errors.h (warning, [...]): Mark as cold.
[gcc.git] / gcc / combine.c
1 /* Optimize by combining instructions for GNU compiler.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006 Free Software Foundation, Inc.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
20 02110-1301, USA. */
21
22 /* This module is essentially the "combiner" phase of the U. of Arizona
23 Portable Optimizer, but redone to work on our list-structured
24 representation for RTL instead of their string representation.
25
26 The LOG_LINKS of each insn identify the most recent assignment
27 to each REG used in the insn. It is a list of previous insns,
28 each of which contains a SET for a REG that is used in this insn
29 and not used or set in between. LOG_LINKs never cross basic blocks.
30 They were set up by the preceding pass (lifetime analysis).
31
32 We try to combine each pair of insns joined by a logical link.
33 We also try to combine triples of insns A, B and C when
34 C has a link back to B and B has a link back to A.
35
36 LOG_LINKS does not have links for use of the CC0. They don't
37 need to, because the insn that sets the CC0 is always immediately
38 before the insn that tests it. So we always regard a branch
39 insn as having a logical link to the preceding insn. The same is true
40 for an insn explicitly using CC0.
41
42 We check (with use_crosses_set_p) to avoid combining in such a way
43 as to move a computation to a place where its value would be different.
44
45 Combination is done by mathematically substituting the previous
46 insn(s) values for the regs they set into the expressions in
47 the later insns that refer to these regs. If the result is a valid insn
48 for our target machine, according to the machine description,
49 we install it, delete the earlier insns, and update the data flow
50 information (LOG_LINKS and REG_NOTES) for what we did.
51
52 There are a few exceptions where the dataflow information created by
53 flow.c aren't completely updated:
54
55 - reg_live_length is not updated
56 - reg_n_refs is not adjusted in the rare case when a register is
57 no longer required in a computation
58 - there are extremely rare cases (see distribute_notes) when a
59 REG_DEAD note is lost
60 - a LOG_LINKS entry that refers to an insn with multiple SETs may be
61 removed because there is no way to know which register it was
62 linking
63
64 To simplify substitution, we combine only when the earlier insn(s)
65 consist of only a single assignment. To simplify updating afterward,
66 we never combine when a subroutine call appears in the middle.
67
68 Since we do not represent assignments to CC0 explicitly except when that
69 is all an insn does, there is no LOG_LINKS entry in an insn that uses
70 the condition code for the insn that set the condition code.
71 Fortunately, these two insns must be consecutive.
72 Therefore, every JUMP_INSN is taken to have an implicit logical link
73 to the preceding insn. This is not quite right, since non-jumps can
74 also use the condition code; but in practice such insns would not
75 combine anyway. */
76
77 #include "config.h"
78 #include "system.h"
79 #include "coretypes.h"
80 #include "tm.h"
81 #include "rtl.h"
82 #include "tree.h"
83 #include "tm_p.h"
84 #include "flags.h"
85 #include "regs.h"
86 #include "hard-reg-set.h"
87 #include "basic-block.h"
88 #include "insn-config.h"
89 #include "function.h"
90 /* Include expr.h after insn-config.h so we get HAVE_conditional_move. */
91 #include "expr.h"
92 #include "insn-attr.h"
93 #include "recog.h"
94 #include "real.h"
95 #include "toplev.h"
96 #include "target.h"
97 #include "optabs.h"
98 #include "insn-codes.h"
99 #include "rtlhooks-def.h"
100 /* Include output.h for dump_file. */
101 #include "output.h"
102 #include "params.h"
103 #include "timevar.h"
104 #include "tree-pass.h"
105
106 /* Number of attempts to combine instructions in this function. */
107
108 static int combine_attempts;
109
110 /* Number of attempts that got as far as substitution in this function. */
111
112 static int combine_merges;
113
114 /* Number of instructions combined with added SETs in this function. */
115
116 static int combine_extras;
117
118 /* Number of instructions combined in this function. */
119
120 static int combine_successes;
121
122 /* Totals over entire compilation. */
123
124 static int total_attempts, total_merges, total_extras, total_successes;
125
126 /* combine_instructions may try to replace the right hand side of the
127 second instruction with the value of an associated REG_EQUAL note
128 before throwing it at try_combine. That is problematic when there
129 is a REG_DEAD note for a register used in the old right hand side
130 and can cause distribute_notes to do wrong things. This is the
131 second instruction if it has been so modified, null otherwise. */
132
133 static rtx i2mod;
134
135 /* When I2MOD is nonnull, this is a copy of the old right hand side. */
136
137 static rtx i2mod_old_rhs;
138
139 /* When I2MOD is nonnull, this is a copy of the new right hand side. */
140
141 static rtx i2mod_new_rhs;
142 \f
143 /* Vector mapping INSN_UIDs to cuids.
144 The cuids are like uids but increase monotonically always.
145 Combine always uses cuids so that it can compare them.
146 But actually renumbering the uids, which we used to do,
147 proves to be a bad idea because it makes it hard to compare
148 the dumps produced by earlier passes with those from later passes. */
149
150 static int *uid_cuid;
151 static int max_uid_cuid;
152
153 /* Get the cuid of an insn. */
154
155 #define INSN_CUID(INSN) \
156 (INSN_UID (INSN) > max_uid_cuid ? insn_cuid (INSN) : uid_cuid[INSN_UID (INSN)])
157
158 /* Maximum register number, which is the size of the tables below. */
159
160 static unsigned int combine_max_regno;
161
162 struct reg_stat {
163 /* Record last point of death of (hard or pseudo) register n. */
164 rtx last_death;
165
166 /* Record last point of modification of (hard or pseudo) register n. */
167 rtx last_set;
168
169 /* The next group of fields allows the recording of the last value assigned
170 to (hard or pseudo) register n. We use this information to see if an
171 operation being processed is redundant given a prior operation performed
172 on the register. For example, an `and' with a constant is redundant if
173 all the zero bits are already known to be turned off.
174
175 We use an approach similar to that used by cse, but change it in the
176 following ways:
177
178 (1) We do not want to reinitialize at each label.
179 (2) It is useful, but not critical, to know the actual value assigned
180 to a register. Often just its form is helpful.
181
182 Therefore, we maintain the following fields:
183
184 last_set_value the last value assigned
185 last_set_label records the value of label_tick when the
186 register was assigned
187 last_set_table_tick records the value of label_tick when a
188 value using the register is assigned
189 last_set_invalid set to nonzero when it is not valid
190 to use the value of this register in some
191 register's value
192
193 To understand the usage of these tables, it is important to understand
194 the distinction between the value in last_set_value being valid and
195 the register being validly contained in some other expression in the
196 table.
197
198 (The next two parameters are out of date).
199
200 reg_stat[i].last_set_value is valid if it is nonzero, and either
201 reg_n_sets[i] is 1 or reg_stat[i].last_set_label == label_tick.
202
203 Register I may validly appear in any expression returned for the value
204 of another register if reg_n_sets[i] is 1. It may also appear in the
205 value for register J if reg_stat[j].last_set_invalid is zero, or
206 reg_stat[i].last_set_label < reg_stat[j].last_set_label.
207
208 If an expression is found in the table containing a register which may
209 not validly appear in an expression, the register is replaced by
210 something that won't match, (clobber (const_int 0)). */
211
212 /* Record last value assigned to (hard or pseudo) register n. */
213
214 rtx last_set_value;
215
216 /* Record the value of label_tick when an expression involving register n
217 is placed in last_set_value. */
218
219 int last_set_table_tick;
220
221 /* Record the value of label_tick when the value for register n is placed in
222 last_set_value. */
223
224 int last_set_label;
225
226 /* These fields are maintained in parallel with last_set_value and are
227 used to store the mode in which the register was last set, the bits
228 that were known to be zero when it was last set, and the number of
229 sign bits copies it was known to have when it was last set. */
230
231 unsigned HOST_WIDE_INT last_set_nonzero_bits;
232 char last_set_sign_bit_copies;
233 ENUM_BITFIELD(machine_mode) last_set_mode : 8;
234
235 /* Set nonzero if references to register n in expressions should not be
236 used. last_set_invalid is set nonzero when this register is being
237 assigned to and last_set_table_tick == label_tick. */
238
239 char last_set_invalid;
240
241 /* Some registers that are set more than once and used in more than one
242 basic block are nevertheless always set in similar ways. For example,
243 a QImode register may be loaded from memory in two places on a machine
244 where byte loads zero extend.
245
246 We record in the following fields if a register has some leading bits
247 that are always equal to the sign bit, and what we know about the
248 nonzero bits of a register, specifically which bits are known to be
249 zero.
250
251 If an entry is zero, it means that we don't know anything special. */
252
253 unsigned char sign_bit_copies;
254
255 unsigned HOST_WIDE_INT nonzero_bits;
256
257 /* Record the value of the label_tick when the last truncation
258 happened. The field truncated_to_mode is only valid if
259 truncation_label == label_tick. */
260
261 int truncation_label;
262
263 /* Record the last truncation seen for this register. If truncation
264 is not a nop to this mode we might be able to save an explicit
265 truncation if we know that value already contains a truncated
266 value. */
267
268 ENUM_BITFIELD(machine_mode) truncated_to_mode : 8;
269 };
270
271 static struct reg_stat *reg_stat;
272
273 /* Record the cuid of the last insn that invalidated memory
274 (anything that writes memory, and subroutine calls, but not pushes). */
275
276 static int mem_last_set;
277
278 /* Record the cuid of the last CALL_INSN
279 so we can tell whether a potential combination crosses any calls. */
280
281 static int last_call_cuid;
282
283 /* When `subst' is called, this is the insn that is being modified
284 (by combining in a previous insn). The PATTERN of this insn
285 is still the old pattern partially modified and it should not be
286 looked at, but this may be used to examine the successors of the insn
287 to judge whether a simplification is valid. */
288
289 static rtx subst_insn;
290
291 /* This is the lowest CUID that `subst' is currently dealing with.
292 get_last_value will not return a value if the register was set at or
293 after this CUID. If not for this mechanism, we could get confused if
294 I2 or I1 in try_combine were an insn that used the old value of a register
295 to obtain a new value. In that case, we might erroneously get the
296 new value of the register when we wanted the old one. */
297
298 static int subst_low_cuid;
299
300 /* This contains any hard registers that are used in newpat; reg_dead_at_p
301 must consider all these registers to be always live. */
302
303 static HARD_REG_SET newpat_used_regs;
304
305 /* This is an insn to which a LOG_LINKS entry has been added. If this
306 insn is the earlier than I2 or I3, combine should rescan starting at
307 that location. */
308
309 static rtx added_links_insn;
310
311 /* Basic block in which we are performing combines. */
312 static basic_block this_basic_block;
313
314 /* A bitmap indicating which blocks had registers go dead at entry.
315 After combine, we'll need to re-do global life analysis with
316 those blocks as starting points. */
317 static sbitmap refresh_blocks;
318 \f
319 /* The following array records the insn_rtx_cost for every insn
320 in the instruction stream. */
321
322 static int *uid_insn_cost;
323
324 /* Length of the currently allocated uid_insn_cost array. */
325
326 static int last_insn_cost;
327
328 /* Incremented for each label. */
329
330 static int label_tick;
331
332 /* Mode used to compute significance in reg_stat[].nonzero_bits. It is the
333 largest integer mode that can fit in HOST_BITS_PER_WIDE_INT. */
334
335 static enum machine_mode nonzero_bits_mode;
336
337 /* Nonzero when reg_stat[].nonzero_bits and reg_stat[].sign_bit_copies can
338 be safely used. It is zero while computing them and after combine has
339 completed. This former test prevents propagating values based on
340 previously set values, which can be incorrect if a variable is modified
341 in a loop. */
342
343 static int nonzero_sign_valid;
344
345 \f
346 /* Record one modification to rtl structure
347 to be undone by storing old_contents into *where. */
348
349 struct undo
350 {
351 struct undo *next;
352 enum { UNDO_RTX, UNDO_INT, UNDO_MODE } kind;
353 union { rtx r; int i; enum machine_mode m; } old_contents;
354 union { rtx *r; int *i; } where;
355 };
356
357 /* Record a bunch of changes to be undone, up to MAX_UNDO of them.
358 num_undo says how many are currently recorded.
359
360 other_insn is nonzero if we have modified some other insn in the process
361 of working on subst_insn. It must be verified too. */
362
363 struct undobuf
364 {
365 struct undo *undos;
366 struct undo *frees;
367 rtx other_insn;
368 };
369
370 static struct undobuf undobuf;
371
372 /* Number of times the pseudo being substituted for
373 was found and replaced. */
374
375 static int n_occurrences;
376
377 static rtx reg_nonzero_bits_for_combine (rtx, enum machine_mode, rtx,
378 enum machine_mode,
379 unsigned HOST_WIDE_INT,
380 unsigned HOST_WIDE_INT *);
381 static rtx reg_num_sign_bit_copies_for_combine (rtx, enum machine_mode, rtx,
382 enum machine_mode,
383 unsigned int, unsigned int *);
384 static void do_SUBST (rtx *, rtx);
385 static void do_SUBST_INT (int *, int);
386 static void init_reg_last (void);
387 static void setup_incoming_promotions (void);
388 static void set_nonzero_bits_and_sign_copies (rtx, rtx, void *);
389 static int cant_combine_insn_p (rtx);
390 static int can_combine_p (rtx, rtx, rtx, rtx, rtx *, rtx *);
391 static int combinable_i3pat (rtx, rtx *, rtx, rtx, int, rtx *);
392 static int contains_muldiv (rtx);
393 static rtx try_combine (rtx, rtx, rtx, int *);
394 static void undo_all (void);
395 static void undo_commit (void);
396 static rtx *find_split_point (rtx *, rtx);
397 static rtx subst (rtx, rtx, rtx, int, int);
398 static rtx combine_simplify_rtx (rtx, enum machine_mode, int);
399 static rtx simplify_if_then_else (rtx);
400 static rtx simplify_set (rtx);
401 static rtx simplify_logical (rtx);
402 static rtx expand_compound_operation (rtx);
403 static rtx expand_field_assignment (rtx);
404 static rtx make_extraction (enum machine_mode, rtx, HOST_WIDE_INT,
405 rtx, unsigned HOST_WIDE_INT, int, int, int);
406 static rtx extract_left_shift (rtx, int);
407 static rtx make_compound_operation (rtx, enum rtx_code);
408 static int get_pos_from_mask (unsigned HOST_WIDE_INT,
409 unsigned HOST_WIDE_INT *);
410 static rtx canon_reg_for_combine (rtx, rtx);
411 static rtx force_to_mode (rtx, enum machine_mode,
412 unsigned HOST_WIDE_INT, int);
413 static rtx if_then_else_cond (rtx, rtx *, rtx *);
414 static rtx known_cond (rtx, enum rtx_code, rtx, rtx);
415 static int rtx_equal_for_field_assignment_p (rtx, rtx);
416 static rtx make_field_assignment (rtx);
417 static rtx apply_distributive_law (rtx);
418 static rtx distribute_and_simplify_rtx (rtx, int);
419 static rtx simplify_and_const_int_1 (enum machine_mode, rtx,
420 unsigned HOST_WIDE_INT);
421 static rtx simplify_and_const_int (rtx, enum machine_mode, rtx,
422 unsigned HOST_WIDE_INT);
423 static int merge_outer_ops (enum rtx_code *, HOST_WIDE_INT *, enum rtx_code,
424 HOST_WIDE_INT, enum machine_mode, int *);
425 static rtx simplify_shift_const_1 (enum rtx_code, enum machine_mode, rtx, int);
426 static rtx simplify_shift_const (rtx, enum rtx_code, enum machine_mode, rtx,
427 int);
428 static int recog_for_combine (rtx *, rtx, rtx *);
429 static rtx gen_lowpart_for_combine (enum machine_mode, rtx);
430 static enum rtx_code simplify_comparison (enum rtx_code, rtx *, rtx *);
431 static void update_table_tick (rtx);
432 static void record_value_for_reg (rtx, rtx, rtx);
433 static void check_conversions (rtx, rtx);
434 static void record_dead_and_set_regs_1 (rtx, rtx, void *);
435 static void record_dead_and_set_regs (rtx);
436 static int get_last_value_validate (rtx *, rtx, int, int);
437 static rtx get_last_value (rtx);
438 static int use_crosses_set_p (rtx, int);
439 static void reg_dead_at_p_1 (rtx, rtx, void *);
440 static int reg_dead_at_p (rtx, rtx);
441 static void move_deaths (rtx, rtx, int, rtx, rtx *);
442 static int reg_bitfield_target_p (rtx, rtx);
443 static void distribute_notes (rtx, rtx, rtx, rtx, rtx, rtx);
444 static void distribute_links (rtx);
445 static void mark_used_regs_combine (rtx);
446 static int insn_cuid (rtx);
447 static void record_promoted_value (rtx, rtx);
448 static int unmentioned_reg_p_1 (rtx *, void *);
449 static bool unmentioned_reg_p (rtx, rtx);
450 static void record_truncated_value (rtx);
451 static bool reg_truncated_to_mode (enum machine_mode, rtx);
452 static rtx gen_lowpart_or_truncate (enum machine_mode, rtx);
453 \f
454
455 /* It is not safe to use ordinary gen_lowpart in combine.
456 See comments in gen_lowpart_for_combine. */
457 #undef RTL_HOOKS_GEN_LOWPART
458 #define RTL_HOOKS_GEN_LOWPART gen_lowpart_for_combine
459
460 /* Our implementation of gen_lowpart never emits a new pseudo. */
461 #undef RTL_HOOKS_GEN_LOWPART_NO_EMIT
462 #define RTL_HOOKS_GEN_LOWPART_NO_EMIT gen_lowpart_for_combine
463
464 #undef RTL_HOOKS_REG_NONZERO_REG_BITS
465 #define RTL_HOOKS_REG_NONZERO_REG_BITS reg_nonzero_bits_for_combine
466
467 #undef RTL_HOOKS_REG_NUM_SIGN_BIT_COPIES
468 #define RTL_HOOKS_REG_NUM_SIGN_BIT_COPIES reg_num_sign_bit_copies_for_combine
469
470 #undef RTL_HOOKS_REG_TRUNCATED_TO_MODE
471 #define RTL_HOOKS_REG_TRUNCATED_TO_MODE reg_truncated_to_mode
472
473 static const struct rtl_hooks combine_rtl_hooks = RTL_HOOKS_INITIALIZER;
474
475 \f
476 /* Substitute NEWVAL, an rtx expression, into INTO, a place in some
477 insn. The substitution can be undone by undo_all. If INTO is already
478 set to NEWVAL, do not record this change. Because computing NEWVAL might
479 also call SUBST, we have to compute it before we put anything into
480 the undo table. */
481
482 static void
483 do_SUBST (rtx *into, rtx newval)
484 {
485 struct undo *buf;
486 rtx oldval = *into;
487
488 if (oldval == newval)
489 return;
490
491 /* We'd like to catch as many invalid transformations here as
492 possible. Unfortunately, there are way too many mode changes
493 that are perfectly valid, so we'd waste too much effort for
494 little gain doing the checks here. Focus on catching invalid
495 transformations involving integer constants. */
496 if (GET_MODE_CLASS (GET_MODE (oldval)) == MODE_INT
497 && GET_CODE (newval) == CONST_INT)
498 {
499 /* Sanity check that we're replacing oldval with a CONST_INT
500 that is a valid sign-extension for the original mode. */
501 gcc_assert (INTVAL (newval)
502 == trunc_int_for_mode (INTVAL (newval), GET_MODE (oldval)));
503
504 /* Replacing the operand of a SUBREG or a ZERO_EXTEND with a
505 CONST_INT is not valid, because after the replacement, the
506 original mode would be gone. Unfortunately, we can't tell
507 when do_SUBST is called to replace the operand thereof, so we
508 perform this test on oldval instead, checking whether an
509 invalid replacement took place before we got here. */
510 gcc_assert (!(GET_CODE (oldval) == SUBREG
511 && GET_CODE (SUBREG_REG (oldval)) == CONST_INT));
512 gcc_assert (!(GET_CODE (oldval) == ZERO_EXTEND
513 && GET_CODE (XEXP (oldval, 0)) == CONST_INT));
514 }
515
516 if (undobuf.frees)
517 buf = undobuf.frees, undobuf.frees = buf->next;
518 else
519 buf = XNEW (struct undo);
520
521 buf->kind = UNDO_RTX;
522 buf->where.r = into;
523 buf->old_contents.r = oldval;
524 *into = newval;
525
526 buf->next = undobuf.undos, undobuf.undos = buf;
527 }
528
529 #define SUBST(INTO, NEWVAL) do_SUBST(&(INTO), (NEWVAL))
530
531 /* Similar to SUBST, but NEWVAL is an int expression. Note that substitution
532 for the value of a HOST_WIDE_INT value (including CONST_INT) is
533 not safe. */
534
535 static void
536 do_SUBST_INT (int *into, int newval)
537 {
538 struct undo *buf;
539 int oldval = *into;
540
541 if (oldval == newval)
542 return;
543
544 if (undobuf.frees)
545 buf = undobuf.frees, undobuf.frees = buf->next;
546 else
547 buf = XNEW (struct undo);
548
549 buf->kind = UNDO_INT;
550 buf->where.i = into;
551 buf->old_contents.i = oldval;
552 *into = newval;
553
554 buf->next = undobuf.undos, undobuf.undos = buf;
555 }
556
557 #define SUBST_INT(INTO, NEWVAL) do_SUBST_INT(&(INTO), (NEWVAL))
558
559 /* Similar to SUBST, but just substitute the mode. This is used when
560 changing the mode of a pseudo-register, so that any other
561 references to the entry in the regno_reg_rtx array will change as
562 well. */
563
564 static void
565 do_SUBST_MODE (rtx *into, enum machine_mode newval)
566 {
567 struct undo *buf;
568 enum machine_mode oldval = GET_MODE (*into);
569
570 if (oldval == newval)
571 return;
572
573 if (undobuf.frees)
574 buf = undobuf.frees, undobuf.frees = buf->next;
575 else
576 buf = XNEW (struct undo);
577
578 buf->kind = UNDO_MODE;
579 buf->where.r = into;
580 buf->old_contents.m = oldval;
581 PUT_MODE (*into, newval);
582
583 buf->next = undobuf.undos, undobuf.undos = buf;
584 }
585
586 #define SUBST_MODE(INTO, NEWVAL) do_SUBST_MODE(&(INTO), (NEWVAL))
587 \f
588 /* Subroutine of try_combine. Determine whether the combine replacement
589 patterns NEWPAT and NEWI2PAT are cheaper according to insn_rtx_cost
590 that the original instruction sequence I1, I2 and I3. Note that I1
591 and/or NEWI2PAT may be NULL_RTX. This function returns false, if the
592 costs of all instructions can be estimated, and the replacements are
593 more expensive than the original sequence. */
594
595 static bool
596 combine_validate_cost (rtx i1, rtx i2, rtx i3, rtx newpat, rtx newi2pat)
597 {
598 int i1_cost, i2_cost, i3_cost;
599 int new_i2_cost, new_i3_cost;
600 int old_cost, new_cost;
601
602 /* Lookup the original insn_rtx_costs. */
603 i2_cost = INSN_UID (i2) <= last_insn_cost
604 ? uid_insn_cost[INSN_UID (i2)] : 0;
605 i3_cost = INSN_UID (i3) <= last_insn_cost
606 ? uid_insn_cost[INSN_UID (i3)] : 0;
607
608 if (i1)
609 {
610 i1_cost = INSN_UID (i1) <= last_insn_cost
611 ? uid_insn_cost[INSN_UID (i1)] : 0;
612 old_cost = (i1_cost > 0 && i2_cost > 0 && i3_cost > 0)
613 ? i1_cost + i2_cost + i3_cost : 0;
614 }
615 else
616 {
617 old_cost = (i2_cost > 0 && i3_cost > 0) ? i2_cost + i3_cost : 0;
618 i1_cost = 0;
619 }
620
621 /* Calculate the replacement insn_rtx_costs. */
622 new_i3_cost = insn_rtx_cost (newpat);
623 if (newi2pat)
624 {
625 new_i2_cost = insn_rtx_cost (newi2pat);
626 new_cost = (new_i2_cost > 0 && new_i3_cost > 0)
627 ? new_i2_cost + new_i3_cost : 0;
628 }
629 else
630 {
631 new_cost = new_i3_cost;
632 new_i2_cost = 0;
633 }
634
635 if (undobuf.other_insn)
636 {
637 int old_other_cost, new_other_cost;
638
639 old_other_cost = (INSN_UID (undobuf.other_insn) <= last_insn_cost
640 ? uid_insn_cost[INSN_UID (undobuf.other_insn)] : 0);
641 new_other_cost = insn_rtx_cost (PATTERN (undobuf.other_insn));
642 if (old_other_cost > 0 && new_other_cost > 0)
643 {
644 old_cost += old_other_cost;
645 new_cost += new_other_cost;
646 }
647 else
648 old_cost = 0;
649 }
650
651 /* Disallow this recombination if both new_cost and old_cost are
652 greater than zero, and new_cost is greater than old cost. */
653 if (old_cost > 0
654 && new_cost > old_cost)
655 {
656 if (dump_file)
657 {
658 if (i1)
659 {
660 fprintf (dump_file,
661 "rejecting combination of insns %d, %d and %d\n",
662 INSN_UID (i1), INSN_UID (i2), INSN_UID (i3));
663 fprintf (dump_file, "original costs %d + %d + %d = %d\n",
664 i1_cost, i2_cost, i3_cost, old_cost);
665 }
666 else
667 {
668 fprintf (dump_file,
669 "rejecting combination of insns %d and %d\n",
670 INSN_UID (i2), INSN_UID (i3));
671 fprintf (dump_file, "original costs %d + %d = %d\n",
672 i2_cost, i3_cost, old_cost);
673 }
674
675 if (newi2pat)
676 {
677 fprintf (dump_file, "replacement costs %d + %d = %d\n",
678 new_i2_cost, new_i3_cost, new_cost);
679 }
680 else
681 fprintf (dump_file, "replacement cost %d\n", new_cost);
682 }
683
684 return false;
685 }
686
687 /* Update the uid_insn_cost array with the replacement costs. */
688 uid_insn_cost[INSN_UID (i2)] = new_i2_cost;
689 uid_insn_cost[INSN_UID (i3)] = new_i3_cost;
690 if (i1)
691 uid_insn_cost[INSN_UID (i1)] = 0;
692
693 return true;
694 }
695 \f
696 /* Main entry point for combiner. F is the first insn of the function.
697 NREGS is the first unused pseudo-reg number.
698
699 Return nonzero if the combiner has turned an indirect jump
700 instruction into a direct jump. */
701 static int
702 combine_instructions (rtx f, unsigned int nregs)
703 {
704 rtx insn, next;
705 #ifdef HAVE_cc0
706 rtx prev;
707 #endif
708 int i;
709 unsigned int j = 0;
710 rtx links, nextlinks;
711 sbitmap_iterator sbi;
712
713 int new_direct_jump_p = 0;
714
715 combine_attempts = 0;
716 combine_merges = 0;
717 combine_extras = 0;
718 combine_successes = 0;
719
720 combine_max_regno = nregs;
721
722 rtl_hooks = combine_rtl_hooks;
723
724 reg_stat = XCNEWVEC (struct reg_stat, nregs);
725
726 init_recog_no_volatile ();
727
728 /* Compute maximum uid value so uid_cuid can be allocated. */
729
730 for (insn = f, i = 0; insn; insn = NEXT_INSN (insn))
731 if (INSN_UID (insn) > i)
732 i = INSN_UID (insn);
733
734 uid_cuid = XNEWVEC (int, i + 1);
735 max_uid_cuid = i;
736
737 nonzero_bits_mode = mode_for_size (HOST_BITS_PER_WIDE_INT, MODE_INT, 0);
738
739 /* Don't use reg_stat[].nonzero_bits when computing it. This can cause
740 problems when, for example, we have j <<= 1 in a loop. */
741
742 nonzero_sign_valid = 0;
743
744 /* Compute the mapping from uids to cuids.
745 Cuids are numbers assigned to insns, like uids,
746 except that cuids increase monotonically through the code.
747
748 Scan all SETs and see if we can deduce anything about what
749 bits are known to be zero for some registers and how many copies
750 of the sign bit are known to exist for those registers.
751
752 Also set any known values so that we can use it while searching
753 for what bits are known to be set. */
754
755 label_tick = 1;
756
757 setup_incoming_promotions ();
758
759 refresh_blocks = sbitmap_alloc (last_basic_block);
760 sbitmap_zero (refresh_blocks);
761
762 /* Allocate array of current insn_rtx_costs. */
763 uid_insn_cost = XCNEWVEC (int, max_uid_cuid + 1);
764 last_insn_cost = max_uid_cuid;
765
766 for (insn = f, i = 0; insn; insn = NEXT_INSN (insn))
767 {
768 uid_cuid[INSN_UID (insn)] = ++i;
769 subst_low_cuid = i;
770 subst_insn = insn;
771
772 if (INSN_P (insn))
773 {
774 note_stores (PATTERN (insn), set_nonzero_bits_and_sign_copies,
775 NULL);
776 record_dead_and_set_regs (insn);
777
778 #ifdef AUTO_INC_DEC
779 for (links = REG_NOTES (insn); links; links = XEXP (links, 1))
780 if (REG_NOTE_KIND (links) == REG_INC)
781 set_nonzero_bits_and_sign_copies (XEXP (links, 0), NULL_RTX,
782 NULL);
783 #endif
784
785 /* Record the current insn_rtx_cost of this instruction. */
786 if (NONJUMP_INSN_P (insn))
787 uid_insn_cost[INSN_UID (insn)] = insn_rtx_cost (PATTERN (insn));
788 if (dump_file)
789 fprintf(dump_file, "insn_cost %d: %d\n",
790 INSN_UID (insn), uid_insn_cost[INSN_UID (insn)]);
791 }
792
793 if (LABEL_P (insn))
794 label_tick++;
795 }
796
797 nonzero_sign_valid = 1;
798
799 /* Now scan all the insns in forward order. */
800
801 label_tick = 1;
802 last_call_cuid = 0;
803 mem_last_set = 0;
804 init_reg_last ();
805 setup_incoming_promotions ();
806
807 FOR_EACH_BB (this_basic_block)
808 {
809 for (insn = BB_HEAD (this_basic_block);
810 insn != NEXT_INSN (BB_END (this_basic_block));
811 insn = next ? next : NEXT_INSN (insn))
812 {
813 next = 0;
814
815 if (LABEL_P (insn))
816 label_tick++;
817
818 else if (INSN_P (insn))
819 {
820 /* See if we know about function return values before this
821 insn based upon SUBREG flags. */
822 check_conversions (insn, PATTERN (insn));
823
824 /* Try this insn with each insn it links back to. */
825
826 for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
827 if ((next = try_combine (insn, XEXP (links, 0),
828 NULL_RTX, &new_direct_jump_p)) != 0)
829 goto retry;
830
831 /* Try each sequence of three linked insns ending with this one. */
832
833 for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
834 {
835 rtx link = XEXP (links, 0);
836
837 /* If the linked insn has been replaced by a note, then there
838 is no point in pursuing this chain any further. */
839 if (NOTE_P (link))
840 continue;
841
842 for (nextlinks = LOG_LINKS (link);
843 nextlinks;
844 nextlinks = XEXP (nextlinks, 1))
845 if ((next = try_combine (insn, link,
846 XEXP (nextlinks, 0),
847 &new_direct_jump_p)) != 0)
848 goto retry;
849 }
850
851 #ifdef HAVE_cc0
852 /* Try to combine a jump insn that uses CC0
853 with a preceding insn that sets CC0, and maybe with its
854 logical predecessor as well.
855 This is how we make decrement-and-branch insns.
856 We need this special code because data flow connections
857 via CC0 do not get entered in LOG_LINKS. */
858
859 if (JUMP_P (insn)
860 && (prev = prev_nonnote_insn (insn)) != 0
861 && NONJUMP_INSN_P (prev)
862 && sets_cc0_p (PATTERN (prev)))
863 {
864 if ((next = try_combine (insn, prev,
865 NULL_RTX, &new_direct_jump_p)) != 0)
866 goto retry;
867
868 for (nextlinks = LOG_LINKS (prev); nextlinks;
869 nextlinks = XEXP (nextlinks, 1))
870 if ((next = try_combine (insn, prev,
871 XEXP (nextlinks, 0),
872 &new_direct_jump_p)) != 0)
873 goto retry;
874 }
875
876 /* Do the same for an insn that explicitly references CC0. */
877 if (NONJUMP_INSN_P (insn)
878 && (prev = prev_nonnote_insn (insn)) != 0
879 && NONJUMP_INSN_P (prev)
880 && sets_cc0_p (PATTERN (prev))
881 && GET_CODE (PATTERN (insn)) == SET
882 && reg_mentioned_p (cc0_rtx, SET_SRC (PATTERN (insn))))
883 {
884 if ((next = try_combine (insn, prev,
885 NULL_RTX, &new_direct_jump_p)) != 0)
886 goto retry;
887
888 for (nextlinks = LOG_LINKS (prev); nextlinks;
889 nextlinks = XEXP (nextlinks, 1))
890 if ((next = try_combine (insn, prev,
891 XEXP (nextlinks, 0),
892 &new_direct_jump_p)) != 0)
893 goto retry;
894 }
895
896 /* Finally, see if any of the insns that this insn links to
897 explicitly references CC0. If so, try this insn, that insn,
898 and its predecessor if it sets CC0. */
899 for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
900 if (NONJUMP_INSN_P (XEXP (links, 0))
901 && GET_CODE (PATTERN (XEXP (links, 0))) == SET
902 && reg_mentioned_p (cc0_rtx, SET_SRC (PATTERN (XEXP (links, 0))))
903 && (prev = prev_nonnote_insn (XEXP (links, 0))) != 0
904 && NONJUMP_INSN_P (prev)
905 && sets_cc0_p (PATTERN (prev))
906 && (next = try_combine (insn, XEXP (links, 0),
907 prev, &new_direct_jump_p)) != 0)
908 goto retry;
909 #endif
910
911 /* Try combining an insn with two different insns whose results it
912 uses. */
913 for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
914 for (nextlinks = XEXP (links, 1); nextlinks;
915 nextlinks = XEXP (nextlinks, 1))
916 if ((next = try_combine (insn, XEXP (links, 0),
917 XEXP (nextlinks, 0),
918 &new_direct_jump_p)) != 0)
919 goto retry;
920
921 /* Try this insn with each REG_EQUAL note it links back to. */
922 for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
923 {
924 rtx set, note;
925 rtx temp = XEXP (links, 0);
926 if ((set = single_set (temp)) != 0
927 && (note = find_reg_equal_equiv_note (temp)) != 0
928 && (note = XEXP (note, 0), GET_CODE (note)) != EXPR_LIST
929 /* Avoid using a register that may already been marked
930 dead by an earlier instruction. */
931 && ! unmentioned_reg_p (note, SET_SRC (set))
932 && (GET_MODE (note) == VOIDmode
933 ? SCALAR_INT_MODE_P (GET_MODE (SET_DEST (set)))
934 : GET_MODE (SET_DEST (set)) == GET_MODE (note)))
935 {
936 /* Temporarily replace the set's source with the
937 contents of the REG_EQUAL note. The insn will
938 be deleted or recognized by try_combine. */
939 rtx orig = SET_SRC (set);
940 SET_SRC (set) = note;
941 i2mod = temp;
942 i2mod_old_rhs = copy_rtx (orig);
943 i2mod_new_rhs = copy_rtx (note);
944 next = try_combine (insn, i2mod, NULL_RTX,
945 &new_direct_jump_p);
946 i2mod = NULL_RTX;
947 if (next)
948 goto retry;
949 SET_SRC (set) = orig;
950 }
951 }
952
953 if (!NOTE_P (insn))
954 record_dead_and_set_regs (insn);
955
956 retry:
957 ;
958 }
959 }
960 }
961 clear_bb_flags ();
962
963 EXECUTE_IF_SET_IN_SBITMAP (refresh_blocks, 0, j, sbi)
964 BASIC_BLOCK (j)->flags |= BB_DIRTY;
965 new_direct_jump_p |= purge_all_dead_edges ();
966 delete_noop_moves ();
967
968 update_life_info_in_dirty_blocks (UPDATE_LIFE_GLOBAL_RM_NOTES,
969 PROP_DEATH_NOTES | PROP_SCAN_DEAD_CODE
970 | PROP_KILL_DEAD_CODE);
971
972 /* Clean up. */
973 sbitmap_free (refresh_blocks);
974 free (uid_insn_cost);
975 free (reg_stat);
976 free (uid_cuid);
977
978 {
979 struct undo *undo, *next;
980 for (undo = undobuf.frees; undo; undo = next)
981 {
982 next = undo->next;
983 free (undo);
984 }
985 undobuf.frees = 0;
986 }
987
988 total_attempts += combine_attempts;
989 total_merges += combine_merges;
990 total_extras += combine_extras;
991 total_successes += combine_successes;
992
993 nonzero_sign_valid = 0;
994 rtl_hooks = general_rtl_hooks;
995
996 /* Make recognizer allow volatile MEMs again. */
997 init_recog ();
998
999 return new_direct_jump_p;
1000 }
1001
1002 /* Wipe the last_xxx fields of reg_stat in preparation for another pass. */
1003
1004 static void
1005 init_reg_last (void)
1006 {
1007 unsigned int i;
1008 for (i = 0; i < combine_max_regno; i++)
1009 memset (reg_stat + i, 0, offsetof (struct reg_stat, sign_bit_copies));
1010 }
1011 \f
1012 /* Set up any promoted values for incoming argument registers. */
1013
1014 static void
1015 setup_incoming_promotions (void)
1016 {
1017 rtx first;
1018 tree arg;
1019
1020 if (!targetm.calls.promote_function_args (TREE_TYPE (cfun->decl)))
1021 return;
1022
1023 first = get_insns ();
1024
1025 for (arg = DECL_ARGUMENTS (current_function_decl); arg;
1026 arg = TREE_CHAIN (arg))
1027 {
1028 rtx reg = DECL_INCOMING_RTL (arg);
1029
1030 if (!REG_P (reg))
1031 continue;
1032
1033 if (TYPE_MODE (DECL_ARG_TYPE (arg)) == TYPE_MODE (TREE_TYPE (arg)))
1034 {
1035 enum machine_mode mode = TYPE_MODE (TREE_TYPE (arg));
1036 int uns = TYPE_UNSIGNED (TREE_TYPE (arg));
1037
1038 mode = promote_mode (TREE_TYPE (arg), mode, &uns, 1);
1039 if (mode == GET_MODE (reg) && mode != DECL_MODE (arg))
1040 {
1041 rtx x;
1042 x = gen_rtx_CLOBBER (DECL_MODE (arg), const0_rtx);
1043 x = gen_rtx_fmt_e ((uns ? ZERO_EXTEND : SIGN_EXTEND), mode, x);
1044 record_value_for_reg (reg, first, x);
1045 }
1046 }
1047 }
1048 }
1049 \f
1050 /* Called via note_stores. If X is a pseudo that is narrower than
1051 HOST_BITS_PER_WIDE_INT and is being set, record what bits are known zero.
1052
1053 If we are setting only a portion of X and we can't figure out what
1054 portion, assume all bits will be used since we don't know what will
1055 be happening.
1056
1057 Similarly, set how many bits of X are known to be copies of the sign bit
1058 at all locations in the function. This is the smallest number implied
1059 by any set of X. */
1060
1061 static void
1062 set_nonzero_bits_and_sign_copies (rtx x, rtx set,
1063 void *data ATTRIBUTE_UNUSED)
1064 {
1065 unsigned int num;
1066
1067 if (REG_P (x)
1068 && REGNO (x) >= FIRST_PSEUDO_REGISTER
1069 /* If this register is undefined at the start of the file, we can't
1070 say what its contents were. */
1071 && ! REGNO_REG_SET_P
1072 (ENTRY_BLOCK_PTR->next_bb->il.rtl->global_live_at_start, REGNO (x))
1073 && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT)
1074 {
1075 if (set == 0 || GET_CODE (set) == CLOBBER)
1076 {
1077 reg_stat[REGNO (x)].nonzero_bits = GET_MODE_MASK (GET_MODE (x));
1078 reg_stat[REGNO (x)].sign_bit_copies = 1;
1079 return;
1080 }
1081
1082 /* If this is a complex assignment, see if we can convert it into a
1083 simple assignment. */
1084 set = expand_field_assignment (set);
1085
1086 /* If this is a simple assignment, or we have a paradoxical SUBREG,
1087 set what we know about X. */
1088
1089 if (SET_DEST (set) == x
1090 || (GET_CODE (SET_DEST (set)) == SUBREG
1091 && (GET_MODE_SIZE (GET_MODE (SET_DEST (set)))
1092 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (set)))))
1093 && SUBREG_REG (SET_DEST (set)) == x))
1094 {
1095 rtx src = SET_SRC (set);
1096
1097 #ifdef SHORT_IMMEDIATES_SIGN_EXTEND
1098 /* If X is narrower than a word and SRC is a non-negative
1099 constant that would appear negative in the mode of X,
1100 sign-extend it for use in reg_stat[].nonzero_bits because some
1101 machines (maybe most) will actually do the sign-extension
1102 and this is the conservative approach.
1103
1104 ??? For 2.5, try to tighten up the MD files in this regard
1105 instead of this kludge. */
1106
1107 if (GET_MODE_BITSIZE (GET_MODE (x)) < BITS_PER_WORD
1108 && GET_CODE (src) == CONST_INT
1109 && INTVAL (src) > 0
1110 && 0 != (INTVAL (src)
1111 & ((HOST_WIDE_INT) 1
1112 << (GET_MODE_BITSIZE (GET_MODE (x)) - 1))))
1113 src = GEN_INT (INTVAL (src)
1114 | ((HOST_WIDE_INT) (-1)
1115 << GET_MODE_BITSIZE (GET_MODE (x))));
1116 #endif
1117
1118 /* Don't call nonzero_bits if it cannot change anything. */
1119 if (reg_stat[REGNO (x)].nonzero_bits != ~(unsigned HOST_WIDE_INT) 0)
1120 reg_stat[REGNO (x)].nonzero_bits
1121 |= nonzero_bits (src, nonzero_bits_mode);
1122 num = num_sign_bit_copies (SET_SRC (set), GET_MODE (x));
1123 if (reg_stat[REGNO (x)].sign_bit_copies == 0
1124 || reg_stat[REGNO (x)].sign_bit_copies > num)
1125 reg_stat[REGNO (x)].sign_bit_copies = num;
1126 }
1127 else
1128 {
1129 reg_stat[REGNO (x)].nonzero_bits = GET_MODE_MASK (GET_MODE (x));
1130 reg_stat[REGNO (x)].sign_bit_copies = 1;
1131 }
1132 }
1133 }
1134 \f
1135 /* See if INSN can be combined into I3. PRED and SUCC are optionally
1136 insns that were previously combined into I3 or that will be combined
1137 into the merger of INSN and I3.
1138
1139 Return 0 if the combination is not allowed for any reason.
1140
1141 If the combination is allowed, *PDEST will be set to the single
1142 destination of INSN and *PSRC to the single source, and this function
1143 will return 1. */
1144
1145 static int
1146 can_combine_p (rtx insn, rtx i3, rtx pred ATTRIBUTE_UNUSED, rtx succ,
1147 rtx *pdest, rtx *psrc)
1148 {
1149 int i;
1150 rtx set = 0, src, dest;
1151 rtx p;
1152 #ifdef AUTO_INC_DEC
1153 rtx link;
1154 #endif
1155 int all_adjacent = (succ ? (next_active_insn (insn) == succ
1156 && next_active_insn (succ) == i3)
1157 : next_active_insn (insn) == i3);
1158
1159 /* Can combine only if previous insn is a SET of a REG, a SUBREG or CC0.
1160 or a PARALLEL consisting of such a SET and CLOBBERs.
1161
1162 If INSN has CLOBBER parallel parts, ignore them for our processing.
1163 By definition, these happen during the execution of the insn. When it
1164 is merged with another insn, all bets are off. If they are, in fact,
1165 needed and aren't also supplied in I3, they may be added by
1166 recog_for_combine. Otherwise, it won't match.
1167
1168 We can also ignore a SET whose SET_DEST is mentioned in a REG_UNUSED
1169 note.
1170
1171 Get the source and destination of INSN. If more than one, can't
1172 combine. */
1173
1174 if (GET_CODE (PATTERN (insn)) == SET)
1175 set = PATTERN (insn);
1176 else if (GET_CODE (PATTERN (insn)) == PARALLEL
1177 && GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == SET)
1178 {
1179 for (i = 0; i < XVECLEN (PATTERN (insn), 0); i++)
1180 {
1181 rtx elt = XVECEXP (PATTERN (insn), 0, i);
1182 rtx note;
1183
1184 switch (GET_CODE (elt))
1185 {
1186 /* This is important to combine floating point insns
1187 for the SH4 port. */
1188 case USE:
1189 /* Combining an isolated USE doesn't make sense.
1190 We depend here on combinable_i3pat to reject them. */
1191 /* The code below this loop only verifies that the inputs of
1192 the SET in INSN do not change. We call reg_set_between_p
1193 to verify that the REG in the USE does not change between
1194 I3 and INSN.
1195 If the USE in INSN was for a pseudo register, the matching
1196 insn pattern will likely match any register; combining this
1197 with any other USE would only be safe if we knew that the
1198 used registers have identical values, or if there was
1199 something to tell them apart, e.g. different modes. For
1200 now, we forgo such complicated tests and simply disallow
1201 combining of USES of pseudo registers with any other USE. */
1202 if (REG_P (XEXP (elt, 0))
1203 && GET_CODE (PATTERN (i3)) == PARALLEL)
1204 {
1205 rtx i3pat = PATTERN (i3);
1206 int i = XVECLEN (i3pat, 0) - 1;
1207 unsigned int regno = REGNO (XEXP (elt, 0));
1208
1209 do
1210 {
1211 rtx i3elt = XVECEXP (i3pat, 0, i);
1212
1213 if (GET_CODE (i3elt) == USE
1214 && REG_P (XEXP (i3elt, 0))
1215 && (REGNO (XEXP (i3elt, 0)) == regno
1216 ? reg_set_between_p (XEXP (elt, 0),
1217 PREV_INSN (insn), i3)
1218 : regno >= FIRST_PSEUDO_REGISTER))
1219 return 0;
1220 }
1221 while (--i >= 0);
1222 }
1223 break;
1224
1225 /* We can ignore CLOBBERs. */
1226 case CLOBBER:
1227 break;
1228
1229 case SET:
1230 /* Ignore SETs whose result isn't used but not those that
1231 have side-effects. */
1232 if (find_reg_note (insn, REG_UNUSED, SET_DEST (elt))
1233 && (!(note = find_reg_note (insn, REG_EH_REGION, NULL_RTX))
1234 || INTVAL (XEXP (note, 0)) <= 0)
1235 && ! side_effects_p (elt))
1236 break;
1237
1238 /* If we have already found a SET, this is a second one and
1239 so we cannot combine with this insn. */
1240 if (set)
1241 return 0;
1242
1243 set = elt;
1244 break;
1245
1246 default:
1247 /* Anything else means we can't combine. */
1248 return 0;
1249 }
1250 }
1251
1252 if (set == 0
1253 /* If SET_SRC is an ASM_OPERANDS we can't throw away these CLOBBERs,
1254 so don't do anything with it. */
1255 || GET_CODE (SET_SRC (set)) == ASM_OPERANDS)
1256 return 0;
1257 }
1258 else
1259 return 0;
1260
1261 if (set == 0)
1262 return 0;
1263
1264 set = expand_field_assignment (set);
1265 src = SET_SRC (set), dest = SET_DEST (set);
1266
1267 /* Don't eliminate a store in the stack pointer. */
1268 if (dest == stack_pointer_rtx
1269 /* Don't combine with an insn that sets a register to itself if it has
1270 a REG_EQUAL note. This may be part of a REG_NO_CONFLICT sequence. */
1271 || (rtx_equal_p (src, dest) && find_reg_note (insn, REG_EQUAL, NULL_RTX))
1272 /* Can't merge an ASM_OPERANDS. */
1273 || GET_CODE (src) == ASM_OPERANDS
1274 /* Can't merge a function call. */
1275 || GET_CODE (src) == CALL
1276 /* Don't eliminate a function call argument. */
1277 || (CALL_P (i3)
1278 && (find_reg_fusage (i3, USE, dest)
1279 || (REG_P (dest)
1280 && REGNO (dest) < FIRST_PSEUDO_REGISTER
1281 && global_regs[REGNO (dest)])))
1282 /* Don't substitute into an incremented register. */
1283 || FIND_REG_INC_NOTE (i3, dest)
1284 || (succ && FIND_REG_INC_NOTE (succ, dest))
1285 /* Don't substitute into a non-local goto, this confuses CFG. */
1286 || (JUMP_P (i3) && find_reg_note (i3, REG_NON_LOCAL_GOTO, NULL_RTX))
1287 #if 0
1288 /* Don't combine the end of a libcall into anything. */
1289 /* ??? This gives worse code, and appears to be unnecessary, since no
1290 pass after flow uses REG_LIBCALL/REG_RETVAL notes. Local-alloc does
1291 use REG_RETVAL notes for noconflict blocks, but other code here
1292 makes sure that those insns don't disappear. */
1293 || find_reg_note (insn, REG_RETVAL, NULL_RTX)
1294 #endif
1295 /* Make sure that DEST is not used after SUCC but before I3. */
1296 || (succ && ! all_adjacent
1297 && reg_used_between_p (dest, succ, i3))
1298 /* Make sure that the value that is to be substituted for the register
1299 does not use any registers whose values alter in between. However,
1300 If the insns are adjacent, a use can't cross a set even though we
1301 think it might (this can happen for a sequence of insns each setting
1302 the same destination; last_set of that register might point to
1303 a NOTE). If INSN has a REG_EQUIV note, the register is always
1304 equivalent to the memory so the substitution is valid even if there
1305 are intervening stores. Also, don't move a volatile asm or
1306 UNSPEC_VOLATILE across any other insns. */
1307 || (! all_adjacent
1308 && (((!MEM_P (src)
1309 || ! find_reg_note (insn, REG_EQUIV, src))
1310 && use_crosses_set_p (src, INSN_CUID (insn)))
1311 || (GET_CODE (src) == ASM_OPERANDS && MEM_VOLATILE_P (src))
1312 || GET_CODE (src) == UNSPEC_VOLATILE))
1313 /* If there is a REG_NO_CONFLICT note for DEST in I3 or SUCC, we get
1314 better register allocation by not doing the combine. */
1315 || find_reg_note (i3, REG_NO_CONFLICT, dest)
1316 || (succ && find_reg_note (succ, REG_NO_CONFLICT, dest))
1317 /* Don't combine across a CALL_INSN, because that would possibly
1318 change whether the life span of some REGs crosses calls or not,
1319 and it is a pain to update that information.
1320 Exception: if source is a constant, moving it later can't hurt.
1321 Accept that special case, because it helps -fforce-addr a lot. */
1322 || (INSN_CUID (insn) < last_call_cuid && ! CONSTANT_P (src)))
1323 return 0;
1324
1325 /* DEST must either be a REG or CC0. */
1326 if (REG_P (dest))
1327 {
1328 /* If register alignment is being enforced for multi-word items in all
1329 cases except for parameters, it is possible to have a register copy
1330 insn referencing a hard register that is not allowed to contain the
1331 mode being copied and which would not be valid as an operand of most
1332 insns. Eliminate this problem by not combining with such an insn.
1333
1334 Also, on some machines we don't want to extend the life of a hard
1335 register. */
1336
1337 if (REG_P (src)
1338 && ((REGNO (dest) < FIRST_PSEUDO_REGISTER
1339 && ! HARD_REGNO_MODE_OK (REGNO (dest), GET_MODE (dest)))
1340 /* Don't extend the life of a hard register unless it is
1341 user variable (if we have few registers) or it can't
1342 fit into the desired register (meaning something special
1343 is going on).
1344 Also avoid substituting a return register into I3, because
1345 reload can't handle a conflict with constraints of other
1346 inputs. */
1347 || (REGNO (src) < FIRST_PSEUDO_REGISTER
1348 && ! HARD_REGNO_MODE_OK (REGNO (src), GET_MODE (src)))))
1349 return 0;
1350 }
1351 else if (GET_CODE (dest) != CC0)
1352 return 0;
1353
1354
1355 if (GET_CODE (PATTERN (i3)) == PARALLEL)
1356 for (i = XVECLEN (PATTERN (i3), 0) - 1; i >= 0; i--)
1357 if (GET_CODE (XVECEXP (PATTERN (i3), 0, i)) == CLOBBER)
1358 {
1359 /* Don't substitute for a register intended as a clobberable
1360 operand. */
1361 rtx reg = XEXP (XVECEXP (PATTERN (i3), 0, i), 0);
1362 if (rtx_equal_p (reg, dest))
1363 return 0;
1364
1365 /* If the clobber represents an earlyclobber operand, we must not
1366 substitute an expression containing the clobbered register.
1367 As we do not analyze the constraint strings here, we have to
1368 make the conservative assumption. However, if the register is
1369 a fixed hard reg, the clobber cannot represent any operand;
1370 we leave it up to the machine description to either accept or
1371 reject use-and-clobber patterns. */
1372 if (!REG_P (reg)
1373 || REGNO (reg) >= FIRST_PSEUDO_REGISTER
1374 || !fixed_regs[REGNO (reg)])
1375 if (reg_overlap_mentioned_p (reg, src))
1376 return 0;
1377 }
1378
1379 /* If INSN contains anything volatile, or is an `asm' (whether volatile
1380 or not), reject, unless nothing volatile comes between it and I3 */
1381
1382 if (GET_CODE (src) == ASM_OPERANDS || volatile_refs_p (src))
1383 {
1384 /* Make sure succ doesn't contain a volatile reference. */
1385 if (succ != 0 && volatile_refs_p (PATTERN (succ)))
1386 return 0;
1387
1388 for (p = NEXT_INSN (insn); p != i3; p = NEXT_INSN (p))
1389 if (INSN_P (p) && p != succ && volatile_refs_p (PATTERN (p)))
1390 return 0;
1391 }
1392
1393 /* If INSN is an asm, and DEST is a hard register, reject, since it has
1394 to be an explicit register variable, and was chosen for a reason. */
1395
1396 if (GET_CODE (src) == ASM_OPERANDS
1397 && REG_P (dest) && REGNO (dest) < FIRST_PSEUDO_REGISTER)
1398 return 0;
1399
1400 /* If there are any volatile insns between INSN and I3, reject, because
1401 they might affect machine state. */
1402
1403 for (p = NEXT_INSN (insn); p != i3; p = NEXT_INSN (p))
1404 if (INSN_P (p) && p != succ && volatile_insn_p (PATTERN (p)))
1405 return 0;
1406
1407 /* If INSN contains an autoincrement or autodecrement, make sure that
1408 register is not used between there and I3, and not already used in
1409 I3 either. Neither must it be used in PRED or SUCC, if they exist.
1410 Also insist that I3 not be a jump; if it were one
1411 and the incremented register were spilled, we would lose. */
1412
1413 #ifdef AUTO_INC_DEC
1414 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1415 if (REG_NOTE_KIND (link) == REG_INC
1416 && (JUMP_P (i3)
1417 || reg_used_between_p (XEXP (link, 0), insn, i3)
1418 || (pred != NULL_RTX
1419 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (pred)))
1420 || (succ != NULL_RTX
1421 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (succ)))
1422 || reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i3))))
1423 return 0;
1424 #endif
1425
1426 #ifdef HAVE_cc0
1427 /* Don't combine an insn that follows a CC0-setting insn.
1428 An insn that uses CC0 must not be separated from the one that sets it.
1429 We do, however, allow I2 to follow a CC0-setting insn if that insn
1430 is passed as I1; in that case it will be deleted also.
1431 We also allow combining in this case if all the insns are adjacent
1432 because that would leave the two CC0 insns adjacent as well.
1433 It would be more logical to test whether CC0 occurs inside I1 or I2,
1434 but that would be much slower, and this ought to be equivalent. */
1435
1436 p = prev_nonnote_insn (insn);
1437 if (p && p != pred && NONJUMP_INSN_P (p) && sets_cc0_p (PATTERN (p))
1438 && ! all_adjacent)
1439 return 0;
1440 #endif
1441
1442 /* If we get here, we have passed all the tests and the combination is
1443 to be allowed. */
1444
1445 *pdest = dest;
1446 *psrc = src;
1447
1448 return 1;
1449 }
1450 \f
1451 /* LOC is the location within I3 that contains its pattern or the component
1452 of a PARALLEL of the pattern. We validate that it is valid for combining.
1453
1454 One problem is if I3 modifies its output, as opposed to replacing it
1455 entirely, we can't allow the output to contain I2DEST or I1DEST as doing
1456 so would produce an insn that is not equivalent to the original insns.
1457
1458 Consider:
1459
1460 (set (reg:DI 101) (reg:DI 100))
1461 (set (subreg:SI (reg:DI 101) 0) <foo>)
1462
1463 This is NOT equivalent to:
1464
1465 (parallel [(set (subreg:SI (reg:DI 100) 0) <foo>)
1466 (set (reg:DI 101) (reg:DI 100))])
1467
1468 Not only does this modify 100 (in which case it might still be valid
1469 if 100 were dead in I2), it sets 101 to the ORIGINAL value of 100.
1470
1471 We can also run into a problem if I2 sets a register that I1
1472 uses and I1 gets directly substituted into I3 (not via I2). In that
1473 case, we would be getting the wrong value of I2DEST into I3, so we
1474 must reject the combination. This case occurs when I2 and I1 both
1475 feed into I3, rather than when I1 feeds into I2, which feeds into I3.
1476 If I1_NOT_IN_SRC is nonzero, it means that finding I1 in the source
1477 of a SET must prevent combination from occurring.
1478
1479 Before doing the above check, we first try to expand a field assignment
1480 into a set of logical operations.
1481
1482 If PI3_DEST_KILLED is nonzero, it is a pointer to a location in which
1483 we place a register that is both set and used within I3. If more than one
1484 such register is detected, we fail.
1485
1486 Return 1 if the combination is valid, zero otherwise. */
1487
1488 static int
1489 combinable_i3pat (rtx i3, rtx *loc, rtx i2dest, rtx i1dest,
1490 int i1_not_in_src, rtx *pi3dest_killed)
1491 {
1492 rtx x = *loc;
1493
1494 if (GET_CODE (x) == SET)
1495 {
1496 rtx set = x ;
1497 rtx dest = SET_DEST (set);
1498 rtx src = SET_SRC (set);
1499 rtx inner_dest = dest;
1500 rtx subdest;
1501
1502 while (GET_CODE (inner_dest) == STRICT_LOW_PART
1503 || GET_CODE (inner_dest) == SUBREG
1504 || GET_CODE (inner_dest) == ZERO_EXTRACT)
1505 inner_dest = XEXP (inner_dest, 0);
1506
1507 /* Check for the case where I3 modifies its output, as discussed
1508 above. We don't want to prevent pseudos from being combined
1509 into the address of a MEM, so only prevent the combination if
1510 i1 or i2 set the same MEM. */
1511 if ((inner_dest != dest &&
1512 (!MEM_P (inner_dest)
1513 || rtx_equal_p (i2dest, inner_dest)
1514 || (i1dest && rtx_equal_p (i1dest, inner_dest)))
1515 && (reg_overlap_mentioned_p (i2dest, inner_dest)
1516 || (i1dest && reg_overlap_mentioned_p (i1dest, inner_dest))))
1517
1518 /* This is the same test done in can_combine_p except we can't test
1519 all_adjacent; we don't have to, since this instruction will stay
1520 in place, thus we are not considering increasing the lifetime of
1521 INNER_DEST.
1522
1523 Also, if this insn sets a function argument, combining it with
1524 something that might need a spill could clobber a previous
1525 function argument; the all_adjacent test in can_combine_p also
1526 checks this; here, we do a more specific test for this case. */
1527
1528 || (REG_P (inner_dest)
1529 && REGNO (inner_dest) < FIRST_PSEUDO_REGISTER
1530 && (! HARD_REGNO_MODE_OK (REGNO (inner_dest),
1531 GET_MODE (inner_dest))))
1532 || (i1_not_in_src && reg_overlap_mentioned_p (i1dest, src)))
1533 return 0;
1534
1535 /* If DEST is used in I3, it is being killed in this insn, so
1536 record that for later. We have to consider paradoxical
1537 subregs here, since they kill the whole register, but we
1538 ignore partial subregs, STRICT_LOW_PART, etc.
1539 Never add REG_DEAD notes for the FRAME_POINTER_REGNUM or the
1540 STACK_POINTER_REGNUM, since these are always considered to be
1541 live. Similarly for ARG_POINTER_REGNUM if it is fixed. */
1542 subdest = dest;
1543 if (GET_CODE (subdest) == SUBREG
1544 && (GET_MODE_SIZE (GET_MODE (subdest))
1545 >= GET_MODE_SIZE (GET_MODE (SUBREG_REG (subdest)))))
1546 subdest = SUBREG_REG (subdest);
1547 if (pi3dest_killed
1548 && REG_P (subdest)
1549 && reg_referenced_p (subdest, PATTERN (i3))
1550 && REGNO (subdest) != FRAME_POINTER_REGNUM
1551 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
1552 && REGNO (subdest) != HARD_FRAME_POINTER_REGNUM
1553 #endif
1554 #if ARG_POINTER_REGNUM != FRAME_POINTER_REGNUM
1555 && (REGNO (subdest) != ARG_POINTER_REGNUM
1556 || ! fixed_regs [REGNO (subdest)])
1557 #endif
1558 && REGNO (subdest) != STACK_POINTER_REGNUM)
1559 {
1560 if (*pi3dest_killed)
1561 return 0;
1562
1563 *pi3dest_killed = subdest;
1564 }
1565 }
1566
1567 else if (GET_CODE (x) == PARALLEL)
1568 {
1569 int i;
1570
1571 for (i = 0; i < XVECLEN (x, 0); i++)
1572 if (! combinable_i3pat (i3, &XVECEXP (x, 0, i), i2dest, i1dest,
1573 i1_not_in_src, pi3dest_killed))
1574 return 0;
1575 }
1576
1577 return 1;
1578 }
1579 \f
1580 /* Return 1 if X is an arithmetic expression that contains a multiplication
1581 and division. We don't count multiplications by powers of two here. */
1582
1583 static int
1584 contains_muldiv (rtx x)
1585 {
1586 switch (GET_CODE (x))
1587 {
1588 case MOD: case DIV: case UMOD: case UDIV:
1589 return 1;
1590
1591 case MULT:
1592 return ! (GET_CODE (XEXP (x, 1)) == CONST_INT
1593 && exact_log2 (INTVAL (XEXP (x, 1))) >= 0);
1594 default:
1595 if (BINARY_P (x))
1596 return contains_muldiv (XEXP (x, 0))
1597 || contains_muldiv (XEXP (x, 1));
1598
1599 if (UNARY_P (x))
1600 return contains_muldiv (XEXP (x, 0));
1601
1602 return 0;
1603 }
1604 }
1605 \f
1606 /* Determine whether INSN can be used in a combination. Return nonzero if
1607 not. This is used in try_combine to detect early some cases where we
1608 can't perform combinations. */
1609
1610 static int
1611 cant_combine_insn_p (rtx insn)
1612 {
1613 rtx set;
1614 rtx src, dest;
1615
1616 /* If this isn't really an insn, we can't do anything.
1617 This can occur when flow deletes an insn that it has merged into an
1618 auto-increment address. */
1619 if (! INSN_P (insn))
1620 return 1;
1621
1622 /* Never combine loads and stores involving hard regs that are likely
1623 to be spilled. The register allocator can usually handle such
1624 reg-reg moves by tying. If we allow the combiner to make
1625 substitutions of likely-spilled regs, reload might die.
1626 As an exception, we allow combinations involving fixed regs; these are
1627 not available to the register allocator so there's no risk involved. */
1628
1629 set = single_set (insn);
1630 if (! set)
1631 return 0;
1632 src = SET_SRC (set);
1633 dest = SET_DEST (set);
1634 if (GET_CODE (src) == SUBREG)
1635 src = SUBREG_REG (src);
1636 if (GET_CODE (dest) == SUBREG)
1637 dest = SUBREG_REG (dest);
1638 if (REG_P (src) && REG_P (dest)
1639 && ((REGNO (src) < FIRST_PSEUDO_REGISTER
1640 && ! fixed_regs[REGNO (src)]
1641 && CLASS_LIKELY_SPILLED_P (REGNO_REG_CLASS (REGNO (src))))
1642 || (REGNO (dest) < FIRST_PSEUDO_REGISTER
1643 && ! fixed_regs[REGNO (dest)]
1644 && CLASS_LIKELY_SPILLED_P (REGNO_REG_CLASS (REGNO (dest))))))
1645 return 1;
1646
1647 return 0;
1648 }
1649
1650 struct likely_spilled_retval_info
1651 {
1652 unsigned regno, nregs;
1653 unsigned mask;
1654 };
1655
1656 /* Called via note_stores by likely_spilled_retval_p. Remove from info->mask
1657 hard registers that are known to be written to / clobbered in full. */
1658 static void
1659 likely_spilled_retval_1 (rtx x, rtx set, void *data)
1660 {
1661 struct likely_spilled_retval_info *info = data;
1662 unsigned regno, nregs;
1663 unsigned new_mask;
1664
1665 if (!REG_P (XEXP (set, 0)))
1666 return;
1667 regno = REGNO (x);
1668 if (regno >= info->regno + info->nregs)
1669 return;
1670 nregs = hard_regno_nregs[regno][GET_MODE (x)];
1671 if (regno + nregs <= info->regno)
1672 return;
1673 new_mask = (2U << (nregs - 1)) - 1;
1674 if (regno < info->regno)
1675 new_mask >>= info->regno - regno;
1676 else
1677 new_mask <<= regno - info->regno;
1678 info->mask &= ~new_mask;
1679 }
1680
1681 /* Return nonzero iff part of the return value is live during INSN, and
1682 it is likely spilled. This can happen when more than one insn is needed
1683 to copy the return value, e.g. when we consider to combine into the
1684 second copy insn for a complex value. */
1685
1686 static int
1687 likely_spilled_retval_p (rtx insn)
1688 {
1689 rtx use = BB_END (this_basic_block);
1690 rtx reg, p;
1691 unsigned regno, nregs;
1692 /* We assume here that no machine mode needs more than
1693 32 hard registers when the value overlaps with a register
1694 for which FUNCTION_VALUE_REGNO_P is true. */
1695 unsigned mask;
1696 struct likely_spilled_retval_info info;
1697
1698 if (!NONJUMP_INSN_P (use) || GET_CODE (PATTERN (use)) != USE || insn == use)
1699 return 0;
1700 reg = XEXP (PATTERN (use), 0);
1701 if (!REG_P (reg) || !FUNCTION_VALUE_REGNO_P (REGNO (reg)))
1702 return 0;
1703 regno = REGNO (reg);
1704 nregs = hard_regno_nregs[regno][GET_MODE (reg)];
1705 if (nregs == 1)
1706 return 0;
1707 mask = (2U << (nregs - 1)) - 1;
1708
1709 /* Disregard parts of the return value that are set later. */
1710 info.regno = regno;
1711 info.nregs = nregs;
1712 info.mask = mask;
1713 for (p = PREV_INSN (use); info.mask && p != insn; p = PREV_INSN (p))
1714 if (INSN_P (p))
1715 note_stores (PATTERN (p), likely_spilled_retval_1, &info);
1716 mask = info.mask;
1717
1718 /* Check if any of the (probably) live return value registers is
1719 likely spilled. */
1720 nregs --;
1721 do
1722 {
1723 if ((mask & 1 << nregs)
1724 && CLASS_LIKELY_SPILLED_P (REGNO_REG_CLASS (regno + nregs)))
1725 return 1;
1726 } while (nregs--);
1727 return 0;
1728 }
1729
1730 /* Adjust INSN after we made a change to its destination.
