c72d81e891cc7c286bdedf4667fca7f080fa33e6
[gcc.git] / gcc / combine.c
1 /* Optimize by combining instructions for GNU compiler.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002 Free Software Foundation, Inc.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
21
22 /* This module is essentially the "combiner" phase of the U. of Arizona
23 Portable Optimizer, but redone to work on our list-structured
24 representation for RTL instead of their string representation.
25
26 The LOG_LINKS of each insn identify the most recent assignment
27 to each REG used in the insn. It is a list of previous insns,
28 each of which contains a SET for a REG that is used in this insn
29 and not used or set in between. LOG_LINKs never cross basic blocks.
30 They were set up by the preceding pass (lifetime analysis).
31
32 We try to combine each pair of insns joined by a logical link.
33 We also try to combine triples of insns A, B and C when
34 C has a link back to B and B has a link back to A.
35
36 LOG_LINKS does not have links for use of the CC0. They don't
37 need to, because the insn that sets the CC0 is always immediately
38 before the insn that tests it. So we always regard a branch
39 insn as having a logical link to the preceding insn. The same is true
40 for an insn explicitly using CC0.
41
42 We check (with use_crosses_set_p) to avoid combining in such a way
43 as to move a computation to a place where its value would be different.
44
45 Combination is done by mathematically substituting the previous
46 insn(s) values for the regs they set into the expressions in
47 the later insns that refer to these regs. If the result is a valid insn
48 for our target machine, according to the machine description,
49 we install it, delete the earlier insns, and update the data flow
50 information (LOG_LINKS and REG_NOTES) for what we did.
51
52 There are a few exceptions where the dataflow information created by
53 flow.c aren't completely updated:
54
55 - reg_live_length is not updated
56 - reg_n_refs is not adjusted in the rare case when a register is
57 no longer required in a computation
58 - there are extremely rare cases (see distribute_regnotes) when a
59 REG_DEAD note is lost
60 - a LOG_LINKS entry that refers to an insn with multiple SETs may be
61 removed because there is no way to know which register it was
62 linking
63
64 To simplify substitution, we combine only when the earlier insn(s)
65 consist of only a single assignment. To simplify updating afterward,
66 we never combine when a subroutine call appears in the middle.
67
68 Since we do not represent assignments to CC0 explicitly except when that
69 is all an insn does, there is no LOG_LINKS entry in an insn that uses
70 the condition code for the insn that set the condition code.
71 Fortunately, these two insns must be consecutive.
72 Therefore, every JUMP_INSN is taken to have an implicit logical link
73 to the preceding insn. This is not quite right, since non-jumps can
74 also use the condition code; but in practice such insns would not
75 combine anyway. */
76
77 #include "config.h"
78 #include "system.h"
79 #include "rtl.h"
80 #include "tm_p.h"
81 #include "flags.h"
82 #include "regs.h"
83 #include "hard-reg-set.h"
84 #include "basic-block.h"
85 #include "insn-config.h"
86 #include "function.h"
87 /* Include expr.h after insn-config.h so we get HAVE_conditional_move. */
88 #include "expr.h"
89 #include "insn-attr.h"
90 #include "recog.h"
91 #include "real.h"
92 #include "toplev.h"
93
94 /* It is not safe to use ordinary gen_lowpart in combine.
95 Use gen_lowpart_for_combine instead. See comments there. */
96 #define gen_lowpart dont_use_gen_lowpart_you_dummy
97
98 /* Number of attempts to combine instructions in this function. */
99
100 static int combine_attempts;
101
102 /* Number of attempts that got as far as substitution in this function. */
103
104 static int combine_merges;
105
106 /* Number of instructions combined with added SETs in this function. */
107
108 static int combine_extras;
109
110 /* Number of instructions combined in this function. */
111
112 static int combine_successes;
113
114 /* Totals over entire compilation. */
115
116 static int total_attempts, total_merges, total_extras, total_successes;
117
118 \f
119 /* Vector mapping INSN_UIDs to cuids.
120 The cuids are like uids but increase monotonically always.
121 Combine always uses cuids so that it can compare them.
122 But actually renumbering the uids, which we used to do,
123 proves to be a bad idea because it makes it hard to compare
124 the dumps produced by earlier passes with those from later passes. */
125
126 static int *uid_cuid;
127 static int max_uid_cuid;
128
129 /* Get the cuid of an insn. */
130
131 #define INSN_CUID(INSN) \
132 (INSN_UID (INSN) > max_uid_cuid ? insn_cuid (INSN) : uid_cuid[INSN_UID (INSN)])
133
134 /* In case BITS_PER_WORD == HOST_BITS_PER_WIDE_INT, shifting by
135 BITS_PER_WORD would invoke undefined behavior. Work around it. */
136
137 #define UWIDE_SHIFT_LEFT_BY_BITS_PER_WORD(val) \
138 (((unsigned HOST_WIDE_INT) (val) << (BITS_PER_WORD - 1)) << 1)
139
140 /* Maximum register number, which is the size of the tables below. */
141
142 static unsigned int combine_max_regno;
143
144 /* Record last point of death of (hard or pseudo) register n. */
145
146 static rtx *reg_last_death;
147
148 /* Record last point of modification of (hard or pseudo) register n. */
149
150 static rtx *reg_last_set;
151
152 /* Record the cuid of the last insn that invalidated memory
153 (anything that writes memory, and subroutine calls, but not pushes). */
154
155 static int mem_last_set;
156
157 /* Record the cuid of the last CALL_INSN
158 so we can tell whether a potential combination crosses any calls. */
159
160 static int last_call_cuid;
161
162 /* When `subst' is called, this is the insn that is being modified
163 (by combining in a previous insn). The PATTERN of this insn
164 is still the old pattern partially modified and it should not be
165 looked at, but this may be used to examine the successors of the insn
166 to judge whether a simplification is valid. */
167
168 static rtx subst_insn;
169
170 /* This is an insn that belongs before subst_insn, but is not currently
171 on the insn chain. */
172
173 static rtx subst_prev_insn;
174
175 /* This is the lowest CUID that `subst' is currently dealing with.
176 get_last_value will not return a value if the register was set at or
177 after this CUID. If not for this mechanism, we could get confused if
178 I2 or I1 in try_combine were an insn that used the old value of a register
179 to obtain a new value. In that case, we might erroneously get the
180 new value of the register when we wanted the old one. */
181
182 static int subst_low_cuid;
183
184 /* This contains any hard registers that are used in newpat; reg_dead_at_p
185 must consider all these registers to be always live. */
186
187 static HARD_REG_SET newpat_used_regs;
188
189 /* This is an insn to which a LOG_LINKS entry has been added. If this
190 insn is the earlier than I2 or I3, combine should rescan starting at
191 that location. */
192
193 static rtx added_links_insn;
194
195 /* Basic block in which we are performing combines. */
196 static basic_block this_basic_block;
197
198 /* A bitmap indicating which blocks had registers go dead at entry.
199 After combine, we'll need to re-do global life analysis with
200 those blocks as starting points. */
201 static sbitmap refresh_blocks;
202 static int need_refresh;
203 \f
204 /* The next group of arrays allows the recording of the last value assigned
205 to (hard or pseudo) register n. We use this information to see if a
206 operation being processed is redundant given a prior operation performed
207 on the register. For example, an `and' with a constant is redundant if
208 all the zero bits are already known to be turned off.
209
210 We use an approach similar to that used by cse, but change it in the
211 following ways:
212
213 (1) We do not want to reinitialize at each label.
214 (2) It is useful, but not critical, to know the actual value assigned
215 to a register. Often just its form is helpful.
216
217 Therefore, we maintain the following arrays:
218
219 reg_last_set_value the last value assigned
220 reg_last_set_label records the value of label_tick when the
221 register was assigned
222 reg_last_set_table_tick records the value of label_tick when a
223 value using the register is assigned
224 reg_last_set_invalid set to non-zero when it is not valid
225 to use the value of this register in some
226 register's value
227
228 To understand the usage of these tables, it is important to understand
229 the distinction between the value in reg_last_set_value being valid
230 and the register being validly contained in some other expression in the
231 table.
232
233 Entry I in reg_last_set_value is valid if it is non-zero, and either
234 reg_n_sets[i] is 1 or reg_last_set_label[i] == label_tick.
235
236 Register I may validly appear in any expression returned for the value
237 of another register if reg_n_sets[i] is 1. It may also appear in the
238 value for register J if reg_last_set_label[i] < reg_last_set_label[j] or
239 reg_last_set_invalid[j] is zero.
240
241 If an expression is found in the table containing a register which may
242 not validly appear in an expression, the register is replaced by
243 something that won't match, (clobber (const_int 0)).
244
245 reg_last_set_invalid[i] is set non-zero when register I is being assigned
246 to and reg_last_set_table_tick[i] == label_tick. */
247
248 /* Record last value assigned to (hard or pseudo) register n. */
249
250 static rtx *reg_last_set_value;
251
252 /* Record the value of label_tick when the value for register n is placed in
253 reg_last_set_value[n]. */
254
255 static int *reg_last_set_label;
256
257 /* Record the value of label_tick when an expression involving register n
258 is placed in reg_last_set_value. */
259
260 static int *reg_last_set_table_tick;
261
262 /* Set non-zero if references to register n in expressions should not be
263 used. */
264
265 static char *reg_last_set_invalid;
266
267 /* Incremented for each label. */
268
269 static int label_tick;
270
271 /* Some registers that are set more than once and used in more than one
272 basic block are nevertheless always set in similar ways. For example,
273 a QImode register may be loaded from memory in two places on a machine
274 where byte loads zero extend.
275
276 We record in the following array what we know about the nonzero
277 bits of a register, specifically which bits are known to be zero.
278
279 If an entry is zero, it means that we don't know anything special. */
280
281 static unsigned HOST_WIDE_INT *reg_nonzero_bits;
282
283 /* Mode used to compute significance in reg_nonzero_bits. It is the largest
284 integer mode that can fit in HOST_BITS_PER_WIDE_INT. */
285
286 static enum machine_mode nonzero_bits_mode;
287
288 /* Nonzero if we know that a register has some leading bits that are always
289 equal to the sign bit. */
290
291 static unsigned char *reg_sign_bit_copies;
292
293 /* Nonzero when reg_nonzero_bits and reg_sign_bit_copies can be safely used.
294 It is zero while computing them and after combine has completed. This
295 former test prevents propagating values based on previously set values,
296 which can be incorrect if a variable is modified in a loop. */
297
298 static int nonzero_sign_valid;
299
300 /* These arrays are maintained in parallel with reg_last_set_value
301 and are used to store the mode in which the register was last set,
302 the bits that were known to be zero when it was last set, and the
303 number of sign bits copies it was known to have when it was last set. */
304
305 static enum machine_mode *reg_last_set_mode;
306 static unsigned HOST_WIDE_INT *reg_last_set_nonzero_bits;
307 static char *reg_last_set_sign_bit_copies;
308 \f
309 /* Record one modification to rtl structure
310 to be undone by storing old_contents into *where.
311 is_int is 1 if the contents are an int. */
312
313 struct undo
314 {
315 struct undo *next;
316 int is_int;
317 union {rtx r; int i;} old_contents;
318 union {rtx *r; int *i;} where;
319 };
320
321 /* Record a bunch of changes to be undone, up to MAX_UNDO of them.
322 num_undo says how many are currently recorded.
323
324 other_insn is nonzero if we have modified some other insn in the process
325 of working on subst_insn. It must be verified too. */
326
327 struct undobuf
328 {
329 struct undo *undos;
330 struct undo *frees;
331 rtx other_insn;
332 };
333
334 static struct undobuf undobuf;
335
336 /* Number of times the pseudo being substituted for
337 was found and replaced. */
338
339 static int n_occurrences;
340
341 static void do_SUBST PARAMS ((rtx *, rtx));
342 static void do_SUBST_INT PARAMS ((int *, int));
343 static void init_reg_last_arrays PARAMS ((void));
344 static void setup_incoming_promotions PARAMS ((void));
345 static void set_nonzero_bits_and_sign_copies PARAMS ((rtx, rtx, void *));
346 static int cant_combine_insn_p PARAMS ((rtx));
347 static int can_combine_p PARAMS ((rtx, rtx, rtx, rtx, rtx *, rtx *));
348 static int sets_function_arg_p PARAMS ((rtx));
349 static int combinable_i3pat PARAMS ((rtx, rtx *, rtx, rtx, int, rtx *));
350 static int contains_muldiv PARAMS ((rtx));
351 static rtx try_combine PARAMS ((rtx, rtx, rtx, int *));
352 static void undo_all PARAMS ((void));
353 static void undo_commit PARAMS ((void));
354 static rtx *find_split_point PARAMS ((rtx *, rtx));
355 static rtx subst PARAMS ((rtx, rtx, rtx, int, int));
356 static rtx combine_simplify_rtx PARAMS ((rtx, enum machine_mode, int, int));
357 static rtx simplify_if_then_else PARAMS ((rtx));
358 static rtx simplify_set PARAMS ((rtx));
359 static rtx simplify_logical PARAMS ((rtx, int));
360 static rtx expand_compound_operation PARAMS ((rtx));
361 static rtx expand_field_assignment PARAMS ((rtx));
362 static rtx make_extraction PARAMS ((enum machine_mode, rtx, HOST_WIDE_INT,
363 rtx, unsigned HOST_WIDE_INT, int,
364 int, int));
365 static rtx extract_left_shift PARAMS ((rtx, int));
366 static rtx make_compound_operation PARAMS ((rtx, enum rtx_code));
367 static int get_pos_from_mask PARAMS ((unsigned HOST_WIDE_INT,
368 unsigned HOST_WIDE_INT *));
369 static rtx force_to_mode PARAMS ((rtx, enum machine_mode,
370 unsigned HOST_WIDE_INT, rtx, int));
371 static rtx if_then_else_cond PARAMS ((rtx, rtx *, rtx *));
372 static rtx known_cond PARAMS ((rtx, enum rtx_code, rtx, rtx));
373 static int rtx_equal_for_field_assignment_p PARAMS ((rtx, rtx));
374 static rtx make_field_assignment PARAMS ((rtx));
375 static rtx apply_distributive_law PARAMS ((rtx));
376 static rtx simplify_and_const_int PARAMS ((rtx, enum machine_mode, rtx,
377 unsigned HOST_WIDE_INT));
378 static unsigned HOST_WIDE_INT nonzero_bits PARAMS ((rtx, enum machine_mode));
379 static unsigned int num_sign_bit_copies PARAMS ((rtx, enum machine_mode));
380 static int merge_outer_ops PARAMS ((enum rtx_code *, HOST_WIDE_INT *,
381 enum rtx_code, HOST_WIDE_INT,
382 enum machine_mode, int *));
383 static rtx simplify_shift_const PARAMS ((rtx, enum rtx_code, enum machine_mode,
384 rtx, int));
385 static int recog_for_combine PARAMS ((rtx *, rtx, rtx *));
386 static rtx gen_lowpart_for_combine PARAMS ((enum machine_mode, rtx));
387 static rtx gen_binary PARAMS ((enum rtx_code, enum machine_mode,
388 rtx, rtx));
389 static enum rtx_code simplify_comparison PARAMS ((enum rtx_code, rtx *, rtx *));
390 static void update_table_tick PARAMS ((rtx));
391 static void record_value_for_reg PARAMS ((rtx, rtx, rtx));
392 static void check_promoted_subreg PARAMS ((rtx, rtx));
393 static void record_dead_and_set_regs_1 PARAMS ((rtx, rtx, void *));
394 static void record_dead_and_set_regs PARAMS ((rtx));
395 static int get_last_value_validate PARAMS ((rtx *, rtx, int, int));
396 static rtx get_last_value PARAMS ((rtx));
397 static int use_crosses_set_p PARAMS ((rtx, int));
398 static void reg_dead_at_p_1 PARAMS ((rtx, rtx, void *));
399 static int reg_dead_at_p PARAMS ((rtx, rtx));
400 static void move_deaths PARAMS ((rtx, rtx, int, rtx, rtx *));
401 static int reg_bitfield_target_p PARAMS ((rtx, rtx));
402 static void distribute_notes PARAMS ((rtx, rtx, rtx, rtx, rtx, rtx));
403 static void distribute_links PARAMS ((rtx));
404 static void mark_used_regs_combine PARAMS ((rtx));
405 static int insn_cuid PARAMS ((rtx));
406 static void record_promoted_value PARAMS ((rtx, rtx));
407 static rtx reversed_comparison PARAMS ((rtx, enum machine_mode, rtx, rtx));
408 static enum rtx_code combine_reversed_comparison_code PARAMS ((rtx));
409 \f
410 /* Substitute NEWVAL, an rtx expression, into INTO, a place in some
411 insn. The substitution can be undone by undo_all. If INTO is already
412 set to NEWVAL, do not record this change. Because computing NEWVAL might
413 also call SUBST, we have to compute it before we put anything into
414 the undo table. */
415
416 static void
417 do_SUBST (into, newval)
418 rtx *into, newval;
419 {
420 struct undo *buf;
421 rtx oldval = *into;
422
423 if (oldval == newval)
424 return;
425
426 /* We'd like to catch as many invalid transformations here as
427 possible. Unfortunately, there are way too many mode changes
428 that are perfectly valid, so we'd waste too much effort for
429 little gain doing the checks here. Focus on catching invalid
430 transformations involving integer constants. */
431 if (GET_MODE_CLASS (GET_MODE (oldval)) == MODE_INT
432 && GET_CODE (newval) == CONST_INT)
433 {
434 /* Sanity check that we're replacing oldval with a CONST_INT
435 that is a valid sign-extension for the original mode. */
436 if (INTVAL (newval) != trunc_int_for_mode (INTVAL (newval),
437 GET_MODE (oldval)))
438 abort ();
439
440 /* Replacing the operand of a SUBREG or a ZERO_EXTEND with a
441 CONST_INT is not valid, because after the replacement, the
442 original mode would be gone. Unfortunately, we can't tell
443 when do_SUBST is called to replace the operand thereof, so we
444 perform this test on oldval instead, checking whether an
445 invalid replacement took place before we got here. */
446 if ((GET_CODE (oldval) == SUBREG
447 && GET_CODE (SUBREG_REG (oldval)) == CONST_INT)
448 || (GET_CODE (oldval) == ZERO_EXTEND
449 && GET_CODE (XEXP (oldval, 0)) == CONST_INT))
450 abort ();
451 }
452
453 if (undobuf.frees)
454 buf = undobuf.frees, undobuf.frees = buf->next;
455 else
456 buf = (struct undo *) xmalloc (sizeof (struct undo));
457
458 buf->is_int = 0;
459 buf->where.r = into;
460 buf->old_contents.r = oldval;
461 *into = newval;
462
463 buf->next = undobuf.undos, undobuf.undos = buf;
464 }
465
466 #define SUBST(INTO, NEWVAL) do_SUBST(&(INTO), (NEWVAL))
467
468 /* Similar to SUBST, but NEWVAL is an int expression. Note that substitution
469 for the value of a HOST_WIDE_INT value (including CONST_INT) is
470 not safe. */
471
472 static void
473 do_SUBST_INT (into, newval)
474 int *into, newval;
475 {
476 struct undo *buf;
477 int oldval = *into;
478
479 if (oldval == newval)
480 return;
481
482 if (undobuf.frees)
483 buf = undobuf.frees, undobuf.frees = buf->next;
484 else
485 buf = (struct undo *) xmalloc (sizeof (struct undo));
486
487 buf->is_int = 1;
488 buf->where.i = into;
489 buf->old_contents.i = oldval;
490 *into = newval;
491
492 buf->next = undobuf.undos, undobuf.undos = buf;
493 }
494
495 #define SUBST_INT(INTO, NEWVAL) do_SUBST_INT(&(INTO), (NEWVAL))
496 \f
497 /* Main entry point for combiner. F is the first insn of the function.
498 NREGS is the first unused pseudo-reg number.
499
500 Return non-zero if the combiner has turned an indirect jump
501 instruction into a direct jump. */
502 int
503 combine_instructions (f, nregs)
504 rtx f;
505 unsigned int nregs;
506 {
507 rtx insn, next;
508 #ifdef HAVE_cc0
509 rtx prev;
510 #endif
511 int i;
512 rtx links, nextlinks;
513
514 int new_direct_jump_p = 0;
515
516 combine_attempts = 0;
517 combine_merges = 0;
518 combine_extras = 0;
519 combine_successes = 0;
520
521 combine_max_regno = nregs;
522
523 reg_nonzero_bits = ((unsigned HOST_WIDE_INT *)
524 xcalloc (nregs, sizeof (unsigned HOST_WIDE_INT)));
525 reg_sign_bit_copies
526 = (unsigned char *) xcalloc (nregs, sizeof (unsigned char));
527
528 reg_last_death = (rtx *) xmalloc (nregs * sizeof (rtx));
529 reg_last_set = (rtx *) xmalloc (nregs * sizeof (rtx));
530 reg_last_set_value = (rtx *) xmalloc (nregs * sizeof (rtx));
531 reg_last_set_table_tick = (int *) xmalloc (nregs * sizeof (int));
532 reg_last_set_label = (int *) xmalloc (nregs * sizeof (int));
533 reg_last_set_invalid = (char *) xmalloc (nregs * sizeof (char));
534 reg_last_set_mode
535 = (enum machine_mode *) xmalloc (nregs * sizeof (enum machine_mode));
536 reg_last_set_nonzero_bits
537 = (unsigned HOST_WIDE_INT *) xmalloc (nregs * sizeof (HOST_WIDE_INT));
538 reg_last_set_sign_bit_copies
539 = (char *) xmalloc (nregs * sizeof (char));
540
541 init_reg_last_arrays ();
542
543 init_recog_no_volatile ();
544
545 /* Compute maximum uid value so uid_cuid can be allocated. */
546
547 for (insn = f, i = 0; insn; insn = NEXT_INSN (insn))
548 if (INSN_UID (insn) > i)
549 i = INSN_UID (insn);
550
551 uid_cuid = (int *) xmalloc ((i + 1) * sizeof (int));
552 max_uid_cuid = i;
553
554 nonzero_bits_mode = mode_for_size (HOST_BITS_PER_WIDE_INT, MODE_INT, 0);
555
556 /* Don't use reg_nonzero_bits when computing it. This can cause problems
557 when, for example, we have j <<= 1 in a loop. */
558
559 nonzero_sign_valid = 0;
560
561 /* Compute the mapping from uids to cuids.
562 Cuids are numbers assigned to insns, like uids,
563 except that cuids increase monotonically through the code.
564
565 Scan all SETs and see if we can deduce anything about what
566 bits are known to be zero for some registers and how many copies
567 of the sign bit are known to exist for those registers.
568
569 Also set any known values so that we can use it while searching
570 for what bits are known to be set. */
571
572 label_tick = 1;
573
574 /* We need to initialize it here, because record_dead_and_set_regs may call
575 get_last_value. */
576 subst_prev_insn = NULL_RTX;
577
578 setup_incoming_promotions ();
579
580 refresh_blocks = sbitmap_alloc (last_basic_block);
581 sbitmap_zero (refresh_blocks);
582 need_refresh = 0;
583
584 for (insn = f, i = 0; insn; insn = NEXT_INSN (insn))
585 {
586 uid_cuid[INSN_UID (insn)] = ++i;
587 subst_low_cuid = i;
588 subst_insn = insn;
589
590 if (INSN_P (insn))
591 {
592 note_stores (PATTERN (insn), set_nonzero_bits_and_sign_copies,
593 NULL);
594 record_dead_and_set_regs (insn);
595
596 #ifdef AUTO_INC_DEC
597 for (links = REG_NOTES (insn); links; links = XEXP (links, 1))
598 if (REG_NOTE_KIND (links) == REG_INC)
599 set_nonzero_bits_and_sign_copies (XEXP (links, 0), NULL_RTX,
600 NULL);
601 #endif
602 }
603
604 if (GET_CODE (insn) == CODE_LABEL)
605 label_tick++;
606 }
607
608 nonzero_sign_valid = 1;
609
610 /* Now scan all the insns in forward order. */
611
612 label_tick = 1;
613 last_call_cuid = 0;
614 mem_last_set = 0;
615 init_reg_last_arrays ();
616 setup_incoming_promotions ();
617
618 FOR_EACH_BB (this_basic_block)
619 {
620 for (insn = this_basic_block->head;
621 insn != NEXT_INSN (this_basic_block->end);
622 insn = next ? next : NEXT_INSN (insn))
623 {
624 next = 0;
625
626 if (GET_CODE (insn) == CODE_LABEL)
627 label_tick++;
628
629 else if (INSN_P (insn))
630 {
631 /* See if we know about function return values before this
632 insn based upon SUBREG flags. */
633 check_promoted_subreg (insn, PATTERN (insn));
634
635 /* Try this insn with each insn it links back to. */
636
637 for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
638 if ((next = try_combine (insn, XEXP (links, 0),
639 NULL_RTX, &new_direct_jump_p)) != 0)
640 goto retry;
641
642 /* Try each sequence of three linked insns ending with this one. */
643
644 for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
645 {
646 rtx link = XEXP (links, 0);
647
648 /* If the linked insn has been replaced by a note, then there
649 is no point in pursuing this chain any further. */
650 if (GET_CODE (link) == NOTE)
651 continue;
652
653 for (nextlinks = LOG_LINKS (link);
654 nextlinks;
655 nextlinks = XEXP (nextlinks, 1))
656 if ((next = try_combine (insn, link,
657 XEXP (nextlinks, 0),
658 &new_direct_jump_p)) != 0)
659 goto retry;
660 }
661
662 #ifdef HAVE_cc0
663 /* Try to combine a jump insn that uses CC0
664 with a preceding insn that sets CC0, and maybe with its
665 logical predecessor as well.
666 This is how we make decrement-and-branch insns.
667 We need this special code because data flow connections
668 via CC0 do not get entered in LOG_LINKS. */
669
670 if (GET_CODE (insn) == JUMP_INSN
671 && (prev = prev_nonnote_insn (insn)) != 0
672 && GET_CODE (prev) == INSN
673 && sets_cc0_p (PATTERN (prev)))
674 {
675 if ((next = try_combine (insn, prev,
676 NULL_RTX, &new_direct_jump_p)) != 0)
677 goto retry;
678
679 for (nextlinks = LOG_LINKS (prev); nextlinks;
680 nextlinks = XEXP (nextlinks, 1))
681 if ((next = try_combine (insn, prev,
682 XEXP (nextlinks, 0),
683 &new_direct_jump_p)) != 0)
684 goto retry;
685 }
686
687 /* Do the same for an insn that explicitly references CC0. */
688 if (GET_CODE (insn) == INSN
689 && (prev = prev_nonnote_insn (insn)) != 0
690 && GET_CODE (prev) == INSN
691 && sets_cc0_p (PATTERN (prev))
692 && GET_CODE (PATTERN (insn)) == SET
693 && reg_mentioned_p (cc0_rtx, SET_SRC (PATTERN (insn))))
694 {
695 if ((next = try_combine (insn, prev,
696 NULL_RTX, &new_direct_jump_p)) != 0)
697 goto retry;
698
699 for (nextlinks = LOG_LINKS (prev); nextlinks;
700 nextlinks = XEXP (nextlinks, 1))
701 if ((next = try_combine (insn, prev,
702 XEXP (nextlinks, 0),
703 &new_direct_jump_p)) != 0)
704 goto retry;
705 }
706
707 /* Finally, see if any of the insns that this insn links to
708 explicitly references CC0. If so, try this insn, that insn,
709 and its predecessor if it sets CC0. */
710 for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
711 if (GET_CODE (XEXP (links, 0)) == INSN
712 && GET_CODE (PATTERN (XEXP (links, 0))) == SET
713 && reg_mentioned_p (cc0_rtx, SET_SRC (PATTERN (XEXP (links, 0))))
714 && (prev = prev_nonnote_insn (XEXP (links, 0))) != 0
715 && GET_CODE (prev) == INSN
716 && sets_cc0_p (PATTERN (prev))
717 && (next = try_combine (insn, XEXP (links, 0),
718 prev, &new_direct_jump_p)) != 0)
719 goto retry;
720 #endif
721
722 /* Try combining an insn with two different insns whose results it
723 uses. */
724 for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
725 for (nextlinks = XEXP (links, 1); nextlinks;
726 nextlinks = XEXP (nextlinks, 1))
727 if ((next = try_combine (insn, XEXP (links, 0),
728 XEXP (nextlinks, 0),
729 &new_direct_jump_p)) != 0)
730 goto retry;
731
732 if (GET_CODE (insn) != NOTE)
733 record_dead_and_set_regs (insn);
734
735 retry:
736 ;
737 }
738 }
739 }
740 clear_bb_flags ();
741
742 EXECUTE_IF_SET_IN_SBITMAP (refresh_blocks, 0, i,
743 BASIC_BLOCK (i)->flags |= BB_DIRTY);
744 new_direct_jump_p |= purge_all_dead_edges (0);
745 delete_noop_moves (f);
746
747 update_life_info_in_dirty_blocks (UPDATE_LIFE_GLOBAL_RM_NOTES,
748 PROP_DEATH_NOTES | PROP_SCAN_DEAD_CODE
749 | PROP_KILL_DEAD_CODE);
750
751 /* Clean up. */
752 sbitmap_free (refresh_blocks);
753 free (reg_nonzero_bits);
754 free (reg_sign_bit_copies);
755 free (reg_last_death);
756 free (reg_last_set);
757 free (reg_last_set_value);
758 free (reg_last_set_table_tick);
759 free (reg_last_set_label);
760 free (reg_last_set_invalid);
761 free (reg_last_set_mode);
762 free (reg_last_set_nonzero_bits);
763 free (reg_last_set_sign_bit_copies);
764 free (uid_cuid);
765
766 {
767 struct undo *undo, *next;
768 for (undo = undobuf.frees; undo; undo = next)
769 {
770 next = undo->next;
771 free (undo);
772 }
773 undobuf.frees = 0;
774 }
775
776 total_attempts += combine_attempts;
777 total_merges += combine_merges;
778 total_extras += combine_extras;
779 total_successes += combine_successes;
780
781 nonzero_sign_valid = 0;
782
783 /* Make recognizer allow volatile MEMs again. */
784 init_recog ();
785
786 return new_direct_jump_p;
787 }
788
789 /* Wipe the reg_last_xxx arrays in preparation for another pass. */
790
791 static void
792 init_reg_last_arrays ()
793 {
794 unsigned int nregs = combine_max_regno;
795
796 memset ((char *) reg_last_death, 0, nregs * sizeof (rtx));
797 memset ((char *) reg_last_set, 0, nregs * sizeof (rtx));
798 memset ((char *) reg_last_set_value, 0, nregs * sizeof (rtx));
799 memset ((char *) reg_last_set_table_tick, 0, nregs * sizeof (int));
800 memset ((char *) reg_last_set_label, 0, nregs * sizeof (int));
801 memset (reg_last_set_invalid, 0, nregs * sizeof (char));
802 memset ((char *) reg_last_set_mode, 0, nregs * sizeof (enum machine_mode));
803 memset ((char *) reg_last_set_nonzero_bits, 0, nregs * sizeof (HOST_WIDE_INT));
804 memset (reg_last_set_sign_bit_copies, 0, nregs * sizeof (char));
805 }
806 \f
807 /* Set up any promoted values for incoming argument registers. */
808
809 static void
810 setup_incoming_promotions ()
811 {
812 #ifdef PROMOTE_FUNCTION_ARGS
813 unsigned int regno;
814 rtx reg;
815 enum machine_mode mode;
816 int unsignedp;
817 rtx first = get_insns ();
818
819 #ifndef OUTGOING_REGNO
820 #define OUTGOING_REGNO(N) N
821 #endif
822 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
823 /* Check whether this register can hold an incoming pointer
824 argument. FUNCTION_ARG_REGNO_P tests outgoing register
825 numbers, so translate if necessary due to register windows. */
826 if (FUNCTION_ARG_REGNO_P (OUTGOING_REGNO (regno))
827 && (reg = promoted_input_arg (regno, &mode, &unsignedp)) != 0)
828 {
829 record_value_for_reg
830 (reg, first, gen_rtx_fmt_e ((unsignedp ? ZERO_EXTEND
831 : SIGN_EXTEND),
832 GET_MODE (reg),
833 gen_rtx_CLOBBER (mode, const0_rtx)));
834 }
835 #endif
836 }
837 \f
838 /* Called via note_stores. If X is a pseudo that is narrower than
839 HOST_BITS_PER_WIDE_INT and is being set, record what bits are known zero.
840
841 If we are setting only a portion of X and we can't figure out what
842 portion, assume all bits will be used since we don't know what will
843 be happening.
844
845 Similarly, set how many bits of X are known to be copies of the sign bit
846 at all locations in the function. This is the smallest number implied
847 by any set of X. */
848
849 static void
850 set_nonzero_bits_and_sign_copies (x, set, data)
851 rtx x;
852 rtx set;
853 void *data ATTRIBUTE_UNUSED;
854 {
855 unsigned int num;
856
857 if (GET_CODE (x) == REG
858 && REGNO (x) >= FIRST_PSEUDO_REGISTER
859 /* If this register is undefined at the start of the file, we can't
860 say what its contents were. */
861 && ! REGNO_REG_SET_P (ENTRY_BLOCK_PTR->next_bb->global_live_at_start, REGNO (x))
862 && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT)
863 {
864 if (set == 0 || GET_CODE (set) == CLOBBER)
865 {
866 reg_nonzero_bits[REGNO (x)] = GET_MODE_MASK (GET_MODE (x));
867 reg_sign_bit_copies[REGNO (x)] = 1;
868 return;
869 }
870
871 /* If this is a complex assignment, see if we can convert it into a
872 simple assignment. */
873 set = expand_field_assignment (set);
874
875 /* If this is a simple assignment, or we have a paradoxical SUBREG,
876 set what we know about X. */
877
878 if (SET_DEST (set) == x
879 || (GET_CODE (SET_DEST (set)) == SUBREG
880 && (GET_MODE_SIZE (GET_MODE (SET_DEST (set)))
881 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (set)))))
882 && SUBREG_REG (SET_DEST (set)) == x))
883 {
884 rtx src = SET_SRC (set);
885
886 #ifdef SHORT_IMMEDIATES_SIGN_EXTEND
887 /* If X is narrower than a word and SRC is a non-negative
888 constant that would appear negative in the mode of X,
889 sign-extend it for use in reg_nonzero_bits because some
890 machines (maybe most) will actually do the sign-extension
891 and this is the conservative approach.
892
893 ??? For 2.5, try to tighten up the MD files in this regard
894 instead of this kludge. */
895
896 if (GET_MODE_BITSIZE (GET_MODE (x)) < BITS_PER_WORD
897 && GET_CODE (src) == CONST_INT
898 && INTVAL (src) > 0
899 && 0 != (INTVAL (src)
900 & ((HOST_WIDE_INT) 1
901 << (GET_MODE_BITSIZE (GET_MODE (x)) - 1))))
902 src = GEN_INT (INTVAL (src)
903 | ((HOST_WIDE_INT) (-1)
904 << GET_MODE_BITSIZE (GET_MODE (x))));
905 #endif
906
907 /* Don't call nonzero_bits if it cannot change anything. */
908 if (reg_nonzero_bits[REGNO (x)] != ~(unsigned HOST_WIDE_INT) 0)
909 reg_nonzero_bits[REGNO (x)]
910 |= nonzero_bits (src, nonzero_bits_mode);
911 num = num_sign_bit_copies (SET_SRC (set), GET_MODE (x));
912 if (reg_sign_bit_copies[REGNO (x)] == 0
913 || reg_sign_bit_copies[REGNO (x)] > num)
914 reg_sign_bit_copies[REGNO (x)] = num;
915 }
916 else
917 {
918 reg_nonzero_bits[REGNO (x)] = GET_MODE_MASK (GET_MODE (x));
919 reg_sign_bit_copies[REGNO (x)] = 1;
920 }
921 }
922 }
923 \f
924 /* See if INSN can be combined into I3. PRED and SUCC are optionally
925 insns that were previously combined into I3 or that will be combined
926 into the merger of INSN and I3.
927
928 Return 0 if the combination is not allowed for any reason.
929
930 If the combination is allowed, *PDEST will be set to the single
931 destination of INSN and *PSRC to the single source, and this function
932 will return 1. */
933
934 static int
935 can_combine_p (insn, i3, pred, succ, pdest, psrc)
936 rtx insn;
937 rtx i3;
938 rtx pred ATTRIBUTE_UNUSED;
939 rtx succ;
940 rtx *pdest, *psrc;
941 {
942 int i;
943 rtx set = 0, src, dest;
944 rtx p;
945 #ifdef AUTO_INC_DEC
946 rtx link;
947 #endif
948 int all_adjacent = (succ ? (next_active_insn (insn) == succ
949 && next_active_insn (succ) == i3)
950 : next_active_insn (insn) == i3);
951
952 /* Can combine only if previous insn is a SET of a REG, a SUBREG or CC0.
953 or a PARALLEL consisting of such a SET and CLOBBERs.
954
955 If INSN has CLOBBER parallel parts, ignore them for our processing.
956 By definition, these happen during the execution of the insn. When it
957 is merged with another insn, all bets are off. If they are, in fact,
958 needed and aren't also supplied in I3, they may be added by
959 recog_for_combine. Otherwise, it won't match.
960
961 We can also ignore a SET whose SET_DEST is mentioned in a REG_UNUSED
962 note.
963
964 Get the source and destination of INSN. If more than one, can't
965 combine. */
966
967 if (GET_CODE (PATTERN (insn)) == SET)
968 set = PATTERN (insn);
969 else if (GET_CODE (PATTERN (insn)) == PARALLEL
970 && GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == SET)
971 {
972 for (i = 0; i < XVECLEN (PATTERN (insn), 0); i++)
973 {
974 rtx elt = XVECEXP (PATTERN (insn), 0, i);
975
976 switch (GET_CODE (elt))
977 {
978 /* This is important to combine floating point insns
979 for the SH4 port. */
980 case USE:
981 /* Combining an isolated USE doesn't make sense.
982 We depend here on combinable_i3pat to reject them. */
983 /* The code below this loop only verifies that the inputs of
984 the SET in INSN do not change. We call reg_set_between_p
985 to verify that the REG in the USE does not change between
986 I3 and INSN.
987 If the USE in INSN was for a pseudo register, the matching
988 insn pattern will likely match any register; combining this
989 with any other USE would only be safe if we knew that the
990 used registers have identical values, or if there was
991 something to tell them apart, e.g. different modes. For
992 now, we forgo such complicated tests and simply disallow
993 combining of USES of pseudo registers with any other USE. */
994 if (GET_CODE (XEXP (elt, 0)) == REG
995 && GET_CODE (PATTERN (i3)) == PARALLEL)
996 {
997 rtx i3pat = PATTERN (i3);
998 int i = XVECLEN (i3pat, 0) - 1;
999 unsigned int regno = REGNO (XEXP (elt, 0));
1000
1001 do
1002 {
1003 rtx i3elt = XVECEXP (i3pat, 0, i);
1004
1005 if (GET_CODE (i3elt) == USE
1006 && GET_CODE (XEXP (i3elt, 0)) == REG
1007 && (REGNO (XEXP (i3elt, 0)) == regno
1008 ? reg_set_between_p (XEXP (elt, 0),
1009 PREV_INSN (insn), i3)
1010 : regno >= FIRST_PSEUDO_REGISTER))
1011 return 0;
1012 }
1013 while (--i >= 0);
1014 }
1015 break;
1016
1017 /* We can ignore CLOBBERs. */
1018 case CLOBBER:
1019 break;
1020
1021 case SET:
1022 /* Ignore SETs whose result isn't used but not those that
1023 have side-effects. */
1024 if (find_reg_note (insn, REG_UNUSED, SET_DEST (elt))
1025 && ! side_effects_p (elt))
1026 break;
1027
1028 /* If we have already found a SET, this is a second one and
1029 so we cannot combine with this insn. */
1030 if (set)
1031 return 0;
1032
1033 set = elt;
1034 break;
1035
1036 default:
1037 /* Anything else means we can't combine. */
1038 return 0;
1039 }
1040 }
1041
1042 if (set == 0
1043 /* If SET_SRC is an ASM_OPERANDS we can't throw away these CLOBBERs,
1044 so don't do anything with it. */
1045 || GET_CODE (SET_SRC (set)) == ASM_OPERANDS)
1046 return 0;
1047 }
1048 else
1049 return 0;
1050
1051 if (set == 0)
1052 return 0;
1053
1054 set = expand_field_assignment (set);
1055 src = SET_SRC (set), dest = SET_DEST (set);
1056
1057 /* Don't eliminate a store in the stack pointer. */
1058 if (dest == stack_pointer_rtx
1059 /* If we couldn't eliminate a field assignment, we can't combine. */
1060 || GET_CODE (dest) == ZERO_EXTRACT || GET_CODE (dest) == STRICT_LOW_PART
1061 /* Don't combine with an insn that sets a register to itself if it has
1062 a REG_EQUAL note. This may be part of a REG_NO_CONFLICT sequence. */
1063 || (rtx_equal_p (src, dest) && find_reg_note (insn, REG_EQUAL, NULL_RTX))
1064 /* Can't merge an ASM_OPERANDS. */
1065 || GET_CODE (src) == ASM_OPERANDS
1066 /* Can't merge a function call. */
1067 || GET_CODE (src) == CALL
1068 /* Don't eliminate a function call argument. */
1069 || (GET_CODE (i3) == CALL_INSN
1070 && (find_reg_fusage (i3, USE, dest)
1071 || (GET_CODE (dest) == REG
1072 && REGNO (dest) < FIRST_PSEUDO_REGISTER
1073 && global_regs[REGNO (dest)])))
1074 /* Don't substitute into an incremented register. */
1075 || FIND_REG_INC_NOTE (i3, dest)
1076 || (succ && FIND_REG_INC_NOTE (succ, dest))
1077 #if 0
1078 /* Don't combine the end of a libcall into anything. */
1079 /* ??? This gives worse code, and appears to be unnecessary, since no
1080 pass after flow uses REG_LIBCALL/REG_RETVAL notes. Local-alloc does
1081 use REG_RETVAL notes for noconflict blocks, but other code here
1082 makes sure that those insns don't disappear. */
1083 || find_reg_note (insn, REG_RETVAL, NULL_RTX)
1084 #endif
1085 /* Make sure that DEST is not used after SUCC but before I3. */
1086 || (succ && ! all_adjacent
1087 && reg_used_between_p (dest, succ, i3))
1088 /* Make sure that the value that is to be substituted for the register
1089 does not use any registers whose values alter in between. However,
1090 If the insns are adjacent, a use can't cross a set even though we
1091 think it might (this can happen for a sequence of insns each setting
1092 the same destination; reg_last_set of that register might point to
1093 a NOTE). If INSN has a REG_EQUIV note, the register is always
1094 equivalent to the memory so the substitution is valid even if there
1095 are intervening stores. Also, don't move a volatile asm or
1096 UNSPEC_VOLATILE across any other insns. */
1097 || (! all_adjacent
1098 && (((GET_CODE (src) != MEM
1099 || ! find_reg_note (insn, REG_EQUIV, src))
1100 && use_crosses_set_p (src, INSN_CUID (insn)))
1101 || (GET_CODE (src) == ASM_OPERANDS && MEM_VOLATILE_P (src))
1102 || GET_CODE (src) == UNSPEC_VOLATILE))
1103 /* If there is a REG_NO_CONFLICT note for DEST in I3 or SUCC, we get
1104 better register allocation by not doing the combine. */
1105 || find_reg_note (i3, REG_NO_CONFLICT, dest)
1106 || (succ && find_reg_note (succ, REG_NO_CONFLICT, dest))
1107 /* Don't combine across a CALL_INSN, because that would possibly
1108 change whether the life span of some REGs crosses calls or not,
1109 and it is a pain to update that information.
1110 Exception: if source is a constant, moving it later can't hurt.
1111 Accept that special case, because it helps -fforce-addr a lot. */
1112 || (INSN_CUID (insn) < last_call_cuid && ! CONSTANT_P (src)))
1113 return 0;
1114
1115 /* DEST must either be a REG or CC0. */
1116 if (GET_CODE (dest) == REG)
1117 {
1118 /* If register alignment is being enforced for multi-word items in all
1119 cases except for parameters, it is possible to have a register copy
1120 insn referencing a hard register that is not allowed to contain the
1121 mode being copied and which would not be valid as an operand of most
1122 insns. Eliminate this problem by not combining with such an insn.
1123
1124 Also, on some machines we don't want to extend the life of a hard
1125 register. */
1126
1127 if (GET_CODE (src) == REG
1128 && ((REGNO (dest) < FIRST_PSEUDO_REGISTER
1129 && ! HARD_REGNO_MODE_OK (REGNO (dest), GET_MODE (dest)))
1130 /* Don't extend the life of a hard register unless it is
1131 user variable (if we have few registers) or it can't
1132 fit into the desired register (meaning something special
1133 is going on).
1134 Also avoid substituting a return register into I3, because
1135 reload can't handle a conflict with constraints of other
1136 inputs. */
1137 || (REGNO (src) < FIRST_PSEUDO_REGISTER
1138 && ! HARD_REGNO_MODE_OK (REGNO (src), GET_MODE (src)))))
1139 return 0;
1140 }
1141 else if (GET_CODE (dest) != CC0)
1142 return 0;
1143
1144 /* Don't substitute for a register intended as a clobberable operand.
1145 Similarly, don't substitute an expression containing a register that
1146 will be clobbered in I3. */
1147 if (GET_CODE (PATTERN (i3)) == PARALLEL)
1148 for (i = XVECLEN (PATTERN (i3), 0) - 1; i >= 0; i--)
1149 if (GET_CODE (XVECEXP (PATTERN (i3), 0, i)) == CLOBBER
1150 && (reg_overlap_mentioned_p (XEXP (XVECEXP (PATTERN (i3), 0, i), 0),
1151 src)
1152 || rtx_equal_p (XEXP (XVECEXP (PATTERN (i3), 0, i), 0), dest)))
1153 return 0;
1154
1155 /* If INSN contains anything volatile, or is an `asm' (whether volatile
1156 or not), reject, unless nothing volatile comes between it and I3 */
1157
1158 if (GET_CODE (src) == ASM_OPERANDS || volatile_refs_p (src))
1159 {
1160 /* Make sure succ doesn't contain a volatile reference. */
1161 if (succ != 0 && volatile_refs_p (PATTERN (succ)))
1162 return 0;
1163
1164 for (p = NEXT_INSN (insn); p != i3; p = NEXT_INSN (p))
1165 if (INSN_P (p) && p != succ && volatile_refs_p (PATTERN (p)))
1166 return 0;
1167 }
1168
1169 /* If INSN is an asm, and DEST is a hard register, reject, since it has
1170 to be an explicit register variable, and was chosen for a reason. */
1171
1172 if (GET_CODE (src) == ASM_OPERANDS
1173 && GET_CODE (dest) == REG && REGNO (dest) < FIRST_PSEUDO_REGISTER)
1174 return 0;
1175
1176 /* If there are any volatile insns between INSN and I3, reject, because
1177 they might affect machine state. */
1178
1179 for (p = NEXT_INSN (insn); p != i3; p = NEXT_INSN (p))
1180 if (INSN_P (p) && p != succ && volatile_insn_p (PATTERN (p)))
1181 return 0;
1182
1183 /* If INSN or I2 contains an autoincrement or autodecrement,
1184 make sure that register is not used between there and I3,
1185 and not already used in I3 either.
1186 Also insist that I3 not be a jump; if it were one
1187 and the incremented register were spilled, we would lose. */
1188
1189 #ifdef AUTO_INC_DEC
1190 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1191 if (REG_NOTE_KIND (link) == REG_INC
1192 && (GET_CODE (i3) == JUMP_INSN
1193 || reg_used_between_p (XEXP (link, 0), insn, i3)
1194 || reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i3))))
1195 return 0;
1196 #endif
1197
1198 #ifdef HAVE_cc0
1199 /* Don't combine an insn that follows a CC0-setting insn.
1200 An insn that uses CC0 must not be separated from the one that sets it.
1201 We do, however, allow I2 to follow a CC0-setting insn if that insn
1202 is passed as I1; in that case it will be deleted also.
1203 We also allow combining in this case if all the insns are adjacent
1204 because that would leave the two CC0 insns adjacent as well.
1205 It would be more logical to test whether CC0 occurs inside I1 or I2,
1206 but that would be much slower, and this ought to be equivalent. */
1207
1208 p = prev_nonnote_insn (insn);
1209 if (p && p != pred && GET_CODE (p) == INSN && sets_cc0_p (PATTERN (p))
1210 && ! all_adjacent)
1211 return 0;
1212 #endif
1213
1214 /* If we get here, we have passed all the tests and the combination is
1215 to be allowed. */
1216
1217 *pdest = dest;
1218 *psrc = src;
1219
1220 return 1;
1221 }
1222 \f
1223 /* Check if PAT is an insn - or a part of it - used to set up an
1224 argument for a function in a hard register. */
1225
1226 static int
1227 sets_function_arg_p (pat)
1228 rtx pat;
1229 {
1230 int i;
1231 rtx inner_dest;
1232
1233 switch (GET_CODE (pat))
1234 {
1235 case INSN:
1236 return sets_function_arg_p (PATTERN (pat));
1237
1238 case PARALLEL:
1239 for (i = XVECLEN (pat, 0); --i >= 0;)
1240 if (sets_function_arg_p (XVECEXP (pat, 0, i)))
1241 return 1;
1242
1243 break;
1244
1245 case SET:
1246 inner_dest = SET_DEST (pat);
1247 while (GET_CODE (inner_dest) == STRICT_LOW_PART
1248 || GET_CODE (inner_dest) == SUBREG
1249 || GET_CODE (inner_dest) == ZERO_EXTRACT)
1250 inner_dest = XEXP (inner_dest, 0);
1251
1252 return (GET_CODE (inner_dest) == REG
1253 && REGNO (inner_dest) < FIRST_PSEUDO_REGISTER
1254 && FUNCTION_ARG_REGNO_P (REGNO (inner_dest)));
1255
1256 default:
1257 break;
1258 }
1259
1260 return 0;
1261 }
1262
1263 /* LOC is the location within I3 that contains its pattern or the component
1264 of a PARALLEL of the pattern. We validate that it is valid for combining.
1265
1266 One problem is if I3 modifies its output, as opposed to replacing it
1267 entirely, we can't allow the output to contain I2DEST or I1DEST as doing
1268 so would produce an insn that is not equivalent to the original insns.
1269
1270 Consider:
1271
1272 (set (reg:DI 101) (reg:DI 100))
1273 (set (subreg:SI (reg:DI 101) 0) <foo>)
1274
1275 This is NOT equivalent to:
1276
1277 (parallel [(set (subreg:SI (reg:DI 100) 0) <foo>)
1278 (set (reg:DI 101) (reg:DI 100))])
1279
1280 Not only does this modify 100 (in which case it might still be valid
1281 if 100 were dead in I2), it sets 101 to the ORIGINAL value of 100.
1282
1283 We can also run into a problem if I2 sets a register that I1
1284 uses and I1 gets directly substituted into I3 (not via I2). In that
1285 case, we would be getting the wrong value of I2DEST into I3, so we
1286 must reject the combination. This case occurs when I2 and I1 both
1287 feed into I3, rather than when I1 feeds into I2, which feeds into I3.
1288 If I1_NOT_IN_SRC is non-zero, it means that finding I1 in the source
1289 of a SET must prevent combination from occurring.
1290
1291 Before doing the above check, we first try to expand a field assignment
1292 into a set of logical operations.
1293
1294 If PI3_DEST_KILLED is non-zero, it is a pointer to a location in which
1295 we place a register that is both set and used within I3. If more than one
1296 such register is detected, we fail.
1297
1298 Return 1 if the combination is valid, zero otherwise. */
1299
1300 static int
1301 combinable_i3pat (i3, loc, i2dest, i1dest, i1_not_in_src, pi3dest_killed)
1302 rtx i3;
1303 rtx *loc;
1304 rtx i2dest;
1305 rtx i1dest;
1306 int i1_not_in_src;
1307 rtx *pi3dest_killed;
1308 {
1309 rtx x = *loc;
1310
1311 if (GET_CODE (x) == SET)
1312 {
1313 rtx set = expand_field_assignment (x);
1314 rtx dest = SET_DEST (set);
1315 rtx src = SET_SRC (set);
1316 rtx inner_dest = dest;
1317
1318 #if 0
1319 rtx inner_src = src;
1320 #endif
1321
1322 SUBST (*loc, set);
1323
1324 while (GET_CODE (inner_dest) == STRICT_LOW_PART
1325 || GET_CODE (inner_dest) == SUBREG
1326 || GET_CODE (inner_dest) == ZERO_EXTRACT)
1327 inner_dest = XEXP (inner_dest, 0);
1328
1329 /* We probably don't need this any more now that LIMIT_RELOAD_CLASS
1330 was added. */
1331 #if 0
1332 while (GET_CODE (inner_src) == STRICT_LOW_PART
1333 || GET_CODE (inner_src) == SUBREG
1334 || GET_CODE (inner_src) == ZERO_EXTRACT)
1335 inner_src = XEXP (inner_src, 0);
1336
1337 /* If it is better that two different modes keep two different pseudos,
1338 avoid combining them. This avoids producing the following pattern
1339 on a 386:
1340 (set (subreg:SI (reg/v:QI 21) 0)
1341 (lshiftrt:SI (reg/v:SI 20)
1342 (const_int 24)))
1343 If that were made, reload could not handle the pair of
1344 reg 20/21, since it would try to get any GENERAL_REGS
1345 but some of them don't handle QImode. */
1346
1347 if (rtx_equal_p (inner_src, i2dest)
1348 && GET_CODE (inner_dest) == REG
1349 && ! MODES_TIEABLE_P (GET_MODE (i2dest), GET_MODE (inner_dest)))
1350 return 0;
1351 #endif
1352
1353 /* Check for the case where I3 modifies its output, as
1354 discussed above. */
1355 if ((inner_dest != dest
1356 && (reg_overlap_mentioned_p (i2dest, inner_dest)
1357 || (i1dest && reg_overlap_mentioned_p (i1dest, inner_dest))))
1358
1359 /* This is the same test done in can_combine_p except we can't test
1360 all_adjacent; we don't have to, since this instruction will stay
1361 in place, thus we are not considering increasing the lifetime of
1362 INNER_DEST.
1363
1364 Also, if this insn sets a function argument, combining it with
1365 something that might need a spill could clobber a previous
1366 function argument; the all_adjacent test in can_combine_p also
1367 checks this; here, we do a more specific test for this case. */
1368
1369 || (GET_CODE (inner_dest) == REG
1370 && REGNO (inner_dest) < FIRST_PSEUDO_REGISTER
1371 && (! HARD_REGNO_MODE_OK (REGNO (inner_dest),
1372 GET_MODE (inner_dest))))
1373 || (i1_not_in_src && reg_overlap_mentioned_p (i1dest, src)))
1374 return 0;
1375
1376 /* If DEST is used in I3, it is being killed in this insn,
1377 so record that for later.
1378 Never add REG_DEAD notes for the FRAME_POINTER_REGNUM or the
1379 STACK_POINTER_REGNUM, since these are always considered to be
1380 live. Similarly for ARG_POINTER_REGNUM if it is fixed. */
1381 if (pi3dest_killed && GET_CODE (dest) == REG
1382 && reg_referenced_p (dest, PATTERN (i3))
1383 && REGNO (dest) != FRAME_POINTER_REGNUM
1384 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
1385 && REGNO (dest) != HARD_FRAME_POINTER_REGNUM
1386 #endif
1387 #if ARG_POINTER_REGNUM != FRAME_POINTER_REGNUM
1388 && (REGNO (dest) != ARG_POINTER_REGNUM
1389 || ! fixed_regs [REGNO (dest)])
1390 #endif
1391 && REGNO (dest) != STACK_POINTER_REGNUM)
1392 {
1393 if (*pi3dest_killed)
1394 return 0;
1395
1396 *pi3dest_killed = dest;
1397 }
1398 }
1399
1400 else if (GET_CODE (x) == PARALLEL)
1401 {
1402 int i;
1403
1404 for (i = 0; i < XVECLEN (x, 0); i++)
1405 if (! combinable_i3pat (i3, &XVECEXP (x, 0, i), i2dest, i1dest,
1406 i1_not_in_src, pi3dest_killed))
1407 return 0;
1408 }
1409
1410 return 1;
1411 }
1412 \f
1413 /* Return 1 if X is an arithmetic expression that contains a multiplication
1414 and division. We don't count multiplications by powers of two here. */
1415
1416 static int
1417 contains_muldiv (x)
1418 rtx x;
1419 {
1420 switch (GET_CODE (x))
1421 {
1422 case MOD: case DIV: case UMOD: case UDIV:
1423 return 1;
1424
1425 case MULT:
1426 return ! (GET_CODE (XEXP (x, 1)) == CONST_INT
1427 && exact_log2 (INTVAL (XEXP (x, 1))) >= 0);
1428 default:
1429 switch (GET_RTX_CLASS (GET_CODE (x)))
1430 {
1431 case 'c': case '<': case '2':
1432 return contains_muldiv (XEXP (x, 0))
1433 || contains_muldiv (XEXP (x, 1));
1434
1435 case '1':
1436 return contains_muldiv (XEXP (x, 0));
1437
1438 default:
1439 return 0;
1440 }
1441 }
1442 }
1443 \f
1444 /* Determine whether INSN can be used in a combination. Return nonzero if
1445 not. This is used in try_combine to detect early some cases where we
1446 can't perform combinations. */
1447
1448 static int
1449 cant_combine_insn_p (insn)
1450 rtx insn;
1451 {
1452 rtx set;
1453 rtx src, dest;
1454
1455 /* If this isn't really an insn, we can't do anything.
1456 This can occur when flow deletes an insn that it has merged into an
1457 auto-increment address. */
1458 if (! INSN_P (insn))
1459 return 1;
1460
1461 /* Never combine loads and stores involving hard regs. The register
1462 allocator can usually handle such reg-reg moves by tying. If we allow
1463 the combiner to make substitutions of hard regs, we risk aborting in
1464 reload on machines that have SMALL_REGISTER_CLASSES.
1465 As an exception, we allow combinations involving fixed regs; these are
1466 not available to the register allocator so there's no risk involved. */
1467
1468 set = single_set (insn);
1469 if (! set)
1470 return 0;
1471 src = SET_SRC (set);
1472 dest = SET_DEST (set);
1473 if (GET_CODE (src) == SUBREG)
1474 src = SUBREG_REG (src);
1475 if (GET_CODE (dest) == SUBREG)
1476 dest = SUBREG_REG (dest);
1477 if (REG_P (src) && REG_P (dest)
1478 && ((REGNO (src) < FIRST_PSEUDO_REGISTER
1479 && ! fixed_regs[REGNO (src)])
1480 || (REGNO (dest) < FIRST_PSEUDO_REGISTER
1481 && ! fixed_regs[REGNO (dest)])))
1482 return 1;
1483
1484 return 0;
1485 }
1486
1487 /* Try to combine the insns I1 and I2 into I3.
1488 Here I1 and I2 appear earlier than I3.
1489 I1 can be zero; then we combine just I2 into I3.
1490
1491 If we are combining three insns and the resulting insn is not recognized,
1492 try splitting it into two insns. If that happens, I2 and I3 are retained
1493 and I1 is pseudo-deleted by turning it into a NOTE. Otherwise, I1 and I2
1494 are pseudo-deleted.
1495
1496 Return 0 if the combination does not work. Then nothing is changed.
1497 If we did the combination, return the insn at which combine should
1498 resume scanning.
1499
1500 Set NEW_DIRECT_JUMP_P to a non-zero value if try_combine creates a
1501 new direct jump instruction. */
1502
1503 static rtx
1504 try_combine (i3, i2, i1, new_direct_jump_p)
1505 rtx i3, i2, i1;
1506 int *new_direct_jump_p;
1507 {
1508 /* New patterns for I3 and I2, respectively. */
1509 rtx newpat, newi2pat = 0;
1510 int substed_i2 = 0, substed_i1 = 0;
1511 /* Indicates need to preserve SET in I1 or I2 in I3 if it is not dead. */
1512 int added_sets_1, added_sets_2;
1513 /* Total number of SETs to put into I3. */
1514 int total_sets;
1515 /* Nonzero is I2's body now appears in I3. */
1516 int i2_is_used;
1517 /* INSN_CODEs for new I3, new I2, and user of condition code. */
1518 int insn_code_number, i2_code_number = 0, other_code_number = 0;
1519 /* Contains I3 if the destination of I3 is used in its source, which means
1520 that the old life of I3 is being killed. If that usage is placed into
1521 I2 and not in I3, a REG_DEAD note must be made. */
1522 rtx i3dest_killed = 0;
1523 /* SET_DEST and SET_SRC of I2 and I1. */
1524 rtx i2dest, i2src, i1dest = 0, i1src = 0;
1525 /* PATTERN (I2), or a copy of it in certain cases. */
1526 rtx i2pat;
1527 /* Indicates if I2DEST or I1DEST is in I2SRC or I1_SRC. */
1528 int i2dest_in_i2src = 0, i1dest_in_i1src = 0, i2dest_in_i1src = 0;
1529 int i1_feeds_i3 = 0;
1530 /* Notes that must be added to REG_NOTES in I3 and I2. */
1531 rtx new_i3_notes, new_i2_notes;
1532 /* Notes that we substituted I3 into I2 instead of the normal case. */
1533 int i3_subst_into_i2 = 0;
1534 /* Notes that I1, I2 or I3 is a MULT operation. */
1535 int have_mult = 0;
1536
1537 int maxreg;
1538 rtx temp;
1539 rtx link;
1540 int i;
1541
1542 /* Exit early if one of the insns involved can't be used for
1543 combinations. */
1544 if (cant_combine_insn_p (i3)
1545 || cant_combine_insn_p (i2)
1546 || (i1 && cant_combine_insn_p (i1))
1547 /* We also can't do anything if I3 has a
1548 REG_LIBCALL note since we don't want to disrupt the contiguity of a
1549 libcall. */
1550 #if 0
1551 /* ??? This gives worse code, and appears to be unnecessary, since no
1552 pass after flow uses REG_LIBCALL/REG_RETVAL notes. */
1553 || find_reg_note (i3, REG_LIBCALL, NULL_RTX)
1554 #endif
1555 )
1556 return 0;
1557
1558 combine_attempts++;
1559 undobuf.other_insn = 0;
1560
1561 /* Reset the hard register usage information. */
1562 CLEAR_HARD_REG_SET (newpat_used_regs);
1563
1564 /* If I1 and I2 both feed I3, they can be in any order. To simplify the
1565 code below, set I1 to be the earlier of the two insns. */
1566 if (i1 && INSN_CUID (i1) > INSN_CUID (i2))
1567 temp = i1, i1 = i2, i2 = temp;
1568
1569 added_links_insn = 0;
1570
1571 /* First check for one important special-case that the code below will
1572 not handle. Namely, the case where I1 is zero, I2 is a PARALLEL
1573 and I3 is a SET whose SET_SRC is a SET_DEST in I2. In that case,
1574 we may be able to replace that destination with the destination of I3.
1575 This occurs in the common code where we compute both a quotient and
1576 remainder into a structure, in which case we want to do the computation
1577 directly into the structure to avoid register-register copies.
1578
1579 Note that this case handles both multiple sets in I2 and also
1580 cases where I2 has a number of CLOBBER or PARALLELs.
1581
1582 We make very conservative checks below and only try to handle the
1583 most common cases of this. For example, we only handle the case
1584 where I2 and I3 are adjacent to avoid making difficult register
1585 usage tests. */
1586
1587 if (i1 == 0 && GET_CODE (i3) == INSN && GET_CODE (PATTERN (i3)) == SET
1588 && GET_CODE (SET_SRC (PATTERN (i3))) == REG
1589 && REGNO (SET_SRC (PATTERN (i3))) >= FIRST_PSEUDO_REGISTER
1590 && find_reg_note (i3, REG_DEAD, SET_SRC (PATTERN (i3)))
1591 && GET_CODE (PATTERN (i2)) == PARALLEL
1592 && ! side_effects_p (SET_DEST (PATTERN (i3)))
1593 /* If the dest of I3 is a ZERO_EXTRACT or STRICT_LOW_PART, the code
1594 below would need to check what is inside (and reg_overlap_mentioned_p
1595 doesn't support those codes anyway). Don't allow those destinations;
1596 the resulting insn isn't likely to be recognized anyway. */
1597 && GET_CODE (SET_DEST (PATTERN (i3))) != ZERO_EXTRACT
1598 && GET_CODE (SET_DEST (PATTERN (i3))) != STRICT_LOW_PART
1599 && ! reg_overlap_mentioned_p (SET_SRC (PATTERN (i3)),
1600 SET_DEST (PATTERN (i3)))
1601 && next_real_insn (i2) == i3)
1602 {
1603 rtx p2 = PATTERN (i2);
1604
1605 /* Make sure that the destination of I3,
1606 which we are going to substitute into one output of I2,
1607 is not used within another output of I2. We must avoid making this:
1608 (parallel [(set (mem (reg 69)) ...)
1609 (set (reg 69) ...)])
1610 which is not well-defined as to order of actions.
1611 (Besides, reload can't handle output reloads for this.)
