHIFT:
8609 /* Left shifts destroy copies. */
8610 if (GET_CODE (XEXP (x, 1)) != CONST_INT
8611 || INTVAL (XEXP (x, 1)) < 0
8612 || INTVAL (XEXP (x, 1)) >= bitwidth)
8613 return 1;
8614
8615 num0 = num_sign_bit_copies (XEXP (x, 0), mode);
8616 return MAX (1, num0 - INTVAL (XEXP (x, 1)));
8617
8618 case IF_THEN_ELSE:
8619 num0 = num_sign_bit_copies (XEXP (x, 1), mode);
8620 num1 = num_sign_bit_copies (XEXP (x, 2), mode);
8621 return MIN (num0, num1);
8622
8623 case EQ: case NE: case GE: case GT: case LE: case LT:
8624 case GEU: case GTU: case LEU: case LTU:
8625 if (STORE_FLAG_VALUE == -1)
8626 return bitwidth;
8627 break;
8628
8629 default:
8630 break;
8631 }
8632
8633 /* If we haven't been able to figure it out by one of the above rules,
8634 see if some of the high-order bits are known to be zero. If so,
8635 count those bits and return one less than that amount. If we can't
8636 safely compute the mask for this mode, always return BITWIDTH. */
8637
8638 if (bitwidth > HOST_BITS_PER_WIDE_INT)
8639 return 1;
8640
8641 nonzero = nonzero_bits (x, mode);
8642 return (nonzero & ((HOST_WIDE_INT) 1 << (bitwidth - 1))
8643 ? 1 : bitwidth - floor_log2 (nonzero) - 1);
8644 }
8645 \f
8646 /* Return the number of "extended" bits there are in X, when interpreted
8647 as a quantity in MODE whose signedness is indicated by UNSIGNEDP. For
8648 unsigned quantities, this is the number of high-order zero bits.
8649 For signed quantities, this is the number of copies of the sign bit
8650 minus 1. In both case, this function returns the number of "spare"
8651 bits. For example, if two quantities for which this function returns
8652 at least 1 are added, the addition is known not to overflow.
8653
8654 This function will always return 0 unless called during combine, which
8655 implies that it must be called from a define_split. */
8656
8657 unsigned int
8658 extended_count (x, mode, unsignedp)
8659 rtx x;
8660 enum machine_mode mode;
8661 int unsignedp;
8662 {
8663 if (nonzero_sign_valid == 0)
8664 return 0;
8665
8666 return (unsignedp
8667 ? (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
8668 ? (GET_MODE_BITSIZE (mode) - 1
8669 - floor_log2 (nonzero_bits (x, mode)))
8670 : 0)
8671 : num_sign_bit_copies (x, mode) - 1);
8672 }
8673 \f
8674 /* This function is called from `simplify_shift_const' to merge two
8675 outer operations. Specifically, we have already found that we need
8676 to perform operation *POP0 with constant *PCONST0 at the outermost
8677 position. We would now like to also perform OP1 with constant CONST1
8678 (with *POP0 being done last).
8679
8680 Return 1 if we can do the operation and update *POP0 and *PCONST0 with
8681 the resulting operation. *PCOMP_P is set to 1 if we would need to
8682 complement the innermost operand, otherwise it is unchanged.
8683
8684 MODE is the mode in which the operation will be done. No bits outside
8685 the width of this mode matter. It is assumed that the width of this mode
8686 is smaller than or equal to HOST_BITS_PER_WIDE_INT.
8687
8688 If *POP0 or OP1 are NIL, it means no operation is required. Only NEG, PLUS,
8689 IOR, XOR, and AND are supported. We may set *POP0 to SET if the proper
8690 result is simply *PCONST0.
8691
8692 If the resulting operation cannot be expressed as one operation, we
8693 return 0 and do not change *POP0, *PCONST0, and *PCOMP_P. */
8694
8695 static int
8696 merge_outer_ops (pop0, pconst0, op1, const1, mode, pcomp_p)
8697 enum rtx_code *pop0;
8698 HOST_WIDE_INT *pconst0;
8699 enum rtx_code op1;
8700 HOST_WIDE_INT const1;
8701 enum machine_mode mode;
8702 int *pcomp_p;
8703 {
8704 enum rtx_code op0 = *pop0;
8705 HOST_WIDE_INT const0 = *pconst0;
8706
8707 const0 &= GET_MODE_MASK (mode);
8708 const1 &= GET_MODE_MASK (mode);
8709
8710 /* If OP0 is an AND, clear unimportant bits in CONST1. */
8711 if (op0 == AND)
8712 const1 &= const0;
8713
8714 /* If OP0 or OP1 is NIL, this is easy. Similarly if they are the same or
8715 if OP0 is SET. */
8716
8717 if (op1 == NIL || op0 == SET)
8718 return 1;
8719
8720 else if (op0 == NIL)
8721 op0 = op1, const0 = const1;
8722
8723 else if (op0 == op1)
8724 {
8725 switch (op0)
8726 {
8727 case AND:
8728 const0 &= const1;
8729 break;
8730 case IOR:
8731 const0 |= const1;
8732 break;
8733 case XOR:
8734 const0 ^= const1;
8735 break;
8736 case PLUS:
8737 const0 += const1;
8738 break;
8739 case NEG:
8740 op0 = NIL;
8741 break;
8742 default:
8743 break;
8744 }
8745 }
8746
8747 /* Otherwise, if either is a PLUS or NEG, we can't do anything. */
8748 else if (op0 == PLUS || op1 == PLUS || op0 == NEG || op1 == NEG)
8749 return 0;
8750
8751 /* If the two constants aren't the same, we can't do anything. The
8752 remaining six cases can all be done. */
8753 else if (const0 != const1)
8754 return 0;
8755
8756 else
8757 switch (op0)
8758 {
8759 case IOR:
8760 if (op1 == AND)
8761 /* (a & b) | b == b */
8762 op0 = SET;
8763 else /* op1 == XOR */
8764 /* (a ^ b) | b == a | b */
8765 {;}
8766 break;
8767
8768 case XOR:
8769 if (op1 == AND)
8770 /* (a & b) ^ b == (~a) & b */
8771 op0 = AND, *pcomp_p = 1;
8772 else /* op1 == IOR */
8773 /* (a | b) ^ b == a & ~b */
8774 op0 = AND, *pconst0 = ~const0;
8775 break;
8776
8777 case AND:
8778 if (op1 == IOR)
8779 /* (a | b) & b == b */
8780 op0 = SET;
8781 else /* op1 == XOR */
8782 /* (a ^ b) & b) == (~a) & b */
8783 *pcomp_p = 1;
8784 break;
8785 default:
8786 break;
8787 }
8788
8789 /* Check for NO-OP cases. */
8790 const0 &= GET_MODE_MASK (mode);
8791 if (const0 == 0
8792 && (op0 == IOR || op0 == XOR || op0 == PLUS))
8793 op0 = NIL;
8794 else if (const0 == 0 && op0 == AND)
8795 op0 = SET;
8796 else if ((unsigned HOST_WIDE_INT) const0 == GET_MODE_MASK (mode)
8797 && op0 == AND)
8798 op0 = NIL;
8799
8800 /* ??? Slightly redundant with the above mask, but not entirely.
8801 Moving this above means we'd have to sign-extend the mode mask
8802 for the final test. */
8803 const0 = trunc_int_for_mode (const0, mode);
8804
8805 *pop0 = op0;
8806 *pconst0 = const0;
8807
8808 return 1;
8809 }
8810 \f
8811 /* Simplify a shift of VAROP by COUNT bits. CODE says what kind of shift.
8812 The result of the shift is RESULT_MODE. X, if non-zero, is an expression
8813 that we started with.
8814
8815 The shift is normally computed in the widest mode we find in VAROP, as
8816 long as it isn't a different number of words than RESULT_MODE. Exceptions
8817 are ASHIFTRT and ROTATE, which are always done in their original mode, */
8818
8819 static rtx
8820 simplify_shift_const (x, code, result_mode, varop, input_count)
8821 rtx x;
8822 enum rtx_code code;
8823 enum machine_mode result_mode;
8824 rtx varop;
8825 int input_count;
8826 {
8827 enum rtx_code orig_code = code;
8828 int orig_count = input_count;
8829 unsigned int count;
8830 int signed_count;
8831 enum machine_mode mode = result_mode;
8832 enum machine_mode shift_mode, tmode;
8833 unsigned int mode_words
8834 = (GET_MODE_SIZE (mode) + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD;
8835 /* We form (outer_op (code varop count) (outer_const)). */
8836 enum rtx_code outer_op = NIL;
8837 HOST_WIDE_INT outer_const = 0;
8838 rtx const_rtx;
8839 int complement_p = 0;
8840 rtx new;
8841
8842 /* If we were given an invalid count, don't do anything except exactly
8843 what was requested. */
8844
8845 if (input_count < 0 || input_count > (int) GET_MODE_BITSIZE (mode))
8846 {
8847 if (x)
8848 return x;
8849
8850 return gen_rtx_fmt_ee (code, mode, varop, GEN_INT (input_count));
8851 }
8852
8853 count = input_count;
8854
8855 /* Make sure and truncate the "natural" shift on the way in. We don't
8856 want to do this inside the loop as it makes it more difficult to
8857 combine shifts. */
8858 #ifdef SHIFT_COUNT_TRUNCATED
8859 if (SHIFT_COUNT_TRUNCATED)
8860 count %= GET_MODE_BITSIZE (mode);
8861 #endif
8862
8863 /* Unless one of the branches of the `if' in this loop does a `continue',
8864 we will `break' the loop after the `if'. */
8865
8866 while (count != 0)
8867 {
8868 /* If we have an operand of (clobber (const_int 0)), just return that
8869 value. */
8870 if (GET_CODE (varop) == CLOBBER)
8871 return varop;
8872
8873 /* If we discovered we had to complement VAROP, leave. Making a NOT
8874 here would cause an infinite loop. */
8875 if (complement_p)
8876 break;
8877
8878 /* Convert ROTATERT to ROTATE. */
8879 if (code == ROTATERT)
8880 code = ROTATE, count = GET_MODE_BITSIZE (result_mode) - count;
8881
8882 /* We need to determine what mode we will do the shift in. If the
8883 shift is a right shift or a ROTATE, we must always do it in the mode
8884 it was originally done in. Otherwise, we can do it in MODE, the
8885 widest mode encountered. */
8886 shift_mode
8887 = (code == ASHIFTRT || code == LSHIFTRT || code == ROTATE
8888 ? result_mode : mode);
8889
8890 /* Handle cases where the count is greater than the size of the mode
8891 minus 1. For ASHIFT, use the size minus one as the count (this can
8892 occur when simplifying (lshiftrt (ashiftrt ..))). For rotates,
8893 take the count modulo the size. For other shifts, the result is
8894 zero.
8895
8896 Since these shifts are being produced by the compiler by combining
8897 multiple operations, each of which are defined, we know what the
8898 result is supposed to be. */
8899
8900 if (count > GET_MODE_BITSIZE (shift_mode) - 1)
8901 {
8902 if (code == ASHIFTRT)
8903 count = GET_MODE_BITSIZE (shift_mode) - 1;
8904 else if (code == ROTATE || code == ROTATERT)
8905 count %= GET_MODE_BITSIZE (shift_mode);
8906 else
8907 {
8908 /* We can't simply return zero because there may be an
8909 outer op. */
8910 varop = const0_rtx;
8911 count = 0;
8912 break;
8913 }
8914 }
8915
8916 /* An arithmetic right shift of a quantity known to be -1 or 0
8917 is a no-op. */
8918 if (code == ASHIFTRT
8919 && (num_sign_bit_copies (varop, shift_mode)
8920 == GET_MODE_BITSIZE (shift_mode)))
8921 {
8922 count = 0;
8923 break;
8924 }
8925
8926 /* If we are doing an arithmetic right shift and discarding all but
8927 the sign bit copies, this is equivalent to doing a shift by the
8928 bitsize minus one. Convert it into that shift because it will often
8929 allow other simplifications. */
8930
8931 if (code == ASHIFTRT
8932 && (count + num_sign_bit_copies (varop, shift_mode)
8933 >= GET_MODE_BITSIZE (shift_mode)))
8934 count = GET_MODE_BITSIZE (shift_mode) - 1;
8935
8936 /* We simplify the tests below and elsewhere by converting
8937 ASHIFTRT to LSHIFTRT if we know the sign bit is clear.
8938 `make_compound_operation' will convert it to a ASHIFTRT for
8939 those machines (such as Vax) that don't have a LSHIFTRT. */
8940 if (GET_MODE_BITSIZE (shift_mode) <= HOST_BITS_PER_WIDE_INT
8941 && code == ASHIFTRT
8942 && ((nonzero_bits (varop, shift_mode)
8943 & ((HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (shift_mode) - 1)))
8944 == 0))
8945 code = LSHIFTRT;
8946
8947 switch (GET_CODE (varop))
8948 {
8949 case SIGN_EXTEND:
8950 case ZERO_EXTEND:
8951 case SIGN_EXTRACT:
8952 case ZERO_EXTRACT:
8953 new = expand_compound_operation (varop);
8954 if (new != varop)
8955 {
8956 varop = new;
8957 continue;
8958 }
8959 break;
8960
8961 case MEM:
8962 /* If we have (xshiftrt (mem ...) C) and C is MODE_WIDTH
8963 minus the width of a smaller mode, we can do this with a
8964 SIGN_EXTEND or ZERO_EXTEND from the narrower memory location. */
8965 if ((code == ASHIFTRT || code == LSHIFTRT)
8966 && ! mode_dependent_address_p (XEXP (varop, 0))
8967 && ! MEM_VOLATILE_P (varop)
8968 && (tmode = mode_for_size (GET_MODE_BITSIZE (mode) - count,
8969 MODE_INT, 1)) != BLKmode)
8970 {
8971 if (BYTES_BIG_ENDIAN)
8972 new = gen_rtx_MEM (tmode, XEXP (varop, 0));
8973 else
8974 new = gen_rtx_MEM (tmode,
8975 plus_constant (XEXP (varop, 0),
8976 count / BITS_PER_UNIT));
8977
8978 MEM_COPY_ATTRIBUTES (new, varop);
8979 varop = gen_rtx_combine (code == ASHIFTRT ? SIGN_EXTEND
8980 : ZERO_EXTEND, mode, new);
8981 count = 0;
8982 continue;
8983 }
8984 break;
8985
8986 case USE:
8987 /* Similar to the case above, except that we can only do this if
8988 the resulting mode is the same as that of the underlying
8989 MEM and adjust the address depending on the *bits* endianness
8990 because of the way that bit-field extract insns are defined. */
8991 if ((code == ASHIFTRT || code == LSHIFTRT)
8992 && (tmode = mode_for_size (GET_MODE_BITSIZE (mode) - count,
8993 MODE_INT, 1)) != BLKmode
8994 && tmode == GET_MODE (XEXP (varop, 0)))
8995 {
8996 if (BITS_BIG_ENDIAN)
8997 new = XEXP (varop, 0);
8998 else
8999 {
9000 new = copy_rtx (XEXP (varop, 0));
9001 SUBST (XEXP (new, 0),
9002 plus_constant (XEXP (new, 0),
9003 count / BITS_PER_UNIT));
9004 }
9005
9006 varop = gen_rtx_combine (code == ASHIFTRT ? SIGN_EXTEND
9007 : ZERO_EXTEND, mode, new);
9008 count = 0;
9009 continue;
9010 }
9011 break;
9012
9013 case SUBREG:
9014 /* If VAROP is a SUBREG, strip it as long as the inner operand has
9015 the same number of words as what we've seen so far. Then store
9016 the widest mode in MODE. */
9017 if (subreg_lowpart_p (varop)
9018 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (varop)))
9019 > GET_MODE_SIZE (GET_MODE (varop)))
9020 && (((GET_MODE_SIZE (GET_MODE (SUBREG_REG (varop)))
9021 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
9022 == mode_words))
9023 {
9024 varop = SUBREG_REG (varop);
9025 if (GET_MODE_SIZE (GET_MODE (varop)) > GET_MODE_SIZE (mode))
9026 mode = GET_MODE (varop);
9027 continue;
9028 }
9029 break;
9030
9031 case MULT:
9032 /* Some machines use MULT instead of ASHIFT because MULT
9033 is cheaper. But it is still better on those machines to
9034 merge two shifts into one. */
9035 if (GET_CODE (XEXP (varop, 1)) == CONST_INT
9036 && exact_log2 (INTVAL (XEXP (varop, 1))) >= 0)
9037 {
9038 varop
9039 = gen_binary (ASHIFT, GET_MODE (varop), XEXP (varop, 0),
9040 GEN_INT (exact_log2 (INTVAL (XEXP (varop, 1)))));
9041 continue;
9042 }
9043 break;
9044
9045 case UDIV:
9046 /* Similar, for when divides are cheaper. */
9047 if (GET_CODE (XEXP (varop, 1)) == CONST_INT
9048 && exact_log2 (INTVAL (XEXP (varop, 1))) >= 0)
9049 {
9050 varop
9051 = gen_binary (LSHIFTRT, GET_MODE (varop), XEXP (varop, 0),
9052 GEN_INT (exact_log2 (INTVAL (XEXP (varop, 1)))));
9053 continue;
9054 }
9055 break;
9056
9057 case ASHIFTRT:
9058 /* If we are extracting just the sign bit of an arithmetic right
9059 shift, that shift is not needed. */
9060 if (code == LSHIFTRT && count == GET_MODE_BITSIZE (result_mode) - 1)
9061 {
9062 varop = XEXP (varop, 0);
9063 continue;
9064 }
9065
9066 /* ... fall through ... */
9067
9068 case LSHIFTRT:
9069 case ASHIFT:
9070 case ROTATE:
9071 /* Here we have two nested shifts. The result is usually the
9072 AND of a new shift with a mask. We compute the result below. */
9073 if (GET_CODE (XEXP (varop, 1)) == CONST_INT
9074 && INTVAL (XEXP (varop, 1)) >= 0
9075 && INTVAL (XEXP (varop, 1)) < GET_MODE_BITSIZE (GET_MODE (varop))
9076 && GET_MODE_BITSIZE (result_mode) <= HOST_BITS_PER_WIDE_INT
9077 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
9078 {
9079 enum rtx_code first_code = GET_CODE (varop);
9080 unsigned int first_count = INTVAL (XEXP (varop, 1));
9081 unsigned HOST_WIDE_INT mask;
9082 rtx mask_rtx;
9083
9084 /* We have one common special case. We can't do any merging if
9085 the inner code is an ASHIFTRT of a smaller mode. However, if
9086 we have (ashift:M1 (subreg:M1 (ashiftrt:M2 FOO C1) 0) C2)
9087 with C2 == GET_MODE_BITSIZE (M1) - GET_MODE_BITSIZE (M2),
9088 we can convert it to
9089 (ashiftrt:M1 (ashift:M1 (and:M1 (subreg:M1 FOO 0 C2) C3) C1).
9090 This simplifies certain SIGN_EXTEND operations. */
9091 if (code == ASHIFT && first_code == ASHIFTRT
9092 && (GET_MODE_BITSIZE (result_mode)
9093 - GET_MODE_BITSIZE (GET_MODE (varop))) == count)
9094 {
9095 /* C3 has the low-order C1 bits zero. */
9096
9097 mask = (GET_MODE_MASK (mode)
9098 & ~(((HOST_WIDE_INT) 1 << first_count) - 1));
9099
9100 varop = simplify_and_const_int (NULL_RTX, result_mode,
9101 XEXP (varop, 0), mask);
9102 varop = simplify_shift_const (NULL_RTX, ASHIFT, result_mode,
9103 varop, count);
9104 count = first_count;
9105 code = ASHIFTRT;
9106 continue;
9107 }
9108
9109 /* If this was (ashiftrt (ashift foo C1) C2) and FOO has more
9110 than C1 high-order bits equal to the sign bit, we can convert
9111 this to either an ASHIFT or a ASHIFTRT depending on the
9112 two counts.
9113
9114 We cannot do this if VAROP's mode is not SHIFT_MODE. */
9115
9116 if (code == ASHIFTRT && first_code == ASHIFT
9117 && GET_MODE (varop) == shift_mode
9118 && (num_sign_bit_copies (XEXP (varop, 0), shift_mode)
9119 > first_count))
9120 {
9121 varop = XEXP (varop, 0);
9122
9123 signed_count = count - first_count;
9124 if (signed_count < 0)
9125 count = -signed_count, code = ASHIFT;
9126 else
9127 count = signed_count;
9128
9129 continue;
9130 }
9131
9132 /* There are some cases we can't do. If CODE is ASHIFTRT,
9133 we can only do this if FIRST_CODE is also ASHIFTRT.