1731
1732 Changing the destination can invalidate notes that say something about
1733 the results of the insn and a LOG_LINK pointing to the insn. */
1734
1735 static void
1736 adjust_for_new_dest (rtx insn)
1737 {
1738 /* For notes, be conservative and simply remove them. */
1739 remove_reg_equal_equiv_notes (insn);
1740
1741 /* The new insn will have a destination that was previously the destination
1742 of an insn just above it. Call distribute_links to make a LOG_LINK from
1743 the next use of that destination. */
1744 distribute_links (gen_rtx_INSN_LIST (VOIDmode, insn, NULL_RTX));
1745 }
1746
1747 /* Return TRUE if combine can reuse reg X in mode MODE.
1748 ADDED_SETS is nonzero if the original set is still required. */
1749 static bool
1750 can_change_dest_mode (rtx x, int added_sets, enum machine_mode mode)
1751 {
1752 unsigned int regno;
1753
1754 if (!REG_P(x))
1755 return false;
1756
1757 regno = REGNO (x);
1758 /* Allow hard registers if the new mode is legal, and occupies no more
1759 registers than the old mode. */
1760 if (regno < FIRST_PSEUDO_REGISTER)
1761 return (HARD_REGNO_MODE_OK (regno, mode)
1762 && (hard_regno_nregs[regno][GET_MODE (x)]
1763 >= hard_regno_nregs[regno][mode]));
1764
1765 /* Or a pseudo that is only used once. */
1766 return (REG_N_SETS (regno) == 1 && !added_sets
1767 && !REG_USERVAR_P (x));
1768 }
1769
1770
1771 /* Check whether X, the destination of a set, refers to part of
1772 the register specified by REG. */
1773
1774 static bool
1775 reg_subword_p (rtx x, rtx reg)
1776 {
1777 /* Check that reg is an integer mode register. */
1778 if (!REG_P (reg) || GET_MODE_CLASS (GET_MODE (reg)) != MODE_INT)
1779 return false;
1780
1781 if (GET_CODE (x) == STRICT_LOW_PART
1782 || GET_CODE (x) == ZERO_EXTRACT)
1783 x = XEXP (x, 0);
1784
1785 return GET_CODE (x) == SUBREG
1786 && SUBREG_REG (x) == reg
1787 && GET_MODE_CLASS (GET_MODE (x)) == MODE_INT;
1788 }
1789
1790
1791 /* Try to combine the insns I1 and I2 into I3.
1792 Here I1 and I2 appear earlier than I3.
1793 I1 can be zero; then we combine just I2 into I3.
1794
1795 If we are combining three insns and the resulting insn is not recognized,
1796 try splitting it into two insns. If that happens, I2 and I3 are retained
1797 and I1 is pseudo-deleted by turning it into a NOTE. Otherwise, I1 and I2
1798 are pseudo-deleted.
1799
1800 Return 0 if the combination does not work. Then nothing is changed.
1801 If we did the combination, return the insn at which combine should
1802 resume scanning.
1803
1804 Set NEW_DIRECT_JUMP_P to a nonzero value if try_combine creates a
1805 new direct jump instruction. */
1806
1807 static rtx
1808 try_combine (rtx i3, rtx i2, rtx i1, int *new_direct_jump_p)
1809 {
1810 /* New patterns for I3 and I2, respectively. */
1811 rtx newpat, newi2pat = 0;
1812 rtvec newpat_vec_with_clobbers = 0;
1813 int substed_i2 = 0, substed_i1 = 0;
1814 /* Indicates need to preserve SET in I1 or I2 in I3 if it is not dead. */
1815 int added_sets_1, added_sets_2;
1816 /* Total number of SETs to put into I3. */
1817 int total_sets;
1818 /* Nonzero if I2's body now appears in I3. */
1819 int i2_is_used;
1820 /* INSN_CODEs for new I3, new I2, and user of condition code. */
1821 int insn_code_number, i2_code_number = 0, other_code_number = 0;
1822 /* Contains I3 if the destination of I3 is used in its source, which means
1823 that the old life of I3 is being killed. If that usage is placed into
1824 I2 and not in I3, a REG_DEAD note must be made. */
1825 rtx i3dest_killed = 0;
1826 /* SET_DEST and SET_SRC of I2 and I1. */
1827 rtx i2dest, i2src, i1dest = 0, i1src = 0;
1828 /* PATTERN (I1) and PATTERN (I2), or a copy of it in certain cases. */
1829 rtx i1pat = 0, i2pat = 0;
1830 /* Indicates if I2DEST or I1DEST is in I2SRC or I1_SRC. */
1831 int i2dest_in_i2src = 0, i1dest_in_i1src = 0, i2dest_in_i1src = 0;
1832 int i2dest_killed = 0, i1dest_killed = 0;
1833 int i1_feeds_i3 = 0;
1834 /* Notes that must be added to REG_NOTES in I3 and I2. */
1835 rtx new_i3_notes, new_i2_notes;
1836 /* Notes that we substituted I3 into I2 instead of the normal case. */
1837 int i3_subst_into_i2 = 0;
1838 /* Notes that I1, I2 or I3 is a MULT operation. */
1839 int have_mult = 0;
1840 int swap_i2i3 = 0;
1841
1842 int maxreg;
1843 rtx temp;
1844 rtx link;
1845 int i;
1846
1847 /* Exit early if one of the insns involved can't be used for
1848 combinations. */
1849 if (cant_combine_insn_p (i3)
1850 || cant_combine_insn_p (i2)
1851 || (i1 && cant_combine_insn_p (i1))
1852 || likely_spilled_retval_p (i3)
1853 /* We also can't do anything if I3 has a
1854 REG_LIBCALL note since we don't want to disrupt the contiguity of a
1855 libcall. */
1856 #if 0
1857 /* ??? This gives worse code, and appears to be unnecessary, since no
1858 pass after flow uses REG_LIBCALL/REG_RETVAL notes. */
1859 || find_reg_note (i3, REG_LIBCALL, NULL_RTX)
1860 #endif
1861 )
1862 return 0;
1863
1864 combine_attempts++;
1865 undobuf.other_insn = 0;
1866
1867 /* Reset the hard register usage information. */
1868 CLEAR_HARD_REG_SET (newpat_used_regs);
1869
1870 /* If I1 and I2 both feed I3, they can be in any order. To simplify the
1871 code below, set I1 to be the earlier of the two insns. */
1872 if (i1 && INSN_CUID (i1) > INSN_CUID (i2))
1873 temp = i1, i1 = i2, i2 = temp;
1874
1875 added_links_insn = 0;
1876
1877 /* First check for one important special-case that the code below will
1878 not handle. Namely, the case where I1 is zero, I2 is a PARALLEL
1879 and I3 is a SET whose SET_SRC is a SET_DEST in I2. In that case,
1880 we may be able to replace that destination with the destination of I3.
1881 This occurs in the common code where we compute both a quotient and
1882 remainder into a structure, in which case we want to do the computation
1883 directly into the structure to avoid register-register copies.
1884
1885 Note that this case handles both multiple sets in I2 and also
1886 cases where I2 has a number of CLOBBER or PARALLELs.
1887
1888 We make very conservative checks below and only try to handle the
1889 most common cases of this. For example, we only handle the case
1890 where I2 and I3 are adjacent to avoid making difficult register
1891 usage tests. */
1892
1893 if (i1 == 0 && NONJUMP_INSN_P (i3) && GET_CODE (PATTERN (i3)) == SET
1894 && REG_P (SET_SRC (PATTERN (i3)))
1895 && REGNO (SET_SRC (PATTERN (i3))) >= FIRST_PSEUDO_REGISTER
1896 && find_reg_note (i3, REG_DEAD, SET_SRC (PATTERN (i3)))
1897 && GET_CODE (PATTERN (i2)) == PARALLEL
1898 && ! side_effects_p (SET_DEST (PATTERN (i3)))
1899 /* If the dest of I3 is a ZERO_EXTRACT or STRICT_LOW_PART, the code
1900 below would need to check what is inside (and reg_overlap_mentioned_p
1901 doesn't support those codes anyway). Don't allow those destinations;
1902 the resulting insn isn't likely to be recognized anyway. */
1903 && GET_CODE (SET_DEST (PATTERN (i3))) != ZERO_EXTRACT
1904 && GET_CODE (SET_DEST (PATTERN (i3))) != STRICT_LOW_PART
1905 && ! reg_overlap_mentioned_p (SET_SRC (PATTERN (i3)),
1906 SET_DEST (PATTERN (i3)))
1907 && next_real_insn (i2) == i3)
1908 {
1909 rtx p2 = PATTERN (i2);
1910
1911 /* Make sure that the destination of I3,
1912 which we are going to substitute into one output of I2,
1913 is not used within another output of I2. We must avoid making this:
1914 (parallel [(set (mem (reg 69)) ...)
1915 (set (reg 69) ...)])
1916 which is not well-defined as to order of actions.
1917 (Besides, reload can't handle output reloads for this.)
1918
1919 The problem can also happen if the dest of I3 is a memory ref,
1920 if another dest in I2 is an indirect memory ref. */
1921 for (i = 0; i < XVECLEN (p2, 0); i++)
1922 if ((GET_CODE (XVECEXP (p2, 0, i)) == SET
1923 || GET_CODE (XVECEXP (p2, 0, i)) == CLOBBER)
1924 && reg_overlap_mentioned_p (SET_DEST (PATTERN (i3)),
1925 SET_DEST (XVECEXP (p2, 0, i))))
1926 break;
1927
1928 if (i == XVECLEN (p2, 0))
1929 for (i = 0; i < XVECLEN (p2, 0); i++)
1930 if ((GET_CODE (XVECEXP (p2, 0, i)) == SET
1931 || GET_CODE (XVECEXP (p2, 0, i)) == CLOBBER)
1932 && SET_DEST (XVECEXP (p2, 0, i)) == SET_SRC (PATTERN (i3)))
1933 {
1934 combine_merges++;
1935
1936 subst_insn = i3;
1937 subst_low_cuid = INSN_CUID (i2);
1938
1939 added_sets_2 = added_sets_1 = 0;
1940 i2dest = SET_SRC (PATTERN (i3));
1941 i2dest_killed = dead_or_set_p (i2, i2dest);
1942
1943 /* Replace the dest in I2 with our dest and make the resulting
1944 insn the new pattern for I3. Then skip to where we
1945 validate the pattern. Everything was set up above. */
1946 SUBST (SET_DEST (XVECEXP (p2, 0, i)),
1947 SET_DEST (PATTERN (i3)));
1948
1949 newpat = p2;
1950 i3_subst_into_i2 = 1;
1951 goto validate_replacement;
1952 }
1953 }
1954
1955 /* If I2 is setting a pseudo to a constant and I3 is setting some
1956 sub-part of it to another constant, merge them by making a new
1957 constant. */
1958 if (i1 == 0
1959 && (temp = single_set (i2)) != 0
1960 && (GET_CODE (SET_SRC (temp)) == CONST_INT
1961 || GET_CODE (SET_SRC (temp)) == CONST_DOUBLE)
1962 && GET_CODE (PATTERN (i3)) == SET
1963 && (GET_CODE (SET_SRC (PATTERN (i3))) == CONST_INT
1964 || GET_CODE (SET_SRC (PATTERN (i3))) == CONST_DOUBLE)
1965 && reg_subword_p (SET_DEST (PATTERN (i3)), SET_DEST (temp)))
1966 {
1967 rtx dest = SET_DEST (PATTERN (i3));
1968 int offset = -1;
1969 int width = 0;
1970
1971 if (GET_CODE (dest) == ZERO_EXTRACT)
1972 {
1973 if (GET_CODE (XEXP (dest, 1)) == CONST_INT
1974 && GET_CODE (XEXP (dest, 2)) == CONST_INT)
1975 {
1976 width = INTVAL (XEXP (dest, 1));
1977 offset = INTVAL (XEXP (dest, 2));
1978 dest = XEXP (dest, 0);
1979 if (BITS_BIG_ENDIAN)
1980 offset = GET_MODE_BITSIZE (GET_MODE (dest)) - width - offset;
1981 }
1982 }
1983 else
1984 {
1985 if (GET_CODE (dest) == STRICT_LOW_PART)
1986 dest = XEXP (dest, 0);
1987 width = GET_MODE_BITSIZE (GET_MODE (dest));
1988 offset = 0;
1989 }
1990
1991 if (offset >= 0)
1992 {
1993 /* If this is the low part, we're done. */
1994 if (subreg_lowpart_p (dest))
1995 ;
1996 /* Handle the case where inner is twice the size of outer. */
1997 else if (GET_MODE_BITSIZE (GET_MODE (SET_DEST (temp)))
1998 == 2 * GET_MODE_BITSIZE (GET_MODE (dest)))
1999 offset += GET_MODE_BITSIZE (GET_MODE (dest));
2000 /* Otherwise give up for now. */
2001 else
2002 offset = -1;
2003 }
2004
2005 if (offset >= 0
2006 && (GET_MODE_BITSIZE (GET_MODE (SET_DEST (temp)))
2007 <= HOST_BITS_PER_WIDE_INT * 2))
2008 {
2009 HOST_WIDE_INT mhi, ohi, ihi;
2010 HOST_WIDE_INT mlo, olo, ilo;
2011 rtx inner = SET_SRC (PATTERN (i3));
2012 rtx outer = SET_SRC (temp);
2013
2014 if (GET_CODE (outer) == CONST_INT)
2015 {
2016 olo = INTVAL (outer);
2017 ohi = olo < 0 ? -1 : 0;
2018 }
2019 else
2020 {
2021 olo = CONST_DOUBLE_LOW (outer);
2022 ohi = CONST_DOUBLE_HIGH (outer);
2023 }
2024
2025 if (GET_CODE (inner) == CONST_INT)
2026 {
2027 ilo = INTVAL (inner);
2028 ihi = ilo < 0 ? -1 : 0;
2029 }
2030 else
2031 {
2032 ilo = CONST_DOUBLE_LOW (inner);
2033 ihi = CONST_DOUBLE_HIGH (inner);
2034 }
2035
2036 if (width < HOST_BITS_PER_WIDE_INT)
2037 {
2038 mlo = ((unsigned HOST_WIDE_INT) 1 << width) - 1;
2039 mhi = 0;
2040 }
2041 else if (width < HOST_BITS_PER_WIDE_INT * 2)
2042 {
2043 mhi = ((unsigned HOST_WIDE_INT) 1
2044 << (width - HOST_BITS_PER_WIDE_INT)) - 1;
2045 mlo = -1;
2046 }
2047 else
2048 {
2049 mlo = -1;
2050 mhi = -1;
2051 }
2052
2053 ilo &= mlo;
2054 ihi &= mhi;
2055
2056 if (offset >= HOST_BITS_PER_WIDE_INT)
2057 {
2058 mhi = mlo << (offset - HOST_BITS_PER_WIDE_INT);
2059 mlo = 0;
2060 ihi = ilo << (offset - HOST_BITS_PER_WIDE_INT);
2061 ilo = 0;
2062 }
2063 else if (offset > 0)
2064 {
2065 mhi = (mhi << offset) | ((unsigned HOST_WIDE_INT) mlo
2066 >> (HOST_BITS_PER_WIDE_INT - offset));
2067 mlo = mlo << offset;
2068 ihi = (ihi << offset) | ((unsigned HOST_WIDE_INT) ilo
2069 >> (HOST_BITS_PER_WIDE_INT - offset));
2070 ilo = ilo << offset;
2071 }
2072
2073 olo = (olo & ~mlo) | ilo;
2074 ohi = (ohi & ~mhi) | ihi;
2075
2076 combine_merges++;
2077 subst_insn = i3;
2078 subst_low_cuid = INSN_CUID (i2);
2079 added_sets_2 = added_sets_1 = 0;
2080 i2dest = SET_DEST (temp);
2081 i2dest_killed = dead_or_set_p (i2, i2dest);
2082
2083 SUBST (SET_SRC (temp),
2084 immed_double_const (olo, ohi, GET_MODE (SET_DEST (temp))));
2085
2086 newpat = PATTERN (i2);
2087 goto validate_replacement;
2088 }
2089 }
2090
2091 #ifndef HAVE_cc0
2092 /* If we have no I1 and I2 looks like:
2093 (parallel [(set (reg:CC X) (compare:CC OP (const_int 0)))
2094 (set Y OP)])
2095 make up a dummy I1 that is
2096 (set Y OP)
2097 and change I2 to be
2098 (set (reg:CC X) (compare:CC Y (const_int 0)))
2099
2100 (We can ignore any trailing CLOBBERs.)
2101
2102 This undoes a previous combination and allows us to match a branch-and-
2103 decrement insn. */
2104
2105 if (i1 == 0 && GET_CODE (PATTERN (i2)) == PARALLEL
2106 && XVECLEN (PATTERN (i2), 0) >= 2
2107 && GET_CODE (XVECEXP (PATTERN (i2), 0, 0)) == SET
2108 && (GET_MODE_CLASS (GET_MODE (SET_DEST (XVECEXP (PATTERN (i2), 0, 0))))
2109 == MODE_CC)
2110 && GET_CODE (SET_SRC (XVECEXP (PATTERN (i2), 0, 0))) == COMPARE
2111 && XEXP (SET_SRC (XVECEXP (PATTERN (i2), 0, 0)), 1) == const0_rtx
2112 && GET_CODE (XVECEXP (PATTERN (i2), 0, 1)) == SET
2113 && REG_P (SET_DEST (XVECEXP (PATTERN (i2), 0, 1)))
2114 && rtx_equal_p (XEXP (SET_SRC (XVECEXP (PATTERN (i2), 0, 0)), 0),
2115 SET_SRC (XVECEXP (PATTERN (i2), 0, 1))))
2116 {
2117 for (i = XVECLEN (PATTERN (i2), 0) - 1; i >= 2; i--)
2118 if (GET_CODE (XVECEXP (PATTERN (i2), 0, i)) != CLOBBER)
2119 break;
2120
2121 if (i == 1)
2122 {
2123 /* We make I1 with the same INSN_UID as I2. This gives it
2124 the same INSN_CUID for value tracking. Our fake I1 will
2125 never appear in the insn stream so giving it the same INSN_UID
2126 as I2 will not cause a problem. */
2127
2128 i1 = gen_rtx_INSN (VOIDmode, INSN_UID (i2), NULL_RTX, i2,
2129 BLOCK_FOR_INSN (i2), INSN_LOCATOR (i2),
2130 XVECEXP (PATTERN (i2), 0, 1), -1, NULL_RTX,
2131 NULL_RTX);
2132
2133 SUBST (PATTERN (i2), XVECEXP (PATTERN (i2), 0, 0));
2134 SUBST (XEXP (SET_SRC (PATTERN (i2)), 0),
2135 SET_DEST (PATTERN (i1)));
2136 }
2137 }
2138 #endif
2139
2140 /* Verify that I2 and I1 are valid for combining. */
2141 if (! can_combine_p (i2, i3, i1, NULL_RTX, &i2dest, &i2src)
2142 || (i1 && ! can_combine_p (i1, i3, NULL_RTX, i2, &i1dest, &i1src)))
2143 {
2144 undo_all ();
2145 return 0;
2146 }
2147
2148 /* Record whether I2DEST is used in I2SRC and similarly for the other
2149 cases. Knowing this will help in register status updating below. */
2150 i2dest_in_i2src = reg_overlap_mentioned_p (i2dest, i2src);
2151 i1dest_in_i1src = i1 && reg_overlap_mentioned_p (i1dest, i1src);
2152 i2dest_in_i1src = i1 && reg_overlap_mentioned_p (i2dest, i1src);
2153 i2dest_killed = dead_or_set_p (i2, i2dest);
2154 i1dest_killed = i1 && dead_or_set_p (i1, i1dest);
2155
2156 /* See if I1 directly feeds into I3. It does if I1DEST is not used
2157 in I2SRC. */
2158 i1_feeds_i3 = i1 && ! reg_overlap_mentioned_p (i1dest, i2src);
2159
2160 /* Ensure that I3's pattern can be the destination of combines. */
2161 if (! combinable_i3pat (i3, &PATTERN (i3), i2dest, i1dest,
2162 i1 && i2dest_in_i1src && i1_feeds_i3,
2163 &i3dest_killed))
2164 {
2165 undo_all ();
2166 return 0;
2167 }
2168
2169 /* See if any of the insns is a MULT operation. Unless one is, we will
2170 reject a combination that is, since it must be slower. Be conservative
2171 here. */
2172 if (GET_CODE (i2src) == MULT
2173 || (i1 != 0 && GET_CODE (i1src) == MULT)
2174 || (GET_CODE (PATTERN (i3)) == SET
2175 && GET_CODE (SET_SRC (PATTERN (i3))) == MULT))
2176 have_mult = 1;
2177
2178 /* If I3 has an inc, then give up if I1 or I2 uses the reg that is inc'd.
2179 We used to do this EXCEPT in one case: I3 has a post-inc in an
2180 output operand. However, that exception can give rise to insns like
2181 mov r3,(r3)+
2182 which is a famous insn on the PDP-11 where the value of r3 used as the
2183 source was model-dependent. Avoid this sort of thing. */
2184
2185 #if 0
2186 if (!(GET_CODE (PATTERN (i3)) == SET
2187 && REG_P (SET_SRC (PATTERN (i3)))
2188 && MEM_P (SET_DEST (PATTERN (i3)))
2189 && (GET_CODE (XEXP (SET_DEST (PATTERN (i3)), 0)) == POST_INC
2190 || GET_CODE (XEXP (SET_DEST (PATTERN (i3)), 0)) == POST_DEC)))
2191 /* It's not the exception. */
2192 #endif
2193 #ifdef AUTO_INC_DEC
2194 for (link = REG_NOTES (i3); link; link = XEXP (link, 1))
2195 if (REG_NOTE_KIND (link) == REG_INC
2196 && (reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i2))
2197 || (i1 != 0
2198 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i1)))))
2199 {
2200 undo_all ();
2201 return 0;
2202 }
2203 #endif
2204
2205 /* See if the SETs in I1 or I2 need to be kept around in the merged
2206 instruction: whenever the value set there is still needed past I3.
2207 For the SETs in I2, this is easy: we see if I2DEST dies or is set in I3.
2208
2209 For the SET in I1, we have two cases: If I1 and I2 independently
2210 feed into I3, the set in I1 needs to be kept around if I1DEST dies
2211 or is set in I3. Otherwise (if I1 feeds I2 which feeds I3), the set
2212 in I1 needs to be kept around unless I1DEST dies or is set in either
2213 I2 or I3. We can distinguish these cases by seeing if I2SRC mentions
2214 I1DEST. If so, we know I1 feeds into I2. */
2215
2216 added_sets_2 = ! dead_or_set_p (i3, i2dest);
2217
2218 added_sets_1
2219 = i1 && ! (i1_feeds_i3 ? dead_or_set_p (i3, i1dest)
2220 : (dead_or_set_p (i3, i1dest) || dead_or_set_p (i2, i1dest)));
2221
2222 /* If the set in I2 needs to be kept around, we must make a copy of
2223 PATTERN (I2), so that when we substitute I1SRC for I1DEST in
2224 PATTERN (I2), we are only substituting for the original I1DEST, not into
2225 an already-substituted copy. This also prevents making self-referential
2226 rtx. If I2 is a PARALLEL, we just need the piece that assigns I2SRC to
2227 I2DEST. */
2228
2229 if (added_sets_2)
2230 {
2231 if (GET_CODE (PATTERN (i2)) == PARALLEL)
2232 i2pat = gen_rtx_SET (VOIDmode, i2dest, copy_rtx (i2src));
2233 else
2234 i2pat = copy_rtx (PATTERN (i2));
2235 }
2236
2237 if (added_sets_1)
2238 {
2239 if (GET_CODE (PATTERN (i1)) == PARALLEL)
2240 i1pat = gen_rtx_SET (VOIDmode, i1dest, copy_rtx (i1src));
2241 else
2242 i1pat = copy_rtx (PATTERN (i1));
2243 }
2244
2245 combine_merges++;
2246
2247 /* Substitute in the latest insn for the regs set by the earlier ones. */
2248
2249 maxreg = max_reg_num ();
2250
2251 subst_insn = i3;
2252
2253 #ifndef HAVE_cc0
2254 /* Many machines that don't use CC0 have insns that can both perform an
2255 arithmetic operation and set the condition code. These operations will
2256 be represented as a PARALLEL with the first element of the vector
2257 being a COMPARE of an arithmetic operation with the constant zero.
2258 The second element of the vector will set some pseudo to the result
2259 of the same arithmetic operation. If we simplify the COMPARE, we won't
2260 match such a pattern and so will generate an extra insn. Here we test
2261 for this case, where both the comparison and the operation result are
2262 needed, and make the PARALLEL by just replacing I2DEST in I3SRC with
2263 I2SRC. Later we will make the PARALLEL that contains I2. */
2264
2265 if (i1 == 0 && added_sets_2 && GET_CODE (PATTERN (i3)) == SET
2266 && GET_CODE (SET_SRC (PATTERN (i3))) == COMPARE
2267 && XEXP (SET_SRC (PATTERN (i3)), 1) == const0_rtx
2268 && rtx_equal_p (XEXP (SET_SRC (PATTERN (i3)), 0), i2dest))
2269 {
2270 #ifdef SELECT_CC_MODE
2271 rtx *cc_use;
2272 enum machine_mode compare_mode;
2273 #endif
2274
2275 newpat = PATTERN (i3);
2276 SUBST (XEXP (SET_SRC (newpat), 0), i2src);
2277
2278 i2_is_used = 1;
2279
2280 #ifdef SELECT_CC_MODE
2281 /* See if a COMPARE with the operand we substituted in should be done
2282 with the mode that is currently being used. If not, do the same
2283 processing we do in `subst' for a SET; namely, if the destination
2284 is used only once, try to replace it with a register of the proper
2285 mode and also replace the COMPARE. */
2286 if (undobuf.other_insn == 0
2287 && (cc_use = find_single_use (SET_DEST (newpat), i3,
2288 &undobuf.other_insn))
2289 && ((compare_mode = SELECT_CC_MODE (GET_CODE (*cc_use),
2290 i2src, const0_rtx))
2291 != GET_MODE (SET_DEST (newpat))))
2292 {
2293 if (can_change_dest_mode(SET_DEST (newpat), added_sets_2,
2294 compare_mode))
2295 {
2296 unsigned int regno = REGNO (SET_DEST (newpat));
2297 rtx new_dest;
2298
2299 if (regno < FIRST_PSEUDO_REGISTER)
2300 new_dest = gen_rtx_REG (compare_mode, regno);
2301 else
2302 {
2303 SUBST_MODE (regno_reg_rtx[regno], compare_mode);
2304 new_dest = regno_reg_rtx[regno];
2305 }
2306
2307 SUBST (SET_DEST (newpat), new_dest);
2308 SUBST (XEXP (*cc_use, 0), new_dest);
2309 SUBST (SET_SRC (newpat),
2310 gen_rtx_COMPARE (compare_mode, i2src, const0_rtx));
2311 }
2312 else
2313 undobuf.other_insn = 0;
2314 }
2315 #endif
2316 }
2317 else
2318 #endif
2319 {
2320 /* It is possible that the source of I2 or I1 may be performing
2321 an unneeded operation, such as a ZERO_EXTEND of something
2322 that is known to have the high part zero. Handle that case
2323 by letting subst look at the innermost one of them.
2324
2325 Another way to do this would be to have a function that tries
2326 to simplify a single insn instead of merging two or more
2327 insns. We don't do this because of the potential of infinite
2328 loops and because of the potential extra memory required.
2329 However, doing it the way we are is a bit of a kludge and
2330 doesn't catch all cases.
2331
2332 But only do this if -fexpensive-optimizations since it slows
2333 things down and doesn't usually win.
2334
2335 This is not done in the COMPARE case above because the
2336 unmodified I2PAT is used in the PARALLEL and so a pattern
2337 with a modified I2SRC would not match. */
2338
2339 if (flag_expensive_optimizations)
2340 {
2341 /* Pass pc_rtx so no substitutions are done, just
2342 simplifications. */
2343 if (i1)
2344 {
2345 subst_low_cuid = INSN_CUID (i1);
2346 i1src = subst (i1src, pc_rtx, pc_rtx, 0, 0);
2347 }
2348 else
2349 {
2350 subst_low_cuid = INSN_CUID (i2);
2351 i2src = subst (i2src, pc_rtx, pc_rtx, 0, 0);
2352 }
2353 }
2354
2355 n_occurrences = 0; /* `subst' counts here */
2356
2357 /* If I1 feeds into I2 (not into I3) and I1DEST is in I1SRC, we
2358 need to make a unique copy of I2SRC each time we substitute it
2359 to avoid self-referential rtl. */
2360
2361 subst_low_cuid = INSN_CUID (i2);
2362 newpat = subst (PATTERN (i3), i2dest, i2src, 0,
2363 ! i1_feeds_i3 && i1dest_in_i1src);
2364 substed_i2 = 1;
2365
2366 /* Record whether i2's body now appears within i3's body. */
2367 i2_is_used = n_occurrences;
2368 }
2369
2370 /* If we already got a failure, don't try to do more. Otherwise,
2371 try to substitute in I1 if we have it. */
2372
2373 if (i1 && GET_CODE (newpat) != CLOBBER)
2374 {
2375 /* Before we can do this substitution, we must redo the test done
2376 above (see detailed comments there) that ensures that I1DEST
2377 isn't mentioned in any SETs in NEWPAT that are field assignments. */
2378
2379 if (! combinable_i3pat (NULL_RTX, &newpat, i1dest, NULL_RTX,
2380 0, (rtx*) 0))
2381 {
2382 undo_all ();
2383 return 0;
2384 }
2385
2386 n_occurrences = 0;
2387 subst_low_cuid = INSN_CUID (i1);
2388 newpat = subst (newpat, i1dest, i1src, 0, 0);
2389 substed_i1 = 1;
2390 }
2391
2392 /* Fail if an autoincrement side-effect has been duplicated. Be careful
2393 to count all the ways that I2SRC and I1SRC can be used. */
2394 if ((FIND_REG_INC_NOTE (i2, NULL_RTX) != 0
2395 && i2_is_used + added_sets_2 > 1)
2396 || (i1 != 0 && FIND_REG_INC_NOTE (i1, NULL_RTX) != 0
2397 && (n_occurrences + added_sets_1 + (added_sets_2 && ! i1_feeds_i3)
2398 > 1))
2399 /* Fail if we tried to make a new register. */
2400 || max_reg_num () != maxreg
2401 /* Fail if we couldn't do something and have a CLOBBER. */
2402 || GET_CODE (newpat) == CLOBBER
2403 /* Fail if this new pattern is a MULT and we didn't have one before
2404 at the outer level. */
2405 || (GET_CODE (newpat) == SET && GET_CODE (SET_SRC (newpat)) == MULT
2406 && ! have_mult))
2407 {
2408 undo_all ();
2409 return 0;
2410 }
2411
2412 /* If the actions of the earlier insns must be kept
2413 in addition to substituting them into the latest one,
2414 we must make a new PARALLEL for the latest insn
2415 to hold additional the SETs. */
2416
2417 if (added_sets_1 || added_sets_2)
2418 {
2419 combine_extras++;
2420
2421 if (GET_CODE (newpat) == PARALLEL)
2422 {
2423 rtvec old = XVEC (newpat, 0);
2424 total_sets = XVECLEN (newpat, 0) + added_sets_1 + added_sets_2;
2425 newpat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (total_sets));
2426 memcpy (XVEC (newpat, 0)->elem, &old->elem[0],
2427 sizeof (old->elem[0]) * old->num_elem);
2428 }
2429 else
2430 {
2431 rtx old = newpat;
2432 total_sets = 1 + added_sets_1 + added_sets_2;
2433 newpat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (total_sets));
2434 XVECEXP (newpat, 0, 0) = old;
2435 }
2436
2437 if (added_sets_1)
2438 XVECEXP (newpat, 0, --total_sets) = i1pat;
2439
2440 if (added_sets_2)
2441 {
2442 /* If there is no I1, use I2's body as is. We used to also not do
2443 the subst call below if I2 was substituted into I3,
2444 but that could lose a simplification. */
2445 if (i1 == 0)
2446 XVECEXP (newpat, 0, --total_sets) = i2pat;
2447 else
2448 /* See comment where i2pat is assigned. */
2449 XVECEXP (newpat, 0, --total_sets)
2450 = subst (i2pat, i1dest, i1src, 0, 0);
2451 }
2452 }
2453
2454 /* We come here when we are replacing a destination in I2 with the
2455 destination of I3. */
2456 validate_replacement:
2457
2458 /* Note which hard regs this insn has as inputs. */
2459 mark_used_regs_combine (newpat);
2460
2461 /* If recog_for_combine fails, it strips existing clobbers. If we'll
2462 consider splitting this pattern, we might need these clobbers. */
2463 if (i1 && GET_CODE (newpat) == PARALLEL
2464 && GET_CODE (XVECEXP (newpat, 0, XVECLEN (newpat, 0) - 1)) == CLOBBER)
2465 {
2466 int len = XVECLEN (newpat, 0);
2467
2468 newpat_vec_with_clobbers = rtvec_alloc (len);
2469 for (i = 0; i < len; i++)
2470 RTVEC_ELT (newpat_vec_with_clobbers, i) = XVECEXP (newpat, 0, i);
2471 }
2472
2473 /* Is the result of combination a valid instruction? */
2474 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
2475
2476 /* If the result isn't valid, see if it is a PARALLEL of two SETs where
2477 the second SET's destination is a register that is unused and isn't
2478 marked as an instruction that might trap in an EH region. In that case,
2479 we just need the first SET. This can occur when simplifying a divmod
2480 insn. We *must* test for this case here because the code below that
2481 splits two independent SETs doesn't handle this case correctly when it
2482 updates the register status.
2483
2484 It's pointless doing this if we originally had two sets, one from
2485 i3, and one from i2. Combining then splitting the parallel results
2486 in the original i2 again plus an invalid insn (which we delete).
2487 The net effect is only to move instructions around, which makes
2488 debug info less accurate.
2489
2490 Also check the case where the first SET's destination is unused.
2491 That would not cause incorrect code, but does cause an unneeded
2492 insn to remain. */
2493
2494 if (insn_code_number < 0
2495 && !(added_sets_2 && i1 == 0)
2496 && GET_CODE (newpat) == PARALLEL
2497 && XVECLEN (newpat, 0) == 2
2498 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
2499 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
2500 && asm_noperands (newpat) < 0)
2501 {
2502 rtx set0 = XVECEXP (newpat, 0, 0);
2503 rtx set1 = XVECEXP (newpat, 0, 1);
2504 rtx note;
2505
2506 if (((REG_P (SET_DEST (set1))
2507 && find_reg_note (i3, REG_UNUSED, SET_DEST (set1)))
2508 || (GET_CODE (SET_DEST (set1)) == SUBREG
2509 && find_reg_note (i3, REG_UNUSED, SUBREG_REG (SET_DEST (set1)))))
2510 && (!(note = find_reg_note (i3, REG_EH_REGION, NULL_RTX))
2511 || INTVAL (XEXP (note, 0)) <= 0)
2512 && ! side_effects_p (SET_SRC (set1)))
2513 {
2514 newpat = set0;
2515 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
2516 }
2517
2518 else if (((REG_P (SET_DEST (set0))
2519 && find_reg_note (i3, REG_UNUSED, SET_DEST (set0)))
2520 || (GET_CODE (SET_DEST (set0)) == SUBREG
2521 && find_reg_note (i3, REG_UNUSED,
2522 SUBREG_REG (SET_DEST (set0)))))
2523 && (!(note = find_reg_note (i3, REG_EH_REGION, NULL_RTX))
2524 || INTVAL (XEXP (note, 0)) <= 0)
2525 && ! side_effects_p (SET_SRC (set0)))
2526 {
2527 newpat = set1;
2528 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
2529
2530 if (insn_code_number >= 0)
2531 {
2532 /* If we will be able to accept this, we have made a
2533 change to the destination of I3. This requires us to
2534 do a few adjustments. */
2535
2536 PATTERN (i3) = newpat;
2537 adjust_for_new_dest (i3);
2538 }
2539 }
2540 }
2541
2542 /* If we were combining three insns and the result is a simple SET
2543 with no ASM_OPERANDS that wasn't recognized, try to split it into two
2544 insns. There are two ways to do this. It can be split using a
2545 machine-specific method (like when you have an addition of a large
2546 constant) or by combine in the function find_split_point. */
2547
2548 if (i1 && insn_code_number < 0 && GET_CODE (newpat) == SET
2549 && asm_noperands (newpat) < 0)
2550 {
2551 rtx m_split, *split;
2552
2553 /* See if the MD file can split NEWPAT. If it can't, see if letting it
2554 use I2DEST as a scratch register will help. In the latter case,
2555 convert I2DEST to the mode of the source of NEWPAT if we can. */
2556
2557 m_split = split_insns (newpat, i3);
2558
2559 /* We can only use I2DEST as a scratch reg if it doesn't overlap any
2560 inputs of NEWPAT. */
2561
2562 /* ??? If I2DEST is not safe, and I1DEST exists, then it would be
2563 possible to try that as a scratch reg. This would require adding
2564 more code to make it work though. */
2565
2566 if (m_split == 0 && ! reg_overlap_mentioned_p (i2dest, newpat))
2567 {
2568 enum machine_mode new_mode = GET_MODE (SET_DEST (newpat));
2569
2570 /* First try to split using the original register as a
2571 scratch register. */
2572 m_split = split_insns (gen_rtx_PARALLEL
2573 (VOIDmode,
2574 gen_rtvec (2, newpat,
2575 gen_rtx_CLOBBER (VOIDmode,
2576 i2dest))),
2577 i3);
2578
2579 /* If that didn't work, try changing the mode of I2DEST if
2580 we can. */
2581 if (m_split == 0
2582 && new_mode != GET_MODE (i2dest)
2583 && new_mode != VOIDmode
2584 && can_change_dest_mode (i2dest, added_sets_2, new_mode))
2585 {
2586 enum machine_mode old_mode = GET_MODE (i2dest);
2587 rtx ni2dest;
2588
2589 if (REGNO (i2dest) < FIRST_PSEUDO_REGISTER)
2590 ni2dest = gen_rtx_REG (new_mode, REGNO (i2dest));
2591 else
2592 {
2593 SUBST_MODE (regno_reg_rtx[REGNO (i2dest)], new_mode);
2594 ni2dest = regno_reg_rtx[REGNO (i2dest)];
2595 }
2596
2597 m_split = split_insns (gen_rtx_PARALLEL
2598 (VOIDmode,
2599 gen_rtvec (2, newpat,
2600 gen_rtx_CLOBBER (VOIDmode,
2601 ni2dest))),
2602 i3);
2603
2604 if (m_split == 0
2605 && REGNO (i2dest) >= FIRST_PSEUDO_REGISTER)
2606 {
2607 struct undo *buf;
2608
2609 PUT_MODE (regno_reg_rtx[REGNO (i2dest)], old_mode);
2610 buf = undobuf.undos;
2611 undobuf.undos = buf->next;
2612 buf->next = undobuf.frees;
2613 undobuf.frees = buf;
2614 }
2615 }
2616 }
2617
2618 /* If recog_for_combine has discarded clobbers, try to use them
2619 again for the split. */
2620 if (m_split == 0 && newpat_vec_with_clobbers)
2621 m_split
2622 = split_insns (gen_rtx_PARALLEL (VOIDmode,
2623 newpat_vec_with_clobbers), i3);
2624
2625 if (m_split && NEXT_INSN (m_split) == NULL_RTX)
2626 {
2627 m_split = PATTERN (m_split);
2628 insn_code_number = recog_for_combine (&m_split, i3, &new_i3_notes);
2629 if (insn_code_number >= 0)
2630 newpat = m_split;
2631 }
2632 else if (m_split && NEXT_INSN (NEXT_INSN (m_split)) == NULL_RTX
2633 && (next_real_insn (i2) == i3
2634 || ! use_crosses_set_p (PATTERN (m_split), INSN_CUID (i2))))
2635 {
2636 rtx i2set, i3set;
2637 rtx newi3pat = PATTERN (NEXT_INSN (m_split));
2638 newi2pat = PATTERN (m_split);
2639
2640 i3set = single_set (NEXT_INSN (m_split));
2641 i2set = single_set (m_split);
2642
2643 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
2644
2645 /* If I2 or I3 has multiple SETs, we won't know how to track
2646 register status, so don't use these insns. If I2's destination
2647 is used between I2 and I3, we also can't use these insns. */
2648
2649 if (i2_code_number >= 0 && i2set && i3set
2650 && (next_real_insn (i2) == i3
2651 || ! reg_used_between_p (SET_DEST (i2set), i2, i3)))
2652 insn_code_number = recog_for_combine (&newi3pat, i3,
2653 &new_i3_notes);
2654 if (insn_code_number >= 0)
2655 newpat = newi3pat;
2656
2657 /* It is possible that both insns now set the destination of I3.
2658 If so, we must show an extra use of it. */
2659
2660 if (insn_code_number >= 0)
2661 {
2662 rtx new_i3_dest = SET_DEST (i3set);
2663 rtx new_i2_dest = SET_DEST (i2set);
2664
2665 while (GET_CODE (new_i3_dest) == ZERO_EXTRACT
2666 || GET_CODE (new_i3_dest) == STRICT_LOW_PART
2667 || GET_CODE (new_i3_dest) == SUBREG)
2668 new_i3_dest = XEXP (new_i3_dest, 0);
2669
2670 while (GET_CODE (new_i2_dest) == ZERO_EXTRACT
2671 || GET_CODE (new_i2_dest) == STRICT_LOW_PART
2672 || GET_CODE (new_i2_dest) == SUBREG)
2673 new_i2_dest = XEXP (new_i2_dest, 0);
2674
2675 if (REG_P (new_i3_dest)
2676 && REG_P (new_i2_dest)
2677 && REGNO (new_i3_dest) == REGNO (new_i2_dest))
2678 REG_N_SETS (REGNO (new_i2_dest))++;
2679 }
2680 }
2681
2682 /* If we can split it and use I2DEST, go ahead and see if that
2683 helps things be recognized. Verify that none of the registers
2684 are set between I2 and I3. */
2685 if (insn_code_number < 0 && (split = find_split_point (&newpat, i3)) != 0
2686 #ifdef HAVE_cc0
2687 && REG_P (i2dest)
2688 #endif
2689 /* We need I2DEST in the proper mode. If it is a hard register
2690 or the only use of a pseudo, we can change its mode.
2691 Make sure we don't change a hard register to have a mode that
2692 isn't valid for it, or change the number of registers. */
2693 && (GET_MODE (*split) == GET_MODE (i2dest)
2694 || GET_MODE (*split) == VOIDmode
2695 || can_change_dest_mode (i2dest, added_sets_2,
2696 GET_MODE (*split)))
2697 && (next_real_insn (i2) == i3
2698 || ! use_crosses_set_p (*split, INSN_CUID (i2)))
2699 /* We can't overwrite I2DEST if its value is still used by
2700 NEWPAT. */
2701 && ! reg_referenced_p (i2dest, newpat))
2702 {
2703 rtx newdest = i2dest;
2704 enum rtx_code split_code = GET_CODE (*split);
2705 enum machine_mode split_mode = GET_MODE (*split);
2706 bool subst_done = false;
2707 newi2pat = NULL_RTX;
2708
2709 /* Get NEWDEST as a register in the proper mode. We have already
2710 validated that we can do this. */
2711 if (GET_MODE (i2dest) != split_mode && split_mode != VOIDmode)
2712 {
2713 if (REGNO (i2dest) < FIRST_PSEUDO_REGISTER)
2714 newdest = gen_rtx_REG (split_mode, REGNO (i2dest));
2715 else
2716 {
2717 SUBST_MODE (regno_reg_rtx[REGNO (i2dest)], split_mode);
2718 newdest = regno_reg_rtx[REGNO (i2dest)];
2719 }
2720 }
2721
2722 /* If *SPLIT is a (mult FOO (const_int pow2)), convert it to
2723 an ASHIFT. This can occur if it was inside a PLUS and hence
2724 appeared to be a memory address. This is a kludge. */
2725 if (split_code == MULT
2726 && GET_CODE (XEXP (*split, 1)) == CONST_INT
2727 && INTVAL (XEXP (*split, 1)) > 0
2728 && (i = exact_log2 (INTVAL (XEXP (*split, 1)))) >= 0)
2729 {
2730 SUBST (*split, gen_rtx_ASHIFT (split_mode,
2731 XEXP (*split, 0), GEN_INT (i)));
2732 /* Update split_code because we may not have a multiply
2733 anymore. */
2734 split_code = GET_CODE (*split);
2735 }
2736
2737 #ifdef INSN_SCHEDULING
2738 /* If *SPLIT is a paradoxical SUBREG, when we split it, it should
2739 be written as a ZERO_EXTEND. */
2740 if (split_code == SUBREG && MEM_P (SUBREG_REG (*split)))
2741 {
2742 #ifdef LOAD_EXTEND_OP
2743 /* Or as a SIGN_EXTEND if LOAD_EXTEND_OP says that that's
2744 what it really is. */
2745 if (LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (*split)))
2746 == SIGN_EXTEND)
2747 SUBST (*split, gen_rtx_SIGN_EXTEND (split_mode,
2748 SUBREG_REG (*split)));
2749 else
2750 #endif
2751 SUBST (*split, gen_rtx_ZERO_EXTEND (split_mode,
2752 SUBREG_REG (*split)));
2753 }
2754 #endif
2755
2756 /* Attempt to split binary operators using arithmetic identities. */
2757 if (BINARY_P (SET_SRC (newpat))
2758 && split_mode == GET_MODE (SET_SRC (newpat))
2759 && ! side_effects_p (SET_SRC (newpat)))
2760 {
2761 rtx setsrc = SET_SRC (newpat);
2762 enum machine_mode mode = GET_MODE (setsrc);
2763 enum rtx_code code = GET_CODE (setsrc);
2764 rtx src_op0 = XEXP (setsrc, 0);
2765 rtx src_op1 = XEXP (setsrc, 1);
2766
2767 /* Split "X = Y op Y" as "Z = Y; X = Z op Z". */
2768 if (rtx_equal_p (src_op0, src_op1))
2769 {
2770 newi2pat = gen_rtx_SET (VOIDmode, newdest, src_op0);
2771 SUBST (XEXP (setsrc, 0), newdest);
2772 SUBST (XEXP (setsrc, 1), newdest);
2773 subst_done = true;
2774 }
2775 /* Split "((P op Q) op R) op S" where op is PLUS or MULT. */
2776 else if ((code == PLUS || code == MULT)
2777 && GET_CODE (src_op0) == code
2778 && GET_CODE (XEXP (src_op0, 0)) == code
2779 && (INTEGRAL_MODE_P (mode)
2780 || (FLOAT_MODE_P (mode)
2781 && flag_unsafe_math_optimizations)))
2782 {
2783 rtx p = XEXP (XEXP (src_op0, 0), 0);
2784 rtx q = XEXP (XEXP (src_op0, 0), 1);
2785 rtx r = XEXP (src_op0, 1);
2786 rtx s = src_op1;
2787
2788 /* Split both "((X op Y) op X) op Y" and
2789 "((X op Y) op Y) op X" as "T op T" where T is
2790 "X op Y". */
2791 if ((rtx_equal_p (p,r) && rtx_equal_p (q,s))
2792 || (rtx_equal_p (p,s) && rtx_equal_p (q,r)))
2793 {
2794 newi2pat = gen_rtx_SET (VOIDmode, newdest,
2795 XEXP (src_op0, 0));
2796 SUBST (XEXP (setsrc, 0), newdest);
2797 SUBST (XEXP (setsrc, 1), newdest);
2798 subst_done = true;
2799 }
2800 /* Split "((X op X) op Y) op Y)" as "T op T" where
2801 T is "X op Y". */
2802 else if (rtx_equal_p (p,q) && rtx_equal_p (r,s))
2803 {
2804 rtx tmp = simplify_gen_binary (code, mode, p, r);
2805 newi2pat = gen_rtx_SET (VOIDmode, newdest, tmp);
2806 SUBST (XEXP (setsrc, 0), newdest);
2807 SUBST (XEXP (setsrc, 1), newdest);
2808 subst_done = true;
2809 }
2810 }
2811 }
2812
2813 if (!subst_done)
2814 {
2815 newi2pat = gen_rtx_SET (VOIDmode, newdest, *split);
2816 SUBST (*split, newdest);
2817 }
2818
2819 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
2820
2821 /* recog_for_combine might have added CLOBBERs to newi2pat.
2822 Make sure NEWPAT does not depend on the clobbered regs. */
2823 if (GET_CODE (newi2pat) == PARALLEL)
2824 for (i = XVECLEN (newi2pat, 0) - 1; i >= 0; i--)
2825 if (GET_CODE (XVECEXP (newi2pat, 0, i)) == CLOBBER)
2826 {
2827 rtx reg = XEXP (XVECEXP (newi2pat, 0, i), 0);
2828 if (reg_overlap_mentioned_p (reg, newpat))
2829 {
2830 undo_all ();
2831 return 0;
2832 }
2833 }
2834
2835 /* If the split point was a MULT and we didn't have one before,
2836 don't use one now. */
2837 if (i2_code_number >= 0 && ! (split_code == MULT && ! have_mult))
2838 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
2839 }
2840 }
2841
2842 /* Check for a case where we loaded from memory in a narrow mode and
2843 then sign extended it, but we need both registers. In that case,
2844 we have a PARALLEL with both loads from the same memory location.
2845 We can split this into a load from memory followed by a register-register
2846 copy. This saves at least one insn, more if register allocation can
2847 eliminate the copy.
2848
2849 We cannot do this if the destination of the first assignment is a
2850 condition code register or cc0. We eliminate this case by making sure
2851 the SET_DEST and SET_SRC have the same mode.
2852
2853 We cannot do this if the destination of the second assignment is
2854 a register that we have already assumed is zero-extended. Similarly
2855 for a SUBREG of such a register. */
2856
2857 else if (i1 && insn_code_number < 0 && asm_noperands (newpat) < 0
2858 && GET_CODE (newpat) == PARALLEL
2859 && XVECLEN (newpat, 0) == 2
2860 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
2861 && GET_CODE (SET_SRC (XVECEXP (newpat, 0, 0))) == SIGN_EXTEND
2862 && (GET_MODE (SET_DEST (XVECEXP (newpat, 0, 0)))
2863 == GET_MODE (SET_SRC (XVECEXP (newpat, 0, 0))))
2864 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
2865 && rtx_equal_p (SET_SRC (XVECEXP (newpat, 0, 1)),
2866 XEXP (SET_SRC (XVECEXP (newpat, 0, 0)), 0))
2867 && ! use_crosses_set_p (SET_SRC (XVECEXP (newpat, 0, 1)),
2868 INSN_CUID (i2))
2869 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != ZERO_EXTRACT
2870 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != STRICT_LOW_PART
2871 && ! (temp = SET_DEST (XVECEXP (newpat, 0, 1)),
2872 (REG_P (temp)
2873 && reg_stat[REGNO (temp)].nonzero_bits != 0
2874 && GET_MODE_BITSIZE (GET_MODE (temp)) < BITS_PER_WORD
2875 && GET_MODE_BITSIZE (GET_MODE (temp)) < HOST_BITS_PER_INT
2876 && (reg_stat[REGNO (temp)].nonzero_bits
2877 != GET_MODE_MASK (word_mode))))
2878 && ! (GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) == SUBREG
2879 && (temp = SUBREG_REG (SET_DEST (XVECEXP (newpat, 0, 1))),
2880 (REG_P (temp)
2881 && reg_stat[REGNO (temp)].nonzero_bits != 0
2882 && GET_MODE_BITSIZE (GET_MODE (temp)) < BITS_PER_WORD
2883 && GET_MODE_BITSIZE (GET_MODE (temp)) < HOST_BITS_PER_INT
2884 && (reg_stat[REGNO (temp)].nonzero_bits
2885 != GET_MODE_MASK (word_mode)))))
2886 && ! reg_overlap_mentioned_p (SET_DEST (XVECEXP (newpat, 0, 1)),
2887 SET_SRC (XVECEXP (newpat, 0, 1)))
2888 && ! find_reg_note (i3, REG_UNUSED,
2889 SET_DEST (XVECEXP (newpat, 0, 0))))
2890 {
2891 rtx ni2dest;
2892
2893 newi2pat = XVECEXP (newpat, 0, 0);
2894 ni2dest = SET_DEST (XVECEXP (newpat, 0, 0));
2895 newpat = XVECEXP (newpat, 0, 1);
2896 SUBST (SET_SRC (newpat),
2897 gen_lowpart (GET_MODE (SET_SRC (newpat)), ni2dest));
2898 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
2899
2900 if (i2_code_number >= 0)
2901 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
2902
2903 if (insn_code_number >= 0)
2904 swap_i2i3 = 1;
2905 }
2906
2907 /* Similarly, check for a case where we have a PARALLEL of two independent
2908 SETs but we started with three insns. In this case, we can do the sets
2909 as two separate insns. This case occurs when some SET allows two
2910 other insns to combine, but the destination of that SET is still live. */
2911
2912 else if (i1 && insn_code_number < 0 && asm_noperands (newpat) < 0
2913 && GET_CODE (newpat) == PARALLEL
2914 && XVECLEN (newpat, 0) == 2
2915 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
2916 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) != ZERO_EXTRACT
2917 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) != STRICT_LOW_PART
2918 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
2919 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != ZERO_EXTRACT
2920 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != STRICT_LOW_PART
2921 && ! use_crosses_set_p (SET_SRC (XVECEXP (newpat, 0, 1)),
2922 INSN_CUID (i2))
2923 && ! reg_referenced_p (SET_DEST (XVECEXP (newpat, 0, 1)),
2924 XVECEXP (newpat, 0, 0))
2925 && ! reg_referenced_p (SET_DEST (XVECEXP (newpat, 0, 0)),
2926 XVECEXP (newpat, 0, 1))
2927 && ! (contains_muldiv (SET_SRC (XVECEXP (newpat, 0, 0)))
2928 && contains_muldiv (SET_SRC (XVECEXP (newpat, 0, 1))))
2929 #ifdef HAVE_cc0
2930 /* We cannot split the parallel into two sets if both sets
2931 reference cc0. */
2932 && ! (reg_referenced_p (cc0_rtx, XVECEXP (newpat, 0, 0))
2933 && reg_referenced_p (cc0_rtx, XVECEXP (newpat, 0, 1)))
2934 #endif
2935 )
2936 {
2937 /* Normally, it doesn't matter which of the two is done first,
2938 but it does if one references cc0. In that case, it has to
2939 be first. */
2940 #ifdef HAVE_cc0
2941 if (reg_referenced_p (cc0_rtx, XVECEXP (newpat, 0, 0)))
2942 {
2943 newi2pat = XVECEXP (newpat, 0, 0);
2944 newpat = XVECEXP (newpat, 0, 1);
2945 }
2946 else
2947 #endif
2948 {
2949 newi2pat = XVECEXP (newpat, 0, 1);
2950 newpat = XVECEXP (newpat, 0, 0);
2951 }
2952
2953 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
2954
2955 if (i2_code_number >= 0)
2956 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
2957 }
2958
2959 /* If it still isn't recognized, fail and change things back the way they
2960 were. */
2961 if ((insn_code_number < 0
2962 /* Is the result a reasonable ASM_OPERANDS? */
2963 && (! check_asm_operands (newpat) || added_sets_1 || added_sets_2)))
2964 {
2965 undo_all ();
2966 return 0;
2967 }
2968
2969 /* If we had to change another insn, make sure it is valid also. */
2970 if (undobuf.other_insn)
2971 {
2972 rtx other_pat = PATTERN (undobuf.other_insn);
2973 rtx new_other_notes;
2974 rtx note, next;
2975
2976 CLEAR_HARD_REG_SET (newpat_used_regs);
2977
2978 other_code_number = recog_for_combine (&other_pat, undobuf.other_insn,
2979 &new_other_notes);
2980
2981 if (other_code_number < 0 && ! check_asm_operands (other_pat))
2982 {
2983 undo_all ();
2984 return 0;
2985 }
2986
2987 PATTERN (undobuf.other_insn) = other_pat;
2988
2989 /* If any of the notes in OTHER_INSN were REG_UNUSED, ensure that they
2990 are still valid. Then add any non-duplicate notes added by
2991 recog_for_combine. */
2992 for (note = REG_NOTES (undobuf.other_insn); note; note = next)
2993 {
2994 next = XEXP (note, 1);
2995
2996 if (REG_NOTE_KIND (note) == REG_UNUSED
2997 && ! reg_set_p (XEXP (note, 0), PATTERN (undobuf.other_insn)))
2998 {
2999 if (REG_P (XEXP (note, 0)))
3000 REG_N_DEATHS (REGNO (XEXP (note, 0)))--;
3001
3002 remove_note (undobuf.other_insn, note);
3003 }
3004 }
3005
3006 for (note = new_other_notes; note; note = XEXP (note, 1))
3007 if (REG_P (XEXP (note, 0)))
3008 REG_N_DEATHS (REGNO (XEXP (note, 0)))++;
3009
3010 distribute_notes (new_other_notes, undobuf.other_insn,
3011 undobuf.other_insn, NULL_RTX, NULL_RTX, NULL_RTX);
3012 }
3013 #ifdef HAVE_cc0
3014 /* If I2 is the CC0 setter and I3 is the CC0 user then check whether
3015 they are adjacent to each other or not. */
3016 {
3017 rtx p = prev_nonnote_insn (i3);
3018 if (p && p != i2 && NONJUMP_INSN_P (p) && newi2pat
3019 && sets_cc0_p (newi2pat))
3020 {
3021 undo_all ();
3022 return 0;
3023 }
3024 }
3025 #endif
3026
3027 /* Only allow this combination if insn_rtx_costs reports that the
3028 replacement instructions are cheaper than the originals. */
3029 if (!combine_validate_cost (i1, i2, i3, newpat, newi2pat))
3030 {
3031 undo_all ();
3032 return 0;
3033 }
3034
3035 /* We now know that we can do this combination. Merge the insns and
3036 update the status of registers and LOG_LINKS. */
3037
3038 if (swap_i2i3)
3039 {
3040 rtx insn;
3041 rtx link;
3042 rtx ni2dest;
3043
3044 /* I3 now uses what used to be its destination and which is now
3045 I2's destination. This requires us to do a few adjustments. */
3046 PATTERN (i3) = newpat;
3047 adjust_for_new_dest (i3);
3048
3049 /* We need a LOG_LINK from I3 to I2. But we used to have one,
3050 so we still will.
3051
3052 However, some later insn might be using I2's dest and have
3053 a LOG_LINK pointing at I3. We must remove this link.
3054 The simplest way to remove the link is to point it at I1,
3055 which we know will be a NOTE. */
3056
3057 /* newi2pat is usually a SET here; however, recog_for_combine might
3058 have added some clobbers. */
3059 if (GET_CODE (newi2pat) == PARALLEL)
3060 ni2dest = SET_DEST (XVECEXP (newi2pat, 0, 0));
3061 else
3062 ni2dest = SET_DEST (newi2pat);
3063
3064 for (insn = NEXT_INSN (i3);
3065 insn && (this_basic_block->next_bb == EXIT_BLOCK_PTR
3066 || insn != BB_HEAD (this_basic_block->next_bb));
3067 insn = NEXT_INSN (insn))
3068 {
3069 if (INSN_P (insn) && reg_referenced_p (ni2dest, PATTERN (insn)))
3070 {
3071 for (link = LOG_LINKS (insn); link;
3072 link = XEXP (link, 1))
3073 if (XEXP (link, 0) == i3)
3074 XEXP (link, 0) = i1;
3075
3076 break;
3077 }
3078 }
3079 }
3080
3081 {
3082 rtx i3notes, i2notes, i1notes = 0;
3083 rtx i3links, i2links, i1links = 0;
3084 rtx midnotes = 0;
3085 unsigned int regno;
3086 /* Compute which registers we expect to eliminate. newi2pat may be setting
3087 either i3dest or i2dest, so we must check it. Also, i1dest may be the
3088 same as i3dest, in which case newi2pat may be setting i1dest. */
3089 rtx elim_i2 = ((newi2pat && reg_set_p (i2dest, newi2pat))
3090 || i2dest_in_i2src || i2dest_in_i1src
3091 || !i2dest_killed
3092 ? 0 : i2dest);
3093 rtx elim_i1 = (i1 == 0 || i1dest_in_i1src
3094 || (newi2pat && reg_set_p (i1dest, newi2pat))
3095 || !i1dest_killed
3096 ? 0 : i1dest);
3097
3098 /* Get the old REG_NOTES and LOG_LINKS from all our insns and
3099 clear them. */
3100 i3notes = REG_NOTES (i3), i3links = LOG_LINKS (i3);
3101 i2notes = REG_NOTES (i2), i2links = LOG_LINKS (i2);
3102 if (i1)
3103 i1notes = REG_NOTES (i1), i1links = LOG_LINKS (i1);
3104
3105 /* Ensure that we do not have something that should not be shared but
3106 occurs multiple times in the new insns. Check this by first
3107 resetting all the `used' flags and then copying anything is shared. */
3108
3109 reset_used_flags (i3notes);
3110 reset_used_flags (i2notes);
3111 reset_used_flags (i1notes);
3112 reset_used_flags (newpat);
3113 reset_used_flags (newi2pat);
3114 if (undobuf.other_insn)
3115 reset_used_flags (PATTERN (undobuf.other_insn));
3116
3117 i3notes = copy_rtx_if_shared (i3notes);
3118 i2notes = copy_rtx_if_shared (i2notes);
3119 i1notes = copy_rtx_if_shared (i1notes);
3120 newpat = copy_rtx_if_shared (newpat);
3121 newi2pat = copy_rtx_if_shared (newi2pat);
3122 if (undobuf.other_insn)
3123 reset_used_flags (PATTERN (undobuf.other_insn));
3124
3125 INSN_CODE (i3) = insn_code_number;
3126 PATTERN (i3) = newpat;
3127
3128 if (CALL_P (i3) && CALL_INSN_FUNCTION_USAGE (i3))
3129 {
3130 rtx call_usage = CALL_INSN_FUNCTION_USAGE (i3);
3131
3132 reset_used_flags (call_usage);
3133 call_usage = copy_rtx (call_usage);
3134
3135 if (substed_i2)
3136 replace_rtx (call_usage, i2dest, i2src);
3137
3138 if (substed_i1)
3139 replace_rtx (call_usage, i1dest, i1src);
3140
3141 CALL_INSN_FUNCTION_USAGE (i3) = call_usage;
3142 }
3143
3144 if (undobuf.other_insn)
3145 INSN_CODE (undobuf.other_insn) = other_code_number;
3146
3147 /* We had one special case above where I2 had more than one set and
3148 we replaced a destination of one of those sets with the destination
3149 of I3. In that case, we have to update LOG_LINKS of insns later
3150 in this basic block. Note that this (expensive) case is rare.
