gengtype.c: Include xregex.h and obstack.h Added comments about role of...
[gcc.git] / gcc / combine.c
1 /* Optimize by combining instructions for GNU compiler.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010
4 Free Software Foundation, Inc.
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22 /* This module is essentially the "combiner" phase of the U. of Arizona
23 Portable Optimizer, but redone to work on our list-structured
24 representation for RTL instead of their string representation.
25
26 The LOG_LINKS of each insn identify the most recent assignment
27 to each REG used in the insn. It is a list of previous insns,
28 each of which contains a SET for a REG that is used in this insn
29 and not used or set in between. LOG_LINKs never cross basic blocks.
30 They were set up by the preceding pass (lifetime analysis).
31
32 We try to combine each pair of insns joined by a logical link.
33 We also try to combine triples of insns A, B and C when
34 C has a link back to B and B has a link back to A.
35
36 LOG_LINKS does not have links for use of the CC0. They don't
37 need to, because the insn that sets the CC0 is always immediately
38 before the insn that tests it. So we always regard a branch
39 insn as having a logical link to the preceding insn. The same is true
40 for an insn explicitly using CC0.
41
42 We check (with use_crosses_set_p) to avoid combining in such a way
43 as to move a computation to a place where its value would be different.
44
45 Combination is done by mathematically substituting the previous
46 insn(s) values for the regs they set into the expressions in
47 the later insns that refer to these regs. If the result is a valid insn
48 for our target machine, according to the machine description,
49 we install it, delete the earlier insns, and update the data flow
50 information (LOG_LINKS and REG_NOTES) for what we did.
51
52 There are a few exceptions where the dataflow information isn't
53 completely updated (however this is only a local issue since it is
54 regenerated before the next pass that uses it):
55
56 - reg_live_length is not updated
57 - reg_n_refs is not adjusted in the rare case when a register is
58 no longer required in a computation
59 - there are extremely rare cases (see distribute_notes) when a
60 REG_DEAD note is lost
61 - a LOG_LINKS entry that refers to an insn with multiple SETs may be
62 removed because there is no way to know which register it was
63 linking
64
65 To simplify substitution, we combine only when the earlier insn(s)
66 consist of only a single assignment. To simplify updating afterward,
67 we never combine when a subroutine call appears in the middle.
68
69 Since we do not represent assignments to CC0 explicitly except when that
70 is all an insn does, there is no LOG_LINKS entry in an insn that uses
71 the condition code for the insn that set the condition code.
72 Fortunately, these two insns must be consecutive.
73 Therefore, every JUMP_INSN is taken to have an implicit logical link
74 to the preceding insn. This is not quite right, since non-jumps can
75 also use the condition code; but in practice such insns would not
76 combine anyway. */
77
78 #include "config.h"
79 #include "system.h"
80 #include "coretypes.h"
81 #include "tm.h"
82 #include "rtl.h"
83 #include "tree.h"
84 #include "tm_p.h"
85 #include "flags.h"
86 #include "regs.h"
87 #include "hard-reg-set.h"
88 #include "basic-block.h"
89 #include "insn-config.h"
90 #include "function.h"
91 /* Include expr.h after insn-config.h so we get HAVE_conditional_move. */
92 #include "expr.h"
93 #include "insn-attr.h"
94 #include "recog.h"
95 #include "diagnostic-core.h"
96 #include "toplev.h"
97 #include "target.h"
98 #include "optabs.h"
99 #include "insn-codes.h"
100 #include "rtlhooks-def.h"
101 /* Include output.h for dump_file. */
102 #include "output.h"
103 #include "params.h"
104 #include "timevar.h"
105 #include "tree-pass.h"
106 #include "df.h"
107 #include "cgraph.h"
108
109 /* Number of attempts to combine instructions in this function. */
110
111 static int combine_attempts;
112
113 /* Number of attempts that got as far as substitution in this function. */
114
115 static int combine_merges;
116
117 /* Number of instructions combined with added SETs in this function. */
118
119 static int combine_extras;
120
121 /* Number of instructions combined in this function. */
122
123 static int combine_successes;
124
125 /* Totals over entire compilation. */
126
127 static int total_attempts, total_merges, total_extras, total_successes;
128
129 /* combine_instructions may try to replace the right hand side of the
130 second instruction with the value of an associated REG_EQUAL note
131 before throwing it at try_combine. That is problematic when there
132 is a REG_DEAD note for a register used in the old right hand side
133 and can cause distribute_notes to do wrong things. This is the
134 second instruction if it has been so modified, null otherwise. */
135
136 static rtx i2mod;
137
138 /* When I2MOD is nonnull, this is a copy of the old right hand side. */
139
140 static rtx i2mod_old_rhs;
141
142 /* When I2MOD is nonnull, this is a copy of the new right hand side. */
143
144 static rtx i2mod_new_rhs;
145 \f
146 typedef struct reg_stat_struct {
147 /* Record last point of death of (hard or pseudo) register n. */
148 rtx last_death;
149
150 /* Record last point of modification of (hard or pseudo) register n. */
151 rtx last_set;
152
153 /* The next group of fields allows the recording of the last value assigned
154 to (hard or pseudo) register n. We use this information to see if an
155 operation being processed is redundant given a prior operation performed
156 on the register. For example, an `and' with a constant is redundant if
157 all the zero bits are already known to be turned off.
158
159 We use an approach similar to that used by cse, but change it in the
160 following ways:
161
162 (1) We do not want to reinitialize at each label.
163 (2) It is useful, but not critical, to know the actual value assigned
164 to a register. Often just its form is helpful.
165
166 Therefore, we maintain the following fields:
167
168 last_set_value the last value assigned
169 last_set_label records the value of label_tick when the
170 register was assigned
171 last_set_table_tick records the value of label_tick when a
172 value using the register is assigned
173 last_set_invalid set to nonzero when it is not valid
174 to use the value of this register in some
175 register's value
176
177 To understand the usage of these tables, it is important to understand
178 the distinction between the value in last_set_value being valid and
179 the register being validly contained in some other expression in the
180 table.
181
182 (The next two parameters are out of date).
183
184 reg_stat[i].last_set_value is valid if it is nonzero, and either
185 reg_n_sets[i] is 1 or reg_stat[i].last_set_label == label_tick.
186
187 Register I may validly appear in any expression returned for the value
188 of another register if reg_n_sets[i] is 1. It may also appear in the
189 value for register J if reg_stat[j].last_set_invalid is zero, or
190 reg_stat[i].last_set_label < reg_stat[j].last_set_label.
191
192 If an expression is found in the table containing a register which may
193 not validly appear in an expression, the register is replaced by
194 something that won't match, (clobber (const_int 0)). */
195
196 /* Record last value assigned to (hard or pseudo) register n. */
197
198 rtx last_set_value;
199
200 /* Record the value of label_tick when an expression involving register n
201 is placed in last_set_value. */
202
203 int last_set_table_tick;
204
205 /* Record the value of label_tick when the value for register n is placed in
206 last_set_value. */
207
208 int last_set_label;
209
210 /* These fields are maintained in parallel with last_set_value and are
211 used to store the mode in which the register was last set, the bits
212 that were known to be zero when it was last set, and the number of
213 sign bits copies it was known to have when it was last set. */
214
215 unsigned HOST_WIDE_INT last_set_nonzero_bits;
216 char last_set_sign_bit_copies;
217 ENUM_BITFIELD(machine_mode) last_set_mode : 8;
218
219 /* Set nonzero if references to register n in expressions should not be
220 used. last_set_invalid is set nonzero when this register is being
221 assigned to and last_set_table_tick == label_tick. */
222
223 char last_set_invalid;
224
225 /* Some registers that are set more than once and used in more than one
226 basic block are nevertheless always set in similar ways. For example,
227 a QImode register may be loaded from memory in two places on a machine
228 where byte loads zero extend.
229
230 We record in the following fields if a register has some leading bits
231 that are always equal to the sign bit, and what we know about the
232 nonzero bits of a register, specifically which bits are known to be
233 zero.
234
235 If an entry is zero, it means that we don't know anything special. */
236
237 unsigned char sign_bit_copies;
238
239 unsigned HOST_WIDE_INT nonzero_bits;
240
241 /* Record the value of the label_tick when the last truncation
242 happened. The field truncated_to_mode is only valid if
243 truncation_label == label_tick. */
244
245 int truncation_label;
246
247 /* Record the last truncation seen for this register. If truncation
248 is not a nop to this mode we might be able to save an explicit
249 truncation if we know that value already contains a truncated
250 value. */
251
252 ENUM_BITFIELD(machine_mode) truncated_to_mode : 8;
253 } reg_stat_type;
254
255 DEF_VEC_O(reg_stat_type);
256 DEF_VEC_ALLOC_O(reg_stat_type,heap);
257
258 static VEC(reg_stat_type,heap) *reg_stat;
259
260 /* Record the luid of the last insn that invalidated memory
261 (anything that writes memory, and subroutine calls, but not pushes). */
262
263 static int mem_last_set;
264
265 /* Record the luid of the last CALL_INSN
266 so we can tell whether a potential combination crosses any calls. */
267
268 static int last_call_luid;
269
270 /* When `subst' is called, this is the insn that is being modified
271 (by combining in a previous insn). The PATTERN of this insn
272 is still the old pattern partially modified and it should not be
273 looked at, but this may be used to examine the successors of the insn
274 to judge whether a simplification is valid. */
275
276 static rtx subst_insn;
277
278 /* This is the lowest LUID that `subst' is currently dealing with.
279 get_last_value will not return a value if the register was set at or
280 after this LUID. If not for this mechanism, we could get confused if
281 I2 or I1 in try_combine were an insn that used the old value of a register
282 to obtain a new value. In that case, we might erroneously get the
283 new value of the register when we wanted the old one. */
284
285 static int subst_low_luid;
286
287 /* This contains any hard registers that are used in newpat; reg_dead_at_p
288 must consider all these registers to be always live. */
289
290 static HARD_REG_SET newpat_used_regs;
291
292 /* This is an insn to which a LOG_LINKS entry has been added. If this
293 insn is the earlier than I2 or I3, combine should rescan starting at
294 that location. */
295
296 static rtx added_links_insn;
297
298 /* Basic block in which we are performing combines. */
299 static basic_block this_basic_block;
300 static bool optimize_this_for_speed_p;
301
302 \f
303 /* Length of the currently allocated uid_insn_cost array. */
304
305 static int max_uid_known;
306
307 /* The following array records the insn_rtx_cost for every insn
308 in the instruction stream. */
309
310 static int *uid_insn_cost;
311
312 /* The following array records the LOG_LINKS for every insn in the
313 instruction stream as an INSN_LIST rtx. */
314
315 static rtx *uid_log_links;
316
317 #define INSN_COST(INSN) (uid_insn_cost[INSN_UID (INSN)])
318 #define LOG_LINKS(INSN) (uid_log_links[INSN_UID (INSN)])
319
320 /* Incremented for each basic block. */
321
322 static int label_tick;
323
324 /* Reset to label_tick for each extended basic block in scanning order. */
325
326 static int label_tick_ebb_start;
327
328 /* Mode used to compute significance in reg_stat[].nonzero_bits. It is the
329 largest integer mode that can fit in HOST_BITS_PER_WIDE_INT. */
330
331 static enum machine_mode nonzero_bits_mode;
332
333 /* Nonzero when reg_stat[].nonzero_bits and reg_stat[].sign_bit_copies can
334 be safely used. It is zero while computing them and after combine has
335 completed. This former test prevents propagating values based on
336 previously set values, which can be incorrect if a variable is modified
337 in a loop. */
338
339 static int nonzero_sign_valid;
340
341 \f
342 /* Record one modification to rtl structure
343 to be undone by storing old_contents into *where. */
344
345 enum undo_kind { UNDO_RTX, UNDO_INT, UNDO_MODE };
346
347 struct undo
348 {
349 struct undo *next;
350 enum undo_kind kind;
351 union { rtx r; int i; enum machine_mode m; } old_contents;
352 union { rtx *r; int *i; } where;
353 };
354
355 /* Record a bunch of changes to be undone, up to MAX_UNDO of them.
356 num_undo says how many are currently recorded.
357
358 other_insn is nonzero if we have modified some other insn in the process
359 of working on subst_insn. It must be verified too. */
360
361 struct undobuf
362 {
363 struct undo *undos;
364 struct undo *frees;
365 rtx other_insn;
366 };
367
368 static struct undobuf undobuf;
369
370 /* Number of times the pseudo being substituted for
371 was found and replaced. */
372
373 static int n_occurrences;
374
375 static rtx reg_nonzero_bits_for_combine (const_rtx, enum machine_mode, const_rtx,
376 enum machine_mode,
377 unsigned HOST_WIDE_INT,
378 unsigned HOST_WIDE_INT *);
379 static rtx reg_num_sign_bit_copies_for_combine (const_rtx, enum machine_mode, const_rtx,
380 enum machine_mode,
381 unsigned int, unsigned int *);
382 static void do_SUBST (rtx *, rtx);
383 static void do_SUBST_INT (int *, int);
384 static void init_reg_last (void);
385 static void setup_incoming_promotions (rtx);
386 static void set_nonzero_bits_and_sign_copies (rtx, const_rtx, void *);
387 static int cant_combine_insn_p (rtx);
388 static int can_combine_p (rtx, rtx, rtx, rtx, rtx, rtx, rtx *, rtx *);
389 static int combinable_i3pat (rtx, rtx *, rtx, rtx, rtx, int, int, rtx *);
390 static int contains_muldiv (rtx);
391 static rtx try_combine (rtx, rtx, rtx, rtx, int *);
392 static void undo_all (void);
393 static void undo_commit (void);
394 static rtx *find_split_point (rtx *, rtx, bool);
395 static rtx subst (rtx, rtx, rtx, int, int);
396 static rtx combine_simplify_rtx (rtx, enum machine_mode, int);
397 static rtx simplify_if_then_else (rtx);
398 static rtx simplify_set (rtx);
399 static rtx simplify_logical (rtx);
400 static rtx expand_compound_operation (rtx);
401 static const_rtx expand_field_assignment (const_rtx);
402 static rtx make_extraction (enum machine_mode, rtx, HOST_WIDE_INT,
403 rtx, unsigned HOST_WIDE_INT, int, int, int);
404 static rtx extract_left_shift (rtx, int);
405 static rtx make_compound_operation (rtx, enum rtx_code);
406 static int get_pos_from_mask (unsigned HOST_WIDE_INT,
407 unsigned HOST_WIDE_INT *);
408 static rtx canon_reg_for_combine (rtx, rtx);
409 static rtx force_to_mode (rtx, enum machine_mode,
410 unsigned HOST_WIDE_INT, int);
411 static rtx if_then_else_cond (rtx, rtx *, rtx *);
412 static rtx known_cond (rtx, enum rtx_code, rtx, rtx);
413 static int rtx_equal_for_field_assignment_p (rtx, rtx);
414 static rtx make_field_assignment (rtx);
415 static rtx apply_distributive_law (rtx);
416 static rtx distribute_and_simplify_rtx (rtx, int);
417 static rtx simplify_and_const_int_1 (enum machine_mode, rtx,
418 unsigned HOST_WIDE_INT);
419 static rtx simplify_and_const_int (rtx, enum machine_mode, rtx,
420 unsigned HOST_WIDE_INT);
421 static int merge_outer_ops (enum rtx_code *, HOST_WIDE_INT *, enum rtx_code,
422 HOST_WIDE_INT, enum machine_mode, int *);
423 static rtx simplify_shift_const_1 (enum rtx_code, enum machine_mode, rtx, int);
424 static rtx simplify_shift_const (rtx, enum rtx_code, enum machine_mode, rtx,
425 int);
426 static int recog_for_combine (rtx *, rtx, rtx *);
427 static rtx gen_lowpart_for_combine (enum machine_mode, rtx);
428 static enum rtx_code simplify_comparison (enum rtx_code, rtx *, rtx *);
429 static void update_table_tick (rtx);
430 static void record_value_for_reg (rtx, rtx, rtx);
431 static void check_promoted_subreg (rtx, rtx);
432 static void record_dead_and_set_regs_1 (rtx, const_rtx, void *);
433 static void record_dead_and_set_regs (rtx);
434 static int get_last_value_validate (rtx *, rtx, int, int);
435 static rtx get_last_value (const_rtx);
436 static int use_crosses_set_p (const_rtx, int);
437 static void reg_dead_at_p_1 (rtx, const_rtx, void *);
438 static int reg_dead_at_p (rtx, rtx);
439 static void move_deaths (rtx, rtx, int, rtx, rtx *);
440 static int reg_bitfield_target_p (rtx, rtx);
441 static void distribute_notes (rtx, rtx, rtx, rtx, rtx, rtx, rtx);
442 static void distribute_links (rtx);
443 static void mark_used_regs_combine (rtx);
444 static void record_promoted_value (rtx, rtx);
445 static int unmentioned_reg_p_1 (rtx *, void *);
446 static bool unmentioned_reg_p (rtx, rtx);
447 static int record_truncated_value (rtx *, void *);
448 static void record_truncated_values (rtx *, void *);
449 static bool reg_truncated_to_mode (enum machine_mode, const_rtx);
450 static rtx gen_lowpart_or_truncate (enum machine_mode, rtx);
451 \f
452
453 /* It is not safe to use ordinary gen_lowpart in combine.
454 See comments in gen_lowpart_for_combine. */
455 #undef RTL_HOOKS_GEN_LOWPART
456 #define RTL_HOOKS_GEN_LOWPART gen_lowpart_for_combine
457
458 /* Our implementation of gen_lowpart never emits a new pseudo. */
459 #undef RTL_HOOKS_GEN_LOWPART_NO_EMIT
460 #define RTL_HOOKS_GEN_LOWPART_NO_EMIT gen_lowpart_for_combine
461
462 #undef RTL_HOOKS_REG_NONZERO_REG_BITS
463 #define RTL_HOOKS_REG_NONZERO_REG_BITS reg_nonzero_bits_for_combine
464
465 #undef RTL_HOOKS_REG_NUM_SIGN_BIT_COPIES
466 #define RTL_HOOKS_REG_NUM_SIGN_BIT_COPIES reg_num_sign_bit_copies_for_combine
467
468 #undef RTL_HOOKS_REG_TRUNCATED_TO_MODE
469 #define RTL_HOOKS_REG_TRUNCATED_TO_MODE reg_truncated_to_mode
470
471 static const struct rtl_hooks combine_rtl_hooks = RTL_HOOKS_INITIALIZER;
472
473 \f
474 /* Try to split PATTERN found in INSN. This returns NULL_RTX if
475 PATTERN can not be split. Otherwise, it returns an insn sequence.
476 This is a wrapper around split_insns which ensures that the
477 reg_stat vector is made larger if the splitter creates a new
478 register. */
479
480 static rtx
481 combine_split_insns (rtx pattern, rtx insn)
482 {
483 rtx ret;
484 unsigned int nregs;
485
486 ret = split_insns (pattern, insn);
487 nregs = max_reg_num ();
488 if (nregs > VEC_length (reg_stat_type, reg_stat))
489 VEC_safe_grow_cleared (reg_stat_type, heap, reg_stat, nregs);
490 return ret;
491 }
492
493 /* This is used by find_single_use to locate an rtx in LOC that
494 contains exactly one use of DEST, which is typically either a REG
495 or CC0. It returns a pointer to the innermost rtx expression
496 containing DEST. Appearances of DEST that are being used to
497 totally replace it are not counted. */
498
499 static rtx *
500 find_single_use_1 (rtx dest, rtx *loc)
501 {
502 rtx x = *loc;
503 enum rtx_code code = GET_CODE (x);
504 rtx *result = NULL;
505 rtx *this_result;
506 int i;
507 const char *fmt;
508
509 switch (code)
510 {
511 case CONST_INT:
512 case CONST:
513 case LABEL_REF:
514 case SYMBOL_REF:
515 case CONST_DOUBLE:
516 case CONST_VECTOR:
517 case CLOBBER:
518 return 0;
519
520 case SET:
521 /* If the destination is anything other than CC0, PC, a REG or a SUBREG
522 of a REG that occupies all of the REG, the insn uses DEST if
523 it is mentioned in the destination or the source. Otherwise, we
524 need just check the source. */
525 if (GET_CODE (SET_DEST (x)) != CC0
526 && GET_CODE (SET_DEST (x)) != PC
527 && !REG_P (SET_DEST (x))
528 && ! (GET_CODE (SET_DEST (x)) == SUBREG
529 && REG_P (SUBREG_REG (SET_DEST (x)))
530 && (((GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (x))))
531 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
532 == ((GET_MODE_SIZE (GET_MODE (SET_DEST (x)))
533 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))))
534 break;
535
536 return find_single_use_1 (dest, &SET_SRC (x));
537
538 case MEM:
539 case SUBREG:
540 return find_single_use_1 (dest, &XEXP (x, 0));
541
542 default:
543 break;
544 }
545
546 /* If it wasn't one of the common cases above, check each expression and
547 vector of this code. Look for a unique usage of DEST. */
548
549 fmt = GET_RTX_FORMAT (code);
550 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
551 {
552 if (fmt[i] == 'e')
553 {
554 if (dest == XEXP (x, i)
555 || (REG_P (dest) && REG_P (XEXP (x, i))
556 && REGNO (dest) == REGNO (XEXP (x, i))))
557 this_result = loc;
558 else
559 this_result = find_single_use_1 (dest, &XEXP (x, i));
560
561 if (result == NULL)
562 result = this_result;
563 else if (this_result)
564 /* Duplicate usage. */
565 return NULL;
566 }
567 else if (fmt[i] == 'E')
568 {
569 int j;
570
571 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
572 {
573 if (XVECEXP (x, i, j) == dest
574 || (REG_P (dest)
575 && REG_P (XVECEXP (x, i, j))
576 && REGNO (XVECEXP (x, i, j)) == REGNO (dest)))
577 this_result = loc;
578 else
579 this_result = find_single_use_1 (dest, &XVECEXP (x, i, j));
580
581 if (result == NULL)
582 result = this_result;
583 else if (this_result)
584 return NULL;
585 }
586 }
587 }
588
589 return result;
590 }
591
592
593 /* See if DEST, produced in INSN, is used only a single time in the
594 sequel. If so, return a pointer to the innermost rtx expression in which
595 it is used.
596
597 If PLOC is nonzero, *PLOC is set to the insn containing the single use.
598
599 If DEST is cc0_rtx, we look only at the next insn. In that case, we don't
600 care about REG_DEAD notes or LOG_LINKS.
601
602 Otherwise, we find the single use by finding an insn that has a
603 LOG_LINKS pointing at INSN and has a REG_DEAD note for DEST. If DEST is
604 only referenced once in that insn, we know that it must be the first
605 and last insn referencing DEST. */
606
607 static rtx *
608 find_single_use (rtx dest, rtx insn, rtx *ploc)
609 {
610 basic_block bb;
611 rtx next;
612 rtx *result;
613 rtx link;
614
615 #ifdef HAVE_cc0
616 if (dest == cc0_rtx)
617 {
618 next = NEXT_INSN (insn);
619 if (next == 0
620 || (!NONJUMP_INSN_P (next) && !JUMP_P (next)))
621 return 0;
622
623 result = find_single_use_1 (dest, &PATTERN (next));
624 if (result && ploc)
625 *ploc = next;
626 return result;
627 }
628 #endif
629
630 if (!REG_P (dest))
631 return 0;
632
633 bb = BLOCK_FOR_INSN (insn);
634 for (next = NEXT_INSN (insn);
635 next && BLOCK_FOR_INSN (next) == bb;
636 next = NEXT_INSN (next))
637 if (INSN_P (next) && dead_or_set_p (next, dest))
638 {
639 for (link = LOG_LINKS (next); link; link = XEXP (link, 1))
640 if (XEXP (link, 0) == insn)
641 break;
642
643 if (link)
644 {
645 result = find_single_use_1 (dest, &PATTERN (next));
646 if (ploc)
647 *ploc = next;
648 return result;
649 }
650 }
651
652 return 0;
653 }
654 \f
655 /* Substitute NEWVAL, an rtx expression, into INTO, a place in some
656 insn. The substitution can be undone by undo_all. If INTO is already
657 set to NEWVAL, do not record this change. Because computing NEWVAL might
658 also call SUBST, we have to compute it before we put anything into
659 the undo table. */
660
661 static void
662 do_SUBST (rtx *into, rtx newval)
663 {
664 struct undo *buf;
665 rtx oldval = *into;
666
667 if (oldval == newval)
668 return;
669
670 /* We'd like to catch as many invalid transformations here as
671 possible. Unfortunately, there are way too many mode changes
672 that are perfectly valid, so we'd waste too much effort for
673 little gain doing the checks here. Focus on catching invalid
674 transformations involving integer constants. */
675 if (GET_MODE_CLASS (GET_MODE (oldval)) == MODE_INT
676 && CONST_INT_P (newval))
677 {
678 /* Sanity check that we're replacing oldval with a CONST_INT
679 that is a valid sign-extension for the original mode. */
680 gcc_assert (INTVAL (newval)
681 == trunc_int_for_mode (INTVAL (newval), GET_MODE (oldval)));
682
683 /* Replacing the operand of a SUBREG or a ZERO_EXTEND with a
684 CONST_INT is not valid, because after the replacement, the
685 original mode would be gone. Unfortunately, we can't tell
686 when do_SUBST is called to replace the operand thereof, so we
687 perform this test on oldval instead, checking whether an
688 invalid replacement took place before we got here. */
689 gcc_assert (!(GET_CODE (oldval) == SUBREG
690 && CONST_INT_P (SUBREG_REG (oldval))));
691 gcc_assert (!(GET_CODE (oldval) == ZERO_EXTEND
692 && CONST_INT_P (XEXP (oldval, 0))));
693 }
694
695 if (undobuf.frees)
696 buf = undobuf.frees, undobuf.frees = buf->next;
697 else
698 buf = XNEW (struct undo);
699
700 buf->kind = UNDO_RTX;
701 buf->where.r = into;
702 buf->old_contents.r = oldval;
703 *into = newval;
704
705 buf->next = undobuf.undos, undobuf.undos = buf;
706 }
707
708 #define SUBST(INTO, NEWVAL) do_SUBST(&(INTO), (NEWVAL))
709
710 /* Similar to SUBST, but NEWVAL is an int expression. Note that substitution
711 for the value of a HOST_WIDE_INT value (including CONST_INT) is
712 not safe. */
713
714 static void
715 do_SUBST_INT (int *into, int newval)
716 {
717 struct undo *buf;
718 int oldval = *into;
719
720 if (oldval == newval)
721 return;
722
723 if (undobuf.frees)
724 buf = undobuf.frees, undobuf.frees = buf->next;
725 else
726 buf = XNEW (struct undo);
727
728 buf->kind = UNDO_INT;
729 buf->where.i = into;
730 buf->old_contents.i = oldval;
731 *into = newval;
732
733 buf->next = undobuf.undos, undobuf.undos = buf;
734 }
735
736 #define SUBST_INT(INTO, NEWVAL) do_SUBST_INT(&(INTO), (NEWVAL))
737
738 /* Similar to SUBST, but just substitute the mode. This is used when
739 changing the mode of a pseudo-register, so that any other
740 references to the entry in the regno_reg_rtx array will change as
741 well. */
742
743 static void
744 do_SUBST_MODE (rtx *into, enum machine_mode newval)
745 {
746 struct undo *buf;
747 enum machine_mode oldval = GET_MODE (*into);
748
749 if (oldval == newval)
750 return;
751
752 if (undobuf.frees)
753 buf = undobuf.frees, undobuf.frees = buf->next;
754 else
755 buf = XNEW (struct undo);
756
757 buf->kind = UNDO_MODE;
758 buf->where.r = into;
759 buf->old_contents.m = oldval;
760 adjust_reg_mode (*into, newval);
761
762 buf->next = undobuf.undos, undobuf.undos = buf;
763 }
764
765 #define SUBST_MODE(INTO, NEWVAL) do_SUBST_MODE(&(INTO), (NEWVAL))
766 \f
767 /* Subroutine of try_combine. Determine whether the combine replacement
768 patterns NEWPAT, NEWI2PAT and NEWOTHERPAT are cheaper according to
769 insn_rtx_cost that the original instruction sequence I0, I1, I2, I3 and
770 undobuf.other_insn. Note that I1 and/or NEWI2PAT may be NULL_RTX.
771 NEWOTHERPAT and undobuf.other_insn may also both be NULL_RTX. This
772 function returns false, if the costs of all instructions can be
773 estimated, and the replacements are more expensive than the original
774 sequence. */
775
776 static bool
777 combine_validate_cost (rtx i0, rtx i1, rtx i2, rtx i3, rtx newpat,
778 rtx newi2pat, rtx newotherpat)
779 {
780 int i0_cost, i1_cost, i2_cost, i3_cost;
781 int new_i2_cost, new_i3_cost;
782 int old_cost, new_cost;
783
784 /* Lookup the original insn_rtx_costs. */
785 i2_cost = INSN_COST (i2);
786 i3_cost = INSN_COST (i3);
787
788 if (i1)
789 {
790 i1_cost = INSN_COST (i1);
791 if (i0)
792 {
793 i0_cost = INSN_COST (i0);
794 old_cost = (i0_cost > 0 && i1_cost > 0 && i2_cost > 0 && i3_cost > 0
795 ? i0_cost + i1_cost + i2_cost + i3_cost : 0);
796 }
797 else
798 {
799 old_cost = (i1_cost > 0 && i2_cost > 0 && i3_cost > 0
800 ? i1_cost + i2_cost + i3_cost : 0);
801 i0_cost = 0;
802 }
803 }
804 else
805 {
806 old_cost = (i2_cost > 0 && i3_cost > 0) ? i2_cost + i3_cost : 0;
807 i1_cost = i0_cost = 0;
808 }
809
810 /* Calculate the replacement insn_rtx_costs. */
811 new_i3_cost = insn_rtx_cost (newpat, optimize_this_for_speed_p);
812 if (newi2pat)
813 {
814 new_i2_cost = insn_rtx_cost (newi2pat, optimize_this_for_speed_p);
815 new_cost = (new_i2_cost > 0 && new_i3_cost > 0)
816 ? new_i2_cost + new_i3_cost : 0;
817 }
818 else
819 {
820 new_cost = new_i3_cost;
821 new_i2_cost = 0;
822 }
823
824 if (undobuf.other_insn)
825 {
826 int old_other_cost, new_other_cost;
827
828 old_other_cost = INSN_COST (undobuf.other_insn);
829 new_other_cost = insn_rtx_cost (newotherpat, optimize_this_for_speed_p);
830 if (old_other_cost > 0 && new_other_cost > 0)
831 {
832 old_cost += old_other_cost;
833 new_cost += new_other_cost;
834 }
835 else
836 old_cost = 0;
837 }
838
839 /* Disallow this recombination if both new_cost and old_cost are
840 greater than zero, and new_cost is greater than old cost. */
841 if (old_cost > 0
842 && new_cost > old_cost)
843 {
844 if (dump_file)
845 {
846 if (i0)
847 {
848 fprintf (dump_file,
849 "rejecting combination of insns %d, %d, %d and %d\n",
850 INSN_UID (i0), INSN_UID (i1), INSN_UID (i2),
851 INSN_UID (i3));
852 fprintf (dump_file, "original costs %d + %d + %d + %d = %d\n",
853 i0_cost, i1_cost, i2_cost, i3_cost, old_cost);
854 }
855 else if (i1)
856 {
857 fprintf (dump_file,
858 "rejecting combination of insns %d, %d and %d\n",
859 INSN_UID (i1), INSN_UID (i2), INSN_UID (i3));
860 fprintf (dump_file, "original costs %d + %d + %d = %d\n",
861 i1_cost, i2_cost, i3_cost, old_cost);
862 }
863 else
864 {
865 fprintf (dump_file,
866 "rejecting combination of insns %d and %d\n",
867 INSN_UID (i2), INSN_UID (i3));
868 fprintf (dump_file, "original costs %d + %d = %d\n",
869 i2_cost, i3_cost, old_cost);
870 }
871
872 if (newi2pat)
873 {
874 fprintf (dump_file, "replacement costs %d + %d = %d\n",
875 new_i2_cost, new_i3_cost, new_cost);
876 }
877 else
878 fprintf (dump_file, "replacement cost %d\n", new_cost);
879 }
880
881 return false;
882 }
883
884 /* Update the uid_insn_cost array with the replacement costs. */
885 INSN_COST (i2) = new_i2_cost;
886 INSN_COST (i3) = new_i3_cost;
887 if (i1)
888 INSN_COST (i1) = 0;
889
890 return true;
891 }
892
893
894 /* Delete any insns that copy a register to itself. */
895
896 static void
897 delete_noop_moves (void)
898 {
899 rtx insn, next;
900 basic_block bb;
901
902 FOR_EACH_BB (bb)
903 {
904 for (insn = BB_HEAD (bb); insn != NEXT_INSN (BB_END (bb)); insn = next)
905 {
906 next = NEXT_INSN (insn);
907 if (INSN_P (insn) && noop_move_p (insn))
908 {
909 if (dump_file)
910 fprintf (dump_file, "deleting noop move %d\n", INSN_UID (insn));
911
912 delete_insn_and_edges (insn);
913 }
914 }
915 }
916 }
917
918 \f
919 /* Fill in log links field for all insns. */
920
921 static void
922 create_log_links (void)
923 {
924 basic_block bb;
925 rtx *next_use, insn;
926 df_ref *def_vec, *use_vec;
927
928 next_use = XCNEWVEC (rtx, max_reg_num ());
929
930 /* Pass through each block from the end, recording the uses of each
931 register and establishing log links when def is encountered.
932 Note that we do not clear next_use array in order to save time,
933 so we have to test whether the use is in the same basic block as def.
934
935 There are a few cases below when we do not consider the definition or
936 usage -- these are taken from original flow.c did. Don't ask me why it is
937 done this way; I don't know and if it works, I don't want to know. */
938
939 FOR_EACH_BB (bb)
940 {
941 FOR_BB_INSNS_REVERSE (bb, insn)
942 {
943 if (!NONDEBUG_INSN_P (insn))
944 continue;
945
946 /* Log links are created only once. */
947 gcc_assert (!LOG_LINKS (insn));
948
949 for (def_vec = DF_INSN_DEFS (insn); *def_vec; def_vec++)
950 {
951 df_ref def = *def_vec;
952 int regno = DF_REF_REGNO (def);
953 rtx use_insn;
954
955 if (!next_use[regno])
956 continue;
957
958 /* Do not consider if it is pre/post modification in MEM. */
959 if (DF_REF_FLAGS (def) & DF_REF_PRE_POST_MODIFY)
960 continue;
961
962 /* Do not make the log link for frame pointer. */
963 if ((regno == FRAME_POINTER_REGNUM
964 && (! reload_completed || frame_pointer_needed))
965 #if !HARD_FRAME_POINTER_IS_FRAME_POINTER
966 || (regno == HARD_FRAME_POINTER_REGNUM
967 && (! reload_completed || frame_pointer_needed))
968 #endif
969 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
970 || (regno == ARG_POINTER_REGNUM && fixed_regs[regno])
971 #endif
972 )
973 continue;
974
975 use_insn = next_use[regno];
976 if (BLOCK_FOR_INSN (use_insn) == bb)
977 {
978 /* flow.c claimed:
979
980 We don't build a LOG_LINK for hard registers contained
981 in ASM_OPERANDs. If these registers get replaced,
982 we might wind up changing the semantics of the insn,
983 even if reload can make what appear to be valid
984 assignments later. */
985 if (regno >= FIRST_PSEUDO_REGISTER
986 || asm_noperands (PATTERN (use_insn)) < 0)
987 {
988 /* Don't add duplicate links between instructions. */
989 rtx links;
990 for (links = LOG_LINKS (use_insn); links;
991 links = XEXP (links, 1))
992 if (insn == XEXP (links, 0))
993 break;
994
995 if (!links)
996 LOG_LINKS (use_insn) =
997 alloc_INSN_LIST (insn, LOG_LINKS (use_insn));
998 }
999 }
1000 next_use[regno] = NULL_RTX;
1001 }
1002
1003 for (use_vec = DF_INSN_USES (insn); *use_vec; use_vec++)
1004 {
1005 df_ref use = *use_vec;
1006 int regno = DF_REF_REGNO (use);
1007
1008 /* Do not consider the usage of the stack pointer
1009 by function call. */
1010 if (DF_REF_FLAGS (use) & DF_REF_CALL_STACK_USAGE)
1011 continue;
1012
1013 next_use[regno] = insn;
1014 }
1015 }
1016 }
1017
1018 free (next_use);
1019 }
1020
1021 /* Clear LOG_LINKS fields of insns. */
1022
1023 static void
1024 clear_log_links (void)
1025 {
1026 rtx insn;
1027
1028 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
1029 if (INSN_P (insn))
1030 free_INSN_LIST_list (&LOG_LINKS (insn));
1031 }
1032
1033 /* Walk the LOG_LINKS of insn B to see if we find a reference to A. Return
1034 true if we found a LOG_LINK that proves that A feeds B. This only works
1035 if there are no instructions between A and B which could have a link
1036 depending on A, since in that case we would not record a link for B. */
1037
1038 static bool
1039 insn_a_feeds_b (rtx a, rtx b)
1040 {
1041 rtx links;
1042 for (links = LOG_LINKS (b); links; links = XEXP (links, 1))
1043 if (XEXP (links, 0) == a)
1044 return true;
1045 return false;
1046 }
1047 \f
1048 /* Main entry point for combiner. F is the first insn of the function.
1049 NREGS is the first unused pseudo-reg number.
1050
1051 Return nonzero if the combiner has turned an indirect jump
1052 instruction into a direct jump. */
1053 static int
1054 combine_instructions (rtx f, unsigned int nregs)
1055 {
1056 rtx insn, next;
1057 #ifdef HAVE_cc0
1058 rtx prev;
1059 #endif
1060 rtx links, nextlinks;
1061 rtx first;
1062 basic_block last_bb;
1063
1064 int new_direct_jump_p = 0;
1065
1066 for (first = f; first && !INSN_P (first); )
1067 first = NEXT_INSN (first);
1068 if (!first)
1069 return 0;
1070
1071 combine_attempts = 0;
1072 combine_merges = 0;
1073 combine_extras = 0;
1074 combine_successes = 0;
1075
1076 rtl_hooks = combine_rtl_hooks;
1077
1078 VEC_safe_grow_cleared (reg_stat_type, heap, reg_stat, nregs);
1079
1080 init_recog_no_volatile ();
1081
1082 /* Allocate array for insn info. */
1083 max_uid_known = get_max_uid ();
1084 uid_log_links = XCNEWVEC (rtx, max_uid_known + 1);
1085 uid_insn_cost = XCNEWVEC (int, max_uid_known + 1);
1086
1087 nonzero_bits_mode = mode_for_size (HOST_BITS_PER_WIDE_INT, MODE_INT, 0);
1088
1089 /* Don't use reg_stat[].nonzero_bits when computing it. This can cause
1090 problems when, for example, we have j <<= 1 in a loop. */
1091
1092 nonzero_sign_valid = 0;
1093 label_tick = label_tick_ebb_start = 1;
1094
1095 /* Scan all SETs and see if we can deduce anything about what
1096 bits are known to be zero for some registers and how many copies
1097 of the sign bit are known to exist for those registers.
1098
1099 Also set any known values so that we can use it while searching
1100 for what bits are known to be set. */
1101
1102 setup_incoming_promotions (first);
1103 /* Allow the entry block and the first block to fall into the same EBB.
1104 Conceptually the incoming promotions are assigned to the entry block. */
1105 last_bb = ENTRY_BLOCK_PTR;
1106
1107 create_log_links ();
1108 FOR_EACH_BB (this_basic_block)
1109 {
1110 optimize_this_for_speed_p = optimize_bb_for_speed_p (this_basic_block);
1111 last_call_luid = 0;
1112 mem_last_set = -1;
1113
1114 label_tick++;
1115 if (!single_pred_p (this_basic_block)
1116 || single_pred (this_basic_block) != last_bb)
1117 label_tick_ebb_start = label_tick;
1118 last_bb = this_basic_block;
1119
1120 FOR_BB_INSNS (this_basic_block, insn)
1121 if (INSN_P (insn) && BLOCK_FOR_INSN (insn))
1122 {
1123 subst_low_luid = DF_INSN_LUID (insn);
1124 subst_insn = insn;
1125
1126 note_stores (PATTERN (insn), set_nonzero_bits_and_sign_copies,
1127 insn);
1128 record_dead_and_set_regs (insn);
1129
1130 #ifdef AUTO_INC_DEC
1131 for (links = REG_NOTES (insn); links; links = XEXP (links, 1))
1132 if (REG_NOTE_KIND (links) == REG_INC)
1133 set_nonzero_bits_and_sign_copies (XEXP (links, 0), NULL_RTX,
1134 insn);
1135 #endif
1136
1137 /* Record the current insn_rtx_cost of this instruction. */
1138 if (NONJUMP_INSN_P (insn))
1139 INSN_COST (insn) = insn_rtx_cost (PATTERN (insn),
1140 optimize_this_for_speed_p);
1141 if (dump_file)
1142 fprintf(dump_file, "insn_cost %d: %d\n",
1143 INSN_UID (insn), INSN_COST (insn));
1144 }
1145 }
1146
1147 nonzero_sign_valid = 1;
1148
1149 /* Now scan all the insns in forward order. */
1150 label_tick = label_tick_ebb_start = 1;
1151 init_reg_last ();
1152 setup_incoming_promotions (first);
1153 last_bb = ENTRY_BLOCK_PTR;
1154
1155 FOR_EACH_BB (this_basic_block)
1156 {
1157 optimize_this_for_speed_p = optimize_bb_for_speed_p (this_basic_block);
1158 last_call_luid = 0;
1159 mem_last_set = -1;
1160
1161 label_tick++;
1162 if (!single_pred_p (this_basic_block)
1163 || single_pred (this_basic_block) != last_bb)
1164 label_tick_ebb_start = label_tick;
1165 last_bb = this_basic_block;
1166
1167 rtl_profile_for_bb (this_basic_block);
1168 for (insn = BB_HEAD (this_basic_block);
1169 insn != NEXT_INSN (BB_END (this_basic_block));
1170 insn = next ? next : NEXT_INSN (insn))
1171 {
1172 next = 0;
1173 if (NONDEBUG_INSN_P (insn))
1174 {
1175 /* See if we know about function return values before this
1176 insn based upon SUBREG flags. */
1177 check_promoted_subreg (insn, PATTERN (insn));
1178
1179 /* See if we can find hardregs and subreg of pseudos in
1180 narrower modes. This could help turning TRUNCATEs
1181 into SUBREGs. */
1182 note_uses (&PATTERN (insn), record_truncated_values, NULL);
1183
1184 /* Try this insn with each insn it links back to. */
1185
1186 for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
1187 if ((next = try_combine (insn, XEXP (links, 0), NULL_RTX,
1188 NULL_RTX, &new_direct_jump_p)) != 0)
1189 goto retry;
1190
1191 /* Try each sequence of three linked insns ending with this one. */
1192
1193 for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
1194 {
1195 rtx link = XEXP (links, 0);
1196
1197 /* If the linked insn has been replaced by a note, then there
1198 is no point in pursuing this chain any further. */
1199 if (NOTE_P (link))
1200 continue;
1201
1202 for (nextlinks = LOG_LINKS (link);
1203 nextlinks;
1204 nextlinks = XEXP (nextlinks, 1))
1205 if ((next = try_combine (insn, link, XEXP (nextlinks, 0),
1206 NULL_RTX,
1207 &new_direct_jump_p)) != 0)
1208 goto retry;
1209 }
1210
1211 #ifdef HAVE_cc0
1212 /* Try to combine a jump insn that uses CC0
1213 with a preceding insn that sets CC0, and maybe with its
1214 logical predecessor as well.
1215 This is how we make decrement-and-branch insns.
1216 We need this special code because data flow connections
1217 via CC0 do not get entered in LOG_LINKS. */
1218
1219 if (JUMP_P (insn)
1220 && (prev = prev_nonnote_insn (insn)) != 0
1221 && NONJUMP_INSN_P (prev)
1222 && sets_cc0_p (PATTERN (prev)))
1223 {
1224 if ((next = try_combine (insn, prev, NULL_RTX, NULL_RTX,
1225 &new_direct_jump_p)) != 0)
1226 goto retry;
1227
1228 for (nextlinks = LOG_LINKS (prev); nextlinks;
1229 nextlinks = XEXP (nextlinks, 1))
1230 if ((next = try_combine (insn, prev, XEXP (nextlinks, 0),
1231 NULL_RTX,
1232 &new_direct_jump_p)) != 0)
1233 goto retry;
1234 }
1235
1236 /* Do the same for an insn that explicitly references CC0. */
1237 if (NONJUMP_INSN_P (insn)
1238 && (prev = prev_nonnote_insn (insn)) != 0
1239 && NONJUMP_INSN_P (prev)
1240 && sets_cc0_p (PATTERN (prev))
1241 && GET_CODE (PATTERN (insn)) == SET
1242 && reg_mentioned_p (cc0_rtx, SET_SRC (PATTERN (insn))))
1243 {
1244 if ((next = try_combine (insn, prev, NULL_RTX, NULL_RTX,
1245 &new_direct_jump_p)) != 0)
1246 goto retry;
1247
1248 for (nextlinks = LOG_LINKS (prev); nextlinks;
1249 nextlinks = XEXP (nextlinks, 1))
1250 if ((next = try_combine (insn, prev, XEXP (nextlinks, 0),
1251 NULL_RTX,
1252 &new_direct_jump_p)) != 0)
1253 goto retry;
1254 }
1255
1256 /* Finally, see if any of the insns that this insn links to
1257 explicitly references CC0. If so, try this insn, that insn,
1258 and its predecessor if it sets CC0. */
1259 for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
1260 if (NONJUMP_INSN_P (XEXP (links, 0))
1261 && GET_CODE (PATTERN (XEXP (links, 0))) == SET
1262 && reg_mentioned_p (cc0_rtx, SET_SRC (PATTERN (XEXP (links, 0))))
1263 && (prev = prev_nonnote_insn (XEXP (links, 0))) != 0
1264 && NONJUMP_INSN_P (prev)
1265 && sets_cc0_p (PATTERN (prev))
1266 && (next = try_combine (insn, XEXP (links, 0),
1267 prev, NULL_RTX,
1268 &new_direct_jump_p)) != 0)
1269 goto retry;
1270 #endif
1271
1272 /* Try combining an insn with two different insns whose results it
1273 uses. */
1274 for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
1275 for (nextlinks = XEXP (links, 1); nextlinks;
1276 nextlinks = XEXP (nextlinks, 1))
1277 if ((next = try_combine (insn, XEXP (links, 0),
1278 XEXP (nextlinks, 0), NULL_RTX,
1279 &new_direct_jump_p)) != 0)
1280 goto retry;
1281
1282 /* Try four-instruction combinations. */
1283 for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
1284 {
1285 rtx next1;
1286 rtx link = XEXP (links, 0);
1287
1288 /* If the linked insn has been replaced by a note, then there
1289 is no point in pursuing this chain any further. */
1290 if (NOTE_P (link))
1291 continue;
1292
1293 for (next1 = LOG_LINKS (link); next1; next1 = XEXP (next1, 1))
1294 {
1295 rtx link1 = XEXP (next1, 0);
1296 if (NOTE_P (link1))
1297 continue;
1298 /* I0 -> I1 -> I2 -> I3. */
1299 for (nextlinks = LOG_LINKS (link1); nextlinks;
1300 nextlinks = XEXP (nextlinks, 1))
1301 if ((next = try_combine (insn, link, link1,
1302 XEXP (nextlinks, 0),
1303 &new_direct_jump_p)) != 0)
1304 goto retry;
1305 /* I0, I1 -> I2, I2 -> I3. */
1306 for (nextlinks = XEXP (next1, 1); nextlinks;
1307 nextlinks = XEXP (nextlinks, 1))
1308 if ((next = try_combine (insn, link, link1,
1309 XEXP (nextlinks, 0),
1310 &new_direct_jump_p)) != 0)
1311 goto retry;
1312 }
1313
1314 for (next1 = XEXP (links, 1); next1; next1 = XEXP (next1, 1))
1315 {
1316 rtx link1 = XEXP (next1, 0);
1317 if (NOTE_P (link1))
1318 continue;
1319 /* I0 -> I2; I1, I2 -> I3. */
1320 for (nextlinks = LOG_LINKS (link); nextlinks;
1321 nextlinks = XEXP (nextlinks, 1))
1322 if ((next = try_combine (insn, link, link1,
1323 XEXP (nextlinks, 0),
1324 &new_direct_jump_p)) != 0)
1325 goto retry;
1326 /* I0 -> I1; I1, I2 -> I3. */
1327 for (nextlinks = LOG_LINKS (link1); nextlinks;
1328 nextlinks = XEXP (nextlinks, 1))
1329 if ((next = try_combine (insn, link, link1,
1330 XEXP (nextlinks, 0),
1331 &new_direct_jump_p)) != 0)
1332 goto retry;
1333 }
1334 }
1335
1336 /* Try this insn with each REG_EQUAL note it links back to. */
1337 for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
1338 {
1339 rtx set, note;
1340 rtx temp = XEXP (links, 0);
1341 if ((set = single_set (temp)) != 0
1342 && (note = find_reg_equal_equiv_note (temp)) != 0
1343 && (note = XEXP (note, 0), GET_CODE (note)) != EXPR_LIST
1344 /* Avoid using a register that may already been marked
1345 dead by an earlier instruction. */
1346 && ! unmentioned_reg_p (note, SET_SRC (set))
1347 && (GET_MODE (note) == VOIDmode
1348 ? SCALAR_INT_MODE_P (GET_MODE (SET_DEST (set)))
1349 : GET_MODE (SET_DEST (set)) == GET_MODE (note)))
1350 {
1351 /* Temporarily replace the set's source with the
1352 contents of the REG_EQUAL note. The insn will
1353 be deleted or recognized by try_combine. */
1354 rtx orig = SET_SRC (set);
1355 SET_SRC (set) = note;
1356 i2mod = temp;
1357 i2mod_old_rhs = copy_rtx (orig);
1358 i2mod_new_rhs = copy_rtx (note);
1359 next = try_combine (insn, i2mod, NULL_RTX, NULL_RTX,
1360 &new_direct_jump_p);
1361 i2mod = NULL_RTX;
1362 if (next)
1363 goto retry;
1364 SET_SRC (set) = orig;
1365 }
1366 }
1367
1368 if (!NOTE_P (insn))
1369 record_dead_and_set_regs (insn);
1370
1371 retry:
1372 ;
1373 }
1374 }
1375 }
1376
1377 default_rtl_profile ();
1378 clear_log_links ();
1379 clear_bb_flags ();
1380 new_direct_jump_p |= purge_all_dead_edges ();
1381 delete_noop_moves ();
1382
1383 /* Clean up. */
1384 free (uid_log_links);
1385 free (uid_insn_cost);
1386 VEC_free (reg_stat_type, heap, reg_stat);
1387
1388 {
1389 struct undo *undo, *next;
1390 for (undo = undobuf.frees; undo; undo = next)
1391 {
1392 next = undo->next;
1393 free (undo);
1394 }
1395 undobuf.frees = 0;
1396 }
1397
1398 total_attempts += combine_attempts;
1399 total_merges += combine_merges;
1400 total_extras += combine_extras;
1401 total_successes += combine_successes;
1402
1403 nonzero_sign_valid = 0;
1404 rtl_hooks = general_rtl_hooks;
1405
1406 /* Make recognizer allow volatile MEMs again. */
1407 init_recog ();
1408
1409 return new_direct_jump_p;
1410 }
1411
1412 /* Wipe the last_xxx fields of reg_stat in preparation for another pass. */
1413
1414 static void
1415 init_reg_last (void)
1416 {
1417 unsigned int i;
1418 reg_stat_type *p;
1419
1420 FOR_EACH_VEC_ELT (reg_stat_type, reg_stat, i, p)
1421 memset (p, 0, offsetof (reg_stat_type, sign_bit_copies));
1422 }
1423 \f
1424 /* Set up any promoted values for incoming argument registers. */
1425
1426 static void
1427 setup_incoming_promotions (rtx first)
1428 {
1429 tree arg;
1430 bool strictly_local = false;
1431
1432 for (arg = DECL_ARGUMENTS (current_function_decl); arg;
1433 arg = DECL_CHAIN (arg))
1434 {
1435 rtx x, reg = DECL_INCOMING_RTL (arg);
1436 int uns1, uns3;
1437 enum machine_mode mode1, mode2, mode3, mode4;
1438
1439 /* Only continue if the incoming argument is in a register. */
1440 if (!REG_P (reg))
1441 continue;
1442
1443 /* Determine, if possible, whether all call sites of the current
1444 function lie within the current compilation unit. (This does
1445 take into account the exporting of a function via taking its
1446 address, and so forth.) */
1447 strictly_local = cgraph_local_info (current_function_decl)->local;
1448
1449 /* The mode and signedness of the argument before any promotions happen
1450 (equal to the mode of the pseudo holding it at that stage). */
1451 mode1 = TYPE_MODE (TREE_TYPE (arg));
1452 uns1 = TYPE_UNSIGNED (TREE_TYPE (arg));
1453
1454 /* The mode and signedness of the argument after any source language and
1455 TARGET_PROMOTE_PROTOTYPES-driven promotions. */
1456 mode2 = TYPE_MODE (DECL_ARG_TYPE (arg));
1457 uns3 = TYPE_UNSIGNED (DECL_ARG_TYPE (arg));
1458
1459 /* The mode and signedness of the argument as it is actually passed,
1460 after any TARGET_PROMOTE_FUNCTION_ARGS-driven ABI promotions. */
1461 mode3 = promote_function_mode (DECL_ARG_TYPE (arg), mode2, &uns3,
1462 TREE_TYPE (cfun->decl), 0);
1463
1464 /* The mode of the register in which the argument is being passed. */
1465 mode4 = GET_MODE (reg);
1466
1467 /* Eliminate sign extensions in the callee when:
1468 (a) A mode promotion has occurred; */
1469 if (mode1 == mode3)
1470 continue;
1471 /* (b) The mode of the register is the same as the mode of
1472 the argument as it is passed; */
1473 if (mode3 != mode4)
1474 continue;
1475 /* (c) There's no language level extension; */
1476 if (mode1 == mode2)
1477 ;
1478 /* (c.1) All callers are from the current compilation unit. If that's
1479 the case we don't have to rely on an ABI, we only have to know
1480 what we're generating right now, and we know that we will do the
1481 mode1 to mode2 promotion with the given sign. */
1482 else if (!strictly_local)
1483 continue;
1484 /* (c.2) The combination of the two promotions is useful. This is
1485 true when the signs match, or if the first promotion is unsigned.
1486 In the later case, (sign_extend (zero_extend x)) is the same as
1487 (zero_extend (zero_extend x)), so make sure to force UNS3 true. */
1488 else if (uns1)
1489 uns3 = true;
1490 else if (uns3)
1491 continue;
1492
1493 /* Record that the value was promoted from mode1 to mode3,
1494 so that any sign extension at the head of the current
1495 function may be eliminated. */
1496 x = gen_rtx_CLOBBER (mode1, const0_rtx);
1497 x = gen_rtx_fmt_e ((uns3 ? ZERO_EXTEND : SIGN_EXTEND), mode3, x);
1498 record_value_for_reg (reg, first, x);
1499 }
1500 }
1501
1502 /* Called via note_stores. If X is a pseudo that is narrower than
1503 HOST_BITS_PER_WIDE_INT and is being set, record what bits are known zero.
1504
1505 If we are setting only a portion of X and we can't figure out what
1506 portion, assume all bits will be used since we don't know what will
1507 be happening.
1508
1509 Similarly, set how many bits of X are known to be copies of the sign bit
1510 at all locations in the function. This is the smallest number implied
1511 by any set of X. */
1512
1513 static void
1514 set_nonzero_bits_and_sign_copies (rtx x, const_rtx set, void *data)
1515 {
1516 rtx insn = (rtx) data;
1517 unsigned int num;
1518
1519 if (REG_P (x)
1520 && REGNO (x) >= FIRST_PSEUDO_REGISTER
1521 /* If this register is undefined at the start of the file, we can't
1522 say what its contents were. */
1523 && ! REGNO_REG_SET_P
1524 (DF_LR_IN (ENTRY_BLOCK_PTR->next_bb), REGNO (x))
1525 && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT)
1526 {
1527 reg_stat_type *rsp = VEC_index (reg_stat_type, reg_stat, REGNO (x));
1528
1529 if (set == 0 || GET_CODE (set) == CLOBBER)
1530 {
1531 rsp->nonzero_bits = GET_MODE_MASK (GET_MODE (x));
1532 rsp->sign_bit_copies = 1;
1533 return;
1534 }
1535
1536 /* If this register is being initialized using itself, and the
1537 register is uninitialized in this basic block, and there are
1538 no LOG_LINKS which set the register, then part of the
1539 register is uninitialized. In that case we can't assume
1540 anything about the number of nonzero bits.
1541
1542 ??? We could do better if we checked this in
1543 reg_{nonzero_bits,num_sign_bit_copies}_for_combine. Then we
1544 could avoid making assumptions about the insn which initially
1545 sets the register, while still using the information in other
1546 insns. We would have to be careful to check every insn
1547 involved in the combination. */
1548
1549 if (insn
1550 && reg_referenced_p (x, PATTERN (insn))
1551 && !REGNO_REG_SET_P (DF_LR_IN (BLOCK_FOR_INSN (insn)),
1552 REGNO (x)))
1553 {
1554 rtx link;
1555
1556 for (link = LOG_LINKS (insn); link; link = XEXP (link, 1))
1557 {
1558 if (dead_or_set_p (XEXP (link, 0), x))
1559 break;
1560 }
1561 if (!link)
1562 {
1563 rsp->nonzero_bits = GET_MODE_MASK (GET_MODE (x));
1564 rsp->sign_bit_copies = 1;
1565 return;
1566 }
1567 }
1568
1569 /* If this is a complex assignment, see if we can convert it into a
1570 simple assignment. */
1571 set = expand_field_assignment (set);
1572
1573 /* If this is a simple assignment, or we have a paradoxical SUBREG,
1574 set what we know about X. */
1575
1576 if (SET_DEST (set) == x
1577 || (GET_CODE (SET_DEST (set)) == SUBREG
1578 && (GET_MODE_SIZE (GET_MODE (SET_DEST (set)))
1579 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (set)))))
1580 && SUBREG_REG (SET_DEST (set)) == x))
1581 {
1582 rtx src = SET_SRC (set);
1583
1584 #ifdef SHORT_IMMEDIATES_SIGN_EXTEND
1585 /* If X is narrower than a word and SRC is a non-negative
1586 constant that would appear negative in the mode of X,
1587 sign-extend it for use in reg_stat[].nonzero_bits because some
1588 machines (maybe most) will actually do the sign-extension
1589 and this is the conservative approach.
1590
1591 ??? For 2.5, try to tighten up the MD files in this regard
1592 instead of this kludge. */
1593
1594 if (GET_MODE_BITSIZE (GET_MODE (x)) < BITS_PER_WORD
1595 && CONST_INT_P (src)
1596 && INTVAL (src) > 0
1597 && 0 != (UINTVAL (src)
1598 & ((unsigned HOST_WIDE_INT) 1
1599 << (GET_MODE_BITSIZE (GET_MODE (x)) - 1))))
1600 src = GEN_INT (UINTVAL (src)
1601 | ((unsigned HOST_WIDE_INT) (-1)
1602 << GET_MODE_BITSIZE (GET_MODE (x))));
1603 #endif
1604
1605 /* Don't call nonzero_bits if it cannot change anything. */
1606 if (rsp->nonzero_bits != ~(unsigned HOST_WIDE_INT) 0)
1607 rsp->nonzero_bits |= nonzero_bits (src, nonzero_bits_mode);
1608 num = num_sign_bit_copies (SET_SRC (set), GET_MODE (x));
1609 if (rsp->sign_bit_copies == 0
1610 || rsp->sign_bit_copies > num)
1611 rsp->sign_bit_copies = num;
1612 }
1613 else
1614 {
1615 rsp->nonzero_bits = GET_MODE_MASK (GET_MODE (x));
1616 rsp->sign_bit_copies = 1;
1617 }
1618 }
1619 }
1620 \f
1621 /* See if INSN can be combined into I3. PRED, PRED2, SUCC and SUCC2 are
1622 optionally insns that were previously combined into I3 or that will be
1623 combined into the merger of INSN and I3. The order is PRED, PRED2,
1624 INSN, SUCC, SUCC2, I3.
1625
1626 Return 0 if the combination is not allowed for any reason.
1627
1628 If the combination is allowed, *PDEST will be set to the single
1629 destination of INSN and *PSRC to the single source, and this function
1630 will return 1. */
1631
1632 static int
1633 can_combine_p (rtx insn, rtx i3, rtx pred ATTRIBUTE_UNUSED,
1634 rtx pred2 ATTRIBUTE_UNUSED, rtx succ, rtx succ2,
1635 rtx *pdest, rtx *psrc)
1636 {
1637 int i;
1638 const_rtx set = 0;
1639 rtx src, dest;
1640 rtx p;
1641 #ifdef AUTO_INC_DEC
1642 rtx link;
1643 #endif
1644 bool all_adjacent = true;
1645
1646 if (succ)
1647 {
1648 if (succ2)
1649 {
1650 if (next_active_insn (succ2) != i3)
1651 all_adjacent = false;
1652 if (next_active_insn (succ) != succ2)
1653 all_adjacent = false;
1654 }
1655 else if (next_active_insn (succ) != i3)
1656 all_adjacent = false;
1657 if (next_active_insn (insn) != succ)
1658 all_adjacent = false;
1659 }
1660 else if (next_active_insn (insn) != i3)
1661 all_adjacent = false;
1662
1663 /* Can combine only if previous insn is a SET of a REG, a SUBREG or CC0.
1664 or a PARALLEL consisting of such a SET and CLOBBERs.
1665
1666 If INSN has CLOBBER parallel parts, ignore them for our processing.
1667 By definition, these happen during the execution of the insn. When it
1668 is merged with another insn, all bets are off. If they are, in fact,
1669 needed and aren't also supplied in I3, they may be added by
1670 recog_for_combine. Otherwise, it won't match.
1671
1672 We can also ignore a SET whose SET_DEST is mentioned in a REG_UNUSED
1673 note.
1674
1675 Get the source and destination of INSN. If more than one, can't
1676 combine. */
1677
1678 if (GET_CODE (PATTERN (insn)) == SET)
1679 set = PATTERN (insn);
1680 else if (GET_CODE (PATTERN (insn)) == PARALLEL
1681 && GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == SET)
1682 {
1683 for (i = 0; i < XVECLEN (PATTERN (insn), 0); i++)
1684 {
1685 rtx elt = XVECEXP (PATTERN (insn), 0, i);
1686
1687 switch (GET_CODE (elt))
1688 {
1689 /* This is important to combine floating point insns
1690 for the SH4 port. */
1691 case USE:
1692 /* Combining an isolated USE doesn't make sense.
1693 We depend here on combinable_i3pat to reject them. */
1694 /* The code below this loop only verifies that the inputs of
1695 the SET in INSN do not change. We call reg_set_between_p
1696 to verify that the REG in the USE does not change between
1697 I3 and INSN.
1698 If the USE in INSN was for a pseudo register, the matching
1699 insn pattern will likely match any register; combining this
1700 with any other USE would only be safe if we knew that the
1701 used registers have identical values, or if there was
1702 something to tell them apart, e.g. different modes. For
1703 now, we forgo such complicated tests and simply disallow
1704 combining of USES of pseudo registers with any other USE. */
1705 if (REG_P (XEXP (elt, 0))
1706 && GET_CODE (PATTERN (i3)) == PARALLEL)
1707 {
1708 rtx i3pat = PATTERN (i3);
1709 int i = XVECLEN (i3pat, 0) - 1;
1710 unsigned int regno = REGNO (XEXP (elt, 0));
1711
1712 do
1713 {
1714 rtx i3elt = XVECEXP (i3pat, 0, i);
1715
1716 if (GET_CODE (i3elt) == USE
1717 && REG_P (XEXP (i3elt, 0))
1718 && (REGNO (XEXP (i3elt, 0)) == regno
1719 ? reg_set_between_p (XEXP (elt, 0),
1720 PREV_INSN (insn), i3)
1721 : regno >= FIRST_PSEUDO_REGISTER))
1722 return 0;
1723 }
1724 while (--i >= 0);
1725 }
1726 break;
1727
1728 /* We can ignore CLOBBERs. */
1729 case CLOBBER:
1730 break;
1731
1732 case SET:
1733 /* Ignore SETs whose result isn't used but not those that
1734 have side-effects. */
1735 if (find_reg_note (insn, REG_UNUSED, SET_DEST (elt))
1736 && insn_nothrow_p (insn)
1737 && !side_effects_p (elt))
1738 break;
1739
1740 /* If we have already found a SET, this is a second one and
1741 so we cannot combine with this insn. */
1742 if (set)
1743 return 0;
1744
1745 set = elt;
1746 break;
1747
1748 default:
1749 /* Anything else means we can't combine. */
1750 return 0;
1751 }
1752 }
1753
1754 if (set == 0
1755 /* If SET_SRC is an ASM_OPERANDS we can't throw away these CLOBBERs,
1756 so don't do anything with it. */
1757 || GET_CODE (SET_SRC (set)) == ASM_OPERANDS)
1758 return 0;
1759 }
1760 else
1761 return 0;
1762
1763 if (set == 0)
1764 return 0;
1765
1766 set = expand_field_assignment (set);
1767 src = SET_SRC (set), dest = SET_DEST (set);
1768
1769 /* Don't eliminate a store in the stack pointer. */
1770 if (dest == stack_pointer_rtx
1771 /* Don't combine with an insn that sets a register to itself if it has
1772 a REG_EQUAL note. This may be part of a LIBCALL sequence. */
1773 || (rtx_equal_p (src, dest) && find_reg_note (insn, REG_EQUAL, NULL_RTX))
1774 /* Can't merge an ASM_OPERANDS. */
1775 || GET_CODE (src) == ASM_OPERANDS
1776 /* Can't merge a function call. */
1777 || GET_CODE (src) == CALL
1778 /* Don't eliminate a function call argument. */
1779 || (CALL_P (i3)
1780 && (find_reg_fusage (i3, USE, dest)
1781 || (REG_P (dest)
1782 && REGNO (dest) < FIRST_PSEUDO_REGISTER
1783 && global_regs[REGNO (dest)])))
1784 /* Don't substitute into an incremented register. */
1785 || FIND_REG_INC_NOTE (i3, dest)
1786 || (succ && FIND_REG_INC_NOTE (succ, dest))
1787 || (succ2 && FIND_REG_INC_NOTE (succ2, dest))
1788 /* Don't substitute into a non-local goto, this confuses CFG. */
1789 || (JUMP_P (i3) && find_reg_note (i3, REG_NON_LOCAL_GOTO, NULL_RTX))
1790 /* Make sure that DEST is not used after SUCC but before I3. */
1791 || (!all_adjacent
1792 && ((succ2
1793 && (reg_used_between_p (dest, succ2, i3)
1794 || reg_used_between_p (dest, succ, succ2)))
1795 || (!succ2 && succ && reg_used_between_p (dest, succ, i3))))
1796 /* Make sure that the value that is to be substituted for the register
1797 does not use any registers whose values alter in between. However,
1798 If the insns are adjacent, a use can't cross a set even though we
1799 think it might (this can happen for a sequence of insns each setting
1800 the same destination; last_set of that register might point to
1801 a NOTE). If INSN has a REG_EQUIV note, the register is always
1802 equivalent to the memory so the substitution is valid even if there
1803 are intervening stores. Also, don't move a volatile asm or
1804 UNSPEC_VOLATILE across any other insns. */
1805 || (! all_adjacent
1806 && (((!MEM_P (src)
1807 || ! find_reg_note (insn, REG_EQUIV, src))
1808 && use_crosses_set_p (src, DF_INSN_LUID (insn)))
1809 || (GET_CODE (src) == ASM_OPERANDS && MEM_VOLATILE_P (src))
1810 || GET_CODE (src) == UNSPEC_VOLATILE))
1811 /* Don't combine across a CALL_INSN, because that would possibly
1812 change whether the life span of some REGs crosses calls or not,
1813 and it is a pain to update that information.
1814 Exception: if source is a constant, moving it later can't hurt.
1815 Accept that as a special case. */
1816 || (DF_INSN_LUID (insn) < last_call_luid && ! CONSTANT_P (src)))
1817 return 0;
1818
1819 /* DEST must either be a REG or CC0. */
1820 if (REG_P (dest))
1821 {
1822 /* If register alignment is being enforced for multi-word items in all
1823 cases except for parameters, it is possible to have a register copy
1824 insn referencing a hard register that is not allowed to contain the
1825 mode being copied and which would not be valid as an operand of most
1826 insns. Eliminate this problem by not combining with such an insn.
1827
1828 Also, on some machines we don't want to extend the life of a hard
1829 register. */
1830
1831 if (REG_P (src)
1832 && ((REGNO (dest) < FIRST_PSEUDO_REGISTER
1833 && ! HARD_REGNO_MODE_OK (REGNO (dest), GET_MODE (dest)))
1834 /* Don't extend the life of a hard register unless it is
1835 user variable (if we have few registers) or it can't
1836 fit into the desired register (meaning something special
1837 is going on).
1838 Also avoid substituting a return register into I3, because
1839 reload can't handle a conflict with constraints of other
1840 inputs. */
1841 || (REGNO (src) < FIRST_PSEUDO_REGISTER
1842 && ! HARD_REGNO_MODE_OK (REGNO (src), GET_MODE (src)))))
1843 return 0;
1844 }
1845 else if (GET_CODE (dest) != CC0)
1846 return 0;
1847
1848
1849 if (GET_CODE (PATTERN (i3)) == PARALLEL)
1850 for (i = XVECLEN (PATTERN (i3), 0) - 1; i >= 0; i--)
1851 if (GET_CODE (XVECEXP (PATTERN (i3), 0, i)) == CLOBBER)
1852 {
1853 /* Don't substitute for a register intended as a clobberable
1854 operand. */
1855 rtx reg = XEXP (XVECEXP (PATTERN (i3), 0, i), 0);
1856 if (rtx_equal_p (reg, dest))
1857 return 0;
1858
1859 /* If the clobber represents an earlyclobber operand, we must not
1860 substitute an expression containing the clobbered register.
1861 As we do not analyze the constraint strings here, we have to
1862 make the conservative assumption. However, if the register is
1863 a fixed hard reg, the clobber cannot represent any operand;
1864 we leave it up to the machine description to either accept or
1865 reject use-and-clobber patterns. */
1866 if (!REG_P (reg)
1867 || REGNO (reg) >= FIRST_PSEUDO_REGISTER
1868 || !fixed_regs[REGNO (reg)])
1869 if (reg_overlap_mentioned_p (reg, src))
1870 return 0;
1871 }
1872
1873 /* If INSN contains anything volatile, or is an `asm' (whether volatile
1874 or not), reject, unless nothing volatile comes between it and I3 */
1875
1876 if (GET_CODE (src) == ASM_OPERANDS || volatile_refs_p (src))
1877 {
1878 /* Make sure neither succ nor succ2 contains a volatile reference. */
1879 if (succ2 != 0 && volatile_refs_p (PATTERN (succ2)))
1880 return 0;
1881 if (succ != 0 && volatile_refs_p (PATTERN (succ)))
1882 return 0;
1883 /* We'll check insns between INSN and I3 below. */
1884 }
1885
1886 /* If INSN is an asm, and DEST is a hard register, reject, since it has
1887 to be an explicit register variable, and was chosen for a reason. */
1888
1889 if (GET_CODE (src) == ASM_OPERANDS
1890 && REG_P (dest) && REGNO (dest) < FIRST_PSEUDO_REGISTER)
1891 return 0;
1892
1893 /* If there are any volatile insns between INSN and I3, reject, because
1894 they might affect machine state. */
1895
1896 for (p = NEXT_INSN (insn); p != i3; p = NEXT_INSN (p))
1897 if (INSN_P (p) && p != succ && p != succ2 && volatile_insn_p (PATTERN (p)))
1898 return 0;
1899
1900 /* If INSN contains an autoincrement or autodecrement, make sure that
1901 register is not used between there and I3, and not already used in
1902 I3 either. Neither must it be used in PRED or SUCC, if they exist.
1903 Also insist that I3 not be a jump; if it were one
1904 and the incremented register were spilled, we would lose. */
1905
1906 #ifdef AUTO_INC_DEC
1907 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1908 if (REG_NOTE_KIND (link) == REG_INC
1909 && (JUMP_P (i3)
1910 || reg_used_between_p (XEXP (link, 0), insn, i3)
1911 || (pred != NULL_RTX
1912 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (pred)))
1913 || (pred2 != NULL_RTX
1914 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (pred2)))
1915 || (succ != NULL_RTX
1916 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (succ)))
1917 || (succ2 != NULL_RTX
1918 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (succ2)))
1919 || reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i3))))
1920 return 0;
1921 #endif
1922
1923 #ifdef HAVE_cc0
1924 /* Don't combine an insn that follows a CC0-setting insn.
