Fix uppercase in trunc<mode><pmov_dst_3>2.
[gcc.git] / gcc / combine.c
1 /* Optimize by combining instructions for GNU compiler.
2 Copyright (C) 1987-2020 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 /* This module is essentially the "combiner" phase of the U. of Arizona
21 Portable Optimizer, but redone to work on our list-structured
22 representation for RTL instead of their string representation.
23
24 The LOG_LINKS of each insn identify the most recent assignment
25 to each REG used in the insn. It is a list of previous insns,
26 each of which contains a SET for a REG that is used in this insn
27 and not used or set in between. LOG_LINKs never cross basic blocks.
28 They were set up by the preceding pass (lifetime analysis).
29
30 We try to combine each pair of insns joined by a logical link.
31 We also try to combine triplets of insns A, B and C when C has
32 a link back to B and B has a link back to A. Likewise for a
33 small number of quadruplets of insns A, B, C and D for which
34 there's high likelihood of success.
35
36 LOG_LINKS does not have links for use of the CC0. They don't
37 need to, because the insn that sets the CC0 is always immediately
38 before the insn that tests it. So we always regard a branch
39 insn as having a logical link to the preceding insn. The same is true
40 for an insn explicitly using CC0.
41
42 We check (with modified_between_p) to avoid combining in such a way
43 as to move a computation to a place where its value would be different.
44
45 Combination is done by mathematically substituting the previous
46 insn(s) values for the regs they set into the expressions in
47 the later insns that refer to these regs. If the result is a valid insn
48 for our target machine, according to the machine description,
49 we install it, delete the earlier insns, and update the data flow
50 information (LOG_LINKS and REG_NOTES) for what we did.
51
52 There are a few exceptions where the dataflow information isn't
53 completely updated (however this is only a local issue since it is
54 regenerated before the next pass that uses it):
55
56 - reg_live_length is not updated
57 - reg_n_refs is not adjusted in the rare case when a register is
58 no longer required in a computation
59 - there are extremely rare cases (see distribute_notes) when a
60 REG_DEAD note is lost
61 - a LOG_LINKS entry that refers to an insn with multiple SETs may be
62 removed because there is no way to know which register it was
63 linking
64
65 To simplify substitution, we combine only when the earlier insn(s)
66 consist of only a single assignment. To simplify updating afterward,
67 we never combine when a subroutine call appears in the middle.
68
69 Since we do not represent assignments to CC0 explicitly except when that
70 is all an insn does, there is no LOG_LINKS entry in an insn that uses
71 the condition code for the insn that set the condition code.
72 Fortunately, these two insns must be consecutive.
73 Therefore, every JUMP_INSN is taken to have an implicit logical link
74 to the preceding insn. This is not quite right, since non-jumps can
75 also use the condition code; but in practice such insns would not
76 combine anyway. */
77
78 #include "config.h"
79 #include "system.h"
80 #include "coretypes.h"
81 #include "backend.h"
82 #include "target.h"
83 #include "rtl.h"
84 #include "tree.h"
85 #include "cfghooks.h"
86 #include "predict.h"
87 #include "df.h"
88 #include "memmodel.h"
89 #include "tm_p.h"
90 #include "optabs.h"
91 #include "regs.h"
92 #include "emit-rtl.h"
93 #include "recog.h"
94 #include "cgraph.h"
95 #include "stor-layout.h"
96 #include "cfgrtl.h"
97 #include "cfgcleanup.h"
98 /* Include expr.h after insn-config.h so we get HAVE_conditional_move. */
99 #include "explow.h"
100 #include "insn-attr.h"
101 #include "rtlhooks-def.h"
102 #include "expr.h"
103 #include "tree-pass.h"
104 #include "valtrack.h"
105 #include "rtl-iter.h"
106 #include "print-rtl.h"
107 #include "function-abi.h"
108
109 /* Number of attempts to combine instructions in this function. */
110
111 static int combine_attempts;
112
113 /* Number of attempts that got as far as substitution in this function. */
114
115 static int combine_merges;
116
117 /* Number of instructions combined with added SETs in this function. */
118
119 static int combine_extras;
120
121 /* Number of instructions combined in this function. */
122
123 static int combine_successes;
124
125 /* Totals over entire compilation. */
126
127 static int total_attempts, total_merges, total_extras, total_successes;
128
129 /* combine_instructions may try to replace the right hand side of the
130 second instruction with the value of an associated REG_EQUAL note
131 before throwing it at try_combine. That is problematic when there
132 is a REG_DEAD note for a register used in the old right hand side
133 and can cause distribute_notes to do wrong things. This is the
134 second instruction if it has been so modified, null otherwise. */
135
136 static rtx_insn *i2mod;
137
138 /* When I2MOD is nonnull, this is a copy of the old right hand side. */
139
140 static rtx i2mod_old_rhs;
141
142 /* When I2MOD is nonnull, this is a copy of the new right hand side. */
143
144 static rtx i2mod_new_rhs;
145 \f
146 struct reg_stat_type {
147 /* Record last point of death of (hard or pseudo) register n. */
148 rtx_insn *last_death;
149
150 /* Record last point of modification of (hard or pseudo) register n. */
151 rtx_insn *last_set;
152
153 /* The next group of fields allows the recording of the last value assigned
154 to (hard or pseudo) register n. We use this information to see if an
155 operation being processed is redundant given a prior operation performed
156 on the register. For example, an `and' with a constant is redundant if
157 all the zero bits are already known to be turned off.
158
159 We use an approach similar to that used by cse, but change it in the
160 following ways:
161
162 (1) We do not want to reinitialize at each label.
163 (2) It is useful, but not critical, to know the actual value assigned
164 to a register. Often just its form is helpful.
165
166 Therefore, we maintain the following fields:
167
168 last_set_value the last value assigned
169 last_set_label records the value of label_tick when the
170 register was assigned
171 last_set_table_tick records the value of label_tick when a
172 value using the register is assigned
173 last_set_invalid set to nonzero when it is not valid
174 to use the value of this register in some
175 register's value
176
177 To understand the usage of these tables, it is important to understand
178 the distinction between the value in last_set_value being valid and
179 the register being validly contained in some other expression in the
180 table.
181
182 (The next two parameters are out of date).
183
184 reg_stat[i].last_set_value is valid if it is nonzero, and either
185 reg_n_sets[i] is 1 or reg_stat[i].last_set_label == label_tick.
186
187 Register I may validly appear in any expression returned for the value
188 of another register if reg_n_sets[i] is 1. It may also appear in the
189 value for register J if reg_stat[j].last_set_invalid is zero, or
190 reg_stat[i].last_set_label < reg_stat[j].last_set_label.
191
192 If an expression is found in the table containing a register which may
193 not validly appear in an expression, the register is replaced by
194 something that won't match, (clobber (const_int 0)). */
195
196 /* Record last value assigned to (hard or pseudo) register n. */
197
198 rtx last_set_value;
199
200 /* Record the value of label_tick when an expression involving register n
201 is placed in last_set_value. */
202
203 int last_set_table_tick;
204
205 /* Record the value of label_tick when the value for register n is placed in
206 last_set_value. */
207
208 int last_set_label;
209
210 /* These fields are maintained in parallel with last_set_value and are
211 used to store the mode in which the register was last set, the bits
212 that were known to be zero when it was last set, and the number of
213 sign bits copies it was known to have when it was last set. */
214
215 unsigned HOST_WIDE_INT last_set_nonzero_bits;
216 char last_set_sign_bit_copies;
217 ENUM_BITFIELD(machine_mode) last_set_mode : 8;
218
219 /* Set nonzero if references to register n in expressions should not be
220 used. last_set_invalid is set nonzero when this register is being
221 assigned to and last_set_table_tick == label_tick. */
222
223 char last_set_invalid;
224
225 /* Some registers that are set more than once and used in more than one
226 basic block are nevertheless always set in similar ways. For example,
227 a QImode register may be loaded from memory in two places on a machine
228 where byte loads zero extend.
229
230 We record in the following fields if a register has some leading bits
231 that are always equal to the sign bit, and what we know about the
232 nonzero bits of a register, specifically which bits are known to be
233 zero.
234
235 If an entry is zero, it means that we don't know anything special. */
236
237 unsigned char sign_bit_copies;
238
239 unsigned HOST_WIDE_INT nonzero_bits;
240
241 /* Record the value of the label_tick when the last truncation
242 happened. The field truncated_to_mode is only valid if
243 truncation_label == label_tick. */
244
245 int truncation_label;
246
247 /* Record the last truncation seen for this register. If truncation
248 is not a nop to this mode we might be able to save an explicit
249 truncation if we know that value already contains a truncated
250 value. */
251
252 ENUM_BITFIELD(machine_mode) truncated_to_mode : 8;
253 };
254
255
256 static vec<reg_stat_type> reg_stat;
257
258 /* One plus the highest pseudo for which we track REG_N_SETS.
259 regstat_init_n_sets_and_refs allocates the array for REG_N_SETS just once,
260 but during combine_split_insns new pseudos can be created. As we don't have
261 updated DF information in that case, it is hard to initialize the array
262 after growing. The combiner only cares about REG_N_SETS (regno) == 1,
263 so instead of growing the arrays, just assume all newly created pseudos
264 during combine might be set multiple times. */
265
266 static unsigned int reg_n_sets_max;
267
268 /* Record the luid of the last insn that invalidated memory
269 (anything that writes memory, and subroutine calls, but not pushes). */
270
271 static int mem_last_set;
272
273 /* Record the luid of the last CALL_INSN
274 so we can tell whether a potential combination crosses any calls. */
275
276 static int last_call_luid;
277
278 /* When `subst' is called, this is the insn that is being modified
279 (by combining in a previous insn). The PATTERN of this insn
280 is still the old pattern partially modified and it should not be
281 looked at, but this may be used to examine the successors of the insn
282 to judge whether a simplification is valid. */
283
284 static rtx_insn *subst_insn;
285
286 /* This is the lowest LUID that `subst' is currently dealing with.
287 get_last_value will not return a value if the register was set at or
288 after this LUID. If not for this mechanism, we could get confused if
289 I2 or I1 in try_combine were an insn that used the old value of a register
290 to obtain a new value. In that case, we might erroneously get the
291 new value of the register when we wanted the old one. */
292
293 static int subst_low_luid;
294
295 /* This contains any hard registers that are used in newpat; reg_dead_at_p
296 must consider all these registers to be always live. */
297
298 static HARD_REG_SET newpat_used_regs;
299
300 /* This is an insn to which a LOG_LINKS entry has been added. If this
301 insn is the earlier than I2 or I3, combine should rescan starting at
302 that location. */
303
304 static rtx_insn *added_links_insn;
305
306 /* And similarly, for notes. */
307
308 static rtx_insn *added_notes_insn;
309
310 /* Basic block in which we are performing combines. */
311 static basic_block this_basic_block;
312 static bool optimize_this_for_speed_p;
313
314 \f
315 /* Length of the currently allocated uid_insn_cost array. */
316
317 static int max_uid_known;
318
319 /* The following array records the insn_cost for every insn
320 in the instruction stream. */
321
322 static int *uid_insn_cost;
323
324 /* The following array records the LOG_LINKS for every insn in the
325 instruction stream as struct insn_link pointers. */
326
327 struct insn_link {
328 rtx_insn *insn;
329 unsigned int regno;
330 struct insn_link *next;
331 };
332
333 static struct insn_link **uid_log_links;
334
335 static inline int
336 insn_uid_check (const_rtx insn)
337 {
338 int uid = INSN_UID (insn);
339 gcc_checking_assert (uid <= max_uid_known);
340 return uid;
341 }
342
343 #define INSN_COST(INSN) (uid_insn_cost[insn_uid_check (INSN)])
344 #define LOG_LINKS(INSN) (uid_log_links[insn_uid_check (INSN)])
345
346 #define FOR_EACH_LOG_LINK(L, INSN) \
347 for ((L) = LOG_LINKS (INSN); (L); (L) = (L)->next)
348
349 /* Links for LOG_LINKS are allocated from this obstack. */
350
351 static struct obstack insn_link_obstack;
352
353 /* Allocate a link. */
354
355 static inline struct insn_link *
356 alloc_insn_link (rtx_insn *insn, unsigned int regno, struct insn_link *next)
357 {
358 struct insn_link *l
359 = (struct insn_link *) obstack_alloc (&insn_link_obstack,
360 sizeof (struct insn_link));
361 l->insn = insn;
362 l->regno = regno;
363 l->next = next;
364 return l;
365 }
366
367 /* Incremented for each basic block. */
368
369 static int label_tick;
370
371 /* Reset to label_tick for each extended basic block in scanning order. */
372
373 static int label_tick_ebb_start;
374
375 /* Mode used to compute significance in reg_stat[].nonzero_bits. It is the
376 largest integer mode that can fit in HOST_BITS_PER_WIDE_INT. */
377
378 static scalar_int_mode nonzero_bits_mode;
379
380 /* Nonzero when reg_stat[].nonzero_bits and reg_stat[].sign_bit_copies can
381 be safely used. It is zero while computing them and after combine has
382 completed. This former test prevents propagating values based on
383 previously set values, which can be incorrect if a variable is modified
384 in a loop. */
385
386 static int nonzero_sign_valid;
387
388 \f
389 /* Record one modification to rtl structure
390 to be undone by storing old_contents into *where. */
391
392 enum undo_kind { UNDO_RTX, UNDO_INT, UNDO_MODE, UNDO_LINKS };
393
394 struct undo
395 {
396 struct undo *next;
397 enum undo_kind kind;
398 union { rtx r; int i; machine_mode m; struct insn_link *l; } old_contents;
399 union { rtx *r; int *i; struct insn_link **l; } where;
400 };
401
402 /* Record a bunch of changes to be undone, up to MAX_UNDO of them.
403 num_undo says how many are currently recorded.
404
405 other_insn is nonzero if we have modified some other insn in the process
406 of working on subst_insn. It must be verified too. */
407
408 struct undobuf
409 {
410 struct undo *undos;
411 struct undo *frees;
412 rtx_insn *other_insn;
413 };
414
415 static struct undobuf undobuf;
416
417 /* Number of times the pseudo being substituted for
418 was found and replaced. */
419
420 static int n_occurrences;
421
422 static rtx reg_nonzero_bits_for_combine (const_rtx, scalar_int_mode,
423 scalar_int_mode,
424 unsigned HOST_WIDE_INT *);
425 static rtx reg_num_sign_bit_copies_for_combine (const_rtx, scalar_int_mode,
426 scalar_int_mode,
427 unsigned int *);
428 static void do_SUBST (rtx *, rtx);
429 static void do_SUBST_INT (int *, int);
430 static void init_reg_last (void);
431 static void setup_incoming_promotions (rtx_insn *);
432 static void set_nonzero_bits_and_sign_copies (rtx, const_rtx, void *);
433 static int cant_combine_insn_p (rtx_insn *);
434 static int can_combine_p (rtx_insn *, rtx_insn *, rtx_insn *, rtx_insn *,
435 rtx_insn *, rtx_insn *, rtx *, rtx *);
436 static int combinable_i3pat (rtx_insn *, rtx *, rtx, rtx, rtx, int, int, rtx *);
437 static int contains_muldiv (rtx);
438 static rtx_insn *try_combine (rtx_insn *, rtx_insn *, rtx_insn *, rtx_insn *,
439 int *, rtx_insn *);
440 static void undo_all (void);
441 static void undo_commit (void);
442 static rtx *find_split_point (rtx *, rtx_insn *, bool);
443 static rtx subst (rtx, rtx, rtx, int, int, int);
444 static rtx combine_simplify_rtx (rtx, machine_mode, int, int);
445 static rtx simplify_if_then_else (rtx);
446 static rtx simplify_set (rtx);
447 static rtx simplify_logical (rtx);
448 static rtx expand_compound_operation (rtx);
449 static const_rtx expand_field_assignment (const_rtx);
450 static rtx make_extraction (machine_mode, rtx, HOST_WIDE_INT,
451 rtx, unsigned HOST_WIDE_INT, int, int, int);
452 static int get_pos_from_mask (unsigned HOST_WIDE_INT,
453 unsigned HOST_WIDE_INT *);
454 static rtx canon_reg_for_combine (rtx, rtx);
455 static rtx force_int_to_mode (rtx, scalar_int_mode, scalar_int_mode,
456 scalar_int_mode, unsigned HOST_WIDE_INT, int);
457 static rtx force_to_mode (rtx, machine_mode,
458 unsigned HOST_WIDE_INT, int);
459 static rtx if_then_else_cond (rtx, rtx *, rtx *);
460 static rtx known_cond (rtx, enum rtx_code, rtx, rtx);
461 static int rtx_equal_for_field_assignment_p (rtx, rtx, bool = false);
462 static rtx make_field_assignment (rtx);
463 static rtx apply_distributive_law (rtx);
464 static rtx distribute_and_simplify_rtx (rtx, int);
465 static rtx simplify_and_const_int_1 (scalar_int_mode, rtx,
466 unsigned HOST_WIDE_INT);
467 static rtx simplify_and_const_int (rtx, scalar_int_mode, rtx,
468 unsigned HOST_WIDE_INT);
469 static int merge_outer_ops (enum rtx_code *, HOST_WIDE_INT *, enum rtx_code,
470 HOST_WIDE_INT, machine_mode, int *);
471 static rtx simplify_shift_const_1 (enum rtx_code, machine_mode, rtx, int);
472 static rtx simplify_shift_const (rtx, enum rtx_code, machine_mode, rtx,
473 int);
474 static int recog_for_combine (rtx *, rtx_insn *, rtx *);
475 static rtx gen_lowpart_for_combine (machine_mode, rtx);
476 static enum rtx_code simplify_compare_const (enum rtx_code, machine_mode,
477 rtx, rtx *);
478 static enum rtx_code simplify_comparison (enum rtx_code, rtx *, rtx *);
479 static void update_table_tick (rtx);
480 static void record_value_for_reg (rtx, rtx_insn *, rtx);
481 static void check_promoted_subreg (rtx_insn *, rtx);
482 static void record_dead_and_set_regs_1 (rtx, const_rtx, void *);
483 static void record_dead_and_set_regs (rtx_insn *);
484 static int get_last_value_validate (rtx *, rtx_insn *, int, int);
485 static rtx get_last_value (const_rtx);
486 static void reg_dead_at_p_1 (rtx, const_rtx, void *);
487 static int reg_dead_at_p (rtx, rtx_insn *);
488 static void move_deaths (rtx, rtx, int, rtx_insn *, rtx *);
489 static int reg_bitfield_target_p (rtx, rtx);
490 static void distribute_notes (rtx, rtx_insn *, rtx_insn *, rtx_insn *, rtx, rtx, rtx);
491 static void distribute_links (struct insn_link *);
492 static void mark_used_regs_combine (rtx);
493 static void record_promoted_value (rtx_insn *, rtx);
494 static bool unmentioned_reg_p (rtx, rtx);
495 static void record_truncated_values (rtx *, void *);
496 static bool reg_truncated_to_mode (machine_mode, const_rtx);
497 static rtx gen_lowpart_or_truncate (machine_mode, rtx);
498 \f
499
500 /* It is not safe to use ordinary gen_lowpart in combine.
501 See comments in gen_lowpart_for_combine. */
502 #undef RTL_HOOKS_GEN_LOWPART
503 #define RTL_HOOKS_GEN_LOWPART gen_lowpart_for_combine
504
505 /* Our implementation of gen_lowpart never emits a new pseudo. */
506 #undef RTL_HOOKS_GEN_LOWPART_NO_EMIT
507 #define RTL_HOOKS_GEN_LOWPART_NO_EMIT gen_lowpart_for_combine
508
509 #undef RTL_HOOKS_REG_NONZERO_REG_BITS
510 #define RTL_HOOKS_REG_NONZERO_REG_BITS reg_nonzero_bits_for_combine
511
512 #undef RTL_HOOKS_REG_NUM_SIGN_BIT_COPIES
513 #define RTL_HOOKS_REG_NUM_SIGN_BIT_COPIES reg_num_sign_bit_copies_for_combine
514
515 #undef RTL_HOOKS_REG_TRUNCATED_TO_MODE
516 #define RTL_HOOKS_REG_TRUNCATED_TO_MODE reg_truncated_to_mode
517
518 static const struct rtl_hooks combine_rtl_hooks = RTL_HOOKS_INITIALIZER;
519
520 \f
521 /* Convenience wrapper for the canonicalize_comparison target hook.
522 Target hooks cannot use enum rtx_code. */
523 static inline void
524 target_canonicalize_comparison (enum rtx_code *code, rtx *op0, rtx *op1,
525 bool op0_preserve_value)
526 {
527 int code_int = (int)*code;
528 targetm.canonicalize_comparison (&code_int, op0, op1, op0_preserve_value);
529 *code = (enum rtx_code)code_int;
530 }
531
532 /* Try to split PATTERN found in INSN. This returns NULL_RTX if
533 PATTERN cannot be split. Otherwise, it returns an insn sequence.
534 This is a wrapper around split_insns which ensures that the
535 reg_stat vector is made larger if the splitter creates a new
536 register. */
537
538 static rtx_insn *
539 combine_split_insns (rtx pattern, rtx_insn *insn)
540 {
541 rtx_insn *ret;
542 unsigned int nregs;
543
544 ret = split_insns (pattern, insn);
545 nregs = max_reg_num ();
546 if (nregs > reg_stat.length ())
547 reg_stat.safe_grow_cleared (nregs);
548 return ret;
549 }
550
551 /* This is used by find_single_use to locate an rtx in LOC that
552 contains exactly one use of DEST, which is typically either a REG
553 or CC0. It returns a pointer to the innermost rtx expression
554 containing DEST. Appearances of DEST that are being used to
555 totally replace it are not counted. */
556
557 static rtx *
558 find_single_use_1 (rtx dest, rtx *loc)
559 {
560 rtx x = *loc;
561 enum rtx_code code = GET_CODE (x);
562 rtx *result = NULL;
563 rtx *this_result;
564 int i;
565 const char *fmt;
566
567 switch (code)
568 {
569 case CONST:
570 case LABEL_REF:
571 case SYMBOL_REF:
572 CASE_CONST_ANY:
573 case CLOBBER:
574 return 0;
575
576 case SET:
577 /* If the destination is anything other than CC0, PC, a REG or a SUBREG
578 of a REG that occupies all of the REG, the insn uses DEST if
579 it is mentioned in the destination or the source. Otherwise, we
580 need just check the source. */
581 if (GET_CODE (SET_DEST (x)) != CC0
582 && GET_CODE (SET_DEST (x)) != PC
583 && !REG_P (SET_DEST (x))
584 && ! (GET_CODE (SET_DEST (x)) == SUBREG
585 && REG_P (SUBREG_REG (SET_DEST (x)))
586 && !read_modify_subreg_p (SET_DEST (x))))
587 break;
588
589 return find_single_use_1 (dest, &SET_SRC (x));
590
591 case MEM:
592 case SUBREG:
593 return find_single_use_1 (dest, &XEXP (x, 0));
594
595 default:
596 break;
597 }
598
599 /* If it wasn't one of the common cases above, check each expression and
600 vector of this code. Look for a unique usage of DEST. */
601
602 fmt = GET_RTX_FORMAT (code);
603 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
604 {
605 if (fmt[i] == 'e')
606 {
607 if (dest == XEXP (x, i)
608 || (REG_P (dest) && REG_P (XEXP (x, i))
609 && REGNO (dest) == REGNO (XEXP (x, i))))
610 this_result = loc;
611 else
612 this_result = find_single_use_1 (dest, &XEXP (x, i));
613
614 if (result == NULL)
615 result = this_result;
616 else if (this_result)
617 /* Duplicate usage. */
618 return NULL;
619 }
620 else if (fmt[i] == 'E')
621 {
622 int j;
623
624 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
625 {
626 if (XVECEXP (x, i, j) == dest
627 || (REG_P (dest)
628 && REG_P (XVECEXP (x, i, j))
629 && REGNO (XVECEXP (x, i, j)) == REGNO (dest)))
630 this_result = loc;
631 else
632 this_result = find_single_use_1 (dest, &XVECEXP (x, i, j));
633
634 if (result == NULL)
635 result = this_result;
636 else if (this_result)
637 return NULL;
638 }
639 }
640 }
641
642 return result;
643 }
644
645
646 /* See if DEST, produced in INSN, is used only a single time in the
647 sequel. If so, return a pointer to the innermost rtx expression in which
648 it is used.
649
650 If PLOC is nonzero, *PLOC is set to the insn containing the single use.
651
652 If DEST is cc0_rtx, we look only at the next insn. In that case, we don't
653 care about REG_DEAD notes or LOG_LINKS.
654
655 Otherwise, we find the single use by finding an insn that has a
656 LOG_LINKS pointing at INSN and has a REG_DEAD note for DEST. If DEST is
657 only referenced once in that insn, we know that it must be the first
658 and last insn referencing DEST. */
659
660 static rtx *
661 find_single_use (rtx dest, rtx_insn *insn, rtx_insn **ploc)
662 {
663 basic_block bb;
664 rtx_insn *next;
665 rtx *result;
666 struct insn_link *link;
667
668 if (dest == cc0_rtx)
669 {
670 next = NEXT_INSN (insn);
671 if (next == 0
672 || (!NONJUMP_INSN_P (next) && !JUMP_P (next)))
673 return 0;
674
675 result = find_single_use_1 (dest, &PATTERN (next));
676 if (result && ploc)
677 *ploc = next;
678 return result;
679 }
680
681 if (!REG_P (dest))
682 return 0;
683
684 bb = BLOCK_FOR_INSN (insn);
685 for (next = NEXT_INSN (insn);
686 next && BLOCK_FOR_INSN (next) == bb;
687 next = NEXT_INSN (next))
688 if (NONDEBUG_INSN_P (next) && dead_or_set_p (next, dest))
689 {
690 FOR_EACH_LOG_LINK (link, next)
691 if (link->insn == insn && link->regno == REGNO (dest))
692 break;
693
694 if (link)
695 {
696 result = find_single_use_1 (dest, &PATTERN (next));
697 if (ploc)
698 *ploc = next;
699 return result;
700 }
701 }
702
703 return 0;
704 }
705 \f
706 /* Substitute NEWVAL, an rtx expression, into INTO, a place in some
707 insn. The substitution can be undone by undo_all. If INTO is already
708 set to NEWVAL, do not record this change. Because computing NEWVAL might
709 also call SUBST, we have to compute it before we put anything into
710 the undo table. */
711
712 static void
713 do_SUBST (rtx *into, rtx newval)
714 {
715 struct undo *buf;
716 rtx oldval = *into;
717
718 if (oldval == newval)
719 return;
720
721 /* We'd like to catch as many invalid transformations here as
722 possible. Unfortunately, there are way too many mode changes
723 that are perfectly valid, so we'd waste too much effort for
724 little gain doing the checks here. Focus on catching invalid
725 transformations involving integer constants. */
726 if (GET_MODE_CLASS (GET_MODE (oldval)) == MODE_INT
727 && CONST_INT_P (newval))
728 {
729 /* Sanity check that we're replacing oldval with a CONST_INT
730 that is a valid sign-extension for the original mode. */
731 gcc_assert (INTVAL (newval)
732 == trunc_int_for_mode (INTVAL (newval), GET_MODE (oldval)));
733
734 /* Replacing the operand of a SUBREG or a ZERO_EXTEND with a
735 CONST_INT is not valid, because after the replacement, the
736 original mode would be gone. Unfortunately, we can't tell
737 when do_SUBST is called to replace the operand thereof, so we
738 perform this test on oldval instead, checking whether an
739 invalid replacement took place before we got here. */
740 gcc_assert (!(GET_CODE (oldval) == SUBREG
741 && CONST_INT_P (SUBREG_REG (oldval))));
742 gcc_assert (!(GET_CODE (oldval) == ZERO_EXTEND
743 && CONST_INT_P (XEXP (oldval, 0))));
744 }
745
746 if (undobuf.frees)
747 buf = undobuf.frees, undobuf.frees = buf->next;
748 else
749 buf = XNEW (struct undo);
750
751 buf->kind = UNDO_RTX;
752 buf->where.r = into;
753 buf->old_contents.r = oldval;
754 *into = newval;
755
756 buf->next = undobuf.undos, undobuf.undos = buf;
757 }
758
759 #define SUBST(INTO, NEWVAL) do_SUBST (&(INTO), (NEWVAL))
760
761 /* Similar to SUBST, but NEWVAL is an int expression. Note that substitution
762 for the value of a HOST_WIDE_INT value (including CONST_INT) is
763 not safe. */
764
765 static void
766 do_SUBST_INT (int *into, int newval)
767 {
768 struct undo *buf;
769 int oldval = *into;
770
771 if (oldval == newval)
772 return;
773
774 if (undobuf.frees)
775 buf = undobuf.frees, undobuf.frees = buf->next;
776 else
777 buf = XNEW (struct undo);
778
779 buf->kind = UNDO_INT;
780 buf->where.i = into;
781 buf->old_contents.i = oldval;
782 *into = newval;
783
784 buf->next = undobuf.undos, undobuf.undos = buf;
785 }
786
787 #define SUBST_INT(INTO, NEWVAL) do_SUBST_INT (&(INTO), (NEWVAL))
788
789 /* Similar to SUBST, but just substitute the mode. This is used when
790 changing the mode of a pseudo-register, so that any other
791 references to the entry in the regno_reg_rtx array will change as
792 well. */
793
794 static void
795 do_SUBST_MODE (rtx *into, machine_mode newval)
796 {
797 struct undo *buf;
798 machine_mode oldval = GET_MODE (*into);
799
800 if (oldval == newval)
801 return;
802
803 if (undobuf.frees)
804 buf = undobuf.frees, undobuf.frees = buf->next;
805 else
806 buf = XNEW (struct undo);
807
808 buf->kind = UNDO_MODE;
809 buf->where.r = into;
810 buf->old_contents.m = oldval;
811 adjust_reg_mode (*into, newval);
812
813 buf->next = undobuf.undos, undobuf.undos = buf;
814 }
815
816 #define SUBST_MODE(INTO, NEWVAL) do_SUBST_MODE (&(INTO), (NEWVAL))
817
818 /* Similar to SUBST, but NEWVAL is a LOG_LINKS expression. */
819
820 static void
821 do_SUBST_LINK (struct insn_link **into, struct insn_link *newval)
822 {
823 struct undo *buf;
824 struct insn_link * oldval = *into;
825
826 if (oldval == newval)
827 return;
828
829 if (undobuf.frees)
830 buf = undobuf.frees, undobuf.frees = buf->next;
831 else
832 buf = XNEW (struct undo);
833
834 buf->kind = UNDO_LINKS;
835 buf->where.l = into;
836 buf->old_contents.l = oldval;
837 *into = newval;
838
839 buf->next = undobuf.undos, undobuf.undos = buf;
840 }
841
842 #define SUBST_LINK(oldval, newval) do_SUBST_LINK (&oldval, newval)
843 \f
844 /* Subroutine of try_combine. Determine whether the replacement patterns
845 NEWPAT, NEWI2PAT and NEWOTHERPAT are cheaper according to insn_cost
846 than the original sequence I0, I1, I2, I3 and undobuf.other_insn. Note
847 that I0, I1 and/or NEWI2PAT may be NULL_RTX. Similarly, NEWOTHERPAT and
848 undobuf.other_insn may also both be NULL_RTX. Return false if the cost
849 of all the instructions can be estimated and the replacements are more
850 expensive than the original sequence. */
851
852 static bool
853 combine_validate_cost (rtx_insn *i0, rtx_insn *i1, rtx_insn *i2, rtx_insn *i3,
854 rtx newpat, rtx newi2pat, rtx newotherpat)
855 {
856 int i0_cost, i1_cost, i2_cost, i3_cost;
857 int new_i2_cost, new_i3_cost;
858 int old_cost, new_cost;
859
860 /* Lookup the original insn_costs. */
861 i2_cost = INSN_COST (i2);
862 i3_cost = INSN_COST (i3);
863
864 if (i1)
865 {
866 i1_cost = INSN_COST (i1);
867 if (i0)
868 {
869 i0_cost = INSN_COST (i0);
870 old_cost = (i0_cost > 0 && i1_cost > 0 && i2_cost > 0 && i3_cost > 0
871 ? i0_cost + i1_cost + i2_cost + i3_cost : 0);
872 }
873 else
874 {
875 old_cost = (i1_cost > 0 && i2_cost > 0 && i3_cost > 0
876 ? i1_cost + i2_cost + i3_cost : 0);
877 i0_cost = 0;
878 }
879 }
880 else
881 {
882 old_cost = (i2_cost > 0 && i3_cost > 0) ? i2_cost + i3_cost : 0;
883 i1_cost = i0_cost = 0;
884 }
885
886 /* If we have split a PARALLEL I2 to I1,I2, we have counted its cost twice;
887 correct that. */
888 if (old_cost && i1 && INSN_UID (i1) == INSN_UID (i2))
889 old_cost -= i1_cost;
890
891
892 /* Calculate the replacement insn_costs. */
893 rtx tmp = PATTERN (i3);
894 PATTERN (i3) = newpat;
895 int tmpi = INSN_CODE (i3);
896 INSN_CODE (i3) = -1;
897 new_i3_cost = insn_cost (i3, optimize_this_for_speed_p);
898 PATTERN (i3) = tmp;
899 INSN_CODE (i3) = tmpi;
900 if (newi2pat)
901 {
902 tmp = PATTERN (i2);
903 PATTERN (i2) = newi2pat;
904 tmpi = INSN_CODE (i2);
905 INSN_CODE (i2) = -1;
906 new_i2_cost = insn_cost (i2, optimize_this_for_speed_p);
907 PATTERN (i2) = tmp;
908 INSN_CODE (i2) = tmpi;
909 new_cost = (new_i2_cost > 0 && new_i3_cost > 0)
910 ? new_i2_cost + new_i3_cost : 0;
911 }
912 else
913 {
914 new_cost = new_i3_cost;
915 new_i2_cost = 0;
916 }
917
918 if (undobuf.other_insn)
919 {
920 int old_other_cost, new_other_cost;
921
922 old_other_cost = INSN_COST (undobuf.other_insn);
923 tmp = PATTERN (undobuf.other_insn);
924 PATTERN (undobuf.other_insn) = newotherpat;
925 tmpi = INSN_CODE (undobuf.other_insn);
926 INSN_CODE (undobuf.other_insn) = -1;
927 new_other_cost = insn_cost (undobuf.other_insn,
928 optimize_this_for_speed_p);
929 PATTERN (undobuf.other_insn) = tmp;
930 INSN_CODE (undobuf.other_insn) = tmpi;
931 if (old_other_cost > 0 && new_other_cost > 0)
932 {
933 old_cost += old_other_cost;
934 new_cost += new_other_cost;
935 }
936 else
937 old_cost = 0;
938 }
939
940 /* Disallow this combination if both new_cost and old_cost are greater than
941 zero, and new_cost is greater than old cost. */
942 int reject = old_cost > 0 && new_cost > old_cost;
943
944 if (dump_file)
945 {
946 fprintf (dump_file, "%s combination of insns ",
947 reject ? "rejecting" : "allowing");
948 if (i0)
949 fprintf (dump_file, "%d, ", INSN_UID (i0));
950 if (i1 && INSN_UID (i1) != INSN_UID (i2))
951 fprintf (dump_file, "%d, ", INSN_UID (i1));
952 fprintf (dump_file, "%d and %d\n", INSN_UID (i2), INSN_UID (i3));
953
954 fprintf (dump_file, "original costs ");
955 if (i0)
956 fprintf (dump_file, "%d + ", i0_cost);
957 if (i1 && INSN_UID (i1) != INSN_UID (i2))
958 fprintf (dump_file, "%d + ", i1_cost);
959 fprintf (dump_file, "%d + %d = %d\n", i2_cost, i3_cost, old_cost);
960
961 if (newi2pat)
962 fprintf (dump_file, "replacement costs %d + %d = %d\n",
963 new_i2_cost, new_i3_cost, new_cost);
964 else
965 fprintf (dump_file, "replacement cost %d\n", new_cost);
966 }
967
968 if (reject)
969 return false;
970
971 /* Update the uid_insn_cost array with the replacement costs. */
972 INSN_COST (i2) = new_i2_cost;
973 INSN_COST (i3) = new_i3_cost;
974 if (i1)
975 {
976 INSN_COST (i1) = 0;
977 if (i0)
978 INSN_COST (i0) = 0;
979 }
980
981 return true;
982 }
983
984
985 /* Delete any insns that copy a register to itself.
986 Return true if the CFG was changed. */
987
988 static bool
989 delete_noop_moves (void)
990 {
991 rtx_insn *insn, *next;
992 basic_block bb;
993
994 bool edges_deleted = false;
995
996 FOR_EACH_BB_FN (bb, cfun)
997 {
998 for (insn = BB_HEAD (bb); insn != NEXT_INSN (BB_END (bb)); insn = next)
999 {
1000 next = NEXT_INSN (insn);
1001 if (INSN_P (insn) && noop_move_p (insn))
1002 {
1003 if (dump_file)
1004 fprintf (dump_file, "deleting noop move %d\n", INSN_UID (insn));
1005
1006 edges_deleted |= delete_insn_and_edges (insn);
1007 }
1008 }
1009 }
1010
1011 return edges_deleted;
1012 }
1013
1014 \f
1015 /* Return false if we do not want to (or cannot) combine DEF. */
1016 static bool
1017 can_combine_def_p (df_ref def)
1018 {
1019 /* Do not consider if it is pre/post modification in MEM. */
1020 if (DF_REF_FLAGS (def) & DF_REF_PRE_POST_MODIFY)
1021 return false;
1022
1023 unsigned int regno = DF_REF_REGNO (def);
1024
1025 /* Do not combine frame pointer adjustments. */
1026 if ((regno == FRAME_POINTER_REGNUM
1027 && (!reload_completed || frame_pointer_needed))
1028 || (!HARD_FRAME_POINTER_IS_FRAME_POINTER
1029 && regno == HARD_FRAME_POINTER_REGNUM
1030 && (!reload_completed || frame_pointer_needed))
1031 || (FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
1032 && regno == ARG_POINTER_REGNUM && fixed_regs[regno]))
1033 return false;
1034
1035 return true;
1036 }
1037
1038 /* Return false if we do not want to (or cannot) combine USE. */
1039 static bool
1040 can_combine_use_p (df_ref use)
1041 {
1042 /* Do not consider the usage of the stack pointer by function call. */
1043 if (DF_REF_FLAGS (use) & DF_REF_CALL_STACK_USAGE)
1044 return false;
1045
1046 return true;
1047 }
1048
1049 /* Fill in log links field for all insns. */
1050
1051 static void
1052 create_log_links (void)
1053 {
1054 basic_block bb;
1055 rtx_insn **next_use;
1056 rtx_insn *insn;
1057 df_ref def, use;
1058
1059 next_use = XCNEWVEC (rtx_insn *, max_reg_num ());
1060
1061 /* Pass through each block from the end, recording the uses of each
1062 register and establishing log links when def is encountered.
1063 Note that we do not clear next_use array in order to save time,
1064 so we have to test whether the use is in the same basic block as def.
1065
1066 There are a few cases below when we do not consider the definition or
1067 usage -- these are taken from original flow.c did. Don't ask me why it is
1068 done this way; I don't know and if it works, I don't want to know. */
1069
1070 FOR_EACH_BB_FN (bb, cfun)
1071 {
1072 FOR_BB_INSNS_REVERSE (bb, insn)
1073 {
1074 if (!NONDEBUG_INSN_P (insn))
1075 continue;
1076
1077 /* Log links are created only once. */
1078 gcc_assert (!LOG_LINKS (insn));
1079
1080 FOR_EACH_INSN_DEF (def, insn)
1081 {
1082 unsigned int regno = DF_REF_REGNO (def);
1083 rtx_insn *use_insn;
1084
1085 if (!next_use[regno])
1086 continue;
1087
1088 if (!can_combine_def_p (def))
1089 continue;
1090
1091 use_insn = next_use[regno];
1092 next_use[regno] = NULL;
1093
1094 if (BLOCK_FOR_INSN (use_insn) != bb)
1095 continue;
1096
1097 /* flow.c claimed:
1098
1099 We don't build a LOG_LINK for hard registers contained
1100 in ASM_OPERANDs. If these registers get replaced,
1101 we might wind up changing the semantics of the insn,
1102 even if reload can make what appear to be valid
1103 assignments later. */
1104 if (regno < FIRST_PSEUDO_REGISTER
1105 && asm_noperands (PATTERN (use_insn)) >= 0)
1106 continue;
1107
1108 /* Don't add duplicate links between instructions. */
1109 struct insn_link *links;
1110 FOR_EACH_LOG_LINK (links, use_insn)
1111 if (insn == links->insn && regno == links->regno)
1112 break;
1113
1114 if (!links)
1115 LOG_LINKS (use_insn)
1116 = alloc_insn_link (insn, regno, LOG_LINKS (use_insn));
1117 }
1118
1119 FOR_EACH_INSN_USE (use, insn)
1120 if (can_combine_use_p (use))
1121 next_use[DF_REF_REGNO (use)] = insn;
1122 }
1123 }
1124
1125 free (next_use);
1126 }
1127
1128 /* Walk the LOG_LINKS of insn B to see if we find a reference to A. Return
1129 true if we found a LOG_LINK that proves that A feeds B. This only works
1130 if there are no instructions between A and B which could have a link
1131 depending on A, since in that case we would not record a link for B.
1132 We also check the implicit dependency created by a cc0 setter/user
1133 pair. */
1134
1135 static bool
1136 insn_a_feeds_b (rtx_insn *a, rtx_insn *b)
1137 {
1138 struct insn_link *links;
1139 FOR_EACH_LOG_LINK (links, b)
1140 if (links->insn == a)
1141 return true;
1142 if (HAVE_cc0 && sets_cc0_p (a))
1143 return true;
1144 return false;
1145 }
1146 \f
1147 /* Main entry point for combiner. F is the first insn of the function.
1148 NREGS is the first unused pseudo-reg number.
1149
1150 Return nonzero if the CFG was changed (e.g. if the combiner has
1151 turned an indirect jump instruction into a direct jump). */
1152 static int
1153 combine_instructions (rtx_insn *f, unsigned int nregs)
1154 {
1155 rtx_insn *insn, *next;
1156 rtx_insn *prev;
1157 struct insn_link *links, *nextlinks;
1158 rtx_insn *first;
1159 basic_block last_bb;
1160
1161 int new_direct_jump_p = 0;
1162
1163 for (first = f; first && !NONDEBUG_INSN_P (first); )
1164 first = NEXT_INSN (first);
1165 if (!first)
1166 return 0;
1167
1168 combine_attempts = 0;
1169 combine_merges = 0;
1170 combine_extras = 0;
1171 combine_successes = 0;
1172
1173 rtl_hooks = combine_rtl_hooks;
1174
1175 reg_stat.safe_grow_cleared (nregs);
1176
1177 init_recog_no_volatile ();
1178
1179 /* Allocate array for insn info. */
1180 max_uid_known = get_max_uid ();
1181 uid_log_links = XCNEWVEC (struct insn_link *, max_uid_known + 1);
1182 uid_insn_cost = XCNEWVEC (int, max_uid_known + 1);
1183 gcc_obstack_init (&insn_link_obstack);
1184
1185 nonzero_bits_mode = int_mode_for_size (HOST_BITS_PER_WIDE_INT, 0).require ();
1186
1187 /* Don't use reg_stat[].nonzero_bits when computing it. This can cause
1188 problems when, for example, we have j <<= 1 in a loop. */
1189
1190 nonzero_sign_valid = 0;
1191 label_tick = label_tick_ebb_start = 1;
1192
1193 /* Scan all SETs and see if we can deduce anything about what
1194 bits are known to be zero for some registers and how many copies
1195 of the sign bit are known to exist for those registers.
1196
1197 Also set any known values so that we can use it while searching
1198 for what bits are known to be set. */
1199
1200 setup_incoming_promotions (first);
1201 /* Allow the entry block and the first block to fall into the same EBB.
1202 Conceptually the incoming promotions are assigned to the entry block. */
1203 last_bb = ENTRY_BLOCK_PTR_FOR_FN (cfun);
1204
1205 create_log_links ();
1206 FOR_EACH_BB_FN (this_basic_block, cfun)
1207 {
1208 optimize_this_for_speed_p = optimize_bb_for_speed_p (this_basic_block);
1209 last_call_luid = 0;
1210 mem_last_set = -1;
1211
1212 label_tick++;
1213 if (!single_pred_p (this_basic_block)
1214 || single_pred (this_basic_block) != last_bb)
1215 label_tick_ebb_start = label_tick;
1216 last_bb = this_basic_block;
1217
1218 FOR_BB_INSNS (this_basic_block, insn)
1219 if (INSN_P (insn) && BLOCK_FOR_INSN (insn))
1220 {
1221 rtx links;
1222
1223 subst_low_luid = DF_INSN_LUID (insn);
1224 subst_insn = insn;
1225
1226 note_stores (insn, set_nonzero_bits_and_sign_copies, insn);
1227 record_dead_and_set_regs (insn);
1228
1229 if (AUTO_INC_DEC)
1230 for (links = REG_NOTES (insn); links; links = XEXP (links, 1))
1231 if (REG_NOTE_KIND (links) == REG_INC)
1232 set_nonzero_bits_and_sign_copies (XEXP (links, 0), NULL_RTX,
1233 insn);
1234
1235 /* Record the current insn_cost of this instruction. */
1236 INSN_COST (insn) = insn_cost (insn, optimize_this_for_speed_p);
1237 if (dump_file)
1238 {
1239 fprintf (dump_file, "insn_cost %d for ", INSN_COST (insn));
1240 dump_insn_slim (dump_file, insn);
1241 }
1242 }
1243 }
1244
1245 nonzero_sign_valid = 1;
1246
1247 /* Now scan all the insns in forward order. */
1248 label_tick = label_tick_ebb_start = 1;
1249 init_reg_last ();
1250 setup_incoming_promotions (first);
1251 last_bb = ENTRY_BLOCK_PTR_FOR_FN (cfun);
1252 int max_combine = param_max_combine_insns;
1253
1254 FOR_EACH_BB_FN (this_basic_block, cfun)
1255 {
1256 rtx_insn *last_combined_insn = NULL;
1257
1258 /* Ignore instruction combination in basic blocks that are going to
1259 be removed as unreachable anyway. See PR82386. */
1260 if (EDGE_COUNT (this_basic_block->preds) == 0)
1261 continue;
1262
1263 optimize_this_for_speed_p = optimize_bb_for_speed_p (this_basic_block);
1264 last_call_luid = 0;
1265 mem_last_set = -1;
1266
1267 label_tick++;
1268 if (!single_pred_p (this_basic_block)
1269 || single_pred (this_basic_block) != last_bb)
1270 label_tick_ebb_start = label_tick;
1271 last_bb = this_basic_block;
1272
1273 rtl_profile_for_bb (this_basic_block);
1274 for (insn = BB_HEAD (this_basic_block);
1275 insn != NEXT_INSN (BB_END (this_basic_block));
1276 insn = next ? next : NEXT_INSN (insn))
1277 {
1278 next = 0;
1279 if (!NONDEBUG_INSN_P (insn))
1280 continue;
1281
1282 while (last_combined_insn
1283 && (!NONDEBUG_INSN_P (last_combined_insn)
1284 || last_combined_insn->deleted ()))
1285 last_combined_insn = PREV_INSN (last_combined_insn);
1286 if (last_combined_insn == NULL_RTX
1287 || BLOCK_FOR_INSN (last_combined_insn) != this_basic_block
1288 || DF_INSN_LUID (last_combined_insn) <= DF_INSN_LUID (insn))
1289 last_combined_insn = insn;
1290
1291 /* See if we know about function return values before this
1292 insn based upon SUBREG flags. */
1293 check_promoted_subreg (insn, PATTERN (insn));
1294
1295 /* See if we can find hardregs and subreg of pseudos in
1296 narrower modes. This could help turning TRUNCATEs
1297 into SUBREGs. */
1298 note_uses (&PATTERN (insn), record_truncated_values, NULL);
1299
1300 /* Try this insn with each insn it links back to. */
1301
1302 FOR_EACH_LOG_LINK (links, insn)
1303 if ((next = try_combine (insn, links->insn, NULL,
1304 NULL, &new_direct_jump_p,
1305 last_combined_insn)) != 0)
1306 {
1307 statistics_counter_event (cfun, "two-insn combine", 1);
1308 goto retry;
1309 }
1310
1311 /* Try each sequence of three linked insns ending with this one. */
1312
1313 if (max_combine >= 3)
1314 FOR_EACH_LOG_LINK (links, insn)
1315 {
1316 rtx_insn *link = links->insn;
1317
1318 /* If the linked insn has been replaced by a note, then there
1319 is no point in pursuing this chain any further. */
1320 if (NOTE_P (link))
1321 continue;
1322
1323 FOR_EACH_LOG_LINK (nextlinks, link)
1324 if ((next = try_combine (insn, link, nextlinks->insn,
1325 NULL, &new_direct_jump_p,
1326 last_combined_insn)) != 0)
1327 {
1328 statistics_counter_event (cfun, "three-insn combine", 1);
1329 goto retry;
1330 }
1331 }
1332
1333 /* Try to combine a jump insn that uses CC0
1334 with a preceding insn that sets CC0, and maybe with its
1335 logical predecessor as well.
1336 This is how we make decrement-and-branch insns.
1337 We need this special code because data flow connections
1338 via CC0 do not get entered in LOG_LINKS. */
1339
1340 if (HAVE_cc0
1341 && JUMP_P (insn)
1342 && (prev = prev_nonnote_insn (insn)) != 0
1343 && NONJUMP_INSN_P (prev)
1344 && sets_cc0_p (PATTERN (prev)))
1345 {
1346 if ((next = try_combine (insn, prev, NULL, NULL,
1347 &new_direct_jump_p,
1348 last_combined_insn)) != 0)
1349 goto retry;
1350
1351 FOR_EACH_LOG_LINK (nextlinks, prev)
1352 if ((next = try_combine (insn, prev, nextlinks->insn,
1353 NULL, &new_direct_jump_p,
1354 last_combined_insn)) != 0)
1355 goto retry;
1356 }
1357
1358 /* Do the same for an insn that explicitly references CC0. */
1359 if (HAVE_cc0 && NONJUMP_INSN_P (insn)
1360 && (prev = prev_nonnote_insn (insn)) != 0
1361 && NONJUMP_INSN_P (prev)
1362 && sets_cc0_p (PATTERN (prev))
1363 && GET_CODE (PATTERN (insn)) == SET
1364 && reg_mentioned_p (cc0_rtx, SET_SRC (PATTERN (insn))))
1365 {
1366 if ((next = try_combine (insn, prev, NULL, NULL,
1367 &new_direct_jump_p,
1368 last_combined_insn)) != 0)
1369 goto retry;
1370
1371 FOR_EACH_LOG_LINK (nextlinks, prev)
1372 if ((next = try_combine (insn, prev, nextlinks->insn,
1373 NULL, &new_direct_jump_p,
1374 last_combined_insn)) != 0)
1375 goto retry;
1376 }
1377
1378 /* Finally, see if any of the insns that this insn links to
1379 explicitly references CC0. If so, try this insn, that insn,
1380 and its predecessor if it sets CC0. */
1381 if (HAVE_cc0)
1382 {
1383 FOR_EACH_LOG_LINK (links, insn)
1384 if (NONJUMP_INSN_P (links->insn)
1385 && GET_CODE (PATTERN (links->insn)) == SET
1386 && reg_mentioned_p (cc0_rtx, SET_SRC (PATTERN (links->insn)))
1387 && (prev = prev_nonnote_insn (links->insn)) != 0
1388 && NONJUMP_INSN_P (prev)
1389 && sets_cc0_p (PATTERN (prev))
1390 && (next = try_combine (insn, links->insn,
1391 prev, NULL, &new_direct_jump_p,
1392 last_combined_insn)) != 0)
1393 goto retry;
1394 }
1395
1396 /* Try combining an insn with two different insns whose results it
1397 uses. */
1398 if (max_combine >= 3)
1399 FOR_EACH_LOG_LINK (links, insn)
1400 for (nextlinks = links->next; nextlinks;
1401 nextlinks = nextlinks->next)
1402 if ((next = try_combine (insn, links->insn,
1403 nextlinks->insn, NULL,
1404 &new_direct_jump_p,
1405 last_combined_insn)) != 0)
1406
1407 {
1408 statistics_counter_event (cfun, "three-insn combine", 1);
1409 goto retry;
1410 }
1411
1412 /* Try four-instruction combinations. */
1413 if (max_combine >= 4)
1414 FOR_EACH_LOG_LINK (links, insn)
1415 {
1416 struct insn_link *next1;
1417 rtx_insn *link = links->insn;
1418
1419 /* If the linked insn has been replaced by a note, then there
1420 is no point in pursuing this chain any further. */
1421 if (NOTE_P (link))
1422 continue;
1423
1424 FOR_EACH_LOG_LINK (next1, link)
1425 {
1426 rtx_insn *link1 = next1->insn;
1427 if (NOTE_P (link1))
1428 continue;
1429 /* I0 -> I1 -> I2 -> I3. */
1430 FOR_EACH_LOG_LINK (nextlinks, link1)
1431 if ((next = try_combine (insn, link, link1,
1432 nextlinks->insn,
1433 &new_direct_jump_p,
1434 last_combined_insn)) != 0)
1435 {
1436 statistics_counter_event (cfun, "four-insn combine", 1);
1437 goto retry;
1438 }
1439 /* I0, I1 -> I2, I2 -> I3. */
1440 for (nextlinks = next1->next; nextlinks;
1441 nextlinks = nextlinks->next)
1442 if ((next = try_combine (insn, link, link1,
1443 nextlinks->insn,
1444 &new_direct_jump_p,
1445 last_combined_insn)) != 0)
1446 {
1447 statistics_counter_event (cfun, "four-insn combine", 1);
1448 goto retry;
1449 }
1450 }
1451
1452 for (next1 = links->next; next1; next1 = next1->next)
1453 {
1454 rtx_insn *link1 = next1->insn;
1455 if (NOTE_P (link1))
1456 continue;
1457 /* I0 -> I2; I1, I2 -> I3. */
1458 FOR_EACH_LOG_LINK (nextlinks, link)
1459 if ((next = try_combine (insn, link, link1,
1460 nextlinks->insn,
1461 &new_direct_jump_p,
1462 last_combined_insn)) != 0)
1463 {
1464 statistics_counter_event (cfun, "four-insn combine", 1);
1465 goto retry;
1466 }
1467 /* I0 -> I1; I1, I2 -> I3. */
1468 FOR_EACH_LOG_LINK (nextlinks, link1)
1469 if ((next = try_combine (insn, link, link1,
1470 nextlinks->insn,
1471 &new_direct_jump_p,
1472 last_combined_insn)) != 0)
1473 {
1474 statistics_counter_event (cfun, "four-insn combine", 1);
1475 goto retry;
1476 }
1477 }
1478 }
1479
1480 /* Try this insn with each REG_EQUAL note it links back to. */
1481 FOR_EACH_LOG_LINK (links, insn)
1482 {
1483 rtx set, note;
1484 rtx_insn *temp = links->insn;
1485 if ((set = single_set (temp)) != 0
1486 && (note = find_reg_equal_equiv_note (temp)) != 0
1487 && (note = XEXP (note, 0), GET_CODE (note)) != EXPR_LIST
1488 && ! side_effects_p (SET_SRC (set))
1489 /* Avoid using a register that may already been marked
1490 dead by an earlier instruction. */
1491 && ! unmentioned_reg_p (note, SET_SRC (set))
1492 && (GET_MODE (note) == VOIDmode
1493 ? SCALAR_INT_MODE_P (GET_MODE (SET_DEST (set)))
1494 : (GET_MODE (SET_DEST (set)) == GET_MODE (note)
1495 && (GET_CODE (SET_DEST (set)) != ZERO_EXTRACT
1496 || (GET_MODE (XEXP (SET_DEST (set), 0))
1497 == GET_MODE (note))))))
1498 {
1499 /* Temporarily replace the set's source with the
1500 contents of the REG_EQUAL note. The insn will
1501 be deleted or recognized by try_combine. */
1502 rtx orig_src = SET_SRC (set);
1503 rtx orig_dest = SET_DEST (set);
1504 if (GET_CODE (SET_DEST (set)) == ZERO_EXTRACT)
1505 SET_DEST (set) = XEXP (SET_DEST (set), 0);
1506 SET_SRC (set) = note;
1507 i2mod = temp;
1508 i2mod_old_rhs = copy_rtx (orig_src);
1509 i2mod_new_rhs = copy_rtx (note);
1510 next = try_combine (insn, i2mod, NULL, NULL,
1511 &new_direct_jump_p,
1512 last_combined_insn);
1513 i2mod = NULL;
1514 if (next)
1515 {
1516 statistics_counter_event (cfun, "insn-with-note combine", 1);
1517 goto retry;
1518 }
1519 SET_SRC (set) = orig_src;
1520 SET_DEST (set) = orig_dest;
1521 }
1522 }
1523
1524 if (!NOTE_P (insn))
1525 record_dead_and_set_regs (insn);
1526
1527 retry:
1528 ;
1529 }
1530 }
1531
1532 default_rtl_profile ();
1533 clear_bb_flags ();
1534 new_direct_jump_p |= purge_all_dead_edges ();
1535 new_direct_jump_p |= delete_noop_moves ();
1536
1537 /* Clean up. */
1538 obstack_free (&insn_link_obstack, NULL);
1539 free (uid_log_links);
1540 free (uid_insn_cost);
1541 reg_stat.release ();
1542
1543 {
1544 struct undo *undo, *next;
1545 for (undo = undobuf.frees; undo; undo = next)
1546 {
1547 next = undo->next;
1548 free (undo);
1549 }
1550 undobuf.frees = 0;
1551 }
1552
1553 total_attempts += combine_attempts;
1554 total_merges += combine_merges;
1555 total_extras += combine_extras;
1556 total_successes += combine_successes;
1557
1558 nonzero_sign_valid = 0;
1559 rtl_hooks = general_rtl_hooks;
1560
1561 /* Make recognizer allow volatile MEMs again. */
1562 init_recog ();
1563
1564 return new_direct_jump_p;
1565 }
1566
1567 /* Wipe the last_xxx fields of reg_stat in preparation for another pass. */
1568
1569 static void
1570 init_reg_last (void)
1571 {
1572 unsigned int i;
1573 reg_stat_type *p;
1574
1575 FOR_EACH_VEC_ELT (reg_stat, i, p)
1576 memset (p, 0, offsetof (reg_stat_type, sign_bit_copies));
1577 }
1578 \f
1579 /* Set up any promoted values for incoming argument registers. */
1580
1581 static void
1582 setup_incoming_promotions (rtx_insn *first)
1583 {
1584 tree arg;
1585 bool strictly_local = false;
1586
1587 for (arg = DECL_ARGUMENTS (current_function_decl); arg;
1588 arg = DECL_CHAIN (arg))
1589 {
1590 rtx x, reg = DECL_INCOMING_RTL (arg);
1591 int uns1, uns3;
1592 machine_mode mode1, mode2, mode3, mode4;
1593
1594 /* Only continue if the incoming argument is in a register. */
1595 if (!REG_P (reg))
1596 continue;
1597
1598 /* Determine, if possible, whether all call sites of the current
1599 function lie within the current compilation unit. (This does
1600 take into account the exporting of a function via taking its
1601 address, and so forth.) */
1602 strictly_local
1603 = cgraph_node::local_info_node (current_function_decl)->local;
1604
1605 /* The mode and signedness of the argument before any promotions happen
1606 (equal to the mode of the pseudo holding it at that stage). */
1607 mode1 = TYPE_MODE (TREE_TYPE (arg));
1608 uns1 = TYPE_UNSIGNED (TREE_TYPE (arg));
1609
1610 /* The mode and signedness of the argument after any source language and
1611 TARGET_PROMOTE_PROTOTYPES-driven promotions. */
1612 mode2 = TYPE_MODE (DECL_ARG_TYPE (arg));
1613 uns3 = TYPE_UNSIGNED (DECL_ARG_TYPE (arg));
1614
1615 /* The mode and signedness of the argument as it is actually passed,
1616 see assign_parm_setup_reg in function.c. */
1617 mode3 = promote_function_mode (TREE_TYPE (arg), mode1, &uns3,
1618 TREE_TYPE (cfun->decl), 0);
1619
1620 /* The mode of the register in which the argument is being passed. */
1621 mode4 = GET_MODE (reg);
1622
1623 /* Eliminate sign extensions in the callee when:
1624 (a) A mode promotion has occurred; */
1625 if (mode1 == mode3)
1626 continue;
1627 /* (b) The mode of the register is the same as the mode of
1628 the argument as it is passed; */
1629 if (mode3 != mode4)
1630 continue;
1631 /* (c) There's no language level extension; */
1632 if (mode1 == mode2)
1633 ;
1634 /* (c.1) All callers are from the current compilation unit. If that's
1635 the case we don't have to rely on an ABI, we only have to know
1636 what we're generating right now, and we know that we will do the
1637 mode1 to mode2 promotion with the given sign. */
1638 else if (!strictly_local)
1639 continue;
1640 /* (c.2) The combination of the two promotions is useful. This is
1641 true when the signs match, or if the first promotion is unsigned.
1642 In the later case, (sign_extend (zero_extend x)) is the same as
1643 (zero_extend (zero_extend x)), so make sure to force UNS3 true. */
1644 else if (uns1)
1645 uns3 = true;
1646 else if (uns3)
1647 continue;
1648
1649 /* Record that the value was promoted from mode1 to mode3,
1650 so that any sign extension at the head of the current
1651 function may be eliminated. */
1652 x = gen_rtx_CLOBBER (mode1, const0_rtx);
1653 x = gen_rtx_fmt_e ((uns3 ? ZERO_EXTEND : SIGN_EXTEND), mode3, x);
1654 record_value_for_reg (reg, first, x);
1655 }
1656 }
1657
1658 /* If MODE has a precision lower than PREC and SRC is a non-negative constant
1659 that would appear negative in MODE, sign-extend SRC for use in nonzero_bits
1660 because some machines (maybe most) will actually do the sign-extension and
1661 this is the conservative approach.
1662
1663 ??? For 2.5, try to tighten up the MD files in this regard instead of this
1664 kludge. */
1665
1666 static rtx
1667 sign_extend_short_imm (rtx src, machine_mode mode, unsigned int prec)
1668 {
1669 scalar_int_mode int_mode;
1670 if (CONST_INT_P (src)
1671 && is_a <scalar_int_mode> (mode, &int_mode)
1672 && GET_MODE_PRECISION (int_mode) < prec
1673 && INTVAL (src) > 0
1674 && val_signbit_known_set_p (int_mode, INTVAL (src)))
1675 src = GEN_INT (INTVAL (src) | ~GET_MODE_MASK (int_mode));
1676
1677 return src;
1678 }
1679
1680 /* Update RSP for pseudo-register X from INSN's REG_EQUAL note (if one exists)
1681 and SET. */
1682
1683 static void
1684 update_rsp_from_reg_equal (reg_stat_type *rsp, rtx_insn *insn, const_rtx set,
1685 rtx x)
1686 {
1687 rtx reg_equal_note = insn ? find_reg_equal_equiv_note (insn) : NULL_RTX;
1688 unsigned HOST_WIDE_INT bits = 0;
1689 rtx reg_equal = NULL, src = SET_SRC (set);
1690 unsigned int num = 0;
1691
1692 if (reg_equal_note)
1693 reg_equal = XEXP (reg_equal_note, 0);
1694
1695 if (SHORT_IMMEDIATES_SIGN_EXTEND)
1696 {
1697 src = sign_extend_short_imm (src, GET_MODE (x), BITS_PER_WORD);
1698 if (reg_equal)
1699 reg_equal = sign_extend_short_imm (reg_equal, GET_MODE (x), BITS_PER_WORD);
1700 }
1701
1702 /* Don't call nonzero_bits if it cannot change anything. */
1703 if (rsp->nonzero_bits != HOST_WIDE_INT_M1U)
1704 {
1705 machine_mode mode = GET_MODE (x);
1706 if (GET_MODE_CLASS (mode) == MODE_INT
1707 && HWI_COMPUTABLE_MODE_P (mode))
1708 mode = nonzero_bits_mode;
1709 bits = nonzero_bits (src, mode);
1710 if (reg_equal && bits)
1711 bits &= nonzero_bits (reg_equal, mode);
1712 rsp->nonzero_bits |= bits;
1713 }
1714
1715 /* Don't call num_sign_bit_copies if it cannot change anything. */
1716 if (rsp->sign_bit_copies != 1)
1717 {
1718 num = num_sign_bit_copies (SET_SRC (set), GET_MODE (x));
1719 if (reg_equal && maybe_ne (num, GET_MODE_PRECISION (GET_MODE (x))))
1720 {
1721 unsigned int numeq = num_sign_bit_copies (reg_equal, GET_MODE (x));
1722 if (num == 0 || numeq > num)
1723 num = numeq;
1724 }
1725 if (rsp->sign_bit_copies == 0 || num < rsp->sign_bit_copies)
1726 rsp->sign_bit_copies = num;
1727 }
1728 }
1729
1730 /* Called via note_stores. If X is a pseudo that is narrower than
1731 HOST_BITS_PER_WIDE_INT and is being set, record what bits are known zero.
1732
1733 If we are setting only a portion of X and we can't figure out what
1734 portion, assume all bits will be used since we don't know what will
1735 be happening.
1736
1737 Similarly, set how many bits of X are known to be copies of the sign bit
1738 at all locations in the function. This is the smallest number implied
1739 by any set of X. */
1740
1741 static void
1742 set_nonzero_bits_and_sign_copies (rtx x, const_rtx set, void *data)
1743 {
1744 rtx_insn *insn = (rtx_insn *) data;
1745 scalar_int_mode mode;
1746
1747 if (REG_P (x)
1748 && REGNO (x) >= FIRST_PSEUDO_REGISTER
1749 /* If this register is undefined at the start of the file, we can't
1750 say what its contents were. */
1751 && ! REGNO_REG_SET_P
1752 (DF_LR_IN (ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb), REGNO (x))
1753 && is_a <scalar_int_mode> (GET_MODE (x), &mode)
1754 && HWI_COMPUTABLE_MODE_P (mode))
1755 {
1756 reg_stat_type *rsp = &reg_stat[REGNO (x)];
1757
1758 if (set == 0 || GET_CODE (set) == CLOBBER)
1759 {
1760 rsp->nonzero_bits = GET_MODE_MASK (mode);
1761 rsp->sign_bit_copies = 1;
1762 return;
1763 }
1764
1765 /* If this register is being initialized using itself, and the
1766 register is uninitialized in this basic block, and there are
1767 no LOG_LINKS which set the register, then part of the
1768 register is uninitialized. In that case we can't assume
1769 anything about the number of nonzero bits.
1770
1771 ??? We could do better if we checked this in
1772 reg_{nonzero_bits,num_sign_bit_copies}_for_combine. Then we
1773 could avoid making assumptions about the insn which initially
1774 sets the register, while still using the information in other
1775 insns. We would have to be careful to check every insn
1776 involved in the combination. */
1777
1778 if (insn
1779 && reg_referenced_p (x, PATTERN (insn))
1780 && !REGNO_REG_SET_P (DF_LR_IN (BLOCK_FOR_INSN (insn)),
1781 REGNO (x)))
1782 {
1783 struct insn_link *link;
1784
1785 FOR_EACH_LOG_LINK (link, insn)
1786 if (dead_or_set_p (link->insn, x))
1787 break;
1788 if (!link)
1789 {
1790 rsp->nonzero_bits = GET_MODE_MASK (mode);
1791 rsp->sign_bit_copies = 1;
1792 return;
1793 }
1794 }
1795
1796 /* If this is a complex assignment, see if we can convert it into a
1797 simple assignment. */
1798 set = expand_field_assignment (set);
1799
1800 /* If this is a simple assignment, or we have a paradoxical SUBREG,
1801 set what we know about X. */
1802
1803 if (SET_DEST (set) == x
1804 || (paradoxical_subreg_p (SET_DEST (set))
1805 && SUBREG_REG (SET_DEST (set)) == x))
1806 update_rsp_from_reg_equal (rsp, insn, set, x);
1807 else
1808 {
1809 rsp->nonzero_bits = GET_MODE_MASK (mode);
1810 rsp->sign_bit_copies = 1;
1811 }
1812 }
1813 }
1814 \f
1815 /* See if INSN can be combined into I3. PRED, PRED2, SUCC and SUCC2 are
1816 optionally insns that were previously combined into I3 or that will be
1817 combined into the merger of INSN and I3. The order is PRED, PRED2,
1818 INSN, SUCC, SUCC2, I3.
1819
1820 Return 0 if the combination is not allowed for any reason.
1821
1822 If the combination is allowed, *PDEST will be set to the single
1823 destination of INSN and *PSRC to the single source, and this function
1824 will return 1. */
1825
1826 static int
1827 can_combine_p (rtx_insn *insn, rtx_insn *i3, rtx_insn *pred ATTRIBUTE_UNUSED,
1828 rtx_insn *pred2 ATTRIBUTE_UNUSED, rtx_insn *succ, rtx_insn *succ2,
1829 rtx *pdest, rtx *psrc)
1830 {
1831 int i;
1832 const_rtx set = 0;
1833 rtx src, dest;
1834 rtx_insn *p;
1835 rtx link;
1836 bool all_adjacent = true;
1837 int (*is_volatile_p) (const_rtx);
1838
1839 if (succ)
1840 {
1841 if (succ2)
1842 {
1843 if (next_active_insn (succ2) != i3)
1844 all_adjacent = false;
1845 if (next_active_insn (succ) != succ2)
1846 all_adjacent = false;
1847 }
1848 else if (next_active_insn (succ) != i3)
1849 all_adjacent = false;
1850 if (next_active_insn (insn) != succ)
1851 all_adjacent = false;
1852 }
1853 else if (next_active_insn (insn) != i3)
1854 all_adjacent = false;
1855
1856 /* Can combine only if previous insn is a SET of a REG, a SUBREG or CC0.
1857 or a PARALLEL consisting of such a SET and CLOBBERs.
1858
1859 If INSN has CLOBBER parallel parts, ignore them for our processing.
1860 By definition, these happen during the execution of the insn. When it
1861 is merged with another insn, all bets are off. If they are, in fact,
1862 needed and aren't also supplied in I3, they may be added by
1863 recog_for_combine. Otherwise, it won't match.
1864
1865 We can also ignore a SET whose SET_DEST is mentioned in a REG_UNUSED
1866 note.
1867
1868 Get the source and destination of INSN. If more than one, can't
1869 combine. */
1870
1871 if (GET_CODE (PATTERN (insn)) == SET)
1872 set = PATTERN (insn);
1873 else if (GET_CODE (PATTERN (insn)) == PARALLEL
1874 && GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == SET)
1875 {
1876 for (i = 0; i < XVECLEN (PATTERN (insn), 0); i++)
1877 {
1878 rtx elt = XVECEXP (PATTERN (insn), 0, i);
1879
1880 switch (GET_CODE (elt))
1881 {
1882 /* This is important to combine floating point insns
1883 for the SH4 port. */
1884 case USE:
1885 /* Combining an isolated USE doesn't make sense.
1886 We depend here on combinable_i3pat to reject them. */
1887 /* The code below this loop only verifies that the inputs of
1888 the SET in INSN do not change. We call reg_set_between_p
1889 to verify that the REG in the USE does not change between
1890 I3 and INSN.
1891 If the USE in INSN was for a pseudo register, the matching
1892 insn pattern will likely match any register; combining this
1893 with any other USE would only be safe if we knew that the
1894 used registers have identical values, or if there was
1895 something to tell them apart, e.g. different modes. For
1896 now, we forgo such complicated tests and simply disallow
1897 combining of USES of pseudo registers with any other USE. */
1898 if (REG_P (XEXP (elt, 0))
1899 && GET_CODE (PATTERN (i3)) == PARALLEL)
1900 {
1901 rtx i3pat = PATTERN (i3);
1902 int i = XVECLEN (i3pat, 0) - 1;
1903 unsigned int regno = REGNO (XEXP (elt, 0));
1904
1905 do
1906 {
1907 rtx i3elt = XVECEXP (i3pat, 0, i);
1908
1909 if (GET_CODE (i3elt) == USE
1910 && REG_P (XEXP (i3elt, 0))
1911 && (REGNO (XEXP (i3elt, 0)) == regno
1912 ? reg_set_between_p (XEXP (elt, 0),
1913 PREV_INSN (insn), i3)
1914 : regno >= FIRST_PSEUDO_REGISTER))
1915 return 0;
1916 }
1917 while (--i >= 0);
1918 }
1919 break;
1920
1921 /* We can ignore CLOBBERs. */
1922 case CLOBBER:
1923 break;
1924
1925 case SET:
1926 /* Ignore SETs whose result isn't used but not those that
1927 have side-effects. */
1928 if (find_reg_note (insn, REG_UNUSED, SET_DEST (elt))
1929 && insn_nothrow_p (insn)
1930 && !side_effects_p (elt))
1931 break;
1932
1933 /* If we have already found a SET, this is a second one and
1934 so we cannot combine with this insn. */
1935 if (set)
1936 return 0;
1937
1938 set = elt;
1939 break;
1940
1941 default:
1942 /* Anything else means we can't combine. */
1943 return 0;
1944 }
1945 }
1946
1947 if (set == 0
1948 /* If SET_SRC is an ASM_OPERANDS we can't throw away these CLOBBERs,
1949 so don't do anything with it. */
1950 || GET_CODE (SET_SRC (set)) == ASM_OPERANDS)
1951 return 0;
1952 }
1953 else
1954 return 0;
1955
1956 if (set == 0)
1957 return 0;
1958
1959 /* The simplification in expand_field_assignment may call back to
1960 get_last_value, so set safe guard here. */
1961 subst_low_luid = DF_INSN_LUID (insn);
1962
1963 set = expand_field_assignment (set);
1964 src = SET_SRC (set), dest = SET_DEST (set);
1965
1966 /* Do not eliminate user-specified register if it is in an
1967 asm input because we may break the register asm usage defined
1968 in GCC manual if allow to do so.
1969 Be aware that this may cover more cases than we expect but this
1970 should be harmless. */
1971 if (REG_P (dest) && REG_USERVAR_P (dest) && HARD_REGISTER_P (dest)
1972 && extract_asm_operands (PATTERN (i3)))
1973 return 0;
1974
1975 /* Don't eliminate a store in the stack pointer. */
1976 if (dest == stack_pointer_rtx
1977 /* Don't combine with an insn that sets a register to itself if it has
1978 a REG_EQUAL note. This may be part of a LIBCALL sequence. */
1979 || (rtx_equal_p (src, dest) && find_reg_note (insn, REG_EQUAL, NULL_RTX))
1980 /* Can't merge an ASM_OPERANDS. */
1981 || GET_CODE (src) == ASM_OPERANDS
1982 /* Can't merge a function call. */
1983 || GET_CODE (src) == CALL
1984 /* Don't eliminate a function call argument. */
1985 || (CALL_P (i3)
1986 && (find_reg_fusage (i3, USE, dest)
1987 || (REG_P (dest)
1988 && REGNO (dest) < FIRST_PSEUDO_REGISTER
1989 && global_regs[REGNO (dest)])))
1990 /* Don't substitute into an incremented register. */
1991 || FIND_REG_INC_NOTE (i3, dest)
1992 || (succ && FIND_REG_INC_NOTE (succ, dest))
1993 || (succ2 && FIND_REG_INC_NOTE (succ2, dest))
1994 /* Don't substitute into a non-local goto, this confuses CFG. */
1995 || (JUMP_P (i3) && find_reg_note (i3, REG_NON_LOCAL_GOTO, NULL_RTX))
1996 /* Make sure that DEST is not used after INSN but before SUCC, or
1997 after SUCC and before SUCC2, or after SUCC2 but before I3. */
1998 || (!all_adjacent
1999 && ((succ2
2000 && (reg_used_between_p (dest, succ2, i3)
2001 || reg_used_between_p (dest, succ, succ2)))
2002 || (!succ2 && succ && reg_used_between_p (dest, succ, i3))
2003 || (!succ2 && !succ && reg_used_between_p (dest, insn, i3))
2004 || (succ
2005 /* SUCC and SUCC2 can be split halves from a PARALLEL; in
2006 that case SUCC is not in the insn stream, so use SUCC2
2007 instead for this test. */
2008 && reg_used_between_p (dest, insn,
2009 succ2
2010 && INSN_UID (succ) == INSN_UID (succ2)
2011 ? succ2 : succ))))
2012 /* Make sure that the value that is to be substituted for the register
2013 does not use any registers whose values alter in between. However,
2014 If the insns are adjacent, a use can't cross a set even though we
2015 think it might (this can happen for a sequence of insns each setting
2016 the same destination; last_set of that register might point to
2017 a NOTE). If INSN has a REG_EQUIV note, the register is always
2018 equivalent to the memory so the substitution is valid even if there
2019 are intervening stores. Also, don't move a volatile asm or
2020 UNSPEC_VOLATILE across any other insns. */
2021 || (! all_adjacent
2022 && (((!MEM_P (src)
2023 || ! find_reg_note (insn, REG_EQUIV, src))
2024 && modified_between_p (src, insn, i3))
2025 || (GET_CODE (src) == ASM_OPERANDS && MEM_VOLATILE_P (src))
2026 || GET_CODE (src) == UNSPEC_VOLATILE))
2027 /* Don't combine across a CALL_INSN, because that would possibly
2028 change whether the life span of some REGs crosses calls or not,
2029 and it is a pain to update that information.
2030 Exception: if source is a constant, moving it later can't hurt.
2031 Accept that as a special case. */
2032 || (DF_INSN_LUID (insn) < last_call_luid && ! CONSTANT_P (src)))
2033 return 0;
2034
2035 /* DEST must either be a REG or CC0. */
2036 if (REG_P (dest))
2037 {
2038 /* If register alignment is being enforced for multi-word items in all
2039 cases except for parameters, it is possible to have a register copy
2040 insn referencing a hard register that is not allowed to contain the
2041 mode being copied and which would not be valid as an operand of most
2042 insns. Eliminate this problem by not combining with such an insn.
2043
2044 Also, on some machines we don't want to extend the life of a hard
2045 register. */
2046
2047 if (REG_P (src)
2048 && ((REGNO (dest) < FIRST_PSEUDO_REGISTER
2049 && !targetm.hard_regno_mode_ok (REGNO (dest), GET_MODE (dest)))
2050 /* Don't extend the life of a hard register unless it is
2051 user variable (if we have few registers) or it can't
2052 fit into the desired register (meaning something special
2053 is going on).
2054 Also avoid substituting a return register into I3, because
2055 reload can't handle a conflict with constraints of other
2056 inputs. */
2057 || (REGNO (src) < FIRST_PSEUDO_REGISTER
2058 && !targetm.hard_regno_mode_ok (REGNO (src),
2059 GET_MODE (src)))))
2060 return 0;
2061 }
2062 else if (GET_CODE (dest) != CC0)
2063 return 0;
2064
2065
2066 if (GET_CODE (PATTERN (i3)) == PARALLEL)
2067 for (i = XVECLEN (PATTERN (i3), 0) - 1; i >= 0; i--)
2068 if (GET_CODE (XVECEXP (PATTERN (i3), 0, i)) == CLOBBER)
2069 {
2070 rtx reg = XEXP (XVECEXP (PATTERN (i3), 0, i), 0);
2071
2072 /* If the clobber represents an earlyclobber operand, we must not
2073 substitute an expression containing the clobbered register.