3151
3152 Also, in this case, we must pretend that all REG_NOTEs for I2
3153 actually came from I3, so that REG_UNUSED notes from I2 will be
3154 properly handled. */
3155
3156 if (i3_subst_into_i2)
3157 {
3158 for (i = 0; i < XVECLEN (PATTERN (i2), 0); i++)
3159 if ((GET_CODE (XVECEXP (PATTERN (i2), 0, i)) == SET
3160 || GET_CODE (XVECEXP (PATTERN (i2), 0, i)) == CLOBBER)
3161 && REG_P (SET_DEST (XVECEXP (PATTERN (i2), 0, i)))
3162 && SET_DEST (XVECEXP (PATTERN (i2), 0, i)) != i2dest
3163 && ! find_reg_note (i2, REG_UNUSED,
3164 SET_DEST (XVECEXP (PATTERN (i2), 0, i))))
3165 for (temp = NEXT_INSN (i2);
3166 temp && (this_basic_block->next_bb == EXIT_BLOCK_PTR
3167 || BB_HEAD (this_basic_block) != temp);
3168 temp = NEXT_INSN (temp))
3169 if (temp != i3 && INSN_P (temp))
3170 for (link = LOG_LINKS (temp); link; link = XEXP (link, 1))
3171 if (XEXP (link, 0) == i2)
3172 XEXP (link, 0) = i3;
3173
3174 if (i3notes)
3175 {
3176 rtx link = i3notes;
3177 while (XEXP (link, 1))
3178 link = XEXP (link, 1);
3179 XEXP (link, 1) = i2notes;
3180 }
3181 else
3182 i3notes = i2notes;
3183 i2notes = 0;
3184 }
3185
3186 LOG_LINKS (i3) = 0;
3187 REG_NOTES (i3) = 0;
3188 LOG_LINKS (i2) = 0;
3189 REG_NOTES (i2) = 0;
3190
3191 if (newi2pat)
3192 {
3193 INSN_CODE (i2) = i2_code_number;
3194 PATTERN (i2) = newi2pat;
3195 }
3196 else
3197 SET_INSN_DELETED (i2);
3198
3199 if (i1)
3200 {
3201 LOG_LINKS (i1) = 0;
3202 REG_NOTES (i1) = 0;
3203 SET_INSN_DELETED (i1);
3204 }
3205
3206 /* Get death notes for everything that is now used in either I3 or
3207 I2 and used to die in a previous insn. If we built two new
3208 patterns, move from I1 to I2 then I2 to I3 so that we get the
3209 proper movement on registers that I2 modifies. */
3210
3211 if (newi2pat)
3212 {
3213 move_deaths (newi2pat, NULL_RTX, INSN_CUID (i1), i2, &midnotes);
3214 move_deaths (newpat, newi2pat, INSN_CUID (i1), i3, &midnotes);
3215 }
3216 else
3217 move_deaths (newpat, NULL_RTX, i1 ? INSN_CUID (i1) : INSN_CUID (i2),
3218 i3, &midnotes);
3219
3220 /* Distribute all the LOG_LINKS and REG_NOTES from I1, I2, and I3. */
3221 if (i3notes)
3222 distribute_notes (i3notes, i3, i3, newi2pat ? i2 : NULL_RTX,
3223 elim_i2, elim_i1);
3224 if (i2notes)
3225 distribute_notes (i2notes, i2, i3, newi2pat ? i2 : NULL_RTX,
3226 elim_i2, elim_i1);
3227 if (i1notes)
3228 distribute_notes (i1notes, i1, i3, newi2pat ? i2 : NULL_RTX,
3229 elim_i2, elim_i1);
3230 if (midnotes)
3231 distribute_notes (midnotes, NULL_RTX, i3, newi2pat ? i2 : NULL_RTX,
3232 elim_i2, elim_i1);
3233
3234 /* Distribute any notes added to I2 or I3 by recog_for_combine. We
3235 know these are REG_UNUSED and want them to go to the desired insn,
3236 so we always pass it as i3. We have not counted the notes in
3237 reg_n_deaths yet, so we need to do so now. */
3238
3239 if (newi2pat && new_i2_notes)
3240 {
3241 for (temp = new_i2_notes; temp; temp = XEXP (temp, 1))
3242 if (REG_P (XEXP (temp, 0)))
3243 REG_N_DEATHS (REGNO (XEXP (temp, 0)))++;
3244
3245 distribute_notes (new_i2_notes, i2, i2, NULL_RTX, NULL_RTX, NULL_RTX);
3246 }
3247
3248 if (new_i3_notes)
3249 {
3250 for (temp = new_i3_notes; temp; temp = XEXP (temp, 1))
3251 if (REG_P (XEXP (temp, 0)))
3252 REG_N_DEATHS (REGNO (XEXP (temp, 0)))++;
3253
3254 distribute_notes (new_i3_notes, i3, i3, NULL_RTX, NULL_RTX, NULL_RTX);
3255 }
3256
3257 /* If I3DEST was used in I3SRC, it really died in I3. We may need to
3258 put a REG_DEAD note for it somewhere. If NEWI2PAT exists and sets
3259 I3DEST, the death must be somewhere before I2, not I3. If we passed I3
3260 in that case, it might delete I2. Similarly for I2 and I1.
3261 Show an additional death due to the REG_DEAD note we make here. If
3262 we discard it in distribute_notes, we will decrement it again. */
3263
3264 if (i3dest_killed)
3265 {
3266 if (REG_P (i3dest_killed))
3267 REG_N_DEATHS (REGNO (i3dest_killed))++;
3268
3269 if (newi2pat && reg_set_p (i3dest_killed, newi2pat))
3270 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i3dest_killed,
3271 NULL_RTX),
3272 NULL_RTX, i2, NULL_RTX, elim_i2, elim_i1);
3273 else
3274 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i3dest_killed,
3275 NULL_RTX),
3276 NULL_RTX, i3, newi2pat ? i2 : NULL_RTX,
3277 elim_i2, elim_i1);
3278 }
3279
3280 if (i2dest_in_i2src)
3281 {
3282 if (REG_P (i2dest))
3283 REG_N_DEATHS (REGNO (i2dest))++;
3284
3285 if (newi2pat && reg_set_p (i2dest, newi2pat))
3286 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i2dest, NULL_RTX),
3287 NULL_RTX, i2, NULL_RTX, NULL_RTX, NULL_RTX);
3288 else
3289 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i2dest, NULL_RTX),
3290 NULL_RTX, i3, newi2pat ? i2 : NULL_RTX,
3291 NULL_RTX, NULL_RTX);
3292 }
3293
3294 if (i1dest_in_i1src)
3295 {
3296 if (REG_P (i1dest))
3297 REG_N_DEATHS (REGNO (i1dest))++;
3298
3299 if (newi2pat && reg_set_p (i1dest, newi2pat))
3300 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i1dest, NULL_RTX),
3301 NULL_RTX, i2, NULL_RTX, NULL_RTX, NULL_RTX);
3302 else
3303 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i1dest, NULL_RTX),
3304 NULL_RTX, i3, newi2pat ? i2 : NULL_RTX,
3305 NULL_RTX, NULL_RTX);
3306 }
3307
3308 distribute_links (i3links);
3309 distribute_links (i2links);
3310 distribute_links (i1links);
3311
3312 if (REG_P (i2dest))
3313 {
3314 rtx link;
3315 rtx i2_insn = 0, i2_val = 0, set;
3316
3317 /* The insn that used to set this register doesn't exist, and
3318 this life of the register may not exist either. See if one of
3319 I3's links points to an insn that sets I2DEST. If it does,
3320 that is now the last known value for I2DEST. If we don't update
3321 this and I2 set the register to a value that depended on its old
3322 contents, we will get confused. If this insn is used, thing
3323 will be set correctly in combine_instructions. */
3324
3325 for (link = LOG_LINKS (i3); link; link = XEXP (link, 1))
3326 if ((set = single_set (XEXP (link, 0))) != 0
3327 && rtx_equal_p (i2dest, SET_DEST (set)))
3328 i2_insn = XEXP (link, 0), i2_val = SET_SRC (set);
3329
3330 record_value_for_reg (i2dest, i2_insn, i2_val);
3331
3332 /* If the reg formerly set in I2 died only once and that was in I3,
3333 zero its use count so it won't make `reload' do any work. */
3334 if (! added_sets_2
3335 && (newi2pat == 0 || ! reg_mentioned_p (i2dest, newi2pat))
3336 && ! i2dest_in_i2src)
3337 {
3338 regno = REGNO (i2dest);
3339 REG_N_SETS (regno)--;
3340 }
3341 }
3342
3343 if (i1 && REG_P (i1dest))
3344 {
3345 rtx link;
3346 rtx i1_insn = 0, i1_val = 0, set;
3347
3348 for (link = LOG_LINKS (i3); link; link = XEXP (link, 1))
3349 if ((set = single_set (XEXP (link, 0))) != 0
3350 && rtx_equal_p (i1dest, SET_DEST (set)))
3351 i1_insn = XEXP (link, 0), i1_val = SET_SRC (set);
3352
3353 record_value_for_reg (i1dest, i1_insn, i1_val);
3354
3355 regno = REGNO (i1dest);
3356 if (! added_sets_1 && ! i1dest_in_i1src)
3357 REG_N_SETS (regno)--;
3358 }
3359
3360 /* Update reg_stat[].nonzero_bits et al for any changes that may have
3361 been made to this insn. The order of
3362 set_nonzero_bits_and_sign_copies() is important. Because newi2pat
3363 can affect nonzero_bits of newpat */
3364 if (newi2pat)
3365 note_stores (newi2pat, set_nonzero_bits_and_sign_copies, NULL);
3366 note_stores (newpat, set_nonzero_bits_and_sign_copies, NULL);
3367
3368 /* Set new_direct_jump_p if a new return or simple jump instruction
3369 has been created.
3370
3371 If I3 is now an unconditional jump, ensure that it has a
3372 BARRIER following it since it may have initially been a
3373 conditional jump. It may also be the last nonnote insn. */
3374
3375 if (returnjump_p (i3) || any_uncondjump_p (i3))
3376 {
3377 *new_direct_jump_p = 1;
3378 mark_jump_label (PATTERN (i3), i3, 0);
3379
3380 if ((temp = next_nonnote_insn (i3)) == NULL_RTX
3381 || !BARRIER_P (temp))
3382 emit_barrier_after (i3);
3383 }
3384
3385 if (undobuf.other_insn != NULL_RTX
3386 && (returnjump_p (undobuf.other_insn)
3387 || any_uncondjump_p (undobuf.other_insn)))
3388 {
3389 *new_direct_jump_p = 1;
3390
3391 if ((temp = next_nonnote_insn (undobuf.other_insn)) == NULL_RTX
3392 || !BARRIER_P (temp))
3393 emit_barrier_after (undobuf.other_insn);
3394 }
3395
3396 /* An NOOP jump does not need barrier, but it does need cleaning up
3397 of CFG. */
3398 if (GET_CODE (newpat) == SET
3399 && SET_SRC (newpat) == pc_rtx
3400 && SET_DEST (newpat) == pc_rtx)
3401 *new_direct_jump_p = 1;
3402 }
3403
3404 combine_successes++;
3405 undo_commit ();
3406
3407 if (added_links_insn
3408 && (newi2pat == 0 || INSN_CUID (added_links_insn) < INSN_CUID (i2))
3409 && INSN_CUID (added_links_insn) < INSN_CUID (i3))
3410 return added_links_insn;
3411 else
3412 return newi2pat ? i2 : i3;
3413 }
3414 \f
3415 /* Undo all the modifications recorded in undobuf. */
3416
3417 static void
3418 undo_all (void)
3419 {
3420 struct undo *undo, *next;
3421
3422 for (undo = undobuf.undos; undo; undo = next)
3423 {
3424 next = undo->next;
3425 switch (undo->kind)
3426 {
3427 case UNDO_RTX:
3428 *undo->where.r = undo->old_contents.r;
3429 break;
3430 case UNDO_INT:
3431 *undo->where.i = undo->old_contents.i;
3432 break;
3433 case UNDO_MODE:
3434 PUT_MODE (*undo->where.r, undo->old_contents.m);
3435 break;
3436 default:
3437 gcc_unreachable ();
3438 }
3439
3440 undo->next = undobuf.frees;
3441 undobuf.frees = undo;
3442 }
3443
3444 undobuf.undos = 0;
3445 }
3446
3447 /* We've committed to accepting the changes we made. Move all
3448 of the undos to the free list. */
3449
3450 static void
3451 undo_commit (void)
3452 {
3453 struct undo *undo, *next;
3454
3455 for (undo = undobuf.undos; undo; undo = next)
3456 {
3457 next = undo->next;
3458 undo->next = undobuf.frees;
3459 undobuf.frees = undo;
3460 }
3461 undobuf.undos = 0;
3462 }
3463 \f
3464 /* Find the innermost point within the rtx at LOC, possibly LOC itself,
3465 where we have an arithmetic expression and return that point. LOC will
3466 be inside INSN.
3467
3468 try_combine will call this function to see if an insn can be split into
3469 two insns. */
3470
3471 static rtx *
3472 find_split_point (rtx *loc, rtx insn)
3473 {
3474 rtx x = *loc;
3475 enum rtx_code code = GET_CODE (x);
3476 rtx *split;
3477 unsigned HOST_WIDE_INT len = 0;
3478 HOST_WIDE_INT pos = 0;
3479 int unsignedp = 0;
3480 rtx inner = NULL_RTX;
3481
3482 /* First special-case some codes. */
3483 switch (code)
3484 {
3485 case SUBREG:
3486 #ifdef INSN_SCHEDULING
3487 /* If we are making a paradoxical SUBREG invalid, it becomes a split
3488 point. */
3489 if (MEM_P (SUBREG_REG (x)))
3490 return loc;
3491 #endif
3492 return find_split_point (&SUBREG_REG (x), insn);
3493
3494 case MEM:
3495 #ifdef HAVE_lo_sum
3496 /* If we have (mem (const ..)) or (mem (symbol_ref ...)), split it
3497 using LO_SUM and HIGH. */
3498 if (GET_CODE (XEXP (x, 0)) == CONST
3499 || GET_CODE (XEXP (x, 0)) == SYMBOL_REF)
3500 {
3501 SUBST (XEXP (x, 0),
3502 gen_rtx_LO_SUM (Pmode,
3503 gen_rtx_HIGH (Pmode, XEXP (x, 0)),
3504 XEXP (x, 0)));
3505 return &XEXP (XEXP (x, 0), 0);
3506 }
3507 #endif
3508
3509 /* If we have a PLUS whose second operand is a constant and the
3510 address is not valid, perhaps will can split it up using
3511 the machine-specific way to split large constants. We use
3512 the first pseudo-reg (one of the virtual regs) as a placeholder;
3513 it will not remain in the result. */
3514 if (GET_CODE (XEXP (x, 0)) == PLUS
3515 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
3516 && ! memory_address_p (GET_MODE (x), XEXP (x, 0)))
3517 {
3518 rtx reg = regno_reg_rtx[FIRST_PSEUDO_REGISTER];
3519 rtx seq = split_insns (gen_rtx_SET (VOIDmode, reg, XEXP (x, 0)),
3520 subst_insn);
3521
3522 /* This should have produced two insns, each of which sets our
3523 placeholder. If the source of the second is a valid address,
3524 we can make put both sources together and make a split point
3525 in the middle. */
3526
3527 if (seq
3528 && NEXT_INSN (seq) != NULL_RTX
3529 && NEXT_INSN (NEXT_INSN (seq)) == NULL_RTX
3530 && NONJUMP_INSN_P (seq)
3531 && GET_CODE (PATTERN (seq)) == SET
3532 && SET_DEST (PATTERN (seq)) == reg
3533 && ! reg_mentioned_p (reg,
3534 SET_SRC (PATTERN (seq)))
3535 && NONJUMP_INSN_P (NEXT_INSN (seq))
3536 && GET_CODE (PATTERN (NEXT_INSN (seq))) == SET
3537 && SET_DEST (PATTERN (NEXT_INSN (seq))) == reg
3538 && memory_address_p (GET_MODE (x),
3539 SET_SRC (PATTERN (NEXT_INSN (seq)))))
3540 {
3541 rtx src1 = SET_SRC (PATTERN (seq));
3542 rtx src2 = SET_SRC (PATTERN (NEXT_INSN (seq)));
3543
3544 /* Replace the placeholder in SRC2 with SRC1. If we can
3545 find where in SRC2 it was placed, that can become our
3546 split point and we can replace this address with SRC2.
3547 Just try two obvious places. */
3548
3549 src2 = replace_rtx (src2, reg, src1);
3550 split = 0;
3551 if (XEXP (src2, 0) == src1)
3552 split = &XEXP (src2, 0);
3553 else if (GET_RTX_FORMAT (GET_CODE (XEXP (src2, 0)))[0] == 'e'
3554 && XEXP (XEXP (src2, 0), 0) == src1)
3555 split = &XEXP (XEXP (src2, 0), 0);
3556
3557 if (split)
3558 {
3559 SUBST (XEXP (x, 0), src2);
3560 return split;
3561 }
3562 }
3563
3564 /* If that didn't work, perhaps the first operand is complex and
3565 needs to be computed separately, so make a split point there.
3566 This will occur on machines that just support REG + CONST
3567 and have a constant moved through some previous computation. */
3568
3569 else if (!OBJECT_P (XEXP (XEXP (x, 0), 0))
3570 && ! (GET_CODE (XEXP (XEXP (x, 0), 0)) == SUBREG
3571 && OBJECT_P (SUBREG_REG (XEXP (XEXP (x, 0), 0)))))
3572 return &XEXP (XEXP (x, 0), 0);
3573 }
3574 break;
3575
3576 case SET:
3577 #ifdef HAVE_cc0
3578 /* If SET_DEST is CC0 and SET_SRC is not an operand, a COMPARE, or a
3579 ZERO_EXTRACT, the most likely reason why this doesn't match is that
3580 we need to put the operand into a register. So split at that
3581 point. */
3582
3583 if (SET_DEST (x) == cc0_rtx
3584 && GET_CODE (SET_SRC (x)) != COMPARE
3585 && GET_CODE (SET_SRC (x)) != ZERO_EXTRACT
3586 && !OBJECT_P (SET_SRC (x))
3587 && ! (GET_CODE (SET_SRC (x)) == SUBREG
3588 && OBJECT_P (SUBREG_REG (SET_SRC (x)))))
3589 return &SET_SRC (x);
3590 #endif
3591
3592 /* See if we can split SET_SRC as it stands. */
3593 split = find_split_point (&SET_SRC (x), insn);
3594 if (split && split != &SET_SRC (x))
3595 return split;
3596
3597 /* See if we can split SET_DEST as it stands. */
3598 split = find_split_point (&SET_DEST (x), insn);
3599 if (split && split != &SET_DEST (x))
3600 return split;
3601
3602 /* See if this is a bitfield assignment with everything constant. If
3603 so, this is an IOR of an AND, so split it into that. */
3604 if (GET_CODE (SET_DEST (x)) == ZERO_EXTRACT
3605 && (GET_MODE_BITSIZE (GET_MODE (XEXP (SET_DEST (x), 0)))
3606 <= HOST_BITS_PER_WIDE_INT)
3607 && GET_CODE (XEXP (SET_DEST (x), 1)) == CONST_INT
3608 && GET_CODE (XEXP (SET_DEST (x), 2)) == CONST_INT
3609 && GET_CODE (SET_SRC (x)) == CONST_INT
3610 && ((INTVAL (XEXP (SET_DEST (x), 1))
3611 + INTVAL (XEXP (SET_DEST (x), 2)))
3612 <= GET_MODE_BITSIZE (GET_MODE (XEXP (SET_DEST (x), 0))))
3613 && ! side_effects_p (XEXP (SET_DEST (x), 0)))
3614 {
3615 HOST_WIDE_INT pos = INTVAL (XEXP (SET_DEST (x), 2));
3616 unsigned HOST_WIDE_INT len = INTVAL (XEXP (SET_DEST (x), 1));
3617 unsigned HOST_WIDE_INT src = INTVAL (SET_SRC (x));
3618 rtx dest = XEXP (SET_DEST (x), 0);
3619 enum machine_mode mode = GET_MODE (dest);
3620 unsigned HOST_WIDE_INT mask = ((HOST_WIDE_INT) 1 << len) - 1;
3621 rtx or_mask;
3622
3623 if (BITS_BIG_ENDIAN)
3624 pos = GET_MODE_BITSIZE (mode) - len - pos;
3625
3626 or_mask = gen_int_mode (src << pos, mode);
3627 if (src == mask)
3628 SUBST (SET_SRC (x),
3629 simplify_gen_binary (IOR, mode, dest, or_mask));
3630 else
3631 {
3632 rtx negmask = gen_int_mode (~(mask << pos), mode);
3633 SUBST (SET_SRC (x),
3634 simplify_gen_binary (IOR, mode,
3635 simplify_gen_binary (AND, mode,
3636 dest, negmask),
3637 or_mask));
3638 }
3639
3640 SUBST (SET_DEST (x), dest);
3641
3642 split = find_split_point (&SET_SRC (x), insn);
3643 if (split && split != &SET_SRC (x))
3644 return split;
3645 }
3646
3647 /* Otherwise, see if this is an operation that we can split into two.
3648 If so, try to split that. */
3649 code = GET_CODE (SET_SRC (x));
3650
3651 switch (code)
3652 {
3653 case AND:
3654 /* If we are AND'ing with a large constant that is only a single
3655 bit and the result is only being used in a context where we
3656 need to know if it is zero or nonzero, replace it with a bit
3657 extraction. This will avoid the large constant, which might
3658 have taken more than one insn to make. If the constant were
3659 not a valid argument to the AND but took only one insn to make,
3660 this is no worse, but if it took more than one insn, it will
3661 be better. */
3662
3663 if (GET_CODE (XEXP (SET_SRC (x), 1)) == CONST_INT
3664 && REG_P (XEXP (SET_SRC (x), 0))
3665 && (pos = exact_log2 (INTVAL (XEXP (SET_SRC (x), 1)))) >= 7
3666 && REG_P (SET_DEST (x))
3667 && (split = find_single_use (SET_DEST (x), insn, (rtx*) 0)) != 0
3668 && (GET_CODE (*split) == EQ || GET_CODE (*split) == NE)
3669 && XEXP (*split, 0) == SET_DEST (x)
3670 && XEXP (*split, 1) == const0_rtx)
3671 {
3672 rtx extraction = make_extraction (GET_MODE (SET_DEST (x)),
3673 XEXP (SET_SRC (x), 0),
3674 pos, NULL_RTX, 1, 1, 0, 0);
3675 if (extraction != 0)
3676 {
3677 SUBST (SET_SRC (x), extraction);
3678 return find_split_point (loc, insn);
3679 }
3680 }
3681 break;
3682
3683 case NE:
3684 /* If STORE_FLAG_VALUE is -1, this is (NE X 0) and only one bit of X
3685 is known to be on, this can be converted into a NEG of a shift. */
3686 if (STORE_FLAG_VALUE == -1 && XEXP (SET_SRC (x), 1) == const0_rtx
3687 && GET_MODE (SET_SRC (x)) == GET_MODE (XEXP (SET_SRC (x), 0))
3688 && 1 <= (pos = exact_log2
3689 (nonzero_bits (XEXP (SET_SRC (x), 0),
3690 GET_MODE (XEXP (SET_SRC (x), 0))))))
3691 {
3692 enum machine_mode mode = GET_MODE (XEXP (SET_SRC (x), 0));
3693
3694 SUBST (SET_SRC (x),
3695 gen_rtx_NEG (mode,
3696 gen_rtx_LSHIFTRT (mode,
3697 XEXP (SET_SRC (x), 0),
3698 GEN_INT (pos))));
3699
3700 split = find_split_point (&SET_SRC (x), insn);
3701 if (split && split != &SET_SRC (x))
3702 return split;
3703 }
3704 break;
3705
3706 case SIGN_EXTEND:
3707 inner = XEXP (SET_SRC (x), 0);
3708
3709 /* We can't optimize if either mode is a partial integer
3710 mode as we don't know how many bits are significant
3711 in those modes. */
3712 if (GET_MODE_CLASS (GET_MODE (inner)) == MODE_PARTIAL_INT
3713 || GET_MODE_CLASS (GET_MODE (SET_SRC (x))) == MODE_PARTIAL_INT)
3714 break;
3715
3716 pos = 0;
3717 len = GET_MODE_BITSIZE (GET_MODE (inner));
3718 unsignedp = 0;
3719 break;
3720
3721 case SIGN_EXTRACT:
3722 case ZERO_EXTRACT:
3723 if (GET_CODE (XEXP (SET_SRC (x), 1)) == CONST_INT
3724 && GET_CODE (XEXP (SET_SRC (x), 2)) == CONST_INT)
3725 {
3726 inner = XEXP (SET_SRC (x), 0);
3727 len = INTVAL (XEXP (SET_SRC (x), 1));
3728 pos = INTVAL (XEXP (SET_SRC (x), 2));
3729
3730 if (BITS_BIG_ENDIAN)
3731 pos = GET_MODE_BITSIZE (GET_MODE (inner)) - len - pos;
3732 unsignedp = (code == ZERO_EXTRACT);
3733 }
3734 break;
3735
3736 default:
3737 break;
3738 }
3739
3740 if (len && pos >= 0 && pos + len <= GET_MODE_BITSIZE (GET_MODE (inner)))
3741 {
3742 enum machine_mode mode = GET_MODE (SET_SRC (x));
3743
3744 /* For unsigned, we have a choice of a shift followed by an
3745 AND or two shifts. Use two shifts for field sizes where the
3746 constant might be too large. We assume here that we can
3747 always at least get 8-bit constants in an AND insn, which is
3748 true for every current RISC. */
3749
3750 if (unsignedp && len <= 8)
3751 {
3752 SUBST (SET_SRC (x),
3753 gen_rtx_AND (mode,
3754 gen_rtx_LSHIFTRT
3755 (mode, gen_lowpart (mode, inner),
3756 GEN_INT (pos)),
3757 GEN_INT (((HOST_WIDE_INT) 1 << len) - 1)));
3758
3759 split = find_split_point (&SET_SRC (x), insn);
3760 if (split && split != &SET_SRC (x))
3761 return split;
3762 }
3763 else
3764 {
3765 SUBST (SET_SRC (x),
3766 gen_rtx_fmt_ee
3767 (unsignedp ? LSHIFTRT : ASHIFTRT, mode,
3768 gen_rtx_ASHIFT (mode,
3769 gen_lowpart (mode, inner),
3770 GEN_INT (GET_MODE_BITSIZE (mode)
3771 - len - pos)),
3772 GEN_INT (GET_MODE_BITSIZE (mode) - len)));
3773
3774 split = find_split_point (&SET_SRC (x), insn);
3775 if (split && split != &SET_SRC (x))
3776 return split;
3777 }
3778 }
3779
3780 /* See if this is a simple operation with a constant as the second
3781 operand. It might be that this constant is out of range and hence
3782 could be used as a split point. */
3783 if (BINARY_P (SET_SRC (x))
3784 && CONSTANT_P (XEXP (SET_SRC (x), 1))
3785 && (OBJECT_P (XEXP (SET_SRC (x), 0))
3786 || (GET_CODE (XEXP (SET_SRC (x), 0)) == SUBREG
3787 && OBJECT_P (SUBREG_REG (XEXP (SET_SRC (x), 0))))))
3788 return &XEXP (SET_SRC (x), 1);
3789
3790 /* Finally, see if this is a simple operation with its first operand
3791 not in a register. The operation might require this operand in a
3792 register, so return it as a split point. We can always do this
3793 because if the first operand were another operation, we would have
3794 already found it as a split point. */
3795 if ((BINARY_P (SET_SRC (x)) || UNARY_P (SET_SRC (x)))
3796 && ! register_operand (XEXP (SET_SRC (x), 0), VOIDmode))
3797 return &XEXP (SET_SRC (x), 0);
3798
3799 return 0;
3800
3801 case AND:
3802 case IOR:
3803 /* We write NOR as (and (not A) (not B)), but if we don't have a NOR,
3804 it is better to write this as (not (ior A B)) so we can split it.
3805 Similarly for IOR. */
3806 if (GET_CODE (XEXP (x, 0)) == NOT && GET_CODE (XEXP (x, 1)) == NOT)
3807 {
3808 SUBST (*loc,
3809 gen_rtx_NOT (GET_MODE (x),
3810 gen_rtx_fmt_ee (code == IOR ? AND : IOR,
3811 GET_MODE (x),
3812 XEXP (XEXP (x, 0), 0),
3813 XEXP (XEXP (x, 1), 0))));
3814 return find_split_point (loc, insn);
3815 }
3816
3817 /* Many RISC machines have a large set of logical insns. If the
3818 second operand is a NOT, put it first so we will try to split the
3819 other operand first. */
3820 if (GET_CODE (XEXP (x, 1)) == NOT)
3821 {
3822 rtx tem = XEXP (x, 0);
3823 SUBST (XEXP (x, 0), XEXP (x, 1));
3824 SUBST (XEXP (x, 1), tem);
3825 }
3826 break;
3827
3828 default:
3829 break;
3830 }
3831
3832 /* Otherwise, select our actions depending on our rtx class. */
3833 switch (GET_RTX_CLASS (code))
3834 {
3835 case RTX_BITFIELD_OPS: /* This is ZERO_EXTRACT and SIGN_EXTRACT. */
3836 case RTX_TERNARY:
3837 split = find_split_point (&XEXP (x, 2), insn);
3838 if (split)
3839 return split;
3840 /* ... fall through ... */
3841 case RTX_BIN_ARITH:
3842 case RTX_COMM_ARITH:
3843 case RTX_COMPARE:
3844 case RTX_COMM_COMPARE:
3845 split = find_split_point (&XEXP (x, 1), insn);
3846 if (split)
3847 return split;
3848 /* ... fall through ... */
3849 case RTX_UNARY:
3850 /* Some machines have (and (shift ...) ...) insns. If X is not
3851 an AND, but XEXP (X, 0) is, use it as our split point. */
3852 if (GET_CODE (x) != AND && GET_CODE (XEXP (x, 0)) == AND)
3853 return &XEXP (x, 0);
3854
3855 split = find_split_point (&XEXP (x, 0), insn);
3856 if (split)
3857 return split;
3858 return loc;
3859
3860 default:
3861 /* Otherwise, we don't have a split point. */
3862 return 0;
3863 }
3864 }
3865 \f
3866 /* Throughout X, replace FROM with TO, and return the result.
3867 The result is TO if X is FROM;
3868 otherwise the result is X, but its contents may have been modified.
3869 If they were modified, a record was made in undobuf so that
3870 undo_all will (among other things) return X to its original state.
3871
3872 If the number of changes necessary is too much to record to undo,
3873 the excess changes are not made, so the result is invalid.
3874 The changes already made can still be undone.
3875 undobuf.num_undo is incremented for such changes, so by testing that
3876 the caller can tell whether the result is valid.
3877
3878 `n_occurrences' is incremented each time FROM is replaced.
3879
3880 IN_DEST is nonzero if we are processing the SET_DEST of a SET.
3881
3882 UNIQUE_COPY is nonzero if each substitution must be unique. We do this
3883 by copying if `n_occurrences' is nonzero. */
3884
3885 static rtx
3886 subst (rtx x, rtx from, rtx to, int in_dest, int unique_copy)
3887 {
3888 enum rtx_code code = GET_CODE (x);
3889 enum machine_mode op0_mode = VOIDmode;
3890 const char *fmt;
3891 int len, i;
3892 rtx new;
3893
3894 /* Two expressions are equal if they are identical copies of a shared
3895 RTX or if they are both registers with the same register number
3896 and mode. */
3897
3898 #define COMBINE_RTX_EQUAL_P(X,Y) \
3899 ((X) == (Y) \
3900 || (REG_P (X) && REG_P (Y) \
3901 && REGNO (X) == REGNO (Y) && GET_MODE (X) == GET_MODE (Y)))
3902
3903 if (! in_dest && COMBINE_RTX_EQUAL_P (x, from))
3904 {
3905 n_occurrences++;
3906 return (unique_copy && n_occurrences > 1 ? copy_rtx (to) : to);
3907 }
3908
3909 /* If X and FROM are the same register but different modes, they will
3910 not have been seen as equal above. However, flow.c will make a
3911 LOG_LINKS entry for that case. If we do nothing, we will try to
3912 rerecognize our original insn and, when it succeeds, we will
3913 delete the feeding insn, which is incorrect.
3914
3915 So force this insn not to match in this (rare) case. */
3916 if (! in_dest && code == REG && REG_P (from)
3917 && REGNO (x) == REGNO (from))
3918 return gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
3919
3920 /* If this is an object, we are done unless it is a MEM or LO_SUM, both
3921 of which may contain things that can be combined. */
3922 if (code != MEM && code != LO_SUM && OBJECT_P (x))
3923 return x;
3924
3925 /* It is possible to have a subexpression appear twice in the insn.
3926 Suppose that FROM is a register that appears within TO.
3927 Then, after that subexpression has been scanned once by `subst',
3928 the second time it is scanned, TO may be found. If we were
3929 to scan TO here, we would find FROM within it and create a
3930 self-referent rtl structure which is completely wrong. */
3931 if (COMBINE_RTX_EQUAL_P (x, to))
3932 return to;
3933
3934 /* Parallel asm_operands need special attention because all of the
3935 inputs are shared across the arms. Furthermore, unsharing the
3936 rtl results in recognition failures. Failure to handle this case
3937 specially can result in circular rtl.
3938
3939 Solve this by doing a normal pass across the first entry of the
3940 parallel, and only processing the SET_DESTs of the subsequent
3941 entries. Ug. */
3942
3943 if (code == PARALLEL
3944 && GET_CODE (XVECEXP (x, 0, 0)) == SET
3945 && GET_CODE (SET_SRC (XVECEXP (x, 0, 0))) == ASM_OPERANDS)
3946 {
3947 new = subst (XVECEXP (x, 0, 0), from, to, 0, unique_copy);
3948
3949 /* If this substitution failed, this whole thing fails. */
3950 if (GET_CODE (new) == CLOBBER
3951 && XEXP (new, 0) == const0_rtx)
3952 return new;
3953
3954 SUBST (XVECEXP (x, 0, 0), new);
3955
3956 for (i = XVECLEN (x, 0) - 1; i >= 1; i--)
3957 {
3958 rtx dest = SET_DEST (XVECEXP (x, 0, i));
3959
3960 if (!REG_P (dest)
3961 && GET_CODE (dest) != CC0
3962 && GET_CODE (dest) != PC)
3963 {
3964 new = subst (dest, from, to, 0, unique_copy);
3965
3966 /* If this substitution failed, this whole thing fails. */
3967 if (GET_CODE (new) == CLOBBER
3968 && XEXP (new, 0) == const0_rtx)
3969 return new;
3970
3971 SUBST (SET_DEST (XVECEXP (x, 0, i)), new);
3972 }
3973 }
3974 }
3975 else
3976 {
3977 len = GET_RTX_LENGTH (code);
3978 fmt = GET_RTX_FORMAT (code);
3979
3980 /* We don't need to process a SET_DEST that is a register, CC0,
3981 or PC, so set up to skip this common case. All other cases
3982 where we want to suppress replacing something inside a
3983 SET_SRC are handled via the IN_DEST operand. */
3984 if (code == SET
3985 && (REG_P (SET_DEST (x))
3986 || GET_CODE (SET_DEST (x)) == CC0
3987 || GET_CODE (SET_DEST (x)) == PC))
3988 fmt = "ie";
3989
3990 /* Get the mode of operand 0 in case X is now a SIGN_EXTEND of a
3991 constant. */
3992 if (fmt[0] == 'e')
3993 op0_mode = GET_MODE (XEXP (x, 0));
3994
3995 for (i = 0; i < len; i++)
3996 {
3997 if (fmt[i] == 'E')
3998 {
3999 int j;
4000 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
4001 {
4002 if (COMBINE_RTX_EQUAL_P (XVECEXP (x, i, j), from))
4003 {
4004 new = (unique_copy && n_occurrences
4005 ? copy_rtx (to) : to);
4006 n_occurrences++;
4007 }
4008 else
4009 {
4010 new = subst (XVECEXP (x, i, j), from, to, 0,
4011 unique_copy);
4012
4013 /* If this substitution failed, this whole thing
4014 fails. */
4015 if (GET_CODE (new) == CLOBBER
4016 && XEXP (new, 0) == const0_rtx)
4017 return new;
4018 }
4019
4020 SUBST (XVECEXP (x, i, j), new);
4021 }
4022 }
4023 else if (fmt[i] == 'e')
4024 {
4025 /* If this is a register being set, ignore it. */
4026 new = XEXP (x, i);
4027 if (in_dest
4028 && i == 0
4029 && (((code == SUBREG || code == ZERO_EXTRACT)
4030 && REG_P (new))
4031 || code == STRICT_LOW_PART))
4032 ;
4033
4034 else if (COMBINE_RTX_EQUAL_P (XEXP (x, i), from))
4035 {
4036 /* In general, don't install a subreg involving two
4037 modes not tieable. It can worsen register
4038 allocation, and can even make invalid reload
4039 insns, since the reg inside may need to be copied
4040 from in the outside mode, and that may be invalid
4041 if it is an fp reg copied in integer mode.
4042
4043 We allow two exceptions to this: It is valid if
4044 it is inside another SUBREG and the mode of that
4045 SUBREG and the mode of the inside of TO is
4046 tieable and it is valid if X is a SET that copies
4047 FROM to CC0. */
4048
4049 if (GET_CODE (to) == SUBREG
4050 && ! MODES_TIEABLE_P (GET_MODE (to),
4051 GET_MODE (SUBREG_REG (to)))
4052 && ! (code == SUBREG
4053 && MODES_TIEABLE_P (GET_MODE (x),
4054 GET_MODE (SUBREG_REG (to))))
4055 #ifdef HAVE_cc0
4056 && ! (code == SET && i == 1 && XEXP (x, 0) == cc0_rtx)
4057 #endif
4058 )
4059 return gen_rtx_CLOBBER (VOIDmode, const0_rtx);
4060
4061 #ifdef CANNOT_CHANGE_MODE_CLASS
4062 if (code == SUBREG
4063 && REG_P (to)
4064 && REGNO (to) < FIRST_PSEUDO_REGISTER
4065 && REG_CANNOT_CHANGE_MODE_P (REGNO (to),
4066 GET_MODE (to),
4067 GET_MODE (x)))
4068 return gen_rtx_CLOBBER (VOIDmode, const0_rtx);
4069 #endif
4070
4071 new = (unique_copy && n_occurrences ? copy_rtx (to) : to);
4072 n_occurrences++;
4073 }
4074 else
4075 /* If we are in a SET_DEST, suppress most cases unless we
4076 have gone inside a MEM, in which case we want to
4077 simplify the address. We assume here that things that
4078 are actually part of the destination have their inner
4079 parts in the first expression. This is true for SUBREG,
4080 STRICT_LOW_PART, and ZERO_EXTRACT, which are the only
4081 things aside from REG and MEM that should appear in a
4082 SET_DEST. */
4083 new = subst (XEXP (x, i), from, to,
4084 (((in_dest
4085 && (code == SUBREG || code == STRICT_LOW_PART
4086 || code == ZERO_EXTRACT))
4087 || code == SET)
4088 && i == 0), unique_copy);
4089
4090 /* If we found that we will have to reject this combination,
4091 indicate that by returning the CLOBBER ourselves, rather than
4092 an expression containing it. This will speed things up as
4093 well as prevent accidents where two CLOBBERs are considered
4094 to be equal, thus producing an incorrect simplification. */
4095
4096 if (GET_CODE (new) == CLOBBER && XEXP (new, 0) == const0_rtx)
4097 return new;
4098
4099 if (GET_CODE (x) == SUBREG
4100 && (GET_CODE (new) == CONST_INT
4101 || GET_CODE (new) == CONST_DOUBLE))
4102 {
4103 enum machine_mode mode = GET_MODE (x);
4104
4105 x = simplify_subreg (GET_MODE (x), new,
4106 GET_MODE (SUBREG_REG (x)),
4107 SUBREG_BYTE (x));
4108 if (! x)
4109 x = gen_rtx_CLOBBER (mode, const0_rtx);
4110 }
4111 else if (GET_CODE (new) == CONST_INT
4112 && GET_CODE (x) == ZERO_EXTEND)
4113 {
4114 x = simplify_unary_operation (ZERO_EXTEND, GET_MODE (x),
4115 new, GET_MODE (XEXP (x, 0)));
4116 gcc_assert (x);
4117 }
4118 else
4119 SUBST (XEXP (x, i), new);
4120 }
4121 }
4122 }
4123
4124 /* Try to simplify X. If the simplification changed the code, it is likely
4125 that further simplification will help, so loop, but limit the number
4126 of repetitions that will be performed. */
4127
4128 for (i = 0; i < 4; i++)
4129 {
4130 /* If X is sufficiently simple, don't bother trying to do anything
4131 with it. */
4132 if (code != CONST_INT && code != REG && code != CLOBBER)
4133 x = combine_simplify_rtx (x, op0_mode, in_dest);
4134
4135 if (GET_CODE (x) == code)
4136 break;
4137
4138 code = GET_CODE (x);
4139
4140 /* We no longer know the original mode of operand 0 since we
4141 have changed the form of X) */
4142 op0_mode = VOIDmode;
4143 }
4144
4145 return x;
4146 }
4147 \f
4148 /* Simplify X, a piece of RTL. We just operate on the expression at the
4149 outer level; call `subst' to simplify recursively. Return the new
4150 expression.
4151
4152 OP0_MODE is the original mode of XEXP (x, 0). IN_DEST is nonzero
4153 if we are inside a SET_DEST. */
4154
4155 static rtx
4156 combine_simplify_rtx (rtx x, enum machine_mode op0_mode, int in_dest)
4157 {
4158 enum rtx_code code = GET_CODE (x);
4159 enum machine_mode mode = GET_MODE (x);
4160 rtx temp;
4161 int i;
4162
4163 /* If this is a commutative operation, put a constant last and a complex
4164 expression first. We don't need to do this for comparisons here. */
4165 if (COMMUTATIVE_ARITH_P (x)
4166 && swap_commutative_operands_p (XEXP (x, 0), XEXP (x, 1)))
4167 {
4168 temp = XEXP (x, 0);
4169 SUBST (XEXP (x, 0), XEXP (x, 1));
4170 SUBST (XEXP (x, 1), temp);
4171 }
4172
4173 /* If this is a simple operation applied to an IF_THEN_ELSE, try
4174 applying it to the arms of the IF_THEN_ELSE. This often simplifies
4175 things. Check for cases where both arms are testing the same
4176 condition.
4177
4178 Don't do anything if all operands are very simple. */
4179
4180 if ((BINARY_P (x)
4181 && ((!OBJECT_P (XEXP (x, 0))
4182 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
4183 && OBJECT_P (SUBREG_REG (XEXP (x, 0)))))
4184 || (!OBJECT_P (XEXP (x, 1))
4185 && ! (GET_CODE (XEXP (x, 1)) == SUBREG
4186 && OBJECT_P (SUBREG_REG (XEXP (x, 1)))))))
4187 || (UNARY_P (x)
4188 && (!OBJECT_P (XEXP (x, 0))
4189 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
4190 && OBJECT_P (SUBREG_REG (XEXP (x, 0)))))))
4191 {
4192 rtx cond, true_rtx, false_rtx;
4193
4194 cond = if_then_else_cond (x, &true_rtx, &false_rtx);
4195 if (cond != 0
4196 /* If everything is a comparison, what we have is highly unlikely
4197 to be simpler, so don't use it. */
4198 && ! (COMPARISON_P (x)
4199 && (COMPARISON_P (true_rtx) || COMPARISON_P (false_rtx))))
4200 {
4201 rtx cop1 = const0_rtx;
4202 enum rtx_code cond_code = simplify_comparison (NE, &cond, &cop1);
4203
4204 if (cond_code == NE && COMPARISON_P (cond))
4205 return x;
4206
4207 /* Simplify the alternative arms; this may collapse the true and
4208 false arms to store-flag values. Be careful to use copy_rtx
4209 here since true_rtx or false_rtx might share RTL with x as a
4210 result of the if_then_else_cond call above. */
4211 true_rtx = subst (copy_rtx (true_rtx), pc_rtx, pc_rtx, 0, 0);
4212 false_rtx = subst (copy_rtx (false_rtx), pc_rtx, pc_rtx, 0, 0);
4213
4214 /* If true_rtx and false_rtx are not general_operands, an if_then_else
4215 is unlikely to be simpler. */
4216 if (general_operand (true_rtx, VOIDmode)
4217 && general_operand (false_rtx, VOIDmode))
4218 {
4219 enum rtx_code reversed;
4220
4221 /* Restarting if we generate a store-flag expression will cause
4222 us to loop. Just drop through in this case. */
4223
4224 /* If the result values are STORE_FLAG_VALUE and zero, we can
4225 just make the comparison operation. */
4226 if (true_rtx == const_true_rtx && false_rtx == const0_rtx)
4227 x = simplify_gen_relational (cond_code, mode, VOIDmode,
4228 cond, cop1);
4229 else if (true_rtx == const0_rtx && false_rtx == const_true_rtx
4230 && ((reversed = reversed_comparison_code_parts
4231 (cond_code, cond, cop1, NULL))
4232 != UNKNOWN))
4233 x = simplify_gen_relational (reversed, mode, VOIDmode,
4234 cond, cop1);
4235
4236 /* Likewise, we can make the negate of a comparison operation
4237 if the result values are - STORE_FLAG_VALUE and zero. */
4238 else if (GET_CODE (true_rtx) == CONST_INT
4239 && INTVAL (true_rtx) == - STORE_FLAG_VALUE
4240 && false_rtx == const0_rtx)
4241 x = simplify_gen_unary (NEG, mode,
4242 simplify_gen_relational (cond_code,
4243 mode, VOIDmode,
4244 cond, cop1),
4245 mode);
4246 else if (GET_CODE (false_rtx) == CONST_INT
4247 && INTVAL (false_rtx) == - STORE_FLAG_VALUE
4248 && true_rtx == const0_rtx
4249 && ((reversed = reversed_comparison_code_parts
4250 (cond_code, cond, cop1, NULL))
4251 != UNKNOWN))
4252 x = simplify_gen_unary (NEG, mode,
4253 simplify_gen_relational (reversed,
4254 mode, VOIDmode,
4255 cond, cop1),
4256 mode);
4257 else
4258 return gen_rtx_IF_THEN_ELSE (mode,
4259 simplify_gen_relational (cond_code,
4260 mode,
4261 VOIDmode,
4262 cond,
4263 cop1),
4264 true_rtx, false_rtx);
4265
4266 code = GET_CODE (x);
4267 op0_mode = VOIDmode;
4268 }
4269 }
4270 }
4271
4272 /* Try to fold this expression in case we have constants that weren't
4273 present before. */
4274 temp = 0;
4275 switch (GET_RTX_CLASS (code))
4276 {
4277 case RTX_UNARY:
4278 if (op0_mode == VOIDmode)
4279 op0_mode = GET_MODE (XEXP (x, 0));
4280 temp = simplify_unary_operation (code, mode, XEXP (x, 0), op0_mode);
4281 break;
4282 case RTX_COMPARE:
4283 case RTX_COMM_COMPARE:
4284 {
4285 enum machine_mode cmp_mode = GET_MODE (XEXP (x, 0));
4286 if (cmp_mode == VOIDmode)
4287 {
4288 cmp_mode = GET_MODE (XEXP (x, 1));
4289 if (cmp_mode == VOIDmode)
4290 cmp_mode = op0_mode;
4291 }
4292 temp = simplify_relational_operation (code, mode, cmp_mode,
4293 XEXP (x, 0), XEXP (x, 1));
4294 }
4295 break;
4296 case RTX_COMM_ARITH:
4297 case RTX_BIN_ARITH:
4298 temp = simplify_binary_operation (code, mode, XEXP (x, 0), XEXP (x, 1));
4299 break;
4300 case RTX_BITFIELD_OPS:
4301 case RTX_TERNARY:
4302 temp = simplify_ternary_operation (code, mode, op0_mode, XEXP (x, 0),
4303 XEXP (x, 1), XEXP (x, 2));
4304 break;
4305 default:
4306 break;
4307 }
4308
4309 if (temp)
4310 {
4311 x = temp;
4312 code = GET_CODE (temp);
4313 op0_mode = VOIDmode;
4314 mode = GET_MODE (temp);
4315 }
4316
4317 /* First see if we can apply the inverse distributive law. */
4318 if (code == PLUS || code == MINUS
4319 || code == AND || code == IOR || code == XOR)
4320 {
4321 x = apply_distributive_law (x);
4322 code = GET_CODE (x);
4323 op0_mode = VOIDmode;
4324 }
4325
4326 /* If CODE is an associative operation not otherwise handled, see if we
4327 can associate some operands. This can win if they are constants or
4328 if they are logically related (i.e. (a & b) & a). */
4329 if ((code == PLUS || code == MINUS || code == MULT || code == DIV
4330 || code == AND || code == IOR || code == XOR
4331 || code == SMAX || code == SMIN || code == UMAX || code == UMIN)
4332 && ((INTEGRAL_MODE_P (mode) && code != DIV)
4333 || (flag_unsafe_math_optimizations && FLOAT_MODE_P (mode))))
4334 {
4335 if (GET_CODE (XEXP (x, 0)) == code)
4336 {
4337 rtx other = XEXP (XEXP (x, 0), 0);
4338 rtx inner_op0 = XEXP (XEXP (x, 0), 1);
4339 rtx inner_op1 = XEXP (x, 1);
4340 rtx inner;
4341
4342 /* Make sure we pass the constant operand if any as the second
4343 one if this is a commutative operation. */
4344 if (CONSTANT_P (inner_op0) && COMMUTATIVE_ARITH_P (x))
4345 {
4346 rtx tem = inner_op0;
4347 inner_op0 = inner_op1;
4348 inner_op1 = tem;
4349 }
4350 inner = simplify_binary_operation (code == MINUS ? PLUS
4351 : code == DIV ? MULT
4352 : code,
4353 mode, inner_op0, inner_op1);
4354
4355 /* For commutative operations, try the other pair if that one
4356 didn't simplify. */
4357 if (inner == 0 && COMMUTATIVE_ARITH_P (x))
4358 {
4359 other = XEXP (XEXP (x, 0), 1);
4360 inner = simplify_binary_operation (code, mode,
4361 XEXP (XEXP (x, 0), 0),
4362 XEXP (x, 1));
4363 }
4364
4365 if (inner)
4366 return simplify_gen_binary (code, mode, other, inner);
4367 }
4368 }
4369
4370 /* A little bit of algebraic simplification here. */
4371 switch (code)
4372 {
4373 case MEM:
4374 /* Ensure that our address has any ASHIFTs converted to MULT in case
4375 address-recognizing predicates are called later. */
4376 temp = make_compound_operation (XEXP (x, 0), MEM);
4377 SUBST (XEXP (x, 0), temp);
4378 break;
4379
4380 case SUBREG:
4381 if (op0_mode == VOIDmode)
4382 op0_mode = GET_MODE (SUBREG_REG (x));
4383
4384 /* See if this can be moved to simplify_subreg. */
4385 if (CONSTANT_P (SUBREG_REG (x))
4386 && subreg_lowpart_offset (mode, op0_mode) == SUBREG_BYTE (x)
4387 /* Don't call gen_lowpart if the inner mode
4388 is VOIDmode and we cannot simplify it, as SUBREG without
4389 inner mode is invalid. */
4390 && (GET_MODE (SUBREG_REG (x)) != VOIDmode
4391 || gen_lowpart_common (mode, SUBREG_REG (x))))
4392 return gen_lowpart (mode, SUBREG_REG (x));
4393
4394 if (GET_MODE_CLASS (GET_MODE (SUBREG_REG (x))) == MODE_CC)
4395 break;
4396 {
4397 rtx temp;
4398 temp = simplify_subreg (mode, SUBREG_REG (x), op0_mode,
4399 SUBREG_BYTE (x));
4400 if (temp)
4401 return temp;
4402 }
4403
4404 /* Don't change the mode of the MEM if that would change the meaning
4405 of the address. */
4406 if (MEM_P (SUBREG_REG (x))
4407 && (MEM_VOLATILE_P (SUBREG_REG (x))
4408 || mode_dependent_address_p (XEXP (SUBREG_REG (x), 0))))
4409 return gen_rtx_CLOBBER (mode, const0_rtx);
4410
4411 /* Note that we cannot do any narrowing for non-constants since
4412 we might have been counting on using the fact that some bits were
4413 zero. We now do this in the SET. */
4414
4415 break;
4416
4417 case NEG:
4418 temp = expand_compound_operation (XEXP (x, 0));
4419
4420 /* For C equal to the width of MODE minus 1, (neg (ashiftrt X C)) can be
4421 replaced by (lshiftrt X C). This will convert
4422 (neg (sign_extract X 1 Y)) to (zero_extract X 1 Y). */
4423
4424 if (GET_CODE (temp) == ASHIFTRT
4425 && GET_CODE (XEXP (temp, 1)) == CONST_INT
4426 && INTVAL (XEXP (temp, 1)) == GET_MODE_BITSIZE (mode) - 1)
4427 return simplify_shift_const (NULL_RTX, LSHIFTRT, mode, XEXP (temp, 0),
4428 INTVAL (XEXP (temp, 1)));
4429
4430 /* If X has only a single bit that might be nonzero, say, bit I, convert
4431 (neg X) to (ashiftrt (ashift X C-I) C-I) where C is the bitsize of
4432 MODE minus 1. This will convert (neg (zero_extract X 1 Y)) to
4433 (sign_extract X 1 Y). But only do this if TEMP isn't a register
4434 or a SUBREG of one since we'd be making the expression more
4435 complex if it was just a register. */
4436
4437 if (!REG_P (temp)
4438 && ! (GET_CODE (temp) == SUBREG
4439 && REG_P (SUBREG_REG (temp)))
4440 && (i = exact_log2 (nonzero_bits (temp, mode))) >= 0)
4441 {
4442 rtx temp1 = simplify_shift_const
4443 (NULL_RTX, ASHIFTRT, mode,
4444 simplify_shift_const (NULL_RTX, ASHIFT, mode, temp,
4445 GET_MODE_BITSIZE (mode) - 1 - i),
4446 GET_MODE_BITSIZE (mode) - 1 - i);
4447
4448 /* If all we did was surround TEMP with the two shifts, we
4449 haven't improved anything, so don't use it. Otherwise,
4450 we are better off with TEMP1. */
4451 if (GET_CODE (temp1) != ASHIFTRT
4452 || GET_CODE (XEXP (temp1, 0)) != ASHIFT
4453 || XEXP (XEXP (temp1, 0), 0) != temp)
4454 return temp1;
4455 }
4456 break;
4457
4458 case TRUNCATE:
4459 /* We can't handle truncation to a partial integer mode here
4460 because we don't know the real bitsize of the partial
4461 integer mode. */
4462 if (GET_MODE_CLASS (mode) == MODE_PARTIAL_INT)
4463 break;
4464
4465 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4466 && TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (mode),
4467 GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))))
4468 SUBST (XEXP (x, 0),
4469 force_to_mode (XEXP (x, 0), GET_MODE (XEXP (x, 0)),
4470 GET_MODE_MASK (mode), 0));
4471
4472 /* Similarly to what we do in simplify-rtx.c, a truncate of a register
4473 whose value is a comparison can be replaced with a subreg if
4474 STORE_FLAG_VALUE permits. */
4475 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4476 && ((HOST_WIDE_INT) STORE_FLAG_VALUE & ~GET_MODE_MASK (mode)) == 0
4477 && (temp = get_last_value (XEXP (x, 0)))
4478 && COMPARISON_P (temp))
4479 return gen_lowpart (mode, XEXP (x, 0));
4480 break;
4481
4482 #ifdef HAVE_cc0
4483 case COMPARE:
4484 /* Convert (compare FOO (const_int 0)) to FOO unless we aren't
4485 using cc0, in which case we want to leave it as a COMPARE
4486 so we can distinguish it from a register-register-copy. */
4487 if (XEXP (x, 1) == const0_rtx)
4488 return XEXP (x, 0);
4489
4490 /* x - 0 is the same as x unless x's mode has signed zeros and
4491 allows rounding towards -infinity. Under those conditions,
4492 0 - 0 is -0. */
4493 if (!(HONOR_SIGNED_ZEROS (GET_MODE (XEXP (x, 0)))
4494 && HONOR_SIGN_DEPENDENT_ROUNDING (GET_MODE (XEXP (x, 0))))
4495 && XEXP (x, 1) == CONST0_RTX (GET_MODE (XEXP (x, 0))))
4496 return XEXP (x, 0);
4497 break;
4498 #endif
4499
4500 case CONST:
4501 /* (const (const X)) can become (const X). Do it this way rather than
4502 returning the inner CONST since CONST can be shared with a
4503 REG_EQUAL note. */
4504 if (GET_CODE (XEXP (x, 0)) == CONST)
4505 SUBST (XEXP (x, 0), XEXP (XEXP (x, 0), 0));
4506 break;
4507
4508 #ifdef HAVE_lo_sum
4509 case LO_SUM:
4510 /* Convert (lo_sum (high FOO) FOO) to FOO. This is necessary so we
4511 can add in an offset. find_split_point will split this address up
4512 again if it doesn't match. */
4513 if (GET_CODE (XEXP (x, 0)) == HIGH
4514 && rtx_equal_p (XEXP (XEXP (x, 0), 0), XEXP (x, 1)))
4515 return XEXP (x, 1);
4516 break;
4517 #endif
4518
4519 case PLUS:
4520 /* (plus (xor (and <foo> (const_int pow2 - 1)) <c>) <-c>)
4521 when c is (const_int (pow2 + 1) / 2) is a sign extension of a
4522 bit-field and can be replaced by either a sign_extend or a
4523 sign_extract. The `and' may be a zero_extend and the two
4524 <c>, -<c> constants may be reversed. */
4525 if (GET_CODE (XEXP (x, 0)) == XOR
4526 && GET_CODE (XEXP (x, 1)) == CONST_INT
4527 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
4528 && INTVAL (XEXP (x, 1)) == -INTVAL (XEXP (XEXP (x, 0), 1))
4529 && ((i = exact_log2 (INTVAL (XEXP (XEXP (x, 0), 1)))) >= 0
4530 || (i = exact_log2 (INTVAL (XEXP (x, 1)))) >= 0)
4531 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4532 && ((GET_CODE (XEXP (XEXP (x, 0), 0)) == AND
4533 && GET_CODE (XEXP (XEXP (XEXP (x, 0), 0), 1)) == CONST_INT
4534 && (INTVAL (XEXP (XEXP (XEXP (x, 0), 0), 1))
4535 == ((HOST_WIDE_INT) 1 << (i + 1)) - 1))
4536 || (GET_CODE (XEXP (XEXP (x, 0), 0)) == ZERO_EXTEND
4537 && (GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (XEXP (x, 0), 0), 0)))
4538 == (unsigned int) i + 1))))
4539 return simplify_shift_const
4540 (NULL_RTX, ASHIFTRT, mode,
4541 simplify_shift_const (NULL_RTX, ASHIFT, mode,
4542 XEXP (XEXP (XEXP (x, 0), 0), 0),
4543 GET_MODE_BITSIZE (mode) - (i + 1)),
4544 GET_MODE_BITSIZE (mode) - (i + 1));
4545
4546 /* If only the low-order bit of X is possibly nonzero, (plus x -1)
4547 can become (ashiftrt (ashift (xor x 1) C) C) where C is
4548 the bitsize of the mode - 1. This allows simplification of
4549 "a = (b & 8) == 0;" */
4550 if (XEXP (x, 1) == constm1_rtx
4551 && !REG_P (XEXP (x, 0))
4552 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
4553 && REG_P (SUBREG_REG (XEXP (x, 0))))
4554 && nonzero_bits (XEXP (x, 0), mode) == 1)
4555 return simplify_shift_const (NULL_RTX, ASHIFTRT, mode,
4556 simplify_shift_const (NULL_RTX, ASHIFT, mode,
4557 gen_rtx_XOR (mode, XEXP (x, 0), const1_rtx),
4558 GET_MODE_BITSIZE (mode) - 1),
4559 GET_MODE_BITSIZE (mode) - 1);
4560
4561 /* If we are adding two things that have no bits in common, convert
4562 the addition into an IOR. This will often be further simplified,
4563 for example in cases like ((a & 1) + (a & 2)), which can
4564 become a & 3. */
4565
4566 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4567 && (nonzero_bits (XEXP (x, 0), mode)
4568 & nonzero_bits (XEXP (x, 1), mode)) == 0)
4569 {
4570 /* Try to simplify the expression further. */
4571 rtx tor = simplify_gen_binary (IOR, mode, XEXP (x, 0), XEXP (x, 1));
4572 temp = combine_simplify_rtx (tor, mode, in_dest);
4573
4574 /* If we could, great. If not, do not go ahead with the IOR
4575 replacement, since PLUS appears in many special purpose
4576 address arithmetic instructions. */
4577 if (GET_CODE (temp) != CLOBBER && temp != tor)
4578 return temp;
4579 }
4580 break;
4581
4582 case MINUS:
4583 /* (minus <foo> (and <foo> (const_int -pow2))) becomes
4584 (and <foo> (const_int pow2-1)) */
4585 if (GET_CODE (XEXP (x, 1)) == AND
4586 && GET_CODE (XEXP (XEXP (x, 1), 1)) == CONST_INT
4587 && exact_log2 (-INTVAL (XEXP (XEXP (x, 1), 1))) >= 0
4588 && rtx_equal_p (XEXP (XEXP (x, 1), 0), XEXP (x, 0)))
4589 return simplify_and_const_int (NULL_RTX, mode, XEXP (x, 0),
4590 -INTVAL (XEXP (XEXP (x, 1), 1)) - 1);
4591 break;
4592
4593 case MULT:
4594 /* If we have (mult (plus A B) C), apply the distributive law and then
4595 the inverse distributive law to see if things simplify. This
4596 occurs mostly in addresses, often when unrolling loops. */
4597
4598 if (GET_CODE (XEXP (x, 0)) == PLUS)
4599 {
4600 rtx result = distribute_and_simplify_rtx (x, 0);
4601 if (result)
4602 return result;
4603 }
4604
4605 /* Try simplify a*(b/c) as (a*b)/c. */
4606 if (FLOAT_MODE_P (mode) && flag_unsafe_math_optimizations
4607 && GET_CODE (XEXP (x, 0)) == DIV)
4608 {
4609 rtx tem = simplify_binary_operation (MULT, mode,
4610 XEXP (XEXP (x, 0), 0),
4611 XEXP (x, 1));
4612 if (tem)
4613 return simplify_gen_binary (DIV, mode, tem, XEXP (XEXP (x, 0), 1));
4614 }
4615 break;
4616
4617 case UDIV:
4618 /* If this is a divide by a power of two, treat it as a shift if
4619 its first operand is a shift. */
4620 if (GET_CODE (XEXP (x, 1)) == CONST_INT
4621 && (i = exact_log2 (INTVAL (XEXP (x, 1)))) >= 0
4622 && (GET_CODE (XEXP (x, 0)) == ASHIFT
4623 || GET_CODE (XEXP (x, 0)) == LSHIFTRT
4624 || GET_CODE (XEXP (x, 0)) == ASHIFTRT
4625 || GET_CODE (XEXP (x, 0)) == ROTATE
4626 || GET_CODE (XEXP (x, 0)) == ROTATERT))
4627 return simplify_shift_const (NULL_RTX, LSHIFTRT, mode, XEXP (x, 0), i);
4628 break;
4629
4630 case EQ: case NE:
4631 case GT: case GTU: case GE: case GEU:
4632 case LT: case LTU: case LE: case LEU:
4633 case UNEQ: case LTGT:
4634 case UNGT: case UNGE:
4635 case UNLT: case UNLE:
4636 case UNORDERED: case ORDERED:
4637 /* If the first operand is a condition code, we can't do anything
4638 with it. */
4639 if (GET_CODE (XEXP (x, 0)) == COMPARE
4640 || (GET_MODE_CLASS (GET_MODE (XEXP (x, 0))) != MODE_CC
4641 && ! CC0_P (XEXP (x, 0))))
4642 {
4643 rtx op0 = XEXP (x, 0);
4644 rtx op1 = XEXP (x, 1);
4645 enum rtx_code new_code;
4646
4647 if (GET_CODE (op0) == COMPARE)
4648 op1 = XEXP (op0, 1), op0 = XEXP (op0, 0);
4649
4650 /* Simplify our comparison, if possible. */
4651 new_code = simplify_comparison (code, &op0, &op1);
4652
4653 /* If STORE_FLAG_VALUE is 1, we can convert (ne x 0) to simply X
4654 if only the low-order bit is possibly nonzero in X (such as when
4655 X is a ZERO_EXTRACT of one bit). Similarly, we can convert EQ to
4656 (xor X 1) or (minus 1 X); we use the former. Finally, if X is
4657 known to be either 0 or -1, NE becomes a NEG and EQ becomes
4658 (plus X 1).
