re PR middle-end/36194 (Truncation optimization in combine can remove necessary trunc...
[gcc.git] / gcc / combine.c
1 /* Optimize by combining instructions for GNU compiler.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008
4 Free Software Foundation, Inc.
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22 /* This module is essentially the "combiner" phase of the U. of Arizona
23 Portable Optimizer, but redone to work on our list-structured
24 representation for RTL instead of their string representation.
25
26 The LOG_LINKS of each insn identify the most recent assignment
27 to each REG used in the insn. It is a list of previous insns,
28 each of which contains a SET for a REG that is used in this insn
29 and not used or set in between. LOG_LINKs never cross basic blocks.
30 They were set up by the preceding pass (lifetime analysis).
31
32 We try to combine each pair of insns joined by a logical link.
33 We also try to combine triples of insns A, B and C when
34 C has a link back to B and B has a link back to A.
35
36 LOG_LINKS does not have links for use of the CC0. They don't
37 need to, because the insn that sets the CC0 is always immediately
38 before the insn that tests it. So we always regard a branch
39 insn as having a logical link to the preceding insn. The same is true
40 for an insn explicitly using CC0.
41
42 We check (with use_crosses_set_p) to avoid combining in such a way
43 as to move a computation to a place where its value would be different.
44
45 Combination is done by mathematically substituting the previous
46 insn(s) values for the regs they set into the expressions in
47 the later insns that refer to these regs. If the result is a valid insn
48 for our target machine, according to the machine description,
49 we install it, delete the earlier insns, and update the data flow
50 information (LOG_LINKS and REG_NOTES) for what we did.
51
52 There are a few exceptions where the dataflow information isn't
53 completely updated (however this is only a local issue since it is
54 regenerated before the next pass that uses it):
55
56 - reg_live_length is not updated
57 - reg_n_refs is not adjusted in the rare case when a register is
58 no longer required in a computation
59 - there are extremely rare cases (see distribute_notes) when a
60 REG_DEAD note is lost
61 - a LOG_LINKS entry that refers to an insn with multiple SETs may be
62 removed because there is no way to know which register it was
63 linking
64
65 To simplify substitution, we combine only when the earlier insn(s)
66 consist of only a single assignment. To simplify updating afterward,
67 we never combine when a subroutine call appears in the middle.
68
69 Since we do not represent assignments to CC0 explicitly except when that
70 is all an insn does, there is no LOG_LINKS entry in an insn that uses
71 the condition code for the insn that set the condition code.
72 Fortunately, these two insns must be consecutive.
73 Therefore, every JUMP_INSN is taken to have an implicit logical link
74 to the preceding insn. This is not quite right, since non-jumps can
75 also use the condition code; but in practice such insns would not
76 combine anyway. */
77
78 #include "config.h"
79 #include "system.h"
80 #include "coretypes.h"
81 #include "tm.h"
82 #include "rtl.h"
83 #include "tree.h"
84 #include "tm_p.h"
85 #include "flags.h"
86 #include "regs.h"
87 #include "hard-reg-set.h"
88 #include "basic-block.h"
89 #include "insn-config.h"
90 #include "function.h"
91 /* Include expr.h after insn-config.h so we get HAVE_conditional_move. */
92 #include "expr.h"
93 #include "insn-attr.h"
94 #include "recog.h"
95 #include "real.h"
96 #include "toplev.h"
97 #include "target.h"
98 #include "optabs.h"
99 #include "insn-codes.h"
100 #include "rtlhooks-def.h"
101 /* Include output.h for dump_file. */
102 #include "output.h"
103 #include "params.h"
104 #include "timevar.h"
105 #include "tree-pass.h"
106 #include "df.h"
107 #include "cgraph.h"
108
109 /* Number of attempts to combine instructions in this function. */
110
111 static int combine_attempts;
112
113 /* Number of attempts that got as far as substitution in this function. */
114
115 static int combine_merges;
116
117 /* Number of instructions combined with added SETs in this function. */
118
119 static int combine_extras;
120
121 /* Number of instructions combined in this function. */
122
123 static int combine_successes;
124
125 /* Totals over entire compilation. */
126
127 static int total_attempts, total_merges, total_extras, total_successes;
128
129 /* combine_instructions may try to replace the right hand side of the
130 second instruction with the value of an associated REG_EQUAL note
131 before throwing it at try_combine. That is problematic when there
132 is a REG_DEAD note for a register used in the old right hand side
133 and can cause distribute_notes to do wrong things. This is the
134 second instruction if it has been so modified, null otherwise. */
135
136 static rtx i2mod;
137
138 /* When I2MOD is nonnull, this is a copy of the old right hand side. */
139
140 static rtx i2mod_old_rhs;
141
142 /* When I2MOD is nonnull, this is a copy of the new right hand side. */
143
144 static rtx i2mod_new_rhs;
145 \f
146 typedef struct reg_stat_struct {
147 /* Record last point of death of (hard or pseudo) register n. */
148 rtx last_death;
149
150 /* Record last point of modification of (hard or pseudo) register n. */
151 rtx last_set;
152
153 /* The next group of fields allows the recording of the last value assigned
154 to (hard or pseudo) register n. We use this information to see if an
155 operation being processed is redundant given a prior operation performed
156 on the register. For example, an `and' with a constant is redundant if
157 all the zero bits are already known to be turned off.
158
159 We use an approach similar to that used by cse, but change it in the
160 following ways:
161
162 (1) We do not want to reinitialize at each label.
163 (2) It is useful, but not critical, to know the actual value assigned
164 to a register. Often just its form is helpful.
165
166 Therefore, we maintain the following fields:
167
168 last_set_value the last value assigned
169 last_set_label records the value of label_tick when the
170 register was assigned
171 last_set_table_tick records the value of label_tick when a
172 value using the register is assigned
173 last_set_invalid set to nonzero when it is not valid
174 to use the value of this register in some
175 register's value
176
177 To understand the usage of these tables, it is important to understand
178 the distinction between the value in last_set_value being valid and
179 the register being validly contained in some other expression in the
180 table.
181
182 (The next two parameters are out of date).
183
184 reg_stat[i].last_set_value is valid if it is nonzero, and either
185 reg_n_sets[i] is 1 or reg_stat[i].last_set_label == label_tick.
186
187 Register I may validly appear in any expression returned for the value
188 of another register if reg_n_sets[i] is 1. It may also appear in the
189 value for register J if reg_stat[j].last_set_invalid is zero, or
190 reg_stat[i].last_set_label < reg_stat[j].last_set_label.
191
192 If an expression is found in the table containing a register which may
193 not validly appear in an expression, the register is replaced by
194 something that won't match, (clobber (const_int 0)). */
195
196 /* Record last value assigned to (hard or pseudo) register n. */
197
198 rtx last_set_value;
199
200 /* Record the value of label_tick when an expression involving register n
201 is placed in last_set_value. */
202
203 int last_set_table_tick;
204
205 /* Record the value of label_tick when the value for register n is placed in
206 last_set_value. */
207
208 int last_set_label;
209
210 /* These fields are maintained in parallel with last_set_value and are
211 used to store the mode in which the register was last set, the bits
212 that were known to be zero when it was last set, and the number of
213 sign bits copies it was known to have when it was last set. */
214
215 unsigned HOST_WIDE_INT last_set_nonzero_bits;
216 char last_set_sign_bit_copies;
217 ENUM_BITFIELD(machine_mode) last_set_mode : 8;
218
219 /* Set nonzero if references to register n in expressions should not be
220 used. last_set_invalid is set nonzero when this register is being
221 assigned to and last_set_table_tick == label_tick. */
222
223 char last_set_invalid;
224
225 /* Some registers that are set more than once and used in more than one
226 basic block are nevertheless always set in similar ways. For example,
227 a QImode register may be loaded from memory in two places on a machine
228 where byte loads zero extend.
229
230 We record in the following fields if a register has some leading bits
231 that are always equal to the sign bit, and what we know about the
232 nonzero bits of a register, specifically which bits are known to be
233 zero.
234
235 If an entry is zero, it means that we don't know anything special. */
236
237 unsigned char sign_bit_copies;
238
239 unsigned HOST_WIDE_INT nonzero_bits;
240
241 /* Record the value of the label_tick when the last truncation
242 happened. The field truncated_to_mode is only valid if
243 truncation_label == label_tick. */
244
245 int truncation_label;
246
247 /* Record the last truncation seen for this register. If truncation
248 is not a nop to this mode we might be able to save an explicit
249 truncation if we know that value already contains a truncated
250 value. */
251
252 ENUM_BITFIELD(machine_mode) truncated_to_mode : 8;
253 } reg_stat_type;
254
255 DEF_VEC_O(reg_stat_type);
256 DEF_VEC_ALLOC_O(reg_stat_type,heap);
257
258 static VEC(reg_stat_type,heap) *reg_stat;
259
260 /* Record the luid of the last insn that invalidated memory
261 (anything that writes memory, and subroutine calls, but not pushes). */
262
263 static int mem_last_set;
264
265 /* Record the luid of the last CALL_INSN
266 so we can tell whether a potential combination crosses any calls. */
267
268 static int last_call_luid;
269
270 /* When `subst' is called, this is the insn that is being modified
271 (by combining in a previous insn). The PATTERN of this insn
272 is still the old pattern partially modified and it should not be
273 looked at, but this may be used to examine the successors of the insn
274 to judge whether a simplification is valid. */
275
276 static rtx subst_insn;
277
278 /* This is the lowest LUID that `subst' is currently dealing with.
279 get_last_value will not return a value if the register was set at or
280 after this LUID. If not for this mechanism, we could get confused if
281 I2 or I1 in try_combine were an insn that used the old value of a register
282 to obtain a new value. In that case, we might erroneously get the
283 new value of the register when we wanted the old one. */
284
285 static int subst_low_luid;
286
287 /* This contains any hard registers that are used in newpat; reg_dead_at_p
288 must consider all these registers to be always live. */
289
290 static HARD_REG_SET newpat_used_regs;
291
292 /* This is an insn to which a LOG_LINKS entry has been added. If this
293 insn is the earlier than I2 or I3, combine should rescan starting at
294 that location. */
295
296 static rtx added_links_insn;
297
298 /* Basic block in which we are performing combines. */
299 static basic_block this_basic_block;
300
301 \f
302 /* Length of the currently allocated uid_insn_cost array. */
303
304 static int max_uid_known;
305
306 /* The following array records the insn_rtx_cost for every insn
307 in the instruction stream. */
308
309 static int *uid_insn_cost;
310
311 /* The following array records the LOG_LINKS for every insn in the
312 instruction stream as an INSN_LIST rtx. */
313
314 static rtx *uid_log_links;
315
316 #define INSN_COST(INSN) (uid_insn_cost[INSN_UID (INSN)])
317 #define LOG_LINKS(INSN) (uid_log_links[INSN_UID (INSN)])
318
319 /* Incremented for each basic block. */
320
321 static int label_tick;
322
323 /* Reset to label_tick for each label. */
324
325 static int label_tick_ebb_start;
326
327 /* Mode used to compute significance in reg_stat[].nonzero_bits. It is the
328 largest integer mode that can fit in HOST_BITS_PER_WIDE_INT. */
329
330 static enum machine_mode nonzero_bits_mode;
331
332 /* Nonzero when reg_stat[].nonzero_bits and reg_stat[].sign_bit_copies can
333 be safely used. It is zero while computing them and after combine has
334 completed. This former test prevents propagating values based on
335 previously set values, which can be incorrect if a variable is modified
336 in a loop. */
337
338 static int nonzero_sign_valid;
339
340 \f
341 /* Record one modification to rtl structure
342 to be undone by storing old_contents into *where. */
343
344 struct undo
345 {
346 struct undo *next;
347 enum { UNDO_RTX, UNDO_INT, UNDO_MODE } kind;
348 union { rtx r; int i; enum machine_mode m; } old_contents;
349 union { rtx *r; int *i; } where;
350 };
351
352 /* Record a bunch of changes to be undone, up to MAX_UNDO of them.
353 num_undo says how many are currently recorded.
354
355 other_insn is nonzero if we have modified some other insn in the process
356 of working on subst_insn. It must be verified too. */
357
358 struct undobuf
359 {
360 struct undo *undos;
361 struct undo *frees;
362 rtx other_insn;
363 };
364
365 static struct undobuf undobuf;
366
367 /* Number of times the pseudo being substituted for
368 was found and replaced. */
369
370 static int n_occurrences;
371
372 static rtx reg_nonzero_bits_for_combine (const_rtx, enum machine_mode, const_rtx,
373 enum machine_mode,
374 unsigned HOST_WIDE_INT,
375 unsigned HOST_WIDE_INT *);
376 static rtx reg_num_sign_bit_copies_for_combine (const_rtx, enum machine_mode, const_rtx,
377 enum machine_mode,
378 unsigned int, unsigned int *);
379 static void do_SUBST (rtx *, rtx);
380 static void do_SUBST_INT (int *, int);
381 static void init_reg_last (void);
382 static void setup_incoming_promotions (rtx);
383 static void set_nonzero_bits_and_sign_copies (rtx, const_rtx, void *);
384 static int cant_combine_insn_p (rtx);
385 static int can_combine_p (rtx, rtx, rtx, rtx, rtx *, rtx *);
386 static int combinable_i3pat (rtx, rtx *, rtx, rtx, int, rtx *);
387 static int contains_muldiv (rtx);
388 static rtx try_combine (rtx, rtx, rtx, int *);
389 static void undo_all (void);
390 static void undo_commit (void);
391 static rtx *find_split_point (rtx *, rtx);
392 static rtx subst (rtx, rtx, rtx, int, int);
393 static rtx combine_simplify_rtx (rtx, enum machine_mode, int);
394 static rtx simplify_if_then_else (rtx);
395 static rtx simplify_set (rtx);
396 static rtx simplify_logical (rtx);
397 static rtx expand_compound_operation (rtx);
398 static const_rtx expand_field_assignment (const_rtx);
399 static rtx make_extraction (enum machine_mode, rtx, HOST_WIDE_INT,
400 rtx, unsigned HOST_WIDE_INT, int, int, int);
401 static rtx extract_left_shift (rtx, int);
402 static rtx make_compound_operation (rtx, enum rtx_code);
403 static int get_pos_from_mask (unsigned HOST_WIDE_INT,
404 unsigned HOST_WIDE_INT *);
405 static rtx canon_reg_for_combine (rtx, rtx);
406 static rtx force_to_mode (rtx, enum machine_mode,
407 unsigned HOST_WIDE_INT, int);
408 static rtx if_then_else_cond (rtx, rtx *, rtx *);
409 static rtx known_cond (rtx, enum rtx_code, rtx, rtx);
410 static int rtx_equal_for_field_assignment_p (rtx, rtx);
411 static rtx make_field_assignment (rtx);
412 static rtx apply_distributive_law (rtx);
413 static rtx distribute_and_simplify_rtx (rtx, int);
414 static rtx simplify_and_const_int_1 (enum machine_mode, rtx,
415 unsigned HOST_WIDE_INT);
416 static rtx simplify_and_const_int (rtx, enum machine_mode, rtx,
417 unsigned HOST_WIDE_INT);
418 static int merge_outer_ops (enum rtx_code *, HOST_WIDE_INT *, enum rtx_code,
419 HOST_WIDE_INT, enum machine_mode, int *);
420 static rtx simplify_shift_const_1 (enum rtx_code, enum machine_mode, rtx, int);
421 static rtx simplify_shift_const (rtx, enum rtx_code, enum machine_mode, rtx,
422 int);
423 static int recog_for_combine (rtx *, rtx, rtx *);
424 static rtx gen_lowpart_for_combine (enum machine_mode, rtx);
425 static enum rtx_code simplify_comparison (enum rtx_code, rtx *, rtx *);
426 static void update_table_tick (rtx);
427 static void record_value_for_reg (rtx, rtx, rtx);
428 static void check_promoted_subreg (rtx, rtx);
429 static void record_dead_and_set_regs_1 (rtx, const_rtx, void *);
430 static void record_dead_and_set_regs (rtx);
431 static int get_last_value_validate (rtx *, rtx, int, int);
432 static rtx get_last_value (const_rtx);
433 static int use_crosses_set_p (const_rtx, int);
434 static void reg_dead_at_p_1 (rtx, const_rtx, void *);
435 static int reg_dead_at_p (rtx, rtx);
436 static void move_deaths (rtx, rtx, int, rtx, rtx *);
437 static int reg_bitfield_target_p (rtx, rtx);
438 static void distribute_notes (rtx, rtx, rtx, rtx, rtx, rtx);
439 static void distribute_links (rtx);
440 static void mark_used_regs_combine (rtx);
441 static void record_promoted_value (rtx, rtx);
442 static int unmentioned_reg_p_1 (rtx *, void *);
443 static bool unmentioned_reg_p (rtx, rtx);
444 static int record_truncated_value (rtx *, void *);
445 static void record_truncated_values (rtx *, void *);
446 static bool reg_truncated_to_mode (enum machine_mode, const_rtx);
447 static rtx gen_lowpart_or_truncate (enum machine_mode, rtx);
448 \f
449
450 /* It is not safe to use ordinary gen_lowpart in combine.
451 See comments in gen_lowpart_for_combine. */
452 #undef RTL_HOOKS_GEN_LOWPART
453 #define RTL_HOOKS_GEN_LOWPART gen_lowpart_for_combine
454
455 /* Our implementation of gen_lowpart never emits a new pseudo. */
456 #undef RTL_HOOKS_GEN_LOWPART_NO_EMIT
457 #define RTL_HOOKS_GEN_LOWPART_NO_EMIT gen_lowpart_for_combine
458
459 #undef RTL_HOOKS_REG_NONZERO_REG_BITS
460 #define RTL_HOOKS_REG_NONZERO_REG_BITS reg_nonzero_bits_for_combine
461
462 #undef RTL_HOOKS_REG_NUM_SIGN_BIT_COPIES
463 #define RTL_HOOKS_REG_NUM_SIGN_BIT_COPIES reg_num_sign_bit_copies_for_combine
464
465 #undef RTL_HOOKS_REG_TRUNCATED_TO_MODE
466 #define RTL_HOOKS_REG_TRUNCATED_TO_MODE reg_truncated_to_mode
467
468 static const struct rtl_hooks combine_rtl_hooks = RTL_HOOKS_INITIALIZER;
469
470 \f
471 /* Try to split PATTERN found in INSN. This returns NULL_RTX if
472 PATTERN can not be split. Otherwise, it returns an insn sequence.
473 This is a wrapper around split_insns which ensures that the
474 reg_stat vector is made larger if the splitter creates a new
475 register. */
476
477 static rtx
478 combine_split_insns (rtx pattern, rtx insn)
479 {
480 rtx ret;
481 unsigned int nregs;
482
483 ret = split_insns (pattern, insn);
484 nregs = max_reg_num ();
485 if (nregs > VEC_length (reg_stat_type, reg_stat))
486 VEC_safe_grow_cleared (reg_stat_type, heap, reg_stat, nregs);
487 return ret;
488 }
489
490 /* This is used by find_single_use to locate an rtx in LOC that
491 contains exactly one use of DEST, which is typically either a REG
492 or CC0. It returns a pointer to the innermost rtx expression
493 containing DEST. Appearances of DEST that are being used to
494 totally replace it are not counted. */
495
496 static rtx *
497 find_single_use_1 (rtx dest, rtx *loc)
498 {
499 rtx x = *loc;
500 enum rtx_code code = GET_CODE (x);
501 rtx *result = NULL;
502 rtx *this_result;
503 int i;
504 const char *fmt;
505
506 switch (code)
507 {
508 case CONST_INT:
509 case CONST:
510 case LABEL_REF:
511 case SYMBOL_REF:
512 case CONST_DOUBLE:
513 case CONST_VECTOR:
514 case CLOBBER:
515 return 0;
516
517 case SET:
518 /* If the destination is anything other than CC0, PC, a REG or a SUBREG
519 of a REG that occupies all of the REG, the insn uses DEST if
520 it is mentioned in the destination or the source. Otherwise, we
521 need just check the source. */
522 if (GET_CODE (SET_DEST (x)) != CC0
523 && GET_CODE (SET_DEST (x)) != PC
524 && !REG_P (SET_DEST (x))
525 && ! (GET_CODE (SET_DEST (x)) == SUBREG
526 && REG_P (SUBREG_REG (SET_DEST (x)))
527 && (((GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (x))))
528 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
529 == ((GET_MODE_SIZE (GET_MODE (SET_DEST (x)))
530 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))))
531 break;
532
533 return find_single_use_1 (dest, &SET_SRC (x));
534
535 case MEM:
536 case SUBREG:
537 return find_single_use_1 (dest, &XEXP (x, 0));
538
539 default:
540 break;
541 }
542
543 /* If it wasn't one of the common cases above, check each expression and
544 vector of this code. Look for a unique usage of DEST. */
545
546 fmt = GET_RTX_FORMAT (code);
547 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
548 {
549 if (fmt[i] == 'e')
550 {
551 if (dest == XEXP (x, i)
552 || (REG_P (dest) && REG_P (XEXP (x, i))
553 && REGNO (dest) == REGNO (XEXP (x, i))))
554 this_result = loc;
555 else
556 this_result = find_single_use_1 (dest, &XEXP (x, i));
557
558 if (result == NULL)
559 result = this_result;
560 else if (this_result)
561 /* Duplicate usage. */
562 return NULL;
563 }
564 else if (fmt[i] == 'E')
565 {
566 int j;
567
568 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
569 {
570 if (XVECEXP (x, i, j) == dest
571 || (REG_P (dest)
572 && REG_P (XVECEXP (x, i, j))
573 && REGNO (XVECEXP (x, i, j)) == REGNO (dest)))
574 this_result = loc;
575 else
576 this_result = find_single_use_1 (dest, &XVECEXP (x, i, j));
577
578 if (result == NULL)
579 result = this_result;
580 else if (this_result)
581 return NULL;
582 }
583 }
584 }
585
586 return result;
587 }
588
589
590 /* See if DEST, produced in INSN, is used only a single time in the
591 sequel. If so, return a pointer to the innermost rtx expression in which
592 it is used.
593
594 If PLOC is nonzero, *PLOC is set to the insn containing the single use.
595
596 If DEST is cc0_rtx, we look only at the next insn. In that case, we don't
597 care about REG_DEAD notes or LOG_LINKS.
598
599 Otherwise, we find the single use by finding an insn that has a
600 LOG_LINKS pointing at INSN and has a REG_DEAD note for DEST. If DEST is
601 only referenced once in that insn, we know that it must be the first
602 and last insn referencing DEST. */
603
604 static rtx *
605 find_single_use (rtx dest, rtx insn, rtx *ploc)
606 {
607 rtx next;
608 rtx *result;
609 rtx link;
610
611 #ifdef HAVE_cc0
612 if (dest == cc0_rtx)
613 {
614 next = NEXT_INSN (insn);
615 if (next == 0
616 || (!NONJUMP_INSN_P (next) && !JUMP_P (next)))
617 return 0;
618
619 result = find_single_use_1 (dest, &PATTERN (next));
620 if (result && ploc)
621 *ploc = next;
622 return result;
623 }
624 #endif
625
626 if (!REG_P (dest))
627 return 0;
628
629 for (next = next_nonnote_insn (insn);
630 next != 0 && !LABEL_P (next);
631 next = next_nonnote_insn (next))
632 if (INSN_P (next) && dead_or_set_p (next, dest))
633 {
634 for (link = LOG_LINKS (next); link; link = XEXP (link, 1))
635 if (XEXP (link, 0) == insn)
636 break;
637
638 if (link)
639 {
640 result = find_single_use_1 (dest, &PATTERN (next));
641 if (ploc)
642 *ploc = next;
643 return result;
644 }
645 }
646
647 return 0;
648 }
649 \f
650 /* Substitute NEWVAL, an rtx expression, into INTO, a place in some
651 insn. The substitution can be undone by undo_all. If INTO is already
652 set to NEWVAL, do not record this change. Because computing NEWVAL might
653 also call SUBST, we have to compute it before we put anything into
654 the undo table. */
655
656 static void
657 do_SUBST (rtx *into, rtx newval)
658 {
659 struct undo *buf;
660 rtx oldval = *into;
661
662 if (oldval == newval)
663 return;
664
665 /* We'd like to catch as many invalid transformations here as
666 possible. Unfortunately, there are way too many mode changes
667 that are perfectly valid, so we'd waste too much effort for
668 little gain doing the checks here. Focus on catching invalid
669 transformations involving integer constants. */
670 if (GET_MODE_CLASS (GET_MODE (oldval)) == MODE_INT
671 && GET_CODE (newval) == CONST_INT)
672 {
673 /* Sanity check that we're replacing oldval with a CONST_INT
674 that is a valid sign-extension for the original mode. */
675 gcc_assert (INTVAL (newval)
676 == trunc_int_for_mode (INTVAL (newval), GET_MODE (oldval)));
677
678 /* Replacing the operand of a SUBREG or a ZERO_EXTEND with a
679 CONST_INT is not valid, because after the replacement, the
680 original mode would be gone. Unfortunately, we can't tell
681 when do_SUBST is called to replace the operand thereof, so we
682 perform this test on oldval instead, checking whether an
683 invalid replacement took place before we got here. */
684 gcc_assert (!(GET_CODE (oldval) == SUBREG
685 && GET_CODE (SUBREG_REG (oldval)) == CONST_INT));
686 gcc_assert (!(GET_CODE (oldval) == ZERO_EXTEND
687 && GET_CODE (XEXP (oldval, 0)) == CONST_INT));
688 }
689
690 if (undobuf.frees)
691 buf = undobuf.frees, undobuf.frees = buf->next;
692 else
693 buf = XNEW (struct undo);
694
695 buf->kind = UNDO_RTX;
696 buf->where.r = into;
697 buf->old_contents.r = oldval;
698 *into = newval;
699
700 buf->next = undobuf.undos, undobuf.undos = buf;
701 }
702
703 #define SUBST(INTO, NEWVAL) do_SUBST(&(INTO), (NEWVAL))
704
705 /* Similar to SUBST, but NEWVAL is an int expression. Note that substitution
706 for the value of a HOST_WIDE_INT value (including CONST_INT) is
707 not safe. */
708
709 static void
710 do_SUBST_INT (int *into, int newval)
711 {
712 struct undo *buf;
713 int oldval = *into;
714
715 if (oldval == newval)
716 return;
717
718 if (undobuf.frees)
719 buf = undobuf.frees, undobuf.frees = buf->next;
720 else
721 buf = XNEW (struct undo);
722
723 buf->kind = UNDO_INT;
724 buf->where.i = into;
725 buf->old_contents.i = oldval;
726 *into = newval;
727
728 buf->next = undobuf.undos, undobuf.undos = buf;
729 }
730
731 #define SUBST_INT(INTO, NEWVAL) do_SUBST_INT(&(INTO), (NEWVAL))
732
733 /* Similar to SUBST, but just substitute the mode. This is used when
734 changing the mode of a pseudo-register, so that any other
735 references to the entry in the regno_reg_rtx array will change as
736 well. */
737
738 static void
739 do_SUBST_MODE (rtx *into, enum machine_mode newval)
740 {
741 struct undo *buf;
742 enum machine_mode oldval = GET_MODE (*into);
743
744 if (oldval == newval)
745 return;
746
747 if (undobuf.frees)
748 buf = undobuf.frees, undobuf.frees = buf->next;
749 else
750 buf = XNEW (struct undo);
751
752 buf->kind = UNDO_MODE;
753 buf->where.r = into;
754 buf->old_contents.m = oldval;
755 adjust_reg_mode (*into, newval);
756
757 buf->next = undobuf.undos, undobuf.undos = buf;
758 }
759
760 #define SUBST_MODE(INTO, NEWVAL) do_SUBST_MODE(&(INTO), (NEWVAL))
761 \f
762 /* Subroutine of try_combine. Determine whether the combine replacement
763 patterns NEWPAT, NEWI2PAT and NEWOTHERPAT are cheaper according to
764 insn_rtx_cost that the original instruction sequence I1, I2, I3 and
765 undobuf.other_insn. Note that I1 and/or NEWI2PAT may be NULL_RTX.
766 NEWOTHERPAT and undobuf.other_insn may also both be NULL_RTX. This
767 function returns false, if the costs of all instructions can be
768 estimated, and the replacements are more expensive than the original
769 sequence. */
770
771 static bool
772 combine_validate_cost (rtx i1, rtx i2, rtx i3, rtx newpat, rtx newi2pat,
773 rtx newotherpat)
774 {
775 int i1_cost, i2_cost, i3_cost;
776 int new_i2_cost, new_i3_cost;
777 int old_cost, new_cost;
778
779 /* Lookup the original insn_rtx_costs. */
780 i2_cost = INSN_COST (i2);
781 i3_cost = INSN_COST (i3);
782
783 if (i1)
784 {
785 i1_cost = INSN_COST (i1);
786 old_cost = (i1_cost > 0 && i2_cost > 0 && i3_cost > 0)
787 ? i1_cost + i2_cost + i3_cost : 0;
788 }
789 else
790 {
791 old_cost = (i2_cost > 0 && i3_cost > 0) ? i2_cost + i3_cost : 0;
792 i1_cost = 0;
793 }
794
795 /* Calculate the replacement insn_rtx_costs. */
796 new_i3_cost = insn_rtx_cost (newpat);
797 if (newi2pat)
798 {
799 new_i2_cost = insn_rtx_cost (newi2pat);
800 new_cost = (new_i2_cost > 0 && new_i3_cost > 0)
801 ? new_i2_cost + new_i3_cost : 0;
802 }
803 else
804 {
805 new_cost = new_i3_cost;
806 new_i2_cost = 0;
807 }
808
809 if (undobuf.other_insn)
810 {
811 int old_other_cost, new_other_cost;
812
813 old_other_cost = INSN_COST (undobuf.other_insn);
814 new_other_cost = insn_rtx_cost (newotherpat);
815 if (old_other_cost > 0 && new_other_cost > 0)
816 {
817 old_cost += old_other_cost;
818 new_cost += new_other_cost;
819 }
820 else
821 old_cost = 0;
822 }
823
824 /* Disallow this recombination if both new_cost and old_cost are
825 greater than zero, and new_cost is greater than old cost. */
826 if (old_cost > 0
827 && new_cost > old_cost)
828 {
829 if (dump_file)
830 {
831 if (i1)
832 {
833 fprintf (dump_file,
834 "rejecting combination of insns %d, %d and %d\n",
835 INSN_UID (i1), INSN_UID (i2), INSN_UID (i3));
836 fprintf (dump_file, "original costs %d + %d + %d = %d\n",
837 i1_cost, i2_cost, i3_cost, old_cost);
838 }
839 else
840 {
841 fprintf (dump_file,
842 "rejecting combination of insns %d and %d\n",
843 INSN_UID (i2), INSN_UID (i3));
844 fprintf (dump_file, "original costs %d + %d = %d\n",
845 i2_cost, i3_cost, old_cost);
846 }
847
848 if (newi2pat)
849 {
850 fprintf (dump_file, "replacement costs %d + %d = %d\n",
851 new_i2_cost, new_i3_cost, new_cost);
852 }
853 else
854 fprintf (dump_file, "replacement cost %d\n", new_cost);
855 }
856
857 return false;
858 }
859
860 /* Update the uid_insn_cost array with the replacement costs. */
861 INSN_COST (i2) = new_i2_cost;
862 INSN_COST (i3) = new_i3_cost;
863 if (i1)
864 INSN_COST (i1) = 0;
865
866 return true;
867 }
868
869
870 /* Delete any insns that copy a register to itself. */
871
872 static void
873 delete_noop_moves (void)
874 {
875 rtx insn, next;
876 basic_block bb;
877
878 FOR_EACH_BB (bb)
879 {
880 for (insn = BB_HEAD (bb); insn != NEXT_INSN (BB_END (bb)); insn = next)
881 {
882 next = NEXT_INSN (insn);
883 if (INSN_P (insn) && noop_move_p (insn))
884 {
885 rtx note;
886
887 /* If we're about to remove the first insn of a libcall
888 then move the libcall note to the next real insn and
889 update the retval note. */
890 if ((note = find_reg_note (insn, REG_LIBCALL, NULL_RTX))
891 && XEXP (note, 0) != insn)
892 {
893 rtx new_libcall_insn = next_real_insn (insn);
894 rtx retval_note = find_reg_note (XEXP (note, 0),
895 REG_RETVAL, NULL_RTX);
896 REG_NOTES (new_libcall_insn)
897 = gen_rtx_INSN_LIST (REG_LIBCALL, XEXP (note, 0),
898 REG_NOTES (new_libcall_insn));
899 XEXP (retval_note, 0) = new_libcall_insn;
900 }
901
902 if (dump_file)
903 fprintf (dump_file, "deleting noop move %d\n", INSN_UID (insn));
904
905 delete_insn_and_edges (insn);
906 }
907 }
908 }
909 }
910
911 \f
912 /* Fill in log links field for all insns. */
913
914 static void
915 create_log_links (void)
916 {
917 basic_block bb;
918 rtx *next_use, insn;
919 struct df_ref **def_vec, **use_vec;
920
921 next_use = XCNEWVEC (rtx, max_reg_num ());
922
923 /* Pass through each block from the end, recording the uses of each
924 register and establishing log links when def is encountered.
925 Note that we do not clear next_use array in order to save time,
926 so we have to test whether the use is in the same basic block as def.
927
928 There are a few cases below when we do not consider the definition or
929 usage -- these are taken from original flow.c did. Don't ask me why it is
930 done this way; I don't know and if it works, I don't want to know. */
931
932 FOR_EACH_BB (bb)
933 {
934 FOR_BB_INSNS_REVERSE (bb, insn)
935 {
936 if (!INSN_P (insn))
937 continue;
938
939 /* Log links are created only once. */
940 gcc_assert (!LOG_LINKS (insn));
941
942 for (def_vec = DF_INSN_DEFS (insn); *def_vec; def_vec++)
943 {
944 struct df_ref *def = *def_vec;
945 int regno = DF_REF_REGNO (def);
946 rtx use_insn;
947
948 if (!next_use[regno])
949 continue;
950
951 /* Do not consider if it is pre/post modification in MEM. */
952 if (DF_REF_FLAGS (def) & DF_REF_PRE_POST_MODIFY)
953 continue;
954
955 /* Do not make the log link for frame pointer. */
956 if ((regno == FRAME_POINTER_REGNUM
957 && (! reload_completed || frame_pointer_needed))
958 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
959 || (regno == HARD_FRAME_POINTER_REGNUM
960 && (! reload_completed || frame_pointer_needed))
961 #endif
962 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
963 || (regno == ARG_POINTER_REGNUM && fixed_regs[regno])
964 #endif
965 )
966 continue;
967
968 use_insn = next_use[regno];
969 if (BLOCK_FOR_INSN (use_insn) == bb)
970 {
971 /* flow.c claimed:
972
973 We don't build a LOG_LINK for hard registers contained
974 in ASM_OPERANDs. If these registers get replaced,
975 we might wind up changing the semantics of the insn,
976 even if reload can make what appear to be valid
977 assignments later. */
978 if (regno >= FIRST_PSEUDO_REGISTER
979 || asm_noperands (PATTERN (use_insn)) < 0)
980 {
981 /* Don't add duplicate links between instructions. */
982 rtx links;
983 for (links = LOG_LINKS (use_insn); links;
984 links = XEXP (links, 1))
985 if (insn == XEXP (links, 0))
986 break;
987
988 if (!links)
989 LOG_LINKS (use_insn) =
990 alloc_INSN_LIST (insn, LOG_LINKS (use_insn));
991 }
992 }
993 next_use[regno] = NULL_RTX;
994 }
995
996 for (use_vec = DF_INSN_USES (insn); *use_vec; use_vec++)
997 {
998 struct df_ref *use = *use_vec;
999 int regno = DF_REF_REGNO (use);
1000
1001 /* Do not consider the usage of the stack pointer
1002 by function call. */
1003 if (DF_REF_FLAGS (use) & DF_REF_CALL_STACK_USAGE)
1004 continue;
1005
1006 next_use[regno] = insn;
1007 }
1008 }
1009 }
1010
1011 free (next_use);
1012 }
1013
1014 /* Clear LOG_LINKS fields of insns. */
1015
1016 static void
1017 clear_log_links (void)
1018 {
1019 rtx insn;
1020
1021 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
1022 if (INSN_P (insn))
1023 free_INSN_LIST_list (&LOG_LINKS (insn));
1024 }
1025
1026
1027
1028 \f
1029 /* Main entry point for combiner. F is the first insn of the function.
1030 NREGS is the first unused pseudo-reg number.
1031
1032 Return nonzero if the combiner has turned an indirect jump
1033 instruction into a direct jump. */
1034 static int
1035 combine_instructions (rtx f, unsigned int nregs)
1036 {
1037 rtx insn, next;
1038 #ifdef HAVE_cc0
1039 rtx prev;
1040 #endif
1041 rtx links, nextlinks;
1042 rtx first;
1043
1044 int new_direct_jump_p = 0;
1045
1046 for (first = f; first && !INSN_P (first); )
1047 first = NEXT_INSN (first);
1048 if (!first)
1049 return 0;
1050
1051 combine_attempts = 0;
1052 combine_merges = 0;
1053 combine_extras = 0;
1054 combine_successes = 0;
1055
1056 rtl_hooks = combine_rtl_hooks;
1057
1058 VEC_safe_grow_cleared (reg_stat_type, heap, reg_stat, nregs);
1059
1060 init_recog_no_volatile ();
1061
1062 /* Allocate array for insn info. */
1063 max_uid_known = get_max_uid ();
1064 uid_log_links = XCNEWVEC (rtx, max_uid_known + 1);
1065 uid_insn_cost = XCNEWVEC (int, max_uid_known + 1);
1066
1067 nonzero_bits_mode = mode_for_size (HOST_BITS_PER_WIDE_INT, MODE_INT, 0);
1068
1069 /* Don't use reg_stat[].nonzero_bits when computing it. This can cause
1070 problems when, for example, we have j <<= 1 in a loop. */
1071
1072 nonzero_sign_valid = 0;
1073
1074 /* Scan all SETs and see if we can deduce anything about what
1075 bits are known to be zero for some registers and how many copies
1076 of the sign bit are known to exist for those registers.
1077
1078 Also set any known values so that we can use it while searching
1079 for what bits are known to be set. */
1080
1081 label_tick = label_tick_ebb_start = 1;
1082
1083 setup_incoming_promotions (first);
1084
1085 create_log_links ();
1086 FOR_EACH_BB (this_basic_block)
1087 {
1088 last_call_luid = 0;
1089 mem_last_set = -1;
1090 label_tick++;
1091 FOR_BB_INSNS (this_basic_block, insn)
1092 if (INSN_P (insn) && BLOCK_FOR_INSN (insn))
1093 {
1094 subst_low_luid = DF_INSN_LUID (insn);
1095 subst_insn = insn;
1096
1097 note_stores (PATTERN (insn), set_nonzero_bits_and_sign_copies,
1098 insn);
1099 record_dead_and_set_regs (insn);
1100
1101 #ifdef AUTO_INC_DEC
1102 for (links = REG_NOTES (insn); links; links = XEXP (links, 1))
1103 if (REG_NOTE_KIND (links) == REG_INC)
1104 set_nonzero_bits_and_sign_copies (XEXP (links, 0), NULL_RTX,
1105 insn);
1106 #endif
1107
1108 /* Record the current insn_rtx_cost of this instruction. */
1109 if (NONJUMP_INSN_P (insn))
1110 INSN_COST (insn) = insn_rtx_cost (PATTERN (insn));
1111 if (dump_file)
1112 fprintf(dump_file, "insn_cost %d: %d\n",
1113 INSN_UID (insn), INSN_COST (insn));
1114 }
1115 else if (LABEL_P (insn))
1116 label_tick_ebb_start = label_tick;
1117 }
1118
1119 nonzero_sign_valid = 1;
1120
1121 /* Now scan all the insns in forward order. */
1122
1123 label_tick = label_tick_ebb_start = 1;
1124 init_reg_last ();
1125 setup_incoming_promotions (first);
1126
1127 FOR_EACH_BB (this_basic_block)
1128 {
1129 last_call_luid = 0;
1130 mem_last_set = -1;
1131 label_tick++;
1132 for (insn = BB_HEAD (this_basic_block);
1133 insn != NEXT_INSN (BB_END (this_basic_block));
1134 insn = next ? next : NEXT_INSN (insn))
1135 {
1136 next = 0;
1137 if (INSN_P (insn))
1138 {
1139 /* See if we know about function return values before this
1140 insn based upon SUBREG flags. */
1141 check_promoted_subreg (insn, PATTERN (insn));
1142
1143 /* See if we can find hardregs and subreg of pseudos in
1144 narrower modes. This could help turning TRUNCATEs
1145 into SUBREGs. */
1146 note_uses (&PATTERN (insn), record_truncated_values, NULL);
1147
1148 /* Try this insn with each insn it links back to. */
1149
1150 for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
1151 if ((next = try_combine (insn, XEXP (links, 0),
1152 NULL_RTX, &new_direct_jump_p)) != 0)
1153 goto retry;
1154
1155 /* Try each sequence of three linked insns ending with this one. */
1156
1157 for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
1158 {
1159 rtx link = XEXP (links, 0);
1160
1161 /* If the linked insn has been replaced by a note, then there
1162 is no point in pursuing this chain any further. */
1163 if (NOTE_P (link))
1164 continue;
1165
1166 for (nextlinks = LOG_LINKS (link);
1167 nextlinks;
1168 nextlinks = XEXP (nextlinks, 1))
1169 if ((next = try_combine (insn, link,
1170 XEXP (nextlinks, 0),
1171 &new_direct_jump_p)) != 0)
1172 goto retry;
1173 }
1174
1175 #ifdef HAVE_cc0
1176 /* Try to combine a jump insn that uses CC0
1177 with a preceding insn that sets CC0, and maybe with its
1178 logical predecessor as well.
1179 This is how we make decrement-and-branch insns.
1180 We need this special code because data flow connections
1181 via CC0 do not get entered in LOG_LINKS. */
1182
1183 if (JUMP_P (insn)
1184 && (prev = prev_nonnote_insn (insn)) != 0
1185 && NONJUMP_INSN_P (prev)
1186 && sets_cc0_p (PATTERN (prev)))
1187 {
1188 if ((next = try_combine (insn, prev,
1189 NULL_RTX, &new_direct_jump_p)) != 0)
1190 goto retry;
1191
1192 for (nextlinks = LOG_LINKS (prev); nextlinks;
1193 nextlinks = XEXP (nextlinks, 1))
1194 if ((next = try_combine (insn, prev,
1195 XEXP (nextlinks, 0),
1196 &new_direct_jump_p)) != 0)
1197 goto retry;
1198 }
1199
1200 /* Do the same for an insn that explicitly references CC0. */
1201 if (NONJUMP_INSN_P (insn)
1202 && (prev = prev_nonnote_insn (insn)) != 0
1203 && NONJUMP_INSN_P (prev)
1204 && sets_cc0_p (PATTERN (prev))
1205 && GET_CODE (PATTERN (insn)) == SET
1206 && reg_mentioned_p (cc0_rtx, SET_SRC (PATTERN (insn))))
1207 {
1208 if ((next = try_combine (insn, prev,
1209 NULL_RTX, &new_direct_jump_p)) != 0)
1210 goto retry;
1211
1212 for (nextlinks = LOG_LINKS (prev); nextlinks;
1213 nextlinks = XEXP (nextlinks, 1))
1214 if ((next = try_combine (insn, prev,
1215 XEXP (nextlinks, 0),
1216 &new_direct_jump_p)) != 0)
1217 goto retry;
1218 }
1219
1220 /* Finally, see if any of the insns that this insn links to
1221 explicitly references CC0. If so, try this insn, that insn,
1222 and its predecessor if it sets CC0. */
1223 for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
1224 if (NONJUMP_INSN_P (XEXP (links, 0))
1225 && GET_CODE (PATTERN (XEXP (links, 0))) == SET
1226 && reg_mentioned_p (cc0_rtx, SET_SRC (PATTERN (XEXP (links, 0))))
1227 && (prev = prev_nonnote_insn (XEXP (links, 0))) != 0
1228 && NONJUMP_INSN_P (prev)
1229 && sets_cc0_p (PATTERN (prev))
1230 && (next = try_combine (insn, XEXP (links, 0),
1231 prev, &new_direct_jump_p)) != 0)
1232 goto retry;
1233 #endif
1234
1235 /* Try combining an insn with two different insns whose results it
1236 uses. */
1237 for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
1238 for (nextlinks = XEXP (links, 1); nextlinks;
1239 nextlinks = XEXP (nextlinks, 1))
1240 if ((next = try_combine (insn, XEXP (links, 0),
1241 XEXP (nextlinks, 0),
1242 &new_direct_jump_p)) != 0)
1243 goto retry;
1244
1245 /* Try this insn with each REG_EQUAL note it links back to. */
1246 for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
1247 {
1248 rtx set, note;
1249 rtx temp = XEXP (links, 0);
1250 if ((set = single_set (temp)) != 0
1251 && (note = find_reg_equal_equiv_note (temp)) != 0
1252 && (note = XEXP (note, 0), GET_CODE (note)) != EXPR_LIST
1253 /* Avoid using a register that may already been marked
1254 dead by an earlier instruction. */
1255 && ! unmentioned_reg_p (note, SET_SRC (set))
1256 && (GET_MODE (note) == VOIDmode
1257 ? SCALAR_INT_MODE_P (GET_MODE (SET_DEST (set)))
1258 : GET_MODE (SET_DEST (set)) == GET_MODE (note)))
1259 {
1260 /* Temporarily replace the set's source with the
1261 contents of the REG_EQUAL note. The insn will
1262 be deleted or recognized by try_combine. */
1263 rtx orig = SET_SRC (set);
1264 SET_SRC (set) = note;
1265 i2mod = temp;
1266 i2mod_old_rhs = copy_rtx (orig);
1267 i2mod_new_rhs = copy_rtx (note);
1268 next = try_combine (insn, i2mod, NULL_RTX,
1269 &new_direct_jump_p);
1270 i2mod = NULL_RTX;
1271 if (next)
1272 goto retry;
1273 SET_SRC (set) = orig;
1274 }
1275 }
1276
1277 if (!NOTE_P (insn))
1278 record_dead_and_set_regs (insn);
1279
1280 retry:
1281 ;
1282 }
1283 else if (LABEL_P (insn))
1284 label_tick_ebb_start = label_tick;
1285 }
1286 }
1287
1288 clear_log_links ();
1289 clear_bb_flags ();
1290 new_direct_jump_p |= purge_all_dead_edges ();
1291 delete_noop_moves ();
1292
1293 /* Clean up. */
1294 free (uid_log_links);
1295 free (uid_insn_cost);
1296 VEC_free (reg_stat_type, heap, reg_stat);
1297
1298 {
1299 struct undo *undo, *next;
1300 for (undo = undobuf.frees; undo; undo = next)
1301 {
1302 next = undo->next;
1303 free (undo);
1304 }
1305 undobuf.frees = 0;
1306 }
1307
1308 total_attempts += combine_attempts;
1309 total_merges += combine_merges;
1310 total_extras += combine_extras;
1311 total_successes += combine_successes;
1312
1313 nonzero_sign_valid = 0;
1314 rtl_hooks = general_rtl_hooks;
1315
1316 /* Make recognizer allow volatile MEMs again. */
1317 init_recog ();
1318
1319 return new_direct_jump_p;
1320 }
1321
1322 /* Wipe the last_xxx fields of reg_stat in preparation for another pass. */
1323
1324 static void
1325 init_reg_last (void)
1326 {
1327 unsigned int i;
1328 reg_stat_type *p;
1329
1330 for (i = 0; VEC_iterate (reg_stat_type, reg_stat, i, p); ++i)
1331 memset (p, 0, offsetof (reg_stat_type, sign_bit_copies));
1332 }
1333 \f
1334 /* Set up any promoted values for incoming argument registers. */
1335
1336 static void
1337 setup_incoming_promotions (rtx first)
1338 {
1339 tree arg;
1340 bool strictly_local = false;
1341
1342 if (!targetm.calls.promote_function_args (TREE_TYPE (cfun->decl)))
1343 return;
1344
1345 for (arg = DECL_ARGUMENTS (current_function_decl); arg;
1346 arg = TREE_CHAIN (arg))
1347 {
1348 rtx reg = DECL_INCOMING_RTL (arg);
1349 int uns1, uns3;
1350 enum machine_mode mode1, mode2, mode3, mode4;
1351
1352 /* Only continue if the incoming argument is in a register. */
1353 if (!REG_P (reg))
1354 continue;
1355
1356 /* Determine, if possible, whether all call sites of the current
1357 function lie within the current compilation unit. (This does
1358 take into account the exporting of a function via taking its
1359 address, and so forth.) */
1360 if (flag_unit_at_a_time)
1361 strictly_local = cgraph_local_info (current_function_decl)->local;
1362
1363 /* The mode and signedness of the argument before any promotions happen
1364 (equal to the mode of the pseudo holding it at that stage). */
1365 mode1 = TYPE_MODE (TREE_TYPE (arg));
1366 uns1 = TYPE_UNSIGNED (TREE_TYPE (arg));
1367
1368 /* The mode and signedness of the argument after any source language and
1369 TARGET_PROMOTE_PROTOTYPES-driven promotions. */
1370 mode2 = TYPE_MODE (DECL_ARG_TYPE (arg));
1371 uns3 = TYPE_UNSIGNED (DECL_ARG_TYPE (arg));
1372
1373 /* The mode and signedness of the argument as it is actually passed,
1374 after any TARGET_PROMOTE_FUNCTION_ARGS-driven ABI promotions. */
1375 mode3 = promote_mode (DECL_ARG_TYPE (arg), mode2, &uns3, 1);
1376
1377 /* The mode of the register in which the argument is being passed. */
1378 mode4 = GET_MODE (reg);
1379
1380 /* Eliminate sign extensions in the callee when possible. Only
1381 do this when:
1382 (a) a mode promotion has occurred;
1383 (b) the mode of the register is the same as the mode of
1384 the argument as it is passed; and
1385 (c) the signedness does not change across any of the promotions; and
1386 (d) when no language-level promotions (which we cannot guarantee
1387 will have been done by an external caller) are necessary,
1388 unless we know that this function is only ever called from
1389 the current compilation unit -- all of whose call sites will
1390 do the mode1 --> mode2 promotion. */
1391 if (mode1 != mode3
1392 && mode3 == mode4
1393 && uns1 == uns3
1394 && (mode1 == mode2 || strictly_local))
1395 {
1396 /* Record that the value was promoted from mode1 to mode3,
1397 so that any sign extension at the head of the current
1398 function may be eliminated. */
1399 rtx x;
1400 x = gen_rtx_CLOBBER (mode1, const0_rtx);
1401 x = gen_rtx_fmt_e ((uns3 ? ZERO_EXTEND : SIGN_EXTEND), mode3, x);
1402 record_value_for_reg (reg, first, x);
1403 }
1404 }
1405 }
1406
1407 /* Called via note_stores. If X is a pseudo that is narrower than
1408 HOST_BITS_PER_WIDE_INT and is being set, record what bits are known zero.
1409
1410 If we are setting only a portion of X and we can't figure out what
1411 portion, assume all bits will be used since we don't know what will
1412 be happening.
1413
1414 Similarly, set how many bits of X are known to be copies of the sign bit
1415 at all locations in the function. This is the smallest number implied
1416 by any set of X. */
1417
1418 static void
1419 set_nonzero_bits_and_sign_copies (rtx x, const_rtx set, void *data)
1420 {
1421 rtx insn = (rtx) data;
1422 unsigned int num;
1423
1424 if (REG_P (x)
1425 && REGNO (x) >= FIRST_PSEUDO_REGISTER
1426 /* If this register is undefined at the start of the file, we can't
1427 say what its contents were. */
1428 && ! REGNO_REG_SET_P
1429 (DF_LR_IN (ENTRY_BLOCK_PTR->next_bb), REGNO (x))
1430 && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT)
1431 {
1432 reg_stat_type *rsp = VEC_index (reg_stat_type, reg_stat, REGNO (x));
1433
1434 if (set == 0 || GET_CODE (set) == CLOBBER)
1435 {
1436 rsp->nonzero_bits = GET_MODE_MASK (GET_MODE (x));
1437 rsp->sign_bit_copies = 1;
1438 return;
1439 }
1440
1441 /* If this register is being initialized using itself, and the
1442 register is uninitialized in this basic block, and there are
1443 no LOG_LINKS which set the register, then part of the
1444 register is uninitialized. In that case we can't assume
1445 anything about the number of nonzero bits.
1446
1447 ??? We could do better if we checked this in
1448 reg_{nonzero_bits,num_sign_bit_copies}_for_combine. Then we
1449 could avoid making assumptions about the insn which initially
1450 sets the register, while still using the information in other
1451 insns. We would have to be careful to check every insn
1452 involved in the combination. */
1453
1454 if (insn
1455 && reg_referenced_p (x, PATTERN (insn))
1456 && !REGNO_REG_SET_P (DF_LR_IN (BLOCK_FOR_INSN (insn)),
1457 REGNO (x)))
1458 {
1459 rtx link;
1460
1461 for (link = LOG_LINKS (insn); link; link = XEXP (link, 1))
1462 {
1463 if (dead_or_set_p (XEXP (link, 0), x))
1464 break;
1465 }
1466 if (!link)
1467 {
1468 rsp->nonzero_bits = GET_MODE_MASK (GET_MODE (x));
1469 rsp->sign_bit_copies = 1;
1470 return;
1471 }
1472 }
1473
1474 /* If this is a complex assignment, see if we can convert it into a
1475 simple assignment. */
1476 set = expand_field_assignment (set);
1477
1478 /* If this is a simple assignment, or we have a paradoxical SUBREG,
1479 set what we know about X. */
1480
1481 if (SET_DEST (set) == x
1482 || (GET_CODE (SET_DEST (set)) == SUBREG
1483 && (GET_MODE_SIZE (GET_MODE (SET_DEST (set)))
1484 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (set)))))
1485 && SUBREG_REG (SET_DEST (set)) == x))
1486 {
1487 rtx src = SET_SRC (set);
1488
1489 #ifdef SHORT_IMMEDIATES_SIGN_EXTEND
1490 /* If X is narrower than a word and SRC is a non-negative
1491 constant that would appear negative in the mode of X,
1492 sign-extend it for use in reg_stat[].nonzero_bits because some
1493 machines (maybe most) will actually do the sign-extension
1494 and this is the conservative approach.
1495
1496 ??? For 2.5, try to tighten up the MD files in this regard
1497 instead of this kludge. */
1498
1499 if (GET_MODE_BITSIZE (GET_MODE (x)) < BITS_PER_WORD
1500 && GET_CODE (src) == CONST_INT
1501 && INTVAL (src) > 0
1502 && 0 != (INTVAL (src)
1503 & ((HOST_WIDE_INT) 1
1504 << (GET_MODE_BITSIZE (GET_MODE (x)) - 1))))
1505 src = GEN_INT (INTVAL (src)
1506 | ((HOST_WIDE_INT) (-1)
1507 << GET_MODE_BITSIZE (GET_MODE (x))));
1508 #endif
1509
1510 /* Don't call nonzero_bits if it cannot change anything. */
1511 if (rsp->nonzero_bits != ~(unsigned HOST_WIDE_INT) 0)
1512 rsp->nonzero_bits |= nonzero_bits (src, nonzero_bits_mode);
1513 num = num_sign_bit_copies (SET_SRC (set), GET_MODE (x));
1514 if (rsp->sign_bit_copies == 0
1515 || rsp->sign_bit_copies > num)
1516 rsp->sign_bit_copies = num;
1517 }
1518 else
1519 {
1520 rsp->nonzero_bits = GET_MODE_MASK (GET_MODE (x));
1521 rsp->sign_bit_copies = 1;
1522 }
1523 }
1524 }
1525 \f
1526 /* See if INSN can be combined into I3. PRED and SUCC are optionally
1527 insns that were previously combined into I3 or that will be combined
1528 into the merger of INSN and I3.
1529
1530 Return 0 if the combination is not allowed for any reason.
1531
1532 If the combination is allowed, *PDEST will be set to the single
1533 destination of INSN and *PSRC to the single source, and this function
1534 will return 1. */
1535
1536 static int
1537 can_combine_p (rtx insn, rtx i3, rtx pred ATTRIBUTE_UNUSED, rtx succ,
1538 rtx *pdest, rtx *psrc)
1539 {
1540 int i;
1541 const_rtx set = 0;
1542 rtx src, dest;
1543 rtx p;
1544 #ifdef AUTO_INC_DEC
1545 rtx link;
1546 #endif
1547 int all_adjacent = (succ ? (next_active_insn (insn) == succ
1548 && next_active_insn (succ) == i3)
1549 : next_active_insn (insn) == i3);
1550
1551 /* Can combine only if previous insn is a SET of a REG, a SUBREG or CC0.
1552 or a PARALLEL consisting of such a SET and CLOBBERs.
1553
1554 If INSN has CLOBBER parallel parts, ignore them for our processing.
1555 By definition, these happen during the execution of the insn. When it
1556 is merged with another insn, all bets are off. If they are, in fact,
1557 needed and aren't also supplied in I3, they may be added by
1558 recog_for_combine. Otherwise, it won't match.
1559
1560 We can also ignore a SET whose SET_DEST is mentioned in a REG_UNUSED
1561 note.
1562
1563 Get the source and destination of INSN. If more than one, can't
1564 combine. */
1565
1566 if (GET_CODE (PATTERN (insn)) == SET)
1567 set = PATTERN (insn);
1568 else if (GET_CODE (PATTERN (insn)) == PARALLEL
1569 && GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == SET)
1570 {
1571 for (i = 0; i < XVECLEN (PATTERN (insn), 0); i++)
1572 {
1573 rtx elt = XVECEXP (PATTERN (insn), 0, i);
1574 rtx note;
1575
1576 switch (GET_CODE (elt))
1577 {
1578 /* This is important to combine floating point insns
1579 for the SH4 port. */
1580 case USE:
1581 /* Combining an isolated USE doesn't make sense.
1582 We depend here on combinable_i3pat to reject them. */
1583 /* The code below this loop only verifies that the inputs of
1584 the SET in INSN do not change. We call reg_set_between_p
1585 to verify that the REG in the USE does not change between
1586 I3 and INSN.
1587 If the USE in INSN was for a pseudo register, the matching
1588 insn pattern will likely match any register; combining this
1589 with any other USE would only be safe if we knew that the
1590 used registers have identical values, or if there was
1591 something to tell them apart, e.g. different modes. For
1592 now, we forgo such complicated tests and simply disallow
1593 combining of USES of pseudo registers with any other USE. */
1594 if (REG_P (XEXP (elt, 0))
1595 && GET_CODE (PATTERN (i3)) == PARALLEL)
1596 {
1597 rtx i3pat = PATTERN (i3);
1598 int i = XVECLEN (i3pat, 0) - 1;
1599 unsigned int regno = REGNO (XEXP (elt, 0));
1600
1601 do
1602 {
1603 rtx i3elt = XVECEXP (i3pat, 0, i);
1604
1605 if (GET_CODE (i3elt) == USE
1606 && REG_P (XEXP (i3elt, 0))
1607 && (REGNO (XEXP (i3elt, 0)) == regno
1608 ? reg_set_between_p (XEXP (elt, 0),
1609 PREV_INSN (insn), i3)
1610 : regno >= FIRST_PSEUDO_REGISTER))
1611 return 0;
1612 }
1613 while (--i >= 0);
1614 }
1615 break;
1616
1617 /* We can ignore CLOBBERs. */
1618 case CLOBBER:
1619 break;
1620
1621 case SET:
1622 /* Ignore SETs whose result isn't used but not those that
1623 have side-effects. */
1624 if (find_reg_note (insn, REG_UNUSED, SET_DEST (elt))
1625 && (!(note = find_reg_note (insn, REG_EH_REGION, NULL_RTX))
1626 || INTVAL (XEXP (note, 0)) <= 0)
1627 && ! side_effects_p (elt))
1628 break;
1629
1630 /* If we have already found a SET, this is a second one and
1631 so we cannot combine with this insn. */
1632 if (set)
1633 return 0;
1634
1635 set = elt;
1636 break;
1637
1638 default:
1639 /* Anything else means we can't combine. */
1640 return 0;
1641 }
1642 }
1643
1644 if (set == 0
1645 /* If SET_SRC is an ASM_OPERANDS we can't throw away these CLOBBERs,
1646 so don't do anything with it. */
1647 || GET_CODE (SET_SRC (set)) == ASM_OPERANDS)
1648 return 0;
1649 }
1650 else
1651 return 0;
1652
1653 if (set == 0)
1654 return 0;
1655
1656 set = expand_field_assignment (set);
1657 src = SET_SRC (set), dest = SET_DEST (set);
1658
1659 /* Don't eliminate a store in the stack pointer. */
1660 if (dest == stack_pointer_rtx
1661 /* Don't combine with an insn that sets a register to itself if it has
1662 a REG_EQUAL note. This may be part of a LIBCALL sequence. */
1663 || (rtx_equal_p (src, dest) && find_reg_note (insn, REG_EQUAL, NULL_RTX))
1664 /* Can't merge an ASM_OPERANDS. */
1665 || GET_CODE (src) == ASM_OPERANDS
1666 /* Can't merge a function call. */
1667 || GET_CODE (src) == CALL
1668 /* Don't eliminate a function call argument. */
1669 || (CALL_P (i3)
1670 && (find_reg_fusage (i3, USE, dest)
1671 || (REG_P (dest)
1672 && REGNO (dest) < FIRST_PSEUDO_REGISTER
1673 && global_regs[REGNO (dest)])))
1674 /* Don't substitute into an incremented register. */
1675 || FIND_REG_INC_NOTE (i3, dest)
1676 || (succ && FIND_REG_INC_NOTE (succ, dest))
1677 /* Don't substitute into a non-local goto, this confuses CFG. */
1678 || (JUMP_P (i3) && find_reg_note (i3, REG_NON_LOCAL_GOTO, NULL_RTX))
1679 #if 0
1680 /* Don't combine the end of a libcall into anything. */
1681 /* ??? This gives worse code, and appears to be unnecessary, since no
1682 pass after flow uses REG_LIBCALL/REG_RETVAL notes. Local-alloc does
1683 use REG_RETVAL notes for noconflict blocks, but other code here
1684 makes sure that those insns don't disappear. */
1685 || find_reg_note (insn, REG_RETVAL, NULL_RTX)
1686 #endif
1687 /* Make sure that DEST is not used after SUCC but before I3. */
1688 || (succ && ! all_adjacent
1689 && reg_used_between_p (dest, succ, i3))
1690 /* Make sure that the value that is to be substituted for the register
1691 does not use any registers whose values alter in between. However,
1692 If the insns are adjacent, a use can't cross a set even though we
1693 think it might (this can happen for a sequence of insns each setting
1694 the same destination; last_set of that register might point to
1695 a NOTE). If INSN has a REG_EQUIV note, the register is always
1696 equivalent to the memory so the substitution is valid even if there
1697 are intervening stores. Also, don't move a volatile asm or
1698 UNSPEC_VOLATILE across any other insns. */
1699 || (! all_adjacent
1700 && (((!MEM_P (src)
1701 || ! find_reg_note (insn, REG_EQUIV, src))
1702 && use_crosses_set_p (src, DF_INSN_LUID (insn)))
1703 || (GET_CODE (src) == ASM_OPERANDS && MEM_VOLATILE_P (src))
1704 || GET_CODE (src) == UNSPEC_VOLATILE))
1705 /* Don't combine across a CALL_INSN, because that would possibly
1706 change whether the life span of some REGs crosses calls or not,
1707 and it is a pain to update that information.
1708 Exception: if source is a constant, moving it later can't hurt.
1709 Accept that as a special case. */
1710 || (DF_INSN_LUID (insn) < last_call_luid && ! CONSTANT_P (src)))
1711 return 0;
1712
1713 /* DEST must either be a REG or CC0. */
1714 if (REG_P (dest))
1715 {
1716 /* If register alignment is being enforced for multi-word items in all
1717 cases except for parameters, it is possible to have a register copy
1718 insn referencing a hard register that is not allowed to contain the
1719 mode being copied and which would not be valid as an operand of most
1720 insns. Eliminate this problem by not combining with such an insn.
1721
1722 Also, on some machines we don't want to extend the life of a hard
1723 register. */
1724
1725 if (REG_P (src)
1726 && ((REGNO (dest) < FIRST_PSEUDO_REGISTER
1727 && ! HARD_REGNO_MODE_OK (REGNO (dest), GET_MODE (dest)))
1728 /* Don't extend the life of a hard register unless it is
1729 user variable (if we have few registers) or it can't
1730 fit into the desired register (meaning something special
1731 is going on).
1732 Also avoid substituting a return register into I3, because
1733 reload can't handle a conflict with constraints of other
1734 inputs. */
1735 || (REGNO (src) < FIRST_PSEUDO_REGISTER
1736 && ! HARD_REGNO_MODE_OK (REGNO (src), GET_MODE (src)))))
1737 return 0;
1738 }
1739 else if (GET_CODE (dest) != CC0)
1740 return 0;
1741
1742
1743 if (GET_CODE (PATTERN (i3)) == PARALLEL)
1744 for (i = XVECLEN (PATTERN (i3), 0) - 1; i >= 0; i--)
1745 if (GET_CODE (XVECEXP (PATTERN (i3), 0, i)) == CLOBBER)
1746 {
1747 /* Don't substitute for a register intended as a clobberable
1748 operand. */
1749 rtx reg = XEXP (XVECEXP (PATTERN (i3), 0, i), 0);
1750 if (rtx_equal_p (reg, dest))
1751 return 0;
1752
1753 /* If the clobber represents an earlyclobber operand, we must not
1754 substitute an expression containing the clobbered register.
1755 As we do not analyze the constraint strings here, we have to
1756 make the conservative assumption. However, if the register is
1757 a fixed hard reg, the clobber cannot represent any operand;
1758 we leave it up to the machine description to either accept or
1759 reject use-and-clobber patterns. */
1760 if (!REG_P (reg)
1761 || REGNO (reg) >= FIRST_PSEUDO_REGISTER
1762 || !fixed_regs[REGNO (reg)])
1763 if (reg_overlap_mentioned_p (reg, src))
1764 return 0;
1765 }
1766
1767 /* If INSN contains anything volatile, or is an `asm' (whether volatile
1768 or not), reject, unless nothing volatile comes between it and I3 */
1769
1770 if (GET_CODE (src) == ASM_OPERANDS || volatile_refs_p (src))
1771 {
1772 /* Make sure succ doesn't contain a volatile reference. */
1773 if (succ != 0 && volatile_refs_p (PATTERN (succ)))
1774 return 0;
1775
1776 for (p = NEXT_INSN (insn); p != i3; p = NEXT_INSN (p))
1777 if (INSN_P (p) && p != succ && volatile_refs_p (PATTERN (p)))
1778 return 0;
1779 }
1780
1781 /* If INSN is an asm, and DEST is a hard register, reject, since it has
1782 to be an explicit register variable, and was chosen for a reason. */
1783
1784 if (GET_CODE (src) == ASM_OPERANDS
1785 && REG_P (dest) && REGNO (dest) < FIRST_PSEUDO_REGISTER)
1786 return 0;
1787
1788 /* If there are any volatile insns between INSN and I3, reject, because
1789 they might affect machine state. */
1790
1791 for (p = NEXT_INSN (insn); p != i3; p = NEXT_INSN (p))
1792 if (INSN_P (p) && p != succ && volatile_insn_p (PATTERN (p)))
1793 return 0;
1794
1795 /* If INSN contains an autoincrement or autodecrement, make sure that
1796 register is not used between there and I3, and not already used in
1797 I3 either. Neither must it be used in PRED or SUCC, if they exist.
1798 Also insist that I3 not be a jump; if it were one
1799 and the incremented register were spilled, we would lose. */
1800
1801 #ifdef AUTO_INC_DEC
1802 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1803 if (REG_NOTE_KIND (link) == REG_INC
1804 && (JUMP_P (i3)
1805 || reg_used_between_p (XEXP (link, 0), insn, i3)
1806 || (pred != NULL_RTX
1807 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (pred)))
1808 || (succ != NULL_RTX
1809 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (succ)))
1810 || reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i3))))
1811 return 0;
1812 #endif
1813
1814 #ifdef HAVE_cc0
1815 /* Don't combine an insn that follows a CC0-setting insn.