1925 An insn that uses CC0 must not be separated from the one that sets it.
1926 We do, however, allow I2 to follow a CC0-setting insn if that insn
1927 is passed as I1; in that case it will be deleted also.
1928 We also allow combining in this case if all the insns are adjacent
1929 because that would leave the two CC0 insns adjacent as well.
1930 It would be more logical to test whether CC0 occurs inside I1 or I2,
1931 but that would be much slower, and this ought to be equivalent. */
1932
1933 p = prev_nonnote_insn (insn);
1934 if (p && p != pred && NONJUMP_INSN_P (p) && sets_cc0_p (PATTERN (p))
1935 && ! all_adjacent)
1936 return 0;
1937 #endif
1938
1939 /* If we get here, we have passed all the tests and the combination is
1940 to be allowed. */
1941
1942 *pdest = dest;
1943 *psrc = src;
1944
1945 return 1;
1946 }
1947 \f
1948 /* LOC is the location within I3 that contains its pattern or the component
1949 of a PARALLEL of the pattern. We validate that it is valid for combining.
1950
1951 One problem is if I3 modifies its output, as opposed to replacing it
1952 entirely, we can't allow the output to contain I2DEST, I1DEST or I0DEST as
1953 doing so would produce an insn that is not equivalent to the original insns.
1954
1955 Consider:
1956
1957 (set (reg:DI 101) (reg:DI 100))
1958 (set (subreg:SI (reg:DI 101) 0) <foo>)
1959
1960 This is NOT equivalent to:
1961
1962 (parallel [(set (subreg:SI (reg:DI 100) 0) <foo>)
1963 (set (reg:DI 101) (reg:DI 100))])
1964
1965 Not only does this modify 100 (in which case it might still be valid
1966 if 100 were dead in I2), it sets 101 to the ORIGINAL value of 100.
1967
1968 We can also run into a problem if I2 sets a register that I1
1969 uses and I1 gets directly substituted into I3 (not via I2). In that
1970 case, we would be getting the wrong value of I2DEST into I3, so we
1971 must reject the combination. This case occurs when I2 and I1 both
1972 feed into I3, rather than when I1 feeds into I2, which feeds into I3.
1973 If I1_NOT_IN_SRC is nonzero, it means that finding I1 in the source
1974 of a SET must prevent combination from occurring. The same situation
1975 can occur for I0, in which case I0_NOT_IN_SRC is set.
1976
1977 Before doing the above check, we first try to expand a field assignment
1978 into a set of logical operations.
1979
1980 If PI3_DEST_KILLED is nonzero, it is a pointer to a location in which
1981 we place a register that is both set and used within I3. If more than one
1982 such register is detected, we fail.
1983
1984 Return 1 if the combination is valid, zero otherwise. */
1985
1986 static int
1987 combinable_i3pat (rtx i3, rtx *loc, rtx i2dest, rtx i1dest, rtx i0dest,
1988 int i1_not_in_src, int i0_not_in_src, rtx *pi3dest_killed)
1989 {
1990 rtx x = *loc;
1991
1992 if (GET_CODE (x) == SET)
1993 {
1994 rtx set = x ;
1995 rtx dest = SET_DEST (set);
1996 rtx src = SET_SRC (set);
1997 rtx inner_dest = dest;
1998 rtx subdest;
1999
2000 while (GET_CODE (inner_dest) == STRICT_LOW_PART
2001 || GET_CODE (inner_dest) == SUBREG
2002 || GET_CODE (inner_dest) == ZERO_EXTRACT)
2003 inner_dest = XEXP (inner_dest, 0);
2004
2005 /* Check for the case where I3 modifies its output, as discussed
2006 above. We don't want to prevent pseudos from being combined
2007 into the address of a MEM, so only prevent the combination if
2008 i1 or i2 set the same MEM. */
2009 if ((inner_dest != dest &&
2010 (!MEM_P (inner_dest)
2011 || rtx_equal_p (i2dest, inner_dest)
2012 || (i1dest && rtx_equal_p (i1dest, inner_dest))
2013 || (i0dest && rtx_equal_p (i0dest, inner_dest)))
2014 && (reg_overlap_mentioned_p (i2dest, inner_dest)
2015 || (i1dest && reg_overlap_mentioned_p (i1dest, inner_dest))
2016 || (i0dest && reg_overlap_mentioned_p (i0dest, inner_dest))))
2017
2018 /* This is the same test done in can_combine_p except we can't test
2019 all_adjacent; we don't have to, since this instruction will stay
2020 in place, thus we are not considering increasing the lifetime of
2021 INNER_DEST.
2022
2023 Also, if this insn sets a function argument, combining it with
2024 something that might need a spill could clobber a previous
2025 function argument; the all_adjacent test in can_combine_p also
2026 checks this; here, we do a more specific test for this case. */
2027
2028 || (REG_P (inner_dest)
2029 && REGNO (inner_dest) < FIRST_PSEUDO_REGISTER
2030 && (! HARD_REGNO_MODE_OK (REGNO (inner_dest),
2031 GET_MODE (inner_dest))))
2032 || (i1_not_in_src && reg_overlap_mentioned_p (i1dest, src))
2033 || (i0_not_in_src && reg_overlap_mentioned_p (i0dest, src)))
2034 return 0;
2035
2036 /* If DEST is used in I3, it is being killed in this insn, so
2037 record that for later. We have to consider paradoxical
2038 subregs here, since they kill the whole register, but we
2039 ignore partial subregs, STRICT_LOW_PART, etc.
2040 Never add REG_DEAD notes for the FRAME_POINTER_REGNUM or the
2041 STACK_POINTER_REGNUM, since these are always considered to be
2042 live. Similarly for ARG_POINTER_REGNUM if it is fixed. */
2043 subdest = dest;
2044 if (GET_CODE (subdest) == SUBREG
2045 && (GET_MODE_SIZE (GET_MODE (subdest))
2046 >= GET_MODE_SIZE (GET_MODE (SUBREG_REG (subdest)))))
2047 subdest = SUBREG_REG (subdest);
2048 if (pi3dest_killed
2049 && REG_P (subdest)
2050 && reg_referenced_p (subdest, PATTERN (i3))
2051 && REGNO (subdest) != FRAME_POINTER_REGNUM
2052 #if !HARD_FRAME_POINTER_IS_FRAME_POINTER
2053 && REGNO (subdest) != HARD_FRAME_POINTER_REGNUM
2054 #endif
2055 #if ARG_POINTER_REGNUM != FRAME_POINTER_REGNUM
2056 && (REGNO (subdest) != ARG_POINTER_REGNUM
2057 || ! fixed_regs [REGNO (subdest)])
2058 #endif
2059 && REGNO (subdest) != STACK_POINTER_REGNUM)
2060 {
2061 if (*pi3dest_killed)
2062 return 0;
2063
2064 *pi3dest_killed = subdest;
2065 }
2066 }
2067
2068 else if (GET_CODE (x) == PARALLEL)
2069 {
2070 int i;
2071
2072 for (i = 0; i < XVECLEN (x, 0); i++)
2073 if (! combinable_i3pat (i3, &XVECEXP (x, 0, i), i2dest, i1dest, i0dest,
2074 i1_not_in_src, i0_not_in_src, pi3dest_killed))
2075 return 0;
2076 }
2077
2078 return 1;
2079 }
2080 \f
2081 /* Return 1 if X is an arithmetic expression that contains a multiplication
2082 and division. We don't count multiplications by powers of two here. */
2083
2084 static int
2085 contains_muldiv (rtx x)
2086 {
2087 switch (GET_CODE (x))
2088 {
2089 case MOD: case DIV: case UMOD: case UDIV:
2090 return 1;
2091
2092 case MULT:
2093 return ! (CONST_INT_P (XEXP (x, 1))
2094 && exact_log2 (UINTVAL (XEXP (x, 1))) >= 0);
2095 default:
2096 if (BINARY_P (x))
2097 return contains_muldiv (XEXP (x, 0))
2098 || contains_muldiv (XEXP (x, 1));
2099
2100 if (UNARY_P (x))
2101 return contains_muldiv (XEXP (x, 0));
2102
2103 return 0;
2104 }
2105 }
2106 \f
2107 /* Determine whether INSN can be used in a combination. Return nonzero if
2108 not. This is used in try_combine to detect early some cases where we
2109 can't perform combinations. */
2110
2111 static int
2112 cant_combine_insn_p (rtx insn)
2113 {
2114 rtx set;
2115 rtx src, dest;
2116
2117 /* If this isn't really an insn, we can't do anything.
2118 This can occur when flow deletes an insn that it has merged into an
2119 auto-increment address. */
2120 if (! INSN_P (insn))
2121 return 1;
2122
2123 /* Never combine loads and stores involving hard regs that are likely
2124 to be spilled. The register allocator can usually handle such
2125 reg-reg moves by tying. If we allow the combiner to make
2126 substitutions of likely-spilled regs, reload might die.
2127 As an exception, we allow combinations involving fixed regs; these are
2128 not available to the register allocator so there's no risk involved. */
2129
2130 set = single_set (insn);
2131 if (! set)
2132 return 0;
2133 src = SET_SRC (set);
2134 dest = SET_DEST (set);
2135 if (GET_CODE (src) == SUBREG)
2136 src = SUBREG_REG (src);
2137 if (GET_CODE (dest) == SUBREG)
2138 dest = SUBREG_REG (dest);
2139 if (REG_P (src) && REG_P (dest)
2140 && ((HARD_REGISTER_P (src)
2141 && ! TEST_HARD_REG_BIT (fixed_reg_set, REGNO (src))
2142 && targetm.class_likely_spilled_p (REGNO_REG_CLASS (REGNO (src))))
2143 || (HARD_REGISTER_P (dest)
2144 && ! TEST_HARD_REG_BIT (fixed_reg_set, REGNO (dest))
2145 && targetm.class_likely_spilled_p (REGNO_REG_CLASS (REGNO (dest))))))
2146 return 1;
2147
2148 return 0;
2149 }
2150
2151 struct likely_spilled_retval_info
2152 {
2153 unsigned regno, nregs;
2154 unsigned mask;
2155 };
2156
2157 /* Called via note_stores by likely_spilled_retval_p. Remove from info->mask
2158 hard registers that are known to be written to / clobbered in full. */
2159 static void
2160 likely_spilled_retval_1 (rtx x, const_rtx set, void *data)
2161 {
2162 struct likely_spilled_retval_info *const info =
2163 (struct likely_spilled_retval_info *) data;
2164 unsigned regno, nregs;
2165 unsigned new_mask;
2166
2167 if (!REG_P (XEXP (set, 0)))
2168 return;
2169 regno = REGNO (x);
2170 if (regno >= info->regno + info->nregs)
2171 return;
2172 nregs = hard_regno_nregs[regno][GET_MODE (x)];
2173 if (regno + nregs <= info->regno)
2174 return;
2175 new_mask = (2U << (nregs - 1)) - 1;
2176 if (regno < info->regno)
2177 new_mask >>= info->regno - regno;
2178 else
2179 new_mask <<= regno - info->regno;
2180 info->mask &= ~new_mask;
2181 }
2182
2183 /* Return nonzero iff part of the return value is live during INSN, and
2184 it is likely spilled. This can happen when more than one insn is needed
2185 to copy the return value, e.g. when we consider to combine into the
2186 second copy insn for a complex value. */
2187
2188 static int
2189 likely_spilled_retval_p (rtx insn)
2190 {
2191 rtx use = BB_END (this_basic_block);
2192 rtx reg, p;
2193 unsigned regno, nregs;
2194 /* We assume here that no machine mode needs more than
2195 32 hard registers when the value overlaps with a register
2196 for which TARGET_FUNCTION_VALUE_REGNO_P is true. */
2197 unsigned mask;
2198 struct likely_spilled_retval_info info;
2199
2200 if (!NONJUMP_INSN_P (use) || GET_CODE (PATTERN (use)) != USE || insn == use)
2201 return 0;
2202 reg = XEXP (PATTERN (use), 0);
2203 if (!REG_P (reg) || !targetm.calls.function_value_regno_p (REGNO (reg)))
2204 return 0;
2205 regno = REGNO (reg);
2206 nregs = hard_regno_nregs[regno][GET_MODE (reg)];
2207 if (nregs == 1)
2208 return 0;
2209 mask = (2U << (nregs - 1)) - 1;
2210
2211 /* Disregard parts of the return value that are set later. */
2212 info.regno = regno;
2213 info.nregs = nregs;
2214 info.mask = mask;
2215 for (p = PREV_INSN (use); info.mask && p != insn; p = PREV_INSN (p))
2216 if (INSN_P (p))
2217 note_stores (PATTERN (p), likely_spilled_retval_1, &info);
2218 mask = info.mask;
2219
2220 /* Check if any of the (probably) live return value registers is
2221 likely spilled. */
2222 nregs --;
2223 do
2224 {
2225 if ((mask & 1 << nregs)
2226 && targetm.class_likely_spilled_p (REGNO_REG_CLASS (regno + nregs)))
2227 return 1;
2228 } while (nregs--);
2229 return 0;
2230 }
2231
2232 /* Adjust INSN after we made a change to its destination.
2233
2234 Changing the destination can invalidate notes that say something about
2235 the results of the insn and a LOG_LINK pointing to the insn. */
2236
2237 static void
2238 adjust_for_new_dest (rtx insn)
2239 {
2240 /* For notes, be conservative and simply remove them. */
2241 remove_reg_equal_equiv_notes (insn);
2242
2243 /* The new insn will have a destination that was previously the destination
2244 of an insn just above it. Call distribute_links to make a LOG_LINK from
2245 the next use of that destination. */
2246 distribute_links (gen_rtx_INSN_LIST (VOIDmode, insn, NULL_RTX));
2247
2248 df_insn_rescan (insn);
2249 }
2250
2251 /* Return TRUE if combine can reuse reg X in mode MODE.
2252 ADDED_SETS is nonzero if the original set is still required. */
2253 static bool
2254 can_change_dest_mode (rtx x, int added_sets, enum machine_mode mode)
2255 {
2256 unsigned int regno;
2257
2258 if (!REG_P(x))
2259 return false;
2260
2261 regno = REGNO (x);
2262 /* Allow hard registers if the new mode is legal, and occupies no more
2263 registers than the old mode. */
2264 if (regno < FIRST_PSEUDO_REGISTER)
2265 return (HARD_REGNO_MODE_OK (regno, mode)
2266 && (hard_regno_nregs[regno][GET_MODE (x)]
2267 >= hard_regno_nregs[regno][mode]));
2268
2269 /* Or a pseudo that is only used once. */
2270 return (REG_N_SETS (regno) == 1 && !added_sets
2271 && !REG_USERVAR_P (x));
2272 }
2273
2274
2275 /* Check whether X, the destination of a set, refers to part of
2276 the register specified by REG. */
2277
2278 static bool
2279 reg_subword_p (rtx x, rtx reg)
2280 {
2281 /* Check that reg is an integer mode register. */
2282 if (!REG_P (reg) || GET_MODE_CLASS (GET_MODE (reg)) != MODE_INT)
2283 return false;
2284
2285 if (GET_CODE (x) == STRICT_LOW_PART
2286 || GET_CODE (x) == ZERO_EXTRACT)
2287 x = XEXP (x, 0);
2288
2289 return GET_CODE (x) == SUBREG
2290 && SUBREG_REG (x) == reg
2291 && GET_MODE_CLASS (GET_MODE (x)) == MODE_INT;
2292 }
2293
2294 #ifdef AUTO_INC_DEC
2295 /* Replace auto-increment addressing modes with explicit operations to access
2296 the same addresses without modifying the corresponding registers. */
2297
2298 static rtx
2299 cleanup_auto_inc_dec (rtx src, enum machine_mode mem_mode)
2300 {
2301 rtx x = src;
2302 const RTX_CODE code = GET_CODE (x);
2303 int i;
2304 const char *fmt;
2305
2306 switch (code)
2307 {
2308 case REG:
2309 case CONST_INT:
2310 case CONST_DOUBLE:
2311 case CONST_FIXED:
2312 case CONST_VECTOR:
2313 case SYMBOL_REF:
2314 case CODE_LABEL:
2315 case PC:
2316 case CC0:
2317 case SCRATCH:
2318 /* SCRATCH must be shared because they represent distinct values. */
2319 return x;
2320 case CLOBBER:
2321 if (REG_P (XEXP (x, 0)) && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER)
2322 return x;
2323 break;
2324
2325 case CONST:
2326 if (shared_const_p (x))
2327 return x;
2328 break;
2329
2330 case MEM:
2331 mem_mode = GET_MODE (x);
2332 break;
2333
2334 case PRE_INC:
2335 case PRE_DEC:
2336 gcc_assert (mem_mode != VOIDmode && mem_mode != BLKmode);
2337 return gen_rtx_PLUS (GET_MODE (x),
2338 cleanup_auto_inc_dec (XEXP (x, 0), mem_mode),
2339 GEN_INT (code == PRE_INC
2340 ? GET_MODE_SIZE (mem_mode)
2341 : -GET_MODE_SIZE (mem_mode)));
2342
2343 case POST_INC:
2344 case POST_DEC:
2345 case PRE_MODIFY:
2346 case POST_MODIFY:
2347 return cleanup_auto_inc_dec (code == PRE_MODIFY
2348 ? XEXP (x, 1) : XEXP (x, 0),
2349 mem_mode);
2350
2351 default:
2352 break;
2353 }
2354
2355 /* Copy the various flags, fields, and other information. We assume
2356 that all fields need copying, and then clear the fields that should
2357 not be copied. That is the sensible default behavior, and forces
2358 us to explicitly document why we are *not* copying a flag. */
2359 x = shallow_copy_rtx (x);
2360
2361 /* We do not copy the USED flag, which is used as a mark bit during
2362 walks over the RTL. */
2363 RTX_FLAG (x, used) = 0;
2364
2365 /* We do not copy FRAME_RELATED for INSNs. */
2366 if (INSN_P (x))
2367 RTX_FLAG (x, frame_related) = 0;
2368
2369 fmt = GET_RTX_FORMAT (code);
2370 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2371 if (fmt[i] == 'e')
2372 XEXP (x, i) = cleanup_auto_inc_dec (XEXP (x, i), mem_mode);
2373 else if (fmt[i] == 'E' || fmt[i] == 'V')
2374 {
2375 int j;
2376 XVEC (x, i) = rtvec_alloc (XVECLEN (x, i));
2377 for (j = 0; j < XVECLEN (x, i); j++)
2378 XVECEXP (x, i, j)
2379 = cleanup_auto_inc_dec (XVECEXP (src, i, j), mem_mode);
2380 }
2381
2382 return x;
2383 }
2384 #endif
2385
2386 /* Auxiliary data structure for propagate_for_debug_stmt. */
2387
2388 struct rtx_subst_pair
2389 {
2390 rtx to;
2391 bool adjusted;
2392 };
2393
2394 /* DATA points to an rtx_subst_pair. Return the value that should be
2395 substituted. */
2396
2397 static rtx
2398 propagate_for_debug_subst (rtx from, const_rtx old_rtx, void *data)
2399 {
2400 struct rtx_subst_pair *pair = (struct rtx_subst_pair *)data;
2401
2402 if (!rtx_equal_p (from, old_rtx))
2403 return NULL_RTX;
2404 if (!pair->adjusted)
2405 {
2406 pair->adjusted = true;
2407 #ifdef AUTO_INC_DEC
2408 pair->to = cleanup_auto_inc_dec (pair->to, VOIDmode);
2409 #else
2410 pair->to = copy_rtx (pair->to);
2411 #endif
2412 pair->to = make_compound_operation (pair->to, SET);
2413 return pair->to;
2414 }
2415 return copy_rtx (pair->to);
2416 }
2417
2418 /* Replace all the occurrences of DEST with SRC in DEBUG_INSNs between INSN
2419 and LAST. */
2420
2421 static void
2422 propagate_for_debug (rtx insn, rtx last, rtx dest, rtx src)
2423 {
2424 rtx next, loc;
2425
2426 struct rtx_subst_pair p;
2427 p.to = src;
2428 p.adjusted = false;
2429
2430 next = NEXT_INSN (insn);
2431 while (next != last)
2432 {
2433 insn = next;
2434 next = NEXT_INSN (insn);
2435 if (DEBUG_INSN_P (insn))
2436 {
2437 loc = simplify_replace_fn_rtx (INSN_VAR_LOCATION_LOC (insn),
2438 dest, propagate_for_debug_subst, &p);
2439 if (loc == INSN_VAR_LOCATION_LOC (insn))
2440 continue;
2441 INSN_VAR_LOCATION_LOC (insn) = loc;
2442 df_insn_rescan (insn);
2443 }
2444 }
2445 }
2446
2447 /* Delete the unconditional jump INSN and adjust the CFG correspondingly.
2448 Note that the INSN should be deleted *after* removing dead edges, so
2449 that the kept edge is the fallthrough edge for a (set (pc) (pc))
2450 but not for a (set (pc) (label_ref FOO)). */
2451
2452 static void
2453 update_cfg_for_uncondjump (rtx insn)
2454 {
2455 basic_block bb = BLOCK_FOR_INSN (insn);
2456 bool at_end = (BB_END (bb) == insn);
2457
2458 if (at_end)
2459 purge_dead_edges (bb);
2460
2461 delete_insn (insn);
2462 if (at_end && EDGE_COUNT (bb->succs) == 1)
2463 {
2464 rtx insn;
2465
2466 single_succ_edge (bb)->flags |= EDGE_FALLTHRU;
2467
2468 /* Remove barriers from the footer if there are any. */
2469 for (insn = bb->il.rtl->footer; insn; insn = NEXT_INSN (insn))
2470 if (BARRIER_P (insn))
2471 {
2472 if (PREV_INSN (insn))
2473 NEXT_INSN (PREV_INSN (insn)) = NEXT_INSN (insn);
2474 else
2475 bb->il.rtl->footer = NEXT_INSN (insn);
2476 if (NEXT_INSN (insn))
2477 PREV_INSN (NEXT_INSN (insn)) = PREV_INSN (insn);
2478 }
2479 else if (LABEL_P (insn))
2480 break;
2481 }
2482 }
2483
2484 /* Try to combine the insns I0, I1 and I2 into I3.
2485 Here I0, I1 and I2 appear earlier than I3.
2486 I0 and I1 can be zero; then we combine just I2 into I3, or I1 and I2 into
2487 I3.
2488
2489 If we are combining more than two insns and the resulting insn is not
2490 recognized, try splitting it into two insns. If that happens, I2 and I3
2491 are retained and I1/I0 are pseudo-deleted by turning them into a NOTE.
2492 Otherwise, I0, I1 and I2 are pseudo-deleted.
2493
2494 Return 0 if the combination does not work. Then nothing is changed.
2495 If we did the combination, return the insn at which combine should
2496 resume scanning.
2497
2498 Set NEW_DIRECT_JUMP_P to a nonzero value if try_combine creates a
2499 new direct jump instruction. */
2500
2501 static rtx
2502 try_combine (rtx i3, rtx i2, rtx i1, rtx i0, int *new_direct_jump_p)
2503 {
2504 /* New patterns for I3 and I2, respectively. */
2505 rtx newpat, newi2pat = 0;
2506 rtvec newpat_vec_with_clobbers = 0;
2507 int substed_i2 = 0, substed_i1 = 0, substed_i0 = 0;
2508 /* Indicates need to preserve SET in I0, I1 or I2 in I3 if it is not
2509 dead. */
2510 int added_sets_0, added_sets_1, added_sets_2;
2511 /* Total number of SETs to put into I3. */
2512 int total_sets;
2513 /* Nonzero if I2's or I1's body now appears in I3. */
2514 int i2_is_used = 0, i1_is_used = 0;
2515 /* INSN_CODEs for new I3, new I2, and user of condition code. */
2516 int insn_code_number, i2_code_number = 0, other_code_number = 0;
2517 /* Contains I3 if the destination of I3 is used in its source, which means
2518 that the old life of I3 is being killed. If that usage is placed into
2519 I2 and not in I3, a REG_DEAD note must be made. */
2520 rtx i3dest_killed = 0;
2521 /* SET_DEST and SET_SRC of I2, I1 and I0. */
2522 rtx i2dest = 0, i2src = 0, i1dest = 0, i1src = 0, i0dest = 0, i0src = 0;
2523 /* Copy of SET_SRC of I1, if needed. */
2524 rtx i1src_copy = 0;
2525 /* Set if I2DEST was reused as a scratch register. */
2526 bool i2scratch = false;
2527 /* The PATTERNs of I0, I1, and I2, or a copy of them in certain cases. */
2528 rtx i0pat = 0, i1pat = 0, i2pat = 0;
2529 /* Indicates if I2DEST or I1DEST is in I2SRC or I1_SRC. */
2530 int i2dest_in_i2src = 0, i1dest_in_i1src = 0, i2dest_in_i1src = 0;
2531 int i0dest_in_i0src = 0, i1dest_in_i0src = 0, i2dest_in_i0src = 0;
2532 int i2dest_killed = 0, i1dest_killed = 0, i0dest_killed = 0;
2533 int i1_feeds_i2_n = 0, i0_feeds_i2_n = 0, i0_feeds_i1_n = 0;
2534 /* Notes that must be added to REG_NOTES in I3 and I2. */
2535 rtx new_i3_notes, new_i2_notes;
2536 /* Notes that we substituted I3 into I2 instead of the normal case. */
2537 int i3_subst_into_i2 = 0;
2538 /* Notes that I1, I2 or I3 is a MULT operation. */
2539 int have_mult = 0;
2540 int swap_i2i3 = 0;
2541 int changed_i3_dest = 0;
2542
2543 int maxreg;
2544 rtx temp;
2545 rtx link;
2546 rtx other_pat = 0;
2547 rtx new_other_notes;
2548 int i;
2549
2550 /* Only try four-insn combinations when there's high likelihood of
2551 success. Look for simple insns, such as loads of constants or
2552 binary operations involving a constant. */
2553 if (i0)
2554 {
2555 int i;
2556 int ngood = 0;
2557 int nshift = 0;
2558
2559 if (!flag_expensive_optimizations)
2560 return 0;
2561
2562 for (i = 0; i < 4; i++)
2563 {
2564 rtx insn = i == 0 ? i0 : i == 1 ? i1 : i == 2 ? i2 : i3;
2565 rtx set = single_set (insn);
2566 rtx src;
2567 if (!set)
2568 continue;
2569 src = SET_SRC (set);
2570 if (CONSTANT_P (src))
2571 {
2572 ngood += 2;
2573 break;
2574 }
2575 else if (BINARY_P (src) && CONSTANT_P (XEXP (src, 1)))
2576 ngood++;
2577 else if (GET_CODE (src) == ASHIFT || GET_CODE (src) == ASHIFTRT
2578 || GET_CODE (src) == LSHIFTRT)
2579 nshift++;
2580 }
2581 if (ngood < 2 && nshift < 2)
2582 return 0;
2583 }
2584
2585 /* Exit early if one of the insns involved can't be used for
2586 combinations. */
2587 if (cant_combine_insn_p (i3)
2588 || cant_combine_insn_p (i2)
2589 || (i1 && cant_combine_insn_p (i1))
2590 || (i0 && cant_combine_insn_p (i0))
2591 || likely_spilled_retval_p (i3))
2592 return 0;
2593
2594 combine_attempts++;
2595 undobuf.other_insn = 0;
2596
2597 /* Reset the hard register usage information. */
2598 CLEAR_HARD_REG_SET (newpat_used_regs);
2599
2600 if (dump_file && (dump_flags & TDF_DETAILS))
2601 {
2602 if (i0)
2603 fprintf (dump_file, "\nTrying %d, %d, %d -> %d:\n",
2604 INSN_UID (i0), INSN_UID (i1), INSN_UID (i2), INSN_UID (i3));
2605 else if (i1)
2606 fprintf (dump_file, "\nTrying %d, %d -> %d:\n",
2607 INSN_UID (i1), INSN_UID (i2), INSN_UID (i3));
2608 else
2609 fprintf (dump_file, "\nTrying %d -> %d:\n",
2610 INSN_UID (i2), INSN_UID (i3));
2611 }
2612
2613 /* If multiple insns feed into one of I2 or I3, they can be in any
2614 order. To simplify the code below, reorder them in sequence. */
2615 if (i0 && DF_INSN_LUID (i0) > DF_INSN_LUID (i2))
2616 temp = i2, i2 = i0, i0 = temp;
2617 if (i0 && DF_INSN_LUID (i0) > DF_INSN_LUID (i1))
2618 temp = i1, i1 = i0, i0 = temp;
2619 if (i1 && DF_INSN_LUID (i1) > DF_INSN_LUID (i2))
2620 temp = i1, i1 = i2, i2 = temp;
2621
2622 added_links_insn = 0;
2623
2624 /* First check for one important special case that the code below will
2625 not handle. Namely, the case where I1 is zero, I2 is a PARALLEL
2626 and I3 is a SET whose SET_SRC is a SET_DEST in I2. In that case,
2627 we may be able to replace that destination with the destination of I3.
2628 This occurs in the common code where we compute both a quotient and
2629 remainder into a structure, in which case we want to do the computation
2630 directly into the structure to avoid register-register copies.
2631
2632 Note that this case handles both multiple sets in I2 and also cases
2633 where I2 has a number of CLOBBERs inside the PARALLEL.
2634
2635 We make very conservative checks below and only try to handle the
2636 most common cases of this. For example, we only handle the case
2637 where I2 and I3 are adjacent to avoid making difficult register
2638 usage tests. */
2639
2640 if (i1 == 0 && NONJUMP_INSN_P (i3) && GET_CODE (PATTERN (i3)) == SET
2641 && REG_P (SET_SRC (PATTERN (i3)))
2642 && REGNO (SET_SRC (PATTERN (i3))) >= FIRST_PSEUDO_REGISTER
2643 && find_reg_note (i3, REG_DEAD, SET_SRC (PATTERN (i3)))
2644 && GET_CODE (PATTERN (i2)) == PARALLEL
2645 && ! side_effects_p (SET_DEST (PATTERN (i3)))
2646 /* If the dest of I3 is a ZERO_EXTRACT or STRICT_LOW_PART, the code
2647 below would need to check what is inside (and reg_overlap_mentioned_p
2648 doesn't support those codes anyway). Don't allow those destinations;
2649 the resulting insn isn't likely to be recognized anyway. */
2650 && GET_CODE (SET_DEST (PATTERN (i3))) != ZERO_EXTRACT
2651 && GET_CODE (SET_DEST (PATTERN (i3))) != STRICT_LOW_PART
2652 && ! reg_overlap_mentioned_p (SET_SRC (PATTERN (i3)),
2653 SET_DEST (PATTERN (i3)))
2654 && next_active_insn (i2) == i3)
2655 {
2656 rtx p2 = PATTERN (i2);
2657
2658 /* Make sure that the destination of I3,
2659 which we are going to substitute into one output of I2,
2660 is not used within another output of I2. We must avoid making this:
2661 (parallel [(set (mem (reg 69)) ...)
2662 (set (reg 69) ...)])
2663 which is not well-defined as to order of actions.
2664 (Besides, reload can't handle output reloads for this.)
2665
2666 The problem can also happen if the dest of I3 is a memory ref,
2667 if another dest in I2 is an indirect memory ref. */
2668 for (i = 0; i < XVECLEN (p2, 0); i++)
2669 if ((GET_CODE (XVECEXP (p2, 0, i)) == SET
2670 || GET_CODE (XVECEXP (p2, 0, i)) == CLOBBER)
2671 && reg_overlap_mentioned_p (SET_DEST (PATTERN (i3)),
2672 SET_DEST (XVECEXP (p2, 0, i))))
2673 break;
2674
2675 if (i == XVECLEN (p2, 0))
2676 for (i = 0; i < XVECLEN (p2, 0); i++)
2677 if (GET_CODE (XVECEXP (p2, 0, i)) == SET
2678 && SET_DEST (XVECEXP (p2, 0, i)) == SET_SRC (PATTERN (i3)))
2679 {
2680 combine_merges++;
2681
2682 subst_insn = i3;
2683 subst_low_luid = DF_INSN_LUID (i2);
2684
2685 added_sets_2 = added_sets_1 = added_sets_0 = 0;
2686 i2src = SET_SRC (XVECEXP (p2, 0, i));
2687 i2dest = SET_DEST (XVECEXP (p2, 0, i));
2688 i2dest_killed = dead_or_set_p (i2, i2dest);
2689
2690 /* Replace the dest in I2 with our dest and make the resulting
2691 insn the new pattern for I3. Then skip to where we validate
2692 the pattern. Everything was set up above. */
2693 SUBST (SET_DEST (XVECEXP (p2, 0, i)), SET_DEST (PATTERN (i3)));
2694 newpat = p2;
2695 i3_subst_into_i2 = 1;
2696 goto validate_replacement;
2697 }
2698 }
2699
2700 /* If I2 is setting a pseudo to a constant and I3 is setting some
2701 sub-part of it to another constant, merge them by making a new
2702 constant. */
2703 if (i1 == 0
2704 && (temp = single_set (i2)) != 0
2705 && (CONST_INT_P (SET_SRC (temp))
2706 || GET_CODE (SET_SRC (temp)) == CONST_DOUBLE)
2707 && GET_CODE (PATTERN (i3)) == SET
2708 && (CONST_INT_P (SET_SRC (PATTERN (i3)))
2709 || GET_CODE (SET_SRC (PATTERN (i3))) == CONST_DOUBLE)
2710 && reg_subword_p (SET_DEST (PATTERN (i3)), SET_DEST (temp)))
2711 {
2712 rtx dest = SET_DEST (PATTERN (i3));
2713 int offset = -1;
2714 int width = 0;
2715
2716 if (GET_CODE (dest) == ZERO_EXTRACT)
2717 {
2718 if (CONST_INT_P (XEXP (dest, 1))
2719 && CONST_INT_P (XEXP (dest, 2)))
2720 {
2721 width = INTVAL (XEXP (dest, 1));
2722 offset = INTVAL (XEXP (dest, 2));
2723 dest = XEXP (dest, 0);
2724 if (BITS_BIG_ENDIAN)
2725 offset = GET_MODE_BITSIZE (GET_MODE (dest)) - width - offset;
2726 }
2727 }
2728 else
2729 {
2730 if (GET_CODE (dest) == STRICT_LOW_PART)
2731 dest = XEXP (dest, 0);
2732 width = GET_MODE_BITSIZE (GET_MODE (dest));
2733 offset = 0;
2734 }
2735
2736 if (offset >= 0)
2737 {
2738 /* If this is the low part, we're done. */
2739 if (subreg_lowpart_p (dest))
2740 ;
2741 /* Handle the case where inner is twice the size of outer. */
2742 else if (GET_MODE_BITSIZE (GET_MODE (SET_DEST (temp)))
2743 == 2 * GET_MODE_BITSIZE (GET_MODE (dest)))
2744 offset += GET_MODE_BITSIZE (GET_MODE (dest));
2745 /* Otherwise give up for now. */
2746 else
2747 offset = -1;
2748 }
2749
2750 if (offset >= 0
2751 && (GET_MODE_BITSIZE (GET_MODE (SET_DEST (temp)))
2752 <= HOST_BITS_PER_DOUBLE_INT))
2753 {
2754 double_int m, o, i;
2755 rtx inner = SET_SRC (PATTERN (i3));
2756 rtx outer = SET_SRC (temp);
2757
2758 o = rtx_to_double_int (outer);
2759 i = rtx_to_double_int (inner);
2760
2761 m = double_int_mask (width);
2762 i = double_int_and (i, m);
2763 m = double_int_lshift (m, offset, HOST_BITS_PER_DOUBLE_INT, false);
2764 i = double_int_lshift (i, offset, HOST_BITS_PER_DOUBLE_INT, false);
2765 o = double_int_ior (double_int_and_not (o, m), i);
2766
2767 combine_merges++;
2768 subst_insn = i3;
2769 subst_low_luid = DF_INSN_LUID (i2);
2770 added_sets_2 = added_sets_1 = added_sets_0 = 0;
2771 i2dest = SET_DEST (temp);
2772 i2dest_killed = dead_or_set_p (i2, i2dest);
2773
2774 /* Replace the source in I2 with the new constant and make the
2775 resulting insn the new pattern for I3. Then skip to where we
2776 validate the pattern. Everything was set up above. */
2777 SUBST (SET_SRC (temp),
2778 immed_double_int_const (o, GET_MODE (SET_DEST (temp))));
2779
2780 newpat = PATTERN (i2);
2781
2782 /* The dest of I3 has been replaced with the dest of I2. */
2783 changed_i3_dest = 1;
2784 goto validate_replacement;
2785 }
2786 }
2787
2788 #ifndef HAVE_cc0
2789 /* If we have no I1 and I2 looks like:
2790 (parallel [(set (reg:CC X) (compare:CC OP (const_int 0)))
2791 (set Y OP)])
2792 make up a dummy I1 that is
2793 (set Y OP)
2794 and change I2 to be
2795 (set (reg:CC X) (compare:CC Y (const_int 0)))
2796
2797 (We can ignore any trailing CLOBBERs.)
2798
2799 This undoes a previous combination and allows us to match a branch-and-
2800 decrement insn. */
2801
2802 if (i1 == 0 && GET_CODE (PATTERN (i2)) == PARALLEL
2803 && XVECLEN (PATTERN (i2), 0) >= 2
2804 && GET_CODE (XVECEXP (PATTERN (i2), 0, 0)) == SET
2805 && (GET_MODE_CLASS (GET_MODE (SET_DEST (XVECEXP (PATTERN (i2), 0, 0))))
2806 == MODE_CC)
2807 && GET_CODE (SET_SRC (XVECEXP (PATTERN (i2), 0, 0))) == COMPARE
2808 && XEXP (SET_SRC (XVECEXP (PATTERN (i2), 0, 0)), 1) == const0_rtx
2809 && GET_CODE (XVECEXP (PATTERN (i2), 0, 1)) == SET
2810 && REG_P (SET_DEST (XVECEXP (PATTERN (i2), 0, 1)))
2811 && rtx_equal_p (XEXP (SET_SRC (XVECEXP (PATTERN (i2), 0, 0)), 0),
2812 SET_SRC (XVECEXP (PATTERN (i2), 0, 1))))
2813 {
2814 for (i = XVECLEN (PATTERN (i2), 0) - 1; i >= 2; i--)
2815 if (GET_CODE (XVECEXP (PATTERN (i2), 0, i)) != CLOBBER)
2816 break;
2817
2818 if (i == 1)
2819 {
2820 /* We make I1 with the same INSN_UID as I2. This gives it
2821 the same DF_INSN_LUID for value tracking. Our fake I1 will
2822 never appear in the insn stream so giving it the same INSN_UID
2823 as I2 will not cause a problem. */
2824
2825 i1 = gen_rtx_INSN (VOIDmode, INSN_UID (i2), NULL_RTX, i2,
2826 BLOCK_FOR_INSN (i2), XVECEXP (PATTERN (i2), 0, 1),
2827 INSN_LOCATOR (i2), -1, NULL_RTX);
2828
2829 SUBST (PATTERN (i2), XVECEXP (PATTERN (i2), 0, 0));
2830 SUBST (XEXP (SET_SRC (PATTERN (i2)), 0),
2831 SET_DEST (PATTERN (i1)));
2832 }
2833 }
2834 #endif
2835
2836 /* Verify that I2 and I1 are valid for combining. */
2837 if (! can_combine_p (i2, i3, i0, i1, NULL_RTX, NULL_RTX, &i2dest, &i2src)
2838 || (i1 && ! can_combine_p (i1, i3, i0, NULL_RTX, i2, NULL_RTX,
2839 &i1dest, &i1src))
2840 || (i0 && ! can_combine_p (i0, i3, NULL_RTX, NULL_RTX, i1, i2,
2841 &i0dest, &i0src)))
2842 {
2843 undo_all ();
2844 return 0;
2845 }
2846
2847 /* Record whether I2DEST is used in I2SRC and similarly for the other
2848 cases. Knowing this will help in register status updating below. */
2849 i2dest_in_i2src = reg_overlap_mentioned_p (i2dest, i2src);
2850 i1dest_in_i1src = i1 && reg_overlap_mentioned_p (i1dest, i1src);
2851 i2dest_in_i1src = i1 && reg_overlap_mentioned_p (i2dest, i1src);
2852 i0dest_in_i0src = i0 && reg_overlap_mentioned_p (i0dest, i0src);
2853 i1dest_in_i0src = i0 && reg_overlap_mentioned_p (i1dest, i0src);
2854 i2dest_in_i0src = i0 && reg_overlap_mentioned_p (i2dest, i0src);
2855 i2dest_killed = dead_or_set_p (i2, i2dest);
2856 i1dest_killed = i1 && dead_or_set_p (i1, i1dest);
2857 i0dest_killed = i0 && dead_or_set_p (i0, i0dest);
2858
2859 /* For the earlier insns, determine which of the subsequent ones they
2860 feed. */
2861 i1_feeds_i2_n = i1 && insn_a_feeds_b (i1, i2);
2862 i0_feeds_i1_n = i0 && insn_a_feeds_b (i0, i1);
2863 i0_feeds_i2_n = (i0 && (!i0_feeds_i1_n ? insn_a_feeds_b (i0, i2)
2864 : (!reg_overlap_mentioned_p (i1dest, i0dest)
2865 && reg_overlap_mentioned_p (i0dest, i2src))));
2866
2867 /* Ensure that I3's pattern can be the destination of combines. */
2868 if (! combinable_i3pat (i3, &PATTERN (i3), i2dest, i1dest, i0dest,
2869 i1 && i2dest_in_i1src && !i1_feeds_i2_n,
2870 i0 && ((i2dest_in_i0src && !i0_feeds_i2_n)
2871 || (i1dest_in_i0src && !i0_feeds_i1_n)),
2872 &i3dest_killed))
2873 {
2874 undo_all ();
2875 return 0;
2876 }
2877
2878 /* See if any of the insns is a MULT operation. Unless one is, we will
2879 reject a combination that is, since it must be slower. Be conservative
2880 here. */
2881 if (GET_CODE (i2src) == MULT
2882 || (i1 != 0 && GET_CODE (i1src) == MULT)
2883 || (i0 != 0 && GET_CODE (i0src) == MULT)
2884 || (GET_CODE (PATTERN (i3)) == SET
2885 && GET_CODE (SET_SRC (PATTERN (i3))) == MULT))
2886 have_mult = 1;
2887
2888 /* If I3 has an inc, then give up if I1 or I2 uses the reg that is inc'd.
2889 We used to do this EXCEPT in one case: I3 has a post-inc in an
2890 output operand. However, that exception can give rise to insns like
2891 mov r3,(r3)+
2892 which is a famous insn on the PDP-11 where the value of r3 used as the
2893 source was model-dependent. Avoid this sort of thing. */
2894
2895 #if 0
2896 if (!(GET_CODE (PATTERN (i3)) == SET
2897 && REG_P (SET_SRC (PATTERN (i3)))
2898 && MEM_P (SET_DEST (PATTERN (i3)))
2899 && (GET_CODE (XEXP (SET_DEST (PATTERN (i3)), 0)) == POST_INC
2900 || GET_CODE (XEXP (SET_DEST (PATTERN (i3)), 0)) == POST_DEC)))
2901 /* It's not the exception. */
2902 #endif
2903 #ifdef AUTO_INC_DEC
2904 for (link = REG_NOTES (i3); link; link = XEXP (link, 1))
2905 if (REG_NOTE_KIND (link) == REG_INC
2906 && (reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i2))
2907 || (i1 != 0
2908 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i1)))))
2909 {
2910 undo_all ();
2911 return 0;
2912 }
2913 #endif
2914
2915 /* See if the SETs in I1 or I2 need to be kept around in the merged
2916 instruction: whenever the value set there is still needed past I3.
2917 For the SETs in I2, this is easy: we see if I2DEST dies or is set in I3.
2918
2919 For the SET in I1, we have two cases: If I1 and I2 independently
2920 feed into I3, the set in I1 needs to be kept around if I1DEST dies
2921 or is set in I3. Otherwise (if I1 feeds I2 which feeds I3), the set
2922 in I1 needs to be kept around unless I1DEST dies or is set in either
2923 I2 or I3. The same consideration applies to I0. */
2924
2925 added_sets_2 = !dead_or_set_p (i3, i2dest);
2926
2927 if (i1)
2928 added_sets_1 = !(dead_or_set_p (i3, i1dest)
2929 || (i1_feeds_i2_n && dead_or_set_p (i2, i1dest)));
2930 else
2931 added_sets_1 = 0;
2932
2933 if (i0)
2934 added_sets_0 = !(dead_or_set_p (i3, i0dest)
2935 || (i0_feeds_i2_n && dead_or_set_p (i2, i0dest))
2936 || (i0_feeds_i1_n && dead_or_set_p (i1, i0dest)));
2937 else
2938 added_sets_0 = 0;
2939
2940 /* We are about to copy insns for the case where they need to be kept
2941 around. Check that they can be copied in the merged instruction. */
2942
2943 if (targetm.cannot_copy_insn_p
2944 && ((added_sets_2 && targetm.cannot_copy_insn_p (i2))
2945 || (i1 && added_sets_1 && targetm.cannot_copy_insn_p (i1))
2946 || (i0 && added_sets_0 && targetm.cannot_copy_insn_p (i0))))
2947 {
2948 undo_all ();
2949 return 0;
2950 }
2951
2952 /* If the set in I2 needs to be kept around, we must make a copy of
2953 PATTERN (I2), so that when we substitute I1SRC for I1DEST in
2954 PATTERN (I2), we are only substituting for the original I1DEST, not into
2955 an already-substituted copy. This also prevents making self-referential
2956 rtx. If I2 is a PARALLEL, we just need the piece that assigns I2SRC to
2957 I2DEST. */
2958
2959 if (added_sets_2)
2960 {
2961 if (GET_CODE (PATTERN (i2)) == PARALLEL)
2962 i2pat = gen_rtx_SET (VOIDmode, i2dest, copy_rtx (i2src));
2963 else
2964 i2pat = copy_rtx (PATTERN (i2));
2965 }
2966
2967 if (added_sets_1)
2968 {
2969 if (GET_CODE (PATTERN (i1)) == PARALLEL)
2970 i1pat = gen_rtx_SET (VOIDmode, i1dest, copy_rtx (i1src));
2971 else
2972 i1pat = copy_rtx (PATTERN (i1));
2973 }
2974
2975 if (added_sets_0)
2976 {
2977 if (GET_CODE (PATTERN (i0)) == PARALLEL)
2978 i0pat = gen_rtx_SET (VOIDmode, i0dest, copy_rtx (i0src));
2979 else
2980 i0pat = copy_rtx (PATTERN (i0));
2981 }
2982
2983 combine_merges++;
2984
2985 /* Substitute in the latest insn for the regs set by the earlier ones. */
2986
2987 maxreg = max_reg_num ();
2988
2989 subst_insn = i3;
2990
2991 #ifndef HAVE_cc0
2992 /* Many machines that don't use CC0 have insns that can both perform an
2993 arithmetic operation and set the condition code. These operations will
2994 be represented as a PARALLEL with the first element of the vector
2995 being a COMPARE of an arithmetic operation with the constant zero.
2996 The second element of the vector will set some pseudo to the result
2997 of the same arithmetic operation. If we simplify the COMPARE, we won't
2998 match such a pattern and so will generate an extra insn. Here we test
2999 for this case, where both the comparison and the operation result are
3000 needed, and make the PARALLEL by just replacing I2DEST in I3SRC with
3001 I2SRC. Later we will make the PARALLEL that contains I2. */
3002
3003 if (i1 == 0 && added_sets_2 && GET_CODE (PATTERN (i3)) == SET
3004 && GET_CODE (SET_SRC (PATTERN (i3))) == COMPARE
3005 && XEXP (SET_SRC (PATTERN (i3)), 1) == const0_rtx
3006 && rtx_equal_p (XEXP (SET_SRC (PATTERN (i3)), 0), i2dest))
3007 {
3008 #ifdef SELECT_CC_MODE
3009 rtx *cc_use;
3010 enum machine_mode compare_mode;
3011 #endif
3012
3013 newpat = PATTERN (i3);
3014 SUBST (XEXP (SET_SRC (newpat), 0), i2src);
3015
3016 i2_is_used = 1;
3017
3018 #ifdef SELECT_CC_MODE
3019 /* See if a COMPARE with the operand we substituted in should be done
3020 with the mode that is currently being used. If not, do the same
3021 processing we do in `subst' for a SET; namely, if the destination
3022 is used only once, try to replace it with a register of the proper
3023 mode and also replace the COMPARE. */
3024 if (undobuf.other_insn == 0
3025 && (cc_use = find_single_use (SET_DEST (newpat), i3,
3026 &undobuf.other_insn))
3027 && ((compare_mode = SELECT_CC_MODE (GET_CODE (*cc_use),
3028 i2src, const0_rtx))
3029 != GET_MODE (SET_DEST (newpat))))
3030 {
3031 if (can_change_dest_mode (SET_DEST (newpat), added_sets_2,
3032 compare_mode))
3033 {
3034 unsigned int regno = REGNO (SET_DEST (newpat));
3035 rtx new_dest;
3036
3037 if (regno < FIRST_PSEUDO_REGISTER)
3038 new_dest = gen_rtx_REG (compare_mode, regno);
3039 else
3040 {
3041 SUBST_MODE (regno_reg_rtx[regno], compare_mode);
3042 new_dest = regno_reg_rtx[regno];
3043 }
3044
3045 SUBST (SET_DEST (newpat), new_dest);
3046 SUBST (XEXP (*cc_use, 0), new_dest);
3047 SUBST (SET_SRC (newpat),
3048 gen_rtx_COMPARE (compare_mode, i2src, const0_rtx));
3049 }
3050 else
3051 undobuf.other_insn = 0;
3052 }
3053 #endif
3054 }
3055 else
3056 #endif
3057 {
3058 /* It is possible that the source of I2 or I1 may be performing
3059 an unneeded operation, such as a ZERO_EXTEND of something
3060 that is known to have the high part zero. Handle that case
3061 by letting subst look at the innermost one of them.
3062
3063 Another way to do this would be to have a function that tries
3064 to simplify a single insn instead of merging two or more
3065 insns. We don't do this because of the potential of infinite
3066 loops and because of the potential extra memory required.
3067 However, doing it the way we are is a bit of a kludge and
3068 doesn't catch all cases.
3069
3070 But only do this if -fexpensive-optimizations since it slows
3071 things down and doesn't usually win.
3072
3073 This is not done in the COMPARE case above because the
3074 unmodified I2PAT is used in the PARALLEL and so a pattern
3075 with a modified I2SRC would not match. */
3076
3077 if (flag_expensive_optimizations)
3078 {
3079 /* Pass pc_rtx so no substitutions are done, just
3080 simplifications. */
3081 if (i1)
3082 {
3083 subst_low_luid = DF_INSN_LUID (i1);
3084 i1src = subst (i1src, pc_rtx, pc_rtx, 0, 0);
3085 }
3086 else
3087 {
3088 subst_low_luid = DF_INSN_LUID (i2);
3089 i2src = subst (i2src, pc_rtx, pc_rtx, 0, 0);
3090 }
3091 }
3092
3093 n_occurrences = 0; /* `subst' counts here */
3094 subst_low_luid = DF_INSN_LUID (i2);
3095
3096 /* If I1 feeds into I2 and I1DEST is in I1SRC, we need to make a unique
3097 copy of I2SRC each time we substitute it, in order to avoid creating
3098 self-referential RTL when we will be substituting I1SRC for I1DEST
3099 later. Likewise if I0 feeds into I2 and I0DEST is in I0SRC. */
3100 newpat = subst (PATTERN (i3), i2dest, i2src, 0,
3101 (i1_feeds_i2_n && i1dest_in_i1src)
3102 || (i0_feeds_i2_n && i0dest_in_i0src));
3103 substed_i2 = 1;
3104
3105 /* Record whether I2's body now appears within I3's body. */
3106 i2_is_used = n_occurrences;
3107 }
3108
3109 /* If we already got a failure, don't try to do more. Otherwise, try to
3110 substitute I1 if we have it. */
3111
3112 if (i1 && GET_CODE (newpat) != CLOBBER)
3113 {
3114 /* Check that an autoincrement side-effect on I1 has not been lost.
3115 This happens if I1DEST is mentioned in I2 and dies there, and
3116 has disappeared from the new pattern. */
3117 if ((FIND_REG_INC_NOTE (i1, NULL_RTX) != 0
3118 && i1_feeds_i2_n
3119 && dead_or_set_p (i2, i1dest)
3120 && !reg_overlap_mentioned_p (i1dest, newpat))
3121 /* Before we can do this substitution, we must redo the test done
3122 above (see detailed comments there) that ensures I1DEST isn't
3123 mentioned in any SETs in NEWPAT that are field assignments. */
3124 || !combinable_i3pat (NULL_RTX, &newpat, i1dest, NULL_RTX, NULL_RTX,
3125 0, 0, 0))
3126 {
3127 undo_all ();
3128 return 0;
3129 }
3130
3131 n_occurrences = 0;
3132 subst_low_luid = DF_INSN_LUID (i1);
3133
3134 /* If I0 feeds into I1 and I0DEST is in I0SRC, we need to make a unique
3135 copy of I1SRC each time we substitute it, in order to avoid creating
3136 self-referential RTL when we will be substituting I0SRC for I0DEST
3137 later. */
3138 newpat = subst (newpat, i1dest, i1src, 0,
3139 i0_feeds_i1_n && i0dest_in_i0src);
3140 substed_i1 = 1;
3141
3142 /* Record whether I1's body now appears within I3's body. */
3143 i1_is_used = n_occurrences;
3144 }
3145
3146 /* Likewise for I0 if we have it. */
3147
3148 if (i0 && GET_CODE (newpat) != CLOBBER)
3149 {
3150 if ((FIND_REG_INC_NOTE (i0, NULL_RTX) != 0
3151 && ((i0_feeds_i2_n && dead_or_set_p (i2, i0dest))
3152 || (i0_feeds_i1_n && dead_or_set_p (i1, i0dest)))
3153 && !reg_overlap_mentioned_p (i0dest, newpat))
3154 || !combinable_i3pat (NULL_RTX, &newpat, i0dest, NULL_RTX, NULL_RTX,
3155 0, 0, 0))
3156 {
3157 undo_all ();
3158 return 0;
3159 }
3160
3161 /* If the following substitution will modify I1SRC, make a copy of it
3162 for the case where it is substituted for I1DEST in I2PAT later. */
3163 if (i0_feeds_i1_n && added_sets_2 && i1_feeds_i2_n)
3164 i1src_copy = copy_rtx (i1src);
3165
3166 n_occurrences = 0;
3167 subst_low_luid = DF_INSN_LUID (i0);
3168 newpat = subst (newpat, i0dest, i0src, 0, 0);
3169 substed_i0 = 1;
3170 }
3171
3172 /* Fail if an autoincrement side-effect has been duplicated. Be careful
3173 to count all the ways that I2SRC and I1SRC can be used. */
3174 if ((FIND_REG_INC_NOTE (i2, NULL_RTX) != 0
3175 && i2_is_used + added_sets_2 > 1)
3176 || (i1 != 0 && FIND_REG_INC_NOTE (i1, NULL_RTX) != 0
3177 && (i1_is_used + added_sets_1 + (added_sets_2 && i1_feeds_i2_n)
3178 > 1))
3179 || (i0 != 0 && FIND_REG_INC_NOTE (i0, NULL_RTX) != 0
3180 && (n_occurrences + added_sets_0
3181 + (added_sets_1 && i0_feeds_i1_n)
3182 + (added_sets_2 && i0_feeds_i2_n)
3183 > 1))
3184 /* Fail if we tried to make a new register. */
3185 || max_reg_num () != maxreg
3186 /* Fail if we couldn't do something and have a CLOBBER. */
3187 || GET_CODE (newpat) == CLOBBER
3188 /* Fail if this new pattern is a MULT and we didn't have one before
3189 at the outer level. */
3190 || (GET_CODE (newpat) == SET && GET_CODE (SET_SRC (newpat)) == MULT
3191 && ! have_mult))
3192 {
3193 undo_all ();
3194 return 0;
3195 }
3196
3197 /* If the actions of the earlier insns must be kept
3198 in addition to substituting them into the latest one,
3199 we must make a new PARALLEL for the latest insn
3200 to hold additional the SETs. */
3201
3202 if (added_sets_0 || added_sets_1 || added_sets_2)
3203 {
3204 int extra_sets = added_sets_0 + added_sets_1 + added_sets_2;
3205 combine_extras++;
3206
3207 if (GET_CODE (newpat) == PARALLEL)
3208 {
3209 rtvec old = XVEC (newpat, 0);
3210 total_sets = XVECLEN (newpat, 0) + extra_sets;
3211 newpat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (total_sets));
3212 memcpy (XVEC (newpat, 0)->elem, &old->elem[0],
3213 sizeof (old->elem[0]) * old->num_elem);
3214 }
3215 else
3216 {
3217 rtx old = newpat;
3218 total_sets = 1 + extra_sets;
3219 newpat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (total_sets));
3220 XVECEXP (newpat, 0, 0) = old;
3221 }
3222
3223 if (added_sets_0)
3224 XVECEXP (newpat, 0, --total_sets) = i0pat;
3225
3226 if (added_sets_1)
3227 {
3228 rtx t = i1pat;
3229 if (i0_feeds_i1_n)
3230 t = subst (t, i0dest, i0src, 0, 0);
3231
3232 XVECEXP (newpat, 0, --total_sets) = t;
3233 }
3234 if (added_sets_2)
3235 {
3236 rtx t = i2pat;
3237 if (i1_feeds_i2_n)
3238 t = subst (t, i1dest, i1src_copy ? i1src_copy : i1src, 0,
3239 i0_feeds_i1_n && i0dest_in_i0src);
3240 if ((i0_feeds_i1_n && i1_feeds_i2_n) || i0_feeds_i2_n)
3241 t = subst (t, i0dest, i0src, 0, 0);
3242
3243 XVECEXP (newpat, 0, --total_sets) = t;
3244 }
3245 }
3246
3247 validate_replacement:
3248
3249 /* Note which hard regs this insn has as inputs. */
3250 mark_used_regs_combine (newpat);
3251
3252 /* If recog_for_combine fails, it strips existing clobbers. If we'll
3253 consider splitting this pattern, we might need these clobbers. */
3254 if (i1 && GET_CODE (newpat) == PARALLEL
3255 && GET_CODE (XVECEXP (newpat, 0, XVECLEN (newpat, 0) - 1)) == CLOBBER)
3256 {
3257 int len = XVECLEN (newpat, 0);
3258
3259 newpat_vec_with_clobbers = rtvec_alloc (len);
3260 for (i = 0; i < len; i++)
3261 RTVEC_ELT (newpat_vec_with_clobbers, i) = XVECEXP (newpat, 0, i);
3262 }
3263
3264 /* Is the result of combination a valid instruction? */
3265 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3266
3267 /* If the result isn't valid, see if it is a PARALLEL of two SETs where
3268 the second SET's destination is a register that is unused and isn't
3269 marked as an instruction that might trap in an EH region. In that case,
3270 we just need the first SET. This can occur when simplifying a divmod
3271 insn. We *must* test for this case here because the code below that
3272 splits two independent SETs doesn't handle this case correctly when it
3273 updates the register status.
3274
3275 It's pointless doing this if we originally had two sets, one from
3276 i3, and one from i2. Combining then splitting the parallel results
3277 in the original i2 again plus an invalid insn (which we delete).
3278 The net effect is only to move instructions around, which makes
3279 debug info less accurate.
3280
3281 Also check the case where the first SET's destination is unused.
3282 That would not cause incorrect code, but does cause an unneeded
3283 insn to remain. */
3284
3285 if (insn_code_number < 0
3286 && !(added_sets_2 && i1 == 0)
3287 && GET_CODE (newpat) == PARALLEL
3288 && XVECLEN (newpat, 0) == 2
3289 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
3290 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
3291 && asm_noperands (newpat) < 0)
3292 {
3293 rtx set0 = XVECEXP (newpat, 0, 0);
3294 rtx set1 = XVECEXP (newpat, 0, 1);
3295
3296 if (((REG_P (SET_DEST (set1))
3297 && find_reg_note (i3, REG_UNUSED, SET_DEST (set1)))
3298 || (GET_CODE (SET_DEST (set1)) == SUBREG
3299 && find_reg_note (i3, REG_UNUSED, SUBREG_REG (SET_DEST (set1)))))
3300 && insn_nothrow_p (i3)
3301 && !side_effects_p (SET_SRC (set1)))
3302 {
3303 newpat = set0;
3304 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3305 }
3306
3307 else if (((REG_P (SET_DEST (set0))
3308 && find_reg_note (i3, REG_UNUSED, SET_DEST (set0)))
3309 || (GET_CODE (SET_DEST (set0)) == SUBREG
3310 && find_reg_note (i3, REG_UNUSED,
3311 SUBREG_REG (SET_DEST (set0)))))
3312 && insn_nothrow_p (i3)
3313 && !side_effects_p (SET_SRC (set0)))
3314 {
3315 newpat = set1;
3316 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3317
3318 if (insn_code_number >= 0)
3319 changed_i3_dest = 1;
3320 }
3321 }
3322
3323 /* If we were combining three insns and the result is a simple SET
3324 with no ASM_OPERANDS that wasn't recognized, try to split it into two
3325 insns. There are two ways to do this. It can be split using a
3326 machine-specific method (like when you have an addition of a large
3327 constant) or by combine in the function find_split_point. */
3328
3329 if (i1 && insn_code_number < 0 && GET_CODE (newpat) == SET
3330 && asm_noperands (newpat) < 0)
3331 {
3332 rtx parallel, m_split, *split;
3333
3334 /* See if the MD file can split NEWPAT. If it can't, see if letting it
3335 use I2DEST as a scratch register will help. In the latter case,
3336 convert I2DEST to the mode of the source of NEWPAT if we can. */
3337
3338 m_split = combine_split_insns (newpat, i3);
3339
3340 /* We can only use I2DEST as a scratch reg if it doesn't overlap any
3341 inputs of NEWPAT. */
3342
3343 /* ??? If I2DEST is not safe, and I1DEST exists, then it would be
3344 possible to try that as a scratch reg. This would require adding
3345 more code to make it work though. */
3346
3347 if (m_split == 0 && ! reg_overlap_mentioned_p (i2dest, newpat))
3348 {
3349 enum machine_mode new_mode = GET_MODE (SET_DEST (newpat));
3350
3351 /* First try to split using the original register as a
3352 scratch register. */
3353 parallel = gen_rtx_PARALLEL (VOIDmode,
3354 gen_rtvec (2, newpat,
3355 gen_rtx_CLOBBER (VOIDmode,
3356 i2dest)));
3357 m_split = combine_split_insns (parallel, i3);
3358
3359 /* If that didn't work, try changing the mode of I2DEST if
3360 we can. */
3361 if (m_split == 0
3362 && new_mode != GET_MODE (i2dest)
3363 && new_mode != VOIDmode
3364 && can_change_dest_mode (i2dest, added_sets_2, new_mode))
3365 {
3366 enum machine_mode old_mode = GET_MODE (i2dest);
3367 rtx ni2dest;
3368
3369 if (REGNO (i2dest) < FIRST_PSEUDO_REGISTER)
3370 ni2dest = gen_rtx_REG (new_mode, REGNO (i2dest));
3371 else
3372 {
3373 SUBST_MODE (regno_reg_rtx[REGNO (i2dest)], new_mode);
3374 ni2dest = regno_reg_rtx[REGNO (i2dest)];
3375 }
3376
3377 parallel = (gen_rtx_PARALLEL
3378 (VOIDmode,
3379 gen_rtvec (2, newpat,
3380 gen_rtx_CLOBBER (VOIDmode,
3381 ni2dest))));
3382 m_split = combine_split_insns (parallel, i3);
3383
3384 if (m_split == 0
3385 && REGNO (i2dest) >= FIRST_PSEUDO_REGISTER)
3386 {
3387 struct undo *buf;
3388
3389 adjust_reg_mode (regno_reg_rtx[REGNO (i2dest)], old_mode);
3390 buf = undobuf.undos;
3391 undobuf.undos = buf->next;
3392 buf->next = undobuf.frees;
3393 undobuf.frees = buf;
3394 }
3395 }
3396
3397 i2scratch = m_split != 0;
3398 }
3399
3400 /* If recog_for_combine has discarded clobbers, try to use them
3401 again for the split. */
3402 if (m_split == 0 && newpat_vec_with_clobbers)
3403 {
3404 parallel = gen_rtx_PARALLEL (VOIDmode, newpat_vec_with_clobbers);
3405 m_split = combine_split_insns (parallel, i3);
3406 }
3407
3408 if (m_split && NEXT_INSN (m_split) == NULL_RTX)
3409 {
3410 m_split = PATTERN (m_split);
3411 insn_code_number = recog_for_combine (&m_split, i3, &new_i3_notes);
3412 if (insn_code_number >= 0)
3413 newpat = m_split;
3414 }
3415 else if (m_split && NEXT_INSN (NEXT_INSN (m_split)) == NULL_RTX
3416 && (next_real_insn (i2) == i3
3417 || ! use_crosses_set_p (PATTERN (m_split), DF_INSN_LUID (i2))))
3418 {
3419 rtx i2set, i3set;
3420 rtx newi3pat = PATTERN (NEXT_INSN (m_split));
3421 newi2pat = PATTERN (m_split);
3422
3423 i3set = single_set (NEXT_INSN (m_split));
3424 i2set = single_set (m_split);
3425
3426 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
3427
3428 /* If I2 or I3 has multiple SETs, we won't know how to track
3429 register status, so don't use these insns. If I2's destination
3430 is used between I2 and I3, we also can't use these insns. */
3431
3432 if (i2_code_number >= 0 && i2set && i3set
3433 && (next_real_insn (i2) == i3
3434 || ! reg_used_between_p (SET_DEST (i2set), i2, i3)))
3435 insn_code_number = recog_for_combine (&newi3pat, i3,
3436 &new_i3_notes);
3437 if (insn_code_number >= 0)
3438 newpat = newi3pat;
3439
3440 /* It is possible that both insns now set the destination of I3.
3441 If so, we must show an extra use of it. */
3442
3443 if (insn_code_number >= 0)
3444 {
3445 rtx new_i3_dest = SET_DEST (i3set);
3446 rtx new_i2_dest = SET_DEST (i2set);
3447
3448 while (GET_CODE (new_i3_dest) == ZERO_EXTRACT
3449 || GET_CODE (new_i3_dest) == STRICT_LOW_PART
3450 || GET_CODE (new_i3_dest) == SUBREG)
3451 new_i3_dest = XEXP (new_i3_dest, 0);
3452
3453 while (GET_CODE (new_i2_dest) == ZERO_EXTRACT
3454 || GET_CODE (new_i2_dest) == STRICT_LOW_PART
3455 || GET_CODE (new_i2_dest) == SUBREG)
3456 new_i2_dest = XEXP (new_i2_dest, 0);
3457
3458 if (REG_P (new_i3_dest)
3459 && REG_P (new_i2_dest)
3460 && REGNO (new_i3_dest) == REGNO (new_i2_dest))
3461 INC_REG_N_SETS (REGNO (new_i2_dest), 1);
3462 }
3463 }
3464
3465 /* If we can split it and use I2DEST, go ahead and see if that
3466 helps things be recognized. Verify that none of the registers
3467 are set between I2 and I3. */
3468 if (insn_code_number < 0
3469 && (split = find_split_point (&newpat, i3, false)) != 0
3470 #ifdef HAVE_cc0
3471 && REG_P (i2dest)
3472 #endif
3473 /* We need I2DEST in the proper mode. If it is a hard register
3474 or the only use of a pseudo, we can change its mode.
3475 Make sure we don't change a hard register to have a mode that
3476 isn't valid for it, or change the number of registers. */
3477 && (GET_MODE (*split) == GET_MODE (i2dest)
3478 || GET_MODE (*split) == VOIDmode
3479 || can_change_dest_mode (i2dest, added_sets_2,
3480 GET_MODE (*split)))
3481 && (next_real_insn (i2) == i3
3482 || ! use_crosses_set_p (*split, DF_INSN_LUID (i2)))
3483 /* We can't overwrite I2DEST if its value is still used by
3484 NEWPAT. */
3485 && ! reg_referenced_p (i2dest, newpat))
3486 {
3487 rtx newdest = i2dest;
3488 enum rtx_code split_code = GET_CODE (*split);
3489 enum machine_mode split_mode = GET_MODE (*split);
3490 bool subst_done = false;
3491 newi2pat = NULL_RTX;
3492
3493 i2scratch = true;
3494
3495 /* *SPLIT may be part of I2SRC, so make sure we have the
3496 original expression around for later debug processing.