9134
9135 We can't do the case when CODE is ROTATE and FIRST_CODE is
9136 ASHIFTRT.
9137
9138 If the mode of this shift is not the mode of the outer shift,
9139 we can't do this if either shift is a right shift or ROTATE.
9140
9141 Finally, we can't do any of these if the mode is too wide
9142 unless the codes are the same.
9143
9144 Handle the case where the shift codes are the same
9145 first. */
9146
9147 if (code == first_code)
9148 {
9149 if (GET_MODE (varop) != result_mode
9150 && (code == ASHIFTRT || code == LSHIFTRT
9151 || code == ROTATE))
9152 break;
9153
9154 count += first_count;
9155 varop = XEXP (varop, 0);
9156 continue;
9157 }
9158
9159 if (code == ASHIFTRT
9160 || (code == ROTATE && first_code == ASHIFTRT)
9161 || GET_MODE_BITSIZE (mode) > HOST_BITS_PER_WIDE_INT
9162 || (GET_MODE (varop) != result_mode
9163 && (first_code == ASHIFTRT || first_code == LSHIFTRT
9164 || first_code == ROTATE
9165 || code == ROTATE)))
9166 break;
9167
9168 /* To compute the mask to apply after the shift, shift the
9169 nonzero bits of the inner shift the same way the
9170 outer shift will. */
9171
9172 mask_rtx = GEN_INT (nonzero_bits (varop, GET_MODE (varop)));
9173
9174 mask_rtx
9175 = simplify_binary_operation (code, result_mode, mask_rtx,
9176 GEN_INT (count));
9177
9178 /* Give up if we can't compute an outer operation to use. */
9179 if (mask_rtx == 0
9180 || GET_CODE (mask_rtx) != CONST_INT
9181 || ! merge_outer_ops (&outer_op, &outer_const, AND,
9182 INTVAL (mask_rtx),
9183 result_mode, &complement_p))
9184 break;
9185
9186 /* If the shifts are in the same direction, we add the
9187 counts. Otherwise, we subtract them. */
9188 signed_count = count;
9189 if ((code == ASHIFTRT || code == LSHIFTRT)
9190 == (first_code == ASHIFTRT || first_code == LSHIFTRT))
9191 signed_count += first_count;
9192 else
9193 signed_count -= first_count;
9194
9195 /* If COUNT is positive, the new shift is usually CODE,
9196 except for the two exceptions below, in which case it is
9197 FIRST_CODE. If the count is negative, FIRST_CODE should
9198 always be used */
9199 if (signed_count > 0
9200 && ((first_code == ROTATE && code == ASHIFT)
9201 || (first_code == ASHIFTRT && code == LSHIFTRT)))
9202 code = first_code, count = signed_count;
9203 else if (signed_count < 0)
9204 code = first_code, count = -signed_count;
9205 else
9206 count = signed_count;
9207
9208 varop = XEXP (varop, 0);
9209 continue;
9210 }
9211
9212 /* If we have (A << B << C) for any shift, we can convert this to
9213 (A << C << B). This wins if A is a constant. Only try this if
9214 B is not a constant. */
9215
9216 else if (GET_CODE (varop) == code
9217 && GET_CODE (XEXP (varop, 1)) != CONST_INT
9218 && 0 != (new
9219 = simplify_binary_operation (code, mode,
9220 XEXP (varop, 0),
9221 GEN_INT (count))))
9222 {
9223 varop = gen_rtx_combine (code, mode, new, XEXP (varop, 1));
9224 count = 0;
9225 continue;
9226 }
9227 break;
9228
9229 case NOT:
9230 /* Make this fit the case below. */
9231 varop = gen_rtx_combine (XOR, mode, XEXP (varop, 0),
9232 GEN_INT (GET_MODE_MASK (mode)));
9233 continue;
9234
9235 case IOR:
9236 case AND:
9237 case XOR:
9238 /* If we have (xshiftrt (ior (plus X (const_int -1)) X) C)
9239 with C the size of VAROP - 1 and the shift is logical if
9240 STORE_FLAG_VALUE is 1 and arithmetic if STORE_FLAG_VALUE is -1,
9241 we have an (le X 0) operation. If we have an arithmetic shift
9242 and STORE_FLAG_VALUE is 1 or we have a logical shift with
9243 STORE_FLAG_VALUE of -1, we have a (neg (le X 0)) operation. */
9244
9245 if (GET_CODE (varop) == IOR && GET_CODE (XEXP (varop, 0)) == PLUS
9246 && XEXP (XEXP (varop, 0), 1) == constm1_rtx
9247 && (STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
9248 && (code == LSHIFTRT || code == ASHIFTRT)
9249 && count == GET_MODE_BITSIZE (GET_MODE (varop)) - 1
9250 && rtx_equal_p (XEXP (XEXP (varop, 0), 0), XEXP (varop, 1)))
9251 {
9252 count = 0;
9253 varop = gen_rtx_combine (LE, GET_MODE (varop), XEXP (varop, 1),
9254 const0_rtx);
9255
9256 if (STORE_FLAG_VALUE == 1 ? code == ASHIFTRT : code == LSHIFTRT)
9257 varop = gen_rtx_combine (NEG, GET_MODE (varop), varop);
9258
9259 continue;
9260 }
9261
9262 /* If we have (shift (logical)), move the logical to the outside
9263 to allow it to possibly combine with another logical and the
9264 shift to combine with another shift. This also canonicalizes to
9265 what a ZERO_EXTRACT looks like. Also, some machines have
9266 (and (shift)) insns. */
9267
9268 if (GET_CODE (XEXP (varop, 1)) == CONST_INT
9269 && (new = simplify_binary_operation (code, result_mode,
9270 XEXP (varop, 1),
9271 GEN_INT (count))) != 0
9272 && GET_CODE (new) == CONST_INT
9273 && merge_outer_ops (&outer_op, &outer_const, GET_CODE (varop),
9274 INTVAL (new), result_mode, &complement_p))
9275 {
9276 varop = XEXP (varop, 0);
9277 continue;
9278 }
9279
9280 /* If we can't do that, try to simplify the shift in each arm of the
9281 logical expression, make a new logical expression, and apply
9282 the inverse distributive law. */
9283 {
9284 rtx lhs = simplify_shift_const (NULL_RTX, code, shift_mode,
9285 XEXP (varop, 0), count);
9286 rtx rhs = simplify_shift_const (NULL_RTX, code, shift_mode,
9287 XEXP (varop, 1), count);
9288
9289 varop = gen_binary (GET_CODE (varop), shift_mode, lhs, rhs);
9290 varop = apply_distributive_law (varop);
9291
9292 count = 0;
9293 }
9294 break;
9295
9296 case EQ:
9297 /* convert (lshiftrt (eq FOO 0) C) to (xor FOO 1) if STORE_FLAG_VALUE
9298 says that the sign bit can be tested, FOO has mode MODE, C is
9299 GET_MODE_BITSIZE (MODE) - 1, and FOO has only its low-order bit
9300 that may be nonzero. */
9301 if (code == LSHIFTRT
9302 && XEXP (varop, 1) == const0_rtx
9303 && GET_MODE (XEXP (varop, 0)) == result_mode
9304 && count == GET_MODE_BITSIZE (result_mode) - 1
9305 && GET_MODE_BITSIZE (result_mode) <= HOST_BITS_PER_WIDE_INT
9306 && ((STORE_FLAG_VALUE
9307 & ((HOST_WIDE_INT) 1
9308 < (GET_MODE_BITSIZE (result_mode) - 1))))
9309 && nonzero_bits (XEXP (varop, 0), result_mode) == 1
9310 && merge_outer_ops (&outer_op, &outer_const, XOR,
9311 (HOST_WIDE_INT) 1, result_mode,
9312 &complement_p))
9313 {
9314 varop = XEXP (varop, 0);
9315 count = 0;
9316 continue;
9317 }
9318 break;
9319
9320 case NEG:
9321 /* (lshiftrt (neg A) C) where A is either 0 or 1 and C is one less
9322 than the number of bits in the mode is equivalent to A. */
9323 if (code == LSHIFTRT && count == GET_MODE_BITSIZE (result_mode) - 1
9324 && nonzero_bits (XEXP (varop, 0), result_mode) == 1)
9325 {
9326 varop = XEXP (varop, 0);
9327 count = 0;
9328 continue;
9329 }
9330
9331 /* NEG commutes with ASHIFT since it is multiplication. Move the
9332 NEG outside to allow shifts to combine. */
9333 if (code == ASHIFT
9334 && merge_outer_ops (&outer_op, &outer_const, NEG,
9335 (HOST_WIDE_INT) 0, result_mode,
9336 &complement_p))
9337 {
9338 varop = XEXP (varop, 0);
9339 continue;
9340 }
9341 break;
9342
9343 case PLUS:
9344 /* (lshiftrt (plus A -1) C) where A is either 0 or 1 and C
9345 is one less than the number of bits in the mode is
9346 equivalent to (xor A 1). */
9347 if (code == LSHIFTRT && count == GET_MODE_BITSIZE (result_mode) - 1
9348 && XEXP (varop, 1) == constm1_rtx
9349 && nonzero_bits (XEXP (varop, 0), result_mode) == 1
9350 && merge_outer_ops (&outer_op, &outer_const, XOR,
9351 (HOST_WIDE_INT) 1, result_mode,
9352 &complement_p))
9353 {
9354 count = 0;
9355 varop = XEXP (varop, 0);
9356 continue;
9357 }
9358
9359 /* If we have (xshiftrt (plus FOO BAR) C), and the only bits
9360 that might be nonzero in BAR are those being shifted out and those
9361 bits are known zero in FOO, we can replace the PLUS with FOO.
9362 Similarly in the other operand order. This code occurs when
9363 we are computing the size of a variable-size array. */
9364
9365 if ((code == ASHIFTRT || code == LSHIFTRT)
9366 && count < HOST_BITS_PER_WIDE_INT
9367 && nonzero_bits (XEXP (varop, 1), result_mode) >> count == 0
9368 && (nonzero_bits (XEXP (varop, 1), result_mode)
9369 & nonzero_bits (XEXP (varop, 0), result_mode)) == 0)
9370 {
9371 varop = XEXP (varop, 0);
9372 continue;
9373 }
9374 else if ((code == ASHIFTRT || code == LSHIFTRT)
9375 && count < HOST_BITS_PER_WIDE_INT
9376 && GET_MODE_BITSIZE (result_mode) <= HOST_BITS_PER_WIDE_INT
9377 && 0 == (nonzero_bits (XEXP (varop, 0), result_mode)
9378 >> count)
9379 && 0 == (nonzero_bits (XEXP (varop, 0), result_mode)
9380 & nonzero_bits (XEXP (varop, 1),
9381 result_mode)))
9382 {
9383 varop = XEXP (varop, 1);
9384 continue;
9385 }
9386
9387 /* (ashift (plus foo C) N) is (plus (ashift foo N) C'). */
9388 if (code == ASHIFT
9389 && GET_CODE (XEXP (varop, 1)) == CONST_INT
9390 && (new = simplify_binary_operation (ASHIFT, result_mode,
9391 XEXP (varop, 1),
9392 GEN_INT (count))) != 0
9393 && GET_CODE (new) == CONST_INT
9394 && merge_outer_ops (&outer_op, &outer_const, PLUS,
9395 INTVAL (new), result_mode, &complement_p))
9396 {
9397 varop = XEXP (varop, 0);
9398 continue;
9399 }
9400 break;
9401
9402 case MINUS:
9403 /* If we have (xshiftrt (minus (ashiftrt X C)) X) C)
9404 with C the size of VAROP - 1 and the shift is logical if
9405 STORE_FLAG_VALUE is 1 and arithmetic if STORE_FLAG_VALUE is -1,
9406 we have a (gt X 0) operation. If the shift is arithmetic with
9407 STORE_FLAG_VALUE of 1 or logical with STORE_FLAG_VALUE == -1,
9408 we have a (neg (gt X 0)) operation. */
9409
9410 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
9411 && GET_CODE (XEXP (varop, 0)) == ASHIFTRT
9412 && count == GET_MODE_BITSIZE (GET_MODE (varop)) - 1
9413 && (code == LSHIFTRT || code == ASHIFTRT)
9414 && GET_CODE (XEXP (XEXP (varop, 0), 1)) == CONST_INT
9415 && INTVAL (XEXP (XEXP (varop, 0), 1)) == count
9416 && rtx_equal_p (XEXP (XEXP (varop, 0), 0), XEXP (varop, 1)))
9417 {
9418 count = 0;
9419 varop = gen_rtx_combine (GT, GET_MODE (varop), XEXP (varop, 1),
9420 const0_rtx);
9421
9422 if (STORE_FLAG_VALUE == 1 ? code == ASHIFTRT : code == LSHIFTRT)
9423 varop = gen_rtx_combine (NEG, GET_MODE (varop), varop);
9424
9425 continue;
9426 }
9427 break;
9428
9429 case TRUNCATE:
9430 /* Change (lshiftrt (truncate (lshiftrt))) to (truncate (lshiftrt))
9431 if the truncate does not affect the value. */
9432 if (code == LSHIFTRT
9433 && GET_CODE (XEXP (varop, 0)) == LSHIFTRT
9434 && GET_CODE (XEXP (XEXP (varop, 0), 1)) == CONST_INT
9435 && (INTVAL (XEXP (XEXP (varop, 0), 1))
9436 >= (GET_MODE_BITSIZE (GET_MODE (XEXP (varop, 0)))
9437 - GET_MODE_BITSIZE (GET_MODE (varop)))))
9438 {
9439 rtx varop_inner = XEXP (varop, 0);
9440
9441 varop_inner
9442 = gen_rtx_combine (LSHIFTRT, GET_MODE (varop_inner),
9443 XEXP (varop_inner, 0),
9444 GEN_INT (count
9445 + INTVAL (XEXP (varop_inner, 1))));
9446 varop = gen_rtx_combine (TRUNCATE, GET_MODE (varop),
9447 varop_inner);
9448 count = 0;
9449 continue;
9450 }
9451 break;
9452
9453 default:
9454 break;
9455 }
9456
9457 break;
9458 }
9459
9460 /* We need to determine what mode to do the shift in. If the shift is
9461 a right shift or ROTATE, we must always do it in the mode it was
9462 originally done in. Otherwise, we can do it in MODE, the widest mode
9463 encountered. The code we care about is that of the shift that will
9464 actually be done, not the shift that was originally requested. */
9465 shift_mode
9466 = (code == ASHIFTRT || code == LSHIFTRT || code == ROTATE
9467 ? result_mode : mode);
9468
9469 /* We have now finished analyzing the shift. The result should be
9470 a shift of type CODE with SHIFT_MODE shifting VAROP COUNT places. If
9471 OUTER_OP is non-NIL, it is an operation that needs to be applied
9472 to the result of the shift. OUTER_CONST is the relevant constant,
9473 but we must turn off all bits turned off in the shift.
9474
9475 If we were passed a value for X, see if we can use any pieces of
9476 it. If not, make new rtx. */
9477
9478 if (x && GET_RTX_CLASS (GET_CODE (x)) == '2'
9479 && GET_CODE (XEXP (x, 1)) == CONST_INT
9480 && INTVAL (XEXP (x, 1)) == count)
9481 const_rtx = XEXP (x, 1);
9482 else
9483 const_rtx = GEN_INT (count);
9484
9485 if (x && GET_CODE (XEXP (x, 0)) == SUBREG
9486 && GET_MODE (XEXP (x, 0)) == shift_mode
9487 && SUBREG_REG (XEXP (x, 0)) == varop)
9488 varop = XEXP (x, 0);
9489 else if (GET_MODE (varop) != shift_mode)
9490 varop = gen_lowpart_for_combine (shift_mode, varop);
9491
9492 /* If we can't make the SUBREG, try to return what we were given. */
9493 if (GET_CODE (varop) == CLOBBER)
9494 return x ? x : varop;
9495
9496 new = simplify_binary_operation (code, shift_mode, varop, const_rtx);
9497 if (new != 0)
9498 x = new;
9499 else
9500 {
9501 if (x == 0 || GET_CODE (x) != code || GET_MODE (x) != shift_mode)
9502 x = gen_rtx_combine (code, shift_mode, varop, const_rtx);
9503
9504 SUBST (XEXP (x, 0), varop);
9505 SUBST (XEXP (x, 1), const_rtx);
9506 }
9507
9508 /* If we have an outer operation and we just made a shift, it is
9509 possible that we could have simplified the shift were it not
9510 for the outer operation. So try to do the simplification
9511 recursively. */
9512
9513 if (outer_op != NIL && GET_CODE (x) == code
9514 && GET_CODE (XEXP (x, 1)) == CONST_INT)
9515 x = simplify_shift_const (x, code, shift_mode, XEXP (x, 0),
9516 INTVAL (XEXP (x, 1)));
9517
9518 /* If we were doing a LSHIFTRT in a wider mode than it was originally,
9519 turn off all the bits that the shift would have turned off. */
9520 if (orig_code == LSHIFTRT && result_mode != shift_mode)
9521 x = simplify_and_const_int (NULL_RTX, shift_mode, x,
9522 GET_MODE_MASK (result_mode) >> orig_count);
9523
9524 /* Do the remainder of the processing in RESULT_MODE. */
9525 x = gen_lowpart_for_combine (result_mode, x);
9526
9527 /* If COMPLEMENT_P is set, we have to complement X before doing the outer
9528 operation. */
9529 if (complement_p)
9530 x = gen_unary (NOT, result_mode, result_mode, x);
9531
9532 if (outer_op != NIL)
9533 {
9534 if (GET_MODE_BITSIZE (result_mode) < HOST_BITS_PER_WIDE_INT)
9535 outer_const = trunc_int_for_mode (outer_const, result_mode);
9536
9537 if (outer_op == AND)
9538 x = simplify_and_const_int (NULL_RTX, result_mode, x, outer_const);
9539 else if (outer_op == SET)
9540 /* This means that we have determined that the result is
9541 equivalent to a constant. This should be rare. */
9542 x = GEN_INT (outer_const);
9543 else if (GET_RTX_CLASS (outer_op) == '1')
9544 x = gen_unary (outer_op, result_mode, result_mode, x);
9545 else
9546 x = gen_binary (outer_op, result_mode, x, GEN_INT (outer_const));
9547 }
9548
9549 return x;
9550 }
9551 \f
9552 /* Like recog, but we receive the address of a pointer to a new pattern.
9553 We try to match the rtx that the pointer points to.
9554 If that fails, we may try to modify or replace the pattern,
9555 storing the replacement into the same pointer object.
9556
9557 Modifications include deletion or addition of CLOBBERs.
9558
9559 PNOTES is a pointer to a location where any REG_UNUSED notes added for
9560 the CLOBBERs are placed.
