[multiple changes]
[gcc.git] / gcc / combine.c
1 /* Optimize by combining instructions for GNU compiler.
2 Copyright (C) 1987-2015 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 /* This module is essentially the "combiner" phase of the U. of Arizona
21 Portable Optimizer, but redone to work on our list-structured
22 representation for RTL instead of their string representation.
23
24 The LOG_LINKS of each insn identify the most recent assignment
25 to each REG used in the insn. It is a list of previous insns,
26 each of which contains a SET for a REG that is used in this insn
27 and not used or set in between. LOG_LINKs never cross basic blocks.
28 They were set up by the preceding pass (lifetime analysis).
29
30 We try to combine each pair of insns joined by a logical link.
31 We also try to combine triplets of insns A, B and C when C has
32 a link back to B and B has a link back to A. Likewise for a
33 small number of quadruplets of insns A, B, C and D for which
34 there's high likelihood of success.
35
36 LOG_LINKS does not have links for use of the CC0. They don't
37 need to, because the insn that sets the CC0 is always immediately
38 before the insn that tests it. So we always regard a branch
39 insn as having a logical link to the preceding insn. The same is true
40 for an insn explicitly using CC0.
41
42 We check (with use_crosses_set_p) to avoid combining in such a way
43 as to move a computation to a place where its value would be different.
44
45 Combination is done by mathematically substituting the previous
46 insn(s) values for the regs they set into the expressions in
47 the later insns that refer to these regs. If the result is a valid insn
48 for our target machine, according to the machine description,
49 we install it, delete the earlier insns, and update the data flow
50 information (LOG_LINKS and REG_NOTES) for what we did.
51
52 There are a few exceptions where the dataflow information isn't
53 completely updated (however this is only a local issue since it is
54 regenerated before the next pass that uses it):
55
56 - reg_live_length is not updated
57 - reg_n_refs is not adjusted in the rare case when a register is
58 no longer required in a computation
59 - there are extremely rare cases (see distribute_notes) when a
60 REG_DEAD note is lost
61 - a LOG_LINKS entry that refers to an insn with multiple SETs may be
62 removed because there is no way to know which register it was
63 linking
64
65 To simplify substitution, we combine only when the earlier insn(s)
66 consist of only a single assignment. To simplify updating afterward,
67 we never combine when a subroutine call appears in the middle.
68
69 Since we do not represent assignments to CC0 explicitly except when that
70 is all an insn does, there is no LOG_LINKS entry in an insn that uses
71 the condition code for the insn that set the condition code.
72 Fortunately, these two insns must be consecutive.
73 Therefore, every JUMP_INSN is taken to have an implicit logical link
74 to the preceding insn. This is not quite right, since non-jumps can
75 also use the condition code; but in practice such insns would not
76 combine anyway. */
77
78 #include "config.h"
79 #include "system.h"
80 #include "coretypes.h"
81 #include "backend.h"
82 #include "target.h"
83 #include "rtl.h"
84 #include "tree.h"
85 #include "predict.h"
86 #include "df.h"
87 #include "tm_p.h"
88 #include "optabs.h"
89 #include "regs.h"
90 #include "emit-rtl.h"
91 #include "recog.h"
92 #include "cgraph.h"
93 #include "stor-layout.h"
94 #include "cfgrtl.h"
95 #include "cfgcleanup.h"
96 /* Include expr.h after insn-config.h so we get HAVE_conditional_move. */
97 #include "explow.h"
98 #include "insn-attr.h"
99 #include "rtlhooks-def.h"
100 #include "params.h"
101 #include "tree-pass.h"
102 #include "valtrack.h"
103 #include "rtl-iter.h"
104 #include "print-rtl.h"
105
106 #ifndef LOAD_EXTEND_OP
107 #define LOAD_EXTEND_OP(M) UNKNOWN
108 #endif
109
110 /* Number of attempts to combine instructions in this function. */
111
112 static int combine_attempts;
113
114 /* Number of attempts that got as far as substitution in this function. */
115
116 static int combine_merges;
117
118 /* Number of instructions combined with added SETs in this function. */
119
120 static int combine_extras;
121
122 /* Number of instructions combined in this function. */
123
124 static int combine_successes;
125
126 /* Totals over entire compilation. */
127
128 static int total_attempts, total_merges, total_extras, total_successes;
129
130 /* combine_instructions may try to replace the right hand side of the
131 second instruction with the value of an associated REG_EQUAL note
132 before throwing it at try_combine. That is problematic when there
133 is a REG_DEAD note for a register used in the old right hand side
134 and can cause distribute_notes to do wrong things. This is the
135 second instruction if it has been so modified, null otherwise. */
136
137 static rtx_insn *i2mod;
138
139 /* When I2MOD is nonnull, this is a copy of the old right hand side. */
140
141 static rtx i2mod_old_rhs;
142
143 /* When I2MOD is nonnull, this is a copy of the new right hand side. */
144
145 static rtx i2mod_new_rhs;
146 \f
147 struct reg_stat_type {
148 /* Record last point of death of (hard or pseudo) register n. */
149 rtx_insn *last_death;
150
151 /* Record last point of modification of (hard or pseudo) register n. */
152 rtx_insn *last_set;
153
154 /* The next group of fields allows the recording of the last value assigned
155 to (hard or pseudo) register n. We use this information to see if an
156 operation being processed is redundant given a prior operation performed
157 on the register. For example, an `and' with a constant is redundant if
158 all the zero bits are already known to be turned off.
159
160 We use an approach similar to that used by cse, but change it in the
161 following ways:
162
163 (1) We do not want to reinitialize at each label.
164 (2) It is useful, but not critical, to know the actual value assigned
165 to a register. Often just its form is helpful.
166
167 Therefore, we maintain the following fields:
168
169 last_set_value the last value assigned
170 last_set_label records the value of label_tick when the
171 register was assigned
172 last_set_table_tick records the value of label_tick when a
173 value using the register is assigned
174 last_set_invalid set to nonzero when it is not valid
175 to use the value of this register in some
176 register's value
177
178 To understand the usage of these tables, it is important to understand
179 the distinction between the value in last_set_value being valid and
180 the register being validly contained in some other expression in the
181 table.
182
183 (The next two parameters are out of date).
184
185 reg_stat[i].last_set_value is valid if it is nonzero, and either
186 reg_n_sets[i] is 1 or reg_stat[i].last_set_label == label_tick.
187
188 Register I may validly appear in any expression returned for the value
189 of another register if reg_n_sets[i] is 1. It may also appear in the
190 value for register J if reg_stat[j].last_set_invalid is zero, or
191 reg_stat[i].last_set_label < reg_stat[j].last_set_label.
192
193 If an expression is found in the table containing a register which may
194 not validly appear in an expression, the register is replaced by
195 something that won't match, (clobber (const_int 0)). */
196
197 /* Record last value assigned to (hard or pseudo) register n. */
198
199 rtx last_set_value;
200
201 /* Record the value of label_tick when an expression involving register n
202 is placed in last_set_value. */
203
204 int last_set_table_tick;
205
206 /* Record the value of label_tick when the value for register n is placed in
207 last_set_value. */
208
209 int last_set_label;
210
211 /* These fields are maintained in parallel with last_set_value and are
212 used to store the mode in which the register was last set, the bits
213 that were known to be zero when it was last set, and the number of
214 sign bits copies it was known to have when it was last set. */
215
216 unsigned HOST_WIDE_INT last_set_nonzero_bits;
217 char last_set_sign_bit_copies;
218 ENUM_BITFIELD(machine_mode) last_set_mode : 8;
219
220 /* Set nonzero if references to register n in expressions should not be
221 used. last_set_invalid is set nonzero when this register is being
222 assigned to and last_set_table_tick == label_tick. */
223
224 char last_set_invalid;
225
226 /* Some registers that are set more than once and used in more than one
227 basic block are nevertheless always set in similar ways. For example,
228 a QImode register may be loaded from memory in two places on a machine
229 where byte loads zero extend.
230
231 We record in the following fields if a register has some leading bits
232 that are always equal to the sign bit, and what we know about the
233 nonzero bits of a register, specifically which bits are known to be
234 zero.
235
236 If an entry is zero, it means that we don't know anything special. */
237
238 unsigned char sign_bit_copies;
239
240 unsigned HOST_WIDE_INT nonzero_bits;
241
242 /* Record the value of the label_tick when the last truncation
243 happened. The field truncated_to_mode is only valid if
244 truncation_label == label_tick. */
245
246 int truncation_label;
247
248 /* Record the last truncation seen for this register. If truncation
249 is not a nop to this mode we might be able to save an explicit
250 truncation if we know that value already contains a truncated
251 value. */
252
253 ENUM_BITFIELD(machine_mode) truncated_to_mode : 8;
254 };
255
256
257 static vec<reg_stat_type> reg_stat;
258
259 /* One plus the highest pseudo for which we track REG_N_SETS.
260 regstat_init_n_sets_and_refs allocates the array for REG_N_SETS just once,
261 but during combine_split_insns new pseudos can be created. As we don't have
262 updated DF information in that case, it is hard to initialize the array
263 after growing. The combiner only cares about REG_N_SETS (regno) == 1,
264 so instead of growing the arrays, just assume all newly created pseudos
265 during combine might be set multiple times. */
266
267 static unsigned int reg_n_sets_max;
268
269 /* Record the luid of the last insn that invalidated memory
270 (anything that writes memory, and subroutine calls, but not pushes). */
271
272 static int mem_last_set;
273
274 /* Record the luid of the last CALL_INSN
275 so we can tell whether a potential combination crosses any calls. */
276
277 static int last_call_luid;
278
279 /* When `subst' is called, this is the insn that is being modified
280 (by combining in a previous insn). The PATTERN of this insn
281 is still the old pattern partially modified and it should not be
282 looked at, but this may be used to examine the successors of the insn
283 to judge whether a simplification is valid. */
284
285 static rtx_insn *subst_insn;
286
287 /* This is the lowest LUID that `subst' is currently dealing with.
288 get_last_value will not return a value if the register was set at or
289 after this LUID. If not for this mechanism, we could get confused if
290 I2 or I1 in try_combine were an insn that used the old value of a register
291 to obtain a new value. In that case, we might erroneously get the
292 new value of the register when we wanted the old one. */
293
294 static int subst_low_luid;
295
296 /* This contains any hard registers that are used in newpat; reg_dead_at_p
297 must consider all these registers to be always live. */
298
299 static HARD_REG_SET newpat_used_regs;
300
301 /* This is an insn to which a LOG_LINKS entry has been added. If this
302 insn is the earlier than I2 or I3, combine should rescan starting at
303 that location. */
304
305 static rtx_insn *added_links_insn;
306
307 /* Basic block in which we are performing combines. */
308 static basic_block this_basic_block;
309 static bool optimize_this_for_speed_p;
310
311 \f
312 /* Length of the currently allocated uid_insn_cost array. */
313
314 static int max_uid_known;
315
316 /* The following array records the insn_rtx_cost for every insn
317 in the instruction stream. */
318
319 static int *uid_insn_cost;
320
321 /* The following array records the LOG_LINKS for every insn in the
322 instruction stream as struct insn_link pointers. */
323
324 struct insn_link {
325 rtx_insn *insn;
326 unsigned int regno;
327 struct insn_link *next;
328 };
329
330 static struct insn_link **uid_log_links;
331
332 #define INSN_COST(INSN) (uid_insn_cost[INSN_UID (INSN)])
333 #define LOG_LINKS(INSN) (uid_log_links[INSN_UID (INSN)])
334
335 #define FOR_EACH_LOG_LINK(L, INSN) \
336 for ((L) = LOG_LINKS (INSN); (L); (L) = (L)->next)
337
338 /* Links for LOG_LINKS are allocated from this obstack. */
339
340 static struct obstack insn_link_obstack;
341
342 /* Allocate a link. */
343
344 static inline struct insn_link *
345 alloc_insn_link (rtx_insn *insn, unsigned int regno, struct insn_link *next)
346 {
347 struct insn_link *l
348 = (struct insn_link *) obstack_alloc (&insn_link_obstack,
349 sizeof (struct insn_link));
350 l->insn = insn;
351 l->regno = regno;
352 l->next = next;
353 return l;
354 }
355
356 /* Incremented for each basic block. */
357
358 static int label_tick;
359
360 /* Reset to label_tick for each extended basic block in scanning order. */
361
362 static int label_tick_ebb_start;
363
364 /* Mode used to compute significance in reg_stat[].nonzero_bits. It is the
365 largest integer mode that can fit in HOST_BITS_PER_WIDE_INT. */
366
367 static machine_mode nonzero_bits_mode;
368
369 /* Nonzero when reg_stat[].nonzero_bits and reg_stat[].sign_bit_copies can
370 be safely used. It is zero while computing them and after combine has
371 completed. This former test prevents propagating values based on
372 previously set values, which can be incorrect if a variable is modified
373 in a loop. */
374
375 static int nonzero_sign_valid;
376
377 \f
378 /* Record one modification to rtl structure
379 to be undone by storing old_contents into *where. */
380
381 enum undo_kind { UNDO_RTX, UNDO_INT, UNDO_MODE, UNDO_LINKS };
382
383 struct undo
384 {
385 struct undo *next;
386 enum undo_kind kind;
387 union { rtx r; int i; machine_mode m; struct insn_link *l; } old_contents;
388 union { rtx *r; int *i; struct insn_link **l; } where;
389 };
390
391 /* Record a bunch of changes to be undone, up to MAX_UNDO of them.
392 num_undo says how many are currently recorded.
393
394 other_insn is nonzero if we have modified some other insn in the process
395 of working on subst_insn. It must be verified too. */
396
397 struct undobuf
398 {
399 struct undo *undos;
400 struct undo *frees;
401 rtx_insn *other_insn;
402 };
403
404 static struct undobuf undobuf;
405
406 /* Number of times the pseudo being substituted for
407 was found and replaced. */
408
409 static int n_occurrences;
410
411 static rtx reg_nonzero_bits_for_combine (const_rtx, machine_mode, const_rtx,
412 machine_mode,
413 unsigned HOST_WIDE_INT,
414 unsigned HOST_WIDE_INT *);
415 static rtx reg_num_sign_bit_copies_for_combine (const_rtx, machine_mode, const_rtx,
416 machine_mode,
417 unsigned int, unsigned int *);
418 static void do_SUBST (rtx *, rtx);
419 static void do_SUBST_INT (int *, int);
420 static void init_reg_last (void);
421 static void setup_incoming_promotions (rtx_insn *);
422 static void set_nonzero_bits_and_sign_copies (rtx, const_rtx, void *);
423 static int cant_combine_insn_p (rtx_insn *);
424 static int can_combine_p (rtx_insn *, rtx_insn *, rtx_insn *, rtx_insn *,
425 rtx_insn *, rtx_insn *, rtx *, rtx *);
426 static int combinable_i3pat (rtx_insn *, rtx *, rtx, rtx, rtx, int, int, rtx *);
427 static int contains_muldiv (rtx);
428 static rtx_insn *try_combine (rtx_insn *, rtx_insn *, rtx_insn *, rtx_insn *,
429 int *, rtx_insn *);
430 static void undo_all (void);
431 static void undo_commit (void);
432 static rtx *find_split_point (rtx *, rtx_insn *, bool);
433 static rtx subst (rtx, rtx, rtx, int, int, int);
434 static rtx combine_simplify_rtx (rtx, machine_mode, int, int);
435 static rtx simplify_if_then_else (rtx);
436 static rtx simplify_set (rtx);
437 static rtx simplify_logical (rtx);
438 static rtx expand_compound_operation (rtx);
439 static const_rtx expand_field_assignment (const_rtx);
440 static rtx make_extraction (machine_mode, rtx, HOST_WIDE_INT,
441 rtx, unsigned HOST_WIDE_INT, int, int, int);
442 static rtx extract_left_shift (rtx, int);
443 static int get_pos_from_mask (unsigned HOST_WIDE_INT,
444 unsigned HOST_WIDE_INT *);
445 static rtx canon_reg_for_combine (rtx, rtx);
446 static rtx force_to_mode (rtx, machine_mode,
447 unsigned HOST_WIDE_INT, int);
448 static rtx if_then_else_cond (rtx, rtx *, rtx *);
449 static rtx known_cond (rtx, enum rtx_code, rtx, rtx);
450 static int rtx_equal_for_field_assignment_p (rtx, rtx, bool = false);
451 static rtx make_field_assignment (rtx);
452 static rtx apply_distributive_law (rtx);
453 static rtx distribute_and_simplify_rtx (rtx, int);
454 static rtx simplify_and_const_int_1 (machine_mode, rtx,
455 unsigned HOST_WIDE_INT);
456 static rtx simplify_and_const_int (rtx, machine_mode, rtx,
457 unsigned HOST_WIDE_INT);
458 static int merge_outer_ops (enum rtx_code *, HOST_WIDE_INT *, enum rtx_code,
459 HOST_WIDE_INT, machine_mode, int *);
460 static rtx simplify_shift_const_1 (enum rtx_code, machine_mode, rtx, int);
461 static rtx simplify_shift_const (rtx, enum rtx_code, machine_mode, rtx,
462 int);
463 static int recog_for_combine (rtx *, rtx_insn *, rtx *);
464 static rtx gen_lowpart_for_combine (machine_mode, rtx);
465 static enum rtx_code simplify_compare_const (enum rtx_code, machine_mode,
466 rtx, rtx *);
467 static enum rtx_code simplify_comparison (enum rtx_code, rtx *, rtx *);
468 static void update_table_tick (rtx);
469 static void record_value_for_reg (rtx, rtx_insn *, rtx);
470 static void check_promoted_subreg (rtx_insn *, rtx);
471 static void record_dead_and_set_regs_1 (rtx, const_rtx, void *);
472 static void record_dead_and_set_regs (rtx_insn *);
473 static int get_last_value_validate (rtx *, rtx_insn *, int, int);
474 static rtx get_last_value (const_rtx);
475 static int use_crosses_set_p (const_rtx, int);
476 static void reg_dead_at_p_1 (rtx, const_rtx, void *);
477 static int reg_dead_at_p (rtx, rtx_insn *);
478 static void move_deaths (rtx, rtx, int, rtx_insn *, rtx *);
479 static int reg_bitfield_target_p (rtx, rtx);
480 static void distribute_notes (rtx, rtx_insn *, rtx_insn *, rtx_insn *, rtx, rtx, rtx);
481 static void distribute_links (struct insn_link *);
482 static void mark_used_regs_combine (rtx);
483 static void record_promoted_value (rtx_insn *, rtx);
484 static bool unmentioned_reg_p (rtx, rtx);
485 static void record_truncated_values (rtx *, void *);
486 static bool reg_truncated_to_mode (machine_mode, const_rtx);
487 static rtx gen_lowpart_or_truncate (machine_mode, rtx);
488 \f
489
490 /* It is not safe to use ordinary gen_lowpart in combine.
491 See comments in gen_lowpart_for_combine. */
492 #undef RTL_HOOKS_GEN_LOWPART
493 #define RTL_HOOKS_GEN_LOWPART gen_lowpart_for_combine
494
495 /* Our implementation of gen_lowpart never emits a new pseudo. */
496 #undef RTL_HOOKS_GEN_LOWPART_NO_EMIT
497 #define RTL_HOOKS_GEN_LOWPART_NO_EMIT gen_lowpart_for_combine
498
499 #undef RTL_HOOKS_REG_NONZERO_REG_BITS
500 #define RTL_HOOKS_REG_NONZERO_REG_BITS reg_nonzero_bits_for_combine
501
502 #undef RTL_HOOKS_REG_NUM_SIGN_BIT_COPIES
503 #define RTL_HOOKS_REG_NUM_SIGN_BIT_COPIES reg_num_sign_bit_copies_for_combine
504
505 #undef RTL_HOOKS_REG_TRUNCATED_TO_MODE
506 #define RTL_HOOKS_REG_TRUNCATED_TO_MODE reg_truncated_to_mode
507
508 static const struct rtl_hooks combine_rtl_hooks = RTL_HOOKS_INITIALIZER;
509
510 \f
511 /* Convenience wrapper for the canonicalize_comparison target hook.
512 Target hooks cannot use enum rtx_code. */
513 static inline void
514 target_canonicalize_comparison (enum rtx_code *code, rtx *op0, rtx *op1,
515 bool op0_preserve_value)
516 {
517 int code_int = (int)*code;
518 targetm.canonicalize_comparison (&code_int, op0, op1, op0_preserve_value);
519 *code = (enum rtx_code)code_int;
520 }
521
522 /* Try to split PATTERN found in INSN. This returns NULL_RTX if
523 PATTERN can not be split. Otherwise, it returns an insn sequence.
524 This is a wrapper around split_insns which ensures that the
525 reg_stat vector is made larger if the splitter creates a new
526 register. */
527
528 static rtx_insn *
529 combine_split_insns (rtx pattern, rtx_insn *insn)
530 {
531 rtx_insn *ret;
532 unsigned int nregs;
533
534 ret = split_insns (pattern, insn);
535 nregs = max_reg_num ();
536 if (nregs > reg_stat.length ())
537 reg_stat.safe_grow_cleared (nregs);
538 return ret;
539 }
540
541 /* This is used by find_single_use to locate an rtx in LOC that
542 contains exactly one use of DEST, which is typically either a REG
543 or CC0. It returns a pointer to the innermost rtx expression
544 containing DEST. Appearances of DEST that are being used to
545 totally replace it are not counted. */
546
547 static rtx *
548 find_single_use_1 (rtx dest, rtx *loc)
549 {
550 rtx x = *loc;
551 enum rtx_code code = GET_CODE (x);
552 rtx *result = NULL;
553 rtx *this_result;
554 int i;
555 const char *fmt;
556
557 switch (code)
558 {
559 case CONST:
560 case LABEL_REF:
561 case SYMBOL_REF:
562 CASE_CONST_ANY:
563 case CLOBBER:
564 return 0;
565
566 case SET:
567 /* If the destination is anything other than CC0, PC, a REG or a SUBREG
568 of a REG that occupies all of the REG, the insn uses DEST if
569 it is mentioned in the destination or the source. Otherwise, we
570 need just check the source. */
571 if (GET_CODE (SET_DEST (x)) != CC0
572 && GET_CODE (SET_DEST (x)) != PC
573 && !REG_P (SET_DEST (x))
574 && ! (GET_CODE (SET_DEST (x)) == SUBREG
575 && REG_P (SUBREG_REG (SET_DEST (x)))
576 && (((GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (x))))
577 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
578 == ((GET_MODE_SIZE (GET_MODE (SET_DEST (x)))
579 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))))
580 break;
581
582 return find_single_use_1 (dest, &SET_SRC (x));
583
584 case MEM:
585 case SUBREG:
586 return find_single_use_1 (dest, &XEXP (x, 0));
587
588 default:
589 break;
590 }
591
592 /* If it wasn't one of the common cases above, check each expression and
593 vector of this code. Look for a unique usage of DEST. */
594
595 fmt = GET_RTX_FORMAT (code);
596 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
597 {
598 if (fmt[i] == 'e')
599 {
600 if (dest == XEXP (x, i)
601 || (REG_P (dest) && REG_P (XEXP (x, i))
602 && REGNO (dest) == REGNO (XEXP (x, i))))
603 this_result = loc;
604 else
605 this_result = find_single_use_1 (dest, &XEXP (x, i));
606
607 if (result == NULL)
608 result = this_result;
609 else if (this_result)
610 /* Duplicate usage. */
611 return NULL;
612 }
613 else if (fmt[i] == 'E')
614 {
615 int j;
616
617 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
618 {
619 if (XVECEXP (x, i, j) == dest
620 || (REG_P (dest)
621 && REG_P (XVECEXP (x, i, j))
622 && REGNO (XVECEXP (x, i, j)) == REGNO (dest)))
623 this_result = loc;
624 else
625 this_result = find_single_use_1 (dest, &XVECEXP (x, i, j));
626
627 if (result == NULL)
628 result = this_result;
629 else if (this_result)
630 return NULL;
631 }
632 }
633 }
634
635 return result;
636 }
637
638
639 /* See if DEST, produced in INSN, is used only a single time in the
640 sequel. If so, return a pointer to the innermost rtx expression in which
641 it is used.
642
643 If PLOC is nonzero, *PLOC is set to the insn containing the single use.
644
645 If DEST is cc0_rtx, we look only at the next insn. In that case, we don't
646 care about REG_DEAD notes or LOG_LINKS.
647
648 Otherwise, we find the single use by finding an insn that has a
649 LOG_LINKS pointing at INSN and has a REG_DEAD note for DEST. If DEST is
650 only referenced once in that insn, we know that it must be the first
651 and last insn referencing DEST. */
652
653 static rtx *
654 find_single_use (rtx dest, rtx_insn *insn, rtx_insn **ploc)
655 {
656 basic_block bb;
657 rtx_insn *next;
658 rtx *result;
659 struct insn_link *link;
660
661 if (dest == cc0_rtx)
662 {
663 next = NEXT_INSN (insn);
664 if (next == 0
665 || (!NONJUMP_INSN_P (next) && !JUMP_P (next)))
666 return 0;
667
668 result = find_single_use_1 (dest, &PATTERN (next));
669 if (result && ploc)
670 *ploc = next;
671 return result;
672 }
673
674 if (!REG_P (dest))
675 return 0;
676
677 bb = BLOCK_FOR_INSN (insn);
678 for (next = NEXT_INSN (insn);
679 next && BLOCK_FOR_INSN (next) == bb;
680 next = NEXT_INSN (next))
681 if (INSN_P (next) && dead_or_set_p (next, dest))
682 {
683 FOR_EACH_LOG_LINK (link, next)
684 if (link->insn == insn && link->regno == REGNO (dest))
685 break;
686
687 if (link)
688 {
689 result = find_single_use_1 (dest, &PATTERN (next));
690 if (ploc)
691 *ploc = next;
692 return result;
693 }
694 }
695
696 return 0;
697 }
698 \f
699 /* Substitute NEWVAL, an rtx expression, into INTO, a place in some
700 insn. The substitution can be undone by undo_all. If INTO is already
701 set to NEWVAL, do not record this change. Because computing NEWVAL might
702 also call SUBST, we have to compute it before we put anything into
703 the undo table. */
704
705 static void
706 do_SUBST (rtx *into, rtx newval)
707 {
708 struct undo *buf;
709 rtx oldval = *into;
710
711 if (oldval == newval)
712 return;
713
714 /* We'd like to catch as many invalid transformations here as
715 possible. Unfortunately, there are way too many mode changes
716 that are perfectly valid, so we'd waste too much effort for
717 little gain doing the checks here. Focus on catching invalid
718 transformations involving integer constants. */
719 if (GET_MODE_CLASS (GET_MODE (oldval)) == MODE_INT
720 && CONST_INT_P (newval))
721 {
722 /* Sanity check that we're replacing oldval with a CONST_INT
723 that is a valid sign-extension for the original mode. */
724 gcc_assert (INTVAL (newval)
725 == trunc_int_for_mode (INTVAL (newval), GET_MODE (oldval)));
726
727 /* Replacing the operand of a SUBREG or a ZERO_EXTEND with a
728 CONST_INT is not valid, because after the replacement, the
729 original mode would be gone. Unfortunately, we can't tell
730 when do_SUBST is called to replace the operand thereof, so we
731 perform this test on oldval instead, checking whether an
732 invalid replacement took place before we got here. */
733 gcc_assert (!(GET_CODE (oldval) == SUBREG
734 && CONST_INT_P (SUBREG_REG (oldval))));
735 gcc_assert (!(GET_CODE (oldval) == ZERO_EXTEND
736 && CONST_INT_P (XEXP (oldval, 0))));
737 }
738
739 if (undobuf.frees)
740 buf = undobuf.frees, undobuf.frees = buf->next;
741 else
742 buf = XNEW (struct undo);
743
744 buf->kind = UNDO_RTX;
745 buf->where.r = into;
746 buf->old_contents.r = oldval;
747 *into = newval;
748
749 buf->next = undobuf.undos, undobuf.undos = buf;
750 }
751
752 #define SUBST(INTO, NEWVAL) do_SUBST (&(INTO), (NEWVAL))
753
754 /* Similar to SUBST, but NEWVAL is an int expression. Note that substitution
755 for the value of a HOST_WIDE_INT value (including CONST_INT) is
756 not safe. */
757
758 static void
759 do_SUBST_INT (int *into, int newval)
760 {
761 struct undo *buf;
762 int oldval = *into;
763
764 if (oldval == newval)
765 return;
766
767 if (undobuf.frees)
768 buf = undobuf.frees, undobuf.frees = buf->next;
769 else
770 buf = XNEW (struct undo);
771
772 buf->kind = UNDO_INT;
773 buf->where.i = into;
774 buf->old_contents.i = oldval;
775 *into = newval;
776
777 buf->next = undobuf.undos, undobuf.undos = buf;
778 }
779
780 #define SUBST_INT(INTO, NEWVAL) do_SUBST_INT (&(INTO), (NEWVAL))
781
782 /* Similar to SUBST, but just substitute the mode. This is used when
783 changing the mode of a pseudo-register, so that any other
784 references to the entry in the regno_reg_rtx array will change as
785 well. */
786
787 static void
788 do_SUBST_MODE (rtx *into, machine_mode newval)
789 {
790 struct undo *buf;
791 machine_mode oldval = GET_MODE (*into);
792
793 if (oldval == newval)
794 return;
795
796 if (undobuf.frees)
797 buf = undobuf.frees, undobuf.frees = buf->next;
798 else
799 buf = XNEW (struct undo);
800
801 buf->kind = UNDO_MODE;
802 buf->where.r = into;
803 buf->old_contents.m = oldval;
804 adjust_reg_mode (*into, newval);
805
806 buf->next = undobuf.undos, undobuf.undos = buf;
807 }
808
809 #define SUBST_MODE(INTO, NEWVAL) do_SUBST_MODE (&(INTO), (NEWVAL))
810
811 /* Similar to SUBST, but NEWVAL is a LOG_LINKS expression. */
812
813 static void
814 do_SUBST_LINK (struct insn_link **into, struct insn_link *newval)
815 {
816 struct undo *buf;
817 struct insn_link * oldval = *into;
818
819 if (oldval == newval)
820 return;
821
822 if (undobuf.frees)
823 buf = undobuf.frees, undobuf.frees = buf->next;
824 else
825 buf = XNEW (struct undo);
826
827 buf->kind = UNDO_LINKS;
828 buf->where.l = into;
829 buf->old_contents.l = oldval;
830 *into = newval;
831
832 buf->next = undobuf.undos, undobuf.undos = buf;
833 }
834
835 #define SUBST_LINK(oldval, newval) do_SUBST_LINK (&oldval, newval)
836 \f
837 /* Subroutine of try_combine. Determine whether the replacement patterns
838 NEWPAT, NEWI2PAT and NEWOTHERPAT are cheaper according to insn_rtx_cost
839 than the original sequence I0, I1, I2, I3 and undobuf.other_insn. Note
840 that I0, I1 and/or NEWI2PAT may be NULL_RTX. Similarly, NEWOTHERPAT and
841 undobuf.other_insn may also both be NULL_RTX. Return false if the cost
842 of all the instructions can be estimated and the replacements are more
843 expensive than the original sequence. */
844
845 static bool
846 combine_validate_cost (rtx_insn *i0, rtx_insn *i1, rtx_insn *i2, rtx_insn *i3,
847 rtx newpat, rtx newi2pat, rtx newotherpat)
848 {
849 int i0_cost, i1_cost, i2_cost, i3_cost;
850 int new_i2_cost, new_i3_cost;
851 int old_cost, new_cost;
852
853 /* Lookup the original insn_rtx_costs. */
854 i2_cost = INSN_COST (i2);
855 i3_cost = INSN_COST (i3);
856
857 if (i1)
858 {
859 i1_cost = INSN_COST (i1);
860 if (i0)
861 {
862 i0_cost = INSN_COST (i0);
863 old_cost = (i0_cost > 0 && i1_cost > 0 && i2_cost > 0 && i3_cost > 0
864 ? i0_cost + i1_cost + i2_cost + i3_cost : 0);
865 }
866 else
867 {
868 old_cost = (i1_cost > 0 && i2_cost > 0 && i3_cost > 0
869 ? i1_cost + i2_cost + i3_cost : 0);
870 i0_cost = 0;
871 }
872 }
873 else
874 {
875 old_cost = (i2_cost > 0 && i3_cost > 0) ? i2_cost + i3_cost : 0;
876 i1_cost = i0_cost = 0;
877 }
878
879 /* If we have split a PARALLEL I2 to I1,I2, we have counted its cost twice;
880 correct that. */
881 if (old_cost && i1 && INSN_UID (i1) == INSN_UID (i2))
882 old_cost -= i1_cost;
883
884
885 /* Calculate the replacement insn_rtx_costs. */
886 new_i3_cost = insn_rtx_cost (newpat, optimize_this_for_speed_p);
887 if (newi2pat)
888 {
889 new_i2_cost = insn_rtx_cost (newi2pat, optimize_this_for_speed_p);
890 new_cost = (new_i2_cost > 0 && new_i3_cost > 0)
891 ? new_i2_cost + new_i3_cost : 0;
892 }
893 else
894 {
895 new_cost = new_i3_cost;
896 new_i2_cost = 0;
897 }
898
899 if (undobuf.other_insn)
900 {
901 int old_other_cost, new_other_cost;
902
903 old_other_cost = INSN_COST (undobuf.other_insn);
904 new_other_cost = insn_rtx_cost (newotherpat, optimize_this_for_speed_p);
905 if (old_other_cost > 0 && new_other_cost > 0)
906 {
907 old_cost += old_other_cost;
908 new_cost += new_other_cost;
909 }
910 else
911 old_cost = 0;
912 }
913
914 /* Disallow this combination if both new_cost and old_cost are greater than
915 zero, and new_cost is greater than old cost. */
916 int reject = old_cost > 0 && new_cost > old_cost;
917
918 if (dump_file)
919 {
920 fprintf (dump_file, "%s combination of insns ",
921 reject ? "rejecting" : "allowing");
922 if (i0)
923 fprintf (dump_file, "%d, ", INSN_UID (i0));
924 if (i1 && INSN_UID (i1) != INSN_UID (i2))
925 fprintf (dump_file, "%d, ", INSN_UID (i1));
926 fprintf (dump_file, "%d and %d\n", INSN_UID (i2), INSN_UID (i3));
927
928 fprintf (dump_file, "original costs ");
929 if (i0)
930 fprintf (dump_file, "%d + ", i0_cost);
931 if (i1 && INSN_UID (i1) != INSN_UID (i2))
932 fprintf (dump_file, "%d + ", i1_cost);
933 fprintf (dump_file, "%d + %d = %d\n", i2_cost, i3_cost, old_cost);
934
935 if (newi2pat)
936 fprintf (dump_file, "replacement costs %d + %d = %d\n",
937 new_i2_cost, new_i3_cost, new_cost);
938 else
939 fprintf (dump_file, "replacement cost %d\n", new_cost);
940 }
941
942 if (reject)
943 return false;
944
945 /* Update the uid_insn_cost array with the replacement costs. */
946 INSN_COST (i2) = new_i2_cost;
947 INSN_COST (i3) = new_i3_cost;
948 if (i1)
949 {
950 INSN_COST (i1) = 0;
951 if (i0)
952 INSN_COST (i0) = 0;
953 }
954
955 return true;
956 }
957
958
959 /* Delete any insns that copy a register to itself. */
960
961 static void
962 delete_noop_moves (void)
963 {
964 rtx_insn *insn, *next;
965 basic_block bb;
966
967 FOR_EACH_BB_FN (bb, cfun)
968 {
969 for (insn = BB_HEAD (bb); insn != NEXT_INSN (BB_END (bb)); insn = next)
970 {
971 next = NEXT_INSN (insn);
972 if (INSN_P (insn) && noop_move_p (insn))
973 {
974 if (dump_file)
975 fprintf (dump_file, "deleting noop move %d\n", INSN_UID (insn));
976
977 delete_insn_and_edges (insn);
978 }
979 }
980 }
981 }
982
983 \f
984 /* Return false if we do not want to (or cannot) combine DEF. */
985 static bool
986 can_combine_def_p (df_ref def)
987 {
988 /* Do not consider if it is pre/post modification in MEM. */
989 if (DF_REF_FLAGS (def) & DF_REF_PRE_POST_MODIFY)
990 return false;
991
992 unsigned int regno = DF_REF_REGNO (def);
993
994 /* Do not combine frame pointer adjustments. */
995 if ((regno == FRAME_POINTER_REGNUM
996 && (!reload_completed || frame_pointer_needed))
997 || (!HARD_FRAME_POINTER_IS_FRAME_POINTER
998 && regno == HARD_FRAME_POINTER_REGNUM
999 && (!reload_completed || frame_pointer_needed))
1000 || (FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
1001 && regno == ARG_POINTER_REGNUM && fixed_regs[regno]))
1002 return false;
1003
1004 return true;
1005 }
1006
1007 /* Return false if we do not want to (or cannot) combine USE. */
1008 static bool
1009 can_combine_use_p (df_ref use)
1010 {
1011 /* Do not consider the usage of the stack pointer by function call. */
1012 if (DF_REF_FLAGS (use) & DF_REF_CALL_STACK_USAGE)
1013 return false;
1014
1015 return true;
1016 }
1017
1018 /* Fill in log links field for all insns. */
1019
1020 static void
1021 create_log_links (void)
1022 {
1023 basic_block bb;
1024 rtx_insn **next_use;
1025 rtx_insn *insn;
1026 df_ref def, use;
1027
1028 next_use = XCNEWVEC (rtx_insn *, max_reg_num ());
1029
1030 /* Pass through each block from the end, recording the uses of each
1031 register and establishing log links when def is encountered.
1032 Note that we do not clear next_use array in order to save time,
1033 so we have to test whether the use is in the same basic block as def.
1034
1035 There are a few cases below when we do not consider the definition or
1036 usage -- these are taken from original flow.c did. Don't ask me why it is
1037 done this way; I don't know and if it works, I don't want to know. */
1038
1039 FOR_EACH_BB_FN (bb, cfun)
1040 {
1041 FOR_BB_INSNS_REVERSE (bb, insn)
1042 {
1043 if (!NONDEBUG_INSN_P (insn))
1044 continue;
1045
1046 /* Log links are created only once. */
1047 gcc_assert (!LOG_LINKS (insn));
1048
1049 FOR_EACH_INSN_DEF (def, insn)
1050 {
1051 unsigned int regno = DF_REF_REGNO (def);
1052 rtx_insn *use_insn;
1053
1054 if (!next_use[regno])
1055 continue;
1056
1057 if (!can_combine_def_p (def))
1058 continue;
1059
1060 use_insn = next_use[regno];
1061 next_use[regno] = NULL;
1062
1063 if (BLOCK_FOR_INSN (use_insn) != bb)
1064 continue;
1065
1066 /* flow.c claimed:
1067
1068 We don't build a LOG_LINK for hard registers contained
1069 in ASM_OPERANDs. If these registers get replaced,
1070 we might wind up changing the semantics of the insn,
1071 even if reload can make what appear to be valid
1072 assignments later. */
1073 if (regno < FIRST_PSEUDO_REGISTER
1074 && asm_noperands (PATTERN (use_insn)) >= 0)
1075 continue;
1076
1077 /* Don't add duplicate links between instructions. */
1078 struct insn_link *links;
1079 FOR_EACH_LOG_LINK (links, use_insn)
1080 if (insn == links->insn && regno == links->regno)
1081 break;
1082
1083 if (!links)
1084 LOG_LINKS (use_insn)
1085 = alloc_insn_link (insn, regno, LOG_LINKS (use_insn));
1086 }
1087
1088 FOR_EACH_INSN_USE (use, insn)
1089 if (can_combine_use_p (use))
1090 next_use[DF_REF_REGNO (use)] = insn;
1091 }
1092 }
1093
1094 free (next_use);
1095 }
1096
1097 /* Walk the LOG_LINKS of insn B to see if we find a reference to A. Return
1098 true if we found a LOG_LINK that proves that A feeds B. This only works
1099 if there are no instructions between A and B which could have a link
1100 depending on A, since in that case we would not record a link for B.
1101 We also check the implicit dependency created by a cc0 setter/user
1102 pair. */
1103
1104 static bool
1105 insn_a_feeds_b (rtx_insn *a, rtx_insn *b)
1106 {
1107 struct insn_link *links;
1108 FOR_EACH_LOG_LINK (links, b)
1109 if (links->insn == a)
1110 return true;
1111 if (HAVE_cc0 && sets_cc0_p (a))
1112 return true;
1113 return false;
1114 }
1115 \f
1116 /* Main entry point for combiner. F is the first insn of the function.
1117 NREGS is the first unused pseudo-reg number.
1118
1119 Return nonzero if the combiner has turned an indirect jump
1120 instruction into a direct jump. */
1121 static int
1122 combine_instructions (rtx_insn *f, unsigned int nregs)
1123 {
1124 rtx_insn *insn, *next;
1125 rtx_insn *prev;
1126 struct insn_link *links, *nextlinks;
1127 rtx_insn *first;
1128 basic_block last_bb;
1129
1130 int new_direct_jump_p = 0;
1131
1132 for (first = f; first && !INSN_P (first); )
1133 first = NEXT_INSN (first);
1134 if (!first)
1135 return 0;
1136
1137 combine_attempts = 0;
1138 combine_merges = 0;
1139 combine_extras = 0;
1140 combine_successes = 0;
1141
1142 rtl_hooks = combine_rtl_hooks;
1143
1144 reg_stat.safe_grow_cleared (nregs);
1145
1146 init_recog_no_volatile ();
1147
1148 /* Allocate array for insn info. */
1149 max_uid_known = get_max_uid ();
1150 uid_log_links = XCNEWVEC (struct insn_link *, max_uid_known + 1);
1151 uid_insn_cost = XCNEWVEC (int, max_uid_known + 1);
1152 gcc_obstack_init (&insn_link_obstack);
1153
1154 nonzero_bits_mode = mode_for_size (HOST_BITS_PER_WIDE_INT, MODE_INT, 0);
1155
1156 /* Don't use reg_stat[].nonzero_bits when computing it. This can cause
1157 problems when, for example, we have j <<= 1 in a loop. */
1158
1159 nonzero_sign_valid = 0;
1160 label_tick = label_tick_ebb_start = 1;
1161
1162 /* Scan all SETs and see if we can deduce anything about what
1163 bits are known to be zero for some registers and how many copies
1164 of the sign bit are known to exist for those registers.
1165
1166 Also set any known values so that we can use it while searching
1167 for what bits are known to be set. */
1168
1169 setup_incoming_promotions (first);
1170 /* Allow the entry block and the first block to fall into the same EBB.
1171 Conceptually the incoming promotions are assigned to the entry block. */
1172 last_bb = ENTRY_BLOCK_PTR_FOR_FN (cfun);
1173
1174 create_log_links ();
1175 FOR_EACH_BB_FN (this_basic_block, cfun)
1176 {
1177 optimize_this_for_speed_p = optimize_bb_for_speed_p (this_basic_block);
1178 last_call_luid = 0;
1179 mem_last_set = -1;
1180
1181 label_tick++;
1182 if (!single_pred_p (this_basic_block)
1183 || single_pred (this_basic_block) != last_bb)
1184 label_tick_ebb_start = label_tick;
1185 last_bb = this_basic_block;
1186
1187 FOR_BB_INSNS (this_basic_block, insn)
1188 if (INSN_P (insn) && BLOCK_FOR_INSN (insn))
1189 {
1190 rtx links;
1191
1192 subst_low_luid = DF_INSN_LUID (insn);
1193 subst_insn = insn;
1194
1195 note_stores (PATTERN (insn), set_nonzero_bits_and_sign_copies,
1196 insn);
1197 record_dead_and_set_regs (insn);
1198
1199 if (AUTO_INC_DEC)
1200 for (links = REG_NOTES (insn); links; links = XEXP (links, 1))
1201 if (REG_NOTE_KIND (links) == REG_INC)
1202 set_nonzero_bits_and_sign_copies (XEXP (links, 0), NULL_RTX,
1203 insn);
1204
1205 /* Record the current insn_rtx_cost of this instruction. */
1206 if (NONJUMP_INSN_P (insn))
1207 INSN_COST (insn) = insn_rtx_cost (PATTERN (insn),
1208 optimize_this_for_speed_p);
1209 if (dump_file)
1210 fprintf (dump_file, "insn_cost %d: %d\n",
1211 INSN_UID (insn), INSN_COST (insn));
1212 }
1213 }
1214
1215 nonzero_sign_valid = 1;
1216
1217 /* Now scan all the insns in forward order. */
1218 label_tick = label_tick_ebb_start = 1;
1219 init_reg_last ();
1220 setup_incoming_promotions (first);
1221 last_bb = ENTRY_BLOCK_PTR_FOR_FN (cfun);
1222 int max_combine = PARAM_VALUE (PARAM_MAX_COMBINE_INSNS);
1223
1224 FOR_EACH_BB_FN (this_basic_block, cfun)
1225 {
1226 rtx_insn *last_combined_insn = NULL;
1227 optimize_this_for_speed_p = optimize_bb_for_speed_p (this_basic_block);
1228 last_call_luid = 0;
1229 mem_last_set = -1;
1230
1231 label_tick++;
1232 if (!single_pred_p (this_basic_block)
1233 || single_pred (this_basic_block) != last_bb)
1234 label_tick_ebb_start = label_tick;
1235 last_bb = this_basic_block;
1236
1237 rtl_profile_for_bb (this_basic_block);
1238 for (insn = BB_HEAD (this_basic_block);
1239 insn != NEXT_INSN (BB_END (this_basic_block));
1240 insn = next ? next : NEXT_INSN (insn))
1241 {
1242 next = 0;
1243 if (!NONDEBUG_INSN_P (insn))
1244 continue;
1245
1246 while (last_combined_insn
1247 && last_combined_insn->deleted ())
1248 last_combined_insn = PREV_INSN (last_combined_insn);
1249 if (last_combined_insn == NULL_RTX
1250 || BARRIER_P (last_combined_insn)
1251 || BLOCK_FOR_INSN (last_combined_insn) != this_basic_block
1252 || DF_INSN_LUID (last_combined_insn) <= DF_INSN_LUID (insn))
1253 last_combined_insn = insn;
1254
1255 /* See if we know about function return values before this
1256 insn based upon SUBREG flags. */
1257 check_promoted_subreg (insn, PATTERN (insn));
1258
1259 /* See if we can find hardregs and subreg of pseudos in
1260 narrower modes. This could help turning TRUNCATEs
1261 into SUBREGs. */
1262 note_uses (&PATTERN (insn), record_truncated_values, NULL);
1263
1264 /* Try this insn with each insn it links back to. */
1265
1266 FOR_EACH_LOG_LINK (links, insn)
1267 if ((next = try_combine (insn, links->insn, NULL,
1268 NULL, &new_direct_jump_p,
1269 last_combined_insn)) != 0)
1270 {
1271 statistics_counter_event (cfun, "two-insn combine", 1);
1272 goto retry;
1273 }
1274
1275 /* Try each sequence of three linked insns ending with this one. */
1276
1277 if (max_combine >= 3)
1278 FOR_EACH_LOG_LINK (links, insn)
1279 {
1280 rtx_insn *link = links->insn;
1281
1282 /* If the linked insn has been replaced by a note, then there
1283 is no point in pursuing this chain any further. */
1284 if (NOTE_P (link))
1285 continue;
1286
1287 FOR_EACH_LOG_LINK (nextlinks, link)
1288 if ((next = try_combine (insn, link, nextlinks->insn,
1289 NULL, &new_direct_jump_p,
1290 last_combined_insn)) != 0)
1291 {
1292 statistics_counter_event (cfun, "three-insn combine", 1);
1293 goto retry;
1294 }
1295 }
1296
1297 /* Try to combine a jump insn that uses CC0
1298 with a preceding insn that sets CC0, and maybe with its
1299 logical predecessor as well.
1300 This is how we make decrement-and-branch insns.
1301 We need this special code because data flow connections
1302 via CC0 do not get entered in LOG_LINKS. */
1303
1304 if (HAVE_cc0
1305 && JUMP_P (insn)
1306 && (prev = prev_nonnote_insn (insn)) != 0
1307 && NONJUMP_INSN_P (prev)
1308 && sets_cc0_p (PATTERN (prev)))
1309 {
1310 if ((next = try_combine (insn, prev, NULL, NULL,
1311 &new_direct_jump_p,
1312 last_combined_insn)) != 0)
1313 goto retry;
1314
1315 FOR_EACH_LOG_LINK (nextlinks, prev)
1316 if ((next = try_combine (insn, prev, nextlinks->insn,
1317 NULL, &new_direct_jump_p,
1318 last_combined_insn)) != 0)
1319 goto retry;
1320 }
1321
1322 /* Do the same for an insn that explicitly references CC0. */
1323 if (HAVE_cc0 && NONJUMP_INSN_P (insn)
1324 && (prev = prev_nonnote_insn (insn)) != 0
1325 && NONJUMP_INSN_P (prev)
1326 && sets_cc0_p (PATTERN (prev))
1327 && GET_CODE (PATTERN (insn)) == SET
1328 && reg_mentioned_p (cc0_rtx, SET_SRC (PATTERN (insn))))
1329 {
1330 if ((next = try_combine (insn, prev, NULL, NULL,
1331 &new_direct_jump_p,
1332 last_combined_insn)) != 0)
1333 goto retry;
1334
1335 FOR_EACH_LOG_LINK (nextlinks, prev)
1336 if ((next = try_combine (insn, prev, nextlinks->insn,
1337 NULL, &new_direct_jump_p,
1338 last_combined_insn)) != 0)
1339 goto retry;
1340 }
1341
1342 /* Finally, see if any of the insns that this insn links to
1343 explicitly references CC0. If so, try this insn, that insn,
1344 and its predecessor if it sets CC0. */
1345 if (HAVE_cc0)
1346 {
1347 FOR_EACH_LOG_LINK (links, insn)
1348 if (NONJUMP_INSN_P (links->insn)
1349 && GET_CODE (PATTERN (links->insn)) == SET
1350 && reg_mentioned_p (cc0_rtx, SET_SRC (PATTERN (links->insn)))
1351 && (prev = prev_nonnote_insn (links->insn)) != 0
1352 && NONJUMP_INSN_P (prev)
1353 && sets_cc0_p (PATTERN (prev))
1354 && (next = try_combine (insn, links->insn,
1355 prev, NULL, &new_direct_jump_p,
1356 last_combined_insn)) != 0)
1357 goto retry;
1358 }
1359
1360 /* Try combining an insn with two different insns whose results it
1361 uses. */
1362 if (max_combine >= 3)
1363 FOR_EACH_LOG_LINK (links, insn)
1364 for (nextlinks = links->next; nextlinks;
1365 nextlinks = nextlinks->next)
1366 if ((next = try_combine (insn, links->insn,
1367 nextlinks->insn, NULL,
1368 &new_direct_jump_p,
1369 last_combined_insn)) != 0)
1370
1371 {
1372 statistics_counter_event (cfun, "three-insn combine", 1);
1373 goto retry;
1374 }
1375
1376 /* Try four-instruction combinations. */
1377 if (max_combine >= 4)
1378 FOR_EACH_LOG_LINK (links, insn)
1379 {
1380 struct insn_link *next1;
1381 rtx_insn *link = links->insn;
1382
1383 /* If the linked insn has been replaced by a note, then there
1384 is no point in pursuing this chain any further. */
1385 if (NOTE_P (link))
1386 continue;
1387
1388 FOR_EACH_LOG_LINK (next1, link)
1389 {
1390 rtx_insn *link1 = next1->insn;
1391 if (NOTE_P (link1))
1392 continue;
1393 /* I0 -> I1 -> I2 -> I3. */
1394 FOR_EACH_LOG_LINK (nextlinks, link1)
1395 if ((next = try_combine (insn, link, link1,
1396 nextlinks->insn,
1397 &new_direct_jump_p,
1398 last_combined_insn)) != 0)
1399 {
1400 statistics_counter_event (cfun, "four-insn combine", 1);
1401 goto retry;
1402 }
1403 /* I0, I1 -> I2, I2 -> I3. */
1404 for (nextlinks = next1->next; nextlinks;
1405 nextlinks = nextlinks->next)
1406 if ((next = try_combine (insn, link, link1,
1407 nextlinks->insn,
1408 &new_direct_jump_p,
1409 last_combined_insn)) != 0)
1410 {
1411 statistics_counter_event (cfun, "four-insn combine", 1);
1412 goto retry;
1413 }
1414 }
1415
1416 for (next1 = links->next; next1; next1 = next1->next)
1417 {
1418 rtx_insn *link1 = next1->insn;
1419 if (NOTE_P (link1))
1420 continue;
1421 /* I0 -> I2; I1, I2 -> I3. */
1422 FOR_EACH_LOG_LINK (nextlinks, link)
1423 if ((next = try_combine (insn, link, link1,
1424 nextlinks->insn,
1425 &new_direct_jump_p,
1426 last_combined_insn)) != 0)
1427 {
1428 statistics_counter_event (cfun, "four-insn combine", 1);
1429 goto retry;
1430 }
1431 /* I0 -> I1; I1, I2 -> I3. */
1432 FOR_EACH_LOG_LINK (nextlinks, link1)
1433 if ((next = try_combine (insn, link, link1,
1434 nextlinks->insn,
1435 &new_direct_jump_p,
1436 last_combined_insn)) != 0)
1437 {
1438 statistics_counter_event (cfun, "four-insn combine", 1);
1439 goto retry;
1440 }
1441 }
1442 }
1443
1444 /* Try this insn with each REG_EQUAL note it links back to. */
1445 FOR_EACH_LOG_LINK (links, insn)
1446 {
1447 rtx set, note;
1448 rtx_insn *temp = links->insn;
1449 if ((set = single_set (temp)) != 0
1450 && (note = find_reg_equal_equiv_note (temp)) != 0
1451 && (note = XEXP (note, 0), GET_CODE (note)) != EXPR_LIST
1452 /* Avoid using a register that may already been marked
1453 dead by an earlier instruction. */
1454 && ! unmentioned_reg_p (note, SET_SRC (set))
1455 && (GET_MODE (note) == VOIDmode
1456 ? SCALAR_INT_MODE_P (GET_MODE (SET_DEST (set)))
1457 : GET_MODE (SET_DEST (set)) == GET_MODE (note)))
1458 {
1459 /* Temporarily replace the set's source with the
1460 contents of the REG_EQUAL note. The insn will
1461 be deleted or recognized by try_combine. */
1462 rtx orig = SET_SRC (set);
1463 SET_SRC (set) = note;
1464 i2mod = temp;
1465 i2mod_old_rhs = copy_rtx (orig);
1466 i2mod_new_rhs = copy_rtx (note);
1467 next = try_combine (insn, i2mod, NULL, NULL,
1468 &new_direct_jump_p,
1469 last_combined_insn);
1470 i2mod = NULL;
1471 if (next)
1472 {
1473 statistics_counter_event (cfun, "insn-with-note combine", 1);
1474 goto retry;
1475 }
1476 SET_SRC (set) = orig;
1477 }
1478 }
1479
1480 if (!NOTE_P (insn))
1481 record_dead_and_set_regs (insn);
1482
1483 retry:
1484 ;
1485 }
1486 }
1487
1488 default_rtl_profile ();
1489 clear_bb_flags ();
1490 new_direct_jump_p |= purge_all_dead_edges ();
1491 delete_noop_moves ();
1492
1493 /* Clean up. */
1494 obstack_free (&insn_link_obstack, NULL);
1495 free (uid_log_links);
1496 free (uid_insn_cost);
1497 reg_stat.release ();
1498
1499 {
1500 struct undo *undo, *next;
1501 for (undo = undobuf.frees; undo; undo = next)
1502 {
1503 next = undo->next;
1504 free (undo);
1505 }
1506 undobuf.frees = 0;
1507 }
1508
1509 total_attempts += combine_attempts;
1510 total_merges += combine_merges;
1511 total_extras += combine_extras;
1512 total_successes += combine_successes;
1513
1514 nonzero_sign_valid = 0;
1515 rtl_hooks = general_rtl_hooks;
1516
1517 /* Make recognizer allow volatile MEMs again. */
1518 init_recog ();
1519
1520 return new_direct_jump_p;
1521 }
1522
1523 /* Wipe the last_xxx fields of reg_stat in preparation for another pass. */
1524
1525 static void
1526 init_reg_last (void)
1527 {
1528 unsigned int i;
1529 reg_stat_type *p;
1530
1531 FOR_EACH_VEC_ELT (reg_stat, i, p)
1532 memset (p, 0, offsetof (reg_stat_type, sign_bit_copies));
1533 }
1534 \f
1535 /* Set up any promoted values for incoming argument registers. */
1536
1537 static void
1538 setup_incoming_promotions (rtx_insn *first)
1539 {
1540 tree arg;
1541 bool strictly_local = false;
1542
1543 for (arg = DECL_ARGUMENTS (current_function_decl); arg;
1544 arg = DECL_CHAIN (arg))
1545 {
1546 rtx x, reg = DECL_INCOMING_RTL (arg);
1547 int uns1, uns3;
1548 machine_mode mode1, mode2, mode3, mode4;
1549
1550 /* Only continue if the incoming argument is in a register. */
1551 if (!REG_P (reg))
1552 continue;
1553
1554 /* Determine, if possible, whether all call sites of the current
1555 function lie within the current compilation unit. (This does
1556 take into account the exporting of a function via taking its
1557 address, and so forth.) */
1558 strictly_local = cgraph_node::local_info (current_function_decl)->local;
1559
1560 /* The mode and signedness of the argument before any promotions happen
1561 (equal to the mode of the pseudo holding it at that stage). */
1562 mode1 = TYPE_MODE (TREE_TYPE (arg));
1563 uns1 = TYPE_UNSIGNED (TREE_TYPE (arg));
1564
1565 /* The mode and signedness of the argument after any source language and
1566 TARGET_PROMOTE_PROTOTYPES-driven promotions. */
1567 mode2 = TYPE_MODE (DECL_ARG_TYPE (arg));
1568 uns3 = TYPE_UNSIGNED (DECL_ARG_TYPE (arg));
1569
1570 /* The mode and signedness of the argument as it is actually passed,
1571 see assign_parm_setup_reg in function.c. */
1572 mode3 = promote_function_mode (TREE_TYPE (arg), mode1, &uns3,
1573 TREE_TYPE (cfun->decl), 0);
1574
1575 /* The mode of the register in which the argument is being passed. */
1576 mode4 = GET_MODE (reg);
1577
1578 /* Eliminate sign extensions in the callee when:
1579 (a) A mode promotion has occurred; */
1580 if (mode1 == mode3)
1581 continue;
1582 /* (b) The mode of the register is the same as the mode of
1583 the argument as it is passed; */
1584 if (mode3 != mode4)
1585 continue;
1586 /* (c) There's no language level extension; */
1587 if (mode1 == mode2)
1588 ;
1589 /* (c.1) All callers are from the current compilation unit. If that's
1590 the case we don't have to rely on an ABI, we only have to know
1591 what we're generating right now, and we know that we will do the
1592 mode1 to mode2 promotion with the given sign. */
1593 else if (!strictly_local)
1594 continue;
1595 /* (c.2) The combination of the two promotions is useful. This is
1596 true when the signs match, or if the first promotion is unsigned.
1597 In the later case, (sign_extend (zero_extend x)) is the same as
1598 (zero_extend (zero_extend x)), so make sure to force UNS3 true. */
1599 else if (uns1)
1600 uns3 = true;
1601 else if (uns3)
1602 continue;
1603
1604 /* Record that the value was promoted from mode1 to mode3,
1605 so that any sign extension at the head of the current
1606 function may be eliminated. */
1607 x = gen_rtx_CLOBBER (mode1, const0_rtx);
1608 x = gen_rtx_fmt_e ((uns3 ? ZERO_EXTEND : SIGN_EXTEND), mode3, x);
1609 record_value_for_reg (reg, first, x);
1610 }
1611 }
1612
1613 /* If MODE has a precision lower than PREC and SRC is a non-negative constant
1614 that would appear negative in MODE, sign-extend SRC for use in nonzero_bits
1615 because some machines (maybe most) will actually do the sign-extension and
1616 this is the conservative approach.
1617
1618 ??? For 2.5, try to tighten up the MD files in this regard instead of this
1619 kludge. */
1620
1621 static rtx
1622 sign_extend_short_imm (rtx src, machine_mode mode, unsigned int prec)
1623 {
1624 if (GET_MODE_PRECISION (mode) < prec
1625 && CONST_INT_P (src)
1626 && INTVAL (src) > 0
1627 && val_signbit_known_set_p (mode, INTVAL (src)))
1628 src = GEN_INT (INTVAL (src) | ~GET_MODE_MASK (mode));
1629
1630 return src;
1631 }
1632
1633 /* Update RSP for pseudo-register X from INSN's REG_EQUAL note (if one exists)
1634 and SET. */
1635
1636 static void
1637 update_rsp_from_reg_equal (reg_stat_type *rsp, rtx_insn *insn, const_rtx set,
1638 rtx x)
1639 {
1640 rtx reg_equal_note = insn ? find_reg_equal_equiv_note (insn) : NULL_RTX;
1641 unsigned HOST_WIDE_INT bits = 0;
1642 rtx reg_equal = NULL, src = SET_SRC (set);
1643 unsigned int num = 0;
1644
1645 if (reg_equal_note)
1646 reg_equal = XEXP (reg_equal_note, 0);
1647
1648 if (SHORT_IMMEDIATES_SIGN_EXTEND)
1649 {
1650 src = sign_extend_short_imm (src, GET_MODE (x), BITS_PER_WORD);
1651 if (reg_equal)
1652 reg_equal = sign_extend_short_imm (reg_equal, GET_MODE (x), BITS_PER_WORD);
1653 }
1654
1655 /* Don't call nonzero_bits if it cannot change anything. */
1656 if (rsp->nonzero_bits != ~(unsigned HOST_WIDE_INT) 0)
1657 {
1658 bits = nonzero_bits (src, nonzero_bits_mode);
1659 if (reg_equal && bits)
1660 bits &= nonzero_bits (reg_equal, nonzero_bits_mode);
1661 rsp->nonzero_bits |= bits;
1662 }
1663
1664 /* Don't call num_sign_bit_copies if it cannot change anything. */
1665 if (rsp->sign_bit_copies != 1)
1666 {
1667 num = num_sign_bit_copies (SET_SRC (set), GET_MODE (x));
1668 if (reg_equal && num != GET_MODE_PRECISION (GET_MODE (x)))
1669 {
1670 unsigned int numeq = num_sign_bit_copies (reg_equal, GET_MODE (x));
1671 if (num == 0 || numeq > num)
1672 num = numeq;
1673 }
1674 if (rsp->sign_bit_copies == 0 || num < rsp->sign_bit_copies)
1675 rsp->sign_bit_copies = num;
1676 }
1677 }
1678
1679 /* Called via note_stores. If X is a pseudo that is narrower than
1680 HOST_BITS_PER_WIDE_INT and is being set, record what bits are known zero.
1681
1682 If we are setting only a portion of X and we can't figure out what
1683 portion, assume all bits will be used since we don't know what will
1684 be happening.
1685
1686 Similarly, set how many bits of X are known to be copies of the sign bit
1687 at all locations in the function. This is the smallest number implied
1688 by any set of X. */
1689
1690 static void
1691 set_nonzero_bits_and_sign_copies (rtx x, const_rtx set, void *data)
1692 {
1693 rtx_insn *insn = (rtx_insn *) data;
1694
1695 if (REG_P (x)
1696 && REGNO (x) >= FIRST_PSEUDO_REGISTER
1697 /* If this register is undefined at the start of the file, we can't
1698 say what its contents were. */
1699 && ! REGNO_REG_SET_P
1700 (DF_LR_IN (ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb), REGNO (x))
1701 && HWI_COMPUTABLE_MODE_P (GET_MODE (x)))
1702 {
1703 reg_stat_type *rsp = &reg_stat[REGNO (x)];
1704
1705 if (set == 0 || GET_CODE (set) == CLOBBER)
1706 {
1707 rsp->nonzero_bits = GET_MODE_MASK (GET_MODE (x));
1708 rsp->sign_bit_copies = 1;
1709 return;
1710 }
1711
1712 /* If this register is being initialized using itself, and the
1713 register is uninitialized in this basic block, and there are
1714 no LOG_LINKS which set the register, then part of the
1715 register is uninitialized. In that case we can't assume
1716 anything about the number of nonzero bits.
1717
1718 ??? We could do better if we checked this in
1719 reg_{nonzero_bits,num_sign_bit_copies}_for_combine. Then we
1720 could avoid making assumptions about the insn which initially
1721 sets the register, while still using the information in other
1722 insns. We would have to be careful to check every insn
1723 involved in the combination. */
1724
1725 if (insn
1726 && reg_referenced_p (x, PATTERN (insn))
1727 && !REGNO_REG_SET_P (DF_LR_IN (BLOCK_FOR_INSN (insn)),
1728 REGNO (x)))
1729 {
1730 struct insn_link *link;
1731
1732 FOR_EACH_LOG_LINK (link, insn)
1733 if (dead_or_set_p (link->insn, x))
1734 break;
1735 if (!link)
1736 {
1737 rsp->nonzero_bits = GET_MODE_MASK (GET_MODE (x));
1738 rsp->sign_bit_copies = 1;
1739 return;
1740 }
1741 }
1742
1743 /* If this is a complex assignment, see if we can convert it into a
1744 simple assignment. */
1745 set = expand_field_assignment (set);
1746
1747 /* If this is a simple assignment, or we have a paradoxical SUBREG,
1748 set what we know about X. */
1749
1750 if (SET_DEST (set) == x
1751 || (paradoxical_subreg_p (SET_DEST (set))
1752 && SUBREG_REG (SET_DEST (set)) == x))
1753 update_rsp_from_reg_equal (rsp, insn, set, x);
1754 else
1755 {
1756 rsp->nonzero_bits = GET_MODE_MASK (GET_MODE (x));
1757 rsp->sign_bit_copies = 1;
1758 }
1759 }
1760 }
1761 \f
1762 /* See if INSN can be combined into I3. PRED, PRED2, SUCC and SUCC2 are
1763 optionally insns that were previously combined into I3 or that will be
1764 combined into the merger of INSN and I3. The order is PRED, PRED2,
1765 INSN, SUCC, SUCC2, I3.
1766
1767 Return 0 if the combination is not allowed for any reason.
1768
1769 If the combination is allowed, *PDEST will be set to the single
1770 destination of INSN and *PSRC to the single source, and this function
1771 will return 1. */
1772
1773 static int
1774 can_combine_p (rtx_insn *insn, rtx_insn *i3, rtx_insn *pred ATTRIBUTE_UNUSED,
1775 rtx_insn *pred2 ATTRIBUTE_UNUSED, rtx_insn *succ, rtx_insn *succ2,
1776 rtx *pdest, rtx *psrc)
1777 {
1778 int i;
1779 const_rtx set = 0;
1780 rtx src, dest;
1781 rtx_insn *p;
1782 rtx link;
1783 bool all_adjacent = true;
1784 int (*is_volatile_p) (const_rtx);
1785
1786 if (succ)
1787 {
1788 if (succ2)
1789 {
1790 if (next_active_insn (succ2) != i3)
1791 all_adjacent = false;
1792 if (next_active_insn (succ) != succ2)
1793 all_adjacent = false;
1794 }
1795 else if (next_active_insn (succ) != i3)
1796 all_adjacent = false;
1797 if (next_active_insn (insn) != succ)
1798 all_adjacent = false;
1799 }
1800 else if (next_active_insn (insn) != i3)
1801 all_adjacent = false;
1802
1803 /* Can combine only if previous insn is a SET of a REG, a SUBREG or CC0.
1804 or a PARALLEL consisting of such a SET and CLOBBERs.
1805
1806 If INSN has CLOBBER parallel parts, ignore them for our processing.
1807 By definition, these happen during the execution of the insn. When it
1808 is merged with another insn, all bets are off. If they are, in fact,
1809 needed and aren't also supplied in I3, they may be added by
1810 recog_for_combine. Otherwise, it won't match.
1811
1812 We can also ignore a SET whose SET_DEST is mentioned in a REG_UNUSED
1813 note.
1814
1815 Get the source and destination of INSN. If more than one, can't
1816 combine. */
1817
1818 if (GET_CODE (PATTERN (insn)) == SET)
1819 set = PATTERN (insn);
1820 else if (GET_CODE (PATTERN (insn)) == PARALLEL
1821 && GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == SET)
1822 {
1823 for (i = 0; i < XVECLEN (PATTERN (insn), 0); i++)
1824 {
1825 rtx elt = XVECEXP (PATTERN (insn), 0, i);
1826
1827 switch (GET_CODE (elt))
1828 {
1829 /* This is important to combine floating point insns
1830 for the SH4 port. */
1831 case USE:
1832 /* Combining an isolated USE doesn't make sense.
1833 We depend here on combinable_i3pat to reject them. */
1834 /* The code below this loop only verifies that the inputs of
1835 the SET in INSN do not change. We call reg_set_between_p
1836 to verify that the REG in the USE does not change between
1837 I3 and INSN.
1838 If the USE in INSN was for a pseudo register, the matching
1839 insn pattern will likely match any register; combining this
1840 with any other USE would only be safe if we knew that the
1841 used registers have identical values, or if there was
1842 something to tell them apart, e.g. different modes. For
1843 now, we forgo such complicated tests and simply disallow
1844 combining of USES of pseudo registers with any other USE. */
1845 if (REG_P (XEXP (elt, 0))
1846 && GET_CODE (PATTERN (i3)) == PARALLEL)
1847 {
1848 rtx i3pat = PATTERN (i3);
1849 int i = XVECLEN (i3pat, 0) - 1;
1850 unsigned int regno = REGNO (XEXP (elt, 0));
1851
1852 do
1853 {
1854 rtx i3elt = XVECEXP (i3pat, 0, i);
1855
1856 if (GET_CODE (i3elt) == USE
1857 && REG_P (XEXP (i3elt, 0))
1858 && (REGNO (XEXP (i3elt, 0)) == regno
1859 ? reg_set_between_p (XEXP (elt, 0),
1860 PREV_INSN (insn), i3)
1861 : regno >= FIRST_PSEUDO_REGISTER))
1862 return 0;
1863 }
1864 while (--i >= 0);
1865 }
1866 break;
1867
1868 /* We can ignore CLOBBERs. */
1869 case CLOBBER:
1870 break;
1871
1872 case SET:
1873 /* Ignore SETs whose result isn't used but not those that
1874 have side-effects. */
1875 if (find_reg_note (insn, REG_UNUSED, SET_DEST (elt))
1876 && insn_nothrow_p (insn)
1877 && !side_effects_p (elt))
1878 break;
1879
1880 /* If we have already found a SET, this is a second one and
1881 so we cannot combine with this insn. */
1882 if (set)
1883 return 0;
1884
1885 set = elt;
1886 break;
1887
1888 default:
1889 /* Anything else means we can't combine. */
1890 return 0;
1891 }
1892 }
1893
1894 if (set == 0
1895 /* If SET_SRC is an ASM_OPERANDS we can't throw away these CLOBBERs,
1896 so don't do anything with it. */
1897 || GET_CODE (SET_SRC (set)) == ASM_OPERANDS)
1898 return 0;
1899 }
1900 else
1901 return 0;
1902
1903 if (set == 0)
1904 return 0;
1905
1906 /* The simplification in expand_field_assignment may call back to
1907 get_last_value, so set safe guard here. */
1908 subst_low_luid = DF_INSN_LUID (insn);
1909
1910 set = expand_field_assignment (set);
1911 src = SET_SRC (set), dest = SET_DEST (set);
1912
1913 /* Do not eliminate user-specified register if it is in an
1914 asm input because we may break the register asm usage defined
1915 in GCC manual if allow to do so.
1916 Be aware that this may cover more cases than we expect but this
1917 should be harmless. */
1918 if (REG_P (dest) && REG_USERVAR_P (dest) && HARD_REGISTER_P (dest)
1919 && extract_asm_operands (PATTERN (i3)))
1920 return 0;
1921
1922 /* Don't eliminate a store in the stack pointer. */
1923 if (dest == stack_pointer_rtx
1924 /* Don't combine with an insn that sets a register to itself if it has
1925 a REG_EQUAL note. This may be part of a LIBCALL sequence. */
1926 || (rtx_equal_p (src, dest) && find_reg_note (insn, REG_EQUAL, NULL_RTX))
1927 /* Can't merge an ASM_OPERANDS. */
1928 || GET_CODE (src) == ASM_OPERANDS
1929 /* Can't merge a function call. */
1930 || GET_CODE (src) == CALL
1931 /* Don't eliminate a function call argument. */
1932 || (CALL_P (i3)
1933 && (find_reg_fusage (i3, USE, dest)
1934 || (REG_P (dest)
1935 && REGNO (dest) < FIRST_PSEUDO_REGISTER
1936 && global_regs[REGNO (dest)])))
1937 /* Don't substitute into an incremented register. */
1938 || FIND_REG_INC_NOTE (i3, dest)
1939 || (succ && FIND_REG_INC_NOTE (succ, dest))
1940 || (succ2 && FIND_REG_INC_NOTE (succ2, dest))
1941 /* Don't substitute into a non-local goto, this confuses CFG. */
1942 || (JUMP_P (i3) && find_reg_note (i3, REG_NON_LOCAL_GOTO, NULL_RTX))
1943 /* Make sure that DEST is not used after SUCC but before I3. */
1944 || (!all_adjacent
1945 && ((succ2
1946 && (reg_used_between_p (dest, succ2, i3)
1947 || reg_used_between_p (dest, succ, succ2)))
1948 || (!succ2 && succ && reg_used_between_p (dest, succ, i3))))
1949 /* Make sure that the value that is to be substituted for the register
1950 does not use any registers whose values alter in between. However,
1951 If the insns are adjacent, a use can't cross a set even though we
1952 think it might (this can happen for a sequence of insns each setting
1953 the same destination; last_set of that register might point to
1954 a NOTE). If INSN has a REG_EQUIV note, the register is always
1955 equivalent to the memory so the substitution is valid even if there
1956 are intervening stores. Also, don't move a volatile asm or
1957 UNSPEC_VOLATILE across any other insns. */
1958 || (! all_adjacent
1959 && (((!MEM_P (src)
1960 || ! find_reg_note (insn, REG_EQUIV, src))
1961 && use_crosses_set_p (src, DF_INSN_LUID (insn)))
1962 || (GET_CODE (src) == ASM_OPERANDS && MEM_VOLATILE_P (src))
1963 || GET_CODE (src) == UNSPEC_VOLATILE))
1964 /* Don't combine across a CALL_INSN, because that would possibly
1965 change whether the life span of some REGs crosses calls or not,
1966 and it is a pain to update that information.
1967 Exception: if source is a constant, moving it later can't hurt.
1968 Accept that as a special case. */
1969 || (DF_INSN_LUID (insn) < last_call_luid && ! CONSTANT_P (src)))
1970 return 0;
1971
1972 /* DEST must either be a REG or CC0. */
1973 if (REG_P (dest))
1974 {
1975 /* If register alignment is being enforced for multi-word items in all
1976 cases except for parameters, it is possible to have a register copy
1977 insn referencing a hard register that is not allowed to contain the
1978 mode being copied and which would not be valid as an operand of most
1979 insns. Eliminate this problem by not combining with such an insn.