1612
1613 The problem can also happen if the dest of I3 is a memory ref,
1614 if another dest in I2 is an indirect memory ref. */
1615 for (i = 0; i < XVECLEN (p2, 0); i++)
1616 if ((GET_CODE (XVECEXP (p2, 0, i)) == SET
1617 || GET_CODE (XVECEXP (p2, 0, i)) == CLOBBER)
1618 && reg_overlap_mentioned_p (SET_DEST (PATTERN (i3)),
1619 SET_DEST (XVECEXP (p2, 0, i))))
1620 break;
1621
1622 if (i == XVECLEN (p2, 0))
1623 for (i = 0; i < XVECLEN (p2, 0); i++)
1624 if ((GET_CODE (XVECEXP (p2, 0, i)) == SET
1625 || GET_CODE (XVECEXP (p2, 0, i)) == CLOBBER)
1626 && SET_DEST (XVECEXP (p2, 0, i)) == SET_SRC (PATTERN (i3)))
1627 {
1628 combine_merges++;
1629
1630 subst_insn = i3;
1631 subst_low_cuid = INSN_CUID (i2);
1632
1633 added_sets_2 = added_sets_1 = 0;
1634 i2dest = SET_SRC (PATTERN (i3));
1635
1636 /* Replace the dest in I2 with our dest and make the resulting
1637 insn the new pattern for I3. Then skip to where we
1638 validate the pattern. Everything was set up above. */
1639 SUBST (SET_DEST (XVECEXP (p2, 0, i)),
1640 SET_DEST (PATTERN (i3)));
1641
1642 newpat = p2;
1643 i3_subst_into_i2 = 1;
1644 goto validate_replacement;
1645 }
1646 }
1647
1648 /* If I2 is setting a double-word pseudo to a constant and I3 is setting
1649 one of those words to another constant, merge them by making a new
1650 constant. */
1651 if (i1 == 0
1652 && (temp = single_set (i2)) != 0
1653 && (GET_CODE (SET_SRC (temp)) == CONST_INT
1654 || GET_CODE (SET_SRC (temp)) == CONST_DOUBLE)
1655 && GET_CODE (SET_DEST (temp)) == REG
1656 && GET_MODE_CLASS (GET_MODE (SET_DEST (temp))) == MODE_INT
1657 && GET_MODE_SIZE (GET_MODE (SET_DEST (temp))) == 2 * UNITS_PER_WORD
1658 && GET_CODE (PATTERN (i3)) == SET
1659 && GET_CODE (SET_DEST (PATTERN (i3))) == SUBREG
1660 && SUBREG_REG (SET_DEST (PATTERN (i3))) == SET_DEST (temp)
1661 && GET_MODE_CLASS (GET_MODE (SET_DEST (PATTERN (i3)))) == MODE_INT
1662 && GET_MODE_SIZE (GET_MODE (SET_DEST (PATTERN (i3)))) == UNITS_PER_WORD
1663 && GET_CODE (SET_SRC (PATTERN (i3))) == CONST_INT)
1664 {
1665 HOST_WIDE_INT lo, hi;
1666
1667 if (GET_CODE (SET_SRC (temp)) == CONST_INT)
1668 lo = INTVAL (SET_SRC (temp)), hi = lo < 0 ? -1 : 0;
1669 else
1670 {
1671 lo = CONST_DOUBLE_LOW (SET_SRC (temp));
1672 hi = CONST_DOUBLE_HIGH (SET_SRC (temp));
1673 }
1674
1675 if (subreg_lowpart_p (SET_DEST (PATTERN (i3))))
1676 {
1677 /* We don't handle the case of the target word being wider
1678 than a host wide int. */
1679 if (HOST_BITS_PER_WIDE_INT < BITS_PER_WORD)
1680 abort ();
1681
1682 lo &= ~(UWIDE_SHIFT_LEFT_BY_BITS_PER_WORD (1) - 1);
1683 lo |= (INTVAL (SET_SRC (PATTERN (i3)))
1684 & (UWIDE_SHIFT_LEFT_BY_BITS_PER_WORD (1) - 1));
1685 }
1686 else if (HOST_BITS_PER_WIDE_INT == BITS_PER_WORD)
1687 hi = INTVAL (SET_SRC (PATTERN (i3)));
1688 else if (HOST_BITS_PER_WIDE_INT >= 2 * BITS_PER_WORD)
1689 {
1690 int sign = -(int) ((unsigned HOST_WIDE_INT) lo
1691 >> (HOST_BITS_PER_WIDE_INT - 1));
1692
1693 lo &= ~ (UWIDE_SHIFT_LEFT_BY_BITS_PER_WORD
1694 (UWIDE_SHIFT_LEFT_BY_BITS_PER_WORD (1) - 1));
1695 lo |= (UWIDE_SHIFT_LEFT_BY_BITS_PER_WORD
1696 (INTVAL (SET_SRC (PATTERN (i3)))));
1697 if (hi == sign)
1698 hi = lo < 0 ? -1 : 0;
1699 }
1700 else
1701 /* We don't handle the case of the higher word not fitting
1702 entirely in either hi or lo. */
1703 abort ();
1704
1705 combine_merges++;
1706 subst_insn = i3;
1707 subst_low_cuid = INSN_CUID (i2);
1708 added_sets_2 = added_sets_1 = 0;
1709 i2dest = SET_DEST (temp);
1710
1711 SUBST (SET_SRC (temp),
1712 immed_double_const (lo, hi, GET_MODE (SET_DEST (temp))));
1713
1714 newpat = PATTERN (i2);
1715 goto validate_replacement;
1716 }
1717
1718 #ifndef HAVE_cc0
1719 /* If we have no I1 and I2 looks like:
1720 (parallel [(set (reg:CC X) (compare:CC OP (const_int 0)))
1721 (set Y OP)])
1722 make up a dummy I1 that is
1723 (set Y OP)
1724 and change I2 to be
1725 (set (reg:CC X) (compare:CC Y (const_int 0)))
1726
1727 (We can ignore any trailing CLOBBERs.)
1728
1729 This undoes a previous combination and allows us to match a branch-and-
1730 decrement insn. */
1731
1732 if (i1 == 0 && GET_CODE (PATTERN (i2)) == PARALLEL
1733 && XVECLEN (PATTERN (i2), 0) >= 2
1734 && GET_CODE (XVECEXP (PATTERN (i2), 0, 0)) == SET
1735 && (GET_MODE_CLASS (GET_MODE (SET_DEST (XVECEXP (PATTERN (i2), 0, 0))))
1736 == MODE_CC)
1737 && GET_CODE (SET_SRC (XVECEXP (PATTERN (i2), 0, 0))) == COMPARE
1738 && XEXP (SET_SRC (XVECEXP (PATTERN (i2), 0, 0)), 1) == const0_rtx
1739 && GET_CODE (XVECEXP (PATTERN (i2), 0, 1)) == SET
1740 && GET_CODE (SET_DEST (XVECEXP (PATTERN (i2), 0, 1))) == REG
1741 && rtx_equal_p (XEXP (SET_SRC (XVECEXP (PATTERN (i2), 0, 0)), 0),
1742 SET_SRC (XVECEXP (PATTERN (i2), 0, 1))))
1743 {
1744 for (i = XVECLEN (PATTERN (i2), 0) - 1; i >= 2; i--)
1745 if (GET_CODE (XVECEXP (PATTERN (i2), 0, i)) != CLOBBER)
1746 break;
1747
1748 if (i == 1)
1749 {
1750 /* We make I1 with the same INSN_UID as I2. This gives it
1751 the same INSN_CUID for value tracking. Our fake I1 will
1752 never appear in the insn stream so giving it the same INSN_UID
1753 as I2 will not cause a problem. */
1754
1755 subst_prev_insn = i1
1756 = gen_rtx_INSN (VOIDmode, INSN_UID (i2), NULL_RTX, i2,
1757 BLOCK_FOR_INSN (i2), INSN_SCOPE (i2),
1758 XVECEXP (PATTERN (i2), 0, 1), -1, NULL_RTX,
1759 NULL_RTX);
1760
1761 SUBST (PATTERN (i2), XVECEXP (PATTERN (i2), 0, 0));
1762 SUBST (XEXP (SET_SRC (PATTERN (i2)), 0),
1763 SET_DEST (PATTERN (i1)));
1764 }
1765 }
1766 #endif
1767
1768 /* Verify that I2 and I1 are valid for combining. */
1769 if (! can_combine_p (i2, i3, i1, NULL_RTX, &i2dest, &i2src)
1770 || (i1 && ! can_combine_p (i1, i3, NULL_RTX, i2, &i1dest, &i1src)))
1771 {
1772 undo_all ();
1773 return 0;
1774 }
1775
1776 /* Record whether I2DEST is used in I2SRC and similarly for the other
1777 cases. Knowing this will help in register status updating below. */
1778 i2dest_in_i2src = reg_overlap_mentioned_p (i2dest, i2src);
1779 i1dest_in_i1src = i1 && reg_overlap_mentioned_p (i1dest, i1src);
1780 i2dest_in_i1src = i1 && reg_overlap_mentioned_p (i2dest, i1src);
1781
1782 /* See if I1 directly feeds into I3. It does if I1DEST is not used
1783 in I2SRC. */
1784 i1_feeds_i3 = i1 && ! reg_overlap_mentioned_p (i1dest, i2src);
1785
1786 /* Ensure that I3's pattern can be the destination of combines. */
1787 if (! combinable_i3pat (i3, &PATTERN (i3), i2dest, i1dest,
1788 i1 && i2dest_in_i1src && i1_feeds_i3,
1789 &i3dest_killed))
1790 {
1791 undo_all ();
1792 return 0;
1793 }
1794
1795 /* See if any of the insns is a MULT operation. Unless one is, we will
1796 reject a combination that is, since it must be slower. Be conservative
1797 here. */
1798 if (GET_CODE (i2src) == MULT
1799 || (i1 != 0 && GET_CODE (i1src) == MULT)
1800 || (GET_CODE (PATTERN (i3)) == SET
1801 && GET_CODE (SET_SRC (PATTERN (i3))) == MULT))
1802 have_mult = 1;
1803
1804 /* If I3 has an inc, then give up if I1 or I2 uses the reg that is inc'd.
1805 We used to do this EXCEPT in one case: I3 has a post-inc in an
1806 output operand. However, that exception can give rise to insns like
1807 mov r3,(r3)+
1808 which is a famous insn on the PDP-11 where the value of r3 used as the
1809 source was model-dependent. Avoid this sort of thing. */
1810
1811 #if 0
1812 if (!(GET_CODE (PATTERN (i3)) == SET
1813 && GET_CODE (SET_SRC (PATTERN (i3))) == REG
1814 && GET_CODE (SET_DEST (PATTERN (i3))) == MEM
1815 && (GET_CODE (XEXP (SET_DEST (PATTERN (i3)), 0)) == POST_INC
1816 || GET_CODE (XEXP (SET_DEST (PATTERN (i3)), 0)) == POST_DEC)))
1817 /* It's not the exception. */
1818 #endif
1819 #ifdef AUTO_INC_DEC
1820 for (link = REG_NOTES (i3); link; link = XEXP (link, 1))
1821 if (REG_NOTE_KIND (link) == REG_INC
1822 && (reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i2))
1823 || (i1 != 0
1824 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i1)))))
1825 {
1826 undo_all ();
1827 return 0;
1828 }
1829 #endif
1830
1831 /* See if the SETs in I1 or I2 need to be kept around in the merged
1832 instruction: whenever the value set there is still needed past I3.
1833 For the SETs in I2, this is easy: we see if I2DEST dies or is set in I3.
1834
1835 For the SET in I1, we have two cases: If I1 and I2 independently
1836 feed into I3, the set in I1 needs to be kept around if I1DEST dies
1837 or is set in I3. Otherwise (if I1 feeds I2 which feeds I3), the set
1838 in I1 needs to be kept around unless I1DEST dies or is set in either
1839 I2 or I3. We can distinguish these cases by seeing if I2SRC mentions
1840 I1DEST. If so, we know I1 feeds into I2. */
1841
1842 added_sets_2 = ! dead_or_set_p (i3, i2dest);
1843
1844 added_sets_1
1845 = i1 && ! (i1_feeds_i3 ? dead_or_set_p (i3, i1dest)
1846 : (dead_or_set_p (i3, i1dest) || dead_or_set_p (i2, i1dest)));
1847
1848 /* If the set in I2 needs to be kept around, we must make a copy of
1849 PATTERN (I2), so that when we substitute I1SRC for I1DEST in
1850 PATTERN (I2), we are only substituting for the original I1DEST, not into
1851 an already-substituted copy. This also prevents making self-referential
1852 rtx. If I2 is a PARALLEL, we just need the piece that assigns I2SRC to
1853 I2DEST. */
1854
1855 i2pat = (GET_CODE (PATTERN (i2)) == PARALLEL
1856 ? gen_rtx_SET (VOIDmode, i2dest, i2src)
1857 : PATTERN (i2));
1858
1859 if (added_sets_2)
1860 i2pat = copy_rtx (i2pat);
1861
1862 combine_merges++;
1863
1864 /* Substitute in the latest insn for the regs set by the earlier ones. */
1865
1866 maxreg = max_reg_num ();
1867
1868 subst_insn = i3;
1869
1870 /* It is possible that the source of I2 or I1 may be performing an
1871 unneeded operation, such as a ZERO_EXTEND of something that is known
1872 to have the high part zero. Handle that case by letting subst look at
1873 the innermost one of them.
1874
1875 Another way to do this would be to have a function that tries to
1876 simplify a single insn instead of merging two or more insns. We don't
1877 do this because of the potential of infinite loops and because
1878 of the potential extra memory required. However, doing it the way
1879 we are is a bit of a kludge and doesn't catch all cases.
1880
1881 But only do this if -fexpensive-optimizations since it slows things down
1882 and doesn't usually win. */
1883
1884 if (flag_expensive_optimizations)
1885 {
1886 /* Pass pc_rtx so no substitutions are done, just simplifications.
1887 The cases that we are interested in here do not involve the few
1888 cases were is_replaced is checked. */
1889 if (i1)
1890 {
1891 subst_low_cuid = INSN_CUID (i1);
1892 i1src = subst (i1src, pc_rtx, pc_rtx, 0, 0);
1893 }
1894 else
1895 {
1896 subst_low_cuid = INSN_CUID (i2);
1897 i2src = subst (i2src, pc_rtx, pc_rtx, 0, 0);
1898 }
1899 }
1900
1901 #ifndef HAVE_cc0
1902 /* Many machines that don't use CC0 have insns that can both perform an
1903 arithmetic operation and set the condition code. These operations will
1904 be represented as a PARALLEL with the first element of the vector
1905 being a COMPARE of an arithmetic operation with the constant zero.
1906 The second element of the vector will set some pseudo to the result
1907 of the same arithmetic operation. If we simplify the COMPARE, we won't
1908 match such a pattern and so will generate an extra insn. Here we test
1909 for this case, where both the comparison and the operation result are
1910 needed, and make the PARALLEL by just replacing I2DEST in I3SRC with
1911 I2SRC. Later we will make the PARALLEL that contains I2. */
1912
1913 if (i1 == 0 && added_sets_2 && GET_CODE (PATTERN (i3)) == SET
1914 && GET_CODE (SET_SRC (PATTERN (i3))) == COMPARE
1915 && XEXP (SET_SRC (PATTERN (i3)), 1) == const0_rtx
1916 && rtx_equal_p (XEXP (SET_SRC (PATTERN (i3)), 0), i2dest))
1917 {
1918 #ifdef EXTRA_CC_MODES
1919 rtx *cc_use;
1920 enum machine_mode compare_mode;
1921 #endif
1922
1923 newpat = PATTERN (i3);
1924 SUBST (XEXP (SET_SRC (newpat), 0), i2src);
1925
1926 i2_is_used = 1;
1927
1928 #ifdef EXTRA_CC_MODES
1929 /* See if a COMPARE with the operand we substituted in should be done
1930 with the mode that is currently being used. If not, do the same
1931 processing we do in `subst' for a SET; namely, if the destination
1932 is used only once, try to replace it with a register of the proper
1933 mode and also replace the COMPARE. */
1934 if (undobuf.other_insn == 0
1935 && (cc_use = find_single_use (SET_DEST (newpat), i3,
1936 &undobuf.other_insn))
1937 && ((compare_mode = SELECT_CC_MODE (GET_CODE (*cc_use),
1938 i2src, const0_rtx))
1939 != GET_MODE (SET_DEST (newpat))))
1940 {
1941 unsigned int regno = REGNO (SET_DEST (newpat));
1942 rtx new_dest = gen_rtx_REG (compare_mode, regno);
1943
1944 if (regno < FIRST_PSEUDO_REGISTER
1945 || (REG_N_SETS (regno) == 1 && ! added_sets_2
1946 && ! REG_USERVAR_P (SET_DEST (newpat))))
1947 {
1948 if (regno >= FIRST_PSEUDO_REGISTER)
1949 SUBST (regno_reg_rtx[regno], new_dest);
1950
1951 SUBST (SET_DEST (newpat), new_dest);
1952 SUBST (XEXP (*cc_use, 0), new_dest);
1953 SUBST (SET_SRC (newpat),
1954 gen_rtx_COMPARE (compare_mode, i2src, const0_rtx));
1955 }
1956 else
1957 undobuf.other_insn = 0;
1958 }
1959 #endif
1960 }
1961 else
1962 #endif
1963 {
1964 n_occurrences = 0; /* `subst' counts here */
1965
1966 /* If I1 feeds into I2 (not into I3) and I1DEST is in I1SRC, we
1967 need to make a unique copy of I2SRC each time we substitute it
1968 to avoid self-referential rtl. */
1969
1970 subst_low_cuid = INSN_CUID (i2);
1971 newpat = subst (PATTERN (i3), i2dest, i2src, 0,
1972 ! i1_feeds_i3 && i1dest_in_i1src);
1973 substed_i2 = 1;
1974
1975 /* Record whether i2's body now appears within i3's body. */
1976 i2_is_used = n_occurrences;
1977 }
1978
1979 /* If we already got a failure, don't try to do more. Otherwise,
1980 try to substitute in I1 if we have it. */
1981
1982 if (i1 && GET_CODE (newpat) != CLOBBER)
1983 {
1984 /* Before we can do this substitution, we must redo the test done
1985 above (see detailed comments there) that ensures that I1DEST
1986 isn't mentioned in any SETs in NEWPAT that are field assignments. */
1987
1988 if (! combinable_i3pat (NULL_RTX, &newpat, i1dest, NULL_RTX,
1989 0, (rtx*) 0))
1990 {
1991 undo_all ();
1992 return 0;
1993 }
1994
1995 n_occurrences = 0;
1996 subst_low_cuid = INSN_CUID (i1);
1997 newpat = subst (newpat, i1dest, i1src, 0, 0);
1998 substed_i1 = 1;
1999 }
2000
2001 /* Fail if an autoincrement side-effect has been duplicated. Be careful
2002 to count all the ways that I2SRC and I1SRC can be used. */
2003 if ((FIND_REG_INC_NOTE (i2, NULL_RTX) != 0
2004 && i2_is_used + added_sets_2 > 1)
2005 || (i1 != 0 && FIND_REG_INC_NOTE (i1, NULL_RTX) != 0
2006 && (n_occurrences + added_sets_1 + (added_sets_2 && ! i1_feeds_i3)
2007 > 1))
2008 /* Fail if we tried to make a new register (we used to abort, but there's
2009 really no reason to). */
2010 || max_reg_num () != maxreg
2011 /* Fail if we couldn't do something and have a CLOBBER. */
2012 || GET_CODE (newpat) == CLOBBER
2013 /* Fail if this new pattern is a MULT and we didn't have one before
2014 at the outer level. */
2015 || (GET_CODE (newpat) == SET && GET_CODE (SET_SRC (newpat)) == MULT
2016 && ! have_mult))
2017 {
2018 undo_all ();
2019 return 0;
2020 }
2021
2022 /* If the actions of the earlier insns must be kept
2023 in addition to substituting them into the latest one,
2024 we must make a new PARALLEL for the latest insn
2025 to hold additional the SETs. */
2026
2027 if (added_sets_1 || added_sets_2)
2028 {
2029 combine_extras++;
2030
2031 if (GET_CODE (newpat) == PARALLEL)
2032 {
2033 rtvec old = XVEC (newpat, 0);
2034 total_sets = XVECLEN (newpat, 0) + added_sets_1 + added_sets_2;
2035 newpat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (total_sets));
2036 memcpy (XVEC (newpat, 0)->elem, &old->elem[0],
2037 sizeof (old->elem[0]) * old->num_elem);
2038 }
2039 else
2040 {
2041 rtx old = newpat;
2042 total_sets = 1 + added_sets_1 + added_sets_2;
2043 newpat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (total_sets));
2044 XVECEXP (newpat, 0, 0) = old;
2045 }
2046
2047 if (added_sets_1)
2048 XVECEXP (newpat, 0, --total_sets)
2049 = (GET_CODE (PATTERN (i1)) == PARALLEL
2050 ? gen_rtx_SET (VOIDmode, i1dest, i1src) : PATTERN (i1));
2051
2052 if (added_sets_2)
2053 {
2054 /* If there is no I1, use I2's body as is. We used to also not do
2055 the subst call below if I2 was substituted into I3,
2056 but that could lose a simplification. */
2057 if (i1 == 0)
2058 XVECEXP (newpat, 0, --total_sets) = i2pat;
2059 else
2060 /* See comment where i2pat is assigned. */
2061 XVECEXP (newpat, 0, --total_sets)
2062 = subst (i2pat, i1dest, i1src, 0, 0);
2063 }
2064 }
2065
2066 /* We come here when we are replacing a destination in I2 with the
2067 destination of I3. */
2068 validate_replacement:
2069
2070 /* Note which hard regs this insn has as inputs. */
2071 mark_used_regs_combine (newpat);
2072
2073 /* Is the result of combination a valid instruction? */
2074 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
2075
2076 /* If the result isn't valid, see if it is a PARALLEL of two SETs where
2077 the second SET's destination is a register that is unused. In that case,
2078 we just need the first SET. This can occur when simplifying a divmod
2079 insn. We *must* test for this case here because the code below that
2080 splits two independent SETs doesn't handle this case correctly when it
2081 updates the register status. Also check the case where the first
2082 SET's destination is unused. That would not cause incorrect code, but
2083 does cause an unneeded insn to remain. */
2084
2085 if (insn_code_number < 0 && GET_CODE (newpat) == PARALLEL
2086 && XVECLEN (newpat, 0) == 2
2087 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
2088 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
2089 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) == REG
2090 && find_reg_note (i3, REG_UNUSED, SET_DEST (XVECEXP (newpat, 0, 1)))
2091 && ! side_effects_p (SET_SRC (XVECEXP (newpat, 0, 1)))
2092 && asm_noperands (newpat) < 0)
2093 {
2094 newpat = XVECEXP (newpat, 0, 0);
2095 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
2096 }
2097
2098 else if (insn_code_number < 0 && GET_CODE (newpat) == PARALLEL
2099 && XVECLEN (newpat, 0) == 2
2100 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
2101 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
2102 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) == REG
2103 && find_reg_note (i3, REG_UNUSED, SET_DEST (XVECEXP (newpat, 0, 0)))
2104 && ! side_effects_p (SET_SRC (XVECEXP (newpat, 0, 0)))
2105 && asm_noperands (newpat) < 0)
2106 {
2107 newpat = XVECEXP (newpat, 0, 1);
2108 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
2109 }
2110
2111 /* If we were combining three insns and the result is a simple SET
2112 with no ASM_OPERANDS that wasn't recognized, try to split it into two
2113 insns. There are two ways to do this. It can be split using a
2114 machine-specific method (like when you have an addition of a large
2115 constant) or by combine in the function find_split_point. */
2116
2117 if (i1 && insn_code_number < 0 && GET_CODE (newpat) == SET
2118 && asm_noperands (newpat) < 0)
2119 {
2120 rtx m_split, *split;
2121 rtx ni2dest = i2dest;
2122
2123 /* See if the MD file can split NEWPAT. If it can't, see if letting it
2124 use I2DEST as a scratch register will help. In the latter case,
2125 convert I2DEST to the mode of the source of NEWPAT if we can. */
2126
2127 m_split = split_insns (newpat, i3);
2128
2129 /* We can only use I2DEST as a scratch reg if it doesn't overlap any
2130 inputs of NEWPAT. */
2131
2132 /* ??? If I2DEST is not safe, and I1DEST exists, then it would be
2133 possible to try that as a scratch reg. This would require adding
2134 more code to make it work though. */
2135
2136 if (m_split == 0 && ! reg_overlap_mentioned_p (ni2dest, newpat))
2137 {
2138 /* If I2DEST is a hard register or the only use of a pseudo,
2139 we can change its mode. */
2140 if (GET_MODE (SET_DEST (newpat)) != GET_MODE (i2dest)
2141 && GET_MODE (SET_DEST (newpat)) != VOIDmode
2142 && GET_CODE (i2dest) == REG
2143 && (REGNO (i2dest) < FIRST_PSEUDO_REGISTER
2144 || (REG_N_SETS (REGNO (i2dest)) == 1 && ! added_sets_2
2145 && ! REG_USERVAR_P (i2dest))))
2146 ni2dest = gen_rtx_REG (GET_MODE (SET_DEST (newpat)),
2147 REGNO (i2dest));
2148
2149 m_split = split_insns (gen_rtx_PARALLEL
2150 (VOIDmode,
2151 gen_rtvec (2, newpat,
2152 gen_rtx_CLOBBER (VOIDmode,
2153 ni2dest))),
2154 i3);
2155 /* If the split with the mode-changed register didn't work, try
2156 the original register. */
2157 if (! m_split && ni2dest != i2dest)
2158 {
2159 ni2dest = i2dest;
2160 m_split = split_insns (gen_rtx_PARALLEL
2161 (VOIDmode,
2162 gen_rtvec (2, newpat,
2163 gen_rtx_CLOBBER (VOIDmode,
2164 i2dest))),
2165 i3);
2166 }
2167 }
2168
2169 if (m_split && NEXT_INSN (m_split) == NULL_RTX)
2170 {
2171 m_split = PATTERN (m_split);
2172 insn_code_number = recog_for_combine (&m_split, i3, &new_i3_notes);
2173 if (insn_code_number >= 0)
2174 newpat = m_split;
2175 }
2176 else if (m_split && NEXT_INSN (NEXT_INSN (m_split)) == NULL_RTX
2177 && (next_real_insn (i2) == i3
2178 || ! use_crosses_set_p (PATTERN (m_split), INSN_CUID (i2))))
2179 {
2180 rtx i2set, i3set;
2181 rtx newi3pat = PATTERN (NEXT_INSN (m_split));
2182 newi2pat = PATTERN (m_split);
2183
2184 i3set = single_set (NEXT_INSN (m_split));
2185 i2set = single_set (m_split);
2186
2187 /* In case we changed the mode of I2DEST, replace it in the
2188 pseudo-register table here. We can't do it above in case this
2189 code doesn't get executed and we do a split the other way. */
2190
2191 if (REGNO (i2dest) >= FIRST_PSEUDO_REGISTER)
2192 SUBST (regno_reg_rtx[REGNO (i2dest)], ni2dest);
2193
2194 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
2195
2196 /* If I2 or I3 has multiple SETs, we won't know how to track
2197 register status, so don't use these insns. If I2's destination
2198 is used between I2 and I3, we also can't use these insns. */
2199
2200 if (i2_code_number >= 0 && i2set && i3set
2201 && (next_real_insn (i2) == i3
2202 || ! reg_used_between_p (SET_DEST (i2set), i2, i3)))
2203 insn_code_number = recog_for_combine (&newi3pat, i3,
2204 &new_i3_notes);
2205 if (insn_code_number >= 0)
2206 newpat = newi3pat;
2207
2208 /* It is possible that both insns now set the destination of I3.
2209 If so, we must show an extra use of it. */
2210
2211 if (insn_code_number >= 0)
2212 {
2213 rtx new_i3_dest = SET_DEST (i3set);
2214 rtx new_i2_dest = SET_DEST (i2set);
2215
2216 while (GET_CODE (new_i3_dest) == ZERO_EXTRACT
2217 || GET_CODE (new_i3_dest) == STRICT_LOW_PART
2218 || GET_CODE (new_i3_dest) == SUBREG)
2219 new_i3_dest = XEXP (new_i3_dest, 0);
2220
2221 while (GET_CODE (new_i2_dest) == ZERO_EXTRACT
2222 || GET_CODE (new_i2_dest) == STRICT_LOW_PART
2223 || GET_CODE (new_i2_dest) == SUBREG)
2224 new_i2_dest = XEXP (new_i2_dest, 0);
2225
2226 if (GET_CODE (new_i3_dest) == REG
2227 && GET_CODE (new_i2_dest) == REG
2228 && REGNO (new_i3_dest) == REGNO (new_i2_dest))
2229 REG_N_SETS (REGNO (new_i2_dest))++;
2230 }
2231 }
2232
2233 /* If we can split it and use I2DEST, go ahead and see if that
2234 helps things be recognized. Verify that none of the registers
2235 are set between I2 and I3. */
2236 if (insn_code_number < 0 && (split = find_split_point (&newpat, i3)) != 0
2237 #ifdef HAVE_cc0
2238 && GET_CODE (i2dest) == REG
2239 #endif
2240 /* We need I2DEST in the proper mode. If it is a hard register
2241 or the only use of a pseudo, we can change its mode. */
2242 && (GET_MODE (*split) == GET_MODE (i2dest)
2243 || GET_MODE (*split) == VOIDmode
2244 || REGNO (i2dest) < FIRST_PSEUDO_REGISTER
2245 || (REG_N_SETS (REGNO (i2dest)) == 1 && ! added_sets_2
2246 && ! REG_USERVAR_P (i2dest)))
2247 && (next_real_insn (i2) == i3
2248 || ! use_crosses_set_p (*split, INSN_CUID (i2)))
2249 /* We can't overwrite I2DEST if its value is still used by
2250 NEWPAT. */
2251 && ! reg_referenced_p (i2dest, newpat))
2252 {
2253 rtx newdest = i2dest;
2254 enum rtx_code split_code = GET_CODE (*split);
2255 enum machine_mode split_mode = GET_MODE (*split);
2256
2257 /* Get NEWDEST as a register in the proper mode. We have already
2258 validated that we can do this. */
2259 if (GET_MODE (i2dest) != split_mode && split_mode != VOIDmode)
2260 {
2261 newdest = gen_rtx_REG (split_mode, REGNO (i2dest));
2262
2263 if (REGNO (i2dest) >= FIRST_PSEUDO_REGISTER)
2264 SUBST (regno_reg_rtx[REGNO (i2dest)], newdest);
2265 }
2266
2267 /* If *SPLIT is a (mult FOO (const_int pow2)), convert it to
2268 an ASHIFT. This can occur if it was inside a PLUS and hence
2269 appeared to be a memory address. This is a kludge. */
2270 if (split_code == MULT
2271 && GET_CODE (XEXP (*split, 1)) == CONST_INT
2272 && INTVAL (XEXP (*split, 1)) > 0
2273 && (i = exact_log2 (INTVAL (XEXP (*split, 1)))) >= 0)
2274 {
2275 SUBST (*split, gen_rtx_ASHIFT (split_mode,
2276 XEXP (*split, 0), GEN_INT (i)));
2277 /* Update split_code because we may not have a multiply
2278 anymore. */
2279 split_code = GET_CODE (*split);
2280 }
2281
2282 #ifdef INSN_SCHEDULING
2283 /* If *SPLIT is a paradoxical SUBREG, when we split it, it should
2284 be written as a ZERO_EXTEND. */
2285 if (split_code == SUBREG && GET_CODE (SUBREG_REG (*split)) == MEM)
2286 {
2287 #ifdef LOAD_EXTEND_OP
2288 /* Or as a SIGN_EXTEND if LOAD_EXTEND_OP says that that's
2289 what it really is. */
2290 if (LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (*split)))
2291 == SIGN_EXTEND)
2292 SUBST (*split, gen_rtx_SIGN_EXTEND (split_mode,
2293 SUBREG_REG (*split)));
2294 else
2295 #endif
2296 SUBST (*split, gen_rtx_ZERO_EXTEND (split_mode,
2297 SUBREG_REG (*split)));
2298 }
2299 #endif
2300
2301 newi2pat = gen_rtx_SET (VOIDmode, newdest, *split);
2302 SUBST (*split, newdest);
2303 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
2304
2305 /* If the split point was a MULT and we didn't have one before,
2306 don't use one now. */
2307 if (i2_code_number >= 0 && ! (split_code == MULT && ! have_mult))
2308 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
2309 }
2310 }
2311
2312 /* Check for a case where we loaded from memory in a narrow mode and
2313 then sign extended it, but we need both registers. In that case,
2314 we have a PARALLEL with both loads from the same memory location.
2315 We can split this into a load from memory followed by a register-register
2316 copy. This saves at least one insn, more if register allocation can
2317 eliminate the copy.
2318
2319 We cannot do this if the destination of the second assignment is
2320 a register that we have already assumed is zero-extended. Similarly
2321 for a SUBREG of such a register. */
2322
2323 else if (i1 && insn_code_number < 0 && asm_noperands (newpat) < 0
2324 && GET_CODE (newpat) == PARALLEL
2325 && XVECLEN (newpat, 0) == 2
2326 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
2327 && GET_CODE (SET_SRC (XVECEXP (newpat, 0, 0))) == SIGN_EXTEND
2328 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
2329 && rtx_equal_p (SET_SRC (XVECEXP (newpat, 0, 1)),
2330 XEXP (SET_SRC (XVECEXP (newpat, 0, 0)), 0))
2331 && ! use_crosses_set_p (SET_SRC (XVECEXP (newpat, 0, 1)),
2332 INSN_CUID (i2))
2333 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != ZERO_EXTRACT
2334 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != STRICT_LOW_PART
2335 && ! (temp = SET_DEST (XVECEXP (newpat, 0, 1)),
2336 (GET_CODE (temp) == REG
2337 && reg_nonzero_bits[REGNO (temp)] != 0
2338 && GET_MODE_BITSIZE (GET_MODE (temp)) < BITS_PER_WORD
2339 && GET_MODE_BITSIZE (GET_MODE (temp)) < HOST_BITS_PER_INT
2340 && (reg_nonzero_bits[REGNO (temp)]
2341 != GET_MODE_MASK (word_mode))))
2342 && ! (GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) == SUBREG
2343 && (temp = SUBREG_REG (SET_DEST (XVECEXP (newpat, 0, 1))),
2344 (GET_CODE (temp) == REG
2345 && reg_nonzero_bits[REGNO (temp)] != 0
2346 && GET_MODE_BITSIZE (GET_MODE (temp)) < BITS_PER_WORD
2347 && GET_MODE_BITSIZE (GET_MODE (temp)) < HOST_BITS_PER_INT
2348 && (reg_nonzero_bits[REGNO (temp)]
2349 != GET_MODE_MASK (word_mode)))))
2350 && ! reg_overlap_mentioned_p (SET_DEST (XVECEXP (newpat, 0, 1)),
2351 SET_SRC (XVECEXP (newpat, 0, 1)))
2352 && ! find_reg_note (i3, REG_UNUSED,
2353 SET_DEST (XVECEXP (newpat, 0, 0))))
2354 {
2355 rtx ni2dest;
2356
2357 newi2pat = XVECEXP (newpat, 0, 0);
2358 ni2dest = SET_DEST (XVECEXP (newpat, 0, 0));
2359 newpat = XVECEXP (newpat, 0, 1);
2360 SUBST (SET_SRC (newpat),
2361 gen_lowpart_for_combine (GET_MODE (SET_SRC (newpat)), ni2dest));
2362 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
2363
2364 if (i2_code_number >= 0)
2365 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
2366
2367 if (insn_code_number >= 0)
2368 {
2369 rtx insn;
2370 rtx link;
2371
2372 /* If we will be able to accept this, we have made a change to the
2373 destination of I3. This can invalidate a LOG_LINKS pointing
2374 to I3. No other part of combine.c makes such a transformation.
2375
2376 The new I3 will have a destination that was previously the
2377 destination of I1 or I2 and which was used in i2 or I3. Call
2378 distribute_links to make a LOG_LINK from the next use of
2379 that destination. */
2380
2381 PATTERN (i3) = newpat;
2382 distribute_links (gen_rtx_INSN_LIST (VOIDmode, i3, NULL_RTX));
2383
2384 /* I3 now uses what used to be its destination and which is
2385 now I2's destination. That means we need a LOG_LINK from
2386 I3 to I2. But we used to have one, so we still will.
2387
2388 However, some later insn might be using I2's dest and have
2389 a LOG_LINK pointing at I3. We must remove this link.
2390 The simplest way to remove the link is to point it at I1,
2391 which we know will be a NOTE. */
2392
2393 for (insn = NEXT_INSN (i3);
2394 insn && (this_basic_block->next_bb == EXIT_BLOCK_PTR
2395 || insn != this_basic_block->next_bb->head);
2396 insn = NEXT_INSN (insn))
2397 {
2398 if (INSN_P (insn) && reg_referenced_p (ni2dest, PATTERN (insn)))
2399 {
2400 for (link = LOG_LINKS (insn); link;
2401 link = XEXP (link, 1))
2402 if (XEXP (link, 0) == i3)
2403 XEXP (link, 0) = i1;
2404
2405 break;
2406 }
2407 }
2408 }
2409 }
2410
2411 /* Similarly, check for a case where we have a PARALLEL of two independent
2412 SETs but we started with three insns. In this case, we can do the sets
2413 as two separate insns. This case occurs when some SET allows two
2414 other insns to combine, but the destination of that SET is still live. */
2415
2416 else if (i1 && insn_code_number < 0 && asm_noperands (newpat) < 0
2417 && GET_CODE (newpat) == PARALLEL
2418 && XVECLEN (newpat, 0) == 2
2419 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
2420 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) != ZERO_EXTRACT
2421 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) != STRICT_LOW_PART
2422 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
2423 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != ZERO_EXTRACT
2424 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != STRICT_LOW_PART
2425 && ! use_crosses_set_p (SET_SRC (XVECEXP (newpat, 0, 1)),
2426 INSN_CUID (i2))
2427 /* Don't pass sets with (USE (MEM ...)) dests to the following. */
2428 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != USE
2429 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) != USE
2430 && ! reg_referenced_p (SET_DEST (XVECEXP (newpat, 0, 1)),
2431 XVECEXP (newpat, 0, 0))
2432 && ! reg_referenced_p (SET_DEST (XVECEXP (newpat, 0, 0)),
2433 XVECEXP (newpat, 0, 1))
2434 && ! (contains_muldiv (SET_SRC (XVECEXP (newpat, 0, 0)))
2435 && contains_muldiv (SET_SRC (XVECEXP (newpat, 0, 1)))))
2436 {
2437 /* Normally, it doesn't matter which of the two is done first,
2438 but it does if one references cc0. In that case, it has to
2439 be first. */
2440 #ifdef HAVE_cc0
2441 if (reg_referenced_p (cc0_rtx, XVECEXP (newpat, 0, 0)))
2442 {
2443 newi2pat = XVECEXP (newpat, 0, 0);
2444 newpat = XVECEXP (newpat, 0, 1);
2445 }
2446 else
2447 #endif
2448 {
2449 newi2pat = XVECEXP (newpat, 0, 1);
2450 newpat = XVECEXP (newpat, 0, 0);
2451 }
2452
2453 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
2454
2455 if (i2_code_number >= 0)
2456 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
2457 }
2458
2459 /* If it still isn't recognized, fail and change things back the way they
2460 were. */
2461 if ((insn_code_number < 0
2462 /* Is the result a reasonable ASM_OPERANDS? */
2463 && (! check_asm_operands (newpat) || added_sets_1 || added_sets_2)))
2464 {
2465 undo_all ();
2466 return 0;
2467 }
2468
2469 /* If we had to change another insn, make sure it is valid also. */
2470 if (undobuf.other_insn)
2471 {
2472 rtx other_pat = PATTERN (undobuf.other_insn);
2473 rtx new_other_notes;
2474 rtx note, next;
2475
2476 CLEAR_HARD_REG_SET (newpat_used_regs);
2477
2478 other_code_number = recog_for_combine (&other_pat, undobuf.other_insn,
2479 &new_other_notes);
2480
2481 if (other_code_number < 0 && ! check_asm_operands (other_pat))
2482 {
2483 undo_all ();
2484 return 0;
2485 }
2486
2487 PATTERN (undobuf.other_insn) = other_pat;
2488
2489 /* If any of the notes in OTHER_INSN were REG_UNUSED, ensure that they
2490 are still valid. Then add any non-duplicate notes added by
2491 recog_for_combine. */
2492 for (note = REG_NOTES (undobuf.other_insn); note; note = next)
2493 {
2494 next = XEXP (note, 1);
2495
2496 if (REG_NOTE_KIND (note) == REG_UNUSED
2497 && ! reg_set_p (XEXP (note, 0), PATTERN (undobuf.other_insn)))
2498 {
2499 if (GET_CODE (XEXP (note, 0)) == REG)
2500 REG_N_DEATHS (REGNO (XEXP (note, 0)))--;
2501
2502 remove_note (undobuf.other_insn, note);
2503 }
2504 }
2505
2506 for (note = new_other_notes; note; note = XEXP (note, 1))
2507 if (GET_CODE (XEXP (note, 0)) == REG)
2508 REG_N_DEATHS (REGNO (XEXP (note, 0)))++;
2509
2510 distribute_notes (new_other_notes, undobuf.other_insn,
2511 undobuf.other_insn, NULL_RTX, NULL_RTX, NULL_RTX);
2512 }
2513 #ifdef HAVE_cc0
2514 /* If I2 is the setter CC0 and I3 is the user CC0 then check whether
2515 they are adjacent to each other or not. */
2516 {
2517 rtx p = prev_nonnote_insn (i3);
2518 if (p && p != i2 && GET_CODE (p) == INSN && newi2pat
2519 && sets_cc0_p (newi2pat))
2520 {
2521 undo_all ();
2522 return 0;
2523 }
2524 }
2525 #endif
2526
2527 /* We now know that we can do this combination. Merge the insns and
2528 update the status of registers and LOG_LINKS. */
2529
2530 {
2531 rtx i3notes, i2notes, i1notes = 0;
2532 rtx i3links, i2links, i1links = 0;
2533 rtx midnotes = 0;
2534 unsigned int regno;
2535 /* Compute which registers we expect to eliminate. newi2pat may be setting
2536 either i3dest or i2dest, so we must check it. Also, i1dest may be the
2537 same as i3dest, in which case newi2pat may be setting i1dest. */
2538 rtx elim_i2 = ((newi2pat && reg_set_p (i2dest, newi2pat))
2539 || i2dest_in_i2src || i2dest_in_i1src
2540 ? 0 : i2dest);
2541 rtx elim_i1 = (i1 == 0 || i1dest_in_i1src
2542 || (newi2pat && reg_set_p (i1dest, newi2pat))
2543 ? 0 : i1dest);
2544
2545 /* Get the old REG_NOTES and LOG_LINKS from all our insns and
2546 clear them. */
2547 i3notes = REG_NOTES (i3), i3links = LOG_LINKS (i3);
2548 i2notes = REG_NOTES (i2), i2links = LOG_LINKS (i2);
2549 if (i1)
2550 i1notes = REG_NOTES (i1), i1links = LOG_LINKS (i1);
2551
2552 /* Ensure that we do not have something that should not be shared but
2553 occurs multiple times in the new insns. Check this by first
2554 resetting all the `used' flags and then copying anything is shared. */
2555
2556 reset_used_flags (i3notes);
2557 reset_used_flags (i2notes);
2558 reset_used_flags (i1notes);
2559 reset_used_flags (newpat);
2560 reset_used_flags (newi2pat);
2561 if (undobuf.other_insn)
2562 reset_used_flags (PATTERN (undobuf.other_insn));
2563
2564 i3notes = copy_rtx_if_shared (i3notes);
2565 i2notes = copy_rtx_if_shared (i2notes);
2566 i1notes = copy_rtx_if_shared (i1notes);
2567 newpat = copy_rtx_if_shared (newpat);
2568 newi2pat = copy_rtx_if_shared (newi2pat);
2569 if (undobuf.other_insn)
2570 reset_used_flags (PATTERN (undobuf.other_insn));
2571
2572 INSN_CODE (i3) = insn_code_number;
2573 PATTERN (i3) = newpat;
2574
2575 if (GET_CODE (i3) == CALL_INSN && CALL_INSN_FUNCTION_USAGE (i3))
2576 {
2577 rtx call_usage = CALL_INSN_FUNCTION_USAGE (i3);
2578
2579 reset_used_flags (call_usage);
2580 call_usage = copy_rtx (call_usage);
2581
2582 if (substed_i2)
2583 replace_rtx (call_usage, i2dest, i2src);
2584
2585 if (substed_i1)
2586 replace_rtx (call_usage, i1dest, i1src);
2587
2588 CALL_INSN_FUNCTION_USAGE (i3) = call_usage;
2589 }
2590
2591 if (undobuf.other_insn)
2592 INSN_CODE (undobuf.other_insn) = other_code_number;
2593
2594 /* We had one special case above where I2 had more than one set and
2595 we replaced a destination of one of those sets with the destination
2596 of I3. In that case, we have to update LOG_LINKS of insns later
2597 in this basic block. Note that this (expensive) case is rare.
2598
2599 Also, in this case, we must pretend that all REG_NOTEs for I2
2600 actually came from I3, so that REG_UNUSED notes from I2 will be
2601 properly handled. */
2602
2603 if (i3_subst_into_i2)
2604 {
2605 for (i = 0; i < XVECLEN (PATTERN (i2), 0); i++)
2606 if (GET_CODE (XVECEXP (PATTERN (i2), 0, i)) != USE
2607 && GET_CODE (SET_DEST (XVECEXP (PATTERN (i2), 0, i))) == REG
2608 && SET_DEST (XVECEXP (PATTERN (i2), 0, i)) != i2dest
2609 && ! find_reg_note (i2, REG_UNUSED,
2610 SET_DEST (XVECEXP (PATTERN (i2), 0, i))))
2611 for (temp = NEXT_INSN (i2);
2612 temp && (this_basic_block->next_bb == EXIT_BLOCK_PTR
2613 || this_basic_block->head != temp);
2614 temp = NEXT_INSN (temp))
2615 if (temp != i3 && INSN_P (temp))
2616 for (link = LOG_LINKS (temp); link; link = XEXP (link, 1))
2617 if (XEXP (link, 0) == i2)
2618 XEXP (link, 0) = i3;
2619
2620 if (i3notes)
2621 {
2622 rtx link = i3notes;
2623 while (XEXP (link, 1))
2624 link = XEXP (link, 1);
2625 XEXP (link, 1) = i2notes;
2626 }
2627 else
2628 i3notes = i2notes;
2629 i2notes = 0;
2630 }
2631
2632 LOG_LINKS (i3) = 0;
2633 REG_NOTES (i3) = 0;
2634 LOG_LINKS (i2) = 0;
2635 REG_NOTES (i2) = 0;
2636
2637 if (newi2pat)
2638 {
2639 INSN_CODE (i2) = i2_code_number;
2640 PATTERN (i2) = newi2pat;
2641 }
2642 else
2643 {
2644 PUT_CODE (i2, NOTE);
2645 NOTE_LINE_NUMBER (i2) = NOTE_INSN_DELETED;
2646 NOTE_SOURCE_FILE (i2) = 0;
2647 }
2648
2649 if (i1)
2650 {
2651 LOG_LINKS (i1) = 0;
2652 REG_NOTES (i1) = 0;
2653 PUT_CODE (i1, NOTE);
2654 NOTE_LINE_NUMBER (i1) = NOTE_INSN_DELETED;
2655 NOTE_SOURCE_FILE (i1) = 0;
2656 }
2657
2658 /* Get death notes for everything that is now used in either I3 or
2659 I2 and used to die in a previous insn. If we built two new
2660 patterns, move from I1 to I2 then I2 to I3 so that we get the
2661 proper movement on registers that I2 modifies. */
2662
2663 if (newi2pat)
2664 {
2665 move_deaths (newi2pat, NULL_RTX, INSN_CUID (i1), i2, &midnotes);
2666 move_deaths (newpat, newi2pat, INSN_CUID (i1), i3, &midnotes);
2667 }
2668 else
2669 move_deaths (newpat, NULL_RTX, i1 ? INSN_CUID (i1) : INSN_CUID (i2),
2670 i3, &midnotes);
2671
2672 /* Distribute all the LOG_LINKS and REG_NOTES from I1, I2, and I3. */
2673 if (i3notes)
2674 distribute_notes (i3notes, i3, i3, newi2pat ? i2 : NULL_RTX,
2675 elim_i2, elim_i1);
2676 if (i2notes)
2677 distribute_notes (i2notes, i2, i3, newi2pat ? i2 : NULL_RTX,
2678 elim_i2, elim_i1);
2679 if (i1notes)
2680 distribute_notes (i1notes, i1, i3, newi2pat ? i2 : NULL_RTX,
2681 elim_i2, elim_i1);
2682 if (midnotes)
2683 distribute_notes (midnotes, NULL_RTX, i3, newi2pat ? i2 : NULL_RTX,
2684 elim_i2, elim_i1);
2685
2686 /* Distribute any notes added to I2 or I3 by recog_for_combine. We
2687 know these are REG_UNUSED and want them to go to the desired insn,
2688 so we always pass it as i3. We have not counted the notes in
2689 reg_n_deaths yet, so we need to do so now. */
2690
2691 if (newi2pat && new_i2_notes)
2692 {
2693 for (temp = new_i2_notes; temp; temp = XEXP (temp, 1))
2694 if (GET_CODE (XEXP (temp, 0)) == REG)
2695 REG_N_DEATHS (REGNO (XEXP (temp, 0)))++;
2696
2697 distribute_notes (new_i2_notes, i2, i2, NULL_RTX, NULL_RTX, NULL_RTX);
2698 }
2699
2700 if (new_i3_notes)
2701 {
2702 for (temp = new_i3_notes; temp; temp = XEXP (temp, 1))
2703 if (GET_CODE (XEXP (temp, 0)) == REG)
2704 REG_N_DEATHS (REGNO (XEXP (temp, 0)))++;
2705
2706 distribute_notes (new_i3_notes, i3, i3, NULL_RTX, NULL_RTX, NULL_RTX);
2707 }
2708
2709 /* If I3DEST was used in I3SRC, it really died in I3. We may need to
2710 put a REG_DEAD note for it somewhere. If NEWI2PAT exists and sets
2711 I3DEST, the death must be somewhere before I2, not I3. If we passed I3
2712 in that case, it might delete I2. Similarly for I2 and I1.
2713 Show an additional death due to the REG_DEAD note we make here. If
2714 we discard it in distribute_notes, we will decrement it again. */
2715
2716 if (i3dest_killed)
2717 {
2718 if (GET_CODE (i3dest_killed) == REG)
2719 REG_N_DEATHS (REGNO (i3dest_killed))++;
2720
2721 if (newi2pat && reg_set_p (i3dest_killed, newi2pat))
2722 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i3dest_killed,
2723 NULL_RTX),
2724 NULL_RTX, i2, NULL_RTX, elim_i2, elim_i1);
2725 else
2726 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i3dest_killed,
2727 NULL_RTX),
2728 NULL_RTX, i3, newi2pat ? i2 : NULL_RTX,
2729 elim_i2, elim_i1);
2730 }
2731
2732 if (i2dest_in_i2src)
2733 {
2734 if (GET_CODE (i2dest) == REG)
2735 REG_N_DEATHS (REGNO (i2dest))++;
2736
2737 if (newi2pat && reg_set_p (i2dest, newi2pat))
2738 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i2dest, NULL_RTX),
2739 NULL_RTX, i2, NULL_RTX, NULL_RTX, NULL_RTX);
2740 else
2741 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i2dest, NULL_RTX),
2742 NULL_RTX, i3, newi2pat ? i2 : NULL_RTX,
2743 NULL_RTX, NULL_RTX);
2744 }
2745
2746 if (i1dest_in_i1src)
2747 {
2748 if (GET_CODE (i1dest) == REG)
2749 REG_N_DEATHS (REGNO (i1dest))++;
2750
2751 if (newi2pat && reg_set_p (i1dest, newi2pat))
2752 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i1dest, NULL_RTX),
2753 NULL_RTX, i2, NULL_RTX, NULL_RTX, NULL_RTX);
2754 else
2755 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i1dest, NULL_RTX),
2756 NULL_RTX, i3, newi2pat ? i2 : NULL_RTX,
2757 NULL_RTX, NULL_RTX);
2758 }
2759
2760 distribute_links (i3links);
2761 distribute_links (i2links);
2762 distribute_links (i1links);
2763
2764 if (GET_CODE (i2dest) == REG)
2765 {
2766 rtx link;
2767 rtx i2_insn = 0, i2_val = 0, set;
2768
2769 /* The insn that used to set this register doesn't exist, and
2770 this life of the register may not exist either. See if one of
2771 I3's links points to an insn that sets I2DEST. If it does,
2772 that is now the last known value for I2DEST. If we don't update
2773 this and I2 set the register to a value that depended on its old
2774 contents, we will get confused. If this insn is used, thing
2775 will be set correctly in combine_instructions. */
2776
2777 for (link = LOG_LINKS (i3); link; link = XEXP (link, 1))
2778 if ((set = single_set (XEXP (link, 0))) != 0
2779 && rtx_equal_p (i2dest, SET_DEST (set)))
2780 i2_insn = XEXP (link, 0), i2_val = SET_SRC (set);
2781
2782 record_value_for_reg (i2dest, i2_insn, i2_val);
2783
2784 /* If the reg formerly set in I2 died only once and that was in I3,
2785 zero its use count so it won't make `reload' do any work. */
2786 if (! added_sets_2
2787 && (newi2pat == 0 || ! reg_mentioned_p (i2dest, newi2pat))
2788 && ! i2dest_in_i2src)
2789 {
2790 regno = REGNO (i2dest);
2791 REG_N_SETS (regno)--;
2792 }
2793 }
2794
2795 if (i1 && GET_CODE (i1dest) == REG)
2796 {
2797 rtx link;
2798 rtx i1_insn = 0, i1_val = 0, set;
2799
2800 for (link = LOG_LINKS (i3); link; link = XEXP (link, 1))
2801 if ((set = single_set (XEXP (link, 0))) != 0
2802 && rtx_equal_p (i1dest, SET_DEST (set)))
2803 i1_insn = XEXP (link, 0), i1_val = SET_SRC (set);
2804
2805 record_value_for_reg (i1dest, i1_insn, i1_val);
2806
2807 regno = REGNO (i1dest);
2808 if (! added_sets_1 && ! i1dest_in_i1src)
2809 REG_N_SETS (regno)--;
2810 }
2811
2812 /* Update reg_nonzero_bits et al for any changes that may have been made
2813 to this insn. The order of set_nonzero_bits_and_sign_copies() is
2814 important. Because newi2pat can affect nonzero_bits of newpat */
2815 if (newi2pat)
2816 note_stores (newi2pat, set_nonzero_bits_and_sign_copies, NULL);
2817 note_stores (newpat, set_nonzero_bits_and_sign_copies, NULL);
2818
2819 /* Set new_direct_jump_p if a new return or simple jump instruction
2820 has been created.
2821
2822 If I3 is now an unconditional jump, ensure that it has a
2823 BARRIER following it since it may have initially been a
2824 conditional jump. It may also be the last nonnote insn. */
2825
2826 if (returnjump_p (i3) || any_uncondjump_p (i3))
2827 {
2828 *new_direct_jump_p = 1;
2829
2830 if ((temp = next_nonnote_insn (i3)) == NULL_RTX
2831 || GET_CODE (temp) != BARRIER)
2832 emit_barrier_after (i3);
2833 }
2834
2835 if (undobuf.other_insn != NULL_RTX
2836 && (returnjump_p (undobuf.other_insn)
2837 || any_uncondjump_p (undobuf.other_insn)))
2838 {
2839 *new_direct_jump_p = 1;
2840
2841 if ((temp = next_nonnote_insn (undobuf.other_insn)) == NULL_RTX
2842 || GET_CODE (temp) != BARRIER)
2843 emit_barrier_after (undobuf.other_insn);
2844 }
2845
2846 /* An NOOP jump does not need barrier, but it does need cleaning up
2847 of CFG. */
2848 if (GET_CODE (newpat) == SET
2849 && SET_SRC (newpat) == pc_rtx
2850 && SET_DEST (newpat) == pc_rtx)
2851 *new_direct_jump_p = 1;
2852 }
2853
2854 combine_successes++;
2855 undo_commit ();
2856
2857 /* Clear this here, so that subsequent get_last_value calls are not
2858 affected. */
2859 subst_prev_insn = NULL_RTX;
2860
2861 if (added_links_insn
2862 && (newi2pat == 0 || INSN_CUID (added_links_insn) < INSN_CUID (i2))
2863 && INSN_CUID (added_links_insn) < INSN_CUID (i3))
2864 return added_links_insn;
2865 else
2866 return newi2pat ? i2 : i3;
2867 }
2868 \f
2869 /* Undo all the modifications recorded in undobuf. */
2870
2871 static void
2872 undo_all ()
2873 {
2874 struct undo *undo, *next;
2875
2876 for (undo = undobuf.undos; undo; undo = next)
2877 {
2878 next = undo->next;
2879 if (undo->is_int)
2880 *undo->where.i = undo->old_contents.i;
2881 else
2882 *undo->where.r = undo->old_contents.r;
2883
2884 undo->next = undobuf.frees;
2885 undobuf.frees = undo;
2886 }
2887
2888 undobuf.undos = 0;
2889
2890 /* Clear this here, so that subsequent get_last_value calls are not
2891 affected. */
2892 subst_prev_insn = NULL_RTX;
2893 }
2894
2895 /* We've committed to accepting the changes we made. Move all
2896 of the undos to the free list. */
2897
2898 static void
2899 undo_commit ()
2900 {
2901 struct undo *undo, *next;
2902
2903 for (undo = undobuf.undos; undo; undo = next)
2904 {
2905 next = undo->next;
2906 undo->next = undobuf.frees;
2907 undobuf.frees = undo;
2908 }
2909 undobuf.undos = 0;
2910 }
2911
2912 \f
2913 /* Find the innermost point within the rtx at LOC, possibly LOC itself,
2914 where we have an arithmetic expression and return that point. LOC will
2915 be inside INSN.
2916
2917 try_combine will call this function to see if an insn can be split into
2918 two insns. */
2919
2920 static rtx *
2921 find_split_point (loc, insn)
2922 rtx *loc;
2923 rtx insn;
2924 {
2925 rtx x = *loc;
2926 enum rtx_code code = GET_CODE (x);
2927 rtx *split;
2928 unsigned HOST_WIDE_INT len = 0;
2929 HOST_WIDE_INT pos = 0;
2930 int unsignedp = 0;
2931 rtx inner = NULL_RTX;
2932
2933 /* First special-case some codes. */
2934 switch (code)
2935 {
2936 case SUBREG:
2937 #ifdef INSN_SCHEDULING
2938 /* If we are making a paradoxical SUBREG invalid, it becomes a split
2939 point. */
2940 if (GET_CODE (SUBREG_REG (x)) == MEM)
2941 return loc;
2942 #endif
2943 return find_split_point (&SUBREG_REG (x), insn);
2944
2945 case MEM:
2946 #ifdef HAVE_lo_sum
2947 /* If we have (mem (const ..)) or (mem (symbol_ref ...)), split it
2948 using LO_SUM and HIGH. */
2949 if (GET_CODE (XEXP (x, 0)) == CONST
2950 || GET_CODE (XEXP (x, 0)) == SYMBOL_REF)
2951 {
2952 SUBST (XEXP (x, 0),
2953 gen_rtx_LO_SUM (Pmode,
2954 gen_rtx_HIGH (Pmode, XEXP (x, 0)),
2955 XEXP (x, 0)));
2956 return &XEXP (XEXP (x, 0), 0);
2957 }
2958 #endif
2959
2960 /* If we have a PLUS whose second operand is a constant and the
2961 address is not valid, perhaps will can split it up using
2962 the machine-specific way to split large constants. We use
2963 the first pseudo-reg (one of the virtual regs) as a placeholder;
2964 it will not remain in the result. */
2965 if (GET_CODE (XEXP (x, 0)) == PLUS
2966 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
2967 && ! memory_address_p (GET_MODE (x), XEXP (x, 0)))
2968 {
2969 rtx reg = regno_reg_rtx[FIRST_PSEUDO_REGISTER];
2970 rtx seq = split_insns (gen_rtx_SET (VOIDmode, reg, XEXP (x, 0)),
2971 subst_insn);
2972
2973 /* This should have produced two insns, each of which sets our
2974 placeholder. If the source of the second is a valid address,
2975 we can make put both sources together and make a split point
2976 in the middle. */
2977
2978 if (seq
2979 && NEXT_INSN (seq) != NULL_RTX
2980 && NEXT_INSN (NEXT_INSN (seq)) == NULL_RTX
2981 && GET_CODE (seq) == INSN
2982 && GET_CODE (PATTERN (seq)) == SET
2983 && SET_DEST (PATTERN (seq)) == reg
2984 && ! reg_mentioned_p (reg,
2985 SET_SRC (PATTERN (seq)))
2986 && GET_CODE (NEXT_INSN (seq)) == INSN
2987 && GET_CODE (PATTERN (NEXT_INSN (seq))) == SET
2988 && SET_DEST (PATTERN (NEXT_INSN (seq))) == reg
2989 && memory_address_p (GET_MODE (x),
2990 SET_SRC (PATTERN (NEXT_INSN (seq)))))
2991 {
2992 rtx src1 = SET_SRC (PATTERN (seq));
2993 rtx src2 = SET_SRC (PATTERN (NEXT_INSN (seq)));
2994
2995 /* Replace the placeholder in SRC2 with SRC1. If we can
2996 find where in SRC2 it was placed, that can become our
2997 split point and we can replace this address with SRC2.
2998 Just try two obvious places. */
2999
3000 src2 = replace_rtx (src2, reg, src1);
3001 split = 0;
3002 if (XEXP (src2, 0) == src1)
3003 split = &XEXP (src2, 0);
3004 else if (GET_RTX_FORMAT (GET_CODE (XEXP (src2, 0)))[0] == 'e'
3005 && XEXP (XEXP (src2, 0), 0) == src1)
3006 split = &XEXP (XEXP (src2, 0), 0);
3007
3008 if (split)
3009 {
3010 SUBST (XEXP (x, 0), src2);
3011 return split;
3012 }
3013 }
3014
3015 /* If that didn't work, perhaps the first operand is complex and
3016 needs to be computed separately, so make a split point there.
3017 This will occur on machines that just support REG + CONST
3018 and have a constant moved through some previous computation. */
3019
3020 else if (GET_RTX_CLASS (GET_CODE (XEXP (XEXP (x, 0), 0))) != 'o'
3021 && ! (GET_CODE (XEXP (XEXP (x, 0), 0)) == SUBREG
3022 && (GET_RTX_CLASS (GET_CODE (SUBREG_REG (XEXP (XEXP (x, 0), 0))))
3023 == 'o')))
3024 return &XEXP (XEXP (x, 0), 0);
3025 }
3026 break;
3027
3028 case SET:
3029 #ifdef HAVE_cc0
3030 /* If SET_DEST is CC0 and SET_SRC is not an operand, a COMPARE, or a
3031 ZERO_EXTRACT, the most likely reason why this doesn't match is that
3032 we need to put the operand into a register. So split at that
3033 point. */
3034
3035 if (SET_DEST (x) == cc0_rtx
3036 && GET_CODE (SET_SRC (x)) != COMPARE
3037 && GET_CODE (SET_SRC (x)) != ZERO_EXTRACT
3038 && GET_RTX_CLASS (GET_CODE (SET_SRC (x))) != 'o'
3039 && ! (GET_CODE (SET_SRC (x)) == SUBREG
3040 && GET_RTX_CLASS (GET_CODE (SUBREG_REG (SET_SRC (x)))) == 'o'))
3041 return &SET_SRC (x);
3042 #endif
3043
3044 /* See if we can split SET_SRC as it stands. */
3045 split = find_split_point (&SET_SRC (x), insn);
3046 if (split && split != &SET_SRC (x))
3047 return split;
3048
3049 /* See if we can split SET_DEST as it stands. */
3050 split = find_split_point (&SET_DEST (x), insn);
3051 if (split && split != &SET_DEST (x))
3052 return split;
3053
3054 /* See if this is a bitfield assignment with everything constant. If
3055 so, this is an IOR of an AND, so split it into that. */
3056 if (GET_CODE (SET_DEST (x)) == ZERO_EXTRACT
3057 && (GET_MODE_BITSIZE (GET_MODE (XEXP (SET_DEST (x), 0)))
3058 <= HOST_BITS_PER_WIDE_INT)
3059 && GET_CODE (XEXP (SET_DEST (x), 1)) == CONST_INT
3060 && GET_CODE (XEXP (SET_DEST (x), 2)) == CONST_INT
3061 && GET_CODE (SET_SRC (x)) == CONST_INT
3062 && ((INTVAL (XEXP (SET_DEST (x), 1))
3063 + INTVAL (XEXP (SET_DEST (x), 2)))
3064 <= GET_MODE_BITSIZE (GET_MODE (XEXP (SET_DEST (x), 0))))
3065 && ! side_effects_p (XEXP (SET_DEST (x), 0)))
3066 {
3067 HOST_WIDE_INT pos = INTVAL (XEXP (SET_DEST (x), 2));
3068 unsigned HOST_WIDE_INT len = INTVAL (XEXP (SET_DEST (x), 1));
3069 unsigned HOST_WIDE_INT src = INTVAL (SET_SRC (x));
3070 rtx dest = XEXP (SET_DEST (x), 0);
3071 enum machine_mode mode = GET_MODE (dest);
3072 unsigned HOST_WIDE_INT mask = ((HOST_WIDE_INT) 1 << len) - 1;
3073
3074 if (BITS_BIG_ENDIAN)
3075 pos = GET_MODE_BITSIZE (mode) - len - pos;
3076
3077 if (src == mask)
3078 SUBST (SET_SRC (x),
3079 gen_binary (IOR, mode, dest, GEN_INT (src << pos)));
3080 else
3081 SUBST (SET_SRC (x),
3082 gen_binary (IOR, mode,
3083 gen_binary (AND, mode, dest,
3084 gen_int_mode (~(mask << pos),
3085 mode)),
3086 GEN_INT (src << pos)));
3087
3088 SUBST (SET_DEST (x), dest);
3089
3090 split = find_split_point (&SET_SRC (x), insn);
3091 if (split && split != &SET_SRC (x))
3092 return split;
3093 }
3094
3095 /* Otherwise, see if this is an operation that we can split into two.