2074 As we do not analyze the constraint strings here, we have to
2075 make the conservative assumption. However, if the register is
2076 a fixed hard reg, the clobber cannot represent any operand;
2077 we leave it up to the machine description to either accept or
2078 reject use-and-clobber patterns. */
2079 if (!REG_P (reg)
2080 || REGNO (reg) >= FIRST_PSEUDO_REGISTER
2081 || !fixed_regs[REGNO (reg)])
2082 if (reg_overlap_mentioned_p (reg, src))
2083 return 0;
2084 }
2085
2086 /* If INSN contains anything volatile, or is an `asm' (whether volatile
2087 or not), reject, unless nothing volatile comes between it and I3 */
2088
2089 if (GET_CODE (src) == ASM_OPERANDS || volatile_refs_p (src))
2090 {
2091 /* Make sure neither succ nor succ2 contains a volatile reference. */
2092 if (succ2 != 0 && volatile_refs_p (PATTERN (succ2)))
2093 return 0;
2094 if (succ != 0 && volatile_refs_p (PATTERN (succ)))
2095 return 0;
2096 /* We'll check insns between INSN and I3 below. */
2097 }
2098
2099 /* If INSN is an asm, and DEST is a hard register, reject, since it has
2100 to be an explicit register variable, and was chosen for a reason. */
2101
2102 if (GET_CODE (src) == ASM_OPERANDS
2103 && REG_P (dest) && REGNO (dest) < FIRST_PSEUDO_REGISTER)
2104 return 0;
2105
2106 /* If INSN contains volatile references (specifically volatile MEMs),
2107 we cannot combine across any other volatile references.
2108 Even if INSN doesn't contain volatile references, any intervening
2109 volatile insn might affect machine state. */
2110
2111 is_volatile_p = volatile_refs_p (PATTERN (insn))
2112 ? volatile_refs_p
2113 : volatile_insn_p;
2114
2115 for (p = NEXT_INSN (insn); p != i3; p = NEXT_INSN (p))
2116 if (INSN_P (p) && p != succ && p != succ2 && is_volatile_p (PATTERN (p)))
2117 return 0;
2118
2119 /* If INSN contains an autoincrement or autodecrement, make sure that
2120 register is not used between there and I3, and not already used in
2121 I3 either. Neither must it be used in PRED or SUCC, if they exist.
2122 Also insist that I3 not be a jump if using LRA; if it were one
2123 and the incremented register were spilled, we would lose.
2124 Reload handles this correctly. */
2125
2126 if (AUTO_INC_DEC)
2127 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
2128 if (REG_NOTE_KIND (link) == REG_INC
2129 && ((JUMP_P (i3) && targetm.lra_p ())
2130 || reg_used_between_p (XEXP (link, 0), insn, i3)
2131 || (pred != NULL_RTX
2132 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (pred)))
2133 || (pred2 != NULL_RTX
2134 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (pred2)))
2135 || (succ != NULL_RTX
2136 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (succ)))
2137 || (succ2 != NULL_RTX
2138 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (succ2)))
2139 || reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i3))))
2140 return 0;
2141
2142 /* Don't combine an insn that follows a CC0-setting insn.
2143 An insn that uses CC0 must not be separated from the one that sets it.
2144 We do, however, allow I2 to follow a CC0-setting insn if that insn
2145 is passed as I1; in that case it will be deleted also.
2146 We also allow combining in this case if all the insns are adjacent
2147 because that would leave the two CC0 insns adjacent as well.
2148 It would be more logical to test whether CC0 occurs inside I1 or I2,
2149 but that would be much slower, and this ought to be equivalent. */
2150
2151 if (HAVE_cc0)
2152 {
2153 p = prev_nonnote_insn (insn);
2154 if (p && p != pred && NONJUMP_INSN_P (p) && sets_cc0_p (PATTERN (p))
2155 && ! all_adjacent)
2156 return 0;
2157 }
2158
2159 /* If we get here, we have passed all the tests and the combination is
2160 to be allowed. */
2161
2162 *pdest = dest;
2163 *psrc = src;
2164
2165 return 1;
2166 }
2167 \f
2168 /* LOC is the location within I3 that contains its pattern or the component
2169 of a PARALLEL of the pattern. We validate that it is valid for combining.
2170
2171 One problem is if I3 modifies its output, as opposed to replacing it
2172 entirely, we can't allow the output to contain I2DEST, I1DEST or I0DEST as
2173 doing so would produce an insn that is not equivalent to the original insns.
2174
2175 Consider:
2176
2177 (set (reg:DI 101) (reg:DI 100))
2178 (set (subreg:SI (reg:DI 101) 0) <foo>)
2179
2180 This is NOT equivalent to:
2181
2182 (parallel [(set (subreg:SI (reg:DI 100) 0) <foo>)
2183 (set (reg:DI 101) (reg:DI 100))])
2184
2185 Not only does this modify 100 (in which case it might still be valid
2186 if 100 were dead in I2), it sets 101 to the ORIGINAL value of 100.
2187
2188 We can also run into a problem if I2 sets a register that I1
2189 uses and I1 gets directly substituted into I3 (not via I2). In that
2190 case, we would be getting the wrong value of I2DEST into I3, so we
2191 must reject the combination. This case occurs when I2 and I1 both
2192 feed into I3, rather than when I1 feeds into I2, which feeds into I3.
2193 If I1_NOT_IN_SRC is nonzero, it means that finding I1 in the source
2194 of a SET must prevent combination from occurring. The same situation
2195 can occur for I0, in which case I0_NOT_IN_SRC is set.
2196
2197 Before doing the above check, we first try to expand a field assignment
2198 into a set of logical operations.
2199
2200 If PI3_DEST_KILLED is nonzero, it is a pointer to a location in which
2201 we place a register that is both set and used within I3. If more than one
2202 such register is detected, we fail.
2203
2204 Return 1 if the combination is valid, zero otherwise. */
2205
2206 static int
2207 combinable_i3pat (rtx_insn *i3, rtx *loc, rtx i2dest, rtx i1dest, rtx i0dest,
2208 int i1_not_in_src, int i0_not_in_src, rtx *pi3dest_killed)
2209 {
2210 rtx x = *loc;
2211
2212 if (GET_CODE (x) == SET)
2213 {
2214 rtx set = x ;
2215 rtx dest = SET_DEST (set);
2216 rtx src = SET_SRC (set);
2217 rtx inner_dest = dest;
2218 rtx subdest;
2219
2220 while (GET_CODE (inner_dest) == STRICT_LOW_PART
2221 || GET_CODE (inner_dest) == SUBREG
2222 || GET_CODE (inner_dest) == ZERO_EXTRACT)
2223 inner_dest = XEXP (inner_dest, 0);
2224
2225 /* Check for the case where I3 modifies its output, as discussed
2226 above. We don't want to prevent pseudos from being combined
2227 into the address of a MEM, so only prevent the combination if
2228 i1 or i2 set the same MEM. */
2229 if ((inner_dest != dest &&
2230 (!MEM_P (inner_dest)
2231 || rtx_equal_p (i2dest, inner_dest)
2232 || (i1dest && rtx_equal_p (i1dest, inner_dest))
2233 || (i0dest && rtx_equal_p (i0dest, inner_dest)))
2234 && (reg_overlap_mentioned_p (i2dest, inner_dest)
2235 || (i1dest && reg_overlap_mentioned_p (i1dest, inner_dest))
2236 || (i0dest && reg_overlap_mentioned_p (i0dest, inner_dest))))
2237
2238 /* This is the same test done in can_combine_p except we can't test
2239 all_adjacent; we don't have to, since this instruction will stay
2240 in place, thus we are not considering increasing the lifetime of
2241 INNER_DEST.
2242
2243 Also, if this insn sets a function argument, combining it with
2244 something that might need a spill could clobber a previous
2245 function argument; the all_adjacent test in can_combine_p also
2246 checks this; here, we do a more specific test for this case. */
2247
2248 || (REG_P (inner_dest)
2249 && REGNO (inner_dest) < FIRST_PSEUDO_REGISTER
2250 && !targetm.hard_regno_mode_ok (REGNO (inner_dest),
2251 GET_MODE (inner_dest)))
2252 || (i1_not_in_src && reg_overlap_mentioned_p (i1dest, src))
2253 || (i0_not_in_src && reg_overlap_mentioned_p (i0dest, src)))
2254 return 0;
2255
2256 /* If DEST is used in I3, it is being killed in this insn, so
2257 record that for later. We have to consider paradoxical
2258 subregs here, since they kill the whole register, but we
2259 ignore partial subregs, STRICT_LOW_PART, etc.
2260 Never add REG_DEAD notes for the FRAME_POINTER_REGNUM or the
2261 STACK_POINTER_REGNUM, since these are always considered to be
2262 live. Similarly for ARG_POINTER_REGNUM if it is fixed. */
2263 subdest = dest;
2264 if (GET_CODE (subdest) == SUBREG && !partial_subreg_p (subdest))
2265 subdest = SUBREG_REG (subdest);
2266 if (pi3dest_killed
2267 && REG_P (subdest)
2268 && reg_referenced_p (subdest, PATTERN (i3))
2269 && REGNO (subdest) != FRAME_POINTER_REGNUM
2270 && (HARD_FRAME_POINTER_IS_FRAME_POINTER
2271 || REGNO (subdest) != HARD_FRAME_POINTER_REGNUM)
2272 && (FRAME_POINTER_REGNUM == ARG_POINTER_REGNUM
2273 || (REGNO (subdest) != ARG_POINTER_REGNUM
2274 || ! fixed_regs [REGNO (subdest)]))
2275 && REGNO (subdest) != STACK_POINTER_REGNUM)
2276 {
2277 if (*pi3dest_killed)
2278 return 0;
2279
2280 *pi3dest_killed = subdest;
2281 }
2282 }
2283
2284 else if (GET_CODE (x) == PARALLEL)
2285 {
2286 int i;
2287
2288 for (i = 0; i < XVECLEN (x, 0); i++)
2289 if (! combinable_i3pat (i3, &XVECEXP (x, 0, i), i2dest, i1dest, i0dest,
2290 i1_not_in_src, i0_not_in_src, pi3dest_killed))
2291 return 0;
2292 }
2293
2294 return 1;
2295 }
2296 \f
2297 /* Return 1 if X is an arithmetic expression that contains a multiplication
2298 and division. We don't count multiplications by powers of two here. */
2299
2300 static int
2301 contains_muldiv (rtx x)
2302 {
2303 switch (GET_CODE (x))
2304 {
2305 case MOD: case DIV: case UMOD: case UDIV:
2306 return 1;
2307
2308 case MULT:
2309 return ! (CONST_INT_P (XEXP (x, 1))
2310 && pow2p_hwi (UINTVAL (XEXP (x, 1))));
2311 default:
2312 if (BINARY_P (x))
2313 return contains_muldiv (XEXP (x, 0))
2314 || contains_muldiv (XEXP (x, 1));
2315
2316 if (UNARY_P (x))
2317 return contains_muldiv (XEXP (x, 0));
2318
2319 return 0;
2320 }
2321 }
2322 \f
2323 /* Determine whether INSN can be used in a combination. Return nonzero if
2324 not. This is used in try_combine to detect early some cases where we
2325 can't perform combinations. */
2326
2327 static int
2328 cant_combine_insn_p (rtx_insn *insn)
2329 {
2330 rtx set;
2331 rtx src, dest;
2332
2333 /* If this isn't really an insn, we can't do anything.
2334 This can occur when flow deletes an insn that it has merged into an
2335 auto-increment address. */
2336 if (!NONDEBUG_INSN_P (insn))
2337 return 1;
2338
2339 /* Never combine loads and stores involving hard regs that are likely
2340 to be spilled. The register allocator can usually handle such
2341 reg-reg moves by tying. If we allow the combiner to make
2342 substitutions of likely-spilled regs, reload might die.
2343 As an exception, we allow combinations involving fixed regs; these are
2344 not available to the register allocator so there's no risk involved. */
2345
2346 set = single_set (insn);
2347 if (! set)
2348 return 0;
2349 src = SET_SRC (set);
2350 dest = SET_DEST (set);
2351 if (GET_CODE (src) == SUBREG)
2352 src = SUBREG_REG (src);
2353 if (GET_CODE (dest) == SUBREG)
2354 dest = SUBREG_REG (dest);
2355 if (REG_P (src) && REG_P (dest)
2356 && ((HARD_REGISTER_P (src)
2357 && ! TEST_HARD_REG_BIT (fixed_reg_set, REGNO (src))
2358 #ifdef LEAF_REGISTERS
2359 && ! LEAF_REGISTERS [REGNO (src)])
2360 #else
2361 )
2362 #endif
2363 || (HARD_REGISTER_P (dest)
2364 && ! TEST_HARD_REG_BIT (fixed_reg_set, REGNO (dest))
2365 && targetm.class_likely_spilled_p (REGNO_REG_CLASS (REGNO (dest))))))
2366 return 1;
2367
2368 return 0;
2369 }
2370
2371 struct likely_spilled_retval_info
2372 {
2373 unsigned regno, nregs;
2374 unsigned mask;
2375 };
2376
2377 /* Called via note_stores by likely_spilled_retval_p. Remove from info->mask
2378 hard registers that are known to be written to / clobbered in full. */
2379 static void
2380 likely_spilled_retval_1 (rtx x, const_rtx set, void *data)
2381 {
2382 struct likely_spilled_retval_info *const info =
2383 (struct likely_spilled_retval_info *) data;
2384 unsigned regno, nregs;
2385 unsigned new_mask;
2386
2387 if (!REG_P (XEXP (set, 0)))
2388 return;
2389 regno = REGNO (x);
2390 if (regno >= info->regno + info->nregs)
2391 return;
2392 nregs = REG_NREGS (x);
2393 if (regno + nregs <= info->regno)
2394 return;
2395 new_mask = (2U << (nregs - 1)) - 1;
2396 if (regno < info->regno)
2397 new_mask >>= info->regno - regno;
2398 else
2399 new_mask <<= regno - info->regno;
2400 info->mask &= ~new_mask;
2401 }
2402
2403 /* Return nonzero iff part of the return value is live during INSN, and
2404 it is likely spilled. This can happen when more than one insn is needed
2405 to copy the return value, e.g. when we consider to combine into the
2406 second copy insn for a complex value. */
2407
2408 static int
2409 likely_spilled_retval_p (rtx_insn *insn)
2410 {
2411 rtx_insn *use = BB_END (this_basic_block);
2412 rtx reg;
2413 rtx_insn *p;
2414 unsigned regno, nregs;
2415 /* We assume here that no machine mode needs more than
2416 32 hard registers when the value overlaps with a register
2417 for which TARGET_FUNCTION_VALUE_REGNO_P is true. */
2418 unsigned mask;
2419 struct likely_spilled_retval_info info;
2420
2421 if (!NONJUMP_INSN_P (use) || GET_CODE (PATTERN (use)) != USE || insn == use)
2422 return 0;
2423 reg = XEXP (PATTERN (use), 0);
2424 if (!REG_P (reg) || !targetm.calls.function_value_regno_p (REGNO (reg)))
2425 return 0;
2426 regno = REGNO (reg);
2427 nregs = REG_NREGS (reg);
2428 if (nregs == 1)
2429 return 0;
2430 mask = (2U << (nregs - 1)) - 1;
2431
2432 /* Disregard parts of the return value that are set later. */
2433 info.regno = regno;
2434 info.nregs = nregs;
2435 info.mask = mask;
2436 for (p = PREV_INSN (use); info.mask && p != insn; p = PREV_INSN (p))
2437 if (INSN_P (p))
2438 note_stores (p, likely_spilled_retval_1, &info);
2439 mask = info.mask;
2440
2441 /* Check if any of the (probably) live return value registers is
2442 likely spilled. */
2443 nregs --;
2444 do
2445 {
2446 if ((mask & 1 << nregs)
2447 && targetm.class_likely_spilled_p (REGNO_REG_CLASS (regno + nregs)))
2448 return 1;
2449 } while (nregs--);
2450 return 0;
2451 }
2452
2453 /* Adjust INSN after we made a change to its destination.
2454
2455 Changing the destination can invalidate notes that say something about
2456 the results of the insn and a LOG_LINK pointing to the insn. */
2457
2458 static void
2459 adjust_for_new_dest (rtx_insn *insn)
2460 {
2461 /* For notes, be conservative and simply remove them. */
2462 remove_reg_equal_equiv_notes (insn, true);
2463
2464 /* The new insn will have a destination that was previously the destination
2465 of an insn just above it. Call distribute_links to make a LOG_LINK from
2466 the next use of that destination. */
2467
2468 rtx set = single_set (insn);
2469 gcc_assert (set);
2470
2471 rtx reg = SET_DEST (set);
2472
2473 while (GET_CODE (reg) == ZERO_EXTRACT
2474 || GET_CODE (reg) == STRICT_LOW_PART
2475 || GET_CODE (reg) == SUBREG)
2476 reg = XEXP (reg, 0);
2477 gcc_assert (REG_P (reg));
2478
2479 distribute_links (alloc_insn_link (insn, REGNO (reg), NULL));
2480
2481 df_insn_rescan (insn);
2482 }
2483
2484 /* Return TRUE if combine can reuse reg X in mode MODE.
2485 ADDED_SETS is nonzero if the original set is still required. */
2486 static bool
2487 can_change_dest_mode (rtx x, int added_sets, machine_mode mode)
2488 {
2489 unsigned int regno;
2490
2491 if (!REG_P (x))
2492 return false;
2493
2494 /* Don't change between modes with different underlying register sizes,
2495 since this could lead to invalid subregs. */
2496 if (maybe_ne (REGMODE_NATURAL_SIZE (mode),
2497 REGMODE_NATURAL_SIZE (GET_MODE (x))))
2498 return false;
2499
2500 regno = REGNO (x);
2501 /* Allow hard registers if the new mode is legal, and occupies no more
2502 registers than the old mode. */
2503 if (regno < FIRST_PSEUDO_REGISTER)
2504 return (targetm.hard_regno_mode_ok (regno, mode)
2505 && REG_NREGS (x) >= hard_regno_nregs (regno, mode));
2506
2507 /* Or a pseudo that is only used once. */
2508 return (regno < reg_n_sets_max
2509 && REG_N_SETS (regno) == 1
2510 && !added_sets
2511 && !REG_USERVAR_P (x));
2512 }
2513
2514
2515 /* Check whether X, the destination of a set, refers to part of
2516 the register specified by REG. */
2517
2518 static bool
2519 reg_subword_p (rtx x, rtx reg)
2520 {
2521 /* Check that reg is an integer mode register. */
2522 if (!REG_P (reg) || GET_MODE_CLASS (GET_MODE (reg)) != MODE_INT)
2523 return false;
2524
2525 if (GET_CODE (x) == STRICT_LOW_PART
2526 || GET_CODE (x) == ZERO_EXTRACT)
2527 x = XEXP (x, 0);
2528
2529 return GET_CODE (x) == SUBREG
2530 && SUBREG_REG (x) == reg
2531 && GET_MODE_CLASS (GET_MODE (x)) == MODE_INT;
2532 }
2533
2534 /* Delete the unconditional jump INSN and adjust the CFG correspondingly.
2535 Note that the INSN should be deleted *after* removing dead edges, so
2536 that the kept edge is the fallthrough edge for a (set (pc) (pc))
2537 but not for a (set (pc) (label_ref FOO)). */
2538
2539 static void
2540 update_cfg_for_uncondjump (rtx_insn *insn)
2541 {
2542 basic_block bb = BLOCK_FOR_INSN (insn);
2543 gcc_assert (BB_END (bb) == insn);
2544
2545 purge_dead_edges (bb);
2546
2547 delete_insn (insn);
2548 if (EDGE_COUNT (bb->succs) == 1)
2549 {
2550 rtx_insn *insn;
2551
2552 single_succ_edge (bb)->flags |= EDGE_FALLTHRU;
2553
2554 /* Remove barriers from the footer if there are any. */
2555 for (insn = BB_FOOTER (bb); insn; insn = NEXT_INSN (insn))
2556 if (BARRIER_P (insn))
2557 {
2558 if (PREV_INSN (insn))
2559 SET_NEXT_INSN (PREV_INSN (insn)) = NEXT_INSN (insn);
2560 else
2561 BB_FOOTER (bb) = NEXT_INSN (insn);
2562 if (NEXT_INSN (insn))
2563 SET_PREV_INSN (NEXT_INSN (insn)) = PREV_INSN (insn);
2564 }
2565 else if (LABEL_P (insn))
2566 break;
2567 }
2568 }
2569
2570 /* Return whether PAT is a PARALLEL of exactly N register SETs followed
2571 by an arbitrary number of CLOBBERs. */
2572 static bool
2573 is_parallel_of_n_reg_sets (rtx pat, int n)
2574 {
2575 if (GET_CODE (pat) != PARALLEL)
2576 return false;
2577
2578 int len = XVECLEN (pat, 0);
2579 if (len < n)
2580 return false;
2581
2582 int i;
2583 for (i = 0; i < n; i++)
2584 if (GET_CODE (XVECEXP (pat, 0, i)) != SET
2585 || !REG_P (SET_DEST (XVECEXP (pat, 0, i))))
2586 return false;
2587 for ( ; i < len; i++)
2588 switch (GET_CODE (XVECEXP (pat, 0, i)))
2589 {
2590 case CLOBBER:
2591 if (XEXP (XVECEXP (pat, 0, i), 0) == const0_rtx)
2592 return false;
2593 break;
2594 default:
2595 return false;
2596 }
2597 return true;
2598 }
2599
2600 /* Return whether INSN, a PARALLEL of N register SETs (and maybe some
2601 CLOBBERs), can be split into individual SETs in that order, without
2602 changing semantics. */
2603 static bool
2604 can_split_parallel_of_n_reg_sets (rtx_insn *insn, int n)
2605 {
2606 if (!insn_nothrow_p (insn))
2607 return false;
2608
2609 rtx pat = PATTERN (insn);
2610
2611 int i, j;
2612 for (i = 0; i < n; i++)
2613 {
2614 if (side_effects_p (SET_SRC (XVECEXP (pat, 0, i))))
2615 return false;
2616
2617 rtx reg = SET_DEST (XVECEXP (pat, 0, i));
2618
2619 for (j = i + 1; j < n; j++)
2620 if (reg_referenced_p (reg, XVECEXP (pat, 0, j)))
2621 return false;
2622 }
2623
2624 return true;
2625 }
2626
2627 /* Return whether X is just a single set, with the source
2628 a general_operand. */
2629 static bool
2630 is_just_move (rtx x)
2631 {
2632 if (INSN_P (x))
2633 x = PATTERN (x);
2634
2635 return (GET_CODE (x) == SET && general_operand (SET_SRC (x), VOIDmode));
2636 }
2637
2638 /* Callback function to count autoincs. */
2639
2640 static int
2641 count_auto_inc (rtx, rtx, rtx, rtx, rtx, void *arg)
2642 {
2643 (*((int *) arg))++;
2644
2645 return 0;
2646 }
2647
2648 /* Try to combine the insns I0, I1 and I2 into I3.
2649 Here I0, I1 and I2 appear earlier than I3.
2650 I0 and I1 can be zero; then we combine just I2 into I3, or I1 and I2 into
2651 I3.
2652
2653 If we are combining more than two insns and the resulting insn is not
2654 recognized, try splitting it into two insns. If that happens, I2 and I3
2655 are retained and I1/I0 are pseudo-deleted by turning them into a NOTE.
2656 Otherwise, I0, I1 and I2 are pseudo-deleted.
2657
2658 Return 0 if the combination does not work. Then nothing is changed.
2659 If we did the combination, return the insn at which combine should
2660 resume scanning.
2661
2662 Set NEW_DIRECT_JUMP_P to a nonzero value if try_combine creates a
2663 new direct jump instruction.
2664
2665 LAST_COMBINED_INSN is either I3, or some insn after I3 that has
2666 been I3 passed to an earlier try_combine within the same basic
2667 block. */
2668
2669 static rtx_insn *
2670 try_combine (rtx_insn *i3, rtx_insn *i2, rtx_insn *i1, rtx_insn *i0,
2671 int *new_direct_jump_p, rtx_insn *last_combined_insn)
2672 {
2673 /* New patterns for I3 and I2, respectively. */
2674 rtx newpat, newi2pat = 0;
2675 rtvec newpat_vec_with_clobbers = 0;
2676 int substed_i2 = 0, substed_i1 = 0, substed_i0 = 0;
2677 /* Indicates need to preserve SET in I0, I1 or I2 in I3 if it is not
2678 dead. */
2679 int added_sets_0, added_sets_1, added_sets_2;
2680 /* Total number of SETs to put into I3. */
2681 int total_sets;
2682 /* Nonzero if I2's or I1's body now appears in I3. */
2683 int i2_is_used = 0, i1_is_used = 0;
2684 /* INSN_CODEs for new I3, new I2, and user of condition code. */
2685 int insn_code_number, i2_code_number = 0, other_code_number = 0;
2686 /* Contains I3 if the destination of I3 is used in its source, which means
2687 that the old life of I3 is being killed. If that usage is placed into
2688 I2 and not in I3, a REG_DEAD note must be made. */
2689 rtx i3dest_killed = 0;
2690 /* SET_DEST and SET_SRC of I2, I1 and I0. */
2691 rtx i2dest = 0, i2src = 0, i1dest = 0, i1src = 0, i0dest = 0, i0src = 0;
2692 /* Copy of SET_SRC of I1 and I0, if needed. */
2693 rtx i1src_copy = 0, i0src_copy = 0, i0src_copy2 = 0;
2694 /* Set if I2DEST was reused as a scratch register. */
2695 bool i2scratch = false;
2696 /* The PATTERNs of I0, I1, and I2, or a copy of them in certain cases. */
2697 rtx i0pat = 0, i1pat = 0, i2pat = 0;
2698 /* Indicates if I2DEST or I1DEST is in I2SRC or I1_SRC. */
2699 int i2dest_in_i2src = 0, i1dest_in_i1src = 0, i2dest_in_i1src = 0;
2700 int i0dest_in_i0src = 0, i1dest_in_i0src = 0, i2dest_in_i0src = 0;
2701 int i2dest_killed = 0, i1dest_killed = 0, i0dest_killed = 0;
2702 int i1_feeds_i2_n = 0, i0_feeds_i2_n = 0, i0_feeds_i1_n = 0;
2703 /* Notes that must be added to REG_NOTES in I3 and I2. */
2704 rtx new_i3_notes, new_i2_notes;
2705 /* Notes that we substituted I3 into I2 instead of the normal case. */
2706 int i3_subst_into_i2 = 0;
2707 /* Notes that I1, I2 or I3 is a MULT operation. */
2708 int have_mult = 0;
2709 int swap_i2i3 = 0;
2710 int split_i2i3 = 0;
2711 int changed_i3_dest = 0;
2712 bool i2_was_move = false, i3_was_move = false;
2713 int n_auto_inc = 0;
2714
2715 int maxreg;
2716 rtx_insn *temp_insn;
2717 rtx temp_expr;
2718 struct insn_link *link;
2719 rtx other_pat = 0;
2720 rtx new_other_notes;
2721 int i;
2722 scalar_int_mode dest_mode, temp_mode;
2723
2724 /* Immediately return if any of I0,I1,I2 are the same insn (I3 can
2725 never be). */
2726 if (i1 == i2 || i0 == i2 || (i0 && i0 == i1))
2727 return 0;
2728
2729 /* Only try four-insn combinations when there's high likelihood of
2730 success. Look for simple insns, such as loads of constants or
2731 binary operations involving a constant. */
2732 if (i0)
2733 {
2734 int i;
2735 int ngood = 0;
2736 int nshift = 0;
2737 rtx set0, set3;
2738
2739 if (!flag_expensive_optimizations)
2740 return 0;
2741
2742 for (i = 0; i < 4; i++)
2743 {
2744 rtx_insn *insn = i == 0 ? i0 : i == 1 ? i1 : i == 2 ? i2 : i3;
2745 rtx set = single_set (insn);
2746 rtx src;
2747 if (!set)
2748 continue;
2749 src = SET_SRC (set);
2750 if (CONSTANT_P (src))
2751 {
2752 ngood += 2;
2753 break;
2754 }
2755 else if (BINARY_P (src) && CONSTANT_P (XEXP (src, 1)))
2756 ngood++;
2757 else if (GET_CODE (src) == ASHIFT || GET_CODE (src) == ASHIFTRT
2758 || GET_CODE (src) == LSHIFTRT)
2759 nshift++;
2760 }
2761
2762 /* If I0 loads a memory and I3 sets the same memory, then I1 and I2
2763 are likely manipulating its value. Ideally we'll be able to combine
2764 all four insns into a bitfield insertion of some kind.
2765
2766 Note the source in I0 might be inside a sign/zero extension and the
2767 memory modes in I0 and I3 might be different. So extract the address
2768 from the destination of I3 and search for it in the source of I0.
2769
2770 In the event that there's a match but the source/dest do not actually
2771 refer to the same memory, the worst that happens is we try some
2772 combinations that we wouldn't have otherwise. */
2773 if ((set0 = single_set (i0))
2774 /* Ensure the source of SET0 is a MEM, possibly buried inside
2775 an extension. */
2776 && (GET_CODE (SET_SRC (set0)) == MEM
2777 || ((GET_CODE (SET_SRC (set0)) == ZERO_EXTEND
2778 || GET_CODE (SET_SRC (set0)) == SIGN_EXTEND)
2779 && GET_CODE (XEXP (SET_SRC (set0), 0)) == MEM))
2780 && (set3 = single_set (i3))
2781 /* Ensure the destination of SET3 is a MEM. */
2782 && GET_CODE (SET_DEST (set3)) == MEM
2783 /* Would it be better to extract the base address for the MEM
2784 in SET3 and look for that? I don't have cases where it matters
2785 but I could envision such cases. */
2786 && rtx_referenced_p (XEXP (SET_DEST (set3), 0), SET_SRC (set0)))
2787 ngood += 2;
2788
2789 if (ngood < 2 && nshift < 2)
2790 return 0;
2791 }
2792
2793 /* Exit early if one of the insns involved can't be used for
2794 combinations. */
2795 if (CALL_P (i2)
2796 || (i1 && CALL_P (i1))
2797 || (i0 && CALL_P (i0))
2798 || cant_combine_insn_p (i3)
2799 || cant_combine_insn_p (i2)
2800 || (i1 && cant_combine_insn_p (i1))
2801 || (i0 && cant_combine_insn_p (i0))
2802 || likely_spilled_retval_p (i3))
2803 return 0;
2804
2805 combine_attempts++;
2806 undobuf.other_insn = 0;
2807
2808 /* Reset the hard register usage information. */
2809 CLEAR_HARD_REG_SET (newpat_used_regs);
2810
2811 if (dump_file && (dump_flags & TDF_DETAILS))
2812 {
2813 if (i0)
2814 fprintf (dump_file, "\nTrying %d, %d, %d -> %d:\n",
2815 INSN_UID (i0), INSN_UID (i1), INSN_UID (i2), INSN_UID (i3));
2816 else if (i1)
2817 fprintf (dump_file, "\nTrying %d, %d -> %d:\n",
2818 INSN_UID (i1), INSN_UID (i2), INSN_UID (i3));
2819 else
2820 fprintf (dump_file, "\nTrying %d -> %d:\n",
2821 INSN_UID (i2), INSN_UID (i3));
2822
2823 if (i0)
2824 dump_insn_slim (dump_file, i0);
2825 if (i1)
2826 dump_insn_slim (dump_file, i1);
2827 dump_insn_slim (dump_file, i2);
2828 dump_insn_slim (dump_file, i3);
2829 }
2830
2831 /* If multiple insns feed into one of I2 or I3, they can be in any
2832 order. To simplify the code below, reorder them in sequence. */
2833 if (i0 && DF_INSN_LUID (i0) > DF_INSN_LUID (i2))
2834 std::swap (i0, i2);
2835 if (i0 && DF_INSN_LUID (i0) > DF_INSN_LUID (i1))
2836 std::swap (i0, i1);
2837 if (i1 && DF_INSN_LUID (i1) > DF_INSN_LUID (i2))
2838 std::swap (i1, i2);
2839
2840 added_links_insn = 0;
2841 added_notes_insn = 0;
2842
2843 /* First check for one important special case that the code below will
2844 not handle. Namely, the case where I1 is zero, I2 is a PARALLEL
2845 and I3 is a SET whose SET_SRC is a SET_DEST in I2. In that case,
2846 we may be able to replace that destination with the destination of I3.
2847 This occurs in the common code where we compute both a quotient and
2848 remainder into a structure, in which case we want to do the computation
2849 directly into the structure to avoid register-register copies.
2850
2851 Note that this case handles both multiple sets in I2 and also cases
2852 where I2 has a number of CLOBBERs inside the PARALLEL.
2853
2854 We make very conservative checks below and only try to handle the
2855 most common cases of this. For example, we only handle the case
2856 where I2 and I3 are adjacent to avoid making difficult register
2857 usage tests. */
2858
2859 if (i1 == 0 && NONJUMP_INSN_P (i3) && GET_CODE (PATTERN (i3)) == SET
2860 && REG_P (SET_SRC (PATTERN (i3)))
2861 && REGNO (SET_SRC (PATTERN (i3))) >= FIRST_PSEUDO_REGISTER
2862 && find_reg_note (i3, REG_DEAD, SET_SRC (PATTERN (i3)))
2863 && GET_CODE (PATTERN (i2)) == PARALLEL
2864 && ! side_effects_p (SET_DEST (PATTERN (i3)))
2865 /* If the dest of I3 is a ZERO_EXTRACT or STRICT_LOW_PART, the code
2866 below would need to check what is inside (and reg_overlap_mentioned_p
2867 doesn't support those codes anyway). Don't allow those destinations;
2868 the resulting insn isn't likely to be recognized anyway. */
2869 && GET_CODE (SET_DEST (PATTERN (i3))) != ZERO_EXTRACT
2870 && GET_CODE (SET_DEST (PATTERN (i3))) != STRICT_LOW_PART
2871 && ! reg_overlap_mentioned_p (SET_SRC (PATTERN (i3)),
2872 SET_DEST (PATTERN (i3)))
2873 && next_active_insn (i2) == i3)
2874 {
2875 rtx p2 = PATTERN (i2);
2876
2877 /* Make sure that the destination of I3,
2878 which we are going to substitute into one output of I2,
2879 is not used within another output of I2. We must avoid making this:
2880 (parallel [(set (mem (reg 69)) ...)
2881 (set (reg 69) ...)])
2882 which is not well-defined as to order of actions.
2883 (Besides, reload can't handle output reloads for this.)
2884
2885 The problem can also happen if the dest of I3 is a memory ref,
2886 if another dest in I2 is an indirect memory ref.
2887
2888 Neither can this PARALLEL be an asm. We do not allow combining
2889 that usually (see can_combine_p), so do not here either. */
2890 bool ok = true;
2891 for (i = 0; ok && i < XVECLEN (p2, 0); i++)
2892 {
2893 if ((GET_CODE (XVECEXP (p2, 0, i)) == SET
2894 || GET_CODE (XVECEXP (p2, 0, i)) == CLOBBER)
2895 && reg_overlap_mentioned_p (SET_DEST (PATTERN (i3)),
2896 SET_DEST (XVECEXP (p2, 0, i))))
2897 ok = false;
2898 else if (GET_CODE (XVECEXP (p2, 0, i)) == SET
2899 && GET_CODE (SET_SRC (XVECEXP (p2, 0, i))) == ASM_OPERANDS)
2900 ok = false;
2901 }
2902
2903 if (ok)
2904 for (i = 0; i < XVECLEN (p2, 0); i++)
2905 if (GET_CODE (XVECEXP (p2, 0, i)) == SET
2906 && SET_DEST (XVECEXP (p2, 0, i)) == SET_SRC (PATTERN (i3)))
2907 {
2908 combine_merges++;
2909
2910 subst_insn = i3;
2911 subst_low_luid = DF_INSN_LUID (i2);
2912
2913 added_sets_2 = added_sets_1 = added_sets_0 = 0;
2914 i2src = SET_SRC (XVECEXP (p2, 0, i));
2915 i2dest = SET_DEST (XVECEXP (p2, 0, i));
2916 i2dest_killed = dead_or_set_p (i2, i2dest);
2917
2918 /* Replace the dest in I2 with our dest and make the resulting
2919 insn the new pattern for I3. Then skip to where we validate
2920 the pattern. Everything was set up above. */
2921 SUBST (SET_DEST (XVECEXP (p2, 0, i)), SET_DEST (PATTERN (i3)));
2922 newpat = p2;
2923 i3_subst_into_i2 = 1;
2924 goto validate_replacement;
2925 }
2926 }
2927
2928 /* If I2 is setting a pseudo to a constant and I3 is setting some
2929 sub-part of it to another constant, merge them by making a new
2930 constant. */
2931 if (i1 == 0
2932 && (temp_expr = single_set (i2)) != 0
2933 && is_a <scalar_int_mode> (GET_MODE (SET_DEST (temp_expr)), &temp_mode)
2934 && CONST_SCALAR_INT_P (SET_SRC (temp_expr))
2935 && GET_CODE (PATTERN (i3)) == SET
2936 && CONST_SCALAR_INT_P (SET_SRC (PATTERN (i3)))
2937 && reg_subword_p (SET_DEST (PATTERN (i3)), SET_DEST (temp_expr)))
2938 {
2939 rtx dest = SET_DEST (PATTERN (i3));
2940 rtx temp_dest = SET_DEST (temp_expr);
2941 int offset = -1;
2942 int width = 0;
2943
2944 if (GET_CODE (dest) == ZERO_EXTRACT)
2945 {
2946 if (CONST_INT_P (XEXP (dest, 1))
2947 && CONST_INT_P (XEXP (dest, 2))
2948 && is_a <scalar_int_mode> (GET_MODE (XEXP (dest, 0)),
2949 &dest_mode))
2950 {
2951 width = INTVAL (XEXP (dest, 1));
2952 offset = INTVAL (XEXP (dest, 2));
2953 dest = XEXP (dest, 0);
2954 if (BITS_BIG_ENDIAN)
2955 offset = GET_MODE_PRECISION (dest_mode) - width - offset;
2956 }
2957 }
2958 else
2959 {
2960 if (GET_CODE (dest) == STRICT_LOW_PART)
2961 dest = XEXP (dest, 0);
2962 if (is_a <scalar_int_mode> (GET_MODE (dest), &dest_mode))
2963 {
2964 width = GET_MODE_PRECISION (dest_mode);
2965 offset = 0;
2966 }
2967 }
2968
2969 if (offset >= 0)
2970 {
2971 /* If this is the low part, we're done. */
2972 if (subreg_lowpart_p (dest))
2973 ;
2974 /* Handle the case where inner is twice the size of outer. */
2975 else if (GET_MODE_PRECISION (temp_mode)
2976 == 2 * GET_MODE_PRECISION (dest_mode))
2977 offset += GET_MODE_PRECISION (dest_mode);
2978 /* Otherwise give up for now. */
2979 else
2980 offset = -1;
2981 }
2982
2983 if (offset >= 0)
2984 {
2985 rtx inner = SET_SRC (PATTERN (i3));
2986 rtx outer = SET_SRC (temp_expr);
2987
2988 wide_int o = wi::insert (rtx_mode_t (outer, temp_mode),
2989 rtx_mode_t (inner, dest_mode),
2990 offset, width);
2991
2992 combine_merges++;
2993 subst_insn = i3;
2994 subst_low_luid = DF_INSN_LUID (i2);
2995 added_sets_2 = added_sets_1 = added_sets_0 = 0;
2996 i2dest = temp_dest;
2997 i2dest_killed = dead_or_set_p (i2, i2dest);
2998
2999 /* Replace the source in I2 with the new constant and make the
3000 resulting insn the new pattern for I3. Then skip to where we
3001 validate the pattern. Everything was set up above. */
3002 SUBST (SET_SRC (temp_expr),
3003 immed_wide_int_const (o, temp_mode));
3004
3005 newpat = PATTERN (i2);
3006
3007 /* The dest of I3 has been replaced with the dest of I2. */
3008 changed_i3_dest = 1;
3009 goto validate_replacement;
3010 }
3011 }
3012
3013 /* If we have no I1 and I2 looks like:
3014 (parallel [(set (reg:CC X) (compare:CC OP (const_int 0)))
3015 (set Y OP)])
3016 make up a dummy I1 that is
3017 (set Y OP)
3018 and change I2 to be
3019 (set (reg:CC X) (compare:CC Y (const_int 0)))
3020
3021 (We can ignore any trailing CLOBBERs.)
3022
3023 This undoes a previous combination and allows us to match a branch-and-
3024 decrement insn. */
3025
3026 if (!HAVE_cc0 && i1 == 0
3027 && is_parallel_of_n_reg_sets (PATTERN (i2), 2)
3028 && (GET_MODE_CLASS (GET_MODE (SET_DEST (XVECEXP (PATTERN (i2), 0, 0))))
3029 == MODE_CC)
3030 && GET_CODE (SET_SRC (XVECEXP (PATTERN (i2), 0, 0))) == COMPARE
3031 && XEXP (SET_SRC (XVECEXP (PATTERN (i2), 0, 0)), 1) == const0_rtx
3032 && rtx_equal_p (XEXP (SET_SRC (XVECEXP (PATTERN (i2), 0, 0)), 0),
3033 SET_SRC (XVECEXP (PATTERN (i2), 0, 1)))
3034 && !reg_used_between_p (SET_DEST (XVECEXP (PATTERN (i2), 0, 0)), i2, i3)
3035 && !reg_used_between_p (SET_DEST (XVECEXP (PATTERN (i2), 0, 1)), i2, i3))
3036 {
3037 /* We make I1 with the same INSN_UID as I2. This gives it
3038 the same DF_INSN_LUID for value tracking. Our fake I1 will
3039 never appear in the insn stream so giving it the same INSN_UID
3040 as I2 will not cause a problem. */
3041
3042 i1 = gen_rtx_INSN (VOIDmode, NULL, i2, BLOCK_FOR_INSN (i2),
3043 XVECEXP (PATTERN (i2), 0, 1), INSN_LOCATION (i2),
3044 -1, NULL_RTX);
3045 INSN_UID (i1) = INSN_UID (i2);
3046
3047 SUBST (PATTERN (i2), XVECEXP (PATTERN (i2), 0, 0));
3048 SUBST (XEXP (SET_SRC (PATTERN (i2)), 0),
3049 SET_DEST (PATTERN (i1)));
3050 unsigned int regno = REGNO (SET_DEST (PATTERN (i1)));
3051 SUBST_LINK (LOG_LINKS (i2),
3052 alloc_insn_link (i1, regno, LOG_LINKS (i2)));
3053 }
3054
3055 /* If I2 is a PARALLEL of two SETs of REGs (and perhaps some CLOBBERs),
3056 make those two SETs separate I1 and I2 insns, and make an I0 that is
3057 the original I1. */
3058 if (!HAVE_cc0 && i0 == 0
3059 && is_parallel_of_n_reg_sets (PATTERN (i2), 2)
3060 && can_split_parallel_of_n_reg_sets (i2, 2)
3061 && !reg_used_between_p (SET_DEST (XVECEXP (PATTERN (i2), 0, 0)), i2, i3)
3062 && !reg_used_between_p (SET_DEST (XVECEXP (PATTERN (i2), 0, 1)), i2, i3)
3063 && !reg_set_between_p (SET_DEST (XVECEXP (PATTERN (i2), 0, 0)), i2, i3)
3064 && !reg_set_between_p (SET_DEST (XVECEXP (PATTERN (i2), 0, 1)), i2, i3))
3065 {
3066 /* If there is no I1, there is no I0 either. */
3067 i0 = i1;
3068
3069 /* We make I1 with the same INSN_UID as I2. This gives it
3070 the same DF_INSN_LUID for value tracking. Our fake I1 will
3071 never appear in the insn stream so giving it the same INSN_UID
3072 as I2 will not cause a problem. */
3073
3074 i1 = gen_rtx_INSN (VOIDmode, NULL, i2, BLOCK_FOR_INSN (i2),
3075 XVECEXP (PATTERN (i2), 0, 0), INSN_LOCATION (i2),
3076 -1, NULL_RTX);
3077 INSN_UID (i1) = INSN_UID (i2);
3078
3079 SUBST (PATTERN (i2), XVECEXP (PATTERN (i2), 0, 1));
3080 }
3081
3082 /* Verify that I2 and maybe I1 and I0 can be combined into I3. */
3083 if (!can_combine_p (i2, i3, i0, i1, NULL, NULL, &i2dest, &i2src))
3084 {
3085 if (dump_file && (dump_flags & TDF_DETAILS))
3086 fprintf (dump_file, "Can't combine i2 into i3\n");
3087 undo_all ();
3088 return 0;
3089 }
3090 if (i1 && !can_combine_p (i1, i3, i0, NULL, i2, NULL, &i1dest, &i1src))
3091 {
3092 if (dump_file && (dump_flags & TDF_DETAILS))
3093 fprintf (dump_file, "Can't combine i1 into i3\n");
3094 undo_all ();
3095 return 0;
3096 }
3097 if (i0 && !can_combine_p (i0, i3, NULL, NULL, i1, i2, &i0dest, &i0src))
3098 {
3099 if (dump_file && (dump_flags & TDF_DETAILS))
3100 fprintf (dump_file, "Can't combine i0 into i3\n");
3101 undo_all ();
3102 return 0;
3103 }
3104
3105 /* Record whether i2 and i3 are trivial moves. */
3106 i2_was_move = is_just_move (i2);
3107 i3_was_move = is_just_move (i3);
3108
3109 /* Record whether I2DEST is used in I2SRC and similarly for the other
3110 cases. Knowing this will help in register status updating below. */
3111 i2dest_in_i2src = reg_overlap_mentioned_p (i2dest, i2src);
3112 i1dest_in_i1src = i1 && reg_overlap_mentioned_p (i1dest, i1src);
3113 i2dest_in_i1src = i1 && reg_overlap_mentioned_p (i2dest, i1src);
3114 i0dest_in_i0src = i0 && reg_overlap_mentioned_p (i0dest, i0src);
3115 i1dest_in_i0src = i0 && reg_overlap_mentioned_p (i1dest, i0src);
3116 i2dest_in_i0src = i0 && reg_overlap_mentioned_p (i2dest, i0src);
3117 i2dest_killed = dead_or_set_p (i2, i2dest);
3118 i1dest_killed = i1 && dead_or_set_p (i1, i1dest);
3119 i0dest_killed = i0 && dead_or_set_p (i0, i0dest);
3120
3121 /* For the earlier insns, determine which of the subsequent ones they
3122 feed. */
3123 i1_feeds_i2_n = i1 && insn_a_feeds_b (i1, i2);
3124 i0_feeds_i1_n = i0 && insn_a_feeds_b (i0, i1);
3125 i0_feeds_i2_n = (i0 && (!i0_feeds_i1_n ? insn_a_feeds_b (i0, i2)
3126 : (!reg_overlap_mentioned_p (i1dest, i0dest)
3127 && reg_overlap_mentioned_p (i0dest, i2src))));
3128
3129 /* Ensure that I3's pattern can be the destination of combines. */
3130 if (! combinable_i3pat (i3, &PATTERN (i3), i2dest, i1dest, i0dest,
3131 i1 && i2dest_in_i1src && !i1_feeds_i2_n,
3132 i0 && ((i2dest_in_i0src && !i0_feeds_i2_n)
3133 || (i1dest_in_i0src && !i0_feeds_i1_n)),
3134 &i3dest_killed))
3135 {
3136 undo_all ();
3137 return 0;
3138 }
3139
3140 /* See if any of the insns is a MULT operation. Unless one is, we will
3141 reject a combination that is, since it must be slower. Be conservative
3142 here. */
3143 if (GET_CODE (i2src) == MULT
3144 || (i1 != 0 && GET_CODE (i1src) == MULT)
3145 || (i0 != 0 && GET_CODE (i0src) == MULT)
3146 || (GET_CODE (PATTERN (i3)) == SET
3147 && GET_CODE (SET_SRC (PATTERN (i3))) == MULT))
3148 have_mult = 1;
3149
3150 /* If I3 has an inc, then give up if I1 or I2 uses the reg that is inc'd.
3151 We used to do this EXCEPT in one case: I3 has a post-inc in an
3152 output operand. However, that exception can give rise to insns like
3153 mov r3,(r3)+
3154 which is a famous insn on the PDP-11 where the value of r3 used as the
3155 source was model-dependent. Avoid this sort of thing. */
3156
3157 #if 0
3158 if (!(GET_CODE (PATTERN (i3)) == SET
3159 && REG_P (SET_SRC (PATTERN (i3)))
3160 && MEM_P (SET_DEST (PATTERN (i3)))
3161 && (GET_CODE (XEXP (SET_DEST (PATTERN (i3)), 0)) == POST_INC
3162 || GET_CODE (XEXP (SET_DEST (PATTERN (i3)), 0)) == POST_DEC)))
3163 /* It's not the exception. */
3164 #endif
3165 if (AUTO_INC_DEC)
3166 {
3167 rtx link;
3168 for (link = REG_NOTES (i3); link; link = XEXP (link, 1))
3169 if (REG_NOTE_KIND (link) == REG_INC
3170 && (reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i2))
3171 || (i1 != 0
3172 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i1)))))
3173 {
3174 undo_all ();
3175 return 0;
3176 }
3177 }
3178
3179 /* See if the SETs in I1 or I2 need to be kept around in the merged
3180 instruction: whenever the value set there is still needed past I3.
3181 For the SET in I2, this is easy: we see if I2DEST dies or is set in I3.
3182
3183 For the SET in I1, we have two cases: if I1 and I2 independently feed
3184 into I3, the set in I1 needs to be kept around unless I1DEST dies
3185 or is set in I3. Otherwise (if I1 feeds I2 which feeds I3), the set
3186 in I1 needs to be kept around unless I1DEST dies or is set in either
3187 I2 or I3. The same considerations apply to I0. */
3188
3189 added_sets_2 = !dead_or_set_p (i3, i2dest);
3190
3191 if (i1)
3192 added_sets_1 = !(dead_or_set_p (i3, i1dest)
3193 || (i1_feeds_i2_n && dead_or_set_p (i2, i1dest)));
3194 else
3195 added_sets_1 = 0;
3196
3197 if (i0)
3198 added_sets_0 = !(dead_or_set_p (i3, i0dest)
3199 || (i0_feeds_i1_n && dead_or_set_p (i1, i0dest))
3200 || ((i0_feeds_i2_n || (i0_feeds_i1_n && i1_feeds_i2_n))
3201 && dead_or_set_p (i2, i0dest)));
3202 else
3203 added_sets_0 = 0;
3204
3205 /* We are about to copy insns for the case where they need to be kept
3206 around. Check that they can be copied in the merged instruction. */
3207
3208 if (targetm.cannot_copy_insn_p
3209 && ((added_sets_2 && targetm.cannot_copy_insn_p (i2))
3210 || (i1 && added_sets_1 && targetm.cannot_copy_insn_p (i1))
3211 || (i0 && added_sets_0 && targetm.cannot_copy_insn_p (i0))))
3212 {
3213 undo_all ();
3214 return 0;
3215 }
3216
3217 /* Count how many auto_inc expressions there were in the original insns;
3218 we need to have the same number in the resulting patterns. */
3219
3220 if (i0)
3221 for_each_inc_dec (PATTERN (i0), count_auto_inc, &n_auto_inc);
3222 if (i1)
3223 for_each_inc_dec (PATTERN (i1), count_auto_inc, &n_auto_inc);
3224 for_each_inc_dec (PATTERN (i2), count_auto_inc, &n_auto_inc);
3225 for_each_inc_dec (PATTERN (i3), count_auto_inc, &n_auto_inc);
3226
3227 /* If the set in I2 needs to be kept around, we must make a copy of
3228 PATTERN (I2), so that when we substitute I1SRC for I1DEST in
3229 PATTERN (I2), we are only substituting for the original I1DEST, not into
3230 an already-substituted copy. This also prevents making self-referential
3231 rtx. If I2 is a PARALLEL, we just need the piece that assigns I2SRC to
3232 I2DEST. */
3233
3234 if (added_sets_2)
3235 {
3236 if (GET_CODE (PATTERN (i2)) == PARALLEL)
3237 i2pat = gen_rtx_SET (i2dest, copy_rtx (i2src));
3238 else
3239 i2pat = copy_rtx (PATTERN (i2));
3240 }
3241
3242 if (added_sets_1)
3243 {
3244 if (GET_CODE (PATTERN (i1)) == PARALLEL)
3245 i1pat = gen_rtx_SET (i1dest, copy_rtx (i1src));
3246 else
3247 i1pat = copy_rtx (PATTERN (i1));
3248 }
3249
3250 if (added_sets_0)
3251 {
3252 if (GET_CODE (PATTERN (i0)) == PARALLEL)
3253 i0pat = gen_rtx_SET (i0dest, copy_rtx (i0src));
3254 else
3255 i0pat = copy_rtx (PATTERN (i0));
3256 }
3257
3258 combine_merges++;
3259
3260 /* Substitute in the latest insn for the regs set by the earlier ones. */
3261
3262 maxreg = max_reg_num ();
3263
3264 subst_insn = i3;
3265
3266 /* Many machines that don't use CC0 have insns that can both perform an
3267 arithmetic operation and set the condition code. These operations will
3268 be represented as a PARALLEL with the first element of the vector
3269 being a COMPARE of an arithmetic operation with the constant zero.
3270 The second element of the vector will set some pseudo to the result
3271 of the same arithmetic operation. If we simplify the COMPARE, we won't
3272 match such a pattern and so will generate an extra insn. Here we test
3273 for this case, where both the comparison and the operation result are
3274 needed, and make the PARALLEL by just replacing I2DEST in I3SRC with
3275 I2SRC. Later we will make the PARALLEL that contains I2. */
3276
3277 if (!HAVE_cc0 && i1 == 0 && added_sets_2 && GET_CODE (PATTERN (i3)) == SET
3278 && GET_CODE (SET_SRC (PATTERN (i3))) == COMPARE
3279 && CONST_INT_P (XEXP (SET_SRC (PATTERN (i3)), 1))
3280 && rtx_equal_p (XEXP (SET_SRC (PATTERN (i3)), 0), i2dest))
3281 {
3282 rtx newpat_dest;
3283 rtx *cc_use_loc = NULL;
3284 rtx_insn *cc_use_insn = NULL;
3285 rtx op0 = i2src, op1 = XEXP (SET_SRC (PATTERN (i3)), 1);
3286 machine_mode compare_mode, orig_compare_mode;
3287 enum rtx_code compare_code = UNKNOWN, orig_compare_code = UNKNOWN;
3288 scalar_int_mode mode;
3289
3290 newpat = PATTERN (i3);
3291 newpat_dest = SET_DEST (newpat);
3292 compare_mode = orig_compare_mode = GET_MODE (newpat_dest);
3293
3294 if (undobuf.other_insn == 0
3295 && (cc_use_loc = find_single_use (SET_DEST (newpat), i3,
3296 &cc_use_insn)))
3297 {
3298 compare_code = orig_compare_code = GET_CODE (*cc_use_loc);
3299 if (is_a <scalar_int_mode> (GET_MODE (i2dest), &mode))
3300 compare_code = simplify_compare_const (compare_code, mode,
3301 op0, &op1);
3302 target_canonicalize_comparison (&compare_code, &op0, &op1, 1);
3303 }
3304
3305 /* Do the rest only if op1 is const0_rtx, which may be the
3306 result of simplification. */
3307 if (op1 == const0_rtx)
3308 {
3309 /* If a single use of the CC is found, prepare to modify it
3310 when SELECT_CC_MODE returns a new CC-class mode, or when
3311 the above simplify_compare_const() returned a new comparison
3312 operator. undobuf.other_insn is assigned the CC use insn
3313 when modifying it. */
3314 if (cc_use_loc)
3315 {
3316 #ifdef SELECT_CC_MODE
3317 machine_mode new_mode
3318 = SELECT_CC_MODE (compare_code, op0, op1);
3319 if (new_mode != orig_compare_mode
3320 && can_change_dest_mode (SET_DEST (newpat),
3321 added_sets_2, new_mode))
3322 {
3323 unsigned int regno = REGNO (newpat_dest);
3324 compare_mode = new_mode;
3325 if (regno < FIRST_PSEUDO_REGISTER)
3326 newpat_dest = gen_rtx_REG (compare_mode, regno);
3327 else
3328 {
3329 SUBST_MODE (regno_reg_rtx[regno], compare_mode);
3330 newpat_dest = regno_reg_rtx[regno];
3331 }
3332 }
3333 #endif
3334 /* Cases for modifying the CC-using comparison. */
3335 if (compare_code != orig_compare_code
3336 /* ??? Do we need to verify the zero rtx? */
3337 && XEXP (*cc_use_loc, 1) == const0_rtx)
3338 {
3339 /* Replace cc_use_loc with entire new RTX. */
3340 SUBST (*cc_use_loc,
3341 gen_rtx_fmt_ee (compare_code, GET_MODE (*cc_use_loc),
3342 newpat_dest, const0_rtx));
3343 undobuf.other_insn = cc_use_insn;
3344 }
3345 else if (compare_mode != orig_compare_mode)
3346 {
3347 /* Just replace the CC reg with a new mode. */
3348 SUBST (XEXP (*cc_use_loc, 0), newpat_dest);
3349 undobuf.other_insn = cc_use_insn;
3350 }
3351 }
3352
3353 /* Now we modify the current newpat:
3354 First, SET_DEST(newpat) is updated if the CC mode has been
3355 altered. For targets without SELECT_CC_MODE, this should be
3356 optimized away. */
3357 if (compare_mode != orig_compare_mode)
3358 SUBST (SET_DEST (newpat), newpat_dest);
3359 /* This is always done to propagate i2src into newpat. */
3360 SUBST (SET_SRC (newpat),
3361 gen_rtx_COMPARE (compare_mode, op0, op1));
3362 /* Create new version of i2pat if needed; the below PARALLEL
3363 creation needs this to work correctly. */
3364 if (! rtx_equal_p (i2src, op0))
3365 i2pat = gen_rtx_SET (i2dest, op0);
3366 i2_is_used = 1;
3367 }
3368 }
3369
3370 if (i2_is_used == 0)
3371 {
3372 /* It is possible that the source of I2 or I1 may be performing
3373 an unneeded operation, such as a ZERO_EXTEND of something
3374 that is known to have the high part zero. Handle that case
3375 by letting subst look at the inner insns.
3376
3377 Another way to do this would be to have a function that tries
3378 to simplify a single insn instead of merging two or more
3379 insns. We don't do this because of the potential of infinite
3380 loops and because of the potential extra memory required.
3381 However, doing it the way we are is a bit of a kludge and
3382 doesn't catch all cases.
3383
3384 But only do this if -fexpensive-optimizations since it slows
3385 things down and doesn't usually win.
3386
3387 This is not done in the COMPARE case above because the
3388 unmodified I2PAT is used in the PARALLEL and so a pattern
3389 with a modified I2SRC would not match. */
3390
3391 if (flag_expensive_optimizations)
3392 {
3393 /* Pass pc_rtx so no substitutions are done, just
3394 simplifications. */
3395 if (i1)
3396 {
3397 subst_low_luid = DF_INSN_LUID (i1);
3398 i1src = subst (i1src, pc_rtx, pc_rtx, 0, 0, 0);
3399 }
3400
3401 subst_low_luid = DF_INSN_LUID (i2);
3402 i2src = subst (i2src, pc_rtx, pc_rtx, 0, 0, 0);
3403 }
3404
3405 n_occurrences = 0; /* `subst' counts here */
3406 subst_low_luid = DF_INSN_LUID (i2);
3407
3408 /* If I1 feeds into I2 and I1DEST is in I1SRC, we need to make a unique
3409 copy of I2SRC each time we substitute it, in order to avoid creating
3410 self-referential RTL when we will be substituting I1SRC for I1DEST
3411 later. Likewise if I0 feeds into I2, either directly or indirectly
3412 through I1, and I0DEST is in I0SRC. */
3413 newpat = subst (PATTERN (i3), i2dest, i2src, 0, 0,
3414 (i1_feeds_i2_n && i1dest_in_i1src)
3415 || ((i0_feeds_i2_n || (i0_feeds_i1_n && i1_feeds_i2_n))
3416 && i0dest_in_i0src));
3417 substed_i2 = 1;
3418
3419 /* Record whether I2's body now appears within I3's body. */
3420 i2_is_used = n_occurrences;
3421 }
3422
3423 /* If we already got a failure, don't try to do more. Otherwise, try to
3424 substitute I1 if we have it. */
3425
3426 if (i1 && GET_CODE (newpat) != CLOBBER)
3427 {
3428 /* Before we can do this substitution, we must redo the test done
3429 above (see detailed comments there) that ensures I1DEST isn't
3430 mentioned in any SETs in NEWPAT that are field assignments. */
3431 if (!combinable_i3pat (NULL, &newpat, i1dest, NULL_RTX, NULL_RTX,
3432 0, 0, 0))
3433 {
3434 undo_all ();
3435 return 0;
3436 }
3437
3438 n_occurrences = 0;
3439 subst_low_luid = DF_INSN_LUID (i1);
3440
3441 /* If the following substitution will modify I1SRC, make a copy of it
3442 for the case where it is substituted for I1DEST in I2PAT later. */
3443 if (added_sets_2 && i1_feeds_i2_n)
3444 i1src_copy = copy_rtx (i1src);
3445
3446 /* If I0 feeds into I1 and I0DEST is in I0SRC, we need to make a unique
3447 copy of I1SRC each time we substitute it, in order to avoid creating
3448 self-referential RTL when we will be substituting I0SRC for I0DEST
3449 later. */
3450 newpat = subst (newpat, i1dest, i1src, 0, 0,
3451 i0_feeds_i1_n && i0dest_in_i0src);
3452 substed_i1 = 1;
3453
3454 /* Record whether I1's body now appears within I3's body. */
3455 i1_is_used = n_occurrences;
3456 }
3457
3458 /* Likewise for I0 if we have it. */
3459
3460 if (i0 && GET_CODE (newpat) != CLOBBER)
3461 {
3462 if (!combinable_i3pat (NULL, &newpat, i0dest, NULL_RTX, NULL_RTX,
3463 0, 0, 0))
3464 {
3465 undo_all ();
3466 return 0;
3467 }
3468
3469 /* If the following substitution will modify I0SRC, make a copy of it
3470 for the case where it is substituted for I0DEST in I1PAT later. */
3471 if (added_sets_1 && i0_feeds_i1_n)
3472 i0src_copy = copy_rtx (i0src);
3473 /* And a copy for I0DEST in I2PAT substitution. */
3474 if (added_sets_2 && ((i0_feeds_i1_n && i1_feeds_i2_n)
3475 || (i0_feeds_i2_n)))
3476 i0src_copy2 = copy_rtx (i0src);
3477
3478 n_occurrences = 0;
3479 subst_low_luid = DF_INSN_LUID (i0);
3480 newpat = subst (newpat, i0dest, i0src, 0, 0, 0);
3481 substed_i0 = 1;
3482 }
3483
3484 if (n_auto_inc)
3485 {
3486 int new_n_auto_inc = 0;
3487 for_each_inc_dec (newpat, count_auto_inc, &new_n_auto_inc);
3488
3489 if (n_auto_inc != new_n_auto_inc)
3490 {
3491 if (dump_file && (dump_flags & TDF_DETAILS))
3492 fprintf (dump_file, "Number of auto_inc expressions changed\n");
3493 undo_all ();
3494 return 0;
3495 }
3496 }
3497
3498 /* Fail if an autoincrement side-effect has been duplicated. Be careful
3499 to count all the ways that I2SRC and I1SRC can be used. */
3500 if ((FIND_REG_INC_NOTE (i2, NULL_RTX) != 0
3501 && i2_is_used + added_sets_2 > 1)
3502 || (i1 != 0 && FIND_REG_INC_NOTE (i1, NULL_RTX) != 0
3503 && (i1_is_used + added_sets_1 + (added_sets_2 && i1_feeds_i2_n)
3504 > 1))
3505 || (i0 != 0 && FIND_REG_INC_NOTE (i0, NULL_RTX) != 0
3506 && (n_occurrences + added_sets_0
3507 + (added_sets_1 && i0_feeds_i1_n)
3508 + (added_sets_2 && i0_feeds_i2_n)
3509 > 1))
3510 /* Fail if we tried to make a new register. */
3511 || max_reg_num () != maxreg
3512 /* Fail if we couldn't do something and have a CLOBBER. */
3513 || GET_CODE (newpat) == CLOBBER
3514 /* Fail if this new pattern is a MULT and we didn't have one before
3515 at the outer level. */
3516 || (GET_CODE (newpat) == SET && GET_CODE (SET_SRC (newpat)) == MULT
3517 && ! have_mult))
3518 {
3519 undo_all ();
3520 return 0;
3521 }
3522
3523 /* If the actions of the earlier insns must be kept
3524 in addition to substituting them into the latest one,
3525 we must make a new PARALLEL for the latest insn
3526 to hold additional the SETs. */
3527
3528 if (added_sets_0 || added_sets_1 || added_sets_2)
3529 {
3530 int extra_sets = added_sets_0 + added_sets_1 + added_sets_2;
3531 combine_extras++;
3532
3533 if (GET_CODE (newpat) == PARALLEL)
3534 {
3535 rtvec old = XVEC (newpat, 0);
3536 total_sets = XVECLEN (newpat, 0) + extra_sets;
3537 newpat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (total_sets));
3538 memcpy (XVEC (newpat, 0)->elem, &old->elem[0],
3539 sizeof (old->elem[0]) * old->num_elem);
3540 }
3541 else
3542 {
3543 rtx old = newpat;
3544 total_sets = 1 + extra_sets;
3545 newpat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (total_sets));
3546 XVECEXP (newpat, 0, 0) = old;
3547 }
3548
3549 if (added_sets_0)
3550 XVECEXP (newpat, 0, --total_sets) = i0pat;
3551
3552 if (added_sets_1)
3553 {
3554 rtx t = i1pat;
3555 if (i0_feeds_i1_n)
3556 t = subst (t, i0dest, i0src_copy ? i0src_copy : i0src, 0, 0, 0);
3557
3558 XVECEXP (newpat, 0, --total_sets) = t;
3559 }
3560 if (added_sets_2)
3561 {
3562 rtx t = i2pat;
3563 if (i1_feeds_i2_n)
3564 t = subst (t, i1dest, i1src_copy ? i1src_copy : i1src, 0, 0,
3565 i0_feeds_i1_n && i0dest_in_i0src);
3566 if ((i0_feeds_i1_n && i1_feeds_i2_n) || i0_feeds_i2_n)
3567 t = subst (t, i0dest, i0src_copy2 ? i0src_copy2 : i0src, 0, 0, 0);
3568
3569 XVECEXP (newpat, 0, --total_sets) = t;
3570 }
3571 }
3572
3573 validate_replacement:
3574
3575 /* Note which hard regs this insn has as inputs. */
3576 mark_used_regs_combine (newpat);
3577
3578 /* If recog_for_combine fails, it strips existing clobbers. If we'll
3579 consider splitting this pattern, we might need these clobbers. */
3580 if (i1 && GET_CODE (newpat) == PARALLEL
3581 && GET_CODE (XVECEXP (newpat, 0, XVECLEN (newpat, 0) - 1)) == CLOBBER)
3582 {
3583 int len = XVECLEN (newpat, 0);
3584
3585 newpat_vec_with_clobbers = rtvec_alloc (len);
3586 for (i = 0; i < len; i++)
3587 RTVEC_ELT (newpat_vec_with_clobbers, i) = XVECEXP (newpat, 0, i);
3588 }
3589
3590 /* We have recognized nothing yet. */
3591 insn_code_number = -1;
3592
3593 /* See if this is a PARALLEL of two SETs where one SET's destination is
3594 a register that is unused and this isn't marked as an instruction that
3595 might trap in an EH region. In that case, we just need the other SET.
3596 We prefer this over the PARALLEL.
3597
3598 This can occur when simplifying a divmod insn. We *must* test for this
3599 case here because the code below that splits two independent SETs doesn't
3600 handle this case correctly when it updates the register status.
3601
3602 It's pointless doing this if we originally had two sets, one from
3603 i3, and one from i2. Combining then splitting the parallel results
3604 in the original i2 again plus an invalid insn (which we delete).
3605 The net effect is only to move instructions around, which makes
3606 debug info less accurate.
3607
3608 If the remaining SET came from I2 its destination should not be used
3609 between I2 and I3. See PR82024. */
3610
3611 if (!(added_sets_2 && i1 == 0)
3612 && is_parallel_of_n_reg_sets (newpat, 2)
3613 && asm_noperands (newpat) < 0)
3614 {
3615 rtx set0 = XVECEXP (newpat, 0, 0);
3616 rtx set1 = XVECEXP (newpat, 0, 1);
3617 rtx oldpat = newpat;
3618
3619 if (((REG_P (SET_DEST (set1))
3620 && find_reg_note (i3, REG_UNUSED, SET_DEST (set1)))
3621 || (GET_CODE (SET_DEST (set1)) == SUBREG
3622 && find_reg_note (i3, REG_UNUSED, SUBREG_REG (SET_DEST (set1)))))
3623 && insn_nothrow_p (i3)
3624 && !side_effects_p (SET_SRC (set1)))
3625 {
3626 newpat = set0;
3627 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3628 }
3629
3630 else if (((REG_P (SET_DEST (set0))
3631 && find_reg_note (i3, REG_UNUSED, SET_DEST (set0)))
3632 || (GET_CODE (SET_DEST (set0)) == SUBREG
3633 && find_reg_note (i3, REG_UNUSED,
3634 SUBREG_REG (SET_DEST (set0)))))
3635 && insn_nothrow_p (i3)
3636 && !side_effects_p (SET_SRC (set0)))
3637 {
3638 rtx dest = SET_DEST (set1);
3639 if (GET_CODE (dest) == SUBREG)
3640 dest = SUBREG_REG (dest);
3641 if (!reg_used_between_p (dest, i2, i3))
3642 {
3643 newpat = set1;
3644 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3645
3646 if (insn_code_number >= 0)
3647 changed_i3_dest = 1;
3648 }
3649 }
3650
3651 if (insn_code_number < 0)
3652 newpat = oldpat;
3653 }
3654
3655 /* Is the result of combination a valid instruction? */
3656 if (insn_code_number < 0)
3657 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3658
3659 /* If we were combining three insns and the result is a simple SET
3660 with no ASM_OPERANDS that wasn't recognized, try to split it into two
3661 insns. There are two ways to do this. It can be split using a
3662 machine-specific method (like when you have an addition of a large
3663 constant) or by combine in the function find_split_point. */
3664
3665 if (i1 && insn_code_number < 0 && GET_CODE (newpat) == SET
3666 && asm_noperands (newpat) < 0)
3667 {
3668 rtx parallel, *split;
3669 rtx_insn *m_split_insn;
3670
3671 /* See if the MD file can split NEWPAT. If it can't, see if letting it
3672 use I2DEST as a scratch register will help. In the latter case,
3673 convert I2DEST to the mode of the source of NEWPAT if we can. */
3674
3675 m_split_insn = combine_split_insns (newpat, i3);
3676
3677 /* We can only use I2DEST as a scratch reg if it doesn't overlap any
3678 inputs of NEWPAT. */
3679
3680 /* ??? If I2DEST is not safe, and I1DEST exists, then it would be
3681 possible to try that as a scratch reg. This would require adding
3682 more code to make it work though. */
3683
3684 if (m_split_insn == 0 && ! reg_overlap_mentioned_p (i2dest, newpat))
3685 {
3686 machine_mode new_mode = GET_MODE (SET_DEST (newpat));
3687
3688 /* ??? Reusing i2dest without resetting the reg_stat entry for it
3689 (temporarily, until we are committed to this instruction
3690 combination) does not work: for example, any call to nonzero_bits
3691 on the register (from a splitter in the MD file, for example)
3692 will get the old information, which is invalid.
3693
3694 Since nowadays we can create registers during combine just fine,
3695 we should just create a new one here, not reuse i2dest. */
3696
3697 /* First try to split using the original register as a
3698 scratch register. */
3699 parallel = gen_rtx_PARALLEL (VOIDmode,
3700 gen_rtvec (2, newpat,
3701 gen_rtx_CLOBBER (VOIDmode,
3702 i2dest)));
3703 m_split_insn = combine_split_insns (parallel, i3);
3704
3705 /* If that didn't work, try changing the mode of I2DEST if
3706 we can. */
3707 if (m_split_insn == 0
3708 && new_mode != GET_MODE (i2dest)
3709 && new_mode != VOIDmode
3710 && can_change_dest_mode (i2dest, added_sets_2, new_mode))
3711 {
3712 machine_mode old_mode = GET_MODE (i2dest);
3713 rtx ni2dest;
3714
3715 if (REGNO (i2dest) < FIRST_PSEUDO_REGISTER)
3716 ni2dest = gen_rtx_REG (new_mode, REGNO (i2dest));
3717 else
3718 {
3719 SUBST_MODE (regno_reg_rtx[REGNO (i2dest)], new_mode);
3720 ni2dest = regno_reg_rtx[REGNO (i2dest)];
3721 }
3722
3723 parallel = (gen_rtx_PARALLEL
3724 (VOIDmode,
3725 gen_rtvec (2, newpat,
3726 gen_rtx_CLOBBER (VOIDmode,
3727 ni2dest))));
3728 m_split_insn = combine_split_insns (parallel, i3);
3729
3730 if (m_split_insn == 0
3731 && REGNO (i2dest) >= FIRST_PSEUDO_REGISTER)
3732 {
3733 struct undo *buf;
3734
3735 adjust_reg_mode (regno_reg_rtx[REGNO (i2dest)], old_mode);
3736 buf = undobuf.undos;
3737 undobuf.undos = buf->next;
3738 buf->next = undobuf.frees;
3739 undobuf.frees = buf;
3740 }
3741 }
3742
3743 i2scratch = m_split_insn != 0;
3744 }
3745
3746 /* If recog_for_combine has discarded clobbers, try to use them
3747 again for the split. */
3748 if (m_split_insn == 0 && newpat_vec_with_clobbers)
3749 {
3750 parallel = gen_rtx_PARALLEL (VOIDmode, newpat_vec_with_clobbers);
3751 m_split_insn = combine_split_insns (parallel, i3);
3752 }
3753
3754 if (m_split_insn && NEXT_INSN (m_split_insn) == NULL_RTX)
3755 {
3756 rtx m_split_pat = PATTERN (m_split_insn);
3757 insn_code_number = recog_for_combine (&m_split_pat, i3, &new_i3_notes);
3758 if (insn_code_number >= 0)
3759 newpat = m_split_pat;
3760 }
3761 else if (m_split_insn && NEXT_INSN (NEXT_INSN (m_split_insn)) == NULL_RTX
3762 && (next_nonnote_nondebug_insn (i2) == i3
3763 || !modified_between_p (PATTERN (m_split_insn), i2, i3)))
3764 {
3765 rtx i2set, i3set;
3766 rtx newi3pat = PATTERN (NEXT_INSN (m_split_insn));
3767 newi2pat = PATTERN (m_split_insn);
3768
3769 i3set = single_set (NEXT_INSN (m_split_insn));
3770 i2set = single_set (m_split_insn);
3771
3772 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
3773
3774 /* If I2 or I3 has multiple SETs, we won't know how to track
3775 register status, so don't use these insns. If I2's destination
3776 is used between I2 and I3, we also can't use these insns. */
3777
3778 if (i2_code_number >= 0 && i2set && i3set
3779 && (next_nonnote_nondebug_insn (i2) == i3
3780 || ! reg_used_between_p (SET_DEST (i2set), i2, i3)))
3781 insn_code_number = recog_for_combine (&newi3pat, i3,
3782 &new_i3_notes);
3783 if (insn_code_number >= 0)
3784 newpat = newi3pat;
3785
3786 /* It is possible that both insns now set the destination of I3.
3787 If so, we must show an extra use of it. */
3788
3789 if (insn_code_number >= 0)
3790 {
3791 rtx new_i3_dest = SET_DEST (i3set);
3792 rtx new_i2_dest = SET_DEST (i2set);
3793
3794 while (GET_CODE (new_i3_dest) == ZERO_EXTRACT
3795 || GET_CODE (new_i3_dest) == STRICT_LOW_PART
3796 || GET_CODE (new_i3_dest) == SUBREG)
3797 new_i3_dest = XEXP (new_i3_dest, 0);
3798
3799 while (GET_CODE (new_i2_dest) == ZERO_EXTRACT
3800 || GET_CODE (new_i2_dest) == STRICT_LOW_PART
3801 || GET_CODE (new_i2_dest) == SUBREG)
3802 new_i2_dest = XEXP (new_i2_dest, 0);
3803
3804 if (REG_P (new_i3_dest)
3805 && REG_P (new_i2_dest)
3806 && REGNO (new_i3_dest) == REGNO (new_i2_dest)
3807 && REGNO (new_i2_dest) < reg_n_sets_max)
3808 INC_REG_N_SETS (REGNO (new_i2_dest), 1);
3809 }
3810 }
3811
3812 /* If we can split it and use I2DEST, go ahead and see if that
3813 helps things be recognized. Verify that none of the registers
3814 are set between I2 and I3. */
3815 if (insn_code_number < 0
3816 && (split = find_split_point (&newpat, i3, false)) != 0
3817 && (!HAVE_cc0 || REG_P (i2dest))
3818 /* We need I2DEST in the proper mode. If it is a hard register
3819 or the only use of a pseudo, we can change its mode.
3820 Make sure we don't change a hard register to have a mode that
3821 isn't valid for it, or change the number of registers. */
3822 && (GET_MODE (*split) == GET_MODE (i2dest)
3823 || GET_MODE (*split) == VOIDmode
3824 || can_change_dest_mode (i2dest, added_sets_2,
3825 GET_MODE (*split)))
3826 && (next_nonnote_nondebug_insn (i2) == i3
3827 || !modified_between_p (*split, i2, i3))
3828 /* We can't overwrite I2DEST if its value is still used by
3829 NEWPAT. */
3830 && ! reg_referenced_p (i2dest, newpat))
3831 {
3832 rtx newdest = i2dest;
3833 enum rtx_code split_code = GET_CODE (*split);
3834 machine_mode split_mode = GET_MODE (*split);
3835 bool subst_done = false;
3836 newi2pat = NULL_RTX;
3837
3838 i2scratch = true;
3839
3840 /* *SPLIT may be part of I2SRC, so make sure we have the
3841 original expression around for later debug processing.