3497 We should not need I2SRC any more in other cases. */
3498 if (MAY_HAVE_DEBUG_INSNS)
3499 i2src = copy_rtx (i2src);
3500 else
3501 i2src = NULL;
3502
3503 /* Get NEWDEST as a register in the proper mode. We have already
3504 validated that we can do this. */
3505 if (GET_MODE (i2dest) != split_mode && split_mode != VOIDmode)
3506 {
3507 if (REGNO (i2dest) < FIRST_PSEUDO_REGISTER)
3508 newdest = gen_rtx_REG (split_mode, REGNO (i2dest));
3509 else
3510 {
3511 SUBST_MODE (regno_reg_rtx[REGNO (i2dest)], split_mode);
3512 newdest = regno_reg_rtx[REGNO (i2dest)];
3513 }
3514 }
3515
3516 /* If *SPLIT is a (mult FOO (const_int pow2)), convert it to
3517 an ASHIFT. This can occur if it was inside a PLUS and hence
3518 appeared to be a memory address. This is a kludge. */
3519 if (split_code == MULT
3520 && CONST_INT_P (XEXP (*split, 1))
3521 && INTVAL (XEXP (*split, 1)) > 0
3522 && (i = exact_log2 (UINTVAL (XEXP (*split, 1)))) >= 0)
3523 {
3524 SUBST (*split, gen_rtx_ASHIFT (split_mode,
3525 XEXP (*split, 0), GEN_INT (i)));
3526 /* Update split_code because we may not have a multiply
3527 anymore. */
3528 split_code = GET_CODE (*split);
3529 }
3530
3531 #ifdef INSN_SCHEDULING
3532 /* If *SPLIT is a paradoxical SUBREG, when we split it, it should
3533 be written as a ZERO_EXTEND. */
3534 if (split_code == SUBREG && MEM_P (SUBREG_REG (*split)))
3535 {
3536 #ifdef LOAD_EXTEND_OP
3537 /* Or as a SIGN_EXTEND if LOAD_EXTEND_OP says that that's
3538 what it really is. */
3539 if (LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (*split)))
3540 == SIGN_EXTEND)
3541 SUBST (*split, gen_rtx_SIGN_EXTEND (split_mode,
3542 SUBREG_REG (*split)));
3543 else
3544 #endif
3545 SUBST (*split, gen_rtx_ZERO_EXTEND (split_mode,
3546 SUBREG_REG (*split)));
3547 }
3548 #endif
3549
3550 /* Attempt to split binary operators using arithmetic identities. */
3551 if (BINARY_P (SET_SRC (newpat))
3552 && split_mode == GET_MODE (SET_SRC (newpat))
3553 && ! side_effects_p (SET_SRC (newpat)))
3554 {
3555 rtx setsrc = SET_SRC (newpat);
3556 enum machine_mode mode = GET_MODE (setsrc);
3557 enum rtx_code code = GET_CODE (setsrc);
3558 rtx src_op0 = XEXP (setsrc, 0);
3559 rtx src_op1 = XEXP (setsrc, 1);
3560
3561 /* Split "X = Y op Y" as "Z = Y; X = Z op Z". */
3562 if (rtx_equal_p (src_op0, src_op1))
3563 {
3564 newi2pat = gen_rtx_SET (VOIDmode, newdest, src_op0);
3565 SUBST (XEXP (setsrc, 0), newdest);
3566 SUBST (XEXP (setsrc, 1), newdest);
3567 subst_done = true;
3568 }
3569 /* Split "((P op Q) op R) op S" where op is PLUS or MULT. */
3570 else if ((code == PLUS || code == MULT)
3571 && GET_CODE (src_op0) == code
3572 && GET_CODE (XEXP (src_op0, 0)) == code
3573 && (INTEGRAL_MODE_P (mode)
3574 || (FLOAT_MODE_P (mode)
3575 && flag_unsafe_math_optimizations)))
3576 {
3577 rtx p = XEXP (XEXP (src_op0, 0), 0);
3578 rtx q = XEXP (XEXP (src_op0, 0), 1);
3579 rtx r = XEXP (src_op0, 1);
3580 rtx s = src_op1;
3581
3582 /* Split both "((X op Y) op X) op Y" and
3583 "((X op Y) op Y) op X" as "T op T" where T is
3584 "X op Y". */
3585 if ((rtx_equal_p (p,r) && rtx_equal_p (q,s))
3586 || (rtx_equal_p (p,s) && rtx_equal_p (q,r)))
3587 {
3588 newi2pat = gen_rtx_SET (VOIDmode, newdest,
3589 XEXP (src_op0, 0));
3590 SUBST (XEXP (setsrc, 0), newdest);
3591 SUBST (XEXP (setsrc, 1), newdest);
3592 subst_done = true;
3593 }
3594 /* Split "((X op X) op Y) op Y)" as "T op T" where
3595 T is "X op Y". */
3596 else if (rtx_equal_p (p,q) && rtx_equal_p (r,s))
3597 {
3598 rtx tmp = simplify_gen_binary (code, mode, p, r);
3599 newi2pat = gen_rtx_SET (VOIDmode, newdest, tmp);
3600 SUBST (XEXP (setsrc, 0), newdest);
3601 SUBST (XEXP (setsrc, 1), newdest);
3602 subst_done = true;
3603 }
3604 }
3605 }
3606
3607 if (!subst_done)
3608 {
3609 newi2pat = gen_rtx_SET (VOIDmode, newdest, *split);
3610 SUBST (*split, newdest);
3611 }
3612
3613 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
3614
3615 /* recog_for_combine might have added CLOBBERs to newi2pat.
3616 Make sure NEWPAT does not depend on the clobbered regs. */
3617 if (GET_CODE (newi2pat) == PARALLEL)
3618 for (i = XVECLEN (newi2pat, 0) - 1; i >= 0; i--)
3619 if (GET_CODE (XVECEXP (newi2pat, 0, i)) == CLOBBER)
3620 {
3621 rtx reg = XEXP (XVECEXP (newi2pat, 0, i), 0);
3622 if (reg_overlap_mentioned_p (reg, newpat))
3623 {
3624 undo_all ();
3625 return 0;
3626 }
3627 }
3628
3629 /* If the split point was a MULT and we didn't have one before,
3630 don't use one now. */
3631 if (i2_code_number >= 0 && ! (split_code == MULT && ! have_mult))
3632 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3633 }
3634 }
3635
3636 /* Check for a case where we loaded from memory in a narrow mode and
3637 then sign extended it, but we need both registers. In that case,
3638 we have a PARALLEL with both loads from the same memory location.
3639 We can split this into a load from memory followed by a register-register
3640 copy. This saves at least one insn, more if register allocation can
3641 eliminate the copy.
3642
3643 We cannot do this if the destination of the first assignment is a
3644 condition code register or cc0. We eliminate this case by making sure
3645 the SET_DEST and SET_SRC have the same mode.
3646
3647 We cannot do this if the destination of the second assignment is
3648 a register that we have already assumed is zero-extended. Similarly
3649 for a SUBREG of such a register. */
3650
3651 else if (i1 && insn_code_number < 0 && asm_noperands (newpat) < 0
3652 && GET_CODE (newpat) == PARALLEL
3653 && XVECLEN (newpat, 0) == 2
3654 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
3655 && GET_CODE (SET_SRC (XVECEXP (newpat, 0, 0))) == SIGN_EXTEND
3656 && (GET_MODE (SET_DEST (XVECEXP (newpat, 0, 0)))
3657 == GET_MODE (SET_SRC (XVECEXP (newpat, 0, 0))))
3658 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
3659 && rtx_equal_p (SET_SRC (XVECEXP (newpat, 0, 1)),
3660 XEXP (SET_SRC (XVECEXP (newpat, 0, 0)), 0))
3661 && ! use_crosses_set_p (SET_SRC (XVECEXP (newpat, 0, 1)),
3662 DF_INSN_LUID (i2))
3663 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != ZERO_EXTRACT
3664 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != STRICT_LOW_PART
3665 && ! (temp = SET_DEST (XVECEXP (newpat, 0, 1)),
3666 (REG_P (temp)
3667 && VEC_index (reg_stat_type, reg_stat,
3668 REGNO (temp))->nonzero_bits != 0
3669 && GET_MODE_BITSIZE (GET_MODE (temp)) < BITS_PER_WORD
3670 && GET_MODE_BITSIZE (GET_MODE (temp)) < HOST_BITS_PER_INT
3671 && (VEC_index (reg_stat_type, reg_stat,
3672 REGNO (temp))->nonzero_bits
3673 != GET_MODE_MASK (word_mode))))
3674 && ! (GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) == SUBREG
3675 && (temp = SUBREG_REG (SET_DEST (XVECEXP (newpat, 0, 1))),
3676 (REG_P (temp)
3677 && VEC_index (reg_stat_type, reg_stat,
3678 REGNO (temp))->nonzero_bits != 0
3679 && GET_MODE_BITSIZE (GET_MODE (temp)) < BITS_PER_WORD
3680 && GET_MODE_BITSIZE (GET_MODE (temp)) < HOST_BITS_PER_INT
3681 && (VEC_index (reg_stat_type, reg_stat,
3682 REGNO (temp))->nonzero_bits
3683 != GET_MODE_MASK (word_mode)))))
3684 && ! reg_overlap_mentioned_p (SET_DEST (XVECEXP (newpat, 0, 1)),
3685 SET_SRC (XVECEXP (newpat, 0, 1)))
3686 && ! find_reg_note (i3, REG_UNUSED,
3687 SET_DEST (XVECEXP (newpat, 0, 0))))
3688 {
3689 rtx ni2dest;
3690
3691 newi2pat = XVECEXP (newpat, 0, 0);
3692 ni2dest = SET_DEST (XVECEXP (newpat, 0, 0));
3693 newpat = XVECEXP (newpat, 0, 1);
3694 SUBST (SET_SRC (newpat),
3695 gen_lowpart (GET_MODE (SET_SRC (newpat)), ni2dest));
3696 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
3697
3698 if (i2_code_number >= 0)
3699 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3700
3701 if (insn_code_number >= 0)
3702 swap_i2i3 = 1;
3703 }
3704
3705 /* Similarly, check for a case where we have a PARALLEL of two independent
3706 SETs but we started with three insns. In this case, we can do the sets
3707 as two separate insns. This case occurs when some SET allows two
3708 other insns to combine, but the destination of that SET is still live. */
3709
3710 else if (i1 && insn_code_number < 0 && asm_noperands (newpat) < 0
3711 && GET_CODE (newpat) == PARALLEL
3712 && XVECLEN (newpat, 0) == 2
3713 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
3714 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) != ZERO_EXTRACT
3715 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) != STRICT_LOW_PART
3716 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
3717 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != ZERO_EXTRACT
3718 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != STRICT_LOW_PART
3719 && ! reg_referenced_p (SET_DEST (XVECEXP (newpat, 0, 1)),
3720 XVECEXP (newpat, 0, 0))
3721 && ! reg_referenced_p (SET_DEST (XVECEXP (newpat, 0, 0)),
3722 XVECEXP (newpat, 0, 1))
3723 && ! (contains_muldiv (SET_SRC (XVECEXP (newpat, 0, 0)))
3724 && contains_muldiv (SET_SRC (XVECEXP (newpat, 0, 1)))))
3725 {
3726 /* Normally, it doesn't matter which of the two is done first,
3727 but the one that references cc0 can't be the second, and
3728 one which uses any regs/memory set in between i2 and i3 can't
3729 be first. */
3730 if (!use_crosses_set_p (SET_SRC (XVECEXP (newpat, 0, 1)),
3731 DF_INSN_LUID (i2))
3732 #ifdef HAVE_cc0
3733 && !reg_referenced_p (cc0_rtx, XVECEXP (newpat, 0, 0))
3734 #endif
3735 )
3736 {
3737 newi2pat = XVECEXP (newpat, 0, 1);
3738 newpat = XVECEXP (newpat, 0, 0);
3739 }
3740 else if (!use_crosses_set_p (SET_SRC (XVECEXP (newpat, 0, 0)),
3741 DF_INSN_LUID (i2))
3742 #ifdef HAVE_cc0
3743 && !reg_referenced_p (cc0_rtx, XVECEXP (newpat, 0, 1))
3744 #endif
3745 )
3746 {
3747 newi2pat = XVECEXP (newpat, 0, 0);
3748 newpat = XVECEXP (newpat, 0, 1);
3749 }
3750 else
3751 {
3752 undo_all ();
3753 return 0;
3754 }
3755
3756 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
3757
3758 if (i2_code_number >= 0)
3759 {
3760 /* recog_for_combine might have added CLOBBERs to newi2pat.
3761 Make sure NEWPAT does not depend on the clobbered regs. */
3762 if (GET_CODE (newi2pat) == PARALLEL)
3763 {
3764 for (i = XVECLEN (newi2pat, 0) - 1; i >= 0; i--)
3765 if (GET_CODE (XVECEXP (newi2pat, 0, i)) == CLOBBER)
3766 {
3767 rtx reg = XEXP (XVECEXP (newi2pat, 0, i), 0);
3768 if (reg_overlap_mentioned_p (reg, newpat))
3769 {
3770 undo_all ();
3771 return 0;
3772 }
3773 }
3774 }
3775
3776 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3777 }
3778 }
3779
3780 /* If it still isn't recognized, fail and change things back the way they
3781 were. */
3782 if ((insn_code_number < 0
3783 /* Is the result a reasonable ASM_OPERANDS? */
3784 && (! check_asm_operands (newpat) || added_sets_1 || added_sets_2)))
3785 {
3786 undo_all ();
3787 return 0;
3788 }
3789
3790 /* If we had to change another insn, make sure it is valid also. */
3791 if (undobuf.other_insn)
3792 {
3793 CLEAR_HARD_REG_SET (newpat_used_regs);
3794
3795 other_pat = PATTERN (undobuf.other_insn);
3796 other_code_number = recog_for_combine (&other_pat, undobuf.other_insn,
3797 &new_other_notes);
3798
3799 if (other_code_number < 0 && ! check_asm_operands (other_pat))
3800 {
3801 undo_all ();
3802 return 0;
3803 }
3804 }
3805
3806 #ifdef HAVE_cc0
3807 /* If I2 is the CC0 setter and I3 is the CC0 user then check whether
3808 they are adjacent to each other or not. */
3809 {
3810 rtx p = prev_nonnote_insn (i3);
3811 if (p && p != i2 && NONJUMP_INSN_P (p) && newi2pat
3812 && sets_cc0_p (newi2pat))
3813 {
3814 undo_all ();
3815 return 0;
3816 }
3817 }
3818 #endif
3819
3820 /* Only allow this combination if insn_rtx_costs reports that the
3821 replacement instructions are cheaper than the originals. */
3822 if (!combine_validate_cost (i0, i1, i2, i3, newpat, newi2pat, other_pat))
3823 {
3824 undo_all ();
3825 return 0;
3826 }
3827
3828 if (MAY_HAVE_DEBUG_INSNS)
3829 {
3830 struct undo *undo;
3831
3832 for (undo = undobuf.undos; undo; undo = undo->next)
3833 if (undo->kind == UNDO_MODE)
3834 {
3835 rtx reg = *undo->where.r;
3836 enum machine_mode new_mode = GET_MODE (reg);
3837 enum machine_mode old_mode = undo->old_contents.m;
3838
3839 /* Temporarily revert mode back. */
3840 adjust_reg_mode (reg, old_mode);
3841
3842 if (reg == i2dest && i2scratch)
3843 {
3844 /* If we used i2dest as a scratch register with a
3845 different mode, substitute it for the original
3846 i2src while its original mode is temporarily
3847 restored, and then clear i2scratch so that we don't
3848 do it again later. */
3849 propagate_for_debug (i2, i3, reg, i2src);
3850 i2scratch = false;
3851 /* Put back the new mode. */
3852 adjust_reg_mode (reg, new_mode);
3853 }
3854 else
3855 {
3856 rtx tempreg = gen_raw_REG (old_mode, REGNO (reg));
3857 rtx first, last;
3858
3859 if (reg == i2dest)
3860 {
3861 first = i2;
3862 last = i3;
3863 }
3864 else
3865 {
3866 first = i3;
3867 last = undobuf.other_insn;
3868 gcc_assert (last);
3869 }
3870
3871 /* We're dealing with a reg that changed mode but not
3872 meaning, so we want to turn it into a subreg for
3873 the new mode. However, because of REG sharing and
3874 because its mode had already changed, we have to do
3875 it in two steps. First, replace any debug uses of
3876 reg, with its original mode temporarily restored,
3877 with this copy we have created; then, replace the
3878 copy with the SUBREG of the original shared reg,
3879 once again changed to the new mode. */
3880 propagate_for_debug (first, last, reg, tempreg);
3881 adjust_reg_mode (reg, new_mode);
3882 propagate_for_debug (first, last, tempreg,
3883 lowpart_subreg (old_mode, reg, new_mode));
3884 }
3885 }
3886 }
3887
3888 /* If we will be able to accept this, we have made a
3889 change to the destination of I3. This requires us to
3890 do a few adjustments. */
3891
3892 if (changed_i3_dest)
3893 {
3894 PATTERN (i3) = newpat;
3895 adjust_for_new_dest (i3);
3896 }
3897
3898 /* We now know that we can do this combination. Merge the insns and
3899 update the status of registers and LOG_LINKS. */
3900
3901 if (undobuf.other_insn)
3902 {
3903 rtx note, next;
3904
3905 PATTERN (undobuf.other_insn) = other_pat;
3906
3907 /* If any of the notes in OTHER_INSN were REG_UNUSED, ensure that they
3908 are still valid. Then add any non-duplicate notes added by
3909 recog_for_combine. */
3910 for (note = REG_NOTES (undobuf.other_insn); note; note = next)
3911 {
3912 next = XEXP (note, 1);
3913
3914 if (REG_NOTE_KIND (note) == REG_UNUSED
3915 && ! reg_set_p (XEXP (note, 0), PATTERN (undobuf.other_insn)))
3916 remove_note (undobuf.other_insn, note);
3917 }
3918
3919 distribute_notes (new_other_notes, undobuf.other_insn,
3920 undobuf.other_insn, NULL_RTX, NULL_RTX, NULL_RTX,
3921 NULL_RTX);
3922 }
3923
3924 if (swap_i2i3)
3925 {
3926 rtx insn;
3927 rtx link;
3928 rtx ni2dest;
3929
3930 /* I3 now uses what used to be its destination and which is now
3931 I2's destination. This requires us to do a few adjustments. */
3932 PATTERN (i3) = newpat;
3933 adjust_for_new_dest (i3);
3934
3935 /* We need a LOG_LINK from I3 to I2. But we used to have one,
3936 so we still will.
3937
3938 However, some later insn might be using I2's dest and have
3939 a LOG_LINK pointing at I3. We must remove this link.
3940 The simplest way to remove the link is to point it at I1,
3941 which we know will be a NOTE. */
3942
3943 /* newi2pat is usually a SET here; however, recog_for_combine might
3944 have added some clobbers. */
3945 if (GET_CODE (newi2pat) == PARALLEL)
3946 ni2dest = SET_DEST (XVECEXP (newi2pat, 0, 0));
3947 else
3948 ni2dest = SET_DEST (newi2pat);
3949
3950 for (insn = NEXT_INSN (i3);
3951 insn && (this_basic_block->next_bb == EXIT_BLOCK_PTR
3952 || insn != BB_HEAD (this_basic_block->next_bb));
3953 insn = NEXT_INSN (insn))
3954 {
3955 if (INSN_P (insn) && reg_referenced_p (ni2dest, PATTERN (insn)))
3956 {
3957 for (link = LOG_LINKS (insn); link;
3958 link = XEXP (link, 1))
3959 if (XEXP (link, 0) == i3)
3960 XEXP (link, 0) = i1;
3961
3962 break;
3963 }
3964 }
3965 }
3966
3967 {
3968 rtx i3notes, i2notes, i1notes = 0, i0notes = 0;
3969 rtx i3links, i2links, i1links = 0, i0links = 0;
3970 rtx midnotes = 0;
3971 int from_luid;
3972 unsigned int regno;
3973 /* Compute which registers we expect to eliminate. newi2pat may be setting
3974 either i3dest or i2dest, so we must check it. Also, i1dest may be the
3975 same as i3dest, in which case newi2pat may be setting i1dest. */
3976 rtx elim_i2 = ((newi2pat && reg_set_p (i2dest, newi2pat))
3977 || i2dest_in_i2src || i2dest_in_i1src || i2dest_in_i0src
3978 || !i2dest_killed
3979 ? 0 : i2dest);
3980 rtx elim_i1 = (i1 == 0 || i1dest_in_i1src || i1dest_in_i0src
3981 || (newi2pat && reg_set_p (i1dest, newi2pat))
3982 || !i1dest_killed
3983 ? 0 : i1dest);
3984 rtx elim_i0 = (i0 == 0 || i0dest_in_i0src
3985 || (newi2pat && reg_set_p (i0dest, newi2pat))
3986 || !i0dest_killed
3987 ? 0 : i0dest);
3988
3989 /* Get the old REG_NOTES and LOG_LINKS from all our insns and
3990 clear them. */
3991 i3notes = REG_NOTES (i3), i3links = LOG_LINKS (i3);
3992 i2notes = REG_NOTES (i2), i2links = LOG_LINKS (i2);
3993 if (i1)
3994 i1notes = REG_NOTES (i1), i1links = LOG_LINKS (i1);
3995 if (i0)
3996 i0notes = REG_NOTES (i0), i0links = LOG_LINKS (i0);
3997
3998 /* Ensure that we do not have something that should not be shared but
3999 occurs multiple times in the new insns. Check this by first
4000 resetting all the `used' flags and then copying anything is shared. */
4001
4002 reset_used_flags (i3notes);
4003 reset_used_flags (i2notes);
4004 reset_used_flags (i1notes);
4005 reset_used_flags (i0notes);
4006 reset_used_flags (newpat);
4007 reset_used_flags (newi2pat);
4008 if (undobuf.other_insn)
4009 reset_used_flags (PATTERN (undobuf.other_insn));
4010
4011 i3notes = copy_rtx_if_shared (i3notes);
4012 i2notes = copy_rtx_if_shared (i2notes);
4013 i1notes = copy_rtx_if_shared (i1notes);
4014 i0notes = copy_rtx_if_shared (i0notes);
4015 newpat = copy_rtx_if_shared (newpat);
4016 newi2pat = copy_rtx_if_shared (newi2pat);
4017 if (undobuf.other_insn)
4018 reset_used_flags (PATTERN (undobuf.other_insn));
4019
4020 INSN_CODE (i3) = insn_code_number;
4021 PATTERN (i3) = newpat;
4022
4023 if (CALL_P (i3) && CALL_INSN_FUNCTION_USAGE (i3))
4024 {
4025 rtx call_usage = CALL_INSN_FUNCTION_USAGE (i3);
4026
4027 reset_used_flags (call_usage);
4028 call_usage = copy_rtx (call_usage);
4029
4030 if (substed_i2)
4031 {
4032 /* I2SRC must still be meaningful at this point. Some splitting
4033 operations can invalidate I2SRC, but those operations do not
4034 apply to calls. */
4035 gcc_assert (i2src);
4036 replace_rtx (call_usage, i2dest, i2src);
4037 }
4038
4039 if (substed_i1)
4040 replace_rtx (call_usage, i1dest, i1src);
4041 if (substed_i0)
4042 replace_rtx (call_usage, i0dest, i0src);
4043
4044 CALL_INSN_FUNCTION_USAGE (i3) = call_usage;
4045 }
4046
4047 if (undobuf.other_insn)
4048 INSN_CODE (undobuf.other_insn) = other_code_number;
4049
4050 /* We had one special case above where I2 had more than one set and
4051 we replaced a destination of one of those sets with the destination
4052 of I3. In that case, we have to update LOG_LINKS of insns later
4053 in this basic block. Note that this (expensive) case is rare.
4054
4055 Also, in this case, we must pretend that all REG_NOTEs for I2
4056 actually came from I3, so that REG_UNUSED notes from I2 will be
4057 properly handled. */
4058
4059 if (i3_subst_into_i2)
4060 {
4061 for (i = 0; i < XVECLEN (PATTERN (i2), 0); i++)
4062 if ((GET_CODE (XVECEXP (PATTERN (i2), 0, i)) == SET
4063 || GET_CODE (XVECEXP (PATTERN (i2), 0, i)) == CLOBBER)
4064 && REG_P (SET_DEST (XVECEXP (PATTERN (i2), 0, i)))
4065 && SET_DEST (XVECEXP (PATTERN (i2), 0, i)) != i2dest
4066 && ! find_reg_note (i2, REG_UNUSED,
4067 SET_DEST (XVECEXP (PATTERN (i2), 0, i))))
4068 for (temp = NEXT_INSN (i2);
4069 temp && (this_basic_block->next_bb == EXIT_BLOCK_PTR
4070 || BB_HEAD (this_basic_block) != temp);
4071 temp = NEXT_INSN (temp))
4072 if (temp != i3 && INSN_P (temp))
4073 for (link = LOG_LINKS (temp); link; link = XEXP (link, 1))
4074 if (XEXP (link, 0) == i2)
4075 XEXP (link, 0) = i3;
4076
4077 if (i3notes)
4078 {
4079 rtx link = i3notes;
4080 while (XEXP (link, 1))
4081 link = XEXP (link, 1);
4082 XEXP (link, 1) = i2notes;
4083 }
4084 else
4085 i3notes = i2notes;
4086 i2notes = 0;
4087 }
4088
4089 LOG_LINKS (i3) = 0;
4090 REG_NOTES (i3) = 0;
4091 LOG_LINKS (i2) = 0;
4092 REG_NOTES (i2) = 0;
4093
4094 if (newi2pat)
4095 {
4096 if (MAY_HAVE_DEBUG_INSNS && i2scratch)
4097 propagate_for_debug (i2, i3, i2dest, i2src);
4098 INSN_CODE (i2) = i2_code_number;
4099 PATTERN (i2) = newi2pat;
4100 }
4101 else
4102 {
4103 if (MAY_HAVE_DEBUG_INSNS && i2src)
4104 propagate_for_debug (i2, i3, i2dest, i2src);
4105 SET_INSN_DELETED (i2);
4106 }
4107
4108 if (i1)
4109 {
4110 LOG_LINKS (i1) = 0;
4111 REG_NOTES (i1) = 0;
4112 if (MAY_HAVE_DEBUG_INSNS)
4113 propagate_for_debug (i1, i3, i1dest, i1src);
4114 SET_INSN_DELETED (i1);
4115 }
4116
4117 if (i0)
4118 {
4119 LOG_LINKS (i0) = 0;
4120 REG_NOTES (i0) = 0;
4121 if (MAY_HAVE_DEBUG_INSNS)
4122 propagate_for_debug (i0, i3, i0dest, i0src);
4123 SET_INSN_DELETED (i0);
4124 }
4125
4126 /* Get death notes for everything that is now used in either I3 or
4127 I2 and used to die in a previous insn. If we built two new
4128 patterns, move from I1 to I2 then I2 to I3 so that we get the
4129 proper movement on registers that I2 modifies. */
4130
4131 if (i0)
4132 from_luid = DF_INSN_LUID (i0);
4133 else if (i1)
4134 from_luid = DF_INSN_LUID (i1);
4135 else
4136 from_luid = DF_INSN_LUID (i2);
4137 if (newi2pat)
4138 move_deaths (newi2pat, NULL_RTX, from_luid, i2, &midnotes);
4139 move_deaths (newpat, newi2pat, from_luid, i3, &midnotes);
4140
4141 /* Distribute all the LOG_LINKS and REG_NOTES from I1, I2, and I3. */
4142 if (i3notes)
4143 distribute_notes (i3notes, i3, i3, newi2pat ? i2 : NULL_RTX,
4144 elim_i2, elim_i1, elim_i0);
4145 if (i2notes)
4146 distribute_notes (i2notes, i2, i3, newi2pat ? i2 : NULL_RTX,
4147 elim_i2, elim_i1, elim_i0);
4148 if (i1notes)
4149 distribute_notes (i1notes, i1, i3, newi2pat ? i2 : NULL_RTX,
4150 elim_i2, elim_i1, elim_i0);
4151 if (i0notes)
4152 distribute_notes (i0notes, i0, i3, newi2pat ? i2 : NULL_RTX,
4153 elim_i2, elim_i1, elim_i0);
4154 if (midnotes)
4155 distribute_notes (midnotes, NULL_RTX, i3, newi2pat ? i2 : NULL_RTX,
4156 elim_i2, elim_i1, elim_i0);
4157
4158 /* Distribute any notes added to I2 or I3 by recog_for_combine. We
4159 know these are REG_UNUSED and want them to go to the desired insn,
4160 so we always pass it as i3. */
4161
4162 if (newi2pat && new_i2_notes)
4163 distribute_notes (new_i2_notes, i2, i2, NULL_RTX, NULL_RTX, NULL_RTX,
4164 NULL_RTX);
4165
4166 if (new_i3_notes)
4167 distribute_notes (new_i3_notes, i3, i3, NULL_RTX, NULL_RTX, NULL_RTX,
4168 NULL_RTX);
4169
4170 /* If I3DEST was used in I3SRC, it really died in I3. We may need to
4171 put a REG_DEAD note for it somewhere. If NEWI2PAT exists and sets
4172 I3DEST, the death must be somewhere before I2, not I3. If we passed I3
4173 in that case, it might delete I2. Similarly for I2 and I1.
4174 Show an additional death due to the REG_DEAD note we make here. If
4175 we discard it in distribute_notes, we will decrement it again. */
4176
4177 if (i3dest_killed)
4178 {
4179 if (newi2pat && reg_set_p (i3dest_killed, newi2pat))
4180 distribute_notes (alloc_reg_note (REG_DEAD, i3dest_killed,
4181 NULL_RTX),
4182 NULL_RTX, i2, NULL_RTX, elim_i2, elim_i1, elim_i0);
4183 else
4184 distribute_notes (alloc_reg_note (REG_DEAD, i3dest_killed,
4185 NULL_RTX),
4186 NULL_RTX, i3, newi2pat ? i2 : NULL_RTX,
4187 elim_i2, elim_i1, elim_i0);
4188 }
4189
4190 if (i2dest_in_i2src)
4191 {
4192 rtx new_note = alloc_reg_note (REG_DEAD, i2dest, NULL_RTX);
4193 if (newi2pat && reg_set_p (i2dest, newi2pat))
4194 distribute_notes (new_note, NULL_RTX, i2, NULL_RTX, NULL_RTX,
4195 NULL_RTX, NULL_RTX);
4196 else
4197 distribute_notes (new_note, NULL_RTX, i3, newi2pat ? i2 : NULL_RTX,
4198 NULL_RTX, NULL_RTX, NULL_RTX);
4199 }
4200
4201 if (i1dest_in_i1src)
4202 {
4203 rtx new_note = alloc_reg_note (REG_DEAD, i1dest, NULL_RTX);
4204 if (newi2pat && reg_set_p (i1dest, newi2pat))
4205 distribute_notes (new_note, NULL_RTX, i2, NULL_RTX, NULL_RTX,
4206 NULL_RTX, NULL_RTX);
4207 else
4208 distribute_notes (new_note, NULL_RTX, i3, newi2pat ? i2 : NULL_RTX,
4209 NULL_RTX, NULL_RTX, NULL_RTX);
4210 }
4211
4212 if (i0dest_in_i0src)
4213 {
4214 rtx new_note = alloc_reg_note (REG_DEAD, i0dest, NULL_RTX);
4215 if (newi2pat && reg_set_p (i0dest, newi2pat))
4216 distribute_notes (new_note, NULL_RTX, i2, NULL_RTX, NULL_RTX,
4217 NULL_RTX, NULL_RTX);
4218 else
4219 distribute_notes (new_note, NULL_RTX, i3, newi2pat ? i2 : NULL_RTX,
4220 NULL_RTX, NULL_RTX, NULL_RTX);
4221 }
4222
4223 distribute_links (i3links);
4224 distribute_links (i2links);
4225 distribute_links (i1links);
4226 distribute_links (i0links);
4227
4228 if (REG_P (i2dest))
4229 {
4230 rtx link;
4231 rtx i2_insn = 0, i2_val = 0, set;
4232
4233 /* The insn that used to set this register doesn't exist, and
4234 this life of the register may not exist either. See if one of
4235 I3's links points to an insn that sets I2DEST. If it does,
4236 that is now the last known value for I2DEST. If we don't update
4237 this and I2 set the register to a value that depended on its old
4238 contents, we will get confused. If this insn is used, thing
4239 will be set correctly in combine_instructions. */
4240
4241 for (link = LOG_LINKS (i3); link; link = XEXP (link, 1))
4242 if ((set = single_set (XEXP (link, 0))) != 0
4243 && rtx_equal_p (i2dest, SET_DEST (set)))
4244 i2_insn = XEXP (link, 0), i2_val = SET_SRC (set);
4245
4246 record_value_for_reg (i2dest, i2_insn, i2_val);
4247
4248 /* If the reg formerly set in I2 died only once and that was in I3,
4249 zero its use count so it won't make `reload' do any work. */
4250 if (! added_sets_2
4251 && (newi2pat == 0 || ! reg_mentioned_p (i2dest, newi2pat))
4252 && ! i2dest_in_i2src)
4253 {
4254 regno = REGNO (i2dest);
4255 INC_REG_N_SETS (regno, -1);
4256 }
4257 }
4258
4259 if (i1 && REG_P (i1dest))
4260 {
4261 rtx link;
4262 rtx i1_insn = 0, i1_val = 0, set;
4263
4264 for (link = LOG_LINKS (i3); link; link = XEXP (link, 1))
4265 if ((set = single_set (XEXP (link, 0))) != 0
4266 && rtx_equal_p (i1dest, SET_DEST (set)))
4267 i1_insn = XEXP (link, 0), i1_val = SET_SRC (set);
4268
4269 record_value_for_reg (i1dest, i1_insn, i1_val);
4270
4271 regno = REGNO (i1dest);
4272 if (! added_sets_1 && ! i1dest_in_i1src)
4273 INC_REG_N_SETS (regno, -1);
4274 }
4275
4276 if (i0 && REG_P (i0dest))
4277 {
4278 rtx link;
4279 rtx i0_insn = 0, i0_val = 0, set;
4280
4281 for (link = LOG_LINKS (i3); link; link = XEXP (link, 1))
4282 if ((set = single_set (XEXP (link, 0))) != 0
4283 && rtx_equal_p (i0dest, SET_DEST (set)))
4284 i0_insn = XEXP (link, 0), i0_val = SET_SRC (set);
4285
4286 record_value_for_reg (i0dest, i0_insn, i0_val);
4287
4288 regno = REGNO (i0dest);
4289 if (! added_sets_0 && ! i0dest_in_i0src)
4290 INC_REG_N_SETS (regno, -1);
4291 }
4292
4293 /* Update reg_stat[].nonzero_bits et al for any changes that may have
4294 been made to this insn. The order of
4295 set_nonzero_bits_and_sign_copies() is important. Because newi2pat
4296 can affect nonzero_bits of newpat */
4297 if (newi2pat)
4298 note_stores (newi2pat, set_nonzero_bits_and_sign_copies, NULL);
4299 note_stores (newpat, set_nonzero_bits_and_sign_copies, NULL);
4300 }
4301
4302 if (undobuf.other_insn != NULL_RTX)
4303 {
4304 if (dump_file)
4305 {
4306 fprintf (dump_file, "modifying other_insn ");
4307 dump_insn_slim (dump_file, undobuf.other_insn);
4308 }
4309 df_insn_rescan (undobuf.other_insn);
4310 }
4311
4312 if (i0 && !(NOTE_P(i0) && (NOTE_KIND (i0) == NOTE_INSN_DELETED)))
4313 {
4314 if (dump_file)
4315 {
4316 fprintf (dump_file, "modifying insn i1 ");
4317 dump_insn_slim (dump_file, i0);
4318 }
4319 df_insn_rescan (i0);
4320 }
4321
4322 if (i1 && !(NOTE_P(i1) && (NOTE_KIND (i1) == NOTE_INSN_DELETED)))
4323 {
4324 if (dump_file)
4325 {
4326 fprintf (dump_file, "modifying insn i1 ");
4327 dump_insn_slim (dump_file, i1);
4328 }
4329 df_insn_rescan (i1);
4330 }
4331
4332 if (i2 && !(NOTE_P(i2) && (NOTE_KIND (i2) == NOTE_INSN_DELETED)))
4333 {
4334 if (dump_file)
4335 {
4336 fprintf (dump_file, "modifying insn i2 ");
4337 dump_insn_slim (dump_file, i2);
4338 }
4339 df_insn_rescan (i2);
4340 }
4341
4342 if (i3 && !(NOTE_P(i3) && (NOTE_KIND (i3) == NOTE_INSN_DELETED)))
4343 {
4344 if (dump_file)
4345 {
4346 fprintf (dump_file, "modifying insn i3 ");
4347 dump_insn_slim (dump_file, i3);
4348 }
4349 df_insn_rescan (i3);
4350 }
4351
4352 /* Set new_direct_jump_p if a new return or simple jump instruction
4353 has been created. Adjust the CFG accordingly. */
4354
4355 if (returnjump_p (i3) || any_uncondjump_p (i3))
4356 {
4357 *new_direct_jump_p = 1;
4358 mark_jump_label (PATTERN (i3), i3, 0);
4359 update_cfg_for_uncondjump (i3);
4360 }
4361
4362 if (undobuf.other_insn != NULL_RTX
4363 && (returnjump_p (undobuf.other_insn)
4364 || any_uncondjump_p (undobuf.other_insn)))
4365 {
4366 *new_direct_jump_p = 1;
4367 update_cfg_for_uncondjump (undobuf.other_insn);
4368 }
4369
4370 /* A noop might also need cleaning up of CFG, if it comes from the
4371 simplification of a jump. */
4372 if (GET_CODE (newpat) == SET
4373 && SET_SRC (newpat) == pc_rtx
4374 && SET_DEST (newpat) == pc_rtx)
4375 {
4376 *new_direct_jump_p = 1;
4377 update_cfg_for_uncondjump (i3);
4378 }
4379
4380 combine_successes++;
4381 undo_commit ();
4382
4383 if (added_links_insn
4384 && (newi2pat == 0 || DF_INSN_LUID (added_links_insn) < DF_INSN_LUID (i2))
4385 && DF_INSN_LUID (added_links_insn) < DF_INSN_LUID (i3))
4386 return added_links_insn;
4387 else
4388 return newi2pat ? i2 : i3;
4389 }
4390 \f
4391 /* Undo all the modifications recorded in undobuf. */
4392
4393 static void
4394 undo_all (void)
4395 {
4396 struct undo *undo, *next;
4397
4398 for (undo = undobuf.undos; undo; undo = next)
4399 {
4400 next = undo->next;
4401 switch (undo->kind)
4402 {
4403 case UNDO_RTX:
4404 *undo->where.r = undo->old_contents.r;
4405 break;
4406 case UNDO_INT:
4407 *undo->where.i = undo->old_contents.i;
4408 break;
4409 case UNDO_MODE:
4410 adjust_reg_mode (*undo->where.r, undo->old_contents.m);
4411 break;
4412 default:
4413 gcc_unreachable ();
4414 }
4415
4416 undo->next = undobuf.frees;
4417 undobuf.frees = undo;
4418 }
4419
4420 undobuf.undos = 0;
4421 }
4422
4423 /* We've committed to accepting the changes we made. Move all
4424 of the undos to the free list. */
4425
4426 static void
4427 undo_commit (void)
4428 {
4429 struct undo *undo, *next;
4430
4431 for (undo = undobuf.undos; undo; undo = next)
4432 {
4433 next = undo->next;
4434 undo->next = undobuf.frees;
4435 undobuf.frees = undo;
4436 }
4437 undobuf.undos = 0;
4438 }
4439 \f
4440 /* Find the innermost point within the rtx at LOC, possibly LOC itself,
4441 where we have an arithmetic expression and return that point. LOC will
4442 be inside INSN.
4443
4444 try_combine will call this function to see if an insn can be split into
4445 two insns. */
4446
4447 static rtx *
4448 find_split_point (rtx *loc, rtx insn, bool set_src)
4449 {
4450 rtx x = *loc;
4451 enum rtx_code code = GET_CODE (x);
4452 rtx *split;
4453 unsigned HOST_WIDE_INT len = 0;
4454 HOST_WIDE_INT pos = 0;
4455 int unsignedp = 0;
4456 rtx inner = NULL_RTX;
4457
4458 /* First special-case some codes. */
4459 switch (code)
4460 {
4461 case SUBREG:
4462 #ifdef INSN_SCHEDULING
4463 /* If we are making a paradoxical SUBREG invalid, it becomes a split
4464 point. */
4465 if (MEM_P (SUBREG_REG (x)))
4466 return loc;
4467 #endif
4468 return find_split_point (&SUBREG_REG (x), insn, false);
4469
4470 case MEM:
4471 #ifdef HAVE_lo_sum
4472 /* If we have (mem (const ..)) or (mem (symbol_ref ...)), split it
4473 using LO_SUM and HIGH. */
4474 if (GET_CODE (XEXP (x, 0)) == CONST
4475 || GET_CODE (XEXP (x, 0)) == SYMBOL_REF)
4476 {
4477 enum machine_mode address_mode
4478 = targetm.addr_space.address_mode (MEM_ADDR_SPACE (x));
4479
4480 SUBST (XEXP (x, 0),
4481 gen_rtx_LO_SUM (address_mode,
4482 gen_rtx_HIGH (address_mode, XEXP (x, 0)),
4483 XEXP (x, 0)));
4484 return &XEXP (XEXP (x, 0), 0);
4485 }
4486 #endif
4487
4488 /* If we have a PLUS whose second operand is a constant and the
4489 address is not valid, perhaps will can split it up using
4490 the machine-specific way to split large constants. We use
4491 the first pseudo-reg (one of the virtual regs) as a placeholder;
4492 it will not remain in the result. */
4493 if (GET_CODE (XEXP (x, 0)) == PLUS
4494 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
4495 && ! memory_address_addr_space_p (GET_MODE (x), XEXP (x, 0),
4496 MEM_ADDR_SPACE (x)))
4497 {
4498 rtx reg = regno_reg_rtx[FIRST_PSEUDO_REGISTER];
4499 rtx seq = combine_split_insns (gen_rtx_SET (VOIDmode, reg,
4500 XEXP (x, 0)),
4501 subst_insn);
4502
4503 /* This should have produced two insns, each of which sets our
4504 placeholder. If the source of the second is a valid address,
4505 we can make put both sources together and make a split point
4506 in the middle. */
4507
4508 if (seq
4509 && NEXT_INSN (seq) != NULL_RTX
4510 && NEXT_INSN (NEXT_INSN (seq)) == NULL_RTX
4511 && NONJUMP_INSN_P (seq)
4512 && GET_CODE (PATTERN (seq)) == SET
4513 && SET_DEST (PATTERN (seq)) == reg
4514 && ! reg_mentioned_p (reg,
4515 SET_SRC (PATTERN (seq)))
4516 && NONJUMP_INSN_P (NEXT_INSN (seq))
4517 && GET_CODE (PATTERN (NEXT_INSN (seq))) == SET
4518 && SET_DEST (PATTERN (NEXT_INSN (seq))) == reg
4519 && memory_address_addr_space_p
4520 (GET_MODE (x), SET_SRC (PATTERN (NEXT_INSN (seq))),
4521 MEM_ADDR_SPACE (x)))
4522 {
4523 rtx src1 = SET_SRC (PATTERN (seq));
4524 rtx src2 = SET_SRC (PATTERN (NEXT_INSN (seq)));
4525
4526 /* Replace the placeholder in SRC2 with SRC1. If we can
4527 find where in SRC2 it was placed, that can become our
4528 split point and we can replace this address with SRC2.
4529 Just try two obvious places. */
4530
4531 src2 = replace_rtx (src2, reg, src1);
4532 split = 0;
4533 if (XEXP (src2, 0) == src1)
4534 split = &XEXP (src2, 0);
4535 else if (GET_RTX_FORMAT (GET_CODE (XEXP (src2, 0)))[0] == 'e'
4536 && XEXP (XEXP (src2, 0), 0) == src1)
4537 split = &XEXP (XEXP (src2, 0), 0);
4538
4539 if (split)
4540 {
4541 SUBST (XEXP (x, 0), src2);
4542 return split;
4543 }
4544 }
4545
4546 /* If that didn't work, perhaps the first operand is complex and
4547 needs to be computed separately, so make a split point there.
4548 This will occur on machines that just support REG + CONST
4549 and have a constant moved through some previous computation. */
4550
4551 else if (!OBJECT_P (XEXP (XEXP (x, 0), 0))
4552 && ! (GET_CODE (XEXP (XEXP (x, 0), 0)) == SUBREG
4553 && OBJECT_P (SUBREG_REG (XEXP (XEXP (x, 0), 0)))))
4554 return &XEXP (XEXP (x, 0), 0);
4555 }
4556
4557 /* If we have a PLUS whose first operand is complex, try computing it
4558 separately by making a split there. */
4559 if (GET_CODE (XEXP (x, 0)) == PLUS
4560 && ! memory_address_addr_space_p (GET_MODE (x), XEXP (x, 0),
4561 MEM_ADDR_SPACE (x))
4562 && ! OBJECT_P (XEXP (XEXP (x, 0), 0))
4563 && ! (GET_CODE (XEXP (XEXP (x, 0), 0)) == SUBREG
4564 && OBJECT_P (SUBREG_REG (XEXP (XEXP (x, 0), 0)))))
4565 return &XEXP (XEXP (x, 0), 0);
4566 break;
4567
4568 case SET:
4569 #ifdef HAVE_cc0
4570 /* If SET_DEST is CC0 and SET_SRC is not an operand, a COMPARE, or a
4571 ZERO_EXTRACT, the most likely reason why this doesn't match is that
4572 we need to put the operand into a register. So split at that
4573 point. */
4574
4575 if (SET_DEST (x) == cc0_rtx
4576 && GET_CODE (SET_SRC (x)) != COMPARE
4577 && GET_CODE (SET_SRC (x)) != ZERO_EXTRACT
4578 && !OBJECT_P (SET_SRC (x))
4579 && ! (GET_CODE (SET_SRC (x)) == SUBREG
4580 && OBJECT_P (SUBREG_REG (SET_SRC (x)))))
4581 return &SET_SRC (x);
4582 #endif
4583
4584 /* See if we can split SET_SRC as it stands. */
4585 split = find_split_point (&SET_SRC (x), insn, true);
4586 if (split && split != &SET_SRC (x))
4587 return split;
4588
4589 /* See if we can split SET_DEST as it stands. */
4590 split = find_split_point (&SET_DEST (x), insn, false);
4591 if (split && split != &SET_DEST (x))
4592 return split;
4593
4594 /* See if this is a bitfield assignment with everything constant. If
4595 so, this is an IOR of an AND, so split it into that. */
4596 if (GET_CODE (SET_DEST (x)) == ZERO_EXTRACT
4597 && (GET_MODE_BITSIZE (GET_MODE (XEXP (SET_DEST (x), 0)))
4598 <= HOST_BITS_PER_WIDE_INT)
4599 && CONST_INT_P (XEXP (SET_DEST (x), 1))
4600 && CONST_INT_P (XEXP (SET_DEST (x), 2))
4601 && CONST_INT_P (SET_SRC (x))
4602 && ((INTVAL (XEXP (SET_DEST (x), 1))
4603 + INTVAL (XEXP (SET_DEST (x), 2)))
4604 <= GET_MODE_BITSIZE (GET_MODE (XEXP (SET_DEST (x), 0))))
4605 && ! side_effects_p (XEXP (SET_DEST (x), 0)))
4606 {
4607 HOST_WIDE_INT pos = INTVAL (XEXP (SET_DEST (x), 2));
4608 unsigned HOST_WIDE_INT len = INTVAL (XEXP (SET_DEST (x), 1));
4609 unsigned HOST_WIDE_INT src = INTVAL (SET_SRC (x));
4610 rtx dest = XEXP (SET_DEST (x), 0);
4611 enum machine_mode mode = GET_MODE (dest);
4612 unsigned HOST_WIDE_INT mask
4613 = ((unsigned HOST_WIDE_INT) 1 << len) - 1;
4614 rtx or_mask;
4615
4616 if (BITS_BIG_ENDIAN)
4617 pos = GET_MODE_BITSIZE (mode) - len - pos;
4618
4619 or_mask = gen_int_mode (src << pos, mode);
4620 if (src == mask)
4621 SUBST (SET_SRC (x),
4622 simplify_gen_binary (IOR, mode, dest, or_mask));
4623 else
4624 {
4625 rtx negmask = gen_int_mode (~(mask << pos), mode);
4626 SUBST (SET_SRC (x),
4627 simplify_gen_binary (IOR, mode,
4628 simplify_gen_binary (AND, mode,
4629 dest, negmask),
4630 or_mask));
4631 }
4632
4633 SUBST (SET_DEST (x), dest);
4634
4635 split = find_split_point (&SET_SRC (x), insn, true);
4636 if (split && split != &SET_SRC (x))
4637 return split;
4638 }
4639
4640 /* Otherwise, see if this is an operation that we can split into two.
4641 If so, try to split that. */
4642 code = GET_CODE (SET_SRC (x));
4643
4644 switch (code)
4645 {
4646 case AND:
4647 /* If we are AND'ing with a large constant that is only a single
4648 bit and the result is only being used in a context where we
4649 need to know if it is zero or nonzero, replace it with a bit
4650 extraction. This will avoid the large constant, which might
4651 have taken more than one insn to make. If the constant were
4652 not a valid argument to the AND but took only one insn to make,
4653 this is no worse, but if it took more than one insn, it will
4654 be better. */
4655
4656 if (CONST_INT_P (XEXP (SET_SRC (x), 1))
4657 && REG_P (XEXP (SET_SRC (x), 0))
4658 && (pos = exact_log2 (UINTVAL (XEXP (SET_SRC (x), 1)))) >= 7
4659 && REG_P (SET_DEST (x))
4660 && (split = find_single_use (SET_DEST (x), insn, (rtx*) 0)) != 0
4661 && (GET_CODE (*split) == EQ || GET_CODE (*split) == NE)
4662 && XEXP (*split, 0) == SET_DEST (x)
4663 && XEXP (*split, 1) == const0_rtx)
4664 {
4665 rtx extraction = make_extraction (GET_MODE (SET_DEST (x)),
4666 XEXP (SET_SRC (x), 0),
4667 pos, NULL_RTX, 1, 1, 0, 0);
4668 if (extraction != 0)
4669 {
4670 SUBST (SET_SRC (x), extraction);
4671 return find_split_point (loc, insn, false);
4672 }
4673 }
4674 break;
4675
4676 case NE:
4677 /* If STORE_FLAG_VALUE is -1, this is (NE X 0) and only one bit of X
4678 is known to be on, this can be converted into a NEG of a shift. */
4679 if (STORE_FLAG_VALUE == -1 && XEXP (SET_SRC (x), 1) == const0_rtx
4680 && GET_MODE (SET_SRC (x)) == GET_MODE (XEXP (SET_SRC (x), 0))
4681 && 1 <= (pos = exact_log2
4682 (nonzero_bits (XEXP (SET_SRC (x), 0),
4683 GET_MODE (XEXP (SET_SRC (x), 0))))))
4684 {
4685 enum machine_mode mode = GET_MODE (XEXP (SET_SRC (x), 0));
4686
4687 SUBST (SET_SRC (x),
4688 gen_rtx_NEG (mode,
4689 gen_rtx_LSHIFTRT (mode,
4690 XEXP (SET_SRC (x), 0),
4691 GEN_INT (pos))));
4692
4693 split = find_split_point (&SET_SRC (x), insn, true);
4694 if (split && split != &SET_SRC (x))
4695 return split;
4696 }
4697 break;
4698
4699 case SIGN_EXTEND:
4700 inner = XEXP (SET_SRC (x), 0);
4701
4702 /* We can't optimize if either mode is a partial integer
4703 mode as we don't know how many bits are significant
4704 in those modes. */
4705 if (GET_MODE_CLASS (GET_MODE (inner)) == MODE_PARTIAL_INT
4706 || GET_MODE_CLASS (GET_MODE (SET_SRC (x))) == MODE_PARTIAL_INT)
4707 break;
4708
4709 pos = 0;
4710 len = GET_MODE_BITSIZE (GET_MODE (inner));
4711 unsignedp = 0;
4712 break;
4713
4714 case SIGN_EXTRACT:
4715 case ZERO_EXTRACT:
4716 if (CONST_INT_P (XEXP (SET_SRC (x), 1))
4717 && CONST_INT_P (XEXP (SET_SRC (x), 2)))
4718 {
4719 inner = XEXP (SET_SRC (x), 0);
4720 len = INTVAL (XEXP (SET_SRC (x), 1));
4721 pos = INTVAL (XEXP (SET_SRC (x), 2));
4722
4723 if (BITS_BIG_ENDIAN)
4724 pos = GET_MODE_BITSIZE (GET_MODE (inner)) - len - pos;
4725 unsignedp = (code == ZERO_EXTRACT);
4726 }
4727 break;
4728
4729 default:
4730 break;
4731 }
4732
4733 if (len && pos >= 0 && pos + len <= GET_MODE_BITSIZE (GET_MODE (inner)))
4734 {
4735 enum machine_mode mode = GET_MODE (SET_SRC (x));
4736
4737 /* For unsigned, we have a choice of a shift followed by an
4738 AND or two shifts. Use two shifts for field sizes where the
4739 constant might be too large. We assume here that we can
4740 always at least get 8-bit constants in an AND insn, which is
4741 true for every current RISC. */
4742
4743 if (unsignedp && len <= 8)
4744 {
4745 SUBST (SET_SRC (x),
4746 gen_rtx_AND (mode,
4747 gen_rtx_LSHIFTRT
4748 (mode, gen_lowpart (mode, inner),
4749 GEN_INT (pos)),
4750 GEN_INT (((unsigned HOST_WIDE_INT) 1 << len)
4751 - 1)));
4752
4753 split = find_split_point (&SET_SRC (x), insn, true);
4754 if (split && split != &SET_SRC (x))
4755 return split;
4756 }
4757 else
4758 {
4759 SUBST (SET_SRC (x),
4760 gen_rtx_fmt_ee
4761 (unsignedp ? LSHIFTRT : ASHIFTRT, mode,
4762 gen_rtx_ASHIFT (mode,
4763 gen_lowpart (mode, inner),
4764 GEN_INT (GET_MODE_BITSIZE (mode)
4765 - len - pos)),
4766 GEN_INT (GET_MODE_BITSIZE (mode) - len)));
4767
4768 split = find_split_point (&SET_SRC (x), insn, true);
4769 if (split && split != &SET_SRC (x))
4770 return split;
4771 }
4772 }
4773
4774 /* See if this is a simple operation with a constant as the second
4775 operand. It might be that this constant is out of range and hence
4776 could be used as a split point. */
4777 if (BINARY_P (SET_SRC (x))
4778 && CONSTANT_P (XEXP (SET_SRC (x), 1))
4779 && (OBJECT_P (XEXP (SET_SRC (x), 0))
4780 || (GET_CODE (XEXP (SET_SRC (x), 0)) == SUBREG
4781 && OBJECT_P (SUBREG_REG (XEXP (SET_SRC (x), 0))))))
4782 return &XEXP (SET_SRC (x), 1);
4783
4784 /* Finally, see if this is a simple operation with its first operand
4785 not in a register. The operation might require this operand in a
4786 register, so return it as a split point. We can always do this
4787 because if the first operand were another operation, we would have
4788 already found it as a split point. */
4789 if ((BINARY_P (SET_SRC (x)) || UNARY_P (SET_SRC (x)))
4790 && ! register_operand (XEXP (SET_SRC (x), 0), VOIDmode))
4791 return &XEXP (SET_SRC (x), 0);
4792
4793 return 0;
4794
4795 case AND:
4796 case IOR:
4797 /* We write NOR as (and (not A) (not B)), but if we don't have a NOR,
4798 it is better to write this as (not (ior A B)) so we can split it.
4799 Similarly for IOR. */
4800 if (GET_CODE (XEXP (x, 0)) == NOT && GET_CODE (XEXP (x, 1)) == NOT)
4801 {
4802 SUBST (*loc,
4803 gen_rtx_NOT (GET_MODE (x),
4804 gen_rtx_fmt_ee (code == IOR ? AND : IOR,
4805 GET_MODE (x),
4806 XEXP (XEXP (x, 0), 0),
4807 XEXP (XEXP (x, 1), 0))));
4808 return find_split_point (loc, insn, set_src);
4809 }
4810
4811 /* Many RISC machines have a large set of logical insns. If the
4812 second operand is a NOT, put it first so we will try to split the
4813 other operand first. */
4814 if (GET_CODE (XEXP (x, 1)) == NOT)
4815 {
4816 rtx tem = XEXP (x, 0);
4817 SUBST (XEXP (x, 0), XEXP (x, 1));
4818 SUBST (XEXP (x, 1), tem);
4819 }
4820 break;
4821
4822 case PLUS:
4823 case MINUS:
4824 /* Canonicalization can produce (minus A (mult B C)), where C is a
4825 constant. It may be better to try splitting (plus (mult B -C) A)
4826 instead if this isn't a multiply by a power of two. */
4827 if (set_src && code == MINUS && GET_CODE (XEXP (x, 1)) == MULT
4828 && GET_CODE (XEXP (XEXP (x, 1), 1)) == CONST_INT
4829 && exact_log2 (INTVAL (XEXP (XEXP (x, 1), 1))) < 0)
4830 {
4831 enum machine_mode mode = GET_MODE (x);
4832 unsigned HOST_WIDE_INT this_int = INTVAL (XEXP (XEXP (x, 1), 1));
4833 HOST_WIDE_INT other_int = trunc_int_for_mode (-this_int, mode);
4834 SUBST (*loc, gen_rtx_PLUS (mode, gen_rtx_MULT (mode,
4835 XEXP (XEXP (x, 1), 0),
4836 GEN_INT (other_int)),
4837 XEXP (x, 0)));
4838 return find_split_point (loc, insn, set_src);
4839 }
4840
4841 /* Split at a multiply-accumulate instruction. However if this is
4842 the SET_SRC, we likely do not have such an instruction and it's
4843 worthless to try this split. */
4844 if (!set_src && GET_CODE (XEXP (x, 0)) == MULT)
4845 return loc;
4846
4847 default:
4848 break;
4849 }
4850
4851 /* Otherwise, select our actions depending on our rtx class. */
4852 switch (GET_RTX_CLASS (code))
4853 {
4854 case RTX_BITFIELD_OPS: /* This is ZERO_EXTRACT and SIGN_EXTRACT. */
4855 case RTX_TERNARY:
4856 split = find_split_point (&XEXP (x, 2), insn, false);
4857 if (split)
4858 return split;
4859 /* ... fall through ... */
4860 case RTX_BIN_ARITH:
4861 case RTX_COMM_ARITH:
4862 case RTX_COMPARE:
4863 case RTX_COMM_COMPARE:
4864 split = find_split_point (&XEXP (x, 1), insn, false);
4865 if (split)
4866 return split;
4867 /* ... fall through ... */
4868 case RTX_UNARY:
4869 /* Some machines have (and (shift ...) ...) insns. If X is not
4870 an AND, but XEXP (X, 0) is, use it as our split point. */
4871 if (GET_CODE (x) != AND && GET_CODE (XEXP (x, 0)) == AND)
4872 return &XEXP (x, 0);
4873
4874 split = find_split_point (&XEXP (x, 0), insn, false);
4875 if (split)
4876 return split;
4877 return loc;
4878
4879 default:
4880 /* Otherwise, we don't have a split point. */
4881 return 0;
4882 }
4883 }
4884 \f
4885 /* Throughout X, replace FROM with TO, and return the result.
4886 The result is TO if X is FROM;
4887 otherwise the result is X, but its contents may have been modified.
4888 If they were modified, a record was made in undobuf so that
4889 undo_all will (among other things) return X to its original state.
4890
4891 If the number of changes necessary is too much to record to undo,
4892 the excess changes are not made, so the result is invalid.
4893 The changes already made can still be undone.
4894 undobuf.num_undo is incremented for such changes, so by testing that
4895 the caller can tell whether the result is valid.
4896
4897 `n_occurrences' is incremented each time FROM is replaced.
4898
4899 IN_DEST is nonzero if we are processing the SET_DEST of a SET.
4900
4901 UNIQUE_COPY is nonzero if each substitution must be unique. We do this
4902 by copying if `n_occurrences' is nonzero. */
4903
4904 static rtx
4905 subst (rtx x, rtx from, rtx to, int in_dest, int unique_copy)
4906 {
4907 enum rtx_code code = GET_CODE (x);
4908 enum machine_mode op0_mode = VOIDmode;
4909 const char *fmt;
4910 int len, i;
4911 rtx new_rtx;
4912
4913 /* Two expressions are equal if they are identical copies of a shared
4914 RTX or if they are both registers with the same register number
4915 and mode. */
4916
4917 #define COMBINE_RTX_EQUAL_P(X,Y) \
4918 ((X) == (Y) \
4919 || (REG_P (X) && REG_P (Y) \
4920 && REGNO (X) == REGNO (Y) && GET_MODE (X) == GET_MODE (Y)))
4921
4922 if (! in_dest && COMBINE_RTX_EQUAL_P (x, from))
4923 {
4924 n_occurrences++;
4925 return (unique_copy && n_occurrences > 1 ? copy_rtx (to) : to);
4926 }
4927
4928 /* If X and FROM are the same register but different modes, they
4929 will not have been seen as equal above. However, the log links code
4930 will make a LOG_LINKS entry for that case. If we do nothing, we
4931 will try to rerecognize our original insn and, when it succeeds,
4932 we will delete the feeding insn, which is incorrect.
4933
4934 So force this insn not to match in this (rare) case. */
4935 if (! in_dest && code == REG && REG_P (from)
4936 && reg_overlap_mentioned_p (x, from))
4937 return gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
4938
4939 /* If this is an object, we are done unless it is a MEM or LO_SUM, both
4940 of which may contain things that can be combined. */
4941 if (code != MEM && code != LO_SUM && OBJECT_P (x))
4942 return x;
4943
4944 /* It is possible to have a subexpression appear twice in the insn.
4945 Suppose that FROM is a register that appears within TO.
4946 Then, after that subexpression has been scanned once by `subst',
4947 the second time it is scanned, TO may be found. If we were
4948 to scan TO here, we would find FROM within it and create a
4949 self-referent rtl structure which is completely wrong. */
4950 if (COMBINE_RTX_EQUAL_P (x, to))
4951 return to;
4952
4953 /* Parallel asm_operands need special attention because all of the
4954 inputs are shared across the arms. Furthermore, unsharing the
4955 rtl results in recognition failures. Failure to handle this case
4956 specially can result in circular rtl.
4957
4958 Solve this by doing a normal pass across the first entry of the
4959 parallel, and only processing the SET_DESTs of the subsequent
4960 entries. Ug. */
4961
4962 if (code == PARALLEL
4963 && GET_CODE (XVECEXP (x, 0, 0)) == SET
4964 && GET_CODE (SET_SRC (XVECEXP (x, 0, 0))) == ASM_OPERANDS)
4965 {
4966 new_rtx = subst (XVECEXP (x, 0, 0), from, to, 0, unique_copy);
4967
4968 /* If this substitution failed, this whole thing fails. */
4969 if (GET_CODE (new_rtx) == CLOBBER
4970 && XEXP (new_rtx, 0) == const0_rtx)
4971 return new_rtx;
4972
4973 SUBST (XVECEXP (x, 0, 0), new_rtx);
4974
4975 for (i = XVECLEN (x, 0) - 1; i >= 1; i--)
4976 {
4977 rtx dest = SET_DEST (XVECEXP (x, 0, i));
4978
4979 if (!REG_P (dest)
4980 && GET_CODE (dest) != CC0
4981 && GET_CODE (dest) != PC)
4982 {
4983 new_rtx = subst (dest, from, to, 0, unique_copy);
4984
4985 /* If this substitution failed, this whole thing fails. */
4986 if (GET_CODE (new_rtx) == CLOBBER
4987 && XEXP (new_rtx, 0) == const0_rtx)
4988 return new_rtx;
4989
4990 SUBST (SET_DEST (XVECEXP (x, 0, i)), new_rtx);
4991 }
4992 }
4993 }
4994 else
4995 {
4996 len = GET_RTX_LENGTH (code);
4997 fmt = GET_RTX_FORMAT (code);
4998
4999 /* We don't need to process a SET_DEST that is a register, CC0,
5000 or PC, so set up to skip this common case. All other cases
5001 where we want to suppress replacing something inside a
5002 SET_SRC are handled via the IN_DEST operand. */
5003 if (code == SET
5004 && (REG_P (SET_DEST (x))
5005 || GET_CODE (SET_DEST (x)) == CC0
5006 || GET_CODE (SET_DEST (x)) == PC))
5007 fmt = "ie";
5008
5009 /* Get the mode of operand 0 in case X is now a SIGN_EXTEND of a
5010 constant. */
5011 if (fmt[0] == 'e')
5012 op0_mode = GET_MODE (XEXP (x, 0));
5013
5014 for (i = 0; i < len; i++)
5015 {
5016 if (fmt[i] == 'E')
5017 {
5018 int j;
5019 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
5020 {
5021 if (COMBINE_RTX_EQUAL_P (XVECEXP (x, i, j), from))
5022 {
5023 new_rtx = (unique_copy && n_occurrences
5024 ? copy_rtx (to) : to);
5025 n_occurrences++;
5026 }
5027 else
5028 {
5029 new_rtx = subst (XVECEXP (x, i, j), from, to, 0,
5030 unique_copy);
5031
5032 /* If this substitution failed, this whole thing
5033 fails. */
5034 if (GET_CODE (new_rtx) == CLOBBER
5035 && XEXP (new_rtx, 0) == const0_rtx)
5036 return new_rtx;
5037 }
5038
5039 SUBST (XVECEXP (x, i, j), new_rtx);
5040 }
5041 }
5042 else if (fmt[i] == 'e')
5043 {
5044 /* If this is a register being set, ignore it. */
5045 new_rtx = XEXP (x, i);
5046 if (in_dest
5047 && i == 0
5048 && (((code == SUBREG || code == ZERO_EXTRACT)
5049 && REG_P (new_rtx))
5050 || code == STRICT_LOW_PART))
5051 ;
5052
5053 else if (COMBINE_RTX_EQUAL_P (XEXP (x, i), from))
5054 {
5055 /* In general, don't install a subreg involving two
5056 modes not tieable. It can worsen register
5057 allocation, and can even make invalid reload
5058 insns, since the reg inside may need to be copied
5059 from in the outside mode, and that may be invalid
5060 if it is an fp reg copied in integer mode.
5061
5062 We allow two exceptions to this: It is valid if
5063 it is inside another SUBREG and the mode of that
5064 SUBREG and the mode of the inside of TO is
5065 tieable and it is valid if X is a SET that copies
5066 FROM to CC0. */
5067
5068 if (GET_CODE (to) == SUBREG
5069 && ! MODES_TIEABLE_P (GET_MODE (to),
5070 GET_MODE (SUBREG_REG (to)))
5071 && ! (code == SUBREG
5072 && MODES_TIEABLE_P (GET_MODE (x),
5073 GET_MODE (SUBREG_REG (to))))
5074 #ifdef HAVE_cc0
5075 && ! (code == SET && i == 1 && XEXP (x, 0) == cc0_rtx)
5076 #endif
5077 )
5078 return gen_rtx_CLOBBER (VOIDmode, const0_rtx);
5079
5080 #ifdef CANNOT_CHANGE_MODE_CLASS
5081 if (code == SUBREG
5082 && REG_P (to)
5083 && REGNO (to) < FIRST_PSEUDO_REGISTER
5084 && REG_CANNOT_CHANGE_MODE_P (REGNO (to),
5085 GET_MODE (to),
5086 GET_MODE (x)))
5087 return gen_rtx_CLOBBER (VOIDmode, const0_rtx);
5088 #endif
5089
5090 new_rtx = (unique_copy && n_occurrences ? copy_rtx (to) : to);
5091 n_occurrences++;
5092 }
5093 else
5094 /* If we are in a SET_DEST, suppress most cases unless we
5095 have gone inside a MEM, in which case we want to
5096 simplify the address. We assume here that things that
5097 are actually part of the destination have their inner
5098 parts in the first expression. This is true for SUBREG,
5099 STRICT_LOW_PART, and ZERO_EXTRACT, which are the only
5100 things aside from REG and MEM that should appear in a
5101 SET_DEST. */
5102 new_rtx = subst (XEXP (x, i), from, to,
5103 (((in_dest
5104 && (code == SUBREG || code == STRICT_LOW_PART
5105 || code == ZERO_EXTRACT))
5106 || code == SET)
5107 && i == 0), unique_copy);
5108
5109 /* If we found that we will have to reject this combination,
5110 indicate that by returning the CLOBBER ourselves, rather than
5111 an expression containing it. This will speed things up as
5112 well as prevent accidents where two CLOBBERs are considered
5113 to be equal, thus producing an incorrect simplification. */
5114
5115 if (GET_CODE (new_rtx) == CLOBBER && XEXP (new_rtx, 0) == const0_rtx)
5116 return new_rtx;
5117
5118 if (GET_CODE (x) == SUBREG
5119 && (CONST_INT_P (new_rtx)
5120 || GET_CODE (new_rtx) == CONST_DOUBLE))
5121 {
5122 enum machine_mode mode = GET_MODE (x);
5123
5124 x = simplify_subreg (GET_MODE (x), new_rtx,
5125 GET_MODE (SUBREG_REG (x)),
5126 SUBREG_BYTE (x));
5127 if (! x)
5128 x = gen_rtx_CLOBBER (mode, const0_rtx);
5129 }
5130 else if (CONST_INT_P (new_rtx)
5131 && GET_CODE (x) == ZERO_EXTEND)
5132 {
5133 x = simplify_unary_operation (ZERO_EXTEND, GET_MODE (x),
5134 new_rtx, GET_MODE (XEXP (x, 0)));
5135 gcc_assert (x);
5136 }
5137 else
5138 SUBST (XEXP (x, i), new_rtx);
5139 }
5140 }
5141 }
5142
5143 /* Check if we are loading something from the constant pool via float
5144 extension; in this case we would undo compress_float_constant
5145 optimization and degenerate constant load to an immediate value. */
5146 if (GET_CODE (x) == FLOAT_EXTEND
5147 && MEM_P (XEXP (x, 0))
5148 && MEM_READONLY_P (XEXP (x, 0)))
5149 {
5150 rtx tmp = avoid_constant_pool_reference (x);
5151 if (x != tmp)
5152 return x;
5153 }
5154
5155 /* Try to simplify X. If the simplification changed the code, it is likely
5156 that further simplification will help, so loop, but limit the number
5157 of repetitions that will be performed. */
5158
5159 for (i = 0; i < 4; i++)
5160 {
5161 /* If X is sufficiently simple, don't bother trying to do anything
5162 with it. */
5163 if (code != CONST_INT && code != REG && code != CLOBBER)
5164 x = combine_simplify_rtx (x, op0_mode, in_dest);
5165
5166 if (GET_CODE (x) == code)
5167 break;
5168
5169 code = GET_CODE (x);
5170
5171 /* We no longer know the original mode of operand 0 since we
5172 have changed the form of X) */
5173 op0_mode = VOIDmode;
5174 }
5175
5176 return x;
5177 }
5178 \f
5179 /* Simplify X, a piece of RTL. We just operate on the expression at the
5180 outer level; call `subst' to simplify recursively. Return the new
5181 expression.
5182
5183 OP0_MODE is the original mode of XEXP (x, 0). IN_DEST is nonzero
5184 if we are inside a SET_DEST. */
5185
5186 static rtx
5187 combine_simplify_rtx (rtx x, enum machine_mode op0_mode, int in_dest)
5188 {
5189 enum rtx_code code = GET_CODE (x);
5190 enum machine_mode mode = GET_MODE (x);
5191 rtx temp;
5192 int i;
5193
5194 /* If this is a commutative operation, put a constant last and a complex
5195 expression first. We don't need to do this for comparisons here. */
5196 if (COMMUTATIVE_ARITH_P (x)
5197 && swap_commutative_operands_p (XEXP (x, 0), XEXP (x, 1)))
5198 {
5199 temp = XEXP (x, 0);
5200 SUBST (XEXP (x, 0), XEXP (x, 1));
5201 SUBST (XEXP (x, 1), temp);
5202 }
5203
5204 /* If this is a simple operation applied to an IF_THEN_ELSE, try
5205 applying it to the arms of the IF_THEN_ELSE. This often simplifies
5206 things. Check for cases where both arms are testing the same
5207 condition.