1816 An insn that uses CC0 must not be separated from the one that sets it.
1817 We do, however, allow I2 to follow a CC0-setting insn if that insn
1818 is passed as I1; in that case it will be deleted also.
1819 We also allow combining in this case if all the insns are adjacent
1820 because that would leave the two CC0 insns adjacent as well.
1821 It would be more logical to test whether CC0 occurs inside I1 or I2,
1822 but that would be much slower, and this ought to be equivalent. */
1823
1824 p = prev_nonnote_insn (insn);
1825 if (p && p != pred && NONJUMP_INSN_P (p) && sets_cc0_p (PATTERN (p))
1826 && ! all_adjacent)
1827 return 0;
1828 #endif
1829
1830 /* If we get here, we have passed all the tests and the combination is
1831 to be allowed. */
1832
1833 *pdest = dest;
1834 *psrc = src;
1835
1836 return 1;
1837 }
1838 \f
1839 /* LOC is the location within I3 that contains its pattern or the component
1840 of a PARALLEL of the pattern. We validate that it is valid for combining.
1841
1842 One problem is if I3 modifies its output, as opposed to replacing it
1843 entirely, we can't allow the output to contain I2DEST or I1DEST as doing
1844 so would produce an insn that is not equivalent to the original insns.
1845
1846 Consider:
1847
1848 (set (reg:DI 101) (reg:DI 100))
1849 (set (subreg:SI (reg:DI 101) 0) <foo>)
1850
1851 This is NOT equivalent to:
1852
1853 (parallel [(set (subreg:SI (reg:DI 100) 0) <foo>)
1854 (set (reg:DI 101) (reg:DI 100))])
1855
1856 Not only does this modify 100 (in which case it might still be valid
1857 if 100 were dead in I2), it sets 101 to the ORIGINAL value of 100.
1858
1859 We can also run into a problem if I2 sets a register that I1
1860 uses and I1 gets directly substituted into I3 (not via I2). In that
1861 case, we would be getting the wrong value of I2DEST into I3, so we
1862 must reject the combination. This case occurs when I2 and I1 both
1863 feed into I3, rather than when I1 feeds into I2, which feeds into I3.
1864 If I1_NOT_IN_SRC is nonzero, it means that finding I1 in the source
1865 of a SET must prevent combination from occurring.
1866
1867 Before doing the above check, we first try to expand a field assignment
1868 into a set of logical operations.
1869
1870 If PI3_DEST_KILLED is nonzero, it is a pointer to a location in which
1871 we place a register that is both set and used within I3. If more than one
1872 such register is detected, we fail.
1873
1874 Return 1 if the combination is valid, zero otherwise. */
1875
1876 static int
1877 combinable_i3pat (rtx i3, rtx *loc, rtx i2dest, rtx i1dest,
1878 int i1_not_in_src, rtx *pi3dest_killed)
1879 {
1880 rtx x = *loc;
1881
1882 if (GET_CODE (x) == SET)
1883 {
1884 rtx set = x ;
1885 rtx dest = SET_DEST (set);
1886 rtx src = SET_SRC (set);
1887 rtx inner_dest = dest;
1888 rtx subdest;
1889
1890 while (GET_CODE (inner_dest) == STRICT_LOW_PART
1891 || GET_CODE (inner_dest) == SUBREG
1892 || GET_CODE (inner_dest) == ZERO_EXTRACT)
1893 inner_dest = XEXP (inner_dest, 0);
1894
1895 /* Check for the case where I3 modifies its output, as discussed
1896 above. We don't want to prevent pseudos from being combined
1897 into the address of a MEM, so only prevent the combination if
1898 i1 or i2 set the same MEM. */
1899 if ((inner_dest != dest &&
1900 (!MEM_P (inner_dest)
1901 || rtx_equal_p (i2dest, inner_dest)
1902 || (i1dest && rtx_equal_p (i1dest, inner_dest)))
1903 && (reg_overlap_mentioned_p (i2dest, inner_dest)
1904 || (i1dest && reg_overlap_mentioned_p (i1dest, inner_dest))))
1905
1906 /* This is the same test done in can_combine_p except we can't test
1907 all_adjacent; we don't have to, since this instruction will stay
1908 in place, thus we are not considering increasing the lifetime of
1909 INNER_DEST.
1910
1911 Also, if this insn sets a function argument, combining it with
1912 something that might need a spill could clobber a previous
1913 function argument; the all_adjacent test in can_combine_p also
1914 checks this; here, we do a more specific test for this case. */
1915
1916 || (REG_P (inner_dest)
1917 && REGNO (inner_dest) < FIRST_PSEUDO_REGISTER
1918 && (! HARD_REGNO_MODE_OK (REGNO (inner_dest),
1919 GET_MODE (inner_dest))))
1920 || (i1_not_in_src && reg_overlap_mentioned_p (i1dest, src)))
1921 return 0;
1922
1923 /* If DEST is used in I3, it is being killed in this insn, so
1924 record that for later. We have to consider paradoxical
1925 subregs here, since they kill the whole register, but we
1926 ignore partial subregs, STRICT_LOW_PART, etc.
1927 Never add REG_DEAD notes for the FRAME_POINTER_REGNUM or the
1928 STACK_POINTER_REGNUM, since these are always considered to be
1929 live. Similarly for ARG_POINTER_REGNUM if it is fixed. */
1930 subdest = dest;
1931 if (GET_CODE (subdest) == SUBREG
1932 && (GET_MODE_SIZE (GET_MODE (subdest))
1933 >= GET_MODE_SIZE (GET_MODE (SUBREG_REG (subdest)))))
1934 subdest = SUBREG_REG (subdest);
1935 if (pi3dest_killed
1936 && REG_P (subdest)
1937 && reg_referenced_p (subdest, PATTERN (i3))
1938 && REGNO (subdest) != FRAME_POINTER_REGNUM
1939 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
1940 && REGNO (subdest) != HARD_FRAME_POINTER_REGNUM
1941 #endif
1942 #if ARG_POINTER_REGNUM != FRAME_POINTER_REGNUM
1943 && (REGNO (subdest) != ARG_POINTER_REGNUM
1944 || ! fixed_regs [REGNO (subdest)])
1945 #endif
1946 && REGNO (subdest) != STACK_POINTER_REGNUM)
1947 {
1948 if (*pi3dest_killed)
1949 return 0;
1950
1951 *pi3dest_killed = subdest;
1952 }
1953 }
1954
1955 else if (GET_CODE (x) == PARALLEL)
1956 {
1957 int i;
1958
1959 for (i = 0; i < XVECLEN (x, 0); i++)
1960 if (! combinable_i3pat (i3, &XVECEXP (x, 0, i), i2dest, i1dest,
1961 i1_not_in_src, pi3dest_killed))
1962 return 0;
1963 }
1964
1965 return 1;
1966 }
1967 \f
1968 /* Return 1 if X is an arithmetic expression that contains a multiplication
1969 and division. We don't count multiplications by powers of two here. */
1970
1971 static int
1972 contains_muldiv (rtx x)
1973 {
1974 switch (GET_CODE (x))
1975 {
1976 case MOD: case DIV: case UMOD: case UDIV:
1977 return 1;
1978
1979 case MULT:
1980 return ! (GET_CODE (XEXP (x, 1)) == CONST_INT
1981 && exact_log2 (INTVAL (XEXP (x, 1))) >= 0);
1982 default:
1983 if (BINARY_P (x))
1984 return contains_muldiv (XEXP (x, 0))
1985 || contains_muldiv (XEXP (x, 1));
1986
1987 if (UNARY_P (x))
1988 return contains_muldiv (XEXP (x, 0));
1989
1990 return 0;
1991 }
1992 }
1993 \f
1994 /* Determine whether INSN can be used in a combination. Return nonzero if
1995 not. This is used in try_combine to detect early some cases where we
1996 can't perform combinations. */
1997
1998 static int
1999 cant_combine_insn_p (rtx insn)
2000 {
2001 rtx set;
2002 rtx src, dest;
2003
2004 /* If this isn't really an insn, we can't do anything.
2005 This can occur when flow deletes an insn that it has merged into an
2006 auto-increment address. */
2007 if (! INSN_P (insn))
2008 return 1;
2009
2010 /* Never combine loads and stores involving hard regs that are likely
2011 to be spilled. The register allocator can usually handle such
2012 reg-reg moves by tying. If we allow the combiner to make
2013 substitutions of likely-spilled regs, reload might die.
2014 As an exception, we allow combinations involving fixed regs; these are
2015 not available to the register allocator so there's no risk involved. */
2016
2017 set = single_set (insn);
2018 if (! set)
2019 return 0;
2020 src = SET_SRC (set);
2021 dest = SET_DEST (set);
2022 if (GET_CODE (src) == SUBREG)
2023 src = SUBREG_REG (src);
2024 if (GET_CODE (dest) == SUBREG)
2025 dest = SUBREG_REG (dest);
2026 if (REG_P (src) && REG_P (dest)
2027 && ((REGNO (src) < FIRST_PSEUDO_REGISTER
2028 && ! fixed_regs[REGNO (src)]
2029 && CLASS_LIKELY_SPILLED_P (REGNO_REG_CLASS (REGNO (src))))
2030 || (REGNO (dest) < FIRST_PSEUDO_REGISTER
2031 && ! fixed_regs[REGNO (dest)]
2032 && CLASS_LIKELY_SPILLED_P (REGNO_REG_CLASS (REGNO (dest))))))
2033 return 1;
2034
2035 return 0;
2036 }
2037
2038 struct likely_spilled_retval_info
2039 {
2040 unsigned regno, nregs;
2041 unsigned mask;
2042 };
2043
2044 /* Called via note_stores by likely_spilled_retval_p. Remove from info->mask
2045 hard registers that are known to be written to / clobbered in full. */
2046 static void
2047 likely_spilled_retval_1 (rtx x, const_rtx set, void *data)
2048 {
2049 struct likely_spilled_retval_info *info = data;
2050 unsigned regno, nregs;
2051 unsigned new_mask;
2052
2053 if (!REG_P (XEXP (set, 0)))
2054 return;
2055 regno = REGNO (x);
2056 if (regno >= info->regno + info->nregs)
2057 return;
2058 nregs = hard_regno_nregs[regno][GET_MODE (x)];
2059 if (regno + nregs <= info->regno)
2060 return;
2061 new_mask = (2U << (nregs - 1)) - 1;
2062 if (regno < info->regno)
2063 new_mask >>= info->regno - regno;
2064 else
2065 new_mask <<= regno - info->regno;
2066 info->mask &= ~new_mask;
2067 }
2068
2069 /* Return nonzero iff part of the return value is live during INSN, and
2070 it is likely spilled. This can happen when more than one insn is needed
2071 to copy the return value, e.g. when we consider to combine into the
2072 second copy insn for a complex value. */
2073
2074 static int
2075 likely_spilled_retval_p (rtx insn)
2076 {
2077 rtx use = BB_END (this_basic_block);
2078 rtx reg, p;
2079 unsigned regno, nregs;
2080 /* We assume here that no machine mode needs more than
2081 32 hard registers when the value overlaps with a register
2082 for which FUNCTION_VALUE_REGNO_P is true. */
2083 unsigned mask;
2084 struct likely_spilled_retval_info info;
2085
2086 if (!NONJUMP_INSN_P (use) || GET_CODE (PATTERN (use)) != USE || insn == use)
2087 return 0;
2088 reg = XEXP (PATTERN (use), 0);
2089 if (!REG_P (reg) || !FUNCTION_VALUE_REGNO_P (REGNO (reg)))
2090 return 0;
2091 regno = REGNO (reg);
2092 nregs = hard_regno_nregs[regno][GET_MODE (reg)];
2093 if (nregs == 1)
2094 return 0;
2095 mask = (2U << (nregs - 1)) - 1;
2096
2097 /* Disregard parts of the return value that are set later. */
2098 info.regno = regno;
2099 info.nregs = nregs;
2100 info.mask = mask;
2101 for (p = PREV_INSN (use); info.mask && p != insn; p = PREV_INSN (p))
2102 if (INSN_P (p))
2103 note_stores (PATTERN (p), likely_spilled_retval_1, &info);
2104 mask = info.mask;
2105
2106 /* Check if any of the (probably) live return value registers is
2107 likely spilled. */
2108 nregs --;
2109 do
2110 {
2111 if ((mask & 1 << nregs)
2112 && CLASS_LIKELY_SPILLED_P (REGNO_REG_CLASS (regno + nregs)))
2113 return 1;
2114 } while (nregs--);
2115 return 0;
2116 }
2117
2118 /* Adjust INSN after we made a change to its destination.
2119
2120 Changing the destination can invalidate notes that say something about
2121 the results of the insn and a LOG_LINK pointing to the insn. */
2122
2123 static void
2124 adjust_for_new_dest (rtx insn)
2125 {
2126 /* For notes, be conservative and simply remove them. */
2127 remove_reg_equal_equiv_notes (insn);
2128
2129 /* The new insn will have a destination that was previously the destination
2130 of an insn just above it. Call distribute_links to make a LOG_LINK from
2131 the next use of that destination. */
2132 distribute_links (gen_rtx_INSN_LIST (VOIDmode, insn, NULL_RTX));
2133
2134 df_insn_rescan (insn);
2135 }
2136
2137 /* Return TRUE if combine can reuse reg X in mode MODE.
2138 ADDED_SETS is nonzero if the original set is still required. */
2139 static bool
2140 can_change_dest_mode (rtx x, int added_sets, enum machine_mode mode)
2141 {
2142 unsigned int regno;
2143
2144 if (!REG_P(x))
2145 return false;
2146
2147 regno = REGNO (x);
2148 /* Allow hard registers if the new mode is legal, and occupies no more
2149 registers than the old mode. */
2150 if (regno < FIRST_PSEUDO_REGISTER)
2151 return (HARD_REGNO_MODE_OK (regno, mode)
2152 && (hard_regno_nregs[regno][GET_MODE (x)]
2153 >= hard_regno_nregs[regno][mode]));
2154
2155 /* Or a pseudo that is only used once. */
2156 return (REG_N_SETS (regno) == 1 && !added_sets
2157 && !REG_USERVAR_P (x));
2158 }
2159
2160
2161 /* Check whether X, the destination of a set, refers to part of
2162 the register specified by REG. */
2163
2164 static bool
2165 reg_subword_p (rtx x, rtx reg)
2166 {
2167 /* Check that reg is an integer mode register. */
2168 if (!REG_P (reg) || GET_MODE_CLASS (GET_MODE (reg)) != MODE_INT)
2169 return false;
2170
2171 if (GET_CODE (x) == STRICT_LOW_PART
2172 || GET_CODE (x) == ZERO_EXTRACT)
2173 x = XEXP (x, 0);
2174
2175 return GET_CODE (x) == SUBREG
2176 && SUBREG_REG (x) == reg
2177 && GET_MODE_CLASS (GET_MODE (x)) == MODE_INT;
2178 }
2179
2180
2181 /* Try to combine the insns I1 and I2 into I3.
2182 Here I1 and I2 appear earlier than I3.
2183 I1 can be zero; then we combine just I2 into I3.
2184
2185 If we are combining three insns and the resulting insn is not recognized,
2186 try splitting it into two insns. If that happens, I2 and I3 are retained
2187 and I1 is pseudo-deleted by turning it into a NOTE. Otherwise, I1 and I2
2188 are pseudo-deleted.
2189
2190 Return 0 if the combination does not work. Then nothing is changed.
2191 If we did the combination, return the insn at which combine should
2192 resume scanning.
2193
2194 Set NEW_DIRECT_JUMP_P to a nonzero value if try_combine creates a
2195 new direct jump instruction. */
2196
2197 static rtx
2198 try_combine (rtx i3, rtx i2, rtx i1, int *new_direct_jump_p)
2199 {
2200 /* New patterns for I3 and I2, respectively. */
2201 rtx newpat, newi2pat = 0;
2202 rtvec newpat_vec_with_clobbers = 0;
2203 int substed_i2 = 0, substed_i1 = 0;
2204 /* Indicates need to preserve SET in I1 or I2 in I3 if it is not dead. */
2205 int added_sets_1, added_sets_2;
2206 /* Total number of SETs to put into I3. */
2207 int total_sets;
2208 /* Nonzero if I2's body now appears in I3. */
2209 int i2_is_used;
2210 /* INSN_CODEs for new I3, new I2, and user of condition code. */
2211 int insn_code_number, i2_code_number = 0, other_code_number = 0;
2212 /* Contains I3 if the destination of I3 is used in its source, which means
2213 that the old life of I3 is being killed. If that usage is placed into
2214 I2 and not in I3, a REG_DEAD note must be made. */
2215 rtx i3dest_killed = 0;
2216 /* SET_DEST and SET_SRC of I2 and I1. */
2217 rtx i2dest, i2src, i1dest = 0, i1src = 0;
2218 /* PATTERN (I1) and PATTERN (I2), or a copy of it in certain cases. */
2219 rtx i1pat = 0, i2pat = 0;
2220 /* Indicates if I2DEST or I1DEST is in I2SRC or I1_SRC. */
2221 int i2dest_in_i2src = 0, i1dest_in_i1src = 0, i2dest_in_i1src = 0;
2222 int i2dest_killed = 0, i1dest_killed = 0;
2223 int i1_feeds_i3 = 0;
2224 /* Notes that must be added to REG_NOTES in I3 and I2. */
2225 rtx new_i3_notes, new_i2_notes;
2226 /* Notes that we substituted I3 into I2 instead of the normal case. */
2227 int i3_subst_into_i2 = 0;
2228 /* Notes that I1, I2 or I3 is a MULT operation. */
2229 int have_mult = 0;
2230 int swap_i2i3 = 0;
2231
2232 int maxreg;
2233 rtx temp;
2234 rtx link;
2235 rtx other_pat = 0;
2236 rtx new_other_notes;
2237 int i;
2238
2239 /* Exit early if one of the insns involved can't be used for
2240 combinations. */
2241 if (cant_combine_insn_p (i3)
2242 || cant_combine_insn_p (i2)
2243 || (i1 && cant_combine_insn_p (i1))
2244 || likely_spilled_retval_p (i3)
2245 /* We also can't do anything if I3 has a
2246 REG_LIBCALL note since we don't want to disrupt the contiguity of a
2247 libcall. */
2248 #if 0
2249 /* ??? This gives worse code, and appears to be unnecessary, since no
2250 pass after flow uses REG_LIBCALL/REG_RETVAL notes. */
2251 || find_reg_note (i3, REG_LIBCALL, NULL_RTX)
2252 #endif
2253 )
2254 return 0;
2255
2256 combine_attempts++;
2257 undobuf.other_insn = 0;
2258
2259 /* Reset the hard register usage information. */
2260 CLEAR_HARD_REG_SET (newpat_used_regs);
2261
2262 /* If I1 and I2 both feed I3, they can be in any order. To simplify the
2263 code below, set I1 to be the earlier of the two insns. */
2264 if (i1 && DF_INSN_LUID (i1) > DF_INSN_LUID (i2))
2265 temp = i1, i1 = i2, i2 = temp;
2266
2267 added_links_insn = 0;
2268
2269 /* First check for one important special-case that the code below will
2270 not handle. Namely, the case where I1 is zero, I2 is a PARALLEL
2271 and I3 is a SET whose SET_SRC is a SET_DEST in I2. In that case,
2272 we may be able to replace that destination with the destination of I3.
2273 This occurs in the common code where we compute both a quotient and
2274 remainder into a structure, in which case we want to do the computation
2275 directly into the structure to avoid register-register copies.
2276
2277 Note that this case handles both multiple sets in I2 and also
2278 cases where I2 has a number of CLOBBER or PARALLELs.
2279
2280 We make very conservative checks below and only try to handle the
2281 most common cases of this. For example, we only handle the case
2282 where I2 and I3 are adjacent to avoid making difficult register
2283 usage tests. */
2284
2285 if (i1 == 0 && NONJUMP_INSN_P (i3) && GET_CODE (PATTERN (i3)) == SET
2286 && REG_P (SET_SRC (PATTERN (i3)))
2287 && REGNO (SET_SRC (PATTERN (i3))) >= FIRST_PSEUDO_REGISTER
2288 && find_reg_note (i3, REG_DEAD, SET_SRC (PATTERN (i3)))
2289 && GET_CODE (PATTERN (i2)) == PARALLEL
2290 && ! side_effects_p (SET_DEST (PATTERN (i3)))
2291 /* If the dest of I3 is a ZERO_EXTRACT or STRICT_LOW_PART, the code
2292 below would need to check what is inside (and reg_overlap_mentioned_p
2293 doesn't support those codes anyway). Don't allow those destinations;
2294 the resulting insn isn't likely to be recognized anyway. */
2295 && GET_CODE (SET_DEST (PATTERN (i3))) != ZERO_EXTRACT
2296 && GET_CODE (SET_DEST (PATTERN (i3))) != STRICT_LOW_PART
2297 && ! reg_overlap_mentioned_p (SET_SRC (PATTERN (i3)),
2298 SET_DEST (PATTERN (i3)))
2299 && next_real_insn (i2) == i3)
2300 {
2301 rtx p2 = PATTERN (i2);
2302
2303 /* Make sure that the destination of I3,
2304 which we are going to substitute into one output of I2,
2305 is not used within another output of I2. We must avoid making this:
2306 (parallel [(set (mem (reg 69)) ...)
2307 (set (reg 69) ...)])
2308 which is not well-defined as to order of actions.
2309 (Besides, reload can't handle output reloads for this.)
2310
2311 The problem can also happen if the dest of I3 is a memory ref,
2312 if another dest in I2 is an indirect memory ref. */
2313 for (i = 0; i < XVECLEN (p2, 0); i++)
2314 if ((GET_CODE (XVECEXP (p2, 0, i)) == SET
2315 || GET_CODE (XVECEXP (p2, 0, i)) == CLOBBER)
2316 && reg_overlap_mentioned_p (SET_DEST (PATTERN (i3)),
2317 SET_DEST (XVECEXP (p2, 0, i))))
2318 break;
2319
2320 if (i == XVECLEN (p2, 0))
2321 for (i = 0; i < XVECLEN (p2, 0); i++)
2322 if ((GET_CODE (XVECEXP (p2, 0, i)) == SET
2323 || GET_CODE (XVECEXP (p2, 0, i)) == CLOBBER)
2324 && SET_DEST (XVECEXP (p2, 0, i)) == SET_SRC (PATTERN (i3)))
2325 {
2326 combine_merges++;
2327
2328 subst_insn = i3;
2329 subst_low_luid = DF_INSN_LUID (i2);
2330
2331 added_sets_2 = added_sets_1 = 0;
2332 i2dest = SET_SRC (PATTERN (i3));
2333 i2dest_killed = dead_or_set_p (i2, i2dest);
2334
2335 /* Replace the dest in I2 with our dest and make the resulting
2336 insn the new pattern for I3. Then skip to where we
2337 validate the pattern. Everything was set up above. */
2338 SUBST (SET_DEST (XVECEXP (p2, 0, i)),
2339 SET_DEST (PATTERN (i3)));
2340
2341 newpat = p2;
2342 i3_subst_into_i2 = 1;
2343 goto validate_replacement;
2344 }
2345 }
2346
2347 /* If I2 is setting a pseudo to a constant and I3 is setting some
2348 sub-part of it to another constant, merge them by making a new
2349 constant. */
2350 if (i1 == 0
2351 && (temp = single_set (i2)) != 0
2352 && (GET_CODE (SET_SRC (temp)) == CONST_INT
2353 || GET_CODE (SET_SRC (temp)) == CONST_DOUBLE)
2354 && GET_CODE (PATTERN (i3)) == SET
2355 && (GET_CODE (SET_SRC (PATTERN (i3))) == CONST_INT
2356 || GET_CODE (SET_SRC (PATTERN (i3))) == CONST_DOUBLE)
2357 && reg_subword_p (SET_DEST (PATTERN (i3)), SET_DEST (temp)))
2358 {
2359 rtx dest = SET_DEST (PATTERN (i3));
2360 int offset = -1;
2361 int width = 0;
2362
2363 if (GET_CODE (dest) == ZERO_EXTRACT)
2364 {
2365 if (GET_CODE (XEXP (dest, 1)) == CONST_INT
2366 && GET_CODE (XEXP (dest, 2)) == CONST_INT)
2367 {
2368 width = INTVAL (XEXP (dest, 1));
2369 offset = INTVAL (XEXP (dest, 2));
2370 dest = XEXP (dest, 0);
2371 if (BITS_BIG_ENDIAN)
2372 offset = GET_MODE_BITSIZE (GET_MODE (dest)) - width - offset;
2373 }
2374 }
2375 else
2376 {
2377 if (GET_CODE (dest) == STRICT_LOW_PART)
2378 dest = XEXP (dest, 0);
2379 width = GET_MODE_BITSIZE (GET_MODE (dest));
2380 offset = 0;
2381 }
2382
2383 if (offset >= 0)
2384 {
2385 /* If this is the low part, we're done. */
2386 if (subreg_lowpart_p (dest))
2387 ;
2388 /* Handle the case where inner is twice the size of outer. */
2389 else if (GET_MODE_BITSIZE (GET_MODE (SET_DEST (temp)))
2390 == 2 * GET_MODE_BITSIZE (GET_MODE (dest)))
2391 offset += GET_MODE_BITSIZE (GET_MODE (dest));
2392 /* Otherwise give up for now. */
2393 else
2394 offset = -1;
2395 }
2396
2397 if (offset >= 0
2398 && (GET_MODE_BITSIZE (GET_MODE (SET_DEST (temp)))
2399 <= HOST_BITS_PER_WIDE_INT * 2))
2400 {
2401 HOST_WIDE_INT mhi, ohi, ihi;
2402 HOST_WIDE_INT mlo, olo, ilo;
2403 rtx inner = SET_SRC (PATTERN (i3));
2404 rtx outer = SET_SRC (temp);
2405
2406 if (GET_CODE (outer) == CONST_INT)
2407 {
2408 olo = INTVAL (outer);
2409 ohi = olo < 0 ? -1 : 0;
2410 }
2411 else
2412 {
2413 olo = CONST_DOUBLE_LOW (outer);
2414 ohi = CONST_DOUBLE_HIGH (outer);
2415 }
2416
2417 if (GET_CODE (inner) == CONST_INT)
2418 {
2419 ilo = INTVAL (inner);
2420 ihi = ilo < 0 ? -1 : 0;
2421 }
2422 else
2423 {
2424 ilo = CONST_DOUBLE_LOW (inner);
2425 ihi = CONST_DOUBLE_HIGH (inner);
2426 }
2427
2428 if (width < HOST_BITS_PER_WIDE_INT)
2429 {
2430 mlo = ((unsigned HOST_WIDE_INT) 1 << width) - 1;
2431 mhi = 0;
2432 }
2433 else if (width < HOST_BITS_PER_WIDE_INT * 2)
2434 {
2435 mhi = ((unsigned HOST_WIDE_INT) 1
2436 << (width - HOST_BITS_PER_WIDE_INT)) - 1;
2437 mlo = -1;
2438 }
2439 else
2440 {
2441 mlo = -1;
2442 mhi = -1;
2443 }
2444
2445 ilo &= mlo;
2446 ihi &= mhi;
2447
2448 if (offset >= HOST_BITS_PER_WIDE_INT)
2449 {
2450 mhi = mlo << (offset - HOST_BITS_PER_WIDE_INT);
2451 mlo = 0;
2452 ihi = ilo << (offset - HOST_BITS_PER_WIDE_INT);
2453 ilo = 0;
2454 }
2455 else if (offset > 0)
2456 {
2457 mhi = (mhi << offset) | ((unsigned HOST_WIDE_INT) mlo
2458 >> (HOST_BITS_PER_WIDE_INT - offset));
2459 mlo = mlo << offset;
2460 ihi = (ihi << offset) | ((unsigned HOST_WIDE_INT) ilo
2461 >> (HOST_BITS_PER_WIDE_INT - offset));
2462 ilo = ilo << offset;
2463 }
2464
2465 olo = (olo & ~mlo) | ilo;
2466 ohi = (ohi & ~mhi) | ihi;
2467
2468 combine_merges++;
2469 subst_insn = i3;
2470 subst_low_luid = DF_INSN_LUID (i2);
2471 added_sets_2 = added_sets_1 = 0;
2472 i2dest = SET_DEST (temp);
2473 i2dest_killed = dead_or_set_p (i2, i2dest);
2474
2475 SUBST (SET_SRC (temp),
2476 immed_double_const (olo, ohi, GET_MODE (SET_DEST (temp))));
2477
2478 newpat = PATTERN (i2);
2479 goto validate_replacement;
2480 }
2481 }
2482
2483 #ifndef HAVE_cc0
2484 /* If we have no I1 and I2 looks like:
2485 (parallel [(set (reg:CC X) (compare:CC OP (const_int 0)))
2486 (set Y OP)])
2487 make up a dummy I1 that is
2488 (set Y OP)
2489 and change I2 to be
2490 (set (reg:CC X) (compare:CC Y (const_int 0)))
2491
2492 (We can ignore any trailing CLOBBERs.)
2493
2494 This undoes a previous combination and allows us to match a branch-and-
2495 decrement insn. */
2496
2497 if (i1 == 0 && GET_CODE (PATTERN (i2)) == PARALLEL
2498 && XVECLEN (PATTERN (i2), 0) >= 2
2499 && GET_CODE (XVECEXP (PATTERN (i2), 0, 0)) == SET
2500 && (GET_MODE_CLASS (GET_MODE (SET_DEST (XVECEXP (PATTERN (i2), 0, 0))))
2501 == MODE_CC)
2502 && GET_CODE (SET_SRC (XVECEXP (PATTERN (i2), 0, 0))) == COMPARE
2503 && XEXP (SET_SRC (XVECEXP (PATTERN (i2), 0, 0)), 1) == const0_rtx
2504 && GET_CODE (XVECEXP (PATTERN (i2), 0, 1)) == SET
2505 && REG_P (SET_DEST (XVECEXP (PATTERN (i2), 0, 1)))
2506 && rtx_equal_p (XEXP (SET_SRC (XVECEXP (PATTERN (i2), 0, 0)), 0),
2507 SET_SRC (XVECEXP (PATTERN (i2), 0, 1))))
2508 {
2509 for (i = XVECLEN (PATTERN (i2), 0) - 1; i >= 2; i--)
2510 if (GET_CODE (XVECEXP (PATTERN (i2), 0, i)) != CLOBBER)
2511 break;
2512
2513 if (i == 1)
2514 {
2515 /* We make I1 with the same INSN_UID as I2. This gives it
2516 the same DF_INSN_LUID for value tracking. Our fake I1 will
2517 never appear in the insn stream so giving it the same INSN_UID
2518 as I2 will not cause a problem. */
2519
2520 i1 = gen_rtx_INSN (VOIDmode, INSN_UID (i2), NULL_RTX, i2,
2521 BLOCK_FOR_INSN (i2), INSN_LOCATOR (i2),
2522 XVECEXP (PATTERN (i2), 0, 1), -1, NULL_RTX);
2523
2524 SUBST (PATTERN (i2), XVECEXP (PATTERN (i2), 0, 0));
2525 SUBST (XEXP (SET_SRC (PATTERN (i2)), 0),
2526 SET_DEST (PATTERN (i1)));
2527 }
2528 }
2529 #endif
2530
2531 /* Verify that I2 and I1 are valid for combining. */
2532 if (! can_combine_p (i2, i3, i1, NULL_RTX, &i2dest, &i2src)
2533 || (i1 && ! can_combine_p (i1, i3, NULL_RTX, i2, &i1dest, &i1src)))
2534 {
2535 undo_all ();
2536 return 0;
2537 }
2538
2539 /* Record whether I2DEST is used in I2SRC and similarly for the other
2540 cases. Knowing this will help in register status updating below. */
2541 i2dest_in_i2src = reg_overlap_mentioned_p (i2dest, i2src);
2542 i1dest_in_i1src = i1 && reg_overlap_mentioned_p (i1dest, i1src);
2543 i2dest_in_i1src = i1 && reg_overlap_mentioned_p (i2dest, i1src);
2544 i2dest_killed = dead_or_set_p (i2, i2dest);
2545 i1dest_killed = i1 && dead_or_set_p (i1, i1dest);
2546
2547 /* See if I1 directly feeds into I3. It does if I1DEST is not used
2548 in I2SRC. */
2549 i1_feeds_i3 = i1 && ! reg_overlap_mentioned_p (i1dest, i2src);
2550
2551 /* Ensure that I3's pattern can be the destination of combines. */
2552 if (! combinable_i3pat (i3, &PATTERN (i3), i2dest, i1dest,
2553 i1 && i2dest_in_i1src && i1_feeds_i3,
2554 &i3dest_killed))
2555 {
2556 undo_all ();
2557 return 0;
2558 }
2559
2560 /* See if any of the insns is a MULT operation. Unless one is, we will
2561 reject a combination that is, since it must be slower. Be conservative
2562 here. */
2563 if (GET_CODE (i2src) == MULT
2564 || (i1 != 0 && GET_CODE (i1src) == MULT)
2565 || (GET_CODE (PATTERN (i3)) == SET
2566 && GET_CODE (SET_SRC (PATTERN (i3))) == MULT))
2567 have_mult = 1;
2568
2569 /* If I3 has an inc, then give up if I1 or I2 uses the reg that is inc'd.
2570 We used to do this EXCEPT in one case: I3 has a post-inc in an
2571 output operand. However, that exception can give rise to insns like
2572 mov r3,(r3)+
2573 which is a famous insn on the PDP-11 where the value of r3 used as the
2574 source was model-dependent. Avoid this sort of thing. */
2575
2576 #if 0
2577 if (!(GET_CODE (PATTERN (i3)) == SET
2578 && REG_P (SET_SRC (PATTERN (i3)))
2579 && MEM_P (SET_DEST (PATTERN (i3)))
2580 && (GET_CODE (XEXP (SET_DEST (PATTERN (i3)), 0)) == POST_INC
2581 || GET_CODE (XEXP (SET_DEST (PATTERN (i3)), 0)) == POST_DEC)))
2582 /* It's not the exception. */
2583 #endif
2584 #ifdef AUTO_INC_DEC
2585 for (link = REG_NOTES (i3); link; link = XEXP (link, 1))
2586 if (REG_NOTE_KIND (link) == REG_INC
2587 && (reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i2))
2588 || (i1 != 0
2589 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i1)))))
2590 {
2591 undo_all ();
2592 return 0;
2593 }
2594 #endif
2595
2596 /* See if the SETs in I1 or I2 need to be kept around in the merged
2597 instruction: whenever the value set there is still needed past I3.
2598 For the SETs in I2, this is easy: we see if I2DEST dies or is set in I3.
2599
2600 For the SET in I1, we have two cases: If I1 and I2 independently
2601 feed into I3, the set in I1 needs to be kept around if I1DEST dies
2602 or is set in I3. Otherwise (if I1 feeds I2 which feeds I3), the set
2603 in I1 needs to be kept around unless I1DEST dies or is set in either
2604 I2 or I3. We can distinguish these cases by seeing if I2SRC mentions
2605 I1DEST. If so, we know I1 feeds into I2. */
2606
2607 added_sets_2 = ! dead_or_set_p (i3, i2dest);
2608
2609 added_sets_1
2610 = i1 && ! (i1_feeds_i3 ? dead_or_set_p (i3, i1dest)
2611 : (dead_or_set_p (i3, i1dest) || dead_or_set_p (i2, i1dest)));
2612
2613 /* If the set in I2 needs to be kept around, we must make a copy of
2614 PATTERN (I2), so that when we substitute I1SRC for I1DEST in
2615 PATTERN (I2), we are only substituting for the original I1DEST, not into
2616 an already-substituted copy. This also prevents making self-referential
2617 rtx. If I2 is a PARALLEL, we just need the piece that assigns I2SRC to
2618 I2DEST. */
2619
2620 if (added_sets_2)
2621 {
2622 if (GET_CODE (PATTERN (i2)) == PARALLEL)
2623 i2pat = gen_rtx_SET (VOIDmode, i2dest, copy_rtx (i2src));
2624 else
2625 i2pat = copy_rtx (PATTERN (i2));
2626 }
2627
2628 if (added_sets_1)
2629 {
2630 if (GET_CODE (PATTERN (i1)) == PARALLEL)
2631 i1pat = gen_rtx_SET (VOIDmode, i1dest, copy_rtx (i1src));
2632 else
2633 i1pat = copy_rtx (PATTERN (i1));
2634 }
2635
2636 combine_merges++;
2637
2638 /* Substitute in the latest insn for the regs set by the earlier ones. */
2639
2640 maxreg = max_reg_num ();
2641
2642 subst_insn = i3;
2643
2644 #ifndef HAVE_cc0
2645 /* Many machines that don't use CC0 have insns that can both perform an
2646 arithmetic operation and set the condition code. These operations will
2647 be represented as a PARALLEL with the first element of the vector
2648 being a COMPARE of an arithmetic operation with the constant zero.
2649 The second element of the vector will set some pseudo to the result
2650 of the same arithmetic operation. If we simplify the COMPARE, we won't
2651 match such a pattern and so will generate an extra insn. Here we test
2652 for this case, where both the comparison and the operation result are
2653 needed, and make the PARALLEL by just replacing I2DEST in I3SRC with
2654 I2SRC. Later we will make the PARALLEL that contains I2. */
2655
2656 if (i1 == 0 && added_sets_2 && GET_CODE (PATTERN (i3)) == SET
2657 && GET_CODE (SET_SRC (PATTERN (i3))) == COMPARE
2658 && XEXP (SET_SRC (PATTERN (i3)), 1) == const0_rtx
2659 && rtx_equal_p (XEXP (SET_SRC (PATTERN (i3)), 0), i2dest))
2660 {
2661 #ifdef SELECT_CC_MODE
2662 rtx *cc_use;
2663 enum machine_mode compare_mode;
2664 #endif
2665
2666 newpat = PATTERN (i3);
2667 SUBST (XEXP (SET_SRC (newpat), 0), i2src);
2668
2669 i2_is_used = 1;
2670
2671 #ifdef SELECT_CC_MODE
2672 /* See if a COMPARE with the operand we substituted in should be done
2673 with the mode that is currently being used. If not, do the same
2674 processing we do in `subst' for a SET; namely, if the destination
2675 is used only once, try to replace it with a register of the proper
2676 mode and also replace the COMPARE. */
2677 if (undobuf.other_insn == 0
2678 && (cc_use = find_single_use (SET_DEST (newpat), i3,
2679 &undobuf.other_insn))
2680 && ((compare_mode = SELECT_CC_MODE (GET_CODE (*cc_use),
2681 i2src, const0_rtx))
2682 != GET_MODE (SET_DEST (newpat))))
2683 {
2684 if (can_change_dest_mode(SET_DEST (newpat), added_sets_2,
2685 compare_mode))
2686 {
2687 unsigned int regno = REGNO (SET_DEST (newpat));
2688 rtx new_dest;
2689
2690 if (regno < FIRST_PSEUDO_REGISTER)
2691 new_dest = gen_rtx_REG (compare_mode, regno);
2692 else
2693 {
2694 SUBST_MODE (regno_reg_rtx[regno], compare_mode);
2695 new_dest = regno_reg_rtx[regno];
2696 }
2697
2698 SUBST (SET_DEST (newpat), new_dest);
2699 SUBST (XEXP (*cc_use, 0), new_dest);
2700 SUBST (SET_SRC (newpat),
2701 gen_rtx_COMPARE (compare_mode, i2src, const0_rtx));
2702 }
2703 else
2704 undobuf.other_insn = 0;
2705 }
2706 #endif
2707 }
2708 else
2709 #endif
2710 {
2711 /* It is possible that the source of I2 or I1 may be performing
2712 an unneeded operation, such as a ZERO_EXTEND of something
2713 that is known to have the high part zero. Handle that case
2714 by letting subst look at the innermost one of them.
2715
2716 Another way to do this would be to have a function that tries
2717 to simplify a single insn instead of merging two or more
2718 insns. We don't do this because of the potential of infinite
2719 loops and because of the potential extra memory required.
2720 However, doing it the way we are is a bit of a kludge and
2721 doesn't catch all cases.
2722
2723 But only do this if -fexpensive-optimizations since it slows
2724 things down and doesn't usually win.
2725
2726 This is not done in the COMPARE case above because the
2727 unmodified I2PAT is used in the PARALLEL and so a pattern
2728 with a modified I2SRC would not match. */
2729
2730 if (flag_expensive_optimizations)
2731 {
2732 /* Pass pc_rtx so no substitutions are done, just
2733 simplifications. */
2734 if (i1)
2735 {
2736 subst_low_luid = DF_INSN_LUID (i1);
2737 i1src = subst (i1src, pc_rtx, pc_rtx, 0, 0);
2738 }
2739 else
2740 {
2741 subst_low_luid = DF_INSN_LUID (i2);
2742 i2src = subst (i2src, pc_rtx, pc_rtx, 0, 0);
2743 }
2744 }
2745
2746 n_occurrences = 0; /* `subst' counts here */
2747
2748 /* If I1 feeds into I2 (not into I3) and I1DEST is in I1SRC, we
2749 need to make a unique copy of I2SRC each time we substitute it
2750 to avoid self-referential rtl. */
2751
2752 subst_low_luid = DF_INSN_LUID (i2);
2753 newpat = subst (PATTERN (i3), i2dest, i2src, 0,
2754 ! i1_feeds_i3 && i1dest_in_i1src);
2755 substed_i2 = 1;
2756
2757 /* Record whether i2's body now appears within i3's body. */
2758 i2_is_used = n_occurrences;
2759 }
2760
2761 /* If we already got a failure, don't try to do more. Otherwise,
2762 try to substitute in I1 if we have it. */
2763
2764 if (i1 && GET_CODE (newpat) != CLOBBER)
2765 {
2766 /* Check that an autoincrement side-effect on I1 has not been lost.
2767 This happens if I1DEST is mentioned in I2 and dies there, and
2768 has disappeared from the new pattern. */
2769 if ((FIND_REG_INC_NOTE (i1, NULL_RTX) != 0
2770 && !i1_feeds_i3
2771 && dead_or_set_p (i2, i1dest)
2772 && !reg_overlap_mentioned_p (i1dest, newpat))
2773 /* Before we can do this substitution, we must redo the test done
2774 above (see detailed comments there) that ensures that I1DEST
2775 isn't mentioned in any SETs in NEWPAT that are field assignments. */
2776 || !combinable_i3pat (NULL_RTX, &newpat, i1dest, NULL_RTX, 0, 0))
2777 {
2778 undo_all ();
2779 return 0;
2780 }
2781
2782 n_occurrences = 0;
2783 subst_low_luid = DF_INSN_LUID (i1);
2784 newpat = subst (newpat, i1dest, i1src, 0, 0);
2785 substed_i1 = 1;
2786 }
2787
2788 /* Fail if an autoincrement side-effect has been duplicated. Be careful
2789 to count all the ways that I2SRC and I1SRC can be used. */
2790 if ((FIND_REG_INC_NOTE (i2, NULL_RTX) != 0
2791 && i2_is_used + added_sets_2 > 1)
2792 || (i1 != 0 && FIND_REG_INC_NOTE (i1, NULL_RTX) != 0
2793 && (n_occurrences + added_sets_1 + (added_sets_2 && ! i1_feeds_i3)
2794 > 1))
2795 /* Fail if we tried to make a new register. */
2796 || max_reg_num () != maxreg
2797 /* Fail if we couldn't do something and have a CLOBBER. */
2798 || GET_CODE (newpat) == CLOBBER
2799 /* Fail if this new pattern is a MULT and we didn't have one before
2800 at the outer level. */
2801 || (GET_CODE (newpat) == SET && GET_CODE (SET_SRC (newpat)) == MULT
2802 && ! have_mult))
2803 {
2804 undo_all ();
2805 return 0;
2806 }
2807
2808 /* If the actions of the earlier insns must be kept
2809 in addition to substituting them into the latest one,
2810 we must make a new PARALLEL for the latest insn
2811 to hold additional the SETs. */
2812
2813 if (added_sets_1 || added_sets_2)
2814 {
2815 combine_extras++;
2816
2817 if (GET_CODE (newpat) == PARALLEL)
2818 {
2819 rtvec old = XVEC (newpat, 0);
2820 total_sets = XVECLEN (newpat, 0) + added_sets_1 + added_sets_2;
2821 newpat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (total_sets));
2822 memcpy (XVEC (newpat, 0)->elem, &old->elem[0],
2823 sizeof (old->elem[0]) * old->num_elem);
2824 }
2825 else
2826 {
2827 rtx old = newpat;
2828 total_sets = 1 + added_sets_1 + added_sets_2;
2829 newpat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (total_sets));
2830 XVECEXP (newpat, 0, 0) = old;
2831 }
2832
2833 if (added_sets_1)
2834 XVECEXP (newpat, 0, --total_sets) = i1pat;
2835
2836 if (added_sets_2)
2837 {
2838 /* If there is no I1, use I2's body as is. We used to also not do
2839 the subst call below if I2 was substituted into I3,
2840 but that could lose a simplification. */
2841 if (i1 == 0)
2842 XVECEXP (newpat, 0, --total_sets) = i2pat;
2843 else
2844 /* See comment where i2pat is assigned. */
2845 XVECEXP (newpat, 0, --total_sets)
2846 = subst (i2pat, i1dest, i1src, 0, 0);
2847 }
2848 }
2849
2850 /* We come here when we are replacing a destination in I2 with the
2851 destination of I3. */
2852 validate_replacement:
2853
2854 /* Note which hard regs this insn has as inputs. */
2855 mark_used_regs_combine (newpat);
2856
2857 /* If recog_for_combine fails, it strips existing clobbers. If we'll
2858 consider splitting this pattern, we might need these clobbers. */
2859 if (i1 && GET_CODE (newpat) == PARALLEL
2860 && GET_CODE (XVECEXP (newpat, 0, XVECLEN (newpat, 0) - 1)) == CLOBBER)
2861 {
2862 int len = XVECLEN (newpat, 0);
2863
2864 newpat_vec_with_clobbers = rtvec_alloc (len);
2865 for (i = 0; i < len; i++)
2866 RTVEC_ELT (newpat_vec_with_clobbers, i) = XVECEXP (newpat, 0, i);
2867 }
2868
2869 /* Is the result of combination a valid instruction? */
2870 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
2871
2872 /* If the result isn't valid, see if it is a PARALLEL of two SETs where
2873 the second SET's destination is a register that is unused and isn't
2874 marked as an instruction that might trap in an EH region. In that case,
2875 we just need the first SET. This can occur when simplifying a divmod
2876 insn. We *must* test for this case here because the code below that
2877 splits two independent SETs doesn't handle this case correctly when it
2878 updates the register status.
2879
2880 It's pointless doing this if we originally had two sets, one from
2881 i3, and one from i2. Combining then splitting the parallel results
2882 in the original i2 again plus an invalid insn (which we delete).
2883 The net effect is only to move instructions around, which makes
2884 debug info less accurate.
2885
2886 Also check the case where the first SET's destination is unused.
2887 That would not cause incorrect code, but does cause an unneeded
2888 insn to remain. */
2889
2890 if (insn_code_number < 0
2891 && !(added_sets_2 && i1 == 0)
2892 && GET_CODE (newpat) == PARALLEL
2893 && XVECLEN (newpat, 0) == 2
2894 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
2895 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
2896 && asm_noperands (newpat) < 0)
2897 {
2898 rtx set0 = XVECEXP (newpat, 0, 0);
2899 rtx set1 = XVECEXP (newpat, 0, 1);
2900 rtx note;
2901
2902 if (((REG_P (SET_DEST (set1))
2903 && find_reg_note (i3, REG_UNUSED, SET_DEST (set1)))
2904 || (GET_CODE (SET_DEST (set1)) == SUBREG
2905 && find_reg_note (i3, REG_UNUSED, SUBREG_REG (SET_DEST (set1)))))
2906 && (!(note = find_reg_note (i3, REG_EH_REGION, NULL_RTX))
2907 || INTVAL (XEXP (note, 0)) <= 0)
2908 && ! side_effects_p (SET_SRC (set1)))
2909 {
2910 newpat = set0;
2911 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
2912 }
2913
2914 else if (((REG_P (SET_DEST (set0))
2915 && find_reg_note (i3, REG_UNUSED, SET_DEST (set0)))
2916 || (GET_CODE (SET_DEST (set0)) == SUBREG
2917 && find_reg_note (i3, REG_UNUSED,
2918 SUBREG_REG (SET_DEST (set0)))))
2919 && (!(note = find_reg_note (i3, REG_EH_REGION, NULL_RTX))
2920 || INTVAL (XEXP (note, 0)) <= 0)
2921 && ! side_effects_p (SET_SRC (set0)))
2922 {
2923 newpat = set1;
2924 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
2925
2926 if (insn_code_number >= 0)
2927 {
2928 /* If we will be able to accept this, we have made a
2929 change to the destination of I3. This requires us to
2930 do a few adjustments. */
2931
2932 PATTERN (i3) = newpat;
2933 adjust_for_new_dest (i3);
2934 }
2935 }
2936 }
2937
2938 /* If we were combining three insns and the result is a simple SET
2939 with no ASM_OPERANDS that wasn't recognized, try to split it into two
2940 insns. There are two ways to do this. It can be split using a
2941 machine-specific method (like when you have an addition of a large
2942 constant) or by combine in the function find_split_point. */
2943
2944 if (i1 && insn_code_number < 0 && GET_CODE (newpat) == SET
2945 && asm_noperands (newpat) < 0)
2946 {
2947 rtx parallel, m_split, *split;
2948
2949 /* See if the MD file can split NEWPAT. If it can't, see if letting it
2950 use I2DEST as a scratch register will help. In the latter case,
2951 convert I2DEST to the mode of the source of NEWPAT if we can. */
2952
2953 m_split = combine_split_insns (newpat, i3);
2954
2955 /* We can only use I2DEST as a scratch reg if it doesn't overlap any
2956 inputs of NEWPAT. */
2957
2958 /* ??? If I2DEST is not safe, and I1DEST exists, then it would be
2959 possible to try that as a scratch reg. This would require adding
2960 more code to make it work though. */
2961
2962 if (m_split == 0 && ! reg_overlap_mentioned_p (i2dest, newpat))
2963 {
2964 enum machine_mode new_mode = GET_MODE (SET_DEST (newpat));
2965
2966 /* First try to split using the original register as a
2967 scratch register. */
2968 parallel = gen_rtx_PARALLEL (VOIDmode,
2969 gen_rtvec (2, newpat,
2970 gen_rtx_CLOBBER (VOIDmode,
2971 i2dest)));
2972 m_split = combine_split_insns (parallel, i3);
2973
2974 /* If that didn't work, try changing the mode of I2DEST if
2975 we can. */
2976 if (m_split == 0
2977 && new_mode != GET_MODE (i2dest)
2978 && new_mode != VOIDmode
2979 && can_change_dest_mode (i2dest, added_sets_2, new_mode))
2980 {
2981 enum machine_mode old_mode = GET_MODE (i2dest);
2982 rtx ni2dest;
2983
2984 if (REGNO (i2dest) < FIRST_PSEUDO_REGISTER)
2985 ni2dest = gen_rtx_REG (new_mode, REGNO (i2dest));
2986 else
2987 {
2988 SUBST_MODE (regno_reg_rtx[REGNO (i2dest)], new_mode);
2989 ni2dest = regno_reg_rtx[REGNO (i2dest)];
2990 }
2991
2992 parallel = (gen_rtx_PARALLEL
2993 (VOIDmode,
2994 gen_rtvec (2, newpat,
2995 gen_rtx_CLOBBER (VOIDmode,
2996 ni2dest))));
2997 m_split = combine_split_insns (parallel, i3);
2998
2999 if (m_split == 0
3000 && REGNO (i2dest) >= FIRST_PSEUDO_REGISTER)
3001 {
3002 struct undo *buf;
3003
3004 adjust_reg_mode (regno_reg_rtx[REGNO (i2dest)], old_mode);
3005 buf = undobuf.undos;
3006 undobuf.undos = buf->next;
3007 buf->next = undobuf.frees;
3008 undobuf.frees = buf;
3009 }
3010 }
3011 }
3012
3013 /* If recog_for_combine has discarded clobbers, try to use them
3014 again for the split. */
3015 if (m_split == 0 && newpat_vec_with_clobbers)
3016 {
3017 parallel = gen_rtx_PARALLEL (VOIDmode, newpat_vec_with_clobbers);
3018 m_split = combine_split_insns (parallel, i3);
3019 }
3020
3021 if (m_split && NEXT_INSN (m_split) == NULL_RTX)
3022 {
3023 m_split = PATTERN (m_split);
3024 insn_code_number = recog_for_combine (&m_split, i3, &new_i3_notes);
3025 if (insn_code_number >= 0)
3026 newpat = m_split;
3027 }
3028 else if (m_split && NEXT_INSN (NEXT_INSN (m_split)) == NULL_RTX
3029 && (next_real_insn (i2) == i3
3030 || ! use_crosses_set_p (PATTERN (m_split), DF_INSN_LUID (i2))))
3031 {
3032 rtx i2set, i3set;
3033 rtx newi3pat = PATTERN (NEXT_INSN (m_split));
3034 newi2pat = PATTERN (m_split);
3035
3036 i3set = single_set (NEXT_INSN (m_split));
3037 i2set = single_set (m_split);
3038
3039 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
3040
3041 /* If I2 or I3 has multiple SETs, we won't know how to track
3042 register status, so don't use these insns. If I2's destination
3043 is used between I2 and I3, we also can't use these insns. */
3044
3045 if (i2_code_number >= 0 && i2set && i3set
3046 && (next_real_insn (i2) == i3
3047 || ! reg_used_between_p (SET_DEST (i2set), i2, i3)))
3048 insn_code_number = recog_for_combine (&newi3pat, i3,
3049 &new_i3_notes);
3050 if (insn_code_number >= 0)
3051 newpat = newi3pat;
3052
3053 /* It is possible that both insns now set the destination of I3.
3054 If so, we must show an extra use of it. */
3055
3056 if (insn_code_number >= 0)
3057 {
3058 rtx new_i3_dest = SET_DEST (i3set);
3059 rtx new_i2_dest = SET_DEST (i2set);
3060
3061 while (GET_CODE (new_i3_dest) == ZERO_EXTRACT
3062 || GET_CODE (new_i3_dest) == STRICT_LOW_PART
3063 || GET_CODE (new_i3_dest) == SUBREG)
3064 new_i3_dest = XEXP (new_i3_dest, 0);
3065
3066 while (GET_CODE (new_i2_dest) == ZERO_EXTRACT
3067 || GET_CODE (new_i2_dest) == STRICT_LOW_PART
3068 || GET_CODE (new_i2_dest) == SUBREG)
3069 new_i2_dest = XEXP (new_i2_dest, 0);
3070
3071 if (REG_P (new_i3_dest)
3072 && REG_P (new_i2_dest)
3073 && REGNO (new_i3_dest) == REGNO (new_i2_dest))
3074 INC_REG_N_SETS (REGNO (new_i2_dest), 1);
3075 }
3076 }
3077
3078 /* If we can split it and use I2DEST, go ahead and see if that
3079 helps things be recognized. Verify that none of the registers
3080 are set between I2 and I3. */
3081 if (insn_code_number < 0 && (split = find_split_point (&newpat, i3)) != 0
3082 #ifdef HAVE_cc0
3083 && REG_P (i2dest)
3084 #endif
3085 /* We need I2DEST in the proper mode. If it is a hard register
3086 or the only use of a pseudo, we can change its mode.
3087 Make sure we don't change a hard register to have a mode that
3088 isn't valid for it, or change the number of registers. */
3089 && (GET_MODE (*split) == GET_MODE (i2dest)
3090 || GET_MODE (*split) == VOIDmode
3091 || can_change_dest_mode (i2dest, added_sets_2,
3092 GET_MODE (*split)))
3093 && (next_real_insn (i2) == i3
3094 || ! use_crosses_set_p (*split, DF_INSN_LUID (i2)))
3095 /* We can't overwrite I2DEST if its value is still used by
3096 NEWPAT. */
3097 && ! reg_referenced_p (i2dest, newpat))
3098 {
3099 rtx newdest = i2dest;
3100 enum rtx_code split_code = GET_CODE (*split);
3101 enum machine_mode split_mode = GET_MODE (*split);
3102 bool subst_done = false;
3103 newi2pat = NULL_RTX;
3104
3105 /* Get NEWDEST as a register in the proper mode. We have already
3106 validated that we can do this. */
3107 if (GET_MODE (i2dest) != split_mode && split_mode != VOIDmode)
3108 {
3109 if (REGNO (i2dest) < FIRST_PSEUDO_REGISTER)
3110 newdest = gen_rtx_REG (split_mode, REGNO (i2dest));
3111 else
3112 {
3113 SUBST_MODE (regno_reg_rtx[REGNO (i2dest)], split_mode);
3114 newdest = regno_reg_rtx[REGNO (i2dest)];
3115 }
3116 }
3117
3118 /* If *SPLIT is a (mult FOO (const_int pow2)), convert it to
3119 an ASHIFT. This can occur if it was inside a PLUS and hence
3120 appeared to be a memory address. This is a kludge. */
3121 if (split_code == MULT
3122 && GET_CODE (XEXP (*split, 1)) == CONST_INT
3123 && INTVAL (XEXP (*split, 1)) > 0
3124 && (i = exact_log2 (INTVAL (XEXP (*split, 1)))) >= 0)
3125 {
3126 SUBST (*split, gen_rtx_ASHIFT (split_mode,
3127 XEXP (*split, 0), GEN_INT (i)));
3128 /* Update split_code because we may not have a multiply
3129 anymore. */
3130 split_code = GET_CODE (*split);
3131 }
3132
3133 #ifdef INSN_SCHEDULING
3134 /* If *SPLIT is a paradoxical SUBREG, when we split it, it should
3135 be written as a ZERO_EXTEND. */
3136 if (split_code == SUBREG && MEM_P (SUBREG_REG (*split)))
3137 {
3138 #ifdef LOAD_EXTEND_OP
3139 /* Or as a SIGN_EXTEND if LOAD_EXTEND_OP says that that's
3140 what it really is. */
3141 if (LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (*split)))
3142 == SIGN_EXTEND)
3143 SUBST (*split, gen_rtx_SIGN_EXTEND (split_mode,
3144 SUBREG_REG (*split)));
3145 else
3146 #endif
3147 SUBST (*split, gen_rtx_ZERO_EXTEND (split_mode,
3148 SUBREG_REG (*split)));
3149 }
3150 #endif
3151
3152 /* Attempt to split binary operators using arithmetic identities. */
3153 if (BINARY_P (SET_SRC (newpat))
3154 && split_mode == GET_MODE (SET_SRC (newpat))
3155 && ! side_effects_p (SET_SRC (newpat)))
3156 {
3157 rtx setsrc = SET_SRC (newpat);
3158 enum machine_mode mode = GET_MODE (setsrc);
3159 enum rtx_code code = GET_CODE (setsrc);
3160 rtx src_op0 = XEXP (setsrc, 0);
3161 rtx src_op1 = XEXP (setsrc, 1);
3162
3163 /* Split "X = Y op Y" as "Z = Y; X = Z op Z". */
3164 if (rtx_equal_p (src_op0, src_op1))
3165 {
3166 newi2pat = gen_rtx_SET (VOIDmode, newdest, src_op0);
3167 SUBST (XEXP (setsrc, 0), newdest);
3168 SUBST (XEXP (setsrc, 1), newdest);
3169 subst_done = true;
3170 }
3171 /* Split "((P op Q) op R) op S" where op is PLUS or MULT. */
3172 else if ((code == PLUS || code == MULT)
3173 && GET_CODE (src_op0) == code
3174 && GET_CODE (XEXP (src_op0, 0)) == code
3175 && (INTEGRAL_MODE_P (mode)
3176 || (FLOAT_MODE_P (mode)
3177 && flag_unsafe_math_optimizations)))
3178 {
3179 rtx p = XEXP (XEXP (src_op0, 0), 0);
3180 rtx q = XEXP (XEXP (src_op0, 0), 1);
3181 rtx r = XEXP (src_op0, 1);
3182 rtx s = src_op1;
3183
3184 /* Split both "((X op Y) op X) op Y" and
3185 "((X op Y) op Y) op X" as "T op T" where T is
3186 "X op Y". */
3187 if ((rtx_equal_p (p,r) && rtx_equal_p (q,s))
3188 || (rtx_equal_p (p,s) && rtx_equal_p (q,r)))
3189 {
3190 newi2pat = gen_rtx_SET (VOIDmode, newdest,
3191 XEXP (src_op0, 0));
3192 SUBST (XEXP (setsrc, 0), newdest);
3193 SUBST (XEXP (setsrc, 1), newdest);
3194 subst_done = true;
3195 }
3196 /* Split "((X op X) op Y) op Y)" as "T op T" where
3197 T is "X op Y". */
3198 else if (rtx_equal_p (p,q) && rtx_equal_p (r,s))
3199 {
3200 rtx tmp = simplify_gen_binary (code, mode, p, r);
3201 newi2pat = gen_rtx_SET (VOIDmode, newdest, tmp);
3202 SUBST (XEXP (setsrc, 0), newdest);
3203 SUBST (XEXP (setsrc, 1), newdest);
3204 subst_done = true;
3205 }
3206 }
3207 }
3208
3209 if (!subst_done)
3210 {
3211 newi2pat = gen_rtx_SET (VOIDmode, newdest, *split);
3212 SUBST (*split, newdest);
3213 }
3214
3215 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
3216
3217 /* recog_for_combine might have added CLOBBERs to newi2pat.
3218 Make sure NEWPAT does not depend on the clobbered regs. */
3219 if (GET_CODE (newi2pat) == PARALLEL)
3220 for (i = XVECLEN (newi2pat, 0) - 1; i >= 0; i--)
3221 if (GET_CODE (XVECEXP (newi2pat, 0, i)) == CLOBBER)
3222 {
3223 rtx reg = XEXP (XVECEXP (newi2pat, 0, i), 0);
3224 if (reg_overlap_mentioned_p (reg, newpat))
3225 {
3226 undo_all ();
3227 return 0;
3228 }
3229 }
3230
3231 /* If the split point was a MULT and we didn't have one before,
3232 don't use one now. */
3233 if (i2_code_number >= 0 && ! (split_code == MULT && ! have_mult))
3234 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3235 }
3236 }
3237
3238 /* Check for a case where we loaded from memory in a narrow mode and
3239 then sign extended it, but we need both registers. In that case,
3240 we have a PARALLEL with both loads from the same memory location.
3241 We can split this into a load from memory followed by a register-register
3242 copy. This saves at least one insn, more if register allocation can
3243 eliminate the copy.
3244
3245 We cannot do this if the destination of the first assignment is a
3246 condition code register or cc0. We eliminate this case by making sure
3247 the SET_DEST and SET_SRC have the same mode.
3248
3249 We cannot do this if the destination of the second assignment is
3250 a register that we have already assumed is zero-extended. Similarly
3251 for a SUBREG of such a register. */
3252
3253 else if (i1 && insn_code_number < 0 && asm_noperands (newpat) < 0
3254 && GET_CODE (newpat) == PARALLEL
3255 && XVECLEN (newpat, 0) == 2
3256 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
3257 && GET_CODE (SET_SRC (XVECEXP (newpat, 0, 0))) == SIGN_EXTEND
3258 && (GET_MODE (SET_DEST (XVECEXP (newpat, 0, 0)))
3259 == GET_MODE (SET_SRC (XVECEXP (newpat, 0, 0))))
3260 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
3261 && rtx_equal_p (SET_SRC (XVECEXP (newpat, 0, 1)),
3262 XEXP (SET_SRC (XVECEXP (newpat, 0, 0)), 0))
3263 && ! use_crosses_set_p (SET_SRC (XVECEXP (newpat, 0, 1)),
3264 DF_INSN_LUID (i2))
3265 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != ZERO_EXTRACT
3266 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != STRICT_LOW_PART
3267 && ! (temp = SET_DEST (XVECEXP (newpat, 0, 1)),
3268 (REG_P (temp)
3269 && VEC_index (reg_stat_type, reg_stat,
3270 REGNO (temp))->nonzero_bits != 0
3271 && GET_MODE_BITSIZE (GET_MODE (temp)) < BITS_PER_WORD
3272 && GET_MODE_BITSIZE (GET_MODE (temp)) < HOST_BITS_PER_INT
3273 && (VEC_index (reg_stat_type, reg_stat,
3274 REGNO (temp))->nonzero_bits
3275 != GET_MODE_MASK (word_mode))))
3276 && ! (GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) == SUBREG
3277 && (temp = SUBREG_REG (SET_DEST (XVECEXP (newpat, 0, 1))),
3278 (REG_P (temp)
3279 && VEC_index (reg_stat_type, reg_stat,
3280 REGNO (temp))->nonzero_bits != 0
3281 && GET_MODE_BITSIZE (GET_MODE (temp)) < BITS_PER_WORD
3282 && GET_MODE_BITSIZE (GET_MODE (temp)) < HOST_BITS_PER_INT
3283 && (VEC_index (reg_stat_type, reg_stat,
3284 REGNO (temp))->nonzero_bits
3285 != GET_MODE_MASK (word_mode)))))
3286 && ! reg_overlap_mentioned_p (SET_DEST (XVECEXP (newpat, 0, 1)),
3287 SET_SRC (XVECEXP (newpat, 0, 1)))
3288 && ! find_reg_note (i3, REG_UNUSED,
3289 SET_DEST (XVECEXP (newpat, 0, 0))))
3290 {
3291 rtx ni2dest;
3292
3293 newi2pat = XVECEXP (newpat, 0, 0);
3294 ni2dest = SET_DEST (XVECEXP (newpat, 0, 0));
3295 newpat = XVECEXP (newpat, 0, 1);
3296 SUBST (SET_SRC (newpat),
3297 gen_lowpart (GET_MODE (SET_SRC (newpat)), ni2dest));
3298 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
3299
3300 if (i2_code_number >= 0)
3301 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3302
3303 if (insn_code_number >= 0)
3304 swap_i2i3 = 1;
3305 }
3306
3307 /* Similarly, check for a case where we have a PARALLEL of two independent
3308 SETs but we started with three insns. In this case, we can do the sets
3309 as two separate insns. This case occurs when some SET allows two
3310 other insns to combine, but the destination of that SET is still live. */
3311
3312 else if (i1 && insn_code_number < 0 && asm_noperands (newpat) < 0
3313 && GET_CODE (newpat) == PARALLEL
3314 && XVECLEN (newpat, 0) == 2
3315 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
3316 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) != ZERO_EXTRACT
3317 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) != STRICT_LOW_PART
3318 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
3319 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != ZERO_EXTRACT
3320 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != STRICT_LOW_PART
3321 && ! use_crosses_set_p (SET_SRC (XVECEXP (newpat, 0, 1)),
3322 DF_INSN_LUID (i2))
3323 && ! reg_referenced_p (SET_DEST (XVECEXP (newpat, 0, 1)),
3324 XVECEXP (newpat, 0, 0))
3325 && ! reg_referenced_p (SET_DEST (XVECEXP (newpat, 0, 0)),
3326 XVECEXP (newpat, 0, 1))
3327 && ! (contains_muldiv (SET_SRC (XVECEXP (newpat, 0, 0)))
3328 && contains_muldiv (SET_SRC (XVECEXP (newpat, 0, 1))))
3329 #ifdef HAVE_cc0
3330 /* We cannot split the parallel into two sets if both sets
3331 reference cc0. */
3332 && ! (reg_referenced_p (cc0_rtx, XVECEXP (newpat, 0, 0))
3333 && reg_referenced_p (cc0_rtx, XVECEXP (newpat, 0, 1)))
3334 #endif
3335 )
3336 {
3337 /* Normally, it doesn't matter which of the two is done first,
3338 but it does if one references cc0. In that case, it has to
3339 be first. */
3340 #ifdef HAVE_cc0
3341 if (reg_referenced_p (cc0_rtx, XVECEXP (newpat, 0, 0)))
3342 {
3343 newi2pat = XVECEXP (newpat, 0, 0);
3344 newpat = XVECEXP (newpat, 0, 1);
3345 }
3346 else
3347 #endif
3348 {
3349 newi2pat = XVECEXP (newpat, 0, 1);
3350 newpat = XVECEXP (newpat, 0, 0);
3351 }
3352
3353 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
3354
3355 if (i2_code_number >= 0)
3356 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3357 }
3358
3359 /* If it still isn't recognized, fail and change things back the way they
3360 were. */
3361 if ((insn_code_number < 0
3362 /* Is the result a reasonable ASM_OPERANDS? */
3363 && (! check_asm_operands (newpat) || added_sets_1 || added_sets_2)))
3364 {
3365 undo_all ();
3366 return 0;
3367 }
3368
3369 /* If we had to change another insn, make sure it is valid also. */
3370 if (undobuf.other_insn)
3371 {
3372 CLEAR_HARD_REG_SET (newpat_used_regs);
3373
3374 other_pat = PATTERN (undobuf.other_insn);
3375 other_code_number = recog_for_combine (&other_pat, undobuf.other_insn,
3376 &new_other_notes);
3377
3378 if (other_code_number < 0 && ! check_asm_operands (other_pat))
3379 {
3380 undo_all ();
3381 return 0;
3382 }
3383 }
3384
3385 #ifdef HAVE_cc0
3386 /* If I2 is the CC0 setter and I3 is the CC0 user then check whether
3387 they are adjacent to each other or not. */
3388 {
3389 rtx p = prev_nonnote_insn (i3);
3390 if (p && p != i2 && NONJUMP_INSN_P (p) && newi2pat
3391 && sets_cc0_p (newi2pat))
3392 {
3393 undo_all ();
3394 return 0;
3395 }
3396 }
3397 #endif
3398
3399 /* Only allow this combination if insn_rtx_costs reports that the
3400 replacement instructions are cheaper than the originals. */
3401 if (!combine_validate_cost (i1, i2, i3, newpat, newi2pat, other_pat))
3402 {
3403 undo_all ();
3404 return 0;
3405 }
3406
3407 /* We now know that we can do this combination. Merge the insns and
3408 update the status of registers and LOG_LINKS. */
3409
3410 if (undobuf.other_insn)
3411 {
3412 rtx note, next;
3413
3414 PATTERN (undobuf.other_insn) = other_pat;
3415
3416 /* If any of the notes in OTHER_INSN were REG_UNUSED, ensure that they
3417 are still valid. Then add any non-duplicate notes added by
3418 recog_for_combine. */
3419 for (note = REG_NOTES (undobuf.other_insn); note; note = next)
3420 {
3421 next = XEXP (note, 1);
3422
3423 if (REG_NOTE_KIND (note) == REG_UNUSED
3424 && ! reg_set_p (XEXP (note, 0), PATTERN (undobuf.other_insn)))
3425 remove_note (undobuf.other_insn, note);
3426 }
3427
3428 distribute_notes (new_other_notes, undobuf.other_insn,
3429 undobuf.other_insn, NULL_RTX, NULL_RTX, NULL_RTX);
3430 }
3431
3432 if (swap_i2i3)
3433 {
3434 rtx insn;
3435 rtx link;
3436 rtx ni2dest;
3437
3438 /* I3 now uses what used to be its destination and which is now
3439 I2's destination. This requires us to do a few adjustments. */
3440 PATTERN (i3) = newpat;
3441 adjust_for_new_dest (i3);
3442
3443 /* We need a LOG_LINK from I3 to I2. But we used to have one,
3444 so we still will.