1980
1981 Also, on some machines we don't want to extend the life of a hard
1982 register. */
1983
1984 if (REG_P (src)
1985 && ((REGNO (dest) < FIRST_PSEUDO_REGISTER
1986 && ! HARD_REGNO_MODE_OK (REGNO (dest), GET_MODE (dest)))
1987 /* Don't extend the life of a hard register unless it is
1988 user variable (if we have few registers) or it can't
1989 fit into the desired register (meaning something special
1990 is going on).
1991 Also avoid substituting a return register into I3, because
1992 reload can't handle a conflict with constraints of other
1993 inputs. */
1994 || (REGNO (src) < FIRST_PSEUDO_REGISTER
1995 && ! HARD_REGNO_MODE_OK (REGNO (src), GET_MODE (src)))))
1996 return 0;
1997 }
1998 else if (GET_CODE (dest) != CC0)
1999 return 0;
2000
2001
2002 if (GET_CODE (PATTERN (i3)) == PARALLEL)
2003 for (i = XVECLEN (PATTERN (i3), 0) - 1; i >= 0; i--)
2004 if (GET_CODE (XVECEXP (PATTERN (i3), 0, i)) == CLOBBER)
2005 {
2006 rtx reg = XEXP (XVECEXP (PATTERN (i3), 0, i), 0);
2007
2008 /* If the clobber represents an earlyclobber operand, we must not
2009 substitute an expression containing the clobbered register.
2010 As we do not analyze the constraint strings here, we have to
2011 make the conservative assumption. However, if the register is
2012 a fixed hard reg, the clobber cannot represent any operand;
2013 we leave it up to the machine description to either accept or
2014 reject use-and-clobber patterns. */
2015 if (!REG_P (reg)
2016 || REGNO (reg) >= FIRST_PSEUDO_REGISTER
2017 || !fixed_regs[REGNO (reg)])
2018 if (reg_overlap_mentioned_p (reg, src))
2019 return 0;
2020 }
2021
2022 /* If INSN contains anything volatile, or is an `asm' (whether volatile
2023 or not), reject, unless nothing volatile comes between it and I3 */
2024
2025 if (GET_CODE (src) == ASM_OPERANDS || volatile_refs_p (src))
2026 {
2027 /* Make sure neither succ nor succ2 contains a volatile reference. */
2028 if (succ2 != 0 && volatile_refs_p (PATTERN (succ2)))
2029 return 0;
2030 if (succ != 0 && volatile_refs_p (PATTERN (succ)))
2031 return 0;
2032 /* We'll check insns between INSN and I3 below. */
2033 }
2034
2035 /* If INSN is an asm, and DEST is a hard register, reject, since it has
2036 to be an explicit register variable, and was chosen for a reason. */
2037
2038 if (GET_CODE (src) == ASM_OPERANDS
2039 && REG_P (dest) && REGNO (dest) < FIRST_PSEUDO_REGISTER)
2040 return 0;
2041
2042 /* If INSN contains volatile references (specifically volatile MEMs),
2043 we cannot combine across any other volatile references.
2044 Even if INSN doesn't contain volatile references, any intervening
2045 volatile insn might affect machine state. */
2046
2047 is_volatile_p = volatile_refs_p (PATTERN (insn))
2048 ? volatile_refs_p
2049 : volatile_insn_p;
2050
2051 for (p = NEXT_INSN (insn); p != i3; p = NEXT_INSN (p))
2052 if (INSN_P (p) && p != succ && p != succ2 && is_volatile_p (PATTERN (p)))
2053 return 0;
2054
2055 /* If INSN contains an autoincrement or autodecrement, make sure that
2056 register is not used between there and I3, and not already used in
2057 I3 either. Neither must it be used in PRED or SUCC, if they exist.
2058 Also insist that I3 not be a jump; if it were one
2059 and the incremented register were spilled, we would lose. */
2060
2061 if (AUTO_INC_DEC)
2062 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
2063 if (REG_NOTE_KIND (link) == REG_INC
2064 && (JUMP_P (i3)
2065 || reg_used_between_p (XEXP (link, 0), insn, i3)
2066 || (pred != NULL_RTX
2067 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (pred)))
2068 || (pred2 != NULL_RTX
2069 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (pred2)))
2070 || (succ != NULL_RTX
2071 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (succ)))
2072 || (succ2 != NULL_RTX
2073 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (succ2)))
2074 || reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i3))))
2075 return 0;
2076
2077 /* Don't combine an insn that follows a CC0-setting insn.
2078 An insn that uses CC0 must not be separated from the one that sets it.
2079 We do, however, allow I2 to follow a CC0-setting insn if that insn
2080 is passed as I1; in that case it will be deleted also.
2081 We also allow combining in this case if all the insns are adjacent
2082 because that would leave the two CC0 insns adjacent as well.
2083 It would be more logical to test whether CC0 occurs inside I1 or I2,
2084 but that would be much slower, and this ought to be equivalent. */
2085
2086 if (HAVE_cc0)
2087 {
2088 p = prev_nonnote_insn (insn);
2089 if (p && p != pred && NONJUMP_INSN_P (p) && sets_cc0_p (PATTERN (p))
2090 && ! all_adjacent)
2091 return 0;
2092 }
2093
2094 /* If we get here, we have passed all the tests and the combination is
2095 to be allowed. */
2096
2097 *pdest = dest;
2098 *psrc = src;
2099
2100 return 1;
2101 }
2102 \f
2103 /* LOC is the location within I3 that contains its pattern or the component
2104 of a PARALLEL of the pattern. We validate that it is valid for combining.
2105
2106 One problem is if I3 modifies its output, as opposed to replacing it
2107 entirely, we can't allow the output to contain I2DEST, I1DEST or I0DEST as
2108 doing so would produce an insn that is not equivalent to the original insns.
2109
2110 Consider:
2111
2112 (set (reg:DI 101) (reg:DI 100))
2113 (set (subreg:SI (reg:DI 101) 0) <foo>)
2114
2115 This is NOT equivalent to:
2116
2117 (parallel [(set (subreg:SI (reg:DI 100) 0) <foo>)
2118 (set (reg:DI 101) (reg:DI 100))])
2119
2120 Not only does this modify 100 (in which case it might still be valid
2121 if 100 were dead in I2), it sets 101 to the ORIGINAL value of 100.
2122
2123 We can also run into a problem if I2 sets a register that I1
2124 uses and I1 gets directly substituted into I3 (not via I2). In that
2125 case, we would be getting the wrong value of I2DEST into I3, so we
2126 must reject the combination. This case occurs when I2 and I1 both
2127 feed into I3, rather than when I1 feeds into I2, which feeds into I3.
2128 If I1_NOT_IN_SRC is nonzero, it means that finding I1 in the source
2129 of a SET must prevent combination from occurring. The same situation
2130 can occur for I0, in which case I0_NOT_IN_SRC is set.
2131
2132 Before doing the above check, we first try to expand a field assignment
2133 into a set of logical operations.
2134
2135 If PI3_DEST_KILLED is nonzero, it is a pointer to a location in which
2136 we place a register that is both set and used within I3. If more than one
2137 such register is detected, we fail.
2138
2139 Return 1 if the combination is valid, zero otherwise. */
2140
2141 static int
2142 combinable_i3pat (rtx_insn *i3, rtx *loc, rtx i2dest, rtx i1dest, rtx i0dest,
2143 int i1_not_in_src, int i0_not_in_src, rtx *pi3dest_killed)
2144 {
2145 rtx x = *loc;
2146
2147 if (GET_CODE (x) == SET)
2148 {
2149 rtx set = x ;
2150 rtx dest = SET_DEST (set);
2151 rtx src = SET_SRC (set);
2152 rtx inner_dest = dest;
2153 rtx subdest;
2154
2155 while (GET_CODE (inner_dest) == STRICT_LOW_PART
2156 || GET_CODE (inner_dest) == SUBREG
2157 || GET_CODE (inner_dest) == ZERO_EXTRACT)
2158 inner_dest = XEXP (inner_dest, 0);
2159
2160 /* Check for the case where I3 modifies its output, as discussed
2161 above. We don't want to prevent pseudos from being combined
2162 into the address of a MEM, so only prevent the combination if
2163 i1 or i2 set the same MEM. */
2164 if ((inner_dest != dest &&
2165 (!MEM_P (inner_dest)
2166 || rtx_equal_p (i2dest, inner_dest)
2167 || (i1dest && rtx_equal_p (i1dest, inner_dest))
2168 || (i0dest && rtx_equal_p (i0dest, inner_dest)))
2169 && (reg_overlap_mentioned_p (i2dest, inner_dest)
2170 || (i1dest && reg_overlap_mentioned_p (i1dest, inner_dest))
2171 || (i0dest && reg_overlap_mentioned_p (i0dest, inner_dest))))
2172
2173 /* This is the same test done in can_combine_p except we can't test
2174 all_adjacent; we don't have to, since this instruction will stay
2175 in place, thus we are not considering increasing the lifetime of
2176 INNER_DEST.
2177
2178 Also, if this insn sets a function argument, combining it with
2179 something that might need a spill could clobber a previous
2180 function argument; the all_adjacent test in can_combine_p also
2181 checks this; here, we do a more specific test for this case. */
2182
2183 || (REG_P (inner_dest)
2184 && REGNO (inner_dest) < FIRST_PSEUDO_REGISTER
2185 && (! HARD_REGNO_MODE_OK (REGNO (inner_dest),
2186 GET_MODE (inner_dest))))
2187 || (i1_not_in_src && reg_overlap_mentioned_p (i1dest, src))
2188 || (i0_not_in_src && reg_overlap_mentioned_p (i0dest, src)))
2189 return 0;
2190
2191 /* If DEST is used in I3, it is being killed in this insn, so
2192 record that for later. We have to consider paradoxical
2193 subregs here, since they kill the whole register, but we
2194 ignore partial subregs, STRICT_LOW_PART, etc.
2195 Never add REG_DEAD notes for the FRAME_POINTER_REGNUM or the
2196 STACK_POINTER_REGNUM, since these are always considered to be
2197 live. Similarly for ARG_POINTER_REGNUM if it is fixed. */
2198 subdest = dest;
2199 if (GET_CODE (subdest) == SUBREG
2200 && (GET_MODE_SIZE (GET_MODE (subdest))
2201 >= GET_MODE_SIZE (GET_MODE (SUBREG_REG (subdest)))))
2202 subdest = SUBREG_REG (subdest);
2203 if (pi3dest_killed
2204 && REG_P (subdest)
2205 && reg_referenced_p (subdest, PATTERN (i3))
2206 && REGNO (subdest) != FRAME_POINTER_REGNUM
2207 && (HARD_FRAME_POINTER_IS_FRAME_POINTER
2208 || REGNO (subdest) != HARD_FRAME_POINTER_REGNUM)
2209 && (FRAME_POINTER_REGNUM == ARG_POINTER_REGNUM
2210 || (REGNO (subdest) != ARG_POINTER_REGNUM
2211 || ! fixed_regs [REGNO (subdest)]))
2212 && REGNO (subdest) != STACK_POINTER_REGNUM)
2213 {
2214 if (*pi3dest_killed)
2215 return 0;
2216
2217 *pi3dest_killed = subdest;
2218 }
2219 }
2220
2221 else if (GET_CODE (x) == PARALLEL)
2222 {
2223 int i;
2224
2225 for (i = 0; i < XVECLEN (x, 0); i++)
2226 if (! combinable_i3pat (i3, &XVECEXP (x, 0, i), i2dest, i1dest, i0dest,
2227 i1_not_in_src, i0_not_in_src, pi3dest_killed))
2228 return 0;
2229 }
2230
2231 return 1;
2232 }
2233 \f
2234 /* Return 1 if X is an arithmetic expression that contains a multiplication
2235 and division. We don't count multiplications by powers of two here. */
2236
2237 static int
2238 contains_muldiv (rtx x)
2239 {
2240 switch (GET_CODE (x))
2241 {
2242 case MOD: case DIV: case UMOD: case UDIV:
2243 return 1;
2244
2245 case MULT:
2246 return ! (CONST_INT_P (XEXP (x, 1))
2247 && exact_log2 (UINTVAL (XEXP (x, 1))) >= 0);
2248 default:
2249 if (BINARY_P (x))
2250 return contains_muldiv (XEXP (x, 0))
2251 || contains_muldiv (XEXP (x, 1));
2252
2253 if (UNARY_P (x))
2254 return contains_muldiv (XEXP (x, 0));
2255
2256 return 0;
2257 }
2258 }
2259 \f
2260 /* Determine whether INSN can be used in a combination. Return nonzero if
2261 not. This is used in try_combine to detect early some cases where we
2262 can't perform combinations. */
2263
2264 static int
2265 cant_combine_insn_p (rtx_insn *insn)
2266 {
2267 rtx set;
2268 rtx src, dest;
2269
2270 /* If this isn't really an insn, we can't do anything.
2271 This can occur when flow deletes an insn that it has merged into an
2272 auto-increment address. */
2273 if (! INSN_P (insn))
2274 return 1;
2275
2276 /* Never combine loads and stores involving hard regs that are likely
2277 to be spilled. The register allocator can usually handle such
2278 reg-reg moves by tying. If we allow the combiner to make
2279 substitutions of likely-spilled regs, reload might die.
2280 As an exception, we allow combinations involving fixed regs; these are
2281 not available to the register allocator so there's no risk involved. */
2282
2283 set = single_set (insn);
2284 if (! set)
2285 return 0;
2286 src = SET_SRC (set);
2287 dest = SET_DEST (set);
2288 if (GET_CODE (src) == SUBREG)
2289 src = SUBREG_REG (src);
2290 if (GET_CODE (dest) == SUBREG)
2291 dest = SUBREG_REG (dest);
2292 if (REG_P (src) && REG_P (dest)
2293 && ((HARD_REGISTER_P (src)
2294 && ! TEST_HARD_REG_BIT (fixed_reg_set, REGNO (src))
2295 && targetm.class_likely_spilled_p (REGNO_REG_CLASS (REGNO (src))))
2296 || (HARD_REGISTER_P (dest)
2297 && ! TEST_HARD_REG_BIT (fixed_reg_set, REGNO (dest))
2298 && targetm.class_likely_spilled_p (REGNO_REG_CLASS (REGNO (dest))))))
2299 return 1;
2300
2301 return 0;
2302 }
2303
2304 struct likely_spilled_retval_info
2305 {
2306 unsigned regno, nregs;
2307 unsigned mask;
2308 };
2309
2310 /* Called via note_stores by likely_spilled_retval_p. Remove from info->mask
2311 hard registers that are known to be written to / clobbered in full. */
2312 static void
2313 likely_spilled_retval_1 (rtx x, const_rtx set, void *data)
2314 {
2315 struct likely_spilled_retval_info *const info =
2316 (struct likely_spilled_retval_info *) data;
2317 unsigned regno, nregs;
2318 unsigned new_mask;
2319
2320 if (!REG_P (XEXP (set, 0)))
2321 return;
2322 regno = REGNO (x);
2323 if (regno >= info->regno + info->nregs)
2324 return;
2325 nregs = REG_NREGS (x);
2326 if (regno + nregs <= info->regno)
2327 return;
2328 new_mask = (2U << (nregs - 1)) - 1;
2329 if (regno < info->regno)
2330 new_mask >>= info->regno - regno;
2331 else
2332 new_mask <<= regno - info->regno;
2333 info->mask &= ~new_mask;
2334 }
2335
2336 /* Return nonzero iff part of the return value is live during INSN, and
2337 it is likely spilled. This can happen when more than one insn is needed
2338 to copy the return value, e.g. when we consider to combine into the
2339 second copy insn for a complex value. */
2340
2341 static int
2342 likely_spilled_retval_p (rtx_insn *insn)
2343 {
2344 rtx_insn *use = BB_END (this_basic_block);
2345 rtx reg;
2346 rtx_insn *p;
2347 unsigned regno, nregs;
2348 /* We assume here that no machine mode needs more than
2349 32 hard registers when the value overlaps with a register
2350 for which TARGET_FUNCTION_VALUE_REGNO_P is true. */
2351 unsigned mask;
2352 struct likely_spilled_retval_info info;
2353
2354 if (!NONJUMP_INSN_P (use) || GET_CODE (PATTERN (use)) != USE || insn == use)
2355 return 0;
2356 reg = XEXP (PATTERN (use), 0);
2357 if (!REG_P (reg) || !targetm.calls.function_value_regno_p (REGNO (reg)))
2358 return 0;
2359 regno = REGNO (reg);
2360 nregs = REG_NREGS (reg);
2361 if (nregs == 1)
2362 return 0;
2363 mask = (2U << (nregs - 1)) - 1;
2364
2365 /* Disregard parts of the return value that are set later. */
2366 info.regno = regno;
2367 info.nregs = nregs;
2368 info.mask = mask;
2369 for (p = PREV_INSN (use); info.mask && p != insn; p = PREV_INSN (p))
2370 if (INSN_P (p))
2371 note_stores (PATTERN (p), likely_spilled_retval_1, &info);
2372 mask = info.mask;
2373
2374 /* Check if any of the (probably) live return value registers is
2375 likely spilled. */
2376 nregs --;
2377 do
2378 {
2379 if ((mask & 1 << nregs)
2380 && targetm.class_likely_spilled_p (REGNO_REG_CLASS (regno + nregs)))
2381 return 1;
2382 } while (nregs--);
2383 return 0;
2384 }
2385
2386 /* Adjust INSN after we made a change to its destination.
2387
2388 Changing the destination can invalidate notes that say something about
2389 the results of the insn and a LOG_LINK pointing to the insn. */
2390
2391 static void
2392 adjust_for_new_dest (rtx_insn *insn)
2393 {
2394 /* For notes, be conservative and simply remove them. */
2395 remove_reg_equal_equiv_notes (insn);
2396
2397 /* The new insn will have a destination that was previously the destination
2398 of an insn just above it. Call distribute_links to make a LOG_LINK from
2399 the next use of that destination. */
2400
2401 rtx set = single_set (insn);
2402 gcc_assert (set);
2403
2404 rtx reg = SET_DEST (set);
2405
2406 while (GET_CODE (reg) == ZERO_EXTRACT
2407 || GET_CODE (reg) == STRICT_LOW_PART
2408 || GET_CODE (reg) == SUBREG)
2409 reg = XEXP (reg, 0);
2410 gcc_assert (REG_P (reg));
2411
2412 distribute_links (alloc_insn_link (insn, REGNO (reg), NULL));
2413
2414 df_insn_rescan (insn);
2415 }
2416
2417 /* Return TRUE if combine can reuse reg X in mode MODE.
2418 ADDED_SETS is nonzero if the original set is still required. */
2419 static bool
2420 can_change_dest_mode (rtx x, int added_sets, machine_mode mode)
2421 {
2422 unsigned int regno;
2423
2424 if (!REG_P (x))
2425 return false;
2426
2427 regno = REGNO (x);
2428 /* Allow hard registers if the new mode is legal, and occupies no more
2429 registers than the old mode. */
2430 if (regno < FIRST_PSEUDO_REGISTER)
2431 return (HARD_REGNO_MODE_OK (regno, mode)
2432 && REG_NREGS (x) >= hard_regno_nregs[regno][mode]);
2433
2434 /* Or a pseudo that is only used once. */
2435 return (regno < reg_n_sets_max
2436 && REG_N_SETS (regno) == 1
2437 && !added_sets
2438 && !REG_USERVAR_P (x));
2439 }
2440
2441
2442 /* Check whether X, the destination of a set, refers to part of
2443 the register specified by REG. */
2444
2445 static bool
2446 reg_subword_p (rtx x, rtx reg)
2447 {
2448 /* Check that reg is an integer mode register. */
2449 if (!REG_P (reg) || GET_MODE_CLASS (GET_MODE (reg)) != MODE_INT)
2450 return false;
2451
2452 if (GET_CODE (x) == STRICT_LOW_PART
2453 || GET_CODE (x) == ZERO_EXTRACT)
2454 x = XEXP (x, 0);
2455
2456 return GET_CODE (x) == SUBREG
2457 && SUBREG_REG (x) == reg
2458 && GET_MODE_CLASS (GET_MODE (x)) == MODE_INT;
2459 }
2460
2461 /* Delete the unconditional jump INSN and adjust the CFG correspondingly.
2462 Note that the INSN should be deleted *after* removing dead edges, so
2463 that the kept edge is the fallthrough edge for a (set (pc) (pc))
2464 but not for a (set (pc) (label_ref FOO)). */
2465
2466 static void
2467 update_cfg_for_uncondjump (rtx_insn *insn)
2468 {
2469 basic_block bb = BLOCK_FOR_INSN (insn);
2470 gcc_assert (BB_END (bb) == insn);
2471
2472 purge_dead_edges (bb);
2473
2474 delete_insn (insn);
2475 if (EDGE_COUNT (bb->succs) == 1)
2476 {
2477 rtx_insn *insn;
2478
2479 single_succ_edge (bb)->flags |= EDGE_FALLTHRU;
2480
2481 /* Remove barriers from the footer if there are any. */
2482 for (insn = BB_FOOTER (bb); insn; insn = NEXT_INSN (insn))
2483 if (BARRIER_P (insn))
2484 {
2485 if (PREV_INSN (insn))
2486 SET_NEXT_INSN (PREV_INSN (insn)) = NEXT_INSN (insn);
2487 else
2488 BB_FOOTER (bb) = NEXT_INSN (insn);
2489 if (NEXT_INSN (insn))
2490 SET_PREV_INSN (NEXT_INSN (insn)) = PREV_INSN (insn);
2491 }
2492 else if (LABEL_P (insn))
2493 break;
2494 }
2495 }
2496
2497 /* Return whether PAT is a PARALLEL of exactly N register SETs followed
2498 by an arbitrary number of CLOBBERs. */
2499 static bool
2500 is_parallel_of_n_reg_sets (rtx pat, int n)
2501 {
2502 if (GET_CODE (pat) != PARALLEL)
2503 return false;
2504
2505 int len = XVECLEN (pat, 0);
2506 if (len < n)
2507 return false;
2508
2509 int i;
2510 for (i = 0; i < n; i++)
2511 if (GET_CODE (XVECEXP (pat, 0, i)) != SET
2512 || !REG_P (SET_DEST (XVECEXP (pat, 0, i))))
2513 return false;
2514 for ( ; i < len; i++)
2515 if (GET_CODE (XVECEXP (pat, 0, i)) != CLOBBER)
2516 return false;
2517
2518 return true;
2519 }
2520
2521 /* Return whether INSN, a PARALLEL of N register SETs (and maybe some
2522 CLOBBERs), can be split into individual SETs in that order, without
2523 changing semantics. */
2524 static bool
2525 can_split_parallel_of_n_reg_sets (rtx_insn *insn, int n)
2526 {
2527 if (!insn_nothrow_p (insn))
2528 return false;
2529
2530 rtx pat = PATTERN (insn);
2531
2532 int i, j;
2533 for (i = 0; i < n; i++)
2534 {
2535 if (side_effects_p (SET_SRC (XVECEXP (pat, 0, i))))
2536 return false;
2537
2538 rtx reg = SET_DEST (XVECEXP (pat, 0, i));
2539
2540 for (j = i + 1; j < n; j++)
2541 if (reg_referenced_p (reg, XVECEXP (pat, 0, j)))
2542 return false;
2543 }
2544
2545 return true;
2546 }
2547
2548 /* Try to combine the insns I0, I1 and I2 into I3.
2549 Here I0, I1 and I2 appear earlier than I3.
2550 I0 and I1 can be zero; then we combine just I2 into I3, or I1 and I2 into
2551 I3.
2552
2553 If we are combining more than two insns and the resulting insn is not
2554 recognized, try splitting it into two insns. If that happens, I2 and I3
2555 are retained and I1/I0 are pseudo-deleted by turning them into a NOTE.
2556 Otherwise, I0, I1 and I2 are pseudo-deleted.
2557
2558 Return 0 if the combination does not work. Then nothing is changed.
2559 If we did the combination, return the insn at which combine should
2560 resume scanning.
2561
2562 Set NEW_DIRECT_JUMP_P to a nonzero value if try_combine creates a
2563 new direct jump instruction.
2564
2565 LAST_COMBINED_INSN is either I3, or some insn after I3 that has
2566 been I3 passed to an earlier try_combine within the same basic
2567 block. */
2568
2569 static rtx_insn *
2570 try_combine (rtx_insn *i3, rtx_insn *i2, rtx_insn *i1, rtx_insn *i0,
2571 int *new_direct_jump_p, rtx_insn *last_combined_insn)
2572 {
2573 /* New patterns for I3 and I2, respectively. */
2574 rtx newpat, newi2pat = 0;
2575 rtvec newpat_vec_with_clobbers = 0;
2576 int substed_i2 = 0, substed_i1 = 0, substed_i0 = 0;
2577 /* Indicates need to preserve SET in I0, I1 or I2 in I3 if it is not
2578 dead. */
2579 int added_sets_0, added_sets_1, added_sets_2;
2580 /* Total number of SETs to put into I3. */
2581 int total_sets;
2582 /* Nonzero if I2's or I1's body now appears in I3. */
2583 int i2_is_used = 0, i1_is_used = 0;
2584 /* INSN_CODEs for new I3, new I2, and user of condition code. */
2585 int insn_code_number, i2_code_number = 0, other_code_number = 0;
2586 /* Contains I3 if the destination of I3 is used in its source, which means
2587 that the old life of I3 is being killed. If that usage is placed into
2588 I2 and not in I3, a REG_DEAD note must be made. */
2589 rtx i3dest_killed = 0;
2590 /* SET_DEST and SET_SRC of I2, I1 and I0. */
2591 rtx i2dest = 0, i2src = 0, i1dest = 0, i1src = 0, i0dest = 0, i0src = 0;
2592 /* Copy of SET_SRC of I1 and I0, if needed. */
2593 rtx i1src_copy = 0, i0src_copy = 0, i0src_copy2 = 0;
2594 /* Set if I2DEST was reused as a scratch register. */
2595 bool i2scratch = false;
2596 /* The PATTERNs of I0, I1, and I2, or a copy of them in certain cases. */
2597 rtx i0pat = 0, i1pat = 0, i2pat = 0;
2598 /* Indicates if I2DEST or I1DEST is in I2SRC or I1_SRC. */
2599 int i2dest_in_i2src = 0, i1dest_in_i1src = 0, i2dest_in_i1src = 0;
2600 int i0dest_in_i0src = 0, i1dest_in_i0src = 0, i2dest_in_i0src = 0;
2601 int i2dest_killed = 0, i1dest_killed = 0, i0dest_killed = 0;
2602 int i1_feeds_i2_n = 0, i0_feeds_i2_n = 0, i0_feeds_i1_n = 0;
2603 /* Notes that must be added to REG_NOTES in I3 and I2. */
2604 rtx new_i3_notes, new_i2_notes;
2605 /* Notes that we substituted I3 into I2 instead of the normal case. */
2606 int i3_subst_into_i2 = 0;
2607 /* Notes that I1, I2 or I3 is a MULT operation. */
2608 int have_mult = 0;
2609 int swap_i2i3 = 0;
2610 int changed_i3_dest = 0;
2611
2612 int maxreg;
2613 rtx_insn *temp_insn;
2614 rtx temp_expr;
2615 struct insn_link *link;
2616 rtx other_pat = 0;
2617 rtx new_other_notes;
2618 int i;
2619
2620 /* Immediately return if any of I0,I1,I2 are the same insn (I3 can
2621 never be). */
2622 if (i1 == i2 || i0 == i2 || (i0 && i0 == i1))
2623 return 0;
2624
2625 /* Only try four-insn combinations when there's high likelihood of
2626 success. Look for simple insns, such as loads of constants or
2627 binary operations involving a constant. */
2628 if (i0)
2629 {
2630 int i;
2631 int ngood = 0;
2632 int nshift = 0;
2633 rtx set0, set3;
2634
2635 if (!flag_expensive_optimizations)
2636 return 0;
2637
2638 for (i = 0; i < 4; i++)
2639 {
2640 rtx_insn *insn = i == 0 ? i0 : i == 1 ? i1 : i == 2 ? i2 : i3;
2641 rtx set = single_set (insn);
2642 rtx src;
2643 if (!set)
2644 continue;
2645 src = SET_SRC (set);
2646 if (CONSTANT_P (src))
2647 {
2648 ngood += 2;
2649 break;
2650 }
2651 else if (BINARY_P (src) && CONSTANT_P (XEXP (src, 1)))
2652 ngood++;
2653 else if (GET_CODE (src) == ASHIFT || GET_CODE (src) == ASHIFTRT
2654 || GET_CODE (src) == LSHIFTRT)
2655 nshift++;
2656 }
2657
2658 /* If I0 loads a memory and I3 sets the same memory, then I1 and I2
2659 are likely manipulating its value. Ideally we'll be able to combine
2660 all four insns into a bitfield insertion of some kind.
2661
2662 Note the source in I0 might be inside a sign/zero extension and the
2663 memory modes in I0 and I3 might be different. So extract the address
2664 from the destination of I3 and search for it in the source of I0.
2665
2666 In the event that there's a match but the source/dest do not actually
2667 refer to the same memory, the worst that happens is we try some
2668 combinations that we wouldn't have otherwise. */
2669 if ((set0 = single_set (i0))
2670 /* Ensure the source of SET0 is a MEM, possibly buried inside
2671 an extension. */
2672 && (GET_CODE (SET_SRC (set0)) == MEM
2673 || ((GET_CODE (SET_SRC (set0)) == ZERO_EXTEND
2674 || GET_CODE (SET_SRC (set0)) == SIGN_EXTEND)
2675 && GET_CODE (XEXP (SET_SRC (set0), 0)) == MEM))
2676 && (set3 = single_set (i3))
2677 /* Ensure the destination of SET3 is a MEM. */
2678 && GET_CODE (SET_DEST (set3)) == MEM
2679 /* Would it be better to extract the base address for the MEM
2680 in SET3 and look for that? I don't have cases where it matters
2681 but I could envision such cases. */
2682 && rtx_referenced_p (XEXP (SET_DEST (set3), 0), SET_SRC (set0)))
2683 ngood += 2;
2684
2685 if (ngood < 2 && nshift < 2)
2686 return 0;
2687 }
2688
2689 /* Exit early if one of the insns involved can't be used for
2690 combinations. */
2691 if (CALL_P (i2)
2692 || (i1 && CALL_P (i1))
2693 || (i0 && CALL_P (i0))
2694 || cant_combine_insn_p (i3)
2695 || cant_combine_insn_p (i2)
2696 || (i1 && cant_combine_insn_p (i1))
2697 || (i0 && cant_combine_insn_p (i0))
2698 || likely_spilled_retval_p (i3))
2699 return 0;
2700
2701 combine_attempts++;
2702 undobuf.other_insn = 0;
2703
2704 /* Reset the hard register usage information. */
2705 CLEAR_HARD_REG_SET (newpat_used_regs);
2706
2707 if (dump_file && (dump_flags & TDF_DETAILS))
2708 {
2709 if (i0)
2710 fprintf (dump_file, "\nTrying %d, %d, %d -> %d:\n",
2711 INSN_UID (i0), INSN_UID (i1), INSN_UID (i2), INSN_UID (i3));
2712 else if (i1)
2713 fprintf (dump_file, "\nTrying %d, %d -> %d:\n",
2714 INSN_UID (i1), INSN_UID (i2), INSN_UID (i3));
2715 else
2716 fprintf (dump_file, "\nTrying %d -> %d:\n",
2717 INSN_UID (i2), INSN_UID (i3));
2718 }
2719
2720 /* If multiple insns feed into one of I2 or I3, they can be in any
2721 order. To simplify the code below, reorder them in sequence. */
2722 if (i0 && DF_INSN_LUID (i0) > DF_INSN_LUID (i2))
2723 std::swap (i0, i2);
2724 if (i0 && DF_INSN_LUID (i0) > DF_INSN_LUID (i1))
2725 std::swap (i0, i1);
2726 if (i1 && DF_INSN_LUID (i1) > DF_INSN_LUID (i2))
2727 std::swap (i1, i2);
2728
2729 added_links_insn = 0;
2730
2731 /* First check for one important special case that the code below will
2732 not handle. Namely, the case where I1 is zero, I2 is a PARALLEL
2733 and I3 is a SET whose SET_SRC is a SET_DEST in I2. In that case,
2734 we may be able to replace that destination with the destination of I3.
2735 This occurs in the common code where we compute both a quotient and
2736 remainder into a structure, in which case we want to do the computation
2737 directly into the structure to avoid register-register copies.
2738
2739 Note that this case handles both multiple sets in I2 and also cases
2740 where I2 has a number of CLOBBERs inside the PARALLEL.
2741
2742 We make very conservative checks below and only try to handle the
2743 most common cases of this. For example, we only handle the case
2744 where I2 and I3 are adjacent to avoid making difficult register
2745 usage tests. */
2746
2747 if (i1 == 0 && NONJUMP_INSN_P (i3) && GET_CODE (PATTERN (i3)) == SET
2748 && REG_P (SET_SRC (PATTERN (i3)))
2749 && REGNO (SET_SRC (PATTERN (i3))) >= FIRST_PSEUDO_REGISTER
2750 && find_reg_note (i3, REG_DEAD, SET_SRC (PATTERN (i3)))
2751 && GET_CODE (PATTERN (i2)) == PARALLEL
2752 && ! side_effects_p (SET_DEST (PATTERN (i3)))
2753 /* If the dest of I3 is a ZERO_EXTRACT or STRICT_LOW_PART, the code
2754 below would need to check what is inside (and reg_overlap_mentioned_p
2755 doesn't support those codes anyway). Don't allow those destinations;
2756 the resulting insn isn't likely to be recognized anyway. */
2757 && GET_CODE (SET_DEST (PATTERN (i3))) != ZERO_EXTRACT
2758 && GET_CODE (SET_DEST (PATTERN (i3))) != STRICT_LOW_PART
2759 && ! reg_overlap_mentioned_p (SET_SRC (PATTERN (i3)),
2760 SET_DEST (PATTERN (i3)))
2761 && next_active_insn (i2) == i3)
2762 {
2763 rtx p2 = PATTERN (i2);
2764
2765 /* Make sure that the destination of I3,
2766 which we are going to substitute into one output of I2,
2767 is not used within another output of I2. We must avoid making this:
2768 (parallel [(set (mem (reg 69)) ...)
2769 (set (reg 69) ...)])
2770 which is not well-defined as to order of actions.
2771 (Besides, reload can't handle output reloads for this.)
2772
2773 The problem can also happen if the dest of I3 is a memory ref,
2774 if another dest in I2 is an indirect memory ref. */
2775 for (i = 0; i < XVECLEN (p2, 0); i++)
2776 if ((GET_CODE (XVECEXP (p2, 0, i)) == SET
2777 || GET_CODE (XVECEXP (p2, 0, i)) == CLOBBER)
2778 && reg_overlap_mentioned_p (SET_DEST (PATTERN (i3)),
2779 SET_DEST (XVECEXP (p2, 0, i))))
2780 break;
2781
2782 /* Make sure this PARALLEL is not an asm. We do not allow combining
2783 that usually (see can_combine_p), so do not here either. */
2784 for (i = 0; i < XVECLEN (p2, 0); i++)
2785 if (GET_CODE (XVECEXP (p2, 0, i)) == SET
2786 && GET_CODE (SET_SRC (XVECEXP (p2, 0, i))) == ASM_OPERANDS)
2787 break;
2788
2789 if (i == XVECLEN (p2, 0))
2790 for (i = 0; i < XVECLEN (p2, 0); i++)
2791 if (GET_CODE (XVECEXP (p2, 0, i)) == SET
2792 && SET_DEST (XVECEXP (p2, 0, i)) == SET_SRC (PATTERN (i3)))
2793 {
2794 combine_merges++;
2795
2796 subst_insn = i3;
2797 subst_low_luid = DF_INSN_LUID (i2);
2798
2799 added_sets_2 = added_sets_1 = added_sets_0 = 0;
2800 i2src = SET_SRC (XVECEXP (p2, 0, i));
2801 i2dest = SET_DEST (XVECEXP (p2, 0, i));
2802 i2dest_killed = dead_or_set_p (i2, i2dest);
2803
2804 /* Replace the dest in I2 with our dest and make the resulting
2805 insn the new pattern for I3. Then skip to where we validate
2806 the pattern. Everything was set up above. */
2807 SUBST (SET_DEST (XVECEXP (p2, 0, i)), SET_DEST (PATTERN (i3)));
2808 newpat = p2;
2809 i3_subst_into_i2 = 1;
2810 goto validate_replacement;
2811 }
2812 }
2813
2814 /* If I2 is setting a pseudo to a constant and I3 is setting some
2815 sub-part of it to another constant, merge them by making a new
2816 constant. */
2817 if (i1 == 0
2818 && (temp_expr = single_set (i2)) != 0
2819 && CONST_SCALAR_INT_P (SET_SRC (temp_expr))
2820 && GET_CODE (PATTERN (i3)) == SET
2821 && CONST_SCALAR_INT_P (SET_SRC (PATTERN (i3)))
2822 && reg_subword_p (SET_DEST (PATTERN (i3)), SET_DEST (temp_expr)))
2823 {
2824 rtx dest = SET_DEST (PATTERN (i3));
2825 int offset = -1;
2826 int width = 0;
2827
2828 if (GET_CODE (dest) == ZERO_EXTRACT)
2829 {
2830 if (CONST_INT_P (XEXP (dest, 1))
2831 && CONST_INT_P (XEXP (dest, 2)))
2832 {
2833 width = INTVAL (XEXP (dest, 1));
2834 offset = INTVAL (XEXP (dest, 2));
2835 dest = XEXP (dest, 0);
2836 if (BITS_BIG_ENDIAN)
2837 offset = GET_MODE_PRECISION (GET_MODE (dest)) - width - offset;
2838 }
2839 }
2840 else
2841 {
2842 if (GET_CODE (dest) == STRICT_LOW_PART)
2843 dest = XEXP (dest, 0);
2844 width = GET_MODE_PRECISION (GET_MODE (dest));
2845 offset = 0;
2846 }
2847
2848 if (offset >= 0)
2849 {
2850 /* If this is the low part, we're done. */
2851 if (subreg_lowpart_p (dest))
2852 ;
2853 /* Handle the case where inner is twice the size of outer. */
2854 else if (GET_MODE_PRECISION (GET_MODE (SET_DEST (temp_expr)))
2855 == 2 * GET_MODE_PRECISION (GET_MODE (dest)))
2856 offset += GET_MODE_PRECISION (GET_MODE (dest));
2857 /* Otherwise give up for now. */
2858 else
2859 offset = -1;
2860 }
2861
2862 if (offset >= 0)
2863 {
2864 rtx inner = SET_SRC (PATTERN (i3));
2865 rtx outer = SET_SRC (temp_expr);
2866
2867 wide_int o
2868 = wi::insert (std::make_pair (outer, GET_MODE (SET_DEST (temp_expr))),
2869 std::make_pair (inner, GET_MODE (dest)),
2870 offset, width);
2871
2872 combine_merges++;
2873 subst_insn = i3;
2874 subst_low_luid = DF_INSN_LUID (i2);
2875 added_sets_2 = added_sets_1 = added_sets_0 = 0;
2876 i2dest = SET_DEST (temp_expr);
2877 i2dest_killed = dead_or_set_p (i2, i2dest);
2878
2879 /* Replace the source in I2 with the new constant and make the
2880 resulting insn the new pattern for I3. Then skip to where we
2881 validate the pattern. Everything was set up above. */
2882 SUBST (SET_SRC (temp_expr),
2883 immed_wide_int_const (o, GET_MODE (SET_DEST (temp_expr))));
2884
2885 newpat = PATTERN (i2);
2886
2887 /* The dest of I3 has been replaced with the dest of I2. */
2888 changed_i3_dest = 1;
2889 goto validate_replacement;
2890 }
2891 }
2892
2893 /* If we have no I1 and I2 looks like:
2894 (parallel [(set (reg:CC X) (compare:CC OP (const_int 0)))
2895 (set Y OP)])
2896 make up a dummy I1 that is
2897 (set Y OP)
2898 and change I2 to be
2899 (set (reg:CC X) (compare:CC Y (const_int 0)))
2900
2901 (We can ignore any trailing CLOBBERs.)
2902
2903 This undoes a previous combination and allows us to match a branch-and-
2904 decrement insn. */
2905
2906 if (!HAVE_cc0 && i1 == 0
2907 && is_parallel_of_n_reg_sets (PATTERN (i2), 2)
2908 && (GET_MODE_CLASS (GET_MODE (SET_DEST (XVECEXP (PATTERN (i2), 0, 0))))
2909 == MODE_CC)
2910 && GET_CODE (SET_SRC (XVECEXP (PATTERN (i2), 0, 0))) == COMPARE
2911 && XEXP (SET_SRC (XVECEXP (PATTERN (i2), 0, 0)), 1) == const0_rtx
2912 && rtx_equal_p (XEXP (SET_SRC (XVECEXP (PATTERN (i2), 0, 0)), 0),
2913 SET_SRC (XVECEXP (PATTERN (i2), 0, 1)))
2914 && !reg_used_between_p (SET_DEST (XVECEXP (PATTERN (i2), 0, 0)), i2, i3)
2915 && !reg_used_between_p (SET_DEST (XVECEXP (PATTERN (i2), 0, 1)), i2, i3))
2916 {
2917 /* We make I1 with the same INSN_UID as I2. This gives it
2918 the same DF_INSN_LUID for value tracking. Our fake I1 will
2919 never appear in the insn stream so giving it the same INSN_UID
2920 as I2 will not cause a problem. */
2921
2922 i1 = gen_rtx_INSN (VOIDmode, NULL, i2, BLOCK_FOR_INSN (i2),
2923 XVECEXP (PATTERN (i2), 0, 1), INSN_LOCATION (i2),
2924 -1, NULL_RTX);
2925 INSN_UID (i1) = INSN_UID (i2);
2926
2927 SUBST (PATTERN (i2), XVECEXP (PATTERN (i2), 0, 0));
2928 SUBST (XEXP (SET_SRC (PATTERN (i2)), 0),
2929 SET_DEST (PATTERN (i1)));
2930 unsigned int regno = REGNO (SET_DEST (PATTERN (i1)));
2931 SUBST_LINK (LOG_LINKS (i2),
2932 alloc_insn_link (i1, regno, LOG_LINKS (i2)));
2933 }
2934
2935 /* If I2 is a PARALLEL of two SETs of REGs (and perhaps some CLOBBERs),
2936 make those two SETs separate I1 and I2 insns, and make an I0 that is
2937 the original I1. */
2938 if (!HAVE_cc0 && i0 == 0
2939 && is_parallel_of_n_reg_sets (PATTERN (i2), 2)
2940 && can_split_parallel_of_n_reg_sets (i2, 2)
2941 && !reg_used_between_p (SET_DEST (XVECEXP (PATTERN (i2), 0, 0)), i2, i3)
2942 && !reg_used_between_p (SET_DEST (XVECEXP (PATTERN (i2), 0, 1)), i2, i3))
2943 {
2944 /* If there is no I1, there is no I0 either. */
2945 i0 = i1;
2946
2947 /* We make I1 with the same INSN_UID as I2. This gives it
2948 the same DF_INSN_LUID for value tracking. Our fake I1 will
2949 never appear in the insn stream so giving it the same INSN_UID
2950 as I2 will not cause a problem. */
2951
2952 i1 = gen_rtx_INSN (VOIDmode, NULL, i2, BLOCK_FOR_INSN (i2),
2953 XVECEXP (PATTERN (i2), 0, 0), INSN_LOCATION (i2),
2954 -1, NULL_RTX);
2955 INSN_UID (i1) = INSN_UID (i2);
2956
2957 SUBST (PATTERN (i2), XVECEXP (PATTERN (i2), 0, 1));
2958 }
2959
2960 /* Verify that I2 and I1 are valid for combining. */
2961 if (! can_combine_p (i2, i3, i0, i1, NULL, NULL, &i2dest, &i2src)
2962 || (i1 && ! can_combine_p (i1, i3, i0, NULL, i2, NULL,
2963 &i1dest, &i1src))
2964 || (i0 && ! can_combine_p (i0, i3, NULL, NULL, i1, i2,
2965 &i0dest, &i0src)))
2966 {
2967 undo_all ();
2968 return 0;
2969 }
2970
2971 /* Record whether I2DEST is used in I2SRC and similarly for the other
2972 cases. Knowing this will help in register status updating below. */
2973 i2dest_in_i2src = reg_overlap_mentioned_p (i2dest, i2src);
2974 i1dest_in_i1src = i1 && reg_overlap_mentioned_p (i1dest, i1src);
2975 i2dest_in_i1src = i1 && reg_overlap_mentioned_p (i2dest, i1src);
2976 i0dest_in_i0src = i0 && reg_overlap_mentioned_p (i0dest, i0src);
2977 i1dest_in_i0src = i0 && reg_overlap_mentioned_p (i1dest, i0src);
2978 i2dest_in_i0src = i0 && reg_overlap_mentioned_p (i2dest, i0src);
2979 i2dest_killed = dead_or_set_p (i2, i2dest);
2980 i1dest_killed = i1 && dead_or_set_p (i1, i1dest);
2981 i0dest_killed = i0 && dead_or_set_p (i0, i0dest);
2982
2983 /* For the earlier insns, determine which of the subsequent ones they
2984 feed. */
2985 i1_feeds_i2_n = i1 && insn_a_feeds_b (i1, i2);
2986 i0_feeds_i1_n = i0 && insn_a_feeds_b (i0, i1);
2987 i0_feeds_i2_n = (i0 && (!i0_feeds_i1_n ? insn_a_feeds_b (i0, i2)
2988 : (!reg_overlap_mentioned_p (i1dest, i0dest)
2989 && reg_overlap_mentioned_p (i0dest, i2src))));
2990
2991 /* Ensure that I3's pattern can be the destination of combines. */
2992 if (! combinable_i3pat (i3, &PATTERN (i3), i2dest, i1dest, i0dest,
2993 i1 && i2dest_in_i1src && !i1_feeds_i2_n,
2994 i0 && ((i2dest_in_i0src && !i0_feeds_i2_n)
2995 || (i1dest_in_i0src && !i0_feeds_i1_n)),
2996 &i3dest_killed))
2997 {
2998 undo_all ();
2999 return 0;
3000 }
3001
3002 /* See if any of the insns is a MULT operation. Unless one is, we will
3003 reject a combination that is, since it must be slower. Be conservative
3004 here. */
3005 if (GET_CODE (i2src) == MULT
3006 || (i1 != 0 && GET_CODE (i1src) == MULT)
3007 || (i0 != 0 && GET_CODE (i0src) == MULT)
3008 || (GET_CODE (PATTERN (i3)) == SET
3009 && GET_CODE (SET_SRC (PATTERN (i3))) == MULT))
3010 have_mult = 1;
3011
3012 /* If I3 has an inc, then give up if I1 or I2 uses the reg that is inc'd.
3013 We used to do this EXCEPT in one case: I3 has a post-inc in an
3014 output operand. However, that exception can give rise to insns like
3015 mov r3,(r3)+
3016 which is a famous insn on the PDP-11 where the value of r3 used as the
3017 source was model-dependent. Avoid this sort of thing. */
3018
3019 #if 0
3020 if (!(GET_CODE (PATTERN (i3)) == SET
3021 && REG_P (SET_SRC (PATTERN (i3)))
3022 && MEM_P (SET_DEST (PATTERN (i3)))
3023 && (GET_CODE (XEXP (SET_DEST (PATTERN (i3)), 0)) == POST_INC
3024 || GET_CODE (XEXP (SET_DEST (PATTERN (i3)), 0)) == POST_DEC)))
3025 /* It's not the exception. */
3026 #endif
3027 if (AUTO_INC_DEC)
3028 {
3029 rtx link;
3030 for (link = REG_NOTES (i3); link; link = XEXP (link, 1))
3031 if (REG_NOTE_KIND (link) == REG_INC
3032 && (reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i2))
3033 || (i1 != 0
3034 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i1)))))
3035 {
3036 undo_all ();
3037 return 0;
3038 }
3039 }
3040
3041 /* See if the SETs in I1 or I2 need to be kept around in the merged
3042 instruction: whenever the value set there is still needed past I3.
3043 For the SET in I2, this is easy: we see if I2DEST dies or is set in I3.
3044
3045 For the SET in I1, we have two cases: if I1 and I2 independently feed
3046 into I3, the set in I1 needs to be kept around unless I1DEST dies
3047 or is set in I3. Otherwise (if I1 feeds I2 which feeds I3), the set
3048 in I1 needs to be kept around unless I1DEST dies or is set in either
3049 I2 or I3. The same considerations apply to I0. */
3050
3051 added_sets_2 = !dead_or_set_p (i3, i2dest);
3052
3053 if (i1)
3054 added_sets_1 = !(dead_or_set_p (i3, i1dest)
3055 || (i1_feeds_i2_n && dead_or_set_p (i2, i1dest)));
3056 else
3057 added_sets_1 = 0;
3058
3059 if (i0)
3060 added_sets_0 = !(dead_or_set_p (i3, i0dest)
3061 || (i0_feeds_i1_n && dead_or_set_p (i1, i0dest))
3062 || ((i0_feeds_i2_n || (i0_feeds_i1_n && i1_feeds_i2_n))
3063 && dead_or_set_p (i2, i0dest)));
3064 else
3065 added_sets_0 = 0;
3066
3067 /* We are about to copy insns for the case where they need to be kept
3068 around. Check that they can be copied in the merged instruction. */
3069
3070 if (targetm.cannot_copy_insn_p
3071 && ((added_sets_2 && targetm.cannot_copy_insn_p (i2))
3072 || (i1 && added_sets_1 && targetm.cannot_copy_insn_p (i1))
3073 || (i0 && added_sets_0 && targetm.cannot_copy_insn_p (i0))))
3074 {
3075 undo_all ();
3076 return 0;
3077 }
3078
3079 /* If the set in I2 needs to be kept around, we must make a copy of
3080 PATTERN (I2), so that when we substitute I1SRC for I1DEST in
3081 PATTERN (I2), we are only substituting for the original I1DEST, not into
3082 an already-substituted copy. This also prevents making self-referential
3083 rtx. If I2 is a PARALLEL, we just need the piece that assigns I2SRC to
3084 I2DEST. */
3085
3086 if (added_sets_2)
3087 {
3088 if (GET_CODE (PATTERN (i2)) == PARALLEL)
3089 i2pat = gen_rtx_SET (i2dest, copy_rtx (i2src));
3090 else
3091 i2pat = copy_rtx (PATTERN (i2));
3092 }
3093
3094 if (added_sets_1)
3095 {
3096 if (GET_CODE (PATTERN (i1)) == PARALLEL)
3097 i1pat = gen_rtx_SET (i1dest, copy_rtx (i1src));
3098 else
3099 i1pat = copy_rtx (PATTERN (i1));
3100 }
3101
3102 if (added_sets_0)
3103 {
3104 if (GET_CODE (PATTERN (i0)) == PARALLEL)
3105 i0pat = gen_rtx_SET (i0dest, copy_rtx (i0src));
3106 else
3107 i0pat = copy_rtx (PATTERN (i0));
3108 }
3109
3110 combine_merges++;
3111
3112 /* Substitute in the latest insn for the regs set by the earlier ones. */
3113
3114 maxreg = max_reg_num ();
3115
3116 subst_insn = i3;
3117
3118 /* Many machines that don't use CC0 have insns that can both perform an
3119 arithmetic operation and set the condition code. These operations will
3120 be represented as a PARALLEL with the first element of the vector
3121 being a COMPARE of an arithmetic operation with the constant zero.
3122 The second element of the vector will set some pseudo to the result
3123 of the same arithmetic operation. If we simplify the COMPARE, we won't
3124 match such a pattern and so will generate an extra insn. Here we test
3125 for this case, where both the comparison and the operation result are
3126 needed, and make the PARALLEL by just replacing I2DEST in I3SRC with
3127 I2SRC. Later we will make the PARALLEL that contains I2. */
3128
3129 if (!HAVE_cc0 && i1 == 0 && added_sets_2 && GET_CODE (PATTERN (i3)) == SET
3130 && GET_CODE (SET_SRC (PATTERN (i3))) == COMPARE
3131 && CONST_INT_P (XEXP (SET_SRC (PATTERN (i3)), 1))
3132 && rtx_equal_p (XEXP (SET_SRC (PATTERN (i3)), 0), i2dest))
3133 {
3134 rtx newpat_dest;
3135 rtx *cc_use_loc = NULL;
3136 rtx_insn *cc_use_insn = NULL;
3137 rtx op0 = i2src, op1 = XEXP (SET_SRC (PATTERN (i3)), 1);
3138 machine_mode compare_mode, orig_compare_mode;
3139 enum rtx_code compare_code = UNKNOWN, orig_compare_code = UNKNOWN;
3140
3141 newpat = PATTERN (i3);
3142 newpat_dest = SET_DEST (newpat);
3143 compare_mode = orig_compare_mode = GET_MODE (newpat_dest);
3144
3145 if (undobuf.other_insn == 0
3146 && (cc_use_loc = find_single_use (SET_DEST (newpat), i3,
3147 &cc_use_insn)))
3148 {
3149 compare_code = orig_compare_code = GET_CODE (*cc_use_loc);
3150 compare_code = simplify_compare_const (compare_code,
3151 GET_MODE (i2dest), op0, &op1);
3152 target_canonicalize_comparison (&compare_code, &op0, &op1, 1);
3153 }
3154
3155 /* Do the rest only if op1 is const0_rtx, which may be the
3156 result of simplification. */
3157 if (op1 == const0_rtx)
3158 {
3159 /* If a single use of the CC is found, prepare to modify it
3160 when SELECT_CC_MODE returns a new CC-class mode, or when
3161 the above simplify_compare_const() returned a new comparison
3162 operator. undobuf.other_insn is assigned the CC use insn
3163 when modifying it. */
3164 if (cc_use_loc)
3165 {
3166 #ifdef SELECT_CC_MODE
3167 machine_mode new_mode
3168 = SELECT_CC_MODE (compare_code, op0, op1);
3169 if (new_mode != orig_compare_mode
3170 && can_change_dest_mode (SET_DEST (newpat),
3171 added_sets_2, new_mode))
3172 {
3173 unsigned int regno = REGNO (newpat_dest);
3174 compare_mode = new_mode;
3175 if (regno < FIRST_PSEUDO_REGISTER)
3176 newpat_dest = gen_rtx_REG (compare_mode, regno);
3177 else
3178 {
3179 SUBST_MODE (regno_reg_rtx[regno], compare_mode);
3180 newpat_dest = regno_reg_rtx[regno];
3181 }
3182 }
3183 #endif
3184 /* Cases for modifying the CC-using comparison. */
3185 if (compare_code != orig_compare_code
3186 /* ??? Do we need to verify the zero rtx? */
3187 && XEXP (*cc_use_loc, 1) == const0_rtx)
3188 {
3189 /* Replace cc_use_loc with entire new RTX. */
3190 SUBST (*cc_use_loc,
3191 gen_rtx_fmt_ee (compare_code, compare_mode,
3192 newpat_dest, const0_rtx));
3193 undobuf.other_insn = cc_use_insn;
3194 }
3195 else if (compare_mode != orig_compare_mode)
3196 {
3197 /* Just replace the CC reg with a new mode. */
3198 SUBST (XEXP (*cc_use_loc, 0), newpat_dest);
3199 undobuf.other_insn = cc_use_insn;
3200 }
3201 }
3202
3203 /* Now we modify the current newpat:
3204 First, SET_DEST(newpat) is updated if the CC mode has been
3205 altered. For targets without SELECT_CC_MODE, this should be
3206 optimized away. */
3207 if (compare_mode != orig_compare_mode)
3208 SUBST (SET_DEST (newpat), newpat_dest);
3209 /* This is always done to propagate i2src into newpat. */
3210 SUBST (SET_SRC (newpat),
3211 gen_rtx_COMPARE (compare_mode, op0, op1));
3212 /* Create new version of i2pat if needed; the below PARALLEL
3213 creation needs this to work correctly. */
3214 if (! rtx_equal_p (i2src, op0))
3215 i2pat = gen_rtx_SET (i2dest, op0);
3216 i2_is_used = 1;
3217 }
3218 }
3219
3220 if (i2_is_used == 0)
3221 {
3222 /* It is possible that the source of I2 or I1 may be performing
3223 an unneeded operation, such as a ZERO_EXTEND of something
3224 that is known to have the high part zero. Handle that case
3225 by letting subst look at the inner insns.
3226
3227 Another way to do this would be to have a function that tries
3228 to simplify a single insn instead of merging two or more
3229 insns. We don't do this because of the potential of infinite
3230 loops and because of the potential extra memory required.
3231 However, doing it the way we are is a bit of a kludge and
3232 doesn't catch all cases.
3233
3234 But only do this if -fexpensive-optimizations since it slows
3235 things down and doesn't usually win.
3236
3237 This is not done in the COMPARE case above because the
3238 unmodified I2PAT is used in the PARALLEL and so a pattern
3239 with a modified I2SRC would not match. */
3240
3241 if (flag_expensive_optimizations)
3242 {
3243 /* Pass pc_rtx so no substitutions are done, just
3244 simplifications. */
3245 if (i1)
3246 {
3247 subst_low_luid = DF_INSN_LUID (i1);
3248 i1src = subst (i1src, pc_rtx, pc_rtx, 0, 0, 0);
3249 }
3250
3251 subst_low_luid = DF_INSN_LUID (i2);
3252 i2src = subst (i2src, pc_rtx, pc_rtx, 0, 0, 0);
3253 }
3254
3255 n_occurrences = 0; /* `subst' counts here */
3256 subst_low_luid = DF_INSN_LUID (i2);
3257
3258 /* If I1 feeds into I2 and I1DEST is in I1SRC, we need to make a unique
3259 copy of I2SRC each time we substitute it, in order to avoid creating
3260 self-referential RTL when we will be substituting I1SRC for I1DEST
3261 later. Likewise if I0 feeds into I2, either directly or indirectly
3262 through I1, and I0DEST is in I0SRC. */
3263 newpat = subst (PATTERN (i3), i2dest, i2src, 0, 0,
3264 (i1_feeds_i2_n && i1dest_in_i1src)
3265 || ((i0_feeds_i2_n || (i0_feeds_i1_n && i1_feeds_i2_n))
3266 && i0dest_in_i0src));
3267 substed_i2 = 1;
3268
3269 /* Record whether I2's body now appears within I3's body. */
3270 i2_is_used = n_occurrences;
3271 }
3272
3273 /* If we already got a failure, don't try to do more. Otherwise, try to
3274 substitute I1 if we have it. */
3275
3276 if (i1 && GET_CODE (newpat) != CLOBBER)
3277 {
3278 /* Check that an autoincrement side-effect on I1 has not been lost.
3279 This happens if I1DEST is mentioned in I2 and dies there, and
3280 has disappeared from the new pattern. */
3281 if ((FIND_REG_INC_NOTE (i1, NULL_RTX) != 0
3282 && i1_feeds_i2_n
3283 && dead_or_set_p (i2, i1dest)
3284 && !reg_overlap_mentioned_p (i1dest, newpat))
3285 /* Before we can do this substitution, we must redo the test done
3286 above (see detailed comments there) that ensures I1DEST isn't
3287 mentioned in any SETs in NEWPAT that are field assignments. */
3288 || !combinable_i3pat (NULL, &newpat, i1dest, NULL_RTX, NULL_RTX,
3289 0, 0, 0))
3290 {
3291 undo_all ();
3292 return 0;
3293 }
3294
3295 n_occurrences = 0;
3296 subst_low_luid = DF_INSN_LUID (i1);
3297
3298 /* If the following substitution will modify I1SRC, make a copy of it
3299 for the case where it is substituted for I1DEST in I2PAT later. */
3300 if (added_sets_2 && i1_feeds_i2_n)
3301 i1src_copy = copy_rtx (i1src);
3302
3303 /* If I0 feeds into I1 and I0DEST is in I0SRC, we need to make a unique
3304 copy of I1SRC each time we substitute it, in order to avoid creating
3305 self-referential RTL when we will be substituting I0SRC for I0DEST
3306 later. */
3307 newpat = subst (newpat, i1dest, i1src, 0, 0,
3308 i0_feeds_i1_n && i0dest_in_i0src);
3309 substed_i1 = 1;
3310
3311 /* Record whether I1's body now appears within I3's body. */
3312 i1_is_used = n_occurrences;
3313 }
3314
3315 /* Likewise for I0 if we have it. */
3316
3317 if (i0 && GET_CODE (newpat) != CLOBBER)
3318 {
3319 if ((FIND_REG_INC_NOTE (i0, NULL_RTX) != 0
3320 && ((i0_feeds_i2_n && dead_or_set_p (i2, i0dest))
3321 || (i0_feeds_i1_n && dead_or_set_p (i1, i0dest)))
3322 && !reg_overlap_mentioned_p (i0dest, newpat))
3323 || !combinable_i3pat (NULL, &newpat, i0dest, NULL_RTX, NULL_RTX,
3324 0, 0, 0))
3325 {
3326 undo_all ();
3327 return 0;
3328 }
3329
3330 /* If the following substitution will modify I0SRC, make a copy of it
3331 for the case where it is substituted for I0DEST in I1PAT later. */
3332 if (added_sets_1 && i0_feeds_i1_n)
3333 i0src_copy = copy_rtx (i0src);
3334 /* And a copy for I0DEST in I2PAT substitution. */
3335 if (added_sets_2 && ((i0_feeds_i1_n && i1_feeds_i2_n)
3336 || (i0_feeds_i2_n)))
3337 i0src_copy2 = copy_rtx (i0src);
3338
3339 n_occurrences = 0;
3340 subst_low_luid = DF_INSN_LUID (i0);
3341 newpat = subst (newpat, i0dest, i0src, 0, 0, 0);
3342 substed_i0 = 1;
3343 }
3344
3345 /* Fail if an autoincrement side-effect has been duplicated. Be careful
3346 to count all the ways that I2SRC and I1SRC can be used. */
3347 if ((FIND_REG_INC_NOTE (i2, NULL_RTX) != 0
3348 && i2_is_used + added_sets_2 > 1)
3349 || (i1 != 0 && FIND_REG_INC_NOTE (i1, NULL_RTX) != 0
3350 && (i1_is_used + added_sets_1 + (added_sets_2 && i1_feeds_i2_n)
3351 > 1))
3352 || (i0 != 0 && FIND_REG_INC_NOTE (i0, NULL_RTX) != 0
3353 && (n_occurrences + added_sets_0
3354 + (added_sets_1 && i0_feeds_i1_n)
3355 + (added_sets_2 && i0_feeds_i2_n)
3356 > 1))
3357 /* Fail if we tried to make a new register. */
3358 || max_reg_num () != maxreg
3359 /* Fail if we couldn't do something and have a CLOBBER. */
3360 || GET_CODE (newpat) == CLOBBER
3361 /* Fail if this new pattern is a MULT and we didn't have one before
3362 at the outer level. */
3363 || (GET_CODE (newpat) == SET && GET_CODE (SET_SRC (newpat)) == MULT
3364 && ! have_mult))
3365 {
3366 undo_all ();
3367 return 0;
3368 }
3369
3370 /* If the actions of the earlier insns must be kept
3371 in addition to substituting them into the latest one,
3372 we must make a new PARALLEL for the latest insn
3373 to hold additional the SETs. */
3374
3375 if (added_sets_0 || added_sets_1 || added_sets_2)
3376 {
3377 int extra_sets = added_sets_0 + added_sets_1 + added_sets_2;
3378 combine_extras++;
3379
3380 if (GET_CODE (newpat) == PARALLEL)
3381 {
3382 rtvec old = XVEC (newpat, 0);
3383 total_sets = XVECLEN (newpat, 0) + extra_sets;
3384 newpat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (total_sets));
3385 memcpy (XVEC (newpat, 0)->elem, &old->elem[0],
3386 sizeof (old->elem[0]) * old->num_elem);
3387 }
3388 else
3389 {
3390 rtx old = newpat;
3391 total_sets = 1 + extra_sets;
3392 newpat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (total_sets));
3393 XVECEXP (newpat, 0, 0) = old;
3394 }
3395
3396 if (added_sets_0)
3397 XVECEXP (newpat, 0, --total_sets) = i0pat;
3398
3399 if (added_sets_1)
3400 {
3401 rtx t = i1pat;
3402 if (i0_feeds_i1_n)
3403 t = subst (t, i0dest, i0src_copy ? i0src_copy : i0src, 0, 0, 0);
3404
3405 XVECEXP (newpat, 0, --total_sets) = t;
3406 }
3407 if (added_sets_2)
3408 {
3409 rtx t = i2pat;
3410 if (i1_feeds_i2_n)
3411 t = subst (t, i1dest, i1src_copy ? i1src_copy : i1src, 0, 0,
3412 i0_feeds_i1_n && i0dest_in_i0src);
3413 if ((i0_feeds_i1_n && i1_feeds_i2_n) || i0_feeds_i2_n)
3414 t = subst (t, i0dest, i0src_copy2 ? i0src_copy2 : i0src, 0, 0, 0);
3415
3416 XVECEXP (newpat, 0, --total_sets) = t;
3417 }
3418 }
3419
3420 validate_replacement:
3421
3422 /* Note which hard regs this insn has as inputs. */
3423 mark_used_regs_combine (newpat);
3424
3425 /* If recog_for_combine fails, it strips existing clobbers. If we'll
3426 consider splitting this pattern, we might need these clobbers. */
3427 if (i1 && GET_CODE (newpat) == PARALLEL
3428 && GET_CODE (XVECEXP (newpat, 0, XVECLEN (newpat, 0) - 1)) == CLOBBER)
3429 {
3430 int len = XVECLEN (newpat, 0);
3431
3432 newpat_vec_with_clobbers = rtvec_alloc (len);
3433 for (i = 0; i < len; i++)
3434 RTVEC_ELT (newpat_vec_with_clobbers, i) = XVECEXP (newpat, 0, i);
3435 }
3436
3437 /* We have recognized nothing yet. */
3438 insn_code_number = -1;
3439
3440 /* See if this is a PARALLEL of two SETs where one SET's destination is
3441 a register that is unused and this isn't marked as an instruction that
3442 might trap in an EH region. In that case, we just need the other SET.
3443 We prefer this over the PARALLEL.
3444
3445 This can occur when simplifying a divmod insn. We *must* test for this
3446 case here because the code below that splits two independent SETs doesn't
3447 handle this case correctly when it updates the register status.
3448
3449 It's pointless doing this if we originally had two sets, one from
3450 i3, and one from i2. Combining then splitting the parallel results
3451 in the original i2 again plus an invalid insn (which we delete).
3452 The net effect is only to move instructions around, which makes
3453 debug info less accurate. */
3454
3455 if (!(added_sets_2 && i1 == 0)
3456 && is_parallel_of_n_reg_sets (newpat, 2)
3457 && asm_noperands (newpat) < 0)
3458 {
3459 rtx set0 = XVECEXP (newpat, 0, 0);
3460 rtx set1 = XVECEXP (newpat, 0, 1);
3461 rtx oldpat = newpat;
3462
3463 if (((REG_P (SET_DEST (set1))
3464 && find_reg_note (i3, REG_UNUSED, SET_DEST (set1)))
3465 || (GET_CODE (SET_DEST (set1)) == SUBREG
3466 && find_reg_note (i3, REG_UNUSED, SUBREG_REG (SET_DEST (set1)))))
3467 && insn_nothrow_p (i3)
3468 && !side_effects_p (SET_SRC (set1)))
3469 {
3470 newpat = set0;
3471 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3472 }
3473
3474 else if (((REG_P (SET_DEST (set0))
3475 && find_reg_note (i3, REG_UNUSED, SET_DEST (set0)))
3476 || (GET_CODE (SET_DEST (set0)) == SUBREG
3477 && find_reg_note (i3, REG_UNUSED,
3478 SUBREG_REG (SET_DEST (set0)))))
3479 && insn_nothrow_p (i3)
3480 && !side_effects_p (SET_SRC (set0)))
3481 {
3482 newpat = set1;
3483 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3484
3485 if (insn_code_number >= 0)
3486 changed_i3_dest = 1;
3487 }
3488
3489 if (insn_code_number < 0)
3490 newpat = oldpat;
3491 }
3492
3493 /* Is the result of combination a valid instruction? */
3494 if (insn_code_number < 0)
3495 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3496
3497 /* If we were combining three insns and the result is a simple SET
3498 with no ASM_OPERANDS that wasn't recognized, try to split it into two
3499 insns. There are two ways to do this. It can be split using a
3500 machine-specific method (like when you have an addition of a large
3501 constant) or by combine in the function find_split_point. */
3502
3503 if (i1 && insn_code_number < 0 && GET_CODE (newpat) == SET
3504 && asm_noperands (newpat) < 0)
3505 {
3506 rtx parallel, *split;
3507 rtx_insn *m_split_insn;
3508
3509 /* See if the MD file can split NEWPAT. If it can't, see if letting it
3510 use I2DEST as a scratch register will help. In the latter case,
3511 convert I2DEST to the mode of the source of NEWPAT if we can. */
3512
3513 m_split_insn = combine_split_insns (newpat, i3);
3514
3515 /* We can only use I2DEST as a scratch reg if it doesn't overlap any
3516 inputs of NEWPAT. */
3517
3518 /* ??? If I2DEST is not safe, and I1DEST exists, then it would be
3519 possible to try that as a scratch reg. This would require adding
3520 more code to make it work though. */
3521
3522 if (m_split_insn == 0 && ! reg_overlap_mentioned_p (i2dest, newpat))
3523 {
3524 machine_mode new_mode = GET_MODE (SET_DEST (newpat));
3525
3526 /* First try to split using the original register as a
3527 scratch register. */
3528 parallel = gen_rtx_PARALLEL (VOIDmode,
3529 gen_rtvec (2, newpat,
3530 gen_rtx_CLOBBER (VOIDmode,
3531 i2dest)));
3532 m_split_insn = combine_split_insns (parallel, i3);
3533
3534 /* If that didn't work, try changing the mode of I2DEST if
3535 we can. */
3536 if (m_split_insn == 0
3537 && new_mode != GET_MODE (i2dest)
3538 && new_mode != VOIDmode
3539 && can_change_dest_mode (i2dest, added_sets_2, new_mode))
3540 {
3541 machine_mode old_mode = GET_MODE (i2dest);
3542 rtx ni2dest;
3543
3544 if (REGNO (i2dest) < FIRST_PSEUDO_REGISTER)
3545 ni2dest = gen_rtx_REG (new_mode, REGNO (i2dest));
3546 else
3547 {
3548 SUBST_MODE (regno_reg_rtx[REGNO (i2dest)], new_mode);
3549 ni2dest = regno_reg_rtx[REGNO (i2dest)];
3550 }
3551
3552 parallel = (gen_rtx_PARALLEL
3553 (VOIDmode,
3554 gen_rtvec (2, newpat,
3555 gen_rtx_CLOBBER (VOIDmode,
3556 ni2dest))));
3557 m_split_insn = combine_split_insns (parallel, i3);
3558
3559 if (m_split_insn == 0
3560 && REGNO (i2dest) >= FIRST_PSEUDO_REGISTER)
3561 {
3562 struct undo *buf;
3563
3564 adjust_reg_mode (regno_reg_rtx[REGNO (i2dest)], old_mode);
3565 buf = undobuf.undos;
3566 undobuf.undos = buf->next;
3567 buf->next = undobuf.frees;
3568 undobuf.frees = buf;
3569 }
3570 }
3571
3572 i2scratch = m_split_insn != 0;
3573 }
3574
3575 /* If recog_for_combine has discarded clobbers, try to use them
3576 again for the split. */
3577 if (m_split_insn == 0 && newpat_vec_with_clobbers)
3578 {
3579 parallel = gen_rtx_PARALLEL (VOIDmode, newpat_vec_with_clobbers);
3580 m_split_insn = combine_split_insns (parallel, i3);
3581 }
3582
3583 if (m_split_insn && NEXT_INSN (m_split_insn) == NULL_RTX)
3584 {
3585 rtx m_split_pat = PATTERN (m_split_insn);
3586 insn_code_number = recog_for_combine (&m_split_pat, i3, &new_i3_notes);
3587 if (insn_code_number >= 0)
3588 newpat = m_split_pat;
3589 }
3590 else if (m_split_insn && NEXT_INSN (NEXT_INSN (m_split_insn)) == NULL_RTX
3591 && (next_nonnote_nondebug_insn (i2) == i3
3592 || ! use_crosses_set_p (PATTERN (m_split_insn), DF_INSN_LUID (i2))))
3593 {
3594 rtx i2set, i3set;
3595 rtx newi3pat = PATTERN (NEXT_INSN (m_split_insn));
3596 newi2pat = PATTERN (m_split_insn);
3597
3598 i3set = single_set (NEXT_INSN (m_split_insn));
3599 i2set = single_set (m_split_insn);
3600
3601 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
3602
3603 /* If I2 or I3 has multiple SETs, we won't know how to track
3604 register status, so don't use these insns. If I2's destination
3605 is used between I2 and I3, we also can't use these insns. */
3606
3607 if (i2_code_number >= 0 && i2set && i3set
3608 && (next_nonnote_nondebug_insn (i2) == i3
3609 || ! reg_used_between_p (SET_DEST (i2set), i2, i3)))
3610 insn_code_number = recog_for_combine (&newi3pat, i3,
3611 &new_i3_notes);
3612 if (insn_code_number >= 0)
3613 newpat = newi3pat;
3614
3615 /* It is possible that both insns now set the destination of I3.
3616 If so, we must show an extra use of it. */
3617
3618 if (insn_code_number >= 0)
3619 {
3620 rtx new_i3_dest = SET_DEST (i3set);
3621 rtx new_i2_dest = SET_DEST (i2set);
3622
3623 while (GET_CODE (new_i3_dest) == ZERO_EXTRACT
3624 || GET_CODE (new_i3_dest) == STRICT_LOW_PART
3625 || GET_CODE (new_i3_dest) == SUBREG)
3626 new_i3_dest = XEXP (new_i3_dest, 0);
3627
3628 while (GET_CODE (new_i2_dest) == ZERO_EXTRACT
3629 || GET_CODE (new_i2_dest) == STRICT_LOW_PART
3630 || GET_CODE (new_i2_dest) == SUBREG)
3631 new_i2_dest = XEXP (new_i2_dest, 0);
3632
3633 if (REG_P (new_i3_dest)
3634 && REG_P (new_i2_dest)
3635 && REGNO (new_i3_dest) == REGNO (new_i2_dest)
3636 && REGNO (new_i2_dest) < reg_n_sets_max)
3637 INC_REG_N_SETS (REGNO (new_i2_dest), 1);
3638 }
3639 }
3640
3641 /* If we can split it and use I2DEST, go ahead and see if that
3642 helps things be recognized. Verify that none of the registers
3643 are set between I2 and I3. */
3644 if (insn_code_number < 0
3645 && (split = find_split_point (&newpat, i3, false)) != 0
3646 && (!HAVE_cc0 || REG_P (i2dest))
3647 /* We need I2DEST in the proper mode. If it is a hard register
3648 or the only use of a pseudo, we can change its mode.