3096 If so, try to split that. */
3097 code = GET_CODE (SET_SRC (x));
3098
3099 switch (code)
3100 {
3101 case AND:
3102 /* If we are AND'ing with a large constant that is only a single
3103 bit and the result is only being used in a context where we
3104 need to know if it is zero or non-zero, replace it with a bit
3105 extraction. This will avoid the large constant, which might
3106 have taken more than one insn to make. If the constant were
3107 not a valid argument to the AND but took only one insn to make,
3108 this is no worse, but if it took more than one insn, it will
3109 be better. */
3110
3111 if (GET_CODE (XEXP (SET_SRC (x), 1)) == CONST_INT
3112 && GET_CODE (XEXP (SET_SRC (x), 0)) == REG
3113 && (pos = exact_log2 (INTVAL (XEXP (SET_SRC (x), 1)))) >= 7
3114 && GET_CODE (SET_DEST (x)) == REG
3115 && (split = find_single_use (SET_DEST (x), insn, (rtx*) 0)) != 0
3116 && (GET_CODE (*split) == EQ || GET_CODE (*split) == NE)
3117 && XEXP (*split, 0) == SET_DEST (x)
3118 && XEXP (*split, 1) == const0_rtx)
3119 {
3120 rtx extraction = make_extraction (GET_MODE (SET_DEST (x)),
3121 XEXP (SET_SRC (x), 0),
3122 pos, NULL_RTX, 1, 1, 0, 0);
3123 if (extraction != 0)
3124 {
3125 SUBST (SET_SRC (x), extraction);
3126 return find_split_point (loc, insn);
3127 }
3128 }
3129 break;
3130
3131 case NE:
3132 /* if STORE_FLAG_VALUE is -1, this is (NE X 0) and only one bit of X
3133 is known to be on, this can be converted into a NEG of a shift. */
3134 if (STORE_FLAG_VALUE == -1 && XEXP (SET_SRC (x), 1) == const0_rtx
3135 && GET_MODE (SET_SRC (x)) == GET_MODE (XEXP (SET_SRC (x), 0))
3136 && 1 <= (pos = exact_log2
3137 (nonzero_bits (XEXP (SET_SRC (x), 0),
3138 GET_MODE (XEXP (SET_SRC (x), 0))))))
3139 {
3140 enum machine_mode mode = GET_MODE (XEXP (SET_SRC (x), 0));
3141
3142 SUBST (SET_SRC (x),
3143 gen_rtx_NEG (mode,
3144 gen_rtx_LSHIFTRT (mode,
3145 XEXP (SET_SRC (x), 0),
3146 GEN_INT (pos))));
3147
3148 split = find_split_point (&SET_SRC (x), insn);
3149 if (split && split != &SET_SRC (x))
3150 return split;
3151 }
3152 break;
3153
3154 case SIGN_EXTEND:
3155 inner = XEXP (SET_SRC (x), 0);
3156
3157 /* We can't optimize if either mode is a partial integer
3158 mode as we don't know how many bits are significant
3159 in those modes. */
3160 if (GET_MODE_CLASS (GET_MODE (inner)) == MODE_PARTIAL_INT
3161 || GET_MODE_CLASS (GET_MODE (SET_SRC (x))) == MODE_PARTIAL_INT)
3162 break;
3163
3164 pos = 0;
3165 len = GET_MODE_BITSIZE (GET_MODE (inner));
3166 unsignedp = 0;
3167 break;
3168
3169 case SIGN_EXTRACT:
3170 case ZERO_EXTRACT:
3171 if (GET_CODE (XEXP (SET_SRC (x), 1)) == CONST_INT
3172 && GET_CODE (XEXP (SET_SRC (x), 2)) == CONST_INT)
3173 {
3174 inner = XEXP (SET_SRC (x), 0);
3175 len = INTVAL (XEXP (SET_SRC (x), 1));
3176 pos = INTVAL (XEXP (SET_SRC (x), 2));
3177
3178 if (BITS_BIG_ENDIAN)
3179 pos = GET_MODE_BITSIZE (GET_MODE (inner)) - len - pos;
3180 unsignedp = (code == ZERO_EXTRACT);
3181 }
3182 break;
3183
3184 default:
3185 break;
3186 }
3187
3188 if (len && pos >= 0 && pos + len <= GET_MODE_BITSIZE (GET_MODE (inner)))
3189 {
3190 enum machine_mode mode = GET_MODE (SET_SRC (x));
3191
3192 /* For unsigned, we have a choice of a shift followed by an
3193 AND or two shifts. Use two shifts for field sizes where the
3194 constant might be too large. We assume here that we can
3195 always at least get 8-bit constants in an AND insn, which is
3196 true for every current RISC. */
3197
3198 if (unsignedp && len <= 8)
3199 {
3200 SUBST (SET_SRC (x),
3201 gen_rtx_AND (mode,
3202 gen_rtx_LSHIFTRT
3203 (mode, gen_lowpart_for_combine (mode, inner),
3204 GEN_INT (pos)),
3205 GEN_INT (((HOST_WIDE_INT) 1 << len) - 1)));
3206
3207 split = find_split_point (&SET_SRC (x), insn);
3208 if (split && split != &SET_SRC (x))
3209 return split;
3210 }
3211 else
3212 {
3213 SUBST (SET_SRC (x),
3214 gen_rtx_fmt_ee
3215 (unsignedp ? LSHIFTRT : ASHIFTRT, mode,
3216 gen_rtx_ASHIFT (mode,
3217 gen_lowpart_for_combine (mode, inner),
3218 GEN_INT (GET_MODE_BITSIZE (mode)
3219 - len - pos)),
3220 GEN_INT (GET_MODE_BITSIZE (mode) - len)));
3221
3222 split = find_split_point (&SET_SRC (x), insn);
3223 if (split && split != &SET_SRC (x))
3224 return split;
3225 }
3226 }
3227
3228 /* See if this is a simple operation with a constant as the second
3229 operand. It might be that this constant is out of range and hence
3230 could be used as a split point. */
3231 if ((GET_RTX_CLASS (GET_CODE (SET_SRC (x))) == '2'
3232 || GET_RTX_CLASS (GET_CODE (SET_SRC (x))) == 'c'
3233 || GET_RTX_CLASS (GET_CODE (SET_SRC (x))) == '<')
3234 && CONSTANT_P (XEXP (SET_SRC (x), 1))
3235 && (GET_RTX_CLASS (GET_CODE (XEXP (SET_SRC (x), 0))) == 'o'
3236 || (GET_CODE (XEXP (SET_SRC (x), 0)) == SUBREG
3237 && (GET_RTX_CLASS (GET_CODE (SUBREG_REG (XEXP (SET_SRC (x), 0))))
3238 == 'o'))))
3239 return &XEXP (SET_SRC (x), 1);
3240
3241 /* Finally, see if this is a simple operation with its first operand
3242 not in a register. The operation might require this operand in a
3243 register, so return it as a split point. We can always do this
3244 because if the first operand were another operation, we would have
3245 already found it as a split point. */
3246 if ((GET_RTX_CLASS (GET_CODE (SET_SRC (x))) == '2'
3247 || GET_RTX_CLASS (GET_CODE (SET_SRC (x))) == 'c'
3248 || GET_RTX_CLASS (GET_CODE (SET_SRC (x))) == '<'
3249 || GET_RTX_CLASS (GET_CODE (SET_SRC (x))) == '1')
3250 && ! register_operand (XEXP (SET_SRC (x), 0), VOIDmode))
3251 return &XEXP (SET_SRC (x), 0);
3252
3253 return 0;
3254
3255 case AND:
3256 case IOR:
3257 /* We write NOR as (and (not A) (not B)), but if we don't have a NOR,
3258 it is better to write this as (not (ior A B)) so we can split it.
3259 Similarly for IOR. */
3260 if (GET_CODE (XEXP (x, 0)) == NOT && GET_CODE (XEXP (x, 1)) == NOT)
3261 {
3262 SUBST (*loc,
3263 gen_rtx_NOT (GET_MODE (x),
3264 gen_rtx_fmt_ee (code == IOR ? AND : IOR,
3265 GET_MODE (x),
3266 XEXP (XEXP (x, 0), 0),
3267 XEXP (XEXP (x, 1), 0))));
3268 return find_split_point (loc, insn);
3269 }
3270
3271 /* Many RISC machines have a large set of logical insns. If the
3272 second operand is a NOT, put it first so we will try to split the
3273 other operand first. */
3274 if (GET_CODE (XEXP (x, 1)) == NOT)
3275 {
3276 rtx tem = XEXP (x, 0);
3277 SUBST (XEXP (x, 0), XEXP (x, 1));
3278 SUBST (XEXP (x, 1), tem);
3279 }
3280 break;
3281
3282 default:
3283 break;
3284 }
3285
3286 /* Otherwise, select our actions depending on our rtx class. */
3287 switch (GET_RTX_CLASS (code))
3288 {
3289 case 'b': /* This is ZERO_EXTRACT and SIGN_EXTRACT. */
3290 case '3':
3291 split = find_split_point (&XEXP (x, 2), insn);
3292 if (split)
3293 return split;
3294 /* ... fall through ... */
3295 case '2':
3296 case 'c':
3297 case '<':
3298 split = find_split_point (&XEXP (x, 1), insn);
3299 if (split)
3300 return split;
3301 /* ... fall through ... */
3302 case '1':
3303 /* Some machines have (and (shift ...) ...) insns. If X is not
3304 an AND, but XEXP (X, 0) is, use it as our split point. */
3305 if (GET_CODE (x) != AND && GET_CODE (XEXP (x, 0)) == AND)
3306 return &XEXP (x, 0);
3307
3308 split = find_split_point (&XEXP (x, 0), insn);
3309 if (split)
3310 return split;
3311 return loc;
3312 }
3313
3314 /* Otherwise, we don't have a split point. */
3315 return 0;
3316 }
3317 \f
3318 /* Throughout X, replace FROM with TO, and return the result.
3319 The result is TO if X is FROM;
3320 otherwise the result is X, but its contents may have been modified.
3321 If they were modified, a record was made in undobuf so that
3322 undo_all will (among other things) return X to its original state.
3323
3324 If the number of changes necessary is too much to record to undo,
3325 the excess changes are not made, so the result is invalid.
3326 The changes already made can still be undone.
3327 undobuf.num_undo is incremented for such changes, so by testing that
3328 the caller can tell whether the result is valid.
3329
3330 `n_occurrences' is incremented each time FROM is replaced.
3331
3332 IN_DEST is non-zero if we are processing the SET_DEST of a SET.
3333
3334 UNIQUE_COPY is non-zero if each substitution must be unique. We do this
3335 by copying if `n_occurrences' is non-zero. */
3336
3337 static rtx
3338 subst (x, from, to, in_dest, unique_copy)
3339 rtx x, from, to;
3340 int in_dest;
3341 int unique_copy;
3342 {
3343 enum rtx_code code = GET_CODE (x);
3344 enum machine_mode op0_mode = VOIDmode;
3345 const char *fmt;
3346 int len, i;
3347 rtx new;
3348
3349 /* Two expressions are equal if they are identical copies of a shared
3350 RTX or if they are both registers with the same register number
3351 and mode. */
3352
3353 #define COMBINE_RTX_EQUAL_P(X,Y) \
3354 ((X) == (Y) \
3355 || (GET_CODE (X) == REG && GET_CODE (Y) == REG \
3356 && REGNO (X) == REGNO (Y) && GET_MODE (X) == GET_MODE (Y)))
3357
3358 if (! in_dest && COMBINE_RTX_EQUAL_P (x, from))
3359 {
3360 n_occurrences++;
3361 return (unique_copy && n_occurrences > 1 ? copy_rtx (to) : to);
3362 }
3363
3364 /* If X and FROM are the same register but different modes, they will
3365 not have been seen as equal above. However, flow.c will make a
3366 LOG_LINKS entry for that case. If we do nothing, we will try to
3367 rerecognize our original insn and, when it succeeds, we will
3368 delete the feeding insn, which is incorrect.
3369
3370 So force this insn not to match in this (rare) case. */
3371 if (! in_dest && code == REG && GET_CODE (from) == REG
3372 && REGNO (x) == REGNO (from))
3373 return gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
3374
3375 /* If this is an object, we are done unless it is a MEM or LO_SUM, both
3376 of which may contain things that can be combined. */
3377 if (code != MEM && code != LO_SUM && GET_RTX_CLASS (code) == 'o')
3378 return x;
3379
3380 /* It is possible to have a subexpression appear twice in the insn.
3381 Suppose that FROM is a register that appears within TO.
3382 Then, after that subexpression has been scanned once by `subst',
3383 the second time it is scanned, TO may be found. If we were
3384 to scan TO here, we would find FROM within it and create a
3385 self-referent rtl structure which is completely wrong. */
3386 if (COMBINE_RTX_EQUAL_P (x, to))
3387 return to;
3388
3389 /* Parallel asm_operands need special attention because all of the
3390 inputs are shared across the arms. Furthermore, unsharing the
3391 rtl results in recognition failures. Failure to handle this case
3392 specially can result in circular rtl.
3393
3394 Solve this by doing a normal pass across the first entry of the
3395 parallel, and only processing the SET_DESTs of the subsequent
3396 entries. Ug. */
3397
3398 if (code == PARALLEL
3399 && GET_CODE (XVECEXP (x, 0, 0)) == SET
3400 && GET_CODE (SET_SRC (XVECEXP (x, 0, 0))) == ASM_OPERANDS)
3401 {
3402 new = subst (XVECEXP (x, 0, 0), from, to, 0, unique_copy);
3403
3404 /* If this substitution failed, this whole thing fails. */
3405 if (GET_CODE (new) == CLOBBER
3406 && XEXP (new, 0) == const0_rtx)
3407 return new;
3408
3409 SUBST (XVECEXP (x, 0, 0), new);
3410
3411 for (i = XVECLEN (x, 0) - 1; i >= 1; i--)
3412 {
3413 rtx dest = SET_DEST (XVECEXP (x, 0, i));
3414
3415 if (GET_CODE (dest) != REG
3416 && GET_CODE (dest) != CC0
3417 && GET_CODE (dest) != PC)
3418 {
3419 new = subst (dest, from, to, 0, unique_copy);
3420
3421 /* If this substitution failed, this whole thing fails. */
3422 if (GET_CODE (new) == CLOBBER
3423 && XEXP (new, 0) == const0_rtx)
3424 return new;
3425
3426 SUBST (SET_DEST (XVECEXP (x, 0, i)), new);
3427 }
3428 }
3429 }
3430 else
3431 {
3432 len = GET_RTX_LENGTH (code);
3433 fmt = GET_RTX_FORMAT (code);
3434
3435 /* We don't need to process a SET_DEST that is a register, CC0,
3436 or PC, so set up to skip this common case. All other cases
3437 where we want to suppress replacing something inside a
3438 SET_SRC are handled via the IN_DEST operand. */
3439 if (code == SET
3440 && (GET_CODE (SET_DEST (x)) == REG
3441 || GET_CODE (SET_DEST (x)) == CC0
3442 || GET_CODE (SET_DEST (x)) == PC))
3443 fmt = "ie";
3444
3445 /* Get the mode of operand 0 in case X is now a SIGN_EXTEND of a
3446 constant. */
3447 if (fmt[0] == 'e')
3448 op0_mode = GET_MODE (XEXP (x, 0));
3449
3450 for (i = 0; i < len; i++)
3451 {
3452 if (fmt[i] == 'E')
3453 {
3454 int j;
3455 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3456 {
3457 if (COMBINE_RTX_EQUAL_P (XVECEXP (x, i, j), from))
3458 {
3459 new = (unique_copy && n_occurrences
3460 ? copy_rtx (to) : to);
3461 n_occurrences++;
3462 }
3463 else
3464 {
3465 new = subst (XVECEXP (x, i, j), from, to, 0,
3466 unique_copy);
3467
3468 /* If this substitution failed, this whole thing
3469 fails. */
3470 if (GET_CODE (new) == CLOBBER
3471 && XEXP (new, 0) == const0_rtx)
3472 return new;
3473 }
3474
3475 SUBST (XVECEXP (x, i, j), new);
3476 }
3477 }
3478 else if (fmt[i] == 'e')
3479 {
3480 /* If this is a register being set, ignore it. */
3481 new = XEXP (x, i);
3482 if (in_dest
3483 && (code == SUBREG || code == STRICT_LOW_PART
3484 || code == ZERO_EXTRACT)
3485 && i == 0
3486 && GET_CODE (new) == REG)
3487 ;
3488
3489 else if (COMBINE_RTX_EQUAL_P (XEXP (x, i), from))
3490 {
3491 /* In general, don't install a subreg involving two
3492 modes not tieable. It can worsen register
3493 allocation, and can even make invalid reload
3494 insns, since the reg inside may need to be copied
3495 from in the outside mode, and that may be invalid
3496 if it is an fp reg copied in integer mode.
3497
3498 We allow two exceptions to this: It is valid if
3499 it is inside another SUBREG and the mode of that
3500 SUBREG and the mode of the inside of TO is
3501 tieable and it is valid if X is a SET that copies
3502 FROM to CC0. */
3503
3504 if (GET_CODE (to) == SUBREG
3505 && ! MODES_TIEABLE_P (GET_MODE (to),
3506 GET_MODE (SUBREG_REG (to)))
3507 && ! (code == SUBREG
3508 && MODES_TIEABLE_P (GET_MODE (x),
3509 GET_MODE (SUBREG_REG (to))))
3510 #ifdef HAVE_cc0
3511 && ! (code == SET && i == 1 && XEXP (x, 0) == cc0_rtx)
3512 #endif
3513 )
3514 return gen_rtx_CLOBBER (VOIDmode, const0_rtx);
3515
3516 #ifdef CLASS_CANNOT_CHANGE_MODE
3517 if (code == SUBREG
3518 && GET_CODE (to) == REG
3519 && REGNO (to) < FIRST_PSEUDO_REGISTER
3520 && (TEST_HARD_REG_BIT
3521 (reg_class_contents[(int) CLASS_CANNOT_CHANGE_MODE],
3522 REGNO (to)))
3523 && CLASS_CANNOT_CHANGE_MODE_P (GET_MODE (to),
3524 GET_MODE (x)))
3525 return gen_rtx_CLOBBER (VOIDmode, const0_rtx);
3526 #endif
3527
3528 new = (unique_copy && n_occurrences ? copy_rtx (to) : to);
3529 n_occurrences++;
3530 }
3531 else
3532 /* If we are in a SET_DEST, suppress most cases unless we
3533 have gone inside a MEM, in which case we want to
3534 simplify the address. We assume here that things that
3535 are actually part of the destination have their inner
3536 parts in the first expression. This is true for SUBREG,
3537 STRICT_LOW_PART, and ZERO_EXTRACT, which are the only
3538 things aside from REG and MEM that should appear in a
3539 SET_DEST. */
3540 new = subst (XEXP (x, i), from, to,
3541 (((in_dest
3542 && (code == SUBREG || code == STRICT_LOW_PART
3543 || code == ZERO_EXTRACT))
3544 || code == SET)
3545 && i == 0), unique_copy);
3546
3547 /* If we found that we will have to reject this combination,
3548 indicate that by returning the CLOBBER ourselves, rather than
3549 an expression containing it. This will speed things up as
3550 well as prevent accidents where two CLOBBERs are considered
3551 to be equal, thus producing an incorrect simplification. */
3552
3553 if (GET_CODE (new) == CLOBBER && XEXP (new, 0) == const0_rtx)
3554 return new;
3555
3556 if (GET_CODE (new) == CONST_INT && GET_CODE (x) == SUBREG)
3557 {
3558 enum machine_mode mode = GET_MODE (x);
3559
3560 x = simplify_subreg (GET_MODE (x), new,
3561 GET_MODE (SUBREG_REG (x)),
3562 SUBREG_BYTE (x));
3563 if (! x)
3564 x = gen_rtx_CLOBBER (mode, const0_rtx);
3565 }
3566 else if (GET_CODE (new) == CONST_INT
3567 && GET_CODE (x) == ZERO_EXTEND)
3568 {
3569 x = simplify_unary_operation (ZERO_EXTEND, GET_MODE (x),
3570 new, GET_MODE (XEXP (x, 0)));
3571 if (! x)
3572 abort ();
3573 }
3574 else
3575 SUBST (XEXP (x, i), new);
3576 }
3577 }
3578 }
3579
3580 /* Try to simplify X. If the simplification changed the code, it is likely
3581 that further simplification will help, so loop, but limit the number
3582 of repetitions that will be performed. */
3583
3584 for (i = 0; i < 4; i++)
3585 {
3586 /* If X is sufficiently simple, don't bother trying to do anything
3587 with it. */
3588 if (code != CONST_INT && code != REG && code != CLOBBER)
3589 x = combine_simplify_rtx (x, op0_mode, i == 3, in_dest);
3590
3591 if (GET_CODE (x) == code)
3592 break;
3593
3594 code = GET_CODE (x);
3595
3596 /* We no longer know the original mode of operand 0 since we
3597 have changed the form of X) */
3598 op0_mode = VOIDmode;
3599 }
3600
3601 return x;
3602 }
3603 \f
3604 /* Simplify X, a piece of RTL. We just operate on the expression at the
3605 outer level; call `subst' to simplify recursively. Return the new
3606 expression.
3607
3608 OP0_MODE is the original mode of XEXP (x, 0); LAST is nonzero if this
3609 will be the iteration even if an expression with a code different from
3610 X is returned; IN_DEST is nonzero if we are inside a SET_DEST. */
3611
3612 static rtx
3613 combine_simplify_rtx (x, op0_mode, last, in_dest)
3614 rtx x;
3615 enum machine_mode op0_mode;
3616 int last;
3617 int in_dest;
3618 {
3619 enum rtx_code code = GET_CODE (x);
3620 enum machine_mode mode = GET_MODE (x);
3621 rtx temp;
3622 rtx reversed;
3623 int i;
3624
3625 /* If this is a commutative operation, put a constant last and a complex
3626 expression first. We don't need to do this for comparisons here. */
3627 if (GET_RTX_CLASS (code) == 'c'
3628 && swap_commutative_operands_p (XEXP (x, 0), XEXP (x, 1)))
3629 {
3630 temp = XEXP (x, 0);
3631 SUBST (XEXP (x, 0), XEXP (x, 1));
3632 SUBST (XEXP (x, 1), temp);
3633 }
3634
3635 /* If this is a PLUS, MINUS, or MULT, and the first operand is the
3636 sign extension of a PLUS with a constant, reverse the order of the sign
3637 extension and the addition. Note that this not the same as the original
3638 code, but overflow is undefined for signed values. Also note that the
3639 PLUS will have been partially moved "inside" the sign-extension, so that
3640 the first operand of X will really look like:
3641 (ashiftrt (plus (ashift A C4) C5) C4).
3642 We convert this to
3643 (plus (ashiftrt (ashift A C4) C2) C4)
3644 and replace the first operand of X with that expression. Later parts
3645 of this function may simplify the expression further.
3646
3647 For example, if we start with (mult (sign_extend (plus A C1)) C2),
3648 we swap the SIGN_EXTEND and PLUS. Later code will apply the
3649 distributive law to produce (plus (mult (sign_extend X) C1) C3).
3650
3651 We do this to simplify address expressions. */
3652
3653 if ((code == PLUS || code == MINUS || code == MULT)
3654 && GET_CODE (XEXP (x, 0)) == ASHIFTRT
3655 && GET_CODE (XEXP (XEXP (x, 0), 0)) == PLUS
3656 && GET_CODE (XEXP (XEXP (XEXP (x, 0), 0), 0)) == ASHIFT
3657 && GET_CODE (XEXP (XEXP (XEXP (XEXP (x, 0), 0), 0), 1)) == CONST_INT
3658 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
3659 && XEXP (XEXP (XEXP (XEXP (x, 0), 0), 0), 1) == XEXP (XEXP (x, 0), 1)
3660 && GET_CODE (XEXP (XEXP (XEXP (x, 0), 0), 1)) == CONST_INT
3661 && (temp = simplify_binary_operation (ASHIFTRT, mode,
3662 XEXP (XEXP (XEXP (x, 0), 0), 1),
3663 XEXP (XEXP (x, 0), 1))) != 0)
3664 {
3665 rtx new
3666 = simplify_shift_const (NULL_RTX, ASHIFT, mode,
3667 XEXP (XEXP (XEXP (XEXP (x, 0), 0), 0), 0),
3668 INTVAL (XEXP (XEXP (x, 0), 1)));
3669
3670 new = simplify_shift_const (NULL_RTX, ASHIFTRT, mode, new,
3671 INTVAL (XEXP (XEXP (x, 0), 1)));
3672
3673 SUBST (XEXP (x, 0), gen_binary (PLUS, mode, new, temp));
3674 }
3675
3676 /* If this is a simple operation applied to an IF_THEN_ELSE, try
3677 applying it to the arms of the IF_THEN_ELSE. This often simplifies
3678 things. Check for cases where both arms are testing the same
3679 condition.
3680
3681 Don't do anything if all operands are very simple. */
3682
3683 if (((GET_RTX_CLASS (code) == '2' || GET_RTX_CLASS (code) == 'c'
3684 || GET_RTX_CLASS (code) == '<')
3685 && ((GET_RTX_CLASS (GET_CODE (XEXP (x, 0))) != 'o'
3686 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
3687 && (GET_RTX_CLASS (GET_CODE (SUBREG_REG (XEXP (x, 0))))
3688 == 'o')))
3689 || (GET_RTX_CLASS (GET_CODE (XEXP (x, 1))) != 'o'
3690 && ! (GET_CODE (XEXP (x, 1)) == SUBREG
3691 && (GET_RTX_CLASS (GET_CODE (SUBREG_REG (XEXP (x, 1))))
3692 == 'o')))))
3693 || (GET_RTX_CLASS (code) == '1'
3694 && ((GET_RTX_CLASS (GET_CODE (XEXP (x, 0))) != 'o'
3695 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
3696 && (GET_RTX_CLASS (GET_CODE (SUBREG_REG (XEXP (x, 0))))
3697 == 'o'))))))
3698 {
3699 rtx cond, true_rtx, false_rtx;
3700
3701 cond = if_then_else_cond (x, &true_rtx, &false_rtx);
3702 if (cond != 0
3703 /* If everything is a comparison, what we have is highly unlikely
3704 to be simpler, so don't use it. */
3705 && ! (GET_RTX_CLASS (code) == '<'
3706 && (GET_RTX_CLASS (GET_CODE (true_rtx)) == '<'
3707 || GET_RTX_CLASS (GET_CODE (false_rtx)) == '<')))
3708 {
3709 rtx cop1 = const0_rtx;
3710 enum rtx_code cond_code = simplify_comparison (NE, &cond, &cop1);
3711
3712 if (cond_code == NE && GET_RTX_CLASS (GET_CODE (cond)) == '<')
3713 return x;
3714
3715 /* Simplify the alternative arms; this may collapse the true and
3716 false arms to store-flag values. */
3717 true_rtx = subst (true_rtx, pc_rtx, pc_rtx, 0, 0);
3718 false_rtx = subst (false_rtx, pc_rtx, pc_rtx, 0, 0);
3719
3720 /* If true_rtx and false_rtx are not general_operands, an if_then_else
3721 is unlikely to be simpler. */
3722 if (general_operand (true_rtx, VOIDmode)
3723 && general_operand (false_rtx, VOIDmode))
3724 {
3725 /* Restarting if we generate a store-flag expression will cause
3726 us to loop. Just drop through in this case. */
3727
3728 /* If the result values are STORE_FLAG_VALUE and zero, we can
3729 just make the comparison operation. */
3730 if (true_rtx == const_true_rtx && false_rtx == const0_rtx)
3731 x = gen_binary (cond_code, mode, cond, cop1);
3732 else if (true_rtx == const0_rtx && false_rtx == const_true_rtx
3733 && reverse_condition (cond_code) != UNKNOWN)
3734 x = gen_binary (reverse_condition (cond_code),
3735 mode, cond, cop1);
3736
3737 /* Likewise, we can make the negate of a comparison operation
3738 if the result values are - STORE_FLAG_VALUE and zero. */
3739 else if (GET_CODE (true_rtx) == CONST_INT
3740 && INTVAL (true_rtx) == - STORE_FLAG_VALUE
3741 && false_rtx == const0_rtx)
3742 x = simplify_gen_unary (NEG, mode,
3743 gen_binary (cond_code, mode, cond,
3744 cop1),
3745 mode);
3746 else if (GET_CODE (false_rtx) == CONST_INT
3747 && INTVAL (false_rtx) == - STORE_FLAG_VALUE
3748 && true_rtx == const0_rtx)
3749 x = simplify_gen_unary (NEG, mode,
3750 gen_binary (reverse_condition
3751 (cond_code),
3752 mode, cond, cop1),
3753 mode);
3754 else
3755 return gen_rtx_IF_THEN_ELSE (mode,
3756 gen_binary (cond_code, VOIDmode,
3757 cond, cop1),
3758 true_rtx, false_rtx);
3759
3760 code = GET_CODE (x);
3761 op0_mode = VOIDmode;
3762 }
3763 }
3764 }
3765
3766 /* Try to fold this expression in case we have constants that weren't
3767 present before. */
3768 temp = 0;
3769 switch (GET_RTX_CLASS (code))
3770 {
3771 case '1':
3772 temp = simplify_unary_operation (code, mode, XEXP (x, 0), op0_mode);
3773 break;
3774 case '<':
3775 {
3776 enum machine_mode cmp_mode = GET_MODE (XEXP (x, 0));
3777 if (cmp_mode == VOIDmode)
3778 {
3779 cmp_mode = GET_MODE (XEXP (x, 1));
3780 if (cmp_mode == VOIDmode)
3781 cmp_mode = op0_mode;
3782 }
3783 temp = simplify_relational_operation (code, cmp_mode,
3784 XEXP (x, 0), XEXP (x, 1));
3785 }
3786 #ifdef FLOAT_STORE_FLAG_VALUE
3787 if (temp != 0 && GET_MODE_CLASS (mode) == MODE_FLOAT)
3788 {
3789 if (temp == const0_rtx)
3790 temp = CONST0_RTX (mode);
3791 else
3792 temp = CONST_DOUBLE_FROM_REAL_VALUE (FLOAT_STORE_FLAG_VALUE (mode),
3793 mode);
3794 }
3795 #endif
3796 break;
3797 case 'c':
3798 case '2':
3799 temp = simplify_binary_operation (code, mode, XEXP (x, 0), XEXP (x, 1));
3800 break;
3801 case 'b':
3802 case '3':
3803 temp = simplify_ternary_operation (code, mode, op0_mode, XEXP (x, 0),
3804 XEXP (x, 1), XEXP (x, 2));
3805 break;
3806 }
3807
3808 if (temp)
3809 {
3810 x = temp;
3811 code = GET_CODE (temp);
3812 op0_mode = VOIDmode;
3813 mode = GET_MODE (temp);
3814 }
3815
3816 /* First see if we can apply the inverse distributive law. */
3817 if (code == PLUS || code == MINUS
3818 || code == AND || code == IOR || code == XOR)
3819 {
3820 x = apply_distributive_law (x);
3821 code = GET_CODE (x);
3822 op0_mode = VOIDmode;
3823 }
3824
3825 /* If CODE is an associative operation not otherwise handled, see if we
3826 can associate some operands. This can win if they are constants or
3827 if they are logically related (i.e. (a & b) & a). */
3828 if ((code == PLUS || code == MINUS || code == MULT || code == DIV
3829 || code == AND || code == IOR || code == XOR
3830 || code == SMAX || code == SMIN || code == UMAX || code == UMIN)
3831 && ((INTEGRAL_MODE_P (mode) && code != DIV)
3832 || (flag_unsafe_math_optimizations && FLOAT_MODE_P (mode))))
3833 {
3834 if (GET_CODE (XEXP (x, 0)) == code)
3835 {
3836 rtx other = XEXP (XEXP (x, 0), 0);
3837 rtx inner_op0 = XEXP (XEXP (x, 0), 1);
3838 rtx inner_op1 = XEXP (x, 1);
3839 rtx inner;
3840
3841 /* Make sure we pass the constant operand if any as the second
3842 one if this is a commutative operation. */
3843 if (CONSTANT_P (inner_op0) && GET_RTX_CLASS (code) == 'c')
3844 {
3845 rtx tem = inner_op0;
3846 inner_op0 = inner_op1;
3847 inner_op1 = tem;
3848 }
3849 inner = simplify_binary_operation (code == MINUS ? PLUS
3850 : code == DIV ? MULT
3851 : code,
3852 mode, inner_op0, inner_op1);
3853
3854 /* For commutative operations, try the other pair if that one
3855 didn't simplify. */
3856 if (inner == 0 && GET_RTX_CLASS (code) == 'c')
3857 {
3858 other = XEXP (XEXP (x, 0), 1);
3859 inner = simplify_binary_operation (code, mode,
3860 XEXP (XEXP (x, 0), 0),
3861 XEXP (x, 1));
3862 }
3863
3864 if (inner)
3865 return gen_binary (code, mode, other, inner);
3866 }
3867 }
3868
3869 /* A little bit of algebraic simplification here. */
3870 switch (code)
3871 {
3872 case MEM:
3873 /* Ensure that our address has any ASHIFTs converted to MULT in case
3874 address-recognizing predicates are called later. */
3875 temp = make_compound_operation (XEXP (x, 0), MEM);
3876 SUBST (XEXP (x, 0), temp);
3877 break;
3878
3879 case SUBREG:
3880 if (op0_mode == VOIDmode)
3881 op0_mode = GET_MODE (SUBREG_REG (x));
3882
3883 /* simplify_subreg can't use gen_lowpart_for_combine. */
3884 if (CONSTANT_P (SUBREG_REG (x))
3885 && subreg_lowpart_offset (mode, op0_mode) == SUBREG_BYTE (x)
3886 /* Don't call gen_lowpart_for_combine if the inner mode
3887 is VOIDmode and we cannot simplify it, as SUBREG without
3888 inner mode is invalid. */
3889 && (GET_MODE (SUBREG_REG (x)) != VOIDmode
3890 || gen_lowpart_common (mode, SUBREG_REG (x))))
3891 return gen_lowpart_for_combine (mode, SUBREG_REG (x));
3892
3893 if (GET_MODE_CLASS (GET_MODE (SUBREG_REG (x))) == MODE_CC)
3894 break;
3895 {
3896 rtx temp;
3897 temp = simplify_subreg (mode, SUBREG_REG (x), op0_mode,
3898 SUBREG_BYTE (x));
3899 if (temp)
3900 return temp;
3901 }
3902
3903 /* Don't change the mode of the MEM if that would change the meaning
3904 of the address. */
3905 if (GET_CODE (SUBREG_REG (x)) == MEM
3906 && (MEM_VOLATILE_P (SUBREG_REG (x))
3907 || mode_dependent_address_p (XEXP (SUBREG_REG (x), 0))))
3908 return gen_rtx_CLOBBER (mode, const0_rtx);
3909
3910 /* Note that we cannot do any narrowing for non-constants since
3911 we might have been counting on using the fact that some bits were
3912 zero. We now do this in the SET. */
3913
3914 break;
3915
3916 case NOT:
3917 /* (not (plus X -1)) can become (neg X). */
3918 if (GET_CODE (XEXP (x, 0)) == PLUS
3919 && XEXP (XEXP (x, 0), 1) == constm1_rtx)
3920 return gen_rtx_NEG (mode, XEXP (XEXP (x, 0), 0));
3921
3922 /* Similarly, (not (neg X)) is (plus X -1). */
3923 if (GET_CODE (XEXP (x, 0)) == NEG)
3924 return gen_rtx_PLUS (mode, XEXP (XEXP (x, 0), 0), constm1_rtx);
3925
3926 /* (not (xor X C)) for C constant is (xor X D) with D = ~C. */
3927 if (GET_CODE (XEXP (x, 0)) == XOR
3928 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
3929 && (temp = simplify_unary_operation (NOT, mode,
3930 XEXP (XEXP (x, 0), 1),
3931 mode)) != 0)
3932 return gen_binary (XOR, mode, XEXP (XEXP (x, 0), 0), temp);
3933
3934 /* (not (ashift 1 X)) is (rotate ~1 X). We used to do this for operands
3935 other than 1, but that is not valid. We could do a similar
3936 simplification for (not (lshiftrt C X)) where C is just the sign bit,
3937 but this doesn't seem common enough to bother with. */
3938 if (GET_CODE (XEXP (x, 0)) == ASHIFT
3939 && XEXP (XEXP (x, 0), 0) == const1_rtx)
3940 return gen_rtx_ROTATE (mode, simplify_gen_unary (NOT, mode,
3941 const1_rtx, mode),
3942 XEXP (XEXP (x, 0), 1));
3943
3944 if (GET_CODE (XEXP (x, 0)) == SUBREG
3945 && subreg_lowpart_p (XEXP (x, 0))
3946 && (GET_MODE_SIZE (GET_MODE (XEXP (x, 0)))
3947 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (XEXP (x, 0)))))
3948 && GET_CODE (SUBREG_REG (XEXP (x, 0))) == ASHIFT
3949 && XEXP (SUBREG_REG (XEXP (x, 0)), 0) == const1_rtx)
3950 {
3951 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (XEXP (x, 0)));
3952
3953 x = gen_rtx_ROTATE (inner_mode,
3954 simplify_gen_unary (NOT, inner_mode, const1_rtx,
3955 inner_mode),
3956 XEXP (SUBREG_REG (XEXP (x, 0)), 1));
3957 return gen_lowpart_for_combine (mode, x);
3958 }
3959
3960 /* If STORE_FLAG_VALUE is -1, (not (comparison foo bar)) can be done by
3961 reversing the comparison code if valid. */
3962 if (STORE_FLAG_VALUE == -1
3963 && GET_RTX_CLASS (GET_CODE (XEXP (x, 0))) == '<'
3964 && (reversed = reversed_comparison (x, mode, XEXP (XEXP (x, 0), 0),
3965 XEXP (XEXP (x, 0), 1))))
3966 return reversed;
3967
3968 /* (not (ashiftrt foo C)) where C is the number of bits in FOO minus 1
3969 is (ge foo (const_int 0)) if STORE_FLAG_VALUE is -1, so we can
3970 perform the above simplification. */
3971
3972 if (STORE_FLAG_VALUE == -1
3973 && GET_CODE (XEXP (x, 0)) == ASHIFTRT
3974 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
3975 && INTVAL (XEXP (XEXP (x, 0), 1)) == GET_MODE_BITSIZE (mode) - 1)
3976 return gen_rtx_GE (mode, XEXP (XEXP (x, 0), 0), const0_rtx);
3977
3978 /* Apply De Morgan's laws to reduce number of patterns for machines
3979 with negating logical insns (and-not, nand, etc.). If result has
3980 only one NOT, put it first, since that is how the patterns are
3981 coded. */
3982
3983 if (GET_CODE (XEXP (x, 0)) == IOR || GET_CODE (XEXP (x, 0)) == AND)
3984 {
3985 rtx in1 = XEXP (XEXP (x, 0), 0), in2 = XEXP (XEXP (x, 0), 1);
3986 enum machine_mode op_mode;
3987
3988 op_mode = GET_MODE (in1);
3989 in1 = simplify_gen_unary (NOT, op_mode, in1, op_mode);
3990
3991 op_mode = GET_MODE (in2);
3992 if (op_mode == VOIDmode)
3993 op_mode = mode;
3994 in2 = simplify_gen_unary (NOT, op_mode, in2, op_mode);
3995
3996 if (GET_CODE (in2) == NOT && GET_CODE (in1) != NOT)
3997 {
3998 rtx tem = in2;
3999 in2 = in1; in1 = tem;
4000 }
4001
4002 return gen_rtx_fmt_ee (GET_CODE (XEXP (x, 0)) == IOR ? AND : IOR,
4003 mode, in1, in2);
4004 }
4005 break;
4006
4007 case NEG:
4008 /* (neg (plus X 1)) can become (not X). */
4009 if (GET_CODE (XEXP (x, 0)) == PLUS
4010 && XEXP (XEXP (x, 0), 1) == const1_rtx)
4011 return gen_rtx_NOT (mode, XEXP (XEXP (x, 0), 0));
4012
4013 /* Similarly, (neg (not X)) is (plus X 1). */
4014 if (GET_CODE (XEXP (x, 0)) == NOT)
4015 return plus_constant (XEXP (XEXP (x, 0), 0), 1);
4016
4017 /* (neg (minus X Y)) can become (minus Y X). This transformation
4018 isn't safe for modes with signed zeros, since if X and Y are
4019 both +0, (minus Y X) is the same as (minus X Y). If the rounding
4020 mode is towards +infinity (or -infinity) then the two expressions
4021 will be rounded differently. */
4022 if (GET_CODE (XEXP (x, 0)) == MINUS
4023 && !HONOR_SIGNED_ZEROS (mode)
4024 && !HONOR_SIGN_DEPENDENT_ROUNDING (mode))
4025 return gen_binary (MINUS, mode, XEXP (XEXP (x, 0), 1),
4026 XEXP (XEXP (x, 0), 0));
4027
4028 /* (neg (xor A 1)) is (plus A -1) if A is known to be either 0 or 1. */
4029 if (GET_CODE (XEXP (x, 0)) == XOR && XEXP (XEXP (x, 0), 1) == const1_rtx
4030 && nonzero_bits (XEXP (XEXP (x, 0), 0), mode) == 1)
4031 return gen_binary (PLUS, mode, XEXP (XEXP (x, 0), 0), constm1_rtx);
4032
4033 /* NEG commutes with ASHIFT since it is multiplication. Only do this
4034 if we can then eliminate the NEG (e.g.,
4035 if the operand is a constant). */
4036
4037 if (GET_CODE (XEXP (x, 0)) == ASHIFT)
4038 {
4039 temp = simplify_unary_operation (NEG, mode,
4040 XEXP (XEXP (x, 0), 0), mode);
4041 if (temp)
4042 return gen_binary (ASHIFT, mode, temp, XEXP (XEXP (x, 0), 1));
4043 }
4044
4045 temp = expand_compound_operation (XEXP (x, 0));
4046
4047 /* For C equal to the width of MODE minus 1, (neg (ashiftrt X C)) can be
4048 replaced by (lshiftrt X C). This will convert
4049 (neg (sign_extract X 1 Y)) to (zero_extract X 1 Y). */
4050
4051 if (GET_CODE (temp) == ASHIFTRT
4052 && GET_CODE (XEXP (temp, 1)) == CONST_INT
4053 && INTVAL (XEXP (temp, 1)) == GET_MODE_BITSIZE (mode) - 1)
4054 return simplify_shift_const (temp, LSHIFTRT, mode, XEXP (temp, 0),
4055 INTVAL (XEXP (temp, 1)));
4056
4057 /* If X has only a single bit that might be nonzero, say, bit I, convert
4058 (neg X) to (ashiftrt (ashift X C-I) C-I) where C is the bitsize of
4059 MODE minus 1. This will convert (neg (zero_extract X 1 Y)) to
4060 (sign_extract X 1 Y). But only do this if TEMP isn't a register
4061 or a SUBREG of one since we'd be making the expression more
4062 complex if it was just a register. */
4063
4064 if (GET_CODE (temp) != REG
4065 && ! (GET_CODE (temp) == SUBREG
4066 && GET_CODE (SUBREG_REG (temp)) == REG)
4067 && (i = exact_log2 (nonzero_bits (temp, mode))) >= 0)
4068 {
4069 rtx temp1 = simplify_shift_const
4070 (NULL_RTX, ASHIFTRT, mode,
4071 simplify_shift_const (NULL_RTX, ASHIFT, mode, temp,
4072 GET_MODE_BITSIZE (mode) - 1 - i),
4073 GET_MODE_BITSIZE (mode) - 1 - i);
4074
4075 /* If all we did was surround TEMP with the two shifts, we
4076 haven't improved anything, so don't use it. Otherwise,
4077 we are better off with TEMP1. */
4078 if (GET_CODE (temp1) != ASHIFTRT
4079 || GET_CODE (XEXP (temp1, 0)) != ASHIFT
4080 || XEXP (XEXP (temp1, 0), 0) != temp)
4081 return temp1;
4082 }
4083 break;
4084
4085 case TRUNCATE:
4086 /* We can't handle truncation to a partial integer mode here
4087 because we don't know the real bitsize of the partial
4088 integer mode. */
4089 if (GET_MODE_CLASS (mode) == MODE_PARTIAL_INT)
4090 break;
4091
4092 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4093 && TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (mode),
4094 GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))))
4095 SUBST (XEXP (x, 0),
4096 force_to_mode (XEXP (x, 0), GET_MODE (XEXP (x, 0)),
4097 GET_MODE_MASK (mode), NULL_RTX, 0));
4098
4099 /* (truncate:SI ({sign,zero}_extend:DI foo:SI)) == foo:SI. */
4100 if ((GET_CODE (XEXP (x, 0)) == SIGN_EXTEND
4101 || GET_CODE (XEXP (x, 0)) == ZERO_EXTEND)
4102 && GET_MODE (XEXP (XEXP (x, 0), 0)) == mode)
4103 return XEXP (XEXP (x, 0), 0);
4104
4105 /* (truncate:SI (OP:DI ({sign,zero}_extend:DI foo:SI))) is
4106 (OP:SI foo:SI) if OP is NEG or ABS. */
4107 if ((GET_CODE (XEXP (x, 0)) == ABS
4108 || GET_CODE (XEXP (x, 0)) == NEG)
4109 && (GET_CODE (XEXP (XEXP (x, 0), 0)) == SIGN_EXTEND
4110 || GET_CODE (XEXP (XEXP (x, 0), 0)) == ZERO_EXTEND)
4111 && GET_MODE (XEXP (XEXP (XEXP (x, 0), 0), 0)) == mode)
4112 return simplify_gen_unary (GET_CODE (XEXP (x, 0)), mode,
4113 XEXP (XEXP (XEXP (x, 0), 0), 0), mode);
4114
4115 /* (truncate:SI (subreg:DI (truncate:SI X) 0)) is
4116 (truncate:SI x). */
4117 if (GET_CODE (XEXP (x, 0)) == SUBREG
4118 && GET_CODE (SUBREG_REG (XEXP (x, 0))) == TRUNCATE
4119 && subreg_lowpart_p (XEXP (x, 0)))
4120 return SUBREG_REG (XEXP (x, 0));
4121
4122 /* If we know that the value is already truncated, we can
4123 replace the TRUNCATE with a SUBREG if TRULY_NOOP_TRUNCATION
4124 is nonzero for the corresponding modes. But don't do this
4125 for an (LSHIFTRT (MULT ...)) since this will cause problems
4126 with the umulXi3_highpart patterns. */
4127 if (TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (mode),
4128 GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0))))
4129 && num_sign_bit_copies (XEXP (x, 0), GET_MODE (XEXP (x, 0)))
4130 >= (unsigned int) (GET_MODE_BITSIZE (mode) + 1)
4131 && ! (GET_CODE (XEXP (x, 0)) == LSHIFTRT
4132 && GET_CODE (XEXP (XEXP (x, 0), 0)) == MULT))
4133 return gen_lowpart_for_combine (mode, XEXP (x, 0));
4134
4135 /* A truncate of a comparison can be replaced with a subreg if
4136 STORE_FLAG_VALUE permits. This is like the previous test,
4137 but it works even if the comparison is done in a mode larger
4138 than HOST_BITS_PER_WIDE_INT. */
4139 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4140 && GET_RTX_CLASS (GET_CODE (XEXP (x, 0))) == '<'
4141 && ((HOST_WIDE_INT) STORE_FLAG_VALUE & ~GET_MODE_MASK (mode)) == 0)
4142 return gen_lowpart_for_combine (mode, XEXP (x, 0));
4143
4144 /* Similarly, a truncate of a register whose value is a
4145 comparison can be replaced with a subreg if STORE_FLAG_VALUE
4146 permits. */
4147 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4148 && ((HOST_WIDE_INT) STORE_FLAG_VALUE & ~GET_MODE_MASK (mode)) == 0
4149 && (temp = get_last_value (XEXP (x, 0)))
4150 && GET_RTX_CLASS (GET_CODE (temp)) == '<')
4151 return gen_lowpart_for_combine (mode, XEXP (x, 0));
4152
4153 break;
4154
4155 case FLOAT_TRUNCATE:
4156 /* (float_truncate:SF (float_extend:DF foo:SF)) = foo:SF. */
4157 if (GET_CODE (XEXP (x, 0)) == FLOAT_EXTEND
4158 && GET_MODE (XEXP (XEXP (x, 0), 0)) == mode)
4159 return XEXP (XEXP (x, 0), 0);
4160
4161 /* (float_truncate:SF (OP:DF (float_extend:DF foo:sf))) is
4162 (OP:SF foo:SF) if OP is NEG or ABS. */
4163 if ((GET_CODE (XEXP (x, 0)) == ABS
4164 || GET_CODE (XEXP (x, 0)) == NEG)
4165 && GET_CODE (XEXP (XEXP (x, 0), 0)) == FLOAT_EXTEND
4166 && GET_MODE (XEXP (XEXP (XEXP (x, 0), 0), 0)) == mode)
4167 return simplify_gen_unary (GET_CODE (XEXP (x, 0)), mode,
4168 XEXP (XEXP (XEXP (x, 0), 0), 0), mode);
4169
4170 /* (float_truncate:SF (subreg:DF (float_truncate:SF X) 0))
4171 is (float_truncate:SF x). */
4172 if (GET_CODE (XEXP (x, 0)) == SUBREG
4173 && subreg_lowpart_p (XEXP (x, 0))
4174 && GET_CODE (SUBREG_REG (XEXP (x, 0))) == FLOAT_TRUNCATE)
4175 return SUBREG_REG (XEXP (x, 0));
4176 break;
4177
4178 #ifdef HAVE_cc0
4179 case COMPARE:
4180 /* Convert (compare FOO (const_int 0)) to FOO unless we aren't
4181 using cc0, in which case we want to leave it as a COMPARE
4182 so we can distinguish it from a register-register-copy. */
4183 if (XEXP (x, 1) == const0_rtx)
4184 return XEXP (x, 0);
4185
4186 /* x - 0 is the same as x unless x's mode has signed zeros and
4187 allows rounding towards -infinity. Under those conditions,
4188 0 - 0 is -0. */
4189 if (!(HONOR_SIGNED_ZEROS (GET_MODE (XEXP (x, 0)))
4190 && HONOR_SIGN_DEPENDENT_ROUNDING (GET_MODE (XEXP (x, 0))))
4191 && XEXP (x, 1) == CONST0_RTX (GET_MODE (XEXP (x, 0))))
4192 return XEXP (x, 0);
4193 break;
4194 #endif
4195
4196 case CONST:
4197 /* (const (const X)) can become (const X). Do it this way rather than
4198 returning the inner CONST since CONST can be shared with a
4199 REG_EQUAL note. */
4200 if (GET_CODE (XEXP (x, 0)) == CONST)
4201 SUBST (XEXP (x, 0), XEXP (XEXP (x, 0), 0));
4202 break;
4203
4204 #ifdef HAVE_lo_sum
4205 case LO_SUM:
4206 /* Convert (lo_sum (high FOO) FOO) to FOO. This is necessary so we
4207 can add in an offset. find_split_point will split this address up
4208 again if it doesn't match. */
4209 if (GET_CODE (XEXP (x, 0)) == HIGH
4210 && rtx_equal_p (XEXP (XEXP (x, 0), 0), XEXP (x, 1)))
4211 return XEXP (x, 1);
4212 break;
4213 #endif
4214
4215 case PLUS:
4216 /* If we have (plus (plus (A const) B)), associate it so that CONST is
4217 outermost. That's because that's the way indexed addresses are
4218 supposed to appear. This code used to check many more cases, but
4219 they are now checked elsewhere. */
4220 if (GET_CODE (XEXP (x, 0)) == PLUS
4221 && CONSTANT_ADDRESS_P (XEXP (XEXP (x, 0), 1)))
4222 return gen_binary (PLUS, mode,
4223 gen_binary (PLUS, mode, XEXP (XEXP (x, 0), 0),
4224 XEXP (x, 1)),
4225 XEXP (XEXP (x, 0), 1));
4226
4227 /* (plus (xor (and <foo> (const_int pow2 - 1)) <c>) <-c>)
4228 when c is (const_int (pow2 + 1) / 2) is a sign extension of a
4229 bit-field and can be replaced by either a sign_extend or a
4230 sign_extract. The `and' may be a zero_extend and the two
4231 <c>, -<c> constants may be reversed. */
4232 if (GET_CODE (XEXP (x, 0)) == XOR
4233 && GET_CODE (XEXP (x, 1)) == CONST_INT
4234 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
4235 && INTVAL (XEXP (x, 1)) == -INTVAL (XEXP (XEXP (x, 0), 1))
4236 && ((i = exact_log2 (INTVAL (XEXP (XEXP (x, 0), 1)))) >= 0
4237 || (i = exact_log2 (INTVAL (XEXP (x, 1)))) >= 0)
4238 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4239 && ((GET_CODE (XEXP (XEXP (x, 0), 0)) == AND
4240 && GET_CODE (XEXP (XEXP (XEXP (x, 0), 0), 1)) == CONST_INT
4241 && (INTVAL (XEXP (XEXP (XEXP (x, 0), 0), 1))
4242 == ((HOST_WIDE_INT) 1 << (i + 1)) - 1))
4243 || (GET_CODE (XEXP (XEXP (x, 0), 0)) == ZERO_EXTEND
4244 && (GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (XEXP (x, 0), 0), 0)))
4245 == (unsigned int) i + 1))))
4246 return simplify_shift_const
4247 (NULL_RTX, ASHIFTRT, mode,
4248 simplify_shift_const (NULL_RTX, ASHIFT, mode,
4249 XEXP (XEXP (XEXP (x, 0), 0), 0),
4250 GET_MODE_BITSIZE (mode) - (i + 1)),
4251 GET_MODE_BITSIZE (mode) - (i + 1));
4252
4253 /* (plus (comparison A B) C) can become (neg (rev-comp A B)) if
4254 C is 1 and STORE_FLAG_VALUE is -1 or if C is -1 and STORE_FLAG_VALUE
4255 is 1. This produces better code than the alternative immediately
4256 below. */
4257 if (GET_RTX_CLASS (GET_CODE (XEXP (x, 0))) == '<'
4258 && ((STORE_FLAG_VALUE == -1 && XEXP (x, 1) == const1_rtx)
4259 || (STORE_FLAG_VALUE == 1 && XEXP (x, 1) == constm1_rtx))
4260 && (reversed = reversed_comparison (XEXP (x, 0), mode,
4261 XEXP (XEXP (x, 0), 0),
4262 XEXP (XEXP (x, 0), 1))))
4263 return
4264 simplify_gen_unary (NEG, mode, reversed, mode);
4265
4266 /* If only the low-order bit of X is possibly nonzero, (plus x -1)
4267 can become (ashiftrt (ashift (xor x 1) C) C) where C is
4268 the bitsize of the mode - 1. This allows simplification of
4269 "a = (b & 8) == 0;" */
4270 if (XEXP (x, 1) == constm1_rtx
4271 && GET_CODE (XEXP (x, 0)) != REG
4272 && ! (GET_CODE (XEXP (x,0)) == SUBREG
4273 && GET_CODE (SUBREG_REG (XEXP (x, 0))) == REG)
4274 && nonzero_bits (XEXP (x, 0), mode) == 1)
4275 return simplify_shift_const (NULL_RTX, ASHIFTRT, mode,
4276 simplify_shift_const (NULL_RTX, ASHIFT, mode,
4277 gen_rtx_XOR (mode, XEXP (x, 0), const1_rtx),
4278 GET_MODE_BITSIZE (mode) - 1),
4279 GET_MODE_BITSIZE (mode) - 1);
4280
4281 /* If we are adding two things that have no bits in common, convert
4282 the addition into an IOR. This will often be further simplified,
4283 for example in cases like ((a & 1) + (a & 2)), which can
4284 become a & 3. */
4285
4286 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4287 && (nonzero_bits (XEXP (x, 0), mode)
4288 & nonzero_bits (XEXP (x, 1), mode)) == 0)
4289 {
4290 /* Try to simplify the expression further. */
4291 rtx tor = gen_binary (IOR, mode, XEXP (x, 0), XEXP (x, 1));
4292 temp = combine_simplify_rtx (tor, mode, last, in_dest);
4293
4294 /* If we could, great. If not, do not go ahead with the IOR
4295 replacement, since PLUS appears in many special purpose
4296 address arithmetic instructions. */
4297 if (GET_CODE (temp) != CLOBBER && temp != tor)
4298 return temp;
4299 }
4300 break;
4301
4302 case MINUS:
4303 /* If STORE_FLAG_VALUE is 1, (minus 1 (comparison foo bar)) can be done
4304 by reversing the comparison code if valid. */
4305 if (STORE_FLAG_VALUE == 1
4306 && XEXP (x, 0) == const1_rtx
4307 && GET_RTX_CLASS (GET_CODE (XEXP (x, 1))) == '<'
4308 && (reversed = reversed_comparison (XEXP (x, 1), mode,
4309 XEXP (XEXP (x, 1), 0),
4310 XEXP (XEXP (x, 1), 1))))
4311 return reversed;
4312
4313 /* (minus <foo> (and <foo> (const_int -pow2))) becomes
4314 (and <foo> (const_int pow2-1)) */
4315 if (GET_CODE (XEXP (x, 1)) == AND
4316 && GET_CODE (XEXP (XEXP (x, 1), 1)) == CONST_INT
4317 && exact_log2 (-INTVAL (XEXP (XEXP (x, 1), 1))) >= 0
4318 && rtx_equal_p (XEXP (XEXP (x, 1), 0), XEXP (x, 0)))
4319 return simplify_and_const_int (NULL_RTX, mode, XEXP (x, 0),
4320 -INTVAL (XEXP (XEXP (x, 1), 1)) - 1);
4321
4322 /* Canonicalize (minus A (plus B C)) to (minus (minus A B) C) for
4323 integers. */
4324 if (GET_CODE (XEXP (x, 1)) == PLUS && INTEGRAL_MODE_P (mode))
4325 return gen_binary (MINUS, mode,
4326 gen_binary (MINUS, mode, XEXP (x, 0),
4327 XEXP (XEXP (x, 1), 0)),
4328 XEXP (XEXP (x, 1), 1));
4329 break;
4330
4331 case MULT:
4332 /* If we have (mult (plus A B) C), apply the distributive law and then
4333 the inverse distributive law to see if things simplify. This
4334 occurs mostly in addresses, often when unrolling loops. */
4335
4336 if (GET_CODE (XEXP (x, 0)) == PLUS)
4337 {
4338 x = apply_distributive_law
4339 (gen_binary (PLUS, mode,
4340 gen_binary (MULT, mode,
4341 XEXP (XEXP (x, 0), 0), XEXP (x, 1)),
4342 gen_binary (MULT, mode,
4343 XEXP (XEXP (x, 0), 1),
4344 copy_rtx (XEXP (x, 1)))));
4345
4346 if (GET_CODE (x) != MULT)
4347 return x;
4348 }
4349 /* Try simplify a*(b/c) as (a*b)/c. */
4350 if (FLOAT_MODE_P (mode) && flag_unsafe_math_optimizations
4351 && GET_CODE (XEXP (x, 0)) == DIV)
4352 {
4353 rtx tem = simplify_binary_operation (MULT, mode,
4354 XEXP (XEXP (x, 0), 0),
4355 XEXP (x, 1));
4356 if (tem)
4357 return gen_binary (DIV, mode, tem, XEXP (XEXP (x, 0), 1));
4358 }
4359 break;
4360
4361 case UDIV:
4362 /* If this is a divide by a power of two, treat it as a shift if
4363 its first operand is a shift. */
4364 if (GET_CODE (XEXP (x, 1)) == CONST_INT
4365 && (i = exact_log2 (INTVAL (XEXP (x, 1)))) >= 0
4366 && (GET_CODE (XEXP (x, 0)) == ASHIFT
4367 || GET_CODE (XEXP (x, 0)) == LSHIFTRT
4368 || GET_CODE (XEXP (x, 0)) == ASHIFTRT
4369 || GET_CODE (XEXP (x, 0)) == ROTATE
4370 || GET_CODE (XEXP (x, 0)) == ROTATERT))
4371 return simplify_shift_const (NULL_RTX, LSHIFTRT, mode, XEXP (x, 0), i);
4372 break;
4373
4374 case EQ: case NE:
4375 case GT: case GTU: case GE: case GEU:
4376 case LT: case LTU: case LE: case LEU:
4377 case UNEQ: case LTGT:
4378 case UNGT: case UNGE:
4379 case UNLT: case UNLE:
4380 case UNORDERED: case ORDERED:
4381 /* If the first operand is a condition code, we can't do anything
4382 with it. */
4383 if (GET_CODE (XEXP (x, 0)) == COMPARE
4384 || (GET_MODE_CLASS (GET_MODE (XEXP (x, 0))) != MODE_CC
4385 #ifdef HAVE_cc0
4386 && XEXP (x, 0) != cc0_rtx
4387 #endif
4388 ))
4389 {
4390 rtx op0 = XEXP (x, 0);
4391 rtx op1 = XEXP (x, 1);
4392 enum rtx_code new_code;
4393
4394 if (GET_CODE (op0) == COMPARE)
4395 op1 = XEXP (op0, 1), op0 = XEXP (op0, 0);
4396
4397 /* Simplify our comparison, if possible. */
4398 new_code = simplify_comparison (code, &op0, &op1);
4399
4400 /* If STORE_FLAG_VALUE is 1, we can convert (ne x 0) to simply X
4401 if only the low-order bit is possibly nonzero in X (such as when
4402 X is a ZERO_EXTRACT of one bit). Similarly, we can convert EQ to
4403 (xor X 1) or (minus 1 X); we use the former. Finally, if X is
4404 known to be either 0 or -1, NE becomes a NEG and EQ becomes
4405 (plus X 1).
4406
4407 Remove any ZERO_EXTRACT we made when thinking this was a
4408 comparison. It may now be simpler to use, e.g., an AND. If a
4409 ZERO_EXTRACT is indeed appropriate, it will be placed back by
4410 the call to make_compound_operation in the SET case. */
4411
4412 if (STORE_FLAG_VALUE == 1
4413 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
4414 && op1 == const0_rtx
4415 && mode == GET_MODE (op0)
4416 && nonzero_bits (op0, mode) == 1)
4417 return gen_lowpart_for_combine (mode,
4418 expand_compound_operation (op0));
4419
4420 else if (STORE_FLAG_VALUE == 1
4421 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
4422 && op1 == const0_rtx
4423 && mode == GET_MODE (op0)
4424 && (num_sign_bit_copies (op0, mode)
4425 == GET_MODE_BITSIZE (mode)))
4426 {
4427 op0 = expand_compound_operation (op0);
4428 return simplify_gen_unary (NEG, mode,
4429 gen_lowpart_for_combine (mode, op0),
4430 mode);
4431 }
4432
4433 else if (STORE_FLAG_VALUE == 1
4434 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
4435 && op1 == const0_rtx
4436 && mode == GET_MODE (op0)
4437 && nonzero_bits (op0, mode) == 1)
4438 {
4439 op0 = expand_compound_operation (op0);
4440 return gen_binary (XOR, mode,
4441 gen_lowpart_for_combine (mode, op0),
4442 const1_rtx);
4443 }
4444
4445 else if (STORE_FLAG_VALUE == 1
4446 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
4447 && op1 == const0_rtx
4448 && mode == GET_MODE (op0)
4449 && (num_sign_bit_copies (op0, mode)
4450 == GET_MODE_BITSIZE (mode)))
4451 {
4452 op0 = expand_compound_operation (op0);
4453 return plus_constant (gen_lowpart_for_combine (mode, op0), 1);
4454 }
4455
4456 /* If STORE_FLAG_VALUE is -1, we have cases similar to
4457 those above. */
4458 if (STORE_FLAG_VALUE == -1
4459 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
4460 && op1 == const0_rtx
4461 && (num_sign_bit_copies (op0, mode)
4462 == GET_MODE_BITSIZE (mode)))
4463 return gen_lowpart_for_combine (mode,
4464 expand_compound_operation (op0));
4465
4466 else if (STORE_FLAG_VALUE == -1
4467 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
4468 && op1 == const0_rtx
4469 && mode == GET_MODE (op0)
4470 && nonzero_bits (op0, mode) == 1)
4471 {
4472 op0 = expand_compound_operation (op0);
4473 return simplify_gen_unary (NEG, mode,
4474 gen_lowpart_for_combine (mode, op0),
4475 mode);
4476 }
4477
4478 else if (STORE_FLAG_VALUE == -1
4479 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
4480 && op1 == const0_rtx
4481 && mode == GET_MODE (op0)
4482 && (num_sign_bit_copies (op0, mode)
4483 == GET_MODE_BITSIZE (mode)))
4484 {
4485 op0 = expand_compound_operation (op0);
4486 return simplify_gen_unary (NOT, mode,
4487 gen_lowpart_for_combine (mode, op0),
4488 mode);
4489 }
4490
4491 /* If X is 0/1, (eq X 0) is X-1. */
4492 else if (STORE_FLAG_VALUE == -1
4493 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
4494 && op1 == const0_rtx
4495 && mode == GET_MODE (op0)
4496 && nonzero_bits (op0, mode) == 1)
4497 {
4498 op0 = expand_compound_operation (op0);
4499 return plus_constant (gen_lowpart_for_combine (mode, op0), -1);
4500 }
4501
4502 /* If STORE_FLAG_VALUE says to just test the sign bit and X has just
4503 one bit that might be nonzero, we can convert (ne x 0) to
4504 (ashift x c) where C puts the bit in the sign bit. Remove any
4505 AND with STORE_FLAG_VALUE when we are done, since we are only
4506 going to test the sign bit. */
4507 if (new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
4508 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4509 && ((STORE_FLAG_VALUE & GET_MODE_MASK (mode))
4510 == (unsigned HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE(mode)-1))
4511 && op1 == const0_rtx
4512 && mode == GET_MODE (op0)
4513 && (i = exact_log2 (nonzero_bits (op0, mode))) >= 0)
4514 {
4515 x = simplify_shift_const (NULL_RTX, ASHIFT, mode,
4516 expand_compound_operation (op0),
4517 GET_MODE_BITSIZE (mode) - 1 - i);
4518 if (GET_CODE (x) == AND && XEXP (x, 1) == const_true_rtx)
4519 return XEXP (x, 0);
4520 else
4521 return x;
4522 }
4523
4524 /* If the code changed, return a whole new comparison. */
4525 if (new_code != code)
4526 return gen_rtx_fmt_ee (new_code, mode, op0, op1);
4527
4528 /* Otherwise, keep this operation, but maybe change its operands.