3445
3446 However, some later insn might be using I2's dest and have
3447 a LOG_LINK pointing at I3. We must remove this link.
3448 The simplest way to remove the link is to point it at I1,
3449 which we know will be a NOTE. */
3450
3451 /* newi2pat is usually a SET here; however, recog_for_combine might
3452 have added some clobbers. */
3453 if (GET_CODE (newi2pat) == PARALLEL)
3454 ni2dest = SET_DEST (XVECEXP (newi2pat, 0, 0));
3455 else
3456 ni2dest = SET_DEST (newi2pat);
3457
3458 for (insn = NEXT_INSN (i3);
3459 insn && (this_basic_block->next_bb == EXIT_BLOCK_PTR
3460 || insn != BB_HEAD (this_basic_block->next_bb));
3461 insn = NEXT_INSN (insn))
3462 {
3463 if (INSN_P (insn) && reg_referenced_p (ni2dest, PATTERN (insn)))
3464 {
3465 for (link = LOG_LINKS (insn); link;
3466 link = XEXP (link, 1))
3467 if (XEXP (link, 0) == i3)
3468 XEXP (link, 0) = i1;
3469
3470 break;
3471 }
3472 }
3473 }
3474
3475 {
3476 rtx i3notes, i2notes, i1notes = 0;
3477 rtx i3links, i2links, i1links = 0;
3478 rtx midnotes = 0;
3479 unsigned int regno;
3480 /* Compute which registers we expect to eliminate. newi2pat may be setting
3481 either i3dest or i2dest, so we must check it. Also, i1dest may be the
3482 same as i3dest, in which case newi2pat may be setting i1dest. */
3483 rtx elim_i2 = ((newi2pat && reg_set_p (i2dest, newi2pat))
3484 || i2dest_in_i2src || i2dest_in_i1src
3485 || !i2dest_killed
3486 ? 0 : i2dest);
3487 rtx elim_i1 = (i1 == 0 || i1dest_in_i1src
3488 || (newi2pat && reg_set_p (i1dest, newi2pat))
3489 || !i1dest_killed
3490 ? 0 : i1dest);
3491
3492 /* Get the old REG_NOTES and LOG_LINKS from all our insns and
3493 clear them. */
3494 i3notes = REG_NOTES (i3), i3links = LOG_LINKS (i3);
3495 i2notes = REG_NOTES (i2), i2links = LOG_LINKS (i2);
3496 if (i1)
3497 i1notes = REG_NOTES (i1), i1links = LOG_LINKS (i1);
3498
3499 /* Ensure that we do not have something that should not be shared but
3500 occurs multiple times in the new insns. Check this by first
3501 resetting all the `used' flags and then copying anything is shared. */
3502
3503 reset_used_flags (i3notes);
3504 reset_used_flags (i2notes);
3505 reset_used_flags (i1notes);
3506 reset_used_flags (newpat);
3507 reset_used_flags (newi2pat);
3508 if (undobuf.other_insn)
3509 reset_used_flags (PATTERN (undobuf.other_insn));
3510
3511 i3notes = copy_rtx_if_shared (i3notes);
3512 i2notes = copy_rtx_if_shared (i2notes);
3513 i1notes = copy_rtx_if_shared (i1notes);
3514 newpat = copy_rtx_if_shared (newpat);
3515 newi2pat = copy_rtx_if_shared (newi2pat);
3516 if (undobuf.other_insn)
3517 reset_used_flags (PATTERN (undobuf.other_insn));
3518
3519 INSN_CODE (i3) = insn_code_number;
3520 PATTERN (i3) = newpat;
3521
3522 if (CALL_P (i3) && CALL_INSN_FUNCTION_USAGE (i3))
3523 {
3524 rtx call_usage = CALL_INSN_FUNCTION_USAGE (i3);
3525
3526 reset_used_flags (call_usage);
3527 call_usage = copy_rtx (call_usage);
3528
3529 if (substed_i2)
3530 replace_rtx (call_usage, i2dest, i2src);
3531
3532 if (substed_i1)
3533 replace_rtx (call_usage, i1dest, i1src);
3534
3535 CALL_INSN_FUNCTION_USAGE (i3) = call_usage;
3536 }
3537
3538 if (undobuf.other_insn)
3539 INSN_CODE (undobuf.other_insn) = other_code_number;
3540
3541 /* We had one special case above where I2 had more than one set and
3542 we replaced a destination of one of those sets with the destination
3543 of I3. In that case, we have to update LOG_LINKS of insns later
3544 in this basic block. Note that this (expensive) case is rare.
3545
3546 Also, in this case, we must pretend that all REG_NOTEs for I2
3547 actually came from I3, so that REG_UNUSED notes from I2 will be
3548 properly handled. */
3549
3550 if (i3_subst_into_i2)
3551 {
3552 for (i = 0; i < XVECLEN (PATTERN (i2), 0); i++)
3553 if ((GET_CODE (XVECEXP (PATTERN (i2), 0, i)) == SET
3554 || GET_CODE (XVECEXP (PATTERN (i2), 0, i)) == CLOBBER)
3555 && REG_P (SET_DEST (XVECEXP (PATTERN (i2), 0, i)))
3556 && SET_DEST (XVECEXP (PATTERN (i2), 0, i)) != i2dest
3557 && ! find_reg_note (i2, REG_UNUSED,
3558 SET_DEST (XVECEXP (PATTERN (i2), 0, i))))
3559 for (temp = NEXT_INSN (i2);
3560 temp && (this_basic_block->next_bb == EXIT_BLOCK_PTR
3561 || BB_HEAD (this_basic_block) != temp);
3562 temp = NEXT_INSN (temp))
3563 if (temp != i3 && INSN_P (temp))
3564 for (link = LOG_LINKS (temp); link; link = XEXP (link, 1))
3565 if (XEXP (link, 0) == i2)
3566 XEXP (link, 0) = i3;
3567
3568 if (i3notes)
3569 {
3570 rtx link = i3notes;
3571 while (XEXP (link, 1))
3572 link = XEXP (link, 1);
3573 XEXP (link, 1) = i2notes;
3574 }
3575 else
3576 i3notes = i2notes;
3577 i2notes = 0;
3578 }
3579
3580 LOG_LINKS (i3) = 0;
3581 REG_NOTES (i3) = 0;
3582 LOG_LINKS (i2) = 0;
3583 REG_NOTES (i2) = 0;
3584
3585 if (newi2pat)
3586 {
3587 INSN_CODE (i2) = i2_code_number;
3588 PATTERN (i2) = newi2pat;
3589 }
3590 else
3591 SET_INSN_DELETED (i2);
3592
3593 if (i1)
3594 {
3595 LOG_LINKS (i1) = 0;
3596 REG_NOTES (i1) = 0;
3597 SET_INSN_DELETED (i1);
3598 }
3599
3600 /* Get death notes for everything that is now used in either I3 or
3601 I2 and used to die in a previous insn. If we built two new
3602 patterns, move from I1 to I2 then I2 to I3 so that we get the
3603 proper movement on registers that I2 modifies. */
3604
3605 if (newi2pat)
3606 {
3607 move_deaths (newi2pat, NULL_RTX, DF_INSN_LUID (i1), i2, &midnotes);
3608 move_deaths (newpat, newi2pat, DF_INSN_LUID (i1), i3, &midnotes);
3609 }
3610 else
3611 move_deaths (newpat, NULL_RTX, i1 ? DF_INSN_LUID (i1) : DF_INSN_LUID (i2),
3612 i3, &midnotes);
3613
3614 /* Distribute all the LOG_LINKS and REG_NOTES from I1, I2, and I3. */
3615 if (i3notes)
3616 distribute_notes (i3notes, i3, i3, newi2pat ? i2 : NULL_RTX,
3617 elim_i2, elim_i1);
3618 if (i2notes)
3619 distribute_notes (i2notes, i2, i3, newi2pat ? i2 : NULL_RTX,
3620 elim_i2, elim_i1);
3621 if (i1notes)
3622 distribute_notes (i1notes, i1, i3, newi2pat ? i2 : NULL_RTX,
3623 elim_i2, elim_i1);
3624 if (midnotes)
3625 distribute_notes (midnotes, NULL_RTX, i3, newi2pat ? i2 : NULL_RTX,
3626 elim_i2, elim_i1);
3627
3628 /* Distribute any notes added to I2 or I3 by recog_for_combine. We
3629 know these are REG_UNUSED and want them to go to the desired insn,
3630 so we always pass it as i3. */
3631
3632 if (newi2pat && new_i2_notes)
3633 distribute_notes (new_i2_notes, i2, i2, NULL_RTX, NULL_RTX, NULL_RTX);
3634
3635 if (new_i3_notes)
3636 distribute_notes (new_i3_notes, i3, i3, NULL_RTX, NULL_RTX, NULL_RTX);
3637
3638 /* If I3DEST was used in I3SRC, it really died in I3. We may need to
3639 put a REG_DEAD note for it somewhere. If NEWI2PAT exists and sets
3640 I3DEST, the death must be somewhere before I2, not I3. If we passed I3
3641 in that case, it might delete I2. Similarly for I2 and I1.
3642 Show an additional death due to the REG_DEAD note we make here. If
3643 we discard it in distribute_notes, we will decrement it again. */
3644
3645 if (i3dest_killed)
3646 {
3647 if (newi2pat && reg_set_p (i3dest_killed, newi2pat))
3648 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i3dest_killed,
3649 NULL_RTX),
3650 NULL_RTX, i2, NULL_RTX, elim_i2, elim_i1);
3651 else
3652 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i3dest_killed,
3653 NULL_RTX),
3654 NULL_RTX, i3, newi2pat ? i2 : NULL_RTX,
3655 elim_i2, elim_i1);
3656 }
3657
3658 if (i2dest_in_i2src)
3659 {
3660 if (newi2pat && reg_set_p (i2dest, newi2pat))
3661 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i2dest, NULL_RTX),
3662 NULL_RTX, i2, NULL_RTX, NULL_RTX, NULL_RTX);
3663 else
3664 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i2dest, NULL_RTX),
3665 NULL_RTX, i3, newi2pat ? i2 : NULL_RTX,
3666 NULL_RTX, NULL_RTX);
3667 }
3668
3669 if (i1dest_in_i1src)
3670 {
3671 if (newi2pat && reg_set_p (i1dest, newi2pat))
3672 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i1dest, NULL_RTX),
3673 NULL_RTX, i2, NULL_RTX, NULL_RTX, NULL_RTX);
3674 else
3675 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i1dest, NULL_RTX),
3676 NULL_RTX, i3, newi2pat ? i2 : NULL_RTX,
3677 NULL_RTX, NULL_RTX);
3678 }
3679
3680 distribute_links (i3links);
3681 distribute_links (i2links);
3682 distribute_links (i1links);
3683
3684 if (REG_P (i2dest))
3685 {
3686 rtx link;
3687 rtx i2_insn = 0, i2_val = 0, set;
3688
3689 /* The insn that used to set this register doesn't exist, and
3690 this life of the register may not exist either. See if one of
3691 I3's links points to an insn that sets I2DEST. If it does,
3692 that is now the last known value for I2DEST. If we don't update
3693 this and I2 set the register to a value that depended on its old
3694 contents, we will get confused. If this insn is used, thing
3695 will be set correctly in combine_instructions. */
3696
3697 for (link = LOG_LINKS (i3); link; link = XEXP (link, 1))
3698 if ((set = single_set (XEXP (link, 0))) != 0
3699 && rtx_equal_p (i2dest, SET_DEST (set)))
3700 i2_insn = XEXP (link, 0), i2_val = SET_SRC (set);
3701
3702 record_value_for_reg (i2dest, i2_insn, i2_val);
3703
3704 /* If the reg formerly set in I2 died only once and that was in I3,
3705 zero its use count so it won't make `reload' do any work. */
3706 if (! added_sets_2
3707 && (newi2pat == 0 || ! reg_mentioned_p (i2dest, newi2pat))
3708 && ! i2dest_in_i2src)
3709 {
3710 regno = REGNO (i2dest);
3711 INC_REG_N_SETS (regno, -1);
3712 }
3713 }
3714
3715 if (i1 && REG_P (i1dest))
3716 {
3717 rtx link;
3718 rtx i1_insn = 0, i1_val = 0, set;
3719
3720 for (link = LOG_LINKS (i3); link; link = XEXP (link, 1))
3721 if ((set = single_set (XEXP (link, 0))) != 0
3722 && rtx_equal_p (i1dest, SET_DEST (set)))
3723 i1_insn = XEXP (link, 0), i1_val = SET_SRC (set);
3724
3725 record_value_for_reg (i1dest, i1_insn, i1_val);
3726
3727 regno = REGNO (i1dest);
3728 if (! added_sets_1 && ! i1dest_in_i1src)
3729 INC_REG_N_SETS (regno, -1);
3730 }
3731
3732 /* Update reg_stat[].nonzero_bits et al for any changes that may have
3733 been made to this insn. The order of
3734 set_nonzero_bits_and_sign_copies() is important. Because newi2pat
3735 can affect nonzero_bits of newpat */
3736 if (newi2pat)
3737 note_stores (newi2pat, set_nonzero_bits_and_sign_copies, NULL);
3738 note_stores (newpat, set_nonzero_bits_and_sign_copies, NULL);
3739
3740 /* Set new_direct_jump_p if a new return or simple jump instruction
3741 has been created.
3742
3743 If I3 is now an unconditional jump, ensure that it has a
3744 BARRIER following it since it may have initially been a
3745 conditional jump. It may also be the last nonnote insn. */
3746
3747 if (returnjump_p (i3) || any_uncondjump_p (i3))
3748 {
3749 *new_direct_jump_p = 1;
3750 mark_jump_label (PATTERN (i3), i3, 0);
3751
3752 if ((temp = next_nonnote_insn (i3)) == NULL_RTX
3753 || !BARRIER_P (temp))
3754 emit_barrier_after (i3);
3755 }
3756
3757 if (undobuf.other_insn != NULL_RTX
3758 && (returnjump_p (undobuf.other_insn)
3759 || any_uncondjump_p (undobuf.other_insn)))
3760 {
3761 *new_direct_jump_p = 1;
3762
3763 if ((temp = next_nonnote_insn (undobuf.other_insn)) == NULL_RTX
3764 || !BARRIER_P (temp))
3765 emit_barrier_after (undobuf.other_insn);
3766 }
3767
3768 /* An NOOP jump does not need barrier, but it does need cleaning up
3769 of CFG. */
3770 if (GET_CODE (newpat) == SET
3771 && SET_SRC (newpat) == pc_rtx
3772 && SET_DEST (newpat) == pc_rtx)
3773 *new_direct_jump_p = 1;
3774 }
3775
3776 if (undobuf.other_insn != NULL_RTX)
3777 {
3778 if (dump_file)
3779 {
3780 fprintf (dump_file, "modifying other_insn ");
3781 dump_insn_slim (dump_file, undobuf.other_insn);
3782 }
3783 df_insn_rescan (undobuf.other_insn);
3784 }
3785
3786 if (i1 && !(NOTE_P(i1) && (NOTE_KIND (i1) == NOTE_INSN_DELETED)))
3787 {
3788 if (dump_file)
3789 {
3790 fprintf (dump_file, "modifying insn i1 ");
3791 dump_insn_slim (dump_file, i1);
3792 }
3793 df_insn_rescan (i1);
3794 }
3795
3796 if (i2 && !(NOTE_P(i2) && (NOTE_KIND (i2) == NOTE_INSN_DELETED)))
3797 {
3798 if (dump_file)
3799 {
3800 fprintf (dump_file, "modifying insn i2 ");
3801 dump_insn_slim (dump_file, i2);
3802 }
3803 df_insn_rescan (i2);
3804 }
3805
3806 if (i3 && !(NOTE_P(i3) && (NOTE_KIND (i3) == NOTE_INSN_DELETED)))
3807 {
3808 if (dump_file)
3809 {
3810 fprintf (dump_file, "modifying insn i3 ");
3811 dump_insn_slim (dump_file, i3);
3812 }
3813 df_insn_rescan (i3);
3814 }
3815
3816 combine_successes++;
3817 undo_commit ();
3818
3819 if (added_links_insn
3820 && (newi2pat == 0 || DF_INSN_LUID (added_links_insn) < DF_INSN_LUID (i2))
3821 && DF_INSN_LUID (added_links_insn) < DF_INSN_LUID (i3))
3822 return added_links_insn;
3823 else
3824 return newi2pat ? i2 : i3;
3825 }
3826 \f
3827 /* Undo all the modifications recorded in undobuf. */
3828
3829 static void
3830 undo_all (void)
3831 {
3832 struct undo *undo, *next;
3833
3834 for (undo = undobuf.undos; undo; undo = next)
3835 {
3836 next = undo->next;
3837 switch (undo->kind)
3838 {
3839 case UNDO_RTX:
3840 *undo->where.r = undo->old_contents.r;
3841 break;
3842 case UNDO_INT:
3843 *undo->where.i = undo->old_contents.i;
3844 break;
3845 case UNDO_MODE:
3846 adjust_reg_mode (*undo->where.r, undo->old_contents.m);
3847 break;
3848 default:
3849 gcc_unreachable ();
3850 }
3851
3852 undo->next = undobuf.frees;
3853 undobuf.frees = undo;
3854 }
3855
3856 undobuf.undos = 0;
3857 }
3858
3859 /* We've committed to accepting the changes we made. Move all
3860 of the undos to the free list. */
3861
3862 static void
3863 undo_commit (void)
3864 {
3865 struct undo *undo, *next;
3866
3867 for (undo = undobuf.undos; undo; undo = next)
3868 {
3869 next = undo->next;
3870 undo->next = undobuf.frees;
3871 undobuf.frees = undo;
3872 }
3873 undobuf.undos = 0;
3874 }
3875 \f
3876 /* Find the innermost point within the rtx at LOC, possibly LOC itself,
3877 where we have an arithmetic expression and return that point. LOC will
3878 be inside INSN.
3879
3880 try_combine will call this function to see if an insn can be split into
3881 two insns. */
3882
3883 static rtx *
3884 find_split_point (rtx *loc, rtx insn)
3885 {
3886 rtx x = *loc;
3887 enum rtx_code code = GET_CODE (x);
3888 rtx *split;
3889 unsigned HOST_WIDE_INT len = 0;
3890 HOST_WIDE_INT pos = 0;
3891 int unsignedp = 0;
3892 rtx inner = NULL_RTX;
3893
3894 /* First special-case some codes. */
3895 switch (code)
3896 {
3897 case SUBREG:
3898 #ifdef INSN_SCHEDULING
3899 /* If we are making a paradoxical SUBREG invalid, it becomes a split
3900 point. */
3901 if (MEM_P (SUBREG_REG (x)))
3902 return loc;
3903 #endif
3904 return find_split_point (&SUBREG_REG (x), insn);
3905
3906 case MEM:
3907 #ifdef HAVE_lo_sum
3908 /* If we have (mem (const ..)) or (mem (symbol_ref ...)), split it
3909 using LO_SUM and HIGH. */
3910 if (GET_CODE (XEXP (x, 0)) == CONST
3911 || GET_CODE (XEXP (x, 0)) == SYMBOL_REF)
3912 {
3913 SUBST (XEXP (x, 0),
3914 gen_rtx_LO_SUM (Pmode,
3915 gen_rtx_HIGH (Pmode, XEXP (x, 0)),
3916 XEXP (x, 0)));
3917 return &XEXP (XEXP (x, 0), 0);
3918 }
3919 #endif
3920
3921 /* If we have a PLUS whose second operand is a constant and the
3922 address is not valid, perhaps will can split it up using
3923 the machine-specific way to split large constants. We use
3924 the first pseudo-reg (one of the virtual regs) as a placeholder;
3925 it will not remain in the result. */
3926 if (GET_CODE (XEXP (x, 0)) == PLUS
3927 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
3928 && ! memory_address_p (GET_MODE (x), XEXP (x, 0)))
3929 {
3930 rtx reg = regno_reg_rtx[FIRST_PSEUDO_REGISTER];
3931 rtx seq = combine_split_insns (gen_rtx_SET (VOIDmode, reg,
3932 XEXP (x, 0)),
3933 subst_insn);
3934
3935 /* This should have produced two insns, each of which sets our
3936 placeholder. If the source of the second is a valid address,
3937 we can make put both sources together and make a split point
3938 in the middle. */
3939
3940 if (seq
3941 && NEXT_INSN (seq) != NULL_RTX
3942 && NEXT_INSN (NEXT_INSN (seq)) == NULL_RTX
3943 && NONJUMP_INSN_P (seq)
3944 && GET_CODE (PATTERN (seq)) == SET
3945 && SET_DEST (PATTERN (seq)) == reg
3946 && ! reg_mentioned_p (reg,
3947 SET_SRC (PATTERN (seq)))
3948 && NONJUMP_INSN_P (NEXT_INSN (seq))
3949 && GET_CODE (PATTERN (NEXT_INSN (seq))) == SET
3950 && SET_DEST (PATTERN (NEXT_INSN (seq))) == reg
3951 && memory_address_p (GET_MODE (x),
3952 SET_SRC (PATTERN (NEXT_INSN (seq)))))
3953 {
3954 rtx src1 = SET_SRC (PATTERN (seq));
3955 rtx src2 = SET_SRC (PATTERN (NEXT_INSN (seq)));
3956
3957 /* Replace the placeholder in SRC2 with SRC1. If we can
3958 find where in SRC2 it was placed, that can become our
3959 split point and we can replace this address with SRC2.
3960 Just try two obvious places. */
3961
3962 src2 = replace_rtx (src2, reg, src1);
3963 split = 0;
3964 if (XEXP (src2, 0) == src1)
3965 split = &XEXP (src2, 0);
3966 else if (GET_RTX_FORMAT (GET_CODE (XEXP (src2, 0)))[0] == 'e'
3967 && XEXP (XEXP (src2, 0), 0) == src1)
3968 split = &XEXP (XEXP (src2, 0), 0);
3969
3970 if (split)
3971 {
3972 SUBST (XEXP (x, 0), src2);
3973 return split;
3974 }
3975 }
3976
3977 /* If that didn't work, perhaps the first operand is complex and
3978 needs to be computed separately, so make a split point there.
3979 This will occur on machines that just support REG + CONST
3980 and have a constant moved through some previous computation. */
3981
3982 else if (!OBJECT_P (XEXP (XEXP (x, 0), 0))
3983 && ! (GET_CODE (XEXP (XEXP (x, 0), 0)) == SUBREG
3984 && OBJECT_P (SUBREG_REG (XEXP (XEXP (x, 0), 0)))))
3985 return &XEXP (XEXP (x, 0), 0);
3986 }
3987
3988 /* If we have a PLUS whose first operand is complex, try computing it
3989 separately by making a split there. */
3990 if (GET_CODE (XEXP (x, 0)) == PLUS
3991 && ! memory_address_p (GET_MODE (x), XEXP (x, 0))
3992 && ! OBJECT_P (XEXP (XEXP (x, 0), 0))
3993 && ! (GET_CODE (XEXP (XEXP (x, 0), 0)) == SUBREG
3994 && OBJECT_P (SUBREG_REG (XEXP (XEXP (x, 0), 0)))))
3995 return &XEXP (XEXP (x, 0), 0);
3996 break;
3997
3998 case SET:
3999 #ifdef HAVE_cc0
4000 /* If SET_DEST is CC0 and SET_SRC is not an operand, a COMPARE, or a
4001 ZERO_EXTRACT, the most likely reason why this doesn't match is that
4002 we need to put the operand into a register. So split at that
4003 point. */
4004
4005 if (SET_DEST (x) == cc0_rtx
4006 && GET_CODE (SET_SRC (x)) != COMPARE
4007 && GET_CODE (SET_SRC (x)) != ZERO_EXTRACT
4008 && !OBJECT_P (SET_SRC (x))
4009 && ! (GET_CODE (SET_SRC (x)) == SUBREG
4010 && OBJECT_P (SUBREG_REG (SET_SRC (x)))))
4011 return &SET_SRC (x);
4012 #endif
4013
4014 /* See if we can split SET_SRC as it stands. */
4015 split = find_split_point (&SET_SRC (x), insn);
4016 if (split && split != &SET_SRC (x))
4017 return split;
4018
4019 /* See if we can split SET_DEST as it stands. */
4020 split = find_split_point (&SET_DEST (x), insn);
4021 if (split && split != &SET_DEST (x))
4022 return split;
4023
4024 /* See if this is a bitfield assignment with everything constant. If
4025 so, this is an IOR of an AND, so split it into that. */
4026 if (GET_CODE (SET_DEST (x)) == ZERO_EXTRACT
4027 && (GET_MODE_BITSIZE (GET_MODE (XEXP (SET_DEST (x), 0)))
4028 <= HOST_BITS_PER_WIDE_INT)
4029 && GET_CODE (XEXP (SET_DEST (x), 1)) == CONST_INT
4030 && GET_CODE (XEXP (SET_DEST (x), 2)) == CONST_INT
4031 && GET_CODE (SET_SRC (x)) == CONST_INT
4032 && ((INTVAL (XEXP (SET_DEST (x), 1))
4033 + INTVAL (XEXP (SET_DEST (x), 2)))
4034 <= GET_MODE_BITSIZE (GET_MODE (XEXP (SET_DEST (x), 0))))
4035 && ! side_effects_p (XEXP (SET_DEST (x), 0)))
4036 {
4037 HOST_WIDE_INT pos = INTVAL (XEXP (SET_DEST (x), 2));
4038 unsigned HOST_WIDE_INT len = INTVAL (XEXP (SET_DEST (x), 1));
4039 unsigned HOST_WIDE_INT src = INTVAL (SET_SRC (x));
4040 rtx dest = XEXP (SET_DEST (x), 0);
4041 enum machine_mode mode = GET_MODE (dest);
4042 unsigned HOST_WIDE_INT mask = ((HOST_WIDE_INT) 1 << len) - 1;
4043 rtx or_mask;
4044
4045 if (BITS_BIG_ENDIAN)
4046 pos = GET_MODE_BITSIZE (mode) - len - pos;
4047
4048 or_mask = gen_int_mode (src << pos, mode);
4049 if (src == mask)
4050 SUBST (SET_SRC (x),
4051 simplify_gen_binary (IOR, mode, dest, or_mask));
4052 else
4053 {
4054 rtx negmask = gen_int_mode (~(mask << pos), mode);
4055 SUBST (SET_SRC (x),
4056 simplify_gen_binary (IOR, mode,
4057 simplify_gen_binary (AND, mode,
4058 dest, negmask),
4059 or_mask));
4060 }
4061
4062 SUBST (SET_DEST (x), dest);
4063
4064 split = find_split_point (&SET_SRC (x), insn);
4065 if (split && split != &SET_SRC (x))
4066 return split;
4067 }
4068
4069 /* Otherwise, see if this is an operation that we can split into two.
4070 If so, try to split that. */
4071 code = GET_CODE (SET_SRC (x));
4072
4073 switch (code)
4074 {
4075 case AND:
4076 /* If we are AND'ing with a large constant that is only a single
4077 bit and the result is only being used in a context where we
4078 need to know if it is zero or nonzero, replace it with a bit
4079 extraction. This will avoid the large constant, which might
4080 have taken more than one insn to make. If the constant were
4081 not a valid argument to the AND but took only one insn to make,
4082 this is no worse, but if it took more than one insn, it will
4083 be better. */
4084
4085 if (GET_CODE (XEXP (SET_SRC (x), 1)) == CONST_INT
4086 && REG_P (XEXP (SET_SRC (x), 0))
4087 && (pos = exact_log2 (INTVAL (XEXP (SET_SRC (x), 1)))) >= 7
4088 && REG_P (SET_DEST (x))
4089 && (split = find_single_use (SET_DEST (x), insn, (rtx*) 0)) != 0
4090 && (GET_CODE (*split) == EQ || GET_CODE (*split) == NE)
4091 && XEXP (*split, 0) == SET_DEST (x)
4092 && XEXP (*split, 1) == const0_rtx)
4093 {
4094 rtx extraction = make_extraction (GET_MODE (SET_DEST (x)),
4095 XEXP (SET_SRC (x), 0),
4096 pos, NULL_RTX, 1, 1, 0, 0);
4097 if (extraction != 0)
4098 {
4099 SUBST (SET_SRC (x), extraction);
4100 return find_split_point (loc, insn);
4101 }
4102 }
4103 break;
4104
4105 case NE:
4106 /* If STORE_FLAG_VALUE is -1, this is (NE X 0) and only one bit of X
4107 is known to be on, this can be converted into a NEG of a shift. */
4108 if (STORE_FLAG_VALUE == -1 && XEXP (SET_SRC (x), 1) == const0_rtx
4109 && GET_MODE (SET_SRC (x)) == GET_MODE (XEXP (SET_SRC (x), 0))
4110 && 1 <= (pos = exact_log2
4111 (nonzero_bits (XEXP (SET_SRC (x), 0),
4112 GET_MODE (XEXP (SET_SRC (x), 0))))))
4113 {
4114 enum machine_mode mode = GET_MODE (XEXP (SET_SRC (x), 0));
4115
4116 SUBST (SET_SRC (x),
4117 gen_rtx_NEG (mode,
4118 gen_rtx_LSHIFTRT (mode,
4119 XEXP (SET_SRC (x), 0),
4120 GEN_INT (pos))));
4121
4122 split = find_split_point (&SET_SRC (x), insn);
4123 if (split && split != &SET_SRC (x))
4124 return split;
4125 }
4126 break;
4127
4128 case SIGN_EXTEND:
4129 inner = XEXP (SET_SRC (x), 0);
4130
4131 /* We can't optimize if either mode is a partial integer
4132 mode as we don't know how many bits are significant
4133 in those modes. */
4134 if (GET_MODE_CLASS (GET_MODE (inner)) == MODE_PARTIAL_INT
4135 || GET_MODE_CLASS (GET_MODE (SET_SRC (x))) == MODE_PARTIAL_INT)
4136 break;
4137
4138 pos = 0;
4139 len = GET_MODE_BITSIZE (GET_MODE (inner));
4140 unsignedp = 0;
4141 break;
4142
4143 case SIGN_EXTRACT:
4144 case ZERO_EXTRACT:
4145 if (GET_CODE (XEXP (SET_SRC (x), 1)) == CONST_INT
4146 && GET_CODE (XEXP (SET_SRC (x), 2)) == CONST_INT)
4147 {
4148 inner = XEXP (SET_SRC (x), 0);
4149 len = INTVAL (XEXP (SET_SRC (x), 1));
4150 pos = INTVAL (XEXP (SET_SRC (x), 2));
4151
4152 if (BITS_BIG_ENDIAN)
4153 pos = GET_MODE_BITSIZE (GET_MODE (inner)) - len - pos;
4154 unsignedp = (code == ZERO_EXTRACT);
4155 }
4156 break;
4157
4158 default:
4159 break;
4160 }
4161
4162 if (len && pos >= 0 && pos + len <= GET_MODE_BITSIZE (GET_MODE (inner)))
4163 {
4164 enum machine_mode mode = GET_MODE (SET_SRC (x));
4165
4166 /* For unsigned, we have a choice of a shift followed by an
4167 AND or two shifts. Use two shifts for field sizes where the
4168 constant might be too large. We assume here that we can
4169 always at least get 8-bit constants in an AND insn, which is
4170 true for every current RISC. */
4171
4172 if (unsignedp && len <= 8)
4173 {
4174 SUBST (SET_SRC (x),
4175 gen_rtx_AND (mode,
4176 gen_rtx_LSHIFTRT
4177 (mode, gen_lowpart (mode, inner),
4178 GEN_INT (pos)),
4179 GEN_INT (((HOST_WIDE_INT) 1 << len) - 1)));
4180
4181 split = find_split_point (&SET_SRC (x), insn);
4182 if (split && split != &SET_SRC (x))
4183 return split;
4184 }
4185 else
4186 {
4187 SUBST (SET_SRC (x),
4188 gen_rtx_fmt_ee
4189 (unsignedp ? LSHIFTRT : ASHIFTRT, mode,
4190 gen_rtx_ASHIFT (mode,
4191 gen_lowpart (mode, inner),
4192 GEN_INT (GET_MODE_BITSIZE (mode)
4193 - len - pos)),
4194 GEN_INT (GET_MODE_BITSIZE (mode) - len)));
4195
4196 split = find_split_point (&SET_SRC (x), insn);
4197 if (split && split != &SET_SRC (x))
4198 return split;
4199 }
4200 }
4201
4202 /* See if this is a simple operation with a constant as the second
4203 operand. It might be that this constant is out of range and hence
4204 could be used as a split point. */
4205 if (BINARY_P (SET_SRC (x))
4206 && CONSTANT_P (XEXP (SET_SRC (x), 1))
4207 && (OBJECT_P (XEXP (SET_SRC (x), 0))
4208 || (GET_CODE (XEXP (SET_SRC (x), 0)) == SUBREG
4209 && OBJECT_P (SUBREG_REG (XEXP (SET_SRC (x), 0))))))
4210 return &XEXP (SET_SRC (x), 1);
4211
4212 /* Finally, see if this is a simple operation with its first operand
4213 not in a register. The operation might require this operand in a
4214 register, so return it as a split point. We can always do this
4215 because if the first operand were another operation, we would have
4216 already found it as a split point. */
4217 if ((BINARY_P (SET_SRC (x)) || UNARY_P (SET_SRC (x)))
4218 && ! register_operand (XEXP (SET_SRC (x), 0), VOIDmode))
4219 return &XEXP (SET_SRC (x), 0);
4220
4221 return 0;
4222
4223 case AND:
4224 case IOR:
4225 /* We write NOR as (and (not A) (not B)), but if we don't have a NOR,
4226 it is better to write this as (not (ior A B)) so we can split it.
4227 Similarly for IOR. */
4228 if (GET_CODE (XEXP (x, 0)) == NOT && GET_CODE (XEXP (x, 1)) == NOT)
4229 {
4230 SUBST (*loc,
4231 gen_rtx_NOT (GET_MODE (x),
4232 gen_rtx_fmt_ee (code == IOR ? AND : IOR,
4233 GET_MODE (x),
4234 XEXP (XEXP (x, 0), 0),
4235 XEXP (XEXP (x, 1), 0))));
4236 return find_split_point (loc, insn);
4237 }
4238
4239 /* Many RISC machines have a large set of logical insns. If the
4240 second operand is a NOT, put it first so we will try to split the
4241 other operand first. */
4242 if (GET_CODE (XEXP (x, 1)) == NOT)
4243 {
4244 rtx tem = XEXP (x, 0);
4245 SUBST (XEXP (x, 0), XEXP (x, 1));
4246 SUBST (XEXP (x, 1), tem);
4247 }
4248 break;
4249
4250 default:
4251 break;
4252 }
4253
4254 /* Otherwise, select our actions depending on our rtx class. */
4255 switch (GET_RTX_CLASS (code))
4256 {
4257 case RTX_BITFIELD_OPS: /* This is ZERO_EXTRACT and SIGN_EXTRACT. */
4258 case RTX_TERNARY:
4259 split = find_split_point (&XEXP (x, 2), insn);
4260 if (split)
4261 return split;
4262 /* ... fall through ... */
4263 case RTX_BIN_ARITH:
4264 case RTX_COMM_ARITH:
4265 case RTX_COMPARE:
4266 case RTX_COMM_COMPARE:
4267 split = find_split_point (&XEXP (x, 1), insn);
4268 if (split)
4269 return split;
4270 /* ... fall through ... */
4271 case RTX_UNARY:
4272 /* Some machines have (and (shift ...) ...) insns. If X is not
4273 an AND, but XEXP (X, 0) is, use it as our split point. */
4274 if (GET_CODE (x) != AND && GET_CODE (XEXP (x, 0)) == AND)
4275 return &XEXP (x, 0);
4276
4277 split = find_split_point (&XEXP (x, 0), insn);
4278 if (split)
4279 return split;
4280 return loc;
4281
4282 default:
4283 /* Otherwise, we don't have a split point. */
4284 return 0;
4285 }
4286 }
4287 \f
4288 /* Throughout X, replace FROM with TO, and return the result.
4289 The result is TO if X is FROM;
4290 otherwise the result is X, but its contents may have been modified.
4291 If they were modified, a record was made in undobuf so that
4292 undo_all will (among other things) return X to its original state.
4293
4294 If the number of changes necessary is too much to record to undo,
4295 the excess changes are not made, so the result is invalid.
4296 The changes already made can still be undone.
4297 undobuf.num_undo is incremented for such changes, so by testing that
4298 the caller can tell whether the result is valid.
4299
4300 `n_occurrences' is incremented each time FROM is replaced.
4301
4302 IN_DEST is nonzero if we are processing the SET_DEST of a SET.
4303
4304 UNIQUE_COPY is nonzero if each substitution must be unique. We do this
4305 by copying if `n_occurrences' is nonzero. */
4306
4307 static rtx
4308 subst (rtx x, rtx from, rtx to, int in_dest, int unique_copy)
4309 {
4310 enum rtx_code code = GET_CODE (x);
4311 enum machine_mode op0_mode = VOIDmode;
4312 const char *fmt;
4313 int len, i;
4314 rtx new;
4315
4316 /* Two expressions are equal if they are identical copies of a shared
4317 RTX or if they are both registers with the same register number
4318 and mode. */
4319
4320 #define COMBINE_RTX_EQUAL_P(X,Y) \
4321 ((X) == (Y) \
4322 || (REG_P (X) && REG_P (Y) \
4323 && REGNO (X) == REGNO (Y) && GET_MODE (X) == GET_MODE (Y)))
4324
4325 if (! in_dest && COMBINE_RTX_EQUAL_P (x, from))
4326 {
4327 n_occurrences++;
4328 return (unique_copy && n_occurrences > 1 ? copy_rtx (to) : to);
4329 }
4330
4331 /* If X and FROM are the same register but different modes, they
4332 will not have been seen as equal above. However, the log links code
4333 will make a LOG_LINKS entry for that case. If we do nothing, we
4334 will try to rerecognize our original insn and, when it succeeds,
4335 we will delete the feeding insn, which is incorrect.
4336
4337 So force this insn not to match in this (rare) case. */
4338 if (! in_dest && code == REG && REG_P (from)
4339 && reg_overlap_mentioned_p (x, from))
4340 return gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
4341
4342 /* If this is an object, we are done unless it is a MEM or LO_SUM, both
4343 of which may contain things that can be combined. */
4344 if (code != MEM && code != LO_SUM && OBJECT_P (x))
4345 return x;
4346
4347 /* It is possible to have a subexpression appear twice in the insn.
4348 Suppose that FROM is a register that appears within TO.
4349 Then, after that subexpression has been scanned once by `subst',
4350 the second time it is scanned, TO may be found. If we were
4351 to scan TO here, we would find FROM within it and create a
4352 self-referent rtl structure which is completely wrong. */
4353 if (COMBINE_RTX_EQUAL_P (x, to))
4354 return to;
4355
4356 /* Parallel asm_operands need special attention because all of the
4357 inputs are shared across the arms. Furthermore, unsharing the
4358 rtl results in recognition failures. Failure to handle this case
4359 specially can result in circular rtl.
4360
4361 Solve this by doing a normal pass across the first entry of the
4362 parallel, and only processing the SET_DESTs of the subsequent
4363 entries. Ug. */
4364
4365 if (code == PARALLEL
4366 && GET_CODE (XVECEXP (x, 0, 0)) == SET
4367 && GET_CODE (SET_SRC (XVECEXP (x, 0, 0))) == ASM_OPERANDS)
4368 {
4369 new = subst (XVECEXP (x, 0, 0), from, to, 0, unique_copy);
4370
4371 /* If this substitution failed, this whole thing fails. */
4372 if (GET_CODE (new) == CLOBBER
4373 && XEXP (new, 0) == const0_rtx)
4374 return new;
4375
4376 SUBST (XVECEXP (x, 0, 0), new);
4377
4378 for (i = XVECLEN (x, 0) - 1; i >= 1; i--)
4379 {
4380 rtx dest = SET_DEST (XVECEXP (x, 0, i));
4381
4382 if (!REG_P (dest)
4383 && GET_CODE (dest) != CC0
4384 && GET_CODE (dest) != PC)
4385 {
4386 new = subst (dest, from, to, 0, unique_copy);
4387
4388 /* If this substitution failed, this whole thing fails. */
4389 if (GET_CODE (new) == CLOBBER
4390 && XEXP (new, 0) == const0_rtx)
4391 return new;
4392
4393 SUBST (SET_DEST (XVECEXP (x, 0, i)), new);
4394 }
4395 }
4396 }
4397 else
4398 {
4399 len = GET_RTX_LENGTH (code);
4400 fmt = GET_RTX_FORMAT (code);
4401
4402 /* We don't need to process a SET_DEST that is a register, CC0,
4403 or PC, so set up to skip this common case. All other cases
4404 where we want to suppress replacing something inside a
4405 SET_SRC are handled via the IN_DEST operand. */
4406 if (code == SET
4407 && (REG_P (SET_DEST (x))
4408 || GET_CODE (SET_DEST (x)) == CC0
4409 || GET_CODE (SET_DEST (x)) == PC))
4410 fmt = "ie";
4411
4412 /* Get the mode of operand 0 in case X is now a SIGN_EXTEND of a
4413 constant. */
4414 if (fmt[0] == 'e')
4415 op0_mode = GET_MODE (XEXP (x, 0));
4416
4417 for (i = 0; i < len; i++)
4418 {
4419 if (fmt[i] == 'E')
4420 {
4421 int j;
4422 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
4423 {
4424 if (COMBINE_RTX_EQUAL_P (XVECEXP (x, i, j), from))
4425 {
4426 new = (unique_copy && n_occurrences
4427 ? copy_rtx (to) : to);
4428 n_occurrences++;
4429 }
4430 else
4431 {
4432 new = subst (XVECEXP (x, i, j), from, to, 0,
4433 unique_copy);
4434
4435 /* If this substitution failed, this whole thing
4436 fails. */
4437 if (GET_CODE (new) == CLOBBER
4438 && XEXP (new, 0) == const0_rtx)
4439 return new;
4440 }
4441
4442 SUBST (XVECEXP (x, i, j), new);
4443 }
4444 }
4445 else if (fmt[i] == 'e')
4446 {
4447 /* If this is a register being set, ignore it. */
4448 new = XEXP (x, i);
4449 if (in_dest
4450 && i == 0
4451 && (((code == SUBREG || code == ZERO_EXTRACT)
4452 && REG_P (new))
4453 || code == STRICT_LOW_PART))
4454 ;
4455
4456 else if (COMBINE_RTX_EQUAL_P (XEXP (x, i), from))
4457 {
4458 /* In general, don't install a subreg involving two
4459 modes not tieable. It can worsen register
4460 allocation, and can even make invalid reload
4461 insns, since the reg inside may need to be copied
4462 from in the outside mode, and that may be invalid
4463 if it is an fp reg copied in integer mode.
4464
4465 We allow two exceptions to this: It is valid if
4466 it is inside another SUBREG and the mode of that
4467 SUBREG and the mode of the inside of TO is
4468 tieable and it is valid if X is a SET that copies
4469 FROM to CC0. */
4470
4471 if (GET_CODE (to) == SUBREG
4472 && ! MODES_TIEABLE_P (GET_MODE (to),
4473 GET_MODE (SUBREG_REG (to)))
4474 && ! (code == SUBREG
4475 && MODES_TIEABLE_P (GET_MODE (x),
4476 GET_MODE (SUBREG_REG (to))))
4477 #ifdef HAVE_cc0
4478 && ! (code == SET && i == 1 && XEXP (x, 0) == cc0_rtx)
4479 #endif
4480 )
4481 return gen_rtx_CLOBBER (VOIDmode, const0_rtx);
4482
4483 #ifdef CANNOT_CHANGE_MODE_CLASS
4484 if (code == SUBREG
4485 && REG_P (to)
4486 && REGNO (to) < FIRST_PSEUDO_REGISTER
4487 && REG_CANNOT_CHANGE_MODE_P (REGNO (to),
4488 GET_MODE (to),
4489 GET_MODE (x)))
4490 return gen_rtx_CLOBBER (VOIDmode, const0_rtx);
4491 #endif
4492
4493 new = (unique_copy && n_occurrences ? copy_rtx (to) : to);
4494 n_occurrences++;
4495 }
4496 else
4497 /* If we are in a SET_DEST, suppress most cases unless we
4498 have gone inside a MEM, in which case we want to
4499 simplify the address. We assume here that things that
4500 are actually part of the destination have their inner
4501 parts in the first expression. This is true for SUBREG,
4502 STRICT_LOW_PART, and ZERO_EXTRACT, which are the only
4503 things aside from REG and MEM that should appear in a
4504 SET_DEST. */
4505 new = subst (XEXP (x, i), from, to,
4506 (((in_dest
4507 && (code == SUBREG || code == STRICT_LOW_PART
4508 || code == ZERO_EXTRACT))
4509 || code == SET)
4510 && i == 0), unique_copy);
4511
4512 /* If we found that we will have to reject this combination,
4513 indicate that by returning the CLOBBER ourselves, rather than
4514 an expression containing it. This will speed things up as
4515 well as prevent accidents where two CLOBBERs are considered
4516 to be equal, thus producing an incorrect simplification. */
4517
4518 if (GET_CODE (new) == CLOBBER && XEXP (new, 0) == const0_rtx)
4519 return new;
4520
4521 if (GET_CODE (x) == SUBREG
4522 && (GET_CODE (new) == CONST_INT
4523 || GET_CODE (new) == CONST_DOUBLE))
4524 {
4525 enum machine_mode mode = GET_MODE (x);
4526
4527 x = simplify_subreg (GET_MODE (x), new,
4528 GET_MODE (SUBREG_REG (x)),
4529 SUBREG_BYTE (x));
4530 if (! x)
4531 x = gen_rtx_CLOBBER (mode, const0_rtx);
4532 }
4533 else if (GET_CODE (new) == CONST_INT
4534 && GET_CODE (x) == ZERO_EXTEND)
4535 {
4536 x = simplify_unary_operation (ZERO_EXTEND, GET_MODE (x),
4537 new, GET_MODE (XEXP (x, 0)));
4538 gcc_assert (x);
4539 }
4540 else
4541 SUBST (XEXP (x, i), new);
4542 }
4543 }
4544 }
4545
4546 /* Check if we are loading something from the constant pool via float
4547 extension; in this case we would undo compress_float_constant
4548 optimization and degenerate constant load to an immediate value. */
4549 if (GET_CODE (x) == FLOAT_EXTEND
4550 && MEM_P (XEXP (x, 0))
4551 && MEM_READONLY_P (XEXP (x, 0)))
4552 {
4553 rtx tmp = avoid_constant_pool_reference (x);
4554 if (x != tmp)
4555 return x;
4556 }
4557
4558 /* Try to simplify X. If the simplification changed the code, it is likely
4559 that further simplification will help, so loop, but limit the number
4560 of repetitions that will be performed. */
4561
4562 for (i = 0; i < 4; i++)
4563 {
4564 /* If X is sufficiently simple, don't bother trying to do anything
4565 with it. */
4566 if (code != CONST_INT && code != REG && code != CLOBBER)
4567 x = combine_simplify_rtx (x, op0_mode, in_dest);
4568
4569 if (GET_CODE (x) == code)
4570 break;
4571
4572 code = GET_CODE (x);
4573
4574 /* We no longer know the original mode of operand 0 since we
4575 have changed the form of X) */
4576 op0_mode = VOIDmode;
4577 }
4578
4579 return x;
4580 }
4581 \f
4582 /* Simplify X, a piece of RTL. We just operate on the expression at the
4583 outer level; call `subst' to simplify recursively. Return the new
4584 expression.
4585
4586 OP0_MODE is the original mode of XEXP (x, 0). IN_DEST is nonzero
4587 if we are inside a SET_DEST. */
4588
4589 static rtx
4590 combine_simplify_rtx (rtx x, enum machine_mode op0_mode, int in_dest)
4591 {
4592 enum rtx_code code = GET_CODE (x);
4593 enum machine_mode mode = GET_MODE (x);
4594 rtx temp;
4595 int i;
4596
4597 /* If this is a commutative operation, put a constant last and a complex
4598 expression first. We don't need to do this for comparisons here. */
4599 if (COMMUTATIVE_ARITH_P (x)
4600 && swap_commutative_operands_p (XEXP (x, 0), XEXP (x, 1)))
4601 {
4602 temp = XEXP (x, 0);
4603 SUBST (XEXP (x, 0), XEXP (x, 1));
4604 SUBST (XEXP (x, 1), temp);
4605 }
4606
4607 /* If this is a simple operation applied to an IF_THEN_ELSE, try
4608 applying it to the arms of the IF_THEN_ELSE. This often simplifies
4609 things. Check for cases where both arms are testing the same
4610 condition.
4611
4612 Don't do anything if all operands are very simple. */
4613
4614 if ((BINARY_P (x)
4615 && ((!OBJECT_P (XEXP (x, 0))
4616 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
4617 && OBJECT_P (SUBREG_REG (XEXP (x, 0)))))
4618 || (!OBJECT_P (XEXP (x, 1))
4619 && ! (GET_CODE (XEXP (x, 1)) == SUBREG
4620 && OBJECT_P (SUBREG_REG (XEXP (x, 1)))))))
4621 || (UNARY_P (x)
4622 && (!OBJECT_P (XEXP (x, 0))
4623 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
4624 && OBJECT_P (SUBREG_REG (XEXP (x, 0)))))))
4625 {
4626 rtx cond, true_rtx, false_rtx;
4627
4628 cond = if_then_else_cond (x, &true_rtx, &false_rtx);
4629 if (cond != 0
4630 /* If everything is a comparison, what we have is highly unlikely
4631 to be simpler, so don't use it. */
4632 && ! (COMPARISON_P (x)
4633 && (COMPARISON_P (true_rtx) || COMPARISON_P (false_rtx))))
4634 {
4635 rtx cop1 = const0_rtx;
4636 enum rtx_code cond_code = simplify_comparison (NE, &cond, &cop1);
4637
4638 if (cond_code == NE && COMPARISON_P (cond))
4639 return x;
4640
4641 /* Simplify the alternative arms; this may collapse the true and
4642 false arms to store-flag values. Be careful to use copy_rtx
4643 here since true_rtx or false_rtx might share RTL with x as a
4644 result of the if_then_else_cond call above. */
4645 true_rtx = subst (copy_rtx (true_rtx), pc_rtx, pc_rtx, 0, 0);
4646 false_rtx = subst (copy_rtx (false_rtx), pc_rtx, pc_rtx, 0, 0);
4647
4648 /* If true_rtx and false_rtx are not general_operands, an if_then_else
4649 is unlikely to be simpler. */
4650 if (general_operand (true_rtx, VOIDmode)
4651 && general_operand (false_rtx, VOIDmode))
4652 {
4653 enum rtx_code reversed;
4654
4655 /* Restarting if we generate a store-flag expression will cause
4656 us to loop. Just drop through in this case. */
4657
4658 /* If the result values are STORE_FLAG_VALUE and zero, we can
4659 just make the comparison operation. */
4660 if (true_rtx == const_true_rtx && false_rtx == const0_rtx)
4661 x = simplify_gen_relational (cond_code, mode, VOIDmode,
4662 cond, cop1);
4663 else if (true_rtx == const0_rtx && false_rtx == const_true_rtx
4664 && ((reversed = reversed_comparison_code_parts
4665 (cond_code, cond, cop1, NULL))
4666 != UNKNOWN))
4667 x = simplify_gen_relational (reversed, mode, VOIDmode,
4668 cond, cop1);
4669
4670 /* Likewise, we can make the negate of a comparison operation
4671 if the result values are - STORE_FLAG_VALUE and zero. */
4672 else if (GET_CODE (true_rtx) == CONST_INT
4673 && INTVAL (true_rtx) == - STORE_FLAG_VALUE
4674 && false_rtx == const0_rtx)
4675 x = simplify_gen_unary (NEG, mode,
4676 simplify_gen_relational (cond_code,
4677 mode, VOIDmode,
4678 cond, cop1),
4679 mode);
4680 else if (GET_CODE (false_rtx) == CONST_INT
4681 && INTVAL (false_rtx) == - STORE_FLAG_VALUE
4682 && true_rtx == const0_rtx
4683 && ((reversed = reversed_comparison_code_parts
4684 (cond_code, cond, cop1, NULL))
4685 != UNKNOWN))
4686 x = simplify_gen_unary (NEG, mode,
4687 simplify_gen_relational (reversed,
4688 mode, VOIDmode,
4689 cond, cop1),
4690 mode);
4691 else
4692 return gen_rtx_IF_THEN_ELSE (mode,
4693 simplify_gen_relational (cond_code,
4694 mode,
4695 VOIDmode,
4696 cond,
4697 cop1),
4698 true_rtx, false_rtx);
4699
4700 code = GET_CODE (x);
4701 op0_mode = VOIDmode;
4702 }
4703 }
4704 }
4705
4706 /* Try to fold this expression in case we have constants that weren't
4707 present before. */
4708 temp = 0;
4709 switch (GET_RTX_CLASS (code))
4710 {
4711 case RTX_UNARY:
4712 if (op0_mode == VOIDmode)
4713 op0_mode = GET_MODE (XEXP (x, 0));
4714 temp = simplify_unary_operation (code, mode, XEXP (x, 0), op0_mode);
4715 break;
4716 case RTX_COMPARE:
4717 case RTX_COMM_COMPARE:
4718 {
4719 enum machine_mode cmp_mode = GET_MODE (XEXP (x, 0));
4720 if (cmp_mode == VOIDmode)
4721 {
4722 cmp_mode = GET_MODE (XEXP (x, 1));
4723 if (cmp_mode == VOIDmode)
4724 cmp_mode = op0_mode;
4725 }
4726 temp = simplify_relational_operation (code, mode, cmp_mode,
4727 XEXP (x, 0), XEXP (x, 1));
4728 }
4729 break;
4730 case RTX_COMM_ARITH:
4731 case RTX_BIN_ARITH:
4732 temp = simplify_binary_operation (code, mode, XEXP (x, 0), XEXP (x, 1));
4733 break;
4734 case RTX_BITFIELD_OPS:
4735 case RTX_TERNARY:
4736 temp = simplify_ternary_operation (code, mode, op0_mode, XEXP (x, 0),
4737 XEXP (x, 1), XEXP (x, 2));
4738 break;
4739 default:
4740 break;
4741 }
4742
4743 if (temp)
4744 {
4745 x = temp;
4746 code = GET_CODE (temp);
4747 op0_mode = VOIDmode;
4748 mode = GET_MODE (temp);
4749 }
4750
4751 /* First see if we can apply the inverse distributive law. */
4752 if (code == PLUS || code == MINUS
4753 || code == AND || code == IOR || code == XOR)
4754 {
4755 x = apply_distributive_law (x);
4756 code = GET_CODE (x);
4757 op0_mode = VOIDmode;
4758 }
4759
4760 /* If CODE is an associative operation not otherwise handled, see if we
4761 can associate some operands. This can win if they are constants or
4762 if they are logically related (i.e. (a & b) & a). */
4763 if ((code == PLUS || code == MINUS || code == MULT || code == DIV
4764 || code == AND || code == IOR || code == XOR
4765 || code == SMAX || code == SMIN || code == UMAX || code == UMIN)
4766 && ((INTEGRAL_MODE_P (mode) && code != DIV)
4767 || (flag_associative_math && FLOAT_MODE_P (mode))))
4768 {
4769 if (GET_CODE (XEXP (x, 0)) == code)
4770 {
4771 rtx other = XEXP (XEXP (x, 0), 0);
4772 rtx inner_op0 = XEXP (XEXP (x, 0), 1);
4773 rtx inner_op1 = XEXP (x, 1);
4774 rtx inner;
4775
4776 /* Make sure we pass the constant operand if any as the second
4777 one if this is a commutative operation. */
4778 if (CONSTANT_P (inner_op0) && COMMUTATIVE_ARITH_P (x))
4779 {
4780 rtx tem = inner_op0;
4781 inner_op0 = inner_op1;
4782 inner_op1 = tem;
4783 }
4784 inner = simplify_binary_operation (code == MINUS ? PLUS
4785 : code == DIV ? MULT
4786 : code,
4787 mode, inner_op0, inner_op1);
4788
4789 /* For commutative operations, try the other pair if that one
4790 didn't simplify. */
4791 if (inner == 0 && COMMUTATIVE_ARITH_P (x))
4792 {
4793 other = XEXP (XEXP (x, 0), 1);
4794 inner = simplify_binary_operation (code, mode,
4795 XEXP (XEXP (x, 0), 0),
4796 XEXP (x, 1));
4797 }
4798
4799 if (inner)
4800 return simplify_gen_binary (code, mode, other, inner);
4801 }
4802 }
4803
4804 /* A little bit of algebraic simplification here. */
4805 switch (code)
4806 {
4807 case MEM:
4808 /* Ensure that our address has any ASHIFTs converted to MULT in case
4809 address-recognizing predicates are called later. */
4810 temp = make_compound_operation (XEXP (x, 0), MEM);
4811 SUBST (XEXP (x, 0), temp);
4812 break;
4813
4814 case SUBREG:
4815 if (op0_mode == VOIDmode)
4816 op0_mode = GET_MODE (SUBREG_REG (x));
4817
4818 /* See if this can be moved to simplify_subreg. */
4819 if (CONSTANT_P (SUBREG_REG (x))
4820 && subreg_lowpart_offset (mode, op0_mode) == SUBREG_BYTE (x)
4821 /* Don't call gen_lowpart if the inner mode
4822 is VOIDmode and we cannot simplify it, as SUBREG without
4823 inner mode is invalid. */
4824 && (GET_MODE (SUBREG_REG (x)) != VOIDmode
4825 || gen_lowpart_common (mode, SUBREG_REG (x))))
4826 return gen_lowpart (mode, SUBREG_REG (x));
4827
4828 if (GET_MODE_CLASS (GET_MODE (SUBREG_REG (x))) == MODE_CC)
4829 break;
4830 {
4831 rtx temp;
4832 temp = simplify_subreg (mode, SUBREG_REG (x), op0_mode,
4833 SUBREG_BYTE (x));
4834 if (temp)
4835 return temp;
4836 }
4837
4838 /* Don't change the mode of the MEM if that would change the meaning
4839 of the address. */
4840 if (MEM_P (SUBREG_REG (x))
4841 && (MEM_VOLATILE_P (SUBREG_REG (x))
4842 || mode_dependent_address_p (XEXP (SUBREG_REG (x), 0))))
4843 return gen_rtx_CLOBBER (mode, const0_rtx);
4844
4845 /* Note that we cannot do any narrowing for non-constants since
4846 we might have been counting on using the fact that some bits were
4847 zero. We now do this in the SET. */
4848
4849 break;
4850
4851 case NEG:
4852 temp = expand_compound_operation (XEXP (x, 0));
4853
4854 /* For C equal to the width of MODE minus 1, (neg (ashiftrt X C)) can be
4855 replaced by (lshiftrt X C). This will convert
4856 (neg (sign_extract X 1 Y)) to (zero_extract X 1 Y). */
4857
4858 if (GET_CODE (temp) == ASHIFTRT
4859 && GET_CODE (XEXP (temp, 1)) == CONST_INT
4860 && INTVAL (XEXP (temp, 1)) == GET_MODE_BITSIZE (mode) - 1)
4861 return simplify_shift_const (NULL_RTX, LSHIFTRT, mode, XEXP (temp, 0),
4862 INTVAL (XEXP (temp, 1)));
4863
4864 /* If X has only a single bit that might be nonzero, say, bit I, convert
4865 (neg X) to (ashiftrt (ashift X C-I) C-I) where C is the bitsize of
4866 MODE minus 1. This will convert (neg (zero_extract X 1 Y)) to
4867 (sign_extract X 1 Y). But only do this if TEMP isn't a register
4868 or a SUBREG of one since we'd be making the expression more
4869 complex if it was just a register. */
4870
4871 if (!REG_P (temp)
4872 && ! (GET_CODE (temp) == SUBREG
4873 && REG_P (SUBREG_REG (temp)))
4874 && (i = exact_log2 (nonzero_bits (temp, mode))) >= 0)
4875 {
4876 rtx temp1 = simplify_shift_const
4877 (NULL_RTX, ASHIFTRT, mode,
4878 simplify_shift_const (NULL_RTX, ASHIFT, mode, temp,
4879 GET_MODE_BITSIZE (mode) - 1 - i),
4880 GET_MODE_BITSIZE (mode) - 1 - i);
4881
4882 /* If all we did was surround TEMP with the two shifts, we
4883 haven't improved anything, so don't use it. Otherwise,
4884 we are better off with TEMP1. */
4885 if (GET_CODE (temp1) != ASHIFTRT
4886 || GET_CODE (XEXP (temp1, 0)) != ASHIFT
4887 || XEXP (XEXP (temp1, 0), 0) != temp)
4888 return temp1;
4889 }
4890 break;
4891
4892 case TRUNCATE:
4893 /* We can't handle truncation to a partial integer mode here
4894 because we don't know the real bitsize of the partial
4895 integer mode. */
4896 if (GET_MODE_CLASS (mode) == MODE_PARTIAL_INT)
4897 break;
4898
4899 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4900 && TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (mode),
4901 GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))))
4902 SUBST (XEXP (x, 0),
4903 force_to_mode (XEXP (x, 0), GET_MODE (XEXP (x, 0)),
4904 GET_MODE_MASK (mode), 0));
4905
4906 /* Similarly to what we do in simplify-rtx.c, a truncate of a register
4907 whose value is a comparison can be replaced with a subreg if
4908 STORE_FLAG_VALUE permits. */
4909 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4910 && ((HOST_WIDE_INT) STORE_FLAG_VALUE & ~GET_MODE_MASK (mode)) == 0
4911 && (temp = get_last_value (XEXP (x, 0)))
4912 && COMPARISON_P (temp))
4913 return gen_lowpart (mode, XEXP (x, 0));
4914 break;
4915
4916 #ifdef HAVE_cc0
4917 case COMPARE:
4918 /* Convert (compare FOO (const_int 0)) to FOO unless we aren't
4919 using cc0, in which case we want to leave it as a COMPARE
4920 so we can distinguish it from a register-register-copy. */
4921 if (XEXP (x, 1) == const0_rtx)
4922 return XEXP (x, 0);
4923
4924 /* x - 0 is the same as x unless x's mode has signed zeros and
4925 allows rounding towards -infinity. Under those conditions,
4926 0 - 0 is -0. */
4927 if (!(HONOR_SIGNED_ZEROS (GET_MODE (XEXP (x, 0)))
4928 && HONOR_SIGN_DEPENDENT_ROUNDING (GET_MODE (XEXP (x, 0))))
4929 && XEXP (x, 1) == CONST0_RTX (GET_MODE (XEXP (x, 0))))
4930 return XEXP (x, 0);
4931 break;
4932 #endif
4933
4934 case CONST:
4935 /* (const (const X)) can become (const X). Do it this way rather than
4936 returning the inner CONST since CONST can be shared with a
4937 REG_EQUAL note. */
4938 if (GET_CODE (XEXP (x, 0)) == CONST)
4939 SUBST (XEXP (x, 0), XEXP (XEXP (x, 0), 0));
4940 break;
4941
4942 #ifdef HAVE_lo_sum
4943 case LO_SUM:
4944 /* Convert (lo_sum (high FOO) FOO) to FOO. This is necessary so we
4945 can add in an offset. find_split_point will split this address up
4946 again if it doesn't match. */
4947 if (GET_CODE (XEXP (x, 0)) == HIGH
4948 && rtx_equal_p (XEXP (XEXP (x, 0), 0), XEXP (x, 1)))
4949 return XEXP (x, 1);
4950 break;
4951 #endif
4952
4953 case PLUS:
4954 /* (plus (xor (and <foo> (const_int pow2 - 1)) <c>) <-c>)
4955 when c is (const_int (pow2 + 1) / 2) is a sign extension of a
4956 bit-field and can be replaced by either a sign_extend or a
4957 sign_extract. The `and' may be a zero_extend and the two
4958 <c>, -<c> constants may be reversed. */
4959 if (GET_CODE (XEXP (x, 0)) == XOR
4960 && GET_CODE (XEXP (x, 1)) == CONST_INT
4961 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
4962 && INTVAL (XEXP (x, 1)) == -INTVAL (XEXP (XEXP (x, 0), 1))
4963 && ((i = exact_log2 (INTVAL (XEXP (XEXP (x, 0), 1)))) >= 0
4964 || (i = exact_log2 (INTVAL (XEXP (x, 1)))) >= 0)
4965 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4966 && ((GET_CODE (XEXP (XEXP (x, 0), 0)) == AND
4967 && GET_CODE (XEXP (XEXP (XEXP (x, 0), 0), 1)) == CONST_INT
4968 && (INTVAL (XEXP (XEXP (XEXP (x, 0), 0), 1))
4969 == ((HOST_WIDE_INT) 1 << (i + 1)) - 1))
4970 || (GET_CODE (XEXP (XEXP (x, 0), 0)) == ZERO_EXTEND
4971 && (GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (XEXP (x, 0), 0), 0)))
4972 == (unsigned int) i + 1))))
4973 return simplify_shift_const
4974 (NULL_RTX, ASHIFTRT, mode,
4975 simplify_shift_const (NULL_RTX, ASHIFT, mode,
4976 XEXP (XEXP (XEXP (x, 0), 0), 0),
4977 GET_MODE_BITSIZE (mode) - (i + 1)),
4978 GET_MODE_BITSIZE (mode) - (i + 1));
4979
4980 /* If only the low-order bit of X is possibly nonzero, (plus x -1)
4981 can become (ashiftrt (ashift (xor x 1) C) C) where C is
4982 the bitsize of the mode - 1. This allows simplification of
4983 "a = (b & 8) == 0;" */
4984 if (XEXP (x, 1) == constm1_rtx
4985 && !REG_P (XEXP (x, 0))
4986 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
4987 && REG_P (SUBREG_REG (XEXP (x, 0))))
4988 && nonzero_bits (XEXP (x, 0), mode) == 1)
4989 return simplify_shift_const (NULL_RTX, ASHIFTRT, mode,
4990 simplify_shift_const (NULL_RTX, ASHIFT, mode,
4991 gen_rtx_XOR (mode, XEXP (x, 0), const1_rtx),
4992 GET_MODE_BITSIZE (mode) - 1),
4993 GET_MODE_BITSIZE (mode) - 1);
4994
4995 /* If we are adding two things that have no bits in common, convert
4996 the addition into an IOR. This will often be further simplified,
4997 for example in cases like ((a & 1) + (a & 2)), which can
4998 become a & 3. */
4999
5000 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5001 && (nonzero_bits (XEXP (x, 0), mode)
5002 & nonzero_bits (XEXP (x, 1), mode)) == 0)
5003 {
5004 /* Try to simplify the expression further. */
5005 rtx tor = simplify_gen_binary (IOR, mode, XEXP (x, 0), XEXP (x, 1));
5006 temp = combine_simplify_rtx (tor, mode, in_dest);
5007
5008 /* If we could, great. If not, do not go ahead with the IOR
5009 replacement, since PLUS appears in many special purpose
5010 address arithmetic instructions. */
5011 if (GET_CODE (temp) != CLOBBER && temp != tor)
5012 return temp;
5013 }
5014 break;
5015
5016 case MINUS:
5017 /* (minus <foo> (and <foo> (const_int -pow2))) becomes
5018 (and <foo> (const_int pow2-1)) */
5019 if (GET_CODE (XEXP (x, 1)) == AND
5020 && GET_CODE (XEXP (XEXP (x, 1), 1)) == CONST_INT
5021 && exact_log2 (-INTVAL (XEXP (XEXP (x, 1), 1))) >= 0
5022 && rtx_equal_p (XEXP (XEXP (x, 1), 0), XEXP (x, 0)))
5023 return simplify_and_const_int (NULL_RTX, mode, XEXP (x, 0),
5024 -INTVAL (XEXP (XEXP (x, 1), 1)) - 1);
5025 break;
5026
5027 case MULT:
5028 /* If we have (mult (plus A B) C), apply the distributive law and then
5029 the inverse distributive law to see if things simplify. This
5030 occurs mostly in addresses, often when unrolling loops. */
5031
5032 if (GET_CODE (XEXP (x, 0)) == PLUS)
5033 {
5034 rtx result = distribute_and_simplify_rtx (x, 0);
5035 if (result)
5036 return result;
5037 }
5038
5039 /* Try simplify a*(b/c) as (a*b)/c. */
5040 if (FLOAT_MODE_P (mode) && flag_associative_math
5041 && GET_CODE (XEXP (x, 0)) == DIV)
5042 {
5043 rtx tem = simplify_binary_operation (MULT, mode,
5044 XEXP (XEXP (x, 0), 0),
5045 XEXP (x, 1));
5046 if (tem)
5047 return simplify_gen_binary (DIV, mode, tem, XEXP (XEXP (x, 0), 1));
5048 }
5049 break;
5050
5051 case UDIV:
5052 /* If this is a divide by a power of two, treat it as a shift if
5053 its first operand is a shift. */
5054 if (GET_CODE (XEXP (x, 1)) == CONST_INT
5055 && (i = exact_log2 (INTVAL (XEXP (x, 1)))) >= 0
5056 && (GET_CODE (XEXP (x, 0)) == ASHIFT
5057 || GET_CODE (XEXP (x, 0)) == LSHIFTRT
5058 || GET_CODE (XEXP (x, 0)) == ASHIFTRT
5059 || GET_CODE (XEXP (x, 0)) == ROTATE
5060 || GET_CODE (XEXP (x, 0)) == ROTATERT))
5061 return simplify_shift_const (NULL_RTX, LSHIFTRT, mode, XEXP (x, 0), i);
5062 break;
5063
5064 case EQ: case NE:
5065 case GT: case GTU: case GE: case GEU:
5066 case LT: case LTU: case LE: case LEU:
5067 case UNEQ: case LTGT:
5068 case UNGT: case UNGE:
5069 case UNLT: case UNLE:
5070 case UNORDERED: case ORDERED:
5071 /* If the first operand is a condition code, we can't do anything
5072 with it. */
5073 if (GET_CODE (XEXP (x, 0)) == COMPARE
5074 || (GET_MODE_CLASS (GET_MODE (XEXP (x, 0))) != MODE_CC
5075 && ! CC0_P (XEXP (x, 0))))
5076 {
5077 rtx op0 = XEXP (x, 0);
5078 rtx op1 = XEXP (x, 1);
5079 enum rtx_code new_code;
5080
5081 if (GET_CODE (op0) == COMPARE)
5082 op1 = XEXP (op0, 1), op0 = XEXP (op0, 0);
5083
5084 /* Simplify our comparison, if possible. */
5085 new_code = simplify_comparison (code, &op0, &op1);
5086
5087 /* If STORE_FLAG_VALUE is 1, we can convert (ne x 0) to simply X
5088 if only the low-order bit is possibly nonzero in X (such as when
5089 X is a ZERO_EXTRACT of one bit). Similarly, we can convert EQ to
5090 (xor X 1) or (minus 1 X); we use the former. Finally, if X is
5091 known to be either 0 or -1, NE becomes a NEG and EQ becomes
5092 (plus X 1).