3649 Make sure we don't change a hard register to have a mode that
3650 isn't valid for it, or change the number of registers. */
3651 && (GET_MODE (*split) == GET_MODE (i2dest)
3652 || GET_MODE (*split) == VOIDmode
3653 || can_change_dest_mode (i2dest, added_sets_2,
3654 GET_MODE (*split)))
3655 && (next_nonnote_nondebug_insn (i2) == i3
3656 || ! use_crosses_set_p (*split, DF_INSN_LUID (i2)))
3657 /* We can't overwrite I2DEST if its value is still used by
3658 NEWPAT. */
3659 && ! reg_referenced_p (i2dest, newpat))
3660 {
3661 rtx newdest = i2dest;
3662 enum rtx_code split_code = GET_CODE (*split);
3663 machine_mode split_mode = GET_MODE (*split);
3664 bool subst_done = false;
3665 newi2pat = NULL_RTX;
3666
3667 i2scratch = true;
3668
3669 /* *SPLIT may be part of I2SRC, so make sure we have the
3670 original expression around for later debug processing.
3671 We should not need I2SRC any more in other cases. */
3672 if (MAY_HAVE_DEBUG_INSNS)
3673 i2src = copy_rtx (i2src);
3674 else
3675 i2src = NULL;
3676
3677 /* Get NEWDEST as a register in the proper mode. We have already
3678 validated that we can do this. */
3679 if (GET_MODE (i2dest) != split_mode && split_mode != VOIDmode)
3680 {
3681 if (REGNO (i2dest) < FIRST_PSEUDO_REGISTER)
3682 newdest = gen_rtx_REG (split_mode, REGNO (i2dest));
3683 else
3684 {
3685 SUBST_MODE (regno_reg_rtx[REGNO (i2dest)], split_mode);
3686 newdest = regno_reg_rtx[REGNO (i2dest)];
3687 }
3688 }
3689
3690 /* If *SPLIT is a (mult FOO (const_int pow2)), convert it to
3691 an ASHIFT. This can occur if it was inside a PLUS and hence
3692 appeared to be a memory address. This is a kludge. */
3693 if (split_code == MULT
3694 && CONST_INT_P (XEXP (*split, 1))
3695 && INTVAL (XEXP (*split, 1)) > 0
3696 && (i = exact_log2 (UINTVAL (XEXP (*split, 1)))) >= 0)
3697 {
3698 SUBST (*split, gen_rtx_ASHIFT (split_mode,
3699 XEXP (*split, 0), GEN_INT (i)));
3700 /* Update split_code because we may not have a multiply
3701 anymore. */
3702 split_code = GET_CODE (*split);
3703 }
3704
3705 /* Similarly for (plus (mult FOO (const_int pow2))). */
3706 if (split_code == PLUS
3707 && GET_CODE (XEXP (*split, 0)) == MULT
3708 && CONST_INT_P (XEXP (XEXP (*split, 0), 1))
3709 && INTVAL (XEXP (XEXP (*split, 0), 1)) > 0
3710 && (i = exact_log2 (UINTVAL (XEXP (XEXP (*split, 0), 1)))) >= 0)
3711 {
3712 rtx nsplit = XEXP (*split, 0);
3713 SUBST (XEXP (*split, 0), gen_rtx_ASHIFT (GET_MODE (nsplit),
3714 XEXP (nsplit, 0), GEN_INT (i)));
3715 /* Update split_code because we may not have a multiply
3716 anymore. */
3717 split_code = GET_CODE (*split);
3718 }
3719
3720 #ifdef INSN_SCHEDULING
3721 /* If *SPLIT is a paradoxical SUBREG, when we split it, it should
3722 be written as a ZERO_EXTEND. */
3723 if (split_code == SUBREG && MEM_P (SUBREG_REG (*split)))
3724 {
3725 /* Or as a SIGN_EXTEND if LOAD_EXTEND_OP says that that's
3726 what it really is. */
3727 if (LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (*split)))
3728 == SIGN_EXTEND)
3729 SUBST (*split, gen_rtx_SIGN_EXTEND (split_mode,
3730 SUBREG_REG (*split)));
3731 else
3732 SUBST (*split, gen_rtx_ZERO_EXTEND (split_mode,
3733 SUBREG_REG (*split)));
3734 }
3735 #endif
3736
3737 /* Attempt to split binary operators using arithmetic identities. */
3738 if (BINARY_P (SET_SRC (newpat))
3739 && split_mode == GET_MODE (SET_SRC (newpat))
3740 && ! side_effects_p (SET_SRC (newpat)))
3741 {
3742 rtx setsrc = SET_SRC (newpat);
3743 machine_mode mode = GET_MODE (setsrc);
3744 enum rtx_code code = GET_CODE (setsrc);
3745 rtx src_op0 = XEXP (setsrc, 0);
3746 rtx src_op1 = XEXP (setsrc, 1);
3747
3748 /* Split "X = Y op Y" as "Z = Y; X = Z op Z". */
3749 if (rtx_equal_p (src_op0, src_op1))
3750 {
3751 newi2pat = gen_rtx_SET (newdest, src_op0);
3752 SUBST (XEXP (setsrc, 0), newdest);
3753 SUBST (XEXP (setsrc, 1), newdest);
3754 subst_done = true;
3755 }
3756 /* Split "((P op Q) op R) op S" where op is PLUS or MULT. */
3757 else if ((code == PLUS || code == MULT)
3758 && GET_CODE (src_op0) == code
3759 && GET_CODE (XEXP (src_op0, 0)) == code
3760 && (INTEGRAL_MODE_P (mode)
3761 || (FLOAT_MODE_P (mode)
3762 && flag_unsafe_math_optimizations)))
3763 {
3764 rtx p = XEXP (XEXP (src_op0, 0), 0);
3765 rtx q = XEXP (XEXP (src_op0, 0), 1);
3766 rtx r = XEXP (src_op0, 1);
3767 rtx s = src_op1;
3768
3769 /* Split both "((X op Y) op X) op Y" and
3770 "((X op Y) op Y) op X" as "T op T" where T is
3771 "X op Y". */
3772 if ((rtx_equal_p (p,r) && rtx_equal_p (q,s))
3773 || (rtx_equal_p (p,s) && rtx_equal_p (q,r)))
3774 {
3775 newi2pat = gen_rtx_SET (newdest, XEXP (src_op0, 0));
3776 SUBST (XEXP (setsrc, 0), newdest);
3777 SUBST (XEXP (setsrc, 1), newdest);
3778 subst_done = true;
3779 }
3780 /* Split "((X op X) op Y) op Y)" as "T op T" where
3781 T is "X op Y". */
3782 else if (rtx_equal_p (p,q) && rtx_equal_p (r,s))
3783 {
3784 rtx tmp = simplify_gen_binary (code, mode, p, r);
3785 newi2pat = gen_rtx_SET (newdest, tmp);
3786 SUBST (XEXP (setsrc, 0), newdest);
3787 SUBST (XEXP (setsrc, 1), newdest);
3788 subst_done = true;
3789 }
3790 }
3791 }
3792
3793 if (!subst_done)
3794 {
3795 newi2pat = gen_rtx_SET (newdest, *split);
3796 SUBST (*split, newdest);
3797 }
3798
3799 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
3800
3801 /* recog_for_combine might have added CLOBBERs to newi2pat.
3802 Make sure NEWPAT does not depend on the clobbered regs. */
3803 if (GET_CODE (newi2pat) == PARALLEL)
3804 for (i = XVECLEN (newi2pat, 0) - 1; i >= 0; i--)
3805 if (GET_CODE (XVECEXP (newi2pat, 0, i)) == CLOBBER)
3806 {
3807 rtx reg = XEXP (XVECEXP (newi2pat, 0, i), 0);
3808 if (reg_overlap_mentioned_p (reg, newpat))
3809 {
3810 undo_all ();
3811 return 0;
3812 }
3813 }
3814
3815 /* If the split point was a MULT and we didn't have one before,
3816 don't use one now. */
3817 if (i2_code_number >= 0 && ! (split_code == MULT && ! have_mult))
3818 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3819 }
3820 }
3821
3822 /* Check for a case where we loaded from memory in a narrow mode and
3823 then sign extended it, but we need both registers. In that case,
3824 we have a PARALLEL with both loads from the same memory location.
3825 We can split this into a load from memory followed by a register-register
3826 copy. This saves at least one insn, more if register allocation can
3827 eliminate the copy.
3828
3829 We cannot do this if the destination of the first assignment is a
3830 condition code register or cc0. We eliminate this case by making sure
3831 the SET_DEST and SET_SRC have the same mode.
3832
3833 We cannot do this if the destination of the second assignment is
3834 a register that we have already assumed is zero-extended. Similarly
3835 for a SUBREG of such a register. */
3836
3837 else if (i1 && insn_code_number < 0 && asm_noperands (newpat) < 0
3838 && GET_CODE (newpat) == PARALLEL
3839 && XVECLEN (newpat, 0) == 2
3840 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
3841 && GET_CODE (SET_SRC (XVECEXP (newpat, 0, 0))) == SIGN_EXTEND
3842 && (GET_MODE (SET_DEST (XVECEXP (newpat, 0, 0)))
3843 == GET_MODE (SET_SRC (XVECEXP (newpat, 0, 0))))
3844 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
3845 && rtx_equal_p (SET_SRC (XVECEXP (newpat, 0, 1)),
3846 XEXP (SET_SRC (XVECEXP (newpat, 0, 0)), 0))
3847 && ! use_crosses_set_p (SET_SRC (XVECEXP (newpat, 0, 1)),
3848 DF_INSN_LUID (i2))
3849 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != ZERO_EXTRACT
3850 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != STRICT_LOW_PART
3851 && ! (temp_expr = SET_DEST (XVECEXP (newpat, 0, 1)),
3852 (REG_P (temp_expr)
3853 && reg_stat[REGNO (temp_expr)].nonzero_bits != 0
3854 && GET_MODE_PRECISION (GET_MODE (temp_expr)) < BITS_PER_WORD
3855 && GET_MODE_PRECISION (GET_MODE (temp_expr)) < HOST_BITS_PER_INT
3856 && (reg_stat[REGNO (temp_expr)].nonzero_bits
3857 != GET_MODE_MASK (word_mode))))
3858 && ! (GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) == SUBREG
3859 && (temp_expr = SUBREG_REG (SET_DEST (XVECEXP (newpat, 0, 1))),
3860 (REG_P (temp_expr)
3861 && reg_stat[REGNO (temp_expr)].nonzero_bits != 0
3862 && GET_MODE_PRECISION (GET_MODE (temp_expr)) < BITS_PER_WORD
3863 && GET_MODE_PRECISION (GET_MODE (temp_expr)) < HOST_BITS_PER_INT
3864 && (reg_stat[REGNO (temp_expr)].nonzero_bits
3865 != GET_MODE_MASK (word_mode)))))
3866 && ! reg_overlap_mentioned_p (SET_DEST (XVECEXP (newpat, 0, 1)),
3867 SET_SRC (XVECEXP (newpat, 0, 1)))
3868 && ! find_reg_note (i3, REG_UNUSED,
3869 SET_DEST (XVECEXP (newpat, 0, 0))))
3870 {
3871 rtx ni2dest;
3872
3873 newi2pat = XVECEXP (newpat, 0, 0);
3874 ni2dest = SET_DEST (XVECEXP (newpat, 0, 0));
3875 newpat = XVECEXP (newpat, 0, 1);
3876 SUBST (SET_SRC (newpat),
3877 gen_lowpart (GET_MODE (SET_SRC (newpat)), ni2dest));
3878 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
3879
3880 if (i2_code_number >= 0)
3881 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3882
3883 if (insn_code_number >= 0)
3884 swap_i2i3 = 1;
3885 }
3886
3887 /* Similarly, check for a case where we have a PARALLEL of two independent
3888 SETs but we started with three insns. In this case, we can do the sets
3889 as two separate insns. This case occurs when some SET allows two
3890 other insns to combine, but the destination of that SET is still live.
3891
3892 Also do this if we started with two insns and (at least) one of the
3893 resulting sets is a noop; this noop will be deleted later. */
3894
3895 else if (insn_code_number < 0 && asm_noperands (newpat) < 0
3896 && GET_CODE (newpat) == PARALLEL
3897 && XVECLEN (newpat, 0) == 2
3898 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
3899 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
3900 && (i1 || set_noop_p (XVECEXP (newpat, 0, 0))
3901 || set_noop_p (XVECEXP (newpat, 0, 1)))
3902 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) != ZERO_EXTRACT
3903 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) != STRICT_LOW_PART
3904 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != ZERO_EXTRACT
3905 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != STRICT_LOW_PART
3906 && ! reg_referenced_p (SET_DEST (XVECEXP (newpat, 0, 1)),
3907 XVECEXP (newpat, 0, 0))
3908 && ! reg_referenced_p (SET_DEST (XVECEXP (newpat, 0, 0)),
3909 XVECEXP (newpat, 0, 1))
3910 && ! (contains_muldiv (SET_SRC (XVECEXP (newpat, 0, 0)))
3911 && contains_muldiv (SET_SRC (XVECEXP (newpat, 0, 1)))))
3912 {
3913 rtx set0 = XVECEXP (newpat, 0, 0);
3914 rtx set1 = XVECEXP (newpat, 0, 1);
3915
3916 /* Normally, it doesn't matter which of the two is done first,
3917 but the one that references cc0 can't be the second, and
3918 one which uses any regs/memory set in between i2 and i3 can't
3919 be first. The PARALLEL might also have been pre-existing in i3,
3920 so we need to make sure that we won't wrongly hoist a SET to i2
3921 that would conflict with a death note present in there. */
3922 if (!use_crosses_set_p (SET_SRC (set1), DF_INSN_LUID (i2))
3923 && !(REG_P (SET_DEST (set1))
3924 && find_reg_note (i2, REG_DEAD, SET_DEST (set1)))
3925 && !(GET_CODE (SET_DEST (set1)) == SUBREG
3926 && find_reg_note (i2, REG_DEAD,
3927 SUBREG_REG (SET_DEST (set1))))
3928 && (!HAVE_cc0 || !reg_referenced_p (cc0_rtx, set0))
3929 /* If I3 is a jump, ensure that set0 is a jump so that
3930 we do not create invalid RTL. */
3931 && (!JUMP_P (i3) || SET_DEST (set0) == pc_rtx)
3932 )
3933 {
3934 newi2pat = set1;
3935 newpat = set0;
3936 }
3937 else if (!use_crosses_set_p (SET_SRC (set0), DF_INSN_LUID (i2))
3938 && !(REG_P (SET_DEST (set0))
3939 && find_reg_note (i2, REG_DEAD, SET_DEST (set0)))
3940 && !(GET_CODE (SET_DEST (set0)) == SUBREG
3941 && find_reg_note (i2, REG_DEAD,
3942 SUBREG_REG (SET_DEST (set0))))
3943 && (!HAVE_cc0 || !reg_referenced_p (cc0_rtx, set1))
3944 /* If I3 is a jump, ensure that set1 is a jump so that
3945 we do not create invalid RTL. */
3946 && (!JUMP_P (i3) || SET_DEST (set1) == pc_rtx)
3947 )
3948 {
3949 newi2pat = set0;
3950 newpat = set1;
3951 }
3952 else
3953 {
3954 undo_all ();
3955 return 0;
3956 }
3957
3958 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
3959
3960 if (i2_code_number >= 0)
3961 {
3962 /* recog_for_combine might have added CLOBBERs to newi2pat.
3963 Make sure NEWPAT does not depend on the clobbered regs. */
3964 if (GET_CODE (newi2pat) == PARALLEL)
3965 {
3966 for (i = XVECLEN (newi2pat, 0) - 1; i >= 0; i--)
3967 if (GET_CODE (XVECEXP (newi2pat, 0, i)) == CLOBBER)
3968 {
3969 rtx reg = XEXP (XVECEXP (newi2pat, 0, i), 0);
3970 if (reg_overlap_mentioned_p (reg, newpat))
3971 {
3972 undo_all ();
3973 return 0;
3974 }
3975 }
3976 }
3977
3978 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3979 }
3980 }
3981
3982 /* If it still isn't recognized, fail and change things back the way they
3983 were. */
3984 if ((insn_code_number < 0
3985 /* Is the result a reasonable ASM_OPERANDS? */
3986 && (! check_asm_operands (newpat) || added_sets_1 || added_sets_2)))
3987 {
3988 undo_all ();
3989 return 0;
3990 }
3991
3992 /* If we had to change another insn, make sure it is valid also. */
3993 if (undobuf.other_insn)
3994 {
3995 CLEAR_HARD_REG_SET (newpat_used_regs);
3996
3997 other_pat = PATTERN (undobuf.other_insn);
3998 other_code_number = recog_for_combine (&other_pat, undobuf.other_insn,
3999 &new_other_notes);
4000
4001 if (other_code_number < 0 && ! check_asm_operands (other_pat))
4002 {
4003 undo_all ();
4004 return 0;
4005 }
4006 }
4007
4008 /* If I2 is the CC0 setter and I3 is the CC0 user then check whether
4009 they are adjacent to each other or not. */
4010 if (HAVE_cc0)
4011 {
4012 rtx_insn *p = prev_nonnote_insn (i3);
4013 if (p && p != i2 && NONJUMP_INSN_P (p) && newi2pat
4014 && sets_cc0_p (newi2pat))
4015 {
4016 undo_all ();
4017 return 0;
4018 }
4019 }
4020
4021 /* Only allow this combination if insn_rtx_costs reports that the
4022 replacement instructions are cheaper than the originals. */
4023 if (!combine_validate_cost (i0, i1, i2, i3, newpat, newi2pat, other_pat))
4024 {
4025 undo_all ();
4026 return 0;
4027 }
4028
4029 if (MAY_HAVE_DEBUG_INSNS)
4030 {
4031 struct undo *undo;
4032
4033 for (undo = undobuf.undos; undo; undo = undo->next)
4034 if (undo->kind == UNDO_MODE)
4035 {
4036 rtx reg = *undo->where.r;
4037 machine_mode new_mode = GET_MODE (reg);
4038 machine_mode old_mode = undo->old_contents.m;
4039
4040 /* Temporarily revert mode back. */
4041 adjust_reg_mode (reg, old_mode);
4042
4043 if (reg == i2dest && i2scratch)
4044 {
4045 /* If we used i2dest as a scratch register with a
4046 different mode, substitute it for the original
4047 i2src while its original mode is temporarily
4048 restored, and then clear i2scratch so that we don't
4049 do it again later. */
4050 propagate_for_debug (i2, last_combined_insn, reg, i2src,
4051 this_basic_block);
4052 i2scratch = false;
4053 /* Put back the new mode. */
4054 adjust_reg_mode (reg, new_mode);
4055 }
4056 else
4057 {
4058 rtx tempreg = gen_raw_REG (old_mode, REGNO (reg));
4059 rtx_insn *first, *last;
4060
4061 if (reg == i2dest)
4062 {
4063 first = i2;
4064 last = last_combined_insn;
4065 }
4066 else
4067 {
4068 first = i3;
4069 last = undobuf.other_insn;
4070 gcc_assert (last);
4071 if (DF_INSN_LUID (last)
4072 < DF_INSN_LUID (last_combined_insn))
4073 last = last_combined_insn;
4074 }
4075
4076 /* We're dealing with a reg that changed mode but not
4077 meaning, so we want to turn it into a subreg for
4078 the new mode. However, because of REG sharing and
4079 because its mode had already changed, we have to do
4080 it in two steps. First, replace any debug uses of
4081 reg, with its original mode temporarily restored,
4082 with this copy we have created; then, replace the
4083 copy with the SUBREG of the original shared reg,
4084 once again changed to the new mode. */
4085 propagate_for_debug (first, last, reg, tempreg,
4086 this_basic_block);
4087 adjust_reg_mode (reg, new_mode);
4088 propagate_for_debug (first, last, tempreg,
4089 lowpart_subreg (old_mode, reg, new_mode),
4090 this_basic_block);
4091 }
4092 }
4093 }
4094
4095 /* If we will be able to accept this, we have made a
4096 change to the destination of I3. This requires us to
4097 do a few adjustments. */
4098
4099 if (changed_i3_dest)
4100 {
4101 PATTERN (i3) = newpat;
4102 adjust_for_new_dest (i3);
4103 }
4104
4105 /* We now know that we can do this combination. Merge the insns and
4106 update the status of registers and LOG_LINKS. */
4107
4108 if (undobuf.other_insn)
4109 {
4110 rtx note, next;
4111
4112 PATTERN (undobuf.other_insn) = other_pat;
4113
4114 /* If any of the notes in OTHER_INSN were REG_DEAD or REG_UNUSED,
4115 ensure that they are still valid. Then add any non-duplicate
4116 notes added by recog_for_combine. */
4117 for (note = REG_NOTES (undobuf.other_insn); note; note = next)
4118 {
4119 next = XEXP (note, 1);
4120
4121 if ((REG_NOTE_KIND (note) == REG_DEAD
4122 && !reg_referenced_p (XEXP (note, 0),
4123 PATTERN (undobuf.other_insn)))
4124 ||(REG_NOTE_KIND (note) == REG_UNUSED
4125 && !reg_set_p (XEXP (note, 0),
4126 PATTERN (undobuf.other_insn))))
4127 remove_note (undobuf.other_insn, note);
4128 }
4129
4130 distribute_notes (new_other_notes, undobuf.other_insn,
4131 undobuf.other_insn, NULL, NULL_RTX, NULL_RTX,
4132 NULL_RTX);
4133 }
4134
4135 if (swap_i2i3)
4136 {
4137 rtx_insn *insn;
4138 struct insn_link *link;
4139 rtx ni2dest;
4140
4141 /* I3 now uses what used to be its destination and which is now
4142 I2's destination. This requires us to do a few adjustments. */
4143 PATTERN (i3) = newpat;
4144 adjust_for_new_dest (i3);
4145
4146 /* We need a LOG_LINK from I3 to I2. But we used to have one,
4147 so we still will.
4148
4149 However, some later insn might be using I2's dest and have
4150 a LOG_LINK pointing at I3. We must remove this link.
4151 The simplest way to remove the link is to point it at I1,
4152 which we know will be a NOTE. */
4153
4154 /* newi2pat is usually a SET here; however, recog_for_combine might
4155 have added some clobbers. */
4156 if (GET_CODE (newi2pat) == PARALLEL)
4157 ni2dest = SET_DEST (XVECEXP (newi2pat, 0, 0));
4158 else
4159 ni2dest = SET_DEST (newi2pat);
4160
4161 for (insn = NEXT_INSN (i3);
4162 insn && (this_basic_block->next_bb == EXIT_BLOCK_PTR_FOR_FN (cfun)
4163 || insn != BB_HEAD (this_basic_block->next_bb));
4164 insn = NEXT_INSN (insn))
4165 {
4166 if (INSN_P (insn) && reg_referenced_p (ni2dest, PATTERN (insn)))
4167 {
4168 FOR_EACH_LOG_LINK (link, insn)
4169 if (link->insn == i3)
4170 link->insn = i1;
4171
4172 break;
4173 }
4174 }
4175 }
4176
4177 {
4178 rtx i3notes, i2notes, i1notes = 0, i0notes = 0;
4179 struct insn_link *i3links, *i2links, *i1links = 0, *i0links = 0;
4180 rtx midnotes = 0;
4181 int from_luid;
4182 /* Compute which registers we expect to eliminate. newi2pat may be setting
4183 either i3dest or i2dest, so we must check it. */
4184 rtx elim_i2 = ((newi2pat && reg_set_p (i2dest, newi2pat))
4185 || i2dest_in_i2src || i2dest_in_i1src || i2dest_in_i0src
4186 || !i2dest_killed
4187 ? 0 : i2dest);
4188 /* For i1, we need to compute both local elimination and global
4189 elimination information with respect to newi2pat because i1dest
4190 may be the same as i3dest, in which case newi2pat may be setting
4191 i1dest. Global information is used when distributing REG_DEAD
4192 note for i2 and i3, in which case it does matter if newi2pat sets
4193 i1dest or not.
4194
4195 Local information is used when distributing REG_DEAD note for i1,
4196 in which case it doesn't matter if newi2pat sets i1dest or not.
4197 See PR62151, if we have four insns combination:
4198 i0: r0 <- i0src
4199 i1: r1 <- i1src (using r0)
4200 REG_DEAD (r0)
4201 i2: r0 <- i2src (using r1)
4202 i3: r3 <- i3src (using r0)
4203 ix: using r0
4204 From i1's point of view, r0 is eliminated, no matter if it is set
4205 by newi2pat or not. In other words, REG_DEAD info for r0 in i1
4206 should be discarded.
4207
4208 Note local information only affects cases in forms like "I1->I2->I3",
4209 "I0->I1->I2->I3" or "I0&I1->I2, I2->I3". For other cases like
4210 "I0->I1, I1&I2->I3" or "I1&I2->I3", newi2pat won't set i1dest or
4211 i0dest anyway. */
4212 rtx local_elim_i1 = (i1 == 0 || i1dest_in_i1src || i1dest_in_i0src
4213 || !i1dest_killed
4214 ? 0 : i1dest);
4215 rtx elim_i1 = (local_elim_i1 == 0
4216 || (newi2pat && reg_set_p (i1dest, newi2pat))
4217 ? 0 : i1dest);
4218 /* Same case as i1. */
4219 rtx local_elim_i0 = (i0 == 0 || i0dest_in_i0src || !i0dest_killed
4220 ? 0 : i0dest);
4221 rtx elim_i0 = (local_elim_i0 == 0
4222 || (newi2pat && reg_set_p (i0dest, newi2pat))
4223 ? 0 : i0dest);
4224
4225 /* Get the old REG_NOTES and LOG_LINKS from all our insns and
4226 clear them. */
4227 i3notes = REG_NOTES (i3), i3links = LOG_LINKS (i3);
4228 i2notes = REG_NOTES (i2), i2links = LOG_LINKS (i2);
4229 if (i1)
4230 i1notes = REG_NOTES (i1), i1links = LOG_LINKS (i1);
4231 if (i0)
4232 i0notes = REG_NOTES (i0), i0links = LOG_LINKS (i0);
4233
4234 /* Ensure that we do not have something that should not be shared but
4235 occurs multiple times in the new insns. Check this by first
4236 resetting all the `used' flags and then copying anything is shared. */
4237
4238 reset_used_flags (i3notes);
4239 reset_used_flags (i2notes);
4240 reset_used_flags (i1notes);
4241 reset_used_flags (i0notes);
4242 reset_used_flags (newpat);
4243 reset_used_flags (newi2pat);
4244 if (undobuf.other_insn)
4245 reset_used_flags (PATTERN (undobuf.other_insn));
4246
4247 i3notes = copy_rtx_if_shared (i3notes);
4248 i2notes = copy_rtx_if_shared (i2notes);
4249 i1notes = copy_rtx_if_shared (i1notes);
4250 i0notes = copy_rtx_if_shared (i0notes);
4251 newpat = copy_rtx_if_shared (newpat);
4252 newi2pat = copy_rtx_if_shared (newi2pat);
4253 if (undobuf.other_insn)
4254 reset_used_flags (PATTERN (undobuf.other_insn));
4255
4256 INSN_CODE (i3) = insn_code_number;
4257 PATTERN (i3) = newpat;
4258
4259 if (CALL_P (i3) && CALL_INSN_FUNCTION_USAGE (i3))
4260 {
4261 rtx call_usage = CALL_INSN_FUNCTION_USAGE (i3);
4262
4263 reset_used_flags (call_usage);
4264 call_usage = copy_rtx (call_usage);
4265
4266 if (substed_i2)
4267 {
4268 /* I2SRC must still be meaningful at this point. Some splitting
4269 operations can invalidate I2SRC, but those operations do not
4270 apply to calls. */
4271 gcc_assert (i2src);
4272 replace_rtx (call_usage, i2dest, i2src);
4273 }
4274
4275 if (substed_i1)
4276 replace_rtx (call_usage, i1dest, i1src);
4277 if (substed_i0)
4278 replace_rtx (call_usage, i0dest, i0src);
4279
4280 CALL_INSN_FUNCTION_USAGE (i3) = call_usage;
4281 }
4282
4283 if (undobuf.other_insn)
4284 INSN_CODE (undobuf.other_insn) = other_code_number;
4285
4286 /* We had one special case above where I2 had more than one set and
4287 we replaced a destination of one of those sets with the destination
4288 of I3. In that case, we have to update LOG_LINKS of insns later
4289 in this basic block. Note that this (expensive) case is rare.
4290
4291 Also, in this case, we must pretend that all REG_NOTEs for I2
4292 actually came from I3, so that REG_UNUSED notes from I2 will be
4293 properly handled. */
4294
4295 if (i3_subst_into_i2)
4296 {
4297 for (i = 0; i < XVECLEN (PATTERN (i2), 0); i++)
4298 if ((GET_CODE (XVECEXP (PATTERN (i2), 0, i)) == SET
4299 || GET_CODE (XVECEXP (PATTERN (i2), 0, i)) == CLOBBER)
4300 && REG_P (SET_DEST (XVECEXP (PATTERN (i2), 0, i)))
4301 && SET_DEST (XVECEXP (PATTERN (i2), 0, i)) != i2dest
4302 && ! find_reg_note (i2, REG_UNUSED,
4303 SET_DEST (XVECEXP (PATTERN (i2), 0, i))))
4304 for (temp_insn = NEXT_INSN (i2);
4305 temp_insn
4306 && (this_basic_block->next_bb == EXIT_BLOCK_PTR_FOR_FN (cfun)
4307 || BB_HEAD (this_basic_block) != temp_insn);
4308 temp_insn = NEXT_INSN (temp_insn))
4309 if (temp_insn != i3 && INSN_P (temp_insn))
4310 FOR_EACH_LOG_LINK (link, temp_insn)
4311 if (link->insn == i2)
4312 link->insn = i3;
4313
4314 if (i3notes)
4315 {
4316 rtx link = i3notes;
4317 while (XEXP (link, 1))
4318 link = XEXP (link, 1);
4319 XEXP (link, 1) = i2notes;
4320 }
4321 else
4322 i3notes = i2notes;
4323 i2notes = 0;
4324 }
4325
4326 LOG_LINKS (i3) = NULL;
4327 REG_NOTES (i3) = 0;
4328 LOG_LINKS (i2) = NULL;
4329 REG_NOTES (i2) = 0;
4330
4331 if (newi2pat)
4332 {
4333 if (MAY_HAVE_DEBUG_INSNS && i2scratch)
4334 propagate_for_debug (i2, last_combined_insn, i2dest, i2src,
4335 this_basic_block);
4336 INSN_CODE (i2) = i2_code_number;
4337 PATTERN (i2) = newi2pat;
4338 }
4339 else
4340 {
4341 if (MAY_HAVE_DEBUG_INSNS && i2src)
4342 propagate_for_debug (i2, last_combined_insn, i2dest, i2src,
4343 this_basic_block);
4344 SET_INSN_DELETED (i2);
4345 }
4346
4347 if (i1)
4348 {
4349 LOG_LINKS (i1) = NULL;
4350 REG_NOTES (i1) = 0;
4351 if (MAY_HAVE_DEBUG_INSNS)
4352 propagate_for_debug (i1, last_combined_insn, i1dest, i1src,
4353 this_basic_block);
4354 SET_INSN_DELETED (i1);
4355 }
4356
4357 if (i0)
4358 {
4359 LOG_LINKS (i0) = NULL;
4360 REG_NOTES (i0) = 0;
4361 if (MAY_HAVE_DEBUG_INSNS)
4362 propagate_for_debug (i0, last_combined_insn, i0dest, i0src,
4363 this_basic_block);
4364 SET_INSN_DELETED (i0);
4365 }
4366
4367 /* Get death notes for everything that is now used in either I3 or
4368 I2 and used to die in a previous insn. If we built two new
4369 patterns, move from I1 to I2 then I2 to I3 so that we get the
4370 proper movement on registers that I2 modifies. */
4371
4372 if (i0)
4373 from_luid = DF_INSN_LUID (i0);
4374 else if (i1)
4375 from_luid = DF_INSN_LUID (i1);
4376 else
4377 from_luid = DF_INSN_LUID (i2);
4378 if (newi2pat)
4379 move_deaths (newi2pat, NULL_RTX, from_luid, i2, &midnotes);
4380 move_deaths (newpat, newi2pat, from_luid, i3, &midnotes);
4381
4382 /* Distribute all the LOG_LINKS and REG_NOTES from I1, I2, and I3. */
4383 if (i3notes)
4384 distribute_notes (i3notes, i3, i3, newi2pat ? i2 : NULL,
4385 elim_i2, elim_i1, elim_i0);
4386 if (i2notes)
4387 distribute_notes (i2notes, i2, i3, newi2pat ? i2 : NULL,
4388 elim_i2, elim_i1, elim_i0);
4389 if (i1notes)
4390 distribute_notes (i1notes, i1, i3, newi2pat ? i2 : NULL,
4391 elim_i2, local_elim_i1, local_elim_i0);
4392 if (i0notes)
4393 distribute_notes (i0notes, i0, i3, newi2pat ? i2 : NULL,
4394 elim_i2, elim_i1, local_elim_i0);
4395 if (midnotes)
4396 distribute_notes (midnotes, NULL, i3, newi2pat ? i2 : NULL,
4397 elim_i2, elim_i1, elim_i0);
4398
4399 /* Distribute any notes added to I2 or I3 by recog_for_combine. We
4400 know these are REG_UNUSED and want them to go to the desired insn,
4401 so we always pass it as i3. */
4402
4403 if (newi2pat && new_i2_notes)
4404 distribute_notes (new_i2_notes, i2, i2, NULL, NULL_RTX, NULL_RTX,
4405 NULL_RTX);
4406
4407 if (new_i3_notes)
4408 distribute_notes (new_i3_notes, i3, i3, NULL, NULL_RTX, NULL_RTX,
4409 NULL_RTX);
4410
4411 /* If I3DEST was used in I3SRC, it really died in I3. We may need to
4412 put a REG_DEAD note for it somewhere. If NEWI2PAT exists and sets
4413 I3DEST, the death must be somewhere before I2, not I3. If we passed I3
4414 in that case, it might delete I2. Similarly for I2 and I1.
4415 Show an additional death due to the REG_DEAD note we make here. If
4416 we discard it in distribute_notes, we will decrement it again. */
4417
4418 if (i3dest_killed)
4419 {
4420 rtx new_note = alloc_reg_note (REG_DEAD, i3dest_killed, NULL_RTX);
4421 if (newi2pat && reg_set_p (i3dest_killed, newi2pat))
4422 distribute_notes (new_note, NULL, i2, NULL, elim_i2,
4423 elim_i1, elim_i0);
4424 else
4425 distribute_notes (new_note, NULL, i3, newi2pat ? i2 : NULL,
4426 elim_i2, elim_i1, elim_i0);
4427 }
4428
4429 if (i2dest_in_i2src)
4430 {
4431 rtx new_note = alloc_reg_note (REG_DEAD, i2dest, NULL_RTX);
4432 if (newi2pat && reg_set_p (i2dest, newi2pat))
4433 distribute_notes (new_note, NULL, i2, NULL, NULL_RTX,
4434 NULL_RTX, NULL_RTX);
4435 else
4436 distribute_notes (new_note, NULL, i3, newi2pat ? i2 : NULL,
4437 NULL_RTX, NULL_RTX, NULL_RTX);
4438 }
4439
4440 if (i1dest_in_i1src)
4441 {
4442 rtx new_note = alloc_reg_note (REG_DEAD, i1dest, NULL_RTX);
4443 if (newi2pat && reg_set_p (i1dest, newi2pat))
4444 distribute_notes (new_note, NULL, i2, NULL, NULL_RTX,
4445 NULL_RTX, NULL_RTX);
4446 else
4447 distribute_notes (new_note, NULL, i3, newi2pat ? i2 : NULL,
4448 NULL_RTX, NULL_RTX, NULL_RTX);
4449 }
4450
4451 if (i0dest_in_i0src)
4452 {
4453 rtx new_note = alloc_reg_note (REG_DEAD, i0dest, NULL_RTX);
4454 if (newi2pat && reg_set_p (i0dest, newi2pat))
4455 distribute_notes (new_note, NULL, i2, NULL, NULL_RTX,
4456 NULL_RTX, NULL_RTX);
4457 else
4458 distribute_notes (new_note, NULL, i3, newi2pat ? i2 : NULL,
4459 NULL_RTX, NULL_RTX, NULL_RTX);
4460 }
4461
4462 distribute_links (i3links);
4463 distribute_links (i2links);
4464 distribute_links (i1links);
4465 distribute_links (i0links);
4466
4467 if (REG_P (i2dest))
4468 {
4469 struct insn_link *link;
4470 rtx_insn *i2_insn = 0;
4471 rtx i2_val = 0, set;
4472
4473 /* The insn that used to set this register doesn't exist, and
4474 this life of the register may not exist either. See if one of
4475 I3's links points to an insn that sets I2DEST. If it does,
4476 that is now the last known value for I2DEST. If we don't update
4477 this and I2 set the register to a value that depended on its old
4478 contents, we will get confused. If this insn is used, thing
4479 will be set correctly in combine_instructions. */
4480 FOR_EACH_LOG_LINK (link, i3)
4481 if ((set = single_set (link->insn)) != 0
4482 && rtx_equal_p (i2dest, SET_DEST (set)))
4483 i2_insn = link->insn, i2_val = SET_SRC (set);
4484
4485 record_value_for_reg (i2dest, i2_insn, i2_val);
4486
4487 /* If the reg formerly set in I2 died only once and that was in I3,
4488 zero its use count so it won't make `reload' do any work. */
4489 if (! added_sets_2
4490 && (newi2pat == 0 || ! reg_mentioned_p (i2dest, newi2pat))
4491 && ! i2dest_in_i2src
4492 && REGNO (i2dest) < reg_n_sets_max)
4493 INC_REG_N_SETS (REGNO (i2dest), -1);
4494 }
4495
4496 if (i1 && REG_P (i1dest))
4497 {
4498 struct insn_link *link;
4499 rtx_insn *i1_insn = 0;
4500 rtx i1_val = 0, set;
4501
4502 FOR_EACH_LOG_LINK (link, i3)
4503 if ((set = single_set (link->insn)) != 0
4504 && rtx_equal_p (i1dest, SET_DEST (set)))
4505 i1_insn = link->insn, i1_val = SET_SRC (set);
4506
4507 record_value_for_reg (i1dest, i1_insn, i1_val);
4508
4509 if (! added_sets_1
4510 && ! i1dest_in_i1src
4511 && REGNO (i1dest) < reg_n_sets_max)
4512 INC_REG_N_SETS (REGNO (i1dest), -1);
4513 }
4514
4515 if (i0 && REG_P (i0dest))
4516 {
4517 struct insn_link *link;
4518 rtx_insn *i0_insn = 0;
4519 rtx i0_val = 0, set;
4520
4521 FOR_EACH_LOG_LINK (link, i3)
4522 if ((set = single_set (link->insn)) != 0
4523 && rtx_equal_p (i0dest, SET_DEST (set)))
4524 i0_insn = link->insn, i0_val = SET_SRC (set);
4525
4526 record_value_for_reg (i0dest, i0_insn, i0_val);
4527
4528 if (! added_sets_0
4529 && ! i0dest_in_i0src
4530 && REGNO (i0dest) < reg_n_sets_max)
4531 INC_REG_N_SETS (REGNO (i0dest), -1);
4532 }
4533
4534 /* Update reg_stat[].nonzero_bits et al for any changes that may have
4535 been made to this insn. The order is important, because newi2pat
4536 can affect nonzero_bits of newpat. */
4537 if (newi2pat)
4538 note_stores (newi2pat, set_nonzero_bits_and_sign_copies, NULL);
4539 note_stores (newpat, set_nonzero_bits_and_sign_copies, NULL);
4540 }
4541
4542 if (undobuf.other_insn != NULL_RTX)
4543 {
4544 if (dump_file)
4545 {
4546 fprintf (dump_file, "modifying other_insn ");
4547 dump_insn_slim (dump_file, undobuf.other_insn);
4548 }
4549 df_insn_rescan (undobuf.other_insn);
4550 }
4551
4552 if (i0 && !(NOTE_P (i0) && (NOTE_KIND (i0) == NOTE_INSN_DELETED)))
4553 {
4554 if (dump_file)
4555 {
4556 fprintf (dump_file, "modifying insn i0 ");
4557 dump_insn_slim (dump_file, i0);
4558 }
4559 df_insn_rescan (i0);
4560 }
4561
4562 if (i1 && !(NOTE_P (i1) && (NOTE_KIND (i1) == NOTE_INSN_DELETED)))
4563 {
4564 if (dump_file)
4565 {
4566 fprintf (dump_file, "modifying insn i1 ");
4567 dump_insn_slim (dump_file, i1);
4568 }
4569 df_insn_rescan (i1);
4570 }
4571
4572 if (i2 && !(NOTE_P (i2) && (NOTE_KIND (i2) == NOTE_INSN_DELETED)))
4573 {
4574 if (dump_file)
4575 {
4576 fprintf (dump_file, "modifying insn i2 ");
4577 dump_insn_slim (dump_file, i2);
4578 }
4579 df_insn_rescan (i2);
4580 }
4581
4582 if (i3 && !(NOTE_P (i3) && (NOTE_KIND (i3) == NOTE_INSN_DELETED)))
4583 {
4584 if (dump_file)
4585 {
4586 fprintf (dump_file, "modifying insn i3 ");
4587 dump_insn_slim (dump_file, i3);
4588 }
4589 df_insn_rescan (i3);
4590 }
4591
4592 /* Set new_direct_jump_p if a new return or simple jump instruction
4593 has been created. Adjust the CFG accordingly. */
4594 if (returnjump_p (i3) || any_uncondjump_p (i3))
4595 {
4596 *new_direct_jump_p = 1;
4597 mark_jump_label (PATTERN (i3), i3, 0);
4598 update_cfg_for_uncondjump (i3);
4599 }
4600
4601 if (undobuf.other_insn != NULL_RTX
4602 && (returnjump_p (undobuf.other_insn)
4603 || any_uncondjump_p (undobuf.other_insn)))
4604 {
4605 *new_direct_jump_p = 1;
4606 update_cfg_for_uncondjump (undobuf.other_insn);
4607 }
4608
4609 /* A noop might also need cleaning up of CFG, if it comes from the
4610 simplification of a jump. */
4611 if (JUMP_P (i3)
4612 && GET_CODE (newpat) == SET
4613 && SET_SRC (newpat) == pc_rtx
4614 && SET_DEST (newpat) == pc_rtx)
4615 {
4616 *new_direct_jump_p = 1;
4617 update_cfg_for_uncondjump (i3);
4618 }
4619
4620 if (undobuf.other_insn != NULL_RTX
4621 && JUMP_P (undobuf.other_insn)
4622 && GET_CODE (PATTERN (undobuf.other_insn)) == SET
4623 && SET_SRC (PATTERN (undobuf.other_insn)) == pc_rtx
4624 && SET_DEST (PATTERN (undobuf.other_insn)) == pc_rtx)
4625 {
4626 *new_direct_jump_p = 1;
4627 update_cfg_for_uncondjump (undobuf.other_insn);
4628 }
4629
4630 combine_successes++;
4631 undo_commit ();
4632
4633 if (added_links_insn
4634 && (newi2pat == 0 || DF_INSN_LUID (added_links_insn) < DF_INSN_LUID (i2))
4635 && DF_INSN_LUID (added_links_insn) < DF_INSN_LUID (i3))
4636 return added_links_insn;
4637 else
4638 return newi2pat ? i2 : i3;
4639 }
4640 \f
4641 /* Get a marker for undoing to the current state. */
4642
4643 static void *
4644 get_undo_marker (void)
4645 {
4646 return undobuf.undos;
4647 }
4648
4649 /* Undo the modifications up to the marker. */
4650
4651 static void
4652 undo_to_marker (void *marker)
4653 {
4654 struct undo *undo, *next;
4655
4656 for (undo = undobuf.undos; undo != marker; undo = next)
4657 {
4658 gcc_assert (undo);
4659
4660 next = undo->next;
4661 switch (undo->kind)
4662 {
4663 case UNDO_RTX:
4664 *undo->where.r = undo->old_contents.r;
4665 break;
4666 case UNDO_INT:
4667 *undo->where.i = undo->old_contents.i;
4668 break;
4669 case UNDO_MODE:
4670 adjust_reg_mode (*undo->where.r, undo->old_contents.m);
4671 break;
4672 case UNDO_LINKS:
4673 *undo->where.l = undo->old_contents.l;
4674 break;
4675 default:
4676 gcc_unreachable ();
4677 }
4678
4679 undo->next = undobuf.frees;
4680 undobuf.frees = undo;
4681 }
4682
4683 undobuf.undos = (struct undo *) marker;
4684 }
4685
4686 /* Undo all the modifications recorded in undobuf. */
4687
4688 static void
4689 undo_all (void)
4690 {
4691 undo_to_marker (0);
4692 }
4693
4694 /* We've committed to accepting the changes we made. Move all
4695 of the undos to the free list. */
4696
4697 static void
4698 undo_commit (void)
4699 {
4700 struct undo *undo, *next;
4701
4702 for (undo = undobuf.undos; undo; undo = next)
4703 {
4704 next = undo->next;
4705 undo->next = undobuf.frees;
4706 undobuf.frees = undo;
4707 }
4708 undobuf.undos = 0;
4709 }
4710 \f
4711 /* Find the innermost point within the rtx at LOC, possibly LOC itself,
4712 where we have an arithmetic expression and return that point. LOC will
4713 be inside INSN.
4714
4715 try_combine will call this function to see if an insn can be split into
4716 two insns. */
4717
4718 static rtx *
4719 find_split_point (rtx *loc, rtx_insn *insn, bool set_src)
4720 {
4721 rtx x = *loc;
4722 enum rtx_code code = GET_CODE (x);
4723 rtx *split;
4724 unsigned HOST_WIDE_INT len = 0;
4725 HOST_WIDE_INT pos = 0;
4726 int unsignedp = 0;
4727 rtx inner = NULL_RTX;
4728
4729 /* First special-case some codes. */
4730 switch (code)
4731 {
4732 case SUBREG:
4733 #ifdef INSN_SCHEDULING
4734 /* If we are making a paradoxical SUBREG invalid, it becomes a split
4735 point. */
4736 if (MEM_P (SUBREG_REG (x)))
4737 return loc;
4738 #endif
4739 return find_split_point (&SUBREG_REG (x), insn, false);
4740
4741 case MEM:
4742 /* If we have (mem (const ..)) or (mem (symbol_ref ...)), split it
4743 using LO_SUM and HIGH. */
4744 if (HAVE_lo_sum && (GET_CODE (XEXP (x, 0)) == CONST
4745 || GET_CODE (XEXP (x, 0)) == SYMBOL_REF))
4746 {
4747 machine_mode address_mode = get_address_mode (x);
4748
4749 SUBST (XEXP (x, 0),
4750 gen_rtx_LO_SUM (address_mode,
4751 gen_rtx_HIGH (address_mode, XEXP (x, 0)),
4752 XEXP (x, 0)));
4753 return &XEXP (XEXP (x, 0), 0);
4754 }
4755
4756 /* If we have a PLUS whose second operand is a constant and the
4757 address is not valid, perhaps will can split it up using
4758 the machine-specific way to split large constants. We use
4759 the first pseudo-reg (one of the virtual regs) as a placeholder;
4760 it will not remain in the result. */
4761 if (GET_CODE (XEXP (x, 0)) == PLUS
4762 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
4763 && ! memory_address_addr_space_p (GET_MODE (x), XEXP (x, 0),
4764 MEM_ADDR_SPACE (x)))
4765 {
4766 rtx reg = regno_reg_rtx[FIRST_PSEUDO_REGISTER];
4767 rtx_insn *seq = combine_split_insns (gen_rtx_SET (reg, XEXP (x, 0)),
4768 subst_insn);
4769
4770 /* This should have produced two insns, each of which sets our
4771 placeholder. If the source of the second is a valid address,
4772 we can make put both sources together and make a split point
4773 in the middle. */
4774
4775 if (seq
4776 && NEXT_INSN (seq) != NULL_RTX
4777 && NEXT_INSN (NEXT_INSN (seq)) == NULL_RTX
4778 && NONJUMP_INSN_P (seq)
4779 && GET_CODE (PATTERN (seq)) == SET
4780 && SET_DEST (PATTERN (seq)) == reg
4781 && ! reg_mentioned_p (reg,
4782 SET_SRC (PATTERN (seq)))
4783 && NONJUMP_INSN_P (NEXT_INSN (seq))
4784 && GET_CODE (PATTERN (NEXT_INSN (seq))) == SET
4785 && SET_DEST (PATTERN (NEXT_INSN (seq))) == reg
4786 && memory_address_addr_space_p
4787 (GET_MODE (x), SET_SRC (PATTERN (NEXT_INSN (seq))),
4788 MEM_ADDR_SPACE (x)))
4789 {
4790 rtx src1 = SET_SRC (PATTERN (seq));
4791 rtx src2 = SET_SRC (PATTERN (NEXT_INSN (seq)));
4792
4793 /* Replace the placeholder in SRC2 with SRC1. If we can
4794 find where in SRC2 it was placed, that can become our
4795 split point and we can replace this address with SRC2.
4796 Just try two obvious places. */
4797
4798 src2 = replace_rtx (src2, reg, src1);
4799 split = 0;
4800 if (XEXP (src2, 0) == src1)
4801 split = &XEXP (src2, 0);
4802 else if (GET_RTX_FORMAT (GET_CODE (XEXP (src2, 0)))[0] == 'e'
4803 && XEXP (XEXP (src2, 0), 0) == src1)
4804 split = &XEXP (XEXP (src2, 0), 0);
4805
4806 if (split)
4807 {
4808 SUBST (XEXP (x, 0), src2);
4809 return split;
4810 }
4811 }
4812
4813 /* If that didn't work, perhaps the first operand is complex and
4814 needs to be computed separately, so make a split point there.
4815 This will occur on machines that just support REG + CONST
4816 and have a constant moved through some previous computation. */
4817
4818 else if (!OBJECT_P (XEXP (XEXP (x, 0), 0))
4819 && ! (GET_CODE (XEXP (XEXP (x, 0), 0)) == SUBREG
4820 && OBJECT_P (SUBREG_REG (XEXP (XEXP (x, 0), 0)))))
4821 return &XEXP (XEXP (x, 0), 0);
4822 }
4823
4824 /* If we have a PLUS whose first operand is complex, try computing it
4825 separately by making a split there. */
4826 if (GET_CODE (XEXP (x, 0)) == PLUS
4827 && ! memory_address_addr_space_p (GET_MODE (x), XEXP (x, 0),
4828 MEM_ADDR_SPACE (x))
4829 && ! OBJECT_P (XEXP (XEXP (x, 0), 0))
4830 && ! (GET_CODE (XEXP (XEXP (x, 0), 0)) == SUBREG
4831 && OBJECT_P (SUBREG_REG (XEXP (XEXP (x, 0), 0)))))
4832 return &XEXP (XEXP (x, 0), 0);
4833 break;
4834
4835 case SET:
4836 /* If SET_DEST is CC0 and SET_SRC is not an operand, a COMPARE, or a
4837 ZERO_EXTRACT, the most likely reason why this doesn't match is that
4838 we need to put the operand into a register. So split at that
4839 point. */
4840
4841 if (SET_DEST (x) == cc0_rtx
4842 && GET_CODE (SET_SRC (x)) != COMPARE
4843 && GET_CODE (SET_SRC (x)) != ZERO_EXTRACT
4844 && !OBJECT_P (SET_SRC (x))
4845 && ! (GET_CODE (SET_SRC (x)) == SUBREG
4846 && OBJECT_P (SUBREG_REG (SET_SRC (x)))))
4847 return &SET_SRC (x);
4848
4849 /* See if we can split SET_SRC as it stands. */
4850 split = find_split_point (&SET_SRC (x), insn, true);
4851 if (split && split != &SET_SRC (x))
4852 return split;
4853
4854 /* See if we can split SET_DEST as it stands. */
4855 split = find_split_point (&SET_DEST (x), insn, false);
4856 if (split && split != &SET_DEST (x))
4857 return split;
4858
4859 /* See if this is a bitfield assignment with everything constant. If
4860 so, this is an IOR of an AND, so split it into that. */
4861 if (GET_CODE (SET_DEST (x)) == ZERO_EXTRACT
4862 && HWI_COMPUTABLE_MODE_P (GET_MODE (XEXP (SET_DEST (x), 0)))
4863 && CONST_INT_P (XEXP (SET_DEST (x), 1))
4864 && CONST_INT_P (XEXP (SET_DEST (x), 2))
4865 && CONST_INT_P (SET_SRC (x))
4866 && ((INTVAL (XEXP (SET_DEST (x), 1))
4867 + INTVAL (XEXP (SET_DEST (x), 2)))
4868 <= GET_MODE_PRECISION (GET_MODE (XEXP (SET_DEST (x), 0))))
4869 && ! side_effects_p (XEXP (SET_DEST (x), 0)))
4870 {
4871 HOST_WIDE_INT pos = INTVAL (XEXP (SET_DEST (x), 2));
4872 unsigned HOST_WIDE_INT len = INTVAL (XEXP (SET_DEST (x), 1));
4873 unsigned HOST_WIDE_INT src = INTVAL (SET_SRC (x));
4874 rtx dest = XEXP (SET_DEST (x), 0);
4875 machine_mode mode = GET_MODE (dest);
4876 unsigned HOST_WIDE_INT mask
4877 = ((unsigned HOST_WIDE_INT) 1 << len) - 1;
4878 rtx or_mask;
4879
4880 if (BITS_BIG_ENDIAN)
4881 pos = GET_MODE_PRECISION (mode) - len - pos;
4882
4883 or_mask = gen_int_mode (src << pos, mode);
4884 if (src == mask)
4885 SUBST (SET_SRC (x),
4886 simplify_gen_binary (IOR, mode, dest, or_mask));
4887 else
4888 {
4889 rtx negmask = gen_int_mode (~(mask << pos), mode);
4890 SUBST (SET_SRC (x),
4891 simplify_gen_binary (IOR, mode,
4892 simplify_gen_binary (AND, mode,
4893 dest, negmask),
4894 or_mask));
4895 }
4896
4897 SUBST (SET_DEST (x), dest);
4898
4899 split = find_split_point (&SET_SRC (x), insn, true);
4900 if (split && split != &SET_SRC (x))
4901 return split;
4902 }
4903
4904 /* Otherwise, see if this is an operation that we can split into two.
4905 If so, try to split that. */
4906 code = GET_CODE (SET_SRC (x));
4907
4908 switch (code)
4909 {
4910 case AND:
4911 /* If we are AND'ing with a large constant that is only a single
4912 bit and the result is only being used in a context where we
4913 need to know if it is zero or nonzero, replace it with a bit
4914 extraction. This will avoid the large constant, which might
4915 have taken more than one insn to make. If the constant were
4916 not a valid argument to the AND but took only one insn to make,
4917 this is no worse, but if it took more than one insn, it will
4918 be better. */
4919
4920 if (CONST_INT_P (XEXP (SET_SRC (x), 1))
4921 && REG_P (XEXP (SET_SRC (x), 0))
4922 && (pos = exact_log2 (UINTVAL (XEXP (SET_SRC (x), 1)))) >= 7
4923 && REG_P (SET_DEST (x))
4924 && (split = find_single_use (SET_DEST (x), insn, NULL)) != 0
4925 && (GET_CODE (*split) == EQ || GET_CODE (*split) == NE)
4926 && XEXP (*split, 0) == SET_DEST (x)
4927 && XEXP (*split, 1) == const0_rtx)
4928 {
4929 rtx extraction = make_extraction (GET_MODE (SET_DEST (x)),
4930 XEXP (SET_SRC (x), 0),
4931 pos, NULL_RTX, 1, 1, 0, 0);
4932 if (extraction != 0)
4933 {
4934 SUBST (SET_SRC (x), extraction);
4935 return find_split_point (loc, insn, false);
4936 }
4937 }
4938 break;
4939
4940 case NE:
4941 /* If STORE_FLAG_VALUE is -1, this is (NE X 0) and only one bit of X
4942 is known to be on, this can be converted into a NEG of a shift. */
4943 if (STORE_FLAG_VALUE == -1 && XEXP (SET_SRC (x), 1) == const0_rtx
4944 && GET_MODE (SET_SRC (x)) == GET_MODE (XEXP (SET_SRC (x), 0))
4945 && 1 <= (pos = exact_log2
4946 (nonzero_bits (XEXP (SET_SRC (x), 0),
4947 GET_MODE (XEXP (SET_SRC (x), 0))))))
4948 {
4949 machine_mode mode = GET_MODE (XEXP (SET_SRC (x), 0));
4950
4951 SUBST (SET_SRC (x),
4952 gen_rtx_NEG (mode,
4953 gen_rtx_LSHIFTRT (mode,
4954 XEXP (SET_SRC (x), 0),
4955 GEN_INT (pos))));
4956
4957 split = find_split_point (&SET_SRC (x), insn, true);
4958 if (split && split != &SET_SRC (x))
4959 return split;
4960 }
4961 break;
4962
4963 case SIGN_EXTEND:
4964 inner = XEXP (SET_SRC (x), 0);
4965
4966 /* We can't optimize if either mode is a partial integer
4967 mode as we don't know how many bits are significant
4968 in those modes. */
4969 if (GET_MODE_CLASS (GET_MODE (inner)) == MODE_PARTIAL_INT
4970 || GET_MODE_CLASS (GET_MODE (SET_SRC (x))) == MODE_PARTIAL_INT)
4971 break;
4972
4973 pos = 0;
4974 len = GET_MODE_PRECISION (GET_MODE (inner));
4975 unsignedp = 0;
4976 break;
4977
4978 case SIGN_EXTRACT:
4979 case ZERO_EXTRACT:
4980 if (CONST_INT_P (XEXP (SET_SRC (x), 1))
4981 && CONST_INT_P (XEXP (SET_SRC (x), 2)))
4982 {
4983 inner = XEXP (SET_SRC (x), 0);
4984 len = INTVAL (XEXP (SET_SRC (x), 1));
4985 pos = INTVAL (XEXP (SET_SRC (x), 2));
4986
4987 if (BITS_BIG_ENDIAN)
4988 pos = GET_MODE_PRECISION (GET_MODE (inner)) - len - pos;
4989 unsignedp = (code == ZERO_EXTRACT);
4990 }
4991 break;
4992
4993 default:
4994 break;
4995 }
4996
4997 if (len && pos >= 0
4998 && pos + len <= GET_MODE_PRECISION (GET_MODE (inner)))
4999 {
5000 machine_mode mode = GET_MODE (SET_SRC (x));
5001
5002 /* For unsigned, we have a choice of a shift followed by an
5003 AND or two shifts. Use two shifts for field sizes where the
5004 constant might be too large. We assume here that we can
5005 always at least get 8-bit constants in an AND insn, which is
5006 true for every current RISC. */
5007
5008 if (unsignedp && len <= 8)
5009 {
5010 unsigned HOST_WIDE_INT mask
5011 = ((unsigned HOST_WIDE_INT) 1 << len) - 1;
5012 SUBST (SET_SRC (x),
5013 gen_rtx_AND (mode,
5014 gen_rtx_LSHIFTRT
5015 (mode, gen_lowpart (mode, inner),
5016 GEN_INT (pos)),
5017 gen_int_mode (mask, mode)));
5018
5019 split = find_split_point (&SET_SRC (x), insn, true);
5020 if (split && split != &SET_SRC (x))
5021 return split;
5022 }
5023 else
5024 {
5025 SUBST (SET_SRC (x),
5026 gen_rtx_fmt_ee
5027 (unsignedp ? LSHIFTRT : ASHIFTRT, mode,
5028 gen_rtx_ASHIFT (mode,
5029 gen_lowpart (mode, inner),
5030 GEN_INT (GET_MODE_PRECISION (mode)
5031 - len - pos)),
5032 GEN_INT (GET_MODE_PRECISION (mode) - len)));
5033
5034 split = find_split_point (&SET_SRC (x), insn, true);
5035 if (split && split != &SET_SRC (x))
5036 return split;
5037 }
5038 }
5039
5040 /* See if this is a simple operation with a constant as the second
5041 operand. It might be that this constant is out of range and hence
5042 could be used as a split point. */
5043 if (BINARY_P (SET_SRC (x))
5044 && CONSTANT_P (XEXP (SET_SRC (x), 1))
5045 && (OBJECT_P (XEXP (SET_SRC (x), 0))
5046 || (GET_CODE (XEXP (SET_SRC (x), 0)) == SUBREG
5047 && OBJECT_P (SUBREG_REG (XEXP (SET_SRC (x), 0))))))
5048 return &XEXP (SET_SRC (x), 1);
5049
5050 /* Finally, see if this is a simple operation with its first operand
5051 not in a register. The operation might require this operand in a
5052 register, so return it as a split point. We can always do this
5053 because if the first operand were another operation, we would have
5054 already found it as a split point. */
5055 if ((BINARY_P (SET_SRC (x)) || UNARY_P (SET_SRC (x)))
5056 && ! register_operand (XEXP (SET_SRC (x), 0), VOIDmode))
5057 return &XEXP (SET_SRC (x), 0);
5058
5059 return 0;
5060
5061 case AND:
5062 case IOR:
5063 /* We write NOR as (and (not A) (not B)), but if we don't have a NOR,
5064 it is better to write this as (not (ior A B)) so we can split it.
5065 Similarly for IOR. */
5066 if (GET_CODE (XEXP (x, 0)) == NOT && GET_CODE (XEXP (x, 1)) == NOT)
5067 {
5068 SUBST (*loc,
5069 gen_rtx_NOT (GET_MODE (x),
5070 gen_rtx_fmt_ee (code == IOR ? AND : IOR,
5071 GET_MODE (x),
5072 XEXP (XEXP (x, 0), 0),
5073 XEXP (XEXP (x, 1), 0))));
5074 return find_split_point (loc, insn, set_src);
5075 }
5076
5077 /* Many RISC machines have a large set of logical insns. If the
5078 second operand is a NOT, put it first so we will try to split the
5079 other operand first. */
5080 if (GET_CODE (XEXP (x, 1)) == NOT)
5081 {
5082 rtx tem = XEXP (x, 0);
5083 SUBST (XEXP (x, 0), XEXP (x, 1));
5084 SUBST (XEXP (x, 1), tem);
5085 }
5086 break;
5087
5088 case PLUS:
5089 case MINUS:
5090 /* Canonicalization can produce (minus A (mult B C)), where C is a
5091 constant. It may be better to try splitting (plus (mult B -C) A)
5092 instead if this isn't a multiply by a power of two. */
5093 if (set_src && code == MINUS && GET_CODE (XEXP (x, 1)) == MULT
5094 && GET_CODE (XEXP (XEXP (x, 1), 1)) == CONST_INT
5095 && exact_log2 (INTVAL (XEXP (XEXP (x, 1), 1))) < 0)
5096 {
5097 machine_mode mode = GET_MODE (x);
5098 unsigned HOST_WIDE_INT this_int = INTVAL (XEXP (XEXP (x, 1), 1));
5099 HOST_WIDE_INT other_int = trunc_int_for_mode (-this_int, mode);
5100 SUBST (*loc, gen_rtx_PLUS (mode,
5101 gen_rtx_MULT (mode,
5102 XEXP (XEXP (x, 1), 0),
5103 gen_int_mode (other_int,
5104 mode)),
5105 XEXP (x, 0)));
5106 return find_split_point (loc, insn, set_src);
5107 }
5108
5109 /* Split at a multiply-accumulate instruction. However if this is
5110 the SET_SRC, we likely do not have such an instruction and it's
5111 worthless to try this split. */
5112 if (!set_src
5113 && (GET_CODE (XEXP (x, 0)) == MULT
5114 || (GET_CODE (XEXP (x, 0)) == ASHIFT
5115 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT)))
5116 return loc;
5117
5118 default:
5119 break;
5120 }
5121
5122 /* Otherwise, select our actions depending on our rtx class. */
5123 switch (GET_RTX_CLASS (code))
5124 {
5125 case RTX_BITFIELD_OPS: /* This is ZERO_EXTRACT and SIGN_EXTRACT. */
5126 case RTX_TERNARY:
5127 split = find_split_point (&XEXP (x, 2), insn, false);
5128 if (split)
5129 return split;
5130 /* ... fall through ... */
5131 case RTX_BIN_ARITH:
5132 case RTX_COMM_ARITH:
5133 case RTX_COMPARE:
5134 case RTX_COMM_COMPARE:
5135 split = find_split_point (&XEXP (x, 1), insn, false);
5136 if (split)
5137 return split;
5138 /* ... fall through ... */
5139 case RTX_UNARY:
5140 /* Some machines have (and (shift ...) ...) insns. If X is not
5141 an AND, but XEXP (X, 0) is, use it as our split point. */
5142 if (GET_CODE (x) != AND && GET_CODE (XEXP (x, 0)) == AND)
5143 return &XEXP (x, 0);
5144
5145 split = find_split_point (&XEXP (x, 0), insn, false);
5146 if (split)
5147 return split;
5148 return loc;
5149
5150 default:
5151 /* Otherwise, we don't have a split point. */
5152 return 0;
5153 }
5154 }
5155 \f
5156 /* Throughout X, replace FROM with TO, and return the result.
5157 The result is TO if X is FROM;
5158 otherwise the result is X, but its contents may have been modified.
5159 If they were modified, a record was made in undobuf so that
5160 undo_all will (among other things) return X to its original state.
5161
5162 If the number of changes necessary is too much to record to undo,
5163 the excess changes are not made, so the result is invalid.
5164 The changes already made can still be undone.
5165 undobuf.num_undo is incremented for such changes, so by testing that
5166 the caller can tell whether the result is valid.
5167
5168 `n_occurrences' is incremented each time FROM is replaced.
5169
5170 IN_DEST is nonzero if we are processing the SET_DEST of a SET.
5171
5172 IN_COND is nonzero if we are at the top level of a condition.
5173
5174 UNIQUE_COPY is nonzero if each substitution must be unique. We do this
5175 by copying if `n_occurrences' is nonzero. */
5176
5177 static rtx
5178 subst (rtx x, rtx from, rtx to, int in_dest, int in_cond, int unique_copy)
5179 {
5180 enum rtx_code code = GET_CODE (x);
5181 machine_mode op0_mode = VOIDmode;
5182 const char *fmt;
5183 int len, i;
5184 rtx new_rtx;
5185
5186 /* Two expressions are equal if they are identical copies of a shared
5187 RTX or if they are both registers with the same register number
5188 and mode. */
5189
5190 #define COMBINE_RTX_EQUAL_P(X,Y) \
5191 ((X) == (Y) \
5192 || (REG_P (X) && REG_P (Y) \
5193 && REGNO (X) == REGNO (Y) && GET_MODE (X) == GET_MODE (Y)))
5194
5195 /* Do not substitute into clobbers of regs -- this will never result in
5196 valid RTL. */
5197 if (GET_CODE (x) == CLOBBER && REG_P (XEXP (x, 0)))
5198 return x;
5199
5200 if (! in_dest && COMBINE_RTX_EQUAL_P (x, from))
5201 {
5202 n_occurrences++;
5203 return (unique_copy && n_occurrences > 1 ? copy_rtx (to) : to);
5204 }
5205
5206 /* If X and FROM are the same register but different modes, they
5207 will not have been seen as equal above. However, the log links code
5208 will make a LOG_LINKS entry for that case. If we do nothing, we
5209 will try to rerecognize our original insn and, when it succeeds,
5210 we will delete the feeding insn, which is incorrect.
5211
5212 So force this insn not to match in this (rare) case. */
5213 if (! in_dest && code == REG && REG_P (from)
5214 && reg_overlap_mentioned_p (x, from))
5215 return gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
5216
5217 /* If this is an object, we are done unless it is a MEM or LO_SUM, both
5218 of which may contain things that can be combined. */
5219 if (code != MEM && code != LO_SUM && OBJECT_P (x))
5220 return x;
5221
5222 /* It is possible to have a subexpression appear twice in the insn.
5223 Suppose that FROM is a register that appears within TO.
5224 Then, after that subexpression has been scanned once by `subst',
5225 the second time it is scanned, TO may be found. If we were
5226 to scan TO here, we would find FROM within it and create a
5227 self-referent rtl structure which is completely wrong. */
5228 if (COMBINE_RTX_EQUAL_P (x, to))
5229 return to;
5230
5231 /* Parallel asm_operands need special attention because all of the
5232 inputs are shared across the arms. Furthermore, unsharing the
5233 rtl results in recognition failures. Failure to handle this case
5234 specially can result in circular rtl.
5235
5236 Solve this by doing a normal pass across the first entry of the
5237 parallel, and only processing the SET_DESTs of the subsequent
5238 entries. Ug. */
5239
5240 if (code == PARALLEL
5241 && GET_CODE (XVECEXP (x, 0, 0)) == SET
5242 && GET_CODE (SET_SRC (XVECEXP (x, 0, 0))) == ASM_OPERANDS)
5243 {
5244 new_rtx = subst (XVECEXP (x, 0, 0), from, to, 0, 0, unique_copy);
5245
5246 /* If this substitution failed, this whole thing fails. */
5247 if (GET_CODE (new_rtx) == CLOBBER
5248 && XEXP (new_rtx, 0) == const0_rtx)
5249 return new_rtx;
5250
5251 SUBST (XVECEXP (x, 0, 0), new_rtx);
5252
5253 for (i = XVECLEN (x, 0) - 1; i >= 1; i--)
5254 {
5255 rtx dest = SET_DEST (XVECEXP (x, 0, i));
5256
5257 if (!REG_P (dest)
5258 && GET_CODE (dest) != CC0
5259 && GET_CODE (dest) != PC)
5260 {
5261 new_rtx = subst (dest, from, to, 0, 0, unique_copy);
5262
5263 /* If this substitution failed, this whole thing fails. */
5264 if (GET_CODE (new_rtx) == CLOBBER
5265 && XEXP (new_rtx, 0) == const0_rtx)
5266 return new_rtx;
5267
5268 SUBST (SET_DEST (XVECEXP (x, 0, i)), new_rtx);
5269 }
5270 }
5271 }
5272 else
5273 {
5274 len = GET_RTX_LENGTH (code);
5275 fmt = GET_RTX_FORMAT (code);
5276
5277 /* We don't need to process a SET_DEST that is a register, CC0,
5278 or PC, so set up to skip this common case. All other cases
5279 where we want to suppress replacing something inside a
5280 SET_SRC are handled via the IN_DEST operand. */
5281 if (code == SET
5282 && (REG_P (SET_DEST (x))
5283 || GET_CODE (SET_DEST (x)) == CC0
5284 || GET_CODE (SET_DEST (x)) == PC))
5285 fmt = "ie";
5286
5287 /* Get the mode of operand 0 in case X is now a SIGN_EXTEND of a
5288 constant. */
5289 if (fmt[0] == 'e')
5290 op0_mode = GET_MODE (XEXP (x, 0));
5291
5292 for (i = 0; i < len; i++)
5293 {
5294 if (fmt[i] == 'E')
5295 {
5296 int j;
5297 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
5298 {
5299 if (COMBINE_RTX_EQUAL_P (XVECEXP (x, i, j), from))
5300 {
5301 new_rtx = (unique_copy && n_occurrences
5302 ? copy_rtx (to) : to);
5303 n_occurrences++;
5304 }
5305 else
5306 {
5307 new_rtx = subst (XVECEXP (x, i, j), from, to, 0, 0,
5308 unique_copy);
5309
5310 /* If this substitution failed, this whole thing
5311 fails. */
5312 if (GET_CODE (new_rtx) == CLOBBER
5313 && XEXP (new_rtx, 0) == const0_rtx)
5314 return new_rtx;
5315 }
5316
5317 SUBST (XVECEXP (x, i, j), new_rtx);
5318 }
5319 }
5320 else if (fmt[i] == 'e')
5321 {
5322 /* If this is a register being set, ignore it. */
5323 new_rtx = XEXP (x, i);
5324 if (in_dest
5325 && i == 0
5326 && (((code == SUBREG || code == ZERO_EXTRACT)
5327 && REG_P (new_rtx))
5328 || code == STRICT_LOW_PART))
5329 ;
5330
5331 else if (COMBINE_RTX_EQUAL_P (XEXP (x, i), from))
5332 {
5333 /* In general, don't install a subreg involving two
5334 modes not tieable. It can worsen register
5335 allocation, and can even make invalid reload
5336 insns, since the reg inside may need to be copied
5337 from in the outside mode, and that may be invalid
5338 if it is an fp reg copied in integer mode.
5339
5340 We allow two exceptions to this: It is valid if
5341 it is inside another SUBREG and the mode of that
5342 SUBREG and the mode of the inside of TO is
5343 tieable and it is valid if X is a SET that copies
5344 FROM to CC0. */
5345
5346 if (GET_CODE (to) == SUBREG
5347 && ! MODES_TIEABLE_P (GET_MODE (to),
5348 GET_MODE (SUBREG_REG (to)))
5349 && ! (code == SUBREG
5350 && MODES_TIEABLE_P (GET_MODE (x),
5351 GET_MODE (SUBREG_REG (to))))
5352 && (!HAVE_cc0
5353 || (! (code == SET
5354 && i == 1
5355 && XEXP (x, 0) == cc0_rtx))))
5356 return gen_rtx_CLOBBER (VOIDmode, const0_rtx);
5357
5358 if (code == SUBREG
5359 && REG_P (to)
5360 && REGNO (to) < FIRST_PSEUDO_REGISTER
5361 && simplify_subreg_regno (REGNO (to), GET_MODE (to),
5362 SUBREG_BYTE (x),
5363 GET_MODE (x)) < 0)
5364 return gen_rtx_CLOBBER (VOIDmode, const0_rtx);
5365
5366 new_rtx = (unique_copy && n_occurrences ? copy_rtx (to) : to);
5367 n_occurrences++;
5368 }
5369 else
5370 /* If we are in a SET_DEST, suppress most cases unless we
5371 have gone inside a MEM, in which case we want to
5372 simplify the address. We assume here that things that
5373 are actually part of the destination have their inner
5374 parts in the first expression. This is true for SUBREG,
5375 STRICT_LOW_PART, and ZERO_EXTRACT, which are the only
5376 things aside from REG and MEM that should appear in a
5377 SET_DEST. */
5378 new_rtx = subst (XEXP (x, i), from, to,
5379 (((in_dest
5380 && (code == SUBREG || code == STRICT_LOW_PART
5381 || code == ZERO_EXTRACT))
5382 || code == SET)
5383 && i == 0),
5384 code == IF_THEN_ELSE && i == 0,
5385 unique_copy);
5386
5387 /* If we found that we will have to reject this combination,
5388 indicate that by returning the CLOBBER ourselves, rather than
5389 an expression containing it. This will speed things up as
5390 well as prevent accidents where two CLOBBERs are considered
5391 to be equal, thus producing an incorrect simplification. */
5392
5393 if (GET_CODE (new_rtx) == CLOBBER && XEXP (new_rtx, 0) == const0_rtx)
5394 return new_rtx;
5395
5396 if (GET_CODE (x) == SUBREG && CONST_SCALAR_INT_P (new_rtx))
5397 {
5398 machine_mode mode = GET_MODE (x);
5399
5400 x = simplify_subreg (GET_MODE (x), new_rtx,
5401 GET_MODE (SUBREG_REG (x)),
5402 SUBREG_BYTE (x));
5403 if (! x)
5404 x = gen_rtx_CLOBBER (mode, const0_rtx);
5405 }
5406 else if (CONST_SCALAR_INT_P (new_rtx)
5407 && GET_CODE (x) == ZERO_EXTEND)
5408 {
5409 x = simplify_unary_operation (ZERO_EXTEND, GET_MODE (x),
5410 new_rtx, GET_MODE (XEXP (x, 0)));
5411 gcc_assert (x);
5412 }
5413 else
5414 SUBST (XEXP (x, i), new_rtx);
5415 }
5416 }
5417 }
5418
5419 /* Check if we are loading something from the constant pool via float
5420 extension; in this case we would undo compress_float_constant
5421 optimization and degenerate constant load to an immediate value. */
5422 if (GET_CODE (x) == FLOAT_EXTEND
5423 && MEM_P (XEXP (x, 0))
5424 && MEM_READONLY_P (XEXP (x, 0)))
5425 {
5426 rtx tmp = avoid_constant_pool_reference (x);
5427 if (x != tmp)
5428 return x;
5429 }
5430
5431 /* Try to simplify X. If the simplification changed the code, it is likely
5432 that further simplification will help, so loop, but limit the number
5433 of repetitions that will be performed. */
5434
5435 for (i = 0; i < 4; i++)
5436 {
5437 /* If X is sufficiently simple, don't bother trying to do anything
5438 with it. */
5439 if (code != CONST_INT && code != REG && code != CLOBBER)
5440 x = combine_simplify_rtx (x, op0_mode, in_dest, in_cond);
5441
5442 if (GET_CODE (x) == code)
5443 break;
5444
5445 code = GET_CODE (x);
5446
5447 /* We no longer know the original mode of operand 0 since we
5448 have changed the form of X) */
5449 op0_mode = VOIDmode;
5450 }
5451
5452 return x;
5453 }
5454 \f
5455 /* Simplify X, a piece of RTL. We just operate on the expression at the
5456 outer level; call `subst' to simplify recursively. Return the new
5457 expression.