4659
4660 Remove any ZERO_EXTRACT we made when thinking this was a
4661 comparison. It may now be simpler to use, e.g., an AND. If a
4662 ZERO_EXTRACT is indeed appropriate, it will be placed back by
4663 the call to make_compound_operation in the SET case. */
4664
4665 if (STORE_FLAG_VALUE == 1
4666 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
4667 && op1 == const0_rtx
4668 && mode == GET_MODE (op0)
4669 && nonzero_bits (op0, mode) == 1)
4670 return gen_lowpart (mode,
4671 expand_compound_operation (op0));
4672
4673 else if (STORE_FLAG_VALUE == 1
4674 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
4675 && op1 == const0_rtx
4676 && mode == GET_MODE (op0)
4677 && (num_sign_bit_copies (op0, mode)
4678 == GET_MODE_BITSIZE (mode)))
4679 {
4680 op0 = expand_compound_operation (op0);
4681 return simplify_gen_unary (NEG, mode,
4682 gen_lowpart (mode, op0),
4683 mode);
4684 }
4685
4686 else if (STORE_FLAG_VALUE == 1
4687 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
4688 && op1 == const0_rtx
4689 && mode == GET_MODE (op0)
4690 && nonzero_bits (op0, mode) == 1)
4691 {
4692 op0 = expand_compound_operation (op0);
4693 return simplify_gen_binary (XOR, mode,
4694 gen_lowpart (mode, op0),
4695 const1_rtx);
4696 }
4697
4698 else if (STORE_FLAG_VALUE == 1
4699 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
4700 && op1 == const0_rtx
4701 && mode == GET_MODE (op0)
4702 && (num_sign_bit_copies (op0, mode)
4703 == GET_MODE_BITSIZE (mode)))
4704 {
4705 op0 = expand_compound_operation (op0);
4706 return plus_constant (gen_lowpart (mode, op0), 1);
4707 }
4708
4709 /* If STORE_FLAG_VALUE is -1, we have cases similar to
4710 those above. */
4711 if (STORE_FLAG_VALUE == -1
4712 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
4713 && op1 == const0_rtx
4714 && (num_sign_bit_copies (op0, mode)
4715 == GET_MODE_BITSIZE (mode)))
4716 return gen_lowpart (mode,
4717 expand_compound_operation (op0));
4718
4719 else if (STORE_FLAG_VALUE == -1
4720 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
4721 && op1 == const0_rtx
4722 && mode == GET_MODE (op0)
4723 && nonzero_bits (op0, mode) == 1)
4724 {
4725 op0 = expand_compound_operation (op0);
4726 return simplify_gen_unary (NEG, mode,
4727 gen_lowpart (mode, op0),
4728 mode);
4729 }
4730
4731 else if (STORE_FLAG_VALUE == -1
4732 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
4733 && op1 == const0_rtx
4734 && mode == GET_MODE (op0)
4735 && (num_sign_bit_copies (op0, mode)
4736 == GET_MODE_BITSIZE (mode)))
4737 {
4738 op0 = expand_compound_operation (op0);
4739 return simplify_gen_unary (NOT, mode,
4740 gen_lowpart (mode, op0),
4741 mode);
4742 }
4743
4744 /* If X is 0/1, (eq X 0) is X-1. */
4745 else if (STORE_FLAG_VALUE == -1
4746 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
4747 && op1 == const0_rtx
4748 && mode == GET_MODE (op0)
4749 && nonzero_bits (op0, mode) == 1)
4750 {
4751 op0 = expand_compound_operation (op0);
4752 return plus_constant (gen_lowpart (mode, op0), -1);
4753 }
4754
4755 /* If STORE_FLAG_VALUE says to just test the sign bit and X has just
4756 one bit that might be nonzero, we can convert (ne x 0) to
4757 (ashift x c) where C puts the bit in the sign bit. Remove any
4758 AND with STORE_FLAG_VALUE when we are done, since we are only
4759 going to test the sign bit. */
4760 if (new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
4761 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4762 && ((STORE_FLAG_VALUE & GET_MODE_MASK (mode))
4763 == (unsigned HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (mode) - 1))
4764 && op1 == const0_rtx
4765 && mode == GET_MODE (op0)
4766 && (i = exact_log2 (nonzero_bits (op0, mode))) >= 0)
4767 {
4768 x = simplify_shift_const (NULL_RTX, ASHIFT, mode,
4769 expand_compound_operation (op0),
4770 GET_MODE_BITSIZE (mode) - 1 - i);
4771 if (GET_CODE (x) == AND && XEXP (x, 1) == const_true_rtx)
4772 return XEXP (x, 0);
4773 else
4774 return x;
4775 }
4776
4777 /* If the code changed, return a whole new comparison. */
4778 if (new_code != code)
4779 return gen_rtx_fmt_ee (new_code, mode, op0, op1);
4780
4781 /* Otherwise, keep this operation, but maybe change its operands.
4782 This also converts (ne (compare FOO BAR) 0) to (ne FOO BAR). */
4783 SUBST (XEXP (x, 0), op0);
4784 SUBST (XEXP (x, 1), op1);
4785 }
4786 break;
4787
4788 case IF_THEN_ELSE:
4789 return simplify_if_then_else (x);
4790
4791 case ZERO_EXTRACT:
4792 case SIGN_EXTRACT:
4793 case ZERO_EXTEND:
4794 case SIGN_EXTEND:
4795 /* If we are processing SET_DEST, we are done. */
4796 if (in_dest)
4797 return x;
4798
4799 return expand_compound_operation (x);
4800
4801 case SET:
4802 return simplify_set (x);
4803
4804 case AND:
4805 case IOR:
4806 return simplify_logical (x);
4807
4808 case ASHIFT:
4809 case LSHIFTRT:
4810 case ASHIFTRT:
4811 case ROTATE:
4812 case ROTATERT:
4813 /* If this is a shift by a constant amount, simplify it. */
4814 if (GET_CODE (XEXP (x, 1)) == CONST_INT)
4815 return simplify_shift_const (x, code, mode, XEXP (x, 0),
4816 INTVAL (XEXP (x, 1)));
4817
4818 else if (SHIFT_COUNT_TRUNCATED && !REG_P (XEXP (x, 1)))
4819 SUBST (XEXP (x, 1),
4820 force_to_mode (XEXP (x, 1), GET_MODE (XEXP (x, 1)),
4821 ((HOST_WIDE_INT) 1
4822 << exact_log2 (GET_MODE_BITSIZE (GET_MODE (x))))
4823 - 1,
4824 0));
4825 break;
4826
4827 default:
4828 break;
4829 }
4830
4831 return x;
4832 }
4833 \f
4834 /* Simplify X, an IF_THEN_ELSE expression. Return the new expression. */
4835
4836 static rtx
4837 simplify_if_then_else (rtx x)
4838 {
4839 enum machine_mode mode = GET_MODE (x);
4840 rtx cond = XEXP (x, 0);
4841 rtx true_rtx = XEXP (x, 1);
4842 rtx false_rtx = XEXP (x, 2);
4843 enum rtx_code true_code = GET_CODE (cond);
4844 int comparison_p = COMPARISON_P (cond);
4845 rtx temp;
4846 int i;
4847 enum rtx_code false_code;
4848 rtx reversed;
4849
4850 /* Simplify storing of the truth value. */
4851 if (comparison_p && true_rtx == const_true_rtx && false_rtx == const0_rtx)
4852 return simplify_gen_relational (true_code, mode, VOIDmode,
4853 XEXP (cond, 0), XEXP (cond, 1));
4854
4855 /* Also when the truth value has to be reversed. */
4856 if (comparison_p
4857 && true_rtx == const0_rtx && false_rtx == const_true_rtx
4858 && (reversed = reversed_comparison (cond, mode)))
4859 return reversed;
4860
4861 /* Sometimes we can simplify the arm of an IF_THEN_ELSE if a register used
4862 in it is being compared against certain values. Get the true and false
4863 comparisons and see if that says anything about the value of each arm. */
4864
4865 if (comparison_p
4866 && ((false_code = reversed_comparison_code (cond, NULL))
4867 != UNKNOWN)
4868 && REG_P (XEXP (cond, 0)))
4869 {
4870 HOST_WIDE_INT nzb;
4871 rtx from = XEXP (cond, 0);
4872 rtx true_val = XEXP (cond, 1);
4873 rtx false_val = true_val;
4874 int swapped = 0;
4875
4876 /* If FALSE_CODE is EQ, swap the codes and arms. */
4877
4878 if (false_code == EQ)
4879 {
4880 swapped = 1, true_code = EQ, false_code = NE;
4881 temp = true_rtx, true_rtx = false_rtx, false_rtx = temp;
4882 }
4883
4884 /* If we are comparing against zero and the expression being tested has
4885 only a single bit that might be nonzero, that is its value when it is
4886 not equal to zero. Similarly if it is known to be -1 or 0. */
4887
4888 if (true_code == EQ && true_val == const0_rtx
4889 && exact_log2 (nzb = nonzero_bits (from, GET_MODE (from))) >= 0)
4890 false_code = EQ, false_val = GEN_INT (nzb);
4891 else if (true_code == EQ && true_val == const0_rtx
4892 && (num_sign_bit_copies (from, GET_MODE (from))
4893 == GET_MODE_BITSIZE (GET_MODE (from))))
4894 false_code = EQ, false_val = constm1_rtx;
4895
4896 /* Now simplify an arm if we know the value of the register in the
4897 branch and it is used in the arm. Be careful due to the potential
4898 of locally-shared RTL. */
4899
4900 if (reg_mentioned_p (from, true_rtx))
4901 true_rtx = subst (known_cond (copy_rtx (true_rtx), true_code,
4902 from, true_val),
4903 pc_rtx, pc_rtx, 0, 0);
4904 if (reg_mentioned_p (from, false_rtx))
4905 false_rtx = subst (known_cond (copy_rtx (false_rtx), false_code,
4906 from, false_val),
4907 pc_rtx, pc_rtx, 0, 0);
4908
4909 SUBST (XEXP (x, 1), swapped ? false_rtx : true_rtx);
4910 SUBST (XEXP (x, 2), swapped ? true_rtx : false_rtx);
4911
4912 true_rtx = XEXP (x, 1);
4913 false_rtx = XEXP (x, 2);
4914 true_code = GET_CODE (cond);
4915 }
4916
4917 /* If we have (if_then_else FOO (pc) (label_ref BAR)) and FOO can be
4918 reversed, do so to avoid needing two sets of patterns for
4919 subtract-and-branch insns. Similarly if we have a constant in the true
4920 arm, the false arm is the same as the first operand of the comparison, or
4921 the false arm is more complicated than the true arm. */
4922
4923 if (comparison_p
4924 && reversed_comparison_code (cond, NULL) != UNKNOWN
4925 && (true_rtx == pc_rtx
4926 || (CONSTANT_P (true_rtx)
4927 && GET_CODE (false_rtx) != CONST_INT && false_rtx != pc_rtx)
4928 || true_rtx == const0_rtx
4929 || (OBJECT_P (true_rtx) && !OBJECT_P (false_rtx))
4930 || (GET_CODE (true_rtx) == SUBREG && OBJECT_P (SUBREG_REG (true_rtx))
4931 && !OBJECT_P (false_rtx))
4932 || reg_mentioned_p (true_rtx, false_rtx)
4933 || rtx_equal_p (false_rtx, XEXP (cond, 0))))
4934 {
4935 true_code = reversed_comparison_code (cond, NULL);
4936 SUBST (XEXP (x, 0), reversed_comparison (cond, GET_MODE (cond)));
4937 SUBST (XEXP (x, 1), false_rtx);
4938 SUBST (XEXP (x, 2), true_rtx);
4939
4940 temp = true_rtx, true_rtx = false_rtx, false_rtx = temp;
4941 cond = XEXP (x, 0);
4942
4943 /* It is possible that the conditional has been simplified out. */
4944 true_code = GET_CODE (cond);
4945 comparison_p = COMPARISON_P (cond);
4946 }
4947
4948 /* If the two arms are identical, we don't need the comparison. */
4949
4950 if (rtx_equal_p (true_rtx, false_rtx) && ! side_effects_p (cond))
4951 return true_rtx;
4952
4953 /* Convert a == b ? b : a to "a". */
4954 if (true_code == EQ && ! side_effects_p (cond)
4955 && !HONOR_NANS (mode)
4956 && rtx_equal_p (XEXP (cond, 0), false_rtx)
4957 && rtx_equal_p (XEXP (cond, 1), true_rtx))
4958 return false_rtx;
4959 else if (true_code == NE && ! side_effects_p (cond)
4960 && !HONOR_NANS (mode)
4961 && rtx_equal_p (XEXP (cond, 0), true_rtx)
4962 && rtx_equal_p (XEXP (cond, 1), false_rtx))
4963 return true_rtx;
4964
4965 /* Look for cases where we have (abs x) or (neg (abs X)). */
4966
4967 if (GET_MODE_CLASS (mode) == MODE_INT
4968 && GET_CODE (false_rtx) == NEG
4969 && rtx_equal_p (true_rtx, XEXP (false_rtx, 0))
4970 && comparison_p
4971 && rtx_equal_p (true_rtx, XEXP (cond, 0))
4972 && ! side_effects_p (true_rtx))
4973 switch (true_code)
4974 {
4975 case GT:
4976 case GE:
4977 return simplify_gen_unary (ABS, mode, true_rtx, mode);
4978 case LT:
4979 case LE:
4980 return
4981 simplify_gen_unary (NEG, mode,
4982 simplify_gen_unary (ABS, mode, true_rtx, mode),
4983 mode);
4984 default:
4985 break;
4986 }
4987
4988 /* Look for MIN or MAX. */
4989
4990 if ((! FLOAT_MODE_P (mode) || flag_unsafe_math_optimizations)
4991 && comparison_p
4992 && rtx_equal_p (XEXP (cond, 0), true_rtx)
4993 && rtx_equal_p (XEXP (cond, 1), false_rtx)
4994 && ! side_effects_p (cond))
4995 switch (true_code)
4996 {
4997 case GE:
4998 case GT:
4999 return simplify_gen_binary (SMAX, mode, true_rtx, false_rtx);
5000 case LE:
5001 case LT:
5002 return simplify_gen_binary (SMIN, mode, true_rtx, false_rtx);
5003 case GEU:
5004 case GTU:
5005 return simplify_gen_binary (UMAX, mode, true_rtx, false_rtx);
5006 case LEU:
5007 case LTU:
5008 return simplify_gen_binary (UMIN, mode, true_rtx, false_rtx);
5009 default:
5010 break;
5011 }
5012
5013 /* If we have (if_then_else COND (OP Z C1) Z) and OP is an identity when its
5014 second operand is zero, this can be done as (OP Z (mult COND C2)) where
5015 C2 = C1 * STORE_FLAG_VALUE. Similarly if OP has an outer ZERO_EXTEND or
5016 SIGN_EXTEND as long as Z is already extended (so we don't destroy it).
5017 We can do this kind of thing in some cases when STORE_FLAG_VALUE is
5018 neither 1 or -1, but it isn't worth checking for. */
5019
5020 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
5021 && comparison_p
5022 && GET_MODE_CLASS (mode) == MODE_INT
5023 && ! side_effects_p (x))
5024 {
5025 rtx t = make_compound_operation (true_rtx, SET);
5026 rtx f = make_compound_operation (false_rtx, SET);
5027 rtx cond_op0 = XEXP (cond, 0);
5028 rtx cond_op1 = XEXP (cond, 1);
5029 enum rtx_code op = UNKNOWN, extend_op = UNKNOWN;
5030 enum machine_mode m = mode;
5031 rtx z = 0, c1 = NULL_RTX;
5032
5033 if ((GET_CODE (t) == PLUS || GET_CODE (t) == MINUS
5034 || GET_CODE (t) == IOR || GET_CODE (t) == XOR
5035 || GET_CODE (t) == ASHIFT
5036 || GET_CODE (t) == LSHIFTRT || GET_CODE (t) == ASHIFTRT)
5037 && rtx_equal_p (XEXP (t, 0), f))
5038 c1 = XEXP (t, 1), op = GET_CODE (t), z = f;
5039
5040 /* If an identity-zero op is commutative, check whether there
5041 would be a match if we swapped the operands. */
5042 else if ((GET_CODE (t) == PLUS || GET_CODE (t) == IOR
5043 || GET_CODE (t) == XOR)
5044 && rtx_equal_p (XEXP (t, 1), f))
5045 c1 = XEXP (t, 0), op = GET_CODE (t), z = f;
5046 else if (GET_CODE (t) == SIGN_EXTEND
5047 && (GET_CODE (XEXP (t, 0)) == PLUS
5048 || GET_CODE (XEXP (t, 0)) == MINUS
5049 || GET_CODE (XEXP (t, 0)) == IOR
5050 || GET_CODE (XEXP (t, 0)) == XOR
5051 || GET_CODE (XEXP (t, 0)) == ASHIFT
5052 || GET_CODE (XEXP (t, 0)) == LSHIFTRT
5053 || GET_CODE (XEXP (t, 0)) == ASHIFTRT)
5054 && GET_CODE (XEXP (XEXP (t, 0), 0)) == SUBREG
5055 && subreg_lowpart_p (XEXP (XEXP (t, 0), 0))
5056 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 0)), f)
5057 && (num_sign_bit_copies (f, GET_MODE (f))
5058 > (unsigned int)
5059 (GET_MODE_BITSIZE (mode)
5060 - GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (t, 0), 0))))))
5061 {
5062 c1 = XEXP (XEXP (t, 0), 1); z = f; op = GET_CODE (XEXP (t, 0));
5063 extend_op = SIGN_EXTEND;
5064 m = GET_MODE (XEXP (t, 0));
5065 }
5066 else if (GET_CODE (t) == SIGN_EXTEND
5067 && (GET_CODE (XEXP (t, 0)) == PLUS
5068 || GET_CODE (XEXP (t, 0)) == IOR
5069 || GET_CODE (XEXP (t, 0)) == XOR)
5070 && GET_CODE (XEXP (XEXP (t, 0), 1)) == SUBREG
5071 && subreg_lowpart_p (XEXP (XEXP (t, 0), 1))
5072 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 1)), f)
5073 && (num_sign_bit_copies (f, GET_MODE (f))
5074 > (unsigned int)
5075 (GET_MODE_BITSIZE (mode)
5076 - GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (t, 0), 1))))))
5077 {
5078 c1 = XEXP (XEXP (t, 0), 0); z = f; op = GET_CODE (XEXP (t, 0));
5079 extend_op = SIGN_EXTEND;
5080 m = GET_MODE (XEXP (t, 0));
5081 }
5082 else if (GET_CODE (t) == ZERO_EXTEND
5083 && (GET_CODE (XEXP (t, 0)) == PLUS
5084 || GET_CODE (XEXP (t, 0)) == MINUS
5085 || GET_CODE (XEXP (t, 0)) == IOR
5086 || GET_CODE (XEXP (t, 0)) == XOR
5087 || GET_CODE (XEXP (t, 0)) == ASHIFT
5088 || GET_CODE (XEXP (t, 0)) == LSHIFTRT
5089 || GET_CODE (XEXP (t, 0)) == ASHIFTRT)
5090 && GET_CODE (XEXP (XEXP (t, 0), 0)) == SUBREG
5091 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5092 && subreg_lowpart_p (XEXP (XEXP (t, 0), 0))
5093 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 0)), f)
5094 && ((nonzero_bits (f, GET_MODE (f))
5095 & ~GET_MODE_MASK (GET_MODE (XEXP (XEXP (t, 0), 0))))
5096 == 0))
5097 {
5098 c1 = XEXP (XEXP (t, 0), 1); z = f; op = GET_CODE (XEXP (t, 0));
5099 extend_op = ZERO_EXTEND;
5100 m = GET_MODE (XEXP (t, 0));
5101 }
5102 else if (GET_CODE (t) == ZERO_EXTEND
5103 && (GET_CODE (XEXP (t, 0)) == PLUS
5104 || GET_CODE (XEXP (t, 0)) == IOR
5105 || GET_CODE (XEXP (t, 0)) == XOR)
5106 && GET_CODE (XEXP (XEXP (t, 0), 1)) == SUBREG
5107 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5108 && subreg_lowpart_p (XEXP (XEXP (t, 0), 1))
5109 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 1)), f)
5110 && ((nonzero_bits (f, GET_MODE (f))
5111 & ~GET_MODE_MASK (GET_MODE (XEXP (XEXP (t, 0), 1))))
5112 == 0))
5113 {
5114 c1 = XEXP (XEXP (t, 0), 0); z = f; op = GET_CODE (XEXP (t, 0));
5115 extend_op = ZERO_EXTEND;
5116 m = GET_MODE (XEXP (t, 0));
5117 }
5118
5119 if (z)
5120 {
5121 temp = subst (simplify_gen_relational (true_code, m, VOIDmode,
5122 cond_op0, cond_op1),
5123 pc_rtx, pc_rtx, 0, 0);
5124 temp = simplify_gen_binary (MULT, m, temp,
5125 simplify_gen_binary (MULT, m, c1,
5126 const_true_rtx));
5127 temp = subst (temp, pc_rtx, pc_rtx, 0, 0);
5128 temp = simplify_gen_binary (op, m, gen_lowpart (m, z), temp);
5129
5130 if (extend_op != UNKNOWN)
5131 temp = simplify_gen_unary (extend_op, mode, temp, m);
5132
5133 return temp;
5134 }
5135 }
5136
5137 /* If we have (if_then_else (ne A 0) C1 0) and either A is known to be 0 or
5138 1 and C1 is a single bit or A is known to be 0 or -1 and C1 is the
5139 negation of a single bit, we can convert this operation to a shift. We
5140 can actually do this more generally, but it doesn't seem worth it. */
5141
5142 if (true_code == NE && XEXP (cond, 1) == const0_rtx
5143 && false_rtx == const0_rtx && GET_CODE (true_rtx) == CONST_INT
5144 && ((1 == nonzero_bits (XEXP (cond, 0), mode)
5145 && (i = exact_log2 (INTVAL (true_rtx))) >= 0)
5146 || ((num_sign_bit_copies (XEXP (cond, 0), mode)
5147 == GET_MODE_BITSIZE (mode))
5148 && (i = exact_log2 (-INTVAL (true_rtx))) >= 0)))
5149 return
5150 simplify_shift_const (NULL_RTX, ASHIFT, mode,
5151 gen_lowpart (mode, XEXP (cond, 0)), i);
5152
5153 /* (IF_THEN_ELSE (NE REG 0) (0) (8)) is REG for nonzero_bits (REG) == 8. */
5154 if (true_code == NE && XEXP (cond, 1) == const0_rtx
5155 && false_rtx == const0_rtx && GET_CODE (true_rtx) == CONST_INT
5156 && GET_MODE (XEXP (cond, 0)) == mode
5157 && (INTVAL (true_rtx) & GET_MODE_MASK (mode))
5158 == nonzero_bits (XEXP (cond, 0), mode)
5159 && (i = exact_log2 (INTVAL (true_rtx) & GET_MODE_MASK (mode))) >= 0)
5160 return XEXP (cond, 0);
5161
5162 return x;
5163 }
5164 \f
5165 /* Simplify X, a SET expression. Return the new expression. */
5166
5167 static rtx
5168 simplify_set (rtx x)
5169 {
5170 rtx src = SET_SRC (x);
5171 rtx dest = SET_DEST (x);
5172 enum machine_mode mode
5173 = GET_MODE (src) != VOIDmode ? GET_MODE (src) : GET_MODE (dest);
5174 rtx other_insn;
5175 rtx *cc_use;
5176
5177 /* (set (pc) (return)) gets written as (return). */
5178 if (GET_CODE (dest) == PC && GET_CODE (src) == RETURN)
5179 return src;
5180
5181 /* Now that we know for sure which bits of SRC we are using, see if we can
5182 simplify the expression for the object knowing that we only need the
5183 low-order bits. */
5184
5185 if (GET_MODE_CLASS (mode) == MODE_INT
5186 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
5187 {
5188 src = force_to_mode (src, mode, ~(HOST_WIDE_INT) 0, 0);
5189 SUBST (SET_SRC (x), src);
5190 }
5191
5192 /* If we are setting CC0 or if the source is a COMPARE, look for the use of
5193 the comparison result and try to simplify it unless we already have used
5194 undobuf.other_insn. */
5195 if ((GET_MODE_CLASS (mode) == MODE_CC
5196 || GET_CODE (src) == COMPARE
5197 || CC0_P (dest))
5198 && (cc_use = find_single_use (dest, subst_insn, &other_insn)) != 0
5199 && (undobuf.other_insn == 0 || other_insn == undobuf.other_insn)
5200 && COMPARISON_P (*cc_use)
5201 && rtx_equal_p (XEXP (*cc_use, 0), dest))
5202 {
5203 enum rtx_code old_code = GET_CODE (*cc_use);
5204 enum rtx_code new_code;
5205 rtx op0, op1, tmp;
5206 int other_changed = 0;
5207 enum machine_mode compare_mode = GET_MODE (dest);
5208
5209 if (GET_CODE (src) == COMPARE)
5210 op0 = XEXP (src, 0), op1 = XEXP (src, 1);
5211 else
5212 op0 = src, op1 = CONST0_RTX (GET_MODE (src));
5213
5214 tmp = simplify_relational_operation (old_code, compare_mode, VOIDmode,
5215 op0, op1);
5216 if (!tmp)
5217 new_code = old_code;
5218 else if (!CONSTANT_P (tmp))
5219 {
5220 new_code = GET_CODE (tmp);
5221 op0 = XEXP (tmp, 0);
5222 op1 = XEXP (tmp, 1);
5223 }
5224 else
5225 {
5226 rtx pat = PATTERN (other_insn);
5227 undobuf.other_insn = other_insn;
5228 SUBST (*cc_use, tmp);
5229
5230 /* Attempt to simplify CC user. */
5231 if (GET_CODE (pat) == SET)
5232 {
5233 rtx new = simplify_rtx (SET_SRC (pat));
5234 if (new != NULL_RTX)
5235 SUBST (SET_SRC (pat), new);
5236 }
5237
5238 /* Convert X into a no-op move. */
5239 SUBST (SET_DEST (x), pc_rtx);
5240 SUBST (SET_SRC (x), pc_rtx);
5241 return x;
5242 }
5243
5244 /* Simplify our comparison, if possible. */
5245 new_code = simplify_comparison (new_code, &op0, &op1);
5246
5247 #ifdef SELECT_CC_MODE
5248 /* If this machine has CC modes other than CCmode, check to see if we
5249 need to use a different CC mode here. */
5250 if (GET_MODE_CLASS (GET_MODE (op0)) == MODE_CC)
5251 compare_mode = GET_MODE (op0);
5252 else
5253 compare_mode = SELECT_CC_MODE (new_code, op0, op1);
5254
5255 #ifndef HAVE_cc0
5256 /* If the mode changed, we have to change SET_DEST, the mode in the
5257 compare, and the mode in the place SET_DEST is used. If SET_DEST is
5258 a hard register, just build new versions with the proper mode. If it
5259 is a pseudo, we lose unless it is only time we set the pseudo, in
5260 which case we can safely change its mode. */
5261 if (compare_mode != GET_MODE (dest))
5262 {
5263 if (can_change_dest_mode (dest, 0, compare_mode))
5264 {
5265 unsigned int regno = REGNO (dest);
5266 rtx new_dest;
5267
5268 if (regno < FIRST_PSEUDO_REGISTER)
5269 new_dest = gen_rtx_REG (compare_mode, regno);
5270 else
5271 {
5272 SUBST_MODE (regno_reg_rtx[regno], compare_mode);
5273 new_dest = regno_reg_rtx[regno];
5274 }
5275
5276 SUBST (SET_DEST (x), new_dest);
5277 SUBST (XEXP (*cc_use, 0), new_dest);
5278 other_changed = 1;
5279
5280 dest = new_dest;
5281 }
5282 }
5283 #endif /* cc0 */
5284 #endif /* SELECT_CC_MODE */
5285
5286 /* If the code changed, we have to build a new comparison in
5287 undobuf.other_insn. */
5288 if (new_code != old_code)
5289 {
5290 int other_changed_previously = other_changed;
5291 unsigned HOST_WIDE_INT mask;
5292
5293 SUBST (*cc_use, gen_rtx_fmt_ee (new_code, GET_MODE (*cc_use),
5294 dest, const0_rtx));
5295 other_changed = 1;
5296
5297 /* If the only change we made was to change an EQ into an NE or
5298 vice versa, OP0 has only one bit that might be nonzero, and OP1
5299 is zero, check if changing the user of the condition code will
5300 produce a valid insn. If it won't, we can keep the original code
5301 in that insn by surrounding our operation with an XOR. */
5302
5303 if (((old_code == NE && new_code == EQ)
5304 || (old_code == EQ && new_code == NE))
5305 && ! other_changed_previously && op1 == const0_rtx
5306 && GET_MODE_BITSIZE (GET_MODE (op0)) <= HOST_BITS_PER_WIDE_INT
5307 && exact_log2 (mask = nonzero_bits (op0, GET_MODE (op0))) >= 0)
5308 {
5309 rtx pat = PATTERN (other_insn), note = 0;
5310
5311 if ((recog_for_combine (&pat, other_insn, &note) < 0
5312 && ! check_asm_operands (pat)))
5313 {
5314 PUT_CODE (*cc_use, old_code);
5315 other_changed = 0;
5316
5317 op0 = simplify_gen_binary (XOR, GET_MODE (op0),
5318 op0, GEN_INT (mask));
5319 }
5320 }
5321 }
5322
5323 if (other_changed)
5324 undobuf.other_insn = other_insn;
5325
5326 #ifdef HAVE_cc0
5327 /* If we are now comparing against zero, change our source if
5328 needed. If we do not use cc0, we always have a COMPARE. */
5329 if (op1 == const0_rtx && dest == cc0_rtx)
5330 {
5331 SUBST (SET_SRC (x), op0);
5332 src = op0;
5333 }
5334 else
5335 #endif
5336
5337 /* Otherwise, if we didn't previously have a COMPARE in the
5338 correct mode, we need one. */
5339 if (GET_CODE (src) != COMPARE || GET_MODE (src) != compare_mode)
5340 {
5341 SUBST (SET_SRC (x), gen_rtx_COMPARE (compare_mode, op0, op1));
5342 src = SET_SRC (x);
5343 }
5344 else if (GET_MODE (op0) == compare_mode && op1 == const0_rtx)
5345 {
5346 SUBST(SET_SRC (x), op0);
5347 src = SET_SRC (x);
5348 }
5349 else
5350 {
5351 /* Otherwise, update the COMPARE if needed. */
5352 SUBST (XEXP (src, 0), op0);
5353 SUBST (XEXP (src, 1), op1);
5354 }
5355 }
5356 else
5357 {
5358 /* Get SET_SRC in a form where we have placed back any
5359 compound expressions. Then do the checks below. */
5360 src = make_compound_operation (src, SET);
5361 SUBST (SET_SRC (x), src);
5362 }
5363
5364 /* If we have (set x (subreg:m1 (op:m2 ...) 0)) with OP being some operation,
5365 and X being a REG or (subreg (reg)), we may be able to convert this to
5366 (set (subreg:m2 x) (op)).
5367
5368 We can always do this if M1 is narrower than M2 because that means that
5369 we only care about the low bits of the result.
5370
5371 However, on machines without WORD_REGISTER_OPERATIONS defined, we cannot
5372 perform a narrower operation than requested since the high-order bits will
5373 be undefined. On machine where it is defined, this transformation is safe
5374 as long as M1 and M2 have the same number of words. */
5375
5376 if (GET_CODE (src) == SUBREG && subreg_lowpart_p (src)
5377 && !OBJECT_P (SUBREG_REG (src))
5378 && (((GET_MODE_SIZE (GET_MODE (src)) + (UNITS_PER_WORD - 1))
5379 / UNITS_PER_WORD)
5380 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (src)))
5381 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))
5382 #ifndef WORD_REGISTER_OPERATIONS
5383 && (GET_MODE_SIZE (GET_MODE (src))
5384 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (src))))
5385 #endif
5386 #ifdef CANNOT_CHANGE_MODE_CLASS
5387 && ! (REG_P (dest) && REGNO (dest) < FIRST_PSEUDO_REGISTER
5388 && REG_CANNOT_CHANGE_MODE_P (REGNO (dest),
5389 GET_MODE (SUBREG_REG (src)),
5390 GET_MODE (src)))
5391 #endif
5392 && (REG_P (dest)
5393 || (GET_CODE (dest) == SUBREG
5394 && REG_P (SUBREG_REG (dest)))))
5395 {
5396 SUBST (SET_DEST (x),
5397 gen_lowpart (GET_MODE (SUBREG_REG (src)),
5398 dest));
5399 SUBST (SET_SRC (x), SUBREG_REG (src));
5400
5401 src = SET_SRC (x), dest = SET_DEST (x);
5402 }
5403
5404 #ifdef HAVE_cc0
5405 /* If we have (set (cc0) (subreg ...)), we try to remove the subreg
5406 in SRC. */
5407 if (dest == cc0_rtx
5408 && GET_CODE (src) == SUBREG
5409 && subreg_lowpart_p (src)
5410 && (GET_MODE_BITSIZE (GET_MODE (src))
5411 < GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (src)))))
5412 {
5413 rtx inner = SUBREG_REG (src);
5414 enum machine_mode inner_mode = GET_MODE (inner);
5415
5416 /* Here we make sure that we don't have a sign bit on. */
5417 if (GET_MODE_BITSIZE (inner_mode) <= HOST_BITS_PER_WIDE_INT
5418 && (nonzero_bits (inner, inner_mode)
5419 < ((unsigned HOST_WIDE_INT) 1
5420 << (GET_MODE_BITSIZE (GET_MODE (src)) - 1))))
5421 {
5422 SUBST (SET_SRC (x), inner);
5423 src = SET_SRC (x);
5424 }
5425 }
5426 #endif
5427
5428 #ifdef LOAD_EXTEND_OP
5429 /* If we have (set FOO (subreg:M (mem:N BAR) 0)) with M wider than N, this
5430 would require a paradoxical subreg. Replace the subreg with a
5431 zero_extend to avoid the reload that would otherwise be required. */
5432
5433 if (GET_CODE (src) == SUBREG && subreg_lowpart_p (src)
5434 && LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (src))) != UNKNOWN
5435 && SUBREG_BYTE (src) == 0
5436 && (GET_MODE_SIZE (GET_MODE (src))
5437 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (src))))
5438 && MEM_P (SUBREG_REG (src)))
5439 {
5440 SUBST (SET_SRC (x),
5441 gen_rtx_fmt_e (LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (src))),
5442 GET_MODE (src), SUBREG_REG (src)));
5443
5444 src = SET_SRC (x);
5445 }
5446 #endif
5447
5448 /* If we don't have a conditional move, SET_SRC is an IF_THEN_ELSE, and we
5449 are comparing an item known to be 0 or -1 against 0, use a logical
5450 operation instead. Check for one of the arms being an IOR of the other
5451 arm with some value. We compute three terms to be IOR'ed together. In
5452 practice, at most two will be nonzero. Then we do the IOR's. */
5453
5454 if (GET_CODE (dest) != PC
5455 && GET_CODE (src) == IF_THEN_ELSE
5456 && GET_MODE_CLASS (GET_MODE (src)) == MODE_INT
5457 && (GET_CODE (XEXP (src, 0)) == EQ || GET_CODE (XEXP (src, 0)) == NE)
5458 && XEXP (XEXP (src, 0), 1) == const0_rtx
5459 && GET_MODE (src) == GET_MODE (XEXP (XEXP (src, 0), 0))
5460 #ifdef HAVE_conditional_move
5461 && ! can_conditionally_move_p (GET_MODE (src))
5462 #endif
5463 && (num_sign_bit_copies (XEXP (XEXP (src, 0), 0),
5464 GET_MODE (XEXP (XEXP (src, 0), 0)))
5465 == GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (src, 0), 0))))
5466 && ! side_effects_p (src))
5467 {
5468 rtx true_rtx = (GET_CODE (XEXP (src, 0)) == NE
5469 ? XEXP (src, 1) : XEXP (src, 2));
5470 rtx false_rtx = (GET_CODE (XEXP (src, 0)) == NE
5471 ? XEXP (src, 2) : XEXP (src, 1));
5472 rtx term1 = const0_rtx, term2, term3;
5473
5474 if (GET_CODE (true_rtx) == IOR
5475 && rtx_equal_p (XEXP (true_rtx, 0), false_rtx))
5476 term1 = false_rtx, true_rtx = XEXP (true_rtx, 1), false_rtx = const0_rtx;
5477 else if (GET_CODE (true_rtx) == IOR
5478 && rtx_equal_p (XEXP (true_rtx, 1), false_rtx))
5479 term1 = false_rtx, true_rtx = XEXP (true_rtx, 0), false_rtx = const0_rtx;
5480 else if (GET_CODE (false_rtx) == IOR
5481 && rtx_equal_p (XEXP (false_rtx, 0), true_rtx))
5482 term1 = true_rtx, false_rtx = XEXP (false_rtx, 1), true_rtx = const0_rtx;
5483 else if (GET_CODE (false_rtx) == IOR
5484 && rtx_equal_p (XEXP (false_rtx, 1), true_rtx))
5485 term1 = true_rtx, false_rtx = XEXP (false_rtx, 0), true_rtx = const0_rtx;
5486
5487 term2 = simplify_gen_binary (AND, GET_MODE (src),
5488 XEXP (XEXP (src, 0), 0), true_rtx);
5489 term3 = simplify_gen_binary (AND, GET_MODE (src),
5490 simplify_gen_unary (NOT, GET_MODE (src),
5491 XEXP (XEXP (src, 0), 0),
5492 GET_MODE (src)),
5493 false_rtx);
5494
5495 SUBST (SET_SRC (x),
5496 simplify_gen_binary (IOR, GET_MODE (src),
5497 simplify_gen_binary (IOR, GET_MODE (src),
5498 term1, term2),
5499 term3));
5500
5501 src = SET_SRC (x);
5502 }
5503
5504 /* If either SRC or DEST is a CLOBBER of (const_int 0), make this
5505 whole thing fail. */
5506 if (GET_CODE (src) == CLOBBER && XEXP (src, 0) == const0_rtx)
5507 return src;
5508 else if (GET_CODE (dest) == CLOBBER && XEXP (dest, 0) == const0_rtx)
5509 return dest;
5510 else
5511 /* Convert this into a field assignment operation, if possible. */
5512 return make_field_assignment (x);
5513 }
5514 \f
5515 /* Simplify, X, and AND, IOR, or XOR operation, and return the simplified
5516 result. */
5517
5518 static rtx
5519 simplify_logical (rtx x)
5520 {
5521 enum machine_mode mode = GET_MODE (x);
5522 rtx op0 = XEXP (x, 0);
5523 rtx op1 = XEXP (x, 1);
5524
5525 switch (GET_CODE (x))
5526 {
5527 case AND:
5528 /* We can call simplify_and_const_int only if we don't lose
5529 any (sign) bits when converting INTVAL (op1) to
5530 "unsigned HOST_WIDE_INT". */
5531 if (GET_CODE (op1) == CONST_INT
5532 && (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5533 || INTVAL (op1) > 0))
5534 {
5535 x = simplify_and_const_int (x, mode, op0, INTVAL (op1));
5536 if (GET_CODE (x) != AND)
5537 return x;
5538
5539 op0 = XEXP (x, 0);
5540 op1 = XEXP (x, 1);
5541 }
5542
5543 /* If we have any of (and (ior A B) C) or (and (xor A B) C),
5544 apply the distributive law and then the inverse distributive
5545 law to see if things simplify. */
5546 if (GET_CODE (op0) == IOR || GET_CODE (op0) == XOR)
5547 {
5548 rtx result = distribute_and_simplify_rtx (x, 0);
5549 if (result)
5550 return result;
5551 }
5552 if (GET_CODE (op1) == IOR || GET_CODE (op1) == XOR)
5553 {
5554 rtx result = distribute_and_simplify_rtx (x, 1);
5555 if (result)
5556 return result;
5557 }
5558 break;
5559
5560 case IOR:
5561 /* If we have (ior (and A B) C), apply the distributive law and then
5562 the inverse distributive law to see if things simplify. */
5563
5564 if (GET_CODE (op0) == AND)
5565 {
5566 rtx result = distribute_and_simplify_rtx (x, 0);
5567 if (result)
5568 return result;
5569 }
5570
5571 if (GET_CODE (op1) == AND)
5572 {
5573 rtx result = distribute_and_simplify_rtx (x, 1);
5574 if (result)
5575 return result;
5576 }
5577 break;
5578
5579 default:
5580 gcc_unreachable ();
5581 }
5582
5583 return x;
5584 }
5585 \f
5586 /* We consider ZERO_EXTRACT, SIGN_EXTRACT, and SIGN_EXTEND as "compound
5587 operations" because they can be replaced with two more basic operations.
5588 ZERO_EXTEND is also considered "compound" because it can be replaced with
5589 an AND operation, which is simpler, though only one operation.
5590
5591 The function expand_compound_operation is called with an rtx expression
5592 and will convert it to the appropriate shifts and AND operations,
5593 simplifying at each stage.
5594
5595 The function make_compound_operation is called to convert an expression
5596 consisting of shifts and ANDs into the equivalent compound expression.
5597 It is the inverse of this function, loosely speaking. */
5598
5599 static rtx
5600 expand_compound_operation (rtx x)
5601 {
5602 unsigned HOST_WIDE_INT pos = 0, len;
5603 int unsignedp = 0;
5604 unsigned int modewidth;
5605 rtx tem;
5606
5607 switch (GET_CODE (x))
5608 {
5609 case ZERO_EXTEND:
5610 unsignedp = 1;
5611 case SIGN_EXTEND:
5612 /* We can't necessarily use a const_int for a multiword mode;
5613 it depends on implicitly extending the value.
5614 Since we don't know the right way to extend it,
5615 we can't tell whether the implicit way is right.
5616
5617 Even for a mode that is no wider than a const_int,
5618 we can't win, because we need to sign extend one of its bits through
5619 the rest of it, and we don't know which bit. */
5620 if (GET_CODE (XEXP (x, 0)) == CONST_INT)
5621 return x;
5622
5623 /* Return if (subreg:MODE FROM 0) is not a safe replacement for
5624 (zero_extend:MODE FROM) or (sign_extend:MODE FROM). It is for any MEM
5625 because (SUBREG (MEM...)) is guaranteed to cause the MEM to be
5626 reloaded. If not for that, MEM's would very rarely be safe.
5627
5628 Reject MODEs bigger than a word, because we might not be able
5629 to reference a two-register group starting with an arbitrary register
5630 (and currently gen_lowpart might crash for a SUBREG). */
5631
5632 if (GET_MODE_SIZE (GET_MODE (XEXP (x, 0))) > UNITS_PER_WORD)
5633 return x;
5634
5635 /* Reject MODEs that aren't scalar integers because turning vector
5636 or complex modes into shifts causes problems. */
5637
5638 if (! SCALAR_INT_MODE_P (GET_MODE (XEXP (x, 0))))
5639 return x;
5640
5641 len = GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)));
5642 /* If the inner object has VOIDmode (the only way this can happen
5643 is if it is an ASM_OPERANDS), we can't do anything since we don't
5644 know how much masking to do. */
5645 if (len == 0)
5646 return x;
5647
5648 break;
5649
5650 case ZERO_EXTRACT:
5651 unsignedp = 1;
5652
5653 /* ... fall through ... */
5654
5655 case SIGN_EXTRACT:
5656 /* If the operand is a CLOBBER, just return it. */
5657 if (GET_CODE (XEXP (x, 0)) == CLOBBER)
5658 return XEXP (x, 0);
5659
5660 if (GET_CODE (XEXP (x, 1)) != CONST_INT
5661 || GET_CODE (XEXP (x, 2)) != CONST_INT
5662 || GET_MODE (XEXP (x, 0)) == VOIDmode)
5663 return x;
5664
5665 /* Reject MODEs that aren't scalar integers because turning vector
5666 or complex modes into shifts causes problems. */
5667
5668 if (! SCALAR_INT_MODE_P (GET_MODE (XEXP (x, 0))))
5669 return x;
5670
5671 len = INTVAL (XEXP (x, 1));
5672 pos = INTVAL (XEXP (x, 2));
5673
5674 /* This should stay within the object being extracted, fail otherwise. */
5675 if (len + pos > GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0))))
5676 return x;
5677
5678 if (BITS_BIG_ENDIAN)
5679 pos = GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0))) - len - pos;
5680
5681 break;
5682
5683 default:
5684 return x;
5685 }
5686 /* Convert sign extension to zero extension, if we know that the high
5687 bit is not set, as this is easier to optimize. It will be converted
5688 back to cheaper alternative in make_extraction. */
5689 if (GET_CODE (x) == SIGN_EXTEND
5690 && (GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
5691 && ((nonzero_bits (XEXP (x, 0), GET_MODE (XEXP (x, 0)))
5692 & ~(((unsigned HOST_WIDE_INT)
5693 GET_MODE_MASK (GET_MODE (XEXP (x, 0))))
5694 >> 1))
5695 == 0)))
5696 {
5697 rtx temp = gen_rtx_ZERO_EXTEND (GET_MODE (x), XEXP (x, 0));
5698 rtx temp2 = expand_compound_operation (temp);
5699
5700 /* Make sure this is a profitable operation. */
5701 if (rtx_cost (x, SET) > rtx_cost (temp2, SET))
5702 return temp2;
5703 else if (rtx_cost (x, SET) > rtx_cost (temp, SET))
5704 return temp;
5705 else
5706 return x;
5707 }
5708
5709 /* We can optimize some special cases of ZERO_EXTEND. */
5710 if (GET_CODE (x) == ZERO_EXTEND)
5711 {
5712 /* (zero_extend:DI (truncate:SI foo:DI)) is just foo:DI if we
5713 know that the last value didn't have any inappropriate bits
5714 set. */
5715 if (GET_CODE (XEXP (x, 0)) == TRUNCATE
5716 && GET_MODE (XEXP (XEXP (x, 0), 0)) == GET_MODE (x)
5717 && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
5718 && (nonzero_bits (XEXP (XEXP (x, 0), 0), GET_MODE (x))
5719 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
5720 return XEXP (XEXP (x, 0), 0);
5721
5722 /* Likewise for (zero_extend:DI (subreg:SI foo:DI 0)). */
5723 if (GET_CODE (XEXP (x, 0)) == SUBREG
5724 && GET_MODE (SUBREG_REG (XEXP (x, 0))) == GET_MODE (x)
5725 && subreg_lowpart_p (XEXP (x, 0))
5726 && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
5727 && (nonzero_bits (SUBREG_REG (XEXP (x, 0)), GET_MODE (x))
5728 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
5729 return SUBREG_REG (XEXP (x, 0));
5730
5731 /* (zero_extend:DI (truncate:SI foo:DI)) is just foo:DI when foo
5732 is a comparison and STORE_FLAG_VALUE permits. This is like
5733 the first case, but it works even when GET_MODE (x) is larger
5734 than HOST_WIDE_INT. */
5735 if (GET_CODE (XEXP (x, 0)) == TRUNCATE
5736 && GET_MODE (XEXP (XEXP (x, 0), 0)) == GET_MODE (x)
5737 && COMPARISON_P (XEXP (XEXP (x, 0), 0))
5738 && (GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))
5739 <= HOST_BITS_PER_WIDE_INT)
5740 && ((HOST_WIDE_INT) STORE_FLAG_VALUE
5741 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
5742 return XEXP (XEXP (x, 0), 0);
5743
5744 /* Likewise for (zero_extend:DI (subreg:SI foo:DI 0)). */
5745 if (GET_CODE (XEXP (x, 0)) == SUBREG
5746 && GET_MODE (SUBREG_REG (XEXP (x, 0))) == GET_MODE (x)
5747 && subreg_lowpart_p (XEXP (x, 0))
5748 && COMPARISON_P (SUBREG_REG (XEXP (x, 0)))
5749 && (GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))
5750 <= HOST_BITS_PER_WIDE_INT)
5751 && ((HOST_WIDE_INT) STORE_FLAG_VALUE
5752 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
5753 return SUBREG_REG (XEXP (x, 0));
5754
5755 }
5756
5757 /* If we reach here, we want to return a pair of shifts. The inner
5758 shift is a left shift of BITSIZE - POS - LEN bits. The outer
5759 shift is a right shift of BITSIZE - LEN bits. It is arithmetic or
5760 logical depending on the value of UNSIGNEDP.
5761
5762 If this was a ZERO_EXTEND or ZERO_EXTRACT, this pair of shifts will be
5763 converted into an AND of a shift.
5764
5765 We must check for the case where the left shift would have a negative
5766 count. This can happen in a case like (x >> 31) & 255 on machines
5767 that can't shift by a constant. On those machines, we would first
5768 combine the shift with the AND to produce a variable-position
5769 extraction. Then the constant of 31 would be substituted in to produce
5770 a such a position. */
5771
5772 modewidth = GET_MODE_BITSIZE (GET_MODE (x));
5773 if (modewidth + len >= pos)
5774 {
5775 enum machine_mode mode = GET_MODE (x);
5776 tem = gen_lowpart (mode, XEXP (x, 0));
5777 if (!tem || GET_CODE (tem) == CLOBBER)
5778 return x;
5779 tem = simplify_shift_const (NULL_RTX, ASHIFT, mode,
5780 tem, modewidth - pos - len);
5781 tem = simplify_shift_const (NULL_RTX, unsignedp ? LSHIFTRT : ASHIFTRT,
5782 mode, tem, modewidth - len);
5783 }
5784 else if (unsignedp && len < HOST_BITS_PER_WIDE_INT)
5785 tem = simplify_and_const_int (NULL_RTX, GET_MODE (x),
5786 simplify_shift_const (NULL_RTX, LSHIFTRT,
5787 GET_MODE (x),
5788 XEXP (x, 0), pos),
5789 ((HOST_WIDE_INT) 1 << len) - 1);
5790 else
5791 /* Any other cases we can't handle. */
5792 return x;
5793
5794 /* If we couldn't do this for some reason, return the original
5795 expression. */
5796 if (GET_CODE (tem) == CLOBBER)
5797 return x;
5798
5799 return tem;
5800 }
5801 \f
5802 /* X is a SET which contains an assignment of one object into
5803 a part of another (such as a bit-field assignment, STRICT_LOW_PART,
5804 or certain SUBREGS). If possible, convert it into a series of
5805 logical operations.
5806
5807 We half-heartedly support variable positions, but do not at all
5808 support variable lengths. */
5809
5810 static rtx
5811 expand_field_assignment (rtx x)
5812 {
5813 rtx inner;
5814 rtx pos; /* Always counts from low bit. */
5815 int len;
5816 rtx mask, cleared, masked;
5817 enum machine_mode compute_mode;
5818
5819 /* Loop until we find something we can't simplify. */
5820 while (1)
5821 {
5822 if (GET_CODE (SET_DEST (x)) == STRICT_LOW_PART
5823 && GET_CODE (XEXP (SET_DEST (x), 0)) == SUBREG)
5824 {
5825 inner = SUBREG_REG (XEXP (SET_DEST (x), 0));
5826 len = GET_MODE_BITSIZE (GET_MODE (XEXP (SET_DEST (x), 0)));
5827 pos = GEN_INT (subreg_lsb (XEXP (SET_DEST (x), 0)));
5828 }
5829 else if (GET_CODE (SET_DEST (x)) == ZERO_EXTRACT
5830 && GET_CODE (XEXP (SET_DEST (x), 1)) == CONST_INT)
5831 {
5832 inner = XEXP (SET_DEST (x), 0);
5833 len = INTVAL (XEXP (SET_DEST (x), 1));
5834 pos = XEXP (SET_DEST (x), 2);
5835
5836 /* A constant position should stay within the width of INNER. */
5837 if (GET_CODE (pos) == CONST_INT
5838 && INTVAL (pos) + len > GET_MODE_BITSIZE (GET_MODE (inner)))
5839 break;
5840
5841 if (BITS_BIG_ENDIAN)
5842 {
5843 if (GET_CODE (pos) == CONST_INT)
5844 pos = GEN_INT (GET_MODE_BITSIZE (GET_MODE (inner)) - len
5845 - INTVAL (pos));
5846 else if (GET_CODE (pos) == MINUS
5847 && GET_CODE (XEXP (pos, 1)) == CONST_INT
5848 && (INTVAL (XEXP (pos, 1))
5849 == GET_MODE_BITSIZE (GET_MODE (inner)) - len))
5850 /* If position is ADJUST - X, new position is X. */
5851 pos = XEXP (pos, 0);
5852 else
5853 pos = simplify_gen_binary (MINUS, GET_MODE (pos),
5854 GEN_INT (GET_MODE_BITSIZE (
5855 GET_MODE (inner))
5856 - len),
5857 pos);
5858 }
5859 }
5860
5861 /* A SUBREG between two modes that occupy the same numbers of words
5862 can be done by moving the SUBREG to the source. */
5863 else if (GET_CODE (SET_DEST (x)) == SUBREG
5864 /* We need SUBREGs to compute nonzero_bits properly. */
5865 && nonzero_sign_valid
5866 && (((GET_MODE_SIZE (GET_MODE (SET_DEST (x)))
5867 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
5868 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (x))))
5869 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)))
5870 {
5871 x = gen_rtx_SET (VOIDmode, SUBREG_REG (SET_DEST (x)),
5872 gen_lowpart
5873 (GET_MODE (SUBREG_REG (SET_DEST (x))),
5874 SET_SRC (x)));
5875 continue;
5876 }
5877 else
5878 break;
5879
5880 while (GET_CODE (inner) == SUBREG && subreg_lowpart_p (inner))
5881 inner = SUBREG_REG (inner);
5882
5883 compute_mode = GET_MODE (inner);
5884
5885 /* Don't attempt bitwise arithmetic on non scalar integer modes. */
5886 if (! SCALAR_INT_MODE_P (compute_mode))
5887 {
5888 enum machine_mode imode;
5889
5890 /* Don't do anything for vector or complex integral types. */
5891 if (! FLOAT_MODE_P (compute_mode))
5892 break;
5893
5894 /* Try to find an integral mode to pun with. */
5895 imode = mode_for_size (GET_MODE_BITSIZE (compute_mode), MODE_INT, 0);
5896 if (imode == BLKmode)
5897 break;
5898
5899 compute_mode = imode;
5900 inner = gen_lowpart (imode, inner);
5901 }
5902
5903 /* Compute a mask of LEN bits, if we can do this on the host machine. */
5904 if (len >= HOST_BITS_PER_WIDE_INT)
5905 break;
5906
5907 /* Now compute the equivalent expression. Make a copy of INNER
5908 for the SET_DEST in case it is a MEM into which we will substitute;
5909 we don't want shared RTL in that case. */
5910 mask = GEN_INT (((HOST_WIDE_INT) 1 << len) - 1);
5911 cleared = simplify_gen_binary (AND, compute_mode,
5912 simplify_gen_unary (NOT, compute_mode,
5913 simplify_gen_binary (ASHIFT,
5914 compute_mode,
5915 mask, pos),
5916 compute_mode),
5917 inner);
5918 masked = simplify_gen_binary (ASHIFT, compute_mode,
5919 simplify_gen_binary (
5920 AND, compute_mode,
5921 gen_lowpart (compute_mode, SET_SRC (x)),
5922 mask),
5923 pos);
5924
5925 x = gen_rtx_SET (VOIDmode, copy_rtx (inner),
5926 simplify_gen_binary (IOR, compute_mode,
5927 cleared, masked));
5928 }
5929
5930 return x;
5931 }
5932 \f
5933 /* Return an RTX for a reference to LEN bits of INNER. If POS_RTX is nonzero,
5934 it is an RTX that represents a variable starting position; otherwise,
5935 POS is the (constant) starting bit position (counted from the LSB).
5936
5937 UNSIGNEDP is nonzero for an unsigned reference and zero for a
5938 signed reference.
5939
5940 IN_DEST is nonzero if this is a reference in the destination of a
5941 SET. This is used when a ZERO_ or SIGN_EXTRACT isn't needed. If nonzero,
5942 a STRICT_LOW_PART will be used, if zero, ZERO_EXTEND or SIGN_EXTEND will
5943 be used.
5944
5945 IN_COMPARE is nonzero if we are in a COMPARE. This means that a
5946 ZERO_EXTRACT should be built even for bits starting at bit 0.
5947
5948 MODE is the desired mode of the result (if IN_DEST == 0).
5949
5950 The result is an RTX for the extraction or NULL_RTX if the target
5951 can't handle it. */
5952
5953 static rtx
5954 make_extraction (enum machine_mode mode, rtx inner, HOST_WIDE_INT pos,
5955 rtx pos_rtx, unsigned HOST_WIDE_INT len, int unsignedp,
5956 int in_dest, int in_compare)
5957 {
5958 /* This mode describes the size of the storage area
5959 to fetch the overall value from. Within that, we
5960 ignore the POS lowest bits, etc. */
5961 enum machine_mode is_mode = GET_MODE (inner);
5962 enum machine_mode inner_mode;
5963 enum machine_mode wanted_inner_mode;
5964 enum machine_mode wanted_inner_reg_mode = word_mode;
5965 enum machine_mode pos_mode = word_mode;
5966 enum machine_mode extraction_mode = word_mode;
5967 enum machine_mode tmode = mode_for_size (len, MODE_INT, 1);
5968 rtx new = 0;
5969 rtx orig_pos_rtx = pos_rtx;
5970 HOST_WIDE_INT orig_pos;
5971
5972 if (GET_CODE (inner) == SUBREG && subreg_lowpart_p (inner))
5973 {
5974 /* If going from (subreg:SI (mem:QI ...)) to (mem:QI ...),
5975 consider just the QI as the memory to extract from.
5976 The subreg adds or removes high bits; its mode is
5977 irrelevant to the meaning of this extraction,
5978 since POS and LEN count from the lsb. */
5979 if (MEM_P (SUBREG_REG (inner)))
5980 is_mode = GET_MODE (SUBREG_REG (inner));
5981 inner = SUBREG_REG (inner);
5982 }
5983 else if (GET_CODE (inner) == ASHIFT
5984 && GET_CODE (XEXP (inner, 1)) == CONST_INT
5985 && pos_rtx == 0 && pos == 0
5986 && len > (unsigned HOST_WIDE_INT) INTVAL (XEXP (inner, 1)))
5987 {
5988 /* We're extracting the least significant bits of an rtx
5989 (ashift X (const_int C)), where LEN > C. Extract the
5990 least significant (LEN - C) bits of X, giving an rtx
5991 whose mode is MODE, then shift it left C times. */
5992 new = make_extraction (mode, XEXP (inner, 0),
5993 0, 0, len - INTVAL (XEXP (inner, 1)),
5994 unsignedp, in_dest, in_compare);
5995 if (new != 0)
5996 return gen_rtx_ASHIFT (mode, new, XEXP (inner, 1));
5997 }
5998
5999 inner_mode = GET_MODE (inner);
6000
6001 if (pos_rtx && GET_CODE (pos_rtx) == CONST_INT)
6002 pos = INTVAL (pos_rtx), pos_rtx = 0;
6003
6004 /* See if this can be done without an extraction. We never can if the
6005 width of the field is not the same as that of some integer mode. For
6006 registers, we can only avoid the extraction if the position is at the
6007 low-order bit and this is either not in the destination or we have the
6008 appropriate STRICT_LOW_PART operation available.
6009
6010 For MEM, we can avoid an extract if the field starts on an appropriate
6011 boundary and we can change the mode of the memory reference. */
6012
6013 if (tmode != BLKmode
6014 && ((pos_rtx == 0 && (pos % BITS_PER_WORD) == 0
6015 && !MEM_P (inner)
6016 && (inner_mode == tmode
6017 || !REG_P (inner)
6018 || TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (tmode),
6019 GET_MODE_BITSIZE (inner_mode))
6020 || reg_truncated_to_mode (tmode, inner))
6021 && (! in_dest
6022 || (REG_P (inner)
6023 && have_insn_for (STRICT_LOW_PART, tmode))))
6024 || (MEM_P (inner) && pos_rtx == 0
6025 && (pos
6026 % (STRICT_ALIGNMENT ? GET_MODE_ALIGNMENT (tmode)
6027 : BITS_PER_UNIT)) == 0
6028 /* We can't do this if we are widening INNER_MODE (it
6029 may not be aligned, for one thing). */
6030 && GET_MODE_BITSIZE (inner_mode) >= GET_MODE_BITSIZE (tmode)
6031 && (inner_mode == tmode
6032 || (! mode_dependent_address_p (XEXP (inner, 0))
6033 && ! MEM_VOLATILE_P (inner))))))
6034 {
6035 /* If INNER is a MEM, make a new MEM that encompasses just the desired
6036 field. If the original and current mode are the same, we need not
6037 adjust the offset. Otherwise, we do if bytes big endian.
6038
6039 If INNER is not a MEM, get a piece consisting of just the field
6040 of interest (in this case POS % BITS_PER_WORD must be 0). */
6041
6042 if (MEM_P (inner))
6043 {
6044 HOST_WIDE_INT offset;
6045
6046 /* POS counts from lsb, but make OFFSET count in memory order. */
6047 if (BYTES_BIG_ENDIAN)
6048 offset = (GET_MODE_BITSIZE (is_mode) - len - pos) / BITS_PER_UNIT;
6049 else
6050 offset = pos / BITS_PER_UNIT;
6051
6052 new = adjust_address_nv (inner, tmode, offset);
6053 }
6054 else if (REG_P (inner))
6055 {
6056 if (tmode != inner_mode)
6057 {
6058 /* We can't call gen_lowpart in a DEST since we
6059 always want a SUBREG (see below) and it would sometimes
6060 return a new hard register. */
6061 if (pos || in_dest)
6062 {
6063 HOST_WIDE_INT final_word = pos / BITS_PER_WORD;
6064
6065 if (WORDS_BIG_ENDIAN
6066 && GET_MODE_SIZE (inner_mode) > UNITS_PER_WORD)
6067 final_word = ((GET_MODE_SIZE (inner_mode)
6068 - GET_MODE_SIZE (tmode))
6069 / UNITS_PER_WORD) - final_word;
6070
6071 final_word *= UNITS_PER_WORD;
6072 if (BYTES_BIG_ENDIAN &&
6073 GET_MODE_SIZE (inner_mode) > GET_MODE_SIZE (tmode))
6074 final_word += (GET_MODE_SIZE (inner_mode)
6075 - GET_MODE_SIZE (tmode)) % UNITS_PER_WORD;
6076
6077 /* Avoid creating invalid subregs, for example when
6078 simplifying (x>>32)&255. */
6079 if (!validate_subreg (tmode, inner_mode, inner, final_word))
6080 return NULL_RTX;
6081
6082 new = gen_rtx_SUBREG (tmode, inner, final_word);
6083 }
6084 else
6085 new = gen_lowpart (tmode, inner);
6086 }
6087 else
6088 new = inner;
6089 }
6090 else
6091 new = force_to_mode (inner, tmode,
6092 len >= HOST_BITS_PER_WIDE_INT
6093 ? ~(unsigned HOST_WIDE_INT) 0
6094 : ((unsigned HOST_WIDE_INT) 1 << len) - 1,
6095 0);
6096
6097 /* If this extraction is going into the destination of a SET,
6098 make a STRICT_LOW_PART unless we made a MEM. */
6099
6100 if (in_dest)
6101 return (MEM_P (new) ? new
6102 : (GET_CODE (new) != SUBREG
6103 ? gen_rtx_CLOBBER (tmode, const0_rtx)
6104 : gen_rtx_STRICT_LOW_PART (VOIDmode, new)));
6105
6106 if (mode == tmode)
6107 return new;
6108
6109 if (GET_CODE (new) == CONST_INT)
6110 return gen_int_mode (INTVAL (new), mode);
6111
6112 /* If we know that no extraneous bits are set, and that the high
6113 bit is not set, convert the extraction to the cheaper of
6114 sign and zero extension, that are equivalent in these cases. */
6115 if (flag_expensive_optimizations
6116 && (GET_MODE_BITSIZE (tmode) <= HOST_BITS_PER_WIDE_INT
6117 && ((nonzero_bits (new, tmode)
6118 & ~(((unsigned HOST_WIDE_INT)
6119 GET_MODE_MASK (tmode))
6120 >> 1))
6121 == 0)))
6122 {
6123 rtx temp = gen_rtx_ZERO_EXTEND (mode, new);
6124 rtx temp1 = gen_rtx_SIGN_EXTEND (mode, new);
6125
6126 /* Prefer ZERO_EXTENSION, since it gives more information to
6127 backends. */
6128 if (rtx_cost (temp, SET) <= rtx_cost (temp1, SET))
6129 return temp;
6130 return temp1;
6131 }
6132
6133 /* Otherwise, sign- or zero-extend unless we already are in the
6134 proper mode. */
6135
6136 return (gen_rtx_fmt_e (unsignedp ? ZERO_EXTEND : SIGN_EXTEND,
6137 mode, new));
6138 }
6139
6140 /* Unless this is a COMPARE or we have a funny memory reference,
6141 don't do anything with zero-extending field extracts starting at
6142 the low-order bit since they are simple AND operations. */
6143 if (pos_rtx == 0 && pos == 0 && ! in_dest
6144 && ! in_compare && unsignedp)
6145 return 0;
6146
6147 /* Unless INNER is not MEM, reject this if we would be spanning bytes or
6148 if the position is not a constant and the length is not 1. In all
6149 other cases, we would only be going outside our object in cases when
6150 an original shift would have been undefined. */
6151 if (MEM_P (inner)
6152 && ((pos_rtx == 0 && pos + len > GET_MODE_BITSIZE (is_mode))
6153 || (pos_rtx != 0 && len != 1)))
6154 return 0;
6155
6156 /* Get the mode to use should INNER not be a MEM, the mode for the position,
6157 and the mode for the result. */
6158 if (in_dest && mode_for_extraction (EP_insv, -1) != MAX_MACHINE_MODE)
6159 {
6160 wanted_inner_reg_mode = mode_for_extraction (EP_insv, 0);
6161 pos_mode = mode_for_extraction (EP_insv, 2);
6162 extraction_mode = mode_for_extraction (EP_insv, 3);
6163 }
6164
6165 if (! in_dest && unsignedp
6166 && mode_for_extraction (EP_extzv, -1) != MAX_MACHINE_MODE)
6167 {
6168 wanted_inner_reg_mode = mode_for_extraction (EP_extzv, 1);
6169 pos_mode = mode_for_extraction (EP_extzv, 3);
6170 extraction_mode = mode_for_extraction (EP_extzv, 0);
6171 }
6172
6173 if (! in_dest && ! unsignedp
6174 && mode_for_extraction (EP_extv, -1) != MAX_MACHINE_MODE)
6175 {
6176 wanted_inner_reg_mode = mode_for_extraction (EP_extv, 1);
6177 pos_mode = mode_for_extraction (EP_extv, 3);
6178 extraction_mode = mode_for_extraction (EP_extv, 0);
6179 }
6180
6181 /* Never narrow an object, since that might not be safe. */
6182
6183 if (mode != VOIDmode
6184 && GET_MODE_SIZE (extraction_mode) < GET_MODE_SIZE (mode))
6185 extraction_mode = mode;
6186
6187 if (pos_rtx && GET_MODE (pos_rtx) != VOIDmode
6188 && GET_MODE_SIZE (pos_mode) < GET_MODE_SIZE (GET_MODE (pos_rtx)))
6189 pos_mode = GET_MODE (pos_rtx);
6190
6191 /* If this is not from memory, the desired mode is the preferred mode
6192 for an extraction pattern's first input operand, or word_mode if there
6193 is none. */
6194 if (!MEM_P (inner))
6195 wanted_inner_mode = wanted_inner_reg_mode;
6196 else
6197 {
6198 /* Be careful not to go beyond the extracted object and maintain the
6199 natural alignment of the memory. */
6200 wanted_inner_mode = smallest_mode_for_size (len, MODE_INT);
6201 while (pos % GET_MODE_BITSIZE (wanted_inner_mode) + len
6202 > GET_MODE_BITSIZE (wanted_inner_mode))
6203 {
6204 wanted_inner_mode = GET_MODE_WIDER_MODE (wanted_inner_mode);
6205 gcc_assert (wanted_inner_mode != VOIDmode);
6206 }
6207
6208 /* If we have to change the mode of memory and cannot, the desired mode
6209 is EXTRACTION_MODE. */
6210 if (inner_mode != wanted_inner_mode
6211 && (mode_dependent_address_p (XEXP (inner, 0))
6212 || MEM_VOLATILE_P (inner)
6213 || pos_rtx))
6214 wanted_inner_mode = extraction_mode;
6215 }
6216
6217 orig_pos = pos;
6218
6219 if (BITS_BIG_ENDIAN)
6220 {
6221 /* POS is passed as if BITS_BIG_ENDIAN == 0, so we need to convert it to
6222 BITS_BIG_ENDIAN style. If position is constant, compute new
6223 position. Otherwise, build subtraction.