9561
9562 The value is the final insn code from the pattern ultimately matched,
9563 or -1. */
9564
9565 static int
9566 recog_for_combine (pnewpat, insn, pnotes)
9567 rtx *pnewpat;
9568 rtx insn;
9569 rtx *pnotes;
9570 {
9571 register rtx pat = *pnewpat;
9572 int insn_code_number;
9573 int num_clobbers_to_add = 0;
9574 int i;
9575 rtx notes = 0;
9576 rtx old_notes;
9577
9578 /* If PAT is a PARALLEL, check to see if it contains the CLOBBER
9579 we use to indicate that something didn't match. If we find such a
9580 thing, force rejection. */
9581 if (GET_CODE (pat) == PARALLEL)
9582 for (i = XVECLEN (pat, 0) - 1; i >= 0; i--)
9583 if (GET_CODE (XVECEXP (pat, 0, i)) == CLOBBER
9584 && XEXP (XVECEXP (pat, 0, i), 0) == const0_rtx)
9585 return -1;
9586
9587 /* Remove the old notes prior to trying to recognize the new pattern. */
9588 old_notes = REG_NOTES (insn);
9589 REG_NOTES (insn) = 0;
9590
9591 /* Is the result of combination a valid instruction? */
9592 insn_code_number = recog (pat, insn, &num_clobbers_to_add);
9593
9594 /* If it isn't, there is the possibility that we previously had an insn
9595 that clobbered some register as a side effect, but the combined
9596 insn doesn't need to do that. So try once more without the clobbers
9597 unless this represents an ASM insn. */
9598
9599 if (insn_code_number < 0 && ! check_asm_operands (pat)
9600 && GET_CODE (pat) == PARALLEL)
9601 {
9602 int pos;
9603
9604 for (pos = 0, i = 0; i < XVECLEN (pat, 0); i++)
9605 if (GET_CODE (XVECEXP (pat, 0, i)) != CLOBBER)
9606 {
9607 if (i != pos)
9608 SUBST (XVECEXP (pat, 0, pos), XVECEXP (pat, 0, i));
9609 pos++;
9610 }
9611
9612 SUBST_INT (XVECLEN (pat, 0), pos);
9613
9614 if (pos == 1)
9615 pat = XVECEXP (pat, 0, 0);
9616
9617 insn_code_number = recog (pat, insn, &num_clobbers_to_add);
9618 }
9619
9620 REG_NOTES (insn) = old_notes;
9621
9622 /* If we had any clobbers to add, make a new pattern than contains
9623 them. Then check to make sure that all of them are dead. */
9624 if (num_clobbers_to_add)
9625 {
9626 rtx newpat = gen_rtx_PARALLEL (VOIDmode,
9627 gen_rtvec (GET_CODE (pat) == PARALLEL
9628 ? (XVECLEN (pat, 0)
9629 + num_clobbers_to_add)
9630 : num_clobbers_to_add + 1));
9631
9632 if (GET_CODE (pat) == PARALLEL)
9633 for (i = 0; i < XVECLEN (pat, 0); i++)
9634 XVECEXP (newpat, 0, i) = XVECEXP (pat, 0, i);
9635 else
9636 XVECEXP (newpat, 0, 0) = pat;
9637
9638 add_clobbers (newpat, insn_code_number);
9639
9640 for (i = XVECLEN (newpat, 0) - num_clobbers_to_add;
9641 i < XVECLEN (newpat, 0); i++)
9642 {
9643 if (GET_CODE (XEXP (XVECEXP (newpat, 0, i), 0)) == REG
9644 && ! reg_dead_at_p (XEXP (XVECEXP (newpat, 0, i), 0), insn))
9645 return -1;
9646 notes = gen_rtx_EXPR_LIST (REG_UNUSED,
9647 XEXP (XVECEXP (newpat, 0, i), 0), notes);
9648 }
9649 pat = newpat;
9650 }
9651
9652 *pnewpat = pat;
9653 *pnotes = notes;
9654
9655 return insn_code_number;
9656 }
9657 \f
9658 /* Like gen_lowpart but for use by combine. In combine it is not possible
9659 to create any new pseudoregs. However, it is safe to create
9660 invalid memory addresses, because combine will try to recognize
9661 them and all they will do is make the combine attempt fail.
9662
9663 If for some reason this cannot do its job, an rtx
9664 (clobber (const_int 0)) is returned.
9665 An insn containing that will not be recognized. */
9666
9667 #undef gen_lowpart
9668
9669 static rtx
9670 gen_lowpart_for_combine (mode, x)
9671 enum machine_mode mode;
9672 register rtx x;
9673 {
9674 rtx result;
9675
9676 if (GET_MODE (x) == mode)
9677 return x;
9678
9679 /* We can only support MODE being wider than a word if X is a
9680 constant integer or has a mode the same size. */
9681
9682 if (GET_MODE_SIZE (mode) > UNITS_PER_WORD
9683 && ! ((GET_MODE (x) == VOIDmode
9684 && (GET_CODE (x) == CONST_INT
9685 || GET_CODE (x) == CONST_DOUBLE))
9686 || GET_MODE_SIZE (GET_MODE (x)) == GET_MODE_SIZE (mode)))
9687 return gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
9688
9689 /* X might be a paradoxical (subreg (mem)). In that case, gen_lowpart
9690 won't know what to do. So we will strip off the SUBREG here and
9691 process normally. */
9692 if (GET_CODE (x) == SUBREG && GET_CODE (SUBREG_REG (x)) == MEM)
9693 {
9694 x = SUBREG_REG (x);
9695 if (GET_MODE (x) == mode)
9696 return x;
9697 }
9698
9699 result = gen_lowpart_common (mode, x);
9700 #ifdef CLASS_CANNOT_CHANGE_MODE
9701 if (result != 0
9702 && GET_CODE (result) == SUBREG
9703 && GET_CODE (SUBREG_REG (result)) == REG
9704 && REGNO (SUBREG_REG (result)) >= FIRST_PSEUDO_REGISTER
9705 && CLASS_CANNOT_CHANGE_MODE_P (GET_MODE (result),
9706 GET_MODE (SUBREG_REG (result))))
9707 REG_CHANGES_MODE (REGNO (SUBREG_REG (result))) = 1;
9708 #endif
9709
9710 if (result)
9711 return result;
9712
9713 if (GET_CODE (x) == MEM)
9714 {
9715 register int offset = 0;
9716 rtx new;
9717
9718 /* Refuse to work on a volatile memory ref or one with a mode-dependent
9719 address. */
9720 if (MEM_VOLATILE_P (x) || mode_dependent_address_p (XEXP (x, 0)))
9721 return gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
9722
9723 /* If we want to refer to something bigger than the original memref,
9724 generate a perverse subreg instead. That will force a reload
9725 of the original memref X. */
9726 if (GET_MODE_SIZE (GET_MODE (x)) < GET_MODE_SIZE (mode))
9727 return gen_rtx_SUBREG (mode, x, 0);
9728
9729 if (WORDS_BIG_ENDIAN)
9730 offset = (MAX (GET_MODE_SIZE (GET_MODE (x)), UNITS_PER_WORD)
9731 - MAX (GET_MODE_SIZE (mode), UNITS_PER_WORD));
9732
9733 if (BYTES_BIG_ENDIAN)
9734 {
9735 /* Adjust the address so that the address-after-the-data is
9736 unchanged. */
9737 offset -= (MIN (UNITS_PER_WORD, GET_MODE_SIZE (mode))
9738 - MIN (UNITS_PER_WORD, GET_MODE_SIZE (GET_MODE (x))));
9739 }
9740 new = gen_rtx_MEM (mode, plus_constant (XEXP (x, 0), offset));
9741 MEM_COPY_ATTRIBUTES (new, x);
9742 return new;
9743 }
9744
9745 /* If X is a comparison operator, rewrite it in a new mode. This
9746 probably won't match, but may allow further simplifications. */
9747 else if (GET_RTX_CLASS (GET_CODE (x)) == '<')
9748 return gen_rtx_combine (GET_CODE (x), mode, XEXP (x, 0), XEXP (x, 1));
9749
9750 /* If we couldn't simplify X any other way, just enclose it in a
9751 SUBREG. Normally, this SUBREG won't match, but some patterns may
9752 include an explicit SUBREG or we may simplify it further in combine. */
9753 else
9754 {
9755 int word = 0;
9756
9757 if (WORDS_BIG_ENDIAN && GET_MODE_SIZE (GET_MODE (x)) > UNITS_PER_WORD)
9758 word = ((GET_MODE_SIZE (GET_MODE (x))
9759 - MAX (GET_MODE_SIZE (mode), UNITS_PER_WORD))
9760 / UNITS_PER_WORD);
9761 return gen_rtx_SUBREG (mode, x, word);
9762 }
9763 }
9764 \f
9765 /* Make an rtx expression. This is a subset of gen_rtx and only supports
9766 expressions of 1, 2, or 3 operands, each of which are rtx expressions.
9767
9768 If the identical expression was previously in the insn (in the undobuf),
9769 it will be returned. Only if it is not found will a new expression
9770 be made. */
9771
9772 /*VARARGS2*/
9773 static rtx
9774 gen_rtx_combine VPARAMS ((enum rtx_code code, enum machine_mode mode, ...))
9775 {
9776 #ifndef ANSI_PROTOTYPES
9777 enum rtx_code code;
9778 enum machine_mode mode;
9779 #endif
9780 va_list p;
9781 int n_args;
9782 rtx args[3];
9783 int j;
9784 const char *fmt;
9785 rtx rt;
9786 struct undo *undo;
9787
9788 VA_START (p, mode);
9789
9790 #ifndef ANSI_PROTOTYPES
9791 code = va_arg (p, enum rtx_code);
9792 mode = va_arg (p, enum machine_mode);
9793 #endif
9794
9795 n_args = GET_RTX_LENGTH (code);
9796 fmt = GET_RTX_FORMAT (code);
9797
9798 if (n_args == 0 || n_args > 3)
9799 abort ();
9800
9801 /* Get each arg and verify that it is supposed to be an expression. */
9802 for (j = 0; j < n_args; j++)
9803 {
9804 if (*fmt++ != 'e')
9805 abort ();
9806
9807 args[j] = va_arg (p, rtx);
9808 }
9809
9810 va_end (p);
9811
9812 /* See if this is in undobuf. Be sure we don't use objects that came
9813 from another insn; this could produce circular rtl structures. */
9814
9815 for (undo = undobuf.undos; undo != undobuf.previous_undos; undo = undo->next)
9816 if (!undo->is_int
9817 && GET_CODE (undo->old_contents.r) == code
9818 && GET_MODE (undo->old_contents.r) == mode)
9819 {
9820 for (j = 0; j < n_args; j++)
9821 if (XEXP (undo->old_contents.r, j) != args[j])
9822 break;
9823
9824 if (j == n_args)
9825 return undo->old_contents.r;
9826 }
9827
9828 /* Otherwise make a new rtx. We know we have 1, 2, or 3 args.
9829 Use rtx_alloc instead of gen_rtx because it's faster on RISC. */
9830 rt = rtx_alloc (code);
9831 PUT_MODE (rt, mode);
9832 XEXP (rt, 0) = args[0];
9833 if (n_args > 1)
9834 {
9835 XEXP (rt, 1) = args[1];
9836 if (n_args > 2)
9837 XEXP (rt, 2) = args[2];
9838 }
9839 return rt;
9840 }
9841
9842 /* These routines make binary and unary operations by first seeing if they
9843 fold; if not, a new expression is allocated. */
9844
9845 static rtx
9846 gen_binary (code, mode, op0, op1)
9847 enum rtx_code code;
9848 enum machine_mode mode;
9849 rtx op0, op1;
9850 {
9851 rtx result;
9852 rtx tem;
9853
9854 if (GET_RTX_CLASS (code) == 'c'
9855 && (GET_CODE (op0) == CONST_INT
9856 || (CONSTANT_P (op0) && GET_CODE (op1) != CONST_INT)))
9857 tem = op0, op0 = op1, op1 = tem;
9858
9859 if (GET_RTX_CLASS (code) == '<')
9860 {
9861 enum machine_mode op_mode = GET_MODE (op0);
9862
9863 /* Strip the COMPARE from (REL_OP (compare X Y) 0) to get
9864 just (REL_OP X Y). */
9865 if (GET_CODE (op0) == COMPARE && op1 == const0_rtx)
9866 {
9867 op1 = XEXP (op0, 1);
9868 op0 = XEXP (op0, 0);
9869 op_mode = GET_MODE (op0);
9870 }
9871
9872 if (op_mode == VOIDmode)
9873 op_mode = GET_MODE (op1);
9874 result = simplify_relational_operation (code, op_mode, op0, op1);
9875 }
9876 else
9877 result = simplify_binary_operation (code, mode, op0, op1);
9878
9879 if (result)
9880 return result;
9881
9882 /* Put complex operands first and constants second. */
9883 if (GET_RTX_CLASS (code) == 'c'
9884 && ((CONSTANT_P (op0) && GET_CODE (op1) != CONST_INT)
9885 || (GET_RTX_CLASS (GET_CODE (op0)) == 'o'
9886 && GET_RTX_CLASS (GET_CODE (op1)) != 'o')
9887 || (GET_CODE (op0) == SUBREG
9888 && GET_RTX_CLASS (GET_CODE (SUBREG_REG (op0))) == 'o'
9889 && GET_RTX_CLASS (GET_CODE (op1)) != 'o')))
9890 return gen_rtx_combine (code, mode, op1, op0);
9891
9892 /* If we are turning off bits already known off in OP0, we need not do
9893 an AND. */
9894 else if (code == AND && GET_CODE (op1) == CONST_INT
9895 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
9896 && (nonzero_bits (op0, mode) & ~INTVAL (op1)) == 0)
9897 return op0;
9898
9899 return gen_rtx_combine (code, mode, op0, op1);
9900 }
9901
9902 static rtx
9903 gen_unary (code, mode, op0_mode, op0)
9904 enum rtx_code code;
9905 enum machine_mode mode, op0_mode;
9906 rtx op0;
9907 {
9908 rtx result = simplify_unary_operation (code, mode, op0, op0_mode);
9909
9910 if (result)
9911 return result;
9912
9913 return gen_rtx_combine (code, mode, op0);
9914 }
9915 \f
9916 /* Simplify a comparison between *POP0 and *POP1 where CODE is the
9917 comparison code that will be tested.
9918
9919 The result is a possibly different comparison code to use. *POP0 and
9920 *POP1 may be updated.
9921
9922 It is possible that we might detect that a comparison is either always
9923 true or always false. However, we do not perform general constant
9924 folding in combine, so this knowledge isn't useful. Such tautologies
9925 should have been detected earlier. Hence we ignore all such cases. */
9926
9927 static enum rtx_code
9928 simplify_comparison (code, pop0, pop1)
9929 enum rtx_code code;
9930 rtx *pop0;
9931 rtx *pop1;
9932 {
9933 rtx op0 = *pop0;
9934 rtx op1 = *pop1;
9935 rtx tem, tem1;
9936 int i;
9937 enum machine_mode mode, tmode;
9938
9939 /* Try a few ways of applying the same transformation to both operands. */
9940 while (1)
9941 {
9942 #ifndef WORD_REGISTER_OPERATIONS
9943 /* The test below this one won't handle SIGN_EXTENDs on these machines,
9944 so check specially. */
9945 if (code != GTU && code != GEU && code != LTU && code != LEU
9946 && GET_CODE (op0) == ASHIFTRT && GET_CODE (op1) == ASHIFTRT
9947 && GET_CODE (XEXP (op0, 0)) == ASHIFT
9948 && GET_CODE (XEXP (op1, 0)) == ASHIFT
9949 && GET_CODE (XEXP (XEXP (op0, 0), 0)) == SUBREG
9950 && GET_CODE (XEXP (XEXP (op1, 0), 0)) == SUBREG
9951 && (GET_MODE (SUBREG_REG (XEXP (XEXP (op0, 0), 0)))
9952 == GET_MODE (SUBREG_REG (XEXP (XEXP (op1, 0), 0))))
9953 && GET_CODE (XEXP (op0, 1)) == CONST_INT
9954 && GET_CODE (XEXP (op1, 1)) == CONST_INT
9955 && GET_CODE (XEXP (XEXP (op0, 0), 1)) == CONST_INT
9956 && GET_CODE (XEXP (XEXP (op1, 0), 1)) == CONST_INT
9957 && INTVAL (XEXP (op0, 1)) == INTVAL (XEXP (op1, 1))
9958 && INTVAL (XEXP (op0, 1)) == INTVAL (XEXP (XEXP (op0, 0), 1))
9959 && INTVAL (XEXP (op0, 1)) == INTVAL (XEXP (XEXP (op1, 0), 1))
9960 && (INTVAL (XEXP (op0, 1))
9961 == (GET_MODE_BITSIZE (GET_MODE (op0))
9962 - (GET_MODE_BITSIZE
9963 (GET_MODE (SUBREG_REG (XEXP (XEXP (op0, 0), 0))))))))
9964 {
9965 op0 = SUBREG_REG (XEXP (XEXP (op0, 0), 0));
9966 op1 = SUBREG_REG (XEXP (XEXP (op1, 0), 0));
9967 }
9968 #endif
9969
9970 /* If both operands are the same constant shift, see if we can ignore the
9971 shift. We can if the shift is a rotate or if the bits shifted out of
9972 this shift are known to be zero for both inputs and if the type of
9973 comparison is compatible with the shift. */
9974 if (GET_CODE (op0) == GET_CODE (op1)
9975 && GET_MODE_BITSIZE (GET_MODE (op0)) <= HOST_BITS_PER_WIDE_INT
9976 && ((GET_CODE (op0) == ROTATE && (code == NE || code == EQ))
9977 || ((GET_CODE (op0) == LSHIFTRT || GET_CODE (op0) == ASHIFT)
9978 && (code != GT && code != LT && code != GE && code != LE))
9979 || (GET_CODE (op0) == ASHIFTRT
9980 && (code != GTU && code != LTU
9981 && code != GEU && code != GEU)))
9982 && GET_CODE (XEXP (op0, 1)) == CONST_INT
9983 && INTVAL (XEXP (op0, 1)) >= 0
9984 && INTVAL (XEXP (op0, 1)) < HOST_BITS_PER_WIDE_INT
9985 && XEXP (op0, 1) == XEXP (op1, 1))
9986 {
9987 enum machine_mode mode = GET_MODE (op0);
9988 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
9989 int shift_count = INTVAL (XEXP (op0, 1));
9990
9991 if (GET_CODE (op0) == LSHIFTRT || GET_CODE (op0) == ASHIFTRT)
9992 mask &= (mask >> shift_count) << shift_count;
9993 else if (GET_CODE (op0) == ASHIFT)
9994 mask = (mask & (mask << shift_count)) >> shift_count;
9995
9996 if ((nonzero_bits (XEXP (op0, 0), mode) & ~mask) == 0
9997 && (nonzero_bits (XEXP (op1, 0), mode) & ~mask) == 0)
9998 op0 = XEXP (op0, 0), op1 = XEXP (op1, 0);
9999 else
10000 break;
10001 }
10002
10003 /* If both operands are AND's of a paradoxical SUBREG by constant, the
10004 SUBREGs are of the same mode, and, in both cases, the AND would
10005 be redundant if the comparison was done in the narrower mode,
10006 do the comparison in the narrower mode (e.g., we are AND'ing with 1
10007 and the operand's possibly nonzero bits are 0xffffff01; in that case
10008 if we only care about QImode, we don't need the AND). This case
10009 occurs if the output mode of an scc insn is not SImode and
10010 STORE_FLAG_VALUE == 1 (e.g., the 386).
10011
10012 Similarly, check for a case where the AND's are ZERO_EXTEND
10013 operations from some narrower mode even though a SUBREG is not
10014 present. */
10015
10016 else if (GET_CODE (op0) == AND && GET_CODE (op1) == AND
10017 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10018 && GET_CODE (XEXP (op1, 1)) == CONST_INT)
10019 {
10020 rtx inner_op0 = XEXP (op0, 0);
10021 rtx inner_op1 = XEXP (op1, 0);
10022 HOST_WIDE_INT c0 = INTVAL (XEXP (op0, 1));
10023 HOST_WIDE_INT c1 = INTVAL (XEXP (op1, 1));
10024 int changed = 0;
10025
10026 if (GET_CODE (inner_op0) == SUBREG && GET_CODE (inner_op1) == SUBREG
10027 && (GET_MODE_SIZE (GET_MODE (inner_op0))
10028 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (inner_op0))))
10029 && (GET_MODE (SUBREG_REG (inner_op0))
10030 == GET_MODE (SUBREG_REG (inner_op1)))
10031 && (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (inner_op0)))
10032 <= HOST_BITS_PER_WIDE_INT)
10033 && (0 == ((~c0) & nonzero_bits (SUBREG_REG (inner_op0),
10034 GET_MODE (SUBREG_REG (inner_op0)))))
10035 && (0 == ((~c1) & nonzero_bits (SUBREG_REG (inner_op1),
10036 GET_MODE (SUBREG_REG (inner_op1))))))
10037 {
10038 op0 = SUBREG_REG (inner_op0);
10039 op1 = SUBREG_REG (inner_op1);
10040
10041 /* The resulting comparison is always unsigned since we masked
10042 off the original sign bit. */
10043 code = unsigned_condition (code);
10044
10045 changed = 1;
10046 }
10047
10048 else if (c0 == c1)
10049 for (tmode = GET_CLASS_NARROWEST_MODE
10050 (GET_MODE_CLASS (GET_MODE (op0)));
10051 tmode != GET_MODE (op0); tmode = GET_MODE_WIDER_MODE (tmode))
10052 if ((unsigned HOST_WIDE_INT) c0 == GET_MODE_MASK (tmode))
10053 {
10054 op0 = gen_lowpart_for_combine (tmode, inner_op0);
10055 op1 = gen_lowpart_for_combine (tmode, inner_op1);
10056 code = unsigned_condition (code);
10057 changed = 1;
10058 break;
10059 }
10060
10061 if (! changed)
10062 break;
10063 }
10064
10065 /* If both operands are NOT, we can strip off the outer operation
10066 and adjust the comparison code for swapped operands; similarly for
10067 NEG, except that this must be an equality comparison. */
10068 else if ((GET_CODE (op0) == NOT && GET_CODE (op1) == NOT)
10069 || (GET_CODE (op0) == NEG && GET_CODE (op1) == NEG
10070 && (code == EQ || code == NE)))
10071 op0 = XEXP (op0, 0), op1 = XEXP (op1, 0), code = swap_condition (code);
10072
10073 else
10074 break;
10075 }
10076
10077 /* If the first operand is a constant, swap the operands and adjust the
10078 comparison code appropriately, but don't do this if the second operand
10079 is already a constant integer. */
10080 if (CONSTANT_P (op0) && GET_CODE (op1) != CONST_INT)
10081 {
10082 tem = op0, op0 = op1, op1 = tem;
10083 code = swap_condition (code);
10084 }
10085
10086 /* We now enter a loop during which we will try to simplify the comparison.