5093
5094 Remove any ZERO_EXTRACT we made when thinking this was a
5095 comparison. It may now be simpler to use, e.g., an AND. If a
5096 ZERO_EXTRACT is indeed appropriate, it will be placed back by
5097 the call to make_compound_operation in the SET case. */
5098
5099 if (STORE_FLAG_VALUE == 1
5100 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
5101 && op1 == const0_rtx
5102 && mode == GET_MODE (op0)
5103 && nonzero_bits (op0, mode) == 1)
5104 return gen_lowpart (mode,
5105 expand_compound_operation (op0));
5106
5107 else if (STORE_FLAG_VALUE == 1
5108 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
5109 && op1 == const0_rtx
5110 && mode == GET_MODE (op0)
5111 && (num_sign_bit_copies (op0, mode)
5112 == GET_MODE_BITSIZE (mode)))
5113 {
5114 op0 = expand_compound_operation (op0);
5115 return simplify_gen_unary (NEG, mode,
5116 gen_lowpart (mode, op0),
5117 mode);
5118 }
5119
5120 else if (STORE_FLAG_VALUE == 1
5121 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
5122 && op1 == const0_rtx
5123 && mode == GET_MODE (op0)
5124 && nonzero_bits (op0, mode) == 1)
5125 {
5126 op0 = expand_compound_operation (op0);
5127 return simplify_gen_binary (XOR, mode,
5128 gen_lowpart (mode, op0),
5129 const1_rtx);
5130 }
5131
5132 else if (STORE_FLAG_VALUE == 1
5133 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
5134 && op1 == const0_rtx
5135 && mode == GET_MODE (op0)
5136 && (num_sign_bit_copies (op0, mode)
5137 == GET_MODE_BITSIZE (mode)))
5138 {
5139 op0 = expand_compound_operation (op0);
5140 return plus_constant (gen_lowpart (mode, op0), 1);
5141 }
5142
5143 /* If STORE_FLAG_VALUE is -1, we have cases similar to
5144 those above. */
5145 if (STORE_FLAG_VALUE == -1
5146 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
5147 && op1 == const0_rtx
5148 && (num_sign_bit_copies (op0, mode)
5149 == GET_MODE_BITSIZE (mode)))
5150 return gen_lowpart (mode,
5151 expand_compound_operation (op0));
5152
5153 else if (STORE_FLAG_VALUE == -1
5154 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
5155 && op1 == const0_rtx
5156 && mode == GET_MODE (op0)
5157 && nonzero_bits (op0, mode) == 1)
5158 {
5159 op0 = expand_compound_operation (op0);
5160 return simplify_gen_unary (NEG, mode,
5161 gen_lowpart (mode, op0),
5162 mode);
5163 }
5164
5165 else if (STORE_FLAG_VALUE == -1
5166 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
5167 && op1 == const0_rtx
5168 && mode == GET_MODE (op0)
5169 && (num_sign_bit_copies (op0, mode)
5170 == GET_MODE_BITSIZE (mode)))
5171 {
5172 op0 = expand_compound_operation (op0);
5173 return simplify_gen_unary (NOT, mode,
5174 gen_lowpart (mode, op0),
5175 mode);
5176 }
5177
5178 /* If X is 0/1, (eq X 0) is X-1. */
5179 else if (STORE_FLAG_VALUE == -1
5180 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
5181 && op1 == const0_rtx
5182 && mode == GET_MODE (op0)
5183 && nonzero_bits (op0, mode) == 1)
5184 {
5185 op0 = expand_compound_operation (op0);
5186 return plus_constant (gen_lowpart (mode, op0), -1);
5187 }
5188
5189 /* If STORE_FLAG_VALUE says to just test the sign bit and X has just
5190 one bit that might be nonzero, we can convert (ne x 0) to
5191 (ashift x c) where C puts the bit in the sign bit. Remove any
5192 AND with STORE_FLAG_VALUE when we are done, since we are only
5193 going to test the sign bit. */
5194 if (new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
5195 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5196 && ((STORE_FLAG_VALUE & GET_MODE_MASK (mode))
5197 == (unsigned HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (mode) - 1))
5198 && op1 == const0_rtx
5199 && mode == GET_MODE (op0)
5200 && (i = exact_log2 (nonzero_bits (op0, mode))) >= 0)
5201 {
5202 x = simplify_shift_const (NULL_RTX, ASHIFT, mode,
5203 expand_compound_operation (op0),
5204 GET_MODE_BITSIZE (mode) - 1 - i);
5205 if (GET_CODE (x) == AND && XEXP (x, 1) == const_true_rtx)
5206 return XEXP (x, 0);
5207 else
5208 return x;
5209 }
5210
5211 /* If the code changed, return a whole new comparison. */
5212 if (new_code != code)
5213 return gen_rtx_fmt_ee (new_code, mode, op0, op1);
5214
5215 /* Otherwise, keep this operation, but maybe change its operands.
5216 This also converts (ne (compare FOO BAR) 0) to (ne FOO BAR). */
5217 SUBST (XEXP (x, 0), op0);
5218 SUBST (XEXP (x, 1), op1);
5219 }
5220 break;
5221
5222 case IF_THEN_ELSE:
5223 return simplify_if_then_else (x);
5224
5225 case ZERO_EXTRACT:
5226 case SIGN_EXTRACT:
5227 case ZERO_EXTEND:
5228 case SIGN_EXTEND:
5229 /* If we are processing SET_DEST, we are done. */
5230 if (in_dest)
5231 return x;
5232
5233 return expand_compound_operation (x);
5234
5235 case SET:
5236 return simplify_set (x);
5237
5238 case AND:
5239 case IOR:
5240 return simplify_logical (x);
5241
5242 case ASHIFT:
5243 case LSHIFTRT:
5244 case ASHIFTRT:
5245 case ROTATE:
5246 case ROTATERT:
5247 /* If this is a shift by a constant amount, simplify it. */
5248 if (GET_CODE (XEXP (x, 1)) == CONST_INT)
5249 return simplify_shift_const (x, code, mode, XEXP (x, 0),
5250 INTVAL (XEXP (x, 1)));
5251
5252 else if (SHIFT_COUNT_TRUNCATED && !REG_P (XEXP (x, 1)))
5253 SUBST (XEXP (x, 1),
5254 force_to_mode (XEXP (x, 1), GET_MODE (XEXP (x, 1)),
5255 ((HOST_WIDE_INT) 1
5256 << exact_log2 (GET_MODE_BITSIZE (GET_MODE (x))))
5257 - 1,
5258 0));
5259 break;
5260
5261 default:
5262 break;
5263 }
5264
5265 return x;
5266 }
5267 \f
5268 /* Simplify X, an IF_THEN_ELSE expression. Return the new expression. */
5269
5270 static rtx
5271 simplify_if_then_else (rtx x)
5272 {
5273 enum machine_mode mode = GET_MODE (x);
5274 rtx cond = XEXP (x, 0);
5275 rtx true_rtx = XEXP (x, 1);
5276 rtx false_rtx = XEXP (x, 2);
5277 enum rtx_code true_code = GET_CODE (cond);
5278 int comparison_p = COMPARISON_P (cond);
5279 rtx temp;
5280 int i;
5281 enum rtx_code false_code;
5282 rtx reversed;
5283
5284 /* Simplify storing of the truth value. */
5285 if (comparison_p && true_rtx == const_true_rtx && false_rtx == const0_rtx)
5286 return simplify_gen_relational (true_code, mode, VOIDmode,
5287 XEXP (cond, 0), XEXP (cond, 1));
5288
5289 /* Also when the truth value has to be reversed. */
5290 if (comparison_p
5291 && true_rtx == const0_rtx && false_rtx == const_true_rtx
5292 && (reversed = reversed_comparison (cond, mode)))
5293 return reversed;
5294
5295 /* Sometimes we can simplify the arm of an IF_THEN_ELSE if a register used
5296 in it is being compared against certain values. Get the true and false
5297 comparisons and see if that says anything about the value of each arm. */
5298
5299 if (comparison_p
5300 && ((false_code = reversed_comparison_code (cond, NULL))
5301 != UNKNOWN)
5302 && REG_P (XEXP (cond, 0)))
5303 {
5304 HOST_WIDE_INT nzb;
5305 rtx from = XEXP (cond, 0);
5306 rtx true_val = XEXP (cond, 1);
5307 rtx false_val = true_val;
5308 int swapped = 0;
5309
5310 /* If FALSE_CODE is EQ, swap the codes and arms. */
5311
5312 if (false_code == EQ)
5313 {
5314 swapped = 1, true_code = EQ, false_code = NE;
5315 temp = true_rtx, true_rtx = false_rtx, false_rtx = temp;
5316 }
5317
5318 /* If we are comparing against zero and the expression being tested has
5319 only a single bit that might be nonzero, that is its value when it is
5320 not equal to zero. Similarly if it is known to be -1 or 0. */
5321
5322 if (true_code == EQ && true_val == const0_rtx
5323 && exact_log2 (nzb = nonzero_bits (from, GET_MODE (from))) >= 0)
5324 {
5325 false_code = EQ;
5326 false_val = GEN_INT (trunc_int_for_mode (nzb, GET_MODE (from)));
5327 }
5328 else if (true_code == EQ && true_val == const0_rtx
5329 && (num_sign_bit_copies (from, GET_MODE (from))
5330 == GET_MODE_BITSIZE (GET_MODE (from))))
5331 {
5332 false_code = EQ;
5333 false_val = constm1_rtx;
5334 }
5335
5336 /* Now simplify an arm if we know the value of the register in the
5337 branch and it is used in the arm. Be careful due to the potential
5338 of locally-shared RTL. */
5339
5340 if (reg_mentioned_p (from, true_rtx))
5341 true_rtx = subst (known_cond (copy_rtx (true_rtx), true_code,
5342 from, true_val),
5343 pc_rtx, pc_rtx, 0, 0);
5344 if (reg_mentioned_p (from, false_rtx))
5345 false_rtx = subst (known_cond (copy_rtx (false_rtx), false_code,
5346 from, false_val),
5347 pc_rtx, pc_rtx, 0, 0);
5348
5349 SUBST (XEXP (x, 1), swapped ? false_rtx : true_rtx);
5350 SUBST (XEXP (x, 2), swapped ? true_rtx : false_rtx);
5351
5352 true_rtx = XEXP (x, 1);
5353 false_rtx = XEXP (x, 2);
5354 true_code = GET_CODE (cond);
5355 }
5356
5357 /* If we have (if_then_else FOO (pc) (label_ref BAR)) and FOO can be
5358 reversed, do so to avoid needing two sets of patterns for
5359 subtract-and-branch insns. Similarly if we have a constant in the true
5360 arm, the false arm is the same as the first operand of the comparison, or
5361 the false arm is more complicated than the true arm. */
5362
5363 if (comparison_p
5364 && reversed_comparison_code (cond, NULL) != UNKNOWN
5365 && (true_rtx == pc_rtx
5366 || (CONSTANT_P (true_rtx)
5367 && GET_CODE (false_rtx) != CONST_INT && false_rtx != pc_rtx)
5368 || true_rtx == const0_rtx
5369 || (OBJECT_P (true_rtx) && !OBJECT_P (false_rtx))
5370 || (GET_CODE (true_rtx) == SUBREG && OBJECT_P (SUBREG_REG (true_rtx))
5371 && !OBJECT_P (false_rtx))
5372 || reg_mentioned_p (true_rtx, false_rtx)
5373 || rtx_equal_p (false_rtx, XEXP (cond, 0))))
5374 {
5375 true_code = reversed_comparison_code (cond, NULL);
5376 SUBST (XEXP (x, 0), reversed_comparison (cond, GET_MODE (cond)));
5377 SUBST (XEXP (x, 1), false_rtx);
5378 SUBST (XEXP (x, 2), true_rtx);
5379
5380 temp = true_rtx, true_rtx = false_rtx, false_rtx = temp;
5381 cond = XEXP (x, 0);
5382
5383 /* It is possible that the conditional has been simplified out. */
5384 true_code = GET_CODE (cond);
5385 comparison_p = COMPARISON_P (cond);
5386 }
5387
5388 /* If the two arms are identical, we don't need the comparison. */
5389
5390 if (rtx_equal_p (true_rtx, false_rtx) && ! side_effects_p (cond))
5391 return true_rtx;
5392
5393 /* Convert a == b ? b : a to "a". */
5394 if (true_code == EQ && ! side_effects_p (cond)
5395 && !HONOR_NANS (mode)
5396 && rtx_equal_p (XEXP (cond, 0), false_rtx)
5397 && rtx_equal_p (XEXP (cond, 1), true_rtx))
5398 return false_rtx;
5399 else if (true_code == NE && ! side_effects_p (cond)
5400 && !HONOR_NANS (mode)
5401 && rtx_equal_p (XEXP (cond, 0), true_rtx)
5402 && rtx_equal_p (XEXP (cond, 1), false_rtx))
5403 return true_rtx;
5404
5405 /* Look for cases where we have (abs x) or (neg (abs X)). */
5406
5407 if (GET_MODE_CLASS (mode) == MODE_INT
5408 && comparison_p
5409 && XEXP (cond, 1) == const0_rtx
5410 && GET_CODE (false_rtx) == NEG
5411 && rtx_equal_p (true_rtx, XEXP (false_rtx, 0))
5412 && rtx_equal_p (true_rtx, XEXP (cond, 0))
5413 && ! side_effects_p (true_rtx))
5414 switch (true_code)
5415 {
5416 case GT:
5417 case GE:
5418 return simplify_gen_unary (ABS, mode, true_rtx, mode);
5419 case LT:
5420 case LE:
5421 return
5422 simplify_gen_unary (NEG, mode,
5423 simplify_gen_unary (ABS, mode, true_rtx, mode),
5424 mode);
5425 default:
5426 break;
5427 }
5428
5429 /* Look for MIN or MAX. */
5430
5431 if ((! FLOAT_MODE_P (mode) || flag_unsafe_math_optimizations)
5432 && comparison_p
5433 && rtx_equal_p (XEXP (cond, 0), true_rtx)
5434 && rtx_equal_p (XEXP (cond, 1), false_rtx)
5435 && ! side_effects_p (cond))
5436 switch (true_code)
5437 {
5438 case GE:
5439 case GT:
5440 return simplify_gen_binary (SMAX, mode, true_rtx, false_rtx);
5441 case LE:
5442 case LT:
5443 return simplify_gen_binary (SMIN, mode, true_rtx, false_rtx);
5444 case GEU:
5445 case GTU:
5446 return simplify_gen_binary (UMAX, mode, true_rtx, false_rtx);
5447 case LEU:
5448 case LTU:
5449 return simplify_gen_binary (UMIN, mode, true_rtx, false_rtx);
5450 default:
5451 break;
5452 }
5453
5454 /* If we have (if_then_else COND (OP Z C1) Z) and OP is an identity when its
5455 second operand is zero, this can be done as (OP Z (mult COND C2)) where
5456 C2 = C1 * STORE_FLAG_VALUE. Similarly if OP has an outer ZERO_EXTEND or
5457 SIGN_EXTEND as long as Z is already extended (so we don't destroy it).
5458 We can do this kind of thing in some cases when STORE_FLAG_VALUE is
5459 neither 1 or -1, but it isn't worth checking for. */
5460
5461 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
5462 && comparison_p
5463 && GET_MODE_CLASS (mode) == MODE_INT
5464 && ! side_effects_p (x))
5465 {
5466 rtx t = make_compound_operation (true_rtx, SET);
5467 rtx f = make_compound_operation (false_rtx, SET);
5468 rtx cond_op0 = XEXP (cond, 0);
5469 rtx cond_op1 = XEXP (cond, 1);
5470 enum rtx_code op = UNKNOWN, extend_op = UNKNOWN;
5471 enum machine_mode m = mode;
5472 rtx z = 0, c1 = NULL_RTX;
5473
5474 if ((GET_CODE (t) == PLUS || GET_CODE (t) == MINUS
5475 || GET_CODE (t) == IOR || GET_CODE (t) == XOR
5476 || GET_CODE (t) == ASHIFT
5477 || GET_CODE (t) == LSHIFTRT || GET_CODE (t) == ASHIFTRT)
5478 && rtx_equal_p (XEXP (t, 0), f))
5479 c1 = XEXP (t, 1), op = GET_CODE (t), z = f;
5480
5481 /* If an identity-zero op is commutative, check whether there
5482 would be a match if we swapped the operands. */
5483 else if ((GET_CODE (t) == PLUS || GET_CODE (t) == IOR
5484 || GET_CODE (t) == XOR)
5485 && rtx_equal_p (XEXP (t, 1), f))
5486 c1 = XEXP (t, 0), op = GET_CODE (t), z = f;
5487 else if (GET_CODE (t) == SIGN_EXTEND
5488 && (GET_CODE (XEXP (t, 0)) == PLUS
5489 || GET_CODE (XEXP (t, 0)) == MINUS
5490 || GET_CODE (XEXP (t, 0)) == IOR
5491 || GET_CODE (XEXP (t, 0)) == XOR
5492 || GET_CODE (XEXP (t, 0)) == ASHIFT
5493 || GET_CODE (XEXP (t, 0)) == LSHIFTRT
5494 || GET_CODE (XEXP (t, 0)) == ASHIFTRT)
5495 && GET_CODE (XEXP (XEXP (t, 0), 0)) == SUBREG
5496 && subreg_lowpart_p (XEXP (XEXP (t, 0), 0))
5497 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 0)), f)
5498 && (num_sign_bit_copies (f, GET_MODE (f))
5499 > (unsigned int)
5500 (GET_MODE_BITSIZE (mode)
5501 - GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (t, 0), 0))))))
5502 {
5503 c1 = XEXP (XEXP (t, 0), 1); z = f; op = GET_CODE (XEXP (t, 0));
5504 extend_op = SIGN_EXTEND;
5505 m = GET_MODE (XEXP (t, 0));
5506 }
5507 else if (GET_CODE (t) == SIGN_EXTEND
5508 && (GET_CODE (XEXP (t, 0)) == PLUS
5509 || GET_CODE (XEXP (t, 0)) == IOR
5510 || GET_CODE (XEXP (t, 0)) == XOR)
5511 && GET_CODE (XEXP (XEXP (t, 0), 1)) == SUBREG
5512 && subreg_lowpart_p (XEXP (XEXP (t, 0), 1))
5513 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 1)), f)
5514 && (num_sign_bit_copies (f, GET_MODE (f))
5515 > (unsigned int)
5516 (GET_MODE_BITSIZE (mode)
5517 - GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (t, 0), 1))))))
5518 {
5519 c1 = XEXP (XEXP (t, 0), 0); z = f; op = GET_CODE (XEXP (t, 0));
5520 extend_op = SIGN_EXTEND;
5521 m = GET_MODE (XEXP (t, 0));
5522 }
5523 else if (GET_CODE (t) == ZERO_EXTEND
5524 && (GET_CODE (XEXP (t, 0)) == PLUS
5525 || GET_CODE (XEXP (t, 0)) == MINUS
5526 || GET_CODE (XEXP (t, 0)) == IOR
5527 || GET_CODE (XEXP (t, 0)) == XOR
5528 || GET_CODE (XEXP (t, 0)) == ASHIFT
5529 || GET_CODE (XEXP (t, 0)) == LSHIFTRT
5530 || GET_CODE (XEXP (t, 0)) == ASHIFTRT)
5531 && GET_CODE (XEXP (XEXP (t, 0), 0)) == SUBREG
5532 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5533 && subreg_lowpart_p (XEXP (XEXP (t, 0), 0))
5534 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 0)), f)
5535 && ((nonzero_bits (f, GET_MODE (f))
5536 & ~GET_MODE_MASK (GET_MODE (XEXP (XEXP (t, 0), 0))))
5537 == 0))
5538 {
5539 c1 = XEXP (XEXP (t, 0), 1); z = f; op = GET_CODE (XEXP (t, 0));
5540 extend_op = ZERO_EXTEND;
5541 m = GET_MODE (XEXP (t, 0));
5542 }
5543 else if (GET_CODE (t) == ZERO_EXTEND
5544 && (GET_CODE (XEXP (t, 0)) == PLUS
5545 || GET_CODE (XEXP (t, 0)) == IOR
5546 || GET_CODE (XEXP (t, 0)) == XOR)
5547 && GET_CODE (XEXP (XEXP (t, 0), 1)) == SUBREG
5548 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5549 && subreg_lowpart_p (XEXP (XEXP (t, 0), 1))
5550 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 1)), f)
5551 && ((nonzero_bits (f, GET_MODE (f))
5552 & ~GET_MODE_MASK (GET_MODE (XEXP (XEXP (t, 0), 1))))
5553 == 0))
5554 {
5555 c1 = XEXP (XEXP (t, 0), 0); z = f; op = GET_CODE (XEXP (t, 0));
5556 extend_op = ZERO_EXTEND;
5557 m = GET_MODE (XEXP (t, 0));
5558 }
5559
5560 if (z)
5561 {
5562 temp = subst (simplify_gen_relational (true_code, m, VOIDmode,
5563 cond_op0, cond_op1),
5564 pc_rtx, pc_rtx, 0, 0);
5565 temp = simplify_gen_binary (MULT, m, temp,
5566 simplify_gen_binary (MULT, m, c1,
5567 const_true_rtx));
5568 temp = subst (temp, pc_rtx, pc_rtx, 0, 0);
5569 temp = simplify_gen_binary (op, m, gen_lowpart (m, z), temp);
5570
5571 if (extend_op != UNKNOWN)
5572 temp = simplify_gen_unary (extend_op, mode, temp, m);
5573
5574 return temp;
5575 }
5576 }
5577
5578 /* If we have (if_then_else (ne A 0) C1 0) and either A is known to be 0 or
5579 1 and C1 is a single bit or A is known to be 0 or -1 and C1 is the
5580 negation of a single bit, we can convert this operation to a shift. We
5581 can actually do this more generally, but it doesn't seem worth it. */
5582
5583 if (true_code == NE && XEXP (cond, 1) == const0_rtx
5584 && false_rtx == const0_rtx && GET_CODE (true_rtx) == CONST_INT
5585 && ((1 == nonzero_bits (XEXP (cond, 0), mode)
5586 && (i = exact_log2 (INTVAL (true_rtx))) >= 0)
5587 || ((num_sign_bit_copies (XEXP (cond, 0), mode)
5588 == GET_MODE_BITSIZE (mode))
5589 && (i = exact_log2 (-INTVAL (true_rtx))) >= 0)))
5590 return
5591 simplify_shift_const (NULL_RTX, ASHIFT, mode,
5592 gen_lowpart (mode, XEXP (cond, 0)), i);
5593
5594 /* (IF_THEN_ELSE (NE REG 0) (0) (8)) is REG for nonzero_bits (REG) == 8. */
5595 if (true_code == NE && XEXP (cond, 1) == const0_rtx
5596 && false_rtx == const0_rtx && GET_CODE (true_rtx) == CONST_INT
5597 && GET_MODE (XEXP (cond, 0)) == mode
5598 && (INTVAL (true_rtx) & GET_MODE_MASK (mode))
5599 == nonzero_bits (XEXP (cond, 0), mode)
5600 && (i = exact_log2 (INTVAL (true_rtx) & GET_MODE_MASK (mode))) >= 0)
5601 return XEXP (cond, 0);
5602
5603 return x;
5604 }
5605 \f
5606 /* Simplify X, a SET expression. Return the new expression. */
5607
5608 static rtx
5609 simplify_set (rtx x)
5610 {
5611 rtx src = SET_SRC (x);
5612 rtx dest = SET_DEST (x);
5613 enum machine_mode mode
5614 = GET_MODE (src) != VOIDmode ? GET_MODE (src) : GET_MODE (dest);
5615 rtx other_insn;
5616 rtx *cc_use;
5617
5618 /* (set (pc) (return)) gets written as (return). */
5619 if (GET_CODE (dest) == PC && GET_CODE (src) == RETURN)
5620 return src;
5621
5622 /* Now that we know for sure which bits of SRC we are using, see if we can
5623 simplify the expression for the object knowing that we only need the
5624 low-order bits. */
5625
5626 if (GET_MODE_CLASS (mode) == MODE_INT
5627 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
5628 {
5629 src = force_to_mode (src, mode, ~(HOST_WIDE_INT) 0, 0);
5630 SUBST (SET_SRC (x), src);
5631 }
5632
5633 /* If we are setting CC0 or if the source is a COMPARE, look for the use of
5634 the comparison result and try to simplify it unless we already have used
5635 undobuf.other_insn. */
5636 if ((GET_MODE_CLASS (mode) == MODE_CC
5637 || GET_CODE (src) == COMPARE
5638 || CC0_P (dest))
5639 && (cc_use = find_single_use (dest, subst_insn, &other_insn)) != 0
5640 && (undobuf.other_insn == 0 || other_insn == undobuf.other_insn)
5641 && COMPARISON_P (*cc_use)
5642 && rtx_equal_p (XEXP (*cc_use, 0), dest))
5643 {
5644 enum rtx_code old_code = GET_CODE (*cc_use);
5645 enum rtx_code new_code;
5646 rtx op0, op1, tmp;
5647 int other_changed = 0;
5648 enum machine_mode compare_mode = GET_MODE (dest);
5649
5650 if (GET_CODE (src) == COMPARE)
5651 op0 = XEXP (src, 0), op1 = XEXP (src, 1);
5652 else
5653 op0 = src, op1 = CONST0_RTX (GET_MODE (src));
5654
5655 tmp = simplify_relational_operation (old_code, compare_mode, VOIDmode,
5656 op0, op1);
5657 if (!tmp)
5658 new_code = old_code;
5659 else if (!CONSTANT_P (tmp))
5660 {
5661 new_code = GET_CODE (tmp);
5662 op0 = XEXP (tmp, 0);
5663 op1 = XEXP (tmp, 1);
5664 }
5665 else
5666 {
5667 rtx pat = PATTERN (other_insn);
5668 undobuf.other_insn = other_insn;
5669 SUBST (*cc_use, tmp);
5670
5671 /* Attempt to simplify CC user. */
5672 if (GET_CODE (pat) == SET)
5673 {
5674 rtx new = simplify_rtx (SET_SRC (pat));
5675 if (new != NULL_RTX)
5676 SUBST (SET_SRC (pat), new);
5677 }
5678
5679 /* Convert X into a no-op move. */
5680 SUBST (SET_DEST (x), pc_rtx);
5681 SUBST (SET_SRC (x), pc_rtx);
5682 return x;
5683 }
5684
5685 /* Simplify our comparison, if possible. */
5686 new_code = simplify_comparison (new_code, &op0, &op1);
5687
5688 #ifdef SELECT_CC_MODE
5689 /* If this machine has CC modes other than CCmode, check to see if we
5690 need to use a different CC mode here. */
5691 if (GET_MODE_CLASS (GET_MODE (op0)) == MODE_CC)
5692 compare_mode = GET_MODE (op0);
5693 else
5694 compare_mode = SELECT_CC_MODE (new_code, op0, op1);
5695
5696 #ifndef HAVE_cc0
5697 /* If the mode changed, we have to change SET_DEST, the mode in the
5698 compare, and the mode in the place SET_DEST is used. If SET_DEST is
5699 a hard register, just build new versions with the proper mode. If it
5700 is a pseudo, we lose unless it is only time we set the pseudo, in
5701 which case we can safely change its mode. */
5702 if (compare_mode != GET_MODE (dest))
5703 {
5704 if (can_change_dest_mode (dest, 0, compare_mode))
5705 {
5706 unsigned int regno = REGNO (dest);
5707 rtx new_dest;
5708
5709 if (regno < FIRST_PSEUDO_REGISTER)
5710 new_dest = gen_rtx_REG (compare_mode, regno);
5711 else
5712 {
5713 SUBST_MODE (regno_reg_rtx[regno], compare_mode);
5714 new_dest = regno_reg_rtx[regno];
5715 }
5716
5717 SUBST (SET_DEST (x), new_dest);
5718 SUBST (XEXP (*cc_use, 0), new_dest);
5719 other_changed = 1;
5720
5721 dest = new_dest;
5722 }
5723 }
5724 #endif /* cc0 */
5725 #endif /* SELECT_CC_MODE */
5726
5727 /* If the code changed, we have to build a new comparison in
5728 undobuf.other_insn. */
5729 if (new_code != old_code)
5730 {
5731 int other_changed_previously = other_changed;
5732 unsigned HOST_WIDE_INT mask;
5733
5734 SUBST (*cc_use, gen_rtx_fmt_ee (new_code, GET_MODE (*cc_use),
5735 dest, const0_rtx));
5736 other_changed = 1;
5737
5738 /* If the only change we made was to change an EQ into an NE or
5739 vice versa, OP0 has only one bit that might be nonzero, and OP1
5740 is zero, check if changing the user of the condition code will
5741 produce a valid insn. If it won't, we can keep the original code
5742 in that insn by surrounding our operation with an XOR. */
5743
5744 if (((old_code == NE && new_code == EQ)
5745 || (old_code == EQ && new_code == NE))
5746 && ! other_changed_previously && op1 == const0_rtx
5747 && GET_MODE_BITSIZE (GET_MODE (op0)) <= HOST_BITS_PER_WIDE_INT
5748 && exact_log2 (mask = nonzero_bits (op0, GET_MODE (op0))) >= 0)
5749 {
5750 rtx pat = PATTERN (other_insn), note = 0;
5751
5752 if ((recog_for_combine (&pat, other_insn, &note) < 0
5753 && ! check_asm_operands (pat)))
5754 {
5755 PUT_CODE (*cc_use, old_code);
5756 other_changed = 0;
5757
5758 op0 = simplify_gen_binary (XOR, GET_MODE (op0),
5759 op0, GEN_INT (mask));
5760 }
5761 }
5762 }
5763
5764 if (other_changed)
5765 undobuf.other_insn = other_insn;
5766
5767 #ifdef HAVE_cc0
5768 /* If we are now comparing against zero, change our source if
5769 needed. If we do not use cc0, we always have a COMPARE. */
5770 if (op1 == const0_rtx && dest == cc0_rtx)
5771 {
5772 SUBST (SET_SRC (x), op0);
5773 src = op0;
5774 }
5775 else
5776 #endif
5777
5778 /* Otherwise, if we didn't previously have a COMPARE in the
5779 correct mode, we need one. */
5780 if (GET_CODE (src) != COMPARE || GET_MODE (src) != compare_mode)
5781 {
5782 SUBST (SET_SRC (x), gen_rtx_COMPARE (compare_mode, op0, op1));
5783 src = SET_SRC (x);
5784 }
5785 else if (GET_MODE (op0) == compare_mode && op1 == const0_rtx)
5786 {
5787 SUBST (SET_SRC (x), op0);
5788 src = SET_SRC (x);
5789 }
5790 /* Otherwise, update the COMPARE if needed. */
5791 else if (XEXP (src, 0) != op0 || XEXP (src, 1) != op1)
5792 {
5793 SUBST (SET_SRC (x), gen_rtx_COMPARE (compare_mode, op0, op1));
5794 src = SET_SRC (x);
5795 }
5796 }
5797 else
5798 {
5799 /* Get SET_SRC in a form where we have placed back any
5800 compound expressions. Then do the checks below. */
5801 src = make_compound_operation (src, SET);
5802 SUBST (SET_SRC (x), src);
5803 }
5804
5805 /* If we have (set x (subreg:m1 (op:m2 ...) 0)) with OP being some operation,
5806 and X being a REG or (subreg (reg)), we may be able to convert this to
5807 (set (subreg:m2 x) (op)).
5808
5809 We can always do this if M1 is narrower than M2 because that means that
5810 we only care about the low bits of the result.
5811
5812 However, on machines without WORD_REGISTER_OPERATIONS defined, we cannot
5813 perform a narrower operation than requested since the high-order bits will
5814 be undefined. On machine where it is defined, this transformation is safe
5815 as long as M1 and M2 have the same number of words. */
5816
5817 if (GET_CODE (src) == SUBREG && subreg_lowpart_p (src)
5818 && !OBJECT_P (SUBREG_REG (src))
5819 && (((GET_MODE_SIZE (GET_MODE (src)) + (UNITS_PER_WORD - 1))
5820 / UNITS_PER_WORD)
5821 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (src)))
5822 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))
5823 #ifndef WORD_REGISTER_OPERATIONS
5824 && (GET_MODE_SIZE (GET_MODE (src))
5825 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (src))))
5826 #endif
5827 #ifdef CANNOT_CHANGE_MODE_CLASS
5828 && ! (REG_P (dest) && REGNO (dest) < FIRST_PSEUDO_REGISTER
5829 && REG_CANNOT_CHANGE_MODE_P (REGNO (dest),
5830 GET_MODE (SUBREG_REG (src)),
5831 GET_MODE (src)))
5832 #endif
5833 && (REG_P (dest)
5834 || (GET_CODE (dest) == SUBREG
5835 && REG_P (SUBREG_REG (dest)))))
5836 {
5837 SUBST (SET_DEST (x),
5838 gen_lowpart (GET_MODE (SUBREG_REG (src)),
5839 dest));
5840 SUBST (SET_SRC (x), SUBREG_REG (src));
5841
5842 src = SET_SRC (x), dest = SET_DEST (x);
5843 }
5844
5845 #ifdef HAVE_cc0
5846 /* If we have (set (cc0) (subreg ...)), we try to remove the subreg
5847 in SRC. */
5848 if (dest == cc0_rtx
5849 && GET_CODE (src) == SUBREG
5850 && subreg_lowpart_p (src)
5851 && (GET_MODE_BITSIZE (GET_MODE (src))
5852 < GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (src)))))
5853 {
5854 rtx inner = SUBREG_REG (src);
5855 enum machine_mode inner_mode = GET_MODE (inner);
5856
5857 /* Here we make sure that we don't have a sign bit on. */
5858 if (GET_MODE_BITSIZE (inner_mode) <= HOST_BITS_PER_WIDE_INT
5859 && (nonzero_bits (inner, inner_mode)
5860 < ((unsigned HOST_WIDE_INT) 1
5861 << (GET_MODE_BITSIZE (GET_MODE (src)) - 1))))
5862 {
5863 SUBST (SET_SRC (x), inner);
5864 src = SET_SRC (x);
5865 }
5866 }
5867 #endif
5868
5869 #ifdef LOAD_EXTEND_OP
5870 /* If we have (set FOO (subreg:M (mem:N BAR) 0)) with M wider than N, this
5871 would require a paradoxical subreg. Replace the subreg with a
5872 zero_extend to avoid the reload that would otherwise be required. */
5873
5874 if (GET_CODE (src) == SUBREG && subreg_lowpart_p (src)
5875 && LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (src))) != UNKNOWN
5876 && SUBREG_BYTE (src) == 0
5877 && (GET_MODE_SIZE (GET_MODE (src))
5878 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (src))))
5879 && MEM_P (SUBREG_REG (src)))
5880 {
5881 SUBST (SET_SRC (x),
5882 gen_rtx_fmt_e (LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (src))),
5883 GET_MODE (src), SUBREG_REG (src)));
5884
5885 src = SET_SRC (x);
5886 }
5887 #endif
5888
5889 /* If we don't have a conditional move, SET_SRC is an IF_THEN_ELSE, and we
5890 are comparing an item known to be 0 or -1 against 0, use a logical
5891 operation instead. Check for one of the arms being an IOR of the other
5892 arm with some value. We compute three terms to be IOR'ed together. In
5893 practice, at most two will be nonzero. Then we do the IOR's. */
5894
5895 if (GET_CODE (dest) != PC
5896 && GET_CODE (src) == IF_THEN_ELSE
5897 && GET_MODE_CLASS (GET_MODE (src)) == MODE_INT
5898 && (GET_CODE (XEXP (src, 0)) == EQ || GET_CODE (XEXP (src, 0)) == NE)
5899 && XEXP (XEXP (src, 0), 1) == const0_rtx
5900 && GET_MODE (src) == GET_MODE (XEXP (XEXP (src, 0), 0))
5901 #ifdef HAVE_conditional_move
5902 && ! can_conditionally_move_p (GET_MODE (src))
5903 #endif
5904 && (num_sign_bit_copies (XEXP (XEXP (src, 0), 0),
5905 GET_MODE (XEXP (XEXP (src, 0), 0)))
5906 == GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (src, 0), 0))))
5907 && ! side_effects_p (src))
5908 {
5909 rtx true_rtx = (GET_CODE (XEXP (src, 0)) == NE
5910 ? XEXP (src, 1) : XEXP (src, 2));
5911 rtx false_rtx = (GET_CODE (XEXP (src, 0)) == NE
5912 ? XEXP (src, 2) : XEXP (src, 1));
5913 rtx term1 = const0_rtx, term2, term3;
5914
5915 if (GET_CODE (true_rtx) == IOR
5916 && rtx_equal_p (XEXP (true_rtx, 0), false_rtx))
5917 term1 = false_rtx, true_rtx = XEXP (true_rtx, 1), false_rtx = const0_rtx;
5918 else if (GET_CODE (true_rtx) == IOR
5919 && rtx_equal_p (XEXP (true_rtx, 1), false_rtx))
5920 term1 = false_rtx, true_rtx = XEXP (true_rtx, 0), false_rtx = const0_rtx;
5921 else if (GET_CODE (false_rtx) == IOR
5922 && rtx_equal_p (XEXP (false_rtx, 0), true_rtx))
5923 term1 = true_rtx, false_rtx = XEXP (false_rtx, 1), true_rtx = const0_rtx;
5924 else if (GET_CODE (false_rtx) == IOR
5925 && rtx_equal_p (XEXP (false_rtx, 1), true_rtx))
5926 term1 = true_rtx, false_rtx = XEXP (false_rtx, 0), true_rtx = const0_rtx;
5927
5928 term2 = simplify_gen_binary (AND, GET_MODE (src),
5929 XEXP (XEXP (src, 0), 0), true_rtx);
5930 term3 = simplify_gen_binary (AND, GET_MODE (src),
5931 simplify_gen_unary (NOT, GET_MODE (src),
5932 XEXP (XEXP (src, 0), 0),
5933 GET_MODE (src)),
5934 false_rtx);
5935
5936 SUBST (SET_SRC (x),
5937 simplify_gen_binary (IOR, GET_MODE (src),
5938 simplify_gen_binary (IOR, GET_MODE (src),
5939 term1, term2),
5940 term3));
5941
5942 src = SET_SRC (x);
5943 }
5944
5945 /* If either SRC or DEST is a CLOBBER of (const_int 0), make this
5946 whole thing fail. */
5947 if (GET_CODE (src) == CLOBBER && XEXP (src, 0) == const0_rtx)
5948 return src;
5949 else if (GET_CODE (dest) == CLOBBER && XEXP (dest, 0) == const0_rtx)
5950 return dest;
5951 else
5952 /* Convert this into a field assignment operation, if possible. */
5953 return make_field_assignment (x);
5954 }
5955 \f
5956 /* Simplify, X, and AND, IOR, or XOR operation, and return the simplified
5957 result. */
5958
5959 static rtx
5960 simplify_logical (rtx x)
5961 {
5962 enum machine_mode mode = GET_MODE (x);
5963 rtx op0 = XEXP (x, 0);
5964 rtx op1 = XEXP (x, 1);
5965
5966 switch (GET_CODE (x))
5967 {
5968 case AND:
5969 /* We can call simplify_and_const_int only if we don't lose
5970 any (sign) bits when converting INTVAL (op1) to
5971 "unsigned HOST_WIDE_INT". */
5972 if (GET_CODE (op1) == CONST_INT
5973 && (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5974 || INTVAL (op1) > 0))
5975 {
5976 x = simplify_and_const_int (x, mode, op0, INTVAL (op1));
5977 if (GET_CODE (x) != AND)
5978 return x;
5979
5980 op0 = XEXP (x, 0);
5981 op1 = XEXP (x, 1);
5982 }
5983
5984 /* If we have any of (and (ior A B) C) or (and (xor A B) C),
5985 apply the distributive law and then the inverse distributive
5986 law to see if things simplify. */
5987 if (GET_CODE (op0) == IOR || GET_CODE (op0) == XOR)
5988 {
5989 rtx result = distribute_and_simplify_rtx (x, 0);
5990 if (result)
5991 return result;
5992 }
5993 if (GET_CODE (op1) == IOR || GET_CODE (op1) == XOR)
5994 {
5995 rtx result = distribute_and_simplify_rtx (x, 1);
5996 if (result)
5997 return result;
5998 }
5999 break;
6000
6001 case IOR:
6002 /* If we have (ior (and A B) C), apply the distributive law and then
6003 the inverse distributive law to see if things simplify. */
6004
6005 if (GET_CODE (op0) == AND)
6006 {
6007 rtx result = distribute_and_simplify_rtx (x, 0);
6008 if (result)
6009 return result;
6010 }
6011
6012 if (GET_CODE (op1) == AND)
6013 {
6014 rtx result = distribute_and_simplify_rtx (x, 1);
6015 if (result)
6016 return result;
6017 }
6018 break;
6019
6020 default:
6021 gcc_unreachable ();
6022 }
6023
6024 return x;
6025 }
6026 \f
6027 /* We consider ZERO_EXTRACT, SIGN_EXTRACT, and SIGN_EXTEND as "compound
6028 operations" because they can be replaced with two more basic operations.
6029 ZERO_EXTEND is also considered "compound" because it can be replaced with
6030 an AND operation, which is simpler, though only one operation.
6031
6032 The function expand_compound_operation is called with an rtx expression
6033 and will convert it to the appropriate shifts and AND operations,
6034 simplifying at each stage.
6035
6036 The function make_compound_operation is called to convert an expression
6037 consisting of shifts and ANDs into the equivalent compound expression.
6038 It is the inverse of this function, loosely speaking. */
6039
6040 static rtx
6041 expand_compound_operation (rtx x)
6042 {
6043 unsigned HOST_WIDE_INT pos = 0, len;
6044 int unsignedp = 0;
6045 unsigned int modewidth;
6046 rtx tem;
6047
6048 switch (GET_CODE (x))
6049 {
6050 case ZERO_EXTEND:
6051 unsignedp = 1;
6052 case SIGN_EXTEND:
6053 /* We can't necessarily use a const_int for a multiword mode;
6054 it depends on implicitly extending the value.
6055 Since we don't know the right way to extend it,
6056 we can't tell whether the implicit way is right.
6057
6058 Even for a mode that is no wider than a const_int,
6059 we can't win, because we need to sign extend one of its bits through
6060 the rest of it, and we don't know which bit. */
6061 if (GET_CODE (XEXP (x, 0)) == CONST_INT)
6062 return x;
6063
6064 /* Return if (subreg:MODE FROM 0) is not a safe replacement for
6065 (zero_extend:MODE FROM) or (sign_extend:MODE FROM). It is for any MEM
6066 because (SUBREG (MEM...)) is guaranteed to cause the MEM to be
6067 reloaded. If not for that, MEM's would very rarely be safe.
6068
6069 Reject MODEs bigger than a word, because we might not be able
6070 to reference a two-register group starting with an arbitrary register
6071 (and currently gen_lowpart might crash for a SUBREG). */
6072
6073 if (GET_MODE_SIZE (GET_MODE (XEXP (x, 0))) > UNITS_PER_WORD)
6074 return x;
6075
6076 /* Reject MODEs that aren't scalar integers because turning vector
6077 or complex modes into shifts causes problems. */
6078
6079 if (! SCALAR_INT_MODE_P (GET_MODE (XEXP (x, 0))))
6080 return x;
6081
6082 len = GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)));
6083 /* If the inner object has VOIDmode (the only way this can happen
6084 is if it is an ASM_OPERANDS), we can't do anything since we don't
6085 know how much masking to do. */
6086 if (len == 0)
6087 return x;
6088
6089 break;
6090
6091 case ZERO_EXTRACT:
6092 unsignedp = 1;
6093
6094 /* ... fall through ... */
6095
6096 case SIGN_EXTRACT:
6097 /* If the operand is a CLOBBER, just return it. */
6098 if (GET_CODE (XEXP (x, 0)) == CLOBBER)
6099 return XEXP (x, 0);
6100
6101 if (GET_CODE (XEXP (x, 1)) != CONST_INT
6102 || GET_CODE (XEXP (x, 2)) != CONST_INT
6103 || GET_MODE (XEXP (x, 0)) == VOIDmode)
6104 return x;
6105
6106 /* Reject MODEs that aren't scalar integers because turning vector
6107 or complex modes into shifts causes problems. */
6108
6109 if (! SCALAR_INT_MODE_P (GET_MODE (XEXP (x, 0))))
6110 return x;
6111
6112 len = INTVAL (XEXP (x, 1));
6113 pos = INTVAL (XEXP (x, 2));
6114
6115 /* This should stay within the object being extracted, fail otherwise. */
6116 if (len + pos > GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0))))
6117 return x;
6118
6119 if (BITS_BIG_ENDIAN)
6120 pos = GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0))) - len - pos;
6121
6122 break;
6123
6124 default:
6125 return x;
6126 }
6127 /* Convert sign extension to zero extension, if we know that the high
6128 bit is not set, as this is easier to optimize. It will be converted
6129 back to cheaper alternative in make_extraction. */
6130 if (GET_CODE (x) == SIGN_EXTEND
6131 && (GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
6132 && ((nonzero_bits (XEXP (x, 0), GET_MODE (XEXP (x, 0)))
6133 & ~(((unsigned HOST_WIDE_INT)
6134 GET_MODE_MASK (GET_MODE (XEXP (x, 0))))
6135 >> 1))
6136 == 0)))
6137 {
6138 rtx temp = gen_rtx_ZERO_EXTEND (GET_MODE (x), XEXP (x, 0));
6139 rtx temp2 = expand_compound_operation (temp);
6140
6141 /* Make sure this is a profitable operation. */
6142 if (rtx_cost (x, SET) > rtx_cost (temp2, SET))
6143 return temp2;
6144 else if (rtx_cost (x, SET) > rtx_cost (temp, SET))
6145 return temp;
6146 else
6147 return x;
6148 }
6149
6150 /* We can optimize some special cases of ZERO_EXTEND. */
6151 if (GET_CODE (x) == ZERO_EXTEND)
6152 {
6153 /* (zero_extend:DI (truncate:SI foo:DI)) is just foo:DI if we
6154 know that the last value didn't have any inappropriate bits
6155 set. */
6156 if (GET_CODE (XEXP (x, 0)) == TRUNCATE
6157 && GET_MODE (XEXP (XEXP (x, 0), 0)) == GET_MODE (x)
6158 && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
6159 && (nonzero_bits (XEXP (XEXP (x, 0), 0), GET_MODE (x))
6160 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
6161 return XEXP (XEXP (x, 0), 0);
6162
6163 /* Likewise for (zero_extend:DI (subreg:SI foo:DI 0)). */
6164 if (GET_CODE (XEXP (x, 0)) == SUBREG
6165 && GET_MODE (SUBREG_REG (XEXP (x, 0))) == GET_MODE (x)
6166 && subreg_lowpart_p (XEXP (x, 0))
6167 && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
6168 && (nonzero_bits (SUBREG_REG (XEXP (x, 0)), GET_MODE (x))
6169 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
6170 return SUBREG_REG (XEXP (x, 0));
6171
6172 /* (zero_extend:DI (truncate:SI foo:DI)) is just foo:DI when foo
6173 is a comparison and STORE_FLAG_VALUE permits. This is like
6174 the first case, but it works even when GET_MODE (x) is larger
6175 than HOST_WIDE_INT. */
6176 if (GET_CODE (XEXP (x, 0)) == TRUNCATE
6177 && GET_MODE (XEXP (XEXP (x, 0), 0)) == GET_MODE (x)
6178 && COMPARISON_P (XEXP (XEXP (x, 0), 0))
6179 && (GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))
6180 <= HOST_BITS_PER_WIDE_INT)
6181 && ((HOST_WIDE_INT) STORE_FLAG_VALUE
6182 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
6183 return XEXP (XEXP (x, 0), 0);
6184
6185 /* Likewise for (zero_extend:DI (subreg:SI foo:DI 0)). */
6186 if (GET_CODE (XEXP (x, 0)) == SUBREG
6187 && GET_MODE (SUBREG_REG (XEXP (x, 0))) == GET_MODE (x)
6188 && subreg_lowpart_p (XEXP (x, 0))
6189 && COMPARISON_P (SUBREG_REG (XEXP (x, 0)))
6190 && (GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))
6191 <= HOST_BITS_PER_WIDE_INT)
6192 && ((HOST_WIDE_INT) STORE_FLAG_VALUE
6193 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
6194 return SUBREG_REG (XEXP (x, 0));
6195
6196 }
6197
6198 /* If we reach here, we want to return a pair of shifts. The inner
6199 shift is a left shift of BITSIZE - POS - LEN bits. The outer
6200 shift is a right shift of BITSIZE - LEN bits. It is arithmetic or
6201 logical depending on the value of UNSIGNEDP.
6202
6203 If this was a ZERO_EXTEND or ZERO_EXTRACT, this pair of shifts will be
6204 converted into an AND of a shift.
6205
6206 We must check for the case where the left shift would have a negative
6207 count. This can happen in a case like (x >> 31) & 255 on machines
6208 that can't shift by a constant. On those machines, we would first
6209 combine the shift with the AND to produce a variable-position
6210 extraction. Then the constant of 31 would be substituted in to produce
6211 a such a position. */
6212
6213 modewidth = GET_MODE_BITSIZE (GET_MODE (x));
6214 if (modewidth + len >= pos)
6215 {
6216 enum machine_mode mode = GET_MODE (x);
6217 tem = gen_lowpart (mode, XEXP (x, 0));
6218 if (!tem || GET_CODE (tem) == CLOBBER)
6219 return x;
6220 tem = simplify_shift_const (NULL_RTX, ASHIFT, mode,
6221 tem, modewidth - pos - len);
6222 tem = simplify_shift_const (NULL_RTX, unsignedp ? LSHIFTRT : ASHIFTRT,
6223 mode, tem, modewidth - len);
6224 }
6225 else if (unsignedp && len < HOST_BITS_PER_WIDE_INT)
6226 tem = simplify_and_const_int (NULL_RTX, GET_MODE (x),
6227 simplify_shift_const (NULL_RTX, LSHIFTRT,
6228 GET_MODE (x),
6229 XEXP (x, 0), pos),
6230 ((HOST_WIDE_INT) 1 << len) - 1);
6231 else
6232 /* Any other cases we can't handle. */
6233 return x;
6234
6235 /* If we couldn't do this for some reason, return the original
6236 expression. */
6237 if (GET_CODE (tem) == CLOBBER)
6238 return x;
6239
6240 return tem;
6241 }
6242 \f
6243 /* X is a SET which contains an assignment of one object into
6244 a part of another (such as a bit-field assignment, STRICT_LOW_PART,
6245 or certain SUBREGS). If possible, convert it into a series of
6246 logical operations.
6247
6248 We half-heartedly support variable positions, but do not at all
6249 support variable lengths. */
6250
6251 static const_rtx
6252 expand_field_assignment (const_rtx x)
6253 {
6254 rtx inner;
6255 rtx pos; /* Always counts from low bit. */
6256 int len;
6257 rtx mask, cleared, masked;
6258 enum machine_mode compute_mode;
6259
6260 /* Loop until we find something we can't simplify. */
6261 while (1)
6262 {
6263 if (GET_CODE (SET_DEST (x)) == STRICT_LOW_PART
6264 && GET_CODE (XEXP (SET_DEST (x), 0)) == SUBREG)
6265 {
6266 inner = SUBREG_REG (XEXP (SET_DEST (x), 0));
6267 len = GET_MODE_BITSIZE (GET_MODE (XEXP (SET_DEST (x), 0)));
6268 pos = GEN_INT (subreg_lsb (XEXP (SET_DEST (x), 0)));
6269 }
6270 else if (GET_CODE (SET_DEST (x)) == ZERO_EXTRACT
6271 && GET_CODE (XEXP (SET_DEST (x), 1)) == CONST_INT)
6272 {
6273 inner = XEXP (SET_DEST (x), 0);
6274 len = INTVAL (XEXP (SET_DEST (x), 1));
6275 pos = XEXP (SET_DEST (x), 2);
6276
6277 /* A constant position should stay within the width of INNER. */
6278 if (GET_CODE (pos) == CONST_INT
6279 && INTVAL (pos) + len > GET_MODE_BITSIZE (GET_MODE (inner)))
6280 break;
6281
6282 if (BITS_BIG_ENDIAN)
6283 {
6284 if (GET_CODE (pos) == CONST_INT)
6285 pos = GEN_INT (GET_MODE_BITSIZE (GET_MODE (inner)) - len
6286 - INTVAL (pos));
6287 else if (GET_CODE (pos) == MINUS
6288 && GET_CODE (XEXP (pos, 1)) == CONST_INT
6289 && (INTVAL (XEXP (pos, 1))
6290 == GET_MODE_BITSIZE (GET_MODE (inner)) - len))
6291 /* If position is ADJUST - X, new position is X. */
6292 pos = XEXP (pos, 0);
6293 else
6294 pos = simplify_gen_binary (MINUS, GET_MODE (pos),
6295 GEN_INT (GET_MODE_BITSIZE (
6296 GET_MODE (inner))
6297 - len),
6298 pos);
6299 }
6300 }
6301
6302 /* A SUBREG between two modes that occupy the same numbers of words
6303 can be done by moving the SUBREG to the source. */
6304 else if (GET_CODE (SET_DEST (x)) == SUBREG
6305 /* We need SUBREGs to compute nonzero_bits properly. */
6306 && nonzero_sign_valid
6307 && (((GET_MODE_SIZE (GET_MODE (SET_DEST (x)))
6308 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
6309 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (x))))
6310 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)))
6311 {
6312 x = gen_rtx_SET (VOIDmode, SUBREG_REG (SET_DEST (x)),
6313 gen_lowpart
6314 (GET_MODE (SUBREG_REG (SET_DEST (x))),
6315 SET_SRC (x)));
6316 continue;
6317 }
6318 else
6319 break;
6320
6321 while (GET_CODE (inner) == SUBREG && subreg_lowpart_p (inner))
6322 inner = SUBREG_REG (inner);
6323
6324 compute_mode = GET_MODE (inner);
6325
6326 /* Don't attempt bitwise arithmetic on non scalar integer modes. */
6327 if (! SCALAR_INT_MODE_P (compute_mode))
6328 {
6329 enum machine_mode imode;
6330
6331 /* Don't do anything for vector or complex integral types. */
6332 if (! FLOAT_MODE_P (compute_mode))
6333 break;
6334
6335 /* Try to find an integral mode to pun with. */
6336 imode = mode_for_size (GET_MODE_BITSIZE (compute_mode), MODE_INT, 0);
6337 if (imode == BLKmode)
6338 break;
6339
6340 compute_mode = imode;
6341 inner = gen_lowpart (imode, inner);
6342 }
6343
6344 /* Compute a mask of LEN bits, if we can do this on the host machine. */
6345 if (len >= HOST_BITS_PER_WIDE_INT)
6346 break;
6347
6348 /* Now compute the equivalent expression. Make a copy of INNER
6349 for the SET_DEST in case it is a MEM into which we will substitute;
6350 we don't want shared RTL in that case. */
6351 mask = GEN_INT (((HOST_WIDE_INT) 1 << len) - 1);
6352 cleared = simplify_gen_binary (AND, compute_mode,
6353 simplify_gen_unary (NOT, compute_mode,
6354 simplify_gen_binary (ASHIFT,
6355 compute_mode,
6356 mask, pos),
6357 compute_mode),
6358 inner);
6359 masked = simplify_gen_binary (ASHIFT, compute_mode,
6360 simplify_gen_binary (
6361 AND, compute_mode,
6362 gen_lowpart (compute_mode, SET_SRC (x)),
6363 mask),
6364 pos);
6365
6366 x = gen_rtx_SET (VOIDmode, copy_rtx (inner),
6367 simplify_gen_binary (IOR, compute_mode,
6368 cleared, masked));
6369 }
6370
6371 return x;
6372 }
6373 \f
6374 /* Return an RTX for a reference to LEN bits of INNER. If POS_RTX is nonzero,
6375 it is an RTX that represents a variable starting position; otherwise,
6376 POS is the (constant) starting bit position (counted from the LSB).
6377
6378 UNSIGNEDP is nonzero for an unsigned reference and zero for a
6379 signed reference.
6380
6381 IN_DEST is nonzero if this is a reference in the destination of a
6382 SET. This is used when a ZERO_ or SIGN_EXTRACT isn't needed. If nonzero,
6383 a STRICT_LOW_PART will be used, if zero, ZERO_EXTEND or SIGN_EXTEND will
6384 be used.
6385
6386 IN_COMPARE is nonzero if we are in a COMPARE. This means that a
6387 ZERO_EXTRACT should be built even for bits starting at bit 0.
6388
6389 MODE is the desired mode of the result (if IN_DEST == 0).
6390
6391 The result is an RTX for the extraction or NULL_RTX if the target
6392 can't handle it. */
6393
6394 static rtx
6395 make_extraction (enum machine_mode mode, rtx inner, HOST_WIDE_INT pos,
6396 rtx pos_rtx, unsigned HOST_WIDE_INT len, int unsignedp,
6397 int in_dest, int in_compare)
6398 {
6399 /* This mode describes the size of the storage area
6400 to fetch the overall value from. Within that, we
6401 ignore the POS lowest bits, etc. */
6402 enum machine_mode is_mode = GET_MODE (inner);
6403 enum machine_mode inner_mode;
6404 enum machine_mode wanted_inner_mode;
6405 enum machine_mode wanted_inner_reg_mode = word_mode;
6406 enum machine_mode pos_mode = word_mode;
6407 enum machine_mode extraction_mode = word_mode;
6408 enum machine_mode tmode = mode_for_size (len, MODE_INT, 1);
6409 rtx new = 0;
6410 rtx orig_pos_rtx = pos_rtx;
6411 HOST_WIDE_INT orig_pos;
6412
6413 if (GET_CODE (inner) == SUBREG && subreg_lowpart_p (inner))
6414 {
6415 /* If going from (subreg:SI (mem:QI ...)) to (mem:QI ...),
6416 consider just the QI as the memory to extract from.
6417 The subreg adds or removes high bits; its mode is
6418 irrelevant to the meaning of this extraction,
6419 since POS and LEN count from the lsb. */
6420 if (MEM_P (SUBREG_REG (inner)))
6421 is_mode = GET_MODE (SUBREG_REG (inner));
6422 inner = SUBREG_REG (inner);
6423 }
6424 else if (GET_CODE (inner) == ASHIFT
6425 && GET_CODE (XEXP (inner, 1)) == CONST_INT
6426 && pos_rtx == 0 && pos == 0
6427 && len > (unsigned HOST_WIDE_INT) INTVAL (XEXP (inner, 1)))
6428 {
6429 /* We're extracting the least significant bits of an rtx
6430 (ashift X (const_int C)), where LEN > C. Extract the
6431 least significant (LEN - C) bits of X, giving an rtx
6432 whose mode is MODE, then shift it left C times. */
6433 new = make_extraction (mode, XEXP (inner, 0),
6434 0, 0, len - INTVAL (XEXP (inner, 1)),
6435 unsignedp, in_dest, in_compare);
6436 if (new != 0)
6437 return gen_rtx_ASHIFT (mode, new, XEXP (inner, 1));
6438 }
6439
6440 inner_mode = GET_MODE (inner);
6441
6442 if (pos_rtx && GET_CODE (pos_rtx) == CONST_INT)
6443 pos = INTVAL (pos_rtx), pos_rtx = 0;
6444
6445 /* See if this can be done without an extraction. We never can if the
6446 width of the field is not the same as that of some integer mode. For
6447 registers, we can only avoid the extraction if the position is at the
6448 low-order bit and this is either not in the destination or we have the
6449 appropriate STRICT_LOW_PART operation available.