6224 Note that POS is relative to the mode of the original argument.
6225 If it's a MEM we need to recompute POS relative to that.
6226 However, if we're extracting from (or inserting into) a register,
6227 we want to recompute POS relative to wanted_inner_mode. */
6228 int width = (MEM_P (inner)
6229 ? GET_MODE_BITSIZE (is_mode)
6230 : GET_MODE_BITSIZE (wanted_inner_mode));
6231
6232 if (pos_rtx == 0)
6233 pos = width - len - pos;
6234 else
6235 pos_rtx
6236 = gen_rtx_MINUS (GET_MODE (pos_rtx), GEN_INT (width - len), pos_rtx);
6237 /* POS may be less than 0 now, but we check for that below.
6238 Note that it can only be less than 0 if !MEM_P (inner). */
6239 }
6240
6241 /* If INNER has a wider mode, and this is a constant extraction, try to
6242 make it smaller and adjust the byte to point to the byte containing
6243 the value. */
6244 if (wanted_inner_mode != VOIDmode
6245 && inner_mode != wanted_inner_mode
6246 && ! pos_rtx
6247 && GET_MODE_SIZE (wanted_inner_mode) < GET_MODE_SIZE (is_mode)
6248 && MEM_P (inner)
6249 && ! mode_dependent_address_p (XEXP (inner, 0))
6250 && ! MEM_VOLATILE_P (inner))
6251 {
6252 int offset = 0;
6253
6254 /* The computations below will be correct if the machine is big
6255 endian in both bits and bytes or little endian in bits and bytes.
6256 If it is mixed, we must adjust. */
6257
6258 /* If bytes are big endian and we had a paradoxical SUBREG, we must
6259 adjust OFFSET to compensate. */
6260 if (BYTES_BIG_ENDIAN
6261 && GET_MODE_SIZE (inner_mode) < GET_MODE_SIZE (is_mode))
6262 offset -= GET_MODE_SIZE (is_mode) - GET_MODE_SIZE (inner_mode);
6263
6264 /* We can now move to the desired byte. */
6265 offset += (pos / GET_MODE_BITSIZE (wanted_inner_mode))
6266 * GET_MODE_SIZE (wanted_inner_mode);
6267 pos %= GET_MODE_BITSIZE (wanted_inner_mode);
6268
6269 if (BYTES_BIG_ENDIAN != BITS_BIG_ENDIAN
6270 && is_mode != wanted_inner_mode)
6271 offset = (GET_MODE_SIZE (is_mode)
6272 - GET_MODE_SIZE (wanted_inner_mode) - offset);
6273
6274 inner = adjust_address_nv (inner, wanted_inner_mode, offset);
6275 }
6276
6277 /* If INNER is not memory, we can always get it into the proper mode. If we
6278 are changing its mode, POS must be a constant and smaller than the size
6279 of the new mode. */
6280 else if (!MEM_P (inner))
6281 {
6282 if (GET_MODE (inner) != wanted_inner_mode
6283 && (pos_rtx != 0
6284 || orig_pos + len > GET_MODE_BITSIZE (wanted_inner_mode)))
6285 return 0;
6286
6287 if (orig_pos < 0)
6288 return 0;
6289
6290 inner = force_to_mode (inner, wanted_inner_mode,
6291 pos_rtx
6292 || len + orig_pos >= HOST_BITS_PER_WIDE_INT
6293 ? ~(unsigned HOST_WIDE_INT) 0
6294 : ((((unsigned HOST_WIDE_INT) 1 << len) - 1)
6295 << orig_pos),
6296 0);
6297 }
6298
6299 /* Adjust mode of POS_RTX, if needed. If we want a wider mode, we
6300 have to zero extend. Otherwise, we can just use a SUBREG. */
6301 if (pos_rtx != 0
6302 && GET_MODE_SIZE (pos_mode) > GET_MODE_SIZE (GET_MODE (pos_rtx)))
6303 {
6304 rtx temp = gen_rtx_ZERO_EXTEND (pos_mode, pos_rtx);
6305
6306 /* If we know that no extraneous bits are set, and that the high
6307 bit is not set, convert extraction to cheaper one - either
6308 SIGN_EXTENSION or ZERO_EXTENSION, that are equivalent in these
6309 cases. */
6310 if (flag_expensive_optimizations
6311 && (GET_MODE_BITSIZE (GET_MODE (pos_rtx)) <= HOST_BITS_PER_WIDE_INT
6312 && ((nonzero_bits (pos_rtx, GET_MODE (pos_rtx))
6313 & ~(((unsigned HOST_WIDE_INT)
6314 GET_MODE_MASK (GET_MODE (pos_rtx)))
6315 >> 1))
6316 == 0)))
6317 {
6318 rtx temp1 = gen_rtx_SIGN_EXTEND (pos_mode, pos_rtx);
6319
6320 /* Prefer ZERO_EXTENSION, since it gives more information to
6321 backends. */
6322 if (rtx_cost (temp1, SET) < rtx_cost (temp, SET))
6323 temp = temp1;
6324 }
6325 pos_rtx = temp;
6326 }
6327 else if (pos_rtx != 0
6328 && GET_MODE_SIZE (pos_mode) < GET_MODE_SIZE (GET_MODE (pos_rtx)))
6329 pos_rtx = gen_lowpart (pos_mode, pos_rtx);
6330
6331 /* Make POS_RTX unless we already have it and it is correct. If we don't
6332 have a POS_RTX but we do have an ORIG_POS_RTX, the latter must
6333 be a CONST_INT. */
6334 if (pos_rtx == 0 && orig_pos_rtx != 0 && INTVAL (orig_pos_rtx) == pos)
6335 pos_rtx = orig_pos_rtx;
6336
6337 else if (pos_rtx == 0)
6338 pos_rtx = GEN_INT (pos);
6339
6340 /* Make the required operation. See if we can use existing rtx. */
6341 new = gen_rtx_fmt_eee (unsignedp ? ZERO_EXTRACT : SIGN_EXTRACT,
6342 extraction_mode, inner, GEN_INT (len), pos_rtx);
6343 if (! in_dest)
6344 new = gen_lowpart (mode, new);
6345
6346 return new;
6347 }
6348 \f
6349 /* See if X contains an ASHIFT of COUNT or more bits that can be commuted
6350 with any other operations in X. Return X without that shift if so. */
6351
6352 static rtx
6353 extract_left_shift (rtx x, int count)
6354 {
6355 enum rtx_code code = GET_CODE (x);
6356 enum machine_mode mode = GET_MODE (x);
6357 rtx tem;
6358
6359 switch (code)
6360 {
6361 case ASHIFT:
6362 /* This is the shift itself. If it is wide enough, we will return
6363 either the value being shifted if the shift count is equal to
6364 COUNT or a shift for the difference. */
6365 if (GET_CODE (XEXP (x, 1)) == CONST_INT
6366 && INTVAL (XEXP (x, 1)) >= count)
6367 return simplify_shift_const (NULL_RTX, ASHIFT, mode, XEXP (x, 0),
6368 INTVAL (XEXP (x, 1)) - count);
6369 break;
6370
6371 case NEG: case NOT:
6372 if ((tem = extract_left_shift (XEXP (x, 0), count)) != 0)
6373 return simplify_gen_unary (code, mode, tem, mode);
6374
6375 break;
6376
6377 case PLUS: case IOR: case XOR: case AND:
6378 /* If we can safely shift this constant and we find the inner shift,
6379 make a new operation. */
6380 if (GET_CODE (XEXP (x, 1)) == CONST_INT
6381 && (INTVAL (XEXP (x, 1)) & ((((HOST_WIDE_INT) 1 << count)) - 1)) == 0
6382 && (tem = extract_left_shift (XEXP (x, 0), count)) != 0)
6383 return simplify_gen_binary (code, mode, tem,
6384 GEN_INT (INTVAL (XEXP (x, 1)) >> count));
6385
6386 break;
6387
6388 default:
6389 break;
6390 }
6391
6392 return 0;
6393 }
6394 \f
6395 /* Look at the expression rooted at X. Look for expressions
6396 equivalent to ZERO_EXTRACT, SIGN_EXTRACT, ZERO_EXTEND, SIGN_EXTEND.
6397 Form these expressions.
6398
6399 Return the new rtx, usually just X.
6400
6401 Also, for machines like the VAX that don't have logical shift insns,
6402 try to convert logical to arithmetic shift operations in cases where
6403 they are equivalent. This undoes the canonicalizations to logical
6404 shifts done elsewhere.
6405
6406 We try, as much as possible, to re-use rtl expressions to save memory.
6407
6408 IN_CODE says what kind of expression we are processing. Normally, it is
6409 SET. In a memory address (inside a MEM, PLUS or minus, the latter two
6410 being kludges), it is MEM. When processing the arguments of a comparison
6411 or a COMPARE against zero, it is COMPARE. */
6412
6413 static rtx
6414 make_compound_operation (rtx x, enum rtx_code in_code)
6415 {
6416 enum rtx_code code = GET_CODE (x);
6417 enum machine_mode mode = GET_MODE (x);
6418 int mode_width = GET_MODE_BITSIZE (mode);
6419 rtx rhs, lhs;
6420 enum rtx_code next_code;
6421 int i;
6422 rtx new = 0;
6423 rtx tem;
6424 const char *fmt;
6425
6426 /* Select the code to be used in recursive calls. Once we are inside an
6427 address, we stay there. If we have a comparison, set to COMPARE,
6428 but once inside, go back to our default of SET. */
6429
6430 next_code = (code == MEM || code == PLUS || code == MINUS ? MEM
6431 : ((code == COMPARE || COMPARISON_P (x))
6432 && XEXP (x, 1) == const0_rtx) ? COMPARE
6433 : in_code == COMPARE ? SET : in_code);
6434
6435 /* Process depending on the code of this operation. If NEW is set
6436 nonzero, it will be returned. */
6437
6438 switch (code)
6439 {
6440 case ASHIFT:
6441 /* Convert shifts by constants into multiplications if inside
6442 an address. */
6443 if (in_code == MEM && GET_CODE (XEXP (x, 1)) == CONST_INT
6444 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT
6445 && INTVAL (XEXP (x, 1)) >= 0)
6446 {
6447 new = make_compound_operation (XEXP (x, 0), next_code);
6448 new = gen_rtx_MULT (mode, new,
6449 GEN_INT ((HOST_WIDE_INT) 1
6450 << INTVAL (XEXP (x, 1))));
6451 }
6452 break;
6453
6454 case AND:
6455 /* If the second operand is not a constant, we can't do anything
6456 with it. */
6457 if (GET_CODE (XEXP (x, 1)) != CONST_INT)
6458 break;
6459
6460 /* If the constant is a power of two minus one and the first operand
6461 is a logical right shift, make an extraction. */
6462 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
6463 && (i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0)
6464 {
6465 new = make_compound_operation (XEXP (XEXP (x, 0), 0), next_code);
6466 new = make_extraction (mode, new, 0, XEXP (XEXP (x, 0), 1), i, 1,
6467 0, in_code == COMPARE);
6468 }
6469
6470 /* Same as previous, but for (subreg (lshiftrt ...)) in first op. */
6471 else if (GET_CODE (XEXP (x, 0)) == SUBREG
6472 && subreg_lowpart_p (XEXP (x, 0))
6473 && GET_CODE (SUBREG_REG (XEXP (x, 0))) == LSHIFTRT
6474 && (i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0)
6475 {
6476 new = make_compound_operation (XEXP (SUBREG_REG (XEXP (x, 0)), 0),
6477 next_code);
6478 new = make_extraction (GET_MODE (SUBREG_REG (XEXP (x, 0))), new, 0,
6479 XEXP (SUBREG_REG (XEXP (x, 0)), 1), i, 1,
6480 0, in_code == COMPARE);
6481 }
6482 /* Same as previous, but for (xor/ior (lshiftrt...) (lshiftrt...)). */
6483 else if ((GET_CODE (XEXP (x, 0)) == XOR
6484 || GET_CODE (XEXP (x, 0)) == IOR)
6485 && GET_CODE (XEXP (XEXP (x, 0), 0)) == LSHIFTRT
6486 && GET_CODE (XEXP (XEXP (x, 0), 1)) == LSHIFTRT
6487 && (i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0)
6488 {
6489 /* Apply the distributive law, and then try to make extractions. */
6490 new = gen_rtx_fmt_ee (GET_CODE (XEXP (x, 0)), mode,
6491 gen_rtx_AND (mode, XEXP (XEXP (x, 0), 0),
6492 XEXP (x, 1)),
6493 gen_rtx_AND (mode, XEXP (XEXP (x, 0), 1),
6494 XEXP (x, 1)));
6495 new = make_compound_operation (new, in_code);
6496 }
6497
6498 /* If we are have (and (rotate X C) M) and C is larger than the number
6499 of bits in M, this is an extraction. */
6500
6501 else if (GET_CODE (XEXP (x, 0)) == ROTATE
6502 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
6503 && (i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0
6504 && i <= INTVAL (XEXP (XEXP (x, 0), 1)))
6505 {
6506 new = make_compound_operation (XEXP (XEXP (x, 0), 0), next_code);
6507 new = make_extraction (mode, new,
6508 (GET_MODE_BITSIZE (mode)
6509 - INTVAL (XEXP (XEXP (x, 0), 1))),
6510 NULL_RTX, i, 1, 0, in_code == COMPARE);
6511 }
6512
6513 /* On machines without logical shifts, if the operand of the AND is
6514 a logical shift and our mask turns off all the propagated sign
6515 bits, we can replace the logical shift with an arithmetic shift. */
6516 else if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
6517 && !have_insn_for (LSHIFTRT, mode)
6518 && have_insn_for (ASHIFTRT, mode)
6519 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
6520 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
6521 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT
6522 && mode_width <= HOST_BITS_PER_WIDE_INT)
6523 {
6524 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
6525
6526 mask >>= INTVAL (XEXP (XEXP (x, 0), 1));
6527 if ((INTVAL (XEXP (x, 1)) & ~mask) == 0)
6528 SUBST (XEXP (x, 0),
6529 gen_rtx_ASHIFTRT (mode,
6530 make_compound_operation
6531 (XEXP (XEXP (x, 0), 0), next_code),
6532 XEXP (XEXP (x, 0), 1)));
6533 }
6534
6535 /* If the constant is one less than a power of two, this might be
6536 representable by an extraction even if no shift is present.
6537 If it doesn't end up being a ZERO_EXTEND, we will ignore it unless
6538 we are in a COMPARE. */
6539 else if ((i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0)
6540 new = make_extraction (mode,
6541 make_compound_operation (XEXP (x, 0),
6542 next_code),
6543 0, NULL_RTX, i, 1, 0, in_code == COMPARE);
6544
6545 /* If we are in a comparison and this is an AND with a power of two,
6546 convert this into the appropriate bit extract. */
6547 else if (in_code == COMPARE
6548 && (i = exact_log2 (INTVAL (XEXP (x, 1)))) >= 0)
6549 new = make_extraction (mode,
6550 make_compound_operation (XEXP (x, 0),
6551 next_code),
6552 i, NULL_RTX, 1, 1, 0, 1);
6553
6554 break;
6555
6556 case LSHIFTRT:
6557 /* If the sign bit is known to be zero, replace this with an
6558 arithmetic shift. */
6559 if (have_insn_for (ASHIFTRT, mode)
6560 && ! have_insn_for (LSHIFTRT, mode)
6561 && mode_width <= HOST_BITS_PER_WIDE_INT
6562 && (nonzero_bits (XEXP (x, 0), mode) & (1 << (mode_width - 1))) == 0)
6563 {
6564 new = gen_rtx_ASHIFTRT (mode,
6565 make_compound_operation (XEXP (x, 0),
6566 next_code),
6567 XEXP (x, 1));
6568 break;
6569 }
6570
6571 /* ... fall through ... */
6572
6573 case ASHIFTRT:
6574 lhs = XEXP (x, 0);
6575 rhs = XEXP (x, 1);
6576
6577 /* If we have (ashiftrt (ashift foo C1) C2) with C2 >= C1,
6578 this is a SIGN_EXTRACT. */
6579 if (GET_CODE (rhs) == CONST_INT
6580 && GET_CODE (lhs) == ASHIFT
6581 && GET_CODE (XEXP (lhs, 1)) == CONST_INT
6582 && INTVAL (rhs) >= INTVAL (XEXP (lhs, 1)))
6583 {
6584 new = make_compound_operation (XEXP (lhs, 0), next_code);
6585 new = make_extraction (mode, new,
6586 INTVAL (rhs) - INTVAL (XEXP (lhs, 1)),
6587 NULL_RTX, mode_width - INTVAL (rhs),
6588 code == LSHIFTRT, 0, in_code == COMPARE);
6589 break;
6590 }
6591
6592 /* See if we have operations between an ASHIFTRT and an ASHIFT.
6593 If so, try to merge the shifts into a SIGN_EXTEND. We could
6594 also do this for some cases of SIGN_EXTRACT, but it doesn't
6595 seem worth the effort; the case checked for occurs on Alpha. */
6596
6597 if (!OBJECT_P (lhs)
6598 && ! (GET_CODE (lhs) == SUBREG
6599 && (OBJECT_P (SUBREG_REG (lhs))))
6600 && GET_CODE (rhs) == CONST_INT
6601 && INTVAL (rhs) < HOST_BITS_PER_WIDE_INT
6602 && (new = extract_left_shift (lhs, INTVAL (rhs))) != 0)
6603 new = make_extraction (mode, make_compound_operation (new, next_code),
6604 0, NULL_RTX, mode_width - INTVAL (rhs),
6605 code == LSHIFTRT, 0, in_code == COMPARE);
6606
6607 break;
6608
6609 case SUBREG:
6610 /* Call ourselves recursively on the inner expression. If we are
6611 narrowing the object and it has a different RTL code from
6612 what it originally did, do this SUBREG as a force_to_mode. */
6613
6614 tem = make_compound_operation (SUBREG_REG (x), in_code);
6615
6616 {
6617 rtx simplified;
6618 simplified = simplify_subreg (GET_MODE (x), tem, GET_MODE (tem),
6619 SUBREG_BYTE (x));
6620
6621 if (simplified)
6622 tem = simplified;
6623
6624 if (GET_CODE (tem) != GET_CODE (SUBREG_REG (x))
6625 && GET_MODE_SIZE (mode) < GET_MODE_SIZE (GET_MODE (tem))
6626 && subreg_lowpart_p (x))
6627 {
6628 rtx newer = force_to_mode (tem, mode, ~(HOST_WIDE_INT) 0,
6629 0);
6630
6631 /* If we have something other than a SUBREG, we might have
6632 done an expansion, so rerun ourselves. */
6633 if (GET_CODE (newer) != SUBREG)
6634 newer = make_compound_operation (newer, in_code);
6635
6636 return newer;
6637 }
6638
6639 if (simplified)
6640 return tem;
6641 }
6642 break;
6643
6644 default:
6645 break;
6646 }
6647
6648 if (new)
6649 {
6650 x = gen_lowpart (mode, new);
6651 code = GET_CODE (x);
6652 }
6653
6654 /* Now recursively process each operand of this operation. */
6655 fmt = GET_RTX_FORMAT (code);
6656 for (i = 0; i < GET_RTX_LENGTH (code); i++)
6657 if (fmt[i] == 'e')
6658 {
6659 new = make_compound_operation (XEXP (x, i), next_code);
6660 SUBST (XEXP (x, i), new);
6661 }
6662
6663 /* If this is a commutative operation, the changes to the operands
6664 may have made it noncanonical. */
6665 if (COMMUTATIVE_ARITH_P (x)
6666 && swap_commutative_operands_p (XEXP (x, 0), XEXP (x, 1)))
6667 {
6668 tem = XEXP (x, 0);
6669 SUBST (XEXP (x, 0), XEXP (x, 1));
6670 SUBST (XEXP (x, 1), tem);
6671 }
6672
6673 return x;
6674 }
6675 \f
6676 /* Given M see if it is a value that would select a field of bits
6677 within an item, but not the entire word. Return -1 if not.
6678 Otherwise, return the starting position of the field, where 0 is the
6679 low-order bit.
6680
6681 *PLEN is set to the length of the field. */
6682
6683 static int
6684 get_pos_from_mask (unsigned HOST_WIDE_INT m, unsigned HOST_WIDE_INT *plen)
6685 {
6686 /* Get the bit number of the first 1 bit from the right, -1 if none. */
6687 int pos = exact_log2 (m & -m);
6688 int len = 0;
6689
6690 if (pos >= 0)
6691 /* Now shift off the low-order zero bits and see if we have a
6692 power of two minus 1. */
6693 len = exact_log2 ((m >> pos) + 1);
6694
6695 if (len <= 0)
6696 pos = -1;
6697
6698 *plen = len;
6699 return pos;
6700 }
6701 \f
6702 /* If X refers to a register that equals REG in value, replace these
6703 references with REG. */
6704 static rtx
6705 canon_reg_for_combine (rtx x, rtx reg)
6706 {
6707 rtx op0, op1, op2;
6708 const char *fmt;
6709 int i;
6710 bool copied;
6711
6712 enum rtx_code code = GET_CODE (x);
6713 switch (GET_RTX_CLASS (code))
6714 {
6715 case RTX_UNARY:
6716 op0 = canon_reg_for_combine (XEXP (x, 0), reg);
6717 if (op0 != XEXP (x, 0))
6718 return simplify_gen_unary (GET_CODE (x), GET_MODE (x), op0,
6719 GET_MODE (reg));
6720 break;
6721
6722 case RTX_BIN_ARITH:
6723 case RTX_COMM_ARITH:
6724 op0 = canon_reg_for_combine (XEXP (x, 0), reg);
6725 op1 = canon_reg_for_combine (XEXP (x, 1), reg);
6726 if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
6727 return simplify_gen_binary (GET_CODE (x), GET_MODE (x), op0, op1);
6728 break;
6729
6730 case RTX_COMPARE:
6731 case RTX_COMM_COMPARE:
6732 op0 = canon_reg_for_combine (XEXP (x, 0), reg);
6733 op1 = canon_reg_for_combine (XEXP (x, 1), reg);
6734 if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
6735 return simplify_gen_relational (GET_CODE (x), GET_MODE (x),
6736 GET_MODE (op0), op0, op1);
6737 break;
6738
6739 case RTX_TERNARY:
6740 case RTX_BITFIELD_OPS:
6741 op0 = canon_reg_for_combine (XEXP (x, 0), reg);
6742 op1 = canon_reg_for_combine (XEXP (x, 1), reg);
6743 op2 = canon_reg_for_combine (XEXP (x, 2), reg);
6744 if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1) || op2 != XEXP (x, 2))
6745 return simplify_gen_ternary (GET_CODE (x), GET_MODE (x),
6746 GET_MODE (op0), op0, op1, op2);
6747
6748 case RTX_OBJ:
6749 if (REG_P (x))
6750 {
6751 if (rtx_equal_p (get_last_value (reg), x)
6752 || rtx_equal_p (reg, get_last_value (x)))
6753 return reg;
6754 else
6755 break;
6756 }
6757
6758 /* fall through */
6759
6760 default:
6761 fmt = GET_RTX_FORMAT (code);
6762 copied = false;
6763 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
6764 if (fmt[i] == 'e')
6765 {
6766 rtx op = canon_reg_for_combine (XEXP (x, i), reg);
6767 if (op != XEXP (x, i))
6768 {
6769 if (!copied)
6770 {
6771 copied = true;
6772 x = copy_rtx (x);
6773 }
6774 XEXP (x, i) = op;
6775 }
6776 }
6777 else if (fmt[i] == 'E')
6778 {
6779 int j;
6780 for (j = 0; j < XVECLEN (x, i); j++)
6781 {
6782 rtx op = canon_reg_for_combine (XVECEXP (x, i, j), reg);
6783 if (op != XVECEXP (x, i, j))
6784 {
6785 if (!copied)
6786 {
6787 copied = true;
6788 x = copy_rtx (x);
6789 }
6790 XVECEXP (x, i, j) = op;
6791 }
6792 }
6793 }
6794
6795 break;
6796 }
6797
6798 return x;
6799 }
6800
6801 /* Return X converted to MODE. If the value is already truncated to
6802 MODE we can just return a subreg even though in the general case we
6803 would need an explicit truncation. */
6804
6805 static rtx
6806 gen_lowpart_or_truncate (enum machine_mode mode, rtx x)
6807 {
6808 if (GET_MODE_SIZE (GET_MODE (x)) <= GET_MODE_SIZE (mode)
6809 || TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (mode),
6810 GET_MODE_BITSIZE (GET_MODE (x)))
6811 || (REG_P (x) && reg_truncated_to_mode (mode, x)))
6812 return gen_lowpart (mode, x);
6813 else
6814 return simplify_gen_unary (TRUNCATE, mode, x, GET_MODE (x));
6815 }
6816
6817 /* See if X can be simplified knowing that we will only refer to it in
6818 MODE and will only refer to those bits that are nonzero in MASK.
6819 If other bits are being computed or if masking operations are done
6820 that select a superset of the bits in MASK, they can sometimes be
6821 ignored.
6822
6823 Return a possibly simplified expression, but always convert X to
6824 MODE. If X is a CONST_INT, AND the CONST_INT with MASK.
6825
6826 If JUST_SELECT is nonzero, don't optimize by noticing that bits in MASK
6827 are all off in X. This is used when X will be complemented, by either
6828 NOT, NEG, or XOR. */
6829
6830 static rtx
6831 force_to_mode (rtx x, enum machine_mode mode, unsigned HOST_WIDE_INT mask,
6832 int just_select)
6833 {
6834 enum rtx_code code = GET_CODE (x);
6835 int next_select = just_select || code == XOR || code == NOT || code == NEG;
6836 enum machine_mode op_mode;
6837 unsigned HOST_WIDE_INT fuller_mask, nonzero;
6838 rtx op0, op1, temp;
6839
6840 /* If this is a CALL or ASM_OPERANDS, don't do anything. Some of the
6841 code below will do the wrong thing since the mode of such an
6842 expression is VOIDmode.
6843
6844 Also do nothing if X is a CLOBBER; this can happen if X was
6845 the return value from a call to gen_lowpart. */
6846 if (code == CALL || code == ASM_OPERANDS || code == CLOBBER)
6847 return x;
6848
6849 /* We want to perform the operation is its present mode unless we know
6850 that the operation is valid in MODE, in which case we do the operation
6851 in MODE. */
6852 op_mode = ((GET_MODE_CLASS (mode) == GET_MODE_CLASS (GET_MODE (x))
6853 && have_insn_for (code, mode))
6854 ? mode : GET_MODE (x));
6855
6856 /* It is not valid to do a right-shift in a narrower mode
6857 than the one it came in with. */
6858 if ((code == LSHIFTRT || code == ASHIFTRT)
6859 && GET_MODE_BITSIZE (mode) < GET_MODE_BITSIZE (GET_MODE (x)))
6860 op_mode = GET_MODE (x);
6861
6862 /* Truncate MASK to fit OP_MODE. */
6863 if (op_mode)
6864 mask &= GET_MODE_MASK (op_mode);
6865
6866 /* When we have an arithmetic operation, or a shift whose count we
6867 do not know, we need to assume that all bits up to the highest-order
6868 bit in MASK will be needed. This is how we form such a mask. */
6869 if (mask & ((unsigned HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT - 1)))
6870 fuller_mask = ~(unsigned HOST_WIDE_INT) 0;
6871 else
6872 fuller_mask = (((unsigned HOST_WIDE_INT) 1 << (floor_log2 (mask) + 1))
6873 - 1);
6874
6875 /* Determine what bits of X are guaranteed to be (non)zero. */
6876 nonzero = nonzero_bits (x, mode);
6877
6878 /* If none of the bits in X are needed, return a zero. */
6879 if (!just_select && (nonzero & mask) == 0 && !side_effects_p (x))
6880 x = const0_rtx;
6881
6882 /* If X is a CONST_INT, return a new one. Do this here since the
6883 test below will fail. */
6884 if (GET_CODE (x) == CONST_INT)
6885 {
6886 if (SCALAR_INT_MODE_P (mode))
6887 return gen_int_mode (INTVAL (x) & mask, mode);
6888 else
6889 {
6890 x = GEN_INT (INTVAL (x) & mask);
6891 return gen_lowpart_common (mode, x);
6892 }
6893 }
6894
6895 /* If X is narrower than MODE and we want all the bits in X's mode, just
6896 get X in the proper mode. */
6897 if (GET_MODE_SIZE (GET_MODE (x)) < GET_MODE_SIZE (mode)
6898 && (GET_MODE_MASK (GET_MODE (x)) & ~mask) == 0)
6899 return gen_lowpart (mode, x);
6900
6901 switch (code)
6902 {
6903 case CLOBBER:
6904 /* If X is a (clobber (const_int)), return it since we know we are
6905 generating something that won't match. */
6906 return x;
6907
6908 case SIGN_EXTEND:
6909 case ZERO_EXTEND:
6910 case ZERO_EXTRACT:
6911 case SIGN_EXTRACT:
6912 x = expand_compound_operation (x);
6913 if (GET_CODE (x) != code)
6914 return force_to_mode (x, mode, mask, next_select);
6915 break;
6916
6917 case SUBREG:
6918 if (subreg_lowpart_p (x)
6919 /* We can ignore the effect of this SUBREG if it narrows the mode or
6920 if the constant masks to zero all the bits the mode doesn't
6921 have. */
6922 && ((GET_MODE_SIZE (GET_MODE (x))
6923 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
6924 || (0 == (mask
6925 & GET_MODE_MASK (GET_MODE (x))
6926 & ~GET_MODE_MASK (GET_MODE (SUBREG_REG (x)))))))
6927 return force_to_mode (SUBREG_REG (x), mode, mask, next_select);
6928 break;
6929
6930 case AND:
6931 /* If this is an AND with a constant, convert it into an AND
6932 whose constant is the AND of that constant with MASK. If it
6933 remains an AND of MASK, delete it since it is redundant. */
6934
6935 if (GET_CODE (XEXP (x, 1)) == CONST_INT)
6936 {
6937 x = simplify_and_const_int (x, op_mode, XEXP (x, 0),
6938 mask & INTVAL (XEXP (x, 1)));
6939
6940 /* If X is still an AND, see if it is an AND with a mask that
6941 is just some low-order bits. If so, and it is MASK, we don't
6942 need it. */
6943
6944 if (GET_CODE (x) == AND && GET_CODE (XEXP (x, 1)) == CONST_INT
6945 && ((INTVAL (XEXP (x, 1)) & GET_MODE_MASK (GET_MODE (x)))
6946 == mask))
6947 x = XEXP (x, 0);
6948
6949 /* If it remains an AND, try making another AND with the bits
6950 in the mode mask that aren't in MASK turned on. If the
6951 constant in the AND is wide enough, this might make a
6952 cheaper constant. */
6953
6954 if (GET_CODE (x) == AND && GET_CODE (XEXP (x, 1)) == CONST_INT
6955 && GET_MODE_MASK (GET_MODE (x)) != mask
6956 && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT)
6957 {
6958 HOST_WIDE_INT cval = (INTVAL (XEXP (x, 1))
6959 | (GET_MODE_MASK (GET_MODE (x)) & ~mask));
6960 int width = GET_MODE_BITSIZE (GET_MODE (x));
6961 rtx y;
6962
6963 /* If MODE is narrower than HOST_WIDE_INT and CVAL is a negative
6964 number, sign extend it. */
6965 if (width > 0 && width < HOST_BITS_PER_WIDE_INT
6966 && (cval & ((HOST_WIDE_INT) 1 << (width - 1))) != 0)
6967 cval |= (HOST_WIDE_INT) -1 << width;
6968
6969 y = simplify_gen_binary (AND, GET_MODE (x),
6970 XEXP (x, 0), GEN_INT (cval));
6971 if (rtx_cost (y, SET) < rtx_cost (x, SET))
6972 x = y;
6973 }
6974
6975 break;
6976 }
6977
6978 goto binop;
6979
6980 case PLUS:
6981 /* In (and (plus FOO C1) M), if M is a mask that just turns off
6982 low-order bits (as in an alignment operation) and FOO is already
6983 aligned to that boundary, mask C1 to that boundary as well.
6984 This may eliminate that PLUS and, later, the AND. */
6985
6986 {
6987 unsigned int width = GET_MODE_BITSIZE (mode);
6988 unsigned HOST_WIDE_INT smask = mask;
6989
6990 /* If MODE is narrower than HOST_WIDE_INT and mask is a negative
6991 number, sign extend it. */
6992
6993 if (width < HOST_BITS_PER_WIDE_INT
6994 && (smask & ((HOST_WIDE_INT) 1 << (width - 1))) != 0)
6995 smask |= (HOST_WIDE_INT) -1 << width;
6996
6997 if (GET_CODE (XEXP (x, 1)) == CONST_INT
6998 && exact_log2 (- smask) >= 0
6999 && (nonzero_bits (XEXP (x, 0), mode) & ~smask) == 0
7000 && (INTVAL (XEXP (x, 1)) & ~smask) != 0)
7001 return force_to_mode (plus_constant (XEXP (x, 0),
7002 (INTVAL (XEXP (x, 1)) & smask)),
7003 mode, smask, next_select);
7004 }
7005
7006 /* ... fall through ... */
7007
7008 case MULT:
7009 /* For PLUS, MINUS and MULT, we need any bits less significant than the
7010 most significant bit in MASK since carries from those bits will
7011 affect the bits we are interested in. */
7012 mask = fuller_mask;
7013 goto binop;
7014
7015 case MINUS:
7016 /* If X is (minus C Y) where C's least set bit is larger than any bit
7017 in the mask, then we may replace with (neg Y). */
7018 if (GET_CODE (XEXP (x, 0)) == CONST_INT
7019 && (((unsigned HOST_WIDE_INT) (INTVAL (XEXP (x, 0))
7020 & -INTVAL (XEXP (x, 0))))
7021 > mask))
7022 {
7023 x = simplify_gen_unary (NEG, GET_MODE (x), XEXP (x, 1),
7024 GET_MODE (x));
7025 return force_to_mode (x, mode, mask, next_select);
7026 }
7027
7028 /* Similarly, if C contains every bit in the fuller_mask, then we may
7029 replace with (not Y). */
7030 if (GET_CODE (XEXP (x, 0)) == CONST_INT
7031 && ((INTVAL (XEXP (x, 0)) | (HOST_WIDE_INT) fuller_mask)
7032 == INTVAL (XEXP (x, 0))))
7033 {
7034 x = simplify_gen_unary (NOT, GET_MODE (x),
7035 XEXP (x, 1), GET_MODE (x));
7036 return force_to_mode (x, mode, mask, next_select);
7037 }
7038
7039 mask = fuller_mask;
7040 goto binop;
7041
7042 case IOR:
7043 case XOR:
7044 /* If X is (ior (lshiftrt FOO C1) C2), try to commute the IOR and
7045 LSHIFTRT so we end up with an (and (lshiftrt (ior ...) ...) ...)
7046 operation which may be a bitfield extraction. Ensure that the
7047 constant we form is not wider than the mode of X. */
7048
7049 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
7050 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
7051 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
7052 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT
7053 && GET_CODE (XEXP (x, 1)) == CONST_INT
7054 && ((INTVAL (XEXP (XEXP (x, 0), 1))
7055 + floor_log2 (INTVAL (XEXP (x, 1))))
7056 < GET_MODE_BITSIZE (GET_MODE (x)))
7057 && (INTVAL (XEXP (x, 1))
7058 & ~nonzero_bits (XEXP (x, 0), GET_MODE (x))) == 0)
7059 {
7060 temp = GEN_INT ((INTVAL (XEXP (x, 1)) & mask)
7061 << INTVAL (XEXP (XEXP (x, 0), 1)));
7062 temp = simplify_gen_binary (GET_CODE (x), GET_MODE (x),
7063 XEXP (XEXP (x, 0), 0), temp);
7064 x = simplify_gen_binary (LSHIFTRT, GET_MODE (x), temp,
7065 XEXP (XEXP (x, 0), 1));
7066 return force_to_mode (x, mode, mask, next_select);
7067 }
7068
7069 binop:
7070 /* For most binary operations, just propagate into the operation and
7071 change the mode if we have an operation of that mode. */
7072
7073 op0 = gen_lowpart_or_truncate (op_mode,
7074 force_to_mode (XEXP (x, 0), mode, mask,
7075 next_select));
7076 op1 = gen_lowpart_or_truncate (op_mode,
7077 force_to_mode (XEXP (x, 1), mode, mask,
7078 next_select));
7079
7080 if (op_mode != GET_MODE (x) || op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
7081 x = simplify_gen_binary (code, op_mode, op0, op1);
7082 break;
7083
7084 case ASHIFT:
7085 /* For left shifts, do the same, but just for the first operand.
7086 However, we cannot do anything with shifts where we cannot
7087 guarantee that the counts are smaller than the size of the mode
7088 because such a count will have a different meaning in a
7089 wider mode. */
7090
7091 if (! (GET_CODE (XEXP (x, 1)) == CONST_INT
7092 && INTVAL (XEXP (x, 1)) >= 0
7093 && INTVAL (XEXP (x, 1)) < GET_MODE_BITSIZE (mode))
7094 && ! (GET_MODE (XEXP (x, 1)) != VOIDmode
7095 && (nonzero_bits (XEXP (x, 1), GET_MODE (XEXP (x, 1)))
7096 < (unsigned HOST_WIDE_INT) GET_MODE_BITSIZE (mode))))
7097 break;
7098
7099 /* If the shift count is a constant and we can do arithmetic in
7100 the mode of the shift, refine which bits we need. Otherwise, use the
7101 conservative form of the mask. */
7102 if (GET_CODE (XEXP (x, 1)) == CONST_INT
7103 && INTVAL (XEXP (x, 1)) >= 0
7104 && INTVAL (XEXP (x, 1)) < GET_MODE_BITSIZE (op_mode)
7105 && GET_MODE_BITSIZE (op_mode) <= HOST_BITS_PER_WIDE_INT)
7106 mask >>= INTVAL (XEXP (x, 1));
7107 else
7108 mask = fuller_mask;
7109
7110 op0 = gen_lowpart_or_truncate (op_mode,
7111 force_to_mode (XEXP (x, 0), op_mode,
7112 mask, next_select));
7113
7114 if (op_mode != GET_MODE (x) || op0 != XEXP (x, 0))
7115 x = simplify_gen_binary (code, op_mode, op0, XEXP (x, 1));
7116 break;
7117
7118 case LSHIFTRT:
7119 /* Here we can only do something if the shift count is a constant,
7120 this shift constant is valid for the host, and we can do arithmetic
7121 in OP_MODE. */
7122
7123 if (GET_CODE (XEXP (x, 1)) == CONST_INT
7124 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT
7125 && GET_MODE_BITSIZE (op_mode) <= HOST_BITS_PER_WIDE_INT)
7126 {
7127 rtx inner = XEXP (x, 0);
7128 unsigned HOST_WIDE_INT inner_mask;
7129
7130 /* Select the mask of the bits we need for the shift operand. */
7131 inner_mask = mask << INTVAL (XEXP (x, 1));
7132
7133 /* We can only change the mode of the shift if we can do arithmetic
7134 in the mode of the shift and INNER_MASK is no wider than the
7135 width of X's mode. */
7136 if ((inner_mask & ~GET_MODE_MASK (GET_MODE (x))) != 0)
7137 op_mode = GET_MODE (x);
7138
7139 inner = force_to_mode (inner, op_mode, inner_mask, next_select);
7140
7141 if (GET_MODE (x) != op_mode || inner != XEXP (x, 0))
7142 x = simplify_gen_binary (LSHIFTRT, op_mode, inner, XEXP (x, 1));
7143 }
7144
7145 /* If we have (and (lshiftrt FOO C1) C2) where the combination of the
7146 shift and AND produces only copies of the sign bit (C2 is one less
7147 than a power of two), we can do this with just a shift. */
7148
7149 if (GET_CODE (x) == LSHIFTRT
7150 && GET_CODE (XEXP (x, 1)) == CONST_INT
7151 /* The shift puts one of the sign bit copies in the least significant
7152 bit. */
7153 && ((INTVAL (XEXP (x, 1))
7154 + num_sign_bit_copies (XEXP (x, 0), GET_MODE (XEXP (x, 0))))
7155 >= GET_MODE_BITSIZE (GET_MODE (x)))
7156 && exact_log2 (mask + 1) >= 0
7157 /* Number of bits left after the shift must be more than the mask
7158 needs. */
7159 && ((INTVAL (XEXP (x, 1)) + exact_log2 (mask + 1))
7160 <= GET_MODE_BITSIZE (GET_MODE (x)))
7161 /* Must be more sign bit copies than the mask needs. */
7162 && ((int) num_sign_bit_copies (XEXP (x, 0), GET_MODE (XEXP (x, 0)))
7163 >= exact_log2 (mask + 1)))
7164 x = simplify_gen_binary (LSHIFTRT, GET_MODE (x), XEXP (x, 0),
7165 GEN_INT (GET_MODE_BITSIZE (GET_MODE (x))
7166 - exact_log2 (mask + 1)));
7167
7168 goto shiftrt;
7169
7170 case ASHIFTRT:
7171 /* If we are just looking for the sign bit, we don't need this shift at
7172 all, even if it has a variable count. */
7173 if (GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
7174 && (mask == ((unsigned HOST_WIDE_INT) 1
7175 << (GET_MODE_BITSIZE (GET_MODE (x)) - 1))))
7176 return force_to_mode (XEXP (x, 0), mode, mask, next_select);
7177
7178 /* If this is a shift by a constant, get a mask that contains those bits
7179 that are not copies of the sign bit. We then have two cases: If
7180 MASK only includes those bits, this can be a logical shift, which may
7181 allow simplifications. If MASK is a single-bit field not within
7182 those bits, we are requesting a copy of the sign bit and hence can
7183 shift the sign bit to the appropriate location. */
7184
7185 if (GET_CODE (XEXP (x, 1)) == CONST_INT && INTVAL (XEXP (x, 1)) >= 0
7186 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT)
7187 {
7188 int i;
7189
7190 /* If the considered data is wider than HOST_WIDE_INT, we can't
7191 represent a mask for all its bits in a single scalar.
7192 But we only care about the lower bits, so calculate these. */
7193
7194 if (GET_MODE_BITSIZE (GET_MODE (x)) > HOST_BITS_PER_WIDE_INT)
7195 {
7196 nonzero = ~(HOST_WIDE_INT) 0;
7197
7198 /* GET_MODE_BITSIZE (GET_MODE (x)) - INTVAL (XEXP (x, 1))
7199 is the number of bits a full-width mask would have set.
7200 We need only shift if these are fewer than nonzero can
7201 hold. If not, we must keep all bits set in nonzero. */
7202
7203 if (GET_MODE_BITSIZE (GET_MODE (x)) - INTVAL (XEXP (x, 1))
7204 < HOST_BITS_PER_WIDE_INT)
7205 nonzero >>= INTVAL (XEXP (x, 1))
7206 + HOST_BITS_PER_WIDE_INT
7207 - GET_MODE_BITSIZE (GET_MODE (x)) ;
7208 }
7209 else
7210 {
7211 nonzero = GET_MODE_MASK (GET_MODE (x));
7212 nonzero >>= INTVAL (XEXP (x, 1));
7213 }
7214
7215 if ((mask & ~nonzero) == 0)
7216 {
7217 x = simplify_shift_const (NULL_RTX, LSHIFTRT, GET_MODE (x),
7218 XEXP (x, 0), INTVAL (XEXP (x, 1)));
7219 if (GET_CODE (x) != ASHIFTRT)
7220 return force_to_mode (x, mode, mask, next_select);
7221 }
7222
7223 else if ((i = exact_log2 (mask)) >= 0)
7224 {
7225 x = simplify_shift_const
7226 (NULL_RTX, LSHIFTRT, GET_MODE (x), XEXP (x, 0),
7227 GET_MODE_BITSIZE (GET_MODE (x)) - 1 - i);
7228
7229 if (GET_CODE (x) != ASHIFTRT)
7230 return force_to_mode (x, mode, mask, next_select);
7231 }
7232 }
7233
7234 /* If MASK is 1, convert this to an LSHIFTRT. This can be done
7235 even if the shift count isn't a constant. */
7236 if (mask == 1)
7237 x = simplify_gen_binary (LSHIFTRT, GET_MODE (x),
7238 XEXP (x, 0), XEXP (x, 1));
7239
7240 shiftrt:
7241
7242 /* If this is a zero- or sign-extension operation that just affects bits
7243 we don't care about, remove it. Be sure the call above returned
7244 something that is still a shift. */
7245
7246 if ((GET_CODE (x) == LSHIFTRT || GET_CODE (x) == ASHIFTRT)
7247 && GET_CODE (XEXP (x, 1)) == CONST_INT
7248 && INTVAL (XEXP (x, 1)) >= 0
7249 && (INTVAL (XEXP (x, 1))
7250 <= GET_MODE_BITSIZE (GET_MODE (x)) - (floor_log2 (mask) + 1))
7251 && GET_CODE (XEXP (x, 0)) == ASHIFT
7252 && XEXP (XEXP (x, 0), 1) == XEXP (x, 1))
7253 return force_to_mode (XEXP (XEXP (x, 0), 0), mode, mask,
7254 next_select);
7255
7256 break;
7257
7258 case ROTATE:
7259 case ROTATERT:
7260 /* If the shift count is constant and we can do computations
7261 in the mode of X, compute where the bits we care about are.
7262 Otherwise, we can't do anything. Don't change the mode of
7263 the shift or propagate MODE into the shift, though. */
7264 if (GET_CODE (XEXP (x, 1)) == CONST_INT
7265 && INTVAL (XEXP (x, 1)) >= 0)
7266 {
7267 temp = simplify_binary_operation (code == ROTATE ? ROTATERT : ROTATE,
7268 GET_MODE (x), GEN_INT (mask),
7269 XEXP (x, 1));
7270 if (temp && GET_CODE (temp) == CONST_INT)
7271 SUBST (XEXP (x, 0),
7272 force_to_mode (XEXP (x, 0), GET_MODE (x),
7273 INTVAL (temp), next_select));
7274 }
7275 break;
7276
7277 case NEG:
7278 /* If we just want the low-order bit, the NEG isn't needed since it
7279 won't change the low-order bit. */
7280 if (mask == 1)
7281 return force_to_mode (XEXP (x, 0), mode, mask, just_select);
7282
7283 /* We need any bits less significant than the most significant bit in
7284 MASK since carries from those bits will affect the bits we are
7285 interested in. */
7286 mask = fuller_mask;
7287 goto unop;
7288
7289 case NOT:
7290 /* (not FOO) is (xor FOO CONST), so if FOO is an LSHIFTRT, we can do the
7291 same as the XOR case above. Ensure that the constant we form is not
7292 wider than the mode of X. */
7293
7294 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
7295 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
7296 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
7297 && (INTVAL (XEXP (XEXP (x, 0), 1)) + floor_log2 (mask)
7298 < GET_MODE_BITSIZE (GET_MODE (x)))
7299 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT)
7300 {
7301 temp = gen_int_mode (mask << INTVAL (XEXP (XEXP (x, 0), 1)),
7302 GET_MODE (x));
7303 temp = simplify_gen_binary (XOR, GET_MODE (x),
7304 XEXP (XEXP (x, 0), 0), temp);
7305 x = simplify_gen_binary (LSHIFTRT, GET_MODE (x),
7306 temp, XEXP (XEXP (x, 0), 1));
7307
7308 return force_to_mode (x, mode, mask, next_select);
7309 }
7310
7311 /* (and (not FOO) CONST) is (not (or FOO (not CONST))), so we must
7312 use the full mask inside the NOT. */
7313 mask = fuller_mask;
7314
7315 unop:
7316 op0 = gen_lowpart_or_truncate (op_mode,
7317 force_to_mode (XEXP (x, 0), mode, mask,
7318 next_select));
7319 if (op_mode != GET_MODE (x) || op0 != XEXP (x, 0))
7320 x = simplify_gen_unary (code, op_mode, op0, op_mode);
7321 break;
7322
7323 case NE:
7324 /* (and (ne FOO 0) CONST) can be (and FOO CONST) if CONST is included
7325 in STORE_FLAG_VALUE and FOO has a single bit that might be nonzero,
7326 which is equal to STORE_FLAG_VALUE. */
7327 if ((mask & ~STORE_FLAG_VALUE) == 0 && XEXP (x, 1) == const0_rtx
7328 && GET_MODE (XEXP (x, 0)) == mode
7329 && exact_log2 (nonzero_bits (XEXP (x, 0), mode)) >= 0
7330 && (nonzero_bits (XEXP (x, 0), mode)
7331 == (unsigned HOST_WIDE_INT) STORE_FLAG_VALUE))
7332 return force_to_mode (XEXP (x, 0), mode, mask, next_select);
7333
7334 break;
7335
7336 case IF_THEN_ELSE:
7337 /* We have no way of knowing if the IF_THEN_ELSE can itself be
7338 written in a narrower mode. We play it safe and do not do so. */
7339
7340 SUBST (XEXP (x, 1),
7341 gen_lowpart_or_truncate (GET_MODE (x),
7342 force_to_mode (XEXP (x, 1), mode,
7343 mask, next_select)));
7344 SUBST (XEXP (x, 2),
7345 gen_lowpart_or_truncate (GET_MODE (x),
7346 force_to_mode (XEXP (x, 2), mode,
7347 mask, next_select)));
7348 break;
7349
7350 default:
7351 break;
7352 }
7353
7354 /* Ensure we return a value of the proper mode. */
7355 return gen_lowpart_or_truncate (mode, x);
7356 }
7357 \f
7358 /* Return nonzero if X is an expression that has one of two values depending on
7359 whether some other value is zero or nonzero. In that case, we return the
7360 value that is being tested, *PTRUE is set to the value if the rtx being
7361 returned has a nonzero value, and *PFALSE is set to the other alternative.
7362
7363 If we return zero, we set *PTRUE and *PFALSE to X. */
7364
7365 static rtx
7366 if_then_else_cond (rtx x, rtx *ptrue, rtx *pfalse)
7367 {
7368 enum machine_mode mode = GET_MODE (x);
7369 enum rtx_code code = GET_CODE (x);
7370 rtx cond0, cond1, true0, true1, false0, false1;
7371 unsigned HOST_WIDE_INT nz;
7372
7373 /* If we are comparing a value against zero, we are done. */
7374 if ((code == NE || code == EQ)
7375 && XEXP (x, 1) == const0_rtx)
7376 {
7377 *ptrue = (code == NE) ? const_true_rtx : const0_rtx;
7378 *pfalse = (code == NE) ? const0_rtx : const_true_rtx;
7379 return XEXP (x, 0);
7380 }
7381
7382 /* If this is a unary operation whose operand has one of two values, apply
7383 our opcode to compute those values. */
7384 else if (UNARY_P (x)
7385 && (cond0 = if_then_else_cond (XEXP (x, 0), &true0, &false0)) != 0)
7386 {
7387 *ptrue = simplify_gen_unary (code, mode, true0, GET_MODE (XEXP (x, 0)));
7388 *pfalse = simplify_gen_unary (code, mode, false0,
7389 GET_MODE (XEXP (x, 0)));
7390 return cond0;
7391 }
7392
7393 /* If this is a COMPARE, do nothing, since the IF_THEN_ELSE we would
7394 make can't possibly match and would suppress other optimizations. */
7395 else if (code == COMPARE)
7396 ;
7397
7398 /* If this is a binary operation, see if either side has only one of two
7399 values. If either one does or if both do and they are conditional on
7400 the same value, compute the new true and false values. */
7401 else if (BINARY_P (x))
7402 {
7403 cond0 = if_then_else_cond (XEXP (x, 0), &true0, &false0);
7404 cond1 = if_then_else_cond (XEXP (x, 1), &true1, &false1);
7405
7406 if ((cond0 != 0 || cond1 != 0)
7407 && ! (cond0 != 0 && cond1 != 0 && ! rtx_equal_p (cond0, cond1)))
7408 {
7409 /* If if_then_else_cond returned zero, then true/false are the
7410 same rtl. We must copy one of them to prevent invalid rtl
7411 sharing. */
7412 if (cond0 == 0)
7413 true0 = copy_rtx (true0);
7414 else if (cond1 == 0)
7415 true1 = copy_rtx (true1);
7416
7417 if (COMPARISON_P (x))
7418 {
7419 *ptrue = simplify_gen_relational (code, mode, VOIDmode,
7420 true0, true1);
7421 *pfalse = simplify_gen_relational (code, mode, VOIDmode,
7422 false0, false1);
7423 }
7424 else
7425 {
7426 *ptrue = simplify_gen_binary (code, mode, true0, true1);
7427 *pfalse = simplify_gen_binary (code, mode, false0, false1);
7428 }
7429
7430 return cond0 ? cond0 : cond1;
7431 }
7432
7433 /* See if we have PLUS, IOR, XOR, MINUS or UMAX, where one of the
7434 operands is zero when the other is nonzero, and vice-versa,
7435 and STORE_FLAG_VALUE is 1 or -1. */
7436
7437 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
7438 && (code == PLUS || code == IOR || code == XOR || code == MINUS
7439 || code == UMAX)
7440 && GET_CODE (XEXP (x, 0)) == MULT && GET_CODE (XEXP (x, 1)) == MULT)
7441 {
7442 rtx op0 = XEXP (XEXP (x, 0), 1);
7443 rtx op1 = XEXP (XEXP (x, 1), 1);
7444
7445 cond0 = XEXP (XEXP (x, 0), 0);
7446 cond1 = XEXP (XEXP (x, 1), 0);
7447
7448 if (COMPARISON_P (cond0)
7449 && COMPARISON_P (cond1)
7450 && ((GET_CODE (cond0) == reversed_comparison_code (cond1, NULL)
7451 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 0))
7452 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 1)))
7453 || ((swap_condition (GET_CODE (cond0))
7454 == reversed_comparison_code (cond1, NULL))
7455 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 1))
7456 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 0))))
7457 && ! side_effects_p (x))
7458 {
7459 *ptrue = simplify_gen_binary (MULT, mode, op0, const_true_rtx);
7460 *pfalse = simplify_gen_binary (MULT, mode,
7461 (code == MINUS
7462 ? simplify_gen_unary (NEG, mode,
7463 op1, mode)
7464 : op1),
7465 const_true_rtx);
7466 return cond0;
7467 }
7468 }
7469
7470 /* Similarly for MULT, AND and UMIN, except that for these the result
7471 is always zero. */
7472 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
7473 && (code == MULT || code == AND || code == UMIN)
7474 && GET_CODE (XEXP (x, 0)) == MULT && GET_CODE (XEXP (x, 1)) == MULT)
7475 {
7476 cond0 = XEXP (XEXP (x, 0), 0);
7477 cond1 = XEXP (XEXP (x, 1), 0);
7478
7479 if (COMPARISON_P (cond0)
7480 && COMPARISON_P (cond1)
7481 && ((GET_CODE (cond0) == reversed_comparison_code (cond1, NULL)
7482 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 0))
7483 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 1)))
7484 || ((swap_condition (GET_CODE (cond0))
7485 == reversed_comparison_code (cond1, NULL))
7486 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 1))
7487 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 0))))
7488 && ! side_effects_p (x))
7489 {
7490 *ptrue = *pfalse = const0_rtx;
7491 return cond0;
7492 }
7493 }
7494 }
7495
7496 else if (code == IF_THEN_ELSE)
7497 {
7498 /* If we have IF_THEN_ELSE already, extract the condition and
7499 canonicalize it if it is NE or EQ. */
7500 cond0 = XEXP (x, 0);
7501 *ptrue = XEXP (x, 1), *pfalse = XEXP (x, 2);
7502 if (GET_CODE (cond0) == NE && XEXP (cond0, 1) == const0_rtx)
7503 return XEXP (cond0, 0);
7504 else if (GET_CODE (cond0) == EQ && XEXP (cond0, 1) == const0_rtx)
7505 {
7506 *ptrue = XEXP (x, 2), *pfalse = XEXP (x, 1);
7507 return XEXP (cond0, 0);
7508 }
7509 else
7510 return cond0;
7511 }
7512
7513 /* If X is a SUBREG, we can narrow both the true and false values
7514 if the inner expression, if there is a condition. */
7515 else if (code == SUBREG
7516 && 0 != (cond0 = if_then_else_cond (SUBREG_REG (x),
7517 &true0, &false0)))
7518 {
7519 true0 = simplify_gen_subreg (mode, true0,
7520 GET_MODE (SUBREG_REG (x)), SUBREG_BYTE (x));
7521 false0 = simplify_gen_subreg (mode, false0,
7522 GET_MODE (SUBREG_REG (x)), SUBREG_BYTE (x));
7523 if (true0 && false0)
7524 {
7525 *ptrue = true0;
7526 *pfalse = false0;
7527 return cond0;
7528 }
7529 }
7530
7531 /* If X is a constant, this isn't special and will cause confusions
7532 if we treat it as such. Likewise if it is equivalent to a constant. */
7533 else if (CONSTANT_P (x)
7534 || ((cond0 = get_last_value (x)) != 0 && CONSTANT_P (cond0)))
7535 ;
7536
7537 /* If we're in BImode, canonicalize on 0 and STORE_FLAG_VALUE, as that
7538 will be least confusing to the rest of the compiler. */
7539 else if (mode == BImode)
7540 {
7541 *ptrue = GEN_INT (STORE_FLAG_VALUE), *pfalse = const0_rtx;
7542 return x;
7543 }
7544
7545 /* If X is known to be either 0 or -1, those are the true and
7546 false values when testing X. */
7547 else if (x == constm1_rtx || x == const0_rtx
7548 || (mode != VOIDmode
7549 && num_sign_bit_copies (x, mode) == GET_MODE_BITSIZE (mode)))
7550 {
7551 *ptrue = constm1_rtx, *pfalse = const0_rtx;
7552 return x;
7553 }
7554
7555 /* Likewise for 0 or a single bit. */
7556 else if (SCALAR_INT_MODE_P (mode)
7557 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
7558 && exact_log2 (nz = nonzero_bits (x, mode)) >= 0)
7559 {
7560 *ptrue = gen_int_mode (nz, mode), *pfalse = const0_rtx;
7561 return x;
7562 }
7563
7564 /* Otherwise fail; show no condition with true and false values the same. */
7565 *ptrue = *pfalse = x;
7566 return 0;
7567 }
7568 \f
7569 /* Return the value of expression X given the fact that condition COND
7570 is known to be true when applied to REG as its first operand and VAL
7571 as its second. X is known to not be shared and so can be modified in
7572 place.
7573
7574 We only handle the simplest cases, and specifically those cases that
7575 arise with IF_THEN_ELSE expressions. */
7576
7577 static rtx
7578 known_cond (rtx x, enum rtx_code cond, rtx reg, rtx val)
7579 {
7580 enum rtx_code code = GET_CODE (x);
7581 rtx temp;
7582 const char *fmt;
7583 int i, j;
7584
7585 if (side_effects_p (x))
7586 return x;
7587
7588 /* If either operand of the condition is a floating point value,
7589 then we have to avoid collapsing an EQ comparison. */
7590 if (cond == EQ
7591 && rtx_equal_p (x, reg)
7592 && ! FLOAT_MODE_P (GET_MODE (x))
7593 && ! FLOAT_MODE_P (GET_MODE (val)))
7594 return val;
7595
7596 if (cond == UNEQ && rtx_equal_p (x, reg))
7597 return val;
7598
7599 /* If X is (abs REG) and we know something about REG's relationship
7600 with zero, we may be able to simplify this. */
7601
7602 if (code == ABS && rtx_equal_p (XEXP (x, 0), reg) && val == const0_rtx)
7603 switch (cond)
7604 {
7605 case GE: case GT: case EQ:
7606 return XEXP (x, 0);
7607 case LT: case LE:
7608 return simplify_gen_unary (NEG, GET_MODE (XEXP (x, 0)),
7609 XEXP (x, 0),
7610 GET_MODE (XEXP (x, 0)));
7611 default:
7612 break;
7613 }
7614
7615 /* The only other cases we handle are MIN, MAX, and comparisons if the
7616 operands are the same as REG and VAL. */
7617
7618 else if (COMPARISON_P (x) || COMMUTATIVE_ARITH_P (x))
7619 {
7620 if (rtx_equal_p (XEXP (x, 0), val))
7621 cond = swap_condition (cond), temp = val, val = reg, reg = temp;
7622
7623 if (rtx_equal_p (XEXP (x, 0), reg) && rtx_equal_p (XEXP (x, 1), val))
7624 {
7625 if (COMPARISON_P (x))
7626 {
7627 if (comparison_dominates_p (cond, code))
7628 return const_true_rtx;
7629
7630 code = reversed_comparison_code (x, NULL);
7631 if (code != UNKNOWN
7632 && comparison_dominates_p (cond, code))
7633 return const0_rtx;
7634 else
7635 return x;
7636 }
7637 else if (code == SMAX || code == SMIN
7638 || code == UMIN || code == UMAX)
7639 {
7640 int unsignedp = (code == UMIN || code == UMAX);
7641
7642 /* Do not reverse the condition when it is NE or EQ.
7643 This is because we cannot conclude anything about
7644 the value of 'SMAX (x, y)' when x is not equal to y,
7645 but we can when x equals y. */
7646 if ((code == SMAX || code == UMAX)
7647 && ! (cond == EQ || cond == NE))
7648 cond = reverse_condition (cond);
7649
7650 switch (cond)
7651 {
7652 case GE: case GT:
7653 return unsignedp ? x : XEXP (x, 1);
7654 case LE: case LT:
7655 return unsignedp ? x : XEXP (x, 0);
7656 case GEU: case GTU:
7657 return unsignedp ? XEXP (x, 1) : x;
7658 case LEU: case LTU:
7659 return unsignedp ? XEXP (x, 0) : x;
7660 default:
7661 break;
7662 }
7663 }
7664 }
7665 }
7666 else if (code == SUBREG)
7667 {
7668 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (x));
7669 rtx new, r = known_cond (SUBREG_REG (x), cond, reg, val);
7670
7671 if (SUBREG_REG (x) != r)
7672 {
7673 /* We must simplify subreg here, before we lose track of the
7674 original inner_mode. */
7675 new = simplify_subreg (GET_MODE (x), r,
7676 inner_mode, SUBREG_BYTE (x));
7677 if (new)
7678 return new;
7679 else
7680 SUBST (SUBREG_REG (x), r);
7681 }
7682
7683 return x;
7684 }
7685 /* We don't have to handle SIGN_EXTEND here, because even in the
7686 case of replacing something with a modeless CONST_INT, a
7687 CONST_INT is already (supposed to be) a valid sign extension for
7688 its narrower mode, which implies it's already properly
7689 sign-extended for the wider mode. Now, for ZERO_EXTEND, the
7690 story is different. */
7691 else if (code == ZERO_EXTEND)
7692 {
7693 enum machine_mode inner_mode = GET_MODE (XEXP (x, 0));
7694 rtx new, r = known_cond (XEXP (x, 0), cond, reg, val);
7695
7696 if (XEXP (x, 0) != r)
7697 {
7698 /* We must simplify the zero_extend here, before we lose
7699 track of the original inner_mode. */
7700 new = simplify_unary_operation (ZERO_EXTEND, GET_MODE (x),
7701 r, inner_mode);
7702 if (new)
7703 return new;
7704 else
7705 SUBST (XEXP (x, 0), r);
7706 }
7707
7708 return x;
7709 }
7710
7711 fmt = GET_RTX_FORMAT (code);
7712 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
7713 {
7714 if (fmt[i] == 'e')
7715 SUBST (XEXP (x, i), known_cond (XEXP (x, i), cond, reg, val));
7716 else if (fmt[i] == 'E')
7717 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
7718 SUBST (XVECEXP (x, i, j), known_cond (XVECEXP (x, i, j),
7719 cond, reg, val));
7720 }
7721
7722 return x;
7723 }
7724 \f
7725 /* See if X and Y are equal for the purposes of seeing if we can rewrite an
7726 assignment as a field assignment. */
7727
7728 static int
7729 rtx_equal_for_field_assignment_p (rtx x, rtx y)
7730 {
7731 if (x == y || rtx_equal_p (x, y))
7732 return 1;
7733
7734 if (x == 0 || y == 0 || GET_MODE (x) != GET_MODE (y))
7735 return 0;
7736
7737 /* Check for a paradoxical SUBREG of a MEM compared with the MEM.
7738 Note that all SUBREGs of MEM are paradoxical; otherwise they
7739 would have been rewritten. */
7740 if (MEM_P (x) && GET_CODE (y) == SUBREG
7741 && MEM_P (SUBREG_REG (y))
7742 && rtx_equal_p (SUBREG_REG (y),
7743 gen_lowpart (GET_MODE (SUBREG_REG (y)), x)))
7744 return 1;
7745
7746 if (MEM_P (y) && GET_CODE (x) == SUBREG
7747 && MEM_P (SUBREG_REG (x))
7748 && rtx_equal_p (SUBREG_REG (x),
7749 gen_lowpart (GET_MODE (SUBREG_REG (x)), y)))
7750 return 1;
7751
7752 /* We used to see if get_last_value of X and Y were the same but that's
7753 not correct. In one direction, we'll cause the assignment to have
7754 the wrong destination and in the case, we'll import a register into this
7755 insn that might have already have been dead. So fail if none of the
7756 above cases are true. */
7757 return 0;
7758 }
7759 \f
7760 /* See if X, a SET operation, can be rewritten as a bit-field assignment.