10087 For the most part, we only are concerned with comparisons with zero,
10088 but some things may really be comparisons with zero but not start
10089 out looking that way. */
10090
10091 while (GET_CODE (op1) == CONST_INT)
10092 {
10093 enum machine_mode mode = GET_MODE (op0);
10094 unsigned int mode_width = GET_MODE_BITSIZE (mode);
10095 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
10096 int equality_comparison_p;
10097 int sign_bit_comparison_p;
10098 int unsigned_comparison_p;
10099 HOST_WIDE_INT const_op;
10100
10101 /* We only want to handle integral modes. This catches VOIDmode,
10102 CCmode, and the floating-point modes. An exception is that we
10103 can handle VOIDmode if OP0 is a COMPARE or a comparison
10104 operation. */
10105
10106 if (GET_MODE_CLASS (mode) != MODE_INT
10107 && ! (mode == VOIDmode
10108 && (GET_CODE (op0) == COMPARE
10109 || GET_RTX_CLASS (GET_CODE (op0)) == '<')))
10110 break;
10111
10112 /* Get the constant we are comparing against and turn off all bits
10113 not on in our mode. */
10114 const_op = trunc_int_for_mode (INTVAL (op1), mode);
10115
10116 /* If we are comparing against a constant power of two and the value
10117 being compared can only have that single bit nonzero (e.g., it was
10118 `and'ed with that bit), we can replace this with a comparison
10119 with zero. */
10120 if (const_op
10121 && (code == EQ || code == NE || code == GE || code == GEU
10122 || code == LT || code == LTU)
10123 && mode_width <= HOST_BITS_PER_WIDE_INT
10124 && exact_log2 (const_op) >= 0
10125 && nonzero_bits (op0, mode) == (unsigned HOST_WIDE_INT) const_op)
10126 {
10127 code = (code == EQ || code == GE || code == GEU ? NE : EQ);
10128 op1 = const0_rtx, const_op = 0;
10129 }
10130
10131 /* Similarly, if we are comparing a value known to be either -1 or
10132 0 with -1, change it to the opposite comparison against zero. */
10133
10134 if (const_op == -1
10135 && (code == EQ || code == NE || code == GT || code == LE
10136 || code == GEU || code == LTU)
10137 && num_sign_bit_copies (op0, mode) == mode_width)
10138 {
10139 code = (code == EQ || code == LE || code == GEU ? NE : EQ);
10140 op1 = const0_rtx, const_op = 0;
10141 }
10142
10143 /* Do some canonicalizations based on the comparison code. We prefer
10144 comparisons against zero and then prefer equality comparisons.
10145 If we can reduce the size of a constant, we will do that too. */
10146
10147 switch (code)
10148 {
10149 case LT:
10150 /* < C is equivalent to <= (C - 1) */
10151 if (const_op > 0)
10152 {
10153 const_op -= 1;
10154 op1 = GEN_INT (const_op);
10155 code = LE;
10156 /* ... fall through to LE case below. */
10157 }
10158 else
10159 break;
10160
10161 case LE:
10162 /* <= C is equivalent to < (C + 1); we do this for C < 0 */
10163 if (const_op < 0)
10164 {
10165 const_op += 1;
10166 op1 = GEN_INT (const_op);
10167 code = LT;
10168 }
10169
10170 /* If we are doing a <= 0 comparison on a value known to have
10171 a zero sign bit, we can replace this with == 0. */
10172 else if (const_op == 0
10173 && mode_width <= HOST_BITS_PER_WIDE_INT
10174 && (nonzero_bits (op0, mode)
10175 & ((HOST_WIDE_INT) 1 << (mode_width - 1))) == 0)
10176 code = EQ;
10177 break;
10178
10179 case GE:
10180 /* >= C is equivalent to > (C - 1). */
10181 if (const_op > 0)
10182 {
10183 const_op -= 1;
10184 op1 = GEN_INT (const_op);
10185 code = GT;
10186 /* ... fall through to GT below. */
10187 }
10188 else
10189 break;
10190
10191 case GT:
10192 /* > C is equivalent to >= (C + 1); we do this for C < 0. */
10193 if (const_op < 0)
10194 {
10195 const_op += 1;
10196 op1 = GEN_INT (const_op);
10197 code = GE;
10198 }
10199
10200 /* If we are doing a > 0 comparison on a value known to have
10201 a zero sign bit, we can replace this with != 0. */
10202 else if (const_op == 0
10203 && mode_width <= HOST_BITS_PER_WIDE_INT
10204 && (nonzero_bits (op0, mode)
10205 & ((HOST_WIDE_INT) 1 << (mode_width - 1))) == 0)
10206 code = NE;
10207 break;
10208
10209 case LTU:
10210 /* < C is equivalent to <= (C - 1). */
10211 if (const_op > 0)
10212 {
10213 const_op -= 1;
10214 op1 = GEN_INT (const_op);
10215 code = LEU;
10216 /* ... fall through ... */
10217 }
10218
10219 /* (unsigned) < 0x80000000 is equivalent to >= 0. */
10220 else if ((mode_width <= HOST_BITS_PER_WIDE_INT)
10221 && (const_op == (HOST_WIDE_INT) 1 << (mode_width - 1)))
10222 {
10223 const_op = 0, op1 = const0_rtx;
10224 code = GE;
10225 break;
10226 }
10227 else
10228 break;
10229
10230 case LEU:
10231 /* unsigned <= 0 is equivalent to == 0 */
10232 if (const_op == 0)
10233 code = EQ;
10234
10235 /* (unsigned) <= 0x7fffffff is equivalent to >= 0. */
10236 else if ((mode_width <= HOST_BITS_PER_WIDE_INT)
10237 && (const_op == ((HOST_WIDE_INT) 1 << (mode_width - 1)) - 1))
10238 {
10239 const_op = 0, op1 = const0_rtx;
10240 code = GE;
10241 }
10242 break;
10243
10244 case GEU:
10245 /* >= C is equivalent to < (C - 1). */
10246 if (const_op > 1)
10247 {
10248 const_op -= 1;
10249 op1 = GEN_INT (const_op);
10250 code = GTU;
10251 /* ... fall through ... */
10252 }
10253
10254 /* (unsigned) >= 0x80000000 is equivalent to < 0. */
10255 else if ((mode_width <= HOST_BITS_PER_WIDE_INT)
10256 && (const_op == (HOST_WIDE_INT) 1 << (mode_width - 1)))
10257 {
10258 const_op = 0, op1 = const0_rtx;
10259 code = LT;
10260 break;
10261 }
10262 else
10263 break;
10264
10265 case GTU:
10266 /* unsigned > 0 is equivalent to != 0 */
10267 if (const_op == 0)
10268 code = NE;
10269
10270 /* (unsigned) > 0x7fffffff is equivalent to < 0. */
10271 else if ((mode_width <= HOST_BITS_PER_WIDE_INT)
10272 && (const_op == ((HOST_WIDE_INT) 1 << (mode_width - 1)) - 1))
10273 {
10274 const_op = 0, op1 = const0_rtx;
10275 code = LT;
10276 }
10277 break;
10278
10279 default:
10280 break;
10281 }
10282
10283 /* Compute some predicates to simplify code below. */
10284
10285 equality_comparison_p = (code == EQ || code == NE);
10286 sign_bit_comparison_p = ((code == LT || code == GE) && const_op == 0);
10287 unsigned_comparison_p = (code == LTU || code == LEU || code == GTU
10288 || code == GEU);
10289
10290 /* If this is a sign bit comparison and we can do arithmetic in
10291 MODE, say that we will only be needing the sign bit of OP0. */
10292 if (sign_bit_comparison_p
10293 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
10294 op0 = force_to_mode (op0, mode,
10295 ((HOST_WIDE_INT) 1
10296 << (GET_MODE_BITSIZE (mode) - 1)),
10297 NULL_RTX, 0);
10298
10299 /* Now try cases based on the opcode of OP0. If none of the cases
10300 does a "continue", we exit this loop immediately after the
10301 switch. */
10302
10303 switch (GET_CODE (op0))
10304 {
10305 case ZERO_EXTRACT:
10306 /* If we are extracting a single bit from a variable position in
10307 a constant that has only a single bit set and are comparing it
10308 with zero, we can convert this into an equality comparison
10309 between the position and the location of the single bit. */
10310
10311 if (GET_CODE (XEXP (op0, 0)) == CONST_INT
10312 && XEXP (op0, 1) == const1_rtx
10313 && equality_comparison_p && const_op == 0
10314 && (i = exact_log2 (INTVAL (XEXP (op0, 0)))) >= 0)
10315 {
10316 if (BITS_BIG_ENDIAN)
10317 {
10318 #ifdef HAVE_extzv
10319 mode = insn_data[(int) CODE_FOR_extzv].operand[1].mode;
10320 if (mode == VOIDmode)
10321 mode = word_mode;
10322 i = (GET_MODE_BITSIZE (mode) - 1 - i);
10323 #else
10324 i = BITS_PER_WORD - 1 - i;
10325 #endif
10326 }
10327
10328 op0 = XEXP (op0, 2);
10329 op1 = GEN_INT (i);
10330 const_op = i;
10331
10332 /* Result is nonzero iff shift count is equal to I. */
10333 code = reverse_condition (code);
10334 continue;
10335 }
10336
10337 /* ... fall through ... */
10338
10339 case SIGN_EXTRACT:
10340 tem = expand_compound_operation (op0);
10341 if (tem != op0)
10342 {
10343 op0 = tem;
10344 continue;
10345 }
10346 break;
10347
10348 case NOT:
10349 /* If testing for equality, we can take the NOT of the constant. */
10350 if (equality_comparison_p
10351 && (tem = simplify_unary_operation (NOT, mode, op1, mode)) != 0)
10352 {
10353 op0 = XEXP (op0, 0);
10354 op1 = tem;
10355 continue;
10356 }
10357
10358 /* If just looking at the sign bit, reverse the sense of the
10359 comparison. */
10360 if (sign_bit_comparison_p)
10361 {
10362 op0 = XEXP (op0, 0);
10363 code = (code == GE ? LT : GE);
10364 continue;
10365 }
10366 break;
10367
10368 case NEG:
10369 /* If testing for equality, we can take the NEG of the constant. */
10370 if (equality_comparison_p
10371 && (tem = simplify_unary_operation (NEG, mode, op1, mode)) != 0)
10372 {
10373 op0 = XEXP (op0, 0);
10374 op1 = tem;
10375 continue;
10376 }
10377
10378 /* The remaining cases only apply to comparisons with zero. */
10379 if (const_op != 0)
10380 break;
10381
10382 /* When X is ABS or is known positive,
10383 (neg X) is < 0 if and only if X != 0. */
10384
10385 if (sign_bit_comparison_p
10386 && (GET_CODE (XEXP (op0, 0)) == ABS
10387 || (mode_width <= HOST_BITS_PER_WIDE_INT
10388 && (nonzero_bits (XEXP (op0, 0), mode)
10389 & ((HOST_WIDE_INT) 1 << (mode_width - 1))) == 0)))
10390 {
10391 op0 = XEXP (op0, 0);
10392 code = (code == LT ? NE : EQ);
10393 continue;
10394 }
10395
10396 /* If we have NEG of something whose two high-order bits are the
10397 same, we know that "(-a) < 0" is equivalent to "a > 0". */
10398 if (num_sign_bit_copies (op0, mode) >= 2)
10399 {
10400 op0 = XEXP (op0, 0);
10401 code = swap_condition (code);
10402 continue;
10403 }
10404 break;
10405
10406 case ROTATE:
10407 /* If we are testing equality and our count is a constant, we
10408 can perform the inverse operation on our RHS. */
10409 if (equality_comparison_p && GET_CODE (XEXP (op0, 1)) == CONST_INT
10410 && (tem = simplify_binary_operation (ROTATERT, mode,
10411 op1, XEXP (op0, 1))) != 0)
10412 {
10413 op0 = XEXP (op0, 0);
10414 op1 = tem;
10415 continue;
10416 }
10417
10418 /* If we are doing a < 0 or >= 0 comparison, it means we are testing
10419 a particular bit. Convert it to an AND of a constant of that
10420 bit. This will be converted into a ZERO_EXTRACT. */
10421 if (const_op == 0 && sign_bit_comparison_p
10422 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10423 && mode_width <= HOST_BITS_PER_WIDE_INT)
10424 {
10425 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
10426 ((HOST_WIDE_INT) 1
10427 << (mode_width - 1
10428 - INTVAL (XEXP (op0, 1)))));
10429 code = (code == LT ? NE : EQ);
10430 continue;
10431 }
10432
10433 /* Fall through. */
10434
10435 case ABS:
10436 /* ABS is ignorable inside an equality comparison with zero. */
10437 if (const_op == 0 && equality_comparison_p)
10438 {
10439 op0 = XEXP (op0, 0);
10440 continue;
10441 }
10442 break;
10443
10444 case SIGN_EXTEND:
10445 /* Can simplify (compare (zero/sign_extend FOO) CONST)
10446 to (compare FOO CONST) if CONST fits in FOO's mode and we
10447 are either testing inequality or have an unsigned comparison
10448 with ZERO_EXTEND or a signed comparison with SIGN_EXTEND. */
10449 if (! unsigned_comparison_p
10450 && (GET_MODE_BITSIZE (GET_MODE (XEXP (op0, 0)))
10451 <= HOST_BITS_PER_WIDE_INT)
10452 && ((unsigned HOST_WIDE_INT) const_op
10453 < (((unsigned HOST_WIDE_INT) 1
10454 << (GET_MODE_BITSIZE (GET_MODE (XEXP (op0, 0))) - 1)))))
10455 {
10456 op0 = XEXP (op0, 0);
10457 continue;
10458 }
10459 break;
10460
10461 case SUBREG:
10462 /* Check for the case where we are comparing A - C1 with C2,
10463 both constants are smaller than 1/2 the maximum positive
10464 value in MODE, and the comparison is equality or unsigned.