6450
6451 For MEM, we can avoid an extract if the field starts on an appropriate
6452 boundary and we can change the mode of the memory reference. */
6453
6454 if (tmode != BLKmode
6455 && ((pos_rtx == 0 && (pos % BITS_PER_WORD) == 0
6456 && !MEM_P (inner)
6457 && (inner_mode == tmode
6458 || !REG_P (inner)
6459 || TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (tmode),
6460 GET_MODE_BITSIZE (inner_mode))
6461 || reg_truncated_to_mode (tmode, inner))
6462 && (! in_dest
6463 || (REG_P (inner)
6464 && have_insn_for (STRICT_LOW_PART, tmode))))
6465 || (MEM_P (inner) && pos_rtx == 0
6466 && (pos
6467 % (STRICT_ALIGNMENT ? GET_MODE_ALIGNMENT (tmode)
6468 : BITS_PER_UNIT)) == 0
6469 /* We can't do this if we are widening INNER_MODE (it
6470 may not be aligned, for one thing). */
6471 && GET_MODE_BITSIZE (inner_mode) >= GET_MODE_BITSIZE (tmode)
6472 && (inner_mode == tmode
6473 || (! mode_dependent_address_p (XEXP (inner, 0))
6474 && ! MEM_VOLATILE_P (inner))))))
6475 {
6476 /* If INNER is a MEM, make a new MEM that encompasses just the desired
6477 field. If the original and current mode are the same, we need not
6478 adjust the offset. Otherwise, we do if bytes big endian.
6479
6480 If INNER is not a MEM, get a piece consisting of just the field
6481 of interest (in this case POS % BITS_PER_WORD must be 0). */
6482
6483 if (MEM_P (inner))
6484 {
6485 HOST_WIDE_INT offset;
6486
6487 /* POS counts from lsb, but make OFFSET count in memory order. */
6488 if (BYTES_BIG_ENDIAN)
6489 offset = (GET_MODE_BITSIZE (is_mode) - len - pos) / BITS_PER_UNIT;
6490 else
6491 offset = pos / BITS_PER_UNIT;
6492
6493 new = adjust_address_nv (inner, tmode, offset);
6494 }
6495 else if (REG_P (inner))
6496 {
6497 if (tmode != inner_mode)
6498 {
6499 /* We can't call gen_lowpart in a DEST since we
6500 always want a SUBREG (see below) and it would sometimes
6501 return a new hard register. */
6502 if (pos || in_dest)
6503 {
6504 HOST_WIDE_INT final_word = pos / BITS_PER_WORD;
6505
6506 if (WORDS_BIG_ENDIAN
6507 && GET_MODE_SIZE (inner_mode) > UNITS_PER_WORD)
6508 final_word = ((GET_MODE_SIZE (inner_mode)
6509 - GET_MODE_SIZE (tmode))
6510 / UNITS_PER_WORD) - final_word;
6511
6512 final_word *= UNITS_PER_WORD;
6513 if (BYTES_BIG_ENDIAN &&
6514 GET_MODE_SIZE (inner_mode) > GET_MODE_SIZE (tmode))
6515 final_word += (GET_MODE_SIZE (inner_mode)
6516 - GET_MODE_SIZE (tmode)) % UNITS_PER_WORD;
6517
6518 /* Avoid creating invalid subregs, for example when
6519 simplifying (x>>32)&255. */
6520 if (!validate_subreg (tmode, inner_mode, inner, final_word))
6521 return NULL_RTX;
6522
6523 new = gen_rtx_SUBREG (tmode, inner, final_word);
6524 }
6525 else
6526 new = gen_lowpart (tmode, inner);
6527 }
6528 else
6529 new = inner;
6530 }
6531 else
6532 new = force_to_mode (inner, tmode,
6533 len >= HOST_BITS_PER_WIDE_INT
6534 ? ~(unsigned HOST_WIDE_INT) 0
6535 : ((unsigned HOST_WIDE_INT) 1 << len) - 1,
6536 0);
6537
6538 /* If this extraction is going into the destination of a SET,
6539 make a STRICT_LOW_PART unless we made a MEM. */
6540
6541 if (in_dest)
6542 return (MEM_P (new) ? new
6543 : (GET_CODE (new) != SUBREG
6544 ? gen_rtx_CLOBBER (tmode, const0_rtx)
6545 : gen_rtx_STRICT_LOW_PART (VOIDmode, new)));
6546
6547 if (mode == tmode)
6548 return new;
6549
6550 if (GET_CODE (new) == CONST_INT)
6551 return gen_int_mode (INTVAL (new), mode);
6552
6553 /* If we know that no extraneous bits are set, and that the high
6554 bit is not set, convert the extraction to the cheaper of
6555 sign and zero extension, that are equivalent in these cases. */
6556 if (flag_expensive_optimizations
6557 && (GET_MODE_BITSIZE (tmode) <= HOST_BITS_PER_WIDE_INT
6558 && ((nonzero_bits (new, tmode)
6559 & ~(((unsigned HOST_WIDE_INT)
6560 GET_MODE_MASK (tmode))
6561 >> 1))
6562 == 0)))
6563 {
6564 rtx temp = gen_rtx_ZERO_EXTEND (mode, new);
6565 rtx temp1 = gen_rtx_SIGN_EXTEND (mode, new);
6566
6567 /* Prefer ZERO_EXTENSION, since it gives more information to
6568 backends. */
6569 if (rtx_cost (temp, SET) <= rtx_cost (temp1, SET))
6570 return temp;
6571 return temp1;
6572 }
6573
6574 /* Otherwise, sign- or zero-extend unless we already are in the
6575 proper mode. */
6576
6577 return (gen_rtx_fmt_e (unsignedp ? ZERO_EXTEND : SIGN_EXTEND,
6578 mode, new));
6579 }
6580
6581 /* Unless this is a COMPARE or we have a funny memory reference,
6582 don't do anything with zero-extending field extracts starting at
6583 the low-order bit since they are simple AND operations. */
6584 if (pos_rtx == 0 && pos == 0 && ! in_dest
6585 && ! in_compare && unsignedp)
6586 return 0;
6587
6588 /* Unless INNER is not MEM, reject this if we would be spanning bytes or
6589 if the position is not a constant and the length is not 1. In all
6590 other cases, we would only be going outside our object in cases when
6591 an original shift would have been undefined. */
6592 if (MEM_P (inner)
6593 && ((pos_rtx == 0 && pos + len > GET_MODE_BITSIZE (is_mode))
6594 || (pos_rtx != 0 && len != 1)))
6595 return 0;
6596
6597 /* Get the mode to use should INNER not be a MEM, the mode for the position,
6598 and the mode for the result. */
6599 if (in_dest && mode_for_extraction (EP_insv, -1) != MAX_MACHINE_MODE)
6600 {
6601 wanted_inner_reg_mode = mode_for_extraction (EP_insv, 0);
6602 pos_mode = mode_for_extraction (EP_insv, 2);
6603 extraction_mode = mode_for_extraction (EP_insv, 3);
6604 }
6605
6606 if (! in_dest && unsignedp
6607 && mode_for_extraction (EP_extzv, -1) != MAX_MACHINE_MODE)
6608 {
6609 wanted_inner_reg_mode = mode_for_extraction (EP_extzv, 1);
6610 pos_mode = mode_for_extraction (EP_extzv, 3);
6611 extraction_mode = mode_for_extraction (EP_extzv, 0);
6612 }
6613
6614 if (! in_dest && ! unsignedp
6615 && mode_for_extraction (EP_extv, -1) != MAX_MACHINE_MODE)
6616 {
6617 wanted_inner_reg_mode = mode_for_extraction (EP_extv, 1);
6618 pos_mode = mode_for_extraction (EP_extv, 3);
6619 extraction_mode = mode_for_extraction (EP_extv, 0);
6620 }
6621
6622 /* Never narrow an object, since that might not be safe. */
6623
6624 if (mode != VOIDmode
6625 && GET_MODE_SIZE (extraction_mode) < GET_MODE_SIZE (mode))
6626 extraction_mode = mode;
6627
6628 if (pos_rtx && GET_MODE (pos_rtx) != VOIDmode
6629 && GET_MODE_SIZE (pos_mode) < GET_MODE_SIZE (GET_MODE (pos_rtx)))
6630 pos_mode = GET_MODE (pos_rtx);
6631
6632 /* If this is not from memory, the desired mode is the preferred mode
6633 for an extraction pattern's first input operand, or word_mode if there
6634 is none. */
6635 if (!MEM_P (inner))
6636 wanted_inner_mode = wanted_inner_reg_mode;
6637 else
6638 {
6639 /* Be careful not to go beyond the extracted object and maintain the
6640 natural alignment of the memory. */
6641 wanted_inner_mode = smallest_mode_for_size (len, MODE_INT);
6642 while (pos % GET_MODE_BITSIZE (wanted_inner_mode) + len
6643 > GET_MODE_BITSIZE (wanted_inner_mode))
6644 {
6645 wanted_inner_mode = GET_MODE_WIDER_MODE (wanted_inner_mode);
6646 gcc_assert (wanted_inner_mode != VOIDmode);
6647 }
6648
6649 /* If we have to change the mode of memory and cannot, the desired mode
6650 is EXTRACTION_MODE. */
6651 if (inner_mode != wanted_inner_mode
6652 && (mode_dependent_address_p (XEXP (inner, 0))
6653 || MEM_VOLATILE_P (inner)
6654 || pos_rtx))
6655 wanted_inner_mode = extraction_mode;
6656 }
6657
6658 orig_pos = pos;
6659
6660 if (BITS_BIG_ENDIAN)
6661 {
6662 /* POS is passed as if BITS_BIG_ENDIAN == 0, so we need to convert it to
6663 BITS_BIG_ENDIAN style. If position is constant, compute new
6664 position. Otherwise, build subtraction.
6665 Note that POS is relative to the mode of the original argument.
6666 If it's a MEM we need to recompute POS relative to that.
6667 However, if we're extracting from (or inserting into) a register,
6668 we want to recompute POS relative to wanted_inner_mode. */
6669 int width = (MEM_P (inner)
6670 ? GET_MODE_BITSIZE (is_mode)
6671 : GET_MODE_BITSIZE (wanted_inner_mode));
6672
6673 if (pos_rtx == 0)
6674 pos = width - len - pos;
6675 else
6676 pos_rtx
6677 = gen_rtx_MINUS (GET_MODE (pos_rtx), GEN_INT (width - len), pos_rtx);
6678 /* POS may be less than 0 now, but we check for that below.
6679 Note that it can only be less than 0 if !MEM_P (inner). */
6680 }
6681
6682 /* If INNER has a wider mode, and this is a constant extraction, try to
6683 make it smaller and adjust the byte to point to the byte containing
6684 the value. */
6685 if (wanted_inner_mode != VOIDmode
6686 && inner_mode != wanted_inner_mode
6687 && ! pos_rtx
6688 && GET_MODE_SIZE (wanted_inner_mode) < GET_MODE_SIZE (is_mode)
6689 && MEM_P (inner)
6690 && ! mode_dependent_address_p (XEXP (inner, 0))
6691 && ! MEM_VOLATILE_P (inner))
6692 {
6693 int offset = 0;
6694
6695 /* The computations below will be correct if the machine is big
6696 endian in both bits and bytes or little endian in bits and bytes.
6697 If it is mixed, we must adjust. */
6698
6699 /* If bytes are big endian and we had a paradoxical SUBREG, we must
6700 adjust OFFSET to compensate. */
6701 if (BYTES_BIG_ENDIAN
6702 && GET_MODE_SIZE (inner_mode) < GET_MODE_SIZE (is_mode))
6703 offset -= GET_MODE_SIZE (is_mode) - GET_MODE_SIZE (inner_mode);
6704
6705 /* We can now move to the desired byte. */
6706 offset += (pos / GET_MODE_BITSIZE (wanted_inner_mode))
6707 * GET_MODE_SIZE (wanted_inner_mode);
6708 pos %= GET_MODE_BITSIZE (wanted_inner_mode);
6709
6710 if (BYTES_BIG_ENDIAN != BITS_BIG_ENDIAN
6711 && is_mode != wanted_inner_mode)
6712 offset = (GET_MODE_SIZE (is_mode)
6713 - GET_MODE_SIZE (wanted_inner_mode) - offset);
6714
6715 inner = adjust_address_nv (inner, wanted_inner_mode, offset);
6716 }
6717
6718 /* If INNER is not memory, we can always get it into the proper mode. If we
6719 are changing its mode, POS must be a constant and smaller than the size
6720 of the new mode. */
6721 else if (!MEM_P (inner))
6722 {
6723 if (GET_MODE (inner) != wanted_inner_mode
6724 && (pos_rtx != 0
6725 || orig_pos + len > GET_MODE_BITSIZE (wanted_inner_mode)))
6726 return 0;
6727
6728 if (orig_pos < 0)
6729 return 0;
6730
6731 inner = force_to_mode (inner, wanted_inner_mode,
6732 pos_rtx
6733 || len + orig_pos >= HOST_BITS_PER_WIDE_INT
6734 ? ~(unsigned HOST_WIDE_INT) 0
6735 : ((((unsigned HOST_WIDE_INT) 1 << len) - 1)
6736 << orig_pos),
6737 0);
6738 }
6739
6740 /* Adjust mode of POS_RTX, if needed. If we want a wider mode, we
6741 have to zero extend. Otherwise, we can just use a SUBREG. */
6742 if (pos_rtx != 0
6743 && GET_MODE_SIZE (pos_mode) > GET_MODE_SIZE (GET_MODE (pos_rtx)))
6744 {
6745 rtx temp = gen_rtx_ZERO_EXTEND (pos_mode, pos_rtx);
6746
6747 /* If we know that no extraneous bits are set, and that the high
6748 bit is not set, convert extraction to cheaper one - either
6749 SIGN_EXTENSION or ZERO_EXTENSION, that are equivalent in these
6750 cases. */
6751 if (flag_expensive_optimizations
6752 && (GET_MODE_BITSIZE (GET_MODE (pos_rtx)) <= HOST_BITS_PER_WIDE_INT
6753 && ((nonzero_bits (pos_rtx, GET_MODE (pos_rtx))
6754 & ~(((unsigned HOST_WIDE_INT)
6755 GET_MODE_MASK (GET_MODE (pos_rtx)))
6756 >> 1))
6757 == 0)))
6758 {
6759 rtx temp1 = gen_rtx_SIGN_EXTEND (pos_mode, pos_rtx);
6760
6761 /* Prefer ZERO_EXTENSION, since it gives more information to
6762 backends. */
6763 if (rtx_cost (temp1, SET) < rtx_cost (temp, SET))
6764 temp = temp1;
6765 }
6766 pos_rtx = temp;
6767 }
6768 else if (pos_rtx != 0
6769 && GET_MODE_SIZE (pos_mode) < GET_MODE_SIZE (GET_MODE (pos_rtx)))
6770 pos_rtx = gen_lowpart (pos_mode, pos_rtx);
6771
6772 /* Make POS_RTX unless we already have it and it is correct. If we don't
6773 have a POS_RTX but we do have an ORIG_POS_RTX, the latter must
6774 be a CONST_INT. */
6775 if (pos_rtx == 0 && orig_pos_rtx != 0 && INTVAL (orig_pos_rtx) == pos)
6776 pos_rtx = orig_pos_rtx;
6777
6778 else if (pos_rtx == 0)
6779 pos_rtx = GEN_INT (pos);
6780
6781 /* Make the required operation. See if we can use existing rtx. */
6782 new = gen_rtx_fmt_eee (unsignedp ? ZERO_EXTRACT : SIGN_EXTRACT,
6783 extraction_mode, inner, GEN_INT (len), pos_rtx);
6784 if (! in_dest)
6785 new = gen_lowpart (mode, new);
6786
6787 return new;
6788 }
6789 \f
6790 /* See if X contains an ASHIFT of COUNT or more bits that can be commuted
6791 with any other operations in X. Return X without that shift if so. */
6792
6793 static rtx
6794 extract_left_shift (rtx x, int count)
6795 {
6796 enum rtx_code code = GET_CODE (x);
6797 enum machine_mode mode = GET_MODE (x);
6798 rtx tem;
6799
6800 switch (code)
6801 {
6802 case ASHIFT:
6803 /* This is the shift itself. If it is wide enough, we will return
6804 either the value being shifted if the shift count is equal to
6805 COUNT or a shift for the difference. */
6806 if (GET_CODE (XEXP (x, 1)) == CONST_INT
6807 && INTVAL (XEXP (x, 1)) >= count)
6808 return simplify_shift_const (NULL_RTX, ASHIFT, mode, XEXP (x, 0),
6809 INTVAL (XEXP (x, 1)) - count);
6810 break;
6811
6812 case NEG: case NOT:
6813 if ((tem = extract_left_shift (XEXP (x, 0), count)) != 0)
6814 return simplify_gen_unary (code, mode, tem, mode);
6815
6816 break;
6817
6818 case PLUS: case IOR: case XOR: case AND:
6819 /* If we can safely shift this constant and we find the inner shift,
6820 make a new operation. */
6821 if (GET_CODE (XEXP (x, 1)) == CONST_INT
6822 && (INTVAL (XEXP (x, 1)) & ((((HOST_WIDE_INT) 1 << count)) - 1)) == 0
6823 && (tem = extract_left_shift (XEXP (x, 0), count)) != 0)
6824 return simplify_gen_binary (code, mode, tem,
6825 GEN_INT (INTVAL (XEXP (x, 1)) >> count));
6826
6827 break;
6828
6829 default:
6830 break;
6831 }
6832
6833 return 0;
6834 }
6835 \f
6836 /* Look at the expression rooted at X. Look for expressions
6837 equivalent to ZERO_EXTRACT, SIGN_EXTRACT, ZERO_EXTEND, SIGN_EXTEND.
6838 Form these expressions.
6839
6840 Return the new rtx, usually just X.
6841
6842 Also, for machines like the VAX that don't have logical shift insns,
6843 try to convert logical to arithmetic shift operations in cases where
6844 they are equivalent. This undoes the canonicalizations to logical
6845 shifts done elsewhere.
6846
6847 We try, as much as possible, to re-use rtl expressions to save memory.
6848
6849 IN_CODE says what kind of expression we are processing. Normally, it is
6850 SET. In a memory address (inside a MEM, PLUS or minus, the latter two
6851 being kludges), it is MEM. When processing the arguments of a comparison
6852 or a COMPARE against zero, it is COMPARE. */
6853
6854 static rtx
6855 make_compound_operation (rtx x, enum rtx_code in_code)
6856 {
6857 enum rtx_code code = GET_CODE (x);
6858 enum machine_mode mode = GET_MODE (x);
6859 int mode_width = GET_MODE_BITSIZE (mode);
6860 rtx rhs, lhs;
6861 enum rtx_code next_code;
6862 int i;
6863 rtx new = 0;
6864 rtx tem;
6865 const char *fmt;
6866
6867 /* Select the code to be used in recursive calls. Once we are inside an
6868 address, we stay there. If we have a comparison, set to COMPARE,
6869 but once inside, go back to our default of SET. */
6870
6871 next_code = (code == MEM || code == PLUS || code == MINUS ? MEM
6872 : ((code == COMPARE || COMPARISON_P (x))
6873 && XEXP (x, 1) == const0_rtx) ? COMPARE
6874 : in_code == COMPARE ? SET : in_code);
6875
6876 /* Process depending on the code of this operation. If NEW is set
6877 nonzero, it will be returned. */
6878
6879 switch (code)
6880 {
6881 case ASHIFT:
6882 /* Convert shifts by constants into multiplications if inside
6883 an address. */
6884 if (in_code == MEM && GET_CODE (XEXP (x, 1)) == CONST_INT
6885 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT
6886 && INTVAL (XEXP (x, 1)) >= 0)
6887 {
6888 new = make_compound_operation (XEXP (x, 0), next_code);
6889 new = gen_rtx_MULT (mode, new,
6890 GEN_INT ((HOST_WIDE_INT) 1
6891 << INTVAL (XEXP (x, 1))));
6892 }
6893 break;
6894
6895 case AND:
6896 /* If the second operand is not a constant, we can't do anything
6897 with it. */
6898 if (GET_CODE (XEXP (x, 1)) != CONST_INT)
6899 break;
6900
6901 /* If the constant is a power of two minus one and the first operand
6902 is a logical right shift, make an extraction. */
6903 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
6904 && (i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0)
6905 {
6906 new = make_compound_operation (XEXP (XEXP (x, 0), 0), next_code);
6907 new = make_extraction (mode, new, 0, XEXP (XEXP (x, 0), 1), i, 1,
6908 0, in_code == COMPARE);
6909 }
6910
6911 /* Same as previous, but for (subreg (lshiftrt ...)) in first op. */
6912 else if (GET_CODE (XEXP (x, 0)) == SUBREG
6913 && subreg_lowpart_p (XEXP (x, 0))
6914 && GET_CODE (SUBREG_REG (XEXP (x, 0))) == LSHIFTRT
6915 && (i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0)
6916 {
6917 new = make_compound_operation (XEXP (SUBREG_REG (XEXP (x, 0)), 0),
6918 next_code);
6919 new = make_extraction (GET_MODE (SUBREG_REG (XEXP (x, 0))), new, 0,
6920 XEXP (SUBREG_REG (XEXP (x, 0)), 1), i, 1,
6921 0, in_code == COMPARE);
6922 }
6923 /* Same as previous, but for (xor/ior (lshiftrt...) (lshiftrt...)). */
6924 else if ((GET_CODE (XEXP (x, 0)) == XOR
6925 || GET_CODE (XEXP (x, 0)) == IOR)
6926 && GET_CODE (XEXP (XEXP (x, 0), 0)) == LSHIFTRT
6927 && GET_CODE (XEXP (XEXP (x, 0), 1)) == LSHIFTRT
6928 && (i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0)
6929 {
6930 /* Apply the distributive law, and then try to make extractions. */
6931 new = gen_rtx_fmt_ee (GET_CODE (XEXP (x, 0)), mode,
6932 gen_rtx_AND (mode, XEXP (XEXP (x, 0), 0),
6933 XEXP (x, 1)),
6934 gen_rtx_AND (mode, XEXP (XEXP (x, 0), 1),
6935 XEXP (x, 1)));
6936 new = make_compound_operation (new, in_code);
6937 }
6938
6939 /* If we are have (and (rotate X C) M) and C is larger than the number
6940 of bits in M, this is an extraction. */
6941
6942 else if (GET_CODE (XEXP (x, 0)) == ROTATE
6943 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
6944 && (i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0
6945 && i <= INTVAL (XEXP (XEXP (x, 0), 1)))
6946 {
6947 new = make_compound_operation (XEXP (XEXP (x, 0), 0), next_code);
6948 new = make_extraction (mode, new,
6949 (GET_MODE_BITSIZE (mode)
6950 - INTVAL (XEXP (XEXP (x, 0), 1))),
6951 NULL_RTX, i, 1, 0, in_code == COMPARE);
6952 }
6953
6954 /* On machines without logical shifts, if the operand of the AND is
6955 a logical shift and our mask turns off all the propagated sign
6956 bits, we can replace the logical shift with an arithmetic shift. */
6957 else if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
6958 && !have_insn_for (LSHIFTRT, mode)
6959 && have_insn_for (ASHIFTRT, mode)
6960 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
6961 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
6962 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT
6963 && mode_width <= HOST_BITS_PER_WIDE_INT)
6964 {
6965 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
6966
6967 mask >>= INTVAL (XEXP (XEXP (x, 0), 1));
6968 if ((INTVAL (XEXP (x, 1)) & ~mask) == 0)
6969 SUBST (XEXP (x, 0),
6970 gen_rtx_ASHIFTRT (mode,
6971 make_compound_operation
6972 (XEXP (XEXP (x, 0), 0), next_code),
6973 XEXP (XEXP (x, 0), 1)));
6974 }
6975
6976 /* If the constant is one less than a power of two, this might be
6977 representable by an extraction even if no shift is present.
6978 If it doesn't end up being a ZERO_EXTEND, we will ignore it unless
6979 we are in a COMPARE. */
6980 else if ((i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0)
6981 new = make_extraction (mode,
6982 make_compound_operation (XEXP (x, 0),
6983 next_code),
6984 0, NULL_RTX, i, 1, 0, in_code == COMPARE);
6985
6986 /* If we are in a comparison and this is an AND with a power of two,
6987 convert this into the appropriate bit extract. */
6988 else if (in_code == COMPARE
6989 && (i = exact_log2 (INTVAL (XEXP (x, 1)))) >= 0)
6990 new = make_extraction (mode,
6991 make_compound_operation (XEXP (x, 0),
6992 next_code),
6993 i, NULL_RTX, 1, 1, 0, 1);
6994
6995 break;
6996
6997 case LSHIFTRT:
6998 /* If the sign bit is known to be zero, replace this with an
6999 arithmetic shift. */
7000 if (have_insn_for (ASHIFTRT, mode)
7001 && ! have_insn_for (LSHIFTRT, mode)
7002 && mode_width <= HOST_BITS_PER_WIDE_INT
7003 && (nonzero_bits (XEXP (x, 0), mode) & (1 << (mode_width - 1))) == 0)
7004 {
7005 new = gen_rtx_ASHIFTRT (mode,
7006 make_compound_operation (XEXP (x, 0),
7007 next_code),
7008 XEXP (x, 1));
7009 break;
7010 }
7011
7012 /* ... fall through ... */
7013
7014 case ASHIFTRT:
7015 lhs = XEXP (x, 0);
7016 rhs = XEXP (x, 1);
7017
7018 /* If we have (ashiftrt (ashift foo C1) C2) with C2 >= C1,
7019 this is a SIGN_EXTRACT. */
7020 if (GET_CODE (rhs) == CONST_INT
7021 && GET_CODE (lhs) == ASHIFT
7022 && GET_CODE (XEXP (lhs, 1)) == CONST_INT
7023 && INTVAL (rhs) >= INTVAL (XEXP (lhs, 1)))
7024 {
7025 new = make_compound_operation (XEXP (lhs, 0), next_code);
7026 new = make_extraction (mode, new,
7027 INTVAL (rhs) - INTVAL (XEXP (lhs, 1)),
7028 NULL_RTX, mode_width - INTVAL (rhs),
7029 code == LSHIFTRT, 0, in_code == COMPARE);
7030 break;
7031 }
7032
7033 /* See if we have operations between an ASHIFTRT and an ASHIFT.
7034 If so, try to merge the shifts into a SIGN_EXTEND. We could
7035 also do this for some cases of SIGN_EXTRACT, but it doesn't
7036 seem worth the effort; the case checked for occurs on Alpha. */
7037
7038 if (!OBJECT_P (lhs)
7039 && ! (GET_CODE (lhs) == SUBREG
7040 && (OBJECT_P (SUBREG_REG (lhs))))
7041 && GET_CODE (rhs) == CONST_INT
7042 && INTVAL (rhs) < HOST_BITS_PER_WIDE_INT
7043 && (new = extract_left_shift (lhs, INTVAL (rhs))) != 0)
7044 new = make_extraction (mode, make_compound_operation (new, next_code),
7045 0, NULL_RTX, mode_width - INTVAL (rhs),
7046 code == LSHIFTRT, 0, in_code == COMPARE);
7047
7048 break;
7049
7050 case SUBREG:
7051 /* Call ourselves recursively on the inner expression. If we are
7052 narrowing the object and it has a different RTL code from
7053 what it originally did, do this SUBREG as a force_to_mode. */
7054
7055 tem = make_compound_operation (SUBREG_REG (x), in_code);
7056
7057 {
7058 rtx simplified;
7059 simplified = simplify_subreg (GET_MODE (x), tem, GET_MODE (tem),
7060 SUBREG_BYTE (x));
7061
7062 if (simplified)
7063 tem = simplified;
7064
7065 if (GET_CODE (tem) != GET_CODE (SUBREG_REG (x))
7066 && GET_MODE_SIZE (mode) < GET_MODE_SIZE (GET_MODE (tem))
7067 && subreg_lowpart_p (x))
7068 {
7069 rtx newer = force_to_mode (tem, mode, ~(HOST_WIDE_INT) 0,
7070 0);
7071
7072 /* If we have something other than a SUBREG, we might have
7073 done an expansion, so rerun ourselves. */
7074 if (GET_CODE (newer) != SUBREG)
7075 newer = make_compound_operation (newer, in_code);
7076
7077 return newer;
7078 }
7079
7080 if (simplified)
7081 return tem;
7082 }
7083 break;
7084
7085 default:
7086 break;
7087 }
7088
7089 if (new)
7090 {
7091 x = gen_lowpart (mode, new);
7092 code = GET_CODE (x);
7093 }
7094
7095 /* Now recursively process each operand of this operation. */
7096 fmt = GET_RTX_FORMAT (code);
7097 for (i = 0; i < GET_RTX_LENGTH (code); i++)
7098 if (fmt[i] == 'e')
7099 {
7100 new = make_compound_operation (XEXP (x, i), next_code);
7101 SUBST (XEXP (x, i), new);
7102 }
7103
7104 /* If this is a commutative operation, the changes to the operands
7105 may have made it noncanonical. */
7106 if (COMMUTATIVE_ARITH_P (x)
7107 && swap_commutative_operands_p (XEXP (x, 0), XEXP (x, 1)))
7108 {
7109 tem = XEXP (x, 0);
7110 SUBST (XEXP (x, 0), XEXP (x, 1));
7111 SUBST (XEXP (x, 1), tem);
7112 }
7113
7114 return x;
7115 }
7116 \f
7117 /* Given M see if it is a value that would select a field of bits
7118 within an item, but not the entire word. Return -1 if not.
7119 Otherwise, return the starting position of the field, where 0 is the
7120 low-order bit.
7121
7122 *PLEN is set to the length of the field. */
7123
7124 static int
7125 get_pos_from_mask (unsigned HOST_WIDE_INT m, unsigned HOST_WIDE_INT *plen)
7126 {
7127 /* Get the bit number of the first 1 bit from the right, -1 if none. */
7128 int pos = exact_log2 (m & -m);
7129 int len = 0;
7130
7131 if (pos >= 0)
7132 /* Now shift off the low-order zero bits and see if we have a
7133 power of two minus 1. */
7134 len = exact_log2 ((m >> pos) + 1);
7135
7136 if (len <= 0)
7137 pos = -1;
7138
7139 *plen = len;
7140 return pos;
7141 }
7142 \f
7143 /* If X refers to a register that equals REG in value, replace these
7144 references with REG. */
7145 static rtx
7146 canon_reg_for_combine (rtx x, rtx reg)
7147 {
7148 rtx op0, op1, op2;
7149 const char *fmt;
7150 int i;
7151 bool copied;
7152
7153 enum rtx_code code = GET_CODE (x);
7154 switch (GET_RTX_CLASS (code))
7155 {
7156 case RTX_UNARY:
7157 op0 = canon_reg_for_combine (XEXP (x, 0), reg);
7158 if (op0 != XEXP (x, 0))
7159 return simplify_gen_unary (GET_CODE (x), GET_MODE (x), op0,
7160 GET_MODE (reg));
7161 break;
7162
7163 case RTX_BIN_ARITH:
7164 case RTX_COMM_ARITH:
7165 op0 = canon_reg_for_combine (XEXP (x, 0), reg);
7166 op1 = canon_reg_for_combine (XEXP (x, 1), reg);
7167 if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
7168 return simplify_gen_binary (GET_CODE (x), GET_MODE (x), op0, op1);
7169 break;
7170
7171 case RTX_COMPARE:
7172 case RTX_COMM_COMPARE:
7173 op0 = canon_reg_for_combine (XEXP (x, 0), reg);
7174 op1 = canon_reg_for_combine (XEXP (x, 1), reg);
7175 if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
7176 return simplify_gen_relational (GET_CODE (x), GET_MODE (x),
7177 GET_MODE (op0), op0, op1);
7178 break;
7179
7180 case RTX_TERNARY:
7181 case RTX_BITFIELD_OPS:
7182 op0 = canon_reg_for_combine (XEXP (x, 0), reg);
7183 op1 = canon_reg_for_combine (XEXP (x, 1), reg);
7184 op2 = canon_reg_for_combine (XEXP (x, 2), reg);
7185 if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1) || op2 != XEXP (x, 2))
7186 return simplify_gen_ternary (GET_CODE (x), GET_MODE (x),
7187 GET_MODE (op0), op0, op1, op2);
7188
7189 case RTX_OBJ:
7190 if (REG_P (x))
7191 {
7192 if (rtx_equal_p (get_last_value (reg), x)
7193 || rtx_equal_p (reg, get_last_value (x)))
7194 return reg;
7195 else
7196 break;
7197 }
7198
7199 /* fall through */
7200
7201 default:
7202 fmt = GET_RTX_FORMAT (code);
7203 copied = false;
7204 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
7205 if (fmt[i] == 'e')
7206 {
7207 rtx op = canon_reg_for_combine (XEXP (x, i), reg);
7208 if (op != XEXP (x, i))
7209 {
7210 if (!copied)
7211 {
7212 copied = true;
7213 x = copy_rtx (x);
7214 }
7215 XEXP (x, i) = op;
7216 }
7217 }
7218 else if (fmt[i] == 'E')
7219 {
7220 int j;
7221 for (j = 0; j < XVECLEN (x, i); j++)
7222 {
7223 rtx op = canon_reg_for_combine (XVECEXP (x, i, j), reg);
7224 if (op != XVECEXP (x, i, j))
7225 {
7226 if (!copied)
7227 {
7228 copied = true;
7229 x = copy_rtx (x);
7230 }
7231 XVECEXP (x, i, j) = op;
7232 }
7233 }
7234 }
7235
7236 break;
7237 }
7238
7239 return x;
7240 }
7241
7242 /* Return X converted to MODE. If the value is already truncated to
7243 MODE we can just return a subreg even though in the general case we
7244 would need an explicit truncation. */
7245
7246 static rtx
7247 gen_lowpart_or_truncate (enum machine_mode mode, rtx x)
7248 {
7249 if (GET_MODE_SIZE (GET_MODE (x)) <= GET_MODE_SIZE (mode)
7250 || TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (mode),
7251 GET_MODE_BITSIZE (GET_MODE (x)))
7252 || (REG_P (x) && reg_truncated_to_mode (mode, x)))
7253 return gen_lowpart (mode, x);
7254 else
7255 return simplify_gen_unary (TRUNCATE, mode, x, GET_MODE (x));
7256 }
7257
7258 /* See if X can be simplified knowing that we will only refer to it in
7259 MODE and will only refer to those bits that are nonzero in MASK.
7260 If other bits are being computed or if masking operations are done
7261 that select a superset of the bits in MASK, they can sometimes be
7262 ignored.
7263
7264 Return a possibly simplified expression, but always convert X to
7265 MODE. If X is a CONST_INT, AND the CONST_INT with MASK.
7266
7267 If JUST_SELECT is nonzero, don't optimize by noticing that bits in MASK
7268 are all off in X. This is used when X will be complemented, by either
7269 NOT, NEG, or XOR. */
7270
7271 static rtx
7272 force_to_mode (rtx x, enum machine_mode mode, unsigned HOST_WIDE_INT mask,
7273 int just_select)
7274 {
7275 enum rtx_code code = GET_CODE (x);
7276 int next_select = just_select || code == XOR || code == NOT || code == NEG;
7277 enum machine_mode op_mode;
7278 unsigned HOST_WIDE_INT fuller_mask, nonzero;
7279 rtx op0, op1, temp;
7280
7281 /* If this is a CALL or ASM_OPERANDS, don't do anything. Some of the
7282 code below will do the wrong thing since the mode of such an
7283 expression is VOIDmode.
7284
7285 Also do nothing if X is a CLOBBER; this can happen if X was
7286 the return value from a call to gen_lowpart. */
7287 if (code == CALL || code == ASM_OPERANDS || code == CLOBBER)
7288 return x;
7289
7290 /* We want to perform the operation is its present mode unless we know
7291 that the operation is valid in MODE, in which case we do the operation
7292 in MODE. */
7293 op_mode = ((GET_MODE_CLASS (mode) == GET_MODE_CLASS (GET_MODE (x))
7294 && have_insn_for (code, mode))
7295 ? mode : GET_MODE (x));
7296
7297 /* It is not valid to do a right-shift in a narrower mode
7298 than the one it came in with. */
7299 if ((code == LSHIFTRT || code == ASHIFTRT)
7300 && GET_MODE_BITSIZE (mode) < GET_MODE_BITSIZE (GET_MODE (x)))
7301 op_mode = GET_MODE (x);
7302
7303 /* Truncate MASK to fit OP_MODE. */
7304 if (op_mode)
7305 mask &= GET_MODE_MASK (op_mode);
7306
7307 /* When we have an arithmetic operation, or a shift whose count we
7308 do not know, we need to assume that all bits up to the highest-order
7309 bit in MASK will be needed. This is how we form such a mask. */
7310 if (mask & ((unsigned HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT - 1)))
7311 fuller_mask = ~(unsigned HOST_WIDE_INT) 0;
7312 else
7313 fuller_mask = (((unsigned HOST_WIDE_INT) 1 << (floor_log2 (mask) + 1))
7314 - 1);
7315
7316 /* Determine what bits of X are guaranteed to be (non)zero. */
7317 nonzero = nonzero_bits (x, mode);
7318
7319 /* If none of the bits in X are needed, return a zero. */
7320 if (!just_select && (nonzero & mask) == 0 && !side_effects_p (x))
7321 x = const0_rtx;
7322
7323 /* If X is a CONST_INT, return a new one. Do this here since the
7324 test below will fail. */
7325 if (GET_CODE (x) == CONST_INT)
7326 {
7327 if (SCALAR_INT_MODE_P (mode))
7328 return gen_int_mode (INTVAL (x) & mask, mode);
7329 else
7330 {
7331 x = GEN_INT (INTVAL (x) & mask);
7332 return gen_lowpart_common (mode, x);
7333 }
7334 }
7335
7336 /* If X is narrower than MODE and we want all the bits in X's mode, just
7337 get X in the proper mode. */
7338 if (GET_MODE_SIZE (GET_MODE (x)) < GET_MODE_SIZE (mode)
7339 && (GET_MODE_MASK (GET_MODE (x)) & ~mask) == 0)
7340 return gen_lowpart (mode, x);
7341
7342 switch (code)
7343 {
7344 case CLOBBER:
7345 /* If X is a (clobber (const_int)), return it since we know we are
7346 generating something that won't match. */
7347 return x;
7348
7349 case SIGN_EXTEND:
7350 case ZERO_EXTEND:
7351 case ZERO_EXTRACT:
7352 case SIGN_EXTRACT:
7353 x = expand_compound_operation (x);
7354 if (GET_CODE (x) != code)
7355 return force_to_mode (x, mode, mask, next_select);
7356 break;
7357
7358 case SUBREG:
7359 if (subreg_lowpart_p (x)
7360 /* We can ignore the effect of this SUBREG if it narrows the mode or
7361 if the constant masks to zero all the bits the mode doesn't
7362 have. */
7363 && ((GET_MODE_SIZE (GET_MODE (x))
7364 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
7365 || (0 == (mask
7366 & GET_MODE_MASK (GET_MODE (x))
7367 & ~GET_MODE_MASK (GET_MODE (SUBREG_REG (x)))))))
7368 return force_to_mode (SUBREG_REG (x), mode, mask, next_select);
7369 break;
7370
7371 case AND:
7372 /* If this is an AND with a constant, convert it into an AND
7373 whose constant is the AND of that constant with MASK. If it
7374 remains an AND of MASK, delete it since it is redundant. */
7375
7376 if (GET_CODE (XEXP (x, 1)) == CONST_INT)
7377 {
7378 x = simplify_and_const_int (x, op_mode, XEXP (x, 0),
7379 mask & INTVAL (XEXP (x, 1)));
7380
7381 /* If X is still an AND, see if it is an AND with a mask that
7382 is just some low-order bits. If so, and it is MASK, we don't
7383 need it. */
7384
7385 if (GET_CODE (x) == AND && GET_CODE (XEXP (x, 1)) == CONST_INT
7386 && ((INTVAL (XEXP (x, 1)) & GET_MODE_MASK (GET_MODE (x)))
7387 == mask))
7388 x = XEXP (x, 0);
7389
7390 /* If it remains an AND, try making another AND with the bits
7391 in the mode mask that aren't in MASK turned on. If the
7392 constant in the AND is wide enough, this might make a
7393 cheaper constant. */
7394
7395 if (GET_CODE (x) == AND && GET_CODE (XEXP (x, 1)) == CONST_INT
7396 && GET_MODE_MASK (GET_MODE (x)) != mask
7397 && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT)
7398 {
7399 HOST_WIDE_INT cval = (INTVAL (XEXP (x, 1))
7400 | (GET_MODE_MASK (GET_MODE (x)) & ~mask));
7401 int width = GET_MODE_BITSIZE (GET_MODE (x));
7402 rtx y;
7403
7404 /* If MODE is narrower than HOST_WIDE_INT and CVAL is a negative
7405 number, sign extend it. */
7406 if (width > 0 && width < HOST_BITS_PER_WIDE_INT
7407 && (cval & ((HOST_WIDE_INT) 1 << (width - 1))) != 0)
7408 cval |= (HOST_WIDE_INT) -1 << width;
7409
7410 y = simplify_gen_binary (AND, GET_MODE (x),
7411 XEXP (x, 0), GEN_INT (cval));
7412 if (rtx_cost (y, SET) < rtx_cost (x, SET))
7413 x = y;
7414 }
7415
7416 break;
7417 }
7418
7419 goto binop;
7420
7421 case PLUS:
7422 /* In (and (plus FOO C1) M), if M is a mask that just turns off
7423 low-order bits (as in an alignment operation) and FOO is already
7424 aligned to that boundary, mask C1 to that boundary as well.
7425 This may eliminate that PLUS and, later, the AND. */
7426
7427 {
7428 unsigned int width = GET_MODE_BITSIZE (mode);
7429 unsigned HOST_WIDE_INT smask = mask;
7430
7431 /* If MODE is narrower than HOST_WIDE_INT and mask is a negative
7432 number, sign extend it. */
7433
7434 if (width < HOST_BITS_PER_WIDE_INT
7435 && (smask & ((HOST_WIDE_INT) 1 << (width - 1))) != 0)
7436 smask |= (HOST_WIDE_INT) -1 << width;
7437
7438 if (GET_CODE (XEXP (x, 1)) == CONST_INT
7439 && exact_log2 (- smask) >= 0
7440 && (nonzero_bits (XEXP (x, 0), mode) & ~smask) == 0
7441 && (INTVAL (XEXP (x, 1)) & ~smask) != 0)
7442 return force_to_mode (plus_constant (XEXP (x, 0),
7443 (INTVAL (XEXP (x, 1)) & smask)),
7444 mode, smask, next_select);
7445 }
7446
7447 /* ... fall through ... */
7448
7449 case MULT:
7450 /* For PLUS, MINUS and MULT, we need any bits less significant than the
7451 most significant bit in MASK since carries from those bits will
7452 affect the bits we are interested in. */
7453 mask = fuller_mask;
7454 goto binop;
7455
7456 case MINUS:
7457 /* If X is (minus C Y) where C's least set bit is larger than any bit
7458 in the mask, then we may replace with (neg Y). */
7459 if (GET_CODE (XEXP (x, 0)) == CONST_INT
7460 && (((unsigned HOST_WIDE_INT) (INTVAL (XEXP (x, 0))
7461 & -INTVAL (XEXP (x, 0))))
7462 > mask))
7463 {
7464 x = simplify_gen_unary (NEG, GET_MODE (x), XEXP (x, 1),
7465 GET_MODE (x));
7466 return force_to_mode (x, mode, mask, next_select);
7467 }
7468
7469 /* Similarly, if C contains every bit in the fuller_mask, then we may
7470 replace with (not Y). */
7471 if (GET_CODE (XEXP (x, 0)) == CONST_INT
7472 && ((INTVAL (XEXP (x, 0)) | (HOST_WIDE_INT) fuller_mask)
7473 == INTVAL (XEXP (x, 0))))
7474 {
7475 x = simplify_gen_unary (NOT, GET_MODE (x),
7476 XEXP (x, 1), GET_MODE (x));
7477 return force_to_mode (x, mode, mask, next_select);
7478 }
7479
7480 mask = fuller_mask;
7481 goto binop;
7482
7483 case IOR:
7484 case XOR:
7485 /* If X is (ior (lshiftrt FOO C1) C2), try to commute the IOR and
7486 LSHIFTRT so we end up with an (and (lshiftrt (ior ...) ...) ...)
7487 operation which may be a bitfield extraction. Ensure that the
7488 constant we form is not wider than the mode of X. */
7489
7490 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
7491 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
7492 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
7493 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT
7494 && GET_CODE (XEXP (x, 1)) == CONST_INT
7495 && ((INTVAL (XEXP (XEXP (x, 0), 1))
7496 + floor_log2 (INTVAL (XEXP (x, 1))))
7497 < GET_MODE_BITSIZE (GET_MODE (x)))
7498 && (INTVAL (XEXP (x, 1))
7499 & ~nonzero_bits (XEXP (x, 0), GET_MODE (x))) == 0)
7500 {
7501 temp = GEN_INT ((INTVAL (XEXP (x, 1)) & mask)
7502 << INTVAL (XEXP (XEXP (x, 0), 1)));
7503 temp = simplify_gen_binary (GET_CODE (x), GET_MODE (x),
7504 XEXP (XEXP (x, 0), 0), temp);
7505 x = simplify_gen_binary (LSHIFTRT, GET_MODE (x), temp,
7506 XEXP (XEXP (x, 0), 1));
7507 return force_to_mode (x, mode, mask, next_select);
7508 }
7509
7510 binop:
7511 /* For most binary operations, just propagate into the operation and
7512 change the mode if we have an operation of that mode. */
7513
7514 op0 = gen_lowpart_or_truncate (op_mode,
7515 force_to_mode (XEXP (x, 0), mode, mask,
7516 next_select));
7517 op1 = gen_lowpart_or_truncate (op_mode,
7518 force_to_mode (XEXP (x, 1), mode, mask,
7519 next_select));
7520
7521 if (op_mode != GET_MODE (x) || op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
7522 x = simplify_gen_binary (code, op_mode, op0, op1);
7523 break;
7524
7525 case ASHIFT:
7526 /* For left shifts, do the same, but just for the first operand.
7527 However, we cannot do anything with shifts where we cannot
7528 guarantee that the counts are smaller than the size of the mode
7529 because such a count will have a different meaning in a
7530 wider mode. */
7531
7532 if (! (GET_CODE (XEXP (x, 1)) == CONST_INT
7533 && INTVAL (XEXP (x, 1)) >= 0
7534 && INTVAL (XEXP (x, 1)) < GET_MODE_BITSIZE (mode))
7535 && ! (GET_MODE (XEXP (x, 1)) != VOIDmode
7536 && (nonzero_bits (XEXP (x, 1), GET_MODE (XEXP (x, 1)))
7537 < (unsigned HOST_WIDE_INT) GET_MODE_BITSIZE (mode))))
7538 break;
7539
7540 /* If the shift count is a constant and we can do arithmetic in
7541 the mode of the shift, refine which bits we need. Otherwise, use the
7542 conservative form of the mask. */
7543 if (GET_CODE (XEXP (x, 1)) == CONST_INT
7544 && INTVAL (XEXP (x, 1)) >= 0
7545 && INTVAL (XEXP (x, 1)) < GET_MODE_BITSIZE (op_mode)
7546 && GET_MODE_BITSIZE (op_mode) <= HOST_BITS_PER_WIDE_INT)
7547 mask >>= INTVAL (XEXP (x, 1));
7548 else
7549 mask = fuller_mask;
7550
7551 op0 = gen_lowpart_or_truncate (op_mode,
7552 force_to_mode (XEXP (x, 0), op_mode,
7553 mask, next_select));
7554
7555 if (op_mode != GET_MODE (x) || op0 != XEXP (x, 0))
7556 x = simplify_gen_binary (code, op_mode, op0, XEXP (x, 1));
7557 break;
7558
7559 case LSHIFTRT:
7560 /* Here we can only do something if the shift count is a constant,
7561 this shift constant is valid for the host, and we can do arithmetic
7562 in OP_MODE. */
7563
7564 if (GET_CODE (XEXP (x, 1)) == CONST_INT
7565 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT
7566 && GET_MODE_BITSIZE (op_mode) <= HOST_BITS_PER_WIDE_INT)
7567 {
7568 rtx inner = XEXP (x, 0);
7569 unsigned HOST_WIDE_INT inner_mask;
7570
7571 /* Select the mask of the bits we need for the shift operand. */
7572 inner_mask = mask << INTVAL (XEXP (x, 1));
7573
7574 /* We can only change the mode of the shift if we can do arithmetic
7575 in the mode of the shift and INNER_MASK is no wider than the
7576 width of X's mode. */
7577 if ((inner_mask & ~GET_MODE_MASK (GET_MODE (x))) != 0)
7578 op_mode = GET_MODE (x);
7579
7580 inner = force_to_mode (inner, op_mode, inner_mask, next_select);
7581
7582 if (GET_MODE (x) != op_mode || inner != XEXP (x, 0))
7583 x = simplify_gen_binary (LSHIFTRT, op_mode, inner, XEXP (x, 1));
7584 }
7585
7586 /* If we have (and (lshiftrt FOO C1) C2) where the combination of the
7587 shift and AND produces only copies of the sign bit (C2 is one less
7588 than a power of two), we can do this with just a shift. */
7589
7590 if (GET_CODE (x) == LSHIFTRT
7591 && GET_CODE (XEXP (x, 1)) == CONST_INT
7592 /* The shift puts one of the sign bit copies in the least significant
7593 bit. */
7594 && ((INTVAL (XEXP (x, 1))
7595 + num_sign_bit_copies (XEXP (x, 0), GET_MODE (XEXP (x, 0))))
7596 >= GET_MODE_BITSIZE (GET_MODE (x)))
7597 && exact_log2 (mask + 1) >= 0
7598 /* Number of bits left after the shift must be more than the mask
7599 needs. */
7600 && ((INTVAL (XEXP (x, 1)) + exact_log2 (mask + 1))
7601 <= GET_MODE_BITSIZE (GET_MODE (x)))
7602 /* Must be more sign bit copies than the mask needs. */
7603 && ((int) num_sign_bit_copies (XEXP (x, 0), GET_MODE (XEXP (x, 0)))
7604 >= exact_log2 (mask + 1)))
7605 x = simplify_gen_binary (LSHIFTRT, GET_MODE (x), XEXP (x, 0),
7606 GEN_INT (GET_MODE_BITSIZE (GET_MODE (x))
7607 - exact_log2 (mask + 1)));
7608
7609 goto shiftrt;
7610
7611 case ASHIFTRT:
7612 /* If we are just looking for the sign bit, we don't need this shift at
7613 all, even if it has a variable count. */
7614 if (GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
7615 && (mask == ((unsigned HOST_WIDE_INT) 1
7616 << (GET_MODE_BITSIZE (GET_MODE (x)) - 1))))
7617 return force_to_mode (XEXP (x, 0), mode, mask, next_select);
7618
7619 /* If this is a shift by a constant, get a mask that contains those bits
7620 that are not copies of the sign bit. We then have two cases: If
7621 MASK only includes those bits, this can be a logical shift, which may
7622 allow simplifications. If MASK is a single-bit field not within
7623 those bits, we are requesting a copy of the sign bit and hence can
7624 shift the sign bit to the appropriate location. */
7625
7626 if (GET_CODE (XEXP (x, 1)) == CONST_INT && INTVAL (XEXP (x, 1)) >= 0
7627 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT)
7628 {
7629 int i;
7630
7631 /* If the considered data is wider than HOST_WIDE_INT, we can't
7632 represent a mask for all its bits in a single scalar.
7633 But we only care about the lower bits, so calculate these. */
7634
7635 if (GET_MODE_BITSIZE (GET_MODE (x)) > HOST_BITS_PER_WIDE_INT)
7636 {
7637 nonzero = ~(HOST_WIDE_INT) 0;
7638
7639 /* GET_MODE_BITSIZE (GET_MODE (x)) - INTVAL (XEXP (x, 1))
7640 is the number of bits a full-width mask would have set.
7641 We need only shift if these are fewer than nonzero can
7642 hold. If not, we must keep all bits set in nonzero. */
7643
7644 if (GET_MODE_BITSIZE (GET_MODE (x)) - INTVAL (XEXP (x, 1))
7645 < HOST_BITS_PER_WIDE_INT)
7646 nonzero >>= INTVAL (XEXP (x, 1))
7647 + HOST_BITS_PER_WIDE_INT
7648 - GET_MODE_BITSIZE (GET_MODE (x)) ;
7649 }
7650 else
7651 {
7652 nonzero = GET_MODE_MASK (GET_MODE (x));
7653 nonzero >>= INTVAL (XEXP (x, 1));
7654 }
7655
7656 if ((mask & ~nonzero) == 0)
7657 {
7658 x = simplify_shift_const (NULL_RTX, LSHIFTRT, GET_MODE (x),
7659 XEXP (x, 0), INTVAL (XEXP (x, 1)));
7660 if (GET_CODE (x) != ASHIFTRT)
7661 return force_to_mode (x, mode, mask, next_select);
7662 }
7663
7664 else if ((i = exact_log2 (mask)) >= 0)
7665 {
7666 x = simplify_shift_const
7667 (NULL_RTX, LSHIFTRT, GET_MODE (x), XEXP (x, 0),
7668 GET_MODE_BITSIZE (GET_MODE (x)) - 1 - i);
7669
7670 if (GET_CODE (x) != ASHIFTRT)
7671 return force_to_mode (x, mode, mask, next_select);
7672 }
7673 }
7674
7675 /* If MASK is 1, convert this to an LSHIFTRT. This can be done
7676 even if the shift count isn't a constant. */
7677 if (mask == 1)
7678 x = simplify_gen_binary (LSHIFTRT, GET_MODE (x),
7679 XEXP (x, 0), XEXP (x, 1));
7680
7681 shiftrt:
7682
7683 /* If this is a zero- or sign-extension operation that just affects bits
7684 we don't care about, remove it. Be sure the call above returned
7685 something that is still a shift. */
7686
7687 if ((GET_CODE (x) == LSHIFTRT || GET_CODE (x) == ASHIFTRT)
7688 && GET_CODE (XEXP (x, 1)) == CONST_INT
7689 && INTVAL (XEXP (x, 1)) >= 0
7690 && (INTVAL (XEXP (x, 1))
7691 <= GET_MODE_BITSIZE (GET_MODE (x)) - (floor_log2 (mask) + 1))
7692 && GET_CODE (XEXP (x, 0)) == ASHIFT
7693 && XEXP (XEXP (x, 0), 1) == XEXP (x, 1))
7694 return force_to_mode (XEXP (XEXP (x, 0), 0), mode, mask,
7695 next_select);
7696
7697 break;
7698
7699 case ROTATE:
7700 case ROTATERT:
7701 /* If the shift count is constant and we can do computations
7702 in the mode of X, compute where the bits we care about are.
7703 Otherwise, we can't do anything. Don't change the mode of
7704 the shift or propagate MODE into the shift, though. */
7705 if (GET_CODE (XEXP (x, 1)) == CONST_INT
7706 && INTVAL (XEXP (x, 1)) >= 0)
7707 {
7708 temp = simplify_binary_operation (code == ROTATE ? ROTATERT : ROTATE,
7709 GET_MODE (x), GEN_INT (mask),
7710 XEXP (x, 1));
7711 if (temp && GET_CODE (temp) == CONST_INT)
7712 SUBST (XEXP (x, 0),
7713 force_to_mode (XEXP (x, 0), GET_MODE (x),
7714 INTVAL (temp), next_select));
7715 }
7716 break;
7717
7718 case NEG:
7719 /* If we just want the low-order bit, the NEG isn't needed since it
7720 won't change the low-order bit. */
7721 if (mask == 1)
7722 return force_to_mode (XEXP (x, 0), mode, mask, just_select);
7723
7724 /* We need any bits less significant than the most significant bit in
7725 MASK since carries from those bits will affect the bits we are
7726 interested in. */
7727 mask = fuller_mask;
7728 goto unop;
7729
7730 case NOT:
7731 /* (not FOO) is (xor FOO CONST), so if FOO is an LSHIFTRT, we can do the
7732 same as the XOR case above. Ensure that the constant we form is not
7733 wider than the mode of X. */
7734
7735 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
7736 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
7737 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
7738 && (INTVAL (XEXP (XEXP (x, 0), 1)) + floor_log2 (mask)
7739 < GET_MODE_BITSIZE (GET_MODE (x)))
7740 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT)
7741 {
7742 temp = gen_int_mode (mask << INTVAL (XEXP (XEXP (x, 0), 1)),
7743 GET_MODE (x));
7744 temp = simplify_gen_binary (XOR, GET_MODE (x),
7745 XEXP (XEXP (x, 0), 0), temp);
7746 x = simplify_gen_binary (LSHIFTRT, GET_MODE (x),
7747 temp, XEXP (XEXP (x, 0), 1));
7748
7749 return force_to_mode (x, mode, mask, next_select);
7750 }
7751
7752 /* (and (not FOO) CONST) is (not (or FOO (not CONST))), so we must
7753 use the full mask inside the NOT. */
7754 mask = fuller_mask;
7755
7756 unop:
7757 op0 = gen_lowpart_or_truncate (op_mode,
7758 force_to_mode (XEXP (x, 0), mode, mask,
7759 next_select));
7760 if (op_mode != GET_MODE (x) || op0 != XEXP (x, 0))
7761 x = simplify_gen_unary (code, op_mode, op0, op_mode);
7762 break;
7763
7764 case NE:
7765 /* (and (ne FOO 0) CONST) can be (and FOO CONST) if CONST is included
7766 in STORE_FLAG_VALUE and FOO has a single bit that might be nonzero,
7767 which is equal to STORE_FLAG_VALUE. */
7768 if ((mask & ~STORE_FLAG_VALUE) == 0 && XEXP (x, 1) == const0_rtx
7769 && GET_MODE (XEXP (x, 0)) == mode
7770 && exact_log2 (nonzero_bits (XEXP (x, 0), mode)) >= 0
7771 && (nonzero_bits (XEXP (x, 0), mode)
7772 == (unsigned HOST_WIDE_INT) STORE_FLAG_VALUE))
7773 return force_to_mode (XEXP (x, 0), mode, mask, next_select);
7774
7775 break;
7776
7777 case IF_THEN_ELSE:
7778 /* We have no way of knowing if the IF_THEN_ELSE can itself be
7779 written in a narrower mode. We play it safe and do not do so. */
7780
7781 SUBST (XEXP (x, 1),
7782 gen_lowpart_or_truncate (GET_MODE (x),
7783 force_to_mode (XEXP (x, 1), mode,
7784 mask, next_select)));
7785 SUBST (XEXP (x, 2),
7786 gen_lowpart_or_truncate (GET_MODE (x),
7787 force_to_mode (XEXP (x, 2), mode,
7788 mask, next_select)));
7789 break;
7790
7791 default:
7792 break;
7793 }
7794
7795 /* Ensure we return a value of the proper mode. */
7796 return gen_lowpart_or_truncate (mode, x);
7797 }
7798 \f
7799 /* Return nonzero if X is an expression that has one of two values depending on
7800 whether some other value is zero or nonzero. In that case, we return the
7801 value that is being tested, *PTRUE is set to the value if the rtx being
7802 returned has a nonzero value, and *PFALSE is set to the other alternative.
7803
7804 If we return zero, we set *PTRUE and *PFALSE to X. */
7805
7806 static rtx
7807 if_then_else_cond (rtx x, rtx *ptrue, rtx *pfalse)
7808 {
7809 enum machine_mode mode = GET_MODE (x);
7810 enum rtx_code code = GET_CODE (x);
7811 rtx cond0, cond1, true0, true1, false0, false1;
7812 unsigned HOST_WIDE_INT nz;
7813
7814 /* If we are comparing a value against zero, we are done. */
7815 if ((code == NE || code == EQ)
7816 && XEXP (x, 1) == const0_rtx)
7817 {
7818 *ptrue = (code == NE) ? const_true_rtx : const0_rtx;
7819 *pfalse = (code == NE) ? const0_rtx : const_true_rtx;
7820 return XEXP (x, 0);
7821 }
7822
7823 /* If this is a unary operation whose operand has one of two values, apply
7824 our opcode to compute those values. */
7825 else if (UNARY_P (x)
7826 && (cond0 = if_then_else_cond (XEXP (x, 0), &true0, &false0)) != 0)
7827 {
7828 *ptrue = simplify_gen_unary (code, mode, true0, GET_MODE (XEXP (x, 0)));
7829 *pfalse = simplify_gen_unary (code, mode, false0,
7830 GET_MODE (XEXP (x, 0)));
7831 return cond0;
7832 }
7833
7834 /* If this is a COMPARE, do nothing, since the IF_THEN_ELSE we would
7835 make can't possibly match and would suppress other optimizations. */
7836 else if (code == COMPARE)
7837 ;
7838
7839 /* If this is a binary operation, see if either side has only one of two
7840 values. If either one does or if both do and they are conditional on
7841 the same value, compute the new true and false values. */
7842 else if (BINARY_P (x))
7843 {
7844 cond0 = if_then_else_cond (XEXP (x, 0), &true0, &false0);
7845 cond1 = if_then_else_cond (XEXP (x, 1), &true1, &false1);
7846
7847 if ((cond0 != 0 || cond1 != 0)
7848 && ! (cond0 != 0 && cond1 != 0 && ! rtx_equal_p (cond0, cond1)))
7849 {
7850 /* If if_then_else_cond returned zero, then true/false are the
7851 same rtl. We must copy one of them to prevent invalid rtl
7852 sharing. */
7853 if (cond0 == 0)
7854 true0 = copy_rtx (true0);
7855 else if (cond1 == 0)
7856 true1 = copy_rtx (true1);
7857
7858 if (COMPARISON_P (x))
7859 {
7860 *ptrue = simplify_gen_relational (code, mode, VOIDmode,
7861 true0, true1);
7862 *pfalse = simplify_gen_relational (code, mode, VOIDmode,
7863 false0, false1);
7864 }
7865 else
7866 {
7867 *ptrue = simplify_gen_binary (code, mode, true0, true1);
7868 *pfalse = simplify_gen_binary (code, mode, false0, false1);
7869 }
7870
7871 return cond0 ? cond0 : cond1;
7872 }
7873
7874 /* See if we have PLUS, IOR, XOR, MINUS or UMAX, where one of the
7875 operands is zero when the other is nonzero, and vice-versa,
7876 and STORE_FLAG_VALUE is 1 or -1. */
7877
7878 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
7879 && (code == PLUS || code == IOR || code == XOR || code == MINUS
7880 || code == UMAX)
7881 && GET_CODE (XEXP (x, 0)) == MULT && GET_CODE (XEXP (x, 1)) == MULT)
7882 {
7883 rtx op0 = XEXP (XEXP (x, 0), 1);
7884 rtx op1 = XEXP (XEXP (x, 1), 1);
7885
7886 cond0 = XEXP (XEXP (x, 0), 0);
7887 cond1 = XEXP (XEXP (x, 1), 0);
7888
7889 if (COMPARISON_P (cond0)
7890 && COMPARISON_P (cond1)
7891 && ((GET_CODE (cond0) == reversed_comparison_code (cond1, NULL)
7892 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 0))
7893 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 1)))
7894 || ((swap_condition (GET_CODE (cond0))
7895 == reversed_comparison_code (cond1, NULL))
7896 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 1))
7897 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 0))))
7898 && ! side_effects_p (x))
7899 {
7900 *ptrue = simplify_gen_binary (MULT, mode, op0, const_true_rtx);
7901 *pfalse = simplify_gen_binary (MULT, mode,
7902 (code == MINUS
7903 ? simplify_gen_unary (NEG, mode,
7904 op1, mode)
7905 : op1),
7906 const_true_rtx);
7907 return cond0;
7908 }
7909 }
7910
7911 /* Similarly for MULT, AND and UMIN, except that for these the result
7912 is always zero. */
7913 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
7914 && (code == MULT || code == AND || code == UMIN)
7915 && GET_CODE (XEXP (x, 0)) == MULT && GET_CODE (XEXP (x, 1)) == MULT)
7916 {
7917 cond0 = XEXP (XEXP (x, 0), 0);
7918 cond1 = XEXP (XEXP (x, 1), 0);
7919
7920 if (COMPARISON_P (cond0)
7921 && COMPARISON_P (cond1)
7922 && ((GET_CODE (cond0) == reversed_comparison_code (cond1, NULL)
7923 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 0))
7924 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 1)))
7925 || ((swap_condition (GET_CODE (cond0))
7926 == reversed_comparison_code (cond1, NULL))
7927 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 1))
7928 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 0))))
7929 && ! side_effects_p (x))
7930 {
7931 *ptrue = *pfalse = const0_rtx;
7932 return cond0;
7933 }
7934 }
7935 }
7936
7937 else if (code == IF_THEN_ELSE)
7938 {
7939 /* If we have IF_THEN_ELSE already, extract the condition and
7940 canonicalize it if it is NE or EQ. */
7941 cond0 = XEXP (x, 0);
7942 *ptrue = XEXP (x, 1), *pfalse = XEXP (x, 2);
7943 if (GET_CODE (cond0) == NE && XEXP (cond0, 1) == const0_rtx)
7944 return XEXP (cond0, 0);
7945 else if (GET_CODE (cond0) == EQ && XEXP (cond0, 1) == const0_rtx)
7946 {
7947 *ptrue = XEXP (x, 2), *pfalse = XEXP (x, 1);
7948 return XEXP (cond0, 0);
7949 }
7950 else
7951 return cond0;
7952 }
7953
7954 /* If X is a SUBREG, we can narrow both the true and false values
7955 if the inner expression, if there is a condition. */
7956 else if (code == SUBREG
7957 && 0 != (cond0 = if_then_else_cond (SUBREG_REG (x),
7958 &true0, &false0)))
7959 {
7960 true0 = simplify_gen_subreg (mode, true0,
7961 GET_MODE (SUBREG_REG (x)), SUBREG_BYTE (x));
7962 false0 = simplify_gen_subreg (mode, false0,
7963 GET_MODE (SUBREG_REG (x)), SUBREG_BYTE (x));
7964 if (true0 && false0)
7965 {
7966 *ptrue = true0;
7967 *pfalse = false0;
7968 return cond0;
7969 }
7970 }
7971
7972 /* If X is a constant, this isn't special and will cause confusions
7973 if we treat it as such. Likewise if it is equivalent to a constant. */
7974 else if (CONSTANT_P (x)
7975 || ((cond0 = get_last_value (x)) != 0 && CONSTANT_P (cond0)))
7976 ;
7977
7978 /* If we're in BImode, canonicalize on 0 and STORE_FLAG_VALUE, as that
7979 will be least confusing to the rest of the compiler. */
7980 else if (mode == BImode)
7981 {
7982 *ptrue = GEN_INT (STORE_FLAG_VALUE), *pfalse = const0_rtx;
7983 return x;
7984 }
7985
7986 /* If X is known to be either 0 or -1, those are the true and
7987 false values when testing X. */
7988 else if (x == constm1_rtx || x == const0_rtx
7989 || (mode != VOIDmode
7990 && num_sign_bit_copies (x, mode) == GET_MODE_BITSIZE (mode)))
7991 {
7992 *ptrue = constm1_rtx, *pfalse = const0_rtx;
7993 return x;
7994 }
7995
7996 /* Likewise for 0 or a single bit. */
7997 else if (SCALAR_INT_MODE_P (mode)
7998 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
7999 && exact_log2 (nz = nonzero_bits (x, mode)) >= 0)
8000 {
8001 *ptrue = gen_int_mode (nz, mode), *pfalse = const0_rtx;
8002 return x;
8003 }
8004
8005 /* Otherwise fail; show no condition with true and false values the same. */
8006 *ptrue = *pfalse = x;
8007 return 0;
8008 }
8009 \f
8010 /* Return the value of expression X given the fact that condition COND
8011 is known to be true when applied to REG as its first operand and VAL
8012 as its second. X is known to not be shared and so can be modified in
8013 place.