5208
5209 Don't do anything if all operands are very simple. */
5210
5211 if ((BINARY_P (x)
5212 && ((!OBJECT_P (XEXP (x, 0))
5213 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
5214 && OBJECT_P (SUBREG_REG (XEXP (x, 0)))))
5215 || (!OBJECT_P (XEXP (x, 1))
5216 && ! (GET_CODE (XEXP (x, 1)) == SUBREG
5217 && OBJECT_P (SUBREG_REG (XEXP (x, 1)))))))
5218 || (UNARY_P (x)
5219 && (!OBJECT_P (XEXP (x, 0))
5220 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
5221 && OBJECT_P (SUBREG_REG (XEXP (x, 0)))))))
5222 {
5223 rtx cond, true_rtx, false_rtx;
5224
5225 cond = if_then_else_cond (x, &true_rtx, &false_rtx);
5226 if (cond != 0
5227 /* If everything is a comparison, what we have is highly unlikely
5228 to be simpler, so don't use it. */
5229 && ! (COMPARISON_P (x)
5230 && (COMPARISON_P (true_rtx) || COMPARISON_P (false_rtx))))
5231 {
5232 rtx cop1 = const0_rtx;
5233 enum rtx_code cond_code = simplify_comparison (NE, &cond, &cop1);
5234
5235 if (cond_code == NE && COMPARISON_P (cond))
5236 return x;
5237
5238 /* Simplify the alternative arms; this may collapse the true and
5239 false arms to store-flag values. Be careful to use copy_rtx
5240 here since true_rtx or false_rtx might share RTL with x as a
5241 result of the if_then_else_cond call above. */
5242 true_rtx = subst (copy_rtx (true_rtx), pc_rtx, pc_rtx, 0, 0);
5243 false_rtx = subst (copy_rtx (false_rtx), pc_rtx, pc_rtx, 0, 0);
5244
5245 /* If true_rtx and false_rtx are not general_operands, an if_then_else
5246 is unlikely to be simpler. */
5247 if (general_operand (true_rtx, VOIDmode)
5248 && general_operand (false_rtx, VOIDmode))
5249 {
5250 enum rtx_code reversed;
5251
5252 /* Restarting if we generate a store-flag expression will cause
5253 us to loop. Just drop through in this case. */
5254
5255 /* If the result values are STORE_FLAG_VALUE and zero, we can
5256 just make the comparison operation. */
5257 if (true_rtx == const_true_rtx && false_rtx == const0_rtx)
5258 x = simplify_gen_relational (cond_code, mode, VOIDmode,
5259 cond, cop1);
5260 else if (true_rtx == const0_rtx && false_rtx == const_true_rtx
5261 && ((reversed = reversed_comparison_code_parts
5262 (cond_code, cond, cop1, NULL))
5263 != UNKNOWN))
5264 x = simplify_gen_relational (reversed, mode, VOIDmode,
5265 cond, cop1);
5266
5267 /* Likewise, we can make the negate of a comparison operation
5268 if the result values are - STORE_FLAG_VALUE and zero. */
5269 else if (CONST_INT_P (true_rtx)
5270 && INTVAL (true_rtx) == - STORE_FLAG_VALUE
5271 && false_rtx == const0_rtx)
5272 x = simplify_gen_unary (NEG, mode,
5273 simplify_gen_relational (cond_code,
5274 mode, VOIDmode,
5275 cond, cop1),
5276 mode);
5277 else if (CONST_INT_P (false_rtx)
5278 && INTVAL (false_rtx) == - STORE_FLAG_VALUE
5279 && true_rtx == const0_rtx
5280 && ((reversed = reversed_comparison_code_parts
5281 (cond_code, cond, cop1, NULL))
5282 != UNKNOWN))
5283 x = simplify_gen_unary (NEG, mode,
5284 simplify_gen_relational (reversed,
5285 mode, VOIDmode,
5286 cond, cop1),
5287 mode);
5288 else
5289 return gen_rtx_IF_THEN_ELSE (mode,
5290 simplify_gen_relational (cond_code,
5291 mode,
5292 VOIDmode,
5293 cond,
5294 cop1),
5295 true_rtx, false_rtx);
5296
5297 code = GET_CODE (x);
5298 op0_mode = VOIDmode;
5299 }
5300 }
5301 }
5302
5303 /* Try to fold this expression in case we have constants that weren't
5304 present before. */
5305 temp = 0;
5306 switch (GET_RTX_CLASS (code))
5307 {
5308 case RTX_UNARY:
5309 if (op0_mode == VOIDmode)
5310 op0_mode = GET_MODE (XEXP (x, 0));
5311 temp = simplify_unary_operation (code, mode, XEXP (x, 0), op0_mode);
5312 break;
5313 case RTX_COMPARE:
5314 case RTX_COMM_COMPARE:
5315 {
5316 enum machine_mode cmp_mode = GET_MODE (XEXP (x, 0));
5317 if (cmp_mode == VOIDmode)
5318 {
5319 cmp_mode = GET_MODE (XEXP (x, 1));
5320 if (cmp_mode == VOIDmode)
5321 cmp_mode = op0_mode;
5322 }
5323 temp = simplify_relational_operation (code, mode, cmp_mode,
5324 XEXP (x, 0), XEXP (x, 1));
5325 }
5326 break;
5327 case RTX_COMM_ARITH:
5328 case RTX_BIN_ARITH:
5329 temp = simplify_binary_operation (code, mode, XEXP (x, 0), XEXP (x, 1));
5330 break;
5331 case RTX_BITFIELD_OPS:
5332 case RTX_TERNARY:
5333 temp = simplify_ternary_operation (code, mode, op0_mode, XEXP (x, 0),
5334 XEXP (x, 1), XEXP (x, 2));
5335 break;
5336 default:
5337 break;
5338 }
5339
5340 if (temp)
5341 {
5342 x = temp;
5343 code = GET_CODE (temp);
5344 op0_mode = VOIDmode;
5345 mode = GET_MODE (temp);
5346 }
5347
5348 /* First see if we can apply the inverse distributive law. */
5349 if (code == PLUS || code == MINUS
5350 || code == AND || code == IOR || code == XOR)
5351 {
5352 x = apply_distributive_law (x);
5353 code = GET_CODE (x);
5354 op0_mode = VOIDmode;
5355 }
5356
5357 /* If CODE is an associative operation not otherwise handled, see if we
5358 can associate some operands. This can win if they are constants or
5359 if they are logically related (i.e. (a & b) & a). */
5360 if ((code == PLUS || code == MINUS || code == MULT || code == DIV
5361 || code == AND || code == IOR || code == XOR
5362 || code == SMAX || code == SMIN || code == UMAX || code == UMIN)
5363 && ((INTEGRAL_MODE_P (mode) && code != DIV)
5364 || (flag_associative_math && FLOAT_MODE_P (mode))))
5365 {
5366 if (GET_CODE (XEXP (x, 0)) == code)
5367 {
5368 rtx other = XEXP (XEXP (x, 0), 0);
5369 rtx inner_op0 = XEXP (XEXP (x, 0), 1);
5370 rtx inner_op1 = XEXP (x, 1);
5371 rtx inner;
5372
5373 /* Make sure we pass the constant operand if any as the second
5374 one if this is a commutative operation. */
5375 if (CONSTANT_P (inner_op0) && COMMUTATIVE_ARITH_P (x))
5376 {
5377 rtx tem = inner_op0;
5378 inner_op0 = inner_op1;
5379 inner_op1 = tem;
5380 }
5381 inner = simplify_binary_operation (code == MINUS ? PLUS
5382 : code == DIV ? MULT
5383 : code,
5384 mode, inner_op0, inner_op1);
5385
5386 /* For commutative operations, try the other pair if that one
5387 didn't simplify. */
5388 if (inner == 0 && COMMUTATIVE_ARITH_P (x))
5389 {
5390 other = XEXP (XEXP (x, 0), 1);
5391 inner = simplify_binary_operation (code, mode,
5392 XEXP (XEXP (x, 0), 0),
5393 XEXP (x, 1));
5394 }
5395
5396 if (inner)
5397 return simplify_gen_binary (code, mode, other, inner);
5398 }
5399 }
5400
5401 /* A little bit of algebraic simplification here. */
5402 switch (code)
5403 {
5404 case MEM:
5405 /* Ensure that our address has any ASHIFTs converted to MULT in case
5406 address-recognizing predicates are called later. */
5407 temp = make_compound_operation (XEXP (x, 0), MEM);
5408 SUBST (XEXP (x, 0), temp);
5409 break;
5410
5411 case SUBREG:
5412 if (op0_mode == VOIDmode)
5413 op0_mode = GET_MODE (SUBREG_REG (x));
5414
5415 /* See if this can be moved to simplify_subreg. */
5416 if (CONSTANT_P (SUBREG_REG (x))
5417 && subreg_lowpart_offset (mode, op0_mode) == SUBREG_BYTE (x)
5418 /* Don't call gen_lowpart if the inner mode
5419 is VOIDmode and we cannot simplify it, as SUBREG without
5420 inner mode is invalid. */
5421 && (GET_MODE (SUBREG_REG (x)) != VOIDmode
5422 || gen_lowpart_common (mode, SUBREG_REG (x))))
5423 return gen_lowpart (mode, SUBREG_REG (x));
5424
5425 if (GET_MODE_CLASS (GET_MODE (SUBREG_REG (x))) == MODE_CC)
5426 break;
5427 {
5428 rtx temp;
5429 temp = simplify_subreg (mode, SUBREG_REG (x), op0_mode,
5430 SUBREG_BYTE (x));
5431 if (temp)
5432 return temp;
5433 }
5434
5435 /* Don't change the mode of the MEM if that would change the meaning
5436 of the address. */
5437 if (MEM_P (SUBREG_REG (x))
5438 && (MEM_VOLATILE_P (SUBREG_REG (x))
5439 || mode_dependent_address_p (XEXP (SUBREG_REG (x), 0))))
5440 return gen_rtx_CLOBBER (mode, const0_rtx);
5441
5442 /* Note that we cannot do any narrowing for non-constants since
5443 we might have been counting on using the fact that some bits were
5444 zero. We now do this in the SET. */
5445
5446 break;
5447
5448 case NEG:
5449 temp = expand_compound_operation (XEXP (x, 0));
5450
5451 /* For C equal to the width of MODE minus 1, (neg (ashiftrt X C)) can be
5452 replaced by (lshiftrt X C). This will convert
5453 (neg (sign_extract X 1 Y)) to (zero_extract X 1 Y). */
5454
5455 if (GET_CODE (temp) == ASHIFTRT
5456 && CONST_INT_P (XEXP (temp, 1))
5457 && INTVAL (XEXP (temp, 1)) == GET_MODE_BITSIZE (mode) - 1)
5458 return simplify_shift_const (NULL_RTX, LSHIFTRT, mode, XEXP (temp, 0),
5459 INTVAL (XEXP (temp, 1)));
5460
5461 /* If X has only a single bit that might be nonzero, say, bit I, convert
5462 (neg X) to (ashiftrt (ashift X C-I) C-I) where C is the bitsize of
5463 MODE minus 1. This will convert (neg (zero_extract X 1 Y)) to
5464 (sign_extract X 1 Y). But only do this if TEMP isn't a register
5465 or a SUBREG of one since we'd be making the expression more
5466 complex if it was just a register. */
5467
5468 if (!REG_P (temp)
5469 && ! (GET_CODE (temp) == SUBREG
5470 && REG_P (SUBREG_REG (temp)))
5471 && (i = exact_log2 (nonzero_bits (temp, mode))) >= 0)
5472 {
5473 rtx temp1 = simplify_shift_const
5474 (NULL_RTX, ASHIFTRT, mode,
5475 simplify_shift_const (NULL_RTX, ASHIFT, mode, temp,
5476 GET_MODE_BITSIZE (mode) - 1 - i),
5477 GET_MODE_BITSIZE (mode) - 1 - i);
5478
5479 /* If all we did was surround TEMP with the two shifts, we
5480 haven't improved anything, so don't use it. Otherwise,
5481 we are better off with TEMP1. */
5482 if (GET_CODE (temp1) != ASHIFTRT
5483 || GET_CODE (XEXP (temp1, 0)) != ASHIFT
5484 || XEXP (XEXP (temp1, 0), 0) != temp)
5485 return temp1;
5486 }
5487 break;
5488
5489 case TRUNCATE:
5490 /* We can't handle truncation to a partial integer mode here
5491 because we don't know the real bitsize of the partial
5492 integer mode. */
5493 if (GET_MODE_CLASS (mode) == MODE_PARTIAL_INT)
5494 break;
5495
5496 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
5497 SUBST (XEXP (x, 0),
5498 force_to_mode (XEXP (x, 0), GET_MODE (XEXP (x, 0)),
5499 GET_MODE_MASK (mode), 0));
5500
5501 /* We can truncate a constant value and return it. */
5502 if (CONST_INT_P (XEXP (x, 0)))
5503 return gen_int_mode (INTVAL (XEXP (x, 0)), mode);
5504
5505 /* Similarly to what we do in simplify-rtx.c, a truncate of a register
5506 whose value is a comparison can be replaced with a subreg if
5507 STORE_FLAG_VALUE permits. */
5508 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5509 && (STORE_FLAG_VALUE & ~GET_MODE_MASK (mode)) == 0
5510 && (temp = get_last_value (XEXP (x, 0)))
5511 && COMPARISON_P (temp))
5512 return gen_lowpart (mode, XEXP (x, 0));
5513 break;
5514
5515 case CONST:
5516 /* (const (const X)) can become (const X). Do it this way rather than
5517 returning the inner CONST since CONST can be shared with a
5518 REG_EQUAL note. */
5519 if (GET_CODE (XEXP (x, 0)) == CONST)
5520 SUBST (XEXP (x, 0), XEXP (XEXP (x, 0), 0));
5521 break;
5522
5523 #ifdef HAVE_lo_sum
5524 case LO_SUM:
5525 /* Convert (lo_sum (high FOO) FOO) to FOO. This is necessary so we
5526 can add in an offset. find_split_point will split this address up
5527 again if it doesn't match. */
5528 if (GET_CODE (XEXP (x, 0)) == HIGH
5529 && rtx_equal_p (XEXP (XEXP (x, 0), 0), XEXP (x, 1)))
5530 return XEXP (x, 1);
5531 break;
5532 #endif
5533
5534 case PLUS:
5535 /* (plus (xor (and <foo> (const_int pow2 - 1)) <c>) <-c>)
5536 when c is (const_int (pow2 + 1) / 2) is a sign extension of a
5537 bit-field and can be replaced by either a sign_extend or a
5538 sign_extract. The `and' may be a zero_extend and the two
5539 <c>, -<c> constants may be reversed. */
5540 if (GET_CODE (XEXP (x, 0)) == XOR
5541 && CONST_INT_P (XEXP (x, 1))
5542 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
5543 && INTVAL (XEXP (x, 1)) == -INTVAL (XEXP (XEXP (x, 0), 1))
5544 && ((i = exact_log2 (UINTVAL (XEXP (XEXP (x, 0), 1)))) >= 0
5545 || (i = exact_log2 (UINTVAL (XEXP (x, 1)))) >= 0)
5546 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5547 && ((GET_CODE (XEXP (XEXP (x, 0), 0)) == AND
5548 && CONST_INT_P (XEXP (XEXP (XEXP (x, 0), 0), 1))
5549 && (UINTVAL (XEXP (XEXP (XEXP (x, 0), 0), 1))
5550 == ((unsigned HOST_WIDE_INT) 1 << (i + 1)) - 1))
5551 || (GET_CODE (XEXP (XEXP (x, 0), 0)) == ZERO_EXTEND
5552 && (GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (XEXP (x, 0), 0), 0)))
5553 == (unsigned int) i + 1))))
5554 return simplify_shift_const
5555 (NULL_RTX, ASHIFTRT, mode,
5556 simplify_shift_const (NULL_RTX, ASHIFT, mode,
5557 XEXP (XEXP (XEXP (x, 0), 0), 0),
5558 GET_MODE_BITSIZE (mode) - (i + 1)),
5559 GET_MODE_BITSIZE (mode) - (i + 1));
5560
5561 /* If only the low-order bit of X is possibly nonzero, (plus x -1)
5562 can become (ashiftrt (ashift (xor x 1) C) C) where C is
5563 the bitsize of the mode - 1. This allows simplification of
5564 "a = (b & 8) == 0;" */
5565 if (XEXP (x, 1) == constm1_rtx
5566 && !REG_P (XEXP (x, 0))
5567 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
5568 && REG_P (SUBREG_REG (XEXP (x, 0))))
5569 && nonzero_bits (XEXP (x, 0), mode) == 1)
5570 return simplify_shift_const (NULL_RTX, ASHIFTRT, mode,
5571 simplify_shift_const (NULL_RTX, ASHIFT, mode,
5572 gen_rtx_XOR (mode, XEXP (x, 0), const1_rtx),
5573 GET_MODE_BITSIZE (mode) - 1),
5574 GET_MODE_BITSIZE (mode) - 1);
5575
5576 /* If we are adding two things that have no bits in common, convert
5577 the addition into an IOR. This will often be further simplified,
5578 for example in cases like ((a & 1) + (a & 2)), which can
5579 become a & 3. */
5580
5581 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5582 && (nonzero_bits (XEXP (x, 0), mode)
5583 & nonzero_bits (XEXP (x, 1), mode)) == 0)
5584 {
5585 /* Try to simplify the expression further. */
5586 rtx tor = simplify_gen_binary (IOR, mode, XEXP (x, 0), XEXP (x, 1));
5587 temp = combine_simplify_rtx (tor, mode, in_dest);
5588
5589 /* If we could, great. If not, do not go ahead with the IOR
5590 replacement, since PLUS appears in many special purpose
5591 address arithmetic instructions. */
5592 if (GET_CODE (temp) != CLOBBER && temp != tor)
5593 return temp;
5594 }
5595 break;
5596
5597 case MINUS:
5598 /* (minus <foo> (and <foo> (const_int -pow2))) becomes
5599 (and <foo> (const_int pow2-1)) */
5600 if (GET_CODE (XEXP (x, 1)) == AND
5601 && CONST_INT_P (XEXP (XEXP (x, 1), 1))
5602 && exact_log2 (-UINTVAL (XEXP (XEXP (x, 1), 1))) >= 0
5603 && rtx_equal_p (XEXP (XEXP (x, 1), 0), XEXP (x, 0)))
5604 return simplify_and_const_int (NULL_RTX, mode, XEXP (x, 0),
5605 -INTVAL (XEXP (XEXP (x, 1), 1)) - 1);
5606 break;
5607
5608 case MULT:
5609 /* If we have (mult (plus A B) C), apply the distributive law and then
5610 the inverse distributive law to see if things simplify. This
5611 occurs mostly in addresses, often when unrolling loops. */
5612
5613 if (GET_CODE (XEXP (x, 0)) == PLUS)
5614 {
5615 rtx result = distribute_and_simplify_rtx (x, 0);
5616 if (result)
5617 return result;
5618 }
5619
5620 /* Try simplify a*(b/c) as (a*b)/c. */
5621 if (FLOAT_MODE_P (mode) && flag_associative_math
5622 && GET_CODE (XEXP (x, 0)) == DIV)
5623 {
5624 rtx tem = simplify_binary_operation (MULT, mode,
5625 XEXP (XEXP (x, 0), 0),
5626 XEXP (x, 1));
5627 if (tem)
5628 return simplify_gen_binary (DIV, mode, tem, XEXP (XEXP (x, 0), 1));
5629 }
5630 break;
5631
5632 case UDIV:
5633 /* If this is a divide by a power of two, treat it as a shift if
5634 its first operand is a shift. */
5635 if (CONST_INT_P (XEXP (x, 1))
5636 && (i = exact_log2 (UINTVAL (XEXP (x, 1)))) >= 0
5637 && (GET_CODE (XEXP (x, 0)) == ASHIFT
5638 || GET_CODE (XEXP (x, 0)) == LSHIFTRT
5639 || GET_CODE (XEXP (x, 0)) == ASHIFTRT
5640 || GET_CODE (XEXP (x, 0)) == ROTATE
5641 || GET_CODE (XEXP (x, 0)) == ROTATERT))
5642 return simplify_shift_const (NULL_RTX, LSHIFTRT, mode, XEXP (x, 0), i);
5643 break;
5644
5645 case EQ: case NE:
5646 case GT: case GTU: case GE: case GEU:
5647 case LT: case LTU: case LE: case LEU:
5648 case UNEQ: case LTGT:
5649 case UNGT: case UNGE:
5650 case UNLT: case UNLE:
5651 case UNORDERED: case ORDERED:
5652 /* If the first operand is a condition code, we can't do anything
5653 with it. */
5654 if (GET_CODE (XEXP (x, 0)) == COMPARE
5655 || (GET_MODE_CLASS (GET_MODE (XEXP (x, 0))) != MODE_CC
5656 && ! CC0_P (XEXP (x, 0))))
5657 {
5658 rtx op0 = XEXP (x, 0);
5659 rtx op1 = XEXP (x, 1);
5660 enum rtx_code new_code;
5661
5662 if (GET_CODE (op0) == COMPARE)
5663 op1 = XEXP (op0, 1), op0 = XEXP (op0, 0);
5664
5665 /* Simplify our comparison, if possible. */
5666 new_code = simplify_comparison (code, &op0, &op1);
5667
5668 /* If STORE_FLAG_VALUE is 1, we can convert (ne x 0) to simply X
5669 if only the low-order bit is possibly nonzero in X (such as when
5670 X is a ZERO_EXTRACT of one bit). Similarly, we can convert EQ to
5671 (xor X 1) or (minus 1 X); we use the former. Finally, if X is
5672 known to be either 0 or -1, NE becomes a NEG and EQ becomes
5673 (plus X 1).
5674
5675 Remove any ZERO_EXTRACT we made when thinking this was a
5676 comparison. It may now be simpler to use, e.g., an AND. If a
5677 ZERO_EXTRACT is indeed appropriate, it will be placed back by
5678 the call to make_compound_operation in the SET case. */
5679
5680 if (STORE_FLAG_VALUE == 1
5681 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
5682 && op1 == const0_rtx
5683 && mode == GET_MODE (op0)
5684 && nonzero_bits (op0, mode) == 1)
5685 return gen_lowpart (mode,
5686 expand_compound_operation (op0));
5687
5688 else if (STORE_FLAG_VALUE == 1
5689 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
5690 && op1 == const0_rtx
5691 && mode == GET_MODE (op0)
5692 && (num_sign_bit_copies (op0, mode)
5693 == GET_MODE_BITSIZE (mode)))
5694 {
5695 op0 = expand_compound_operation (op0);
5696 return simplify_gen_unary (NEG, mode,
5697 gen_lowpart (mode, op0),
5698 mode);
5699 }
5700
5701 else if (STORE_FLAG_VALUE == 1
5702 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
5703 && op1 == const0_rtx
5704 && mode == GET_MODE (op0)
5705 && nonzero_bits (op0, mode) == 1)
5706 {
5707 op0 = expand_compound_operation (op0);
5708 return simplify_gen_binary (XOR, mode,
5709 gen_lowpart (mode, op0),
5710 const1_rtx);
5711 }
5712
5713 else if (STORE_FLAG_VALUE == 1
5714 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
5715 && op1 == const0_rtx
5716 && mode == GET_MODE (op0)
5717 && (num_sign_bit_copies (op0, mode)
5718 == GET_MODE_BITSIZE (mode)))
5719 {
5720 op0 = expand_compound_operation (op0);
5721 return plus_constant (gen_lowpart (mode, op0), 1);
5722 }
5723
5724 /* If STORE_FLAG_VALUE is -1, we have cases similar to
5725 those above. */
5726 if (STORE_FLAG_VALUE == -1
5727 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
5728 && op1 == const0_rtx
5729 && (num_sign_bit_copies (op0, mode)
5730 == GET_MODE_BITSIZE (mode)))
5731 return gen_lowpart (mode,
5732 expand_compound_operation (op0));
5733
5734 else if (STORE_FLAG_VALUE == -1
5735 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
5736 && op1 == const0_rtx
5737 && mode == GET_MODE (op0)
5738 && nonzero_bits (op0, mode) == 1)
5739 {
5740 op0 = expand_compound_operation (op0);
5741 return simplify_gen_unary (NEG, mode,
5742 gen_lowpart (mode, op0),
5743 mode);
5744 }
5745
5746 else if (STORE_FLAG_VALUE == -1
5747 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
5748 && op1 == const0_rtx
5749 && mode == GET_MODE (op0)
5750 && (num_sign_bit_copies (op0, mode)
5751 == GET_MODE_BITSIZE (mode)))
5752 {
5753 op0 = expand_compound_operation (op0);
5754 return simplify_gen_unary (NOT, mode,
5755 gen_lowpart (mode, op0),
5756 mode);
5757 }
5758
5759 /* If X is 0/1, (eq X 0) is X-1. */
5760 else if (STORE_FLAG_VALUE == -1
5761 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
5762 && op1 == const0_rtx
5763 && mode == GET_MODE (op0)
5764 && nonzero_bits (op0, mode) == 1)
5765 {
5766 op0 = expand_compound_operation (op0);
5767 return plus_constant (gen_lowpart (mode, op0), -1);
5768 }
5769
5770 /* If STORE_FLAG_VALUE says to just test the sign bit and X has just
5771 one bit that might be nonzero, we can convert (ne x 0) to
5772 (ashift x c) where C puts the bit in the sign bit. Remove any
5773 AND with STORE_FLAG_VALUE when we are done, since we are only
5774 going to test the sign bit. */
5775 if (new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
5776 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5777 && ((STORE_FLAG_VALUE & GET_MODE_MASK (mode))
5778 == (unsigned HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (mode) - 1))
5779 && op1 == const0_rtx
5780 && mode == GET_MODE (op0)
5781 && (i = exact_log2 (nonzero_bits (op0, mode))) >= 0)
5782 {
5783 x = simplify_shift_const (NULL_RTX, ASHIFT, mode,
5784 expand_compound_operation (op0),
5785 GET_MODE_BITSIZE (mode) - 1 - i);
5786 if (GET_CODE (x) == AND && XEXP (x, 1) == const_true_rtx)
5787 return XEXP (x, 0);
5788 else
5789 return x;
5790 }
5791
5792 /* If the code changed, return a whole new comparison. */
5793 if (new_code != code)
5794 return gen_rtx_fmt_ee (new_code, mode, op0, op1);
5795
5796 /* Otherwise, keep this operation, but maybe change its operands.
5797 This also converts (ne (compare FOO BAR) 0) to (ne FOO BAR). */
5798 SUBST (XEXP (x, 0), op0);
5799 SUBST (XEXP (x, 1), op1);
5800 }
5801 break;
5802
5803 case IF_THEN_ELSE:
5804 return simplify_if_then_else (x);
5805
5806 case ZERO_EXTRACT:
5807 case SIGN_EXTRACT:
5808 case ZERO_EXTEND:
5809 case SIGN_EXTEND:
5810 /* If we are processing SET_DEST, we are done. */
5811 if (in_dest)
5812 return x;
5813
5814 return expand_compound_operation (x);
5815
5816 case SET:
5817 return simplify_set (x);
5818
5819 case AND:
5820 case IOR:
5821 return simplify_logical (x);
5822
5823 case ASHIFT:
5824 case LSHIFTRT:
5825 case ASHIFTRT:
5826 case ROTATE:
5827 case ROTATERT:
5828 /* If this is a shift by a constant amount, simplify it. */
5829 if (CONST_INT_P (XEXP (x, 1)))
5830 return simplify_shift_const (x, code, mode, XEXP (x, 0),
5831 INTVAL (XEXP (x, 1)));
5832
5833 else if (SHIFT_COUNT_TRUNCATED && !REG_P (XEXP (x, 1)))
5834 SUBST (XEXP (x, 1),
5835 force_to_mode (XEXP (x, 1), GET_MODE (XEXP (x, 1)),
5836 ((unsigned HOST_WIDE_INT) 1
5837 << exact_log2 (GET_MODE_BITSIZE (GET_MODE (x))))
5838 - 1,
5839 0));
5840 break;
5841
5842 default:
5843 break;
5844 }
5845
5846 return x;
5847 }
5848 \f
5849 /* Simplify X, an IF_THEN_ELSE expression. Return the new expression. */
5850
5851 static rtx
5852 simplify_if_then_else (rtx x)
5853 {
5854 enum machine_mode mode = GET_MODE (x);
5855 rtx cond = XEXP (x, 0);
5856 rtx true_rtx = XEXP (x, 1);
5857 rtx false_rtx = XEXP (x, 2);
5858 enum rtx_code true_code = GET_CODE (cond);
5859 int comparison_p = COMPARISON_P (cond);
5860 rtx temp;
5861 int i;
5862 enum rtx_code false_code;
5863 rtx reversed;
5864
5865 /* Simplify storing of the truth value. */
5866 if (comparison_p && true_rtx == const_true_rtx && false_rtx == const0_rtx)
5867 return simplify_gen_relational (true_code, mode, VOIDmode,
5868 XEXP (cond, 0), XEXP (cond, 1));
5869
5870 /* Also when the truth value has to be reversed. */
5871 if (comparison_p
5872 && true_rtx == const0_rtx && false_rtx == const_true_rtx
5873 && (reversed = reversed_comparison (cond, mode)))
5874 return reversed;
5875
5876 /* Sometimes we can simplify the arm of an IF_THEN_ELSE if a register used
5877 in it is being compared against certain values. Get the true and false
5878 comparisons and see if that says anything about the value of each arm. */
5879
5880 if (comparison_p
5881 && ((false_code = reversed_comparison_code (cond, NULL))
5882 != UNKNOWN)
5883 && REG_P (XEXP (cond, 0)))
5884 {
5885 HOST_WIDE_INT nzb;
5886 rtx from = XEXP (cond, 0);
5887 rtx true_val = XEXP (cond, 1);
5888 rtx false_val = true_val;
5889 int swapped = 0;
5890
5891 /* If FALSE_CODE is EQ, swap the codes and arms. */
5892
5893 if (false_code == EQ)
5894 {
5895 swapped = 1, true_code = EQ, false_code = NE;
5896 temp = true_rtx, true_rtx = false_rtx, false_rtx = temp;
5897 }
5898
5899 /* If we are comparing against zero and the expression being tested has
5900 only a single bit that might be nonzero, that is its value when it is
5901 not equal to zero. Similarly if it is known to be -1 or 0. */
5902
5903 if (true_code == EQ && true_val == const0_rtx
5904 && exact_log2 (nzb = nonzero_bits (from, GET_MODE (from))) >= 0)
5905 {
5906 false_code = EQ;
5907 false_val = GEN_INT (trunc_int_for_mode (nzb, GET_MODE (from)));
5908 }
5909 else if (true_code == EQ && true_val == const0_rtx
5910 && (num_sign_bit_copies (from, GET_MODE (from))
5911 == GET_MODE_BITSIZE (GET_MODE (from))))
5912 {
5913 false_code = EQ;
5914 false_val = constm1_rtx;
5915 }
5916
5917 /* Now simplify an arm if we know the value of the register in the
5918 branch and it is used in the arm. Be careful due to the potential
5919 of locally-shared RTL. */
5920
5921 if (reg_mentioned_p (from, true_rtx))
5922 true_rtx = subst (known_cond (copy_rtx (true_rtx), true_code,
5923 from, true_val),
5924 pc_rtx, pc_rtx, 0, 0);
5925 if (reg_mentioned_p (from, false_rtx))
5926 false_rtx = subst (known_cond (copy_rtx (false_rtx), false_code,
5927 from, false_val),
5928 pc_rtx, pc_rtx, 0, 0);
5929
5930 SUBST (XEXP (x, 1), swapped ? false_rtx : true_rtx);
5931 SUBST (XEXP (x, 2), swapped ? true_rtx : false_rtx);
5932
5933 true_rtx = XEXP (x, 1);
5934 false_rtx = XEXP (x, 2);
5935 true_code = GET_CODE (cond);
5936 }
5937
5938 /* If we have (if_then_else FOO (pc) (label_ref BAR)) and FOO can be
5939 reversed, do so to avoid needing two sets of patterns for
5940 subtract-and-branch insns. Similarly if we have a constant in the true
5941 arm, the false arm is the same as the first operand of the comparison, or
5942 the false arm is more complicated than the true arm. */
5943
5944 if (comparison_p
5945 && reversed_comparison_code (cond, NULL) != UNKNOWN
5946 && (true_rtx == pc_rtx
5947 || (CONSTANT_P (true_rtx)
5948 && !CONST_INT_P (false_rtx) && false_rtx != pc_rtx)
5949 || true_rtx == const0_rtx
5950 || (OBJECT_P (true_rtx) && !OBJECT_P (false_rtx))
5951 || (GET_CODE (true_rtx) == SUBREG && OBJECT_P (SUBREG_REG (true_rtx))
5952 && !OBJECT_P (false_rtx))
5953 || reg_mentioned_p (true_rtx, false_rtx)
5954 || rtx_equal_p (false_rtx, XEXP (cond, 0))))
5955 {
5956 true_code = reversed_comparison_code (cond, NULL);
5957 SUBST (XEXP (x, 0), reversed_comparison (cond, GET_MODE (cond)));
5958 SUBST (XEXP (x, 1), false_rtx);
5959 SUBST (XEXP (x, 2), true_rtx);
5960
5961 temp = true_rtx, true_rtx = false_rtx, false_rtx = temp;
5962 cond = XEXP (x, 0);
5963
5964 /* It is possible that the conditional has been simplified out. */
5965 true_code = GET_CODE (cond);
5966 comparison_p = COMPARISON_P (cond);
5967 }
5968
5969 /* If the two arms are identical, we don't need the comparison. */
5970
5971 if (rtx_equal_p (true_rtx, false_rtx) && ! side_effects_p (cond))
5972 return true_rtx;
5973
5974 /* Convert a == b ? b : a to "a". */
5975 if (true_code == EQ && ! side_effects_p (cond)
5976 && !HONOR_NANS (mode)
5977 && rtx_equal_p (XEXP (cond, 0), false_rtx)
5978 && rtx_equal_p (XEXP (cond, 1), true_rtx))
5979 return false_rtx;
5980 else if (true_code == NE && ! side_effects_p (cond)
5981 && !HONOR_NANS (mode)
5982 && rtx_equal_p (XEXP (cond, 0), true_rtx)
5983 && rtx_equal_p (XEXP (cond, 1), false_rtx))
5984 return true_rtx;
5985
5986 /* Look for cases where we have (abs x) or (neg (abs X)). */
5987
5988 if (GET_MODE_CLASS (mode) == MODE_INT
5989 && comparison_p
5990 && XEXP (cond, 1) == const0_rtx
5991 && GET_CODE (false_rtx) == NEG
5992 && rtx_equal_p (true_rtx, XEXP (false_rtx, 0))
5993 && rtx_equal_p (true_rtx, XEXP (cond, 0))
5994 && ! side_effects_p (true_rtx))
5995 switch (true_code)
5996 {
5997 case GT:
5998 case GE:
5999 return simplify_gen_unary (ABS, mode, true_rtx, mode);
6000 case LT:
6001 case LE:
6002 return
6003 simplify_gen_unary (NEG, mode,
6004 simplify_gen_unary (ABS, mode, true_rtx, mode),
6005 mode);
6006 default:
6007 break;
6008 }
6009
6010 /* Look for MIN or MAX. */
6011
6012 if ((! FLOAT_MODE_P (mode) || flag_unsafe_math_optimizations)
6013 && comparison_p
6014 && rtx_equal_p (XEXP (cond, 0), true_rtx)
6015 && rtx_equal_p (XEXP (cond, 1), false_rtx)
6016 && ! side_effects_p (cond))
6017 switch (true_code)
6018 {
6019 case GE:
6020 case GT:
6021 return simplify_gen_binary (SMAX, mode, true_rtx, false_rtx);
6022 case LE:
6023 case LT:
6024 return simplify_gen_binary (SMIN, mode, true_rtx, false_rtx);
6025 case GEU:
6026 case GTU:
6027 return simplify_gen_binary (UMAX, mode, true_rtx, false_rtx);
6028 case LEU:
6029 case LTU:
6030 return simplify_gen_binary (UMIN, mode, true_rtx, false_rtx);
6031 default:
6032 break;
6033 }
6034
6035 /* If we have (if_then_else COND (OP Z C1) Z) and OP is an identity when its
6036 second operand is zero, this can be done as (OP Z (mult COND C2)) where
6037 C2 = C1 * STORE_FLAG_VALUE. Similarly if OP has an outer ZERO_EXTEND or
6038 SIGN_EXTEND as long as Z is already extended (so we don't destroy it).
6039 We can do this kind of thing in some cases when STORE_FLAG_VALUE is
6040 neither 1 or -1, but it isn't worth checking for. */
6041
6042 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
6043 && comparison_p
6044 && GET_MODE_CLASS (mode) == MODE_INT
6045 && ! side_effects_p (x))
6046 {
6047 rtx t = make_compound_operation (true_rtx, SET);
6048 rtx f = make_compound_operation (false_rtx, SET);
6049 rtx cond_op0 = XEXP (cond, 0);
6050 rtx cond_op1 = XEXP (cond, 1);
6051 enum rtx_code op = UNKNOWN, extend_op = UNKNOWN;
6052 enum machine_mode m = mode;
6053 rtx z = 0, c1 = NULL_RTX;
6054
6055 if ((GET_CODE (t) == PLUS || GET_CODE (t) == MINUS
6056 || GET_CODE (t) == IOR || GET_CODE (t) == XOR
6057 || GET_CODE (t) == ASHIFT
6058 || GET_CODE (t) == LSHIFTRT || GET_CODE (t) == ASHIFTRT)
6059 && rtx_equal_p (XEXP (t, 0), f))
6060 c1 = XEXP (t, 1), op = GET_CODE (t), z = f;
6061
6062 /* If an identity-zero op is commutative, check whether there
6063 would be a match if we swapped the operands. */
6064 else if ((GET_CODE (t) == PLUS || GET_CODE (t) == IOR
6065 || GET_CODE (t) == XOR)
6066 && rtx_equal_p (XEXP (t, 1), f))
6067 c1 = XEXP (t, 0), op = GET_CODE (t), z = f;
6068 else if (GET_CODE (t) == SIGN_EXTEND
6069 && (GET_CODE (XEXP (t, 0)) == PLUS
6070 || GET_CODE (XEXP (t, 0)) == MINUS
6071 || GET_CODE (XEXP (t, 0)) == IOR
6072 || GET_CODE (XEXP (t, 0)) == XOR
6073 || GET_CODE (XEXP (t, 0)) == ASHIFT
6074 || GET_CODE (XEXP (t, 0)) == LSHIFTRT
6075 || GET_CODE (XEXP (t, 0)) == ASHIFTRT)
6076 && GET_CODE (XEXP (XEXP (t, 0), 0)) == SUBREG
6077 && subreg_lowpart_p (XEXP (XEXP (t, 0), 0))
6078 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 0)), f)
6079 && (num_sign_bit_copies (f, GET_MODE (f))
6080 > (unsigned int)
6081 (GET_MODE_BITSIZE (mode)
6082 - GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (t, 0), 0))))))
6083 {
6084 c1 = XEXP (XEXP (t, 0), 1); z = f; op = GET_CODE (XEXP (t, 0));
6085 extend_op = SIGN_EXTEND;
6086 m = GET_MODE (XEXP (t, 0));
6087 }
6088 else if (GET_CODE (t) == SIGN_EXTEND
6089 && (GET_CODE (XEXP (t, 0)) == PLUS
6090 || GET_CODE (XEXP (t, 0)) == IOR
6091 || GET_CODE (XEXP (t, 0)) == XOR)
6092 && GET_CODE (XEXP (XEXP (t, 0), 1)) == SUBREG
6093 && subreg_lowpart_p (XEXP (XEXP (t, 0), 1))
6094 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 1)), f)
6095 && (num_sign_bit_copies (f, GET_MODE (f))
6096 > (unsigned int)
6097 (GET_MODE_BITSIZE (mode)
6098 - GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (t, 0), 1))))))
6099 {
6100 c1 = XEXP (XEXP (t, 0), 0); z = f; op = GET_CODE (XEXP (t, 0));
6101 extend_op = SIGN_EXTEND;
6102 m = GET_MODE (XEXP (t, 0));
6103 }
6104 else if (GET_CODE (t) == ZERO_EXTEND
6105 && (GET_CODE (XEXP (t, 0)) == PLUS
6106 || GET_CODE (XEXP (t, 0)) == MINUS
6107 || GET_CODE (XEXP (t, 0)) == IOR
6108 || GET_CODE (XEXP (t, 0)) == XOR
6109 || GET_CODE (XEXP (t, 0)) == ASHIFT
6110 || GET_CODE (XEXP (t, 0)) == LSHIFTRT
6111 || GET_CODE (XEXP (t, 0)) == ASHIFTRT)
6112 && GET_CODE (XEXP (XEXP (t, 0), 0)) == SUBREG
6113 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
6114 && subreg_lowpart_p (XEXP (XEXP (t, 0), 0))
6115 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 0)), f)
6116 && ((nonzero_bits (f, GET_MODE (f))
6117 & ~GET_MODE_MASK (GET_MODE (XEXP (XEXP (t, 0), 0))))
6118 == 0))
6119 {
6120 c1 = XEXP (XEXP (t, 0), 1); z = f; op = GET_CODE (XEXP (t, 0));
6121 extend_op = ZERO_EXTEND;
6122 m = GET_MODE (XEXP (t, 0));
6123 }
6124 else if (GET_CODE (t) == ZERO_EXTEND
6125 && (GET_CODE (XEXP (t, 0)) == PLUS
6126 || GET_CODE (XEXP (t, 0)) == IOR
6127 || GET_CODE (XEXP (t, 0)) == XOR)
6128 && GET_CODE (XEXP (XEXP (t, 0), 1)) == SUBREG
6129 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
6130 && subreg_lowpart_p (XEXP (XEXP (t, 0), 1))
6131 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 1)), f)
6132 && ((nonzero_bits (f, GET_MODE (f))
6133 & ~GET_MODE_MASK (GET_MODE (XEXP (XEXP (t, 0), 1))))
6134 == 0))
6135 {
6136 c1 = XEXP (XEXP (t, 0), 0); z = f; op = GET_CODE (XEXP (t, 0));
6137 extend_op = ZERO_EXTEND;
6138 m = GET_MODE (XEXP (t, 0));
6139 }
6140
6141 if (z)
6142 {
6143 temp = subst (simplify_gen_relational (true_code, m, VOIDmode,
6144 cond_op0, cond_op1),
6145 pc_rtx, pc_rtx, 0, 0);
6146 temp = simplify_gen_binary (MULT, m, temp,
6147 simplify_gen_binary (MULT, m, c1,
6148 const_true_rtx));
6149 temp = subst (temp, pc_rtx, pc_rtx, 0, 0);
6150 temp = simplify_gen_binary (op, m, gen_lowpart (m, z), temp);
6151
6152 if (extend_op != UNKNOWN)
6153 temp = simplify_gen_unary (extend_op, mode, temp, m);
6154
6155 return temp;
6156 }
6157 }
6158
6159 /* If we have (if_then_else (ne A 0) C1 0) and either A is known to be 0 or
6160 1 and C1 is a single bit or A is known to be 0 or -1 and C1 is the
6161 negation of a single bit, we can convert this operation to a shift. We
6162 can actually do this more generally, but it doesn't seem worth it. */
6163
6164 if (true_code == NE && XEXP (cond, 1) == const0_rtx
6165 && false_rtx == const0_rtx && CONST_INT_P (true_rtx)
6166 && ((1 == nonzero_bits (XEXP (cond, 0), mode)
6167 && (i = exact_log2 (UINTVAL (true_rtx))) >= 0)
6168 || ((num_sign_bit_copies (XEXP (cond, 0), mode)
6169 == GET_MODE_BITSIZE (mode))
6170 && (i = exact_log2 (-UINTVAL (true_rtx))) >= 0)))
6171 return
6172 simplify_shift_const (NULL_RTX, ASHIFT, mode,
6173 gen_lowpart (mode, XEXP (cond, 0)), i);
6174
6175 /* (IF_THEN_ELSE (NE REG 0) (0) (8)) is REG for nonzero_bits (REG) == 8. */
6176 if (true_code == NE && XEXP (cond, 1) == const0_rtx
6177 && false_rtx == const0_rtx && CONST_INT_P (true_rtx)
6178 && GET_MODE (XEXP (cond, 0)) == mode
6179 && (UINTVAL (true_rtx) & GET_MODE_MASK (mode))
6180 == nonzero_bits (XEXP (cond, 0), mode)
6181 && (i = exact_log2 (UINTVAL (true_rtx) & GET_MODE_MASK (mode))) >= 0)
6182 return XEXP (cond, 0);
6183
6184 return x;
6185 }
6186 \f
6187 /* Simplify X, a SET expression. Return the new expression. */
6188
6189 static rtx
6190 simplify_set (rtx x)
6191 {
6192 rtx src = SET_SRC (x);
6193 rtx dest = SET_DEST (x);
6194 enum machine_mode mode
6195 = GET_MODE (src) != VOIDmode ? GET_MODE (src) : GET_MODE (dest);
6196 rtx other_insn;
6197 rtx *cc_use;
6198
6199 /* (set (pc) (return)) gets written as (return). */
6200 if (GET_CODE (dest) == PC && GET_CODE (src) == RETURN)
6201 return src;
6202
6203 /* Now that we know for sure which bits of SRC we are using, see if we can
6204 simplify the expression for the object knowing that we only need the
6205 low-order bits. */
6206
6207 if (GET_MODE_CLASS (mode) == MODE_INT
6208 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
6209 {
6210 src = force_to_mode (src, mode, ~(unsigned HOST_WIDE_INT) 0, 0);
6211 SUBST (SET_SRC (x), src);
6212 }
6213
6214 /* If we are setting CC0 or if the source is a COMPARE, look for the use of
6215 the comparison result and try to simplify it unless we already have used
6216 undobuf.other_insn. */
6217 if ((GET_MODE_CLASS (mode) == MODE_CC
6218 || GET_CODE (src) == COMPARE
6219 || CC0_P (dest))
6220 && (cc_use = find_single_use (dest, subst_insn, &other_insn)) != 0
6221 && (undobuf.other_insn == 0 || other_insn == undobuf.other_insn)
6222 && COMPARISON_P (*cc_use)
6223 && rtx_equal_p (XEXP (*cc_use, 0), dest))
6224 {
6225 enum rtx_code old_code = GET_CODE (*cc_use);
6226 enum rtx_code new_code;
6227 rtx op0, op1, tmp;
6228 int other_changed = 0;
6229 enum machine_mode compare_mode = GET_MODE (dest);
6230
6231 if (GET_CODE (src) == COMPARE)
6232 op0 = XEXP (src, 0), op1 = XEXP (src, 1);
6233 else
6234 op0 = src, op1 = CONST0_RTX (GET_MODE (src));
6235
6236 tmp = simplify_relational_operation (old_code, compare_mode, VOIDmode,
6237 op0, op1);
6238 if (!tmp)
6239 new_code = old_code;
6240 else if (!CONSTANT_P (tmp))
6241 {
6242 new_code = GET_CODE (tmp);
6243 op0 = XEXP (tmp, 0);
6244 op1 = XEXP (tmp, 1);
6245 }
6246 else
6247 {
6248 rtx pat = PATTERN (other_insn);
6249 undobuf.other_insn = other_insn;
6250 SUBST (*cc_use, tmp);
6251
6252 /* Attempt to simplify CC user. */
6253 if (GET_CODE (pat) == SET)
6254 {
6255 rtx new_rtx = simplify_rtx (SET_SRC (pat));
6256 if (new_rtx != NULL_RTX)
6257 SUBST (SET_SRC (pat), new_rtx);
6258 }
6259
6260 /* Convert X into a no-op move. */
6261 SUBST (SET_DEST (x), pc_rtx);
6262 SUBST (SET_SRC (x), pc_rtx);
6263 return x;
6264 }
6265
6266 /* Simplify our comparison, if possible. */
6267 new_code = simplify_comparison (new_code, &op0, &op1);
6268
6269 #ifdef SELECT_CC_MODE
6270 /* If this machine has CC modes other than CCmode, check to see if we
6271 need to use a different CC mode here. */
6272 if (GET_MODE_CLASS (GET_MODE (op0)) == MODE_CC)
6273 compare_mode = GET_MODE (op0);
6274 else
6275 compare_mode = SELECT_CC_MODE (new_code, op0, op1);
6276
6277 #ifndef HAVE_cc0
6278 /* If the mode changed, we have to change SET_DEST, the mode in the
6279 compare, and the mode in the place SET_DEST is used. If SET_DEST is
6280 a hard register, just build new versions with the proper mode. If it
6281 is a pseudo, we lose unless it is only time we set the pseudo, in
6282 which case we can safely change its mode. */
6283 if (compare_mode != GET_MODE (dest))
6284 {
6285 if (can_change_dest_mode (dest, 0, compare_mode))
6286 {
6287 unsigned int regno = REGNO (dest);
6288 rtx new_dest;
6289
6290 if (regno < FIRST_PSEUDO_REGISTER)
6291 new_dest = gen_rtx_REG (compare_mode, regno);
6292 else
6293 {
6294 SUBST_MODE (regno_reg_rtx[regno], compare_mode);
6295 new_dest = regno_reg_rtx[regno];
6296 }
6297
6298 SUBST (SET_DEST (x), new_dest);
6299 SUBST (XEXP (*cc_use, 0), new_dest);
6300 other_changed = 1;
6301
6302 dest = new_dest;
6303 }
6304 }
6305 #endif /* cc0 */
6306 #endif /* SELECT_CC_MODE */
6307
6308 /* If the code changed, we have to build a new comparison in
6309 undobuf.other_insn. */
6310 if (new_code != old_code)
6311 {
6312 int other_changed_previously = other_changed;
6313 unsigned HOST_WIDE_INT mask;
6314 rtx old_cc_use = *cc_use;
6315
6316 SUBST (*cc_use, gen_rtx_fmt_ee (new_code, GET_MODE (*cc_use),
6317 dest, const0_rtx));
6318 other_changed = 1;
6319
6320 /* If the only change we made was to change an EQ into an NE or
6321 vice versa, OP0 has only one bit that might be nonzero, and OP1
6322 is zero, check if changing the user of the condition code will
6323 produce a valid insn. If it won't, we can keep the original code
6324 in that insn by surrounding our operation with an XOR. */
6325
6326 if (((old_code == NE && new_code == EQ)
6327 || (old_code == EQ && new_code == NE))
6328 && ! other_changed_previously && op1 == const0_rtx
6329 && GET_MODE_BITSIZE (GET_MODE (op0)) <= HOST_BITS_PER_WIDE_INT
6330 && exact_log2 (mask = nonzero_bits (op0, GET_MODE (op0))) >= 0)
6331 {
6332 rtx pat = PATTERN (other_insn), note = 0;
6333
6334 if ((recog_for_combine (&pat, other_insn, &note) < 0
6335 && ! check_asm_operands (pat)))
6336 {
6337 *cc_use = old_cc_use;
6338 other_changed = 0;
6339
6340 op0 = simplify_gen_binary (XOR, GET_MODE (op0),
6341 op0, GEN_INT (mask));
6342 }
6343 }
6344 }
6345
6346 if (other_changed)
6347 undobuf.other_insn = other_insn;
6348
6349 /* Otherwise, if we didn't previously have a COMPARE in the
6350 correct mode, we need one. */
6351 if (GET_CODE (src) != COMPARE || GET_MODE (src) != compare_mode)
6352 {
6353 SUBST (SET_SRC (x), gen_rtx_COMPARE (compare_mode, op0, op1));
6354 src = SET_SRC (x);
6355 }
6356 else if (GET_MODE (op0) == compare_mode && op1 == const0_rtx)
6357 {
6358 SUBST (SET_SRC (x), op0);
6359 src = SET_SRC (x);
6360 }
6361 /* Otherwise, update the COMPARE if needed. */
6362 else if (XEXP (src, 0) != op0 || XEXP (src, 1) != op1)
6363 {
6364 SUBST (SET_SRC (x), gen_rtx_COMPARE (compare_mode, op0, op1));
6365 src = SET_SRC (x);
6366 }
6367 }
6368 else
6369 {
6370 /* Get SET_SRC in a form where we have placed back any
6371 compound expressions. Then do the checks below. */
6372 src = make_compound_operation (src, SET);
6373 SUBST (SET_SRC (x), src);
6374 }
6375
6376 /* If we have (set x (subreg:m1 (op:m2 ...) 0)) with OP being some operation,
6377 and X being a REG or (subreg (reg)), we may be able to convert this to
6378 (set (subreg:m2 x) (op)).
6379
6380 We can always do this if M1 is narrower than M2 because that means that
6381 we only care about the low bits of the result.
6382
6383 However, on machines without WORD_REGISTER_OPERATIONS defined, we cannot
6384 perform a narrower operation than requested since the high-order bits will
6385 be undefined. On machine where it is defined, this transformation is safe
6386 as long as M1 and M2 have the same number of words. */
6387
6388 if (GET_CODE (src) == SUBREG && subreg_lowpart_p (src)
6389 && !OBJECT_P (SUBREG_REG (src))
6390 && (((GET_MODE_SIZE (GET_MODE (src)) + (UNITS_PER_WORD - 1))
6391 / UNITS_PER_WORD)
6392 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (src)))
6393 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))
6394 #ifndef WORD_REGISTER_OPERATIONS
6395 && (GET_MODE_SIZE (GET_MODE (src))
6396 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (src))))
6397 #endif
6398 #ifdef CANNOT_CHANGE_MODE_CLASS
6399 && ! (REG_P (dest) && REGNO (dest) < FIRST_PSEUDO_REGISTER
6400 && REG_CANNOT_CHANGE_MODE_P (REGNO (dest),
6401 GET_MODE (SUBREG_REG (src)),
6402 GET_MODE (src)))
6403 #endif
6404 && (REG_P (dest)
6405 || (GET_CODE (dest) == SUBREG
6406 && REG_P (SUBREG_REG (dest)))))
6407 {
6408 SUBST (SET_DEST (x),
6409 gen_lowpart (GET_MODE (SUBREG_REG (src)),
6410 dest));
6411 SUBST (SET_SRC (x), SUBREG_REG (src));
6412
6413 src = SET_SRC (x), dest = SET_DEST (x);
6414 }
6415
6416 #ifdef HAVE_cc0
6417 /* If we have (set (cc0) (subreg ...)), we try to remove the subreg
6418 in SRC. */
6419 if (dest == cc0_rtx
6420 && GET_CODE (src) == SUBREG
6421 && subreg_lowpart_p (src)
6422 && (GET_MODE_BITSIZE (GET_MODE (src))
6423 < GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (src)))))
6424 {
6425 rtx inner = SUBREG_REG (src);
6426 enum machine_mode inner_mode = GET_MODE (inner);
6427
6428 /* Here we make sure that we don't have a sign bit on. */
6429 if (GET_MODE_BITSIZE (inner_mode) <= HOST_BITS_PER_WIDE_INT
6430 && (nonzero_bits (inner, inner_mode)
6431 < ((unsigned HOST_WIDE_INT) 1
6432 << (GET_MODE_BITSIZE (GET_MODE (src)) - 1))))
6433 {
6434 SUBST (SET_SRC (x), inner);
6435 src = SET_SRC (x);
6436 }
6437 }
6438 #endif
6439
6440 #ifdef LOAD_EXTEND_OP
6441 /* If we have (set FOO (subreg:M (mem:N BAR) 0)) with M wider than N, this
6442 would require a paradoxical subreg. Replace the subreg with a
6443 zero_extend to avoid the reload that would otherwise be required. */
6444
6445 if (GET_CODE (src) == SUBREG && subreg_lowpart_p (src)
6446 && INTEGRAL_MODE_P (GET_MODE (SUBREG_REG (src)))
6447 && LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (src))) != UNKNOWN
6448 && SUBREG_BYTE (src) == 0
6449 && (GET_MODE_SIZE (GET_MODE (src))
6450 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (src))))
6451 && MEM_P (SUBREG_REG (src)))
6452 {
6453 SUBST (SET_SRC (x),
6454 gen_rtx_fmt_e (LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (src))),
6455 GET_MODE (src), SUBREG_REG (src)));
6456
6457 src = SET_SRC (x);
6458 }
6459 #endif
6460
6461 /* If we don't have a conditional move, SET_SRC is an IF_THEN_ELSE, and we
6462 are comparing an item known to be 0 or -1 against 0, use a logical
6463 operation instead. Check for one of the arms being an IOR of the other
6464 arm with some value. We compute three terms to be IOR'ed together. In
6465 practice, at most two will be nonzero. Then we do the IOR's. */
6466
6467 if (GET_CODE (dest) != PC
6468 && GET_CODE (src) == IF_THEN_ELSE
6469 && GET_MODE_CLASS (GET_MODE (src)) == MODE_INT
6470 && (GET_CODE (XEXP (src, 0)) == EQ || GET_CODE (XEXP (src, 0)) == NE)
6471 && XEXP (XEXP (src, 0), 1) == const0_rtx
6472 && GET_MODE (src) == GET_MODE (XEXP (XEXP (src, 0), 0))
6473 #ifdef HAVE_conditional_move
6474 && ! can_conditionally_move_p (GET_MODE (src))
6475 #endif
6476 && (num_sign_bit_copies (XEXP (XEXP (src, 0), 0),
6477 GET_MODE (XEXP (XEXP (src, 0), 0)))
6478 == GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (src, 0), 0))))
6479 && ! side_effects_p (src))
6480 {
6481 rtx true_rtx = (GET_CODE (XEXP (src, 0)) == NE
6482 ? XEXP (src, 1) : XEXP (src, 2));
6483 rtx false_rtx = (GET_CODE (XEXP (src, 0)) == NE
6484 ? XEXP (src, 2) : XEXP (src, 1));
6485 rtx term1 = const0_rtx, term2, term3;
6486
6487 if (GET_CODE (true_rtx) == IOR
6488 && rtx_equal_p (XEXP (true_rtx, 0), false_rtx))
6489 term1 = false_rtx, true_rtx = XEXP (true_rtx, 1), false_rtx = const0_rtx;
6490 else if (GET_CODE (true_rtx) == IOR
6491 && rtx_equal_p (XEXP (true_rtx, 1), false_rtx))
6492 term1 = false_rtx, true_rtx = XEXP (true_rtx, 0), false_rtx = const0_rtx;
6493 else if (GET_CODE (false_rtx) == IOR
6494 && rtx_equal_p (XEXP (false_rtx, 0), true_rtx))
6495 term1 = true_rtx, false_rtx = XEXP (false_rtx, 1), true_rtx = const0_rtx;
6496 else if (GET_CODE (false_rtx) == IOR
6497 && rtx_equal_p (XEXP (false_rtx, 1), true_rtx))
6498 term1 = true_rtx, false_rtx = XEXP (false_rtx, 0), true_rtx = const0_rtx;
6499
6500 term2 = simplify_gen_binary (AND, GET_MODE (src),
6501 XEXP (XEXP (src, 0), 0), true_rtx);
6502 term3 = simplify_gen_binary (AND, GET_MODE (src),
6503 simplify_gen_unary (NOT, GET_MODE (src),
6504 XEXP (XEXP (src, 0), 0),
6505 GET_MODE (src)),
6506 false_rtx);
6507
6508 SUBST (SET_SRC (x),
6509 simplify_gen_binary (IOR, GET_MODE (src),
6510 simplify_gen_binary (IOR, GET_MODE (src),
6511 term1, term2),
6512 term3));
6513
6514 src = SET_SRC (x);
6515 }
6516
6517 /* If either SRC or DEST is a CLOBBER of (const_int 0), make this
6518 whole thing fail. */
6519 if (GET_CODE (src) == CLOBBER && XEXP (src, 0) == const0_rtx)
6520 return src;
6521 else if (GET_CODE (dest) == CLOBBER && XEXP (dest, 0) == const0_rtx)
6522 return dest;
6523 else
6524 /* Convert this into a field assignment operation, if possible. */
6525 return make_field_assignment (x);
6526 }
6527 \f
6528 /* Simplify, X, and AND, IOR, or XOR operation, and return the simplified
6529 result. */
6530
6531 static rtx
6532 simplify_logical (rtx x)
6533 {
6534 enum machine_mode mode = GET_MODE (x);
6535 rtx op0 = XEXP (x, 0);
6536 rtx op1 = XEXP (x, 1);
6537
6538 switch (GET_CODE (x))
6539 {
6540 case AND:
6541 /* We can call simplify_and_const_int only if we don't lose
6542 any (sign) bits when converting INTVAL (op1) to
6543 "unsigned HOST_WIDE_INT". */
6544 if (CONST_INT_P (op1)
6545 && (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
6546 || INTVAL (op1) > 0))
6547 {
6548 x = simplify_and_const_int (x, mode, op0, INTVAL (op1));
6549 if (GET_CODE (x) != AND)
6550 return x;
6551
6552 op0 = XEXP (x, 0);
6553 op1 = XEXP (x, 1);
6554 }
6555
6556 /* If we have any of (and (ior A B) C) or (and (xor A B) C),
6557 apply the distributive law and then the inverse distributive
6558 law to see if things simplify. */
6559 if (GET_CODE (op0) == IOR || GET_CODE (op0) == XOR)
6560 {
6561 rtx result = distribute_and_simplify_rtx (x, 0);
6562 if (result)
6563 return result;
6564 }
6565 if (GET_CODE (op1) == IOR || GET_CODE (op1) == XOR)
6566 {
6567 rtx result = distribute_and_simplify_rtx (x, 1);
6568 if (result)
6569 return result;
6570 }
6571 break;
6572
6573 case IOR:
6574 /* If we have (ior (and A B) C), apply the distributive law and then
6575 the inverse distributive law to see if things simplify. */
6576
6577 if (GET_CODE (op0) == AND)
6578 {
6579 rtx result = distribute_and_simplify_rtx (x, 0);
6580 if (result)
6581 return result;
6582 }
6583
6584 if (GET_CODE (op1) == AND)
6585 {
6586 rtx result = distribute_and_simplify_rtx (x, 1);
6587 if (result)
6588 return result;
6589 }
6590 break;
6591
6592 default:
6593 gcc_unreachable ();
6594 }
6595
6596 return x;
6597 }
6598 \f
6599 /* We consider ZERO_EXTRACT, SIGN_EXTRACT, and SIGN_EXTEND as "compound
6600 operations" because they can be replaced with two more basic operations.
6601 ZERO_EXTEND is also considered "compound" because it can be replaced with
6602 an AND operation, which is simpler, though only one operation.
6603
6604 The function expand_compound_operation is called with an rtx expression
6605 and will convert it to the appropriate shifts and AND operations,
6606 simplifying at each stage.
6607
6608 The function make_compound_operation is called to convert an expression
6609 consisting of shifts and ANDs into the equivalent compound expression.
6610 It is the inverse of this function, loosely speaking. */
6611
6612 static rtx
6613 expand_compound_operation (rtx x)
6614 {
6615 unsigned HOST_WIDE_INT pos = 0, len;
6616 int unsignedp = 0;
6617 unsigned int modewidth;
6618 rtx tem;
6619
6620 switch (GET_CODE (x))
6621 {
6622 case ZERO_EXTEND:
6623 unsignedp = 1;
6624 case SIGN_EXTEND:
6625 /* We can't necessarily use a const_int for a multiword mode;
6626 it depends on implicitly extending the value.
6627 Since we don't know the right way to extend it,
6628 we can't tell whether the implicit way is right.
6629
6630 Even for a mode that is no wider than a const_int,
6631 we can't win, because we need to sign extend one of its bits through
6632 the rest of it, and we don't know which bit. */
6633 if (CONST_INT_P (XEXP (x, 0)))
6634 return x;
6635
6636 /* Return if (subreg:MODE FROM 0) is not a safe replacement for
6637 (zero_extend:MODE FROM) or (sign_extend:MODE FROM). It is for any MEM
6638 because (SUBREG (MEM...)) is guaranteed to cause the MEM to be
6639 reloaded. If not for that, MEM's would very rarely be safe.
6640
6641 Reject MODEs bigger than a word, because we might not be able
6642 to reference a two-register group starting with an arbitrary register
6643 (and currently gen_lowpart might crash for a SUBREG). */
6644
6645 if (GET_MODE_SIZE (GET_MODE (XEXP (x, 0))) > UNITS_PER_WORD)
6646 return x;
6647
6648 /* Reject MODEs that aren't scalar integers because turning vector
6649 or complex modes into shifts causes problems. */
6650
6651 if (! SCALAR_INT_MODE_P (GET_MODE (XEXP (x, 0))))
6652 return x;
6653
6654 len = GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)));
6655 /* If the inner object has VOIDmode (the only way this can happen
6656 is if it is an ASM_OPERANDS), we can't do anything since we don't
6657 know how much masking to do. */
6658 if (len == 0)
6659 return x;
6660
6661 break;
6662
6663 case ZERO_EXTRACT:
6664 unsignedp = 1;
6665
6666 /* ... fall through ... */
6667
6668 case SIGN_EXTRACT:
6669 /* If the operand is a CLOBBER, just return it. */
6670 if (GET_CODE (XEXP (x, 0)) == CLOBBER)
6671 return XEXP (x, 0);
6672
6673 if (!CONST_INT_P (XEXP (x, 1))
6674 || !CONST_INT_P (XEXP (x, 2))
6675 || GET_MODE (XEXP (x, 0)) == VOIDmode)
6676 return x;
6677
6678 /* Reject MODEs that aren't scalar integers because turning vector
6679 or complex modes into shifts causes problems. */
6680
6681 if (! SCALAR_INT_MODE_P (GET_MODE (XEXP (x, 0))))
6682 return x;
6683
6684 len = INTVAL (XEXP (x, 1));
6685 pos = INTVAL (XEXP (x, 2));
6686
6687 /* This should stay within the object being extracted, fail otherwise. */
6688 if (len + pos > GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0))))
6689 return x;
6690
6691 if (BITS_BIG_ENDIAN)
6692 pos = GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0))) - len - pos;
6693
6694 break;
6695
6696 default:
6697 return x;
6698 }
6699 /* Convert sign extension to zero extension, if we know that the high
6700 bit is not set, as this is easier to optimize. It will be converted
6701 back to cheaper alternative in make_extraction. */
6702 if (GET_CODE (x) == SIGN_EXTEND
6703 && (GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
6704 && ((nonzero_bits (XEXP (x, 0), GET_MODE (XEXP (x, 0)))
6705 & ~(((unsigned HOST_WIDE_INT)
6706 GET_MODE_MASK (GET_MODE (XEXP (x, 0))))
6707 >> 1))
6708 == 0)))
6709 {
6710 rtx temp = gen_rtx_ZERO_EXTEND (GET_MODE (x), XEXP (x, 0));
6711 rtx temp2 = expand_compound_operation (temp);
6712
6713 /* Make sure this is a profitable operation. */
6714 if (rtx_cost (x, SET, optimize_this_for_speed_p)
6715 > rtx_cost (temp2, SET, optimize_this_for_speed_p))
6716 return temp2;
6717 else if (rtx_cost (x, SET, optimize_this_for_speed_p)
6718 > rtx_cost (temp, SET, optimize_this_for_speed_p))
6719 return temp;
6720 else
6721 return x;
6722 }
6723
6724 /* We can optimize some special cases of ZERO_EXTEND. */
6725 if (GET_CODE (x) == ZERO_EXTEND)
6726 {
6727 /* (zero_extend:DI (truncate:SI foo:DI)) is just foo:DI if we
6728 know that the last value didn't have any inappropriate bits
6729 set. */
6730 if (GET_CODE (XEXP (x, 0)) == TRUNCATE
6731 && GET_MODE (XEXP (XEXP (x, 0), 0)) == GET_MODE (x)
6732 && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
6733 && (nonzero_bits (XEXP (XEXP (x, 0), 0), GET_MODE (x))
6734 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
6735 return XEXP (XEXP (x, 0), 0);
6736
6737 /* Likewise for (zero_extend:DI (subreg:SI foo:DI 0)). */
6738 if (GET_CODE (XEXP (x, 0)) == SUBREG
6739 && GET_MODE (SUBREG_REG (XEXP (x, 0))) == GET_MODE (x)
6740 && subreg_lowpart_p (XEXP (x, 0))
6741 && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
6742 && (nonzero_bits (SUBREG_REG (XEXP (x, 0)), GET_MODE (x))
6743 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
6744 return SUBREG_REG (XEXP (x, 0));
6745
6746 /* (zero_extend:DI (truncate:SI foo:DI)) is just foo:DI when foo
6747 is a comparison and STORE_FLAG_VALUE permits. This is like
6748 the first case, but it works even when GET_MODE (x) is larger
6749 than HOST_WIDE_INT. */
6750 if (GET_CODE (XEXP (x, 0)) == TRUNCATE
6751 && GET_MODE (XEXP (XEXP (x, 0), 0)) == GET_MODE (x)
6752 && COMPARISON_P (XEXP (XEXP (x, 0), 0))
6753 && (GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))
6754 <= HOST_BITS_PER_WIDE_INT)
6755 && (STORE_FLAG_VALUE & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
6756 return XEXP (XEXP (x, 0), 0);
6757
6758 /* Likewise for (zero_extend:DI (subreg:SI foo:DI 0)). */
6759 if (GET_CODE (XEXP (x, 0)) == SUBREG
6760 && GET_MODE (SUBREG_REG (XEXP (x, 0))) == GET_MODE (x)
6761 && subreg_lowpart_p (XEXP (x, 0))
6762 && COMPARISON_P (SUBREG_REG (XEXP (x, 0)))
6763 && (GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))
6764 <= HOST_BITS_PER_WIDE_INT)
6765 && (STORE_FLAG_VALUE & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
6766 return SUBREG_REG (XEXP (x, 0));
6767
6768 }
6769
6770 /* If we reach here, we want to return a pair of shifts. The inner
6771 shift is a left shift of BITSIZE - POS - LEN bits. The outer
6772 shift is a right shift of BITSIZE - LEN bits. It is arithmetic or
6773 logical depending on the value of UNSIGNEDP.
6774
6775 If this was a ZERO_EXTEND or ZERO_EXTRACT, this pair of shifts will be
6776 converted into an AND of a shift.
6777
6778 We must check for the case where the left shift would have a negative
6779 count. This can happen in a case like (x >> 31) & 255 on machines
6780 that can't shift by a constant. On those machines, we would first
6781 combine the shift with the AND to produce a variable-position
6782 extraction. Then the constant of 31 would be substituted in
6783 to produce such a position. */
6784
6785 modewidth = GET_MODE_BITSIZE (GET_MODE (x));
6786 if (modewidth >= pos + len)
6787 {
6788 enum machine_mode mode = GET_MODE (x);
6789 tem = gen_lowpart (mode, XEXP (x, 0));
6790 if (!tem || GET_CODE (tem) == CLOBBER)
6791 return x;
6792 tem = simplify_shift_const (NULL_RTX, ASHIFT, mode,
6793 tem, modewidth - pos - len);
6794 tem = simplify_shift_const (NULL_RTX, unsignedp ? LSHIFTRT : ASHIFTRT,
6795 mode, tem, modewidth - len);
6796 }
6797 else if (unsignedp && len < HOST_BITS_PER_WIDE_INT)
6798 tem = simplify_and_const_int (NULL_RTX, GET_MODE (x),
6799 simplify_shift_const (NULL_RTX, LSHIFTRT,
6800 GET_MODE (x),
6801 XEXP (x, 0), pos),
6802 ((unsigned HOST_WIDE_INT) 1 << len) - 1);
6803 else
6804 /* Any other cases we can't handle. */
6805 return x;
6806
6807 /* If we couldn't do this for some reason, return the original
6808 expression. */
6809 if (GET_CODE (tem) == CLOBBER)
6810 return x;
6811
6812 return tem;
6813 }
6814 \f
6815 /* X is a SET which contains an assignment of one object into
6816 a part of another (such as a bit-field assignment, STRICT_LOW_PART,
6817 or certain SUBREGS). If possible, convert it into a series of
6818 logical operations.