4529 This also converts (ne (compare FOO BAR) 0) to (ne FOO BAR). */
4530 SUBST (XEXP (x, 0), op0);
4531 SUBST (XEXP (x, 1), op1);
4532 }
4533 break;
4534
4535 case IF_THEN_ELSE:
4536 return simplify_if_then_else (x);
4537
4538 case ZERO_EXTRACT:
4539 case SIGN_EXTRACT:
4540 case ZERO_EXTEND:
4541 case SIGN_EXTEND:
4542 /* If we are processing SET_DEST, we are done. */
4543 if (in_dest)
4544 return x;
4545
4546 return expand_compound_operation (x);
4547
4548 case SET:
4549 return simplify_set (x);
4550
4551 case AND:
4552 case IOR:
4553 case XOR:
4554 return simplify_logical (x, last);
4555
4556 case ABS:
4557 /* (abs (neg <foo>)) -> (abs <foo>) */
4558 if (GET_CODE (XEXP (x, 0)) == NEG)
4559 SUBST (XEXP (x, 0), XEXP (XEXP (x, 0), 0));
4560
4561 /* If the mode of the operand is VOIDmode (i.e. if it is ASM_OPERANDS),
4562 do nothing. */
4563 if (GET_MODE (XEXP (x, 0)) == VOIDmode)
4564 break;
4565
4566 /* If operand is something known to be positive, ignore the ABS. */
4567 if (GET_CODE (XEXP (x, 0)) == FFS || GET_CODE (XEXP (x, 0)) == ABS
4568 || ((GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))
4569 <= HOST_BITS_PER_WIDE_INT)
4570 && ((nonzero_bits (XEXP (x, 0), GET_MODE (XEXP (x, 0)))
4571 & ((HOST_WIDE_INT) 1
4572 << (GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0))) - 1)))
4573 == 0)))
4574 return XEXP (x, 0);
4575
4576 /* If operand is known to be only -1 or 0, convert ABS to NEG. */
4577 if (num_sign_bit_copies (XEXP (x, 0), mode) == GET_MODE_BITSIZE (mode))
4578 return gen_rtx_NEG (mode, XEXP (x, 0));
4579
4580 break;
4581
4582 case FFS:
4583 /* (ffs (*_extend <X>)) = (ffs <X>) */
4584 if (GET_CODE (XEXP (x, 0)) == SIGN_EXTEND
4585 || GET_CODE (XEXP (x, 0)) == ZERO_EXTEND)
4586 SUBST (XEXP (x, 0), XEXP (XEXP (x, 0), 0));
4587 break;
4588
4589 case FLOAT:
4590 /* (float (sign_extend <X>)) = (float <X>). */
4591 if (GET_CODE (XEXP (x, 0)) == SIGN_EXTEND)
4592 SUBST (XEXP (x, 0), XEXP (XEXP (x, 0), 0));
4593 break;
4594
4595 case ASHIFT:
4596 case LSHIFTRT:
4597 case ASHIFTRT:
4598 case ROTATE:
4599 case ROTATERT:
4600 /* If this is a shift by a constant amount, simplify it. */
4601 if (GET_CODE (XEXP (x, 1)) == CONST_INT)
4602 return simplify_shift_const (x, code, mode, XEXP (x, 0),
4603 INTVAL (XEXP (x, 1)));
4604
4605 #ifdef SHIFT_COUNT_TRUNCATED
4606 else if (SHIFT_COUNT_TRUNCATED && GET_CODE (XEXP (x, 1)) != REG)
4607 SUBST (XEXP (x, 1),
4608 force_to_mode (XEXP (x, 1), GET_MODE (XEXP (x, 1)),
4609 ((HOST_WIDE_INT) 1
4610 << exact_log2 (GET_MODE_BITSIZE (GET_MODE (x))))
4611 - 1,
4612 NULL_RTX, 0));
4613 #endif
4614
4615 break;
4616
4617 case VEC_SELECT:
4618 {
4619 rtx op0 = XEXP (x, 0);
4620 rtx op1 = XEXP (x, 1);
4621 int len;
4622
4623 if (GET_CODE (op1) != PARALLEL)
4624 abort ();
4625 len = XVECLEN (op1, 0);
4626 if (len == 1
4627 && GET_CODE (XVECEXP (op1, 0, 0)) == CONST_INT
4628 && GET_CODE (op0) == VEC_CONCAT)
4629 {
4630 int offset = INTVAL (XVECEXP (op1, 0, 0)) * GET_MODE_SIZE (GET_MODE (x));
4631
4632 /* Try to find the element in the VEC_CONCAT. */
4633 for (;;)
4634 {
4635 if (GET_MODE (op0) == GET_MODE (x))
4636 return op0;
4637 if (GET_CODE (op0) == VEC_CONCAT)
4638 {
4639 HOST_WIDE_INT op0_size = GET_MODE_SIZE (GET_MODE (XEXP (op0, 0)));
4640 if (op0_size < offset)
4641 op0 = XEXP (op0, 0);
4642 else
4643 {
4644 offset -= op0_size;
4645 op0 = XEXP (op0, 1);
4646 }
4647 }
4648 else
4649 break;
4650 }
4651 }
4652 }
4653
4654 break;
4655
4656 default:
4657 break;
4658 }
4659
4660 return x;
4661 }
4662 \f
4663 /* Simplify X, an IF_THEN_ELSE expression. Return the new expression. */
4664
4665 static rtx
4666 simplify_if_then_else (x)
4667 rtx x;
4668 {
4669 enum machine_mode mode = GET_MODE (x);
4670 rtx cond = XEXP (x, 0);
4671 rtx true_rtx = XEXP (x, 1);
4672 rtx false_rtx = XEXP (x, 2);
4673 enum rtx_code true_code = GET_CODE (cond);
4674 int comparison_p = GET_RTX_CLASS (true_code) == '<';
4675 rtx temp;
4676 int i;
4677 enum rtx_code false_code;
4678 rtx reversed;
4679
4680 /* Simplify storing of the truth value. */
4681 if (comparison_p && true_rtx == const_true_rtx && false_rtx == const0_rtx)
4682 return gen_binary (true_code, mode, XEXP (cond, 0), XEXP (cond, 1));
4683
4684 /* Also when the truth value has to be reversed. */
4685 if (comparison_p
4686 && true_rtx == const0_rtx && false_rtx == const_true_rtx
4687 && (reversed = reversed_comparison (cond, mode, XEXP (cond, 0),
4688 XEXP (cond, 1))))
4689 return reversed;
4690
4691 /* Sometimes we can simplify the arm of an IF_THEN_ELSE if a register used
4692 in it is being compared against certain values. Get the true and false
4693 comparisons and see if that says anything about the value of each arm. */
4694
4695 if (comparison_p
4696 && ((false_code = combine_reversed_comparison_code (cond))
4697 != UNKNOWN)
4698 && GET_CODE (XEXP (cond, 0)) == REG)
4699 {
4700 HOST_WIDE_INT nzb;
4701 rtx from = XEXP (cond, 0);
4702 rtx true_val = XEXP (cond, 1);
4703 rtx false_val = true_val;
4704 int swapped = 0;
4705
4706 /* If FALSE_CODE is EQ, swap the codes and arms. */
4707
4708 if (false_code == EQ)
4709 {
4710 swapped = 1, true_code = EQ, false_code = NE;
4711 temp = true_rtx, true_rtx = false_rtx, false_rtx = temp;
4712 }
4713
4714 /* If we are comparing against zero and the expression being tested has
4715 only a single bit that might be nonzero, that is its value when it is
4716 not equal to zero. Similarly if it is known to be -1 or 0. */
4717
4718 if (true_code == EQ && true_val == const0_rtx
4719 && exact_log2 (nzb = nonzero_bits (from, GET_MODE (from))) >= 0)
4720 false_code = EQ, false_val = GEN_INT (nzb);
4721 else if (true_code == EQ && true_val == const0_rtx
4722 && (num_sign_bit_copies (from, GET_MODE (from))
4723 == GET_MODE_BITSIZE (GET_MODE (from))))
4724 false_code = EQ, false_val = constm1_rtx;
4725
4726 /* Now simplify an arm if we know the value of the register in the
4727 branch and it is used in the arm. Be careful due to the potential
4728 of locally-shared RTL. */
4729
4730 if (reg_mentioned_p (from, true_rtx))
4731 true_rtx = subst (known_cond (copy_rtx (true_rtx), true_code,
4732 from, true_val),
4733 pc_rtx, pc_rtx, 0, 0);
4734 if (reg_mentioned_p (from, false_rtx))
4735 false_rtx = subst (known_cond (copy_rtx (false_rtx), false_code,
4736 from, false_val),
4737 pc_rtx, pc_rtx, 0, 0);
4738
4739 SUBST (XEXP (x, 1), swapped ? false_rtx : true_rtx);
4740 SUBST (XEXP (x, 2), swapped ? true_rtx : false_rtx);
4741
4742 true_rtx = XEXP (x, 1);
4743 false_rtx = XEXP (x, 2);
4744 true_code = GET_CODE (cond);
4745 }
4746
4747 /* If we have (if_then_else FOO (pc) (label_ref BAR)) and FOO can be
4748 reversed, do so to avoid needing two sets of patterns for
4749 subtract-and-branch insns. Similarly if we have a constant in the true
4750 arm, the false arm is the same as the first operand of the comparison, or
4751 the false arm is more complicated than the true arm. */
4752
4753 if (comparison_p
4754 && combine_reversed_comparison_code (cond) != UNKNOWN
4755 && (true_rtx == pc_rtx
4756 || (CONSTANT_P (true_rtx)
4757 && GET_CODE (false_rtx) != CONST_INT && false_rtx != pc_rtx)
4758 || true_rtx == const0_rtx
4759 || (GET_RTX_CLASS (GET_CODE (true_rtx)) == 'o'
4760 && GET_RTX_CLASS (GET_CODE (false_rtx)) != 'o')
4761 || (GET_CODE (true_rtx) == SUBREG
4762 && GET_RTX_CLASS (GET_CODE (SUBREG_REG (true_rtx))) == 'o'
4763 && GET_RTX_CLASS (GET_CODE (false_rtx)) != 'o')
4764 || reg_mentioned_p (true_rtx, false_rtx)
4765 || rtx_equal_p (false_rtx, XEXP (cond, 0))))
4766 {
4767 true_code = reversed_comparison_code (cond, NULL);
4768 SUBST (XEXP (x, 0),
4769 reversed_comparison (cond, GET_MODE (cond), XEXP (cond, 0),
4770 XEXP (cond, 1)));
4771
4772 SUBST (XEXP (x, 1), false_rtx);
4773 SUBST (XEXP (x, 2), true_rtx);
4774
4775 temp = true_rtx, true_rtx = false_rtx, false_rtx = temp;
4776 cond = XEXP (x, 0);
4777
4778 /* It is possible that the conditional has been simplified out. */
4779 true_code = GET_CODE (cond);
4780 comparison_p = GET_RTX_CLASS (true_code) == '<';
4781 }
4782
4783 /* If the two arms are identical, we don't need the comparison. */
4784
4785 if (rtx_equal_p (true_rtx, false_rtx) && ! side_effects_p (cond))
4786 return true_rtx;
4787
4788 /* Convert a == b ? b : a to "a". */
4789 if (true_code == EQ && ! side_effects_p (cond)
4790 && !HONOR_NANS (mode)
4791 && rtx_equal_p (XEXP (cond, 0), false_rtx)
4792 && rtx_equal_p (XEXP (cond, 1), true_rtx))
4793 return false_rtx;
4794 else if (true_code == NE && ! side_effects_p (cond)
4795 && !HONOR_NANS (mode)
4796 && rtx_equal_p (XEXP (cond, 0), true_rtx)
4797 && rtx_equal_p (XEXP (cond, 1), false_rtx))
4798 return true_rtx;
4799
4800 /* Look for cases where we have (abs x) or (neg (abs X)). */
4801
4802 if (GET_MODE_CLASS (mode) == MODE_INT
4803 && GET_CODE (false_rtx) == NEG
4804 && rtx_equal_p (true_rtx, XEXP (false_rtx, 0))
4805 && comparison_p
4806 && rtx_equal_p (true_rtx, XEXP (cond, 0))
4807 && ! side_effects_p (true_rtx))
4808 switch (true_code)
4809 {
4810 case GT:
4811 case GE:
4812 return simplify_gen_unary (ABS, mode, true_rtx, mode);
4813 case LT:
4814 case LE:
4815 return
4816 simplify_gen_unary (NEG, mode,
4817 simplify_gen_unary (ABS, mode, true_rtx, mode),
4818 mode);
4819 default:
4820 break;
4821 }
4822
4823 /* Look for MIN or MAX. */
4824
4825 if ((! FLOAT_MODE_P (mode) || flag_unsafe_math_optimizations)
4826 && comparison_p
4827 && rtx_equal_p (XEXP (cond, 0), true_rtx)
4828 && rtx_equal_p (XEXP (cond, 1), false_rtx)
4829 && ! side_effects_p (cond))
4830 switch (true_code)
4831 {
4832 case GE:
4833 case GT:
4834 return gen_binary (SMAX, mode, true_rtx, false_rtx);
4835 case LE:
4836 case LT:
4837 return gen_binary (SMIN, mode, true_rtx, false_rtx);
4838 case GEU:
4839 case GTU:
4840 return gen_binary (UMAX, mode, true_rtx, false_rtx);
4841 case LEU:
4842 case LTU:
4843 return gen_binary (UMIN, mode, true_rtx, false_rtx);
4844 default:
4845 break;
4846 }
4847
4848 /* If we have (if_then_else COND (OP Z C1) Z) and OP is an identity when its
4849 second operand is zero, this can be done as (OP Z (mult COND C2)) where
4850 C2 = C1 * STORE_FLAG_VALUE. Similarly if OP has an outer ZERO_EXTEND or
4851 SIGN_EXTEND as long as Z is already extended (so we don't destroy it).
4852 We can do this kind of thing in some cases when STORE_FLAG_VALUE is
4853 neither 1 or -1, but it isn't worth checking for. */
4854
4855 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
4856 && comparison_p && mode != VOIDmode && ! side_effects_p (x))
4857 {
4858 rtx t = make_compound_operation (true_rtx, SET);
4859 rtx f = make_compound_operation (false_rtx, SET);
4860 rtx cond_op0 = XEXP (cond, 0);
4861 rtx cond_op1 = XEXP (cond, 1);
4862 enum rtx_code op = NIL, extend_op = NIL;
4863 enum machine_mode m = mode;
4864 rtx z = 0, c1 = NULL_RTX;
4865
4866 if ((GET_CODE (t) == PLUS || GET_CODE (t) == MINUS
4867 || GET_CODE (t) == IOR || GET_CODE (t) == XOR
4868 || GET_CODE (t) == ASHIFT
4869 || GET_CODE (t) == LSHIFTRT || GET_CODE (t) == ASHIFTRT)
4870 && rtx_equal_p (XEXP (t, 0), f))
4871 c1 = XEXP (t, 1), op = GET_CODE (t), z = f;
4872
4873 /* If an identity-zero op is commutative, check whether there
4874 would be a match if we swapped the operands. */
4875 else if ((GET_CODE (t) == PLUS || GET_CODE (t) == IOR
4876 || GET_CODE (t) == XOR)
4877 && rtx_equal_p (XEXP (t, 1), f))
4878 c1 = XEXP (t, 0), op = GET_CODE (t), z = f;
4879 else if (GET_CODE (t) == SIGN_EXTEND
4880 && (GET_CODE (XEXP (t, 0)) == PLUS
4881 || GET_CODE (XEXP (t, 0)) == MINUS
4882 || GET_CODE (XEXP (t, 0)) == IOR
4883 || GET_CODE (XEXP (t, 0)) == XOR
4884 || GET_CODE (XEXP (t, 0)) == ASHIFT
4885 || GET_CODE (XEXP (t, 0)) == LSHIFTRT
4886 || GET_CODE (XEXP (t, 0)) == ASHIFTRT)
4887 && GET_CODE (XEXP (XEXP (t, 0), 0)) == SUBREG
4888 && subreg_lowpart_p (XEXP (XEXP (t, 0), 0))
4889 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 0)), f)
4890 && (num_sign_bit_copies (f, GET_MODE (f))
4891 > (unsigned int)
4892 (GET_MODE_BITSIZE (mode)
4893 - GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (t, 0), 0))))))
4894 {
4895 c1 = XEXP (XEXP (t, 0), 1); z = f; op = GET_CODE (XEXP (t, 0));
4896 extend_op = SIGN_EXTEND;
4897 m = GET_MODE (XEXP (t, 0));
4898 }
4899 else if (GET_CODE (t) == SIGN_EXTEND
4900 && (GET_CODE (XEXP (t, 0)) == PLUS
4901 || GET_CODE (XEXP (t, 0)) == IOR
4902 || GET_CODE (XEXP (t, 0)) == XOR)
4903 && GET_CODE (XEXP (XEXP (t, 0), 1)) == SUBREG
4904 && subreg_lowpart_p (XEXP (XEXP (t, 0), 1))
4905 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 1)), f)
4906 && (num_sign_bit_copies (f, GET_MODE (f))
4907 > (unsigned int)
4908 (GET_MODE_BITSIZE (mode)
4909 - GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (t, 0), 1))))))
4910 {
4911 c1 = XEXP (XEXP (t, 0), 0); z = f; op = GET_CODE (XEXP (t, 0));
4912 extend_op = SIGN_EXTEND;
4913 m = GET_MODE (XEXP (t, 0));
4914 }
4915 else if (GET_CODE (t) == ZERO_EXTEND
4916 && (GET_CODE (XEXP (t, 0)) == PLUS
4917 || GET_CODE (XEXP (t, 0)) == MINUS
4918 || GET_CODE (XEXP (t, 0)) == IOR
4919 || GET_CODE (XEXP (t, 0)) == XOR
4920 || GET_CODE (XEXP (t, 0)) == ASHIFT
4921 || GET_CODE (XEXP (t, 0)) == LSHIFTRT
4922 || GET_CODE (XEXP (t, 0)) == ASHIFTRT)
4923 && GET_CODE (XEXP (XEXP (t, 0), 0)) == SUBREG
4924 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4925 && subreg_lowpart_p (XEXP (XEXP (t, 0), 0))
4926 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 0)), f)
4927 && ((nonzero_bits (f, GET_MODE (f))
4928 & ~GET_MODE_MASK (GET_MODE (XEXP (XEXP (t, 0), 0))))
4929 == 0))
4930 {
4931 c1 = XEXP (XEXP (t, 0), 1); z = f; op = GET_CODE (XEXP (t, 0));
4932 extend_op = ZERO_EXTEND;
4933 m = GET_MODE (XEXP (t, 0));
4934 }
4935 else if (GET_CODE (t) == ZERO_EXTEND
4936 && (GET_CODE (XEXP (t, 0)) == PLUS
4937 || GET_CODE (XEXP (t, 0)) == IOR
4938 || GET_CODE (XEXP (t, 0)) == XOR)
4939 && GET_CODE (XEXP (XEXP (t, 0), 1)) == SUBREG
4940 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4941 && subreg_lowpart_p (XEXP (XEXP (t, 0), 1))
4942 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 1)), f)
4943 && ((nonzero_bits (f, GET_MODE (f))
4944 & ~GET_MODE_MASK (GET_MODE (XEXP (XEXP (t, 0), 1))))
4945 == 0))
4946 {
4947 c1 = XEXP (XEXP (t, 0), 0); z = f; op = GET_CODE (XEXP (t, 0));
4948 extend_op = ZERO_EXTEND;
4949 m = GET_MODE (XEXP (t, 0));
4950 }
4951
4952 if (z)
4953 {
4954 temp = subst (gen_binary (true_code, m, cond_op0, cond_op1),
4955 pc_rtx, pc_rtx, 0, 0);
4956 temp = gen_binary (MULT, m, temp,
4957 gen_binary (MULT, m, c1, const_true_rtx));
4958 temp = subst (temp, pc_rtx, pc_rtx, 0, 0);
4959 temp = gen_binary (op, m, gen_lowpart_for_combine (m, z), temp);
4960
4961 if (extend_op != NIL)
4962 temp = simplify_gen_unary (extend_op, mode, temp, m);
4963
4964 return temp;
4965 }
4966 }
4967
4968 /* If we have (if_then_else (ne A 0) C1 0) and either A is known to be 0 or
4969 1 and C1 is a single bit or A is known to be 0 or -1 and C1 is the
4970 negation of a single bit, we can convert this operation to a shift. We
4971 can actually do this more generally, but it doesn't seem worth it. */
4972
4973 if (true_code == NE && XEXP (cond, 1) == const0_rtx
4974 && false_rtx == const0_rtx && GET_CODE (true_rtx) == CONST_INT
4975 && ((1 == nonzero_bits (XEXP (cond, 0), mode)
4976 && (i = exact_log2 (INTVAL (true_rtx))) >= 0)
4977 || ((num_sign_bit_copies (XEXP (cond, 0), mode)
4978 == GET_MODE_BITSIZE (mode))
4979 && (i = exact_log2 (-INTVAL (true_rtx))) >= 0)))
4980 return
4981 simplify_shift_const (NULL_RTX, ASHIFT, mode,
4982 gen_lowpart_for_combine (mode, XEXP (cond, 0)), i);
4983
4984 return x;
4985 }
4986 \f
4987 /* Simplify X, a SET expression. Return the new expression. */
4988
4989 static rtx
4990 simplify_set (x)
4991 rtx x;
4992 {
4993 rtx src = SET_SRC (x);
4994 rtx dest = SET_DEST (x);
4995 enum machine_mode mode
4996 = GET_MODE (src) != VOIDmode ? GET_MODE (src) : GET_MODE (dest);
4997 rtx other_insn;
4998 rtx *cc_use;
4999
5000 /* (set (pc) (return)) gets written as (return). */
5001 if (GET_CODE (dest) == PC && GET_CODE (src) == RETURN)
5002 return src;
5003
5004 /* Now that we know for sure which bits of SRC we are using, see if we can
5005 simplify the expression for the object knowing that we only need the
5006 low-order bits. */
5007
5008 if (GET_MODE_CLASS (mode) == MODE_INT)
5009 {
5010 src = force_to_mode (src, mode, ~(HOST_WIDE_INT) 0, NULL_RTX, 0);
5011 SUBST (SET_SRC (x), src);
5012 }
5013
5014 /* If we are setting CC0 or if the source is a COMPARE, look for the use of
5015 the comparison result and try to simplify it unless we already have used
5016 undobuf.other_insn. */
5017 if ((GET_CODE (src) == COMPARE
5018 #ifdef HAVE_cc0
5019 || dest == cc0_rtx
5020 #endif
5021 )
5022 && (cc_use = find_single_use (dest, subst_insn, &other_insn)) != 0
5023 && (undobuf.other_insn == 0 || other_insn == undobuf.other_insn)
5024 && GET_RTX_CLASS (GET_CODE (*cc_use)) == '<'
5025 && rtx_equal_p (XEXP (*cc_use, 0), dest))
5026 {
5027 enum rtx_code old_code = GET_CODE (*cc_use);
5028 enum rtx_code new_code;
5029 rtx op0, op1, tmp;
5030 int other_changed = 0;
5031 enum machine_mode compare_mode = GET_MODE (dest);
5032 enum machine_mode tmp_mode;
5033
5034 if (GET_CODE (src) == COMPARE)
5035 op0 = XEXP (src, 0), op1 = XEXP (src, 1);
5036 else
5037 op0 = src, op1 = const0_rtx;
5038
5039 /* Check whether the comparison is known at compile time. */
5040 if (GET_MODE (op0) != VOIDmode)
5041 tmp_mode = GET_MODE (op0);
5042 else if (GET_MODE (op1) != VOIDmode)
5043 tmp_mode = GET_MODE (op1);
5044 else
5045 tmp_mode = compare_mode;
5046 tmp = simplify_relational_operation (old_code, tmp_mode, op0, op1);
5047 if (tmp != NULL_RTX)
5048 {
5049 rtx pat = PATTERN (other_insn);
5050 undobuf.other_insn = other_insn;
5051 SUBST (*cc_use, tmp);
5052
5053 /* Attempt to simplify CC user. */
5054 if (GET_CODE (pat) == SET)
5055 {
5056 rtx new = simplify_rtx (SET_SRC (pat));
5057 if (new != NULL_RTX)
5058 SUBST (SET_SRC (pat), new);
5059 }
5060
5061 /* Convert X into a no-op move. */
5062 SUBST (SET_DEST (x), pc_rtx);
5063 SUBST (SET_SRC (x), pc_rtx);
5064 return x;
5065 }
5066
5067 /* Simplify our comparison, if possible. */
5068 new_code = simplify_comparison (old_code, &op0, &op1);
5069
5070 #ifdef EXTRA_CC_MODES
5071 /* If this machine has CC modes other than CCmode, check to see if we
5072 need to use a different CC mode here. */
5073 compare_mode = SELECT_CC_MODE (new_code, op0, op1);
5074 #endif /* EXTRA_CC_MODES */
5075
5076 #if !defined (HAVE_cc0) && defined (EXTRA_CC_MODES)
5077 /* If the mode changed, we have to change SET_DEST, the mode in the
5078 compare, and the mode in the place SET_DEST is used. If SET_DEST is
5079 a hard register, just build new versions with the proper mode. If it
5080 is a pseudo, we lose unless it is only time we set the pseudo, in
5081 which case we can safely change its mode. */
5082 if (compare_mode != GET_MODE (dest))
5083 {
5084 unsigned int regno = REGNO (dest);
5085 rtx new_dest = gen_rtx_REG (compare_mode, regno);
5086
5087 if (regno < FIRST_PSEUDO_REGISTER
5088 || (REG_N_SETS (regno) == 1 && ! REG_USERVAR_P (dest)))
5089 {
5090 if (regno >= FIRST_PSEUDO_REGISTER)
5091 SUBST (regno_reg_rtx[regno], new_dest);
5092
5093 SUBST (SET_DEST (x), new_dest);
5094 SUBST (XEXP (*cc_use, 0), new_dest);
5095 other_changed = 1;
5096
5097 dest = new_dest;
5098 }
5099 }
5100 #endif
5101
5102 /* If the code changed, we have to build a new comparison in
5103 undobuf.other_insn. */
5104 if (new_code != old_code)
5105 {
5106 unsigned HOST_WIDE_INT mask;
5107
5108 SUBST (*cc_use, gen_rtx_fmt_ee (new_code, GET_MODE (*cc_use),
5109 dest, const0_rtx));
5110
5111 /* If the only change we made was to change an EQ into an NE or
5112 vice versa, OP0 has only one bit that might be nonzero, and OP1
5113 is zero, check if changing the user of the condition code will
5114 produce a valid insn. If it won't, we can keep the original code
5115 in that insn by surrounding our operation with an XOR. */
5116
5117 if (((old_code == NE && new_code == EQ)
5118 || (old_code == EQ && new_code == NE))
5119 && ! other_changed && op1 == const0_rtx
5120 && GET_MODE_BITSIZE (GET_MODE (op0)) <= HOST_BITS_PER_WIDE_INT
5121 && exact_log2 (mask = nonzero_bits (op0, GET_MODE (op0))) >= 0)
5122 {
5123 rtx pat = PATTERN (other_insn), note = 0;
5124
5125 if ((recog_for_combine (&pat, other_insn, &note) < 0
5126 && ! check_asm_operands (pat)))
5127 {
5128 PUT_CODE (*cc_use, old_code);
5129 other_insn = 0;
5130
5131 op0 = gen_binary (XOR, GET_MODE (op0), op0, GEN_INT (mask));
5132 }
5133 }
5134
5135 other_changed = 1;
5136 }
5137
5138 if (other_changed)
5139 undobuf.other_insn = other_insn;
5140
5141 #ifdef HAVE_cc0
5142 /* If we are now comparing against zero, change our source if
5143 needed. If we do not use cc0, we always have a COMPARE. */
5144 if (op1 == const0_rtx && dest == cc0_rtx)
5145 {
5146 SUBST (SET_SRC (x), op0);
5147 src = op0;
5148 }
5149 else
5150 #endif
5151
5152 /* Otherwise, if we didn't previously have a COMPARE in the
5153 correct mode, we need one. */
5154 if (GET_CODE (src) != COMPARE || GET_MODE (src) != compare_mode)
5155 {
5156 SUBST (SET_SRC (x), gen_rtx_COMPARE (compare_mode, op0, op1));
5157 src = SET_SRC (x);
5158 }
5159 else
5160 {
5161 /* Otherwise, update the COMPARE if needed. */
5162 SUBST (XEXP (src, 0), op0);
5163 SUBST (XEXP (src, 1), op1);
5164 }
5165 }
5166 else
5167 {
5168 /* Get SET_SRC in a form where we have placed back any
5169 compound expressions. Then do the checks below. */
5170 src = make_compound_operation (src, SET);
5171 SUBST (SET_SRC (x), src);
5172 }
5173
5174 /* If we have (set x (subreg:m1 (op:m2 ...) 0)) with OP being some operation,
5175 and X being a REG or (subreg (reg)), we may be able to convert this to
5176 (set (subreg:m2 x) (op)).
5177
5178 We can always do this if M1 is narrower than M2 because that means that
5179 we only care about the low bits of the result.
5180
5181 However, on machines without WORD_REGISTER_OPERATIONS defined, we cannot
5182 perform a narrower operation than requested since the high-order bits will
5183 be undefined. On machine where it is defined, this transformation is safe
5184 as long as M1 and M2 have the same number of words. */
5185
5186 if (GET_CODE (src) == SUBREG && subreg_lowpart_p (src)
5187 && GET_RTX_CLASS (GET_CODE (SUBREG_REG (src))) != 'o'
5188 && (((GET_MODE_SIZE (GET_MODE (src)) + (UNITS_PER_WORD - 1))
5189 / UNITS_PER_WORD)
5190 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (src)))
5191 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))
5192 #ifndef WORD_REGISTER_OPERATIONS
5193 && (GET_MODE_SIZE (GET_MODE (src))
5194 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (src))))
5195 #endif
5196 #ifdef CLASS_CANNOT_CHANGE_MODE
5197 && ! (GET_CODE (dest) == REG && REGNO (dest) < FIRST_PSEUDO_REGISTER
5198 && (TEST_HARD_REG_BIT
5199 (reg_class_contents[(int) CLASS_CANNOT_CHANGE_MODE],
5200 REGNO (dest)))
5201 && CLASS_CANNOT_CHANGE_MODE_P (GET_MODE (src),
5202 GET_MODE (SUBREG_REG (src))))
5203 #endif
5204 && (GET_CODE (dest) == REG
5205 || (GET_CODE (dest) == SUBREG
5206 && GET_CODE (SUBREG_REG (dest)) == REG)))
5207 {
5208 SUBST (SET_DEST (x),
5209 gen_lowpart_for_combine (GET_MODE (SUBREG_REG (src)),
5210 dest));
5211 SUBST (SET_SRC (x), SUBREG_REG (src));
5212
5213 src = SET_SRC (x), dest = SET_DEST (x);
5214 }
5215
5216 #ifdef HAVE_cc0
5217 /* If we have (set (cc0) (subreg ...)), we try to remove the subreg
5218 in SRC. */
5219 if (dest == cc0_rtx
5220 && GET_CODE (src) == SUBREG
5221 && subreg_lowpart_p (src)
5222 && (GET_MODE_BITSIZE (GET_MODE (src))
5223 < GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (src)))))
5224 {
5225 rtx inner = SUBREG_REG (src);
5226 enum machine_mode inner_mode = GET_MODE (inner);
5227
5228 /* Here we make sure that we don't have a sign bit on. */
5229 if (GET_MODE_BITSIZE (inner_mode) <= HOST_BITS_PER_WIDE_INT
5230 && (nonzero_bits (inner, inner_mode)
5231 < ((unsigned HOST_WIDE_INT) 1
5232 << (GET_MODE_BITSIZE (inner_mode) - 1))))
5233 {
5234 SUBST (SET_SRC (x), inner);
5235 src = SET_SRC (x);
5236 }
5237 }
5238 #endif
5239
5240 #ifdef LOAD_EXTEND_OP
5241 /* If we have (set FOO (subreg:M (mem:N BAR) 0)) with M wider than N, this
5242 would require a paradoxical subreg. Replace the subreg with a
5243 zero_extend to avoid the reload that would otherwise be required. */
5244
5245 if (GET_CODE (src) == SUBREG && subreg_lowpart_p (src)
5246 && LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (src))) != NIL
5247 && SUBREG_BYTE (src) == 0
5248 && (GET_MODE_SIZE (GET_MODE (src))
5249 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (src))))
5250 && GET_CODE (SUBREG_REG (src)) == MEM)
5251 {
5252 SUBST (SET_SRC (x),
5253 gen_rtx (LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (src))),
5254 GET_MODE (src), SUBREG_REG (src)));
5255
5256 src = SET_SRC (x);
5257 }
5258 #endif
5259
5260 /* If we don't have a conditional move, SET_SRC is an IF_THEN_ELSE, and we
5261 are comparing an item known to be 0 or -1 against 0, use a logical
5262 operation instead. Check for one of the arms being an IOR of the other
5263 arm with some value. We compute three terms to be IOR'ed together. In
5264 practice, at most two will be nonzero. Then we do the IOR's. */
5265
5266 if (GET_CODE (dest) != PC
5267 && GET_CODE (src) == IF_THEN_ELSE
5268 && GET_MODE_CLASS (GET_MODE (src)) == MODE_INT
5269 && (GET_CODE (XEXP (src, 0)) == EQ || GET_CODE (XEXP (src, 0)) == NE)
5270 && XEXP (XEXP (src, 0), 1) == const0_rtx
5271 && GET_MODE (src) == GET_MODE (XEXP (XEXP (src, 0), 0))
5272 #ifdef HAVE_conditional_move
5273 && ! can_conditionally_move_p (GET_MODE (src))
5274 #endif
5275 && (num_sign_bit_copies (XEXP (XEXP (src, 0), 0),
5276 GET_MODE (XEXP (XEXP (src, 0), 0)))
5277 == GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (src, 0), 0))))
5278 && ! side_effects_p (src))
5279 {
5280 rtx true_rtx = (GET_CODE (XEXP (src, 0)) == NE
5281 ? XEXP (src, 1) : XEXP (src, 2));
5282 rtx false_rtx = (GET_CODE (XEXP (src, 0)) == NE
5283 ? XEXP (src, 2) : XEXP (src, 1));
5284 rtx term1 = const0_rtx, term2, term3;
5285
5286 if (GET_CODE (true_rtx) == IOR
5287 && rtx_equal_p (XEXP (true_rtx, 0), false_rtx))
5288 term1 = false_rtx, true_rtx = XEXP(true_rtx, 1), false_rtx = const0_rtx;
5289 else if (GET_CODE (true_rtx) == IOR
5290 && rtx_equal_p (XEXP (true_rtx, 1), false_rtx))
5291 term1 = false_rtx, true_rtx = XEXP(true_rtx, 0), false_rtx = const0_rtx;
5292 else if (GET_CODE (false_rtx) == IOR
5293 && rtx_equal_p (XEXP (false_rtx, 0), true_rtx))
5294 term1 = true_rtx, false_rtx = XEXP(false_rtx, 1), true_rtx = const0_rtx;
5295 else if (GET_CODE (false_rtx) == IOR
5296 && rtx_equal_p (XEXP (false_rtx, 1), true_rtx))
5297 term1 = true_rtx, false_rtx = XEXP(false_rtx, 0), true_rtx = const0_rtx;
5298
5299 term2 = gen_binary (AND, GET_MODE (src),
5300 XEXP (XEXP (src, 0), 0), true_rtx);
5301 term3 = gen_binary (AND, GET_MODE (src),
5302 simplify_gen_unary (NOT, GET_MODE (src),
5303 XEXP (XEXP (src, 0), 0),
5304 GET_MODE (src)),
5305 false_rtx);
5306
5307 SUBST (SET_SRC (x),
5308 gen_binary (IOR, GET_MODE (src),
5309 gen_binary (IOR, GET_MODE (src), term1, term2),
5310 term3));
5311
5312 src = SET_SRC (x);
5313 }
5314
5315 /* If either SRC or DEST is a CLOBBER of (const_int 0), make this
5316 whole thing fail. */
5317 if (GET_CODE (src) == CLOBBER && XEXP (src, 0) == const0_rtx)
5318 return src;
5319 else if (GET_CODE (dest) == CLOBBER && XEXP (dest, 0) == const0_rtx)
5320 return dest;
5321 else
5322 /* Convert this into a field assignment operation, if possible. */
5323 return make_field_assignment (x);
5324 }
5325 \f
5326 /* Simplify, X, and AND, IOR, or XOR operation, and return the simplified
5327 result. LAST is nonzero if this is the last retry. */
5328
5329 static rtx
5330 simplify_logical (x, last)
5331 rtx x;
5332 int last;
5333 {
5334 enum machine_mode mode = GET_MODE (x);
5335 rtx op0 = XEXP (x, 0);
5336 rtx op1 = XEXP (x, 1);
5337 rtx reversed;
5338
5339 switch (GET_CODE (x))
5340 {
5341 case AND:
5342 /* Convert (A ^ B) & A to A & (~B) since the latter is often a single
5343 insn (and may simplify more). */
5344 if (GET_CODE (op0) == XOR
5345 && rtx_equal_p (XEXP (op0, 0), op1)
5346 && ! side_effects_p (op1))
5347 x = gen_binary (AND, mode,
5348 simplify_gen_unary (NOT, mode, XEXP (op0, 1), mode),
5349 op1);
5350
5351 if (GET_CODE (op0) == XOR
5352 && rtx_equal_p (XEXP (op0, 1), op1)
5353 && ! side_effects_p (op1))
5354 x = gen_binary (AND, mode,
5355 simplify_gen_unary (NOT, mode, XEXP (op0, 0), mode),
5356 op1);
5357
5358 /* Similarly for (~(A ^ B)) & A. */
5359 if (GET_CODE (op0) == NOT
5360 && GET_CODE (XEXP (op0, 0)) == XOR
5361 && rtx_equal_p (XEXP (XEXP (op0, 0), 0), op1)
5362 && ! side_effects_p (op1))
5363 x = gen_binary (AND, mode, XEXP (XEXP (op0, 0), 1), op1);
5364
5365 if (GET_CODE (op0) == NOT
5366 && GET_CODE (XEXP (op0, 0)) == XOR
5367 && rtx_equal_p (XEXP (XEXP (op0, 0), 1), op1)
5368 && ! side_effects_p (op1))
5369 x = gen_binary (AND, mode, XEXP (XEXP (op0, 0), 0), op1);
5370
5371 /* We can call simplify_and_const_int only if we don't lose
5372 any (sign) bits when converting INTVAL (op1) to
5373 "unsigned HOST_WIDE_INT". */
5374 if (GET_CODE (op1) == CONST_INT
5375 && (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5376 || INTVAL (op1) > 0))
5377 {
5378 x = simplify_and_const_int (x, mode, op0, INTVAL (op1));
5379
5380 /* If we have (ior (and (X C1) C2)) and the next restart would be
5381 the last, simplify this by making C1 as small as possible
5382 and then exit. */
5383 if (last
5384 && GET_CODE (x) == IOR && GET_CODE (op0) == AND
5385 && GET_CODE (XEXP (op0, 1)) == CONST_INT
5386 && GET_CODE (op1) == CONST_INT)
5387 return gen_binary (IOR, mode,
5388 gen_binary (AND, mode, XEXP (op0, 0),
5389 GEN_INT (INTVAL (XEXP (op0, 1))
5390 & ~INTVAL (op1))), op1);
5391
5392 if (GET_CODE (x) != AND)
5393 return x;
5394
5395 if (GET_RTX_CLASS (GET_CODE (x)) == 'c'
5396 || GET_RTX_CLASS (GET_CODE (x)) == '2')
5397 op0 = XEXP (x, 0), op1 = XEXP (x, 1);
5398 }
5399
5400 /* Convert (A | B) & A to A. */
5401 if (GET_CODE (op0) == IOR
5402 && (rtx_equal_p (XEXP (op0, 0), op1)
5403 || rtx_equal_p (XEXP (op0, 1), op1))
5404 && ! side_effects_p (XEXP (op0, 0))
5405 && ! side_effects_p (XEXP (op0, 1)))
5406 return op1;
5407
5408 /* In the following group of tests (and those in case IOR below),
5409 we start with some combination of logical operations and apply
5410 the distributive law followed by the inverse distributive law.
5411 Most of the time, this results in no change. However, if some of
5412 the operands are the same or inverses of each other, simplifications
5413 will result.
5414
5415 For example, (and (ior A B) (not B)) can occur as the result of
5416 expanding a bit field assignment. When we apply the distributive
5417 law to this, we get (ior (and (A (not B))) (and (B (not B)))),
5418 which then simplifies to (and (A (not B))).
5419
5420 If we have (and (ior A B) C), apply the distributive law and then
5421 the inverse distributive law to see if things simplify. */
5422
5423 if (GET_CODE (op0) == IOR || GET_CODE (op0) == XOR)
5424 {
5425 x = apply_distributive_law
5426 (gen_binary (GET_CODE (op0), mode,
5427 gen_binary (AND, mode, XEXP (op0, 0), op1),
5428 gen_binary (AND, mode, XEXP (op0, 1),
5429 copy_rtx (op1))));
5430 if (GET_CODE (x) != AND)
5431 return x;
5432 }
5433
5434 if (GET_CODE (op1) == IOR || GET_CODE (op1) == XOR)
5435 return apply_distributive_law
5436 (gen_binary (GET_CODE (op1), mode,
5437 gen_binary (AND, mode, XEXP (op1, 0), op0),
5438 gen_binary (AND, mode, XEXP (op1, 1),
5439 copy_rtx (op0))));
5440
5441 /* Similarly, taking advantage of the fact that
5442 (and (not A) (xor B C)) == (xor (ior A B) (ior A C)) */
5443
5444 if (GET_CODE (op0) == NOT && GET_CODE (op1) == XOR)
5445 return apply_distributive_law
5446 (gen_binary (XOR, mode,
5447 gen_binary (IOR, mode, XEXP (op0, 0), XEXP (op1, 0)),
5448 gen_binary (IOR, mode, copy_rtx (XEXP (op0, 0)),
5449 XEXP (op1, 1))));
5450
5451 else if (GET_CODE (op1) == NOT && GET_CODE (op0) == XOR)
5452 return apply_distributive_law
5453 (gen_binary (XOR, mode,
5454 gen_binary (IOR, mode, XEXP (op1, 0), XEXP (op0, 0)),
5455 gen_binary (IOR, mode, copy_rtx (XEXP (op1, 0)), XEXP (op0, 1))));
5456 break;
5457
5458 case IOR:
5459 /* (ior A C) is C if all bits of A that might be nonzero are on in C. */
5460 if (GET_CODE (op1) == CONST_INT
5461 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5462 && (nonzero_bits (op0, mode) & ~INTVAL (op1)) == 0)
5463 return op1;
5464
5465 /* Convert (A & B) | A to A. */
5466 if (GET_CODE (op0) == AND
5467 && (rtx_equal_p (XEXP (op0, 0), op1)
5468 || rtx_equal_p (XEXP (op0, 1), op1))
5469 && ! side_effects_p (XEXP (op0, 0))
5470 && ! side_effects_p (XEXP (op0, 1)))
5471 return op1;
5472
5473 /* If we have (ior (and A B) C), apply the distributive law and then
5474 the inverse distributive law to see if things simplify. */
5475
5476 if (GET_CODE (op0) == AND)
5477 {
5478 x = apply_distributive_law
5479 (gen_binary (AND, mode,
5480 gen_binary (IOR, mode, XEXP (op0, 0), op1),
5481 gen_binary (IOR, mode, XEXP (op0, 1),
5482 copy_rtx (op1))));
5483
5484 if (GET_CODE (x) != IOR)
5485 return x;
5486 }
5487
5488 if (GET_CODE (op1) == AND)
5489 {
5490 x = apply_distributive_law
5491 (gen_binary (AND, mode,
5492 gen_binary (IOR, mode, XEXP (op1, 0), op0),
5493 gen_binary (IOR, mode, XEXP (op1, 1),
5494 copy_rtx (op0))));
5495
5496 if (GET_CODE (x) != IOR)
5497 return x;
5498 }
5499
5500 /* Convert (ior (ashift A CX) (lshiftrt A CY)) where CX+CY equals the
5501 mode size to (rotate A CX). */
5502
5503 if (((GET_CODE (op0) == ASHIFT && GET_CODE (op1) == LSHIFTRT)
5504 || (GET_CODE (op1) == ASHIFT && GET_CODE (op0) == LSHIFTRT))
5505 && rtx_equal_p (XEXP (op0, 0), XEXP (op1, 0))
5506 && GET_CODE (XEXP (op0, 1)) == CONST_INT
5507 && GET_CODE (XEXP (op1, 1)) == CONST_INT
5508 && (INTVAL (XEXP (op0, 1)) + INTVAL (XEXP (op1, 1))
5509 == GET_MODE_BITSIZE (mode)))
5510 return gen_rtx_ROTATE (mode, XEXP (op0, 0),
5511 (GET_CODE (op0) == ASHIFT
5512 ? XEXP (op0, 1) : XEXP (op1, 1)));
5513
5514 /* If OP0 is (ashiftrt (plus ...) C), it might actually be
5515 a (sign_extend (plus ...)). If so, OP1 is a CONST_INT, and the PLUS
5516 does not affect any of the bits in OP1, it can really be done
5517 as a PLUS and we can associate. We do this by seeing if OP1
5518 can be safely shifted left C bits. */
5519 if (GET_CODE (op1) == CONST_INT && GET_CODE (op0) == ASHIFTRT
5520 && GET_CODE (XEXP (op0, 0)) == PLUS
5521 && GET_CODE (XEXP (XEXP (op0, 0), 1)) == CONST_INT
5522 && GET_CODE (XEXP (op0, 1)) == CONST_INT
5523 && INTVAL (XEXP (op0, 1)) < HOST_BITS_PER_WIDE_INT)
5524 {
5525 int count = INTVAL (XEXP (op0, 1));
5526 HOST_WIDE_INT mask = INTVAL (op1) << count;
5527
5528 if (mask >> count == INTVAL (op1)
5529 && (mask & nonzero_bits (XEXP (op0, 0), mode)) == 0)
5530 {
5531 SUBST (XEXP (XEXP (op0, 0), 1),
5532 GEN_INT (INTVAL (XEXP (XEXP (op0, 0), 1)) | mask));
5533 return op0;
5534 }
5535 }
5536 break;
5537
5538 case XOR:
5539 /* If we are XORing two things that have no bits in common,
5540 convert them into an IOR. This helps to detect rotation encoded
5541 using those methods and possibly other simplifications. */
5542
5543 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5544 && (nonzero_bits (op0, mode)
5545 & nonzero_bits (op1, mode)) == 0)
5546 return (gen_binary (IOR, mode, op0, op1));
5547
5548 /* Convert (XOR (NOT x) (NOT y)) to (XOR x y).
5549 Also convert (XOR (NOT x) y) to (NOT (XOR x y)), similarly for
5550 (NOT y). */
5551 {
5552 int num_negated = 0;
5553
5554 if (GET_CODE (op0) == NOT)
5555 num_negated++, op0 = XEXP (op0, 0);
5556 if (GET_CODE (op1) == NOT)
5557 num_negated++, op1 = XEXP (op1, 0);
5558
5559 if (num_negated == 2)
5560 {
5561 SUBST (XEXP (x, 0), op0);
5562 SUBST (XEXP (x, 1), op1);
5563 }
5564 else if (num_negated == 1)
5565 return
5566 simplify_gen_unary (NOT, mode, gen_binary (XOR, mode, op0, op1),
5567 mode);
5568 }
5569
5570 /* Convert (xor (and A B) B) to (and (not A) B). The latter may
5571 correspond to a machine insn or result in further simplifications
5572 if B is a constant. */
5573
5574 if (GET_CODE (op0) == AND
5575 && rtx_equal_p (XEXP (op0, 1), op1)
5576 && ! side_effects_p (op1))
5577 return gen_binary (AND, mode,
5578 simplify_gen_unary (NOT, mode, XEXP (op0, 0), mode),
5579 op1);
5580
5581 else if (GET_CODE (op0) == AND
5582 && rtx_equal_p (XEXP (op0, 0), op1)
5583 && ! side_effects_p (op1))
5584 return gen_binary (AND, mode,
5585 simplify_gen_unary (NOT, mode, XEXP (op0, 1), mode),
5586 op1);
5587
5588 /* (xor (comparison foo bar) (const_int 1)) can become the reversed
5589 comparison if STORE_FLAG_VALUE is 1. */
5590 if (STORE_FLAG_VALUE == 1
5591 && op1 == const1_rtx
5592 && GET_RTX_CLASS (GET_CODE (op0)) == '<'
5593 && (reversed = reversed_comparison (op0, mode, XEXP (op0, 0),
5594 XEXP (op0, 1))))
5595 return reversed;
5596
5597 /* (lshiftrt foo C) where C is the number of bits in FOO minus 1
5598 is (lt foo (const_int 0)), so we can perform the above
5599 simplification if STORE_FLAG_VALUE is 1. */
5600
5601 if (STORE_FLAG_VALUE == 1
5602 && op1 == const1_rtx
5603 && GET_CODE (op0) == LSHIFTRT
5604 && GET_CODE (XEXP (op0, 1)) == CONST_INT
5605 && INTVAL (XEXP (op0, 1)) == GET_MODE_BITSIZE (mode) - 1)
5606 return gen_rtx_GE (mode, XEXP (op0, 0), const0_rtx);
5607
5608 /* (xor (comparison foo bar) (const_int sign-bit))
5609 when STORE_FLAG_VALUE is the sign bit. */
5610 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5611 && ((STORE_FLAG_VALUE & GET_MODE_MASK (mode))
5612 == (unsigned HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (mode) - 1))
5613 && op1 == const_true_rtx
5614 && GET_RTX_CLASS (GET_CODE (op0)) == '<'
5615 && (reversed = reversed_comparison (op0, mode, XEXP (op0, 0),
5616 XEXP (op0, 1))))
5617 return reversed;
5618
5619 break;
5620
5621 default:
5622 abort ();
5623 }
5624
5625 return x;
5626 }
5627 \f
5628 /* We consider ZERO_EXTRACT, SIGN_EXTRACT, and SIGN_EXTEND as "compound
5629 operations" because they can be replaced with two more basic operations.
5630 ZERO_EXTEND is also considered "compound" because it can be replaced with
5631 an AND operation, which is simpler, though only one operation.
5632
5633 The function expand_compound_operation is called with an rtx expression
5634 and will convert it to the appropriate shifts and AND operations,
5635 simplifying at each stage.
5636
5637 The function make_compound_operation is called to convert an expression
5638 consisting of shifts and ANDs into the equivalent compound expression.
5639 It is the inverse of this function, loosely speaking. */
5640
5641 static rtx
5642 expand_compound_operation (x)
5643 rtx x;
5644 {
5645 unsigned HOST_WIDE_INT pos = 0, len;
5646 int unsignedp = 0;
5647 unsigned int modewidth;
5648 rtx tem;
5649
5650 switch (GET_CODE (x))
5651 {
5652 case ZERO_EXTEND:
5653 unsignedp = 1;
5654 case SIGN_EXTEND:
5655 /* We can't necessarily use a const_int for a multiword mode;
5656 it depends on implicitly extending the value.
5657 Since we don't know the right way to extend it,
5658 we can't tell whether the implicit way is right.
5659
5660 Even for a mode that is no wider than a const_int,
5661 we can't win, because we need to sign extend one of its bits through
5662 the rest of it, and we don't know which bit. */
5663 if (GET_CODE (XEXP (x, 0)) == CONST_INT)
5664 return x;
5665
5666 /* Return if (subreg:MODE FROM 0) is not a safe replacement for
5667 (zero_extend:MODE FROM) or (sign_extend:MODE FROM). It is for any MEM
5668 because (SUBREG (MEM...)) is guaranteed to cause the MEM to be
5669 reloaded. If not for that, MEM's would very rarely be safe.
5670
5671 Reject MODEs bigger than a word, because we might not be able
5672 to reference a two-register group starting with an arbitrary register
5673 (and currently gen_lowpart might crash for a SUBREG). */
5674
5675 if (GET_MODE_SIZE (GET_MODE (XEXP (x, 0))) > UNITS_PER_WORD)
5676 return x;
5677
5678 /* Reject MODEs that aren't scalar integers because turning vector
5679 or complex modes into shifts causes problems. */
5680
5681 if (! SCALAR_INT_MODE_P (GET_MODE (XEXP (x, 0))))
5682 return x;
5683
5684 len = GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)));
5685 /* If the inner object has VOIDmode (the only way this can happen
5686 is if it is an ASM_OPERANDS), we can't do anything since we don't
5687 know how much masking to do. */
5688 if (len == 0)
5689 return x;
5690
5691 break;
5692
5693 case ZERO_EXTRACT:
5694 unsignedp = 1;
5695 case SIGN_EXTRACT:
5696 /* If the operand is a CLOBBER, just return it. */
5697 if (GET_CODE (XEXP (x, 0)) == CLOBBER)
5698 return XEXP (x, 0);
5699
5700 if (GET_CODE (XEXP (x, 1)) != CONST_INT
5701 || GET_CODE (XEXP (x, 2)) != CONST_INT
5702 || GET_MODE (XEXP (x, 0)) == VOIDmode)
5703 return x;
5704
5705 /* Reject MODEs that aren't scalar integers because turning vector
5706 or complex modes into shifts causes problems. */
5707
5708 if (! SCALAR_INT_MODE_P (GET_MODE (XEXP (x, 0))))
5709 return x;
5710
5711 len = INTVAL (XEXP (x, 1));
5712 pos = INTVAL (XEXP (x, 2));
5713
5714 /* If this goes outside the object being extracted, replace the object
5715 with a (use (mem ...)) construct that only combine understands
5716 and is used only for this purpose. */
5717 if (len + pos > GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0))))
5718 SUBST (XEXP (x, 0), gen_rtx_USE (GET_MODE (x), XEXP (x, 0)));
5719
5720 if (BITS_BIG_ENDIAN)
5721 pos = GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0))) - len - pos;
5722
5723 break;
5724
5725 default:
5726 return x;
5727 }
5728 /* Convert sign extension to zero extension, if we know that the high
5729 bit is not set, as this is easier to optimize. It will be converted
5730 back to cheaper alternative in make_extraction. */
5731 if (GET_CODE (x) == SIGN_EXTEND
5732 && (GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
5733 && ((nonzero_bits (XEXP (x, 0), GET_MODE (XEXP (x, 0)))
5734 & ~(((unsigned HOST_WIDE_INT)
5735 GET_MODE_MASK (GET_MODE (XEXP (x, 0))))
5736 >> 1))
5737 == 0)))
5738 {
5739 rtx temp = gen_rtx_ZERO_EXTEND (GET_MODE (x), XEXP (x, 0));
5740 return expand_compound_operation (temp);
5741 }
5742
5743 /* We can optimize some special cases of ZERO_EXTEND. */
5744 if (GET_CODE (x) == ZERO_EXTEND)
5745 {
5746 /* (zero_extend:DI (truncate:SI foo:DI)) is just foo:DI if we
5747 know that the last value didn't have any inappropriate bits
5748 set. */
5749 if (GET_CODE (XEXP (x, 0)) == TRUNCATE
5750 && GET_MODE (XEXP (XEXP (x, 0), 0)) == GET_MODE (x)
5751 && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
5752 && (nonzero_bits (XEXP (XEXP (x, 0), 0), GET_MODE (x))
5753 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
5754 return XEXP (XEXP (x, 0), 0);
5755
5756 /* Likewise for (zero_extend:DI (subreg:SI foo:DI 0)). */
5757 if (GET_CODE (XEXP (x, 0)) == SUBREG
5758 && GET_MODE (SUBREG_REG (XEXP (x, 0))) == GET_MODE (x)
5759 && subreg_lowpart_p (XEXP (x, 0))
5760 && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
5761 && (nonzero_bits (SUBREG_REG (XEXP (x, 0)), GET_MODE (x))
5762 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
5763 return SUBREG_REG (XEXP (x, 0));
5764
5765 /* (zero_extend:DI (truncate:SI foo:DI)) is just foo:DI when foo
5766 is a comparison and STORE_FLAG_VALUE permits. This is like
5767 the first case, but it works even when GET_MODE (x) is larger
5768 than HOST_WIDE_INT. */
5769 if (GET_CODE (XEXP (x, 0)) == TRUNCATE
5770 && GET_MODE (XEXP (XEXP (x, 0), 0)) == GET_MODE (x)
5771 && GET_RTX_CLASS (GET_CODE (XEXP (XEXP (x, 0), 0))) == '<'
5772 && (GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))
5773 <= HOST_BITS_PER_WIDE_INT)
5774 && ((HOST_WIDE_INT) STORE_FLAG_VALUE
5775 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
5776 return XEXP (XEXP (x, 0), 0);
5777
5778 /* Likewise for (zero_extend:DI (subreg:SI foo:DI 0)). */
5779 if (GET_CODE (XEXP (x, 0)) == SUBREG
5780 && GET_MODE (SUBREG_REG (XEXP (x, 0))) == GET_MODE (x)
5781 && subreg_lowpart_p (XEXP (x, 0))
5782 && GET_RTX_CLASS (GET_CODE (SUBREG_REG (XEXP (x, 0)))) == '<'
5783 && (GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))
5784 <= HOST_BITS_PER_WIDE_INT)
5785 && ((HOST_WIDE_INT) STORE_FLAG_VALUE
5786 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
5787 return SUBREG_REG (XEXP (x, 0));
5788
5789 }
5790
5791 /* If we reach here, we want to return a pair of shifts. The inner
5792 shift is a left shift of BITSIZE - POS - LEN bits. The outer
5793 shift is a right shift of BITSIZE - LEN bits. It is arithmetic or
5794 logical depending on the value of UNSIGNEDP.
5795
5796 If this was a ZERO_EXTEND or ZERO_EXTRACT, this pair of shifts will be
5797 converted into an AND of a shift.
5798
5799 We must check for the case where the left shift would have a negative
5800 count. This can happen in a case like (x >> 31) & 255 on machines
5801 that can't shift by a constant. On those machines, we would first
5802 combine the shift with the AND to produce a variable-position
5803 extraction. Then the constant of 31 would be substituted in to produce
5804 a such a position. */
5805
5806 modewidth = GET_MODE_BITSIZE (GET_MODE (x));
5807 if (modewidth + len >= pos)
5808 tem = simplify_shift_const (NULL_RTX, unsignedp ? LSHIFTRT : ASHIFTRT,
5809 GET_MODE (x),
5810 simplify_shift_const (NULL_RTX, ASHIFT,
5811 GET_MODE (x),
5812 XEXP (x, 0),
5813 modewidth - pos - len),
5814 modewidth - len);
5815
5816 else if (unsignedp && len < HOST_BITS_PER_WIDE_INT)
5817 tem = simplify_and_const_int (NULL_RTX, GET_MODE (x),
5818 simplify_shift_const (NULL_RTX, LSHIFTRT,
5819 GET_MODE (x),
5820 XEXP (x, 0), pos),
5821 ((HOST_WIDE_INT) 1 << len) - 1);
5822 else
5823 /* Any other cases we can't handle. */
5824 return x;
5825
5826 /* If we couldn't do this for some reason, return the original
5827 expression. */
5828 if (GET_CODE (tem) == CLOBBER)
5829 return x;
5830
5831 return tem;
5832 }
5833 \f
5834 /* X is a SET which contains an assignment of one object into
5835 a part of another (such as a bit-field assignment, STRICT_LOW_PART,
5836 or certain SUBREGS). If possible, convert it into a series of
5837 logical operations.
5838
5839 We half-heartedly support variable positions, but do not at all
5840 support variable lengths. */
5841
5842 static rtx
5843 expand_field_assignment (x)
5844 rtx x;
5845 {
5846 rtx inner;
5847 rtx pos; /* Always counts from low bit. */
5848 int len;
5849 rtx mask;
5850 enum machine_mode compute_mode;
5851
5852 /* Loop until we find something we can't simplify. */
5853 while (1)
5854 {
5855 if (GET_CODE (SET_DEST (x)) == STRICT_LOW_PART
5856 && GET_CODE (XEXP (SET_DEST (x), 0)) == SUBREG)
5857 {
5858 inner = SUBREG_REG (XEXP (SET_DEST (x), 0));
5859 len = GET_MODE_BITSIZE (GET_MODE (XEXP (SET_DEST (x), 0)));
5860 pos = GEN_INT (subreg_lsb (XEXP (SET_DEST (x), 0)));
5861 }
5862 else if (GET_CODE (SET_DEST (x)) == ZERO_EXTRACT
5863 && GET_CODE (XEXP (SET_DEST (x), 1)) == CONST_INT)
5864 {
5865 inner = XEXP (SET_DEST (x), 0);
5866 len = INTVAL (XEXP (SET_DEST (x), 1));
5867 pos = XEXP (SET_DEST (x), 2);
5868
5869 /* If the position is constant and spans the width of INNER,
5870 surround INNER with a USE to indicate this. */
5871 if (GET_CODE (pos) == CONST_INT
5872 && INTVAL (pos) + len > GET_MODE_BITSIZE (GET_MODE (inner)))
5873 inner = gen_rtx_USE (GET_MODE (SET_DEST (x)), inner);
5874
5875 if (BITS_BIG_ENDIAN)
5876 {
5877 if (GET_CODE (pos) == CONST_INT)
5878 pos = GEN_INT (GET_MODE_BITSIZE (GET_MODE (inner)) - len
5879 - INTVAL (pos));
5880 else if (GET_CODE (pos) == MINUS
5881 && GET_CODE (XEXP (pos, 1)) == CONST_INT
5882 && (INTVAL (XEXP (pos, 1))
5883 == GET_MODE_BITSIZE (GET_MODE (inner)) - len))
5884 /* If position is ADJUST - X, new position is X. */
5885 pos = XEXP (pos, 0);
5886 else
5887 pos = gen_binary (MINUS, GET_MODE (pos),
5888 GEN_INT (GET_MODE_BITSIZE (GET_MODE (inner))
5889 - len),
5890 pos);
5891 }
5892 }
5893
5894 /* A SUBREG between two modes that occupy the same numbers of words
5895 can be done by moving the SUBREG to the source. */
5896 else if (GET_CODE (SET_DEST (x)) == SUBREG
5897 /* We need SUBREGs to compute nonzero_bits properly. */
5898 && nonzero_sign_valid
5899 && (((GET_MODE_SIZE (GET_MODE (SET_DEST (x)))
5900 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
5901 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (x))))
5902 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)))
5903 {
5904 x = gen_rtx_SET (VOIDmode, SUBREG_REG (SET_DEST (x)),
5905 gen_lowpart_for_combine
5906 (GET_MODE (SUBREG_REG (SET_DEST (x))),
5907 SET_SRC (x)));
5908 continue;
5909 }
5910 else
5911 break;
5912
5913 while (GET_CODE (inner) == SUBREG && subreg_lowpart_p (inner))
5914 inner = SUBREG_REG (inner);
5915
5916 compute_mode = GET_MODE (inner);
5917
5918 /* Don't attempt bitwise arithmetic on non scalar integer modes. */
5919 if (! SCALAR_INT_MODE_P (compute_mode))
5920 {
5921 enum machine_mode imode;
5922
5923 /* Don't do anything for vector or complex integral types. */
5924 if (! FLOAT_MODE_P (compute_mode))
5925 break;
5926
5927 /* Try to find an integral mode to pun with. */
5928 imode = mode_for_size (GET_MODE_BITSIZE (compute_mode), MODE_INT, 0);
5929 if (imode == BLKmode)
5930 break;
5931
5932 compute_mode = imode;
5933 inner = gen_lowpart_for_combine (imode, inner);
5934 }
5935
5936 /* Compute a mask of LEN bits, if we can do this on the host machine. */
5937 if (len < HOST_BITS_PER_WIDE_INT)
5938 mask = GEN_INT (((HOST_WIDE_INT) 1 << len) - 1);
5939 else
5940 break;
5941
5942 /* Now compute the equivalent expression. Make a copy of INNER
5943 for the SET_DEST in case it is a MEM into which we will substitute;
5944 we don't want shared RTL in that case. */
5945 x = gen_rtx_SET
5946 (VOIDmode, copy_rtx (inner),
5947 gen_binary (IOR, compute_mode,
5948 gen_binary (AND, compute_mode,
5949 simplify_gen_unary (NOT, compute_mode,
5950 gen_binary (ASHIFT,
5951 compute_mode,
5952 mask, pos),
5953 compute_mode),
5954 inner),
5955 gen_binary (ASHIFT, compute_mode,
5956 gen_binary (AND, compute_mode,
5957 gen_lowpart_for_combine
5958 (compute_mode, SET_SRC (x)),
5959 mask),
5960 pos)));
5961 }
5962
5963 return x;
5964 }
5965 \f
5966 /* Return an RTX for a reference to LEN bits of INNER. If POS_RTX is nonzero,
5967 it is an RTX that represents a variable starting position; otherwise,
5968 POS is the (constant) starting bit position (counted from the LSB).
5969
5970 INNER may be a USE. This will occur when we started with a bitfield
5971 that went outside the boundary of the object in memory, which is
5972 allowed on most machines. To isolate this case, we produce a USE
5973 whose mode is wide enough and surround the MEM with it. The only
5974 code that understands the USE is this routine. If it is not removed,
5975 it will cause the resulting insn not to match.
5976
5977 UNSIGNEDP is non-zero for an unsigned reference and zero for a
5978 signed reference.