8014
8015 We only handle the simplest cases, and specifically those cases that
8016 arise with IF_THEN_ELSE expressions. */
8017
8018 static rtx
8019 known_cond (rtx x, enum rtx_code cond, rtx reg, rtx val)
8020 {
8021 enum rtx_code code = GET_CODE (x);
8022 rtx temp;
8023 const char *fmt;
8024 int i, j;
8025
8026 if (side_effects_p (x))
8027 return x;
8028
8029 /* If either operand of the condition is a floating point value,
8030 then we have to avoid collapsing an EQ comparison. */
8031 if (cond == EQ
8032 && rtx_equal_p (x, reg)
8033 && ! FLOAT_MODE_P (GET_MODE (x))
8034 && ! FLOAT_MODE_P (GET_MODE (val)))
8035 return val;
8036
8037 if (cond == UNEQ && rtx_equal_p (x, reg))
8038 return val;
8039
8040 /* If X is (abs REG) and we know something about REG's relationship
8041 with zero, we may be able to simplify this. */
8042
8043 if (code == ABS && rtx_equal_p (XEXP (x, 0), reg) && val == const0_rtx)
8044 switch (cond)
8045 {
8046 case GE: case GT: case EQ:
8047 return XEXP (x, 0);
8048 case LT: case LE:
8049 return simplify_gen_unary (NEG, GET_MODE (XEXP (x, 0)),
8050 XEXP (x, 0),
8051 GET_MODE (XEXP (x, 0)));
8052 default:
8053 break;
8054 }
8055
8056 /* The only other cases we handle are MIN, MAX, and comparisons if the
8057 operands are the same as REG and VAL. */
8058
8059 else if (COMPARISON_P (x) || COMMUTATIVE_ARITH_P (x))
8060 {
8061 if (rtx_equal_p (XEXP (x, 0), val))
8062 cond = swap_condition (cond), temp = val, val = reg, reg = temp;
8063
8064 if (rtx_equal_p (XEXP (x, 0), reg) && rtx_equal_p (XEXP (x, 1), val))
8065 {
8066 if (COMPARISON_P (x))
8067 {
8068 if (comparison_dominates_p (cond, code))
8069 return const_true_rtx;
8070
8071 code = reversed_comparison_code (x, NULL);
8072 if (code != UNKNOWN
8073 && comparison_dominates_p (cond, code))
8074 return const0_rtx;
8075 else
8076 return x;
8077 }
8078 else if (code == SMAX || code == SMIN
8079 || code == UMIN || code == UMAX)
8080 {
8081 int unsignedp = (code == UMIN || code == UMAX);
8082
8083 /* Do not reverse the condition when it is NE or EQ.
8084 This is because we cannot conclude anything about
8085 the value of 'SMAX (x, y)' when x is not equal to y,
8086 but we can when x equals y. */
8087 if ((code == SMAX || code == UMAX)
8088 && ! (cond == EQ || cond == NE))
8089 cond = reverse_condition (cond);
8090
8091 switch (cond)
8092 {
8093 case GE: case GT:
8094 return unsignedp ? x : XEXP (x, 1);
8095 case LE: case LT:
8096 return unsignedp ? x : XEXP (x, 0);
8097 case GEU: case GTU:
8098 return unsignedp ? XEXP (x, 1) : x;
8099 case LEU: case LTU:
8100 return unsignedp ? XEXP (x, 0) : x;
8101 default:
8102 break;
8103 }
8104 }
8105 }
8106 }
8107 else if (code == SUBREG)
8108 {
8109 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (x));
8110 rtx new, r = known_cond (SUBREG_REG (x), cond, reg, val);
8111
8112 if (SUBREG_REG (x) != r)
8113 {
8114 /* We must simplify subreg here, before we lose track of the
8115 original inner_mode. */
8116 new = simplify_subreg (GET_MODE (x), r,
8117 inner_mode, SUBREG_BYTE (x));
8118 if (new)
8119 return new;
8120 else
8121 SUBST (SUBREG_REG (x), r);
8122 }
8123
8124 return x;
8125 }
8126 /* We don't have to handle SIGN_EXTEND here, because even in the
8127 case of replacing something with a modeless CONST_INT, a
8128 CONST_INT is already (supposed to be) a valid sign extension for
8129 its narrower mode, which implies it's already properly
8130 sign-extended for the wider mode. Now, for ZERO_EXTEND, the
8131 story is different. */
8132 else if (code == ZERO_EXTEND)
8133 {
8134 enum machine_mode inner_mode = GET_MODE (XEXP (x, 0));
8135 rtx new, r = known_cond (XEXP (x, 0), cond, reg, val);
8136
8137 if (XEXP (x, 0) != r)
8138 {
8139 /* We must simplify the zero_extend here, before we lose
8140 track of the original inner_mode. */
8141 new = simplify_unary_operation (ZERO_EXTEND, GET_MODE (x),
8142 r, inner_mode);
8143 if (new)
8144 return new;
8145 else
8146 SUBST (XEXP (x, 0), r);
8147 }
8148
8149 return x;
8150 }
8151
8152 fmt = GET_RTX_FORMAT (code);
8153 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
8154 {
8155 if (fmt[i] == 'e')
8156 SUBST (XEXP (x, i), known_cond (XEXP (x, i), cond, reg, val));
8157 else if (fmt[i] == 'E')
8158 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
8159 SUBST (XVECEXP (x, i, j), known_cond (XVECEXP (x, i, j),
8160 cond, reg, val));
8161 }
8162
8163 return x;
8164 }
8165 \f
8166 /* See if X and Y are equal for the purposes of seeing if we can rewrite an
8167 assignment as a field assignment. */
8168
8169 static int
8170 rtx_equal_for_field_assignment_p (rtx x, rtx y)
8171 {
8172 if (x == y || rtx_equal_p (x, y))
8173 return 1;
8174
8175 if (x == 0 || y == 0 || GET_MODE (x) != GET_MODE (y))
8176 return 0;
8177
8178 /* Check for a paradoxical SUBREG of a MEM compared with the MEM.
8179 Note that all SUBREGs of MEM are paradoxical; otherwise they
8180 would have been rewritten. */
8181 if (MEM_P (x) && GET_CODE (y) == SUBREG
8182 && MEM_P (SUBREG_REG (y))
8183 && rtx_equal_p (SUBREG_REG (y),
8184 gen_lowpart (GET_MODE (SUBREG_REG (y)), x)))
8185 return 1;
8186
8187 if (MEM_P (y) && GET_CODE (x) == SUBREG
8188 && MEM_P (SUBREG_REG (x))
8189 && rtx_equal_p (SUBREG_REG (x),
8190 gen_lowpart (GET_MODE (SUBREG_REG (x)), y)))
8191 return 1;
8192
8193 /* We used to see if get_last_value of X and Y were the same but that's
8194 not correct. In one direction, we'll cause the assignment to have
8195 the wrong destination and in the case, we'll import a register into this
8196 insn that might have already have been dead. So fail if none of the
8197 above cases are true. */
8198 return 0;
8199 }
8200 \f
8201 /* See if X, a SET operation, can be rewritten as a bit-field assignment.
8202 Return that assignment if so.
8203
8204 We only handle the most common cases. */
8205
8206 static rtx
8207 make_field_assignment (rtx x)
8208 {
8209 rtx dest = SET_DEST (x);
8210 rtx src = SET_SRC (x);
8211 rtx assign;
8212 rtx rhs, lhs;
8213 HOST_WIDE_INT c1;
8214 HOST_WIDE_INT pos;
8215 unsigned HOST_WIDE_INT len;
8216 rtx other;
8217 enum machine_mode mode;
8218
8219 /* If SRC was (and (not (ashift (const_int 1) POS)) DEST), this is
8220 a clear of a one-bit field. We will have changed it to
8221 (and (rotate (const_int -2) POS) DEST), so check for that. Also check
8222 for a SUBREG. */
8223
8224 if (GET_CODE (src) == AND && GET_CODE (XEXP (src, 0)) == ROTATE
8225 && GET_CODE (XEXP (XEXP (src, 0), 0)) == CONST_INT
8226 && INTVAL (XEXP (XEXP (src, 0), 0)) == -2
8227 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
8228 {
8229 assign = make_extraction (VOIDmode, dest, 0, XEXP (XEXP (src, 0), 1),
8230 1, 1, 1, 0);
8231 if (assign != 0)
8232 return gen_rtx_SET (VOIDmode, assign, const0_rtx);
8233 return x;
8234 }
8235
8236 if (GET_CODE (src) == AND && GET_CODE (XEXP (src, 0)) == SUBREG
8237 && subreg_lowpart_p (XEXP (src, 0))
8238 && (GET_MODE_SIZE (GET_MODE (XEXP (src, 0)))
8239 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (XEXP (src, 0)))))
8240 && GET_CODE (SUBREG_REG (XEXP (src, 0))) == ROTATE
8241 && GET_CODE (XEXP (SUBREG_REG (XEXP (src, 0)), 0)) == CONST_INT
8242 && INTVAL (XEXP (SUBREG_REG (XEXP (src, 0)), 0)) == -2
8243 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
8244 {
8245 assign = make_extraction (VOIDmode, dest, 0,
8246 XEXP (SUBREG_REG (XEXP (src, 0)), 1),
8247 1, 1, 1, 0);
8248 if (assign != 0)
8249 return gen_rtx_SET (VOIDmode, assign, const0_rtx);
8250 return x;
8251 }
8252
8253 /* If SRC is (ior (ashift (const_int 1) POS) DEST), this is a set of a
8254 one-bit field. */
8255 if (GET_CODE (src) == IOR && GET_CODE (XEXP (src, 0)) == ASHIFT
8256 && XEXP (XEXP (src, 0), 0) == const1_rtx
8257 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
8258 {
8259 assign = make_extraction (VOIDmode, dest, 0, XEXP (XEXP (src, 0), 1),
8260 1, 1, 1, 0);
8261 if (assign != 0)
8262 return gen_rtx_SET (VOIDmode, assign, const1_rtx);
8263 return x;
8264 }
8265
8266 /* If DEST is already a field assignment, i.e. ZERO_EXTRACT, and the
8267 SRC is an AND with all bits of that field set, then we can discard
8268 the AND. */
8269 if (GET_CODE (dest) == ZERO_EXTRACT
8270 && GET_CODE (XEXP (dest, 1)) == CONST_INT
8271 && GET_CODE (src) == AND
8272 && GET_CODE (XEXP (src, 1)) == CONST_INT)
8273 {
8274 HOST_WIDE_INT width = INTVAL (XEXP (dest, 1));
8275 unsigned HOST_WIDE_INT and_mask = INTVAL (XEXP (src, 1));
8276 unsigned HOST_WIDE_INT ze_mask;
8277
8278 if (width >= HOST_BITS_PER_WIDE_INT)
8279 ze_mask = -1;
8280 else
8281 ze_mask = ((unsigned HOST_WIDE_INT)1 << width) - 1;
8282
8283 /* Complete overlap. We can remove the source AND. */
8284 if ((and_mask & ze_mask) == ze_mask)
8285 return gen_rtx_SET (VOIDmode, dest, XEXP (src, 0));
8286
8287 /* Partial overlap. We can reduce the source AND. */
8288 if ((and_mask & ze_mask) != and_mask)
8289 {
8290 mode = GET_MODE (src);
8291 src = gen_rtx_AND (mode, XEXP (src, 0),
8292 gen_int_mode (and_mask & ze_mask, mode));
8293 return gen_rtx_SET (VOIDmode, dest, src);
8294 }
8295 }
8296
8297 /* The other case we handle is assignments into a constant-position
8298 field. They look like (ior/xor (and DEST C1) OTHER). If C1 represents
8299 a mask that has all one bits except for a group of zero bits and
8300 OTHER is known to have zeros where C1 has ones, this is such an
8301 assignment. Compute the position and length from C1. Shift OTHER
8302 to the appropriate position, force it to the required mode, and
8303 make the extraction. Check for the AND in both operands. */
8304
8305 if (GET_CODE (src) != IOR && GET_CODE (src) != XOR)
8306 return x;
8307
8308 rhs = expand_compound_operation (XEXP (src, 0));
8309 lhs = expand_compound_operation (XEXP (src, 1));
8310
8311 if (GET_CODE (rhs) == AND
8312 && GET_CODE (XEXP (rhs, 1)) == CONST_INT
8313 && rtx_equal_for_field_assignment_p (XEXP (rhs, 0), dest))
8314 c1 = INTVAL (XEXP (rhs, 1)), other = lhs;
8315 else if (GET_CODE (lhs) == AND
8316 && GET_CODE (XEXP (lhs, 1)) == CONST_INT
8317 && rtx_equal_for_field_assignment_p (XEXP (lhs, 0), dest))
8318 c1 = INTVAL (XEXP (lhs, 1)), other = rhs;
8319 else
8320 return x;
8321
8322 pos = get_pos_from_mask ((~c1) & GET_MODE_MASK (GET_MODE (dest)), &len);
8323 if (pos < 0 || pos + len > GET_MODE_BITSIZE (GET_MODE (dest))
8324 || GET_MODE_BITSIZE (GET_MODE (dest)) > HOST_BITS_PER_WIDE_INT
8325 || (c1 & nonzero_bits (other, GET_MODE (dest))) != 0)
8326 return x;
8327
8328 assign = make_extraction (VOIDmode, dest, pos, NULL_RTX, len, 1, 1, 0);
8329 if (assign == 0)
8330 return x;
8331
8332 /* The mode to use for the source is the mode of the assignment, or of
8333 what is inside a possible STRICT_LOW_PART. */
8334 mode = (GET_CODE (assign) == STRICT_LOW_PART
8335 ? GET_MODE (XEXP (assign, 0)) : GET_MODE (assign));
8336
8337 /* Shift OTHER right POS places and make it the source, restricting it
8338 to the proper length and mode. */
8339
8340 src = canon_reg_for_combine (simplify_shift_const (NULL_RTX, LSHIFTRT,
8341 GET_MODE (src),
8342 other, pos),
8343 dest);
8344 src = force_to_mode (src, mode,
8345 GET_MODE_BITSIZE (mode) >= HOST_BITS_PER_WIDE_INT
8346 ? ~(unsigned HOST_WIDE_INT) 0
8347 : ((unsigned HOST_WIDE_INT) 1 << len) - 1,
8348 0);
8349
8350 /* If SRC is masked by an AND that does not make a difference in
8351 the value being stored, strip it. */
8352 if (GET_CODE (assign) == ZERO_EXTRACT
8353 && GET_CODE (XEXP (assign, 1)) == CONST_INT
8354 && INTVAL (XEXP (assign, 1)) < HOST_BITS_PER_WIDE_INT
8355 && GET_CODE (src) == AND
8356 && GET_CODE (XEXP (src, 1)) == CONST_INT
8357 && ((unsigned HOST_WIDE_INT) INTVAL (XEXP (src, 1))
8358 == ((unsigned HOST_WIDE_INT) 1 << INTVAL (XEXP (assign, 1))) - 1))
8359 src = XEXP (src, 0);
8360
8361 return gen_rtx_SET (VOIDmode, assign, src);
8362 }
8363 \f
8364 /* See if X is of the form (+ (* a c) (* b c)) and convert to (* (+ a b) c)
8365 if so. */
8366
8367 static rtx
8368 apply_distributive_law (rtx x)
8369 {
8370 enum rtx_code code = GET_CODE (x);
8371 enum rtx_code inner_code;
8372 rtx lhs, rhs, other;
8373 rtx tem;
8374
8375 /* Distributivity is not true for floating point as it can change the
8376 value. So we don't do it unless -funsafe-math-optimizations. */
8377 if (FLOAT_MODE_P (GET_MODE (x))
8378 && ! flag_unsafe_math_optimizations)
8379 return x;
8380
8381 /* The outer operation can only be one of the following: */
8382 if (code != IOR && code != AND && code != XOR
8383 && code != PLUS && code != MINUS)
8384 return x;
8385
8386 lhs = XEXP (x, 0);
8387 rhs = XEXP (x, 1);
8388
8389 /* If either operand is a primitive we can't do anything, so get out
8390 fast. */
8391 if (OBJECT_P (lhs) || OBJECT_P (rhs))
8392 return x;
8393
8394 lhs = expand_compound_operation (lhs);
8395 rhs = expand_compound_operation (rhs);
8396 inner_code = GET_CODE (lhs);
8397 if (inner_code != GET_CODE (rhs))
8398 return x;
8399
8400 /* See if the inner and outer operations distribute. */
8401 switch (inner_code)
8402 {
8403 case LSHIFTRT:
8404 case ASHIFTRT:
8405 case AND:
8406 case IOR:
8407 /* These all distribute except over PLUS. */
8408 if (code == PLUS || code == MINUS)
8409 return x;
8410 break;
8411
8412 case MULT:
8413 if (code != PLUS && code != MINUS)
8414 return x;
8415 break;
8416
8417 case ASHIFT:
8418 /* This is also a multiply, so it distributes over everything. */
8419 break;
8420
8421 case SUBREG:
8422 /* Non-paradoxical SUBREGs distributes over all operations,
8423 provided the inner modes and byte offsets are the same, this
8424 is an extraction of a low-order part, we don't convert an fp
8425 operation to int or vice versa, this is not a vector mode,
8426 and we would not be converting a single-word operation into a
8427 multi-word operation. The latter test is not required, but
8428 it prevents generating unneeded multi-word operations. Some
8429 of the previous tests are redundant given the latter test,
8430 but are retained because they are required for correctness.
8431
8432 We produce the result slightly differently in this case. */
8433
8434 if (GET_MODE (SUBREG_REG (lhs)) != GET_MODE (SUBREG_REG (rhs))
8435 || SUBREG_BYTE (lhs) != SUBREG_BYTE (rhs)
8436 || ! subreg_lowpart_p (lhs)
8437 || (GET_MODE_CLASS (GET_MODE (lhs))
8438 != GET_MODE_CLASS (GET_MODE (SUBREG_REG (lhs))))
8439 || (GET_MODE_SIZE (GET_MODE (lhs))
8440 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (lhs))))
8441 || VECTOR_MODE_P (GET_MODE (lhs))
8442 || GET_MODE_SIZE (GET_MODE (SUBREG_REG (lhs))) > UNITS_PER_WORD
8443 /* Result might need to be truncated. Don't change mode if
8444 explicit truncation is needed. */
8445 || !TRULY_NOOP_TRUNCATION
8446 (GET_MODE_BITSIZE (GET_MODE (x)),
8447 GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (lhs)))))
8448 return x;
8449
8450 tem = simplify_gen_binary (code, GET_MODE (SUBREG_REG (lhs)),
8451 SUBREG_REG (lhs), SUBREG_REG (rhs));
8452 return gen_lowpart (GET_MODE (x), tem);
8453
8454 default:
8455 return x;
8456 }
8457
8458 /* Set LHS and RHS to the inner operands (A and B in the example
8459 above) and set OTHER to the common operand (C in the example).
8460 There is only one way to do this unless the inner operation is
8461 commutative. */
8462 if (COMMUTATIVE_ARITH_P (lhs)
8463 && rtx_equal_p (XEXP (lhs, 0), XEXP (rhs, 0)))
8464 other = XEXP (lhs, 0), lhs = XEXP (lhs, 1), rhs = XEXP (rhs, 1);
8465 else if (COMMUTATIVE_ARITH_P (lhs)
8466 && rtx_equal_p (XEXP (lhs, 0), XEXP (rhs, 1)))
8467 other = XEXP (lhs, 0), lhs = XEXP (lhs, 1), rhs = XEXP (rhs, 0);
8468 else if (COMMUTATIVE_ARITH_P (lhs)
8469 && rtx_equal_p (XEXP (lhs, 1), XEXP (rhs, 0)))
8470 other = XEXP (lhs, 1), lhs = XEXP (lhs, 0), rhs = XEXP (rhs, 1);
8471 else if (rtx_equal_p (XEXP (lhs, 1), XEXP (rhs, 1)))
8472 other = XEXP (lhs, 1), lhs = XEXP (lhs, 0), rhs = XEXP (rhs, 0);
8473 else
8474 return x;
8475
8476 /* Form the new inner operation, seeing if it simplifies first. */
8477 tem = simplify_gen_binary (code, GET_MODE (x), lhs, rhs);
8478
8479 /* There is one exception to the general way of distributing:
8480 (a | c) ^ (b | c) -> (a ^ b) & ~c */
8481 if (code == XOR && inner_code == IOR)
8482 {
8483 inner_code = AND;
8484 other = simplify_gen_unary (NOT, GET_MODE (x), other, GET_MODE (x));
8485 }
8486
8487 /* We may be able to continuing distributing the result, so call
8488 ourselves recursively on the inner operation before forming the
8489 outer operation, which we return. */
8490 return simplify_gen_binary (inner_code, GET_MODE (x),
8491 apply_distributive_law (tem), other);
8492 }
8493
8494 /* See if X is of the form (* (+ A B) C), and if so convert to
8495 (+ (* A C) (* B C)) and try to simplify.
8496
8497 Most of the time, this results in no change. However, if some of
8498 the operands are the same or inverses of each other, simplifications
8499 will result.
8500
8501 For example, (and (ior A B) (not B)) can occur as the result of
8502 expanding a bit field assignment. When we apply the distributive
8503 law to this, we get (ior (and (A (not B))) (and (B (not B)))),
8504 which then simplifies to (and (A (not B))).
8505
8506 Note that no checks happen on the validity of applying the inverse
8507 distributive law. This is pointless since we can do it in the
8508 few places where this routine is called.
8509
8510 N is the index of the term that is decomposed (the arithmetic operation,
8511 i.e. (+ A B) in the first example above). !N is the index of the term that
8512 is distributed, i.e. of C in the first example above. */
8513 static rtx
8514 distribute_and_simplify_rtx (rtx x, int n)
8515 {
8516 enum machine_mode mode;
8517 enum rtx_code outer_code, inner_code;
8518 rtx decomposed, distributed, inner_op0, inner_op1, new_op0, new_op1, tmp;
8519
8520 decomposed = XEXP (x, n);
8521 if (!ARITHMETIC_P (decomposed))
8522 return NULL_RTX;
8523
8524 mode = GET_MODE (x);
8525 outer_code = GET_CODE (x);
8526 distributed = XEXP (x, !n);
8527
8528 inner_code = GET_CODE (decomposed);
8529 inner_op0 = XEXP (decomposed, 0);
8530 inner_op1 = XEXP (decomposed, 1);
8531
8532 /* Special case (and (xor B C) (not A)), which is equivalent to
8533 (xor (ior A B) (ior A C)) */
8534 if (outer_code == AND && inner_code == XOR && GET_CODE (distributed) == NOT)
8535 {
8536 distributed = XEXP (distributed, 0);
8537 outer_code = IOR;
8538 }
8539
8540 if (n == 0)
8541 {
8542 /* Distribute the second term. */
8543 new_op0 = simplify_gen_binary (outer_code, mode, inner_op0, distributed);
8544 new_op1 = simplify_gen_binary (outer_code, mode, inner_op1, distributed);
8545 }
8546 else
8547 {
8548 /* Distribute the first term. */
8549 new_op0 = simplify_gen_binary (outer_code, mode, distributed, inner_op0);
8550 new_op1 = simplify_gen_binary (outer_code, mode, distributed, inner_op1);
8551 }
8552
8553 tmp = apply_distributive_law (simplify_gen_binary (inner_code, mode,
8554 new_op0, new_op1));
8555 if (GET_CODE (tmp) != outer_code
8556 && rtx_cost (tmp, SET) < rtx_cost (x, SET))
8557 return tmp;
8558
8559 return NULL_RTX;
8560 }
8561 \f
8562 /* Simplify a logical `and' of VAROP with the constant CONSTOP, to be done
8563 in MODE. Return an equivalent form, if different from (and VAROP
8564 (const_int CONSTOP)). Otherwise, return NULL_RTX. */
8565
8566 static rtx
8567 simplify_and_const_int_1 (enum machine_mode mode, rtx varop,
8568 unsigned HOST_WIDE_INT constop)
8569 {
8570 unsigned HOST_WIDE_INT nonzero;
8571 unsigned HOST_WIDE_INT orig_constop;
8572 rtx orig_varop;
8573 int i;
8574
8575 orig_varop = varop;
8576 orig_constop = constop;
8577 if (GET_CODE (varop) == CLOBBER)
8578 return NULL_RTX;
8579
8580 /* Simplify VAROP knowing that we will be only looking at some of the
8581 bits in it.
8582
8583 Note by passing in CONSTOP, we guarantee that the bits not set in
8584 CONSTOP are not significant and will never be examined. We must
8585 ensure that is the case by explicitly masking out those bits
8586 before returning. */
8587 varop = force_to_mode (varop, mode, constop, 0);
8588
8589 /* If VAROP is a CLOBBER, we will fail so return it. */
8590 if (GET_CODE (varop) == CLOBBER)
8591 return varop;
8592
8593 /* If VAROP is a CONST_INT, then we need to apply the mask in CONSTOP
8594 to VAROP and return the new constant. */
8595 if (GET_CODE (varop) == CONST_INT)
8596 return gen_int_mode (INTVAL (varop) & constop, mode);
8597
8598 /* See what bits may be nonzero in VAROP. Unlike the general case of
8599 a call to nonzero_bits, here we don't care about bits outside
8600 MODE. */
8601
8602 nonzero = nonzero_bits (varop, mode) & GET_MODE_MASK (mode);
8603
8604 /* Turn off all bits in the constant that are known to already be zero.
8605 Thus, if the AND isn't needed at all, we will have CONSTOP == NONZERO_BITS
8606 which is tested below. */
8607
8608 constop &= nonzero;
8609
8610 /* If we don't have any bits left, return zero. */
8611 if (constop == 0)
8612 return const0_rtx;
8613
8614 /* If VAROP is a NEG of something known to be zero or 1 and CONSTOP is
8615 a power of two, we can replace this with an ASHIFT. */
8616 if (GET_CODE (varop) == NEG && nonzero_bits (XEXP (varop, 0), mode) == 1
8617 && (i = exact_log2 (constop)) >= 0)
8618 return simplify_shift_const (NULL_RTX, ASHIFT, mode, XEXP (varop, 0), i);
8619
8620 /* If VAROP is an IOR or XOR, apply the AND to both branches of the IOR
8621 or XOR, then try to apply the distributive law. This may eliminate
8622 operations if either branch can be simplified because of the AND.
8623 It may also make some cases more complex, but those cases probably
8624 won't match a pattern either with or without this. */
8625
8626 if (GET_CODE (varop) == IOR || GET_CODE (varop) == XOR)
8627 return
8628 gen_lowpart
8629 (mode,
8630 apply_distributive_law
8631 (simplify_gen_binary (GET_CODE (varop), GET_MODE (varop),
8632 simplify_and_const_int (NULL_RTX,
8633 GET_MODE (varop),
8634 XEXP (varop, 0),
8635 constop),
8636 simplify_and_const_int (NULL_RTX,
8637 GET_MODE (varop),
8638 XEXP (varop, 1),
8639 constop))));
8640
8641 /* If VAROP is PLUS, and the constant is a mask of low bits, distribute
8642 the AND and see if one of the operands simplifies to zero. If so, we
8643 may eliminate it. */
8644
8645 if (GET_CODE (varop) == PLUS
8646 && exact_log2 (constop + 1) >= 0)
8647 {
8648 rtx o0, o1;
8649
8650 o0 = simplify_and_const_int (NULL_RTX, mode, XEXP (varop, 0), constop);
8651 o1 = simplify_and_const_int (NULL_RTX, mode, XEXP (varop, 1), constop);
8652 if (o0 == const0_rtx)
8653 return o1;
8654 if (o1 == const0_rtx)
8655 return o0;
8656 }
8657
8658 /* Make a SUBREG if necessary. If we can't make it, fail. */
8659 varop = gen_lowpart (mode, varop);
8660 if (varop == NULL_RTX || GET_CODE (varop) == CLOBBER)
8661 return NULL_RTX;
8662
8663 /* If we are only masking insignificant bits, return VAROP. */
8664 if (constop == nonzero)
8665 return varop;
8666
8667 if (varop == orig_varop && constop == orig_constop)
8668 return NULL_RTX;
8669
8670 /* Otherwise, return an AND. */
8671 return simplify_gen_binary (AND, mode, varop, gen_int_mode (constop, mode));
8672 }
8673
8674
8675 /* We have X, a logical `and' of VAROP with the constant CONSTOP, to be done
8676 in MODE.
8677
8678 Return an equivalent form, if different from X. Otherwise, return X. If
8679 X is zero, we are to always construct the equivalent form. */
8680
8681 static rtx
8682 simplify_and_const_int (rtx x, enum machine_mode mode, rtx varop,
8683 unsigned HOST_WIDE_INT constop)
8684 {
8685 rtx tem = simplify_and_const_int_1 (mode, varop, constop);
8686 if (tem)
8687 return tem;
8688
8689 if (!x)
8690 x = simplify_gen_binary (AND, GET_MODE (varop), varop,
8691 gen_int_mode (constop, mode));
8692 if (GET_MODE (x) != mode)
8693 x = gen_lowpart (mode, x);
8694 return x;
8695 }
8696 \f
8697 /* Given a REG, X, compute which bits in X can be nonzero.
8698 We don't care about bits outside of those defined in MODE.
8699
8700 For most X this is simply GET_MODE_MASK (GET_MODE (MODE)), but if X is
8701 a shift, AND, or zero_extract, we can do better. */
8702
8703 static rtx
8704 reg_nonzero_bits_for_combine (const_rtx x, enum machine_mode mode,
8705 const_rtx known_x ATTRIBUTE_UNUSED,
8706 enum machine_mode known_mode ATTRIBUTE_UNUSED,
8707 unsigned HOST_WIDE_INT known_ret ATTRIBUTE_UNUSED,
8708 unsigned HOST_WIDE_INT *nonzero)
8709 {
8710 rtx tem;
8711 reg_stat_type *rsp;
8712
8713 /* If X is a register whose nonzero bits value is current, use it.
8714 Otherwise, if X is a register whose value we can find, use that
8715 value. Otherwise, use the previously-computed global nonzero bits
8716 for this register. */
8717
8718 rsp = VEC_index (reg_stat_type, reg_stat, REGNO (x));
8719 if (rsp->last_set_value != 0
8720 && (rsp->last_set_mode == mode
8721 || (GET_MODE_CLASS (rsp->last_set_mode) == MODE_INT
8722 && GET_MODE_CLASS (mode) == MODE_INT))
8723 && ((rsp->last_set_label >= label_tick_ebb_start
8724 && rsp->last_set_label < label_tick)
8725 || (rsp->last_set_label == label_tick
8726 && DF_INSN_LUID (rsp->last_set) < subst_low_luid)
8727 || (REGNO (x) >= FIRST_PSEUDO_REGISTER
8728 && REG_N_SETS (REGNO (x)) == 1
8729 && !REGNO_REG_SET_P
8730 (DF_LR_IN (ENTRY_BLOCK_PTR->next_bb), REGNO (x)))))
8731 {
8732 *nonzero &= rsp->last_set_nonzero_bits;
8733 return NULL;
8734 }
8735
8736 tem = get_last_value (x);
8737
8738 if (tem)
8739 {
8740 #ifdef SHORT_IMMEDIATES_SIGN_EXTEND
8741 /* If X is narrower than MODE and TEM is a non-negative
8742 constant that would appear negative in the mode of X,
8743 sign-extend it for use in reg_nonzero_bits because some
8744 machines (maybe most) will actually do the sign-extension
8745 and this is the conservative approach.
8746
8747 ??? For 2.5, try to tighten up the MD files in this regard
8748 instead of this kludge. */
8749
8750 if (GET_MODE_BITSIZE (GET_MODE (x)) < GET_MODE_BITSIZE (mode)
8751 && GET_CODE (tem) == CONST_INT
8752 && INTVAL (tem) > 0
8753 && 0 != (INTVAL (tem)
8754 & ((HOST_WIDE_INT) 1
8755 << (GET_MODE_BITSIZE (GET_MODE (x)) - 1))))
8756 tem = GEN_INT (INTVAL (tem)
8757 | ((HOST_WIDE_INT) (-1)
8758 << GET_MODE_BITSIZE (GET_MODE (x))));
8759 #endif
8760 return tem;
8761 }
8762 else if (nonzero_sign_valid && rsp->nonzero_bits)
8763 {
8764 unsigned HOST_WIDE_INT mask = rsp->nonzero_bits;
8765
8766 if (GET_MODE_BITSIZE (GET_MODE (x)) < GET_MODE_BITSIZE (mode))
8767 /* We don't know anything about the upper bits. */
8768 mask |= GET_MODE_MASK (mode) ^ GET_MODE_MASK (GET_MODE (x));
8769 *nonzero &= mask;
8770 }
8771
8772 return NULL;
8773 }
8774
8775 /* Return the number of bits at the high-order end of X that are known to
8776 be equal to the sign bit. X will be used in mode MODE; if MODE is
8777 VOIDmode, X will be used in its own mode. The returned value will always
8778 be between 1 and the number of bits in MODE. */
8779
8780 static rtx
8781 reg_num_sign_bit_copies_for_combine (const_rtx x, enum machine_mode mode,
8782 const_rtx known_x ATTRIBUTE_UNUSED,
8783 enum machine_mode known_mode
8784 ATTRIBUTE_UNUSED,
8785 unsigned int known_ret ATTRIBUTE_UNUSED,
8786 unsigned int *result)
8787 {
8788 rtx tem;
8789 reg_stat_type *rsp;
8790
8791 rsp = VEC_index (reg_stat_type, reg_stat, REGNO (x));
8792 if (rsp->last_set_value != 0
8793 && rsp->last_set_mode == mode
8794 && ((rsp->last_set_label >= label_tick_ebb_start
8795 && rsp->last_set_label < label_tick)
8796 || (rsp->last_set_label == label_tick
8797 && DF_INSN_LUID (rsp->last_set) < subst_low_luid)
8798 || (REGNO (x) >= FIRST_PSEUDO_REGISTER
8799 && REG_N_SETS (REGNO (x)) == 1
8800 && !REGNO_REG_SET_P
8801 (DF_LR_IN (ENTRY_BLOCK_PTR->next_bb), REGNO (x)))))
8802 {
8803 *result = rsp->last_set_sign_bit_copies;
8804 return NULL;
8805 }
8806
8807 tem = get_last_value (x);
8808 if (tem != 0)
8809 return tem;
8810
8811 if (nonzero_sign_valid && rsp->sign_bit_copies != 0
8812 && GET_MODE_BITSIZE (GET_MODE (x)) == GET_MODE_BITSIZE (mode))
8813 *result = rsp->sign_bit_copies;
8814
8815 return NULL;
8816 }
8817 \f
8818 /* Return the number of "extended" bits there are in X, when interpreted
8819 as a quantity in MODE whose signedness is indicated by UNSIGNEDP. For
8820 unsigned quantities, this is the number of high-order zero bits.
8821 For signed quantities, this is the number of copies of the sign bit
8822 minus 1. In both case, this function returns the number of "spare"
8823 bits. For example, if two quantities for which this function returns
8824 at least 1 are added, the addition is known not to overflow.
8825
8826 This function will always return 0 unless called during combine, which
8827 implies that it must be called from a define_split. */
8828
8829 unsigned int
8830 extended_count (const_rtx x, enum machine_mode mode, int unsignedp)
8831 {
8832 if (nonzero_sign_valid == 0)
8833 return 0;
8834
8835 return (unsignedp
8836 ? (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
8837 ? (unsigned int) (GET_MODE_BITSIZE (mode) - 1
8838 - floor_log2 (nonzero_bits (x, mode)))
8839 : 0)
8840 : num_sign_bit_copies (x, mode) - 1);
8841 }
8842 \f
8843 /* This function is called from `simplify_shift_const' to merge two
8844 outer operations. Specifically, we have already found that we need
8845 to perform operation *POP0 with constant *PCONST0 at the outermost
8846 position. We would now like to also perform OP1 with constant CONST1
8847 (with *POP0 being done last).
8848
8849 Return 1 if we can do the operation and update *POP0 and *PCONST0 with
8850 the resulting operation. *PCOMP_P is set to 1 if we would need to
8851 complement the innermost operand, otherwise it is unchanged.
8852
8853 MODE is the mode in which the operation will be done. No bits outside
8854 the width of this mode matter. It is assumed that the width of this mode
8855 is smaller than or equal to HOST_BITS_PER_WIDE_INT.
8856
8857 If *POP0 or OP1 are UNKNOWN, it means no operation is required. Only NEG, PLUS,
8858 IOR, XOR, and AND are supported. We may set *POP0 to SET if the proper
8859 result is simply *PCONST0.
8860
8861 If the resulting operation cannot be expressed as one operation, we
8862 return 0 and do not change *POP0, *PCONST0, and *PCOMP_P. */
8863
8864 static int
8865 merge_outer_ops (enum rtx_code *pop0, HOST_WIDE_INT *pconst0, enum rtx_code op1, HOST_WIDE_INT const1, enum machine_mode mode, int *pcomp_p)
8866 {
8867 enum rtx_code op0 = *pop0;
8868 HOST_WIDE_INT const0 = *pconst0;
8869
8870 const0 &= GET_MODE_MASK (mode);
8871 const1 &= GET_MODE_MASK (mode);
8872
8873 /* If OP0 is an AND, clear unimportant bits in CONST1. */
8874 if (op0 == AND)
8875 const1 &= const0;
8876
8877 /* If OP0 or OP1 is UNKNOWN, this is easy. Similarly if they are the same or
8878 if OP0 is SET. */
8879
8880 if (op1 == UNKNOWN || op0 == SET)
8881 return 1;
8882
8883 else if (op0 == UNKNOWN)
8884 op0 = op1, const0 = const1;
8885
8886 else if (op0 == op1)
8887 {
8888 switch (op0)
8889 {
8890 case AND:
8891 const0 &= const1;
8892 break;
8893 case IOR:
8894 const0 |= const1;
8895 break;
8896 case XOR:
8897 const0 ^= const1;
8898 break;
8899 case PLUS:
8900 const0 += const1;
8901 break;
8902 case NEG:
8903 op0 = UNKNOWN;
8904 break;
8905 default:
8906 break;
8907 }
8908 }
8909
8910 /* Otherwise, if either is a PLUS or NEG, we can't do anything. */
8911 else if (op0 == PLUS || op1 == PLUS || op0 == NEG || op1 == NEG)
8912 return 0;
8913
8914 /* If the two constants aren't the same, we can't do anything. The
8915 remaining six cases can all be done. */
8916 else if (const0 != const1)
8917 return 0;
8918
8919 else
8920 switch (op0)
8921 {
8922 case IOR:
8923 if (op1 == AND)
8924 /* (a & b) | b == b */
8925 op0 = SET;
8926 else /* op1 == XOR */
8927 /* (a ^ b) | b == a | b */
8928 {;}
8929 break;
8930
8931 case XOR:
8932 if (op1 == AND)
8933 /* (a & b) ^ b == (~a) & b */
8934 op0 = AND, *pcomp_p = 1;
8935 else /* op1 == IOR */
8936 /* (a | b) ^ b == a & ~b */
8937 op0 = AND, const0 = ~const0;
8938 break;
8939
8940 case AND:
8941 if (op1 == IOR)
8942 /* (a | b) & b == b */
8943 op0 = SET;
8944 else /* op1 == XOR */
8945 /* (a ^ b) & b) == (~a) & b */
8946 *pcomp_p = 1;
8947 break;
8948 default:
8949 break;
8950 }
8951
8952 /* Check for NO-OP cases. */
8953 const0 &= GET_MODE_MASK (mode);
8954 if (const0 == 0
8955 && (op0 == IOR || op0 == XOR || op0 == PLUS))
8956 op0 = UNKNOWN;
8957 else if (const0 == 0 && op0 == AND)
8958 op0 = SET;
8959 else if ((unsigned HOST_WIDE_INT) const0 == GET_MODE_MASK (mode)
8960 && op0 == AND)
8961 op0 = UNKNOWN;
8962
8963 /* ??? Slightly redundant with the above mask, but not entirely.
8964 Moving this above means we'd have to sign-extend the mode mask
8965 for the final test. */
8966 const0 = trunc_int_for_mode (const0, mode);
8967
8968 *pop0 = op0;
8969 *pconst0 = const0;
8970
8971 return 1;
8972 }
8973 \f
8974 /* Simplify a shift of VAROP by COUNT bits. CODE says what kind of shift.
8975 The result of the shift is RESULT_MODE. Return NULL_RTX if we cannot
8976 simplify it. Otherwise, return a simplified value.
8977
8978 The shift is normally computed in the widest mode we find in VAROP, as
8979 long as it isn't a different number of words than RESULT_MODE. Exceptions
8980 are ASHIFTRT and ROTATE, which are always done in their original mode. */
8981
8982 static rtx
8983 simplify_shift_const_1 (enum rtx_code code, enum machine_mode result_mode,
8984 rtx varop, int orig_count)
8985 {
8986 enum rtx_code orig_code = code;
8987 rtx orig_varop = varop;
8988 int count;
8989 enum machine_mode mode = result_mode;
8990 enum machine_mode shift_mode, tmode;
8991 unsigned int mode_words
8992 = (GET_MODE_SIZE (mode) + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD;
8993 /* We form (outer_op (code varop count) (outer_const)). */
8994 enum rtx_code outer_op = UNKNOWN;
8995 HOST_WIDE_INT outer_const = 0;
8996 int complement_p = 0;
8997 rtx new, x;
8998
8999 /* Make sure and truncate the "natural" shift on the way in. We don't
9000 want to do this inside the loop as it makes it more difficult to
9001 combine shifts. */
9002 if (SHIFT_COUNT_TRUNCATED)
9003 orig_count &= GET_MODE_BITSIZE (mode) - 1;
9004
9005 /* If we were given an invalid count, don't do anything except exactly
9006 what was requested. */
9007
9008 if (orig_count < 0 || orig_count >= (int) GET_MODE_BITSIZE (mode))
9009 return NULL_RTX;
9010
9011 count = orig_count;
9012
9013 /* Unless one of the branches of the `if' in this loop does a `continue',
9014 we will `break' the loop after the `if'. */
9015
9016 while (count != 0)
9017 {
9018 /* If we have an operand of (clobber (const_int 0)), fail. */
9019 if (GET_CODE (varop) == CLOBBER)
9020 return NULL_RTX;
9021
9022 /* If we discovered we had to complement VAROP, leave. Making a NOT
9023 here would cause an infinite loop. */
9024 if (complement_p)
9025 break;
9026
9027 /* Convert ROTATERT to ROTATE. */
9028 if (code == ROTATERT)
9029 {
9030 unsigned int bitsize = GET_MODE_BITSIZE (result_mode);;
9031 code = ROTATE;
9032 if (VECTOR_MODE_P (result_mode))
9033 count = bitsize / GET_MODE_NUNITS (result_mode) - count;
9034 else
9035 count = bitsize - count;
9036 }
9037
9038 /* We need to determine what mode we will do the shift in. If the
9039 shift is a right shift or a ROTATE, we must always do it in the mode
9040 it was originally done in. Otherwise, we can do it in MODE, the
9041 widest mode encountered. */
9042 shift_mode
9043 = (code == ASHIFTRT || code == LSHIFTRT || code == ROTATE
9044 ? result_mode : mode);
9045
9046 /* Handle cases where the count is greater than the size of the mode
9047 minus 1. For ASHIFT, use the size minus one as the count (this can
9048 occur when simplifying (lshiftrt (ashiftrt ..))). For rotates,
9049 take the count modulo the size. For other shifts, the result is
9050 zero.
9051
9052 Since these shifts are being produced by the compiler by combining
9053 multiple operations, each of which are defined, we know what the
9054 result is supposed to be. */
9055
9056 if (count > (GET_MODE_BITSIZE (shift_mode) - 1))
9057 {
9058 if (code == ASHIFTRT)
9059 count = GET_MODE_BITSIZE (shift_mode) - 1;
9060 else if (code == ROTATE || code == ROTATERT)
9061 count %= GET_MODE_BITSIZE (shift_mode);
9062 else
9063 {
9064 /* We can't simply return zero because there may be an
9065 outer op. */
9066 varop = const0_rtx;
9067 count = 0;
9068 break;
9069 }
9070 }
9071
9072 /* An arithmetic right shift of a quantity known to be -1 or 0
9073 is a no-op. */
9074 if (code == ASHIFTRT
9075 && (num_sign_bit_copies (varop, shift_mode)
9076 == GET_MODE_BITSIZE (shift_mode)))
9077 {
9078 count = 0;
9079 break;
9080 }
9081
9082 /* If we are doing an arithmetic right shift and discarding all but
9083 the sign bit copies, this is equivalent to doing a shift by the
9084 bitsize minus one. Convert it into that shift because it will often
9085 allow other simplifications. */
9086
9087 if (code == ASHIFTRT
9088 && (count + num_sign_bit_copies (varop, shift_mode)
9089 >= GET_MODE_BITSIZE (shift_mode)))
9090 count = GET_MODE_BITSIZE (shift_mode) - 1;
9091
9092 /* We simplify the tests below and elsewhere by converting
9093 ASHIFTRT to LSHIFTRT if we know the sign bit is clear.
9094 `make_compound_operation' will convert it to an ASHIFTRT for
9095 those machines (such as VAX) that don't have an LSHIFTRT. */
9096 if (GET_MODE_BITSIZE (shift_mode) <= HOST_BITS_PER_WIDE_INT
9097 && code == ASHIFTRT
9098 && ((nonzero_bits (varop, shift_mode)
9099 & ((HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (shift_mode) - 1)))
9100 == 0))
9101 code = LSHIFTRT;
9102
9103 if (((code == LSHIFTRT
9104 && GET_MODE_BITSIZE (shift_mode) <= HOST_BITS_PER_WIDE_INT
9105 && !(nonzero_bits (varop, shift_mode) >> count))
9106 || (code == ASHIFT
9107 && GET_MODE_BITSIZE (shift_mode) <= HOST_BITS_PER_WIDE_INT
9108 && !((nonzero_bits (varop, shift_mode) << count)
9109 & GET_MODE_MASK (shift_mode))))
9110 && !side_effects_p (varop))
9111 varop = const0_rtx;
9112
9113 switch (GET_CODE (varop))
9114 {
9115 case SIGN_EXTEND:
9116 case ZERO_EXTEND:
9117 case SIGN_EXTRACT:
9118 case ZERO_EXTRACT:
9119 new = expand_compound_operation (varop);
9120 if (new != varop)
9121 {
9122 varop = new;
9123 continue;
9124 }
9125 break;
9126
9127 case MEM:
9128 /* If we have (xshiftrt (mem ...) C) and C is MODE_WIDTH
9129 minus the width of a smaller mode, we can do this with a
9130 SIGN_EXTEND or ZERO_EXTEND from the narrower memory location. */
9131 if ((code == ASHIFTRT || code == LSHIFTRT)
9132 && ! mode_dependent_address_p (XEXP (varop, 0))
9133 && ! MEM_VOLATILE_P (varop)
9134 && (tmode = mode_for_size (GET_MODE_BITSIZE (mode) - count,
9135 MODE_INT, 1)) != BLKmode)
9136 {
9137 new = adjust_address_nv (varop, tmode,
9138 BYTES_BIG_ENDIAN ? 0
9139 : count / BITS_PER_UNIT);
9140
9141 varop = gen_rtx_fmt_e (code == ASHIFTRT ? SIGN_EXTEND
9142 : ZERO_EXTEND, mode, new);
9143 count = 0;
9144 continue;
9145 }
9146 break;
9147
9148 case SUBREG:
9149 /* If VAROP is a SUBREG, strip it as long as the inner operand has
9150 the same number of words as what we've seen so far. Then store
9151 the widest mode in MODE. */
9152 if (subreg_lowpart_p (varop)
9153 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (varop)))
9154 > GET_MODE_SIZE (GET_MODE (varop)))
9155 && (unsigned int) ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (varop)))
9156 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
9157 == mode_words)
9158 {
9159 varop = SUBREG_REG (varop);
9160 if (GET_MODE_SIZE (GET_MODE (varop)) > GET_MODE_SIZE (mode))
9161 mode = GET_MODE (varop);
9162 continue;
9163 }
9164 break;
9165
9166 case MULT:
9167 /* Some machines use MULT instead of ASHIFT because MULT
9168 is cheaper. But it is still better on those machines to
9169 merge two shifts into one. */
9170 if (GET_CODE (XEXP (varop, 1)) == CONST_INT
9171 && exact_log2 (INTVAL (XEXP (varop, 1))) >= 0)
9172 {
9173 varop
9174 = simplify_gen_binary (ASHIFT, GET_MODE (varop),
9175 XEXP (varop, 0),
9176 GEN_INT (exact_log2 (
9177 INTVAL (XEXP (varop, 1)))));
9178 continue;
9179 }
9180 break;
9181
9182 case UDIV:
9183 /* Similar, for when divides are cheaper. */
9184 if (GET_CODE (XEXP (varop, 1)) == CONST_INT
9185 && exact_log2 (INTVAL (XEXP (varop, 1))) >= 0)
9186 {
9187 varop
9188 = simplify_gen_binary (LSHIFTRT, GET_MODE (varop),
9189 XEXP (varop, 0),
9190 GEN_INT (exact_log2 (
9191 INTVAL (XEXP (varop, 1)))));
9192 continue;
9193 }
9194 break;
9195
9196 case ASHIFTRT:
9197 /* If we are extracting just the sign bit of an arithmetic
9198 right shift, that shift is not needed. However, the sign
9199 bit of a wider mode may be different from what would be
9200 interpreted as the sign bit in a narrower mode, so, if
9201 the result is narrower, don't discard the shift. */
9202 if (code == LSHIFTRT
9203 && count == (GET_MODE_BITSIZE (result_mode) - 1)
9204 && (GET_MODE_BITSIZE (result_mode)
9205 >= GET_MODE_BITSIZE (GET_MODE (varop))))
9206 {
9207 varop = XEXP (varop, 0);
9208 continue;
9209 }
9210
9211 /* ... fall through ... */
9212
9213 case LSHIFTRT:
9214 case ASHIFT:
9215 case ROTATE:
9216 /* Here we have two nested shifts. The result is usually the
9217 AND of a new shift with a mask. We compute the result below. */
9218 if (GET_CODE (XEXP (varop, 1)) == CONST_INT
9219 && INTVAL (XEXP (varop, 1)) >= 0
9220 && INTVAL (XEXP (varop, 1)) < GET_MODE_BITSIZE (GET_MODE (varop))
9221 && GET_MODE_BITSIZE (result_mode) <= HOST_BITS_PER_WIDE_INT
9222 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
9223 && !VECTOR_MODE_P (result_mode))
9224 {
9225 enum rtx_code first_code = GET_CODE (varop);
9226 unsigned int first_count = INTVAL (XEXP (varop, 1));
9227 unsigned HOST_WIDE_INT mask;
9228 rtx mask_rtx;
9229
9230 /* We have one common special case. We can't do any merging if
9231 the inner code is an ASHIFTRT of a smaller mode. However, if
9232 we have (ashift:M1 (subreg:M1 (ashiftrt:M2 FOO C1) 0) C2)
9233 with C2 == GET_MODE_BITSIZE (M1) - GET_MODE_BITSIZE (M2),
9234 we can convert it to
9235 (ashiftrt:M1 (ashift:M1 (and:M1 (subreg:M1 FOO 0 C2) C3) C1).
9236 This simplifies certain SIGN_EXTEND operations. */
9237 if (code == ASHIFT && first_code == ASHIFTRT
9238 && count == (GET_MODE_BITSIZE (result_mode)
9239 - GET_MODE_BITSIZE (GET_MODE (varop))))
9240 {
9241 /* C3 has the low-order C1 bits zero. */
9242
9243 mask = (GET_MODE_MASK (mode)
9244 & ~(((HOST_WIDE_INT) 1 << first_count) - 1));
9245
9246 varop = simplify_and_const_int (NULL_RTX, result_mode,
9247 XEXP (varop, 0), mask);
9248 varop = simplify_shift_const (NULL_RTX, ASHIFT, result_mode,
9249 varop, count);
9250 count = first_count;
9251 code = ASHIFTRT;
9252 continue;
9253 }
9254
9255 /* If this was (ashiftrt (ashift foo C1) C2) and FOO has more
9256 than C1 high-order bits equal to the sign bit, we can convert
9257 this to either an ASHIFT or an ASHIFTRT depending on the
9258 two counts.
9259
9260 We cannot do this if VAROP's mode is not SHIFT_MODE. */
9261
9262 if (code == ASHIFTRT && first_code == ASHIFT
9263 && GET_MODE (varop) == shift_mode
9264 && (num_sign_bit_copies (XEXP (varop, 0), shift_mode)
9265 > first_count))
9266 {
9267 varop = XEXP (varop, 0);
9268 count -= first_count;
9269 if (count < 0)
9270 {
9271 count = -count;
9272 code = ASHIFT;
9273 }
9274
9275 continue;
9276 }
9277
9278 /* There are some cases we can't do. If CODE is ASHIFTRT,
9279 we can only do this if FIRST_CODE is also ASHIFTRT.
9280
9281 We can't do the case when CODE is ROTATE and FIRST_CODE is
9282 ASHIFTRT.
9283
9284 If the mode of this shift is not the mode of the outer shift,
9285 we can't do this if either shift is a right shift or ROTATE.
9286
9287 Finally, we can't do any of these if the mode is too wide
9288 unless the codes are the same.
9289
9290 Handle the case where the shift codes are the same
9291 first. */
9292
9293 if (code == first_code)
9294 {
9295 if (GET_MODE (varop) != result_mode
9296 && (code == ASHIFTRT || code == LSHIFTRT
9297 || code == ROTATE))
9298 break;
9299
9300 count += first_count;
9301 varop = XEXP (varop, 0);
9302 continue;
9303 }
9304
9305 if (code == ASHIFTRT
9306 || (code == ROTATE && first_code == ASHIFTRT)
9307 || GET_MODE_BITSIZE (mode) > HOST_BITS_PER_WIDE_INT
9308 || (GET_MODE (varop) != result_mode
9309 && (first_code == ASHIFTRT || first_code == LSHIFTRT
9310 || first_code == ROTATE
9311 || code == ROTATE)))
9312 break;
9313
9314 /* To compute the mask to apply after the shift, shift the
9315 nonzero bits of the inner shift the same way the
9316 outer shift will. */
9317
9318 mask_rtx = GEN_INT (nonzero_bits (varop, GET_MODE (varop)));
9319
9320 mask_rtx
9321 = simplify_const_binary_operation (code, result_mode, mask_rtx,
9322 GEN_INT (count));
9323
9324 /* Give up if we can't compute an outer operation to use. */
9325 if (mask_rtx == 0
9326 || GET_CODE (mask_rtx) != CONST_INT
9327 || ! merge_outer_ops (&outer_op, &outer_const, AND,
9328 INTVAL (mask_rtx),
9329 result_mode, &complement_p))
9330 break;
9331
9332 /* If the shifts are in the same direction, we add the
9333 counts. Otherwise, we subtract them. */
9334 if ((code == ASHIFTRT || code == LSHIFTRT)
9335 == (first_code == ASHIFTRT || first_code == LSHIFTRT))
9336 count += first_count;
9337 else
9338 count -= first_count;
9339
9340 /* If COUNT is positive, the new shift is usually CODE,
9341 except for the two exceptions below, in which case it is
9342 FIRST_CODE. If the count is negative, FIRST_CODE should
9343 always be used */
9344 if (count > 0
9345 && ((first_code == ROTATE && code == ASHIFT)
9346 || (first_code == ASHIFTRT && code == LSHIFTRT)))
9347 code = first_code;
9348 else if (count < 0)
9349 code = first_code, count = -count;
9350
9351 varop = XEXP (varop, 0);
9352 continue;
9353 }
9354
9355 /* If we have (A << B << C) for any shift, we can convert this to
9356 (A << C << B). This wins if A is a constant. Only try this if
9357 B is not a constant. */
9358
9359 else if (GET_CODE (varop) == code
9360 && GET_CODE (XEXP (varop, 0)) == CONST_INT
9361 && GET_CODE (XEXP (varop, 1)) != CONST_INT)
9362 {
9363 rtx new = simplify_const_binary_operation (code, mode,
9364 XEXP (varop, 0),
9365 GEN_INT (count));
9366 varop = gen_rtx_fmt_ee (code, mode, new, XEXP (varop, 1));
9367 count = 0;
9368 continue;
9369 }
9370 break;
9371
9372 case NOT:
9373 if (VECTOR_MODE_P (mode))
9374 break;
9375
9376 /* Make this fit the case below. */
9377 varop = gen_rtx_XOR (mode, XEXP (varop, 0),
9378 GEN_INT (GET_MODE_MASK (mode)));
9379 continue;
9380
9381 case IOR:
9382 case AND:
9383 case XOR:
9384 /* If we have (xshiftrt (ior (plus X (const_int -1)) X) C)
9385 with C the size of VAROP - 1 and the shift is logical if
9386 STORE_FLAG_VALUE is 1 and arithmetic if STORE_FLAG_VALUE is -1,
9387 we have an (le X 0) operation. If we have an arithmetic shift
9388 and STORE_FLAG_VALUE is 1 or we have a logical shift with
9389 STORE_FLAG_VALUE of -1, we have a (neg (le X 0)) operation. */
9390
9391 if (GET_CODE (varop) == IOR && GET_CODE (XEXP (varop, 0)) == PLUS
9392 && XEXP (XEXP (varop, 0), 1) == constm1_rtx
9393 && (STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
9394 && (code == LSHIFTRT || code == ASHIFTRT)
9395 && count == (GET_MODE_BITSIZE (GET_MODE (varop)) - 1)
9396 && rtx_equal_p (XEXP (XEXP (varop, 0), 0), XEXP (varop, 1)))
9397 {
9398 count = 0;
9399 varop = gen_rtx_LE (GET_MODE (varop), XEXP (varop, 1),
9400 const0_rtx);
9401
9402 if (STORE_FLAG_VALUE == 1 ? code == ASHIFTRT : code == LSHIFTRT)
9403 varop = gen_rtx_NEG (GET_MODE (varop), varop);
9404
9405 continue;
9406 }
9407
9408 /* If we have (shift (logical)), move the logical to the outside
9409 to allow it to possibly combine with another logical and the
9410 shift to combine with another shift. This also canonicalizes to
9411 what a ZERO_EXTRACT looks like. Also, some machines have
9412 (and (shift)) insns. */
9413
9414 if (GET_CODE (XEXP (varop, 1)) == CONST_INT
9415 /* We can't do this if we have (ashiftrt (xor)) and the
9416 constant has its sign bit set in shift_mode. */
9417 && !(code == ASHIFTRT && GET_CODE (varop) == XOR
9418 && 0 > trunc_int_for_mode (INTVAL (XEXP (varop, 1)),
9419 shift_mode))
9420 && (new = simplify_const_binary_operation (code, result_mode,
9421 XEXP (varop, 1),
9422 GEN_INT (count))) != 0
9423 && GET_CODE (new) == CONST_INT
9424 && merge_outer_ops (&outer_op, &outer_const, GET_CODE (varop),
9425 INTVAL (new), result_mode, &complement_p))
9426 {
9427 varop = XEXP (varop, 0);
9428 continue;
9429 }
9430
9431 /* If we can't do that, try to simplify the shift in each arm of the
9432 logical expression, make a new logical expression, and apply
9433 the inverse distributive law. This also can't be done
9434 for some (ashiftrt (xor)). */
9435 if (GET_CODE (XEXP (varop, 1)) == CONST_INT
9436 && !(code == ASHIFTRT && GET_CODE (varop) == XOR
9437 && 0 > trunc_int_for_mode (INTVAL (XEXP (varop, 1)),
9438 shift_mode)))
9439 {
9440 rtx lhs = simplify_shift_const (NULL_RTX, code, shift_mode,
9441 XEXP (varop, 0), count);
9442 rtx rhs = simplify_shift_const (NULL_RTX, code, shift_mode,
9443 XEXP (varop, 1), count);
9444
9445 varop = simplify_gen_binary (GET_CODE (varop), shift_mode,
9446 lhs, rhs);
9447 varop = apply_distributive_law (varop);
9448
9449 count = 0;
9450 continue;
9451 }
9452 break;
9453
9454 case EQ:
9455 /* Convert (lshiftrt (eq FOO 0) C) to (xor FOO 1) if STORE_FLAG_VALUE
9456 says that the sign bit can be tested, FOO has mode MODE, C is
9457 GET_MODE_BITSIZE (MODE) - 1, and FOO has only its low-order bit
9458 that may be nonzero. */
9459 if (code == LSHIFTRT
9460 && XEXP (varop, 1) == const0_rtx
9461 && GET_MODE (XEXP (varop, 0)) == result_mode
9462 && count == (GET_MODE_BITSIZE (result_mode) - 1)
9463 && GET_MODE_BITSIZE (result_mode) <= HOST_BITS_PER_WIDE_INT
9464 && STORE_FLAG_VALUE == -1
9465 && nonzero_bits (XEXP (varop, 0), result_mode) == 1
9466 && merge_outer_ops (&outer_op, &outer_const, XOR,
9467 (HOST_WIDE_INT) 1, result_mode,
9468 &complement_p))
9469 {
9470 varop = XEXP (varop, 0);
9471 count = 0;
9472 continue;
9473 }
9474 break;
9475
9476 case NEG:
9477 /* (lshiftrt (neg A) C) where A is either 0 or 1 and C is one less
9478 than the number of bits in the mode is equivalent to A. */
9479 if (code == LSHIFTRT
9480 && count == (GET_MODE_BITSIZE (result_mode) - 1)
9481 && nonzero_bits (XEXP (varop, 0), result_mode) == 1)
9482 {
9483 varop = XEXP (varop, 0);
9484 count = 0;
9485 continue;
9486 }
9487
9488 /* NEG commutes with ASHIFT since it is multiplication. Move the
9489 NEG outside to allow shifts to combine. */
9490 if (code == ASHIFT
9491 && merge_outer_ops (&outer_op, &outer_const, NEG,
9492 (HOST_WIDE_INT) 0, result_mode,
9493 &complement_p))
9494 {
9495 varop = XEXP (varop, 0);
9496 continue;
9497 }
9498 break;
9499
9500 case PLUS:
9501 /* (lshiftrt (plus A -1) C) where A is either 0 or 1 and C
9502 is one less than the number of bits in the mode is
9503 equivalent to (xor A 1). */
9504 if (code == LSHIFTRT
9505 && count == (GET_MODE_BITSIZE (result_mode) - 1)
9506 && XEXP (varop, 1) == constm1_rtx
9507 && nonzero_bits (XEXP (varop, 0), result_mode) == 1
9508 && merge_outer_ops (&outer_op, &outer_const, XOR,
9509 (HOST_WIDE_INT) 1, result_mode,
9510 &complement_p))
9511 {
9512 count = 0;
9513 varop = XEXP (varop, 0);
9514 continue;
9515 }
9516
9517 /* If we have (xshiftrt (plus FOO BAR) C), and the only bits
9518 that might be nonzero in BAR are those being shifted out and those
9519 bits are known zero in FOO, we can replace the PLUS with FOO.
9520 Similarly in the other operand order. This code occurs when
9521 we are computing the size of a variable-size array. */
9522
9523 if ((code == ASHIFTRT || code == LSHIFTRT)
9524 && count < HOST_BITS_PER_WIDE_INT
9525 && nonzero_bits (XEXP (varop, 1), result_mode) >> count == 0
9526 && (nonzero_bits (XEXP (varop, 1), result_mode)
9527 & nonzero_bits (XEXP (varop, 0), result_mode)) == 0)
9528 {
9529 varop = XEXP (varop, 0);
9530 continue;
9531 }
9532 else if ((code == ASHIFTRT || code == LSHIFTRT)
9533 && count < HOST_BITS_PER_WIDE_INT
9534 && GET_MODE_BITSIZE (result_mode) <= HOST_BITS_PER_WIDE_INT
9535 && 0 == (nonzero_bits (XEXP (varop, 0), result_mode)
9536 >> count)
9537 && 0 == (nonzero_bits (XEXP (varop, 0), result_mode)
9538 & nonzero_bits (XEXP (varop, 1),
9539 result_mode)))
9540 {
9541 varop = XEXP (varop, 1);
9542 continue;
9543 }
9544
9545 /* (ashift (plus foo C) N) is (plus (ashift foo N) C'). */
9546 if (code == ASHIFT
9547 && GET_CODE (XEXP (varop, 1)) == CONST_INT
9548 && (new = simplify_const_binary_operation (ASHIFT, result_mode,
9549 XEXP (varop, 1),
9550 GEN_INT (count))) != 0
9551 && GET_CODE (new) == CONST_INT
9552 && merge_outer_ops (&outer_op, &outer_const, PLUS,
9553 INTVAL (new), result_mode, &complement_p))
9554 {
9555 varop = XEXP (varop, 0);
9556 continue;
9557 }
9558
9559 /* Check for 'PLUS signbit', which is the canonical form of 'XOR
9560 signbit', and attempt to change the PLUS to an XOR and move it to
9561 the outer operation as is done above in the AND/IOR/XOR case
9562 leg for shift(logical). See details in logical handling above
9563 for reasoning in doing so. */
9564 if (code == LSHIFTRT
9565 && GET_CODE (XEXP (varop, 1)) == CONST_INT
9566 && mode_signbit_p (result_mode, XEXP (varop, 1))
9567 && (new = simplify_const_binary_operation (code, result_mode,
9568 XEXP (varop, 1),
9569 GEN_INT (count))) != 0
9570 && GET_CODE (new) == CONST_INT
9571 && merge_outer_ops (&outer_op, &outer_const, XOR,
9572 INTVAL (new), result_mode, &complement_p))
9573 {
9574 varop = XEXP (varop, 0);
9575 continue;
9576 }
9577
9578 break;
9579
9580 case MINUS:
9581 /* If we have (xshiftrt (minus (ashiftrt X C)) X) C)
9582 with C the size of VAROP - 1 and the shift is logical if
9583 STORE_FLAG_VALUE is 1 and arithmetic if STORE_FLAG_VALUE is -1,
9584 we have a (gt X 0) operation. If the shift is arithmetic with
9585 STORE_FLAG_VALUE of 1 or logical with STORE_FLAG_VALUE == -1,
9586 we have a (neg (gt X 0)) operation. */
9587
9588 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
9589 && GET_CODE (XEXP (varop, 0)) == ASHIFTRT
9590 && count == (GET_MODE_BITSIZE (GET_MODE (varop)) - 1)
9591 && (code == LSHIFTRT || code == ASHIFTRT)
9592 && GET_CODE (XEXP (XEXP (varop, 0), 1)) == CONST_INT
9593 && INTVAL (XEXP (XEXP (varop, 0), 1)) == count
9594 && rtx_equal_p (XEXP (XEXP (varop, 0), 0), XEXP (varop, 1)))
9595 {
9596 count = 0;
9597 varop = gen_rtx_GT (GET_MODE (varop), XEXP (varop, 1),
9598 const0_rtx);
9599
9600 if (STORE_FLAG_VALUE == 1 ? code == ASHIFTRT : code == LSHIFTRT)
9601 varop = gen_rtx_NEG (GET_MODE (varop), varop);
9602
9603 continue;
9604 }
9605 break;
9606
9607 case TRUNCATE:
9608 /* Change (lshiftrt (truncate (lshiftrt))) to (truncate (lshiftrt))
9609 if the truncate does not affect the value. */
9610 if (code == LSHIFTRT
9611 && GET_CODE (XEXP (varop, 0)) == LSHIFTRT
9612 && GET_CODE (XEXP (XEXP (varop, 0), 1)) == CONST_INT
9613 && (INTVAL (XEXP (XEXP (varop, 0), 1))
9614 >= (GET_MODE_BITSIZE (GET_MODE (XEXP (varop, 0)))
9615 - GET_MODE_BITSIZE (GET_MODE (varop)))))
9616 {
9617 rtx varop_inner = XEXP (varop, 0);
9618
9619 varop_inner
9620 = gen_rtx_LSHIFTRT (GET_MODE (varop_inner),
9621 XEXP (varop_inner, 0),
9622 GEN_INT
9623 (count + INTVAL (XEXP (varop_inner, 1))));
9624 varop = gen_rtx_TRUNCATE (GET_MODE (varop), varop_inner);
9625 count = 0;
9626 continue;
9627 }
9628 break;
9629
9630 default:
9631 break;
9632 }
9633
9634 break;
9635 }
9636
9637 /* We need to determine what mode to do the shift in. If the shift is
9638 a right shift or ROTATE, we must always do it in the mode it was
9639 originally done in. Otherwise, we can do it in MODE, the widest mode
9640 encountered. The code we care about is that of the shift that will
9641 actually be done, not the shift that was originally requested. */
9642 shift_mode
9643 = (code == ASHIFTRT || code == LSHIFTRT || code == ROTATE
9644 ? result_mode : mode);
9645
9646 /* We have now finished analyzing the shift. The result should be
9647 a shift of type CODE with SHIFT_MODE shifting VAROP COUNT places. If
9648 OUTER_OP is non-UNKNOWN, it is an operation that needs to be applied
9649 to the result of the shift. OUTER_CONST is the relevant constant,
9650 but we must turn off all bits turned off in the shift. */
9651
9652 if (outer_op == UNKNOWN
9653 && orig_code == code && orig_count == count
9654 && varop == orig_varop
9655 && shift_mode == GET_MODE (varop))
9656 return NULL_RTX;
9657
9658 /* Make a SUBREG if necessary. If we can't make it, fail. */
9659 varop = gen_lowpart (shift_mode, varop);
9660 if (varop == NULL_RTX || GET_CODE (varop) == CLOBBER)
9661 return NULL_RTX;
9662
9663 /* If we have an outer operation and we just made a shift, it is
9664 possible that we could have simplified the shift were it not
9665 for the outer operation. So try to do the simplification
9666 recursively. */
9667
9668 if (outer_op != UNKNOWN)
9669 x = simplify_shift_const_1 (code, shift_mode, varop, count);
9670 else
9671 x = NULL_RTX;
9672
9673 if (x == NULL_RTX)
9674 x = simplify_gen_binary (code, shift_mode, varop, GEN_INT (count));
9675
9676 /* If we were doing an LSHIFTRT in a wider mode than it was originally,
9677 turn off all the bits that the shift would have turned off. */
9678 if (orig_code == LSHIFTRT && result_mode != shift_mode)
9679 x = simplify_and_const_int (NULL_RTX, shift_mode, x,
9680 GET_MODE_MASK (result_mode) >> orig_count);
9681
9682 /* Do the remainder of the processing in RESULT_MODE. */
9683 x = gen_lowpart_or_truncate (result_mode, x);
9684
9685 /* If COMPLEMENT_P is set, we have to complement X before doing the outer
9686 operation. */
9687 if (complement_p)
9688 x = simplify_gen_unary (NOT, result_mode, x, result_mode);
9689
9690 if (outer_op != UNKNOWN)
9691 {
9692 if (GET_MODE_BITSIZE (result_mode) < HOST_BITS_PER_WIDE_INT)
9693 outer_const = trunc_int_for_mode (outer_const, result_mode);
9694
9695 if (outer_op == AND)
9696 x = simplify_and_const_int (NULL_RTX, result_mode, x, outer_const);
9697 else if (outer_op == SET)
9698 {
9699 /* This means that we have determined that the result is
9700 equivalent to a constant. This should be rare. */
9701 if (!side_effects_p (x))
9702 x = GEN_INT (outer_const);
9703 }
9704 else if (GET_RTX_CLASS (outer_op) == RTX_UNARY)
9705 x = simplify_gen_unary (outer_op, result_mode, x, result_mode);
9706 else
9707 x = simplify_gen_binary (outer_op, result_mode, x,
9708 GEN_INT (outer_const));
9709 }
9710
9711 return x;
9712 }
9713
9714 /* Simplify a shift of VAROP by COUNT bits. CODE says what kind of shift.