6819
6820 We half-heartedly support variable positions, but do not at all
6821 support variable lengths. */
6822
6823 static const_rtx
6824 expand_field_assignment (const_rtx x)
6825 {
6826 rtx inner;
6827 rtx pos; /* Always counts from low bit. */
6828 int len;
6829 rtx mask, cleared, masked;
6830 enum machine_mode compute_mode;
6831
6832 /* Loop until we find something we can't simplify. */
6833 while (1)
6834 {
6835 if (GET_CODE (SET_DEST (x)) == STRICT_LOW_PART
6836 && GET_CODE (XEXP (SET_DEST (x), 0)) == SUBREG)
6837 {
6838 inner = SUBREG_REG (XEXP (SET_DEST (x), 0));
6839 len = GET_MODE_BITSIZE (GET_MODE (XEXP (SET_DEST (x), 0)));
6840 pos = GEN_INT (subreg_lsb (XEXP (SET_DEST (x), 0)));
6841 }
6842 else if (GET_CODE (SET_DEST (x)) == ZERO_EXTRACT
6843 && CONST_INT_P (XEXP (SET_DEST (x), 1)))
6844 {
6845 inner = XEXP (SET_DEST (x), 0);
6846 len = INTVAL (XEXP (SET_DEST (x), 1));
6847 pos = XEXP (SET_DEST (x), 2);
6848
6849 /* A constant position should stay within the width of INNER. */
6850 if (CONST_INT_P (pos)
6851 && INTVAL (pos) + len > GET_MODE_BITSIZE (GET_MODE (inner)))
6852 break;
6853
6854 if (BITS_BIG_ENDIAN)
6855 {
6856 if (CONST_INT_P (pos))
6857 pos = GEN_INT (GET_MODE_BITSIZE (GET_MODE (inner)) - len
6858 - INTVAL (pos));
6859 else if (GET_CODE (pos) == MINUS
6860 && CONST_INT_P (XEXP (pos, 1))
6861 && (INTVAL (XEXP (pos, 1))
6862 == GET_MODE_BITSIZE (GET_MODE (inner)) - len))
6863 /* If position is ADJUST - X, new position is X. */
6864 pos = XEXP (pos, 0);
6865 else
6866 pos = simplify_gen_binary (MINUS, GET_MODE (pos),
6867 GEN_INT (GET_MODE_BITSIZE (
6868 GET_MODE (inner))
6869 - len),
6870 pos);
6871 }
6872 }
6873
6874 /* A SUBREG between two modes that occupy the same numbers of words
6875 can be done by moving the SUBREG to the source. */
6876 else if (GET_CODE (SET_DEST (x)) == SUBREG
6877 /* We need SUBREGs to compute nonzero_bits properly. */
6878 && nonzero_sign_valid
6879 && (((GET_MODE_SIZE (GET_MODE (SET_DEST (x)))
6880 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
6881 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (x))))
6882 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)))
6883 {
6884 x = gen_rtx_SET (VOIDmode, SUBREG_REG (SET_DEST (x)),
6885 gen_lowpart
6886 (GET_MODE (SUBREG_REG (SET_DEST (x))),
6887 SET_SRC (x)));
6888 continue;
6889 }
6890 else
6891 break;
6892
6893 while (GET_CODE (inner) == SUBREG && subreg_lowpart_p (inner))
6894 inner = SUBREG_REG (inner);
6895
6896 compute_mode = GET_MODE (inner);
6897
6898 /* Don't attempt bitwise arithmetic on non scalar integer modes. */
6899 if (! SCALAR_INT_MODE_P (compute_mode))
6900 {
6901 enum machine_mode imode;
6902
6903 /* Don't do anything for vector or complex integral types. */
6904 if (! FLOAT_MODE_P (compute_mode))
6905 break;
6906
6907 /* Try to find an integral mode to pun with. */
6908 imode = mode_for_size (GET_MODE_BITSIZE (compute_mode), MODE_INT, 0);
6909 if (imode == BLKmode)
6910 break;
6911
6912 compute_mode = imode;
6913 inner = gen_lowpart (imode, inner);
6914 }
6915
6916 /* Compute a mask of LEN bits, if we can do this on the host machine. */
6917 if (len >= HOST_BITS_PER_WIDE_INT)
6918 break;
6919
6920 /* Now compute the equivalent expression. Make a copy of INNER
6921 for the SET_DEST in case it is a MEM into which we will substitute;
6922 we don't want shared RTL in that case. */
6923 mask = GEN_INT (((unsigned HOST_WIDE_INT) 1 << len) - 1);
6924 cleared = simplify_gen_binary (AND, compute_mode,
6925 simplify_gen_unary (NOT, compute_mode,
6926 simplify_gen_binary (ASHIFT,
6927 compute_mode,
6928 mask, pos),
6929 compute_mode),
6930 inner);
6931 masked = simplify_gen_binary (ASHIFT, compute_mode,
6932 simplify_gen_binary (
6933 AND, compute_mode,
6934 gen_lowpart (compute_mode, SET_SRC (x)),
6935 mask),
6936 pos);
6937
6938 x = gen_rtx_SET (VOIDmode, copy_rtx (inner),
6939 simplify_gen_binary (IOR, compute_mode,
6940 cleared, masked));
6941 }
6942
6943 return x;
6944 }
6945 \f
6946 /* Return an RTX for a reference to LEN bits of INNER. If POS_RTX is nonzero,
6947 it is an RTX that represents a variable starting position; otherwise,
6948 POS is the (constant) starting bit position (counted from the LSB).
6949
6950 UNSIGNEDP is nonzero for an unsigned reference and zero for a
6951 signed reference.
6952
6953 IN_DEST is nonzero if this is a reference in the destination of a
6954 SET. This is used when a ZERO_ or SIGN_EXTRACT isn't needed. If nonzero,
6955 a STRICT_LOW_PART will be used, if zero, ZERO_EXTEND or SIGN_EXTEND will
6956 be used.
6957
6958 IN_COMPARE is nonzero if we are in a COMPARE. This means that a
6959 ZERO_EXTRACT should be built even for bits starting at bit 0.
6960
6961 MODE is the desired mode of the result (if IN_DEST == 0).
6962
6963 The result is an RTX for the extraction or NULL_RTX if the target
6964 can't handle it. */
6965
6966 static rtx
6967 make_extraction (enum machine_mode mode, rtx inner, HOST_WIDE_INT pos,
6968 rtx pos_rtx, unsigned HOST_WIDE_INT len, int unsignedp,
6969 int in_dest, int in_compare)
6970 {
6971 /* This mode describes the size of the storage area
6972 to fetch the overall value from. Within that, we
6973 ignore the POS lowest bits, etc. */
6974 enum machine_mode is_mode = GET_MODE (inner);
6975 enum machine_mode inner_mode;
6976 enum machine_mode wanted_inner_mode;
6977 enum machine_mode wanted_inner_reg_mode = word_mode;
6978 enum machine_mode pos_mode = word_mode;
6979 enum machine_mode extraction_mode = word_mode;
6980 enum machine_mode tmode = mode_for_size (len, MODE_INT, 1);
6981 rtx new_rtx = 0;
6982 rtx orig_pos_rtx = pos_rtx;
6983 HOST_WIDE_INT orig_pos;
6984
6985 if (GET_CODE (inner) == SUBREG && subreg_lowpart_p (inner))
6986 {
6987 /* If going from (subreg:SI (mem:QI ...)) to (mem:QI ...),
6988 consider just the QI as the memory to extract from.
6989 The subreg adds or removes high bits; its mode is
6990 irrelevant to the meaning of this extraction,
6991 since POS and LEN count from the lsb. */
6992 if (MEM_P (SUBREG_REG (inner)))
6993 is_mode = GET_MODE (SUBREG_REG (inner));
6994 inner = SUBREG_REG (inner);
6995 }
6996 else if (GET_CODE (inner) == ASHIFT
6997 && CONST_INT_P (XEXP (inner, 1))
6998 && pos_rtx == 0 && pos == 0
6999 && len > UINTVAL (XEXP (inner, 1)))
7000 {
7001 /* We're extracting the least significant bits of an rtx
7002 (ashift X (const_int C)), where LEN > C. Extract the
7003 least significant (LEN - C) bits of X, giving an rtx
7004 whose mode is MODE, then shift it left C times. */
7005 new_rtx = make_extraction (mode, XEXP (inner, 0),
7006 0, 0, len - INTVAL (XEXP (inner, 1)),
7007 unsignedp, in_dest, in_compare);
7008 if (new_rtx != 0)
7009 return gen_rtx_ASHIFT (mode, new_rtx, XEXP (inner, 1));
7010 }
7011
7012 inner_mode = GET_MODE (inner);
7013
7014 if (pos_rtx && CONST_INT_P (pos_rtx))
7015 pos = INTVAL (pos_rtx), pos_rtx = 0;
7016
7017 /* See if this can be done without an extraction. We never can if the
7018 width of the field is not the same as that of some integer mode. For
7019 registers, we can only avoid the extraction if the position is at the
7020 low-order bit and this is either not in the destination or we have the
7021 appropriate STRICT_LOW_PART operation available.
7022
7023 For MEM, we can avoid an extract if the field starts on an appropriate
7024 boundary and we can change the mode of the memory reference. */
7025
7026 if (tmode != BLKmode
7027 && ((pos_rtx == 0 && (pos % BITS_PER_WORD) == 0
7028 && !MEM_P (inner)
7029 && (inner_mode == tmode
7030 || !REG_P (inner)
7031 || TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (tmode),
7032 GET_MODE_BITSIZE (inner_mode))
7033 || reg_truncated_to_mode (tmode, inner))
7034 && (! in_dest
7035 || (REG_P (inner)
7036 && have_insn_for (STRICT_LOW_PART, tmode))))
7037 || (MEM_P (inner) && pos_rtx == 0
7038 && (pos
7039 % (STRICT_ALIGNMENT ? GET_MODE_ALIGNMENT (tmode)
7040 : BITS_PER_UNIT)) == 0
7041 /* We can't do this if we are widening INNER_MODE (it
7042 may not be aligned, for one thing). */
7043 && GET_MODE_BITSIZE (inner_mode) >= GET_MODE_BITSIZE (tmode)
7044 && (inner_mode == tmode
7045 || (! mode_dependent_address_p (XEXP (inner, 0))
7046 && ! MEM_VOLATILE_P (inner))))))
7047 {
7048 /* If INNER is a MEM, make a new MEM that encompasses just the desired
7049 field. If the original and current mode are the same, we need not
7050 adjust the offset. Otherwise, we do if bytes big endian.
7051
7052 If INNER is not a MEM, get a piece consisting of just the field
7053 of interest (in this case POS % BITS_PER_WORD must be 0). */
7054
7055 if (MEM_P (inner))
7056 {
7057 HOST_WIDE_INT offset;
7058
7059 /* POS counts from lsb, but make OFFSET count in memory order. */
7060 if (BYTES_BIG_ENDIAN)
7061 offset = (GET_MODE_BITSIZE (is_mode) - len - pos) / BITS_PER_UNIT;
7062 else
7063 offset = pos / BITS_PER_UNIT;
7064
7065 new_rtx = adjust_address_nv (inner, tmode, offset);
7066 }
7067 else if (REG_P (inner))
7068 {
7069 if (tmode != inner_mode)
7070 {
7071 /* We can't call gen_lowpart in a DEST since we
7072 always want a SUBREG (see below) and it would sometimes
7073 return a new hard register. */
7074 if (pos || in_dest)
7075 {
7076 HOST_WIDE_INT final_word = pos / BITS_PER_WORD;
7077
7078 if (WORDS_BIG_ENDIAN
7079 && GET_MODE_SIZE (inner_mode) > UNITS_PER_WORD)
7080 final_word = ((GET_MODE_SIZE (inner_mode)
7081 - GET_MODE_SIZE (tmode))
7082 / UNITS_PER_WORD) - final_word;
7083
7084 final_word *= UNITS_PER_WORD;
7085 if (BYTES_BIG_ENDIAN &&
7086 GET_MODE_SIZE (inner_mode) > GET_MODE_SIZE (tmode))
7087 final_word += (GET_MODE_SIZE (inner_mode)
7088 - GET_MODE_SIZE (tmode)) % UNITS_PER_WORD;
7089
7090 /* Avoid creating invalid subregs, for example when
7091 simplifying (x>>32)&255. */
7092 if (!validate_subreg (tmode, inner_mode, inner, final_word))
7093 return NULL_RTX;
7094
7095 new_rtx = gen_rtx_SUBREG (tmode, inner, final_word);
7096 }
7097 else
7098 new_rtx = gen_lowpart (tmode, inner);
7099 }
7100 else
7101 new_rtx = inner;
7102 }
7103 else
7104 new_rtx = force_to_mode (inner, tmode,
7105 len >= HOST_BITS_PER_WIDE_INT
7106 ? ~(unsigned HOST_WIDE_INT) 0
7107 : ((unsigned HOST_WIDE_INT) 1 << len) - 1,
7108 0);
7109
7110 /* If this extraction is going into the destination of a SET,
7111 make a STRICT_LOW_PART unless we made a MEM. */
7112
7113 if (in_dest)
7114 return (MEM_P (new_rtx) ? new_rtx
7115 : (GET_CODE (new_rtx) != SUBREG
7116 ? gen_rtx_CLOBBER (tmode, const0_rtx)
7117 : gen_rtx_STRICT_LOW_PART (VOIDmode, new_rtx)));
7118
7119 if (mode == tmode)
7120 return new_rtx;
7121
7122 if (CONST_INT_P (new_rtx)
7123 || GET_CODE (new_rtx) == CONST_DOUBLE)
7124 return simplify_unary_operation (unsignedp ? ZERO_EXTEND : SIGN_EXTEND,
7125 mode, new_rtx, tmode);
7126
7127 /* If we know that no extraneous bits are set, and that the high
7128 bit is not set, convert the extraction to the cheaper of
7129 sign and zero extension, that are equivalent in these cases. */
7130 if (flag_expensive_optimizations
7131 && (GET_MODE_BITSIZE (tmode) <= HOST_BITS_PER_WIDE_INT
7132 && ((nonzero_bits (new_rtx, tmode)
7133 & ~(((unsigned HOST_WIDE_INT)
7134 GET_MODE_MASK (tmode))
7135 >> 1))
7136 == 0)))
7137 {
7138 rtx temp = gen_rtx_ZERO_EXTEND (mode, new_rtx);
7139 rtx temp1 = gen_rtx_SIGN_EXTEND (mode, new_rtx);
7140
7141 /* Prefer ZERO_EXTENSION, since it gives more information to
7142 backends. */
7143 if (rtx_cost (temp, SET, optimize_this_for_speed_p)
7144 <= rtx_cost (temp1, SET, optimize_this_for_speed_p))
7145 return temp;
7146 return temp1;
7147 }
7148
7149 /* Otherwise, sign- or zero-extend unless we already are in the
7150 proper mode. */
7151
7152 return (gen_rtx_fmt_e (unsignedp ? ZERO_EXTEND : SIGN_EXTEND,
7153 mode, new_rtx));
7154 }
7155
7156 /* Unless this is a COMPARE or we have a funny memory reference,
7157 don't do anything with zero-extending field extracts starting at
7158 the low-order bit since they are simple AND operations. */
7159 if (pos_rtx == 0 && pos == 0 && ! in_dest
7160 && ! in_compare && unsignedp)
7161 return 0;
7162
7163 /* Unless INNER is not MEM, reject this if we would be spanning bytes or
7164 if the position is not a constant and the length is not 1. In all
7165 other cases, we would only be going outside our object in cases when
7166 an original shift would have been undefined. */
7167 if (MEM_P (inner)
7168 && ((pos_rtx == 0 && pos + len > GET_MODE_BITSIZE (is_mode))
7169 || (pos_rtx != 0 && len != 1)))
7170 return 0;
7171
7172 /* Get the mode to use should INNER not be a MEM, the mode for the position,
7173 and the mode for the result. */
7174 if (in_dest && mode_for_extraction (EP_insv, -1) != MAX_MACHINE_MODE)
7175 {
7176 wanted_inner_reg_mode = mode_for_extraction (EP_insv, 0);
7177 pos_mode = mode_for_extraction (EP_insv, 2);
7178 extraction_mode = mode_for_extraction (EP_insv, 3);
7179 }
7180
7181 if (! in_dest && unsignedp
7182 && mode_for_extraction (EP_extzv, -1) != MAX_MACHINE_MODE)
7183 {
7184 wanted_inner_reg_mode = mode_for_extraction (EP_extzv, 1);
7185 pos_mode = mode_for_extraction (EP_extzv, 3);
7186 extraction_mode = mode_for_extraction (EP_extzv, 0);
7187 }
7188
7189 if (! in_dest && ! unsignedp
7190 && mode_for_extraction (EP_extv, -1) != MAX_MACHINE_MODE)
7191 {
7192 wanted_inner_reg_mode = mode_for_extraction (EP_extv, 1);
7193 pos_mode = mode_for_extraction (EP_extv, 3);
7194 extraction_mode = mode_for_extraction (EP_extv, 0);
7195 }
7196
7197 /* Never narrow an object, since that might not be safe. */
7198
7199 if (mode != VOIDmode
7200 && GET_MODE_SIZE (extraction_mode) < GET_MODE_SIZE (mode))
7201 extraction_mode = mode;
7202
7203 if (pos_rtx && GET_MODE (pos_rtx) != VOIDmode
7204 && GET_MODE_SIZE (pos_mode) < GET_MODE_SIZE (GET_MODE (pos_rtx)))
7205 pos_mode = GET_MODE (pos_rtx);
7206
7207 /* If this is not from memory, the desired mode is the preferred mode
7208 for an extraction pattern's first input operand, or word_mode if there
7209 is none. */
7210 if (!MEM_P (inner))
7211 wanted_inner_mode = wanted_inner_reg_mode;
7212 else
7213 {
7214 /* Be careful not to go beyond the extracted object and maintain the
7215 natural alignment of the memory. */
7216 wanted_inner_mode = smallest_mode_for_size (len, MODE_INT);
7217 while (pos % GET_MODE_BITSIZE (wanted_inner_mode) + len
7218 > GET_MODE_BITSIZE (wanted_inner_mode))
7219 {
7220 wanted_inner_mode = GET_MODE_WIDER_MODE (wanted_inner_mode);
7221 gcc_assert (wanted_inner_mode != VOIDmode);
7222 }
7223
7224 /* If we have to change the mode of memory and cannot, the desired mode
7225 is EXTRACTION_MODE. */
7226 if (inner_mode != wanted_inner_mode
7227 && (mode_dependent_address_p (XEXP (inner, 0))
7228 || MEM_VOLATILE_P (inner)
7229 || pos_rtx))
7230 wanted_inner_mode = extraction_mode;
7231 }
7232
7233 orig_pos = pos;
7234
7235 if (BITS_BIG_ENDIAN)
7236 {
7237 /* POS is passed as if BITS_BIG_ENDIAN == 0, so we need to convert it to
7238 BITS_BIG_ENDIAN style. If position is constant, compute new
7239 position. Otherwise, build subtraction.
7240 Note that POS is relative to the mode of the original argument.
7241 If it's a MEM we need to recompute POS relative to that.
7242 However, if we're extracting from (or inserting into) a register,
7243 we want to recompute POS relative to wanted_inner_mode. */
7244 int width = (MEM_P (inner)
7245 ? GET_MODE_BITSIZE (is_mode)
7246 : GET_MODE_BITSIZE (wanted_inner_mode));
7247
7248 if (pos_rtx == 0)
7249 pos = width - len - pos;
7250 else
7251 pos_rtx
7252 = gen_rtx_MINUS (GET_MODE (pos_rtx), GEN_INT (width - len), pos_rtx);
7253 /* POS may be less than 0 now, but we check for that below.
7254 Note that it can only be less than 0 if !MEM_P (inner). */
7255 }
7256
7257 /* If INNER has a wider mode, and this is a constant extraction, try to
7258 make it smaller and adjust the byte to point to the byte containing
7259 the value. */
7260 if (wanted_inner_mode != VOIDmode
7261 && inner_mode != wanted_inner_mode
7262 && ! pos_rtx
7263 && GET_MODE_SIZE (wanted_inner_mode) < GET_MODE_SIZE (is_mode)
7264 && MEM_P (inner)
7265 && ! mode_dependent_address_p (XEXP (inner, 0))
7266 && ! MEM_VOLATILE_P (inner))
7267 {
7268 int offset = 0;
7269
7270 /* The computations below will be correct if the machine is big
7271 endian in both bits and bytes or little endian in bits and bytes.
7272 If it is mixed, we must adjust. */
7273
7274 /* If bytes are big endian and we had a paradoxical SUBREG, we must
7275 adjust OFFSET to compensate. */
7276 if (BYTES_BIG_ENDIAN
7277 && GET_MODE_SIZE (inner_mode) < GET_MODE_SIZE (is_mode))
7278 offset -= GET_MODE_SIZE (is_mode) - GET_MODE_SIZE (inner_mode);
7279
7280 /* We can now move to the desired byte. */
7281 offset += (pos / GET_MODE_BITSIZE (wanted_inner_mode))
7282 * GET_MODE_SIZE (wanted_inner_mode);
7283 pos %= GET_MODE_BITSIZE (wanted_inner_mode);
7284
7285 if (BYTES_BIG_ENDIAN != BITS_BIG_ENDIAN
7286 && is_mode != wanted_inner_mode)
7287 offset = (GET_MODE_SIZE (is_mode)
7288 - GET_MODE_SIZE (wanted_inner_mode) - offset);
7289
7290 inner = adjust_address_nv (inner, wanted_inner_mode, offset);
7291 }
7292
7293 /* If INNER is not memory, get it into the proper mode. If we are changing
7294 its mode, POS must be a constant and smaller than the size of the new
7295 mode. */
7296 else if (!MEM_P (inner))
7297 {
7298 /* On the LHS, don't create paradoxical subregs implicitely truncating
7299 the register unless TRULY_NOOP_TRUNCATION. */
7300 if (in_dest
7301 && !TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (GET_MODE (inner)),
7302 GET_MODE_BITSIZE (wanted_inner_mode)))
7303 return NULL_RTX;
7304
7305 if (GET_MODE (inner) != wanted_inner_mode
7306 && (pos_rtx != 0
7307 || orig_pos + len > GET_MODE_BITSIZE (wanted_inner_mode)))
7308 return NULL_RTX;
7309
7310 if (orig_pos < 0)
7311 return NULL_RTX;
7312
7313 inner = force_to_mode (inner, wanted_inner_mode,
7314 pos_rtx
7315 || len + orig_pos >= HOST_BITS_PER_WIDE_INT
7316 ? ~(unsigned HOST_WIDE_INT) 0
7317 : ((((unsigned HOST_WIDE_INT) 1 << len) - 1)
7318 << orig_pos),
7319 0);
7320 }
7321
7322 /* Adjust mode of POS_RTX, if needed. If we want a wider mode, we
7323 have to zero extend. Otherwise, we can just use a SUBREG. */
7324 if (pos_rtx != 0
7325 && GET_MODE_SIZE (pos_mode) > GET_MODE_SIZE (GET_MODE (pos_rtx)))
7326 {
7327 rtx temp = gen_rtx_ZERO_EXTEND (pos_mode, pos_rtx);
7328
7329 /* If we know that no extraneous bits are set, and that the high
7330 bit is not set, convert extraction to cheaper one - either
7331 SIGN_EXTENSION or ZERO_EXTENSION, that are equivalent in these
7332 cases. */
7333 if (flag_expensive_optimizations
7334 && (GET_MODE_BITSIZE (GET_MODE (pos_rtx)) <= HOST_BITS_PER_WIDE_INT
7335 && ((nonzero_bits (pos_rtx, GET_MODE (pos_rtx))
7336 & ~(((unsigned HOST_WIDE_INT)
7337 GET_MODE_MASK (GET_MODE (pos_rtx)))
7338 >> 1))
7339 == 0)))
7340 {
7341 rtx temp1 = gen_rtx_SIGN_EXTEND (pos_mode, pos_rtx);
7342
7343 /* Prefer ZERO_EXTENSION, since it gives more information to
7344 backends. */
7345 if (rtx_cost (temp1, SET, optimize_this_for_speed_p)
7346 < rtx_cost (temp, SET, optimize_this_for_speed_p))
7347 temp = temp1;
7348 }
7349 pos_rtx = temp;
7350 }
7351 else if (pos_rtx != 0
7352 && GET_MODE_SIZE (pos_mode) < GET_MODE_SIZE (GET_MODE (pos_rtx)))
7353 pos_rtx = gen_lowpart (pos_mode, pos_rtx);
7354
7355 /* Make POS_RTX unless we already have it and it is correct. If we don't
7356 have a POS_RTX but we do have an ORIG_POS_RTX, the latter must
7357 be a CONST_INT. */
7358 if (pos_rtx == 0 && orig_pos_rtx != 0 && INTVAL (orig_pos_rtx) == pos)
7359 pos_rtx = orig_pos_rtx;
7360
7361 else if (pos_rtx == 0)
7362 pos_rtx = GEN_INT (pos);
7363
7364 /* Make the required operation. See if we can use existing rtx. */
7365 new_rtx = gen_rtx_fmt_eee (unsignedp ? ZERO_EXTRACT : SIGN_EXTRACT,
7366 extraction_mode, inner, GEN_INT (len), pos_rtx);
7367 if (! in_dest)
7368 new_rtx = gen_lowpart (mode, new_rtx);
7369
7370 return new_rtx;
7371 }
7372 \f
7373 /* See if X contains an ASHIFT of COUNT or more bits that can be commuted
7374 with any other operations in X. Return X without that shift if so. */
7375
7376 static rtx
7377 extract_left_shift (rtx x, int count)
7378 {
7379 enum rtx_code code = GET_CODE (x);
7380 enum machine_mode mode = GET_MODE (x);
7381 rtx tem;
7382
7383 switch (code)
7384 {
7385 case ASHIFT:
7386 /* This is the shift itself. If it is wide enough, we will return
7387 either the value being shifted if the shift count is equal to
7388 COUNT or a shift for the difference. */
7389 if (CONST_INT_P (XEXP (x, 1))
7390 && INTVAL (XEXP (x, 1)) >= count)
7391 return simplify_shift_const (NULL_RTX, ASHIFT, mode, XEXP (x, 0),
7392 INTVAL (XEXP (x, 1)) - count);
7393 break;
7394
7395 case NEG: case NOT:
7396 if ((tem = extract_left_shift (XEXP (x, 0), count)) != 0)
7397 return simplify_gen_unary (code, mode, tem, mode);
7398
7399 break;
7400
7401 case PLUS: case IOR: case XOR: case AND:
7402 /* If we can safely shift this constant and we find the inner shift,
7403 make a new operation. */
7404 if (CONST_INT_P (XEXP (x, 1))
7405 && (UINTVAL (XEXP (x, 1))
7406 & ((((unsigned HOST_WIDE_INT) 1 << count)) - 1)) == 0
7407 && (tem = extract_left_shift (XEXP (x, 0), count)) != 0)
7408 return simplify_gen_binary (code, mode, tem,
7409 GEN_INT (INTVAL (XEXP (x, 1)) >> count));
7410
7411 break;
7412
7413 default:
7414 break;
7415 }
7416
7417 return 0;
7418 }
7419 \f
7420 /* Look at the expression rooted at X. Look for expressions
7421 equivalent to ZERO_EXTRACT, SIGN_EXTRACT, ZERO_EXTEND, SIGN_EXTEND.
7422 Form these expressions.
7423
7424 Return the new rtx, usually just X.
7425
7426 Also, for machines like the VAX that don't have logical shift insns,
7427 try to convert logical to arithmetic shift operations in cases where
7428 they are equivalent. This undoes the canonicalizations to logical
7429 shifts done elsewhere.
7430
7431 We try, as much as possible, to re-use rtl expressions to save memory.
7432
7433 IN_CODE says what kind of expression we are processing. Normally, it is
7434 SET. In a memory address (inside a MEM, PLUS or minus, the latter two
7435 being kludges), it is MEM. When processing the arguments of a comparison
7436 or a COMPARE against zero, it is COMPARE. */
7437
7438 static rtx
7439 make_compound_operation (rtx x, enum rtx_code in_code)
7440 {
7441 enum rtx_code code = GET_CODE (x);
7442 enum machine_mode mode = GET_MODE (x);
7443 int mode_width = GET_MODE_BITSIZE (mode);
7444 rtx rhs, lhs;
7445 enum rtx_code next_code;
7446 int i, j;
7447 rtx new_rtx = 0;
7448 rtx tem;
7449 const char *fmt;
7450
7451 /* Select the code to be used in recursive calls. Once we are inside an
7452 address, we stay there. If we have a comparison, set to COMPARE,
7453 but once inside, go back to our default of SET. */
7454
7455 next_code = (code == MEM ? MEM
7456 : ((code == PLUS || code == MINUS)
7457 && SCALAR_INT_MODE_P (mode)) ? MEM
7458 : ((code == COMPARE || COMPARISON_P (x))
7459 && XEXP (x, 1) == const0_rtx) ? COMPARE
7460 : in_code == COMPARE ? SET : in_code);
7461
7462 /* Process depending on the code of this operation. If NEW is set
7463 nonzero, it will be returned. */
7464
7465 switch (code)
7466 {
7467 case ASHIFT:
7468 /* Convert shifts by constants into multiplications if inside
7469 an address. */
7470 if (in_code == MEM && CONST_INT_P (XEXP (x, 1))
7471 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT
7472 && INTVAL (XEXP (x, 1)) >= 0)
7473 {
7474 HOST_WIDE_INT count = INTVAL (XEXP (x, 1));
7475 HOST_WIDE_INT multval = (HOST_WIDE_INT) 1 << count;
7476
7477 new_rtx = make_compound_operation (XEXP (x, 0), next_code);
7478 if (GET_CODE (new_rtx) == NEG)
7479 {
7480 new_rtx = XEXP (new_rtx, 0);
7481 multval = -multval;
7482 }
7483 multval = trunc_int_for_mode (multval, mode);
7484 new_rtx = gen_rtx_MULT (mode, new_rtx, GEN_INT (multval));
7485 }
7486 break;
7487
7488 case PLUS:
7489 lhs = XEXP (x, 0);
7490 rhs = XEXP (x, 1);
7491 lhs = make_compound_operation (lhs, next_code);
7492 rhs = make_compound_operation (rhs, next_code);
7493 if (GET_CODE (lhs) == MULT && GET_CODE (XEXP (lhs, 0)) == NEG
7494 && SCALAR_INT_MODE_P (mode))
7495 {
7496 tem = simplify_gen_binary (MULT, mode, XEXP (XEXP (lhs, 0), 0),
7497 XEXP (lhs, 1));
7498 new_rtx = simplify_gen_binary (MINUS, mode, rhs, tem);
7499 }
7500 else if (GET_CODE (lhs) == MULT
7501 && (CONST_INT_P (XEXP (lhs, 1)) && INTVAL (XEXP (lhs, 1)) < 0))
7502 {
7503 tem = simplify_gen_binary (MULT, mode, XEXP (lhs, 0),
7504 simplify_gen_unary (NEG, mode,
7505 XEXP (lhs, 1),
7506 mode));
7507 new_rtx = simplify_gen_binary (MINUS, mode, rhs, tem);
7508 }
7509 else
7510 {
7511 SUBST (XEXP (x, 0), lhs);
7512 SUBST (XEXP (x, 1), rhs);
7513 goto maybe_swap;
7514 }
7515 x = gen_lowpart (mode, new_rtx);
7516 goto maybe_swap;
7517
7518 case MINUS:
7519 lhs = XEXP (x, 0);
7520 rhs = XEXP (x, 1);
7521 lhs = make_compound_operation (lhs, next_code);
7522 rhs = make_compound_operation (rhs, next_code);
7523 if (GET_CODE (rhs) == MULT && GET_CODE (XEXP (rhs, 0)) == NEG
7524 && SCALAR_INT_MODE_P (mode))
7525 {
7526 tem = simplify_gen_binary (MULT, mode, XEXP (XEXP (rhs, 0), 0),
7527 XEXP (rhs, 1));
7528 new_rtx = simplify_gen_binary (PLUS, mode, tem, lhs);
7529 }
7530 else if (GET_CODE (rhs) == MULT
7531 && (CONST_INT_P (XEXP (rhs, 1)) && INTVAL (XEXP (rhs, 1)) < 0))
7532 {
7533 tem = simplify_gen_binary (MULT, mode, XEXP (rhs, 0),
7534 simplify_gen_unary (NEG, mode,
7535 XEXP (rhs, 1),
7536 mode));
7537 new_rtx = simplify_gen_binary (PLUS, mode, tem, lhs);
7538 }
7539 else
7540 {
7541 SUBST (XEXP (x, 0), lhs);
7542 SUBST (XEXP (x, 1), rhs);
7543 return x;
7544 }
7545 return gen_lowpart (mode, new_rtx);
7546
7547 case AND:
7548 /* If the second operand is not a constant, we can't do anything
7549 with it. */
7550 if (!CONST_INT_P (XEXP (x, 1)))
7551 break;
7552
7553 /* If the constant is a power of two minus one and the first operand
7554 is a logical right shift, make an extraction. */
7555 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
7556 && (i = exact_log2 (UINTVAL (XEXP (x, 1)) + 1)) >= 0)
7557 {
7558 new_rtx = make_compound_operation (XEXP (XEXP (x, 0), 0), next_code);
7559 new_rtx = make_extraction (mode, new_rtx, 0, XEXP (XEXP (x, 0), 1), i, 1,
7560 0, in_code == COMPARE);
7561 }
7562
7563 /* Same as previous, but for (subreg (lshiftrt ...)) in first op. */
7564 else if (GET_CODE (XEXP (x, 0)) == SUBREG
7565 && subreg_lowpart_p (XEXP (x, 0))
7566 && GET_CODE (SUBREG_REG (XEXP (x, 0))) == LSHIFTRT
7567 && (i = exact_log2 (UINTVAL (XEXP (x, 1)) + 1)) >= 0)
7568 {
7569 new_rtx = make_compound_operation (XEXP (SUBREG_REG (XEXP (x, 0)), 0),
7570 next_code);
7571 new_rtx = make_extraction (GET_MODE (SUBREG_REG (XEXP (x, 0))), new_rtx, 0,
7572 XEXP (SUBREG_REG (XEXP (x, 0)), 1), i, 1,
7573 0, in_code == COMPARE);
7574 }
7575 /* Same as previous, but for (xor/ior (lshiftrt...) (lshiftrt...)). */
7576 else if ((GET_CODE (XEXP (x, 0)) == XOR
7577 || GET_CODE (XEXP (x, 0)) == IOR)
7578 && GET_CODE (XEXP (XEXP (x, 0), 0)) == LSHIFTRT
7579 && GET_CODE (XEXP (XEXP (x, 0), 1)) == LSHIFTRT
7580 && (i = exact_log2 (UINTVAL (XEXP (x, 1)) + 1)) >= 0)
7581 {
7582 /* Apply the distributive law, and then try to make extractions. */
7583 new_rtx = gen_rtx_fmt_ee (GET_CODE (XEXP (x, 0)), mode,
7584 gen_rtx_AND (mode, XEXP (XEXP (x, 0), 0),
7585 XEXP (x, 1)),
7586 gen_rtx_AND (mode, XEXP (XEXP (x, 0), 1),
7587 XEXP (x, 1)));
7588 new_rtx = make_compound_operation (new_rtx, in_code);
7589 }
7590
7591 /* If we are have (and (rotate X C) M) and C is larger than the number
7592 of bits in M, this is an extraction. */
7593
7594 else if (GET_CODE (XEXP (x, 0)) == ROTATE
7595 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
7596 && (i = exact_log2 (UINTVAL (XEXP (x, 1)) + 1)) >= 0
7597 && i <= INTVAL (XEXP (XEXP (x, 0), 1)))
7598 {
7599 new_rtx = make_compound_operation (XEXP (XEXP (x, 0), 0), next_code);
7600 new_rtx = make_extraction (mode, new_rtx,
7601 (GET_MODE_BITSIZE (mode)
7602 - INTVAL (XEXP (XEXP (x, 0), 1))),
7603 NULL_RTX, i, 1, 0, in_code == COMPARE);
7604 }
7605
7606 /* On machines without logical shifts, if the operand of the AND is
7607 a logical shift and our mask turns off all the propagated sign
7608 bits, we can replace the logical shift with an arithmetic shift. */
7609 else if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
7610 && !have_insn_for (LSHIFTRT, mode)
7611 && have_insn_for (ASHIFTRT, mode)
7612 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
7613 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
7614 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT
7615 && mode_width <= HOST_BITS_PER_WIDE_INT)
7616 {
7617 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
7618
7619 mask >>= INTVAL (XEXP (XEXP (x, 0), 1));
7620 if ((INTVAL (XEXP (x, 1)) & ~mask) == 0)
7621 SUBST (XEXP (x, 0),
7622 gen_rtx_ASHIFTRT (mode,
7623 make_compound_operation
7624 (XEXP (XEXP (x, 0), 0), next_code),
7625 XEXP (XEXP (x, 0), 1)));
7626 }
7627
7628 /* If the constant is one less than a power of two, this might be
7629 representable by an extraction even if no shift is present.
7630 If it doesn't end up being a ZERO_EXTEND, we will ignore it unless
7631 we are in a COMPARE. */
7632 else if ((i = exact_log2 (UINTVAL (XEXP (x, 1)) + 1)) >= 0)
7633 new_rtx = make_extraction (mode,
7634 make_compound_operation (XEXP (x, 0),
7635 next_code),
7636 0, NULL_RTX, i, 1, 0, in_code == COMPARE);
7637
7638 /* If we are in a comparison and this is an AND with a power of two,
7639 convert this into the appropriate bit extract. */
7640 else if (in_code == COMPARE
7641 && (i = exact_log2 (UINTVAL (XEXP (x, 1)))) >= 0)
7642 new_rtx = make_extraction (mode,
7643 make_compound_operation (XEXP (x, 0),
7644 next_code),
7645 i, NULL_RTX, 1, 1, 0, 1);
7646
7647 break;
7648
7649 case LSHIFTRT:
7650 /* If the sign bit is known to be zero, replace this with an
7651 arithmetic shift. */
7652 if (have_insn_for (ASHIFTRT, mode)
7653 && ! have_insn_for (LSHIFTRT, mode)
7654 && mode_width <= HOST_BITS_PER_WIDE_INT
7655 && (nonzero_bits (XEXP (x, 0), mode) & (1 << (mode_width - 1))) == 0)
7656 {
7657 new_rtx = gen_rtx_ASHIFTRT (mode,
7658 make_compound_operation (XEXP (x, 0),
7659 next_code),
7660 XEXP (x, 1));
7661 break;
7662 }
7663
7664 /* ... fall through ... */
7665
7666 case ASHIFTRT:
7667 lhs = XEXP (x, 0);
7668 rhs = XEXP (x, 1);
7669
7670 /* If we have (ashiftrt (ashift foo C1) C2) with C2 >= C1,
7671 this is a SIGN_EXTRACT. */
7672 if (CONST_INT_P (rhs)
7673 && GET_CODE (lhs) == ASHIFT
7674 && CONST_INT_P (XEXP (lhs, 1))
7675 && INTVAL (rhs) >= INTVAL (XEXP (lhs, 1))
7676 && INTVAL (rhs) < mode_width)
7677 {
7678 new_rtx = make_compound_operation (XEXP (lhs, 0), next_code);
7679 new_rtx = make_extraction (mode, new_rtx,
7680 INTVAL (rhs) - INTVAL (XEXP (lhs, 1)),
7681 NULL_RTX, mode_width - INTVAL (rhs),
7682 code == LSHIFTRT, 0, in_code == COMPARE);
7683 break;
7684 }
7685
7686 /* See if we have operations between an ASHIFTRT and an ASHIFT.
7687 If so, try to merge the shifts into a SIGN_EXTEND. We could
7688 also do this for some cases of SIGN_EXTRACT, but it doesn't
7689 seem worth the effort; the case checked for occurs on Alpha. */
7690
7691 if (!OBJECT_P (lhs)
7692 && ! (GET_CODE (lhs) == SUBREG
7693 && (OBJECT_P (SUBREG_REG (lhs))))
7694 && CONST_INT_P (rhs)
7695 && INTVAL (rhs) < HOST_BITS_PER_WIDE_INT
7696 && INTVAL (rhs) < mode_width
7697 && (new_rtx = extract_left_shift (lhs, INTVAL (rhs))) != 0)
7698 new_rtx = make_extraction (mode, make_compound_operation (new_rtx, next_code),
7699 0, NULL_RTX, mode_width - INTVAL (rhs),
7700 code == LSHIFTRT, 0, in_code == COMPARE);
7701
7702 break;
7703
7704 case SUBREG:
7705 /* Call ourselves recursively on the inner expression. If we are
7706 narrowing the object and it has a different RTL code from
7707 what it originally did, do this SUBREG as a force_to_mode. */
7708 {
7709 rtx inner = SUBREG_REG (x), simplified;
7710
7711 tem = make_compound_operation (inner, in_code);
7712
7713 simplified
7714 = simplify_subreg (mode, tem, GET_MODE (inner), SUBREG_BYTE (x));
7715 if (simplified)
7716 tem = simplified;
7717
7718 if (GET_CODE (tem) != GET_CODE (inner)
7719 && GET_MODE_SIZE (mode) < GET_MODE_SIZE (GET_MODE (inner))
7720 && subreg_lowpart_p (x))
7721 {
7722 rtx newer
7723 = force_to_mode (tem, mode, ~(unsigned HOST_WIDE_INT) 0, 0);
7724
7725 /* If we have something other than a SUBREG, we might have
7726 done an expansion, so rerun ourselves. */
7727 if (GET_CODE (newer) != SUBREG)
7728 newer = make_compound_operation (newer, in_code);
7729
7730 /* force_to_mode can expand compounds. If it just re-expanded the
7731 compound, use gen_lowpart to convert to the desired mode. */
7732 if (rtx_equal_p (newer, x)
7733 /* Likewise if it re-expanded the compound only partially.
7734 This happens for SUBREG of ZERO_EXTRACT if they extract
7735 the same number of bits. */
7736 || (GET_CODE (newer) == SUBREG
7737 && (GET_CODE (SUBREG_REG (newer)) == LSHIFTRT
7738 || GET_CODE (SUBREG_REG (newer)) == ASHIFTRT)
7739 && GET_CODE (inner) == AND
7740 && rtx_equal_p (SUBREG_REG (newer), XEXP (inner, 0))))
7741 return gen_lowpart (GET_MODE (x), tem);
7742
7743 return newer;
7744 }
7745
7746 if (simplified)
7747 return tem;
7748 }
7749 break;
7750
7751 default:
7752 break;
7753 }
7754
7755 if (new_rtx)
7756 {
7757 x = gen_lowpart (mode, new_rtx);
7758 code = GET_CODE (x);
7759 }
7760
7761 /* Now recursively process each operand of this operation. */
7762 fmt = GET_RTX_FORMAT (code);
7763 for (i = 0; i < GET_RTX_LENGTH (code); i++)
7764 if (fmt[i] == 'e')
7765 {
7766 new_rtx = make_compound_operation (XEXP (x, i), next_code);
7767 SUBST (XEXP (x, i), new_rtx);
7768 }
7769 else if (fmt[i] == 'E')
7770 for (j = 0; j < XVECLEN (x, i); j++)
7771 {
7772 new_rtx = make_compound_operation (XVECEXP (x, i, j), next_code);
7773 SUBST (XVECEXP (x, i, j), new_rtx);
7774 }
7775
7776 maybe_swap:
7777 /* If this is a commutative operation, the changes to the operands
7778 may have made it noncanonical. */
7779 if (COMMUTATIVE_ARITH_P (x)
7780 && swap_commutative_operands_p (XEXP (x, 0), XEXP (x, 1)))
7781 {
7782 tem = XEXP (x, 0);
7783 SUBST (XEXP (x, 0), XEXP (x, 1));
7784 SUBST (XEXP (x, 1), tem);
7785 }
7786
7787 return x;
7788 }
7789 \f
7790 /* Given M see if it is a value that would select a field of bits
7791 within an item, but not the entire word. Return -1 if not.
7792 Otherwise, return the starting position of the field, where 0 is the
7793 low-order bit.
7794
7795 *PLEN is set to the length of the field. */
7796
7797 static int
7798 get_pos_from_mask (unsigned HOST_WIDE_INT m, unsigned HOST_WIDE_INT *plen)
7799 {
7800 /* Get the bit number of the first 1 bit from the right, -1 if none. */
7801 int pos = m ? ctz_hwi (m) : -1;
7802 int len = 0;
7803
7804 if (pos >= 0)
7805 /* Now shift off the low-order zero bits and see if we have a
7806 power of two minus 1. */
7807 len = exact_log2 ((m >> pos) + 1);
7808
7809 if (len <= 0)
7810 pos = -1;
7811
7812 *plen = len;
7813 return pos;
7814 }
7815 \f
7816 /* If X refers to a register that equals REG in value, replace these
7817 references with REG. */
7818 static rtx
7819 canon_reg_for_combine (rtx x, rtx reg)
7820 {
7821 rtx op0, op1, op2;
7822 const char *fmt;
7823 int i;
7824 bool copied;
7825
7826 enum rtx_code code = GET_CODE (x);
7827 switch (GET_RTX_CLASS (code))
7828 {
7829 case RTX_UNARY:
7830 op0 = canon_reg_for_combine (XEXP (x, 0), reg);
7831 if (op0 != XEXP (x, 0))
7832 return simplify_gen_unary (GET_CODE (x), GET_MODE (x), op0,
7833 GET_MODE (reg));
7834 break;
7835
7836 case RTX_BIN_ARITH:
7837 case RTX_COMM_ARITH:
7838 op0 = canon_reg_for_combine (XEXP (x, 0), reg);
7839 op1 = canon_reg_for_combine (XEXP (x, 1), reg);
7840 if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
7841 return simplify_gen_binary (GET_CODE (x), GET_MODE (x), op0, op1);
7842 break;
7843
7844 case RTX_COMPARE:
7845 case RTX_COMM_COMPARE:
7846 op0 = canon_reg_for_combine (XEXP (x, 0), reg);
7847 op1 = canon_reg_for_combine (XEXP (x, 1), reg);
7848 if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
7849 return simplify_gen_relational (GET_CODE (x), GET_MODE (x),
7850 GET_MODE (op0), op0, op1);
7851 break;
7852
7853 case RTX_TERNARY:
7854 case RTX_BITFIELD_OPS:
7855 op0 = canon_reg_for_combine (XEXP (x, 0), reg);
7856 op1 = canon_reg_for_combine (XEXP (x, 1), reg);
7857 op2 = canon_reg_for_combine (XEXP (x, 2), reg);
7858 if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1) || op2 != XEXP (x, 2))
7859 return simplify_gen_ternary (GET_CODE (x), GET_MODE (x),
7860 GET_MODE (op0), op0, op1, op2);
7861
7862 case RTX_OBJ:
7863 if (REG_P (x))
7864 {
7865 if (rtx_equal_p (get_last_value (reg), x)
7866 || rtx_equal_p (reg, get_last_value (x)))
7867 return reg;
7868 else
7869 break;
7870 }
7871
7872 /* fall through */
7873
7874 default:
7875 fmt = GET_RTX_FORMAT (code);
7876 copied = false;
7877 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
7878 if (fmt[i] == 'e')
7879 {
7880 rtx op = canon_reg_for_combine (XEXP (x, i), reg);
7881 if (op != XEXP (x, i))
7882 {
7883 if (!copied)
7884 {
7885 copied = true;
7886 x = copy_rtx (x);
7887 }
7888 XEXP (x, i) = op;
7889 }
7890 }
7891 else if (fmt[i] == 'E')
7892 {
7893 int j;
7894 for (j = 0; j < XVECLEN (x, i); j++)
7895 {
7896 rtx op = canon_reg_for_combine (XVECEXP (x, i, j), reg);
7897 if (op != XVECEXP (x, i, j))
7898 {
7899 if (!copied)
7900 {
7901 copied = true;
7902 x = copy_rtx (x);
7903 }
7904 XVECEXP (x, i, j) = op;
7905 }
7906 }
7907 }
7908
7909 break;
7910 }
7911
7912 return x;
7913 }
7914
7915 /* Return X converted to MODE. If the value is already truncated to
7916 MODE we can just return a subreg even though in the general case we
7917 would need an explicit truncation. */
7918
7919 static rtx
7920 gen_lowpart_or_truncate (enum machine_mode mode, rtx x)
7921 {
7922 if (!CONST_INT_P (x)
7923 && GET_MODE_SIZE (mode) < GET_MODE_SIZE (GET_MODE (x))
7924 && !TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (mode),
7925 GET_MODE_BITSIZE (GET_MODE (x)))
7926 && !(REG_P (x) && reg_truncated_to_mode (mode, x)))
7927 {
7928 /* Bit-cast X into an integer mode. */
7929 if (!SCALAR_INT_MODE_P (GET_MODE (x)))
7930 x = gen_lowpart (int_mode_for_mode (GET_MODE (x)), x);
7931 x = simplify_gen_unary (TRUNCATE, int_mode_for_mode (mode),
7932 x, GET_MODE (x));
7933 }
7934
7935 return gen_lowpart (mode, x);
7936 }
7937
7938 /* See if X can be simplified knowing that we will only refer to it in
7939 MODE and will only refer to those bits that are nonzero in MASK.
7940 If other bits are being computed or if masking operations are done
7941 that select a superset of the bits in MASK, they can sometimes be
7942 ignored.
7943
7944 Return a possibly simplified expression, but always convert X to
7945 MODE. If X is a CONST_INT, AND the CONST_INT with MASK.
7946
7947 If JUST_SELECT is nonzero, don't optimize by noticing that bits in MASK
7948 are all off in X. This is used when X will be complemented, by either
7949 NOT, NEG, or XOR. */
7950
7951 static rtx
7952 force_to_mode (rtx x, enum machine_mode mode, unsigned HOST_WIDE_INT mask,
7953 int just_select)
7954 {
7955 enum rtx_code code = GET_CODE (x);
7956 int next_select = just_select || code == XOR || code == NOT || code == NEG;
7957 enum machine_mode op_mode;
7958 unsigned HOST_WIDE_INT fuller_mask, nonzero;
7959 rtx op0, op1, temp;
7960
7961 /* If this is a CALL or ASM_OPERANDS, don't do anything. Some of the
7962 code below will do the wrong thing since the mode of such an
7963 expression is VOIDmode.
7964
7965 Also do nothing if X is a CLOBBER; this can happen if X was
7966 the return value from a call to gen_lowpart. */
7967 if (code == CALL || code == ASM_OPERANDS || code == CLOBBER)
7968 return x;
7969
7970 /* We want to perform the operation is its present mode unless we know
7971 that the operation is valid in MODE, in which case we do the operation
7972 in MODE. */
7973 op_mode = ((GET_MODE_CLASS (mode) == GET_MODE_CLASS (GET_MODE (x))
7974 && have_insn_for (code, mode))
7975 ? mode : GET_MODE (x));
7976
7977 /* It is not valid to do a right-shift in a narrower mode
7978 than the one it came in with. */
7979 if ((code == LSHIFTRT || code == ASHIFTRT)
7980 && GET_MODE_BITSIZE (mode) < GET_MODE_BITSIZE (GET_MODE (x)))
7981 op_mode = GET_MODE (x);
7982
7983 /* Truncate MASK to fit OP_MODE. */
7984 if (op_mode)
7985 mask &= GET_MODE_MASK (op_mode);
7986
7987 /* When we have an arithmetic operation, or a shift whose count we
7988 do not know, we need to assume that all bits up to the highest-order
7989 bit in MASK will be needed. This is how we form such a mask. */
7990 if (mask & ((unsigned HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT - 1)))
7991 fuller_mask = ~(unsigned HOST_WIDE_INT) 0;
7992 else
7993 fuller_mask = (((unsigned HOST_WIDE_INT) 1 << (floor_log2 (mask) + 1))
7994 - 1);
7995
7996 /* Determine what bits of X are guaranteed to be (non)zero. */
7997 nonzero = nonzero_bits (x, mode);
7998
7999 /* If none of the bits in X are needed, return a zero. */
8000 if (!just_select && (nonzero & mask) == 0 && !side_effects_p (x))
8001 x = const0_rtx;
8002
8003 /* If X is a CONST_INT, return a new one. Do this here since the
8004 test below will fail. */
8005 if (CONST_INT_P (x))
8006 {
8007 if (SCALAR_INT_MODE_P (mode))
8008 return gen_int_mode (INTVAL (x) & mask, mode);
8009 else
8010 {
8011 x = GEN_INT (INTVAL (x) & mask);
8012 return gen_lowpart_common (mode, x);
8013 }
8014 }
8015
8016 /* If X is narrower than MODE and we want all the bits in X's mode, just
8017 get X in the proper mode. */
8018 if (GET_MODE_SIZE (GET_MODE (x)) < GET_MODE_SIZE (mode)
8019 && (GET_MODE_MASK (GET_MODE (x)) & ~mask) == 0)
8020 return gen_lowpart (mode, x);
8021
8022 /* We can ignore the effect of a SUBREG if it narrows the mode or
8023 if the constant masks to zero all the bits the mode doesn't have. */
8024 if (GET_CODE (x) == SUBREG
8025 && subreg_lowpart_p (x)
8026 && ((GET_MODE_SIZE (GET_MODE (x))
8027 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
8028 || (0 == (mask
8029 & GET_MODE_MASK (GET_MODE (x))
8030 & ~GET_MODE_MASK (GET_MODE (SUBREG_REG (x)))))))
8031 return force_to_mode (SUBREG_REG (x), mode, mask, next_select);
8032
8033 /* The arithmetic simplifications here only work for scalar integer modes. */
8034 if (!SCALAR_INT_MODE_P (mode) || !SCALAR_INT_MODE_P (GET_MODE (x)))
8035 return gen_lowpart_or_truncate (mode, x);
8036
8037 switch (code)
8038 {
8039 case CLOBBER:
8040 /* If X is a (clobber (const_int)), return it since we know we are
8041 generating something that won't match. */
8042 return x;
8043
8044 case SIGN_EXTEND:
8045 case ZERO_EXTEND:
8046 case ZERO_EXTRACT:
8047 case SIGN_EXTRACT:
8048 x = expand_compound_operation (x);
8049 if (GET_CODE (x) != code)
8050 return force_to_mode (x, mode, mask, next_select);
8051 break;
8052
8053 case TRUNCATE:
8054 /* Similarly for a truncate. */
8055 return force_to_mode (XEXP (x, 0), mode, mask, next_select);
8056
8057 case AND:
8058 /* If this is an AND with a constant, convert it into an AND
8059 whose constant is the AND of that constant with MASK. If it
8060 remains an AND of MASK, delete it since it is redundant. */
8061
8062 if (CONST_INT_P (XEXP (x, 1)))
8063 {
8064 x = simplify_and_const_int (x, op_mode, XEXP (x, 0),
8065 mask & INTVAL (XEXP (x, 1)));
8066
8067 /* If X is still an AND, see if it is an AND with a mask that
8068 is just some low-order bits. If so, and it is MASK, we don't
8069 need it. */
8070
8071 if (GET_CODE (x) == AND && CONST_INT_P (XEXP (x, 1))
8072 && ((INTVAL (XEXP (x, 1)) & GET_MODE_MASK (GET_MODE (x)))
8073 == mask))
8074 x = XEXP (x, 0);
8075
8076 /* If it remains an AND, try making another AND with the bits
8077 in the mode mask that aren't in MASK turned on. If the
8078 constant in the AND is wide enough, this might make a
8079 cheaper constant. */
8080
8081 if (GET_CODE (x) == AND && CONST_INT_P (XEXP (x, 1))
8082 && GET_MODE_MASK (GET_MODE (x)) != mask
8083 && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT)
8084 {
8085 unsigned HOST_WIDE_INT cval
8086 = UINTVAL (XEXP (x, 1))
8087 | (GET_MODE_MASK (GET_MODE (x)) & ~mask);
8088 int width = GET_MODE_BITSIZE (GET_MODE (x));
8089 rtx y;
8090
8091 /* If MODE is narrower than HOST_WIDE_INT and CVAL is a negative
8092 number, sign extend it. */
8093 if (width > 0 && width < HOST_BITS_PER_WIDE_INT
8094 && (cval & ((unsigned HOST_WIDE_INT) 1 << (width - 1))) != 0)
8095 cval |= (unsigned HOST_WIDE_INT) -1 << width;
8096
8097 y = simplify_gen_binary (AND, GET_MODE (x),
8098 XEXP (x, 0), GEN_INT (cval));
8099 if (rtx_cost (y, SET, optimize_this_for_speed_p)
8100 < rtx_cost (x, SET, optimize_this_for_speed_p))
8101 x = y;
8102 }
8103
8104 break;
8105 }
8106
8107 goto binop;
8108
8109 case PLUS:
8110 /* In (and (plus FOO C1) M), if M is a mask that just turns off
8111 low-order bits (as in an alignment operation) and FOO is already
8112 aligned to that boundary, mask C1 to that boundary as well.
8113 This may eliminate that PLUS and, later, the AND. */
8114
8115 {
8116 unsigned int width = GET_MODE_BITSIZE (mode);
8117 unsigned HOST_WIDE_INT smask = mask;
8118
8119 /* If MODE is narrower than HOST_WIDE_INT and mask is a negative
8120 number, sign extend it. */
8121
8122 if (width < HOST_BITS_PER_WIDE_INT
8123 && (smask & ((unsigned HOST_WIDE_INT) 1 << (width - 1))) != 0)
8124 smask |= (unsigned HOST_WIDE_INT) (-1) << width;
8125
8126 if (CONST_INT_P (XEXP (x, 1))
8127 && exact_log2 (- smask) >= 0
8128 && (nonzero_bits (XEXP (x, 0), mode) & ~smask) == 0
8129 && (INTVAL (XEXP (x, 1)) & ~smask) != 0)
8130 return force_to_mode (plus_constant (XEXP (x, 0),
8131 (INTVAL (XEXP (x, 1)) & smask)),
8132 mode, smask, next_select);
8133 }
8134
8135 /* ... fall through ... */
8136
8137 case MULT:
8138 /* For PLUS, MINUS and MULT, we need any bits less significant than the
8139 most significant bit in MASK since carries from those bits will
8140 affect the bits we are interested in. */
8141 mask = fuller_mask;
8142 goto binop;
8143
8144 case MINUS:
8145 /* If X is (minus C Y) where C's least set bit is larger than any bit
8146 in the mask, then we may replace with (neg Y). */
8147 if (CONST_INT_P (XEXP (x, 0))
8148 && (((unsigned HOST_WIDE_INT) (INTVAL (XEXP (x, 0))
8149 & -INTVAL (XEXP (x, 0))))
8150 > mask))
8151 {
8152 x = simplify_gen_unary (NEG, GET_MODE (x), XEXP (x, 1),
8153 GET_MODE (x));
8154 return force_to_mode (x, mode, mask, next_select);
8155 }
8156
8157 /* Similarly, if C contains every bit in the fuller_mask, then we may
8158 replace with (not Y). */
8159 if (CONST_INT_P (XEXP (x, 0))
8160 && ((UINTVAL (XEXP (x, 0)) | fuller_mask) == UINTVAL (XEXP (x, 0))))
8161 {
8162 x = simplify_gen_unary (NOT, GET_MODE (x),
8163 XEXP (x, 1), GET_MODE (x));
8164 return force_to_mode (x, mode, mask, next_select);
8165 }
8166
8167 mask = fuller_mask;
8168 goto binop;
8169
8170 case IOR:
8171 case XOR:
8172 /* If X is (ior (lshiftrt FOO C1) C2), try to commute the IOR and
8173 LSHIFTRT so we end up with an (and (lshiftrt (ior ...) ...) ...)
8174 operation which may be a bitfield extraction. Ensure that the
8175 constant we form is not wider than the mode of X. */
8176
8177 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
8178 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
8179 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
8180 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT
8181 && CONST_INT_P (XEXP (x, 1))
8182 && ((INTVAL (XEXP (XEXP (x, 0), 1))
8183 + floor_log2 (INTVAL (XEXP (x, 1))))
8184 < GET_MODE_BITSIZE (GET_MODE (x)))
8185 && (UINTVAL (XEXP (x, 1))
8186 & ~nonzero_bits (XEXP (x, 0), GET_MODE (x))) == 0)
8187 {
8188 temp = GEN_INT ((INTVAL (XEXP (x, 1)) & mask)
8189 << INTVAL (XEXP (XEXP (x, 0), 1)));
8190 temp = simplify_gen_binary (GET_CODE (x), GET_MODE (x),
8191 XEXP (XEXP (x, 0), 0), temp);
8192 x = simplify_gen_binary (LSHIFTRT, GET_MODE (x), temp,
8193 XEXP (XEXP (x, 0), 1));
8194 return force_to_mode (x, mode, mask, next_select);
8195 }
8196
8197 binop:
8198 /* For most binary operations, just propagate into the operation and
8199 change the mode if we have an operation of that mode. */
8200
8201 op0 = force_to_mode (XEXP (x, 0), mode, mask, next_select);
8202 op1 = force_to_mode (XEXP (x, 1), mode, mask, next_select);
8203
8204 /* If we ended up truncating both operands, truncate the result of the
8205 operation instead. */
8206 if (GET_CODE (op0) == TRUNCATE
8207 && GET_CODE (op1) == TRUNCATE)
8208 {
8209 op0 = XEXP (op0, 0);
8210 op1 = XEXP (op1, 0);
8211 }
8212
8213 op0 = gen_lowpart_or_truncate (op_mode, op0);
8214 op1 = gen_lowpart_or_truncate (op_mode, op1);
8215
8216 if (op_mode != GET_MODE (x) || op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
8217 x = simplify_gen_binary (code, op_mode, op0, op1);
8218 break;
8219
8220 case ASHIFT:
8221 /* For left shifts, do the same, but just for the first operand.
8222 However, we cannot do anything with shifts where we cannot
8223 guarantee that the counts are smaller than the size of the mode
8224 because such a count will have a different meaning in a
8225 wider mode. */
8226
8227 if (! (CONST_INT_P (XEXP (x, 1))
8228 && INTVAL (XEXP (x, 1)) >= 0
8229 && INTVAL (XEXP (x, 1)) < GET_MODE_BITSIZE (mode))
8230 && ! (GET_MODE (XEXP (x, 1)) != VOIDmode
8231 && (nonzero_bits (XEXP (x, 1), GET_MODE (XEXP (x, 1)))
8232 < (unsigned HOST_WIDE_INT) GET_MODE_BITSIZE (mode))))
8233 break;
8234
8235 /* If the shift count is a constant and we can do arithmetic in
8236 the mode of the shift, refine which bits we need. Otherwise, use the
8237 conservative form of the mask. */
8238 if (CONST_INT_P (XEXP (x, 1))
8239 && INTVAL (XEXP (x, 1)) >= 0
8240 && INTVAL (XEXP (x, 1)) < GET_MODE_BITSIZE (op_mode)
8241 && GET_MODE_BITSIZE (op_mode) <= HOST_BITS_PER_WIDE_INT)
8242 mask >>= INTVAL (XEXP (x, 1));
8243 else
8244 mask = fuller_mask;
8245
8246 op0 = gen_lowpart_or_truncate (op_mode,
8247 force_to_mode (XEXP (x, 0), op_mode,
8248 mask, next_select));
8249
8250 if (op_mode != GET_MODE (x) || op0 != XEXP (x, 0))
8251 x = simplify_gen_binary (code, op_mode, op0, XEXP (x, 1));
8252 break;
8253
8254 case LSHIFTRT:
8255 /* Here we can only do something if the shift count is a constant,
8256 this shift constant is valid for the host, and we can do arithmetic
8257 in OP_MODE. */
8258
8259 if (CONST_INT_P (XEXP (x, 1))
8260 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT
8261 && GET_MODE_BITSIZE (op_mode) <= HOST_BITS_PER_WIDE_INT)
8262 {
8263 rtx inner = XEXP (x, 0);
8264 unsigned HOST_WIDE_INT inner_mask;
8265
8266 /* Select the mask of the bits we need for the shift operand. */
8267 inner_mask = mask << INTVAL (XEXP (x, 1));
8268
8269 /* We can only change the mode of the shift if we can do arithmetic
8270 in the mode of the shift and INNER_MASK is no wider than the
8271 width of X's mode. */
8272 if ((inner_mask & ~GET_MODE_MASK (GET_MODE (x))) != 0)
8273 op_mode = GET_MODE (x);
8274
8275 inner = force_to_mode (inner, op_mode, inner_mask, next_select);
8276
8277 if (GET_MODE (x) != op_mode || inner != XEXP (x, 0))
8278 x = simplify_gen_binary (LSHIFTRT, op_mode, inner, XEXP (x, 1));
8279 }
8280
8281 /* If we have (and (lshiftrt FOO C1) C2) where the combination of the
8282 shift and AND produces only copies of the sign bit (C2 is one less
8283 than a power of two), we can do this with just a shift. */
8284
8285 if (GET_CODE (x) == LSHIFTRT
8286 && CONST_INT_P (XEXP (x, 1))
8287 /* The shift puts one of the sign bit copies in the least significant
8288 bit. */
8289 && ((INTVAL (XEXP (x, 1))
8290 + num_sign_bit_copies (XEXP (x, 0), GET_MODE (XEXP (x, 0))))
8291 >= GET_MODE_BITSIZE (GET_MODE (x)))
8292 && exact_log2 (mask + 1) >= 0
8293 /* Number of bits left after the shift must be more than the mask
8294 needs. */
8295 && ((INTVAL (XEXP (x, 1)) + exact_log2 (mask + 1))
8296 <= GET_MODE_BITSIZE (GET_MODE (x)))
8297 /* Must be more sign bit copies than the mask needs. */
8298 && ((int) num_sign_bit_copies (XEXP (x, 0), GET_MODE (XEXP (x, 0)))
8299 >= exact_log2 (mask + 1)))
8300 x = simplify_gen_binary (LSHIFTRT, GET_MODE (x), XEXP (x, 0),
8301 GEN_INT (GET_MODE_BITSIZE (GET_MODE (x))
8302 - exact_log2 (mask + 1)));
8303
8304 goto shiftrt;
8305
8306 case ASHIFTRT:
8307 /* If we are just looking for the sign bit, we don't need this shift at
8308 all, even if it has a variable count. */
8309 if (GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
8310 && (mask == ((unsigned HOST_WIDE_INT) 1
8311 << (GET_MODE_BITSIZE (GET_MODE (x)) - 1))))
8312 return force_to_mode (XEXP (x, 0), mode, mask, next_select);
8313
8314 /* If this is a shift by a constant, get a mask that contains those bits
8315 that are not copies of the sign bit. We then have two cases: If
8316 MASK only includes those bits, this can be a logical shift, which may
8317 allow simplifications. If MASK is a single-bit field not within
8318 those bits, we are requesting a copy of the sign bit and hence can
8319 shift the sign bit to the appropriate location. */
8320
8321 if (CONST_INT_P (XEXP (x, 1)) && INTVAL (XEXP (x, 1)) >= 0
8322 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT)
8323 {
8324 int i;
8325
8326 /* If the considered data is wider than HOST_WIDE_INT, we can't
8327 represent a mask for all its bits in a single scalar.
8328 But we only care about the lower bits, so calculate these. */
8329
8330 if (GET_MODE_BITSIZE (GET_MODE (x)) > HOST_BITS_PER_WIDE_INT)
8331 {
8332 nonzero = ~(unsigned HOST_WIDE_INT) 0;
8333
8334 /* GET_MODE_BITSIZE (GET_MODE (x)) - INTVAL (XEXP (x, 1))
8335 is the number of bits a full-width mask would have set.
8336 We need only shift if these are fewer than nonzero can
8337 hold. If not, we must keep all bits set in nonzero. */
8338
8339 if (GET_MODE_BITSIZE (GET_MODE (x)) - INTVAL (XEXP (x, 1))
8340 < HOST_BITS_PER_WIDE_INT)
8341 nonzero >>= INTVAL (XEXP (x, 1))
8342 + HOST_BITS_PER_WIDE_INT
8343 - GET_MODE_BITSIZE (GET_MODE (x)) ;
8344 }
8345 else
8346 {
8347 nonzero = GET_MODE_MASK (GET_MODE (x));
8348 nonzero >>= INTVAL (XEXP (x, 1));
8349 }
8350
8351 if ((mask & ~nonzero) == 0)
8352 {
8353 x = simplify_shift_const (NULL_RTX, LSHIFTRT, GET_MODE (x),
8354 XEXP (x, 0), INTVAL (XEXP (x, 1)));
8355 if (GET_CODE (x) != ASHIFTRT)
8356 return force_to_mode (x, mode, mask, next_select);
8357 }
8358
8359 else if ((i = exact_log2 (mask)) >= 0)
8360 {
8361 x = simplify_shift_const
8362 (NULL_RTX, LSHIFTRT, GET_MODE (x), XEXP (x, 0),
8363 GET_MODE_BITSIZE (GET_MODE (x)) - 1 - i);
8364
8365 if (GET_CODE (x) != ASHIFTRT)
8366 return force_to_mode (x, mode, mask, next_select);
8367 }
8368 }
8369
8370 /* If MASK is 1, convert this to an LSHIFTRT. This can be done
8371 even if the shift count isn't a constant. */
8372 if (mask == 1)
8373 x = simplify_gen_binary (LSHIFTRT, GET_MODE (x),
8374 XEXP (x, 0), XEXP (x, 1));
8375
8376 shiftrt:
8377
8378 /* If this is a zero- or sign-extension operation that just affects bits
8379 we don't care about, remove it. Be sure the call above returned
8380 something that is still a shift. */
8381
8382 if ((GET_CODE (x) == LSHIFTRT || GET_CODE (x) == ASHIFTRT)
8383 && CONST_INT_P (XEXP (x, 1))
8384 && INTVAL (XEXP (x, 1)) >= 0
8385 && (INTVAL (XEXP (x, 1))
8386 <= GET_MODE_BITSIZE (GET_MODE (x)) - (floor_log2 (mask) + 1))
8387 && GET_CODE (XEXP (x, 0)) == ASHIFT
8388 && XEXP (XEXP (x, 0), 1) == XEXP (x, 1))
8389 return force_to_mode (XEXP (XEXP (x, 0), 0), mode, mask,
8390 next_select);
8391
8392 break;
8393
8394 case ROTATE:
8395 case ROTATERT:
8396 /* If the shift count is constant and we can do computations
8397 in the mode of X, compute where the bits we care about are.
8398 Otherwise, we can't do anything. Don't change the mode of
8399 the shift or propagate MODE into the shift, though. */
8400 if (CONST_INT_P (XEXP (x, 1))
8401 && INTVAL (XEXP (x, 1)) >= 0)
8402 {
8403 temp = simplify_binary_operation (code == ROTATE ? ROTATERT : ROTATE,
8404 GET_MODE (x), GEN_INT (mask),
8405 XEXP (x, 1));
8406 if (temp && CONST_INT_P (temp))
8407 SUBST (XEXP (x, 0),
8408 force_to_mode (XEXP (x, 0), GET_MODE (x),
8409 INTVAL (temp), next_select));
8410 }
8411 break;
8412
8413 case NEG:
8414 /* If we just want the low-order bit, the NEG isn't needed since it
8415 won't change the low-order bit. */
8416 if (mask == 1)
8417 return force_to_mode (XEXP (x, 0), mode, mask, just_select);
8418
8419 /* We need any bits less significant than the most significant bit in
8420 MASK since carries from those bits will affect the bits we are
8421 interested in. */
8422 mask = fuller_mask;
8423 goto unop;
8424
8425 case NOT:
8426 /* (not FOO) is (xor FOO CONST), so if FOO is an LSHIFTRT, we can do the
8427 same as the XOR case above. Ensure that the constant we form is not
8428 wider than the mode of X. */
8429
8430 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
8431 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
8432 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
8433 && (INTVAL (XEXP (XEXP (x, 0), 1)) + floor_log2 (mask)
8434 < GET_MODE_BITSIZE (GET_MODE (x)))
8435 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT)
8436 {
8437 temp = gen_int_mode (mask << INTVAL (XEXP (XEXP (x, 0), 1)),
8438 GET_MODE (x));
8439 temp = simplify_gen_binary (XOR, GET_MODE (x),
8440 XEXP (XEXP (x, 0), 0), temp);
8441 x = simplify_gen_binary (LSHIFTRT, GET_MODE (x),
8442 temp, XEXP (XEXP (x, 0), 1));
8443
8444 return force_to_mode (x, mode, mask, next_select);
8445 }
8446
8447 /* (and (not FOO) CONST) is (not (or FOO (not CONST))), so we must
8448 use the full mask inside the NOT. */
8449 mask = fuller_mask;
8450
8451 unop:
8452 op0 = gen_lowpart_or_truncate (op_mode,
8453 force_to_mode (XEXP (x, 0), mode, mask,
8454 next_select));
8455 if (op_mode != GET_MODE (x) || op0 != XEXP (x, 0))
8456 x = simplify_gen_unary (code, op_mode, op0, op_mode);
8457 break;
8458
8459 case NE:
8460 /* (and (ne FOO 0) CONST) can be (and FOO CONST) if CONST is included
8461 in STORE_FLAG_VALUE and FOO has a single bit that might be nonzero,
8462 which is equal to STORE_FLAG_VALUE. */
8463 if ((mask & ~STORE_FLAG_VALUE) == 0
8464 && XEXP (x, 1) == const0_rtx
8465 && GET_MODE (XEXP (x, 0)) == mode
8466 && exact_log2 (nonzero_bits (XEXP (x, 0), mode)) >= 0
8467 && (nonzero_bits (XEXP (x, 0), mode)
8468 == (unsigned HOST_WIDE_INT) STORE_FLAG_VALUE))
8469 return force_to_mode (XEXP (x, 0), mode, mask, next_select);
8470
8471 break;
8472
8473 case IF_THEN_ELSE:
8474 /* We have no way of knowing if the IF_THEN_ELSE can itself be
8475 written in a narrower mode. We play it safe and do not do so. */
8476
8477 SUBST (XEXP (x, 1),
8478 gen_lowpart_or_truncate (GET_MODE (x),
8479 force_to_mode (XEXP (x, 1), mode,
8480 mask, next_select)));
8481 SUBST (XEXP (x, 2),
8482 gen_lowpart_or_truncate (GET_MODE (x),
8483 force_to_mode (XEXP (x, 2), mode,
8484 mask, next_select)));
8485 break;
8486
8487 default:
8488 break;
8489 }
8490
8491 /* Ensure we return a value of the proper mode. */
8492 return gen_lowpart_or_truncate (mode, x);
8493 }
8494 \f
8495 /* Return nonzero if X is an expression that has one of two values depending on
8496 whether some other value is zero or nonzero. In that case, we return the
8497 value that is being tested, *PTRUE is set to the value if the rtx being
8498 returned has a nonzero value, and *PFALSE is set to the other alternative.