7761 Return that assignment if so.
7762
7763 We only handle the most common cases. */
7764
7765 static rtx
7766 make_field_assignment (rtx x)
7767 {
7768 rtx dest = SET_DEST (x);
7769 rtx src = SET_SRC (x);
7770 rtx assign;
7771 rtx rhs, lhs;
7772 HOST_WIDE_INT c1;
7773 HOST_WIDE_INT pos;
7774 unsigned HOST_WIDE_INT len;
7775 rtx other;
7776 enum machine_mode mode;
7777
7778 /* If SRC was (and (not (ashift (const_int 1) POS)) DEST), this is
7779 a clear of a one-bit field. We will have changed it to
7780 (and (rotate (const_int -2) POS) DEST), so check for that. Also check
7781 for a SUBREG. */
7782
7783 if (GET_CODE (src) == AND && GET_CODE (XEXP (src, 0)) == ROTATE
7784 && GET_CODE (XEXP (XEXP (src, 0), 0)) == CONST_INT
7785 && INTVAL (XEXP (XEXP (src, 0), 0)) == -2
7786 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
7787 {
7788 assign = make_extraction (VOIDmode, dest, 0, XEXP (XEXP (src, 0), 1),
7789 1, 1, 1, 0);
7790 if (assign != 0)
7791 return gen_rtx_SET (VOIDmode, assign, const0_rtx);
7792 return x;
7793 }
7794
7795 if (GET_CODE (src) == AND && GET_CODE (XEXP (src, 0)) == SUBREG
7796 && subreg_lowpart_p (XEXP (src, 0))
7797 && (GET_MODE_SIZE (GET_MODE (XEXP (src, 0)))
7798 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (XEXP (src, 0)))))
7799 && GET_CODE (SUBREG_REG (XEXP (src, 0))) == ROTATE
7800 && GET_CODE (XEXP (SUBREG_REG (XEXP (src, 0)), 0)) == CONST_INT
7801 && INTVAL (XEXP (SUBREG_REG (XEXP (src, 0)), 0)) == -2
7802 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
7803 {
7804 assign = make_extraction (VOIDmode, dest, 0,
7805 XEXP (SUBREG_REG (XEXP (src, 0)), 1),
7806 1, 1, 1, 0);
7807 if (assign != 0)
7808 return gen_rtx_SET (VOIDmode, assign, const0_rtx);
7809 return x;
7810 }
7811
7812 /* If SRC is (ior (ashift (const_int 1) POS) DEST), this is a set of a
7813 one-bit field. */
7814 if (GET_CODE (src) == IOR && GET_CODE (XEXP (src, 0)) == ASHIFT
7815 && XEXP (XEXP (src, 0), 0) == const1_rtx
7816 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
7817 {
7818 assign = make_extraction (VOIDmode, dest, 0, XEXP (XEXP (src, 0), 1),
7819 1, 1, 1, 0);
7820 if (assign != 0)
7821 return gen_rtx_SET (VOIDmode, assign, const1_rtx);
7822 return x;
7823 }
7824
7825 /* If DEST is already a field assignment, i.e. ZERO_EXTRACT, and the
7826 SRC is an AND with all bits of that field set, then we can discard
7827 the AND. */
7828 if (GET_CODE (dest) == ZERO_EXTRACT
7829 && GET_CODE (XEXP (dest, 1)) == CONST_INT
7830 && GET_CODE (src) == AND
7831 && GET_CODE (XEXP (src, 1)) == CONST_INT)
7832 {
7833 HOST_WIDE_INT width = INTVAL (XEXP (dest, 1));
7834 unsigned HOST_WIDE_INT and_mask = INTVAL (XEXP (src, 1));
7835 unsigned HOST_WIDE_INT ze_mask;
7836
7837 if (width >= HOST_BITS_PER_WIDE_INT)
7838 ze_mask = -1;
7839 else
7840 ze_mask = ((unsigned HOST_WIDE_INT)1 << width) - 1;
7841
7842 /* Complete overlap. We can remove the source AND. */
7843 if ((and_mask & ze_mask) == ze_mask)
7844 return gen_rtx_SET (VOIDmode, dest, XEXP (src, 0));
7845
7846 /* Partial overlap. We can reduce the source AND. */
7847 if ((and_mask & ze_mask) != and_mask)
7848 {
7849 mode = GET_MODE (src);
7850 src = gen_rtx_AND (mode, XEXP (src, 0),
7851 gen_int_mode (and_mask & ze_mask, mode));
7852 return gen_rtx_SET (VOIDmode, dest, src);
7853 }
7854 }
7855
7856 /* The other case we handle is assignments into a constant-position
7857 field. They look like (ior/xor (and DEST C1) OTHER). If C1 represents
7858 a mask that has all one bits except for a group of zero bits and
7859 OTHER is known to have zeros where C1 has ones, this is such an
7860 assignment. Compute the position and length from C1. Shift OTHER
7861 to the appropriate position, force it to the required mode, and
7862 make the extraction. Check for the AND in both operands. */
7863
7864 if (GET_CODE (src) != IOR && GET_CODE (src) != XOR)
7865 return x;
7866
7867 rhs = expand_compound_operation (XEXP (src, 0));
7868 lhs = expand_compound_operation (XEXP (src, 1));
7869
7870 if (GET_CODE (rhs) == AND
7871 && GET_CODE (XEXP (rhs, 1)) == CONST_INT
7872 && rtx_equal_for_field_assignment_p (XEXP (rhs, 0), dest))
7873 c1 = INTVAL (XEXP (rhs, 1)), other = lhs;
7874 else if (GET_CODE (lhs) == AND
7875 && GET_CODE (XEXP (lhs, 1)) == CONST_INT
7876 && rtx_equal_for_field_assignment_p (XEXP (lhs, 0), dest))
7877 c1 = INTVAL (XEXP (lhs, 1)), other = rhs;
7878 else
7879 return x;
7880
7881 pos = get_pos_from_mask ((~c1) & GET_MODE_MASK (GET_MODE (dest)), &len);
7882 if (pos < 0 || pos + len > GET_MODE_BITSIZE (GET_MODE (dest))
7883 || GET_MODE_BITSIZE (GET_MODE (dest)) > HOST_BITS_PER_WIDE_INT
7884 || (c1 & nonzero_bits (other, GET_MODE (dest))) != 0)
7885 return x;
7886
7887 assign = make_extraction (VOIDmode, dest, pos, NULL_RTX, len, 1, 1, 0);
7888 if (assign == 0)
7889 return x;
7890
7891 /* The mode to use for the source is the mode of the assignment, or of
7892 what is inside a possible STRICT_LOW_PART. */
7893 mode = (GET_CODE (assign) == STRICT_LOW_PART
7894 ? GET_MODE (XEXP (assign, 0)) : GET_MODE (assign));
7895
7896 /* Shift OTHER right POS places and make it the source, restricting it
7897 to the proper length and mode. */
7898
7899 src = canon_reg_for_combine (simplify_shift_const (NULL_RTX, LSHIFTRT,
7900 GET_MODE (src),
7901 other, pos),
7902 dest);
7903 src = force_to_mode (src, mode,
7904 GET_MODE_BITSIZE (mode) >= HOST_BITS_PER_WIDE_INT
7905 ? ~(unsigned HOST_WIDE_INT) 0
7906 : ((unsigned HOST_WIDE_INT) 1 << len) - 1,
7907 0);
7908
7909 /* If SRC is masked by an AND that does not make a difference in
7910 the value being stored, strip it. */
7911 if (GET_CODE (assign) == ZERO_EXTRACT
7912 && GET_CODE (XEXP (assign, 1)) == CONST_INT
7913 && INTVAL (XEXP (assign, 1)) < HOST_BITS_PER_WIDE_INT
7914 && GET_CODE (src) == AND
7915 && GET_CODE (XEXP (src, 1)) == CONST_INT
7916 && ((unsigned HOST_WIDE_INT) INTVAL (XEXP (src, 1))
7917 == ((unsigned HOST_WIDE_INT) 1 << INTVAL (XEXP (assign, 1))) - 1))
7918 src = XEXP (src, 0);
7919
7920 return gen_rtx_SET (VOIDmode, assign, src);
7921 }
7922 \f
7923 /* See if X is of the form (+ (* a c) (* b c)) and convert to (* (+ a b) c)
7924 if so. */
7925
7926 static rtx
7927 apply_distributive_law (rtx x)
7928 {
7929 enum rtx_code code = GET_CODE (x);
7930 enum rtx_code inner_code;
7931 rtx lhs, rhs, other;
7932 rtx tem;
7933
7934 /* Distributivity is not true for floating point as it can change the
7935 value. So we don't do it unless -funsafe-math-optimizations. */
7936 if (FLOAT_MODE_P (GET_MODE (x))
7937 && ! flag_unsafe_math_optimizations)
7938 return x;
7939
7940 /* The outer operation can only be one of the following: */
7941 if (code != IOR && code != AND && code != XOR
7942 && code != PLUS && code != MINUS)
7943 return x;
7944
7945 lhs = XEXP (x, 0);
7946 rhs = XEXP (x, 1);
7947
7948 /* If either operand is a primitive we can't do anything, so get out
7949 fast. */
7950 if (OBJECT_P (lhs) || OBJECT_P (rhs))
7951 return x;
7952
7953 lhs = expand_compound_operation (lhs);
7954 rhs = expand_compound_operation (rhs);
7955 inner_code = GET_CODE (lhs);
7956 if (inner_code != GET_CODE (rhs))
7957 return x;
7958
7959 /* See if the inner and outer operations distribute. */
7960 switch (inner_code)
7961 {
7962 case LSHIFTRT:
7963 case ASHIFTRT:
7964 case AND:
7965 case IOR:
7966 /* These all distribute except over PLUS. */
7967 if (code == PLUS || code == MINUS)
7968 return x;
7969 break;
7970
7971 case MULT:
7972 if (code != PLUS && code != MINUS)
7973 return x;
7974 break;
7975
7976 case ASHIFT:
7977 /* This is also a multiply, so it distributes over everything. */
7978 break;
7979
7980 case SUBREG:
7981 /* Non-paradoxical SUBREGs distributes over all operations,
7982 provided the inner modes and byte offsets are the same, this
7983 is an extraction of a low-order part, we don't convert an fp
7984 operation to int or vice versa, this is not a vector mode,
7985 and we would not be converting a single-word operation into a
7986 multi-word operation. The latter test is not required, but
7987 it prevents generating unneeded multi-word operations. Some
7988 of the previous tests are redundant given the latter test,
7989 but are retained because they are required for correctness.
7990
7991 We produce the result slightly differently in this case. */
7992
7993 if (GET_MODE (SUBREG_REG (lhs)) != GET_MODE (SUBREG_REG (rhs))
7994 || SUBREG_BYTE (lhs) != SUBREG_BYTE (rhs)
7995 || ! subreg_lowpart_p (lhs)
7996 || (GET_MODE_CLASS (GET_MODE (lhs))
7997 != GET_MODE_CLASS (GET_MODE (SUBREG_REG (lhs))))
7998 || (GET_MODE_SIZE (GET_MODE (lhs))
7999 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (lhs))))
8000 || VECTOR_MODE_P (GET_MODE (lhs))
8001 || GET_MODE_SIZE (GET_MODE (SUBREG_REG (lhs))) > UNITS_PER_WORD
8002 /* Result might need to be truncated. Don't change mode if
8003 explicit truncation is needed. */
8004 || !TRULY_NOOP_TRUNCATION
8005 (GET_MODE_BITSIZE (GET_MODE (x)),
8006 GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (lhs)))))
8007 return x;
8008
8009 tem = simplify_gen_binary (code, GET_MODE (SUBREG_REG (lhs)),
8010 SUBREG_REG (lhs), SUBREG_REG (rhs));
8011 return gen_lowpart (GET_MODE (x), tem);
8012
8013 default:
8014 return x;
8015 }
8016
8017 /* Set LHS and RHS to the inner operands (A and B in the example
8018 above) and set OTHER to the common operand (C in the example).
8019 There is only one way to do this unless the inner operation is
8020 commutative. */
8021 if (COMMUTATIVE_ARITH_P (lhs)
8022 && rtx_equal_p (XEXP (lhs, 0), XEXP (rhs, 0)))
8023 other = XEXP (lhs, 0), lhs = XEXP (lhs, 1), rhs = XEXP (rhs, 1);
8024 else if (COMMUTATIVE_ARITH_P (lhs)
8025 && rtx_equal_p (XEXP (lhs, 0), XEXP (rhs, 1)))
8026 other = XEXP (lhs, 0), lhs = XEXP (lhs, 1), rhs = XEXP (rhs, 0);
8027 else if (COMMUTATIVE_ARITH_P (lhs)
8028 && rtx_equal_p (XEXP (lhs, 1), XEXP (rhs, 0)))
8029 other = XEXP (lhs, 1), lhs = XEXP (lhs, 0), rhs = XEXP (rhs, 1);
8030 else if (rtx_equal_p (XEXP (lhs, 1), XEXP (rhs, 1)))
8031 other = XEXP (lhs, 1), lhs = XEXP (lhs, 0), rhs = XEXP (rhs, 0);
8032 else
8033 return x;
8034
8035 /* Form the new inner operation, seeing if it simplifies first. */
8036 tem = simplify_gen_binary (code, GET_MODE (x), lhs, rhs);
8037
8038 /* There is one exception to the general way of distributing:
8039 (a | c) ^ (b | c) -> (a ^ b) & ~c */
8040 if (code == XOR && inner_code == IOR)
8041 {
8042 inner_code = AND;
8043 other = simplify_gen_unary (NOT, GET_MODE (x), other, GET_MODE (x));
8044 }
8045
8046 /* We may be able to continuing distributing the result, so call
8047 ourselves recursively on the inner operation before forming the
8048 outer operation, which we return. */
8049 return simplify_gen_binary (inner_code, GET_MODE (x),
8050 apply_distributive_law (tem), other);
8051 }
8052
8053 /* See if X is of the form (* (+ A B) C), and if so convert to
8054 (+ (* A C) (* B C)) and try to simplify.
8055
8056 Most of the time, this results in no change. However, if some of
8057 the operands are the same or inverses of each other, simplifications
8058 will result.
8059
8060 For example, (and (ior A B) (not B)) can occur as the result of
8061 expanding a bit field assignment. When we apply the distributive
8062 law to this, we get (ior (and (A (not B))) (and (B (not B)))),
8063 which then simplifies to (and (A (not B))).
8064
8065 Note that no checks happen on the validity of applying the inverse
8066 distributive law. This is pointless since we can do it in the
8067 few places where this routine is called.
8068
8069 N is the index of the term that is decomposed (the arithmetic operation,
8070 i.e. (+ A B) in the first example above). !N is the index of the term that
8071 is distributed, i.e. of C in the first example above. */
8072 static rtx
8073 distribute_and_simplify_rtx (rtx x, int n)
8074 {
8075 enum machine_mode mode;
8076 enum rtx_code outer_code, inner_code;
8077 rtx decomposed, distributed, inner_op0, inner_op1, new_op0, new_op1, tmp;
8078
8079 decomposed = XEXP (x, n);
8080 if (!ARITHMETIC_P (decomposed))
8081 return NULL_RTX;
8082
8083 mode = GET_MODE (x);
8084 outer_code = GET_CODE (x);
8085 distributed = XEXP (x, !n);
8086
8087 inner_code = GET_CODE (decomposed);
8088 inner_op0 = XEXP (decomposed, 0);
8089 inner_op1 = XEXP (decomposed, 1);
8090
8091 /* Special case (and (xor B C) (not A)), which is equivalent to
8092 (xor (ior A B) (ior A C)) */
8093 if (outer_code == AND && inner_code == XOR && GET_CODE (distributed) == NOT)
8094 {
8095 distributed = XEXP (distributed, 0);
8096 outer_code = IOR;
8097 }
8098
8099 if (n == 0)
8100 {
8101 /* Distribute the second term. */
8102 new_op0 = simplify_gen_binary (outer_code, mode, inner_op0, distributed);
8103 new_op1 = simplify_gen_binary (outer_code, mode, inner_op1, distributed);
8104 }
8105 else
8106 {
8107 /* Distribute the first term. */
8108 new_op0 = simplify_gen_binary (outer_code, mode, distributed, inner_op0);
8109 new_op1 = simplify_gen_binary (outer_code, mode, distributed, inner_op1);
8110 }
8111
8112 tmp = apply_distributive_law (simplify_gen_binary (inner_code, mode,
8113 new_op0, new_op1));
8114 if (GET_CODE (tmp) != outer_code
8115 && rtx_cost (tmp, SET) < rtx_cost (x, SET))
8116 return tmp;
8117
8118 return NULL_RTX;
8119 }
8120 \f
8121 /* Simplify a logical `and' of VAROP with the constant CONSTOP, to be done
8122 in MODE. Return an equivalent form, if different from (and VAROP
8123 (const_int CONSTOP)). Otherwise, return NULL_RTX. */
8124
8125 static rtx
8126 simplify_and_const_int_1 (enum machine_mode mode, rtx varop,
8127 unsigned HOST_WIDE_INT constop)
8128 {
8129 unsigned HOST_WIDE_INT nonzero;
8130 unsigned HOST_WIDE_INT orig_constop;
8131 rtx orig_varop;
8132 int i;
8133
8134 orig_varop = varop;
8135 orig_constop = constop;
8136 if (GET_CODE (varop) == CLOBBER)
8137 return NULL_RTX;
8138
8139 /* Simplify VAROP knowing that we will be only looking at some of the
8140 bits in it.
8141
8142 Note by passing in CONSTOP, we guarantee that the bits not set in
8143 CONSTOP are not significant and will never be examined. We must
8144 ensure that is the case by explicitly masking out those bits
8145 before returning. */
8146 varop = force_to_mode (varop, mode, constop, 0);
8147
8148 /* If VAROP is a CLOBBER, we will fail so return it. */
8149 if (GET_CODE (varop) == CLOBBER)
8150 return varop;
8151
8152 /* If VAROP is a CONST_INT, then we need to apply the mask in CONSTOP
8153 to VAROP and return the new constant. */
8154 if (GET_CODE (varop) == CONST_INT)
8155 return gen_int_mode (INTVAL (varop) & constop, mode);
8156
8157 /* See what bits may be nonzero in VAROP. Unlike the general case of
8158 a call to nonzero_bits, here we don't care about bits outside
8159 MODE. */
8160
8161 nonzero = nonzero_bits (varop, mode) & GET_MODE_MASK (mode);
8162
8163 /* Turn off all bits in the constant that are known to already be zero.
8164 Thus, if the AND isn't needed at all, we will have CONSTOP == NONZERO_BITS
8165 which is tested below. */
8166
8167 constop &= nonzero;
8168
8169 /* If we don't have any bits left, return zero. */
8170 if (constop == 0)
8171 return const0_rtx;
8172
8173 /* If VAROP is a NEG of something known to be zero or 1 and CONSTOP is
8174 a power of two, we can replace this with an ASHIFT. */
8175 if (GET_CODE (varop) == NEG && nonzero_bits (XEXP (varop, 0), mode) == 1
8176 && (i = exact_log2 (constop)) >= 0)
8177 return simplify_shift_const (NULL_RTX, ASHIFT, mode, XEXP (varop, 0), i);
8178
8179 /* If VAROP is an IOR or XOR, apply the AND to both branches of the IOR
8180 or XOR, then try to apply the distributive law. This may eliminate
8181 operations if either branch can be simplified because of the AND.
8182 It may also make some cases more complex, but those cases probably
8183 won't match a pattern either with or without this. */
8184
8185 if (GET_CODE (varop) == IOR || GET_CODE (varop) == XOR)
8186 return
8187 gen_lowpart
8188 (mode,
8189 apply_distributive_law
8190 (simplify_gen_binary (GET_CODE (varop), GET_MODE (varop),
8191 simplify_and_const_int (NULL_RTX,
8192 GET_MODE (varop),
8193 XEXP (varop, 0),
8194 constop),
8195 simplify_and_const_int (NULL_RTX,
8196 GET_MODE (varop),
8197 XEXP (varop, 1),
8198 constop))));
8199
8200 /* If VAROP is PLUS, and the constant is a mask of low bits, distribute
8201 the AND and see if one of the operands simplifies to zero. If so, we
8202 may eliminate it. */
8203
8204 if (GET_CODE (varop) == PLUS
8205 && exact_log2 (constop + 1) >= 0)
8206 {
8207 rtx o0, o1;
8208
8209 o0 = simplify_and_const_int (NULL_RTX, mode, XEXP (varop, 0), constop);
8210 o1 = simplify_and_const_int (NULL_RTX, mode, XEXP (varop, 1), constop);
8211 if (o0 == const0_rtx)
8212 return o1;
8213 if (o1 == const0_rtx)
8214 return o0;
8215 }
8216
8217 /* Make a SUBREG if necessary. If we can't make it, fail. */
8218 varop = gen_lowpart (mode, varop);
8219 if (varop == NULL_RTX || GET_CODE (varop) == CLOBBER)
8220 return NULL_RTX;
8221
8222 /* If we are only masking insignificant bits, return VAROP. */
8223 if (constop == nonzero)
8224 return varop;
8225
8226 if (varop == orig_varop && constop == orig_constop)
8227 return NULL_RTX;
8228
8229 /* Otherwise, return an AND. */
8230 return simplify_gen_binary (AND, mode, varop, gen_int_mode (constop, mode));
8231 }
8232
8233
8234 /* We have X, a logical `and' of VAROP with the constant CONSTOP, to be done
8235 in MODE.
8236
8237 Return an equivalent form, if different from X. Otherwise, return X. If
8238 X is zero, we are to always construct the equivalent form. */
8239
8240 static rtx
8241 simplify_and_const_int (rtx x, enum machine_mode mode, rtx varop,
8242 unsigned HOST_WIDE_INT constop)
8243 {
8244 rtx tem = simplify_and_const_int_1 (mode, varop, constop);
8245 if (tem)
8246 return tem;
8247
8248 if (!x)
8249 x = simplify_gen_binary (AND, GET_MODE (varop), varop,
8250 gen_int_mode (constop, mode));
8251 if (GET_MODE (x) != mode)
8252 x = gen_lowpart (mode, x);
8253 return x;
8254 }
8255 \f
8256 /* Given a REG, X, compute which bits in X can be nonzero.
8257 We don't care about bits outside of those defined in MODE.
8258
8259 For most X this is simply GET_MODE_MASK (GET_MODE (MODE)), but if X is
8260 a shift, AND, or zero_extract, we can do better. */
8261
8262 static rtx
8263 reg_nonzero_bits_for_combine (rtx x, enum machine_mode mode,
8264 rtx known_x ATTRIBUTE_UNUSED,
8265 enum machine_mode known_mode ATTRIBUTE_UNUSED,
8266 unsigned HOST_WIDE_INT known_ret ATTRIBUTE_UNUSED,
8267 unsigned HOST_WIDE_INT *nonzero)
8268 {
8269 rtx tem;
8270
8271 /* If X is a register whose nonzero bits value is current, use it.
8272 Otherwise, if X is a register whose value we can find, use that
8273 value. Otherwise, use the previously-computed global nonzero bits
8274 for this register. */
8275
8276 if (reg_stat[REGNO (x)].last_set_value != 0
8277 && (reg_stat[REGNO (x)].last_set_mode == mode
8278 || (GET_MODE_CLASS (reg_stat[REGNO (x)].last_set_mode) == MODE_INT
8279 && GET_MODE_CLASS (mode) == MODE_INT))
8280 && (reg_stat[REGNO (x)].last_set_label == label_tick
8281 || (REGNO (x) >= FIRST_PSEUDO_REGISTER
8282 && REG_N_SETS (REGNO (x)) == 1
8283 && ! REGNO_REG_SET_P
8284 (ENTRY_BLOCK_PTR->next_bb->il.rtl->global_live_at_start,
8285 REGNO (x))))
8286 && INSN_CUID (reg_stat[REGNO (x)].last_set) < subst_low_cuid)
8287 {
8288 *nonzero &= reg_stat[REGNO (x)].last_set_nonzero_bits;
8289 return NULL;
8290 }
8291
8292 tem = get_last_value (x);
8293
8294 if (tem)
8295 {
8296 #ifdef SHORT_IMMEDIATES_SIGN_EXTEND
8297 /* If X is narrower than MODE and TEM is a non-negative
8298 constant that would appear negative in the mode of X,
8299 sign-extend it for use in reg_nonzero_bits because some
8300 machines (maybe most) will actually do the sign-extension
8301 and this is the conservative approach.
8302
8303 ??? For 2.5, try to tighten up the MD files in this regard
8304 instead of this kludge. */
8305
8306 if (GET_MODE_BITSIZE (GET_MODE (x)) < GET_MODE_BITSIZE (mode)
8307 && GET_CODE (tem) == CONST_INT
8308 && INTVAL (tem) > 0
8309 && 0 != (INTVAL (tem)
8310 & ((HOST_WIDE_INT) 1
8311 << (GET_MODE_BITSIZE (GET_MODE (x)) - 1))))
8312 tem = GEN_INT (INTVAL (tem)
8313 | ((HOST_WIDE_INT) (-1)
8314 << GET_MODE_BITSIZE (GET_MODE (x))));
8315 #endif
8316 return tem;
8317 }
8318 else if (nonzero_sign_valid && reg_stat[REGNO (x)].nonzero_bits)
8319 {
8320 unsigned HOST_WIDE_INT mask = reg_stat[REGNO (x)].nonzero_bits;
8321
8322 if (GET_MODE_BITSIZE (GET_MODE (x)) < GET_MODE_BITSIZE (mode))
8323 /* We don't know anything about the upper bits. */
8324 mask |= GET_MODE_MASK (mode) ^ GET_MODE_MASK (GET_MODE (x));
8325 *nonzero &= mask;
8326 }
8327
8328 return NULL;
8329 }
8330
8331 /* Return the number of bits at the high-order end of X that are known to
8332 be equal to the sign bit. X will be used in mode MODE; if MODE is
8333 VOIDmode, X will be used in its own mode. The returned value will always
8334 be between 1 and the number of bits in MODE. */
8335
8336 static rtx
8337 reg_num_sign_bit_copies_for_combine (rtx x, enum machine_mode mode,
8338 rtx known_x ATTRIBUTE_UNUSED,
8339 enum machine_mode known_mode
8340 ATTRIBUTE_UNUSED,
8341 unsigned int known_ret ATTRIBUTE_UNUSED,
8342 unsigned int *result)
8343 {
8344 rtx tem;
8345
8346 if (reg_stat[REGNO (x)].last_set_value != 0
8347 && reg_stat[REGNO (x)].last_set_mode == mode
8348 && (reg_stat[REGNO (x)].last_set_label == label_tick
8349 || (REGNO (x) >= FIRST_PSEUDO_REGISTER
8350 && REG_N_SETS (REGNO (x)) == 1
8351 && ! REGNO_REG_SET_P
8352 (ENTRY_BLOCK_PTR->next_bb->il.rtl->global_live_at_start,
8353 REGNO (x))))
8354 && INSN_CUID (reg_stat[REGNO (x)].last_set) < subst_low_cuid)
8355 {
8356 *result = reg_stat[REGNO (x)].last_set_sign_bit_copies;
8357 return NULL;
8358 }
8359
8360 tem = get_last_value (x);
8361 if (tem != 0)
8362 return tem;
8363
8364 if (nonzero_sign_valid && reg_stat[REGNO (x)].sign_bit_copies != 0
8365 && GET_MODE_BITSIZE (GET_MODE (x)) == GET_MODE_BITSIZE (mode))
8366 *result = reg_stat[REGNO (x)].sign_bit_copies;
8367
8368 return NULL;
8369 }
8370 \f
8371 /* Return the number of "extended" bits there are in X, when interpreted
8372 as a quantity in MODE whose signedness is indicated by UNSIGNEDP. For
8373 unsigned quantities, this is the number of high-order zero bits.
8374 For signed quantities, this is the number of copies of the sign bit
8375 minus 1. In both case, this function returns the number of "spare"
8376 bits. For example, if two quantities for which this function returns
8377 at least 1 are added, the addition is known not to overflow.
8378
8379 This function will always return 0 unless called during combine, which
8380 implies that it must be called from a define_split. */
8381
8382 unsigned int
8383 extended_count (rtx x, enum machine_mode mode, int unsignedp)
8384 {
8385 if (nonzero_sign_valid == 0)
8386 return 0;
8387
8388 return (unsignedp
8389 ? (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
8390 ? (unsigned int) (GET_MODE_BITSIZE (mode) - 1
8391 - floor_log2 (nonzero_bits (x, mode)))
8392 : 0)
8393 : num_sign_bit_copies (x, mode) - 1);
8394 }
8395 \f
8396 /* This function is called from `simplify_shift_const' to merge two
8397 outer operations. Specifically, we have already found that we need
8398 to perform operation *POP0 with constant *PCONST0 at the outermost
8399 position. We would now like to also perform OP1 with constant CONST1
8400 (with *POP0 being done last).
8401
8402 Return 1 if we can do the operation and update *POP0 and *PCONST0 with
8403 the resulting operation. *PCOMP_P is set to 1 if we would need to
8404 complement the innermost operand, otherwise it is unchanged.
8405
8406 MODE is the mode in which the operation will be done. No bits outside
8407 the width of this mode matter. It is assumed that the width of this mode
8408 is smaller than or equal to HOST_BITS_PER_WIDE_INT.
8409
8410 If *POP0 or OP1 are UNKNOWN, it means no operation is required. Only NEG, PLUS,
8411 IOR, XOR, and AND are supported. We may set *POP0 to SET if the proper
8412 result is simply *PCONST0.
8413
8414 If the resulting operation cannot be expressed as one operation, we
8415 return 0 and do not change *POP0, *PCONST0, and *PCOMP_P. */
8416
8417 static int
8418 merge_outer_ops (enum rtx_code *pop0, HOST_WIDE_INT *pconst0, enum rtx_code op1, HOST_WIDE_INT const1, enum machine_mode mode, int *pcomp_p)
8419 {
8420 enum rtx_code op0 = *pop0;
8421 HOST_WIDE_INT const0 = *pconst0;
8422
8423 const0 &= GET_MODE_MASK (mode);
8424 const1 &= GET_MODE_MASK (mode);
8425
8426 /* If OP0 is an AND, clear unimportant bits in CONST1. */
8427 if (op0 == AND)
8428 const1 &= const0;
8429
8430 /* If OP0 or OP1 is UNKNOWN, this is easy. Similarly if they are the same or
8431 if OP0 is SET. */
8432
8433 if (op1 == UNKNOWN || op0 == SET)
8434 return 1;
8435
8436 else if (op0 == UNKNOWN)
8437 op0 = op1, const0 = const1;
8438
8439 else if (op0 == op1)
8440 {
8441 switch (op0)
8442 {
8443 case AND:
8444 const0 &= const1;
8445 break;
8446 case IOR:
8447 const0 |= const1;
8448 break;
8449 case XOR:
8450 const0 ^= const1;
8451 break;
8452 case PLUS:
8453 const0 += const1;
8454 break;
8455 case NEG:
8456 op0 = UNKNOWN;
8457 break;
8458 default:
8459 break;
8460 }
8461 }
8462
8463 /* Otherwise, if either is a PLUS or NEG, we can't do anything. */
8464 else if (op0 == PLUS || op1 == PLUS || op0 == NEG || op1 == NEG)
8465 return 0;
8466
8467 /* If the two constants aren't the same, we can't do anything. The
8468 remaining six cases can all be done. */
8469 else if (const0 != const1)
8470 return 0;
8471
8472 else
8473 switch (op0)
8474 {
8475 case IOR:
8476 if (op1 == AND)
8477 /* (a & b) | b == b */
8478 op0 = SET;
8479 else /* op1 == XOR */
8480 /* (a ^ b) | b == a | b */
8481 {;}
8482 break;
8483
8484 case XOR:
8485 if (op1 == AND)
8486 /* (a & b) ^ b == (~a) & b */
8487 op0 = AND, *pcomp_p = 1;
8488 else /* op1 == IOR */
8489 /* (a | b) ^ b == a & ~b */
8490 op0 = AND, const0 = ~const0;
8491 break;
8492
8493 case AND:
8494 if (op1 == IOR)
8495 /* (a | b) & b == b */
8496 op0 = SET;
8497 else /* op1 == XOR */
8498 /* (a ^ b) & b) == (~a) & b */
8499 *pcomp_p = 1;
8500 break;
8501 default:
8502 break;
8503 }
8504
8505 /* Check for NO-OP cases. */
8506 const0 &= GET_MODE_MASK (mode);
8507 if (const0 == 0
8508 && (op0 == IOR || op0 == XOR || op0 == PLUS))
8509 op0 = UNKNOWN;
8510 else if (const0 == 0 && op0 == AND)
8511 op0 = SET;
8512 else if ((unsigned HOST_WIDE_INT) const0 == GET_MODE_MASK (mode)
8513 && op0 == AND)
8514 op0 = UNKNOWN;
8515
8516 /* ??? Slightly redundant with the above mask, but not entirely.
8517 Moving this above means we'd have to sign-extend the mode mask
8518 for the final test. */
8519 const0 = trunc_int_for_mode (const0, mode);
8520
8521 *pop0 = op0;
8522 *pconst0 = const0;
8523
8524 return 1;
8525 }
8526 \f
8527 /* Simplify a shift of VAROP by COUNT bits. CODE says what kind of shift.
8528 The result of the shift is RESULT_MODE. Return NULL_RTX if we cannot
8529 simplify it. Otherwise, return a simplified value.
8530
8531 The shift is normally computed in the widest mode we find in VAROP, as
8532 long as it isn't a different number of words than RESULT_MODE. Exceptions
8533 are ASHIFTRT and ROTATE, which are always done in their original mode. */
8534
8535 static rtx
8536 simplify_shift_const_1 (enum rtx_code code, enum machine_mode result_mode,
8537 rtx varop, int orig_count)
8538 {
8539 enum rtx_code orig_code = code;
8540 rtx orig_varop = varop;
8541 int count;
8542 enum machine_mode mode = result_mode;
8543 enum machine_mode shift_mode, tmode;
8544 unsigned int mode_words
8545 = (GET_MODE_SIZE (mode) + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD;
8546 /* We form (outer_op (code varop count) (outer_const)). */
8547 enum rtx_code outer_op = UNKNOWN;
8548 HOST_WIDE_INT outer_const = 0;
8549 int complement_p = 0;
8550 rtx new, x;
8551
8552 /* Make sure and truncate the "natural" shift on the way in. We don't
8553 want to do this inside the loop as it makes it more difficult to
8554 combine shifts. */
8555 if (SHIFT_COUNT_TRUNCATED)
8556 orig_count &= GET_MODE_BITSIZE (mode) - 1;
8557
8558 /* If we were given an invalid count, don't do anything except exactly
8559 what was requested. */
8560
8561 if (orig_count < 0 || orig_count >= (int) GET_MODE_BITSIZE (mode))
8562 return NULL_RTX;
8563
8564 count = orig_count;
8565
8566 /* Unless one of the branches of the `if' in this loop does a `continue',
8567 we will `break' the loop after the `if'. */
8568
8569 while (count != 0)
8570 {
8571 /* If we have an operand of (clobber (const_int 0)), fail. */
8572 if (GET_CODE (varop) == CLOBBER)
8573 return NULL_RTX;
8574
8575 /* If we discovered we had to complement VAROP, leave. Making a NOT
8576 here would cause an infinite loop. */
8577 if (complement_p)
8578 break;
8579
8580 /* Convert ROTATERT to ROTATE. */
8581 if (code == ROTATERT)
8582 {
8583 unsigned int bitsize = GET_MODE_BITSIZE (result_mode);;
8584 code = ROTATE;
8585 if (VECTOR_MODE_P (result_mode))
8586 count = bitsize / GET_MODE_NUNITS (result_mode) - count;
8587 else
8588 count = bitsize - count;
8589 }
8590
8591 /* We need to determine what mode we will do the shift in. If the
8592 shift is a right shift or a ROTATE, we must always do it in the mode
8593 it was originally done in. Otherwise, we can do it in MODE, the
8594 widest mode encountered. */
8595 shift_mode
8596 = (code == ASHIFTRT || code == LSHIFTRT || code == ROTATE
8597 ? result_mode : mode);
8598
8599 /* Handle cases where the count is greater than the size of the mode
8600 minus 1. For ASHIFT, use the size minus one as the count (this can
8601 occur when simplifying (lshiftrt (ashiftrt ..))). For rotates,
8602 take the count modulo the size. For other shifts, the result is
8603 zero.
8604
8605 Since these shifts are being produced by the compiler by combining
8606 multiple operations, each of which are defined, we know what the
8607 result is supposed to be. */
8608
8609 if (count > (GET_MODE_BITSIZE (shift_mode) - 1))
8610 {
8611 if (code == ASHIFTRT)
8612 count = GET_MODE_BITSIZE (shift_mode) - 1;
8613 else if (code == ROTATE || code == ROTATERT)
8614 count %= GET_MODE_BITSIZE (shift_mode);
8615 else
8616 {
8617 /* We can't simply return zero because there may be an
8618 outer op. */
8619 varop = const0_rtx;
8620 count = 0;
8621 break;
8622 }
8623 }
8624
8625 /* An arithmetic right shift of a quantity known to be -1 or 0
8626 is a no-op. */
8627 if (code == ASHIFTRT
8628 && (num_sign_bit_copies (varop, shift_mode)
8629 == GET_MODE_BITSIZE (shift_mode)))
8630 {
8631 count = 0;
8632 break;
8633 }
8634
8635 /* If we are doing an arithmetic right shift and discarding all but
8636 the sign bit copies, this is equivalent to doing a shift by the
8637 bitsize minus one. Convert it into that shift because it will often
8638 allow other simplifications. */
8639
8640 if (code == ASHIFTRT
8641 && (count + num_sign_bit_copies (varop, shift_mode)
8642 >= GET_MODE_BITSIZE (shift_mode)))
8643 count = GET_MODE_BITSIZE (shift_mode) - 1;
8644
8645 /* We simplify the tests below and elsewhere by converting
8646 ASHIFTRT to LSHIFTRT if we know the sign bit is clear.
8647 `make_compound_operation' will convert it to an ASHIFTRT for
8648 those machines (such as VAX) that don't have an LSHIFTRT. */
8649 if (GET_MODE_BITSIZE (shift_mode) <= HOST_BITS_PER_WIDE_INT
8650 && code == ASHIFTRT
8651 && ((nonzero_bits (varop, shift_mode)
8652 & ((HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (shift_mode) - 1)))
8653 == 0))
8654 code = LSHIFTRT;
8655
8656 if (((code == LSHIFTRT
8657 && GET_MODE_BITSIZE (shift_mode) <= HOST_BITS_PER_WIDE_INT
8658 && !(nonzero_bits (varop, shift_mode) >> count))
8659 || (code == ASHIFT
8660 && GET_MODE_BITSIZE (shift_mode) <= HOST_BITS_PER_WIDE_INT
8661 && !((nonzero_bits (varop, shift_mode) << count)
8662 & GET_MODE_MASK (shift_mode))))
8663 && !side_effects_p (varop))
8664 varop = const0_rtx;
8665
8666 switch (GET_CODE (varop))
8667 {
8668 case SIGN_EXTEND:
8669 case ZERO_EXTEND:
8670 case SIGN_EXTRACT:
8671 case ZERO_EXTRACT:
8672 new = expand_compound_operation (varop);
8673 if (new != varop)
8674 {
8675 varop = new;
8676 continue;
8677 }
8678 break;
8679
8680 case MEM:
8681 /* If we have (xshiftrt (mem ...) C) and C is MODE_WIDTH
8682 minus the width of a smaller mode, we can do this with a
8683 SIGN_EXTEND or ZERO_EXTEND from the narrower memory location. */
8684 if ((code == ASHIFTRT || code == LSHIFTRT)
8685 && ! mode_dependent_address_p (XEXP (varop, 0))
8686 && ! MEM_VOLATILE_P (varop)
8687 && (tmode = mode_for_size (GET_MODE_BITSIZE (mode) - count,
8688 MODE_INT, 1)) != BLKmode)
8689 {
8690 new = adjust_address_nv (varop, tmode,
8691 BYTES_BIG_ENDIAN ? 0
8692 : count / BITS_PER_UNIT);
8693
8694 varop = gen_rtx_fmt_e (code == ASHIFTRT ? SIGN_EXTEND
8695 : ZERO_EXTEND, mode, new);
8696 count = 0;
8697 continue;
8698 }
8699 break;
8700
8701 case SUBREG:
8702 /* If VAROP is a SUBREG, strip it as long as the inner operand has
8703 the same number of words as what we've seen so far. Then store
8704 the widest mode in MODE. */
8705 if (subreg_lowpart_p (varop)
8706 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (varop)))
8707 > GET_MODE_SIZE (GET_MODE (varop)))
8708 && (unsigned int) ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (varop)))
8709 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
8710 == mode_words)
8711 {
8712 varop = SUBREG_REG (varop);
8713 if (GET_MODE_SIZE (GET_MODE (varop)) > GET_MODE_SIZE (mode))
8714 mode = GET_MODE (varop);
8715 continue;
8716 }
8717 break;
8718
8719 case MULT:
8720 /* Some machines use MULT instead of ASHIFT because MULT
8721 is cheaper. But it is still better on those machines to
8722 merge two shifts into one. */
8723 if (GET_CODE (XEXP (varop, 1)) == CONST_INT
8724 && exact_log2 (INTVAL (XEXP (varop, 1))) >= 0)
8725 {
8726 varop
8727 = simplify_gen_binary (ASHIFT, GET_MODE (varop),
8728 XEXP (varop, 0),
8729 GEN_INT (exact_log2 (
8730 INTVAL (XEXP (varop, 1)))));
8731 continue;
8732 }
8733 break;
8734
8735 case UDIV:
8736 /* Similar, for when divides are cheaper. */
8737 if (GET_CODE (XEXP (varop, 1)) == CONST_INT
8738 && exact_log2 (INTVAL (XEXP (varop, 1))) >= 0)
8739 {
8740 varop
8741 = simplify_gen_binary (LSHIFTRT, GET_MODE (varop),
8742 XEXP (varop, 0),
8743 GEN_INT (exact_log2 (
8744 INTVAL (XEXP (varop, 1)))));
8745 continue;
8746 }
8747 break;
8748
8749 case ASHIFTRT:
8750 /* If we are extracting just the sign bit of an arithmetic
8751 right shift, that shift is not needed. However, the sign
8752 bit of a wider mode may be different from what would be
8753 interpreted as the sign bit in a narrower mode, so, if
8754 the result is narrower, don't discard the shift. */
8755 if (code == LSHIFTRT
8756 && count == (GET_MODE_BITSIZE (result_mode) - 1)
8757 && (GET_MODE_BITSIZE (result_mode)
8758 >= GET_MODE_BITSIZE (GET_MODE (varop))))
8759 {
8760 varop = XEXP (varop, 0);
8761 continue;
8762 }
8763
8764 /* ... fall through ... */
8765
8766 case LSHIFTRT:
8767 case ASHIFT:
8768 case ROTATE:
8769 /* Here we have two nested shifts. The result is usually the
8770 AND of a new shift with a mask. We compute the result below. */
8771 if (GET_CODE (XEXP (varop, 1)) == CONST_INT
8772 && INTVAL (XEXP (varop, 1)) >= 0
8773 && INTVAL (XEXP (varop, 1)) < GET_MODE_BITSIZE (GET_MODE (varop))
8774 && GET_MODE_BITSIZE (result_mode) <= HOST_BITS_PER_WIDE_INT
8775 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
8776 && !VECTOR_MODE_P (result_mode))
8777 {
8778 enum rtx_code first_code = GET_CODE (varop);
8779 unsigned int first_count = INTVAL (XEXP (varop, 1));
8780 unsigned HOST_WIDE_INT mask;
8781 rtx mask_rtx;
8782
8783 /* We have one common special case. We can't do any merging if
8784 the inner code is an ASHIFTRT of a smaller mode. However, if
8785 we have (ashift:M1 (subreg:M1 (ashiftrt:M2 FOO C1) 0) C2)
8786 with C2 == GET_MODE_BITSIZE (M1) - GET_MODE_BITSIZE (M2),
8787 we can convert it to
8788 (ashiftrt:M1 (ashift:M1 (and:M1 (subreg:M1 FOO 0 C2) C3) C1).
8789 This simplifies certain SIGN_EXTEND operations. */
8790 if (code == ASHIFT && first_code == ASHIFTRT
8791 && count == (GET_MODE_BITSIZE (result_mode)
8792 - GET_MODE_BITSIZE (GET_MODE (varop))))
8793 {
8794 /* C3 has the low-order C1 bits zero. */
8795
8796 mask = (GET_MODE_MASK (mode)
8797 & ~(((HOST_WIDE_INT) 1 << first_count) - 1));
8798
8799 varop = simplify_and_const_int (NULL_RTX, result_mode,
8800 XEXP (varop, 0), mask);
8801 varop = simplify_shift_const (NULL_RTX, ASHIFT, result_mode,
8802 varop, count);
8803 count = first_count;
8804 code = ASHIFTRT;
8805 continue;
8806 }
8807
8808 /* If this was (ashiftrt (ashift foo C1) C2) and FOO has more
8809 than C1 high-order bits equal to the sign bit, we can convert
8810 this to either an ASHIFT or an ASHIFTRT depending on the
8811 two counts.
8812
8813 We cannot do this if VAROP's mode is not SHIFT_MODE. */
8814
8815 if (code == ASHIFTRT && first_code == ASHIFT
8816 && GET_MODE (varop) == shift_mode
8817 && (num_sign_bit_copies (XEXP (varop, 0), shift_mode)
8818 > first_count))
8819 {
8820 varop = XEXP (varop, 0);
8821 count -= first_count;
8822 if (count < 0)
8823 {
8824 count = -count;
8825 code = ASHIFT;
8826 }
8827
8828 continue;
8829 }
8830
8831 /* There are some cases we can't do. If CODE is ASHIFTRT,
8832 we can only do this if FIRST_CODE is also ASHIFTRT.
8833
8834 We can't do the case when CODE is ROTATE and FIRST_CODE is
8835 ASHIFTRT.
8836
8837 If the mode of this shift is not the mode of the outer shift,
8838 we can't do this if either shift is a right shift or ROTATE.
8839
8840 Finally, we can't do any of these if the mode is too wide
8841 unless the codes are the same.
8842
8843 Handle the case where the shift codes are the same
8844 first. */
8845
8846 if (code == first_code)
8847 {
8848 if (GET_MODE (varop) != result_mode
8849 && (code == ASHIFTRT || code == LSHIFTRT
8850 || code == ROTATE))
8851 break;
8852
8853 count += first_count;
8854 varop = XEXP (varop, 0);
8855 continue;
8856 }
8857
8858 if (code == ASHIFTRT
8859 || (code == ROTATE && first_code == ASHIFTRT)
8860 || GET_MODE_BITSIZE (mode) > HOST_BITS_PER_WIDE_INT
8861 || (GET_MODE (varop) != result_mode
8862 && (first_code == ASHIFTRT || first_code == LSHIFTRT
8863 || first_code == ROTATE
8864 || code == ROTATE)))
8865 break;
8866
8867 /* To compute the mask to apply after the shift, shift the
8868 nonzero bits of the inner shift the same way the
8869 outer shift will. */
8870
8871 mask_rtx = GEN_INT (nonzero_bits (varop, GET_MODE (varop)));
8872
8873 mask_rtx
8874 = simplify_const_binary_operation (code, result_mode, mask_rtx,
8875 GEN_INT (count));
8876
8877 /* Give up if we can't compute an outer operation to use. */
8878 if (mask_rtx == 0
8879 || GET_CODE (mask_rtx) != CONST_INT
8880 || ! merge_outer_ops (&outer_op, &outer_const, AND,
8881 INTVAL (mask_rtx),
8882 result_mode, &complement_p))
8883 break;
8884
8885 /* If the shifts are in the same direction, we add the
8886 counts. Otherwise, we subtract them. */
8887 if ((code == ASHIFTRT || code == LSHIFTRT)
8888 == (first_code == ASHIFTRT || first_code == LSHIFTRT))
8889 count += first_count;
8890 else
8891 count -= first_count;
8892
8893 /* If COUNT is positive, the new shift is usually CODE,
8894 except for the two exceptions below, in which case it is
8895 FIRST_CODE. If the count is negative, FIRST_CODE should
8896 always be used */
8897 if (count > 0
8898 && ((first_code == ROTATE && code == ASHIFT)
8899 || (first_code == ASHIFTRT && code == LSHIFTRT)))
8900 code = first_code;
8901 else if (count < 0)
8902 code = first_code, count = -count;
8903
8904 varop = XEXP (varop, 0);
8905 continue;
8906 }
8907
8908 /* If we have (A << B << C) for any shift, we can convert this to
8909 (A << C << B). This wins if A is a constant. Only try this if
8910 B is not a constant. */
8911
8912 else if (GET_CODE (varop) == code
8913 && GET_CODE (XEXP (varop, 0)) == CONST_INT
8914 && GET_CODE (XEXP (varop, 1)) != CONST_INT)
8915 {
8916 rtx new = simplify_const_binary_operation (code, mode,
8917 XEXP (varop, 0),
8918 GEN_INT (count));
8919 varop = gen_rtx_fmt_ee (code, mode, new, XEXP (varop, 1));
8920 count = 0;
8921 continue;
8922 }
8923 break;
8924
8925 case NOT:
8926 /* Make this fit the case below. */
8927 varop = gen_rtx_XOR (mode, XEXP (varop, 0),
8928 GEN_INT (GET_MODE_MASK (mode)));
8929 continue;
8930
8931 case IOR:
8932 case AND:
8933 case XOR:
8934 /* If we have (xshiftrt (ior (plus X (const_int -1)) X) C)
8935 with C the size of VAROP - 1 and the shift is logical if
8936 STORE_FLAG_VALUE is 1 and arithmetic if STORE_FLAG_VALUE is -1,
8937 we have an (le X 0) operation. If we have an arithmetic shift
8938 and STORE_FLAG_VALUE is 1 or we have a logical shift with
8939 STORE_FLAG_VALUE of -1, we have a (neg (le X 0)) operation. */
8940
8941 if (GET_CODE (varop) == IOR && GET_CODE (XEXP (varop, 0)) == PLUS
8942 && XEXP (XEXP (varop, 0), 1) == constm1_rtx
8943 && (STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
8944 && (code == LSHIFTRT || code == ASHIFTRT)
8945 && count == (GET_MODE_BITSIZE (GET_MODE (varop)) - 1)
8946 && rtx_equal_p (XEXP (XEXP (varop, 0), 0), XEXP (varop, 1)))
8947 {
8948 count = 0;
8949 varop = gen_rtx_LE (GET_MODE (varop), XEXP (varop, 1),
8950 const0_rtx);
8951
8952 if (STORE_FLAG_VALUE == 1 ? code == ASHIFTRT : code == LSHIFTRT)
8953 varop = gen_rtx_NEG (GET_MODE (varop), varop);
8954
8955 continue;
8956 }
8957
8958 /* If we have (shift (logical)), move the logical to the outside
8959 to allow it to possibly combine with another logical and the
8960 shift to combine with another shift. This also canonicalizes to
8961 what a ZERO_EXTRACT looks like. Also, some machines have
8962 (and (shift)) insns. */
8963
8964 if (GET_CODE (XEXP (varop, 1)) == CONST_INT
8965 /* We can't do this if we have (ashiftrt (xor)) and the
8966 constant has its sign bit set in shift_mode. */
8967 && !(code == ASHIFTRT && GET_CODE (varop) == XOR
8968 && 0 > trunc_int_for_mode (INTVAL (XEXP (varop, 1)),
8969 shift_mode))
8970 && (new = simplify_const_binary_operation (code, result_mode,
8971 XEXP (varop, 1),
8972 GEN_INT (count))) != 0
8973 && GET_CODE (new) == CONST_INT
8974 && merge_outer_ops (&outer_op, &outer_const, GET_CODE (varop),
8975 INTVAL (new), result_mode, &complement_p))
8976 {
8977 varop = XEXP (varop, 0);
8978 continue;
8979 }
8980
8981 /* If we can't do that, try to simplify the shift in each arm of the
8982 logical expression, make a new logical expression, and apply
8983 the inverse distributive law. This also can't be done
8984 for some (ashiftrt (xor)). */
8985 if (GET_CODE (XEXP (varop, 1)) == CONST_INT
8986 && !(code == ASHIFTRT && GET_CODE (varop) == XOR
8987 && 0 > trunc_int_for_mode (INTVAL (XEXP (varop, 1)),
8988 shift_mode)))
8989 {
8990 rtx lhs = simplify_shift_const (NULL_RTX, code, shift_mode,
8991 XEXP (varop, 0), count);
8992 rtx rhs = simplify_shift_const (NULL_RTX, code, shift_mode,
8993 XEXP (varop, 1), count);
8994
8995 varop = simplify_gen_binary (GET_CODE (varop), shift_mode,
8996 lhs, rhs);
8997 varop = apply_distributive_law (varop);
8998
8999 count = 0;
9000 continue;
9001 }
9002 break;
9003
9004 case EQ:
9005 /* Convert (lshiftrt (eq FOO 0) C) to (xor FOO 1) if STORE_FLAG_VALUE
9006 says that the sign bit can be tested, FOO has mode MODE, C is
9007 GET_MODE_BITSIZE (MODE) - 1, and FOO has only its low-order bit
9008 that may be nonzero. */
9009 if (code == LSHIFTRT
9010 && XEXP (varop, 1) == const0_rtx
9011 && GET_MODE (XEXP (varop, 0)) == result_mode
9012 && count == (GET_MODE_BITSIZE (result_mode) - 1)
9013 && GET_MODE_BITSIZE (result_mode) <= HOST_BITS_PER_WIDE_INT
9014 && STORE_FLAG_VALUE == -1
9015 && nonzero_bits (XEXP (varop, 0), result_mode) == 1
9016 && merge_outer_ops (&outer_op, &outer_const, XOR,
9017 (HOST_WIDE_INT) 1, result_mode,
9018 &complement_p))
9019 {
9020 varop = XEXP (varop, 0);
9021 count = 0;
9022 continue;
9023 }
9024 break;
9025
9026 case NEG:
9027 /* (lshiftrt (neg A) C) where A is either 0 or 1 and C is one less
9028 than the number of bits in the mode is equivalent to A. */
9029 if (code == LSHIFTRT
9030 && count == (GET_MODE_BITSIZE (result_mode) - 1)
9031 && nonzero_bits (XEXP (varop, 0), result_mode) == 1)
9032 {
9033 varop = XEXP (varop, 0);
9034 count = 0;
9035 continue;
9036 }
9037
9038 /* NEG commutes with ASHIFT since it is multiplication. Move the
9039 NEG outside to allow shifts to combine. */
9040 if (code == ASHIFT
9041 && merge_outer_ops (&outer_op, &outer_const, NEG,
9042 (HOST_WIDE_INT) 0, result_mode,
9043 &complement_p))
9044 {
9045 varop = XEXP (varop, 0);
9046 continue;
9047 }
9048 break;
9049
9050 case PLUS:
9051 /* (lshiftrt (plus A -1) C) where A is either 0 or 1 and C
9052 is one less than the number of bits in the mode is
9053 equivalent to (xor A 1). */
9054 if (code == LSHIFTRT
9055 && count == (GET_MODE_BITSIZE (result_mode) - 1)
9056 && XEXP (varop, 1) == constm1_rtx
9057 && nonzero_bits (XEXP (varop, 0), result_mode) == 1
9058 && merge_outer_ops (&outer_op, &outer_const, XOR,
9059 (HOST_WIDE_INT) 1, result_mode,
9060 &complement_p))
9061 {
9062 count = 0;
9063 varop = XEXP (varop, 0);
9064 continue;
9065 }
9066
9067 /* If we have (xshiftrt (plus FOO BAR) C), and the only bits
9068 that might be nonzero in BAR are those being shifted out and those
9069 bits are known zero in FOO, we can replace the PLUS with FOO.
9070 Similarly in the other operand order. This code occurs when
9071 we are computing the size of a variable-size array. */
9072
9073 if ((code == ASHIFTRT || code == LSHIFTRT)
9074 && count < HOST_BITS_PER_WIDE_INT
9075 && nonzero_bits (XEXP (varop, 1), result_mode) >> count == 0
9076 && (nonzero_bits (XEXP (varop, 1), result_mode)
9077 & nonzero_bits (XEXP (varop, 0), result_mode)) == 0)
9078 {
9079 varop = XEXP (varop, 0);
9080 continue;
9081 }
9082 else if ((code == ASHIFTRT || code == LSHIFTRT)
9083 && count < HOST_BITS_PER_WIDE_INT
9084 && GET_MODE_BITSIZE (result_mode) <= HOST_BITS_PER_WIDE_INT
9085 && 0 == (nonzero_bits (XEXP (varop, 0), result_mode)
9086 >> count)
9087 && 0 == (nonzero_bits (XEXP (varop, 0), result_mode)
9088 & nonzero_bits (XEXP (varop, 1),
9089 result_mode)))
9090 {
9091 varop = XEXP (varop, 1);
9092 continue;
9093 }
9094
9095 /* (ashift (plus foo C) N) is (plus (ashift foo N) C'). */
9096 if (code == ASHIFT
9097 && GET_CODE (XEXP (varop, 1)) == CONST_INT
9098 && (new = simplify_const_binary_operation (ASHIFT, result_mode,
9099 XEXP (varop, 1),
9100 GEN_INT (count))) != 0
9101 && GET_CODE (new) == CONST_INT
9102 && merge_outer_ops (&outer_op, &outer_const, PLUS,
9103 INTVAL (new), result_mode, &complement_p))
9104 {
9105 varop = XEXP (varop, 0);
9106 continue;
9107 }
9108
9109 /* Check for 'PLUS signbit', which is the canonical form of 'XOR
9110 signbit', and attempt to change the PLUS to an XOR and move it to
9111 the outer operation as is done above in the AND/IOR/XOR case
9112 leg for shift(logical). See details in logical handling above
9113 for reasoning in doing so. */
9114 if (code == LSHIFTRT
9115 && GET_CODE (XEXP (varop, 1)) == CONST_INT
9116 && mode_signbit_p (result_mode, XEXP (varop, 1))
9117 && (new = simplify_const_binary_operation (code, result_mode,
9118 XEXP (varop, 1),
9119 GEN_INT (count))) != 0
9120 && GET_CODE (new) == CONST_INT
9121 && merge_outer_ops (&outer_op, &outer_const, XOR,
9122 INTVAL (new), result_mode, &complement_p))
9123 {
9124 varop = XEXP (varop, 0);
9125 continue;
9126 }
9127
9128 break;
9129
9130 case MINUS:
9131 /* If we have (xshiftrt (minus (ashiftrt X C)) X) C)
9132 with C the size of VAROP - 1 and the shift is logical if
9133 STORE_FLAG_VALUE is 1 and arithmetic if STORE_FLAG_VALUE is -1,
9134 we have a (gt X 0) operation. If the shift is arithmetic with
9135 STORE_FLAG_VALUE of 1 or logical with STORE_FLAG_VALUE == -1,
9136 we have a (neg (gt X 0)) operation. */
9137
9138 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
9139 && GET_CODE (XEXP (varop, 0)) == ASHIFTRT
9140 && count == (GET_MODE_BITSIZE (GET_MODE (varop)) - 1)
9141 && (code == LSHIFTRT || code == ASHIFTRT)
9142 && GET_CODE (XEXP (XEXP (varop, 0), 1)) == CONST_INT
9143 && INTVAL (XEXP (XEXP (varop, 0), 1)) == count
9144 && rtx_equal_p (XEXP (XEXP (varop, 0), 0), XEXP (varop, 1)))
9145 {
9146 count = 0;
9147 varop = gen_rtx_GT (GET_MODE (varop), XEXP (varop, 1),
9148 const0_rtx);
9149
9150 if (STORE_FLAG_VALUE == 1 ? code == ASHIFTRT : code == LSHIFTRT)
9151 varop = gen_rtx_NEG (GET_MODE (varop), varop);
9152
9153 continue;
9154 }
9155 break;
9156
9157 case TRUNCATE:
9158 /* Change (lshiftrt (truncate (lshiftrt))) to (truncate (lshiftrt))
9159 if the truncate does not affect the value. */
9160 if (code == LSHIFTRT
9161 && GET_CODE (XEXP (varop, 0)) == LSHIFTRT
9162 && GET_CODE (XEXP (XEXP (varop, 0), 1)) == CONST_INT
9163 && (INTVAL (XEXP (XEXP (varop, 0), 1))
9164 >= (GET_MODE_BITSIZE (GET_MODE (XEXP (varop, 0)))
9165 - GET_MODE_BITSIZE (GET_MODE (varop)))))
9166 {
9167 rtx varop_inner = XEXP (varop, 0);
9168
9169 varop_inner
9170 = gen_rtx_LSHIFTRT (GET_MODE (varop_inner),
9171 XEXP (varop_inner, 0),
9172 GEN_INT
9173 (count + INTVAL (XEXP (varop_inner, 1))));
9174 varop = gen_rtx_TRUNCATE (GET_MODE (varop), varop_inner);
9175 count = 0;
9176 continue;
9177 }
9178 break;
9179
9180 default:
9181 break;
9182 }
9183
9184 break;
9185 }
9186
9187 /* We need to determine what mode to do the shift in. If the shift is
9188 a right shift or ROTATE, we must always do it in the mode it was
9189 originally done in. Otherwise, we can do it in MODE, the widest mode
9190 encountered. The code we care about is that of the shift that will
9191 actually be done, not the shift that was originally requested. */
9192 shift_mode
9193 = (code == ASHIFTRT || code == LSHIFTRT || code == ROTATE
9194 ? result_mode : mode);
9195
9196 /* We have now finished analyzing the shift. The result should be
9197 a shift of type CODE with SHIFT_MODE shifting VAROP COUNT places. If
9198 OUTER_OP is non-UNKNOWN, it is an operation that needs to be applied
9199 to the result of the shift. OUTER_CONST is the relevant constant,
9200 but we must turn off all bits turned off in the shift. */
9201
9202 if (outer_op == UNKNOWN
9203 && orig_code == code && orig_count == count
9204 && varop == orig_varop
9205 && shift_mode == GET_MODE (varop))
9206 return NULL_RTX;
9207
9208 /* Make a SUBREG if necessary. If we can't make it, fail. */
9209 varop = gen_lowpart (shift_mode, varop);
9210 if (varop == NULL_RTX || GET_CODE (varop) == CLOBBER)
9211 return NULL_RTX;
9212
9213 /* If we have an outer operation and we just made a shift, it is
9214 possible that we could have simplified the shift were it not
9215 for the outer operation. So try to do the simplification
9216 recursively. */
9217
9218 if (outer_op != UNKNOWN)
9219 x = simplify_shift_const_1 (code, shift_mode, varop, count);
9220 else
9221 x = NULL_RTX;
9222
9223 if (x == NULL_RTX)
9224 x = simplify_gen_binary (code, shift_mode, varop, GEN_INT (count));
9225
9226 /* If we were doing an LSHIFTRT in a wider mode than it was originally,
9227 turn off all the bits that the shift would have turned off. */
9228 if (orig_code == LSHIFTRT && result_mode != shift_mode)
9229 x = simplify_and_const_int (NULL_RTX, shift_mode, x,
9230 GET_MODE_MASK (result_mode) >> orig_count);
9231
9232 /* Do the remainder of the processing in RESULT_MODE. */
9233 x = gen_lowpart_or_truncate (result_mode, x);
9234
9235 /* If COMPLEMENT_P is set, we have to complement X before doing the outer
9236 operation. */
9237 if (complement_p)
9238 x = simplify_gen_unary (NOT, result_mode, x, result_mode);
9239
9240 if (outer_op != UNKNOWN)
9241 {
9242 if (GET_MODE_BITSIZE (result_mode) < HOST_BITS_PER_WIDE_INT)
9243 outer_const = trunc_int_for_mode (outer_const, result_mode);
9244
9245 if (outer_op == AND)
9246 x = simplify_and_const_int (NULL_RTX, result_mode, x, outer_const);
9247 else if (outer_op == SET)
9248 {
9249 /* This means that we have determined that the result is
9250 equivalent to a constant. This should be rare. */
9251 if (!side_effects_p (x))
9252 x = GEN_INT (outer_const);
9253 }
9254 else if (GET_RTX_CLASS (outer_op) == RTX_UNARY)
9255 x = simplify_gen_unary (outer_op, result_mode, x, result_mode);
9256 else
9257 x = simplify_gen_binary (outer_op, result_mode, x,
9258 GEN_INT (outer_const));
9259 }
9260
9261 return x;
9262 }
9263
9264 /* Simplify a shift of VAROP by COUNT bits. CODE says what kind of shift.
9265 The result of the shift is RESULT_MODE. If we cannot simplify it,
9266 return X or, if it is NULL, synthesize the expression with
9267 simplify_gen_binary. Otherwise, return a simplified value.
9268
9269 The shift is normally computed in the widest mode we find in VAROP, as
9270 long as it isn't a different number of words than RESULT_MODE. Exceptions
9271 are ASHIFTRT and ROTATE, which are always done in their original mode. */
9272
9273 static rtx
9274 simplify_shift_const (rtx x, enum rtx_code code, enum machine_mode result_mode,
9275 rtx varop, int count)
9276 {
9277 rtx tem = simplify_shift_const_1 (code, result_mode, varop, count);
9278 if (tem)
9279 return tem;
9280
9281 if (!x)
9282 x = simplify_gen_binary (code, GET_MODE (varop), varop, GEN_INT (count));
9283 if (GET_MODE (x) != result_mode)
9284 x = gen_lowpart (result_mode, x);
9285 return x;
9286 }
9287
9288 \f
9289 /* Like recog, but we receive the address of a pointer to a new pattern.
9290 We try to match the rtx that the pointer points to.
9291 If that fails, we may try to modify or replace the pattern,
9292 storing the replacement into the same pointer object.
9293
9294 Modifications include deletion or addition of CLOBBERs.
9295
9296 PNOTES is a pointer to a location where any REG_UNUSED notes added for
9297 the CLOBBERs are placed.