9715 The result of the shift is RESULT_MODE. If we cannot simplify it,
9716 return X or, if it is NULL, synthesize the expression with
9717 simplify_gen_binary. Otherwise, return a simplified value.
9718
9719 The shift is normally computed in the widest mode we find in VAROP, as
9720 long as it isn't a different number of words than RESULT_MODE. Exceptions
9721 are ASHIFTRT and ROTATE, which are always done in their original mode. */
9722
9723 static rtx
9724 simplify_shift_const (rtx x, enum rtx_code code, enum machine_mode result_mode,
9725 rtx varop, int count)
9726 {
9727 rtx tem = simplify_shift_const_1 (code, result_mode, varop, count);
9728 if (tem)
9729 return tem;
9730
9731 if (!x)
9732 x = simplify_gen_binary (code, GET_MODE (varop), varop, GEN_INT (count));
9733 if (GET_MODE (x) != result_mode)
9734 x = gen_lowpart (result_mode, x);
9735 return x;
9736 }
9737
9738 \f
9739 /* Like recog, but we receive the address of a pointer to a new pattern.
9740 We try to match the rtx that the pointer points to.
9741 If that fails, we may try to modify or replace the pattern,
9742 storing the replacement into the same pointer object.
9743
9744 Modifications include deletion or addition of CLOBBERs.
9745
9746 PNOTES is a pointer to a location where any REG_UNUSED notes added for
9747 the CLOBBERs are placed.
9748
9749 The value is the final insn code from the pattern ultimately matched,
9750 or -1. */
9751
9752 static int
9753 recog_for_combine (rtx *pnewpat, rtx insn, rtx *pnotes)
9754 {
9755 rtx pat = *pnewpat;
9756 int insn_code_number;
9757 int num_clobbers_to_add = 0;
9758 int i;
9759 rtx notes = 0;
9760 rtx old_notes, old_pat;
9761
9762 /* If PAT is a PARALLEL, check to see if it contains the CLOBBER
9763 we use to indicate that something didn't match. If we find such a
9764 thing, force rejection. */
9765 if (GET_CODE (pat) == PARALLEL)
9766 for (i = XVECLEN (pat, 0) - 1; i >= 0; i--)
9767 if (GET_CODE (XVECEXP (pat, 0, i)) == CLOBBER
9768 && XEXP (XVECEXP (pat, 0, i), 0) == const0_rtx)
9769 return -1;
9770
9771 old_pat = PATTERN (insn);
9772 old_notes = REG_NOTES (insn);
9773 PATTERN (insn) = pat;
9774 REG_NOTES (insn) = 0;
9775
9776 insn_code_number = recog (pat, insn, &num_clobbers_to_add);
9777 if (dump_file && (dump_flags & TDF_DETAILS))
9778 {
9779 if (insn_code_number < 0)
9780 fputs ("Failed to match this instruction:\n", dump_file);
9781 else
9782 fputs ("Successfully matched this instruction:\n", dump_file);
9783 print_rtl_single (dump_file, pat);
9784 }
9785
9786 /* If it isn't, there is the possibility that we previously had an insn
9787 that clobbered some register as a side effect, but the combined
9788 insn doesn't need to do that. So try once more without the clobbers
9789 unless this represents an ASM insn. */
9790
9791 if (insn_code_number < 0 && ! check_asm_operands (pat)
9792 && GET_CODE (pat) == PARALLEL)
9793 {
9794 int pos;
9795
9796 for (pos = 0, i = 0; i < XVECLEN (pat, 0); i++)
9797 if (GET_CODE (XVECEXP (pat, 0, i)) != CLOBBER)
9798 {
9799 if (i != pos)
9800 SUBST (XVECEXP (pat, 0, pos), XVECEXP (pat, 0, i));
9801 pos++;
9802 }
9803
9804 SUBST_INT (XVECLEN (pat, 0), pos);
9805
9806 if (pos == 1)
9807 pat = XVECEXP (pat, 0, 0);
9808
9809 PATTERN (insn) = pat;
9810 insn_code_number = recog (pat, insn, &num_clobbers_to_add);
9811 if (dump_file && (dump_flags & TDF_DETAILS))
9812 {
9813 if (insn_code_number < 0)
9814 fputs ("Failed to match this instruction:\n", dump_file);
9815 else
9816 fputs ("Successfully matched this instruction:\n", dump_file);
9817 print_rtl_single (dump_file, pat);
9818 }
9819 }
9820 PATTERN (insn) = old_pat;
9821 REG_NOTES (insn) = old_notes;
9822
9823 /* Recognize all noop sets, these will be killed by followup pass. */
9824 if (insn_code_number < 0 && GET_CODE (pat) == SET && set_noop_p (pat))
9825 insn_code_number = NOOP_MOVE_INSN_CODE, num_clobbers_to_add = 0;
9826
9827 /* If we had any clobbers to add, make a new pattern than contains
9828 them. Then check to make sure that all of them are dead. */
9829 if (num_clobbers_to_add)
9830 {
9831 rtx newpat = gen_rtx_PARALLEL (VOIDmode,
9832 rtvec_alloc (GET_CODE (pat) == PARALLEL
9833 ? (XVECLEN (pat, 0)
9834 + num_clobbers_to_add)
9835 : num_clobbers_to_add + 1));
9836
9837 if (GET_CODE (pat) == PARALLEL)
9838 for (i = 0; i < XVECLEN (pat, 0); i++)
9839 XVECEXP (newpat, 0, i) = XVECEXP (pat, 0, i);
9840 else
9841 XVECEXP (newpat, 0, 0) = pat;
9842
9843 add_clobbers (newpat, insn_code_number);
9844
9845 for (i = XVECLEN (newpat, 0) - num_clobbers_to_add;
9846 i < XVECLEN (newpat, 0); i++)
9847 {
9848 if (REG_P (XEXP (XVECEXP (newpat, 0, i), 0))
9849 && ! reg_dead_at_p (XEXP (XVECEXP (newpat, 0, i), 0), insn))
9850 return -1;
9851 if (GET_CODE (XEXP (XVECEXP (newpat, 0, i), 0)) != SCRATCH)
9852 {
9853 gcc_assert (REG_P (XEXP (XVECEXP (newpat, 0, i), 0)));
9854 notes = gen_rtx_EXPR_LIST (REG_UNUSED,
9855 XEXP (XVECEXP (newpat, 0, i), 0), notes);
9856 }
9857 }
9858 pat = newpat;
9859 }
9860
9861 *pnewpat = pat;
9862 *pnotes = notes;
9863
9864 return insn_code_number;
9865 }
9866 \f
9867 /* Like gen_lowpart_general but for use by combine. In combine it
9868 is not possible to create any new pseudoregs. However, it is
9869 safe to create invalid memory addresses, because combine will
9870 try to recognize them and all they will do is make the combine
9871 attempt fail.
9872
9873 If for some reason this cannot do its job, an rtx
9874 (clobber (const_int 0)) is returned.
9875 An insn containing that will not be recognized. */
9876
9877 static rtx
9878 gen_lowpart_for_combine (enum machine_mode omode, rtx x)
9879 {
9880 enum machine_mode imode = GET_MODE (x);
9881 unsigned int osize = GET_MODE_SIZE (omode);
9882 unsigned int isize = GET_MODE_SIZE (imode);
9883 rtx result;
9884
9885 if (omode == imode)
9886 return x;
9887
9888 /* Return identity if this is a CONST or symbolic reference. */
9889 if (omode == Pmode
9890 && (GET_CODE (x) == CONST
9891 || GET_CODE (x) == SYMBOL_REF
9892 || GET_CODE (x) == LABEL_REF))
9893 return x;
9894
9895 /* We can only support MODE being wider than a word if X is a
9896 constant integer or has a mode the same size. */
9897 if (GET_MODE_SIZE (omode) > UNITS_PER_WORD
9898 && ! ((imode == VOIDmode
9899 && (GET_CODE (x) == CONST_INT
9900 || GET_CODE (x) == CONST_DOUBLE))
9901 || isize == osize))
9902 goto fail;
9903
9904 /* X might be a paradoxical (subreg (mem)). In that case, gen_lowpart
9905 won't know what to do. So we will strip off the SUBREG here and
9906 process normally. */
9907 if (GET_CODE (x) == SUBREG && MEM_P (SUBREG_REG (x)))
9908 {
9909 x = SUBREG_REG (x);
9910
9911 /* For use in case we fall down into the address adjustments
9912 further below, we need to adjust the known mode and size of
9913 x; imode and isize, since we just adjusted x. */
9914 imode = GET_MODE (x);
9915
9916 if (imode == omode)
9917 return x;
9918
9919 isize = GET_MODE_SIZE (imode);
9920 }
9921
9922 result = gen_lowpart_common (omode, x);
9923
9924 if (result)
9925 return result;
9926
9927 if (MEM_P (x))
9928 {
9929 int offset = 0;
9930
9931 /* Refuse to work on a volatile memory ref or one with a mode-dependent
9932 address. */
9933 if (MEM_VOLATILE_P (x) || mode_dependent_address_p (XEXP (x, 0)))
9934 goto fail;
9935
9936 /* If we want to refer to something bigger than the original memref,
9937 generate a paradoxical subreg instead. That will force a reload
9938 of the original memref X. */
9939 if (isize < osize)
9940 return gen_rtx_SUBREG (omode, x, 0);
9941
9942 if (WORDS_BIG_ENDIAN)
9943 offset = MAX (isize, UNITS_PER_WORD) - MAX (osize, UNITS_PER_WORD);
9944
9945 /* Adjust the address so that the address-after-the-data is
9946 unchanged. */
9947 if (BYTES_BIG_ENDIAN)
9948 offset -= MIN (UNITS_PER_WORD, osize) - MIN (UNITS_PER_WORD, isize);
9949
9950 return adjust_address_nv (x, omode, offset);
9951 }
9952
9953 /* If X is a comparison operator, rewrite it in a new mode. This
9954 probably won't match, but may allow further simplifications. */
9955 else if (COMPARISON_P (x))
9956 return gen_rtx_fmt_ee (GET_CODE (x), omode, XEXP (x, 0), XEXP (x, 1));
9957
9958 /* If we couldn't simplify X any other way, just enclose it in a
9959 SUBREG. Normally, this SUBREG won't match, but some patterns may
9960 include an explicit SUBREG or we may simplify it further in combine. */
9961 else
9962 {
9963 int offset = 0;
9964 rtx res;
9965
9966 offset = subreg_lowpart_offset (omode, imode);
9967 if (imode == VOIDmode)
9968 {
9969 imode = int_mode_for_mode (omode);
9970 x = gen_lowpart_common (imode, x);
9971 if (x == NULL)
9972 goto fail;
9973 }
9974 res = simplify_gen_subreg (omode, x, imode, offset);
9975 if (res)
9976 return res;
9977 }
9978
9979 fail:
9980 return gen_rtx_CLOBBER (imode, const0_rtx);
9981 }
9982 \f
9983 /* Simplify a comparison between *POP0 and *POP1 where CODE is the
9984 comparison code that will be tested.
9985
9986 The result is a possibly different comparison code to use. *POP0 and
9987 *POP1 may be updated.
9988
9989 It is possible that we might detect that a comparison is either always
9990 true or always false. However, we do not perform general constant
9991 folding in combine, so this knowledge isn't useful. Such tautologies
9992 should have been detected earlier. Hence we ignore all such cases. */
9993
9994 static enum rtx_code
9995 simplify_comparison (enum rtx_code code, rtx *pop0, rtx *pop1)
9996 {
9997 rtx op0 = *pop0;
9998 rtx op1 = *pop1;
9999 rtx tem, tem1;
10000 int i;
10001 enum machine_mode mode, tmode;
10002
10003 /* Try a few ways of applying the same transformation to both operands. */
10004 while (1)
10005 {
10006 #ifndef WORD_REGISTER_OPERATIONS
10007 /* The test below this one won't handle SIGN_EXTENDs on these machines,
10008 so check specially. */
10009 if (code != GTU && code != GEU && code != LTU && code != LEU
10010 && GET_CODE (op0) == ASHIFTRT && GET_CODE (op1) == ASHIFTRT
10011 && GET_CODE (XEXP (op0, 0)) == ASHIFT
10012 && GET_CODE (XEXP (op1, 0)) == ASHIFT
10013 && GET_CODE (XEXP (XEXP (op0, 0), 0)) == SUBREG
10014 && GET_CODE (XEXP (XEXP (op1, 0), 0)) == SUBREG
10015 && (GET_MODE (SUBREG_REG (XEXP (XEXP (op0, 0), 0)))
10016 == GET_MODE (SUBREG_REG (XEXP (XEXP (op1, 0), 0))))
10017 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10018 && XEXP (op0, 1) == XEXP (op1, 1)
10019 && XEXP (op0, 1) == XEXP (XEXP (op0, 0), 1)
10020 && XEXP (op0, 1) == XEXP (XEXP (op1, 0), 1)
10021 && (INTVAL (XEXP (op0, 1))
10022 == (GET_MODE_BITSIZE (GET_MODE (op0))
10023 - (GET_MODE_BITSIZE
10024 (GET_MODE (SUBREG_REG (XEXP (XEXP (op0, 0), 0))))))))
10025 {
10026 op0 = SUBREG_REG (XEXP (XEXP (op0, 0), 0));
10027 op1 = SUBREG_REG (XEXP (XEXP (op1, 0), 0));
10028 }
10029 #endif
10030
10031 /* If both operands are the same constant shift, see if we can ignore the
10032 shift. We can if the shift is a rotate or if the bits shifted out of
10033 this shift are known to be zero for both inputs and if the type of
10034 comparison is compatible with the shift. */
10035 if (GET_CODE (op0) == GET_CODE (op1)
10036 && GET_MODE_BITSIZE (GET_MODE (op0)) <= HOST_BITS_PER_WIDE_INT
10037 && ((GET_CODE (op0) == ROTATE && (code == NE || code == EQ))
10038 || ((GET_CODE (op0) == LSHIFTRT || GET_CODE (op0) == ASHIFT)
10039 && (code != GT && code != LT && code != GE && code != LE))
10040 || (GET_CODE (op0) == ASHIFTRT
10041 && (code != GTU && code != LTU
10042 && code != GEU && code != LEU)))
10043 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10044 && INTVAL (XEXP (op0, 1)) >= 0
10045 && INTVAL (XEXP (op0, 1)) < HOST_BITS_PER_WIDE_INT
10046 && XEXP (op0, 1) == XEXP (op1, 1))
10047 {
10048 enum machine_mode mode = GET_MODE (op0);
10049 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
10050 int shift_count = INTVAL (XEXP (op0, 1));
10051
10052 if (GET_CODE (op0) == LSHIFTRT || GET_CODE (op0) == ASHIFTRT)
10053 mask &= (mask >> shift_count) << shift_count;
10054 else if (GET_CODE (op0) == ASHIFT)
10055 mask = (mask & (mask << shift_count)) >> shift_count;
10056
10057 if ((nonzero_bits (XEXP (op0, 0), mode) & ~mask) == 0
10058 && (nonzero_bits (XEXP (op1, 0), mode) & ~mask) == 0)
10059 op0 = XEXP (op0, 0), op1 = XEXP (op1, 0);
10060 else
10061 break;
10062 }
10063
10064 /* If both operands are AND's of a paradoxical SUBREG by constant, the
10065 SUBREGs are of the same mode, and, in both cases, the AND would
10066 be redundant if the comparison was done in the narrower mode,
10067 do the comparison in the narrower mode (e.g., we are AND'ing with 1
10068 and the operand's possibly nonzero bits are 0xffffff01; in that case
10069 if we only care about QImode, we don't need the AND). This case
10070 occurs if the output mode of an scc insn is not SImode and
10071 STORE_FLAG_VALUE == 1 (e.g., the 386).
10072
10073 Similarly, check for a case where the AND's are ZERO_EXTEND
10074 operations from some narrower mode even though a SUBREG is not
10075 present. */
10076
10077 else if (GET_CODE (op0) == AND && GET_CODE (op1) == AND
10078 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10079 && GET_CODE (XEXP (op1, 1)) == CONST_INT)
10080 {
10081 rtx inner_op0 = XEXP (op0, 0);
10082 rtx inner_op1 = XEXP (op1, 0);
10083 HOST_WIDE_INT c0 = INTVAL (XEXP (op0, 1));
10084 HOST_WIDE_INT c1 = INTVAL (XEXP (op1, 1));
10085 int changed = 0;
10086
10087 if (GET_CODE (inner_op0) == SUBREG && GET_CODE (inner_op1) == SUBREG
10088 && (GET_MODE_SIZE (GET_MODE (inner_op0))
10089 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (inner_op0))))
10090 && (GET_MODE (SUBREG_REG (inner_op0))
10091 == GET_MODE (SUBREG_REG (inner_op1)))
10092 && (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (inner_op0)))
10093 <= HOST_BITS_PER_WIDE_INT)
10094 && (0 == ((~c0) & nonzero_bits (SUBREG_REG (inner_op0),
10095 GET_MODE (SUBREG_REG (inner_op0)))))
10096 && (0 == ((~c1) & nonzero_bits (SUBREG_REG (inner_op1),
10097 GET_MODE (SUBREG_REG (inner_op1))))))
10098 {
10099 op0 = SUBREG_REG (inner_op0);
10100 op1 = SUBREG_REG (inner_op1);
10101
10102 /* The resulting comparison is always unsigned since we masked
10103 off the original sign bit. */
10104 code = unsigned_condition (code);
10105
10106 changed = 1;
10107 }
10108
10109 else if (c0 == c1)
10110 for (tmode = GET_CLASS_NARROWEST_MODE
10111 (GET_MODE_CLASS (GET_MODE (op0)));
10112 tmode != GET_MODE (op0); tmode = GET_MODE_WIDER_MODE (tmode))
10113 if ((unsigned HOST_WIDE_INT) c0 == GET_MODE_MASK (tmode))
10114 {
10115 op0 = gen_lowpart (tmode, inner_op0);
10116 op1 = gen_lowpart (tmode, inner_op1);
10117 code = unsigned_condition (code);
10118 changed = 1;
10119 break;
10120 }
10121
10122 if (! changed)
10123 break;
10124 }
10125
10126 /* If both operands are NOT, we can strip off the outer operation
10127 and adjust the comparison code for swapped operands; similarly for
10128 NEG, except that this must be an equality comparison. */
10129 else if ((GET_CODE (op0) == NOT && GET_CODE (op1) == NOT)
10130 || (GET_CODE (op0) == NEG && GET_CODE (op1) == NEG
10131 && (code == EQ || code == NE)))
10132 op0 = XEXP (op0, 0), op1 = XEXP (op1, 0), code = swap_condition (code);
10133
10134 else
10135 break;
10136 }
10137
10138 /* If the first operand is a constant, swap the operands and adjust the
10139 comparison code appropriately, but don't do this if the second operand
10140 is already a constant integer. */
10141 if (swap_commutative_operands_p (op0, op1))
10142 {
10143 tem = op0, op0 = op1, op1 = tem;
10144 code = swap_condition (code);
10145 }
10146
10147 /* We now enter a loop during which we will try to simplify the comparison.
10148 For the most part, we only are concerned with comparisons with zero,
10149 but some things may really be comparisons with zero but not start
10150 out looking that way. */
10151
10152 while (GET_CODE (op1) == CONST_INT)
10153 {
10154 enum machine_mode mode = GET_MODE (op0);
10155 unsigned int mode_width = GET_MODE_BITSIZE (mode);
10156 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
10157 int equality_comparison_p;
10158 int sign_bit_comparison_p;
10159 int unsigned_comparison_p;
10160 HOST_WIDE_INT const_op;
10161
10162 /* We only want to handle integral modes. This catches VOIDmode,
10163 CCmode, and the floating-point modes. An exception is that we
10164 can handle VOIDmode if OP0 is a COMPARE or a comparison
10165 operation. */
10166
10167 if (GET_MODE_CLASS (mode) != MODE_INT
10168 && ! (mode == VOIDmode
10169 && (GET_CODE (op0) == COMPARE || COMPARISON_P (op0))))
10170 break;
10171
10172 /* Get the constant we are comparing against and turn off all bits
10173 not on in our mode. */
10174 const_op = INTVAL (op1);
10175 if (mode != VOIDmode)
10176 const_op = trunc_int_for_mode (const_op, mode);
10177 op1 = GEN_INT (const_op);
10178
10179 /* If we are comparing against a constant power of two and the value
10180 being compared can only have that single bit nonzero (e.g., it was
10181 `and'ed with that bit), we can replace this with a comparison
10182 with zero. */
10183 if (const_op
10184 && (code == EQ || code == NE || code == GE || code == GEU
10185 || code == LT || code == LTU)
10186 && mode_width <= HOST_BITS_PER_WIDE_INT
10187 && exact_log2 (const_op) >= 0
10188 && nonzero_bits (op0, mode) == (unsigned HOST_WIDE_INT) const_op)
10189 {
10190 code = (code == EQ || code == GE || code == GEU ? NE : EQ);
10191 op1 = const0_rtx, const_op = 0;
10192 }
10193
10194 /* Similarly, if we are comparing a value known to be either -1 or
10195 0 with -1, change it to the opposite comparison against zero. */
10196
10197 if (const_op == -1
10198 && (code == EQ || code == NE || code == GT || code == LE
10199 || code == GEU || code == LTU)
10200 && num_sign_bit_copies (op0, mode) == mode_width)
10201 {
10202 code = (code == EQ || code == LE || code == GEU ? NE : EQ);
10203 op1 = const0_rtx, const_op = 0;
10204 }
10205
10206 /* Do some canonicalizations based on the comparison code. We prefer
10207 comparisons against zero and then prefer equality comparisons.
10208 If we can reduce the size of a constant, we will do that too. */
10209
10210 switch (code)
10211 {
10212 case LT:
10213 /* < C is equivalent to <= (C - 1) */
10214 if (const_op > 0)
10215 {
10216 const_op -= 1;
10217 op1 = GEN_INT (const_op);
10218 code = LE;
10219 /* ... fall through to LE case below. */
10220 }
10221 else
10222 break;
10223
10224 case LE:
10225 /* <= C is equivalent to < (C + 1); we do this for C < 0 */
10226 if (const_op < 0)
10227 {
10228 const_op += 1;
10229 op1 = GEN_INT (const_op);
10230 code = LT;
10231 }
10232
10233 /* If we are doing a <= 0 comparison on a value known to have
10234 a zero sign bit, we can replace this with == 0. */
10235 else if (const_op == 0
10236 && mode_width <= HOST_BITS_PER_WIDE_INT
10237 && (nonzero_bits (op0, mode)
10238 & ((HOST_WIDE_INT) 1 << (mode_width - 1))) == 0)
10239 code = EQ;
10240 break;
10241
10242 case GE:
10243 /* >= C is equivalent to > (C - 1). */
10244 if (const_op > 0)
10245 {
10246 const_op -= 1;
10247 op1 = GEN_INT (const_op);
10248 code = GT;
10249 /* ... fall through to GT below. */
10250 }
10251 else
10252 break;
10253
10254 case GT:
10255 /* > C is equivalent to >= (C + 1); we do this for C < 0. */
10256 if (const_op < 0)
10257 {
10258 const_op += 1;
10259 op1 = GEN_INT (const_op);
10260 code = GE;
10261 }
10262
10263 /* If we are doing a > 0 comparison on a value known to have
10264 a zero sign bit, we can replace this with != 0. */
10265 else if (const_op == 0
10266 && mode_width <= HOST_BITS_PER_WIDE_INT
10267 && (nonzero_bits (op0, mode)
10268 & ((HOST_WIDE_INT) 1 << (mode_width - 1))) == 0)
10269 code = NE;
10270 break;
10271
10272 case LTU:
10273 /* < C is equivalent to <= (C - 1). */
10274 if (const_op > 0)
10275 {
10276 const_op -= 1;
10277 op1 = GEN_INT (const_op);
10278 code = LEU;
10279 /* ... fall through ... */
10280 }
10281
10282 /* (unsigned) < 0x80000000 is equivalent to >= 0. */
10283 else if ((mode_width <= HOST_BITS_PER_WIDE_INT)
10284 && (const_op == (HOST_WIDE_INT) 1 << (mode_width - 1)))
10285 {
10286 const_op = 0, op1 = const0_rtx;
10287 code = GE;
10288 break;
10289 }
10290 else
10291 break;
10292
10293 case LEU:
10294 /* unsigned <= 0 is equivalent to == 0 */
10295 if (const_op == 0)
10296 code = EQ;
10297
10298 /* (unsigned) <= 0x7fffffff is equivalent to >= 0. */
10299 else if ((mode_width <= HOST_BITS_PER_WIDE_INT)
10300 && (const_op == ((HOST_WIDE_INT) 1 << (mode_width - 1)) - 1))
10301 {
10302 const_op = 0, op1 = const0_rtx;
10303 code = GE;
10304 }
10305 break;
10306
10307 case GEU:
10308 /* >= C is equivalent to > (C - 1). */
10309 if (const_op > 1)
10310 {
10311 const_op -= 1;
10312 op1 = GEN_INT (const_op);
10313 code = GTU;
10314 /* ... fall through ... */
10315 }
10316
10317 /* (unsigned) >= 0x80000000 is equivalent to < 0. */
10318 else if ((mode_width <= HOST_BITS_PER_WIDE_INT)
10319 && (const_op == (HOST_WIDE_INT) 1 << (mode_width - 1)))
10320 {
10321 const_op = 0, op1 = const0_rtx;
10322 code = LT;
10323 break;
10324 }
10325 else
10326 break;
10327
10328 case GTU:
10329 /* unsigned > 0 is equivalent to != 0 */
10330 if (const_op == 0)
10331 code = NE;
10332
10333 /* (unsigned) > 0x7fffffff is equivalent to < 0. */
10334 else if ((mode_width <= HOST_BITS_PER_WIDE_INT)
10335 && (const_op == ((HOST_WIDE_INT) 1 << (mode_width - 1)) - 1))
10336 {
10337 const_op = 0, op1 = const0_rtx;
10338 code = LT;
10339 }
10340 break;
10341
10342 default:
10343 break;
10344 }
10345
10346 /* Compute some predicates to simplify code below. */
10347
10348 equality_comparison_p = (code == EQ || code == NE);
10349 sign_bit_comparison_p = ((code == LT || code == GE) && const_op == 0);
10350 unsigned_comparison_p = (code == LTU || code == LEU || code == GTU
10351 || code == GEU);
10352
10353 /* If this is a sign bit comparison and we can do arithmetic in
10354 MODE, say that we will only be needing the sign bit of OP0. */
10355 if (sign_bit_comparison_p
10356 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
10357 op0 = force_to_mode (op0, mode,
10358 ((HOST_WIDE_INT) 1
10359 << (GET_MODE_BITSIZE (mode) - 1)),
10360 0);
10361
10362 /* Now try cases based on the opcode of OP0. If none of the cases
10363 does a "continue", we exit this loop immediately after the
10364 switch. */
10365
10366 switch (GET_CODE (op0))
10367 {
10368 case ZERO_EXTRACT:
10369 /* If we are extracting a single bit from a variable position in
10370 a constant that has only a single bit set and are comparing it
10371 with zero, we can convert this into an equality comparison
10372 between the position and the location of the single bit. */
10373 /* Except we can't if SHIFT_COUNT_TRUNCATED is set, since we might
10374 have already reduced the shift count modulo the word size. */
10375 if (!SHIFT_COUNT_TRUNCATED
10376 && GET_CODE (XEXP (op0, 0)) == CONST_INT
10377 && XEXP (op0, 1) == const1_rtx
10378 && equality_comparison_p && const_op == 0
10379 && (i = exact_log2 (INTVAL (XEXP (op0, 0)))) >= 0)
10380 {
10381 if (BITS_BIG_ENDIAN)
10382 {
10383 enum machine_mode new_mode
10384 = mode_for_extraction (EP_extzv, 1);
10385 if (new_mode == MAX_MACHINE_MODE)
10386 i = BITS_PER_WORD - 1 - i;
10387 else
10388 {
10389 mode = new_mode;
10390 i = (GET_MODE_BITSIZE (mode) - 1 - i);
10391 }
10392 }
10393
10394 op0 = XEXP (op0, 2);
10395 op1 = GEN_INT (i);
10396 const_op = i;
10397
10398 /* Result is nonzero iff shift count is equal to I. */
10399 code = reverse_condition (code);
10400 continue;
10401 }
10402
10403 /* ... fall through ... */
10404
10405 case SIGN_EXTRACT:
10406 tem = expand_compound_operation (op0);
10407 if (tem != op0)
10408 {
10409 op0 = tem;
10410 continue;
10411 }
10412 break;
10413
10414 case NOT:
10415 /* If testing for equality, we can take the NOT of the constant. */
10416 if (equality_comparison_p
10417 && (tem = simplify_unary_operation (NOT, mode, op1, mode)) != 0)
10418 {
10419 op0 = XEXP (op0, 0);
10420 op1 = tem;
10421 continue;
10422 }
10423
10424 /* If just looking at the sign bit, reverse the sense of the
10425 comparison. */
10426 if (sign_bit_comparison_p)
10427 {
10428 op0 = XEXP (op0, 0);
10429 code = (code == GE ? LT : GE);
10430 continue;
10431 }
10432 break;
10433
10434 case NEG:
10435 /* If testing for equality, we can take the NEG of the constant. */
10436 if (equality_comparison_p
10437 && (tem = simplify_unary_operation (NEG, mode, op1, mode)) != 0)
10438 {
10439 op0 = XEXP (op0, 0);
10440 op1 = tem;
10441 continue;
10442 }
10443
10444 /* The remaining cases only apply to comparisons with zero. */
10445 if (const_op != 0)
10446 break;
10447
10448 /* When X is ABS or is known positive,
10449 (neg X) is < 0 if and only if X != 0. */
10450
10451 if (sign_bit_comparison_p
10452 && (GET_CODE (XEXP (op0, 0)) == ABS
10453 || (mode_width <= HOST_BITS_PER_WIDE_INT
10454 && (nonzero_bits (XEXP (op0, 0), mode)
10455 & ((HOST_WIDE_INT) 1 << (mode_width - 1))) == 0)))
10456 {
10457 op0 = XEXP (op0, 0);
10458 code = (code == LT ? NE : EQ);
10459 continue;
10460 }
10461
10462 /* If we have NEG of something whose two high-order bits are the
10463 same, we know that "(-a) < 0" is equivalent to "a > 0". */
10464 if (num_sign_bit_copies (op0, mode) >= 2)
10465 {
10466 op0 = XEXP (op0, 0);
10467 code = swap_condition (code);
10468 continue;
10469 }
10470 break;
10471
10472 case ROTATE:
10473 /* If we are testing equality and our count is a constant, we
10474 can perform the inverse operation on our RHS. */
10475 if (equality_comparison_p && GET_CODE (XEXP (op0, 1)) == CONST_INT
10476 && (tem = simplify_binary_operation (ROTATERT, mode,
10477 op1, XEXP (op0, 1))) != 0)
10478 {
10479 op0 = XEXP (op0, 0);
10480 op1 = tem;
10481 continue;
10482 }
10483
10484 /* If we are doing a < 0 or >= 0 comparison, it means we are testing
10485 a particular bit. Convert it to an AND of a constant of that
10486 bit. This will be converted into a ZERO_EXTRACT. */
10487 if (const_op == 0 && sign_bit_comparison_p
10488 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10489 && mode_width <= HOST_BITS_PER_WIDE_INT)
10490 {
10491 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
10492 ((HOST_WIDE_INT) 1
10493 << (mode_width - 1
10494 - INTVAL (XEXP (op0, 1)))));
10495 code = (code == LT ? NE : EQ);
10496 continue;
10497 }
10498
10499 /* Fall through. */
10500
10501 case ABS:
10502 /* ABS is ignorable inside an equality comparison with zero. */
10503 if (const_op == 0 && equality_comparison_p)
10504 {
10505 op0 = XEXP (op0, 0);
10506 continue;
10507 }
10508 break;
10509
10510 case SIGN_EXTEND:
10511 /* Can simplify (compare (zero/sign_extend FOO) CONST) to
10512 (compare FOO CONST) if CONST fits in FOO's mode and we
10513 are either testing inequality or have an unsigned
10514 comparison with ZERO_EXTEND or a signed comparison with
10515 SIGN_EXTEND. But don't do it if we don't have a compare
10516 insn of the given mode, since we'd have to revert it
10517 later on, and then we wouldn't know whether to sign- or
10518 zero-extend. */
10519 mode = GET_MODE (XEXP (op0, 0));
10520 if (mode != VOIDmode && GET_MODE_CLASS (mode) == MODE_INT
10521 && ! unsigned_comparison_p
10522 && (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
10523 && ((unsigned HOST_WIDE_INT) const_op
10524 < (((unsigned HOST_WIDE_INT) 1
10525 << (GET_MODE_BITSIZE (mode) - 1))))
10526 && optab_handler (cmp_optab, mode)->insn_code != CODE_FOR_nothing)
10527 {
10528 op0 = XEXP (op0, 0);
10529 continue;
10530 }
10531 break;
10532
10533 case SUBREG:
10534 /* Check for the case where we are comparing A - C1 with C2, that is
10535
10536 (subreg:MODE (plus (A) (-C1))) op (C2)
10537
10538 with C1 a constant, and try to lift the SUBREG, i.e. to do the
10539 comparison in the wider mode. One of the following two conditions
10540 must be true in order for this to be valid:
10541
10542 1. The mode extension results in the same bit pattern being added
10543 on both sides and the comparison is equality or unsigned. As
10544 C2 has been truncated to fit in MODE, the pattern can only be
10545 all 0s or all 1s.
10546
10547 2. The mode extension results in the sign bit being copied on
10548 each side.
10549
10550 The difficulty here is that we have predicates for A but not for
10551 (A - C1) so we need to check that C1 is within proper bounds so
10552 as to perturbate A as little as possible. */
10553
10554 if (mode_width <= HOST_BITS_PER_WIDE_INT
10555 && subreg_lowpart_p (op0)
10556 && GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (op0))) > mode_width
10557 && GET_CODE (SUBREG_REG (op0)) == PLUS
10558 && GET_CODE (XEXP (SUBREG_REG (op0), 1)) == CONST_INT)
10559 {
10560 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (op0));
10561 rtx a = XEXP (SUBREG_REG (op0), 0);
10562 HOST_WIDE_INT c1 = -INTVAL (XEXP (SUBREG_REG (op0), 1));
10563
10564 if ((c1 > 0
10565 && (unsigned HOST_WIDE_INT) c1
10566 < (unsigned HOST_WIDE_INT) 1 << (mode_width - 1)
10567 && (equality_comparison_p || unsigned_comparison_p)
10568 /* (A - C1) zero-extends if it is positive and sign-extends
10569 if it is negative, C2 both zero- and sign-extends. */
10570 && ((0 == (nonzero_bits (a, inner_mode)
10571 & ~GET_MODE_MASK (mode))
10572 && const_op >= 0)
10573 /* (A - C1) sign-extends if it is positive and 1-extends
10574 if it is negative, C2 both sign- and 1-extends. */
10575 || (num_sign_bit_copies (a, inner_mode)
10576 > (unsigned int) (GET_MODE_BITSIZE (inner_mode)
10577 - mode_width)
10578 && const_op < 0)))
10579 || ((unsigned HOST_WIDE_INT) c1
10580 < (unsigned HOST_WIDE_INT) 1 << (mode_width - 2)
10581 /* (A - C1) always sign-extends, like C2. */
10582 && num_sign_bit_copies (a, inner_mode)
10583 > (unsigned int) (GET_MODE_BITSIZE (inner_mode)
10584 - (mode_width - 1))))
10585 {
10586 op0 = SUBREG_REG (op0);
10587 continue;
10588 }
10589 }
10590
10591 /* If the inner mode is narrower and we are extracting the low part,
10592 we can treat the SUBREG as if it were a ZERO_EXTEND. */
10593 if (subreg_lowpart_p (op0)
10594 && GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (op0))) < mode_width)
10595 /* Fall through */ ;
10596 else
10597 break;
10598
10599 /* ... fall through ... */
10600
10601 case ZERO_EXTEND:
10602 mode = GET_MODE (XEXP (op0, 0));
10603 if (mode != VOIDmode && GET_MODE_CLASS (mode) == MODE_INT
10604 && (unsigned_comparison_p || equality_comparison_p)
10605 && (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
10606 && ((unsigned HOST_WIDE_INT) const_op < GET_MODE_MASK (mode))
10607 && optab_handler (cmp_optab, mode)->insn_code != CODE_FOR_nothing)
10608 {
10609 op0 = XEXP (op0, 0);
10610 continue;
10611 }
10612 break;
10613
10614 case PLUS:
10615 /* (eq (plus X A) B) -> (eq X (minus B A)). We can only do
10616 this for equality comparisons due to pathological cases involving
10617 overflows. */
10618 if (equality_comparison_p
10619 && 0 != (tem = simplify_binary_operation (MINUS, mode,
10620 op1, XEXP (op0, 1))))
10621 {
10622 op0 = XEXP (op0, 0);
10623 op1 = tem;
10624 continue;
10625 }
10626
10627 /* (plus (abs X) (const_int -1)) is < 0 if and only if X == 0. */
10628 if (const_op == 0 && XEXP (op0, 1) == constm1_rtx
10629 && GET_CODE (XEXP (op0, 0)) == ABS && sign_bit_comparison_p)
10630 {
10631 op0 = XEXP (XEXP (op0, 0), 0);
10632 code = (code == LT ? EQ : NE);
10633 continue;
10634 }
10635 break;
10636
10637 case MINUS:
10638 /* We used to optimize signed comparisons against zero, but that
10639 was incorrect. Unsigned comparisons against zero (GTU, LEU)
10640 arrive here as equality comparisons, or (GEU, LTU) are
10641 optimized away. No need to special-case them. */
10642
10643 /* (eq (minus A B) C) -> (eq A (plus B C)) or
10644 (eq B (minus A C)), whichever simplifies. We can only do
10645 this for equality comparisons due to pathological cases involving
10646 overflows. */
10647 if (equality_comparison_p
10648 && 0 != (tem = simplify_binary_operation (PLUS, mode,
10649 XEXP (op0, 1), op1)))
10650 {
10651 op0 = XEXP (op0, 0);
10652 op1 = tem;
10653 continue;
10654 }
10655
10656 if (equality_comparison_p
10657 && 0 != (tem = simplify_binary_operation (MINUS, mode,
10658 XEXP (op0, 0), op1)))
10659 {
10660 op0 = XEXP (op0, 1);
10661 op1 = tem;
10662 continue;
10663 }
10664
10665 /* The sign bit of (minus (ashiftrt X C) X), where C is the number
10666 of bits in X minus 1, is one iff X > 0. */
10667 if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 0)) == ASHIFTRT
10668 && GET_CODE (XEXP (XEXP (op0, 0), 1)) == CONST_INT
10669 && (unsigned HOST_WIDE_INT) INTVAL (XEXP (XEXP (op0, 0), 1))
10670 == mode_width - 1
10671 && rtx_equal_p (XEXP (XEXP (op0, 0), 0), XEXP (op0, 1)))
10672 {
10673 op0 = XEXP (op0, 1);
10674 code = (code == GE ? LE : GT);
10675 continue;
10676 }
10677 break;
10678
10679 case XOR:
10680 /* (eq (xor A B) C) -> (eq A (xor B C)). This is a simplification
10681 if C is zero or B is a constant. */
10682 if (equality_comparison_p
10683 && 0 != (tem = simplify_binary_operation (XOR, mode,
10684 XEXP (op0, 1), op1)))
10685 {
10686 op0 = XEXP (op0, 0);
10687 op1 = tem;
10688 continue;
10689 }
10690 break;
10691
10692 case EQ: case NE:
10693 case UNEQ: case LTGT:
10694 case LT: case LTU: case UNLT: case LE: case LEU: case UNLE:
10695 case GT: case GTU: case UNGT: case GE: case GEU: case UNGE:
10696 case UNORDERED: case ORDERED:
10697 /* We can't do anything if OP0 is a condition code value, rather
10698 than an actual data value. */
10699 if (const_op != 0
10700 || CC0_P (XEXP (op0, 0))
10701 || GET_MODE_CLASS (GET_MODE (XEXP (op0, 0))) == MODE_CC)
10702 break;
10703
10704 /* Get the two operands being compared. */
10705 if (GET_CODE (XEXP (op0, 0)) == COMPARE)
10706 tem = XEXP (XEXP (op0, 0), 0), tem1 = XEXP (XEXP (op0, 0), 1);
10707 else
10708 tem = XEXP (op0, 0), tem1 = XEXP (op0, 1);
10709
10710 /* Check for the cases where we simply want the result of the
10711 earlier test or the opposite of that result. */
10712 if (code == NE || code == EQ
10713 || (GET_MODE_BITSIZE (GET_MODE (op0)) <= HOST_BITS_PER_WIDE_INT
10714 && GET_MODE_CLASS (GET_MODE (op0)) == MODE_INT
10715 && (STORE_FLAG_VALUE
10716 & (((HOST_WIDE_INT) 1
10717 << (GET_MODE_BITSIZE (GET_MODE (op0)) - 1))))
10718 && (code == LT || code == GE)))
10719 {
10720 enum rtx_code new_code;
10721 if (code == LT || code == NE)
10722 new_code = GET_CODE (op0);
10723 else
10724 new_code = reversed_comparison_code (op0, NULL);
10725
10726 if (new_code != UNKNOWN)
10727 {
10728 code = new_code;
10729 op0 = tem;
10730 op1 = tem1;
10731 continue;
10732 }
10733 }
10734 break;
10735
10736 case IOR:
10737 /* The sign bit of (ior (plus X (const_int -1)) X) is nonzero
10738 iff X <= 0. */
10739 if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 0)) == PLUS
10740 && XEXP (XEXP (op0, 0), 1) == constm1_rtx
10741 && rtx_equal_p (XEXP (XEXP (op0, 0), 0), XEXP (op0, 1)))
10742 {
10743 op0 = XEXP (op0, 1);
10744 code = (code == GE ? GT : LE);
10745 continue;
10746 }
10747 break;
10748
10749 case AND:
10750 /* Convert (and (xshift 1 X) Y) to (and (lshiftrt Y X) 1). This
10751 will be converted to a ZERO_EXTRACT later. */
10752 if (const_op == 0 && equality_comparison_p
10753 && GET_CODE (XEXP (op0, 0)) == ASHIFT
10754 && XEXP (XEXP (op0, 0), 0) == const1_rtx)
10755 {
10756 op0 = simplify_and_const_int
10757 (NULL_RTX, mode, gen_rtx_LSHIFTRT (mode,
10758 XEXP (op0, 1),
10759 XEXP (XEXP (op0, 0), 1)),
10760 (HOST_WIDE_INT) 1);
10761 continue;
10762 }
10763
10764 /* If we are comparing (and (lshiftrt X C1) C2) for equality with
10765 zero and X is a comparison and C1 and C2 describe only bits set
10766 in STORE_FLAG_VALUE, we can compare with X. */
10767 if (const_op == 0 && equality_comparison_p
10768 && mode_width <= HOST_BITS_PER_WIDE_INT
10769 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10770 && GET_CODE (XEXP (op0, 0)) == LSHIFTRT
10771 && GET_CODE (XEXP (XEXP (op0, 0), 1)) == CONST_INT
10772 && INTVAL (XEXP (XEXP (op0, 0), 1)) >= 0
10773 && INTVAL (XEXP (XEXP (op0, 0), 1)) < HOST_BITS_PER_WIDE_INT)
10774 {
10775 mask = ((INTVAL (XEXP (op0, 1)) & GET_MODE_MASK (mode))
10776 << INTVAL (XEXP (XEXP (op0, 0), 1)));
10777 if ((~STORE_FLAG_VALUE & mask) == 0
10778 && (COMPARISON_P (XEXP (XEXP (op0, 0), 0))
10779 || ((tem = get_last_value (XEXP (XEXP (op0, 0), 0))) != 0
10780 && COMPARISON_P (tem))))
10781 {
10782 op0 = XEXP (XEXP (op0, 0), 0);
10783 continue;
10784 }
10785 }
10786
10787 /* If we are doing an equality comparison of an AND of a bit equal
10788 to the sign bit, replace this with a LT or GE comparison of
10789 the underlying value. */
10790 if (equality_comparison_p
10791 && const_op == 0
10792 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10793 && mode_width <= HOST_BITS_PER_WIDE_INT
10794 && ((INTVAL (XEXP (op0, 1)) & GET_MODE_MASK (mode))
10795 == (unsigned HOST_WIDE_INT) 1 << (mode_width - 1)))
10796 {
10797 op0 = XEXP (op0, 0);
10798 code = (code == EQ ? GE : LT);
10799 continue;
10800 }
10801
10802 /* If this AND operation is really a ZERO_EXTEND from a narrower
10803 mode, the constant fits within that mode, and this is either an
10804 equality or unsigned comparison, try to do this comparison in
10805 the narrower mode.
10806
10807 Note that in:
10808
10809 (ne:DI (and:DI (reg:DI 4) (const_int 0xffffffff)) (const_int 0))
10810 -> (ne:DI (reg:SI 4) (const_int 0))
10811
10812 unless TRULY_NOOP_TRUNCATION allows it or the register is
10813 known to hold a value of the required mode the
10814 transformation is invalid. */
10815 if ((equality_comparison_p || unsigned_comparison_p)
10816 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10817 && (i = exact_log2 ((INTVAL (XEXP (op0, 1))
10818 & GET_MODE_MASK (mode))
10819 + 1)) >= 0
10820 && const_op >> i == 0
10821 && (tmode = mode_for_size (i, MODE_INT, 1)) != BLKmode
10822 && (TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (tmode),
10823 GET_MODE_BITSIZE (GET_MODE (op0)))
10824 || (REG_P (XEXP (op0, 0))
10825 && reg_truncated_to_mode (tmode, XEXP (op0, 0)))))
10826 {
10827 op0 = gen_lowpart (tmode, XEXP (op0, 0));
10828 continue;
10829 }
10830
10831 /* If this is (and:M1 (subreg:M2 X 0) (const_int C1)) where C1
10832 fits in both M1 and M2 and the SUBREG is either paradoxical
10833 or represents the low part, permute the SUBREG and the AND
10834 and try again. */
10835 if (GET_CODE (XEXP (op0, 0)) == SUBREG)
10836 {
10837 unsigned HOST_WIDE_INT c1;
10838 tmode = GET_MODE (SUBREG_REG (XEXP (op0, 0)));
10839 /* Require an integral mode, to avoid creating something like
10840 (AND:SF ...). */
10841 if (SCALAR_INT_MODE_P (tmode)
10842 /* It is unsafe to commute the AND into the SUBREG if the
10843 SUBREG is paradoxical and WORD_REGISTER_OPERATIONS is
10844 not defined. As originally written the upper bits
10845 have a defined value due to the AND operation.
10846 However, if we commute the AND inside the SUBREG then
10847 they no longer have defined values and the meaning of
10848 the code has been changed. */
10849 && (0
10850 #ifdef WORD_REGISTER_OPERATIONS
10851 || (mode_width > GET_MODE_BITSIZE (tmode)
10852 && mode_width <= BITS_PER_WORD)
10853 #endif
10854 || (mode_width <= GET_MODE_BITSIZE (tmode)
10855 && subreg_lowpart_p (XEXP (op0, 0))))
10856 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10857 && mode_width <= HOST_BITS_PER_WIDE_INT
10858 && GET_MODE_BITSIZE (tmode) <= HOST_BITS_PER_WIDE_INT
10859 && ((c1 = INTVAL (XEXP (op0, 1))) & ~mask) == 0
10860 && (c1 & ~GET_MODE_MASK (tmode)) == 0
10861 && c1 != mask
10862 && c1 != GET_MODE_MASK (tmode))
10863 {
10864 op0 = simplify_gen_binary (AND, tmode,
10865 SUBREG_REG (XEXP (op0, 0)),
10866 gen_int_mode (c1, tmode));
10867 op0 = gen_lowpart (mode, op0);
10868 continue;
10869 }
10870 }
10871
10872 /* Convert (ne (and (not X) 1) 0) to (eq (and X 1) 0). */
10873 if (const_op == 0 && equality_comparison_p
10874 && XEXP (op0, 1) == const1_rtx
10875 && GET_CODE (XEXP (op0, 0)) == NOT)
10876 {
10877 op0 = simplify_and_const_int
10878 (NULL_RTX, mode, XEXP (XEXP (op0, 0), 0), (HOST_WIDE_INT) 1);
10879 code = (code == NE ? EQ : NE);
10880 continue;
10881 }
10882
10883 /* Convert (ne (and (lshiftrt (not X)) 1) 0) to
10884 (eq (and (lshiftrt X) 1) 0).
10885 Also handle the case where (not X) is expressed using xor. */
10886 if (const_op == 0 && equality_comparison_p
10887 && XEXP (op0, 1) == const1_rtx
10888 && GET_CODE (XEXP (op0, 0)) == LSHIFTRT)
10889 {
10890 rtx shift_op = XEXP (XEXP (op0, 0), 0);
10891 rtx shift_count = XEXP (XEXP (op0, 0), 1);
10892
10893 if (GET_CODE (shift_op) == NOT
10894 || (GET_CODE (shift_op) == XOR
10895 && GET_CODE (XEXP (shift_op, 1)) == CONST_INT
10896 && GET_CODE (shift_count) == CONST_INT
10897 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
10898 && (INTVAL (XEXP (shift_op, 1))
10899 == (HOST_WIDE_INT) 1 << INTVAL (shift_count))))
10900 {
10901 op0 = simplify_and_const_int
10902 (NULL_RTX, mode,
10903 gen_rtx_LSHIFTRT (mode, XEXP (shift_op, 0), shift_count),
10904 (HOST_WIDE_INT) 1);
10905 code = (code == NE ? EQ : NE);
10906 continue;
10907 }
10908 }
10909 break;
10910
10911 case ASHIFT:
10912 /* If we have (compare (ashift FOO N) (const_int C)) and
10913 the high order N bits of FOO (N+1 if an inequality comparison)
10914 are known to be zero, we can do this by comparing FOO with C
10915 shifted right N bits so long as the low-order N bits of C are
10916 zero. */
10917 if (GET_CODE (XEXP (op0, 1)) == CONST_INT
10918 && INTVAL (XEXP (op0, 1)) >= 0
10919 && ((INTVAL (XEXP (op0, 1)) + ! equality_comparison_p)
10920 < HOST_BITS_PER_WIDE_INT)
10921 && ((const_op
10922 & (((HOST_WIDE_INT) 1 << INTVAL (XEXP (op0, 1))) - 1)) == 0)
10923 && mode_width <= HOST_BITS_PER_WIDE_INT
10924 && (nonzero_bits (XEXP (op0, 0), mode)
10925 & ~(mask >> (INTVAL (XEXP (op0, 1))
10926 + ! equality_comparison_p))) == 0)
10927 {
10928 /* We must perform a logical shift, not an arithmetic one,
10929 as we want the top N bits of C to be zero. */
10930 unsigned HOST_WIDE_INT temp = const_op & GET_MODE_MASK (mode);
10931
10932 temp >>= INTVAL (XEXP (op0, 1));
10933 op1 = gen_int_mode (temp, mode);
10934 op0 = XEXP (op0, 0);
10935 continue;
10936 }
10937
10938 /* If we are doing a sign bit comparison, it means we are testing
10939 a particular bit. Convert it to the appropriate AND. */
10940 if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 1)) == CONST_INT
10941 && mode_width <= HOST_BITS_PER_WIDE_INT)
10942 {
10943 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
10944 ((HOST_WIDE_INT) 1
10945 << (mode_width - 1
10946 - INTVAL (XEXP (op0, 1)))));
10947 code = (code == LT ? NE : EQ);
10948 continue;
10949 }
10950
10951 /* If this an equality comparison with zero and we are shifting
10952 the low bit to the sign bit, we can convert this to an AND of the
10953 low-order bit. */
10954 if (const_op == 0 && equality_comparison_p
10955 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10956 && (unsigned HOST_WIDE_INT) INTVAL (XEXP (op0, 1))
10957 == mode_width - 1)
10958 {
10959 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
10960 (HOST_WIDE_INT) 1);
10961 continue;
10962 }
10963 break;
10964
10965 case ASHIFTRT:
10966 /* If this is an equality comparison with zero, we can do this
10967 as a logical shift, which might be much simpler. */
10968 if (equality_comparison_p && const_op == 0
10969 && GET_CODE (XEXP (op0, 1)) == CONST_INT)
10970 {
10971 op0 = simplify_shift_const (NULL_RTX, LSHIFTRT, mode,
10972 XEXP (op0, 0),
10973 INTVAL (XEXP (op0, 1)));
10974 continue;
10975 }
10976
10977 /* If OP0 is a sign extension and CODE is not an unsigned comparison,
10978 do the comparison in a narrower mode. */
10979 if (! unsigned_comparison_p
10980 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10981 && GET_CODE (XEXP (op0, 0)) == ASHIFT
10982 && XEXP (op0, 1) == XEXP (XEXP (op0, 0), 1)
10983 && (tmode = mode_for_size (mode_width - INTVAL (XEXP (op0, 1)),
10984 MODE_INT, 1)) != BLKmode
10985 && (((unsigned HOST_WIDE_INT) const_op
10986 + (GET_MODE_MASK (tmode) >> 1) + 1)
10987 <= GET_MODE_MASK (tmode)))
10988 {
10989 op0 = gen_lowpart (tmode, XEXP (XEXP (op0, 0), 0));
10990 continue;
10991 }
10992
10993 /* Likewise if OP0 is a PLUS of a sign extension with a
10994 constant, which is usually represented with the PLUS
10995 between the shifts. */
10996 if (! unsigned_comparison_p
10997 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10998 && GET_CODE (XEXP (op0, 0)) == PLUS
10999 && GET_CODE (XEXP (XEXP (op0, 0), 1)) == CONST_INT
11000 && GET_CODE (XEXP (XEXP (op0, 0), 0)) == ASHIFT
11001 && XEXP (op0, 1) == XEXP (XEXP (XEXP (op0, 0), 0), 1)
11002 && (tmode = mode_for_size (mode_width - INTVAL (XEXP (op0, 1)),
11003 MODE_INT, 1)) != BLKmode
11004 && (((unsigned HOST_WIDE_INT) const_op
11005 + (GET_MODE_MASK (tmode) >> 1) + 1)
11006 <= GET_MODE_MASK (tmode)))
11007 {
11008 rtx inner = XEXP (XEXP (XEXP (op0, 0), 0), 0);
11009 rtx add_const = XEXP (XEXP (op0, 0), 1);
11010 rtx new_const = simplify_gen_binary (ASHIFTRT, GET_MODE (op0),
11011 add_const, XEXP (op0, 1));
11012
11013 op0 = simplify_gen_binary (PLUS, tmode,
11014 gen_lowpart (tmode, inner),
11015 new_const);
11016 continue;
11017 }
11018
11019 /* ... fall through ... */
11020 case LSHIFTRT:
11021 /* If we have (compare (xshiftrt FOO N) (const_int C)) and
11022 the low order N bits of FOO are known to be zero, we can do this
11023 by comparing FOO with C shifted left N bits so long as no
11024 overflow occurs. */
11025 if (GET_CODE (XEXP (op0, 1)) == CONST_INT
11026 && INTVAL (XEXP (op0, 1)) >= 0
11027 && INTVAL (XEXP (op0, 1)) < HOST_BITS_PER_WIDE_INT
11028 && mode_width <= HOST_BITS_PER_WIDE_INT
11029 && (nonzero_bits (XEXP (op0, 0), mode)
11030 & (((HOST_WIDE_INT) 1 << INTVAL (XEXP (op0, 1))) - 1)) == 0
11031 && (((unsigned HOST_WIDE_INT) const_op
11032 + (GET_CODE (op0) != LSHIFTRT
11033 ? ((GET_MODE_MASK (mode) >> INTVAL (XEXP (op0, 1)) >> 1)
11034 + 1)
11035 : 0))
11036 <= GET_MODE_MASK (mode) >> INTVAL (XEXP (op0, 1))))
11037 {
11038 /* If the shift was logical, then we must make the condition
11039 unsigned. */
11040 if (GET_CODE (op0) == LSHIFTRT)
11041 code = unsigned_condition (code);
11042
11043 const_op <<= INTVAL (XEXP (op0, 1));
11044 op1 = GEN_INT (const_op);
11045 op0 = XEXP (op0, 0);
11046 continue;
11047 }
11048
11049 /* If we are using this shift to extract just the sign bit, we
11050 can replace this with an LT or GE comparison. */
11051 if (const_op == 0
11052 && (equality_comparison_p || sign_bit_comparison_p)
11053 && GET_CODE (XEXP (op0, 1)) == CONST_INT
11054 && (unsigned HOST_WIDE_INT) INTVAL (XEXP (op0, 1))
11055 == mode_width - 1)
11056 {
11057 op0 = XEXP (op0, 0);
11058 code = (code == NE || code == GT ? LT : GE);
11059 continue;
11060 }
11061 break;
11062
11063 default:
11064 break;
11065 }
11066
11067 break;
11068 }
11069
11070 /* Now make any compound operations involved in this comparison. Then,
11071 check for an outmost SUBREG on OP0 that is not doing anything or is
11072 paradoxical. The latter transformation must only be performed when
11073 it is known that the "extra" bits will be the same in op0 and op1 or
11074 that they don't matter. There are three cases to consider:
11075
11076 1. SUBREG_REG (op0) is a register. In this case the bits are don't
11077 care bits and we can assume they have any convenient value. So
11078 making the transformation is safe.
11079
11080 2. SUBREG_REG (op0) is a memory and LOAD_EXTEND_OP is not defined.
11081 In this case the upper bits of op0 are undefined. We should not make
11082 the simplification in that case as we do not know the contents of
11083 those bits.
11084
11085 3. SUBREG_REG (op0) is a memory and LOAD_EXTEND_OP is defined and not
11086 UNKNOWN. In that case we know those bits are zeros or ones. We must
11087 also be sure that they are the same as the upper bits of op1.
11088
11089 We can never remove a SUBREG for a non-equality comparison because
11090 the sign bit is in a different place in the underlying object. */
11091
11092 op0 = make_compound_operation (op0, op1 == const0_rtx ? COMPARE : SET);
11093 op1 = make_compound_operation (op1, SET);
11094
11095 if (GET_CODE (op0) == SUBREG && subreg_lowpart_p (op0)
11096 && GET_MODE_CLASS (GET_MODE (op0)) == MODE_INT
11097 && GET_MODE_CLASS (GET_MODE (SUBREG_REG (op0))) == MODE_INT
11098 && (code == NE || code == EQ))
11099 {
11100 if (GET_MODE_SIZE (GET_MODE (op0))
11101 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (op0))))
11102 {
11103 /* For paradoxical subregs, allow case 1 as above. Case 3 isn't
11104 implemented. */
11105 if (REG_P (SUBREG_REG (op0)))
11106 {
11107 op0 = SUBREG_REG (op0);
11108 op1 = gen_lowpart (GET_MODE (op0), op1);
11109 }
11110 }
11111 else if ((GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (op0)))
11112 <= HOST_BITS_PER_WIDE_INT)
11113 && (nonzero_bits (SUBREG_REG (op0),
11114 GET_MODE (SUBREG_REG (op0)))
11115 & ~GET_MODE_MASK (GET_MODE (op0))) == 0)
11116 {
11117 tem = gen_lowpart (GET_MODE (SUBREG_REG (op0)), op1);
11118
11119 if ((nonzero_bits (tem, GET_MODE (SUBREG_REG (op0)))
11120 & ~GET_MODE_MASK (GET_MODE (op0))) == 0)
11121 op0 = SUBREG_REG (op0), op1 = tem;
11122 }
11123 }
11124
11125 /* We now do the opposite procedure: Some machines don't have compare
11126 insns in all modes. If OP0's mode is an integer mode smaller than a
11127 word and we can't do a compare in that mode, see if there is a larger
11128 mode for which we can do the compare. There are a number of cases in
11129 which we can use the wider mode. */
11130
11131 mode = GET_MODE (op0);
11132 if (mode != VOIDmode && GET_MODE_CLASS (mode) == MODE_INT
11133 && GET_MODE_SIZE (mode) < UNITS_PER_WORD
11134 && ! have_insn_for (COMPARE, mode))
11135 for (tmode = GET_MODE_WIDER_MODE (mode);
11136 (tmode != VOIDmode
11137 && GET_MODE_BITSIZE (tmode) <= HOST_BITS_PER_WIDE_INT);
11138 tmode = GET_MODE_WIDER_MODE (tmode))
11139 if (have_insn_for (COMPARE, tmode))
11140 {
11141 int zero_extended;
11142
11143 /* If the only nonzero bits in OP0 and OP1 are those in the
11144 narrower mode and this is an equality or unsigned comparison,
11145 we can use the wider mode. Similarly for sign-extended
11146 values, in which case it is true for all comparisons. */
11147 zero_extended = ((code == EQ || code == NE
11148 || code == GEU || code == GTU
11149 || code == LEU || code == LTU)
11150 && (nonzero_bits (op0, tmode)
11151 & ~GET_MODE_MASK (mode)) == 0
11152 && ((GET_CODE (op1) == CONST_INT
11153 || (nonzero_bits (op1, tmode)
11154 & ~GET_MODE_MASK (mode)) == 0)));
11155
11156 if (zero_extended
11157 || ((num_sign_bit_copies (op0, tmode)
11158 > (unsigned int) (GET_MODE_BITSIZE (tmode)
11159 - GET_MODE_BITSIZE (mode)))
11160 && (num_sign_bit_copies (op1, tmode)
11161 > (unsigned int) (GET_MODE_BITSIZE (tmode)
11162 - GET_MODE_BITSIZE (mode)))))
11163 {
11164 /* If OP0 is an AND and we don't have an AND in MODE either,
11165 make a new AND in the proper mode. */
11166 if (GET_CODE (op0) == AND
11167 && !have_insn_for (AND, mode))
11168 op0 = simplify_gen_binary (AND, tmode,
11169 gen_lowpart (tmode,
11170 XEXP (op0, 0)),
11171 gen_lowpart (tmode,
11172 XEXP (op0, 1)));
11173
11174 op0 = gen_lowpart (tmode, op0);
11175 if (zero_extended && GET_CODE (op1) == CONST_INT)
11176 op1 = GEN_INT (INTVAL (op1) & GET_MODE_MASK (mode));
11177 op1 = gen_lowpart (tmode, op1);
11178 break;
11179 }
11180
11181 /* If this is a test for negative, we can make an explicit
11182 test of the sign bit. */
11183
11184 if (op1 == const0_rtx && (code == LT || code == GE)
11185 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
11186 {
11187 op0 = simplify_gen_binary (AND, tmode,
11188 gen_lowpart (tmode, op0),
11189 GEN_INT ((HOST_WIDE_INT) 1
11190 << (GET_MODE_BITSIZE (mode)
11191 - 1)));
11192 code = (code == LT) ? NE : EQ;
11193 break;
11194 }
11195 }
11196
11197 #ifdef CANONICALIZE_COMPARISON
11198 /* If this machine only supports a subset of valid comparisons, see if we
11199 can convert an unsupported one into a supported one. */
11200 CANONICALIZE_COMPARISON (code, op0, op1);
11201 #endif
11202
11203 *pop0 = op0;
11204 *pop1 = op1;
11205
11206 return code;
11207 }
11208 \f
11209 /* Utility function for record_value_for_reg. Count number of
11210 rtxs in X. */
11211 static int
11212 count_rtxs (rtx x)
11213 {
11214 enum rtx_code code = GET_CODE (x);
11215 const char *fmt;
11216 int i, ret = 1;
11217
11218 if (GET_RTX_CLASS (code) == '2'
11219 || GET_RTX_CLASS (code) == 'c')
11220 {
11221 rtx x0 = XEXP (x, 0);
11222 rtx x1 = XEXP (x, 1);
11223
11224 if (x0 == x1)
11225 return 1 + 2 * count_rtxs (x0);
11226
11227 if ((GET_RTX_CLASS (GET_CODE (x1)) == '2'
11228 || GET_RTX_CLASS (GET_CODE (x1)) == 'c')
11229 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
11230 return 2 + 2 * count_rtxs (x0)
11231 + count_rtxs (x == XEXP (x1, 0)
11232 ? XEXP (x1, 1) : XEXP (x1, 0));
11233
11234 if ((GET_RTX_CLASS (GET_CODE (x0)) == '2'
11235 || GET_RTX_CLASS (GET_CODE (x0)) == 'c')
11236 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
11237 return 2 + 2 * count_rtxs (x1)
11238 + count_rtxs (x == XEXP (x0, 0)
11239 ? XEXP (x0, 1) : XEXP (x0, 0));
11240 }
11241
11242 fmt = GET_RTX_FORMAT (code);
11243 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
11244 if (fmt[i] == 'e')
11245 ret += count_rtxs (XEXP (x, i));
11246
11247 return ret;
11248 }
11249 \f
11250 /* Utility function for following routine. Called when X is part of a value
11251 being stored into last_set_value. Sets last_set_table_tick
11252 for each register mentioned. Similar to mention_regs in cse.c */
11253
11254 static void
11255 update_table_tick (rtx x)
11256 {
11257 enum rtx_code code = GET_CODE (x);
11258 const char *fmt = GET_RTX_FORMAT (code);
11259 int i;
11260
11261 if (code == REG)
11262 {
11263 unsigned int regno = REGNO (x);
11264 unsigned int endregno = END_REGNO (x);
11265 unsigned int r;
11266
11267 for (r = regno; r < endregno; r++)
11268 {
11269 reg_stat_type *rsp = VEC_index (reg_stat_type, reg_stat, r);
11270 rsp->last_set_table_tick = label_tick;
11271 }
11272
11273 return;
11274 }
11275
11276 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
11277 /* Note that we can't have an "E" in values stored; see
11278 get_last_value_validate. */
11279 if (fmt[i] == 'e')
11280 {
11281 /* Check for identical subexpressions. If x contains
11282 identical subexpression we only have to traverse one of
11283 them. */
11284 if (i == 0 && ARITHMETIC_P (x))
11285 {
11286 /* Note that at this point x1 has already been
11287 processed. */
11288 rtx x0 = XEXP (x, 0);
11289 rtx x1 = XEXP (x, 1);
11290
11291 /* If x0 and x1 are identical then there is no need to
11292 process x0. */
11293 if (x0 == x1)
11294 break;
11295
11296 /* If x0 is identical to a subexpression of x1 then while
11297 processing x1, x0 has already been processed. Thus we
11298 are done with x. */
11299 if (ARITHMETIC_P (x1)
11300 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
11301 break;
11302
11303 /* If x1 is identical to a subexpression of x0 then we
11304 still have to process the rest of x0. */
11305 if (ARITHMETIC_P (x0)
11306 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
11307 {
11308 update_table_tick (XEXP (x0, x1 == XEXP (x0, 0) ? 1 : 0));
11309 break;
11310 }
11311 }
11312
11313 update_table_tick (XEXP (x, i));
11314 }
11315 }
11316
11317 /* Record that REG is set to VALUE in insn INSN. If VALUE is zero, we
11318 are saying that the register is clobbered and we no longer know its
11319 value. If INSN is zero, don't update reg_stat[].last_set; this is
11320 only permitted with VALUE also zero and is used to invalidate the
11321 register. */
11322
11323 static void
11324 record_value_for_reg (rtx reg, rtx insn, rtx value)
11325 {
11326 unsigned int regno = REGNO (reg);
11327 unsigned int endregno = END_REGNO (reg);
11328 unsigned int i;
11329 reg_stat_type *rsp;
11330
11331 /* If VALUE contains REG and we have a previous value for REG, substitute
11332 the previous value. */
11333 if (value && insn && reg_overlap_mentioned_p (reg, value))
11334 {
11335 rtx tem;
11336
11337 /* Set things up so get_last_value is allowed to see anything set up to
11338 our insn. */
11339 subst_low_luid = DF_INSN_LUID (insn);
11340 tem = get_last_value (reg);
11341
11342 /* If TEM is simply a binary operation with two CLOBBERs as operands,
11343 it isn't going to be useful and will take a lot of time to process,
11344 so just use the CLOBBER. */
11345
11346 if (tem)
11347 {
11348 if (ARITHMETIC_P (tem)
11349 && GET_CODE (XEXP (tem, 0)) == CLOBBER
11350 && GET_CODE (XEXP (tem, 1)) == CLOBBER)
11351 tem = XEXP (tem, 0);
11352 else if (count_occurrences (value, reg, 1) >= 2)
11353 {
11354 /* If there are two or more occurrences of REG in VALUE,
11355 prevent the value from growing too much. */
11356 if (count_rtxs (tem) > MAX_LAST_VALUE_RTL)
11357 tem = gen_rtx_CLOBBER (GET_MODE (tem), const0_rtx);
11358 }
11359
11360 value = replace_rtx (copy_rtx (value), reg, tem);
11361 }
11362 }
11363
11364 /* For each register modified, show we don't know its value, that
11365 we don't know about its bitwise content, that its value has been
11366 updated, and that we don't know the location of the death of the
11367 register. */
11368 for (i = regno; i < endregno; i++)
11369 {
11370 rsp = VEC_index (reg_stat_type, reg_stat, i);
11371
11372 if (insn)
11373 rsp->last_set = insn;
11374
11375 rsp->last_set_value = 0;
11376 rsp->last_set_mode = 0;
11377 rsp->last_set_nonzero_bits = 0;
11378 rsp->last_set_sign_bit_copies = 0;
11379 rsp->last_death = 0;
11380 rsp->truncated_to_mode = 0;
11381 }
11382
11383 /* Mark registers that are being referenced in this value. */
11384 if (value)
11385 update_table_tick (value);
11386
11387 /* Now update the status of each register being set.