3842 We should not need I2SRC any more in other cases. */
3843 if (MAY_HAVE_DEBUG_BIND_INSNS)
3844 i2src = copy_rtx (i2src);
3845 else
3846 i2src = NULL;
3847
3848 /* Get NEWDEST as a register in the proper mode. We have already
3849 validated that we can do this. */
3850 if (GET_MODE (i2dest) != split_mode && split_mode != VOIDmode)
3851 {
3852 if (REGNO (i2dest) < FIRST_PSEUDO_REGISTER)
3853 newdest = gen_rtx_REG (split_mode, REGNO (i2dest));
3854 else
3855 {
3856 SUBST_MODE (regno_reg_rtx[REGNO (i2dest)], split_mode);
3857 newdest = regno_reg_rtx[REGNO (i2dest)];
3858 }
3859 }
3860
3861 /* If *SPLIT is a (mult FOO (const_int pow2)), convert it to
3862 an ASHIFT. This can occur if it was inside a PLUS and hence
3863 appeared to be a memory address. This is a kludge. */
3864 if (split_code == MULT
3865 && CONST_INT_P (XEXP (*split, 1))
3866 && INTVAL (XEXP (*split, 1)) > 0
3867 && (i = exact_log2 (UINTVAL (XEXP (*split, 1)))) >= 0)
3868 {
3869 rtx i_rtx = gen_int_shift_amount (split_mode, i);
3870 SUBST (*split, gen_rtx_ASHIFT (split_mode,
3871 XEXP (*split, 0), i_rtx));
3872 /* Update split_code because we may not have a multiply
3873 anymore. */
3874 split_code = GET_CODE (*split);
3875 }
3876
3877 /* Similarly for (plus (mult FOO (const_int pow2))). */
3878 if (split_code == PLUS
3879 && GET_CODE (XEXP (*split, 0)) == MULT
3880 && CONST_INT_P (XEXP (XEXP (*split, 0), 1))
3881 && INTVAL (XEXP (XEXP (*split, 0), 1)) > 0
3882 && (i = exact_log2 (UINTVAL (XEXP (XEXP (*split, 0), 1)))) >= 0)
3883 {
3884 rtx nsplit = XEXP (*split, 0);
3885 rtx i_rtx = gen_int_shift_amount (GET_MODE (nsplit), i);
3886 SUBST (XEXP (*split, 0), gen_rtx_ASHIFT (GET_MODE (nsplit),
3887 XEXP (nsplit, 0),
3888 i_rtx));
3889 /* Update split_code because we may not have a multiply
3890 anymore. */
3891 split_code = GET_CODE (*split);
3892 }
3893
3894 #ifdef INSN_SCHEDULING
3895 /* If *SPLIT is a paradoxical SUBREG, when we split it, it should
3896 be written as a ZERO_EXTEND. */
3897 if (split_code == SUBREG && MEM_P (SUBREG_REG (*split)))
3898 {
3899 /* Or as a SIGN_EXTEND if LOAD_EXTEND_OP says that that's
3900 what it really is. */
3901 if (load_extend_op (GET_MODE (SUBREG_REG (*split)))
3902 == SIGN_EXTEND)
3903 SUBST (*split, gen_rtx_SIGN_EXTEND (split_mode,
3904 SUBREG_REG (*split)));
3905 else
3906 SUBST (*split, gen_rtx_ZERO_EXTEND (split_mode,
3907 SUBREG_REG (*split)));
3908 }
3909 #endif
3910
3911 /* Attempt to split binary operators using arithmetic identities. */
3912 if (BINARY_P (SET_SRC (newpat))
3913 && split_mode == GET_MODE (SET_SRC (newpat))
3914 && ! side_effects_p (SET_SRC (newpat)))
3915 {
3916 rtx setsrc = SET_SRC (newpat);
3917 machine_mode mode = GET_MODE (setsrc);
3918 enum rtx_code code = GET_CODE (setsrc);
3919 rtx src_op0 = XEXP (setsrc, 0);
3920 rtx src_op1 = XEXP (setsrc, 1);
3921
3922 /* Split "X = Y op Y" as "Z = Y; X = Z op Z". */
3923 if (rtx_equal_p (src_op0, src_op1))
3924 {
3925 newi2pat = gen_rtx_SET (newdest, src_op0);
3926 SUBST (XEXP (setsrc, 0), newdest);
3927 SUBST (XEXP (setsrc, 1), newdest);
3928 subst_done = true;
3929 }
3930 /* Split "((P op Q) op R) op S" where op is PLUS or MULT. */
3931 else if ((code == PLUS || code == MULT)
3932 && GET_CODE (src_op0) == code
3933 && GET_CODE (XEXP (src_op0, 0)) == code
3934 && (INTEGRAL_MODE_P (mode)
3935 || (FLOAT_MODE_P (mode)
3936 && flag_unsafe_math_optimizations)))
3937 {
3938 rtx p = XEXP (XEXP (src_op0, 0), 0);
3939 rtx q = XEXP (XEXP (src_op0, 0), 1);
3940 rtx r = XEXP (src_op0, 1);
3941 rtx s = src_op1;
3942
3943 /* Split both "((X op Y) op X) op Y" and
3944 "((X op Y) op Y) op X" as "T op T" where T is
3945 "X op Y". */
3946 if ((rtx_equal_p (p,r) && rtx_equal_p (q,s))
3947 || (rtx_equal_p (p,s) && rtx_equal_p (q,r)))
3948 {
3949 newi2pat = gen_rtx_SET (newdest, XEXP (src_op0, 0));
3950 SUBST (XEXP (setsrc, 0), newdest);
3951 SUBST (XEXP (setsrc, 1), newdest);
3952 subst_done = true;
3953 }
3954 /* Split "((X op X) op Y) op Y)" as "T op T" where
3955 T is "X op Y". */
3956 else if (rtx_equal_p (p,q) && rtx_equal_p (r,s))
3957 {
3958 rtx tmp = simplify_gen_binary (code, mode, p, r);
3959 newi2pat = gen_rtx_SET (newdest, tmp);
3960 SUBST (XEXP (setsrc, 0), newdest);
3961 SUBST (XEXP (setsrc, 1), newdest);
3962 subst_done = true;
3963 }
3964 }
3965 }
3966
3967 if (!subst_done)
3968 {
3969 newi2pat = gen_rtx_SET (newdest, *split);
3970 SUBST (*split, newdest);
3971 }
3972
3973 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
3974
3975 /* recog_for_combine might have added CLOBBERs to newi2pat.
3976 Make sure NEWPAT does not depend on the clobbered regs. */
3977 if (GET_CODE (newi2pat) == PARALLEL)
3978 for (i = XVECLEN (newi2pat, 0) - 1; i >= 0; i--)
3979 if (GET_CODE (XVECEXP (newi2pat, 0, i)) == CLOBBER)
3980 {
3981 rtx reg = XEXP (XVECEXP (newi2pat, 0, i), 0);
3982 if (reg_overlap_mentioned_p (reg, newpat))
3983 {
3984 undo_all ();
3985 return 0;
3986 }
3987 }
3988
3989 /* If the split point was a MULT and we didn't have one before,
3990 don't use one now. */
3991 if (i2_code_number >= 0 && ! (split_code == MULT && ! have_mult))
3992 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3993 }
3994 }
3995
3996 /* Check for a case where we loaded from memory in a narrow mode and
3997 then sign extended it, but we need both registers. In that case,
3998 we have a PARALLEL with both loads from the same memory location.
3999 We can split this into a load from memory followed by a register-register
4000 copy. This saves at least one insn, more if register allocation can
4001 eliminate the copy.
4002
4003 We cannot do this if the destination of the first assignment is a
4004 condition code register or cc0. We eliminate this case by making sure
4005 the SET_DEST and SET_SRC have the same mode.
4006
4007 We cannot do this if the destination of the second assignment is
4008 a register that we have already assumed is zero-extended. Similarly
4009 for a SUBREG of such a register. */
4010
4011 else if (i1 && insn_code_number < 0 && asm_noperands (newpat) < 0
4012 && GET_CODE (newpat) == PARALLEL
4013 && XVECLEN (newpat, 0) == 2
4014 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
4015 && GET_CODE (SET_SRC (XVECEXP (newpat, 0, 0))) == SIGN_EXTEND
4016 && (GET_MODE (SET_DEST (XVECEXP (newpat, 0, 0)))
4017 == GET_MODE (SET_SRC (XVECEXP (newpat, 0, 0))))
4018 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
4019 && rtx_equal_p (SET_SRC (XVECEXP (newpat, 0, 1)),
4020 XEXP (SET_SRC (XVECEXP (newpat, 0, 0)), 0))
4021 && !modified_between_p (SET_SRC (XVECEXP (newpat, 0, 1)), i2, i3)
4022 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != ZERO_EXTRACT
4023 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != STRICT_LOW_PART
4024 && ! (temp_expr = SET_DEST (XVECEXP (newpat, 0, 1)),
4025 (REG_P (temp_expr)
4026 && reg_stat[REGNO (temp_expr)].nonzero_bits != 0
4027 && known_lt (GET_MODE_PRECISION (GET_MODE (temp_expr)),
4028 BITS_PER_WORD)
4029 && known_lt (GET_MODE_PRECISION (GET_MODE (temp_expr)),
4030 HOST_BITS_PER_INT)
4031 && (reg_stat[REGNO (temp_expr)].nonzero_bits
4032 != GET_MODE_MASK (word_mode))))
4033 && ! (GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) == SUBREG
4034 && (temp_expr = SUBREG_REG (SET_DEST (XVECEXP (newpat, 0, 1))),
4035 (REG_P (temp_expr)
4036 && reg_stat[REGNO (temp_expr)].nonzero_bits != 0
4037 && known_lt (GET_MODE_PRECISION (GET_MODE (temp_expr)),
4038 BITS_PER_WORD)
4039 && known_lt (GET_MODE_PRECISION (GET_MODE (temp_expr)),
4040 HOST_BITS_PER_INT)
4041 && (reg_stat[REGNO (temp_expr)].nonzero_bits
4042 != GET_MODE_MASK (word_mode)))))
4043 && ! reg_overlap_mentioned_p (SET_DEST (XVECEXP (newpat, 0, 1)),
4044 SET_SRC (XVECEXP (newpat, 0, 1)))
4045 && ! find_reg_note (i3, REG_UNUSED,
4046 SET_DEST (XVECEXP (newpat, 0, 0))))
4047 {
4048 rtx ni2dest;
4049
4050 newi2pat = XVECEXP (newpat, 0, 0);
4051 ni2dest = SET_DEST (XVECEXP (newpat, 0, 0));
4052 newpat = XVECEXP (newpat, 0, 1);
4053 SUBST (SET_SRC (newpat),
4054 gen_lowpart (GET_MODE (SET_SRC (newpat)), ni2dest));
4055 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
4056
4057 if (i2_code_number >= 0)
4058 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
4059
4060 if (insn_code_number >= 0)
4061 swap_i2i3 = 1;
4062 }
4063
4064 /* Similarly, check for a case where we have a PARALLEL of two independent
4065 SETs but we started with three insns. In this case, we can do the sets
4066 as two separate insns. This case occurs when some SET allows two
4067 other insns to combine, but the destination of that SET is still live.
4068
4069 Also do this if we started with two insns and (at least) one of the
4070 resulting sets is a noop; this noop will be deleted later.
4071
4072 Also do this if we started with two insns neither of which was a simple
4073 move. */
4074
4075 else if (insn_code_number < 0 && asm_noperands (newpat) < 0
4076 && GET_CODE (newpat) == PARALLEL
4077 && XVECLEN (newpat, 0) == 2
4078 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
4079 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
4080 && (i1
4081 || set_noop_p (XVECEXP (newpat, 0, 0))
4082 || set_noop_p (XVECEXP (newpat, 0, 1))
4083 || (!i2_was_move && !i3_was_move))
4084 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) != ZERO_EXTRACT
4085 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) != STRICT_LOW_PART
4086 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != ZERO_EXTRACT
4087 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != STRICT_LOW_PART
4088 && ! reg_referenced_p (SET_DEST (XVECEXP (newpat, 0, 1)),
4089 XVECEXP (newpat, 0, 0))
4090 && ! reg_referenced_p (SET_DEST (XVECEXP (newpat, 0, 0)),
4091 XVECEXP (newpat, 0, 1))
4092 && ! (contains_muldiv (SET_SRC (XVECEXP (newpat, 0, 0)))
4093 && contains_muldiv (SET_SRC (XVECEXP (newpat, 0, 1)))))
4094 {
4095 rtx set0 = XVECEXP (newpat, 0, 0);
4096 rtx set1 = XVECEXP (newpat, 0, 1);
4097
4098 /* Normally, it doesn't matter which of the two is done first,
4099 but the one that references cc0 can't be the second, and
4100 one which uses any regs/memory set in between i2 and i3 can't
4101 be first. The PARALLEL might also have been pre-existing in i3,
4102 so we need to make sure that we won't wrongly hoist a SET to i2
4103 that would conflict with a death note present in there, or would
4104 have its dest modified between i2 and i3. */
4105 if (!modified_between_p (SET_SRC (set1), i2, i3)
4106 && !(REG_P (SET_DEST (set1))
4107 && find_reg_note (i2, REG_DEAD, SET_DEST (set1)))
4108 && !(GET_CODE (SET_DEST (set1)) == SUBREG
4109 && find_reg_note (i2, REG_DEAD,
4110 SUBREG_REG (SET_DEST (set1))))
4111 && !modified_between_p (SET_DEST (set1), i2, i3)
4112 && (!HAVE_cc0 || !reg_referenced_p (cc0_rtx, set0))
4113 /* If I3 is a jump, ensure that set0 is a jump so that
4114 we do not create invalid RTL. */
4115 && (!JUMP_P (i3) || SET_DEST (set0) == pc_rtx)
4116 )
4117 {
4118 newi2pat = set1;
4119 newpat = set0;
4120 }
4121 else if (!modified_between_p (SET_SRC (set0), i2, i3)
4122 && !(REG_P (SET_DEST (set0))
4123 && find_reg_note (i2, REG_DEAD, SET_DEST (set0)))
4124 && !(GET_CODE (SET_DEST (set0)) == SUBREG
4125 && find_reg_note (i2, REG_DEAD,
4126 SUBREG_REG (SET_DEST (set0))))
4127 && !modified_between_p (SET_DEST (set0), i2, i3)
4128 && (!HAVE_cc0 || !reg_referenced_p (cc0_rtx, set1))
4129 /* If I3 is a jump, ensure that set1 is a jump so that
4130 we do not create invalid RTL. */
4131 && (!JUMP_P (i3) || SET_DEST (set1) == pc_rtx)
4132 )
4133 {
4134 newi2pat = set0;
4135 newpat = set1;
4136 }
4137 else
4138 {
4139 undo_all ();
4140 return 0;
4141 }
4142
4143 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
4144
4145 if (i2_code_number >= 0)
4146 {
4147 /* recog_for_combine might have added CLOBBERs to newi2pat.
4148 Make sure NEWPAT does not depend on the clobbered regs. */
4149 if (GET_CODE (newi2pat) == PARALLEL)
4150 {
4151 for (i = XVECLEN (newi2pat, 0) - 1; i >= 0; i--)
4152 if (GET_CODE (XVECEXP (newi2pat, 0, i)) == CLOBBER)
4153 {
4154 rtx reg = XEXP (XVECEXP (newi2pat, 0, i), 0);
4155 if (reg_overlap_mentioned_p (reg, newpat))
4156 {
4157 undo_all ();
4158 return 0;
4159 }
4160 }
4161 }
4162
4163 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
4164
4165 if (insn_code_number >= 0)
4166 split_i2i3 = 1;
4167 }
4168 }
4169
4170 /* If it still isn't recognized, fail and change things back the way they
4171 were. */
4172 if ((insn_code_number < 0
4173 /* Is the result a reasonable ASM_OPERANDS? */
4174 && (! check_asm_operands (newpat) || added_sets_1 || added_sets_2)))
4175 {
4176 undo_all ();
4177 return 0;
4178 }
4179
4180 /* If we had to change another insn, make sure it is valid also. */
4181 if (undobuf.other_insn)
4182 {
4183 CLEAR_HARD_REG_SET (newpat_used_regs);
4184
4185 other_pat = PATTERN (undobuf.other_insn);
4186 other_code_number = recog_for_combine (&other_pat, undobuf.other_insn,
4187 &new_other_notes);
4188
4189 if (other_code_number < 0 && ! check_asm_operands (other_pat))
4190 {
4191 undo_all ();
4192 return 0;
4193 }
4194 }
4195
4196 /* If I2 is the CC0 setter and I3 is the CC0 user then check whether
4197 they are adjacent to each other or not. */
4198 if (HAVE_cc0)
4199 {
4200 rtx_insn *p = prev_nonnote_insn (i3);
4201 if (p && p != i2 && NONJUMP_INSN_P (p) && newi2pat
4202 && sets_cc0_p (newi2pat))
4203 {
4204 undo_all ();
4205 return 0;
4206 }
4207 }
4208
4209 /* Only allow this combination if insn_cost reports that the
4210 replacement instructions are cheaper than the originals. */
4211 if (!combine_validate_cost (i0, i1, i2, i3, newpat, newi2pat, other_pat))
4212 {
4213 undo_all ();
4214 return 0;
4215 }
4216
4217 if (MAY_HAVE_DEBUG_BIND_INSNS)
4218 {
4219 struct undo *undo;
4220
4221 for (undo = undobuf.undos; undo; undo = undo->next)
4222 if (undo->kind == UNDO_MODE)
4223 {
4224 rtx reg = *undo->where.r;
4225 machine_mode new_mode = GET_MODE (reg);
4226 machine_mode old_mode = undo->old_contents.m;
4227
4228 /* Temporarily revert mode back. */
4229 adjust_reg_mode (reg, old_mode);
4230
4231 if (reg == i2dest && i2scratch)
4232 {
4233 /* If we used i2dest as a scratch register with a
4234 different mode, substitute it for the original
4235 i2src while its original mode is temporarily
4236 restored, and then clear i2scratch so that we don't
4237 do it again later. */
4238 propagate_for_debug (i2, last_combined_insn, reg, i2src,
4239 this_basic_block);
4240 i2scratch = false;
4241 /* Put back the new mode. */
4242 adjust_reg_mode (reg, new_mode);
4243 }
4244 else
4245 {
4246 rtx tempreg = gen_raw_REG (old_mode, REGNO (reg));
4247 rtx_insn *first, *last;
4248
4249 if (reg == i2dest)
4250 {
4251 first = i2;
4252 last = last_combined_insn;
4253 }
4254 else
4255 {
4256 first = i3;
4257 last = undobuf.other_insn;
4258 gcc_assert (last);
4259 if (DF_INSN_LUID (last)
4260 < DF_INSN_LUID (last_combined_insn))
4261 last = last_combined_insn;
4262 }
4263
4264 /* We're dealing with a reg that changed mode but not
4265 meaning, so we want to turn it into a subreg for
4266 the new mode. However, because of REG sharing and
4267 because its mode had already changed, we have to do
4268 it in two steps. First, replace any debug uses of
4269 reg, with its original mode temporarily restored,
4270 with this copy we have created; then, replace the
4271 copy with the SUBREG of the original shared reg,
4272 once again changed to the new mode. */
4273 propagate_for_debug (first, last, reg, tempreg,
4274 this_basic_block);
4275 adjust_reg_mode (reg, new_mode);
4276 propagate_for_debug (first, last, tempreg,
4277 lowpart_subreg (old_mode, reg, new_mode),
4278 this_basic_block);
4279 }
4280 }
4281 }
4282
4283 /* If we will be able to accept this, we have made a
4284 change to the destination of I3. This requires us to
4285 do a few adjustments. */
4286
4287 if (changed_i3_dest)
4288 {
4289 PATTERN (i3) = newpat;
4290 adjust_for_new_dest (i3);
4291 }
4292
4293 /* We now know that we can do this combination. Merge the insns and
4294 update the status of registers and LOG_LINKS. */
4295
4296 if (undobuf.other_insn)
4297 {
4298 rtx note, next;
4299
4300 PATTERN (undobuf.other_insn) = other_pat;
4301
4302 /* If any of the notes in OTHER_INSN were REG_DEAD or REG_UNUSED,
4303 ensure that they are still valid. Then add any non-duplicate
4304 notes added by recog_for_combine. */
4305 for (note = REG_NOTES (undobuf.other_insn); note; note = next)
4306 {
4307 next = XEXP (note, 1);
4308
4309 if ((REG_NOTE_KIND (note) == REG_DEAD
4310 && !reg_referenced_p (XEXP (note, 0),
4311 PATTERN (undobuf.other_insn)))
4312 ||(REG_NOTE_KIND (note) == REG_UNUSED
4313 && !reg_set_p (XEXP (note, 0),
4314 PATTERN (undobuf.other_insn)))
4315 /* Simply drop equal note since it may be no longer valid
4316 for other_insn. It may be possible to record that CC
4317 register is changed and only discard those notes, but
4318 in practice it's unnecessary complication and doesn't
4319 give any meaningful improvement.
4320
4321 See PR78559. */
4322 || REG_NOTE_KIND (note) == REG_EQUAL
4323 || REG_NOTE_KIND (note) == REG_EQUIV)
4324 remove_note (undobuf.other_insn, note);
4325 }
4326
4327 distribute_notes (new_other_notes, undobuf.other_insn,
4328 undobuf.other_insn, NULL, NULL_RTX, NULL_RTX,
4329 NULL_RTX);
4330 }
4331
4332 if (swap_i2i3)
4333 {
4334 /* I3 now uses what used to be its destination and which is now
4335 I2's destination. This requires us to do a few adjustments. */
4336 PATTERN (i3) = newpat;
4337 adjust_for_new_dest (i3);
4338 }
4339
4340 if (swap_i2i3 || split_i2i3)
4341 {
4342 /* We might need a LOG_LINK from I3 to I2. But then we used to
4343 have one, so we still will.
4344
4345 However, some later insn might be using I2's dest and have
4346 a LOG_LINK pointing at I3. We should change it to point at
4347 I2 instead. */
4348
4349 /* newi2pat is usually a SET here; however, recog_for_combine might
4350 have added some clobbers. */
4351 rtx x = newi2pat;
4352 if (GET_CODE (x) == PARALLEL)
4353 x = XVECEXP (newi2pat, 0, 0);
4354
4355 if (REG_P (SET_DEST (x))
4356 || (GET_CODE (SET_DEST (x)) == SUBREG
4357 && REG_P (SUBREG_REG (SET_DEST (x)))))
4358 {
4359 unsigned int regno = reg_or_subregno (SET_DEST (x));
4360
4361 bool done = false;
4362 for (rtx_insn *insn = NEXT_INSN (i3);
4363 !done
4364 && insn
4365 && NONDEBUG_INSN_P (insn)
4366 && BLOCK_FOR_INSN (insn) == this_basic_block;
4367 insn = NEXT_INSN (insn))
4368 {
4369 struct insn_link *link;
4370 FOR_EACH_LOG_LINK (link, insn)
4371 if (link->insn == i3 && link->regno == regno)
4372 {
4373 link->insn = i2;
4374 done = true;
4375 break;
4376 }
4377 }
4378 }
4379 }
4380
4381 {
4382 rtx i3notes, i2notes, i1notes = 0, i0notes = 0;
4383 struct insn_link *i3links, *i2links, *i1links = 0, *i0links = 0;
4384 rtx midnotes = 0;
4385 int from_luid;
4386 /* Compute which registers we expect to eliminate. newi2pat may be setting
4387 either i3dest or i2dest, so we must check it. */
4388 rtx elim_i2 = ((newi2pat && reg_set_p (i2dest, newi2pat))
4389 || i2dest_in_i2src || i2dest_in_i1src || i2dest_in_i0src
4390 || !i2dest_killed
4391 ? 0 : i2dest);
4392 /* For i1, we need to compute both local elimination and global
4393 elimination information with respect to newi2pat because i1dest
4394 may be the same as i3dest, in which case newi2pat may be setting
4395 i1dest. Global information is used when distributing REG_DEAD
4396 note for i2 and i3, in which case it does matter if newi2pat sets
4397 i1dest or not.
4398
4399 Local information is used when distributing REG_DEAD note for i1,
4400 in which case it doesn't matter if newi2pat sets i1dest or not.
4401 See PR62151, if we have four insns combination:
4402 i0: r0 <- i0src
4403 i1: r1 <- i1src (using r0)
4404 REG_DEAD (r0)
4405 i2: r0 <- i2src (using r1)
4406 i3: r3 <- i3src (using r0)
4407 ix: using r0
4408 From i1's point of view, r0 is eliminated, no matter if it is set
4409 by newi2pat or not. In other words, REG_DEAD info for r0 in i1
4410 should be discarded.
4411
4412 Note local information only affects cases in forms like "I1->I2->I3",
4413 "I0->I1->I2->I3" or "I0&I1->I2, I2->I3". For other cases like
4414 "I0->I1, I1&I2->I3" or "I1&I2->I3", newi2pat won't set i1dest or
4415 i0dest anyway. */
4416 rtx local_elim_i1 = (i1 == 0 || i1dest_in_i1src || i1dest_in_i0src
4417 || !i1dest_killed
4418 ? 0 : i1dest);
4419 rtx elim_i1 = (local_elim_i1 == 0
4420 || (newi2pat && reg_set_p (i1dest, newi2pat))
4421 ? 0 : i1dest);
4422 /* Same case as i1. */
4423 rtx local_elim_i0 = (i0 == 0 || i0dest_in_i0src || !i0dest_killed
4424 ? 0 : i0dest);
4425 rtx elim_i0 = (local_elim_i0 == 0
4426 || (newi2pat && reg_set_p (i0dest, newi2pat))
4427 ? 0 : i0dest);
4428
4429 /* Get the old REG_NOTES and LOG_LINKS from all our insns and
4430 clear them. */
4431 i3notes = REG_NOTES (i3), i3links = LOG_LINKS (i3);
4432 i2notes = REG_NOTES (i2), i2links = LOG_LINKS (i2);
4433 if (i1)
4434 i1notes = REG_NOTES (i1), i1links = LOG_LINKS (i1);
4435 if (i0)
4436 i0notes = REG_NOTES (i0), i0links = LOG_LINKS (i0);
4437
4438 /* Ensure that we do not have something that should not be shared but
4439 occurs multiple times in the new insns. Check this by first
4440 resetting all the `used' flags and then copying anything is shared. */
4441
4442 reset_used_flags (i3notes);
4443 reset_used_flags (i2notes);
4444 reset_used_flags (i1notes);
4445 reset_used_flags (i0notes);
4446 reset_used_flags (newpat);
4447 reset_used_flags (newi2pat);
4448 if (undobuf.other_insn)
4449 reset_used_flags (PATTERN (undobuf.other_insn));
4450
4451 i3notes = copy_rtx_if_shared (i3notes);
4452 i2notes = copy_rtx_if_shared (i2notes);
4453 i1notes = copy_rtx_if_shared (i1notes);
4454 i0notes = copy_rtx_if_shared (i0notes);
4455 newpat = copy_rtx_if_shared (newpat);
4456 newi2pat = copy_rtx_if_shared (newi2pat);
4457 if (undobuf.other_insn)
4458 reset_used_flags (PATTERN (undobuf.other_insn));
4459
4460 INSN_CODE (i3) = insn_code_number;
4461 PATTERN (i3) = newpat;
4462
4463 if (CALL_P (i3) && CALL_INSN_FUNCTION_USAGE (i3))
4464 {
4465 for (rtx link = CALL_INSN_FUNCTION_USAGE (i3); link;
4466 link = XEXP (link, 1))
4467 {
4468 if (substed_i2)
4469 {
4470 /* I2SRC must still be meaningful at this point. Some
4471 splitting operations can invalidate I2SRC, but those
4472 operations do not apply to calls. */
4473 gcc_assert (i2src);
4474 XEXP (link, 0) = simplify_replace_rtx (XEXP (link, 0),
4475 i2dest, i2src);
4476 }
4477 if (substed_i1)
4478 XEXP (link, 0) = simplify_replace_rtx (XEXP (link, 0),
4479 i1dest, i1src);
4480 if (substed_i0)
4481 XEXP (link, 0) = simplify_replace_rtx (XEXP (link, 0),
4482 i0dest, i0src);
4483 }
4484 }
4485
4486 if (undobuf.other_insn)
4487 INSN_CODE (undobuf.other_insn) = other_code_number;
4488
4489 /* We had one special case above where I2 had more than one set and
4490 we replaced a destination of one of those sets with the destination
4491 of I3. In that case, we have to update LOG_LINKS of insns later
4492 in this basic block. Note that this (expensive) case is rare.
4493
4494 Also, in this case, we must pretend that all REG_NOTEs for I2
4495 actually came from I3, so that REG_UNUSED notes from I2 will be
4496 properly handled. */
4497
4498 if (i3_subst_into_i2)
4499 {
4500 for (i = 0; i < XVECLEN (PATTERN (i2), 0); i++)
4501 if ((GET_CODE (XVECEXP (PATTERN (i2), 0, i)) == SET
4502 || GET_CODE (XVECEXP (PATTERN (i2), 0, i)) == CLOBBER)
4503 && REG_P (SET_DEST (XVECEXP (PATTERN (i2), 0, i)))
4504 && SET_DEST (XVECEXP (PATTERN (i2), 0, i)) != i2dest
4505 && ! find_reg_note (i2, REG_UNUSED,
4506 SET_DEST (XVECEXP (PATTERN (i2), 0, i))))
4507 for (temp_insn = NEXT_INSN (i2);
4508 temp_insn
4509 && (this_basic_block->next_bb == EXIT_BLOCK_PTR_FOR_FN (cfun)
4510 || BB_HEAD (this_basic_block) != temp_insn);
4511 temp_insn = NEXT_INSN (temp_insn))
4512 if (temp_insn != i3 && NONDEBUG_INSN_P (temp_insn))
4513 FOR_EACH_LOG_LINK (link, temp_insn)
4514 if (link->insn == i2)
4515 link->insn = i3;
4516
4517 if (i3notes)
4518 {
4519 rtx link = i3notes;
4520 while (XEXP (link, 1))
4521 link = XEXP (link, 1);
4522 XEXP (link, 1) = i2notes;
4523 }
4524 else
4525 i3notes = i2notes;
4526 i2notes = 0;
4527 }
4528
4529 LOG_LINKS (i3) = NULL;
4530 REG_NOTES (i3) = 0;
4531 LOG_LINKS (i2) = NULL;
4532 REG_NOTES (i2) = 0;
4533
4534 if (newi2pat)
4535 {
4536 if (MAY_HAVE_DEBUG_BIND_INSNS && i2scratch)
4537 propagate_for_debug (i2, last_combined_insn, i2dest, i2src,
4538 this_basic_block);
4539 INSN_CODE (i2) = i2_code_number;
4540 PATTERN (i2) = newi2pat;
4541 }
4542 else
4543 {
4544 if (MAY_HAVE_DEBUG_BIND_INSNS && i2src)
4545 propagate_for_debug (i2, last_combined_insn, i2dest, i2src,
4546 this_basic_block);
4547 SET_INSN_DELETED (i2);
4548 }
4549
4550 if (i1)
4551 {
4552 LOG_LINKS (i1) = NULL;
4553 REG_NOTES (i1) = 0;
4554 if (MAY_HAVE_DEBUG_BIND_INSNS)
4555 propagate_for_debug (i1, last_combined_insn, i1dest, i1src,
4556 this_basic_block);
4557 SET_INSN_DELETED (i1);
4558 }
4559
4560 if (i0)
4561 {
4562 LOG_LINKS (i0) = NULL;
4563 REG_NOTES (i0) = 0;
4564 if (MAY_HAVE_DEBUG_BIND_INSNS)
4565 propagate_for_debug (i0, last_combined_insn, i0dest, i0src,
4566 this_basic_block);
4567 SET_INSN_DELETED (i0);
4568 }
4569
4570 /* Get death notes for everything that is now used in either I3 or
4571 I2 and used to die in a previous insn. If we built two new
4572 patterns, move from I1 to I2 then I2 to I3 so that we get the
4573 proper movement on registers that I2 modifies. */
4574
4575 if (i0)
4576 from_luid = DF_INSN_LUID (i0);
4577 else if (i1)
4578 from_luid = DF_INSN_LUID (i1);
4579 else
4580 from_luid = DF_INSN_LUID (i2);
4581 if (newi2pat)
4582 move_deaths (newi2pat, NULL_RTX, from_luid, i2, &midnotes);
4583 move_deaths (newpat, newi2pat, from_luid, i3, &midnotes);
4584
4585 /* Distribute all the LOG_LINKS and REG_NOTES from I1, I2, and I3. */
4586 if (i3notes)
4587 distribute_notes (i3notes, i3, i3, newi2pat ? i2 : NULL,
4588 elim_i2, elim_i1, elim_i0);
4589 if (i2notes)
4590 distribute_notes (i2notes, i2, i3, newi2pat ? i2 : NULL,
4591 elim_i2, elim_i1, elim_i0);
4592 if (i1notes)
4593 distribute_notes (i1notes, i1, i3, newi2pat ? i2 : NULL,
4594 elim_i2, local_elim_i1, local_elim_i0);
4595 if (i0notes)
4596 distribute_notes (i0notes, i0, i3, newi2pat ? i2 : NULL,
4597 elim_i2, elim_i1, local_elim_i0);
4598 if (midnotes)
4599 distribute_notes (midnotes, NULL, i3, newi2pat ? i2 : NULL,
4600 elim_i2, elim_i1, elim_i0);
4601
4602 /* Distribute any notes added to I2 or I3 by recog_for_combine. We
4603 know these are REG_UNUSED and want them to go to the desired insn,
4604 so we always pass it as i3. */
4605
4606 if (newi2pat && new_i2_notes)
4607 distribute_notes (new_i2_notes, i2, i2, NULL, NULL_RTX, NULL_RTX,
4608 NULL_RTX);
4609
4610 if (new_i3_notes)
4611 distribute_notes (new_i3_notes, i3, i3, NULL, NULL_RTX, NULL_RTX,
4612 NULL_RTX);
4613
4614 /* If I3DEST was used in I3SRC, it really died in I3. We may need to
4615 put a REG_DEAD note for it somewhere. If NEWI2PAT exists and sets
4616 I3DEST, the death must be somewhere before I2, not I3. If we passed I3
4617 in that case, it might delete I2. Similarly for I2 and I1.
4618 Show an additional death due to the REG_DEAD note we make here. If
4619 we discard it in distribute_notes, we will decrement it again. */
4620
4621 if (i3dest_killed)
4622 {
4623 rtx new_note = alloc_reg_note (REG_DEAD, i3dest_killed, NULL_RTX);
4624 if (newi2pat && reg_set_p (i3dest_killed, newi2pat))
4625 distribute_notes (new_note, NULL, i2, NULL, elim_i2,
4626 elim_i1, elim_i0);
4627 else
4628 distribute_notes (new_note, NULL, i3, newi2pat ? i2 : NULL,
4629 elim_i2, elim_i1, elim_i0);
4630 }
4631
4632 if (i2dest_in_i2src)
4633 {
4634 rtx new_note = alloc_reg_note (REG_DEAD, i2dest, NULL_RTX);
4635 if (newi2pat && reg_set_p (i2dest, newi2pat))
4636 distribute_notes (new_note, NULL, i2, NULL, NULL_RTX,
4637 NULL_RTX, NULL_RTX);
4638 else
4639 distribute_notes (new_note, NULL, i3, newi2pat ? i2 : NULL,
4640 NULL_RTX, NULL_RTX, NULL_RTX);
4641 }
4642
4643 if (i1dest_in_i1src)
4644 {
4645 rtx new_note = alloc_reg_note (REG_DEAD, i1dest, NULL_RTX);
4646 if (newi2pat && reg_set_p (i1dest, newi2pat))
4647 distribute_notes (new_note, NULL, i2, NULL, NULL_RTX,
4648 NULL_RTX, NULL_RTX);
4649 else
4650 distribute_notes (new_note, NULL, i3, newi2pat ? i2 : NULL,
4651 NULL_RTX, NULL_RTX, NULL_RTX);
4652 }
4653
4654 if (i0dest_in_i0src)
4655 {
4656 rtx new_note = alloc_reg_note (REG_DEAD, i0dest, NULL_RTX);
4657 if (newi2pat && reg_set_p (i0dest, newi2pat))
4658 distribute_notes (new_note, NULL, i2, NULL, NULL_RTX,
4659 NULL_RTX, NULL_RTX);
4660 else
4661 distribute_notes (new_note, NULL, i3, newi2pat ? i2 : NULL,
4662 NULL_RTX, NULL_RTX, NULL_RTX);
4663 }
4664
4665 distribute_links (i3links);
4666 distribute_links (i2links);
4667 distribute_links (i1links);
4668 distribute_links (i0links);
4669
4670 if (REG_P (i2dest))
4671 {
4672 struct insn_link *link;
4673 rtx_insn *i2_insn = 0;
4674 rtx i2_val = 0, set;
4675
4676 /* The insn that used to set this register doesn't exist, and
4677 this life of the register may not exist either. See if one of
4678 I3's links points to an insn that sets I2DEST. If it does,
4679 that is now the last known value for I2DEST. If we don't update
4680 this and I2 set the register to a value that depended on its old
4681 contents, we will get confused. If this insn is used, thing
4682 will be set correctly in combine_instructions. */
4683 FOR_EACH_LOG_LINK (link, i3)
4684 if ((set = single_set (link->insn)) != 0
4685 && rtx_equal_p (i2dest, SET_DEST (set)))
4686 i2_insn = link->insn, i2_val = SET_SRC (set);
4687
4688 record_value_for_reg (i2dest, i2_insn, i2_val);
4689
4690 /* If the reg formerly set in I2 died only once and that was in I3,
4691 zero its use count so it won't make `reload' do any work. */
4692 if (! added_sets_2
4693 && (newi2pat == 0 || ! reg_mentioned_p (i2dest, newi2pat))
4694 && ! i2dest_in_i2src
4695 && REGNO (i2dest) < reg_n_sets_max)
4696 INC_REG_N_SETS (REGNO (i2dest), -1);
4697 }
4698
4699 if (i1 && REG_P (i1dest))
4700 {
4701 struct insn_link *link;
4702 rtx_insn *i1_insn = 0;
4703 rtx i1_val = 0, set;
4704
4705 FOR_EACH_LOG_LINK (link, i3)
4706 if ((set = single_set (link->insn)) != 0
4707 && rtx_equal_p (i1dest, SET_DEST (set)))
4708 i1_insn = link->insn, i1_val = SET_SRC (set);
4709
4710 record_value_for_reg (i1dest, i1_insn, i1_val);
4711
4712 if (! added_sets_1
4713 && ! i1dest_in_i1src
4714 && REGNO (i1dest) < reg_n_sets_max)
4715 INC_REG_N_SETS (REGNO (i1dest), -1);
4716 }
4717
4718 if (i0 && REG_P (i0dest))
4719 {
4720 struct insn_link *link;
4721 rtx_insn *i0_insn = 0;
4722 rtx i0_val = 0, set;
4723
4724 FOR_EACH_LOG_LINK (link, i3)
4725 if ((set = single_set (link->insn)) != 0
4726 && rtx_equal_p (i0dest, SET_DEST (set)))
4727 i0_insn = link->insn, i0_val = SET_SRC (set);
4728
4729 record_value_for_reg (i0dest, i0_insn, i0_val);
4730
4731 if (! added_sets_0
4732 && ! i0dest_in_i0src
4733 && REGNO (i0dest) < reg_n_sets_max)
4734 INC_REG_N_SETS (REGNO (i0dest), -1);
4735 }
4736
4737 /* Update reg_stat[].nonzero_bits et al for any changes that may have
4738 been made to this insn. The order is important, because newi2pat
4739 can affect nonzero_bits of newpat. */
4740 if (newi2pat)
4741 note_pattern_stores (newi2pat, set_nonzero_bits_and_sign_copies, NULL);
4742 note_pattern_stores (newpat, set_nonzero_bits_and_sign_copies, NULL);
4743 }
4744
4745 if (undobuf.other_insn != NULL_RTX)
4746 {
4747 if (dump_file)
4748 {
4749 fprintf (dump_file, "modifying other_insn ");
4750 dump_insn_slim (dump_file, undobuf.other_insn);
4751 }
4752 df_insn_rescan (undobuf.other_insn);
4753 }
4754
4755 if (i0 && !(NOTE_P (i0) && (NOTE_KIND (i0) == NOTE_INSN_DELETED)))
4756 {
4757 if (dump_file)
4758 {
4759 fprintf (dump_file, "modifying insn i0 ");
4760 dump_insn_slim (dump_file, i0);
4761 }
4762 df_insn_rescan (i0);
4763 }
4764
4765 if (i1 && !(NOTE_P (i1) && (NOTE_KIND (i1) == NOTE_INSN_DELETED)))
4766 {
4767 if (dump_file)
4768 {
4769 fprintf (dump_file, "modifying insn i1 ");
4770 dump_insn_slim (dump_file, i1);
4771 }
4772 df_insn_rescan (i1);
4773 }
4774
4775 if (i2 && !(NOTE_P (i2) && (NOTE_KIND (i2) == NOTE_INSN_DELETED)))
4776 {
4777 if (dump_file)
4778 {
4779 fprintf (dump_file, "modifying insn i2 ");
4780 dump_insn_slim (dump_file, i2);
4781 }
4782 df_insn_rescan (i2);
4783 }
4784
4785 if (i3 && !(NOTE_P (i3) && (NOTE_KIND (i3) == NOTE_INSN_DELETED)))
4786 {
4787 if (dump_file)
4788 {
4789 fprintf (dump_file, "modifying insn i3 ");
4790 dump_insn_slim (dump_file, i3);
4791 }
4792 df_insn_rescan (i3);
4793 }
4794
4795 /* Set new_direct_jump_p if a new return or simple jump instruction
4796 has been created. Adjust the CFG accordingly. */
4797 if (returnjump_p (i3) || any_uncondjump_p (i3))
4798 {
4799 *new_direct_jump_p = 1;
4800 mark_jump_label (PATTERN (i3), i3, 0);
4801 update_cfg_for_uncondjump (i3);
4802 }
4803
4804 if (undobuf.other_insn != NULL_RTX
4805 && (returnjump_p (undobuf.other_insn)
4806 || any_uncondjump_p (undobuf.other_insn)))
4807 {
4808 *new_direct_jump_p = 1;
4809 update_cfg_for_uncondjump (undobuf.other_insn);
4810 }
4811
4812 if (GET_CODE (PATTERN (i3)) == TRAP_IF
4813 && XEXP (PATTERN (i3), 0) == const1_rtx)
4814 {
4815 basic_block bb = BLOCK_FOR_INSN (i3);
4816 gcc_assert (bb);
4817 remove_edge (split_block (bb, i3));
4818 emit_barrier_after_bb (bb);
4819 *new_direct_jump_p = 1;
4820 }
4821
4822 if (undobuf.other_insn
4823 && GET_CODE (PATTERN (undobuf.other_insn)) == TRAP_IF
4824 && XEXP (PATTERN (undobuf.other_insn), 0) == const1_rtx)
4825 {
4826 basic_block bb = BLOCK_FOR_INSN (undobuf.other_insn);
4827 gcc_assert (bb);
4828 remove_edge (split_block (bb, undobuf.other_insn));
4829 emit_barrier_after_bb (bb);
4830 *new_direct_jump_p = 1;
4831 }
4832
4833 /* A noop might also need cleaning up of CFG, if it comes from the
4834 simplification of a jump. */
4835 if (JUMP_P (i3)
4836 && GET_CODE (newpat) == SET
4837 && SET_SRC (newpat) == pc_rtx
4838 && SET_DEST (newpat) == pc_rtx)
4839 {
4840 *new_direct_jump_p = 1;
4841 update_cfg_for_uncondjump (i3);
4842 }
4843
4844 if (undobuf.other_insn != NULL_RTX
4845 && JUMP_P (undobuf.other_insn)
4846 && GET_CODE (PATTERN (undobuf.other_insn)) == SET
4847 && SET_SRC (PATTERN (undobuf.other_insn)) == pc_rtx
4848 && SET_DEST (PATTERN (undobuf.other_insn)) == pc_rtx)
4849 {
4850 *new_direct_jump_p = 1;
4851 update_cfg_for_uncondjump (undobuf.other_insn);
4852 }
4853
4854 combine_successes++;
4855 undo_commit ();
4856
4857 rtx_insn *ret = newi2pat ? i2 : i3;
4858 if (added_links_insn && DF_INSN_LUID (added_links_insn) < DF_INSN_LUID (ret))
4859 ret = added_links_insn;
4860 if (added_notes_insn && DF_INSN_LUID (added_notes_insn) < DF_INSN_LUID (ret))
4861 ret = added_notes_insn;
4862
4863 return ret;
4864 }
4865 \f
4866 /* Get a marker for undoing to the current state. */
4867
4868 static void *
4869 get_undo_marker (void)
4870 {
4871 return undobuf.undos;
4872 }
4873
4874 /* Undo the modifications up to the marker. */
4875
4876 static void
4877 undo_to_marker (void *marker)
4878 {
4879 struct undo *undo, *next;
4880
4881 for (undo = undobuf.undos; undo != marker; undo = next)
4882 {
4883 gcc_assert (undo);
4884
4885 next = undo->next;
4886 switch (undo->kind)
4887 {
4888 case UNDO_RTX:
4889 *undo->where.r = undo->old_contents.r;
4890 break;
4891 case UNDO_INT:
4892 *undo->where.i = undo->old_contents.i;
4893 break;
4894 case UNDO_MODE:
4895 adjust_reg_mode (*undo->where.r, undo->old_contents.m);
4896 break;
4897 case UNDO_LINKS:
4898 *undo->where.l = undo->old_contents.l;
4899 break;
4900 default:
4901 gcc_unreachable ();
4902 }
4903
4904 undo->next = undobuf.frees;
4905 undobuf.frees = undo;
4906 }
4907
4908 undobuf.undos = (struct undo *) marker;
4909 }
4910
4911 /* Undo all the modifications recorded in undobuf. */
4912
4913 static void
4914 undo_all (void)
4915 {
4916 undo_to_marker (0);
4917 }
4918
4919 /* We've committed to accepting the changes we made. Move all
4920 of the undos to the free list. */
4921
4922 static void
4923 undo_commit (void)
4924 {
4925 struct undo *undo, *next;
4926
4927 for (undo = undobuf.undos; undo; undo = next)
4928 {
4929 next = undo->next;
4930 undo->next = undobuf.frees;
4931 undobuf.frees = undo;
4932 }
4933 undobuf.undos = 0;
4934 }
4935 \f
4936 /* Find the innermost point within the rtx at LOC, possibly LOC itself,
4937 where we have an arithmetic expression and return that point. LOC will
4938 be inside INSN.
4939
4940 try_combine will call this function to see if an insn can be split into
4941 two insns. */
4942
4943 static rtx *
4944 find_split_point (rtx *loc, rtx_insn *insn, bool set_src)
4945 {
4946 rtx x = *loc;
4947 enum rtx_code code = GET_CODE (x);
4948 rtx *split;
4949 unsigned HOST_WIDE_INT len = 0;
4950 HOST_WIDE_INT pos = 0;
4951 int unsignedp = 0;
4952 rtx inner = NULL_RTX;
4953 scalar_int_mode mode, inner_mode;
4954
4955 /* First special-case some codes. */
4956 switch (code)
4957 {
4958 case SUBREG:
4959 #ifdef INSN_SCHEDULING
4960 /* If we are making a paradoxical SUBREG invalid, it becomes a split
4961 point. */
4962 if (MEM_P (SUBREG_REG (x)))
4963 return loc;
4964 #endif
4965 return find_split_point (&SUBREG_REG (x), insn, false);
4966
4967 case MEM:
4968 /* If we have (mem (const ..)) or (mem (symbol_ref ...)), split it
4969 using LO_SUM and HIGH. */
4970 if (HAVE_lo_sum && (GET_CODE (XEXP (x, 0)) == CONST
4971 || GET_CODE (XEXP (x, 0)) == SYMBOL_REF))
4972 {
4973 machine_mode address_mode = get_address_mode (x);
4974
4975 SUBST (XEXP (x, 0),
4976 gen_rtx_LO_SUM (address_mode,
4977 gen_rtx_HIGH (address_mode, XEXP (x, 0)),
4978 XEXP (x, 0)));
4979 return &XEXP (XEXP (x, 0), 0);
4980 }
4981
4982 /* If we have a PLUS whose second operand is a constant and the
4983 address is not valid, perhaps we can split it up using
4984 the machine-specific way to split large constants. We use
4985 the first pseudo-reg (one of the virtual regs) as a placeholder;
4986 it will not remain in the result. */
4987 if (GET_CODE (XEXP (x, 0)) == PLUS
4988 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
4989 && ! memory_address_addr_space_p (GET_MODE (x), XEXP (x, 0),
4990 MEM_ADDR_SPACE (x)))
4991 {
4992 rtx reg = regno_reg_rtx[FIRST_PSEUDO_REGISTER];
4993 rtx_insn *seq = combine_split_insns (gen_rtx_SET (reg, XEXP (x, 0)),
4994 subst_insn);
4995
4996 /* This should have produced two insns, each of which sets our
4997 placeholder. If the source of the second is a valid address,
4998 we can put both sources together and make a split point
4999 in the middle. */
5000
5001 if (seq
5002 && NEXT_INSN (seq) != NULL_RTX
5003 && NEXT_INSN (NEXT_INSN (seq)) == NULL_RTX
5004 && NONJUMP_INSN_P (seq)
5005 && GET_CODE (PATTERN (seq)) == SET
5006 && SET_DEST (PATTERN (seq)) == reg
5007 && ! reg_mentioned_p (reg,
5008 SET_SRC (PATTERN (seq)))
5009 && NONJUMP_INSN_P (NEXT_INSN (seq))
5010 && GET_CODE (PATTERN (NEXT_INSN (seq))) == SET
5011 && SET_DEST (PATTERN (NEXT_INSN (seq))) == reg
5012 && memory_address_addr_space_p
5013 (GET_MODE (x), SET_SRC (PATTERN (NEXT_INSN (seq))),
5014 MEM_ADDR_SPACE (x)))
5015 {
5016 rtx src1 = SET_SRC (PATTERN (seq));
5017 rtx src2 = SET_SRC (PATTERN (NEXT_INSN (seq)));
5018
5019 /* Replace the placeholder in SRC2 with SRC1. If we can
5020 find where in SRC2 it was placed, that can become our
5021 split point and we can replace this address with SRC2.
5022 Just try two obvious places. */
5023
5024 src2 = replace_rtx (src2, reg, src1);
5025 split = 0;
5026 if (XEXP (src2, 0) == src1)
5027 split = &XEXP (src2, 0);
5028 else if (GET_RTX_FORMAT (GET_CODE (XEXP (src2, 0)))[0] == 'e'
5029 && XEXP (XEXP (src2, 0), 0) == src1)
5030 split = &XEXP (XEXP (src2, 0), 0);
5031
5032 if (split)
5033 {
5034 SUBST (XEXP (x, 0), src2);
5035 return split;
5036 }
5037 }
5038
5039 /* If that didn't work and we have a nested plus, like:
5040 ((REG1 * CONST1) + REG2) + CONST2 and (REG1 + REG2) + CONST2
5041 is valid address, try to split (REG1 * CONST1). */
5042 if (GET_CODE (XEXP (XEXP (x, 0), 0)) == PLUS
5043 && !OBJECT_P (XEXP (XEXP (XEXP (x, 0), 0), 0))
5044 && OBJECT_P (XEXP (XEXP (XEXP (x, 0), 0), 1))
5045 && ! (GET_CODE (XEXP (XEXP (XEXP (x, 0), 0), 0)) == SUBREG
5046 && OBJECT_P (SUBREG_REG (XEXP (XEXP (XEXP (x, 0),
5047 0), 0)))))
5048 {
5049 rtx tem = XEXP (XEXP (XEXP (x, 0), 0), 0);
5050 XEXP (XEXP (XEXP (x, 0), 0), 0) = reg;
5051 if (memory_address_addr_space_p (GET_MODE (x), XEXP (x, 0),
5052 MEM_ADDR_SPACE (x)))
5053 {
5054 XEXP (XEXP (XEXP (x, 0), 0), 0) = tem;
5055 return &XEXP (XEXP (XEXP (x, 0), 0), 0);
5056 }
5057 XEXP (XEXP (XEXP (x, 0), 0), 0) = tem;
5058 }
5059 else if (GET_CODE (XEXP (XEXP (x, 0), 0)) == PLUS
5060 && OBJECT_P (XEXP (XEXP (XEXP (x, 0), 0), 0))
5061 && !OBJECT_P (XEXP (XEXP (XEXP (x, 0), 0), 1))
5062 && ! (GET_CODE (XEXP (XEXP (XEXP (x, 0), 0), 1)) == SUBREG
5063 && OBJECT_P (SUBREG_REG (XEXP (XEXP (XEXP (x, 0),
5064 0), 1)))))
5065 {
5066 rtx tem = XEXP (XEXP (XEXP (x, 0), 0), 1);
5067 XEXP (XEXP (XEXP (x, 0), 0), 1) = reg;
5068 if (memory_address_addr_space_p (GET_MODE (x), XEXP (x, 0),
5069 MEM_ADDR_SPACE (x)))
5070 {
5071 XEXP (XEXP (XEXP (x, 0), 0), 1) = tem;
5072 return &XEXP (XEXP (XEXP (x, 0), 0), 1);
5073 }
5074 XEXP (XEXP (XEXP (x, 0), 0), 1) = tem;
5075 }
5076
5077 /* If that didn't work, perhaps the first operand is complex and
5078 needs to be computed separately, so make a split point there.
5079 This will occur on machines that just support REG + CONST
5080 and have a constant moved through some previous computation. */
5081 if (!OBJECT_P (XEXP (XEXP (x, 0), 0))
5082 && ! (GET_CODE (XEXP (XEXP (x, 0), 0)) == SUBREG
5083 && OBJECT_P (SUBREG_REG (XEXP (XEXP (x, 0), 0)))))
5084 return &XEXP (XEXP (x, 0), 0);
5085 }
5086
5087 /* If we have a PLUS whose first operand is complex, try computing it
5088 separately by making a split there. */
5089 if (GET_CODE (XEXP (x, 0)) == PLUS
5090 && ! memory_address_addr_space_p (GET_MODE (x), XEXP (x, 0),
5091 MEM_ADDR_SPACE (x))
5092 && ! OBJECT_P (XEXP (XEXP (x, 0), 0))
5093 && ! (GET_CODE (XEXP (XEXP (x, 0), 0)) == SUBREG
5094 && OBJECT_P (SUBREG_REG (XEXP (XEXP (x, 0), 0)))))
5095 return &XEXP (XEXP (x, 0), 0);
5096 break;
5097
5098 case SET:
5099 /* If SET_DEST is CC0 and SET_SRC is not an operand, a COMPARE, or a
5100 ZERO_EXTRACT, the most likely reason why this doesn't match is that
5101 we need to put the operand into a register. So split at that
5102 point. */
5103
5104 if (SET_DEST (x) == cc0_rtx
5105 && GET_CODE (SET_SRC (x)) != COMPARE
5106 && GET_CODE (SET_SRC (x)) != ZERO_EXTRACT
5107 && !OBJECT_P (SET_SRC (x))
5108 && ! (GET_CODE (SET_SRC (x)) == SUBREG
5109 && OBJECT_P (SUBREG_REG (SET_SRC (x)))))
5110 return &SET_SRC (x);
5111
5112 /* See if we can split SET_SRC as it stands. */
5113 split = find_split_point (&SET_SRC (x), insn, true);
5114 if (split && split != &SET_SRC (x))
5115 return split;
5116
5117 /* See if we can split SET_DEST as it stands. */
5118 split = find_split_point (&SET_DEST (x), insn, false);
5119 if (split && split != &SET_DEST (x))
5120 return split;
5121
5122 /* See if this is a bitfield assignment with everything constant. If
5123 so, this is an IOR of an AND, so split it into that. */
5124 if (GET_CODE (SET_DEST (x)) == ZERO_EXTRACT
5125 && is_a <scalar_int_mode> (GET_MODE (XEXP (SET_DEST (x), 0)),
5126 &inner_mode)
5127 && HWI_COMPUTABLE_MODE_P (inner_mode)
5128 && CONST_INT_P (XEXP (SET_DEST (x), 1))
5129 && CONST_INT_P (XEXP (SET_DEST (x), 2))
5130 && CONST_INT_P (SET_SRC (x))
5131 && ((INTVAL (XEXP (SET_DEST (x), 1))
5132 + INTVAL (XEXP (SET_DEST (x), 2)))
5133 <= GET_MODE_PRECISION (inner_mode))
5134 && ! side_effects_p (XEXP (SET_DEST (x), 0)))
5135 {
5136 HOST_WIDE_INT pos = INTVAL (XEXP (SET_DEST (x), 2));
5137 unsigned HOST_WIDE_INT len = INTVAL (XEXP (SET_DEST (x), 1));
5138 rtx dest = XEXP (SET_DEST (x), 0);
5139 unsigned HOST_WIDE_INT mask = (HOST_WIDE_INT_1U << len) - 1;
5140 unsigned HOST_WIDE_INT src = INTVAL (SET_SRC (x)) & mask;
5141 rtx or_mask;
5142
5143 if (BITS_BIG_ENDIAN)
5144 pos = GET_MODE_PRECISION (inner_mode) - len - pos;
5145
5146 or_mask = gen_int_mode (src << pos, inner_mode);
5147 if (src == mask)
5148 SUBST (SET_SRC (x),
5149 simplify_gen_binary (IOR, inner_mode, dest, or_mask));
5150 else
5151 {
5152 rtx negmask = gen_int_mode (~(mask << pos), inner_mode);
5153 SUBST (SET_SRC (x),
5154 simplify_gen_binary (IOR, inner_mode,
5155 simplify_gen_binary (AND, inner_mode,
5156 dest, negmask),
5157 or_mask));
5158 }
5159
5160 SUBST (SET_DEST (x), dest);
5161
5162 split = find_split_point (&SET_SRC (x), insn, true);
5163 if (split && split != &SET_SRC (x))
5164 return split;
5165 }
5166
5167 /* Otherwise, see if this is an operation that we can split into two.
5168 If so, try to split that. */
5169 code = GET_CODE (SET_SRC (x));
5170
5171 switch (code)
5172 {
5173 case AND:
5174 /* If we are AND'ing with a large constant that is only a single
5175 bit and the result is only being used in a context where we
5176 need to know if it is zero or nonzero, replace it with a bit
5177 extraction. This will avoid the large constant, which might
5178 have taken more than one insn to make. If the constant were
5179 not a valid argument to the AND but took only one insn to make,
5180 this is no worse, but if it took more than one insn, it will
5181 be better. */
5182
5183 if (CONST_INT_P (XEXP (SET_SRC (x), 1))
5184 && REG_P (XEXP (SET_SRC (x), 0))
5185 && (pos = exact_log2 (UINTVAL (XEXP (SET_SRC (x), 1)))) >= 7
5186 && REG_P (SET_DEST (x))
5187 && (split = find_single_use (SET_DEST (x), insn, NULL)) != 0
5188 && (GET_CODE (*split) == EQ || GET_CODE (*split) == NE)
5189 && XEXP (*split, 0) == SET_DEST (x)
5190 && XEXP (*split, 1) == const0_rtx)
5191 {
5192 rtx extraction = make_extraction (GET_MODE (SET_DEST (x)),
5193 XEXP (SET_SRC (x), 0),
5194 pos, NULL_RTX, 1, 1, 0, 0);
5195 if (extraction != 0)
5196 {
5197 SUBST (SET_SRC (x), extraction);
5198 return find_split_point (loc, insn, false);
5199 }
5200 }
5201 break;
5202
5203 case NE:
5204 /* If STORE_FLAG_VALUE is -1, this is (NE X 0) and only one bit of X
5205 is known to be on, this can be converted into a NEG of a shift. */
5206 if (STORE_FLAG_VALUE == -1 && XEXP (SET_SRC (x), 1) == const0_rtx
5207 && GET_MODE (SET_SRC (x)) == GET_MODE (XEXP (SET_SRC (x), 0))
5208 && ((pos = exact_log2 (nonzero_bits (XEXP (SET_SRC (x), 0),
5209 GET_MODE (XEXP (SET_SRC (x),
5210 0))))) >= 1))
5211 {
5212 machine_mode mode = GET_MODE (XEXP (SET_SRC (x), 0));
5213 rtx pos_rtx = gen_int_shift_amount (mode, pos);
5214 SUBST (SET_SRC (x),
5215 gen_rtx_NEG (mode,
5216 gen_rtx_LSHIFTRT (mode,
5217 XEXP (SET_SRC (x), 0),
5218 pos_rtx)));
5219
5220 split = find_split_point (&SET_SRC (x), insn, true);
5221 if (split && split != &SET_SRC (x))
5222 return split;
5223 }
5224 break;
5225
5226 case SIGN_EXTEND:
5227 inner = XEXP (SET_SRC (x), 0);
5228
5229 /* We can't optimize if either mode is a partial integer
5230 mode as we don't know how many bits are significant
5231 in those modes. */
5232 if (!is_int_mode (GET_MODE (inner), &inner_mode)
5233 || GET_MODE_CLASS (GET_MODE (SET_SRC (x))) == MODE_PARTIAL_INT)
5234 break;
5235
5236 pos = 0;
5237 len = GET_MODE_PRECISION (inner_mode);
5238 unsignedp = 0;
5239 break;
5240
5241 case SIGN_EXTRACT:
5242 case ZERO_EXTRACT:
5243 if (is_a <scalar_int_mode> (GET_MODE (XEXP (SET_SRC (x), 0)),
5244 &inner_mode)
5245 && CONST_INT_P (XEXP (SET_SRC (x), 1))
5246 && CONST_INT_P (XEXP (SET_SRC (x), 2)))
5247 {
5248 inner = XEXP (SET_SRC (x), 0);
5249 len = INTVAL (XEXP (SET_SRC (x), 1));
5250 pos = INTVAL (XEXP (SET_SRC (x), 2));
5251
5252 if (BITS_BIG_ENDIAN)
5253 pos = GET_MODE_PRECISION (inner_mode) - len - pos;
5254 unsignedp = (code == ZERO_EXTRACT);
5255 }
5256 break;
5257
5258 default:
5259 break;
5260 }
5261
5262 if (len
5263 && known_subrange_p (pos, len,
5264 0, GET_MODE_PRECISION (GET_MODE (inner)))
5265 && is_a <scalar_int_mode> (GET_MODE (SET_SRC (x)), &mode))
5266 {
5267 /* For unsigned, we have a choice of a shift followed by an
5268 AND or two shifts. Use two shifts for field sizes where the
5269 constant might be too large. We assume here that we can
5270 always at least get 8-bit constants in an AND insn, which is
5271 true for every current RISC. */
5272
5273 if (unsignedp && len <= 8)
5274 {
5275 unsigned HOST_WIDE_INT mask
5276 = (HOST_WIDE_INT_1U << len) - 1;
5277 rtx pos_rtx = gen_int_shift_amount (mode, pos);
5278 SUBST (SET_SRC (x),
5279 gen_rtx_AND (mode,
5280 gen_rtx_LSHIFTRT
5281 (mode, gen_lowpart (mode, inner), pos_rtx),
5282 gen_int_mode (mask, mode)));
5283
5284 split = find_split_point (&SET_SRC (x), insn, true);
5285 if (split && split != &SET_SRC (x))
5286 return split;
5287 }
5288 else
5289 {
5290 int left_bits = GET_MODE_PRECISION (mode) - len - pos;
5291 int right_bits = GET_MODE_PRECISION (mode) - len;
5292 SUBST (SET_SRC (x),
5293 gen_rtx_fmt_ee
5294 (unsignedp ? LSHIFTRT : ASHIFTRT, mode,
5295 gen_rtx_ASHIFT (mode,
5296 gen_lowpart (mode, inner),
5297 gen_int_shift_amount (mode, left_bits)),
5298 gen_int_shift_amount (mode, right_bits)));
5299
5300 split = find_split_point (&SET_SRC (x), insn, true);
5301 if (split && split != &SET_SRC (x))
5302 return split;
5303 }
5304 }
5305
5306 /* See if this is a simple operation with a constant as the second
5307 operand. It might be that this constant is out of range and hence
5308 could be used as a split point. */
5309 if (BINARY_P (SET_SRC (x))
5310 && CONSTANT_P (XEXP (SET_SRC (x), 1))
5311 && (OBJECT_P (XEXP (SET_SRC (x), 0))
5312 || (GET_CODE (XEXP (SET_SRC (x), 0)) == SUBREG
5313 && OBJECT_P (SUBREG_REG (XEXP (SET_SRC (x), 0))))))
5314 return &XEXP (SET_SRC (x), 1);
5315
5316 /* Finally, see if this is a simple operation with its first operand
5317 not in a register. The operation might require this operand in a
5318 register, so return it as a split point. We can always do this
5319 because if the first operand were another operation, we would have
5320 already found it as a split point. */
5321 if ((BINARY_P (SET_SRC (x)) || UNARY_P (SET_SRC (x)))
5322 && ! register_operand (XEXP (SET_SRC (x), 0), VOIDmode))
5323 return &XEXP (SET_SRC (x), 0);
5324
5325 return 0;
5326
5327 case AND:
5328 case IOR:
5329 /* We write NOR as (and (not A) (not B)), but if we don't have a NOR,
5330 it is better to write this as (not (ior A B)) so we can split it.
5331 Similarly for IOR. */
5332 if (GET_CODE (XEXP (x, 0)) == NOT && GET_CODE (XEXP (x, 1)) == NOT)
5333 {
5334 SUBST (*loc,
5335 gen_rtx_NOT (GET_MODE (x),
5336 gen_rtx_fmt_ee (code == IOR ? AND : IOR,
5337 GET_MODE (x),
5338 XEXP (XEXP (x, 0), 0),
5339 XEXP (XEXP (x, 1), 0))));
5340 return find_split_point (loc, insn, set_src);
5341 }
5342
5343 /* Many RISC machines have a large set of logical insns. If the
5344 second operand is a NOT, put it first so we will try to split the
5345 other operand first. */
5346 if (GET_CODE (XEXP (x, 1)) == NOT)
5347 {
5348 rtx tem = XEXP (x, 0);
5349 SUBST (XEXP (x, 0), XEXP (x, 1));
5350 SUBST (XEXP (x, 1), tem);
5351 }
5352 break;
5353
5354 case PLUS:
5355 case MINUS:
5356 /* Canonicalization can produce (minus A (mult B C)), where C is a
5357 constant. It may be better to try splitting (plus (mult B -C) A)
5358 instead if this isn't a multiply by a power of two. */
5359 if (set_src && code == MINUS && GET_CODE (XEXP (x, 1)) == MULT
5360 && GET_CODE (XEXP (XEXP (x, 1), 1)) == CONST_INT
5361 && !pow2p_hwi (INTVAL (XEXP (XEXP (x, 1), 1))))
5362 {
5363 machine_mode mode = GET_MODE (x);
5364 unsigned HOST_WIDE_INT this_int = INTVAL (XEXP (XEXP (x, 1), 1));
5365 HOST_WIDE_INT other_int = trunc_int_for_mode (-this_int, mode);
5366 SUBST (*loc, gen_rtx_PLUS (mode,
5367 gen_rtx_MULT (mode,
5368 XEXP (XEXP (x, 1), 0),
5369 gen_int_mode (other_int,
5370 mode)),
5371 XEXP (x, 0)));
5372 return find_split_point (loc, insn, set_src);
5373 }
5374
5375 /* Split at a multiply-accumulate instruction. However if this is
5376 the SET_SRC, we likely do not have such an instruction and it's
5377 worthless to try this split. */
5378 if (!set_src
5379 && (GET_CODE (XEXP (x, 0)) == MULT
5380 || (GET_CODE (XEXP (x, 0)) == ASHIFT
5381 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT)))
5382 return loc;
5383
5384 default:
5385 break;
5386 }
5387
5388 /* Otherwise, select our actions depending on our rtx class. */
5389 switch (GET_RTX_CLASS (code))
5390 {
5391 case RTX_BITFIELD_OPS: /* This is ZERO_EXTRACT and SIGN_EXTRACT. */
5392 case RTX_TERNARY:
5393 split = find_split_point (&XEXP (x, 2), insn, false);
5394 if (split)
5395 return split;
5396 /* fall through */
5397 case RTX_BIN_ARITH:
5398 case RTX_COMM_ARITH:
5399 case RTX_COMPARE:
5400 case RTX_COMM_COMPARE:
5401 split = find_split_point (&XEXP (x, 1), insn, false);
5402 if (split)
5403 return split;
5404 /* fall through */
5405 case RTX_UNARY:
5406 /* Some machines have (and (shift ...) ...) insns. If X is not
5407 an AND, but XEXP (X, 0) is, use it as our split point. */
5408 if (GET_CODE (x) != AND && GET_CODE (XEXP (x, 0)) == AND)
5409 return &XEXP (x, 0);
5410
5411 split = find_split_point (&XEXP (x, 0), insn, false);
5412 if (split)
5413 return split;
5414 return loc;
5415
5416 default:
5417 /* Otherwise, we don't have a split point. */
5418 return 0;
5419 }
5420 }
5421 \f
5422 /* Throughout X, replace FROM with TO, and return the result.
5423 The result is TO if X is FROM;
5424 otherwise the result is X, but its contents may have been modified.
5425 If they were modified, a record was made in undobuf so that
5426 undo_all will (among other things) return X to its original state.
5427
5428 If the number of changes necessary is too much to record to undo,
5429 the excess changes are not made, so the result is invalid.
5430 The changes already made can still be undone.
5431 undobuf.num_undo is incremented for such changes, so by testing that
5432 the caller can tell whether the result is valid.
5433
5434 `n_occurrences' is incremented each time FROM is replaced.
5435
5436 IN_DEST is nonzero if we are processing the SET_DEST of a SET.
5437
5438 IN_COND is nonzero if we are at the top level of a condition.
5439
5440 UNIQUE_COPY is nonzero if each substitution must be unique. We do this
5441 by copying if `n_occurrences' is nonzero. */
5442
5443 static rtx
5444 subst (rtx x, rtx from, rtx to, int in_dest, int in_cond, int unique_copy)
5445 {
5446 enum rtx_code code = GET_CODE (x);
5447 machine_mode op0_mode = VOIDmode;
5448 const char *fmt;
5449 int len, i;
5450 rtx new_rtx;
5451
5452 /* Two expressions are equal if they are identical copies of a shared
5453 RTX or if they are both registers with the same register number
5454 and mode. */
5455
5456 #define COMBINE_RTX_EQUAL_P(X,Y) \
5457 ((X) == (Y) \
5458 || (REG_P (X) && REG_P (Y) \
5459 && REGNO (X) == REGNO (Y) && GET_MODE (X) == GET_MODE (Y)))
5460
5461 /* Do not substitute into clobbers of regs -- this will never result in
5462 valid RTL. */
5463 if (GET_CODE (x) == CLOBBER && REG_P (XEXP (x, 0)))
5464 return x;
5465
5466 if (! in_dest && COMBINE_RTX_EQUAL_P (x, from))
5467 {
5468 n_occurrences++;
5469 return (unique_copy && n_occurrences > 1 ? copy_rtx (to) : to);
5470 }
5471
5472 /* If X and FROM are the same register but different modes, they
5473 will not have been seen as equal above. However, the log links code
5474 will make a LOG_LINKS entry for that case. If we do nothing, we
5475 will try to rerecognize our original insn and, when it succeeds,
5476 we will delete the feeding insn, which is incorrect.
5477
5478 So force this insn not to match in this (rare) case. */
5479 if (! in_dest && code == REG && REG_P (from)
5480 && reg_overlap_mentioned_p (x, from))
5481 return gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
5482
5483 /* If this is an object, we are done unless it is a MEM or LO_SUM, both
5484 of which may contain things that can be combined. */
5485 if (code != MEM && code != LO_SUM && OBJECT_P (x))
5486 return x;
5487
5488 /* It is possible to have a subexpression appear twice in the insn.
5489 Suppose that FROM is a register that appears within TO.
5490 Then, after that subexpression has been scanned once by `subst',
5491 the second time it is scanned, TO may be found. If we were
5492 to scan TO here, we would find FROM within it and create a
5493 self-referent rtl structure which is completely wrong. */
5494 if (COMBINE_RTX_EQUAL_P (x, to))
5495 return to;
5496
5497 /* Parallel asm_operands need special attention because all of the
5498 inputs are shared across the arms. Furthermore, unsharing the
5499 rtl results in recognition failures. Failure to handle this case
5500 specially can result in circular rtl.
5501
5502 Solve this by doing a normal pass across the first entry of the
5503 parallel, and only processing the SET_DESTs of the subsequent
5504 entries. Ug. */
5505
5506 if (code == PARALLEL
5507 && GET_CODE (XVECEXP (x, 0, 0)) == SET
5508 && GET_CODE (SET_SRC (XVECEXP (x, 0, 0))) == ASM_OPERANDS)
5509 {
5510 new_rtx = subst (XVECEXP (x, 0, 0), from, to, 0, 0, unique_copy);
5511
5512 /* If this substitution failed, this whole thing fails. */
5513 if (GET_CODE (new_rtx) == CLOBBER
5514 && XEXP (new_rtx, 0) == const0_rtx)
5515 return new_rtx;
5516
5517 SUBST (XVECEXP (x, 0, 0), new_rtx);
5518
5519 for (i = XVECLEN (x, 0) - 1; i >= 1; i--)
5520 {
5521 rtx dest = SET_DEST (XVECEXP (x, 0, i));
5522
5523 if (!REG_P (dest)
5524 && GET_CODE (dest) != CC0
5525 && GET_CODE (dest) != PC)
5526 {
5527 new_rtx = subst (dest, from, to, 0, 0, unique_copy);
5528
5529 /* If this substitution failed, this whole thing fails. */
5530 if (GET_CODE (new_rtx) == CLOBBER
5531 && XEXP (new_rtx, 0) == const0_rtx)
5532 return new_rtx;
5533
5534 SUBST (SET_DEST (XVECEXP (x, 0, i)), new_rtx);
5535 }
5536 }
5537 }
5538 else
5539 {
5540 len = GET_RTX_LENGTH (code);
5541 fmt = GET_RTX_FORMAT (code);
5542
5543 /* We don't need to process a SET_DEST that is a register, CC0,
5544 or PC, so set up to skip this common case. All other cases
5545 where we want to suppress replacing something inside a
5546 SET_SRC are handled via the IN_DEST operand. */
5547 if (code == SET
5548 && (REG_P (SET_DEST (x))
5549 || GET_CODE (SET_DEST (x)) == CC0
5550 || GET_CODE (SET_DEST (x)) == PC))
5551 fmt = "ie";
5552
5553 /* Trying to simplify the operands of a widening MULT is not likely
5554 to create RTL matching a machine insn. */
5555 if (code == MULT
5556 && (GET_CODE (XEXP (x, 0)) == ZERO_EXTEND
5557 || GET_CODE (XEXP (x, 0)) == SIGN_EXTEND)
5558 && (GET_CODE (XEXP (x, 1)) == ZERO_EXTEND
5559 || GET_CODE (XEXP (x, 1)) == SIGN_EXTEND)
5560 && REG_P (XEXP (XEXP (x, 0), 0))
5561 && REG_P (XEXP (XEXP (x, 1), 0))
5562 && from == to)
5563 return x;
5564
5565
5566 /* Get the mode of operand 0 in case X is now a SIGN_EXTEND of a
5567 constant. */
5568 if (fmt[0] == 'e')
5569 op0_mode = GET_MODE (XEXP (x, 0));
5570
5571 for (i = 0; i < len; i++)
5572 {
5573 if (fmt[i] == 'E')
5574 {
5575 int j;
5576 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
5577 {
5578 if (COMBINE_RTX_EQUAL_P (XVECEXP (x, i, j), from))
5579 {
5580 new_rtx = (unique_copy && n_occurrences
5581 ? copy_rtx (to) : to);
5582 n_occurrences++;
5583 }
5584 else
5585 {
5586 new_rtx = subst (XVECEXP (x, i, j), from, to, 0, 0,
5587 unique_copy);
5588
5589 /* If this substitution failed, this whole thing
5590 fails. */
5591 if (GET_CODE (new_rtx) == CLOBBER
5592 && XEXP (new_rtx, 0) == const0_rtx)
5593 return new_rtx;
5594 }
5595
5596 SUBST (XVECEXP (x, i, j), new_rtx);
5597 }
5598 }
5599 else if (fmt[i] == 'e')
5600 {
5601 /* If this is a register being set, ignore it. */
5602 new_rtx = XEXP (x, i);
5603 if (in_dest
5604 && i == 0
5605 && (((code == SUBREG || code == ZERO_EXTRACT)
5606 && REG_P (new_rtx))
5607 || code == STRICT_LOW_PART))
5608 ;
5609
5610 else if (COMBINE_RTX_EQUAL_P (XEXP (x, i), from))
5611 {
5612 /* In general, don't install a subreg involving two
5613 modes not tieable. It can worsen register
5614 allocation, and can even make invalid reload
5615 insns, since the reg inside may need to be copied
5616 from in the outside mode, and that may be invalid
5617 if it is an fp reg copied in integer mode.
5618
5619 We allow two exceptions to this: It is valid if
5620 it is inside another SUBREG and the mode of that
5621 SUBREG and the mode of the inside of TO is
5622 tieable and it is valid if X is a SET that copies
5623 FROM to CC0. */
5624
5625 if (GET_CODE (to) == SUBREG
5626 && !targetm.modes_tieable_p (GET_MODE (to),
5627 GET_MODE (SUBREG_REG (to)))
5628 && ! (code == SUBREG
5629 && (targetm.modes_tieable_p
5630 (GET_MODE (x), GET_MODE (SUBREG_REG (to)))))
5631 && (!HAVE_cc0
5632 || (! (code == SET
5633 && i == 1
5634 && XEXP (x, 0) == cc0_rtx))))
5635 return gen_rtx_CLOBBER (VOIDmode, const0_rtx);
5636
5637 if (code == SUBREG
5638 && REG_P (to)
5639 && REGNO (to) < FIRST_PSEUDO_REGISTER
5640 && simplify_subreg_regno (REGNO (to), GET_MODE (to),
5641 SUBREG_BYTE (x),
5642 GET_MODE (x)) < 0)
5643 return gen_rtx_CLOBBER (VOIDmode, const0_rtx);
5644
5645 new_rtx = (unique_copy && n_occurrences ? copy_rtx (to) : to);
5646 n_occurrences++;
5647 }
5648 else
5649 /* If we are in a SET_DEST, suppress most cases unless we
5650 have gone inside a MEM, in which case we want to
5651 simplify the address. We assume here that things that
5652 are actually part of the destination have their inner
5653 parts in the first expression. This is true for SUBREG,
5654 STRICT_LOW_PART, and ZERO_EXTRACT, which are the only
5655 things aside from REG and MEM that should appear in a
5656 SET_DEST. */
5657 new_rtx = subst (XEXP (x, i), from, to,
5658 (((in_dest
5659 && (code == SUBREG || code == STRICT_LOW_PART
5660 || code == ZERO_EXTRACT))
5661 || code == SET)
5662 && i == 0),
5663 code == IF_THEN_ELSE && i == 0,
5664 unique_copy);
5665
5666 /* If we found that we will have to reject this combination,
5667 indicate that by returning the CLOBBER ourselves, rather than
5668 an expression containing it. This will speed things up as
5669 well as prevent accidents where two CLOBBERs are considered
5670 to be equal, thus producing an incorrect simplification. */
5671
5672 if (GET_CODE (new_rtx) == CLOBBER && XEXP (new_rtx, 0) == const0_rtx)
5673 return new_rtx;
5674
5675 if (GET_CODE (x) == SUBREG && CONST_SCALAR_INT_P (new_rtx))
5676 {
5677 machine_mode mode = GET_MODE (x);
5678
5679 x = simplify_subreg (GET_MODE (x), new_rtx,
5680 GET_MODE (SUBREG_REG (x)),
5681 SUBREG_BYTE (x));
5682 if (! x)
5683 x = gen_rtx_CLOBBER (mode, const0_rtx);
5684 }
5685 else if (CONST_SCALAR_INT_P (new_rtx)
5686 && (GET_CODE (x) == ZERO_EXTEND
5687 || GET_CODE (x) == SIGN_EXTEND
5688 || GET_CODE (x) == FLOAT
5689 || GET_CODE (x) == UNSIGNED_FLOAT))
5690 {
5691 x = simplify_unary_operation (GET_CODE (x), GET_MODE (x),
5692 new_rtx,
5693 GET_MODE (XEXP (x, 0)));
5694 if (!x)
5695 return gen_rtx_CLOBBER (VOIDmode, const0_rtx);
5696 }
5697 else
5698 SUBST (XEXP (x, i), new_rtx);
5699 }
5700 }
5701 }
5702
5703 /* Check if we are loading something from the constant pool via float
5704 extension; in this case we would undo compress_float_constant
5705 optimization and degenerate constant load to an immediate value. */
5706 if (GET_CODE (x) == FLOAT_EXTEND
5707 && MEM_P (XEXP (x, 0))
5708 && MEM_READONLY_P (XEXP (x, 0)))
5709 {
5710 rtx tmp = avoid_constant_pool_reference (x);
5711 if (x != tmp)
5712 return x;
5713 }
5714
5715 /* Try to simplify X. If the simplification changed the code, it is likely
5716 that further simplification will help, so loop, but limit the number
5717 of repetitions that will be performed. */
5718
5719 for (i = 0; i < 4; i++)
5720 {
5721 /* If X is sufficiently simple, don't bother trying to do anything
5722 with it. */
5723 if (code != CONST_INT && code != REG && code != CLOBBER)
5724 x = combine_simplify_rtx (x, op0_mode, in_dest, in_cond);
5725
5726 if (GET_CODE (x) == code)
5727 break;
5728
5729 code = GET_CODE (x);
5730
5731 /* We no longer know the original mode of operand 0 since we
5732 have changed the form of X) */
5733 op0_mode = VOIDmode;
5734 }
5735
5736 return x;
5737 }
5738 \f
5739 /* If X is a commutative operation whose operands are not in the canonical
5740 order, use substitutions to swap them. */
5741
5742 static void
5743 maybe_swap_commutative_operands (rtx x)
5744 {
5745 if (COMMUTATIVE_ARITH_P (x)
5746 && swap_commutative_operands_p (XEXP (x, 0), XEXP (x, 1)))
5747 {
5748 rtx temp = XEXP (x, 0);
5749 SUBST (XEXP (x, 0), XEXP (x, 1));
5750 SUBST (XEXP (x, 1), temp);
5751 }
5752 }
5753
5754 /* Simplify X, a piece of RTL. We just operate on the expression at the
5755 outer level; call `subst' to simplify recursively. Return the new
5756 expression.