10465 In that case, if A is either zero-extended to MODE or has
10466 sufficient sign bits so that the high-order bit in MODE
10467 is a copy of the sign in the inner mode, we can prove that it is
10468 safe to do the operation in the wider mode. This simplifies
10469 many range checks. */
10470
10471 if (mode_width <= HOST_BITS_PER_WIDE_INT
10472 && subreg_lowpart_p (op0)
10473 && GET_CODE (SUBREG_REG (op0)) == PLUS
10474 && GET_CODE (XEXP (SUBREG_REG (op0), 1)) == CONST_INT
10475 && INTVAL (XEXP (SUBREG_REG (op0), 1)) < 0
10476 && (-INTVAL (XEXP (SUBREG_REG (op0), 1))
10477 < (HOST_WIDE_INT) (GET_MODE_MASK (mode) / 2))
10478 && (unsigned HOST_WIDE_INT) const_op < GET_MODE_MASK (mode) / 2
10479 && (0 == (nonzero_bits (XEXP (SUBREG_REG (op0), 0),
10480 GET_MODE (SUBREG_REG (op0)))
10481 & ~GET_MODE_MASK (mode))
10482 || (num_sign_bit_copies (XEXP (SUBREG_REG (op0), 0),
10483 GET_MODE (SUBREG_REG (op0)))
10484 > (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (op0)))
10485 - GET_MODE_BITSIZE (mode)))))
10486 {
10487 op0 = SUBREG_REG (op0);
10488 continue;
10489 }
10490
10491 /* If the inner mode is narrower and we are extracting the low part,
10492 we can treat the SUBREG as if it were a ZERO_EXTEND. */
10493 if (subreg_lowpart_p (op0)
10494 && GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (op0))) < mode_width)
10495 /* Fall through */ ;
10496 else
10497 break;
10498
10499 /* ... fall through ... */
10500
10501 case ZERO_EXTEND:
10502 if ((unsigned_comparison_p || equality_comparison_p)
10503 && (GET_MODE_BITSIZE (GET_MODE (XEXP (op0, 0)))
10504 <= HOST_BITS_PER_WIDE_INT)
10505 && ((unsigned HOST_WIDE_INT) const_op
10506 < GET_MODE_MASK (GET_MODE (XEXP (op0, 0)))))
10507 {
10508 op0 = XEXP (op0, 0);
10509 continue;
10510 }
10511 break;
10512
10513 case PLUS:
10514 /* (eq (plus X A) B) -> (eq X (minus B A)). We can only do
10515 this for equality comparisons due to pathological cases involving
10516 overflows. */
10517 if (equality_comparison_p
10518 && 0 != (tem = simplify_binary_operation (MINUS, mode,
10519 op1, XEXP (op0, 1))))
10520 {
10521 op0 = XEXP (op0, 0);
10522 op1 = tem;
10523 continue;
10524 }
10525
10526 /* (plus (abs X) (const_int -1)) is < 0 if and only if X == 0. */
10527 if (const_op == 0 && XEXP (op0, 1) == constm1_rtx
10528 && GET_CODE (XEXP (op0, 0)) == ABS && sign_bit_comparison_p)
10529 {
10530 op0 = XEXP (XEXP (op0, 0), 0);
10531 code = (code == LT ? EQ : NE);
10532 continue;
10533 }
10534 break;
10535
10536 case MINUS:
10537 /* We used to optimize signed comparisons against zero, but that
10538 was incorrect. Unsigned comparisons against zero (GTU, LEU)
10539 arrive here as equality comparisons, or (GEU, LTU) are
10540 optimized away. No need to special-case them. */
10541
10542 /* (eq (minus A B) C) -> (eq A (plus B C)) or
10543 (eq B (minus A C)), whichever simplifies. We can only do
10544 this for equality comparisons due to pathological cases involving
10545 overflows. */
10546 if (equality_comparison_p
10547 && 0 != (tem = simplify_binary_operation (PLUS, mode,
10548 XEXP (op0, 1), op1)))
10549 {
10550 op0 = XEXP (op0, 0);
10551 op1 = tem;
10552 continue;
10553 }
10554
10555 if (equality_comparison_p
10556 && 0 != (tem = simplify_binary_operation (MINUS, mode,
10557 XEXP (op0, 0), op1)))
10558 {
10559 op0 = XEXP (op0, 1);
10560 op1 = tem;
10561 continue;
10562 }
10563
10564 /* The sign bit of (minus (ashiftrt X C) X), where C is the number
10565 of bits in X minus 1, is one iff X > 0. */
10566 if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 0)) == ASHIFTRT
10567 && GET_CODE (XEXP (XEXP (op0, 0), 1)) == CONST_INT
10568 && INTVAL (XEXP (XEXP (op0, 0), 1)) == mode_width - 1
10569 && rtx_equal_p (XEXP (XEXP (op0, 0), 0), XEXP (op0, 1)))
10570 {
10571 op0 = XEXP (op0, 1);
10572 code = (code == GE ? LE : GT);
10573 continue;
10574 }
10575 break;
10576
10577 case XOR:
10578 /* (eq (xor A B) C) -> (eq A (xor B C)). This is a simplification
10579 if C is zero or B is a constant. */
10580 if (equality_comparison_p
10581 && 0 != (tem = simplify_binary_operation (XOR, mode,
10582 XEXP (op0, 1), op1)))
10583 {
10584 op0 = XEXP (op0, 0);
10585 op1 = tem;
10586 continue;
10587 }
10588 break;
10589
10590 case EQ: case NE:
10591 case LT: case LTU: case LE: case LEU:
10592 case GT: case GTU: case GE: case GEU:
10593 /* We can't do anything if OP0 is a condition code value, rather
10594 than an actual data value. */
10595 if (const_op != 0
10596 #ifdef HAVE_cc0
10597 || XEXP (op0, 0) == cc0_rtx
10598 #endif
10599 || GET_MODE_CLASS (GET_MODE (XEXP (op0, 0))) == MODE_CC)
10600 break;
10601
10602 /* Get the two operands being compared. */
10603 if (GET_CODE (XEXP (op0, 0)) == COMPARE)
10604 tem = XEXP (XEXP (op0, 0), 0), tem1 = XEXP (XEXP (op0, 0), 1);
10605 else
10606 tem = XEXP (op0, 0), tem1 = XEXP (op0, 1);
10607
10608 /* Check for the cases where we simply want the result of the
10609 earlier test or the opposite of that result. */
10610 if (code == NE
10611 || (code == EQ && reversible_comparison_p (op0))
10612 || (GET_MODE_BITSIZE (GET_MODE (op0)) <= HOST_BITS_PER_WIDE_INT
10613 && GET_MODE_CLASS (GET_MODE (op0)) == MODE_INT
10614 && (STORE_FLAG_VALUE
10615 & (((HOST_WIDE_INT) 1
10616 << (GET_MODE_BITSIZE (GET_MODE (op0)) - 1))))
10617 && (code == LT
10618 || (code == GE && reversible_comparison_p (op0)))))
10619 {
10620 code = (code == LT || code == NE
10621 ? GET_CODE (op0) : reverse_condition (GET_CODE (op0)));
10622 op0 = tem, op1 = tem1;
10623 continue;
10624 }
10625 break;
10626
10627 case IOR:
10628 /* The sign bit of (ior (plus X (const_int -1)) X) is non-zero
10629 iff X <= 0. */
10630 if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 0)) == PLUS
10631 && XEXP (XEXP (op0, 0), 1) == constm1_rtx
10632 && rtx_equal_p (XEXP (XEXP (op0, 0), 0), XEXP (op0, 1)))
10633 {
10634 op0 = XEXP (op0, 1);
10635 code = (code == GE ? GT : LE);
10636 continue;
10637 }
10638 break;
10639
10640 case AND:
10641 /* Convert (and (xshift 1 X) Y) to (and (lshiftrt Y X) 1). This
10642 will be converted to a ZERO_EXTRACT later. */
10643 if (const_op == 0 && equality_comparison_p
10644 && GET_CODE (XEXP (op0, 0)) == ASHIFT
10645 && XEXP (XEXP (op0, 0), 0) == const1_rtx)
10646 {
10647 op0 = simplify_and_const_int
10648 (op0, mode, gen_rtx_combine (LSHIFTRT, mode,
10649 XEXP (op0, 1),
10650 XEXP (XEXP (op0, 0), 1)),
10651 (HOST_WIDE_INT) 1);
10652 continue;
10653 }
10654
10655 /* If we are comparing (and (lshiftrt X C1) C2) for equality with
10656 zero and X is a comparison and C1 and C2 describe only bits set
10657 in STORE_FLAG_VALUE, we can compare with X. */
10658 if (const_op == 0 && equality_comparison_p
10659 && mode_width <= HOST_BITS_PER_WIDE_INT
10660 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10661 && GET_CODE (XEXP (op0, 0)) == LSHIFTRT
10662 && GET_CODE (XEXP (XEXP (op0, 0), 1)) == CONST_INT
10663 && INTVAL (XEXP (XEXP (op0, 0), 1)) >= 0
10664 && INTVAL (XEXP (XEXP (op0, 0), 1)) < HOST_BITS_PER_WIDE_INT)
10665 {
10666 mask = ((INTVAL (XEXP (op0, 1)) & GET_MODE_MASK (mode))
10667 << INTVAL (XEXP (XEXP (op0, 0), 1)));
10668 if ((~STORE_FLAG_VALUE & mask) == 0
10669 && (GET_RTX_CLASS (GET_CODE (XEXP (XEXP (op0, 0), 0))) == '<'
10670 || ((tem = get_last_value (XEXP (XEXP (op0, 0), 0))) != 0
10671 && GET_RTX_CLASS (GET_CODE (tem)) == '<')))
10672 {
10673 op0 = XEXP (XEXP (op0, 0), 0);
10674 continue;
10675 }
10676 }
10677
10678 /* If we are doing an equality comparison of an AND of a bit equal
10679 to the sign bit, replace this with a LT or GE comparison of
10680 the underlying value. */
10681 if (equality_comparison_p
10682 && const_op == 0
10683 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10684 && mode_width <= HOST_BITS_PER_WIDE_INT
10685 && ((INTVAL (XEXP (op0, 1)) & GET_MODE_MASK (mode))
10686 == (unsigned HOST_WIDE_INT) 1 << (mode_width - 1)))
10687 {
10688 op0 = XEXP (op0, 0);
10689 code = (code == EQ ? GE : LT);
10690 continue;
10691 }
10692
10693 /* If this AND operation is really a ZERO_EXTEND from a narrower
10694 mode, the constant fits within that mode, and this is either an
10695 equality or unsigned comparison, try to do this comparison in
10696 the narrower mode. */
10697 if ((equality_comparison_p || unsigned_comparison_p)
10698 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10699 && (i = exact_log2 ((INTVAL (XEXP (op0, 1))
10700 & GET_MODE_MASK (mode))
10701 + 1)) >= 0
10702 && const_op >> i == 0
10703 && (tmode = mode_for_size (i, MODE_INT, 1)) != BLKmode)
10704 {
10705 op0 = gen_lowpart_for_combine (tmode, XEXP (op0, 0));
10706 continue;
10707 }
10708
10709 /* If this is (and:M1 (subreg:M2 X 0) (const_int C1)) where C1 fits
10710 in both M1 and M2 and the SUBREG is either paradoxical or
10711 represents the low part, permute the SUBREG and the AND and
10712 try again. */
10713 if (GET_CODE (XEXP (op0, 0)) == SUBREG
10714 && (0
10715 #ifdef WORD_REGISTER_OPERATIONS
10716 || ((mode_width
10717 > (GET_MODE_BITSIZE
10718 (GET_MODE (SUBREG_REG (XEXP (op0, 0))))))
10719 && mode_width <= BITS_PER_WORD)
10720 #endif
10721 || ((mode_width
10722 <= (GET_MODE_BITSIZE
10723 (GET_MODE (SUBREG_REG (XEXP (op0, 0))))))
10724 && subreg_lowpart_p (XEXP (op0, 0))))
10725 #ifndef WORD_REGISTER_OPERATIONS
10726 /* It is unsafe to commute the AND into the SUBREG if the SUBREG
10727 is paradoxical and WORD_REGISTER_OPERATIONS is not defined.
10728 As originally written the upper bits have a defined value
10729 due to the AND operation. However, if we commute the AND
10730 inside the SUBREG then they no longer have defined values
10731 and the meaning of the code has been changed. */
10732 && (GET_MODE_SIZE (GET_MODE (XEXP (op0, 0)))
10733 <= GET_MODE_SIZE (GET_MODE (SUBREG_REG (XEXP (op0, 0)))))
10734 #endif
10735 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10736 && mode_width <= HOST_BITS_PER_WIDE_INT
10737 && (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (XEXP (op0, 0))))
10738 <= HOST_BITS_PER_WIDE_INT)
10739 && (INTVAL (XEXP (op0, 1)) & ~mask) == 0
10740 && 0 == (~GET_MODE_MASK (GET_MODE (SUBREG_REG (XEXP (op0, 0))))
10741 & INTVAL (XEXP (op0, 1)))
10742 && (unsigned HOST_WIDE_INT) INTVAL (XEXP (op0, 1)) != mask
10743 && ((unsigned HOST_WIDE_INT) INTVAL (XEXP (op0, 1))
10744 != GET_MODE_MASK (GET_MODE (SUBREG_REG (XEXP (op0, 0))))))
10745
10746 {
10747 op0
10748 = gen_lowpart_for_combine
10749 (mode,
10750 gen_binary (AND, GET_MODE (SUBREG_REG (XEXP (op0, 0))),
10751 SUBREG_REG (XEXP (op0, 0)), XEXP (op0, 1)));
10752 continue;
10753 }
10754
10755 break;
10756
10757 case ASHIFT:
10758 /* If we have (compare (ashift FOO N) (const_int C)) and
10759 the high order N bits of FOO (N+1 if an inequality comparison)
10760 are known to be zero, we can do this by comparing FOO with C
10761 shifted right N bits so long as the low-order N bits of C are
10762 zero. */
10763 if (GET_CODE (XEXP (op0, 1)) == CONST_INT
10764 && INTVAL (XEXP (op0, 1)) >= 0
10765 && ((INTVAL (XEXP (op0, 1)) + ! equality_comparison_p)
10766 < HOST_BITS_PER_WIDE_INT)
10767 && ((const_op
10768 & (((HOST_WIDE_INT) 1 << INTVAL (XEXP (op0, 1))) - 1)) == 0)
10769 && mode_width <= HOST_BITS_PER_WIDE_INT
10770 && (nonzero_bits (XEXP (op0, 0), mode)
10771 & ~(mask >> (INTVAL (XEXP (op0, 1))
10772 + ! equality_comparison_p))) == 0)
10773 {
10774 /* We must perform a logical shift, not an arithmetic one,
10775 as we want the top N bits of C to be zero. */
10776 unsigned HOST_WIDE_INT temp = const_op & GET_MODE_MASK (mode);
10777
10778 temp >>= INTVAL (XEXP (op0, 1));
10779 op1 = GEN_INT (trunc_int_for_mode (temp, mode));
10780 op0 = XEXP (op0, 0);
10781 continue;
10782 }
10783
10784 /* If we are doing a sign bit comparison, it means we are testing
10785 a particular bit. Convert it to the appropriate AND. */
10786 if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 1)) == CONST_INT
10787 && mode_width <= HOST_BITS_PER_WIDE_INT)
10788 {
10789 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
10790 ((HOST_WIDE_INT) 1
10791 << (mode_width - 1
10792 - INTVAL (XEXP (op0, 1)))));
10793 code = (code == LT ? NE : EQ);
10794 continue;
10795 }
10796
10797 /* If this an equality comparison with zero and we are shifting
10798 the low bit to the sign bit, we can convert this to an AND of the
10799 low-order bit. */
10800 if (const_op == 0 && equality_comparison_p
10801 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10802 && INTVAL (XEXP (op0, 1)) == mode_width - 1)
10803 {
10804 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
10805 (HOST_WIDE_INT) 1);
10806 continue;
10807 }
10808 break;
10809
10810 case ASHIFTRT:
10811 /* If this is an equality comparison with zero, we can do this
10812 as a logical shift, which might be much simpler. */
10813 if (equality_comparison_p && const_op == 0
10814 && GET_CODE (XEXP (op0, 1)) == CONST_INT)
10815 {
10816 op0 = simplify_shift_const (NULL_RTX, LSHIFTRT, mode,
10817 XEXP (op0, 0),
10818 INTVAL (XEXP (op0, 1)));
10819 continue;
10820 }
10821
10822 /* If OP0 is a sign extension and CODE is not an unsigned comparison,
10823 do the comparison in a narrower mode. */
10824 if (! unsigned_comparison_p
10825 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10826 && GET_CODE (XEXP (op0, 0)) == ASHIFT
10827 && XEXP (op0, 1) == XEXP (XEXP (op0, 0), 1)
10828 && (tmode = mode_for_size (mode_width - INTVAL (XEXP (op0, 1)),
10829 MODE_INT, 1)) != BLKmode
10830 && ((unsigned HOST_WIDE_INT) const_op <= GET_MODE_MASK (tmode)
10831 || ((unsigned HOST_WIDE_INT) -const_op
10832 <= GET_MODE_MASK (tmode))))
10833 {
10834 op0 = gen_lowpart_for_combine (tmode, XEXP (XEXP (op0, 0), 0));
10835 continue;
10836 }
10837
10838 /* Likewise if OP0 is a PLUS of a sign extension with a
10839 constant, which is usually represented with the PLUS
10840 between the shifts. */
10841 if (! unsigned_comparison_p
10842 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10843 && GET_CODE (XEXP (op0, 0)) == PLUS
10844 && GET_CODE (XEXP (XEXP (op0, 0), 1)) == CONST_INT
10845 && GET_CODE (XEXP (XEXP (op0, 0), 0)) == ASHIFT
10846 && XEXP (op0, 1) == XEXP (XEXP (XEXP (op0, 0), 0), 1)
10847 && (tmode = mode_for_size (mode_width - INTVAL (XEXP (op0, 1)),
10848 MODE_INT, 1)) != BLKmode
10849 && ((unsigned HOST_WIDE_INT) const_op <= GET_MODE_MASK (tmode)
10850 || ((unsigned HOST_WIDE_INT) -const_op
10851 <= GET_MODE_MASK (tmode))))
10852 {
10853 rtx inner = XEXP (XEXP (XEXP (op0, 0), 0), 0);
10854 rtx add_const = XEXP (XEXP (op0, 0), 1);
10855 rtx new_const = gen_binary (ASHIFTRT, GET_MODE (op0), add_const,
10856 XEXP (op0, 1));
10857
10858 op0 = gen_binary (PLUS, tmode,
10859 gen_lowpart_for_combine (tmode, inner),
10860 new_const);
10861 continue;
10862 }
10863
10864 /* ... fall through ... */
10865 case LSHIFTRT:
10866 /* If we have (compare (xshiftrt FOO N) (const_int C)) and
10867 the low order N bits of FOO are known to be zero, we can do this
10868 by comparing FOO with C shifted left N bits so long as no
10869 overflow occurs. */
10870 if (GET_CODE (XEXP (op0, 1)) == CONST_INT
10871 && INTVAL (XEXP (op0, 1)) >= 0
10872 && INTVAL (XEXP (op0, 1)) < HOST_BITS_PER_WIDE_INT
10873 && mode_width <= HOST_BITS_PER_WIDE_INT
10874 && (nonzero_bits (XEXP (op0, 0), mode)
10875 & (((HOST_WIDE_INT) 1 << INTVAL (XEXP (op0, 1))) - 1)) == 0
10876 && (const_op == 0
10877 || (floor_log2 (const_op) + INTVAL (XEXP (op0, 1))
10878 < mode_width)))
10879 {
10880 const_op <<= INTVAL (XEXP (op0, 1));
10881 op1 = GEN_INT (const_op);
10882 op0 = XEXP (op0, 0);
10883 continue;
10884 }
10885
10886 /* If we are using this shift to extract just the sign bit, we
10887 can replace this with an LT or GE comparison. */
10888 if (const_op == 0
10889 && (equality_comparison_p || sign_bit_comparison_p)
10890 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10891 && INTVAL (XEXP (op0, 1)) == mode_width - 1)
10892 {
10893 op0 = XEXP (op0, 0);
10894 code = (code == NE || code == GT ? LT : GE);
10895 continue;
10896 }
10897 break;
10898
10899 default:
10900 break;
10901 }
10902
10903 break;
10904 }
10905
10906 /* Now make any compound operations involved in this comparison. Then,
10907 check for an outmost SUBREG on OP0 that is not doing anything or is
10908 paradoxical. The latter case can only occur when it is known that the
10909 "extra" bits will be zero. Therefore, it is safe to remove the SUBREG.
10910 We can never remove a SUBREG for a non-equality comparison because the
10911 sign bit is in a different place in the underlying object. */
10912
10913 op0 = make_compound_operation (op0, op1 == const0_rtx ? COMPARE : SET);
10914 op1 = make_compound_operation (op1, SET);
10915
10916 if (GET_CODE (op0) == SUBREG && subreg_lowpart_p (op0)
10917 && GET_MODE_CLASS (GET_MODE (op0)) == MODE_INT
10918 && (code == NE || code == EQ)
10919 && ((GET_MODE_SIZE (GET_MODE (op0))
10920 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (op0))))))
10921 {
10922 op0 = SUBREG_REG (op0);
10923 op1 = gen_lowpart_for_combine (GET_MODE (op0), op1);
10924 }
10925
10926 else if (GET_CODE (op0) == SUBREG && subreg_lowpart_p (op0)
10927 && GET_MODE_CLASS (GET_MODE (op0)) == MODE_INT
10928 && (code == NE || code == EQ)
10929 && (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (op0)))
10930 <= HOST_BITS_PER_WIDE_INT)
10931 && (nonzero_bits (SUBREG_REG (op0), GET_MODE (SUBREG_REG (op0)))
10932 & ~GET_MODE_MASK (GET_MODE (op0))) == 0
10933 && (tem = gen_lowpart_for_combine (GET_MODE (SUBREG_REG (op0)),
10934 op1),
10935 (nonzero_bits (tem, GET_MODE (SUBREG_REG (op0)))
10936 & ~GET_MODE_MASK (GET_MODE (op0))) == 0))
10937 op0 = SUBREG_REG (op0), op1 = tem;
10938
10939 /* We now do the opposite procedure: Some machines don't have compare
10940 insns in all modes. If OP0's mode is an integer mode smaller than a
10941 word and we can't do a compare in that mode, see if there is a larger
10942 mode for which we can do the compare. There are a number of cases in
10943 which we can use the wider mode. */
10944
10945 mode = GET_MODE (op0);
10946 if (mode != VOIDmode && GET_MODE_CLASS (mode) == MODE_INT
10947 && GET_MODE_SIZE (mode) < UNITS_PER_WORD
10948 && cmp_optab->handlers[(int) mode].insn_code == CODE_FOR_nothing)
10949 for (tmode = GET_MODE_WIDER_MODE (mode);
10950 (tmode != VOIDmode
10951 && GET_MODE_BITSIZE (tmode) <= HOST_BITS_PER_WIDE_INT);
10952 tmode = GET_MODE_WIDER_MODE (tmode))
10953 if (cmp_optab->handlers[(int) tmode].insn_code != CODE_FOR_nothing)
10954 {
10955 /* If the only nonzero bits in OP0 and OP1 are those in the
10956 narrower mode and this is an equality or unsigned comparison,
10957 we can use the wider mode. Similarly for sign-extended
10958 values, in which case it is true for all comparisons. */
10959 if (((code == EQ || code == NE
10960 || code == GEU || code == GTU || code == LEU || code == LTU)
10961 && (nonzero_bits (op0, tmode) & ~GET_MODE_MASK (mode)) == 0
10962 && (nonzero_bits (op1, tmode) & ~GET_MODE_MASK (mode)) == 0)
10963 || ((num_sign_bit_copies (op0, tmode)
10964 > GET_MODE_BITSIZE (tmode) - GET_MODE_BITSIZE (mode))
10965 && (num_sign_bit_copies (op1, tmode)
10966 > GET_MODE_BITSIZE (tmode) - GET_MODE_BITSIZE (mode))))
10967 {
10968 /* If OP0 is an AND and we don't have an AND in MODE either,
10969 make a new AND in the proper mode. */
10970 if (GET_CODE (op0) == AND
10971 && (add_optab->handlers[(int) mode].insn_code
10972 == CODE_FOR_nothing))
10973 op0 = gen_binary (AND, tmode,
10974 gen_lowpart_for_combine (tmode,
10975 XEXP (op0, 0)),
10976 gen_lowpart_for_combine (tmode,
10977 XEXP (op0, 1)));
10978
10979 op0 = gen_lowpart_for_combine (tmode, op0);
10980 op1 = gen_lowpart_for_combine (tmode, op1);
10981 break;
10982 }
10983
10984 /* If this is a test for negative, we can make an explicit
10985 test of the sign bit. */
10986
10987 if (op1 == const0_rtx && (code == LT || code == GE)
10988 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
10989 {
10990 op0 = gen_binary (AND, tmode,
10991 gen_lowpart_for_combine (tmode, op0),
10992 GEN_INT ((HOST_WIDE_INT) 1
10993 << (GET_MODE_BITSIZE (mode) - 1)));
10994 code = (code == LT) ? NE : EQ;
10995 break;
10996 }
10997 }
10998
10999 #ifdef CANONICALIZE_COMPARISON
11000 /* If this machine only supports a subset of valid comparisons, see if we
11001 can convert an unsupported one into a supported one. */
11002 CANONICALIZE_COMPARISON (code, op0, op1);
11003 #endif
11004
11005 *pop0 = op0;
11006 *pop1 = op1;
11007
11008 return code;
11009 }
11010 \f
11011 /* Return 1 if we know that X, a comparison operation, is not operating
11012 on a floating-point value or is EQ or NE, meaning that we can safely
11013 reverse it. */
11014
11015 static int
11016 reversible_comparison_p (x)
11017 rtx x;
11018 {
11019 if (TARGET_FLOAT_FORMAT != IEEE_FLOAT_FORMAT
11020 || flag_fast_math
11021 || GET_CODE (x) == NE || GET_CODE (x) == EQ
11022 || GET_CODE (x) == UNORDERED || GET_CODE (x) == ORDERED)
11023 return 1;
11024
11025 switch (GET_MODE_CLASS (GET_MODE (XEXP (x, 0))))
11026 {
11027 case MODE_INT:
11028 case MODE_PARTIAL_INT:
11029 case MODE_COMPLEX_INT:
11030 return 1;
11031
11032 case MODE_CC:
11033 /* If the mode of the condition codes tells us that this is safe,
11034 we need look no further. */
11035 if (REVERSIBLE_CC_MODE (GET_MODE (XEXP (x, 0))))
11036 return 1;
11037
11038 /* Otherwise try and find where the condition codes were last set and
11039 use that. */
11040 x = get_last_value (XEXP (x, 0));
11041 return (x && GET_CODE (x) == COMPARE
11042 && ! FLOAT_MODE_P (GET_MODE (XEXP (x, 0))));
11043
11044 default:
11045 return 0;
11046 }
11047 }
11048 \f
11049 /* Utility function for following routine. Called when X is part of a value
11050 being stored into reg_last_set_value. Sets reg_last_set_table_tick
11051 for each register mentioned. Similar to mention_regs in cse.c */
11052
11053 static void
11054 update_table_tick (x)
11055 rtx x;
11056 {
11057 register enum rtx_code code = GET_CODE (x);
11058 register const char *fmt = GET_RTX_FORMAT (code);
11059 register int i;
11060
11061 if (code == REG)
11062 {
11063 unsigned int regno = REGNO (x);
11064 unsigned int endregno
11065 = regno + (regno < FIRST_PSEUDO_REGISTER
11066 ? HARD_REGNO_NREGS (regno, GET_MODE (x)) : 1);
11067 unsigned int r;
11068
11069 for (r = regno; r < endregno; r++)
11070 reg_last_set_table_tick[r] = label_tick;
11071
11072 return;
11073 }
11074
11075 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
11076 /* Note that we can't have an "E" in values stored; see
11077 get_last_value_validate. */
11078 if (fmt[i] == 'e')
11079 update_table_tick (XEXP (x, i));
11080 }
11081
11082 /* Record that REG is set to VALUE in insn INSN. If VALUE is zero, we
11083 are saying that the register is clobbered and we no longer know its
11084 value. If INSN is zero, don't update reg_last_set; this is only permitted
11085 with VALUE also zero and is used to invalidate the register. */
11086
11087 static void
11088 record_value_for_reg (reg, insn, value)
11089 rtx reg;
11090 rtx insn;
11091 rtx value;
11092 {
11093 unsigned int regno = REGNO (reg);
11094 unsigned int endregno
11095 = regno + (regno < FIRST_PSEUDO_REGISTER
11096 ? HARD_REGNO_NREGS (regno, GET_MODE (reg)) : 1);
11097 unsigned int i;
11098
11099 /* If VALUE contains REG and we have a previous value for REG, substitute
11100 the previous value. */
11101 if (value && insn && reg_overlap_mentioned_p (reg, value))
11102 {
11103 rtx tem;
11104
11105 /* Set things up so get_last_value is allowed to see anything set up to
11106 our insn. */
11107 subst_low_cuid = INSN_CUID (insn);
11108 tem = get_last_value (reg);
11109
11110 /* If TEM is simply a binary operation with two CLOBBERs as operands,
11111 it isn't going to be useful and will take a lot of time to process,
11112 so just use the CLOBBER. */
11113
11114 if (tem)
11115 {
11116 if ((GET_RTX_CLASS (GET_CODE (tem)) == '2'
11117 || GET_RTX_CLASS (GET_CODE (tem)) == 'c')
11118 && GET_CODE (XEXP (tem, 0)) == CLOBBER
11119 && GET_CODE (XEXP (tem, 1)) == CLOBBER)
11120 tem = XEXP (tem, 0);
11121
11122 value = replace_rtx (copy_rtx (value), reg, tem);
11123 }
11124 }
11125
11126 /* For each register modified, show we don't know its value, that
11127 we don't know about its bitwise content, that its value has been
11128 updated, and that we don't know the location of the death of the
11129 register. */
11130 for (i = regno; i < endregno; i++)
11131 {
11132 if (insn)
11133 reg_last_set[i] = insn;
11134
11135 reg_last_set_value[i] = 0;
11136 reg_last_set_mode[i] = 0;
11137 reg_last_set_nonzero_bits[i] = 0;
11138 reg_last_set_sign_bit_copies[i] = 0;
11139 reg_last_death[i] = 0;
11140 }
11141
11142 /* Mark registers that are being referenced in this value. */
11143 if (value)
11144 update_table_tick (value);
11145
11146 /* Now update the status of each register being set.