5979
5980 IN_DEST is non-zero if this is a reference in the destination of a
5981 SET. This is used when a ZERO_ or SIGN_EXTRACT isn't needed. If non-zero,
5982 a STRICT_LOW_PART will be used, if zero, ZERO_EXTEND or SIGN_EXTEND will
5983 be used.
5984
5985 IN_COMPARE is non-zero if we are in a COMPARE. This means that a
5986 ZERO_EXTRACT should be built even for bits starting at bit 0.
5987
5988 MODE is the desired mode of the result (if IN_DEST == 0).
5989
5990 The result is an RTX for the extraction or NULL_RTX if the target
5991 can't handle it. */
5992
5993 static rtx
5994 make_extraction (mode, inner, pos, pos_rtx, len,
5995 unsignedp, in_dest, in_compare)
5996 enum machine_mode mode;
5997 rtx inner;
5998 HOST_WIDE_INT pos;
5999 rtx pos_rtx;
6000 unsigned HOST_WIDE_INT len;
6001 int unsignedp;
6002 int in_dest, in_compare;
6003 {
6004 /* This mode describes the size of the storage area
6005 to fetch the overall value from. Within that, we
6006 ignore the POS lowest bits, etc. */
6007 enum machine_mode is_mode = GET_MODE (inner);
6008 enum machine_mode inner_mode;
6009 enum machine_mode wanted_inner_mode = byte_mode;
6010 enum machine_mode wanted_inner_reg_mode = word_mode;
6011 enum machine_mode pos_mode = word_mode;
6012 enum machine_mode extraction_mode = word_mode;
6013 enum machine_mode tmode = mode_for_size (len, MODE_INT, 1);
6014 int spans_byte = 0;
6015 rtx new = 0;
6016 rtx orig_pos_rtx = pos_rtx;
6017 HOST_WIDE_INT orig_pos;
6018
6019 /* Get some information about INNER and get the innermost object. */
6020 if (GET_CODE (inner) == USE)
6021 /* (use:SI (mem:QI foo)) stands for (mem:SI foo). */
6022 /* We don't need to adjust the position because we set up the USE
6023 to pretend that it was a full-word object. */
6024 spans_byte = 1, inner = XEXP (inner, 0);
6025 else if (GET_CODE (inner) == SUBREG && subreg_lowpart_p (inner))
6026 {
6027 /* If going from (subreg:SI (mem:QI ...)) to (mem:QI ...),
6028 consider just the QI as the memory to extract from.
6029 The subreg adds or removes high bits; its mode is
6030 irrelevant to the meaning of this extraction,
6031 since POS and LEN count from the lsb. */
6032 if (GET_CODE (SUBREG_REG (inner)) == MEM)
6033 is_mode = GET_MODE (SUBREG_REG (inner));
6034 inner = SUBREG_REG (inner);
6035 }
6036 else if (GET_CODE (inner) == ASHIFT
6037 && GET_CODE (XEXP (inner, 1)) == CONST_INT
6038 && pos_rtx == 0 && pos == 0
6039 && len > (unsigned HOST_WIDE_INT) INTVAL (XEXP (inner, 1)))
6040 {
6041 /* We're extracting the least significant bits of an rtx
6042 (ashift X (const_int C)), where LEN > C. Extract the
6043 least significant (LEN - C) bits of X, giving an rtx
6044 whose mode is MODE, then shift it left C times. */
6045 new = make_extraction (mode, XEXP (inner, 0),
6046 0, 0, len - INTVAL (XEXP (inner, 1)),
6047 unsignedp, in_dest, in_compare);
6048 if (new != 0)
6049 return gen_rtx_ASHIFT (mode, new, XEXP (inner, 1));
6050 }
6051
6052 inner_mode = GET_MODE (inner);
6053
6054 if (pos_rtx && GET_CODE (pos_rtx) == CONST_INT)
6055 pos = INTVAL (pos_rtx), pos_rtx = 0;
6056
6057 /* See if this can be done without an extraction. We never can if the
6058 width of the field is not the same as that of some integer mode. For
6059 registers, we can only avoid the extraction if the position is at the
6060 low-order bit and this is either not in the destination or we have the
6061 appropriate STRICT_LOW_PART operation available.
6062
6063 For MEM, we can avoid an extract if the field starts on an appropriate
6064 boundary and we can change the mode of the memory reference. However,
6065 we cannot directly access the MEM if we have a USE and the underlying
6066 MEM is not TMODE. This combination means that MEM was being used in a
6067 context where bits outside its mode were being referenced; that is only
6068 valid in bit-field insns. */
6069
6070 if (tmode != BLKmode
6071 && ! (spans_byte && inner_mode != tmode)
6072 && ((pos_rtx == 0 && (pos % BITS_PER_WORD) == 0
6073 && GET_CODE (inner) != MEM
6074 && (! in_dest
6075 || (GET_CODE (inner) == REG
6076 && have_insn_for (STRICT_LOW_PART, tmode))))
6077 || (GET_CODE (inner) == MEM && pos_rtx == 0
6078 && (pos
6079 % (STRICT_ALIGNMENT ? GET_MODE_ALIGNMENT (tmode)
6080 : BITS_PER_UNIT)) == 0
6081 /* We can't do this if we are widening INNER_MODE (it
6082 may not be aligned, for one thing). */
6083 && GET_MODE_BITSIZE (inner_mode) >= GET_MODE_BITSIZE (tmode)
6084 && (inner_mode == tmode
6085 || (! mode_dependent_address_p (XEXP (inner, 0))
6086 && ! MEM_VOLATILE_P (inner))))))
6087 {
6088 /* If INNER is a MEM, make a new MEM that encompasses just the desired
6089 field. If the original and current mode are the same, we need not
6090 adjust the offset. Otherwise, we do if bytes big endian.
6091
6092 If INNER is not a MEM, get a piece consisting of just the field
6093 of interest (in this case POS % BITS_PER_WORD must be 0). */
6094
6095 if (GET_CODE (inner) == MEM)
6096 {
6097 HOST_WIDE_INT offset;
6098
6099 /* POS counts from lsb, but make OFFSET count in memory order. */
6100 if (BYTES_BIG_ENDIAN)
6101 offset = (GET_MODE_BITSIZE (is_mode) - len - pos) / BITS_PER_UNIT;
6102 else
6103 offset = pos / BITS_PER_UNIT;
6104
6105 new = adjust_address_nv (inner, tmode, offset);
6106 }
6107 else if (GET_CODE (inner) == REG)
6108 {
6109 /* We can't call gen_lowpart_for_combine here since we always want
6110 a SUBREG and it would sometimes return a new hard register. */
6111 if (tmode != inner_mode)
6112 {
6113 HOST_WIDE_INT final_word = pos / BITS_PER_WORD;
6114
6115 if (WORDS_BIG_ENDIAN
6116 && GET_MODE_SIZE (inner_mode) > UNITS_PER_WORD)
6117 final_word = ((GET_MODE_SIZE (inner_mode)
6118 - GET_MODE_SIZE (tmode))
6119 / UNITS_PER_WORD) - final_word;
6120
6121 final_word *= UNITS_PER_WORD;
6122 if (BYTES_BIG_ENDIAN &&
6123 GET_MODE_SIZE (inner_mode) > GET_MODE_SIZE (tmode))
6124 final_word += (GET_MODE_SIZE (inner_mode)
6125 - GET_MODE_SIZE (tmode)) % UNITS_PER_WORD;
6126
6127 /* Avoid creating invalid subregs, for example when
6128 simplifying (x>>32)&255. */
6129 if (final_word >= GET_MODE_SIZE (inner_mode))
6130 return NULL_RTX;
6131
6132 new = gen_rtx_SUBREG (tmode, inner, final_word);
6133 }
6134 else
6135 new = inner;
6136 }
6137 else
6138 new = force_to_mode (inner, tmode,
6139 len >= HOST_BITS_PER_WIDE_INT
6140 ? ~(unsigned HOST_WIDE_INT) 0
6141 : ((unsigned HOST_WIDE_INT) 1 << len) - 1,
6142 NULL_RTX, 0);
6143
6144 /* If this extraction is going into the destination of a SET,
6145 make a STRICT_LOW_PART unless we made a MEM. */
6146
6147 if (in_dest)
6148 return (GET_CODE (new) == MEM ? new
6149 : (GET_CODE (new) != SUBREG
6150 ? gen_rtx_CLOBBER (tmode, const0_rtx)
6151 : gen_rtx_STRICT_LOW_PART (VOIDmode, new)));
6152
6153 if (mode == tmode)
6154 return new;
6155
6156 if (GET_CODE (new) == CONST_INT)
6157 return gen_int_mode (INTVAL (new), mode);
6158
6159 /* If we know that no extraneous bits are set, and that the high
6160 bit is not set, convert the extraction to the cheaper of
6161 sign and zero extension, that are equivalent in these cases. */
6162 if (flag_expensive_optimizations
6163 && (GET_MODE_BITSIZE (tmode) <= HOST_BITS_PER_WIDE_INT
6164 && ((nonzero_bits (new, tmode)
6165 & ~(((unsigned HOST_WIDE_INT)
6166 GET_MODE_MASK (tmode))
6167 >> 1))
6168 == 0)))
6169 {
6170 rtx temp = gen_rtx_ZERO_EXTEND (mode, new);
6171 rtx temp1 = gen_rtx_SIGN_EXTEND (mode, new);
6172
6173 /* Prefer ZERO_EXTENSION, since it gives more information to
6174 backends. */
6175 if (rtx_cost (temp, SET) <= rtx_cost (temp1, SET))
6176 return temp;
6177 return temp1;
6178 }
6179
6180 /* Otherwise, sign- or zero-extend unless we already are in the
6181 proper mode. */
6182
6183 return (gen_rtx_fmt_e (unsignedp ? ZERO_EXTEND : SIGN_EXTEND,
6184 mode, new));
6185 }
6186
6187 /* Unless this is a COMPARE or we have a funny memory reference,
6188 don't do anything with zero-extending field extracts starting at
6189 the low-order bit since they are simple AND operations. */
6190 if (pos_rtx == 0 && pos == 0 && ! in_dest
6191 && ! in_compare && ! spans_byte && unsignedp)
6192 return 0;
6193
6194 /* Unless we are allowed to span bytes or INNER is not MEM, reject this if
6195 we would be spanning bytes or if the position is not a constant and the
6196 length is not 1. In all other cases, we would only be going outside
6197 our object in cases when an original shift would have been
6198 undefined. */
6199 if (! spans_byte && GET_CODE (inner) == MEM
6200 && ((pos_rtx == 0 && pos + len > GET_MODE_BITSIZE (is_mode))
6201 || (pos_rtx != 0 && len != 1)))
6202 return 0;
6203
6204 /* Get the mode to use should INNER not be a MEM, the mode for the position,
6205 and the mode for the result. */
6206 if (in_dest && mode_for_extraction (EP_insv, -1) != MAX_MACHINE_MODE)
6207 {
6208 wanted_inner_reg_mode = mode_for_extraction (EP_insv, 0);
6209 pos_mode = mode_for_extraction (EP_insv, 2);
6210 extraction_mode = mode_for_extraction (EP_insv, 3);
6211 }
6212
6213 if (! in_dest && unsignedp
6214 && mode_for_extraction (EP_extzv, -1) != MAX_MACHINE_MODE)
6215 {
6216 wanted_inner_reg_mode = mode_for_extraction (EP_extzv, 1);
6217 pos_mode = mode_for_extraction (EP_extzv, 3);
6218 extraction_mode = mode_for_extraction (EP_extzv, 0);
6219 }
6220
6221 if (! in_dest && ! unsignedp
6222 && mode_for_extraction (EP_extv, -1) != MAX_MACHINE_MODE)
6223 {
6224 wanted_inner_reg_mode = mode_for_extraction (EP_extv, 1);
6225 pos_mode = mode_for_extraction (EP_extv, 3);
6226 extraction_mode = mode_for_extraction (EP_extv, 0);
6227 }
6228
6229 /* Never narrow an object, since that might not be safe. */
6230
6231 if (mode != VOIDmode
6232 && GET_MODE_SIZE (extraction_mode) < GET_MODE_SIZE (mode))
6233 extraction_mode = mode;
6234
6235 if (pos_rtx && GET_MODE (pos_rtx) != VOIDmode
6236 && GET_MODE_SIZE (pos_mode) < GET_MODE_SIZE (GET_MODE (pos_rtx)))
6237 pos_mode = GET_MODE (pos_rtx);
6238
6239 /* If this is not from memory, the desired mode is wanted_inner_reg_mode;
6240 if we have to change the mode of memory and cannot, the desired mode is
6241 EXTRACTION_MODE. */
6242 if (GET_CODE (inner) != MEM)
6243 wanted_inner_mode = wanted_inner_reg_mode;
6244 else if (inner_mode != wanted_inner_mode
6245 && (mode_dependent_address_p (XEXP (inner, 0))
6246 || MEM_VOLATILE_P (inner)))
6247 wanted_inner_mode = extraction_mode;
6248
6249 orig_pos = pos;
6250
6251 if (BITS_BIG_ENDIAN)
6252 {
6253 /* POS is passed as if BITS_BIG_ENDIAN == 0, so we need to convert it to
6254 BITS_BIG_ENDIAN style. If position is constant, compute new
6255 position. Otherwise, build subtraction.
6256 Note that POS is relative to the mode of the original argument.
6257 If it's a MEM we need to recompute POS relative to that.
6258 However, if we're extracting from (or inserting into) a register,
6259 we want to recompute POS relative to wanted_inner_mode. */
6260 int width = (GET_CODE (inner) == MEM
6261 ? GET_MODE_BITSIZE (is_mode)
6262 : GET_MODE_BITSIZE (wanted_inner_mode));
6263
6264 if (pos_rtx == 0)
6265 pos = width - len - pos;
6266 else
6267 pos_rtx
6268 = gen_rtx_MINUS (GET_MODE (pos_rtx), GEN_INT (width - len), pos_rtx);
6269 /* POS may be less than 0 now, but we check for that below.
6270 Note that it can only be less than 0 if GET_CODE (inner) != MEM. */
6271 }
6272
6273 /* If INNER has a wider mode, make it smaller. If this is a constant
6274 extract, try to adjust the byte to point to the byte containing
6275 the value. */
6276 if (wanted_inner_mode != VOIDmode
6277 && GET_MODE_SIZE (wanted_inner_mode) < GET_MODE_SIZE (is_mode)
6278 && ((GET_CODE (inner) == MEM
6279 && (inner_mode == wanted_inner_mode
6280 || (! mode_dependent_address_p (XEXP (inner, 0))
6281 && ! MEM_VOLATILE_P (inner))))))
6282 {
6283 int offset = 0;
6284
6285 /* The computations below will be correct if the machine is big
6286 endian in both bits and bytes or little endian in bits and bytes.
6287 If it is mixed, we must adjust. */
6288
6289 /* If bytes are big endian and we had a paradoxical SUBREG, we must
6290 adjust OFFSET to compensate. */
6291 if (BYTES_BIG_ENDIAN
6292 && ! spans_byte
6293 && GET_MODE_SIZE (inner_mode) < GET_MODE_SIZE (is_mode))
6294 offset -= GET_MODE_SIZE (is_mode) - GET_MODE_SIZE (inner_mode);
6295
6296 /* If this is a constant position, we can move to the desired byte. */
6297 if (pos_rtx == 0)
6298 {
6299 offset += pos / BITS_PER_UNIT;
6300 pos %= GET_MODE_BITSIZE (wanted_inner_mode);
6301 }
6302
6303 if (BYTES_BIG_ENDIAN != BITS_BIG_ENDIAN
6304 && ! spans_byte
6305 && is_mode != wanted_inner_mode)
6306 offset = (GET_MODE_SIZE (is_mode)
6307 - GET_MODE_SIZE (wanted_inner_mode) - offset);
6308
6309 if (offset != 0 || inner_mode != wanted_inner_mode)
6310 inner = adjust_address_nv (inner, wanted_inner_mode, offset);
6311 }
6312
6313 /* If INNER is not memory, we can always get it into the proper mode. If we
6314 are changing its mode, POS must be a constant and smaller than the size
6315 of the new mode. */
6316 else if (GET_CODE (inner) != MEM)
6317 {
6318 if (GET_MODE (inner) != wanted_inner_mode
6319 && (pos_rtx != 0
6320 || orig_pos + len > GET_MODE_BITSIZE (wanted_inner_mode)))
6321 return 0;
6322
6323 inner = force_to_mode (inner, wanted_inner_mode,
6324 pos_rtx
6325 || len + orig_pos >= HOST_BITS_PER_WIDE_INT
6326 ? ~(unsigned HOST_WIDE_INT) 0
6327 : ((((unsigned HOST_WIDE_INT) 1 << len) - 1)
6328 << orig_pos),
6329 NULL_RTX, 0);
6330 }
6331
6332 /* Adjust mode of POS_RTX, if needed. If we want a wider mode, we
6333 have to zero extend. Otherwise, we can just use a SUBREG. */
6334 if (pos_rtx != 0
6335 && GET_MODE_SIZE (pos_mode) > GET_MODE_SIZE (GET_MODE (pos_rtx)))
6336 {
6337 rtx temp = gen_rtx_ZERO_EXTEND (pos_mode, pos_rtx);
6338
6339 /* If we know that no extraneous bits are set, and that the high
6340 bit is not set, convert extraction to cheaper one - either
6341 SIGN_EXTENSION or ZERO_EXTENSION, that are equivalent in these
6342 cases. */
6343 if (flag_expensive_optimizations
6344 && (GET_MODE_BITSIZE (GET_MODE (pos_rtx)) <= HOST_BITS_PER_WIDE_INT
6345 && ((nonzero_bits (pos_rtx, GET_MODE (pos_rtx))
6346 & ~(((unsigned HOST_WIDE_INT)
6347 GET_MODE_MASK (GET_MODE (pos_rtx)))
6348 >> 1))
6349 == 0)))
6350 {
6351 rtx temp1 = gen_rtx_SIGN_EXTEND (pos_mode, pos_rtx);
6352
6353 /* Prefer ZERO_EXTENSION, since it gives more information to
6354 backends. */
6355 if (rtx_cost (temp1, SET) < rtx_cost (temp, SET))
6356 temp = temp1;
6357 }
6358 pos_rtx = temp;
6359 }
6360 else if (pos_rtx != 0
6361 && GET_MODE_SIZE (pos_mode) < GET_MODE_SIZE (GET_MODE (pos_rtx)))
6362 pos_rtx = gen_lowpart_for_combine (pos_mode, pos_rtx);
6363
6364 /* Make POS_RTX unless we already have it and it is correct. If we don't
6365 have a POS_RTX but we do have an ORIG_POS_RTX, the latter must
6366 be a CONST_INT. */
6367 if (pos_rtx == 0 && orig_pos_rtx != 0 && INTVAL (orig_pos_rtx) == pos)
6368 pos_rtx = orig_pos_rtx;
6369
6370 else if (pos_rtx == 0)
6371 pos_rtx = GEN_INT (pos);
6372
6373 /* Make the required operation. See if we can use existing rtx. */
6374 new = gen_rtx_fmt_eee (unsignedp ? ZERO_EXTRACT : SIGN_EXTRACT,
6375 extraction_mode, inner, GEN_INT (len), pos_rtx);
6376 if (! in_dest)
6377 new = gen_lowpart_for_combine (mode, new);
6378
6379 return new;
6380 }
6381 \f
6382 /* See if X contains an ASHIFT of COUNT or more bits that can be commuted
6383 with any other operations in X. Return X without that shift if so. */
6384
6385 static rtx
6386 extract_left_shift (x, count)
6387 rtx x;
6388 int count;
6389 {
6390 enum rtx_code code = GET_CODE (x);
6391 enum machine_mode mode = GET_MODE (x);
6392 rtx tem;
6393
6394 switch (code)
6395 {
6396 case ASHIFT:
6397 /* This is the shift itself. If it is wide enough, we will return
6398 either the value being shifted if the shift count is equal to
6399 COUNT or a shift for the difference. */
6400 if (GET_CODE (XEXP (x, 1)) == CONST_INT
6401 && INTVAL (XEXP (x, 1)) >= count)
6402 return simplify_shift_const (NULL_RTX, ASHIFT, mode, XEXP (x, 0),
6403 INTVAL (XEXP (x, 1)) - count);
6404 break;
6405
6406 case NEG: case NOT:
6407 if ((tem = extract_left_shift (XEXP (x, 0), count)) != 0)
6408 return simplify_gen_unary (code, mode, tem, mode);
6409
6410 break;
6411
6412 case PLUS: case IOR: case XOR: case AND:
6413 /* If we can safely shift this constant and we find the inner shift,
6414 make a new operation. */
6415 if (GET_CODE (XEXP (x,1)) == CONST_INT
6416 && (INTVAL (XEXP (x, 1)) & ((((HOST_WIDE_INT) 1 << count)) - 1)) == 0
6417 && (tem = extract_left_shift (XEXP (x, 0), count)) != 0)
6418 return gen_binary (code, mode, tem,
6419 GEN_INT (INTVAL (XEXP (x, 1)) >> count));
6420
6421 break;
6422
6423 default:
6424 break;
6425 }
6426
6427 return 0;
6428 }
6429 \f
6430 /* Look at the expression rooted at X. Look for expressions
6431 equivalent to ZERO_EXTRACT, SIGN_EXTRACT, ZERO_EXTEND, SIGN_EXTEND.
6432 Form these expressions.
6433
6434 Return the new rtx, usually just X.
6435
6436 Also, for machines like the VAX that don't have logical shift insns,
6437 try to convert logical to arithmetic shift operations in cases where
6438 they are equivalent. This undoes the canonicalizations to logical
6439 shifts done elsewhere.
6440
6441 We try, as much as possible, to re-use rtl expressions to save memory.
6442
6443 IN_CODE says what kind of expression we are processing. Normally, it is
6444 SET. In a memory address (inside a MEM, PLUS or minus, the latter two
6445 being kludges), it is MEM. When processing the arguments of a comparison
6446 or a COMPARE against zero, it is COMPARE. */
6447
6448 static rtx
6449 make_compound_operation (x, in_code)
6450 rtx x;
6451 enum rtx_code in_code;
6452 {
6453 enum rtx_code code = GET_CODE (x);
6454 enum machine_mode mode = GET_MODE (x);
6455 int mode_width = GET_MODE_BITSIZE (mode);
6456 rtx rhs, lhs;
6457 enum rtx_code next_code;
6458 int i;
6459 rtx new = 0;
6460 rtx tem;
6461 const char *fmt;
6462
6463 /* Select the code to be used in recursive calls. Once we are inside an
6464 address, we stay there. If we have a comparison, set to COMPARE,
6465 but once inside, go back to our default of SET. */
6466
6467 next_code = (code == MEM || code == PLUS || code == MINUS ? MEM
6468 : ((code == COMPARE || GET_RTX_CLASS (code) == '<')
6469 && XEXP (x, 1) == const0_rtx) ? COMPARE
6470 : in_code == COMPARE ? SET : in_code);
6471
6472 /* Process depending on the code of this operation. If NEW is set
6473 non-zero, it will be returned. */
6474
6475 switch (code)
6476 {
6477 case ASHIFT:
6478 /* Convert shifts by constants into multiplications if inside
6479 an address. */
6480 if (in_code == MEM && GET_CODE (XEXP (x, 1)) == CONST_INT
6481 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT
6482 && INTVAL (XEXP (x, 1)) >= 0)
6483 {
6484 new = make_compound_operation (XEXP (x, 0), next_code);
6485 new = gen_rtx_MULT (mode, new,
6486 GEN_INT ((HOST_WIDE_INT) 1
6487 << INTVAL (XEXP (x, 1))));
6488 }
6489 break;
6490
6491 case AND:
6492 /* If the second operand is not a constant, we can't do anything
6493 with it. */
6494 if (GET_CODE (XEXP (x, 1)) != CONST_INT)
6495 break;
6496
6497 /* If the constant is a power of two minus one and the first operand
6498 is a logical right shift, make an extraction. */
6499 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
6500 && (i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0)
6501 {
6502 new = make_compound_operation (XEXP (XEXP (x, 0), 0), next_code);
6503 new = make_extraction (mode, new, 0, XEXP (XEXP (x, 0), 1), i, 1,
6504 0, in_code == COMPARE);
6505 }
6506
6507 /* Same as previous, but for (subreg (lshiftrt ...)) in first op. */
6508 else if (GET_CODE (XEXP (x, 0)) == SUBREG
6509 && subreg_lowpart_p (XEXP (x, 0))
6510 && GET_CODE (SUBREG_REG (XEXP (x, 0))) == LSHIFTRT
6511 && (i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0)
6512 {
6513 new = make_compound_operation (XEXP (SUBREG_REG (XEXP (x, 0)), 0),
6514 next_code);
6515 new = make_extraction (GET_MODE (SUBREG_REG (XEXP (x, 0))), new, 0,
6516 XEXP (SUBREG_REG (XEXP (x, 0)), 1), i, 1,
6517 0, in_code == COMPARE);
6518 }
6519 /* Same as previous, but for (xor/ior (lshiftrt...) (lshiftrt...)). */
6520 else if ((GET_CODE (XEXP (x, 0)) == XOR
6521 || GET_CODE (XEXP (x, 0)) == IOR)
6522 && GET_CODE (XEXP (XEXP (x, 0), 0)) == LSHIFTRT
6523 && GET_CODE (XEXP (XEXP (x, 0), 1)) == LSHIFTRT
6524 && (i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0)
6525 {
6526 /* Apply the distributive law, and then try to make extractions. */
6527 new = gen_rtx_fmt_ee (GET_CODE (XEXP (x, 0)), mode,
6528 gen_rtx_AND (mode, XEXP (XEXP (x, 0), 0),
6529 XEXP (x, 1)),
6530 gen_rtx_AND (mode, XEXP (XEXP (x, 0), 1),
6531 XEXP (x, 1)));
6532 new = make_compound_operation (new, in_code);
6533 }
6534
6535 /* If we are have (and (rotate X C) M) and C is larger than the number
6536 of bits in M, this is an extraction. */
6537
6538 else if (GET_CODE (XEXP (x, 0)) == ROTATE
6539 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
6540 && (i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0
6541 && i <= INTVAL (XEXP (XEXP (x, 0), 1)))
6542 {
6543 new = make_compound_operation (XEXP (XEXP (x, 0), 0), next_code);
6544 new = make_extraction (mode, new,
6545 (GET_MODE_BITSIZE (mode)
6546 - INTVAL (XEXP (XEXP (x, 0), 1))),
6547 NULL_RTX, i, 1, 0, in_code == COMPARE);
6548 }
6549
6550 /* On machines without logical shifts, if the operand of the AND is
6551 a logical shift and our mask turns off all the propagated sign
6552 bits, we can replace the logical shift with an arithmetic shift. */
6553 else if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
6554 && !have_insn_for (LSHIFTRT, mode)
6555 && have_insn_for (ASHIFTRT, mode)
6556 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
6557 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
6558 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT
6559 && mode_width <= HOST_BITS_PER_WIDE_INT)
6560 {
6561 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
6562
6563 mask >>= INTVAL (XEXP (XEXP (x, 0), 1));
6564 if ((INTVAL (XEXP (x, 1)) & ~mask) == 0)
6565 SUBST (XEXP (x, 0),
6566 gen_rtx_ASHIFTRT (mode,
6567 make_compound_operation
6568 (XEXP (XEXP (x, 0), 0), next_code),
6569 XEXP (XEXP (x, 0), 1)));
6570 }
6571
6572 /* If the constant is one less than a power of two, this might be
6573 representable by an extraction even if no shift is present.
6574 If it doesn't end up being a ZERO_EXTEND, we will ignore it unless
6575 we are in a COMPARE. */
6576 else if ((i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0)
6577 new = make_extraction (mode,
6578 make_compound_operation (XEXP (x, 0),
6579 next_code),
6580 0, NULL_RTX, i, 1, 0, in_code == COMPARE);
6581
6582 /* If we are in a comparison and this is an AND with a power of two,
6583 convert this into the appropriate bit extract. */
6584 else if (in_code == COMPARE
6585 && (i = exact_log2 (INTVAL (XEXP (x, 1)))) >= 0)
6586 new = make_extraction (mode,
6587 make_compound_operation (XEXP (x, 0),
6588 next_code),
6589 i, NULL_RTX, 1, 1, 0, 1);
6590
6591 break;
6592
6593 case LSHIFTRT:
6594 /* If the sign bit is known to be zero, replace this with an
6595 arithmetic shift. */
6596 if (have_insn_for (ASHIFTRT, mode)
6597 && ! have_insn_for (LSHIFTRT, mode)
6598 && mode_width <= HOST_BITS_PER_WIDE_INT
6599 && (nonzero_bits (XEXP (x, 0), mode) & (1 << (mode_width - 1))) == 0)
6600 {
6601 new = gen_rtx_ASHIFTRT (mode,
6602 make_compound_operation (XEXP (x, 0),
6603 next_code),
6604 XEXP (x, 1));
6605 break;
6606 }
6607
6608 /* ... fall through ... */
6609
6610 case ASHIFTRT:
6611 lhs = XEXP (x, 0);
6612 rhs = XEXP (x, 1);
6613
6614 /* If we have (ashiftrt (ashift foo C1) C2) with C2 >= C1,
6615 this is a SIGN_EXTRACT. */
6616 if (GET_CODE (rhs) == CONST_INT
6617 && GET_CODE (lhs) == ASHIFT
6618 && GET_CODE (XEXP (lhs, 1)) == CONST_INT
6619 && INTVAL (rhs) >= INTVAL (XEXP (lhs, 1)))
6620 {
6621 new = make_compound_operation (XEXP (lhs, 0), next_code);
6622 new = make_extraction (mode, new,
6623 INTVAL (rhs) - INTVAL (XEXP (lhs, 1)),
6624 NULL_RTX, mode_width - INTVAL (rhs),
6625 code == LSHIFTRT, 0, in_code == COMPARE);
6626 break;
6627 }
6628
6629 /* See if we have operations between an ASHIFTRT and an ASHIFT.
6630 If so, try to merge the shifts into a SIGN_EXTEND. We could
6631 also do this for some cases of SIGN_EXTRACT, but it doesn't
6632 seem worth the effort; the case checked for occurs on Alpha. */
6633
6634 if (GET_RTX_CLASS (GET_CODE (lhs)) != 'o'
6635 && ! (GET_CODE (lhs) == SUBREG
6636 && (GET_RTX_CLASS (GET_CODE (SUBREG_REG (lhs))) == 'o'))
6637 && GET_CODE (rhs) == CONST_INT
6638 && INTVAL (rhs) < HOST_BITS_PER_WIDE_INT
6639 && (new = extract_left_shift (lhs, INTVAL (rhs))) != 0)
6640 new = make_extraction (mode, make_compound_operation (new, next_code),
6641 0, NULL_RTX, mode_width - INTVAL (rhs),
6642 code == LSHIFTRT, 0, in_code == COMPARE);
6643
6644 break;
6645
6646 case SUBREG:
6647 /* Call ourselves recursively on the inner expression. If we are
6648 narrowing the object and it has a different RTL code from
6649 what it originally did, do this SUBREG as a force_to_mode. */
6650
6651 tem = make_compound_operation (SUBREG_REG (x), in_code);
6652 if (GET_CODE (tem) != GET_CODE (SUBREG_REG (x))
6653 && GET_MODE_SIZE (mode) < GET_MODE_SIZE (GET_MODE (tem))
6654 && subreg_lowpart_p (x))
6655 {
6656 rtx newer = force_to_mode (tem, mode, ~(HOST_WIDE_INT) 0,
6657 NULL_RTX, 0);
6658
6659 /* If we have something other than a SUBREG, we might have
6660 done an expansion, so rerun ourselves. */
6661 if (GET_CODE (newer) != SUBREG)
6662 newer = make_compound_operation (newer, in_code);
6663
6664 return newer;
6665 }
6666
6667 /* If this is a paradoxical subreg, and the new code is a sign or
6668 zero extension, omit the subreg and widen the extension. If it
6669 is a regular subreg, we can still get rid of the subreg by not
6670 widening so much, or in fact removing the extension entirely. */
6671 if ((GET_CODE (tem) == SIGN_EXTEND
6672 || GET_CODE (tem) == ZERO_EXTEND)
6673 && subreg_lowpart_p (x))
6674 {
6675 if (GET_MODE_SIZE (mode) > GET_MODE_SIZE (GET_MODE (tem))
6676 || (GET_MODE_SIZE (mode) >
6677 GET_MODE_SIZE (GET_MODE (XEXP (tem, 0)))))
6678 {
6679 if (! INTEGRAL_MODE_P (mode))
6680 break;
6681 tem = gen_rtx_fmt_e (GET_CODE (tem), mode, XEXP (tem, 0));
6682 }
6683 else
6684 tem = gen_lowpart_for_combine (mode, XEXP (tem, 0));
6685 return tem;
6686 }
6687 break;
6688
6689 default:
6690 break;
6691 }
6692
6693 if (new)
6694 {
6695 x = gen_lowpart_for_combine (mode, new);
6696 code = GET_CODE (x);
6697 }
6698
6699 /* Now recursively process each operand of this operation. */
6700 fmt = GET_RTX_FORMAT (code);
6701 for (i = 0; i < GET_RTX_LENGTH (code); i++)
6702 if (fmt[i] == 'e')
6703 {
6704 new = make_compound_operation (XEXP (x, i), next_code);
6705 SUBST (XEXP (x, i), new);
6706 }
6707
6708 return x;
6709 }
6710 \f
6711 /* Given M see if it is a value that would select a field of bits
6712 within an item, but not the entire word. Return -1 if not.
6713 Otherwise, return the starting position of the field, where 0 is the
6714 low-order bit.
6715
6716 *PLEN is set to the length of the field. */
6717
6718 static int
6719 get_pos_from_mask (m, plen)
6720 unsigned HOST_WIDE_INT m;
6721 unsigned HOST_WIDE_INT *plen;
6722 {
6723 /* Get the bit number of the first 1 bit from the right, -1 if none. */
6724 int pos = exact_log2 (m & -m);
6725 int len;
6726
6727 if (pos < 0)
6728 return -1;
6729
6730 /* Now shift off the low-order zero bits and see if we have a power of
6731 two minus 1. */
6732 len = exact_log2 ((m >> pos) + 1);
6733
6734 if (len <= 0)
6735 return -1;
6736
6737 *plen = len;
6738 return pos;
6739 }
6740 \f
6741 /* See if X can be simplified knowing that we will only refer to it in
6742 MODE and will only refer to those bits that are nonzero in MASK.
6743 If other bits are being computed or if masking operations are done
6744 that select a superset of the bits in MASK, they can sometimes be
6745 ignored.
6746
6747 Return a possibly simplified expression, but always convert X to
6748 MODE. If X is a CONST_INT, AND the CONST_INT with MASK.
6749
6750 Also, if REG is non-zero and X is a register equal in value to REG,
6751 replace X with REG.
6752
6753 If JUST_SELECT is nonzero, don't optimize by noticing that bits in MASK
6754 are all off in X. This is used when X will be complemented, by either
6755 NOT, NEG, or XOR. */
6756
6757 static rtx
6758 force_to_mode (x, mode, mask, reg, just_select)
6759 rtx x;
6760 enum machine_mode mode;
6761 unsigned HOST_WIDE_INT mask;
6762 rtx reg;
6763 int just_select;
6764 {
6765 enum rtx_code code = GET_CODE (x);
6766 int next_select = just_select || code == XOR || code == NOT || code == NEG;
6767 enum machine_mode op_mode;
6768 unsigned HOST_WIDE_INT fuller_mask, nonzero;
6769 rtx op0, op1, temp;
6770
6771 /* If this is a CALL or ASM_OPERANDS, don't do anything. Some of the
6772 code below will do the wrong thing since the mode of such an
6773 expression is VOIDmode.
6774
6775 Also do nothing if X is a CLOBBER; this can happen if X was
6776 the return value from a call to gen_lowpart_for_combine. */
6777 if (code == CALL || code == ASM_OPERANDS || code == CLOBBER)
6778 return x;
6779
6780 /* We want to perform the operation is its present mode unless we know
6781 that the operation is valid in MODE, in which case we do the operation
6782 in MODE. */
6783 op_mode = ((GET_MODE_CLASS (mode) == GET_MODE_CLASS (GET_MODE (x))
6784 && have_insn_for (code, mode))
6785 ? mode : GET_MODE (x));
6786
6787 /* It is not valid to do a right-shift in a narrower mode
6788 than the one it came in with. */
6789 if ((code == LSHIFTRT || code == ASHIFTRT)
6790 && GET_MODE_BITSIZE (mode) < GET_MODE_BITSIZE (GET_MODE (x)))
6791 op_mode = GET_MODE (x);
6792
6793 /* Truncate MASK to fit OP_MODE. */
6794 if (op_mode)
6795 mask &= GET_MODE_MASK (op_mode);
6796
6797 /* When we have an arithmetic operation, or a shift whose count we
6798 do not know, we need to assume that all bit the up to the highest-order
6799 bit in MASK will be needed. This is how we form such a mask. */
6800 if (op_mode)
6801 fuller_mask = (GET_MODE_BITSIZE (op_mode) >= HOST_BITS_PER_WIDE_INT
6802 ? GET_MODE_MASK (op_mode)
6803 : (((unsigned HOST_WIDE_INT) 1 << (floor_log2 (mask) + 1))
6804 - 1));
6805 else
6806 fuller_mask = ~(HOST_WIDE_INT) 0;
6807
6808 /* Determine what bits of X are guaranteed to be (non)zero. */
6809 nonzero = nonzero_bits (x, mode);
6810
6811 /* If none of the bits in X are needed, return a zero. */
6812 if (! just_select && (nonzero & mask) == 0)
6813 return const0_rtx;
6814
6815 /* If X is a CONST_INT, return a new one. Do this here since the
6816 test below will fail. */
6817 if (GET_CODE (x) == CONST_INT)
6818 return gen_int_mode (INTVAL (x) & mask, mode);
6819
6820 /* If X is narrower than MODE and we want all the bits in X's mode, just
6821 get X in the proper mode. */
6822 if (GET_MODE_SIZE (GET_MODE (x)) < GET_MODE_SIZE (mode)
6823 && (GET_MODE_MASK (GET_MODE (x)) & ~mask) == 0)
6824 return gen_lowpart_for_combine (mode, x);
6825
6826 /* If we aren't changing the mode, X is not a SUBREG, and all zero bits in
6827 MASK are already known to be zero in X, we need not do anything. */
6828 if (GET_MODE (x) == mode && code != SUBREG && (~mask & nonzero) == 0)
6829 return x;
6830
6831 switch (code)
6832 {
6833 case CLOBBER:
6834 /* If X is a (clobber (const_int)), return it since we know we are
6835 generating something that won't match. */
6836 return x;
6837
6838 case USE:
6839 /* X is a (use (mem ..)) that was made from a bit-field extraction that
6840 spanned the boundary of the MEM. If we are now masking so it is
6841 within that boundary, we don't need the USE any more. */
6842 if (! BITS_BIG_ENDIAN
6843 && (mask & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
6844 return force_to_mode (XEXP (x, 0), mode, mask, reg, next_select);
6845 break;
6846
6847 case SIGN_EXTEND:
6848 case ZERO_EXTEND:
6849 case ZERO_EXTRACT:
6850 case SIGN_EXTRACT:
6851 x = expand_compound_operation (x);
6852 if (GET_CODE (x) != code)
6853 return force_to_mode (x, mode, mask, reg, next_select);
6854 break;
6855
6856 case REG:
6857 if (reg != 0 && (rtx_equal_p (get_last_value (reg), x)
6858 || rtx_equal_p (reg, get_last_value (x))))
6859 x = reg;
6860 break;
6861
6862 case SUBREG:
6863 if (subreg_lowpart_p (x)
6864 /* We can ignore the effect of this SUBREG if it narrows the mode or
6865 if the constant masks to zero all the bits the mode doesn't
6866 have. */
6867 && ((GET_MODE_SIZE (GET_MODE (x))
6868 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
6869 || (0 == (mask
6870 & GET_MODE_MASK (GET_MODE (x))
6871 & ~GET_MODE_MASK (GET_MODE (SUBREG_REG (x)))))))
6872 return force_to_mode (SUBREG_REG (x), mode, mask, reg, next_select);
6873 break;
6874
6875 case AND:
6876 /* If this is an AND with a constant, convert it into an AND
6877 whose constant is the AND of that constant with MASK. If it
6878 remains an AND of MASK, delete it since it is redundant. */
6879
6880 if (GET_CODE (XEXP (x, 1)) == CONST_INT)
6881 {
6882 x = simplify_and_const_int (x, op_mode, XEXP (x, 0),
6883 mask & INTVAL (XEXP (x, 1)));
6884
6885 /* If X is still an AND, see if it is an AND with a mask that
6886 is just some low-order bits. If so, and it is MASK, we don't
6887 need it. */
6888
6889 if (GET_CODE (x) == AND && GET_CODE (XEXP (x, 1)) == CONST_INT
6890 && ((INTVAL (XEXP (x, 1)) & GET_MODE_MASK (GET_MODE (x)))
6891 == mask))
6892 x = XEXP (x, 0);
6893
6894 /* If it remains an AND, try making another AND with the bits
6895 in the mode mask that aren't in MASK turned on. If the
6896 constant in the AND is wide enough, this might make a
6897 cheaper constant. */
6898
6899 if (GET_CODE (x) == AND && GET_CODE (XEXP (x, 1)) == CONST_INT
6900 && GET_MODE_MASK (GET_MODE (x)) != mask
6901 && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT)
6902 {
6903 HOST_WIDE_INT cval = (INTVAL (XEXP (x, 1))
6904 | (GET_MODE_MASK (GET_MODE (x)) & ~mask));
6905 int width = GET_MODE_BITSIZE (GET_MODE (x));
6906 rtx y;
6907
6908 /* If MODE is narrower that HOST_WIDE_INT and CVAL is a negative
6909 number, sign extend it. */
6910 if (width > 0 && width < HOST_BITS_PER_WIDE_INT
6911 && (cval & ((HOST_WIDE_INT) 1 << (width - 1))) != 0)
6912 cval |= (HOST_WIDE_INT) -1 << width;
6913
6914 y = gen_binary (AND, GET_MODE (x), XEXP (x, 0), GEN_INT (cval));
6915 if (rtx_cost (y, SET) < rtx_cost (x, SET))
6916 x = y;
6917 }
6918
6919 break;
6920 }
6921
6922 goto binop;
6923
6924 case PLUS:
6925 /* In (and (plus FOO C1) M), if M is a mask that just turns off
6926 low-order bits (as in an alignment operation) and FOO is already
6927 aligned to that boundary, mask C1 to that boundary as well.
6928 This may eliminate that PLUS and, later, the AND. */
6929
6930 {
6931 unsigned int width = GET_MODE_BITSIZE (mode);
6932 unsigned HOST_WIDE_INT smask = mask;
6933
6934 /* If MODE is narrower than HOST_WIDE_INT and mask is a negative
6935 number, sign extend it. */
6936
6937 if (width < HOST_BITS_PER_WIDE_INT
6938 && (smask & ((HOST_WIDE_INT) 1 << (width - 1))) != 0)
6939 smask |= (HOST_WIDE_INT) -1 << width;
6940
6941 if (GET_CODE (XEXP (x, 1)) == CONST_INT
6942 && exact_log2 (- smask) >= 0
6943 && (nonzero_bits (XEXP (x, 0), mode) & ~smask) == 0
6944 && (INTVAL (XEXP (x, 1)) & ~smask) != 0)
6945 return force_to_mode (plus_constant (XEXP (x, 0),
6946 (INTVAL (XEXP (x, 1)) & smask)),
6947 mode, smask, reg, next_select);
6948 }
6949
6950 /* ... fall through ... */
6951
6952 case MULT:
6953 /* For PLUS, MINUS and MULT, we need any bits less significant than the
6954 most significant bit in MASK since carries from those bits will
6955 affect the bits we are interested in. */
6956 mask = fuller_mask;
6957 goto binop;
6958
6959 case MINUS:
6960 /* If X is (minus C Y) where C's least set bit is larger than any bit
6961 in the mask, then we may replace with (neg Y). */
6962 if (GET_CODE (XEXP (x, 0)) == CONST_INT
6963 && (((unsigned HOST_WIDE_INT) (INTVAL (XEXP (x, 0))
6964 & -INTVAL (XEXP (x, 0))))
6965 > mask))
6966 {
6967 x = simplify_gen_unary (NEG, GET_MODE (x), XEXP (x, 1),
6968 GET_MODE (x));
6969 return force_to_mode (x, mode, mask, reg, next_select);
6970 }
6971
6972 /* Similarly, if C contains every bit in the mask, then we may
6973 replace with (not Y). */
6974 if (GET_CODE (XEXP (x, 0)) == CONST_INT
6975 && ((INTVAL (XEXP (x, 0)) | (HOST_WIDE_INT) mask)
6976 == INTVAL (XEXP (x, 0))))
6977 {
6978 x = simplify_gen_unary (NOT, GET_MODE (x),
6979 XEXP (x, 1), GET_MODE (x));
6980 return force_to_mode (x, mode, mask, reg, next_select);
6981 }
6982
6983 mask = fuller_mask;
6984 goto binop;
6985
6986 case IOR:
6987 case XOR:
6988 /* If X is (ior (lshiftrt FOO C1) C2), try to commute the IOR and
6989 LSHIFTRT so we end up with an (and (lshiftrt (ior ...) ...) ...)
6990 operation which may be a bitfield extraction. Ensure that the
6991 constant we form is not wider than the mode of X. */
6992
6993 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
6994 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
6995 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
6996 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT
6997 && GET_CODE (XEXP (x, 1)) == CONST_INT
6998 && ((INTVAL (XEXP (XEXP (x, 0), 1))
6999 + floor_log2 (INTVAL (XEXP (x, 1))))
7000 < GET_MODE_BITSIZE (GET_MODE (x)))
7001 && (INTVAL (XEXP (x, 1))
7002 & ~nonzero_bits (XEXP (x, 0), GET_MODE (x))) == 0)
7003 {
7004 temp = GEN_INT ((INTVAL (XEXP (x, 1)) & mask)
7005 << INTVAL (XEXP (XEXP (x, 0), 1)));
7006 temp = gen_binary (GET_CODE (x), GET_MODE (x),
7007 XEXP (XEXP (x, 0), 0), temp);
7008 x = gen_binary (LSHIFTRT, GET_MODE (x), temp,
7009 XEXP (XEXP (x, 0), 1));
7010 return force_to_mode (x, mode, mask, reg, next_select);
7011 }
7012
7013 binop:
7014 /* For most binary operations, just propagate into the operation and
7015 change the mode if we have an operation of that mode. */
7016
7017 op0 = gen_lowpart_for_combine (op_mode,
7018 force_to_mode (XEXP (x, 0), mode, mask,
7019 reg, next_select));
7020 op1 = gen_lowpart_for_combine (op_mode,
7021 force_to_mode (XEXP (x, 1), mode, mask,
7022 reg, next_select));
7023
7024 if (op_mode != GET_MODE (x) || op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
7025 x = gen_binary (code, op_mode, op0, op1);
7026 break;
7027
7028 case ASHIFT:
7029 /* For left shifts, do the same, but just for the first operand.
7030 However, we cannot do anything with shifts where we cannot
7031 guarantee that the counts are smaller than the size of the mode
7032 because such a count will have a different meaning in a
7033 wider mode. */
7034
7035 if (! (GET_CODE (XEXP (x, 1)) == CONST_INT
7036 && INTVAL (XEXP (x, 1)) >= 0
7037 && INTVAL (XEXP (x, 1)) < GET_MODE_BITSIZE (mode))
7038 && ! (GET_MODE (XEXP (x, 1)) != VOIDmode
7039 && (nonzero_bits (XEXP (x, 1), GET_MODE (XEXP (x, 1)))
7040 < (unsigned HOST_WIDE_INT) GET_MODE_BITSIZE (mode))))
7041 break;
7042
7043 /* If the shift count is a constant and we can do arithmetic in
7044 the mode of the shift, refine which bits we need. Otherwise, use the
7045 conservative form of the mask. */
7046 if (GET_CODE (XEXP (x, 1)) == CONST_INT
7047 && INTVAL (XEXP (x, 1)) >= 0
7048 && INTVAL (XEXP (x, 1)) < GET_MODE_BITSIZE (op_mode)
7049 && GET_MODE_BITSIZE (op_mode) <= HOST_BITS_PER_WIDE_INT)
7050 mask >>= INTVAL (XEXP (x, 1));
7051 else
7052 mask = fuller_mask;
7053
7054 op0 = gen_lowpart_for_combine (op_mode,
7055 force_to_mode (XEXP (x, 0), op_mode,
7056 mask, reg, next_select));
7057
7058 if (op_mode != GET_MODE (x) || op0 != XEXP (x, 0))
7059 x = gen_binary (code, op_mode, op0, XEXP (x, 1));
7060 break;
7061
7062 case LSHIFTRT:
7063 /* Here we can only do something if the shift count is a constant,
7064 this shift constant is valid for the host, and we can do arithmetic
7065 in OP_MODE. */
7066
7067 if (GET_CODE (XEXP (x, 1)) == CONST_INT
7068 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT
7069 && GET_MODE_BITSIZE (op_mode) <= HOST_BITS_PER_WIDE_INT)
7070 {
7071 rtx inner = XEXP (x, 0);
7072 unsigned HOST_WIDE_INT inner_mask;
7073
7074 /* Select the mask of the bits we need for the shift operand. */
7075 inner_mask = mask << INTVAL (XEXP (x, 1));
7076
7077 /* We can only change the mode of the shift if we can do arithmetic
7078 in the mode of the shift and INNER_MASK is no wider than the
7079 width of OP_MODE. */
7080 if (GET_MODE_BITSIZE (op_mode) > HOST_BITS_PER_WIDE_INT
7081 || (inner_mask & ~GET_MODE_MASK (op_mode)) != 0)
7082 op_mode = GET_MODE (x);
7083
7084 inner = force_to_mode (inner, op_mode, inner_mask, reg, next_select);
7085
7086 if (GET_MODE (x) != op_mode || inner != XEXP (x, 0))
7087 x = gen_binary (LSHIFTRT, op_mode, inner, XEXP (x, 1));
7088 }
7089
7090 /* If we have (and (lshiftrt FOO C1) C2) where the combination of the
7091 shift and AND produces only copies of the sign bit (C2 is one less
7092 than a power of two), we can do this with just a shift. */
7093
7094 if (GET_CODE (x) == LSHIFTRT
7095 && GET_CODE (XEXP (x, 1)) == CONST_INT
7096 /* The shift puts one of the sign bit copies in the least significant
7097 bit. */
7098 && ((INTVAL (XEXP (x, 1))
7099 + num_sign_bit_copies (XEXP (x, 0), GET_MODE (XEXP (x, 0))))
7100 >= GET_MODE_BITSIZE (GET_MODE (x)))
7101 && exact_log2 (mask + 1) >= 0
7102 /* Number of bits left after the shift must be more than the mask
7103 needs. */
7104 && ((INTVAL (XEXP (x, 1)) + exact_log2 (mask + 1))
7105 <= GET_MODE_BITSIZE (GET_MODE (x)))
7106 /* Must be more sign bit copies than the mask needs. */
7107 && ((int) num_sign_bit_copies (XEXP (x, 0), GET_MODE (XEXP (x, 0)))
7108 >= exact_log2 (mask + 1)))
7109 x = gen_binary (LSHIFTRT, GET_MODE (x), XEXP (x, 0),
7110 GEN_INT (GET_MODE_BITSIZE (GET_MODE (x))
7111 - exact_log2 (mask + 1)));
7112
7113 goto shiftrt;
7114
7115 case ASHIFTRT:
7116 /* If we are just looking for the sign bit, we don't need this shift at
7117 all, even if it has a variable count. */
7118 if (GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
7119 && (mask == ((unsigned HOST_WIDE_INT) 1
7120 << (GET_MODE_BITSIZE (GET_MODE (x)) - 1))))
7121 return force_to_mode (XEXP (x, 0), mode, mask, reg, next_select);
7122
7123 /* If this is a shift by a constant, get a mask that contains those bits
7124 that are not copies of the sign bit. We then have two cases: If
7125 MASK only includes those bits, this can be a logical shift, which may
7126 allow simplifications. If MASK is a single-bit field not within
7127 those bits, we are requesting a copy of the sign bit and hence can
7128 shift the sign bit to the appropriate location. */
7129
7130 if (GET_CODE (XEXP (x, 1)) == CONST_INT && INTVAL (XEXP (x, 1)) >= 0
7131 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT)
7132 {
7133 int i = -1;
7134
7135 /* If the considered data is wider than HOST_WIDE_INT, we can't
7136 represent a mask for all its bits in a single scalar.
7137 But we only care about the lower bits, so calculate these. */
7138
7139 if (GET_MODE_BITSIZE (GET_MODE (x)) > HOST_BITS_PER_WIDE_INT)
7140 {
7141 nonzero = ~(HOST_WIDE_INT) 0;
7142
7143 /* GET_MODE_BITSIZE (GET_MODE (x)) - INTVAL (XEXP (x, 1))
7144 is the number of bits a full-width mask would have set.
7145 We need only shift if these are fewer than nonzero can
7146 hold. If not, we must keep all bits set in nonzero. */
7147
7148 if (GET_MODE_BITSIZE (GET_MODE (x)) - INTVAL (XEXP (x, 1))
7149 < HOST_BITS_PER_WIDE_INT)
7150 nonzero >>= INTVAL (XEXP (x, 1))
7151 + HOST_BITS_PER_WIDE_INT
7152 - GET_MODE_BITSIZE (GET_MODE (x)) ;
7153 }
7154 else
7155 {
7156 nonzero = GET_MODE_MASK (GET_MODE (x));
7157 nonzero >>= INTVAL (XEXP (x, 1));
7158 }
7159
7160 if ((mask & ~nonzero) == 0
7161 || (i = exact_log2 (mask)) >= 0)
7162 {
7163 x = simplify_shift_const
7164 (x, LSHIFTRT, GET_MODE (x), XEXP (x, 0),
7165 i < 0 ? INTVAL (XEXP (x, 1))
7166 : GET_MODE_BITSIZE (GET_MODE (x)) - 1 - i);
7167
7168 if (GET_CODE (x) != ASHIFTRT)
7169 return force_to_mode (x, mode, mask, reg, next_select);
7170 }
7171 }
7172
7173 /* If MASK is 1, convert this to an LSHIFTRT. This can be done
7174 even if the shift count isn't a constant. */
7175 if (mask == 1)
7176 x = gen_binary (LSHIFTRT, GET_MODE (x), XEXP (x, 0), XEXP (x, 1));
7177
7178 shiftrt:
7179
7180 /* If this is a zero- or sign-extension operation that just affects bits
7181 we don't care about, remove it. Be sure the call above returned
7182 something that is still a shift. */
7183
7184 if ((GET_CODE (x) == LSHIFTRT || GET_CODE (x) == ASHIFTRT)
7185 && GET_CODE (XEXP (x, 1)) == CONST_INT
7186 && INTVAL (XEXP (x, 1)) >= 0
7187 && (INTVAL (XEXP (x, 1))
7188 <= GET_MODE_BITSIZE (GET_MODE (x)) - (floor_log2 (mask) + 1))
7189 && GET_CODE (XEXP (x, 0)) == ASHIFT
7190 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
7191 && INTVAL (XEXP (XEXP (x, 0), 1)) == INTVAL (XEXP (x, 1)))
7192 return force_to_mode (XEXP (XEXP (x, 0), 0), mode, mask,
7193 reg, next_select);
7194
7195 break;
7196
7197 case ROTATE:
7198 case ROTATERT:
7199 /* If the shift count is constant and we can do computations
7200 in the mode of X, compute where the bits we care about are.
7201 Otherwise, we can't do anything. Don't change the mode of
7202 the shift or propagate MODE into the shift, though. */
7203 if (GET_CODE (XEXP (x, 1)) == CONST_INT
7204 && INTVAL (XEXP (x, 1)) >= 0)
7205 {
7206 temp = simplify_binary_operation (code == ROTATE ? ROTATERT : ROTATE,
7207 GET_MODE (x), GEN_INT (mask),
7208 XEXP (x, 1));
7209 if (temp && GET_CODE(temp) == CONST_INT)
7210 SUBST (XEXP (x, 0),
7211 force_to_mode (XEXP (x, 0), GET_MODE (x),
7212 INTVAL (temp), reg, next_select));
7213 }
7214 break;
7215
7216 case NEG:
7217 /* If we just want the low-order bit, the NEG isn't needed since it
7218 won't change the low-order bit. */
7219 if (mask == 1)
7220 return force_to_mode (XEXP (x, 0), mode, mask, reg, just_select);
7221
7222 /* We need any bits less significant than the most significant bit in
7223 MASK since carries from those bits will affect the bits we are
7224 interested in. */
7225 mask = fuller_mask;
7226 goto unop;
7227
7228 case NOT:
7229 /* (not FOO) is (xor FOO CONST), so if FOO is an LSHIFTRT, we can do the
7230 same as the XOR case above. Ensure that the constant we form is not
7231 wider than the mode of X. */
7232
7233 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
7234 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
7235 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
7236 && (INTVAL (XEXP (XEXP (x, 0), 1)) + floor_log2 (mask)
7237 < GET_MODE_BITSIZE (GET_MODE (x)))
7238 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT)
7239 {
7240 temp = GEN_INT (mask << INTVAL (XEXP (XEXP (x, 0), 1)));
7241 temp = gen_binary (XOR, GET_MODE (x), XEXP (XEXP (x, 0), 0), temp);
7242 x = gen_binary (LSHIFTRT, GET_MODE (x), temp, XEXP (XEXP (x, 0), 1));
7243
7244 return force_to_mode (x, mode, mask, reg, next_select);
7245 }
7246
7247 /* (and (not FOO) CONST) is (not (or FOO (not CONST))), so we must
7248 use the full mask inside the NOT. */
7249 mask = fuller_mask;
7250
7251 unop:
7252 op0 = gen_lowpart_for_combine (op_mode,
7253 force_to_mode (XEXP (x, 0), mode, mask,
7254 reg, next_select));
7255 if (op_mode != GET_MODE (x) || op0 != XEXP (x, 0))
7256 x = simplify_gen_unary (code, op_mode, op0, op_mode);
7257 break;
7258
7259 case NE:
7260 /* (and (ne FOO 0) CONST) can be (and FOO CONST) if CONST is included
7261 in STORE_FLAG_VALUE and FOO has a single bit that might be nonzero,
7262 which is equal to STORE_FLAG_VALUE. */
7263 if ((mask & ~STORE_FLAG_VALUE) == 0 && XEXP (x, 1) == const0_rtx
7264 && exact_log2 (nonzero_bits (XEXP (x, 0), mode)) >= 0
7265 && nonzero_bits (XEXP (x, 0), mode) == STORE_FLAG_VALUE)
7266 return force_to_mode (XEXP (x, 0), mode, mask, reg, next_select);
7267
7268 break;
7269
7270 case IF_THEN_ELSE:
7271 /* We have no way of knowing if the IF_THEN_ELSE can itself be
7272 written in a narrower mode. We play it safe and do not do so. */
7273
7274 SUBST (XEXP (x, 1),
7275 gen_lowpart_for_combine (GET_MODE (x),
7276 force_to_mode (XEXP (x, 1), mode,
7277 mask, reg, next_select)));
7278 SUBST (XEXP (x, 2),
7279 gen_lowpart_for_combine (GET_MODE (x),
7280 force_to_mode (XEXP (x, 2), mode,
7281 mask, reg,next_select)));
7282 break;
7283
7284 default:
7285 break;
7286 }
7287
7288 /* Ensure we return a value of the proper mode. */
7289 return gen_lowpart_for_combine (mode, x);
7290 }
7291 \f
7292 /* Return nonzero if X is an expression that has one of two values depending on
7293 whether some other value is zero or nonzero. In that case, we return the
7294 value that is being tested, *PTRUE is set to the value if the rtx being
7295 returned has a nonzero value, and *PFALSE is set to the other alternative.
7296
7297 If we return zero, we set *PTRUE and *PFALSE to X. */
7298
7299 static rtx
7300 if_then_else_cond (x, ptrue, pfalse)
7301 rtx x;
7302 rtx *ptrue, *pfalse;
7303 {
7304 enum machine_mode mode = GET_MODE (x);
7305 enum rtx_code code = GET_CODE (x);
7306 rtx cond0, cond1, true0, true1, false0, false1;
7307 unsigned HOST_WIDE_INT nz;
7308
7309 /* If we are comparing a value against zero, we are done. */
7310 if ((code == NE || code == EQ)
7311 && GET_CODE (XEXP (x, 1)) == CONST_INT && INTVAL (XEXP (x, 1)) == 0)
7312 {
7313 *ptrue = (code == NE) ? const_true_rtx : const0_rtx;
7314 *pfalse = (code == NE) ? const0_rtx : const_true_rtx;
7315 return XEXP (x, 0);
7316 }
7317
7318 /* If this is a unary operation whose operand has one of two values, apply
7319 our opcode to compute those values. */
7320 else if (GET_RTX_CLASS (code) == '1'
7321 && (cond0 = if_then_else_cond (XEXP (x, 0), &true0, &false0)) != 0)
7322 {
7323 *ptrue = simplify_gen_unary (code, mode, true0, GET_MODE (XEXP (x, 0)));
7324 *pfalse = simplify_gen_unary (code, mode, false0,
7325 GET_MODE (XEXP (x, 0)));
7326 return cond0;
7327 }
7328
7329 /* If this is a COMPARE, do nothing, since the IF_THEN_ELSE we would
7330 make can't possibly match and would suppress other optimizations. */
7331 else if (code == COMPARE)
7332 ;
7333
7334 /* If this is a binary operation, see if either side has only one of two
7335 values. If either one does or if both do and they are conditional on
7336 the same value, compute the new true and false values. */
7337 else if (GET_RTX_CLASS (code) == 'c' || GET_RTX_CLASS (code) == '2'
7338 || GET_RTX_CLASS (code) == '<')
7339 {
7340 cond0 = if_then_else_cond (XEXP (x, 0), &true0, &false0);
7341 cond1 = if_then_else_cond (XEXP (x, 1), &true1, &false1);
7342
7343 if ((cond0 != 0 || cond1 != 0)
7344 && ! (cond0 != 0 && cond1 != 0 && ! rtx_equal_p (cond0, cond1)))
7345 {
7346 /* If if_then_else_cond returned zero, then true/false are the
7347 same rtl. We must copy one of them to prevent invalid rtl
7348 sharing. */
7349 if (cond0 == 0)
7350 true0 = copy_rtx (true0);
7351 else if (cond1 == 0)
7352 true1 = copy_rtx (true1);
7353
7354 *ptrue = gen_binary (code, mode, true0, true1);
7355 *pfalse = gen_binary (code, mode, false0, false1);
7356 return cond0 ? cond0 : cond1;
7357 }
7358
7359 /* See if we have PLUS, IOR, XOR, MINUS or UMAX, where one of the
7360 operands is zero when the other is non-zero, and vice-versa,
7361 and STORE_FLAG_VALUE is 1 or -1. */
7362
7363 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
7364 && (code == PLUS || code == IOR || code == XOR || code == MINUS
7365 || code == UMAX)
7366 && GET_CODE (XEXP (x, 0)) == MULT && GET_CODE (XEXP (x, 1)) == MULT)
7367 {
7368 rtx op0 = XEXP (XEXP (x, 0), 1);
7369 rtx op1 = XEXP (XEXP (x, 1), 1);
7370
7371 cond0 = XEXP (XEXP (x, 0), 0);
7372 cond1 = XEXP (XEXP (x, 1), 0);
7373
7374 if (GET_RTX_CLASS (GET_CODE (cond0)) == '<'
7375 && GET_RTX_CLASS (GET_CODE (cond1)) == '<'
7376 && ((GET_CODE (cond0) == combine_reversed_comparison_code (cond1)
7377 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 0))
7378 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 1)))
7379 || ((swap_condition (GET_CODE (cond0))
7380 == combine_reversed_comparison_code (cond1))
7381 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 1))
7382 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 0))))
7383 && ! side_effects_p (x))
7384 {
7385 *ptrue = gen_binary (MULT, mode, op0, const_true_rtx);
7386 *pfalse = gen_binary (MULT, mode,
7387 (code == MINUS
7388 ? simplify_gen_unary (NEG, mode, op1,
7389 mode)
7390 : op1),
7391 const_true_rtx);
7392 return cond0;
7393 }
7394 }
7395
7396 /* Similarly for MULT, AND and UMIN, except that for these the result
7397 is always zero. */
7398 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
7399 && (code == MULT || code == AND || code == UMIN)
7400 && GET_CODE (XEXP (x, 0)) == MULT && GET_CODE (XEXP (x, 1)) == MULT)
7401 {
7402 cond0 = XEXP (XEXP (x, 0), 0);
7403 cond1 = XEXP (XEXP (x, 1), 0);
7404
7405 if (GET_RTX_CLASS (GET_CODE (cond0)) == '<'
7406 && GET_RTX_CLASS (GET_CODE (cond1)) == '<'
7407 && ((GET_CODE (cond0) == combine_reversed_comparison_code (cond1)
7408 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 0))
7409 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 1)))
7410 || ((swap_condition (GET_CODE (cond0))
7411 == combine_reversed_comparison_code (cond1))
7412 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 1))
7413 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 0))))
7414 && ! side_effects_p (x))
7415 {
7416 *ptrue = *pfalse = const0_rtx;
7417 return cond0;
7418 }
7419 }
7420 }
7421
7422 else if (code == IF_THEN_ELSE)
7423 {
7424 /* If we have IF_THEN_ELSE already, extract the condition and
7425 canonicalize it if it is NE or EQ. */
7426 cond0 = XEXP (x, 0);
7427 *ptrue = XEXP (x, 1), *pfalse = XEXP (x, 2);
7428 if (GET_CODE (cond0) == NE && XEXP (cond0, 1) == const0_rtx)
7429 return XEXP (cond0, 0);
7430 else if (GET_CODE (cond0) == EQ && XEXP (cond0, 1) == const0_rtx)
7431 {
7432 *ptrue = XEXP (x, 2), *pfalse = XEXP (x, 1);
7433 return XEXP (cond0, 0);
7434 }
7435 else
7436 return cond0;
7437 }
7438
7439 /* If X is a SUBREG, we can narrow both the true and false values
7440 if the inner expression, if there is a condition. */
7441 else if (code == SUBREG
7442 && 0 != (cond0 = if_then_else_cond (SUBREG_REG (x),
7443 &true0, &false0)))
7444 {
7445 *ptrue = simplify_gen_subreg (mode, true0,
7446 GET_MODE (SUBREG_REG (x)), SUBREG_BYTE (x));
7447 *pfalse = simplify_gen_subreg (mode, false0,
7448 GET_MODE (SUBREG_REG (x)), SUBREG_BYTE (x));
7449
7450 return cond0;
7451 }
7452
7453 /* If X is a constant, this isn't special and will cause confusions
7454 if we treat it as such. Likewise if it is equivalent to a constant. */
7455 else if (CONSTANT_P (x)
7456 || ((cond0 = get_last_value (x)) != 0 && CONSTANT_P (cond0)))
7457 ;
7458
7459 /* If we're in BImode, canonicalize on 0 and STORE_FLAG_VALUE, as that
7460 will be least confusing to the rest of the compiler. */
7461 else if (mode == BImode)
7462 {
7463 *ptrue = GEN_INT (STORE_FLAG_VALUE), *pfalse = const0_rtx;
7464 return x;
7465 }
7466
7467 /* If X is known to be either 0 or -1, those are the true and
7468 false values when testing X. */
7469 else if (x == constm1_rtx || x == const0_rtx
7470 || (mode != VOIDmode
7471 && num_sign_bit_copies (x, mode) == GET_MODE_BITSIZE (mode)))
7472 {
7473 *ptrue = constm1_rtx, *pfalse = const0_rtx;
7474 return x;
7475 }
7476
7477 /* Likewise for 0 or a single bit. */
7478 else if (mode != VOIDmode
7479 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
7480 && exact_log2 (nz = nonzero_bits (x, mode)) >= 0)
7481 {
7482 *ptrue = gen_int_mode (nz, mode), *pfalse = const0_rtx;
7483 return x;
7484 }
7485
7486 /* Otherwise fail; show no condition with true and false values the same. */
7487 *ptrue = *pfalse = x;
7488 return 0;
7489 }
7490 \f
7491 /* Return the value of expression X given the fact that condition COND
7492 is known to be true when applied to REG as its first operand and VAL
7493 as its second. X is known to not be shared and so can be modified in
7494 place.