5757
5758 OP0_MODE is the original mode of XEXP (x, 0). IN_DEST is nonzero
5759 if we are inside a SET_DEST. IN_COND is nonzero if we are at the top level
5760 of a condition. */
5761
5762 static rtx
5763 combine_simplify_rtx (rtx x, machine_mode op0_mode, int in_dest,
5764 int in_cond)
5765 {
5766 enum rtx_code code = GET_CODE (x);
5767 machine_mode mode = GET_MODE (x);
5768 scalar_int_mode int_mode;
5769 rtx temp;
5770 int i;
5771
5772 /* If this is a commutative operation, put a constant last and a complex
5773 expression first. We don't need to do this for comparisons here. */
5774 maybe_swap_commutative_operands (x);
5775
5776 /* Try to fold this expression in case we have constants that weren't
5777 present before. */
5778 temp = 0;
5779 switch (GET_RTX_CLASS (code))
5780 {
5781 case RTX_UNARY:
5782 if (op0_mode == VOIDmode)
5783 op0_mode = GET_MODE (XEXP (x, 0));
5784 temp = simplify_unary_operation (code, mode, XEXP (x, 0), op0_mode);
5785 break;
5786 case RTX_COMPARE:
5787 case RTX_COMM_COMPARE:
5788 {
5789 machine_mode cmp_mode = GET_MODE (XEXP (x, 0));
5790 if (cmp_mode == VOIDmode)
5791 {
5792 cmp_mode = GET_MODE (XEXP (x, 1));
5793 if (cmp_mode == VOIDmode)
5794 cmp_mode = op0_mode;
5795 }
5796 temp = simplify_relational_operation (code, mode, cmp_mode,
5797 XEXP (x, 0), XEXP (x, 1));
5798 }
5799 break;
5800 case RTX_COMM_ARITH:
5801 case RTX_BIN_ARITH:
5802 temp = simplify_binary_operation (code, mode, XEXP (x, 0), XEXP (x, 1));
5803 break;
5804 case RTX_BITFIELD_OPS:
5805 case RTX_TERNARY:
5806 temp = simplify_ternary_operation (code, mode, op0_mode, XEXP (x, 0),
5807 XEXP (x, 1), XEXP (x, 2));
5808 break;
5809 default:
5810 break;
5811 }
5812
5813 if (temp)
5814 {
5815 x = temp;
5816 code = GET_CODE (temp);
5817 op0_mode = VOIDmode;
5818 mode = GET_MODE (temp);
5819 }
5820
5821 /* If this is a simple operation applied to an IF_THEN_ELSE, try
5822 applying it to the arms of the IF_THEN_ELSE. This often simplifies
5823 things. Check for cases where both arms are testing the same
5824 condition.
5825
5826 Don't do anything if all operands are very simple. */
5827
5828 if ((BINARY_P (x)
5829 && ((!OBJECT_P (XEXP (x, 0))
5830 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
5831 && OBJECT_P (SUBREG_REG (XEXP (x, 0)))))
5832 || (!OBJECT_P (XEXP (x, 1))
5833 && ! (GET_CODE (XEXP (x, 1)) == SUBREG
5834 && OBJECT_P (SUBREG_REG (XEXP (x, 1)))))))
5835 || (UNARY_P (x)
5836 && (!OBJECT_P (XEXP (x, 0))
5837 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
5838 && OBJECT_P (SUBREG_REG (XEXP (x, 0)))))))
5839 {
5840 rtx cond, true_rtx, false_rtx;
5841
5842 cond = if_then_else_cond (x, &true_rtx, &false_rtx);
5843 if (cond != 0
5844 /* If everything is a comparison, what we have is highly unlikely
5845 to be simpler, so don't use it. */
5846 && ! (COMPARISON_P (x)
5847 && (COMPARISON_P (true_rtx) || COMPARISON_P (false_rtx)))
5848 /* Similarly, if we end up with one of the expressions the same
5849 as the original, it is certainly not simpler. */
5850 && ! rtx_equal_p (x, true_rtx)
5851 && ! rtx_equal_p (x, false_rtx))
5852 {
5853 rtx cop1 = const0_rtx;
5854 enum rtx_code cond_code = simplify_comparison (NE, &cond, &cop1);
5855
5856 if (cond_code == NE && COMPARISON_P (cond))
5857 return x;
5858
5859 /* Simplify the alternative arms; this may collapse the true and
5860 false arms to store-flag values. Be careful to use copy_rtx
5861 here since true_rtx or false_rtx might share RTL with x as a
5862 result of the if_then_else_cond call above. */
5863 true_rtx = subst (copy_rtx (true_rtx), pc_rtx, pc_rtx, 0, 0, 0);
5864 false_rtx = subst (copy_rtx (false_rtx), pc_rtx, pc_rtx, 0, 0, 0);
5865
5866 /* If true_rtx and false_rtx are not general_operands, an if_then_else
5867 is unlikely to be simpler. */
5868 if (general_operand (true_rtx, VOIDmode)
5869 && general_operand (false_rtx, VOIDmode))
5870 {
5871 enum rtx_code reversed;
5872
5873 /* Restarting if we generate a store-flag expression will cause
5874 us to loop. Just drop through in this case. */
5875
5876 /* If the result values are STORE_FLAG_VALUE and zero, we can
5877 just make the comparison operation. */
5878 if (true_rtx == const_true_rtx && false_rtx == const0_rtx)
5879 x = simplify_gen_relational (cond_code, mode, VOIDmode,
5880 cond, cop1);
5881 else if (true_rtx == const0_rtx && false_rtx == const_true_rtx
5882 && ((reversed = reversed_comparison_code_parts
5883 (cond_code, cond, cop1, NULL))
5884 != UNKNOWN))
5885 x = simplify_gen_relational (reversed, mode, VOIDmode,
5886 cond, cop1);
5887
5888 /* Likewise, we can make the negate of a comparison operation
5889 if the result values are - STORE_FLAG_VALUE and zero. */
5890 else if (CONST_INT_P (true_rtx)
5891 && INTVAL (true_rtx) == - STORE_FLAG_VALUE
5892 && false_rtx == const0_rtx)
5893 x = simplify_gen_unary (NEG, mode,
5894 simplify_gen_relational (cond_code,
5895 mode, VOIDmode,
5896 cond, cop1),
5897 mode);
5898 else if (CONST_INT_P (false_rtx)
5899 && INTVAL (false_rtx) == - STORE_FLAG_VALUE
5900 && true_rtx == const0_rtx
5901 && ((reversed = reversed_comparison_code_parts
5902 (cond_code, cond, cop1, NULL))
5903 != UNKNOWN))
5904 x = simplify_gen_unary (NEG, mode,
5905 simplify_gen_relational (reversed,
5906 mode, VOIDmode,
5907 cond, cop1),
5908 mode);
5909
5910 code = GET_CODE (x);
5911 op0_mode = VOIDmode;
5912 }
5913 }
5914 }
5915
5916 /* First see if we can apply the inverse distributive law. */
5917 if (code == PLUS || code == MINUS
5918 || code == AND || code == IOR || code == XOR)
5919 {
5920 x = apply_distributive_law (x);
5921 code = GET_CODE (x);
5922 op0_mode = VOIDmode;
5923 }
5924
5925 /* If CODE is an associative operation not otherwise handled, see if we
5926 can associate some operands. This can win if they are constants or
5927 if they are logically related (i.e. (a & b) & a). */
5928 if ((code == PLUS || code == MINUS || code == MULT || code == DIV
5929 || code == AND || code == IOR || code == XOR
5930 || code == SMAX || code == SMIN || code == UMAX || code == UMIN)
5931 && ((INTEGRAL_MODE_P (mode) && code != DIV)
5932 || (flag_associative_math && FLOAT_MODE_P (mode))))
5933 {
5934 if (GET_CODE (XEXP (x, 0)) == code)
5935 {
5936 rtx other = XEXP (XEXP (x, 0), 0);
5937 rtx inner_op0 = XEXP (XEXP (x, 0), 1);
5938 rtx inner_op1 = XEXP (x, 1);
5939 rtx inner;
5940
5941 /* Make sure we pass the constant operand if any as the second
5942 one if this is a commutative operation. */
5943 if (CONSTANT_P (inner_op0) && COMMUTATIVE_ARITH_P (x))
5944 std::swap (inner_op0, inner_op1);
5945 inner = simplify_binary_operation (code == MINUS ? PLUS
5946 : code == DIV ? MULT
5947 : code,
5948 mode, inner_op0, inner_op1);
5949
5950 /* For commutative operations, try the other pair if that one
5951 didn't simplify. */
5952 if (inner == 0 && COMMUTATIVE_ARITH_P (x))
5953 {
5954 other = XEXP (XEXP (x, 0), 1);
5955 inner = simplify_binary_operation (code, mode,
5956 XEXP (XEXP (x, 0), 0),
5957 XEXP (x, 1));
5958 }
5959
5960 if (inner)
5961 return simplify_gen_binary (code, mode, other, inner);
5962 }
5963 }
5964
5965 /* A little bit of algebraic simplification here. */
5966 switch (code)
5967 {
5968 case MEM:
5969 /* Ensure that our address has any ASHIFTs converted to MULT in case
5970 address-recognizing predicates are called later. */
5971 temp = make_compound_operation (XEXP (x, 0), MEM);
5972 SUBST (XEXP (x, 0), temp);
5973 break;
5974
5975 case SUBREG:
5976 if (op0_mode == VOIDmode)
5977 op0_mode = GET_MODE (SUBREG_REG (x));
5978
5979 /* See if this can be moved to simplify_subreg. */
5980 if (CONSTANT_P (SUBREG_REG (x))
5981 && known_eq (subreg_lowpart_offset (mode, op0_mode), SUBREG_BYTE (x))
5982 /* Don't call gen_lowpart if the inner mode
5983 is VOIDmode and we cannot simplify it, as SUBREG without
5984 inner mode is invalid. */
5985 && (GET_MODE (SUBREG_REG (x)) != VOIDmode
5986 || gen_lowpart_common (mode, SUBREG_REG (x))))
5987 return gen_lowpart (mode, SUBREG_REG (x));
5988
5989 if (GET_MODE_CLASS (GET_MODE (SUBREG_REG (x))) == MODE_CC)
5990 break;
5991 {
5992 rtx temp;
5993 temp = simplify_subreg (mode, SUBREG_REG (x), op0_mode,
5994 SUBREG_BYTE (x));
5995 if (temp)
5996 return temp;
5997
5998 /* If op is known to have all lower bits zero, the result is zero. */
5999 scalar_int_mode int_mode, int_op0_mode;
6000 if (!in_dest
6001 && is_a <scalar_int_mode> (mode, &int_mode)
6002 && is_a <scalar_int_mode> (op0_mode, &int_op0_mode)
6003 && (GET_MODE_PRECISION (int_mode)
6004 < GET_MODE_PRECISION (int_op0_mode))
6005 && known_eq (subreg_lowpart_offset (int_mode, int_op0_mode),
6006 SUBREG_BYTE (x))
6007 && HWI_COMPUTABLE_MODE_P (int_op0_mode)
6008 && ((nonzero_bits (SUBREG_REG (x), int_op0_mode)
6009 & GET_MODE_MASK (int_mode)) == 0)
6010 && !side_effects_p (SUBREG_REG (x)))
6011 return CONST0_RTX (int_mode);
6012 }
6013
6014 /* Don't change the mode of the MEM if that would change the meaning
6015 of the address. */
6016 if (MEM_P (SUBREG_REG (x))
6017 && (MEM_VOLATILE_P (SUBREG_REG (x))
6018 || mode_dependent_address_p (XEXP (SUBREG_REG (x), 0),
6019 MEM_ADDR_SPACE (SUBREG_REG (x)))))
6020 return gen_rtx_CLOBBER (mode, const0_rtx);
6021
6022 /* Note that we cannot do any narrowing for non-constants since
6023 we might have been counting on using the fact that some bits were
6024 zero. We now do this in the SET. */
6025
6026 break;
6027
6028 case NEG:
6029 temp = expand_compound_operation (XEXP (x, 0));
6030
6031 /* For C equal to the width of MODE minus 1, (neg (ashiftrt X C)) can be
6032 replaced by (lshiftrt X C). This will convert
6033 (neg (sign_extract X 1 Y)) to (zero_extract X 1 Y). */
6034
6035 if (GET_CODE (temp) == ASHIFTRT
6036 && CONST_INT_P (XEXP (temp, 1))
6037 && INTVAL (XEXP (temp, 1)) == GET_MODE_UNIT_PRECISION (mode) - 1)
6038 return simplify_shift_const (NULL_RTX, LSHIFTRT, mode, XEXP (temp, 0),
6039 INTVAL (XEXP (temp, 1)));
6040
6041 /* If X has only a single bit that might be nonzero, say, bit I, convert
6042 (neg X) to (ashiftrt (ashift X C-I) C-I) where C is the bitsize of
6043 MODE minus 1. This will convert (neg (zero_extract X 1 Y)) to
6044 (sign_extract X 1 Y). But only do this if TEMP isn't a register
6045 or a SUBREG of one since we'd be making the expression more
6046 complex if it was just a register. */
6047
6048 if (!REG_P (temp)
6049 && ! (GET_CODE (temp) == SUBREG
6050 && REG_P (SUBREG_REG (temp)))
6051 && is_a <scalar_int_mode> (mode, &int_mode)
6052 && (i = exact_log2 (nonzero_bits (temp, int_mode))) >= 0)
6053 {
6054 rtx temp1 = simplify_shift_const
6055 (NULL_RTX, ASHIFTRT, int_mode,
6056 simplify_shift_const (NULL_RTX, ASHIFT, int_mode, temp,
6057 GET_MODE_PRECISION (int_mode) - 1 - i),
6058 GET_MODE_PRECISION (int_mode) - 1 - i);
6059
6060 /* If all we did was surround TEMP with the two shifts, we
6061 haven't improved anything, so don't use it. Otherwise,
6062 we are better off with TEMP1. */
6063 if (GET_CODE (temp1) != ASHIFTRT
6064 || GET_CODE (XEXP (temp1, 0)) != ASHIFT
6065 || XEXP (XEXP (temp1, 0), 0) != temp)
6066 return temp1;
6067 }
6068 break;
6069
6070 case TRUNCATE:
6071 /* We can't handle truncation to a partial integer mode here
6072 because we don't know the real bitsize of the partial
6073 integer mode. */
6074 if (GET_MODE_CLASS (mode) == MODE_PARTIAL_INT)
6075 break;
6076
6077 if (HWI_COMPUTABLE_MODE_P (mode))
6078 SUBST (XEXP (x, 0),
6079 force_to_mode (XEXP (x, 0), GET_MODE (XEXP (x, 0)),
6080 GET_MODE_MASK (mode), 0));
6081
6082 /* We can truncate a constant value and return it. */
6083 {
6084 poly_int64 c;
6085 if (poly_int_rtx_p (XEXP (x, 0), &c))
6086 return gen_int_mode (c, mode);
6087 }
6088
6089 /* Similarly to what we do in simplify-rtx.c, a truncate of a register
6090 whose value is a comparison can be replaced with a subreg if
6091 STORE_FLAG_VALUE permits. */
6092 if (HWI_COMPUTABLE_MODE_P (mode)
6093 && (STORE_FLAG_VALUE & ~GET_MODE_MASK (mode)) == 0
6094 && (temp = get_last_value (XEXP (x, 0)))
6095 && COMPARISON_P (temp))
6096 return gen_lowpart (mode, XEXP (x, 0));
6097 break;
6098
6099 case CONST:
6100 /* (const (const X)) can become (const X). Do it this way rather than
6101 returning the inner CONST since CONST can be shared with a
6102 REG_EQUAL note. */
6103 if (GET_CODE (XEXP (x, 0)) == CONST)
6104 SUBST (XEXP (x, 0), XEXP (XEXP (x, 0), 0));
6105 break;
6106
6107 case LO_SUM:
6108 /* Convert (lo_sum (high FOO) FOO) to FOO. This is necessary so we
6109 can add in an offset. find_split_point will split this address up
6110 again if it doesn't match. */
6111 if (HAVE_lo_sum && GET_CODE (XEXP (x, 0)) == HIGH
6112 && rtx_equal_p (XEXP (XEXP (x, 0), 0), XEXP (x, 1)))
6113 return XEXP (x, 1);
6114 break;
6115
6116 case PLUS:
6117 /* (plus (xor (and <foo> (const_int pow2 - 1)) <c>) <-c>)
6118 when c is (const_int (pow2 + 1) / 2) is a sign extension of a
6119 bit-field and can be replaced by either a sign_extend or a
6120 sign_extract. The `and' may be a zero_extend and the two
6121 <c>, -<c> constants may be reversed. */
6122 if (GET_CODE (XEXP (x, 0)) == XOR
6123 && is_a <scalar_int_mode> (mode, &int_mode)
6124 && CONST_INT_P (XEXP (x, 1))
6125 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
6126 && INTVAL (XEXP (x, 1)) == -INTVAL (XEXP (XEXP (x, 0), 1))
6127 && ((i = exact_log2 (UINTVAL (XEXP (XEXP (x, 0), 1)))) >= 0
6128 || (i = exact_log2 (UINTVAL (XEXP (x, 1)))) >= 0)
6129 && HWI_COMPUTABLE_MODE_P (int_mode)
6130 && ((GET_CODE (XEXP (XEXP (x, 0), 0)) == AND
6131 && CONST_INT_P (XEXP (XEXP (XEXP (x, 0), 0), 1))
6132 && (UINTVAL (XEXP (XEXP (XEXP (x, 0), 0), 1))
6133 == (HOST_WIDE_INT_1U << (i + 1)) - 1))
6134 || (GET_CODE (XEXP (XEXP (x, 0), 0)) == ZERO_EXTEND
6135 && known_eq ((GET_MODE_PRECISION
6136 (GET_MODE (XEXP (XEXP (XEXP (x, 0), 0), 0)))),
6137 (unsigned int) i + 1))))
6138 return simplify_shift_const
6139 (NULL_RTX, ASHIFTRT, int_mode,
6140 simplify_shift_const (NULL_RTX, ASHIFT, int_mode,
6141 XEXP (XEXP (XEXP (x, 0), 0), 0),
6142 GET_MODE_PRECISION (int_mode) - (i + 1)),
6143 GET_MODE_PRECISION (int_mode) - (i + 1));
6144
6145 /* If only the low-order bit of X is possibly nonzero, (plus x -1)
6146 can become (ashiftrt (ashift (xor x 1) C) C) where C is
6147 the bitsize of the mode - 1. This allows simplification of
6148 "a = (b & 8) == 0;" */
6149 if (XEXP (x, 1) == constm1_rtx
6150 && !REG_P (XEXP (x, 0))
6151 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
6152 && REG_P (SUBREG_REG (XEXP (x, 0))))
6153 && is_a <scalar_int_mode> (mode, &int_mode)
6154 && nonzero_bits (XEXP (x, 0), int_mode) == 1)
6155 return simplify_shift_const
6156 (NULL_RTX, ASHIFTRT, int_mode,
6157 simplify_shift_const (NULL_RTX, ASHIFT, int_mode,
6158 gen_rtx_XOR (int_mode, XEXP (x, 0),
6159 const1_rtx),
6160 GET_MODE_PRECISION (int_mode) - 1),
6161 GET_MODE_PRECISION (int_mode) - 1);
6162
6163 /* If we are adding two things that have no bits in common, convert
6164 the addition into an IOR. This will often be further simplified,
6165 for example in cases like ((a & 1) + (a & 2)), which can
6166 become a & 3. */
6167
6168 if (HWI_COMPUTABLE_MODE_P (mode)
6169 && (nonzero_bits (XEXP (x, 0), mode)
6170 & nonzero_bits (XEXP (x, 1), mode)) == 0)
6171 {
6172 /* Try to simplify the expression further. */
6173 rtx tor = simplify_gen_binary (IOR, mode, XEXP (x, 0), XEXP (x, 1));
6174 temp = combine_simplify_rtx (tor, VOIDmode, in_dest, 0);
6175
6176 /* If we could, great. If not, do not go ahead with the IOR
6177 replacement, since PLUS appears in many special purpose
6178 address arithmetic instructions. */
6179 if (GET_CODE (temp) != CLOBBER
6180 && (GET_CODE (temp) != IOR
6181 || ((XEXP (temp, 0) != XEXP (x, 0)
6182 || XEXP (temp, 1) != XEXP (x, 1))
6183 && (XEXP (temp, 0) != XEXP (x, 1)
6184 || XEXP (temp, 1) != XEXP (x, 0)))))
6185 return temp;
6186 }
6187
6188 /* Canonicalize x + x into x << 1. */
6189 if (GET_MODE_CLASS (mode) == MODE_INT
6190 && rtx_equal_p (XEXP (x, 0), XEXP (x, 1))
6191 && !side_effects_p (XEXP (x, 0)))
6192 return simplify_gen_binary (ASHIFT, mode, XEXP (x, 0), const1_rtx);
6193
6194 break;
6195
6196 case MINUS:
6197 /* (minus <foo> (and <foo> (const_int -pow2))) becomes
6198 (and <foo> (const_int pow2-1)) */
6199 if (is_a <scalar_int_mode> (mode, &int_mode)
6200 && GET_CODE (XEXP (x, 1)) == AND
6201 && CONST_INT_P (XEXP (XEXP (x, 1), 1))
6202 && pow2p_hwi (-UINTVAL (XEXP (XEXP (x, 1), 1)))
6203 && rtx_equal_p (XEXP (XEXP (x, 1), 0), XEXP (x, 0)))
6204 return simplify_and_const_int (NULL_RTX, int_mode, XEXP (x, 0),
6205 -INTVAL (XEXP (XEXP (x, 1), 1)) - 1);
6206 break;
6207
6208 case MULT:
6209 /* If we have (mult (plus A B) C), apply the distributive law and then
6210 the inverse distributive law to see if things simplify. This
6211 occurs mostly in addresses, often when unrolling loops. */
6212
6213 if (GET_CODE (XEXP (x, 0)) == PLUS)
6214 {
6215 rtx result = distribute_and_simplify_rtx (x, 0);
6216 if (result)
6217 return result;
6218 }
6219
6220 /* Try simplify a*(b/c) as (a*b)/c. */
6221 if (FLOAT_MODE_P (mode) && flag_associative_math
6222 && GET_CODE (XEXP (x, 0)) == DIV)
6223 {
6224 rtx tem = simplify_binary_operation (MULT, mode,
6225 XEXP (XEXP (x, 0), 0),
6226 XEXP (x, 1));
6227 if (tem)
6228 return simplify_gen_binary (DIV, mode, tem, XEXP (XEXP (x, 0), 1));
6229 }
6230 break;
6231
6232 case UDIV:
6233 /* If this is a divide by a power of two, treat it as a shift if
6234 its first operand is a shift. */
6235 if (is_a <scalar_int_mode> (mode, &int_mode)
6236 && CONST_INT_P (XEXP (x, 1))
6237 && (i = exact_log2 (UINTVAL (XEXP (x, 1)))) >= 0
6238 && (GET_CODE (XEXP (x, 0)) == ASHIFT
6239 || GET_CODE (XEXP (x, 0)) == LSHIFTRT
6240 || GET_CODE (XEXP (x, 0)) == ASHIFTRT
6241 || GET_CODE (XEXP (x, 0)) == ROTATE
6242 || GET_CODE (XEXP (x, 0)) == ROTATERT))
6243 return simplify_shift_const (NULL_RTX, LSHIFTRT, int_mode,
6244 XEXP (x, 0), i);
6245 break;
6246
6247 case EQ: case NE:
6248 case GT: case GTU: case GE: case GEU:
6249 case LT: case LTU: case LE: case LEU:
6250 case UNEQ: case LTGT:
6251 case UNGT: case UNGE:
6252 case UNLT: case UNLE:
6253 case UNORDERED: case ORDERED:
6254 /* If the first operand is a condition code, we can't do anything
6255 with it. */
6256 if (GET_CODE (XEXP (x, 0)) == COMPARE
6257 || (GET_MODE_CLASS (GET_MODE (XEXP (x, 0))) != MODE_CC
6258 && ! CC0_P (XEXP (x, 0))))
6259 {
6260 rtx op0 = XEXP (x, 0);
6261 rtx op1 = XEXP (x, 1);
6262 enum rtx_code new_code;
6263
6264 if (GET_CODE (op0) == COMPARE)
6265 op1 = XEXP (op0, 1), op0 = XEXP (op0, 0);
6266
6267 /* Simplify our comparison, if possible. */
6268 new_code = simplify_comparison (code, &op0, &op1);
6269
6270 /* If STORE_FLAG_VALUE is 1, we can convert (ne x 0) to simply X
6271 if only the low-order bit is possibly nonzero in X (such as when
6272 X is a ZERO_EXTRACT of one bit). Similarly, we can convert EQ to
6273 (xor X 1) or (minus 1 X); we use the former. Finally, if X is
6274 known to be either 0 or -1, NE becomes a NEG and EQ becomes
6275 (plus X 1).
6276
6277 Remove any ZERO_EXTRACT we made when thinking this was a
6278 comparison. It may now be simpler to use, e.g., an AND. If a
6279 ZERO_EXTRACT is indeed appropriate, it will be placed back by
6280 the call to make_compound_operation in the SET case.
6281
6282 Don't apply these optimizations if the caller would
6283 prefer a comparison rather than a value.
6284 E.g., for the condition in an IF_THEN_ELSE most targets need
6285 an explicit comparison. */
6286
6287 if (in_cond)
6288 ;
6289
6290 else if (STORE_FLAG_VALUE == 1
6291 && new_code == NE
6292 && is_int_mode (mode, &int_mode)
6293 && op1 == const0_rtx
6294 && int_mode == GET_MODE (op0)
6295 && nonzero_bits (op0, int_mode) == 1)
6296 return gen_lowpart (int_mode,
6297 expand_compound_operation (op0));
6298
6299 else if (STORE_FLAG_VALUE == 1
6300 && new_code == NE
6301 && is_int_mode (mode, &int_mode)
6302 && op1 == const0_rtx
6303 && int_mode == GET_MODE (op0)
6304 && (num_sign_bit_copies (op0, int_mode)
6305 == GET_MODE_PRECISION (int_mode)))
6306 {
6307 op0 = expand_compound_operation (op0);
6308 return simplify_gen_unary (NEG, int_mode,
6309 gen_lowpart (int_mode, op0),
6310 int_mode);
6311 }
6312
6313 else if (STORE_FLAG_VALUE == 1
6314 && new_code == EQ
6315 && is_int_mode (mode, &int_mode)
6316 && op1 == const0_rtx
6317 && int_mode == GET_MODE (op0)
6318 && nonzero_bits (op0, int_mode) == 1)
6319 {
6320 op0 = expand_compound_operation (op0);
6321 return simplify_gen_binary (XOR, int_mode,
6322 gen_lowpart (int_mode, op0),
6323 const1_rtx);
6324 }
6325
6326 else if (STORE_FLAG_VALUE == 1
6327 && new_code == EQ
6328 && is_int_mode (mode, &int_mode)
6329 && op1 == const0_rtx
6330 && int_mode == GET_MODE (op0)
6331 && (num_sign_bit_copies (op0, int_mode)
6332 == GET_MODE_PRECISION (int_mode)))
6333 {
6334 op0 = expand_compound_operation (op0);
6335 return plus_constant (int_mode, gen_lowpart (int_mode, op0), 1);
6336 }
6337
6338 /* If STORE_FLAG_VALUE is -1, we have cases similar to
6339 those above. */
6340 if (in_cond)
6341 ;
6342
6343 else if (STORE_FLAG_VALUE == -1
6344 && new_code == NE
6345 && is_int_mode (mode, &int_mode)
6346 && op1 == const0_rtx
6347 && int_mode == GET_MODE (op0)
6348 && (num_sign_bit_copies (op0, int_mode)
6349 == GET_MODE_PRECISION (int_mode)))
6350 return gen_lowpart (int_mode, expand_compound_operation (op0));
6351
6352 else if (STORE_FLAG_VALUE == -1
6353 && new_code == NE
6354 && is_int_mode (mode, &int_mode)
6355 && op1 == const0_rtx
6356 && int_mode == GET_MODE (op0)
6357 && nonzero_bits (op0, int_mode) == 1)
6358 {
6359 op0 = expand_compound_operation (op0);
6360 return simplify_gen_unary (NEG, int_mode,
6361 gen_lowpart (int_mode, op0),
6362 int_mode);
6363 }
6364
6365 else if (STORE_FLAG_VALUE == -1
6366 && new_code == EQ
6367 && is_int_mode (mode, &int_mode)
6368 && op1 == const0_rtx
6369 && int_mode == GET_MODE (op0)
6370 && (num_sign_bit_copies (op0, int_mode)
6371 == GET_MODE_PRECISION (int_mode)))
6372 {
6373 op0 = expand_compound_operation (op0);
6374 return simplify_gen_unary (NOT, int_mode,
6375 gen_lowpart (int_mode, op0),
6376 int_mode);
6377 }
6378
6379 /* If X is 0/1, (eq X 0) is X-1. */
6380 else if (STORE_FLAG_VALUE == -1
6381 && new_code == EQ
6382 && is_int_mode (mode, &int_mode)
6383 && op1 == const0_rtx
6384 && int_mode == GET_MODE (op0)
6385 && nonzero_bits (op0, int_mode) == 1)
6386 {
6387 op0 = expand_compound_operation (op0);
6388 return plus_constant (int_mode, gen_lowpart (int_mode, op0), -1);
6389 }
6390
6391 /* If STORE_FLAG_VALUE says to just test the sign bit and X has just
6392 one bit that might be nonzero, we can convert (ne x 0) to
6393 (ashift x c) where C puts the bit in the sign bit. Remove any
6394 AND with STORE_FLAG_VALUE when we are done, since we are only
6395 going to test the sign bit. */
6396 if (new_code == NE
6397 && is_int_mode (mode, &int_mode)
6398 && HWI_COMPUTABLE_MODE_P (int_mode)
6399 && val_signbit_p (int_mode, STORE_FLAG_VALUE)
6400 && op1 == const0_rtx
6401 && int_mode == GET_MODE (op0)
6402 && (i = exact_log2 (nonzero_bits (op0, int_mode))) >= 0)
6403 {
6404 x = simplify_shift_const (NULL_RTX, ASHIFT, int_mode,
6405 expand_compound_operation (op0),
6406 GET_MODE_PRECISION (int_mode) - 1 - i);
6407 if (GET_CODE (x) == AND && XEXP (x, 1) == const_true_rtx)
6408 return XEXP (x, 0);
6409 else
6410 return x;
6411 }
6412
6413 /* If the code changed, return a whole new comparison.
6414 We also need to avoid using SUBST in cases where
6415 simplify_comparison has widened a comparison with a CONST_INT,
6416 since in that case the wider CONST_INT may fail the sanity
6417 checks in do_SUBST. */
6418 if (new_code != code
6419 || (CONST_INT_P (op1)
6420 && GET_MODE (op0) != GET_MODE (XEXP (x, 0))
6421 && GET_MODE (op0) != GET_MODE (XEXP (x, 1))))
6422 return gen_rtx_fmt_ee (new_code, mode, op0, op1);
6423
6424 /* Otherwise, keep this operation, but maybe change its operands.
6425 This also converts (ne (compare FOO BAR) 0) to (ne FOO BAR). */
6426 SUBST (XEXP (x, 0), op0);
6427 SUBST (XEXP (x, 1), op1);
6428 }
6429 break;
6430
6431 case IF_THEN_ELSE:
6432 return simplify_if_then_else (x);
6433
6434 case ZERO_EXTRACT:
6435 case SIGN_EXTRACT:
6436 case ZERO_EXTEND:
6437 case SIGN_EXTEND:
6438 /* If we are processing SET_DEST, we are done. */
6439 if (in_dest)
6440 return x;
6441
6442 return expand_compound_operation (x);
6443
6444 case SET:
6445 return simplify_set (x);
6446
6447 case AND:
6448 case IOR:
6449 return simplify_logical (x);
6450
6451 case ASHIFT:
6452 case LSHIFTRT:
6453 case ASHIFTRT:
6454 case ROTATE:
6455 case ROTATERT:
6456 /* If this is a shift by a constant amount, simplify it. */
6457 if (CONST_INT_P (XEXP (x, 1)))
6458 return simplify_shift_const (x, code, mode, XEXP (x, 0),
6459 INTVAL (XEXP (x, 1)));
6460
6461 else if (SHIFT_COUNT_TRUNCATED && !REG_P (XEXP (x, 1)))
6462 SUBST (XEXP (x, 1),
6463 force_to_mode (XEXP (x, 1), GET_MODE (XEXP (x, 1)),
6464 (HOST_WIDE_INT_1U
6465 << exact_log2 (GET_MODE_UNIT_BITSIZE
6466 (GET_MODE (x))))
6467 - 1,
6468 0));
6469 break;
6470
6471 default:
6472 break;
6473 }
6474
6475 return x;
6476 }
6477 \f
6478 /* Simplify X, an IF_THEN_ELSE expression. Return the new expression. */
6479
6480 static rtx
6481 simplify_if_then_else (rtx x)
6482 {
6483 machine_mode mode = GET_MODE (x);
6484 rtx cond = XEXP (x, 0);
6485 rtx true_rtx = XEXP (x, 1);
6486 rtx false_rtx = XEXP (x, 2);
6487 enum rtx_code true_code = GET_CODE (cond);
6488 int comparison_p = COMPARISON_P (cond);
6489 rtx temp;
6490 int i;
6491 enum rtx_code false_code;
6492 rtx reversed;
6493 scalar_int_mode int_mode, inner_mode;
6494
6495 /* Simplify storing of the truth value. */
6496 if (comparison_p && true_rtx == const_true_rtx && false_rtx == const0_rtx)
6497 return simplify_gen_relational (true_code, mode, VOIDmode,
6498 XEXP (cond, 0), XEXP (cond, 1));
6499
6500 /* Also when the truth value has to be reversed. */
6501 if (comparison_p
6502 && true_rtx == const0_rtx && false_rtx == const_true_rtx
6503 && (reversed = reversed_comparison (cond, mode)))
6504 return reversed;
6505
6506 /* Sometimes we can simplify the arm of an IF_THEN_ELSE if a register used
6507 in it is being compared against certain values. Get the true and false
6508 comparisons and see if that says anything about the value of each arm. */
6509
6510 if (comparison_p
6511 && ((false_code = reversed_comparison_code (cond, NULL))
6512 != UNKNOWN)
6513 && REG_P (XEXP (cond, 0)))
6514 {
6515 HOST_WIDE_INT nzb;
6516 rtx from = XEXP (cond, 0);
6517 rtx true_val = XEXP (cond, 1);
6518 rtx false_val = true_val;
6519 int swapped = 0;
6520
6521 /* If FALSE_CODE is EQ, swap the codes and arms. */
6522
6523 if (false_code == EQ)
6524 {
6525 swapped = 1, true_code = EQ, false_code = NE;
6526 std::swap (true_rtx, false_rtx);
6527 }
6528
6529 scalar_int_mode from_mode;
6530 if (is_a <scalar_int_mode> (GET_MODE (from), &from_mode))
6531 {
6532 /* If we are comparing against zero and the expression being
6533 tested has only a single bit that might be nonzero, that is
6534 its value when it is not equal to zero. Similarly if it is
6535 known to be -1 or 0. */
6536 if (true_code == EQ
6537 && true_val == const0_rtx
6538 && pow2p_hwi (nzb = nonzero_bits (from, from_mode)))
6539 {
6540 false_code = EQ;
6541 false_val = gen_int_mode (nzb, from_mode);
6542 }
6543 else if (true_code == EQ
6544 && true_val == const0_rtx
6545 && (num_sign_bit_copies (from, from_mode)
6546 == GET_MODE_PRECISION (from_mode)))
6547 {
6548 false_code = EQ;
6549 false_val = constm1_rtx;
6550 }
6551 }
6552
6553 /* Now simplify an arm if we know the value of the register in the
6554 branch and it is used in the arm. Be careful due to the potential
6555 of locally-shared RTL. */
6556
6557 if (reg_mentioned_p (from, true_rtx))
6558 true_rtx = subst (known_cond (copy_rtx (true_rtx), true_code,
6559 from, true_val),
6560 pc_rtx, pc_rtx, 0, 0, 0);
6561 if (reg_mentioned_p (from, false_rtx))
6562 false_rtx = subst (known_cond (copy_rtx (false_rtx), false_code,
6563 from, false_val),
6564 pc_rtx, pc_rtx, 0, 0, 0);
6565
6566 SUBST (XEXP (x, 1), swapped ? false_rtx : true_rtx);
6567 SUBST (XEXP (x, 2), swapped ? true_rtx : false_rtx);
6568
6569 true_rtx = XEXP (x, 1);
6570 false_rtx = XEXP (x, 2);
6571 true_code = GET_CODE (cond);
6572 }
6573
6574 /* If we have (if_then_else FOO (pc) (label_ref BAR)) and FOO can be
6575 reversed, do so to avoid needing two sets of patterns for
6576 subtract-and-branch insns. Similarly if we have a constant in the true
6577 arm, the false arm is the same as the first operand of the comparison, or
6578 the false arm is more complicated than the true arm. */
6579
6580 if (comparison_p
6581 && reversed_comparison_code (cond, NULL) != UNKNOWN
6582 && (true_rtx == pc_rtx
6583 || (CONSTANT_P (true_rtx)
6584 && !CONST_INT_P (false_rtx) && false_rtx != pc_rtx)
6585 || true_rtx == const0_rtx
6586 || (OBJECT_P (true_rtx) && !OBJECT_P (false_rtx))
6587 || (GET_CODE (true_rtx) == SUBREG && OBJECT_P (SUBREG_REG (true_rtx))
6588 && !OBJECT_P (false_rtx))
6589 || reg_mentioned_p (true_rtx, false_rtx)
6590 || rtx_equal_p (false_rtx, XEXP (cond, 0))))
6591 {
6592 SUBST (XEXP (x, 0), reversed_comparison (cond, GET_MODE (cond)));
6593 SUBST (XEXP (x, 1), false_rtx);
6594 SUBST (XEXP (x, 2), true_rtx);
6595
6596 std::swap (true_rtx, false_rtx);
6597 cond = XEXP (x, 0);
6598
6599 /* It is possible that the conditional has been simplified out. */
6600 true_code = GET_CODE (cond);
6601 comparison_p = COMPARISON_P (cond);
6602 }
6603
6604 /* If the two arms are identical, we don't need the comparison. */
6605
6606 if (rtx_equal_p (true_rtx, false_rtx) && ! side_effects_p (cond))
6607 return true_rtx;
6608
6609 /* Convert a == b ? b : a to "a". */
6610 if (true_code == EQ && ! side_effects_p (cond)
6611 && !HONOR_NANS (mode)
6612 && rtx_equal_p (XEXP (cond, 0), false_rtx)
6613 && rtx_equal_p (XEXP (cond, 1), true_rtx))
6614 return false_rtx;
6615 else if (true_code == NE && ! side_effects_p (cond)
6616 && !HONOR_NANS (mode)
6617 && rtx_equal_p (XEXP (cond, 0), true_rtx)
6618 && rtx_equal_p (XEXP (cond, 1), false_rtx))
6619 return true_rtx;
6620
6621 /* Look for cases where we have (abs x) or (neg (abs X)). */
6622
6623 if (GET_MODE_CLASS (mode) == MODE_INT
6624 && comparison_p
6625 && XEXP (cond, 1) == const0_rtx
6626 && GET_CODE (false_rtx) == NEG
6627 && rtx_equal_p (true_rtx, XEXP (false_rtx, 0))
6628 && rtx_equal_p (true_rtx, XEXP (cond, 0))
6629 && ! side_effects_p (true_rtx))
6630 switch (true_code)
6631 {
6632 case GT:
6633 case GE:
6634 return simplify_gen_unary (ABS, mode, true_rtx, mode);
6635 case LT:
6636 case LE:
6637 return
6638 simplify_gen_unary (NEG, mode,
6639 simplify_gen_unary (ABS, mode, true_rtx, mode),
6640 mode);
6641 default:
6642 break;
6643 }
6644
6645 /* Look for MIN or MAX. */
6646
6647 if ((! FLOAT_MODE_P (mode)
6648 || (flag_unsafe_math_optimizations
6649 && !HONOR_NANS (mode)
6650 && !HONOR_SIGNED_ZEROS (mode)))
6651 && comparison_p
6652 && rtx_equal_p (XEXP (cond, 0), true_rtx)
6653 && rtx_equal_p (XEXP (cond, 1), false_rtx)
6654 && ! side_effects_p (cond))
6655 switch (true_code)
6656 {
6657 case GE:
6658 case GT:
6659 return simplify_gen_binary (SMAX, mode, true_rtx, false_rtx);
6660 case LE:
6661 case LT:
6662 return simplify_gen_binary (SMIN, mode, true_rtx, false_rtx);
6663 case GEU:
6664 case GTU:
6665 return simplify_gen_binary (UMAX, mode, true_rtx, false_rtx);
6666 case LEU:
6667 case LTU:
6668 return simplify_gen_binary (UMIN, mode, true_rtx, false_rtx);
6669 default:
6670 break;
6671 }
6672
6673 /* If we have (if_then_else COND (OP Z C1) Z) and OP is an identity when its
6674 second operand is zero, this can be done as (OP Z (mult COND C2)) where
6675 C2 = C1 * STORE_FLAG_VALUE. Similarly if OP has an outer ZERO_EXTEND or
6676 SIGN_EXTEND as long as Z is already extended (so we don't destroy it).
6677 We can do this kind of thing in some cases when STORE_FLAG_VALUE is
6678 neither 1 or -1, but it isn't worth checking for. */
6679
6680 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
6681 && comparison_p
6682 && is_int_mode (mode, &int_mode)
6683 && ! side_effects_p (x))
6684 {
6685 rtx t = make_compound_operation (true_rtx, SET);
6686 rtx f = make_compound_operation (false_rtx, SET);
6687 rtx cond_op0 = XEXP (cond, 0);
6688 rtx cond_op1 = XEXP (cond, 1);
6689 enum rtx_code op = UNKNOWN, extend_op = UNKNOWN;
6690 scalar_int_mode m = int_mode;
6691 rtx z = 0, c1 = NULL_RTX;
6692
6693 if ((GET_CODE (t) == PLUS || GET_CODE (t) == MINUS
6694 || GET_CODE (t) == IOR || GET_CODE (t) == XOR
6695 || GET_CODE (t) == ASHIFT
6696 || GET_CODE (t) == LSHIFTRT || GET_CODE (t) == ASHIFTRT)
6697 && rtx_equal_p (XEXP (t, 0), f))
6698 c1 = XEXP (t, 1), op = GET_CODE (t), z = f;
6699
6700 /* If an identity-zero op is commutative, check whether there
6701 would be a match if we swapped the operands. */
6702 else if ((GET_CODE (t) == PLUS || GET_CODE (t) == IOR
6703 || GET_CODE (t) == XOR)
6704 && rtx_equal_p (XEXP (t, 1), f))
6705 c1 = XEXP (t, 0), op = GET_CODE (t), z = f;
6706 else if (GET_CODE (t) == SIGN_EXTEND
6707 && is_a <scalar_int_mode> (GET_MODE (XEXP (t, 0)), &inner_mode)
6708 && (GET_CODE (XEXP (t, 0)) == PLUS
6709 || GET_CODE (XEXP (t, 0)) == MINUS
6710 || GET_CODE (XEXP (t, 0)) == IOR
6711 || GET_CODE (XEXP (t, 0)) == XOR
6712 || GET_CODE (XEXP (t, 0)) == ASHIFT
6713 || GET_CODE (XEXP (t, 0)) == LSHIFTRT
6714 || GET_CODE (XEXP (t, 0)) == ASHIFTRT)
6715 && GET_CODE (XEXP (XEXP (t, 0), 0)) == SUBREG
6716 && subreg_lowpart_p (XEXP (XEXP (t, 0), 0))
6717 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 0)), f)
6718 && (num_sign_bit_copies (f, GET_MODE (f))
6719 > (unsigned int)
6720 (GET_MODE_PRECISION (int_mode)
6721 - GET_MODE_PRECISION (inner_mode))))
6722 {
6723 c1 = XEXP (XEXP (t, 0), 1); z = f; op = GET_CODE (XEXP (t, 0));
6724 extend_op = SIGN_EXTEND;
6725 m = inner_mode;
6726 }
6727 else if (GET_CODE (t) == SIGN_EXTEND
6728 && is_a <scalar_int_mode> (GET_MODE (XEXP (t, 0)), &inner_mode)
6729 && (GET_CODE (XEXP (t, 0)) == PLUS
6730 || GET_CODE (XEXP (t, 0)) == IOR
6731 || GET_CODE (XEXP (t, 0)) == XOR)
6732 && GET_CODE (XEXP (XEXP (t, 0), 1)) == SUBREG
6733 && subreg_lowpart_p (XEXP (XEXP (t, 0), 1))
6734 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 1)), f)
6735 && (num_sign_bit_copies (f, GET_MODE (f))
6736 > (unsigned int)
6737 (GET_MODE_PRECISION (int_mode)
6738 - GET_MODE_PRECISION (inner_mode))))
6739 {
6740 c1 = XEXP (XEXP (t, 0), 0); z = f; op = GET_CODE (XEXP (t, 0));
6741 extend_op = SIGN_EXTEND;
6742 m = inner_mode;
6743 }
6744 else if (GET_CODE (t) == ZERO_EXTEND
6745 && is_a <scalar_int_mode> (GET_MODE (XEXP (t, 0)), &inner_mode)
6746 && (GET_CODE (XEXP (t, 0)) == PLUS
6747 || GET_CODE (XEXP (t, 0)) == MINUS
6748 || GET_CODE (XEXP (t, 0)) == IOR
6749 || GET_CODE (XEXP (t, 0)) == XOR
6750 || GET_CODE (XEXP (t, 0)) == ASHIFT
6751 || GET_CODE (XEXP (t, 0)) == LSHIFTRT
6752 || GET_CODE (XEXP (t, 0)) == ASHIFTRT)
6753 && GET_CODE (XEXP (XEXP (t, 0), 0)) == SUBREG
6754 && HWI_COMPUTABLE_MODE_P (int_mode)
6755 && subreg_lowpart_p (XEXP (XEXP (t, 0), 0))
6756 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 0)), f)
6757 && ((nonzero_bits (f, GET_MODE (f))
6758 & ~GET_MODE_MASK (inner_mode))
6759 == 0))
6760 {
6761 c1 = XEXP (XEXP (t, 0), 1); z = f; op = GET_CODE (XEXP (t, 0));
6762 extend_op = ZERO_EXTEND;
6763 m = inner_mode;
6764 }
6765 else if (GET_CODE (t) == ZERO_EXTEND
6766 && is_a <scalar_int_mode> (GET_MODE (XEXP (t, 0)), &inner_mode)
6767 && (GET_CODE (XEXP (t, 0)) == PLUS
6768 || GET_CODE (XEXP (t, 0)) == IOR
6769 || GET_CODE (XEXP (t, 0)) == XOR)
6770 && GET_CODE (XEXP (XEXP (t, 0), 1)) == SUBREG
6771 && HWI_COMPUTABLE_MODE_P (int_mode)
6772 && subreg_lowpart_p (XEXP (XEXP (t, 0), 1))
6773 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 1)), f)
6774 && ((nonzero_bits (f, GET_MODE (f))
6775 & ~GET_MODE_MASK (inner_mode))
6776 == 0))
6777 {
6778 c1 = XEXP (XEXP (t, 0), 0); z = f; op = GET_CODE (XEXP (t, 0));
6779 extend_op = ZERO_EXTEND;
6780 m = inner_mode;
6781 }
6782
6783 if (z)
6784 {
6785 machine_mode cm = m;
6786 if ((op == ASHIFT || op == LSHIFTRT || op == ASHIFTRT)
6787 && GET_MODE (c1) != VOIDmode)
6788 cm = GET_MODE (c1);
6789 temp = subst (simplify_gen_relational (true_code, cm, VOIDmode,
6790 cond_op0, cond_op1),
6791 pc_rtx, pc_rtx, 0, 0, 0);
6792 temp = simplify_gen_binary (MULT, cm, temp,
6793 simplify_gen_binary (MULT, cm, c1,
6794 const_true_rtx));
6795 temp = subst (temp, pc_rtx, pc_rtx, 0, 0, 0);
6796 temp = simplify_gen_binary (op, m, gen_lowpart (m, z), temp);
6797
6798 if (extend_op != UNKNOWN)
6799 temp = simplify_gen_unary (extend_op, int_mode, temp, m);
6800
6801 return temp;
6802 }
6803 }
6804
6805 /* If we have (if_then_else (ne A 0) C1 0) and either A is known to be 0 or
6806 1 and C1 is a single bit or A is known to be 0 or -1 and C1 is the
6807 negation of a single bit, we can convert this operation to a shift. We
6808 can actually do this more generally, but it doesn't seem worth it. */
6809
6810 if (true_code == NE
6811 && is_a <scalar_int_mode> (mode, &int_mode)
6812 && XEXP (cond, 1) == const0_rtx
6813 && false_rtx == const0_rtx
6814 && CONST_INT_P (true_rtx)
6815 && ((nonzero_bits (XEXP (cond, 0), int_mode) == 1
6816 && (i = exact_log2 (UINTVAL (true_rtx))) >= 0)
6817 || ((num_sign_bit_copies (XEXP (cond, 0), int_mode)
6818 == GET_MODE_PRECISION (int_mode))
6819 && (i = exact_log2 (-UINTVAL (true_rtx))) >= 0)))
6820 return
6821 simplify_shift_const (NULL_RTX, ASHIFT, int_mode,
6822 gen_lowpart (int_mode, XEXP (cond, 0)), i);
6823
6824 /* (IF_THEN_ELSE (NE A 0) C1 0) is A or a zero-extend of A if the only
6825 non-zero bit in A is C1. */
6826 if (true_code == NE && XEXP (cond, 1) == const0_rtx
6827 && false_rtx == const0_rtx && CONST_INT_P (true_rtx)
6828 && is_a <scalar_int_mode> (mode, &int_mode)
6829 && is_a <scalar_int_mode> (GET_MODE (XEXP (cond, 0)), &inner_mode)
6830 && (UINTVAL (true_rtx) & GET_MODE_MASK (int_mode))
6831 == nonzero_bits (XEXP (cond, 0), inner_mode)
6832 && (i = exact_log2 (UINTVAL (true_rtx) & GET_MODE_MASK (int_mode))) >= 0)
6833 {
6834 rtx val = XEXP (cond, 0);
6835 if (inner_mode == int_mode)
6836 return val;
6837 else if (GET_MODE_PRECISION (inner_mode) < GET_MODE_PRECISION (int_mode))
6838 return simplify_gen_unary (ZERO_EXTEND, int_mode, val, inner_mode);
6839 }
6840
6841 return x;
6842 }
6843 \f
6844 /* Simplify X, a SET expression. Return the new expression. */
6845
6846 static rtx
6847 simplify_set (rtx x)
6848 {
6849 rtx src = SET_SRC (x);
6850 rtx dest = SET_DEST (x);
6851 machine_mode mode
6852 = GET_MODE (src) != VOIDmode ? GET_MODE (src) : GET_MODE (dest);
6853 rtx_insn *other_insn;
6854 rtx *cc_use;
6855 scalar_int_mode int_mode;
6856
6857 /* (set (pc) (return)) gets written as (return). */
6858 if (GET_CODE (dest) == PC && ANY_RETURN_P (src))
6859 return src;
6860
6861 /* Now that we know for sure which bits of SRC we are using, see if we can
6862 simplify the expression for the object knowing that we only need the
6863 low-order bits. */
6864
6865 if (GET_MODE_CLASS (mode) == MODE_INT && HWI_COMPUTABLE_MODE_P (mode))
6866 {
6867 src = force_to_mode (src, mode, HOST_WIDE_INT_M1U, 0);
6868 SUBST (SET_SRC (x), src);
6869 }
6870
6871 /* If we are setting CC0 or if the source is a COMPARE, look for the use of
6872 the comparison result and try to simplify it unless we already have used
6873 undobuf.other_insn. */
6874 if ((GET_MODE_CLASS (mode) == MODE_CC
6875 || GET_CODE (src) == COMPARE
6876 || CC0_P (dest))
6877 && (cc_use = find_single_use (dest, subst_insn, &other_insn)) != 0
6878 && (undobuf.other_insn == 0 || other_insn == undobuf.other_insn)
6879 && COMPARISON_P (*cc_use)
6880 && rtx_equal_p (XEXP (*cc_use, 0), dest))
6881 {
6882 enum rtx_code old_code = GET_CODE (*cc_use);
6883 enum rtx_code new_code;
6884 rtx op0, op1, tmp;
6885 int other_changed = 0;
6886 rtx inner_compare = NULL_RTX;
6887 machine_mode compare_mode = GET_MODE (dest);
6888
6889 if (GET_CODE (src) == COMPARE)
6890 {
6891 op0 = XEXP (src, 0), op1 = XEXP (src, 1);
6892 if (GET_CODE (op0) == COMPARE && op1 == const0_rtx)
6893 {
6894 inner_compare = op0;
6895 op0 = XEXP (inner_compare, 0), op1 = XEXP (inner_compare, 1);
6896 }
6897 }
6898 else
6899 op0 = src, op1 = CONST0_RTX (GET_MODE (src));
6900
6901 tmp = simplify_relational_operation (old_code, compare_mode, VOIDmode,
6902 op0, op1);
6903 if (!tmp)
6904 new_code = old_code;
6905 else if (!CONSTANT_P (tmp))
6906 {
6907 new_code = GET_CODE (tmp);
6908 op0 = XEXP (tmp, 0);
6909 op1 = XEXP (tmp, 1);
6910 }
6911 else
6912 {
6913 rtx pat = PATTERN (other_insn);
6914 undobuf.other_insn = other_insn;
6915 SUBST (*cc_use, tmp);
6916
6917 /* Attempt to simplify CC user. */
6918 if (GET_CODE (pat) == SET)
6919 {
6920 rtx new_rtx = simplify_rtx (SET_SRC (pat));
6921 if (new_rtx != NULL_RTX)
6922 SUBST (SET_SRC (pat), new_rtx);
6923 }
6924
6925 /* Convert X into a no-op move. */
6926 SUBST (SET_DEST (x), pc_rtx);
6927 SUBST (SET_SRC (x), pc_rtx);
6928 return x;
6929 }
6930
6931 /* Simplify our comparison, if possible. */
6932 new_code = simplify_comparison (new_code, &op0, &op1);
6933
6934 #ifdef SELECT_CC_MODE
6935 /* If this machine has CC modes other than CCmode, check to see if we
6936 need to use a different CC mode here. */
6937 if (GET_MODE_CLASS (GET_MODE (op0)) == MODE_CC)
6938 compare_mode = GET_MODE (op0);
6939 else if (inner_compare
6940 && GET_MODE_CLASS (GET_MODE (inner_compare)) == MODE_CC
6941 && new_code == old_code
6942 && op0 == XEXP (inner_compare, 0)
6943 && op1 == XEXP (inner_compare, 1))
6944 compare_mode = GET_MODE (inner_compare);
6945 else
6946 compare_mode = SELECT_CC_MODE (new_code, op0, op1);
6947
6948 /* If the mode changed, we have to change SET_DEST, the mode in the
6949 compare, and the mode in the place SET_DEST is used. If SET_DEST is
6950 a hard register, just build new versions with the proper mode. If it
6951 is a pseudo, we lose unless it is only time we set the pseudo, in
6952 which case we can safely change its mode. */
6953 if (!HAVE_cc0 && compare_mode != GET_MODE (dest))
6954 {
6955 if (can_change_dest_mode (dest, 0, compare_mode))
6956 {
6957 unsigned int regno = REGNO (dest);
6958 rtx new_dest;
6959
6960 if (regno < FIRST_PSEUDO_REGISTER)
6961 new_dest = gen_rtx_REG (compare_mode, regno);
6962 else
6963 {
6964 SUBST_MODE (regno_reg_rtx[regno], compare_mode);
6965 new_dest = regno_reg_rtx[regno];
6966 }
6967
6968 SUBST (SET_DEST (x), new_dest);
6969 SUBST (XEXP (*cc_use, 0), new_dest);
6970 other_changed = 1;
6971
6972 dest = new_dest;
6973 }
6974 }
6975 #endif /* SELECT_CC_MODE */
6976
6977 /* If the code changed, we have to build a new comparison in
6978 undobuf.other_insn. */
6979 if (new_code != old_code)
6980 {
6981 int other_changed_previously = other_changed;
6982 unsigned HOST_WIDE_INT mask;
6983 rtx old_cc_use = *cc_use;
6984
6985 SUBST (*cc_use, gen_rtx_fmt_ee (new_code, GET_MODE (*cc_use),
6986 dest, const0_rtx));
6987 other_changed = 1;
6988
6989 /* If the only change we made was to change an EQ into an NE or
6990 vice versa, OP0 has only one bit that might be nonzero, and OP1
6991 is zero, check if changing the user of the condition code will
6992 produce a valid insn. If it won't, we can keep the original code
6993 in that insn by surrounding our operation with an XOR. */
6994
6995 if (((old_code == NE && new_code == EQ)
6996 || (old_code == EQ && new_code == NE))
6997 && ! other_changed_previously && op1 == const0_rtx
6998 && HWI_COMPUTABLE_MODE_P (GET_MODE (op0))
6999 && pow2p_hwi (mask = nonzero_bits (op0, GET_MODE (op0))))
7000 {
7001 rtx pat = PATTERN (other_insn), note = 0;
7002
7003 if ((recog_for_combine (&pat, other_insn, &note) < 0
7004 && ! check_asm_operands (pat)))
7005 {
7006 *cc_use = old_cc_use;
7007 other_changed = 0;
7008
7009 op0 = simplify_gen_binary (XOR, GET_MODE (op0), op0,
7010 gen_int_mode (mask,
7011 GET_MODE (op0)));
7012 }
7013 }
7014 }
7015
7016 if (other_changed)
7017 undobuf.other_insn = other_insn;
7018
7019 /* Don't generate a compare of a CC with 0, just use that CC. */
7020 if (GET_MODE (op0) == compare_mode && op1 == const0_rtx)
7021 {
7022 SUBST (SET_SRC (x), op0);
7023 src = SET_SRC (x);
7024 }
7025 /* Otherwise, if we didn't previously have the same COMPARE we
7026 want, create it from scratch. */
7027 else if (GET_CODE (src) != COMPARE || GET_MODE (src) != compare_mode
7028 || XEXP (src, 0) != op0 || XEXP (src, 1) != op1)
7029 {
7030 SUBST (SET_SRC (x), gen_rtx_COMPARE (compare_mode, op0, op1));
7031 src = SET_SRC (x);
7032 }
7033 }
7034 else
7035 {
7036 /* Get SET_SRC in a form where we have placed back any
7037 compound expressions. Then do the checks below. */
7038 src = make_compound_operation (src, SET);
7039 SUBST (SET_SRC (x), src);
7040 }
7041
7042 /* If we have (set x (subreg:m1 (op:m2 ...) 0)) with OP being some operation,
7043 and X being a REG or (subreg (reg)), we may be able to convert this to
7044 (set (subreg:m2 x) (op)).
7045
7046 We can always do this if M1 is narrower than M2 because that means that
7047 we only care about the low bits of the result.
7048
7049 However, on machines without WORD_REGISTER_OPERATIONS defined, we cannot
7050 perform a narrower operation than requested since the high-order bits will
7051 be undefined. On machine where it is defined, this transformation is safe
7052 as long as M1 and M2 have the same number of words. */
7053
7054 if (GET_CODE (src) == SUBREG && subreg_lowpart_p (src)
7055 && !OBJECT_P (SUBREG_REG (src))
7056 && (known_equal_after_align_up
7057 (GET_MODE_SIZE (GET_MODE (src)),
7058 GET_MODE_SIZE (GET_MODE (SUBREG_REG (src))),
7059 UNITS_PER_WORD))
7060 && (WORD_REGISTER_OPERATIONS || !paradoxical_subreg_p (src))
7061 && ! (REG_P (dest) && REGNO (dest) < FIRST_PSEUDO_REGISTER
7062 && !REG_CAN_CHANGE_MODE_P (REGNO (dest),
7063 GET_MODE (SUBREG_REG (src)),
7064 GET_MODE (src)))
7065 && (REG_P (dest)
7066 || (GET_CODE (dest) == SUBREG
7067 && REG_P (SUBREG_REG (dest)))))
7068 {
7069 SUBST (SET_DEST (x),
7070 gen_lowpart (GET_MODE (SUBREG_REG (src)),
7071 dest));
7072 SUBST (SET_SRC (x), SUBREG_REG (src));
7073
7074 src = SET_SRC (x), dest = SET_DEST (x);
7075 }
7076
7077 /* If we have (set (cc0) (subreg ...)), we try to remove the subreg
7078 in SRC. */
7079 if (dest == cc0_rtx
7080 && partial_subreg_p (src)
7081 && subreg_lowpart_p (src))
7082 {
7083 rtx inner = SUBREG_REG (src);
7084 machine_mode inner_mode = GET_MODE (inner);
7085
7086 /* Here we make sure that we don't have a sign bit on. */
7087 if (val_signbit_known_clear_p (GET_MODE (src),
7088 nonzero_bits (inner, inner_mode)))
7089 {
7090 SUBST (SET_SRC (x), inner);
7091 src = SET_SRC (x);
7092 }
7093 }
7094
7095 /* If we have (set FOO (subreg:M (mem:N BAR) 0)) with M wider than N, this
7096 would require a paradoxical subreg. Replace the subreg with a
7097 zero_extend to avoid the reload that would otherwise be required.
7098 Don't do this unless we have a scalar integer mode, otherwise the
7099 transformation is incorrect. */
7100
7101 enum rtx_code extend_op;
7102 if (paradoxical_subreg_p (src)
7103 && MEM_P (SUBREG_REG (src))
7104 && SCALAR_INT_MODE_P (GET_MODE (src))
7105 && (extend_op = load_extend_op (GET_MODE (SUBREG_REG (src)))) != UNKNOWN)
7106 {
7107 SUBST (SET_SRC (x),
7108 gen_rtx_fmt_e (extend_op, GET_MODE (src), SUBREG_REG (src)));
7109
7110 src = SET_SRC (x);
7111 }
7112
7113 /* If we don't have a conditional move, SET_SRC is an IF_THEN_ELSE, and we
7114 are comparing an item known to be 0 or -1 against 0, use a logical
7115 operation instead. Check for one of the arms being an IOR of the other
7116 arm with some value. We compute three terms to be IOR'ed together. In
7117 practice, at most two will be nonzero. Then we do the IOR's. */
7118
7119 if (GET_CODE (dest) != PC
7120 && GET_CODE (src) == IF_THEN_ELSE
7121 && is_int_mode (GET_MODE (src), &int_mode)
7122 && (GET_CODE (XEXP (src, 0)) == EQ || GET_CODE (XEXP (src, 0)) == NE)
7123 && XEXP (XEXP (src, 0), 1) == const0_rtx
7124 && int_mode == GET_MODE (XEXP (XEXP (src, 0), 0))
7125 && (!HAVE_conditional_move
7126 || ! can_conditionally_move_p (int_mode))
7127 && (num_sign_bit_copies (XEXP (XEXP (src, 0), 0), int_mode)
7128 == GET_MODE_PRECISION (int_mode))
7129 && ! side_effects_p (src))
7130 {
7131 rtx true_rtx = (GET_CODE (XEXP (src, 0)) == NE
7132 ? XEXP (src, 1) : XEXP (src, 2));
7133 rtx false_rtx = (GET_CODE (XEXP (src, 0)) == NE
7134 ? XEXP (src, 2) : XEXP (src, 1));
7135 rtx term1 = const0_rtx, term2, term3;
7136
7137 if (GET_CODE (true_rtx) == IOR
7138 && rtx_equal_p (XEXP (true_rtx, 0), false_rtx))
7139 term1 = false_rtx, true_rtx = XEXP (true_rtx, 1), false_rtx = const0_rtx;
7140 else if (GET_CODE (true_rtx) == IOR
7141 && rtx_equal_p (XEXP (true_rtx, 1), false_rtx))
7142 term1 = false_rtx, true_rtx = XEXP (true_rtx, 0), false_rtx = const0_rtx;
7143 else if (GET_CODE (false_rtx) == IOR
7144 && rtx_equal_p (XEXP (false_rtx, 0), true_rtx))
7145 term1 = true_rtx, false_rtx = XEXP (false_rtx, 1), true_rtx = const0_rtx;
7146 else if (GET_CODE (false_rtx) == IOR
7147 && rtx_equal_p (XEXP (false_rtx, 1), true_rtx))
7148 term1 = true_rtx, false_rtx = XEXP (false_rtx, 0), true_rtx = const0_rtx;
7149
7150 term2 = simplify_gen_binary (AND, int_mode,
7151 XEXP (XEXP (src, 0), 0), true_rtx);
7152 term3 = simplify_gen_binary (AND, int_mode,
7153 simplify_gen_unary (NOT, int_mode,
7154 XEXP (XEXP (src, 0), 0),
7155 int_mode),
7156 false_rtx);
7157
7158 SUBST (SET_SRC (x),
7159 simplify_gen_binary (IOR, int_mode,
7160 simplify_gen_binary (IOR, int_mode,
7161 term1, term2),
7162 term3));
7163
7164 src = SET_SRC (x);
7165 }
7166
7167 /* If either SRC or DEST is a CLOBBER of (const_int 0), make this
7168 whole thing fail. */
7169 if (GET_CODE (src) == CLOBBER && XEXP (src, 0) == const0_rtx)
7170 return src;
7171 else if (GET_CODE (dest) == CLOBBER && XEXP (dest, 0) == const0_rtx)
7172 return dest;
7173 else
7174 /* Convert this into a field assignment operation, if possible. */
7175 return make_field_assignment (x);
7176 }
7177 \f
7178 /* Simplify, X, and AND, IOR, or XOR operation, and return the simplified
7179 result. */
7180
7181 static rtx
7182 simplify_logical (rtx x)
7183 {
7184 rtx op0 = XEXP (x, 0);
7185 rtx op1 = XEXP (x, 1);
7186 scalar_int_mode mode;
7187
7188 switch (GET_CODE (x))
7189 {
7190 case AND:
7191 /* We can call simplify_and_const_int only if we don't lose
7192 any (sign) bits when converting INTVAL (op1) to
7193 "unsigned HOST_WIDE_INT". */
7194 if (is_a <scalar_int_mode> (GET_MODE (x), &mode)
7195 && CONST_INT_P (op1)
7196 && (HWI_COMPUTABLE_MODE_P (mode)
7197 || INTVAL (op1) > 0))
7198 {
7199 x = simplify_and_const_int (x, mode, op0, INTVAL (op1));
7200 if (GET_CODE (x) != AND)
7201 return x;
7202
7203 op0 = XEXP (x, 0);
7204 op1 = XEXP (x, 1);
7205 }
7206
7207 /* If we have any of (and (ior A B) C) or (and (xor A B) C),
7208 apply the distributive law and then the inverse distributive
7209 law to see if things simplify. */
7210 if (GET_CODE (op0) == IOR || GET_CODE (op0) == XOR)
7211 {
7212 rtx result = distribute_and_simplify_rtx (x, 0);
7213 if (result)
7214 return result;
7215 }
7216 if (GET_CODE (op1) == IOR || GET_CODE (op1) == XOR)
7217 {
7218 rtx result = distribute_and_simplify_rtx (x, 1);
7219 if (result)
7220 return result;
7221 }
7222 break;
7223
7224 case IOR:
7225 /* If we have (ior (and A B) C), apply the distributive law and then
7226 the inverse distributive law to see if things simplify. */
7227
7228 if (GET_CODE (op0) == AND)
7229 {
7230 rtx result = distribute_and_simplify_rtx (x, 0);
7231 if (result)
7232 return result;
7233 }
7234
7235 if (GET_CODE (op1) == AND)
7236 {
7237 rtx result = distribute_and_simplify_rtx (x, 1);
7238 if (result)
7239 return result;
7240 }
7241 break;
7242
7243 default:
7244 gcc_unreachable ();
7245 }
7246
7247 return x;
7248 }
7249 \f
7250 /* We consider ZERO_EXTRACT, SIGN_EXTRACT, and SIGN_EXTEND as "compound
7251 operations" because they can be replaced with two more basic operations.
7252 ZERO_EXTEND is also considered "compound" because it can be replaced with
7253 an AND operation, which is simpler, though only one operation.
7254
7255 The function expand_compound_operation is called with an rtx expression
7256 and will convert it to the appropriate shifts and AND operations,
7257 simplifying at each stage.
7258
7259 The function make_compound_operation is called to convert an expression
7260 consisting of shifts and ANDs into the equivalent compound expression.
7261 It is the inverse of this function, loosely speaking. */
7262
7263 static rtx
7264 expand_compound_operation (rtx x)
7265 {
7266 unsigned HOST_WIDE_INT pos = 0, len;
7267 int unsignedp = 0;
7268 unsigned int modewidth;
7269 rtx tem;
7270 scalar_int_mode inner_mode;
7271
7272 switch (GET_CODE (x))
7273 {
7274 case ZERO_EXTEND:
7275 unsignedp = 1;
7276 /* FALLTHRU */
7277 case SIGN_EXTEND:
7278 /* We can't necessarily use a const_int for a multiword mode;
7279 it depends on implicitly extending the value.
7280 Since we don't know the right way to extend it,
7281 we can't tell whether the implicit way is right.
7282
7283 Even for a mode that is no wider than a const_int,
7284 we can't win, because we need to sign extend one of its bits through
7285 the rest of it, and we don't know which bit. */
7286 if (CONST_INT_P (XEXP (x, 0)))
7287 return x;
7288
7289 /* Reject modes that aren't scalar integers because turning vector
7290 or complex modes into shifts causes problems. */
7291 if (!is_a <scalar_int_mode> (GET_MODE (XEXP (x, 0)), &inner_mode))
7292 return x;
7293
7294 /* Return if (subreg:MODE FROM 0) is not a safe replacement for
7295 (zero_extend:MODE FROM) or (sign_extend:MODE FROM). It is for any MEM
7296 because (SUBREG (MEM...)) is guaranteed to cause the MEM to be
7297 reloaded. If not for that, MEM's would very rarely be safe.
7298
7299 Reject modes bigger than a word, because we might not be able
7300 to reference a two-register group starting with an arbitrary register
7301 (and currently gen_lowpart might crash for a SUBREG). */
7302
7303 if (GET_MODE_SIZE (inner_mode) > UNITS_PER_WORD)
7304 return x;
7305
7306 len = GET_MODE_PRECISION (inner_mode);
7307 /* If the inner object has VOIDmode (the only way this can happen
7308 is if it is an ASM_OPERANDS), we can't do anything since we don't
7309 know how much masking to do. */
7310 if (len == 0)
7311 return x;
7312
7313 break;
7314
7315 case ZERO_EXTRACT:
7316 unsignedp = 1;
7317
7318 /* fall through */
7319
7320 case SIGN_EXTRACT:
7321 /* If the operand is a CLOBBER, just return it. */
7322 if (GET_CODE (XEXP (x, 0)) == CLOBBER)
7323 return XEXP (x, 0);
7324
7325 if (!CONST_INT_P (XEXP (x, 1))
7326 || !CONST_INT_P (XEXP (x, 2)))
7327 return x;
7328
7329 /* Reject modes that aren't scalar integers because turning vector
7330 or complex modes into shifts causes problems. */
7331 if (!is_a <scalar_int_mode> (GET_MODE (XEXP (x, 0)), &inner_mode))
7332 return x;
7333
7334 len = INTVAL (XEXP (x, 1));
7335 pos = INTVAL (XEXP (x, 2));
7336
7337 /* This should stay within the object being extracted, fail otherwise. */
7338 if (len + pos > GET_MODE_PRECISION (inner_mode))
7339 return x;
7340
7341 if (BITS_BIG_ENDIAN)
7342 pos = GET_MODE_PRECISION (inner_mode) - len - pos;
7343
7344 break;
7345
7346 default:
7347 return x;
7348 }
7349
7350 /* We've rejected non-scalar operations by now. */
7351 scalar_int_mode mode = as_a <scalar_int_mode> (GET_MODE (x));
7352
7353 /* Convert sign extension to zero extension, if we know that the high
7354 bit is not set, as this is easier to optimize. It will be converted
7355 back to cheaper alternative in make_extraction. */
7356 if (GET_CODE (x) == SIGN_EXTEND
7357 && HWI_COMPUTABLE_MODE_P (mode)
7358 && ((nonzero_bits (XEXP (x, 0), inner_mode)
7359 & ~(((unsigned HOST_WIDE_INT) GET_MODE_MASK (inner_mode)) >> 1))
7360 == 0))
7361 {
7362 rtx temp = gen_rtx_ZERO_EXTEND (mode, XEXP (x, 0));
7363 rtx temp2 = expand_compound_operation (temp);
7364
7365 /* Make sure this is a profitable operation. */
7366 if (set_src_cost (x, mode, optimize_this_for_speed_p)
7367 > set_src_cost (temp2, mode, optimize_this_for_speed_p))
7368 return temp2;
7369 else if (set_src_cost (x, mode, optimize_this_for_speed_p)
7370 > set_src_cost (temp, mode, optimize_this_for_speed_p))
7371 return temp;
7372 else
7373 return x;
7374 }
7375
7376 /* We can optimize some special cases of ZERO_EXTEND. */
7377 if (GET_CODE (x) == ZERO_EXTEND)
7378 {
7379 /* (zero_extend:DI (truncate:SI foo:DI)) is just foo:DI if we
7380 know that the last value didn't have any inappropriate bits
7381 set. */
7382 if (GET_CODE (XEXP (x, 0)) == TRUNCATE
7383 && GET_MODE (XEXP (XEXP (x, 0), 0)) == mode
7384 && HWI_COMPUTABLE_MODE_P (mode)
7385 && (nonzero_bits (XEXP (XEXP (x, 0), 0), mode)
7386 & ~GET_MODE_MASK (inner_mode)) == 0)
7387 return XEXP (XEXP (x, 0), 0);
7388
7389 /* Likewise for (zero_extend:DI (subreg:SI foo:DI 0)). */
7390 if (GET_CODE (XEXP (x, 0)) == SUBREG
7391 && GET_MODE (SUBREG_REG (XEXP (x, 0))) == mode
7392 && subreg_lowpart_p (XEXP (x, 0))
7393 && HWI_COMPUTABLE_MODE_P (mode)
7394 && (nonzero_bits (SUBREG_REG (XEXP (x, 0)), mode)
7395 & ~GET_MODE_MASK (inner_mode)) == 0)
7396 return SUBREG_REG (XEXP (x, 0));
7397
7398 /* (zero_extend:DI (truncate:SI foo:DI)) is just foo:DI when foo
7399 is a comparison and STORE_FLAG_VALUE permits. This is like
7400 the first case, but it works even when MODE is larger
7401 than HOST_WIDE_INT. */
7402 if (GET_CODE (XEXP (x, 0)) == TRUNCATE
7403 && GET_MODE (XEXP (XEXP (x, 0), 0)) == mode
7404 && COMPARISON_P (XEXP (XEXP (x, 0), 0))
7405 && GET_MODE_PRECISION (inner_mode) <= HOST_BITS_PER_WIDE_INT
7406 && (STORE_FLAG_VALUE & ~GET_MODE_MASK (inner_mode)) == 0)
7407 return XEXP (XEXP (x, 0), 0);
7408
7409 /* Likewise for (zero_extend:DI (subreg:SI foo:DI 0)). */
7410 if (GET_CODE (XEXP (x, 0)) == SUBREG
7411 && GET_MODE (SUBREG_REG (XEXP (x, 0))) == mode
7412 && subreg_lowpart_p (XEXP (x, 0))
7413 && COMPARISON_P (SUBREG_REG (XEXP (x, 0)))
7414 && GET_MODE_PRECISION (inner_mode) <= HOST_BITS_PER_WIDE_INT
7415 && (STORE_FLAG_VALUE & ~GET_MODE_MASK (inner_mode)) == 0)
7416 return SUBREG_REG (XEXP (x, 0));
7417
7418 }
7419
7420 /* If we reach here, we want to return a pair of shifts. The inner
7421 shift is a left shift of BITSIZE - POS - LEN bits. The outer
7422 shift is a right shift of BITSIZE - LEN bits. It is arithmetic or
7423 logical depending on the value of UNSIGNEDP.
7424
7425 If this was a ZERO_EXTEND or ZERO_EXTRACT, this pair of shifts will be
7426 converted into an AND of a shift.
7427
7428 We must check for the case where the left shift would have a negative
7429 count. This can happen in a case like (x >> 31) & 255 on machines
7430 that can't shift by a constant. On those machines, we would first
7431 combine the shift with the AND to produce a variable-position
7432 extraction. Then the constant of 31 would be substituted in
7433 to produce such a position. */
7434
7435 modewidth = GET_MODE_PRECISION (mode);
7436 if (modewidth >= pos + len)
7437 {
7438 tem = gen_lowpart (mode, XEXP (x, 0));
7439 if (!tem || GET_CODE (tem) == CLOBBER)
7440 return x;
7441 tem = simplify_shift_const (NULL_RTX, ASHIFT, mode,
7442 tem, modewidth - pos - len);
7443 tem = simplify_shift_const (NULL_RTX, unsignedp ? LSHIFTRT : ASHIFTRT,
7444 mode, tem, modewidth - len);
7445 }
7446 else if (unsignedp && len < HOST_BITS_PER_WIDE_INT)
7447 tem = simplify_and_const_int (NULL_RTX, mode,
7448 simplify_shift_const (NULL_RTX, LSHIFTRT,
7449 mode, XEXP (x, 0),
7450 pos),
7451 (HOST_WIDE_INT_1U << len) - 1);
7452 else
7453 /* Any other cases we can't handle. */
7454 return x;
7455
7456 /* If we couldn't do this for some reason, return the original
7457 expression. */
7458 if (GET_CODE (tem) == CLOBBER)
7459 return x;
7460
7461 return tem;
7462 }
7463 \f
7464 /* X is a SET which contains an assignment of one object into
7465 a part of another (such as a bit-field assignment, STRICT_LOW_PART,
7466 or certain SUBREGS). If possible, convert it into a series of
7467 logical operations.