8499
8500 If we return zero, we set *PTRUE and *PFALSE to X. */
8501
8502 static rtx
8503 if_then_else_cond (rtx x, rtx *ptrue, rtx *pfalse)
8504 {
8505 enum machine_mode mode = GET_MODE (x);
8506 enum rtx_code code = GET_CODE (x);
8507 rtx cond0, cond1, true0, true1, false0, false1;
8508 unsigned HOST_WIDE_INT nz;
8509
8510 /* If we are comparing a value against zero, we are done. */
8511 if ((code == NE || code == EQ)
8512 && XEXP (x, 1) == const0_rtx)
8513 {
8514 *ptrue = (code == NE) ? const_true_rtx : const0_rtx;
8515 *pfalse = (code == NE) ? const0_rtx : const_true_rtx;
8516 return XEXP (x, 0);
8517 }
8518
8519 /* If this is a unary operation whose operand has one of two values, apply
8520 our opcode to compute those values. */
8521 else if (UNARY_P (x)
8522 && (cond0 = if_then_else_cond (XEXP (x, 0), &true0, &false0)) != 0)
8523 {
8524 *ptrue = simplify_gen_unary (code, mode, true0, GET_MODE (XEXP (x, 0)));
8525 *pfalse = simplify_gen_unary (code, mode, false0,
8526 GET_MODE (XEXP (x, 0)));
8527 return cond0;
8528 }
8529
8530 /* If this is a COMPARE, do nothing, since the IF_THEN_ELSE we would
8531 make can't possibly match and would suppress other optimizations. */
8532 else if (code == COMPARE)
8533 ;
8534
8535 /* If this is a binary operation, see if either side has only one of two
8536 values. If either one does or if both do and they are conditional on
8537 the same value, compute the new true and false values. */
8538 else if (BINARY_P (x))
8539 {
8540 cond0 = if_then_else_cond (XEXP (x, 0), &true0, &false0);
8541 cond1 = if_then_else_cond (XEXP (x, 1), &true1, &false1);
8542
8543 if ((cond0 != 0 || cond1 != 0)
8544 && ! (cond0 != 0 && cond1 != 0 && ! rtx_equal_p (cond0, cond1)))
8545 {
8546 /* If if_then_else_cond returned zero, then true/false are the
8547 same rtl. We must copy one of them to prevent invalid rtl
8548 sharing. */
8549 if (cond0 == 0)
8550 true0 = copy_rtx (true0);
8551 else if (cond1 == 0)
8552 true1 = copy_rtx (true1);
8553
8554 if (COMPARISON_P (x))
8555 {
8556 *ptrue = simplify_gen_relational (code, mode, VOIDmode,
8557 true0, true1);
8558 *pfalse = simplify_gen_relational (code, mode, VOIDmode,
8559 false0, false1);
8560 }
8561 else
8562 {
8563 *ptrue = simplify_gen_binary (code, mode, true0, true1);
8564 *pfalse = simplify_gen_binary (code, mode, false0, false1);
8565 }
8566
8567 return cond0 ? cond0 : cond1;
8568 }
8569
8570 /* See if we have PLUS, IOR, XOR, MINUS or UMAX, where one of the
8571 operands is zero when the other is nonzero, and vice-versa,
8572 and STORE_FLAG_VALUE is 1 or -1. */
8573
8574 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
8575 && (code == PLUS || code == IOR || code == XOR || code == MINUS
8576 || code == UMAX)
8577 && GET_CODE (XEXP (x, 0)) == MULT && GET_CODE (XEXP (x, 1)) == MULT)
8578 {
8579 rtx op0 = XEXP (XEXP (x, 0), 1);
8580 rtx op1 = XEXP (XEXP (x, 1), 1);
8581
8582 cond0 = XEXP (XEXP (x, 0), 0);
8583 cond1 = XEXP (XEXP (x, 1), 0);
8584
8585 if (COMPARISON_P (cond0)
8586 && COMPARISON_P (cond1)
8587 && ((GET_CODE (cond0) == reversed_comparison_code (cond1, NULL)
8588 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 0))
8589 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 1)))
8590 || ((swap_condition (GET_CODE (cond0))
8591 == reversed_comparison_code (cond1, NULL))
8592 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 1))
8593 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 0))))
8594 && ! side_effects_p (x))
8595 {
8596 *ptrue = simplify_gen_binary (MULT, mode, op0, const_true_rtx);
8597 *pfalse = simplify_gen_binary (MULT, mode,
8598 (code == MINUS
8599 ? simplify_gen_unary (NEG, mode,
8600 op1, mode)
8601 : op1),
8602 const_true_rtx);
8603 return cond0;
8604 }
8605 }
8606
8607 /* Similarly for MULT, AND and UMIN, except that for these the result
8608 is always zero. */
8609 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
8610 && (code == MULT || code == AND || code == UMIN)
8611 && GET_CODE (XEXP (x, 0)) == MULT && GET_CODE (XEXP (x, 1)) == MULT)
8612 {
8613 cond0 = XEXP (XEXP (x, 0), 0);
8614 cond1 = XEXP (XEXP (x, 1), 0);
8615
8616 if (COMPARISON_P (cond0)
8617 && COMPARISON_P (cond1)
8618 && ((GET_CODE (cond0) == reversed_comparison_code (cond1, NULL)
8619 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 0))
8620 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 1)))
8621 || ((swap_condition (GET_CODE (cond0))
8622 == reversed_comparison_code (cond1, NULL))
8623 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 1))
8624 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 0))))
8625 && ! side_effects_p (x))
8626 {
8627 *ptrue = *pfalse = const0_rtx;
8628 return cond0;
8629 }
8630 }
8631 }
8632
8633 else if (code == IF_THEN_ELSE)
8634 {
8635 /* If we have IF_THEN_ELSE already, extract the condition and
8636 canonicalize it if it is NE or EQ. */
8637 cond0 = XEXP (x, 0);
8638 *ptrue = XEXP (x, 1), *pfalse = XEXP (x, 2);
8639 if (GET_CODE (cond0) == NE && XEXP (cond0, 1) == const0_rtx)
8640 return XEXP (cond0, 0);
8641 else if (GET_CODE (cond0) == EQ && XEXP (cond0, 1) == const0_rtx)
8642 {
8643 *ptrue = XEXP (x, 2), *pfalse = XEXP (x, 1);
8644 return XEXP (cond0, 0);
8645 }
8646 else
8647 return cond0;
8648 }
8649
8650 /* If X is a SUBREG, we can narrow both the true and false values
8651 if the inner expression, if there is a condition. */
8652 else if (code == SUBREG
8653 && 0 != (cond0 = if_then_else_cond (SUBREG_REG (x),
8654 &true0, &false0)))
8655 {
8656 true0 = simplify_gen_subreg (mode, true0,
8657 GET_MODE (SUBREG_REG (x)), SUBREG_BYTE (x));
8658 false0 = simplify_gen_subreg (mode, false0,
8659 GET_MODE (SUBREG_REG (x)), SUBREG_BYTE (x));
8660 if (true0 && false0)
8661 {
8662 *ptrue = true0;
8663 *pfalse = false0;
8664 return cond0;
8665 }
8666 }
8667
8668 /* If X is a constant, this isn't special and will cause confusions
8669 if we treat it as such. Likewise if it is equivalent to a constant. */
8670 else if (CONSTANT_P (x)
8671 || ((cond0 = get_last_value (x)) != 0 && CONSTANT_P (cond0)))
8672 ;
8673
8674 /* If we're in BImode, canonicalize on 0 and STORE_FLAG_VALUE, as that
8675 will be least confusing to the rest of the compiler. */
8676 else if (mode == BImode)
8677 {
8678 *ptrue = GEN_INT (STORE_FLAG_VALUE), *pfalse = const0_rtx;
8679 return x;
8680 }
8681
8682 /* If X is known to be either 0 or -1, those are the true and
8683 false values when testing X. */
8684 else if (x == constm1_rtx || x == const0_rtx
8685 || (mode != VOIDmode
8686 && num_sign_bit_copies (x, mode) == GET_MODE_BITSIZE (mode)))
8687 {
8688 *ptrue = constm1_rtx, *pfalse = const0_rtx;
8689 return x;
8690 }
8691
8692 /* Likewise for 0 or a single bit. */
8693 else if (SCALAR_INT_MODE_P (mode)
8694 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
8695 && exact_log2 (nz = nonzero_bits (x, mode)) >= 0)
8696 {
8697 *ptrue = gen_int_mode (nz, mode), *pfalse = const0_rtx;
8698 return x;
8699 }
8700
8701 /* Otherwise fail; show no condition with true and false values the same. */
8702 *ptrue = *pfalse = x;
8703 return 0;
8704 }
8705 \f
8706 /* Return the value of expression X given the fact that condition COND
8707 is known to be true when applied to REG as its first operand and VAL
8708 as its second. X is known to not be shared and so can be modified in
8709 place.
8710
8711 We only handle the simplest cases, and specifically those cases that
8712 arise with IF_THEN_ELSE expressions. */
8713
8714 static rtx
8715 known_cond (rtx x, enum rtx_code cond, rtx reg, rtx val)
8716 {
8717 enum rtx_code code = GET_CODE (x);
8718 rtx temp;
8719 const char *fmt;
8720 int i, j;
8721
8722 if (side_effects_p (x))
8723 return x;
8724
8725 /* If either operand of the condition is a floating point value,
8726 then we have to avoid collapsing an EQ comparison. */
8727 if (cond == EQ
8728 && rtx_equal_p (x, reg)
8729 && ! FLOAT_MODE_P (GET_MODE (x))
8730 && ! FLOAT_MODE_P (GET_MODE (val)))
8731 return val;
8732
8733 if (cond == UNEQ && rtx_equal_p (x, reg))
8734 return val;
8735
8736 /* If X is (abs REG) and we know something about REG's relationship
8737 with zero, we may be able to simplify this. */
8738
8739 if (code == ABS && rtx_equal_p (XEXP (x, 0), reg) && val == const0_rtx)
8740 switch (cond)
8741 {
8742 case GE: case GT: case EQ:
8743 return XEXP (x, 0);
8744 case LT: case LE:
8745 return simplify_gen_unary (NEG, GET_MODE (XEXP (x, 0)),
8746 XEXP (x, 0),
8747 GET_MODE (XEXP (x, 0)));
8748 default:
8749 break;
8750 }
8751
8752 /* The only other cases we handle are MIN, MAX, and comparisons if the
8753 operands are the same as REG and VAL. */
8754
8755 else if (COMPARISON_P (x) || COMMUTATIVE_ARITH_P (x))
8756 {
8757 if (rtx_equal_p (XEXP (x, 0), val))
8758 cond = swap_condition (cond), temp = val, val = reg, reg = temp;
8759
8760 if (rtx_equal_p (XEXP (x, 0), reg) && rtx_equal_p (XEXP (x, 1), val))
8761 {
8762 if (COMPARISON_P (x))
8763 {
8764 if (comparison_dominates_p (cond, code))
8765 return const_true_rtx;
8766
8767 code = reversed_comparison_code (x, NULL);
8768 if (code != UNKNOWN
8769 && comparison_dominates_p (cond, code))
8770 return const0_rtx;
8771 else
8772 return x;
8773 }
8774 else if (code == SMAX || code == SMIN
8775 || code == UMIN || code == UMAX)
8776 {
8777 int unsignedp = (code == UMIN || code == UMAX);
8778
8779 /* Do not reverse the condition when it is NE or EQ.
8780 This is because we cannot conclude anything about
8781 the value of 'SMAX (x, y)' when x is not equal to y,
8782 but we can when x equals y. */
8783 if ((code == SMAX || code == UMAX)
8784 && ! (cond == EQ || cond == NE))
8785 cond = reverse_condition (cond);
8786
8787 switch (cond)
8788 {
8789 case GE: case GT:
8790 return unsignedp ? x : XEXP (x, 1);
8791 case LE: case LT:
8792 return unsignedp ? x : XEXP (x, 0);
8793 case GEU: case GTU:
8794 return unsignedp ? XEXP (x, 1) : x;
8795 case LEU: case LTU:
8796 return unsignedp ? XEXP (x, 0) : x;
8797 default:
8798 break;
8799 }
8800 }
8801 }
8802 }
8803 else if (code == SUBREG)
8804 {
8805 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (x));
8806 rtx new_rtx, r = known_cond (SUBREG_REG (x), cond, reg, val);
8807
8808 if (SUBREG_REG (x) != r)
8809 {
8810 /* We must simplify subreg here, before we lose track of the
8811 original inner_mode. */
8812 new_rtx = simplify_subreg (GET_MODE (x), r,
8813 inner_mode, SUBREG_BYTE (x));
8814 if (new_rtx)
8815 return new_rtx;
8816 else
8817 SUBST (SUBREG_REG (x), r);
8818 }
8819
8820 return x;
8821 }
8822 /* We don't have to handle SIGN_EXTEND here, because even in the
8823 case of replacing something with a modeless CONST_INT, a
8824 CONST_INT is already (supposed to be) a valid sign extension for
8825 its narrower mode, which implies it's already properly
8826 sign-extended for the wider mode. Now, for ZERO_EXTEND, the
8827 story is different. */
8828 else if (code == ZERO_EXTEND)
8829 {
8830 enum machine_mode inner_mode = GET_MODE (XEXP (x, 0));
8831 rtx new_rtx, r = known_cond (XEXP (x, 0), cond, reg, val);
8832
8833 if (XEXP (x, 0) != r)
8834 {
8835 /* We must simplify the zero_extend here, before we lose
8836 track of the original inner_mode. */
8837 new_rtx = simplify_unary_operation (ZERO_EXTEND, GET_MODE (x),
8838 r, inner_mode);
8839 if (new_rtx)
8840 return new_rtx;
8841 else
8842 SUBST (XEXP (x, 0), r);
8843 }
8844
8845 return x;
8846 }
8847
8848 fmt = GET_RTX_FORMAT (code);
8849 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
8850 {
8851 if (fmt[i] == 'e')
8852 SUBST (XEXP (x, i), known_cond (XEXP (x, i), cond, reg, val));
8853 else if (fmt[i] == 'E')
8854 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
8855 SUBST (XVECEXP (x, i, j), known_cond (XVECEXP (x, i, j),
8856 cond, reg, val));
8857 }
8858
8859 return x;
8860 }
8861 \f
8862 /* See if X and Y are equal for the purposes of seeing if we can rewrite an
8863 assignment as a field assignment. */
8864
8865 static int
8866 rtx_equal_for_field_assignment_p (rtx x, rtx y)
8867 {
8868 if (x == y || rtx_equal_p (x, y))
8869 return 1;
8870
8871 if (x == 0 || y == 0 || GET_MODE (x) != GET_MODE (y))
8872 return 0;
8873
8874 /* Check for a paradoxical SUBREG of a MEM compared with the MEM.
8875 Note that all SUBREGs of MEM are paradoxical; otherwise they
8876 would have been rewritten. */
8877 if (MEM_P (x) && GET_CODE (y) == SUBREG
8878 && MEM_P (SUBREG_REG (y))
8879 && rtx_equal_p (SUBREG_REG (y),
8880 gen_lowpart (GET_MODE (SUBREG_REG (y)), x)))
8881 return 1;
8882
8883 if (MEM_P (y) && GET_CODE (x) == SUBREG
8884 && MEM_P (SUBREG_REG (x))
8885 && rtx_equal_p (SUBREG_REG (x),
8886 gen_lowpart (GET_MODE (SUBREG_REG (x)), y)))
8887 return 1;
8888
8889 /* We used to see if get_last_value of X and Y were the same but that's
8890 not correct. In one direction, we'll cause the assignment to have
8891 the wrong destination and in the case, we'll import a register into this
8892 insn that might have already have been dead. So fail if none of the
8893 above cases are true. */
8894 return 0;
8895 }
8896 \f
8897 /* See if X, a SET operation, can be rewritten as a bit-field assignment.
8898 Return that assignment if so.
8899
8900 We only handle the most common cases. */
8901
8902 static rtx
8903 make_field_assignment (rtx x)
8904 {
8905 rtx dest = SET_DEST (x);
8906 rtx src = SET_SRC (x);
8907 rtx assign;
8908 rtx rhs, lhs;
8909 HOST_WIDE_INT c1;
8910 HOST_WIDE_INT pos;
8911 unsigned HOST_WIDE_INT len;
8912 rtx other;
8913 enum machine_mode mode;
8914
8915 /* If SRC was (and (not (ashift (const_int 1) POS)) DEST), this is
8916 a clear of a one-bit field. We will have changed it to
8917 (and (rotate (const_int -2) POS) DEST), so check for that. Also check
8918 for a SUBREG. */
8919
8920 if (GET_CODE (src) == AND && GET_CODE (XEXP (src, 0)) == ROTATE
8921 && CONST_INT_P (XEXP (XEXP (src, 0), 0))
8922 && INTVAL (XEXP (XEXP (src, 0), 0)) == -2
8923 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
8924 {
8925 assign = make_extraction (VOIDmode, dest, 0, XEXP (XEXP (src, 0), 1),
8926 1, 1, 1, 0);
8927 if (assign != 0)
8928 return gen_rtx_SET (VOIDmode, assign, const0_rtx);
8929 return x;
8930 }
8931
8932 if (GET_CODE (src) == AND && GET_CODE (XEXP (src, 0)) == SUBREG
8933 && subreg_lowpart_p (XEXP (src, 0))
8934 && (GET_MODE_SIZE (GET_MODE (XEXP (src, 0)))
8935 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (XEXP (src, 0)))))
8936 && GET_CODE (SUBREG_REG (XEXP (src, 0))) == ROTATE
8937 && CONST_INT_P (XEXP (SUBREG_REG (XEXP (src, 0)), 0))
8938 && INTVAL (XEXP (SUBREG_REG (XEXP (src, 0)), 0)) == -2
8939 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
8940 {
8941 assign = make_extraction (VOIDmode, dest, 0,
8942 XEXP (SUBREG_REG (XEXP (src, 0)), 1),
8943 1, 1, 1, 0);
8944 if (assign != 0)
8945 return gen_rtx_SET (VOIDmode, assign, const0_rtx);
8946 return x;
8947 }
8948
8949 /* If SRC is (ior (ashift (const_int 1) POS) DEST), this is a set of a
8950 one-bit field. */
8951 if (GET_CODE (src) == IOR && GET_CODE (XEXP (src, 0)) == ASHIFT
8952 && XEXP (XEXP (src, 0), 0) == const1_rtx
8953 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
8954 {
8955 assign = make_extraction (VOIDmode, dest, 0, XEXP (XEXP (src, 0), 1),
8956 1, 1, 1, 0);
8957 if (assign != 0)
8958 return gen_rtx_SET (VOIDmode, assign, const1_rtx);
8959 return x;
8960 }
8961
8962 /* If DEST is already a field assignment, i.e. ZERO_EXTRACT, and the
8963 SRC is an AND with all bits of that field set, then we can discard
8964 the AND. */
8965 if (GET_CODE (dest) == ZERO_EXTRACT
8966 && CONST_INT_P (XEXP (dest, 1))
8967 && GET_CODE (src) == AND
8968 && CONST_INT_P (XEXP (src, 1)))
8969 {
8970 HOST_WIDE_INT width = INTVAL (XEXP (dest, 1));
8971 unsigned HOST_WIDE_INT and_mask = INTVAL (XEXP (src, 1));
8972 unsigned HOST_WIDE_INT ze_mask;
8973
8974 if (width >= HOST_BITS_PER_WIDE_INT)
8975 ze_mask = -1;
8976 else
8977 ze_mask = ((unsigned HOST_WIDE_INT)1 << width) - 1;
8978
8979 /* Complete overlap. We can remove the source AND. */
8980 if ((and_mask & ze_mask) == ze_mask)
8981 return gen_rtx_SET (VOIDmode, dest, XEXP (src, 0));
8982
8983 /* Partial overlap. We can reduce the source AND. */
8984 if ((and_mask & ze_mask) != and_mask)
8985 {
8986 mode = GET_MODE (src);
8987 src = gen_rtx_AND (mode, XEXP (src, 0),
8988 gen_int_mode (and_mask & ze_mask, mode));
8989 return gen_rtx_SET (VOIDmode, dest, src);
8990 }
8991 }
8992
8993 /* The other case we handle is assignments into a constant-position
8994 field. They look like (ior/xor (and DEST C1) OTHER). If C1 represents
8995 a mask that has all one bits except for a group of zero bits and
8996 OTHER is known to have zeros where C1 has ones, this is such an
8997 assignment. Compute the position and length from C1. Shift OTHER
8998 to the appropriate position, force it to the required mode, and
8999 make the extraction. Check for the AND in both operands. */
9000
9001 if (GET_CODE (src) != IOR && GET_CODE (src) != XOR)
9002 return x;
9003
9004 rhs = expand_compound_operation (XEXP (src, 0));
9005 lhs = expand_compound_operation (XEXP (src, 1));
9006
9007 if (GET_CODE (rhs) == AND
9008 && CONST_INT_P (XEXP (rhs, 1))
9009 && rtx_equal_for_field_assignment_p (XEXP (rhs, 0), dest))
9010 c1 = INTVAL (XEXP (rhs, 1)), other = lhs;
9011 else if (GET_CODE (lhs) == AND
9012 && CONST_INT_P (XEXP (lhs, 1))
9013 && rtx_equal_for_field_assignment_p (XEXP (lhs, 0), dest))
9014 c1 = INTVAL (XEXP (lhs, 1)), other = rhs;
9015 else
9016 return x;
9017
9018 pos = get_pos_from_mask ((~c1) & GET_MODE_MASK (GET_MODE (dest)), &len);
9019 if (pos < 0 || pos + len > GET_MODE_BITSIZE (GET_MODE (dest))
9020 || GET_MODE_BITSIZE (GET_MODE (dest)) > HOST_BITS_PER_WIDE_INT
9021 || (c1 & nonzero_bits (other, GET_MODE (dest))) != 0)
9022 return x;
9023
9024 assign = make_extraction (VOIDmode, dest, pos, NULL_RTX, len, 1, 1, 0);
9025 if (assign == 0)
9026 return x;
9027
9028 /* The mode to use for the source is the mode of the assignment, or of
9029 what is inside a possible STRICT_LOW_PART. */
9030 mode = (GET_CODE (assign) == STRICT_LOW_PART
9031 ? GET_MODE (XEXP (assign, 0)) : GET_MODE (assign));
9032
9033 /* Shift OTHER right POS places and make it the source, restricting it
9034 to the proper length and mode. */
9035
9036 src = canon_reg_for_combine (simplify_shift_const (NULL_RTX, LSHIFTRT,
9037 GET_MODE (src),
9038 other, pos),
9039 dest);
9040 src = force_to_mode (src, mode,
9041 GET_MODE_BITSIZE (mode) >= HOST_BITS_PER_WIDE_INT
9042 ? ~(unsigned HOST_WIDE_INT) 0
9043 : ((unsigned HOST_WIDE_INT) 1 << len) - 1,
9044 0);
9045
9046 /* If SRC is masked by an AND that does not make a difference in
9047 the value being stored, strip it. */
9048 if (GET_CODE (assign) == ZERO_EXTRACT
9049 && CONST_INT_P (XEXP (assign, 1))
9050 && INTVAL (XEXP (assign, 1)) < HOST_BITS_PER_WIDE_INT
9051 && GET_CODE (src) == AND
9052 && CONST_INT_P (XEXP (src, 1))
9053 && UINTVAL (XEXP (src, 1))
9054 == ((unsigned HOST_WIDE_INT) 1 << INTVAL (XEXP (assign, 1))) - 1)
9055 src = XEXP (src, 0);
9056
9057 return gen_rtx_SET (VOIDmode, assign, src);
9058 }
9059 \f
9060 /* See if X is of the form (+ (* a c) (* b c)) and convert to (* (+ a b) c)
9061 if so. */
9062
9063 static rtx
9064 apply_distributive_law (rtx x)
9065 {
9066 enum rtx_code code = GET_CODE (x);
9067 enum rtx_code inner_code;
9068 rtx lhs, rhs, other;
9069 rtx tem;
9070
9071 /* Distributivity is not true for floating point as it can change the
9072 value. So we don't do it unless -funsafe-math-optimizations. */
9073 if (FLOAT_MODE_P (GET_MODE (x))
9074 && ! flag_unsafe_math_optimizations)
9075 return x;
9076
9077 /* The outer operation can only be one of the following: */
9078 if (code != IOR && code != AND && code != XOR
9079 && code != PLUS && code != MINUS)
9080 return x;
9081
9082 lhs = XEXP (x, 0);
9083 rhs = XEXP (x, 1);
9084
9085 /* If either operand is a primitive we can't do anything, so get out
9086 fast. */
9087 if (OBJECT_P (lhs) || OBJECT_P (rhs))
9088 return x;
9089
9090 lhs = expand_compound_operation (lhs);
9091 rhs = expand_compound_operation (rhs);
9092 inner_code = GET_CODE (lhs);
9093 if (inner_code != GET_CODE (rhs))
9094 return x;
9095
9096 /* See if the inner and outer operations distribute. */
9097 switch (inner_code)
9098 {
9099 case LSHIFTRT:
9100 case ASHIFTRT:
9101 case AND:
9102 case IOR:
9103 /* These all distribute except over PLUS. */
9104 if (code == PLUS || code == MINUS)
9105 return x;
9106 break;
9107
9108 case MULT:
9109 if (code != PLUS && code != MINUS)
9110 return x;
9111 break;
9112
9113 case ASHIFT:
9114 /* This is also a multiply, so it distributes over everything. */
9115 break;
9116
9117 case SUBREG:
9118 /* Non-paradoxical SUBREGs distributes over all operations,
9119 provided the inner modes and byte offsets are the same, this
9120 is an extraction of a low-order part, we don't convert an fp
9121 operation to int or vice versa, this is not a vector mode,
9122 and we would not be converting a single-word operation into a
9123 multi-word operation. The latter test is not required, but
9124 it prevents generating unneeded multi-word operations. Some
9125 of the previous tests are redundant given the latter test,
9126 but are retained because they are required for correctness.
9127
9128 We produce the result slightly differently in this case. */
9129
9130 if (GET_MODE (SUBREG_REG (lhs)) != GET_MODE (SUBREG_REG (rhs))
9131 || SUBREG_BYTE (lhs) != SUBREG_BYTE (rhs)
9132 || ! subreg_lowpart_p (lhs)
9133 || (GET_MODE_CLASS (GET_MODE (lhs))
9134 != GET_MODE_CLASS (GET_MODE (SUBREG_REG (lhs))))
9135 || (GET_MODE_SIZE (GET_MODE (lhs))
9136 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (lhs))))
9137 || VECTOR_MODE_P (GET_MODE (lhs))
9138 || GET_MODE_SIZE (GET_MODE (SUBREG_REG (lhs))) > UNITS_PER_WORD
9139 /* Result might need to be truncated. Don't change mode if
9140 explicit truncation is needed. */
9141 || !TRULY_NOOP_TRUNCATION
9142 (GET_MODE_BITSIZE (GET_MODE (x)),
9143 GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (lhs)))))
9144 return x;
9145
9146 tem = simplify_gen_binary (code, GET_MODE (SUBREG_REG (lhs)),
9147 SUBREG_REG (lhs), SUBREG_REG (rhs));
9148 return gen_lowpart (GET_MODE (x), tem);
9149
9150 default:
9151 return x;
9152 }
9153
9154 /* Set LHS and RHS to the inner operands (A and B in the example
9155 above) and set OTHER to the common operand (C in the example).
9156 There is only one way to do this unless the inner operation is
9157 commutative. */
9158 if (COMMUTATIVE_ARITH_P (lhs)
9159 && rtx_equal_p (XEXP (lhs, 0), XEXP (rhs, 0)))
9160 other = XEXP (lhs, 0), lhs = XEXP (lhs, 1), rhs = XEXP (rhs, 1);
9161 else if (COMMUTATIVE_ARITH_P (lhs)
9162 && rtx_equal_p (XEXP (lhs, 0), XEXP (rhs, 1)))
9163 other = XEXP (lhs, 0), lhs = XEXP (lhs, 1), rhs = XEXP (rhs, 0);
9164 else if (COMMUTATIVE_ARITH_P (lhs)
9165 && rtx_equal_p (XEXP (lhs, 1), XEXP (rhs, 0)))
9166 other = XEXP (lhs, 1), lhs = XEXP (lhs, 0), rhs = XEXP (rhs, 1);
9167 else if (rtx_equal_p (XEXP (lhs, 1), XEXP (rhs, 1)))
9168 other = XEXP (lhs, 1), lhs = XEXP (lhs, 0), rhs = XEXP (rhs, 0);
9169 else
9170 return x;
9171
9172 /* Form the new inner operation, seeing if it simplifies first. */
9173 tem = simplify_gen_binary (code, GET_MODE (x), lhs, rhs);
9174
9175 /* There is one exception to the general way of distributing:
9176 (a | c) ^ (b | c) -> (a ^ b) & ~c */
9177 if (code == XOR && inner_code == IOR)
9178 {
9179 inner_code = AND;
9180 other = simplify_gen_unary (NOT, GET_MODE (x), other, GET_MODE (x));
9181 }
9182
9183 /* We may be able to continuing distributing the result, so call
9184 ourselves recursively on the inner operation before forming the
9185 outer operation, which we return. */
9186 return simplify_gen_binary (inner_code, GET_MODE (x),
9187 apply_distributive_law (tem), other);
9188 }
9189
9190 /* See if X is of the form (* (+ A B) C), and if so convert to
9191 (+ (* A C) (* B C)) and try to simplify.
9192
9193 Most of the time, this results in no change. However, if some of
9194 the operands are the same or inverses of each other, simplifications
9195 will result.
9196
9197 For example, (and (ior A B) (not B)) can occur as the result of
9198 expanding a bit field assignment. When we apply the distributive
9199 law to this, we get (ior (and (A (not B))) (and (B (not B)))),
9200 which then simplifies to (and (A (not B))).
9201
9202 Note that no checks happen on the validity of applying the inverse
9203 distributive law. This is pointless since we can do it in the
9204 few places where this routine is called.
9205
9206 N is the index of the term that is decomposed (the arithmetic operation,
9207 i.e. (+ A B) in the first example above). !N is the index of the term that
9208 is distributed, i.e. of C in the first example above. */
9209 static rtx
9210 distribute_and_simplify_rtx (rtx x, int n)
9211 {
9212 enum machine_mode mode;
9213 enum rtx_code outer_code, inner_code;
9214 rtx decomposed, distributed, inner_op0, inner_op1, new_op0, new_op1, tmp;
9215
9216 /* Distributivity is not true for floating point as it can change the
9217 value. So we don't do it unless -funsafe-math-optimizations. */
9218 if (FLOAT_MODE_P (GET_MODE (x))
9219 && ! flag_unsafe_math_optimizations)
9220 return NULL_RTX;
9221
9222 decomposed = XEXP (x, n);
9223 if (!ARITHMETIC_P (decomposed))
9224 return NULL_RTX;
9225
9226 mode = GET_MODE (x);
9227 outer_code = GET_CODE (x);
9228 distributed = XEXP (x, !n);
9229
9230 inner_code = GET_CODE (decomposed);
9231 inner_op0 = XEXP (decomposed, 0);
9232 inner_op1 = XEXP (decomposed, 1);
9233
9234 /* Special case (and (xor B C) (not A)), which is equivalent to
9235 (xor (ior A B) (ior A C)) */
9236 if (outer_code == AND && inner_code == XOR && GET_CODE (distributed) == NOT)
9237 {
9238 distributed = XEXP (distributed, 0);
9239 outer_code = IOR;
9240 }
9241
9242 if (n == 0)
9243 {
9244 /* Distribute the second term. */
9245 new_op0 = simplify_gen_binary (outer_code, mode, inner_op0, distributed);
9246 new_op1 = simplify_gen_binary (outer_code, mode, inner_op1, distributed);
9247 }
9248 else
9249 {
9250 /* Distribute the first term. */
9251 new_op0 = simplify_gen_binary (outer_code, mode, distributed, inner_op0);
9252 new_op1 = simplify_gen_binary (outer_code, mode, distributed, inner_op1);
9253 }
9254
9255 tmp = apply_distributive_law (simplify_gen_binary (inner_code, mode,
9256 new_op0, new_op1));
9257 if (GET_CODE (tmp) != outer_code
9258 && rtx_cost (tmp, SET, optimize_this_for_speed_p)
9259 < rtx_cost (x, SET, optimize_this_for_speed_p))
9260 return tmp;
9261
9262 return NULL_RTX;
9263 }
9264 \f
9265 /* Simplify a logical `and' of VAROP with the constant CONSTOP, to be done
9266 in MODE. Return an equivalent form, if different from (and VAROP
9267 (const_int CONSTOP)). Otherwise, return NULL_RTX. */
9268
9269 static rtx
9270 simplify_and_const_int_1 (enum machine_mode mode, rtx varop,
9271 unsigned HOST_WIDE_INT constop)
9272 {
9273 unsigned HOST_WIDE_INT nonzero;
9274 unsigned HOST_WIDE_INT orig_constop;
9275 rtx orig_varop;
9276 int i;
9277
9278 orig_varop = varop;
9279 orig_constop = constop;
9280 if (GET_CODE (varop) == CLOBBER)
9281 return NULL_RTX;
9282
9283 /* Simplify VAROP knowing that we will be only looking at some of the
9284 bits in it.
9285
9286 Note by passing in CONSTOP, we guarantee that the bits not set in
9287 CONSTOP are not significant and will never be examined. We must
9288 ensure that is the case by explicitly masking out those bits
9289 before returning. */
9290 varop = force_to_mode (varop, mode, constop, 0);
9291
9292 /* If VAROP is a CLOBBER, we will fail so return it. */
9293 if (GET_CODE (varop) == CLOBBER)
9294 return varop;
9295
9296 /* If VAROP is a CONST_INT, then we need to apply the mask in CONSTOP
9297 to VAROP and return the new constant. */
9298 if (CONST_INT_P (varop))
9299 return gen_int_mode (INTVAL (varop) & constop, mode);
9300
9301 /* See what bits may be nonzero in VAROP. Unlike the general case of
9302 a call to nonzero_bits, here we don't care about bits outside
9303 MODE. */
9304
9305 nonzero = nonzero_bits (varop, mode) & GET_MODE_MASK (mode);
9306
9307 /* Turn off all bits in the constant that are known to already be zero.
9308 Thus, if the AND isn't needed at all, we will have CONSTOP == NONZERO_BITS
9309 which is tested below. */
9310
9311 constop &= nonzero;
9312
9313 /* If we don't have any bits left, return zero. */
9314 if (constop == 0)
9315 return const0_rtx;
9316
9317 /* If VAROP is a NEG of something known to be zero or 1 and CONSTOP is
9318 a power of two, we can replace this with an ASHIFT. */
9319 if (GET_CODE (varop) == NEG && nonzero_bits (XEXP (varop, 0), mode) == 1
9320 && (i = exact_log2 (constop)) >= 0)
9321 return simplify_shift_const (NULL_RTX, ASHIFT, mode, XEXP (varop, 0), i);
9322
9323 /* If VAROP is an IOR or XOR, apply the AND to both branches of the IOR
9324 or XOR, then try to apply the distributive law. This may eliminate
9325 operations if either branch can be simplified because of the AND.
9326 It may also make some cases more complex, but those cases probably
9327 won't match a pattern either with or without this. */
9328
9329 if (GET_CODE (varop) == IOR || GET_CODE (varop) == XOR)
9330 return
9331 gen_lowpart
9332 (mode,
9333 apply_distributive_law
9334 (simplify_gen_binary (GET_CODE (varop), GET_MODE (varop),
9335 simplify_and_const_int (NULL_RTX,
9336 GET_MODE (varop),
9337 XEXP (varop, 0),
9338 constop),
9339 simplify_and_const_int (NULL_RTX,
9340 GET_MODE (varop),
9341 XEXP (varop, 1),
9342 constop))));
9343
9344 /* If VAROP is PLUS, and the constant is a mask of low bits, distribute
9345 the AND and see if one of the operands simplifies to zero. If so, we
9346 may eliminate it. */
9347
9348 if (GET_CODE (varop) == PLUS
9349 && exact_log2 (constop + 1) >= 0)
9350 {
9351 rtx o0, o1;
9352
9353 o0 = simplify_and_const_int (NULL_RTX, mode, XEXP (varop, 0), constop);
9354 o1 = simplify_and_const_int (NULL_RTX, mode, XEXP (varop, 1), constop);
9355 if (o0 == const0_rtx)
9356 return o1;
9357 if (o1 == const0_rtx)
9358 return o0;
9359 }
9360
9361 /* Make a SUBREG if necessary. If we can't make it, fail. */
9362 varop = gen_lowpart (mode, varop);
9363 if (varop == NULL_RTX || GET_CODE (varop) == CLOBBER)
9364 return NULL_RTX;
9365
9366 /* If we are only masking insignificant bits, return VAROP. */
9367 if (constop == nonzero)
9368 return varop;
9369
9370 if (varop == orig_varop && constop == orig_constop)
9371 return NULL_RTX;
9372
9373 /* Otherwise, return an AND. */
9374 return simplify_gen_binary (AND, mode, varop, gen_int_mode (constop, mode));
9375 }
9376
9377
9378 /* We have X, a logical `and' of VAROP with the constant CONSTOP, to be done
9379 in MODE.
9380
9381 Return an equivalent form, if different from X. Otherwise, return X. If
9382 X is zero, we are to always construct the equivalent form. */
9383
9384 static rtx
9385 simplify_and_const_int (rtx x, enum machine_mode mode, rtx varop,
9386 unsigned HOST_WIDE_INT constop)
9387 {
9388 rtx tem = simplify_and_const_int_1 (mode, varop, constop);
9389 if (tem)
9390 return tem;
9391
9392 if (!x)
9393 x = simplify_gen_binary (AND, GET_MODE (varop), varop,
9394 gen_int_mode (constop, mode));
9395 if (GET_MODE (x) != mode)
9396 x = gen_lowpart (mode, x);
9397 return x;
9398 }
9399 \f
9400 /* Given a REG, X, compute which bits in X can be nonzero.
9401 We don't care about bits outside of those defined in MODE.
9402
9403 For most X this is simply GET_MODE_MASK (GET_MODE (MODE)), but if X is
9404 a shift, AND, or zero_extract, we can do better. */
9405
9406 static rtx
9407 reg_nonzero_bits_for_combine (const_rtx x, enum machine_mode mode,
9408 const_rtx known_x ATTRIBUTE_UNUSED,
9409 enum machine_mode known_mode ATTRIBUTE_UNUSED,
9410 unsigned HOST_WIDE_INT known_ret ATTRIBUTE_UNUSED,
9411 unsigned HOST_WIDE_INT *nonzero)
9412 {
9413 rtx tem;
9414 reg_stat_type *rsp;
9415
9416 /* If X is a register whose nonzero bits value is current, use it.
9417 Otherwise, if X is a register whose value we can find, use that
9418 value. Otherwise, use the previously-computed global nonzero bits
9419 for this register. */
9420
9421 rsp = VEC_index (reg_stat_type, reg_stat, REGNO (x));
9422 if (rsp->last_set_value != 0
9423 && (rsp->last_set_mode == mode
9424 || (GET_MODE_CLASS (rsp->last_set_mode) == MODE_INT
9425 && GET_MODE_CLASS (mode) == MODE_INT))
9426 && ((rsp->last_set_label >= label_tick_ebb_start
9427 && rsp->last_set_label < label_tick)
9428 || (rsp->last_set_label == label_tick
9429 && DF_INSN_LUID (rsp->last_set) < subst_low_luid)
9430 || (REGNO (x) >= FIRST_PSEUDO_REGISTER
9431 && REG_N_SETS (REGNO (x)) == 1
9432 && !REGNO_REG_SET_P
9433 (DF_LR_IN (ENTRY_BLOCK_PTR->next_bb), REGNO (x)))))
9434 {
9435 *nonzero &= rsp->last_set_nonzero_bits;
9436 return NULL;
9437 }
9438
9439 tem = get_last_value (x);
9440
9441 if (tem)
9442 {
9443 #ifdef SHORT_IMMEDIATES_SIGN_EXTEND
9444 /* If X is narrower than MODE and TEM is a non-negative
9445 constant that would appear negative in the mode of X,
9446 sign-extend it for use in reg_nonzero_bits because some
9447 machines (maybe most) will actually do the sign-extension
9448 and this is the conservative approach.
9449
9450 ??? For 2.5, try to tighten up the MD files in this regard
9451 instead of this kludge. */
9452
9453 if (GET_MODE_BITSIZE (GET_MODE (x)) < GET_MODE_BITSIZE (mode)
9454 && CONST_INT_P (tem)
9455 && INTVAL (tem) > 0
9456 && 0 != (UINTVAL (tem)
9457 & ((unsigned HOST_WIDE_INT) 1
9458 << (GET_MODE_BITSIZE (GET_MODE (x)) - 1))))
9459 tem = GEN_INT (UINTVAL (tem)
9460 | ((unsigned HOST_WIDE_INT) (-1)
9461 << GET_MODE_BITSIZE (GET_MODE (x))));
9462 #endif
9463 return tem;
9464 }
9465 else if (nonzero_sign_valid && rsp->nonzero_bits)
9466 {
9467 unsigned HOST_WIDE_INT mask = rsp->nonzero_bits;
9468
9469 if (GET_MODE_BITSIZE (GET_MODE (x)) < GET_MODE_BITSIZE (mode))
9470 /* We don't know anything about the upper bits. */
9471 mask |= GET_MODE_MASK (mode) ^ GET_MODE_MASK (GET_MODE (x));
9472 *nonzero &= mask;
9473 }
9474
9475 return NULL;
9476 }
9477
9478 /* Return the number of bits at the high-order end of X that are known to
9479 be equal to the sign bit. X will be used in mode MODE; if MODE is
9480 VOIDmode, X will be used in its own mode. The returned value will always
9481 be between 1 and the number of bits in MODE. */
9482
9483 static rtx
9484 reg_num_sign_bit_copies_for_combine (const_rtx x, enum machine_mode mode,
9485 const_rtx known_x ATTRIBUTE_UNUSED,
9486 enum machine_mode known_mode
9487 ATTRIBUTE_UNUSED,
9488 unsigned int known_ret ATTRIBUTE_UNUSED,
9489 unsigned int *result)
9490 {
9491 rtx tem;
9492 reg_stat_type *rsp;
9493
9494 rsp = VEC_index (reg_stat_type, reg_stat, REGNO (x));
9495 if (rsp->last_set_value != 0
9496 && rsp->last_set_mode == mode
9497 && ((rsp->last_set_label >= label_tick_ebb_start
9498 && rsp->last_set_label < label_tick)
9499 || (rsp->last_set_label == label_tick
9500 && DF_INSN_LUID (rsp->last_set) < subst_low_luid)
9501 || (REGNO (x) >= FIRST_PSEUDO_REGISTER
9502 && REG_N_SETS (REGNO (x)) == 1
9503 && !REGNO_REG_SET_P
9504 (DF_LR_IN (ENTRY_BLOCK_PTR->next_bb), REGNO (x)))))
9505 {
9506 *result = rsp->last_set_sign_bit_copies;
9507 return NULL;
9508 }
9509
9510 tem = get_last_value (x);
9511 if (tem != 0)
9512 return tem;
9513
9514 if (nonzero_sign_valid && rsp->sign_bit_copies != 0
9515 && GET_MODE_BITSIZE (GET_MODE (x)) == GET_MODE_BITSIZE (mode))
9516 *result = rsp->sign_bit_copies;
9517
9518 return NULL;
9519 }
9520 \f
9521 /* Return the number of "extended" bits there are in X, when interpreted
9522 as a quantity in MODE whose signedness is indicated by UNSIGNEDP. For
9523 unsigned quantities, this is the number of high-order zero bits.
9524 For signed quantities, this is the number of copies of the sign bit
9525 minus 1. In both case, this function returns the number of "spare"
9526 bits. For example, if two quantities for which this function returns
9527 at least 1 are added, the addition is known not to overflow.
9528
9529 This function will always return 0 unless called during combine, which
9530 implies that it must be called from a define_split. */
9531
9532 unsigned int
9533 extended_count (const_rtx x, enum machine_mode mode, int unsignedp)
9534 {
9535 if (nonzero_sign_valid == 0)
9536 return 0;
9537
9538 return (unsignedp
9539 ? (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
9540 ? (unsigned int) (GET_MODE_BITSIZE (mode) - 1
9541 - floor_log2 (nonzero_bits (x, mode)))
9542 : 0)
9543 : num_sign_bit_copies (x, mode) - 1);
9544 }
9545 \f
9546 /* This function is called from `simplify_shift_const' to merge two
9547 outer operations. Specifically, we have already found that we need
9548 to perform operation *POP0 with constant *PCONST0 at the outermost
9549 position. We would now like to also perform OP1 with constant CONST1
9550 (with *POP0 being done last).
9551
9552 Return 1 if we can do the operation and update *POP0 and *PCONST0 with
9553 the resulting operation. *PCOMP_P is set to 1 if we would need to
9554 complement the innermost operand, otherwise it is unchanged.
9555
9556 MODE is the mode in which the operation will be done. No bits outside
9557 the width of this mode matter. It is assumed that the width of this mode
9558 is smaller than or equal to HOST_BITS_PER_WIDE_INT.
9559
9560 If *POP0 or OP1 are UNKNOWN, it means no operation is required. Only NEG, PLUS,
9561 IOR, XOR, and AND are supported. We may set *POP0 to SET if the proper
9562 result is simply *PCONST0.
9563
9564 If the resulting operation cannot be expressed as one operation, we
9565 return 0 and do not change *POP0, *PCONST0, and *PCOMP_P. */
9566
9567 static int
9568 merge_outer_ops (enum rtx_code *pop0, HOST_WIDE_INT *pconst0, enum rtx_code op1, HOST_WIDE_INT const1, enum machine_mode mode, int *pcomp_p)
9569 {
9570 enum rtx_code op0 = *pop0;
9571 HOST_WIDE_INT const0 = *pconst0;
9572
9573 const0 &= GET_MODE_MASK (mode);
9574 const1 &= GET_MODE_MASK (mode);
9575
9576 /* If OP0 is an AND, clear unimportant bits in CONST1. */
9577 if (op0 == AND)
9578 const1 &= const0;
9579
9580 /* If OP0 or OP1 is UNKNOWN, this is easy. Similarly if they are the same or
9581 if OP0 is SET. */
9582
9583 if (op1 == UNKNOWN || op0 == SET)
9584 return 1;
9585
9586 else if (op0 == UNKNOWN)
9587 op0 = op1, const0 = const1;
9588
9589 else if (op0 == op1)
9590 {
9591 switch (op0)
9592 {
9593 case AND:
9594 const0 &= const1;
9595 break;
9596 case IOR:
9597 const0 |= const1;
9598 break;
9599 case XOR:
9600 const0 ^= const1;
9601 break;
9602 case PLUS:
9603 const0 += const1;
9604 break;
9605 case NEG:
9606 op0 = UNKNOWN;
9607 break;
9608 default:
9609 break;
9610 }
9611 }
9612
9613 /* Otherwise, if either is a PLUS or NEG, we can't do anything. */
9614 else if (op0 == PLUS || op1 == PLUS || op0 == NEG || op1 == NEG)
9615 return 0;
9616
9617 /* If the two constants aren't the same, we can't do anything. The
9618 remaining six cases can all be done. */
9619 else if (const0 != const1)
9620 return 0;
9621
9622 else
9623 switch (op0)
9624 {
9625 case IOR:
9626 if (op1 == AND)
9627 /* (a & b) | b == b */
9628 op0 = SET;
9629 else /* op1 == XOR */
9630 /* (a ^ b) | b == a | b */
9631 {;}
9632 break;
9633
9634 case XOR:
9635 if (op1 == AND)
9636 /* (a & b) ^ b == (~a) & b */
9637 op0 = AND, *pcomp_p = 1;
9638 else /* op1 == IOR */
9639 /* (a | b) ^ b == a & ~b */
9640 op0 = AND, const0 = ~const0;
9641 break;
9642
9643 case AND:
9644 if (op1 == IOR)
9645 /* (a | b) & b == b */
9646 op0 = SET;
9647 else /* op1 == XOR */
9648 /* (a ^ b) & b) == (~a) & b */
9649 *pcomp_p = 1;
9650 break;
9651 default:
9652 break;
9653 }
9654
9655 /* Check for NO-OP cases. */
9656 const0 &= GET_MODE_MASK (mode);
9657 if (const0 == 0
9658 && (op0 == IOR || op0 == XOR || op0 == PLUS))
9659 op0 = UNKNOWN;
9660 else if (const0 == 0 && op0 == AND)
9661 op0 = SET;
9662 else if ((unsigned HOST_WIDE_INT) const0 == GET_MODE_MASK (mode)
9663 && op0 == AND)
9664 op0 = UNKNOWN;
9665
9666 *pop0 = op0;
9667
9668 /* ??? Slightly redundant with the above mask, but not entirely.
9669 Moving this above means we'd have to sign-extend the mode mask
9670 for the final test. */
9671 if (op0 != UNKNOWN && op0 != NEG)
9672 *pconst0 = trunc_int_for_mode (const0, mode);
9673
9674 return 1;
9675 }
9676 \f
9677 /* A helper to simplify_shift_const_1 to determine the mode we can perform
9678 the shift in. The original shift operation CODE is performed on OP in
9679 ORIG_MODE. Return the wider mode MODE if we can perform the operation
9680 in that mode. Return ORIG_MODE otherwise. We can also assume that the
9681 result of the shift is subject to operation OUTER_CODE with operand
9682 OUTER_CONST. */
9683
9684 static enum machine_mode
9685 try_widen_shift_mode (enum rtx_code code, rtx op, int count,
9686 enum machine_mode orig_mode, enum machine_mode mode,
9687 enum rtx_code outer_code, HOST_WIDE_INT outer_const)
9688 {
9689 if (orig_mode == mode)
9690 return mode;
9691 gcc_assert (GET_MODE_BITSIZE (mode) > GET_MODE_BITSIZE (orig_mode));
9692
9693 /* In general we can't perform in wider mode for right shift and rotate. */
9694 switch (code)
9695 {
9696 case ASHIFTRT:
9697 /* We can still widen if the bits brought in from the left are identical
9698 to the sign bit of ORIG_MODE. */
9699 if (num_sign_bit_copies (op, mode)
9700 > (unsigned) (GET_MODE_BITSIZE (mode)
9701 - GET_MODE_BITSIZE (orig_mode)))
9702 return mode;
9703 return orig_mode;
9704
9705 case LSHIFTRT:
9706 /* Similarly here but with zero bits. */
9707 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
9708 && (nonzero_bits (op, mode) & ~GET_MODE_MASK (orig_mode)) == 0)
9709 return mode;
9710
9711 /* We can also widen if the bits brought in will be masked off. This
9712 operation is performed in ORIG_MODE. */
9713 if (outer_code == AND)
9714 {
9715 int care_bits = low_bitmask_len (orig_mode, outer_const);
9716
9717 if (care_bits >= 0
9718 && GET_MODE_BITSIZE (orig_mode) - care_bits >= count)
9719 return mode;
9720 }
9721 /* fall through */
9722
9723 case ROTATE:
9724 return orig_mode;
9725
9726 case ROTATERT:
9727 gcc_unreachable ();
9728
9729 default:
9730 return mode;
9731 }
9732 }
9733
9734 /* Simplify a shift of VAROP by COUNT bits. CODE says what kind of shift.
9735 The result of the shift is RESULT_MODE. Return NULL_RTX if we cannot
9736 simplify it. Otherwise, return a simplified value.
9737
9738 The shift is normally computed in the widest mode we find in VAROP, as
9739 long as it isn't a different number of words than RESULT_MODE. Exceptions
9740 are ASHIFTRT and ROTATE, which are always done in their original mode. */
9741
9742 static rtx
9743 simplify_shift_const_1 (enum rtx_code code, enum machine_mode result_mode,
9744 rtx varop, int orig_count)
9745 {
9746 enum rtx_code orig_code = code;
9747 rtx orig_varop = varop;
9748 int count;
9749 enum machine_mode mode = result_mode;
9750 enum machine_mode shift_mode, tmode;
9751 unsigned int mode_words
9752 = (GET_MODE_SIZE (mode) + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD;
9753 /* We form (outer_op (code varop count) (outer_const)). */
9754 enum rtx_code outer_op = UNKNOWN;
9755 HOST_WIDE_INT outer_const = 0;
9756 int complement_p = 0;
9757 rtx new_rtx, x;
9758
9759 /* Make sure and truncate the "natural" shift on the way in. We don't
9760 want to do this inside the loop as it makes it more difficult to
9761 combine shifts. */
9762 if (SHIFT_COUNT_TRUNCATED)
9763 orig_count &= GET_MODE_BITSIZE (mode) - 1;
9764
9765 /* If we were given an invalid count, don't do anything except exactly
9766 what was requested. */
9767
9768 if (orig_count < 0 || orig_count >= (int) GET_MODE_BITSIZE (mode))
9769 return NULL_RTX;
9770
9771 count = orig_count;
9772
9773 /* Unless one of the branches of the `if' in this loop does a `continue',
9774 we will `break' the loop after the `if'. */
9775
9776 while (count != 0)
9777 {
9778 /* If we have an operand of (clobber (const_int 0)), fail. */
9779 if (GET_CODE (varop) == CLOBBER)
9780 return NULL_RTX;
9781
9782 /* Convert ROTATERT to ROTATE. */
9783 if (code == ROTATERT)
9784 {
9785 unsigned int bitsize = GET_MODE_BITSIZE (result_mode);;
9786 code = ROTATE;
9787 if (VECTOR_MODE_P (result_mode))
9788 count = bitsize / GET_MODE_NUNITS (result_mode) - count;
9789 else
9790 count = bitsize - count;
9791 }
9792
9793 shift_mode = try_widen_shift_mode (code, varop, count, result_mode,
9794 mode, outer_op, outer_const);
9795
9796 /* Handle cases where the count is greater than the size of the mode
9797 minus 1. For ASHIFT, use the size minus one as the count (this can
9798 occur when simplifying (lshiftrt (ashiftrt ..))). For rotates,
9799 take the count modulo the size. For other shifts, the result is
9800 zero.
9801
9802 Since these shifts are being produced by the compiler by combining
9803 multiple operations, each of which are defined, we know what the
9804 result is supposed to be. */
9805
9806 if (count > (GET_MODE_BITSIZE (shift_mode) - 1))
9807 {
9808 if (code == ASHIFTRT)
9809 count = GET_MODE_BITSIZE (shift_mode) - 1;
9810 else if (code == ROTATE || code == ROTATERT)
9811 count %= GET_MODE_BITSIZE (shift_mode);
9812 else
9813 {
9814 /* We can't simply return zero because there may be an
9815 outer op. */
9816 varop = const0_rtx;
9817 count = 0;
9818 break;
9819 }
9820 }
9821
9822 /* If we discovered we had to complement VAROP, leave. Making a NOT
9823 here would cause an infinite loop. */
9824 if (complement_p)
9825 break;
9826
9827 /* An arithmetic right shift of a quantity known to be -1 or 0
9828 is a no-op. */
9829 if (code == ASHIFTRT
9830 && (num_sign_bit_copies (varop, shift_mode)
9831 == GET_MODE_BITSIZE (shift_mode)))
9832 {
9833 count = 0;
9834 break;
9835 }
9836
9837 /* If we are doing an arithmetic right shift and discarding all but
9838 the sign bit copies, this is equivalent to doing a shift by the
9839 bitsize minus one. Convert it into that shift because it will often
9840 allow other simplifications. */
9841
9842 if (code == ASHIFTRT
9843 && (count + num_sign_bit_copies (varop, shift_mode)
9844 >= GET_MODE_BITSIZE (shift_mode)))
9845 count = GET_MODE_BITSIZE (shift_mode) - 1;
9846
9847 /* We simplify the tests below and elsewhere by converting
9848 ASHIFTRT to LSHIFTRT if we know the sign bit is clear.
9849 `make_compound_operation' will convert it to an ASHIFTRT for
9850 those machines (such as VAX) that don't have an LSHIFTRT. */
9851 if (GET_MODE_BITSIZE (shift_mode) <= HOST_BITS_PER_WIDE_INT
9852 && code == ASHIFTRT
9853 && ((nonzero_bits (varop, shift_mode)
9854 & ((unsigned HOST_WIDE_INT) 1
9855 << (GET_MODE_BITSIZE (shift_mode) - 1))) == 0))
9856 code = LSHIFTRT;
9857
9858 if (((code == LSHIFTRT
9859 && GET_MODE_BITSIZE (shift_mode) <= HOST_BITS_PER_WIDE_INT
9860 && !(nonzero_bits (varop, shift_mode) >> count))
9861 || (code == ASHIFT
9862 && GET_MODE_BITSIZE (shift_mode) <= HOST_BITS_PER_WIDE_INT
9863 && !((nonzero_bits (varop, shift_mode) << count)
9864 & GET_MODE_MASK (shift_mode))))
9865 && !side_effects_p (varop))
9866 varop = const0_rtx;
9867
9868 switch (GET_CODE (varop))
9869 {
9870 case SIGN_EXTEND:
9871 case ZERO_EXTEND:
9872 case SIGN_EXTRACT:
9873 case ZERO_EXTRACT:
9874 new_rtx = expand_compound_operation (varop);
9875 if (new_rtx != varop)
9876 {
9877 varop = new_rtx;
9878 continue;
9879 }
9880 break;
9881
9882 case MEM:
9883 /* If we have (xshiftrt (mem ...) C) and C is MODE_WIDTH
9884 minus the width of a smaller mode, we can do this with a
9885 SIGN_EXTEND or ZERO_EXTEND from the narrower memory location. */
9886 if ((code == ASHIFTRT || code == LSHIFTRT)
9887 && ! mode_dependent_address_p (XEXP (varop, 0))
9888 && ! MEM_VOLATILE_P (varop)
9889 && (tmode = mode_for_size (GET_MODE_BITSIZE (mode) - count,
9890 MODE_INT, 1)) != BLKmode)
9891 {
9892 new_rtx = adjust_address_nv (varop, tmode,
9893 BYTES_BIG_ENDIAN ? 0
9894 : count / BITS_PER_UNIT);
9895
9896 varop = gen_rtx_fmt_e (code == ASHIFTRT ? SIGN_EXTEND
9897 : ZERO_EXTEND, mode, new_rtx);
9898 count = 0;
9899 continue;
9900 }
9901 break;
9902
9903 case SUBREG:
9904 /* If VAROP is a SUBREG, strip it as long as the inner operand has
9905 the same number of words as what we've seen so far. Then store
9906 the widest mode in MODE. */
9907 if (subreg_lowpart_p (varop)
9908 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (varop)))
9909 > GET_MODE_SIZE (GET_MODE (varop)))
9910 && (unsigned int) ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (varop)))
9911 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
9912 == mode_words
9913 && GET_MODE_CLASS (GET_MODE (varop)) == MODE_INT
9914 && GET_MODE_CLASS (GET_MODE (SUBREG_REG (varop))) == MODE_INT)
9915 {
9916 varop = SUBREG_REG (varop);
9917 if (GET_MODE_SIZE (GET_MODE (varop)) > GET_MODE_SIZE (mode))
9918 mode = GET_MODE (varop);
9919 continue;
9920 }
9921 break;
9922
9923 case MULT:
9924 /* Some machines use MULT instead of ASHIFT because MULT
9925 is cheaper. But it is still better on those machines to
9926 merge two shifts into one. */
9927 if (CONST_INT_P (XEXP (varop, 1))
9928 && exact_log2 (UINTVAL (XEXP (varop, 1))) >= 0)
9929 {
9930 varop
9931 = simplify_gen_binary (ASHIFT, GET_MODE (varop),
9932 XEXP (varop, 0),
9933 GEN_INT (exact_log2 (
9934 UINTVAL (XEXP (varop, 1)))));
9935 continue;
9936 }
9937 break;
9938
9939 case UDIV:
9940 /* Similar, for when divides are cheaper. */
9941 if (CONST_INT_P (XEXP (varop, 1))
9942 && exact_log2 (UINTVAL (XEXP (varop, 1))) >= 0)
9943 {
9944 varop
9945 = simplify_gen_binary (LSHIFTRT, GET_MODE (varop),
9946 XEXP (varop, 0),
9947 GEN_INT (exact_log2 (
9948 UINTVAL (XEXP (varop, 1)))));
9949 continue;
9950 }
9951 break;
9952
9953 case ASHIFTRT:
9954 /* If we are extracting just the sign bit of an arithmetic
9955 right shift, that shift is not needed. However, the sign
9956 bit of a wider mode may be different from what would be
9957 interpreted as the sign bit in a narrower mode, so, if
9958 the result is narrower, don't discard the shift. */
9959 if (code == LSHIFTRT
9960 && count == (GET_MODE_BITSIZE (result_mode) - 1)
9961 && (GET_MODE_BITSIZE (result_mode)
9962 >= GET_MODE_BITSIZE (GET_MODE (varop))))
9963 {
9964 varop = XEXP (varop, 0);
9965 continue;
9966 }
9967
9968 /* ... fall through ... */
9969
9970 case LSHIFTRT:
9971 case ASHIFT:
9972 case ROTATE:
9973 /* Here we have two nested shifts. The result is usually the
9974 AND of a new shift with a mask. We compute the result below. */
9975 if (CONST_INT_P (XEXP (varop, 1))
9976 && INTVAL (XEXP (varop, 1)) >= 0
9977 && INTVAL (XEXP (varop, 1)) < GET_MODE_BITSIZE (GET_MODE (varop))
9978 && GET_MODE_BITSIZE (result_mode) <= HOST_BITS_PER_WIDE_INT
9979 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
9980 && !VECTOR_MODE_P (result_mode))
9981 {
9982 enum rtx_code first_code = GET_CODE (varop);
9983 unsigned int first_count = INTVAL (XEXP (varop, 1));
9984 unsigned HOST_WIDE_INT mask;
9985 rtx mask_rtx;
9986
9987 /* We have one common special case. We can't do any merging if
9988 the inner code is an ASHIFTRT of a smaller mode. However, if
9989 we have (ashift:M1 (subreg:M1 (ashiftrt:M2 FOO C1) 0) C2)
9990 with C2 == GET_MODE_BITSIZE (M1) - GET_MODE_BITSIZE (M2),
9991 we can convert it to
9992 (ashiftrt:M1 (ashift:M1 (and:M1 (subreg:M1 FOO 0 C2) C3) C1).
9993 This simplifies certain SIGN_EXTEND operations. */
9994 if (code == ASHIFT && first_code == ASHIFTRT
9995 && count == (GET_MODE_BITSIZE (result_mode)
9996 - GET_MODE_BITSIZE (GET_MODE (varop))))
9997 {
9998 /* C3 has the low-order C1 bits zero. */
9999
10000 mask = GET_MODE_MASK (mode)
10001 & ~(((unsigned HOST_WIDE_INT) 1 << first_count) - 1);
10002
10003 varop = simplify_and_const_int (NULL_RTX, result_mode,
10004 XEXP (varop, 0), mask);
10005 varop = simplify_shift_const (NULL_RTX, ASHIFT, result_mode,
10006 varop, count);
10007 count = first_count;
10008 code = ASHIFTRT;
10009 continue;
10010 }
10011
10012 /* If this was (ashiftrt (ashift foo C1) C2) and FOO has more
10013 than C1 high-order bits equal to the sign bit, we can convert
10014 this to either an ASHIFT or an ASHIFTRT depending on the
10015 two counts.
10016
10017 We cannot do this if VAROP's mode is not SHIFT_MODE. */
10018
10019 if (code == ASHIFTRT && first_code == ASHIFT
10020 && GET_MODE (varop) == shift_mode
10021 && (num_sign_bit_copies (XEXP (varop, 0), shift_mode)
10022 > first_count))
10023 {
10024 varop = XEXP (varop, 0);
10025 count -= first_count;
10026 if (count < 0)
10027 {
10028 count = -count;
10029 code = ASHIFT;
10030 }
10031
10032 continue;
10033 }
10034
10035 /* There are some cases we can't do. If CODE is ASHIFTRT,
10036 we can only do this if FIRST_CODE is also ASHIFTRT.
10037
10038 We can't do the case when CODE is ROTATE and FIRST_CODE is
10039 ASHIFTRT.
10040
10041 If the mode of this shift is not the mode of the outer shift,
10042 we can't do this if either shift is a right shift or ROTATE.
10043
10044 Finally, we can't do any of these if the mode is too wide
10045 unless the codes are the same.
10046
10047 Handle the case where the shift codes are the same
10048 first. */
10049
10050 if (code == first_code)
10051 {
10052 if (GET_MODE (varop) != result_mode
10053 && (code == ASHIFTRT || code == LSHIFTRT
10054 || code == ROTATE))
10055 break;
10056
10057 count += first_count;
10058 varop = XEXP (varop, 0);
10059 continue;
10060 }
10061
10062 if (code == ASHIFTRT
10063 || (code == ROTATE && first_code == ASHIFTRT)
10064 || GET_MODE_BITSIZE (mode) > HOST_BITS_PER_WIDE_INT
10065 || (GET_MODE (varop) != result_mode
10066 && (first_code == ASHIFTRT || first_code == LSHIFTRT
10067 || first_code == ROTATE
10068 || code == ROTATE)))
10069 break;
10070
10071 /* To compute the mask to apply after the shift, shift the
10072 nonzero bits of the inner shift the same way the
10073 outer shift will. */
10074
10075 mask_rtx = GEN_INT (nonzero_bits (varop, GET_MODE (varop)));
10076
10077 mask_rtx
10078 = simplify_const_binary_operation (code, result_mode, mask_rtx,
10079 GEN_INT (count));
10080
10081 /* Give up if we can't compute an outer operation to use. */
10082 if (mask_rtx == 0
10083 || !CONST_INT_P (mask_rtx)
10084 || ! merge_outer_ops (&outer_op, &outer_const, AND,
10085 INTVAL (mask_rtx),
10086 result_mode, &complement_p))
10087 break;
10088
10089 /* If the shifts are in the same direction, we add the
10090 counts. Otherwise, we subtract them. */
10091 if ((code == ASHIFTRT || code == LSHIFTRT)
10092 == (first_code == ASHIFTRT || first_code == LSHIFTRT))
10093 count += first_count;
10094 else
10095 count -= first_count;
10096
10097 /* If COUNT is positive, the new shift is usually CODE,
10098 except for the two exceptions below, in which case it is
10099 FIRST_CODE. If the count is negative, FIRST_CODE should
10100 always be used */
10101 if (count > 0
10102 && ((first_code == ROTATE && code == ASHIFT)
10103 || (first_code == ASHIFTRT && code == LSHIFTRT)))
10104 code = first_code;
10105 else if (count < 0)
10106 code = first_code, count = -count;
10107
10108 varop = XEXP (varop, 0);
10109 continue;
10110 }
10111
10112 /* If we have (A << B << C) for any shift, we can convert this to
10113 (A << C << B). This wins if A is a constant. Only try this if
10114 B is not a constant. */
10115
10116 else if (GET_CODE (varop) == code
10117 && CONST_INT_P (XEXP (varop, 0))
10118 && !CONST_INT_P (XEXP (varop, 1)))
10119 {
10120 rtx new_rtx = simplify_const_binary_operation (code, mode,
10121 XEXP (varop, 0),
10122 GEN_INT (count));
10123 varop = gen_rtx_fmt_ee (code, mode, new_rtx, XEXP (varop, 1));
10124 count = 0;
10125 continue;
10126 }
10127 break;
10128
10129 case NOT:
10130 if (VECTOR_MODE_P (mode))
10131 break;
10132
10133 /* Make this fit the case below. */
10134 varop = gen_rtx_XOR (mode, XEXP (varop, 0),
10135 GEN_INT (GET_MODE_MASK (mode)));
10136 continue;
10137
10138 case IOR:
10139 case AND:
10140 case XOR:
10141 /* If we have (xshiftrt (ior (plus X (const_int -1)) X) C)
10142 with C the size of VAROP - 1 and the shift is logical if
10143 STORE_FLAG_VALUE is 1 and arithmetic if STORE_FLAG_VALUE is -1,
10144 we have an (le X 0) operation. If we have an arithmetic shift
10145 and STORE_FLAG_VALUE is 1 or we have a logical shift with
10146 STORE_FLAG_VALUE of -1, we have a (neg (le X 0)) operation. */
10147
10148 if (GET_CODE (varop) == IOR && GET_CODE (XEXP (varop, 0)) == PLUS
10149 && XEXP (XEXP (varop, 0), 1) == constm1_rtx
10150 && (STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
10151 && (code == LSHIFTRT || code == ASHIFTRT)
10152 && count == (GET_MODE_BITSIZE (GET_MODE (varop)) - 1)
10153 && rtx_equal_p (XEXP (XEXP (varop, 0), 0), XEXP (varop, 1)))
10154 {
10155 count = 0;
10156 varop = gen_rtx_LE (GET_MODE (varop), XEXP (varop, 1),
10157 const0_rtx);
10158
10159 if (STORE_FLAG_VALUE == 1 ? code == ASHIFTRT : code == LSHIFTRT)
10160 varop = gen_rtx_NEG (GET_MODE (varop), varop);
10161
10162 continue;
10163 }
10164
10165 /* If we have (shift (logical)), move the logical to the outside
10166 to allow it to possibly combine with another logical and the
10167 shift to combine with another shift. This also canonicalizes to
10168 what a ZERO_EXTRACT looks like. Also, some machines have
10169 (and (shift)) insns. */
10170
10171 if (CONST_INT_P (XEXP (varop, 1))
10172 /* We can't do this if we have (ashiftrt (xor)) and the
10173 constant has its sign bit set in shift_mode. */
10174 && !(code == ASHIFTRT && GET_CODE (varop) == XOR
10175 && 0 > trunc_int_for_mode (INTVAL (XEXP (varop, 1)),
10176 shift_mode))
10177 && (new_rtx = simplify_const_binary_operation (code, result_mode,
10178 XEXP (varop, 1),
10179 GEN_INT (count))) != 0
10180 && CONST_INT_P (new_rtx)
10181 && merge_outer_ops (&outer_op, &outer_const, GET_CODE (varop),
10182 INTVAL (new_rtx), result_mode, &complement_p))
10183 {
10184 varop = XEXP (varop, 0);
10185 continue;
10186 }
10187
10188 /* If we can't do that, try to simplify the shift in each arm of the
10189 logical expression, make a new logical expression, and apply
10190 the inverse distributive law. This also can't be done
10191 for some (ashiftrt (xor)). */
10192 if (CONST_INT_P (XEXP (varop, 1))
10193 && !(code == ASHIFTRT && GET_CODE (varop) == XOR
10194 && 0 > trunc_int_for_mode (INTVAL (XEXP (varop, 1)),
10195 shift_mode)))
10196 {
10197 rtx lhs = simplify_shift_const (NULL_RTX, code, shift_mode,
10198 XEXP (varop, 0), count);
10199 rtx rhs = simplify_shift_const (NULL_RTX, code, shift_mode,
10200 XEXP (varop, 1), count);
10201
10202 varop = simplify_gen_binary (GET_CODE (varop), shift_mode,
10203 lhs, rhs);
10204 varop = apply_distributive_law (varop);
10205
10206 count = 0;
10207 continue;
10208 }
10209 break;
10210
10211 case EQ:
10212 /* Convert (lshiftrt (eq FOO 0) C) to (xor FOO 1) if STORE_FLAG_VALUE
10213 says that the sign bit can be tested, FOO has mode MODE, C is
10214 GET_MODE_BITSIZE (MODE) - 1, and FOO has only its low-order bit
10215 that may be nonzero. */
10216 if (code == LSHIFTRT
10217 && XEXP (varop, 1) == const0_rtx
10218 && GET_MODE (XEXP (varop, 0)) == result_mode
10219 && count == (GET_MODE_BITSIZE (result_mode) - 1)
10220 && GET_MODE_BITSIZE (result_mode) <= HOST_BITS_PER_WIDE_INT
10221 && STORE_FLAG_VALUE == -1
10222 && nonzero_bits (XEXP (varop, 0), result_mode) == 1
10223 && merge_outer_ops (&outer_op, &outer_const, XOR, 1, result_mode,
10224 &complement_p))
10225 {
10226 varop = XEXP (varop, 0);
10227 count = 0;
10228 continue;
10229 }
10230 break;
10231
10232 case NEG:
10233 /* (lshiftrt (neg A) C) where A is either 0 or 1 and C is one less
10234 than the number of bits in the mode is equivalent to A. */
10235 if (code == LSHIFTRT
10236 && count == (GET_MODE_BITSIZE (result_mode) - 1)
10237 && nonzero_bits (XEXP (varop, 0), result_mode) == 1)
10238 {
10239 varop = XEXP (varop, 0);
10240 count = 0;
10241 continue;
10242 }
10243
10244 /* NEG commutes with ASHIFT since it is multiplication. Move the
10245 NEG outside to allow shifts to combine. */
10246 if (code == ASHIFT
10247 && merge_outer_ops (&outer_op, &outer_const, NEG, 0, result_mode,
10248 &complement_p))
10249 {
10250 varop = XEXP (varop, 0);
10251 continue;
10252 }
10253 break;
10254
10255 case PLUS:
10256 /* (lshiftrt (plus A -1) C) where A is either 0 or 1 and C
10257 is one less than the number of bits in the mode is
10258 equivalent to (xor A 1). */
10259 if (code == LSHIFTRT
10260 && count == (GET_MODE_BITSIZE (result_mode) - 1)
10261 && XEXP (varop, 1) == constm1_rtx
10262 && nonzero_bits (XEXP (varop, 0), result_mode) == 1
10263 && merge_outer_ops (&outer_op, &outer_const, XOR, 1, result_mode,
10264 &complement_p))
10265 {
10266 count = 0;
10267 varop = XEXP (varop, 0);
10268 continue;
10269 }
10270
10271 /* If we have (xshiftrt (plus FOO BAR) C), and the only bits
10272 that might be nonzero in BAR are those being shifted out and those
10273 bits are known zero in FOO, we can replace the PLUS with FOO.