7495
7496 We only handle the simplest cases, and specifically those cases that
7497 arise with IF_THEN_ELSE expressions. */
7498
7499 static rtx
7500 known_cond (x, cond, reg, val)
7501 rtx x;
7502 enum rtx_code cond;
7503 rtx reg, val;
7504 {
7505 enum rtx_code code = GET_CODE (x);
7506 rtx temp;
7507 const char *fmt;
7508 int i, j;
7509
7510 if (side_effects_p (x))
7511 return x;
7512
7513 /* If either operand of the condition is a floating point value,
7514 then we have to avoid collapsing an EQ comparison. */
7515 if (cond == EQ
7516 && rtx_equal_p (x, reg)
7517 && ! FLOAT_MODE_P (GET_MODE (x))
7518 && ! FLOAT_MODE_P (GET_MODE (val)))
7519 return val;
7520
7521 if (cond == UNEQ && rtx_equal_p (x, reg))
7522 return val;
7523
7524 /* If X is (abs REG) and we know something about REG's relationship
7525 with zero, we may be able to simplify this. */
7526
7527 if (code == ABS && rtx_equal_p (XEXP (x, 0), reg) && val == const0_rtx)
7528 switch (cond)
7529 {
7530 case GE: case GT: case EQ:
7531 return XEXP (x, 0);
7532 case LT: case LE:
7533 return simplify_gen_unary (NEG, GET_MODE (XEXP (x, 0)),
7534 XEXP (x, 0),
7535 GET_MODE (XEXP (x, 0)));
7536 default:
7537 break;
7538 }
7539
7540 /* The only other cases we handle are MIN, MAX, and comparisons if the
7541 operands are the same as REG and VAL. */
7542
7543 else if (GET_RTX_CLASS (code) == '<' || GET_RTX_CLASS (code) == 'c')
7544 {
7545 if (rtx_equal_p (XEXP (x, 0), val))
7546 cond = swap_condition (cond), temp = val, val = reg, reg = temp;
7547
7548 if (rtx_equal_p (XEXP (x, 0), reg) && rtx_equal_p (XEXP (x, 1), val))
7549 {
7550 if (GET_RTX_CLASS (code) == '<')
7551 {
7552 if (comparison_dominates_p (cond, code))
7553 return const_true_rtx;
7554
7555 code = combine_reversed_comparison_code (x);
7556 if (code != UNKNOWN
7557 && comparison_dominates_p (cond, code))
7558 return const0_rtx;
7559 else
7560 return x;
7561 }
7562 else if (code == SMAX || code == SMIN
7563 || code == UMIN || code == UMAX)
7564 {
7565 int unsignedp = (code == UMIN || code == UMAX);
7566
7567 /* Do not reverse the condition when it is NE or EQ.
7568 This is because we cannot conclude anything about
7569 the value of 'SMAX (x, y)' when x is not equal to y,
7570 but we can when x equals y. */
7571 if ((code == SMAX || code == UMAX)
7572 && ! (cond == EQ || cond == NE))
7573 cond = reverse_condition (cond);
7574
7575 switch (cond)
7576 {
7577 case GE: case GT:
7578 return unsignedp ? x : XEXP (x, 1);
7579 case LE: case LT:
7580 return unsignedp ? x : XEXP (x, 0);
7581 case GEU: case GTU:
7582 return unsignedp ? XEXP (x, 1) : x;
7583 case LEU: case LTU:
7584 return unsignedp ? XEXP (x, 0) : x;
7585 default:
7586 break;
7587 }
7588 }
7589 }
7590 }
7591 else if (code == SUBREG)
7592 {
7593 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (x));
7594 rtx new, r = known_cond (SUBREG_REG (x), cond, reg, val);
7595
7596 if (SUBREG_REG (x) != r)
7597 {
7598 /* We must simplify subreg here, before we lose track of the
7599 original inner_mode. */
7600 new = simplify_subreg (GET_MODE (x), r,
7601 inner_mode, SUBREG_BYTE (x));
7602 if (new)
7603 return new;
7604 else
7605 SUBST (SUBREG_REG (x), r);
7606 }
7607
7608 return x;
7609 }
7610 /* We don't have to handle SIGN_EXTEND here, because even in the
7611 case of replacing something with a modeless CONST_INT, a
7612 CONST_INT is already (supposed to be) a valid sign extension for
7613 its narrower mode, which implies it's already properly
7614 sign-extended for the wider mode. Now, for ZERO_EXTEND, the
7615 story is different. */
7616 else if (code == ZERO_EXTEND)
7617 {
7618 enum machine_mode inner_mode = GET_MODE (XEXP (x, 0));
7619 rtx new, r = known_cond (XEXP (x, 0), cond, reg, val);
7620
7621 if (XEXP (x, 0) != r)
7622 {
7623 /* We must simplify the zero_extend here, before we lose
7624 track of the original inner_mode. */
7625 new = simplify_unary_operation (ZERO_EXTEND, GET_MODE (x),
7626 r, inner_mode);
7627 if (new)
7628 return new;
7629 else
7630 SUBST (XEXP (x, 0), r);
7631 }
7632
7633 return x;
7634 }
7635
7636 fmt = GET_RTX_FORMAT (code);
7637 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
7638 {
7639 if (fmt[i] == 'e')
7640 SUBST (XEXP (x, i), known_cond (XEXP (x, i), cond, reg, val));
7641 else if (fmt[i] == 'E')
7642 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
7643 SUBST (XVECEXP (x, i, j), known_cond (XVECEXP (x, i, j),
7644 cond, reg, val));
7645 }
7646
7647 return x;
7648 }
7649 \f
7650 /* See if X and Y are equal for the purposes of seeing if we can rewrite an
7651 assignment as a field assignment. */
7652
7653 static int
7654 rtx_equal_for_field_assignment_p (x, y)
7655 rtx x;
7656 rtx y;
7657 {
7658 if (x == y || rtx_equal_p (x, y))
7659 return 1;
7660
7661 if (x == 0 || y == 0 || GET_MODE (x) != GET_MODE (y))
7662 return 0;
7663
7664 /* Check for a paradoxical SUBREG of a MEM compared with the MEM.
7665 Note that all SUBREGs of MEM are paradoxical; otherwise they
7666 would have been rewritten. */
7667 if (GET_CODE (x) == MEM && GET_CODE (y) == SUBREG
7668 && GET_CODE (SUBREG_REG (y)) == MEM
7669 && rtx_equal_p (SUBREG_REG (y),
7670 gen_lowpart_for_combine (GET_MODE (SUBREG_REG (y)), x)))
7671 return 1;
7672
7673 if (GET_CODE (y) == MEM && GET_CODE (x) == SUBREG
7674 && GET_CODE (SUBREG_REG (x)) == MEM
7675 && rtx_equal_p (SUBREG_REG (x),
7676 gen_lowpart_for_combine (GET_MODE (SUBREG_REG (x)), y)))
7677 return 1;
7678
7679 /* We used to see if get_last_value of X and Y were the same but that's
7680 not correct. In one direction, we'll cause the assignment to have
7681 the wrong destination and in the case, we'll import a register into this
7682 insn that might have already have been dead. So fail if none of the
7683 above cases are true. */
7684 return 0;
7685 }
7686 \f
7687 /* See if X, a SET operation, can be rewritten as a bit-field assignment.
7688 Return that assignment if so.
7689
7690 We only handle the most common cases. */
7691
7692 static rtx
7693 make_field_assignment (x)
7694 rtx x;
7695 {
7696 rtx dest = SET_DEST (x);
7697 rtx src = SET_SRC (x);
7698 rtx assign;
7699 rtx rhs, lhs;
7700 HOST_WIDE_INT c1;
7701 HOST_WIDE_INT pos;
7702 unsigned HOST_WIDE_INT len;
7703 rtx other;
7704 enum machine_mode mode;
7705
7706 /* If SRC was (and (not (ashift (const_int 1) POS)) DEST), this is
7707 a clear of a one-bit field. We will have changed it to
7708 (and (rotate (const_int -2) POS) DEST), so check for that. Also check
7709 for a SUBREG. */
7710
7711 if (GET_CODE (src) == AND && GET_CODE (XEXP (src, 0)) == ROTATE
7712 && GET_CODE (XEXP (XEXP (src, 0), 0)) == CONST_INT
7713 && INTVAL (XEXP (XEXP (src, 0), 0)) == -2
7714 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
7715 {
7716 assign = make_extraction (VOIDmode, dest, 0, XEXP (XEXP (src, 0), 1),
7717 1, 1, 1, 0);
7718 if (assign != 0)
7719 return gen_rtx_SET (VOIDmode, assign, const0_rtx);
7720 return x;
7721 }
7722
7723 else if (GET_CODE (src) == AND && GET_CODE (XEXP (src, 0)) == SUBREG
7724 && subreg_lowpart_p (XEXP (src, 0))
7725 && (GET_MODE_SIZE (GET_MODE (XEXP (src, 0)))
7726 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (XEXP (src, 0)))))
7727 && GET_CODE (SUBREG_REG (XEXP (src, 0))) == ROTATE
7728 && INTVAL (XEXP (SUBREG_REG (XEXP (src, 0)), 0)) == -2
7729 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
7730 {
7731 assign = make_extraction (VOIDmode, dest, 0,
7732 XEXP (SUBREG_REG (XEXP (src, 0)), 1),
7733 1, 1, 1, 0);
7734 if (assign != 0)
7735 return gen_rtx_SET (VOIDmode, assign, const0_rtx);
7736 return x;
7737 }
7738
7739 /* If SRC is (ior (ashift (const_int 1) POS) DEST), this is a set of a
7740 one-bit field. */
7741 else if (GET_CODE (src) == IOR && GET_CODE (XEXP (src, 0)) == ASHIFT
7742 && XEXP (XEXP (src, 0), 0) == const1_rtx
7743 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
7744 {
7745 assign = make_extraction (VOIDmode, dest, 0, XEXP (XEXP (src, 0), 1),
7746 1, 1, 1, 0);
7747 if (assign != 0)
7748 return gen_rtx_SET (VOIDmode, assign, const1_rtx);
7749 return x;
7750 }
7751
7752 /* The other case we handle is assignments into a constant-position
7753 field. They look like (ior/xor (and DEST C1) OTHER). If C1 represents
7754 a mask that has all one bits except for a group of zero bits and
7755 OTHER is known to have zeros where C1 has ones, this is such an
7756 assignment. Compute the position and length from C1. Shift OTHER
7757 to the appropriate position, force it to the required mode, and
7758 make the extraction. Check for the AND in both operands. */
7759
7760 if (GET_CODE (src) != IOR && GET_CODE (src) != XOR)
7761 return x;
7762
7763 rhs = expand_compound_operation (XEXP (src, 0));
7764 lhs = expand_compound_operation (XEXP (src, 1));
7765
7766 if (GET_CODE (rhs) == AND
7767 && GET_CODE (XEXP (rhs, 1)) == CONST_INT
7768 && rtx_equal_for_field_assignment_p (XEXP (rhs, 0), dest))
7769 c1 = INTVAL (XEXP (rhs, 1)), other = lhs;
7770 else if (GET_CODE (lhs) == AND
7771 && GET_CODE (XEXP (lhs, 1)) == CONST_INT
7772 && rtx_equal_for_field_assignment_p (XEXP (lhs, 0), dest))
7773 c1 = INTVAL (XEXP (lhs, 1)), other = rhs;
7774 else
7775 return x;
7776
7777 pos = get_pos_from_mask ((~c1) & GET_MODE_MASK (GET_MODE (dest)), &len);
7778 if (pos < 0 || pos + len > GET_MODE_BITSIZE (GET_MODE (dest))
7779 || GET_MODE_BITSIZE (GET_MODE (dest)) > HOST_BITS_PER_WIDE_INT
7780 || (c1 & nonzero_bits (other, GET_MODE (dest))) != 0)
7781 return x;
7782
7783 assign = make_extraction (VOIDmode, dest, pos, NULL_RTX, len, 1, 1, 0);
7784 if (assign == 0)
7785 return x;
7786
7787 /* The mode to use for the source is the mode of the assignment, or of
7788 what is inside a possible STRICT_LOW_PART. */
7789 mode = (GET_CODE (assign) == STRICT_LOW_PART
7790 ? GET_MODE (XEXP (assign, 0)) : GET_MODE (assign));
7791
7792 /* Shift OTHER right POS places and make it the source, restricting it
7793 to the proper length and mode. */
7794
7795 src = force_to_mode (simplify_shift_const (NULL_RTX, LSHIFTRT,
7796 GET_MODE (src), other, pos),
7797 mode,
7798 GET_MODE_BITSIZE (mode) >= HOST_BITS_PER_WIDE_INT
7799 ? ~(unsigned HOST_WIDE_INT) 0
7800 : ((unsigned HOST_WIDE_INT) 1 << len) - 1,
7801 dest, 0);
7802
7803 return gen_rtx_SET (VOIDmode, assign, src);
7804 }
7805 \f
7806 /* See if X is of the form (+ (* a c) (* b c)) and convert to (* (+ a b) c)
7807 if so. */
7808
7809 static rtx
7810 apply_distributive_law (x)
7811 rtx x;
7812 {
7813 enum rtx_code code = GET_CODE (x);
7814 rtx lhs, rhs, other;
7815 rtx tem;
7816 enum rtx_code inner_code;
7817
7818 /* Distributivity is not true for floating point.
7819 It can change the value. So don't do it.
7820 -- rms and moshier@world.std.com. */
7821 if (FLOAT_MODE_P (GET_MODE (x)))
7822 return x;
7823
7824 /* The outer operation can only be one of the following: */
7825 if (code != IOR && code != AND && code != XOR
7826 && code != PLUS && code != MINUS)
7827 return x;
7828
7829 lhs = XEXP (x, 0), rhs = XEXP (x, 1);
7830
7831 /* If either operand is a primitive we can't do anything, so get out
7832 fast. */
7833 if (GET_RTX_CLASS (GET_CODE (lhs)) == 'o'
7834 || GET_RTX_CLASS (GET_CODE (rhs)) == 'o')
7835 return x;
7836
7837 lhs = expand_compound_operation (lhs);
7838 rhs = expand_compound_operation (rhs);
7839 inner_code = GET_CODE (lhs);
7840 if (inner_code != GET_CODE (rhs))
7841 return x;
7842
7843 /* See if the inner and outer operations distribute. */
7844 switch (inner_code)
7845 {
7846 case LSHIFTRT:
7847 case ASHIFTRT:
7848 case AND:
7849 case IOR:
7850 /* These all distribute except over PLUS. */
7851 if (code == PLUS || code == MINUS)
7852 return x;
7853 break;
7854
7855 case MULT:
7856 if (code != PLUS && code != MINUS)
7857 return x;
7858 break;
7859
7860 case ASHIFT:
7861 /* This is also a multiply, so it distributes over everything. */
7862 break;
7863
7864 case SUBREG:
7865 /* Non-paradoxical SUBREGs distributes over all operations, provided
7866 the inner modes and byte offsets are the same, this is an extraction
7867 of a low-order part, we don't convert an fp operation to int or
7868 vice versa, and we would not be converting a single-word
7869 operation into a multi-word operation. The latter test is not
7870 required, but it prevents generating unneeded multi-word operations.
7871 Some of the previous tests are redundant given the latter test, but
7872 are retained because they are required for correctness.
7873
7874 We produce the result slightly differently in this case. */
7875
7876 if (GET_MODE (SUBREG_REG (lhs)) != GET_MODE (SUBREG_REG (rhs))
7877 || SUBREG_BYTE (lhs) != SUBREG_BYTE (rhs)
7878 || ! subreg_lowpart_p (lhs)
7879 || (GET_MODE_CLASS (GET_MODE (lhs))
7880 != GET_MODE_CLASS (GET_MODE (SUBREG_REG (lhs))))
7881 || (GET_MODE_SIZE (GET_MODE (lhs))
7882 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (lhs))))
7883 || GET_MODE_SIZE (GET_MODE (SUBREG_REG (lhs))) > UNITS_PER_WORD)
7884 return x;
7885
7886 tem = gen_binary (code, GET_MODE (SUBREG_REG (lhs)),
7887 SUBREG_REG (lhs), SUBREG_REG (rhs));
7888 return gen_lowpart_for_combine (GET_MODE (x), tem);
7889
7890 default:
7891 return x;
7892 }
7893
7894 /* Set LHS and RHS to the inner operands (A and B in the example
7895 above) and set OTHER to the common operand (C in the example).
7896 These is only one way to do this unless the inner operation is
7897 commutative. */
7898 if (GET_RTX_CLASS (inner_code) == 'c'
7899 && rtx_equal_p (XEXP (lhs, 0), XEXP (rhs, 0)))
7900 other = XEXP (lhs, 0), lhs = XEXP (lhs, 1), rhs = XEXP (rhs, 1);
7901 else if (GET_RTX_CLASS (inner_code) == 'c'
7902 && rtx_equal_p (XEXP (lhs, 0), XEXP (rhs, 1)))
7903 other = XEXP (lhs, 0), lhs = XEXP (lhs, 1), rhs = XEXP (rhs, 0);
7904 else if (GET_RTX_CLASS (inner_code) == 'c'
7905 && rtx_equal_p (XEXP (lhs, 1), XEXP (rhs, 0)))
7906 other = XEXP (lhs, 1), lhs = XEXP (lhs, 0), rhs = XEXP (rhs, 1);
7907 else if (rtx_equal_p (XEXP (lhs, 1), XEXP (rhs, 1)))
7908 other = XEXP (lhs, 1), lhs = XEXP (lhs, 0), rhs = XEXP (rhs, 0);
7909 else
7910 return x;
7911
7912 /* Form the new inner operation, seeing if it simplifies first. */
7913 tem = gen_binary (code, GET_MODE (x), lhs, rhs);
7914
7915 /* There is one exception to the general way of distributing:
7916 (a ^ b) | (a ^ c) -> (~a) & (b ^ c) */
7917 if (code == XOR && inner_code == IOR)
7918 {
7919 inner_code = AND;
7920 other = simplify_gen_unary (NOT, GET_MODE (x), other, GET_MODE (x));
7921 }
7922
7923 /* We may be able to continuing distributing the result, so call
7924 ourselves recursively on the inner operation before forming the
7925 outer operation, which we return. */
7926 return gen_binary (inner_code, GET_MODE (x),
7927 apply_distributive_law (tem), other);
7928 }
7929 \f
7930 /* We have X, a logical `and' of VAROP with the constant CONSTOP, to be done
7931 in MODE.
7932
7933 Return an equivalent form, if different from X. Otherwise, return X. If
7934 X is zero, we are to always construct the equivalent form. */
7935
7936 static rtx
7937 simplify_and_const_int (x, mode, varop, constop)
7938 rtx x;
7939 enum machine_mode mode;
7940 rtx varop;
7941 unsigned HOST_WIDE_INT constop;
7942 {
7943 unsigned HOST_WIDE_INT nonzero;
7944 int i;
7945
7946 /* Simplify VAROP knowing that we will be only looking at some of the
7947 bits in it.
7948
7949 Note by passing in CONSTOP, we guarantee that the bits not set in
7950 CONSTOP are not significant and will never be examined. We must
7951 ensure that is the case by explicitly masking out those bits
7952 before returning. */
7953 varop = force_to_mode (varop, mode, constop, NULL_RTX, 0);
7954
7955 /* If VAROP is a CLOBBER, we will fail so return it. */
7956 if (GET_CODE (varop) == CLOBBER)
7957 return varop;
7958
7959 /* If VAROP is a CONST_INT, then we need to apply the mask in CONSTOP
7960 to VAROP and return the new constant. */
7961 if (GET_CODE (varop) == CONST_INT)
7962 return GEN_INT (trunc_int_for_mode (INTVAL (varop) & constop, mode));
7963
7964 /* See what bits may be nonzero in VAROP. Unlike the general case of
7965 a call to nonzero_bits, here we don't care about bits outside
7966 MODE. */
7967
7968 nonzero = nonzero_bits (varop, mode) & GET_MODE_MASK (mode);
7969
7970 /* Turn off all bits in the constant that are known to already be zero.
7971 Thus, if the AND isn't needed at all, we will have CONSTOP == NONZERO_BITS
7972 which is tested below. */
7973
7974 constop &= nonzero;
7975
7976 /* If we don't have any bits left, return zero. */
7977 if (constop == 0)
7978 return const0_rtx;
7979
7980 /* If VAROP is a NEG of something known to be zero or 1 and CONSTOP is
7981 a power of two, we can replace this with an ASHIFT. */
7982 if (GET_CODE (varop) == NEG && nonzero_bits (XEXP (varop, 0), mode) == 1
7983 && (i = exact_log2 (constop)) >= 0)
7984 return simplify_shift_const (NULL_RTX, ASHIFT, mode, XEXP (varop, 0), i);
7985
7986 /* If VAROP is an IOR or XOR, apply the AND to both branches of the IOR
7987 or XOR, then try to apply the distributive law. This may eliminate
7988 operations if either branch can be simplified because of the AND.
7989 It may also make some cases more complex, but those cases probably
7990 won't match a pattern either with or without this. */
7991
7992 if (GET_CODE (varop) == IOR || GET_CODE (varop) == XOR)
7993 return
7994 gen_lowpart_for_combine
7995 (mode,
7996 apply_distributive_law
7997 (gen_binary (GET_CODE (varop), GET_MODE (varop),
7998 simplify_and_const_int (NULL_RTX, GET_MODE (varop),
7999 XEXP (varop, 0), constop),
8000 simplify_and_const_int (NULL_RTX, GET_MODE (varop),
8001 XEXP (varop, 1), constop))));
8002
8003 /* If VAROP is PLUS, and the constant is a mask of low bite, distribute
8004 the AND and see if one of the operands simplifies to zero. If so, we
8005 may eliminate it. */
8006
8007 if (GET_CODE (varop) == PLUS
8008 && exact_log2 (constop + 1) >= 0)
8009 {
8010 rtx o0, o1;
8011
8012 o0 = simplify_and_const_int (NULL_RTX, mode, XEXP (varop, 0), constop);
8013 o1 = simplify_and_const_int (NULL_RTX, mode, XEXP (varop, 1), constop);
8014 if (o0 == const0_rtx)
8015 return o1;
8016 if (o1 == const0_rtx)
8017 return o0;
8018 }
8019
8020 /* Get VAROP in MODE. Try to get a SUBREG if not. Don't make a new SUBREG
8021 if we already had one (just check for the simplest cases). */
8022 if (x && GET_CODE (XEXP (x, 0)) == SUBREG
8023 && GET_MODE (XEXP (x, 0)) == mode
8024 && SUBREG_REG (XEXP (x, 0)) == varop)
8025 varop = XEXP (x, 0);
8026 else
8027 varop = gen_lowpart_for_combine (mode, varop);
8028
8029 /* If we can't make the SUBREG, try to return what we were given. */
8030 if (GET_CODE (varop) == CLOBBER)
8031 return x ? x : varop;
8032
8033 /* If we are only masking insignificant bits, return VAROP. */
8034 if (constop == nonzero)
8035 x = varop;
8036 else
8037 {
8038 /* Otherwise, return an AND. */
8039 constop = trunc_int_for_mode (constop, mode);
8040 /* See how much, if any, of X we can use. */
8041 if (x == 0 || GET_CODE (x) != AND || GET_MODE (x) != mode)
8042 x = gen_binary (AND, mode, varop, GEN_INT (constop));
8043
8044 else
8045 {
8046 if (GET_CODE (XEXP (x, 1)) != CONST_INT
8047 || (unsigned HOST_WIDE_INT) INTVAL (XEXP (x, 1)) != constop)
8048 SUBST (XEXP (x, 1), GEN_INT (constop));
8049
8050 SUBST (XEXP (x, 0), varop);
8051 }
8052 }
8053
8054 return x;
8055 }
8056 \f
8057 /* We let num_sign_bit_copies recur into nonzero_bits as that is useful.
8058 We don't let nonzero_bits recur into num_sign_bit_copies, because that
8059 is less useful. We can't allow both, because that results in exponential
8060 run time recursion. There is a nullstone testcase that triggered
8061 this. This macro avoids accidental uses of num_sign_bit_copies. */
8062 #define num_sign_bit_copies()
8063
8064 /* Given an expression, X, compute which bits in X can be non-zero.
8065 We don't care about bits outside of those defined in MODE.
8066
8067 For most X this is simply GET_MODE_MASK (GET_MODE (MODE)), but if X is
8068 a shift, AND, or zero_extract, we can do better. */
8069
8070 static unsigned HOST_WIDE_INT
8071 nonzero_bits (x, mode)
8072 rtx x;
8073 enum machine_mode mode;
8074 {
8075 unsigned HOST_WIDE_INT nonzero = GET_MODE_MASK (mode);
8076 unsigned HOST_WIDE_INT inner_nz;
8077 enum rtx_code code;
8078 unsigned int mode_width = GET_MODE_BITSIZE (mode);
8079 rtx tem;
8080
8081 /* For floating-point values, assume all bits are needed. */
8082 if (FLOAT_MODE_P (GET_MODE (x)) || FLOAT_MODE_P (mode))
8083 return nonzero;
8084
8085 /* If X is wider than MODE, use its mode instead. */
8086 if (GET_MODE_BITSIZE (GET_MODE (x)) > mode_width)
8087 {
8088 mode = GET_MODE (x);
8089 nonzero = GET_MODE_MASK (mode);
8090 mode_width = GET_MODE_BITSIZE (mode);
8091 }
8092
8093 if (mode_width > HOST_BITS_PER_WIDE_INT)
8094 /* Our only callers in this case look for single bit values. So
8095 just return the mode mask. Those tests will then be false. */
8096 return nonzero;
8097
8098 #ifndef WORD_REGISTER_OPERATIONS
8099 /* If MODE is wider than X, but both are a single word for both the host
8100 and target machines, we can compute this from which bits of the
8101 object might be nonzero in its own mode, taking into account the fact
8102 that on many CISC machines, accessing an object in a wider mode
8103 causes the high-order bits to become undefined. So they are
8104 not known to be zero. */
8105
8106 if (GET_MODE (x) != VOIDmode && GET_MODE (x) != mode
8107 && GET_MODE_BITSIZE (GET_MODE (x)) <= BITS_PER_WORD
8108 && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
8109 && GET_MODE_BITSIZE (mode) > GET_MODE_BITSIZE (GET_MODE (x)))
8110 {
8111 nonzero &= nonzero_bits (x, GET_MODE (x));
8112 nonzero |= GET_MODE_MASK (mode) & ~GET_MODE_MASK (GET_MODE (x));
8113 return nonzero;
8114 }
8115 #endif
8116
8117 code = GET_CODE (x);
8118 switch (code)
8119 {
8120 case REG:
8121 #if defined(POINTERS_EXTEND_UNSIGNED) && !defined(HAVE_ptr_extend)
8122 /* If pointers extend unsigned and this is a pointer in Pmode, say that
8123 all the bits above ptr_mode are known to be zero. */
8124 if (POINTERS_EXTEND_UNSIGNED && GET_MODE (x) == Pmode
8125 && REG_POINTER (x))
8126 nonzero &= GET_MODE_MASK (ptr_mode);
8127 #endif
8128
8129 /* Include declared information about alignment of pointers. */
8130 /* ??? We don't properly preserve REG_POINTER changes across
8131 pointer-to-integer casts, so we can't trust it except for
8132 things that we know must be pointers. See execute/960116-1.c. */
8133 if ((x == stack_pointer_rtx
8134 || x == frame_pointer_rtx
8135 || x == arg_pointer_rtx)
8136 && REGNO_POINTER_ALIGN (REGNO (x)))
8137 {
8138 unsigned HOST_WIDE_INT alignment
8139 = REGNO_POINTER_ALIGN (REGNO (x)) / BITS_PER_UNIT;
8140
8141 #ifdef PUSH_ROUNDING
8142 /* If PUSH_ROUNDING is defined, it is possible for the
8143 stack to be momentarily aligned only to that amount,
8144 so we pick the least alignment. */
8145 if (x == stack_pointer_rtx && PUSH_ARGS)
8146 alignment = MIN (PUSH_ROUNDING (1), alignment);
8147 #endif
8148
8149 nonzero &= ~(alignment - 1);
8150 }
8151
8152 /* If X is a register whose nonzero bits value is current, use it.
8153 Otherwise, if X is a register whose value we can find, use that
8154 value. Otherwise, use the previously-computed global nonzero bits
8155 for this register. */
8156
8157 if (reg_last_set_value[REGNO (x)] != 0
8158 && (reg_last_set_mode[REGNO (x)] == mode
8159 || (GET_MODE_CLASS (reg_last_set_mode[REGNO (x)]) == MODE_INT
8160 && GET_MODE_CLASS (mode) == MODE_INT))
8161 && (reg_last_set_label[REGNO (x)] == label_tick
8162 || (REGNO (x) >= FIRST_PSEUDO_REGISTER
8163 && REG_N_SETS (REGNO (x)) == 1
8164 && ! REGNO_REG_SET_P (ENTRY_BLOCK_PTR->next_bb->global_live_at_start,
8165 REGNO (x))))
8166 && INSN_CUID (reg_last_set[REGNO (x)]) < subst_low_cuid)
8167 return reg_last_set_nonzero_bits[REGNO (x)] & nonzero;
8168
8169 tem = get_last_value (x);
8170
8171 if (tem)
8172 {
8173 #ifdef SHORT_IMMEDIATES_SIGN_EXTEND
8174 /* If X is narrower than MODE and TEM is a non-negative
8175 constant that would appear negative in the mode of X,
8176 sign-extend it for use in reg_nonzero_bits because some
8177 machines (maybe most) will actually do the sign-extension
8178 and this is the conservative approach.
8179
8180 ??? For 2.5, try to tighten up the MD files in this regard
8181 instead of this kludge. */
8182
8183 if (GET_MODE_BITSIZE (GET_MODE (x)) < mode_width
8184 && GET_CODE (tem) == CONST_INT
8185 && INTVAL (tem) > 0
8186 && 0 != (INTVAL (tem)
8187 & ((HOST_WIDE_INT) 1
8188 << (GET_MODE_BITSIZE (GET_MODE (x)) - 1))))
8189 tem = GEN_INT (INTVAL (tem)
8190 | ((HOST_WIDE_INT) (-1)
8191 << GET_MODE_BITSIZE (GET_MODE (x))));
8192 #endif
8193 return nonzero_bits (tem, mode) & nonzero;
8194 }
8195 else if (nonzero_sign_valid && reg_nonzero_bits[REGNO (x)])
8196 {
8197 unsigned HOST_WIDE_INT mask = reg_nonzero_bits[REGNO (x)];
8198
8199 if (GET_MODE_BITSIZE (GET_MODE (x)) < mode_width)
8200 /* We don't know anything about the upper bits. */
8201 mask |= GET_MODE_MASK (mode) ^ GET_MODE_MASK (GET_MODE (x));
8202 return nonzero & mask;
8203 }
8204 else
8205 return nonzero;
8206
8207 case CONST_INT:
8208 #ifdef SHORT_IMMEDIATES_SIGN_EXTEND
8209 /* If X is negative in MODE, sign-extend the value. */
8210 if (INTVAL (x) > 0 && mode_width < BITS_PER_WORD
8211 && 0 != (INTVAL (x) & ((HOST_WIDE_INT) 1 << (mode_width - 1))))
8212 return (INTVAL (x) | ((HOST_WIDE_INT) (-1) << mode_width));
8213 #endif
8214
8215 return INTVAL (x);
8216
8217 case MEM:
8218 #ifdef LOAD_EXTEND_OP
8219 /* In many, if not most, RISC machines, reading a byte from memory
8220 zeros the rest of the register. Noticing that fact saves a lot
8221 of extra zero-extends. */
8222 if (LOAD_EXTEND_OP (GET_MODE (x)) == ZERO_EXTEND)
8223 nonzero &= GET_MODE_MASK (GET_MODE (x));
8224 #endif
8225 break;
8226
8227 case EQ: case NE:
8228 case UNEQ: case LTGT:
8229 case GT: case GTU: case UNGT:
8230 case LT: case LTU: case UNLT:
8231 case GE: case GEU: case UNGE:
8232 case LE: case LEU: case UNLE:
8233 case UNORDERED: case ORDERED:
8234
8235 /* If this produces an integer result, we know which bits are set.
8236 Code here used to clear bits outside the mode of X, but that is
8237 now done above. */
8238
8239 if (GET_MODE_CLASS (mode) == MODE_INT
8240 && mode_width <= HOST_BITS_PER_WIDE_INT)
8241 nonzero = STORE_FLAG_VALUE;
8242 break;
8243
8244 case NEG:
8245 #if 0
8246 /* Disabled to avoid exponential mutual recursion between nonzero_bits
8247 and num_sign_bit_copies. */
8248 if (num_sign_bit_copies (XEXP (x, 0), GET_MODE (x))
8249 == GET_MODE_BITSIZE (GET_MODE (x)))
8250 nonzero = 1;
8251 #endif
8252
8253 if (GET_MODE_SIZE (GET_MODE (x)) < mode_width)
8254 nonzero |= (GET_MODE_MASK (mode) & ~GET_MODE_MASK (GET_MODE (x)));
8255 break;
8256
8257 case ABS:
8258 #if 0
8259 /* Disabled to avoid exponential mutual recursion between nonzero_bits
8260 and num_sign_bit_copies. */
8261 if (num_sign_bit_copies (XEXP (x, 0), GET_MODE (x))
8262 == GET_MODE_BITSIZE (GET_MODE (x)))
8263 nonzero = 1;
8264 #endif
8265 break;
8266
8267 case TRUNCATE:
8268 nonzero &= (nonzero_bits (XEXP (x, 0), mode) & GET_MODE_MASK (mode));
8269 break;
8270
8271 case ZERO_EXTEND:
8272 nonzero &= nonzero_bits (XEXP (x, 0), mode);
8273 if (GET_MODE (XEXP (x, 0)) != VOIDmode)
8274 nonzero &= GET_MODE_MASK (GET_MODE (XEXP (x, 0)));
8275 break;
8276
8277 case SIGN_EXTEND:
8278 /* If the sign bit is known clear, this is the same as ZERO_EXTEND.
8279 Otherwise, show all the bits in the outer mode but not the inner
8280 may be non-zero. */
8281 inner_nz = nonzero_bits (XEXP (x, 0), mode);
8282 if (GET_MODE (XEXP (x, 0)) != VOIDmode)
8283 {
8284 inner_nz &= GET_MODE_MASK (GET_MODE (XEXP (x, 0)));
8285 if (inner_nz
8286 & (((HOST_WIDE_INT) 1
8287 << (GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0))) - 1))))
8288 inner_nz |= (GET_MODE_MASK (mode)
8289 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0))));
8290 }
8291
8292 nonzero &= inner_nz;
8293 break;
8294
8295 case AND:
8296 nonzero &= (nonzero_bits (XEXP (x, 0), mode)
8297 & nonzero_bits (XEXP (x, 1), mode));
8298 break;
8299
8300 case XOR: case IOR:
8301 case UMIN: case UMAX: case SMIN: case SMAX:
8302 {
8303 unsigned HOST_WIDE_INT nonzero0 = nonzero_bits (XEXP (x, 0), mode);
8304
8305 /* Don't call nonzero_bits for the second time if it cannot change
8306 anything. */
8307 if ((nonzero & nonzero0) != nonzero)
8308 nonzero &= (nonzero0 | nonzero_bits (XEXP (x, 1), mode));
8309 }
8310 break;
8311
8312 case PLUS: case MINUS:
8313 case MULT:
8314 case DIV: case UDIV:
8315 case MOD: case UMOD:
8316 /* We can apply the rules of arithmetic to compute the number of
8317 high- and low-order zero bits of these operations. We start by
8318 computing the width (position of the highest-order non-zero bit)
8319 and the number of low-order zero bits for each value. */
8320 {
8321 unsigned HOST_WIDE_INT nz0 = nonzero_bits (XEXP (x, 0), mode);
8322 unsigned HOST_WIDE_INT nz1 = nonzero_bits (XEXP (x, 1), mode);
8323 int width0 = floor_log2 (nz0) + 1;
8324 int width1 = floor_log2 (nz1) + 1;
8325 int low0 = floor_log2 (nz0 & -nz0);
8326 int low1 = floor_log2 (nz1 & -nz1);
8327 HOST_WIDE_INT op0_maybe_minusp
8328 = (nz0 & ((HOST_WIDE_INT) 1 << (mode_width - 1)));
8329 HOST_WIDE_INT op1_maybe_minusp
8330 = (nz1 & ((HOST_WIDE_INT) 1 << (mode_width - 1)));
8331 unsigned int result_width = mode_width;
8332 int result_low = 0;
8333
8334 switch (code)
8335 {
8336 case PLUS:
8337 result_width = MAX (width0, width1) + 1;
8338 result_low = MIN (low0, low1);
8339 break;
8340 case MINUS:
8341 result_low = MIN (low0, low1);
8342 break;
8343 case MULT:
8344 result_width = width0 + width1;
8345 result_low = low0 + low1;
8346 break;
8347 case DIV:
8348 if (width1 == 0)
8349 break;
8350 if (! op0_maybe_minusp && ! op1_maybe_minusp)
8351 result_width = width0;
8352 break;
8353 case UDIV:
8354 if (width1 == 0)
8355 break;
8356 result_width = width0;
8357 break;
8358 case MOD:
8359 if (width1 == 0)
8360 break;
8361 if (! op0_maybe_minusp && ! op1_maybe_minusp)
8362 result_width = MIN (width0, width1);
8363 result_low = MIN (low0, low1);
8364 break;
8365 case UMOD:
8366 if (width1 == 0)
8367 break;
8368 result_width = MIN (width0, width1);
8369 result_low = MIN (low0, low1);
8370 break;
8371 default:
8372 abort ();
8373 }
8374
8375 if (result_width < mode_width)
8376 nonzero &= ((HOST_WIDE_INT) 1 << result_width) - 1;
8377
8378 if (result_low > 0)
8379 nonzero &= ~(((HOST_WIDE_INT) 1 << result_low) - 1);
8380
8381 #ifdef POINTERS_EXTEND_UNSIGNED
8382 /* If pointers extend unsigned and this is an addition or subtraction
8383 to a pointer in Pmode, all the bits above ptr_mode are known to be
8384 zero. */
8385 if (POINTERS_EXTEND_UNSIGNED > 0 && GET_MODE (x) == Pmode
8386 && (code == PLUS || code == MINUS)
8387 && GET_CODE (XEXP (x, 0)) == REG && REG_POINTER (XEXP (x, 0)))
8388 nonzero &= GET_MODE_MASK (ptr_mode);
8389 #endif
8390 }
8391 break;
8392
8393 case ZERO_EXTRACT:
8394 if (GET_CODE (XEXP (x, 1)) == CONST_INT
8395 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT)
8396 nonzero &= ((HOST_WIDE_INT) 1 << INTVAL (XEXP (x, 1))) - 1;
8397 break;
8398
8399 case SUBREG:
8400 /* If this is a SUBREG formed for a promoted variable that has
8401 been zero-extended, we know that at least the high-order bits
8402 are zero, though others might be too. */
8403
8404 if (SUBREG_PROMOTED_VAR_P (x) && SUBREG_PROMOTED_UNSIGNED_P (x) > 0)
8405 nonzero = (GET_MODE_MASK (GET_MODE (x))
8406 & nonzero_bits (SUBREG_REG (x), GET_MODE (x)));
8407
8408 /* If the inner mode is a single word for both the host and target
8409 machines, we can compute this from which bits of the inner
8410 object might be nonzero. */
8411 if (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x))) <= BITS_PER_WORD
8412 && (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x)))
8413 <= HOST_BITS_PER_WIDE_INT))
8414 {
8415 nonzero &= nonzero_bits (SUBREG_REG (x), mode);
8416
8417 #if defined (WORD_REGISTER_OPERATIONS) && defined (LOAD_EXTEND_OP)
8418 /* If this is a typical RISC machine, we only have to worry
8419 about the way loads are extended. */
8420 if ((LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (x))) == SIGN_EXTEND
8421 ? (((nonzero
8422 & (((unsigned HOST_WIDE_INT) 1
8423 << (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x))) - 1))))
8424 != 0))
8425 : LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (x))) != ZERO_EXTEND)
8426 || GET_CODE (SUBREG_REG (x)) != MEM)
8427 #endif
8428 {
8429 /* On many CISC machines, accessing an object in a wider mode
8430 causes the high-order bits to become undefined. So they are
8431 not known to be zero. */
8432 if (GET_MODE_SIZE (GET_MODE (x))
8433 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
8434 nonzero |= (GET_MODE_MASK (GET_MODE (x))
8435 & ~GET_MODE_MASK (GET_MODE (SUBREG_REG (x))));
8436 }
8437 }
8438 break;
8439
8440 case ASHIFTRT:
8441 case LSHIFTRT:
8442 case ASHIFT:
8443 case ROTATE:
8444 /* The nonzero bits are in two classes: any bits within MODE
8445 that aren't in GET_MODE (x) are always significant. The rest of the
8446 nonzero bits are those that are significant in the operand of
8447 the shift when shifted the appropriate number of bits. This
8448 shows that high-order bits are cleared by the right shift and
8449 low-order bits by left shifts. */
8450 if (GET_CODE (XEXP (x, 1)) == CONST_INT
8451 && INTVAL (XEXP (x, 1)) >= 0
8452 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT)
8453 {
8454 enum machine_mode inner_mode = GET_MODE (x);
8455 unsigned int width = GET_MODE_BITSIZE (inner_mode);
8456 int count = INTVAL (XEXP (x, 1));
8457 unsigned HOST_WIDE_INT mode_mask = GET_MODE_MASK (inner_mode);
8458 unsigned HOST_WIDE_INT op_nonzero = nonzero_bits (XEXP (x, 0), mode);
8459 unsigned HOST_WIDE_INT inner = op_nonzero & mode_mask;
8460 unsigned HOST_WIDE_INT outer = 0;
8461
8462 if (mode_width > width)
8463 outer = (op_nonzero & nonzero & ~mode_mask);
8464
8465 if (code == LSHIFTRT)
8466 inner >>= count;
8467 else if (code == ASHIFTRT)
8468 {
8469 inner >>= count;
8470
8471 /* If the sign bit may have been nonzero before the shift, we
8472 need to mark all the places it could have been copied to
8473 by the shift as possibly nonzero. */
8474 if (inner & ((HOST_WIDE_INT) 1 << (width - 1 - count)))
8475 inner |= (((HOST_WIDE_INT) 1 << count) - 1) << (width - count);
8476 }
8477 else if (code == ASHIFT)
8478 inner <<= count;
8479 else
8480 inner = ((inner << (count % width)
8481 | (inner >> (width - (count % width)))) & mode_mask);
8482
8483 nonzero &= (outer | inner);
8484 }
8485 break;
8486
8487 case FFS:
8488 /* This is at most the number of bits in the mode. */
8489 nonzero = ((HOST_WIDE_INT) 1 << (floor_log2 (mode_width) + 1)) - 1;
8490 break;
8491
8492 case IF_THEN_ELSE:
8493 nonzero &= (nonzero_bits (XEXP (x, 1), mode)
8494 | nonzero_bits (XEXP (x, 2), mode));
8495 break;
8496
8497 default:
8498 break;
8499 }
8500
8501 return nonzero;
8502 }
8503
8504 /* See the macro definition above. */
8505 #undef num_sign_bit_copies
8506 \f
8507 /* Return the number of bits at the high-order end of X that are known to
8508 be equal to the sign bit. X will be used in mode MODE; if MODE is
8509 VOIDmode, X will be used in its own mode. The returned value will always
8510 be between 1 and the number of bits in MODE. */
8511
8512 static unsigned int
8513 num_sign_bit_copies (x, mode)
8514 rtx x;
8515 enum machine_mode mode;
8516 {
8517 enum rtx_code code = GET_CODE (x);
8518 unsigned int bitwidth;
8519 int num0, num1, result;
8520 unsigned HOST_WIDE_INT nonzero;
8521 rtx tem;
8522
8523 /* If we weren't given a mode, use the mode of X. If the mode is still
8524 VOIDmode, we don't know anything. Likewise if one of the modes is
8525 floating-point. */
8526
8527 if (mode == VOIDmode)
8528 mode = GET_MODE (x);
8529
8530 if (mode == VOIDmode || FLOAT_MODE_P (mode) || FLOAT_MODE_P (GET_MODE (x)))
8531 return 1;
8532
8533 bitwidth = GET_MODE_BITSIZE (mode);
8534
8535 /* For a smaller object, just ignore the high bits. */
8536 if (bitwidth < GET_MODE_BITSIZE (GET_MODE (x)))
8537 {
8538 num0 = num_sign_bit_copies (x, GET_MODE (x));
8539 return MAX (1,
8540 num0 - (int) (GET_MODE_BITSIZE (GET_MODE (x)) - bitwidth));
8541 }
8542
8543 if (GET_MODE (x) != VOIDmode && bitwidth > GET_MODE_BITSIZE (GET_MODE (x)))
8544 {
8545 #ifndef WORD_REGISTER_OPERATIONS
8546 /* If this machine does not do all register operations on the entire
8547 register and MODE is wider than the mode of X, we can say nothing
8548 at all about the high-order bits. */
8549 return 1;
8550 #else
8551 /* Likewise on machines that do, if the mode of the object is smaller
8552 than a word and loads of that size don't sign extend, we can say
8553 nothing about the high order bits. */
8554 if (GET_MODE_BITSIZE (GET_MODE (x)) < BITS_PER_WORD
8555 #ifdef LOAD_EXTEND_OP
8556 && LOAD_EXTEND_OP (GET_MODE (x)) != SIGN_EXTEND
8557 #endif
8558 )
8559 return 1;
8560 #endif
8561 }
8562
8563 switch (code)
8564 {
8565 case REG:
8566
8567 #if defined(POINTERS_EXTEND_UNSIGNED) && !defined(HAVE_ptr_extend)
8568 /* If pointers extend signed and this is a pointer in Pmode, say that
8569 all the bits above ptr_mode are known to be sign bit copies. */
8570 if (! POINTERS_EXTEND_UNSIGNED && GET_MODE (x) == Pmode && mode == Pmode
8571 && REG_POINTER (x))
8572 return GET_MODE_BITSIZE (Pmode) - GET_MODE_BITSIZE (ptr_mode) + 1;
8573 #endif
8574
8575 if (reg_last_set_value[REGNO (x)] != 0
8576 && reg_last_set_mode[REGNO (x)] == mode
8577 && (reg_last_set_label[REGNO (x)] == label_tick
8578 || (REGNO (x) >= FIRST_PSEUDO_REGISTER
8579 && REG_N_SETS (REGNO (x)) == 1
8580 && ! REGNO_REG_SET_P (ENTRY_BLOCK_PTR->next_bb->global_live_at_start,
8581 REGNO (x))))
8582 && INSN_CUID (reg_last_set[REGNO (x)]) < subst_low_cuid)
8583 return reg_last_set_sign_bit_copies[REGNO (x)];
8584
8585 tem = get_last_value (x);
8586 if (tem != 0)
8587 return num_sign_bit_copies (tem, mode);
8588
8589 if (nonzero_sign_valid && reg_sign_bit_copies[REGNO (x)] != 0
8590 && GET_MODE_BITSIZE (GET_MODE (x)) == bitwidth)
8591 return reg_sign_bit_copies[REGNO (x)];
8592 break;
8593
8594 case MEM:
8595 #ifdef LOAD_EXTEND_OP
8596 /* Some RISC machines sign-extend all loads of smaller than a word. */
8597 if (LOAD_EXTEND_OP (GET_MODE (x)) == SIGN_EXTEND)
8598 return MAX (1, ((int) bitwidth
8599 - (int) GET_MODE_BITSIZE (GET_MODE (x)) + 1));
8600 #endif
8601 break;
8602
8603 case CONST_INT:
8604 /* If the constant is negative, take its 1's complement and remask.
8605 Then see how many zero bits we have. */
8606 nonzero = INTVAL (x) & GET_MODE_MASK (mode);
8607 if (bitwidth <= HOST_BITS_PER_WIDE_INT
8608 && (nonzero & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
8609 nonzero = (~nonzero) & GET_MODE_MASK (mode);
8610
8611 return (nonzero == 0 ? bitwidth : bitwidth - floor_log2 (nonzero) - 1);
8612
8613 case SUBREG:
8614 /* If this is a SUBREG for a promoted object that is sign-extended
8615 and we are looking at it in a wider mode, we know that at least the
8616 high-order bits are known to be sign bit copies. */
8617
8618 if (SUBREG_PROMOTED_VAR_P (x) && ! SUBREG_PROMOTED_UNSIGNED_P (x))
8619 {
8620 num0 = num_sign_bit_copies (SUBREG_REG (x), mode);
8621 return MAX ((int) bitwidth
8622 - (int) GET_MODE_BITSIZE (GET_MODE (x)) + 1,
8623 num0);
8624 }
8625
8626 /* For a smaller object, just ignore the high bits. */
8627 if (bitwidth <= GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x))))
8628 {
8629 num0 = num_sign_bit_copies (SUBREG_REG (x), VOIDmode);
8630 return MAX (1, (num0
8631 - (int) (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x)))
8632 - bitwidth)));
8633 }
8634
8635 #ifdef WORD_REGISTER_OPERATIONS
8636 #ifdef LOAD_EXTEND_OP
8637 /* For paradoxical SUBREGs on machines where all register operations
8638 affect the entire register, just look inside. Note that we are
8639 passing MODE to the recursive call, so the number of sign bit copies
8640 will remain relative to that mode, not the inner mode. */
8641
8642 /* This works only if loads sign extend. Otherwise, if we get a
8643 reload for the inner part, it may be loaded from the stack, and
8644 then we lose all sign bit copies that existed before the store
8645 to the stack. */
8646
8647 if ((GET_MODE_SIZE (GET_MODE (x))
8648 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
8649 && LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (x))) == SIGN_EXTEND
8650 && GET_CODE (SUBREG_REG (x)) == MEM)
8651 return num_sign_bit_copies (SUBREG_REG (x), mode);
8652 #endif
8653 #endif
8654 break;
8655
8656 case SIGN_EXTRACT:
8657 if (GET_CODE (XEXP (x, 1)) == CONST_INT)
8658 return MAX (1, (int) bitwidth - INTVAL (XEXP (x, 1)));
8659 break;
8660
8661 case SIGN_EXTEND:
8662 return (bitwidth - GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))
8663 + num_sign_bit_copies (XEXP (x, 0), VOIDmode));
8664
8665 case TRUNCATE:
8666 /* For a smaller object, just ignore the high bits. */
8667 num0 = num_sign_bit_copies (XEXP (x, 0), VOIDmode);
8668 return MAX (1, (num0 - (int) (GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))
8669 - bitwidth)));
8670
8671 case NOT:
8672 return num_sign_bit_copies (XEXP (x, 0), mode);
8673
8674 case ROTATE: case ROTATERT:
8675 /* If we are rotating left by a number of bits less than the number
8676 of sign bit copies, we can just subtract that amount from the
8677 number. */
8678 if (GET_CODE (XEXP (x, 1)) == CONST_INT
8679 && INTVAL (XEXP (x, 1)) >= 0
8680 && INTVAL (XEXP (x, 1)) < (int) bitwidth)
8681 {
8682 num0 = num_sign_bit_copies (XEXP (x, 0), mode);
8683 return MAX (1, num0 - (code == ROTATE ? INTVAL (XEXP (x, 1))
8684 : (int) bitwidth - INTVAL (XEXP (x, 1))));
8685 }
8686 break;
8687
8688 case NEG:
8689 /* In general, this subtracts one sign bit copy. But if the value
8690 is known to be positive, the number of sign bit copies is the
8691 same as that of the input. Finally, if the input has just one bit
8692 that might be nonzero, all the bits are copies of the sign bit. */
8693 num0 = num_sign_bit_copies (XEXP (x, 0), mode);
8694 if (bitwidth > HOST_BITS_PER_WIDE_INT)
8695 return num0 > 1 ? num0 - 1 : 1;
8696
8697 nonzero = nonzero_bits (XEXP (x, 0), mode);
8698 if (nonzero == 1)
8699 return bitwidth;
8700
8701 if (num0 > 1
8702 && (((HOST_WIDE_INT) 1 << (bitwidth - 1)) & nonzero))
8703 num0--;
8704
8705 return num0;
8706
8707 case IOR: case AND: case XOR:
8708 case SMIN: case SMAX: case UMIN: case UMAX:
8709 /* Logical operations will preserve the number of sign-bit copies.
8710 MIN and MAX operations always return one of the operands. */
8711 num0 = num_sign_bit_copies (XEXP (x, 0), mode);
8712 num1 = num_sign_bit_copies (XEXP (x, 1), mode);
8713 return MIN (num0, num1);
8714
8715 case PLUS: case MINUS:
8716 /* For addition and subtraction, we can have a 1-bit carry. However,
8717 if we are subtracting 1 from a positive number, there will not
8718 be such a carry. Furthermore, if the positive number is known to
8719 be 0 or 1, we know the result is either -1 or 0. */
8720
8721 if (code == PLUS && XEXP (x, 1) == constm1_rtx
8722 && bitwidth <= HOST_BITS_PER_WIDE_INT)
8723 {
8724 nonzero = nonzero_bits (XEXP (x, 0), mode);
8725 if ((((HOST_WIDE_INT) 1 << (bitwidth - 1)) & nonzero) == 0)
8726 return (nonzero == 1 || nonzero == 0 ? bitwidth
8727 : bitwidth - floor_log2 (nonzero) - 1);
8728 }
8729
8730 num0 = num_sign_bit_copies (XEXP (x, 0), mode);
8731 num1 = num_sign_bit_copies (XEXP (x, 1), mode);
8732 result = MAX (1, MIN (num0, num1) - 1);
8733
8734 #ifdef POINTERS_EXTEND_UNSIGNED
8735 /* If pointers extend signed and this is an addition or subtraction
8736 to a pointer in Pmode, all the bits above ptr_mode are known to be
8737 sign bit copies. */
8738 if (! POINTERS_EXTEND_UNSIGNED && GET_MODE (x) == Pmode
8739 && (code == PLUS || code == MINUS)
8740 && GET_CODE (XEXP (x, 0)) == REG && REG_POINTER (XEXP (x, 0)))
8741 result = MAX ((int) (GET_MODE_BITSIZE (Pmode)
8742 - GET_MODE_BITSIZE (ptr_mode) + 1),
8743 result);
8744 #endif
8745 return result;
8746
8747 case MULT:
8748 /* The number of bits of the product is the sum of the number of
8749 bits of both terms. However, unless one of the terms if known
8750 to be positive, we must allow for an additional bit since negating
8751 a negative number can remove one sign bit copy. */
8752
8753 num0 = num_sign_bit_copies (XEXP (x, 0), mode);
8754 num1 = num_sign_bit_copies (XEXP (x, 1), mode);
8755
8756 result = bitwidth - (bitwidth - num0) - (bitwidth - num1);
8757 if (result > 0
8758 && (bitwidth > HOST_BITS_PER_WIDE_INT
8759 || (((nonzero_bits (XEXP (x, 0), mode)
8760 & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
8761 && ((nonzero_bits (XEXP (x, 1), mode)
8762 & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0))))
8763 result--;
8764
8765 return MAX (1, result);
8766
8767 case UDIV:
8768 /* The result must be <= the first operand. If the first operand
8769 has the high bit set, we know nothing about the number of sign
8770 bit copies. */
8771 if (bitwidth > HOST_BITS_PER_WIDE_INT)
8772 return 1;
8773 else if ((nonzero_bits (XEXP (x, 0), mode)
8774 & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
8775 return 1;
8776 else
8777 return num_sign_bit_copies (XEXP (x, 0), mode);
8778
8779 case UMOD:
8780 /* The result must be <= the second operand. */
8781 return num_sign_bit_copies (XEXP (x, 1), mode);
8782
8783 case DIV:
8784 /* Similar to unsigned division, except that we have to worry about
8785 the case where the divisor is negative, in which case we have
8786 to add 1. */
8787 result = num_sign_bit_copies (XEXP (x, 0), mode);
8788 if (result > 1
8789 && (bitwidth > HOST_BITS_PER_WIDE_INT
8790 || (nonzero_bits (XEXP (x, 1), mode)
8791 & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0))
8792 result--;
8793
8794 return result;
8795
8796 case MOD:
8797 result = num_sign_bit_copies (XEXP (x, 1), mode);
8798 if (result > 1
8799 && (bitwidth > HOST_BITS_PER_WIDE_INT
8800 || (nonzero_bits (XEXP (x, 1), mode)
8801 & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0))
8802 result--;
8803
8804 return result;
8805
8806 case ASHIFTRT:
8807 /* Shifts by a constant add to the number of bits equal to the
8808 sign bit. */
8809 num0 = num_sign_bit_copies (XEXP (x, 0), mode);
8810 if (GET_CODE (XEXP (x, 1)) == CONST_INT
8811 && INTVAL (XEXP (x, 1)) > 0)
8812 num0 = MIN ((int) bitwidth, num0 + INTVAL (XEXP (x, 1)));
8813
8814 return num0;
8815
8816 case ASHIFT:
8817 /* Left shifts destroy copies. */
8818 if (GET_CODE (XEXP (x, 1)) != CONST_INT
8819 || INTVAL (XEXP (x, 1)) < 0
8820 || INTVAL (XEXP (x, 1)) >= (int) bitwidth)
8821 return 1;
8822
8823 num0 = num_sign_bit_copies (XEXP (x, 0), mode);
8824 return MAX (1, num0 - INTVAL (XEXP (x, 1)));
8825
8826 case IF_THEN_ELSE:
8827 num0 = num_sign_bit_copies (XEXP (x, 1), mode);
8828 num1 = num_sign_bit_copies (XEXP (x, 2), mode);
8829 return MIN (num0, num1);
8830
8831 case EQ: case NE: case GE: case GT: case LE: case LT:
8832 case UNEQ: case LTGT: case UNGE: case UNGT: case UNLE: case UNLT:
8833 case GEU: case GTU: case LEU: case LTU:
8834 case UNORDERED: case ORDERED:
8835 /* If the constant is negative, take its 1's complement and remask.
8836 Then see how many zero bits we have. */
8837 nonzero = STORE_FLAG_VALUE;
8838 if (bitwidth <= HOST_BITS_PER_WIDE_INT
8839 && (nonzero & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
8840 nonzero = (~nonzero) & GET_MODE_MASK (mode);
8841
8842 return (nonzero == 0 ? bitwidth : bitwidth - floor_log2 (nonzero) - 1);
8843 break;
8844
8845 default:
8846 break;
8847 }
8848
8849 /* If we haven't been able to figure it out by one of the above rules,
8850 see if some of the high-order bits are known to be zero. If so,
8851 count those bits and return one less than that amount. If we can't
8852 safely compute the mask for this mode, always return BITWIDTH. */
8853
8854 if (bitwidth > HOST_BITS_PER_WIDE_INT)
8855 return 1;
8856
8857 nonzero = nonzero_bits (x, mode);
8858 return (nonzero & ((HOST_WIDE_INT) 1 << (bitwidth - 1))
8859 ? 1 : bitwidth - floor_log2 (nonzero) - 1);
8860 }
8861 \f
8862 /* Return the number of "extended" bits there are in X, when interpreted
8863 as a quantity in MODE whose signedness is indicated by UNSIGNEDP. For
8864 unsigned quantities, this is the number of high-order zero bits.
8865 For signed quantities, this is the number of copies of the sign bit
8866 minus 1. In both case, this function returns the number of "spare"
8867 bits. For example, if two quantities for which this function returns
8868 at least 1 are added, the addition is known not to overflow.
8869
8870 This function will always return 0 unless called during combine, which
8871 implies that it must be called from a define_split. */
8872
8873 unsigned int
8874 extended_count (x, mode, unsignedp)
8875 rtx x;
8876 enum machine_mode mode;
8877 int unsignedp;
8878 {
8879 if (nonzero_sign_valid == 0)
8880 return 0;
8881
8882 return (unsignedp
8883 ? (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
8884 ? (unsigned int) (GET_MODE_BITSIZE (mode) - 1
8885 - floor_log2 (nonzero_bits (x, mode)))
8886 : 0)
8887 : num_sign_bit_copies (x, mode) - 1);
8888 }
8889 \f
8890 /* This function is called from `simplify_shift_const' to merge two
8891 outer operations. Specifically, we have already found that we need
8892 to perform operation *POP0 with constant *PCONST0 at the outermost
8893 position. We would now like to also perform OP1 with constant CONST1
8894 (with *POP0 being done last).
8895
8896 Return 1 if we can do the operation and update *POP0 and *PCONST0 with
8897 the resulting operation. *PCOMP_P is set to 1 if we would need to
8898 complement the innermost operand, otherwise it is unchanged.
8899
8900 MODE is the mode in which the operation will be done. No bits outside
8901 the width of this mode matter. It is assumed that the width of this mode
8902 is smaller than or equal to HOST_BITS_PER_WIDE_INT.
8903
8904 If *POP0 or OP1 are NIL, it means no operation is required. Only NEG, PLUS,
8905 IOR, XOR, and AND are supported. We may set *POP0 to SET if the proper
8906 result is simply *PCONST0.
8907
8908 If the resulting operation cannot be expressed as one operation, we
8909 return 0 and do not change *POP0, *PCONST0, and *PCOMP_P. */
8910
8911 static int
8912 merge_outer_ops (pop0, pconst0, op1, const1, mode, pcomp_p)
8913 enum rtx_code *pop0;
8914 HOST_WIDE_INT *pconst0;
8915 enum rtx_code op1;
8916 HOST_WIDE_INT const1;
8917 enum machine_mode mode;
8918 int *pcomp_p;
8919 {
8920 enum rtx_code op0 = *pop0;
8921 HOST_WIDE_INT const0 = *pconst0;
8922
8923 const0 &= GET_MODE_MASK (mode);
8924 const1 &= GET_MODE_MASK (mode);
8925
8926 /* If OP0 is an AND, clear unimportant bits in CONST1. */
8927 if (op0 == AND)
8928 const1 &= const0;
8929
8930 /* If OP0 or OP1 is NIL, this is easy. Similarly if they are the same or
8931 if OP0 is SET. */
8932
8933 if (op1 == NIL || op0 == SET)
8934 return 1;
8935
8936 else if (op0 == NIL)
8937 op0 = op1, const0 = const1;
8938
8939 else if (op0 == op1)
8940 {
8941 switch (op0)
8942 {
8943 case AND:
8944 const0 &= const1;
8945 break;
8946 case IOR:
8947 const0 |= const1;
8948 break;
8949 case XOR:
8950 const0 ^= const1;
8951 break;
8952 case PLUS:
8953 const0 += const1;
8954 break;
8955 case NEG:
8956 op0 = NIL;
8957 break;
8958 default:
8959 break;
8960 }
8961 }
8962
8963 /* Otherwise, if either is a PLUS or NEG, we can't do anything. */
8964 else if (op0 == PLUS || op1 == PLUS || op0 == NEG || op1 == NEG)
8965 return 0;
8966
8967 /* If the two constants aren't the same, we can't do anything. The
8968 remaining six cases can all be done. */
8969 else if (const0 != const1)
8970 return 0;
8971
8972 else
8973 switch (op0)
8974 {
8975 case IOR:
8976 if (op1 == AND)
8977 /* (a & b) | b == b */
8978 op0 = SET;
8979 else /* op1 == XOR */
8980 /* (a ^ b) | b == a | b */
8981 {;}
8982 break;
8983
8984 case XOR:
8985 if (op1 == AND)
8986 /* (a & b) ^ b == (~a) & b */
8987 op0 = AND, *pcomp_p = 1;
8988 else /* op1 == IOR */
8989 /* (a | b) ^ b == a & ~b */
8990 op0 = AND, *pconst0 = ~const0;
8991 break;
8992
8993 case AND:
8994 if (op1 == IOR)
8995 /* (a | b) & b == b */
8996 op0 = SET;
8997 else /* op1 == XOR */
8998 /* (a ^ b) & b) == (~a) & b */
8999 *pcomp_p = 1;
9000 break;
9001 default:
9002 break;
9003 }
9004
9005 /* Check for NO-OP cases. */
9006 const0 &= GET_MODE_MASK (mode);
9007 if (const0 == 0
9008 && (op0 == IOR || op0 == XOR || op0 == PLUS))
9009 op0 = NIL;
9010 else if (const0 == 0 && op0 == AND)
9011 op0 = SET;
9012 else if ((unsigned HOST_WIDE_INT) const0 == GET_MODE_MASK (mode)
9013 && op0 == AND)
9014 op0 = NIL;
9015
9016 /* ??? Slightly redundant with the above mask, but not entirely.