7468
7469 We half-heartedly support variable positions, but do not at all
7470 support variable lengths. */
7471
7472 static const_rtx
7473 expand_field_assignment (const_rtx x)
7474 {
7475 rtx inner;
7476 rtx pos; /* Always counts from low bit. */
7477 int len, inner_len;
7478 rtx mask, cleared, masked;
7479 scalar_int_mode compute_mode;
7480
7481 /* Loop until we find something we can't simplify. */
7482 while (1)
7483 {
7484 if (GET_CODE (SET_DEST (x)) == STRICT_LOW_PART
7485 && GET_CODE (XEXP (SET_DEST (x), 0)) == SUBREG)
7486 {
7487 rtx x0 = XEXP (SET_DEST (x), 0);
7488 if (!GET_MODE_PRECISION (GET_MODE (x0)).is_constant (&len))
7489 break;
7490 inner = SUBREG_REG (XEXP (SET_DEST (x), 0));
7491 pos = gen_int_mode (subreg_lsb (XEXP (SET_DEST (x), 0)),
7492 MAX_MODE_INT);
7493 }
7494 else if (GET_CODE (SET_DEST (x)) == ZERO_EXTRACT
7495 && CONST_INT_P (XEXP (SET_DEST (x), 1)))
7496 {
7497 inner = XEXP (SET_DEST (x), 0);
7498 if (!GET_MODE_PRECISION (GET_MODE (inner)).is_constant (&inner_len))
7499 break;
7500
7501 len = INTVAL (XEXP (SET_DEST (x), 1));
7502 pos = XEXP (SET_DEST (x), 2);
7503
7504 /* A constant position should stay within the width of INNER. */
7505 if (CONST_INT_P (pos) && INTVAL (pos) + len > inner_len)
7506 break;
7507
7508 if (BITS_BIG_ENDIAN)
7509 {
7510 if (CONST_INT_P (pos))
7511 pos = GEN_INT (inner_len - len - INTVAL (pos));
7512 else if (GET_CODE (pos) == MINUS
7513 && CONST_INT_P (XEXP (pos, 1))
7514 && INTVAL (XEXP (pos, 1)) == inner_len - len)
7515 /* If position is ADJUST - X, new position is X. */
7516 pos = XEXP (pos, 0);
7517 else
7518 pos = simplify_gen_binary (MINUS, GET_MODE (pos),
7519 gen_int_mode (inner_len - len,
7520 GET_MODE (pos)),
7521 pos);
7522 }
7523 }
7524
7525 /* If the destination is a subreg that overwrites the whole of the inner
7526 register, we can move the subreg to the source. */
7527 else if (GET_CODE (SET_DEST (x)) == SUBREG
7528 /* We need SUBREGs to compute nonzero_bits properly. */
7529 && nonzero_sign_valid
7530 && !read_modify_subreg_p (SET_DEST (x)))
7531 {
7532 x = gen_rtx_SET (SUBREG_REG (SET_DEST (x)),
7533 gen_lowpart
7534 (GET_MODE (SUBREG_REG (SET_DEST (x))),
7535 SET_SRC (x)));
7536 continue;
7537 }
7538 else
7539 break;
7540
7541 while (GET_CODE (inner) == SUBREG && subreg_lowpart_p (inner))
7542 inner = SUBREG_REG (inner);
7543
7544 /* Don't attempt bitwise arithmetic on non scalar integer modes. */
7545 if (!is_a <scalar_int_mode> (GET_MODE (inner), &compute_mode))
7546 {
7547 /* Don't do anything for vector or complex integral types. */
7548 if (! FLOAT_MODE_P (GET_MODE (inner)))
7549 break;
7550
7551 /* Try to find an integral mode to pun with. */
7552 if (!int_mode_for_size (GET_MODE_BITSIZE (GET_MODE (inner)), 0)
7553 .exists (&compute_mode))
7554 break;
7555
7556 inner = gen_lowpart (compute_mode, inner);
7557 }
7558
7559 /* Compute a mask of LEN bits, if we can do this on the host machine. */
7560 if (len >= HOST_BITS_PER_WIDE_INT)
7561 break;
7562
7563 /* Don't try to compute in too wide unsupported modes. */
7564 if (!targetm.scalar_mode_supported_p (compute_mode))
7565 break;
7566
7567 /* Now compute the equivalent expression. Make a copy of INNER
7568 for the SET_DEST in case it is a MEM into which we will substitute;
7569 we don't want shared RTL in that case. */
7570 mask = gen_int_mode ((HOST_WIDE_INT_1U << len) - 1,
7571 compute_mode);
7572 cleared = simplify_gen_binary (AND, compute_mode,
7573 simplify_gen_unary (NOT, compute_mode,
7574 simplify_gen_binary (ASHIFT,
7575 compute_mode,
7576 mask, pos),
7577 compute_mode),
7578 inner);
7579 masked = simplify_gen_binary (ASHIFT, compute_mode,
7580 simplify_gen_binary (
7581 AND, compute_mode,
7582 gen_lowpart (compute_mode, SET_SRC (x)),
7583 mask),
7584 pos);
7585
7586 x = gen_rtx_SET (copy_rtx (inner),
7587 simplify_gen_binary (IOR, compute_mode,
7588 cleared, masked));
7589 }
7590
7591 return x;
7592 }
7593 \f
7594 /* Return an RTX for a reference to LEN bits of INNER. If POS_RTX is nonzero,
7595 it is an RTX that represents the (variable) starting position; otherwise,
7596 POS is the (constant) starting bit position. Both are counted from the LSB.
7597
7598 UNSIGNEDP is nonzero for an unsigned reference and zero for a signed one.
7599
7600 IN_DEST is nonzero if this is a reference in the destination of a SET.
7601 This is used when a ZERO_ or SIGN_EXTRACT isn't needed. If nonzero,
7602 a STRICT_LOW_PART will be used, if zero, ZERO_EXTEND or SIGN_EXTEND will
7603 be used.
7604
7605 IN_COMPARE is nonzero if we are in a COMPARE. This means that a
7606 ZERO_EXTRACT should be built even for bits starting at bit 0.
7607
7608 MODE is the desired mode of the result (if IN_DEST == 0).
7609
7610 The result is an RTX for the extraction or NULL_RTX if the target
7611 can't handle it. */
7612
7613 static rtx
7614 make_extraction (machine_mode mode, rtx inner, HOST_WIDE_INT pos,
7615 rtx pos_rtx, unsigned HOST_WIDE_INT len, int unsignedp,
7616 int in_dest, int in_compare)
7617 {
7618 /* This mode describes the size of the storage area
7619 to fetch the overall value from. Within that, we
7620 ignore the POS lowest bits, etc. */
7621 machine_mode is_mode = GET_MODE (inner);
7622 machine_mode inner_mode;
7623 scalar_int_mode wanted_inner_mode;
7624 scalar_int_mode wanted_inner_reg_mode = word_mode;
7625 scalar_int_mode pos_mode = word_mode;
7626 machine_mode extraction_mode = word_mode;
7627 rtx new_rtx = 0;
7628 rtx orig_pos_rtx = pos_rtx;
7629 HOST_WIDE_INT orig_pos;
7630
7631 if (pos_rtx && CONST_INT_P (pos_rtx))
7632 pos = INTVAL (pos_rtx), pos_rtx = 0;
7633
7634 if (GET_CODE (inner) == SUBREG
7635 && subreg_lowpart_p (inner)
7636 && (paradoxical_subreg_p (inner)
7637 /* If trying or potentionally trying to extract
7638 bits outside of is_mode, don't look through
7639 non-paradoxical SUBREGs. See PR82192. */
7640 || (pos_rtx == NULL_RTX
7641 && known_le (pos + len, GET_MODE_PRECISION (is_mode)))))
7642 {
7643 /* If going from (subreg:SI (mem:QI ...)) to (mem:QI ...),
7644 consider just the QI as the memory to extract from.
7645 The subreg adds or removes high bits; its mode is
7646 irrelevant to the meaning of this extraction,
7647 since POS and LEN count from the lsb. */
7648 if (MEM_P (SUBREG_REG (inner)))
7649 is_mode = GET_MODE (SUBREG_REG (inner));
7650 inner = SUBREG_REG (inner);
7651 }
7652 else if (GET_CODE (inner) == ASHIFT
7653 && CONST_INT_P (XEXP (inner, 1))
7654 && pos_rtx == 0 && pos == 0
7655 && len > UINTVAL (XEXP (inner, 1)))
7656 {
7657 /* We're extracting the least significant bits of an rtx
7658 (ashift X (const_int C)), where LEN > C. Extract the
7659 least significant (LEN - C) bits of X, giving an rtx
7660 whose mode is MODE, then shift it left C times. */
7661 new_rtx = make_extraction (mode, XEXP (inner, 0),
7662 0, 0, len - INTVAL (XEXP (inner, 1)),
7663 unsignedp, in_dest, in_compare);
7664 if (new_rtx != 0)
7665 return gen_rtx_ASHIFT (mode, new_rtx, XEXP (inner, 1));
7666 }
7667 else if (GET_CODE (inner) == TRUNCATE
7668 /* If trying or potentionally trying to extract
7669 bits outside of is_mode, don't look through
7670 TRUNCATE. See PR82192. */
7671 && pos_rtx == NULL_RTX
7672 && known_le (pos + len, GET_MODE_PRECISION (is_mode)))
7673 inner = XEXP (inner, 0);
7674
7675 inner_mode = GET_MODE (inner);
7676
7677 /* See if this can be done without an extraction. We never can if the
7678 width of the field is not the same as that of some integer mode. For
7679 registers, we can only avoid the extraction if the position is at the
7680 low-order bit and this is either not in the destination or we have the
7681 appropriate STRICT_LOW_PART operation available.
7682
7683 For MEM, we can avoid an extract if the field starts on an appropriate
7684 boundary and we can change the mode of the memory reference. */
7685
7686 scalar_int_mode tmode;
7687 if (int_mode_for_size (len, 1).exists (&tmode)
7688 && ((pos_rtx == 0 && (pos % BITS_PER_WORD) == 0
7689 && !MEM_P (inner)
7690 && (pos == 0 || REG_P (inner))
7691 && (inner_mode == tmode
7692 || !REG_P (inner)
7693 || TRULY_NOOP_TRUNCATION_MODES_P (tmode, inner_mode)
7694 || reg_truncated_to_mode (tmode, inner))
7695 && (! in_dest
7696 || (REG_P (inner)
7697 && have_insn_for (STRICT_LOW_PART, tmode))))
7698 || (MEM_P (inner) && pos_rtx == 0
7699 && (pos
7700 % (STRICT_ALIGNMENT ? GET_MODE_ALIGNMENT (tmode)
7701 : BITS_PER_UNIT)) == 0
7702 /* We can't do this if we are widening INNER_MODE (it
7703 may not be aligned, for one thing). */
7704 && !paradoxical_subreg_p (tmode, inner_mode)
7705 && known_le (pos + len, GET_MODE_PRECISION (is_mode))
7706 && (inner_mode == tmode
7707 || (! mode_dependent_address_p (XEXP (inner, 0),
7708 MEM_ADDR_SPACE (inner))
7709 && ! MEM_VOLATILE_P (inner))))))
7710 {
7711 /* If INNER is a MEM, make a new MEM that encompasses just the desired
7712 field. If the original and current mode are the same, we need not
7713 adjust the offset. Otherwise, we do if bytes big endian.
7714
7715 If INNER is not a MEM, get a piece consisting of just the field
7716 of interest (in this case POS % BITS_PER_WORD must be 0). */
7717
7718 if (MEM_P (inner))
7719 {
7720 poly_int64 offset;
7721
7722 /* POS counts from lsb, but make OFFSET count in memory order. */
7723 if (BYTES_BIG_ENDIAN)
7724 offset = bits_to_bytes_round_down (GET_MODE_PRECISION (is_mode)
7725 - len - pos);
7726 else
7727 offset = pos / BITS_PER_UNIT;
7728
7729 new_rtx = adjust_address_nv (inner, tmode, offset);
7730 }
7731 else if (REG_P (inner))
7732 {
7733 if (tmode != inner_mode)
7734 {
7735 /* We can't call gen_lowpart in a DEST since we
7736 always want a SUBREG (see below) and it would sometimes
7737 return a new hard register. */
7738 if (pos || in_dest)
7739 {
7740 poly_uint64 offset
7741 = subreg_offset_from_lsb (tmode, inner_mode, pos);
7742
7743 /* Avoid creating invalid subregs, for example when
7744 simplifying (x>>32)&255. */
7745 if (!validate_subreg (tmode, inner_mode, inner, offset))
7746 return NULL_RTX;
7747
7748 new_rtx = gen_rtx_SUBREG (tmode, inner, offset);
7749 }
7750 else
7751 new_rtx = gen_lowpart (tmode, inner);
7752 }
7753 else
7754 new_rtx = inner;
7755 }
7756 else
7757 new_rtx = force_to_mode (inner, tmode,
7758 len >= HOST_BITS_PER_WIDE_INT
7759 ? HOST_WIDE_INT_M1U
7760 : (HOST_WIDE_INT_1U << len) - 1, 0);
7761
7762 /* If this extraction is going into the destination of a SET,
7763 make a STRICT_LOW_PART unless we made a MEM. */
7764
7765 if (in_dest)
7766 return (MEM_P (new_rtx) ? new_rtx
7767 : (GET_CODE (new_rtx) != SUBREG
7768 ? gen_rtx_CLOBBER (tmode, const0_rtx)
7769 : gen_rtx_STRICT_LOW_PART (VOIDmode, new_rtx)));
7770
7771 if (mode == tmode)
7772 return new_rtx;
7773
7774 if (CONST_SCALAR_INT_P (new_rtx))
7775 return simplify_unary_operation (unsignedp ? ZERO_EXTEND : SIGN_EXTEND,
7776 mode, new_rtx, tmode);
7777
7778 /* If we know that no extraneous bits are set, and that the high
7779 bit is not set, convert the extraction to the cheaper of
7780 sign and zero extension, that are equivalent in these cases. */
7781 if (flag_expensive_optimizations
7782 && (HWI_COMPUTABLE_MODE_P (tmode)
7783 && ((nonzero_bits (new_rtx, tmode)
7784 & ~(((unsigned HOST_WIDE_INT)GET_MODE_MASK (tmode)) >> 1))
7785 == 0)))
7786 {
7787 rtx temp = gen_rtx_ZERO_EXTEND (mode, new_rtx);
7788 rtx temp1 = gen_rtx_SIGN_EXTEND (mode, new_rtx);
7789
7790 /* Prefer ZERO_EXTENSION, since it gives more information to
7791 backends. */
7792 if (set_src_cost (temp, mode, optimize_this_for_speed_p)
7793 <= set_src_cost (temp1, mode, optimize_this_for_speed_p))
7794 return temp;
7795 return temp1;
7796 }
7797
7798 /* Otherwise, sign- or zero-extend unless we already are in the
7799 proper mode. */
7800
7801 return (gen_rtx_fmt_e (unsignedp ? ZERO_EXTEND : SIGN_EXTEND,
7802 mode, new_rtx));
7803 }
7804
7805 /* Unless this is a COMPARE or we have a funny memory reference,
7806 don't do anything with zero-extending field extracts starting at
7807 the low-order bit since they are simple AND operations. */
7808 if (pos_rtx == 0 && pos == 0 && ! in_dest
7809 && ! in_compare && unsignedp)
7810 return 0;
7811
7812 /* Unless INNER is not MEM, reject this if we would be spanning bytes or
7813 if the position is not a constant and the length is not 1. In all
7814 other cases, we would only be going outside our object in cases when
7815 an original shift would have been undefined. */
7816 if (MEM_P (inner)
7817 && ((pos_rtx == 0 && maybe_gt (pos + len, GET_MODE_PRECISION (is_mode)))
7818 || (pos_rtx != 0 && len != 1)))
7819 return 0;
7820
7821 enum extraction_pattern pattern = (in_dest ? EP_insv
7822 : unsignedp ? EP_extzv : EP_extv);
7823
7824 /* If INNER is not from memory, we want it to have the mode of a register
7825 extraction pattern's structure operand, or word_mode if there is no
7826 such pattern. The same applies to extraction_mode and pos_mode
7827 and their respective operands.
7828
7829 For memory, assume that the desired extraction_mode and pos_mode
7830 are the same as for a register operation, since at present we don't
7831 have named patterns for aligned memory structures. */
7832 class extraction_insn insn;
7833 unsigned int inner_size;
7834 if (GET_MODE_BITSIZE (inner_mode).is_constant (&inner_size)
7835 && get_best_reg_extraction_insn (&insn, pattern, inner_size, mode))
7836 {
7837 wanted_inner_reg_mode = insn.struct_mode.require ();
7838 pos_mode = insn.pos_mode;
7839 extraction_mode = insn.field_mode;
7840 }
7841
7842 /* Never narrow an object, since that might not be safe. */
7843
7844 if (mode != VOIDmode
7845 && partial_subreg_p (extraction_mode, mode))
7846 extraction_mode = mode;
7847
7848 /* Punt if len is too large for extraction_mode. */
7849 if (maybe_gt (len, GET_MODE_PRECISION (extraction_mode)))
7850 return NULL_RTX;
7851
7852 if (!MEM_P (inner))
7853 wanted_inner_mode = wanted_inner_reg_mode;
7854 else
7855 {
7856 /* Be careful not to go beyond the extracted object and maintain the
7857 natural alignment of the memory. */
7858 wanted_inner_mode = smallest_int_mode_for_size (len);
7859 while (pos % GET_MODE_BITSIZE (wanted_inner_mode) + len
7860 > GET_MODE_BITSIZE (wanted_inner_mode))
7861 wanted_inner_mode = GET_MODE_WIDER_MODE (wanted_inner_mode).require ();
7862 }
7863
7864 orig_pos = pos;
7865
7866 if (BITS_BIG_ENDIAN)
7867 {
7868 /* POS is passed as if BITS_BIG_ENDIAN == 0, so we need to convert it to
7869 BITS_BIG_ENDIAN style. If position is constant, compute new
7870 position. Otherwise, build subtraction.
7871 Note that POS is relative to the mode of the original argument.
7872 If it's a MEM we need to recompute POS relative to that.
7873 However, if we're extracting from (or inserting into) a register,
7874 we want to recompute POS relative to wanted_inner_mode. */
7875 int width;
7876 if (!MEM_P (inner))
7877 width = GET_MODE_BITSIZE (wanted_inner_mode);
7878 else if (!GET_MODE_BITSIZE (is_mode).is_constant (&width))
7879 return NULL_RTX;
7880
7881 if (pos_rtx == 0)
7882 pos = width - len - pos;
7883 else
7884 pos_rtx
7885 = gen_rtx_MINUS (GET_MODE (pos_rtx),
7886 gen_int_mode (width - len, GET_MODE (pos_rtx)),
7887 pos_rtx);
7888 /* POS may be less than 0 now, but we check for that below.
7889 Note that it can only be less than 0 if !MEM_P (inner). */
7890 }
7891
7892 /* If INNER has a wider mode, and this is a constant extraction, try to
7893 make it smaller and adjust the byte to point to the byte containing
7894 the value. */
7895 if (wanted_inner_mode != VOIDmode
7896 && inner_mode != wanted_inner_mode
7897 && ! pos_rtx
7898 && partial_subreg_p (wanted_inner_mode, is_mode)
7899 && MEM_P (inner)
7900 && ! mode_dependent_address_p (XEXP (inner, 0), MEM_ADDR_SPACE (inner))
7901 && ! MEM_VOLATILE_P (inner))
7902 {
7903 poly_int64 offset = 0;
7904
7905 /* The computations below will be correct if the machine is big
7906 endian in both bits and bytes or little endian in bits and bytes.
7907 If it is mixed, we must adjust. */
7908
7909 /* If bytes are big endian and we had a paradoxical SUBREG, we must
7910 adjust OFFSET to compensate. */
7911 if (BYTES_BIG_ENDIAN
7912 && paradoxical_subreg_p (is_mode, inner_mode))
7913 offset -= GET_MODE_SIZE (is_mode) - GET_MODE_SIZE (inner_mode);
7914
7915 /* We can now move to the desired byte. */
7916 offset += (pos / GET_MODE_BITSIZE (wanted_inner_mode))
7917 * GET_MODE_SIZE (wanted_inner_mode);
7918 pos %= GET_MODE_BITSIZE (wanted_inner_mode);
7919
7920 if (BYTES_BIG_ENDIAN != BITS_BIG_ENDIAN
7921 && is_mode != wanted_inner_mode)
7922 offset = (GET_MODE_SIZE (is_mode)
7923 - GET_MODE_SIZE (wanted_inner_mode) - offset);
7924
7925 inner = adjust_address_nv (inner, wanted_inner_mode, offset);
7926 }
7927
7928 /* If INNER is not memory, get it into the proper mode. If we are changing
7929 its mode, POS must be a constant and smaller than the size of the new
7930 mode. */
7931 else if (!MEM_P (inner))
7932 {
7933 /* On the LHS, don't create paradoxical subregs implicitely truncating
7934 the register unless TARGET_TRULY_NOOP_TRUNCATION. */
7935 if (in_dest
7936 && !TRULY_NOOP_TRUNCATION_MODES_P (GET_MODE (inner),
7937 wanted_inner_mode))
7938 return NULL_RTX;
7939
7940 if (GET_MODE (inner) != wanted_inner_mode
7941 && (pos_rtx != 0
7942 || orig_pos + len > GET_MODE_BITSIZE (wanted_inner_mode)))
7943 return NULL_RTX;
7944
7945 if (orig_pos < 0)
7946 return NULL_RTX;
7947
7948 inner = force_to_mode (inner, wanted_inner_mode,
7949 pos_rtx
7950 || len + orig_pos >= HOST_BITS_PER_WIDE_INT
7951 ? HOST_WIDE_INT_M1U
7952 : (((HOST_WIDE_INT_1U << len) - 1)
7953 << orig_pos),
7954 0);
7955 }
7956
7957 /* Adjust mode of POS_RTX, if needed. If we want a wider mode, we
7958 have to zero extend. Otherwise, we can just use a SUBREG.
7959
7960 We dealt with constant rtxes earlier, so pos_rtx cannot
7961 have VOIDmode at this point. */
7962 if (pos_rtx != 0
7963 && (GET_MODE_SIZE (pos_mode)
7964 > GET_MODE_SIZE (as_a <scalar_int_mode> (GET_MODE (pos_rtx)))))
7965 {
7966 rtx temp = simplify_gen_unary (ZERO_EXTEND, pos_mode, pos_rtx,
7967 GET_MODE (pos_rtx));
7968
7969 /* If we know that no extraneous bits are set, and that the high
7970 bit is not set, convert extraction to cheaper one - either
7971 SIGN_EXTENSION or ZERO_EXTENSION, that are equivalent in these
7972 cases. */
7973 if (flag_expensive_optimizations
7974 && (HWI_COMPUTABLE_MODE_P (GET_MODE (pos_rtx))
7975 && ((nonzero_bits (pos_rtx, GET_MODE (pos_rtx))
7976 & ~(((unsigned HOST_WIDE_INT)
7977 GET_MODE_MASK (GET_MODE (pos_rtx)))
7978 >> 1))
7979 == 0)))
7980 {
7981 rtx temp1 = simplify_gen_unary (SIGN_EXTEND, pos_mode, pos_rtx,
7982 GET_MODE (pos_rtx));
7983
7984 /* Prefer ZERO_EXTENSION, since it gives more information to
7985 backends. */
7986 if (set_src_cost (temp1, pos_mode, optimize_this_for_speed_p)
7987 < set_src_cost (temp, pos_mode, optimize_this_for_speed_p))
7988 temp = temp1;
7989 }
7990 pos_rtx = temp;
7991 }
7992
7993 /* Make POS_RTX unless we already have it and it is correct. If we don't
7994 have a POS_RTX but we do have an ORIG_POS_RTX, the latter must
7995 be a CONST_INT. */
7996 if (pos_rtx == 0 && orig_pos_rtx != 0 && INTVAL (orig_pos_rtx) == pos)
7997 pos_rtx = orig_pos_rtx;
7998
7999 else if (pos_rtx == 0)
8000 pos_rtx = GEN_INT (pos);
8001
8002 /* Make the required operation. See if we can use existing rtx. */
8003 new_rtx = gen_rtx_fmt_eee (unsignedp ? ZERO_EXTRACT : SIGN_EXTRACT,
8004 extraction_mode, inner, GEN_INT (len), pos_rtx);
8005 if (! in_dest)
8006 new_rtx = gen_lowpart (mode, new_rtx);
8007
8008 return new_rtx;
8009 }
8010 \f
8011 /* See if X (of mode MODE) contains an ASHIFT of COUNT or more bits that
8012 can be commuted with any other operations in X. Return X without
8013 that shift if so. */
8014
8015 static rtx
8016 extract_left_shift (scalar_int_mode mode, rtx x, int count)
8017 {
8018 enum rtx_code code = GET_CODE (x);
8019 rtx tem;
8020
8021 switch (code)
8022 {
8023 case ASHIFT:
8024 /* This is the shift itself. If it is wide enough, we will return
8025 either the value being shifted if the shift count is equal to
8026 COUNT or a shift for the difference. */
8027 if (CONST_INT_P (XEXP (x, 1))
8028 && INTVAL (XEXP (x, 1)) >= count)
8029 return simplify_shift_const (NULL_RTX, ASHIFT, mode, XEXP (x, 0),
8030 INTVAL (XEXP (x, 1)) - count);
8031 break;
8032
8033 case NEG: case NOT:
8034 if ((tem = extract_left_shift (mode, XEXP (x, 0), count)) != 0)
8035 return simplify_gen_unary (code, mode, tem, mode);
8036
8037 break;
8038
8039 case PLUS: case IOR: case XOR: case AND:
8040 /* If we can safely shift this constant and we find the inner shift,
8041 make a new operation. */
8042 if (CONST_INT_P (XEXP (x, 1))
8043 && (UINTVAL (XEXP (x, 1))
8044 & (((HOST_WIDE_INT_1U << count)) - 1)) == 0
8045 && (tem = extract_left_shift (mode, XEXP (x, 0), count)) != 0)
8046 {
8047 HOST_WIDE_INT val = INTVAL (XEXP (x, 1)) >> count;
8048 return simplify_gen_binary (code, mode, tem,
8049 gen_int_mode (val, mode));
8050 }
8051 break;
8052
8053 default:
8054 break;
8055 }
8056
8057 return 0;
8058 }
8059 \f
8060 /* Subroutine of make_compound_operation. *X_PTR is the rtx at the current
8061 level of the expression and MODE is its mode. IN_CODE is as for
8062 make_compound_operation. *NEXT_CODE_PTR is the value of IN_CODE
8063 that should be used when recursing on operands of *X_PTR.
8064
8065 There are two possible actions:
8066
8067 - Return null. This tells the caller to recurse on *X_PTR with IN_CODE
8068 equal to *NEXT_CODE_PTR, after which *X_PTR holds the final value.
8069
8070 - Return a new rtx, which the caller returns directly. */
8071
8072 static rtx
8073 make_compound_operation_int (scalar_int_mode mode, rtx *x_ptr,
8074 enum rtx_code in_code,
8075 enum rtx_code *next_code_ptr)
8076 {
8077 rtx x = *x_ptr;
8078 enum rtx_code next_code = *next_code_ptr;
8079 enum rtx_code code = GET_CODE (x);
8080 int mode_width = GET_MODE_PRECISION (mode);
8081 rtx rhs, lhs;
8082 rtx new_rtx = 0;
8083 int i;
8084 rtx tem;
8085 scalar_int_mode inner_mode;
8086 bool equality_comparison = false;
8087
8088 if (in_code == EQ)
8089 {
8090 equality_comparison = true;
8091 in_code = COMPARE;
8092 }
8093
8094 /* Process depending on the code of this operation. If NEW is set
8095 nonzero, it will be returned. */
8096
8097 switch (code)
8098 {
8099 case ASHIFT:
8100 /* Convert shifts by constants into multiplications if inside
8101 an address. */
8102 if (in_code == MEM && CONST_INT_P (XEXP (x, 1))
8103 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT
8104 && INTVAL (XEXP (x, 1)) >= 0)
8105 {
8106 HOST_WIDE_INT count = INTVAL (XEXP (x, 1));
8107 HOST_WIDE_INT multval = HOST_WIDE_INT_1 << count;
8108
8109 new_rtx = make_compound_operation (XEXP (x, 0), next_code);
8110 if (GET_CODE (new_rtx) == NEG)
8111 {
8112 new_rtx = XEXP (new_rtx, 0);
8113 multval = -multval;
8114 }
8115 multval = trunc_int_for_mode (multval, mode);
8116 new_rtx = gen_rtx_MULT (mode, new_rtx, gen_int_mode (multval, mode));
8117 }
8118 break;
8119
8120 case PLUS:
8121 lhs = XEXP (x, 0);
8122 rhs = XEXP (x, 1);
8123 lhs = make_compound_operation (lhs, next_code);
8124 rhs = make_compound_operation (rhs, next_code);
8125 if (GET_CODE (lhs) == MULT && GET_CODE (XEXP (lhs, 0)) == NEG)
8126 {
8127 tem = simplify_gen_binary (MULT, mode, XEXP (XEXP (lhs, 0), 0),
8128 XEXP (lhs, 1));
8129 new_rtx = simplify_gen_binary (MINUS, mode, rhs, tem);
8130 }
8131 else if (GET_CODE (lhs) == MULT
8132 && (CONST_INT_P (XEXP (lhs, 1)) && INTVAL (XEXP (lhs, 1)) < 0))
8133 {
8134 tem = simplify_gen_binary (MULT, mode, XEXP (lhs, 0),
8135 simplify_gen_unary (NEG, mode,
8136 XEXP (lhs, 1),
8137 mode));
8138 new_rtx = simplify_gen_binary (MINUS, mode, rhs, tem);
8139 }
8140 else
8141 {
8142 SUBST (XEXP (x, 0), lhs);
8143 SUBST (XEXP (x, 1), rhs);
8144 }
8145 maybe_swap_commutative_operands (x);
8146 return x;
8147
8148 case MINUS:
8149 lhs = XEXP (x, 0);
8150 rhs = XEXP (x, 1);
8151 lhs = make_compound_operation (lhs, next_code);
8152 rhs = make_compound_operation (rhs, next_code);
8153 if (GET_CODE (rhs) == MULT && GET_CODE (XEXP (rhs, 0)) == NEG)
8154 {
8155 tem = simplify_gen_binary (MULT, mode, XEXP (XEXP (rhs, 0), 0),
8156 XEXP (rhs, 1));
8157 return simplify_gen_binary (PLUS, mode, tem, lhs);
8158 }
8159 else if (GET_CODE (rhs) == MULT
8160 && (CONST_INT_P (XEXP (rhs, 1)) && INTVAL (XEXP (rhs, 1)) < 0))
8161 {
8162 tem = simplify_gen_binary (MULT, mode, XEXP (rhs, 0),
8163 simplify_gen_unary (NEG, mode,
8164 XEXP (rhs, 1),
8165 mode));
8166 return simplify_gen_binary (PLUS, mode, tem, lhs);
8167 }
8168 else
8169 {
8170 SUBST (XEXP (x, 0), lhs);
8171 SUBST (XEXP (x, 1), rhs);
8172 return x;
8173 }
8174
8175 case AND:
8176 /* If the second operand is not a constant, we can't do anything
8177 with it. */
8178 if (!CONST_INT_P (XEXP (x, 1)))
8179 break;
8180
8181 /* If the constant is a power of two minus one and the first operand
8182 is a logical right shift, make an extraction. */
8183 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
8184 && (i = exact_log2 (UINTVAL (XEXP (x, 1)) + 1)) >= 0)
8185 {
8186 new_rtx = make_compound_operation (XEXP (XEXP (x, 0), 0), next_code);
8187 new_rtx = make_extraction (mode, new_rtx, 0, XEXP (XEXP (x, 0), 1),
8188 i, 1, 0, in_code == COMPARE);
8189 }
8190
8191 /* Same as previous, but for (subreg (lshiftrt ...)) in first op. */
8192 else if (GET_CODE (XEXP (x, 0)) == SUBREG
8193 && subreg_lowpart_p (XEXP (x, 0))
8194 && is_a <scalar_int_mode> (GET_MODE (SUBREG_REG (XEXP (x, 0))),
8195 &inner_mode)
8196 && GET_CODE (SUBREG_REG (XEXP (x, 0))) == LSHIFTRT
8197 && (i = exact_log2 (UINTVAL (XEXP (x, 1)) + 1)) >= 0)
8198 {
8199 rtx inner_x0 = SUBREG_REG (XEXP (x, 0));
8200 new_rtx = make_compound_operation (XEXP (inner_x0, 0), next_code);
8201 new_rtx = make_extraction (inner_mode, new_rtx, 0,
8202 XEXP (inner_x0, 1),
8203 i, 1, 0, in_code == COMPARE);
8204
8205 /* If we narrowed the mode when dropping the subreg, then we lose. */
8206 if (GET_MODE_SIZE (inner_mode) < GET_MODE_SIZE (mode))
8207 new_rtx = NULL;
8208
8209 /* If that didn't give anything, see if the AND simplifies on
8210 its own. */
8211 if (!new_rtx && i >= 0)
8212 {
8213 new_rtx = make_compound_operation (XEXP (x, 0), next_code);
8214 new_rtx = make_extraction (mode, new_rtx, 0, NULL_RTX, i, 1,
8215 0, in_code == COMPARE);
8216 }
8217 }
8218 /* Same as previous, but for (xor/ior (lshiftrt...) (lshiftrt...)). */
8219 else if ((GET_CODE (XEXP (x, 0)) == XOR
8220 || GET_CODE (XEXP (x, 0)) == IOR)
8221 && GET_CODE (XEXP (XEXP (x, 0), 0)) == LSHIFTRT
8222 && GET_CODE (XEXP (XEXP (x, 0), 1)) == LSHIFTRT
8223 && (i = exact_log2 (UINTVAL (XEXP (x, 1)) + 1)) >= 0)
8224 {
8225 /* Apply the distributive law, and then try to make extractions. */
8226 new_rtx = gen_rtx_fmt_ee (GET_CODE (XEXP (x, 0)), mode,
8227 gen_rtx_AND (mode, XEXP (XEXP (x, 0), 0),
8228 XEXP (x, 1)),
8229 gen_rtx_AND (mode, XEXP (XEXP (x, 0), 1),
8230 XEXP (x, 1)));
8231 new_rtx = make_compound_operation (new_rtx, in_code);
8232 }
8233
8234 /* If we are have (and (rotate X C) M) and C is larger than the number
8235 of bits in M, this is an extraction. */
8236
8237 else if (GET_CODE (XEXP (x, 0)) == ROTATE
8238 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
8239 && (i = exact_log2 (UINTVAL (XEXP (x, 1)) + 1)) >= 0
8240 && i <= INTVAL (XEXP (XEXP (x, 0), 1)))
8241 {
8242 new_rtx = make_compound_operation (XEXP (XEXP (x, 0), 0), next_code);
8243 new_rtx = make_extraction (mode, new_rtx,
8244 (GET_MODE_PRECISION (mode)
8245 - INTVAL (XEXP (XEXP (x, 0), 1))),
8246 NULL_RTX, i, 1, 0, in_code == COMPARE);
8247 }
8248
8249 /* On machines without logical shifts, if the operand of the AND is
8250 a logical shift and our mask turns off all the propagated sign
8251 bits, we can replace the logical shift with an arithmetic shift. */
8252 else if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
8253 && !have_insn_for (LSHIFTRT, mode)
8254 && have_insn_for (ASHIFTRT, mode)
8255 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
8256 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
8257 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT
8258 && mode_width <= HOST_BITS_PER_WIDE_INT)
8259 {
8260 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
8261
8262 mask >>= INTVAL (XEXP (XEXP (x, 0), 1));
8263 if ((INTVAL (XEXP (x, 1)) & ~mask) == 0)
8264 SUBST (XEXP (x, 0),
8265 gen_rtx_ASHIFTRT (mode,
8266 make_compound_operation (XEXP (XEXP (x,
8267 0),
8268 0),
8269 next_code),
8270 XEXP (XEXP (x, 0), 1)));
8271 }
8272
8273 /* If the constant is one less than a power of two, this might be
8274 representable by an extraction even if no shift is present.
8275 If it doesn't end up being a ZERO_EXTEND, we will ignore it unless
8276 we are in a COMPARE. */
8277 else if ((i = exact_log2 (UINTVAL (XEXP (x, 1)) + 1)) >= 0)
8278 new_rtx = make_extraction (mode,
8279 make_compound_operation (XEXP (x, 0),
8280 next_code),
8281 0, NULL_RTX, i, 1, 0, in_code == COMPARE);
8282
8283 /* If we are in a comparison and this is an AND with a power of two,
8284 convert this into the appropriate bit extract. */
8285 else if (in_code == COMPARE
8286 && (i = exact_log2 (UINTVAL (XEXP (x, 1)))) >= 0
8287 && (equality_comparison || i < GET_MODE_PRECISION (mode) - 1))
8288 new_rtx = make_extraction (mode,
8289 make_compound_operation (XEXP (x, 0),
8290 next_code),
8291 i, NULL_RTX, 1, 1, 0, 1);
8292
8293 /* If the one operand is a paradoxical subreg of a register or memory and
8294 the constant (limited to the smaller mode) has only zero bits where
8295 the sub expression has known zero bits, this can be expressed as
8296 a zero_extend. */
8297 else if (GET_CODE (XEXP (x, 0)) == SUBREG)
8298 {
8299 rtx sub;
8300
8301 sub = XEXP (XEXP (x, 0), 0);
8302 machine_mode sub_mode = GET_MODE (sub);
8303 int sub_width;
8304 if ((REG_P (sub) || MEM_P (sub))
8305 && GET_MODE_PRECISION (sub_mode).is_constant (&sub_width)
8306 && sub_width < mode_width)
8307 {
8308 unsigned HOST_WIDE_INT mode_mask = GET_MODE_MASK (sub_mode);
8309 unsigned HOST_WIDE_INT mask;
8310
8311 /* original AND constant with all the known zero bits set */
8312 mask = UINTVAL (XEXP (x, 1)) | (~nonzero_bits (sub, sub_mode));
8313 if ((mask & mode_mask) == mode_mask)
8314 {
8315 new_rtx = make_compound_operation (sub, next_code);
8316 new_rtx = make_extraction (mode, new_rtx, 0, 0, sub_width,
8317 1, 0, in_code == COMPARE);
8318 }
8319 }
8320 }
8321
8322 break;
8323
8324 case LSHIFTRT:
8325 /* If the sign bit is known to be zero, replace this with an
8326 arithmetic shift. */
8327 if (have_insn_for (ASHIFTRT, mode)
8328 && ! have_insn_for (LSHIFTRT, mode)
8329 && mode_width <= HOST_BITS_PER_WIDE_INT
8330 && (nonzero_bits (XEXP (x, 0), mode) & (1 << (mode_width - 1))) == 0)
8331 {
8332 new_rtx = gen_rtx_ASHIFTRT (mode,
8333 make_compound_operation (XEXP (x, 0),
8334 next_code),
8335 XEXP (x, 1));
8336 break;
8337 }
8338
8339 /* fall through */
8340
8341 case ASHIFTRT:
8342 lhs = XEXP (x, 0);
8343 rhs = XEXP (x, 1);
8344
8345 /* If we have (ashiftrt (ashift foo C1) C2) with C2 >= C1,
8346 this is a SIGN_EXTRACT. */
8347 if (CONST_INT_P (rhs)
8348 && GET_CODE (lhs) == ASHIFT
8349 && CONST_INT_P (XEXP (lhs, 1))
8350 && INTVAL (rhs) >= INTVAL (XEXP (lhs, 1))
8351 && INTVAL (XEXP (lhs, 1)) >= 0
8352 && INTVAL (rhs) < mode_width)
8353 {
8354 new_rtx = make_compound_operation (XEXP (lhs, 0), next_code);
8355 new_rtx = make_extraction (mode, new_rtx,
8356 INTVAL (rhs) - INTVAL (XEXP (lhs, 1)),
8357 NULL_RTX, mode_width - INTVAL (rhs),
8358 code == LSHIFTRT, 0, in_code == COMPARE);
8359 break;
8360 }
8361
8362 /* See if we have operations between an ASHIFTRT and an ASHIFT.
8363 If so, try to merge the shifts into a SIGN_EXTEND. We could
8364 also do this for some cases of SIGN_EXTRACT, but it doesn't
8365 seem worth the effort; the case checked for occurs on Alpha. */
8366
8367 if (!OBJECT_P (lhs)
8368 && ! (GET_CODE (lhs) == SUBREG
8369 && (OBJECT_P (SUBREG_REG (lhs))))
8370 && CONST_INT_P (rhs)
8371 && INTVAL (rhs) >= 0
8372 && INTVAL (rhs) < HOST_BITS_PER_WIDE_INT
8373 && INTVAL (rhs) < mode_width
8374 && (new_rtx = extract_left_shift (mode, lhs, INTVAL (rhs))) != 0)
8375 new_rtx = make_extraction (mode, make_compound_operation (new_rtx,
8376 next_code),
8377 0, NULL_RTX, mode_width - INTVAL (rhs),
8378 code == LSHIFTRT, 0, in_code == COMPARE);
8379
8380 break;
8381
8382 case SUBREG:
8383 /* Call ourselves recursively on the inner expression. If we are
8384 narrowing the object and it has a different RTL code from
8385 what it originally did, do this SUBREG as a force_to_mode. */
8386 {
8387 rtx inner = SUBREG_REG (x), simplified;
8388 enum rtx_code subreg_code = in_code;
8389
8390 /* If the SUBREG is masking of a logical right shift,
8391 make an extraction. */
8392 if (GET_CODE (inner) == LSHIFTRT
8393 && is_a <scalar_int_mode> (GET_MODE (inner), &inner_mode)
8394 && GET_MODE_SIZE (mode) < GET_MODE_SIZE (inner_mode)
8395 && CONST_INT_P (XEXP (inner, 1))
8396 && UINTVAL (XEXP (inner, 1)) < GET_MODE_PRECISION (inner_mode)
8397 && subreg_lowpart_p (x))
8398 {
8399 new_rtx = make_compound_operation (XEXP (inner, 0), next_code);
8400 int width = GET_MODE_PRECISION (inner_mode)
8401 - INTVAL (XEXP (inner, 1));
8402 if (width > mode_width)
8403 width = mode_width;
8404 new_rtx = make_extraction (mode, new_rtx, 0, XEXP (inner, 1),
8405 width, 1, 0, in_code == COMPARE);
8406 break;
8407 }
8408
8409 /* If in_code is COMPARE, it isn't always safe to pass it through
8410 to the recursive make_compound_operation call. */
8411 if (subreg_code == COMPARE
8412 && (!subreg_lowpart_p (x)
8413 || GET_CODE (inner) == SUBREG
8414 /* (subreg:SI (and:DI (reg:DI) (const_int 0x800000000)) 0)
8415 is (const_int 0), rather than
8416 (subreg:SI (lshiftrt:DI (reg:DI) (const_int 35)) 0).
8417 Similarly (subreg:QI (and:SI (reg:SI) (const_int 0x80)) 0)
8418 for non-equality comparisons against 0 is not equivalent
8419 to (subreg:QI (lshiftrt:SI (reg:SI) (const_int 7)) 0). */
8420 || (GET_CODE (inner) == AND
8421 && CONST_INT_P (XEXP (inner, 1))
8422 && partial_subreg_p (x)
8423 && exact_log2 (UINTVAL (XEXP (inner, 1)))
8424 >= GET_MODE_BITSIZE (mode) - 1)))
8425 subreg_code = SET;
8426
8427 tem = make_compound_operation (inner, subreg_code);
8428
8429 simplified
8430 = simplify_subreg (mode, tem, GET_MODE (inner), SUBREG_BYTE (x));
8431 if (simplified)
8432 tem = simplified;
8433
8434 if (GET_CODE (tem) != GET_CODE (inner)
8435 && partial_subreg_p (x)
8436 && subreg_lowpart_p (x))
8437 {
8438 rtx newer
8439 = force_to_mode (tem, mode, HOST_WIDE_INT_M1U, 0);
8440
8441 /* If we have something other than a SUBREG, we might have
8442 done an expansion, so rerun ourselves. */
8443 if (GET_CODE (newer) != SUBREG)
8444 newer = make_compound_operation (newer, in_code);
8445
8446 /* force_to_mode can expand compounds. If it just re-expanded
8447 the compound, use gen_lowpart to convert to the desired
8448 mode. */
8449 if (rtx_equal_p (newer, x)
8450 /* Likewise if it re-expanded the compound only partially.
8451 This happens for SUBREG of ZERO_EXTRACT if they extract
8452 the same number of bits. */
8453 || (GET_CODE (newer) == SUBREG
8454 && (GET_CODE (SUBREG_REG (newer)) == LSHIFTRT
8455 || GET_CODE (SUBREG_REG (newer)) == ASHIFTRT)
8456 && GET_CODE (inner) == AND
8457 && rtx_equal_p (SUBREG_REG (newer), XEXP (inner, 0))))
8458 return gen_lowpart (GET_MODE (x), tem);
8459
8460 return newer;
8461 }
8462
8463 if (simplified)
8464 return tem;
8465 }
8466 break;
8467
8468 default:
8469 break;
8470 }
8471
8472 if (new_rtx)
8473 *x_ptr = gen_lowpart (mode, new_rtx);
8474 *next_code_ptr = next_code;
8475 return NULL_RTX;
8476 }
8477
8478 /* Look at the expression rooted at X. Look for expressions
8479 equivalent to ZERO_EXTRACT, SIGN_EXTRACT, ZERO_EXTEND, SIGN_EXTEND.
8480 Form these expressions.
8481
8482 Return the new rtx, usually just X.
8483
8484 Also, for machines like the VAX that don't have logical shift insns,
8485 try to convert logical to arithmetic shift operations in cases where
8486 they are equivalent. This undoes the canonicalizations to logical
8487 shifts done elsewhere.
8488
8489 We try, as much as possible, to re-use rtl expressions to save memory.
8490
8491 IN_CODE says what kind of expression we are processing. Normally, it is
8492 SET. In a memory address it is MEM. When processing the arguments of
8493 a comparison or a COMPARE against zero, it is COMPARE, or EQ if more
8494 precisely it is an equality comparison against zero. */
8495
8496 rtx
8497 make_compound_operation (rtx x, enum rtx_code in_code)
8498 {
8499 enum rtx_code code = GET_CODE (x);
8500 const char *fmt;
8501 int i, j;
8502 enum rtx_code next_code;
8503 rtx new_rtx, tem;
8504
8505 /* Select the code to be used in recursive calls. Once we are inside an
8506 address, we stay there. If we have a comparison, set to COMPARE,
8507 but once inside, go back to our default of SET. */
8508
8509 next_code = (code == MEM ? MEM
8510 : ((code == COMPARE || COMPARISON_P (x))
8511 && XEXP (x, 1) == const0_rtx) ? COMPARE
8512 : in_code == COMPARE || in_code == EQ ? SET : in_code);
8513
8514 scalar_int_mode mode;
8515 if (is_a <scalar_int_mode> (GET_MODE (x), &mode))
8516 {
8517 rtx new_rtx = make_compound_operation_int (mode, &x, in_code,
8518 &next_code);
8519 if (new_rtx)
8520 return new_rtx;
8521 code = GET_CODE (x);
8522 }
8523
8524 /* Now recursively process each operand of this operation. We need to
8525 handle ZERO_EXTEND specially so that we don't lose track of the
8526 inner mode. */
8527 if (code == ZERO_EXTEND)
8528 {
8529 new_rtx = make_compound_operation (XEXP (x, 0), next_code);
8530 tem = simplify_const_unary_operation (ZERO_EXTEND, GET_MODE (x),
8531 new_rtx, GET_MODE (XEXP (x, 0)));
8532 if (tem)
8533 return tem;
8534 SUBST (XEXP (x, 0), new_rtx);
8535 return x;
8536 }
8537
8538 fmt = GET_RTX_FORMAT (code);
8539 for (i = 0; i < GET_RTX_LENGTH (code); i++)
8540 if (fmt[i] == 'e')
8541 {
8542 new_rtx = make_compound_operation (XEXP (x, i), next_code);
8543 SUBST (XEXP (x, i), new_rtx);
8544 }
8545 else if (fmt[i] == 'E')
8546 for (j = 0; j < XVECLEN (x, i); j++)
8547 {
8548 new_rtx = make_compound_operation (XVECEXP (x, i, j), next_code);
8549 SUBST (XVECEXP (x, i, j), new_rtx);
8550 }
8551
8552 maybe_swap_commutative_operands (x);
8553 return x;
8554 }
8555 \f
8556 /* Given M see if it is a value that would select a field of bits
8557 within an item, but not the entire word. Return -1 if not.
8558 Otherwise, return the starting position of the field, where 0 is the
8559 low-order bit.
8560
8561 *PLEN is set to the length of the field. */
8562
8563 static int
8564 get_pos_from_mask (unsigned HOST_WIDE_INT m, unsigned HOST_WIDE_INT *plen)
8565 {
8566 /* Get the bit number of the first 1 bit from the right, -1 if none. */
8567 int pos = m ? ctz_hwi (m) : -1;
8568 int len = 0;
8569
8570 if (pos >= 0)
8571 /* Now shift off the low-order zero bits and see if we have a
8572 power of two minus 1. */
8573 len = exact_log2 ((m >> pos) + 1);
8574
8575 if (len <= 0)
8576 pos = -1;
8577
8578 *plen = len;
8579 return pos;
8580 }
8581 \f
8582 /* If X refers to a register that equals REG in value, replace these
8583 references with REG. */
8584 static rtx
8585 canon_reg_for_combine (rtx x, rtx reg)
8586 {
8587 rtx op0, op1, op2;
8588 const char *fmt;
8589 int i;
8590 bool copied;
8591
8592 enum rtx_code code = GET_CODE (x);
8593 switch (GET_RTX_CLASS (code))
8594 {
8595 case RTX_UNARY:
8596 op0 = canon_reg_for_combine (XEXP (x, 0), reg);
8597 if (op0 != XEXP (x, 0))
8598 return simplify_gen_unary (GET_CODE (x), GET_MODE (x), op0,
8599 GET_MODE (reg));
8600 break;
8601
8602 case RTX_BIN_ARITH:
8603 case RTX_COMM_ARITH:
8604 op0 = canon_reg_for_combine (XEXP (x, 0), reg);
8605 op1 = canon_reg_for_combine (XEXP (x, 1), reg);
8606 if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
8607 return simplify_gen_binary (GET_CODE (x), GET_MODE (x), op0, op1);
8608 break;
8609
8610 case RTX_COMPARE:
8611 case RTX_COMM_COMPARE:
8612 op0 = canon_reg_for_combine (XEXP (x, 0), reg);
8613 op1 = canon_reg_for_combine (XEXP (x, 1), reg);
8614 if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
8615 return simplify_gen_relational (GET_CODE (x), GET_MODE (x),
8616 GET_MODE (op0), op0, op1);
8617 break;
8618
8619 case RTX_TERNARY:
8620 case RTX_BITFIELD_OPS:
8621 op0 = canon_reg_for_combine (XEXP (x, 0), reg);
8622 op1 = canon_reg_for_combine (XEXP (x, 1), reg);
8623 op2 = canon_reg_for_combine (XEXP (x, 2), reg);
8624 if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1) || op2 != XEXP (x, 2))
8625 return simplify_gen_ternary (GET_CODE (x), GET_MODE (x),
8626 GET_MODE (op0), op0, op1, op2);
8627 /* FALLTHRU */
8628
8629 case RTX_OBJ:
8630 if (REG_P (x))
8631 {
8632 if (rtx_equal_p (get_last_value (reg), x)
8633 || rtx_equal_p (reg, get_last_value (x)))
8634 return reg;
8635 else
8636 break;
8637 }
8638
8639 /* fall through */
8640
8641 default:
8642 fmt = GET_RTX_FORMAT (code);
8643 copied = false;
8644 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
8645 if (fmt[i] == 'e')
8646 {
8647 rtx op = canon_reg_for_combine (XEXP (x, i), reg);
8648 if (op != XEXP (x, i))
8649 {
8650 if (!copied)
8651 {
8652 copied = true;
8653 x = copy_rtx (x);
8654 }
8655 XEXP (x, i) = op;
8656 }
8657 }
8658 else if (fmt[i] == 'E')
8659 {
8660 int j;
8661 for (j = 0; j < XVECLEN (x, i); j++)
8662 {
8663 rtx op = canon_reg_for_combine (XVECEXP (x, i, j), reg);
8664 if (op != XVECEXP (x, i, j))
8665 {
8666 if (!copied)
8667 {
8668 copied = true;
8669 x = copy_rtx (x);
8670 }
8671 XVECEXP (x, i, j) = op;
8672 }
8673 }
8674 }
8675
8676 break;
8677 }
8678
8679 return x;
8680 }
8681
8682 /* Return X converted to MODE. If the value is already truncated to
8683 MODE we can just return a subreg even though in the general case we
8684 would need an explicit truncation. */
8685
8686 static rtx
8687 gen_lowpart_or_truncate (machine_mode mode, rtx x)
8688 {
8689 if (!CONST_INT_P (x)
8690 && partial_subreg_p (mode, GET_MODE (x))
8691 && !TRULY_NOOP_TRUNCATION_MODES_P (mode, GET_MODE (x))
8692 && !(REG_P (x) && reg_truncated_to_mode (mode, x)))
8693 {
8694 /* Bit-cast X into an integer mode. */
8695 if (!SCALAR_INT_MODE_P (GET_MODE (x)))
8696 x = gen_lowpart (int_mode_for_mode (GET_MODE (x)).require (), x);
8697 x = simplify_gen_unary (TRUNCATE, int_mode_for_mode (mode).require (),
8698 x, GET_MODE (x));
8699 }
8700
8701 return gen_lowpart (mode, x);
8702 }
8703
8704 /* See if X can be simplified knowing that we will only refer to it in
8705 MODE and will only refer to those bits that are nonzero in MASK.
8706 If other bits are being computed or if masking operations are done
8707 that select a superset of the bits in MASK, they can sometimes be
8708 ignored.
8709
8710 Return a possibly simplified expression, but always convert X to
8711 MODE. If X is a CONST_INT, AND the CONST_INT with MASK.
8712
8713 If JUST_SELECT is nonzero, don't optimize by noticing that bits in MASK
8714 are all off in X. This is used when X will be complemented, by either
8715 NOT, NEG, or XOR. */
8716
8717 static rtx
8718 force_to_mode (rtx x, machine_mode mode, unsigned HOST_WIDE_INT mask,
8719 int just_select)
8720 {
8721 enum rtx_code code = GET_CODE (x);
8722 int next_select = just_select || code == XOR || code == NOT || code == NEG;
8723 machine_mode op_mode;
8724 unsigned HOST_WIDE_INT nonzero;
8725
8726 /* If this is a CALL or ASM_OPERANDS, don't do anything. Some of the
8727 code below will do the wrong thing since the mode of such an
8728 expression is VOIDmode.
8729
8730 Also do nothing if X is a CLOBBER; this can happen if X was
8731 the return value from a call to gen_lowpart. */
8732 if (code == CALL || code == ASM_OPERANDS || code == CLOBBER)
8733 return x;
8734
8735 /* We want to perform the operation in its present mode unless we know
8736 that the operation is valid in MODE, in which case we do the operation
8737 in MODE. */
8738 op_mode = ((GET_MODE_CLASS (mode) == GET_MODE_CLASS (GET_MODE (x))
8739 && have_insn_for (code, mode))
8740 ? mode : GET_MODE (x));
8741
8742 /* It is not valid to do a right-shift in a narrower mode
8743 than the one it came in with. */
8744 if ((code == LSHIFTRT || code == ASHIFTRT)
8745 && partial_subreg_p (mode, GET_MODE (x)))
8746 op_mode = GET_MODE (x);
8747
8748 /* Truncate MASK to fit OP_MODE. */
8749 if (op_mode)
8750 mask &= GET_MODE_MASK (op_mode);
8751
8752 /* Determine what bits of X are guaranteed to be (non)zero. */
8753 nonzero = nonzero_bits (x, mode);
8754
8755 /* If none of the bits in X are needed, return a zero. */
8756 if (!just_select && (nonzero & mask) == 0 && !side_effects_p (x))
8757 x = const0_rtx;
8758
8759 /* If X is a CONST_INT, return a new one. Do this here since the
8760 test below will fail. */
8761 if (CONST_INT_P (x))
8762 {
8763 if (SCALAR_INT_MODE_P (mode))
8764 return gen_int_mode (INTVAL (x) & mask, mode);
8765 else
8766 {
8767 x = GEN_INT (INTVAL (x) & mask);
8768 return gen_lowpart_common (mode, x);
8769 }
8770 }
8771
8772 /* If X is narrower than MODE and we want all the bits in X's mode, just
8773 get X in the proper mode. */
8774 if (paradoxical_subreg_p (mode, GET_MODE (x))
8775 && (GET_MODE_MASK (GET_MODE (x)) & ~mask) == 0)
8776 return gen_lowpart (mode, x);
8777
8778 /* We can ignore the effect of a SUBREG if it narrows the mode or
8779 if the constant masks to zero all the bits the mode doesn't have. */
8780 if (GET_CODE (x) == SUBREG
8781 && subreg_lowpart_p (x)
8782 && (partial_subreg_p (x)
8783 || (mask
8784 & GET_MODE_MASK (GET_MODE (x))
8785 & ~GET_MODE_MASK (GET_MODE (SUBREG_REG (x)))) == 0))
8786 return force_to_mode (SUBREG_REG (x), mode, mask, next_select);
8787
8788 scalar_int_mode int_mode, xmode;
8789 if (is_a <scalar_int_mode> (mode, &int_mode)
8790 && is_a <scalar_int_mode> (GET_MODE (x), &xmode))
8791 /* OP_MODE is either MODE or XMODE, so it must be a scalar
8792 integer too. */
8793 return force_int_to_mode (x, int_mode, xmode,
8794 as_a <scalar_int_mode> (op_mode),
8795 mask, just_select);
8796
8797 return gen_lowpart_or_truncate (mode, x);
8798 }
8799
8800 /* Subroutine of force_to_mode that handles cases in which both X and
8801 the result are scalar integers. MODE is the mode of the result,
8802 XMODE is the mode of X, and OP_MODE says which of MODE or XMODE
8803 is preferred for simplified versions of X. The other arguments
8804 are as for force_to_mode. */
8805
8806 static rtx
8807 force_int_to_mode (rtx x, scalar_int_mode mode, scalar_int_mode xmode,
8808 scalar_int_mode op_mode, unsigned HOST_WIDE_INT mask,
8809 int just_select)
8810 {
8811 enum rtx_code code = GET_CODE (x);
8812 int next_select = just_select || code == XOR || code == NOT || code == NEG;
8813 unsigned HOST_WIDE_INT fuller_mask;
8814 rtx op0, op1, temp;
8815 poly_int64 const_op0;
8816
8817 /* When we have an arithmetic operation, or a shift whose count we
8818 do not know, we need to assume that all bits up to the highest-order
8819 bit in MASK will be needed. This is how we form such a mask. */
8820 if (mask & (HOST_WIDE_INT_1U << (HOST_BITS_PER_WIDE_INT - 1)))
8821 fuller_mask = HOST_WIDE_INT_M1U;
8822 else
8823 fuller_mask = ((HOST_WIDE_INT_1U << (floor_log2 (mask) + 1))
8824 - 1);
8825
8826 switch (code)
8827 {
8828 case CLOBBER:
8829 /* If X is a (clobber (const_int)), return it since we know we are
8830 generating something that won't match. */
8831 return x;
8832
8833 case SIGN_EXTEND:
8834 case ZERO_EXTEND:
8835 case ZERO_EXTRACT:
8836 case SIGN_EXTRACT:
8837 x = expand_compound_operation (x);
8838 if (GET_CODE (x) != code)
8839 return force_to_mode (x, mode, mask, next_select);
8840 break;
8841
8842 case TRUNCATE:
8843 /* Similarly for a truncate. */
8844 return force_to_mode (XEXP (x, 0), mode, mask, next_select);
8845
8846 case AND:
8847 /* If this is an AND with a constant, convert it into an AND
8848 whose constant is the AND of that constant with MASK. If it
8849 remains an AND of MASK, delete it since it is redundant. */
8850
8851 if (CONST_INT_P (XEXP (x, 1)))
8852 {
8853 x = simplify_and_const_int (x, op_mode, XEXP (x, 0),
8854 mask & INTVAL (XEXP (x, 1)));
8855 xmode = op_mode;
8856
8857 /* If X is still an AND, see if it is an AND with a mask that
8858 is just some low-order bits. If so, and it is MASK, we don't
8859 need it. */
8860
8861 if (GET_CODE (x) == AND && CONST_INT_P (XEXP (x, 1))
8862 && (INTVAL (XEXP (x, 1)) & GET_MODE_MASK (xmode)) == mask)
8863 x = XEXP (x, 0);
8864
8865 /* If it remains an AND, try making another AND with the bits
8866 in the mode mask that aren't in MASK turned on. If the
8867 constant in the AND is wide enough, this might make a
8868 cheaper constant. */
8869
8870 if (GET_CODE (x) == AND && CONST_INT_P (XEXP (x, 1))
8871 && GET_MODE_MASK (xmode) != mask
8872 && HWI_COMPUTABLE_MODE_P (xmode))
8873 {
8874 unsigned HOST_WIDE_INT cval
8875 = UINTVAL (XEXP (x, 1)) | (GET_MODE_MASK (xmode) & ~mask);
8876 rtx y;
8877
8878 y = simplify_gen_binary (AND, xmode, XEXP (x, 0),
8879 gen_int_mode (cval, xmode));
8880 if (set_src_cost (y, xmode, optimize_this_for_speed_p)
8881 < set_src_cost (x, xmode, optimize_this_for_speed_p))
8882 x = y;
8883 }
8884
8885 break;
8886 }
8887
8888 goto binop;
8889
8890 case PLUS:
8891 /* In (and (plus FOO C1) M), if M is a mask that just turns off
8892 low-order bits (as in an alignment operation) and FOO is already
8893 aligned to that boundary, mask C1 to that boundary as well.
8894 This may eliminate that PLUS and, later, the AND. */
8895
8896 {
8897 unsigned int width = GET_MODE_PRECISION (mode);
8898 unsigned HOST_WIDE_INT smask = mask;
8899
8900 /* If MODE is narrower than HOST_WIDE_INT and mask is a negative
8901 number, sign extend it. */
8902
8903 if (width < HOST_BITS_PER_WIDE_INT
8904 && (smask & (HOST_WIDE_INT_1U << (width - 1))) != 0)
8905 smask |= HOST_WIDE_INT_M1U << width;
8906
8907 if (CONST_INT_P (XEXP (x, 1))
8908 && pow2p_hwi (- smask)
8909 && (nonzero_bits (XEXP (x, 0), mode) & ~smask) == 0
8910 && (INTVAL (XEXP (x, 1)) & ~smask) != 0)
8911 return force_to_mode (plus_constant (xmode, XEXP (x, 0),
8912 (INTVAL (XEXP (x, 1)) & smask)),
8913 mode, smask, next_select);
8914 }
8915
8916 /* fall through */
8917
8918 case MULT:
8919 /* Substituting into the operands of a widening MULT is not likely to
8920 create RTL matching a machine insn. */
8921 if (code == MULT
8922 && (GET_CODE (XEXP (x, 0)) == ZERO_EXTEND
8923 || GET_CODE (XEXP (x, 0)) == SIGN_EXTEND)
8924 && (GET_CODE (XEXP (x, 1)) == ZERO_EXTEND
8925 || GET_CODE (XEXP (x, 1)) == SIGN_EXTEND)
8926 && REG_P (XEXP (XEXP (x, 0), 0))
8927 && REG_P (XEXP (XEXP (x, 1), 0)))
8928 return gen_lowpart_or_truncate (mode, x);
8929
8930 /* For PLUS, MINUS and MULT, we need any bits less significant than the
8931 most significant bit in MASK since carries from those bits will
8932 affect the bits we are interested in. */
8933 mask = fuller_mask;
8934 goto binop;
8935
8936 case MINUS:
8937 /* If X is (minus C Y) where C's least set bit is larger than any bit
8938 in the mask, then we may replace with (neg Y). */
8939 if (poly_int_rtx_p (XEXP (x, 0), &const_op0)
8940 && known_alignment (poly_uint64 (const_op0)) > mask)
8941 {
8942 x = simplify_gen_unary (NEG, xmode, XEXP (x, 1), xmode);
8943 return force_to_mode (x, mode, mask, next_select);
8944 }
8945
8946 /* Similarly, if C contains every bit in the fuller_mask, then we may
8947 replace with (not Y). */
8948 if (CONST_INT_P (XEXP (x, 0))
8949 && ((UINTVAL (XEXP (x, 0)) | fuller_mask) == UINTVAL (XEXP (x, 0))))
8950 {
8951 x = simplify_gen_unary (NOT, xmode, XEXP (x, 1), xmode);
8952 return force_to_mode (x, mode, mask, next_select);
8953 }
8954
8955 mask = fuller_mask;
8956 goto binop;
8957
8958 case IOR:
8959 case XOR:
8960 /* If X is (ior (lshiftrt FOO C1) C2), try to commute the IOR and
8961 LSHIFTRT so we end up with an (and (lshiftrt (ior ...) ...) ...)
8962 operation which may be a bitfield extraction. Ensure that the
8963 constant we form is not wider than the mode of X. */
8964
8965 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
8966 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
8967 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
8968 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT
8969 && CONST_INT_P (XEXP (x, 1))
8970 && ((INTVAL (XEXP (XEXP (x, 0), 1))
8971 + floor_log2 (INTVAL (XEXP (x, 1))))
8972 < GET_MODE_PRECISION (xmode))
8973 && (UINTVAL (XEXP (x, 1))
8974 & ~nonzero_bits (XEXP (x, 0), xmode)) == 0)
8975 {
8976 temp = gen_int_mode ((INTVAL (XEXP (x, 1)) & mask)
8977 << INTVAL (XEXP (XEXP (x, 0), 1)),
8978 xmode);
8979 temp = simplify_gen_binary (GET_CODE (x), xmode,
8980 XEXP (XEXP (x, 0), 0), temp);
8981 x = simplify_gen_binary (LSHIFTRT, xmode, temp,
8982 XEXP (XEXP (x, 0), 1));
8983 return force_to_mode (x, mode, mask, next_select);
8984 }
8985
8986 binop:
8987 /* For most binary operations, just propagate into the operation and
8988 change the mode if we have an operation of that mode. */
8989
8990 op0 = force_to_mode (XEXP (x, 0), mode, mask, next_select);
8991 op1 = force_to_mode (XEXP (x, 1), mode, mask, next_select);
8992
8993 /* If we ended up truncating both operands, truncate the result of the
8994 operation instead. */
8995 if (GET_CODE (op0) == TRUNCATE
8996 && GET_CODE (op1) == TRUNCATE)
8997 {
8998 op0 = XEXP (op0, 0);
8999 op1 = XEXP (op1, 0);
9000 }
9001
9002 op0 = gen_lowpart_or_truncate (op_mode, op0);
9003 op1 = gen_lowpart_or_truncate (op_mode, op1);
9004
9005 if (op_mode != xmode || op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
9006 {
9007 x = simplify_gen_binary (code, op_mode, op0, op1);
9008 xmode = op_mode;
9009 }
9010 break;
9011
9012 case ASHIFT:
9013 /* For left shifts, do the same, but just for the first operand.
9014 However, we cannot do anything with shifts where we cannot
9015 guarantee that the counts are smaller than the size of the mode
9016 because such a count will have a different meaning in a
9017 wider mode. */
9018
9019 if (! (CONST_INT_P (XEXP (x, 1))
9020 && INTVAL (XEXP (x, 1)) >= 0
9021 && INTVAL (XEXP (x, 1)) < GET_MODE_PRECISION (mode))
9022 && ! (GET_MODE (XEXP (x, 1)) != VOIDmode
9023 && (nonzero_bits (XEXP (x, 1), GET_MODE (XEXP (x, 1)))
9024 < (unsigned HOST_WIDE_INT) GET_MODE_PRECISION (mode))))
9025 break;
9026
9027 /* If the shift count is a constant and we can do arithmetic in
9028 the mode of the shift, refine which bits we need. Otherwise, use the
9029 conservative form of the mask. */
9030 if (CONST_INT_P (XEXP (x, 1))
9031 && INTVAL (XEXP (x, 1)) >= 0
9032 && INTVAL (XEXP (x, 1)) < GET_MODE_PRECISION (op_mode)
9033 && HWI_COMPUTABLE_MODE_P (op_mode))
9034 mask >>= INTVAL (XEXP (x, 1));
9035 else
9036 mask = fuller_mask;
9037
9038 op0 = gen_lowpart_or_truncate (op_mode,
9039 force_to_mode (XEXP (x, 0), mode,
9040 mask, next_select));
9041
9042 if (op_mode != xmode || op0 != XEXP (x, 0))
9043 {
9044 x = simplify_gen_binary (code, op_mode, op0, XEXP (x, 1));
9045 xmode = op_mode;
9046 }
9047 break;
9048
9049 case LSHIFTRT:
9050 /* Here we can only do something if the shift count is a constant,
9051 this shift constant is valid for the host, and we can do arithmetic
9052 in OP_MODE. */
9053
9054 if (CONST_INT_P (XEXP (x, 1))
9055 && INTVAL (XEXP (x, 1)) >= 0
9056 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT
9057 && HWI_COMPUTABLE_MODE_P (op_mode))
9058 {
9059 rtx inner = XEXP (x, 0);
9060 unsigned HOST_WIDE_INT inner_mask;
9061
9062 /* Select the mask of the bits we need for the shift operand. */
9063 inner_mask = mask << INTVAL (XEXP (x, 1));
9064
9065 /* We can only change the mode of the shift if we can do arithmetic
9066 in the mode of the shift and INNER_MASK is no wider than the
9067 width of X's mode. */
9068 if ((inner_mask & ~GET_MODE_MASK (xmode)) != 0)
9069 op_mode = xmode;
9070
9071 inner = force_to_mode (inner, op_mode, inner_mask, next_select);
9072
9073 if (xmode != op_mode || inner != XEXP (x, 0))
9074 {
9075 x = simplify_gen_binary (LSHIFTRT, op_mode, inner, XEXP (x, 1));
9076 xmode = op_mode;
9077 }
9078 }
9079
9080 /* If we have (and (lshiftrt FOO C1) C2) where the combination of the
9081 shift and AND produces only copies of the sign bit (C2 is one less
9082 than a power of two), we can do this with just a shift. */
9083
9084 if (GET_CODE (x) == LSHIFTRT
9085 && CONST_INT_P (XEXP (x, 1))
9086 /* The shift puts one of the sign bit copies in the least significant
9087 bit. */
9088 && ((INTVAL (XEXP (x, 1))
9089 + num_sign_bit_copies (XEXP (x, 0), GET_MODE (XEXP (x, 0))))
9090 >= GET_MODE_PRECISION (xmode))
9091 && pow2p_hwi (mask + 1)
9092 /* Number of bits left after the shift must be more than the mask
9093 needs. */
9094 && ((INTVAL (XEXP (x, 1)) + exact_log2 (mask + 1))
9095 <= GET_MODE_PRECISION (xmode))
9096 /* Must be more sign bit copies than the mask needs. */
9097 && ((int) num_sign_bit_copies (XEXP (x, 0), GET_MODE (XEXP (x, 0)))
9098 >= exact_log2 (mask + 1)))
9099 {
9100 int nbits = GET_MODE_PRECISION (xmode) - exact_log2 (mask + 1);
9101 x = simplify_gen_binary (LSHIFTRT, xmode, XEXP (x, 0),
9102 gen_int_shift_amount (xmode, nbits));
9103 }
9104 goto shiftrt;
9105
9106 case ASHIFTRT:
9107 /* If we are just looking for the sign bit, we don't need this shift at
9108 all, even if it has a variable count. */
9109 if (val_signbit_p (xmode, mask))
9110 return force_to_mode (XEXP (x, 0), mode, mask, next_select);
9111
9112 /* If this is a shift by a constant, get a mask that contains those bits
9113 that are not copies of the sign bit. We then have two cases: If
9114 MASK only includes those bits, this can be a logical shift, which may
9115 allow simplifications. If MASK is a single-bit field not within
9116 those bits, we are requesting a copy of the sign bit and hence can
9117 shift the sign bit to the appropriate location. */
9118
9119 if (CONST_INT_P (XEXP (x, 1)) && INTVAL (XEXP (x, 1)) >= 0
9120 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT)
9121 {
9122 unsigned HOST_WIDE_INT nonzero;
9123 int i;
9124
9125 /* If the considered data is wider than HOST_WIDE_INT, we can't
9126 represent a mask for all its bits in a single scalar.
9127 But we only care about the lower bits, so calculate these. */
9128
9129 if (GET_MODE_PRECISION (xmode) > HOST_BITS_PER_WIDE_INT)
9130 {
9131 nonzero = HOST_WIDE_INT_M1U;
9132
9133 /* GET_MODE_PRECISION (GET_MODE (x)) - INTVAL (XEXP (x, 1))
9134 is the number of bits a full-width mask would have set.
9135 We need only shift if these are fewer than nonzero can
9136 hold. If not, we must keep all bits set in nonzero. */
9137
9138 if (GET_MODE_PRECISION (xmode) - INTVAL (XEXP (x, 1))
9139 < HOST_BITS_PER_WIDE_INT)
9140 nonzero >>= INTVAL (XEXP (x, 1))
9141 + HOST_BITS_PER_WIDE_INT
9142 - GET_MODE_PRECISION (xmode);
9143 }
9144 else
9145 {
9146 nonzero = GET_MODE_MASK (xmode);
9147 nonzero >>= INTVAL (XEXP (x, 1));
9148 }
9149
9150 if ((mask & ~nonzero) == 0)
9151 {
9152 x = simplify_shift_const (NULL_RTX, LSHIFTRT, xmode,
9153 XEXP (x, 0), INTVAL (XEXP (x, 1)));
9154 if (GET_CODE (x) != ASHIFTRT)
9155 return force_to_mode (x, mode, mask, next_select);
9156 }
9157
9158 else if ((i = exact_log2 (mask)) >= 0)
9159 {
9160 x = simplify_shift_const
9161 (NULL_RTX, LSHIFTRT, xmode, XEXP (x, 0),
9162 GET_MODE_PRECISION (xmode) - 1 - i);
9163
9164 if (GET_CODE (x) != ASHIFTRT)
9165 return force_to_mode (x, mode, mask, next_select);
9166 }
9167 }
9168
9169 /* If MASK is 1, convert this to an LSHIFTRT. This can be done
9170 even if the shift count isn't a constant. */
9171 if (mask == 1)
9172 x = simplify_gen_binary (LSHIFTRT, xmode, XEXP (x, 0), XEXP (x, 1));
9173
9174 shiftrt:
9175
9176 /* If this is a zero- or sign-extension operation that just affects bits
9177 we don't care about, remove it. Be sure the call above returned
9178 something that is still a shift. */
9179
9180 if ((GET_CODE (x) == LSHIFTRT || GET_CODE (x) == ASHIFTRT)
9181 && CONST_INT_P (XEXP (x, 1))
9182 && INTVAL (XEXP (x, 1)) >= 0
9183 && (INTVAL (XEXP (x, 1))
9184 <= GET_MODE_PRECISION (xmode) - (floor_log2 (mask) + 1))
9185 && GET_CODE (XEXP (x, 0)) == ASHIFT
9186 && XEXP (XEXP (x, 0), 1) == XEXP (x, 1))
9187 return force_to_mode (XEXP (XEXP (x, 0), 0), mode, mask,
9188 next_select);
9189
9190 break;
9191
9192 case ROTATE:
9193 case ROTATERT:
9194 /* If the shift count is constant and we can do computations
9195 in the mode of X, compute where the bits we care about are.
9196 Otherwise, we can't do anything. Don't change the mode of
9197 the shift or propagate MODE into the shift, though. */
9198 if (CONST_INT_P (XEXP (x, 1))
9199 && INTVAL (XEXP (x, 1)) >= 0)
9200 {
9201 temp = simplify_binary_operation (code == ROTATE ? ROTATERT : ROTATE,
9202 xmode, gen_int_mode (mask, xmode),
9203 XEXP (x, 1));
9204 if (temp && CONST_INT_P (temp))
9205 x = simplify_gen_binary (code, xmode,
9206 force_to_mode (XEXP (x, 0), xmode,
9207 INTVAL (temp), next_select),
9208 XEXP (x, 1));
9209 }
9210 break;
9211
9212 case NEG:
9213 /* If we just want the low-order bit, the NEG isn't needed since it
9214 won't change the low-order bit. */
9215 if (mask == 1)
9216 return force_to_mode (XEXP (x, 0), mode, mask, just_select);
9217
9218 /* We need any bits less significant than the most significant bit in
9219 MASK since carries from those bits will affect the bits we are
9220 interested in. */
9221 mask = fuller_mask;
9222 goto unop;
9223
9224 case NOT:
9225 /* (not FOO) is (xor FOO CONST), so if FOO is an LSHIFTRT, we can do the
9226 same as the XOR case above. Ensure that the constant we form is not
9227 wider than the mode of X. */
9228
9229 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
9230 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
9231 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
9232 && (INTVAL (XEXP (XEXP (x, 0), 1)) + floor_log2 (mask)
9233 < GET_MODE_PRECISION (xmode))
9234 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT)
9235 {
9236 temp = gen_int_mode (mask << INTVAL (XEXP (XEXP (x, 0), 1)), xmode);
9237 temp = simplify_gen_binary (XOR, xmode, XEXP (XEXP (x, 0), 0), temp);
9238 x = simplify_gen_binary (LSHIFTRT, xmode,
9239 temp, XEXP (XEXP (x, 0), 1));
9240
9241 return force_to_mode (x, mode, mask, next_select);
9242 }
9243
9244 /* (and (not FOO) CONST) is (not (or FOO (not CONST))), so we must
9245 use the full mask inside the NOT. */
9246 mask = fuller_mask;
9247
9248 unop:
9249 op0 = gen_lowpart_or_truncate (op_mode,
9250 force_to_mode (XEXP (x, 0), mode, mask,
9251 next_select));
9252 if (op_mode != xmode || op0 != XEXP (x, 0))
9253 {
9254 x = simplify_gen_unary (code, op_mode, op0, op_mode);
9255 xmode = op_mode;
9256 }
9257 break;
9258
9259 case NE:
9260 /* (and (ne FOO 0) CONST) can be (and FOO CONST) if CONST is included
9261 in STORE_FLAG_VALUE and FOO has a single bit that might be nonzero,
9262 which is equal to STORE_FLAG_VALUE. */
9263 if ((mask & ~STORE_FLAG_VALUE) == 0
9264 && XEXP (x, 1) == const0_rtx
9265 && GET_MODE (XEXP (x, 0)) == mode
9266 && pow2p_hwi (nonzero_bits (XEXP (x, 0), mode))
9267 && (nonzero_bits (XEXP (x, 0), mode)
9268 == (unsigned HOST_WIDE_INT) STORE_FLAG_VALUE))
9269 return force_to_mode (XEXP (x, 0), mode, mask, next_select);
9270
9271 break;
9272
9273 case IF_THEN_ELSE:
9274 /* We have no way of knowing if the IF_THEN_ELSE can itself be
9275 written in a narrower mode. We play it safe and do not do so. */
9276
9277 op0 = gen_lowpart_or_truncate (xmode,
9278 force_to_mode (XEXP (x, 1), mode,
9279 mask, next_select));
9280 op1 = gen_lowpart_or_truncate (xmode,
9281 force_to_mode (XEXP (x, 2), mode,
9282 mask, next_select));
9283 if (op0 != XEXP (x, 1) || op1 != XEXP (x, 2))
9284 x = simplify_gen_ternary (IF_THEN_ELSE, xmode,
9285 GET_MODE (XEXP (x, 0)), XEXP (x, 0),
9286 op0, op1);
9287 break;
9288
9289 default:
9290 break;
9291 }
9292
9293 /* Ensure we return a value of the proper mode. */
9294 return gen_lowpart_or_truncate (mode, x);
9295 }
9296 \f
9297 /* Return nonzero if X is an expression that has one of two values depending on
9298 whether some other value is zero or nonzero. In that case, we return the
9299 value that is being tested, *PTRUE is set to the value if the rtx being
9300 returned has a nonzero value, and *PFALSE is set to the other alternative.