5458
5459 OP0_MODE is the original mode of XEXP (x, 0). IN_DEST is nonzero
5460 if we are inside a SET_DEST. IN_COND is nonzero if we are at the top level
5461 of a condition. */
5462
5463 static rtx
5464 combine_simplify_rtx (rtx x, machine_mode op0_mode, int in_dest,
5465 int in_cond)
5466 {
5467 enum rtx_code code = GET_CODE (x);
5468 machine_mode mode = GET_MODE (x);
5469 rtx temp;
5470 int i;
5471
5472 /* If this is a commutative operation, put a constant last and a complex
5473 expression first. We don't need to do this for comparisons here. */
5474 if (COMMUTATIVE_ARITH_P (x)
5475 && swap_commutative_operands_p (XEXP (x, 0), XEXP (x, 1)))
5476 {
5477 temp = XEXP (x, 0);
5478 SUBST (XEXP (x, 0), XEXP (x, 1));
5479 SUBST (XEXP (x, 1), temp);
5480 }
5481
5482 /* Try to fold this expression in case we have constants that weren't
5483 present before. */
5484 temp = 0;
5485 switch (GET_RTX_CLASS (code))
5486 {
5487 case RTX_UNARY:
5488 if (op0_mode == VOIDmode)
5489 op0_mode = GET_MODE (XEXP (x, 0));
5490 temp = simplify_unary_operation (code, mode, XEXP (x, 0), op0_mode);
5491 break;
5492 case RTX_COMPARE:
5493 case RTX_COMM_COMPARE:
5494 {
5495 machine_mode cmp_mode = GET_MODE (XEXP (x, 0));
5496 if (cmp_mode == VOIDmode)
5497 {
5498 cmp_mode = GET_MODE (XEXP (x, 1));
5499 if (cmp_mode == VOIDmode)
5500 cmp_mode = op0_mode;
5501 }
5502 temp = simplify_relational_operation (code, mode, cmp_mode,
5503 XEXP (x, 0), XEXP (x, 1));
5504 }
5505 break;
5506 case RTX_COMM_ARITH:
5507 case RTX_BIN_ARITH:
5508 temp = simplify_binary_operation (code, mode, XEXP (x, 0), XEXP (x, 1));
5509 break;
5510 case RTX_BITFIELD_OPS:
5511 case RTX_TERNARY:
5512 temp = simplify_ternary_operation (code, mode, op0_mode, XEXP (x, 0),
5513 XEXP (x, 1), XEXP (x, 2));
5514 break;
5515 default:
5516 break;
5517 }
5518
5519 if (temp)
5520 {
5521 x = temp;
5522 code = GET_CODE (temp);
5523 op0_mode = VOIDmode;
5524 mode = GET_MODE (temp);
5525 }
5526
5527 /* If this is a simple operation applied to an IF_THEN_ELSE, try
5528 applying it to the arms of the IF_THEN_ELSE. This often simplifies
5529 things. Check for cases where both arms are testing the same
5530 condition.
5531
5532 Don't do anything if all operands are very simple. */
5533
5534 if ((BINARY_P (x)
5535 && ((!OBJECT_P (XEXP (x, 0))
5536 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
5537 && OBJECT_P (SUBREG_REG (XEXP (x, 0)))))
5538 || (!OBJECT_P (XEXP (x, 1))
5539 && ! (GET_CODE (XEXP (x, 1)) == SUBREG
5540 && OBJECT_P (SUBREG_REG (XEXP (x, 1)))))))
5541 || (UNARY_P (x)
5542 && (!OBJECT_P (XEXP (x, 0))
5543 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
5544 && OBJECT_P (SUBREG_REG (XEXP (x, 0)))))))
5545 {
5546 rtx cond, true_rtx, false_rtx;
5547
5548 cond = if_then_else_cond (x, &true_rtx, &false_rtx);
5549 if (cond != 0
5550 /* If everything is a comparison, what we have is highly unlikely
5551 to be simpler, so don't use it. */
5552 && ! (COMPARISON_P (x)
5553 && (COMPARISON_P (true_rtx) || COMPARISON_P (false_rtx))))
5554 {
5555 rtx cop1 = const0_rtx;
5556 enum rtx_code cond_code = simplify_comparison (NE, &cond, &cop1);
5557
5558 if (cond_code == NE && COMPARISON_P (cond))
5559 return x;
5560
5561 /* Simplify the alternative arms; this may collapse the true and
5562 false arms to store-flag values. Be careful to use copy_rtx
5563 here since true_rtx or false_rtx might share RTL with x as a
5564 result of the if_then_else_cond call above. */
5565 true_rtx = subst (copy_rtx (true_rtx), pc_rtx, pc_rtx, 0, 0, 0);
5566 false_rtx = subst (copy_rtx (false_rtx), pc_rtx, pc_rtx, 0, 0, 0);
5567
5568 /* If true_rtx and false_rtx are not general_operands, an if_then_else
5569 is unlikely to be simpler. */
5570 if (general_operand (true_rtx, VOIDmode)
5571 && general_operand (false_rtx, VOIDmode))
5572 {
5573 enum rtx_code reversed;
5574
5575 /* Restarting if we generate a store-flag expression will cause
5576 us to loop. Just drop through in this case. */
5577
5578 /* If the result values are STORE_FLAG_VALUE and zero, we can
5579 just make the comparison operation. */
5580 if (true_rtx == const_true_rtx && false_rtx == const0_rtx)
5581 x = simplify_gen_relational (cond_code, mode, VOIDmode,
5582 cond, cop1);
5583 else if (true_rtx == const0_rtx && false_rtx == const_true_rtx
5584 && ((reversed = reversed_comparison_code_parts
5585 (cond_code, cond, cop1, NULL))
5586 != UNKNOWN))
5587 x = simplify_gen_relational (reversed, mode, VOIDmode,
5588 cond, cop1);
5589
5590 /* Likewise, we can make the negate of a comparison operation
5591 if the result values are - STORE_FLAG_VALUE and zero. */
5592 else if (CONST_INT_P (true_rtx)
5593 && INTVAL (true_rtx) == - STORE_FLAG_VALUE
5594 && false_rtx == const0_rtx)
5595 x = simplify_gen_unary (NEG, mode,
5596 simplify_gen_relational (cond_code,
5597 mode, VOIDmode,
5598 cond, cop1),
5599 mode);
5600 else if (CONST_INT_P (false_rtx)
5601 && INTVAL (false_rtx) == - STORE_FLAG_VALUE
5602 && true_rtx == const0_rtx
5603 && ((reversed = reversed_comparison_code_parts
5604 (cond_code, cond, cop1, NULL))
5605 != UNKNOWN))
5606 x = simplify_gen_unary (NEG, mode,
5607 simplify_gen_relational (reversed,
5608 mode, VOIDmode,
5609 cond, cop1),
5610 mode);
5611 else
5612 return gen_rtx_IF_THEN_ELSE (mode,
5613 simplify_gen_relational (cond_code,
5614 mode,
5615 VOIDmode,
5616 cond,
5617 cop1),
5618 true_rtx, false_rtx);
5619
5620 code = GET_CODE (x);
5621 op0_mode = VOIDmode;
5622 }
5623 }
5624 }
5625
5626 /* First see if we can apply the inverse distributive law. */
5627 if (code == PLUS || code == MINUS
5628 || code == AND || code == IOR || code == XOR)
5629 {
5630 x = apply_distributive_law (x);
5631 code = GET_CODE (x);
5632 op0_mode = VOIDmode;
5633 }
5634
5635 /* If CODE is an associative operation not otherwise handled, see if we
5636 can associate some operands. This can win if they are constants or
5637 if they are logically related (i.e. (a & b) & a). */
5638 if ((code == PLUS || code == MINUS || code == MULT || code == DIV
5639 || code == AND || code == IOR || code == XOR
5640 || code == SMAX || code == SMIN || code == UMAX || code == UMIN)
5641 && ((INTEGRAL_MODE_P (mode) && code != DIV)
5642 || (flag_associative_math && FLOAT_MODE_P (mode))))
5643 {
5644 if (GET_CODE (XEXP (x, 0)) == code)
5645 {
5646 rtx other = XEXP (XEXP (x, 0), 0);
5647 rtx inner_op0 = XEXP (XEXP (x, 0), 1);
5648 rtx inner_op1 = XEXP (x, 1);
5649 rtx inner;
5650
5651 /* Make sure we pass the constant operand if any as the second
5652 one if this is a commutative operation. */
5653 if (CONSTANT_P (inner_op0) && COMMUTATIVE_ARITH_P (x))
5654 std::swap (inner_op0, inner_op1);
5655 inner = simplify_binary_operation (code == MINUS ? PLUS
5656 : code == DIV ? MULT
5657 : code,
5658 mode, inner_op0, inner_op1);
5659
5660 /* For commutative operations, try the other pair if that one
5661 didn't simplify. */
5662 if (inner == 0 && COMMUTATIVE_ARITH_P (x))
5663 {
5664 other = XEXP (XEXP (x, 0), 1);
5665 inner = simplify_binary_operation (code, mode,
5666 XEXP (XEXP (x, 0), 0),
5667 XEXP (x, 1));
5668 }
5669
5670 if (inner)
5671 return simplify_gen_binary (code, mode, other, inner);
5672 }
5673 }
5674
5675 /* A little bit of algebraic simplification here. */
5676 switch (code)
5677 {
5678 case MEM:
5679 /* Ensure that our address has any ASHIFTs converted to MULT in case
5680 address-recognizing predicates are called later. */
5681 temp = make_compound_operation (XEXP (x, 0), MEM);
5682 SUBST (XEXP (x, 0), temp);
5683 break;
5684
5685 case SUBREG:
5686 if (op0_mode == VOIDmode)
5687 op0_mode = GET_MODE (SUBREG_REG (x));
5688
5689 /* See if this can be moved to simplify_subreg. */
5690 if (CONSTANT_P (SUBREG_REG (x))
5691 && subreg_lowpart_offset (mode, op0_mode) == SUBREG_BYTE (x)
5692 /* Don't call gen_lowpart if the inner mode
5693 is VOIDmode and we cannot simplify it, as SUBREG without
5694 inner mode is invalid. */
5695 && (GET_MODE (SUBREG_REG (x)) != VOIDmode
5696 || gen_lowpart_common (mode, SUBREG_REG (x))))
5697 return gen_lowpart (mode, SUBREG_REG (x));
5698
5699 if (GET_MODE_CLASS (GET_MODE (SUBREG_REG (x))) == MODE_CC)
5700 break;
5701 {
5702 rtx temp;
5703 temp = simplify_subreg (mode, SUBREG_REG (x), op0_mode,
5704 SUBREG_BYTE (x));
5705 if (temp)
5706 return temp;
5707
5708 /* If op is known to have all lower bits zero, the result is zero. */
5709 if (!in_dest
5710 && SCALAR_INT_MODE_P (mode)
5711 && SCALAR_INT_MODE_P (op0_mode)
5712 && GET_MODE_PRECISION (mode) < GET_MODE_PRECISION (op0_mode)
5713 && subreg_lowpart_offset (mode, op0_mode) == SUBREG_BYTE (x)
5714 && HWI_COMPUTABLE_MODE_P (op0_mode)
5715 && (nonzero_bits (SUBREG_REG (x), op0_mode)
5716 & GET_MODE_MASK (mode)) == 0)
5717 return CONST0_RTX (mode);
5718 }
5719
5720 /* Don't change the mode of the MEM if that would change the meaning
5721 of the address. */
5722 if (MEM_P (SUBREG_REG (x))
5723 && (MEM_VOLATILE_P (SUBREG_REG (x))
5724 || mode_dependent_address_p (XEXP (SUBREG_REG (x), 0),
5725 MEM_ADDR_SPACE (SUBREG_REG (x)))))
5726 return gen_rtx_CLOBBER (mode, const0_rtx);
5727
5728 /* Note that we cannot do any narrowing for non-constants since
5729 we might have been counting on using the fact that some bits were
5730 zero. We now do this in the SET. */
5731
5732 break;
5733
5734 case NEG:
5735 temp = expand_compound_operation (XEXP (x, 0));
5736
5737 /* For C equal to the width of MODE minus 1, (neg (ashiftrt X C)) can be
5738 replaced by (lshiftrt X C). This will convert
5739 (neg (sign_extract X 1 Y)) to (zero_extract X 1 Y). */
5740
5741 if (GET_CODE (temp) == ASHIFTRT
5742 && CONST_INT_P (XEXP (temp, 1))
5743 && INTVAL (XEXP (temp, 1)) == GET_MODE_PRECISION (mode) - 1)
5744 return simplify_shift_const (NULL_RTX, LSHIFTRT, mode, XEXP (temp, 0),
5745 INTVAL (XEXP (temp, 1)));
5746
5747 /* If X has only a single bit that might be nonzero, say, bit I, convert
5748 (neg X) to (ashiftrt (ashift X C-I) C-I) where C is the bitsize of
5749 MODE minus 1. This will convert (neg (zero_extract X 1 Y)) to
5750 (sign_extract X 1 Y). But only do this if TEMP isn't a register
5751 or a SUBREG of one since we'd be making the expression more
5752 complex if it was just a register. */
5753
5754 if (!REG_P (temp)
5755 && ! (GET_CODE (temp) == SUBREG
5756 && REG_P (SUBREG_REG (temp)))
5757 && (i = exact_log2 (nonzero_bits (temp, mode))) >= 0)
5758 {
5759 rtx temp1 = simplify_shift_const
5760 (NULL_RTX, ASHIFTRT, mode,
5761 simplify_shift_const (NULL_RTX, ASHIFT, mode, temp,
5762 GET_MODE_PRECISION (mode) - 1 - i),
5763 GET_MODE_PRECISION (mode) - 1 - i);
5764
5765 /* If all we did was surround TEMP with the two shifts, we
5766 haven't improved anything, so don't use it. Otherwise,
5767 we are better off with TEMP1. */
5768 if (GET_CODE (temp1) != ASHIFTRT
5769 || GET_CODE (XEXP (temp1, 0)) != ASHIFT
5770 || XEXP (XEXP (temp1, 0), 0) != temp)
5771 return temp1;
5772 }
5773 break;
5774
5775 case TRUNCATE:
5776 /* We can't handle truncation to a partial integer mode here
5777 because we don't know the real bitsize of the partial
5778 integer mode. */
5779 if (GET_MODE_CLASS (mode) == MODE_PARTIAL_INT)
5780 break;
5781
5782 if (HWI_COMPUTABLE_MODE_P (mode))
5783 SUBST (XEXP (x, 0),
5784 force_to_mode (XEXP (x, 0), GET_MODE (XEXP (x, 0)),
5785 GET_MODE_MASK (mode), 0));
5786
5787 /* We can truncate a constant value and return it. */
5788 if (CONST_INT_P (XEXP (x, 0)))
5789 return gen_int_mode (INTVAL (XEXP (x, 0)), mode);
5790
5791 /* Similarly to what we do in simplify-rtx.c, a truncate of a register
5792 whose value is a comparison can be replaced with a subreg if
5793 STORE_FLAG_VALUE permits. */
5794 if (HWI_COMPUTABLE_MODE_P (mode)
5795 && (STORE_FLAG_VALUE & ~GET_MODE_MASK (mode)) == 0
5796 && (temp = get_last_value (XEXP (x, 0)))
5797 && COMPARISON_P (temp))
5798 return gen_lowpart (mode, XEXP (x, 0));
5799 break;
5800
5801 case CONST:
5802 /* (const (const X)) can become (const X). Do it this way rather than
5803 returning the inner CONST since CONST can be shared with a
5804 REG_EQUAL note. */
5805 if (GET_CODE (XEXP (x, 0)) == CONST)
5806 SUBST (XEXP (x, 0), XEXP (XEXP (x, 0), 0));
5807 break;
5808
5809 case LO_SUM:
5810 /* Convert (lo_sum (high FOO) FOO) to FOO. This is necessary so we
5811 can add in an offset. find_split_point will split this address up
5812 again if it doesn't match. */
5813 if (HAVE_lo_sum && GET_CODE (XEXP (x, 0)) == HIGH
5814 && rtx_equal_p (XEXP (XEXP (x, 0), 0), XEXP (x, 1)))
5815 return XEXP (x, 1);
5816 break;
5817
5818 case PLUS:
5819 /* (plus (xor (and <foo> (const_int pow2 - 1)) <c>) <-c>)
5820 when c is (const_int (pow2 + 1) / 2) is a sign extension of a
5821 bit-field and can be replaced by either a sign_extend or a
5822 sign_extract. The `and' may be a zero_extend and the two
5823 <c>, -<c> constants may be reversed. */
5824 if (GET_CODE (XEXP (x, 0)) == XOR
5825 && CONST_INT_P (XEXP (x, 1))
5826 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
5827 && INTVAL (XEXP (x, 1)) == -INTVAL (XEXP (XEXP (x, 0), 1))
5828 && ((i = exact_log2 (UINTVAL (XEXP (XEXP (x, 0), 1)))) >= 0
5829 || (i = exact_log2 (UINTVAL (XEXP (x, 1)))) >= 0)
5830 && HWI_COMPUTABLE_MODE_P (mode)
5831 && ((GET_CODE (XEXP (XEXP (x, 0), 0)) == AND
5832 && CONST_INT_P (XEXP (XEXP (XEXP (x, 0), 0), 1))
5833 && (UINTVAL (XEXP (XEXP (XEXP (x, 0), 0), 1))
5834 == ((unsigned HOST_WIDE_INT) 1 << (i + 1)) - 1))
5835 || (GET_CODE (XEXP (XEXP (x, 0), 0)) == ZERO_EXTEND
5836 && (GET_MODE_PRECISION (GET_MODE (XEXP (XEXP (XEXP (x, 0), 0), 0)))
5837 == (unsigned int) i + 1))))
5838 return simplify_shift_const
5839 (NULL_RTX, ASHIFTRT, mode,
5840 simplify_shift_const (NULL_RTX, ASHIFT, mode,
5841 XEXP (XEXP (XEXP (x, 0), 0), 0),
5842 GET_MODE_PRECISION (mode) - (i + 1)),
5843 GET_MODE_PRECISION (mode) - (i + 1));
5844
5845 /* If only the low-order bit of X is possibly nonzero, (plus x -1)
5846 can become (ashiftrt (ashift (xor x 1) C) C) where C is
5847 the bitsize of the mode - 1. This allows simplification of
5848 "a = (b & 8) == 0;" */
5849 if (XEXP (x, 1) == constm1_rtx
5850 && !REG_P (XEXP (x, 0))
5851 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
5852 && REG_P (SUBREG_REG (XEXP (x, 0))))
5853 && nonzero_bits (XEXP (x, 0), mode) == 1)
5854 return simplify_shift_const (NULL_RTX, ASHIFTRT, mode,
5855 simplify_shift_const (NULL_RTX, ASHIFT, mode,
5856 gen_rtx_XOR (mode, XEXP (x, 0), const1_rtx),
5857 GET_MODE_PRECISION (mode) - 1),
5858 GET_MODE_PRECISION (mode) - 1);
5859
5860 /* If we are adding two things that have no bits in common, convert
5861 the addition into an IOR. This will often be further simplified,
5862 for example in cases like ((a & 1) + (a & 2)), which can
5863 become a & 3. */
5864
5865 if (HWI_COMPUTABLE_MODE_P (mode)
5866 && (nonzero_bits (XEXP (x, 0), mode)
5867 & nonzero_bits (XEXP (x, 1), mode)) == 0)
5868 {
5869 /* Try to simplify the expression further. */
5870 rtx tor = simplify_gen_binary (IOR, mode, XEXP (x, 0), XEXP (x, 1));
5871 temp = combine_simplify_rtx (tor, VOIDmode, in_dest, 0);
5872
5873 /* If we could, great. If not, do not go ahead with the IOR
5874 replacement, since PLUS appears in many special purpose
5875 address arithmetic instructions. */
5876 if (GET_CODE (temp) != CLOBBER
5877 && (GET_CODE (temp) != IOR
5878 || ((XEXP (temp, 0) != XEXP (x, 0)
5879 || XEXP (temp, 1) != XEXP (x, 1))
5880 && (XEXP (temp, 0) != XEXP (x, 1)
5881 || XEXP (temp, 1) != XEXP (x, 0)))))
5882 return temp;
5883 }
5884 break;
5885
5886 case MINUS:
5887 /* (minus <foo> (and <foo> (const_int -pow2))) becomes
5888 (and <foo> (const_int pow2-1)) */
5889 if (GET_CODE (XEXP (x, 1)) == AND
5890 && CONST_INT_P (XEXP (XEXP (x, 1), 1))
5891 && exact_log2 (-UINTVAL (XEXP (XEXP (x, 1), 1))) >= 0
5892 && rtx_equal_p (XEXP (XEXP (x, 1), 0), XEXP (x, 0)))
5893 return simplify_and_const_int (NULL_RTX, mode, XEXP (x, 0),
5894 -INTVAL (XEXP (XEXP (x, 1), 1)) - 1);
5895 break;
5896
5897 case MULT:
5898 /* If we have (mult (plus A B) C), apply the distributive law and then
5899 the inverse distributive law to see if things simplify. This
5900 occurs mostly in addresses, often when unrolling loops. */
5901
5902 if (GET_CODE (XEXP (x, 0)) == PLUS)
5903 {
5904 rtx result = distribute_and_simplify_rtx (x, 0);
5905 if (result)
5906 return result;
5907 }
5908
5909 /* Try simplify a*(b/c) as (a*b)/c. */
5910 if (FLOAT_MODE_P (mode) && flag_associative_math
5911 && GET_CODE (XEXP (x, 0)) == DIV)
5912 {
5913 rtx tem = simplify_binary_operation (MULT, mode,
5914 XEXP (XEXP (x, 0), 0),
5915 XEXP (x, 1));
5916 if (tem)
5917 return simplify_gen_binary (DIV, mode, tem, XEXP (XEXP (x, 0), 1));
5918 }
5919 break;
5920
5921 case UDIV:
5922 /* If this is a divide by a power of two, treat it as a shift if
5923 its first operand is a shift. */
5924 if (CONST_INT_P (XEXP (x, 1))
5925 && (i = exact_log2 (UINTVAL (XEXP (x, 1)))) >= 0
5926 && (GET_CODE (XEXP (x, 0)) == ASHIFT
5927 || GET_CODE (XEXP (x, 0)) == LSHIFTRT
5928 || GET_CODE (XEXP (x, 0)) == ASHIFTRT
5929 || GET_CODE (XEXP (x, 0)) == ROTATE
5930 || GET_CODE (XEXP (x, 0)) == ROTATERT))
5931 return simplify_shift_const (NULL_RTX, LSHIFTRT, mode, XEXP (x, 0), i);
5932 break;
5933
5934 case EQ: case NE:
5935 case GT: case GTU: case GE: case GEU:
5936 case LT: case LTU: case LE: case LEU:
5937 case UNEQ: case LTGT:
5938 case UNGT: case UNGE:
5939 case UNLT: case UNLE:
5940 case UNORDERED: case ORDERED:
5941 /* If the first operand is a condition code, we can't do anything
5942 with it. */
5943 if (GET_CODE (XEXP (x, 0)) == COMPARE
5944 || (GET_MODE_CLASS (GET_MODE (XEXP (x, 0))) != MODE_CC
5945 && ! CC0_P (XEXP (x, 0))))
5946 {
5947 rtx op0 = XEXP (x, 0);
5948 rtx op1 = XEXP (x, 1);
5949 enum rtx_code new_code;
5950
5951 if (GET_CODE (op0) == COMPARE)
5952 op1 = XEXP (op0, 1), op0 = XEXP (op0, 0);
5953
5954 /* Simplify our comparison, if possible. */
5955 new_code = simplify_comparison (code, &op0, &op1);
5956
5957 /* If STORE_FLAG_VALUE is 1, we can convert (ne x 0) to simply X
5958 if only the low-order bit is possibly nonzero in X (such as when
5959 X is a ZERO_EXTRACT of one bit). Similarly, we can convert EQ to
5960 (xor X 1) or (minus 1 X); we use the former. Finally, if X is
5961 known to be either 0 or -1, NE becomes a NEG and EQ becomes
5962 (plus X 1).
5963
5964 Remove any ZERO_EXTRACT we made when thinking this was a
5965 comparison. It may now be simpler to use, e.g., an AND. If a
5966 ZERO_EXTRACT is indeed appropriate, it will be placed back by
5967 the call to make_compound_operation in the SET case.
5968
5969 Don't apply these optimizations if the caller would
5970 prefer a comparison rather than a value.
5971 E.g., for the condition in an IF_THEN_ELSE most targets need
5972 an explicit comparison. */
5973
5974 if (in_cond)
5975 ;
5976
5977 else if (STORE_FLAG_VALUE == 1
5978 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
5979 && op1 == const0_rtx
5980 && mode == GET_MODE (op0)
5981 && nonzero_bits (op0, mode) == 1)
5982 return gen_lowpart (mode,
5983 expand_compound_operation (op0));
5984
5985 else if (STORE_FLAG_VALUE == 1
5986 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
5987 && op1 == const0_rtx
5988 && mode == GET_MODE (op0)
5989 && (num_sign_bit_copies (op0, mode)
5990 == GET_MODE_PRECISION (mode)))
5991 {
5992 op0 = expand_compound_operation (op0);
5993 return simplify_gen_unary (NEG, mode,
5994 gen_lowpart (mode, op0),
5995 mode);
5996 }
5997
5998 else if (STORE_FLAG_VALUE == 1
5999 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
6000 && op1 == const0_rtx
6001 && mode == GET_MODE (op0)
6002 && nonzero_bits (op0, mode) == 1)
6003 {
6004 op0 = expand_compound_operation (op0);
6005 return simplify_gen_binary (XOR, mode,
6006 gen_lowpart (mode, op0),
6007 const1_rtx);
6008 }
6009
6010 else if (STORE_FLAG_VALUE == 1
6011 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
6012 && op1 == const0_rtx
6013 && mode == GET_MODE (op0)
6014 && (num_sign_bit_copies (op0, mode)
6015 == GET_MODE_PRECISION (mode)))
6016 {
6017 op0 = expand_compound_operation (op0);
6018 return plus_constant (mode, gen_lowpart (mode, op0), 1);
6019 }
6020
6021 /* If STORE_FLAG_VALUE is -1, we have cases similar to
6022 those above. */
6023 if (in_cond)
6024 ;
6025
6026 else if (STORE_FLAG_VALUE == -1
6027 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
6028 && op1 == const0_rtx
6029 && mode == GET_MODE (op0)
6030 && (num_sign_bit_copies (op0, mode)
6031 == GET_MODE_PRECISION (mode)))
6032 return gen_lowpart (mode,
6033 expand_compound_operation (op0));
6034
6035 else if (STORE_FLAG_VALUE == -1
6036 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
6037 && op1 == const0_rtx
6038 && mode == GET_MODE (op0)
6039 && nonzero_bits (op0, mode) == 1)
6040 {
6041 op0 = expand_compound_operation (op0);
6042 return simplify_gen_unary (NEG, mode,
6043 gen_lowpart (mode, op0),
6044 mode);
6045 }
6046
6047 else if (STORE_FLAG_VALUE == -1
6048 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
6049 && op1 == const0_rtx
6050 && mode == GET_MODE (op0)
6051 && (num_sign_bit_copies (op0, mode)
6052 == GET_MODE_PRECISION (mode)))
6053 {
6054 op0 = expand_compound_operation (op0);
6055 return simplify_gen_unary (NOT, mode,
6056 gen_lowpart (mode, op0),
6057 mode);
6058 }
6059
6060 /* If X is 0/1, (eq X 0) is X-1. */
6061 else if (STORE_FLAG_VALUE == -1
6062 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
6063 && op1 == const0_rtx
6064 && mode == GET_MODE (op0)
6065 && nonzero_bits (op0, mode) == 1)
6066 {
6067 op0 = expand_compound_operation (op0);
6068 return plus_constant (mode, gen_lowpart (mode, op0), -1);
6069 }
6070
6071 /* If STORE_FLAG_VALUE says to just test the sign bit and X has just
6072 one bit that might be nonzero, we can convert (ne x 0) to
6073 (ashift x c) where C puts the bit in the sign bit. Remove any
6074 AND with STORE_FLAG_VALUE when we are done, since we are only
6075 going to test the sign bit. */
6076 if (new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
6077 && HWI_COMPUTABLE_MODE_P (mode)
6078 && val_signbit_p (mode, STORE_FLAG_VALUE)
6079 && op1 == const0_rtx
6080 && mode == GET_MODE (op0)
6081 && (i = exact_log2 (nonzero_bits (op0, mode))) >= 0)
6082 {
6083 x = simplify_shift_const (NULL_RTX, ASHIFT, mode,
6084 expand_compound_operation (op0),
6085 GET_MODE_PRECISION (mode) - 1 - i);
6086 if (GET_CODE (x) == AND && XEXP (x, 1) == const_true_rtx)
6087 return XEXP (x, 0);
6088 else
6089 return x;
6090 }
6091
6092 /* If the code changed, return a whole new comparison.
6093 We also need to avoid using SUBST in cases where
6094 simplify_comparison has widened a comparison with a CONST_INT,
6095 since in that case the wider CONST_INT may fail the sanity
6096 checks in do_SUBST. */
6097 if (new_code != code
6098 || (CONST_INT_P (op1)
6099 && GET_MODE (op0) != GET_MODE (XEXP (x, 0))
6100 && GET_MODE (op0) != GET_MODE (XEXP (x, 1))))
6101 return gen_rtx_fmt_ee (new_code, mode, op0, op1);
6102
6103 /* Otherwise, keep this operation, but maybe change its operands.
6104 This also converts (ne (compare FOO BAR) 0) to (ne FOO BAR). */
6105 SUBST (XEXP (x, 0), op0);
6106 SUBST (XEXP (x, 1), op1);
6107 }
6108 break;
6109
6110 case IF_THEN_ELSE:
6111 return simplify_if_then_else (x);
6112
6113 case ZERO_EXTRACT:
6114 case SIGN_EXTRACT:
6115 case ZERO_EXTEND:
6116 case SIGN_EXTEND:
6117 /* If we are processing SET_DEST, we are done. */
6118 if (in_dest)
6119 return x;
6120
6121 return expand_compound_operation (x);
6122
6123 case SET:
6124 return simplify_set (x);
6125
6126 case AND:
6127 case IOR:
6128 return simplify_logical (x);
6129
6130 case ASHIFT:
6131 case LSHIFTRT:
6132 case ASHIFTRT:
6133 case ROTATE:
6134 case ROTATERT:
6135 /* If this is a shift by a constant amount, simplify it. */
6136 if (CONST_INT_P (XEXP (x, 1)))
6137 return simplify_shift_const (x, code, mode, XEXP (x, 0),
6138 INTVAL (XEXP (x, 1)));
6139
6140 else if (SHIFT_COUNT_TRUNCATED && !REG_P (XEXP (x, 1)))
6141 SUBST (XEXP (x, 1),
6142 force_to_mode (XEXP (x, 1), GET_MODE (XEXP (x, 1)),
6143 ((unsigned HOST_WIDE_INT) 1
6144 << exact_log2 (GET_MODE_BITSIZE (GET_MODE (x))))
6145 - 1,
6146 0));
6147 break;
6148
6149 default:
6150 break;
6151 }
6152
6153 return x;
6154 }
6155 \f
6156 /* Simplify X, an IF_THEN_ELSE expression. Return the new expression. */
6157
6158 static rtx
6159 simplify_if_then_else (rtx x)
6160 {
6161 machine_mode mode = GET_MODE (x);
6162 rtx cond = XEXP (x, 0);
6163 rtx true_rtx = XEXP (x, 1);
6164 rtx false_rtx = XEXP (x, 2);
6165 enum rtx_code true_code = GET_CODE (cond);
6166 int comparison_p = COMPARISON_P (cond);
6167 rtx temp;
6168 int i;
6169 enum rtx_code false_code;
6170 rtx reversed;
6171
6172 /* Simplify storing of the truth value. */
6173 if (comparison_p && true_rtx == const_true_rtx && false_rtx == const0_rtx)
6174 return simplify_gen_relational (true_code, mode, VOIDmode,
6175 XEXP (cond, 0), XEXP (cond, 1));
6176
6177 /* Also when the truth value has to be reversed. */
6178 if (comparison_p
6179 && true_rtx == const0_rtx && false_rtx == const_true_rtx
6180 && (reversed = reversed_comparison (cond, mode)))
6181 return reversed;
6182
6183 /* Sometimes we can simplify the arm of an IF_THEN_ELSE if a register used
6184 in it is being compared against certain values. Get the true and false
6185 comparisons and see if that says anything about the value of each arm. */
6186
6187 if (comparison_p
6188 && ((false_code = reversed_comparison_code (cond, NULL))
6189 != UNKNOWN)
6190 && REG_P (XEXP (cond, 0)))
6191 {
6192 HOST_WIDE_INT nzb;
6193 rtx from = XEXP (cond, 0);
6194 rtx true_val = XEXP (cond, 1);
6195 rtx false_val = true_val;
6196 int swapped = 0;
6197
6198 /* If FALSE_CODE is EQ, swap the codes and arms. */
6199
6200 if (false_code == EQ)
6201 {
6202 swapped = 1, true_code = EQ, false_code = NE;
6203 std::swap (true_rtx, false_rtx);
6204 }
6205
6206 /* If we are comparing against zero and the expression being tested has
6207 only a single bit that might be nonzero, that is its value when it is
6208 not equal to zero. Similarly if it is known to be -1 or 0. */
6209
6210 if (true_code == EQ && true_val == const0_rtx
6211 && exact_log2 (nzb = nonzero_bits (from, GET_MODE (from))) >= 0)
6212 {
6213 false_code = EQ;
6214 false_val = gen_int_mode (nzb, GET_MODE (from));
6215 }
6216 else if (true_code == EQ && true_val == const0_rtx
6217 && (num_sign_bit_copies (from, GET_MODE (from))
6218 == GET_MODE_PRECISION (GET_MODE (from))))
6219 {
6220 false_code = EQ;
6221 false_val = constm1_rtx;
6222 }
6223
6224 /* Now simplify an arm if we know the value of the register in the
6225 branch and it is used in the arm. Be careful due to the potential
6226 of locally-shared RTL. */
6227
6228 if (reg_mentioned_p (from, true_rtx))
6229 true_rtx = subst (known_cond (copy_rtx (true_rtx), true_code,
6230 from, true_val),
6231 pc_rtx, pc_rtx, 0, 0, 0);
6232 if (reg_mentioned_p (from, false_rtx))
6233 false_rtx = subst (known_cond (copy_rtx (false_rtx), false_code,
6234 from, false_val),
6235 pc_rtx, pc_rtx, 0, 0, 0);
6236
6237 SUBST (XEXP (x, 1), swapped ? false_rtx : true_rtx);
6238 SUBST (XEXP (x, 2), swapped ? true_rtx : false_rtx);
6239
6240 true_rtx = XEXP (x, 1);
6241 false_rtx = XEXP (x, 2);
6242 true_code = GET_CODE (cond);
6243 }
6244
6245 /* If we have (if_then_else FOO (pc) (label_ref BAR)) and FOO can be
6246 reversed, do so to avoid needing two sets of patterns for
6247 subtract-and-branch insns. Similarly if we have a constant in the true
6248 arm, the false arm is the same as the first operand of the comparison, or
6249 the false arm is more complicated than the true arm. */
6250
6251 if (comparison_p
6252 && reversed_comparison_code (cond, NULL) != UNKNOWN
6253 && (true_rtx == pc_rtx
6254 || (CONSTANT_P (true_rtx)
6255 && !CONST_INT_P (false_rtx) && false_rtx != pc_rtx)
6256 || true_rtx == const0_rtx
6257 || (OBJECT_P (true_rtx) && !OBJECT_P (false_rtx))
6258 || (GET_CODE (true_rtx) == SUBREG && OBJECT_P (SUBREG_REG (true_rtx))
6259 && !OBJECT_P (false_rtx))
6260 || reg_mentioned_p (true_rtx, false_rtx)
6261 || rtx_equal_p (false_rtx, XEXP (cond, 0))))
6262 {
6263 true_code = reversed_comparison_code (cond, NULL);
6264 SUBST (XEXP (x, 0), reversed_comparison (cond, GET_MODE (cond)));
6265 SUBST (XEXP (x, 1), false_rtx);
6266 SUBST (XEXP (x, 2), true_rtx);
6267
6268 std::swap (true_rtx, false_rtx);
6269 cond = XEXP (x, 0);
6270
6271 /* It is possible that the conditional has been simplified out. */
6272 true_code = GET_CODE (cond);
6273 comparison_p = COMPARISON_P (cond);
6274 }
6275
6276 /* If the two arms are identical, we don't need the comparison. */
6277
6278 if (rtx_equal_p (true_rtx, false_rtx) && ! side_effects_p (cond))
6279 return true_rtx;
6280
6281 /* Convert a == b ? b : a to "a". */
6282 if (true_code == EQ && ! side_effects_p (cond)
6283 && !HONOR_NANS (mode)
6284 && rtx_equal_p (XEXP (cond, 0), false_rtx)
6285 && rtx_equal_p (XEXP (cond, 1), true_rtx))
6286 return false_rtx;
6287 else if (true_code == NE && ! side_effects_p (cond)
6288 && !HONOR_NANS (mode)
6289 && rtx_equal_p (XEXP (cond, 0), true_rtx)
6290 && rtx_equal_p (XEXP (cond, 1), false_rtx))
6291 return true_rtx;
6292
6293 /* Look for cases where we have (abs x) or (neg (abs X)). */
6294
6295 if (GET_MODE_CLASS (mode) == MODE_INT
6296 && comparison_p
6297 && XEXP (cond, 1) == const0_rtx
6298 && GET_CODE (false_rtx) == NEG
6299 && rtx_equal_p (true_rtx, XEXP (false_rtx, 0))
6300 && rtx_equal_p (true_rtx, XEXP (cond, 0))
6301 && ! side_effects_p (true_rtx))
6302 switch (true_code)
6303 {
6304 case GT:
6305 case GE:
6306 return simplify_gen_unary (ABS, mode, true_rtx, mode);
6307 case LT:
6308 case LE:
6309 return
6310 simplify_gen_unary (NEG, mode,
6311 simplify_gen_unary (ABS, mode, true_rtx, mode),
6312 mode);
6313 default:
6314 break;
6315 }
6316
6317 /* Look for MIN or MAX. */
6318
6319 if ((! FLOAT_MODE_P (mode) || flag_unsafe_math_optimizations)
6320 && comparison_p
6321 && rtx_equal_p (XEXP (cond, 0), true_rtx)
6322 && rtx_equal_p (XEXP (cond, 1), false_rtx)
6323 && ! side_effects_p (cond))
6324 switch (true_code)
6325 {
6326 case GE:
6327 case GT:
6328 return simplify_gen_binary (SMAX, mode, true_rtx, false_rtx);
6329 case LE:
6330 case LT:
6331 return simplify_gen_binary (SMIN, mode, true_rtx, false_rtx);
6332 case GEU:
6333 case GTU:
6334 return simplify_gen_binary (UMAX, mode, true_rtx, false_rtx);
6335 case LEU:
6336 case LTU:
6337 return simplify_gen_binary (UMIN, mode, true_rtx, false_rtx);
6338 default:
6339 break;
6340 }
6341
6342 /* If we have (if_then_else COND (OP Z C1) Z) and OP is an identity when its
6343 second operand is zero, this can be done as (OP Z (mult COND C2)) where
6344 C2 = C1 * STORE_FLAG_VALUE. Similarly if OP has an outer ZERO_EXTEND or
6345 SIGN_EXTEND as long as Z is already extended (so we don't destroy it).
6346 We can do this kind of thing in some cases when STORE_FLAG_VALUE is
6347 neither 1 or -1, but it isn't worth checking for. */
6348
6349 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
6350 && comparison_p
6351 && GET_MODE_CLASS (mode) == MODE_INT
6352 && ! side_effects_p (x))
6353 {
6354 rtx t = make_compound_operation (true_rtx, SET);
6355 rtx f = make_compound_operation (false_rtx, SET);
6356 rtx cond_op0 = XEXP (cond, 0);
6357 rtx cond_op1 = XEXP (cond, 1);
6358 enum rtx_code op = UNKNOWN, extend_op = UNKNOWN;
6359 machine_mode m = mode;
6360 rtx z = 0, c1 = NULL_RTX;
6361
6362 if ((GET_CODE (t) == PLUS || GET_CODE (t) == MINUS
6363 || GET_CODE (t) == IOR || GET_CODE (t) == XOR
6364 || GET_CODE (t) == ASHIFT
6365 || GET_CODE (t) == LSHIFTRT || GET_CODE (t) == ASHIFTRT)
6366 && rtx_equal_p (XEXP (t, 0), f))
6367 c1 = XEXP (t, 1), op = GET_CODE (t), z = f;
6368
6369 /* If an identity-zero op is commutative, check whether there
6370 would be a match if we swapped the operands. */
6371 else if ((GET_CODE (t) == PLUS || GET_CODE (t) == IOR
6372 || GET_CODE (t) == XOR)
6373 && rtx_equal_p (XEXP (t, 1), f))
6374 c1 = XEXP (t, 0), op = GET_CODE (t), z = f;
6375 else if (GET_CODE (t) == SIGN_EXTEND
6376 && (GET_CODE (XEXP (t, 0)) == PLUS
6377 || GET_CODE (XEXP (t, 0)) == MINUS
6378 || GET_CODE (XEXP (t, 0)) == IOR
6379 || GET_CODE (XEXP (t, 0)) == XOR
6380 || GET_CODE (XEXP (t, 0)) == ASHIFT
6381 || GET_CODE (XEXP (t, 0)) == LSHIFTRT
6382 || GET_CODE (XEXP (t, 0)) == ASHIFTRT)
6383 && GET_CODE (XEXP (XEXP (t, 0), 0)) == SUBREG
6384 && subreg_lowpart_p (XEXP (XEXP (t, 0), 0))
6385 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 0)), f)
6386 && (num_sign_bit_copies (f, GET_MODE (f))
6387 > (unsigned int)
6388 (GET_MODE_PRECISION (mode)
6389 - GET_MODE_PRECISION (GET_MODE (XEXP (XEXP (t, 0), 0))))))
6390 {
6391 c1 = XEXP (XEXP (t, 0), 1); z = f; op = GET_CODE (XEXP (t, 0));
6392 extend_op = SIGN_EXTEND;
6393 m = GET_MODE (XEXP (t, 0));
6394 }
6395 else if (GET_CODE (t) == SIGN_EXTEND
6396 && (GET_CODE (XEXP (t, 0)) == PLUS
6397 || GET_CODE (XEXP (t, 0)) == IOR
6398 || GET_CODE (XEXP (t, 0)) == XOR)
6399 && GET_CODE (XEXP (XEXP (t, 0), 1)) == SUBREG
6400 && subreg_lowpart_p (XEXP (XEXP (t, 0), 1))
6401 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 1)), f)
6402 && (num_sign_bit_copies (f, GET_MODE (f))
6403 > (unsigned int)
6404 (GET_MODE_PRECISION (mode)
6405 - GET_MODE_PRECISION (GET_MODE (XEXP (XEXP (t, 0), 1))))))
6406 {
6407 c1 = XEXP (XEXP (t, 0), 0); z = f; op = GET_CODE (XEXP (t, 0));
6408 extend_op = SIGN_EXTEND;
6409 m = GET_MODE (XEXP (t, 0));
6410 }
6411 else if (GET_CODE (t) == ZERO_EXTEND
6412 && (GET_CODE (XEXP (t, 0)) == PLUS
6413 || GET_CODE (XEXP (t, 0)) == MINUS
6414 || GET_CODE (XEXP (t, 0)) == IOR
6415 || GET_CODE (XEXP (t, 0)) == XOR
6416 || GET_CODE (XEXP (t, 0)) == ASHIFT
6417 || GET_CODE (XEXP (t, 0)) == LSHIFTRT
6418 || GET_CODE (XEXP (t, 0)) == ASHIFTRT)
6419 && GET_CODE (XEXP (XEXP (t, 0), 0)) == SUBREG
6420 && HWI_COMPUTABLE_MODE_P (mode)
6421 && subreg_lowpart_p (XEXP (XEXP (t, 0), 0))
6422 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 0)), f)
6423 && ((nonzero_bits (f, GET_MODE (f))
6424 & ~GET_MODE_MASK (GET_MODE (XEXP (XEXP (t, 0), 0))))
6425 == 0))
6426 {
6427 c1 = XEXP (XEXP (t, 0), 1); z = f; op = GET_CODE (XEXP (t, 0));
6428 extend_op = ZERO_EXTEND;
6429 m = GET_MODE (XEXP (t, 0));
6430 }
6431 else if (GET_CODE (t) == ZERO_EXTEND
6432 && (GET_CODE (XEXP (t, 0)) == PLUS
6433 || GET_CODE (XEXP (t, 0)) == IOR
6434 || GET_CODE (XEXP (t, 0)) == XOR)
6435 && GET_CODE (XEXP (XEXP (t, 0), 1)) == SUBREG
6436 && HWI_COMPUTABLE_MODE_P (mode)
6437 && subreg_lowpart_p (XEXP (XEXP (t, 0), 1))
6438 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 1)), f)
6439 && ((nonzero_bits (f, GET_MODE (f))
6440 & ~GET_MODE_MASK (GET_MODE (XEXP (XEXP (t, 0), 1))))
6441 == 0))
6442 {
6443 c1 = XEXP (XEXP (t, 0), 0); z = f; op = GET_CODE (XEXP (t, 0));
6444 extend_op = ZERO_EXTEND;
6445 m = GET_MODE (XEXP (t, 0));
6446 }
6447
6448 if (z)
6449 {
6450 temp = subst (simplify_gen_relational (true_code, m, VOIDmode,
6451 cond_op0, cond_op1),
6452 pc_rtx, pc_rtx, 0, 0, 0);
6453 temp = simplify_gen_binary (MULT, m, temp,
6454 simplify_gen_binary (MULT, m, c1,
6455 const_true_rtx));
6456 temp = subst (temp, pc_rtx, pc_rtx, 0, 0, 0);
6457 temp = simplify_gen_binary (op, m, gen_lowpart (m, z), temp);
6458
6459 if (extend_op != UNKNOWN)
6460 temp = simplify_gen_unary (extend_op, mode, temp, m);
6461
6462 return temp;
6463 }
6464 }
6465
6466 /* If we have (if_then_else (ne A 0) C1 0) and either A is known to be 0 or
6467 1 and C1 is a single bit or A is known to be 0 or -1 and C1 is the
6468 negation of a single bit, we can convert this operation to a shift. We
6469 can actually do this more generally, but it doesn't seem worth it. */
6470
6471 if (true_code == NE && XEXP (cond, 1) == const0_rtx
6472 && false_rtx == const0_rtx && CONST_INT_P (true_rtx)
6473 && ((1 == nonzero_bits (XEXP (cond, 0), mode)
6474 && (i = exact_log2 (UINTVAL (true_rtx))) >= 0)
6475 || ((num_sign_bit_copies (XEXP (cond, 0), mode)
6476 == GET_MODE_PRECISION (mode))
6477 && (i = exact_log2 (-UINTVAL (true_rtx))) >= 0)))
6478 return
6479 simplify_shift_const (NULL_RTX, ASHIFT, mode,
6480 gen_lowpart (mode, XEXP (cond, 0)), i);
6481
6482 /* (IF_THEN_ELSE (NE REG 0) (0) (8)) is REG for nonzero_bits (REG) == 8. */
6483 if (true_code == NE && XEXP (cond, 1) == const0_rtx
6484 && false_rtx == const0_rtx && CONST_INT_P (true_rtx)
6485 && GET_MODE (XEXP (cond, 0)) == mode
6486 && (UINTVAL (true_rtx) & GET_MODE_MASK (mode))
6487 == nonzero_bits (XEXP (cond, 0), mode)
6488 && (i = exact_log2 (UINTVAL (true_rtx) & GET_MODE_MASK (mode))) >= 0)
6489 return XEXP (cond, 0);
6490
6491 return x;
6492 }
6493 \f
6494 /* Simplify X, a SET expression. Return the new expression. */
6495
6496 static rtx
6497 simplify_set (rtx x)
6498 {
6499 rtx src = SET_SRC (x);
6500 rtx dest = SET_DEST (x);
6501 machine_mode mode
6502 = GET_MODE (src) != VOIDmode ? GET_MODE (src) : GET_MODE (dest);
6503 rtx_insn *other_insn;
6504 rtx *cc_use;
6505
6506 /* (set (pc) (return)) gets written as (return). */
6507 if (GET_CODE (dest) == PC && ANY_RETURN_P (src))
6508 return src;
6509
6510 /* Now that we know for sure which bits of SRC we are using, see if we can
6511 simplify the expression for the object knowing that we only need the
6512 low-order bits. */
6513
6514 if (GET_MODE_CLASS (mode) == MODE_INT && HWI_COMPUTABLE_MODE_P (mode))
6515 {
6516 src = force_to_mode (src, mode, ~(unsigned HOST_WIDE_INT) 0, 0);
6517 SUBST (SET_SRC (x), src);
6518 }
6519
6520 /* If we are setting CC0 or if the source is a COMPARE, look for the use of
6521 the comparison result and try to simplify it unless we already have used
6522 undobuf.other_insn. */
6523 if ((GET_MODE_CLASS (mode) == MODE_CC
6524 || GET_CODE (src) == COMPARE
6525 || CC0_P (dest))
6526 && (cc_use = find_single_use (dest, subst_insn, &other_insn)) != 0
6527 && (undobuf.other_insn == 0 || other_insn == undobuf.other_insn)
6528 && COMPARISON_P (*cc_use)
6529 && rtx_equal_p (XEXP (*cc_use, 0), dest))
6530 {
6531 enum rtx_code old_code = GET_CODE (*cc_use);
6532 enum rtx_code new_code;
6533 rtx op0, op1, tmp;
6534 int other_changed = 0;
6535 rtx inner_compare = NULL_RTX;
6536 machine_mode compare_mode = GET_MODE (dest);
6537
6538 if (GET_CODE (src) == COMPARE)
6539 {
6540 op0 = XEXP (src, 0), op1 = XEXP (src, 1);
6541 if (GET_CODE (op0) == COMPARE && op1 == const0_rtx)
6542 {
6543 inner_compare = op0;
6544 op0 = XEXP (inner_compare, 0), op1 = XEXP (inner_compare, 1);
6545 }
6546 }
6547 else
6548 op0 = src, op1 = CONST0_RTX (GET_MODE (src));
6549
6550 tmp = simplify_relational_operation (old_code, compare_mode, VOIDmode,
6551 op0, op1);
6552 if (!tmp)
6553 new_code = old_code;
6554 else if (!CONSTANT_P (tmp))
6555 {
6556 new_code = GET_CODE (tmp);
6557 op0 = XEXP (tmp, 0);
6558 op1 = XEXP (tmp, 1);
6559 }
6560 else
6561 {
6562 rtx pat = PATTERN (other_insn);
6563 undobuf.other_insn = other_insn;
6564 SUBST (*cc_use, tmp);
6565
6566 /* Attempt to simplify CC user. */
6567 if (GET_CODE (pat) == SET)
6568 {
6569 rtx new_rtx = simplify_rtx (SET_SRC (pat));
6570 if (new_rtx != NULL_RTX)
6571 SUBST (SET_SRC (pat), new_rtx);
6572 }
6573
6574 /* Convert X into a no-op move. */
6575 SUBST (SET_DEST (x), pc_rtx);
6576 SUBST (SET_SRC (x), pc_rtx);
6577 return x;
6578 }
6579
6580 /* Simplify our comparison, if possible. */
6581 new_code = simplify_comparison (new_code, &op0, &op1);
6582
6583 #ifdef SELECT_CC_MODE
6584 /* If this machine has CC modes other than CCmode, check to see if we
6585 need to use a different CC mode here. */
6586 if (GET_MODE_CLASS (GET_MODE (op0)) == MODE_CC)
6587 compare_mode = GET_MODE (op0);
6588 else if (inner_compare
6589 && GET_MODE_CLASS (GET_MODE (inner_compare)) == MODE_CC
6590 && new_code == old_code
6591 && op0 == XEXP (inner_compare, 0)
6592 && op1 == XEXP (inner_compare, 1))
6593 compare_mode = GET_MODE (inner_compare);
6594 else
6595 compare_mode = SELECT_CC_MODE (new_code, op0, op1);
6596
6597 /* If the mode changed, we have to change SET_DEST, the mode in the
6598 compare, and the mode in the place SET_DEST is used. If SET_DEST is
6599 a hard register, just build new versions with the proper mode. If it
6600 is a pseudo, we lose unless it is only time we set the pseudo, in
6601 which case we can safely change its mode. */
6602 if (!HAVE_cc0 && compare_mode != GET_MODE (dest))
6603 {
6604 if (can_change_dest_mode (dest, 0, compare_mode))
6605 {
6606 unsigned int regno = REGNO (dest);
6607 rtx new_dest;
6608
6609 if (regno < FIRST_PSEUDO_REGISTER)
6610 new_dest = gen_rtx_REG (compare_mode, regno);
6611 else
6612 {
6613 SUBST_MODE (regno_reg_rtx[regno], compare_mode);
6614 new_dest = regno_reg_rtx[regno];
6615 }
6616
6617 SUBST (SET_DEST (x), new_dest);
6618 SUBST (XEXP (*cc_use, 0), new_dest);
6619 other_changed = 1;
6620
6621 dest = new_dest;
6622 }
6623 }
6624 #endif /* SELECT_CC_MODE */
6625
6626 /* If the code changed, we have to build a new comparison in
6627 undobuf.other_insn. */
6628 if (new_code != old_code)
6629 {
6630 int other_changed_previously = other_changed;
6631 unsigned HOST_WIDE_INT mask;
6632 rtx old_cc_use = *cc_use;
6633
6634 SUBST (*cc_use, gen_rtx_fmt_ee (new_code, GET_MODE (*cc_use),
6635 dest, const0_rtx));
6636 other_changed = 1;
6637
6638 /* If the only change we made was to change an EQ into an NE or
6639 vice versa, OP0 has only one bit that might be nonzero, and OP1
6640 is zero, check if changing the user of the condition code will
6641 produce a valid insn. If it won't, we can keep the original code
6642 in that insn by surrounding our operation with an XOR. */
6643
6644 if (((old_code == NE && new_code == EQ)
6645 || (old_code == EQ && new_code == NE))
6646 && ! other_changed_previously && op1 == const0_rtx
6647 && HWI_COMPUTABLE_MODE_P (GET_MODE (op0))
6648 && exact_log2 (mask = nonzero_bits (op0, GET_MODE (op0))) >= 0)
6649 {
6650 rtx pat = PATTERN (other_insn), note = 0;
6651
6652 if ((recog_for_combine (&pat, other_insn, &note) < 0
6653 && ! check_asm_operands (pat)))
6654 {
6655 *cc_use = old_cc_use;
6656 other_changed = 0;
6657
6658 op0 = simplify_gen_binary (XOR, GET_MODE (op0), op0,
6659 gen_int_mode (mask,
6660 GET_MODE (op0)));
6661 }
6662 }
6663 }
6664
6665 if (other_changed)
6666 undobuf.other_insn = other_insn;
6667
6668 /* Don't generate a compare of a CC with 0, just use that CC. */
6669 if (GET_MODE (op0) == compare_mode && op1 == const0_rtx)
6670 {
6671 SUBST (SET_SRC (x), op0);
6672 src = SET_SRC (x);
6673 }
6674 /* Otherwise, if we didn't previously have the same COMPARE we
6675 want, create it from scratch. */
6676 else if (GET_CODE (src) != COMPARE || GET_MODE (src) != compare_mode
6677 || XEXP (src, 0) != op0 || XEXP (src, 1) != op1)
6678 {
6679 SUBST (SET_SRC (x), gen_rtx_COMPARE (compare_mode, op0, op1));
6680 src = SET_SRC (x);
6681 }
6682 }
6683 else
6684 {
6685 /* Get SET_SRC in a form where we have placed back any
6686 compound expressions. Then do the checks below. */
6687 src = make_compound_operation (src, SET);
6688 SUBST (SET_SRC (x), src);
6689 }
6690
6691 /* If we have (set x (subreg:m1 (op:m2 ...) 0)) with OP being some operation,
6692 and X being a REG or (subreg (reg)), we may be able to convert this to
6693 (set (subreg:m2 x) (op)).
6694
6695 We can always do this if M1 is narrower than M2 because that means that
6696 we only care about the low bits of the result.
6697
6698 However, on machines without WORD_REGISTER_OPERATIONS defined, we cannot
6699 perform a narrower operation than requested since the high-order bits will
6700 be undefined. On machine where it is defined, this transformation is safe
6701 as long as M1 and M2 have the same number of words. */
6702
6703 if (GET_CODE (src) == SUBREG && subreg_lowpart_p (src)
6704 && !OBJECT_P (SUBREG_REG (src))
6705 && (((GET_MODE_SIZE (GET_MODE (src)) + (UNITS_PER_WORD - 1))
6706 / UNITS_PER_WORD)
6707 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (src)))
6708 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))
6709 && (WORD_REGISTER_OPERATIONS
6710 || (GET_MODE_SIZE (GET_MODE (src))
6711 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (src)))))
6712 #ifdef CANNOT_CHANGE_MODE_CLASS
6713 && ! (REG_P (dest) && REGNO (dest) < FIRST_PSEUDO_REGISTER
6714 && REG_CANNOT_CHANGE_MODE_P (REGNO (dest),
6715 GET_MODE (SUBREG_REG (src)),
6716 GET_MODE (src)))
6717 #endif
6718 && (REG_P (dest)
6719 || (GET_CODE (dest) == SUBREG
6720 && REG_P (SUBREG_REG (dest)))))
6721 {
6722 SUBST (SET_DEST (x),
6723 gen_lowpart (GET_MODE (SUBREG_REG (src)),
6724 dest));
6725 SUBST (SET_SRC (x), SUBREG_REG (src));
6726
6727 src = SET_SRC (x), dest = SET_DEST (x);
6728 }
6729
6730 /* If we have (set (cc0) (subreg ...)), we try to remove the subreg
6731 in SRC. */
6732 if (dest == cc0_rtx
6733 && GET_CODE (src) == SUBREG
6734 && subreg_lowpart_p (src)
6735 && (GET_MODE_PRECISION (GET_MODE (src))
6736 < GET_MODE_PRECISION (GET_MODE (SUBREG_REG (src)))))
6737 {
6738 rtx inner = SUBREG_REG (src);
6739 machine_mode inner_mode = GET_MODE (inner);
6740
6741 /* Here we make sure that we don't have a sign bit on. */
6742 if (val_signbit_known_clear_p (GET_MODE (src),
6743 nonzero_bits (inner, inner_mode)))
6744 {
6745 SUBST (SET_SRC (x), inner);
6746 src = SET_SRC (x);
6747 }
6748 }
6749
6750 /* If we have (set FOO (subreg:M (mem:N BAR) 0)) with M wider than N, this
6751 would require a paradoxical subreg. Replace the subreg with a
6752 zero_extend to avoid the reload that would otherwise be required. */
6753
6754 if (GET_CODE (src) == SUBREG && subreg_lowpart_p (src)
6755 && INTEGRAL_MODE_P (GET_MODE (SUBREG_REG (src)))
6756 && LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (src))) != UNKNOWN
6757 && SUBREG_BYTE (src) == 0
6758 && paradoxical_subreg_p (src)
6759 && MEM_P (SUBREG_REG (src)))
6760 {
6761 SUBST (SET_SRC (x),
6762 gen_rtx_fmt_e (LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (src))),
6763 GET_MODE (src), SUBREG_REG (src)));
6764
6765 src = SET_SRC (x);
6766 }
6767
6768 /* If we don't have a conditional move, SET_SRC is an IF_THEN_ELSE, and we
6769 are comparing an item known to be 0 or -1 against 0, use a logical
6770 operation instead. Check for one of the arms being an IOR of the other
6771 arm with some value. We compute three terms to be IOR'ed together. In
6772 practice, at most two will be nonzero. Then we do the IOR's. */
6773
6774 if (GET_CODE (dest) != PC
6775 && GET_CODE (src) == IF_THEN_ELSE
6776 && GET_MODE_CLASS (GET_MODE (src)) == MODE_INT
6777 && (GET_CODE (XEXP (src, 0)) == EQ || GET_CODE (XEXP (src, 0)) == NE)
6778 && XEXP (XEXP (src, 0), 1) == const0_rtx
6779 && GET_MODE (src) == GET_MODE (XEXP (XEXP (src, 0), 0))
6780 && (!HAVE_conditional_move
6781 || ! can_conditionally_move_p (GET_MODE (src)))
6782 && (num_sign_bit_copies (XEXP (XEXP (src, 0), 0),
6783 GET_MODE (XEXP (XEXP (src, 0), 0)))
6784 == GET_MODE_PRECISION (GET_MODE (XEXP (XEXP (src, 0), 0))))
6785 && ! side_effects_p (src))
6786 {
6787 rtx true_rtx = (GET_CODE (XEXP (src, 0)) == NE
6788 ? XEXP (src, 1) : XEXP (src, 2));
6789 rtx false_rtx = (GET_CODE (XEXP (src, 0)) == NE
6790 ? XEXP (src, 2) : XEXP (src, 1));
6791 rtx term1 = const0_rtx, term2, term3;
6792
6793 if (GET_CODE (true_rtx) == IOR
6794 && rtx_equal_p (XEXP (true_rtx, 0), false_rtx))
6795 term1 = false_rtx, true_rtx = XEXP (true_rtx, 1), false_rtx = const0_rtx;
6796 else if (GET_CODE (true_rtx) == IOR
6797 && rtx_equal_p (XEXP (true_rtx, 1), false_rtx))
6798 term1 = false_rtx, true_rtx = XEXP (true_rtx, 0), false_rtx = const0_rtx;
6799 else if (GET_CODE (false_rtx) == IOR
6800 && rtx_equal_p (XEXP (false_rtx, 0), true_rtx))
6801 term1 = true_rtx, false_rtx = XEXP (false_rtx, 1), true_rtx = const0_rtx;
6802 else if (GET_CODE (false_rtx) == IOR
6803 && rtx_equal_p (XEXP (false_rtx, 1), true_rtx))
6804 term1 = true_rtx, false_rtx = XEXP (false_rtx, 0), true_rtx = const0_rtx;
6805
6806 term2 = simplify_gen_binary (AND, GET_MODE (src),
6807 XEXP (XEXP (src, 0), 0), true_rtx);
6808 term3 = simplify_gen_binary (AND, GET_MODE (src),
6809 simplify_gen_unary (NOT, GET_MODE (src),
6810 XEXP (XEXP (src, 0), 0),
6811 GET_MODE (src)),
6812 false_rtx);
6813
6814 SUBST (SET_SRC (x),
6815 simplify_gen_binary (IOR, GET_MODE (src),
6816 simplify_gen_binary (IOR, GET_MODE (src),
6817 term1, term2),
6818 term3));
6819
6820 src = SET_SRC (x);
6821 }
6822
6823 /* If either SRC or DEST is a CLOBBER of (const_int 0), make this
6824 whole thing fail. */
6825 if (GET_CODE (src) == CLOBBER && XEXP (src, 0) == const0_rtx)
6826 return src;
6827 else if (GET_CODE (dest) == CLOBBER && XEXP (dest, 0) == const0_rtx)
6828 return dest;
6829 else
6830 /* Convert this into a field assignment operation, if possible. */
6831 return make_field_assignment (x);
6832 }
6833 \f
6834 /* Simplify, X, and AND, IOR, or XOR operation, and return the simplified
6835 result. */
6836
6837 static rtx
6838 simplify_logical (rtx x)
6839 {
6840 machine_mode mode = GET_MODE (x);
6841 rtx op0 = XEXP (x, 0);
6842 rtx op1 = XEXP (x, 1);
6843
6844 switch (GET_CODE (x))
6845 {
6846 case AND:
6847 /* We can call simplify_and_const_int only if we don't lose
6848 any (sign) bits when converting INTVAL (op1) to
6849 "unsigned HOST_WIDE_INT". */
6850 if (CONST_INT_P (op1)
6851 && (HWI_COMPUTABLE_MODE_P (mode)
6852 || INTVAL (op1) > 0))
6853 {
6854 x = simplify_and_const_int (x, mode, op0, INTVAL (op1));
6855 if (GET_CODE (x) != AND)
6856 return x;
6857
6858 op0 = XEXP (x, 0);
6859 op1 = XEXP (x, 1);
6860 }
6861
6862 /* If we have any of (and (ior A B) C) or (and (xor A B) C),
6863 apply the distributive law and then the inverse distributive
6864 law to see if things simplify. */
6865 if (GET_CODE (op0) == IOR || GET_CODE (op0) == XOR)
6866 {
6867 rtx result = distribute_and_simplify_rtx (x, 0);
6868 if (result)
6869 return result;
6870 }
6871 if (GET_CODE (op1) == IOR || GET_CODE (op1) == XOR)
6872 {
6873 rtx result = distribute_and_simplify_rtx (x, 1);
6874 if (result)
6875 return result;
6876 }
6877 break;
6878
6879 case IOR:
6880 /* If we have (ior (and A B) C), apply the distributive law and then
6881 the inverse distributive law to see if things simplify. */
6882
6883 if (GET_CODE (op0) == AND)
6884 {
6885 rtx result = distribute_and_simplify_rtx (x, 0);
6886 if (result)
6887 return result;
6888 }
6889
6890 if (GET_CODE (op1) == AND)
6891 {
6892 rtx result = distribute_and_simplify_rtx (x, 1);
6893 if (result)
6894 return result;
6895 }
6896 break;
6897
6898 default:
6899 gcc_unreachable ();
6900 }
6901
6902 return x;
6903 }
6904 \f
6905 /* We consider ZERO_EXTRACT, SIGN_EXTRACT, and SIGN_EXTEND as "compound
6906 operations" because they can be replaced with two more basic operations.
6907 ZERO_EXTEND is also considered "compound" because it can be replaced with
6908 an AND operation, which is simpler, though only one operation.
6909
6910 The function expand_compound_operation is called with an rtx expression
6911 and will convert it to the appropriate shifts and AND operations,
6912 simplifying at each stage.
6913
6914 The function make_compound_operation is called to convert an expression
6915 consisting of shifts and ANDs into the equivalent compound expression.
6916 It is the inverse of this function, loosely speaking. */
6917
6918 static rtx
6919 expand_compound_operation (rtx x)
6920 {
6921 unsigned HOST_WIDE_INT pos = 0, len;
6922 int unsignedp = 0;
6923 unsigned int modewidth;
6924 rtx tem;
6925
6926 switch (GET_CODE (x))
6927 {
6928 case ZERO_EXTEND:
6929 unsignedp = 1;
6930 case SIGN_EXTEND:
6931 /* We can't necessarily use a const_int for a multiword mode;
6932 it depends on implicitly extending the value.
6933 Since we don't know the right way to extend it,
6934 we can't tell whether the implicit way is right.
6935
6936 Even for a mode that is no wider than a const_int,
6937 we can't win, because we need to sign extend one of its bits through
6938 the rest of it, and we don't know which bit. */
6939 if (CONST_INT_P (XEXP (x, 0)))
6940 return x;
6941
6942 /* Return if (subreg:MODE FROM 0) is not a safe replacement for
6943 (zero_extend:MODE FROM) or (sign_extend:MODE FROM). It is for any MEM
6944 because (SUBREG (MEM...)) is guaranteed to cause the MEM to be
6945 reloaded. If not for that, MEM's would very rarely be safe.
6946
6947 Reject MODEs bigger than a word, because we might not be able
6948 to reference a two-register group starting with an arbitrary register
6949 (and currently gen_lowpart might crash for a SUBREG). */
6950
6951 if (GET_MODE_SIZE (GET_MODE (XEXP (x, 0))) > UNITS_PER_WORD)
6952 return x;
6953
6954 /* Reject MODEs that aren't scalar integers because turning vector
6955 or complex modes into shifts causes problems. */
6956
6957 if (! SCALAR_INT_MODE_P (GET_MODE (XEXP (x, 0))))
6958 return x;
6959
6960 len = GET_MODE_PRECISION (GET_MODE (XEXP (x, 0)));
6961 /* If the inner object has VOIDmode (the only way this can happen
6962 is if it is an ASM_OPERANDS), we can't do anything since we don't
6963 know how much masking to do. */
6964 if (len == 0)
6965 return x;
6966
6967 break;
6968
6969 case ZERO_EXTRACT:
6970 unsignedp = 1;
6971
6972 /* ... fall through ... */
6973
6974 case SIGN_EXTRACT:
6975 /* If the operand is a CLOBBER, just return it. */
6976 if (GET_CODE (XEXP (x, 0)) == CLOBBER)
6977 return XEXP (x, 0);
6978
6979 if (!CONST_INT_P (XEXP (x, 1))
6980 || !CONST_INT_P (XEXP (x, 2))
6981 || GET_MODE (XEXP (x, 0)) == VOIDmode)
6982 return x;
6983
6984 /* Reject MODEs that aren't scalar integers because turning vector
6985 or complex modes into shifts causes problems. */
6986
6987 if (! SCALAR_INT_MODE_P (GET_MODE (XEXP (x, 0))))
6988 return x;
6989
6990 len = INTVAL (XEXP (x, 1));
6991 pos = INTVAL (XEXP (x, 2));
6992
6993 /* This should stay within the object being extracted, fail otherwise. */
6994 if (len + pos > GET_MODE_PRECISION (GET_MODE (XEXP (x, 0))))
6995 return x;
6996
6997 if (BITS_BIG_ENDIAN)
6998 pos = GET_MODE_PRECISION (GET_MODE (XEXP (x, 0))) - len - pos;
6999
7000 break;
7001
7002 default:
7003 return x;
7004 }
7005 /* Convert sign extension to zero extension, if we know that the high
7006 bit is not set, as this is easier to optimize. It will be converted
7007 back to cheaper alternative in make_extraction. */
7008 if (GET_CODE (x) == SIGN_EXTEND
7009 && (HWI_COMPUTABLE_MODE_P (GET_MODE (x))
7010 && ((nonzero_bits (XEXP (x, 0), GET_MODE (XEXP (x, 0)))
7011 & ~(((unsigned HOST_WIDE_INT)
7012 GET_MODE_MASK (GET_MODE (XEXP (x, 0))))
7013 >> 1))
7014 == 0)))
7015 {
7016 machine_mode mode = GET_MODE (x);
7017 rtx temp = gen_rtx_ZERO_EXTEND (mode, XEXP (x, 0));
7018 rtx temp2 = expand_compound_operation (temp);
7019
7020 /* Make sure this is a profitable operation. */
7021 if (set_src_cost (x, mode, optimize_this_for_speed_p)
7022 > set_src_cost (temp2, mode, optimize_this_for_speed_p))
7023 return temp2;
7024 else if (set_src_cost (x, mode, optimize_this_for_speed_p)
7025 > set_src_cost (temp, mode, optimize_this_for_speed_p))
7026 return temp;
7027 else
7028 return x;
7029 }
7030
7031 /* We can optimize some special cases of ZERO_EXTEND. */
7032 if (GET_CODE (x) == ZERO_EXTEND)
7033 {
7034 /* (zero_extend:DI (truncate:SI foo:DI)) is just foo:DI if we
7035 know that the last value didn't have any inappropriate bits
7036 set. */
7037 if (GET_CODE (XEXP (x, 0)) == TRUNCATE
7038 && GET_MODE (XEXP (XEXP (x, 0), 0)) == GET_MODE (x)
7039 && HWI_COMPUTABLE_MODE_P (GET_MODE (x))
7040 && (nonzero_bits (XEXP (XEXP (x, 0), 0), GET_MODE (x))
7041 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
7042 return XEXP (XEXP (x, 0), 0);
7043
7044 /* Likewise for (zero_extend:DI (subreg:SI foo:DI 0)). */
7045 if (GET_CODE (XEXP (x, 0)) == SUBREG
7046 && GET_MODE (SUBREG_REG (XEXP (x, 0))) == GET_MODE (x)
7047 && subreg_lowpart_p (XEXP (x, 0))
7048 && HWI_COMPUTABLE_MODE_P (GET_MODE (x))
7049 && (nonzero_bits (SUBREG_REG (XEXP (x, 0)), GET_MODE (x))
7050 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
7051 return SUBREG_REG (XEXP (x, 0));
7052
7053 /* (zero_extend:DI (truncate:SI foo:DI)) is just foo:DI when foo
7054 is a comparison and STORE_FLAG_VALUE permits. This is like
7055 the first case, but it works even when GET_MODE (x) is larger
7056 than HOST_WIDE_INT. */
7057 if (GET_CODE (XEXP (x, 0)) == TRUNCATE
7058 && GET_MODE (XEXP (XEXP (x, 0), 0)) == GET_MODE (x)
7059 && COMPARISON_P (XEXP (XEXP (x, 0), 0))
7060 && (GET_MODE_PRECISION (GET_MODE (XEXP (x, 0)))
7061 <= HOST_BITS_PER_WIDE_INT)
7062 && (STORE_FLAG_VALUE & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
7063 return XEXP (XEXP (x, 0), 0);
7064
7065 /* Likewise for (zero_extend:DI (subreg:SI foo:DI 0)). */
7066 if (GET_CODE (XEXP (x, 0)) == SUBREG
7067 && GET_MODE (SUBREG_REG (XEXP (x, 0))) == GET_MODE (x)
7068 && subreg_lowpart_p (XEXP (x, 0))
7069 && COMPARISON_P (SUBREG_REG (XEXP (x, 0)))
7070 && (GET_MODE_PRECISION (GET_MODE (XEXP (x, 0)))
7071 <= HOST_BITS_PER_WIDE_INT)
7072 && (STORE_FLAG_VALUE & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
7073 return SUBREG_REG (XEXP (x, 0));
7074
7075 }
7076
7077 /* If we reach here, we want to return a pair of shifts. The inner
7078 shift is a left shift of BITSIZE - POS - LEN bits. The outer
7079 shift is a right shift of BITSIZE - LEN bits. It is arithmetic or
7080 logical depending on the value of UNSIGNEDP.