9017 Moving this above means we'd have to sign-extend the mode mask
9018 for the final test. */
9019 const0 = trunc_int_for_mode (const0, mode);
9020
9021 *pop0 = op0;
9022 *pconst0 = const0;
9023
9024 return 1;
9025 }
9026 \f
9027 /* Simplify a shift of VAROP by COUNT bits. CODE says what kind of shift.
9028 The result of the shift is RESULT_MODE. X, if non-zero, is an expression
9029 that we started with.
9030
9031 The shift is normally computed in the widest mode we find in VAROP, as
9032 long as it isn't a different number of words than RESULT_MODE. Exceptions
9033 are ASHIFTRT and ROTATE, which are always done in their original mode, */
9034
9035 static rtx
9036 simplify_shift_const (x, code, result_mode, varop, orig_count)
9037 rtx x;
9038 enum rtx_code code;
9039 enum machine_mode result_mode;
9040 rtx varop;
9041 int orig_count;
9042 {
9043 enum rtx_code orig_code = code;
9044 unsigned int count;
9045 int signed_count;
9046 enum machine_mode mode = result_mode;
9047 enum machine_mode shift_mode, tmode;
9048 unsigned int mode_words
9049 = (GET_MODE_SIZE (mode) + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD;
9050 /* We form (outer_op (code varop count) (outer_const)). */
9051 enum rtx_code outer_op = NIL;
9052 HOST_WIDE_INT outer_const = 0;
9053 rtx const_rtx;
9054 int complement_p = 0;
9055 rtx new;
9056
9057 /* Make sure and truncate the "natural" shift on the way in. We don't
9058 want to do this inside the loop as it makes it more difficult to
9059 combine shifts. */
9060 #ifdef SHIFT_COUNT_TRUNCATED
9061 if (SHIFT_COUNT_TRUNCATED)
9062 orig_count &= GET_MODE_BITSIZE (mode) - 1;
9063 #endif
9064
9065 /* If we were given an invalid count, don't do anything except exactly
9066 what was requested. */
9067
9068 if (orig_count < 0 || orig_count >= (int) GET_MODE_BITSIZE (mode))
9069 {
9070 if (x)
9071 return x;
9072
9073 return gen_rtx_fmt_ee (code, mode, varop, GEN_INT (orig_count));
9074 }
9075
9076 count = orig_count;
9077
9078 /* Unless one of the branches of the `if' in this loop does a `continue',
9079 we will `break' the loop after the `if'. */
9080
9081 while (count != 0)
9082 {
9083 /* If we have an operand of (clobber (const_int 0)), just return that
9084 value. */
9085 if (GET_CODE (varop) == CLOBBER)
9086 return varop;
9087
9088 /* If we discovered we had to complement VAROP, leave. Making a NOT
9089 here would cause an infinite loop. */
9090 if (complement_p)
9091 break;
9092
9093 /* Convert ROTATERT to ROTATE. */
9094 if (code == ROTATERT)
9095 {
9096 unsigned int bitsize = GET_MODE_BITSIZE (result_mode);;
9097 code = ROTATE;
9098 if (VECTOR_MODE_P (result_mode))
9099 count = bitsize / GET_MODE_NUNITS (result_mode) - count;
9100 else
9101 count = bitsize - count;
9102 }
9103
9104 /* We need to determine what mode we will do the shift in. If the
9105 shift is a right shift or a ROTATE, we must always do it in the mode
9106 it was originally done in. Otherwise, we can do it in MODE, the
9107 widest mode encountered. */
9108 shift_mode
9109 = (code == ASHIFTRT || code == LSHIFTRT || code == ROTATE
9110 ? result_mode : mode);
9111
9112 /* Handle cases where the count is greater than the size of the mode
9113 minus 1. For ASHIFT, use the size minus one as the count (this can
9114 occur when simplifying (lshiftrt (ashiftrt ..))). For rotates,
9115 take the count modulo the size. For other shifts, the result is
9116 zero.
9117
9118 Since these shifts are being produced by the compiler by combining
9119 multiple operations, each of which are defined, we know what the
9120 result is supposed to be. */
9121
9122 if (count > (unsigned int) (GET_MODE_BITSIZE (shift_mode) - 1))
9123 {
9124 if (code == ASHIFTRT)
9125 count = GET_MODE_BITSIZE (shift_mode) - 1;
9126 else if (code == ROTATE || code == ROTATERT)
9127 count %= GET_MODE_BITSIZE (shift_mode);
9128 else
9129 {
9130 /* We can't simply return zero because there may be an
9131 outer op. */
9132 varop = const0_rtx;
9133 count = 0;
9134 break;
9135 }
9136 }
9137
9138 /* An arithmetic right shift of a quantity known to be -1 or 0
9139 is a no-op. */
9140 if (code == ASHIFTRT
9141 && (num_sign_bit_copies (varop, shift_mode)
9142 == GET_MODE_BITSIZE (shift_mode)))
9143 {
9144 count = 0;
9145 break;
9146 }
9147
9148 /* If we are doing an arithmetic right shift and discarding all but
9149 the sign bit copies, this is equivalent to doing a shift by the
9150 bitsize minus one. Convert it into that shift because it will often
9151 allow other simplifications. */
9152
9153 if (code == ASHIFTRT
9154 && (count + num_sign_bit_copies (varop, shift_mode)
9155 >= GET_MODE_BITSIZE (shift_mode)))
9156 count = GET_MODE_BITSIZE (shift_mode) - 1;
9157
9158 /* We simplify the tests below and elsewhere by converting
9159 ASHIFTRT to LSHIFTRT if we know the sign bit is clear.
9160 `make_compound_operation' will convert it to an ASHIFTRT for
9161 those machines (such as VAX) that don't have an LSHIFTRT. */
9162 if (GET_MODE_BITSIZE (shift_mode) <= HOST_BITS_PER_WIDE_INT
9163 && code == ASHIFTRT
9164 && ((nonzero_bits (varop, shift_mode)
9165 & ((HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (shift_mode) - 1)))
9166 == 0))
9167 code = LSHIFTRT;
9168
9169 switch (GET_CODE (varop))
9170 {
9171 case SIGN_EXTEND:
9172 case ZERO_EXTEND:
9173 case SIGN_EXTRACT:
9174 case ZERO_EXTRACT:
9175 new = expand_compound_operation (varop);
9176 if (new != varop)
9177 {
9178 varop = new;
9179 continue;
9180 }
9181 break;
9182
9183 case MEM:
9184 /* If we have (xshiftrt (mem ...) C) and C is MODE_WIDTH
9185 minus the width of a smaller mode, we can do this with a
9186 SIGN_EXTEND or ZERO_EXTEND from the narrower memory location. */
9187 if ((code == ASHIFTRT || code == LSHIFTRT)
9188 && ! mode_dependent_address_p (XEXP (varop, 0))
9189 && ! MEM_VOLATILE_P (varop)
9190 && (tmode = mode_for_size (GET_MODE_BITSIZE (mode) - count,
9191 MODE_INT, 1)) != BLKmode)
9192 {
9193 new = adjust_address_nv (varop, tmode,
9194 BYTES_BIG_ENDIAN ? 0
9195 : count / BITS_PER_UNIT);
9196
9197 varop = gen_rtx_fmt_e (code == ASHIFTRT ? SIGN_EXTEND
9198 : ZERO_EXTEND, mode, new);
9199 count = 0;
9200 continue;
9201 }
9202 break;
9203
9204 case USE:
9205 /* Similar to the case above, except that we can only do this if
9206 the resulting mode is the same as that of the underlying
9207 MEM and adjust the address depending on the *bits* endianness
9208 because of the way that bit-field extract insns are defined. */
9209 if ((code == ASHIFTRT || code == LSHIFTRT)
9210 && (tmode = mode_for_size (GET_MODE_BITSIZE (mode) - count,
9211 MODE_INT, 1)) != BLKmode
9212 && tmode == GET_MODE (XEXP (varop, 0)))
9213 {
9214 if (BITS_BIG_ENDIAN)
9215 new = XEXP (varop, 0);
9216 else
9217 {
9218 new = copy_rtx (XEXP (varop, 0));
9219 SUBST (XEXP (new, 0),
9220 plus_constant (XEXP (new, 0),
9221 count / BITS_PER_UNIT));
9222 }
9223
9224 varop = gen_rtx_fmt_e (code == ASHIFTRT ? SIGN_EXTEND
9225 : ZERO_EXTEND, mode, new);
9226 count = 0;
9227 continue;
9228 }
9229 break;
9230
9231 case SUBREG:
9232 /* If VAROP is a SUBREG, strip it as long as the inner operand has
9233 the same number of words as what we've seen so far. Then store
9234 the widest mode in MODE. */
9235 if (subreg_lowpart_p (varop)
9236 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (varop)))
9237 > GET_MODE_SIZE (GET_MODE (varop)))
9238 && (unsigned int) ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (varop)))
9239 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
9240 == mode_words)
9241 {
9242 varop = SUBREG_REG (varop);
9243 if (GET_MODE_SIZE (GET_MODE (varop)) > GET_MODE_SIZE (mode))
9244 mode = GET_MODE (varop);
9245 continue;
9246 }
9247 break;
9248
9249 case MULT:
9250 /* Some machines use MULT instead of ASHIFT because MULT
9251 is cheaper. But it is still better on those machines to
9252 merge two shifts into one. */
9253 if (GET_CODE (XEXP (varop, 1)) == CONST_INT
9254 && exact_log2 (INTVAL (XEXP (varop, 1))) >= 0)
9255 {
9256 varop
9257 = gen_binary (ASHIFT, GET_MODE (varop), XEXP (varop, 0),
9258 GEN_INT (exact_log2 (INTVAL (XEXP (varop, 1)))));
9259 continue;
9260 }
9261 break;
9262
9263 case UDIV:
9264 /* Similar, for when divides are cheaper. */
9265 if (GET_CODE (XEXP (varop, 1)) == CONST_INT
9266 && exact_log2 (INTVAL (XEXP (varop, 1))) >= 0)
9267 {
9268 varop
9269 = gen_binary (LSHIFTRT, GET_MODE (varop), XEXP (varop, 0),
9270 GEN_INT (exact_log2 (INTVAL (XEXP (varop, 1)))));
9271 continue;
9272 }
9273 break;
9274
9275 case ASHIFTRT:
9276 /* If we are extracting just the sign bit of an arithmetic
9277 right shift, that shift is not needed. However, the sign
9278 bit of a wider mode may be different from what would be
9279 interpreted as the sign bit in a narrower mode, so, if
9280 the result is narrower, don't discard the shift. */
9281 if (code == LSHIFTRT
9282 && count == (unsigned int) (GET_MODE_BITSIZE (result_mode) - 1)
9283 && (GET_MODE_BITSIZE (result_mode)
9284 >= GET_MODE_BITSIZE (GET_MODE (varop))))
9285 {
9286 varop = XEXP (varop, 0);
9287 continue;
9288 }
9289
9290 /* ... fall through ... */
9291
9292 case LSHIFTRT:
9293 case ASHIFT:
9294 case ROTATE:
9295 /* Here we have two nested shifts. The result is usually the
9296 AND of a new shift with a mask. We compute the result below. */
9297 if (GET_CODE (XEXP (varop, 1)) == CONST_INT
9298 && INTVAL (XEXP (varop, 1)) >= 0
9299 && INTVAL (XEXP (varop, 1)) < GET_MODE_BITSIZE (GET_MODE (varop))
9300 && GET_MODE_BITSIZE (result_mode) <= HOST_BITS_PER_WIDE_INT
9301 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
9302 {
9303 enum rtx_code first_code = GET_CODE (varop);
9304 unsigned int first_count = INTVAL (XEXP (varop, 1));
9305 unsigned HOST_WIDE_INT mask;
9306 rtx mask_rtx;
9307
9308 /* We have one common special case. We can't do any merging if
9309 the inner code is an ASHIFTRT of a smaller mode. However, if
9310 we have (ashift:M1 (subreg:M1 (ashiftrt:M2 FOO C1) 0) C2)
9311 with C2 == GET_MODE_BITSIZE (M1) - GET_MODE_BITSIZE (M2),
9312 we can convert it to
9313 (ashiftrt:M1 (ashift:M1 (and:M1 (subreg:M1 FOO 0 C2) C3) C1).
9314 This simplifies certain SIGN_EXTEND operations. */
9315 if (code == ASHIFT && first_code == ASHIFTRT
9316 && count == (unsigned int)
9317 (GET_MODE_BITSIZE (result_mode)
9318 - GET_MODE_BITSIZE (GET_MODE (varop))))
9319 {
9320 /* C3 has the low-order C1 bits zero. */
9321
9322 mask = (GET_MODE_MASK (mode)
9323 & ~(((HOST_WIDE_INT) 1 << first_count) - 1));
9324
9325 varop = simplify_and_const_int (NULL_RTX, result_mode,
9326 XEXP (varop, 0), mask);
9327 varop = simplify_shift_const (NULL_RTX, ASHIFT, result_mode,
9328 varop, count);
9329 count = first_count;
9330 code = ASHIFTRT;
9331 continue;
9332 }
9333
9334 /* If this was (ashiftrt (ashift foo C1) C2) and FOO has more
9335 than C1 high-order bits equal to the sign bit, we can convert
9336 this to either an ASHIFT or an ASHIFTRT depending on the
9337 two counts.
9338
9339 We cannot do this if VAROP's mode is not SHIFT_MODE. */
9340
9341 if (code == ASHIFTRT && first_code == ASHIFT
9342 && GET_MODE (varop) == shift_mode
9343 && (num_sign_bit_copies (XEXP (varop, 0), shift_mode)
9344 > first_count))
9345 {
9346 varop = XEXP (varop, 0);
9347
9348 signed_count = count - first_count;
9349 if (signed_count < 0)
9350 count = -signed_count, code = ASHIFT;
9351 else
9352 count = signed_count;
9353
9354 continue;
9355 }
9356
9357 /* There are some cases we can't do. If CODE is ASHIFTRT,
9358 we can only do this if FIRST_CODE is also ASHIFTRT.
9359
9360 We can't do the case when CODE is ROTATE and FIRST_CODE is
9361 ASHIFTRT.
9362
9363 If the mode of this shift is not the mode of the outer shift,
9364 we can't do this if either shift is a right shift or ROTATE.
9365
9366 Finally, we can't do any of these if the mode is too wide
9367 unless the codes are the same.
9368
9369 Handle the case where the shift codes are the same
9370 first. */
9371
9372 if (code == first_code)
9373 {
9374 if (GET_MODE (varop) != result_mode
9375 && (code == ASHIFTRT || code == LSHIFTRT
9376 || code == ROTATE))
9377 break;
9378
9379 count += first_count;
9380 varop = XEXP (varop, 0);
9381 continue;
9382 }
9383
9384 if (code == ASHIFTRT
9385 || (code == ROTATE && first_code == ASHIFTRT)
9386 || GET_MODE_BITSIZE (mode) > HOST_BITS_PER_WIDE_INT
9387 || (GET_MODE (varop) != result_mode
9388 && (first_code == ASHIFTRT || first_code == LSHIFTRT
9389 || first_code == ROTATE
9390 || code == ROTATE)))
9391 break;
9392
9393 /* To compute the mask to apply after the shift, shift the
9394 nonzero bits of the inner shift the same way the
9395 outer shift will. */
9396
9397 mask_rtx = GEN_INT (nonzero_bits (varop, GET_MODE (varop)));
9398
9399 mask_rtx
9400 = simplify_binary_operation (code, result_mode, mask_rtx,
9401 GEN_INT (count));
9402
9403 /* Give up if we can't compute an outer operation to use. */
9404 if (mask_rtx == 0
9405 || GET_CODE (mask_rtx) != CONST_INT
9406 || ! merge_outer_ops (&outer_op, &outer_const, AND,
9407 INTVAL (mask_rtx),
9408 result_mode, &complement_p))
9409 break;
9410
9411 /* If the shifts are in the same direction, we add the
9412 counts. Otherwise, we subtract them. */
9413 signed_count = count;
9414 if ((code == ASHIFTRT || code == LSHIFTRT)
9415 == (first_code == ASHIFTRT || first_code == LSHIFTRT))
9416 signed_count += first_count;
9417 else
9418 signed_count -= first_count;
9419
9420 /* If COUNT is positive, the new shift is usually CODE,
9421 except for the two exceptions below, in which case it is
9422 FIRST_CODE. If the count is negative, FIRST_CODE should
9423 always be used */
9424 if (signed_count > 0
9425 && ((first_code == ROTATE && code == ASHIFT)
9426 || (first_code == ASHIFTRT && code == LSHIFTRT)))
9427 code = first_code, count = signed_count;
9428 else if (signed_count < 0)
9429 code = first_code, count = -signed_count;
9430 else
9431 count = signed_count;
9432
9433 varop = XEXP (varop, 0);
9434 continue;
9435 }
9436
9437 /* If we have (A << B << C) for any shift, we can convert this to
9438 (A << C << B). This wins if A is a constant. Only try this if
9439 B is not a constant. */
9440
9441 else if (GET_CODE (varop) == code
9442 && GET_CODE (XEXP (varop, 1)) != CONST_INT
9443 && 0 != (new
9444 = simplify_binary_operation (code, mode,
9445 XEXP (varop, 0),
9446 GEN_INT (count))))
9447 {
9448 varop = gen_rtx_fmt_ee (code, mode, new, XEXP (varop, 1));
9449 count = 0;
9450 continue;
9451 }
9452 break;
9453
9454 case NOT:
9455 /* Make this fit the case below. */
9456 varop = gen_rtx_XOR (mode, XEXP (varop, 0),
9457 GEN_INT (GET_MODE_MASK (mode)));
9458 continue;
9459
9460 case IOR:
9461 case AND:
9462 case XOR:
9463 /* If we have (xshiftrt (ior (plus X (const_int -1)) X) C)
9464 with C the size of VAROP - 1 and the shift is logical if
9465 STORE_FLAG_VALUE is 1 and arithmetic if STORE_FLAG_VALUE is -1,
9466 we have an (le X 0) operation. If we have an arithmetic shift
9467 and STORE_FLAG_VALUE is 1 or we have a logical shift with
9468 STORE_FLAG_VALUE of -1, we have a (neg (le X 0)) operation. */
9469
9470 if (GET_CODE (varop) == IOR && GET_CODE (XEXP (varop, 0)) == PLUS
9471 && XEXP (XEXP (varop, 0), 1) == constm1_rtx
9472 && (STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
9473 && (code == LSHIFTRT || code == ASHIFTRT)
9474 && count == (unsigned int)
9475 (GET_MODE_BITSIZE (GET_MODE (varop)) - 1)
9476 && rtx_equal_p (XEXP (XEXP (varop, 0), 0), XEXP (varop, 1)))
9477 {
9478 count = 0;
9479 varop = gen_rtx_LE (GET_MODE (varop), XEXP (varop, 1),
9480 const0_rtx);
9481
9482 if (STORE_FLAG_VALUE == 1 ? code == ASHIFTRT : code == LSHIFTRT)
9483 varop = gen_rtx_NEG (GET_MODE (varop), varop);
9484
9485 continue;
9486 }
9487
9488 /* If we have (shift (logical)), move the logical to the outside
9489 to allow it to possibly combine with another logical and the
9490 shift to combine with another shift. This also canonicalizes to
9491 what a ZERO_EXTRACT looks like. Also, some machines have
9492 (and (shift)) insns. */
9493
9494 if (GET_CODE (XEXP (varop, 1)) == CONST_INT
9495 && (new = simplify_binary_operation (code, result_mode,
9496 XEXP (varop, 1),
9497 GEN_INT (count))) != 0
9498 && GET_CODE (new) == CONST_INT
9499 && merge_outer_ops (&outer_op, &outer_const, GET_CODE (varop),
9500 INTVAL (new), result_mode, &complement_p))
9501 {
9502 varop = XEXP (varop, 0);
9503 continue;
9504 }
9505
9506 /* If we can't do that, try to simplify the shift in each arm of the
9507 logical expression, make a new logical expression, and apply
9508 the inverse distributive law. */
9509 {
9510 rtx lhs = simplify_shift_const (NULL_RTX, code, shift_mode,
9511 XEXP (varop, 0), count);
9512 rtx rhs = simplify_shift_const (NULL_RTX, code, shift_mode,
9513 XEXP (varop, 1), count);
9514
9515 varop = gen_binary (GET_CODE (varop), shift_mode, lhs, rhs);
9516 varop = apply_distributive_law (varop);
9517
9518 count = 0;
9519 }
9520 break;
9521
9522 case EQ:
9523 /* convert (lshiftrt (eq FOO 0) C) to (xor FOO 1) if STORE_FLAG_VALUE
9524 says that the sign bit can be tested, FOO has mode MODE, C is
9525 GET_MODE_BITSIZE (MODE) - 1, and FOO has only its low-order bit
9526 that may be nonzero. */
9527 if (code == LSHIFTRT
9528 && XEXP (varop, 1) == const0_rtx
9529 && GET_MODE (XEXP (varop, 0)) == result_mode
9530 && count == (unsigned int) (GET_MODE_BITSIZE (result_mode) - 1)
9531 && GET_MODE_BITSIZE (result_mode) <= HOST_BITS_PER_WIDE_INT
9532 && ((STORE_FLAG_VALUE
9533 & ((HOST_WIDE_INT) 1
9534 < (GET_MODE_BITSIZE (result_mode) - 1))))
9535 && nonzero_bits (XEXP (varop, 0), result_mode) == 1
9536 && merge_outer_ops (&outer_op, &outer_const, XOR,
9537 (HOST_WIDE_INT) 1, result_mode,
9538 &complement_p))
9539 {
9540 varop = XEXP (varop, 0);
9541 count = 0;
9542 continue;
9543 }
9544 break;
9545
9546 case NEG:
9547 /* (lshiftrt (neg A) C) where A is either 0 or 1 and C is one less
9548 than the number of bits in the mode is equivalent to A. */
9549 if (code == LSHIFTRT
9550 && count == (unsigned int) (GET_MODE_BITSIZE (result_mode) - 1)
9551 && nonzero_bits (XEXP (varop, 0), result_mode) == 1)
9552 {
9553 varop = XEXP (varop, 0);
9554 count = 0;
9555 continue;
9556 }
9557
9558 /* NEG commutes with ASHIFT since it is multiplication. Move the
9559 NEG outside to allow shifts to combine. */
9560 if (code == ASHIFT
9561 && merge_outer_ops (&outer_op, &outer_const, NEG,
9562 (HOST_WIDE_INT) 0, result_mode,
9563 &complement_p))
9564 {
9565 varop = XEXP (varop, 0);
9566 continue;
9567 }
9568 break;
9569
9570 case PLUS:
9571 /* (lshiftrt (plus A -1) C) where A is either 0 or 1 and C
9572 is one less than the number of bits in the mode is
9573 equivalent to (xor A 1). */
9574 if (code == LSHIFTRT
9575 && count == (unsigned int) (GET_MODE_BITSIZE (result_mode) - 1)
9576 && XEXP (varop, 1) == constm1_rtx
9577 && nonzero_bits (XEXP (varop, 0), result_mode) == 1
9578 && merge_outer_ops (&outer_op, &outer_const, XOR,
9579 (HOST_WIDE_INT) 1, result_mode,
9580 &complement_p))
9581 {
9582 count = 0;
9583 varop = XEXP (varop, 0);
9584 continue;
9585 }
9586
9587 /* If we have (xshiftrt (plus FOO BAR) C), and the only bits
9588 that might be nonzero in BAR are those being shifted out and those
9589 bits are known zero in FOO, we can replace the PLUS with FOO.
9590 Similarly in the other operand order. This code occurs when
9591 we are computing the size of a variable-size array. */
9592
9593 if ((code == ASHIFTRT || code == LSHIFTRT)
9594 && count < HOST_BITS_PER_WIDE_INT
9595 && nonzero_bits (XEXP (varop, 1), result_mode) >> count == 0
9596 && (nonzero_bits (XEXP (varop, 1), result_mode)
9597 & nonzero_bits (XEXP (varop, 0), result_mode)) == 0)
9598 {
9599 varop = XEXP (varop, 0);
9600 continue;
9601 }
9602 else if ((code == ASHIFTRT || code == LSHIFTRT)
9603 && count < HOST_BITS_PER_WIDE_INT
9604 && GET_MODE_BITSIZE (result_mode) <= HOST_BITS_PER_WIDE_INT
9605 && 0 == (nonzero_bits (XEXP (varop, 0), result_mode)
9606 >> count)
9607 && 0 == (nonzero_bits (XEXP (varop, 0), result_mode)
9608 & nonzero_bits (XEXP (varop, 1),
9609 result_mode)))
9610 {
9611 varop = XEXP (varop, 1);
9612 continue;
9613 }
9614
9615 /* (ashift (plus foo C) N) is (plus (ashift foo N) C'). */
9616 if (code == ASHIFT
9617 && GET_CODE (XEXP (varop, 1)) == CONST_INT
9618 && (new = simplify_binary_operation (ASHIFT, result_mode,
9619 XEXP (varop, 1),
9620 GEN_INT (count))) != 0
9621 && GET_CODE (new) == CONST_INT
9622 && merge_outer_ops (&outer_op, &outer_const, PLUS,
9623 INTVAL (new), result_mode, &complement_p))
9624 {
9625 varop = XEXP (varop, 0);
9626 continue;
9627 }
9628 break;
9629
9630 case MINUS:
9631 /* If we have (xshiftrt (minus (ashiftrt X C)) X) C)
9632 with C the size of VAROP - 1 and the shift is logical if
9633 STORE_FLAG_VALUE is 1 and arithmetic if STORE_FLAG_VALUE is -1,
9634 we have a (gt X 0) operation. If the shift is arithmetic with
9635 STORE_FLAG_VALUE of 1 or logical with STORE_FLAG_VALUE == -1,
9636 we have a (neg (gt X 0)) operation. */
9637
9638 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
9639 && GET_CODE (XEXP (varop, 0)) == ASHIFTRT
9640 && count == (unsigned int)
9641 (GET_MODE_BITSIZE (GET_MODE (varop)) - 1)
9642 && (code == LSHIFTRT || code == ASHIFTRT)
9643 && GET_CODE (XEXP (XEXP (varop, 0), 1)) == CONST_INT
9644 && (unsigned HOST_WIDE_INT) INTVAL (XEXP (XEXP (varop, 0), 1))
9645 == count
9646 && rtx_equal_p (XEXP (XEXP (varop, 0), 0), XEXP (varop, 1)))
9647 {
9648 count = 0;
9649 varop = gen_rtx_GT (GET_MODE (varop), XEXP (varop, 1),
9650 const0_rtx);
9651
9652 if (STORE_FLAG_VALUE == 1 ? code == ASHIFTRT : code == LSHIFTRT)
9653 varop = gen_rtx_NEG (GET_MODE (varop), varop);
9654
9655 continue;
9656 }
9657 break;
9658
9659 case TRUNCATE:
9660 /* Change (lshiftrt (truncate (lshiftrt))) to (truncate (lshiftrt))
9661 if the truncate does not affect the value. */
9662 if (code == LSHIFTRT
9663 && GET_CODE (XEXP (varop, 0)) == LSHIFTRT
9664 && GET_CODE (XEXP (XEXP (varop, 0), 1)) == CONST_INT
9665 && (INTVAL (XEXP (XEXP (varop, 0), 1))
9666 >= (GET_MODE_BITSIZE (GET_MODE (XEXP (varop, 0)))
9667 - GET_MODE_BITSIZE (GET_MODE (varop)))))
9668 {
9669 rtx varop_inner = XEXP (varop, 0);
9670
9671 varop_inner
9672 = gen_rtx_LSHIFTRT (GET_MODE (varop_inner),
9673 XEXP (varop_inner, 0),
9674 GEN_INT
9675 (count + INTVAL (XEXP (varop_inner, 1))));
9676 varop = gen_rtx_TRUNCATE (GET_MODE (varop), varop_inner);
9677 count = 0;
9678 continue;
9679 }
9680 break;
9681
9682 default:
9683 break;
9684 }
9685
9686 break;
9687 }
9688
9689 /* We need to determine what mode to do the shift in. If the shift is
9690 a right shift or ROTATE, we must always do it in the mode it was
9691 originally done in. Otherwise, we can do it in MODE, the widest mode
9692 encountered. The code we care about is that of the shift that will
9693 actually be done, not the shift that was originally requested. */
9694 shift_mode
9695 = (code == ASHIFTRT || code == LSHIFTRT || code == ROTATE
9696 ? result_mode : mode);
9697
9698 /* We have now finished analyzing the shift. The result should be
9699 a shift of type CODE with SHIFT_MODE shifting VAROP COUNT places. If
9700 OUTER_OP is non-NIL, it is an operation that needs to be applied
9701 to the result of the shift. OUTER_CONST is the relevant constant,
9702 but we must turn off all bits turned off in the shift.
9703
9704 If we were passed a value for X, see if we can use any pieces of
9705 it. If not, make new rtx. */
9706
9707 if (x && GET_RTX_CLASS (GET_CODE (x)) == '2'
9708 && GET_CODE (XEXP (x, 1)) == CONST_INT
9709 && (unsigned HOST_WIDE_INT) INTVAL (XEXP (x, 1)) == count)
9710 const_rtx = XEXP (x, 1);
9711 else
9712 const_rtx = GEN_INT (count);
9713
9714 if (x && GET_CODE (XEXP (x, 0)) == SUBREG
9715 && GET_MODE (XEXP (x, 0)) == shift_mode
9716 && SUBREG_REG (XEXP (x, 0)) == varop)
9717 varop = XEXP (x, 0);
9718 else if (GET_MODE (varop) != shift_mode)
9719 varop = gen_lowpart_for_combine (shift_mode, varop);
9720
9721 /* If we can't make the SUBREG, try to return what we were given. */
9722 if (GET_CODE (varop) == CLOBBER)
9723 return x ? x : varop;
9724
9725 new = simplify_binary_operation (code, shift_mode, varop, const_rtx);
9726 if (new != 0)
9727 x = new;
9728 else
9729 x = gen_rtx_fmt_ee (code, shift_mode, varop, const_rtx);
9730
9731 /* If we have an outer operation and we just made a shift, it is
9732 possible that we could have simplified the shift were it not
9733 for the outer operation. So try to do the simplification
9734 recursively. */
9735
9736 if (outer_op != NIL && GET_CODE (x) == code
9737 && GET_CODE (XEXP (x, 1)) == CONST_INT)
9738 x = simplify_shift_const (x, code, shift_mode, XEXP (x, 0),
9739 INTVAL (XEXP (x, 1)));
9740
9741 /* If we were doing an LSHIFTRT in a wider mode than it was originally,
9742 turn off all the bits that the shift would have turned off. */
9743 if (orig_code == LSHIFTRT && result_mode != shift_mode)
9744 x = simplify_and_const_int (NULL_RTX, shift_mode, x,
9745 GET_MODE_MASK (result_mode) >> orig_count);
9746
9747 /* Do the remainder of the processing in RESULT_MODE. */
9748 x = gen_lowpart_for_combine (result_mode, x);
9749
9750 /* If COMPLEMENT_P is set, we have to complement X before doing the outer
9751 operation. */
9752 if (complement_p)
9753 x =simplify_gen_unary (NOT, result_mode, x, result_mode);
9754
9755 if (outer_op != NIL)
9756 {
9757 if (GET_MODE_BITSIZE (result_mode) < HOST_BITS_PER_WIDE_INT)
9758 outer_const = trunc_int_for_mode (outer_const, result_mode);
9759
9760 if (outer_op == AND)
9761 x = simplify_and_const_int (NULL_RTX, result_mode, x, outer_const);
9762 else if (outer_op == SET)
9763 /* This means that we have determined that the result is
9764 equivalent to a constant. This should be rare. */
9765 x = GEN_INT (outer_const);
9766 else if (GET_RTX_CLASS (outer_op) == '1')
9767 x = simplify_gen_unary (outer_op, result_mode, x, result_mode);
9768 else
9769 x = gen_binary (outer_op, result_mode, x, GEN_INT (outer_const));
9770 }
9771
9772 return x;
9773 }
9774 \f
9775 /* Like recog, but we receive the address of a pointer to a new pattern.
9776 We try to match the rtx that the pointer points to.
9777 If that fails, we may try to modify or replace the pattern,
9778 storing the replacement into the same pointer object.
9779
9780 Modifications include deletion or addition of CLOBBERs.
9781
9782 PNOTES is a pointer to a location where any REG_UNUSED notes added for
9783 the CLOBBERs are placed.
9784
9785 The value is the final insn code from the pattern ultimately matched,
9786 or -1. */
9787
9788 static int
9789 recog_for_combine (pnewpat, insn, pnotes)
9790 rtx *pnewpat;
9791 rtx insn;
9792 rtx *pnotes;
9793 {
9794 rtx pat = *pnewpat;
9795 int insn_code_number;
9796 int num_clobbers_to_add = 0;
9797 int i;
9798 rtx notes = 0;
9799 rtx dummy_insn;
9800
9801 /* If PAT is a PARALLEL, check to see if it contains the CLOBBER
9802 we use to indicate that something didn't match. If we find such a
9803 thing, force rejection. */
9804 if (GET_CODE (pat) == PARALLEL)
9805 for (i = XVECLEN (pat, 0) - 1; i >= 0; i--)
9806 if (GET_CODE (XVECEXP (pat, 0, i)) == CLOBBER
9807 && XEXP (XVECEXP (pat, 0, i), 0) == const0_rtx)
9808 return -1;
9809
9810 /* *pnewpat does not have to be actual PATTERN (insn), so make a dummy
9811 instruction for pattern recognition. */
9812 dummy_insn = shallow_copy_rtx (insn);
9813 PATTERN (dummy_insn) = pat;
9814 REG_NOTES (dummy_insn) = 0;
9815
9816 insn_code_number = recog (pat, dummy_insn, &num_clobbers_to_add);
9817
9818 /* If it isn't, there is the possibility that we previously had an insn
9819 that clobbered some register as a side effect, but the combined
9820 insn doesn't need to do that. So try once more without the clobbers
9821 unless this represents an ASM insn. */
9822
9823 if (insn_code_number < 0 && ! check_asm_operands (pat)
9824 && GET_CODE (pat) == PARALLEL)
9825 {
9826 int pos;
9827
9828 for (pos = 0, i = 0; i < XVECLEN (pat, 0); i++)
9829 if (GET_CODE (XVECEXP (pat, 0, i)) != CLOBBER)
9830 {
9831 if (i != pos)
9832 SUBST (XVECEXP (pat, 0, pos), XVECEXP (pat, 0, i));
9833 pos++;
9834 }
9835
9836 SUBST_INT (XVECLEN (pat, 0), pos);
9837
9838 if (pos == 1)
9839 pat = XVECEXP (pat, 0, 0);
9840
9841 PATTERN (dummy_insn) = pat;
9842 insn_code_number = recog (pat, dummy_insn, &num_clobbers_to_add);
9843 }
9844
9845 /* Recognize all noop sets, these will be killed by followup pass. */
9846 if (insn_code_number < 0 && GET_CODE (pat) == SET && set_noop_p (pat))
9847 insn_code_number = NOOP_MOVE_INSN_CODE, num_clobbers_to_add = 0;
9848
9849 /* If we had any clobbers to add, make a new pattern than contains
9850 them. Then check to make sure that all of them are dead. */
9851 if (num_clobbers_to_add)
9852 {
9853 rtx newpat = gen_rtx_PARALLEL (VOIDmode,
9854 rtvec_alloc (GET_CODE (pat) == PARALLEL
9855 ? (XVECLEN (pat, 0)
9856 + num_clobbers_to_add)
9857 : num_clobbers_to_add + 1));
9858
9859 if (GET_CODE (pat) == PARALLEL)
9860 for (i = 0; i < XVECLEN (pat, 0); i++)
9861 XVECEXP (newpat, 0, i) = XVECEXP (pat, 0, i);
9862 else
9863 XVECEXP (newpat, 0, 0) = pat;
9864
9865 add_clobbers (newpat, insn_code_number);
9866
9867 for (i = XVECLEN (newpat, 0) - num_clobbers_to_add;
9868 i < XVECLEN (newpat, 0); i++)
9869 {
9870 if (GET_CODE (XEXP (XVECEXP (newpat, 0, i), 0)) == REG
9871 && ! reg_dead_at_p (XEXP (XVECEXP (newpat, 0, i), 0), insn))
9872 return -1;
9873 notes = gen_rtx_EXPR_LIST (REG_UNUSED,
9874 XEXP (XVECEXP (newpat, 0, i), 0), notes);
9875 }
9876 pat = newpat;
9877 }
9878
9879 *pnewpat = pat;
9880 *pnotes = notes;
9881
9882 return insn_code_number;
9883 }
9884 \f
9885 /* Like gen_lowpart but for use by combine. In combine it is not possible
9886 to create any new pseudoregs. However, it is safe to create
9887 invalid memory addresses, because combine will try to recognize
9888 them and all they will do is make the combine attempt fail.
9889
9890 If for some reason this cannot do its job, an rtx
9891 (clobber (const_int 0)) is returned.
9892 An insn containing that will not be recognized. */
9893
9894 #undef gen_lowpart
9895
9896 static rtx
9897 gen_lowpart_for_combine (mode, x)
9898 enum machine_mode mode;
9899 rtx x;
9900 {
9901 rtx result;
9902
9903 if (GET_MODE (x) == mode)
9904 return x;
9905
9906 /* We can only support MODE being wider than a word if X is a
9907 constant integer or has a mode the same size. */
9908
9909 if (GET_MODE_SIZE (mode) > UNITS_PER_WORD
9910 && ! ((GET_MODE (x) == VOIDmode
9911 && (GET_CODE (x) == CONST_INT
9912 || GET_CODE (x) == CONST_DOUBLE))
9913 || GET_MODE_SIZE (GET_MODE (x)) == GET_MODE_SIZE (mode)))
9914 return gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
9915
9916 /* X might be a paradoxical (subreg (mem)). In that case, gen_lowpart
9917 won't know what to do. So we will strip off the SUBREG here and
9918 process normally. */
9919 if (GET_CODE (x) == SUBREG && GET_CODE (SUBREG_REG (x)) == MEM)
9920 {
9921 x = SUBREG_REG (x);
9922 if (GET_MODE (x) == mode)
9923 return x;
9924 }
9925
9926 result = gen_lowpart_common (mode, x);
9927 #ifdef CLASS_CANNOT_CHANGE_MODE
9928 if (result != 0
9929 && GET_CODE (result) == SUBREG
9930 && GET_CODE (SUBREG_REG (result)) == REG
9931 && REGNO (SUBREG_REG (result)) >= FIRST_PSEUDO_REGISTER
9932 && CLASS_CANNOT_CHANGE_MODE_P (GET_MODE (result),
9933 GET_MODE (SUBREG_REG (result))))
9934 REG_CHANGES_MODE (REGNO (SUBREG_REG (result))) = 1;
9935 #endif
9936
9937 if (result)
9938 return result;
9939
9940 if (GET_CODE (x) == MEM)
9941 {
9942 int offset = 0;
9943
9944 /* Refuse to work on a volatile memory ref or one with a mode-dependent
9945 address. */
9946 if (MEM_VOLATILE_P (x) || mode_dependent_address_p (XEXP (x, 0)))
9947 return gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
9948
9949 /* If we want to refer to something bigger than the original memref,
9950 generate a perverse subreg instead. That will force a reload
9951 of the original memref X. */
9952 if (GET_MODE_SIZE (GET_MODE (x)) < GET_MODE_SIZE (mode))
9953 return gen_rtx_SUBREG (mode, x, 0);
9954
9955 if (WORDS_BIG_ENDIAN)
9956 offset = (MAX (GET_MODE_SIZE (GET_MODE (x)), UNITS_PER_WORD)
9957 - MAX (GET_MODE_SIZE (mode), UNITS_PER_WORD));
9958
9959 if (BYTES_BIG_ENDIAN)
9960 {
9961 /* Adjust the address so that the address-after-the-data is
9962 unchanged. */
9963 offset -= (MIN (UNITS_PER_WORD, GET_MODE_SIZE (mode))
9964 - MIN (UNITS_PER_WORD, GET_MODE_SIZE (GET_MODE (x))));
9965 }
9966
9967 return adjust_address_nv (x, mode, offset);
9968 }
9969
9970 /* If X is a comparison operator, rewrite it in a new mode. This
9971 probably won't match, but may allow further simplifications. */
9972 else if (GET_RTX_CLASS (GET_CODE (x)) == '<')
9973 return gen_rtx_fmt_ee (GET_CODE (x), mode, XEXP (x, 0), XEXP (x, 1));
9974
9975 /* If we couldn't simplify X any other way, just enclose it in a
9976 SUBREG. Normally, this SUBREG won't match, but some patterns may
9977 include an explicit SUBREG or we may simplify it further in combine. */
9978 else
9979 {
9980 int offset = 0;
9981 rtx res;
9982 enum machine_mode sub_mode = GET_MODE (x);
9983
9984 offset = subreg_lowpart_offset (mode, sub_mode);
9985 if (sub_mode == VOIDmode)
9986 {
9987 sub_mode = int_mode_for_mode (mode);
9988 x = gen_lowpart_common (sub_mode, x);
9989 }
9990 res = simplify_gen_subreg (mode, x, sub_mode, offset);
9991 if (res)
9992 return res;
9993 return gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
9994 }
9995 }
9996 \f
9997 /* These routines make binary and unary operations by first seeing if they
9998 fold; if not, a new expression is allocated. */
9999
10000 static rtx
10001 gen_binary (code, mode, op0, op1)
10002 enum rtx_code code;
10003 enum machine_mode mode;
10004 rtx op0, op1;
10005 {
10006 rtx result;
10007 rtx tem;
10008
10009 if (GET_RTX_CLASS (code) == 'c'
10010 && swap_commutative_operands_p (op0, op1))
10011 tem = op0, op0 = op1, op1 = tem;
10012
10013 if (GET_RTX_CLASS (code) == '<')
10014 {
10015 enum machine_mode op_mode = GET_MODE (op0);
10016
10017 /* Strip the COMPARE from (REL_OP (compare X Y) 0) to get
10018 just (REL_OP X Y). */
10019 if (GET_CODE (op0) == COMPARE && op1 == const0_rtx)
10020 {
10021 op1 = XEXP (op0, 1);
10022 op0 = XEXP (op0, 0);
10023 op_mode = GET_MODE (op0);
10024 }
10025
10026 if (op_mode == VOIDmode)
10027 op_mode = GET_MODE (op1);
10028 result = simplify_relational_operation (code, op_mode, op0, op1);
10029 }
10030 else
10031 result = simplify_binary_operation (code, mode, op0, op1);
10032
10033 if (result)
10034 return result;
10035
10036 /* Put complex operands first and constants second. */
10037 if (GET_RTX_CLASS (code) == 'c'
10038 && swap_commutative_operands_p (op0, op1))
10039 return gen_rtx_fmt_ee (code, mode, op1, op0);
10040
10041 /* If we are turning off bits already known off in OP0, we need not do
10042 an AND. */
10043 else if (code == AND && GET_CODE (op1) == CONST_INT
10044 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
10045 && (nonzero_bits (op0, mode) & ~INTVAL (op1)) == 0)
10046 return op0;
10047
10048 return gen_rtx_fmt_ee (code, mode, op0, op1);
10049 }
10050 \f
10051 /* Simplify a comparison between *POP0 and *POP1 where CODE is the
10052 comparison code that will be tested.
10053
10054 The result is a possibly different comparison code to use. *POP0 and
10055 *POP1 may be updated.
10056
10057 It is possible that we might detect that a comparison is either always
10058 true or always false. However, we do not perform general constant
10059 folding in combine, so this knowledge isn't useful. Such tautologies
10060 should have been detected earlier. Hence we ignore all such cases. */
10061
10062 static enum rtx_code
10063 simplify_comparison (code, pop0, pop1)
10064 enum rtx_code code;
10065 rtx *pop0;
10066 rtx *pop1;
10067 {
10068 rtx op0 = *pop0;
10069 rtx op1 = *pop1;
10070 rtx tem, tem1;
10071 int i;
10072 enum machine_mode mode, tmode;
10073
10074 /* Try a few ways of applying the same transformation to both operands. */
10075 while (1)
10076 {
10077 #ifndef WORD_REGISTER_OPERATIONS
10078 /* The test below this one won't handle SIGN_EXTENDs on these machines,
10079 so check specially. */
10080 if (code != GTU && code != GEU && code != LTU && code != LEU
10081 && GET_CODE (op0) == ASHIFTRT && GET_CODE (op1) == ASHIFTRT
10082 && GET_CODE (XEXP (op0, 0)) == ASHIFT
10083 && GET_CODE (XEXP (op1, 0)) == ASHIFT
10084 && GET_CODE (XEXP (XEXP (op0, 0), 0)) == SUBREG
10085 && GET_CODE (XEXP (XEXP (op1, 0), 0)) == SUBREG
10086 && (GET_MODE (SUBREG_REG (XEXP (XEXP (op0, 0), 0)))
10087 == GET_MODE (SUBREG_REG (XEXP (XEXP (op1, 0), 0))))
10088 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10089 && GET_CODE (XEXP (op1, 1)) == CONST_INT
10090 && GET_CODE (XEXP (XEXP (op0, 0), 1)) == CONST_INT
10091 && GET_CODE (XEXP (XEXP (op1, 0), 1)) == CONST_INT
10092 && INTVAL (XEXP (op0, 1)) == INTVAL (XEXP (op1, 1))
10093 && INTVAL (XEXP (op0, 1)) == INTVAL (XEXP (XEXP (op0, 0), 1))
10094 && INTVAL (XEXP (op0, 1)) == INTVAL (XEXP (XEXP (op1, 0), 1))
10095 && (INTVAL (XEXP (op0, 1))
10096 == (GET_MODE_BITSIZE (GET_MODE (op0))
10097 - (GET_MODE_BITSIZE
10098 (GET_MODE (SUBREG_REG (XEXP (XEXP (op0, 0), 0))))))))
10099 {
10100 op0 = SUBREG_REG (XEXP (XEXP (op0, 0), 0));
10101 op1 = SUBREG_REG (XEXP (XEXP (op1, 0), 0));
10102 }
10103 #endif
10104
10105 /* If both operands are the same constant shift, see if we can ignore the
10106 shift. We can if the shift is a rotate or if the bits shifted out of
10107 this shift are known to be zero for both inputs and if the type of
10108 comparison is compatible with the shift. */
10109 if (GET_CODE (op0) == GET_CODE (op1)
10110 && GET_MODE_BITSIZE (GET_MODE (op0)) <= HOST_BITS_PER_WIDE_INT
10111 && ((GET_CODE (op0) == ROTATE && (code == NE || code == EQ))
10112 || ((GET_CODE (op0) == LSHIFTRT || GET_CODE (op0) == ASHIFT)
10113 && (code != GT && code != LT && code != GE && code != LE))
10114 || (GET_CODE (op0) == ASHIFTRT
10115 && (code != GTU && code != LTU
10116 && code != GEU && code != LEU)))
10117 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10118 && INTVAL (XEXP (op0, 1)) >= 0
10119 && INTVAL (XEXP (op0, 1)) < HOST_BITS_PER_WIDE_INT
10120 && XEXP (op0, 1) == XEXP (op1, 1))
10121 {
10122 enum machine_mode mode = GET_MODE (op0);
10123 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
10124 int shift_count = INTVAL (XEXP (op0, 1));
10125
10126 if (GET_CODE (op0) == LSHIFTRT || GET_CODE (op0) == ASHIFTRT)
10127 mask &= (mask >> shift_count) << shift_count;
10128 else if (GET_CODE (op0) == ASHIFT)
10129 mask = (mask & (mask << shift_count)) >> shift_count;
10130
10131 if ((nonzero_bits (XEXP (op0, 0), mode) & ~mask) == 0
10132 && (nonzero_bits (XEXP (op1, 0), mode) & ~mask) == 0)
10133 op0 = XEXP (op0, 0), op1 = XEXP (op1, 0);
10134 else
10135 break;
10136 }
10137
10138 /* If both operands are AND's of a paradoxical SUBREG by constant, the
10139 SUBREGs are of the same mode, and, in both cases, the AND would
10140 be redundant if the comparison was done in the narrower mode,
10141 do the comparison in the narrower mode (e.g., we are AND'ing with 1
10142 and the operand's possibly nonzero bits are 0xffffff01; in that case
10143 if we only care about QImode, we don't need the AND). This case
10144 occurs if the output mode of an scc insn is not SImode and
10145 STORE_FLAG_VALUE == 1 (e.g., the 386).
10146
10147 Similarly, check for a case where the AND's are ZERO_EXTEND
10148 operations from some narrower mode even though a SUBREG is not
10149 present. */
10150
10151 else if (GET_CODE (op0) == AND && GET_CODE (op1) == AND
10152 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10153 && GET_CODE (XEXP (op1, 1)) == CONST_INT)
10154 {
10155 rtx inner_op0 = XEXP (op0, 0);
10156 rtx inner_op1 = XEXP (op1, 0);
10157 HOST_WIDE_INT c0 = INTVAL (XEXP (op0, 1));
10158 HOST_WIDE_INT c1 = INTVAL (XEXP (op1, 1));
10159 int changed = 0;
10160
10161 if (GET_CODE (inner_op0) == SUBREG && GET_CODE (inner_op1) == SUBREG
10162 && (GET_MODE_SIZE (GET_MODE (inner_op0))
10163 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (inner_op0))))
10164 && (GET_MODE (SUBREG_REG (inner_op0))
10165 == GET_MODE (SUBREG_REG (inner_op1)))
10166 && (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (inner_op0)))
10167 <= HOST_BITS_PER_WIDE_INT)
10168 && (0 == ((~c0) & nonzero_bits (SUBREG_REG (inner_op0),
10169 GET_MODE (SUBREG_REG (inner_op0)))))
10170 && (0 == ((~c1) & nonzero_bits (SUBREG_REG (inner_op1),
10171 GET_MODE (SUBREG_REG (inner_op1))))))
10172 {
10173 op0 = SUBREG_REG (inner_op0);
10174 op1 = SUBREG_REG (inner_op1);
10175
10176 /* The resulting comparison is always unsigned since we masked
10177 off the original sign bit. */
10178 code = unsigned_condition (code);
10179
10180 changed = 1;
10181 }
10182
10183 else if (c0 == c1)
10184 for (tmode = GET_CLASS_NARROWEST_MODE
10185 (GET_MODE_CLASS (GET_MODE (op0)));
10186 tmode != GET_MODE (op0); tmode = GET_MODE_WIDER_MODE (tmode))
10187 if ((unsigned HOST_WIDE_INT) c0 == GET_MODE_MASK (tmode))
10188 {
10189 op0 = gen_lowpart_for_combine (tmode, inner_op0);
10190 op1 = gen_lowpart_for_combine (tmode, inner_op1);
10191 code = unsigned_condition (code);
10192 changed = 1;
10193 break;
10194 }
10195
10196 if (! changed)
10197 break;
10198 }
10199
10200 /* If both operands are NOT, we can strip off the outer operation
10201 and adjust the comparison code for swapped operands; similarly for
10202 NEG, except that this must be an equality comparison. */
10203 else if ((GET_CODE (op0) == NOT && GET_CODE (op1) == NOT)
10204 || (GET_CODE (op0) == NEG && GET_CODE (op1) == NEG
10205 && (code == EQ || code == NE)))
10206 op0 = XEXP (op0, 0), op1 = XEXP (op1, 0), code = swap_condition (code);
10207
10208 else
10209 break;
10210 }
10211
10212 /* If the first operand is a constant, swap the operands and adjust the
10213 comparison code appropriately, but don't do this if the second operand
10214 is already a constant integer. */
10215 if (swap_commutative_operands_p (op0, op1))
10216 {
10217 tem = op0, op0 = op1, op1 = tem;
10218 code = swap_condition (code);
10219 }
10220
10221 /* We now enter a loop during which we will try to simplify the comparison.
10222 For the most part, we only are concerned with comparisons with zero,
10223 but some things may really be comparisons with zero but not start
10224 out looking that way. */
10225
10226 while (GET_CODE (op1) == CONST_INT)
10227 {
10228 enum machine_mode mode = GET_MODE (op0);
10229 unsigned int mode_width = GET_MODE_BITSIZE (mode);
10230 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
10231 int equality_comparison_p;
10232 int sign_bit_comparison_p;
10233 int unsigned_comparison_p;
10234 HOST_WIDE_INT const_op;
10235
10236 /* We only want to handle integral modes. This catches VOIDmode,
10237 CCmode, and the floating-point modes. An exception is that we
10238 can handle VOIDmode if OP0 is a COMPARE or a comparison
10239 operation. */
10240
10241 if (GET_MODE_CLASS (mode) != MODE_INT
10242 && ! (mode == VOIDmode
10243 && (GET_CODE (op0) == COMPARE
10244 || GET_RTX_CLASS (GET_CODE (op0)) == '<')))
10245 break;
10246
10247 /* Get the constant we are comparing against and turn off all bits
10248 not on in our mode. */
10249 const_op = INTVAL (op1);
10250 if (mode != VOIDmode)
10251 const_op = trunc_int_for_mode (const_op, mode);
10252 op1 = GEN_INT (const_op);
10253
10254 /* If we are comparing against a constant power of two and the value
10255 being compared can only have that single bit nonzero (e.g., it was
10256 `and'ed with that bit), we can replace this with a comparison
10257 with zero. */
10258 if (const_op
10259 && (code == EQ || code == NE || code == GE || code == GEU
10260 || code == LT || code == LTU)
10261 && mode_width <= HOST_BITS_PER_WIDE_INT
10262 && exact_log2 (const_op) >= 0
10263 && nonzero_bits (op0, mode) == (unsigned HOST_WIDE_INT) const_op)
10264 {
10265 code = (code == EQ || code == GE || code == GEU ? NE : EQ);
10266 op1 = const0_rtx, const_op = 0;
10267 }
10268
10269 /* Similarly, if we are comparing a value known to be either -1 or
10270 0 with -1, change it to the opposite comparison against zero. */
10271
10272 if (const_op == -1
10273 && (code == EQ || code == NE || code == GT || code == LE
10274 || code == GEU || code == LTU)
10275 && num_sign_bit_copies (op0, mode) == mode_width)
10276 {
10277 code = (code == EQ || code == LE || code == GEU ? NE : EQ);
10278 op1 = const0_rtx, const_op = 0;
10279 }
10280
10281 /* Do some canonicalizations based on the comparison code. We prefer
10282 comparisons against zero and then prefer equality comparisons.
10283 If we can reduce the size of a constant, we will do that too. */
10284
10285 switch (code)
10286 {
10287 case LT:
10288 /* < C is equivalent to <= (C - 1) */
10289 if (const_op > 0)
10290 {
10291 const_op -= 1;
10292 op1 = GEN_INT (const_op);
10293 code = LE;
10294 /* ... fall through to LE case below. */
10295 }
10296 else
10297 break;
10298
10299 case LE:
10300 /* <= C is equivalent to < (C + 1); we do this for C < 0 */
10301 if (const_op < 0)
10302 {
10303 const_op += 1;
10304 op1 = GEN_INT (const_op);
10305 code = LT;
10306 }
10307
10308 /* If we are doing a <= 0 comparison on a value known to have
10309 a zero sign bit, we can replace this with == 0. */
10310 else if (const_op == 0
10311 && mode_width <= HOST_BITS_PER_WIDE_INT
10312 && (nonzero_bits (op0, mode)
10313 & ((HOST_WIDE_INT) 1 << (mode_width - 1))) == 0)
10314 code = EQ;
10315 break;
10316
10317 case GE:
10318 /* >= C is equivalent to > (C - 1). */
10319 if (const_op > 0)
10320 {
10321 const_op -= 1;
10322 op1 = GEN_INT (const_op);
10323 code = GT;
10324 /* ... fall through to GT below. */
10325 }
10326 else
10327 break;
10328
10329 case GT:
10330 /* > C is equivalent to >= (C + 1); we do this for C < 0. */
10331 if (const_op < 0)
10332 {
10333 const_op += 1;
10334 op1 = GEN_INT (const_op);
10335 code = GE;
10336 }
10337
10338 /* If we are doing a > 0 comparison on a value known to have
10339 a zero sign bit, we can replace this with != 0. */
10340 else if (const_op == 0
10341 && mode_width <= HOST_BITS_PER_WIDE_INT
10342 && (nonzero_bits (op0, mode)
10343 & ((HOST_WIDE_INT) 1 << (mode_width - 1))) == 0)
10344 code = NE;
10345 break;
10346
10347 case LTU:
10348 /* < C is equivalent to <= (C - 1). */
10349 if (const_op > 0)
10350 {
10351 const_op -= 1;
10352 op1 = GEN_INT (const_op);
10353 code = LEU;
10354 /* ... fall through ... */
10355 }
10356
10357 /* (unsigned) < 0x80000000 is equivalent to >= 0. */
10358 else if ((mode_width <= HOST_BITS_PER_WIDE_INT)
10359 && (const_op == (HOST_WIDE_INT) 1 << (mode_width - 1)))
10360 {
10361 const_op = 0, op1 = const0_rtx;
10362 code = GE;
10363 break;
10364 }
10365 else
10366 break;
10367
10368 case LEU:
10369 /* unsigned <= 0 is equivalent to == 0 */
10370 if (const_op == 0)
10371 code = EQ;
10372
10373 /* (unsigned) <= 0x7fffffff is equivalent to >= 0. */
10374 else if ((mode_width <= HOST_BITS_PER_WIDE_INT)
10375 && (const_op == ((HOST_WIDE_INT) 1 << (mode_width - 1)) - 1))
10376 {
10377 const_op = 0, op1 = const0_rtx;
10378 code = GE;
10379 }
10380 break;
10381
10382 case GEU:
10383 /* >= C is equivalent to < (C - 1). */
10384 if (const_op > 1)
10385 {
10386 const_op -= 1;
10387 op1 = GEN_INT (const_op);
10388 code = GTU;
10389 /* ... fall through ... */
10390 }
10391
10392 /* (unsigned) >= 0x80000000 is equivalent to < 0. */
10393 else if ((mode_width <= HOST_BITS_PER_WIDE_INT)
10394 && (const_op == (HOST_WIDE_INT) 1 << (mode_width - 1)))
10395 {
10396 const_op = 0, op1 = const0_rtx;
10397 code = LT;
10398 break;
10399 }
10400 else
10401 break;
10402
10403 case GTU:
10404 /* unsigned > 0 is equivalent to != 0 */
10405 if (const_op == 0)
10406 code = NE;
10407
10408 /* (unsigned) > 0x7fffffff is equivalent to < 0. */
10409 else if ((mode_width <= HOST_BITS_PER_WIDE_INT)
10410 && (const_op == ((HOST_WIDE_INT) 1 << (mode_width - 1)) - 1))
10411 {
10412 const_op = 0, op1 = const0_rtx;
10413 code = LT;
10414 }
10415 break;
10416
10417 default:
10418 break;
10419 }
10420
10421 /* Compute some predicates to simplify code below. */
10422
10423 equality_comparison_p = (code == EQ || code == NE);
10424 sign_bit_comparison_p = ((code == LT || code == GE) && const_op == 0);
10425 unsigned_comparison_p = (code == LTU || code == LEU || code == GTU
10426 || code == GEU);
10427
10428 /* If this is a sign bit comparison and we can do arithmetic in
10429 MODE, say that we will only be needing the sign bit of OP0. */
10430 if (sign_bit_comparison_p
10431 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
10432 op0 = force_to_mode (op0, mode,
10433 ((HOST_WIDE_INT) 1
10434 << (GET_MODE_BITSIZE (mode) - 1)),
10435 NULL_RTX, 0);
10436
10437 /* Now try cases based on the opcode of OP0. If none of the cases
10438 does a "continue", we exit this loop immediately after the
10439 switch. */
10440
10441 switch (GET_CODE (op0))
10442 {
10443 case ZERO_EXTRACT:
10444 /* If we are extracting a single bit from a variable position in
10445 a constant that has only a single bit set and are comparing it
10446 with zero, we can convert this into an equality comparison
10447 between the position and the location of the single bit. */
10448
10449 if (GET_CODE (XEXP (op0, 0)) == CONST_INT
10450 && XEXP (op0, 1) == const1_rtx
10451 && equality_comparison_p && const_op == 0
10452 && (i = exact_log2 (INTVAL (XEXP (op0, 0)))) >= 0)
10453 {
10454 if (BITS_BIG_ENDIAN)
10455 {
10456 enum machine_mode new_mode
10457 = mode_for_extraction (EP_extzv, 1);
10458 if (new_mode == MAX_MACHINE_MODE)
10459 i = BITS_PER_WORD - 1 - i;
10460 else
10461 {
10462 mode = new_mode;
10463 i = (GET_MODE_BITSIZE (mode) - 1 - i);
10464 }
10465 }
10466
10467 op0 = XEXP (op0, 2);
10468 op1 = GEN_INT (i);
10469 const_op = i;
10470
10471 /* Result is nonzero iff shift count is equal to I. */
10472 code = reverse_condition (code);
10473 continue;
10474 }
10475
10476 /* ... fall through ... */
10477
10478 case SIGN_EXTRACT:
10479 tem = expand_compound_operation (op0);
10480 if (tem != op0)
10481 {
10482 op0 = tem;
10483 continue;
10484 }
10485 break;
10486
10487 case NOT:
10488 /* If testing for equality, we can take the NOT of the constant. */
10489 if (equality_comparison_p
10490 && (tem = simplify_unary_operation (NOT, mode, op1, mode)) != 0)
10491 {
10492 op0 = XEXP (op0, 0);
10493 op1 = tem;
10494 continue;
10495 }
10496
10497 /* If just looking at the sign bit, reverse the sense of the
10498 comparison. */
10499 if (sign_bit_comparison_p)
10500 {
10501 op0 = XEXP (op0, 0);
10502 code = (code == GE ? LT : GE);
10503 continue;
10504 }
10505 break;
10506
10507 case NEG:
10508 /* If testing for equality, we can take the NEG of the constant. */
10509 if (equality_comparison_p
10510 && (tem = simplify_unary_operation (NEG, mode, op1, mode)) != 0)
10511 {
10512 op0 = XEXP (op0, 0);
10513 op1 = tem;
10514 continue;
10515 }
10516
10517 /* The remaining cases only apply to comparisons with zero. */
10518 if (const_op != 0)
10519 break;
10520
10521 /* When X is ABS or is known positive,
10522 (neg X) is < 0 if and only if X != 0. */
10523
10524 if (sign_bit_comparison_p
10525 && (GET_CODE (XEXP (op0, 0)) == ABS
10526 || (mode_width <= HOST_BITS_PER_WIDE_INT
10527 && (nonzero_bits (XEXP (op0, 0), mode)
10528 & ((HOST_WIDE_INT) 1 << (mode_width - 1))) == 0)))
10529 {
10530 op0 = XEXP (op0, 0);
10531 code = (code == LT ? NE : EQ);
10532 continue;
10533 }
10534
10535 /* If we have NEG of something whose two high-order bits are the
10536 same, we know that "(-a) < 0" is equivalent to "a > 0". */
10537 if (num_sign_bit_copies (op0, mode) >= 2)
10538 {
10539 op0 = XEXP (op0, 0);
10540 code = swap_condition (code);
10541 continue;
10542 }
10543 break;
10544
10545 case ROTATE:
10546 /* If we are testing equality and our count is a constant, we
10547 can perform the inverse operation on our RHS. */
10548 if (equality_comparison_p && GET_CODE (XEXP (op0, 1)) == CONST_INT
10549 && (tem = simplify_binary_operation (ROTATERT, mode,
10550 op1, XEXP (op0, 1))) != 0)
10551 {
10552 op0 = XEXP (op0, 0);
10553 op1 = tem;
10554 continue;
10555 }
10556
10557 /* If we are doing a < 0 or >= 0 comparison, it means we are testing
10558 a particular bit. Convert it to an AND of a constant of that
10559 bit. This will be converted into a ZERO_EXTRACT. */
10560 if (const_op == 0 && sign_bit_comparison_p
10561 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10562 && mode_width <= HOST_BITS_PER_WIDE_INT)
10563 {
10564 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
10565 ((HOST_WIDE_INT) 1
10566 << (mode_width - 1
10567 - INTVAL (XEXP (op0, 1)))));
10568 code = (code == LT ? NE : EQ);
10569 continue;
10570 }
10571
10572 /* Fall through. */
10573
10574 case ABS:
10575 /* ABS is ignorable inside an equality comparison with zero. */
10576 if (const_op == 0 && equality_comparison_p)
10577 {
10578 op0 = XEXP (op0, 0);
10579 continue;
10580 }
10581 break;
10582
10583 case SIGN_EXTEND:
10584 /* Can simplify (compare (zero/sign_extend FOO) CONST)
10585 to (compare FOO CONST) if CONST fits in FOO's mode and we
10586 are either testing inequality or have an unsigned comparison
10587 with ZERO_EXTEND or a signed comparison with SIGN_EXTEND. */
10588 if (! unsigned_comparison_p
10589 && (GET_MODE_BITSIZE (GET_MODE (XEXP (op0, 0)))
10590 <= HOST_BITS_PER_WIDE_INT)
10591 && ((unsigned HOST_WIDE_INT) const_op
10592 < (((unsigned HOST_WIDE_INT) 1
10593 << (GET_MODE_BITSIZE (GET_MODE (XEXP (op0, 0))) - 1)))))
10594 {
10595 op0 = XEXP (op0, 0);
10596 continue;
10597 }
10598 break;
10599
10600 case SUBREG:
10601 /* Check for the case where we are comparing A - C1 with C2,
10602 both constants are smaller than 1/2 the maximum positive
10603 value in MODE, and the comparison is equality or unsigned.