9301
9302 If we return zero, we set *PTRUE and *PFALSE to X. */
9303
9304 static rtx
9305 if_then_else_cond (rtx x, rtx *ptrue, rtx *pfalse)
9306 {
9307 machine_mode mode = GET_MODE (x);
9308 enum rtx_code code = GET_CODE (x);
9309 rtx cond0, cond1, true0, true1, false0, false1;
9310 unsigned HOST_WIDE_INT nz;
9311 scalar_int_mode int_mode;
9312
9313 /* If we are comparing a value against zero, we are done. */
9314 if ((code == NE || code == EQ)
9315 && XEXP (x, 1) == const0_rtx)
9316 {
9317 *ptrue = (code == NE) ? const_true_rtx : const0_rtx;
9318 *pfalse = (code == NE) ? const0_rtx : const_true_rtx;
9319 return XEXP (x, 0);
9320 }
9321
9322 /* If this is a unary operation whose operand has one of two values, apply
9323 our opcode to compute those values. */
9324 else if (UNARY_P (x)
9325 && (cond0 = if_then_else_cond (XEXP (x, 0), &true0, &false0)) != 0)
9326 {
9327 *ptrue = simplify_gen_unary (code, mode, true0, GET_MODE (XEXP (x, 0)));
9328 *pfalse = simplify_gen_unary (code, mode, false0,
9329 GET_MODE (XEXP (x, 0)));
9330 return cond0;
9331 }
9332
9333 /* If this is a COMPARE, do nothing, since the IF_THEN_ELSE we would
9334 make can't possibly match and would suppress other optimizations. */
9335 else if (code == COMPARE)
9336 ;
9337
9338 /* If this is a binary operation, see if either side has only one of two
9339 values. If either one does or if both do and they are conditional on
9340 the same value, compute the new true and false values. */
9341 else if (BINARY_P (x))
9342 {
9343 rtx op0 = XEXP (x, 0);
9344 rtx op1 = XEXP (x, 1);
9345 cond0 = if_then_else_cond (op0, &true0, &false0);
9346 cond1 = if_then_else_cond (op1, &true1, &false1);
9347
9348 if ((cond0 != 0 && cond1 != 0 && !rtx_equal_p (cond0, cond1))
9349 && (REG_P (op0) || REG_P (op1)))
9350 {
9351 /* Try to enable a simplification by undoing work done by
9352 if_then_else_cond if it converted a REG into something more
9353 complex. */
9354 if (REG_P (op0))
9355 {
9356 cond0 = 0;
9357 true0 = false0 = op0;
9358 }
9359 else
9360 {
9361 cond1 = 0;
9362 true1 = false1 = op1;
9363 }
9364 }
9365
9366 if ((cond0 != 0 || cond1 != 0)
9367 && ! (cond0 != 0 && cond1 != 0 && !rtx_equal_p (cond0, cond1)))
9368 {
9369 /* If if_then_else_cond returned zero, then true/false are the
9370 same rtl. We must copy one of them to prevent invalid rtl
9371 sharing. */
9372 if (cond0 == 0)
9373 true0 = copy_rtx (true0);
9374 else if (cond1 == 0)
9375 true1 = copy_rtx (true1);
9376
9377 if (COMPARISON_P (x))
9378 {
9379 *ptrue = simplify_gen_relational (code, mode, VOIDmode,
9380 true0, true1);
9381 *pfalse = simplify_gen_relational (code, mode, VOIDmode,
9382 false0, false1);
9383 }
9384 else
9385 {
9386 *ptrue = simplify_gen_binary (code, mode, true0, true1);
9387 *pfalse = simplify_gen_binary (code, mode, false0, false1);
9388 }
9389
9390 return cond0 ? cond0 : cond1;
9391 }
9392
9393 /* See if we have PLUS, IOR, XOR, MINUS or UMAX, where one of the
9394 operands is zero when the other is nonzero, and vice-versa,
9395 and STORE_FLAG_VALUE is 1 or -1. */
9396
9397 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
9398 && (code == PLUS || code == IOR || code == XOR || code == MINUS
9399 || code == UMAX)
9400 && GET_CODE (XEXP (x, 0)) == MULT && GET_CODE (XEXP (x, 1)) == MULT)
9401 {
9402 rtx op0 = XEXP (XEXP (x, 0), 1);
9403 rtx op1 = XEXP (XEXP (x, 1), 1);
9404
9405 cond0 = XEXP (XEXP (x, 0), 0);
9406 cond1 = XEXP (XEXP (x, 1), 0);
9407
9408 if (COMPARISON_P (cond0)
9409 && COMPARISON_P (cond1)
9410 && SCALAR_INT_MODE_P (mode)
9411 && ((GET_CODE (cond0) == reversed_comparison_code (cond1, NULL)
9412 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 0))
9413 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 1)))
9414 || ((swap_condition (GET_CODE (cond0))
9415 == reversed_comparison_code (cond1, NULL))
9416 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 1))
9417 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 0))))
9418 && ! side_effects_p (x))
9419 {
9420 *ptrue = simplify_gen_binary (MULT, mode, op0, const_true_rtx);
9421 *pfalse = simplify_gen_binary (MULT, mode,
9422 (code == MINUS
9423 ? simplify_gen_unary (NEG, mode,
9424 op1, mode)
9425 : op1),
9426 const_true_rtx);
9427 return cond0;
9428 }
9429 }
9430
9431 /* Similarly for MULT, AND and UMIN, except that for these the result
9432 is always zero. */
9433 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
9434 && (code == MULT || code == AND || code == UMIN)
9435 && GET_CODE (XEXP (x, 0)) == MULT && GET_CODE (XEXP (x, 1)) == MULT)
9436 {
9437 cond0 = XEXP (XEXP (x, 0), 0);
9438 cond1 = XEXP (XEXP (x, 1), 0);
9439
9440 if (COMPARISON_P (cond0)
9441 && COMPARISON_P (cond1)
9442 && ((GET_CODE (cond0) == reversed_comparison_code (cond1, NULL)
9443 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 0))
9444 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 1)))
9445 || ((swap_condition (GET_CODE (cond0))
9446 == reversed_comparison_code (cond1, NULL))
9447 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 1))
9448 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 0))))
9449 && ! side_effects_p (x))
9450 {
9451 *ptrue = *pfalse = const0_rtx;
9452 return cond0;
9453 }
9454 }
9455 }
9456
9457 else if (code == IF_THEN_ELSE)
9458 {
9459 /* If we have IF_THEN_ELSE already, extract the condition and
9460 canonicalize it if it is NE or EQ. */
9461 cond0 = XEXP (x, 0);
9462 *ptrue = XEXP (x, 1), *pfalse = XEXP (x, 2);
9463 if (GET_CODE (cond0) == NE && XEXP (cond0, 1) == const0_rtx)
9464 return XEXP (cond0, 0);
9465 else if (GET_CODE (cond0) == EQ && XEXP (cond0, 1) == const0_rtx)
9466 {
9467 *ptrue = XEXP (x, 2), *pfalse = XEXP (x, 1);
9468 return XEXP (cond0, 0);
9469 }
9470 else
9471 return cond0;
9472 }
9473
9474 /* If X is a SUBREG, we can narrow both the true and false values
9475 if the inner expression, if there is a condition. */
9476 else if (code == SUBREG
9477 && (cond0 = if_then_else_cond (SUBREG_REG (x), &true0,
9478 &false0)) != 0)
9479 {
9480 true0 = simplify_gen_subreg (mode, true0,
9481 GET_MODE (SUBREG_REG (x)), SUBREG_BYTE (x));
9482 false0 = simplify_gen_subreg (mode, false0,
9483 GET_MODE (SUBREG_REG (x)), SUBREG_BYTE (x));
9484 if (true0 && false0)
9485 {
9486 *ptrue = true0;
9487 *pfalse = false0;
9488 return cond0;
9489 }
9490 }
9491
9492 /* If X is a constant, this isn't special and will cause confusions
9493 if we treat it as such. Likewise if it is equivalent to a constant. */
9494 else if (CONSTANT_P (x)
9495 || ((cond0 = get_last_value (x)) != 0 && CONSTANT_P (cond0)))
9496 ;
9497
9498 /* If we're in BImode, canonicalize on 0 and STORE_FLAG_VALUE, as that
9499 will be least confusing to the rest of the compiler. */
9500 else if (mode == BImode)
9501 {
9502 *ptrue = GEN_INT (STORE_FLAG_VALUE), *pfalse = const0_rtx;
9503 return x;
9504 }
9505
9506 /* If X is known to be either 0 or -1, those are the true and
9507 false values when testing X. */
9508 else if (x == constm1_rtx || x == const0_rtx
9509 || (is_a <scalar_int_mode> (mode, &int_mode)
9510 && (num_sign_bit_copies (x, int_mode)
9511 == GET_MODE_PRECISION (int_mode))))
9512 {
9513 *ptrue = constm1_rtx, *pfalse = const0_rtx;
9514 return x;
9515 }
9516
9517 /* Likewise for 0 or a single bit. */
9518 else if (HWI_COMPUTABLE_MODE_P (mode)
9519 && pow2p_hwi (nz = nonzero_bits (x, mode)))
9520 {
9521 *ptrue = gen_int_mode (nz, mode), *pfalse = const0_rtx;
9522 return x;
9523 }
9524
9525 /* Otherwise fail; show no condition with true and false values the same. */
9526 *ptrue = *pfalse = x;
9527 return 0;
9528 }
9529 \f
9530 /* Return the value of expression X given the fact that condition COND
9531 is known to be true when applied to REG as its first operand and VAL
9532 as its second. X is known to not be shared and so can be modified in
9533 place.
9534
9535 We only handle the simplest cases, and specifically those cases that
9536 arise with IF_THEN_ELSE expressions. */
9537
9538 static rtx
9539 known_cond (rtx x, enum rtx_code cond, rtx reg, rtx val)
9540 {
9541 enum rtx_code code = GET_CODE (x);
9542 const char *fmt;
9543 int i, j;
9544
9545 if (side_effects_p (x))
9546 return x;
9547
9548 /* If either operand of the condition is a floating point value,
9549 then we have to avoid collapsing an EQ comparison. */
9550 if (cond == EQ
9551 && rtx_equal_p (x, reg)
9552 && ! FLOAT_MODE_P (GET_MODE (x))
9553 && ! FLOAT_MODE_P (GET_MODE (val)))
9554 return val;
9555
9556 if (cond == UNEQ && rtx_equal_p (x, reg))
9557 return val;
9558
9559 /* If X is (abs REG) and we know something about REG's relationship
9560 with zero, we may be able to simplify this. */
9561
9562 if (code == ABS && rtx_equal_p (XEXP (x, 0), reg) && val == const0_rtx)
9563 switch (cond)
9564 {
9565 case GE: case GT: case EQ:
9566 return XEXP (x, 0);
9567 case LT: case LE:
9568 return simplify_gen_unary (NEG, GET_MODE (XEXP (x, 0)),
9569 XEXP (x, 0),
9570 GET_MODE (XEXP (x, 0)));
9571 default:
9572 break;
9573 }
9574
9575 /* The only other cases we handle are MIN, MAX, and comparisons if the
9576 operands are the same as REG and VAL. */
9577
9578 else if (COMPARISON_P (x) || COMMUTATIVE_ARITH_P (x))
9579 {
9580 if (rtx_equal_p (XEXP (x, 0), val))
9581 {
9582 std::swap (val, reg);
9583 cond = swap_condition (cond);
9584 }
9585
9586 if (rtx_equal_p (XEXP (x, 0), reg) && rtx_equal_p (XEXP (x, 1), val))
9587 {
9588 if (COMPARISON_P (x))
9589 {
9590 if (comparison_dominates_p (cond, code))
9591 return VECTOR_MODE_P (GET_MODE (x)) ? x : const_true_rtx;
9592
9593 code = reversed_comparison_code (x, NULL);
9594 if (code != UNKNOWN
9595 && comparison_dominates_p (cond, code))
9596 return CONST0_RTX (GET_MODE (x));
9597 else
9598 return x;
9599 }
9600 else if (code == SMAX || code == SMIN
9601 || code == UMIN || code == UMAX)
9602 {
9603 int unsignedp = (code == UMIN || code == UMAX);
9604
9605 /* Do not reverse the condition when it is NE or EQ.
9606 This is because we cannot conclude anything about
9607 the value of 'SMAX (x, y)' when x is not equal to y,
9608 but we can when x equals y. */
9609 if ((code == SMAX || code == UMAX)
9610 && ! (cond == EQ || cond == NE))
9611 cond = reverse_condition (cond);
9612
9613 switch (cond)
9614 {
9615 case GE: case GT:
9616 return unsignedp ? x : XEXP (x, 1);
9617 case LE: case LT:
9618 return unsignedp ? x : XEXP (x, 0);
9619 case GEU: case GTU:
9620 return unsignedp ? XEXP (x, 1) : x;
9621 case LEU: case LTU:
9622 return unsignedp ? XEXP (x, 0) : x;
9623 default:
9624 break;
9625 }
9626 }
9627 }
9628 }
9629 else if (code == SUBREG)
9630 {
9631 machine_mode inner_mode = GET_MODE (SUBREG_REG (x));
9632 rtx new_rtx, r = known_cond (SUBREG_REG (x), cond, reg, val);
9633
9634 if (SUBREG_REG (x) != r)
9635 {
9636 /* We must simplify subreg here, before we lose track of the
9637 original inner_mode. */
9638 new_rtx = simplify_subreg (GET_MODE (x), r,
9639 inner_mode, SUBREG_BYTE (x));
9640 if (new_rtx)
9641 return new_rtx;
9642 else
9643 SUBST (SUBREG_REG (x), r);
9644 }
9645
9646 return x;
9647 }
9648 /* We don't have to handle SIGN_EXTEND here, because even in the
9649 case of replacing something with a modeless CONST_INT, a
9650 CONST_INT is already (supposed to be) a valid sign extension for
9651 its narrower mode, which implies it's already properly
9652 sign-extended for the wider mode. Now, for ZERO_EXTEND, the
9653 story is different. */
9654 else if (code == ZERO_EXTEND)
9655 {
9656 machine_mode inner_mode = GET_MODE (XEXP (x, 0));
9657 rtx new_rtx, r = known_cond (XEXP (x, 0), cond, reg, val);
9658
9659 if (XEXP (x, 0) != r)
9660 {
9661 /* We must simplify the zero_extend here, before we lose
9662 track of the original inner_mode. */
9663 new_rtx = simplify_unary_operation (ZERO_EXTEND, GET_MODE (x),
9664 r, inner_mode);
9665 if (new_rtx)
9666 return new_rtx;
9667 else
9668 SUBST (XEXP (x, 0), r);
9669 }
9670
9671 return x;
9672 }
9673
9674 fmt = GET_RTX_FORMAT (code);
9675 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
9676 {
9677 if (fmt[i] == 'e')
9678 SUBST (XEXP (x, i), known_cond (XEXP (x, i), cond, reg, val));
9679 else if (fmt[i] == 'E')
9680 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
9681 SUBST (XVECEXP (x, i, j), known_cond (XVECEXP (x, i, j),
9682 cond, reg, val));
9683 }
9684
9685 return x;
9686 }
9687 \f
9688 /* See if X and Y are equal for the purposes of seeing if we can rewrite an
9689 assignment as a field assignment. */
9690
9691 static int
9692 rtx_equal_for_field_assignment_p (rtx x, rtx y, bool widen_x)
9693 {
9694 if (widen_x && GET_MODE (x) != GET_MODE (y))
9695 {
9696 if (paradoxical_subreg_p (GET_MODE (x), GET_MODE (y)))
9697 return 0;
9698 if (BYTES_BIG_ENDIAN != WORDS_BIG_ENDIAN)
9699 return 0;
9700 x = adjust_address_nv (x, GET_MODE (y),
9701 byte_lowpart_offset (GET_MODE (y),
9702 GET_MODE (x)));
9703 }
9704
9705 if (x == y || rtx_equal_p (x, y))
9706 return 1;
9707
9708 if (x == 0 || y == 0 || GET_MODE (x) != GET_MODE (y))
9709 return 0;
9710
9711 /* Check for a paradoxical SUBREG of a MEM compared with the MEM.
9712 Note that all SUBREGs of MEM are paradoxical; otherwise they
9713 would have been rewritten. */
9714 if (MEM_P (x) && GET_CODE (y) == SUBREG
9715 && MEM_P (SUBREG_REG (y))
9716 && rtx_equal_p (SUBREG_REG (y),
9717 gen_lowpart (GET_MODE (SUBREG_REG (y)), x)))
9718 return 1;
9719
9720 if (MEM_P (y) && GET_CODE (x) == SUBREG
9721 && MEM_P (SUBREG_REG (x))
9722 && rtx_equal_p (SUBREG_REG (x),
9723 gen_lowpart (GET_MODE (SUBREG_REG (x)), y)))
9724 return 1;
9725
9726 /* We used to see if get_last_value of X and Y were the same but that's
9727 not correct. In one direction, we'll cause the assignment to have
9728 the wrong destination and in the case, we'll import a register into this
9729 insn that might have already have been dead. So fail if none of the
9730 above cases are true. */
9731 return 0;
9732 }
9733 \f
9734 /* See if X, a SET operation, can be rewritten as a bit-field assignment.
9735 Return that assignment if so.
9736
9737 We only handle the most common cases. */
9738
9739 static rtx
9740 make_field_assignment (rtx x)
9741 {
9742 rtx dest = SET_DEST (x);
9743 rtx src = SET_SRC (x);
9744 rtx assign;
9745 rtx rhs, lhs;
9746 HOST_WIDE_INT c1;
9747 HOST_WIDE_INT pos;
9748 unsigned HOST_WIDE_INT len;
9749 rtx other;
9750
9751 /* All the rules in this function are specific to scalar integers. */
9752 scalar_int_mode mode;
9753 if (!is_a <scalar_int_mode> (GET_MODE (dest), &mode))
9754 return x;
9755
9756 /* If SRC was (and (not (ashift (const_int 1) POS)) DEST), this is
9757 a clear of a one-bit field. We will have changed it to
9758 (and (rotate (const_int -2) POS) DEST), so check for that. Also check
9759 for a SUBREG. */
9760
9761 if (GET_CODE (src) == AND && GET_CODE (XEXP (src, 0)) == ROTATE
9762 && CONST_INT_P (XEXP (XEXP (src, 0), 0))
9763 && INTVAL (XEXP (XEXP (src, 0), 0)) == -2
9764 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
9765 {
9766 assign = make_extraction (VOIDmode, dest, 0, XEXP (XEXP (src, 0), 1),
9767 1, 1, 1, 0);
9768 if (assign != 0)
9769 return gen_rtx_SET (assign, const0_rtx);
9770 return x;
9771 }
9772
9773 if (GET_CODE (src) == AND && GET_CODE (XEXP (src, 0)) == SUBREG
9774 && subreg_lowpart_p (XEXP (src, 0))
9775 && partial_subreg_p (XEXP (src, 0))
9776 && GET_CODE (SUBREG_REG (XEXP (src, 0))) == ROTATE
9777 && CONST_INT_P (XEXP (SUBREG_REG (XEXP (src, 0)), 0))
9778 && INTVAL (XEXP (SUBREG_REG (XEXP (src, 0)), 0)) == -2
9779 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
9780 {
9781 assign = make_extraction (VOIDmode, dest, 0,
9782 XEXP (SUBREG_REG (XEXP (src, 0)), 1),
9783 1, 1, 1, 0);
9784 if (assign != 0)
9785 return gen_rtx_SET (assign, const0_rtx);
9786 return x;
9787 }
9788
9789 /* If SRC is (ior (ashift (const_int 1) POS) DEST), this is a set of a
9790 one-bit field. */
9791 if (GET_CODE (src) == IOR && GET_CODE (XEXP (src, 0)) == ASHIFT
9792 && XEXP (XEXP (src, 0), 0) == const1_rtx
9793 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
9794 {
9795 assign = make_extraction (VOIDmode, dest, 0, XEXP (XEXP (src, 0), 1),
9796 1, 1, 1, 0);
9797 if (assign != 0)
9798 return gen_rtx_SET (assign, const1_rtx);
9799 return x;
9800 }
9801
9802 /* If DEST is already a field assignment, i.e. ZERO_EXTRACT, and the
9803 SRC is an AND with all bits of that field set, then we can discard
9804 the AND. */
9805 if (GET_CODE (dest) == ZERO_EXTRACT
9806 && CONST_INT_P (XEXP (dest, 1))
9807 && GET_CODE (src) == AND
9808 && CONST_INT_P (XEXP (src, 1)))
9809 {
9810 HOST_WIDE_INT width = INTVAL (XEXP (dest, 1));
9811 unsigned HOST_WIDE_INT and_mask = INTVAL (XEXP (src, 1));
9812 unsigned HOST_WIDE_INT ze_mask;
9813
9814 if (width >= HOST_BITS_PER_WIDE_INT)
9815 ze_mask = -1;
9816 else
9817 ze_mask = ((unsigned HOST_WIDE_INT)1 << width) - 1;
9818
9819 /* Complete overlap. We can remove the source AND. */
9820 if ((and_mask & ze_mask) == ze_mask)
9821 return gen_rtx_SET (dest, XEXP (src, 0));
9822
9823 /* Partial overlap. We can reduce the source AND. */
9824 if ((and_mask & ze_mask) != and_mask)
9825 {
9826 src = gen_rtx_AND (mode, XEXP (src, 0),
9827 gen_int_mode (and_mask & ze_mask, mode));
9828 return gen_rtx_SET (dest, src);
9829 }
9830 }
9831
9832 /* The other case we handle is assignments into a constant-position
9833 field. They look like (ior/xor (and DEST C1) OTHER). If C1 represents
9834 a mask that has all one bits except for a group of zero bits and
9835 OTHER is known to have zeros where C1 has ones, this is such an
9836 assignment. Compute the position and length from C1. Shift OTHER
9837 to the appropriate position, force it to the required mode, and
9838 make the extraction. Check for the AND in both operands. */
9839
9840 /* One or more SUBREGs might obscure the constant-position field
9841 assignment. The first one we are likely to encounter is an outer
9842 narrowing SUBREG, which we can just strip for the purposes of
9843 identifying the constant-field assignment. */
9844 scalar_int_mode src_mode = mode;
9845 if (GET_CODE (src) == SUBREG
9846 && subreg_lowpart_p (src)
9847 && is_a <scalar_int_mode> (GET_MODE (SUBREG_REG (src)), &src_mode))
9848 src = SUBREG_REG (src);
9849
9850 if (GET_CODE (src) != IOR && GET_CODE (src) != XOR)
9851 return x;
9852
9853 rhs = expand_compound_operation (XEXP (src, 0));
9854 lhs = expand_compound_operation (XEXP (src, 1));
9855
9856 if (GET_CODE (rhs) == AND
9857 && CONST_INT_P (XEXP (rhs, 1))
9858 && rtx_equal_for_field_assignment_p (XEXP (rhs, 0), dest))
9859 c1 = INTVAL (XEXP (rhs, 1)), other = lhs;
9860 /* The second SUBREG that might get in the way is a paradoxical
9861 SUBREG around the first operand of the AND. We want to
9862 pretend the operand is as wide as the destination here. We
9863 do this by adjusting the MEM to wider mode for the sole
9864 purpose of the call to rtx_equal_for_field_assignment_p. Also
9865 note this trick only works for MEMs. */
9866 else if (GET_CODE (rhs) == AND
9867 && paradoxical_subreg_p (XEXP (rhs, 0))
9868 && MEM_P (SUBREG_REG (XEXP (rhs, 0)))
9869 && CONST_INT_P (XEXP (rhs, 1))
9870 && rtx_equal_for_field_assignment_p (SUBREG_REG (XEXP (rhs, 0)),
9871 dest, true))
9872 c1 = INTVAL (XEXP (rhs, 1)), other = lhs;
9873 else if (GET_CODE (lhs) == AND
9874 && CONST_INT_P (XEXP (lhs, 1))
9875 && rtx_equal_for_field_assignment_p (XEXP (lhs, 0), dest))
9876 c1 = INTVAL (XEXP (lhs, 1)), other = rhs;
9877 /* The second SUBREG that might get in the way is a paradoxical
9878 SUBREG around the first operand of the AND. We want to
9879 pretend the operand is as wide as the destination here. We
9880 do this by adjusting the MEM to wider mode for the sole
9881 purpose of the call to rtx_equal_for_field_assignment_p. Also
9882 note this trick only works for MEMs. */
9883 else if (GET_CODE (lhs) == AND
9884 && paradoxical_subreg_p (XEXP (lhs, 0))
9885 && MEM_P (SUBREG_REG (XEXP (lhs, 0)))
9886 && CONST_INT_P (XEXP (lhs, 1))
9887 && rtx_equal_for_field_assignment_p (SUBREG_REG (XEXP (lhs, 0)),
9888 dest, true))
9889 c1 = INTVAL (XEXP (lhs, 1)), other = rhs;
9890 else
9891 return x;
9892
9893 pos = get_pos_from_mask ((~c1) & GET_MODE_MASK (mode), &len);
9894 if (pos < 0
9895 || pos + len > GET_MODE_PRECISION (mode)
9896 || GET_MODE_PRECISION (mode) > HOST_BITS_PER_WIDE_INT
9897 || (c1 & nonzero_bits (other, mode)) != 0)
9898 return x;
9899
9900 assign = make_extraction (VOIDmode, dest, pos, NULL_RTX, len, 1, 1, 0);
9901 if (assign == 0)
9902 return x;
9903
9904 /* The mode to use for the source is the mode of the assignment, or of
9905 what is inside a possible STRICT_LOW_PART. */
9906 machine_mode new_mode = (GET_CODE (assign) == STRICT_LOW_PART
9907 ? GET_MODE (XEXP (assign, 0)) : GET_MODE (assign));
9908
9909 /* Shift OTHER right POS places and make it the source, restricting it
9910 to the proper length and mode. */
9911
9912 src = canon_reg_for_combine (simplify_shift_const (NULL_RTX, LSHIFTRT,
9913 src_mode, other, pos),
9914 dest);
9915 src = force_to_mode (src, new_mode,
9916 len >= HOST_BITS_PER_WIDE_INT
9917 ? HOST_WIDE_INT_M1U
9918 : (HOST_WIDE_INT_1U << len) - 1,
9919 0);
9920
9921 /* If SRC is masked by an AND that does not make a difference in
9922 the value being stored, strip it. */
9923 if (GET_CODE (assign) == ZERO_EXTRACT
9924 && CONST_INT_P (XEXP (assign, 1))
9925 && INTVAL (XEXP (assign, 1)) < HOST_BITS_PER_WIDE_INT
9926 && GET_CODE (src) == AND
9927 && CONST_INT_P (XEXP (src, 1))
9928 && UINTVAL (XEXP (src, 1))
9929 == (HOST_WIDE_INT_1U << INTVAL (XEXP (assign, 1))) - 1)
9930 src = XEXP (src, 0);
9931
9932 return gen_rtx_SET (assign, src);
9933 }
9934 \f
9935 /* See if X is of the form (+ (* a c) (* b c)) and convert to (* (+ a b) c)
9936 if so. */
9937
9938 static rtx
9939 apply_distributive_law (rtx x)
9940 {
9941 enum rtx_code code = GET_CODE (x);
9942 enum rtx_code inner_code;
9943 rtx lhs, rhs, other;
9944 rtx tem;
9945
9946 /* Distributivity is not true for floating point as it can change the
9947 value. So we don't do it unless -funsafe-math-optimizations. */
9948 if (FLOAT_MODE_P (GET_MODE (x))
9949 && ! flag_unsafe_math_optimizations)
9950 return x;
9951
9952 /* The outer operation can only be one of the following: */
9953 if (code != IOR && code != AND && code != XOR
9954 && code != PLUS && code != MINUS)
9955 return x;
9956
9957 lhs = XEXP (x, 0);
9958 rhs = XEXP (x, 1);
9959
9960 /* If either operand is a primitive we can't do anything, so get out
9961 fast. */
9962 if (OBJECT_P (lhs) || OBJECT_P (rhs))
9963 return x;
9964
9965 lhs = expand_compound_operation (lhs);
9966 rhs = expand_compound_operation (rhs);
9967 inner_code = GET_CODE (lhs);
9968 if (inner_code != GET_CODE (rhs))
9969 return x;
9970
9971 /* See if the inner and outer operations distribute. */
9972 switch (inner_code)
9973 {
9974 case LSHIFTRT:
9975 case ASHIFTRT:
9976 case AND:
9977 case IOR:
9978 /* These all distribute except over PLUS. */
9979 if (code == PLUS || code == MINUS)
9980 return x;
9981 break;
9982
9983 case MULT:
9984 if (code != PLUS && code != MINUS)
9985 return x;
9986 break;
9987
9988 case ASHIFT:
9989 /* This is also a multiply, so it distributes over everything. */
9990 break;
9991
9992 /* This used to handle SUBREG, but this turned out to be counter-
9993 productive, since (subreg (op ...)) usually is not handled by
9994 insn patterns, and this "optimization" therefore transformed
9995 recognizable patterns into unrecognizable ones. Therefore the
9996 SUBREG case was removed from here.
9997
9998 It is possible that distributing SUBREG over arithmetic operations
9999 leads to an intermediate result than can then be optimized further,
10000 e.g. by moving the outer SUBREG to the other side of a SET as done
10001 in simplify_set. This seems to have been the original intent of
10002 handling SUBREGs here.
10003
10004 However, with current GCC this does not appear to actually happen,
10005 at least on major platforms. If some case is found where removing
10006 the SUBREG case here prevents follow-on optimizations, distributing
10007 SUBREGs ought to be re-added at that place, e.g. in simplify_set. */
10008
10009 default:
10010 return x;
10011 }
10012
10013 /* Set LHS and RHS to the inner operands (A and B in the example
10014 above) and set OTHER to the common operand (C in the example).
10015 There is only one way to do this unless the inner operation is
10016 commutative. */
10017 if (COMMUTATIVE_ARITH_P (lhs)
10018 && rtx_equal_p (XEXP (lhs, 0), XEXP (rhs, 0)))
10019 other = XEXP (lhs, 0), lhs = XEXP (lhs, 1), rhs = XEXP (rhs, 1);
10020 else if (COMMUTATIVE_ARITH_P (lhs)
10021 && rtx_equal_p (XEXP (lhs, 0), XEXP (rhs, 1)))
10022 other = XEXP (lhs, 0), lhs = XEXP (lhs, 1), rhs = XEXP (rhs, 0);
10023 else if (COMMUTATIVE_ARITH_P (lhs)
10024 && rtx_equal_p (XEXP (lhs, 1), XEXP (rhs, 0)))
10025 other = XEXP (lhs, 1), lhs = XEXP (lhs, 0), rhs = XEXP (rhs, 1);
10026 else if (rtx_equal_p (XEXP (lhs, 1), XEXP (rhs, 1)))
10027 other = XEXP (lhs, 1), lhs = XEXP (lhs, 0), rhs = XEXP (rhs, 0);
10028 else
10029 return x;
10030
10031 /* Form the new inner operation, seeing if it simplifies first. */
10032 tem = simplify_gen_binary (code, GET_MODE (x), lhs, rhs);
10033
10034 /* There is one exception to the general way of distributing:
10035 (a | c) ^ (b | c) -> (a ^ b) & ~c */
10036 if (code == XOR && inner_code == IOR)
10037 {
10038 inner_code = AND;
10039 other = simplify_gen_unary (NOT, GET_MODE (x), other, GET_MODE (x));
10040 }
10041
10042 /* We may be able to continuing distributing the result, so call
10043 ourselves recursively on the inner operation before forming the
10044 outer operation, which we return. */
10045 return simplify_gen_binary (inner_code, GET_MODE (x),
10046 apply_distributive_law (tem), other);
10047 }
10048
10049 /* See if X is of the form (* (+ A B) C), and if so convert to
10050 (+ (* A C) (* B C)) and try to simplify.
10051
10052 Most of the time, this results in no change. However, if some of
10053 the operands are the same or inverses of each other, simplifications
10054 will result.
10055
10056 For example, (and (ior A B) (not B)) can occur as the result of
10057 expanding a bit field assignment. When we apply the distributive
10058 law to this, we get (ior (and (A (not B))) (and (B (not B)))),
10059 which then simplifies to (and (A (not B))).
10060
10061 Note that no checks happen on the validity of applying the inverse
10062 distributive law. This is pointless since we can do it in the
10063 few places where this routine is called.
10064
10065 N is the index of the term that is decomposed (the arithmetic operation,
10066 i.e. (+ A B) in the first example above). !N is the index of the term that
10067 is distributed, i.e. of C in the first example above. */
10068 static rtx
10069 distribute_and_simplify_rtx (rtx x, int n)
10070 {
10071 machine_mode mode;
10072 enum rtx_code outer_code, inner_code;
10073 rtx decomposed, distributed, inner_op0, inner_op1, new_op0, new_op1, tmp;
10074
10075 /* Distributivity is not true for floating point as it can change the
10076 value. So we don't do it unless -funsafe-math-optimizations. */
10077 if (FLOAT_MODE_P (GET_MODE (x))
10078 && ! flag_unsafe_math_optimizations)
10079 return NULL_RTX;
10080
10081 decomposed = XEXP (x, n);
10082 if (!ARITHMETIC_P (decomposed))
10083 return NULL_RTX;
10084
10085 mode = GET_MODE (x);
10086 outer_code = GET_CODE (x);
10087 distributed = XEXP (x, !n);
10088
10089 inner_code = GET_CODE (decomposed);
10090 inner_op0 = XEXP (decomposed, 0);
10091 inner_op1 = XEXP (decomposed, 1);
10092
10093 /* Special case (and (xor B C) (not A)), which is equivalent to
10094 (xor (ior A B) (ior A C)) */
10095 if (outer_code == AND && inner_code == XOR && GET_CODE (distributed) == NOT)
10096 {
10097 distributed = XEXP (distributed, 0);
10098 outer_code = IOR;
10099 }
10100
10101 if (n == 0)
10102 {
10103 /* Distribute the second term. */
10104 new_op0 = simplify_gen_binary (outer_code, mode, inner_op0, distributed);
10105 new_op1 = simplify_gen_binary (outer_code, mode, inner_op1, distributed);
10106 }
10107 else
10108 {
10109 /* Distribute the first term. */
10110 new_op0 = simplify_gen_binary (outer_code, mode, distributed, inner_op0);
10111 new_op1 = simplify_gen_binary (outer_code, mode, distributed, inner_op1);
10112 }
10113
10114 tmp = apply_distributive_law (simplify_gen_binary (inner_code, mode,
10115 new_op0, new_op1));
10116 if (GET_CODE (tmp) != outer_code
10117 && (set_src_cost (tmp, mode, optimize_this_for_speed_p)
10118 < set_src_cost (x, mode, optimize_this_for_speed_p)))
10119 return tmp;
10120
10121 return NULL_RTX;
10122 }
10123 \f
10124 /* Simplify a logical `and' of VAROP with the constant CONSTOP, to be done
10125 in MODE. Return an equivalent form, if different from (and VAROP
10126 (const_int CONSTOP)). Otherwise, return NULL_RTX. */
10127
10128 static rtx
10129 simplify_and_const_int_1 (scalar_int_mode mode, rtx varop,
10130 unsigned HOST_WIDE_INT constop)
10131 {
10132 unsigned HOST_WIDE_INT nonzero;
10133 unsigned HOST_WIDE_INT orig_constop;
10134 rtx orig_varop;
10135 int i;
10136
10137 orig_varop = varop;
10138 orig_constop = constop;
10139 if (GET_CODE (varop) == CLOBBER)
10140 return NULL_RTX;
10141
10142 /* Simplify VAROP knowing that we will be only looking at some of the
10143 bits in it.
10144
10145 Note by passing in CONSTOP, we guarantee that the bits not set in
10146 CONSTOP are not significant and will never be examined. We must
10147 ensure that is the case by explicitly masking out those bits
10148 before returning. */
10149 varop = force_to_mode (varop, mode, constop, 0);
10150
10151 /* If VAROP is a CLOBBER, we will fail so return it. */
10152 if (GET_CODE (varop) == CLOBBER)
10153 return varop;
10154
10155 /* If VAROP is a CONST_INT, then we need to apply the mask in CONSTOP
10156 to VAROP and return the new constant. */
10157 if (CONST_INT_P (varop))
10158 return gen_int_mode (INTVAL (varop) & constop, mode);
10159
10160 /* See what bits may be nonzero in VAROP. Unlike the general case of
10161 a call to nonzero_bits, here we don't care about bits outside
10162 MODE. */
10163
10164 nonzero = nonzero_bits (varop, mode) & GET_MODE_MASK (mode);
10165
10166 /* Turn off all bits in the constant that are known to already be zero.
10167 Thus, if the AND isn't needed at all, we will have CONSTOP == NONZERO_BITS
10168 which is tested below. */
10169
10170 constop &= nonzero;
10171
10172 /* If we don't have any bits left, return zero. */
10173 if (constop == 0)
10174 return const0_rtx;
10175
10176 /* If VAROP is a NEG of something known to be zero or 1 and CONSTOP is
10177 a power of two, we can replace this with an ASHIFT. */
10178 if (GET_CODE (varop) == NEG && nonzero_bits (XEXP (varop, 0), mode) == 1
10179 && (i = exact_log2 (constop)) >= 0)
10180 return simplify_shift_const (NULL_RTX, ASHIFT, mode, XEXP (varop, 0), i);
10181
10182 /* If VAROP is an IOR or XOR, apply the AND to both branches of the IOR
10183 or XOR, then try to apply the distributive law. This may eliminate
10184 operations if either branch can be simplified because of the AND.
10185 It may also make some cases more complex, but those cases probably
10186 won't match a pattern either with or without this. */
10187
10188 if (GET_CODE (varop) == IOR || GET_CODE (varop) == XOR)
10189 {
10190 scalar_int_mode varop_mode = as_a <scalar_int_mode> (GET_MODE (varop));
10191 return
10192 gen_lowpart
10193 (mode,
10194 apply_distributive_law
10195 (simplify_gen_binary (GET_CODE (varop), varop_mode,
10196 simplify_and_const_int (NULL_RTX, varop_mode,
10197 XEXP (varop, 0),
10198 constop),
10199 simplify_and_const_int (NULL_RTX, varop_mode,
10200 XEXP (varop, 1),
10201 constop))));
10202 }
10203
10204 /* If VAROP is PLUS, and the constant is a mask of low bits, distribute
10205 the AND and see if one of the operands simplifies to zero. If so, we
10206 may eliminate it. */
10207
10208 if (GET_CODE (varop) == PLUS
10209 && pow2p_hwi (constop + 1))
10210 {
10211 rtx o0, o1;
10212
10213 o0 = simplify_and_const_int (NULL_RTX, mode, XEXP (varop, 0), constop);
10214 o1 = simplify_and_const_int (NULL_RTX, mode, XEXP (varop, 1), constop);
10215 if (o0 == const0_rtx)
10216 return o1;
10217 if (o1 == const0_rtx)
10218 return o0;
10219 }
10220
10221 /* Make a SUBREG if necessary. If we can't make it, fail. */
10222 varop = gen_lowpart (mode, varop);
10223 if (varop == NULL_RTX || GET_CODE (varop) == CLOBBER)
10224 return NULL_RTX;
10225
10226 /* If we are only masking insignificant bits, return VAROP. */
10227 if (constop == nonzero)
10228 return varop;
10229
10230 if (varop == orig_varop && constop == orig_constop)
10231 return NULL_RTX;
10232
10233 /* Otherwise, return an AND. */
10234 return simplify_gen_binary (AND, mode, varop, gen_int_mode (constop, mode));
10235 }
10236
10237
10238 /* We have X, a logical `and' of VAROP with the constant CONSTOP, to be done
10239 in MODE.
10240
10241 Return an equivalent form, if different from X. Otherwise, return X. If
10242 X is zero, we are to always construct the equivalent form. */
10243
10244 static rtx
10245 simplify_and_const_int (rtx x, scalar_int_mode mode, rtx varop,
10246 unsigned HOST_WIDE_INT constop)
10247 {
10248 rtx tem = simplify_and_const_int_1 (mode, varop, constop);
10249 if (tem)
10250 return tem;
10251
10252 if (!x)
10253 x = simplify_gen_binary (AND, GET_MODE (varop), varop,
10254 gen_int_mode (constop, mode));
10255 if (GET_MODE (x) != mode)
10256 x = gen_lowpart (mode, x);
10257 return x;
10258 }
10259 \f
10260 /* Given a REG X of mode XMODE, compute which bits in X can be nonzero.
10261 We don't care about bits outside of those defined in MODE.
10262 We DO care about all the bits in MODE, even if XMODE is smaller than MODE.
10263
10264 For most X this is simply GET_MODE_MASK (GET_MODE (MODE)), but if X is
10265 a shift, AND, or zero_extract, we can do better. */
10266
10267 static rtx
10268 reg_nonzero_bits_for_combine (const_rtx x, scalar_int_mode xmode,
10269 scalar_int_mode mode,
10270 unsigned HOST_WIDE_INT *nonzero)
10271 {
10272 rtx tem;
10273 reg_stat_type *rsp;
10274
10275 /* If X is a register whose nonzero bits value is current, use it.
10276 Otherwise, if X is a register whose value we can find, use that
10277 value. Otherwise, use the previously-computed global nonzero bits
10278 for this register. */
10279
10280 rsp = &reg_stat[REGNO (x)];
10281 if (rsp->last_set_value != 0
10282 && (rsp->last_set_mode == mode
10283 || (REGNO (x) >= FIRST_PSEUDO_REGISTER
10284 && GET_MODE_CLASS (rsp->last_set_mode) == MODE_INT
10285 && GET_MODE_CLASS (mode) == MODE_INT))
10286 && ((rsp->last_set_label >= label_tick_ebb_start
10287 && rsp->last_set_label < label_tick)
10288 || (rsp->last_set_label == label_tick
10289 && DF_INSN_LUID (rsp->last_set) < subst_low_luid)
10290 || (REGNO (x) >= FIRST_PSEUDO_REGISTER
10291 && REGNO (x) < reg_n_sets_max
10292 && REG_N_SETS (REGNO (x)) == 1
10293 && !REGNO_REG_SET_P
10294 (DF_LR_IN (ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb),
10295 REGNO (x)))))
10296 {
10297 /* Note that, even if the precision of last_set_mode is lower than that
10298 of mode, record_value_for_reg invoked nonzero_bits on the register
10299 with nonzero_bits_mode (because last_set_mode is necessarily integral
10300 and HWI_COMPUTABLE_MODE_P in this case) so bits in nonzero_bits_mode
10301 are all valid, hence in mode too since nonzero_bits_mode is defined
10302 to the largest HWI_COMPUTABLE_MODE_P mode. */
10303 *nonzero &= rsp->last_set_nonzero_bits;
10304 return NULL;
10305 }
10306
10307 tem = get_last_value (x);
10308 if (tem)
10309 {
10310 if (SHORT_IMMEDIATES_SIGN_EXTEND)
10311 tem = sign_extend_short_imm (tem, xmode, GET_MODE_PRECISION (mode));
10312
10313 return tem;
10314 }
10315
10316 if (nonzero_sign_valid && rsp->nonzero_bits)
10317 {
10318 unsigned HOST_WIDE_INT mask = rsp->nonzero_bits;
10319
10320 if (GET_MODE_PRECISION (xmode) < GET_MODE_PRECISION (mode))
10321 /* We don't know anything about the upper bits. */
10322 mask |= GET_MODE_MASK (mode) ^ GET_MODE_MASK (xmode);
10323
10324 *nonzero &= mask;
10325 }
10326
10327 return NULL;
10328 }
10329
10330 /* Given a reg X of mode XMODE, return the number of bits at the high-order
10331 end of X that are known to be equal to the sign bit. X will be used
10332 in mode MODE; the returned value will always be between 1 and the
10333 number of bits in MODE. */
10334
10335 static rtx
10336 reg_num_sign_bit_copies_for_combine (const_rtx x, scalar_int_mode xmode,
10337 scalar_int_mode mode,
10338 unsigned int *result)
10339 {
10340 rtx tem;
10341 reg_stat_type *rsp;
10342
10343 rsp = &reg_stat[REGNO (x)];
10344 if (rsp->last_set_value != 0
10345 && rsp->last_set_mode == mode
10346 && ((rsp->last_set_label >= label_tick_ebb_start
10347 && rsp->last_set_label < label_tick)
10348 || (rsp->last_set_label == label_tick
10349 && DF_INSN_LUID (rsp->last_set) < subst_low_luid)
10350 || (REGNO (x) >= FIRST_PSEUDO_REGISTER
10351 && REGNO (x) < reg_n_sets_max
10352 && REG_N_SETS (REGNO (x)) == 1
10353 && !REGNO_REG_SET_P
10354 (DF_LR_IN (ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb),
10355 REGNO (x)))))
10356 {
10357 *result = rsp->last_set_sign_bit_copies;
10358 return NULL;
10359 }
10360
10361 tem = get_last_value (x);
10362 if (tem != 0)
10363 return tem;
10364
10365 if (nonzero_sign_valid && rsp->sign_bit_copies != 0
10366 && GET_MODE_PRECISION (xmode) == GET_MODE_PRECISION (mode))
10367 *result = rsp->sign_bit_copies;
10368
10369 return NULL;
10370 }
10371 \f
10372 /* Return the number of "extended" bits there are in X, when interpreted
10373 as a quantity in MODE whose signedness is indicated by UNSIGNEDP. For
10374 unsigned quantities, this is the number of high-order zero bits.
10375 For signed quantities, this is the number of copies of the sign bit
10376 minus 1. In both case, this function returns the number of "spare"
10377 bits. For example, if two quantities for which this function returns
10378 at least 1 are added, the addition is known not to overflow.
10379
10380 This function will always return 0 unless called during combine, which
10381 implies that it must be called from a define_split. */
10382
10383 unsigned int
10384 extended_count (const_rtx x, machine_mode mode, int unsignedp)
10385 {
10386 if (nonzero_sign_valid == 0)
10387 return 0;
10388
10389 scalar_int_mode int_mode;
10390 return (unsignedp
10391 ? (is_a <scalar_int_mode> (mode, &int_mode)
10392 && HWI_COMPUTABLE_MODE_P (int_mode)
10393 ? (unsigned int) (GET_MODE_PRECISION (int_mode) - 1
10394 - floor_log2 (nonzero_bits (x, int_mode)))
10395 : 0)
10396 : num_sign_bit_copies (x, mode) - 1);
10397 }
10398
10399 /* This function is called from `simplify_shift_const' to merge two
10400 outer operations. Specifically, we have already found that we need
10401 to perform operation *POP0 with constant *PCONST0 at the outermost
10402 position. We would now like to also perform OP1 with constant CONST1
10403 (with *POP0 being done last).
10404
10405 Return 1 if we can do the operation and update *POP0 and *PCONST0 with
10406 the resulting operation. *PCOMP_P is set to 1 if we would need to
10407 complement the innermost operand, otherwise it is unchanged.
10408
10409 MODE is the mode in which the operation will be done. No bits outside
10410 the width of this mode matter. It is assumed that the width of this mode
10411 is smaller than or equal to HOST_BITS_PER_WIDE_INT.
10412
10413 If *POP0 or OP1 are UNKNOWN, it means no operation is required. Only NEG, PLUS,
10414 IOR, XOR, and AND are supported. We may set *POP0 to SET if the proper
10415 result is simply *PCONST0.
10416
10417 If the resulting operation cannot be expressed as one operation, we
10418 return 0 and do not change *POP0, *PCONST0, and *PCOMP_P. */
10419
10420 static int
10421 merge_outer_ops (enum rtx_code *pop0, HOST_WIDE_INT *pconst0, enum rtx_code op1, HOST_WIDE_INT const1, machine_mode mode, int *pcomp_p)
10422 {
10423 enum rtx_code op0 = *pop0;
10424 HOST_WIDE_INT const0 = *pconst0;
10425
10426 const0 &= GET_MODE_MASK (mode);
10427 const1 &= GET_MODE_MASK (mode);
10428
10429 /* If OP0 is an AND, clear unimportant bits in CONST1. */
10430 if (op0 == AND)
10431 const1 &= const0;
10432
10433 /* If OP0 or OP1 is UNKNOWN, this is easy. Similarly if they are the same or
10434 if OP0 is SET. */
10435
10436 if (op1 == UNKNOWN || op0 == SET)
10437 return 1;
10438
10439 else if (op0 == UNKNOWN)
10440 op0 = op1, const0 = const1;
10441
10442 else if (op0 == op1)
10443 {
10444 switch (op0)
10445 {
10446 case AND:
10447 const0 &= const1;
10448 break;
10449 case IOR:
10450 const0 |= const1;
10451 break;
10452 case XOR:
10453 const0 ^= const1;
10454 break;
10455 case PLUS:
10456 const0 += const1;
10457 break;
10458 case NEG:
10459 op0 = UNKNOWN;
10460 break;
10461 default:
10462 break;
10463 }
10464 }
10465
10466 /* Otherwise, if either is a PLUS or NEG, we can't do anything. */
10467 else if (op0 == PLUS || op1 == PLUS || op0 == NEG || op1 == NEG)
10468 return 0;
10469
10470 /* If the two constants aren't the same, we can't do anything. The
10471 remaining six cases can all be done. */
10472 else if (const0 != const1)
10473 return 0;
10474
10475 else
10476 switch (op0)
10477 {
10478 case IOR:
10479 if (op1 == AND)
10480 /* (a & b) | b == b */
10481 op0 = SET;
10482 else /* op1 == XOR */
10483 /* (a ^ b) | b == a | b */
10484 {;}
10485 break;
10486
10487 case XOR:
10488 if (op1 == AND)
10489 /* (a & b) ^ b == (~a) & b */
10490 op0 = AND, *pcomp_p = 1;
10491 else /* op1 == IOR */
10492 /* (a | b) ^ b == a & ~b */
10493 op0 = AND, const0 = ~const0;
10494 break;
10495
10496 case AND:
10497 if (op1 == IOR)
10498 /* (a | b) & b == b */
10499 op0 = SET;
10500 else /* op1 == XOR */
10501 /* (a ^ b) & b) == (~a) & b */
10502 *pcomp_p = 1;
10503 break;
10504 default:
10505 break;
10506 }
10507
10508 /* Check for NO-OP cases. */
10509 const0 &= GET_MODE_MASK (mode);
10510 if (const0 == 0
10511 && (op0 == IOR || op0 == XOR || op0 == PLUS))
10512 op0 = UNKNOWN;
10513 else if (const0 == 0 && op0 == AND)
10514 op0 = SET;
10515 else if ((unsigned HOST_WIDE_INT) const0 == GET_MODE_MASK (mode)
10516 && op0 == AND)
10517 op0 = UNKNOWN;
10518
10519 *pop0 = op0;
10520
10521 /* ??? Slightly redundant with the above mask, but not entirely.
10522 Moving this above means we'd have to sign-extend the mode mask
10523 for the final test. */
10524 if (op0 != UNKNOWN && op0 != NEG)
10525 *pconst0 = trunc_int_for_mode (const0, mode);
10526
10527 return 1;
10528 }
10529 \f
10530 /* A helper to simplify_shift_const_1 to determine the mode we can perform
10531 the shift in. The original shift operation CODE is performed on OP in
10532 ORIG_MODE. Return the wider mode MODE if we can perform the operation
10533 in that mode. Return ORIG_MODE otherwise. We can also assume that the
10534 result of the shift is subject to operation OUTER_CODE with operand
10535 OUTER_CONST. */
10536
10537 static scalar_int_mode
10538 try_widen_shift_mode (enum rtx_code code, rtx op, int count,
10539 scalar_int_mode orig_mode, scalar_int_mode mode,
10540 enum rtx_code outer_code, HOST_WIDE_INT outer_const)
10541 {
10542 gcc_assert (GET_MODE_PRECISION (mode) > GET_MODE_PRECISION (orig_mode));
10543
10544 /* In general we can't perform in wider mode for right shift and rotate. */
10545 switch (code)
10546 {
10547 case ASHIFTRT:
10548 /* We can still widen if the bits brought in from the left are identical
10549 to the sign bit of ORIG_MODE. */
10550 if (num_sign_bit_copies (op, mode)
10551 > (unsigned) (GET_MODE_PRECISION (mode)
10552 - GET_MODE_PRECISION (orig_mode)))
10553 return mode;
10554 return orig_mode;
10555
10556 case LSHIFTRT:
10557 /* Similarly here but with zero bits. */
10558 if (HWI_COMPUTABLE_MODE_P (mode)
10559 && (nonzero_bits (op, mode) & ~GET_MODE_MASK (orig_mode)) == 0)
10560 return mode;
10561
10562 /* We can also widen if the bits brought in will be masked off. This
10563 operation is performed in ORIG_MODE. */
10564 if (outer_code == AND)
10565 {
10566 int care_bits = low_bitmask_len (orig_mode, outer_const);
10567
10568 if (care_bits >= 0
10569 && GET_MODE_PRECISION (orig_mode) - care_bits >= count)
10570 return mode;
10571 }
10572 /* fall through */
10573
10574 case ROTATE:
10575 return orig_mode;
10576
10577 case ROTATERT:
10578 gcc_unreachable ();
10579
10580 default:
10581 return mode;
10582 }
10583 }
10584
10585 /* Simplify a shift of VAROP by ORIG_COUNT bits. CODE says what kind
10586 of shift. The result of the shift is RESULT_MODE. Return NULL_RTX
10587 if we cannot simplify it. Otherwise, return a simplified value.
10588
10589 The shift is normally computed in the widest mode we find in VAROP, as
10590 long as it isn't a different number of words than RESULT_MODE. Exceptions
10591 are ASHIFTRT and ROTATE, which are always done in their original mode. */
10592
10593 static rtx
10594 simplify_shift_const_1 (enum rtx_code code, machine_mode result_mode,
10595 rtx varop, int orig_count)
10596 {
10597 enum rtx_code orig_code = code;
10598 rtx orig_varop = varop;
10599 int count, log2;
10600 machine_mode mode = result_mode;
10601 machine_mode shift_mode;
10602 scalar_int_mode tmode, inner_mode, int_mode, int_varop_mode, int_result_mode;
10603 /* We form (outer_op (code varop count) (outer_const)). */
10604 enum rtx_code outer_op = UNKNOWN;
10605 HOST_WIDE_INT outer_const = 0;
10606 int complement_p = 0;
10607 rtx new_rtx, x;
10608
10609 /* Make sure and truncate the "natural" shift on the way in. We don't
10610 want to do this inside the loop as it makes it more difficult to
10611 combine shifts. */
10612 if (SHIFT_COUNT_TRUNCATED)
10613 orig_count &= GET_MODE_UNIT_BITSIZE (mode) - 1;
10614
10615 /* If we were given an invalid count, don't do anything except exactly
10616 what was requested. */
10617
10618 if (orig_count < 0 || orig_count >= (int) GET_MODE_UNIT_PRECISION (mode))
10619 return NULL_RTX;
10620
10621 count = orig_count;
10622
10623 /* Unless one of the branches of the `if' in this loop does a `continue',
10624 we will `break' the loop after the `if'. */
10625
10626 while (count != 0)
10627 {
10628 /* If we have an operand of (clobber (const_int 0)), fail. */
10629 if (GET_CODE (varop) == CLOBBER)
10630 return NULL_RTX;
10631
10632 /* Convert ROTATERT to ROTATE. */
10633 if (code == ROTATERT)
10634 {
10635 unsigned int bitsize = GET_MODE_UNIT_PRECISION (result_mode);
10636 code = ROTATE;
10637 count = bitsize - count;
10638 }
10639
10640 shift_mode = result_mode;
10641 if (shift_mode != mode)
10642 {
10643 /* We only change the modes of scalar shifts. */
10644 int_mode = as_a <scalar_int_mode> (mode);
10645 int_result_mode = as_a <scalar_int_mode> (result_mode);
10646 shift_mode = try_widen_shift_mode (code, varop, count,
10647 int_result_mode, int_mode,
10648 outer_op, outer_const);
10649 }
10650
10651 scalar_int_mode shift_unit_mode
10652 = as_a <scalar_int_mode> (GET_MODE_INNER (shift_mode));
10653
10654 /* Handle cases where the count is greater than the size of the mode
10655 minus 1. For ASHIFT, use the size minus one as the count (this can
10656 occur when simplifying (lshiftrt (ashiftrt ..))). For rotates,
10657 take the count modulo the size. For other shifts, the result is
10658 zero.
10659
10660 Since these shifts are being produced by the compiler by combining
10661 multiple operations, each of which are defined, we know what the
10662 result is supposed to be. */
10663
10664 if (count > (GET_MODE_PRECISION (shift_unit_mode) - 1))
10665 {
10666 if (code == ASHIFTRT)
10667 count = GET_MODE_PRECISION (shift_unit_mode) - 1;
10668 else if (code == ROTATE || code == ROTATERT)
10669 count %= GET_MODE_PRECISION (shift_unit_mode);
10670 else
10671 {
10672 /* We can't simply return zero because there may be an
10673 outer op. */
10674 varop = const0_rtx;
10675 count = 0;
10676 break;
10677 }
10678 }
10679
10680 /* If we discovered we had to complement VAROP, leave. Making a NOT
10681 here would cause an infinite loop. */
10682 if (complement_p)
10683 break;
10684
10685 if (shift_mode == shift_unit_mode)
10686 {
10687 /* An arithmetic right shift of a quantity known to be -1 or 0
10688 is a no-op. */
10689 if (code == ASHIFTRT
10690 && (num_sign_bit_copies (varop, shift_unit_mode)
10691 == GET_MODE_PRECISION (shift_unit_mode)))
10692 {
10693 count = 0;
10694 break;
10695 }
10696
10697 /* If we are doing an arithmetic right shift and discarding all but
10698 the sign bit copies, this is equivalent to doing a shift by the
10699 bitsize minus one. Convert it into that shift because it will
10700 often allow other simplifications. */
10701
10702 if (code == ASHIFTRT
10703 && (count + num_sign_bit_copies (varop, shift_unit_mode)
10704 >= GET_MODE_PRECISION (shift_unit_mode)))
10705 count = GET_MODE_PRECISION (shift_unit_mode) - 1;
10706
10707 /* We simplify the tests below and elsewhere by converting
10708 ASHIFTRT to LSHIFTRT if we know the sign bit is clear.
10709 `make_compound_operation' will convert it to an ASHIFTRT for
10710 those machines (such as VAX) that don't have an LSHIFTRT. */
10711 if (code == ASHIFTRT
10712 && HWI_COMPUTABLE_MODE_P (shift_unit_mode)
10713 && val_signbit_known_clear_p (shift_unit_mode,
10714 nonzero_bits (varop,
10715 shift_unit_mode)))
10716 code = LSHIFTRT;
10717
10718 if (((code == LSHIFTRT
10719 && HWI_COMPUTABLE_MODE_P (shift_unit_mode)
10720 && !(nonzero_bits (varop, shift_unit_mode) >> count))
10721 || (code == ASHIFT
10722 && HWI_COMPUTABLE_MODE_P (shift_unit_mode)
10723 && !((nonzero_bits (varop, shift_unit_mode) << count)
10724 & GET_MODE_MASK (shift_unit_mode))))
10725 && !side_effects_p (varop))
10726 varop = const0_rtx;
10727 }
10728
10729 switch (GET_CODE (varop))
10730 {
10731 case SIGN_EXTEND:
10732 case ZERO_EXTEND:
10733 case SIGN_EXTRACT:
10734 case ZERO_EXTRACT:
10735 new_rtx = expand_compound_operation (varop);
10736 if (new_rtx != varop)
10737 {
10738 varop = new_rtx;
10739 continue;
10740 }
10741 break;
10742
10743 case MEM:
10744 /* The following rules apply only to scalars. */
10745 if (shift_mode != shift_unit_mode)
10746 break;
10747 int_mode = as_a <scalar_int_mode> (mode);
10748
10749 /* If we have (xshiftrt (mem ...) C) and C is MODE_WIDTH
10750 minus the width of a smaller mode, we can do this with a
10751 SIGN_EXTEND or ZERO_EXTEND from the narrower memory location. */
10752 if ((code == ASHIFTRT || code == LSHIFTRT)
10753 && ! mode_dependent_address_p (XEXP (varop, 0),
10754 MEM_ADDR_SPACE (varop))
10755 && ! MEM_VOLATILE_P (varop)
10756 && (int_mode_for_size (GET_MODE_BITSIZE (int_mode) - count, 1)
10757 .exists (&tmode)))
10758 {
10759 new_rtx = adjust_address_nv (varop, tmode,
10760 BYTES_BIG_ENDIAN ? 0
10761 : count / BITS_PER_UNIT);
10762
10763 varop = gen_rtx_fmt_e (code == ASHIFTRT ? SIGN_EXTEND
10764 : ZERO_EXTEND, int_mode, new_rtx);
10765 count = 0;
10766 continue;
10767 }
10768 break;
10769
10770 case SUBREG:
10771 /* The following rules apply only to scalars. */
10772 if (shift_mode != shift_unit_mode)
10773 break;
10774 int_mode = as_a <scalar_int_mode> (mode);
10775 int_varop_mode = as_a <scalar_int_mode> (GET_MODE (varop));
10776
10777 /* If VAROP is a SUBREG, strip it as long as the inner operand has
10778 the same number of words as what we've seen so far. Then store
10779 the widest mode in MODE. */
10780 if (subreg_lowpart_p (varop)
10781 && is_int_mode (GET_MODE (SUBREG_REG (varop)), &inner_mode)
10782 && GET_MODE_SIZE (inner_mode) > GET_MODE_SIZE (int_varop_mode)
10783 && (CEIL (GET_MODE_SIZE (inner_mode), UNITS_PER_WORD)
10784 == CEIL (GET_MODE_SIZE (int_mode), UNITS_PER_WORD))
10785 && GET_MODE_CLASS (int_varop_mode) == MODE_INT)
10786 {
10787 varop = SUBREG_REG (varop);
10788 if (GET_MODE_SIZE (inner_mode) > GET_MODE_SIZE (int_mode))
10789 mode = inner_mode;
10790 continue;
10791 }
10792 break;
10793
10794 case MULT:
10795 /* Some machines use MULT instead of ASHIFT because MULT
10796 is cheaper. But it is still better on those machines to
10797 merge two shifts into one. */
10798 if (CONST_INT_P (XEXP (varop, 1))
10799 && (log2 = exact_log2 (UINTVAL (XEXP (varop, 1)))) >= 0)
10800 {
10801 rtx log2_rtx = gen_int_shift_amount (GET_MODE (varop), log2);
10802 varop = simplify_gen_binary (ASHIFT, GET_MODE (varop),
10803 XEXP (varop, 0), log2_rtx);
10804 continue;
10805 }
10806 break;
10807
10808 case UDIV:
10809 /* Similar, for when divides are cheaper. */
10810 if (CONST_INT_P (XEXP (varop, 1))
10811 && (log2 = exact_log2 (UINTVAL (XEXP (varop, 1)))) >= 0)
10812 {
10813 rtx log2_rtx = gen_int_shift_amount (GET_MODE (varop), log2);
10814 varop = simplify_gen_binary (LSHIFTRT, GET_MODE (varop),
10815 XEXP (varop, 0), log2_rtx);
10816 continue;
10817 }
10818 break;
10819
10820 case ASHIFTRT:
10821 /* If we are extracting just the sign bit of an arithmetic
10822 right shift, that shift is not needed. However, the sign
10823 bit of a wider mode may be different from what would be
10824 interpreted as the sign bit in a narrower mode, so, if
10825 the result is narrower, don't discard the shift. */
10826 if (code == LSHIFTRT
10827 && count == (GET_MODE_UNIT_BITSIZE (result_mode) - 1)
10828 && (GET_MODE_UNIT_BITSIZE (result_mode)
10829 >= GET_MODE_UNIT_BITSIZE (GET_MODE (varop))))
10830 {
10831 varop = XEXP (varop, 0);
10832 continue;
10833 }
10834
10835 /* fall through */
10836
10837 case LSHIFTRT:
10838 case ASHIFT:
10839 case ROTATE:
10840 /* The following rules apply only to scalars. */
10841 if (shift_mode != shift_unit_mode)
10842 break;
10843 int_mode = as_a <scalar_int_mode> (mode);
10844 int_varop_mode = as_a <scalar_int_mode> (GET_MODE (varop));
10845 int_result_mode = as_a <scalar_int_mode> (result_mode);
10846
10847 /* Here we have two nested shifts. The result is usually the
10848 AND of a new shift with a mask. We compute the result below. */
10849 if (CONST_INT_P (XEXP (varop, 1))
10850 && INTVAL (XEXP (varop, 1)) >= 0
10851 && INTVAL (XEXP (varop, 1)) < GET_MODE_PRECISION (int_varop_mode)
10852 && HWI_COMPUTABLE_MODE_P (int_result_mode)
10853 && HWI_COMPUTABLE_MODE_P (int_mode))
10854 {
10855 enum rtx_code first_code = GET_CODE (varop);
10856 unsigned int first_count = INTVAL (XEXP (varop, 1));
10857 unsigned HOST_WIDE_INT mask;
10858 rtx mask_rtx;
10859
10860 /* We have one common special case. We can't do any merging if
10861 the inner code is an ASHIFTRT of a smaller mode. However, if
10862 we have (ashift:M1 (subreg:M1 (ashiftrt:M2 FOO C1) 0) C2)
10863 with C2 == GET_MODE_BITSIZE (M1) - GET_MODE_BITSIZE (M2),
10864 we can convert it to
10865 (ashiftrt:M1 (ashift:M1 (and:M1 (subreg:M1 FOO 0) C3) C2) C1).
10866 This simplifies certain SIGN_EXTEND operations. */
10867 if (code == ASHIFT && first_code == ASHIFTRT
10868 && count == (GET_MODE_PRECISION (int_result_mode)
10869 - GET_MODE_PRECISION (int_varop_mode)))
10870 {
10871 /* C3 has the low-order C1 bits zero. */
10872
10873 mask = GET_MODE_MASK (int_mode)
10874 & ~((HOST_WIDE_INT_1U << first_count) - 1);
10875
10876 varop = simplify_and_const_int (NULL_RTX, int_result_mode,
10877 XEXP (varop, 0), mask);
10878 varop = simplify_shift_const (NULL_RTX, ASHIFT,
10879 int_result_mode, varop, count);
10880 count = first_count;
10881 code = ASHIFTRT;
10882 continue;
10883 }
10884
10885 /* If this was (ashiftrt (ashift foo C1) C2) and FOO has more
10886 than C1 high-order bits equal to the sign bit, we can convert
10887 this to either an ASHIFT or an ASHIFTRT depending on the
10888 two counts.
10889
10890 We cannot do this if VAROP's mode is not SHIFT_UNIT_MODE. */
10891
10892 if (code == ASHIFTRT && first_code == ASHIFT
10893 && int_varop_mode == shift_unit_mode
10894 && (num_sign_bit_copies (XEXP (varop, 0), shift_unit_mode)
10895 > first_count))
10896 {
10897 varop = XEXP (varop, 0);
10898 count -= first_count;
10899 if (count < 0)
10900 {
10901 count = -count;
10902 code = ASHIFT;
10903 }
10904
10905 continue;
10906 }
10907
10908 /* There are some cases we can't do. If CODE is ASHIFTRT,
10909 we can only do this if FIRST_CODE is also ASHIFTRT.
10910
10911 We can't do the case when CODE is ROTATE and FIRST_CODE is
10912 ASHIFTRT.
10913
10914 If the mode of this shift is not the mode of the outer shift,
10915 we can't do this if either shift is a right shift or ROTATE.
10916
10917 Finally, we can't do any of these if the mode is too wide
10918 unless the codes are the same.
10919
10920 Handle the case where the shift codes are the same
10921 first. */
10922
10923 if (code == first_code)
10924 {
10925 if (int_varop_mode != int_result_mode
10926 && (code == ASHIFTRT || code == LSHIFTRT
10927 || code == ROTATE))
10928 break;
10929
10930 count += first_count;
10931 varop = XEXP (varop, 0);
10932 continue;
10933 }
10934
10935 if (code == ASHIFTRT
10936 || (code == ROTATE && first_code == ASHIFTRT)
10937 || GET_MODE_PRECISION (int_mode) > HOST_BITS_PER_WIDE_INT
10938 || (int_varop_mode != int_result_mode
10939 && (first_code == ASHIFTRT || first_code == LSHIFTRT
10940 || first_code == ROTATE
10941 || code == ROTATE)))
10942 break;
10943
10944 /* To compute the mask to apply after the shift, shift the
10945 nonzero bits of the inner shift the same way the
10946 outer shift will. */
10947
10948 mask_rtx = gen_int_mode (nonzero_bits (varop, int_varop_mode),
10949 int_result_mode);
10950 rtx count_rtx = gen_int_shift_amount (int_result_mode, count);
10951 mask_rtx
10952 = simplify_const_binary_operation (code, int_result_mode,
10953 mask_rtx, count_rtx);
10954
10955 /* Give up if we can't compute an outer operation to use. */
10956 if (mask_rtx == 0
10957 || !CONST_INT_P (mask_rtx)
10958 || ! merge_outer_ops (&outer_op, &outer_const, AND,
10959 INTVAL (mask_rtx),
10960 int_result_mode, &complement_p))
10961 break;
10962
10963 /* If the shifts are in the same direction, we add the
10964 counts. Otherwise, we subtract them. */
10965 if ((code == ASHIFTRT || code == LSHIFTRT)
10966 == (first_code == ASHIFTRT || first_code == LSHIFTRT))
10967 count += first_count;
10968 else
10969 count -= first_count;
10970
10971 /* If COUNT is positive, the new shift is usually CODE,
10972 except for the two exceptions below, in which case it is
10973 FIRST_CODE. If the count is negative, FIRST_CODE should
10974 always be used */
10975 if (count > 0
10976 && ((first_code == ROTATE && code == ASHIFT)
10977 || (first_code == ASHIFTRT && code == LSHIFTRT)))
10978 code = first_code;
10979 else if (count < 0)
10980 code = first_code, count = -count;
10981
10982 varop = XEXP (varop, 0);
10983 continue;
10984 }
10985
10986 /* If we have (A << B << C) for any shift, we can convert this to
10987 (A << C << B). This wins if A is a constant. Only try this if
10988 B is not a constant. */
10989
10990 else if (GET_CODE (varop) == code
10991 && CONST_INT_P (XEXP (varop, 0))
10992 && !CONST_INT_P (XEXP (varop, 1)))
10993 {
10994 /* For ((unsigned) (cstULL >> count)) >> cst2 we have to make
10995 sure the result will be masked. See PR70222. */
10996 if (code == LSHIFTRT
10997 && int_mode != int_result_mode
10998 && !merge_outer_ops (&outer_op, &outer_const, AND,
10999 GET_MODE_MASK (int_result_mode)
11000 >> orig_count, int_result_mode,
11001 &complement_p))
11002 break;
11003 /* For ((int) (cstLL >> count)) >> cst2 just give up. Queuing
11004 up outer sign extension (often left and right shift) is
11005 hardly more efficient than the original. See PR70429. */
11006 if (code == ASHIFTRT && int_mode != int_result_mode)
11007 break;
11008
11009 rtx count_rtx = gen_int_shift_amount (int_result_mode, count);
11010 rtx new_rtx = simplify_const_binary_operation (code, int_mode,
11011 XEXP (varop, 0),
11012 count_rtx);
11013 varop = gen_rtx_fmt_ee (code, int_mode, new_rtx, XEXP (varop, 1));
11014 count = 0;
11015 continue;
11016 }
11017 break;
11018
11019 case NOT:
11020 /* The following rules apply only to scalars. */
11021 if (shift_mode != shift_unit_mode)
11022 break;
11023
11024 /* Make this fit the case below. */
11025 varop = gen_rtx_XOR (mode, XEXP (varop, 0), constm1_rtx);
11026 continue;
11027
11028 case IOR:
11029 case AND:
11030 case XOR:
11031 /* The following rules apply only to scalars. */
11032 if (shift_mode != shift_unit_mode)
11033 break;
11034 int_varop_mode = as_a <scalar_int_mode> (GET_MODE (varop));
11035 int_result_mode = as_a <scalar_int_mode> (result_mode);
11036
11037 /* If we have (xshiftrt (ior (plus X (const_int -1)) X) C)
11038 with C the size of VAROP - 1 and the shift is logical if
11039 STORE_FLAG_VALUE is 1 and arithmetic if STORE_FLAG_VALUE is -1,
11040 we have an (le X 0) operation. If we have an arithmetic shift
11041 and STORE_FLAG_VALUE is 1 or we have a logical shift with
11042 STORE_FLAG_VALUE of -1, we have a (neg (le X 0)) operation. */
11043
11044 if (GET_CODE (varop) == IOR && GET_CODE (XEXP (varop, 0)) == PLUS
11045 && XEXP (XEXP (varop, 0), 1) == constm1_rtx
11046 && (STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
11047 && (code == LSHIFTRT || code == ASHIFTRT)
11048 && count == (GET_MODE_PRECISION (int_varop_mode) - 1)
11049 && rtx_equal_p (XEXP (XEXP (varop, 0), 0), XEXP (varop, 1)))
11050 {
11051 count = 0;
11052 varop = gen_rtx_LE (int_varop_mode, XEXP (varop, 1),
11053 const0_rtx);
11054
11055 if (STORE_FLAG_VALUE == 1 ? code == ASHIFTRT : code == LSHIFTRT)
11056 varop = gen_rtx_NEG (int_varop_mode, varop);
11057
11058 continue;
11059 }
11060
11061 /* If we have (shift (logical)), move the logical to the outside
11062 to allow it to possibly combine with another logical and the
11063 shift to combine with another shift. This also canonicalizes to
11064 what a ZERO_EXTRACT looks like. Also, some machines have
11065 (and (shift)) insns. */
11066
11067 if (CONST_INT_P (XEXP (varop, 1))
11068 /* We can't do this if we have (ashiftrt (xor)) and the
11069 constant has its sign bit set in shift_unit_mode with
11070 shift_unit_mode wider than result_mode. */
11071 && !(code == ASHIFTRT && GET_CODE (varop) == XOR
11072 && int_result_mode != shift_unit_mode
11073 && trunc_int_for_mode (INTVAL (XEXP (varop, 1)),
11074 shift_unit_mode) < 0)
11075 && (new_rtx = simplify_const_binary_operation
11076 (code, int_result_mode,
11077 gen_int_mode (INTVAL (XEXP (varop, 1)), int_result_mode),
11078 gen_int_shift_amount (int_result_mode, count))) != 0
11079 && CONST_INT_P (new_rtx)
11080 && merge_outer_ops (&outer_op, &outer_const, GET_CODE (varop),
11081 INTVAL (new_rtx), int_result_mode,
11082 &complement_p))
11083 {
11084 varop = XEXP (varop, 0);
11085 continue;
11086 }
11087
11088 /* If we can't do that, try to simplify the shift in each arm of the
11089 logical expression, make a new logical expression, and apply
11090 the inverse distributive law. This also can't be done for
11091 (ashiftrt (xor)) where we've widened the shift and the constant
11092 changes the sign bit. */
11093 if (CONST_INT_P (XEXP (varop, 1))
11094 && !(code == ASHIFTRT && GET_CODE (varop) == XOR
11095 && int_result_mode != shift_unit_mode
11096 && trunc_int_for_mode (INTVAL (XEXP (varop, 1)),
11097 shift_unit_mode) < 0))
11098 {
11099 rtx lhs = simplify_shift_const (NULL_RTX, code, shift_unit_mode,
11100 XEXP (varop, 0), count);
11101 rtx rhs = simplify_shift_const (NULL_RTX, code, shift_unit_mode,
11102 XEXP (varop, 1), count);
11103
11104 varop = simplify_gen_binary (GET_CODE (varop), shift_unit_mode,
11105 lhs, rhs);
11106 varop = apply_distributive_law (varop);
11107
11108 count = 0;
11109 continue;
11110 }
11111 break;
11112
11113 case EQ:
11114 /* The following rules apply only to scalars. */
11115 if (shift_mode != shift_unit_mode)
11116 break;
11117 int_result_mode = as_a <scalar_int_mode> (result_mode);
11118
11119 /* Convert (lshiftrt (eq FOO 0) C) to (xor FOO 1) if STORE_FLAG_VALUE
11120 says that the sign bit can be tested, FOO has mode MODE, C is
11121 GET_MODE_PRECISION (MODE) - 1, and FOO has only its low-order bit
11122 that may be nonzero. */
11123 if (code == LSHIFTRT
11124 && XEXP (varop, 1) == const0_rtx
11125 && GET_MODE (XEXP (varop, 0)) == int_result_mode
11126 && count == (GET_MODE_PRECISION (int_result_mode) - 1)
11127 && HWI_COMPUTABLE_MODE_P (int_result_mode)
11128 && STORE_FLAG_VALUE == -1
11129 && nonzero_bits (XEXP (varop, 0), int_result_mode) == 1
11130 && merge_outer_ops (&outer_op, &outer_const, XOR, 1,
11131 int_result_mode, &complement_p))
11132 {
11133 varop = XEXP (varop, 0);
11134 count = 0;
11135 continue;
11136 }
11137 break;
11138
11139 case NEG:
11140 /* The following rules apply only to scalars. */
11141 if (shift_mode != shift_unit_mode)
11142 break;
11143 int_result_mode = as_a <scalar_int_mode> (result_mode);
11144
11145 /* (lshiftrt (neg A) C) where A is either 0 or 1 and C is one less
11146 than the number of bits in the mode is equivalent to A. */
11147 if (code == LSHIFTRT
11148 && count == (GET_MODE_PRECISION (int_result_mode) - 1)
11149 && nonzero_bits (XEXP (varop, 0), int_result_mode) == 1)
11150 {
11151 varop = XEXP (varop, 0);
11152 count = 0;
11153 continue;
11154 }
11155
11156 /* NEG commutes with ASHIFT since it is multiplication. Move the
11157 NEG outside to allow shifts to combine. */
11158 if (code == ASHIFT
11159 && merge_outer_ops (&outer_op, &outer_const, NEG, 0,
11160 int_result_mode, &complement_p))
11161 {
11162 varop = XEXP (varop, 0);
11163 continue;
11164 }
11165 break;
11166
11167 case PLUS:
11168 /* The following rules apply only to scalars. */
11169 if (shift_mode != shift_unit_mode)
11170 break;
11171 int_result_mode = as_a <scalar_int_mode> (result_mode);
11172
11173 /* (lshiftrt (plus A -1) C) where A is either 0 or 1 and C
11174 is one less than the number of bits in the mode is
11175 equivalent to (xor A 1). */
11176 if (code == LSHIFTRT
11177 && count == (GET_MODE_PRECISION (int_result_mode) - 1)
11178 && XEXP (varop, 1) == constm1_rtx
11179 && nonzero_bits (XEXP (varop, 0), int_result_mode) == 1
11180 && merge_outer_ops (&outer_op, &outer_const, XOR, 1,
11181 int_result_mode, &complement_p))
11182 {
11183 count = 0;
11184 varop = XEXP (varop, 0);
11185 continue;
11186 }
11187
11188 /* If we have (xshiftrt (plus FOO BAR) C), and the only bits
11189 that might be nonzero in BAR are those being shifted out and those
11190 bits are known zero in FOO, we can replace the PLUS with FOO.