7081
7082 If this was a ZERO_EXTEND or ZERO_EXTRACT, this pair of shifts will be
7083 converted into an AND of a shift.
7084
7085 We must check for the case where the left shift would have a negative
7086 count. This can happen in a case like (x >> 31) & 255 on machines
7087 that can't shift by a constant. On those machines, we would first
7088 combine the shift with the AND to produce a variable-position
7089 extraction. Then the constant of 31 would be substituted in
7090 to produce such a position. */
7091
7092 modewidth = GET_MODE_PRECISION (GET_MODE (x));
7093 if (modewidth >= pos + len)
7094 {
7095 machine_mode mode = GET_MODE (x);
7096 tem = gen_lowpart (mode, XEXP (x, 0));
7097 if (!tem || GET_CODE (tem) == CLOBBER)
7098 return x;
7099 tem = simplify_shift_const (NULL_RTX, ASHIFT, mode,
7100 tem, modewidth - pos - len);
7101 tem = simplify_shift_const (NULL_RTX, unsignedp ? LSHIFTRT : ASHIFTRT,
7102 mode, tem, modewidth - len);
7103 }
7104 else if (unsignedp && len < HOST_BITS_PER_WIDE_INT)
7105 tem = simplify_and_const_int (NULL_RTX, GET_MODE (x),
7106 simplify_shift_const (NULL_RTX, LSHIFTRT,
7107 GET_MODE (x),
7108 XEXP (x, 0), pos),
7109 ((unsigned HOST_WIDE_INT) 1 << len) - 1);
7110 else
7111 /* Any other cases we can't handle. */
7112 return x;
7113
7114 /* If we couldn't do this for some reason, return the original
7115 expression. */
7116 if (GET_CODE (tem) == CLOBBER)
7117 return x;
7118
7119 return tem;
7120 }
7121 \f
7122 /* X is a SET which contains an assignment of one object into
7123 a part of another (such as a bit-field assignment, STRICT_LOW_PART,
7124 or certain SUBREGS). If possible, convert it into a series of
7125 logical operations.
7126
7127 We half-heartedly support variable positions, but do not at all
7128 support variable lengths. */
7129
7130 static const_rtx
7131 expand_field_assignment (const_rtx x)
7132 {
7133 rtx inner;
7134 rtx pos; /* Always counts from low bit. */
7135 int len;
7136 rtx mask, cleared, masked;
7137 machine_mode compute_mode;
7138
7139 /* Loop until we find something we can't simplify. */
7140 while (1)
7141 {
7142 if (GET_CODE (SET_DEST (x)) == STRICT_LOW_PART
7143 && GET_CODE (XEXP (SET_DEST (x), 0)) == SUBREG)
7144 {
7145 inner = SUBREG_REG (XEXP (SET_DEST (x), 0));
7146 len = GET_MODE_PRECISION (GET_MODE (XEXP (SET_DEST (x), 0)));
7147 pos = GEN_INT (subreg_lsb (XEXP (SET_DEST (x), 0)));
7148 }
7149 else if (GET_CODE (SET_DEST (x)) == ZERO_EXTRACT
7150 && CONST_INT_P (XEXP (SET_DEST (x), 1)))
7151 {
7152 inner = XEXP (SET_DEST (x), 0);
7153 len = INTVAL (XEXP (SET_DEST (x), 1));
7154 pos = XEXP (SET_DEST (x), 2);
7155
7156 /* A constant position should stay within the width of INNER. */
7157 if (CONST_INT_P (pos)
7158 && INTVAL (pos) + len > GET_MODE_PRECISION (GET_MODE (inner)))
7159 break;
7160
7161 if (BITS_BIG_ENDIAN)
7162 {
7163 if (CONST_INT_P (pos))
7164 pos = GEN_INT (GET_MODE_PRECISION (GET_MODE (inner)) - len
7165 - INTVAL (pos));
7166 else if (GET_CODE (pos) == MINUS
7167 && CONST_INT_P (XEXP (pos, 1))
7168 && (INTVAL (XEXP (pos, 1))
7169 == GET_MODE_PRECISION (GET_MODE (inner)) - len))
7170 /* If position is ADJUST - X, new position is X. */
7171 pos = XEXP (pos, 0);
7172 else
7173 {
7174 HOST_WIDE_INT prec = GET_MODE_PRECISION (GET_MODE (inner));
7175 pos = simplify_gen_binary (MINUS, GET_MODE (pos),
7176 gen_int_mode (prec - len,
7177 GET_MODE (pos)),
7178 pos);
7179 }
7180 }
7181 }
7182
7183 /* A SUBREG between two modes that occupy the same numbers of words
7184 can be done by moving the SUBREG to the source. */
7185 else if (GET_CODE (SET_DEST (x)) == SUBREG
7186 /* We need SUBREGs to compute nonzero_bits properly. */
7187 && nonzero_sign_valid
7188 && (((GET_MODE_SIZE (GET_MODE (SET_DEST (x)))
7189 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
7190 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (x))))
7191 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)))
7192 {
7193 x = gen_rtx_SET (SUBREG_REG (SET_DEST (x)),
7194 gen_lowpart
7195 (GET_MODE (SUBREG_REG (SET_DEST (x))),
7196 SET_SRC (x)));
7197 continue;
7198 }
7199 else
7200 break;
7201
7202 while (GET_CODE (inner) == SUBREG && subreg_lowpart_p (inner))
7203 inner = SUBREG_REG (inner);
7204
7205 compute_mode = GET_MODE (inner);
7206
7207 /* Don't attempt bitwise arithmetic on non scalar integer modes. */
7208 if (! SCALAR_INT_MODE_P (compute_mode))
7209 {
7210 machine_mode imode;
7211
7212 /* Don't do anything for vector or complex integral types. */
7213 if (! FLOAT_MODE_P (compute_mode))
7214 break;
7215
7216 /* Try to find an integral mode to pun with. */
7217 imode = mode_for_size (GET_MODE_BITSIZE (compute_mode), MODE_INT, 0);
7218 if (imode == BLKmode)
7219 break;
7220
7221 compute_mode = imode;
7222 inner = gen_lowpart (imode, inner);
7223 }
7224
7225 /* Compute a mask of LEN bits, if we can do this on the host machine. */
7226 if (len >= HOST_BITS_PER_WIDE_INT)
7227 break;
7228
7229 /* Now compute the equivalent expression. Make a copy of INNER
7230 for the SET_DEST in case it is a MEM into which we will substitute;
7231 we don't want shared RTL in that case. */
7232 mask = gen_int_mode (((unsigned HOST_WIDE_INT) 1 << len) - 1,
7233 compute_mode);
7234 cleared = simplify_gen_binary (AND, compute_mode,
7235 simplify_gen_unary (NOT, compute_mode,
7236 simplify_gen_binary (ASHIFT,
7237 compute_mode,
7238 mask, pos),
7239 compute_mode),
7240 inner);
7241 masked = simplify_gen_binary (ASHIFT, compute_mode,
7242 simplify_gen_binary (
7243 AND, compute_mode,
7244 gen_lowpart (compute_mode, SET_SRC (x)),
7245 mask),
7246 pos);
7247
7248 x = gen_rtx_SET (copy_rtx (inner),
7249 simplify_gen_binary (IOR, compute_mode,
7250 cleared, masked));
7251 }
7252
7253 return x;
7254 }
7255 \f
7256 /* Return an RTX for a reference to LEN bits of INNER. If POS_RTX is nonzero,
7257 it is an RTX that represents the (variable) starting position; otherwise,
7258 POS is the (constant) starting bit position. Both are counted from the LSB.
7259
7260 UNSIGNEDP is nonzero for an unsigned reference and zero for a signed one.
7261
7262 IN_DEST is nonzero if this is a reference in the destination of a SET.
7263 This is used when a ZERO_ or SIGN_EXTRACT isn't needed. If nonzero,
7264 a STRICT_LOW_PART will be used, if zero, ZERO_EXTEND or SIGN_EXTEND will
7265 be used.
7266
7267 IN_COMPARE is nonzero if we are in a COMPARE. This means that a
7268 ZERO_EXTRACT should be built even for bits starting at bit 0.
7269
7270 MODE is the desired mode of the result (if IN_DEST == 0).
7271
7272 The result is an RTX for the extraction or NULL_RTX if the target
7273 can't handle it. */
7274
7275 static rtx
7276 make_extraction (machine_mode mode, rtx inner, HOST_WIDE_INT pos,
7277 rtx pos_rtx, unsigned HOST_WIDE_INT len, int unsignedp,
7278 int in_dest, int in_compare)
7279 {
7280 /* This mode describes the size of the storage area
7281 to fetch the overall value from. Within that, we
7282 ignore the POS lowest bits, etc. */
7283 machine_mode is_mode = GET_MODE (inner);
7284 machine_mode inner_mode;
7285 machine_mode wanted_inner_mode;
7286 machine_mode wanted_inner_reg_mode = word_mode;
7287 machine_mode pos_mode = word_mode;
7288 machine_mode extraction_mode = word_mode;
7289 machine_mode tmode = mode_for_size (len, MODE_INT, 1);
7290 rtx new_rtx = 0;
7291 rtx orig_pos_rtx = pos_rtx;
7292 HOST_WIDE_INT orig_pos;
7293
7294 if (pos_rtx && CONST_INT_P (pos_rtx))
7295 pos = INTVAL (pos_rtx), pos_rtx = 0;
7296
7297 if (GET_CODE (inner) == SUBREG && subreg_lowpart_p (inner))
7298 {
7299 /* If going from (subreg:SI (mem:QI ...)) to (mem:QI ...),
7300 consider just the QI as the memory to extract from.
7301 The subreg adds or removes high bits; its mode is
7302 irrelevant to the meaning of this extraction,
7303 since POS and LEN count from the lsb. */
7304 if (MEM_P (SUBREG_REG (inner)))
7305 is_mode = GET_MODE (SUBREG_REG (inner));
7306 inner = SUBREG_REG (inner);
7307 }
7308 else if (GET_CODE (inner) == ASHIFT
7309 && CONST_INT_P (XEXP (inner, 1))
7310 && pos_rtx == 0 && pos == 0
7311 && len > UINTVAL (XEXP (inner, 1)))
7312 {
7313 /* We're extracting the least significant bits of an rtx
7314 (ashift X (const_int C)), where LEN > C. Extract the
7315 least significant (LEN - C) bits of X, giving an rtx
7316 whose mode is MODE, then shift it left C times. */
7317 new_rtx = make_extraction (mode, XEXP (inner, 0),
7318 0, 0, len - INTVAL (XEXP (inner, 1)),
7319 unsignedp, in_dest, in_compare);
7320 if (new_rtx != 0)
7321 return gen_rtx_ASHIFT (mode, new_rtx, XEXP (inner, 1));
7322 }
7323 else if (GET_CODE (inner) == TRUNCATE)
7324 inner = XEXP (inner, 0);
7325
7326 inner_mode = GET_MODE (inner);
7327
7328 /* See if this can be done without an extraction. We never can if the
7329 width of the field is not the same as that of some integer mode. For
7330 registers, we can only avoid the extraction if the position is at the
7331 low-order bit and this is either not in the destination or we have the
7332 appropriate STRICT_LOW_PART operation available.
7333
7334 For MEM, we can avoid an extract if the field starts on an appropriate
7335 boundary and we can change the mode of the memory reference. */
7336
7337 if (tmode != BLKmode
7338 && ((pos_rtx == 0 && (pos % BITS_PER_WORD) == 0
7339 && !MEM_P (inner)
7340 && (inner_mode == tmode
7341 || !REG_P (inner)
7342 || TRULY_NOOP_TRUNCATION_MODES_P (tmode, inner_mode)
7343 || reg_truncated_to_mode (tmode, inner))
7344 && (! in_dest
7345 || (REG_P (inner)
7346 && have_insn_for (STRICT_LOW_PART, tmode))))
7347 || (MEM_P (inner) && pos_rtx == 0
7348 && (pos
7349 % (STRICT_ALIGNMENT ? GET_MODE_ALIGNMENT (tmode)
7350 : BITS_PER_UNIT)) == 0
7351 /* We can't do this if we are widening INNER_MODE (it
7352 may not be aligned, for one thing). */
7353 && GET_MODE_PRECISION (inner_mode) >= GET_MODE_PRECISION (tmode)
7354 && (inner_mode == tmode
7355 || (! mode_dependent_address_p (XEXP (inner, 0),
7356 MEM_ADDR_SPACE (inner))
7357 && ! MEM_VOLATILE_P (inner))))))
7358 {
7359 /* If INNER is a MEM, make a new MEM that encompasses just the desired
7360 field. If the original and current mode are the same, we need not
7361 adjust the offset. Otherwise, we do if bytes big endian.
7362
7363 If INNER is not a MEM, get a piece consisting of just the field
7364 of interest (in this case POS % BITS_PER_WORD must be 0). */
7365
7366 if (MEM_P (inner))
7367 {
7368 HOST_WIDE_INT offset;
7369
7370 /* POS counts from lsb, but make OFFSET count in memory order. */
7371 if (BYTES_BIG_ENDIAN)
7372 offset = (GET_MODE_PRECISION (is_mode) - len - pos) / BITS_PER_UNIT;
7373 else
7374 offset = pos / BITS_PER_UNIT;
7375
7376 new_rtx = adjust_address_nv (inner, tmode, offset);
7377 }
7378 else if (REG_P (inner))
7379 {
7380 if (tmode != inner_mode)
7381 {
7382 /* We can't call gen_lowpart in a DEST since we
7383 always want a SUBREG (see below) and it would sometimes
7384 return a new hard register. */
7385 if (pos || in_dest)
7386 {
7387 HOST_WIDE_INT final_word = pos / BITS_PER_WORD;
7388
7389 if (WORDS_BIG_ENDIAN
7390 && GET_MODE_SIZE (inner_mode) > UNITS_PER_WORD)
7391 final_word = ((GET_MODE_SIZE (inner_mode)
7392 - GET_MODE_SIZE (tmode))
7393 / UNITS_PER_WORD) - final_word;
7394
7395 final_word *= UNITS_PER_WORD;
7396 if (BYTES_BIG_ENDIAN &&
7397 GET_MODE_SIZE (inner_mode) > GET_MODE_SIZE (tmode))
7398 final_word += (GET_MODE_SIZE (inner_mode)
7399 - GET_MODE_SIZE (tmode)) % UNITS_PER_WORD;
7400
7401 /* Avoid creating invalid subregs, for example when
7402 simplifying (x>>32)&255. */
7403 if (!validate_subreg (tmode, inner_mode, inner, final_word))
7404 return NULL_RTX;
7405
7406 new_rtx = gen_rtx_SUBREG (tmode, inner, final_word);
7407 }
7408 else
7409 new_rtx = gen_lowpart (tmode, inner);
7410 }
7411 else
7412 new_rtx = inner;
7413 }
7414 else
7415 new_rtx = force_to_mode (inner, tmode,
7416 len >= HOST_BITS_PER_WIDE_INT
7417 ? ~(unsigned HOST_WIDE_INT) 0
7418 : ((unsigned HOST_WIDE_INT) 1 << len) - 1,
7419 0);
7420
7421 /* If this extraction is going into the destination of a SET,
7422 make a STRICT_LOW_PART unless we made a MEM. */
7423
7424 if (in_dest)
7425 return (MEM_P (new_rtx) ? new_rtx
7426 : (GET_CODE (new_rtx) != SUBREG
7427 ? gen_rtx_CLOBBER (tmode, const0_rtx)
7428 : gen_rtx_STRICT_LOW_PART (VOIDmode, new_rtx)));
7429
7430 if (mode == tmode)
7431 return new_rtx;
7432
7433 if (CONST_SCALAR_INT_P (new_rtx))
7434 return simplify_unary_operation (unsignedp ? ZERO_EXTEND : SIGN_EXTEND,
7435 mode, new_rtx, tmode);
7436
7437 /* If we know that no extraneous bits are set, and that the high
7438 bit is not set, convert the extraction to the cheaper of
7439 sign and zero extension, that are equivalent in these cases. */
7440 if (flag_expensive_optimizations
7441 && (HWI_COMPUTABLE_MODE_P (tmode)
7442 && ((nonzero_bits (new_rtx, tmode)
7443 & ~(((unsigned HOST_WIDE_INT)GET_MODE_MASK (tmode)) >> 1))
7444 == 0)))
7445 {
7446 rtx temp = gen_rtx_ZERO_EXTEND (mode, new_rtx);
7447 rtx temp1 = gen_rtx_SIGN_EXTEND (mode, new_rtx);
7448
7449 /* Prefer ZERO_EXTENSION, since it gives more information to
7450 backends. */
7451 if (set_src_cost (temp, mode, optimize_this_for_speed_p)
7452 <= set_src_cost (temp1, mode, optimize_this_for_speed_p))
7453 return temp;
7454 return temp1;
7455 }
7456
7457 /* Otherwise, sign- or zero-extend unless we already are in the
7458 proper mode. */
7459
7460 return (gen_rtx_fmt_e (unsignedp ? ZERO_EXTEND : SIGN_EXTEND,
7461 mode, new_rtx));
7462 }
7463
7464 /* Unless this is a COMPARE or we have a funny memory reference,
7465 don't do anything with zero-extending field extracts starting at
7466 the low-order bit since they are simple AND operations. */
7467 if (pos_rtx == 0 && pos == 0 && ! in_dest
7468 && ! in_compare && unsignedp)
7469 return 0;
7470
7471 /* Unless INNER is not MEM, reject this if we would be spanning bytes or
7472 if the position is not a constant and the length is not 1. In all
7473 other cases, we would only be going outside our object in cases when
7474 an original shift would have been undefined. */
7475 if (MEM_P (inner)
7476 && ((pos_rtx == 0 && pos + len > GET_MODE_PRECISION (is_mode))
7477 || (pos_rtx != 0 && len != 1)))
7478 return 0;
7479
7480 enum extraction_pattern pattern = (in_dest ? EP_insv
7481 : unsignedp ? EP_extzv : EP_extv);
7482
7483 /* If INNER is not from memory, we want it to have the mode of a register
7484 extraction pattern's structure operand, or word_mode if there is no
7485 such pattern. The same applies to extraction_mode and pos_mode
7486 and their respective operands.
7487
7488 For memory, assume that the desired extraction_mode and pos_mode
7489 are the same as for a register operation, since at present we don't
7490 have named patterns for aligned memory structures. */
7491 struct extraction_insn insn;
7492 if (get_best_reg_extraction_insn (&insn, pattern,
7493 GET_MODE_BITSIZE (inner_mode), mode))
7494 {
7495 wanted_inner_reg_mode = insn.struct_mode;
7496 pos_mode = insn.pos_mode;
7497 extraction_mode = insn.field_mode;
7498 }
7499
7500 /* Never narrow an object, since that might not be safe. */
7501
7502 if (mode != VOIDmode
7503 && GET_MODE_SIZE (extraction_mode) < GET_MODE_SIZE (mode))
7504 extraction_mode = mode;
7505
7506 if (!MEM_P (inner))
7507 wanted_inner_mode = wanted_inner_reg_mode;
7508 else
7509 {
7510 /* Be careful not to go beyond the extracted object and maintain the
7511 natural alignment of the memory. */
7512 wanted_inner_mode = smallest_mode_for_size (len, MODE_INT);
7513 while (pos % GET_MODE_BITSIZE (wanted_inner_mode) + len
7514 > GET_MODE_BITSIZE (wanted_inner_mode))
7515 {
7516 wanted_inner_mode = GET_MODE_WIDER_MODE (wanted_inner_mode);
7517 gcc_assert (wanted_inner_mode != VOIDmode);
7518 }
7519 }
7520
7521 orig_pos = pos;
7522
7523 if (BITS_BIG_ENDIAN)
7524 {
7525 /* POS is passed as if BITS_BIG_ENDIAN == 0, so we need to convert it to
7526 BITS_BIG_ENDIAN style. If position is constant, compute new
7527 position. Otherwise, build subtraction.
7528 Note that POS is relative to the mode of the original argument.
7529 If it's a MEM we need to recompute POS relative to that.
7530 However, if we're extracting from (or inserting into) a register,
7531 we want to recompute POS relative to wanted_inner_mode. */
7532 int width = (MEM_P (inner)
7533 ? GET_MODE_BITSIZE (is_mode)
7534 : GET_MODE_BITSIZE (wanted_inner_mode));
7535
7536 if (pos_rtx == 0)
7537 pos = width - len - pos;
7538 else
7539 pos_rtx
7540 = gen_rtx_MINUS (GET_MODE (pos_rtx),
7541 gen_int_mode (width - len, GET_MODE (pos_rtx)),
7542 pos_rtx);
7543 /* POS may be less than 0 now, but we check for that below.
7544 Note that it can only be less than 0 if !MEM_P (inner). */
7545 }
7546
7547 /* If INNER has a wider mode, and this is a constant extraction, try to
7548 make it smaller and adjust the byte to point to the byte containing
7549 the value. */
7550 if (wanted_inner_mode != VOIDmode
7551 && inner_mode != wanted_inner_mode
7552 && ! pos_rtx
7553 && GET_MODE_SIZE (wanted_inner_mode) < GET_MODE_SIZE (is_mode)
7554 && MEM_P (inner)
7555 && ! mode_dependent_address_p (XEXP (inner, 0), MEM_ADDR_SPACE (inner))
7556 && ! MEM_VOLATILE_P (inner))
7557 {
7558 int offset = 0;
7559
7560 /* The computations below will be correct if the machine is big
7561 endian in both bits and bytes or little endian in bits and bytes.
7562 If it is mixed, we must adjust. */
7563
7564 /* If bytes are big endian and we had a paradoxical SUBREG, we must
7565 adjust OFFSET to compensate. */
7566 if (BYTES_BIG_ENDIAN
7567 && GET_MODE_SIZE (inner_mode) < GET_MODE_SIZE (is_mode))
7568 offset -= GET_MODE_SIZE (is_mode) - GET_MODE_SIZE (inner_mode);
7569
7570 /* We can now move to the desired byte. */
7571 offset += (pos / GET_MODE_BITSIZE (wanted_inner_mode))
7572 * GET_MODE_SIZE (wanted_inner_mode);
7573 pos %= GET_MODE_BITSIZE (wanted_inner_mode);
7574
7575 if (BYTES_BIG_ENDIAN != BITS_BIG_ENDIAN
7576 && is_mode != wanted_inner_mode)
7577 offset = (GET_MODE_SIZE (is_mode)
7578 - GET_MODE_SIZE (wanted_inner_mode) - offset);
7579
7580 inner = adjust_address_nv (inner, wanted_inner_mode, offset);
7581 }
7582
7583 /* If INNER is not memory, get it into the proper mode. If we are changing
7584 its mode, POS must be a constant and smaller than the size of the new
7585 mode. */
7586 else if (!MEM_P (inner))
7587 {
7588 /* On the LHS, don't create paradoxical subregs implicitely truncating
7589 the register unless TRULY_NOOP_TRUNCATION. */
7590 if (in_dest
7591 && !TRULY_NOOP_TRUNCATION_MODES_P (GET_MODE (inner),
7592 wanted_inner_mode))
7593 return NULL_RTX;
7594
7595 if (GET_MODE (inner) != wanted_inner_mode
7596 && (pos_rtx != 0
7597 || orig_pos + len > GET_MODE_BITSIZE (wanted_inner_mode)))
7598 return NULL_RTX;
7599
7600 if (orig_pos < 0)
7601 return NULL_RTX;
7602
7603 inner = force_to_mode (inner, wanted_inner_mode,
7604 pos_rtx
7605 || len + orig_pos >= HOST_BITS_PER_WIDE_INT
7606 ? ~(unsigned HOST_WIDE_INT) 0
7607 : ((((unsigned HOST_WIDE_INT) 1 << len) - 1)
7608 << orig_pos),
7609 0);
7610 }
7611
7612 /* Adjust mode of POS_RTX, if needed. If we want a wider mode, we
7613 have to zero extend. Otherwise, we can just use a SUBREG. */
7614 if (pos_rtx != 0
7615 && GET_MODE_SIZE (pos_mode) > GET_MODE_SIZE (GET_MODE (pos_rtx)))
7616 {
7617 rtx temp = simplify_gen_unary (ZERO_EXTEND, pos_mode, pos_rtx,
7618 GET_MODE (pos_rtx));
7619
7620 /* If we know that no extraneous bits are set, and that the high
7621 bit is not set, convert extraction to cheaper one - either
7622 SIGN_EXTENSION or ZERO_EXTENSION, that are equivalent in these
7623 cases. */
7624 if (flag_expensive_optimizations
7625 && (HWI_COMPUTABLE_MODE_P (GET_MODE (pos_rtx))
7626 && ((nonzero_bits (pos_rtx, GET_MODE (pos_rtx))
7627 & ~(((unsigned HOST_WIDE_INT)
7628 GET_MODE_MASK (GET_MODE (pos_rtx)))
7629 >> 1))
7630 == 0)))
7631 {
7632 rtx temp1 = simplify_gen_unary (SIGN_EXTEND, pos_mode, pos_rtx,
7633 GET_MODE (pos_rtx));
7634
7635 /* Prefer ZERO_EXTENSION, since it gives more information to
7636 backends. */
7637 if (set_src_cost (temp1, pos_mode, optimize_this_for_speed_p)
7638 < set_src_cost (temp, pos_mode, optimize_this_for_speed_p))
7639 temp = temp1;
7640 }
7641 pos_rtx = temp;
7642 }
7643
7644 /* Make POS_RTX unless we already have it and it is correct. If we don't
7645 have a POS_RTX but we do have an ORIG_POS_RTX, the latter must
7646 be a CONST_INT. */
7647 if (pos_rtx == 0 && orig_pos_rtx != 0 && INTVAL (orig_pos_rtx) == pos)
7648 pos_rtx = orig_pos_rtx;
7649
7650 else if (pos_rtx == 0)
7651 pos_rtx = GEN_INT (pos);
7652
7653 /* Make the required operation. See if we can use existing rtx. */
7654 new_rtx = gen_rtx_fmt_eee (unsignedp ? ZERO_EXTRACT : SIGN_EXTRACT,
7655 extraction_mode, inner, GEN_INT (len), pos_rtx);
7656 if (! in_dest)
7657 new_rtx = gen_lowpart (mode, new_rtx);
7658
7659 return new_rtx;
7660 }
7661 \f
7662 /* See if X contains an ASHIFT of COUNT or more bits that can be commuted
7663 with any other operations in X. Return X without that shift if so. */
7664
7665 static rtx
7666 extract_left_shift (rtx x, int count)
7667 {
7668 enum rtx_code code = GET_CODE (x);
7669 machine_mode mode = GET_MODE (x);
7670 rtx tem;
7671
7672 switch (code)
7673 {
7674 case ASHIFT:
7675 /* This is the shift itself. If it is wide enough, we will return
7676 either the value being shifted if the shift count is equal to
7677 COUNT or a shift for the difference. */
7678 if (CONST_INT_P (XEXP (x, 1))
7679 && INTVAL (XEXP (x, 1)) >= count)
7680 return simplify_shift_const (NULL_RTX, ASHIFT, mode, XEXP (x, 0),
7681 INTVAL (XEXP (x, 1)) - count);
7682 break;
7683
7684 case NEG: case NOT:
7685 if ((tem = extract_left_shift (XEXP (x, 0), count)) != 0)
7686 return simplify_gen_unary (code, mode, tem, mode);
7687
7688 break;
7689
7690 case PLUS: case IOR: case XOR: case AND:
7691 /* If we can safely shift this constant and we find the inner shift,
7692 make a new operation. */
7693 if (CONST_INT_P (XEXP (x, 1))
7694 && (UINTVAL (XEXP (x, 1))
7695 & ((((unsigned HOST_WIDE_INT) 1 << count)) - 1)) == 0
7696 && (tem = extract_left_shift (XEXP (x, 0), count)) != 0)
7697 {
7698 HOST_WIDE_INT val = INTVAL (XEXP (x, 1)) >> count;
7699 return simplify_gen_binary (code, mode, tem,
7700 gen_int_mode (val, mode));
7701 }
7702 break;
7703
7704 default:
7705 break;
7706 }
7707
7708 return 0;
7709 }
7710 \f
7711 /* Look at the expression rooted at X. Look for expressions
7712 equivalent to ZERO_EXTRACT, SIGN_EXTRACT, ZERO_EXTEND, SIGN_EXTEND.
7713 Form these expressions.
7714
7715 Return the new rtx, usually just X.
7716
7717 Also, for machines like the VAX that don't have logical shift insns,
7718 try to convert logical to arithmetic shift operations in cases where
7719 they are equivalent. This undoes the canonicalizations to logical
7720 shifts done elsewhere.
7721
7722 We try, as much as possible, to re-use rtl expressions to save memory.
7723
7724 IN_CODE says what kind of expression we are processing. Normally, it is
7725 SET. In a memory address it is MEM. When processing the arguments of
7726 a comparison or a COMPARE against zero, it is COMPARE. */
7727
7728 rtx
7729 make_compound_operation (rtx x, enum rtx_code in_code)
7730 {
7731 enum rtx_code code = GET_CODE (x);
7732 machine_mode mode = GET_MODE (x);
7733 int mode_width = GET_MODE_PRECISION (mode);
7734 rtx rhs, lhs;
7735 enum rtx_code next_code;
7736 int i, j;
7737 rtx new_rtx = 0;
7738 rtx tem;
7739 const char *fmt;
7740
7741 /* Select the code to be used in recursive calls. Once we are inside an
7742 address, we stay there. If we have a comparison, set to COMPARE,
7743 but once inside, go back to our default of SET. */
7744
7745 next_code = (code == MEM ? MEM
7746 : ((code == COMPARE || COMPARISON_P (x))
7747 && XEXP (x, 1) == const0_rtx) ? COMPARE
7748 : in_code == COMPARE ? SET : in_code);
7749
7750 /* Process depending on the code of this operation. If NEW is set
7751 nonzero, it will be returned. */
7752
7753 switch (code)
7754 {
7755 case ASHIFT:
7756 /* Convert shifts by constants into multiplications if inside
7757 an address. */
7758 if (in_code == MEM && CONST_INT_P (XEXP (x, 1))
7759 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT
7760 && INTVAL (XEXP (x, 1)) >= 0
7761 && SCALAR_INT_MODE_P (mode))
7762 {
7763 HOST_WIDE_INT count = INTVAL (XEXP (x, 1));
7764 HOST_WIDE_INT multval = (HOST_WIDE_INT) 1 << count;
7765
7766 new_rtx = make_compound_operation (XEXP (x, 0), next_code);
7767 if (GET_CODE (new_rtx) == NEG)
7768 {
7769 new_rtx = XEXP (new_rtx, 0);
7770 multval = -multval;
7771 }
7772 multval = trunc_int_for_mode (multval, mode);
7773 new_rtx = gen_rtx_MULT (mode, new_rtx, gen_int_mode (multval, mode));
7774 }
7775 break;
7776
7777 case PLUS:
7778 lhs = XEXP (x, 0);
7779 rhs = XEXP (x, 1);
7780 lhs = make_compound_operation (lhs, next_code);
7781 rhs = make_compound_operation (rhs, next_code);
7782 if (GET_CODE (lhs) == MULT && GET_CODE (XEXP (lhs, 0)) == NEG
7783 && SCALAR_INT_MODE_P (mode))
7784 {
7785 tem = simplify_gen_binary (MULT, mode, XEXP (XEXP (lhs, 0), 0),
7786 XEXP (lhs, 1));
7787 new_rtx = simplify_gen_binary (MINUS, mode, rhs, tem);
7788 }
7789 else if (GET_CODE (lhs) == MULT
7790 && (CONST_INT_P (XEXP (lhs, 1)) && INTVAL (XEXP (lhs, 1)) < 0))
7791 {
7792 tem = simplify_gen_binary (MULT, mode, XEXP (lhs, 0),
7793 simplify_gen_unary (NEG, mode,
7794 XEXP (lhs, 1),
7795 mode));
7796 new_rtx = simplify_gen_binary (MINUS, mode, rhs, tem);
7797 }
7798 else
7799 {
7800 SUBST (XEXP (x, 0), lhs);
7801 SUBST (XEXP (x, 1), rhs);
7802 goto maybe_swap;
7803 }
7804 x = gen_lowpart (mode, new_rtx);
7805 goto maybe_swap;
7806
7807 case MINUS:
7808 lhs = XEXP (x, 0);
7809 rhs = XEXP (x, 1);
7810 lhs = make_compound_operation (lhs, next_code);
7811 rhs = make_compound_operation (rhs, next_code);
7812 if (GET_CODE (rhs) == MULT && GET_CODE (XEXP (rhs, 0)) == NEG
7813 && SCALAR_INT_MODE_P (mode))
7814 {
7815 tem = simplify_gen_binary (MULT, mode, XEXP (XEXP (rhs, 0), 0),
7816 XEXP (rhs, 1));
7817 new_rtx = simplify_gen_binary (PLUS, mode, tem, lhs);
7818 }
7819 else if (GET_CODE (rhs) == MULT
7820 && (CONST_INT_P (XEXP (rhs, 1)) && INTVAL (XEXP (rhs, 1)) < 0))
7821 {
7822 tem = simplify_gen_binary (MULT, mode, XEXP (rhs, 0),
7823 simplify_gen_unary (NEG, mode,
7824 XEXP (rhs, 1),
7825 mode));
7826 new_rtx = simplify_gen_binary (PLUS, mode, tem, lhs);
7827 }
7828 else
7829 {
7830 SUBST (XEXP (x, 0), lhs);
7831 SUBST (XEXP (x, 1), rhs);
7832 return x;
7833 }
7834 return gen_lowpart (mode, new_rtx);
7835
7836 case AND:
7837 /* If the second operand is not a constant, we can't do anything
7838 with it. */
7839 if (!CONST_INT_P (XEXP (x, 1)))
7840 break;
7841
7842 /* If the constant is a power of two minus one and the first operand
7843 is a logical right shift, make an extraction. */
7844 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
7845 && (i = exact_log2 (UINTVAL (XEXP (x, 1)) + 1)) >= 0)
7846 {
7847 new_rtx = make_compound_operation (XEXP (XEXP (x, 0), 0), next_code);
7848 new_rtx = make_extraction (mode, new_rtx, 0, XEXP (XEXP (x, 0), 1), i, 1,
7849 0, in_code == COMPARE);
7850 }
7851
7852 /* Same as previous, but for (subreg (lshiftrt ...)) in first op. */
7853 else if (GET_CODE (XEXP (x, 0)) == SUBREG
7854 && subreg_lowpart_p (XEXP (x, 0))
7855 && GET_CODE (SUBREG_REG (XEXP (x, 0))) == LSHIFTRT
7856 && (i = exact_log2 (UINTVAL (XEXP (x, 1)) + 1)) >= 0)
7857 {
7858 new_rtx = make_compound_operation (XEXP (SUBREG_REG (XEXP (x, 0)), 0),
7859 next_code);
7860 new_rtx = make_extraction (GET_MODE (SUBREG_REG (XEXP (x, 0))), new_rtx, 0,
7861 XEXP (SUBREG_REG (XEXP (x, 0)), 1), i, 1,
7862 0, in_code == COMPARE);
7863
7864 /* If that didn't give anything, see if the AND simplifies on
7865 its own. */
7866 if (!new_rtx && i >= 0)
7867 {
7868 new_rtx = make_compound_operation (XEXP (x, 0), next_code);
7869 new_rtx = make_extraction (mode, new_rtx, 0, NULL_RTX, i, 1,
7870 0, in_code == COMPARE);
7871 }
7872 }
7873 /* Same as previous, but for (xor/ior (lshiftrt...) (lshiftrt...)). */
7874 else if ((GET_CODE (XEXP (x, 0)) == XOR
7875 || GET_CODE (XEXP (x, 0)) == IOR)
7876 && GET_CODE (XEXP (XEXP (x, 0), 0)) == LSHIFTRT
7877 && GET_CODE (XEXP (XEXP (x, 0), 1)) == LSHIFTRT
7878 && (i = exact_log2 (UINTVAL (XEXP (x, 1)) + 1)) >= 0)
7879 {
7880 /* Apply the distributive law, and then try to make extractions. */
7881 new_rtx = gen_rtx_fmt_ee (GET_CODE (XEXP (x, 0)), mode,
7882 gen_rtx_AND (mode, XEXP (XEXP (x, 0), 0),
7883 XEXP (x, 1)),
7884 gen_rtx_AND (mode, XEXP (XEXP (x, 0), 1),
7885 XEXP (x, 1)));
7886 new_rtx = make_compound_operation (new_rtx, in_code);
7887 }
7888
7889 /* If we are have (and (rotate X C) M) and C is larger than the number
7890 of bits in M, this is an extraction. */
7891
7892 else if (GET_CODE (XEXP (x, 0)) == ROTATE
7893 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
7894 && (i = exact_log2 (UINTVAL (XEXP (x, 1)) + 1)) >= 0
7895 && i <= INTVAL (XEXP (XEXP (x, 0), 1)))
7896 {
7897 new_rtx = make_compound_operation (XEXP (XEXP (x, 0), 0), next_code);
7898 new_rtx = make_extraction (mode, new_rtx,
7899 (GET_MODE_PRECISION (mode)
7900 - INTVAL (XEXP (XEXP (x, 0), 1))),
7901 NULL_RTX, i, 1, 0, in_code == COMPARE);
7902 }
7903
7904 /* On machines without logical shifts, if the operand of the AND is
7905 a logical shift and our mask turns off all the propagated sign
7906 bits, we can replace the logical shift with an arithmetic shift. */
7907 else if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
7908 && !have_insn_for (LSHIFTRT, mode)
7909 && have_insn_for (ASHIFTRT, mode)
7910 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
7911 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
7912 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT
7913 && mode_width <= HOST_BITS_PER_WIDE_INT)
7914 {
7915 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
7916
7917 mask >>= INTVAL (XEXP (XEXP (x, 0), 1));
7918 if ((INTVAL (XEXP (x, 1)) & ~mask) == 0)
7919 SUBST (XEXP (x, 0),
7920 gen_rtx_ASHIFTRT (mode,
7921 make_compound_operation
7922 (XEXP (XEXP (x, 0), 0), next_code),
7923 XEXP (XEXP (x, 0), 1)));
7924 }
7925
7926 /* If the constant is one less than a power of two, this might be
7927 representable by an extraction even if no shift is present.
7928 If it doesn't end up being a ZERO_EXTEND, we will ignore it unless
7929 we are in a COMPARE. */
7930 else if ((i = exact_log2 (UINTVAL (XEXP (x, 1)) + 1)) >= 0)
7931 new_rtx = make_extraction (mode,
7932 make_compound_operation (XEXP (x, 0),
7933 next_code),
7934 0, NULL_RTX, i, 1, 0, in_code == COMPARE);
7935
7936 /* If we are in a comparison and this is an AND with a power of two,
7937 convert this into the appropriate bit extract. */
7938 else if (in_code == COMPARE
7939 && (i = exact_log2 (UINTVAL (XEXP (x, 1)))) >= 0)
7940 new_rtx = make_extraction (mode,
7941 make_compound_operation (XEXP (x, 0),
7942 next_code),
7943 i, NULL_RTX, 1, 1, 0, 1);
7944
7945 break;
7946
7947 case LSHIFTRT:
7948 /* If the sign bit is known to be zero, replace this with an
7949 arithmetic shift. */
7950 if (have_insn_for (ASHIFTRT, mode)
7951 && ! have_insn_for (LSHIFTRT, mode)
7952 && mode_width <= HOST_BITS_PER_WIDE_INT
7953 && (nonzero_bits (XEXP (x, 0), mode) & (1 << (mode_width - 1))) == 0)
7954 {
7955 new_rtx = gen_rtx_ASHIFTRT (mode,
7956 make_compound_operation (XEXP (x, 0),
7957 next_code),
7958 XEXP (x, 1));
7959 break;
7960 }
7961
7962 /* ... fall through ... */
7963
7964 case ASHIFTRT:
7965 lhs = XEXP (x, 0);
7966 rhs = XEXP (x, 1);
7967
7968 /* If we have (ashiftrt (ashift foo C1) C2) with C2 >= C1,
7969 this is a SIGN_EXTRACT. */
7970 if (CONST_INT_P (rhs)
7971 && GET_CODE (lhs) == ASHIFT
7972 && CONST_INT_P (XEXP (lhs, 1))
7973 && INTVAL (rhs) >= INTVAL (XEXP (lhs, 1))
7974 && INTVAL (XEXP (lhs, 1)) >= 0
7975 && INTVAL (rhs) < mode_width)
7976 {
7977 new_rtx = make_compound_operation (XEXP (lhs, 0), next_code);
7978 new_rtx = make_extraction (mode, new_rtx,
7979 INTVAL (rhs) - INTVAL (XEXP (lhs, 1)),
7980 NULL_RTX, mode_width - INTVAL (rhs),
7981 code == LSHIFTRT, 0, in_code == COMPARE);
7982 break;
7983 }
7984
7985 /* See if we have operations between an ASHIFTRT and an ASHIFT.
7986 If so, try to merge the shifts into a SIGN_EXTEND. We could
7987 also do this for some cases of SIGN_EXTRACT, but it doesn't
7988 seem worth the effort; the case checked for occurs on Alpha. */
7989
7990 if (!OBJECT_P (lhs)
7991 && ! (GET_CODE (lhs) == SUBREG
7992 && (OBJECT_P (SUBREG_REG (lhs))))
7993 && CONST_INT_P (rhs)
7994 && INTVAL (rhs) < HOST_BITS_PER_WIDE_INT
7995 && INTVAL (rhs) < mode_width
7996 && (new_rtx = extract_left_shift (lhs, INTVAL (rhs))) != 0)
7997 new_rtx = make_extraction (mode, make_compound_operation (new_rtx, next_code),
7998 0, NULL_RTX, mode_width - INTVAL (rhs),
7999 code == LSHIFTRT, 0, in_code == COMPARE);
8000
8001 break;
8002
8003 case SUBREG:
8004 /* Call ourselves recursively on the inner expression. If we are
8005 narrowing the object and it has a different RTL code from
8006 what it originally did, do this SUBREG as a force_to_mode. */
8007 {
8008 rtx inner = SUBREG_REG (x), simplified;
8009 enum rtx_code subreg_code = in_code;
8010
8011 /* If in_code is COMPARE, it isn't always safe to pass it through
8012 to the recursive make_compound_operation call. */
8013 if (subreg_code == COMPARE
8014 && (!subreg_lowpart_p (x)
8015 || GET_CODE (inner) == SUBREG
8016 /* (subreg:SI (and:DI (reg:DI) (const_int 0x800000000)) 0)
8017 is (const_int 0), rather than
8018 (subreg:SI (lshiftrt:DI (reg:DI) (const_int 35)) 0). */
8019 || (GET_CODE (inner) == AND
8020 && CONST_INT_P (XEXP (inner, 1))
8021 && GET_MODE_SIZE (mode) < GET_MODE_SIZE (GET_MODE (inner))
8022 && exact_log2 (UINTVAL (XEXP (inner, 1)))
8023 >= GET_MODE_BITSIZE (mode))))
8024 subreg_code = SET;
8025
8026 tem = make_compound_operation (inner, subreg_code);
8027
8028 simplified
8029 = simplify_subreg (mode, tem, GET_MODE (inner), SUBREG_BYTE (x));
8030 if (simplified)
8031 tem = simplified;
8032
8033 if (GET_CODE (tem) != GET_CODE (inner)
8034 && GET_MODE_SIZE (mode) < GET_MODE_SIZE (GET_MODE (inner))
8035 && subreg_lowpart_p (x))
8036 {
8037 rtx newer
8038 = force_to_mode (tem, mode, ~(unsigned HOST_WIDE_INT) 0, 0);
8039
8040 /* If we have something other than a SUBREG, we might have
8041 done an expansion, so rerun ourselves. */
8042 if (GET_CODE (newer) != SUBREG)
8043 newer = make_compound_operation (newer, in_code);
8044
8045 /* force_to_mode can expand compounds. If it just re-expanded the
8046 compound, use gen_lowpart to convert to the desired mode. */
8047 if (rtx_equal_p (newer, x)
8048 /* Likewise if it re-expanded the compound only partially.
8049 This happens for SUBREG of ZERO_EXTRACT if they extract
8050 the same number of bits. */
8051 || (GET_CODE (newer) == SUBREG
8052 && (GET_CODE (SUBREG_REG (newer)) == LSHIFTRT
8053 || GET_CODE (SUBREG_REG (newer)) == ASHIFTRT)
8054 && GET_CODE (inner) == AND
8055 && rtx_equal_p (SUBREG_REG (newer), XEXP (inner, 0))))
8056 return gen_lowpart (GET_MODE (x), tem);
8057
8058 return newer;
8059 }
8060
8061 if (simplified)
8062 return tem;
8063 }
8064 break;
8065
8066 default:
8067 break;
8068 }
8069
8070 if (new_rtx)
8071 {
8072 x = gen_lowpart (mode, new_rtx);
8073 code = GET_CODE (x);
8074 }
8075
8076 /* Now recursively process each operand of this operation. We need to
8077 handle ZERO_EXTEND specially so that we don't lose track of the
8078 inner mode. */
8079 if (GET_CODE (x) == ZERO_EXTEND)
8080 {
8081 new_rtx = make_compound_operation (XEXP (x, 0), next_code);
8082 tem = simplify_const_unary_operation (ZERO_EXTEND, GET_MODE (x),
8083 new_rtx, GET_MODE (XEXP (x, 0)));
8084 if (tem)
8085 return tem;
8086 SUBST (XEXP (x, 0), new_rtx);
8087 return x;
8088 }
8089
8090 fmt = GET_RTX_FORMAT (code);
8091 for (i = 0; i < GET_RTX_LENGTH (code); i++)
8092 if (fmt[i] == 'e')
8093 {
8094 new_rtx = make_compound_operation (XEXP (x, i), next_code);
8095 SUBST (XEXP (x, i), new_rtx);
8096 }
8097 else if (fmt[i] == 'E')
8098 for (j = 0; j < XVECLEN (x, i); j++)
8099 {
8100 new_rtx = make_compound_operation (XVECEXP (x, i, j), next_code);
8101 SUBST (XVECEXP (x, i, j), new_rtx);
8102 }
8103
8104 maybe_swap:
8105 /* If this is a commutative operation, the changes to the operands
8106 may have made it noncanonical. */
8107 if (COMMUTATIVE_ARITH_P (x)
8108 && swap_commutative_operands_p (XEXP (x, 0), XEXP (x, 1)))
8109 {
8110 tem = XEXP (x, 0);
8111 SUBST (XEXP (x, 0), XEXP (x, 1));
8112 SUBST (XEXP (x, 1), tem);
8113 }
8114
8115 return x;
8116 }
8117 \f
8118 /* Given M see if it is a value that would select a field of bits
8119 within an item, but not the entire word. Return -1 if not.
8120 Otherwise, return the starting position of the field, where 0 is the
8121 low-order bit.
8122
8123 *PLEN is set to the length of the field. */
8124
8125 static int
8126 get_pos_from_mask (unsigned HOST_WIDE_INT m, unsigned HOST_WIDE_INT *plen)
8127 {
8128 /* Get the bit number of the first 1 bit from the right, -1 if none. */
8129 int pos = m ? ctz_hwi (m) : -1;
8130 int len = 0;
8131
8132 if (pos >= 0)
8133 /* Now shift off the low-order zero bits and see if we have a
8134 power of two minus 1. */
8135 len = exact_log2 ((m >> pos) + 1);
8136
8137 if (len <= 0)
8138 pos = -1;
8139
8140 *plen = len;
8141 return pos;
8142 }
8143 \f
8144 /* If X refers to a register that equals REG in value, replace these
8145 references with REG. */
8146 static rtx
8147 canon_reg_for_combine (rtx x, rtx reg)
8148 {
8149 rtx op0, op1, op2;
8150 const char *fmt;
8151 int i;
8152 bool copied;
8153
8154 enum rtx_code code = GET_CODE (x);
8155 switch (GET_RTX_CLASS (code))
8156 {
8157 case RTX_UNARY:
8158 op0 = canon_reg_for_combine (XEXP (x, 0), reg);
8159 if (op0 != XEXP (x, 0))
8160 return simplify_gen_unary (GET_CODE (x), GET_MODE (x), op0,
8161 GET_MODE (reg));
8162 break;
8163
8164 case RTX_BIN_ARITH:
8165 case RTX_COMM_ARITH:
8166 op0 = canon_reg_for_combine (XEXP (x, 0), reg);
8167 op1 = canon_reg_for_combine (XEXP (x, 1), reg);
8168 if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
8169 return simplify_gen_binary (GET_CODE (x), GET_MODE (x), op0, op1);
8170 break;
8171
8172 case RTX_COMPARE:
8173 case RTX_COMM_COMPARE:
8174 op0 = canon_reg_for_combine (XEXP (x, 0), reg);
8175 op1 = canon_reg_for_combine (XEXP (x, 1), reg);
8176 if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
8177 return simplify_gen_relational (GET_CODE (x), GET_MODE (x),
8178 GET_MODE (op0), op0, op1);
8179 break;
8180
8181 case RTX_TERNARY:
8182 case RTX_BITFIELD_OPS:
8183 op0 = canon_reg_for_combine (XEXP (x, 0), reg);
8184 op1 = canon_reg_for_combine (XEXP (x, 1), reg);
8185 op2 = canon_reg_for_combine (XEXP (x, 2), reg);
8186 if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1) || op2 != XEXP (x, 2))
8187 return simplify_gen_ternary (GET_CODE (x), GET_MODE (x),
8188 GET_MODE (op0), op0, op1, op2);
8189
8190 case RTX_OBJ:
8191 if (REG_P (x))
8192 {
8193 if (rtx_equal_p (get_last_value (reg), x)
8194 || rtx_equal_p (reg, get_last_value (x)))
8195 return reg;
8196 else
8197 break;
8198 }
8199
8200 /* fall through */
8201
8202 default:
8203 fmt = GET_RTX_FORMAT (code);
8204 copied = false;
8205 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
8206 if (fmt[i] == 'e')
8207 {
8208 rtx op = canon_reg_for_combine (XEXP (x, i), reg);
8209 if (op != XEXP (x, i))
8210 {
8211 if (!copied)
8212 {
8213 copied = true;
8214 x = copy_rtx (x);
8215 }
8216 XEXP (x, i) = op;
8217 }
8218 }
8219 else if (fmt[i] == 'E')
8220 {
8221 int j;
8222 for (j = 0; j < XVECLEN (x, i); j++)
8223 {
8224 rtx op = canon_reg_for_combine (XVECEXP (x, i, j), reg);
8225 if (op != XVECEXP (x, i, j))
8226 {
8227 if (!copied)
8228 {
8229 copied = true;
8230 x = copy_rtx (x);
8231 }
8232 XVECEXP (x, i, j) = op;
8233 }
8234 }
8235 }
8236
8237 break;
8238 }
8239
8240 return x;
8241 }
8242
8243 /* Return X converted to MODE. If the value is already truncated to
8244 MODE we can just return a subreg even though in the general case we
8245 would need an explicit truncation. */
8246
8247 static rtx
8248 gen_lowpart_or_truncate (machine_mode mode, rtx x)
8249 {
8250 if (!CONST_INT_P (x)
8251 && GET_MODE_SIZE (mode) < GET_MODE_SIZE (GET_MODE (x))
8252 && !TRULY_NOOP_TRUNCATION_MODES_P (mode, GET_MODE (x))
8253 && !(REG_P (x) && reg_truncated_to_mode (mode, x)))
8254 {
8255 /* Bit-cast X into an integer mode. */
8256 if (!SCALAR_INT_MODE_P (GET_MODE (x)))
8257 x = gen_lowpart (int_mode_for_mode (GET_MODE (x)), x);
8258 x = simplify_gen_unary (TRUNCATE, int_mode_for_mode (mode),
8259 x, GET_MODE (x));
8260 }
8261
8262 return gen_lowpart (mode, x);
8263 }
8264
8265 /* See if X can be simplified knowing that we will only refer to it in
8266 MODE and will only refer to those bits that are nonzero in MASK.
8267 If other bits are being computed or if masking operations are done
8268 that select a superset of the bits in MASK, they can sometimes be
8269 ignored.
8270
8271 Return a possibly simplified expression, but always convert X to
8272 MODE. If X is a CONST_INT, AND the CONST_INT with MASK.
8273
8274 If JUST_SELECT is nonzero, don't optimize by noticing that bits in MASK
8275 are all off in X. This is used when X will be complemented, by either
8276 NOT, NEG, or XOR. */
8277
8278 static rtx
8279 force_to_mode (rtx x, machine_mode mode, unsigned HOST_WIDE_INT mask,
8280 int just_select)
8281 {
8282 enum rtx_code code = GET_CODE (x);
8283 int next_select = just_select || code == XOR || code == NOT || code == NEG;
8284 machine_mode op_mode;
8285 unsigned HOST_WIDE_INT fuller_mask, nonzero;
8286 rtx op0, op1, temp;
8287
8288 /* If this is a CALL or ASM_OPERANDS, don't do anything. Some of the
8289 code below will do the wrong thing since the mode of such an
8290 expression is VOIDmode.
8291
8292 Also do nothing if X is a CLOBBER; this can happen if X was
8293 the return value from a call to gen_lowpart. */
8294 if (code == CALL || code == ASM_OPERANDS || code == CLOBBER)
8295 return x;
8296
8297 /* We want to perform the operation in its present mode unless we know
8298 that the operation is valid in MODE, in which case we do the operation
8299 in MODE. */
8300 op_mode = ((GET_MODE_CLASS (mode) == GET_MODE_CLASS (GET_MODE (x))
8301 && have_insn_for (code, mode))
8302 ? mode : GET_MODE (x));
8303
8304 /* It is not valid to do a right-shift in a narrower mode
8305 than the one it came in with. */
8306 if ((code == LSHIFTRT || code == ASHIFTRT)
8307 && GET_MODE_PRECISION (mode) < GET_MODE_PRECISION (GET_MODE (x)))
8308 op_mode = GET_MODE (x);
8309
8310 /* Truncate MASK to fit OP_MODE. */
8311 if (op_mode)
8312 mask &= GET_MODE_MASK (op_mode);
8313
8314 /* When we have an arithmetic operation, or a shift whose count we
8315 do not know, we need to assume that all bits up to the highest-order
8316 bit in MASK will be needed. This is how we form such a mask. */
8317 if (mask & ((unsigned HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT - 1)))
8318 fuller_mask = ~(unsigned HOST_WIDE_INT) 0;
8319 else
8320 fuller_mask = (((unsigned HOST_WIDE_INT) 1 << (floor_log2 (mask) + 1))
8321 - 1);
8322
8323 /* Determine what bits of X are guaranteed to be (non)zero. */
8324 nonzero = nonzero_bits (x, mode);
8325
8326 /* If none of the bits in X are needed, return a zero. */
8327 if (!just_select && (nonzero & mask) == 0 && !side_effects_p (x))
8328 x = const0_rtx;
8329
8330 /* If X is a CONST_INT, return a new one. Do this here since the
8331 test below will fail. */
8332 if (CONST_INT_P (x))
8333 {
8334 if (SCALAR_INT_MODE_P (mode))
8335 return gen_int_mode (INTVAL (x) & mask, mode);
8336 else
8337 {
8338 x = GEN_INT (INTVAL (x) & mask);
8339 return gen_lowpart_common (mode, x);
8340 }
8341 }
8342
8343 /* If X is narrower than MODE and we want all the bits in X's mode, just
8344 get X in the proper mode. */
8345 if (GET_MODE_SIZE (GET_MODE (x)) < GET_MODE_SIZE (mode)
8346 && (GET_MODE_MASK (GET_MODE (x)) & ~mask) == 0)
8347 return gen_lowpart (mode, x);
8348
8349 /* We can ignore the effect of a SUBREG if it narrows the mode or
8350 if the constant masks to zero all the bits the mode doesn't have. */
8351 if (GET_CODE (x) == SUBREG
8352 && subreg_lowpart_p (x)
8353 && ((GET_MODE_SIZE (GET_MODE (x))
8354 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
8355 || (0 == (mask
8356 & GET_MODE_MASK (GET_MODE (x))
8357 & ~GET_MODE_MASK (GET_MODE (SUBREG_REG (x)))))))
8358 return force_to_mode (SUBREG_REG (x), mode, mask, next_select);
8359
8360 /* The arithmetic simplifications here only work for scalar integer modes. */
8361 if (!SCALAR_INT_MODE_P (mode) || !SCALAR_INT_MODE_P (GET_MODE (x)))
8362 return gen_lowpart_or_truncate (mode, x);
8363
8364 switch (code)
8365 {
8366 case CLOBBER:
8367 /* If X is a (clobber (const_int)), return it since we know we are
8368 generating something that won't match. */
8369 return x;
8370
8371 case SIGN_EXTEND:
8372 case ZERO_EXTEND:
8373 case ZERO_EXTRACT:
8374 case SIGN_EXTRACT:
8375 x = expand_compound_operation (x);
8376 if (GET_CODE (x) != code)
8377 return force_to_mode (x, mode, mask, next_select);
8378 break;
8379
8380 case TRUNCATE:
8381 /* Similarly for a truncate. */
8382 return force_to_mode (XEXP (x, 0), mode, mask, next_select);
8383
8384 case AND:
8385 /* If this is an AND with a constant, convert it into an AND
8386 whose constant is the AND of that constant with MASK. If it
8387 remains an AND of MASK, delete it since it is redundant. */
8388
8389 if (CONST_INT_P (XEXP (x, 1)))
8390 {
8391 x = simplify_and_const_int (x, op_mode, XEXP (x, 0),
8392 mask & INTVAL (XEXP (x, 1)));
8393
8394 /* If X is still an AND, see if it is an AND with a mask that
8395 is just some low-order bits. If so, and it is MASK, we don't
8396 need it. */
8397
8398 if (GET_CODE (x) == AND && CONST_INT_P (XEXP (x, 1))
8399 && ((INTVAL (XEXP (x, 1)) & GET_MODE_MASK (GET_MODE (x)))
8400 == mask))
8401 x = XEXP (x, 0);
8402
8403 /* If it remains an AND, try making another AND with the bits
8404 in the mode mask that aren't in MASK turned on. If the
8405 constant in the AND is wide enough, this might make a
8406 cheaper constant. */
8407
8408 if (GET_CODE (x) == AND && CONST_INT_P (XEXP (x, 1))
8409 && GET_MODE_MASK (GET_MODE (x)) != mask
8410 && HWI_COMPUTABLE_MODE_P (GET_MODE (x)))
8411 {
8412 unsigned HOST_WIDE_INT cval
8413 = UINTVAL (XEXP (x, 1))
8414 | (GET_MODE_MASK (GET_MODE (x)) & ~mask);
8415 rtx y;
8416
8417 y = simplify_gen_binary (AND, GET_MODE (x), XEXP (x, 0),
8418 gen_int_mode (cval, GET_MODE (x)));
8419 if (set_src_cost (y, GET_MODE (x), optimize_this_for_speed_p)
8420 < set_src_cost (x, GET_MODE (x), optimize_this_for_speed_p))
8421 x = y;
8422 }
8423
8424 break;
8425 }
8426
8427 goto binop;
8428
8429 case PLUS:
8430 /* In (and (plus FOO C1) M), if M is a mask that just turns off
8431 low-order bits (as in an alignment operation) and FOO is already
8432 aligned to that boundary, mask C1 to that boundary as well.
8433 This may eliminate that PLUS and, later, the AND. */
8434
8435 {
8436 unsigned int width = GET_MODE_PRECISION (mode);
8437 unsigned HOST_WIDE_INT smask = mask;
8438
8439 /* If MODE is narrower than HOST_WIDE_INT and mask is a negative
8440 number, sign extend it. */
8441
8442 if (width < HOST_BITS_PER_WIDE_INT
8443 && (smask & (HOST_WIDE_INT_1U << (width - 1))) != 0)
8444 smask |= HOST_WIDE_INT_M1U << width;
8445
8446 if (CONST_INT_P (XEXP (x, 1))
8447 && exact_log2 (- smask) >= 0
8448 && (nonzero_bits (XEXP (x, 0), mode) & ~smask) == 0
8449 && (INTVAL (XEXP (x, 1)) & ~smask) != 0)
8450 return force_to_mode (plus_constant (GET_MODE (x), XEXP (x, 0),
8451 (INTVAL (XEXP (x, 1)) & smask)),
8452 mode, smask, next_select);
8453 }
8454
8455 /* ... fall through ... */
8456
8457 case MULT:
8458 /* For PLUS, MINUS and MULT, we need any bits less significant than the
8459 most significant bit in MASK since carries from those bits will
8460 affect the bits we are interested in. */
8461 mask = fuller_mask;
8462 goto binop;
8463
8464 case MINUS:
8465 /* If X is (minus C Y) where C's least set bit is larger than any bit
8466 in the mask, then we may replace with (neg Y). */
8467 if (CONST_INT_P (XEXP (x, 0))
8468 && ((UINTVAL (XEXP (x, 0)) & -UINTVAL (XEXP (x, 0))) > mask))
8469 {
8470 x = simplify_gen_unary (NEG, GET_MODE (x), XEXP (x, 1),
8471 GET_MODE (x));
8472 return force_to_mode (x, mode, mask, next_select);
8473 }
8474
8475 /* Similarly, if C contains every bit in the fuller_mask, then we may
8476 replace with (not Y). */
8477 if (CONST_INT_P (XEXP (x, 0))
8478 && ((UINTVAL (XEXP (x, 0)) | fuller_mask) == UINTVAL (XEXP (x, 0))))
8479 {
8480 x = simplify_gen_unary (NOT, GET_MODE (x),
8481 XEXP (x, 1), GET_MODE (x));
8482 return force_to_mode (x, mode, mask, next_select);
8483 }
8484
8485 mask = fuller_mask;
8486 goto binop;
8487
8488 case IOR:
8489 case XOR:
8490 /* If X is (ior (lshiftrt FOO C1) C2), try to commute the IOR and
8491 LSHIFTRT so we end up with an (and (lshiftrt (ior ...) ...) ...)
8492 operation which may be a bitfield extraction. Ensure that the
8493 constant we form is not wider than the mode of X. */
8494
8495 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
8496 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
8497 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
8498 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT
8499 && CONST_INT_P (XEXP (x, 1))
8500 && ((INTVAL (XEXP (XEXP (x, 0), 1))
8501 + floor_log2 (INTVAL (XEXP (x, 1))))
8502 < GET_MODE_PRECISION (GET_MODE (x)))
8503 && (UINTVAL (XEXP (x, 1))
8504 & ~nonzero_bits (XEXP (x, 0), GET_MODE (x))) == 0)
8505 {
8506 temp = gen_int_mode ((INTVAL (XEXP (x, 1)) & mask)
8507 << INTVAL (XEXP (XEXP (x, 0), 1)),
8508 GET_MODE (x));
8509 temp = simplify_gen_binary (GET_CODE (x), GET_MODE (x),
8510 XEXP (XEXP (x, 0), 0), temp);
8511 x = simplify_gen_binary (LSHIFTRT, GET_MODE (x), temp,
8512 XEXP (XEXP (x, 0), 1));
8513 return force_to_mode (x, mode, mask, next_select);
8514 }
8515
8516 binop:
8517 /* For most binary operations, just propagate into the operation and
8518 change the mode if we have an operation of that mode. */
8519
8520 op0 = force_to_mode (XEXP (x, 0), mode, mask, next_select);
8521 op1 = force_to_mode (XEXP (x, 1), mode, mask, next_select);
8522
8523 /* If we ended up truncating both operands, truncate the result of the
8524 operation instead. */
8525 if (GET_CODE (op0) == TRUNCATE
8526 && GET_CODE (op1) == TRUNCATE)
8527 {
8528 op0 = XEXP (op0, 0);
8529 op1 = XEXP (op1, 0);
8530 }
8531
8532 op0 = gen_lowpart_or_truncate (op_mode, op0);
8533 op1 = gen_lowpart_or_truncate (op_mode, op1);
8534
8535 if (op_mode != GET_MODE (x) || op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
8536 x = simplify_gen_binary (code, op_mode, op0, op1);
8537 break;
8538
8539 case ASHIFT:
8540 /* For left shifts, do the same, but just for the first operand.
8541 However, we cannot do anything with shifts where we cannot
8542 guarantee that the counts are smaller than the size of the mode
8543 because such a count will have a different meaning in a
8544 wider mode. */
8545
8546 if (! (CONST_INT_P (XEXP (x, 1))
8547 && INTVAL (XEXP (x, 1)) >= 0
8548 && INTVAL (XEXP (x, 1)) < GET_MODE_PRECISION (mode))
8549 && ! (GET_MODE (XEXP (x, 1)) != VOIDmode
8550 && (nonzero_bits (XEXP (x, 1), GET_MODE (XEXP (x, 1)))
8551 < (unsigned HOST_WIDE_INT) GET_MODE_PRECISION (mode))))
8552 break;
8553
8554 /* If the shift count is a constant and we can do arithmetic in
8555 the mode of the shift, refine which bits we need. Otherwise, use the
8556 conservative form of the mask. */
8557 if (CONST_INT_P (XEXP (x, 1))
8558 && INTVAL (XEXP (x, 1)) >= 0
8559 && INTVAL (XEXP (x, 1)) < GET_MODE_PRECISION (op_mode)
8560 && HWI_COMPUTABLE_MODE_P (op_mode))
8561 mask >>= INTVAL (XEXP (x, 1));
8562 else
8563 mask = fuller_mask;
8564
8565 op0 = gen_lowpart_or_truncate (op_mode,
8566 force_to_mode (XEXP (x, 0), op_mode,
8567 mask, next_select));
8568
8569 if (op_mode != GET_MODE (x) || op0 != XEXP (x, 0))
8570 x = simplify_gen_binary (code, op_mode, op0, XEXP (x, 1));
8571 break;
8572
8573 case LSHIFTRT:
8574 /* Here we can only do something if the shift count is a constant,
8575 this shift constant is valid for the host, and we can do arithmetic
8576 in OP_MODE. */
8577
8578 if (CONST_INT_P (XEXP (x, 1))
8579 && INTVAL (XEXP (x, 1)) >= 0
8580 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT
8581 && HWI_COMPUTABLE_MODE_P (op_mode))
8582 {
8583 rtx inner = XEXP (x, 0);
8584 unsigned HOST_WIDE_INT inner_mask;
8585
8586 /* Select the mask of the bits we need for the shift operand. */
8587 inner_mask = mask << INTVAL (XEXP (x, 1));
8588
8589 /* We can only change the mode of the shift if we can do arithmetic
8590 in the mode of the shift and INNER_MASK is no wider than the
8591 width of X's mode. */
8592 if ((inner_mask & ~GET_MODE_MASK (GET_MODE (x))) != 0)
8593 op_mode = GET_MODE (x);
8594
8595 inner = force_to_mode (inner, op_mode, inner_mask, next_select);
8596
8597 if (GET_MODE (x) != op_mode || inner != XEXP (x, 0))
8598 x = simplify_gen_binary (LSHIFTRT, op_mode, inner, XEXP (x, 1));
8599 }
8600
8601 /* If we have (and (lshiftrt FOO C1) C2) where the combination of the
8602 shift and AND produces only copies of the sign bit (C2 is one less
8603 than a power of two), we can do this with just a shift. */
8604
8605 if (GET_CODE (x) == LSHIFTRT
8606 && CONST_INT_P (XEXP (x, 1))
8607 /* The shift puts one of the sign bit copies in the least significant
8608 bit. */
8609 && ((INTVAL (XEXP (x, 1))
8610 + num_sign_bit_copies (XEXP (x, 0), GET_MODE (XEXP (x, 0))))
8611 >= GET_MODE_PRECISION (GET_MODE (x)))
8612 && exact_log2 (mask + 1) >= 0
8613 /* Number of bits left after the shift must be more than the mask
8614 needs. */
8615 && ((INTVAL (XEXP (x, 1)) + exact_log2 (mask + 1))
8616 <= GET_MODE_PRECISION (GET_MODE (x)))
8617 /* Must be more sign bit copies than the mask needs. */
8618 && ((int) num_sign_bit_copies (XEXP (x, 0), GET_MODE (XEXP (x, 0)))
8619 >= exact_log2 (mask + 1)))
8620 x = simplify_gen_binary (LSHIFTRT, GET_MODE (x), XEXP (x, 0),
8621 GEN_INT (GET_MODE_PRECISION (GET_MODE (x))
8622 - exact_log2 (mask + 1)));
8623
8624 goto shiftrt;
8625
8626 case ASHIFTRT:
8627 /* If we are just looking for the sign bit, we don't need this shift at
8628 all, even if it has a variable count. */
8629 if (val_signbit_p (GET_MODE (x), mask))
8630 return force_to_mode (XEXP (x, 0), mode, mask, next_select);
8631
8632 /* If this is a shift by a constant, get a mask that contains those bits
8633 that are not copies of the sign bit. We then have two cases: If
8634 MASK only includes those bits, this can be a logical shift, which may
8635 allow simplifications. If MASK is a single-bit field not within
8636 those bits, we are requesting a copy of the sign bit and hence can
8637 shift the sign bit to the appropriate location. */
8638
8639 if (CONST_INT_P (XEXP (x, 1)) && INTVAL (XEXP (x, 1)) >= 0
8640 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT)
8641 {
8642 int i;
8643
8644 /* If the considered data is wider than HOST_WIDE_INT, we can't
8645 represent a mask for all its bits in a single scalar.
8646 But we only care about the lower bits, so calculate these. */
8647
8648 if (GET_MODE_PRECISION (GET_MODE (x)) > HOST_BITS_PER_WIDE_INT)
8649 {
8650 nonzero = ~(unsigned HOST_WIDE_INT) 0;
8651
8652 /* GET_MODE_PRECISION (GET_MODE (x)) - INTVAL (XEXP (x, 1))
8653 is the number of bits a full-width mask would have set.
8654 We need only shift if these are fewer than nonzero can
8655 hold. If not, we must keep all bits set in nonzero. */
8656
8657 if (GET_MODE_PRECISION (GET_MODE (x)) - INTVAL (XEXP (x, 1))
8658 < HOST_BITS_PER_WIDE_INT)
8659 nonzero >>= INTVAL (XEXP (x, 1))
8660 + HOST_BITS_PER_WIDE_INT
8661 - GET_MODE_PRECISION (GET_MODE (x)) ;
8662 }
8663 else
8664 {
8665 nonzero = GET_MODE_MASK (GET_MODE (x));
8666 nonzero >>= INTVAL (XEXP (x, 1));
8667 }
8668
8669 if ((mask & ~nonzero) == 0)
8670 {
8671 x = simplify_shift_const (NULL_RTX, LSHIFTRT, GET_MODE (x),
8672 XEXP (x, 0), INTVAL (XEXP (x, 1)));
8673 if (GET_CODE (x) != ASHIFTRT)
8674 return force_to_mode (x, mode, mask, next_select);
8675 }
8676
8677 else if ((i = exact_log2 (mask)) >= 0)
8678 {
8679 x = simplify_shift_const
8680 (NULL_RTX, LSHIFTRT, GET_MODE (x), XEXP (x, 0),
8681 GET_MODE_PRECISION (GET_MODE (x)) - 1 - i);
8682
8683 if (GET_CODE (x) != ASHIFTRT)
8684 return force_to_mode (x, mode, mask, next_select);
8685 }
8686 }
8687
8688 /* If MASK is 1, convert this to an LSHIFTRT. This can be done
8689 even if the shift count isn't a constant. */
8690 if (mask == 1)
8691 x = simplify_gen_binary (LSHIFTRT, GET_MODE (x),
8692 XEXP (x, 0), XEXP (x, 1));
8693
8694 shiftrt:
8695
8696 /* If this is a zero- or sign-extension operation that just affects bits
8697 we don't care about, remove it. Be sure the call above returned
8698 something that is still a shift. */
8699
8700 if ((GET_CODE (x) == LSHIFTRT || GET_CODE (x) == ASHIFTRT)
8701 && CONST_INT_P (XEXP (x, 1))
8702 && INTVAL (XEXP (x, 1)) >= 0
8703 && (INTVAL (XEXP (x, 1))
8704 <= GET_MODE_PRECISION (GET_MODE (x)) - (floor_log2 (mask) + 1))
8705 && GET_CODE (XEXP (x, 0)) == ASHIFT
8706 && XEXP (XEXP (x, 0), 1) == XEXP (x, 1))
8707 return force_to_mode (XEXP (XEXP (x, 0), 0), mode, mask,
8708 next_select);
8709
8710 break;
8711
8712 case ROTATE:
8713 case ROTATERT:
8714 /* If the shift count is constant and we can do computations
8715 in the mode of X, compute where the bits we care about are.