11147 If someone is using this register in this block, set this register
11148 to invalid since we will get confused between the two lives in this
11149 basic block. This makes using this register always invalid. In cse, we
11150 scan the table to invalidate all entries using this register, but this
11151 is too much work for us. */
11152
11153 for (i = regno; i < endregno; i++)
11154 {
11155 reg_last_set_label[i] = label_tick;
11156 if (value && reg_last_set_table_tick[i] == label_tick)
11157 reg_last_set_invalid[i] = 1;
11158 else
11159 reg_last_set_invalid[i] = 0;
11160 }
11161
11162 /* The value being assigned might refer to X (like in "x++;"). In that
11163 case, we must replace it with (clobber (const_int 0)) to prevent
11164 infinite loops. */
11165 if (value && ! get_last_value_validate (&value, insn,
11166 reg_last_set_label[regno], 0))
11167 {
11168 value = copy_rtx (value);
11169 if (! get_last_value_validate (&value, insn,
11170 reg_last_set_label[regno], 1))
11171 value = 0;
11172 }
11173
11174 /* For the main register being modified, update the value, the mode, the
11175 nonzero bits, and the number of sign bit copies. */
11176
11177 reg_last_set_value[regno] = value;
11178
11179 if (value)
11180 {
11181 subst_low_cuid = INSN_CUID (insn);
11182 reg_last_set_mode[regno] = GET_MODE (reg);
11183 reg_last_set_nonzero_bits[regno] = nonzero_bits (value, GET_MODE (reg));
11184 reg_last_set_sign_bit_copies[regno]
11185 = num_sign_bit_copies (value, GET_MODE (reg));
11186 }
11187 }
11188
11189 /* Called via note_stores from record_dead_and_set_regs to handle one
11190 SET or CLOBBER in an insn. DATA is the instruction in which the
11191 set is occurring. */
11192
11193 static void
11194 record_dead_and_set_regs_1 (dest, setter, data)
11195 rtx dest, setter;
11196 void *data;
11197 {
11198 rtx record_dead_insn = (rtx) data;
11199
11200 if (GET_CODE (dest) == SUBREG)
11201 dest = SUBREG_REG (dest);
11202
11203 if (GET_CODE (dest) == REG)
11204 {
11205 /* If we are setting the whole register, we know its value. Otherwise
11206 show that we don't know the value. We can handle SUBREG in
11207 some cases. */
11208 if (GET_CODE (setter) == SET && dest == SET_DEST (setter))
11209 record_value_for_reg (dest, record_dead_insn, SET_SRC (setter));
11210 else if (GET_CODE (setter) == SET
11211 && GET_CODE (SET_DEST (setter)) == SUBREG
11212 && SUBREG_REG (SET_DEST (setter)) == dest
11213 && GET_MODE_BITSIZE (GET_MODE (dest)) <= BITS_PER_WORD
11214 && subreg_lowpart_p (SET_DEST (setter)))
11215 record_value_for_reg (dest, record_dead_insn,
11216 gen_lowpart_for_combine (GET_MODE (dest),
11217 SET_SRC (setter)));
11218 else
11219 record_value_for_reg (dest, record_dead_insn, NULL_RTX);
11220 }
11221 else if (GET_CODE (dest) == MEM
11222 /* Ignore pushes, they clobber nothing. */
11223 && ! push_operand (dest, GET_MODE (dest)))
11224 mem_last_set = INSN_CUID (record_dead_insn);
11225 }
11226
11227 /* Update the records of when each REG was most recently set or killed
11228 for the things done by INSN. This is the last thing done in processing
11229 INSN in the combiner loop.
11230
11231 We update reg_last_set, reg_last_set_value, reg_last_set_mode,
11232 reg_last_set_nonzero_bits, reg_last_set_sign_bit_copies, reg_last_death,
11233 and also the similar information mem_last_set (which insn most recently
11234 modified memory) and last_call_cuid (which insn was the most recent
11235 subroutine call). */
11236
11237 static void
11238 record_dead_and_set_regs (insn)
11239 rtx insn;
11240 {
11241 register rtx link;
11242 unsigned int i;
11243
11244 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
11245 {
11246 if (REG_NOTE_KIND (link) == REG_DEAD
11247 && GET_CODE (XEXP (link, 0)) == REG)
11248 {
11249 unsigned int regno = REGNO (XEXP (link, 0));
11250 unsigned int endregno
11251 = regno + (regno < FIRST_PSEUDO_REGISTER
11252 ? HARD_REGNO_NREGS (regno, GET_MODE (XEXP (link, 0)))
11253 : 1);
11254
11255 for (i = regno; i < endregno; i++)
11256 reg_last_death[i] = insn;
11257 }
11258 else if (REG_NOTE_KIND (link) == REG_INC)
11259 record_value_for_reg (XEXP (link, 0), insn, NULL_RTX);
11260 }
11261
11262 if (GET_CODE (insn) == CALL_INSN)
11263 {
11264 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
11265 if (call_used_regs[i])
11266 {
11267 reg_last_set_value[i] = 0;
11268 reg_last_set_mode[i] = 0;
11269 reg_last_set_nonzero_bits[i] = 0;
11270 reg_last_set_sign_bit_copies[i] = 0;
11271 reg_last_death[i] = 0;
11272 }
11273
11274 last_call_cuid = mem_last_set = INSN_CUID (insn);
11275 }
11276
11277 note_stores (PATTERN (insn), record_dead_and_set_regs_1, insn);
11278 }
11279
11280 /* If a SUBREG has the promoted bit set, it is in fact a property of the
11281 register present in the SUBREG, so for each such SUBREG go back and
11282 adjust nonzero and sign bit information of the registers that are
11283 known to have some zero/sign bits set.
11284
11285 This is needed because when combine blows the SUBREGs away, the
11286 information on zero/sign bits is lost and further combines can be
11287 missed because of that. */
11288
11289 static void
11290 record_promoted_value (insn, subreg)
11291 rtx insn;
11292 rtx subreg;
11293 {
11294 rtx links, set;
11295 unsigned int regno = REGNO (SUBREG_REG (subreg));
11296 enum machine_mode mode = GET_MODE (subreg);
11297
11298 if (GET_MODE_BITSIZE (mode) > HOST_BITS_PER_WIDE_INT)
11299 return;
11300
11301 for (links = LOG_LINKS (insn); links;)
11302 {
11303 insn = XEXP (links, 0);
11304 set = single_set (insn);
11305
11306 if (! set || GET_CODE (SET_DEST (set)) != REG
11307 || REGNO (SET_DEST (set)) != regno
11308 || GET_MODE (SET_DEST (set)) != GET_MODE (SUBREG_REG (subreg)))
11309 {
11310 links = XEXP (links, 1);
11311 continue;
11312 }
11313
11314 if (reg_last_set[regno] == insn)
11315 {
11316 if (SUBREG_PROMOTED_UNSIGNED_P (subreg))
11317 reg_last_set_nonzero_bits[regno] &= GET_MODE_MASK (mode);
11318 }
11319
11320 if (GET_CODE (SET_SRC (set)) == REG)
11321 {
11322 regno = REGNO (SET_SRC (set));
11323 links = LOG_LINKS (insn);
11324 }
11325 else
11326 break;
11327 }
11328 }
11329
11330 /* Scan X for promoted SUBREGs. For each one found,
11331 note what it implies to the registers used in it. */
11332
11333 static void
11334 check_promoted_subreg (insn, x)
11335 rtx insn;
11336 rtx x;
11337 {
11338 if (GET_CODE (x) == SUBREG && SUBREG_PROMOTED_VAR_P (x)
11339 && GET_CODE (SUBREG_REG (x)) == REG)
11340 record_promoted_value (insn, x);
11341 else
11342 {
11343 const char *format = GET_RTX_FORMAT (GET_CODE (x));
11344 int i, j;
11345
11346 for (i = 0; i < GET_RTX_LENGTH (GET_CODE (x)); i++)
11347 switch (format[i])
11348 {
11349 case 'e':
11350 check_promoted_subreg (insn, XEXP (x, i));
11351 break;
11352 case 'V':
11353 case 'E':
11354 if (XVEC (x, i) != 0)
11355 for (j = 0; j < XVECLEN (x, i); j++)
11356 check_promoted_subreg (insn, XVECEXP (x, i, j));
11357 break;
11358 }
11359 }
11360 }
11361 \f
11362 /* Utility routine for the following function. Verify that all the registers
11363 mentioned in *LOC are valid when *LOC was part of a value set when
11364 label_tick == TICK. Return 0 if some are not.
11365
11366 If REPLACE is non-zero, replace the invalid reference with
11367 (clobber (const_int 0)) and return 1. This replacement is useful because
11368 we often can get useful information about the form of a value (e.g., if
11369 it was produced by a shift that always produces -1 or 0) even though
11370 we don't know exactly what registers it was produced from. */
11371
11372 static int
11373 get_last_value_validate (loc, insn, tick, replace)
11374 rtx *loc;
11375 rtx insn;
11376 int tick;
11377 int replace;
11378 {
11379 rtx x = *loc;
11380 const char *fmt = GET_RTX_FORMAT (GET_CODE (x));
11381 int len = GET_RTX_LENGTH (GET_CODE (x));
11382 int i;
11383
11384 if (GET_CODE (x) == REG)
11385 {
11386 unsigned int regno = REGNO (x);
11387 unsigned int endregno
11388 = regno + (regno < FIRST_PSEUDO_REGISTER
11389 ? HARD_REGNO_NREGS (regno, GET_MODE (x)) : 1);
11390 unsigned int j;
11391
11392 for (j = regno; j < endregno; j++)
11393 if (reg_last_set_invalid[j]
11394 /* If this is a pseudo-register that was only set once and not
11395 live at the beginning of the function, it is always valid. */
11396 || (! (regno >= FIRST_PSEUDO_REGISTER
11397 && REG_N_SETS (regno) == 1
11398 && (! REGNO_REG_SET_P
11399 (BASIC_BLOCK (0)->global_live_at_start, regno)))
11400 && reg_last_set_label[j] > tick))
11401 {
11402 if (replace)
11403 *loc = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
11404 return replace;
11405 }
11406
11407 return 1;
11408 }
11409 /* If this is a memory reference, make sure that there were
11410 no stores after it that might have clobbered the value. We don't
11411 have alias info, so we assume any store invalidates it. */
11412 else if (GET_CODE (x) == MEM && ! RTX_UNCHANGING_P (x)
11413 && INSN_CUID (insn) <= mem_last_set)
11414 {
11415 if (replace)
11416 *loc = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
11417 return replace;
11418 }
11419
11420 for (i = 0; i < len; i++)
11421 if ((fmt[i] == 'e'
11422 && get_last_value_validate (&XEXP (x, i), insn, tick, replace) == 0)
11423 /* Don't bother with these. They shouldn't occur anyway. */
11424 || fmt[i] == 'E')
11425 return 0;
11426
11427 /* If we haven't found a reason for it to be invalid, it is valid. */
11428 return 1;
11429 }
11430
11431 /* Get the last value assigned to X, if known. Some registers
11432 in the value may be replaced with (clobber (const_int 0)) if their value
11433 is known longer known reliably. */
11434
11435 static rtx
11436 get_last_value (x)
11437 rtx x;
11438 {
11439 unsigned int regno;
11440 rtx value;
11441
11442 /* If this is a non-paradoxical SUBREG, get the value of its operand and
11443 then convert it to the desired mode. If this is a paradoxical SUBREG,
11444 we cannot predict what values the "extra" bits might have. */
11445 if (GET_CODE (x) == SUBREG
11446 && subreg_lowpart_p (x)
11447 && (GET_MODE_SIZE (GET_MODE (x))
11448 <= GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
11449 && (value = get_last_value (SUBREG_REG (x))) != 0)
11450 return gen_lowpart_for_combine (GET_MODE (x), value);
11451
11452 if (GET_CODE (x) != REG)
11453 return 0;
11454
11455 regno = REGNO (x);
11456 value = reg_last_set_value[regno];
11457
11458 /* If we don't have a value, or if it isn't for this basic block and
11459 it's either a hard register, set more than once, or it's a live
11460 at the beginning of the function, return 0.
11461
11462 Because if it's not live at the beginnning of the function then the reg
11463 is always set before being used (is never used without being set).
11464 And, if it's set only once, and it's always set before use, then all
11465 uses must have the same last value, even if it's not from this basic
11466 block. */
11467
11468 if (value == 0
11469 || (reg_last_set_label[regno] != label_tick
11470 && (regno < FIRST_PSEUDO_REGISTER
11471 || REG_N_SETS (regno) != 1
11472 || (REGNO_REG_SET_P
11473 (BASIC_BLOCK (0)->global_live_at_start, regno)))))
11474 return 0;
11475
11476 /* If the value was set in a later insn than the ones we are processing,
11477 we can't use it even if the register was only set once. */
11478 if (INSN_CUID (reg_last_set[regno]) >= subst_low_cuid)
11479 return 0;
11480
11481 /* If the value has all its registers valid, return it. */
11482 if (get_last_value_validate (&value, reg_last_set[regno],
11483 reg_last_set_label[regno], 0))
11484 return value;
11485
11486 /* Otherwise, make a copy and replace any invalid register with
11487 (clobber (const_int 0)). If that fails for some reason, return 0. */
11488
11489 value = copy_rtx (value);
11490 if (get_last_value_validate (&value, reg_last_set[regno],
11491 reg_last_set_label[regno], 1))
11492 return value;
11493
11494 return 0;
11495 }
11496 \f
11497 /* Return nonzero if expression X refers to a REG or to memory
11498 that is set in an instruction more recent than FROM_CUID. */
11499
11500 static int
11501 use_crosses_set_p (x, from_cuid)
11502 register rtx x;
11503 int from_cuid;
11504 {
11505 register const char *fmt;
11506 register int i;
11507 register enum rtx_code code = GET_CODE (x);
11508
11509 if (code == REG)
11510 {
11511 unsigned int regno = REGNO (x);
11512 unsigned endreg = regno + (regno < FIRST_PSEUDO_REGISTER
11513 ? HARD_REGNO_NREGS (regno, GET_MODE (x)) : 1);
11514
11515 #ifdef PUSH_ROUNDING
11516 /* Don't allow uses of the stack pointer to be moved,
11517 because we don't know whether the move crosses a push insn. */
11518 if (regno == STACK_POINTER_REGNUM && PUSH_ARGS)
11519 return 1;
11520 #endif
11521 for (; regno < endreg; regno++)
11522 if (reg_last_set[regno]
11523 && INSN_CUID (reg_last_set[regno]) > from_cuid)
11524 return 1;
11525 return 0;
11526 }
11527
11528 if (code == MEM && mem_last_set > from_cuid)
11529 return 1;
11530
11531 fmt = GET_RTX_FORMAT (code);
11532
11533 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
11534 {
11535 if (fmt[i] == 'E')
11536 {
11537 register int j;
11538 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
11539 if (use_crosses_set_p (XVECEXP (x, i, j), from_cuid))
11540 return 1;
11541 }
11542 else if (fmt[i] == 'e'
11543 && use_crosses_set_p (XEXP (x, i), from_cuid))
11544 return 1;
11545 }
11546 return 0;
11547 }
11548 \f
11549 /* Define three variables used for communication between the following
11550 routines. */
11551
11552 static unsigned int reg_dead_regno, reg_dead_endregno;
11553 static int reg_dead_flag;
11554
11555 /* Function called via note_stores from reg_dead_at_p.