11191 Similarly in the other operand order. This code occurs when
11192 we are computing the size of a variable-size array. */
11193
11194 if ((code == ASHIFTRT || code == LSHIFTRT)
11195 && count < HOST_BITS_PER_WIDE_INT
11196 && nonzero_bits (XEXP (varop, 1), int_result_mode) >> count == 0
11197 && (nonzero_bits (XEXP (varop, 1), int_result_mode)
11198 & nonzero_bits (XEXP (varop, 0), int_result_mode)) == 0)
11199 {
11200 varop = XEXP (varop, 0);
11201 continue;
11202 }
11203 else if ((code == ASHIFTRT || code == LSHIFTRT)
11204 && count < HOST_BITS_PER_WIDE_INT
11205 && HWI_COMPUTABLE_MODE_P (int_result_mode)
11206 && (nonzero_bits (XEXP (varop, 0), int_result_mode)
11207 >> count) == 0
11208 && (nonzero_bits (XEXP (varop, 0), int_result_mode)
11209 & nonzero_bits (XEXP (varop, 1), int_result_mode)) == 0)
11210 {
11211 varop = XEXP (varop, 1);
11212 continue;
11213 }
11214
11215 /* (ashift (plus foo C) N) is (plus (ashift foo N) C'). */
11216 if (code == ASHIFT
11217 && CONST_INT_P (XEXP (varop, 1))
11218 && (new_rtx = simplify_const_binary_operation
11219 (ASHIFT, int_result_mode,
11220 gen_int_mode (INTVAL (XEXP (varop, 1)), int_result_mode),
11221 gen_int_shift_amount (int_result_mode, count))) != 0
11222 && CONST_INT_P (new_rtx)
11223 && merge_outer_ops (&outer_op, &outer_const, PLUS,
11224 INTVAL (new_rtx), int_result_mode,
11225 &complement_p))
11226 {
11227 varop = XEXP (varop, 0);
11228 continue;
11229 }
11230
11231 /* Check for 'PLUS signbit', which is the canonical form of 'XOR
11232 signbit', and attempt to change the PLUS to an XOR and move it to
11233 the outer operation as is done above in the AND/IOR/XOR case
11234 leg for shift(logical). See details in logical handling above
11235 for reasoning in doing so. */
11236 if (code == LSHIFTRT
11237 && CONST_INT_P (XEXP (varop, 1))
11238 && mode_signbit_p (int_result_mode, XEXP (varop, 1))
11239 && (new_rtx = simplify_const_binary_operation
11240 (code, int_result_mode,
11241 gen_int_mode (INTVAL (XEXP (varop, 1)), int_result_mode),
11242 gen_int_shift_amount (int_result_mode, count))) != 0
11243 && CONST_INT_P (new_rtx)
11244 && merge_outer_ops (&outer_op, &outer_const, XOR,
11245 INTVAL (new_rtx), int_result_mode,
11246 &complement_p))
11247 {
11248 varop = XEXP (varop, 0);
11249 continue;
11250 }
11251
11252 break;
11253
11254 case MINUS:
11255 /* The following rules apply only to scalars. */
11256 if (shift_mode != shift_unit_mode)
11257 break;
11258 int_varop_mode = as_a <scalar_int_mode> (GET_MODE (varop));
11259
11260 /* If we have (xshiftrt (minus (ashiftrt X C)) X) C)
11261 with C the size of VAROP - 1 and the shift is logical if
11262 STORE_FLAG_VALUE is 1 and arithmetic if STORE_FLAG_VALUE is -1,
11263 we have a (gt X 0) operation. If the shift is arithmetic with
11264 STORE_FLAG_VALUE of 1 or logical with STORE_FLAG_VALUE == -1,
11265 we have a (neg (gt X 0)) operation. */
11266
11267 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
11268 && GET_CODE (XEXP (varop, 0)) == ASHIFTRT
11269 && count == (GET_MODE_PRECISION (int_varop_mode) - 1)
11270 && (code == LSHIFTRT || code == ASHIFTRT)
11271 && CONST_INT_P (XEXP (XEXP (varop, 0), 1))
11272 && INTVAL (XEXP (XEXP (varop, 0), 1)) == count
11273 && rtx_equal_p (XEXP (XEXP (varop, 0), 0), XEXP (varop, 1)))
11274 {
11275 count = 0;
11276 varop = gen_rtx_GT (int_varop_mode, XEXP (varop, 1),
11277 const0_rtx);
11278
11279 if (STORE_FLAG_VALUE == 1 ? code == ASHIFTRT : code == LSHIFTRT)
11280 varop = gen_rtx_NEG (int_varop_mode, varop);
11281
11282 continue;
11283 }
11284 break;
11285
11286 case TRUNCATE:
11287 /* Change (lshiftrt (truncate (lshiftrt))) to (truncate (lshiftrt))
11288 if the truncate does not affect the value. */
11289 if (code == LSHIFTRT
11290 && GET_CODE (XEXP (varop, 0)) == LSHIFTRT
11291 && CONST_INT_P (XEXP (XEXP (varop, 0), 1))
11292 && (INTVAL (XEXP (XEXP (varop, 0), 1))
11293 >= (GET_MODE_UNIT_PRECISION (GET_MODE (XEXP (varop, 0)))
11294 - GET_MODE_UNIT_PRECISION (GET_MODE (varop)))))
11295 {
11296 rtx varop_inner = XEXP (varop, 0);
11297 int new_count = count + INTVAL (XEXP (varop_inner, 1));
11298 rtx new_count_rtx = gen_int_shift_amount (GET_MODE (varop_inner),
11299 new_count);
11300 varop_inner = gen_rtx_LSHIFTRT (GET_MODE (varop_inner),
11301 XEXP (varop_inner, 0),
11302 new_count_rtx);
11303 varop = gen_rtx_TRUNCATE (GET_MODE (varop), varop_inner);
11304 count = 0;
11305 continue;
11306 }
11307 break;
11308
11309 default:
11310 break;
11311 }
11312
11313 break;
11314 }
11315
11316 shift_mode = result_mode;
11317 if (shift_mode != mode)
11318 {
11319 /* We only change the modes of scalar shifts. */
11320 int_mode = as_a <scalar_int_mode> (mode);
11321 int_result_mode = as_a <scalar_int_mode> (result_mode);
11322 shift_mode = try_widen_shift_mode (code, varop, count, int_result_mode,
11323 int_mode, outer_op, outer_const);
11324 }
11325
11326 /* We have now finished analyzing the shift. The result should be
11327 a shift of type CODE with SHIFT_MODE shifting VAROP COUNT places. If
11328 OUTER_OP is non-UNKNOWN, it is an operation that needs to be applied
11329 to the result of the shift. OUTER_CONST is the relevant constant,
11330 but we must turn off all bits turned off in the shift. */
11331
11332 if (outer_op == UNKNOWN
11333 && orig_code == code && orig_count == count
11334 && varop == orig_varop
11335 && shift_mode == GET_MODE (varop))
11336 return NULL_RTX;
11337
11338 /* Make a SUBREG if necessary. If we can't make it, fail. */
11339 varop = gen_lowpart (shift_mode, varop);
11340 if (varop == NULL_RTX || GET_CODE (varop) == CLOBBER)
11341 return NULL_RTX;
11342
11343 /* If we have an outer operation and we just made a shift, it is
11344 possible that we could have simplified the shift were it not
11345 for the outer operation. So try to do the simplification
11346 recursively. */
11347
11348 if (outer_op != UNKNOWN)
11349 x = simplify_shift_const_1 (code, shift_mode, varop, count);
11350 else
11351 x = NULL_RTX;
11352
11353 if (x == NULL_RTX)
11354 x = simplify_gen_binary (code, shift_mode, varop,
11355 gen_int_shift_amount (shift_mode, count));
11356
11357 /* If we were doing an LSHIFTRT in a wider mode than it was originally,
11358 turn off all the bits that the shift would have turned off. */
11359 if (orig_code == LSHIFTRT && result_mode != shift_mode)
11360 /* We only change the modes of scalar shifts. */
11361 x = simplify_and_const_int (NULL_RTX, as_a <scalar_int_mode> (shift_mode),
11362 x, GET_MODE_MASK (result_mode) >> orig_count);
11363
11364 /* Do the remainder of the processing in RESULT_MODE. */
11365 x = gen_lowpart_or_truncate (result_mode, x);
11366
11367 /* If COMPLEMENT_P is set, we have to complement X before doing the outer
11368 operation. */
11369 if (complement_p)
11370 x = simplify_gen_unary (NOT, result_mode, x, result_mode);
11371
11372 if (outer_op != UNKNOWN)
11373 {
11374 int_result_mode = as_a <scalar_int_mode> (result_mode);
11375
11376 if (GET_RTX_CLASS (outer_op) != RTX_UNARY
11377 && GET_MODE_PRECISION (int_result_mode) < HOST_BITS_PER_WIDE_INT)
11378 outer_const = trunc_int_for_mode (outer_const, int_result_mode);
11379
11380 if (outer_op == AND)
11381 x = simplify_and_const_int (NULL_RTX, int_result_mode, x, outer_const);
11382 else if (outer_op == SET)
11383 {
11384 /* This means that we have determined that the result is
11385 equivalent to a constant. This should be rare. */
11386 if (!side_effects_p (x))
11387 x = GEN_INT (outer_const);
11388 }
11389 else if (GET_RTX_CLASS (outer_op) == RTX_UNARY)
11390 x = simplify_gen_unary (outer_op, int_result_mode, x, int_result_mode);
11391 else
11392 x = simplify_gen_binary (outer_op, int_result_mode, x,
11393 GEN_INT (outer_const));
11394 }
11395
11396 return x;
11397 }
11398
11399 /* Simplify a shift of VAROP by COUNT bits. CODE says what kind of shift.
11400 The result of the shift is RESULT_MODE. If we cannot simplify it,
11401 return X or, if it is NULL, synthesize the expression with
11402 simplify_gen_binary. Otherwise, return a simplified value.
11403
11404 The shift is normally computed in the widest mode we find in VAROP, as
11405 long as it isn't a different number of words than RESULT_MODE. Exceptions
11406 are ASHIFTRT and ROTATE, which are always done in their original mode. */
11407
11408 static rtx
11409 simplify_shift_const (rtx x, enum rtx_code code, machine_mode result_mode,
11410 rtx varop, int count)
11411 {
11412 rtx tem = simplify_shift_const_1 (code, result_mode, varop, count);
11413 if (tem)
11414 return tem;
11415
11416 if (!x)
11417 x = simplify_gen_binary (code, GET_MODE (varop), varop,
11418 gen_int_shift_amount (GET_MODE (varop), count));
11419 if (GET_MODE (x) != result_mode)
11420 x = gen_lowpart (result_mode, x);
11421 return x;
11422 }
11423
11424 \f
11425 /* A subroutine of recog_for_combine. See there for arguments and
11426 return value. */
11427
11428 static int
11429 recog_for_combine_1 (rtx *pnewpat, rtx_insn *insn, rtx *pnotes)
11430 {
11431 rtx pat = *pnewpat;
11432 rtx pat_without_clobbers;
11433 int insn_code_number;
11434 int num_clobbers_to_add = 0;
11435 int i;
11436 rtx notes = NULL_RTX;
11437 rtx old_notes, old_pat;
11438 int old_icode;
11439
11440 /* If PAT is a PARALLEL, check to see if it contains the CLOBBER
11441 we use to indicate that something didn't match. If we find such a
11442 thing, force rejection. */
11443 if (GET_CODE (pat) == PARALLEL)
11444 for (i = XVECLEN (pat, 0) - 1; i >= 0; i--)
11445 if (GET_CODE (XVECEXP (pat, 0, i)) == CLOBBER
11446 && XEXP (XVECEXP (pat, 0, i), 0) == const0_rtx)
11447 return -1;
11448
11449 old_pat = PATTERN (insn);
11450 old_notes = REG_NOTES (insn);
11451 PATTERN (insn) = pat;
11452 REG_NOTES (insn) = NULL_RTX;
11453
11454 insn_code_number = recog (pat, insn, &num_clobbers_to_add);
11455 if (dump_file && (dump_flags & TDF_DETAILS))
11456 {
11457 if (insn_code_number < 0)
11458 fputs ("Failed to match this instruction:\n", dump_file);
11459 else
11460 fputs ("Successfully matched this instruction:\n", dump_file);
11461 print_rtl_single (dump_file, pat);
11462 }
11463
11464 /* If it isn't, there is the possibility that we previously had an insn
11465 that clobbered some register as a side effect, but the combined
11466 insn doesn't need to do that. So try once more without the clobbers
11467 unless this represents an ASM insn. */
11468
11469 if (insn_code_number < 0 && ! check_asm_operands (pat)
11470 && GET_CODE (pat) == PARALLEL)
11471 {
11472 int pos;
11473
11474 for (pos = 0, i = 0; i < XVECLEN (pat, 0); i++)
11475 if (GET_CODE (XVECEXP (pat, 0, i)) != CLOBBER)
11476 {
11477 if (i != pos)
11478 SUBST (XVECEXP (pat, 0, pos), XVECEXP (pat, 0, i));
11479 pos++;
11480 }
11481
11482 SUBST_INT (XVECLEN (pat, 0), pos);
11483
11484 if (pos == 1)
11485 pat = XVECEXP (pat, 0, 0);
11486
11487 PATTERN (insn) = pat;
11488 insn_code_number = recog (pat, insn, &num_clobbers_to_add);
11489 if (dump_file && (dump_flags & TDF_DETAILS))
11490 {
11491 if (insn_code_number < 0)
11492 fputs ("Failed to match this instruction:\n", dump_file);
11493 else
11494 fputs ("Successfully matched this instruction:\n", dump_file);
11495 print_rtl_single (dump_file, pat);
11496 }
11497 }
11498
11499 pat_without_clobbers = pat;
11500
11501 PATTERN (insn) = old_pat;
11502 REG_NOTES (insn) = old_notes;
11503
11504 /* Recognize all noop sets, these will be killed by followup pass. */
11505 if (insn_code_number < 0 && GET_CODE (pat) == SET && set_noop_p (pat))
11506 insn_code_number = NOOP_MOVE_INSN_CODE, num_clobbers_to_add = 0;
11507
11508 /* If we had any clobbers to add, make a new pattern than contains
11509 them. Then check to make sure that all of them are dead. */
11510 if (num_clobbers_to_add)
11511 {
11512 rtx newpat = gen_rtx_PARALLEL (VOIDmode,
11513 rtvec_alloc (GET_CODE (pat) == PARALLEL
11514 ? (XVECLEN (pat, 0)
11515 + num_clobbers_to_add)
11516 : num_clobbers_to_add + 1));
11517
11518 if (GET_CODE (pat) == PARALLEL)
11519 for (i = 0; i < XVECLEN (pat, 0); i++)
11520 XVECEXP (newpat, 0, i) = XVECEXP (pat, 0, i);
11521 else
11522 XVECEXP (newpat, 0, 0) = pat;
11523
11524 add_clobbers (newpat, insn_code_number);
11525
11526 for (i = XVECLEN (newpat, 0) - num_clobbers_to_add;
11527 i < XVECLEN (newpat, 0); i++)
11528 {
11529 if (REG_P (XEXP (XVECEXP (newpat, 0, i), 0))
11530 && ! reg_dead_at_p (XEXP (XVECEXP (newpat, 0, i), 0), insn))
11531 return -1;
11532 if (GET_CODE (XEXP (XVECEXP (newpat, 0, i), 0)) != SCRATCH)
11533 {
11534 gcc_assert (REG_P (XEXP (XVECEXP (newpat, 0, i), 0)));
11535 notes = alloc_reg_note (REG_UNUSED,
11536 XEXP (XVECEXP (newpat, 0, i), 0), notes);
11537 }
11538 }
11539 pat = newpat;
11540 }
11541
11542 if (insn_code_number >= 0
11543 && insn_code_number != NOOP_MOVE_INSN_CODE)
11544 {
11545 old_pat = PATTERN (insn);
11546 old_notes = REG_NOTES (insn);
11547 old_icode = INSN_CODE (insn);
11548 PATTERN (insn) = pat;
11549 REG_NOTES (insn) = notes;
11550 INSN_CODE (insn) = insn_code_number;
11551
11552 /* Allow targets to reject combined insn. */
11553 if (!targetm.legitimate_combined_insn (insn))
11554 {
11555 if (dump_file && (dump_flags & TDF_DETAILS))
11556 fputs ("Instruction not appropriate for target.",
11557 dump_file);
11558
11559 /* Callers expect recog_for_combine to strip
11560 clobbers from the pattern on failure. */
11561 pat = pat_without_clobbers;
11562 notes = NULL_RTX;
11563
11564 insn_code_number = -1;
11565 }
11566
11567 PATTERN (insn) = old_pat;
11568 REG_NOTES (insn) = old_notes;
11569 INSN_CODE (insn) = old_icode;
11570 }
11571
11572 *pnewpat = pat;
11573 *pnotes = notes;
11574
11575 return insn_code_number;
11576 }
11577
11578 /* Change every ZERO_EXTRACT and ZERO_EXTEND of a SUBREG that can be
11579 expressed as an AND and maybe an LSHIFTRT, to that formulation.
11580 Return whether anything was so changed. */
11581
11582 static bool
11583 change_zero_ext (rtx pat)
11584 {
11585 bool changed = false;
11586 rtx *src = &SET_SRC (pat);
11587
11588 subrtx_ptr_iterator::array_type array;
11589 FOR_EACH_SUBRTX_PTR (iter, array, src, NONCONST)
11590 {
11591 rtx x = **iter;
11592 scalar_int_mode mode, inner_mode;
11593 if (!is_a <scalar_int_mode> (GET_MODE (x), &mode))
11594 continue;
11595 int size;
11596
11597 if (GET_CODE (x) == ZERO_EXTRACT
11598 && CONST_INT_P (XEXP (x, 1))
11599 && CONST_INT_P (XEXP (x, 2))
11600 && is_a <scalar_int_mode> (GET_MODE (XEXP (x, 0)), &inner_mode)
11601 && GET_MODE_PRECISION (inner_mode) <= GET_MODE_PRECISION (mode))
11602 {
11603 size = INTVAL (XEXP (x, 1));
11604
11605 int start = INTVAL (XEXP (x, 2));
11606 if (BITS_BIG_ENDIAN)
11607 start = GET_MODE_PRECISION (inner_mode) - size - start;
11608
11609 if (start != 0)
11610 x = gen_rtx_LSHIFTRT (inner_mode, XEXP (x, 0),
11611 gen_int_shift_amount (inner_mode, start));
11612 else
11613 x = XEXP (x, 0);
11614
11615 if (mode != inner_mode)
11616 {
11617 if (REG_P (x) && HARD_REGISTER_P (x)
11618 && !can_change_dest_mode (x, 0, mode))
11619 continue;
11620
11621 x = gen_lowpart_SUBREG (mode, x);
11622 }
11623 }
11624 else if (GET_CODE (x) == ZERO_EXTEND
11625 && GET_CODE (XEXP (x, 0)) == SUBREG
11626 && SCALAR_INT_MODE_P (GET_MODE (SUBREG_REG (XEXP (x, 0))))
11627 && !paradoxical_subreg_p (XEXP (x, 0))
11628 && subreg_lowpart_p (XEXP (x, 0)))
11629 {
11630 inner_mode = as_a <scalar_int_mode> (GET_MODE (XEXP (x, 0)));
11631 size = GET_MODE_PRECISION (inner_mode);
11632 x = SUBREG_REG (XEXP (x, 0));
11633 if (GET_MODE (x) != mode)
11634 {
11635 if (REG_P (x) && HARD_REGISTER_P (x)
11636 && !can_change_dest_mode (x, 0, mode))
11637 continue;
11638
11639 x = gen_lowpart_SUBREG (mode, x);
11640 }
11641 }
11642 else if (GET_CODE (x) == ZERO_EXTEND
11643 && REG_P (XEXP (x, 0))
11644 && HARD_REGISTER_P (XEXP (x, 0))
11645 && can_change_dest_mode (XEXP (x, 0), 0, mode))
11646 {
11647 inner_mode = as_a <scalar_int_mode> (GET_MODE (XEXP (x, 0)));
11648 size = GET_MODE_PRECISION (inner_mode);
11649 x = gen_rtx_REG (mode, REGNO (XEXP (x, 0)));
11650 }
11651 else
11652 continue;
11653
11654 if (!(GET_CODE (x) == LSHIFTRT
11655 && CONST_INT_P (XEXP (x, 1))
11656 && size + INTVAL (XEXP (x, 1)) == GET_MODE_PRECISION (mode)))
11657 {
11658 wide_int mask = wi::mask (size, false, GET_MODE_PRECISION (mode));
11659 x = gen_rtx_AND (mode, x, immed_wide_int_const (mask, mode));
11660 }
11661
11662 SUBST (**iter, x);
11663 changed = true;
11664 }
11665
11666 if (changed)
11667 FOR_EACH_SUBRTX_PTR (iter, array, src, NONCONST)
11668 maybe_swap_commutative_operands (**iter);
11669
11670 rtx *dst = &SET_DEST (pat);
11671 scalar_int_mode mode;
11672 if (GET_CODE (*dst) == ZERO_EXTRACT
11673 && REG_P (XEXP (*dst, 0))
11674 && is_a <scalar_int_mode> (GET_MODE (XEXP (*dst, 0)), &mode)
11675 && CONST_INT_P (XEXP (*dst, 1))
11676 && CONST_INT_P (XEXP (*dst, 2)))
11677 {
11678 rtx reg = XEXP (*dst, 0);
11679 int width = INTVAL (XEXP (*dst, 1));
11680 int offset = INTVAL (XEXP (*dst, 2));
11681 int reg_width = GET_MODE_PRECISION (mode);
11682 if (BITS_BIG_ENDIAN)
11683 offset = reg_width - width - offset;
11684
11685 rtx x, y, z, w;
11686 wide_int mask = wi::shifted_mask (offset, width, true, reg_width);
11687 wide_int mask2 = wi::shifted_mask (offset, width, false, reg_width);
11688 x = gen_rtx_AND (mode, reg, immed_wide_int_const (mask, mode));
11689 if (offset)
11690 y = gen_rtx_ASHIFT (mode, SET_SRC (pat), GEN_INT (offset));
11691 else
11692 y = SET_SRC (pat);
11693 z = gen_rtx_AND (mode, y, immed_wide_int_const (mask2, mode));
11694 w = gen_rtx_IOR (mode, x, z);
11695 SUBST (SET_DEST (pat), reg);
11696 SUBST (SET_SRC (pat), w);
11697
11698 changed = true;
11699 }
11700
11701 return changed;
11702 }
11703
11704 /* Like recog, but we receive the address of a pointer to a new pattern.
11705 We try to match the rtx that the pointer points to.
11706 If that fails, we may try to modify or replace the pattern,
11707 storing the replacement into the same pointer object.
11708
11709 Modifications include deletion or addition of CLOBBERs. If the
11710 instruction will still not match, we change ZERO_EXTEND and ZERO_EXTRACT
11711 to the equivalent AND and perhaps LSHIFTRT patterns, and try with that
11712 (and undo if that fails).
11713
11714 PNOTES is a pointer to a location where any REG_UNUSED notes added for
11715 the CLOBBERs are placed.
11716
11717 The value is the final insn code from the pattern ultimately matched,
11718 or -1. */
11719
11720 static int
11721 recog_for_combine (rtx *pnewpat, rtx_insn *insn, rtx *pnotes)
11722 {
11723 rtx pat = *pnewpat;
11724 int insn_code_number = recog_for_combine_1 (pnewpat, insn, pnotes);
11725 if (insn_code_number >= 0 || check_asm_operands (pat))
11726 return insn_code_number;
11727
11728 void *marker = get_undo_marker ();
11729 bool changed = false;
11730
11731 if (GET_CODE (pat) == SET)
11732 changed = change_zero_ext (pat);
11733 else if (GET_CODE (pat) == PARALLEL)
11734 {
11735 int i;
11736 for (i = 0; i < XVECLEN (pat, 0); i++)
11737 {
11738 rtx set = XVECEXP (pat, 0, i);
11739 if (GET_CODE (set) == SET)
11740 changed |= change_zero_ext (set);
11741 }
11742 }
11743
11744 if (changed)
11745 {
11746 insn_code_number = recog_for_combine_1 (pnewpat, insn, pnotes);
11747
11748 if (insn_code_number < 0)
11749 undo_to_marker (marker);
11750 }
11751
11752 return insn_code_number;
11753 }
11754 \f
11755 /* Like gen_lowpart_general but for use by combine. In combine it
11756 is not possible to create any new pseudoregs. However, it is
11757 safe to create invalid memory addresses, because combine will
11758 try to recognize them and all they will do is make the combine
11759 attempt fail.
11760
11761 If for some reason this cannot do its job, an rtx
11762 (clobber (const_int 0)) is returned.
11763 An insn containing that will not be recognized. */
11764
11765 static rtx
11766 gen_lowpart_for_combine (machine_mode omode, rtx x)
11767 {
11768 machine_mode imode = GET_MODE (x);
11769 rtx result;
11770
11771 if (omode == imode)
11772 return x;
11773
11774 /* We can only support MODE being wider than a word if X is a
11775 constant integer or has a mode the same size. */
11776 if (maybe_gt (GET_MODE_SIZE (omode), UNITS_PER_WORD)
11777 && ! (CONST_SCALAR_INT_P (x)
11778 || known_eq (GET_MODE_SIZE (imode), GET_MODE_SIZE (omode))))
11779 goto fail;
11780
11781 /* X might be a paradoxical (subreg (mem)). In that case, gen_lowpart
11782 won't know what to do. So we will strip off the SUBREG here and
11783 process normally. */
11784 if (GET_CODE (x) == SUBREG && MEM_P (SUBREG_REG (x)))
11785 {
11786 x = SUBREG_REG (x);
11787
11788 /* For use in case we fall down into the address adjustments
11789 further below, we need to adjust the known mode and size of
11790 x; imode and isize, since we just adjusted x. */
11791 imode = GET_MODE (x);
11792
11793 if (imode == omode)
11794 return x;
11795 }
11796
11797 result = gen_lowpart_common (omode, x);
11798
11799 if (result)
11800 return result;
11801
11802 if (MEM_P (x))
11803 {
11804 /* Refuse to work on a volatile memory ref or one with a mode-dependent
11805 address. */
11806 if (MEM_VOLATILE_P (x)
11807 || mode_dependent_address_p (XEXP (x, 0), MEM_ADDR_SPACE (x)))
11808 goto fail;
11809
11810 /* If we want to refer to something bigger than the original memref,
11811 generate a paradoxical subreg instead. That will force a reload
11812 of the original memref X. */
11813 if (paradoxical_subreg_p (omode, imode))
11814 return gen_rtx_SUBREG (omode, x, 0);
11815
11816 poly_int64 offset = byte_lowpart_offset (omode, imode);
11817 return adjust_address_nv (x, omode, offset);
11818 }
11819
11820 /* If X is a comparison operator, rewrite it in a new mode. This
11821 probably won't match, but may allow further simplifications. */
11822 else if (COMPARISON_P (x)
11823 && SCALAR_INT_MODE_P (imode)
11824 && SCALAR_INT_MODE_P (omode))
11825 return gen_rtx_fmt_ee (GET_CODE (x), omode, XEXP (x, 0), XEXP (x, 1));
11826
11827 /* If we couldn't simplify X any other way, just enclose it in a
11828 SUBREG. Normally, this SUBREG won't match, but some patterns may
11829 include an explicit SUBREG or we may simplify it further in combine. */
11830 else
11831 {
11832 rtx res;
11833
11834 if (imode == VOIDmode)
11835 {
11836 imode = int_mode_for_mode (omode).require ();
11837 x = gen_lowpart_common (imode, x);
11838 if (x == NULL)
11839 goto fail;
11840 }
11841 res = lowpart_subreg (omode, x, imode);
11842 if (res)
11843 return res;
11844 }
11845
11846 fail:
11847 return gen_rtx_CLOBBER (omode, const0_rtx);
11848 }
11849 \f
11850 /* Try to simplify a comparison between OP0 and a constant OP1,
11851 where CODE is the comparison code that will be tested, into a
11852 (CODE OP0 const0_rtx) form.
11853
11854 The result is a possibly different comparison code to use.
11855 *POP1 may be updated. */
11856
11857 static enum rtx_code
11858 simplify_compare_const (enum rtx_code code, machine_mode mode,
11859 rtx op0, rtx *pop1)
11860 {
11861 scalar_int_mode int_mode;
11862 HOST_WIDE_INT const_op = INTVAL (*pop1);
11863
11864 /* Get the constant we are comparing against and turn off all bits
11865 not on in our mode. */
11866 if (mode != VOIDmode)
11867 const_op = trunc_int_for_mode (const_op, mode);
11868
11869 /* If we are comparing against a constant power of two and the value
11870 being compared can only have that single bit nonzero (e.g., it was
11871 `and'ed with that bit), we can replace this with a comparison
11872 with zero. */
11873 if (const_op
11874 && (code == EQ || code == NE || code == GE || code == GEU
11875 || code == LT || code == LTU)
11876 && is_a <scalar_int_mode> (mode, &int_mode)
11877 && GET_MODE_PRECISION (int_mode) - 1 < HOST_BITS_PER_WIDE_INT
11878 && pow2p_hwi (const_op & GET_MODE_MASK (int_mode))
11879 && (nonzero_bits (op0, int_mode)
11880 == (unsigned HOST_WIDE_INT) (const_op & GET_MODE_MASK (int_mode))))
11881 {
11882 code = (code == EQ || code == GE || code == GEU ? NE : EQ);
11883 const_op = 0;
11884 }
11885
11886 /* Similarly, if we are comparing a value known to be either -1 or
11887 0 with -1, change it to the opposite comparison against zero. */
11888 if (const_op == -1
11889 && (code == EQ || code == NE || code == GT || code == LE
11890 || code == GEU || code == LTU)
11891 && is_a <scalar_int_mode> (mode, &int_mode)
11892 && num_sign_bit_copies (op0, int_mode) == GET_MODE_PRECISION (int_mode))
11893 {
11894 code = (code == EQ || code == LE || code == GEU ? NE : EQ);
11895 const_op = 0;
11896 }
11897
11898 /* Do some canonicalizations based on the comparison code. We prefer
11899 comparisons against zero and then prefer equality comparisons.
11900 If we can reduce the size of a constant, we will do that too. */
11901 switch (code)
11902 {
11903 case LT:
11904 /* < C is equivalent to <= (C - 1) */
11905 if (const_op > 0)
11906 {
11907 const_op -= 1;
11908 code = LE;
11909 /* ... fall through to LE case below. */
11910 gcc_fallthrough ();
11911 }
11912 else
11913 break;
11914
11915 case LE:
11916 /* <= C is equivalent to < (C + 1); we do this for C < 0 */
11917 if (const_op < 0)
11918 {
11919 const_op += 1;
11920 code = LT;
11921 }
11922
11923 /* If we are doing a <= 0 comparison on a value known to have
11924 a zero sign bit, we can replace this with == 0. */
11925 else if (const_op == 0
11926 && is_a <scalar_int_mode> (mode, &int_mode)
11927 && GET_MODE_PRECISION (int_mode) - 1 < HOST_BITS_PER_WIDE_INT
11928 && (nonzero_bits (op0, int_mode)
11929 & (HOST_WIDE_INT_1U << (GET_MODE_PRECISION (int_mode) - 1)))
11930 == 0)
11931 code = EQ;
11932 break;
11933
11934 case GE:
11935 /* >= C is equivalent to > (C - 1). */
11936 if (const_op > 0)
11937 {
11938 const_op -= 1;
11939 code = GT;
11940 /* ... fall through to GT below. */
11941 gcc_fallthrough ();
11942 }
11943 else
11944 break;
11945
11946 case GT:
11947 /* > C is equivalent to >= (C + 1); we do this for C < 0. */
11948 if (const_op < 0)
11949 {
11950 const_op += 1;
11951 code = GE;
11952 }
11953
11954 /* If we are doing a > 0 comparison on a value known to have
11955 a zero sign bit, we can replace this with != 0. */
11956 else if (const_op == 0
11957 && is_a <scalar_int_mode> (mode, &int_mode)
11958 && GET_MODE_PRECISION (int_mode) - 1 < HOST_BITS_PER_WIDE_INT
11959 && (nonzero_bits (op0, int_mode)
11960 & (HOST_WIDE_INT_1U << (GET_MODE_PRECISION (int_mode) - 1)))
11961 == 0)
11962 code = NE;
11963 break;
11964
11965 case LTU:
11966 /* < C is equivalent to <= (C - 1). */
11967 if (const_op > 0)
11968 {
11969 const_op -= 1;
11970 code = LEU;
11971 /* ... fall through ... */
11972 gcc_fallthrough ();
11973 }
11974 /* (unsigned) < 0x80000000 is equivalent to >= 0. */
11975 else if (is_a <scalar_int_mode> (mode, &int_mode)
11976 && GET_MODE_PRECISION (int_mode) - 1 < HOST_BITS_PER_WIDE_INT
11977 && ((unsigned HOST_WIDE_INT) const_op
11978 == HOST_WIDE_INT_1U << (GET_MODE_PRECISION (int_mode) - 1)))
11979 {
11980 const_op = 0;
11981 code = GE;
11982 break;
11983 }
11984 else
11985 break;
11986
11987 case LEU:
11988 /* unsigned <= 0 is equivalent to == 0 */
11989 if (const_op == 0)
11990 code = EQ;
11991 /* (unsigned) <= 0x7fffffff is equivalent to >= 0. */
11992 else if (is_a <scalar_int_mode> (mode, &int_mode)
11993 && GET_MODE_PRECISION (int_mode) - 1 < HOST_BITS_PER_WIDE_INT
11994 && ((unsigned HOST_WIDE_INT) const_op
11995 == ((HOST_WIDE_INT_1U
11996 << (GET_MODE_PRECISION (int_mode) - 1)) - 1)))
11997 {
11998 const_op = 0;
11999 code = GE;
12000 }
12001 break;
12002
12003 case GEU:
12004 /* >= C is equivalent to > (C - 1). */
12005 if (const_op > 1)
12006 {
12007 const_op -= 1;
12008 code = GTU;
12009 /* ... fall through ... */
12010 gcc_fallthrough ();
12011 }
12012
12013 /* (unsigned) >= 0x80000000 is equivalent to < 0. */
12014 else if (is_a <scalar_int_mode> (mode, &int_mode)
12015 && GET_MODE_PRECISION (int_mode) - 1 < HOST_BITS_PER_WIDE_INT
12016 && ((unsigned HOST_WIDE_INT) const_op
12017 == HOST_WIDE_INT_1U << (GET_MODE_PRECISION (int_mode) - 1)))
12018 {
12019 const_op = 0;
12020 code = LT;
12021 break;
12022 }
12023 else
12024 break;
12025
12026 case GTU:
12027 /* unsigned > 0 is equivalent to != 0 */
12028 if (const_op == 0)
12029 code = NE;
12030 /* (unsigned) > 0x7fffffff is equivalent to < 0. */
12031 else if (is_a <scalar_int_mode> (mode, &int_mode)
12032 && GET_MODE_PRECISION (int_mode) - 1 < HOST_BITS_PER_WIDE_INT
12033 && ((unsigned HOST_WIDE_INT) const_op
12034 == (HOST_WIDE_INT_1U
12035 << (GET_MODE_PRECISION (int_mode) - 1)) - 1))
12036 {
12037 const_op = 0;
12038 code = LT;
12039 }
12040 break;
12041
12042 default:
12043 break;
12044 }
12045
12046 *pop1 = GEN_INT (const_op);
12047 return code;
12048 }
12049 \f
12050 /* Simplify a comparison between *POP0 and *POP1 where CODE is the
12051 comparison code that will be tested.
12052
12053 The result is a possibly different comparison code to use. *POP0 and
12054 *POP1 may be updated.
12055
12056 It is possible that we might detect that a comparison is either always
12057 true or always false. However, we do not perform general constant
12058 folding in combine, so this knowledge isn't useful. Such tautologies
12059 should have been detected earlier. Hence we ignore all such cases. */
12060
12061 static enum rtx_code
12062 simplify_comparison (enum rtx_code code, rtx *pop0, rtx *pop1)
12063 {
12064 rtx op0 = *pop0;
12065 rtx op1 = *pop1;
12066 rtx tem, tem1;
12067 int i;
12068 scalar_int_mode mode, inner_mode, tmode;
12069 opt_scalar_int_mode tmode_iter;
12070
12071 /* Try a few ways of applying the same transformation to both operands. */
12072 while (1)
12073 {
12074 /* The test below this one won't handle SIGN_EXTENDs on these machines,
12075 so check specially. */
12076 if (!WORD_REGISTER_OPERATIONS
12077 && code != GTU && code != GEU && code != LTU && code != LEU
12078 && GET_CODE (op0) == ASHIFTRT && GET_CODE (op1) == ASHIFTRT
12079 && GET_CODE (XEXP (op0, 0)) == ASHIFT
12080 && GET_CODE (XEXP (op1, 0)) == ASHIFT
12081 && GET_CODE (XEXP (XEXP (op0, 0), 0)) == SUBREG
12082 && GET_CODE (XEXP (XEXP (op1, 0), 0)) == SUBREG
12083 && is_a <scalar_int_mode> (GET_MODE (op0), &mode)
12084 && (is_a <scalar_int_mode>
12085 (GET_MODE (SUBREG_REG (XEXP (XEXP (op0, 0), 0))), &inner_mode))
12086 && inner_mode == GET_MODE (SUBREG_REG (XEXP (XEXP (op1, 0), 0)))
12087 && CONST_INT_P (XEXP (op0, 1))
12088 && XEXP (op0, 1) == XEXP (op1, 1)
12089 && XEXP (op0, 1) == XEXP (XEXP (op0, 0), 1)
12090 && XEXP (op0, 1) == XEXP (XEXP (op1, 0), 1)
12091 && (INTVAL (XEXP (op0, 1))
12092 == (GET_MODE_PRECISION (mode)
12093 - GET_MODE_PRECISION (inner_mode))))
12094 {
12095 op0 = SUBREG_REG (XEXP (XEXP (op0, 0), 0));
12096 op1 = SUBREG_REG (XEXP (XEXP (op1, 0), 0));
12097 }
12098
12099 /* If both operands are the same constant shift, see if we can ignore the
12100 shift. We can if the shift is a rotate or if the bits shifted out of
12101 this shift are known to be zero for both inputs and if the type of
12102 comparison is compatible with the shift. */
12103 if (GET_CODE (op0) == GET_CODE (op1)
12104 && HWI_COMPUTABLE_MODE_P (GET_MODE (op0))
12105 && ((GET_CODE (op0) == ROTATE && (code == NE || code == EQ))
12106 || ((GET_CODE (op0) == LSHIFTRT || GET_CODE (op0) == ASHIFT)
12107 && (code != GT && code != LT && code != GE && code != LE))
12108 || (GET_CODE (op0) == ASHIFTRT
12109 && (code != GTU && code != LTU
12110 && code != GEU && code != LEU)))
12111 && CONST_INT_P (XEXP (op0, 1))
12112 && INTVAL (XEXP (op0, 1)) >= 0
12113 && INTVAL (XEXP (op0, 1)) < HOST_BITS_PER_WIDE_INT
12114 && XEXP (op0, 1) == XEXP (op1, 1))
12115 {
12116 machine_mode mode = GET_MODE (op0);
12117 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
12118 int shift_count = INTVAL (XEXP (op0, 1));
12119
12120 if (GET_CODE (op0) == LSHIFTRT || GET_CODE (op0) == ASHIFTRT)
12121 mask &= (mask >> shift_count) << shift_count;
12122 else if (GET_CODE (op0) == ASHIFT)
12123 mask = (mask & (mask << shift_count)) >> shift_count;
12124
12125 if ((nonzero_bits (XEXP (op0, 0), mode) & ~mask) == 0
12126 && (nonzero_bits (XEXP (op1, 0), mode) & ~mask) == 0)
12127 op0 = XEXP (op0, 0), op1 = XEXP (op1, 0);
12128 else
12129 break;
12130 }
12131
12132 /* If both operands are AND's of a paradoxical SUBREG by constant, the
12133 SUBREGs are of the same mode, and, in both cases, the AND would
12134 be redundant if the comparison was done in the narrower mode,
12135 do the comparison in the narrower mode (e.g., we are AND'ing with 1
12136 and the operand's possibly nonzero bits are 0xffffff01; in that case
12137 if we only care about QImode, we don't need the AND). This case
12138 occurs if the output mode of an scc insn is not SImode and
12139 STORE_FLAG_VALUE == 1 (e.g., the 386).
12140
12141 Similarly, check for a case where the AND's are ZERO_EXTEND
12142 operations from some narrower mode even though a SUBREG is not
12143 present. */
12144
12145 else if (GET_CODE (op0) == AND && GET_CODE (op1) == AND
12146 && CONST_INT_P (XEXP (op0, 1))
12147 && CONST_INT_P (XEXP (op1, 1)))
12148 {
12149 rtx inner_op0 = XEXP (op0, 0);
12150 rtx inner_op1 = XEXP (op1, 0);
12151 HOST_WIDE_INT c0 = INTVAL (XEXP (op0, 1));
12152 HOST_WIDE_INT c1 = INTVAL (XEXP (op1, 1));
12153 int changed = 0;
12154
12155 if (paradoxical_subreg_p (inner_op0)
12156 && GET_CODE (inner_op1) == SUBREG
12157 && HWI_COMPUTABLE_MODE_P (GET_MODE (SUBREG_REG (inner_op0)))
12158 && (GET_MODE (SUBREG_REG (inner_op0))
12159 == GET_MODE (SUBREG_REG (inner_op1)))
12160 && ((~c0) & nonzero_bits (SUBREG_REG (inner_op0),
12161 GET_MODE (SUBREG_REG (inner_op0)))) == 0
12162 && ((~c1) & nonzero_bits (SUBREG_REG (inner_op1),
12163 GET_MODE (SUBREG_REG (inner_op1)))) == 0)
12164 {
12165 op0 = SUBREG_REG (inner_op0);
12166 op1 = SUBREG_REG (inner_op1);
12167
12168 /* The resulting comparison is always unsigned since we masked
12169 off the original sign bit. */
12170 code = unsigned_condition (code);
12171
12172 changed = 1;
12173 }
12174
12175 else if (c0 == c1)
12176 FOR_EACH_MODE_UNTIL (tmode,
12177 as_a <scalar_int_mode> (GET_MODE (op0)))
12178 if ((unsigned HOST_WIDE_INT) c0 == GET_MODE_MASK (tmode))
12179 {
12180 op0 = gen_lowpart_or_truncate (tmode, inner_op0);
12181 op1 = gen_lowpart_or_truncate (tmode, inner_op1);
12182 code = unsigned_condition (code);
12183 changed = 1;
12184 break;
12185 }
12186
12187 if (! changed)
12188 break;
12189 }
12190
12191 /* If both operands are NOT, we can strip off the outer operation
12192 and adjust the comparison code for swapped operands; similarly for
12193 NEG, except that this must be an equality comparison. */
12194 else if ((GET_CODE (op0) == NOT && GET_CODE (op1) == NOT)
12195 || (GET_CODE (op0) == NEG && GET_CODE (op1) == NEG
12196 && (code == EQ || code == NE)))
12197 op0 = XEXP (op0, 0), op1 = XEXP (op1, 0), code = swap_condition (code);
12198
12199 else
12200 break;
12201 }
12202
12203 /* If the first operand is a constant, swap the operands and adjust the
12204 comparison code appropriately, but don't do this if the second operand
12205 is already a constant integer. */
12206 if (swap_commutative_operands_p (op0, op1))
12207 {
12208 std::swap (op0, op1);
12209 code = swap_condition (code);
12210 }
12211
12212 /* We now enter a loop during which we will try to simplify the comparison.
12213 For the most part, we only are concerned with comparisons with zero,
12214 but some things may really be comparisons with zero but not start
12215 out looking that way. */
12216
12217 while (CONST_INT_P (op1))
12218 {
12219 machine_mode raw_mode = GET_MODE (op0);
12220 scalar_int_mode int_mode;
12221 int equality_comparison_p;
12222 int sign_bit_comparison_p;
12223 int unsigned_comparison_p;
12224 HOST_WIDE_INT const_op;
12225
12226 /* We only want to handle integral modes. This catches VOIDmode,
12227 CCmode, and the floating-point modes. An exception is that we
12228 can handle VOIDmode if OP0 is a COMPARE or a comparison
12229 operation. */
12230
12231 if (GET_MODE_CLASS (raw_mode) != MODE_INT
12232 && ! (raw_mode == VOIDmode
12233 && (GET_CODE (op0) == COMPARE || COMPARISON_P (op0))))
12234 break;
12235
12236 /* Try to simplify the compare to constant, possibly changing the
12237 comparison op, and/or changing op1 to zero. */
12238 code = simplify_compare_const (code, raw_mode, op0, &op1);
12239 const_op = INTVAL (op1);
12240
12241 /* Compute some predicates to simplify code below. */
12242
12243 equality_comparison_p = (code == EQ || code == NE);
12244 sign_bit_comparison_p = ((code == LT || code == GE) && const_op == 0);
12245 unsigned_comparison_p = (code == LTU || code == LEU || code == GTU
12246 || code == GEU);
12247
12248 /* If this is a sign bit comparison and we can do arithmetic in
12249 MODE, say that we will only be needing the sign bit of OP0. */
12250 if (sign_bit_comparison_p
12251 && is_a <scalar_int_mode> (raw_mode, &int_mode)
12252 && HWI_COMPUTABLE_MODE_P (int_mode))
12253 op0 = force_to_mode (op0, int_mode,
12254 HOST_WIDE_INT_1U
12255 << (GET_MODE_PRECISION (int_mode) - 1),
12256 0);
12257
12258 if (COMPARISON_P (op0))
12259 {
12260 /* We can't do anything if OP0 is a condition code value, rather
12261 than an actual data value. */
12262 if (const_op != 0
12263 || CC0_P (XEXP (op0, 0))
12264 || GET_MODE_CLASS (GET_MODE (XEXP (op0, 0))) == MODE_CC)
12265 break;
12266
12267 /* Get the two operands being compared. */
12268 if (GET_CODE (XEXP (op0, 0)) == COMPARE)
12269 tem = XEXP (XEXP (op0, 0), 0), tem1 = XEXP (XEXP (op0, 0), 1);
12270 else
12271 tem = XEXP (op0, 0), tem1 = XEXP (op0, 1);
12272
12273 /* Check for the cases where we simply want the result of the
12274 earlier test or the opposite of that result. */
12275 if (code == NE || code == EQ
12276 || (val_signbit_known_set_p (raw_mode, STORE_FLAG_VALUE)
12277 && (code == LT || code == GE)))
12278 {
12279 enum rtx_code new_code;
12280 if (code == LT || code == NE)
12281 new_code = GET_CODE (op0);
12282 else
12283 new_code = reversed_comparison_code (op0, NULL);
12284
12285 if (new_code != UNKNOWN)
12286 {
12287 code = new_code;
12288 op0 = tem;
12289 op1 = tem1;
12290 continue;
12291 }
12292 }
12293 break;
12294 }
12295
12296 if (raw_mode == VOIDmode)
12297 break;
12298 scalar_int_mode mode = as_a <scalar_int_mode> (raw_mode);
12299
12300 /* Now try cases based on the opcode of OP0. If none of the cases
12301 does a "continue", we exit this loop immediately after the
12302 switch. */
12303
12304 unsigned int mode_width = GET_MODE_PRECISION (mode);
12305 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
12306 switch (GET_CODE (op0))
12307 {
12308 case ZERO_EXTRACT:
12309 /* If we are extracting a single bit from a variable position in
12310 a constant that has only a single bit set and are comparing it
12311 with zero, we can convert this into an equality comparison
12312 between the position and the location of the single bit. */
12313 /* Except we can't if SHIFT_COUNT_TRUNCATED is set, since we might
12314 have already reduced the shift count modulo the word size. */
12315 if (!SHIFT_COUNT_TRUNCATED
12316 && CONST_INT_P (XEXP (op0, 0))
12317 && XEXP (op0, 1) == const1_rtx
12318 && equality_comparison_p && const_op == 0
12319 && (i = exact_log2 (UINTVAL (XEXP (op0, 0)))) >= 0)
12320 {
12321 if (BITS_BIG_ENDIAN)
12322 i = BITS_PER_WORD - 1 - i;
12323
12324 op0 = XEXP (op0, 2);
12325 op1 = GEN_INT (i);
12326 const_op = i;
12327
12328 /* Result is nonzero iff shift count is equal to I. */
12329 code = reverse_condition (code);
12330 continue;
12331 }
12332
12333 /* fall through */
12334
12335 case SIGN_EXTRACT:
12336 tem = expand_compound_operation (op0);
12337 if (tem != op0)
12338 {
12339 op0 = tem;
12340 continue;
12341 }
12342 break;
12343
12344 case NOT:
12345 /* If testing for equality, we can take the NOT of the constant. */
12346 if (equality_comparison_p
12347 && (tem = simplify_unary_operation (NOT, mode, op1, mode)) != 0)
12348 {
12349 op0 = XEXP (op0, 0);
12350 op1 = tem;
12351 continue;
12352 }
12353
12354 /* If just looking at the sign bit, reverse the sense of the
12355 comparison. */
12356 if (sign_bit_comparison_p)
12357 {
12358 op0 = XEXP (op0, 0);
12359 code = (code == GE ? LT : GE);
12360 continue;
12361 }
12362 break;
12363
12364 case NEG:
12365 /* If testing for equality, we can take the NEG of the constant. */
12366 if (equality_comparison_p
12367 && (tem = simplify_unary_operation (NEG, mode, op1, mode)) != 0)
12368 {
12369 op0 = XEXP (op0, 0);
12370 op1 = tem;
12371 continue;
12372 }
12373
12374 /* The remaining cases only apply to comparisons with zero. */
12375 if (const_op != 0)
12376 break;
12377
12378 /* When X is ABS or is known positive,
12379 (neg X) is < 0 if and only if X != 0. */
12380
12381 if (sign_bit_comparison_p
12382 && (GET_CODE (XEXP (op0, 0)) == ABS
12383 || (mode_width <= HOST_BITS_PER_WIDE_INT
12384 && (nonzero_bits (XEXP (op0, 0), mode)
12385 & (HOST_WIDE_INT_1U << (mode_width - 1)))
12386 == 0)))
12387 {
12388 op0 = XEXP (op0, 0);
12389 code = (code == LT ? NE : EQ);
12390 continue;
12391 }
12392
12393 /* If we have NEG of something whose two high-order bits are the
12394 same, we know that "(-a) < 0" is equivalent to "a > 0". */
12395 if (num_sign_bit_copies (op0, mode) >= 2)
12396 {
12397 op0 = XEXP (op0, 0);
12398 code = swap_condition (code);
12399 continue;
12400 }
12401 break;
12402
12403 case ROTATE:
12404 /* If we are testing equality and our count is a constant, we
12405 can perform the inverse operation on our RHS. */
12406 if (equality_comparison_p && CONST_INT_P (XEXP (op0, 1))
12407 && (tem = simplify_binary_operation (ROTATERT, mode,
12408 op1, XEXP (op0, 1))) != 0)
12409 {
12410 op0 = XEXP (op0, 0);
12411 op1 = tem;
12412 continue;
12413 }
12414
12415 /* If we are doing a < 0 or >= 0 comparison, it means we are testing
12416 a particular bit. Convert it to an AND of a constant of that
12417 bit. This will be converted into a ZERO_EXTRACT. */
12418 if (const_op == 0 && sign_bit_comparison_p
12419 && CONST_INT_P (XEXP (op0, 1))
12420 && mode_width <= HOST_BITS_PER_WIDE_INT
12421 && UINTVAL (XEXP (op0, 1)) < mode_width)
12422 {
12423 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
12424 (HOST_WIDE_INT_1U
12425 << (mode_width - 1
12426 - INTVAL (XEXP (op0, 1)))));
12427 code = (code == LT ? NE : EQ);
12428 continue;
12429 }
12430
12431 /* Fall through. */
12432
12433 case ABS:
12434 /* ABS is ignorable inside an equality comparison with zero. */
12435 if (const_op == 0 && equality_comparison_p)
12436 {
12437 op0 = XEXP (op0, 0);
12438 continue;
12439 }
12440 break;
12441
12442 case SIGN_EXTEND:
12443 /* Can simplify (compare (zero/sign_extend FOO) CONST) to
12444 (compare FOO CONST) if CONST fits in FOO's mode and we
12445 are either testing inequality or have an unsigned
12446 comparison with ZERO_EXTEND or a signed comparison with
12447 SIGN_EXTEND. But don't do it if we don't have a compare
12448 insn of the given mode, since we'd have to revert it
12449 later on, and then we wouldn't know whether to sign- or
12450 zero-extend. */
12451 if (is_int_mode (GET_MODE (XEXP (op0, 0)), &mode)
12452 && ! unsigned_comparison_p
12453 && HWI_COMPUTABLE_MODE_P (mode)
12454 && trunc_int_for_mode (const_op, mode) == const_op
12455 && have_insn_for (COMPARE, mode))
12456 {
12457 op0 = XEXP (op0, 0);
12458 continue;
12459 }
12460 break;
12461
12462 case SUBREG:
12463 /* Check for the case where we are comparing A - C1 with C2, that is
12464
12465 (subreg:MODE (plus (A) (-C1))) op (C2)
12466
12467 with C1 a constant, and try to lift the SUBREG, i.e. to do the
12468 comparison in the wider mode. One of the following two conditions
12469 must be true in order for this to be valid:
12470
12471 1. The mode extension results in the same bit pattern being added
12472 on both sides and the comparison is equality or unsigned. As
12473 C2 has been truncated to fit in MODE, the pattern can only be
12474 all 0s or all 1s.
12475
12476 2. The mode extension results in the sign bit being copied on
12477 each side.
12478
12479 The difficulty here is that we have predicates for A but not for
12480 (A - C1) so we need to check that C1 is within proper bounds so
12481 as to perturbate A as little as possible. */
12482
12483 if (mode_width <= HOST_BITS_PER_WIDE_INT
12484 && subreg_lowpart_p (op0)
12485 && is_a <scalar_int_mode> (GET_MODE (SUBREG_REG (op0)),
12486 &inner_mode)
12487 && GET_MODE_PRECISION (inner_mode) > mode_width
12488 && GET_CODE (SUBREG_REG (op0)) == PLUS
12489 && CONST_INT_P (XEXP (SUBREG_REG (op0), 1)))
12490 {
12491 rtx a = XEXP (SUBREG_REG (op0), 0);
12492 HOST_WIDE_INT c1 = -INTVAL (XEXP (SUBREG_REG (op0), 1));
12493
12494 if ((c1 > 0
12495 && (unsigned HOST_WIDE_INT) c1
12496 < HOST_WIDE_INT_1U << (mode_width - 1)
12497 && (equality_comparison_p || unsigned_comparison_p)
12498 /* (A - C1) zero-extends if it is positive and sign-extends
12499 if it is negative, C2 both zero- and sign-extends. */
12500 && (((nonzero_bits (a, inner_mode)
12501 & ~GET_MODE_MASK (mode)) == 0
12502 && const_op >= 0)
12503 /* (A - C1) sign-extends if it is positive and 1-extends
12504 if it is negative, C2 both sign- and 1-extends. */
12505 || (num_sign_bit_copies (a, inner_mode)
12506 > (unsigned int) (GET_MODE_PRECISION (inner_mode)
12507 - mode_width)
12508 && const_op < 0)))
12509 || ((unsigned HOST_WIDE_INT) c1
12510 < HOST_WIDE_INT_1U << (mode_width - 2)
12511 /* (A - C1) always sign-extends, like C2. */
12512 && num_sign_bit_copies (a, inner_mode)
12513 > (unsigned int) (GET_MODE_PRECISION (inner_mode)
12514 - (mode_width - 1))))
12515 {
12516 op0 = SUBREG_REG (op0);
12517 continue;
12518 }
12519 }
12520
12521 /* If the inner mode is narrower and we are extracting the low part,
12522 we can treat the SUBREG as if it were a ZERO_EXTEND. */
12523 if (paradoxical_subreg_p (op0))
12524 ;
12525 else if (subreg_lowpart_p (op0)
12526 && GET_MODE_CLASS (mode) == MODE_INT
12527 && is_int_mode (GET_MODE (SUBREG_REG (op0)), &inner_mode)
12528 && (code == NE || code == EQ)
12529 && GET_MODE_PRECISION (inner_mode) <= HOST_BITS_PER_WIDE_INT
12530 && !paradoxical_subreg_p (op0)
12531 && (nonzero_bits (SUBREG_REG (op0), inner_mode)
12532 & ~GET_MODE_MASK (mode)) == 0)
12533 {
12534 /* Remove outer subregs that don't do anything. */
12535 tem = gen_lowpart (inner_mode, op1);
12536
12537 if ((nonzero_bits (tem, inner_mode)
12538 & ~GET_MODE_MASK (mode)) == 0)
12539 {
12540 op0 = SUBREG_REG (op0);
12541 op1 = tem;
12542 continue;
12543 }
12544 break;
12545 }
12546 else
12547 break;
12548
12549 /* FALLTHROUGH */
12550
12551 case ZERO_EXTEND:
12552 if (is_int_mode (GET_MODE (XEXP (op0, 0)), &mode)
12553 && (unsigned_comparison_p || equality_comparison_p)
12554 && HWI_COMPUTABLE_MODE_P (mode)
12555 && (unsigned HOST_WIDE_INT) const_op <= GET_MODE_MASK (mode)
12556 && const_op >= 0
12557 && have_insn_for (COMPARE, mode))
12558 {
12559 op0 = XEXP (op0, 0);
12560 continue;
12561 }
12562 break;
12563
12564 case PLUS:
12565 /* (eq (plus X A) B) -> (eq X (minus B A)). We can only do
12566 this for equality comparisons due to pathological cases involving
12567 overflows. */
12568 if (equality_comparison_p
12569 && (tem = simplify_binary_operation (MINUS, mode,
12570 op1, XEXP (op0, 1))) != 0)
12571 {
12572 op0 = XEXP (op0, 0);
12573 op1 = tem;
12574 continue;
12575 }
12576
12577 /* (plus (abs X) (const_int -1)) is < 0 if and only if X == 0. */
12578 if (const_op == 0 && XEXP (op0, 1) == constm1_rtx
12579 && GET_CODE (XEXP (op0, 0)) == ABS && sign_bit_comparison_p)
12580 {
12581 op0 = XEXP (XEXP (op0, 0), 0);
12582 code = (code == LT ? EQ : NE);
12583 continue;
12584 }
12585 break;
12586
12587 case MINUS:
12588 /* We used to optimize signed comparisons against zero, but that
12589 was incorrect. Unsigned comparisons against zero (GTU, LEU)
12590 arrive here as equality comparisons, or (GEU, LTU) are
12591 optimized away. No need to special-case them. */
12592
12593 /* (eq (minus A B) C) -> (eq A (plus B C)) or
12594 (eq B (minus A C)), whichever simplifies. We can only do
12595 this for equality comparisons due to pathological cases involving
12596 overflows. */
12597 if (equality_comparison_p
12598 && (tem = simplify_binary_operation (PLUS, mode,
12599 XEXP (op0, 1), op1)) != 0)
12600 {
12601 op0 = XEXP (op0, 0);
12602 op1 = tem;
12603 continue;
12604 }
12605
12606 if (equality_comparison_p
12607 && (tem = simplify_binary_operation (MINUS, mode,
12608 XEXP (op0, 0), op1)) != 0)
12609 {
12610 op0 = XEXP (op0, 1);
12611 op1 = tem;
12612 continue;
12613 }
12614
12615 /* The sign bit of (minus (ashiftrt X C) X), where C is the number
12616 of bits in X minus 1, is one iff X > 0. */
12617 if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 0)) == ASHIFTRT
12618 && CONST_INT_P (XEXP (XEXP (op0, 0), 1))
12619 && UINTVAL (XEXP (XEXP (op0, 0), 1)) == mode_width - 1
12620 && rtx_equal_p (XEXP (XEXP (op0, 0), 0), XEXP (op0, 1)))
12621 {
12622 op0 = XEXP (op0, 1);
12623 code = (code == GE ? LE : GT);
12624 continue;
12625 }
12626 break;
12627
12628 case XOR:
12629 /* (eq (xor A B) C) -> (eq A (xor B C)). This is a simplification
12630 if C is zero or B is a constant. */
12631 if (equality_comparison_p
12632 && (tem = simplify_binary_operation (XOR, mode,
12633 XEXP (op0, 1), op1)) != 0)
12634 {
12635 op0 = XEXP (op0, 0);
12636 op1 = tem;
12637 continue;
12638 }
12639 break;
12640
12641
12642 case IOR:
12643 /* The sign bit of (ior (plus X (const_int -1)) X) is nonzero
12644 iff X <= 0. */
12645 if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 0)) == PLUS
12646 && XEXP (XEXP (op0, 0), 1) == constm1_rtx
12647 && rtx_equal_p (XEXP (XEXP (op0, 0), 0), XEXP (op0, 1)))
12648 {
12649 op0 = XEXP (op0, 1);
12650 code = (code == GE ? GT : LE);
12651 continue;
12652 }
12653 break;
12654
12655 case AND:
12656 /* Convert (and (xshift 1 X) Y) to (and (lshiftrt Y X) 1). This
12657 will be converted to a ZERO_EXTRACT later. */
12658 if (const_op == 0 && equality_comparison_p
12659 && GET_CODE (XEXP (op0, 0)) == ASHIFT
12660 && XEXP (XEXP (op0, 0), 0) == const1_rtx)
12661 {
12662 op0 = gen_rtx_LSHIFTRT (mode, XEXP (op0, 1),
12663 XEXP (XEXP (op0, 0), 1));
12664 op0 = simplify_and_const_int (NULL_RTX, mode, op0, 1);
12665 continue;
12666 }
12667
12668 /* If we are comparing (and (lshiftrt X C1) C2) for equality with
12669 zero and X is a comparison and C1 and C2 describe only bits set
12670 in STORE_FLAG_VALUE, we can compare with X. */
12671 if (const_op == 0 && equality_comparison_p
12672 && mode_width <= HOST_BITS_PER_WIDE_INT
12673 && CONST_INT_P (XEXP (op0, 1))
12674 && GET_CODE (XEXP (op0, 0)) == LSHIFTRT
12675 && CONST_INT_P (XEXP (XEXP (op0, 0), 1))
12676 && INTVAL (XEXP (XEXP (op0, 0), 1)) >= 0
12677 && INTVAL (XEXP (XEXP (op0, 0), 1)) < HOST_BITS_PER_WIDE_INT)
12678 {
12679 mask = ((INTVAL (XEXP (op0, 1)) & GET_MODE_MASK (mode))
12680 << INTVAL (XEXP (XEXP (op0, 0), 1)));
12681 if ((~STORE_FLAG_VALUE & mask) == 0
12682 && (COMPARISON_P (XEXP (XEXP (op0, 0), 0))
12683 || ((tem = get_last_value (XEXP (XEXP (op0, 0), 0))) != 0
12684 && COMPARISON_P (tem))))
12685 {
12686 op0 = XEXP (XEXP (op0, 0), 0);
12687 continue;
12688 }
12689 }
12690
12691 /* If we are doing an equality comparison of an AND of a bit equal
12692 to the sign bit, replace this with a LT or GE comparison of
12693 the underlying value. */
12694 if (equality_comparison_p
12695 && const_op == 0
12696 && CONST_INT_P (XEXP (op0, 1))
12697 && mode_width <= HOST_BITS_PER_WIDE_INT
12698 && ((INTVAL (XEXP (op0, 1)) & GET_MODE_MASK (mode))
12699 == HOST_WIDE_INT_1U << (mode_width - 1)))
12700 {
12701 op0 = XEXP (op0, 0);
12702 code = (code == EQ ? GE : LT);
12703 continue;
12704 }
12705
12706 /* If this AND operation is really a ZERO_EXTEND from a narrower
12707 mode, the constant fits within that mode, and this is either an
12708 equality or unsigned comparison, try to do this comparison in
12709 the narrower mode.
12710
12711 Note that in:
12712
12713 (ne:DI (and:DI (reg:DI 4) (const_int 0xffffffff)) (const_int 0))
12714 -> (ne:DI (reg:SI 4) (const_int 0))
12715
12716 unless TARGET_TRULY_NOOP_TRUNCATION allows it or the register is
12717 known to hold a value of the required mode the
12718 transformation is invalid. */
12719 if ((equality_comparison_p || unsigned_comparison_p)
12720 && CONST_INT_P (XEXP (op0, 1))
12721 && (i = exact_log2 ((UINTVAL (XEXP (op0, 1))
12722 & GET_MODE_MASK (mode))
12723 + 1)) >= 0
12724 && const_op >> i == 0
12725 && int_mode_for_size (i, 1).exists (&tmode))
12726 {
12727 op0 = gen_lowpart_or_truncate (tmode, XEXP (op0, 0));
12728 continue;
12729 }
12730
12731 /* If this is (and:M1 (subreg:M1 X:M2 0) (const_int C1)) where C1
12732 fits in both M1 and M2 and the SUBREG is either paradoxical
12733 or represents the low part, permute the SUBREG and the AND
12734 and try again. */
12735 if (GET_CODE (XEXP (op0, 0)) == SUBREG
12736 && CONST_INT_P (XEXP (op0, 1)))
12737 {
12738 unsigned HOST_WIDE_INT c1 = INTVAL (XEXP (op0, 1));
12739 /* Require an integral mode, to avoid creating something like
12740 (AND:SF ...). */
12741 if ((is_a <scalar_int_mode>
12742 (GET_MODE (SUBREG_REG (XEXP (op0, 0))), &tmode))
12743 /* It is unsafe to commute the AND into the SUBREG if the
12744 SUBREG is paradoxical and WORD_REGISTER_OPERATIONS is
12745 not defined. As originally written the upper bits
12746 have a defined value due to the AND operation.
12747 However, if we commute the AND inside the SUBREG then
12748 they no longer have defined values and the meaning of
12749 the code has been changed.
12750 Also C1 should not change value in the smaller mode,
12751 see PR67028 (a positive C1 can become negative in the
12752 smaller mode, so that the AND does no longer mask the
12753 upper bits). */
12754 && ((WORD_REGISTER_OPERATIONS
12755 && mode_width > GET_MODE_PRECISION (tmode)
12756 && mode_width <= BITS_PER_WORD
12757 && trunc_int_for_mode (c1, tmode) == (HOST_WIDE_INT) c1)
12758 || (mode_width <= GET_MODE_PRECISION (tmode)
12759 && subreg_lowpart_p (XEXP (op0, 0))))
12760 && mode_width <= HOST_BITS_PER_WIDE_INT
12761 && HWI_COMPUTABLE_MODE_P (tmode)
12762 && (c1 & ~mask) == 0
12763 && (c1 & ~GET_MODE_MASK (tmode)) == 0
12764 && c1 != mask
12765 && c1 != GET_MODE_MASK (tmode))
12766 {
12767 op0 = simplify_gen_binary (AND, tmode,
12768 SUBREG_REG (XEXP (op0, 0)),
12769 gen_int_mode (c1, tmode));
12770 op0 = gen_lowpart (mode, op0);
12771 continue;
12772 }
12773 }
12774
12775 /* Convert (ne (and (not X) 1) 0) to (eq (and X 1) 0). */
12776 if (const_op == 0 && equality_comparison_p
12777 && XEXP (op0, 1) == const1_rtx
12778 && GET_CODE (XEXP (op0, 0)) == NOT)
12779 {
12780 op0 = simplify_and_const_int (NULL_RTX, mode,
12781 XEXP (XEXP (op0, 0), 0), 1);
12782 code = (code == NE ? EQ : NE);
12783 continue;
12784 }
12785
12786 /* Convert (ne (and (lshiftrt (not X)) 1) 0) to
12787 (eq (and (lshiftrt X) 1) 0).
12788 Also handle the case where (not X) is expressed using xor. */
12789 if (const_op == 0 && equality_comparison_p
12790 && XEXP (op0, 1) == const1_rtx
12791 && GET_CODE (XEXP (op0, 0)) == LSHIFTRT)
12792 {
12793 rtx shift_op = XEXP (XEXP (op0, 0), 0);
12794 rtx shift_count = XEXP (XEXP (op0, 0), 1);
12795
12796 if (GET_CODE (shift_op) == NOT
12797 || (GET_CODE (shift_op) == XOR
12798 && CONST_INT_P (XEXP (shift_op, 1))
12799 && CONST_INT_P (shift_count)
12800 && HWI_COMPUTABLE_MODE_P (mode)
12801 && (UINTVAL (XEXP (shift_op, 1))
12802 == HOST_WIDE_INT_1U
12803 << INTVAL (shift_count))))
12804 {
12805 op0
12806 = gen_rtx_LSHIFTRT (mode, XEXP (shift_op, 0), shift_count);
12807 op0 = simplify_and_const_int (NULL_RTX, mode, op0, 1);
12808 code = (code == NE ? EQ : NE);
12809 continue;
12810 }
12811 }
12812 break;
12813
12814 case ASHIFT:
12815 /* If we have (compare (ashift FOO N) (const_int C)) and
12816 the high order N bits of FOO (N+1 if an inequality comparison)
12817 are known to be zero, we can do this by comparing FOO with C
12818 shifted right N bits so long as the low-order N bits of C are
12819 zero. */
12820 if (CONST_INT_P (XEXP (op0, 1))
12821 && INTVAL (XEXP (op0, 1)) >= 0
12822 && ((INTVAL (XEXP (op0, 1)) + ! equality_comparison_p)
12823 < HOST_BITS_PER_WIDE_INT)
12824 && (((unsigned HOST_WIDE_INT) const_op
12825 & ((HOST_WIDE_INT_1U << INTVAL (XEXP (op0, 1)))
12826 - 1)) == 0)
12827 && mode_width <= HOST_BITS_PER_WIDE_INT
12828 && (nonzero_bits (XEXP (op0, 0), mode)
12829 & ~(mask >> (INTVAL (XEXP (op0, 1))
12830 + ! equality_comparison_p))) == 0)
12831 {
12832 /* We must perform a logical shift, not an arithmetic one,
12833 as we want the top N bits of C to be zero. */
12834 unsigned HOST_WIDE_INT temp = const_op & GET_MODE_MASK (mode);
12835
12836 temp >>= INTVAL (XEXP (op0, 1));
12837 op1 = gen_int_mode (temp, mode);
12838 op0 = XEXP (op0, 0);
12839 continue;
12840 }
12841
12842 /* If we are doing a sign bit comparison, it means we are testing
12843 a particular bit. Convert it to the appropriate AND. */
12844 if (sign_bit_comparison_p && CONST_INT_P (XEXP (op0, 1))
12845 && mode_width <= HOST_BITS_PER_WIDE_INT)
12846 {
12847 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
12848 (HOST_WIDE_INT_1U
12849 << (mode_width - 1
12850 - INTVAL (XEXP (op0, 1)))));
12851 code = (code == LT ? NE : EQ);
12852 continue;
12853 }
12854
12855 /* If this an equality comparison with zero and we are shifting
12856 the low bit to the sign bit, we can convert this to an AND of the
12857 low-order bit. */
12858 if (const_op == 0 && equality_comparison_p
12859 && CONST_INT_P (XEXP (op0, 1))
12860 && UINTVAL (XEXP (op0, 1)) == mode_width - 1)
12861 {
12862 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0), 1);
12863 continue;
12864 }
12865 break;
12866
12867 case ASHIFTRT:
12868 /* If this is an equality comparison with zero, we can do this
12869 as a logical shift, which might be much simpler. */
12870 if (equality_comparison_p && const_op == 0
12871 && CONST_INT_P (XEXP (op0, 1)))
12872 {
12873 op0 = simplify_shift_const (NULL_RTX, LSHIFTRT, mode,
12874 XEXP (op0, 0),
12875 INTVAL (XEXP (op0, 1)));
12876 continue;
12877 }
12878
12879 /* If OP0 is a sign extension and CODE is not an unsigned comparison,
12880 do the comparison in a narrower mode. */
12881 if (! unsigned_comparison_p
12882 && CONST_INT_P (XEXP (op0, 1))
12883 && GET_CODE (XEXP (op0, 0)) == ASHIFT
12884 && XEXP (op0, 1) == XEXP (XEXP (op0, 0), 1)
12885 && (int_mode_for_size (mode_width - INTVAL (XEXP (op0, 1)), 1)
12886 .exists (&tmode))
12887 && (((unsigned HOST_WIDE_INT) const_op
12888 + (GET_MODE_MASK (tmode) >> 1) + 1)
12889 <= GET_MODE_MASK (tmode)))
12890 {
12891 op0 = gen_lowpart (tmode, XEXP (XEXP (op0, 0), 0));
12892 continue;
12893 }
12894
12895 /* Likewise if OP0 is a PLUS of a sign extension with a
12896 constant, which is usually represented with the PLUS
12897 between the shifts. */
12898 if (! unsigned_comparison_p
12899 && CONST_INT_P (XEXP (op0, 1))
12900 && GET_CODE (XEXP (op0, 0)) == PLUS
12901 && CONST_INT_P (XEXP (XEXP (op0, 0), 1))
12902 && GET_CODE (XEXP (XEXP (op0, 0), 0)) == ASHIFT
12903 && XEXP (op0, 1) == XEXP (XEXP (XEXP (op0, 0), 0), 1)
12904 && (int_mode_for_size (mode_width - INTVAL (XEXP (op0, 1)), 1)
12905 .exists (&tmode))
12906 && (((unsigned HOST_WIDE_INT) const_op
12907 + (GET_MODE_MASK (tmode) >> 1) + 1)
12908 <= GET_MODE_MASK (tmode)))
12909 {
12910 rtx inner = XEXP (XEXP (XEXP (op0, 0), 0), 0);
12911 rtx add_const = XEXP (XEXP (op0, 0), 1);
12912 rtx new_const = simplify_gen_binary (ASHIFTRT, mode,
12913 add_const, XEXP (op0, 1));
12914
12915 op0 = simplify_gen_binary (PLUS, tmode,
12916 gen_lowpart (tmode, inner),
12917 new_const);
12918 continue;
12919 }
12920
12921 /* FALLTHROUGH */
12922 case LSHIFTRT:
12923 /* If we have (compare (xshiftrt FOO N) (const_int C)) and
12924 the low order N bits of FOO are known to be zero, we can do this
12925 by comparing FOO with C shifted left N bits so long as no
12926 overflow occurs. Even if the low order N bits of FOO aren't known
12927 to be zero, if the comparison is >= or < we can use the same
12928 optimization and for > or <= by setting all the low
12929 order N bits in the comparison constant. */
12930 if (CONST_INT_P (XEXP (op0, 1))
12931 && INTVAL (XEXP (op0, 1)) > 0
12932 && INTVAL (XEXP (op0, 1)) < HOST_BITS_PER_WIDE_INT
12933 && mode_width <= HOST_BITS_PER_WIDE_INT
12934 && (((unsigned HOST_WIDE_INT) const_op
12935 + (GET_CODE (op0) != LSHIFTRT
12936 ? ((GET_MODE_MASK (mode) >> INTVAL (XEXP (op0, 1)) >> 1)
12937 + 1)
12938 : 0))
12939 <= GET_MODE_MASK (mode) >> INTVAL (XEXP (op0, 1))))
12940 {
12941 unsigned HOST_WIDE_INT low_bits
12942 = (nonzero_bits (XEXP (op0, 0), mode)
12943 & ((HOST_WIDE_INT_1U
12944 << INTVAL (XEXP (op0, 1))) - 1));
12945 if (low_bits == 0 || !equality_comparison_p)
12946 {
12947 /* If the shift was logical, then we must make the condition
12948 unsigned. */
12949 if (GET_CODE (op0) == LSHIFTRT)
12950 code = unsigned_condition (code);
12951
12952 const_op = (unsigned HOST_WIDE_INT) const_op
12953 << INTVAL (XEXP (op0, 1));
12954 if (low_bits != 0
12955 && (code == GT || code == GTU
12956 || code == LE || code == LEU))
12957 const_op
12958 |= ((HOST_WIDE_INT_1 << INTVAL (XEXP (op0, 1))) - 1);
12959 op1 = GEN_INT (const_op);
12960 op0 = XEXP (op0, 0);
12961 continue;
12962 }
12963 }
12964
12965 /* If we are using this shift to extract just the sign bit, we
12966 can replace this with an LT or GE comparison. */
12967 if (const_op == 0
12968 && (equality_comparison_p || sign_bit_comparison_p)
12969 && CONST_INT_P (XEXP (op0, 1))
12970 && UINTVAL (XEXP (op0, 1)) == mode_width - 1)
12971 {
12972 op0 = XEXP (op0, 0);
12973 code = (code == NE || code == GT ? LT : GE);
12974 continue;
12975 }
12976 break;
12977
12978 default:
12979 break;
12980 }
12981
12982 break;
12983 }
12984
12985 /* Now make any compound operations involved in this comparison. Then,
12986 check for an outmost SUBREG on OP0 that is not doing anything or is
12987 paradoxical. The latter transformation must only be performed when
12988 it is known that the "extra" bits will be the same in op0 and op1 or
12989 that they don't matter. There are three cases to consider:
12990
12991 1. SUBREG_REG (op0) is a register. In this case the bits are don't
12992 care bits and we can assume they have any convenient value. So
12993 making the transformation is safe.
12994
12995 2. SUBREG_REG (op0) is a memory and LOAD_EXTEND_OP is UNKNOWN.
12996 In this case the upper bits of op0 are undefined. We should not make
12997 the simplification in that case as we do not know the contents of
12998 those bits.
12999
13000 3. SUBREG_REG (op0) is a memory and LOAD_EXTEND_OP is not UNKNOWN.
13001 In that case we know those bits are zeros or ones. We must also be
13002 sure that they are the same as the upper bits of op1.