9298
9299 The value is the final insn code from the pattern ultimately matched,
9300 or -1. */
9301
9302 static int
9303 recog_for_combine (rtx *pnewpat, rtx insn, rtx *pnotes)
9304 {
9305 rtx pat = *pnewpat;
9306 int insn_code_number;
9307 int num_clobbers_to_add = 0;
9308 int i;
9309 rtx notes = 0;
9310 rtx old_notes, old_pat;
9311
9312 /* If PAT is a PARALLEL, check to see if it contains the CLOBBER
9313 we use to indicate that something didn't match. If we find such a
9314 thing, force rejection. */
9315 if (GET_CODE (pat) == PARALLEL)
9316 for (i = XVECLEN (pat, 0) - 1; i >= 0; i--)
9317 if (GET_CODE (XVECEXP (pat, 0, i)) == CLOBBER
9318 && XEXP (XVECEXP (pat, 0, i), 0) == const0_rtx)
9319 return -1;
9320
9321 old_pat = PATTERN (insn);
9322 old_notes = REG_NOTES (insn);
9323 PATTERN (insn) = pat;
9324 REG_NOTES (insn) = 0;
9325
9326 insn_code_number = recog (pat, insn, &num_clobbers_to_add);
9327
9328 /* If it isn't, there is the possibility that we previously had an insn
9329 that clobbered some register as a side effect, but the combined
9330 insn doesn't need to do that. So try once more without the clobbers
9331 unless this represents an ASM insn. */
9332
9333 if (insn_code_number < 0 && ! check_asm_operands (pat)
9334 && GET_CODE (pat) == PARALLEL)
9335 {
9336 int pos;
9337
9338 for (pos = 0, i = 0; i < XVECLEN (pat, 0); i++)
9339 if (GET_CODE (XVECEXP (pat, 0, i)) != CLOBBER)
9340 {
9341 if (i != pos)
9342 SUBST (XVECEXP (pat, 0, pos), XVECEXP (pat, 0, i));
9343 pos++;
9344 }
9345
9346 SUBST_INT (XVECLEN (pat, 0), pos);
9347
9348 if (pos == 1)
9349 pat = XVECEXP (pat, 0, 0);
9350
9351 PATTERN (insn) = pat;
9352 insn_code_number = recog (pat, insn, &num_clobbers_to_add);
9353 }
9354 PATTERN (insn) = old_pat;
9355 REG_NOTES (insn) = old_notes;
9356
9357 /* Recognize all noop sets, these will be killed by followup pass. */
9358 if (insn_code_number < 0 && GET_CODE (pat) == SET && set_noop_p (pat))
9359 insn_code_number = NOOP_MOVE_INSN_CODE, num_clobbers_to_add = 0;
9360
9361 /* If we had any clobbers to add, make a new pattern than contains
9362 them. Then check to make sure that all of them are dead. */
9363 if (num_clobbers_to_add)
9364 {
9365 rtx newpat = gen_rtx_PARALLEL (VOIDmode,
9366 rtvec_alloc (GET_CODE (pat) == PARALLEL
9367 ? (XVECLEN (pat, 0)
9368 + num_clobbers_to_add)
9369 : num_clobbers_to_add + 1));
9370
9371 if (GET_CODE (pat) == PARALLEL)
9372 for (i = 0; i < XVECLEN (pat, 0); i++)
9373 XVECEXP (newpat, 0, i) = XVECEXP (pat, 0, i);
9374 else
9375 XVECEXP (newpat, 0, 0) = pat;
9376
9377 add_clobbers (newpat, insn_code_number);
9378
9379 for (i = XVECLEN (newpat, 0) - num_clobbers_to_add;
9380 i < XVECLEN (newpat, 0); i++)
9381 {
9382 if (REG_P (XEXP (XVECEXP (newpat, 0, i), 0))
9383 && ! reg_dead_at_p (XEXP (XVECEXP (newpat, 0, i), 0), insn))
9384 return -1;
9385 notes = gen_rtx_EXPR_LIST (REG_UNUSED,
9386 XEXP (XVECEXP (newpat, 0, i), 0), notes);
9387 }
9388 pat = newpat;
9389 }
9390
9391 *pnewpat = pat;
9392 *pnotes = notes;
9393
9394 return insn_code_number;
9395 }
9396 \f
9397 /* Like gen_lowpart_general but for use by combine. In combine it
9398 is not possible to create any new pseudoregs. However, it is
9399 safe to create invalid memory addresses, because combine will
9400 try to recognize them and all they will do is make the combine
9401 attempt fail.
9402
9403 If for some reason this cannot do its job, an rtx
9404 (clobber (const_int 0)) is returned.
9405 An insn containing that will not be recognized. */
9406
9407 static rtx
9408 gen_lowpart_for_combine (enum machine_mode omode, rtx x)
9409 {
9410 enum machine_mode imode = GET_MODE (x);
9411 unsigned int osize = GET_MODE_SIZE (omode);
9412 unsigned int isize = GET_MODE_SIZE (imode);
9413 rtx result;
9414
9415 if (omode == imode)
9416 return x;
9417
9418 /* Return identity if this is a CONST or symbolic reference. */
9419 if (omode == Pmode
9420 && (GET_CODE (x) == CONST
9421 || GET_CODE (x) == SYMBOL_REF
9422 || GET_CODE (x) == LABEL_REF))
9423 return x;
9424
9425 /* We can only support MODE being wider than a word if X is a
9426 constant integer or has a mode the same size. */
9427 if (GET_MODE_SIZE (omode) > UNITS_PER_WORD
9428 && ! ((imode == VOIDmode
9429 && (GET_CODE (x) == CONST_INT
9430 || GET_CODE (x) == CONST_DOUBLE))
9431 || isize == osize))
9432 goto fail;
9433
9434 /* X might be a paradoxical (subreg (mem)). In that case, gen_lowpart
9435 won't know what to do. So we will strip off the SUBREG here and
9436 process normally. */
9437 if (GET_CODE (x) == SUBREG && MEM_P (SUBREG_REG (x)))
9438 {
9439 x = SUBREG_REG (x);
9440
9441 /* For use in case we fall down into the address adjustments
9442 further below, we need to adjust the known mode and size of
9443 x; imode and isize, since we just adjusted x. */
9444 imode = GET_MODE (x);
9445
9446 if (imode == omode)
9447 return x;
9448
9449 isize = GET_MODE_SIZE (imode);
9450 }
9451
9452 result = gen_lowpart_common (omode, x);
9453
9454 #ifdef CANNOT_CHANGE_MODE_CLASS
9455 if (result != 0 && GET_CODE (result) == SUBREG)
9456 record_subregs_of_mode (result);
9457 #endif
9458
9459 if (result)
9460 return result;
9461
9462 if (MEM_P (x))
9463 {
9464 int offset = 0;
9465
9466 /* Refuse to work on a volatile memory ref or one with a mode-dependent
9467 address. */
9468 if (MEM_VOLATILE_P (x) || mode_dependent_address_p (XEXP (x, 0)))
9469 goto fail;
9470
9471 /* If we want to refer to something bigger than the original memref,
9472 generate a paradoxical subreg instead. That will force a reload
9473 of the original memref X. */
9474 if (isize < osize)
9475 return gen_rtx_SUBREG (omode, x, 0);
9476
9477 if (WORDS_BIG_ENDIAN)
9478 offset = MAX (isize, UNITS_PER_WORD) - MAX (osize, UNITS_PER_WORD);
9479
9480 /* Adjust the address so that the address-after-the-data is
9481 unchanged. */
9482 if (BYTES_BIG_ENDIAN)
9483 offset -= MIN (UNITS_PER_WORD, osize) - MIN (UNITS_PER_WORD, isize);
9484
9485 return adjust_address_nv (x, omode, offset);
9486 }
9487
9488 /* If X is a comparison operator, rewrite it in a new mode. This
9489 probably won't match, but may allow further simplifications. */
9490 else if (COMPARISON_P (x))
9491 return gen_rtx_fmt_ee (GET_CODE (x), omode, XEXP (x, 0), XEXP (x, 1));
9492
9493 /* If we couldn't simplify X any other way, just enclose it in a
9494 SUBREG. Normally, this SUBREG won't match, but some patterns may
9495 include an explicit SUBREG or we may simplify it further in combine. */
9496 else
9497 {
9498 int offset = 0;
9499 rtx res;
9500
9501 offset = subreg_lowpart_offset (omode, imode);
9502 if (imode == VOIDmode)
9503 {
9504 imode = int_mode_for_mode (omode);
9505 x = gen_lowpart_common (imode, x);
9506 if (x == NULL)
9507 goto fail;
9508 }
9509 res = simplify_gen_subreg (omode, x, imode, offset);
9510 if (res)
9511 return res;
9512 }
9513
9514 fail:
9515 return gen_rtx_CLOBBER (imode, const0_rtx);
9516 }
9517 \f
9518 /* Simplify a comparison between *POP0 and *POP1 where CODE is the
9519 comparison code that will be tested.
9520
9521 The result is a possibly different comparison code to use. *POP0 and
9522 *POP1 may be updated.
9523
9524 It is possible that we might detect that a comparison is either always
9525 true or always false. However, we do not perform general constant
9526 folding in combine, so this knowledge isn't useful. Such tautologies
9527 should have been detected earlier. Hence we ignore all such cases. */
9528
9529 static enum rtx_code
9530 simplify_comparison (enum rtx_code code, rtx *pop0, rtx *pop1)
9531 {
9532 rtx op0 = *pop0;
9533 rtx op1 = *pop1;
9534 rtx tem, tem1;
9535 int i;
9536 enum machine_mode mode, tmode;
9537
9538 /* Try a few ways of applying the same transformation to both operands. */
9539 while (1)
9540 {
9541 #ifndef WORD_REGISTER_OPERATIONS
9542 /* The test below this one won't handle SIGN_EXTENDs on these machines,
9543 so check specially. */
9544 if (code != GTU && code != GEU && code != LTU && code != LEU
9545 && GET_CODE (op0) == ASHIFTRT && GET_CODE (op1) == ASHIFTRT
9546 && GET_CODE (XEXP (op0, 0)) == ASHIFT
9547 && GET_CODE (XEXP (op1, 0)) == ASHIFT
9548 && GET_CODE (XEXP (XEXP (op0, 0), 0)) == SUBREG
9549 && GET_CODE (XEXP (XEXP (op1, 0), 0)) == SUBREG
9550 && (GET_MODE (SUBREG_REG (XEXP (XEXP (op0, 0), 0)))
9551 == GET_MODE (SUBREG_REG (XEXP (XEXP (op1, 0), 0))))
9552 && GET_CODE (XEXP (op0, 1)) == CONST_INT
9553 && XEXP (op0, 1) == XEXP (op1, 1)
9554 && XEXP (op0, 1) == XEXP (XEXP (op0, 0), 1)
9555 && XEXP (op0, 1) == XEXP (XEXP (op1, 0), 1)
9556 && (INTVAL (XEXP (op0, 1))
9557 == (GET_MODE_BITSIZE (GET_MODE (op0))
9558 - (GET_MODE_BITSIZE
9559 (GET_MODE (SUBREG_REG (XEXP (XEXP (op0, 0), 0))))))))
9560 {
9561 op0 = SUBREG_REG (XEXP (XEXP (op0, 0), 0));
9562 op1 = SUBREG_REG (XEXP (XEXP (op1, 0), 0));
9563 }
9564 #endif
9565
9566 /* If both operands are the same constant shift, see if we can ignore the
9567 shift. We can if the shift is a rotate or if the bits shifted out of
9568 this shift are known to be zero for both inputs and if the type of
9569 comparison is compatible with the shift. */
9570 if (GET_CODE (op0) == GET_CODE (op1)
9571 && GET_MODE_BITSIZE (GET_MODE (op0)) <= HOST_BITS_PER_WIDE_INT
9572 && ((GET_CODE (op0) == ROTATE && (code == NE || code == EQ))
9573 || ((GET_CODE (op0) == LSHIFTRT || GET_CODE (op0) == ASHIFT)
9574 && (code != GT && code != LT && code != GE && code != LE))
9575 || (GET_CODE (op0) == ASHIFTRT
9576 && (code != GTU && code != LTU
9577 && code != GEU && code != LEU)))
9578 && GET_CODE (XEXP (op0, 1)) == CONST_INT
9579 && INTVAL (XEXP (op0, 1)) >= 0
9580 && INTVAL (XEXP (op0, 1)) < HOST_BITS_PER_WIDE_INT
9581 && XEXP (op0, 1) == XEXP (op1, 1))
9582 {
9583 enum machine_mode mode = GET_MODE (op0);
9584 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
9585 int shift_count = INTVAL (XEXP (op0, 1));
9586
9587 if (GET_CODE (op0) == LSHIFTRT || GET_CODE (op0) == ASHIFTRT)
9588 mask &= (mask >> shift_count) << shift_count;
9589 else if (GET_CODE (op0) == ASHIFT)
9590 mask = (mask & (mask << shift_count)) >> shift_count;
9591
9592 if ((nonzero_bits (XEXP (op0, 0), mode) & ~mask) == 0
9593 && (nonzero_bits (XEXP (op1, 0), mode) & ~mask) == 0)
9594 op0 = XEXP (op0, 0), op1 = XEXP (op1, 0);
9595 else
9596 break;
9597 }
9598
9599 /* If both operands are AND's of a paradoxical SUBREG by constant, the
9600 SUBREGs are of the same mode, and, in both cases, the AND would
9601 be redundant if the comparison was done in the narrower mode,
9602 do the comparison in the narrower mode (e.g., we are AND'ing with 1
9603 and the operand's possibly nonzero bits are 0xffffff01; in that case
9604 if we only care about QImode, we don't need the AND). This case
9605 occurs if the output mode of an scc insn is not SImode and
9606 STORE_FLAG_VALUE == 1 (e.g., the 386).
9607
9608 Similarly, check for a case where the AND's are ZERO_EXTEND
9609 operations from some narrower mode even though a SUBREG is not
9610 present. */
9611
9612 else if (GET_CODE (op0) == AND && GET_CODE (op1) == AND
9613 && GET_CODE (XEXP (op0, 1)) == CONST_INT
9614 && GET_CODE (XEXP (op1, 1)) == CONST_INT)
9615 {
9616 rtx inner_op0 = XEXP (op0, 0);
9617 rtx inner_op1 = XEXP (op1, 0);
9618 HOST_WIDE_INT c0 = INTVAL (XEXP (op0, 1));
9619 HOST_WIDE_INT c1 = INTVAL (XEXP (op1, 1));
9620 int changed = 0;
9621
9622 if (GET_CODE (inner_op0) == SUBREG && GET_CODE (inner_op1) == SUBREG
9623 && (GET_MODE_SIZE (GET_MODE (inner_op0))
9624 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (inner_op0))))
9625 && (GET_MODE (SUBREG_REG (inner_op0))
9626 == GET_MODE (SUBREG_REG (inner_op1)))
9627 && (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (inner_op0)))
9628 <= HOST_BITS_PER_WIDE_INT)
9629 && (0 == ((~c0) & nonzero_bits (SUBREG_REG (inner_op0),
9630 GET_MODE (SUBREG_REG (inner_op0)))))
9631 && (0 == ((~c1) & nonzero_bits (SUBREG_REG (inner_op1),
9632 GET_MODE (SUBREG_REG (inner_op1))))))
9633 {
9634 op0 = SUBREG_REG (inner_op0);
9635 op1 = SUBREG_REG (inner_op1);
9636
9637 /* The resulting comparison is always unsigned since we masked
9638 off the original sign bit. */
9639 code = unsigned_condition (code);
9640
9641 changed = 1;
9642 }
9643
9644 else if (c0 == c1)
9645 for (tmode = GET_CLASS_NARROWEST_MODE
9646 (GET_MODE_CLASS (GET_MODE (op0)));
9647 tmode != GET_MODE (op0); tmode = GET_MODE_WIDER_MODE (tmode))
9648 if ((unsigned HOST_WIDE_INT) c0 == GET_MODE_MASK (tmode))
9649 {
9650 op0 = gen_lowpart (tmode, inner_op0);
9651 op1 = gen_lowpart (tmode, inner_op1);
9652 code = unsigned_condition (code);
9653 changed = 1;
9654 break;
9655 }
9656
9657 if (! changed)
9658 break;
9659 }
9660
9661 /* If both operands are NOT, we can strip off the outer operation
9662 and adjust the comparison code for swapped operands; similarly for
9663 NEG, except that this must be an equality comparison. */
9664 else if ((GET_CODE (op0) == NOT && GET_CODE (op1) == NOT)
9665 || (GET_CODE (op0) == NEG && GET_CODE (op1) == NEG
9666 && (code == EQ || code == NE)))
9667 op0 = XEXP (op0, 0), op1 = XEXP (op1, 0), code = swap_condition (code);
9668
9669 else
9670 break;
9671 }
9672
9673 /* If the first operand is a constant, swap the operands and adjust the
9674 comparison code appropriately, but don't do this if the second operand
9675 is already a constant integer. */
9676 if (swap_commutative_operands_p (op0, op1))
9677 {
9678 tem = op0, op0 = op1, op1 = tem;
9679 code = swap_condition (code);
9680 }
9681
9682 /* We now enter a loop during which we will try to simplify the comparison.
9683 For the most part, we only are concerned with comparisons with zero,
9684 but some things may really be comparisons with zero but not start
9685 out looking that way. */
9686
9687 while (GET_CODE (op1) == CONST_INT)
9688 {
9689 enum machine_mode mode = GET_MODE (op0);
9690 unsigned int mode_width = GET_MODE_BITSIZE (mode);
9691 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
9692 int equality_comparison_p;
9693 int sign_bit_comparison_p;
9694 int unsigned_comparison_p;
9695 HOST_WIDE_INT const_op;
9696
9697 /* We only want to handle integral modes. This catches VOIDmode,
9698 CCmode, and the floating-point modes. An exception is that we
9699 can handle VOIDmode if OP0 is a COMPARE or a comparison
9700 operation. */
9701
9702 if (GET_MODE_CLASS (mode) != MODE_INT
9703 && ! (mode == VOIDmode
9704 && (GET_CODE (op0) == COMPARE || COMPARISON_P (op0))))
9705 break;
9706
9707 /* Get the constant we are comparing against and turn off all bits
9708 not on in our mode. */
9709 const_op = INTVAL (op1);
9710 if (mode != VOIDmode)
9711 const_op = trunc_int_for_mode (const_op, mode);
9712 op1 = GEN_INT (const_op);
9713
9714 /* If we are comparing against a constant power of two and the value
9715 being compared can only have that single bit nonzero (e.g., it was
9716 `and'ed with that bit), we can replace this with a comparison
9717 with zero. */
9718 if (const_op
9719 && (code == EQ || code == NE || code == GE || code == GEU
9720 || code == LT || code == LTU)
9721 && mode_width <= HOST_BITS_PER_WIDE_INT
9722 && exact_log2 (const_op) >= 0
9723 && nonzero_bits (op0, mode) == (unsigned HOST_WIDE_INT) const_op)
9724 {
9725 code = (code == EQ || code == GE || code == GEU ? NE : EQ);
9726 op1 = const0_rtx, const_op = 0;
9727 }
9728
9729 /* Similarly, if we are comparing a value known to be either -1 or
9730 0 with -1, change it to the opposite comparison against zero. */
9731
9732 if (const_op == -1
9733 && (code == EQ || code == NE || code == GT || code == LE
9734 || code == GEU || code == LTU)
9735 && num_sign_bit_copies (op0, mode) == mode_width)
9736 {
9737 code = (code == EQ || code == LE || code == GEU ? NE : EQ);
9738 op1 = const0_rtx, const_op = 0;
9739 }
9740
9741 /* Do some canonicalizations based on the comparison code. We prefer
9742 comparisons against zero and then prefer equality comparisons.
9743 If we can reduce the size of a constant, we will do that too. */
9744
9745 switch (code)
9746 {
9747 case LT:
9748 /* < C is equivalent to <= (C - 1) */
9749 if (const_op > 0)
9750 {
9751 const_op -= 1;
9752 op1 = GEN_INT (const_op);
9753 code = LE;
9754 /* ... fall through to LE case below. */
9755 }
9756 else
9757 break;
9758
9759 case LE:
9760 /* <= C is equivalent to < (C + 1); we do this for C < 0 */
9761 if (const_op < 0)
9762 {
9763 const_op += 1;
9764 op1 = GEN_INT (const_op);
9765 code = LT;
9766 }
9767
9768 /* If we are doing a <= 0 comparison on a value known to have
9769 a zero sign bit, we can replace this with == 0. */
9770 else if (const_op == 0
9771 && mode_width <= HOST_BITS_PER_WIDE_INT
9772 && (nonzero_bits (op0, mode)
9773 & ((HOST_WIDE_INT) 1 << (mode_width - 1))) == 0)
9774 code = EQ;
9775 break;
9776
9777 case GE:
9778 /* >= C is equivalent to > (C - 1). */
9779 if (const_op > 0)
9780 {
9781 const_op -= 1;
9782 op1 = GEN_INT (const_op);
9783 code = GT;
9784 /* ... fall through to GT below. */
9785 }
9786 else
9787 break;
9788
9789 case GT:
9790 /* > C is equivalent to >= (C + 1); we do this for C < 0. */
9791 if (const_op < 0)
9792 {
9793 const_op += 1;
9794 op1 = GEN_INT (const_op);
9795 code = GE;
9796 }
9797
9798 /* If we are doing a > 0 comparison on a value known to have
9799 a zero sign bit, we can replace this with != 0. */
9800 else if (const_op == 0
9801 && mode_width <= HOST_BITS_PER_WIDE_INT
9802 && (nonzero_bits (op0, mode)
9803 & ((HOST_WIDE_INT) 1 << (mode_width - 1))) == 0)
9804 code = NE;
9805 break;
9806
9807 case LTU:
9808 /* < C is equivalent to <= (C - 1). */
9809 if (const_op > 0)
9810 {
9811 const_op -= 1;
9812 op1 = GEN_INT (const_op);
9813 code = LEU;
9814 /* ... fall through ... */
9815 }
9816
9817 /* (unsigned) < 0x80000000 is equivalent to >= 0. */
9818 else if ((mode_width <= HOST_BITS_PER_WIDE_INT)
9819 && (const_op == (HOST_WIDE_INT) 1 << (mode_width - 1)))
9820 {
9821 const_op = 0, op1 = const0_rtx;
9822 code = GE;
9823 break;
9824 }
9825 else
9826 break;
9827
9828 case LEU:
9829 /* unsigned <= 0 is equivalent to == 0 */
9830 if (const_op == 0)
9831 code = EQ;
9832
9833 /* (unsigned) <= 0x7fffffff is equivalent to >= 0. */
9834 else if ((mode_width <= HOST_BITS_PER_WIDE_INT)
9835 && (const_op == ((HOST_WIDE_INT) 1 << (mode_width - 1)) - 1))
9836 {
9837 const_op = 0, op1 = const0_rtx;
9838 code = GE;
9839 }
9840 break;
9841
9842 case GEU:
9843 /* >= C is equivalent to > (C - 1). */
9844 if (const_op > 1)
9845 {
9846 const_op -= 1;
9847 op1 = GEN_INT (const_op);
9848 code = GTU;
9849 /* ... fall through ... */
9850 }
9851
9852 /* (unsigned) >= 0x80000000 is equivalent to < 0. */
9853 else if ((mode_width <= HOST_BITS_PER_WIDE_INT)
9854 && (const_op == (HOST_WIDE_INT) 1 << (mode_width - 1)))
9855 {
9856 const_op = 0, op1 = const0_rtx;
9857 code = LT;
9858 break;
9859 }
9860 else
9861 break;
9862
9863 case GTU:
9864 /* unsigned > 0 is equivalent to != 0 */
9865 if (const_op == 0)
9866 code = NE;
9867
9868 /* (unsigned) > 0x7fffffff is equivalent to < 0. */
9869 else if ((mode_width <= HOST_BITS_PER_WIDE_INT)
9870 && (const_op == ((HOST_WIDE_INT) 1 << (mode_width - 1)) - 1))
9871 {
9872 const_op = 0, op1 = const0_rtx;
9873 code = LT;
9874 }
9875 break;
9876
9877 default:
9878 break;
9879 }
9880
9881 /* Compute some predicates to simplify code below. */
9882
9883 equality_comparison_p = (code == EQ || code == NE);
9884 sign_bit_comparison_p = ((code == LT || code == GE) && const_op == 0);
9885 unsigned_comparison_p = (code == LTU || code == LEU || code == GTU
9886 || code == GEU);
9887
9888 /* If this is a sign bit comparison and we can do arithmetic in
9889 MODE, say that we will only be needing the sign bit of OP0. */
9890 if (sign_bit_comparison_p
9891 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
9892 op0 = force_to_mode (op0, mode,
9893 ((HOST_WIDE_INT) 1
9894 << (GET_MODE_BITSIZE (mode) - 1)),
9895 0);
9896
9897 /* Now try cases based on the opcode of OP0. If none of the cases
9898 does a "continue", we exit this loop immediately after the
9899 switch. */
9900
9901 switch (GET_CODE (op0))
9902 {
9903 case ZERO_EXTRACT:
9904 /* If we are extracting a single bit from a variable position in
9905 a constant that has only a single bit set and are comparing it
9906 with zero, we can convert this into an equality comparison
9907 between the position and the location of the single bit. */
9908 /* Except we can't if SHIFT_COUNT_TRUNCATED is set, since we might
9909 have already reduced the shift count modulo the word size. */
9910 if (!SHIFT_COUNT_TRUNCATED
9911 && GET_CODE (XEXP (op0, 0)) == CONST_INT
9912 && XEXP (op0, 1) == const1_rtx
9913 && equality_comparison_p && const_op == 0
9914 && (i = exact_log2 (INTVAL (XEXP (op0, 0)))) >= 0)
9915 {
9916 if (BITS_BIG_ENDIAN)
9917 {
9918 enum machine_mode new_mode
9919 = mode_for_extraction (EP_extzv, 1);
9920 if (new_mode == MAX_MACHINE_MODE)
9921 i = BITS_PER_WORD - 1 - i;
9922 else
9923 {
9924 mode = new_mode;
9925 i = (GET_MODE_BITSIZE (mode) - 1 - i);
9926 }
9927 }
9928
9929 op0 = XEXP (op0, 2);
9930 op1 = GEN_INT (i);
9931 const_op = i;
9932
9933 /* Result is nonzero iff shift count is equal to I. */
9934 code = reverse_condition (code);
9935 continue;
9936 }
9937
9938 /* ... fall through ... */
9939
9940 case SIGN_EXTRACT:
9941 tem = expand_compound_operation (op0);
9942 if (tem != op0)
9943 {
9944 op0 = tem;
9945 continue;
9946 }
9947 break;
9948
9949 case NOT:
9950 /* If testing for equality, we can take the NOT of the constant. */
9951 if (equality_comparison_p
9952 && (tem = simplify_unary_operation (NOT, mode, op1, mode)) != 0)
9953 {
9954 op0 = XEXP (op0, 0);
9955 op1 = tem;
9956 continue;
9957 }
9958
9959 /* If just looking at the sign bit, reverse the sense of the
9960 comparison. */
9961 if (sign_bit_comparison_p)
9962 {
9963 op0 = XEXP (op0, 0);
9964 code = (code == GE ? LT : GE);
9965 continue;
9966 }
9967 break;
9968
9969 case NEG:
9970 /* If testing for equality, we can take the NEG of the constant. */
9971 if (equality_comparison_p
9972 && (tem = simplify_unary_operation (NEG, mode, op1, mode)) != 0)
9973 {
9974 op0 = XEXP (op0, 0);
9975 op1 = tem;
9976 continue;
9977 }
9978
9979 /* The remaining cases only apply to comparisons with zero. */
9980 if (const_op != 0)
9981 break;
9982
9983 /* When X is ABS or is known positive,
9984 (neg X) is < 0 if and only if X != 0. */
9985
9986 if (sign_bit_comparison_p
9987 && (GET_CODE (XEXP (op0, 0)) == ABS
9988 || (mode_width <= HOST_BITS_PER_WIDE_INT
9989 && (nonzero_bits (XEXP (op0, 0), mode)
9990 & ((HOST_WIDE_INT) 1 << (mode_width - 1))) == 0)))
9991 {
9992 op0 = XEXP (op0, 0);
9993 code = (code == LT ? NE : EQ);
9994 continue;
9995 }
9996
9997 /* If we have NEG of something whose two high-order bits are the
9998 same, we know that "(-a) < 0" is equivalent to "a > 0". */
9999 if (num_sign_bit_copies (op0, mode) >= 2)
10000 {
10001 op0 = XEXP (op0, 0);
10002 code = swap_condition (code);
10003 continue;
10004 }
10005 break;
10006
10007 case ROTATE:
10008 /* If we are testing equality and our count is a constant, we
10009 can perform the inverse operation on our RHS. */
10010 if (equality_comparison_p && GET_CODE (XEXP (op0, 1)) == CONST_INT
10011 && (tem = simplify_binary_operation (ROTATERT, mode,
10012 op1, XEXP (op0, 1))) != 0)
10013 {
10014 op0 = XEXP (op0, 0);
10015 op1 = tem;
10016 continue;
10017 }
10018
10019 /* If we are doing a < 0 or >= 0 comparison, it means we are testing
10020 a particular bit. Convert it to an AND of a constant of that
10021 bit. This will be converted into a ZERO_EXTRACT. */
10022 if (const_op == 0 && sign_bit_comparison_p
10023 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10024 && mode_width <= HOST_BITS_PER_WIDE_INT)
10025 {
10026 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
10027 ((HOST_WIDE_INT) 1
10028 << (mode_width - 1
10029 - INTVAL (XEXP (op0, 1)))));
10030 code = (code == LT ? NE : EQ);
10031 continue;
10032 }
10033
10034 /* Fall through. */
10035
10036 case ABS:
10037 /* ABS is ignorable inside an equality comparison with zero. */
10038 if (const_op == 0 && equality_comparison_p)
10039 {
10040 op0 = XEXP (op0, 0);
10041 continue;
10042 }
10043 break;
10044
10045 case SIGN_EXTEND:
10046 /* Can simplify (compare (zero/sign_extend FOO) CONST) to
10047 (compare FOO CONST) if CONST fits in FOO's mode and we
10048 are either testing inequality or have an unsigned
10049 comparison with ZERO_EXTEND or a signed comparison with
10050 SIGN_EXTEND. But don't do it if we don't have a compare
10051 insn of the given mode, since we'd have to revert it
10052 later on, and then we wouldn't know whether to sign- or
10053 zero-extend. */
10054 mode = GET_MODE (XEXP (op0, 0));
10055 if (mode != VOIDmode && GET_MODE_CLASS (mode) == MODE_INT
10056 && ! unsigned_comparison_p
10057 && (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
10058 && ((unsigned HOST_WIDE_INT) const_op
10059 < (((unsigned HOST_WIDE_INT) 1
10060 << (GET_MODE_BITSIZE (mode) - 1))))
10061 && cmp_optab->handlers[(int) mode].insn_code != CODE_FOR_nothing)
10062 {
10063 op0 = XEXP (op0, 0);
10064 continue;
10065 }
10066 break;
10067
10068 case SUBREG:
10069 /* Check for the case where we are comparing A - C1 with C2, that is
10070
10071 (subreg:MODE (plus (A) (-C1))) op (C2)
10072
10073 with C1 a constant, and try to lift the SUBREG, i.e. to do the
10074 comparison in the wider mode. One of the following two conditions
10075 must be true in order for this to be valid:
10076
10077 1. The mode extension results in the same bit pattern being added
10078 on both sides and the comparison is equality or unsigned. As
10079 C2 has been truncated to fit in MODE, the pattern can only be
10080 all 0s or all 1s.
10081
10082 2. The mode extension results in the sign bit being copied on
10083 each side.
10084
10085 The difficulty here is that we have predicates for A but not for
10086 (A - C1) so we need to check that C1 is within proper bounds so
10087 as to perturbate A as little as possible. */
10088
10089 if (mode_width <= HOST_BITS_PER_WIDE_INT
10090 && subreg_lowpart_p (op0)
10091 && GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (op0))) > mode_width
10092 && GET_CODE (SUBREG_REG (op0)) == PLUS
10093 && GET_CODE (XEXP (SUBREG_REG (op0), 1)) == CONST_INT)
10094 {
10095 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (op0));
10096 rtx a = XEXP (SUBREG_REG (op0), 0);
10097 HOST_WIDE_INT c1 = -INTVAL (XEXP (SUBREG_REG (op0), 1));
10098
10099 if ((c1 > 0
10100 && (unsigned HOST_WIDE_INT) c1
10101 < (unsigned HOST_WIDE_INT) 1 << (mode_width - 1)
10102 && (equality_comparison_p || unsigned_comparison_p)
10103 /* (A - C1) zero-extends if it is positive and sign-extends
10104 if it is negative, C2 both zero- and sign-extends. */
10105 && ((0 == (nonzero_bits (a, inner_mode)
10106 & ~GET_MODE_MASK (mode))
10107 && const_op >= 0)
10108 /* (A - C1) sign-extends if it is positive and 1-extends
10109 if it is negative, C2 both sign- and 1-extends. */
10110 || (num_sign_bit_copies (a, inner_mode)
10111 > (unsigned int) (GET_MODE_BITSIZE (inner_mode)
10112 - mode_width)
10113 && const_op < 0)))
10114 || ((unsigned HOST_WIDE_INT) c1
10115 < (unsigned HOST_WIDE_INT) 1 << (mode_width - 2)
10116 /* (A - C1) always sign-extends, like C2. */
10117 && num_sign_bit_copies (a, inner_mode)
10118 > (unsigned int) (GET_MODE_BITSIZE (inner_mode)
10119 - (mode_width - 1))))
10120 {
10121 op0 = SUBREG_REG (op0);
10122 continue;
10123 }
10124 }
10125
10126 /* If the inner mode is narrower and we are extracting the low part,
10127 we can treat the SUBREG as if it were a ZERO_EXTEND. */
10128 if (subreg_lowpart_p (op0)
10129 && GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (op0))) < mode_width)
10130 /* Fall through */ ;
10131 else
10132 break;
10133
10134 /* ... fall through ... */
10135
10136 case ZERO_EXTEND:
10137 mode = GET_MODE (XEXP (op0, 0));
10138 if (mode != VOIDmode && GET_MODE_CLASS (mode) == MODE_INT
10139 && (unsigned_comparison_p || equality_comparison_p)
10140 && (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
10141 && ((unsigned HOST_WIDE_INT) const_op < GET_MODE_MASK (mode))
10142 && cmp_optab->handlers[(int) mode].insn_code != CODE_FOR_nothing)
10143 {
10144 op0 = XEXP (op0, 0);
10145 continue;
10146 }
10147 break;
10148
10149 case PLUS:
10150 /* (eq (plus X A) B) -> (eq X (minus B A)). We can only do
10151 this for equality comparisons due to pathological cases involving
10152 overflows. */
10153 if (equality_comparison_p
10154 && 0 != (tem = simplify_binary_operation (MINUS, mode,
10155 op1, XEXP (op0, 1))))
10156 {
10157 op0 = XEXP (op0, 0);
10158 op1 = tem;
10159 continue;
10160 }
10161
10162 /* (plus (abs X) (const_int -1)) is < 0 if and only if X == 0. */
10163 if (const_op == 0 && XEXP (op0, 1) == constm1_rtx
10164 && GET_CODE (XEXP (op0, 0)) == ABS && sign_bit_comparison_p)
10165 {
10166 op0 = XEXP (XEXP (op0, 0), 0);
10167 code = (code == LT ? EQ : NE);
10168 continue;
10169 }
10170 break;
10171
10172 case MINUS:
10173 /* We used to optimize signed comparisons against zero, but that
10174 was incorrect. Unsigned comparisons against zero (GTU, LEU)
10175 arrive here as equality comparisons, or (GEU, LTU) are
10176 optimized away. No need to special-case them. */
10177
10178 /* (eq (minus A B) C) -> (eq A (plus B C)) or
10179 (eq B (minus A C)), whichever simplifies. We can only do
10180 this for equality comparisons due to pathological cases involving
10181 overflows. */
10182 if (equality_comparison_p
10183 && 0 != (tem = simplify_binary_operation (PLUS, mode,
10184 XEXP (op0, 1), op1)))
10185 {
10186 op0 = XEXP (op0, 0);
10187 op1 = tem;
10188 continue;
10189 }
10190
10191 if (equality_comparison_p
10192 && 0 != (tem = simplify_binary_operation (MINUS, mode,
10193 XEXP (op0, 0), op1)))
10194 {
10195 op0 = XEXP (op0, 1);
10196 op1 = tem;
10197 continue;
10198 }
10199
10200 /* The sign bit of (minus (ashiftrt X C) X), where C is the number
10201 of bits in X minus 1, is one iff X > 0. */
10202 if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 0)) == ASHIFTRT
10203 && GET_CODE (XEXP (XEXP (op0, 0), 1)) == CONST_INT
10204 && (unsigned HOST_WIDE_INT) INTVAL (XEXP (XEXP (op0, 0), 1))
10205 == mode_width - 1
10206 && rtx_equal_p (XEXP (XEXP (op0, 0), 0), XEXP (op0, 1)))
10207 {
10208 op0 = XEXP (op0, 1);
10209 code = (code == GE ? LE : GT);
10210 continue;
10211 }
10212 break;
10213
10214 case XOR:
10215 /* (eq (xor A B) C) -> (eq A (xor B C)). This is a simplification
10216 if C is zero or B is a constant. */
10217 if (equality_comparison_p
10218 && 0 != (tem = simplify_binary_operation (XOR, mode,
10219 XEXP (op0, 1), op1)))
10220 {
10221 op0 = XEXP (op0, 0);
10222 op1 = tem;
10223 continue;
10224 }
10225 break;
10226
10227 case EQ: case NE:
10228 case UNEQ: case LTGT:
10229 case LT: case LTU: case UNLT: case LE: case LEU: case UNLE:
10230 case GT: case GTU: case UNGT: case GE: case GEU: case UNGE:
10231 case UNORDERED: case ORDERED:
10232 /* We can't do anything if OP0 is a condition code value, rather
10233 than an actual data value. */
10234 if (const_op != 0
10235 || CC0_P (XEXP (op0, 0))
10236 || GET_MODE_CLASS (GET_MODE (XEXP (op0, 0))) == MODE_CC)
10237 break;
10238
10239 /* Get the two operands being compared. */
10240 if (GET_CODE (XEXP (op0, 0)) == COMPARE)
10241 tem = XEXP (XEXP (op0, 0), 0), tem1 = XEXP (XEXP (op0, 0), 1);
10242 else
10243 tem = XEXP (op0, 0), tem1 = XEXP (op0, 1);
10244
10245 /* Check for the cases where we simply want the result of the
10246 earlier test or the opposite of that result. */
10247 if (code == NE || code == EQ
10248 || (GET_MODE_BITSIZE (GET_MODE (op0)) <= HOST_BITS_PER_WIDE_INT
10249 && GET_MODE_CLASS (GET_MODE (op0)) == MODE_INT
10250 && (STORE_FLAG_VALUE
10251 & (((HOST_WIDE_INT) 1
10252 << (GET_MODE_BITSIZE (GET_MODE (op0)) - 1))))
10253 && (code == LT || code == GE)))
10254 {
10255 enum rtx_code new_code;
10256 if (code == LT || code == NE)
10257 new_code = GET_CODE (op0);
10258 else
10259 new_code = reversed_comparison_code (op0, NULL);
10260
10261 if (new_code != UNKNOWN)
10262 {
10263 code = new_code;
10264 op0 = tem;
10265 op1 = tem1;
10266 continue;
10267 }
10268 }
10269 break;
10270
10271 case IOR:
10272 /* The sign bit of (ior (plus X (const_int -1)) X) is nonzero
10273 iff X <= 0. */
10274 if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 0)) == PLUS
10275 && XEXP (XEXP (op0, 0), 1) == constm1_rtx
10276 && rtx_equal_p (XEXP (XEXP (op0, 0), 0), XEXP (op0, 1)))
10277 {
10278 op0 = XEXP (op0, 1);
10279 code = (code == GE ? GT : LE);
10280 continue;
10281 }
10282 break;
10283
10284 case AND:
10285 /* Convert (and (xshift 1 X) Y) to (and (lshiftrt Y X) 1). This
10286 will be converted to a ZERO_EXTRACT later. */
10287 if (const_op == 0 && equality_comparison_p
10288 && GET_CODE (XEXP (op0, 0)) == ASHIFT
10289 && XEXP (XEXP (op0, 0), 0) == const1_rtx)
10290 {
10291 op0 = simplify_and_const_int
10292 (NULL_RTX, mode, gen_rtx_LSHIFTRT (mode,
10293 XEXP (op0, 1),
10294 XEXP (XEXP (op0, 0), 1)),
10295 (HOST_WIDE_INT) 1);
10296 continue;
10297 }
10298
10299 /* If we are comparing (and (lshiftrt X C1) C2) for equality with
10300 zero and X is a comparison and C1 and C2 describe only bits set
10301 in STORE_FLAG_VALUE, we can compare with X. */
10302 if (const_op == 0 && equality_comparison_p
10303 && mode_width <= HOST_BITS_PER_WIDE_INT
10304 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10305 && GET_CODE (XEXP (op0, 0)) == LSHIFTRT
10306 && GET_CODE (XEXP (XEXP (op0, 0), 1)) == CONST_INT
10307 && INTVAL (XEXP (XEXP (op0, 0), 1)) >= 0
10308 && INTVAL (XEXP (XEXP (op0, 0), 1)) < HOST_BITS_PER_WIDE_INT)
10309 {
10310 mask = ((INTVAL (XEXP (op0, 1)) & GET_MODE_MASK (mode))
10311 << INTVAL (XEXP (XEXP (op0, 0), 1)));
10312 if ((~STORE_FLAG_VALUE & mask) == 0
10313 && (COMPARISON_P (XEXP (XEXP (op0, 0), 0))
10314 || ((tem = get_last_value (XEXP (XEXP (op0, 0), 0))) != 0
10315 && COMPARISON_P (tem))))
10316 {
10317 op0 = XEXP (XEXP (op0, 0), 0);
10318 continue;
10319 }
10320 }
10321
10322 /* If we are doing an equality comparison of an AND of a bit equal
10323 to the sign bit, replace this with a LT or GE comparison of
10324 the underlying value. */
10325 if (equality_comparison_p
10326 && const_op == 0
10327 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10328 && mode_width <= HOST_BITS_PER_WIDE_INT
10329 && ((INTVAL (XEXP (op0, 1)) & GET_MODE_MASK (mode))
10330 == (unsigned HOST_WIDE_INT) 1 << (mode_width - 1)))
10331 {
10332 op0 = XEXP (op0, 0);
10333 code = (code == EQ ? GE : LT);
10334 continue;
10335 }
10336
10337 /* If this AND operation is really a ZERO_EXTEND from a narrower
10338 mode, the constant fits within that mode, and this is either an
10339 equality or unsigned comparison, try to do this comparison in
10340 the narrower mode.
10341
10342 Note that in:
10343
10344 (ne:DI (and:DI (reg:DI 4) (const_int 0xffffffff)) (const_int 0))
10345 -> (ne:DI (reg:SI 4) (const_int 0))
10346
10347 unless TRULY_NOOP_TRUNCATION allows it or the register is
10348 known to hold a value of the required mode the
10349 transformation is invalid. */
10350 if ((equality_comparison_p || unsigned_comparison_p)
10351 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10352 && (i = exact_log2 ((INTVAL (XEXP (op0, 1))
10353 & GET_MODE_MASK (mode))
10354 + 1)) >= 0
10355 && const_op >> i == 0
10356 && (tmode = mode_for_size (i, MODE_INT, 1)) != BLKmode
10357 && (TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (tmode),
10358 GET_MODE_BITSIZE (GET_MODE (op0)))
10359 || (REG_P (XEXP (op0, 0))
10360 && reg_truncated_to_mode (tmode, XEXP (op0, 0)))))
10361 {
10362 op0 = gen_lowpart (tmode, XEXP (op0, 0));
10363 continue;
10364 }
10365
10366 /* If this is (and:M1 (subreg:M2 X 0) (const_int C1)) where C1
10367 fits in both M1 and M2 and the SUBREG is either paradoxical
10368 or represents the low part, permute the SUBREG and the AND
10369 and try again. */
10370 if (GET_CODE (XEXP (op0, 0)) == SUBREG)
10371 {
10372 unsigned HOST_WIDE_INT c1;
10373 tmode = GET_MODE (SUBREG_REG (XEXP (op0, 0)));
10374 /* Require an integral mode, to avoid creating something like
10375 (AND:SF ...). */
10376 if (SCALAR_INT_MODE_P (tmode)
10377 /* It is unsafe to commute the AND into the SUBREG if the
10378 SUBREG is paradoxical and WORD_REGISTER_OPERATIONS is
10379 not defined. As originally written the upper bits
10380 have a defined value due to the AND operation.
10381 However, if we commute the AND inside the SUBREG then
10382 they no longer have defined values and the meaning of
10383 the code has been changed. */
10384 && (0
10385 #ifdef WORD_REGISTER_OPERATIONS
10386 || (mode_width > GET_MODE_BITSIZE (tmode)
10387 && mode_width <= BITS_PER_WORD)
10388 #endif
10389 || (mode_width <= GET_MODE_BITSIZE (tmode)
10390 && subreg_lowpart_p (XEXP (op0, 0))))
10391 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10392 && mode_width <= HOST_BITS_PER_WIDE_INT
10393 && GET_MODE_BITSIZE (tmode) <= HOST_BITS_PER_WIDE_INT
10394 && ((c1 = INTVAL (XEXP (op0, 1))) & ~mask) == 0
10395 && (c1 & ~GET_MODE_MASK (tmode)) == 0
10396 && c1 != mask
10397 && c1 != GET_MODE_MASK (tmode))
10398 {
10399 op0 = simplify_gen_binary (AND, tmode,
10400 SUBREG_REG (XEXP (op0, 0)),
10401 gen_int_mode (c1, tmode));
10402 op0 = gen_lowpart (mode, op0);
10403 continue;
10404 }
10405 }
10406
10407 /* Convert (ne (and (not X) 1) 0) to (eq (and X 1) 0). */
10408 if (const_op == 0 && equality_comparison_p
10409 && XEXP (op0, 1) == const1_rtx
10410 && GET_CODE (XEXP (op0, 0)) == NOT)
10411 {
10412 op0 = simplify_and_const_int
10413 (NULL_RTX, mode, XEXP (XEXP (op0, 0), 0), (HOST_WIDE_INT) 1);
10414 code = (code == NE ? EQ : NE);
10415 continue;
10416 }
10417
10418 /* Convert (ne (and (lshiftrt (not X)) 1) 0) to
10419 (eq (and (lshiftrt X) 1) 0).
10420 Also handle the case where (not X) is expressed using xor. */
10421 if (const_op == 0 && equality_comparison_p
10422 && XEXP (op0, 1) == const1_rtx
10423 && GET_CODE (XEXP (op0, 0)) == LSHIFTRT)
10424 {
10425 rtx shift_op = XEXP (XEXP (op0, 0), 0);
10426 rtx shift_count = XEXP (XEXP (op0, 0), 1);
10427
10428 if (GET_CODE (shift_op) == NOT
10429 || (GET_CODE (shift_op) == XOR
10430 && GET_CODE (XEXP (shift_op, 1)) == CONST_INT
10431 && GET_CODE (shift_count) == CONST_INT
10432 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
10433 && (INTVAL (XEXP (shift_op, 1))
10434 == (HOST_WIDE_INT) 1 << INTVAL (shift_count))))
10435 {
10436 op0 = simplify_and_const_int
10437 (NULL_RTX, mode,
10438 gen_rtx_LSHIFTRT (mode, XEXP (shift_op, 0), shift_count),
10439 (HOST_WIDE_INT) 1);
10440 code = (code == NE ? EQ : NE);
10441 continue;
10442 }
10443 }
10444 break;
10445
10446 case ASHIFT:
10447 /* If we have (compare (ashift FOO N) (const_int C)) and
10448 the high order N bits of FOO (N+1 if an inequality comparison)
10449 are known to be zero, we can do this by comparing FOO with C
10450 shifted right N bits so long as the low-order N bits of C are
10451 zero. */
10452 if (GET_CODE (XEXP (op0, 1)) == CONST_INT
10453 && INTVAL (XEXP (op0, 1)) >= 0
10454 && ((INTVAL (XEXP (op0, 1)) + ! equality_comparison_p)
10455 < HOST_BITS_PER_WIDE_INT)
10456 && ((const_op
10457 & (((HOST_WIDE_INT) 1 << INTVAL (XEXP (op0, 1))) - 1)) == 0)
10458 && mode_width <= HOST_BITS_PER_WIDE_INT
10459 && (nonzero_bits (XEXP (op0, 0), mode)
10460 & ~(mask >> (INTVAL (XEXP (op0, 1))
10461 + ! equality_comparison_p))) == 0)
10462 {
10463 /* We must perform a logical shift, not an arithmetic one,
10464 as we want the top N bits of C to be zero. */
10465 unsigned HOST_WIDE_INT temp = const_op & GET_MODE_MASK (mode);
10466
10467 temp >>= INTVAL (XEXP (op0, 1));
10468 op1 = gen_int_mode (temp, mode);
10469 op0 = XEXP (op0, 0);
10470 continue;
10471 }
10472
10473 /* If we are doing a sign bit comparison, it means we are testing
10474 a particular bit. Convert it to the appropriate AND. */
10475 if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 1)) == CONST_INT
10476 && mode_width <= HOST_BITS_PER_WIDE_INT)
10477 {
10478 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
10479 ((HOST_WIDE_INT) 1
10480 << (mode_width - 1
10481 - INTVAL (XEXP (op0, 1)))));
10482 code = (code == LT ? NE : EQ);
10483 continue;
10484 }
10485
10486 /* If this an equality comparison with zero and we are shifting
10487 the low bit to the sign bit, we can convert this to an AND of the
10488 low-order bit. */
10489 if (const_op == 0 && equality_comparison_p
10490 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10491 && (unsigned HOST_WIDE_INT) INTVAL (XEXP (op0, 1))
10492 == mode_width - 1)
10493 {
10494 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
10495 (HOST_WIDE_INT) 1);
10496 continue;
10497 }
10498 break;
10499
10500 case ASHIFTRT:
10501 /* If this is an equality comparison with zero, we can do this
10502 as a logical shift, which might be much simpler. */
10503 if (equality_comparison_p && const_op == 0
10504 && GET_CODE (XEXP (op0, 1)) == CONST_INT)
10505 {
10506 op0 = simplify_shift_const (NULL_RTX, LSHIFTRT, mode,
10507 XEXP (op0, 0),
10508 INTVAL (XEXP (op0, 1)));
10509 continue;
10510 }
10511
10512 /* If OP0 is a sign extension and CODE is not an unsigned comparison,
10513 do the comparison in a narrower mode. */
10514 if (! unsigned_comparison_p
10515 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10516 && GET_CODE (XEXP (op0, 0)) == ASHIFT
10517 && XEXP (op0, 1) == XEXP (XEXP (op0, 0), 1)
10518 && (tmode = mode_for_size (mode_width - INTVAL (XEXP (op0, 1)),
10519 MODE_INT, 1)) != BLKmode
10520 && (((unsigned HOST_WIDE_INT) const_op
10521 + (GET_MODE_MASK (tmode) >> 1) + 1)
10522 <= GET_MODE_MASK (tmode)))
10523 {
10524 op0 = gen_lowpart (tmode, XEXP (XEXP (op0, 0), 0));
10525 continue;
10526 }
10527
10528 /* Likewise if OP0 is a PLUS of a sign extension with a
10529 constant, which is usually represented with the PLUS
10530 between the shifts. */
10531 if (! unsigned_comparison_p
10532 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10533 && GET_CODE (XEXP (op0, 0)) == PLUS
10534 && GET_CODE (XEXP (XEXP (op0, 0), 1)) == CONST_INT
10535 && GET_CODE (XEXP (XEXP (op0, 0), 0)) == ASHIFT
10536 && XEXP (op0, 1) == XEXP (XEXP (XEXP (op0, 0), 0), 1)
10537 && (tmode = mode_for_size (mode_width - INTVAL (XEXP (op0, 1)),
10538 MODE_INT, 1)) != BLKmode
10539 && (((unsigned HOST_WIDE_INT) const_op
10540 + (GET_MODE_MASK (tmode) >> 1) + 1)
10541 <= GET_MODE_MASK (tmode)))
10542 {
10543 rtx inner = XEXP (XEXP (XEXP (op0, 0), 0), 0);
10544 rtx add_const = XEXP (XEXP (op0, 0), 1);
10545 rtx new_const = simplify_gen_binary (ASHIFTRT, GET_MODE (op0),
10546 add_const, XEXP (op0, 1));
10547
10548 op0 = simplify_gen_binary (PLUS, tmode,
10549 gen_lowpart (tmode, inner),
10550 new_const);
10551 continue;
10552 }
10553
10554 /* ... fall through ... */
10555 case LSHIFTRT:
10556 /* If we have (compare (xshiftrt FOO N) (const_int C)) and
10557 the low order N bits of FOO are known to be zero, we can do this
10558 by comparing FOO with C shifted left N bits so long as no
10559 overflow occurs. */
10560 if (GET_CODE (XEXP (op0, 1)) == CONST_INT
10561 && INTVAL (XEXP (op0, 1)) >= 0
10562 && INTVAL (XEXP (op0, 1)) < HOST_BITS_PER_WIDE_INT
10563 && mode_width <= HOST_BITS_PER_WIDE_INT
10564 && (nonzero_bits (XEXP (op0, 0), mode)
10565 & (((HOST_WIDE_INT) 1 << INTVAL (XEXP (op0, 1))) - 1)) == 0
10566 && (((unsigned HOST_WIDE_INT) const_op
10567 + (GET_CODE (op0) != LSHIFTRT
10568 ? ((GET_MODE_MASK (mode) >> INTVAL (XEXP (op0, 1)) >> 1)
10569 + 1)
10570 : 0))
10571 <= GET_MODE_MASK (mode) >> INTVAL (XEXP (op0, 1))))
10572 {
10573 /* If the shift was logical, then we must make the condition
10574 unsigned. */
10575 if (GET_CODE (op0) == LSHIFTRT)
10576 code = unsigned_condition (code);
10577
10578 const_op <<= INTVAL (XEXP (op0, 1));
10579 op1 = GEN_INT (const_op);
10580 op0 = XEXP (op0, 0);
10581 continue;
10582 }
10583
10584 /* If we are using this shift to extract just the sign bit, we
10585 can replace this with an LT or GE comparison. */
10586 if (const_op == 0
10587 && (equality_comparison_p || sign_bit_comparison_p)
10588 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10589 && (unsigned HOST_WIDE_INT) INTVAL (XEXP (op0, 1))
10590 == mode_width - 1)
10591 {
10592 op0 = XEXP (op0, 0);
10593 code = (code == NE || code == GT ? LT : GE);
10594 continue;
10595 }
10596 break;
10597
10598 default:
10599 break;
10600 }
10601
10602 break;
10603 }
10604
10605 /* Now make any compound operations involved in this comparison. Then,
10606 check for an outmost SUBREG on OP0 that is not doing anything or is
10607 paradoxical. The latter transformation must only be performed when
10608 it is known that the "extra" bits will be the same in op0 and op1 or
10609 that they don't matter. There are three cases to consider:
10610
10611 1. SUBREG_REG (op0) is a register. In this case the bits are don't
10612 care bits and we can assume they have any convenient value. So
10613 making the transformation is safe.
10614
10615 2. SUBREG_REG (op0) is a memory and LOAD_EXTEND_OP is not defined.
10616 In this case the upper bits of op0 are undefined. We should not make
10617 the simplification in that case as we do not know the contents of
10618 those bits.
10619
10620 3. SUBREG_REG (op0) is a memory and LOAD_EXTEND_OP is defined and not
10621 UNKNOWN. In that case we know those bits are zeros or ones. We must
10622 also be sure that they are the same as the upper bits of op1.
10623
10624 We can never remove a SUBREG for a non-equality comparison because
10625 the sign bit is in a different place in the underlying object. */
10626
10627 op0 = make_compound_operation (op0, op1 == const0_rtx ? COMPARE : SET);
10628 op1 = make_compound_operation (op1, SET);
10629
10630 if (GET_CODE (op0) == SUBREG && subreg_lowpart_p (op0)
10631 && GET_MODE_CLASS (GET_MODE (op0)) == MODE_INT
10632 && GET_MODE_CLASS (GET_MODE (SUBREG_REG (op0))) == MODE_INT
10633 && (code == NE || code == EQ))
10634 {
10635 if (GET_MODE_SIZE (GET_MODE (op0))
10636 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (op0))))
10637 {
10638 /* For paradoxical subregs, allow case 1 as above. Case 3 isn't
10639 implemented. */
10640 if (REG_P (SUBREG_REG (op0)))
10641 {
10642 op0 = SUBREG_REG (op0);
10643 op1 = gen_lowpart (GET_MODE (op0), op1);
10644 }
10645 }
10646 else if ((GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (op0)))
10647 <= HOST_BITS_PER_WIDE_INT)
10648 && (nonzero_bits (SUBREG_REG (op0),
10649 GET_MODE (SUBREG_REG (op0)))
10650 & ~GET_MODE_MASK (GET_MODE (op0))) == 0)
10651 {
10652 tem = gen_lowpart (GET_MODE (SUBREG_REG (op0)), op1);
10653
10654 if ((nonzero_bits (tem, GET_MODE (SUBREG_REG (op0)))
10655 & ~GET_MODE_MASK (GET_MODE (op0))) == 0)
10656 op0 = SUBREG_REG (op0), op1 = tem;
10657 }
10658 }
10659
10660 /* We now do the opposite procedure: Some machines don't have compare
10661 insns in all modes. If OP0's mode is an integer mode smaller than a
10662 word and we can't do a compare in that mode, see if there is a larger
10663 mode for which we can do the compare. There are a number of cases in
10664 which we can use the wider mode. */
10665
10666 mode = GET_MODE (op0);
10667 if (mode != VOIDmode && GET_MODE_CLASS (mode) == MODE_INT
10668 && GET_MODE_SIZE (mode) < UNITS_PER_WORD
10669 && ! have_insn_for (COMPARE, mode))
10670 for (tmode = GET_MODE_WIDER_MODE (mode);
10671 (tmode != VOIDmode
10672 && GET_MODE_BITSIZE (tmode) <= HOST_BITS_PER_WIDE_INT);
10673 tmode = GET_MODE_WIDER_MODE (tmode))
10674 if (have_insn_for (COMPARE, tmode))
10675 {
10676 int zero_extended;
10677
10678 /* If the only nonzero bits in OP0 and OP1 are those in the
10679 narrower mode and this is an equality or unsigned comparison,
10680 we can use the wider mode. Similarly for sign-extended
10681 values, in which case it is true for all comparisons. */
10682 zero_extended = ((code == EQ || code == NE
10683 || code == GEU || code == GTU
10684 || code == LEU || code == LTU)
10685 && (nonzero_bits (op0, tmode)
10686 & ~GET_MODE_MASK (mode)) == 0
10687 && ((GET_CODE (op1) == CONST_INT
10688 || (nonzero_bits (op1, tmode)
10689 & ~GET_MODE_MASK (mode)) == 0)));
10690
10691 if (zero_extended
10692 || ((num_sign_bit_copies (op0, tmode)
10693 > (unsigned int) (GET_MODE_BITSIZE (tmode)
10694 - GET_MODE_BITSIZE (mode)))
10695 && (num_sign_bit_copies (op1, tmode)
10696 > (unsigned int) (GET_MODE_BITSIZE (tmode)
10697 - GET_MODE_BITSIZE (mode)))))
10698 {
10699 /* If OP0 is an AND and we don't have an AND in MODE either,
10700 make a new AND in the proper mode. */
10701 if (GET_CODE (op0) == AND
10702 && !have_insn_for (AND, mode))
10703 op0 = simplify_gen_binary (AND, tmode,
10704 gen_lowpart (tmode,
10705 XEXP (op0, 0)),
10706 gen_lowpart (tmode,
10707 XEXP (op0, 1)));
10708
10709 op0 = gen_lowpart (tmode, op0);
10710 if (zero_extended && GET_CODE (op1) == CONST_INT)
10711 op1 = GEN_INT (INTVAL (op1) & GET_MODE_MASK (mode));
10712 op1 = gen_lowpart (tmode, op1);
10713 break;
10714 }
10715
10716 /* If this is a test for negative, we can make an explicit
10717 test of the sign bit. */
10718
10719 if (op1 == const0_rtx && (code == LT || code == GE)
10720 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
10721 {
10722 op0 = simplify_gen_binary (AND, tmode,
10723 gen_lowpart (tmode, op0),
10724 GEN_INT ((HOST_WIDE_INT) 1
10725 << (GET_MODE_BITSIZE (mode)
10726 - 1)));
10727 code = (code == LT) ? NE : EQ;
10728 break;
10729 }
10730 }
10731
10732 #ifdef CANONICALIZE_COMPARISON
10733 /* If this machine only supports a subset of valid comparisons, see if we
10734 can convert an unsupported one into a supported one. */
10735 CANONICALIZE_COMPARISON (code, op0, op1);
10736 #endif
10737
10738 *pop0 = op0;
10739 *pop1 = op1;
10740
10741 return code;
10742 }
10743 \f
10744 /* Utility function for record_value_for_reg. Count number of
10745 rtxs in X. */
10746 static int
10747 count_rtxs (rtx x)
10748 {
10749 enum rtx_code code = GET_CODE (x);
10750 const char *fmt;
10751 int i, ret = 1;
10752
10753 if (GET_RTX_CLASS (code) == '2'
10754 || GET_RTX_CLASS (code) == 'c')
10755 {
10756 rtx x0 = XEXP (x, 0);
10757 rtx x1 = XEXP (x, 1);
10758
10759 if (x0 == x1)
10760 return 1 + 2 * count_rtxs (x0);
10761
10762 if ((GET_RTX_CLASS (GET_CODE (x1)) == '2'
10763 || GET_RTX_CLASS (GET_CODE (x1)) == 'c')
10764 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
10765 return 2 + 2 * count_rtxs (x0)
10766 + count_rtxs (x == XEXP (x1, 0)
10767 ? XEXP (x1, 1) : XEXP (x1, 0));
10768
10769 if ((GET_RTX_CLASS (GET_CODE (x0)) == '2'
10770 || GET_RTX_CLASS (GET_CODE (x0)) == 'c')
10771 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
10772 return 2 + 2 * count_rtxs (x1)
10773 + count_rtxs (x == XEXP (x0, 0)
10774 ? XEXP (x0, 1) : XEXP (x0, 0));
10775 }
10776
10777 fmt = GET_RTX_FORMAT (code);
10778 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
10779 if (fmt[i] == 'e')
10780 ret += count_rtxs (XEXP (x, i));
10781
10782 return ret;
10783 }
10784 \f
10785 /* Utility function for following routine. Called when X is part of a value
10786 being stored into last_set_value. Sets last_set_table_tick
10787 for each register mentioned. Similar to mention_regs in cse.c */
10788
10789 static void
10790 update_table_tick (rtx x)
10791 {
10792 enum rtx_code code = GET_CODE (x);
10793 const char *fmt = GET_RTX_FORMAT (code);
10794 int i;
10795
10796 if (code == REG)
10797 {
10798 unsigned int regno = REGNO (x);
10799 unsigned int endregno
10800 = regno + (regno < FIRST_PSEUDO_REGISTER
10801 ? hard_regno_nregs[regno][GET_MODE (x)] : 1);
10802 unsigned int r;
10803
10804 for (r = regno; r < endregno; r++)
10805 reg_stat[r].last_set_table_tick = label_tick;
10806
10807 return;
10808 }
10809
10810 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
10811 /* Note that we can't have an "E" in values stored; see
10812 get_last_value_validate. */
10813 if (fmt[i] == 'e')
10814 {
10815 /* Check for identical subexpressions. If x contains
10816 identical subexpression we only have to traverse one of
10817 them. */
10818 if (i == 0 && ARITHMETIC_P (x))
10819 {
10820 /* Note that at this point x1 has already been
10821 processed. */
10822 rtx x0 = XEXP (x, 0);
10823 rtx x1 = XEXP (x, 1);
10824
10825 /* If x0 and x1 are identical then there is no need to
10826 process x0. */
10827 if (x0 == x1)
10828 break;
10829
10830 /* If x0 is identical to a subexpression of x1 then while
10831 processing x1, x0 has already been processed. Thus we
10832 are done with x. */
10833 if (ARITHMETIC_P (x1)
10834 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
10835 break;
10836
10837 /* If x1 is identical to a subexpression of x0 then we
10838 still have to process the rest of x0. */
10839 if (ARITHMETIC_P (x0)
10840 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
10841 {
10842 update_table_tick (XEXP (x0, x1 == XEXP (x0, 0) ? 1 : 0));
10843 break;
10844 }
10845 }
10846
10847 update_table_tick (XEXP (x, i));
10848 }
10849 }
10850
10851 /* Record that REG is set to VALUE in insn INSN. If VALUE is zero, we
10852 are saying that the register is clobbered and we no longer know its
10853 value. If INSN is zero, don't update reg_stat[].last_set; this is
10854 only permitted with VALUE also zero and is used to invalidate the
10855 register. */
10856
10857 static void
10858 record_value_for_reg (rtx reg, rtx insn, rtx value)
10859 {
10860 unsigned int regno = REGNO (reg);
10861 unsigned int endregno
10862 = regno + (regno < FIRST_PSEUDO_REGISTER
10863 ? hard_regno_nregs[regno][GET_MODE (reg)] : 1);
10864 unsigned int i;
10865
10866 /* If VALUE contains REG and we have a previous value for REG, substitute
10867 the previous value. */
10868 if (value && insn && reg_overlap_mentioned_p (reg, value))
10869 {
10870 rtx tem;
10871
10872 /* Set things up so get_last_value is allowed to see anything set up to
10873 our insn. */
10874 subst_low_cuid = INSN_CUID (insn);
10875 tem = get_last_value (reg);
10876
10877 /* If TEM is simply a binary operation with two CLOBBERs as operands,
10878 it isn't going to be useful and will take a lot of time to process,
10879 so just use the CLOBBER. */
10880
10881 if (tem)
10882 {
10883 if (ARITHMETIC_P (tem)
10884 && GET_CODE (XEXP (tem, 0)) == CLOBBER
10885 && GET_CODE (XEXP (tem, 1)) == CLOBBER)
10886 tem = XEXP (tem, 0);
10887 else if (count_occurrences (value, reg, 1) >= 2)
10888 {
10889 /* If there are two or more occurrences of REG in VALUE,
10890 prevent the value from growing too much. */
10891 if (count_rtxs (tem) > MAX_LAST_VALUE_RTL)
10892 tem = gen_rtx_CLOBBER (GET_MODE (tem), const0_rtx);
10893 }
10894
10895 value = replace_rtx (copy_rtx (value), reg, tem);
10896 }
10897 }
10898
10899 /* For each register modified, show we don't know its value, that
10900 we don't know about its bitwise content, that its value has been
10901 updated, and that we don't know the location of the death of the
10902 register. */
10903 for (i = regno; i < endregno; i++)
10904 {
10905 if (insn)
10906 reg_stat[i].last_set = insn;
10907
10908 reg_stat[i].last_set_value = 0;
10909 reg_stat[i].last_set_mode = 0;
10910 reg_stat[i].last_set_nonzero_bits = 0;
10911 reg_stat[i].last_set_sign_bit_copies = 0;
10912 reg_stat[i].last_death = 0;
10913 reg_stat[i].truncated_to_mode = 0;
10914 }
10915
10916 /* Mark registers that are being referenced in this value. */
10917 if (value)
10918 update_table_tick (value);
10919
10920 /* Now update the status of each register being set.