8716 Otherwise, we can't do anything. Don't change the mode of
8717 the shift or propagate MODE into the shift, though. */
8718 if (CONST_INT_P (XEXP (x, 1))
8719 && INTVAL (XEXP (x, 1)) >= 0)
8720 {
8721 temp = simplify_binary_operation (code == ROTATE ? ROTATERT : ROTATE,
8722 GET_MODE (x),
8723 gen_int_mode (mask, GET_MODE (x)),
8724 XEXP (x, 1));
8725 if (temp && CONST_INT_P (temp))
8726 x = simplify_gen_binary (code, GET_MODE (x),
8727 force_to_mode (XEXP (x, 0), GET_MODE (x),
8728 INTVAL (temp), next_select),
8729 XEXP (x, 1));
8730 }
8731 break;
8732
8733 case NEG:
8734 /* If we just want the low-order bit, the NEG isn't needed since it
8735 won't change the low-order bit. */
8736 if (mask == 1)
8737 return force_to_mode (XEXP (x, 0), mode, mask, just_select);
8738
8739 /* We need any bits less significant than the most significant bit in
8740 MASK since carries from those bits will affect the bits we are
8741 interested in. */
8742 mask = fuller_mask;
8743 goto unop;
8744
8745 case NOT:
8746 /* (not FOO) is (xor FOO CONST), so if FOO is an LSHIFTRT, we can do the
8747 same as the XOR case above. Ensure that the constant we form is not
8748 wider than the mode of X. */
8749
8750 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
8751 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
8752 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
8753 && (INTVAL (XEXP (XEXP (x, 0), 1)) + floor_log2 (mask)
8754 < GET_MODE_PRECISION (GET_MODE (x)))
8755 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT)
8756 {
8757 temp = gen_int_mode (mask << INTVAL (XEXP (XEXP (x, 0), 1)),
8758 GET_MODE (x));
8759 temp = simplify_gen_binary (XOR, GET_MODE (x),
8760 XEXP (XEXP (x, 0), 0), temp);
8761 x = simplify_gen_binary (LSHIFTRT, GET_MODE (x),
8762 temp, XEXP (XEXP (x, 0), 1));
8763
8764 return force_to_mode (x, mode, mask, next_select);
8765 }
8766
8767 /* (and (not FOO) CONST) is (not (or FOO (not CONST))), so we must
8768 use the full mask inside the NOT. */
8769 mask = fuller_mask;
8770
8771 unop:
8772 op0 = gen_lowpart_or_truncate (op_mode,
8773 force_to_mode (XEXP (x, 0), mode, mask,
8774 next_select));
8775 if (op_mode != GET_MODE (x) || op0 != XEXP (x, 0))
8776 x = simplify_gen_unary (code, op_mode, op0, op_mode);
8777 break;
8778
8779 case NE:
8780 /* (and (ne FOO 0) CONST) can be (and FOO CONST) if CONST is included
8781 in STORE_FLAG_VALUE and FOO has a single bit that might be nonzero,
8782 which is equal to STORE_FLAG_VALUE. */
8783 if ((mask & ~STORE_FLAG_VALUE) == 0
8784 && XEXP (x, 1) == const0_rtx
8785 && GET_MODE (XEXP (x, 0)) == mode
8786 && exact_log2 (nonzero_bits (XEXP (x, 0), mode)) >= 0
8787 && (nonzero_bits (XEXP (x, 0), mode)
8788 == (unsigned HOST_WIDE_INT) STORE_FLAG_VALUE))
8789 return force_to_mode (XEXP (x, 0), mode, mask, next_select);
8790
8791 break;
8792
8793 case IF_THEN_ELSE:
8794 /* We have no way of knowing if the IF_THEN_ELSE can itself be
8795 written in a narrower mode. We play it safe and do not do so. */
8796
8797 op0 = gen_lowpart_or_truncate (GET_MODE (x),
8798 force_to_mode (XEXP (x, 1), mode,
8799 mask, next_select));
8800 op1 = gen_lowpart_or_truncate (GET_MODE (x),
8801 force_to_mode (XEXP (x, 2), mode,
8802 mask, next_select));
8803 if (op0 != XEXP (x, 1) || op1 != XEXP (x, 2))
8804 x = simplify_gen_ternary (IF_THEN_ELSE, GET_MODE (x),
8805 GET_MODE (XEXP (x, 0)), XEXP (x, 0),
8806 op0, op1);
8807 break;
8808
8809 default:
8810 break;
8811 }
8812
8813 /* Ensure we return a value of the proper mode. */
8814 return gen_lowpart_or_truncate (mode, x);
8815 }
8816 \f
8817 /* Return nonzero if X is an expression that has one of two values depending on
8818 whether some other value is zero or nonzero. In that case, we return the
8819 value that is being tested, *PTRUE is set to the value if the rtx being
8820 returned has a nonzero value, and *PFALSE is set to the other alternative.
8821
8822 If we return zero, we set *PTRUE and *PFALSE to X. */
8823
8824 static rtx
8825 if_then_else_cond (rtx x, rtx *ptrue, rtx *pfalse)
8826 {
8827 machine_mode mode = GET_MODE (x);
8828 enum rtx_code code = GET_CODE (x);
8829 rtx cond0, cond1, true0, true1, false0, false1;
8830 unsigned HOST_WIDE_INT nz;
8831
8832 /* If we are comparing a value against zero, we are done. */
8833 if ((code == NE || code == EQ)
8834 && XEXP (x, 1) == const0_rtx)
8835 {
8836 *ptrue = (code == NE) ? const_true_rtx : const0_rtx;
8837 *pfalse = (code == NE) ? const0_rtx : const_true_rtx;
8838 return XEXP (x, 0);
8839 }
8840
8841 /* If this is a unary operation whose operand has one of two values, apply
8842 our opcode to compute those values. */
8843 else if (UNARY_P (x)
8844 && (cond0 = if_then_else_cond (XEXP (x, 0), &true0, &false0)) != 0)
8845 {
8846 *ptrue = simplify_gen_unary (code, mode, true0, GET_MODE (XEXP (x, 0)));
8847 *pfalse = simplify_gen_unary (code, mode, false0,
8848 GET_MODE (XEXP (x, 0)));
8849 return cond0;
8850 }
8851
8852 /* If this is a COMPARE, do nothing, since the IF_THEN_ELSE we would
8853 make can't possibly match and would suppress other optimizations. */
8854 else if (code == COMPARE)
8855 ;
8856
8857 /* If this is a binary operation, see if either side has only one of two
8858 values. If either one does or if both do and they are conditional on
8859 the same value, compute the new true and false values. */
8860 else if (BINARY_P (x))
8861 {
8862 cond0 = if_then_else_cond (XEXP (x, 0), &true0, &false0);
8863 cond1 = if_then_else_cond (XEXP (x, 1), &true1, &false1);
8864
8865 if ((cond0 != 0 || cond1 != 0)
8866 && ! (cond0 != 0 && cond1 != 0 && ! rtx_equal_p (cond0, cond1)))
8867 {
8868 /* If if_then_else_cond returned zero, then true/false are the
8869 same rtl. We must copy one of them to prevent invalid rtl
8870 sharing. */
8871 if (cond0 == 0)
8872 true0 = copy_rtx (true0);
8873 else if (cond1 == 0)
8874 true1 = copy_rtx (true1);
8875
8876 if (COMPARISON_P (x))
8877 {
8878 *ptrue = simplify_gen_relational (code, mode, VOIDmode,
8879 true0, true1);
8880 *pfalse = simplify_gen_relational (code, mode, VOIDmode,
8881 false0, false1);
8882 }
8883 else
8884 {
8885 *ptrue = simplify_gen_binary (code, mode, true0, true1);
8886 *pfalse = simplify_gen_binary (code, mode, false0, false1);
8887 }
8888
8889 return cond0 ? cond0 : cond1;
8890 }
8891
8892 /* See if we have PLUS, IOR, XOR, MINUS or UMAX, where one of the
8893 operands is zero when the other is nonzero, and vice-versa,
8894 and STORE_FLAG_VALUE is 1 or -1. */
8895
8896 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
8897 && (code == PLUS || code == IOR || code == XOR || code == MINUS
8898 || code == UMAX)
8899 && GET_CODE (XEXP (x, 0)) == MULT && GET_CODE (XEXP (x, 1)) == MULT)
8900 {
8901 rtx op0 = XEXP (XEXP (x, 0), 1);
8902 rtx op1 = XEXP (XEXP (x, 1), 1);
8903
8904 cond0 = XEXP (XEXP (x, 0), 0);
8905 cond1 = XEXP (XEXP (x, 1), 0);
8906
8907 if (COMPARISON_P (cond0)
8908 && COMPARISON_P (cond1)
8909 && ((GET_CODE (cond0) == reversed_comparison_code (cond1, NULL)
8910 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 0))
8911 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 1)))
8912 || ((swap_condition (GET_CODE (cond0))
8913 == reversed_comparison_code (cond1, NULL))
8914 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 1))
8915 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 0))))
8916 && ! side_effects_p (x))
8917 {
8918 *ptrue = simplify_gen_binary (MULT, mode, op0, const_true_rtx);
8919 *pfalse = simplify_gen_binary (MULT, mode,
8920 (code == MINUS
8921 ? simplify_gen_unary (NEG, mode,
8922 op1, mode)
8923 : op1),
8924 const_true_rtx);
8925 return cond0;
8926 }
8927 }
8928
8929 /* Similarly for MULT, AND and UMIN, except that for these the result
8930 is always zero. */
8931 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
8932 && (code == MULT || code == AND || code == UMIN)
8933 && GET_CODE (XEXP (x, 0)) == MULT && GET_CODE (XEXP (x, 1)) == MULT)
8934 {
8935 cond0 = XEXP (XEXP (x, 0), 0);
8936 cond1 = XEXP (XEXP (x, 1), 0);
8937
8938 if (COMPARISON_P (cond0)
8939 && COMPARISON_P (cond1)
8940 && ((GET_CODE (cond0) == reversed_comparison_code (cond1, NULL)
8941 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 0))
8942 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 1)))
8943 || ((swap_condition (GET_CODE (cond0))
8944 == reversed_comparison_code (cond1, NULL))
8945 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 1))
8946 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 0))))
8947 && ! side_effects_p (x))
8948 {
8949 *ptrue = *pfalse = const0_rtx;
8950 return cond0;
8951 }
8952 }
8953 }
8954
8955 else if (code == IF_THEN_ELSE)
8956 {
8957 /* If we have IF_THEN_ELSE already, extract the condition and
8958 canonicalize it if it is NE or EQ. */
8959 cond0 = XEXP (x, 0);
8960 *ptrue = XEXP (x, 1), *pfalse = XEXP (x, 2);
8961 if (GET_CODE (cond0) == NE && XEXP (cond0, 1) == const0_rtx)
8962 return XEXP (cond0, 0);
8963 else if (GET_CODE (cond0) == EQ && XEXP (cond0, 1) == const0_rtx)
8964 {
8965 *ptrue = XEXP (x, 2), *pfalse = XEXP (x, 1);
8966 return XEXP (cond0, 0);
8967 }
8968 else
8969 return cond0;
8970 }
8971
8972 /* If X is a SUBREG, we can narrow both the true and false values
8973 if the inner expression, if there is a condition. */
8974 else if (code == SUBREG
8975 && 0 != (cond0 = if_then_else_cond (SUBREG_REG (x),
8976 &true0, &false0)))
8977 {
8978 true0 = simplify_gen_subreg (mode, true0,
8979 GET_MODE (SUBREG_REG (x)), SUBREG_BYTE (x));
8980 false0 = simplify_gen_subreg (mode, false0,
8981 GET_MODE (SUBREG_REG (x)), SUBREG_BYTE (x));
8982 if (true0 && false0)
8983 {
8984 *ptrue = true0;
8985 *pfalse = false0;
8986 return cond0;
8987 }
8988 }
8989
8990 /* If X is a constant, this isn't special and will cause confusions
8991 if we treat it as such. Likewise if it is equivalent to a constant. */
8992 else if (CONSTANT_P (x)
8993 || ((cond0 = get_last_value (x)) != 0 && CONSTANT_P (cond0)))
8994 ;
8995
8996 /* If we're in BImode, canonicalize on 0 and STORE_FLAG_VALUE, as that
8997 will be least confusing to the rest of the compiler. */
8998 else if (mode == BImode)
8999 {
9000 *ptrue = GEN_INT (STORE_FLAG_VALUE), *pfalse = const0_rtx;
9001 return x;
9002 }
9003
9004 /* If X is known to be either 0 or -1, those are the true and
9005 false values when testing X. */
9006 else if (x == constm1_rtx || x == const0_rtx
9007 || (mode != VOIDmode
9008 && num_sign_bit_copies (x, mode) == GET_MODE_PRECISION (mode)))
9009 {
9010 *ptrue = constm1_rtx, *pfalse = const0_rtx;
9011 return x;
9012 }
9013
9014 /* Likewise for 0 or a single bit. */
9015 else if (HWI_COMPUTABLE_MODE_P (mode)
9016 && exact_log2 (nz = nonzero_bits (x, mode)) >= 0)
9017 {
9018 *ptrue = gen_int_mode (nz, mode), *pfalse = const0_rtx;
9019 return x;
9020 }
9021
9022 /* Otherwise fail; show no condition with true and false values the same. */
9023 *ptrue = *pfalse = x;
9024 return 0;
9025 }
9026 \f
9027 /* Return the value of expression X given the fact that condition COND
9028 is known to be true when applied to REG as its first operand and VAL
9029 as its second. X is known to not be shared and so can be modified in
9030 place.
9031
9032 We only handle the simplest cases, and specifically those cases that
9033 arise with IF_THEN_ELSE expressions. */
9034
9035 static rtx
9036 known_cond (rtx x, enum rtx_code cond, rtx reg, rtx val)
9037 {
9038 enum rtx_code code = GET_CODE (x);
9039 const char *fmt;
9040 int i, j;
9041
9042 if (side_effects_p (x))
9043 return x;
9044
9045 /* If either operand of the condition is a floating point value,
9046 then we have to avoid collapsing an EQ comparison. */
9047 if (cond == EQ
9048 && rtx_equal_p (x, reg)
9049 && ! FLOAT_MODE_P (GET_MODE (x))
9050 && ! FLOAT_MODE_P (GET_MODE (val)))
9051 return val;
9052
9053 if (cond == UNEQ && rtx_equal_p (x, reg))
9054 return val;
9055
9056 /* If X is (abs REG) and we know something about REG's relationship
9057 with zero, we may be able to simplify this. */
9058
9059 if (code == ABS && rtx_equal_p (XEXP (x, 0), reg) && val == const0_rtx)
9060 switch (cond)
9061 {
9062 case GE: case GT: case EQ:
9063 return XEXP (x, 0);
9064 case LT: case LE:
9065 return simplify_gen_unary (NEG, GET_MODE (XEXP (x, 0)),
9066 XEXP (x, 0),
9067 GET_MODE (XEXP (x, 0)));
9068 default:
9069 break;
9070 }
9071
9072 /* The only other cases we handle are MIN, MAX, and comparisons if the
9073 operands are the same as REG and VAL. */
9074
9075 else if (COMPARISON_P (x) || COMMUTATIVE_ARITH_P (x))
9076 {
9077 if (rtx_equal_p (XEXP (x, 0), val))
9078 {
9079 std::swap (val, reg);
9080 cond = swap_condition (cond);
9081 }
9082
9083 if (rtx_equal_p (XEXP (x, 0), reg) && rtx_equal_p (XEXP (x, 1), val))
9084 {
9085 if (COMPARISON_P (x))
9086 {
9087 if (comparison_dominates_p (cond, code))
9088 return const_true_rtx;
9089
9090 code = reversed_comparison_code (x, NULL);
9091 if (code != UNKNOWN
9092 && comparison_dominates_p (cond, code))
9093 return const0_rtx;
9094 else
9095 return x;
9096 }
9097 else if (code == SMAX || code == SMIN
9098 || code == UMIN || code == UMAX)
9099 {
9100 int unsignedp = (code == UMIN || code == UMAX);
9101
9102 /* Do not reverse the condition when it is NE or EQ.
9103 This is because we cannot conclude anything about
9104 the value of 'SMAX (x, y)' when x is not equal to y,
9105 but we can when x equals y. */
9106 if ((code == SMAX || code == UMAX)
9107 && ! (cond == EQ || cond == NE))
9108 cond = reverse_condition (cond);
9109
9110 switch (cond)
9111 {
9112 case GE: case GT:
9113 return unsignedp ? x : XEXP (x, 1);
9114 case LE: case LT:
9115 return unsignedp ? x : XEXP (x, 0);
9116 case GEU: case GTU:
9117 return unsignedp ? XEXP (x, 1) : x;
9118 case LEU: case LTU:
9119 return unsignedp ? XEXP (x, 0) : x;
9120 default:
9121 break;
9122 }
9123 }
9124 }
9125 }
9126 else if (code == SUBREG)
9127 {
9128 machine_mode inner_mode = GET_MODE (SUBREG_REG (x));
9129 rtx new_rtx, r = known_cond (SUBREG_REG (x), cond, reg, val);
9130
9131 if (SUBREG_REG (x) != r)
9132 {
9133 /* We must simplify subreg here, before we lose track of the
9134 original inner_mode. */
9135 new_rtx = simplify_subreg (GET_MODE (x), r,
9136 inner_mode, SUBREG_BYTE (x));
9137 if (new_rtx)
9138 return new_rtx;
9139 else
9140 SUBST (SUBREG_REG (x), r);
9141 }
9142
9143 return x;
9144 }
9145 /* We don't have to handle SIGN_EXTEND here, because even in the
9146 case of replacing something with a modeless CONST_INT, a
9147 CONST_INT is already (supposed to be) a valid sign extension for
9148 its narrower mode, which implies it's already properly
9149 sign-extended for the wider mode. Now, for ZERO_EXTEND, the
9150 story is different. */
9151 else if (code == ZERO_EXTEND)
9152 {
9153 machine_mode inner_mode = GET_MODE (XEXP (x, 0));
9154 rtx new_rtx, r = known_cond (XEXP (x, 0), cond, reg, val);
9155
9156 if (XEXP (x, 0) != r)
9157 {
9158 /* We must simplify the zero_extend here, before we lose
9159 track of the original inner_mode. */
9160 new_rtx = simplify_unary_operation (ZERO_EXTEND, GET_MODE (x),
9161 r, inner_mode);
9162 if (new_rtx)
9163 return new_rtx;
9164 else
9165 SUBST (XEXP (x, 0), r);
9166 }
9167
9168 return x;
9169 }
9170
9171 fmt = GET_RTX_FORMAT (code);
9172 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
9173 {
9174 if (fmt[i] == 'e')
9175 SUBST (XEXP (x, i), known_cond (XEXP (x, i), cond, reg, val));
9176 else if (fmt[i] == 'E')
9177 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
9178 SUBST (XVECEXP (x, i, j), known_cond (XVECEXP (x, i, j),
9179 cond, reg, val));
9180 }
9181
9182 return x;
9183 }
9184 \f
9185 /* See if X and Y are equal for the purposes of seeing if we can rewrite an
9186 assignment as a field assignment. */
9187
9188 static int
9189 rtx_equal_for_field_assignment_p (rtx x, rtx y, bool widen_x)
9190 {
9191 if (widen_x && GET_MODE (x) != GET_MODE (y))
9192 {
9193 if (GET_MODE_SIZE (GET_MODE (x)) > GET_MODE_SIZE (GET_MODE (y)))
9194 return 0;
9195 if (BYTES_BIG_ENDIAN != WORDS_BIG_ENDIAN)
9196 return 0;
9197 /* For big endian, adjust the memory offset. */
9198 if (BYTES_BIG_ENDIAN)
9199 x = adjust_address_nv (x, GET_MODE (y),
9200 -subreg_lowpart_offset (GET_MODE (x),
9201 GET_MODE (y)));
9202 else
9203 x = adjust_address_nv (x, GET_MODE (y), 0);
9204 }
9205
9206 if (x == y || rtx_equal_p (x, y))
9207 return 1;
9208
9209 if (x == 0 || y == 0 || GET_MODE (x) != GET_MODE (y))
9210 return 0;
9211
9212 /* Check for a paradoxical SUBREG of a MEM compared with the MEM.
9213 Note that all SUBREGs of MEM are paradoxical; otherwise they
9214 would have been rewritten. */
9215 if (MEM_P (x) && GET_CODE (y) == SUBREG
9216 && MEM_P (SUBREG_REG (y))
9217 && rtx_equal_p (SUBREG_REG (y),
9218 gen_lowpart (GET_MODE (SUBREG_REG (y)), x)))
9219 return 1;
9220
9221 if (MEM_P (y) && GET_CODE (x) == SUBREG
9222 && MEM_P (SUBREG_REG (x))
9223 && rtx_equal_p (SUBREG_REG (x),
9224 gen_lowpart (GET_MODE (SUBREG_REG (x)), y)))
9225 return 1;
9226
9227 /* We used to see if get_last_value of X and Y were the same but that's
9228 not correct. In one direction, we'll cause the assignment to have
9229 the wrong destination and in the case, we'll import a register into this
9230 insn that might have already have been dead. So fail if none of the
9231 above cases are true. */
9232 return 0;
9233 }
9234 \f
9235 /* See if X, a SET operation, can be rewritten as a bit-field assignment.
9236 Return that assignment if so.
9237
9238 We only handle the most common cases. */
9239
9240 static rtx
9241 make_field_assignment (rtx x)
9242 {
9243 rtx dest = SET_DEST (x);
9244 rtx src = SET_SRC (x);
9245 rtx assign;
9246 rtx rhs, lhs;
9247 HOST_WIDE_INT c1;
9248 HOST_WIDE_INT pos;
9249 unsigned HOST_WIDE_INT len;
9250 rtx other;
9251 machine_mode mode;
9252
9253 /* If SRC was (and (not (ashift (const_int 1) POS)) DEST), this is
9254 a clear of a one-bit field. We will have changed it to
9255 (and (rotate (const_int -2) POS) DEST), so check for that. Also check
9256 for a SUBREG. */
9257
9258 if (GET_CODE (src) == AND && GET_CODE (XEXP (src, 0)) == ROTATE
9259 && CONST_INT_P (XEXP (XEXP (src, 0), 0))
9260 && INTVAL (XEXP (XEXP (src, 0), 0)) == -2
9261 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
9262 {
9263 assign = make_extraction (VOIDmode, dest, 0, XEXP (XEXP (src, 0), 1),
9264 1, 1, 1, 0);
9265 if (assign != 0)
9266 return gen_rtx_SET (assign, const0_rtx);
9267 return x;
9268 }
9269
9270 if (GET_CODE (src) == AND && GET_CODE (XEXP (src, 0)) == SUBREG
9271 && subreg_lowpart_p (XEXP (src, 0))
9272 && (GET_MODE_SIZE (GET_MODE (XEXP (src, 0)))
9273 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (XEXP (src, 0)))))
9274 && GET_CODE (SUBREG_REG (XEXP (src, 0))) == ROTATE
9275 && CONST_INT_P (XEXP (SUBREG_REG (XEXP (src, 0)), 0))
9276 && INTVAL (XEXP (SUBREG_REG (XEXP (src, 0)), 0)) == -2
9277 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
9278 {
9279 assign = make_extraction (VOIDmode, dest, 0,
9280 XEXP (SUBREG_REG (XEXP (src, 0)), 1),
9281 1, 1, 1, 0);
9282 if (assign != 0)
9283 return gen_rtx_SET (assign, const0_rtx);
9284 return x;
9285 }
9286
9287 /* If SRC is (ior (ashift (const_int 1) POS) DEST), this is a set of a
9288 one-bit field. */
9289 if (GET_CODE (src) == IOR && GET_CODE (XEXP (src, 0)) == ASHIFT
9290 && XEXP (XEXP (src, 0), 0) == const1_rtx
9291 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
9292 {
9293 assign = make_extraction (VOIDmode, dest, 0, XEXP (XEXP (src, 0), 1),
9294 1, 1, 1, 0);
9295 if (assign != 0)
9296 return gen_rtx_SET (assign, const1_rtx);
9297 return x;
9298 }
9299
9300 /* If DEST is already a field assignment, i.e. ZERO_EXTRACT, and the
9301 SRC is an AND with all bits of that field set, then we can discard
9302 the AND. */
9303 if (GET_CODE (dest) == ZERO_EXTRACT
9304 && CONST_INT_P (XEXP (dest, 1))
9305 && GET_CODE (src) == AND
9306 && CONST_INT_P (XEXP (src, 1)))
9307 {
9308 HOST_WIDE_INT width = INTVAL (XEXP (dest, 1));
9309 unsigned HOST_WIDE_INT and_mask = INTVAL (XEXP (src, 1));
9310 unsigned HOST_WIDE_INT ze_mask;
9311
9312 if (width >= HOST_BITS_PER_WIDE_INT)
9313 ze_mask = -1;
9314 else
9315 ze_mask = ((unsigned HOST_WIDE_INT)1 << width) - 1;
9316
9317 /* Complete overlap. We can remove the source AND. */
9318 if ((and_mask & ze_mask) == ze_mask)
9319 return gen_rtx_SET (dest, XEXP (src, 0));
9320
9321 /* Partial overlap. We can reduce the source AND. */
9322 if ((and_mask & ze_mask) != and_mask)
9323 {
9324 mode = GET_MODE (src);
9325 src = gen_rtx_AND (mode, XEXP (src, 0),
9326 gen_int_mode (and_mask & ze_mask, mode));
9327 return gen_rtx_SET (dest, src);
9328 }
9329 }
9330
9331 /* The other case we handle is assignments into a constant-position
9332 field. They look like (ior/xor (and DEST C1) OTHER). If C1 represents
9333 a mask that has all one bits except for a group of zero bits and
9334 OTHER is known to have zeros where C1 has ones, this is such an
9335 assignment. Compute the position and length from C1. Shift OTHER
9336 to the appropriate position, force it to the required mode, and
9337 make the extraction. Check for the AND in both operands. */
9338
9339 /* One or more SUBREGs might obscure the constant-position field
9340 assignment. The first one we are likely to encounter is an outer
9341 narrowing SUBREG, which we can just strip for the purposes of
9342 identifying the constant-field assignment. */
9343 if (GET_CODE (src) == SUBREG && subreg_lowpart_p (src))
9344 src = SUBREG_REG (src);
9345
9346 if (GET_CODE (src) != IOR && GET_CODE (src) != XOR)
9347 return x;
9348
9349 rhs = expand_compound_operation (XEXP (src, 0));
9350 lhs = expand_compound_operation (XEXP (src, 1));
9351
9352 if (GET_CODE (rhs) == AND
9353 && CONST_INT_P (XEXP (rhs, 1))
9354 && rtx_equal_for_field_assignment_p (XEXP (rhs, 0), dest))
9355 c1 = INTVAL (XEXP (rhs, 1)), other = lhs;
9356 /* The second SUBREG that might get in the way is a paradoxical
9357 SUBREG around the first operand of the AND. We want to
9358 pretend the operand is as wide as the destination here. We
9359 do this by adjusting the MEM to wider mode for the sole
9360 purpose of the call to rtx_equal_for_field_assignment_p. Also
9361 note this trick only works for MEMs. */
9362 else if (GET_CODE (rhs) == AND
9363 && paradoxical_subreg_p (XEXP (rhs, 0))
9364 && MEM_P (SUBREG_REG (XEXP (rhs, 0)))
9365 && CONST_INT_P (XEXP (rhs, 1))
9366 && rtx_equal_for_field_assignment_p (SUBREG_REG (XEXP (rhs, 0)),
9367 dest, true))
9368 c1 = INTVAL (XEXP (rhs, 1)), other = lhs;
9369 else if (GET_CODE (lhs) == AND
9370 && CONST_INT_P (XEXP (lhs, 1))
9371 && rtx_equal_for_field_assignment_p (XEXP (lhs, 0), dest))
9372 c1 = INTVAL (XEXP (lhs, 1)), other = rhs;
9373 /* The second SUBREG that might get in the way is a paradoxical
9374 SUBREG around the first operand of the AND. We want to
9375 pretend the operand is as wide as the destination here. We
9376 do this by adjusting the MEM to wider mode for the sole
9377 purpose of the call to rtx_equal_for_field_assignment_p. Also
9378 note this trick only works for MEMs. */
9379 else if (GET_CODE (lhs) == AND
9380 && paradoxical_subreg_p (XEXP (lhs, 0))
9381 && MEM_P (SUBREG_REG (XEXP (lhs, 0)))
9382 && CONST_INT_P (XEXP (lhs, 1))
9383 && rtx_equal_for_field_assignment_p (SUBREG_REG (XEXP (lhs, 0)),
9384 dest, true))
9385 c1 = INTVAL (XEXP (lhs, 1)), other = rhs;
9386 else
9387 return x;
9388
9389 pos = get_pos_from_mask ((~c1) & GET_MODE_MASK (GET_MODE (dest)), &len);
9390 if (pos < 0 || pos + len > GET_MODE_PRECISION (GET_MODE (dest))
9391 || GET_MODE_PRECISION (GET_MODE (dest)) > HOST_BITS_PER_WIDE_INT
9392 || (c1 & nonzero_bits (other, GET_MODE (dest))) != 0)
9393 return x;
9394
9395 assign = make_extraction (VOIDmode, dest, pos, NULL_RTX, len, 1, 1, 0);
9396 if (assign == 0)
9397 return x;
9398
9399 /* The mode to use for the source is the mode of the assignment, or of
9400 what is inside a possible STRICT_LOW_PART. */
9401 mode = (GET_CODE (assign) == STRICT_LOW_PART
9402 ? GET_MODE (XEXP (assign, 0)) : GET_MODE (assign));
9403
9404 /* Shift OTHER right POS places and make it the source, restricting it
9405 to the proper length and mode. */
9406
9407 src = canon_reg_for_combine (simplify_shift_const (NULL_RTX, LSHIFTRT,
9408 GET_MODE (src),
9409 other, pos),
9410 dest);
9411 src = force_to_mode (src, mode,
9412 GET_MODE_PRECISION (mode) >= HOST_BITS_PER_WIDE_INT
9413 ? ~(unsigned HOST_WIDE_INT) 0
9414 : ((unsigned HOST_WIDE_INT) 1 << len) - 1,
9415 0);
9416
9417 /* If SRC is masked by an AND that does not make a difference in
9418 the value being stored, strip it. */
9419 if (GET_CODE (assign) == ZERO_EXTRACT
9420 && CONST_INT_P (XEXP (assign, 1))
9421 && INTVAL (XEXP (assign, 1)) < HOST_BITS_PER_WIDE_INT
9422 && GET_CODE (src) == AND
9423 && CONST_INT_P (XEXP (src, 1))
9424 && UINTVAL (XEXP (src, 1))
9425 == ((unsigned HOST_WIDE_INT) 1 << INTVAL (XEXP (assign, 1))) - 1)
9426 src = XEXP (src, 0);
9427
9428 return gen_rtx_SET (assign, src);
9429 }
9430 \f
9431 /* See if X is of the form (+ (* a c) (* b c)) and convert to (* (+ a b) c)
9432 if so. */
9433
9434 static rtx
9435 apply_distributive_law (rtx x)
9436 {
9437 enum rtx_code code = GET_CODE (x);
9438 enum rtx_code inner_code;
9439 rtx lhs, rhs, other;
9440 rtx tem;
9441
9442 /* Distributivity is not true for floating point as it can change the
9443 value. So we don't do it unless -funsafe-math-optimizations. */
9444 if (FLOAT_MODE_P (GET_MODE (x))
9445 && ! flag_unsafe_math_optimizations)
9446 return x;
9447
9448 /* The outer operation can only be one of the following: */
9449 if (code != IOR && code != AND && code != XOR
9450 && code != PLUS && code != MINUS)
9451 return x;
9452
9453 lhs = XEXP (x, 0);
9454 rhs = XEXP (x, 1);
9455
9456 /* If either operand is a primitive we can't do anything, so get out
9457 fast. */
9458 if (OBJECT_P (lhs) || OBJECT_P (rhs))
9459 return x;
9460
9461 lhs = expand_compound_operation (lhs);
9462 rhs = expand_compound_operation (rhs);
9463 inner_code = GET_CODE (lhs);
9464 if (inner_code != GET_CODE (rhs))
9465 return x;
9466
9467 /* See if the inner and outer operations distribute. */
9468 switch (inner_code)
9469 {
9470 case LSHIFTRT:
9471 case ASHIFTRT:
9472 case AND:
9473 case IOR:
9474 /* These all distribute except over PLUS. */
9475 if (code == PLUS || code == MINUS)
9476 return x;
9477 break;
9478
9479 case MULT:
9480 if (code != PLUS && code != MINUS)
9481 return x;
9482 break;
9483
9484 case ASHIFT:
9485 /* This is also a multiply, so it distributes over everything. */
9486 break;
9487
9488 /* This used to handle SUBREG, but this turned out to be counter-
9489 productive, since (subreg (op ...)) usually is not handled by
9490 insn patterns, and this "optimization" therefore transformed
9491 recognizable patterns into unrecognizable ones. Therefore the
9492 SUBREG case was removed from here.
9493
9494 It is possible that distributing SUBREG over arithmetic operations
9495 leads to an intermediate result than can then be optimized further,
9496 e.g. by moving the outer SUBREG to the other side of a SET as done
9497 in simplify_set. This seems to have been the original intent of
9498 handling SUBREGs here.
9499
9500 However, with current GCC this does not appear to actually happen,
9501 at least on major platforms. If some case is found where removing
9502 the SUBREG case here prevents follow-on optimizations, distributing
9503 SUBREGs ought to be re-added at that place, e.g. in simplify_set. */
9504
9505 default:
9506 return x;
9507 }
9508
9509 /* Set LHS and RHS to the inner operands (A and B in the example
9510 above) and set OTHER to the common operand (C in the example).
9511 There is only one way to do this unless the inner operation is
9512 commutative. */
9513 if (COMMUTATIVE_ARITH_P (lhs)
9514 && rtx_equal_p (XEXP (lhs, 0), XEXP (rhs, 0)))
9515 other = XEXP (lhs, 0), lhs = XEXP (lhs, 1), rhs = XEXP (rhs, 1);
9516 else if (COMMUTATIVE_ARITH_P (lhs)
9517 && rtx_equal_p (XEXP (lhs, 0), XEXP (rhs, 1)))
9518 other = XEXP (lhs, 0), lhs = XEXP (lhs, 1), rhs = XEXP (rhs, 0);
9519 else if (COMMUTATIVE_ARITH_P (lhs)
9520 && rtx_equal_p (XEXP (lhs, 1), XEXP (rhs, 0)))
9521 other = XEXP (lhs, 1), lhs = XEXP (lhs, 0), rhs = XEXP (rhs, 1);
9522 else if (rtx_equal_p (XEXP (lhs, 1), XEXP (rhs, 1)))
9523 other = XEXP (lhs, 1), lhs = XEXP (lhs, 0), rhs = XEXP (rhs, 0);
9524 else
9525 return x;
9526
9527 /* Form the new inner operation, seeing if it simplifies first. */
9528 tem = simplify_gen_binary (code, GET_MODE (x), lhs, rhs);
9529
9530 /* There is one exception to the general way of distributing:
9531 (a | c) ^ (b | c) -> (a ^ b) & ~c */
9532 if (code == XOR && inner_code == IOR)
9533 {
9534 inner_code = AND;
9535 other = simplify_gen_unary (NOT, GET_MODE (x), other, GET_MODE (x));
9536 }
9537
9538 /* We may be able to continuing distributing the result, so call
9539 ourselves recursively on the inner operation before forming the
9540 outer operation, which we return. */
9541 return simplify_gen_binary (inner_code, GET_MODE (x),
9542 apply_distributive_law (tem), other);
9543 }
9544
9545 /* See if X is of the form (* (+ A B) C), and if so convert to
9546 (+ (* A C) (* B C)) and try to simplify.
9547
9548 Most of the time, this results in no change. However, if some of
9549 the operands are the same or inverses of each other, simplifications
9550 will result.
9551
9552 For example, (and (ior A B) (not B)) can occur as the result of
9553 expanding a bit field assignment. When we apply the distributive
9554 law to this, we get (ior (and (A (not B))) (and (B (not B)))),
9555 which then simplifies to (and (A (not B))).
9556
9557 Note that no checks happen on the validity of applying the inverse
9558 distributive law. This is pointless since we can do it in the
9559 few places where this routine is called.
9560
9561 N is the index of the term that is decomposed (the arithmetic operation,
9562 i.e. (+ A B) in the first example above). !N is the index of the term that
9563 is distributed, i.e. of C in the first example above. */
9564 static rtx
9565 distribute_and_simplify_rtx (rtx x, int n)
9566 {
9567 machine_mode mode;
9568 enum rtx_code outer_code, inner_code;
9569 rtx decomposed, distributed, inner_op0, inner_op1, new_op0, new_op1, tmp;
9570
9571 /* Distributivity is not true for floating point as it can change the
9572 value. So we don't do it unless -funsafe-math-optimizations. */
9573 if (FLOAT_MODE_P (GET_MODE (x))
9574 && ! flag_unsafe_math_optimizations)
9575 return NULL_RTX;
9576
9577 decomposed = XEXP (x, n);
9578 if (!ARITHMETIC_P (decomposed))
9579 return NULL_RTX;
9580
9581 mode = GET_MODE (x);
9582 outer_code = GET_CODE (x);
9583 distributed = XEXP (x, !n);
9584
9585 inner_code = GET_CODE (decomposed);
9586 inner_op0 = XEXP (decomposed, 0);
9587 inner_op1 = XEXP (decomposed, 1);
9588
9589 /* Special case (and (xor B C) (not A)), which is equivalent to
9590 (xor (ior A B) (ior A C)) */
9591 if (outer_code == AND && inner_code == XOR && GET_CODE (distributed) == NOT)
9592 {
9593 distributed = XEXP (distributed, 0);
9594 outer_code = IOR;
9595 }
9596
9597 if (n == 0)
9598 {
9599 /* Distribute the second term. */
9600 new_op0 = simplify_gen_binary (outer_code, mode, inner_op0, distributed);
9601 new_op1 = simplify_gen_binary (outer_code, mode, inner_op1, distributed);
9602 }
9603 else
9604 {
9605 /* Distribute the first term. */
9606 new_op0 = simplify_gen_binary (outer_code, mode, distributed, inner_op0);
9607 new_op1 = simplify_gen_binary (outer_code, mode, distributed, inner_op1);
9608 }
9609
9610 tmp = apply_distributive_law (simplify_gen_binary (inner_code, mode,
9611 new_op0, new_op1));
9612 if (GET_CODE (tmp) != outer_code
9613 && (set_src_cost (tmp, mode, optimize_this_for_speed_p)
9614 < set_src_cost (x, mode, optimize_this_for_speed_p)))
9615 return tmp;
9616
9617 return NULL_RTX;
9618 }
9619 \f
9620 /* Simplify a logical `and' of VAROP with the constant CONSTOP, to be done
9621 in MODE. Return an equivalent form, if different from (and VAROP
9622 (const_int CONSTOP)). Otherwise, return NULL_RTX. */
9623
9624 static rtx
9625 simplify_and_const_int_1 (machine_mode mode, rtx varop,
9626 unsigned HOST_WIDE_INT constop)
9627 {
9628 unsigned HOST_WIDE_INT nonzero;
9629 unsigned HOST_WIDE_INT orig_constop;
9630 rtx orig_varop;
9631 int i;
9632
9633 orig_varop = varop;
9634 orig_constop = constop;
9635 if (GET_CODE (varop) == CLOBBER)
9636 return NULL_RTX;
9637
9638 /* Simplify VAROP knowing that we will be only looking at some of the
9639 bits in it.
9640
9641 Note by passing in CONSTOP, we guarantee that the bits not set in
9642 CONSTOP are not significant and will never be examined. We must
9643 ensure that is the case by explicitly masking out those bits
9644 before returning. */
9645 varop = force_to_mode (varop, mode, constop, 0);
9646
9647 /* If VAROP is a CLOBBER, we will fail so return it. */
9648 if (GET_CODE (varop) == CLOBBER)
9649 return varop;
9650
9651 /* If VAROP is a CONST_INT, then we need to apply the mask in CONSTOP
9652 to VAROP and return the new constant. */
9653 if (CONST_INT_P (varop))
9654 return gen_int_mode (INTVAL (varop) & constop, mode);
9655
9656 /* See what bits may be nonzero in VAROP. Unlike the general case of
9657 a call to nonzero_bits, here we don't care about bits outside
9658 MODE. */
9659
9660 nonzero = nonzero_bits (varop, mode) & GET_MODE_MASK (mode);
9661
9662 /* Turn off all bits in the constant that are known to already be zero.
9663 Thus, if the AND isn't needed at all, we will have CONSTOP == NONZERO_BITS
9664 which is tested below. */
9665
9666 constop &= nonzero;
9667
9668 /* If we don't have any bits left, return zero. */
9669 if (constop == 0)
9670 return const0_rtx;
9671
9672 /* If VAROP is a NEG of something known to be zero or 1 and CONSTOP is
9673 a power of two, we can replace this with an ASHIFT. */
9674 if (GET_CODE (varop) == NEG && nonzero_bits (XEXP (varop, 0), mode) == 1
9675 && (i = exact_log2 (constop)) >= 0)
9676 return simplify_shift_const (NULL_RTX, ASHIFT, mode, XEXP (varop, 0), i);
9677
9678 /* If VAROP is an IOR or XOR, apply the AND to both branches of the IOR
9679 or XOR, then try to apply the distributive law. This may eliminate
9680 operations if either branch can be simplified because of the AND.
9681 It may also make some cases more complex, but those cases probably
9682 won't match a pattern either with or without this. */
9683
9684 if (GET_CODE (varop) == IOR || GET_CODE (varop) == XOR)
9685 return
9686 gen_lowpart
9687 (mode,
9688 apply_distributive_law
9689 (simplify_gen_binary (GET_CODE (varop), GET_MODE (varop),
9690 simplify_and_const_int (NULL_RTX,
9691 GET_MODE (varop),
9692 XEXP (varop, 0),
9693 constop),
9694 simplify_and_const_int (NULL_RTX,
9695 GET_MODE (varop),
9696 XEXP (varop, 1),
9697 constop))));
9698
9699 /* If VAROP is PLUS, and the constant is a mask of low bits, distribute
9700 the AND and see if one of the operands simplifies to zero. If so, we
9701 may eliminate it. */
9702
9703 if (GET_CODE (varop) == PLUS
9704 && exact_log2 (constop + 1) >= 0)
9705 {
9706 rtx o0, o1;
9707
9708 o0 = simplify_and_const_int (NULL_RTX, mode, XEXP (varop, 0), constop);
9709 o1 = simplify_and_const_int (NULL_RTX, mode, XEXP (varop, 1), constop);
9710 if (o0 == const0_rtx)
9711 return o1;
9712 if (o1 == const0_rtx)
9713 return o0;
9714 }
9715
9716 /* Make a SUBREG if necessary. If we can't make it, fail. */
9717 varop = gen_lowpart (mode, varop);
9718 if (varop == NULL_RTX || GET_CODE (varop) == CLOBBER)
9719 return NULL_RTX;
9720
9721 /* If we are only masking insignificant bits, return VAROP. */
9722 if (constop == nonzero)
9723 return varop;
9724
9725 if (varop == orig_varop && constop == orig_constop)
9726 return NULL_RTX;
9727
9728 /* Otherwise, return an AND. */
9729 return simplify_gen_binary (AND, mode, varop, gen_int_mode (constop, mode));
9730 }
9731
9732
9733 /* We have X, a logical `and' of VAROP with the constant CONSTOP, to be done
9734 in MODE.
9735
9736 Return an equivalent form, if different from X. Otherwise, return X. If
9737 X is zero, we are to always construct the equivalent form. */
9738
9739 static rtx
9740 simplify_and_const_int (rtx x, machine_mode mode, rtx varop,
9741 unsigned HOST_WIDE_INT constop)
9742 {
9743 rtx tem = simplify_and_const_int_1 (mode, varop, constop);
9744 if (tem)
9745 return tem;
9746
9747 if (!x)
9748 x = simplify_gen_binary (AND, GET_MODE (varop), varop,
9749 gen_int_mode (constop, mode));
9750 if (GET_MODE (x) != mode)
9751 x = gen_lowpart (mode, x);
9752 return x;
9753 }
9754 \f
9755 /* Given a REG, X, compute which bits in X can be nonzero.
9756 We don't care about bits outside of those defined in MODE.
9757
9758 For most X this is simply GET_MODE_MASK (GET_MODE (MODE)), but if X is
9759 a shift, AND, or zero_extract, we can do better. */
9760
9761 static rtx
9762 reg_nonzero_bits_for_combine (const_rtx x, machine_mode mode,
9763 const_rtx known_x ATTRIBUTE_UNUSED,
9764 machine_mode known_mode ATTRIBUTE_UNUSED,
9765 unsigned HOST_WIDE_INT known_ret ATTRIBUTE_UNUSED,
9766 unsigned HOST_WIDE_INT *nonzero)
9767 {
9768 rtx tem;
9769 reg_stat_type *rsp;
9770
9771 /* If X is a register whose nonzero bits value is current, use it.
9772 Otherwise, if X is a register whose value we can find, use that
9773 value. Otherwise, use the previously-computed global nonzero bits
9774 for this register. */
9775
9776 rsp = &reg_stat[REGNO (x)];
9777 if (rsp->last_set_value != 0
9778 && (rsp->last_set_mode == mode
9779 || (GET_MODE_CLASS (rsp->last_set_mode) == MODE_INT
9780 && GET_MODE_CLASS (mode) == MODE_INT))
9781 && ((rsp->last_set_label >= label_tick_ebb_start
9782 && rsp->last_set_label < label_tick)
9783 || (rsp->last_set_label == label_tick
9784 && DF_INSN_LUID (rsp->last_set) < subst_low_luid)
9785 || (REGNO (x) >= FIRST_PSEUDO_REGISTER
9786 && REGNO (x) < reg_n_sets_max
9787 && REG_N_SETS (REGNO (x)) == 1
9788 && !REGNO_REG_SET_P
9789 (DF_LR_IN (ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb),
9790 REGNO (x)))))
9791 {
9792 unsigned HOST_WIDE_INT mask = rsp->last_set_nonzero_bits;
9793
9794 if (GET_MODE_PRECISION (rsp->last_set_mode) < GET_MODE_PRECISION (mode))
9795 /* We don't know anything about the upper bits. */
9796 mask |= GET_MODE_MASK (mode) ^ GET_MODE_MASK (rsp->last_set_mode);
9797
9798 *nonzero &= mask;
9799 return NULL;
9800 }
9801
9802 tem = get_last_value (x);
9803
9804 if (tem)
9805 {
9806 if (SHORT_IMMEDIATES_SIGN_EXTEND)
9807 tem = sign_extend_short_imm (tem, GET_MODE (x),
9808 GET_MODE_PRECISION (mode));
9809
9810 return tem;
9811 }
9812 else if (nonzero_sign_valid && rsp->nonzero_bits)
9813 {
9814 unsigned HOST_WIDE_INT mask = rsp->nonzero_bits;
9815
9816 if (GET_MODE_PRECISION (GET_MODE (x)) < GET_MODE_PRECISION (mode))
9817 /* We don't know anything about the upper bits. */
9818 mask |= GET_MODE_MASK (mode) ^ GET_MODE_MASK (GET_MODE (x));
9819
9820 *nonzero &= mask;
9821 }
9822
9823 return NULL;
9824 }
9825
9826 /* Return the number of bits at the high-order end of X that are known to
9827 be equal to the sign bit. X will be used in mode MODE; if MODE is
9828 VOIDmode, X will be used in its own mode. The returned value will always
9829 be between 1 and the number of bits in MODE. */
9830
9831 static rtx
9832 reg_num_sign_bit_copies_for_combine (const_rtx x, machine_mode mode,
9833 const_rtx known_x ATTRIBUTE_UNUSED,
9834 machine_mode known_mode
9835 ATTRIBUTE_UNUSED,
9836 unsigned int known_ret ATTRIBUTE_UNUSED,
9837 unsigned int *result)
9838 {
9839 rtx tem;
9840 reg_stat_type *rsp;
9841
9842 rsp = &reg_stat[REGNO (x)];
9843 if (rsp->last_set_value != 0
9844 && rsp->last_set_mode == mode
9845 && ((rsp->last_set_label >= label_tick_ebb_start
9846 && rsp->last_set_label < label_tick)
9847 || (rsp->last_set_label == label_tick
9848 && DF_INSN_LUID (rsp->last_set) < subst_low_luid)
9849 || (REGNO (x) >= FIRST_PSEUDO_REGISTER
9850 && REGNO (x) < reg_n_sets_max
9851 && REG_N_SETS (REGNO (x)) == 1
9852 && !REGNO_REG_SET_P
9853 (DF_LR_IN (ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb),
9854 REGNO (x)))))
9855 {
9856 *result = rsp->last_set_sign_bit_copies;
9857 return NULL;
9858 }
9859
9860 tem = get_last_value (x);
9861 if (tem != 0)
9862 return tem;
9863
9864 if (nonzero_sign_valid && rsp->sign_bit_copies != 0
9865 && GET_MODE_PRECISION (GET_MODE (x)) == GET_MODE_PRECISION (mode))
9866 *result = rsp->sign_bit_copies;
9867
9868 return NULL;
9869 }
9870 \f
9871 /* Return the number of "extended" bits there are in X, when interpreted
9872 as a quantity in MODE whose signedness is indicated by UNSIGNEDP. For
9873 unsigned quantities, this is the number of high-order zero bits.
9874 For signed quantities, this is the number of copies of the sign bit
9875 minus 1. In both case, this function returns the number of "spare"
9876 bits. For example, if two quantities for which this function returns
9877 at least 1 are added, the addition is known not to overflow.
9878
9879 This function will always return 0 unless called during combine, which
9880 implies that it must be called from a define_split. */
9881
9882 unsigned int
9883 extended_count (const_rtx x, machine_mode mode, int unsignedp)
9884 {
9885 if (nonzero_sign_valid == 0)
9886 return 0;
9887
9888 return (unsignedp
9889 ? (HWI_COMPUTABLE_MODE_P (mode)
9890 ? (unsigned int) (GET_MODE_PRECISION (mode) - 1
9891 - floor_log2 (nonzero_bits (x, mode)))
9892 : 0)
9893 : num_sign_bit_copies (x, mode) - 1);
9894 }
9895
9896 /* This function is called from `simplify_shift_const' to merge two
9897 outer operations. Specifically, we have already found that we need
9898 to perform operation *POP0 with constant *PCONST0 at the outermost
9899 position. We would now like to also perform OP1 with constant CONST1
9900 (with *POP0 being done last).
9901
9902 Return 1 if we can do the operation and update *POP0 and *PCONST0 with
9903 the resulting operation. *PCOMP_P is set to 1 if we would need to
9904 complement the innermost operand, otherwise it is unchanged.
9905
9906 MODE is the mode in which the operation will be done. No bits outside
9907 the width of this mode matter. It is assumed that the width of this mode
9908 is smaller than or equal to HOST_BITS_PER_WIDE_INT.
9909
9910 If *POP0 or OP1 are UNKNOWN, it means no operation is required. Only NEG, PLUS,
9911 IOR, XOR, and AND are supported. We may set *POP0 to SET if the proper
9912 result is simply *PCONST0.
9913
9914 If the resulting operation cannot be expressed as one operation, we
9915 return 0 and do not change *POP0, *PCONST0, and *PCOMP_P. */
9916
9917 static int
9918 merge_outer_ops (enum rtx_code *pop0, HOST_WIDE_INT *pconst0, enum rtx_code op1, HOST_WIDE_INT const1, machine_mode mode, int *pcomp_p)
9919 {
9920 enum rtx_code op0 = *pop0;
9921 HOST_WIDE_INT const0 = *pconst0;
9922
9923 const0 &= GET_MODE_MASK (mode);
9924 const1 &= GET_MODE_MASK (mode);
9925
9926 /* If OP0 is an AND, clear unimportant bits in CONST1. */
9927 if (op0 == AND)
9928 const1 &= const0;
9929
9930 /* If OP0 or OP1 is UNKNOWN, this is easy. Similarly if they are the same or
9931 if OP0 is SET. */
9932
9933 if (op1 == UNKNOWN || op0 == SET)
9934 return 1;
9935
9936 else if (op0 == UNKNOWN)
9937 op0 = op1, const0 = const1;
9938
9939 else if (op0 == op1)
9940 {
9941 switch (op0)
9942 {
9943 case AND:
9944 const0 &= const1;
9945 break;
9946 case IOR:
9947 const0 |= const1;
9948 break;
9949 case XOR:
9950 const0 ^= const1;
9951 break;
9952 case PLUS:
9953 const0 += const1;
9954 break;
9955 case NEG:
9956 op0 = UNKNOWN;
9957 break;
9958 default:
9959 break;
9960 }
9961 }
9962
9963 /* Otherwise, if either is a PLUS or NEG, we can't do anything. */
9964 else if (op0 == PLUS || op1 == PLUS || op0 == NEG || op1 == NEG)
9965 return 0;
9966
9967 /* If the two constants aren't the same, we can't do anything. The
9968 remaining six cases can all be done. */
9969 else if (const0 != const1)
9970 return 0;
9971
9972 else
9973 switch (op0)
9974 {
9975 case IOR:
9976 if (op1 == AND)
9977 /* (a & b) | b == b */
9978 op0 = SET;
9979 else /* op1 == XOR */
9980 /* (a ^ b) | b == a | b */
9981 {;}
9982 break;
9983
9984 case XOR:
9985 if (op1 == AND)
9986 /* (a & b) ^ b == (~a) & b */
9987 op0 = AND, *pcomp_p = 1;
9988 else /* op1 == IOR */
9989 /* (a | b) ^ b == a & ~b */
9990 op0 = AND, const0 = ~const0;
9991 break;
9992
9993 case AND:
9994 if (op1 == IOR)
9995 /* (a | b) & b == b */
9996 op0 = SET;
9997 else /* op1 == XOR */
9998 /* (a ^ b) & b) == (~a) & b */
9999 *pcomp_p = 1;
10000 break;
10001 default:
10002 break;
10003 }
10004
10005 /* Check for NO-OP cases. */
10006 const0 &= GET_MODE_MASK (mode);
10007 if (const0 == 0
10008 && (op0 == IOR || op0 == XOR || op0 == PLUS))
10009 op0 = UNKNOWN;
10010 else if (const0 == 0 && op0 == AND)
10011 op0 = SET;
10012 else if ((unsigned HOST_WIDE_INT) const0 == GET_MODE_MASK (mode)
10013 && op0 == AND)
10014 op0 = UNKNOWN;
10015
10016 *pop0 = op0;
10017
10018 /* ??? Slightly redundant with the above mask, but not entirely.
10019 Moving this above means we'd have to sign-extend the mode mask
10020 for the final test. */
10021 if (op0 != UNKNOWN && op0 != NEG)
10022 *pconst0 = trunc_int_for_mode (const0, mode);
10023
10024 return 1;
10025 }
10026 \f
10027 /* A helper to simplify_shift_const_1 to determine the mode we can perform
10028 the shift in. The original shift operation CODE is performed on OP in
10029 ORIG_MODE. Return the wider mode MODE if we can perform the operation
10030 in that mode. Return ORIG_MODE otherwise. We can also assume that the
10031 result of the shift is subject to operation OUTER_CODE with operand
10032 OUTER_CONST. */
10033
10034 static machine_mode
10035 try_widen_shift_mode (enum rtx_code code, rtx op, int count,
10036 machine_mode orig_mode, machine_mode mode,
10037 enum rtx_code outer_code, HOST_WIDE_INT outer_const)
10038 {
10039 if (orig_mode == mode)
10040 return mode;
10041 gcc_assert (GET_MODE_PRECISION (mode) > GET_MODE_PRECISION (orig_mode));
10042
10043 /* In general we can't perform in wider mode for right shift and rotate. */
10044 switch (code)
10045 {
10046 case ASHIFTRT:
10047 /* We can still widen if the bits brought in from the left are identical
10048 to the sign bit of ORIG_MODE. */
10049 if (num_sign_bit_copies (op, mode)
10050 > (unsigned) (GET_MODE_PRECISION (mode)
10051 - GET_MODE_PRECISION (orig_mode)))
10052 return mode;
10053 return orig_mode;
10054
10055 case LSHIFTRT:
10056 /* Similarly here but with zero bits. */
10057 if (HWI_COMPUTABLE_MODE_P (mode)
10058 && (nonzero_bits (op, mode) & ~GET_MODE_MASK (orig_mode)) == 0)
10059 return mode;
10060
10061 /* We can also widen if the bits brought in will be masked off. This
10062 operation is performed in ORIG_MODE. */
10063 if (outer_code == AND)
10064 {
10065 int care_bits = low_bitmask_len (orig_mode, outer_const);
10066
10067 if (care_bits >= 0
10068 && GET_MODE_PRECISION (orig_mode) - care_bits >= count)
10069 return mode;
10070 }
10071 /* fall through */
10072
10073 case ROTATE:
10074 return orig_mode;
10075
10076 case ROTATERT:
10077 gcc_unreachable ();
10078
10079 default:
10080 return mode;
10081 }
10082 }
10083
10084 /* Simplify a shift of VAROP by ORIG_COUNT bits. CODE says what kind
10085 of shift. The result of the shift is RESULT_MODE. Return NULL_RTX
10086 if we cannot simplify it. Otherwise, return a simplified value.
10087
10088 The shift is normally computed in the widest mode we find in VAROP, as
10089 long as it isn't a different number of words than RESULT_MODE. Exceptions
10090 are ASHIFTRT and ROTATE, which are always done in their original mode. */
10091
10092 static rtx
10093 simplify_shift_const_1 (enum rtx_code code, machine_mode result_mode,
10094 rtx varop, int orig_count)
10095 {
10096 enum rtx_code orig_code = code;
10097 rtx orig_varop = varop;
10098 int count;
10099 machine_mode mode = result_mode;
10100 machine_mode shift_mode, tmode;
10101 unsigned int mode_words
10102 = (GET_MODE_SIZE (mode) + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD;
10103 /* We form (outer_op (code varop count) (outer_const)). */
10104 enum rtx_code outer_op = UNKNOWN;
10105 HOST_WIDE_INT outer_const = 0;
10106 int complement_p = 0;
10107 rtx new_rtx, x;
10108
10109 /* Make sure and truncate the "natural" shift on the way in. We don't
10110 want to do this inside the loop as it makes it more difficult to
10111 combine shifts. */
10112 if (SHIFT_COUNT_TRUNCATED)
10113 orig_count &= GET_MODE_BITSIZE (mode) - 1;
10114
10115 /* If we were given an invalid count, don't do anything except exactly
10116 what was requested. */
10117
10118 if (orig_count < 0 || orig_count >= (int) GET_MODE_PRECISION (mode))
10119 return NULL_RTX;
10120
10121 count = orig_count;
10122
10123 /* Unless one of the branches of the `if' in this loop does a `continue',
10124 we will `break' the loop after the `if'. */
10125
10126 while (count != 0)
10127 {
10128 /* If we have an operand of (clobber (const_int 0)), fail. */
10129 if (GET_CODE (varop) == CLOBBER)
10130 return NULL_RTX;
10131
10132 /* Convert ROTATERT to ROTATE. */
10133 if (code == ROTATERT)
10134 {
10135 unsigned int bitsize = GET_MODE_PRECISION (result_mode);
10136 code = ROTATE;
10137 if (VECTOR_MODE_P (result_mode))
10138 count = bitsize / GET_MODE_NUNITS (result_mode) - count;
10139 else
10140 count = bitsize - count;
10141 }
10142
10143 shift_mode = try_widen_shift_mode (code, varop, count, result_mode,
10144 mode, outer_op, outer_const);
10145
10146 /* Handle cases where the count is greater than the size of the mode
10147 minus 1. For ASHIFT, use the size minus one as the count (this can
10148 occur when simplifying (lshiftrt (ashiftrt ..))). For rotates,
10149 take the count modulo the size. For other shifts, the result is
10150 zero.
10151
10152 Since these shifts are being produced by the compiler by combining
10153 multiple operations, each of which are defined, we know what the
10154 result is supposed to be. */
10155
10156 if (count > (GET_MODE_PRECISION (shift_mode) - 1))
10157 {
10158 if (code == ASHIFTRT)
10159 count = GET_MODE_PRECISION (shift_mode) - 1;
10160 else if (code == ROTATE || code == ROTATERT)
10161 count %= GET_MODE_PRECISION (shift_mode);
10162 else
10163 {
10164 /* We can't simply return zero because there may be an
10165 outer op. */
10166 varop = const0_rtx;
10167 count = 0;
10168 break;
10169 }
10170 }
10171
10172 /* If we discovered we had to complement VAROP, leave. Making a NOT
10173 here would cause an infinite loop. */
10174 if (complement_p)
10175 break;
10176
10177 /* An arithmetic right shift of a quantity known to be -1 or 0
10178 is a no-op. */
10179 if (code == ASHIFTRT
10180 && (num_sign_bit_copies (varop, shift_mode)
10181 == GET_MODE_PRECISION (shift_mode)))
10182 {
10183 count = 0;
10184 break;
10185 }
10186
10187 /* If we are doing an arithmetic right shift and discarding all but
10188 the sign bit copies, this is equivalent to doing a shift by the
10189 bitsize minus one. Convert it into that shift because it will often
10190 allow other simplifications. */
10191
10192 if (code == ASHIFTRT
10193 && (count + num_sign_bit_copies (varop, shift_mode)
10194 >= GET_MODE_PRECISION (shift_mode)))
10195 count = GET_MODE_PRECISION (shift_mode) - 1;
10196
10197 /* We simplify the tests below and elsewhere by converting
10198 ASHIFTRT to LSHIFTRT if we know the sign bit is clear.
10199 `make_compound_operation' will convert it to an ASHIFTRT for
10200 those machines (such as VAX) that don't have an LSHIFTRT. */
10201 if (code == ASHIFTRT
10202 && val_signbit_known_clear_p (shift_mode,
10203 nonzero_bits (varop, shift_mode)))
10204 code = LSHIFTRT;
10205
10206 if (((code == LSHIFTRT
10207 && HWI_COMPUTABLE_MODE_P (shift_mode)
10208 && !(nonzero_bits (varop, shift_mode) >> count))
10209 || (code == ASHIFT
10210 && HWI_COMPUTABLE_MODE_P (shift_mode)
10211 && !((nonzero_bits (varop, shift_mode) << count)
10212 & GET_MODE_MASK (shift_mode))))
10213 && !side_effects_p (varop))
10214 varop = const0_rtx;
10215
10216 switch (GET_CODE (varop))
10217 {
10218 case SIGN_EXTEND:
10219 case ZERO_EXTEND:
10220 case SIGN_EXTRACT:
10221 case ZERO_EXTRACT:
10222 new_rtx = expand_compound_operation (varop);
10223 if (new_rtx != varop)
10224 {
10225 varop = new_rtx;
10226 continue;
10227 }
10228 break;
10229
10230 case MEM:
10231 /* If we have (xshiftrt (mem ...) C) and C is MODE_WIDTH
10232 minus the width of a smaller mode, we can do this with a
10233 SIGN_EXTEND or ZERO_EXTEND from the narrower memory location. */
10234 if ((code == ASHIFTRT || code == LSHIFTRT)
10235 && ! mode_dependent_address_p (XEXP (varop, 0),
10236 MEM_ADDR_SPACE (varop))
10237 && ! MEM_VOLATILE_P (varop)
10238 && (tmode = mode_for_size (GET_MODE_BITSIZE (mode) - count,
10239 MODE_INT, 1)) != BLKmode)
10240 {
10241 new_rtx = adjust_address_nv (varop, tmode,
10242 BYTES_BIG_ENDIAN ? 0
10243 : count / BITS_PER_UNIT);
10244
10245 varop = gen_rtx_fmt_e (code == ASHIFTRT ? SIGN_EXTEND
10246 : ZERO_EXTEND, mode, new_rtx);
10247 count = 0;
10248 continue;
10249 }
10250 break;
10251
10252 case SUBREG:
10253 /* If VAROP is a SUBREG, strip it as long as the inner operand has
10254 the same number of words as what we've seen so far. Then store
10255 the widest mode in MODE. */
10256 if (subreg_lowpart_p (varop)
10257 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (varop)))
10258 > GET_MODE_SIZE (GET_MODE (varop)))
10259 && (unsigned int) ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (varop)))
10260 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
10261 == mode_words
10262 && GET_MODE_CLASS (GET_MODE (varop)) == MODE_INT
10263 && GET_MODE_CLASS (GET_MODE (SUBREG_REG (varop))) == MODE_INT)
10264 {
10265 varop = SUBREG_REG (varop);
10266 if (GET_MODE_SIZE (GET_MODE (varop)) > GET_MODE_SIZE (mode))
10267 mode = GET_MODE (varop);
10268 continue;
10269 }
10270 break;
10271
10272 case MULT:
10273 /* Some machines use MULT instead of ASHIFT because MULT
10274 is cheaper. But it is still better on those machines to
10275 merge two shifts into one. */
10276 if (CONST_INT_P (XEXP (varop, 1))
10277 && exact_log2 (UINTVAL (XEXP (varop, 1))) >= 0)
10278 {
10279 varop
10280 = simplify_gen_binary (ASHIFT, GET_MODE (varop),
10281 XEXP (varop, 0),
10282 GEN_INT (exact_log2 (
10283 UINTVAL (XEXP (varop, 1)))));
10284 continue;
10285 }
10286 break;
10287
10288 case UDIV:
10289 /* Similar, for when divides are cheaper. */
10290 if (CONST_INT_P (XEXP (varop, 1))
10291 && exact_log2 (UINTVAL (XEXP (varop, 1))) >= 0)
10292 {
10293 varop
10294 = simplify_gen_binary (LSHIFTRT, GET_MODE (varop),
10295 XEXP (varop, 0),
10296 GEN_INT (exact_log2 (
10297 UINTVAL (XEXP (varop, 1)))));
10298 continue;
10299 }
10300 break;
10301
10302 case ASHIFTRT:
10303 /* If we are extracting just the sign bit of an arithmetic
10304 right shift, that shift is not needed. However, the sign
10305 bit of a wider mode may be different from what would be
10306 interpreted as the sign bit in a narrower mode, so, if
10307 the result is narrower, don't discard the shift. */
10308 if (code == LSHIFTRT
10309 && count == (GET_MODE_BITSIZE (result_mode) - 1)
10310 && (GET_MODE_BITSIZE (result_mode)
10311 >= GET_MODE_BITSIZE (GET_MODE (varop))))
10312 {
10313 varop = XEXP (varop, 0);
10314 continue;
10315 }
10316
10317 /* ... fall through ... */
10318
10319 case LSHIFTRT:
10320 case ASHIFT:
10321 case ROTATE:
10322 /* Here we have two nested shifts. The result is usually the
10323 AND of a new shift with a mask. We compute the result below. */
10324 if (CONST_INT_P (XEXP (varop, 1))
10325 && INTVAL (XEXP (varop, 1)) >= 0
10326 && INTVAL (XEXP (varop, 1)) < GET_MODE_PRECISION (GET_MODE (varop))
10327 && HWI_COMPUTABLE_MODE_P (result_mode)
10328 && HWI_COMPUTABLE_MODE_P (mode)
10329 && !VECTOR_MODE_P (result_mode))
10330 {
10331 enum rtx_code first_code = GET_CODE (varop);
10332 unsigned int first_count = INTVAL (XEXP (varop, 1));
10333 unsigned HOST_WIDE_INT mask;
10334 rtx mask_rtx;
10335
10336 /* We have one common special case. We can't do any merging if
10337 the inner code is an ASHIFTRT of a smaller mode. However, if
10338 we have (ashift:M1 (subreg:M1 (ashiftrt:M2 FOO C1) 0) C2)
10339 with C2 == GET_MODE_BITSIZE (M1) - GET_MODE_BITSIZE (M2),
10340 we can convert it to
10341 (ashiftrt:M1 (ashift:M1 (and:M1 (subreg:M1 FOO 0) C3) C2) C1).
10342 This simplifies certain SIGN_EXTEND operations. */
10343 if (code == ASHIFT && first_code == ASHIFTRT
10344 && count == (GET_MODE_PRECISION (result_mode)
10345 - GET_MODE_PRECISION (GET_MODE (varop))))
10346 {
10347 /* C3 has the low-order C1 bits zero. */
10348
10349 mask = GET_MODE_MASK (mode)
10350 & ~(((unsigned HOST_WIDE_INT) 1 << first_count) - 1);
10351
10352 varop = simplify_and_const_int (NULL_RTX, result_mode,
10353 XEXP (varop, 0), mask);
10354 varop = simplify_shift_const (NULL_RTX, ASHIFT, result_mode,
10355 varop, count);
10356 count = first_count;
10357 code = ASHIFTRT;
10358 continue;
10359 }
10360
10361 /* If this was (ashiftrt (ashift foo C1) C2) and FOO has more
10362 than C1 high-order bits equal to the sign bit, we can convert
10363 this to either an ASHIFT or an ASHIFTRT depending on the
10364 two counts.
10365
10366 We cannot do this if VAROP's mode is not SHIFT_MODE. */
10367
10368 if (code == ASHIFTRT && first_code == ASHIFT
10369 && GET_MODE (varop) == shift_mode
10370 && (num_sign_bit_copies (XEXP (varop, 0), shift_mode)
10371 > first_count))
10372 {
10373 varop = XEXP (varop, 0);
10374 count -= first_count;
10375 if (count < 0)
10376 {
10377 count = -count;
10378 code = ASHIFT;
10379 }
10380
10381 continue;
10382 }
10383
10384 /* There are some cases we can't do. If CODE is ASHIFTRT,
10385 we can only do this if FIRST_CODE is also ASHIFTRT.
10386
10387 We can't do the case when CODE is ROTATE and FIRST_CODE is
10388 ASHIFTRT.
10389
10390 If the mode of this shift is not the mode of the outer shift,
10391 we can't do this if either shift is a right shift or ROTATE.
10392
10393 Finally, we can't do any of these if the mode is too wide
10394 unless the codes are the same.
10395
10396 Handle the case where the shift codes are the same
10397 first. */
10398
10399 if (code == first_code)
10400 {
10401 if (GET_MODE (varop) != result_mode
10402 && (code == ASHIFTRT || code == LSHIFTRT
10403 || code == ROTATE))
10404 break;
10405
10406 count += first_count;
10407 varop = XEXP (varop, 0);
10408 continue;
10409 }
10410
10411 if (code == ASHIFTRT
10412 || (code == ROTATE && first_code == ASHIFTRT)
10413 || GET_MODE_PRECISION (mode) > HOST_BITS_PER_WIDE_INT
10414 || (GET_MODE (varop) != result_mode
10415 && (first_code == ASHIFTRT || first_code == LSHIFTRT
10416 || first_code == ROTATE
10417 || code == ROTATE)))
10418 break;
10419
10420 /* To compute the mask to apply after the shift, shift the
10421 nonzero bits of the inner shift the same way the
10422 outer shift will. */
10423
10424 mask_rtx = gen_int_mode (nonzero_bits (varop, GET_MODE (varop)),
10425 result_mode);
10426
10427 mask_rtx
10428 = simplify_const_binary_operation (code, result_mode, mask_rtx,
10429 GEN_INT (count));
10430
10431 /* Give up if we can't compute an outer operation to use. */
10432 if (mask_rtx == 0
10433 || !CONST_INT_P (mask_rtx)
10434 || ! merge_outer_ops (&outer_op, &outer_const, AND,
10435 INTVAL (mask_rtx),
10436 result_mode, &complement_p))
10437 break;
10438
10439 /* If the shifts are in the same direction, we add the
10440 counts. Otherwise, we subtract them. */
10441 if ((code == ASHIFTRT || code == LSHIFTRT)
10442 == (first_code == ASHIFTRT || first_code == LSHIFTRT))
10443 count += first_count;
10444 else
10445 count -= first_count;
10446
10447 /* If COUNT is positive, the new shift is usually CODE,
10448 except for the two exceptions below, in which case it is
10449 FIRST_CODE. If the count is negative, FIRST_CODE should
10450 always be used */
10451 if (count > 0
10452 && ((first_code == ROTATE && code == ASHIFT)
10453 || (first_code == ASHIFTRT && code == LSHIFTRT)))
10454 code = first_code;
10455 else if (count < 0)
10456 code = first_code, count = -count;
10457
10458 varop = XEXP (varop, 0);
10459 continue;
10460 }
10461
10462 /* If we have (A << B << C) for any shift, we can convert this to
10463 (A << C << B). This wins if A is a constant. Only try this if
10464 B is not a constant. */
10465
10466 else if (GET_CODE (varop) == code
10467 && CONST_INT_P (XEXP (varop, 0))
10468 && !CONST_INT_P (XEXP (varop, 1)))
10469 {
10470 rtx new_rtx = simplify_const_binary_operation (code, mode,
10471 XEXP (varop, 0),
10472 GEN_INT (count));
10473 varop = gen_rtx_fmt_ee (code, mode, new_rtx, XEXP (varop, 1));
10474 count = 0;
10475 continue;
10476 }
10477 break;
10478
10479 case NOT:
10480 if (VECTOR_MODE_P (mode))
10481 break;
10482
10483 /* Make this fit the case below. */
10484 varop = gen_rtx_XOR (mode, XEXP (varop, 0), constm1_rtx);
10485 continue;
10486
10487 case IOR:
10488 case AND:
10489 case XOR:
10490 /* If we have (xshiftrt (ior (plus X (const_int -1)) X) C)
10491 with C the size of VAROP - 1 and the shift is logical if
10492 STORE_FLAG_VALUE is 1 and arithmetic if STORE_FLAG_VALUE is -1,
10493 we have an (le X 0) operation. If we have an arithmetic shift
10494 and STORE_FLAG_VALUE is 1 or we have a logical shift with
10495 STORE_FLAG_VALUE of -1, we have a (neg (le X 0)) operation. */
10496
10497 if (GET_CODE (varop) == IOR && GET_CODE (XEXP (varop, 0)) == PLUS
10498 && XEXP (XEXP (varop, 0), 1) == constm1_rtx
10499 && (STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
10500 && (code == LSHIFTRT || code == ASHIFTRT)
10501 && count == (GET_MODE_PRECISION (GET_MODE (varop)) - 1)
10502 && rtx_equal_p (XEXP (XEXP (varop, 0), 0), XEXP (varop, 1)))
10503 {
10504 count = 0;
10505 varop = gen_rtx_LE (GET_MODE (varop), XEXP (varop, 1),
10506 const0_rtx);
10507
10508 if (STORE_FLAG_VALUE == 1 ? code == ASHIFTRT : code == LSHIFTRT)
10509 varop = gen_rtx_NEG (GET_MODE (varop), varop);
10510
10511 continue;
10512 }
10513
10514 /* If we have (shift (logical)), move the logical to the outside
10515 to allow it to possibly combine with another logical and the
10516 shift to combine with another shift. This also canonicalizes to
10517 what a ZERO_EXTRACT looks like. Also, some machines have
10518 (and (shift)) insns. */
10519
10520 if (CONST_INT_P (XEXP (varop, 1))
10521 /* We can't do this if we have (ashiftrt (xor)) and the
10522 constant has its sign bit set in shift_mode with shift_mode
10523 wider than result_mode. */
10524 && !(code == ASHIFTRT && GET_CODE (varop) == XOR
10525 && result_mode != shift_mode
10526 && 0 > trunc_int_for_mode (INTVAL (XEXP (varop, 1)),
10527 shift_mode))
10528 && (new_rtx = simplify_const_binary_operation
10529 (code, result_mode,
10530 gen_int_mode (INTVAL (XEXP (varop, 1)), result_mode),
10531 GEN_INT (count))) != 0
10532 && CONST_INT_P (new_rtx)
10533 && merge_outer_ops (&outer_op, &outer_const, GET_CODE (varop),
10534 INTVAL (new_rtx), result_mode, &complement_p))
10535 {
10536 varop = XEXP (varop, 0);
10537 continue;
10538 }
10539
10540 /* If we can't do that, try to simplify the shift in each arm of the
10541 logical expression, make a new logical expression, and apply
10542 the inverse distributive law. This also can't be done for
10543 (ashiftrt (xor)) where we've widened the shift and the constant
10544 changes the sign bit. */
10545 if (CONST_INT_P (XEXP (varop, 1))
10546 && !(code == ASHIFTRT && GET_CODE (varop) == XOR
10547 && result_mode != shift_mode
10548 && 0 > trunc_int_for_mode (INTVAL (XEXP (varop, 1)),
10549 shift_mode)))
10550 {
10551 rtx lhs = simplify_shift_const (NULL_RTX, code, shift_mode,
10552 XEXP (varop, 0), count);
10553 rtx rhs = simplify_shift_const (NULL_RTX, code, shift_mode,
10554 XEXP (varop, 1), count);
10555
10556 varop = simplify_gen_binary (GET_CODE (varop), shift_mode,
10557 lhs, rhs);
10558 varop = apply_distributive_law (varop);
10559
10560 count = 0;
10561 continue;
10562 }
10563 break;
10564
10565 case EQ:
10566 /* Convert (lshiftrt (eq FOO 0) C) to (xor FOO 1) if STORE_FLAG_VALUE
10567 says that the sign bit can be tested, FOO has mode MODE, C is
10568 GET_MODE_PRECISION (MODE) - 1, and FOO has only its low-order bit
10569 that may be nonzero. */
10570 if (code == LSHIFTRT
10571 && XEXP (varop, 1) == const0_rtx
10572 && GET_MODE (XEXP (varop, 0)) == result_mode
10573 && count == (GET_MODE_PRECISION (result_mode) - 1)
10574 && HWI_COMPUTABLE_MODE_P (result_mode)
10575 && STORE_FLAG_VALUE == -1
10576 && nonzero_bits (XEXP (varop, 0), result_mode) == 1
10577 && merge_outer_ops (&outer_op, &outer_const, XOR, 1, result_mode,
10578 &complement_p))
10579 {
10580 varop = XEXP (varop, 0);
10581 count = 0;
10582 continue;
10583 }
10584 break;
10585
10586 case NEG:
10587 /* (lshiftrt (neg A) C) where A is either 0 or 1 and C is one less
10588 than the number of bits in the mode is equivalent to A. */
10589 if (code == LSHIFTRT
10590 && count == (GET_MODE_PRECISION (result_mode) - 1)
10591 && nonzero_bits (XEXP (varop, 0), result_mode) == 1)
10592 {
10593 varop = XEXP (varop, 0);
10594 count = 0;
10595 continue;
10596 }
10597
10598 /* NEG commutes with ASHIFT since it is multiplication. Move the
10599 NEG outside to allow shifts to combine. */
10600 if (code == ASHIFT
10601 && merge_outer_ops (&outer_op, &outer_const, NEG, 0, result_mode,
10602 &complement_p))
10603 {
10604 varop = XEXP (varop, 0);
10605 continue;
10606 }
10607 break;
10608
10609 case PLUS:
10610 /* (lshiftrt (plus A -1) C) where A is either 0 or 1 and C
10611 is one less than the number of bits in the mode is
10612 equivalent to (xor A 1). */
10613 if (code == LSHIFTRT
10614 && count == (GET_MODE_PRECISION (result_mode) - 1)
10615 && XEXP (varop, 1) == constm1_rtx
10616 && nonzero_bits (XEXP (varop, 0), result_mode) == 1
10617 && merge_outer_ops (&outer_op, &outer_const, XOR, 1, result_mode,
10618 &complement_p))
10619 {
10620 count = 0;
10621 varop = XEXP (varop, 0);
10622 continue;
10623 }
10624
10625 /* If we have (xshiftrt (plus FOO BAR) C), and the only bits
10626 that might be nonzero in BAR are those being shifted out and those
10627 bits are known zero in FOO, we can replace the PLUS with FOO.