13003
13004 We can never remove a SUBREG for a non-equality comparison because
13005 the sign bit is in a different place in the underlying object. */
13006
13007 rtx_code op0_mco_code = SET;
13008 if (op1 == const0_rtx)
13009 op0_mco_code = code == NE || code == EQ ? EQ : COMPARE;
13010
13011 op0 = make_compound_operation (op0, op0_mco_code);
13012 op1 = make_compound_operation (op1, SET);
13013
13014 if (GET_CODE (op0) == SUBREG && subreg_lowpart_p (op0)
13015 && is_int_mode (GET_MODE (op0), &mode)
13016 && is_int_mode (GET_MODE (SUBREG_REG (op0)), &inner_mode)
13017 && (code == NE || code == EQ))
13018 {
13019 if (paradoxical_subreg_p (op0))
13020 {
13021 /* For paradoxical subregs, allow case 1 as above. Case 3 isn't
13022 implemented. */
13023 if (REG_P (SUBREG_REG (op0)))
13024 {
13025 op0 = SUBREG_REG (op0);
13026 op1 = gen_lowpart (inner_mode, op1);
13027 }
13028 }
13029 else if (GET_MODE_PRECISION (inner_mode) <= HOST_BITS_PER_WIDE_INT
13030 && (nonzero_bits (SUBREG_REG (op0), inner_mode)
13031 & ~GET_MODE_MASK (mode)) == 0)
13032 {
13033 tem = gen_lowpart (inner_mode, op1);
13034
13035 if ((nonzero_bits (tem, inner_mode) & ~GET_MODE_MASK (mode)) == 0)
13036 op0 = SUBREG_REG (op0), op1 = tem;
13037 }
13038 }
13039
13040 /* We now do the opposite procedure: Some machines don't have compare
13041 insns in all modes. If OP0's mode is an integer mode smaller than a
13042 word and we can't do a compare in that mode, see if there is a larger
13043 mode for which we can do the compare. There are a number of cases in
13044 which we can use the wider mode. */
13045
13046 if (is_int_mode (GET_MODE (op0), &mode)
13047 && GET_MODE_SIZE (mode) < UNITS_PER_WORD
13048 && ! have_insn_for (COMPARE, mode))
13049 FOR_EACH_WIDER_MODE (tmode_iter, mode)
13050 {
13051 tmode = tmode_iter.require ();
13052 if (!HWI_COMPUTABLE_MODE_P (tmode))
13053 break;
13054 if (have_insn_for (COMPARE, tmode))
13055 {
13056 int zero_extended;
13057
13058 /* If this is a test for negative, we can make an explicit
13059 test of the sign bit. Test this first so we can use
13060 a paradoxical subreg to extend OP0. */
13061
13062 if (op1 == const0_rtx && (code == LT || code == GE)
13063 && HWI_COMPUTABLE_MODE_P (mode))
13064 {
13065 unsigned HOST_WIDE_INT sign
13066 = HOST_WIDE_INT_1U << (GET_MODE_BITSIZE (mode) - 1);
13067 op0 = simplify_gen_binary (AND, tmode,
13068 gen_lowpart (tmode, op0),
13069 gen_int_mode (sign, tmode));
13070 code = (code == LT) ? NE : EQ;
13071 break;
13072 }
13073
13074 /* If the only nonzero bits in OP0 and OP1 are those in the
13075 narrower mode and this is an equality or unsigned comparison,
13076 we can use the wider mode. Similarly for sign-extended
13077 values, in which case it is true for all comparisons. */
13078 zero_extended = ((code == EQ || code == NE
13079 || code == GEU || code == GTU
13080 || code == LEU || code == LTU)
13081 && (nonzero_bits (op0, tmode)
13082 & ~GET_MODE_MASK (mode)) == 0
13083 && ((CONST_INT_P (op1)
13084 || (nonzero_bits (op1, tmode)
13085 & ~GET_MODE_MASK (mode)) == 0)));
13086
13087 if (zero_extended
13088 || ((num_sign_bit_copies (op0, tmode)
13089 > (unsigned int) (GET_MODE_PRECISION (tmode)
13090 - GET_MODE_PRECISION (mode)))
13091 && (num_sign_bit_copies (op1, tmode)
13092 > (unsigned int) (GET_MODE_PRECISION (tmode)
13093 - GET_MODE_PRECISION (mode)))))
13094 {
13095 /* If OP0 is an AND and we don't have an AND in MODE either,
13096 make a new AND in the proper mode. */
13097 if (GET_CODE (op0) == AND
13098 && !have_insn_for (AND, mode))
13099 op0 = simplify_gen_binary (AND, tmode,
13100 gen_lowpart (tmode,
13101 XEXP (op0, 0)),
13102 gen_lowpart (tmode,
13103 XEXP (op0, 1)));
13104 else
13105 {
13106 if (zero_extended)
13107 {
13108 op0 = simplify_gen_unary (ZERO_EXTEND, tmode,
13109 op0, mode);
13110 op1 = simplify_gen_unary (ZERO_EXTEND, tmode,
13111 op1, mode);
13112 }
13113 else
13114 {
13115 op0 = simplify_gen_unary (SIGN_EXTEND, tmode,
13116 op0, mode);
13117 op1 = simplify_gen_unary (SIGN_EXTEND, tmode,
13118 op1, mode);
13119 }
13120 break;
13121 }
13122 }
13123 }
13124 }
13125
13126 /* We may have changed the comparison operands. Re-canonicalize. */
13127 if (swap_commutative_operands_p (op0, op1))
13128 {
13129 std::swap (op0, op1);
13130 code = swap_condition (code);
13131 }
13132
13133 /* If this machine only supports a subset of valid comparisons, see if we
13134 can convert an unsupported one into a supported one. */
13135 target_canonicalize_comparison (&code, &op0, &op1, 0);
13136
13137 *pop0 = op0;
13138 *pop1 = op1;
13139
13140 return code;
13141 }
13142 \f
13143 /* Utility function for record_value_for_reg. Count number of
13144 rtxs in X. */
13145 static int
13146 count_rtxs (rtx x)
13147 {
13148 enum rtx_code code = GET_CODE (x);
13149 const char *fmt;
13150 int i, j, ret = 1;
13151
13152 if (GET_RTX_CLASS (code) == RTX_BIN_ARITH
13153 || GET_RTX_CLASS (code) == RTX_COMM_ARITH)
13154 {
13155 rtx x0 = XEXP (x, 0);
13156 rtx x1 = XEXP (x, 1);
13157
13158 if (x0 == x1)
13159 return 1 + 2 * count_rtxs (x0);
13160
13161 if ((GET_RTX_CLASS (GET_CODE (x1)) == RTX_BIN_ARITH
13162 || GET_RTX_CLASS (GET_CODE (x1)) == RTX_COMM_ARITH)
13163 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
13164 return 2 + 2 * count_rtxs (x0)
13165 + count_rtxs (x == XEXP (x1, 0)
13166 ? XEXP (x1, 1) : XEXP (x1, 0));
13167
13168 if ((GET_RTX_CLASS (GET_CODE (x0)) == RTX_BIN_ARITH
13169 || GET_RTX_CLASS (GET_CODE (x0)) == RTX_COMM_ARITH)
13170 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
13171 return 2 + 2 * count_rtxs (x1)
13172 + count_rtxs (x == XEXP (x0, 0)
13173 ? XEXP (x0, 1) : XEXP (x0, 0));
13174 }
13175
13176 fmt = GET_RTX_FORMAT (code);
13177 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
13178 if (fmt[i] == 'e')
13179 ret += count_rtxs (XEXP (x, i));
13180 else if (fmt[i] == 'E')
13181 for (j = 0; j < XVECLEN (x, i); j++)
13182 ret += count_rtxs (XVECEXP (x, i, j));
13183
13184 return ret;
13185 }
13186 \f
13187 /* Utility function for following routine. Called when X is part of a value
13188 being stored into last_set_value. Sets last_set_table_tick
13189 for each register mentioned. Similar to mention_regs in cse.c */
13190
13191 static void
13192 update_table_tick (rtx x)
13193 {
13194 enum rtx_code code = GET_CODE (x);
13195 const char *fmt = GET_RTX_FORMAT (code);
13196 int i, j;
13197
13198 if (code == REG)
13199 {
13200 unsigned int regno = REGNO (x);
13201 unsigned int endregno = END_REGNO (x);
13202 unsigned int r;
13203
13204 for (r = regno; r < endregno; r++)
13205 {
13206 reg_stat_type *rsp = &reg_stat[r];
13207 rsp->last_set_table_tick = label_tick;
13208 }
13209
13210 return;
13211 }
13212
13213 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
13214 if (fmt[i] == 'e')
13215 {
13216 /* Check for identical subexpressions. If x contains
13217 identical subexpression we only have to traverse one of
13218 them. */
13219 if (i == 0 && ARITHMETIC_P (x))
13220 {
13221 /* Note that at this point x1 has already been
13222 processed. */
13223 rtx x0 = XEXP (x, 0);
13224 rtx x1 = XEXP (x, 1);
13225
13226 /* If x0 and x1 are identical then there is no need to
13227 process x0. */
13228 if (x0 == x1)
13229 break;
13230
13231 /* If x0 is identical to a subexpression of x1 then while
13232 processing x1, x0 has already been processed. Thus we
13233 are done with x. */
13234 if (ARITHMETIC_P (x1)
13235 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
13236 break;
13237
13238 /* If x1 is identical to a subexpression of x0 then we
13239 still have to process the rest of x0. */
13240 if (ARITHMETIC_P (x0)
13241 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
13242 {
13243 update_table_tick (XEXP (x0, x1 == XEXP (x0, 0) ? 1 : 0));
13244 break;
13245 }
13246 }
13247
13248 update_table_tick (XEXP (x, i));
13249 }
13250 else if (fmt[i] == 'E')
13251 for (j = 0; j < XVECLEN (x, i); j++)
13252 update_table_tick (XVECEXP (x, i, j));
13253 }
13254
13255 /* Record that REG is set to VALUE in insn INSN. If VALUE is zero, we
13256 are saying that the register is clobbered and we no longer know its
13257 value. If INSN is zero, don't update reg_stat[].last_set; this is
13258 only permitted with VALUE also zero and is used to invalidate the
13259 register. */
13260
13261 static void
13262 record_value_for_reg (rtx reg, rtx_insn *insn, rtx value)
13263 {
13264 unsigned int regno = REGNO (reg);
13265 unsigned int endregno = END_REGNO (reg);
13266 unsigned int i;
13267 reg_stat_type *rsp;
13268
13269 /* If VALUE contains REG and we have a previous value for REG, substitute
13270 the previous value. */
13271 if (value && insn && reg_overlap_mentioned_p (reg, value))
13272 {
13273 rtx tem;
13274
13275 /* Set things up so get_last_value is allowed to see anything set up to
13276 our insn. */
13277 subst_low_luid = DF_INSN_LUID (insn);
13278 tem = get_last_value (reg);
13279
13280 /* If TEM is simply a binary operation with two CLOBBERs as operands,
13281 it isn't going to be useful and will take a lot of time to process,
13282 so just use the CLOBBER. */
13283
13284 if (tem)
13285 {
13286 if (ARITHMETIC_P (tem)
13287 && GET_CODE (XEXP (tem, 0)) == CLOBBER
13288 && GET_CODE (XEXP (tem, 1)) == CLOBBER)
13289 tem = XEXP (tem, 0);
13290 else if (count_occurrences (value, reg, 1) >= 2)
13291 {
13292 /* If there are two or more occurrences of REG in VALUE,
13293 prevent the value from growing too much. */
13294 if (count_rtxs (tem) > param_max_last_value_rtl)
13295 tem = gen_rtx_CLOBBER (GET_MODE (tem), const0_rtx);
13296 }
13297
13298 value = replace_rtx (copy_rtx (value), reg, tem);
13299 }
13300 }
13301
13302 /* For each register modified, show we don't know its value, that
13303 we don't know about its bitwise content, that its value has been
13304 updated, and that we don't know the location of the death of the
13305 register. */
13306 for (i = regno; i < endregno; i++)
13307 {
13308 rsp = &reg_stat[i];
13309
13310 if (insn)
13311 rsp->last_set = insn;
13312
13313 rsp->last_set_value = 0;
13314 rsp->last_set_mode = VOIDmode;
13315 rsp->last_set_nonzero_bits = 0;
13316 rsp->last_set_sign_bit_copies = 0;
13317 rsp->last_death = 0;
13318 rsp->truncated_to_mode = VOIDmode;
13319 }
13320
13321 /* Mark registers that are being referenced in this value. */
13322 if (value)
13323 update_table_tick (value);
13324
13325 /* Now update the status of each register being set.
13326 If someone is using this register in this block, set this register
13327 to invalid since we will get confused between the two lives in this
13328 basic block. This makes using this register always invalid. In cse, we
13329 scan the table to invalidate all entries using this register, but this
13330 is too much work for us. */
13331
13332 for (i = regno; i < endregno; i++)
13333 {
13334 rsp = &reg_stat[i];
13335 rsp->last_set_label = label_tick;
13336 if (!insn
13337 || (value && rsp->last_set_table_tick >= label_tick_ebb_start))
13338 rsp->last_set_invalid = 1;
13339 else
13340 rsp->last_set_invalid = 0;
13341 }
13342
13343 /* The value being assigned might refer to X (like in "x++;"). In that
13344 case, we must replace it with (clobber (const_int 0)) to prevent
13345 infinite loops. */
13346 rsp = &reg_stat[regno];
13347 if (value && !get_last_value_validate (&value, insn, label_tick, 0))
13348 {
13349 value = copy_rtx (value);
13350 if (!get_last_value_validate (&value, insn, label_tick, 1))
13351 value = 0;
13352 }
13353
13354 /* For the main register being modified, update the value, the mode, the
13355 nonzero bits, and the number of sign bit copies. */
13356
13357 rsp->last_set_value = value;
13358
13359 if (value)
13360 {
13361 machine_mode mode = GET_MODE (reg);
13362 subst_low_luid = DF_INSN_LUID (insn);
13363 rsp->last_set_mode = mode;
13364 if (GET_MODE_CLASS (mode) == MODE_INT
13365 && HWI_COMPUTABLE_MODE_P (mode))
13366 mode = nonzero_bits_mode;
13367 rsp->last_set_nonzero_bits = nonzero_bits (value, mode);
13368 rsp->last_set_sign_bit_copies
13369 = num_sign_bit_copies (value, GET_MODE (reg));
13370 }
13371 }
13372
13373 /* Called via note_stores from record_dead_and_set_regs to handle one
13374 SET or CLOBBER in an insn. DATA is the instruction in which the
13375 set is occurring. */
13376
13377 static void
13378 record_dead_and_set_regs_1 (rtx dest, const_rtx setter, void *data)
13379 {
13380 rtx_insn *record_dead_insn = (rtx_insn *) data;
13381
13382 if (GET_CODE (dest) == SUBREG)
13383 dest = SUBREG_REG (dest);
13384
13385 if (!record_dead_insn)
13386 {
13387 if (REG_P (dest))
13388 record_value_for_reg (dest, NULL, NULL_RTX);
13389 return;
13390 }
13391
13392 if (REG_P (dest))
13393 {
13394 /* If we are setting the whole register, we know its value. Otherwise
13395 show that we don't know the value. We can handle a SUBREG if it's
13396 the low part, but we must be careful with paradoxical SUBREGs on
13397 RISC architectures because we cannot strip e.g. an extension around
13398 a load and record the naked load since the RTL middle-end considers
13399 that the upper bits are defined according to LOAD_EXTEND_OP. */
13400 if (GET_CODE (setter) == SET && dest == SET_DEST (setter))
13401 record_value_for_reg (dest, record_dead_insn, SET_SRC (setter));
13402 else if (GET_CODE (setter) == SET
13403 && GET_CODE (SET_DEST (setter)) == SUBREG
13404 && SUBREG_REG (SET_DEST (setter)) == dest
13405 && known_le (GET_MODE_PRECISION (GET_MODE (dest)),
13406 BITS_PER_WORD)
13407 && subreg_lowpart_p (SET_DEST (setter)))
13408 record_value_for_reg (dest, record_dead_insn,
13409 WORD_REGISTER_OPERATIONS
13410 && word_register_operation_p (SET_SRC (setter))
13411 && paradoxical_subreg_p (SET_DEST (setter))
13412 ? SET_SRC (setter)
13413 : gen_lowpart (GET_MODE (dest),
13414 SET_SRC (setter)));
13415 else
13416 record_value_for_reg (dest, record_dead_insn, NULL_RTX);
13417 }
13418 else if (MEM_P (dest)
13419 /* Ignore pushes, they clobber nothing. */
13420 && ! push_operand (dest, GET_MODE (dest)))
13421 mem_last_set = DF_INSN_LUID (record_dead_insn);
13422 }
13423
13424 /* Update the records of when each REG was most recently set or killed
13425 for the things done by INSN. This is the last thing done in processing
13426 INSN in the combiner loop.
13427
13428 We update reg_stat[], in particular fields last_set, last_set_value,
13429 last_set_mode, last_set_nonzero_bits, last_set_sign_bit_copies,
13430 last_death, and also the similar information mem_last_set (which insn
13431 most recently modified memory) and last_call_luid (which insn was the
13432 most recent subroutine call). */
13433
13434 static void
13435 record_dead_and_set_regs (rtx_insn *insn)
13436 {
13437 rtx link;
13438 unsigned int i;
13439
13440 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
13441 {
13442 if (REG_NOTE_KIND (link) == REG_DEAD
13443 && REG_P (XEXP (link, 0)))
13444 {
13445 unsigned int regno = REGNO (XEXP (link, 0));
13446 unsigned int endregno = END_REGNO (XEXP (link, 0));
13447
13448 for (i = regno; i < endregno; i++)
13449 {
13450 reg_stat_type *rsp;
13451
13452 rsp = &reg_stat[i];
13453 rsp->last_death = insn;
13454 }
13455 }
13456 else if (REG_NOTE_KIND (link) == REG_INC)
13457 record_value_for_reg (XEXP (link, 0), insn, NULL_RTX);
13458 }
13459
13460 if (CALL_P (insn))
13461 {
13462 HARD_REG_SET callee_clobbers
13463 = insn_callee_abi (insn).full_and_partial_reg_clobbers ();
13464 hard_reg_set_iterator hrsi;
13465 EXECUTE_IF_SET_IN_HARD_REG_SET (callee_clobbers, 0, i, hrsi)
13466 {
13467 reg_stat_type *rsp;
13468
13469 /* ??? We could try to preserve some information from the last
13470 set of register I if the call doesn't actually clobber
13471 (reg:last_set_mode I), which might be true for ABIs with
13472 partial clobbers. However, it would be difficult to
13473 update last_set_nonzero_bits and last_sign_bit_copies
13474 to account for the part of I that actually was clobbered.
13475 It wouldn't help much anyway, since we rarely see this
13476 situation before RA. */
13477 rsp = &reg_stat[i];
13478 rsp->last_set_invalid = 1;
13479 rsp->last_set = insn;
13480 rsp->last_set_value = 0;
13481 rsp->last_set_mode = VOIDmode;
13482 rsp->last_set_nonzero_bits = 0;
13483 rsp->last_set_sign_bit_copies = 0;
13484 rsp->last_death = 0;
13485 rsp->truncated_to_mode = VOIDmode;
13486 }
13487
13488 last_call_luid = mem_last_set = DF_INSN_LUID (insn);
13489
13490 /* We can't combine into a call pattern. Remember, though, that
13491 the return value register is set at this LUID. We could
13492 still replace a register with the return value from the
13493 wrong subroutine call! */
13494 note_stores (insn, record_dead_and_set_regs_1, NULL_RTX);
13495 }
13496 else
13497 note_stores (insn, record_dead_and_set_regs_1, insn);
13498 }
13499
13500 /* If a SUBREG has the promoted bit set, it is in fact a property of the
13501 register present in the SUBREG, so for each such SUBREG go back and
13502 adjust nonzero and sign bit information of the registers that are
13503 known to have some zero/sign bits set.
13504
13505 This is needed because when combine blows the SUBREGs away, the
13506 information on zero/sign bits is lost and further combines can be
13507 missed because of that. */
13508
13509 static void
13510 record_promoted_value (rtx_insn *insn, rtx subreg)
13511 {
13512 struct insn_link *links;
13513 rtx set;
13514 unsigned int regno = REGNO (SUBREG_REG (subreg));
13515 machine_mode mode = GET_MODE (subreg);
13516
13517 if (!HWI_COMPUTABLE_MODE_P (mode))
13518 return;
13519
13520 for (links = LOG_LINKS (insn); links;)
13521 {
13522 reg_stat_type *rsp;
13523
13524 insn = links->insn;
13525 set = single_set (insn);
13526
13527 if (! set || !REG_P (SET_DEST (set))
13528 || REGNO (SET_DEST (set)) != regno
13529 || GET_MODE (SET_DEST (set)) != GET_MODE (SUBREG_REG (subreg)))
13530 {
13531 links = links->next;
13532 continue;
13533 }
13534
13535 rsp = &reg_stat[regno];
13536 if (rsp->last_set == insn)
13537 {
13538 if (SUBREG_PROMOTED_UNSIGNED_P (subreg))
13539 rsp->last_set_nonzero_bits &= GET_MODE_MASK (mode);
13540 }
13541
13542 if (REG_P (SET_SRC (set)))
13543 {
13544 regno = REGNO (SET_SRC (set));
13545 links = LOG_LINKS (insn);
13546 }
13547 else
13548 break;
13549 }
13550 }
13551
13552 /* Check if X, a register, is known to contain a value already
13553 truncated to MODE. In this case we can use a subreg to refer to
13554 the truncated value even though in the generic case we would need
13555 an explicit truncation. */
13556
13557 static bool
13558 reg_truncated_to_mode (machine_mode mode, const_rtx x)
13559 {
13560 reg_stat_type *rsp = &reg_stat[REGNO (x)];
13561 machine_mode truncated = rsp->truncated_to_mode;
13562
13563 if (truncated == 0
13564 || rsp->truncation_label < label_tick_ebb_start)
13565 return false;
13566 if (!partial_subreg_p (mode, truncated))
13567 return true;
13568 if (TRULY_NOOP_TRUNCATION_MODES_P (mode, truncated))
13569 return true;
13570 return false;
13571 }
13572
13573 /* If X is a hard reg or a subreg record the mode that the register is
13574 accessed in. For non-TARGET_TRULY_NOOP_TRUNCATION targets we might be
13575 able to turn a truncate into a subreg using this information. Return true
13576 if traversing X is complete. */
13577
13578 static bool
13579 record_truncated_value (rtx x)
13580 {
13581 machine_mode truncated_mode;
13582 reg_stat_type *rsp;
13583
13584 if (GET_CODE (x) == SUBREG && REG_P (SUBREG_REG (x)))
13585 {
13586 machine_mode original_mode = GET_MODE (SUBREG_REG (x));
13587 truncated_mode = GET_MODE (x);
13588
13589 if (!partial_subreg_p (truncated_mode, original_mode))
13590 return true;
13591
13592 truncated_mode = GET_MODE (x);
13593 if (TRULY_NOOP_TRUNCATION_MODES_P (truncated_mode, original_mode))
13594 return true;
13595
13596 x = SUBREG_REG (x);
13597 }
13598 /* ??? For hard-regs we now record everything. We might be able to
13599 optimize this using last_set_mode. */
13600 else if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
13601 truncated_mode = GET_MODE (x);
13602 else
13603 return false;
13604
13605 rsp = &reg_stat[REGNO (x)];
13606 if (rsp->truncated_to_mode == 0
13607 || rsp->truncation_label < label_tick_ebb_start
13608 || partial_subreg_p (truncated_mode, rsp->truncated_to_mode))
13609 {
13610 rsp->truncated_to_mode = truncated_mode;
13611 rsp->truncation_label = label_tick;
13612 }
13613
13614 return true;
13615 }
13616
13617 /* Callback for note_uses. Find hardregs and subregs of pseudos and
13618 the modes they are used in. This can help truning TRUNCATEs into
13619 SUBREGs. */
13620
13621 static void
13622 record_truncated_values (rtx *loc, void *data ATTRIBUTE_UNUSED)
13623 {
13624 subrtx_var_iterator::array_type array;
13625 FOR_EACH_SUBRTX_VAR (iter, array, *loc, NONCONST)
13626 if (record_truncated_value (*iter))
13627 iter.skip_subrtxes ();
13628 }
13629
13630 /* Scan X for promoted SUBREGs. For each one found,
13631 note what it implies to the registers used in it. */
13632
13633 static void
13634 check_promoted_subreg (rtx_insn *insn, rtx x)
13635 {
13636 if (GET_CODE (x) == SUBREG
13637 && SUBREG_PROMOTED_VAR_P (x)
13638 && REG_P (SUBREG_REG (x)))
13639 record_promoted_value (insn, x);
13640 else
13641 {
13642 const char *format = GET_RTX_FORMAT (GET_CODE (x));
13643 int i, j;
13644
13645 for (i = 0; i < GET_RTX_LENGTH (GET_CODE (x)); i++)
13646 switch (format[i])
13647 {
13648 case 'e':
13649 check_promoted_subreg (insn, XEXP (x, i));
13650 break;
13651 case 'V':
13652 case 'E':
13653 if (XVEC (x, i) != 0)
13654 for (j = 0; j < XVECLEN (x, i); j++)
13655 check_promoted_subreg (insn, XVECEXP (x, i, j));
13656 break;
13657 }
13658 }
13659 }
13660 \f
13661 /* Verify that all the registers and memory references mentioned in *LOC are
13662 still valid. *LOC was part of a value set in INSN when label_tick was
13663 equal to TICK. Return 0 if some are not. If REPLACE is nonzero, replace
13664 the invalid references with (clobber (const_int 0)) and return 1. This
13665 replacement is useful because we often can get useful information about
13666 the form of a value (e.g., if it was produced by a shift that always
13667 produces -1 or 0) even though we don't know exactly what registers it
13668 was produced from. */
13669
13670 static int
13671 get_last_value_validate (rtx *loc, rtx_insn *insn, int tick, int replace)
13672 {
13673 rtx x = *loc;
13674 const char *fmt = GET_RTX_FORMAT (GET_CODE (x));
13675 int len = GET_RTX_LENGTH (GET_CODE (x));
13676 int i, j;
13677
13678 if (REG_P (x))
13679 {
13680 unsigned int regno = REGNO (x);
13681 unsigned int endregno = END_REGNO (x);
13682 unsigned int j;
13683
13684 for (j = regno; j < endregno; j++)
13685 {
13686 reg_stat_type *rsp = &reg_stat[j];
13687 if (rsp->last_set_invalid
13688 /* If this is a pseudo-register that was only set once and not
13689 live at the beginning of the function, it is always valid. */
13690 || (! (regno >= FIRST_PSEUDO_REGISTER
13691 && regno < reg_n_sets_max
13692 && REG_N_SETS (regno) == 1
13693 && (!REGNO_REG_SET_P
13694 (DF_LR_IN (ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb),
13695 regno)))
13696 && rsp->last_set_label > tick))
13697 {
13698 if (replace)
13699 *loc = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
13700 return replace;
13701 }
13702 }
13703
13704 return 1;
13705 }
13706 /* If this is a memory reference, make sure that there were no stores after
13707 it that might have clobbered the value. We don't have alias info, so we
13708 assume any store invalidates it. Moreover, we only have local UIDs, so
13709 we also assume that there were stores in the intervening basic blocks. */
13710 else if (MEM_P (x) && !MEM_READONLY_P (x)
13711 && (tick != label_tick || DF_INSN_LUID (insn) <= mem_last_set))
13712 {
13713 if (replace)
13714 *loc = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
13715 return replace;
13716 }
13717
13718 for (i = 0; i < len; i++)
13719 {
13720 if (fmt[i] == 'e')
13721 {
13722 /* Check for identical subexpressions. If x contains
13723 identical subexpression we only have to traverse one of
13724 them. */
13725 if (i == 1 && ARITHMETIC_P (x))
13726 {
13727 /* Note that at this point x0 has already been checked
13728 and found valid. */
13729 rtx x0 = XEXP (x, 0);
13730 rtx x1 = XEXP (x, 1);
13731
13732 /* If x0 and x1 are identical then x is also valid. */
13733 if (x0 == x1)
13734 return 1;
13735
13736 /* If x1 is identical to a subexpression of x0 then
13737 while checking x0, x1 has already been checked. Thus
13738 it is valid and so as x. */
13739 if (ARITHMETIC_P (x0)
13740 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
13741 return 1;
13742
13743 /* If x0 is identical to a subexpression of x1 then x is
13744 valid iff the rest of x1 is valid. */
13745 if (ARITHMETIC_P (x1)
13746 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
13747 return
13748 get_last_value_validate (&XEXP (x1,
13749 x0 == XEXP (x1, 0) ? 1 : 0),
13750 insn, tick, replace);
13751 }
13752
13753 if (get_last_value_validate (&XEXP (x, i), insn, tick,
13754 replace) == 0)
13755 return 0;
13756 }
13757 else if (fmt[i] == 'E')
13758 for (j = 0; j < XVECLEN (x, i); j++)
13759 if (get_last_value_validate (&XVECEXP (x, i, j),
13760 insn, tick, replace) == 0)
13761 return 0;
13762 }
13763
13764 /* If we haven't found a reason for it to be invalid, it is valid. */
13765 return 1;
13766 }
13767
13768 /* Get the last value assigned to X, if known. Some registers
13769 in the value may be replaced with (clobber (const_int 0)) if their value
13770 is known longer known reliably. */
13771
13772 static rtx
13773 get_last_value (const_rtx x)
13774 {
13775 unsigned int regno;
13776 rtx value;
13777 reg_stat_type *rsp;
13778
13779 /* If this is a non-paradoxical SUBREG, get the value of its operand and
13780 then convert it to the desired mode. If this is a paradoxical SUBREG,
13781 we cannot predict what values the "extra" bits might have. */
13782 if (GET_CODE (x) == SUBREG
13783 && subreg_lowpart_p (x)
13784 && !paradoxical_subreg_p (x)
13785 && (value = get_last_value (SUBREG_REG (x))) != 0)
13786 return gen_lowpart (GET_MODE (x), value);
13787
13788 if (!REG_P (x))
13789 return 0;
13790
13791 regno = REGNO (x);
13792 rsp = &reg_stat[regno];
13793 value = rsp->last_set_value;
13794
13795 /* If we don't have a value, or if it isn't for this basic block and
13796 it's either a hard register, set more than once, or it's a live
13797 at the beginning of the function, return 0.
13798
13799 Because if it's not live at the beginning of the function then the reg
13800 is always set before being used (is never used without being set).
13801 And, if it's set only once, and it's always set before use, then all
13802 uses must have the same last value, even if it's not from this basic
13803 block. */
13804
13805 if (value == 0
13806 || (rsp->last_set_label < label_tick_ebb_start
13807 && (regno < FIRST_PSEUDO_REGISTER
13808 || regno >= reg_n_sets_max
13809 || REG_N_SETS (regno) != 1
13810 || REGNO_REG_SET_P
13811 (DF_LR_IN (ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb), regno))))
13812 return 0;
13813
13814 /* If the value was set in a later insn than the ones we are processing,
13815 we can't use it even if the register was only set once. */
13816 if (rsp->last_set_label == label_tick
13817 && DF_INSN_LUID (rsp->last_set) >= subst_low_luid)
13818 return 0;
13819
13820 /* If fewer bits were set than what we are asked for now, we cannot use
13821 the value. */
13822 if (maybe_lt (GET_MODE_PRECISION (rsp->last_set_mode),
13823 GET_MODE_PRECISION (GET_MODE (x))))
13824 return 0;
13825
13826 /* If the value has all its registers valid, return it. */
13827 if (get_last_value_validate (&value, rsp->last_set, rsp->last_set_label, 0))
13828 return value;
13829
13830 /* Otherwise, make a copy and replace any invalid register with
13831 (clobber (const_int 0)). If that fails for some reason, return 0. */
13832
13833 value = copy_rtx (value);
13834 if (get_last_value_validate (&value, rsp->last_set, rsp->last_set_label, 1))
13835 return value;
13836
13837 return 0;
13838 }
13839 \f
13840 /* Define three variables used for communication between the following
13841 routines. */
13842
13843 static unsigned int reg_dead_regno, reg_dead_endregno;
13844 static int reg_dead_flag;
13845 rtx reg_dead_reg;
13846
13847 /* Function called via note_stores from reg_dead_at_p.
13848
13849 If DEST is within [reg_dead_regno, reg_dead_endregno), set
13850 reg_dead_flag to 1 if X is a CLOBBER and to -1 it is a SET. */
13851
13852 static void
13853 reg_dead_at_p_1 (rtx dest, const_rtx x, void *data ATTRIBUTE_UNUSED)
13854 {
13855 unsigned int regno, endregno;
13856
13857 if (!REG_P (dest))
13858 return;
13859
13860 regno = REGNO (dest);
13861 endregno = END_REGNO (dest);
13862 if (reg_dead_endregno > regno && reg_dead_regno < endregno)
13863 reg_dead_flag = (GET_CODE (x) == CLOBBER) ? 1 : -1;
13864 }
13865
13866 /* Return nonzero if REG is known to be dead at INSN.
13867
13868 We scan backwards from INSN. If we hit a REG_DEAD note or a CLOBBER
13869 referencing REG, it is dead. If we hit a SET referencing REG, it is
13870 live. Otherwise, see if it is live or dead at the start of the basic
13871 block we are in. Hard regs marked as being live in NEWPAT_USED_REGS
13872 must be assumed to be always live. */
13873
13874 static int
13875 reg_dead_at_p (rtx reg, rtx_insn *insn)
13876 {
13877 basic_block block;
13878 unsigned int i;
13879
13880 /* Set variables for reg_dead_at_p_1. */
13881 reg_dead_regno = REGNO (reg);
13882 reg_dead_endregno = END_REGNO (reg);
13883 reg_dead_reg = reg;
13884
13885 reg_dead_flag = 0;
13886
13887 /* Check that reg isn't mentioned in NEWPAT_USED_REGS. For fixed registers
13888 we allow the machine description to decide whether use-and-clobber
13889 patterns are OK. */
13890 if (reg_dead_regno < FIRST_PSEUDO_REGISTER)
13891 {
13892 for (i = reg_dead_regno; i < reg_dead_endregno; i++)
13893 if (!fixed_regs[i] && TEST_HARD_REG_BIT (newpat_used_regs, i))
13894 return 0;
13895 }
13896
13897 /* Scan backwards until we find a REG_DEAD note, SET, CLOBBER, or
13898 beginning of basic block. */
13899 block = BLOCK_FOR_INSN (insn);
13900 for (;;)
13901 {
13902 if (INSN_P (insn))
13903 {
13904 if (find_regno_note (insn, REG_UNUSED, reg_dead_regno))
13905 return 1;
13906
13907 note_stores (insn, reg_dead_at_p_1, NULL);
13908 if (reg_dead_flag)
13909 return reg_dead_flag == 1 ? 1 : 0;
13910
13911 if (find_regno_note (insn, REG_DEAD, reg_dead_regno))
13912 return 1;
13913 }
13914
13915 if (insn == BB_HEAD (block))
13916 break;
13917
13918 insn = PREV_INSN (insn);
13919 }
13920
13921 /* Look at live-in sets for the basic block that we were in. */
13922 for (i = reg_dead_regno; i < reg_dead_endregno; i++)
13923 if (REGNO_REG_SET_P (df_get_live_in (block), i))
13924 return 0;
13925
13926 return 1;
13927 }
13928 \f
13929 /* Note hard registers in X that are used. */
13930
13931 static void
13932 mark_used_regs_combine (rtx x)
13933 {
13934 RTX_CODE code = GET_CODE (x);
13935 unsigned int regno;
13936 int i;
13937
13938 switch (code)
13939 {
13940 case LABEL_REF:
13941 case SYMBOL_REF:
13942 case CONST:
13943 CASE_CONST_ANY:
13944 case PC:
13945 case ADDR_VEC:
13946 case ADDR_DIFF_VEC:
13947 case ASM_INPUT:
13948 /* CC0 must die in the insn after it is set, so we don't need to take
13949 special note of it here. */
13950 case CC0:
13951 return;
13952
13953 case CLOBBER:
13954 /* If we are clobbering a MEM, mark any hard registers inside the
13955 address as used. */
13956 if (MEM_P (XEXP (x, 0)))
13957 mark_used_regs_combine (XEXP (XEXP (x, 0), 0));
13958 return;
13959
13960 case REG:
13961 regno = REGNO (x);
13962 /* A hard reg in a wide mode may really be multiple registers.
13963 If so, mark all of them just like the first. */
13964 if (regno < FIRST_PSEUDO_REGISTER)
13965 {
13966 /* None of this applies to the stack, frame or arg pointers. */
13967 if (regno == STACK_POINTER_REGNUM
13968 || (!HARD_FRAME_POINTER_IS_FRAME_POINTER
13969 && regno == HARD_FRAME_POINTER_REGNUM)
13970 || (FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
13971 && regno == ARG_POINTER_REGNUM && fixed_regs[regno])
13972 || regno == FRAME_POINTER_REGNUM)
13973 return;
13974
13975 add_to_hard_reg_set (&newpat_used_regs, GET_MODE (x), regno);
13976 }
13977 return;
13978
13979 case SET:
13980 {
13981 /* If setting a MEM, or a SUBREG of a MEM, then note any hard regs in
13982 the address. */
13983 rtx testreg = SET_DEST (x);
13984
13985 while (GET_CODE (testreg) == SUBREG
13986 || GET_CODE (testreg) == ZERO_EXTRACT
13987 || GET_CODE (testreg) == STRICT_LOW_PART)
13988 testreg = XEXP (testreg, 0);
13989
13990 if (MEM_P (testreg))
13991 mark_used_regs_combine (XEXP (testreg, 0));
13992
13993 mark_used_regs_combine (SET_SRC (x));
13994 }
13995 return;
13996
13997 default:
13998 break;
13999 }
14000
14001 /* Recursively scan the operands of this expression. */
14002
14003 {
14004 const char *fmt = GET_RTX_FORMAT (code);
14005
14006 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
14007 {
14008 if (fmt[i] == 'e')
14009 mark_used_regs_combine (XEXP (x, i));
14010 else if (fmt[i] == 'E')
14011 {
14012 int j;
14013
14014 for (j = 0; j < XVECLEN (x, i); j++)
14015 mark_used_regs_combine (XVECEXP (x, i, j));
14016 }
14017 }
14018 }
14019 }
14020 \f
14021 /* Remove register number REGNO from the dead registers list of INSN.
14022
14023 Return the note used to record the death, if there was one. */
14024
14025 rtx
14026 remove_death (unsigned int regno, rtx_insn *insn)
14027 {
14028 rtx note = find_regno_note (insn, REG_DEAD, regno);
14029
14030 if (note)
14031 remove_note (insn, note);
14032
14033 return note;
14034 }
14035
14036 /* For each register (hardware or pseudo) used within expression X, if its
14037 death is in an instruction with luid between FROM_LUID (inclusive) and
14038 TO_INSN (exclusive), put a REG_DEAD note for that register in the
14039 list headed by PNOTES.
14040
14041 That said, don't move registers killed by maybe_kill_insn.
14042
14043 This is done when X is being merged by combination into TO_INSN. These
14044 notes will then be distributed as needed. */
14045
14046 static void
14047 move_deaths (rtx x, rtx maybe_kill_insn, int from_luid, rtx_insn *to_insn,
14048 rtx *pnotes)
14049 {
14050 const char *fmt;
14051 int len, i;
14052 enum rtx_code code = GET_CODE (x);
14053
14054 if (code == REG)
14055 {
14056 unsigned int regno = REGNO (x);
14057 rtx_insn *where_dead = reg_stat[regno].last_death;
14058
14059 /* If we do not know where the register died, it may still die between
14060 FROM_LUID and TO_INSN. If so, find it. This is PR83304. */
14061 if (!where_dead || DF_INSN_LUID (where_dead) >= DF_INSN_LUID (to_insn))
14062 {
14063 rtx_insn *insn = prev_real_nondebug_insn (to_insn);
14064 while (insn
14065 && BLOCK_FOR_INSN (insn) == BLOCK_FOR_INSN (to_insn)
14066 && DF_INSN_LUID (insn) >= from_luid)
14067 {
14068 if (dead_or_set_regno_p (insn, regno))
14069 {
14070 if (find_regno_note (insn, REG_DEAD, regno))
14071 where_dead = insn;
14072 break;
14073 }
14074
14075 insn = prev_real_nondebug_insn (insn);
14076 }
14077 }
14078
14079 /* Don't move the register if it gets killed in between from and to. */
14080 if (maybe_kill_insn && reg_set_p (x, maybe_kill_insn)
14081 && ! reg_referenced_p (x, maybe_kill_insn))
14082 return;
14083
14084 if (where_dead
14085 && BLOCK_FOR_INSN (where_dead) == BLOCK_FOR_INSN (to_insn)
14086 && DF_INSN_LUID (where_dead) >= from_luid
14087 && DF_INSN_LUID (where_dead) < DF_INSN_LUID (to_insn))
14088 {
14089 rtx note = remove_death (regno, where_dead);
14090
14091 /* It is possible for the call above to return 0. This can occur
14092 when last_death points to I2 or I1 that we combined with.
14093 In that case make a new note.
14094
14095 We must also check for the case where X is a hard register
14096 and NOTE is a death note for a range of hard registers
14097 including X. In that case, we must put REG_DEAD notes for
14098 the remaining registers in place of NOTE. */
14099
14100 if (note != 0 && regno < FIRST_PSEUDO_REGISTER
14101 && partial_subreg_p (GET_MODE (x), GET_MODE (XEXP (note, 0))))
14102 {
14103 unsigned int deadregno = REGNO (XEXP (note, 0));
14104 unsigned int deadend = END_REGNO (XEXP (note, 0));
14105 unsigned int ourend = END_REGNO (x);
14106 unsigned int i;
14107
14108 for (i = deadregno; i < deadend; i++)
14109 if (i < regno || i >= ourend)
14110 add_reg_note (where_dead, REG_DEAD, regno_reg_rtx[i]);
14111 }
14112
14113 /* If we didn't find any note, or if we found a REG_DEAD note that
14114 covers only part of the given reg, and we have a multi-reg hard
14115 register, then to be safe we must check for REG_DEAD notes
14116 for each register other than the first. They could have
14117 their own REG_DEAD notes lying around. */
14118 else if ((note == 0
14119 || (note != 0
14120 && partial_subreg_p (GET_MODE (XEXP (note, 0)),
14121 GET_MODE (x))))
14122 && regno < FIRST_PSEUDO_REGISTER
14123 && REG_NREGS (x) > 1)
14124 {
14125 unsigned int ourend = END_REGNO (x);
14126 unsigned int i, offset;
14127 rtx oldnotes = 0;
14128
14129 if (note)
14130 offset = hard_regno_nregs (regno, GET_MODE (XEXP (note, 0)));
14131 else
14132 offset = 1;
14133
14134 for (i = regno + offset; i < ourend; i++)
14135 move_deaths (regno_reg_rtx[i],
14136 maybe_kill_insn, from_luid, to_insn, &oldnotes);
14137 }
14138
14139 if (note != 0 && GET_MODE (XEXP (note, 0)) == GET_MODE (x))
14140 {
14141 XEXP (note, 1) = *pnotes;
14142 *pnotes = note;
14143 }
14144 else
14145 *pnotes = alloc_reg_note (REG_DEAD, x, *pnotes);
14146 }
14147
14148 return;
14149 }
14150
14151 else if (GET_CODE (x) == SET)
14152 {
14153 rtx dest = SET_DEST (x);
14154
14155 move_deaths (SET_SRC (x), maybe_kill_insn, from_luid, to_insn, pnotes);
14156
14157 /* In the case of a ZERO_EXTRACT, a STRICT_LOW_PART, or a SUBREG
14158 that accesses one word of a multi-word item, some
14159 piece of everything register in the expression is used by
14160 this insn, so remove any old death. */
14161 /* ??? So why do we test for equality of the sizes? */
14162
14163 if (GET_CODE (dest) == ZERO_EXTRACT
14164 || GET_CODE (dest) == STRICT_LOW_PART
14165 || (GET_CODE (dest) == SUBREG
14166 && !read_modify_subreg_p (dest)))
14167 {
14168 move_deaths (dest, maybe_kill_insn, from_luid, to_insn, pnotes);
14169 return;
14170 }
14171
14172 /* If this is some other SUBREG, we know it replaces the entire
14173 value, so use that as the destination. */
14174 if (GET_CODE (dest) == SUBREG)
14175 dest = SUBREG_REG (dest);
14176
14177 /* If this is a MEM, adjust deaths of anything used in the address.
14178 For a REG (the only other possibility), the entire value is
14179 being replaced so the old value is not used in this insn. */
14180
14181 if (MEM_P (dest))
14182 move_deaths (XEXP (dest, 0), maybe_kill_insn, from_luid,
14183 to_insn, pnotes);
14184 return;
14185 }
14186
14187 else if (GET_CODE (x) == CLOBBER)
14188 return;
14189
14190 len = GET_RTX_LENGTH (code);
14191 fmt = GET_RTX_FORMAT (code);
14192
14193 for (i = 0; i < len; i++)
14194 {
14195 if (fmt[i] == 'E')
14196 {
14197 int j;
14198 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
14199 move_deaths (XVECEXP (x, i, j), maybe_kill_insn, from_luid,
14200 to_insn, pnotes);
14201 }
14202 else if (fmt[i] == 'e')
14203 move_deaths (XEXP (x, i), maybe_kill_insn, from_luid, to_insn, pnotes);
14204 }
14205 }
14206 \f
14207 /* Return 1 if X is the target of a bit-field assignment in BODY, the
14208 pattern of an insn. X must be a REG. */
14209
14210 static int
14211 reg_bitfield_target_p (rtx x, rtx body)
14212 {
14213 int i;
14214
14215 if (GET_CODE (body) == SET)
14216 {
14217 rtx dest = SET_DEST (body);
14218 rtx target;
14219 unsigned int regno, tregno, endregno, endtregno;
14220
14221 if (GET_CODE (dest) == ZERO_EXTRACT)
14222 target = XEXP (dest, 0);
14223 else if (GET_CODE (dest) == STRICT_LOW_PART)
14224 target = SUBREG_REG (XEXP (dest, 0));
14225 else
14226 return 0;
14227
14228 if (GET_CODE (target) == SUBREG)
14229 target = SUBREG_REG (target);
14230
14231 if (!REG_P (target))
14232 return 0;
14233
14234 tregno = REGNO (target), regno = REGNO (x);
14235 if (tregno >= FIRST_PSEUDO_REGISTER || regno >= FIRST_PSEUDO_REGISTER)
14236 return target == x;
14237
14238 endtregno = end_hard_regno (GET_MODE (target), tregno);
14239 endregno = end_hard_regno (GET_MODE (x), regno);
14240
14241 return endregno > tregno && regno < endtregno;
14242 }
14243
14244 else if (GET_CODE (body) == PARALLEL)
14245 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
14246 if (reg_bitfield_target_p (x, XVECEXP (body, 0, i)))
14247 return 1;
14248
14249 return 0;
14250 }
14251 \f
14252 /* Given a chain of REG_NOTES originally from FROM_INSN, try to place them
14253 as appropriate. I3 and I2 are the insns resulting from the combination
14254 insns including FROM (I2 may be zero).
14255
14256 ELIM_I2 and ELIM_I1 are either zero or registers that we know will
14257 not need REG_DEAD notes because they are being substituted for. This
14258 saves searching in the most common cases.
14259
14260 Each note in the list is either ignored or placed on some insns, depending
14261 on the type of note. */
14262
14263 static void
14264 distribute_notes (rtx notes, rtx_insn *from_insn, rtx_insn *i3, rtx_insn *i2,
14265 rtx elim_i2, rtx elim_i1, rtx elim_i0)
14266 {
14267 rtx note, next_note;
14268 rtx tem_note;
14269 rtx_insn *tem_insn;
14270
14271 for (note = notes; note; note = next_note)
14272 {
14273 rtx_insn *place = 0, *place2 = 0;
14274
14275 next_note = XEXP (note, 1);
14276 switch (REG_NOTE_KIND (note))
14277 {
14278 case REG_BR_PROB:
14279 case REG_BR_PRED:
14280 /* Doesn't matter much where we put this, as long as it's somewhere.
14281 It is preferable to keep these notes on branches, which is most
14282 likely to be i3. */
14283 place = i3;
14284 break;
14285
14286 case REG_NON_LOCAL_GOTO:
14287 if (JUMP_P (i3))
14288 place = i3;
14289 else
14290 {
14291 gcc_assert (i2 && JUMP_P (i2));
14292 place = i2;
14293 }
14294 break;
14295
14296 case REG_EH_REGION:
14297 /* These notes must remain with the call or trapping instruction. */
14298 if (CALL_P (i3))
14299 place = i3;
14300 else if (i2 && CALL_P (i2))
14301 place = i2;
14302 else
14303 {
14304 gcc_assert (cfun->can_throw_non_call_exceptions);
14305 if (may_trap_p (i3))
14306 place = i3;
14307 else if (i2 && may_trap_p (i2))
14308 place = i2;
14309 /* ??? Otherwise assume we've combined things such that we
14310 can now prove that the instructions can't trap. Drop the
14311 note in this case. */
14312 }
14313 break;
14314
14315 case REG_ARGS_SIZE:
14316 /* ??? How to distribute between i3-i1. Assume i3 contains the
14317 entire adjustment. Assert i3 contains at least some adjust. */
14318 if (!noop_move_p (i3))
14319 {
14320 poly_int64 old_size, args_size = get_args_size (note);
14321 /* fixup_args_size_notes looks at REG_NORETURN note,
14322 so ensure the note is placed there first. */
14323 if (CALL_P (i3))
14324 {
14325 rtx *np;
14326 for (np = &next_note; *np; np = &XEXP (*np, 1))
14327 if (REG_NOTE_KIND (*np) == REG_NORETURN)
14328 {
14329 rtx n = *np;
14330 *np = XEXP (n, 1);
14331 XEXP (n, 1) = REG_NOTES (i3);
14332 REG_NOTES (i3) = n;
14333 break;
14334 }
14335 }
14336 old_size = fixup_args_size_notes (PREV_INSN (i3), i3, args_size);
14337 /* emit_call_1 adds for !ACCUMULATE_OUTGOING_ARGS
14338 REG_ARGS_SIZE note to all noreturn calls, allow that here. */
14339 gcc_assert (maybe_ne (old_size, args_size)
14340 || (CALL_P (i3)
14341 && !ACCUMULATE_OUTGOING_ARGS
14342 && find_reg_note (i3, REG_NORETURN, NULL_RTX)));
14343 }
14344 break;
14345
14346 case REG_NORETURN:
14347 case REG_SETJMP:
14348 case REG_TM:
14349 case REG_CALL_DECL:
14350 case REG_CALL_NOCF_CHECK:
14351 /* These notes must remain with the call. It should not be
14352 possible for both I2 and I3 to be a call. */
14353 if (CALL_P (i3))
14354 place = i3;
14355 else
14356 {
14357 gcc_assert (i2 && CALL_P (i2));
14358 place = i2;
14359 }
14360 break;
14361
14362 case REG_UNUSED:
14363 /* Any clobbers for i3 may still exist, and so we must process
14364 REG_UNUSED notes from that insn.
14365
14366 Any clobbers from i2 or i1 can only exist if they were added by
14367 recog_for_combine. In that case, recog_for_combine created the
14368 necessary REG_UNUSED notes. Trying to keep any original
14369 REG_UNUSED notes from these insns can cause incorrect output
14370 if it is for the same register as the original i3 dest.
14371 In that case, we will notice that the register is set in i3,
14372 and then add a REG_UNUSED note for the destination of i3, which
14373 is wrong. However, it is possible to have REG_UNUSED notes from
14374 i2 or i1 for register which were both used and clobbered, so
14375 we keep notes from i2 or i1 if they will turn into REG_DEAD
14376 notes. */
14377
14378 /* If this register is set or clobbered in I3, put the note there
14379 unless there is one already. */
14380 if (reg_set_p (XEXP (note, 0), PATTERN (i3)))
14381 {
14382 if (from_insn != i3)
14383 break;
14384
14385 if (! (REG_P (XEXP (note, 0))
14386 ? find_regno_note (i3, REG_UNUSED, REGNO (XEXP (note, 0)))
14387 : find_reg_note (i3, REG_UNUSED, XEXP (note, 0))))
14388 place = i3;
14389 }
14390 /* Otherwise, if this register is used by I3, then this register
14391 now dies here, so we must put a REG_DEAD note here unless there
14392 is one already. */
14393 else if (reg_referenced_p (XEXP (note, 0), PATTERN (i3))
14394 && ! (REG_P (XEXP (note, 0))
14395 ? find_regno_note (i3, REG_DEAD,
14396 REGNO (XEXP (note, 0)))
14397 : find_reg_note (i3, REG_DEAD, XEXP (note, 0))))
14398 {
14399 PUT_REG_NOTE_KIND (note, REG_DEAD);
14400 place = i3;
14401 }
14402
14403 /* A SET or CLOBBER of the REG_UNUSED reg has been removed,
14404 but we can't tell which at this point. We must reset any
14405 expectations we had about the value that was previously
14406 stored in the reg. ??? Ideally, we'd adjust REG_N_SETS
14407 and, if appropriate, restore its previous value, but we
14408 don't have enough information for that at this point. */
14409 else
14410 {
14411 record_value_for_reg (XEXP (note, 0), NULL, NULL_RTX);
14412
14413 /* Otherwise, if this register is now referenced in i2
14414 then the register used to be modified in one of the
14415 original insns. If it was i3 (say, in an unused
14416 parallel), it's now completely gone, so the note can
14417 be discarded. But if it was modified in i2, i1 or i0
14418 and we still reference it in i2, then we're
14419 referencing the previous value, and since the
14420 register was modified and REG_UNUSED, we know that
14421 the previous value is now dead. So, if we only
14422 reference the register in i2, we change the note to
14423 REG_DEAD, to reflect the previous value. However, if
14424 we're also setting or clobbering the register as
14425 scratch, we know (because the register was not
14426 referenced in i3) that it's unused, just as it was
14427 unused before, and we place the note in i2. */
14428 if (from_insn != i3 && i2 && INSN_P (i2)
14429 && reg_referenced_p (XEXP (note, 0), PATTERN (i2)))
14430 {
14431 if (!reg_set_p (XEXP (note, 0), PATTERN (i2)))
14432 PUT_REG_NOTE_KIND (note, REG_DEAD);
14433 if (! (REG_P (XEXP (note, 0))
14434 ? find_regno_note (i2, REG_NOTE_KIND (note),
14435 REGNO (XEXP (note, 0)))
14436 : find_reg_note (i2, REG_NOTE_KIND (note),
14437 XEXP (note, 0))))
14438 place = i2;
14439 }
14440 }
14441
14442 break;
14443
14444 case REG_EQUAL:
14445 case REG_EQUIV:
14446 case REG_NOALIAS:
14447 /* These notes say something about results of an insn. We can
14448 only support them if they used to be on I3 in which case they
14449 remain on I3. Otherwise they are ignored.
14450
14451 If the note refers to an expression that is not a constant, we
14452 must also ignore the note since we cannot tell whether the
14453 equivalence is still true. It might be possible to do
14454 slightly better than this (we only have a problem if I2DEST
14455 or I1DEST is present in the expression), but it doesn't
14456 seem worth the trouble. */
14457
14458 if (from_insn == i3
14459 && (XEXP (note, 0) == 0 || CONSTANT_P (XEXP (note, 0))))
14460 place = i3;
14461 break;
14462
14463 case REG_INC:
14464 /* These notes say something about how a register is used. They must
14465 be present on any use of the register in I2 or I3. */
14466 if (reg_mentioned_p (XEXP (note, 0), PATTERN (i3)))
14467 place = i3;
14468
14469 if (i2 && reg_mentioned_p (XEXP (note, 0), PATTERN (i2)))
14470 {
14471 if (place)
14472 place2 = i2;
14473 else
14474 place = i2;
14475 }
14476 break;
14477
14478 case REG_LABEL_TARGET:
14479 case REG_LABEL_OPERAND:
14480 /* This can show up in several ways -- either directly in the
14481 pattern, or hidden off in the constant pool with (or without?)
14482 a REG_EQUAL note. */
14483 /* ??? Ignore the without-reg_equal-note problem for now. */
14484 if (reg_mentioned_p (XEXP (note, 0), PATTERN (i3))
14485 || ((tem_note = find_reg_note (i3, REG_EQUAL, NULL_RTX))
14486 && GET_CODE (XEXP (tem_note, 0)) == LABEL_REF
14487 && label_ref_label (XEXP (tem_note, 0)) == XEXP (note, 0)))
14488 place = i3;
14489
14490 if (i2
14491 && (reg_mentioned_p (XEXP (note, 0), PATTERN (i2))
14492 || ((tem_note = find_reg_note (i2, REG_EQUAL, NULL_RTX))
14493 && GET_CODE (XEXP (tem_note, 0)) == LABEL_REF
14494 && label_ref_label (XEXP (tem_note, 0)) == XEXP (note, 0))))
14495 {
14496 if (place)
14497 place2 = i2;
14498 else
14499 place = i2;
14500 }
14501
14502 /* For REG_LABEL_TARGET on a JUMP_P, we prefer to put the note
14503 as a JUMP_LABEL or decrement LABEL_NUSES if it's already
14504 there. */
14505 if (place && JUMP_P (place)
14506 && REG_NOTE_KIND (note) == REG_LABEL_TARGET
14507 && (JUMP_LABEL (place) == NULL
14508 || JUMP_LABEL (place) == XEXP (note, 0)))
14509 {
14510 rtx label = JUMP_LABEL (place);
14511
14512 if (!label)
14513 JUMP_LABEL (place) = XEXP (note, 0);
14514 else if (LABEL_P (label))
14515 LABEL_NUSES (label)--;
14516 }
14517
14518 if (place2 && JUMP_P (place2)
14519 && REG_NOTE_KIND (note) == REG_LABEL_TARGET
14520 && (JUMP_LABEL (place2) == NULL
14521 || JUMP_LABEL (place2) == XEXP (note, 0)))
14522 {
14523 rtx label = JUMP_LABEL (place2);
14524
14525 if (!label)
14526 JUMP_LABEL (place2) = XEXP (note, 0);
14527 else if (LABEL_P (label))
14528 LABEL_NUSES (label)--;
14529 place2 = 0;
14530 }
14531 break;
14532
14533 case REG_NONNEG:
14534 /* This note says something about the value of a register prior
14535 to the execution of an insn. It is too much trouble to see
14536 if the note is still correct in all situations. It is better
14537 to simply delete it. */
14538 break;
14539
14540 case REG_DEAD:
14541 /* If we replaced the right hand side of FROM_INSN with a
14542 REG_EQUAL note, the original use of the dying register
14543 will not have been combined into I3 and I2. In such cases,
14544 FROM_INSN is guaranteed to be the first of the combined
14545 instructions, so we simply need to search back before
14546 FROM_INSN for the previous use or set of this register,
14547 then alter the notes there appropriately.
14548
14549 If the register is used as an input in I3, it dies there.
14550 Similarly for I2, if it is nonzero and adjacent to I3.
14551
14552 If the register is not used as an input in either I3 or I2
14553 and it is not one of the registers we were supposed to eliminate,
14554 there are two possibilities. We might have a non-adjacent I2
14555 or we might have somehow eliminated an additional register
14556 from a computation. For example, we might have had A & B where
14557 we discover that B will always be zero. In this case we will
14558 eliminate the reference to A.
14559
14560 In both cases, we must search to see if we can find a previous
14561 use of A and put the death note there. */
14562
14563 if (from_insn
14564 && from_insn == i2mod
14565 && !reg_overlap_mentioned_p (XEXP (note, 0), i2mod_new_rhs))
14566 tem_insn = from_insn;
14567 else
14568 {
14569 if (from_insn
14570 && CALL_P (from_insn)
14571 && find_reg_fusage (from_insn, USE, XEXP (note, 0)))
14572 place = from_insn;
14573 else if (i2 && reg_set_p (XEXP (note, 0), PATTERN (i2)))
14574 {
14575 /* If the new I2 sets the same register that is marked
14576 dead in the note, we do not in general know where to
14577 put the note. One important case we _can_ handle is
14578 when the note comes from I3. */
14579 if (from_insn == i3)
14580 place = i3;
14581 else
14582 break;
14583 }
14584 else if (reg_referenced_p (XEXP (note, 0), PATTERN (i3)))
14585 place = i3;
14586 else if (i2 != 0 && next_nonnote_nondebug_insn (i2) == i3
14587 && reg_referenced_p (XEXP (note, 0), PATTERN (i2)))
14588 place = i2;
14589 else if ((rtx_equal_p (XEXP (note, 0), elim_i2)
14590 && !(i2mod
14591 && reg_overlap_mentioned_p (XEXP (note, 0),
14592 i2mod_old_rhs)))
14593 || rtx_equal_p (XEXP (note, 0), elim_i1)
14594 || rtx_equal_p (XEXP (note, 0), elim_i0))
14595 break;
14596 tem_insn = i3;
14597 }
14598
14599 if (place == 0)
14600 {
14601 basic_block bb = this_basic_block;
14602
14603 for (tem_insn = PREV_INSN (tem_insn); place == 0; tem_insn = PREV_INSN (tem_insn))
14604 {
14605 if (!NONDEBUG_INSN_P (tem_insn))
14606 {
14607 if (tem_insn == BB_HEAD (bb))
14608 break;
14609 continue;
14610 }
14611
14612 /* If the register is being set at TEM_INSN, see if that is all
14613 TEM_INSN is doing. If so, delete TEM_INSN. Otherwise, make this
14614 into a REG_UNUSED note instead. Don't delete sets to
14615 global register vars. */
14616 if ((REGNO (XEXP (note, 0)) >= FIRST_PSEUDO_REGISTER
14617 || !global_regs[REGNO (XEXP (note, 0))])
14618 && reg_set_p (XEXP (note, 0), PATTERN (tem_insn)))
14619 {
14620 rtx set = single_set (tem_insn);
14621 rtx inner_dest = 0;
14622 rtx_insn *cc0_setter = NULL;
14623
14624 if (set != 0)
14625 for (inner_dest = SET_DEST (set);
14626 (GET_CODE (inner_dest) == STRICT_LOW_PART
14627 || GET_CODE (inner_dest) == SUBREG
14628 || GET_CODE (inner_dest) == ZERO_EXTRACT);
14629 inner_dest = XEXP (inner_dest, 0))
14630 ;
14631
14632 /* Verify that it was the set, and not a clobber that
14633 modified the register.
14634
14635 CC0 targets must be careful to maintain setter/user
14636 pairs. If we cannot delete the setter due to side
14637 effects, mark the user with an UNUSED note instead
14638 of deleting it. */
14639
14640 if (set != 0 && ! side_effects_p (SET_SRC (set))
14641 && rtx_equal_p (XEXP (note, 0), inner_dest)
14642 && (!HAVE_cc0
14643 || (! reg_mentioned_p (cc0_rtx, SET_SRC (set))
14644 || ((cc0_setter = prev_cc0_setter (tem_insn)) != NULL
14645 && sets_cc0_p (PATTERN (cc0_setter)) > 0))))
14646 {
14647 /* Move the notes and links of TEM_INSN elsewhere.
14648 This might delete other dead insns recursively.
14649 First set the pattern to something that won't use
14650 any register. */
14651 rtx old_notes = REG_NOTES (tem_insn);
14652
14653 PATTERN (tem_insn) = pc_rtx;
14654 REG_NOTES (tem_insn) = NULL;
14655
14656 distribute_notes (old_notes, tem_insn, tem_insn, NULL,
14657 NULL_RTX, NULL_RTX, NULL_RTX);
14658 distribute_links (LOG_LINKS (tem_insn));
14659
14660 unsigned int regno = REGNO (XEXP (note, 0));
14661 reg_stat_type *rsp = &reg_stat[regno];
14662 if (rsp->last_set == tem_insn)
14663 record_value_for_reg (XEXP (note, 0), NULL, NULL_RTX);
14664
14665 SET_INSN_DELETED (tem_insn);
14666 if (tem_insn == i2)
14667 i2 = NULL;
14668
14669 /* Delete the setter too. */
14670 if (cc0_setter)
14671 {
14672 PATTERN (cc0_setter) = pc_rtx;
14673 old_notes = REG_NOTES (cc0_setter);
14674 REG_NOTES (cc0_setter) = NULL;
14675
14676 distribute_notes (old_notes, cc0_setter,
14677 cc0_setter, NULL,
14678 NULL_RTX, NULL_RTX, NULL_RTX);
14679 distribute_links (LOG_LINKS (cc0_setter));
14680
14681 SET_INSN_DELETED (cc0_setter);
14682 if (cc0_setter == i2)
14683 i2 = NULL;
14684 }
14685 }
14686 else
14687 {
14688 PUT_REG_NOTE_KIND (note, REG_UNUSED);
14689
14690 /* If there isn't already a REG_UNUSED note, put one
14691 here. Do not place a REG_DEAD note, even if
14692 the register is also used here; that would not
14693 match the algorithm used in lifetime analysis
14694 and can cause the consistency check in the
14695 scheduler to fail. */
14696 if (! find_regno_note (tem_insn, REG_UNUSED,
14697 REGNO (XEXP (note, 0))))
14698 place = tem_insn;
14699 break;
14700 }
14701 }
14702 else if (reg_referenced_p (XEXP (note, 0), PATTERN (tem_insn))
14703 || (CALL_P (tem_insn)
14704 && find_reg_fusage (tem_insn, USE, XEXP (note, 0))))
14705 {
14706 place = tem_insn;
14707
14708 /* If we are doing a 3->2 combination, and we have a
14709 register which formerly died in i3 and was not used
14710 by i2, which now no longer dies in i3 and is used in
14711 i2 but does not die in i2, and place is between i2
14712 and i3, then we may need to move a link from place to
14713 i2. */
14714 if (i2 && DF_INSN_LUID (place) > DF_INSN_LUID (i2)
14715 && from_insn
14716 && DF_INSN_LUID (from_insn) > DF_INSN_LUID (i2)
14717 && reg_referenced_p (XEXP (note, 0), PATTERN (i2)))
14718 {
14719 struct insn_link *links = LOG_LINKS (place);
14720 LOG_LINKS (place) = NULL;
14721 distribute_links (links);
14722 }
14723 break;
14724 }
14725
14726 if (tem_insn == BB_HEAD (bb))
14727 break;
14728 }
14729
14730 }
14731
14732 /* If the register is set or already dead at PLACE, we needn't do
14733 anything with this note if it is still a REG_DEAD note.
14734 We check here if it is set at all, not if is it totally replaced,
14735 which is what `dead_or_set_p' checks, so also check for it being
14736 set partially. */
14737
14738 if (place && REG_NOTE_KIND (note) == REG_DEAD)
14739 {
14740 unsigned int regno = REGNO (XEXP (note, 0));
14741 reg_stat_type *rsp = &reg_stat[regno];
14742
14743 if (dead_or_set_p (place, XEXP (note, 0))
14744 || reg_bitfield_target_p (XEXP (note, 0), PATTERN (place)))
14745 {
14746 /* Unless the register previously died in PLACE, clear
14747 last_death. [I no longer understand why this is
14748 being done.] */
14749 if (rsp->last_death != place)
14750 rsp->last_death = 0;
14751 place = 0;
14752 }
14753 else
14754 rsp->last_death = place;
14755
14756 /* If this is a death note for a hard reg that is occupying
14757 multiple registers, ensure that we are still using all
14758 parts of the object. If we find a piece of the object
14759 that is unused, we must arrange for an appropriate REG_DEAD
14760 note to be added for it. However, we can't just emit a USE
14761 and tag the note to it, since the register might actually
14762 be dead; so we recourse, and the recursive call then finds
14763 the previous insn that used this register. */
14764
14765 if (place && REG_NREGS (XEXP (note, 0)) > 1)
14766 {
14767 unsigned int endregno = END_REGNO (XEXP (note, 0));
14768 bool all_used = true;
14769 unsigned int i;
14770
14771 for (i = regno; i < endregno; i++)
14772 if ((! refers_to_regno_p (i, PATTERN (place))
14773 && ! find_regno_fusage (place, USE, i))
14774 || dead_or_set_regno_p (place, i))
14775 {
14776 all_used = false;
14777 break;
14778 }
14779
14780 if (! all_used)
14781 {
14782 /* Put only REG_DEAD notes for pieces that are
14783 not already dead or set. */
14784
14785 for (i = regno; i < endregno;
14786 i += hard_regno_nregs (i, reg_raw_mode[i]))
14787 {
14788 rtx piece = regno_reg_rtx[i];
14789 basic_block bb = this_basic_block;
14790
14791 if (! dead_or_set_p (place, piece)
14792 && ! reg_bitfield_target_p (piece,
14793 PATTERN (place)))
14794 {
14795 rtx new_note = alloc_reg_note (REG_DEAD, piece,
14796 NULL_RTX);
14797
14798 distribute_notes (new_note, place, place,
14799 NULL, NULL_RTX, NULL_RTX,
14800 NULL_RTX);
14801 }
14802 else if (! refers_to_regno_p (i, PATTERN (place))
14803 && ! find_regno_fusage (place, USE, i))
14804 for (tem_insn = PREV_INSN (place); ;
14805 tem_insn = PREV_INSN (tem_insn))
14806 {
14807 if (!NONDEBUG_INSN_P (tem_insn))
14808 {
14809 if (tem_insn == BB_HEAD (bb))
14810 break;
14811 continue;
14812 }
14813 if (dead_or_set_p (tem_insn, piece)
14814 || reg_bitfield_target_p (piece,
14815 PATTERN (tem_insn)))
14816 {
14817 add_reg_note (tem_insn, REG_UNUSED, piece);
14818 break;
14819 }
14820 }
14821 }
14822
14823 place = 0;
14824 }
14825 }
14826 }
14827 break;
14828
14829 default:
14830 /* Any other notes should not be present at this point in the
14831 compilation. */
14832 gcc_unreachable ();
14833 }
14834
14835 if (place)
14836 {
14837 XEXP (note, 1) = REG_NOTES (place);
14838 REG_NOTES (place) = note;
14839
14840 /* Set added_notes_insn to the earliest insn we added a note to. */
14841 if (added_notes_insn == 0
14842 || DF_INSN_LUID (added_notes_insn) > DF_INSN_LUID (place))
14843 added_notes_insn = place;
14844 }
14845
14846 if (place2)
14847 {
14848 add_shallow_copy_of_reg_note (place2, note);
14849
14850 /* Set added_notes_insn to the earliest insn we added a note to. */
14851 if (added_notes_insn == 0
14852 || DF_INSN_LUID (added_notes_insn) > DF_INSN_LUID (place2))
14853 added_notes_insn = place2;
14854 }
14855 }
14856 }
14857 \f
14858 /* Similarly to above, distribute the LOG_LINKS that used to be present on
14859 I3, I2, and I1 to new locations. This is also called to add a link
14860 pointing at I3 when I3's destination is changed. */
14861
14862 static void
14863 distribute_links (struct insn_link *links)
14864 {
14865 struct insn_link *link, *next_link;
14866
14867 for (link = links; link; link = next_link)
14868 {
14869 rtx_insn *place = 0;
14870 rtx_insn *insn;
14871 rtx set, reg;
14872
14873 next_link = link->next;
14874
14875 /* If the insn that this link points to is a NOTE, ignore it. */
14876 if (NOTE_P (link->insn))
14877 continue;
14878
14879 set = 0;
14880 rtx pat = PATTERN (link->insn);
14881 if (GET_CODE (pat) == SET)
14882 set = pat;
14883 else if (GET_CODE (pat) == PARALLEL)
14884 {
14885 int i;
14886 for (i = 0; i < XVECLEN (pat, 0); i++)
14887 {
14888 set = XVECEXP (pat, 0, i);
14889 if (GET_CODE (set) != SET)
14890 continue;
14891
14892 reg = SET_DEST (set);
14893 while (GET_CODE (reg) == ZERO_EXTRACT
14894 || GET_CODE (reg) == STRICT_LOW_PART
14895 || GET_CODE (reg) == SUBREG)
14896 reg = XEXP (reg, 0);
14897
14898 if (!REG_P (reg))
14899 continue;
14900
14901 if (REGNO (reg) == link->regno)
14902 break;
14903 }
14904 if (i == XVECLEN (pat, 0))
14905 continue;
14906 }
14907 else
14908 continue;
14909
14910 reg = SET_DEST (set);
14911
14912 while (GET_CODE (reg) == ZERO_EXTRACT
14913 || GET_CODE (reg) == STRICT_LOW_PART
14914 || GET_CODE (reg) == SUBREG)
14915 reg = XEXP (reg, 0);
14916
14917 if (reg == pc_rtx)
14918 continue;
14919
14920 /* A LOG_LINK is defined as being placed on the first insn that uses
14921 a register and points to the insn that sets the register. Start
14922 searching at the next insn after the target of the link and stop
14923 when we reach a set of the register or the end of the basic block.
14924
14925 Note that this correctly handles the link that used to point from
14926 I3 to I2. Also note that not much searching is typically done here
14927 since most links don't point very far away. */
14928
14929 for (insn = NEXT_INSN (link->insn);
14930 (insn && (this_basic_block->next_bb == EXIT_BLOCK_PTR_FOR_FN (cfun)
14931 || BB_HEAD (this_basic_block->next_bb) != insn));
14932 insn = NEXT_INSN (insn))
14933 if (DEBUG_INSN_P (insn))
14934 continue;
14935 else if (INSN_P (insn) && reg_overlap_mentioned_p (reg, PATTERN (insn)))
14936 {
14937 if (reg_referenced_p (reg, PATTERN (insn)))
14938 place = insn;
14939 break;
14940 }
14941 else if (CALL_P (insn)
14942 && find_reg_fusage (insn, USE, reg))
14943 {
14944 place = insn;
14945 break;
14946 }
14947 else if (INSN_P (insn) && reg_set_p (reg, insn))
14948 break;
14949
14950 /* If we found a place to put the link, place it there unless there
14951 is already a link to the same insn as LINK at that point. */
14952
14953 if (place)
14954 {
14955 struct insn_link *link2;
14956
14957 FOR_EACH_LOG_LINK (link2, place)
14958 if (link2->insn == link->insn && link2->regno == link->regno)
14959 break;
14960
14961 if (link2 == NULL)
14962 {
14963 link->next = LOG_LINKS (place);
14964 LOG_LINKS (place) = link;
14965
14966 /* Set added_links_insn to the earliest insn we added a
14967 link to. */
14968 if (added_links_insn == 0
14969 || DF_INSN_LUID (added_links_insn) > DF_INSN_LUID (place))
14970 added_links_insn = place;
14971 }
14972 }
14973 }
14974 }
14975 \f
14976 /* Check for any register or memory mentioned in EQUIV that is not
14977 mentioned in EXPR. This is used to restrict EQUIV to "specializations"
14978 of EXPR where some registers may have been replaced by constants. */
14979
14980 static bool
14981 unmentioned_reg_p (rtx equiv, rtx expr)
14982 {
14983 subrtx_iterator::array_type array;
14984 FOR_EACH_SUBRTX (iter, array, equiv, NONCONST)
14985 {
14986 const_rtx x = *iter;
14987 if ((REG_P (x) || MEM_P (x))
14988 && !reg_mentioned_p (x, expr))
14989 return true;
14990 }
14991 return false;
14992 }
14993 \f
14994 DEBUG_FUNCTION void
14995 dump_combine_stats (FILE *file)
14996 {
14997 fprintf
14998 (file,
14999 ";; Combiner statistics: %d attempts, %d substitutions (%d requiring new space),\n;; %d successes.\n\n",
15000 combine_attempts, combine_merges, combine_extras, combine_successes);
15001 }
15002
15003 void
15004 dump_combine_total_stats (FILE *file)
15005 {
15006 fprintf
15007 (file,
15008 "\n;; Combiner totals: %d attempts, %d substitutions (%d requiring new space),\n;; %d successes.\n",
15009 total_attempts, total_merges, total_extras, total_successes);
15010 }
15011 \f
15012 /* Make pseudo-to-pseudo copies after every hard-reg-to-pseudo-copy, because
15013 the reg-to-reg copy can usefully combine with later instructions, but we
15014 do not want to combine the hard reg into later instructions, for that
15015 restricts register allocation. */
15016 static void
15017 make_more_copies (void)
15018 {
15019 basic_block bb;
15020
15021 FOR_EACH_BB_FN (bb, cfun)
15022 {
15023 rtx_insn *insn;
15024
15025 FOR_BB_INSNS (bb, insn)
15026 {
15027 if (!NONDEBUG_INSN_P (insn))
15028 continue;
15029
15030 rtx set = single_set (insn);
15031 if (!set)
15032 continue;
15033
15034 rtx dest = SET_DEST (set);
15035 if (!(REG_P (dest) && !HARD_REGISTER_P (dest)))
15036 continue;
15037
15038 rtx src = SET_SRC (set);
15039 if (!(REG_P (src) && HARD_REGISTER_P (src)))
15040 continue;
15041 if (TEST_HARD_REG_BIT (fixed_reg_set, REGNO (src)))
15042 continue;
15043
15044 rtx new_reg = gen_reg_rtx (GET_MODE (dest));
15045 rtx_insn *new_insn = gen_move_insn (new_reg, src);
15046 SET_SRC (set) = new_reg;
15047 emit_insn_before (new_insn, insn);
15048 df_insn_rescan (insn);
15049 }
15050 }
15051 }
15052
15053 /* Try combining insns through substitution. */
15054 static unsigned int
15055 rest_of_handle_combine (void)
15056 {
15057 make_more_copies ();
15058
15059 df_set_flags (DF_LR_RUN_DCE + DF_DEFER_INSN_RESCAN);
15060 df_note_add_problem ();
15061 df_analyze ();
15062
15063 regstat_init_n_sets_and_refs ();
15064 reg_n_sets_max = max_reg_num ();
15065
15066 int rebuild_jump_labels_after_combine
15067 = combine_instructions (get_insns (), max_reg_num ());
15068
15069 /* Combining insns may have turned an indirect jump into a
15070 direct jump. Rebuild the JUMP_LABEL fields of jumping
15071 instructions. */
15072 if (rebuild_jump_labels_after_combine)
15073 {
15074 if (dom_info_available_p (CDI_DOMINATORS))
15075 free_dominance_info (CDI_DOMINATORS);
15076 timevar_push (TV_JUMP);
15077 rebuild_jump_labels (get_insns ());
15078 cleanup_cfg (0);
15079 timevar_pop (TV_JUMP);
15080 }
15081
15082 regstat_free_n_sets_and_refs ();
15083 return 0;
15084 }
15085
15086 namespace {
15087
15088 const pass_data pass_data_combine =
15089 {
15090 RTL_PASS, /* type */
15091 "combine", /* name */
15092 OPTGROUP_NONE, /* optinfo_flags */
15093 TV_COMBINE, /* tv_id */
15094 PROP_cfglayout, /* properties_required */
15095 0, /* properties_provided */
15096 0, /* properties_destroyed */
15097 0, /* todo_flags_start */
15098 TODO_df_finish, /* todo_flags_finish */
15099 };
15100
15101 class pass_combine : public rtl_opt_pass
15102 {
15103 public:
15104 pass_combine (gcc::context *ctxt)
15105 : rtl_opt_pass (pass_data_combine, ctxt)
15106 {}
15107
15108 /* opt_pass methods: */
15109 virtual bool gate (function *) { return (optimize > 0); }
15110 virtual unsigned int execute (function *)
15111 {
15112 return rest_of_handle_combine ();
15113 }
15114
15115 }; // class pass_combine
15116
15117 } // anon namespace
15118
15119 rtl_opt_pass *
15120 make_pass_combine (gcc::context *ctxt)
15121 {
15122 return new pass_combine (ctxt);
15123 }