11556
11557 If DEST is within [reg_dead_regno, reg_dead_endregno), set
11558 reg_dead_flag to 1 if X is a CLOBBER and to -1 it is a SET. */
11559
11560 static void
11561 reg_dead_at_p_1 (dest, x, data)
11562 rtx dest;
11563 rtx x;
11564 void *data ATTRIBUTE_UNUSED;
11565 {
11566 unsigned int regno, endregno;
11567
11568 if (GET_CODE (dest) != REG)
11569 return;
11570
11571 regno = REGNO (dest);
11572 endregno = regno + (regno < FIRST_PSEUDO_REGISTER
11573 ? HARD_REGNO_NREGS (regno, GET_MODE (dest)) : 1);
11574
11575 if (reg_dead_endregno > regno && reg_dead_regno < endregno)
11576 reg_dead_flag = (GET_CODE (x) == CLOBBER) ? 1 : -1;
11577 }
11578
11579 /* Return non-zero if REG is known to be dead at INSN.
11580
11581 We scan backwards from INSN. If we hit a REG_DEAD note or a CLOBBER
11582 referencing REG, it is dead. If we hit a SET referencing REG, it is
11583 live. Otherwise, see if it is live or dead at the start of the basic
11584 block we are in. Hard regs marked as being live in NEWPAT_USED_REGS
11585 must be assumed to be always live. */
11586
11587 static int
11588 reg_dead_at_p (reg, insn)
11589 rtx reg;
11590 rtx insn;
11591 {
11592 int block;
11593 unsigned int i;
11594
11595 /* Set variables for reg_dead_at_p_1. */
11596 reg_dead_regno = REGNO (reg);
11597 reg_dead_endregno = reg_dead_regno + (reg_dead_regno < FIRST_PSEUDO_REGISTER
11598 ? HARD_REGNO_NREGS (reg_dead_regno,
11599 GET_MODE (reg))
11600 : 1);
11601
11602 reg_dead_flag = 0;
11603
11604 /* Check that reg isn't mentioned in NEWPAT_USED_REGS. */
11605 if (reg_dead_regno < FIRST_PSEUDO_REGISTER)
11606 {
11607 for (i = reg_dead_regno; i < reg_dead_endregno; i++)
11608 if (TEST_HARD_REG_BIT (newpat_used_regs, i))
11609 return 0;
11610 }
11611
11612 /* Scan backwards until we find a REG_DEAD note, SET, CLOBBER, label, or
11613 beginning of function. */
11614 for (; insn && GET_CODE (insn) != CODE_LABEL && GET_CODE (insn) != BARRIER;
11615 insn = prev_nonnote_insn (insn))
11616 {
11617 note_stores (PATTERN (insn), reg_dead_at_p_1, NULL);
11618 if (reg_dead_flag)
11619 return reg_dead_flag == 1 ? 1 : 0;
11620
11621 if (find_regno_note (insn, REG_DEAD, reg_dead_regno))
11622 return 1;
11623 }
11624
11625 /* Get the basic block number that we were in. */
11626 if (insn == 0)
11627 block = 0;
11628 else
11629 {
11630 for (block = 0; block < n_basic_blocks; block++)
11631 if (insn == BLOCK_HEAD (block))
11632 break;
11633
11634 if (block == n_basic_blocks)
11635 return 0;
11636 }
11637
11638 for (i = reg_dead_regno; i < reg_dead_endregno; i++)
11639 if (REGNO_REG_SET_P (BASIC_BLOCK (block)->global_live_at_start, i))
11640 return 0;
11641
11642 return 1;
11643 }
11644 \f
11645 /* Note hard registers in X that are used. This code is similar to
11646 that in flow.c, but much simpler since we don't care about pseudos. */
11647
11648 static void
11649 mark_used_regs_combine (x)
11650 rtx x;
11651 {
11652 RTX_CODE code = GET_CODE (x);
11653 unsigned int regno;
11654 int i;
11655
11656 switch (code)
11657 {
11658 case LABEL_REF:
11659 case SYMBOL_REF:
11660 case CONST_INT:
11661 case CONST:
11662 case CONST_DOUBLE:
11663 case PC:
11664 case ADDR_VEC:
11665 case ADDR_DIFF_VEC:
11666 case ASM_INPUT:
11667 #ifdef HAVE_cc0
11668 /* CC0 must die in the insn after it is set, so we don't need to take
11669 special note of it here. */
11670 case CC0:
11671 #endif
11672 return;
11673
11674 case CLOBBER:
11675 /* If we are clobbering a MEM, mark any hard registers inside the
11676 address as used. */
11677 if (GET_CODE (XEXP (x, 0)) == MEM)
11678 mark_used_regs_combine (XEXP (XEXP (x, 0), 0));
11679 return;
11680
11681 case REG:
11682 regno = REGNO (x);
11683 /* A hard reg in a wide mode may really be multiple registers.
11684 If so, mark all of them just like the first. */
11685 if (regno < FIRST_PSEUDO_REGISTER)
11686 {
11687 unsigned int endregno, r;
11688
11689 /* None of this applies to the stack, frame or arg pointers */
11690 if (regno == STACK_POINTER_REGNUM
11691 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
11692 || regno == HARD_FRAME_POINTER_REGNUM
11693 #endif
11694 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
11695 || (regno == ARG_POINTER_REGNUM && fixed_regs[regno])
11696 #endif
11697 || regno == FRAME_POINTER_REGNUM)
11698 return;
11699
11700 endregno = regno + HARD_REGNO_NREGS (regno, GET_MODE (x));
11701 for (r = regno; r < endregno; r++)
11702 SET_HARD_REG_BIT (newpat_used_regs, r);
11703 }
11704 return;
11705
11706 case SET:
11707 {
11708 /* If setting a MEM, or a SUBREG of a MEM, then note any hard regs in
11709 the address. */
11710 register rtx testreg = SET_DEST (x);
11711
11712 while (GET_CODE (testreg) == SUBREG
11713 || GET_CODE (testreg) == ZERO_EXTRACT
11714 || GET_CODE (testreg) == SIGN_EXTRACT
11715 || GET_CODE (testreg) == STRICT_LOW_PART)
11716 testreg = XEXP (testreg, 0);
11717
11718 if (GET_CODE (testreg) == MEM)
11719 mark_used_regs_combine (XEXP (testreg, 0));
11720
11721 mark_used_regs_combine (SET_SRC (x));
11722 }
11723 return;
11724
11725 default:
11726 break;
11727 }
11728
11729 /* Recursively scan the operands of this expression. */
11730
11731 {
11732 register const char *fmt = GET_RTX_FORMAT (code);
11733
11734 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
11735 {
11736 if (fmt[i] == 'e')
11737 mark_used_regs_combine (XEXP (x, i));
11738 else if (fmt[i] == 'E')
11739 {
11740 register int j;
11741
11742 for (j = 0; j < XVECLEN (x, i); j++)
11743 mark_used_regs_combine (XVECEXP (x, i, j));
11744 }
11745 }
11746 }
11747 }
11748 \f
11749 /* Remove register number REGNO from the dead registers list of INSN.
11750
11751 Return the note used to record the death, if there was one. */
11752
11753 rtx
11754 remove_death (regno, insn)
11755 unsigned int regno;
11756 rtx insn;
11757 {
11758 register rtx note = find_regno_note (insn, REG_DEAD, regno);
11759
11760 if (note)
11761 {
11762 REG_N_DEATHS (regno)--;
11763 remove_note (insn, note);
11764 }
11765
11766 return note;
11767 }
11768
11769 /* For each register (hardware or pseudo) used within expression X, if its
11770 death is in an instruction with cuid between FROM_CUID (inclusive) and
11771 TO_INSN (exclusive), put a REG_DEAD note for that register in the
11772 list headed by PNOTES.
11773
11774 That said, don't move registers killed by maybe_kill_insn.
11775
11776 This is done when X is being merged by combination into TO_INSN. These
11777 notes will then be distributed as needed. */
11778
11779 static void
11780 move_deaths (x, maybe_kill_insn, from_cuid, to_insn, pnotes)
11781 rtx x;
11782 rtx maybe_kill_insn;
11783 int from_cuid;
11784 rtx to_insn;
11785 rtx *pnotes;
11786 {
11787 register const char *fmt;
11788 register int len, i;
11789 register enum rtx_code code = GET_CODE (x);
11790
11791 if (code == REG)
11792 {
11793 unsigned int regno = REGNO (x);
11794 register rtx where_dead = reg_last_death[regno];
11795 register rtx before_dead, after_dead;
11796
11797 /* Don't move the register if it gets killed in between from and to */
11798 if (maybe_kill_insn && reg_set_p (x, maybe_kill_insn)
11799 && ! reg_referenced_p (x, maybe_kill_insn))
11800 return;
11801
11802 /* WHERE_DEAD could be a USE insn made by combine, so first we
11803 make sure that we have insns with valid INSN_CUID values. */
11804 before_dead = where_dead;
11805 while (before_dead && INSN_UID (before_dead) > max_uid_cuid)
11806 before_dead = PREV_INSN (before_dead);
11807
11808 after_dead = where_dead;
11809 while (after_dead && INSN_UID (after_dead) > max_uid_cuid)
11810 after_dead = NEXT_INSN (after_dead);
11811
11812 if (before_dead && after_dead
11813 && INSN_CUID (before_dead) >= from_cuid
11814 && (INSN_CUID (after_dead) < INSN_CUID (to_insn)
11815 || (where_dead != after_dead
11816 && INSN_CUID (after_dead) == INSN_CUID (to_insn))))
11817 {
11818 rtx note = remove_death (regno, where_dead);
11819
11820 /* It is possible for the call above to return 0. This can occur
11821 when reg_last_death points to I2 or I1 that we combined with.
11822 In that case make a new note.
11823
11824 We must also check for the case where X is a hard register
11825 and NOTE is a death note for a range of hard registers
11826 including X. In that case, we must put REG_DEAD notes for
11827 the remaining registers in place of NOTE. */
11828
11829 if (note != 0 && regno < FIRST_PSEUDO_REGISTER
11830 && (GET_MODE_SIZE (GET_MODE (XEXP (note, 0)))
11831 > GET_MODE_SIZE (GET_MODE (x))))
11832 {
11833 unsigned int deadregno = REGNO (XEXP (note, 0));
11834 unsigned int deadend
11835 = (deadregno + HARD_REGNO_NREGS (deadregno,
11836 GET_MODE (XEXP (note, 0))));
11837 unsigned int ourend
11838 = regno + HARD_REGNO_NREGS (regno, GET_MODE (x));
11839 unsigned int i;
11840
11841 for (i = deadregno; i < deadend; i++)
11842 if (i < regno || i >= ourend)
11843 REG_NOTES (where_dead)
11844 = gen_rtx_EXPR_LIST (REG_DEAD,
11845 gen_rtx_REG (reg_raw_mode[i], i),
11846 REG_NOTES (where_dead));
11847 }
11848
11849 /* If we didn't find any note, or if we found a REG_DEAD note that
11850 covers only part of the given reg, and we have a multi-reg hard
11851 register, then to be safe we must check for REG_DEAD notes
11852 for each register other than the first. They could have
11853 their own REG_DEAD notes lying around. */
11854 else if ((note == 0
11855 || (note != 0
11856 && (GET_MODE_SIZE (GET_MODE (XEXP (note, 0)))
11857 < GET_MODE_SIZE (GET_MODE (x)))))
11858 && regno < FIRST_PSEUDO_REGISTER
11859 && HARD_REGNO_NREGS (regno, GET_MODE (x)) > 1)
11860 {
11861 unsigned int ourend
11862 = regno + HARD_REGNO_NREGS (regno, GET_MODE (x));
11863 unsigned int i, offset;
11864 rtx oldnotes = 0;
11865
11866 if (note)
11867 offset = HARD_REGNO_NREGS (regno, GET_MODE (XEXP (note, 0)));
11868 else
11869 offset = 1;
11870
11871 for (i = regno + offset; i < ourend; i++)
11872 move_deaths (gen_rtx_REG (reg_raw_mode[i], i),
11873 maybe_kill_insn, from_cuid, to_insn, &oldnotes);
11874 }
11875
11876 if (note != 0 && GET_MODE (XEXP (note, 0)) == GET_MODE (x))
11877 {
11878 XEXP (note, 1) = *pnotes;
11879 *pnotes = note;
11880 }
11881 else
11882 *pnotes = gen_rtx_EXPR_LIST (REG_DEAD, x, *pnotes);
11883
11884 REG_N_DEATHS (regno)++;
11885 }
11886
11887 return;
11888 }
11889
11890 else if (GET_CODE (x) == SET)
11891 {
11892 rtx dest = SET_DEST (x);
11893
11894 move_deaths (SET_SRC (x), maybe_kill_insn, from_cuid, to_insn, pnotes);
11895
11896 /* In the case of a ZERO_EXTRACT, a STRICT_LOW_PART, or a SUBREG
11897 that accesses one word of a multi-word item, some
11898 piece of everything register in the expression is used by
11899 this insn, so remove any old death. */
11900
11901 if (GET_CODE (dest) == ZERO_EXTRACT
11902 || GET_CODE (dest) == STRICT_LOW_PART
11903 || (GET_CODE (dest) == SUBREG
11904 && (((GET_MODE_SIZE (GET_MODE (dest))
11905 + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
11906 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest)))
11907 + UNITS_PER_WORD - 1) / UNITS_PER_WORD))))
11908 {
11909 move_deaths (dest, maybe_kill_insn, from_cuid, to_insn, pnotes);
11910 return;
11911 }
11912
11913 /* If this is some other SUBREG, we know it replaces the entire
11914 value, so use that as the destination. */
11915 if (GET_CODE (dest) == SUBREG)
11916 dest = SUBREG_REG (dest);
11917
11918 /* If this is a MEM, adjust deaths of anything used in the address.
11919 For a REG (the only other possibility), the entire value is
11920 being replaced so the old value is not used in this insn. */
11921
11922 if (GET_CODE (dest) == MEM)
11923 move_deaths (XEXP (dest, 0), maybe_kill_insn, from_cuid,
11924 to_insn, pnotes);
11925 return;
11926 }
11927
11928 else if (GET_CODE (x) == CLOBBER)
11929 return;
11930
11931 len = GET_RTX_LENGTH (code);
11932 fmt = GET_RTX_FORMAT (code);
11933
11934 for (i = 0; i < len; i++)
11935 {
11936 if (fmt[i] == 'E')
11937 {
11938 register int j;
11939 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
11940 move_deaths (XVECEXP (x, i, j), maybe_kill_insn, from_cuid,
11941 to_insn, pnotes);
11942 }
11943 else if (fmt[i] == 'e')
11944 move_deaths (XEXP (x, i), maybe_kill_insn, from_cuid, to_insn, pnotes);
11945 }
11946 }
11947 \f
11948 /* Return 1 if X is the target of a bit-field assignment in BODY, the
11949 pattern of an insn. X must be a REG. */
11950
11951 static int
11952 reg_bitfield_target_p (x, body)
11953 rtx x;
11954 rtx body;
11955 {
11956 int i;
11957
11958 if (GET_CODE (body) == SET)
11959 {
11960 rtx dest = SET_DEST (body);
11961 rtx target;
11962 unsigned int regno, tregno, endregno, endtregno;
11963
11964 if (GET_CODE (dest) == ZERO_EXTRACT)
11965 target = XEXP (dest, 0);
11966 else if (GET_CODE (dest) == STRICT_LOW_PART)
11967 target = SUBREG_REG (XEXP (dest, 0));
11968 else
11969 return 0;
11970
11971 if (GET_CODE (target) == SUBREG)
11972 target = SUBREG_REG (target);
11973
11974 if (GET_CODE (target) != REG)
11975 return 0;
11976
11977 tregno = REGNO (target), regno = REGNO (x);
11978 if (tregno >= FIRST_PSEUDO_REGISTER || regno >= FIRST_PSEUDO_REGISTER)
11979 return target == x;
11980
11981 endtregno = tregno + HARD_REGNO_NREGS (tregno, GET_MODE (target));
11982 endregno = regno + HARD_REGNO_NREGS (regno, GET_MODE (x));
11983
11984 return endregno > tregno && regno < endtregno;
11985 }
11986
11987 else if (GET_CODE (body) == PARALLEL)
11988 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
11989 if (reg_bitfield_target_p (x, XVECEXP (body, 0, i)))
11990 return 1;
11991
11992 return 0;
11993 }
11994 \f
11995 /* Given a chain of REG_NOTES originally from FROM_INSN, try to place them
11996 as appropriate. I3 and I2 are the insns resulting from the combination
11997 insns including FROM (I2 may be zero).
11998
11999 ELIM_I2 and ELIM_I1 are either zero or registers that we know will
12000 not need REG_DEAD notes because they are being substituted for. This
12001 saves searching in the most common cases.
12002
12003 Each note in the list is either ignored or placed on some insns, depending
12004 on the type of note. */
12005
12006 static void
12007 distribute_notes (notes, from_insn, i3, i2, elim_i2, elim_i1)
12008 rtx notes;
12009 rtx from_insn;
12010 rtx i3, i2;
12011 rtx elim_i2, elim_i1;
12012 {
12013 rtx note, next_note;
12014 rtx tem;
12015
12016 for (note = notes; note; note = next_note)
12017 {
12018 rtx place = 0, place2 = 0;
12019
12020 /* If this NOTE references a pseudo register, ensure it references
12021 the latest copy of that register. */
12022 if (XEXP (note, 0) && GET_CODE (XEXP (note, 0)) == REG
12023 && REGNO (XEXP (note, 0)) >= FIRST_PSEUDO_REGISTER)
12024 XEXP (note, 0) = regno_reg_rtx[REGNO (XEXP (note, 0))];
12025
12026 next_note = XEXP (note, 1);
12027 switch (REG_NOTE_KIND (note))
12028 {
12029 case REG_BR_PROB:
12030 case REG_EXEC_COUNT:
12031 /* Doesn't matter much where we put this, as long as it's somewhere.
12032 It is preferable to keep these notes on branches, which is most
12033 likely to be i3. */
12034 place = i3;
12035 break;
12036
12037 case REG_EH_REGION:
12038 case REG_EH_RETHROW:
12039 /* These notes must remain with the call. It should not be
12040 possible for both I2 and I3 to be a call. */
12041 if (GET_CODE (i3) == CALL_INSN)
12042 place = i3;
12043 else if (i2 && GET_CODE (i2) == CALL_INSN)
12044 place = i2;
12045 else
12046 abort ();
12047 break;
12048
12049 case REG_UNUSED:
12050 /* Any clobbers for i3 may still exist, and so we must process
12051 REG_UNUSED notes from that insn.
12052
12053 Any clobbers from i2 or i1 can only exist if they were added by
12054 recog_for_combine. In that case, recog_for_combine created the
12055 necessary REG_UNUSED notes. Trying to keep any original
12056 REG_UNUSED notes from these insns can cause incorrect output
12057 if it is for the same register as the original i3 dest.
12058 In that case, we will notice that the register is set in i3,
12059 and then add a REG_UNUSED note for the destination of i3, which
12060 is wrong. However, it is possible to have REG_UNUSED notes from
12061 i2 or i1 for register which were both used and clobbered, so
12062 we keep notes from i2 or i1 if they will turn into REG_DEAD
12063 notes. */
12064
12065 /* If this register is set or clobbered in I3, put the note there
12066 unless there is one already. */
12067 if (reg_set_p (XEXP (note, 0), PATTERN (i3)))
12068 {
12069 if (from_insn != i3)
12070 break;
12071
12072 if (! (GET_CODE (XEXP (note, 0)) == REG
12073 ? find_regno_note (i3, REG_UNUSED, REGNO (XEXP (note, 0)))
12074 : find_reg_note (i3, REG_UNUSED, XEXP (note, 0))))
12075 place = i3;
12076 }
12077 /* Otherwise, if this register is used by I3, then this register
12078 now dies here, so we must put a REG_DEAD note here unless there
12079 is one already. */
12080 else if (reg_referenced_p (XEXP (note, 0), PATTERN (i3))
12081 && ! (GET_CODE (XEXP (note, 0)) == REG
12082 ? find_regno_note (i3, REG_DEAD,
12083 REGNO (XEXP (note, 0)))
12084 : find_reg_note (i3, REG_DEAD, XEXP (note, 0))))
12085 {
12086 PUT_REG_NOTE_KIND (note, REG_DEAD);
12087 place = i3;
12088 }
12089 break;
12090
12091 case REG_EQUAL:
12092 case REG_EQUIV:
12093 case REG_NOALIAS:
12094 /* These notes say something about results of an insn. We can
12095 only support them if they used to be on I3 in which case they
12096 remain on I3. Otherwise they are ignored.