10628 Similarly in the other operand order. This code occurs when
10629 we are computing the size of a variable-size array. */
10630
10631 if ((code == ASHIFTRT || code == LSHIFTRT)
10632 && count < HOST_BITS_PER_WIDE_INT
10633 && nonzero_bits (XEXP (varop, 1), result_mode) >> count == 0
10634 && (nonzero_bits (XEXP (varop, 1), result_mode)
10635 & nonzero_bits (XEXP (varop, 0), result_mode)) == 0)
10636 {
10637 varop = XEXP (varop, 0);
10638 continue;
10639 }
10640 else if ((code == ASHIFTRT || code == LSHIFTRT)
10641 && count < HOST_BITS_PER_WIDE_INT
10642 && HWI_COMPUTABLE_MODE_P (result_mode)
10643 && 0 == (nonzero_bits (XEXP (varop, 0), result_mode)
10644 >> count)
10645 && 0 == (nonzero_bits (XEXP (varop, 0), result_mode)
10646 & nonzero_bits (XEXP (varop, 1),
10647 result_mode)))
10648 {
10649 varop = XEXP (varop, 1);
10650 continue;
10651 }
10652
10653 /* (ashift (plus foo C) N) is (plus (ashift foo N) C'). */
10654 if (code == ASHIFT
10655 && CONST_INT_P (XEXP (varop, 1))
10656 && (new_rtx = simplify_const_binary_operation
10657 (ASHIFT, result_mode,
10658 gen_int_mode (INTVAL (XEXP (varop, 1)), result_mode),
10659 GEN_INT (count))) != 0
10660 && CONST_INT_P (new_rtx)
10661 && merge_outer_ops (&outer_op, &outer_const, PLUS,
10662 INTVAL (new_rtx), result_mode, &complement_p))
10663 {
10664 varop = XEXP (varop, 0);
10665 continue;
10666 }
10667
10668 /* Check for 'PLUS signbit', which is the canonical form of 'XOR
10669 signbit', and attempt to change the PLUS to an XOR and move it to
10670 the outer operation as is done above in the AND/IOR/XOR case
10671 leg for shift(logical). See details in logical handling above
10672 for reasoning in doing so. */
10673 if (code == LSHIFTRT
10674 && CONST_INT_P (XEXP (varop, 1))
10675 && mode_signbit_p (result_mode, XEXP (varop, 1))
10676 && (new_rtx = simplify_const_binary_operation
10677 (code, result_mode,
10678 gen_int_mode (INTVAL (XEXP (varop, 1)), result_mode),
10679 GEN_INT (count))) != 0
10680 && CONST_INT_P (new_rtx)
10681 && merge_outer_ops (&outer_op, &outer_const, XOR,
10682 INTVAL (new_rtx), result_mode, &complement_p))
10683 {
10684 varop = XEXP (varop, 0);
10685 continue;
10686 }
10687
10688 break;
10689
10690 case MINUS:
10691 /* If we have (xshiftrt (minus (ashiftrt X C)) X) C)
10692 with C the size of VAROP - 1 and the shift is logical if
10693 STORE_FLAG_VALUE is 1 and arithmetic if STORE_FLAG_VALUE is -1,
10694 we have a (gt X 0) operation. If the shift is arithmetic with
10695 STORE_FLAG_VALUE of 1 or logical with STORE_FLAG_VALUE == -1,
10696 we have a (neg (gt X 0)) operation. */
10697
10698 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
10699 && GET_CODE (XEXP (varop, 0)) == ASHIFTRT
10700 && count == (GET_MODE_PRECISION (GET_MODE (varop)) - 1)
10701 && (code == LSHIFTRT || code == ASHIFTRT)
10702 && CONST_INT_P (XEXP (XEXP (varop, 0), 1))
10703 && INTVAL (XEXP (XEXP (varop, 0), 1)) == count
10704 && rtx_equal_p (XEXP (XEXP (varop, 0), 0), XEXP (varop, 1)))
10705 {
10706 count = 0;
10707 varop = gen_rtx_GT (GET_MODE (varop), XEXP (varop, 1),
10708 const0_rtx);
10709
10710 if (STORE_FLAG_VALUE == 1 ? code == ASHIFTRT : code == LSHIFTRT)
10711 varop = gen_rtx_NEG (GET_MODE (varop), varop);
10712
10713 continue;
10714 }
10715 break;
10716
10717 case TRUNCATE:
10718 /* Change (lshiftrt (truncate (lshiftrt))) to (truncate (lshiftrt))
10719 if the truncate does not affect the value. */
10720 if (code == LSHIFTRT
10721 && GET_CODE (XEXP (varop, 0)) == LSHIFTRT
10722 && CONST_INT_P (XEXP (XEXP (varop, 0), 1))
10723 && (INTVAL (XEXP (XEXP (varop, 0), 1))
10724 >= (GET_MODE_PRECISION (GET_MODE (XEXP (varop, 0)))
10725 - GET_MODE_PRECISION (GET_MODE (varop)))))
10726 {
10727 rtx varop_inner = XEXP (varop, 0);
10728
10729 varop_inner
10730 = gen_rtx_LSHIFTRT (GET_MODE (varop_inner),
10731 XEXP (varop_inner, 0),
10732 GEN_INT
10733 (count + INTVAL (XEXP (varop_inner, 1))));
10734 varop = gen_rtx_TRUNCATE (GET_MODE (varop), varop_inner);
10735 count = 0;
10736 continue;
10737 }
10738 break;
10739
10740 default:
10741 break;
10742 }
10743
10744 break;
10745 }
10746
10747 shift_mode = try_widen_shift_mode (code, varop, count, result_mode, mode,
10748 outer_op, outer_const);
10749
10750 /* We have now finished analyzing the shift. The result should be
10751 a shift of type CODE with SHIFT_MODE shifting VAROP COUNT places. If
10752 OUTER_OP is non-UNKNOWN, it is an operation that needs to be applied
10753 to the result of the shift. OUTER_CONST is the relevant constant,
10754 but we must turn off all bits turned off in the shift. */
10755
10756 if (outer_op == UNKNOWN
10757 && orig_code == code && orig_count == count
10758 && varop == orig_varop
10759 && shift_mode == GET_MODE (varop))
10760 return NULL_RTX;
10761
10762 /* Make a SUBREG if necessary. If we can't make it, fail. */
10763 varop = gen_lowpart (shift_mode, varop);
10764 if (varop == NULL_RTX || GET_CODE (varop) == CLOBBER)
10765 return NULL_RTX;
10766
10767 /* If we have an outer operation and we just made a shift, it is
10768 possible that we could have simplified the shift were it not
10769 for the outer operation. So try to do the simplification
10770 recursively. */
10771
10772 if (outer_op != UNKNOWN)
10773 x = simplify_shift_const_1 (code, shift_mode, varop, count);
10774 else
10775 x = NULL_RTX;
10776
10777 if (x == NULL_RTX)
10778 x = simplify_gen_binary (code, shift_mode, varop, GEN_INT (count));
10779
10780 /* If we were doing an LSHIFTRT in a wider mode than it was originally,
10781 turn off all the bits that the shift would have turned off. */
10782 if (orig_code == LSHIFTRT && result_mode != shift_mode)
10783 x = simplify_and_const_int (NULL_RTX, shift_mode, x,
10784 GET_MODE_MASK (result_mode) >> orig_count);
10785
10786 /* Do the remainder of the processing in RESULT_MODE. */
10787 x = gen_lowpart_or_truncate (result_mode, x);
10788
10789 /* If COMPLEMENT_P is set, we have to complement X before doing the outer
10790 operation. */
10791 if (complement_p)
10792 x = simplify_gen_unary (NOT, result_mode, x, result_mode);
10793
10794 if (outer_op != UNKNOWN)
10795 {
10796 if (GET_RTX_CLASS (outer_op) != RTX_UNARY
10797 && GET_MODE_PRECISION (result_mode) < HOST_BITS_PER_WIDE_INT)
10798 outer_const = trunc_int_for_mode (outer_const, result_mode);
10799
10800 if (outer_op == AND)
10801 x = simplify_and_const_int (NULL_RTX, result_mode, x, outer_const);
10802 else if (outer_op == SET)
10803 {
10804 /* This means that we have determined that the result is
10805 equivalent to a constant. This should be rare. */
10806 if (!side_effects_p (x))
10807 x = GEN_INT (outer_const);
10808 }
10809 else if (GET_RTX_CLASS (outer_op) == RTX_UNARY)
10810 x = simplify_gen_unary (outer_op, result_mode, x, result_mode);
10811 else
10812 x = simplify_gen_binary (outer_op, result_mode, x,
10813 GEN_INT (outer_const));
10814 }
10815
10816 return x;
10817 }
10818
10819 /* Simplify a shift of VAROP by COUNT bits. CODE says what kind of shift.
10820 The result of the shift is RESULT_MODE. If we cannot simplify it,
10821 return X or, if it is NULL, synthesize the expression with
10822 simplify_gen_binary. Otherwise, return a simplified value.
10823
10824 The shift is normally computed in the widest mode we find in VAROP, as
10825 long as it isn't a different number of words than RESULT_MODE. Exceptions
10826 are ASHIFTRT and ROTATE, which are always done in their original mode. */
10827
10828 static rtx
10829 simplify_shift_const (rtx x, enum rtx_code code, machine_mode result_mode,
10830 rtx varop, int count)
10831 {
10832 rtx tem = simplify_shift_const_1 (code, result_mode, varop, count);
10833 if (tem)
10834 return tem;
10835
10836 if (!x)
10837 x = simplify_gen_binary (code, GET_MODE (varop), varop, GEN_INT (count));
10838 if (GET_MODE (x) != result_mode)
10839 x = gen_lowpart (result_mode, x);
10840 return x;
10841 }
10842
10843 \f
10844 /* A subroutine of recog_for_combine. See there for arguments and
10845 return value. */
10846
10847 static int
10848 recog_for_combine_1 (rtx *pnewpat, rtx_insn *insn, rtx *pnotes)
10849 {
10850 rtx pat = *pnewpat;
10851 rtx pat_without_clobbers;
10852 int insn_code_number;
10853 int num_clobbers_to_add = 0;
10854 int i;
10855 rtx notes = NULL_RTX;
10856 rtx old_notes, old_pat;
10857 int old_icode;
10858
10859 /* If PAT is a PARALLEL, check to see if it contains the CLOBBER
10860 we use to indicate that something didn't match. If we find such a
10861 thing, force rejection. */
10862 if (GET_CODE (pat) == PARALLEL)
10863 for (i = XVECLEN (pat, 0) - 1; i >= 0; i--)
10864 if (GET_CODE (XVECEXP (pat, 0, i)) == CLOBBER
10865 && XEXP (XVECEXP (pat, 0, i), 0) == const0_rtx)
10866 return -1;
10867
10868 old_pat = PATTERN (insn);
10869 old_notes = REG_NOTES (insn);
10870 PATTERN (insn) = pat;
10871 REG_NOTES (insn) = NULL_RTX;
10872
10873 insn_code_number = recog (pat, insn, &num_clobbers_to_add);
10874 if (dump_file && (dump_flags & TDF_DETAILS))
10875 {
10876 if (insn_code_number < 0)
10877 fputs ("Failed to match this instruction:\n", dump_file);
10878 else
10879 fputs ("Successfully matched this instruction:\n", dump_file);
10880 print_rtl_single (dump_file, pat);
10881 }
10882
10883 /* If it isn't, there is the possibility that we previously had an insn
10884 that clobbered some register as a side effect, but the combined
10885 insn doesn't need to do that. So try once more without the clobbers
10886 unless this represents an ASM insn. */
10887
10888 if (insn_code_number < 0 && ! check_asm_operands (pat)
10889 && GET_CODE (pat) == PARALLEL)
10890 {
10891 int pos;
10892
10893 for (pos = 0, i = 0; i < XVECLEN (pat, 0); i++)
10894 if (GET_CODE (XVECEXP (pat, 0, i)) != CLOBBER)
10895 {
10896 if (i != pos)
10897 SUBST (XVECEXP (pat, 0, pos), XVECEXP (pat, 0, i));
10898 pos++;
10899 }
10900
10901 SUBST_INT (XVECLEN (pat, 0), pos);
10902
10903 if (pos == 1)
10904 pat = XVECEXP (pat, 0, 0);
10905
10906 PATTERN (insn) = pat;
10907 insn_code_number = recog (pat, insn, &num_clobbers_to_add);
10908 if (dump_file && (dump_flags & TDF_DETAILS))
10909 {
10910 if (insn_code_number < 0)
10911 fputs ("Failed to match this instruction:\n", dump_file);
10912 else
10913 fputs ("Successfully matched this instruction:\n", dump_file);
10914 print_rtl_single (dump_file, pat);
10915 }
10916 }
10917
10918 pat_without_clobbers = pat;
10919
10920 PATTERN (insn) = old_pat;
10921 REG_NOTES (insn) = old_notes;
10922
10923 /* Recognize all noop sets, these will be killed by followup pass. */
10924 if (insn_code_number < 0 && GET_CODE (pat) == SET && set_noop_p (pat))
10925 insn_code_number = NOOP_MOVE_INSN_CODE, num_clobbers_to_add = 0;
10926
10927 /* If we had any clobbers to add, make a new pattern than contains
10928 them. Then check to make sure that all of them are dead. */
10929 if (num_clobbers_to_add)
10930 {
10931 rtx newpat = gen_rtx_PARALLEL (VOIDmode,
10932 rtvec_alloc (GET_CODE (pat) == PARALLEL
10933 ? (XVECLEN (pat, 0)
10934 + num_clobbers_to_add)
10935 : num_clobbers_to_add + 1));
10936
10937 if (GET_CODE (pat) == PARALLEL)
10938 for (i = 0; i < XVECLEN (pat, 0); i++)
10939 XVECEXP (newpat, 0, i) = XVECEXP (pat, 0, i);
10940 else
10941 XVECEXP (newpat, 0, 0) = pat;
10942
10943 add_clobbers (newpat, insn_code_number);
10944
10945 for (i = XVECLEN (newpat, 0) - num_clobbers_to_add;
10946 i < XVECLEN (newpat, 0); i++)
10947 {
10948 if (REG_P (XEXP (XVECEXP (newpat, 0, i), 0))
10949 && ! reg_dead_at_p (XEXP (XVECEXP (newpat, 0, i), 0), insn))
10950 return -1;
10951 if (GET_CODE (XEXP (XVECEXP (newpat, 0, i), 0)) != SCRATCH)
10952 {
10953 gcc_assert (REG_P (XEXP (XVECEXP (newpat, 0, i), 0)));
10954 notes = alloc_reg_note (REG_UNUSED,
10955 XEXP (XVECEXP (newpat, 0, i), 0), notes);
10956 }
10957 }
10958 pat = newpat;
10959 }
10960
10961 if (insn_code_number >= 0
10962 && insn_code_number != NOOP_MOVE_INSN_CODE)
10963 {
10964 old_pat = PATTERN (insn);
10965 old_notes = REG_NOTES (insn);
10966 old_icode = INSN_CODE (insn);
10967 PATTERN (insn) = pat;
10968 REG_NOTES (insn) = notes;
10969
10970 /* Allow targets to reject combined insn. */
10971 if (!targetm.legitimate_combined_insn (insn))
10972 {
10973 if (dump_file && (dump_flags & TDF_DETAILS))
10974 fputs ("Instruction not appropriate for target.",
10975 dump_file);
10976
10977 /* Callers expect recog_for_combine to strip
10978 clobbers from the pattern on failure. */
10979 pat = pat_without_clobbers;
10980 notes = NULL_RTX;
10981
10982 insn_code_number = -1;
10983 }
10984
10985 PATTERN (insn) = old_pat;
10986 REG_NOTES (insn) = old_notes;
10987 INSN_CODE (insn) = old_icode;
10988 }
10989
10990 *pnewpat = pat;
10991 *pnotes = notes;
10992
10993 return insn_code_number;
10994 }
10995
10996 /* Change every ZERO_EXTRACT and ZERO_EXTEND of a SUBREG that can be
10997 expressed as an AND and maybe an LSHIFTRT, to that formulation.
10998 Return whether anything was so changed. */
10999
11000 static bool
11001 change_zero_ext (rtx *src)
11002 {
11003 bool changed = false;
11004
11005 subrtx_ptr_iterator::array_type array;
11006 FOR_EACH_SUBRTX_PTR (iter, array, src, NONCONST)
11007 {
11008 rtx x = **iter;
11009 machine_mode mode = GET_MODE (x);
11010 int size;
11011
11012 if (GET_CODE (x) == ZERO_EXTRACT
11013 && CONST_INT_P (XEXP (x, 1))
11014 && CONST_INT_P (XEXP (x, 2))
11015 && GET_MODE (XEXP (x, 0)) == mode)
11016 {
11017 size = INTVAL (XEXP (x, 1));
11018
11019 int start = INTVAL (XEXP (x, 2));
11020 if (BITS_BIG_ENDIAN)
11021 start = GET_MODE_PRECISION (mode) - size - start;
11022
11023 x = gen_rtx_LSHIFTRT (mode, XEXP (x, 0), GEN_INT (start));
11024 }
11025 else if (GET_CODE (x) == ZERO_EXTEND
11026 && GET_CODE (XEXP (x, 0)) == SUBREG
11027 && GET_MODE (SUBREG_REG (XEXP (x, 0))) == mode
11028 && subreg_lowpart_p (XEXP (x, 0)))
11029 {
11030 size = GET_MODE_PRECISION (GET_MODE (XEXP (x, 0)));
11031 x = SUBREG_REG (XEXP (x, 0));
11032 }
11033 else
11034 continue;
11035
11036 unsigned HOST_WIDE_INT mask = 1;
11037 mask <<= size;
11038 mask--;
11039
11040 x = gen_rtx_AND (mode, x, GEN_INT (mask));
11041
11042 SUBST (**iter, x);
11043 changed = true;
11044 }
11045
11046 return changed;
11047 }
11048
11049 /* Like recog, but we receive the address of a pointer to a new pattern.
11050 We try to match the rtx that the pointer points to.
11051 If that fails, we may try to modify or replace the pattern,
11052 storing the replacement into the same pointer object.
11053
11054 Modifications include deletion or addition of CLOBBERs. If the
11055 instruction will still not match, we change ZERO_EXTEND and ZERO_EXTRACT
11056 to the equivalent AND and perhaps LSHIFTRT patterns, and try with that
11057 (and undo if that fails).
11058
11059 PNOTES is a pointer to a location where any REG_UNUSED notes added for
11060 the CLOBBERs are placed.
11061
11062 The value is the final insn code from the pattern ultimately matched,
11063 or -1. */
11064
11065 static int
11066 recog_for_combine (rtx *pnewpat, rtx_insn *insn, rtx *pnotes)
11067 {
11068 rtx pat = PATTERN (insn);
11069 int insn_code_number = recog_for_combine_1 (pnewpat, insn, pnotes);
11070 if (insn_code_number >= 0 || check_asm_operands (pat))
11071 return insn_code_number;
11072
11073 void *marker = get_undo_marker ();
11074 bool changed = false;
11075
11076 if (GET_CODE (pat) == SET)
11077 changed = change_zero_ext (&SET_SRC (pat));
11078 else if (GET_CODE (pat) == PARALLEL)
11079 {
11080 int i;
11081 for (i = 0; i < XVECLEN (pat, 0); i++)
11082 {
11083 rtx set = XVECEXP (pat, 0, i);
11084 if (GET_CODE (set) == SET)
11085 changed |= change_zero_ext (&SET_SRC (set));
11086 }
11087 }
11088
11089 if (changed)
11090 {
11091 insn_code_number = recog_for_combine_1 (pnewpat, insn, pnotes);
11092
11093 if (insn_code_number < 0)
11094 undo_to_marker (marker);
11095 }
11096
11097 return insn_code_number;
11098 }
11099 \f
11100 /* Like gen_lowpart_general but for use by combine. In combine it
11101 is not possible to create any new pseudoregs. However, it is
11102 safe to create invalid memory addresses, because combine will
11103 try to recognize them and all they will do is make the combine
11104 attempt fail.
11105
11106 If for some reason this cannot do its job, an rtx
11107 (clobber (const_int 0)) is returned.
11108 An insn containing that will not be recognized. */
11109
11110 static rtx
11111 gen_lowpart_for_combine (machine_mode omode, rtx x)
11112 {
11113 machine_mode imode = GET_MODE (x);
11114 unsigned int osize = GET_MODE_SIZE (omode);
11115 unsigned int isize = GET_MODE_SIZE (imode);
11116 rtx result;
11117
11118 if (omode == imode)
11119 return x;
11120
11121 /* We can only support MODE being wider than a word if X is a
11122 constant integer or has a mode the same size. */
11123 if (GET_MODE_SIZE (omode) > UNITS_PER_WORD
11124 && ! (CONST_SCALAR_INT_P (x) || isize == osize))
11125 goto fail;
11126
11127 /* X might be a paradoxical (subreg (mem)). In that case, gen_lowpart
11128 won't know what to do. So we will strip off the SUBREG here and
11129 process normally. */
11130 if (GET_CODE (x) == SUBREG && MEM_P (SUBREG_REG (x)))
11131 {
11132 x = SUBREG_REG (x);
11133
11134 /* For use in case we fall down into the address adjustments
11135 further below, we need to adjust the known mode and size of
11136 x; imode and isize, since we just adjusted x. */
11137 imode = GET_MODE (x);
11138
11139 if (imode == omode)
11140 return x;
11141
11142 isize = GET_MODE_SIZE (imode);
11143 }
11144
11145 result = gen_lowpart_common (omode, x);
11146
11147 if (result)
11148 return result;
11149
11150 if (MEM_P (x))
11151 {
11152 int offset = 0;
11153
11154 /* Refuse to work on a volatile memory ref or one with a mode-dependent
11155 address. */
11156 if (MEM_VOLATILE_P (x)
11157 || mode_dependent_address_p (XEXP (x, 0), MEM_ADDR_SPACE (x)))
11158 goto fail;
11159
11160 /* If we want to refer to something bigger than the original memref,
11161 generate a paradoxical subreg instead. That will force a reload
11162 of the original memref X. */
11163 if (isize < osize)
11164 return gen_rtx_SUBREG (omode, x, 0);
11165
11166 if (WORDS_BIG_ENDIAN)
11167 offset = MAX (isize, UNITS_PER_WORD) - MAX (osize, UNITS_PER_WORD);
11168
11169 /* Adjust the address so that the address-after-the-data is
11170 unchanged. */
11171 if (BYTES_BIG_ENDIAN)
11172 offset -= MIN (UNITS_PER_WORD, osize) - MIN (UNITS_PER_WORD, isize);
11173
11174 return adjust_address_nv (x, omode, offset);
11175 }
11176
11177 /* If X is a comparison operator, rewrite it in a new mode. This
11178 probably won't match, but may allow further simplifications. */
11179 else if (COMPARISON_P (x))
11180 return gen_rtx_fmt_ee (GET_CODE (x), omode, XEXP (x, 0), XEXP (x, 1));
11181
11182 /* If we couldn't simplify X any other way, just enclose it in a
11183 SUBREG. Normally, this SUBREG won't match, but some patterns may
11184 include an explicit SUBREG or we may simplify it further in combine. */
11185 else
11186 {
11187 rtx res;
11188
11189 if (imode == VOIDmode)
11190 {
11191 imode = int_mode_for_mode (omode);
11192 x = gen_lowpart_common (imode, x);
11193 if (x == NULL)
11194 goto fail;
11195 }
11196 res = lowpart_subreg (omode, x, imode);
11197 if (res)
11198 return res;
11199 }
11200
11201 fail:
11202 return gen_rtx_CLOBBER (omode, const0_rtx);
11203 }
11204 \f
11205 /* Try to simplify a comparison between OP0 and a constant OP1,
11206 where CODE is the comparison code that will be tested, into a
11207 (CODE OP0 const0_rtx) form.
11208
11209 The result is a possibly different comparison code to use.
11210 *POP1 may be updated. */
11211
11212 static enum rtx_code
11213 simplify_compare_const (enum rtx_code code, machine_mode mode,
11214 rtx op0, rtx *pop1)
11215 {
11216 unsigned int mode_width = GET_MODE_PRECISION (mode);
11217 HOST_WIDE_INT const_op = INTVAL (*pop1);
11218
11219 /* Get the constant we are comparing against and turn off all bits
11220 not on in our mode. */
11221 if (mode != VOIDmode)
11222 const_op = trunc_int_for_mode (const_op, mode);
11223
11224 /* If we are comparing against a constant power of two and the value
11225 being compared can only have that single bit nonzero (e.g., it was
11226 `and'ed with that bit), we can replace this with a comparison
11227 with zero. */
11228 if (const_op
11229 && (code == EQ || code == NE || code == GE || code == GEU
11230 || code == LT || code == LTU)
11231 && mode_width - 1 < HOST_BITS_PER_WIDE_INT
11232 && exact_log2 (const_op & GET_MODE_MASK (mode)) >= 0
11233 && (nonzero_bits (op0, mode)
11234 == (unsigned HOST_WIDE_INT) (const_op & GET_MODE_MASK (mode))))
11235 {
11236 code = (code == EQ || code == GE || code == GEU ? NE : EQ);
11237 const_op = 0;
11238 }
11239
11240 /* Similarly, if we are comparing a value known to be either -1 or
11241 0 with -1, change it to the opposite comparison against zero. */
11242 if (const_op == -1
11243 && (code == EQ || code == NE || code == GT || code == LE
11244 || code == GEU || code == LTU)
11245 && num_sign_bit_copies (op0, mode) == mode_width)
11246 {
11247 code = (code == EQ || code == LE || code == GEU ? NE : EQ);
11248 const_op = 0;
11249 }
11250
11251 /* Do some canonicalizations based on the comparison code. We prefer
11252 comparisons against zero and then prefer equality comparisons.
11253 If we can reduce the size of a constant, we will do that too. */
11254 switch (code)
11255 {
11256 case LT:
11257 /* < C is equivalent to <= (C - 1) */
11258 if (const_op > 0)
11259 {
11260 const_op -= 1;
11261 code = LE;
11262 /* ... fall through to LE case below. */
11263 }
11264 else
11265 break;
11266
11267 case LE:
11268 /* <= C is equivalent to < (C + 1); we do this for C < 0 */
11269 if (const_op < 0)
11270 {
11271 const_op += 1;
11272 code = LT;
11273 }
11274
11275 /* If we are doing a <= 0 comparison on a value known to have
11276 a zero sign bit, we can replace this with == 0. */
11277 else if (const_op == 0
11278 && mode_width - 1 < HOST_BITS_PER_WIDE_INT
11279 && (nonzero_bits (op0, mode)
11280 & ((unsigned HOST_WIDE_INT) 1 << (mode_width - 1)))
11281 == 0)
11282 code = EQ;
11283 break;
11284
11285 case GE:
11286 /* >= C is equivalent to > (C - 1). */
11287 if (const_op > 0)
11288 {
11289 const_op -= 1;
11290 code = GT;
11291 /* ... fall through to GT below. */
11292 }
11293 else
11294 break;
11295
11296 case GT:
11297 /* > C is equivalent to >= (C + 1); we do this for C < 0. */
11298 if (const_op < 0)
11299 {
11300 const_op += 1;
11301 code = GE;
11302 }
11303
11304 /* If we are doing a > 0 comparison on a value known to have
11305 a zero sign bit, we can replace this with != 0. */
11306 else if (const_op == 0
11307 && mode_width - 1 < HOST_BITS_PER_WIDE_INT
11308 && (nonzero_bits (op0, mode)
11309 & ((unsigned HOST_WIDE_INT) 1 << (mode_width - 1)))
11310 == 0)
11311 code = NE;
11312 break;
11313
11314 case LTU:
11315 /* < C is equivalent to <= (C - 1). */
11316 if (const_op > 0)
11317 {
11318 const_op -= 1;
11319 code = LEU;
11320 /* ... fall through ... */
11321 }
11322 /* (unsigned) < 0x80000000 is equivalent to >= 0. */
11323 else if (mode_width - 1 < HOST_BITS_PER_WIDE_INT
11324 && (unsigned HOST_WIDE_INT) const_op
11325 == (unsigned HOST_WIDE_INT) 1 << (mode_width - 1))
11326 {
11327 const_op = 0;
11328 code = GE;
11329 break;
11330 }
11331 else
11332 break;
11333
11334 case LEU:
11335 /* unsigned <= 0 is equivalent to == 0 */
11336 if (const_op == 0)
11337 code = EQ;
11338 /* (unsigned) <= 0x7fffffff is equivalent to >= 0. */
11339 else if (mode_width - 1 < HOST_BITS_PER_WIDE_INT
11340 && (unsigned HOST_WIDE_INT) const_op
11341 == ((unsigned HOST_WIDE_INT) 1 << (mode_width - 1)) - 1)
11342 {
11343 const_op = 0;
11344 code = GE;
11345 }
11346 break;
11347
11348 case GEU:
11349 /* >= C is equivalent to > (C - 1). */
11350 if (const_op > 1)
11351 {
11352 const_op -= 1;
11353 code = GTU;
11354 /* ... fall through ... */
11355 }
11356
11357 /* (unsigned) >= 0x80000000 is equivalent to < 0. */
11358 else if (mode_width - 1 < HOST_BITS_PER_WIDE_INT
11359 && (unsigned HOST_WIDE_INT) const_op
11360 == (unsigned HOST_WIDE_INT) 1 << (mode_width - 1))
11361 {
11362 const_op = 0;
11363 code = LT;
11364 break;
11365 }
11366 else
11367 break;
11368
11369 case GTU:
11370 /* unsigned > 0 is equivalent to != 0 */
11371 if (const_op == 0)
11372 code = NE;
11373 /* (unsigned) > 0x7fffffff is equivalent to < 0. */
11374 else if (mode_width - 1 < HOST_BITS_PER_WIDE_INT
11375 && (unsigned HOST_WIDE_INT) const_op
11376 == ((unsigned HOST_WIDE_INT) 1 << (mode_width - 1)) - 1)
11377 {
11378 const_op = 0;
11379 code = LT;
11380 }
11381 break;
11382
11383 default:
11384 break;
11385 }
11386
11387 *pop1 = GEN_INT (const_op);
11388 return code;
11389 }
11390 \f
11391 /* Simplify a comparison between *POP0 and *POP1 where CODE is the
11392 comparison code that will be tested.
11393
11394 The result is a possibly different comparison code to use. *POP0 and
11395 *POP1 may be updated.
11396
11397 It is possible that we might detect that a comparison is either always
11398 true or always false. However, we do not perform general constant
11399 folding in combine, so this knowledge isn't useful. Such tautologies
11400 should have been detected earlier. Hence we ignore all such cases. */
11401
11402 static enum rtx_code
11403 simplify_comparison (enum rtx_code code, rtx *pop0, rtx *pop1)
11404 {
11405 rtx op0 = *pop0;
11406 rtx op1 = *pop1;
11407 rtx tem, tem1;
11408 int i;
11409 machine_mode mode, tmode;
11410
11411 /* Try a few ways of applying the same transformation to both operands. */
11412 while (1)
11413 {
11414 #if !WORD_REGISTER_OPERATIONS
11415 /* The test below this one won't handle SIGN_EXTENDs on these machines,
11416 so check specially. */
11417 if (code != GTU && code != GEU && code != LTU && code != LEU
11418 && GET_CODE (op0) == ASHIFTRT && GET_CODE (op1) == ASHIFTRT
11419 && GET_CODE (XEXP (op0, 0)) == ASHIFT
11420 && GET_CODE (XEXP (op1, 0)) == ASHIFT
11421 && GET_CODE (XEXP (XEXP (op0, 0), 0)) == SUBREG
11422 && GET_CODE (XEXP (XEXP (op1, 0), 0)) == SUBREG
11423 && (GET_MODE (SUBREG_REG (XEXP (XEXP (op0, 0), 0)))
11424 == GET_MODE (SUBREG_REG (XEXP (XEXP (op1, 0), 0))))
11425 && CONST_INT_P (XEXP (op0, 1))
11426 && XEXP (op0, 1) == XEXP (op1, 1)
11427 && XEXP (op0, 1) == XEXP (XEXP (op0, 0), 1)
11428 && XEXP (op0, 1) == XEXP (XEXP (op1, 0), 1)
11429 && (INTVAL (XEXP (op0, 1))
11430 == (GET_MODE_PRECISION (GET_MODE (op0))
11431 - (GET_MODE_PRECISION
11432 (GET_MODE (SUBREG_REG (XEXP (XEXP (op0, 0), 0))))))))
11433 {
11434 op0 = SUBREG_REG (XEXP (XEXP (op0, 0), 0));
11435 op1 = SUBREG_REG (XEXP (XEXP (op1, 0), 0));
11436 }
11437 #endif
11438
11439 /* If both operands are the same constant shift, see if we can ignore the
11440 shift. We can if the shift is a rotate or if the bits shifted out of
11441 this shift are known to be zero for both inputs and if the type of
11442 comparison is compatible with the shift. */
11443 if (GET_CODE (op0) == GET_CODE (op1)
11444 && HWI_COMPUTABLE_MODE_P (GET_MODE (op0))
11445 && ((GET_CODE (op0) == ROTATE && (code == NE || code == EQ))
11446 || ((GET_CODE (op0) == LSHIFTRT || GET_CODE (op0) == ASHIFT)
11447 && (code != GT && code != LT && code != GE && code != LE))
11448 || (GET_CODE (op0) == ASHIFTRT
11449 && (code != GTU && code != LTU
11450 && code != GEU && code != LEU)))
11451 && CONST_INT_P (XEXP (op0, 1))
11452 && INTVAL (XEXP (op0, 1)) >= 0
11453 && INTVAL (XEXP (op0, 1)) < HOST_BITS_PER_WIDE_INT
11454 && XEXP (op0, 1) == XEXP (op1, 1))
11455 {
11456 machine_mode mode = GET_MODE (op0);
11457 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
11458 int shift_count = INTVAL (XEXP (op0, 1));
11459
11460 if (GET_CODE (op0) == LSHIFTRT || GET_CODE (op0) == ASHIFTRT)
11461 mask &= (mask >> shift_count) << shift_count;
11462 else if (GET_CODE (op0) == ASHIFT)
11463 mask = (mask & (mask << shift_count)) >> shift_count;
11464
11465 if ((nonzero_bits (XEXP (op0, 0), mode) & ~mask) == 0
11466 && (nonzero_bits (XEXP (op1, 0), mode) & ~mask) == 0)
11467 op0 = XEXP (op0, 0), op1 = XEXP (op1, 0);
11468 else
11469 break;
11470 }
11471
11472 /* If both operands are AND's of a paradoxical SUBREG by constant, the
11473 SUBREGs are of the same mode, and, in both cases, the AND would
11474 be redundant if the comparison was done in the narrower mode,
11475 do the comparison in the narrower mode (e.g., we are AND'ing with 1
11476 and the operand's possibly nonzero bits are 0xffffff01; in that case
11477 if we only care about QImode, we don't need the AND). This case
11478 occurs if the output mode of an scc insn is not SImode and
11479 STORE_FLAG_VALUE == 1 (e.g., the 386).
11480
11481 Similarly, check for a case where the AND's are ZERO_EXTEND
11482 operations from some narrower mode even though a SUBREG is not
11483 present. */
11484
11485 else if (GET_CODE (op0) == AND && GET_CODE (op1) == AND
11486 && CONST_INT_P (XEXP (op0, 1))
11487 && CONST_INT_P (XEXP (op1, 1)))
11488 {
11489 rtx inner_op0 = XEXP (op0, 0);
11490 rtx inner_op1 = XEXP (op1, 0);
11491 HOST_WIDE_INT c0 = INTVAL (XEXP (op0, 1));
11492 HOST_WIDE_INT c1 = INTVAL (XEXP (op1, 1));
11493 int changed = 0;
11494
11495 if (paradoxical_subreg_p (inner_op0)
11496 && GET_CODE (inner_op1) == SUBREG
11497 && (GET_MODE (SUBREG_REG (inner_op0))
11498 == GET_MODE (SUBREG_REG (inner_op1)))
11499 && (GET_MODE_PRECISION (GET_MODE (SUBREG_REG (inner_op0)))
11500 <= HOST_BITS_PER_WIDE_INT)
11501 && (0 == ((~c0) & nonzero_bits (SUBREG_REG (inner_op0),
11502 GET_MODE (SUBREG_REG (inner_op0)))))
11503 && (0 == ((~c1) & nonzero_bits (SUBREG_REG (inner_op1),
11504 GET_MODE (SUBREG_REG (inner_op1))))))
11505 {
11506 op0 = SUBREG_REG (inner_op0);
11507 op1 = SUBREG_REG (inner_op1);
11508
11509 /* The resulting comparison is always unsigned since we masked
11510 off the original sign bit. */
11511 code = unsigned_condition (code);
11512
11513 changed = 1;
11514 }
11515
11516 else if (c0 == c1)
11517 for (tmode = GET_CLASS_NARROWEST_MODE
11518 (GET_MODE_CLASS (GET_MODE (op0)));
11519 tmode != GET_MODE (op0); tmode = GET_MODE_WIDER_MODE (tmode))
11520 if ((unsigned HOST_WIDE_INT) c0 == GET_MODE_MASK (tmode))
11521 {
11522 op0 = gen_lowpart_or_truncate (tmode, inner_op0);
11523 op1 = gen_lowpart_or_truncate (tmode, inner_op1);
11524 code = unsigned_condition (code);
11525 changed = 1;
11526 break;
11527 }
11528
11529 if (! changed)
11530 break;
11531 }
11532
11533 /* If both operands are NOT, we can strip off the outer operation
11534 and adjust the comparison code for swapped operands; similarly for
11535 NEG, except that this must be an equality comparison. */
11536 else if ((GET_CODE (op0) == NOT && GET_CODE (op1) == NOT)
11537 || (GET_CODE (op0) == NEG && GET_CODE (op1) == NEG
11538 && (code == EQ || code == NE)))
11539 op0 = XEXP (op0, 0), op1 = XEXP (op1, 0), code = swap_condition (code);
11540
11541 else
11542 break;
11543 }
11544
11545 /* If the first operand is a constant, swap the operands and adjust the
11546 comparison code appropriately, but don't do this if the second operand
11547 is already a constant integer. */
11548 if (swap_commutative_operands_p (op0, op1))
11549 {
11550 std::swap (op0, op1);
11551 code = swap_condition (code);
11552 }
11553
11554 /* We now enter a loop during which we will try to simplify the comparison.
11555 For the most part, we only are concerned with comparisons with zero,
11556 but some things may really be comparisons with zero but not start
11557 out looking that way. */
11558
11559 while (CONST_INT_P (op1))
11560 {
11561 machine_mode mode = GET_MODE (op0);
11562 unsigned int mode_width = GET_MODE_PRECISION (mode);
11563 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
11564 int equality_comparison_p;
11565 int sign_bit_comparison_p;
11566 int unsigned_comparison_p;
11567 HOST_WIDE_INT const_op;
11568
11569 /* We only want to handle integral modes. This catches VOIDmode,
11570 CCmode, and the floating-point modes. An exception is that we
11571 can handle VOIDmode if OP0 is a COMPARE or a comparison
11572 operation. */
11573
11574 if (GET_MODE_CLASS (mode) != MODE_INT
11575 && ! (mode == VOIDmode
11576 && (GET_CODE (op0) == COMPARE || COMPARISON_P (op0))))
11577 break;
11578
11579 /* Try to simplify the compare to constant, possibly changing the
11580 comparison op, and/or changing op1 to zero. */
11581 code = simplify_compare_const (code, mode, op0, &op1);
11582 const_op = INTVAL (op1);
11583
11584 /* Compute some predicates to simplify code below. */
11585
11586 equality_comparison_p = (code == EQ || code == NE);
11587 sign_bit_comparison_p = ((code == LT || code == GE) && const_op == 0);
11588 unsigned_comparison_p = (code == LTU || code == LEU || code == GTU
11589 || code == GEU);
11590
11591 /* If this is a sign bit comparison and we can do arithmetic in
11592 MODE, say that we will only be needing the sign bit of OP0. */
11593 if (sign_bit_comparison_p && HWI_COMPUTABLE_MODE_P (mode))
11594 op0 = force_to_mode (op0, mode,
11595 (unsigned HOST_WIDE_INT) 1
11596 << (GET_MODE_PRECISION (mode) - 1),
11597 0);
11598
11599 /* Now try cases based on the opcode of OP0. If none of the cases
11600 does a "continue", we exit this loop immediately after the
11601 switch. */
11602
11603 switch (GET_CODE (op0))
11604 {
11605 case ZERO_EXTRACT:
11606 /* If we are extracting a single bit from a variable position in
11607 a constant that has only a single bit set and are comparing it
11608 with zero, we can convert this into an equality comparison
11609 between the position and the location of the single bit. */
11610 /* Except we can't if SHIFT_COUNT_TRUNCATED is set, since we might
11611 have already reduced the shift count modulo the word size. */
11612 if (!SHIFT_COUNT_TRUNCATED
11613 && CONST_INT_P (XEXP (op0, 0))
11614 && XEXP (op0, 1) == const1_rtx
11615 && equality_comparison_p && const_op == 0
11616 && (i = exact_log2 (UINTVAL (XEXP (op0, 0)))) >= 0)
11617 {
11618 if (BITS_BIG_ENDIAN)
11619 i = BITS_PER_WORD - 1 - i;
11620
11621 op0 = XEXP (op0, 2);
11622 op1 = GEN_INT (i);
11623 const_op = i;
11624
11625 /* Result is nonzero iff shift count is equal to I. */
11626 code = reverse_condition (code);
11627 continue;
11628 }
11629
11630 /* ... fall through ... */
11631
11632 case SIGN_EXTRACT:
11633 tem = expand_compound_operation (op0);
11634 if (tem != op0)
11635 {
11636 op0 = tem;
11637 continue;
11638 }
11639 break;
11640
11641 case NOT:
11642 /* If testing for equality, we can take the NOT of the constant. */
11643 if (equality_comparison_p
11644 && (tem = simplify_unary_operation (NOT, mode, op1, mode)) != 0)
11645 {
11646 op0 = XEXP (op0, 0);
11647 op1 = tem;
11648 continue;
11649 }
11650
11651 /* If just looking at the sign bit, reverse the sense of the
11652 comparison. */
11653 if (sign_bit_comparison_p)
11654 {
11655 op0 = XEXP (op0, 0);
11656 code = (code == GE ? LT : GE);
11657 continue;
11658 }
11659 break;
11660
11661 case NEG:
11662 /* If testing for equality, we can take the NEG of the constant. */
11663 if (equality_comparison_p
11664 && (tem = simplify_unary_operation (NEG, mode, op1, mode)) != 0)
11665 {
11666 op0 = XEXP (op0, 0);
11667 op1 = tem;
11668 continue;
11669 }
11670
11671 /* The remaining cases only apply to comparisons with zero. */
11672 if (const_op != 0)
11673 break;
11674
11675 /* When X is ABS or is known positive,
11676 (neg X) is < 0 if and only if X != 0. */
11677
11678 if (sign_bit_comparison_p
11679 && (GET_CODE (XEXP (op0, 0)) == ABS
11680 || (mode_width <= HOST_BITS_PER_WIDE_INT
11681 && (nonzero_bits (XEXP (op0, 0), mode)
11682 & ((unsigned HOST_WIDE_INT) 1 << (mode_width - 1)))
11683 == 0)))
11684 {
11685 op0 = XEXP (op0, 0);
11686 code = (code == LT ? NE : EQ);
11687 continue;
11688 }
11689
11690 /* If we have NEG of something whose two high-order bits are the
11691 same, we know that "(-a) < 0" is equivalent to "a > 0". */
11692 if (num_sign_bit_copies (op0, mode) >= 2)
11693 {
11694 op0 = XEXP (op0, 0);
11695 code = swap_condition (code);
11696 continue;
11697 }
11698 break;
11699
11700 case ROTATE:
11701 /* If we are testing equality and our count is a constant, we
11702 can perform the inverse operation on our RHS. */
11703 if (equality_comparison_p && CONST_INT_P (XEXP (op0, 1))
11704 && (tem = simplify_binary_operation (ROTATERT, mode,
11705 op1, XEXP (op0, 1))) != 0)
11706 {
11707 op0 = XEXP (op0, 0);
11708 op1 = tem;
11709 continue;
11710 }
11711
11712 /* If we are doing a < 0 or >= 0 comparison, it means we are testing
11713 a particular bit. Convert it to an AND of a constant of that
11714 bit. This will be converted into a ZERO_EXTRACT. */
11715 if (const_op == 0 && sign_bit_comparison_p
11716 && CONST_INT_P (XEXP (op0, 1))
11717 && mode_width <= HOST_BITS_PER_WIDE_INT)
11718 {
11719 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
11720 ((unsigned HOST_WIDE_INT) 1
11721 << (mode_width - 1
11722 - INTVAL (XEXP (op0, 1)))));
11723 code = (code == LT ? NE : EQ);
11724 continue;
11725 }
11726
11727 /* Fall through. */
11728
11729 case ABS:
11730 /* ABS is ignorable inside an equality comparison with zero. */
11731 if (const_op == 0 && equality_comparison_p)
11732 {
11733 op0 = XEXP (op0, 0);
11734 continue;
11735 }
11736 break;
11737
11738 case SIGN_EXTEND:
11739 /* Can simplify (compare (zero/sign_extend FOO) CONST) to
11740 (compare FOO CONST) if CONST fits in FOO's mode and we
11741 are either testing inequality or have an unsigned
11742 comparison with ZERO_EXTEND or a signed comparison with
11743 SIGN_EXTEND. But don't do it if we don't have a compare
11744 insn of the given mode, since we'd have to revert it
11745 later on, and then we wouldn't know whether to sign- or
11746 zero-extend. */
11747 mode = GET_MODE (XEXP (op0, 0));
11748 if (GET_MODE_CLASS (mode) == MODE_INT
11749 && ! unsigned_comparison_p
11750 && HWI_COMPUTABLE_MODE_P (mode)
11751 && trunc_int_for_mode (const_op, mode) == const_op
11752 && have_insn_for (COMPARE, mode))
11753 {
11754 op0 = XEXP (op0, 0);
11755 continue;
11756 }
11757 break;
11758
11759 case SUBREG:
11760 /* Check for the case where we are comparing A - C1 with C2, that is
11761
11762 (subreg:MODE (plus (A) (-C1))) op (C2)
11763
11764 with C1 a constant, and try to lift the SUBREG, i.e. to do the
11765 comparison in the wider mode. One of the following two conditions
11766 must be true in order for this to be valid:
11767
11768 1. The mode extension results in the same bit pattern being added
11769 on both sides and the comparison is equality or unsigned. As
11770 C2 has been truncated to fit in MODE, the pattern can only be
11771 all 0s or all 1s.
11772
11773 2. The mode extension results in the sign bit being copied on
11774 each side.
11775
11776 The difficulty here is that we have predicates for A but not for
11777 (A - C1) so we need to check that C1 is within proper bounds so
11778 as to perturbate A as little as possible. */
11779
11780 if (mode_width <= HOST_BITS_PER_WIDE_INT
11781 && subreg_lowpart_p (op0)
11782 && GET_MODE_PRECISION (GET_MODE (SUBREG_REG (op0))) > mode_width
11783 && GET_CODE (SUBREG_REG (op0)) == PLUS
11784 && CONST_INT_P (XEXP (SUBREG_REG (op0), 1)))
11785 {
11786 machine_mode inner_mode = GET_MODE (SUBREG_REG (op0));
11787 rtx a = XEXP (SUBREG_REG (op0), 0);
11788 HOST_WIDE_INT c1 = -INTVAL (XEXP (SUBREG_REG (op0), 1));
11789
11790 if ((c1 > 0
11791 && (unsigned HOST_WIDE_INT) c1
11792 < (unsigned HOST_WIDE_INT) 1 << (mode_width - 1)
11793 && (equality_comparison_p || unsigned_comparison_p)
11794 /* (A - C1) zero-extends if it is positive and sign-extends
11795 if it is negative, C2 both zero- and sign-extends. */
11796 && ((0 == (nonzero_bits (a, inner_mode)
11797 & ~GET_MODE_MASK (mode))
11798 && const_op >= 0)
11799 /* (A - C1) sign-extends if it is positive and 1-extends
11800 if it is negative, C2 both sign- and 1-extends. */
11801 || (num_sign_bit_copies (a, inner_mode)
11802 > (unsigned int) (GET_MODE_PRECISION (inner_mode)
11803 - mode_width)
11804 && const_op < 0)))
11805 || ((unsigned HOST_WIDE_INT) c1
11806 < (unsigned HOST_WIDE_INT) 1 << (mode_width - 2)
11807 /* (A - C1) always sign-extends, like C2. */
11808 && num_sign_bit_copies (a, inner_mode)
11809 > (unsigned int) (GET_MODE_PRECISION (inner_mode)
11810 - (mode_width - 1))))
11811 {
11812 op0 = SUBREG_REG (op0);
11813 continue;
11814 }
11815 }
11816
11817 /* If the inner mode is narrower and we are extracting the low part,
11818 we can treat the SUBREG as if it were a ZERO_EXTEND. */
11819 if (subreg_lowpart_p (op0)
11820 && GET_MODE_PRECISION (GET_MODE (SUBREG_REG (op0))) < mode_width)
11821 /* Fall through */ ;
11822 else
11823 break;
11824
11825 /* ... fall through ... */
11826
11827 case ZERO_EXTEND:
11828 mode = GET_MODE (XEXP (op0, 0));
11829 if (GET_MODE_CLASS (mode) == MODE_INT
11830 && (unsigned_comparison_p || equality_comparison_p)
11831 && HWI_COMPUTABLE_MODE_P (mode)
11832 && (unsigned HOST_WIDE_INT) const_op <= GET_MODE_MASK (mode)
11833 && const_op >= 0
11834 && have_insn_for (COMPARE, mode))
11835 {
11836 op0 = XEXP (op0, 0);
11837 continue;
11838 }
11839 break;
11840
11841 case PLUS:
11842 /* (eq (plus X A) B) -> (eq X (minus B A)). We can only do
11843 this for equality comparisons due to pathological cases involving
11844 overflows. */
11845 if (equality_comparison_p
11846 && 0 != (tem = simplify_binary_operation (MINUS, mode,
11847 op1, XEXP (op0, 1))))
11848 {
11849 op0 = XEXP (op0, 0);
11850 op1 = tem;
11851 continue;
11852 }
11853
11854 /* (plus (abs X) (const_int -1)) is < 0 if and only if X == 0. */
11855 if (const_op == 0 && XEXP (op0, 1) == constm1_rtx
11856 && GET_CODE (XEXP (op0, 0)) == ABS && sign_bit_comparison_p)
11857 {
11858 op0 = XEXP (XEXP (op0, 0), 0);
11859 code = (code == LT ? EQ : NE);
11860 continue;
11861 }
11862 break;
11863
11864 case MINUS:
11865 /* We used to optimize signed comparisons against zero, but that
11866 was incorrect. Unsigned comparisons against zero (GTU, LEU)
11867 arrive here as equality comparisons, or (GEU, LTU) are
11868 optimized away. No need to special-case them. */
11869
11870 /* (eq (minus A B) C) -> (eq A (plus B C)) or
11871 (eq B (minus A C)), whichever simplifies. We can only do
11872 this for equality comparisons due to pathological cases involving
11873 overflows. */
11874 if (equality_comparison_p
11875 && 0 != (tem = simplify_binary_operation (PLUS, mode,
11876 XEXP (op0, 1), op1)))
11877 {
11878 op0 = XEXP (op0, 0);
11879 op1 = tem;
11880 continue;
11881 }
11882
11883 if (equality_comparison_p
11884 && 0 != (tem = simplify_binary_operation (MINUS, mode,
11885 XEXP (op0, 0), op1)))
11886 {
11887 op0 = XEXP (op0, 1);
11888 op1 = tem;
11889 continue;
11890 }
11891
11892 /* The sign bit of (minus (ashiftrt X C) X), where C is the number
11893 of bits in X minus 1, is one iff X > 0. */
11894 if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 0)) == ASHIFTRT
11895 && CONST_INT_P (XEXP (XEXP (op0, 0), 1))
11896 && UINTVAL (XEXP (XEXP (op0, 0), 1)) == mode_width - 1
11897 && rtx_equal_p (XEXP (XEXP (op0, 0), 0), XEXP (op0, 1)))
11898 {
11899 op0 = XEXP (op0, 1);
11900 code = (code == GE ? LE : GT);
11901 continue;
11902 }
11903 break;
11904
11905 case XOR:
11906 /* (eq (xor A B) C) -> (eq A (xor B C)). This is a simplification
11907 if C is zero or B is a constant. */
11908 if (equality_comparison_p
11909 && 0 != (tem = simplify_binary_operation (XOR, mode,
11910 XEXP (op0, 1), op1)))
11911 {
11912 op0 = XEXP (op0, 0);
11913 op1 = tem;
11914 continue;
11915 }
11916 break;
11917
11918 case EQ: case NE:
11919 case UNEQ: case LTGT:
11920 case LT: case LTU: case UNLT: case LE: case LEU: case UNLE:
11921 case GT: case GTU: case UNGT: case GE: case GEU: case UNGE:
11922 case UNORDERED: case ORDERED:
11923 /* We can't do anything if OP0 is a condition code value, rather
11924 than an actual data value. */
11925 if (const_op != 0
11926 || CC0_P (XEXP (op0, 0))
11927 || GET_MODE_CLASS (GET_MODE (XEXP (op0, 0))) == MODE_CC)
11928 break;
11929
11930 /* Get the two operands being compared. */
11931 if (GET_CODE (XEXP (op0, 0)) == COMPARE)
11932 tem = XEXP (XEXP (op0, 0), 0), tem1 = XEXP (XEXP (op0, 0), 1);
11933 else
11934 tem = XEXP (op0, 0), tem1 = XEXP (op0, 1);
11935
11936 /* Check for the cases where we simply want the result of the
11937 earlier test or the opposite of that result. */
11938 if (code == NE || code == EQ
11939 || (val_signbit_known_set_p (GET_MODE (op0), STORE_FLAG_VALUE)
11940 && (code == LT || code == GE)))
11941 {
11942 enum rtx_code new_code;
11943 if (code == LT || code == NE)
11944 new_code = GET_CODE (op0);
11945 else
11946 new_code = reversed_comparison_code (op0, NULL);
11947
11948 if (new_code != UNKNOWN)
11949 {
11950 code = new_code;
11951 op0 = tem;
11952 op1 = tem1;
11953 continue;
11954 }
11955 }
11956 break;
11957
11958 case IOR:
11959 /* The sign bit of (ior (plus X (const_int -1)) X) is nonzero
11960 iff X <= 0. */
11961 if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 0)) == PLUS
11962 && XEXP (XEXP (op0, 0), 1) == constm1_rtx
11963 && rtx_equal_p (XEXP (XEXP (op0, 0), 0), XEXP (op0, 1)))
11964 {
11965 op0 = XEXP (op0, 1);
11966 code = (code == GE ? GT : LE);
11967 continue;
11968 }
11969 break;
11970
11971 case AND:
11972 /* Convert (and (xshift 1 X) Y) to (and (lshiftrt Y X) 1). This
11973 will be converted to a ZERO_EXTRACT later. */
11974 if (const_op == 0 && equality_comparison_p
11975 && GET_CODE (XEXP (op0, 0)) == ASHIFT
11976 && XEXP (XEXP (op0, 0), 0) == const1_rtx)
11977 {
11978 op0 = gen_rtx_LSHIFTRT (mode, XEXP (op0, 1),
11979 XEXP (XEXP (op0, 0), 1));
11980 op0 = simplify_and_const_int (NULL_RTX, mode, op0, 1);
11981 continue;
11982 }
11983
11984 /* If we are comparing (and (lshiftrt X C1) C2) for equality with
11985 zero and X is a comparison and C1 and C2 describe only bits set
11986 in STORE_FLAG_VALUE, we can compare with X. */
11987 if (const_op == 0 && equality_comparison_p
11988 && mode_width <= HOST_BITS_PER_WIDE_INT
11989 && CONST_INT_P (XEXP (op0, 1))
11990 && GET_CODE (XEXP (op0, 0)) == LSHIFTRT
11991 && CONST_INT_P (XEXP (XEXP (op0, 0), 1))
11992 && INTVAL (XEXP (XEXP (op0, 0), 1)) >= 0
11993 && INTVAL (XEXP (XEXP (op0, 0), 1)) < HOST_BITS_PER_WIDE_INT)
11994 {
11995 mask = ((INTVAL (XEXP (op0, 1)) & GET_MODE_MASK (mode))
11996 << INTVAL (XEXP (XEXP (op0, 0), 1)));
11997 if ((~STORE_FLAG_VALUE & mask) == 0
11998 && (COMPARISON_P (XEXP (XEXP (op0, 0), 0))
11999 || ((tem = get_last_value (XEXP (XEXP (op0, 0), 0))) != 0
12000 && COMPARISON_P (tem))))
12001 {
12002 op0 = XEXP (XEXP (op0, 0), 0);
12003 continue;
12004 }
12005 }
12006
12007 /* If we are doing an equality comparison of an AND of a bit equal
12008 to the sign bit, replace this with a LT or GE comparison of
12009 the underlying value. */
12010 if (equality_comparison_p
12011 && const_op == 0
12012 && CONST_INT_P (XEXP (op0, 1))
12013 && mode_width <= HOST_BITS_PER_WIDE_INT
12014 && ((INTVAL (XEXP (op0, 1)) & GET_MODE_MASK (mode))
12015 == (unsigned HOST_WIDE_INT) 1 << (mode_width - 1)))
12016 {
12017 op0 = XEXP (op0, 0);
12018 code = (code == EQ ? GE : LT);
12019 continue;
12020 }
12021
12022 /* If this AND operation is really a ZERO_EXTEND from a narrower
12023 mode, the constant fits within that mode, and this is either an
12024 equality or unsigned comparison, try to do this comparison in
12025 the narrower mode.
12026
12027 Note that in:
12028
12029 (ne:DI (and:DI (reg:DI 4) (const_int 0xffffffff)) (const_int 0))
12030 -> (ne:DI (reg:SI 4) (const_int 0))
12031
12032 unless TRULY_NOOP_TRUNCATION allows it or the register is
12033 known to hold a value of the required mode the
12034 transformation is invalid. */
12035 if ((equality_comparison_p || unsigned_comparison_p)
12036 && CONST_INT_P (XEXP (op0, 1))
12037 && (i = exact_log2 ((UINTVAL (XEXP (op0, 1))
12038 & GET_MODE_MASK (mode))
12039 + 1)) >= 0
12040 && const_op >> i == 0
12041 && (tmode = mode_for_size (i, MODE_INT, 1)) != BLKmode)
12042 {
12043 op0 = gen_lowpart_or_truncate (tmode, XEXP (op0, 0));
12044 continue;
12045 }
12046
12047 /* If this is (and:M1 (subreg:M1 X:M2 0) (const_int C1)) where C1
12048 fits in both M1 and M2 and the SUBREG is either paradoxical
12049 or represents the low part, permute the SUBREG and the AND
12050 and try again. */
12051 if (GET_CODE (XEXP (op0, 0)) == SUBREG
12052 && CONST_INT_P (XEXP (op0, 1)))
12053 {
12054 tmode = GET_MODE (SUBREG_REG (XEXP (op0, 0)));
12055 unsigned HOST_WIDE_INT c1 = INTVAL (XEXP (op0, 1));
12056 /* Require an integral mode, to avoid creating something like
12057 (AND:SF ...). */
12058 if (SCALAR_INT_MODE_P (tmode)
12059 /* It is unsafe to commute the AND into the SUBREG if the
12060 SUBREG is paradoxical and WORD_REGISTER_OPERATIONS is
12061 not defined. As originally written the upper bits
12062 have a defined value due to the AND operation.
12063 However, if we commute the AND inside the SUBREG then
12064 they no longer have defined values and the meaning of
12065 the code has been changed.
12066 Also C1 should not change value in the smaller mode,
12067 see PR67028 (a positive C1 can become negative in the
12068 smaller mode, so that the AND does no longer mask the
12069 upper bits). */
12070 && ((WORD_REGISTER_OPERATIONS
12071 && mode_width > GET_MODE_PRECISION (tmode)
12072 && mode_width <= BITS_PER_WORD
12073 && trunc_int_for_mode (c1, tmode) == (HOST_WIDE_INT) c1)
12074 || (mode_width <= GET_MODE_PRECISION (tmode)
12075 && subreg_lowpart_p (XEXP (op0, 0))))
12076 && mode_width <= HOST_BITS_PER_WIDE_INT
12077 && HWI_COMPUTABLE_MODE_P (tmode)
12078 && (c1 & ~mask) == 0
12079 && (c1 & ~GET_MODE_MASK (tmode)) == 0
12080 && c1 != mask
12081 && c1 != GET_MODE_MASK (tmode))
12082 {
12083 op0 = simplify_gen_binary (AND, tmode,
12084 SUBREG_REG (XEXP (op0, 0)),
12085 gen_int_mode (c1, tmode));
12086 op0 = gen_lowpart (mode, op0);
12087 continue;
12088 }
12089 }
12090
12091 /* Convert (ne (and (not X) 1) 0) to (eq (and X 1) 0). */
12092 if (const_op == 0 && equality_comparison_p
12093 && XEXP (op0, 1) == const1_rtx
12094 && GET_CODE (XEXP (op0, 0)) == NOT)
12095 {
12096 op0 = simplify_and_const_int (NULL_RTX, mode,
12097 XEXP (XEXP (op0, 0), 0), 1);
12098 code = (code == NE ? EQ : NE);
12099 continue;
12100 }
12101
12102 /* Convert (ne (and (lshiftrt (not X)) 1) 0) to
12103 (eq (and (lshiftrt X) 1) 0).
12104 Also handle the case where (not X) is expressed using xor. */
12105 if (const_op == 0 && equality_comparison_p
12106 && XEXP (op0, 1) == const1_rtx
12107 && GET_CODE (XEXP (op0, 0)) == LSHIFTRT)
12108 {
12109 rtx shift_op = XEXP (XEXP (op0, 0), 0);
12110 rtx shift_count = XEXP (XEXP (op0, 0), 1);
12111
12112 if (GET_CODE (shift_op) == NOT
12113 || (GET_CODE (shift_op) == XOR
12114 && CONST_INT_P (XEXP (shift_op, 1))
12115 && CONST_INT_P (shift_count)
12116 && HWI_COMPUTABLE_MODE_P (mode)
12117 && (UINTVAL (XEXP (shift_op, 1))
12118 == (unsigned HOST_WIDE_INT) 1
12119 << INTVAL (shift_count))))
12120 {
12121 op0
12122 = gen_rtx_LSHIFTRT (mode, XEXP (shift_op, 0), shift_count);
12123 op0 = simplify_and_const_int (NULL_RTX, mode, op0, 1);
12124 code = (code == NE ? EQ : NE);
12125 continue;
12126 }
12127 }
12128 break;
12129
12130 case ASHIFT:
12131 /* If we have (compare (ashift FOO N) (const_int C)) and
12132 the high order N bits of FOO (N+1 if an inequality comparison)
12133 are known to be zero, we can do this by comparing FOO with C
12134 shifted right N bits so long as the low-order N bits of C are
12135 zero. */
12136 if (CONST_INT_P (XEXP (op0, 1))
12137 && INTVAL (XEXP (op0, 1)) >= 0
12138 && ((INTVAL (XEXP (op0, 1)) + ! equality_comparison_p)
12139 < HOST_BITS_PER_WIDE_INT)
12140 && (((unsigned HOST_WIDE_INT) const_op
12141 & (((unsigned HOST_WIDE_INT) 1 << INTVAL (XEXP (op0, 1)))
12142 - 1)) == 0)
12143 && mode_width <= HOST_BITS_PER_WIDE_INT
12144 && (nonzero_bits (XEXP (op0, 0), mode)
12145 & ~(mask >> (INTVAL (XEXP (op0, 1))
12146 + ! equality_comparison_p))) == 0)
12147 {
12148 /* We must perform a logical shift, not an arithmetic one,
12149 as we want the top N bits of C to be zero. */
12150 unsigned HOST_WIDE_INT temp = const_op & GET_MODE_MASK (mode);
12151
12152 temp >>= INTVAL (XEXP (op0, 1));
12153 op1 = gen_int_mode (temp, mode);
12154 op0 = XEXP (op0, 0);
12155 continue;
12156 }
12157
12158 /* If we are doing a sign bit comparison, it means we are testing
12159 a particular bit. Convert it to the appropriate AND. */
12160 if (sign_bit_comparison_p && CONST_INT_P (XEXP (op0, 1))
12161 && mode_width <= HOST_BITS_PER_WIDE_INT)
12162 {
12163 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
12164 ((unsigned HOST_WIDE_INT) 1
12165 << (mode_width - 1
12166 - INTVAL (XEXP (op0, 1)))));
12167 code = (code == LT ? NE : EQ);
12168 continue;
12169 }
12170
12171 /* If this an equality comparison with zero and we are shifting
12172 the low bit to the sign bit, we can convert this to an AND of the
12173 low-order bit. */
12174 if (const_op == 0 && equality_comparison_p
12175 && CONST_INT_P (XEXP (op0, 1))
12176 && UINTVAL (XEXP (op0, 1)) == mode_width - 1)
12177 {
12178 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0), 1);
12179 continue;
12180 }
12181 break;
12182
12183 case ASHIFTRT:
12184 /* If this is an equality comparison with zero, we can do this
12185 as a logical shift, which might be much simpler. */
12186 if (equality_comparison_p && const_op == 0
12187 && CONST_INT_P (XEXP (op0, 1)))
12188 {
12189 op0 = simplify_shift_const (NULL_RTX, LSHIFTRT, mode,
12190 XEXP (op0, 0),
12191 INTVAL (XEXP (op0, 1)));
12192 continue;
12193 }
12194
12195 /* If OP0 is a sign extension and CODE is not an unsigned comparison,
12196 do the comparison in a narrower mode. */
12197 if (! unsigned_comparison_p
12198 && CONST_INT_P (XEXP (op0, 1))
12199 && GET_CODE (XEXP (op0, 0)) == ASHIFT
12200 && XEXP (op0, 1) == XEXP (XEXP (op0, 0), 1)
12201 && (tmode = mode_for_size (mode_width - INTVAL (XEXP (op0, 1)),
12202 MODE_INT, 1)) != BLKmode
12203 && (((unsigned HOST_WIDE_INT) const_op
12204 + (GET_MODE_MASK (tmode) >> 1) + 1)
12205 <= GET_MODE_MASK (tmode)))
12206 {
12207 op0 = gen_lowpart (tmode, XEXP (XEXP (op0, 0), 0));
12208 continue;
12209 }
12210
12211 /* Likewise if OP0 is a PLUS of a sign extension with a
12212 constant, which is usually represented with the PLUS
12213 between the shifts. */
12214 if (! unsigned_comparison_p
12215 && CONST_INT_P (XEXP (op0, 1))
12216 && GET_CODE (XEXP (op0, 0)) == PLUS
12217 && CONST_INT_P (XEXP (XEXP (op0, 0), 1))
12218 && GET_CODE (XEXP (XEXP (op0, 0), 0)) == ASHIFT
12219 && XEXP (op0, 1) == XEXP (XEXP (XEXP (op0, 0), 0), 1)
12220 && (tmode = mode_for_size (mode_width - INTVAL (XEXP (op0, 1)),
12221 MODE_INT, 1)) != BLKmode
12222 && (((unsigned HOST_WIDE_INT) const_op
12223 + (GET_MODE_MASK (tmode) >> 1) + 1)
12224 <= GET_MODE_MASK (tmode)))
12225 {
12226 rtx inner = XEXP (XEXP (XEXP (op0, 0), 0), 0);
12227 rtx add_const = XEXP (XEXP (op0, 0), 1);
12228 rtx new_const = simplify_gen_binary (ASHIFTRT, GET_MODE (op0),
12229 add_const, XEXP (op0, 1));
12230
12231 op0 = simplify_gen_binary (PLUS, tmode,
12232 gen_lowpart (tmode, inner),
12233 new_const);
12234 continue;
12235 }
12236
12237 /* ... fall through ... */
12238 case LSHIFTRT:
12239 /* If we have (compare (xshiftrt FOO N) (const_int C)) and
12240 the low order N bits of FOO are known to be zero, we can do this
12241 by comparing FOO with C shifted left N bits so long as no
12242 overflow occurs. Even if the low order N bits of FOO aren't known
12243 to be zero, if the comparison is >= or < we can use the same
12244 optimization and for > or <= by setting all the low
12245 order N bits in the comparison constant. */
12246 if (CONST_INT_P (XEXP (op0, 1))
12247 && INTVAL (XEXP (op0, 1)) > 0
12248 && INTVAL (XEXP (op0, 1)) < HOST_BITS_PER_WIDE_INT
12249 && mode_width <= HOST_BITS_PER_WIDE_INT
12250 && (((unsigned HOST_WIDE_INT) const_op
12251 + (GET_CODE (op0) != LSHIFTRT
12252 ? ((GET_MODE_MASK (mode) >> INTVAL (XEXP (op0, 1)) >> 1)
12253 + 1)
12254 : 0))
12255 <= GET_MODE_MASK (mode) >> INTVAL (XEXP (op0, 1))))
12256 {
12257 unsigned HOST_WIDE_INT low_bits
12258 = (nonzero_bits (XEXP (op0, 0), mode)
12259 & (((unsigned HOST_WIDE_INT) 1
12260 << INTVAL (XEXP (op0, 1))) - 1));
12261 if (low_bits == 0 || !equality_comparison_p)
12262 {
12263 /* If the shift was logical, then we must make the condition
12264 unsigned. */
12265 if (GET_CODE (op0) == LSHIFTRT)
12266 code = unsigned_condition (code);
12267
12268 const_op <<= INTVAL (XEXP (op0, 1));
12269 if (low_bits != 0
12270 && (code == GT || code == GTU
12271 || code == LE || code == LEU))
12272 const_op
12273 |= (((HOST_WIDE_INT) 1 << INTVAL (XEXP (op0, 1))) - 1);
12274 op1 = GEN_INT (const_op);
12275 op0 = XEXP (op0, 0);
12276 continue;
12277 }
12278 }
12279
12280 /* If we are using this shift to extract just the sign bit, we
12281 can replace this with an LT or GE comparison. */
12282 if (const_op == 0
12283 && (equality_comparison_p || sign_bit_comparison_p)
12284 && CONST_INT_P (XEXP (op0, 1))
12285 && UINTVAL (XEXP (op0, 1)) == mode_width - 1)
12286 {
12287 op0 = XEXP (op0, 0);
12288 code = (code == NE || code == GT ? LT : GE);
12289 continue;
12290 }
12291 break;
12292
12293 default:
12294 break;
12295 }
12296
12297 break;
12298 }
12299
12300 /* Now make any compound operations involved in this comparison. Then,
12301 check for an outmost SUBREG on OP0 that is not doing anything or is
12302 paradoxical. The latter transformation must only be performed when
12303 it is known that the "extra" bits will be the same in op0 and op1 or
12304 that they don't matter. There are three cases to consider:
12305
12306 1. SUBREG_REG (op0) is a register. In this case the bits are don't
12307 care bits and we can assume they have any convenient value. So
12308 making the transformation is safe.
12309
12310 2. SUBREG_REG (op0) is a memory and LOAD_EXTEND_OP is not defined.
12311 In this case the upper bits of op0 are undefined. We should not make
12312 the simplification in that case as we do not know the contents of
12313 those bits.
12314
12315 3. SUBREG_REG (op0) is a memory and LOAD_EXTEND_OP is defined and not
12316 UNKNOWN. In that case we know those bits are zeros or ones. We must
12317 also be sure that they are the same as the upper bits of op1.