11388 If someone is using this register in this block, set this register
11389 to invalid since we will get confused between the two lives in this
11390 basic block. This makes using this register always invalid. In cse, we
11391 scan the table to invalidate all entries using this register, but this
11392 is too much work for us. */
11393
11394 for (i = regno; i < endregno; i++)
11395 {
11396 rsp = VEC_index (reg_stat_type, reg_stat, i);
11397 rsp->last_set_label = label_tick;
11398 if (!insn
11399 || (value && rsp->last_set_table_tick >= label_tick_ebb_start))
11400 rsp->last_set_invalid = 1;
11401 else
11402 rsp->last_set_invalid = 0;
11403 }
11404
11405 /* The value being assigned might refer to X (like in "x++;"). In that
11406 case, we must replace it with (clobber (const_int 0)) to prevent
11407 infinite loops. */
11408 rsp = VEC_index (reg_stat_type, reg_stat, regno);
11409 if (value && ! get_last_value_validate (&value, insn,
11410 rsp->last_set_label, 0))
11411 {
11412 value = copy_rtx (value);
11413 if (! get_last_value_validate (&value, insn,
11414 rsp->last_set_label, 1))
11415 value = 0;
11416 }
11417
11418 /* For the main register being modified, update the value, the mode, the
11419 nonzero bits, and the number of sign bit copies. */
11420
11421 rsp->last_set_value = value;
11422
11423 if (value)
11424 {
11425 enum machine_mode mode = GET_MODE (reg);
11426 subst_low_luid = DF_INSN_LUID (insn);
11427 rsp->last_set_mode = mode;
11428 if (GET_MODE_CLASS (mode) == MODE_INT
11429 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
11430 mode = nonzero_bits_mode;
11431 rsp->last_set_nonzero_bits = nonzero_bits (value, mode);
11432 rsp->last_set_sign_bit_copies
11433 = num_sign_bit_copies (value, GET_MODE (reg));
11434 }
11435 }
11436
11437 /* Called via note_stores from record_dead_and_set_regs to handle one
11438 SET or CLOBBER in an insn. DATA is the instruction in which the
11439 set is occurring. */
11440
11441 static void
11442 record_dead_and_set_regs_1 (rtx dest, const_rtx setter, void *data)
11443 {
11444 rtx record_dead_insn = (rtx) data;
11445
11446 if (GET_CODE (dest) == SUBREG)
11447 dest = SUBREG_REG (dest);
11448
11449 if (!record_dead_insn)
11450 {
11451 if (REG_P (dest))
11452 record_value_for_reg (dest, NULL_RTX, NULL_RTX);
11453 return;
11454 }
11455
11456 if (REG_P (dest))
11457 {
11458 /* If we are setting the whole register, we know its value. Otherwise
11459 show that we don't know the value. We can handle SUBREG in
11460 some cases. */
11461 if (GET_CODE (setter) == SET && dest == SET_DEST (setter))
11462 record_value_for_reg (dest, record_dead_insn, SET_SRC (setter));
11463 else if (GET_CODE (setter) == SET
11464 && GET_CODE (SET_DEST (setter)) == SUBREG
11465 && SUBREG_REG (SET_DEST (setter)) == dest
11466 && GET_MODE_BITSIZE (GET_MODE (dest)) <= BITS_PER_WORD
11467 && subreg_lowpart_p (SET_DEST (setter)))
11468 record_value_for_reg (dest, record_dead_insn,
11469 gen_lowpart (GET_MODE (dest),
11470 SET_SRC (setter)));
11471 else
11472 record_value_for_reg (dest, record_dead_insn, NULL_RTX);
11473 }
11474 else if (MEM_P (dest)
11475 /* Ignore pushes, they clobber nothing. */
11476 && ! push_operand (dest, GET_MODE (dest)))
11477 mem_last_set = DF_INSN_LUID (record_dead_insn);
11478 }
11479
11480 /* Update the records of when each REG was most recently set or killed
11481 for the things done by INSN. This is the last thing done in processing
11482 INSN in the combiner loop.
11483
11484 We update reg_stat[], in particular fields last_set, last_set_value,
11485 last_set_mode, last_set_nonzero_bits, last_set_sign_bit_copies,
11486 last_death, and also the similar information mem_last_set (which insn
11487 most recently modified memory) and last_call_luid (which insn was the
11488 most recent subroutine call). */
11489
11490 static void
11491 record_dead_and_set_regs (rtx insn)
11492 {
11493 rtx link;
11494 unsigned int i;
11495
11496 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
11497 {
11498 if (REG_NOTE_KIND (link) == REG_DEAD
11499 && REG_P (XEXP (link, 0)))
11500 {
11501 unsigned int regno = REGNO (XEXP (link, 0));
11502 unsigned int endregno = END_REGNO (XEXP (link, 0));
11503
11504 for (i = regno; i < endregno; i++)
11505 {
11506 reg_stat_type *rsp;
11507
11508 rsp = VEC_index (reg_stat_type, reg_stat, i);
11509 rsp->last_death = insn;
11510 }
11511 }
11512 else if (REG_NOTE_KIND (link) == REG_INC)
11513 record_value_for_reg (XEXP (link, 0), insn, NULL_RTX);
11514 }
11515
11516 if (CALL_P (insn))
11517 {
11518 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
11519 if (TEST_HARD_REG_BIT (regs_invalidated_by_call, i))
11520 {
11521 reg_stat_type *rsp;
11522
11523 rsp = VEC_index (reg_stat_type, reg_stat, i);
11524 rsp->last_set_invalid = 1;
11525 rsp->last_set = insn;
11526 rsp->last_set_value = 0;
11527 rsp->last_set_mode = 0;
11528 rsp->last_set_nonzero_bits = 0;
11529 rsp->last_set_sign_bit_copies = 0;
11530 rsp->last_death = 0;
11531 rsp->truncated_to_mode = 0;
11532 }
11533
11534 last_call_luid = mem_last_set = DF_INSN_LUID (insn);
11535
11536 /* We can't combine into a call pattern. Remember, though, that
11537 the return value register is set at this LUID. We could
11538 still replace a register with the return value from the
11539 wrong subroutine call! */
11540 note_stores (PATTERN (insn), record_dead_and_set_regs_1, NULL_RTX);
11541 }
11542 else
11543 note_stores (PATTERN (insn), record_dead_and_set_regs_1, insn);
11544 }
11545
11546 /* If a SUBREG has the promoted bit set, it is in fact a property of the
11547 register present in the SUBREG, so for each such SUBREG go back and
11548 adjust nonzero and sign bit information of the registers that are
11549 known to have some zero/sign bits set.
11550
11551 This is needed because when combine blows the SUBREGs away, the
11552 information on zero/sign bits is lost and further combines can be
11553 missed because of that. */
11554
11555 static void
11556 record_promoted_value (rtx insn, rtx subreg)
11557 {
11558 rtx links, set;
11559 unsigned int regno = REGNO (SUBREG_REG (subreg));
11560 enum machine_mode mode = GET_MODE (subreg);
11561
11562 if (GET_MODE_BITSIZE (mode) > HOST_BITS_PER_WIDE_INT)
11563 return;
11564
11565 for (links = LOG_LINKS (insn); links;)
11566 {
11567 reg_stat_type *rsp;
11568
11569 insn = XEXP (links, 0);
11570 set = single_set (insn);
11571
11572 if (! set || !REG_P (SET_DEST (set))
11573 || REGNO (SET_DEST (set)) != regno
11574 || GET_MODE (SET_DEST (set)) != GET_MODE (SUBREG_REG (subreg)))
11575 {
11576 links = XEXP (links, 1);
11577 continue;
11578 }
11579
11580 rsp = VEC_index (reg_stat_type, reg_stat, regno);
11581 if (rsp->last_set == insn)
11582 {
11583 if (SUBREG_PROMOTED_UNSIGNED_P (subreg) > 0)
11584 rsp->last_set_nonzero_bits &= GET_MODE_MASK (mode);
11585 }
11586
11587 if (REG_P (SET_SRC (set)))
11588 {
11589 regno = REGNO (SET_SRC (set));
11590 links = LOG_LINKS (insn);
11591 }
11592 else
11593 break;
11594 }
11595 }
11596
11597 /* Check if X, a register, is known to contain a value already
11598 truncated to MODE. In this case we can use a subreg to refer to
11599 the truncated value even though in the generic case we would need
11600 an explicit truncation. */
11601
11602 static bool
11603 reg_truncated_to_mode (enum machine_mode mode, const_rtx x)
11604 {
11605 reg_stat_type *rsp = VEC_index (reg_stat_type, reg_stat, REGNO (x));
11606 enum machine_mode truncated = rsp->truncated_to_mode;
11607
11608 if (truncated == 0
11609 || rsp->truncation_label < label_tick_ebb_start)
11610 return false;
11611 if (GET_MODE_SIZE (truncated) <= GET_MODE_SIZE (mode))
11612 return true;
11613 if (TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (mode),
11614 GET_MODE_BITSIZE (truncated)))
11615 return true;
11616 return false;
11617 }
11618
11619 /* Callback for for_each_rtx. If *P is a hard reg or a subreg record the mode
11620 that the register is accessed in. For non-TRULY_NOOP_TRUNCATION targets we
11621 might be able to turn a truncate into a subreg using this information.
11622 Return -1 if traversing *P is complete or 0 otherwise. */
11623
11624 static int
11625 record_truncated_value (rtx *p, void *data ATTRIBUTE_UNUSED)
11626 {
11627 rtx x = *p;
11628 enum machine_mode truncated_mode;
11629 reg_stat_type *rsp;
11630
11631 if (GET_CODE (x) == SUBREG && REG_P (SUBREG_REG (x)))
11632 {
11633 enum machine_mode original_mode = GET_MODE (SUBREG_REG (x));
11634 truncated_mode = GET_MODE (x);
11635
11636 if (GET_MODE_SIZE (original_mode) <= GET_MODE_SIZE (truncated_mode))
11637 return -1;
11638
11639 if (TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (truncated_mode),
11640 GET_MODE_BITSIZE (original_mode)))
11641 return -1;
11642
11643 x = SUBREG_REG (x);
11644 }
11645 /* ??? For hard-regs we now record everything. We might be able to
11646 optimize this using last_set_mode. */
11647 else if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
11648 truncated_mode = GET_MODE (x);
11649 else
11650 return 0;
11651
11652 rsp = VEC_index (reg_stat_type, reg_stat, REGNO (x));
11653 if (rsp->truncated_to_mode == 0
11654 || rsp->truncation_label < label_tick_ebb_start
11655 || (GET_MODE_SIZE (truncated_mode)
11656 < GET_MODE_SIZE (rsp->truncated_to_mode)))
11657 {
11658 rsp->truncated_to_mode = truncated_mode;
11659 rsp->truncation_label = label_tick;
11660 }
11661
11662 return -1;
11663 }
11664
11665 /* Callback for note_uses. Find hardregs and subregs of pseudos and
11666 the modes they are used in. This can help truning TRUNCATEs into
11667 SUBREGs. */
11668
11669 static void
11670 record_truncated_values (rtx *x, void *data ATTRIBUTE_UNUSED)
11671 {
11672 for_each_rtx (x, record_truncated_value, NULL);
11673 }
11674
11675 /* Scan X for promoted SUBREGs. For each one found,
11676 note what it implies to the registers used in it. */
11677
11678 static void
11679 check_promoted_subreg (rtx insn, rtx x)
11680 {
11681 if (GET_CODE (x) == SUBREG
11682 && SUBREG_PROMOTED_VAR_P (x)
11683 && REG_P (SUBREG_REG (x)))
11684 record_promoted_value (insn, x);
11685 else
11686 {
11687 const char *format = GET_RTX_FORMAT (GET_CODE (x));
11688 int i, j;
11689
11690 for (i = 0; i < GET_RTX_LENGTH (GET_CODE (x)); i++)
11691 switch (format[i])
11692 {
11693 case 'e':
11694 check_promoted_subreg (insn, XEXP (x, i));
11695 break;
11696 case 'V':
11697 case 'E':
11698 if (XVEC (x, i) != 0)
11699 for (j = 0; j < XVECLEN (x, i); j++)
11700 check_promoted_subreg (insn, XVECEXP (x, i, j));
11701 break;
11702 }
11703 }
11704 }
11705 \f
11706 /* Utility routine for the following function. Verify that all the registers
11707 mentioned in *LOC are valid when *LOC was part of a value set when
11708 label_tick == TICK. Return 0 if some are not.
11709
11710 If REPLACE is nonzero, replace the invalid reference with
11711 (clobber (const_int 0)) and return 1. This replacement is useful because
11712 we often can get useful information about the form of a value (e.g., if
11713 it was produced by a shift that always produces -1 or 0) even though
11714 we don't know exactly what registers it was produced from. */
11715
11716 static int
11717 get_last_value_validate (rtx *loc, rtx insn, int tick, int replace)
11718 {
11719 rtx x = *loc;
11720 const char *fmt = GET_RTX_FORMAT (GET_CODE (x));
11721 int len = GET_RTX_LENGTH (GET_CODE (x));
11722 int i;
11723
11724 if (REG_P (x))
11725 {
11726 unsigned int regno = REGNO (x);
11727 unsigned int endregno = END_REGNO (x);
11728 unsigned int j;
11729
11730 for (j = regno; j < endregno; j++)
11731 {
11732 reg_stat_type *rsp = VEC_index (reg_stat_type, reg_stat, j);
11733 if (rsp->last_set_invalid
11734 /* If this is a pseudo-register that was only set once and not
11735 live at the beginning of the function, it is always valid. */
11736 || (! (regno >= FIRST_PSEUDO_REGISTER
11737 && REG_N_SETS (regno) == 1
11738 && (!REGNO_REG_SET_P
11739 (DF_LR_IN (ENTRY_BLOCK_PTR->next_bb), regno)))
11740 && rsp->last_set_label > tick))
11741 {
11742 if (replace)
11743 *loc = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
11744 return replace;
11745 }
11746 }
11747
11748 return 1;
11749 }
11750 /* If this is a memory reference, make sure that there were
11751 no stores after it that might have clobbered the value. We don't
11752 have alias info, so we assume any store invalidates it. */
11753 else if (MEM_P (x) && !MEM_READONLY_P (x)
11754 && DF_INSN_LUID (insn) <= mem_last_set)
11755 {
11756 if (replace)
11757 *loc = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
11758 return replace;
11759 }
11760
11761 for (i = 0; i < len; i++)
11762 {
11763 if (fmt[i] == 'e')
11764 {
11765 /* Check for identical subexpressions. If x contains
11766 identical subexpression we only have to traverse one of
11767 them. */
11768 if (i == 1 && ARITHMETIC_P (x))
11769 {
11770 /* Note that at this point x0 has already been checked
11771 and found valid. */
11772 rtx x0 = XEXP (x, 0);
11773 rtx x1 = XEXP (x, 1);
11774
11775 /* If x0 and x1 are identical then x is also valid. */
11776 if (x0 == x1)
11777 return 1;
11778
11779 /* If x1 is identical to a subexpression of x0 then
11780 while checking x0, x1 has already been checked. Thus
11781 it is valid and so as x. */
11782 if (ARITHMETIC_P (x0)
11783 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
11784 return 1;
11785
11786 /* If x0 is identical to a subexpression of x1 then x is
11787 valid iff the rest of x1 is valid. */
11788 if (ARITHMETIC_P (x1)
11789 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
11790 return
11791 get_last_value_validate (&XEXP (x1,
11792 x0 == XEXP (x1, 0) ? 1 : 0),
11793 insn, tick, replace);
11794 }
11795
11796 if (get_last_value_validate (&XEXP (x, i), insn, tick,
11797 replace) == 0)
11798 return 0;
11799 }
11800 /* Don't bother with these. They shouldn't occur anyway. */
11801 else if (fmt[i] == 'E')
11802 return 0;
11803 }
11804
11805 /* If we haven't found a reason for it to be invalid, it is valid. */
11806 return 1;
11807 }
11808
11809 /* Get the last value assigned to X, if known. Some registers
11810 in the value may be replaced with (clobber (const_int 0)) if their value
11811 is known longer known reliably. */
11812
11813 static rtx
11814 get_last_value (const_rtx x)
11815 {
11816 unsigned int regno;
11817 rtx value;
11818 reg_stat_type *rsp;
11819
11820 /* If this is a non-paradoxical SUBREG, get the value of its operand and
11821 then convert it to the desired mode. If this is a paradoxical SUBREG,
11822 we cannot predict what values the "extra" bits might have. */
11823 if (GET_CODE (x) == SUBREG
11824 && subreg_lowpart_p (x)
11825 && (GET_MODE_SIZE (GET_MODE (x))
11826 <= GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
11827 && (value = get_last_value (SUBREG_REG (x))) != 0)
11828 return gen_lowpart (GET_MODE (x), value);
11829
11830 if (!REG_P (x))
11831 return 0;
11832
11833 regno = REGNO (x);
11834 rsp = VEC_index (reg_stat_type, reg_stat, regno);
11835 value = rsp->last_set_value;
11836
11837 /* If we don't have a value, or if it isn't for this basic block and
11838 it's either a hard register, set more than once, or it's a live
11839 at the beginning of the function, return 0.
11840
11841 Because if it's not live at the beginning of the function then the reg
11842 is always set before being used (is never used without being set).
11843 And, if it's set only once, and it's always set before use, then all
11844 uses must have the same last value, even if it's not from this basic
11845 block. */
11846
11847 if (value == 0
11848 || (rsp->last_set_label < label_tick_ebb_start
11849 && (regno < FIRST_PSEUDO_REGISTER
11850 || REG_N_SETS (regno) != 1
11851 || REGNO_REG_SET_P
11852 (DF_LR_IN (ENTRY_BLOCK_PTR->next_bb), regno))))
11853 return 0;
11854
11855 /* If the value was set in a later insn than the ones we are processing,
11856 we can't use it even if the register was only set once. */
11857 if (rsp->last_set_label == label_tick
11858 && DF_INSN_LUID (rsp->last_set) >= subst_low_luid)
11859 return 0;
11860
11861 /* If the value has all its registers valid, return it. */
11862 if (get_last_value_validate (&value, rsp->last_set,
11863 rsp->last_set_label, 0))
11864 return value;
11865
11866 /* Otherwise, make a copy and replace any invalid register with
11867 (clobber (const_int 0)). If that fails for some reason, return 0. */
11868
11869 value = copy_rtx (value);
11870 if (get_last_value_validate (&value, rsp->last_set,
11871 rsp->last_set_label, 1))
11872 return value;
11873
11874 return 0;
11875 }
11876 \f
11877 /* Return nonzero if expression X refers to a REG or to memory
11878 that is set in an instruction more recent than FROM_LUID. */
11879
11880 static int
11881 use_crosses_set_p (const_rtx x, int from_luid)
11882 {
11883 const char *fmt;
11884 int i;
11885 enum rtx_code code = GET_CODE (x);
11886
11887 if (code == REG)
11888 {
11889 unsigned int regno = REGNO (x);
11890 unsigned endreg = END_REGNO (x);
11891
11892 #ifdef PUSH_ROUNDING
11893 /* Don't allow uses of the stack pointer to be moved,
11894 because we don't know whether the move crosses a push insn. */
11895 if (regno == STACK_POINTER_REGNUM && PUSH_ARGS)
11896 return 1;
11897 #endif
11898 for (; regno < endreg; regno++)
11899 {
11900 reg_stat_type *rsp = VEC_index (reg_stat_type, reg_stat, regno);
11901 if (rsp->last_set
11902 && rsp->last_set_label == label_tick
11903 && DF_INSN_LUID (rsp->last_set) > from_luid)
11904 return 1;
11905 }
11906 return 0;
11907 }
11908
11909 if (code == MEM && mem_last_set > from_luid)
11910 return 1;
11911
11912 fmt = GET_RTX_FORMAT (code);
11913
11914 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
11915 {
11916 if (fmt[i] == 'E')
11917 {
11918 int j;
11919 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
11920 if (use_crosses_set_p (XVECEXP (x, i, j), from_luid))
11921 return 1;
11922 }
11923 else if (fmt[i] == 'e'
11924 && use_crosses_set_p (XEXP (x, i), from_luid))
11925 return 1;
11926 }
11927 return 0;
11928 }
11929 \f
11930 /* Define three variables used for communication between the following
11931 routines. */
11932
11933 static unsigned int reg_dead_regno, reg_dead_endregno;
11934 static int reg_dead_flag;
11935
11936 /* Function called via note_stores from reg_dead_at_p.
11937
11938 If DEST is within [reg_dead_regno, reg_dead_endregno), set
11939 reg_dead_flag to 1 if X is a CLOBBER and to -1 it is a SET. */
11940
11941 static void
11942 reg_dead_at_p_1 (rtx dest, const_rtx x, void *data ATTRIBUTE_UNUSED)
11943 {
11944 unsigned int regno, endregno;
11945
11946 if (!REG_P (dest))
11947 return;
11948
11949 regno = REGNO (dest);
11950 endregno = END_REGNO (dest);
11951 if (reg_dead_endregno > regno && reg_dead_regno < endregno)
11952 reg_dead_flag = (GET_CODE (x) == CLOBBER) ? 1 : -1;
11953 }
11954
11955 /* Return nonzero if REG is known to be dead at INSN.
11956
11957 We scan backwards from INSN. If we hit a REG_DEAD note or a CLOBBER
11958 referencing REG, it is dead. If we hit a SET referencing REG, it is
11959 live. Otherwise, see if it is live or dead at the start of the basic
11960 block we are in. Hard regs marked as being live in NEWPAT_USED_REGS
11961 must be assumed to be always live. */
11962
11963 static int
11964 reg_dead_at_p (rtx reg, rtx insn)
11965 {
11966 basic_block block;
11967 unsigned int i;
11968
11969 /* Set variables for reg_dead_at_p_1. */
11970 reg_dead_regno = REGNO (reg);
11971 reg_dead_endregno = END_REGNO (reg);
11972
11973 reg_dead_flag = 0;
11974
11975 /* Check that reg isn't mentioned in NEWPAT_USED_REGS. For fixed registers
11976 we allow the machine description to decide whether use-and-clobber
11977 patterns are OK. */
11978 if (reg_dead_regno < FIRST_PSEUDO_REGISTER)
11979 {
11980 for (i = reg_dead_regno; i < reg_dead_endregno; i++)
11981 if (!fixed_regs[i] && TEST_HARD_REG_BIT (newpat_used_regs, i))
11982 return 0;
11983 }
11984
11985 /* Scan backwards until we find a REG_DEAD note, SET, CLOBBER, label, or
11986 beginning of function. */
11987 for (; insn && !LABEL_P (insn) && !BARRIER_P (insn);
11988 insn = prev_nonnote_insn (insn))
11989 {
11990 note_stores (PATTERN (insn), reg_dead_at_p_1, NULL);
11991 if (reg_dead_flag)
11992 return reg_dead_flag == 1 ? 1 : 0;
11993
11994 if (find_regno_note (insn, REG_DEAD, reg_dead_regno))
11995 return 1;
11996 }
11997
11998 /* Get the basic block that we were in. */
11999 if (insn == 0)
12000 block = ENTRY_BLOCK_PTR->next_bb;
12001 else
12002 {
12003 FOR_EACH_BB (block)
12004 if (insn == BB_HEAD (block))
12005 break;
12006
12007 if (block == EXIT_BLOCK_PTR)
12008 return 0;
12009 }
12010
12011 for (i = reg_dead_regno; i < reg_dead_endregno; i++)
12012 if (REGNO_REG_SET_P (df_get_live_in (block), i))
12013 return 0;
12014
12015 return 1;
12016 }
12017 \f
12018 /* Note hard registers in X that are used. */
12019
12020 static void
12021 mark_used_regs_combine (rtx x)
12022 {
12023 RTX_CODE code = GET_CODE (x);
12024 unsigned int regno;
12025 int i;
12026
12027 switch (code)
12028 {
12029 case LABEL_REF:
12030 case SYMBOL_REF:
12031 case CONST_INT:
12032 case CONST:
12033 case CONST_DOUBLE:
12034 case CONST_VECTOR:
12035 case PC:
12036 case ADDR_VEC:
12037 case ADDR_DIFF_VEC:
12038 case ASM_INPUT:
12039 #ifdef HAVE_cc0
12040 /* CC0 must die in the insn after it is set, so we don't need to take
12041 special note of it here. */
12042 case CC0:
12043 #endif
12044 return;
12045
12046 case CLOBBER:
12047 /* If we are clobbering a MEM, mark any hard registers inside the
12048 address as used. */
12049 if (MEM_P (XEXP (x, 0)))
12050 mark_used_regs_combine (XEXP (XEXP (x, 0), 0));
12051 return;
12052
12053 case REG:
12054 regno = REGNO (x);
12055 /* A hard reg in a wide mode may really be multiple registers.
12056 If so, mark all of them just like the first. */
12057 if (regno < FIRST_PSEUDO_REGISTER)
12058 {
12059 /* None of this applies to the stack, frame or arg pointers. */
12060 if (regno == STACK_POINTER_REGNUM
12061 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
12062 || regno == HARD_FRAME_POINTER_REGNUM
12063 #endif
12064 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
12065 || (regno == ARG_POINTER_REGNUM && fixed_regs[regno])
12066 #endif
12067 || regno == FRAME_POINTER_REGNUM)
12068 return;
12069
12070 add_to_hard_reg_set (&newpat_used_regs, GET_MODE (x), regno);
12071 }
12072 return;
12073
12074 case SET:
12075 {
12076 /* If setting a MEM, or a SUBREG of a MEM, then note any hard regs in
12077 the address. */
12078 rtx testreg = SET_DEST (x);
12079
12080 while (GET_CODE (testreg) == SUBREG
12081 || GET_CODE (testreg) == ZERO_EXTRACT
12082 || GET_CODE (testreg) == STRICT_LOW_PART)
12083 testreg = XEXP (testreg, 0);
12084
12085 if (MEM_P (testreg))
12086 mark_used_regs_combine (XEXP (testreg, 0));
12087
12088 mark_used_regs_combine (SET_SRC (x));
12089 }
12090 return;
12091
12092 default:
12093 break;
12094 }
12095
12096 /* Recursively scan the operands of this expression. */
12097
12098 {
12099 const char *fmt = GET_RTX_FORMAT (code);
12100
12101 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
12102 {
12103 if (fmt[i] == 'e')
12104 mark_used_regs_combine (XEXP (x, i));
12105 else if (fmt[i] == 'E')
12106 {
12107 int j;
12108
12109 for (j = 0; j < XVECLEN (x, i); j++)
12110 mark_used_regs_combine (XVECEXP (x, i, j));
12111 }
12112 }
12113 }
12114 }
12115 \f
12116 /* Remove register number REGNO from the dead registers list of INSN.
12117
12118 Return the note used to record the death, if there was one. */
12119
12120 rtx
12121 remove_death (unsigned int regno, rtx insn)
12122 {
12123 rtx note = find_regno_note (insn, REG_DEAD, regno);
12124
12125 if (note)
12126 remove_note (insn, note);
12127
12128 return note;
12129 }
12130
12131 /* For each register (hardware or pseudo) used within expression X, if its
12132 death is in an instruction with luid between FROM_LUID (inclusive) and
12133 TO_INSN (exclusive), put a REG_DEAD note for that register in the
12134 list headed by PNOTES.
12135
12136 That said, don't move registers killed by maybe_kill_insn.
12137
12138 This is done when X is being merged by combination into TO_INSN. These
12139 notes will then be distributed as needed. */
12140
12141 static void
12142 move_deaths (rtx x, rtx maybe_kill_insn, int from_luid, rtx to_insn,
12143 rtx *pnotes)
12144 {
12145 const char *fmt;
12146 int len, i;
12147 enum rtx_code code = GET_CODE (x);
12148
12149 if (code == REG)
12150 {
12151 unsigned int regno = REGNO (x);
12152 rtx where_dead = VEC_index (reg_stat_type, reg_stat, regno)->last_death;
12153
12154 /* Don't move the register if it gets killed in between from and to. */
12155 if (maybe_kill_insn && reg_set_p (x, maybe_kill_insn)
12156 && ! reg_referenced_p (x, maybe_kill_insn))
12157 return;
12158
12159 if (where_dead
12160 && DF_INSN_LUID (where_dead) >= from_luid
12161 && DF_INSN_LUID (where_dead) < DF_INSN_LUID (to_insn))
12162 {
12163 rtx note = remove_death (regno, where_dead);
12164
12165 /* It is possible for the call above to return 0. This can occur
12166 when last_death points to I2 or I1 that we combined with.
12167 In that case make a new note.
12168
12169 We must also check for the case where X is a hard register
12170 and NOTE is a death note for a range of hard registers
12171 including X. In that case, we must put REG_DEAD notes for
12172 the remaining registers in place of NOTE. */
12173
12174 if (note != 0 && regno < FIRST_PSEUDO_REGISTER
12175 && (GET_MODE_SIZE (GET_MODE (XEXP (note, 0)))
12176 > GET_MODE_SIZE (GET_MODE (x))))
12177 {
12178 unsigned int deadregno = REGNO (XEXP (note, 0));
12179 unsigned int deadend = END_HARD_REGNO (XEXP (note, 0));
12180 unsigned int ourend = END_HARD_REGNO (x);
12181 unsigned int i;
12182
12183 for (i = deadregno; i < deadend; i++)
12184 if (i < regno || i >= ourend)
12185 REG_NOTES (where_dead)
12186 = gen_rtx_EXPR_LIST (REG_DEAD,
12187 regno_reg_rtx[i],
12188 REG_NOTES (where_dead));
12189 }
12190
12191 /* If we didn't find any note, or if we found a REG_DEAD note that
12192 covers only part of the given reg, and we have a multi-reg hard
12193 register, then to be safe we must check for REG_DEAD notes
12194 for each register other than the first. They could have
12195 their own REG_DEAD notes lying around. */
12196 else if ((note == 0
12197 || (note != 0
12198 && (GET_MODE_SIZE (GET_MODE (XEXP (note, 0)))
12199 < GET_MODE_SIZE (GET_MODE (x)))))
12200 && regno < FIRST_PSEUDO_REGISTER
12201 && hard_regno_nregs[regno][GET_MODE (x)] > 1)
12202 {
12203 unsigned int ourend = END_HARD_REGNO (x);
12204 unsigned int i, offset;
12205 rtx oldnotes = 0;
12206
12207 if (note)
12208 offset = hard_regno_nregs[regno][GET_MODE (XEXP (note, 0))];
12209 else
12210 offset = 1;
12211
12212 for (i = regno + offset; i < ourend; i++)
12213 move_deaths (regno_reg_rtx[i],
12214 maybe_kill_insn, from_luid, to_insn, &oldnotes);
12215 }
12216
12217 if (note != 0 && GET_MODE (XEXP (note, 0)) == GET_MODE (x))
12218 {
12219 XEXP (note, 1) = *pnotes;
12220 *pnotes = note;
12221 }
12222 else
12223 *pnotes = gen_rtx_EXPR_LIST (REG_DEAD, x, *pnotes);
12224 }
12225
12226 return;
12227 }
12228
12229 else if (GET_CODE (x) == SET)
12230 {
12231 rtx dest = SET_DEST (x);
12232
12233 move_deaths (SET_SRC (x), maybe_kill_insn, from_luid, to_insn, pnotes);
12234
12235 /* In the case of a ZERO_EXTRACT, a STRICT_LOW_PART, or a SUBREG
12236 that accesses one word of a multi-word item, some
12237 piece of everything register in the expression is used by
12238 this insn, so remove any old death. */
12239 /* ??? So why do we test for equality of the sizes? */
12240
12241 if (GET_CODE (dest) == ZERO_EXTRACT
12242 || GET_CODE (dest) == STRICT_LOW_PART
12243 || (GET_CODE (dest) == SUBREG
12244 && (((GET_MODE_SIZE (GET_MODE (dest))
12245 + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
12246 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest)))
12247 + UNITS_PER_WORD - 1) / UNITS_PER_WORD))))
12248 {
12249 move_deaths (dest, maybe_kill_insn, from_luid, to_insn, pnotes);
12250 return;
12251 }
12252
12253 /* If this is some other SUBREG, we know it replaces the entire
12254 value, so use that as the destination. */
12255 if (GET_CODE (dest) == SUBREG)
12256 dest = SUBREG_REG (dest);
12257
12258 /* If this is a MEM, adjust deaths of anything used in the address.
12259 For a REG (the only other possibility), the entire value is
12260 being replaced so the old value is not used in this insn. */
12261
12262 if (MEM_P (dest))
12263 move_deaths (XEXP (dest, 0), maybe_kill_insn, from_luid,
12264 to_insn, pnotes);
12265 return;
12266 }
12267
12268 else if (GET_CODE (x) == CLOBBER)
12269 return;
12270
12271 len = GET_RTX_LENGTH (code);
12272 fmt = GET_RTX_FORMAT (code);
12273
12274 for (i = 0; i < len; i++)
12275 {
12276 if (fmt[i] == 'E')
12277 {
12278 int j;
12279 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
12280 move_deaths (XVECEXP (x, i, j), maybe_kill_insn, from_luid,
12281 to_insn, pnotes);
12282 }
12283 else if (fmt[i] == 'e')
12284 move_deaths (XEXP (x, i), maybe_kill_insn, from_luid, to_insn, pnotes);
12285 }
12286 }
12287 \f
12288 /* Return 1 if X is the target of a bit-field assignment in BODY, the
12289 pattern of an insn. X must be a REG. */
12290
12291 static int
12292 reg_bitfield_target_p (rtx x, rtx body)
12293 {
12294 int i;
12295
12296 if (GET_CODE (body) == SET)
12297 {
12298 rtx dest = SET_DEST (body);
12299 rtx target;
12300 unsigned int regno, tregno, endregno, endtregno;
12301
12302 if (GET_CODE (dest) == ZERO_EXTRACT)
12303 target = XEXP (dest, 0);
12304 else if (GET_CODE (dest) == STRICT_LOW_PART)
12305 target = SUBREG_REG (XEXP (dest, 0));
12306 else
12307 return 0;
12308
12309 if (GET_CODE (target) == SUBREG)
12310 target = SUBREG_REG (target);
12311
12312 if (!REG_P (target))
12313 return 0;
12314
12315 tregno = REGNO (target), regno = REGNO (x);
12316 if (tregno >= FIRST_PSEUDO_REGISTER || regno >= FIRST_PSEUDO_REGISTER)
12317 return target == x;
12318
12319 endtregno = end_hard_regno (GET_MODE (target), tregno);
12320 endregno = end_hard_regno (GET_MODE (x), regno);
12321
12322 return endregno > tregno && regno < endtregno;
12323 }
12324
12325 else if (GET_CODE (body) == PARALLEL)
12326 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
12327 if (reg_bitfield_target_p (x, XVECEXP (body, 0, i)))
12328 return 1;
12329
12330 return 0;
12331 }
12332 \f
12333 /* Given a chain of REG_NOTES originally from FROM_INSN, try to place them
12334 as appropriate. I3 and I2 are the insns resulting from the combination
12335 insns including FROM (I2 may be zero).
12336
12337 ELIM_I2 and ELIM_I1 are either zero or registers that we know will
12338 not need REG_DEAD notes because they are being substituted for. This
12339 saves searching in the most common cases.
12340
12341 Each note in the list is either ignored or placed on some insns, depending
12342 on the type of note. */
12343
12344 static void
12345 distribute_notes (rtx notes, rtx from_insn, rtx i3, rtx i2, rtx elim_i2,
12346 rtx elim_i1)
12347 {
12348 rtx note, next_note;
12349 rtx tem;
12350
12351 for (note = notes; note; note = next_note)
12352 {
12353 rtx place = 0, place2 = 0;
12354
12355 next_note = XEXP (note, 1);
12356 switch (REG_NOTE_KIND (note))
12357 {
12358 case REG_BR_PROB:
12359 case REG_BR_PRED:
12360 /* Doesn't matter much where we put this, as long as it's somewhere.
12361 It is preferable to keep these notes on branches, which is most
12362 likely to be i3. */
12363 place = i3;
12364 break;
12365
12366 case REG_VALUE_PROFILE:
12367 /* Just get rid of this note, as it is unused later anyway. */
12368 break;
12369
12370 case REG_NON_LOCAL_GOTO:
12371 if (JUMP_P (i3))
12372 place = i3;
12373 else
12374 {
12375 gcc_assert (i2 && JUMP_P (i2));
12376 place = i2;
12377 }
12378 break;
12379
12380 case REG_EH_REGION:
12381 /* These notes must remain with the call or trapping instruction. */
12382 if (CALL_P (i3))
12383 place = i3;
12384 else if (i2 && CALL_P (i2))
12385 place = i2;
12386 else
12387 {
12388 gcc_assert (flag_non_call_exceptions);
12389 if (may_trap_p (i3))
12390 place = i3;
12391 else if (i2 && may_trap_p (i2))
12392 place = i2;
12393 /* ??? Otherwise assume we've combined things such that we
12394 can now prove that the instructions can't trap. Drop the
12395 note in this case. */
12396 }
12397 break;
12398
12399 case REG_NORETURN:
12400 case REG_SETJMP:
12401 /* These notes must remain with the call. It should not be
12402 possible for both I2 and I3 to be a call. */
12403 if (CALL_P (i3))
12404 place = i3;
12405 else
12406 {
12407 gcc_assert (i2 && CALL_P (i2));
12408 place = i2;
12409 }
12410 break;
12411
12412 case REG_UNUSED:
12413 /* Any clobbers for i3 may still exist, and so we must process
12414 REG_UNUSED notes from that insn.
12415
12416 Any clobbers from i2 or i1 can only exist if they were added by
12417 recog_for_combine. In that case, recog_for_combine created the
12418 necessary REG_UNUSED notes. Trying to keep any original
12419 REG_UNUSED notes from these insns can cause incorrect output
12420 if it is for the same register as the original i3 dest.
12421 In that case, we will notice that the register is set in i3,
12422 and then add a REG_UNUSED note for the destination of i3, which
12423 is wrong. However, it is possible to have REG_UNUSED notes from
12424 i2 or i1 for register which were both used and clobbered, so
12425 we keep notes from i2 or i1 if they will turn into REG_DEAD
12426 notes. */
12427
12428 /* If this register is set or clobbered in I3, put the note there
12429 unless there is one already. */
12430 if (reg_set_p (XEXP (note, 0), PATTERN (i3)))
12431 {
12432 if (from_insn != i3)
12433 break;
12434
12435 if (! (REG_P (XEXP (note, 0))
12436 ? find_regno_note (i3, REG_UNUSED, REGNO (XEXP (note, 0)))
12437 : find_reg_note (i3, REG_UNUSED, XEXP (note, 0))))
12438 place = i3;
12439 }
12440 /* Otherwise, if this register is used by I3, then this register
12441 now dies here, so we must put a REG_DEAD note here unless there
12442 is one already. */
12443 else if (reg_referenced_p (XEXP (note, 0), PATTERN (i3))
12444 && ! (REG_P (XEXP (note, 0))
12445 ? find_regno_note (i3, REG_DEAD,
12446 REGNO (XEXP (note, 0)))
12447 : find_reg_note (i3, REG_DEAD, XEXP (note, 0))))
12448 {
12449 PUT_REG_NOTE_KIND (note, REG_DEAD);
12450 place = i3;
12451 }
12452 break;
12453
12454 case REG_EQUAL:
12455 case REG_EQUIV:
12456 case REG_NOALIAS:
12457 /* These notes say something about results of an insn. We can
12458 only support them if they used to be on I3 in which case they
12459 remain on I3. Otherwise they are ignored.
12460
12461 If the note refers to an expression that is not a constant, we
12462 must also ignore the note since we cannot tell whether the
12463 equivalence is still true. It might be possible to do
12464 slightly better than this (we only have a problem if I2DEST
12465 or I1DEST is present in the expression), but it doesn't
12466 seem worth the trouble. */
12467
12468 if (from_insn == i3
12469 && (XEXP (note, 0) == 0 || CONSTANT_P (XEXP (note, 0))))
12470 place = i3;
12471 break;
12472
12473 case REG_INC:
12474 /* These notes say something about how a register is used. They must
12475 be present on any use of the register in I2 or I3. */
12476 if (reg_mentioned_p (XEXP (note, 0), PATTERN (i3)))
12477 place = i3;
12478
12479 if (i2 && reg_mentioned_p (XEXP (note, 0), PATTERN (i2)))
12480 {
12481 if (place)
12482 place2 = i2;
12483 else
12484 place = i2;
12485 }
12486 break;
12487
12488 case REG_LABEL_TARGET:
12489 case REG_LABEL_OPERAND:
12490 /* This can show up in several ways -- either directly in the
12491 pattern, or hidden off in the constant pool with (or without?)
12492 a REG_EQUAL note. */
12493 /* ??? Ignore the without-reg_equal-note problem for now. */
12494 if (reg_mentioned_p (XEXP (note, 0), PATTERN (i3))
12495 || ((tem = find_reg_note (i3, REG_EQUAL, NULL_RTX))
12496 && GET_CODE (XEXP (tem, 0)) == LABEL_REF
12497 && XEXP (XEXP (tem, 0), 0) == XEXP (note, 0)))
12498 place = i3;
12499
12500 if (i2
12501 && (reg_mentioned_p (XEXP (note, 0), PATTERN (i2))
12502 || ((tem = find_reg_note (i2, REG_EQUAL, NULL_RTX))
12503 && GET_CODE (XEXP (tem, 0)) == LABEL_REF
12504 && XEXP (XEXP (tem, 0), 0) == XEXP (note, 0))))
12505 {
12506 if (place)
12507 place2 = i2;
12508 else
12509 place = i2;
12510 }
12511
12512 /* For REG_LABEL_TARGET on a JUMP_P, we prefer to put the note
12513 as a JUMP_LABEL or decrement LABEL_NUSES if it's already
12514 there. */
12515 if (place && JUMP_P (place)
12516 && REG_NOTE_KIND (note) == REG_LABEL_TARGET
12517 && (JUMP_LABEL (place) == NULL
12518 || JUMP_LABEL (place) == XEXP (note, 0)))
12519 {
12520 rtx label = JUMP_LABEL (place);
12521
12522 if (!label)
12523 JUMP_LABEL (place) = XEXP (note, 0);
12524 else if (LABEL_P (label))
12525 LABEL_NUSES (label)--;
12526 }
12527
12528 if (place2 && JUMP_P (place2)
12529 && REG_NOTE_KIND (note) == REG_LABEL_TARGET
12530 && (JUMP_LABEL (place2) == NULL
12531 || JUMP_LABEL (place2) == XEXP (note, 0)))
12532 {
12533 rtx label = JUMP_LABEL (place2);
12534
12535 if (!label)
12536 JUMP_LABEL (place2) = XEXP (note, 0);
12537 else if (LABEL_P (label))
12538 LABEL_NUSES (label)--;
12539 place2 = 0;
12540 }
12541 break;
12542
12543 case REG_NONNEG:
12544 /* This note says something about the value of a register prior
12545 to the execution of an insn. It is too much trouble to see
12546 if the note is still correct in all situations. It is better
12547 to simply delete it. */
12548 break;
12549
12550 case REG_RETVAL:
12551 /* If the insn previously containing this note still exists,
12552 put it back where it was. Otherwise move it to the previous
12553 insn. Adjust the corresponding REG_LIBCALL note. */
12554 if (!NOTE_P (from_insn))
12555 place = from_insn;
12556 else
12557 {
12558 tem = find_reg_note (XEXP (note, 0), REG_LIBCALL, NULL_RTX);
12559 place = prev_real_insn (from_insn);
12560 if (tem && place)
12561 XEXP (tem, 0) = place;
12562 /* If we're deleting the last remaining instruction of a
12563 libcall sequence, don't add the notes. */
12564 else if (XEXP (note, 0) == from_insn)
12565 tem = place = 0;
12566 /* Don't add the dangling REG_RETVAL note. */
12567 else if (! tem)
12568 place = 0;
12569 }
12570 break;
12571
12572 case REG_LIBCALL:
12573 /* This is handled similarly to REG_RETVAL. */
12574 if (!NOTE_P (from_insn))
12575 place = from_insn;
12576 else
12577 {
12578 tem = find_reg_note (XEXP (note, 0), REG_RETVAL, NULL_RTX);
12579 place = next_real_insn (from_insn);
12580 if (tem && place)
12581 XEXP (tem, 0) = place;
12582 /* If we're deleting the last remaining instruction of a
12583 libcall sequence, don't add the notes. */
12584 else if (XEXP (note, 0) == from_insn)
12585 tem = place = 0;
12586 /* Don't add the dangling REG_LIBCALL note. */
12587 else if (! tem)
12588 place = 0;
12589 }
12590 break;
12591
12592 case REG_DEAD:
12593 /* If we replaced the right hand side of FROM_INSN with a
12594 REG_EQUAL note, the original use of the dying register
12595 will not have been combined into I3 and I2. In such cases,
12596 FROM_INSN is guaranteed to be the first of the combined
12597 instructions, so we simply need to search back before
12598 FROM_INSN for the previous use or set of this register,
12599 then alter the notes there appropriately.
12600
12601 If the register is used as an input in I3, it dies there.
12602 Similarly for I2, if it is nonzero and adjacent to I3.
12603
12604 If the register is not used as an input in either I3 or I2
12605 and it is not one of the registers we were supposed to eliminate,
12606 there are two possibilities. We might have a non-adjacent I2
12607 or we might have somehow eliminated an additional register
12608 from a computation. For example, we might have had A & B where
12609 we discover that B will always be zero. In this case we will
12610 eliminate the reference to A.
12611
12612 In both cases, we must search to see if we can find a previous
12613 use of A and put the death note there. */
12614
12615 if (from_insn
12616 && from_insn == i2mod
12617 && !reg_overlap_mentioned_p (XEXP (note, 0), i2mod_new_rhs))
12618 tem = from_insn;
12619 else
12620 {
12621 if (from_insn
12622 && CALL_P (from_insn)
12623 && find_reg_fusage (from_insn, USE, XEXP (note, 0)))
12624 place = from_insn;
12625 else if (reg_referenced_p (XEXP (note, 0), PATTERN (i3)))
12626 place = i3;
12627 else if (i2 != 0 && next_nonnote_insn (i2) == i3
12628 && reg_referenced_p (XEXP (note, 0), PATTERN (i2)))
12629 place = i2;
12630 else if ((rtx_equal_p (XEXP (note, 0), elim_i2)
12631 && !(i2mod
12632 && reg_overlap_mentioned_p (XEXP (note, 0),
12633 i2mod_old_rhs)))
12634 || rtx_equal_p (XEXP (note, 0), elim_i1))
12635 break;
12636 tem = i3;
12637 }
12638
12639 if (place == 0)
12640 {
12641 basic_block bb = this_basic_block;
12642
12643 for (tem = PREV_INSN (tem); place == 0; tem = PREV_INSN (tem))
12644 {
12645 if (! INSN_P (tem))
12646 {
12647 if (tem == BB_HEAD (bb))
12648 break;
12649 continue;
12650 }
12651
12652 /* If the register is being set at TEM, see if that is all
12653 TEM is doing. If so, delete TEM. Otherwise, make this
12654 into a REG_UNUSED note instead. Don't delete sets to
12655 global register vars. */
12656 if ((REGNO (XEXP (note, 0)) >= FIRST_PSEUDO_REGISTER
12657 || !global_regs[REGNO (XEXP (note, 0))])
12658 && reg_set_p (XEXP (note, 0), PATTERN (tem)))
12659 {
12660 rtx set = single_set (tem);
12661 rtx inner_dest = 0;
12662 #ifdef HAVE_cc0
12663 rtx cc0_setter = NULL_RTX;
12664 #endif
12665
12666 if (set != 0)
12667 for (inner_dest = SET_DEST (set);
12668 (GET_CODE (inner_dest) == STRICT_LOW_PART
12669 || GET_CODE (inner_dest) == SUBREG
12670 || GET_CODE (inner_dest) == ZERO_EXTRACT);
12671 inner_dest = XEXP (inner_dest, 0))
12672 ;
12673
12674 /* Verify that it was the set, and not a clobber that
12675 modified the register.
12676
12677 CC0 targets must be careful to maintain setter/user
12678 pairs. If we cannot delete the setter due to side
12679 effects, mark the user with an UNUSED note instead
12680 of deleting it. */
12681
12682 if (set != 0 && ! side_effects_p (SET_SRC (set))
12683 && rtx_equal_p (XEXP (note, 0), inner_dest)
12684 #ifdef HAVE_cc0
12685 && (! reg_mentioned_p (cc0_rtx, SET_SRC (set))
12686 || ((cc0_setter = prev_cc0_setter (tem)) != NULL
12687 && sets_cc0_p (PATTERN (cc0_setter)) > 0))
12688 #endif
12689 )
12690 {
12691 /* Move the notes and links of TEM elsewhere.
12692 This might delete other dead insns recursively.
12693 First set the pattern to something that won't use
12694 any register. */
12695 rtx old_notes = REG_NOTES (tem);
12696
12697 PATTERN (tem) = pc_rtx;
12698 REG_NOTES (tem) = NULL;
12699
12700 distribute_notes (old_notes, tem, tem, NULL_RTX,
12701 NULL_RTX, NULL_RTX);
12702 distribute_links (LOG_LINKS (tem));
12703
12704 SET_INSN_DELETED (tem);
12705
12706 #ifdef HAVE_cc0
12707 /* Delete the setter too. */
12708 if (cc0_setter)
12709 {
12710 PATTERN (cc0_setter) = pc_rtx;
12711 old_notes = REG_NOTES (cc0_setter);
12712 REG_NOTES (cc0_setter) = NULL;
12713
12714 distribute_notes (old_notes, cc0_setter,
12715 cc0_setter, NULL_RTX,
12716 NULL_RTX, NULL_RTX);
12717 distribute_links (LOG_LINKS (cc0_setter));
12718
12719 SET_INSN_DELETED (cc0_setter);
12720 }
12721 #endif
12722 }
12723 else
12724 {
12725 PUT_REG_NOTE_KIND (note, REG_UNUSED);
12726
12727 /* If there isn't already a REG_UNUSED note, put one
12728 here. Do not place a REG_DEAD note, even if
12729 the register is also used here; that would not
12730 match the algorithm used in lifetime analysis
12731 and can cause the consistency check in the
12732 scheduler to fail. */
12733 if (! find_regno_note (tem, REG_UNUSED,
12734 REGNO (XEXP (note, 0))))
12735 place = tem;
12736 break;
12737 }
12738 }
12739 else if (reg_referenced_p (XEXP (note, 0), PATTERN (tem))
12740 || (CALL_P (tem)
12741 && find_reg_fusage (tem, USE, XEXP (note, 0))))
12742 {
12743 place = tem;
12744
12745 /* If we are doing a 3->2 combination, and we have a
12746 register which formerly died in i3 and was not used
12747 by i2, which now no longer dies in i3 and is used in
12748 i2 but does not die in i2, and place is between i2
12749 and i3, then we may need to move a link from place to
12750 i2. */
12751 if (i2 && DF_INSN_LUID (place) > DF_INSN_LUID (i2)
12752 && from_insn
12753 && DF_INSN_LUID (from_insn) > DF_INSN_LUID (i2)
12754 && reg_referenced_p (XEXP (note, 0), PATTERN (i2)))
12755 {
12756 rtx links = LOG_LINKS (place);
12757 LOG_LINKS (place) = 0;
12758 distribute_links (links);
12759 }
12760 break;
12761 }
12762
12763 if (tem == BB_HEAD (bb))
12764 break;
12765 }
12766
12767 }
12768
12769 /* If the register is set or already dead at PLACE, we needn't do
12770 anything with this note if it is still a REG_DEAD note.
12771 We check here if it is set at all, not if is it totally replaced,
12772 which is what `dead_or_set_p' checks, so also check for it being
12773 set partially. */
12774
12775 if (place && REG_NOTE_KIND (note) == REG_DEAD)
12776 {
12777 unsigned int regno = REGNO (XEXP (note, 0));
12778 reg_stat_type *rsp = VEC_index (reg_stat_type, reg_stat, regno);
12779
12780 if (dead_or_set_p (place, XEXP (note, 0))
12781 || reg_bitfield_target_p (XEXP (note, 0), PATTERN (place)))
12782 {
12783 /* Unless the register previously died in PLACE, clear
12784 last_death. [I no longer understand why this is
12785 being done.] */
12786 if (rsp->last_death != place)
12787 rsp->last_death = 0;
12788 place = 0;
12789 }
12790 else
12791 rsp->last_death = place;
12792
12793 /* If this is a death note for a hard reg that is occupying
12794 multiple registers, ensure that we are still using all
12795 parts of the object. If we find a piece of the object
12796 that is unused, we must arrange for an appropriate REG_DEAD
12797 note to be added for it. However, we can't just emit a USE
12798 and tag the note to it, since the register might actually
12799 be dead; so we recourse, and the recursive call then finds
12800 the previous insn that used this register. */
12801
12802 if (place && regno < FIRST_PSEUDO_REGISTER
12803 && hard_regno_nregs[regno][GET_MODE (XEXP (note, 0))] > 1)
12804 {
12805 unsigned int endregno = END_HARD_REGNO (XEXP (note, 0));
12806 int all_used = 1;
12807 unsigned int i;
12808
12809 for (i = regno; i < endregno; i++)
12810 if ((! refers_to_regno_p (i, i + 1, PATTERN (place), 0)
12811 && ! find_regno_fusage (place, USE, i))
12812 || dead_or_set_regno_p (place, i))
12813 all_used = 0;
12814
12815 if (! all_used)
12816 {
12817 /* Put only REG_DEAD notes for pieces that are
12818 not already dead or set. */
12819
12820 for (i = regno; i < endregno;
12821 i += hard_regno_nregs[i][reg_raw_mode[i]])
12822 {
12823 rtx piece = regno_reg_rtx[i];
12824 basic_block bb = this_basic_block;
12825
12826 if (! dead_or_set_p (place, piece)
12827 && ! reg_bitfield_target_p (piece,
12828 PATTERN (place)))
12829 {
12830 rtx new_note
12831 = gen_rtx_EXPR_LIST (REG_DEAD, piece, NULL_RTX);
12832
12833 distribute_notes (new_note, place, place,
12834 NULL_RTX, NULL_RTX, NULL_RTX);
12835 }
12836 else if (! refers_to_regno_p (i, i + 1,
12837 PATTERN (place), 0)
12838 && ! find_regno_fusage (place, USE, i))
12839 for (tem = PREV_INSN (place); ;
12840 tem = PREV_INSN (tem))
12841 {
12842 if (! INSN_P (tem))
12843 {
12844 if (tem == BB_HEAD (bb))
12845 break;
12846 continue;
12847 }
12848 if (dead_or_set_p (tem, piece)
12849 || reg_bitfield_target_p (piece,
12850 PATTERN (tem)))
12851 {
12852 REG_NOTES (tem)
12853 = gen_rtx_EXPR_LIST (REG_UNUSED, piece,
12854 REG_NOTES (tem));
12855 break;
12856 }
12857 }
12858
12859 }
12860
12861 place = 0;
12862 }
12863 }
12864 }
12865 break;
12866
12867 default:
12868 /* Any other notes should not be present at this point in the
12869 compilation. */
12870 gcc_unreachable ();
12871 }
12872
12873 if (place)
12874 {
12875 XEXP (note, 1) = REG_NOTES (place);
12876 REG_NOTES (place) = note;
12877 }
12878
12879 if (place2)
12880 REG_NOTES (place2)
12881 = gen_rtx_fmt_ee (GET_CODE (note), REG_NOTE_KIND (note),
12882 XEXP (note, 0), REG_NOTES (place2));
12883 }
12884 }
12885 \f
12886 /* Similarly to above, distribute the LOG_LINKS that used to be present on
12887 I3, I2, and I1 to new locations. This is also called to add a link
12888 pointing at I3 when I3's destination is changed. */
12889
12890 static void
12891 distribute_links (rtx links)
12892 {
12893 rtx link, next_link;
12894
12895 for (link = links; link; link = next_link)
12896 {
12897 rtx place = 0;
12898 rtx insn;
12899 rtx set, reg;
12900
12901 next_link = XEXP (link, 1);
12902
12903 /* If the insn that this link points to is a NOTE or isn't a single
12904 set, ignore it. In the latter case, it isn't clear what we
12905 can do other than ignore the link, since we can't tell which
12906 register it was for. Such links wouldn't be used by combine
12907 anyway.
12908
12909 It is not possible for the destination of the target of the link to
12910 have been changed by combine. The only potential of this is if we
12911 replace I3, I2, and I1 by I3 and I2. But in that case the
12912 destination of I2 also remains unchanged. */
12913
12914 if (NOTE_P (XEXP (link, 0))
12915 || (set = single_set (XEXP (link, 0))) == 0)
12916 continue;
12917
12918 reg = SET_DEST (set);
12919 while (GET_CODE (reg) == SUBREG || GET_CODE (reg) == ZERO_EXTRACT
12920 || GET_CODE (reg) == STRICT_LOW_PART)
12921 reg = XEXP (reg, 0);
12922
12923 /* A LOG_LINK is defined as being placed on the first insn that uses
12924 a register and points to the insn that sets the register. Start
12925 searching at the next insn after the target of the link and stop
12926 when we reach a set of the register or the end of the basic block.
12927
12928 Note that this correctly handles the link that used to point from
12929 I3 to I2. Also note that not much searching is typically done here
12930 since most links don't point very far away. */
12931
12932 for (insn = NEXT_INSN (XEXP (link, 0));
12933 (insn && (this_basic_block->next_bb == EXIT_BLOCK_PTR
12934 || BB_HEAD (this_basic_block->next_bb) != insn));
12935 insn = NEXT_INSN (insn))
12936 if (INSN_P (insn) && reg_overlap_mentioned_p (reg, PATTERN (insn)))
12937 {
12938 if (reg_referenced_p (reg, PATTERN (insn)))
12939 place = insn;
12940 break;
12941 }
12942 else if (CALL_P (insn)
12943 && find_reg_fusage (insn, USE, reg))
12944 {
12945 place = insn;
12946 break;
12947 }
12948 else if (INSN_P (insn) && reg_set_p (reg, insn))
12949 break;
12950
12951 /* If we found a place to put the link, place it there unless there
12952 is already a link to the same insn as LINK at that point. */
12953
12954 if (place)
12955 {
12956 rtx link2;
12957
12958 for (link2 = LOG_LINKS (place); link2; link2 = XEXP (link2, 1))
12959 if (XEXP (link2, 0) == XEXP (link, 0))
12960 break;
12961
12962 if (link2 == 0)
12963 {
12964 XEXP (link, 1) = LOG_LINKS (place);
12965 LOG_LINKS (place) = link;
12966
12967 /* Set added_links_insn to the earliest insn we added a
12968 link to. */
12969 if (added_links_insn == 0
12970 || DF_INSN_LUID (added_links_insn) > DF_INSN_LUID (place))
12971 added_links_insn = place;
12972 }
12973 }
12974 }
12975 }
12976 \f
12977 /* Subroutine of unmentioned_reg_p and callback from for_each_rtx.
12978 Check whether the expression pointer to by LOC is a register or
12979 memory, and if so return 1 if it isn't mentioned in the rtx EXPR.
12980 Otherwise return zero. */
12981
12982 static int
12983 unmentioned_reg_p_1 (rtx *loc, void *expr)
12984 {
12985 rtx x = *loc;
12986
12987 if (x != NULL_RTX
12988 && (REG_P (x) || MEM_P (x))
12989 && ! reg_mentioned_p (x, (rtx) expr))
12990 return 1;
12991 return 0;
12992 }
12993
12994 /* Check for any register or memory mentioned in EQUIV that is not
12995 mentioned in EXPR. This is used to restrict EQUIV to "specializations"
12996 of EXPR where some registers may have been replaced by constants. */
12997
12998 static bool
12999 unmentioned_reg_p (rtx equiv, rtx expr)
13000 {
13001 return for_each_rtx (&equiv, unmentioned_reg_p_1, expr);
13002 }
13003 \f
13004 void
13005 dump_combine_stats (FILE *file)
13006 {
13007 fprintf
13008 (file,
13009 ";; Combiner statistics: %d attempts, %d substitutions (%d requiring new space),\n;; %d successes.\n\n",
13010 combine_attempts, combine_merges, combine_extras, combine_successes);
13011 }
13012
13013 void
13014 dump_combine_total_stats (FILE *file)
13015 {
13016 fprintf
13017 (file,
13018 "\n;; Combiner totals: %d attempts, %d substitutions (%d requiring new space),\n;; %d successes.\n",
13019 total_attempts, total_merges, total_extras, total_successes);
13020 }
13021 \f
13022 static bool
13023 gate_handle_combine (void)
13024 {
13025 return (optimize > 0);
13026 }
13027
13028 /* Try combining insns through substitution. */
13029 static unsigned int
13030 rest_of_handle_combine (void)
13031 {
13032 int rebuild_jump_labels_after_combine;
13033
13034 df_set_flags (DF_LR_RUN_DCE + DF_DEFER_INSN_RESCAN);
13035 df_note_add_problem ();
13036 df_analyze ();
13037
13038 regstat_init_n_sets_and_refs ();
13039
13040 rebuild_jump_labels_after_combine
13041 = combine_instructions (get_insns (), max_reg_num ());
13042
13043 /* Combining insns may have turned an indirect jump into a
13044 direct jump. Rebuild the JUMP_LABEL fields of jumping
13045 instructions. */
13046 if (rebuild_jump_labels_after_combine)
13047 {
13048 timevar_push (TV_JUMP);
13049 rebuild_jump_labels (get_insns ());
13050 cleanup_cfg (0);
13051 timevar_pop (TV_JUMP);
13052 }
13053
13054 regstat_free_n_sets_and_refs ();
13055 return 0;
13056 }
13057
13058 struct rtl_opt_pass pass_combine =
13059 {
13060 {
13061 RTL_PASS,
13062 "combine", /* name */
13063 gate_handle_combine, /* gate */
13064 rest_of_handle_combine, /* execute */
13065 NULL, /* sub */
13066 NULL, /* next */
13067 0, /* static_pass_number */
13068 TV_COMBINE, /* tv_id */
13069 0, /* properties_required */
13070 0, /* properties_provided */
13071 0, /* properties_destroyed */
13072 0, /* todo_flags_start */
13073 TODO_dump_func |
13074 TODO_df_finish | TODO_verify_rtl_sharing |
13075 TODO_ggc_collect, /* todo_flags_finish */
13076 }
13077 };
13078