10921 If someone is using this register in this block, set this register
10922 to invalid since we will get confused between the two lives in this
10923 basic block. This makes using this register always invalid. In cse, we
10924 scan the table to invalidate all entries using this register, but this
10925 is too much work for us. */
10926
10927 for (i = regno; i < endregno; i++)
10928 {
10929 reg_stat[i].last_set_label = label_tick;
10930 if (!insn || (value && reg_stat[i].last_set_table_tick == label_tick))
10931 reg_stat[i].last_set_invalid = 1;
10932 else
10933 reg_stat[i].last_set_invalid = 0;
10934 }
10935
10936 /* The value being assigned might refer to X (like in "x++;"). In that
10937 case, we must replace it with (clobber (const_int 0)) to prevent
10938 infinite loops. */
10939 if (value && ! get_last_value_validate (&value, insn,
10940 reg_stat[regno].last_set_label, 0))
10941 {
10942 value = copy_rtx (value);
10943 if (! get_last_value_validate (&value, insn,
10944 reg_stat[regno].last_set_label, 1))
10945 value = 0;
10946 }
10947
10948 /* For the main register being modified, update the value, the mode, the
10949 nonzero bits, and the number of sign bit copies. */
10950
10951 reg_stat[regno].last_set_value = value;
10952
10953 if (value)
10954 {
10955 enum machine_mode mode = GET_MODE (reg);
10956 subst_low_cuid = INSN_CUID (insn);
10957 reg_stat[regno].last_set_mode = mode;
10958 if (GET_MODE_CLASS (mode) == MODE_INT
10959 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
10960 mode = nonzero_bits_mode;
10961 reg_stat[regno].last_set_nonzero_bits = nonzero_bits (value, mode);
10962 reg_stat[regno].last_set_sign_bit_copies
10963 = num_sign_bit_copies (value, GET_MODE (reg));
10964 }
10965 }
10966
10967 /* Called via note_stores from record_dead_and_set_regs to handle one
10968 SET or CLOBBER in an insn. DATA is the instruction in which the
10969 set is occurring. */
10970
10971 static void
10972 record_dead_and_set_regs_1 (rtx dest, rtx setter, void *data)
10973 {
10974 rtx record_dead_insn = (rtx) data;
10975
10976 if (GET_CODE (dest) == SUBREG)
10977 dest = SUBREG_REG (dest);
10978
10979 if (!record_dead_insn)
10980 {
10981 if (REG_P (dest))
10982 record_value_for_reg (dest, NULL_RTX, NULL_RTX);
10983 return;
10984 }
10985
10986 if (REG_P (dest))
10987 {
10988 /* If we are setting the whole register, we know its value. Otherwise
10989 show that we don't know the value. We can handle SUBREG in
10990 some cases. */
10991 if (GET_CODE (setter) == SET && dest == SET_DEST (setter))
10992 record_value_for_reg (dest, record_dead_insn, SET_SRC (setter));
10993 else if (GET_CODE (setter) == SET
10994 && GET_CODE (SET_DEST (setter)) == SUBREG
10995 && SUBREG_REG (SET_DEST (setter)) == dest
10996 && GET_MODE_BITSIZE (GET_MODE (dest)) <= BITS_PER_WORD
10997 && subreg_lowpart_p (SET_DEST (setter)))
10998 record_value_for_reg (dest, record_dead_insn,
10999 gen_lowpart (GET_MODE (dest),
11000 SET_SRC (setter)));
11001 else
11002 record_value_for_reg (dest, record_dead_insn, NULL_RTX);
11003 }
11004 else if (MEM_P (dest)
11005 /* Ignore pushes, they clobber nothing. */
11006 && ! push_operand (dest, GET_MODE (dest)))
11007 mem_last_set = INSN_CUID (record_dead_insn);
11008 }
11009
11010 /* Update the records of when each REG was most recently set or killed
11011 for the things done by INSN. This is the last thing done in processing
11012 INSN in the combiner loop.
11013
11014 We update reg_stat[], in particular fields last_set, last_set_value,
11015 last_set_mode, last_set_nonzero_bits, last_set_sign_bit_copies,
11016 last_death, and also the similar information mem_last_set (which insn
11017 most recently modified memory) and last_call_cuid (which insn was the
11018 most recent subroutine call). */
11019
11020 static void
11021 record_dead_and_set_regs (rtx insn)
11022 {
11023 rtx link;
11024 unsigned int i;
11025
11026 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
11027 {
11028 if (REG_NOTE_KIND (link) == REG_DEAD
11029 && REG_P (XEXP (link, 0)))
11030 {
11031 unsigned int regno = REGNO (XEXP (link, 0));
11032 unsigned int endregno
11033 = regno + (regno < FIRST_PSEUDO_REGISTER
11034 ? hard_regno_nregs[regno][GET_MODE (XEXP (link, 0))]
11035 : 1);
11036
11037 for (i = regno; i < endregno; i++)
11038 reg_stat[i].last_death = insn;
11039 }
11040 else if (REG_NOTE_KIND (link) == REG_INC)
11041 record_value_for_reg (XEXP (link, 0), insn, NULL_RTX);
11042 }
11043
11044 if (CALL_P (insn))
11045 {
11046 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
11047 if (TEST_HARD_REG_BIT (regs_invalidated_by_call, i))
11048 {
11049 reg_stat[i].last_set_value = 0;
11050 reg_stat[i].last_set_mode = 0;
11051 reg_stat[i].last_set_nonzero_bits = 0;
11052 reg_stat[i].last_set_sign_bit_copies = 0;
11053 reg_stat[i].last_death = 0;
11054 reg_stat[i].truncated_to_mode = 0;
11055 }
11056
11057 last_call_cuid = mem_last_set = INSN_CUID (insn);
11058
11059 /* We can't combine into a call pattern. Remember, though, that
11060 the return value register is set at this CUID. We could
11061 still replace a register with the return value from the
11062 wrong subroutine call! */
11063 note_stores (PATTERN (insn), record_dead_and_set_regs_1, NULL_RTX);
11064 }
11065 else
11066 note_stores (PATTERN (insn), record_dead_and_set_regs_1, insn);
11067 }
11068
11069 /* If a SUBREG has the promoted bit set, it is in fact a property of the
11070 register present in the SUBREG, so for each such SUBREG go back and
11071 adjust nonzero and sign bit information of the registers that are
11072 known to have some zero/sign bits set.
11073
11074 This is needed because when combine blows the SUBREGs away, the
11075 information on zero/sign bits is lost and further combines can be
11076 missed because of that. */
11077
11078 static void
11079 record_promoted_value (rtx insn, rtx subreg)
11080 {
11081 rtx links, set;
11082 unsigned int regno = REGNO (SUBREG_REG (subreg));
11083 enum machine_mode mode = GET_MODE (subreg);
11084
11085 if (GET_MODE_BITSIZE (mode) > HOST_BITS_PER_WIDE_INT)
11086 return;
11087
11088 for (links = LOG_LINKS (insn); links;)
11089 {
11090 insn = XEXP (links, 0);
11091 set = single_set (insn);
11092
11093 if (! set || !REG_P (SET_DEST (set))
11094 || REGNO (SET_DEST (set)) != regno
11095 || GET_MODE (SET_DEST (set)) != GET_MODE (SUBREG_REG (subreg)))
11096 {
11097 links = XEXP (links, 1);
11098 continue;
11099 }
11100
11101 if (reg_stat[regno].last_set == insn)
11102 {
11103 if (SUBREG_PROMOTED_UNSIGNED_P (subreg) > 0)
11104 reg_stat[regno].last_set_nonzero_bits &= GET_MODE_MASK (mode);
11105 }
11106
11107 if (REG_P (SET_SRC (set)))
11108 {
11109 regno = REGNO (SET_SRC (set));
11110 links = LOG_LINKS (insn);
11111 }
11112 else
11113 break;
11114 }
11115 }
11116
11117 /* Check if X, a register, is known to contain a value already
11118 truncated to MODE. In this case we can use a subreg to refer to
11119 the truncated value even though in the generic case we would need
11120 an explicit truncation. */
11121
11122 static bool
11123 reg_truncated_to_mode (enum machine_mode mode, rtx x)
11124 {
11125 enum machine_mode truncated = reg_stat[REGNO (x)].truncated_to_mode;
11126
11127 if (truncated == 0 || reg_stat[REGNO (x)].truncation_label != label_tick)
11128 return false;
11129 if (GET_MODE_SIZE (truncated) <= GET_MODE_SIZE (mode))
11130 return true;
11131 if (TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (mode),
11132 GET_MODE_BITSIZE (truncated)))
11133 return true;
11134 return false;
11135 }
11136
11137 /* X is a REG or a SUBREG. If X is some sort of a truncation record
11138 it. For non-TRULY_NOOP_TRUNCATION targets we might be able to turn
11139 a truncate into a subreg using this information. */
11140
11141 static void
11142 record_truncated_value (rtx x)
11143 {
11144 enum machine_mode truncated_mode;
11145
11146 if (GET_CODE (x) == SUBREG && REG_P (SUBREG_REG (x)))
11147 {
11148 enum machine_mode original_mode = GET_MODE (SUBREG_REG (x));
11149 truncated_mode = GET_MODE (x);
11150
11151 if (GET_MODE_SIZE (original_mode) <= GET_MODE_SIZE (truncated_mode))
11152 return;
11153
11154 if (TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (truncated_mode),
11155 GET_MODE_BITSIZE (original_mode)))
11156 return;
11157
11158 x = SUBREG_REG (x);
11159 }
11160 /* ??? For hard-regs we now record everything. We might be able to
11161 optimize this using last_set_mode. */
11162 else if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
11163 truncated_mode = GET_MODE (x);
11164 else
11165 return;
11166
11167 if (reg_stat[REGNO (x)].truncated_to_mode == 0
11168 || reg_stat[REGNO (x)].truncation_label < label_tick
11169 || (GET_MODE_SIZE (truncated_mode)
11170 < GET_MODE_SIZE (reg_stat[REGNO (x)].truncated_to_mode)))
11171 {
11172 reg_stat[REGNO (x)].truncated_to_mode = truncated_mode;
11173 reg_stat[REGNO (x)].truncation_label = label_tick;
11174 }
11175 }
11176
11177 /* Scan X for promoted SUBREGs and truncated REGs. For each one
11178 found, note what it implies to the registers used in it. */
11179
11180 static void
11181 check_conversions (rtx insn, rtx x)
11182 {
11183 if (GET_CODE (x) == SUBREG || REG_P (x))
11184 {
11185 if (GET_CODE (x) == SUBREG
11186 && SUBREG_PROMOTED_VAR_P (x)
11187 && REG_P (SUBREG_REG (x)))
11188 record_promoted_value (insn, x);
11189
11190 record_truncated_value (x);
11191 }
11192 else
11193 {
11194 const char *format = GET_RTX_FORMAT (GET_CODE (x));
11195 int i, j;
11196
11197 for (i = 0; i < GET_RTX_LENGTH (GET_CODE (x)); i++)
11198 switch (format[i])
11199 {
11200 case 'e':
11201 check_conversions (insn, XEXP (x, i));
11202 break;
11203 case 'V':
11204 case 'E':
11205 if (XVEC (x, i) != 0)
11206 for (j = 0; j < XVECLEN (x, i); j++)
11207 check_conversions (insn, XVECEXP (x, i, j));
11208 break;
11209 }
11210 }
11211 }
11212 \f
11213 /* Utility routine for the following function. Verify that all the registers
11214 mentioned in *LOC are valid when *LOC was part of a value set when
11215 label_tick == TICK. Return 0 if some are not.
11216
11217 If REPLACE is nonzero, replace the invalid reference with
11218 (clobber (const_int 0)) and return 1. This replacement is useful because
11219 we often can get useful information about the form of a value (e.g., if
11220 it was produced by a shift that always produces -1 or 0) even though
11221 we don't know exactly what registers it was produced from. */
11222
11223 static int
11224 get_last_value_validate (rtx *loc, rtx insn, int tick, int replace)
11225 {
11226 rtx x = *loc;
11227 const char *fmt = GET_RTX_FORMAT (GET_CODE (x));
11228 int len = GET_RTX_LENGTH (GET_CODE (x));
11229 int i;
11230
11231 if (REG_P (x))
11232 {
11233 unsigned int regno = REGNO (x);
11234 unsigned int endregno
11235 = regno + (regno < FIRST_PSEUDO_REGISTER
11236 ? hard_regno_nregs[regno][GET_MODE (x)] : 1);
11237 unsigned int j;
11238
11239 for (j = regno; j < endregno; j++)
11240 if (reg_stat[j].last_set_invalid
11241 /* If this is a pseudo-register that was only set once and not
11242 live at the beginning of the function, it is always valid. */
11243 || (! (regno >= FIRST_PSEUDO_REGISTER
11244 && REG_N_SETS (regno) == 1
11245 && (! REGNO_REG_SET_P
11246 (ENTRY_BLOCK_PTR->next_bb->il.rtl->global_live_at_start,
11247 regno)))
11248 && reg_stat[j].last_set_label > tick))
11249 {
11250 if (replace)
11251 *loc = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
11252 return replace;
11253 }
11254
11255 return 1;
11256 }
11257 /* If this is a memory reference, make sure that there were
11258 no stores after it that might have clobbered the value. We don't
11259 have alias info, so we assume any store invalidates it. */
11260 else if (MEM_P (x) && !MEM_READONLY_P (x)
11261 && INSN_CUID (insn) <= mem_last_set)
11262 {
11263 if (replace)
11264 *loc = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
11265 return replace;
11266 }
11267
11268 for (i = 0; i < len; i++)
11269 {
11270 if (fmt[i] == 'e')
11271 {
11272 /* Check for identical subexpressions. If x contains
11273 identical subexpression we only have to traverse one of
11274 them. */
11275 if (i == 1 && ARITHMETIC_P (x))
11276 {
11277 /* Note that at this point x0 has already been checked
11278 and found valid. */
11279 rtx x0 = XEXP (x, 0);
11280 rtx x1 = XEXP (x, 1);
11281
11282 /* If x0 and x1 are identical then x is also valid. */
11283 if (x0 == x1)
11284 return 1;
11285
11286 /* If x1 is identical to a subexpression of x0 then
11287 while checking x0, x1 has already been checked. Thus
11288 it is valid and so as x. */
11289 if (ARITHMETIC_P (x0)
11290 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
11291 return 1;
11292
11293 /* If x0 is identical to a subexpression of x1 then x is
11294 valid iff the rest of x1 is valid. */
11295 if (ARITHMETIC_P (x1)
11296 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
11297 return
11298 get_last_value_validate (&XEXP (x1,
11299 x0 == XEXP (x1, 0) ? 1 : 0),
11300 insn, tick, replace);
11301 }
11302
11303 if (get_last_value_validate (&XEXP (x, i), insn, tick,
11304 replace) == 0)
11305 return 0;
11306 }
11307 /* Don't bother with these. They shouldn't occur anyway. */
11308 else if (fmt[i] == 'E')
11309 return 0;
11310 }
11311
11312 /* If we haven't found a reason for it to be invalid, it is valid. */
11313 return 1;
11314 }
11315
11316 /* Get the last value assigned to X, if known. Some registers
11317 in the value may be replaced with (clobber (const_int 0)) if their value
11318 is known longer known reliably. */
11319
11320 static rtx
11321 get_last_value (rtx x)
11322 {
11323 unsigned int regno;
11324 rtx value;
11325
11326 /* If this is a non-paradoxical SUBREG, get the value of its operand and
11327 then convert it to the desired mode. If this is a paradoxical SUBREG,
11328 we cannot predict what values the "extra" bits might have. */
11329 if (GET_CODE (x) == SUBREG
11330 && subreg_lowpart_p (x)
11331 && (GET_MODE_SIZE (GET_MODE (x))
11332 <= GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
11333 && (value = get_last_value (SUBREG_REG (x))) != 0)
11334 return gen_lowpart (GET_MODE (x), value);
11335
11336 if (!REG_P (x))
11337 return 0;
11338
11339 regno = REGNO (x);
11340 value = reg_stat[regno].last_set_value;
11341
11342 /* If we don't have a value, or if it isn't for this basic block and
11343 it's either a hard register, set more than once, or it's a live
11344 at the beginning of the function, return 0.
11345
11346 Because if it's not live at the beginning of the function then the reg
11347 is always set before being used (is never used without being set).
11348 And, if it's set only once, and it's always set before use, then all
11349 uses must have the same last value, even if it's not from this basic
11350 block. */
11351
11352 if (value == 0
11353 || (reg_stat[regno].last_set_label != label_tick
11354 && (regno < FIRST_PSEUDO_REGISTER
11355 || REG_N_SETS (regno) != 1
11356 || (REGNO_REG_SET_P
11357 (ENTRY_BLOCK_PTR->next_bb->il.rtl->global_live_at_start,
11358 regno)))))
11359 return 0;
11360
11361 /* If the value was set in a later insn than the ones we are processing,
11362 we can't use it even if the register was only set once. */
11363 if (INSN_CUID (reg_stat[regno].last_set) >= subst_low_cuid)
11364 return 0;
11365
11366 /* If the value has all its registers valid, return it. */
11367 if (get_last_value_validate (&value, reg_stat[regno].last_set,
11368 reg_stat[regno].last_set_label, 0))
11369 return value;
11370
11371 /* Otherwise, make a copy and replace any invalid register with
11372 (clobber (const_int 0)). If that fails for some reason, return 0. */
11373
11374 value = copy_rtx (value);
11375 if (get_last_value_validate (&value, reg_stat[regno].last_set,
11376 reg_stat[regno].last_set_label, 1))
11377 return value;
11378
11379 return 0;
11380 }
11381 \f
11382 /* Return nonzero if expression X refers to a REG or to memory
11383 that is set in an instruction more recent than FROM_CUID. */
11384
11385 static int
11386 use_crosses_set_p (rtx x, int from_cuid)
11387 {
11388 const char *fmt;
11389 int i;
11390 enum rtx_code code = GET_CODE (x);
11391
11392 if (code == REG)
11393 {
11394 unsigned int regno = REGNO (x);
11395 unsigned endreg = regno + (regno < FIRST_PSEUDO_REGISTER
11396 ? hard_regno_nregs[regno][GET_MODE (x)] : 1);
11397
11398 #ifdef PUSH_ROUNDING
11399 /* Don't allow uses of the stack pointer to be moved,
11400 because we don't know whether the move crosses a push insn. */
11401 if (regno == STACK_POINTER_REGNUM && PUSH_ARGS)
11402 return 1;
11403 #endif
11404 for (; regno < endreg; regno++)
11405 if (reg_stat[regno].last_set
11406 && INSN_CUID (reg_stat[regno].last_set) > from_cuid)
11407 return 1;
11408 return 0;
11409 }
11410
11411 if (code == MEM && mem_last_set > from_cuid)
11412 return 1;
11413
11414 fmt = GET_RTX_FORMAT (code);
11415
11416 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
11417 {
11418 if (fmt[i] == 'E')
11419 {
11420 int j;
11421 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
11422 if (use_crosses_set_p (XVECEXP (x, i, j), from_cuid))
11423 return 1;
11424 }
11425 else if (fmt[i] == 'e'
11426 && use_crosses_set_p (XEXP (x, i), from_cuid))
11427 return 1;
11428 }
11429 return 0;
11430 }
11431 \f
11432 /* Define three variables used for communication between the following
11433 routines. */
11434
11435 static unsigned int reg_dead_regno, reg_dead_endregno;
11436 static int reg_dead_flag;
11437
11438 /* Function called via note_stores from reg_dead_at_p.
11439
11440 If DEST is within [reg_dead_regno, reg_dead_endregno), set
11441 reg_dead_flag to 1 if X is a CLOBBER and to -1 it is a SET. */
11442
11443 static void
11444 reg_dead_at_p_1 (rtx dest, rtx x, void *data ATTRIBUTE_UNUSED)
11445 {
11446 unsigned int regno, endregno;
11447
11448 if (!REG_P (dest))
11449 return;
11450
11451 regno = REGNO (dest);
11452 endregno = regno + (regno < FIRST_PSEUDO_REGISTER
11453 ? hard_regno_nregs[regno][GET_MODE (dest)] : 1);
11454
11455 if (reg_dead_endregno > regno && reg_dead_regno < endregno)
11456 reg_dead_flag = (GET_CODE (x) == CLOBBER) ? 1 : -1;
11457 }
11458
11459 /* Return nonzero if REG is known to be dead at INSN.
11460
11461 We scan backwards from INSN. If we hit a REG_DEAD note or a CLOBBER
11462 referencing REG, it is dead. If we hit a SET referencing REG, it is
11463 live. Otherwise, see if it is live or dead at the start of the basic
11464 block we are in. Hard regs marked as being live in NEWPAT_USED_REGS
11465 must be assumed to be always live. */
11466
11467 static int
11468 reg_dead_at_p (rtx reg, rtx insn)
11469 {
11470 basic_block block;
11471 unsigned int i;
11472
11473 /* Set variables for reg_dead_at_p_1. */
11474 reg_dead_regno = REGNO (reg);
11475 reg_dead_endregno = reg_dead_regno + (reg_dead_regno < FIRST_PSEUDO_REGISTER
11476 ? hard_regno_nregs[reg_dead_regno]
11477 [GET_MODE (reg)]
11478 : 1);
11479
11480 reg_dead_flag = 0;
11481
11482 /* Check that reg isn't mentioned in NEWPAT_USED_REGS. For fixed registers
11483 we allow the machine description to decide whether use-and-clobber
11484 patterns are OK. */
11485 if (reg_dead_regno < FIRST_PSEUDO_REGISTER)
11486 {
11487 for (i = reg_dead_regno; i < reg_dead_endregno; i++)
11488 if (!fixed_regs[i] && TEST_HARD_REG_BIT (newpat_used_regs, i))
11489 return 0;
11490 }
11491
11492 /* Scan backwards until we find a REG_DEAD note, SET, CLOBBER, label, or
11493 beginning of function. */
11494 for (; insn && !LABEL_P (insn) && !BARRIER_P (insn);
11495 insn = prev_nonnote_insn (insn))
11496 {
11497 note_stores (PATTERN (insn), reg_dead_at_p_1, NULL);
11498 if (reg_dead_flag)
11499 return reg_dead_flag == 1 ? 1 : 0;
11500
11501 if (find_regno_note (insn, REG_DEAD, reg_dead_regno))
11502 return 1;
11503 }
11504
11505 /* Get the basic block that we were in. */
11506 if (insn == 0)
11507 block = ENTRY_BLOCK_PTR->next_bb;
11508 else
11509 {
11510 FOR_EACH_BB (block)
11511 if (insn == BB_HEAD (block))
11512 break;
11513
11514 if (block == EXIT_BLOCK_PTR)
11515 return 0;
11516 }
11517
11518 for (i = reg_dead_regno; i < reg_dead_endregno; i++)
11519 if (REGNO_REG_SET_P (block->il.rtl->global_live_at_start, i))
11520 return 0;
11521
11522 return 1;
11523 }
11524 \f
11525 /* Note hard registers in X that are used. This code is similar to
11526 that in flow.c, but much simpler since we don't care about pseudos. */
11527
11528 static void
11529 mark_used_regs_combine (rtx x)
11530 {
11531 RTX_CODE code = GET_CODE (x);
11532 unsigned int regno;
11533 int i;
11534
11535 switch (code)
11536 {
11537 case LABEL_REF:
11538 case SYMBOL_REF:
11539 case CONST_INT:
11540 case CONST:
11541 case CONST_DOUBLE:
11542 case CONST_VECTOR:
11543 case PC:
11544 case ADDR_VEC:
11545 case ADDR_DIFF_VEC:
11546 case ASM_INPUT:
11547 #ifdef HAVE_cc0
11548 /* CC0 must die in the insn after it is set, so we don't need to take
11549 special note of it here. */
11550 case CC0:
11551 #endif
11552 return;
11553
11554 case CLOBBER:
11555 /* If we are clobbering a MEM, mark any hard registers inside the
11556 address as used. */
11557 if (MEM_P (XEXP (x, 0)))
11558 mark_used_regs_combine (XEXP (XEXP (x, 0), 0));
11559 return;
11560
11561 case REG:
11562 regno = REGNO (x);
11563 /* A hard reg in a wide mode may really be multiple registers.
11564 If so, mark all of them just like the first. */
11565 if (regno < FIRST_PSEUDO_REGISTER)
11566 {
11567 unsigned int endregno, r;
11568
11569 /* None of this applies to the stack, frame or arg pointers. */
11570 if (regno == STACK_POINTER_REGNUM
11571 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
11572 || regno == HARD_FRAME_POINTER_REGNUM
11573 #endif
11574 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
11575 || (regno == ARG_POINTER_REGNUM && fixed_regs[regno])
11576 #endif
11577 || regno == FRAME_POINTER_REGNUM)
11578 return;
11579
11580 endregno = regno + hard_regno_nregs[regno][GET_MODE (x)];
11581 for (r = regno; r < endregno; r++)
11582 SET_HARD_REG_BIT (newpat_used_regs, r);
11583 }
11584 return;
11585
11586 case SET:
11587 {
11588 /* If setting a MEM, or a SUBREG of a MEM, then note any hard regs in
11589 the address. */
11590 rtx testreg = SET_DEST (x);
11591
11592 while (GET_CODE (testreg) == SUBREG
11593 || GET_CODE (testreg) == ZERO_EXTRACT
11594 || GET_CODE (testreg) == STRICT_LOW_PART)
11595 testreg = XEXP (testreg, 0);
11596
11597 if (MEM_P (testreg))
11598 mark_used_regs_combine (XEXP (testreg, 0));
11599
11600 mark_used_regs_combine (SET_SRC (x));
11601 }
11602 return;
11603
11604 default:
11605 break;
11606 }
11607
11608 /* Recursively scan the operands of this expression. */
11609
11610 {
11611 const char *fmt = GET_RTX_FORMAT (code);
11612
11613 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
11614 {
11615 if (fmt[i] == 'e')
11616 mark_used_regs_combine (XEXP (x, i));
11617 else if (fmt[i] == 'E')
11618 {
11619 int j;
11620
11621 for (j = 0; j < XVECLEN (x, i); j++)
11622 mark_used_regs_combine (XVECEXP (x, i, j));
11623 }
11624 }
11625 }
11626 }
11627 \f
11628 /* Remove register number REGNO from the dead registers list of INSN.
11629
11630 Return the note used to record the death, if there was one. */
11631
11632 rtx
11633 remove_death (unsigned int regno, rtx insn)
11634 {
11635 rtx note = find_regno_note (insn, REG_DEAD, regno);
11636
11637 if (note)
11638 {
11639 REG_N_DEATHS (regno)--;
11640 remove_note (insn, note);
11641 }
11642
11643 return note;
11644 }
11645
11646 /* For each register (hardware or pseudo) used within expression X, if its
11647 death is in an instruction with cuid between FROM_CUID (inclusive) and
11648 TO_INSN (exclusive), put a REG_DEAD note for that register in the
11649 list headed by PNOTES.
11650
11651 That said, don't move registers killed by maybe_kill_insn.
11652
11653 This is done when X is being merged by combination into TO_INSN. These
11654 notes will then be distributed as needed. */
11655
11656 static void
11657 move_deaths (rtx x, rtx maybe_kill_insn, int from_cuid, rtx to_insn,
11658 rtx *pnotes)
11659 {
11660 const char *fmt;
11661 int len, i;
11662 enum rtx_code code = GET_CODE (x);
11663
11664 if (code == REG)
11665 {
11666 unsigned int regno = REGNO (x);
11667 rtx where_dead = reg_stat[regno].last_death;
11668 rtx before_dead, after_dead;
11669
11670 /* Don't move the register if it gets killed in between from and to. */
11671 if (maybe_kill_insn && reg_set_p (x, maybe_kill_insn)
11672 && ! reg_referenced_p (x, maybe_kill_insn))
11673 return;
11674
11675 /* WHERE_DEAD could be a USE insn made by combine, so first we
11676 make sure that we have insns with valid INSN_CUID values. */
11677 before_dead = where_dead;
11678 while (before_dead && INSN_UID (before_dead) > max_uid_cuid)
11679 before_dead = PREV_INSN (before_dead);
11680
11681 after_dead = where_dead;
11682 while (after_dead && INSN_UID (after_dead) > max_uid_cuid)
11683 after_dead = NEXT_INSN (after_dead);
11684
11685 if (before_dead && after_dead
11686 && INSN_CUID (before_dead) >= from_cuid
11687 && (INSN_CUID (after_dead) < INSN_CUID (to_insn)
11688 || (where_dead != after_dead
11689 && INSN_CUID (after_dead) == INSN_CUID (to_insn))))
11690 {
11691 rtx note = remove_death (regno, where_dead);
11692
11693 /* It is possible for the call above to return 0. This can occur
11694 when last_death points to I2 or I1 that we combined with.
11695 In that case make a new note.
11696
11697 We must also check for the case where X is a hard register
11698 and NOTE is a death note for a range of hard registers
11699 including X. In that case, we must put REG_DEAD notes for
11700 the remaining registers in place of NOTE. */
11701
11702 if (note != 0 && regno < FIRST_PSEUDO_REGISTER
11703 && (GET_MODE_SIZE (GET_MODE (XEXP (note, 0)))
11704 > GET_MODE_SIZE (GET_MODE (x))))
11705 {
11706 unsigned int deadregno = REGNO (XEXP (note, 0));
11707 unsigned int deadend
11708 = (deadregno + hard_regno_nregs[deadregno]
11709 [GET_MODE (XEXP (note, 0))]);
11710 unsigned int ourend
11711 = regno + hard_regno_nregs[regno][GET_MODE (x)];
11712 unsigned int i;
11713
11714 for (i = deadregno; i < deadend; i++)
11715 if (i < regno || i >= ourend)
11716 REG_NOTES (where_dead)
11717 = gen_rtx_EXPR_LIST (REG_DEAD,
11718 regno_reg_rtx[i],
11719 REG_NOTES (where_dead));
11720 }
11721
11722 /* If we didn't find any note, or if we found a REG_DEAD note that
11723 covers only part of the given reg, and we have a multi-reg hard
11724 register, then to be safe we must check for REG_DEAD notes
11725 for each register other than the first. They could have
11726 their own REG_DEAD notes lying around. */
11727 else if ((note == 0
11728 || (note != 0
11729 && (GET_MODE_SIZE (GET_MODE (XEXP (note, 0)))
11730 < GET_MODE_SIZE (GET_MODE (x)))))
11731 && regno < FIRST_PSEUDO_REGISTER
11732 && hard_regno_nregs[regno][GET_MODE (x)] > 1)
11733 {
11734 unsigned int ourend
11735 = regno + hard_regno_nregs[regno][GET_MODE (x)];
11736 unsigned int i, offset;
11737 rtx oldnotes = 0;
11738
11739 if (note)
11740 offset = hard_regno_nregs[regno][GET_MODE (XEXP (note, 0))];
11741 else
11742 offset = 1;
11743
11744 for (i = regno + offset; i < ourend; i++)
11745 move_deaths (regno_reg_rtx[i],
11746 maybe_kill_insn, from_cuid, to_insn, &oldnotes);
11747 }
11748
11749 if (note != 0 && GET_MODE (XEXP (note, 0)) == GET_MODE (x))
11750 {
11751 XEXP (note, 1) = *pnotes;
11752 *pnotes = note;
11753 }
11754 else
11755 *pnotes = gen_rtx_EXPR_LIST (REG_DEAD, x, *pnotes);
11756
11757 REG_N_DEATHS (regno)++;
11758 }
11759
11760 return;
11761 }
11762
11763 else if (GET_CODE (x) == SET)
11764 {
11765 rtx dest = SET_DEST (x);
11766
11767 move_deaths (SET_SRC (x), maybe_kill_insn, from_cuid, to_insn, pnotes);
11768
11769 /* In the case of a ZERO_EXTRACT, a STRICT_LOW_PART, or a SUBREG
11770 that accesses one word of a multi-word item, some
11771 piece of everything register in the expression is used by
11772 this insn, so remove any old death. */
11773 /* ??? So why do we test for equality of the sizes? */
11774
11775 if (GET_CODE (dest) == ZERO_EXTRACT
11776 || GET_CODE (dest) == STRICT_LOW_PART
11777 || (GET_CODE (dest) == SUBREG
11778 && (((GET_MODE_SIZE (GET_MODE (dest))
11779 + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
11780 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest)))
11781 + UNITS_PER_WORD - 1) / UNITS_PER_WORD))))
11782 {
11783 move_deaths (dest, maybe_kill_insn, from_cuid, to_insn, pnotes);
11784 return;
11785 }
11786
11787 /* If this is some other SUBREG, we know it replaces the entire
11788 value, so use that as the destination. */
11789 if (GET_CODE (dest) == SUBREG)
11790 dest = SUBREG_REG (dest);
11791
11792 /* If this is a MEM, adjust deaths of anything used in the address.
11793 For a REG (the only other possibility), the entire value is
11794 being replaced so the old value is not used in this insn. */
11795
11796 if (MEM_P (dest))
11797 move_deaths (XEXP (dest, 0), maybe_kill_insn, from_cuid,
11798 to_insn, pnotes);
11799 return;
11800 }
11801
11802 else if (GET_CODE (x) == CLOBBER)
11803 return;
11804
11805 len = GET_RTX_LENGTH (code);
11806 fmt = GET_RTX_FORMAT (code);
11807
11808 for (i = 0; i < len; i++)
11809 {
11810 if (fmt[i] == 'E')
11811 {
11812 int j;
11813 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
11814 move_deaths (XVECEXP (x, i, j), maybe_kill_insn, from_cuid,
11815 to_insn, pnotes);
11816 }
11817 else if (fmt[i] == 'e')
11818 move_deaths (XEXP (x, i), maybe_kill_insn, from_cuid, to_insn, pnotes);
11819 }
11820 }
11821 \f
11822 /* Return 1 if X is the target of a bit-field assignment in BODY, the
11823 pattern of an insn. X must be a REG. */
11824
11825 static int
11826 reg_bitfield_target_p (rtx x, rtx body)
11827 {
11828 int i;
11829
11830 if (GET_CODE (body) == SET)
11831 {
11832 rtx dest = SET_DEST (body);
11833 rtx target;
11834 unsigned int regno, tregno, endregno, endtregno;
11835
11836 if (GET_CODE (dest) == ZERO_EXTRACT)
11837 target = XEXP (dest, 0);
11838 else if (GET_CODE (dest) == STRICT_LOW_PART)
11839 target = SUBREG_REG (XEXP (dest, 0));
11840 else
11841 return 0;
11842
11843 if (GET_CODE (target) == SUBREG)
11844 target = SUBREG_REG (target);
11845
11846 if (!REG_P (target))
11847 return 0;
11848
11849 tregno = REGNO (target), regno = REGNO (x);
11850 if (tregno >= FIRST_PSEUDO_REGISTER || regno >= FIRST_PSEUDO_REGISTER)
11851 return target == x;
11852
11853 endtregno = tregno + hard_regno_nregs[tregno][GET_MODE (target)];
11854 endregno = regno + hard_regno_nregs[regno][GET_MODE (x)];
11855
11856 return endregno > tregno && regno < endtregno;
11857 }
11858
11859 else if (GET_CODE (body) == PARALLEL)
11860 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
11861 if (reg_bitfield_target_p (x, XVECEXP (body, 0, i)))
11862 return 1;
11863
11864 return 0;
11865 }
11866 \f
11867 /* Given a chain of REG_NOTES originally from FROM_INSN, try to place them
11868 as appropriate. I3 and I2 are the insns resulting from the combination
11869 insns including FROM (I2 may be zero).
11870
11871 ELIM_I2 and ELIM_I1 are either zero or registers that we know will
11872 not need REG_DEAD notes because they are being substituted for. This
11873 saves searching in the most common cases.
11874
11875 Each note in the list is either ignored or placed on some insns, depending
11876 on the type of note. */
11877
11878 static void
11879 distribute_notes (rtx notes, rtx from_insn, rtx i3, rtx i2, rtx elim_i2,
11880 rtx elim_i1)
11881 {
11882 rtx note, next_note;
11883 rtx tem;
11884
11885 for (note = notes; note; note = next_note)
11886 {
11887 rtx place = 0, place2 = 0;
11888
11889 next_note = XEXP (note, 1);
11890 switch (REG_NOTE_KIND (note))
11891 {
11892 case REG_BR_PROB:
11893 case REG_BR_PRED:
11894 /* Doesn't matter much where we put this, as long as it's somewhere.
11895 It is preferable to keep these notes on branches, which is most
11896 likely to be i3. */
11897 place = i3;
11898 break;
11899
11900 case REG_VALUE_PROFILE:
11901 /* Just get rid of this note, as it is unused later anyway. */
11902 break;
11903
11904 case REG_NON_LOCAL_GOTO:
11905 if (JUMP_P (i3))
11906 place = i3;
11907 else
11908 {
11909 gcc_assert (i2 && JUMP_P (i2));
11910 place = i2;
11911 }
11912 break;
11913
11914 case REG_EH_REGION:
11915 /* These notes must remain with the call or trapping instruction. */
11916 if (CALL_P (i3))
11917 place = i3;
11918 else if (i2 && CALL_P (i2))
11919 place = i2;
11920 else
11921 {
11922 gcc_assert (flag_non_call_exceptions);
11923 if (may_trap_p (i3))
11924 place = i3;
11925 else if (i2 && may_trap_p (i2))
11926 place = i2;
11927 /* ??? Otherwise assume we've combined things such that we
11928 can now prove that the instructions can't trap. Drop the
11929 note in this case. */
11930 }
11931 break;
11932
11933 case REG_NORETURN:
11934 case REG_SETJMP:
11935 /* These notes must remain with the call. It should not be
11936 possible for both I2 and I3 to be a call. */
11937 if (CALL_P (i3))
11938 place = i3;
11939 else
11940 {
11941 gcc_assert (i2 && CALL_P (i2));
11942 place = i2;
11943 }
11944 break;
11945
11946 case REG_UNUSED:
11947 /* Any clobbers for i3 may still exist, and so we must process
11948 REG_UNUSED notes from that insn.
11949
11950 Any clobbers from i2 or i1 can only exist if they were added by
11951 recog_for_combine. In that case, recog_for_combine created the
11952 necessary REG_UNUSED notes. Trying to keep any original
11953 REG_UNUSED notes from these insns can cause incorrect output
11954 if it is for the same register as the original i3 dest.
11955 In that case, we will notice that the register is set in i3,
11956 and then add a REG_UNUSED note for the destination of i3, which
11957 is wrong. However, it is possible to have REG_UNUSED notes from
11958 i2 or i1 for register which were both used and clobbered, so
11959 we keep notes from i2 or i1 if they will turn into REG_DEAD
11960 notes. */
11961
11962 /* If this register is set or clobbered in I3, put the note there
11963 unless there is one already. */
11964 if (reg_set_p (XEXP (note, 0), PATTERN (i3)))
11965 {
11966 if (from_insn != i3)
11967 break;
11968
11969 if (! (REG_P (XEXP (note, 0))
11970 ? find_regno_note (i3, REG_UNUSED, REGNO (XEXP (note, 0)))
11971 : find_reg_note (i3, REG_UNUSED, XEXP (note, 0))))
11972 place = i3;
11973 }
11974 /* Otherwise, if this register is used by I3, then this register
11975 now dies here, so we must put a REG_DEAD note here unless there
11976 is one already. */
11977 else if (reg_referenced_p (XEXP (note, 0), PATTERN (i3))
11978 && ! (REG_P (XEXP (note, 0))
11979 ? find_regno_note (i3, REG_DEAD,
11980 REGNO (XEXP (note, 0)))
11981 : find_reg_note (i3, REG_DEAD, XEXP (note, 0))))
11982 {
11983 PUT_REG_NOTE_KIND (note, REG_DEAD);
11984 place = i3;
11985 }
11986 break;
11987
11988 case REG_EQUAL:
11989 case REG_EQUIV:
11990 case REG_NOALIAS:
11991 /* These notes say something about results of an insn. We can
11992 only support them if they used to be on I3 in which case they
11993 remain on I3. Otherwise they are ignored.
11994
11995 If the note refers to an expression that is not a constant, we
11996 must also ignore the note since we cannot tell whether the
11997 equivalence is still true. It might be possible to do
11998 slightly better than this (we only have a problem if I2DEST
11999 or I1DEST is present in the expression), but it doesn't
12000 seem worth the trouble. */
12001
12002 if (from_insn == i3
12003 && (XEXP (note, 0) == 0 || CONSTANT_P (XEXP (note, 0))))
12004 place = i3;
12005 break;
12006
12007 case REG_INC:
12008 case REG_NO_CONFLICT:
12009 /* These notes say something about how a register is used. They must
12010 be present on any use of the register in I2 or I3. */
12011 if (reg_mentioned_p (XEXP (note, 0), PATTERN (i3)))
12012 place = i3;
12013
12014 if (i2 && reg_mentioned_p (XEXP (note, 0), PATTERN (i2)))
12015 {
12016 if (place)
12017 place2 = i2;
12018 else
12019 place = i2;
12020 }
12021 break;
12022
12023 case REG_LABEL:
12024 /* This can show up in several ways -- either directly in the
12025 pattern, or hidden off in the constant pool with (or without?)
12026 a REG_EQUAL note. */
12027 /* ??? Ignore the without-reg_equal-note problem for now. */
12028 if (reg_mentioned_p (XEXP (note, 0), PATTERN (i3))
12029 || ((tem = find_reg_note (i3, REG_EQUAL, NULL_RTX))
12030 && GET_CODE (XEXP (tem, 0)) == LABEL_REF
12031 && XEXP (XEXP (tem, 0), 0) == XEXP (note, 0)))
12032 place = i3;
12033
12034 if (i2
12035 && (reg_mentioned_p (XEXP (note, 0), PATTERN (i2))
12036 || ((tem = find_reg_note (i2, REG_EQUAL, NULL_RTX))
12037 && GET_CODE (XEXP (tem, 0)) == LABEL_REF
12038 && XEXP (XEXP (tem, 0), 0) == XEXP (note, 0))))
12039 {
12040 if (place)
12041 place2 = i2;
12042 else
12043 place = i2;
12044 }
12045
12046 /* Don't attach REG_LABEL note to a JUMP_INSN. Add
12047 a JUMP_LABEL instead or decrement LABEL_NUSES. */
12048 if (place && JUMP_P (place))
12049 {
12050 rtx label = JUMP_LABEL (place);
12051
12052 if (!label)
12053 JUMP_LABEL (place) = XEXP (note, 0);
12054 else
12055 {
12056 gcc_assert (label == XEXP (note, 0));
12057 if (LABEL_P (label))
12058 LABEL_NUSES (label)--;
12059 }
12060 place = 0;
12061 }
12062 if (place2 && JUMP_P (place2))
12063 {
12064 rtx label = JUMP_LABEL (place2);
12065
12066 if (!label)
12067 JUMP_LABEL (place2) = XEXP (note, 0);
12068 else
12069 {
12070 gcc_assert (label == XEXP (note, 0));
12071 if (LABEL_P (label))
12072 LABEL_NUSES (label)--;
12073 }
12074 place2 = 0;
12075 }
12076 break;
12077
12078 case REG_NONNEG:
12079 /* This note says something about the value of a register prior
12080 to the execution of an insn. It is too much trouble to see
12081 if the note is still correct in all situations. It is better
12082 to simply delete it. */
12083 break;
12084
12085 case REG_RETVAL:
12086 /* If the insn previously containing this note still exists,
12087 put it back where it was. Otherwise move it to the previous
12088 insn. Adjust the corresponding REG_LIBCALL note. */
12089 if (!NOTE_P (from_insn))
12090 place = from_insn;
12091 else
12092 {
12093 tem = find_reg_note (XEXP (note, 0), REG_LIBCALL, NULL_RTX);
12094 place = prev_real_insn (from_insn);
12095 if (tem && place)
12096 XEXP (tem, 0) = place;
12097 /* If we're deleting the last remaining instruction of a
12098 libcall sequence, don't add the notes. */
12099 else if (XEXP (note, 0) == from_insn)
12100 tem = place = 0;
12101 /* Don't add the dangling REG_RETVAL note. */
12102 else if (! tem)
12103 place = 0;
12104 }
12105 break;
12106
12107 case REG_LIBCALL:
12108 /* This is handled similarly to REG_RETVAL. */
12109 if (!NOTE_P (from_insn))
12110 place = from_insn;
12111 else
12112 {
12113 tem = find_reg_note (XEXP (note, 0), REG_RETVAL, NULL_RTX);
12114 place = next_real_insn (from_insn);
12115 if (tem && place)
12116 XEXP (tem, 0) = place;
12117 /* If we're deleting the last remaining instruction of a
12118 libcall sequence, don't add the notes. */
12119 else if (XEXP (note, 0) == from_insn)
12120 tem = place = 0;
12121 /* Don't add the dangling REG_LIBCALL note. */
12122 else if (! tem)
12123 place = 0;
12124 }
12125 break;
12126
12127 case REG_DEAD:
12128 /* If we replaced the right hand side of FROM_INSN with a
12129 REG_EQUAL note, the original use of the dying register
12130 will not have been combined into I3 and I2. In such cases,
12131 FROM_INSN is guaranteed to be the first of the combined
12132 instructions, so we simply need to search back before
12133 FROM_INSN for the previous use or set of this register,
12134 then alter the notes there appropriately.
12135
12136 If the register is used as an input in I3, it dies there.
12137 Similarly for I2, if it is nonzero and adjacent to I3.
12138
12139 If the register is not used as an input in either I3 or I2
12140 and it is not one of the registers we were supposed to eliminate,
12141 there are two possibilities. We might have a non-adjacent I2
12142 or we might have somehow eliminated an additional register
12143 from a computation. For example, we might have had A & B where
12144 we discover that B will always be zero. In this case we will
12145 eliminate the reference to A.
12146
12147 In both cases, we must search to see if we can find a previous
12148 use of A and put the death note there. */
12149
12150 if (from_insn
12151 && from_insn == i2mod
12152 && !reg_overlap_mentioned_p (XEXP (note, 0), i2mod_new_rhs))
12153 tem = from_insn;
12154 else
12155 {
12156 if (from_insn
12157 && CALL_P (from_insn)
12158 && find_reg_fusage (from_insn, USE, XEXP (note, 0)))
12159 place = from_insn;
12160 else if (reg_referenced_p (XEXP (note, 0), PATTERN (i3)))
12161 place = i3;
12162 else if (i2 != 0 && next_nonnote_insn (i2) == i3
12163 && reg_referenced_p (XEXP (note, 0), PATTERN (i2)))
12164 place = i2;
12165 else if ((rtx_equal_p (XEXP (note, 0), elim_i2)
12166 && !(i2mod
12167 && reg_overlap_mentioned_p (XEXP (note, 0),
12168 i2mod_old_rhs)))
12169 || rtx_equal_p (XEXP (note, 0), elim_i1))
12170 break;
12171 tem = i3;
12172 }
12173
12174 if (place == 0)
12175 {
12176 basic_block bb = this_basic_block;
12177
12178 for (tem = PREV_INSN (tem); place == 0; tem = PREV_INSN (tem))
12179 {
12180 if (! INSN_P (tem))
12181 {
12182 if (tem == BB_HEAD (bb))
12183 break;
12184 continue;
12185 }
12186
12187 /* If the register is being set at TEM, see if that is all
12188 TEM is doing. If so, delete TEM. Otherwise, make this
12189 into a REG_UNUSED note instead. Don't delete sets to
12190 global register vars. */
12191 if ((REGNO (XEXP (note, 0)) >= FIRST_PSEUDO_REGISTER
12192 || !global_regs[REGNO (XEXP (note, 0))])
12193 && reg_set_p (XEXP (note, 0), PATTERN (tem)))
12194 {
12195 rtx set = single_set (tem);
12196 rtx inner_dest = 0;
12197 #ifdef HAVE_cc0
12198 rtx cc0_setter = NULL_RTX;
12199 #endif
12200
12201 if (set != 0)
12202 for (inner_dest = SET_DEST (set);
12203 (GET_CODE (inner_dest) == STRICT_LOW_PART
12204 || GET_CODE (inner_dest) == SUBREG
12205 || GET_CODE (inner_dest) == ZERO_EXTRACT);
12206 inner_dest = XEXP (inner_dest, 0))
12207 ;
12208
12209 /* Verify that it was the set, and not a clobber that
12210 modified the register.
12211
12212 CC0 targets must be careful to maintain setter/user
12213 pairs. If we cannot delete the setter due to side
12214 effects, mark the user with an UNUSED note instead
12215 of deleting it. */
12216
12217 if (set != 0 && ! side_effects_p (SET_SRC (set))
12218 && rtx_equal_p (XEXP (note, 0), inner_dest)
12219 #ifdef HAVE_cc0
12220 && (! reg_mentioned_p (cc0_rtx, SET_SRC (set))
12221 || ((cc0_setter = prev_cc0_setter (tem)) != NULL
12222 && sets_cc0_p (PATTERN (cc0_setter)) > 0))
12223 #endif
12224 )
12225 {
12226 /* Move the notes and links of TEM elsewhere.
12227 This might delete other dead insns recursively.
12228 First set the pattern to something that won't use
12229 any register. */
12230 rtx old_notes = REG_NOTES (tem);
12231
12232 PATTERN (tem) = pc_rtx;
12233 REG_NOTES (tem) = NULL;
12234
12235 distribute_notes (old_notes, tem, tem, NULL_RTX,
12236 NULL_RTX, NULL_RTX);
12237 distribute_links (LOG_LINKS (tem));
12238
12239 SET_INSN_DELETED (tem);
12240
12241 #ifdef HAVE_cc0
12242 /* Delete the setter too. */
12243 if (cc0_setter)
12244 {
12245 PATTERN (cc0_setter) = pc_rtx;
12246 old_notes = REG_NOTES (cc0_setter);
12247 REG_NOTES (cc0_setter) = NULL;
12248
12249 distribute_notes (old_notes, cc0_setter,
12250 cc0_setter, NULL_RTX,
12251 NULL_RTX, NULL_RTX);
12252 distribute_links (LOG_LINKS (cc0_setter));
12253
12254 SET_INSN_DELETED (cc0_setter);
12255 }
12256 #endif
12257 }
12258 else
12259 {
12260 PUT_REG_NOTE_KIND (note, REG_UNUSED);
12261
12262 /* If there isn't already a REG_UNUSED note, put one
12263 here. Do not place a REG_DEAD note, even if
12264 the register is also used here; that would not
12265 match the algorithm used in lifetime analysis
12266 and can cause the consistency check in the
12267 scheduler to fail. */
12268 if (! find_regno_note (tem, REG_UNUSED,
12269 REGNO (XEXP (note, 0))))
12270 place = tem;
12271 break;
12272 }
12273 }
12274 else if (reg_referenced_p (XEXP (note, 0), PATTERN (tem))
12275 || (CALL_P (tem)
12276 && find_reg_fusage (tem, USE, XEXP (note, 0))))
12277 {
12278 place = tem;
12279
12280 /* If we are doing a 3->2 combination, and we have a
12281 register which formerly died in i3 and was not used
12282 by i2, which now no longer dies in i3 and is used in
12283 i2 but does not die in i2, and place is between i2
12284 and i3, then we may need to move a link from place to
12285 i2. */
12286 if (i2 && INSN_UID (place) <= max_uid_cuid
12287 && INSN_CUID (place) > INSN_CUID (i2)
12288 && from_insn
12289 && INSN_CUID (from_insn) > INSN_CUID (i2)
12290 && reg_referenced_p (XEXP (note, 0), PATTERN (i2)))
12291 {
12292 rtx links = LOG_LINKS (place);
12293 LOG_LINKS (place) = 0;
12294 distribute_links (links);
12295 }
12296 break;
12297 }
12298
12299 if (tem == BB_HEAD (bb))
12300 break;
12301 }
12302
12303 /* We haven't found an insn for the death note and it
12304 is still a REG_DEAD note, but we have hit the beginning
12305 of the block. If the existing life info says the reg
12306 was dead, there's nothing left to do. Otherwise, we'll
12307 need to do a global life update after combine. */
12308 if (REG_NOTE_KIND (note) == REG_DEAD && place == 0
12309 && REGNO_REG_SET_P (bb->il.rtl->global_live_at_start,
12310 REGNO (XEXP (note, 0))))
12311 SET_BIT (refresh_blocks, this_basic_block->index);
12312 }
12313
12314 /* If the register is set or already dead at PLACE, we needn't do
12315 anything with this note if it is still a REG_DEAD note.
12316 We check here if it is set at all, not if is it totally replaced,
12317 which is what `dead_or_set_p' checks, so also check for it being
12318 set partially. */
12319
12320 if (place && REG_NOTE_KIND (note) == REG_DEAD)
12321 {
12322 unsigned int regno = REGNO (XEXP (note, 0));
12323
12324 /* Similarly, if the instruction on which we want to place
12325 the note is a noop, we'll need do a global live update
12326 after we remove them in delete_noop_moves. */
12327 if (noop_move_p (place))
12328 SET_BIT (refresh_blocks, this_basic_block->index);
12329
12330 if (dead_or_set_p (place, XEXP (note, 0))
12331 || reg_bitfield_target_p (XEXP (note, 0), PATTERN (place)))
12332 {
12333 /* Unless the register previously died in PLACE, clear
12334 last_death. [I no longer understand why this is
12335 being done.] */
12336 if (reg_stat[regno].last_death != place)
12337 reg_stat[regno].last_death = 0;
12338 place = 0;
12339 }
12340 else
12341 reg_stat[regno].last_death = place;
12342
12343 /* If this is a death note for a hard reg that is occupying
12344 multiple registers, ensure that we are still using all
12345 parts of the object. If we find a piece of the object
12346 that is unused, we must arrange for an appropriate REG_DEAD
12347 note to be added for it. However, we can't just emit a USE
12348 and tag the note to it, since the register might actually
12349 be dead; so we recourse, and the recursive call then finds
12350 the previous insn that used this register. */
12351
12352 if (place && regno < FIRST_PSEUDO_REGISTER
12353 && hard_regno_nregs[regno][GET_MODE (XEXP (note, 0))] > 1)
12354 {
12355 unsigned int endregno
12356 = regno + hard_regno_nregs[regno]
12357 [GET_MODE (XEXP (note, 0))];
12358 int all_used = 1;
12359 unsigned int i;
12360
12361 for (i = regno; i < endregno; i++)
12362 if ((! refers_to_regno_p (i, i + 1, PATTERN (place), 0)
12363 && ! find_regno_fusage (place, USE, i))
12364 || dead_or_set_regno_p (place, i))
12365 all_used = 0;
12366
12367 if (! all_used)
12368 {
12369 /* Put only REG_DEAD notes for pieces that are
12370 not already dead or set. */
12371
12372 for (i = regno; i < endregno;
12373 i += hard_regno_nregs[i][reg_raw_mode[i]])
12374 {
12375 rtx piece = regno_reg_rtx[i];
12376 basic_block bb = this_basic_block;
12377
12378 if (! dead_or_set_p (place, piece)
12379 && ! reg_bitfield_target_p (piece,
12380 PATTERN (place)))
12381 {
12382 rtx new_note
12383 = gen_rtx_EXPR_LIST (REG_DEAD, piece, NULL_RTX);
12384
12385 distribute_notes (new_note, place, place,
12386 NULL_RTX, NULL_RTX, NULL_RTX);
12387 }
12388 else if (! refers_to_regno_p (i, i + 1,
12389 PATTERN (place), 0)
12390 && ! find_regno_fusage (place, USE, i))
12391 for (tem = PREV_INSN (place); ;
12392 tem = PREV_INSN (tem))
12393 {
12394 if (! INSN_P (tem))
12395 {
12396 if (tem == BB_HEAD (bb))
12397 {
12398 SET_BIT (refresh_blocks,
12399 this_basic_block->index);
12400 break;
12401 }
12402 continue;
12403 }
12404 if (dead_or_set_p (tem, piece)
12405 || reg_bitfield_target_p (piece,
12406 PATTERN (tem)))
12407 {
12408 REG_NOTES (tem)
12409 = gen_rtx_EXPR_LIST (REG_UNUSED, piece,
12410 REG_NOTES (tem));
12411 break;
12412 }
12413 }
12414
12415 }
12416
12417 place = 0;
12418 }
12419 }
12420 }
12421 break;
12422
12423 default:
12424 /* Any other notes should not be present at this point in the
12425 compilation. */
12426 gcc_unreachable ();
12427 }
12428
12429 if (place)
12430 {
12431 XEXP (note, 1) = REG_NOTES (place);
12432 REG_NOTES (place) = note;
12433 }
12434 else if ((REG_NOTE_KIND (note) == REG_DEAD
12435 || REG_NOTE_KIND (note) == REG_UNUSED)
12436 && REG_P (XEXP (note, 0)))
12437 REG_N_DEATHS (REGNO (XEXP (note, 0)))--;
12438
12439 if (place2)
12440 {
12441 if ((REG_NOTE_KIND (note) == REG_DEAD
12442 || REG_NOTE_KIND (note) == REG_UNUSED)
12443 && REG_P (XEXP (note, 0)))
12444 REG_N_DEATHS (REGNO (XEXP (note, 0)))++;
12445
12446 REG_NOTES (place2) = gen_rtx_fmt_ee (GET_CODE (note),
12447 REG_NOTE_KIND (note),
12448 XEXP (note, 0),
12449 REG_NOTES (place2));
12450 }
12451 }
12452 }
12453 \f
12454 /* Similarly to above, distribute the LOG_LINKS that used to be present on
12455 I3, I2, and I1 to new locations. This is also called to add a link
12456 pointing at I3 when I3's destination is changed. */
12457
12458 static void
12459 distribute_links (rtx links)
12460 {
12461 rtx link, next_link;
12462
12463 for (link = links; link; link = next_link)
12464 {
12465 rtx place = 0;
12466 rtx insn;
12467 rtx set, reg;
12468
12469 next_link = XEXP (link, 1);
12470
12471 /* If the insn that this link points to is a NOTE or isn't a single
12472 set, ignore it. In the latter case, it isn't clear what we
12473 can do other than ignore the link, since we can't tell which
12474 register it was for. Such links wouldn't be used by combine
12475 anyway.
12476
12477 It is not possible for the destination of the target of the link to
12478 have been changed by combine. The only potential of this is if we
12479 replace I3, I2, and I1 by I3 and I2. But in that case the
12480 destination of I2 also remains unchanged. */
12481
12482 if (NOTE_P (XEXP (link, 0))
12483 || (set = single_set (XEXP (link, 0))) == 0)
12484 continue;
12485
12486 reg = SET_DEST (set);
12487 while (GET_CODE (reg) == SUBREG || GET_CODE (reg) == ZERO_EXTRACT
12488 || GET_CODE (reg) == STRICT_LOW_PART)
12489 reg = XEXP (reg, 0);
12490
12491 /* A LOG_LINK is defined as being placed on the first insn that uses
12492 a register and points to the insn that sets the register. Start
12493 searching at the next insn after the target of the link and stop
12494 when we reach a set of the register or the end of the basic block.
12495
12496 Note that this correctly handles the link that used to point from
12497 I3 to I2. Also note that not much searching is typically done here
12498 since most links don't point very far away. */
12499
12500 for (insn = NEXT_INSN (XEXP (link, 0));
12501 (insn && (this_basic_block->next_bb == EXIT_BLOCK_PTR
12502 || BB_HEAD (this_basic_block->next_bb) != insn));
12503 insn = NEXT_INSN (insn))
12504 if (INSN_P (insn) && reg_overlap_mentioned_p (reg, PATTERN (insn)))
12505 {
12506 if (reg_referenced_p (reg, PATTERN (insn)))
12507 place = insn;
12508 break;
12509 }
12510 else if (CALL_P (insn)
12511 && find_reg_fusage (insn, USE, reg))
12512 {
12513 place = insn;
12514 break;
12515 }
12516 else if (INSN_P (insn) && reg_set_p (reg, insn))
12517 break;
12518
12519 /* If we found a place to put the link, place it there unless there
12520 is already a link to the same insn as LINK at that point. */
12521
12522 if (place)
12523 {
12524 rtx link2;
12525
12526 for (link2 = LOG_LINKS (place); link2; link2 = XEXP (link2, 1))
12527 if (XEXP (link2, 0) == XEXP (link, 0))
12528 break;
12529
12530 if (link2 == 0)
12531 {
12532 XEXP (link, 1) = LOG_LINKS (place);
12533 LOG_LINKS (place) = link;
12534
12535 /* Set added_links_insn to the earliest insn we added a
12536 link to. */
12537 if (added_links_insn == 0
12538 || INSN_CUID (added_links_insn) > INSN_CUID (place))
12539 added_links_insn = place;
12540 }
12541 }
12542 }
12543 }
12544 \f
12545 /* Subroutine of unmentioned_reg_p and callback from for_each_rtx.
12546 Check whether the expression pointer to by LOC is a register or
12547 memory, and if so return 1 if it isn't mentioned in the rtx EXPR.
12548 Otherwise return zero. */
12549
12550 static int
12551 unmentioned_reg_p_1 (rtx *loc, void *expr)
12552 {
12553 rtx x = *loc;
12554
12555 if (x != NULL_RTX
12556 && (REG_P (x) || MEM_P (x))
12557 && ! reg_mentioned_p (x, (rtx) expr))
12558 return 1;
12559 return 0;
12560 }
12561
12562 /* Check for any register or memory mentioned in EQUIV that is not
12563 mentioned in EXPR. This is used to restrict EQUIV to "specializations"
12564 of EXPR where some registers may have been replaced by constants. */
12565
12566 static bool
12567 unmentioned_reg_p (rtx equiv, rtx expr)
12568 {
12569 return for_each_rtx (&equiv, unmentioned_reg_p_1, expr);
12570 }
12571 \f
12572 /* Compute INSN_CUID for INSN, which is an insn made by combine. */
12573
12574 static int
12575 insn_cuid (rtx insn)
12576 {
12577 while (insn != 0 && INSN_UID (insn) > max_uid_cuid
12578 && NONJUMP_INSN_P (insn) && GET_CODE (PATTERN (insn)) == USE)
12579 insn = NEXT_INSN (insn);
12580
12581 gcc_assert (INSN_UID (insn) <= max_uid_cuid);
12582
12583 return INSN_CUID (insn);
12584 }
12585 \f
12586 void
12587 dump_combine_stats (FILE *file)
12588 {
12589 fprintf
12590 (file,
12591 ";; Combiner statistics: %d attempts, %d substitutions (%d requiring new space),\n;; %d successes.\n\n",
12592 combine_attempts, combine_merges, combine_extras, combine_successes);
12593 }
12594
12595 void
12596 dump_combine_total_stats (FILE *file)
12597 {
12598 fprintf
12599 (file,
12600 "\n;; Combiner totals: %d attempts, %d substitutions (%d requiring new space),\n;; %d successes.\n",
12601 total_attempts, total_merges, total_extras, total_successes);
12602 }
12603 \f
12604
12605 static bool
12606 gate_handle_combine (void)
12607 {
12608 return (optimize > 0);
12609 }
12610
12611 /* Try combining insns through substitution. */
12612 static unsigned int
12613 rest_of_handle_combine (void)
12614 {
12615 int rebuild_jump_labels_after_combine
12616 = combine_instructions (get_insns (), max_reg_num ());
12617
12618 /* Combining insns may have turned an indirect jump into a
12619 direct jump. Rebuild the JUMP_LABEL fields of jumping
12620 instructions. */
12621 if (rebuild_jump_labels_after_combine)
12622 {
12623 timevar_push (TV_JUMP);
12624 rebuild_jump_labels (get_insns ());
12625 timevar_pop (TV_JUMP);
12626
12627 delete_dead_jumptables ();
12628 cleanup_cfg (CLEANUP_EXPENSIVE | CLEANUP_UPDATE_LIFE);
12629 }
12630 return 0;
12631 }
12632
12633 struct tree_opt_pass pass_combine =
12634 {
12635 "combine", /* name */
12636 gate_handle_combine, /* gate */
12637 rest_of_handle_combine, /* execute */
12638 NULL, /* sub */
12639 NULL, /* next */
12640 0, /* static_pass_number */
12641 TV_COMBINE, /* tv_id */
12642 0, /* properties_required */
12643 0, /* properties_provided */
12644 0, /* properties_destroyed */
12645 0, /* todo_flags_start */
12646 TODO_dump_func |
12647 TODO_ggc_collect, /* todo_flags_finish */
12648 'c' /* letter */
12649 };
12650