12318
12319 We can never remove a SUBREG for a non-equality comparison because
12320 the sign bit is in a different place in the underlying object. */
12321
12322 op0 = make_compound_operation (op0, op1 == const0_rtx ? COMPARE : SET);
12323 op1 = make_compound_operation (op1, SET);
12324
12325 if (GET_CODE (op0) == SUBREG && subreg_lowpart_p (op0)
12326 && GET_MODE_CLASS (GET_MODE (op0)) == MODE_INT
12327 && GET_MODE_CLASS (GET_MODE (SUBREG_REG (op0))) == MODE_INT
12328 && (code == NE || code == EQ))
12329 {
12330 if (paradoxical_subreg_p (op0))
12331 {
12332 /* For paradoxical subregs, allow case 1 as above. Case 3 isn't
12333 implemented. */
12334 if (REG_P (SUBREG_REG (op0)))
12335 {
12336 op0 = SUBREG_REG (op0);
12337 op1 = gen_lowpart (GET_MODE (op0), op1);
12338 }
12339 }
12340 else if ((GET_MODE_PRECISION (GET_MODE (SUBREG_REG (op0)))
12341 <= HOST_BITS_PER_WIDE_INT)
12342 && (nonzero_bits (SUBREG_REG (op0),
12343 GET_MODE (SUBREG_REG (op0)))
12344 & ~GET_MODE_MASK (GET_MODE (op0))) == 0)
12345 {
12346 tem = gen_lowpart (GET_MODE (SUBREG_REG (op0)), op1);
12347
12348 if ((nonzero_bits (tem, GET_MODE (SUBREG_REG (op0)))
12349 & ~GET_MODE_MASK (GET_MODE (op0))) == 0)
12350 op0 = SUBREG_REG (op0), op1 = tem;
12351 }
12352 }
12353
12354 /* We now do the opposite procedure: Some machines don't have compare
12355 insns in all modes. If OP0's mode is an integer mode smaller than a
12356 word and we can't do a compare in that mode, see if there is a larger
12357 mode for which we can do the compare. There are a number of cases in
12358 which we can use the wider mode. */
12359
12360 mode = GET_MODE (op0);
12361 if (mode != VOIDmode && GET_MODE_CLASS (mode) == MODE_INT
12362 && GET_MODE_SIZE (mode) < UNITS_PER_WORD
12363 && ! have_insn_for (COMPARE, mode))
12364 for (tmode = GET_MODE_WIDER_MODE (mode);
12365 (tmode != VOIDmode && HWI_COMPUTABLE_MODE_P (tmode));
12366 tmode = GET_MODE_WIDER_MODE (tmode))
12367 if (have_insn_for (COMPARE, tmode))
12368 {
12369 int zero_extended;
12370
12371 /* If this is a test for negative, we can make an explicit
12372 test of the sign bit. Test this first so we can use
12373 a paradoxical subreg to extend OP0. */
12374
12375 if (op1 == const0_rtx && (code == LT || code == GE)
12376 && HWI_COMPUTABLE_MODE_P (mode))
12377 {
12378 unsigned HOST_WIDE_INT sign
12379 = (unsigned HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (mode) - 1);
12380 op0 = simplify_gen_binary (AND, tmode,
12381 gen_lowpart (tmode, op0),
12382 gen_int_mode (sign, tmode));
12383 code = (code == LT) ? NE : EQ;
12384 break;
12385 }
12386
12387 /* If the only nonzero bits in OP0 and OP1 are those in the
12388 narrower mode and this is an equality or unsigned comparison,
12389 we can use the wider mode. Similarly for sign-extended
12390 values, in which case it is true for all comparisons. */
12391 zero_extended = ((code == EQ || code == NE
12392 || code == GEU || code == GTU
12393 || code == LEU || code == LTU)
12394 && (nonzero_bits (op0, tmode)
12395 & ~GET_MODE_MASK (mode)) == 0
12396 && ((CONST_INT_P (op1)
12397 || (nonzero_bits (op1, tmode)
12398 & ~GET_MODE_MASK (mode)) == 0)));
12399
12400 if (zero_extended
12401 || ((num_sign_bit_copies (op0, tmode)
12402 > (unsigned int) (GET_MODE_PRECISION (tmode)
12403 - GET_MODE_PRECISION (mode)))
12404 && (num_sign_bit_copies (op1, tmode)
12405 > (unsigned int) (GET_MODE_PRECISION (tmode)
12406 - GET_MODE_PRECISION (mode)))))
12407 {
12408 /* If OP0 is an AND and we don't have an AND in MODE either,
12409 make a new AND in the proper mode. */
12410 if (GET_CODE (op0) == AND
12411 && !have_insn_for (AND, mode))
12412 op0 = simplify_gen_binary (AND, tmode,
12413 gen_lowpart (tmode,
12414 XEXP (op0, 0)),
12415 gen_lowpart (tmode,
12416 XEXP (op0, 1)));
12417 else
12418 {
12419 if (zero_extended)
12420 {
12421 op0 = simplify_gen_unary (ZERO_EXTEND, tmode, op0, mode);
12422 op1 = simplify_gen_unary (ZERO_EXTEND, tmode, op1, mode);
12423 }
12424 else
12425 {
12426 op0 = simplify_gen_unary (SIGN_EXTEND, tmode, op0, mode);
12427 op1 = simplify_gen_unary (SIGN_EXTEND, tmode, op1, mode);
12428 }
12429 break;
12430 }
12431 }
12432 }
12433
12434 /* We may have changed the comparison operands. Re-canonicalize. */
12435 if (swap_commutative_operands_p (op0, op1))
12436 {
12437 std::swap (op0, op1);
12438 code = swap_condition (code);
12439 }
12440
12441 /* If this machine only supports a subset of valid comparisons, see if we
12442 can convert an unsupported one into a supported one. */
12443 target_canonicalize_comparison (&code, &op0, &op1, 0);
12444
12445 *pop0 = op0;
12446 *pop1 = op1;
12447
12448 return code;
12449 }
12450 \f
12451 /* Utility function for record_value_for_reg. Count number of
12452 rtxs in X. */
12453 static int
12454 count_rtxs (rtx x)
12455 {
12456 enum rtx_code code = GET_CODE (x);
12457 const char *fmt;
12458 int i, j, ret = 1;
12459
12460 if (GET_RTX_CLASS (code) == RTX_BIN_ARITH
12461 || GET_RTX_CLASS (code) == RTX_COMM_ARITH)
12462 {
12463 rtx x0 = XEXP (x, 0);
12464 rtx x1 = XEXP (x, 1);
12465
12466 if (x0 == x1)
12467 return 1 + 2 * count_rtxs (x0);
12468
12469 if ((GET_RTX_CLASS (GET_CODE (x1)) == RTX_BIN_ARITH
12470 || GET_RTX_CLASS (GET_CODE (x1)) == RTX_COMM_ARITH)
12471 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
12472 return 2 + 2 * count_rtxs (x0)
12473 + count_rtxs (x == XEXP (x1, 0)
12474 ? XEXP (x1, 1) : XEXP (x1, 0));
12475
12476 if ((GET_RTX_CLASS (GET_CODE (x0)) == RTX_BIN_ARITH
12477 || GET_RTX_CLASS (GET_CODE (x0)) == RTX_COMM_ARITH)
12478 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
12479 return 2 + 2 * count_rtxs (x1)
12480 + count_rtxs (x == XEXP (x0, 0)
12481 ? XEXP (x0, 1) : XEXP (x0, 0));
12482 }
12483
12484 fmt = GET_RTX_FORMAT (code);
12485 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
12486 if (fmt[i] == 'e')
12487 ret += count_rtxs (XEXP (x, i));
12488 else if (fmt[i] == 'E')
12489 for (j = 0; j < XVECLEN (x, i); j++)
12490 ret += count_rtxs (XVECEXP (x, i, j));
12491
12492 return ret;
12493 }
12494 \f
12495 /* Utility function for following routine. Called when X is part of a value
12496 being stored into last_set_value. Sets last_set_table_tick
12497 for each register mentioned. Similar to mention_regs in cse.c */
12498
12499 static void
12500 update_table_tick (rtx x)
12501 {
12502 enum rtx_code code = GET_CODE (x);
12503 const char *fmt = GET_RTX_FORMAT (code);
12504 int i, j;
12505
12506 if (code == REG)
12507 {
12508 unsigned int regno = REGNO (x);
12509 unsigned int endregno = END_REGNO (x);
12510 unsigned int r;
12511
12512 for (r = regno; r < endregno; r++)
12513 {
12514 reg_stat_type *rsp = &reg_stat[r];
12515 rsp->last_set_table_tick = label_tick;
12516 }
12517
12518 return;
12519 }
12520
12521 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
12522 if (fmt[i] == 'e')
12523 {
12524 /* Check for identical subexpressions. If x contains
12525 identical subexpression we only have to traverse one of
12526 them. */
12527 if (i == 0 && ARITHMETIC_P (x))
12528 {
12529 /* Note that at this point x1 has already been
12530 processed. */
12531 rtx x0 = XEXP (x, 0);
12532 rtx x1 = XEXP (x, 1);
12533
12534 /* If x0 and x1 are identical then there is no need to
12535 process x0. */
12536 if (x0 == x1)
12537 break;
12538
12539 /* If x0 is identical to a subexpression of x1 then while
12540 processing x1, x0 has already been processed. Thus we
12541 are done with x. */
12542 if (ARITHMETIC_P (x1)
12543 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
12544 break;
12545
12546 /* If x1 is identical to a subexpression of x0 then we
12547 still have to process the rest of x0. */
12548 if (ARITHMETIC_P (x0)
12549 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
12550 {
12551 update_table_tick (XEXP (x0, x1 == XEXP (x0, 0) ? 1 : 0));
12552 break;
12553 }
12554 }
12555
12556 update_table_tick (XEXP (x, i));
12557 }
12558 else if (fmt[i] == 'E')
12559 for (j = 0; j < XVECLEN (x, i); j++)
12560 update_table_tick (XVECEXP (x, i, j));
12561 }
12562
12563 /* Record that REG is set to VALUE in insn INSN. If VALUE is zero, we
12564 are saying that the register is clobbered and we no longer know its
12565 value. If INSN is zero, don't update reg_stat[].last_set; this is
12566 only permitted with VALUE also zero and is used to invalidate the
12567 register. */
12568
12569 static void
12570 record_value_for_reg (rtx reg, rtx_insn *insn, rtx value)
12571 {
12572 unsigned int regno = REGNO (reg);
12573 unsigned int endregno = END_REGNO (reg);
12574 unsigned int i;
12575 reg_stat_type *rsp;
12576
12577 /* If VALUE contains REG and we have a previous value for REG, substitute
12578 the previous value. */
12579 if (value && insn && reg_overlap_mentioned_p (reg, value))
12580 {
12581 rtx tem;
12582
12583 /* Set things up so get_last_value is allowed to see anything set up to
12584 our insn. */
12585 subst_low_luid = DF_INSN_LUID (insn);
12586 tem = get_last_value (reg);
12587
12588 /* If TEM is simply a binary operation with two CLOBBERs as operands,
12589 it isn't going to be useful and will take a lot of time to process,
12590 so just use the CLOBBER. */
12591
12592 if (tem)
12593 {
12594 if (ARITHMETIC_P (tem)
12595 && GET_CODE (XEXP (tem, 0)) == CLOBBER
12596 && GET_CODE (XEXP (tem, 1)) == CLOBBER)
12597 tem = XEXP (tem, 0);
12598 else if (count_occurrences (value, reg, 1) >= 2)
12599 {
12600 /* If there are two or more occurrences of REG in VALUE,
12601 prevent the value from growing too much. */
12602 if (count_rtxs (tem) > MAX_LAST_VALUE_RTL)
12603 tem = gen_rtx_CLOBBER (GET_MODE (tem), const0_rtx);
12604 }
12605
12606 value = replace_rtx (copy_rtx (value), reg, tem);
12607 }
12608 }
12609
12610 /* For each register modified, show we don't know its value, that
12611 we don't know about its bitwise content, that its value has been
12612 updated, and that we don't know the location of the death of the
12613 register. */
12614 for (i = regno; i < endregno; i++)
12615 {
12616 rsp = &reg_stat[i];
12617
12618 if (insn)
12619 rsp->last_set = insn;
12620
12621 rsp->last_set_value = 0;
12622 rsp->last_set_mode = VOIDmode;
12623 rsp->last_set_nonzero_bits = 0;
12624 rsp->last_set_sign_bit_copies = 0;
12625 rsp->last_death = 0;
12626 rsp->truncated_to_mode = VOIDmode;
12627 }
12628
12629 /* Mark registers that are being referenced in this value. */
12630 if (value)
12631 update_table_tick (value);
12632
12633 /* Now update the status of each register being set.
12634 If someone is using this register in this block, set this register
12635 to invalid since we will get confused between the two lives in this
12636 basic block. This makes using this register always invalid. In cse, we
12637 scan the table to invalidate all entries using this register, but this
12638 is too much work for us. */
12639
12640 for (i = regno; i < endregno; i++)
12641 {
12642 rsp = &reg_stat[i];
12643 rsp->last_set_label = label_tick;
12644 if (!insn
12645 || (value && rsp->last_set_table_tick >= label_tick_ebb_start))
12646 rsp->last_set_invalid = 1;
12647 else
12648 rsp->last_set_invalid = 0;
12649 }
12650
12651 /* The value being assigned might refer to X (like in "x++;"). In that
12652 case, we must replace it with (clobber (const_int 0)) to prevent
12653 infinite loops. */
12654 rsp = &reg_stat[regno];
12655 if (value && !get_last_value_validate (&value, insn, label_tick, 0))
12656 {
12657 value = copy_rtx (value);
12658 if (!get_last_value_validate (&value, insn, label_tick, 1))
12659 value = 0;
12660 }
12661
12662 /* For the main register being modified, update the value, the mode, the
12663 nonzero bits, and the number of sign bit copies. */
12664
12665 rsp->last_set_value = value;
12666
12667 if (value)
12668 {
12669 machine_mode mode = GET_MODE (reg);
12670 subst_low_luid = DF_INSN_LUID (insn);
12671 rsp->last_set_mode = mode;
12672 if (GET_MODE_CLASS (mode) == MODE_INT
12673 && HWI_COMPUTABLE_MODE_P (mode))
12674 mode = nonzero_bits_mode;
12675 rsp->last_set_nonzero_bits = nonzero_bits (value, mode);
12676 rsp->last_set_sign_bit_copies
12677 = num_sign_bit_copies (value, GET_MODE (reg));
12678 }
12679 }
12680
12681 /* Called via note_stores from record_dead_and_set_regs to handle one
12682 SET or CLOBBER in an insn. DATA is the instruction in which the
12683 set is occurring. */
12684
12685 static void
12686 record_dead_and_set_regs_1 (rtx dest, const_rtx setter, void *data)
12687 {
12688 rtx_insn *record_dead_insn = (rtx_insn *) data;
12689
12690 if (GET_CODE (dest) == SUBREG)
12691 dest = SUBREG_REG (dest);
12692
12693 if (!record_dead_insn)
12694 {
12695 if (REG_P (dest))
12696 record_value_for_reg (dest, NULL, NULL_RTX);
12697 return;
12698 }
12699
12700 if (REG_P (dest))
12701 {
12702 /* If we are setting the whole register, we know its value. Otherwise
12703 show that we don't know the value. We can handle SUBREG in
12704 some cases. */
12705 if (GET_CODE (setter) == SET && dest == SET_DEST (setter))
12706 record_value_for_reg (dest, record_dead_insn, SET_SRC (setter));
12707 else if (GET_CODE (setter) == SET
12708 && GET_CODE (SET_DEST (setter)) == SUBREG
12709 && SUBREG_REG (SET_DEST (setter)) == dest
12710 && GET_MODE_PRECISION (GET_MODE (dest)) <= BITS_PER_WORD
12711 && subreg_lowpart_p (SET_DEST (setter)))
12712 record_value_for_reg (dest, record_dead_insn,
12713 gen_lowpart (GET_MODE (dest),
12714 SET_SRC (setter)));
12715 else
12716 record_value_for_reg (dest, record_dead_insn, NULL_RTX);
12717 }
12718 else if (MEM_P (dest)
12719 /* Ignore pushes, they clobber nothing. */
12720 && ! push_operand (dest, GET_MODE (dest)))
12721 mem_last_set = DF_INSN_LUID (record_dead_insn);
12722 }
12723
12724 /* Update the records of when each REG was most recently set or killed
12725 for the things done by INSN. This is the last thing done in processing
12726 INSN in the combiner loop.
12727
12728 We update reg_stat[], in particular fields last_set, last_set_value,
12729 last_set_mode, last_set_nonzero_bits, last_set_sign_bit_copies,
12730 last_death, and also the similar information mem_last_set (which insn
12731 most recently modified memory) and last_call_luid (which insn was the
12732 most recent subroutine call). */
12733
12734 static void
12735 record_dead_and_set_regs (rtx_insn *insn)
12736 {
12737 rtx link;
12738 unsigned int i;
12739
12740 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
12741 {
12742 if (REG_NOTE_KIND (link) == REG_DEAD
12743 && REG_P (XEXP (link, 0)))
12744 {
12745 unsigned int regno = REGNO (XEXP (link, 0));
12746 unsigned int endregno = END_REGNO (XEXP (link, 0));
12747
12748 for (i = regno; i < endregno; i++)
12749 {
12750 reg_stat_type *rsp;
12751
12752 rsp = &reg_stat[i];
12753 rsp->last_death = insn;
12754 }
12755 }
12756 else if (REG_NOTE_KIND (link) == REG_INC)
12757 record_value_for_reg (XEXP (link, 0), insn, NULL_RTX);
12758 }
12759
12760 if (CALL_P (insn))
12761 {
12762 hard_reg_set_iterator hrsi;
12763 EXECUTE_IF_SET_IN_HARD_REG_SET (regs_invalidated_by_call, 0, i, hrsi)
12764 {
12765 reg_stat_type *rsp;
12766
12767 rsp = &reg_stat[i];
12768 rsp->last_set_invalid = 1;
12769 rsp->last_set = insn;
12770 rsp->last_set_value = 0;
12771 rsp->last_set_mode = VOIDmode;
12772 rsp->last_set_nonzero_bits = 0;
12773 rsp->last_set_sign_bit_copies = 0;
12774 rsp->last_death = 0;
12775 rsp->truncated_to_mode = VOIDmode;
12776 }
12777
12778 last_call_luid = mem_last_set = DF_INSN_LUID (insn);
12779
12780 /* We can't combine into a call pattern. Remember, though, that
12781 the return value register is set at this LUID. We could
12782 still replace a register with the return value from the
12783 wrong subroutine call! */
12784 note_stores (PATTERN (insn), record_dead_and_set_regs_1, NULL_RTX);
12785 }
12786 else
12787 note_stores (PATTERN (insn), record_dead_and_set_regs_1, insn);
12788 }
12789
12790 /* If a SUBREG has the promoted bit set, it is in fact a property of the
12791 register present in the SUBREG, so for each such SUBREG go back and
12792 adjust nonzero and sign bit information of the registers that are
12793 known to have some zero/sign bits set.
12794
12795 This is needed because when combine blows the SUBREGs away, the
12796 information on zero/sign bits is lost and further combines can be
12797 missed because of that. */
12798
12799 static void
12800 record_promoted_value (rtx_insn *insn, rtx subreg)
12801 {
12802 struct insn_link *links;
12803 rtx set;
12804 unsigned int regno = REGNO (SUBREG_REG (subreg));
12805 machine_mode mode = GET_MODE (subreg);
12806
12807 if (GET_MODE_PRECISION (mode) > HOST_BITS_PER_WIDE_INT)
12808 return;
12809
12810 for (links = LOG_LINKS (insn); links;)
12811 {
12812 reg_stat_type *rsp;
12813
12814 insn = links->insn;
12815 set = single_set (insn);
12816
12817 if (! set || !REG_P (SET_DEST (set))
12818 || REGNO (SET_DEST (set)) != regno
12819 || GET_MODE (SET_DEST (set)) != GET_MODE (SUBREG_REG (subreg)))
12820 {
12821 links = links->next;
12822 continue;
12823 }
12824
12825 rsp = &reg_stat[regno];
12826 if (rsp->last_set == insn)
12827 {
12828 if (SUBREG_PROMOTED_UNSIGNED_P (subreg))
12829 rsp->last_set_nonzero_bits &= GET_MODE_MASK (mode);
12830 }
12831
12832 if (REG_P (SET_SRC (set)))
12833 {
12834 regno = REGNO (SET_SRC (set));
12835 links = LOG_LINKS (insn);
12836 }
12837 else
12838 break;
12839 }
12840 }
12841
12842 /* Check if X, a register, is known to contain a value already
12843 truncated to MODE. In this case we can use a subreg to refer to
12844 the truncated value even though in the generic case we would need
12845 an explicit truncation. */
12846
12847 static bool
12848 reg_truncated_to_mode (machine_mode mode, const_rtx x)
12849 {
12850 reg_stat_type *rsp = &reg_stat[REGNO (x)];
12851 machine_mode truncated = rsp->truncated_to_mode;
12852
12853 if (truncated == 0
12854 || rsp->truncation_label < label_tick_ebb_start)
12855 return false;
12856 if (GET_MODE_SIZE (truncated) <= GET_MODE_SIZE (mode))
12857 return true;
12858 if (TRULY_NOOP_TRUNCATION_MODES_P (mode, truncated))
12859 return true;
12860 return false;
12861 }
12862
12863 /* If X is a hard reg or a subreg record the mode that the register is
12864 accessed in. For non-TRULY_NOOP_TRUNCATION targets we might be able
12865 to turn a truncate into a subreg using this information. Return true
12866 if traversing X is complete. */
12867
12868 static bool
12869 record_truncated_value (rtx x)
12870 {
12871 machine_mode truncated_mode;
12872 reg_stat_type *rsp;
12873
12874 if (GET_CODE (x) == SUBREG && REG_P (SUBREG_REG (x)))
12875 {
12876 machine_mode original_mode = GET_MODE (SUBREG_REG (x));
12877 truncated_mode = GET_MODE (x);
12878
12879 if (GET_MODE_SIZE (original_mode) <= GET_MODE_SIZE (truncated_mode))
12880 return true;
12881
12882 if (TRULY_NOOP_TRUNCATION_MODES_P (truncated_mode, original_mode))
12883 return true;
12884
12885 x = SUBREG_REG (x);
12886 }
12887 /* ??? For hard-regs we now record everything. We might be able to
12888 optimize this using last_set_mode. */
12889 else if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
12890 truncated_mode = GET_MODE (x);
12891 else
12892 return false;
12893
12894 rsp = &reg_stat[REGNO (x)];
12895 if (rsp->truncated_to_mode == 0
12896 || rsp->truncation_label < label_tick_ebb_start
12897 || (GET_MODE_SIZE (truncated_mode)
12898 < GET_MODE_SIZE (rsp->truncated_to_mode)))
12899 {
12900 rsp->truncated_to_mode = truncated_mode;
12901 rsp->truncation_label = label_tick;
12902 }
12903
12904 return true;
12905 }
12906
12907 /* Callback for note_uses. Find hardregs and subregs of pseudos and
12908 the modes they are used in. This can help truning TRUNCATEs into
12909 SUBREGs. */
12910
12911 static void
12912 record_truncated_values (rtx *loc, void *data ATTRIBUTE_UNUSED)
12913 {
12914 subrtx_var_iterator::array_type array;
12915 FOR_EACH_SUBRTX_VAR (iter, array, *loc, NONCONST)
12916 if (record_truncated_value (*iter))
12917 iter.skip_subrtxes ();
12918 }
12919
12920 /* Scan X for promoted SUBREGs. For each one found,
12921 note what it implies to the registers used in it. */
12922
12923 static void
12924 check_promoted_subreg (rtx_insn *insn, rtx x)
12925 {
12926 if (GET_CODE (x) == SUBREG
12927 && SUBREG_PROMOTED_VAR_P (x)
12928 && REG_P (SUBREG_REG (x)))
12929 record_promoted_value (insn, x);
12930 else
12931 {
12932 const char *format = GET_RTX_FORMAT (GET_CODE (x));
12933 int i, j;
12934
12935 for (i = 0; i < GET_RTX_LENGTH (GET_CODE (x)); i++)
12936 switch (format[i])
12937 {
12938 case 'e':
12939 check_promoted_subreg (insn, XEXP (x, i));
12940 break;
12941 case 'V':
12942 case 'E':
12943 if (XVEC (x, i) != 0)
12944 for (j = 0; j < XVECLEN (x, i); j++)
12945 check_promoted_subreg (insn, XVECEXP (x, i, j));
12946 break;
12947 }
12948 }
12949 }
12950 \f
12951 /* Verify that all the registers and memory references mentioned in *LOC are
12952 still valid. *LOC was part of a value set in INSN when label_tick was
12953 equal to TICK. Return 0 if some are not. If REPLACE is nonzero, replace
12954 the invalid references with (clobber (const_int 0)) and return 1. This
12955 replacement is useful because we often can get useful information about
12956 the form of a value (e.g., if it was produced by a shift that always
12957 produces -1 or 0) even though we don't know exactly what registers it
12958 was produced from. */
12959
12960 static int
12961 get_last_value_validate (rtx *loc, rtx_insn *insn, int tick, int replace)
12962 {
12963 rtx x = *loc;
12964 const char *fmt = GET_RTX_FORMAT (GET_CODE (x));
12965 int len = GET_RTX_LENGTH (GET_CODE (x));
12966 int i, j;
12967
12968 if (REG_P (x))
12969 {
12970 unsigned int regno = REGNO (x);
12971 unsigned int endregno = END_REGNO (x);
12972 unsigned int j;
12973
12974 for (j = regno; j < endregno; j++)
12975 {
12976 reg_stat_type *rsp = &reg_stat[j];
12977 if (rsp->last_set_invalid
12978 /* If this is a pseudo-register that was only set once and not
12979 live at the beginning of the function, it is always valid. */
12980 || (! (regno >= FIRST_PSEUDO_REGISTER
12981 && regno < reg_n_sets_max
12982 && REG_N_SETS (regno) == 1
12983 && (!REGNO_REG_SET_P
12984 (DF_LR_IN (ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb),
12985 regno)))
12986 && rsp->last_set_label > tick))
12987 {
12988 if (replace)
12989 *loc = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
12990 return replace;
12991 }
12992 }
12993
12994 return 1;
12995 }
12996 /* If this is a memory reference, make sure that there were no stores after
12997 it that might have clobbered the value. We don't have alias info, so we
12998 assume any store invalidates it. Moreover, we only have local UIDs, so
12999 we also assume that there were stores in the intervening basic blocks. */
13000 else if (MEM_P (x) && !MEM_READONLY_P (x)
13001 && (tick != label_tick || DF_INSN_LUID (insn) <= mem_last_set))
13002 {
13003 if (replace)
13004 *loc = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
13005 return replace;
13006 }
13007
13008 for (i = 0; i < len; i++)
13009 {
13010 if (fmt[i] == 'e')
13011 {
13012 /* Check for identical subexpressions. If x contains
13013 identical subexpression we only have to traverse one of
13014 them. */
13015 if (i == 1 && ARITHMETIC_P (x))
13016 {
13017 /* Note that at this point x0 has already been checked
13018 and found valid. */
13019 rtx x0 = XEXP (x, 0);
13020 rtx x1 = XEXP (x, 1);
13021
13022 /* If x0 and x1 are identical then x is also valid. */
13023 if (x0 == x1)
13024 return 1;
13025
13026 /* If x1 is identical to a subexpression of x0 then
13027 while checking x0, x1 has already been checked. Thus
13028 it is valid and so as x. */
13029 if (ARITHMETIC_P (x0)
13030 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
13031 return 1;
13032
13033 /* If x0 is identical to a subexpression of x1 then x is
13034 valid iff the rest of x1 is valid. */
13035 if (ARITHMETIC_P (x1)
13036 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
13037 return
13038 get_last_value_validate (&XEXP (x1,
13039 x0 == XEXP (x1, 0) ? 1 : 0),
13040 insn, tick, replace);
13041 }
13042
13043 if (get_last_value_validate (&XEXP (x, i), insn, tick,
13044 replace) == 0)
13045 return 0;
13046 }
13047 else if (fmt[i] == 'E')
13048 for (j = 0; j < XVECLEN (x, i); j++)
13049 if (get_last_value_validate (&XVECEXP (x, i, j),
13050 insn, tick, replace) == 0)
13051 return 0;
13052 }
13053
13054 /* If we haven't found a reason for it to be invalid, it is valid. */
13055 return 1;
13056 }
13057
13058 /* Get the last value assigned to X, if known. Some registers
13059 in the value may be replaced with (clobber (const_int 0)) if their value
13060 is known longer known reliably. */
13061
13062 static rtx
13063 get_last_value (const_rtx x)
13064 {
13065 unsigned int regno;
13066 rtx value;
13067 reg_stat_type *rsp;
13068
13069 /* If this is a non-paradoxical SUBREG, get the value of its operand and
13070 then convert it to the desired mode. If this is a paradoxical SUBREG,
13071 we cannot predict what values the "extra" bits might have. */
13072 if (GET_CODE (x) == SUBREG
13073 && subreg_lowpart_p (x)
13074 && !paradoxical_subreg_p (x)
13075 && (value = get_last_value (SUBREG_REG (x))) != 0)
13076 return gen_lowpart (GET_MODE (x), value);
13077
13078 if (!REG_P (x))
13079 return 0;
13080
13081 regno = REGNO (x);
13082 rsp = &reg_stat[regno];
13083 value = rsp->last_set_value;
13084
13085 /* If we don't have a value, or if it isn't for this basic block and
13086 it's either a hard register, set more than once, or it's a live
13087 at the beginning of the function, return 0.
13088
13089 Because if it's not live at the beginning of the function then the reg
13090 is always set before being used (is never used without being set).
13091 And, if it's set only once, and it's always set before use, then all
13092 uses must have the same last value, even if it's not from this basic
13093 block. */
13094
13095 if (value == 0
13096 || (rsp->last_set_label < label_tick_ebb_start
13097 && (regno < FIRST_PSEUDO_REGISTER
13098 || regno >= reg_n_sets_max
13099 || REG_N_SETS (regno) != 1
13100 || REGNO_REG_SET_P
13101 (DF_LR_IN (ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb), regno))))
13102 return 0;
13103
13104 /* If the value was set in a later insn than the ones we are processing,
13105 we can't use it even if the register was only set once. */
13106 if (rsp->last_set_label == label_tick
13107 && DF_INSN_LUID (rsp->last_set) >= subst_low_luid)
13108 return 0;
13109
13110 /* If the value has all its registers valid, return it. */
13111 if (get_last_value_validate (&value, rsp->last_set, rsp->last_set_label, 0))
13112 return value;
13113
13114 /* Otherwise, make a copy and replace any invalid register with
13115 (clobber (const_int 0)). If that fails for some reason, return 0. */
13116
13117 value = copy_rtx (value);
13118 if (get_last_value_validate (&value, rsp->last_set, rsp->last_set_label, 1))
13119 return value;
13120
13121 return 0;
13122 }
13123 \f
13124 /* Return nonzero if expression X refers to a REG or to memory
13125 that is set in an instruction more recent than FROM_LUID. */
13126
13127 static int
13128 use_crosses_set_p (const_rtx x, int from_luid)
13129 {
13130 const char *fmt;
13131 int i;
13132 enum rtx_code code = GET_CODE (x);
13133
13134 if (code == REG)
13135 {
13136 unsigned int regno = REGNO (x);
13137 unsigned endreg = END_REGNO (x);
13138
13139 #ifdef PUSH_ROUNDING
13140 /* Don't allow uses of the stack pointer to be moved,
13141 because we don't know whether the move crosses a push insn. */
13142 if (regno == STACK_POINTER_REGNUM && PUSH_ARGS)
13143 return 1;
13144 #endif
13145 for (; regno < endreg; regno++)
13146 {
13147 reg_stat_type *rsp = &reg_stat[regno];
13148 if (rsp->last_set
13149 && rsp->last_set_label == label_tick
13150 && DF_INSN_LUID (rsp->last_set) > from_luid)
13151 return 1;
13152 }
13153 return 0;
13154 }
13155
13156 if (code == MEM && mem_last_set > from_luid)
13157 return 1;
13158
13159 fmt = GET_RTX_FORMAT (code);
13160
13161 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
13162 {
13163 if (fmt[i] == 'E')
13164 {
13165 int j;
13166 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
13167 if (use_crosses_set_p (XVECEXP (x, i, j), from_luid))
13168 return 1;
13169 }
13170 else if (fmt[i] == 'e'
13171 && use_crosses_set_p (XEXP (x, i), from_luid))
13172 return 1;
13173 }
13174 return 0;
13175 }
13176 \f
13177 /* Define three variables used for communication between the following
13178 routines. */
13179
13180 static unsigned int reg_dead_regno, reg_dead_endregno;
13181 static int reg_dead_flag;
13182
13183 /* Function called via note_stores from reg_dead_at_p.
13184
13185 If DEST is within [reg_dead_regno, reg_dead_endregno), set
13186 reg_dead_flag to 1 if X is a CLOBBER and to -1 it is a SET. */
13187
13188 static void
13189 reg_dead_at_p_1 (rtx dest, const_rtx x, void *data ATTRIBUTE_UNUSED)
13190 {
13191 unsigned int regno, endregno;
13192
13193 if (!REG_P (dest))
13194 return;
13195
13196 regno = REGNO (dest);
13197 endregno = END_REGNO (dest);
13198 if (reg_dead_endregno > regno && reg_dead_regno < endregno)
13199 reg_dead_flag = (GET_CODE (x) == CLOBBER) ? 1 : -1;
13200 }
13201
13202 /* Return nonzero if REG is known to be dead at INSN.
13203
13204 We scan backwards from INSN. If we hit a REG_DEAD note or a CLOBBER
13205 referencing REG, it is dead. If we hit a SET referencing REG, it is
13206 live. Otherwise, see if it is live or dead at the start of the basic
13207 block we are in. Hard regs marked as being live in NEWPAT_USED_REGS
13208 must be assumed to be always live. */
13209
13210 static int
13211 reg_dead_at_p (rtx reg, rtx_insn *insn)
13212 {
13213 basic_block block;
13214 unsigned int i;
13215
13216 /* Set variables for reg_dead_at_p_1. */
13217 reg_dead_regno = REGNO (reg);
13218 reg_dead_endregno = END_REGNO (reg);
13219
13220 reg_dead_flag = 0;
13221
13222 /* Check that reg isn't mentioned in NEWPAT_USED_REGS. For fixed registers
13223 we allow the machine description to decide whether use-and-clobber
13224 patterns are OK. */
13225 if (reg_dead_regno < FIRST_PSEUDO_REGISTER)
13226 {
13227 for (i = reg_dead_regno; i < reg_dead_endregno; i++)
13228 if (!fixed_regs[i] && TEST_HARD_REG_BIT (newpat_used_regs, i))
13229 return 0;
13230 }
13231
13232 /* Scan backwards until we find a REG_DEAD note, SET, CLOBBER, or
13233 beginning of basic block. */
13234 block = BLOCK_FOR_INSN (insn);
13235 for (;;)
13236 {
13237 if (INSN_P (insn))
13238 {
13239 if (find_regno_note (insn, REG_UNUSED, reg_dead_regno))
13240 return 1;
13241
13242 note_stores (PATTERN (insn), reg_dead_at_p_1, NULL);
13243 if (reg_dead_flag)
13244 return reg_dead_flag == 1 ? 1 : 0;
13245
13246 if (find_regno_note (insn, REG_DEAD, reg_dead_regno))
13247 return 1;
13248 }
13249
13250 if (insn == BB_HEAD (block))
13251 break;
13252
13253 insn = PREV_INSN (insn);
13254 }
13255
13256 /* Look at live-in sets for the basic block that we were in. */
13257 for (i = reg_dead_regno; i < reg_dead_endregno; i++)
13258 if (REGNO_REG_SET_P (df_get_live_in (block), i))
13259 return 0;
13260
13261 return 1;
13262 }
13263 \f
13264 /* Note hard registers in X that are used. */
13265
13266 static void
13267 mark_used_regs_combine (rtx x)
13268 {
13269 RTX_CODE code = GET_CODE (x);
13270 unsigned int regno;
13271 int i;
13272
13273 switch (code)
13274 {
13275 case LABEL_REF:
13276 case SYMBOL_REF:
13277 case CONST:
13278 CASE_CONST_ANY:
13279 case PC:
13280 case ADDR_VEC:
13281 case ADDR_DIFF_VEC:
13282 case ASM_INPUT:
13283 /* CC0 must die in the insn after it is set, so we don't need to take
13284 special note of it here. */
13285 case CC0:
13286 return;
13287
13288 case CLOBBER:
13289 /* If we are clobbering a MEM, mark any hard registers inside the
13290 address as used. */
13291 if (MEM_P (XEXP (x, 0)))
13292 mark_used_regs_combine (XEXP (XEXP (x, 0), 0));
13293 return;
13294
13295 case REG:
13296 regno = REGNO (x);
13297 /* A hard reg in a wide mode may really be multiple registers.
13298 If so, mark all of them just like the first. */
13299 if (regno < FIRST_PSEUDO_REGISTER)
13300 {
13301 /* None of this applies to the stack, frame or arg pointers. */
13302 if (regno == STACK_POINTER_REGNUM
13303 || (!HARD_FRAME_POINTER_IS_FRAME_POINTER
13304 && regno == HARD_FRAME_POINTER_REGNUM)
13305 || (FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
13306 && regno == ARG_POINTER_REGNUM && fixed_regs[regno])
13307 || regno == FRAME_POINTER_REGNUM)
13308 return;
13309
13310 add_to_hard_reg_set (&newpat_used_regs, GET_MODE (x), regno);
13311 }
13312 return;
13313
13314 case SET:
13315 {
13316 /* If setting a MEM, or a SUBREG of a MEM, then note any hard regs in
13317 the address. */
13318 rtx testreg = SET_DEST (x);
13319
13320 while (GET_CODE (testreg) == SUBREG
13321 || GET_CODE (testreg) == ZERO_EXTRACT
13322 || GET_CODE (testreg) == STRICT_LOW_PART)
13323 testreg = XEXP (testreg, 0);
13324
13325 if (MEM_P (testreg))
13326 mark_used_regs_combine (XEXP (testreg, 0));
13327
13328 mark_used_regs_combine (SET_SRC (x));
13329 }
13330 return;
13331
13332 default:
13333 break;
13334 }
13335
13336 /* Recursively scan the operands of this expression. */
13337
13338 {
13339 const char *fmt = GET_RTX_FORMAT (code);
13340
13341 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
13342 {
13343 if (fmt[i] == 'e')
13344 mark_used_regs_combine (XEXP (x, i));
13345 else if (fmt[i] == 'E')
13346 {
13347 int j;
13348
13349 for (j = 0; j < XVECLEN (x, i); j++)
13350 mark_used_regs_combine (XVECEXP (x, i, j));
13351 }
13352 }
13353 }
13354 }
13355 \f
13356 /* Remove register number REGNO from the dead registers list of INSN.
13357
13358 Return the note used to record the death, if there was one. */
13359
13360 rtx
13361 remove_death (unsigned int regno, rtx_insn *insn)
13362 {
13363 rtx note = find_regno_note (insn, REG_DEAD, regno);
13364
13365 if (note)
13366 remove_note (insn, note);
13367
13368 return note;
13369 }
13370
13371 /* For each register (hardware or pseudo) used within expression X, if its
13372 death is in an instruction with luid between FROM_LUID (inclusive) and
13373 TO_INSN (exclusive), put a REG_DEAD note for that register in the
13374 list headed by PNOTES.
13375
13376 That said, don't move registers killed by maybe_kill_insn.
13377
13378 This is done when X is being merged by combination into TO_INSN. These
13379 notes will then be distributed as needed. */
13380
13381 static void
13382 move_deaths (rtx x, rtx maybe_kill_insn, int from_luid, rtx_insn *to_insn,
13383 rtx *pnotes)
13384 {
13385 const char *fmt;
13386 int len, i;
13387 enum rtx_code code = GET_CODE (x);
13388
13389 if (code == REG)
13390 {
13391 unsigned int regno = REGNO (x);
13392 rtx_insn *where_dead = reg_stat[regno].last_death;
13393
13394 /* Don't move the register if it gets killed in between from and to. */
13395 if (maybe_kill_insn && reg_set_p (x, maybe_kill_insn)
13396 && ! reg_referenced_p (x, maybe_kill_insn))
13397 return;
13398
13399 if (where_dead
13400 && BLOCK_FOR_INSN (where_dead) == BLOCK_FOR_INSN (to_insn)
13401 && DF_INSN_LUID (where_dead) >= from_luid
13402 && DF_INSN_LUID (where_dead) < DF_INSN_LUID (to_insn))
13403 {
13404 rtx note = remove_death (regno, where_dead);
13405
13406 /* It is possible for the call above to return 0. This can occur
13407 when last_death points to I2 or I1 that we combined with.
13408 In that case make a new note.
13409
13410 We must also check for the case where X is a hard register
13411 and NOTE is a death note for a range of hard registers
13412 including X. In that case, we must put REG_DEAD notes for
13413 the remaining registers in place of NOTE. */
13414
13415 if (note != 0 && regno < FIRST_PSEUDO_REGISTER
13416 && (GET_MODE_SIZE (GET_MODE (XEXP (note, 0)))
13417 > GET_MODE_SIZE (GET_MODE (x))))
13418 {
13419 unsigned int deadregno = REGNO (XEXP (note, 0));
13420 unsigned int deadend = END_REGNO (XEXP (note, 0));
13421 unsigned int ourend = END_REGNO (x);
13422 unsigned int i;
13423
13424 for (i = deadregno; i < deadend; i++)
13425 if (i < regno || i >= ourend)
13426 add_reg_note (where_dead, REG_DEAD, regno_reg_rtx[i]);
13427 }
13428
13429 /* If we didn't find any note, or if we found a REG_DEAD note that
13430 covers only part of the given reg, and we have a multi-reg hard
13431 register, then to be safe we must check for REG_DEAD notes
13432 for each register other than the first. They could have
13433 their own REG_DEAD notes lying around. */
13434 else if ((note == 0
13435 || (note != 0
13436 && (GET_MODE_SIZE (GET_MODE (XEXP (note, 0)))
13437 < GET_MODE_SIZE (GET_MODE (x)))))
13438 && regno < FIRST_PSEUDO_REGISTER
13439 && REG_NREGS (x) > 1)
13440 {
13441 unsigned int ourend = END_REGNO (x);
13442 unsigned int i, offset;
13443 rtx oldnotes = 0;
13444
13445 if (note)
13446 offset = hard_regno_nregs[regno][GET_MODE (XEXP (note, 0))];
13447 else
13448 offset = 1;
13449
13450 for (i = regno + offset; i < ourend; i++)
13451 move_deaths (regno_reg_rtx[i],
13452 maybe_kill_insn, from_luid, to_insn, &oldnotes);
13453 }
13454
13455 if (note != 0 && GET_MODE (XEXP (note, 0)) == GET_MODE (x))
13456 {
13457 XEXP (note, 1) = *pnotes;
13458 *pnotes = note;
13459 }
13460 else
13461 *pnotes = alloc_reg_note (REG_DEAD, x, *pnotes);
13462 }
13463
13464 return;
13465 }
13466
13467 else if (GET_CODE (x) == SET)
13468 {
13469 rtx dest = SET_DEST (x);
13470
13471 move_deaths (SET_SRC (x), maybe_kill_insn, from_luid, to_insn, pnotes);
13472
13473 /* In the case of a ZERO_EXTRACT, a STRICT_LOW_PART, or a SUBREG
13474 that accesses one word of a multi-word item, some
13475 piece of everything register in the expression is used by
13476 this insn, so remove any old death. */
13477 /* ??? So why do we test for equality of the sizes? */
13478
13479 if (GET_CODE (dest) == ZERO_EXTRACT
13480 || GET_CODE (dest) == STRICT_LOW_PART
13481 || (GET_CODE (dest) == SUBREG
13482 && (((GET_MODE_SIZE (GET_MODE (dest))
13483 + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
13484 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest)))
13485 + UNITS_PER_WORD - 1) / UNITS_PER_WORD))))
13486 {
13487 move_deaths (dest, maybe_kill_insn, from_luid, to_insn, pnotes);
13488 return;
13489 }
13490
13491 /* If this is some other SUBREG, we know it replaces the entire
13492 value, so use that as the destination. */
13493 if (GET_CODE (dest) == SUBREG)
13494 dest = SUBREG_REG (dest);
13495
13496 /* If this is a MEM, adjust deaths of anything used in the address.
13497 For a REG (the only other possibility), the entire value is
13498 being replaced so the old value is not used in this insn. */
13499
13500 if (MEM_P (dest))
13501 move_deaths (XEXP (dest, 0), maybe_kill_insn, from_luid,
13502 to_insn, pnotes);
13503 return;
13504 }
13505
13506 else if (GET_CODE (x) == CLOBBER)
13507 return;
13508
13509 len = GET_RTX_LENGTH (code);
13510 fmt = GET_RTX_FORMAT (code);
13511
13512 for (i = 0; i < len; i++)
13513 {
13514 if (fmt[i] == 'E')
13515 {
13516 int j;
13517 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
13518 move_deaths (XVECEXP (x, i, j), maybe_kill_insn, from_luid,
13519 to_insn, pnotes);
13520 }
13521 else if (fmt[i] == 'e')
13522 move_deaths (XEXP (x, i), maybe_kill_insn, from_luid, to_insn, pnotes);
13523 }
13524 }
13525 \f
13526 /* Return 1 if X is the target of a bit-field assignment in BODY, the
13527 pattern of an insn. X must be a REG. */
13528
13529 static int
13530 reg_bitfield_target_p (rtx x, rtx body)
13531 {
13532 int i;
13533
13534 if (GET_CODE (body) == SET)
13535 {
13536 rtx dest = SET_DEST (body);
13537 rtx target;
13538 unsigned int regno, tregno, endregno, endtregno;
13539
13540 if (GET_CODE (dest) == ZERO_EXTRACT)
13541 target = XEXP (dest, 0);
13542 else if (GET_CODE (dest) == STRICT_LOW_PART)
13543 target = SUBREG_REG (XEXP (dest, 0));
13544 else
13545 return 0;
13546
13547 if (GET_CODE (target) == SUBREG)
13548 target = SUBREG_REG (target);
13549
13550 if (!REG_P (target))
13551 return 0;
13552
13553 tregno = REGNO (target), regno = REGNO (x);
13554 if (tregno >= FIRST_PSEUDO_REGISTER || regno >= FIRST_PSEUDO_REGISTER)
13555 return target == x;
13556
13557 endtregno = end_hard_regno (GET_MODE (target), tregno);
13558 endregno = end_hard_regno (GET_MODE (x), regno);
13559
13560 return endregno > tregno && regno < endtregno;
13561 }
13562
13563 else if (GET_CODE (body) == PARALLEL)
13564 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
13565 if (reg_bitfield_target_p (x, XVECEXP (body, 0, i)))
13566 return 1;
13567
13568 return 0;
13569 }
13570 \f
13571 /* Given a chain of REG_NOTES originally from FROM_INSN, try to place them
13572 as appropriate. I3 and I2 are the insns resulting from the combination
13573 insns including FROM (I2 may be zero).
13574
13575 ELIM_I2 and ELIM_I1 are either zero or registers that we know will
13576 not need REG_DEAD notes because they are being substituted for. This
13577 saves searching in the most common cases.
13578
13579 Each note in the list is either ignored or placed on some insns, depending
13580 on the type of note. */
13581
13582 static void
13583 distribute_notes (rtx notes, rtx_insn *from_insn, rtx_insn *i3, rtx_insn *i2,
13584 rtx elim_i2, rtx elim_i1, rtx elim_i0)
13585 {
13586 rtx note, next_note;
13587 rtx tem_note;
13588 rtx_insn *tem_insn;
13589
13590 for (note = notes; note; note = next_note)
13591 {
13592 rtx_insn *place = 0, *place2 = 0;
13593
13594 next_note = XEXP (note, 1);
13595 switch (REG_NOTE_KIND (note))
13596 {
13597 case REG_BR_PROB:
13598 case REG_BR_PRED:
13599 /* Doesn't matter much where we put this, as long as it's somewhere.
13600 It is preferable to keep these notes on branches, which is most
13601 likely to be i3. */
13602 place = i3;
13603 break;
13604
13605 case REG_NON_LOCAL_GOTO:
13606 if (JUMP_P (i3))
13607 place = i3;
13608 else
13609 {
13610 gcc_assert (i2 && JUMP_P (i2));
13611 place = i2;
13612 }
13613 break;
13614
13615 case REG_EH_REGION:
13616 /* These notes must remain with the call or trapping instruction. */
13617 if (CALL_P (i3))
13618 place = i3;
13619 else if (i2 && CALL_P (i2))
13620 place = i2;
13621 else
13622 {
13623 gcc_assert (cfun->can_throw_non_call_exceptions);
13624 if (may_trap_p (i3))
13625 place = i3;
13626 else if (i2 && may_trap_p (i2))
13627 place = i2;
13628 /* ??? Otherwise assume we've combined things such that we
13629 can now prove that the instructions can't trap. Drop the
13630 note in this case. */
13631 }
13632 break;
13633
13634 case REG_ARGS_SIZE:
13635 /* ??? How to distribute between i3-i1. Assume i3 contains the
13636 entire adjustment. Assert i3 contains at least some adjust. */
13637 if (!noop_move_p (i3))
13638 {
13639 int old_size, args_size = INTVAL (XEXP (note, 0));
13640 /* fixup_args_size_notes looks at REG_NORETURN note,
13641 so ensure the note is placed there first. */
13642 if (CALL_P (i3))
13643 {
13644 rtx *np;
13645 for (np = &next_note; *np; np = &XEXP (*np, 1))
13646 if (REG_NOTE_KIND (*np) == REG_NORETURN)
13647 {
13648 rtx n = *np;
13649 *np = XEXP (n, 1);
13650 XEXP (n, 1) = REG_NOTES (i3);
13651 REG_NOTES (i3) = n;
13652 break;
13653 }
13654 }
13655 old_size = fixup_args_size_notes (PREV_INSN (i3), i3, args_size);
13656 /* emit_call_1 adds for !ACCUMULATE_OUTGOING_ARGS
13657 REG_ARGS_SIZE note to all noreturn calls, allow that here. */
13658 gcc_assert (old_size != args_size
13659 || (CALL_P (i3)
13660 && !ACCUMULATE_OUTGOING_ARGS
13661 && find_reg_note (i3, REG_NORETURN, NULL_RTX)));
13662 }
13663 break;
13664
13665 case REG_NORETURN:
13666 case REG_SETJMP:
13667 case REG_TM:
13668 case REG_CALL_DECL:
13669 /* These notes must remain with the call. It should not be
13670 possible for both I2 and I3 to be a call. */
13671 if (CALL_P (i3))
13672 place = i3;
13673 else
13674 {
13675 gcc_assert (i2 && CALL_P (i2));
13676 place = i2;
13677 }
13678 break;
13679
13680 case REG_UNUSED:
13681 /* Any clobbers for i3 may still exist, and so we must process
13682 REG_UNUSED notes from that insn.
13683
13684 Any clobbers from i2 or i1 can only exist if they were added by
13685 recog_for_combine. In that case, recog_for_combine created the
13686 necessary REG_UNUSED notes. Trying to keep any original
13687 REG_UNUSED notes from these insns can cause incorrect output
13688 if it is for the same register as the original i3 dest.
13689 In that case, we will notice that the register is set in i3,
13690 and then add a REG_UNUSED note for the destination of i3, which
13691 is wrong. However, it is possible to have REG_UNUSED notes from
13692 i2 or i1 for register which were both used and clobbered, so
13693 we keep notes from i2 or i1 if they will turn into REG_DEAD
13694 notes. */
13695
13696 /* If this register is set or clobbered in I3, put the note there
13697 unless there is one already. */
13698 if (reg_set_p (XEXP (note, 0), PATTERN (i3)))
13699 {
13700 if (from_insn != i3)
13701 break;
13702
13703 if (! (REG_P (XEXP (note, 0))
13704 ? find_regno_note (i3, REG_UNUSED, REGNO (XEXP (note, 0)))
13705 : find_reg_note (i3, REG_UNUSED, XEXP (note, 0))))
13706 place = i3;
13707 }
13708 /* Otherwise, if this register is used by I3, then this register
13709 now dies here, so we must put a REG_DEAD note here unless there
13710 is one already. */
13711 else if (reg_referenced_p (XEXP (note, 0), PATTERN (i3))
13712 && ! (REG_P (XEXP (note, 0))
13713 ? find_regno_note (i3, REG_DEAD,
13714 REGNO (XEXP (note, 0)))
13715 : find_reg_note (i3, REG_DEAD, XEXP (note, 0))))
13716 {
13717 PUT_REG_NOTE_KIND (note, REG_DEAD);
13718 place = i3;
13719 }
13720 break;
13721
13722 case REG_EQUAL:
13723 case REG_EQUIV:
13724 case REG_NOALIAS:
13725 /* These notes say something about results of an insn. We can
13726 only support them if they used to be on I3 in which case they
13727 remain on I3. Otherwise they are ignored.
13728
13729 If the note refers to an expression that is not a constant, we
13730 must also ignore the note since we cannot tell whether the
13731 equivalence is still true. It might be possible to do
13732 slightly better than this (we only have a problem if I2DEST
13733 or I1DEST is present in the expression), but it doesn't
13734 seem worth the trouble. */
13735
13736 if (from_insn == i3
13737 && (XEXP (note, 0) == 0 || CONSTANT_P (XEXP (note, 0))))
13738 place = i3;
13739 break;
13740
13741 case REG_INC:
13742 /* These notes say something about how a register is used. They must
13743 be present on any use of the register in I2 or I3. */
13744 if (reg_mentioned_p (XEXP (note, 0), PATTERN (i3)))
13745 place = i3;
13746
13747 if (i2 && reg_mentioned_p (XEXP (note, 0), PATTERN (i2)))
13748 {
13749 if (place)
13750 place2 = i2;
13751 else
13752 place = i2;
13753 }
13754 break;
13755
13756 case REG_LABEL_TARGET:
13757 case REG_LABEL_OPERAND:
13758 /* This can show up in several ways -- either directly in the
13759 pattern, or hidden off in the constant pool with (or without?)
13760 a REG_EQUAL note. */
13761 /* ??? Ignore the without-reg_equal-note problem for now. */
13762 if (reg_mentioned_p (XEXP (note, 0), PATTERN (i3))
13763 || ((tem_note = find_reg_note (i3, REG_EQUAL, NULL_RTX))
13764 && GET_CODE (XEXP (tem_note, 0)) == LABEL_REF
13765 && LABEL_REF_LABEL (XEXP (tem_note, 0)) == XEXP (note, 0)))
13766 place = i3;
13767
13768 if (i2
13769 && (reg_mentioned_p (XEXP (note, 0), PATTERN (i2))
13770 || ((tem_note = find_reg_note (i2, REG_EQUAL, NULL_RTX))
13771 && GET_CODE (XEXP (tem_note, 0)) == LABEL_REF
13772 && LABEL_REF_LABEL (XEXP (tem_note, 0)) == XEXP (note, 0))))
13773 {
13774 if (place)
13775 place2 = i2;
13776 else
13777 place = i2;
13778 }
13779
13780 /* For REG_LABEL_TARGET on a JUMP_P, we prefer to put the note
13781 as a JUMP_LABEL or decrement LABEL_NUSES if it's already
13782 there. */
13783 if (place && JUMP_P (place)
13784 && REG_NOTE_KIND (note) == REG_LABEL_TARGET
13785 && (JUMP_LABEL (place) == NULL
13786 || JUMP_LABEL (place) == XEXP (note, 0)))
13787 {
13788 rtx label = JUMP_LABEL (place);
13789
13790 if (!label)
13791 JUMP_LABEL (place) = XEXP (note, 0);
13792 else if (LABEL_P (label))
13793 LABEL_NUSES (label)--;
13794 }
13795
13796 if (place2 && JUMP_P (place2)
13797 && REG_NOTE_KIND (note) == REG_LABEL_TARGET
13798 && (JUMP_LABEL (place2) == NULL
13799 || JUMP_LABEL (place2) == XEXP (note, 0)))
13800 {
13801 rtx label = JUMP_LABEL (place2);
13802
13803 if (!label)
13804 JUMP_LABEL (place2) = XEXP (note, 0);
13805 else if (LABEL_P (label))
13806 LABEL_NUSES (label)--;
13807 place2 = 0;
13808 }
13809 break;
13810
13811 case REG_NONNEG:
13812 /* This note says something about the value of a register prior
13813 to the execution of an insn. It is too much trouble to see
13814 if the note is still correct in all situations. It is better
13815 to simply delete it. */
13816 break;
13817
13818 case REG_DEAD:
13819 /* If we replaced the right hand side of FROM_INSN with a
13820 REG_EQUAL note, the original use of the dying register
13821 will not have been combined into I3 and I2. In such cases,
13822 FROM_INSN is guaranteed to be the first of the combined
13823 instructions, so we simply need to search back before
13824 FROM_INSN for the previous use or set of this register,
13825 then alter the notes there appropriately.
13826
13827 If the register is used as an input in I3, it dies there.
13828 Similarly for I2, if it is nonzero and adjacent to I3.
13829
13830 If the register is not used as an input in either I3 or I2
13831 and it is not one of the registers we were supposed to eliminate,
13832 there are two possibilities. We might have a non-adjacent I2
13833 or we might have somehow eliminated an additional register
13834 from a computation. For example, we might have had A & B where
13835 we discover that B will always be zero. In this case we will
13836 eliminate the reference to A.
13837
13838 In both cases, we must search to see if we can find a previous
13839 use of A and put the death note there. */
13840
13841 if (from_insn
13842 && from_insn == i2mod
13843 && !reg_overlap_mentioned_p (XEXP (note, 0), i2mod_new_rhs))
13844 tem_insn = from_insn;
13845 else
13846 {
13847 if (from_insn
13848 && CALL_P (from_insn)
13849 && find_reg_fusage (from_insn, USE, XEXP (note, 0)))
13850 place = from_insn;
13851 else if (reg_referenced_p (XEXP (note, 0), PATTERN (i3)))
13852 place = i3;
13853 else if (i2 != 0 && next_nonnote_nondebug_insn (i2) == i3
13854 && reg_referenced_p (XEXP (note, 0), PATTERN (i2)))
13855 place = i2;
13856 else if ((rtx_equal_p (XEXP (note, 0), elim_i2)
13857 && !(i2mod
13858 && reg_overlap_mentioned_p (XEXP (note, 0),
13859 i2mod_old_rhs)))
13860 || rtx_equal_p (XEXP (note, 0), elim_i1)
13861 || rtx_equal_p (XEXP (note, 0), elim_i0))
13862 break;
13863 tem_insn = i3;
13864 /* If the new I2 sets the same register that is marked dead
13865 in the note, the note now should not be put on I2, as the
13866 note refers to a previous incarnation of the reg. */
13867 if (i2 != 0 && reg_set_p (XEXP (note, 0), PATTERN (i2)))
13868 tem_insn = i2;
13869 }
13870
13871 if (place == 0)
13872 {
13873 basic_block bb = this_basic_block;
13874
13875 for (tem_insn = PREV_INSN (tem_insn); place == 0; tem_insn = PREV_INSN (tem_insn))
13876 {
13877 if (!NONDEBUG_INSN_P (tem_insn))
13878 {
13879 if (tem_insn == BB_HEAD (bb))
13880 break;
13881 continue;
13882 }
13883
13884 /* If the register is being set at TEM_INSN, see if that is all
13885 TEM_INSN is doing. If so, delete TEM_INSN. Otherwise, make this
13886 into a REG_UNUSED note instead. Don't delete sets to
13887 global register vars. */
13888 if ((REGNO (XEXP (note, 0)) >= FIRST_PSEUDO_REGISTER
13889 || !global_regs[REGNO (XEXP (note, 0))])
13890 && reg_set_p (XEXP (note, 0), PATTERN (tem_insn)))
13891 {
13892 rtx set = single_set (tem_insn);
13893 rtx inner_dest = 0;
13894 rtx_insn *cc0_setter = NULL;
13895
13896 if (set != 0)
13897 for (inner_dest = SET_DEST (set);
13898 (GET_CODE (inner_dest) == STRICT_LOW_PART
13899 || GET_CODE (inner_dest) == SUBREG
13900 || GET_CODE (inner_dest) == ZERO_EXTRACT);
13901 inner_dest = XEXP (inner_dest, 0))
13902 ;
13903
13904 /* Verify that it was the set, and not a clobber that
13905 modified the register.
13906
13907 CC0 targets must be careful to maintain setter/user
13908 pairs. If we cannot delete the setter due to side
13909 effects, mark the user with an UNUSED note instead
13910 of deleting it. */
13911
13912 if (set != 0 && ! side_effects_p (SET_SRC (set))
13913 && rtx_equal_p (XEXP (note, 0), inner_dest)
13914 && (!HAVE_cc0
13915 || (! reg_mentioned_p (cc0_rtx, SET_SRC (set))
13916 || ((cc0_setter = prev_cc0_setter (tem_insn)) != NULL
13917 && sets_cc0_p (PATTERN (cc0_setter)) > 0))))
13918 {
13919 /* Move the notes and links of TEM_INSN elsewhere.
13920 This might delete other dead insns recursively.
13921 First set the pattern to something that won't use
13922 any register. */
13923 rtx old_notes = REG_NOTES (tem_insn);
13924
13925 PATTERN (tem_insn) = pc_rtx;
13926 REG_NOTES (tem_insn) = NULL;
13927
13928 distribute_notes (old_notes, tem_insn, tem_insn, NULL,
13929 NULL_RTX, NULL_RTX, NULL_RTX);
13930 distribute_links (LOG_LINKS (tem_insn));
13931
13932 SET_INSN_DELETED (tem_insn);
13933 if (tem_insn == i2)
13934 i2 = NULL;
13935
13936 /* Delete the setter too. */
13937 if (cc0_setter)
13938 {
13939 PATTERN (cc0_setter) = pc_rtx;
13940 old_notes = REG_NOTES (cc0_setter);
13941 REG_NOTES (cc0_setter) = NULL;
13942
13943 distribute_notes (old_notes, cc0_setter,
13944 cc0_setter, NULL,
13945 NULL_RTX, NULL_RTX, NULL_RTX);
13946 distribute_links (LOG_LINKS (cc0_setter));
13947
13948 SET_INSN_DELETED (cc0_setter);
13949 if (cc0_setter == i2)
13950 i2 = NULL;
13951 }
13952 }
13953 else
13954 {
13955 PUT_REG_NOTE_KIND (note, REG_UNUSED);
13956
13957 /* If there isn't already a REG_UNUSED note, put one
13958 here. Do not place a REG_DEAD note, even if
13959 the register is also used here; that would not
13960 match the algorithm used in lifetime analysis
13961 and can cause the consistency check in the
13962 scheduler to fail. */
13963 if (! find_regno_note (tem_insn, REG_UNUSED,
13964 REGNO (XEXP (note, 0))))
13965 place = tem_insn;
13966 break;
13967 }
13968 }
13969 else if (reg_referenced_p (XEXP (note, 0), PATTERN (tem_insn))
13970 || (CALL_P (tem_insn)
13971 && find_reg_fusage (tem_insn, USE, XEXP (note, 0))))
13972 {
13973 place = tem_insn;
13974
13975 /* If we are doing a 3->2 combination, and we have a
13976 register which formerly died in i3 and was not used
13977 by i2, which now no longer dies in i3 and is used in
13978 i2 but does not die in i2, and place is between i2
13979 and i3, then we may need to move a link from place to
13980 i2. */
13981 if (i2 && DF_INSN_LUID (place) > DF_INSN_LUID (i2)
13982 && from_insn
13983 && DF_INSN_LUID (from_insn) > DF_INSN_LUID (i2)
13984 && reg_referenced_p (XEXP (note, 0), PATTERN (i2)))
13985 {
13986 struct insn_link *links = LOG_LINKS (place);
13987 LOG_LINKS (place) = NULL;
13988 distribute_links (links);
13989 }
13990 break;
13991 }
13992
13993 if (tem_insn == BB_HEAD (bb))
13994 break;
13995 }
13996
13997 }
13998
13999 /* If the register is set or already dead at PLACE, we needn't do
14000 anything with this note if it is still a REG_DEAD note.
14001 We check here if it is set at all, not if is it totally replaced,
14002 which is what `dead_or_set_p' checks, so also check for it being
14003 set partially. */
14004
14005 if (place && REG_NOTE_KIND (note) == REG_DEAD)
14006 {
14007 unsigned int regno = REGNO (XEXP (note, 0));
14008 reg_stat_type *rsp = &reg_stat[regno];
14009
14010 if (dead_or_set_p (place, XEXP (note, 0))
14011 || reg_bitfield_target_p (XEXP (note, 0), PATTERN (place)))
14012 {
14013 /* Unless the register previously died in PLACE, clear
14014 last_death. [I no longer understand why this is
14015 being done.] */
14016 if (rsp->last_death != place)
14017 rsp->last_death = 0;
14018 place = 0;
14019 }
14020 else
14021 rsp->last_death = place;
14022
14023 /* If this is a death note for a hard reg that is occupying
14024 multiple registers, ensure that we are still using all
14025 parts of the object. If we find a piece of the object
14026 that is unused, we must arrange for an appropriate REG_DEAD
14027 note to be added for it. However, we can't just emit a USE
14028 and tag the note to it, since the register might actually
14029 be dead; so we recourse, and the recursive call then finds
14030 the previous insn that used this register. */
14031
14032 if (place && REG_NREGS (XEXP (note, 0)) > 1)
14033 {
14034 unsigned int endregno = END_REGNO (XEXP (note, 0));
14035 bool all_used = true;
14036 unsigned int i;
14037
14038 for (i = regno; i < endregno; i++)
14039 if ((! refers_to_regno_p (i, PATTERN (place))
14040 && ! find_regno_fusage (place, USE, i))
14041 || dead_or_set_regno_p (place, i))
14042 {
14043 all_used = false;
14044 break;
14045 }
14046
14047 if (! all_used)
14048 {
14049 /* Put only REG_DEAD notes for pieces that are
14050 not already dead or set. */
14051
14052 for (i = regno; i < endregno;
14053 i += hard_regno_nregs[i][reg_raw_mode[i]])
14054 {
14055 rtx piece = regno_reg_rtx[i];
14056 basic_block bb = this_basic_block;
14057
14058 if (! dead_or_set_p (place, piece)
14059 && ! reg_bitfield_target_p (piece,
14060 PATTERN (place)))
14061 {
14062 rtx new_note = alloc_reg_note (REG_DEAD, piece,
14063 NULL_RTX);
14064
14065 distribute_notes (new_note, place, place,
14066 NULL, NULL_RTX, NULL_RTX,
14067 NULL_RTX);
14068 }
14069 else if (! refers_to_regno_p (i, PATTERN (place))
14070 && ! find_regno_fusage (place, USE, i))
14071 for (tem_insn = PREV_INSN (place); ;
14072 tem_insn = PREV_INSN (tem_insn))
14073 {
14074 if (!NONDEBUG_INSN_P (tem_insn))
14075 {
14076 if (tem_insn == BB_HEAD (bb))
14077 break;
14078 continue;
14079 }
14080 if (dead_or_set_p (tem_insn, piece)
14081 || reg_bitfield_target_p (piece,
14082 PATTERN (tem_insn)))
14083 {
14084 add_reg_note (tem_insn, REG_UNUSED, piece);
14085 break;
14086 }
14087 }
14088 }
14089
14090 place = 0;
14091 }
14092 }
14093 }
14094 break;
14095
14096 default:
14097 /* Any other notes should not be present at this point in the
14098 compilation. */
14099 gcc_unreachable ();
14100 }
14101
14102 if (place)
14103 {
14104 XEXP (note, 1) = REG_NOTES (place);
14105 REG_NOTES (place) = note;
14106 }
14107
14108 if (place2)
14109 add_shallow_copy_of_reg_note (place2, note);
14110 }
14111 }
14112 \f
14113 /* Similarly to above, distribute the LOG_LINKS that used to be present on
14114 I3, I2, and I1 to new locations. This is also called to add a link
14115 pointing at I3 when I3's destination is changed. */
14116
14117 static void
14118 distribute_links (struct insn_link *links)
14119 {
14120 struct insn_link *link, *next_link;
14121
14122 for (link = links; link; link = next_link)
14123 {
14124 rtx_insn *place = 0;
14125 rtx_insn *insn;
14126 rtx set, reg;
14127
14128 next_link = link->next;
14129
14130 /* If the insn that this link points to is a NOTE, ignore it. */
14131 if (NOTE_P (link->insn))
14132 continue;
14133
14134 set = 0;
14135 rtx pat = PATTERN (link->insn);
14136 if (GET_CODE (pat) == SET)
14137 set = pat;
14138 else if (GET_CODE (pat) == PARALLEL)
14139 {
14140 int i;
14141 for (i = 0; i < XVECLEN (pat, 0); i++)
14142 {
14143 set = XVECEXP (pat, 0, i);
14144 if (GET_CODE (set) != SET)
14145 continue;
14146
14147 reg = SET_DEST (set);
14148 while (GET_CODE (reg) == ZERO_EXTRACT
14149 || GET_CODE (reg) == STRICT_LOW_PART
14150 || GET_CODE (reg) == SUBREG)
14151 reg = XEXP (reg, 0);
14152
14153 if (!REG_P (reg))
14154 continue;
14155
14156 if (REGNO (reg) == link->regno)
14157 break;
14158 }
14159 if (i == XVECLEN (pat, 0))
14160 continue;
14161 }
14162 else
14163 continue;
14164
14165 reg = SET_DEST (set);
14166
14167 while (GET_CODE (reg) == ZERO_EXTRACT
14168 || GET_CODE (reg) == STRICT_LOW_PART
14169 || GET_CODE (reg) == SUBREG)
14170 reg = XEXP (reg, 0);
14171
14172 /* A LOG_LINK is defined as being placed on the first insn that uses
14173 a register and points to the insn that sets the register. Start
14174 searching at the next insn after the target of the link and stop
14175 when we reach a set of the register or the end of the basic block.
14176
14177 Note that this correctly handles the link that used to point from
14178 I3 to I2. Also note that not much searching is typically done here
14179 since most links don't point very far away. */
14180
14181 for (insn = NEXT_INSN (link->insn);
14182 (insn && (this_basic_block->next_bb == EXIT_BLOCK_PTR_FOR_FN (cfun)
14183 || BB_HEAD (this_basic_block->next_bb) != insn));
14184 insn = NEXT_INSN (insn))
14185 if (DEBUG_INSN_P (insn))
14186 continue;
14187 else if (INSN_P (insn) && reg_overlap_mentioned_p (reg, PATTERN (insn)))
14188 {
14189 if (reg_referenced_p (reg, PATTERN (insn)))
14190 place = insn;
14191 break;
14192 }
14193 else if (CALL_P (insn)
14194 && find_reg_fusage (insn, USE, reg))
14195 {
14196 place = insn;
14197 break;
14198 }
14199 else if (INSN_P (insn) && reg_set_p (reg, insn))
14200 break;
14201
14202 /* If we found a place to put the link, place it there unless there
14203 is already a link to the same insn as LINK at that point. */
14204
14205 if (place)
14206 {
14207 struct insn_link *link2;
14208
14209 FOR_EACH_LOG_LINK (link2, place)
14210 if (link2->insn == link->insn && link2->regno == link->regno)
14211 break;
14212
14213 if (link2 == NULL)
14214 {
14215 link->next = LOG_LINKS (place);
14216 LOG_LINKS (place) = link;
14217
14218 /* Set added_links_insn to the earliest insn we added a
14219 link to. */
14220 if (added_links_insn == 0
14221 || DF_INSN_LUID (added_links_insn) > DF_INSN_LUID (place))
14222 added_links_insn = place;
14223 }
14224 }
14225 }
14226 }
14227 \f
14228 /* Check for any register or memory mentioned in EQUIV that is not
14229 mentioned in EXPR. This is used to restrict EQUIV to "specializations"
14230 of EXPR where some registers may have been replaced by constants. */
14231
14232 static bool
14233 unmentioned_reg_p (rtx equiv, rtx expr)
14234 {
14235 subrtx_iterator::array_type array;
14236 FOR_EACH_SUBRTX (iter, array, equiv, NONCONST)
14237 {
14238 const_rtx x = *iter;
14239 if ((REG_P (x) || MEM_P (x))
14240 && !reg_mentioned_p (x, expr))
14241 return true;
14242 }
14243 return false;
14244 }
14245 \f
14246 DEBUG_FUNCTION void
14247 dump_combine_stats (FILE *file)
14248 {
14249 fprintf
14250 (file,
14251 ";; Combiner statistics: %d attempts, %d substitutions (%d requiring new space),\n;; %d successes.\n\n",
14252 combine_attempts, combine_merges, combine_extras, combine_successes);
14253 }
14254
14255 void
14256 dump_combine_total_stats (FILE *file)
14257 {
14258 fprintf
14259 (file,
14260 "\n;; Combiner totals: %d attempts, %d substitutions (%d requiring new space),\n;; %d successes.\n",
14261 total_attempts, total_merges, total_extras, total_successes);
14262 }
14263 \f
14264 /* Try combining insns through substitution. */
14265 static unsigned int
14266 rest_of_handle_combine (void)
14267 {
14268 int rebuild_jump_labels_after_combine;
14269
14270 df_set_flags (DF_LR_RUN_DCE + DF_DEFER_INSN_RESCAN);
14271 df_note_add_problem ();
14272 df_analyze ();
14273
14274 regstat_init_n_sets_and_refs ();
14275 reg_n_sets_max = max_reg_num ();
14276
14277 rebuild_jump_labels_after_combine
14278 = combine_instructions (get_insns (), max_reg_num ());
14279
14280 /* Combining insns may have turned an indirect jump into a
14281 direct jump. Rebuild the JUMP_LABEL fields of jumping
14282 instructions. */
14283 if (rebuild_jump_labels_after_combine)
14284 {
14285 timevar_push (TV_JUMP);
14286 rebuild_jump_labels (get_insns ());
14287 cleanup_cfg (0);
14288 timevar_pop (TV_JUMP);
14289 }
14290
14291 regstat_free_n_sets_and_refs ();
14292 return 0;
14293 }
14294
14295 namespace {
14296
14297 const pass_data pass_data_combine =
14298 {
14299 RTL_PASS, /* type */
14300 "combine", /* name */
14301 OPTGROUP_NONE, /* optinfo_flags */
14302 TV_COMBINE, /* tv_id */
14303 PROP_cfglayout, /* properties_required */
14304 0, /* properties_provided */
14305 0, /* properties_destroyed */
14306 0, /* todo_flags_start */
14307 TODO_df_finish, /* todo_flags_finish */
14308 };
14309
14310 class pass_combine : public rtl_opt_pass
14311 {
14312 public:
14313 pass_combine (gcc::context *ctxt)
14314 : rtl_opt_pass (pass_data_combine, ctxt)
14315 {}
14316
14317 /* opt_pass methods: */
14318 virtual bool gate (function *) { return (optimize > 0); }
14319 virtual unsigned int execute (function *)
14320 {
14321 return rest_of_handle_combine ();
14322 }
14323
14324 }; // class pass_combine
14325
14326 } // anon namespace
14327
14328 rtl_opt_pass *
14329 make_pass_combine (gcc::context *ctxt)
14330 {
14331 return new pass_combine (ctxt);
14332 }