12097
12098 If the note refers to an expression that is not a constant, we
12099 must also ignore the note since we cannot tell whether the
12100 equivalence is still true. It might be possible to do
12101 slightly better than this (we only have a problem if I2DEST
12102 or I1DEST is present in the expression), but it doesn't
12103 seem worth the trouble. */
12104
12105 if (from_insn == i3
12106 && (XEXP (note, 0) == 0 || CONSTANT_P (XEXP (note, 0))))
12107 place = i3;
12108 break;
12109
12110 case REG_INC:
12111 case REG_NO_CONFLICT:
12112 /* These notes say something about how a register is used. They must
12113 be present on any use of the register in I2 or I3. */
12114 if (reg_mentioned_p (XEXP (note, 0), PATTERN (i3)))
12115 place = i3;
12116
12117 if (i2 && reg_mentioned_p (XEXP (note, 0), PATTERN (i2)))
12118 {
12119 if (place)
12120 place2 = i2;
12121 else
12122 place = i2;
12123 }
12124 break;
12125
12126 case REG_LABEL:
12127 /* This can show up in several ways -- either directly in the
12128 pattern, or hidden off in the constant pool with (or without?)
12129 a REG_EQUAL note. */
12130 /* ??? Ignore the without-reg_equal-note problem for now. */
12131 if (reg_mentioned_p (XEXP (note, 0), PATTERN (i3))
12132 || ((tem = find_reg_note (i3, REG_EQUAL, NULL_RTX))
12133 && GET_CODE (XEXP (tem, 0)) == LABEL_REF
12134 && XEXP (XEXP (tem, 0), 0) == XEXP (note, 0)))
12135 place = i3;
12136
12137 if (i2
12138 && (reg_mentioned_p (XEXP (note, 0), PATTERN (i2))
12139 || ((tem = find_reg_note (i2, REG_EQUAL, NULL_RTX))
12140 && GET_CODE (XEXP (tem, 0)) == LABEL_REF
12141 && XEXP (XEXP (tem, 0), 0) == XEXP (note, 0))))
12142 {
12143 if (place)
12144 place2 = i2;
12145 else
12146 place = i2;
12147 }
12148 break;
12149
12150 case REG_NONNEG:
12151 case REG_WAS_0:
12152 /* These notes say something about the value of a register prior
12153 to the execution of an insn. It is too much trouble to see
12154 if the note is still correct in all situations. It is better
12155 to simply delete it. */
12156 break;
12157
12158 case REG_RETVAL:
12159 /* If the insn previously containing this note still exists,
12160 put it back where it was. Otherwise move it to the previous
12161 insn. Adjust the corresponding REG_LIBCALL note. */
12162 if (GET_CODE (from_insn) != NOTE)
12163 place = from_insn;
12164 else
12165 {
12166 tem = find_reg_note (XEXP (note, 0), REG_LIBCALL, NULL_RTX);
12167 place = prev_real_insn (from_insn);
12168 if (tem && place)
12169 XEXP (tem, 0) = place;
12170 }
12171 break;
12172
12173 case REG_LIBCALL:
12174 /* This is handled similarly to REG_RETVAL. */
12175 if (GET_CODE (from_insn) != NOTE)
12176 place = from_insn;
12177 else
12178 {
12179 tem = find_reg_note (XEXP (note, 0), REG_RETVAL, NULL_RTX);
12180 place = next_real_insn (from_insn);
12181 if (tem && place)
12182 XEXP (tem, 0) = place;
12183 }
12184 break;
12185
12186 case REG_DEAD:
12187 /* If the register is used as an input in I3, it dies there.
12188 Similarly for I2, if it is non-zero and adjacent to I3.
12189
12190 If the register is not used as an input in either I3 or I2
12191 and it is not one of the registers we were supposed to eliminate,
12192 there are two possibilities. We might have a non-adjacent I2
12193 or we might have somehow eliminated an additional register
12194 from a computation. For example, we might have had A & B where
12195 we discover that B will always be zero. In this case we will
12196 eliminate the reference to A.
12197
12198 In both cases, we must search to see if we can find a previous
12199 use of A and put the death note there. */
12200
12201 if (from_insn
12202 && GET_CODE (from_insn) == CALL_INSN
12203 && find_reg_fusage (from_insn, USE, XEXP (note, 0)))
12204 place = from_insn;
12205 else if (reg_referenced_p (XEXP (note, 0), PATTERN (i3)))
12206 place = i3;
12207 else if (i2 != 0 && next_nonnote_insn (i2) == i3
12208 && reg_referenced_p (XEXP (note, 0), PATTERN (i2)))
12209 place = i2;
12210
12211 if (XEXP (note, 0) == elim_i2 || XEXP (note, 0) == elim_i1)
12212 break;
12213
12214 if (place == 0)
12215 {
12216 basic_block bb = BASIC_BLOCK (this_basic_block);
12217
12218 for (tem = PREV_INSN (i3); place == 0; tem = PREV_INSN (tem))
12219 {
12220 if (! INSN_P (tem))
12221 {
12222 if (tem == bb->head)
12223 break;
12224 continue;
12225 }
12226
12227 /* If the register is being set at TEM, see if that is all
12228 TEM is doing. If so, delete TEM. Otherwise, make this
12229 into a REG_UNUSED note instead. */
12230 if (reg_set_p (XEXP (note, 0), PATTERN (tem)))
12231 {
12232 rtx set = single_set (tem);
12233 rtx inner_dest = 0;
12234 #ifdef HAVE_cc0
12235 rtx cc0_setter = NULL_RTX;
12236 #endif
12237
12238 if (set != 0)
12239 for (inner_dest = SET_DEST (set);
12240 (GET_CODE (inner_dest) == STRICT_LOW_PART
12241 || GET_CODE (inner_dest) == SUBREG
12242 || GET_CODE (inner_dest) == ZERO_EXTRACT);
12243 inner_dest = XEXP (inner_dest, 0))
12244 ;
12245
12246 /* Verify that it was the set, and not a clobber that
12247 modified the register.
12248
12249 CC0 targets must be careful to maintain setter/user
12250 pairs. If we cannot delete the setter due to side
12251 effects, mark the user with an UNUSED note instead
12252 of deleting it. */
12253
12254 if (set != 0 && ! side_effects_p (SET_SRC (set))
12255 && rtx_equal_p (XEXP (note, 0), inner_dest)
12256 #ifdef HAVE_cc0
12257 && (! reg_mentioned_p (cc0_rtx, SET_SRC (set))
12258 || ((cc0_setter = prev_cc0_setter (tem)) != NULL
12259 && sets_cc0_p (PATTERN (cc0_setter)) > 0))
12260 #endif
12261 )
12262 {
12263 /* Move the notes and links of TEM elsewhere.
12264 This might delete other dead insns recursively.
12265 First set the pattern to something that won't use
12266 any register. */
12267
12268 PATTERN (tem) = pc_rtx;
12269
12270 distribute_notes (REG_NOTES (tem), tem, tem,
12271 NULL_RTX, NULL_RTX, NULL_RTX);
12272 distribute_links (LOG_LINKS (tem));
12273
12274 PUT_CODE (tem, NOTE);
12275 NOTE_LINE_NUMBER (tem) = NOTE_INSN_DELETED;
12276 NOTE_SOURCE_FILE (tem) = 0;
12277
12278 #ifdef HAVE_cc0
12279 /* Delete the setter too. */
12280 if (cc0_setter)
12281 {
12282 PATTERN (cc0_setter) = pc_rtx;
12283
12284 distribute_notes (REG_NOTES (cc0_setter),
12285 cc0_setter, cc0_setter,
12286 NULL_RTX, NULL_RTX, NULL_RTX);
12287 distribute_links (LOG_LINKS (cc0_setter));
12288
12289 PUT_CODE (cc0_setter, NOTE);
12290 NOTE_LINE_NUMBER (cc0_setter)
12291 = NOTE_INSN_DELETED;
12292 NOTE_SOURCE_FILE (cc0_setter) = 0;
12293 }
12294 #endif
12295 }
12296 /* If the register is both set and used here, put the
12297 REG_DEAD note here, but place a REG_UNUSED note
12298 here too unless there already is one. */
12299 else if (reg_referenced_p (XEXP (note, 0),
12300 PATTERN (tem)))
12301 {
12302 place = tem;
12303
12304 if (! find_regno_note (tem, REG_UNUSED,
12305 REGNO (XEXP (note, 0))))
12306 REG_NOTES (tem)
12307 = gen_rtx_EXPR_LIST (REG_UNUSED, XEXP (note, 0),
12308 REG_NOTES (tem));
12309 }
12310 else
12311 {
12312 PUT_REG_NOTE_KIND (note, REG_UNUSED);
12313
12314 /* If there isn't already a REG_UNUSED note, put one
12315 here. */
12316 if (! find_regno_note (tem, REG_UNUSED,
12317 REGNO (XEXP (note, 0))))
12318 place = tem;
12319 break;
12320 }
12321 }
12322 else if (reg_referenced_p (XEXP (note, 0), PATTERN (tem))
12323 || (GET_CODE (tem) == CALL_INSN
12324 && find_reg_fusage (tem, USE, XEXP (note, 0))))
12325 {
12326 place = tem;
12327
12328 /* If we are doing a 3->2 combination, and we have a
12329 register which formerly died in i3 and was not used
12330 by i2, which now no longer dies in i3 and is used in
12331 i2 but does not die in i2, and place is between i2
12332 and i3, then we may need to move a link from place to
12333 i2. */
12334 if (i2 && INSN_UID (place) <= max_uid_cuid
12335 && INSN_CUID (place) > INSN_CUID (i2)
12336 && from_insn
12337 && INSN_CUID (from_insn) > INSN_CUID (i2)
12338 && reg_referenced_p (XEXP (note, 0), PATTERN (i2)))
12339 {
12340 rtx links = LOG_LINKS (place);
12341 LOG_LINKS (place) = 0;
12342 distribute_links (links);
12343 }
12344 break;
12345 }
12346
12347 if (tem == bb->head)
12348 break;
12349 }
12350
12351 /* We haven't found an insn for the death note and it
12352 is still a REG_DEAD note, but we have hit the beginning
12353 of the block. If the existing life info says the reg
12354 was dead, there's nothing left to do. Otherwise, we'll
12355 need to do a global life update after combine. */
12356 if (REG_NOTE_KIND (note) == REG_DEAD && place == 0
12357 && REGNO_REG_SET_P (bb->global_live_at_start,
12358 REGNO (XEXP (note, 0))))
12359 {
12360 SET_BIT (refresh_blocks, this_basic_block);
12361 need_refresh = 1;
12362 }
12363 }
12364
12365 /* If the register is set or already dead at PLACE, we needn't do
12366 anything with this note if it is still a REG_DEAD note.
12367 We can here if it is set at all, not if is it totally replace,
12368 which is what `dead_or_set_p' checks, so also check for it being
12369 set partially. */
12370
12371 if (place && REG_NOTE_KIND (note) == REG_DEAD)
12372 {
12373 unsigned int regno = REGNO (XEXP (note, 0));
12374
12375 if (dead_or_set_p (place, XEXP (note, 0))
12376 || reg_bitfield_target_p (XEXP (note, 0), PATTERN (place)))
12377 {
12378 /* Unless the register previously died in PLACE, clear
12379 reg_last_death. [I no longer understand why this is
12380 being done.] */
12381 if (reg_last_death[regno] != place)
12382 reg_last_death[regno] = 0;
12383 place = 0;
12384 }
12385 else
12386 reg_last_death[regno] = place;
12387
12388 /* If this is a death note for a hard reg that is occupying
12389 multiple registers, ensure that we are still using all
12390 parts of the object. If we find a piece of the object
12391 that is unused, we must add a USE for that piece before
12392 PLACE and put the appropriate REG_DEAD note on it.
12393
12394 An alternative would be to put a REG_UNUSED for the pieces
12395 on the insn that set the register, but that can't be done if
12396 it is not in the same block. It is simpler, though less
12397 efficient, to add the USE insns. */
12398
12399 if (place && regno < FIRST_PSEUDO_REGISTER
12400 && HARD_REGNO_NREGS (regno, GET_MODE (XEXP (note, 0))) > 1)
12401 {
12402 unsigned int endregno
12403 = regno + HARD_REGNO_NREGS (regno,
12404 GET_MODE (XEXP (note, 0)));
12405 int all_used = 1;
12406 unsigned int i;
12407
12408 for (i = regno; i < endregno; i++)
12409 if (! refers_to_regno_p (i, i + 1, PATTERN (place), 0)
12410 && ! find_regno_fusage (place, USE, i))
12411 {
12412 rtx piece = gen_rtx_REG (reg_raw_mode[i], i);
12413 rtx p;
12414
12415 /* See if we already placed a USE note for this
12416 register in front of PLACE. */
12417 for (p = place;
12418 GET_CODE (PREV_INSN (p)) == INSN
12419 && GET_CODE (PATTERN (PREV_INSN (p))) == USE;
12420 p = PREV_INSN (p))
12421 if (rtx_equal_p (piece,
12422 XEXP (PATTERN (PREV_INSN (p)), 0)))
12423 {
12424 p = 0;
12425 break;
12426 }
12427
12428 if (p)
12429 {
12430 rtx use_insn
12431 = emit_insn_before (gen_rtx_USE (VOIDmode,
12432 piece),
12433 p);
12434 REG_NOTES (use_insn)
12435 = gen_rtx_EXPR_LIST (REG_DEAD, piece,
12436 REG_NOTES (use_insn));
12437 }
12438
12439 all_used = 0;
12440 }
12441
12442 /* Check for the case where the register dying partially
12443 overlaps the register set by this insn. */
12444 if (all_used)
12445 for (i = regno; i < endregno; i++)
12446 if (dead_or_set_regno_p (place, i))
12447 {
12448 all_used = 0;
12449 break;
12450 }
12451
12452 if (! all_used)
12453 {
12454 /* Put only REG_DEAD notes for pieces that are
12455 still used and that are not already dead or set. */
12456
12457 for (i = regno; i < endregno; i++)
12458 {
12459 rtx piece = gen_rtx_REG (reg_raw_mode[i], i);
12460
12461 if ((reg_referenced_p (piece, PATTERN (place))
12462 || (GET_CODE (place) == CALL_INSN
12463 && find_reg_fusage (place, USE, piece)))
12464 && ! dead_or_set_p (place, piece)
12465 && ! reg_bitfield_target_p (piece,
12466 PATTERN (place)))
12467 REG_NOTES (place)
12468 = gen_rtx_EXPR_LIST (REG_DEAD, piece,
12469 REG_NOTES (place));
12470 }
12471
12472 place = 0;
12473 }
12474 }
12475 }
12476 break;
12477
12478 default:
12479 /* Any other notes should not be present at this point in the
12480 compilation. */
12481 abort ();
12482 }
12483
12484 if (place)
12485 {
12486 XEXP (note, 1) = REG_NOTES (place);
12487 REG_NOTES (place) = note;
12488 }
12489 else if ((REG_NOTE_KIND (note) == REG_DEAD
12490 || REG_NOTE_KIND (note) == REG_UNUSED)
12491 && GET_CODE (XEXP (note, 0)) == REG)
12492 REG_N_DEATHS (REGNO (XEXP (note, 0)))--;
12493
12494 if (place2)
12495 {
12496 if ((REG_NOTE_KIND (note) == REG_DEAD
12497 || REG_NOTE_KIND (note) == REG_UNUSED)
12498 && GET_CODE (XEXP (note, 0)) == REG)
12499 REG_N_DEATHS (REGNO (XEXP (note, 0)))++;
12500
12501 REG_NOTES (place2) = gen_rtx_fmt_ee (GET_CODE (note),
12502 REG_NOTE_KIND (note),
12503 XEXP (note, 0),
12504 REG_NOTES (place2));
12505 }
12506 }
12507 }
12508 \f
12509 /* Similarly to above, distribute the LOG_LINKS that used to be present on
12510 I3, I2, and I1 to new locations. This is also called in one case to
12511 add a link pointing at I3 when I3's destination is changed. */
12512
12513 static void
12514 distribute_links (links)
12515 rtx links;
12516 {
12517 rtx link, next_link;
12518
12519 for (link = links; link; link = next_link)
12520 {
12521 rtx place = 0;
12522 rtx insn;
12523 rtx set, reg;
12524
12525 next_link = XEXP (link, 1);
12526
12527 /* If the insn that this link points to is a NOTE or isn't a single
12528 set, ignore it. In the latter case, it isn't clear what we
12529 can do other than ignore the link, since we can't tell which
12530 register it was for. Such links wouldn't be used by combine
12531 anyway.
12532
12533 It is not possible for the destination of the target of the link to
12534 have been changed by combine. The only potential of this is if we
12535 replace I3, I2, and I1 by I3 and I2. But in that case the
12536 destination of I2 also remains unchanged. */
12537
12538 if (GET_CODE (XEXP (link, 0)) == NOTE
12539 || (set = single_set (XEXP (link, 0))) == 0)
12540 continue;
12541
12542 reg = SET_DEST (set);
12543 while (GET_CODE (reg) == SUBREG || GET_CODE (reg) == ZERO_EXTRACT
12544 || GET_CODE (reg) == SIGN_EXTRACT
12545 || GET_CODE (reg) == STRICT_LOW_PART)
12546 reg = XEXP (reg, 0);
12547
12548 /* A LOG_LINK is defined as being placed on the first insn that uses
12549 a register and points to the insn that sets the register. Start
12550 searching at the next insn after the target of the link and stop
12551 when we reach a set of the register or the end of the basic block.
12552
12553 Note that this correctly handles the link that used to point from
12554 I3 to I2. Also note that not much searching is typically done here
12555 since most links don't point very far away. */
12556
12557 for (insn = NEXT_INSN (XEXP (link, 0));
12558 (insn && (this_basic_block == n_basic_blocks - 1
12559 || BLOCK_HEAD (this_basic_block + 1) != insn));
12560 insn = NEXT_INSN (insn))
12561 if (INSN_P (insn) && reg_overlap_mentioned_p (reg, PATTERN (insn)))
12562 {
12563 if (reg_referenced_p (reg, PATTERN (insn)))
12564 place = insn;
12565 break;
12566 }
12567 else if (GET_CODE (insn) == CALL_INSN
12568 && find_reg_fusage (insn, USE, reg))
12569 {
12570 place = insn;
12571 break;
12572 }
12573
12574 /* If we found a place to put the link, place it there unless there
12575 is already a link to the same insn as LINK at that point. */
12576
12577 if (place)
12578 {
12579 rtx link2;
12580
12581 for (link2 = LOG_LINKS (place); link2; link2 = XEXP (link2, 1))
12582 if (XEXP (link2, 0) == XEXP (link, 0))
12583 break;
12584
12585 if (link2 == 0)
12586 {
12587 XEXP (link, 1) = LOG_LINKS (place);
12588 LOG_LINKS (place) = link;
12589
12590 /* Set added_links_insn to the earliest insn we added a
12591 link to. */
12592 if (added_links_insn == 0
12593 || INSN_CUID (added_links_insn) > INSN_CUID (place))
12594 added_links_insn = place;
12595 }
12596 }
12597 }
12598 }
12599 \f
12600 /* Compute INSN_CUID for INSN, which is an insn made by combine. */
12601
12602 static int
12603 insn_cuid (insn)
12604 rtx insn;
12605 {
12606 while (insn != 0 && INSN_UID (insn) > max_uid_cuid
12607 && GET_CODE (insn) == INSN && GET_CODE (PATTERN (insn)) == USE)
12608 insn = NEXT_INSN (insn);
12609
12610 if (INSN_UID (insn) > max_uid_cuid)
12611 abort ();
12612
12613 return INSN_CUID (insn);
12614 }
12615 \f
12616 void
12617 dump_combine_stats (file)
12618 FILE *file;
12619 {
12620 fnotice
12621 (file,
12622 ";; Combiner statistics: %d attempts, %d substitutions (%d requiring new space),\n;; %d successes.\n\n",
12623 combine_attempts, combine_merges, combine_extras, combine_successes);
12624 }
12625
12626 void
12627 dump_combine_total_stats (file)
12628 FILE *file;
12629 {
12630 fnotice
12631 (file,
12632 "\n;; Combiner totals: %d attempts, %d substitutions (%d requiring new space),\n;; %d successes.\n",
12633 total_attempts, total_merges, total_extras, total_successes);
12634 }