10274 Similarly in the other operand order. This code occurs when
10275 we are computing the size of a variable-size array. */
10276
10277 if ((code == ASHIFTRT || code == LSHIFTRT)
10278 && count < HOST_BITS_PER_WIDE_INT
10279 && nonzero_bits (XEXP (varop, 1), result_mode) >> count == 0
10280 && (nonzero_bits (XEXP (varop, 1), result_mode)
10281 & nonzero_bits (XEXP (varop, 0), result_mode)) == 0)
10282 {
10283 varop = XEXP (varop, 0);
10284 continue;
10285 }
10286 else if ((code == ASHIFTRT || code == LSHIFTRT)
10287 && count < HOST_BITS_PER_WIDE_INT
10288 && GET_MODE_BITSIZE (result_mode) <= HOST_BITS_PER_WIDE_INT
10289 && 0 == (nonzero_bits (XEXP (varop, 0), result_mode)
10290 >> count)
10291 && 0 == (nonzero_bits (XEXP (varop, 0), result_mode)
10292 & nonzero_bits (XEXP (varop, 1),
10293 result_mode)))
10294 {
10295 varop = XEXP (varop, 1);
10296 continue;
10297 }
10298
10299 /* (ashift (plus foo C) N) is (plus (ashift foo N) C'). */
10300 if (code == ASHIFT
10301 && CONST_INT_P (XEXP (varop, 1))
10302 && (new_rtx = simplify_const_binary_operation (ASHIFT, result_mode,
10303 XEXP (varop, 1),
10304 GEN_INT (count))) != 0
10305 && CONST_INT_P (new_rtx)
10306 && merge_outer_ops (&outer_op, &outer_const, PLUS,
10307 INTVAL (new_rtx), result_mode, &complement_p))
10308 {
10309 varop = XEXP (varop, 0);
10310 continue;
10311 }
10312
10313 /* Check for 'PLUS signbit', which is the canonical form of 'XOR
10314 signbit', and attempt to change the PLUS to an XOR and move it to
10315 the outer operation as is done above in the AND/IOR/XOR case
10316 leg for shift(logical). See details in logical handling above
10317 for reasoning in doing so. */
10318 if (code == LSHIFTRT
10319 && CONST_INT_P (XEXP (varop, 1))
10320 && mode_signbit_p (result_mode, XEXP (varop, 1))
10321 && (new_rtx = simplify_const_binary_operation (code, result_mode,
10322 XEXP (varop, 1),
10323 GEN_INT (count))) != 0
10324 && CONST_INT_P (new_rtx)
10325 && merge_outer_ops (&outer_op, &outer_const, XOR,
10326 INTVAL (new_rtx), result_mode, &complement_p))
10327 {
10328 varop = XEXP (varop, 0);
10329 continue;
10330 }
10331
10332 break;
10333
10334 case MINUS:
10335 /* If we have (xshiftrt (minus (ashiftrt X C)) X) C)
10336 with C the size of VAROP - 1 and the shift is logical if
10337 STORE_FLAG_VALUE is 1 and arithmetic if STORE_FLAG_VALUE is -1,
10338 we have a (gt X 0) operation. If the shift is arithmetic with
10339 STORE_FLAG_VALUE of 1 or logical with STORE_FLAG_VALUE == -1,
10340 we have a (neg (gt X 0)) operation. */
10341
10342 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
10343 && GET_CODE (XEXP (varop, 0)) == ASHIFTRT
10344 && count == (GET_MODE_BITSIZE (GET_MODE (varop)) - 1)
10345 && (code == LSHIFTRT || code == ASHIFTRT)
10346 && CONST_INT_P (XEXP (XEXP (varop, 0), 1))
10347 && INTVAL (XEXP (XEXP (varop, 0), 1)) == count
10348 && rtx_equal_p (XEXP (XEXP (varop, 0), 0), XEXP (varop, 1)))
10349 {
10350 count = 0;
10351 varop = gen_rtx_GT (GET_MODE (varop), XEXP (varop, 1),
10352 const0_rtx);
10353
10354 if (STORE_FLAG_VALUE == 1 ? code == ASHIFTRT : code == LSHIFTRT)
10355 varop = gen_rtx_NEG (GET_MODE (varop), varop);
10356
10357 continue;
10358 }
10359 break;
10360
10361 case TRUNCATE:
10362 /* Change (lshiftrt (truncate (lshiftrt))) to (truncate (lshiftrt))
10363 if the truncate does not affect the value. */
10364 if (code == LSHIFTRT
10365 && GET_CODE (XEXP (varop, 0)) == LSHIFTRT
10366 && CONST_INT_P (XEXP (XEXP (varop, 0), 1))
10367 && (INTVAL (XEXP (XEXP (varop, 0), 1))
10368 >= (GET_MODE_BITSIZE (GET_MODE (XEXP (varop, 0)))
10369 - GET_MODE_BITSIZE (GET_MODE (varop)))))
10370 {
10371 rtx varop_inner = XEXP (varop, 0);
10372
10373 varop_inner
10374 = gen_rtx_LSHIFTRT (GET_MODE (varop_inner),
10375 XEXP (varop_inner, 0),
10376 GEN_INT
10377 (count + INTVAL (XEXP (varop_inner, 1))));
10378 varop = gen_rtx_TRUNCATE (GET_MODE (varop), varop_inner);
10379 count = 0;
10380 continue;
10381 }
10382 break;
10383
10384 default:
10385 break;
10386 }
10387
10388 break;
10389 }
10390
10391 shift_mode = try_widen_shift_mode (code, varop, count, result_mode, mode,
10392 outer_op, outer_const);
10393
10394 /* We have now finished analyzing the shift. The result should be
10395 a shift of type CODE with SHIFT_MODE shifting VAROP COUNT places. If
10396 OUTER_OP is non-UNKNOWN, it is an operation that needs to be applied
10397 to the result of the shift. OUTER_CONST is the relevant constant,
10398 but we must turn off all bits turned off in the shift. */
10399
10400 if (outer_op == UNKNOWN
10401 && orig_code == code && orig_count == count
10402 && varop == orig_varop
10403 && shift_mode == GET_MODE (varop))
10404 return NULL_RTX;
10405
10406 /* Make a SUBREG if necessary. If we can't make it, fail. */
10407 varop = gen_lowpart (shift_mode, varop);
10408 if (varop == NULL_RTX || GET_CODE (varop) == CLOBBER)
10409 return NULL_RTX;
10410
10411 /* If we have an outer operation and we just made a shift, it is
10412 possible that we could have simplified the shift were it not
10413 for the outer operation. So try to do the simplification
10414 recursively. */
10415
10416 if (outer_op != UNKNOWN)
10417 x = simplify_shift_const_1 (code, shift_mode, varop, count);
10418 else
10419 x = NULL_RTX;
10420
10421 if (x == NULL_RTX)
10422 x = simplify_gen_binary (code, shift_mode, varop, GEN_INT (count));
10423
10424 /* If we were doing an LSHIFTRT in a wider mode than it was originally,
10425 turn off all the bits that the shift would have turned off. */
10426 if (orig_code == LSHIFTRT && result_mode != shift_mode)
10427 x = simplify_and_const_int (NULL_RTX, shift_mode, x,
10428 GET_MODE_MASK (result_mode) >> orig_count);
10429
10430 /* Do the remainder of the processing in RESULT_MODE. */
10431 x = gen_lowpart_or_truncate (result_mode, x);
10432
10433 /* If COMPLEMENT_P is set, we have to complement X before doing the outer
10434 operation. */
10435 if (complement_p)
10436 x = simplify_gen_unary (NOT, result_mode, x, result_mode);
10437
10438 if (outer_op != UNKNOWN)
10439 {
10440 if (GET_RTX_CLASS (outer_op) != RTX_UNARY
10441 && GET_MODE_BITSIZE (result_mode) < HOST_BITS_PER_WIDE_INT)
10442 outer_const = trunc_int_for_mode (outer_const, result_mode);
10443
10444 if (outer_op == AND)
10445 x = simplify_and_const_int (NULL_RTX, result_mode, x, outer_const);
10446 else if (outer_op == SET)
10447 {
10448 /* This means that we have determined that the result is
10449 equivalent to a constant. This should be rare. */
10450 if (!side_effects_p (x))
10451 x = GEN_INT (outer_const);
10452 }
10453 else if (GET_RTX_CLASS (outer_op) == RTX_UNARY)
10454 x = simplify_gen_unary (outer_op, result_mode, x, result_mode);
10455 else
10456 x = simplify_gen_binary (outer_op, result_mode, x,
10457 GEN_INT (outer_const));
10458 }
10459
10460 return x;
10461 }
10462
10463 /* Simplify a shift of VAROP by COUNT bits. CODE says what kind of shift.
10464 The result of the shift is RESULT_MODE. If we cannot simplify it,
10465 return X or, if it is NULL, synthesize the expression with
10466 simplify_gen_binary. Otherwise, return a simplified value.
10467
10468 The shift is normally computed in the widest mode we find in VAROP, as
10469 long as it isn't a different number of words than RESULT_MODE. Exceptions
10470 are ASHIFTRT and ROTATE, which are always done in their original mode. */
10471
10472 static rtx
10473 simplify_shift_const (rtx x, enum rtx_code code, enum machine_mode result_mode,
10474 rtx varop, int count)
10475 {
10476 rtx tem = simplify_shift_const_1 (code, result_mode, varop, count);
10477 if (tem)
10478 return tem;
10479
10480 if (!x)
10481 x = simplify_gen_binary (code, GET_MODE (varop), varop, GEN_INT (count));
10482 if (GET_MODE (x) != result_mode)
10483 x = gen_lowpart (result_mode, x);
10484 return x;
10485 }
10486
10487 \f
10488 /* Like recog, but we receive the address of a pointer to a new pattern.
10489 We try to match the rtx that the pointer points to.
10490 If that fails, we may try to modify or replace the pattern,
10491 storing the replacement into the same pointer object.
10492
10493 Modifications include deletion or addition of CLOBBERs.
10494
10495 PNOTES is a pointer to a location where any REG_UNUSED notes added for
10496 the CLOBBERs are placed.
10497
10498 The value is the final insn code from the pattern ultimately matched,
10499 or -1. */
10500
10501 static int
10502 recog_for_combine (rtx *pnewpat, rtx insn, rtx *pnotes)
10503 {
10504 rtx pat = *pnewpat;
10505 int insn_code_number;
10506 int num_clobbers_to_add = 0;
10507 int i;
10508 rtx notes = 0;
10509 rtx old_notes, old_pat;
10510
10511 /* If PAT is a PARALLEL, check to see if it contains the CLOBBER
10512 we use to indicate that something didn't match. If we find such a
10513 thing, force rejection. */
10514 if (GET_CODE (pat) == PARALLEL)
10515 for (i = XVECLEN (pat, 0) - 1; i >= 0; i--)
10516 if (GET_CODE (XVECEXP (pat, 0, i)) == CLOBBER
10517 && XEXP (XVECEXP (pat, 0, i), 0) == const0_rtx)
10518 return -1;
10519
10520 old_pat = PATTERN (insn);
10521 old_notes = REG_NOTES (insn);
10522 PATTERN (insn) = pat;
10523 REG_NOTES (insn) = 0;
10524
10525 insn_code_number = recog (pat, insn, &num_clobbers_to_add);
10526 if (dump_file && (dump_flags & TDF_DETAILS))
10527 {
10528 if (insn_code_number < 0)
10529 fputs ("Failed to match this instruction:\n", dump_file);
10530 else
10531 fputs ("Successfully matched this instruction:\n", dump_file);
10532 print_rtl_single (dump_file, pat);
10533 }
10534
10535 /* If it isn't, there is the possibility that we previously had an insn
10536 that clobbered some register as a side effect, but the combined
10537 insn doesn't need to do that. So try once more without the clobbers
10538 unless this represents an ASM insn. */
10539
10540 if (insn_code_number < 0 && ! check_asm_operands (pat)
10541 && GET_CODE (pat) == PARALLEL)
10542 {
10543 int pos;
10544
10545 for (pos = 0, i = 0; i < XVECLEN (pat, 0); i++)
10546 if (GET_CODE (XVECEXP (pat, 0, i)) != CLOBBER)
10547 {
10548 if (i != pos)
10549 SUBST (XVECEXP (pat, 0, pos), XVECEXP (pat, 0, i));
10550 pos++;
10551 }
10552
10553 SUBST_INT (XVECLEN (pat, 0), pos);
10554
10555 if (pos == 1)
10556 pat = XVECEXP (pat, 0, 0);
10557
10558 PATTERN (insn) = pat;
10559 insn_code_number = recog (pat, insn, &num_clobbers_to_add);
10560 if (dump_file && (dump_flags & TDF_DETAILS))
10561 {
10562 if (insn_code_number < 0)
10563 fputs ("Failed to match this instruction:\n", dump_file);
10564 else
10565 fputs ("Successfully matched this instruction:\n", dump_file);
10566 print_rtl_single (dump_file, pat);
10567 }
10568 }
10569 PATTERN (insn) = old_pat;
10570 REG_NOTES (insn) = old_notes;
10571
10572 /* Recognize all noop sets, these will be killed by followup pass. */
10573 if (insn_code_number < 0 && GET_CODE (pat) == SET && set_noop_p (pat))
10574 insn_code_number = NOOP_MOVE_INSN_CODE, num_clobbers_to_add = 0;
10575
10576 /* If we had any clobbers to add, make a new pattern than contains
10577 them. Then check to make sure that all of them are dead. */
10578 if (num_clobbers_to_add)
10579 {
10580 rtx newpat = gen_rtx_PARALLEL (VOIDmode,
10581 rtvec_alloc (GET_CODE (pat) == PARALLEL
10582 ? (XVECLEN (pat, 0)
10583 + num_clobbers_to_add)
10584 : num_clobbers_to_add + 1));
10585
10586 if (GET_CODE (pat) == PARALLEL)
10587 for (i = 0; i < XVECLEN (pat, 0); i++)
10588 XVECEXP (newpat, 0, i) = XVECEXP (pat, 0, i);
10589 else
10590 XVECEXP (newpat, 0, 0) = pat;
10591
10592 add_clobbers (newpat, insn_code_number);
10593
10594 for (i = XVECLEN (newpat, 0) - num_clobbers_to_add;
10595 i < XVECLEN (newpat, 0); i++)
10596 {
10597 if (REG_P (XEXP (XVECEXP (newpat, 0, i), 0))
10598 && ! reg_dead_at_p (XEXP (XVECEXP (newpat, 0, i), 0), insn))
10599 return -1;
10600 if (GET_CODE (XEXP (XVECEXP (newpat, 0, i), 0)) != SCRATCH)
10601 {
10602 gcc_assert (REG_P (XEXP (XVECEXP (newpat, 0, i), 0)));
10603 notes = alloc_reg_note (REG_UNUSED,
10604 XEXP (XVECEXP (newpat, 0, i), 0), notes);
10605 }
10606 }
10607 pat = newpat;
10608 }
10609
10610 *pnewpat = pat;
10611 *pnotes = notes;
10612
10613 return insn_code_number;
10614 }
10615 \f
10616 /* Like gen_lowpart_general but for use by combine. In combine it
10617 is not possible to create any new pseudoregs. However, it is
10618 safe to create invalid memory addresses, because combine will
10619 try to recognize them and all they will do is make the combine
10620 attempt fail.
10621
10622 If for some reason this cannot do its job, an rtx
10623 (clobber (const_int 0)) is returned.
10624 An insn containing that will not be recognized. */
10625
10626 static rtx
10627 gen_lowpart_for_combine (enum machine_mode omode, rtx x)
10628 {
10629 enum machine_mode imode = GET_MODE (x);
10630 unsigned int osize = GET_MODE_SIZE (omode);
10631 unsigned int isize = GET_MODE_SIZE (imode);
10632 rtx result;
10633
10634 if (omode == imode)
10635 return x;
10636
10637 /* Return identity if this is a CONST or symbolic reference. */
10638 if (omode == Pmode
10639 && (GET_CODE (x) == CONST
10640 || GET_CODE (x) == SYMBOL_REF
10641 || GET_CODE (x) == LABEL_REF))
10642 return x;
10643
10644 /* We can only support MODE being wider than a word if X is a
10645 constant integer or has a mode the same size. */
10646 if (GET_MODE_SIZE (omode) > UNITS_PER_WORD
10647 && ! ((imode == VOIDmode
10648 && (CONST_INT_P (x)
10649 || GET_CODE (x) == CONST_DOUBLE))
10650 || isize == osize))
10651 goto fail;
10652
10653 /* X might be a paradoxical (subreg (mem)). In that case, gen_lowpart
10654 won't know what to do. So we will strip off the SUBREG here and
10655 process normally. */
10656 if (GET_CODE (x) == SUBREG && MEM_P (SUBREG_REG (x)))
10657 {
10658 x = SUBREG_REG (x);
10659
10660 /* For use in case we fall down into the address adjustments
10661 further below, we need to adjust the known mode and size of
10662 x; imode and isize, since we just adjusted x. */
10663 imode = GET_MODE (x);
10664
10665 if (imode == omode)
10666 return x;
10667
10668 isize = GET_MODE_SIZE (imode);
10669 }
10670
10671 result = gen_lowpart_common (omode, x);
10672
10673 if (result)
10674 return result;
10675
10676 if (MEM_P (x))
10677 {
10678 int offset = 0;
10679
10680 /* Refuse to work on a volatile memory ref or one with a mode-dependent
10681 address. */
10682 if (MEM_VOLATILE_P (x) || mode_dependent_address_p (XEXP (x, 0)))
10683 goto fail;
10684
10685 /* If we want to refer to something bigger than the original memref,
10686 generate a paradoxical subreg instead. That will force a reload
10687 of the original memref X. */
10688 if (isize < osize)
10689 return gen_rtx_SUBREG (omode, x, 0);
10690
10691 if (WORDS_BIG_ENDIAN)
10692 offset = MAX (isize, UNITS_PER_WORD) - MAX (osize, UNITS_PER_WORD);
10693
10694 /* Adjust the address so that the address-after-the-data is
10695 unchanged. */
10696 if (BYTES_BIG_ENDIAN)
10697 offset -= MIN (UNITS_PER_WORD, osize) - MIN (UNITS_PER_WORD, isize);
10698
10699 return adjust_address_nv (x, omode, offset);
10700 }
10701
10702 /* If X is a comparison operator, rewrite it in a new mode. This
10703 probably won't match, but may allow further simplifications. */
10704 else if (COMPARISON_P (x))
10705 return gen_rtx_fmt_ee (GET_CODE (x), omode, XEXP (x, 0), XEXP (x, 1));
10706
10707 /* If we couldn't simplify X any other way, just enclose it in a
10708 SUBREG. Normally, this SUBREG won't match, but some patterns may
10709 include an explicit SUBREG or we may simplify it further in combine. */
10710 else
10711 {
10712 int offset = 0;
10713 rtx res;
10714
10715 offset = subreg_lowpart_offset (omode, imode);
10716 if (imode == VOIDmode)
10717 {
10718 imode = int_mode_for_mode (omode);
10719 x = gen_lowpart_common (imode, x);
10720 if (x == NULL)
10721 goto fail;
10722 }
10723 res = simplify_gen_subreg (omode, x, imode, offset);
10724 if (res)
10725 return res;
10726 }
10727
10728 fail:
10729 return gen_rtx_CLOBBER (omode, const0_rtx);
10730 }
10731 \f
10732 /* Simplify a comparison between *POP0 and *POP1 where CODE is the
10733 comparison code that will be tested.
10734
10735 The result is a possibly different comparison code to use. *POP0 and
10736 *POP1 may be updated.
10737
10738 It is possible that we might detect that a comparison is either always
10739 true or always false. However, we do not perform general constant
10740 folding in combine, so this knowledge isn't useful. Such tautologies
10741 should have been detected earlier. Hence we ignore all such cases. */
10742
10743 static enum rtx_code
10744 simplify_comparison (enum rtx_code code, rtx *pop0, rtx *pop1)
10745 {
10746 rtx op0 = *pop0;
10747 rtx op1 = *pop1;
10748 rtx tem, tem1;
10749 int i;
10750 enum machine_mode mode, tmode;
10751
10752 /* Try a few ways of applying the same transformation to both operands. */
10753 while (1)
10754 {
10755 #ifndef WORD_REGISTER_OPERATIONS
10756 /* The test below this one won't handle SIGN_EXTENDs on these machines,
10757 so check specially. */
10758 if (code != GTU && code != GEU && code != LTU && code != LEU
10759 && GET_CODE (op0) == ASHIFTRT && GET_CODE (op1) == ASHIFTRT
10760 && GET_CODE (XEXP (op0, 0)) == ASHIFT
10761 && GET_CODE (XEXP (op1, 0)) == ASHIFT
10762 && GET_CODE (XEXP (XEXP (op0, 0), 0)) == SUBREG
10763 && GET_CODE (XEXP (XEXP (op1, 0), 0)) == SUBREG
10764 && (GET_MODE (SUBREG_REG (XEXP (XEXP (op0, 0), 0)))
10765 == GET_MODE (SUBREG_REG (XEXP (XEXP (op1, 0), 0))))
10766 && CONST_INT_P (XEXP (op0, 1))
10767 && XEXP (op0, 1) == XEXP (op1, 1)
10768 && XEXP (op0, 1) == XEXP (XEXP (op0, 0), 1)
10769 && XEXP (op0, 1) == XEXP (XEXP (op1, 0), 1)
10770 && (INTVAL (XEXP (op0, 1))
10771 == (GET_MODE_BITSIZE (GET_MODE (op0))
10772 - (GET_MODE_BITSIZE
10773 (GET_MODE (SUBREG_REG (XEXP (XEXP (op0, 0), 0))))))))
10774 {
10775 op0 = SUBREG_REG (XEXP (XEXP (op0, 0), 0));
10776 op1 = SUBREG_REG (XEXP (XEXP (op1, 0), 0));
10777 }
10778 #endif
10779
10780 /* If both operands are the same constant shift, see if we can ignore the
10781 shift. We can if the shift is a rotate or if the bits shifted out of
10782 this shift are known to be zero for both inputs and if the type of
10783 comparison is compatible with the shift. */
10784 if (GET_CODE (op0) == GET_CODE (op1)
10785 && GET_MODE_BITSIZE (GET_MODE (op0)) <= HOST_BITS_PER_WIDE_INT
10786 && ((GET_CODE (op0) == ROTATE && (code == NE || code == EQ))
10787 || ((GET_CODE (op0) == LSHIFTRT || GET_CODE (op0) == ASHIFT)
10788 && (code != GT && code != LT && code != GE && code != LE))
10789 || (GET_CODE (op0) == ASHIFTRT
10790 && (code != GTU && code != LTU
10791 && code != GEU && code != LEU)))
10792 && CONST_INT_P (XEXP (op0, 1))
10793 && INTVAL (XEXP (op0, 1)) >= 0
10794 && INTVAL (XEXP (op0, 1)) < HOST_BITS_PER_WIDE_INT
10795 && XEXP (op0, 1) == XEXP (op1, 1))
10796 {
10797 enum machine_mode mode = GET_MODE (op0);
10798 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
10799 int shift_count = INTVAL (XEXP (op0, 1));
10800
10801 if (GET_CODE (op0) == LSHIFTRT || GET_CODE (op0) == ASHIFTRT)
10802 mask &= (mask >> shift_count) << shift_count;
10803 else if (GET_CODE (op0) == ASHIFT)
10804 mask = (mask & (mask << shift_count)) >> shift_count;
10805
10806 if ((nonzero_bits (XEXP (op0, 0), mode) & ~mask) == 0
10807 && (nonzero_bits (XEXP (op1, 0), mode) & ~mask) == 0)
10808 op0 = XEXP (op0, 0), op1 = XEXP (op1, 0);
10809 else
10810 break;
10811 }
10812
10813 /* If both operands are AND's of a paradoxical SUBREG by constant, the
10814 SUBREGs are of the same mode, and, in both cases, the AND would
10815 be redundant if the comparison was done in the narrower mode,
10816 do the comparison in the narrower mode (e.g., we are AND'ing with 1
10817 and the operand's possibly nonzero bits are 0xffffff01; in that case
10818 if we only care about QImode, we don't need the AND). This case
10819 occurs if the output mode of an scc insn is not SImode and
10820 STORE_FLAG_VALUE == 1 (e.g., the 386).
10821
10822 Similarly, check for a case where the AND's are ZERO_EXTEND
10823 operations from some narrower mode even though a SUBREG is not
10824 present. */
10825
10826 else if (GET_CODE (op0) == AND && GET_CODE (op1) == AND
10827 && CONST_INT_P (XEXP (op0, 1))
10828 && CONST_INT_P (XEXP (op1, 1)))
10829 {
10830 rtx inner_op0 = XEXP (op0, 0);
10831 rtx inner_op1 = XEXP (op1, 0);
10832 HOST_WIDE_INT c0 = INTVAL (XEXP (op0, 1));
10833 HOST_WIDE_INT c1 = INTVAL (XEXP (op1, 1));
10834 int changed = 0;
10835
10836 if (GET_CODE (inner_op0) == SUBREG && GET_CODE (inner_op1) == SUBREG
10837 && (GET_MODE_SIZE (GET_MODE (inner_op0))
10838 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (inner_op0))))
10839 && (GET_MODE (SUBREG_REG (inner_op0))
10840 == GET_MODE (SUBREG_REG (inner_op1)))
10841 && (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (inner_op0)))
10842 <= HOST_BITS_PER_WIDE_INT)
10843 && (0 == ((~c0) & nonzero_bits (SUBREG_REG (inner_op0),
10844 GET_MODE (SUBREG_REG (inner_op0)))))
10845 && (0 == ((~c1) & nonzero_bits (SUBREG_REG (inner_op1),
10846 GET_MODE (SUBREG_REG (inner_op1))))))
10847 {
10848 op0 = SUBREG_REG (inner_op0);
10849 op1 = SUBREG_REG (inner_op1);
10850
10851 /* The resulting comparison is always unsigned since we masked
10852 off the original sign bit. */
10853 code = unsigned_condition (code);
10854
10855 changed = 1;
10856 }
10857
10858 else if (c0 == c1)
10859 for (tmode = GET_CLASS_NARROWEST_MODE
10860 (GET_MODE_CLASS (GET_MODE (op0)));
10861 tmode != GET_MODE (op0); tmode = GET_MODE_WIDER_MODE (tmode))
10862 if ((unsigned HOST_WIDE_INT) c0 == GET_MODE_MASK (tmode))
10863 {
10864 op0 = gen_lowpart (tmode, inner_op0);
10865 op1 = gen_lowpart (tmode, inner_op1);
10866 code = unsigned_condition (code);
10867 changed = 1;
10868 break;
10869 }
10870
10871 if (! changed)
10872 break;
10873 }
10874
10875 /* If both operands are NOT, we can strip off the outer operation
10876 and adjust the comparison code for swapped operands; similarly for
10877 NEG, except that this must be an equality comparison. */
10878 else if ((GET_CODE (op0) == NOT && GET_CODE (op1) == NOT)
10879 || (GET_CODE (op0) == NEG && GET_CODE (op1) == NEG
10880 && (code == EQ || code == NE)))
10881 op0 = XEXP (op0, 0), op1 = XEXP (op1, 0), code = swap_condition (code);
10882
10883 else
10884 break;
10885 }
10886
10887 /* If the first operand is a constant, swap the operands and adjust the
10888 comparison code appropriately, but don't do this if the second operand
10889 is already a constant integer. */
10890 if (swap_commutative_operands_p (op0, op1))
10891 {
10892 tem = op0, op0 = op1, op1 = tem;
10893 code = swap_condition (code);
10894 }
10895
10896 /* We now enter a loop during which we will try to simplify the comparison.
10897 For the most part, we only are concerned with comparisons with zero,
10898 but some things may really be comparisons with zero but not start
10899 out looking that way. */
10900
10901 while (CONST_INT_P (op1))
10902 {
10903 enum machine_mode mode = GET_MODE (op0);
10904 unsigned int mode_width = GET_MODE_BITSIZE (mode);
10905 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
10906 int equality_comparison_p;
10907 int sign_bit_comparison_p;
10908 int unsigned_comparison_p;
10909 HOST_WIDE_INT const_op;
10910
10911 /* We only want to handle integral modes. This catches VOIDmode,
10912 CCmode, and the floating-point modes. An exception is that we
10913 can handle VOIDmode if OP0 is a COMPARE or a comparison
10914 operation. */
10915
10916 if (GET_MODE_CLASS (mode) != MODE_INT
10917 && ! (mode == VOIDmode
10918 && (GET_CODE (op0) == COMPARE || COMPARISON_P (op0))))
10919 break;
10920
10921 /* Get the constant we are comparing against and turn off all bits
10922 not on in our mode. */
10923 const_op = INTVAL (op1);
10924 if (mode != VOIDmode)
10925 const_op = trunc_int_for_mode (const_op, mode);
10926 op1 = GEN_INT (const_op);
10927
10928 /* If we are comparing against a constant power of two and the value
10929 being compared can only have that single bit nonzero (e.g., it was
10930 `and'ed with that bit), we can replace this with a comparison
10931 with zero. */
10932 if (const_op
10933 && (code == EQ || code == NE || code == GE || code == GEU
10934 || code == LT || code == LTU)
10935 && mode_width <= HOST_BITS_PER_WIDE_INT
10936 && exact_log2 (const_op) >= 0
10937 && nonzero_bits (op0, mode) == (unsigned HOST_WIDE_INT) const_op)
10938 {
10939 code = (code == EQ || code == GE || code == GEU ? NE : EQ);
10940 op1 = const0_rtx, const_op = 0;
10941 }
10942
10943 /* Similarly, if we are comparing a value known to be either -1 or
10944 0 with -1, change it to the opposite comparison against zero. */
10945
10946 if (const_op == -1
10947 && (code == EQ || code == NE || code == GT || code == LE
10948 || code == GEU || code == LTU)
10949 && num_sign_bit_copies (op0, mode) == mode_width)
10950 {
10951 code = (code == EQ || code == LE || code == GEU ? NE : EQ);
10952 op1 = const0_rtx, const_op = 0;
10953 }
10954
10955 /* Do some canonicalizations based on the comparison code. We prefer
10956 comparisons against zero and then prefer equality comparisons.
10957 If we can reduce the size of a constant, we will do that too. */
10958
10959 switch (code)
10960 {
10961 case LT:
10962 /* < C is equivalent to <= (C - 1) */
10963 if (const_op > 0)
10964 {
10965 const_op -= 1;
10966 op1 = GEN_INT (const_op);
10967 code = LE;
10968 /* ... fall through to LE case below. */
10969 }
10970 else
10971 break;
10972
10973 case LE:
10974 /* <= C is equivalent to < (C + 1); we do this for C < 0 */
10975 if (const_op < 0)
10976 {
10977 const_op += 1;
10978 op1 = GEN_INT (const_op);
10979 code = LT;
10980 }
10981
10982 /* If we are doing a <= 0 comparison on a value known to have
10983 a zero sign bit, we can replace this with == 0. */
10984 else if (const_op == 0
10985 && mode_width <= HOST_BITS_PER_WIDE_INT
10986 && (nonzero_bits (op0, mode)
10987 & ((unsigned HOST_WIDE_INT) 1 << (mode_width - 1)))
10988 == 0)
10989 code = EQ;
10990 break;
10991
10992 case GE:
10993 /* >= C is equivalent to > (C - 1). */
10994 if (const_op > 0)
10995 {
10996 const_op -= 1;
10997 op1 = GEN_INT (const_op);
10998 code = GT;
10999 /* ... fall through to GT below. */
11000 }
11001 else
11002 break;
11003
11004 case GT:
11005 /* > C is equivalent to >= (C + 1); we do this for C < 0. */
11006 if (const_op < 0)
11007 {
11008 const_op += 1;
11009 op1 = GEN_INT (const_op);
11010 code = GE;
11011 }
11012
11013 /* If we are doing a > 0 comparison on a value known to have
11014 a zero sign bit, we can replace this with != 0. */
11015 else if (const_op == 0
11016 && mode_width <= HOST_BITS_PER_WIDE_INT
11017 && (nonzero_bits (op0, mode)
11018 & ((unsigned HOST_WIDE_INT) 1 << (mode_width - 1)))
11019 == 0)
11020 code = NE;
11021 break;
11022
11023 case LTU:
11024 /* < C is equivalent to <= (C - 1). */
11025 if (const_op > 0)
11026 {
11027 const_op -= 1;
11028 op1 = GEN_INT (const_op);
11029 code = LEU;
11030 /* ... fall through ... */
11031 }
11032
11033 /* (unsigned) < 0x80000000 is equivalent to >= 0. */
11034 else if (mode_width <= HOST_BITS_PER_WIDE_INT
11035 && (unsigned HOST_WIDE_INT) const_op
11036 == (unsigned HOST_WIDE_INT) 1 << (mode_width - 1))
11037 {
11038 const_op = 0, op1 = const0_rtx;
11039 code = GE;
11040 break;
11041 }
11042 else
11043 break;
11044
11045 case LEU:
11046 /* unsigned <= 0 is equivalent to == 0 */
11047 if (const_op == 0)
11048 code = EQ;
11049
11050 /* (unsigned) <= 0x7fffffff is equivalent to >= 0. */
11051 else if (mode_width <= HOST_BITS_PER_WIDE_INT
11052 && (unsigned HOST_WIDE_INT) const_op
11053 == ((unsigned HOST_WIDE_INT) 1 << (mode_width - 1)) - 1)
11054 {
11055 const_op = 0, op1 = const0_rtx;
11056 code = GE;
11057 }
11058 break;
11059
11060 case GEU:
11061 /* >= C is equivalent to > (C - 1). */
11062 if (const_op > 1)
11063 {
11064 const_op -= 1;
11065 op1 = GEN_INT (const_op);
11066 code = GTU;
11067 /* ... fall through ... */
11068 }
11069
11070 /* (unsigned) >= 0x80000000 is equivalent to < 0. */
11071 else if (mode_width <= HOST_BITS_PER_WIDE_INT
11072 && (unsigned HOST_WIDE_INT) const_op
11073 == (unsigned HOST_WIDE_INT) 1 << (mode_width - 1))
11074 {
11075 const_op = 0, op1 = const0_rtx;
11076 code = LT;
11077 break;
11078 }
11079 else
11080 break;
11081
11082 case GTU:
11083 /* unsigned > 0 is equivalent to != 0 */
11084 if (const_op == 0)
11085 code = NE;
11086
11087 /* (unsigned) > 0x7fffffff is equivalent to < 0. */
11088 else if (mode_width <= HOST_BITS_PER_WIDE_INT
11089 && (unsigned HOST_WIDE_INT) const_op
11090 == ((unsigned HOST_WIDE_INT) 1 << (mode_width - 1)) - 1)
11091 {
11092 const_op = 0, op1 = const0_rtx;
11093 code = LT;
11094 }
11095 break;
11096
11097 default:
11098 break;
11099 }
11100
11101 /* Compute some predicates to simplify code below. */
11102
11103 equality_comparison_p = (code == EQ || code == NE);
11104 sign_bit_comparison_p = ((code == LT || code == GE) && const_op == 0);
11105 unsigned_comparison_p = (code == LTU || code == LEU || code == GTU
11106 || code == GEU);
11107
11108 /* If this is a sign bit comparison and we can do arithmetic in
11109 MODE, say that we will only be needing the sign bit of OP0. */
11110 if (sign_bit_comparison_p
11111 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
11112 op0 = force_to_mode (op0, mode,
11113 (unsigned HOST_WIDE_INT) 1
11114 << (GET_MODE_BITSIZE (mode) - 1),
11115 0);
11116
11117 /* Now try cases based on the opcode of OP0. If none of the cases
11118 does a "continue", we exit this loop immediately after the
11119 switch. */
11120
11121 switch (GET_CODE (op0))
11122 {
11123 case ZERO_EXTRACT:
11124 /* If we are extracting a single bit from a variable position in
11125 a constant that has only a single bit set and are comparing it
11126 with zero, we can convert this into an equality comparison
11127 between the position and the location of the single bit. */
11128 /* Except we can't if SHIFT_COUNT_TRUNCATED is set, since we might
11129 have already reduced the shift count modulo the word size. */
11130 if (!SHIFT_COUNT_TRUNCATED
11131 && CONST_INT_P (XEXP (op0, 0))
11132 && XEXP (op0, 1) == const1_rtx
11133 && equality_comparison_p && const_op == 0
11134 && (i = exact_log2 (UINTVAL (XEXP (op0, 0)))) >= 0)
11135 {
11136 if (BITS_BIG_ENDIAN)
11137 {
11138 enum machine_mode new_mode
11139 = mode_for_extraction (EP_extzv, 1);
11140 if (new_mode == MAX_MACHINE_MODE)
11141 i = BITS_PER_WORD - 1 - i;
11142 else
11143 {
11144 mode = new_mode;
11145 i = (GET_MODE_BITSIZE (mode) - 1 - i);
11146 }
11147 }
11148
11149 op0 = XEXP (op0, 2);
11150 op1 = GEN_INT (i);
11151 const_op = i;
11152
11153 /* Result is nonzero iff shift count is equal to I. */
11154 code = reverse_condition (code);
11155 continue;
11156 }
11157
11158 /* ... fall through ... */
11159
11160 case SIGN_EXTRACT:
11161 tem = expand_compound_operation (op0);
11162 if (tem != op0)
11163 {
11164 op0 = tem;
11165 continue;
11166 }
11167 break;
11168
11169 case NOT:
11170 /* If testing for equality, we can take the NOT of the constant. */
11171 if (equality_comparison_p
11172 && (tem = simplify_unary_operation (NOT, mode, op1, mode)) != 0)
11173 {
11174 op0 = XEXP (op0, 0);
11175 op1 = tem;
11176 continue;
11177 }
11178
11179 /* If just looking at the sign bit, reverse the sense of the
11180 comparison. */
11181 if (sign_bit_comparison_p)
11182 {
11183 op0 = XEXP (op0, 0);
11184 code = (code == GE ? LT : GE);
11185 continue;
11186 }
11187 break;
11188
11189 case NEG:
11190 /* If testing for equality, we can take the NEG of the constant. */
11191 if (equality_comparison_p
11192 && (tem = simplify_unary_operation (NEG, mode, op1, mode)) != 0)
11193 {
11194 op0 = XEXP (op0, 0);
11195 op1 = tem;
11196 continue;
11197 }
11198
11199 /* The remaining cases only apply to comparisons with zero. */
11200 if (const_op != 0)
11201 break;
11202
11203 /* When X is ABS or is known positive,
11204 (neg X) is < 0 if and only if X != 0. */
11205
11206 if (sign_bit_comparison_p
11207 && (GET_CODE (XEXP (op0, 0)) == ABS
11208 || (mode_width <= HOST_BITS_PER_WIDE_INT
11209 && (nonzero_bits (XEXP (op0, 0), mode)
11210 & ((unsigned HOST_WIDE_INT) 1 << (mode_width - 1)))
11211 == 0)))
11212 {
11213 op0 = XEXP (op0, 0);
11214 code = (code == LT ? NE : EQ);
11215 continue;
11216 }
11217
11218 /* If we have NEG of something whose two high-order bits are the
11219 same, we know that "(-a) < 0" is equivalent to "a > 0". */
11220 if (num_sign_bit_copies (op0, mode) >= 2)
11221 {
11222 op0 = XEXP (op0, 0);
11223 code = swap_condition (code);
11224 continue;
11225 }
11226 break;
11227
11228 case ROTATE:
11229 /* If we are testing equality and our count is a constant, we
11230 can perform the inverse operation on our RHS. */
11231 if (equality_comparison_p && CONST_INT_P (XEXP (op0, 1))
11232 && (tem = simplify_binary_operation (ROTATERT, mode,
11233 op1, XEXP (op0, 1))) != 0)
11234 {
11235 op0 = XEXP (op0, 0);
11236 op1 = tem;
11237 continue;
11238 }
11239
11240 /* If we are doing a < 0 or >= 0 comparison, it means we are testing
11241 a particular bit. Convert it to an AND of a constant of that
11242 bit. This will be converted into a ZERO_EXTRACT. */
11243 if (const_op == 0 && sign_bit_comparison_p
11244 && CONST_INT_P (XEXP (op0, 1))
11245 && mode_width <= HOST_BITS_PER_WIDE_INT)
11246 {
11247 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
11248 ((unsigned HOST_WIDE_INT) 1
11249 << (mode_width - 1
11250 - INTVAL (XEXP (op0, 1)))));
11251 code = (code == LT ? NE : EQ);
11252 continue;
11253 }
11254
11255 /* Fall through. */
11256
11257 case ABS:
11258 /* ABS is ignorable inside an equality comparison with zero. */
11259 if (const_op == 0 && equality_comparison_p)
11260 {
11261 op0 = XEXP (op0, 0);
11262 continue;
11263 }
11264 break;
11265
11266 case SIGN_EXTEND:
11267 /* Can simplify (compare (zero/sign_extend FOO) CONST) to
11268 (compare FOO CONST) if CONST fits in FOO's mode and we
11269 are either testing inequality or have an unsigned
11270 comparison with ZERO_EXTEND or a signed comparison with
11271 SIGN_EXTEND. But don't do it if we don't have a compare
11272 insn of the given mode, since we'd have to revert it
11273 later on, and then we wouldn't know whether to sign- or
11274 zero-extend. */
11275 mode = GET_MODE (XEXP (op0, 0));
11276 if (mode != VOIDmode && GET_MODE_CLASS (mode) == MODE_INT
11277 && ! unsigned_comparison_p
11278 && (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
11279 && ((unsigned HOST_WIDE_INT) const_op
11280 < (((unsigned HOST_WIDE_INT) 1
11281 << (GET_MODE_BITSIZE (mode) - 1))))
11282 && have_insn_for (COMPARE, mode))
11283 {
11284 op0 = XEXP (op0, 0);
11285 continue;
11286 }
11287 break;
11288
11289 case SUBREG:
11290 /* Check for the case where we are comparing A - C1 with C2, that is
11291
11292 (subreg:MODE (plus (A) (-C1))) op (C2)
11293
11294 with C1 a constant, and try to lift the SUBREG, i.e. to do the
11295 comparison in the wider mode. One of the following two conditions
11296 must be true in order for this to be valid:
11297
11298 1. The mode extension results in the same bit pattern being added
11299 on both sides and the comparison is equality or unsigned. As
11300 C2 has been truncated to fit in MODE, the pattern can only be
11301 all 0s or all 1s.
11302
11303 2. The mode extension results in the sign bit being copied on
11304 each side.
11305
11306 The difficulty here is that we have predicates for A but not for
11307 (A - C1) so we need to check that C1 is within proper bounds so
11308 as to perturbate A as little as possible. */
11309
11310 if (mode_width <= HOST_BITS_PER_WIDE_INT
11311 && subreg_lowpart_p (op0)
11312 && GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (op0))) > mode_width
11313 && GET_CODE (SUBREG_REG (op0)) == PLUS
11314 && CONST_INT_P (XEXP (SUBREG_REG (op0), 1)))
11315 {
11316 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (op0));
11317 rtx a = XEXP (SUBREG_REG (op0), 0);
11318 HOST_WIDE_INT c1 = -INTVAL (XEXP (SUBREG_REG (op0), 1));
11319
11320 if ((c1 > 0
11321 && (unsigned HOST_WIDE_INT) c1
11322 < (unsigned HOST_WIDE_INT) 1 << (mode_width - 1)
11323 && (equality_comparison_p || unsigned_comparison_p)
11324 /* (A - C1) zero-extends if it is positive and sign-extends
11325 if it is negative, C2 both zero- and sign-extends. */
11326 && ((0 == (nonzero_bits (a, inner_mode)
11327 & ~GET_MODE_MASK (mode))
11328 && const_op >= 0)
11329 /* (A - C1) sign-extends if it is positive and 1-extends
11330 if it is negative, C2 both sign- and 1-extends. */
11331 || (num_sign_bit_copies (a, inner_mode)
11332 > (unsigned int) (GET_MODE_BITSIZE (inner_mode)
11333 - mode_width)
11334 && const_op < 0)))
11335 || ((unsigned HOST_WIDE_INT) c1
11336 < (unsigned HOST_WIDE_INT) 1 << (mode_width - 2)
11337 /* (A - C1) always sign-extends, like C2. */
11338 && num_sign_bit_copies (a, inner_mode)
11339 > (unsigned int) (GET_MODE_BITSIZE (inner_mode)
11340 - (mode_width - 1))))
11341 {
11342 op0 = SUBREG_REG (op0);
11343 continue;
11344 }
11345 }
11346
11347 /* If the inner mode is narrower and we are extracting the low part,
11348 we can treat the SUBREG as if it were a ZERO_EXTEND. */
11349 if (subreg_lowpart_p (op0)
11350 && GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (op0))) < mode_width)
11351 /* Fall through */ ;
11352 else
11353 break;
11354
11355 /* ... fall through ... */
11356
11357 case ZERO_EXTEND:
11358 mode = GET_MODE (XEXP (op0, 0));
11359 if (mode != VOIDmode && GET_MODE_CLASS (mode) == MODE_INT
11360 && (unsigned_comparison_p || equality_comparison_p)
11361 && (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
11362 && ((unsigned HOST_WIDE_INT) const_op < GET_MODE_MASK (mode))
11363 && have_insn_for (COMPARE, mode))
11364 {
11365 op0 = XEXP (op0, 0);
11366 continue;
11367 }
11368 break;
11369
11370 case PLUS:
11371 /* (eq (plus X A) B) -> (eq X (minus B A)). We can only do
11372 this for equality comparisons due to pathological cases involving
11373 overflows. */
11374 if (equality_comparison_p
11375 && 0 != (tem = simplify_binary_operation (MINUS, mode,
11376 op1, XEXP (op0, 1))))
11377 {
11378 op0 = XEXP (op0, 0);
11379 op1 = tem;
11380 continue;
11381 }
11382
11383 /* (plus (abs X) (const_int -1)) is < 0 if and only if X == 0. */
11384 if (const_op == 0 && XEXP (op0, 1) == constm1_rtx
11385 && GET_CODE (XEXP (op0, 0)) == ABS && sign_bit_comparison_p)
11386 {
11387 op0 = XEXP (XEXP (op0, 0), 0);
11388 code = (code == LT ? EQ : NE);
11389 continue;
11390 }
11391 break;
11392
11393 case MINUS:
11394 /* We used to optimize signed comparisons against zero, but that
11395 was incorrect. Unsigned comparisons against zero (GTU, LEU)
11396 arrive here as equality comparisons, or (GEU, LTU) are
11397 optimized away. No need to special-case them. */
11398
11399 /* (eq (minus A B) C) -> (eq A (plus B C)) or
11400 (eq B (minus A C)), whichever simplifies. We can only do
11401 this for equality comparisons due to pathological cases involving
11402 overflows. */
11403 if (equality_comparison_p
11404 && 0 != (tem = simplify_binary_operation (PLUS, mode,
11405 XEXP (op0, 1), op1)))
11406 {
11407 op0 = XEXP (op0, 0);
11408 op1 = tem;
11409 continue;
11410 }
11411
11412 if (equality_comparison_p
11413 && 0 != (tem = simplify_binary_operation (MINUS, mode,
11414 XEXP (op0, 0), op1)))
11415 {
11416 op0 = XEXP (op0, 1);
11417 op1 = tem;
11418 continue;
11419 }
11420
11421 /* The sign bit of (minus (ashiftrt X C) X), where C is the number
11422 of bits in X minus 1, is one iff X > 0. */
11423 if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 0)) == ASHIFTRT
11424 && CONST_INT_P (XEXP (XEXP (op0, 0), 1))
11425 && UINTVAL (XEXP (XEXP (op0, 0), 1)) == mode_width - 1
11426 && rtx_equal_p (XEXP (XEXP (op0, 0), 0), XEXP (op0, 1)))
11427 {
11428 op0 = XEXP (op0, 1);
11429 code = (code == GE ? LE : GT);
11430 continue;
11431 }
11432 break;
11433
11434 case XOR:
11435 /* (eq (xor A B) C) -> (eq A (xor B C)). This is a simplification
11436 if C is zero or B is a constant. */
11437 if (equality_comparison_p
11438 && 0 != (tem = simplify_binary_operation (XOR, mode,
11439 XEXP (op0, 1), op1)))
11440 {
11441 op0 = XEXP (op0, 0);
11442 op1 = tem;
11443 continue;
11444 }
11445 break;
11446
11447 case EQ: case NE:
11448 case UNEQ: case LTGT:
11449 case LT: case LTU: case UNLT: case LE: case LEU: case UNLE:
11450 case GT: case GTU: case UNGT: case GE: case GEU: case UNGE:
11451 case UNORDERED: case ORDERED:
11452 /* We can't do anything if OP0 is a condition code value, rather
11453 than an actual data value. */
11454 if (const_op != 0
11455 || CC0_P (XEXP (op0, 0))
11456 || GET_MODE_CLASS (GET_MODE (XEXP (op0, 0))) == MODE_CC)
11457 break;
11458
11459 /* Get the two operands being compared. */
11460 if (GET_CODE (XEXP (op0, 0)) == COMPARE)
11461 tem = XEXP (XEXP (op0, 0), 0), tem1 = XEXP (XEXP (op0, 0), 1);
11462 else
11463 tem = XEXP (op0, 0), tem1 = XEXP (op0, 1);
11464
11465 /* Check for the cases where we simply want the result of the
11466 earlier test or the opposite of that result. */
11467 if (code == NE || code == EQ
11468 || (GET_MODE_BITSIZE (GET_MODE (op0)) <= HOST_BITS_PER_WIDE_INT
11469 && GET_MODE_CLASS (GET_MODE (op0)) == MODE_INT
11470 && (STORE_FLAG_VALUE
11471 & (((unsigned HOST_WIDE_INT) 1
11472 << (GET_MODE_BITSIZE (GET_MODE (op0)) - 1))))
11473 && (code == LT || code == GE)))
11474 {
11475 enum rtx_code new_code;
11476 if (code == LT || code == NE)
11477 new_code = GET_CODE (op0);
11478 else
11479 new_code = reversed_comparison_code (op0, NULL);
11480
11481 if (new_code != UNKNOWN)
11482 {
11483 code = new_code;
11484 op0 = tem;
11485 op1 = tem1;
11486 continue;
11487 }
11488 }
11489 break;
11490
11491 case IOR:
11492 /* The sign bit of (ior (plus X (const_int -1)) X) is nonzero
11493 iff X <= 0. */
11494 if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 0)) == PLUS
11495 && XEXP (XEXP (op0, 0), 1) == constm1_rtx
11496 && rtx_equal_p (XEXP (XEXP (op0, 0), 0), XEXP (op0, 1)))
11497 {
11498 op0 = XEXP (op0, 1);
11499 code = (code == GE ? GT : LE);
11500 continue;
11501 }
11502 break;
11503
11504 case AND:
11505 /* Convert (and (xshift 1 X) Y) to (and (lshiftrt Y X) 1). This
11506 will be converted to a ZERO_EXTRACT later. */
11507 if (const_op == 0 && equality_comparison_p
11508 && GET_CODE (XEXP (op0, 0)) == ASHIFT
11509 && XEXP (XEXP (op0, 0), 0) == const1_rtx)
11510 {
11511 op0 = gen_rtx_LSHIFTRT (mode, XEXP (op0, 1),
11512 XEXP (XEXP (op0, 0), 1));
11513 op0 = simplify_and_const_int (NULL_RTX, mode, op0, 1);
11514 continue;
11515 }
11516
11517 /* If we are comparing (and (lshiftrt X C1) C2) for equality with
11518 zero and X is a comparison and C1 and C2 describe only bits set
11519 in STORE_FLAG_VALUE, we can compare with X. */
11520 if (const_op == 0 && equality_comparison_p
11521 && mode_width <= HOST_BITS_PER_WIDE_INT
11522 && CONST_INT_P (XEXP (op0, 1))
11523 && GET_CODE (XEXP (op0, 0)) == LSHIFTRT
11524 && CONST_INT_P (XEXP (XEXP (op0, 0), 1))
11525 && INTVAL (XEXP (XEXP (op0, 0), 1)) >= 0
11526 && INTVAL (XEXP (XEXP (op0, 0), 1)) < HOST_BITS_PER_WIDE_INT)
11527 {
11528 mask = ((INTVAL (XEXP (op0, 1)) & GET_MODE_MASK (mode))
11529 << INTVAL (XEXP (XEXP (op0, 0), 1)));
11530 if ((~STORE_FLAG_VALUE & mask) == 0
11531 && (COMPARISON_P (XEXP (XEXP (op0, 0), 0))
11532 || ((tem = get_last_value (XEXP (XEXP (op0, 0), 0))) != 0
11533 && COMPARISON_P (tem))))
11534 {
11535 op0 = XEXP (XEXP (op0, 0), 0);
11536 continue;
11537 }
11538 }
11539
11540 /* If we are doing an equality comparison of an AND of a bit equal
11541 to the sign bit, replace this with a LT or GE comparison of
11542 the underlying value. */
11543 if (equality_comparison_p
11544 && const_op == 0
11545 && CONST_INT_P (XEXP (op0, 1))
11546 && mode_width <= HOST_BITS_PER_WIDE_INT
11547 && ((INTVAL (XEXP (op0, 1)) & GET_MODE_MASK (mode))
11548 == (unsigned HOST_WIDE_INT) 1 << (mode_width - 1)))
11549 {
11550 op0 = XEXP (op0, 0);
11551 code = (code == EQ ? GE : LT);
11552 continue;
11553 }
11554
11555 /* If this AND operation is really a ZERO_EXTEND from a narrower
11556 mode, the constant fits within that mode, and this is either an
11557 equality or unsigned comparison, try to do this comparison in
11558 the narrower mode.
11559
11560 Note that in:
11561
11562 (ne:DI (and:DI (reg:DI 4) (const_int 0xffffffff)) (const_int 0))
11563 -> (ne:DI (reg:SI 4) (const_int 0))
11564
11565 unless TRULY_NOOP_TRUNCATION allows it or the register is
11566 known to hold a value of the required mode the
11567 transformation is invalid. */
11568 if ((equality_comparison_p || unsigned_comparison_p)
11569 && CONST_INT_P (XEXP (op0, 1))
11570 && (i = exact_log2 ((UINTVAL (XEXP (op0, 1))
11571 & GET_MODE_MASK (mode))
11572 + 1)) >= 0
11573 && const_op >> i == 0
11574 && (tmode = mode_for_size (i, MODE_INT, 1)) != BLKmode
11575 && (TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (tmode),
11576 GET_MODE_BITSIZE (GET_MODE (op0)))
11577 || (REG_P (XEXP (op0, 0))
11578 && reg_truncated_to_mode (tmode, XEXP (op0, 0)))))
11579 {
11580 op0 = gen_lowpart (tmode, XEXP (op0, 0));
11581 continue;
11582 }
11583
11584 /* If this is (and:M1 (subreg:M2 X 0) (const_int C1)) where C1
11585 fits in both M1 and M2 and the SUBREG is either paradoxical
11586 or represents the low part, permute the SUBREG and the AND
11587 and try again. */
11588 if (GET_CODE (XEXP (op0, 0)) == SUBREG)
11589 {
11590 unsigned HOST_WIDE_INT c1;
11591 tmode = GET_MODE (SUBREG_REG (XEXP (op0, 0)));
11592 /* Require an integral mode, to avoid creating something like
11593 (AND:SF ...). */
11594 if (SCALAR_INT_MODE_P (tmode)
11595 /* It is unsafe to commute the AND into the SUBREG if the
11596 SUBREG is paradoxical and WORD_REGISTER_OPERATIONS is
11597 not defined. As originally written the upper bits
11598 have a defined value due to the AND operation.
11599 However, if we commute the AND inside the SUBREG then
11600 they no longer have defined values and the meaning of
11601 the code has been changed. */
11602 && (0
11603 #ifdef WORD_REGISTER_OPERATIONS
11604 || (mode_width > GET_MODE_BITSIZE (tmode)
11605 && mode_width <= BITS_PER_WORD)
11606 #endif
11607 || (mode_width <= GET_MODE_BITSIZE (tmode)
11608 && subreg_lowpart_p (XEXP (op0, 0))))
11609 && CONST_INT_P (XEXP (op0, 1))
11610 && mode_width <= HOST_BITS_PER_WIDE_INT
11611 && GET_MODE_BITSIZE (tmode) <= HOST_BITS_PER_WIDE_INT
11612 && ((c1 = INTVAL (XEXP (op0, 1))) & ~mask) == 0
11613 && (c1 & ~GET_MODE_MASK (tmode)) == 0
11614 && c1 != mask
11615 && c1 != GET_MODE_MASK (tmode))
11616 {
11617 op0 = simplify_gen_binary (AND, tmode,
11618 SUBREG_REG (XEXP (op0, 0)),
11619 gen_int_mode (c1, tmode));
11620 op0 = gen_lowpart (mode, op0);
11621 continue;
11622 }
11623 }
11624
11625 /* Convert (ne (and (not X) 1) 0) to (eq (and X 1) 0). */
11626 if (const_op == 0 && equality_comparison_p
11627 && XEXP (op0, 1) == const1_rtx
11628 && GET_CODE (XEXP (op0, 0)) == NOT)
11629 {
11630 op0 = simplify_and_const_int (NULL_RTX, mode,
11631 XEXP (XEXP (op0, 0), 0), 1);
11632 code = (code == NE ? EQ : NE);
11633 continue;
11634 }
11635
11636 /* Convert (ne (and (lshiftrt (not X)) 1) 0) to
11637 (eq (and (lshiftrt X) 1) 0).
11638 Also handle the case where (not X) is expressed using xor. */
11639 if (const_op == 0 && equality_comparison_p
11640 && XEXP (op0, 1) == const1_rtx
11641 && GET_CODE (XEXP (op0, 0)) == LSHIFTRT)
11642 {
11643 rtx shift_op = XEXP (XEXP (op0, 0), 0);
11644 rtx shift_count = XEXP (XEXP (op0, 0), 1);
11645
11646 if (GET_CODE (shift_op) == NOT
11647 || (GET_CODE (shift_op) == XOR
11648 && CONST_INT_P (XEXP (shift_op, 1))
11649 && CONST_INT_P (shift_count)
11650 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
11651 && (UINTVAL (XEXP (shift_op, 1))
11652 == (unsigned HOST_WIDE_INT) 1
11653 << INTVAL (shift_count))))
11654 {
11655 op0
11656 = gen_rtx_LSHIFTRT (mode, XEXP (shift_op, 0), shift_count);
11657 op0 = simplify_and_const_int (NULL_RTX, mode, op0, 1);
11658 code = (code == NE ? EQ : NE);
11659 continue;
11660 }
11661 }
11662 break;
11663
11664 case ASHIFT:
11665 /* If we have (compare (ashift FOO N) (const_int C)) and
11666 the high order N bits of FOO (N+1 if an inequality comparison)
11667 are known to be zero, we can do this by comparing FOO with C
11668 shifted right N bits so long as the low-order N bits of C are
11669 zero. */
11670 if (CONST_INT_P (XEXP (op0, 1))
11671 && INTVAL (XEXP (op0, 1)) >= 0
11672 && ((INTVAL (XEXP (op0, 1)) + ! equality_comparison_p)
11673 < HOST_BITS_PER_WIDE_INT)
11674 && (((unsigned HOST_WIDE_INT) const_op
11675 & (((unsigned HOST_WIDE_INT) 1 << INTVAL (XEXP (op0, 1)))
11676 - 1)) == 0)
11677 && mode_width <= HOST_BITS_PER_WIDE_INT
11678 && (nonzero_bits (XEXP (op0, 0), mode)
11679 & ~(mask >> (INTVAL (XEXP (op0, 1))
11680 + ! equality_comparison_p))) == 0)
11681 {
11682 /* We must perform a logical shift, not an arithmetic one,
11683 as we want the top N bits of C to be zero. */
11684 unsigned HOST_WIDE_INT temp = const_op & GET_MODE_MASK (mode);
11685
11686 temp >>= INTVAL (XEXP (op0, 1));
11687 op1 = gen_int_mode (temp, mode);
11688 op0 = XEXP (op0, 0);
11689 continue;
11690 }
11691
11692 /* If we are doing a sign bit comparison, it means we are testing
11693 a particular bit. Convert it to the appropriate AND. */
11694 if (sign_bit_comparison_p && CONST_INT_P (XEXP (op0, 1))
11695 && mode_width <= HOST_BITS_PER_WIDE_INT)
11696 {
11697 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
11698 ((unsigned HOST_WIDE_INT) 1
11699 << (mode_width - 1
11700 - INTVAL (XEXP (op0, 1)))));
11701 code = (code == LT ? NE : EQ);
11702 continue;
11703 }
11704
11705 /* If this an equality comparison with zero and we are shifting
11706 the low bit to the sign bit, we can convert this to an AND of the
11707 low-order bit. */
11708 if (const_op == 0 && equality_comparison_p
11709 && CONST_INT_P (XEXP (op0, 1))
11710 && UINTVAL (XEXP (op0, 1)) == mode_width - 1)
11711 {
11712 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0), 1);
11713 continue;
11714 }
11715 break;
11716
11717 case ASHIFTRT:
11718 /* If this is an equality comparison with zero, we can do this
11719 as a logical shift, which might be much simpler. */
11720 if (equality_comparison_p && const_op == 0
11721 && CONST_INT_P (XEXP (op0, 1)))
11722 {
11723 op0 = simplify_shift_const (NULL_RTX, LSHIFTRT, mode,
11724 XEXP (op0, 0),
11725 INTVAL (XEXP (op0, 1)));
11726 continue;
11727 }
11728
11729 /* If OP0 is a sign extension and CODE is not an unsigned comparison,
11730 do the comparison in a narrower mode. */
11731 if (! unsigned_comparison_p
11732 && CONST_INT_P (XEXP (op0, 1))
11733 && GET_CODE (XEXP (op0, 0)) == ASHIFT
11734 && XEXP (op0, 1) == XEXP (XEXP (op0, 0), 1)
11735 && (tmode = mode_for_size (mode_width - INTVAL (XEXP (op0, 1)),
11736 MODE_INT, 1)) != BLKmode
11737 && (((unsigned HOST_WIDE_INT) const_op
11738 + (GET_MODE_MASK (tmode) >> 1) + 1)
11739 <= GET_MODE_MASK (tmode)))
11740 {
11741 op0 = gen_lowpart (tmode, XEXP (XEXP (op0, 0), 0));
11742 continue;
11743 }
11744
11745 /* Likewise if OP0 is a PLUS of a sign extension with a
11746 constant, which is usually represented with the PLUS
11747 between the shifts. */
11748 if (! unsigned_comparison_p
11749 && CONST_INT_P (XEXP (op0, 1))
11750 && GET_CODE (XEXP (op0, 0)) == PLUS
11751 && CONST_INT_P (XEXP (XEXP (op0, 0), 1))
11752 && GET_CODE (XEXP (XEXP (op0, 0), 0)) == ASHIFT
11753 && XEXP (op0, 1) == XEXP (XEXP (XEXP (op0, 0), 0), 1)
11754 && (tmode = mode_for_size (mode_width - INTVAL (XEXP (op0, 1)),
11755 MODE_INT, 1)) != BLKmode
11756 && (((unsigned HOST_WIDE_INT) const_op
11757 + (GET_MODE_MASK (tmode) >> 1) + 1)
11758 <= GET_MODE_MASK (tmode)))
11759 {
11760 rtx inner = XEXP (XEXP (XEXP (op0, 0), 0), 0);
11761 rtx add_const = XEXP (XEXP (op0, 0), 1);
11762 rtx new_const = simplify_gen_binary (ASHIFTRT, GET_MODE (op0),
11763 add_const, XEXP (op0, 1));
11764
11765 op0 = simplify_gen_binary (PLUS, tmode,
11766 gen_lowpart (tmode, inner),
11767 new_const);
11768 continue;
11769 }
11770
11771 /* ... fall through ... */
11772 case LSHIFTRT:
11773 /* If we have (compare (xshiftrt FOO N) (const_int C)) and
11774 the low order N bits of FOO are known to be zero, we can do this
11775 by comparing FOO with C shifted left N bits so long as no
11776 overflow occurs. Even if the low order N bits of FOO aren't known
11777 to be zero, if the comparison is >= or < we can use the same
11778 optimization and for > or <= by setting all the low
11779 order N bits in the comparison constant. */
11780 if (CONST_INT_P (XEXP (op0, 1))
11781 && INTVAL (XEXP (op0, 1)) > 0
11782 && INTVAL (XEXP (op0, 1)) < HOST_BITS_PER_WIDE_INT
11783 && mode_width <= HOST_BITS_PER_WIDE_INT
11784 && (((unsigned HOST_WIDE_INT) const_op
11785 + (GET_CODE (op0) != LSHIFTRT
11786 ? ((GET_MODE_MASK (mode) >> INTVAL (XEXP (op0, 1)) >> 1)
11787 + 1)
11788 : 0))
11789 <= GET_MODE_MASK (mode) >> INTVAL (XEXP (op0, 1))))
11790 {
11791 unsigned HOST_WIDE_INT low_bits
11792 = (nonzero_bits (XEXP (op0, 0), mode)
11793 & (((unsigned HOST_WIDE_INT) 1
11794 << INTVAL (XEXP (op0, 1))) - 1));
11795 if (low_bits == 0 || !equality_comparison_p)
11796 {
11797 /* If the shift was logical, then we must make the condition
11798 unsigned. */
11799 if (GET_CODE (op0) == LSHIFTRT)
11800 code = unsigned_condition (code);
11801
11802 const_op <<= INTVAL (XEXP (op0, 1));
11803 if (low_bits != 0
11804 && (code == GT || code == GTU
11805 || code == LE || code == LEU))
11806 const_op
11807 |= (((HOST_WIDE_INT) 1 << INTVAL (XEXP (op0, 1))) - 1);
11808 op1 = GEN_INT (const_op);
11809 op0 = XEXP (op0, 0);
11810 continue;
11811 }
11812 }
11813
11814 /* If we are using this shift to extract just the sign bit, we
11815 can replace this with an LT or GE comparison. */
11816 if (const_op == 0
11817 && (equality_comparison_p || sign_bit_comparison_p)
11818 && CONST_INT_P (XEXP (op0, 1))
11819 && UINTVAL (XEXP (op0, 1)) == mode_width - 1)
11820 {
11821 op0 = XEXP (op0, 0);
11822 code = (code == NE || code == GT ? LT : GE);
11823 continue;
11824 }
11825 break;
11826
11827 default:
11828 break;
11829 }
11830
11831 break;
11832 }
11833
11834 /* Now make any compound operations involved in this comparison. Then,
11835 check for an outmost SUBREG on OP0 that is not doing anything or is
11836 paradoxical. The latter transformation must only be performed when
11837 it is known that the "extra" bits will be the same in op0 and op1 or
11838 that they don't matter. There are three cases to consider:
11839
11840 1. SUBREG_REG (op0) is a register. In this case the bits are don't
11841 care bits and we can assume they have any convenient value. So
11842 making the transformation is safe.
11843
11844 2. SUBREG_REG (op0) is a memory and LOAD_EXTEND_OP is not defined.
11845 In this case the upper bits of op0 are undefined. We should not make
11846 the simplification in that case as we do not know the contents of
11847 those bits.
11848
11849 3. SUBREG_REG (op0) is a memory and LOAD_EXTEND_OP is defined and not
11850 UNKNOWN. In that case we know those bits are zeros or ones. We must
11851 also be sure that they are the same as the upper bits of op1.
11852
11853 We can never remove a SUBREG for a non-equality comparison because
11854 the sign bit is in a different place in the underlying object. */
11855
11856 op0 = make_compound_operation (op0, op1 == const0_rtx ? COMPARE : SET);
11857 op1 = make_compound_operation (op1, SET);
11858
11859 if (GET_CODE (op0) == SUBREG && subreg_lowpart_p (op0)
11860 && GET_MODE_CLASS (GET_MODE (op0)) == MODE_INT
11861 && GET_MODE_CLASS (GET_MODE (SUBREG_REG (op0))) == MODE_INT
11862 && (code == NE || code == EQ))
11863 {
11864 if (GET_MODE_SIZE (GET_MODE (op0))
11865 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (op0))))
11866 {
11867 /* For paradoxical subregs, allow case 1 as above. Case 3 isn't
11868 implemented. */
11869 if (REG_P (SUBREG_REG (op0)))
11870 {
11871 op0 = SUBREG_REG (op0);
11872 op1 = gen_lowpart (GET_MODE (op0), op1);
11873 }
11874 }
11875 else if ((GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (op0)))
11876 <= HOST_BITS_PER_WIDE_INT)
11877 && (nonzero_bits (SUBREG_REG (op0),
11878 GET_MODE (SUBREG_REG (op0)))
11879 & ~GET_MODE_MASK (GET_MODE (op0))) == 0)
11880 {
11881 tem = gen_lowpart (GET_MODE (SUBREG_REG (op0)), op1);
11882
11883 if ((nonzero_bits (tem, GET_MODE (SUBREG_REG (op0)))
11884 & ~GET_MODE_MASK (GET_MODE (op0))) == 0)
11885 op0 = SUBREG_REG (op0), op1 = tem;
11886 }
11887 }
11888
11889 /* We now do the opposite procedure: Some machines don't have compare
11890 insns in all modes. If OP0's mode is an integer mode smaller than a
11891 word and we can't do a compare in that mode, see if there is a larger
11892 mode for which we can do the compare. There are a number of cases in
11893 which we can use the wider mode. */
11894
11895 mode = GET_MODE (op0);
11896 if (mode != VOIDmode && GET_MODE_CLASS (mode) == MODE_INT
11897 && GET_MODE_SIZE (mode) < UNITS_PER_WORD
11898 && ! have_insn_for (COMPARE, mode))
11899 for (tmode = GET_MODE_WIDER_MODE (mode);
11900 (tmode != VOIDmode
11901 && GET_MODE_BITSIZE (tmode) <= HOST_BITS_PER_WIDE_INT);
11902 tmode = GET_MODE_WIDER_MODE (tmode))
11903 if (have_insn_for (COMPARE, tmode))
11904 {
11905 int zero_extended;
11906
11907 /* If this is a test for negative, we can make an explicit
11908 test of the sign bit. Test this first so we can use
11909 a paradoxical subreg to extend OP0. */
11910
11911 if (op1 == const0_rtx && (code == LT || code == GE)
11912 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
11913 {
11914 op0 = simplify_gen_binary (AND, tmode,
11915 gen_lowpart (tmode, op0),
11916 GEN_INT ((unsigned HOST_WIDE_INT) 1
11917 << (GET_MODE_BITSIZE (mode)
11918 - 1)));
11919 code = (code == LT) ? NE : EQ;
11920 break;
11921 }
11922
11923 /* If the only nonzero bits in OP0 and OP1 are those in the
11924 narrower mode and this is an equality or unsigned comparison,
11925 we can use the wider mode. Similarly for sign-extended
11926 values, in which case it is true for all comparisons. */
11927 zero_extended = ((code == EQ || code == NE
11928 || code == GEU || code == GTU
11929 || code == LEU || code == LTU)
11930 && (nonzero_bits (op0, tmode)
11931 & ~GET_MODE_MASK (mode)) == 0
11932 && ((CONST_INT_P (op1)
11933 || (nonzero_bits (op1, tmode)
11934 & ~GET_MODE_MASK (mode)) == 0)));
11935
11936 if (zero_extended
11937 || ((num_sign_bit_copies (op0, tmode)
11938 > (unsigned int) (GET_MODE_BITSIZE (tmode)
11939 - GET_MODE_BITSIZE (mode)))
11940 && (num_sign_bit_copies (op1, tmode)
11941 > (unsigned int) (GET_MODE_BITSIZE (tmode)
11942 - GET_MODE_BITSIZE (mode)))))
11943 {
11944 /* If OP0 is an AND and we don't have an AND in MODE either,
11945 make a new AND in the proper mode. */
11946 if (GET_CODE (op0) == AND
11947 && !have_insn_for (AND, mode))
11948 op0 = simplify_gen_binary (AND, tmode,
11949 gen_lowpart (tmode,
11950 XEXP (op0, 0)),
11951 gen_lowpart (tmode,
11952 XEXP (op0, 1)));
11953 else
11954 {
11955 if (zero_extended)
11956 {
11957 op0 = simplify_gen_unary (ZERO_EXTEND, tmode, op0, mode);
11958 op1 = simplify_gen_unary (ZERO_EXTEND, tmode, op1, mode);
11959 }
11960 else
11961 {
11962 op0 = simplify_gen_unary (SIGN_EXTEND, tmode, op0, mode);
11963 op1 = simplify_gen_unary (SIGN_EXTEND, tmode, op1, mode);
11964 }
11965 break;
11966 }
11967 }
11968 }
11969
11970 #ifdef CANONICALIZE_COMPARISON
11971 /* If this machine only supports a subset of valid comparisons, see if we
11972 can convert an unsupported one into a supported one. */
11973 CANONICALIZE_COMPARISON (code, op0, op1);
11974 #endif
11975
11976 *pop0 = op0;
11977 *pop1 = op1;
11978
11979 return code;
11980 }
11981 \f
11982 /* Utility function for record_value_for_reg. Count number of
11983 rtxs in X. */
11984 static int
11985 count_rtxs (rtx x)
11986 {
11987 enum rtx_code code = GET_CODE (x);
11988 const char *fmt;
11989 int i, j, ret = 1;
11990
11991 if (GET_RTX_CLASS (code) == '2'
11992 || GET_RTX_CLASS (code) == 'c')
11993 {
11994 rtx x0 = XEXP (x, 0);
11995 rtx x1 = XEXP (x, 1);
11996
11997 if (x0 == x1)
11998 return 1 + 2 * count_rtxs (x0);
11999
12000 if ((GET_RTX_CLASS (GET_CODE (x1)) == '2'
12001 || GET_RTX_CLASS (GET_CODE (x1)) == 'c')
12002 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
12003 return 2 + 2 * count_rtxs (x0)
12004 + count_rtxs (x == XEXP (x1, 0)
12005 ? XEXP (x1, 1) : XEXP (x1, 0));
12006
12007 if ((GET_RTX_CLASS (GET_CODE (x0)) == '2'
12008 || GET_RTX_CLASS (GET_CODE (x0)) == 'c')
12009 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
12010 return 2 + 2 * count_rtxs (x1)
12011 + count_rtxs (x == XEXP (x0, 0)
12012 ? XEXP (x0, 1) : XEXP (x0, 0));
12013 }
12014
12015 fmt = GET_RTX_FORMAT (code);
12016 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
12017 if (fmt[i] == 'e')
12018 ret += count_rtxs (XEXP (x, i));
12019 else if (fmt[i] == 'E')
12020 for (j = 0; j < XVECLEN (x, i); j++)
12021 ret += count_rtxs (XVECEXP (x, i, j));
12022
12023 return ret;
12024 }
12025 \f
12026 /* Utility function for following routine. Called when X is part of a value
12027 being stored into last_set_value. Sets last_set_table_tick
12028 for each register mentioned. Similar to mention_regs in cse.c */
12029
12030 static void
12031 update_table_tick (rtx x)
12032 {
12033 enum rtx_code code = GET_CODE (x);
12034 const char *fmt = GET_RTX_FORMAT (code);
12035 int i, j;
12036
12037 if (code == REG)
12038 {
12039 unsigned int regno = REGNO (x);
12040 unsigned int endregno = END_REGNO (x);
12041 unsigned int r;
12042
12043 for (r = regno; r < endregno; r++)
12044 {
12045 reg_stat_type *rsp = VEC_index (reg_stat_type, reg_stat, r);
12046 rsp->last_set_table_tick = label_tick;
12047 }
12048
12049 return;
12050 }
12051
12052 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
12053 if (fmt[i] == 'e')
12054 {
12055 /* Check for identical subexpressions. If x contains
12056 identical subexpression we only have to traverse one of
12057 them. */
12058 if (i == 0 && ARITHMETIC_P (x))
12059 {
12060 /* Note that at this point x1 has already been
12061 processed. */
12062 rtx x0 = XEXP (x, 0);
12063 rtx x1 = XEXP (x, 1);
12064
12065 /* If x0 and x1 are identical then there is no need to
12066 process x0. */
12067 if (x0 == x1)
12068 break;
12069
12070 /* If x0 is identical to a subexpression of x1 then while
12071 processing x1, x0 has already been processed. Thus we
12072 are done with x. */
12073 if (ARITHMETIC_P (x1)
12074 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
12075 break;
12076
12077 /* If x1 is identical to a subexpression of x0 then we
12078 still have to process the rest of x0. */
12079 if (ARITHMETIC_P (x0)
12080 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
12081 {
12082 update_table_tick (XEXP (x0, x1 == XEXP (x0, 0) ? 1 : 0));
12083 break;
12084 }
12085 }
12086
12087 update_table_tick (XEXP (x, i));
12088 }
12089 else if (fmt[i] == 'E')
12090 for (j = 0; j < XVECLEN (x, i); j++)
12091 update_table_tick (XVECEXP (x, i, j));
12092 }
12093
12094 /* Record that REG is set to VALUE in insn INSN. If VALUE is zero, we
12095 are saying that the register is clobbered and we no longer know its
12096 value. If INSN is zero, don't update reg_stat[].last_set; this is
12097 only permitted with VALUE also zero and is used to invalidate the
12098 register. */
12099
12100 static void
12101 record_value_for_reg (rtx reg, rtx insn, rtx value)
12102 {
12103 unsigned int regno = REGNO (reg);
12104 unsigned int endregno = END_REGNO (reg);
12105 unsigned int i;
12106 reg_stat_type *rsp;
12107
12108 /* If VALUE contains REG and we have a previous value for REG, substitute
12109 the previous value. */
12110 if (value && insn && reg_overlap_mentioned_p (reg, value))
12111 {
12112 rtx tem;
12113
12114 /* Set things up so get_last_value is allowed to see anything set up to
12115 our insn. */
12116 subst_low_luid = DF_INSN_LUID (insn);
12117 tem = get_last_value (reg);
12118
12119 /* If TEM is simply a binary operation with two CLOBBERs as operands,
12120 it isn't going to be useful and will take a lot of time to process,
12121 so just use the CLOBBER. */
12122
12123 if (tem)
12124 {
12125 if (ARITHMETIC_P (tem)
12126 && GET_CODE (XEXP (tem, 0)) == CLOBBER
12127 && GET_CODE (XEXP (tem, 1)) == CLOBBER)
12128 tem = XEXP (tem, 0);
12129 else if (count_occurrences (value, reg, 1) >= 2)
12130 {
12131 /* If there are two or more occurrences of REG in VALUE,
12132 prevent the value from growing too much. */
12133 if (count_rtxs (tem) > MAX_LAST_VALUE_RTL)
12134 tem = gen_rtx_CLOBBER (GET_MODE (tem), const0_rtx);
12135 }
12136
12137 value = replace_rtx (copy_rtx (value), reg, tem);
12138 }
12139 }
12140
12141 /* For each register modified, show we don't know its value, that
12142 we don't know about its bitwise content, that its value has been
12143 updated, and that we don't know the location of the death of the
12144 register. */
12145 for (i = regno; i < endregno; i++)
12146 {
12147 rsp = VEC_index (reg_stat_type, reg_stat, i);
12148
12149 if (insn)
12150 rsp->last_set = insn;
12151
12152 rsp->last_set_value = 0;
12153 rsp->last_set_mode = VOIDmode;
12154 rsp->last_set_nonzero_bits = 0;
12155 rsp->last_set_sign_bit_copies = 0;
12156 rsp->last_death = 0;
12157 rsp->truncated_to_mode = VOIDmode;
12158 }
12159
12160 /* Mark registers that are being referenced in this value. */
12161 if (value)
12162 update_table_tick (value);
12163
12164 /* Now update the status of each register being set.
12165 If someone is using this register in this block, set this register
12166 to invalid since we will get confused between the two lives in this
12167 basic block. This makes using this register always invalid. In cse, we
12168 scan the table to invalidate all entries using this register, but this
12169 is too much work for us. */
12170
12171 for (i = regno; i < endregno; i++)
12172 {
12173 rsp = VEC_index (reg_stat_type, reg_stat, i);
12174 rsp->last_set_label = label_tick;
12175 if (!insn
12176 || (value && rsp->last_set_table_tick >= label_tick_ebb_start))
12177 rsp->last_set_invalid = 1;
12178 else
12179 rsp->last_set_invalid = 0;
12180 }
12181
12182 /* The value being assigned might refer to X (like in "x++;"). In that
12183 case, we must replace it with (clobber (const_int 0)) to prevent
12184 infinite loops. */
12185 rsp = VEC_index (reg_stat_type, reg_stat, regno);
12186 if (value && !get_last_value_validate (&value, insn, label_tick, 0))
12187 {
12188 value = copy_rtx (value);
12189 if (!get_last_value_validate (&value, insn, label_tick, 1))
12190 value = 0;
12191 }
12192
12193 /* For the main register being modified, update the value, the mode, the
12194 nonzero bits, and the number of sign bit copies. */
12195
12196 rsp->last_set_value = value;
12197
12198 if (value)
12199 {
12200 enum machine_mode mode = GET_MODE (reg);
12201 subst_low_luid = DF_INSN_LUID (insn);
12202 rsp->last_set_mode = mode;
12203 if (GET_MODE_CLASS (mode) == MODE_INT
12204 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
12205 mode = nonzero_bits_mode;
12206 rsp->last_set_nonzero_bits = nonzero_bits (value, mode);
12207 rsp->last_set_sign_bit_copies
12208 = num_sign_bit_copies (value, GET_MODE (reg));
12209 }
12210 }
12211
12212 /* Called via note_stores from record_dead_and_set_regs to handle one
12213 SET or CLOBBER in an insn. DATA is the instruction in which the
12214 set is occurring. */
12215
12216 static void
12217 record_dead_and_set_regs_1 (rtx dest, const_rtx setter, void *data)
12218 {
12219 rtx record_dead_insn = (rtx) data;
12220
12221 if (GET_CODE (dest) == SUBREG)
12222 dest = SUBREG_REG (dest);
12223
12224 if (!record_dead_insn)
12225 {
12226 if (REG_P (dest))
12227 record_value_for_reg (dest, NULL_RTX, NULL_RTX);
12228 return;
12229 }
12230
12231 if (REG_P (dest))
12232 {
12233 /* If we are setting the whole register, we know its value. Otherwise
12234 show that we don't know the value. We can handle SUBREG in
12235 some cases. */
12236 if (GET_CODE (setter) == SET && dest == SET_DEST (setter))
12237 record_value_for_reg (dest, record_dead_insn, SET_SRC (setter));
12238 else if (GET_CODE (setter) == SET
12239 && GET_CODE (SET_DEST (setter)) == SUBREG
12240 && SUBREG_REG (SET_DEST (setter)) == dest
12241 && GET_MODE_BITSIZE (GET_MODE (dest)) <= BITS_PER_WORD
12242 && subreg_lowpart_p (SET_DEST (setter)))
12243 record_value_for_reg (dest, record_dead_insn,
12244 gen_lowpart (GET_MODE (dest),
12245 SET_SRC (setter)));
12246 else
12247 record_value_for_reg (dest, record_dead_insn, NULL_RTX);
12248 }
12249 else if (MEM_P (dest)
12250 /* Ignore pushes, they clobber nothing. */
12251 && ! push_operand (dest, GET_MODE (dest)))
12252 mem_last_set = DF_INSN_LUID (record_dead_insn);
12253 }
12254
12255 /* Update the records of when each REG was most recently set or killed
12256 for the things done by INSN. This is the last thing done in processing
12257 INSN in the combiner loop.
12258
12259 We update reg_stat[], in particular fields last_set, last_set_value,
12260 last_set_mode, last_set_nonzero_bits, last_set_sign_bit_copies,
12261 last_death, and also the similar information mem_last_set (which insn
12262 most recently modified memory) and last_call_luid (which insn was the
12263 most recent subroutine call). */
12264
12265 static void
12266 record_dead_and_set_regs (rtx insn)
12267 {
12268 rtx link;
12269 unsigned int i;
12270
12271 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
12272 {
12273 if (REG_NOTE_KIND (link) == REG_DEAD
12274 && REG_P (XEXP (link, 0)))
12275 {
12276 unsigned int regno = REGNO (XEXP (link, 0));
12277 unsigned int endregno = END_REGNO (XEXP (link, 0));
12278
12279 for (i = regno; i < endregno; i++)
12280 {
12281 reg_stat_type *rsp;
12282
12283 rsp = VEC_index (reg_stat_type, reg_stat, i);
12284 rsp->last_death = insn;
12285 }
12286 }
12287 else if (REG_NOTE_KIND (link) == REG_INC)
12288 record_value_for_reg (XEXP (link, 0), insn, NULL_RTX);
12289 }
12290
12291 if (CALL_P (insn))
12292 {
12293 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
12294 if (TEST_HARD_REG_BIT (regs_invalidated_by_call, i))
12295 {
12296 reg_stat_type *rsp;
12297
12298 rsp = VEC_index (reg_stat_type, reg_stat, i);
12299 rsp->last_set_invalid = 1;
12300 rsp->last_set = insn;
12301 rsp->last_set_value = 0;
12302 rsp->last_set_mode = VOIDmode;
12303 rsp->last_set_nonzero_bits = 0;
12304 rsp->last_set_sign_bit_copies = 0;
12305 rsp->last_death = 0;
12306 rsp->truncated_to_mode = VOIDmode;
12307 }
12308
12309 last_call_luid = mem_last_set = DF_INSN_LUID (insn);
12310
12311 /* We can't combine into a call pattern. Remember, though, that
12312 the return value register is set at this LUID. We could
12313 still replace a register with the return value from the
12314 wrong subroutine call! */
12315 note_stores (PATTERN (insn), record_dead_and_set_regs_1, NULL_RTX);
12316 }
12317 else
12318 note_stores (PATTERN (insn), record_dead_and_set_regs_1, insn);
12319 }
12320
12321 /* If a SUBREG has the promoted bit set, it is in fact a property of the
12322 register present in the SUBREG, so for each such SUBREG go back and
12323 adjust nonzero and sign bit information of the registers that are
12324 known to have some zero/sign bits set.
12325
12326 This is needed because when combine blows the SUBREGs away, the
12327 information on zero/sign bits is lost and further combines can be
12328 missed because of that. */
12329
12330 static void
12331 record_promoted_value (rtx insn, rtx subreg)
12332 {
12333 rtx links, set;
12334 unsigned int regno = REGNO (SUBREG_REG (subreg));
12335 enum machine_mode mode = GET_MODE (subreg);
12336
12337 if (GET_MODE_BITSIZE (mode) > HOST_BITS_PER_WIDE_INT)
12338 return;
12339
12340 for (links = LOG_LINKS (insn); links;)
12341 {
12342 reg_stat_type *rsp;
12343
12344 insn = XEXP (links, 0);
12345 set = single_set (insn);
12346
12347 if (! set || !REG_P (SET_DEST (set))
12348 || REGNO (SET_DEST (set)) != regno
12349 || GET_MODE (SET_DEST (set)) != GET_MODE (SUBREG_REG (subreg)))
12350 {
12351 links = XEXP (links, 1);
12352 continue;
12353 }
12354
12355 rsp = VEC_index (reg_stat_type, reg_stat, regno);
12356 if (rsp->last_set == insn)
12357 {
12358 if (SUBREG_PROMOTED_UNSIGNED_P (subreg) > 0)
12359 rsp->last_set_nonzero_bits &= GET_MODE_MASK (mode);
12360 }
12361
12362 if (REG_P (SET_SRC (set)))
12363 {
12364 regno = REGNO (SET_SRC (set));
12365 links = LOG_LINKS (insn);
12366 }
12367 else
12368 break;
12369 }
12370 }
12371
12372 /* Check if X, a register, is known to contain a value already
12373 truncated to MODE. In this case we can use a subreg to refer to
12374 the truncated value even though in the generic case we would need
12375 an explicit truncation. */
12376
12377 static bool
12378 reg_truncated_to_mode (enum machine_mode mode, const_rtx x)
12379 {
12380 reg_stat_type *rsp = VEC_index (reg_stat_type, reg_stat, REGNO (x));
12381 enum machine_mode truncated = rsp->truncated_to_mode;
12382
12383 if (truncated == 0
12384 || rsp->truncation_label < label_tick_ebb_start)
12385 return false;
12386 if (GET_MODE_SIZE (truncated) <= GET_MODE_SIZE (mode))
12387 return true;
12388 if (TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (mode),
12389 GET_MODE_BITSIZE (truncated)))
12390 return true;
12391 return false;
12392 }
12393
12394 /* Callback for for_each_rtx. If *P is a hard reg or a subreg record the mode
12395 that the register is accessed in. For non-TRULY_NOOP_TRUNCATION targets we
12396 might be able to turn a truncate into a subreg using this information.
12397 Return -1 if traversing *P is complete or 0 otherwise. */
12398
12399 static int
12400 record_truncated_value (rtx *p, void *data ATTRIBUTE_UNUSED)
12401 {
12402 rtx x = *p;
12403 enum machine_mode truncated_mode;
12404 reg_stat_type *rsp;
12405
12406 if (GET_CODE (x) == SUBREG && REG_P (SUBREG_REG (x)))
12407 {
12408 enum machine_mode original_mode = GET_MODE (SUBREG_REG (x));
12409 truncated_mode = GET_MODE (x);
12410
12411 if (GET_MODE_SIZE (original_mode) <= GET_MODE_SIZE (truncated_mode))
12412 return -1;
12413
12414 if (TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (truncated_mode),
12415 GET_MODE_BITSIZE (original_mode)))
12416 return -1;
12417
12418 x = SUBREG_REG (x);
12419 }
12420 /* ??? For hard-regs we now record everything. We might be able to
12421 optimize this using last_set_mode. */
12422 else if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
12423 truncated_mode = GET_MODE (x);
12424 else
12425 return 0;
12426
12427 rsp = VEC_index (reg_stat_type, reg_stat, REGNO (x));
12428 if (rsp->truncated_to_mode == 0
12429 || rsp->truncation_label < label_tick_ebb_start
12430 || (GET_MODE_SIZE (truncated_mode)
12431 < GET_MODE_SIZE (rsp->truncated_to_mode)))
12432 {
12433 rsp->truncated_to_mode = truncated_mode;
12434 rsp->truncation_label = label_tick;
12435 }
12436
12437 return -1;
12438 }
12439
12440 /* Callback for note_uses. Find hardregs and subregs of pseudos and
12441 the modes they are used in. This can help truning TRUNCATEs into
12442 SUBREGs. */
12443
12444 static void
12445 record_truncated_values (rtx *x, void *data ATTRIBUTE_UNUSED)
12446 {
12447 for_each_rtx (x, record_truncated_value, NULL);
12448 }
12449
12450 /* Scan X for promoted SUBREGs. For each one found,
12451 note what it implies to the registers used in it. */
12452
12453 static void
12454 check_promoted_subreg (rtx insn, rtx x)
12455 {
12456 if (GET_CODE (x) == SUBREG
12457 && SUBREG_PROMOTED_VAR_P (x)
12458 && REG_P (SUBREG_REG (x)))
12459 record_promoted_value (insn, x);
12460 else
12461 {
12462 const char *format = GET_RTX_FORMAT (GET_CODE (x));
12463 int i, j;
12464
12465 for (i = 0; i < GET_RTX_LENGTH (GET_CODE (x)); i++)
12466 switch (format[i])
12467 {
12468 case 'e':
12469 check_promoted_subreg (insn, XEXP (x, i));
12470 break;
12471 case 'V':
12472 case 'E':
12473 if (XVEC (x, i) != 0)
12474 for (j = 0; j < XVECLEN (x, i); j++)
12475 check_promoted_subreg (insn, XVECEXP (x, i, j));
12476 break;
12477 }
12478 }
12479 }
12480 \f
12481 /* Verify that all the registers and memory references mentioned in *LOC are
12482 still valid. *LOC was part of a value set in INSN when label_tick was
12483 equal to TICK. Return 0 if some are not. If REPLACE is nonzero, replace
12484 the invalid references with (clobber (const_int 0)) and return 1. This
12485 replacement is useful because we often can get useful information about
12486 the form of a value (e.g., if it was produced by a shift that always
12487 produces -1 or 0) even though we don't know exactly what registers it
12488 was produced from. */
12489
12490 static int
12491 get_last_value_validate (rtx *loc, rtx insn, int tick, int replace)
12492 {
12493 rtx x = *loc;
12494 const char *fmt = GET_RTX_FORMAT (GET_CODE (x));
12495 int len = GET_RTX_LENGTH (GET_CODE (x));
12496 int i, j;
12497
12498 if (REG_P (x))
12499 {
12500 unsigned int regno = REGNO (x);
12501 unsigned int endregno = END_REGNO (x);
12502 unsigned int j;
12503
12504 for (j = regno; j < endregno; j++)
12505 {
12506 reg_stat_type *rsp = VEC_index (reg_stat_type, reg_stat, j);
12507 if (rsp->last_set_invalid
12508 /* If this is a pseudo-register that was only set once and not
12509 live at the beginning of the function, it is always valid. */
12510 || (! (regno >= FIRST_PSEUDO_REGISTER
12511 && REG_N_SETS (regno) == 1
12512 && (!REGNO_REG_SET_P
12513 (DF_LR_IN (ENTRY_BLOCK_PTR->next_bb), regno)))
12514 && rsp->last_set_label > tick))
12515 {
12516 if (replace)
12517 *loc = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
12518 return replace;
12519 }
12520 }
12521
12522 return 1;
12523 }
12524 /* If this is a memory reference, make sure that there were no stores after
12525 it that might have clobbered the value. We don't have alias info, so we
12526 assume any store invalidates it. Moreover, we only have local UIDs, so
12527 we also assume that there were stores in the intervening basic blocks. */
12528 else if (MEM_P (x) && !MEM_READONLY_P (x)
12529 && (tick != label_tick || DF_INSN_LUID (insn) <= mem_last_set))
12530 {
12531 if (replace)
12532 *loc = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
12533 return replace;
12534 }
12535
12536 for (i = 0; i < len; i++)
12537 {
12538 if (fmt[i] == 'e')
12539 {
12540 /* Check for identical subexpressions. If x contains
12541 identical subexpression we only have to traverse one of
12542 them. */
12543 if (i == 1 && ARITHMETIC_P (x))
12544 {
12545 /* Note that at this point x0 has already been checked
12546 and found valid. */
12547 rtx x0 = XEXP (x, 0);
12548 rtx x1 = XEXP (x, 1);
12549
12550 /* If x0 and x1 are identical then x is also valid. */
12551 if (x0 == x1)
12552 return 1;
12553
12554 /* If x1 is identical to a subexpression of x0 then
12555 while checking x0, x1 has already been checked. Thus
12556 it is valid and so as x. */
12557 if (ARITHMETIC_P (x0)
12558 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
12559 return 1;
12560
12561 /* If x0 is identical to a subexpression of x1 then x is
12562 valid iff the rest of x1 is valid. */
12563 if (ARITHMETIC_P (x1)
12564 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
12565 return
12566 get_last_value_validate (&XEXP (x1,
12567 x0 == XEXP (x1, 0) ? 1 : 0),
12568 insn, tick, replace);
12569 }
12570
12571 if (get_last_value_validate (&XEXP (x, i), insn, tick,
12572 replace) == 0)
12573 return 0;
12574 }
12575 else if (fmt[i] == 'E')
12576 for (j = 0; j < XVECLEN (x, i); j++)
12577 if (get_last_value_validate (&XVECEXP (x, i, j),
12578 insn, tick, replace) == 0)
12579 return 0;
12580 }
12581
12582 /* If we haven't found a reason for it to be invalid, it is valid. */
12583 return 1;
12584 }
12585
12586 /* Get the last value assigned to X, if known. Some registers
12587 in the value may be replaced with (clobber (const_int 0)) if their value
12588 is known longer known reliably. */
12589
12590 static rtx
12591 get_last_value (const_rtx x)
12592 {
12593 unsigned int regno;
12594 rtx value;
12595 reg_stat_type *rsp;
12596
12597 /* If this is a non-paradoxical SUBREG, get the value of its operand and
12598 then convert it to the desired mode. If this is a paradoxical SUBREG,
12599 we cannot predict what values the "extra" bits might have. */
12600 if (GET_CODE (x) == SUBREG
12601 && subreg_lowpart_p (x)
12602 && (GET_MODE_SIZE (GET_MODE (x))
12603 <= GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
12604 && (value = get_last_value (SUBREG_REG (x))) != 0)
12605 return gen_lowpart (GET_MODE (x), value);
12606
12607 if (!REG_P (x))
12608 return 0;
12609
12610 regno = REGNO (x);
12611 rsp = VEC_index (reg_stat_type, reg_stat, regno);
12612 value = rsp->last_set_value;
12613
12614 /* If we don't have a value, or if it isn't for this basic block and
12615 it's either a hard register, set more than once, or it's a live
12616 at the beginning of the function, return 0.
12617
12618 Because if it's not live at the beginning of the function then the reg
12619 is always set before being used (is never used without being set).
12620 And, if it's set only once, and it's always set before use, then all
12621 uses must have the same last value, even if it's not from this basic
12622 block. */
12623
12624 if (value == 0
12625 || (rsp->last_set_label < label_tick_ebb_start
12626 && (regno < FIRST_PSEUDO_REGISTER
12627 || REG_N_SETS (regno) != 1
12628 || REGNO_REG_SET_P
12629 (DF_LR_IN (ENTRY_BLOCK_PTR->next_bb), regno))))
12630 return 0;
12631
12632 /* If the value was set in a later insn than the ones we are processing,
12633 we can't use it even if the register was only set once. */
12634 if (rsp->last_set_label == label_tick
12635 && DF_INSN_LUID (rsp->last_set) >= subst_low_luid)
12636 return 0;
12637
12638 /* If the value has all its registers valid, return it. */
12639 if (get_last_value_validate (&value, rsp->last_set, rsp->last_set_label, 0))
12640 return value;
12641
12642 /* Otherwise, make a copy and replace any invalid register with
12643 (clobber (const_int 0)). If that fails for some reason, return 0. */
12644
12645 value = copy_rtx (value);
12646 if (get_last_value_validate (&value, rsp->last_set, rsp->last_set_label, 1))
12647 return value;
12648
12649 return 0;
12650 }
12651 \f
12652 /* Return nonzero if expression X refers to a REG or to memory
12653 that is set in an instruction more recent than FROM_LUID. */
12654
12655 static int
12656 use_crosses_set_p (const_rtx x, int from_luid)
12657 {
12658 const char *fmt;
12659 int i;
12660 enum rtx_code code = GET_CODE (x);
12661
12662 if (code == REG)
12663 {
12664 unsigned int regno = REGNO (x);
12665 unsigned endreg = END_REGNO (x);
12666
12667 #ifdef PUSH_ROUNDING
12668 /* Don't allow uses of the stack pointer to be moved,
12669 because we don't know whether the move crosses a push insn. */
12670 if (regno == STACK_POINTER_REGNUM && PUSH_ARGS)
12671 return 1;
12672 #endif
12673 for (; regno < endreg; regno++)
12674 {
12675 reg_stat_type *rsp = VEC_index (reg_stat_type, reg_stat, regno);
12676 if (rsp->last_set
12677 && rsp->last_set_label == label_tick
12678 && DF_INSN_LUID (rsp->last_set) > from_luid)
12679 return 1;
12680 }
12681 return 0;
12682 }
12683
12684 if (code == MEM && mem_last_set > from_luid)
12685 return 1;
12686
12687 fmt = GET_RTX_FORMAT (code);
12688
12689 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
12690 {
12691 if (fmt[i] == 'E')
12692 {
12693 int j;
12694 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
12695 if (use_crosses_set_p (XVECEXP (x, i, j), from_luid))
12696 return 1;
12697 }
12698 else if (fmt[i] == 'e'
12699 && use_crosses_set_p (XEXP (x, i), from_luid))
12700 return 1;
12701 }
12702 return 0;
12703 }
12704 \f
12705 /* Define three variables used for communication between the following
12706 routines. */
12707
12708 static unsigned int reg_dead_regno, reg_dead_endregno;
12709 static int reg_dead_flag;
12710
12711 /* Function called via note_stores from reg_dead_at_p.
12712
12713 If DEST is within [reg_dead_regno, reg_dead_endregno), set
12714 reg_dead_flag to 1 if X is a CLOBBER and to -1 it is a SET. */
12715
12716 static void
12717 reg_dead_at_p_1 (rtx dest, const_rtx x, void *data ATTRIBUTE_UNUSED)
12718 {
12719 unsigned int regno, endregno;
12720
12721 if (!REG_P (dest))
12722 return;
12723
12724 regno = REGNO (dest);
12725 endregno = END_REGNO (dest);
12726 if (reg_dead_endregno > regno && reg_dead_regno < endregno)
12727 reg_dead_flag = (GET_CODE (x) == CLOBBER) ? 1 : -1;
12728 }
12729
12730 /* Return nonzero if REG is known to be dead at INSN.
12731
12732 We scan backwards from INSN. If we hit a REG_DEAD note or a CLOBBER
12733 referencing REG, it is dead. If we hit a SET referencing REG, it is
12734 live. Otherwise, see if it is live or dead at the start of the basic
12735 block we are in. Hard regs marked as being live in NEWPAT_USED_REGS
12736 must be assumed to be always live. */
12737
12738 static int
12739 reg_dead_at_p (rtx reg, rtx insn)
12740 {
12741 basic_block block;
12742 unsigned int i;
12743
12744 /* Set variables for reg_dead_at_p_1. */
12745 reg_dead_regno = REGNO (reg);
12746 reg_dead_endregno = END_REGNO (reg);
12747
12748 reg_dead_flag = 0;
12749
12750 /* Check that reg isn't mentioned in NEWPAT_USED_REGS. For fixed registers
12751 we allow the machine description to decide whether use-and-clobber
12752 patterns are OK. */
12753 if (reg_dead_regno < FIRST_PSEUDO_REGISTER)
12754 {
12755 for (i = reg_dead_regno; i < reg_dead_endregno; i++)
12756 if (!fixed_regs[i] && TEST_HARD_REG_BIT (newpat_used_regs, i))
12757 return 0;
12758 }
12759
12760 /* Scan backwards until we find a REG_DEAD note, SET, CLOBBER, or
12761 beginning of basic block. */
12762 block = BLOCK_FOR_INSN (insn);
12763 for (;;)
12764 {
12765 if (INSN_P (insn))
12766 {
12767 note_stores (PATTERN (insn), reg_dead_at_p_1, NULL);
12768 if (reg_dead_flag)
12769 return reg_dead_flag == 1 ? 1 : 0;
12770
12771 if (find_regno_note (insn, REG_DEAD, reg_dead_regno))
12772 return 1;
12773 }
12774
12775 if (insn == BB_HEAD (block))
12776 break;
12777
12778 insn = PREV_INSN (insn);
12779 }
12780
12781 /* Look at live-in sets for the basic block that we were in. */
12782 for (i = reg_dead_regno; i < reg_dead_endregno; i++)
12783 if (REGNO_REG_SET_P (df_get_live_in (block), i))
12784 return 0;
12785
12786 return 1;
12787 }
12788 \f
12789 /* Note hard registers in X that are used. */
12790
12791 static void
12792 mark_used_regs_combine (rtx x)
12793 {
12794 RTX_CODE code = GET_CODE (x);
12795 unsigned int regno;
12796 int i;
12797
12798 switch (code)
12799 {
12800 case LABEL_REF:
12801 case SYMBOL_REF:
12802 case CONST_INT:
12803 case CONST:
12804 case CONST_DOUBLE:
12805 case CONST_VECTOR:
12806 case PC:
12807 case ADDR_VEC:
12808 case ADDR_DIFF_VEC:
12809 case ASM_INPUT:
12810 #ifdef HAVE_cc0
12811 /* CC0 must die in the insn after it is set, so we don't need to take
12812 special note of it here. */
12813 case CC0:
12814 #endif
12815 return;
12816
12817 case CLOBBER:
12818 /* If we are clobbering a MEM, mark any hard registers inside the
12819 address as used. */
12820 if (MEM_P (XEXP (x, 0)))
12821 mark_used_regs_combine (XEXP (XEXP (x, 0), 0));
12822 return;
12823
12824 case REG:
12825 regno = REGNO (x);
12826 /* A hard reg in a wide mode may really be multiple registers.
12827 If so, mark all of them just like the first. */
12828 if (regno < FIRST_PSEUDO_REGISTER)
12829 {
12830 /* None of this applies to the stack, frame or arg pointers. */
12831 if (regno == STACK_POINTER_REGNUM
12832 #if !HARD_FRAME_POINTER_IS_FRAME_POINTER
12833 || regno == HARD_FRAME_POINTER_REGNUM
12834 #endif
12835 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
12836 || (regno == ARG_POINTER_REGNUM && fixed_regs[regno])
12837 #endif
12838 || regno == FRAME_POINTER_REGNUM)
12839 return;
12840
12841 add_to_hard_reg_set (&newpat_used_regs, GET_MODE (x), regno);
12842 }
12843 return;
12844
12845 case SET:
12846 {
12847 /* If setting a MEM, or a SUBREG of a MEM, then note any hard regs in
12848 the address. */
12849 rtx testreg = SET_DEST (x);
12850
12851 while (GET_CODE (testreg) == SUBREG
12852 || GET_CODE (testreg) == ZERO_EXTRACT
12853 || GET_CODE (testreg) == STRICT_LOW_PART)
12854 testreg = XEXP (testreg, 0);
12855
12856 if (MEM_P (testreg))
12857 mark_used_regs_combine (XEXP (testreg, 0));
12858
12859 mark_used_regs_combine (SET_SRC (x));
12860 }
12861 return;
12862
12863 default:
12864 break;
12865 }
12866
12867 /* Recursively scan the operands of this expression. */
12868
12869 {
12870 const char *fmt = GET_RTX_FORMAT (code);
12871
12872 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
12873 {
12874 if (fmt[i] == 'e')
12875 mark_used_regs_combine (XEXP (x, i));
12876 else if (fmt[i] == 'E')
12877 {
12878 int j;
12879
12880 for (j = 0; j < XVECLEN (x, i); j++)
12881 mark_used_regs_combine (XVECEXP (x, i, j));
12882 }
12883 }
12884 }
12885 }
12886 \f
12887 /* Remove register number REGNO from the dead registers list of INSN.
12888
12889 Return the note used to record the death, if there was one. */
12890
12891 rtx
12892 remove_death (unsigned int regno, rtx insn)
12893 {
12894 rtx note = find_regno_note (insn, REG_DEAD, regno);
12895
12896 if (note)
12897 remove_note (insn, note);
12898
12899 return note;
12900 }
12901
12902 /* For each register (hardware or pseudo) used within expression X, if its
12903 death is in an instruction with luid between FROM_LUID (inclusive) and
12904 TO_INSN (exclusive), put a REG_DEAD note for that register in the
12905 list headed by PNOTES.
12906
12907 That said, don't move registers killed by maybe_kill_insn.
12908
12909 This is done when X is being merged by combination into TO_INSN. These
12910 notes will then be distributed as needed. */
12911
12912 static void
12913 move_deaths (rtx x, rtx maybe_kill_insn, int from_luid, rtx to_insn,
12914 rtx *pnotes)
12915 {
12916 const char *fmt;
12917 int len, i;
12918 enum rtx_code code = GET_CODE (x);
12919
12920 if (code == REG)
12921 {
12922 unsigned int regno = REGNO (x);
12923 rtx where_dead = VEC_index (reg_stat_type, reg_stat, regno)->last_death;
12924
12925 /* Don't move the register if it gets killed in between from and to. */
12926 if (maybe_kill_insn && reg_set_p (x, maybe_kill_insn)
12927 && ! reg_referenced_p (x, maybe_kill_insn))
12928 return;
12929
12930 if (where_dead
12931 && BLOCK_FOR_INSN (where_dead) == BLOCK_FOR_INSN (to_insn)
12932 && DF_INSN_LUID (where_dead) >= from_luid
12933 && DF_INSN_LUID (where_dead) < DF_INSN_LUID (to_insn))
12934 {
12935 rtx note = remove_death (regno, where_dead);
12936
12937 /* It is possible for the call above to return 0. This can occur
12938 when last_death points to I2 or I1 that we combined with.
12939 In that case make a new note.
12940
12941 We must also check for the case where X is a hard register
12942 and NOTE is a death note for a range of hard registers
12943 including X. In that case, we must put REG_DEAD notes for
12944 the remaining registers in place of NOTE. */
12945
12946 if (note != 0 && regno < FIRST_PSEUDO_REGISTER
12947 && (GET_MODE_SIZE (GET_MODE (XEXP (note, 0)))
12948 > GET_MODE_SIZE (GET_MODE (x))))
12949 {
12950 unsigned int deadregno = REGNO (XEXP (note, 0));
12951 unsigned int deadend = END_HARD_REGNO (XEXP (note, 0));
12952 unsigned int ourend = END_HARD_REGNO (x);
12953 unsigned int i;
12954
12955 for (i = deadregno; i < deadend; i++)
12956 if (i < regno || i >= ourend)
12957 add_reg_note (where_dead, REG_DEAD, regno_reg_rtx[i]);
12958 }
12959
12960 /* If we didn't find any note, or if we found a REG_DEAD note that
12961 covers only part of the given reg, and we have a multi-reg hard
12962 register, then to be safe we must check for REG_DEAD notes
12963 for each register other than the first. They could have
12964 their own REG_DEAD notes lying around. */
12965 else if ((note == 0
12966 || (note != 0
12967 && (GET_MODE_SIZE (GET_MODE (XEXP (note, 0)))
12968 < GET_MODE_SIZE (GET_MODE (x)))))
12969 && regno < FIRST_PSEUDO_REGISTER
12970 && hard_regno_nregs[regno][GET_MODE (x)] > 1)
12971 {
12972 unsigned int ourend = END_HARD_REGNO (x);
12973 unsigned int i, offset;
12974 rtx oldnotes = 0;
12975
12976 if (note)
12977 offset = hard_regno_nregs[regno][GET_MODE (XEXP (note, 0))];
12978 else
12979 offset = 1;
12980
12981 for (i = regno + offset; i < ourend; i++)
12982 move_deaths (regno_reg_rtx[i],
12983 maybe_kill_insn, from_luid, to_insn, &oldnotes);
12984 }
12985
12986 if (note != 0 && GET_MODE (XEXP (note, 0)) == GET_MODE (x))
12987 {
12988 XEXP (note, 1) = *pnotes;
12989 *pnotes = note;
12990 }
12991 else
12992 *pnotes = alloc_reg_note (REG_DEAD, x, *pnotes);
12993 }
12994
12995 return;
12996 }
12997
12998 else if (GET_CODE (x) == SET)
12999 {
13000 rtx dest = SET_DEST (x);
13001
13002 move_deaths (SET_SRC (x), maybe_kill_insn, from_luid, to_insn, pnotes);
13003
13004 /* In the case of a ZERO_EXTRACT, a STRICT_LOW_PART, or a SUBREG
13005 that accesses one word of a multi-word item, some
13006 piece of everything register in the expression is used by
13007 this insn, so remove any old death. */
13008 /* ??? So why do we test for equality of the sizes? */
13009
13010 if (GET_CODE (dest) == ZERO_EXTRACT
13011 || GET_CODE (dest) == STRICT_LOW_PART
13012 || (GET_CODE (dest) == SUBREG
13013 && (((GET_MODE_SIZE (GET_MODE (dest))
13014 + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
13015 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest)))
13016 + UNITS_PER_WORD - 1) / UNITS_PER_WORD))))
13017 {
13018 move_deaths (dest, maybe_kill_insn, from_luid, to_insn, pnotes);
13019 return;
13020 }
13021
13022 /* If this is some other SUBREG, we know it replaces the entire
13023 value, so use that as the destination. */
13024 if (GET_CODE (dest) == SUBREG)
13025 dest = SUBREG_REG (dest);
13026
13027 /* If this is a MEM, adjust deaths of anything used in the address.
13028 For a REG (the only other possibility), the entire value is
13029 being replaced so the old value is not used in this insn. */
13030
13031 if (MEM_P (dest))
13032 move_deaths (XEXP (dest, 0), maybe_kill_insn, from_luid,
13033 to_insn, pnotes);
13034 return;
13035 }
13036
13037 else if (GET_CODE (x) == CLOBBER)
13038 return;
13039
13040 len = GET_RTX_LENGTH (code);
13041 fmt = GET_RTX_FORMAT (code);
13042
13043 for (i = 0; i < len; i++)
13044 {
13045 if (fmt[i] == 'E')
13046 {
13047 int j;
13048 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
13049 move_deaths (XVECEXP (x, i, j), maybe_kill_insn, from_luid,
13050 to_insn, pnotes);
13051 }
13052 else if (fmt[i] == 'e')
13053 move_deaths (XEXP (x, i), maybe_kill_insn, from_luid, to_insn, pnotes);
13054 }
13055 }
13056 \f
13057 /* Return 1 if X is the target of a bit-field assignment in BODY, the
13058 pattern of an insn. X must be a REG. */
13059
13060 static int
13061 reg_bitfield_target_p (rtx x, rtx body)
13062 {
13063 int i;
13064
13065 if (GET_CODE (body) == SET)
13066 {
13067 rtx dest = SET_DEST (body);
13068 rtx target;
13069 unsigned int regno, tregno, endregno, endtregno;
13070
13071 if (GET_CODE (dest) == ZERO_EXTRACT)
13072 target = XEXP (dest, 0);
13073 else if (GET_CODE (dest) == STRICT_LOW_PART)
13074 target = SUBREG_REG (XEXP (dest, 0));
13075 else
13076 return 0;
13077
13078 if (GET_CODE (target) == SUBREG)
13079 target = SUBREG_REG (target);
13080
13081 if (!REG_P (target))
13082 return 0;
13083
13084 tregno = REGNO (target), regno = REGNO (x);
13085 if (tregno >= FIRST_PSEUDO_REGISTER || regno >= FIRST_PSEUDO_REGISTER)
13086 return target == x;
13087
13088 endtregno = end_hard_regno (GET_MODE (target), tregno);
13089 endregno = end_hard_regno (GET_MODE (x), regno);
13090
13091 return endregno > tregno && regno < endtregno;
13092 }
13093
13094 else if (GET_CODE (body) == PARALLEL)
13095 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
13096 if (reg_bitfield_target_p (x, XVECEXP (body, 0, i)))
13097 return 1;
13098
13099 return 0;
13100 }
13101 \f
13102 /* Given a chain of REG_NOTES originally from FROM_INSN, try to place them
13103 as appropriate. I3 and I2 are the insns resulting from the combination
13104 insns including FROM (I2 may be zero).
13105
13106 ELIM_I2 and ELIM_I1 are either zero or registers that we know will
13107 not need REG_DEAD notes because they are being substituted for. This
13108 saves searching in the most common cases.
13109
13110 Each note in the list is either ignored or placed on some insns, depending
13111 on the type of note. */
13112
13113 static void
13114 distribute_notes (rtx notes, rtx from_insn, rtx i3, rtx i2, rtx elim_i2,
13115 rtx elim_i1, rtx elim_i0)
13116 {
13117 rtx note, next_note;
13118 rtx tem;
13119
13120 for (note = notes; note; note = next_note)
13121 {
13122 rtx place = 0, place2 = 0;
13123
13124 next_note = XEXP (note, 1);
13125 switch (REG_NOTE_KIND (note))
13126 {
13127 case REG_BR_PROB:
13128 case REG_BR_PRED:
13129 /* Doesn't matter much where we put this, as long as it's somewhere.
13130 It is preferable to keep these notes on branches, which is most
13131 likely to be i3. */
13132 place = i3;
13133 break;
13134
13135 case REG_VALUE_PROFILE:
13136 /* Just get rid of this note, as it is unused later anyway. */
13137 break;
13138
13139 case REG_NON_LOCAL_GOTO:
13140 if (JUMP_P (i3))
13141 place = i3;
13142 else
13143 {
13144 gcc_assert (i2 && JUMP_P (i2));
13145 place = i2;
13146 }
13147 break;
13148
13149 case REG_EH_REGION:
13150 /* These notes must remain with the call or trapping instruction. */
13151 if (CALL_P (i3))
13152 place = i3;
13153 else if (i2 && CALL_P (i2))
13154 place = i2;
13155 else
13156 {
13157 gcc_assert (cfun->can_throw_non_call_exceptions);
13158 if (may_trap_p (i3))
13159 place = i3;
13160 else if (i2 && may_trap_p (i2))
13161 place = i2;
13162 /* ??? Otherwise assume we've combined things such that we
13163 can now prove that the instructions can't trap. Drop the
13164 note in this case. */
13165 }
13166 break;
13167
13168 case REG_NORETURN:
13169 case REG_SETJMP:
13170 /* These notes must remain with the call. It should not be
13171 possible for both I2 and I3 to be a call. */
13172 if (CALL_P (i3))
13173 place = i3;
13174 else
13175 {
13176 gcc_assert (i2 && CALL_P (i2));
13177 place = i2;
13178 }
13179 break;
13180
13181 case REG_UNUSED:
13182 /* Any clobbers for i3 may still exist, and so we must process
13183 REG_UNUSED notes from that insn.
13184
13185 Any clobbers from i2 or i1 can only exist if they were added by
13186 recog_for_combine. In that case, recog_for_combine created the
13187 necessary REG_UNUSED notes. Trying to keep any original
13188 REG_UNUSED notes from these insns can cause incorrect output
13189 if it is for the same register as the original i3 dest.
13190 In that case, we will notice that the register is set in i3,
13191 and then add a REG_UNUSED note for the destination of i3, which
13192 is wrong. However, it is possible to have REG_UNUSED notes from
13193 i2 or i1 for register which were both used and clobbered, so
13194 we keep notes from i2 or i1 if they will turn into REG_DEAD
13195 notes. */
13196
13197 /* If this register is set or clobbered in I3, put the note there
13198 unless there is one already. */
13199 if (reg_set_p (XEXP (note, 0), PATTERN (i3)))
13200 {
13201 if (from_insn != i3)
13202 break;
13203
13204 if (! (REG_P (XEXP (note, 0))
13205 ? find_regno_note (i3, REG_UNUSED, REGNO (XEXP (note, 0)))
13206 : find_reg_note (i3, REG_UNUSED, XEXP (note, 0))))
13207 place = i3;
13208 }
13209 /* Otherwise, if this register is used by I3, then this register
13210 now dies here, so we must put a REG_DEAD note here unless there
13211 is one already. */
13212 else if (reg_referenced_p (XEXP (note, 0), PATTERN (i3))
13213 && ! (REG_P (XEXP (note, 0))
13214 ? find_regno_note (i3, REG_DEAD,
13215 REGNO (XEXP (note, 0)))
13216 : find_reg_note (i3, REG_DEAD, XEXP (note, 0))))
13217 {
13218 PUT_REG_NOTE_KIND (note, REG_DEAD);
13219 place = i3;
13220 }
13221 break;
13222
13223 case REG_EQUAL:
13224 case REG_EQUIV:
13225 case REG_NOALIAS:
13226 /* These notes say something about results of an insn. We can
13227 only support them if they used to be on I3 in which case they
13228 remain on I3. Otherwise they are ignored.
13229
13230 If the note refers to an expression that is not a constant, we
13231 must also ignore the note since we cannot tell whether the
13232 equivalence is still true. It might be possible to do
13233 slightly better than this (we only have a problem if I2DEST
13234 or I1DEST is present in the expression), but it doesn't
13235 seem worth the trouble. */
13236
13237 if (from_insn == i3
13238 && (XEXP (note, 0) == 0 || CONSTANT_P (XEXP (note, 0))))
13239 place = i3;
13240 break;
13241
13242 case REG_INC:
13243 /* These notes say something about how a register is used. They must
13244 be present on any use of the register in I2 or I3. */
13245 if (reg_mentioned_p (XEXP (note, 0), PATTERN (i3)))
13246 place = i3;
13247
13248 if (i2 && reg_mentioned_p (XEXP (note, 0), PATTERN (i2)))
13249 {
13250 if (place)
13251 place2 = i2;
13252 else
13253 place = i2;
13254 }
13255 break;
13256
13257 case REG_LABEL_TARGET:
13258 case REG_LABEL_OPERAND:
13259 /* This can show up in several ways -- either directly in the
13260 pattern, or hidden off in the constant pool with (or without?)
13261 a REG_EQUAL note. */
13262 /* ??? Ignore the without-reg_equal-note problem for now. */
13263 if (reg_mentioned_p (XEXP (note, 0), PATTERN (i3))
13264 || ((tem = find_reg_note (i3, REG_EQUAL, NULL_RTX))
13265 && GET_CODE (XEXP (tem, 0)) == LABEL_REF
13266 && XEXP (XEXP (tem, 0), 0) == XEXP (note, 0)))
13267 place = i3;
13268
13269 if (i2
13270 && (reg_mentioned_p (XEXP (note, 0), PATTERN (i2))
13271 || ((tem = find_reg_note (i2, REG_EQUAL, NULL_RTX))
13272 && GET_CODE (XEXP (tem, 0)) == LABEL_REF
13273 && XEXP (XEXP (tem, 0), 0) == XEXP (note, 0))))
13274 {
13275 if (place)
13276 place2 = i2;
13277 else
13278 place = i2;
13279 }
13280
13281 /* For REG_LABEL_TARGET on a JUMP_P, we prefer to put the note
13282 as a JUMP_LABEL or decrement LABEL_NUSES if it's already
13283 there. */
13284 if (place && JUMP_P (place)
13285 && REG_NOTE_KIND (note) == REG_LABEL_TARGET
13286 && (JUMP_LABEL (place) == NULL
13287 || JUMP_LABEL (place) == XEXP (note, 0)))
13288 {
13289 rtx label = JUMP_LABEL (place);
13290
13291 if (!label)
13292 JUMP_LABEL (place) = XEXP (note, 0);
13293 else if (LABEL_P (label))
13294 LABEL_NUSES (label)--;
13295 }
13296
13297 if (place2 && JUMP_P (place2)
13298 && REG_NOTE_KIND (note) == REG_LABEL_TARGET
13299 && (JUMP_LABEL (place2) == NULL
13300 || JUMP_LABEL (place2) == XEXP (note, 0)))
13301 {
13302 rtx label = JUMP_LABEL (place2);
13303
13304 if (!label)
13305 JUMP_LABEL (place2) = XEXP (note, 0);
13306 else if (LABEL_P (label))
13307 LABEL_NUSES (label)--;
13308 place2 = 0;
13309 }
13310 break;
13311
13312 case REG_NONNEG:
13313 /* This note says something about the value of a register prior
13314 to the execution of an insn. It is too much trouble to see
13315 if the note is still correct in all situations. It is better
13316 to simply delete it. */
13317 break;
13318
13319 case REG_DEAD:
13320 /* If we replaced the right hand side of FROM_INSN with a
13321 REG_EQUAL note, the original use of the dying register
13322 will not have been combined into I3 and I2. In such cases,
13323 FROM_INSN is guaranteed to be the first of the combined
13324 instructions, so we simply need to search back before
13325 FROM_INSN for the previous use or set of this register,
13326 then alter the notes there appropriately.
13327
13328 If the register is used as an input in I3, it dies there.
13329 Similarly for I2, if it is nonzero and adjacent to I3.
13330
13331 If the register is not used as an input in either I3 or I2
13332 and it is not one of the registers we were supposed to eliminate,
13333 there are two possibilities. We might have a non-adjacent I2
13334 or we might have somehow eliminated an additional register
13335 from a computation. For example, we might have had A & B where
13336 we discover that B will always be zero. In this case we will
13337 eliminate the reference to A.
13338
13339 In both cases, we must search to see if we can find a previous
13340 use of A and put the death note there. */
13341
13342 if (from_insn
13343 && from_insn == i2mod
13344 && !reg_overlap_mentioned_p (XEXP (note, 0), i2mod_new_rhs))
13345 tem = from_insn;
13346 else
13347 {
13348 if (from_insn
13349 && CALL_P (from_insn)
13350 && find_reg_fusage (from_insn, USE, XEXP (note, 0)))
13351 place = from_insn;
13352 else if (reg_referenced_p (XEXP (note, 0), PATTERN (i3)))
13353 place = i3;
13354 else if (i2 != 0 && next_nonnote_nondebug_insn (i2) == i3
13355 && reg_referenced_p (XEXP (note, 0), PATTERN (i2)))
13356 place = i2;
13357 else if ((rtx_equal_p (XEXP (note, 0), elim_i2)
13358 && !(i2mod
13359 && reg_overlap_mentioned_p (XEXP (note, 0),
13360 i2mod_old_rhs)))
13361 || rtx_equal_p (XEXP (note, 0), elim_i1)
13362 || rtx_equal_p (XEXP (note, 0), elim_i0))
13363 break;
13364 tem = i3;
13365 }
13366
13367 if (place == 0)
13368 {
13369 basic_block bb = this_basic_block;
13370
13371 for (tem = PREV_INSN (tem); place == 0; tem = PREV_INSN (tem))
13372 {
13373 if (!NONDEBUG_INSN_P (tem))
13374 {
13375 if (tem == BB_HEAD (bb))
13376 break;
13377 continue;
13378 }
13379
13380 /* If the register is being set at TEM, see if that is all
13381 TEM is doing. If so, delete TEM. Otherwise, make this
13382 into a REG_UNUSED note instead. Don't delete sets to
13383 global register vars. */
13384 if ((REGNO (XEXP (note, 0)) >= FIRST_PSEUDO_REGISTER
13385 || !global_regs[REGNO (XEXP (note, 0))])
13386 && reg_set_p (XEXP (note, 0), PATTERN (tem)))
13387 {
13388 rtx set = single_set (tem);
13389 rtx inner_dest = 0;
13390 #ifdef HAVE_cc0
13391 rtx cc0_setter = NULL_RTX;
13392 #endif
13393
13394 if (set != 0)
13395 for (inner_dest = SET_DEST (set);
13396 (GET_CODE (inner_dest) == STRICT_LOW_PART
13397 || GET_CODE (inner_dest) == SUBREG
13398 || GET_CODE (inner_dest) == ZERO_EXTRACT);
13399 inner_dest = XEXP (inner_dest, 0))
13400 ;
13401
13402 /* Verify that it was the set, and not a clobber that
13403 modified the register.
13404
13405 CC0 targets must be careful to maintain setter/user
13406 pairs. If we cannot delete the setter due to side
13407 effects, mark the user with an UNUSED note instead
13408 of deleting it. */
13409
13410 if (set != 0 && ! side_effects_p (SET_SRC (set))
13411 && rtx_equal_p (XEXP (note, 0), inner_dest)
13412 #ifdef HAVE_cc0
13413 && (! reg_mentioned_p (cc0_rtx, SET_SRC (set))
13414 || ((cc0_setter = prev_cc0_setter (tem)) != NULL
13415 && sets_cc0_p (PATTERN (cc0_setter)) > 0))
13416 #endif
13417 )
13418 {
13419 /* Move the notes and links of TEM elsewhere.
13420 This might delete other dead insns recursively.
13421 First set the pattern to something that won't use
13422 any register. */
13423 rtx old_notes = REG_NOTES (tem);
13424
13425 PATTERN (tem) = pc_rtx;
13426 REG_NOTES (tem) = NULL;
13427
13428 distribute_notes (old_notes, tem, tem, NULL_RTX,
13429 NULL_RTX, NULL_RTX, NULL_RTX);
13430 distribute_links (LOG_LINKS (tem));
13431
13432 SET_INSN_DELETED (tem);
13433 if (tem == i2)
13434 i2 = NULL_RTX;
13435
13436 #ifdef HAVE_cc0
13437 /* Delete the setter too. */
13438 if (cc0_setter)
13439 {
13440 PATTERN (cc0_setter) = pc_rtx;
13441 old_notes = REG_NOTES (cc0_setter);
13442 REG_NOTES (cc0_setter) = NULL;
13443
13444 distribute_notes (old_notes, cc0_setter,
13445 cc0_setter, NULL_RTX,
13446 NULL_RTX, NULL_RTX, NULL_RTX);
13447 distribute_links (LOG_LINKS (cc0_setter));
13448
13449 SET_INSN_DELETED (cc0_setter);
13450 if (cc0_setter == i2)
13451 i2 = NULL_RTX;
13452 }
13453 #endif
13454 }
13455 else
13456 {
13457 PUT_REG_NOTE_KIND (note, REG_UNUSED);
13458
13459 /* If there isn't already a REG_UNUSED note, put one
13460 here. Do not place a REG_DEAD note, even if
13461 the register is also used here; that would not
13462 match the algorithm used in lifetime analysis
13463 and can cause the consistency check in the
13464 scheduler to fail. */
13465 if (! find_regno_note (tem, REG_UNUSED,
13466 REGNO (XEXP (note, 0))))
13467 place = tem;
13468 break;
13469 }
13470 }
13471 else if (reg_referenced_p (XEXP (note, 0), PATTERN (tem))
13472 || (CALL_P (tem)
13473 && find_reg_fusage (tem, USE, XEXP (note, 0))))
13474 {
13475 place = tem;
13476
13477 /* If we are doing a 3->2 combination, and we have a
13478 register which formerly died in i3 and was not used
13479 by i2, which now no longer dies in i3 and is used in
13480 i2 but does not die in i2, and place is between i2
13481 and i3, then we may need to move a link from place to
13482 i2. */
13483 if (i2 && DF_INSN_LUID (place) > DF_INSN_LUID (i2)
13484 && from_insn
13485 && DF_INSN_LUID (from_insn) > DF_INSN_LUID (i2)
13486 && reg_referenced_p (XEXP (note, 0), PATTERN (i2)))
13487 {
13488 rtx links = LOG_LINKS (place);
13489 LOG_LINKS (place) = 0;
13490 distribute_links (links);
13491 }
13492 break;
13493 }
13494
13495 if (tem == BB_HEAD (bb))
13496 break;
13497 }
13498
13499 }
13500
13501 /* If the register is set or already dead at PLACE, we needn't do
13502 anything with this note if it is still a REG_DEAD note.
13503 We check here if it is set at all, not if is it totally replaced,
13504 which is what `dead_or_set_p' checks, so also check for it being
13505 set partially. */
13506
13507 if (place && REG_NOTE_KIND (note) == REG_DEAD)
13508 {
13509 unsigned int regno = REGNO (XEXP (note, 0));
13510 reg_stat_type *rsp = VEC_index (reg_stat_type, reg_stat, regno);
13511
13512 if (dead_or_set_p (place, XEXP (note, 0))
13513 || reg_bitfield_target_p (XEXP (note, 0), PATTERN (place)))
13514 {
13515 /* Unless the register previously died in PLACE, clear
13516 last_death. [I no longer understand why this is
13517 being done.] */
13518 if (rsp->last_death != place)
13519 rsp->last_death = 0;
13520 place = 0;
13521 }
13522 else
13523 rsp->last_death = place;
13524
13525 /* If this is a death note for a hard reg that is occupying
13526 multiple registers, ensure that we are still using all
13527 parts of the object. If we find a piece of the object
13528 that is unused, we must arrange for an appropriate REG_DEAD
13529 note to be added for it. However, we can't just emit a USE
13530 and tag the note to it, since the register might actually
13531 be dead; so we recourse, and the recursive call then finds
13532 the previous insn that used this register. */
13533
13534 if (place && regno < FIRST_PSEUDO_REGISTER
13535 && hard_regno_nregs[regno][GET_MODE (XEXP (note, 0))] > 1)
13536 {
13537 unsigned int endregno = END_HARD_REGNO (XEXP (note, 0));
13538 int all_used = 1;
13539 unsigned int i;
13540
13541 for (i = regno; i < endregno; i++)
13542 if ((! refers_to_regno_p (i, i + 1, PATTERN (place), 0)
13543 && ! find_regno_fusage (place, USE, i))
13544 || dead_or_set_regno_p (place, i))
13545 all_used = 0;
13546
13547 if (! all_used)
13548 {
13549 /* Put only REG_DEAD notes for pieces that are
13550 not already dead or set. */
13551
13552 for (i = regno; i < endregno;
13553 i += hard_regno_nregs[i][reg_raw_mode[i]])
13554 {
13555 rtx piece = regno_reg_rtx[i];
13556 basic_block bb = this_basic_block;
13557
13558 if (! dead_or_set_p (place, piece)
13559 && ! reg_bitfield_target_p (piece,
13560 PATTERN (place)))
13561 {
13562 rtx new_note = alloc_reg_note (REG_DEAD, piece,
13563 NULL_RTX);
13564
13565 distribute_notes (new_note, place, place,
13566 NULL_RTX, NULL_RTX, NULL_RTX,
13567 NULL_RTX);
13568 }
13569 else if (! refers_to_regno_p (i, i + 1,
13570 PATTERN (place), 0)
13571 && ! find_regno_fusage (place, USE, i))
13572 for (tem = PREV_INSN (place); ;
13573 tem = PREV_INSN (tem))
13574 {
13575 if (!NONDEBUG_INSN_P (tem))
13576 {
13577 if (tem == BB_HEAD (bb))
13578 break;
13579 continue;
13580 }
13581 if (dead_or_set_p (tem, piece)
13582 || reg_bitfield_target_p (piece,
13583 PATTERN (tem)))
13584 {
13585 add_reg_note (tem, REG_UNUSED, piece);
13586 break;
13587 }
13588 }
13589
13590 }
13591
13592 place = 0;
13593 }
13594 }
13595 }
13596 break;
13597
13598 default:
13599 /* Any other notes should not be present at this point in the
13600 compilation. */
13601 gcc_unreachable ();
13602 }
13603
13604 if (place)
13605 {
13606 XEXP (note, 1) = REG_NOTES (place);
13607 REG_NOTES (place) = note;
13608 }
13609
13610 if (place2)
13611 add_reg_note (place2, REG_NOTE_KIND (note), XEXP (note, 0));
13612 }
13613 }
13614 \f
13615 /* Similarly to above, distribute the LOG_LINKS that used to be present on
13616 I3, I2, and I1 to new locations. This is also called to add a link
13617 pointing at I3 when I3's destination is changed. */
13618
13619 static void
13620 distribute_links (rtx links)
13621 {
13622 rtx link, next_link;
13623
13624 for (link = links; link; link = next_link)
13625 {
13626 rtx place = 0;
13627 rtx insn;
13628 rtx set, reg;
13629
13630 next_link = XEXP (link, 1);
13631
13632 /* If the insn that this link points to is a NOTE or isn't a single
13633 set, ignore it. In the latter case, it isn't clear what we
13634 can do other than ignore the link, since we can't tell which
13635 register it was for. Such links wouldn't be used by combine
13636 anyway.
13637
13638 It is not possible for the destination of the target of the link to
13639 have been changed by combine. The only potential of this is if we
13640 replace I3, I2, and I1 by I3 and I2. But in that case the
13641 destination of I2 also remains unchanged. */
13642
13643 if (NOTE_P (XEXP (link, 0))
13644 || (set = single_set (XEXP (link, 0))) == 0)
13645 continue;
13646
13647 reg = SET_DEST (set);
13648 while (GET_CODE (reg) == SUBREG || GET_CODE (reg) == ZERO_EXTRACT
13649 || GET_CODE (reg) == STRICT_LOW_PART)
13650 reg = XEXP (reg, 0);
13651
13652 /* A LOG_LINK is defined as being placed on the first insn that uses
13653 a register and points to the insn that sets the register. Start
13654 searching at the next insn after the target of the link and stop
13655 when we reach a set of the register or the end of the basic block.
13656
13657 Note that this correctly handles the link that used to point from
13658 I3 to I2. Also note that not much searching is typically done here
13659 since most links don't point very far away. */
13660
13661 for (insn = NEXT_INSN (XEXP (link, 0));
13662 (insn && (this_basic_block->next_bb == EXIT_BLOCK_PTR
13663 || BB_HEAD (this_basic_block->next_bb) != insn));
13664 insn = NEXT_INSN (insn))
13665 if (DEBUG_INSN_P (insn))
13666 continue;
13667 else if (INSN_P (insn) && reg_overlap_mentioned_p (reg, PATTERN (insn)))
13668 {
13669 if (reg_referenced_p (reg, PATTERN (insn)))
13670 place = insn;
13671 break;
13672 }
13673 else if (CALL_P (insn)
13674 && find_reg_fusage (insn, USE, reg))
13675 {
13676 place = insn;
13677 break;
13678 }
13679 else if (INSN_P (insn) && reg_set_p (reg, insn))
13680 break;
13681
13682 /* If we found a place to put the link, place it there unless there
13683 is already a link to the same insn as LINK at that point. */
13684
13685 if (place)
13686 {
13687 rtx link2;
13688
13689 for (link2 = LOG_LINKS (place); link2; link2 = XEXP (link2, 1))
13690 if (XEXP (link2, 0) == XEXP (link, 0))
13691 break;
13692
13693 if (link2 == 0)
13694 {
13695 XEXP (link, 1) = LOG_LINKS (place);
13696 LOG_LINKS (place) = link;
13697
13698 /* Set added_links_insn to the earliest insn we added a
13699 link to. */
13700 if (added_links_insn == 0
13701 || DF_INSN_LUID (added_links_insn) > DF_INSN_LUID (place))
13702 added_links_insn = place;
13703 }
13704 }
13705 }
13706 }
13707 \f
13708 /* Subroutine of unmentioned_reg_p and callback from for_each_rtx.
13709 Check whether the expression pointer to by LOC is a register or
13710 memory, and if so return 1 if it isn't mentioned in the rtx EXPR.
13711 Otherwise return zero. */
13712
13713 static int
13714 unmentioned_reg_p_1 (rtx *loc, void *expr)
13715 {
13716 rtx x = *loc;
13717
13718 if (x != NULL_RTX
13719 && (REG_P (x) || MEM_P (x))
13720 && ! reg_mentioned_p (x, (rtx) expr))
13721 return 1;
13722 return 0;
13723 }
13724
13725 /* Check for any register or memory mentioned in EQUIV that is not
13726 mentioned in EXPR. This is used to restrict EQUIV to "specializations"
13727 of EXPR where some registers may have been replaced by constants. */
13728
13729 static bool
13730 unmentioned_reg_p (rtx equiv, rtx expr)
13731 {
13732 return for_each_rtx (&equiv, unmentioned_reg_p_1, expr);
13733 }
13734 \f
13735 void
13736 dump_combine_stats (FILE *file)
13737 {
13738 fprintf
13739 (file,
13740 ";; Combiner statistics: %d attempts, %d substitutions (%d requiring new space),\n;; %d successes.\n\n",
13741 combine_attempts, combine_merges, combine_extras, combine_successes);
13742 }
13743
13744 void
13745 dump_combine_total_stats (FILE *file)
13746 {
13747 fprintf
13748 (file,
13749 "\n;; Combiner totals: %d attempts, %d substitutions (%d requiring new space),\n;; %d successes.\n",
13750 total_attempts, total_merges, total_extras, total_successes);
13751 }
13752 \f
13753 static bool
13754 gate_handle_combine (void)
13755 {
13756 return (optimize > 0);
13757 }
13758
13759 /* Try combining insns through substitution. */
13760 static unsigned int
13761 rest_of_handle_combine (void)
13762 {
13763 int rebuild_jump_labels_after_combine;
13764
13765 df_set_flags (DF_LR_RUN_DCE + DF_DEFER_INSN_RESCAN);
13766 df_note_add_problem ();
13767 df_analyze ();
13768
13769 regstat_init_n_sets_and_refs ();
13770
13771 rebuild_jump_labels_after_combine
13772 = combine_instructions (get_insns (), max_reg_num ());
13773
13774 /* Combining insns may have turned an indirect jump into a
13775 direct jump. Rebuild the JUMP_LABEL fields of jumping
13776 instructions. */
13777 if (rebuild_jump_labels_after_combine)
13778 {
13779 timevar_push (TV_JUMP);
13780 rebuild_jump_labels (get_insns ());
13781 cleanup_cfg (0);
13782 timevar_pop (TV_JUMP);
13783 }
13784
13785 regstat_free_n_sets_and_refs ();
13786 return 0;
13787 }
13788
13789 struct rtl_opt_pass pass_combine =
13790 {
13791 {
13792 RTL_PASS,
13793 "combine", /* name */
13794 gate_handle_combine, /* gate */
13795 rest_of_handle_combine, /* execute */
13796 NULL, /* sub */
13797 NULL, /* next */
13798 0, /* static_pass_number */
13799 TV_COMBINE, /* tv_id */
13800 PROP_cfglayout, /* properties_required */
13801 0, /* properties_provided */
13802 0, /* properties_destroyed */
13803 0, /* todo_flags_start */
13804 TODO_dump_func |
13805 TODO_df_finish | TODO_verify_rtl_sharing |
13806 TODO_ggc_collect, /* todo_flags_finish */
13807 }
13808 };