10604 In that case, if A is either zero-extended to MODE or has
10605 sufficient sign bits so that the high-order bit in MODE
10606 is a copy of the sign in the inner mode, we can prove that it is
10607 safe to do the operation in the wider mode. This simplifies
10608 many range checks. */
10609
10610 if (mode_width <= HOST_BITS_PER_WIDE_INT
10611 && subreg_lowpart_p (op0)
10612 && GET_CODE (SUBREG_REG (op0)) == PLUS
10613 && GET_CODE (XEXP (SUBREG_REG (op0), 1)) == CONST_INT
10614 && INTVAL (XEXP (SUBREG_REG (op0), 1)) < 0
10615 && (-INTVAL (XEXP (SUBREG_REG (op0), 1))
10616 < (HOST_WIDE_INT) (GET_MODE_MASK (mode) / 2))
10617 && (unsigned HOST_WIDE_INT) const_op < GET_MODE_MASK (mode) / 2
10618 && (0 == (nonzero_bits (XEXP (SUBREG_REG (op0), 0),
10619 GET_MODE (SUBREG_REG (op0)))
10620 & ~GET_MODE_MASK (mode))
10621 || (num_sign_bit_copies (XEXP (SUBREG_REG (op0), 0),
10622 GET_MODE (SUBREG_REG (op0)))
10623 > (unsigned int)
10624 (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (op0)))
10625 - GET_MODE_BITSIZE (mode)))))
10626 {
10627 op0 = SUBREG_REG (op0);
10628 continue;
10629 }
10630
10631 /* If the inner mode is narrower and we are extracting the low part,
10632 we can treat the SUBREG as if it were a ZERO_EXTEND. */
10633 if (subreg_lowpart_p (op0)
10634 && GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (op0))) < mode_width)
10635 /* Fall through */ ;
10636 else
10637 break;
10638
10639 /* ... fall through ... */
10640
10641 case ZERO_EXTEND:
10642 if ((unsigned_comparison_p || equality_comparison_p)
10643 && (GET_MODE_BITSIZE (GET_MODE (XEXP (op0, 0)))
10644 <= HOST_BITS_PER_WIDE_INT)
10645 && ((unsigned HOST_WIDE_INT) const_op
10646 < GET_MODE_MASK (GET_MODE (XEXP (op0, 0)))))
10647 {
10648 op0 = XEXP (op0, 0);
10649 continue;
10650 }
10651 break;
10652
10653 case PLUS:
10654 /* (eq (plus X A) B) -> (eq X (minus B A)). We can only do
10655 this for equality comparisons due to pathological cases involving
10656 overflows. */
10657 if (equality_comparison_p
10658 && 0 != (tem = simplify_binary_operation (MINUS, mode,
10659 op1, XEXP (op0, 1))))
10660 {
10661 op0 = XEXP (op0, 0);
10662 op1 = tem;
10663 continue;
10664 }
10665
10666 /* (plus (abs X) (const_int -1)) is < 0 if and only if X == 0. */
10667 if (const_op == 0 && XEXP (op0, 1) == constm1_rtx
10668 && GET_CODE (XEXP (op0, 0)) == ABS && sign_bit_comparison_p)
10669 {
10670 op0 = XEXP (XEXP (op0, 0), 0);
10671 code = (code == LT ? EQ : NE);
10672 continue;
10673 }
10674 break;
10675
10676 case MINUS:
10677 /* We used to optimize signed comparisons against zero, but that
10678 was incorrect. Unsigned comparisons against zero (GTU, LEU)
10679 arrive here as equality comparisons, or (GEU, LTU) are
10680 optimized away. No need to special-case them. */
10681
10682 /* (eq (minus A B) C) -> (eq A (plus B C)) or
10683 (eq B (minus A C)), whichever simplifies. We can only do
10684 this for equality comparisons due to pathological cases involving
10685 overflows. */
10686 if (equality_comparison_p
10687 && 0 != (tem = simplify_binary_operation (PLUS, mode,
10688 XEXP (op0, 1), op1)))
10689 {
10690 op0 = XEXP (op0, 0);
10691 op1 = tem;
10692 continue;
10693 }
10694
10695 if (equality_comparison_p
10696 && 0 != (tem = simplify_binary_operation (MINUS, mode,
10697 XEXP (op0, 0), op1)))
10698 {
10699 op0 = XEXP (op0, 1);
10700 op1 = tem;
10701 continue;
10702 }
10703
10704 /* The sign bit of (minus (ashiftrt X C) X), where C is the number
10705 of bits in X minus 1, is one iff X > 0. */
10706 if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 0)) == ASHIFTRT
10707 && GET_CODE (XEXP (XEXP (op0, 0), 1)) == CONST_INT
10708 && (unsigned HOST_WIDE_INT) INTVAL (XEXP (XEXP (op0, 0), 1))
10709 == mode_width - 1
10710 && rtx_equal_p (XEXP (XEXP (op0, 0), 0), XEXP (op0, 1)))
10711 {
10712 op0 = XEXP (op0, 1);
10713 code = (code == GE ? LE : GT);
10714 continue;
10715 }
10716 break;
10717
10718 case XOR:
10719 /* (eq (xor A B) C) -> (eq A (xor B C)). This is a simplification
10720 if C is zero or B is a constant. */
10721 if (equality_comparison_p
10722 && 0 != (tem = simplify_binary_operation (XOR, mode,
10723 XEXP (op0, 1), op1)))
10724 {
10725 op0 = XEXP (op0, 0);
10726 op1 = tem;
10727 continue;
10728 }
10729 break;
10730
10731 case EQ: case NE:
10732 case UNEQ: case LTGT:
10733 case LT: case LTU: case UNLT: case LE: case LEU: case UNLE:
10734 case GT: case GTU: case UNGT: case GE: case GEU: case UNGE:
10735 case UNORDERED: case ORDERED:
10736 /* We can't do anything if OP0 is a condition code value, rather
10737 than an actual data value. */
10738 if (const_op != 0
10739 #ifdef HAVE_cc0
10740 || XEXP (op0, 0) == cc0_rtx
10741 #endif
10742 || GET_MODE_CLASS (GET_MODE (XEXP (op0, 0))) == MODE_CC)
10743 break;
10744
10745 /* Get the two operands being compared. */
10746 if (GET_CODE (XEXP (op0, 0)) == COMPARE)
10747 tem = XEXP (XEXP (op0, 0), 0), tem1 = XEXP (XEXP (op0, 0), 1);
10748 else
10749 tem = XEXP (op0, 0), tem1 = XEXP (op0, 1);
10750
10751 /* Check for the cases where we simply want the result of the
10752 earlier test or the opposite of that result. */
10753 if (code == NE || code == EQ
10754 || (GET_MODE_BITSIZE (GET_MODE (op0)) <= HOST_BITS_PER_WIDE_INT
10755 && GET_MODE_CLASS (GET_MODE (op0)) == MODE_INT
10756 && (STORE_FLAG_VALUE
10757 & (((HOST_WIDE_INT) 1
10758 << (GET_MODE_BITSIZE (GET_MODE (op0)) - 1))))
10759 && (code == LT || code == GE)))
10760 {
10761 enum rtx_code new_code;
10762 if (code == LT || code == NE)
10763 new_code = GET_CODE (op0);
10764 else
10765 new_code = combine_reversed_comparison_code (op0);
10766
10767 if (new_code != UNKNOWN)
10768 {
10769 code = new_code;
10770 op0 = tem;
10771 op1 = tem1;
10772 continue;
10773 }
10774 }
10775 break;
10776
10777 case IOR:
10778 /* The sign bit of (ior (plus X (const_int -1)) X) is non-zero
10779 iff X <= 0. */
10780 if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 0)) == PLUS
10781 && XEXP (XEXP (op0, 0), 1) == constm1_rtx
10782 && rtx_equal_p (XEXP (XEXP (op0, 0), 0), XEXP (op0, 1)))
10783 {
10784 op0 = XEXP (op0, 1);
10785 code = (code == GE ? GT : LE);
10786 continue;
10787 }
10788 break;
10789
10790 case AND:
10791 /* Convert (and (xshift 1 X) Y) to (and (lshiftrt Y X) 1). This
10792 will be converted to a ZERO_EXTRACT later. */
10793 if (const_op == 0 && equality_comparison_p
10794 && GET_CODE (XEXP (op0, 0)) == ASHIFT
10795 && XEXP (XEXP (op0, 0), 0) == const1_rtx)
10796 {
10797 op0 = simplify_and_const_int
10798 (op0, mode, gen_rtx_LSHIFTRT (mode,
10799 XEXP (op0, 1),
10800 XEXP (XEXP (op0, 0), 1)),
10801 (HOST_WIDE_INT) 1);
10802 continue;
10803 }
10804
10805 /* If we are comparing (and (lshiftrt X C1) C2) for equality with
10806 zero and X is a comparison and C1 and C2 describe only bits set
10807 in STORE_FLAG_VALUE, we can compare with X. */
10808 if (const_op == 0 && equality_comparison_p
10809 && mode_width <= HOST_BITS_PER_WIDE_INT
10810 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10811 && GET_CODE (XEXP (op0, 0)) == LSHIFTRT
10812 && GET_CODE (XEXP (XEXP (op0, 0), 1)) == CONST_INT
10813 && INTVAL (XEXP (XEXP (op0, 0), 1)) >= 0
10814 && INTVAL (XEXP (XEXP (op0, 0), 1)) < HOST_BITS_PER_WIDE_INT)
10815 {
10816 mask = ((INTVAL (XEXP (op0, 1)) & GET_MODE_MASK (mode))
10817 << INTVAL (XEXP (XEXP (op0, 0), 1)));
10818 if ((~STORE_FLAG_VALUE & mask) == 0
10819 && (GET_RTX_CLASS (GET_CODE (XEXP (XEXP (op0, 0), 0))) == '<'
10820 || ((tem = get_last_value (XEXP (XEXP (op0, 0), 0))) != 0
10821 && GET_RTX_CLASS (GET_CODE (tem)) == '<')))
10822 {
10823 op0 = XEXP (XEXP (op0, 0), 0);
10824 continue;
10825 }
10826 }
10827
10828 /* If we are doing an equality comparison of an AND of a bit equal
10829 to the sign bit, replace this with a LT or GE comparison of
10830 the underlying value. */
10831 if (equality_comparison_p
10832 && const_op == 0
10833 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10834 && mode_width <= HOST_BITS_PER_WIDE_INT
10835 && ((INTVAL (XEXP (op0, 1)) & GET_MODE_MASK (mode))
10836 == (unsigned HOST_WIDE_INT) 1 << (mode_width - 1)))
10837 {
10838 op0 = XEXP (op0, 0);
10839 code = (code == EQ ? GE : LT);
10840 continue;
10841 }
10842
10843 /* If this AND operation is really a ZERO_EXTEND from a narrower
10844 mode, the constant fits within that mode, and this is either an
10845 equality or unsigned comparison, try to do this comparison in
10846 the narrower mode. */
10847 if ((equality_comparison_p || unsigned_comparison_p)
10848 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10849 && (i = exact_log2 ((INTVAL (XEXP (op0, 1))
10850 & GET_MODE_MASK (mode))
10851 + 1)) >= 0
10852 && const_op >> i == 0
10853 && (tmode = mode_for_size (i, MODE_INT, 1)) != BLKmode)
10854 {
10855 op0 = gen_lowpart_for_combine (tmode, XEXP (op0, 0));
10856 continue;
10857 }
10858
10859 /* If this is (and:M1 (subreg:M2 X 0) (const_int C1)) where C1 fits
10860 in both M1 and M2 and the SUBREG is either paradoxical or
10861 represents the low part, permute the SUBREG and the AND and
10862 try again. */
10863 if (GET_CODE (XEXP (op0, 0)) == SUBREG
10864 && (0
10865 #ifdef WORD_REGISTER_OPERATIONS
10866 || ((mode_width
10867 > (GET_MODE_BITSIZE
10868 (GET_MODE (SUBREG_REG (XEXP (op0, 0))))))
10869 && mode_width <= BITS_PER_WORD)
10870 #endif
10871 || ((mode_width
10872 <= (GET_MODE_BITSIZE
10873 (GET_MODE (SUBREG_REG (XEXP (op0, 0))))))
10874 && subreg_lowpart_p (XEXP (op0, 0))))
10875 #ifndef WORD_REGISTER_OPERATIONS
10876 /* It is unsafe to commute the AND into the SUBREG if the SUBREG
10877 is paradoxical and WORD_REGISTER_OPERATIONS is not defined.
10878 As originally written the upper bits have a defined value
10879 due to the AND operation. However, if we commute the AND
10880 inside the SUBREG then they no longer have defined values
10881 and the meaning of the code has been changed. */
10882 && (GET_MODE_SIZE (GET_MODE (XEXP (op0, 0)))
10883 <= GET_MODE_SIZE (GET_MODE (SUBREG_REG (XEXP (op0, 0)))))
10884 #endif
10885 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10886 && mode_width <= HOST_BITS_PER_WIDE_INT
10887 && (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (XEXP (op0, 0))))
10888 <= HOST_BITS_PER_WIDE_INT)
10889 && (INTVAL (XEXP (op0, 1)) & ~mask) == 0
10890 && 0 == (~GET_MODE_MASK (GET_MODE (SUBREG_REG (XEXP (op0, 0))))
10891 & INTVAL (XEXP (op0, 1)))
10892 && (unsigned HOST_WIDE_INT) INTVAL (XEXP (op0, 1)) != mask
10893 && ((unsigned HOST_WIDE_INT) INTVAL (XEXP (op0, 1))
10894 != GET_MODE_MASK (GET_MODE (SUBREG_REG (XEXP (op0, 0))))))
10895
10896 {
10897 op0
10898 = gen_lowpart_for_combine
10899 (mode,
10900 gen_binary (AND, GET_MODE (SUBREG_REG (XEXP (op0, 0))),
10901 SUBREG_REG (XEXP (op0, 0)), XEXP (op0, 1)));
10902 continue;
10903 }
10904
10905 /* Convert (ne (and (lshiftrt (not X)) 1) 0) to
10906 (eq (and (lshiftrt X) 1) 0). */
10907 if (const_op == 0 && equality_comparison_p
10908 && XEXP (op0, 1) == const1_rtx
10909 && GET_CODE (XEXP (op0, 0)) == LSHIFTRT
10910 && GET_CODE (XEXP (XEXP (op0, 0), 0)) == NOT)
10911 {
10912 op0 = simplify_and_const_int
10913 (op0, mode,
10914 gen_rtx_LSHIFTRT (mode, XEXP (XEXP (XEXP (op0, 0), 0), 0),
10915 XEXP (XEXP (op0, 0), 1)),
10916 (HOST_WIDE_INT) 1);
10917 code = (code == NE ? EQ : NE);
10918 continue;
10919 }
10920 break;
10921
10922 case ASHIFT:
10923 /* If we have (compare (ashift FOO N) (const_int C)) and
10924 the high order N bits of FOO (N+1 if an inequality comparison)
10925 are known to be zero, we can do this by comparing FOO with C
10926 shifted right N bits so long as the low-order N bits of C are
10927 zero. */
10928 if (GET_CODE (XEXP (op0, 1)) == CONST_INT
10929 && INTVAL (XEXP (op0, 1)) >= 0
10930 && ((INTVAL (XEXP (op0, 1)) + ! equality_comparison_p)
10931 < HOST_BITS_PER_WIDE_INT)
10932 && ((const_op
10933 & (((HOST_WIDE_INT) 1 << INTVAL (XEXP (op0, 1))) - 1)) == 0)
10934 && mode_width <= HOST_BITS_PER_WIDE_INT
10935 && (nonzero_bits (XEXP (op0, 0), mode)
10936 & ~(mask >> (INTVAL (XEXP (op0, 1))
10937 + ! equality_comparison_p))) == 0)
10938 {
10939 /* We must perform a logical shift, not an arithmetic one,
10940 as we want the top N bits of C to be zero. */
10941 unsigned HOST_WIDE_INT temp = const_op & GET_MODE_MASK (mode);
10942
10943 temp >>= INTVAL (XEXP (op0, 1));
10944 op1 = gen_int_mode (temp, mode);
10945 op0 = XEXP (op0, 0);
10946 continue;
10947 }
10948
10949 /* If we are doing a sign bit comparison, it means we are testing
10950 a particular bit. Convert it to the appropriate AND. */
10951 if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 1)) == CONST_INT
10952 && mode_width <= HOST_BITS_PER_WIDE_INT)
10953 {
10954 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
10955 ((HOST_WIDE_INT) 1
10956 << (mode_width - 1
10957 - INTVAL (XEXP (op0, 1)))));
10958 code = (code == LT ? NE : EQ);
10959 continue;
10960 }
10961
10962 /* If this an equality comparison with zero and we are shifting
10963 the low bit to the sign bit, we can convert this to an AND of the
10964 low-order bit. */
10965 if (const_op == 0 && equality_comparison_p
10966 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10967 && (unsigned HOST_WIDE_INT) INTVAL (XEXP (op0, 1))
10968 == mode_width - 1)
10969 {
10970 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
10971 (HOST_WIDE_INT) 1);
10972 continue;
10973 }
10974 break;
10975
10976 case ASHIFTRT:
10977 /* If this is an equality comparison with zero, we can do this
10978 as a logical shift, which might be much simpler. */
10979 if (equality_comparison_p && const_op == 0
10980 && GET_CODE (XEXP (op0, 1)) == CONST_INT)
10981 {
10982 op0 = simplify_shift_const (NULL_RTX, LSHIFTRT, mode,
10983 XEXP (op0, 0),
10984 INTVAL (XEXP (op0, 1)));
10985 continue;
10986 }
10987
10988 /* If OP0 is a sign extension and CODE is not an unsigned comparison,
10989 do the comparison in a narrower mode. */
10990 if (! unsigned_comparison_p
10991 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10992 && GET_CODE (XEXP (op0, 0)) == ASHIFT
10993 && XEXP (op0, 1) == XEXP (XEXP (op0, 0), 1)
10994 && (tmode = mode_for_size (mode_width - INTVAL (XEXP (op0, 1)),
10995 MODE_INT, 1)) != BLKmode
10996 && (((unsigned HOST_WIDE_INT) const_op
10997 + (GET_MODE_MASK (tmode) >> 1) + 1)
10998 <= GET_MODE_MASK (tmode)))
10999 {
11000 op0 = gen_lowpart_for_combine (tmode, XEXP (XEXP (op0, 0), 0));
11001 continue;
11002 }
11003
11004 /* Likewise if OP0 is a PLUS of a sign extension with a
11005 constant, which is usually represented with the PLUS
11006 between the shifts. */
11007 if (! unsigned_comparison_p
11008 && GET_CODE (XEXP (op0, 1)) == CONST_INT
11009 && GET_CODE (XEXP (op0, 0)) == PLUS
11010 && GET_CODE (XEXP (XEXP (op0, 0), 1)) == CONST_INT
11011 && GET_CODE (XEXP (XEXP (op0, 0), 0)) == ASHIFT
11012 && XEXP (op0, 1) == XEXP (XEXP (XEXP (op0, 0), 0), 1)
11013 && (tmode = mode_for_size (mode_width - INTVAL (XEXP (op0, 1)),
11014 MODE_INT, 1)) != BLKmode
11015 && (((unsigned HOST_WIDE_INT) const_op
11016 + (GET_MODE_MASK (tmode) >> 1) + 1)
11017 <= GET_MODE_MASK (tmode)))
11018 {
11019 rtx inner = XEXP (XEXP (XEXP (op0, 0), 0), 0);
11020 rtx add_const = XEXP (XEXP (op0, 0), 1);
11021 rtx new_const = gen_binary (ASHIFTRT, GET_MODE (op0), add_const,
11022 XEXP (op0, 1));
11023
11024 op0 = gen_binary (PLUS, tmode,
11025 gen_lowpart_for_combine (tmode, inner),
11026 new_const);
11027 continue;
11028 }
11029
11030 /* ... fall through ... */
11031 case LSHIFTRT:
11032 /* If we have (compare (xshiftrt FOO N) (const_int C)) and
11033 the low order N bits of FOO are known to be zero, we can do this
11034 by comparing FOO with C shifted left N bits so long as no
11035 overflow occurs. */
11036 if (GET_CODE (XEXP (op0, 1)) == CONST_INT
11037 && INTVAL (XEXP (op0, 1)) >= 0
11038 && INTVAL (XEXP (op0, 1)) < HOST_BITS_PER_WIDE_INT
11039 && mode_width <= HOST_BITS_PER_WIDE_INT
11040 && (nonzero_bits (XEXP (op0, 0), mode)
11041 & (((HOST_WIDE_INT) 1 << INTVAL (XEXP (op0, 1))) - 1)) == 0
11042 && (((unsigned HOST_WIDE_INT) const_op
11043 + (GET_CODE (op0) != LSHIFTRT
11044 ? ((GET_MODE_MASK (mode) >> INTVAL (XEXP (op0, 1)) >> 1)
11045 + 1)
11046 : 0))
11047 <= GET_MODE_MASK (mode) >> INTVAL (XEXP (op0, 1))))
11048 {
11049 /* If the shift was logical, then we must make the condition
11050 unsigned. */
11051 if (GET_CODE (op0) == LSHIFTRT)
11052 code = unsigned_condition (code);
11053
11054 const_op <<= INTVAL (XEXP (op0, 1));
11055 op1 = GEN_INT (const_op);
11056 op0 = XEXP (op0, 0);
11057 continue;
11058 }
11059
11060 /* If we are using this shift to extract just the sign bit, we
11061 can replace this with an LT or GE comparison. */
11062 if (const_op == 0
11063 && (equality_comparison_p || sign_bit_comparison_p)
11064 && GET_CODE (XEXP (op0, 1)) == CONST_INT
11065 && (unsigned HOST_WIDE_INT) INTVAL (XEXP (op0, 1))
11066 == mode_width - 1)
11067 {
11068 op0 = XEXP (op0, 0);
11069 code = (code == NE || code == GT ? LT : GE);
11070 continue;
11071 }
11072 break;
11073
11074 default:
11075 break;
11076 }
11077
11078 break;
11079 }
11080
11081 /* Now make any compound operations involved in this comparison. Then,
11082 check for an outmost SUBREG on OP0 that is not doing anything or is
11083 paradoxical. The latter transformation must only be performed when
11084 it is known that the "extra" bits will be the same in op0 and op1 or
11085 that they don't matter. There are three cases to consider:
11086
11087 1. SUBREG_REG (op0) is a register. In this case the bits are don't
11088 care bits and we can assume they have any convenient value. So
11089 making the transformation is safe.
11090
11091 2. SUBREG_REG (op0) is a memory and LOAD_EXTEND_OP is not defined.
11092 In this case the upper bits of op0 are undefined. We should not make
11093 the simplification in that case as we do not know the contents of
11094 those bits.
11095
11096 3. SUBREG_REG (op0) is a memory and LOAD_EXTEND_OP is defined and not
11097 NIL. In that case we know those bits are zeros or ones. We must
11098 also be sure that they are the same as the upper bits of op1.
11099
11100 We can never remove a SUBREG for a non-equality comparison because
11101 the sign bit is in a different place in the underlying object. */
11102
11103 op0 = make_compound_operation (op0, op1 == const0_rtx ? COMPARE : SET);
11104 op1 = make_compound_operation (op1, SET);
11105
11106 if (GET_CODE (op0) == SUBREG && subreg_lowpart_p (op0)
11107 /* Case 3 above, to sometimes allow (subreg (mem x)), isn't
11108 implemented. */
11109 && GET_CODE (SUBREG_REG (op0)) == REG
11110 && GET_MODE_CLASS (GET_MODE (op0)) == MODE_INT
11111 && GET_MODE_CLASS (GET_MODE (SUBREG_REG (op0))) == MODE_INT
11112 && (code == NE || code == EQ))
11113 {
11114 if (GET_MODE_SIZE (GET_MODE (op0))
11115 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (op0))))
11116 {
11117 op0 = SUBREG_REG (op0);
11118 op1 = gen_lowpart_for_combine (GET_MODE (op0), op1);
11119 }
11120 else if ((GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (op0)))
11121 <= HOST_BITS_PER_WIDE_INT)
11122 && (nonzero_bits (SUBREG_REG (op0),
11123 GET_MODE (SUBREG_REG (op0)))
11124 & ~GET_MODE_MASK (GET_MODE (op0))) == 0)
11125 {
11126 tem = gen_lowpart_for_combine (GET_MODE (SUBREG_REG (op0)), op1);
11127
11128 if ((nonzero_bits (tem, GET_MODE (SUBREG_REG (op0)))
11129 & ~GET_MODE_MASK (GET_MODE (op0))) == 0)
11130 op0 = SUBREG_REG (op0), op1 = tem;
11131 }
11132 }
11133
11134 /* We now do the opposite procedure: Some machines don't have compare
11135 insns in all modes. If OP0's mode is an integer mode smaller than a
11136 word and we can't do a compare in that mode, see if there is a larger
11137 mode for which we can do the compare. There are a number of cases in
11138 which we can use the wider mode. */
11139
11140 mode = GET_MODE (op0);
11141 if (mode != VOIDmode && GET_MODE_CLASS (mode) == MODE_INT
11142 && GET_MODE_SIZE (mode) < UNITS_PER_WORD
11143 && ! have_insn_for (COMPARE, mode))
11144 for (tmode = GET_MODE_WIDER_MODE (mode);
11145 (tmode != VOIDmode
11146 && GET_MODE_BITSIZE (tmode) <= HOST_BITS_PER_WIDE_INT);
11147 tmode = GET_MODE_WIDER_MODE (tmode))
11148 if (have_insn_for (COMPARE, tmode))
11149 {
11150 int zero_extended;
11151
11152 /* If the only nonzero bits in OP0 and OP1 are those in the
11153 narrower mode and this is an equality or unsigned comparison,
11154 we can use the wider mode. Similarly for sign-extended
11155 values, in which case it is true for all comparisons. */
11156 zero_extended = ((code == EQ || code == NE
11157 || code == GEU || code == GTU
11158 || code == LEU || code == LTU)
11159 && (nonzero_bits (op0, tmode)
11160 & ~GET_MODE_MASK (mode)) == 0
11161 && ((GET_CODE (op1) == CONST_INT
11162 || (nonzero_bits (op1, tmode)
11163 & ~GET_MODE_MASK (mode)) == 0)));
11164
11165 if (zero_extended
11166 || ((num_sign_bit_copies (op0, tmode)
11167 > (unsigned int) (GET_MODE_BITSIZE (tmode)
11168 - GET_MODE_BITSIZE (mode)))
11169 && (num_sign_bit_copies (op1, tmode)
11170 > (unsigned int) (GET_MODE_BITSIZE (tmode)
11171 - GET_MODE_BITSIZE (mode)))))
11172 {
11173 /* If OP0 is an AND and we don't have an AND in MODE either,
11174 make a new AND in the proper mode. */
11175 if (GET_CODE (op0) == AND
11176 && !have_insn_for (AND, mode))
11177 op0 = gen_binary (AND, tmode,
11178 gen_lowpart_for_combine (tmode,
11179 XEXP (op0, 0)),
11180 gen_lowpart_for_combine (tmode,
11181 XEXP (op0, 1)));
11182
11183 op0 = gen_lowpart_for_combine (tmode, op0);
11184 if (zero_extended && GET_CODE (op1) == CONST_INT)
11185 op1 = GEN_INT (INTVAL (op1) & GET_MODE_MASK (mode));
11186 op1 = gen_lowpart_for_combine (tmode, op1);
11187 break;
11188 }
11189
11190 /* If this is a test for negative, we can make an explicit
11191 test of the sign bit. */
11192
11193 if (op1 == const0_rtx && (code == LT || code == GE)
11194 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
11195 {
11196 op0 = gen_binary (AND, tmode,
11197 gen_lowpart_for_combine (tmode, op0),
11198 GEN_INT ((HOST_WIDE_INT) 1
11199 << (GET_MODE_BITSIZE (mode) - 1)));
11200 code = (code == LT) ? NE : EQ;
11201 break;
11202 }
11203 }
11204
11205 #ifdef CANONICALIZE_COMPARISON
11206 /* If this machine only supports a subset of valid comparisons, see if we
11207 can convert an unsupported one into a supported one. */
11208 CANONICALIZE_COMPARISON (code, op0, op1);
11209 #endif
11210
11211 *pop0 = op0;
11212 *pop1 = op1;
11213
11214 return code;
11215 }
11216 \f
11217 /* Like jump.c' reversed_comparison_code, but use combine infrastructure for
11218 searching backward. */
11219 static enum rtx_code
11220 combine_reversed_comparison_code (exp)
11221 rtx exp;
11222 {
11223 enum rtx_code code1 = reversed_comparison_code (exp, NULL);
11224 rtx x;
11225
11226 if (code1 != UNKNOWN
11227 || GET_MODE_CLASS (GET_MODE (XEXP (exp, 0))) != MODE_CC)
11228 return code1;
11229 /* Otherwise try and find where the condition codes were last set and
11230 use that. */
11231 x = get_last_value (XEXP (exp, 0));
11232 if (!x || GET_CODE (x) != COMPARE)
11233 return UNKNOWN;
11234 return reversed_comparison_code_parts (GET_CODE (exp),
11235 XEXP (x, 0), XEXP (x, 1), NULL);
11236 }
11237 /* Return comparison with reversed code of EXP and operands OP0 and OP1.
11238 Return NULL_RTX in case we fail to do the reversal. */
11239 static rtx
11240 reversed_comparison (exp, mode, op0, op1)
11241 rtx exp, op0, op1;
11242 enum machine_mode mode;
11243 {
11244 enum rtx_code reversed_code = combine_reversed_comparison_code (exp);
11245 if (reversed_code == UNKNOWN)
11246 return NULL_RTX;
11247 else
11248 return gen_binary (reversed_code, mode, op0, op1);
11249 }
11250 \f
11251 /* Utility function for following routine. Called when X is part of a value
11252 being stored into reg_last_set_value. Sets reg_last_set_table_tick
11253 for each register mentioned. Similar to mention_regs in cse.c */
11254
11255 static void
11256 update_table_tick (x)
11257 rtx x;
11258 {
11259 enum rtx_code code = GET_CODE (x);
11260 const char *fmt = GET_RTX_FORMAT (code);
11261 int i;
11262
11263 if (code == REG)
11264 {
11265 unsigned int regno = REGNO (x);
11266 unsigned int endregno
11267 = regno + (regno < FIRST_PSEUDO_REGISTER
11268 ? HARD_REGNO_NREGS (regno, GET_MODE (x)) : 1);
11269 unsigned int r;
11270
11271 for (r = regno; r < endregno; r++)
11272 reg_last_set_table_tick[r] = label_tick;
11273
11274 return;
11275 }
11276
11277 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
11278 /* Note that we can't have an "E" in values stored; see
11279 get_last_value_validate. */
11280 if (fmt[i] == 'e')
11281 update_table_tick (XEXP (x, i));
11282 }
11283
11284 /* Record that REG is set to VALUE in insn INSN. If VALUE is zero, we
11285 are saying that the register is clobbered and we no longer know its
11286 value. If INSN is zero, don't update reg_last_set; this is only permitted
11287 with VALUE also zero and is used to invalidate the register. */
11288
11289 static void
11290 record_value_for_reg (reg, insn, value)
11291 rtx reg;
11292 rtx insn;
11293 rtx value;
11294 {
11295 unsigned int regno = REGNO (reg);
11296 unsigned int endregno
11297 = regno + (regno < FIRST_PSEUDO_REGISTER
11298 ? HARD_REGNO_NREGS (regno, GET_MODE (reg)) : 1);
11299 unsigned int i;
11300
11301 /* If VALUE contains REG and we have a previous value for REG, substitute
11302 the previous value. */
11303 if (value && insn && reg_overlap_mentioned_p (reg, value))
11304 {
11305 rtx tem;
11306
11307 /* Set things up so get_last_value is allowed to see anything set up to
11308 our insn. */
11309 subst_low_cuid = INSN_CUID (insn);
11310 tem = get_last_value (reg);
11311
11312 /* If TEM is simply a binary operation with two CLOBBERs as operands,
11313 it isn't going to be useful and will take a lot of time to process,
11314 so just use the CLOBBER. */
11315
11316 if (tem)
11317 {
11318 if ((GET_RTX_CLASS (GET_CODE (tem)) == '2'
11319 || GET_RTX_CLASS (GET_CODE (tem)) == 'c')
11320 && GET_CODE (XEXP (tem, 0)) == CLOBBER
11321 && GET_CODE (XEXP (tem, 1)) == CLOBBER)
11322 tem = XEXP (tem, 0);
11323
11324 value = replace_rtx (copy_rtx (value), reg, tem);
11325 }
11326 }
11327
11328 /* For each register modified, show we don't know its value, that
11329 we don't know about its bitwise content, that its value has been
11330 updated, and that we don't know the location of the death of the
11331 register. */
11332 for (i = regno; i < endregno; i++)
11333 {
11334 if (insn)
11335 reg_last_set[i] = insn;
11336
11337 reg_last_set_value[i] = 0;
11338 reg_last_set_mode[i] = 0;
11339 reg_last_set_nonzero_bits[i] = 0;
11340 reg_last_set_sign_bit_copies[i] = 0;
11341 reg_last_death[i] = 0;
11342 }
11343
11344 /* Mark registers that are being referenced in this value. */
11345 if (value)
11346 update_table_tick (value);
11347
11348 /* Now update the status of each register being set.
11349 If someone is using this register in this block, set this register
11350 to invalid since we will get confused between the two lives in this
11351 basic block. This makes using this register always invalid. In cse, we
11352 scan the table to invalidate all entries using this register, but this
11353 is too much work for us. */
11354
11355 for (i = regno; i < endregno; i++)
11356 {
11357 reg_last_set_label[i] = label_tick;
11358 if (value && reg_last_set_table_tick[i] == label_tick)
11359 reg_last_set_invalid[i] = 1;
11360 else
11361 reg_last_set_invalid[i] = 0;
11362 }
11363
11364 /* The value being assigned might refer to X (like in "x++;"). In that
11365 case, we must replace it with (clobber (const_int 0)) to prevent
11366 infinite loops. */
11367 if (value && ! get_last_value_validate (&value, insn,
11368 reg_last_set_label[regno], 0))
11369 {
11370 value = copy_rtx (value);
11371 if (! get_last_value_validate (&value, insn,
11372 reg_last_set_label[regno], 1))
11373 value = 0;
11374 }
11375
11376 /* For the main register being modified, update the value, the mode, the
11377 nonzero bits, and the number of sign bit copies. */
11378
11379 reg_last_set_value[regno] = value;
11380
11381 if (value)
11382 {
11383 enum machine_mode mode = GET_MODE (reg);
11384 subst_low_cuid = INSN_CUID (insn);
11385 reg_last_set_mode[regno] = mode;
11386 if (GET_MODE_CLASS (mode) == MODE_INT
11387 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
11388 mode = nonzero_bits_mode;
11389 reg_last_set_nonzero_bits[regno] = nonzero_bits (value, mode);
11390 reg_last_set_sign_bit_copies[regno]
11391 = num_sign_bit_copies (value, GET_MODE (reg));
11392 }
11393 }
11394
11395 /* Called via note_stores from record_dead_and_set_regs to handle one
11396 SET or CLOBBER in an insn. DATA is the instruction in which the
11397 set is occurring. */
11398
11399 static void
11400 record_dead_and_set_regs_1 (dest, setter, data)
11401 rtx dest, setter;
11402 void *data;
11403 {
11404 rtx record_dead_insn = (rtx) data;
11405
11406 if (GET_CODE (dest) == SUBREG)
11407 dest = SUBREG_REG (dest);
11408
11409 if (GET_CODE (dest) == REG)
11410 {
11411 /* If we are setting the whole register, we know its value. Otherwise
11412 show that we don't know the value. We can handle SUBREG in
11413 some cases. */
11414 if (GET_CODE (setter) == SET && dest == SET_DEST (setter))
11415 record_value_for_reg (dest, record_dead_insn, SET_SRC (setter));
11416 else if (GET_CODE (setter) == SET
11417 && GET_CODE (SET_DEST (setter)) == SUBREG
11418 && SUBREG_REG (SET_DEST (setter)) == dest
11419 && GET_MODE_BITSIZE (GET_MODE (dest)) <= BITS_PER_WORD
11420 && subreg_lowpart_p (SET_DEST (setter)))
11421 record_value_for_reg (dest, record_dead_insn,
11422 gen_lowpart_for_combine (GET_MODE (dest),
11423 SET_SRC (setter)));
11424 else
11425 record_value_for_reg (dest, record_dead_insn, NULL_RTX);
11426 }
11427 else if (GET_CODE (dest) == MEM
11428 /* Ignore pushes, they clobber nothing. */
11429 && ! push_operand (dest, GET_MODE (dest)))
11430 mem_last_set = INSN_CUID (record_dead_insn);
11431 }
11432
11433 /* Update the records of when each REG was most recently set or killed
11434 for the things done by INSN. This is the last thing done in processing
11435 INSN in the combiner loop.
11436
11437 We update reg_last_set, reg_last_set_value, reg_last_set_mode,
11438 reg_last_set_nonzero_bits, reg_last_set_sign_bit_copies, reg_last_death,
11439 and also the similar information mem_last_set (which insn most recently
11440 modified memory) and last_call_cuid (which insn was the most recent
11441 subroutine call). */
11442
11443 static void
11444 record_dead_and_set_regs (insn)
11445 rtx insn;
11446 {
11447 rtx link;
11448 unsigned int i;
11449
11450 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
11451 {
11452 if (REG_NOTE_KIND (link) == REG_DEAD
11453 && GET_CODE (XEXP (link, 0)) == REG)
11454 {
11455 unsigned int regno = REGNO (XEXP (link, 0));
11456 unsigned int endregno
11457 = regno + (regno < FIRST_PSEUDO_REGISTER
11458 ? HARD_REGNO_NREGS (regno, GET_MODE (XEXP (link, 0)))
11459 : 1);
11460
11461 for (i = regno; i < endregno; i++)
11462 reg_last_death[i] = insn;
11463 }
11464 else if (REG_NOTE_KIND (link) == REG_INC)
11465 record_value_for_reg (XEXP (link, 0), insn, NULL_RTX);
11466 }
11467
11468 if (GET_CODE (insn) == CALL_INSN)
11469 {
11470 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
11471 if (TEST_HARD_REG_BIT (regs_invalidated_by_call, i))
11472 {
11473 reg_last_set_value[i] = 0;
11474 reg_last_set_mode[i] = 0;
11475 reg_last_set_nonzero_bits[i] = 0;
11476 reg_last_set_sign_bit_copies[i] = 0;
11477 reg_last_death[i] = 0;
11478 }
11479
11480 last_call_cuid = mem_last_set = INSN_CUID (insn);
11481
11482 /* Don't bother recording what this insn does. It might set the
11483 return value register, but we can't combine into a call
11484 pattern anyway, so there's no point trying (and it may cause
11485 a crash, if e.g. we wind up asking for last_set_value of a
11486 SUBREG of the return value register). */
11487 return;
11488 }
11489
11490 note_stores (PATTERN (insn), record_dead_and_set_regs_1, insn);
11491 }
11492
11493 /* If a SUBREG has the promoted bit set, it is in fact a property of the
11494 register present in the SUBREG, so for each such SUBREG go back and
11495 adjust nonzero and sign bit information of the registers that are
11496 known to have some zero/sign bits set.
11497
11498 This is needed because when combine blows the SUBREGs away, the
11499 information on zero/sign bits is lost and further combines can be
11500 missed because of that. */
11501
11502 static void
11503 record_promoted_value (insn, subreg)
11504 rtx insn;
11505 rtx subreg;
11506 {
11507 rtx links, set;
11508 unsigned int regno = REGNO (SUBREG_REG (subreg));
11509 enum machine_mode mode = GET_MODE (subreg);
11510
11511 if (GET_MODE_BITSIZE (mode) > HOST_BITS_PER_WIDE_INT)
11512 return;
11513
11514 for (links = LOG_LINKS (insn); links;)
11515 {
11516 insn = XEXP (links, 0);
11517 set = single_set (insn);
11518
11519 if (! set || GET_CODE (SET_DEST (set)) != REG
11520 || REGNO (SET_DEST (set)) != regno
11521 || GET_MODE (SET_DEST (set)) != GET_MODE (SUBREG_REG (subreg)))
11522 {
11523 links = XEXP (links, 1);
11524 continue;
11525 }
11526
11527 if (reg_last_set[regno] == insn)
11528 {
11529 if (SUBREG_PROMOTED_UNSIGNED_P (subreg) > 0)
11530 reg_last_set_nonzero_bits[regno] &= GET_MODE_MASK (mode);
11531 }
11532
11533 if (GET_CODE (SET_SRC (set)) == REG)
11534 {
11535 regno = REGNO (SET_SRC (set));
11536 links = LOG_LINKS (insn);
11537 }
11538 else
11539 break;
11540 }
11541 }
11542
11543 /* Scan X for promoted SUBREGs. For each one found,
11544 note what it implies to the registers used in it. */
11545
11546 static void
11547 check_promoted_subreg (insn, x)
11548 rtx insn;
11549 rtx x;
11550 {
11551 if (GET_CODE (x) == SUBREG && SUBREG_PROMOTED_VAR_P (x)
11552 && GET_CODE (SUBREG_REG (x)) == REG)
11553 record_promoted_value (insn, x);
11554 else
11555 {
11556 const char *format = GET_RTX_FORMAT (GET_CODE (x));
11557 int i, j;
11558
11559 for (i = 0; i < GET_RTX_LENGTH (GET_CODE (x)); i++)
11560 switch (format[i])
11561 {
11562 case 'e':
11563 check_promoted_subreg (insn, XEXP (x, i));
11564 break;
11565 case 'V':
11566 case 'E':
11567 if (XVEC (x, i) != 0)
11568 for (j = 0; j < XVECLEN (x, i); j++)
11569 check_promoted_subreg (insn, XVECEXP (x, i, j));
11570 break;
11571 }
11572 }
11573 }
11574 \f
11575 /* Utility routine for the following function. Verify that all the registers
11576 mentioned in *LOC are valid when *LOC was part of a value set when
11577 label_tick == TICK. Return 0 if some are not.
11578
11579 If REPLACE is non-zero, replace the invalid reference with
11580 (clobber (const_int 0)) and return 1. This replacement is useful because
11581 we often can get useful information about the form of a value (e.g., if
11582 it was produced by a shift that always produces -1 or 0) even though
11583 we don't know exactly what registers it was produced from. */
11584
11585 static int
11586 get_last_value_validate (loc, insn, tick, replace)
11587 rtx *loc;
11588 rtx insn;
11589 int tick;
11590 int replace;
11591 {
11592 rtx x = *loc;
11593 const char *fmt = GET_RTX_FORMAT (GET_CODE (x));
11594 int len = GET_RTX_LENGTH (GET_CODE (x));
11595 int i;
11596
11597 if (GET_CODE (x) == REG)
11598 {
11599 unsigned int regno = REGNO (x);
11600 unsigned int endregno
11601 = regno + (regno < FIRST_PSEUDO_REGISTER
11602 ? HARD_REGNO_NREGS (regno, GET_MODE (x)) : 1);
11603 unsigned int j;
11604
11605 for (j = regno; j < endregno; j++)
11606 if (reg_last_set_invalid[j]
11607 /* If this is a pseudo-register that was only set once and not
11608 live at the beginning of the function, it is always valid. */
11609 || (! (regno >= FIRST_PSEUDO_REGISTER
11610 && REG_N_SETS (regno) == 1
11611 && (! REGNO_REG_SET_P
11612 (ENTRY_BLOCK_PTR->next_bb->global_live_at_start, regno)))
11613 && reg_last_set_label[j] > tick))
11614 {
11615 if (replace)
11616 *loc = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
11617 return replace;
11618 }
11619
11620 return 1;
11621 }
11622 /* If this is a memory reference, make sure that there were
11623 no stores after it that might have clobbered the value. We don't
11624 have alias info, so we assume any store invalidates it. */
11625 else if (GET_CODE (x) == MEM && ! RTX_UNCHANGING_P (x)
11626 && INSN_CUID (insn) <= mem_last_set)
11627 {
11628 if (replace)
11629 *loc = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
11630 return replace;
11631 }
11632
11633 for (i = 0; i < len; i++)
11634 if ((fmt[i] == 'e'
11635 && get_last_value_validate (&XEXP (x, i), insn, tick, replace) == 0)
11636 /* Don't bother with these. They shouldn't occur anyway. */
11637 || fmt[i] == 'E')
11638 return 0;
11639
11640 /* If we haven't found a reason for it to be invalid, it is valid. */
11641 return 1;
11642 }
11643
11644 /* Get the last value assigned to X, if known. Some registers
11645 in the value may be replaced with (clobber (const_int 0)) if their value
11646 is known longer known reliably. */
11647
11648 static rtx
11649 get_last_value (x)
11650 rtx x;
11651 {
11652 unsigned int regno;
11653 rtx value;
11654
11655 /* If this is a non-paradoxical SUBREG, get the value of its operand and
11656 then convert it to the desired mode. If this is a paradoxical SUBREG,
11657 we cannot predict what values the "extra" bits might have. */
11658 if (GET_CODE (x) == SUBREG
11659 && subreg_lowpart_p (x)
11660 && (GET_MODE_SIZE (GET_MODE (x))
11661 <= GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
11662 && (value = get_last_value (SUBREG_REG (x))) != 0)
11663 return gen_lowpart_for_combine (GET_MODE (x), value);
11664
11665 if (GET_CODE (x) != REG)
11666 return 0;
11667
11668 regno = REGNO (x);
11669 value = reg_last_set_value[regno];
11670
11671 /* If we don't have a value, or if it isn't for this basic block and
11672 it's either a hard register, set more than once, or it's a live
11673 at the beginning of the function, return 0.
11674
11675 Because if it's not live at the beginning of the function then the reg
11676 is always set before being used (is never used without being set).
11677 And, if it's set only once, and it's always set before use, then all
11678 uses must have the same last value, even if it's not from this basic
11679 block. */
11680
11681 if (value == 0
11682 || (reg_last_set_label[regno] != label_tick
11683 && (regno < FIRST_PSEUDO_REGISTER
11684 || REG_N_SETS (regno) != 1
11685 || (REGNO_REG_SET_P
11686 (ENTRY_BLOCK_PTR->next_bb->global_live_at_start, regno)))))
11687 return 0;
11688
11689 /* If the value was set in a later insn than the ones we are processing,
11690 we can't use it even if the register was only set once. */
11691 if (INSN_CUID (reg_last_set[regno]) >= subst_low_cuid)
11692 return 0;
11693
11694 /* If the value has all its registers valid, return it. */
11695 if (get_last_value_validate (&value, reg_last_set[regno],
11696 reg_last_set_label[regno], 0))
11697 return value;
11698
11699 /* Otherwise, make a copy and replace any invalid register with
11700 (clobber (const_int 0)). If that fails for some reason, return 0. */
11701
11702 value = copy_rtx (value);
11703 if (get_last_value_validate (&value, reg_last_set[regno],
11704 reg_last_set_label[regno], 1))
11705 return value;
11706
11707 return 0;
11708 }
11709 \f
11710 /* Return nonzero if expression X refers to a REG or to memory
11711 that is set in an instruction more recent than FROM_CUID. */
11712
11713 static int
11714 use_crosses_set_p (x, from_cuid)
11715 rtx x;
11716 int from_cuid;
11717 {
11718 const char *fmt;
11719 int i;
11720 enum rtx_code code = GET_CODE (x);
11721
11722 if (code == REG)
11723 {
11724 unsigned int regno = REGNO (x);
11725 unsigned endreg = regno + (regno < FIRST_PSEUDO_REGISTER
11726 ? HARD_REGNO_NREGS (regno, GET_MODE (x)) : 1);
11727
11728 #ifdef PUSH_ROUNDING
11729 /* Don't allow uses of the stack pointer to be moved,
11730 because we don't know whether the move crosses a push insn. */
11731 if (regno == STACK_POINTER_REGNUM && PUSH_ARGS)
11732 return 1;
11733 #endif
11734 for (; regno < endreg; regno++)
11735 if (reg_last_set[regno]
11736 && INSN_CUID (reg_last_set[regno]) > from_cuid)
11737 return 1;
11738 return 0;
11739 }
11740
11741 if (code == MEM && mem_last_set > from_cuid)
11742 return 1;
11743
11744 fmt = GET_RTX_FORMAT (code);
11745
11746 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
11747 {
11748 if (fmt[i] == 'E')
11749 {
11750 int j;
11751 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
11752 if (use_crosses_set_p (XVECEXP (x, i, j), from_cuid))
11753 return 1;
11754 }
11755 else if (fmt[i] == 'e'
11756 && use_crosses_set_p (XEXP (x, i), from_cuid))
11757 return 1;
11758 }
11759 return 0;
11760 }
11761 \f
11762 /* Define three variables used for communication between the following
11763 routines. */
11764
11765 static unsigned int reg_dead_regno, reg_dead_endregno;
11766 static int reg_dead_flag;
11767
11768 /* Function called via note_stores from reg_dead_at_p.
11769
11770 If DEST is within [reg_dead_regno, reg_dead_endregno), set
11771 reg_dead_flag to 1 if X is a CLOBBER and to -1 it is a SET. */
11772
11773 static void
11774 reg_dead_at_p_1 (dest, x, data)
11775 rtx dest;
11776 rtx x;
11777 void *data ATTRIBUTE_UNUSED;
11778 {
11779 unsigned int regno, endregno;
11780
11781 if (GET_CODE (dest) != REG)
11782 return;
11783
11784 regno = REGNO (dest);
11785 endregno = regno + (regno < FIRST_PSEUDO_REGISTER
11786 ? HARD_REGNO_NREGS (regno, GET_MODE (dest)) : 1);
11787
11788 if (reg_dead_endregno > regno && reg_dead_regno < endregno)
11789 reg_dead_flag = (GET_CODE (x) == CLOBBER) ? 1 : -1;
11790 }
11791
11792 /* Return non-zero if REG is known to be dead at INSN.
11793
11794 We scan backwards from INSN. If we hit a REG_DEAD note or a CLOBBER
11795 referencing REG, it is dead. If we hit a SET referencing REG, it is
11796 live. Otherwise, see if it is live or dead at the start of the basic
11797 block we are in. Hard regs marked as being live in NEWPAT_USED_REGS
11798 must be assumed to be always live. */
11799
11800 static int
11801 reg_dead_at_p (reg, insn)
11802 rtx reg;
11803 rtx insn;
11804 {
11805 basic_block block;
11806 unsigned int i;
11807
11808 /* Set variables for reg_dead_at_p_1. */
11809 reg_dead_regno = REGNO (reg);
11810 reg_dead_endregno = reg_dead_regno + (reg_dead_regno < FIRST_PSEUDO_REGISTER
11811 ? HARD_REGNO_NREGS (reg_dead_regno,
11812 GET_MODE (reg))
11813 : 1);
11814
11815 reg_dead_flag = 0;
11816
11817 /* Check that reg isn't mentioned in NEWPAT_USED_REGS. */
11818 if (reg_dead_regno < FIRST_PSEUDO_REGISTER)
11819 {
11820 for (i = reg_dead_regno; i < reg_dead_endregno; i++)
11821 if (TEST_HARD_REG_BIT (newpat_used_regs, i))
11822 return 0;
11823 }
11824
11825 /* Scan backwards until we find a REG_DEAD note, SET, CLOBBER, label, or
11826 beginning of function. */
11827 for (; insn && GET_CODE (insn) != CODE_LABEL && GET_CODE (insn) != BARRIER;
11828 insn = prev_nonnote_insn (insn))
11829 {
11830 note_stores (PATTERN (insn), reg_dead_at_p_1, NULL);
11831 if (reg_dead_flag)
11832 return reg_dead_flag == 1 ? 1 : 0;
11833
11834 if (find_regno_note (insn, REG_DEAD, reg_dead_regno))
11835 return 1;
11836 }
11837
11838 /* Get the basic block that we were in. */
11839 if (insn == 0)
11840 block = ENTRY_BLOCK_PTR->next_bb;
11841 else
11842 {
11843 FOR_EACH_BB (block)
11844 if (insn == block->head)
11845 break;
11846
11847 if (block == EXIT_BLOCK_PTR)
11848 return 0;
11849 }
11850
11851 for (i = reg_dead_regno; i < reg_dead_endregno; i++)
11852 if (REGNO_REG_SET_P (block->global_live_at_start, i))
11853 return 0;
11854
11855 return 1;
11856 }
11857 \f
11858 /* Note hard registers in X that are used. This code is similar to
11859 that in flow.c, but much simpler since we don't care about pseudos. */
11860
11861 static void
11862 mark_used_regs_combine (x)
11863 rtx x;
11864 {
11865 RTX_CODE code = GET_CODE (x);
11866 unsigned int regno;
11867 int i;
11868
11869 switch (code)
11870 {
11871 case LABEL_REF:
11872 case SYMBOL_REF:
11873 case CONST_INT:
11874 case CONST:
11875 case CONST_DOUBLE:
11876 case CONST_VECTOR:
11877 case PC:
11878 case ADDR_VEC:
11879 case ADDR_DIFF_VEC:
11880 case ASM_INPUT:
11881 #ifdef HAVE_cc0
11882 /* CC0 must die in the insn after it is set, so we don't need to take
11883 special note of it here. */
11884 case CC0:
11885 #endif
11886 return;
11887
11888 case CLOBBER:
11889 /* If we are clobbering a MEM, mark any hard registers inside the
11890 address as used. */
11891 if (GET_CODE (XEXP (x, 0)) == MEM)
11892 mark_used_regs_combine (XEXP (XEXP (x, 0), 0));
11893 return;
11894
11895 case REG:
11896 regno = REGNO (x);
11897 /* A hard reg in a wide mode may really be multiple registers.
11898 If so, mark all of them just like the first. */
11899 if (regno < FIRST_PSEUDO_REGISTER)
11900 {
11901 unsigned int endregno, r;
11902
11903 /* None of this applies to the stack, frame or arg pointers */
11904 if (regno == STACK_POINTER_REGNUM
11905 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
11906 || regno == HARD_FRAME_POINTER_REGNUM
11907 #endif
11908 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
11909 || (regno == ARG_POINTER_REGNUM && fixed_regs[regno])
11910 #endif
11911 || regno == FRAME_POINTER_REGNUM)
11912 return;
11913
11914 endregno = regno + HARD_REGNO_NREGS (regno, GET_MODE (x));
11915 for (r = regno; r < endregno; r++)
11916 SET_HARD_REG_BIT (newpat_used_regs, r);
11917 }
11918 return;
11919
11920 case SET:
11921 {
11922 /* If setting a MEM, or a SUBREG of a MEM, then note any hard regs in
11923 the address. */
11924 rtx testreg = SET_DEST (x);
11925
11926 while (GET_CODE (testreg) == SUBREG
11927 || GET_CODE (testreg) == ZERO_EXTRACT
11928 || GET_CODE (testreg) == SIGN_EXTRACT
11929 || GET_CODE (testreg) == STRICT_LOW_PART)
11930 testreg = XEXP (testreg, 0);
11931
11932 if (GET_CODE (testreg) == MEM)
11933 mark_used_regs_combine (XEXP (testreg, 0));
11934
11935 mark_used_regs_combine (SET_SRC (x));
11936 }
11937 return;
11938
11939 default:
11940 break;
11941 }
11942
11943 /* Recursively scan the operands of this expression. */
11944
11945 {
11946 const char *fmt = GET_RTX_FORMAT (code);
11947
11948 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
11949 {
11950 if (fmt[i] == 'e')
11951 mark_used_regs_combine (XEXP (x, i));
11952 else if (fmt[i] == 'E')
11953 {
11954 int j;
11955
11956 for (j = 0; j < XVECLEN (x, i); j++)
11957 mark_used_regs_combine (XVECEXP (x, i, j));
11958 }
11959 }
11960 }
11961 }
11962 \f
11963 /* Remove register number REGNO from the dead registers list of INSN.
11964
11965 Return the note used to record the death, if there was one. */
11966
11967 rtx
11968 remove_death (regno, insn)
11969 unsigned int regno;
11970 rtx insn;
11971 {
11972 rtx note = find_regno_note (insn, REG_DEAD, regno);
11973
11974 if (note)
11975 {
11976 REG_N_DEATHS (regno)--;
11977 remove_note (insn, note);
11978 }
11979
11980 return note;
11981 }
11982
11983 /* For each register (hardware or pseudo) used within expression X, if its
11984 death is in an instruction with cuid between FROM_CUID (inclusive) and
11985 TO_INSN (exclusive), put a REG_DEAD note for that register in the
11986 list headed by PNOTES.
11987
11988 That said, don't move registers killed by maybe_kill_insn.
11989
11990 This is done when X is being merged by combination into TO_INSN. These
11991 notes will then be distributed as needed. */
11992
11993 static void
11994 move_deaths (x, maybe_kill_insn, from_cuid, to_insn, pnotes)
11995 rtx x;
11996 rtx maybe_kill_insn;
11997 int from_cuid;
11998 rtx to_insn;
11999 rtx *pnotes;
12000 {
12001 const char *fmt;
12002 int len, i;
12003 enum rtx_code code = GET_CODE (x);
12004
12005 if (code == REG)
12006 {
12007 unsigned int regno = REGNO (x);
12008 rtx where_dead = reg_last_death[regno];
12009 rtx before_dead, after_dead;
12010
12011 /* Don't move the register if it gets killed in between from and to */
12012 if (maybe_kill_insn && reg_set_p (x, maybe_kill_insn)
12013 && ! reg_referenced_p (x, maybe_kill_insn))
12014 return;
12015
12016 /* WHERE_DEAD could be a USE insn made by combine, so first we
12017 make sure that we have insns with valid INSN_CUID values. */
12018 before_dead = where_dead;
12019 while (before_dead && INSN_UID (before_dead) > max_uid_cuid)
12020 before_dead = PREV_INSN (before_dead);
12021
12022 after_dead = where_dead;
12023 while (after_dead && INSN_UID (after_dead) > max_uid_cuid)
12024 after_dead = NEXT_INSN (after_dead);
12025
12026 if (before_dead && after_dead
12027 && INSN_CUID (before_dead) >= from_cuid
12028 && (INSN_CUID (after_dead) < INSN_CUID (to_insn)
12029 || (where_dead != after_dead
12030 && INSN_CUID (after_dead) == INSN_CUID (to_insn))))
12031 {
12032 rtx note = remove_death (regno, where_dead);
12033
12034 /* It is possible for the call above to return 0. This can occur
12035 when reg_last_death points to I2 or I1 that we combined with.
12036 In that case make a new note.
12037
12038 We must also check for the case where X is a hard register
12039 and NOTE is a death note for a range of hard registers
12040 including X. In that case, we must put REG_DEAD notes for
12041 the remaining registers in place of NOTE. */
12042
12043 if (note != 0 && regno < FIRST_PSEUDO_REGISTER
12044 && (GET_MODE_SIZE (GET_MODE (XEXP (note, 0)))
12045 > GET_MODE_SIZE (GET_MODE (x))))
12046 {
12047 unsigned int deadregno = REGNO (XEXP (note, 0));
12048 unsigned int deadend
12049 = (deadregno + HARD_REGNO_NREGS (deadregno,
12050 GET_MODE (XEXP (note, 0))));
12051 unsigned int ourend
12052 = regno + HARD_REGNO_NREGS (regno, GET_MODE (x));
12053 unsigned int i;
12054
12055 for (i = deadregno; i < deadend; i++)
12056 if (i < regno || i >= ourend)
12057 REG_NOTES (where_dead)
12058 = gen_rtx_EXPR_LIST (REG_DEAD,
12059 regno_reg_rtx[i],
12060 REG_NOTES (where_dead));
12061 }
12062
12063 /* If we didn't find any note, or if we found a REG_DEAD note that
12064 covers only part of the given reg, and we have a multi-reg hard
12065 register, then to be safe we must check for REG_DEAD notes
12066 for each register other than the first. They could have
12067 their own REG_DEAD notes lying around. */
12068 else if ((note == 0
12069 || (note != 0
12070 && (GET_MODE_SIZE (GET_MODE (XEXP (note, 0)))
12071 < GET_MODE_SIZE (GET_MODE (x)))))
12072 && regno < FIRST_PSEUDO_REGISTER
12073 && HARD_REGNO_NREGS (regno, GET_MODE (x)) > 1)
12074 {
12075 unsigned int ourend
12076 = regno + HARD_REGNO_NREGS (regno, GET_MODE (x));
12077 unsigned int i, offset;
12078 rtx oldnotes = 0;
12079
12080 if (note)
12081 offset = HARD_REGNO_NREGS (regno, GET_MODE (XEXP (note, 0)));
12082 else
12083 offset = 1;
12084
12085 for (i = regno + offset; i < ourend; i++)
12086 move_deaths (regno_reg_rtx[i],
12087 maybe_kill_insn, from_cuid, to_insn, &oldnotes);
12088 }
12089
12090 if (note != 0 && GET_MODE (XEXP (note, 0)) == GET_MODE (x))
12091 {
12092 XEXP (note, 1) = *pnotes;
12093 *pnotes = note;
12094 }
12095 else
12096 *pnotes = gen_rtx_EXPR_LIST (REG_DEAD, x, *pnotes);
12097
12098 REG_N_DEATHS (regno)++;
12099 }
12100
12101 return;
12102 }
12103
12104 else if (GET_CODE (x) == SET)
12105 {
12106 rtx dest = SET_DEST (x);
12107
12108 move_deaths (SET_SRC (x), maybe_kill_insn, from_cuid, to_insn, pnotes);
12109
12110 /* In the case of a ZERO_EXTRACT, a STRICT_LOW_PART, or a SUBREG
12111 that accesses one word of a multi-word item, some
12112 piece of everything register in the expression is used by
12113 this insn, so remove any old death. */
12114 /* ??? So why do we test for equality of the sizes? */
12115
12116 if (GET_CODE (dest) == ZERO_EXTRACT
12117 || GET_CODE (dest) == STRICT_LOW_PART
12118 || (GET_CODE (dest) == SUBREG
12119 && (((GET_MODE_SIZE (GET_MODE (dest))
12120 + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
12121 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest)))
12122 + UNITS_PER_WORD - 1) / UNITS_PER_WORD))))
12123 {
12124 move_deaths (dest, maybe_kill_insn, from_cuid, to_insn, pnotes);
12125 return;
12126 }
12127
12128 /* If this is some other SUBREG, we know it replaces the entire
12129 value, so use that as the destination. */
12130 if (GET_CODE (dest) == SUBREG)
12131 dest = SUBREG_REG (dest);
12132
12133 /* If this is a MEM, adjust deaths of anything used in the address.
12134 For a REG (the only other possibility), the entire value is
12135 being replaced so the old value is not used in this insn. */
12136
12137 if (GET_CODE (dest) == MEM)
12138 move_deaths (XEXP (dest, 0), maybe_kill_insn, from_cuid,
12139 to_insn, pnotes);
12140 return;
12141 }
12142
12143 else if (GET_CODE (x) == CLOBBER)
12144 return;
12145
12146 len = GET_RTX_LENGTH (code);
12147 fmt = GET_RTX_FORMAT (code);
12148
12149 for (i = 0; i < len; i++)
12150 {
12151 if (fmt[i] == 'E')
12152 {
12153 int j;
12154 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
12155 move_deaths (XVECEXP (x, i, j), maybe_kill_insn, from_cuid,
12156 to_insn, pnotes);
12157 }
12158 else if (fmt[i] == 'e')
12159 move_deaths (XEXP (x, i), maybe_kill_insn, from_cuid, to_insn, pnotes);
12160 }
12161 }
12162 \f
12163 /* Return 1 if X is the target of a bit-field assignment in BODY, the
12164 pattern of an insn. X must be a REG. */
12165
12166 static int
12167 reg_bitfield_target_p (x, body)
12168 rtx x;
12169 rtx body;
12170 {
12171 int i;
12172
12173 if (GET_CODE (body) == SET)
12174 {
12175 rtx dest = SET_DEST (body);
12176 rtx target;
12177 unsigned int regno, tregno, endregno, endtregno;
12178
12179 if (GET_CODE (dest) == ZERO_EXTRACT)
12180 target = XEXP (dest, 0);
12181 else if (GET_CODE (dest) == STRICT_LOW_PART)
12182 target = SUBREG_REG (XEXP (dest, 0));
12183 else
12184 return 0;
12185
12186 if (GET_CODE (target) == SUBREG)
12187 target = SUBREG_REG (target);
12188
12189 if (GET_CODE (target) != REG)
12190 return 0;
12191
12192 tregno = REGNO (target), regno = REGNO (x);
12193 if (tregno >= FIRST_PSEUDO_REGISTER || regno >= FIRST_PSEUDO_REGISTER)
12194 return target == x;
12195
12196 endtregno = tregno + HARD_REGNO_NREGS (tregno, GET_MODE (target));
12197 endregno = regno + HARD_REGNO_NREGS (regno, GET_MODE (x));
12198
12199 return endregno > tregno && regno < endtregno;
12200 }
12201
12202 else if (GET_CODE (body) == PARALLEL)
12203 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
12204 if (reg_bitfield_target_p (x, XVECEXP (body, 0, i)))
12205 return 1;
12206
12207 return 0;
12208 }
12209 \f
12210 /* Given a chain of REG_NOTES originally from FROM_INSN, try to place them
12211 as appropriate. I3 and I2 are the insns resulting from the combination
12212 insns including FROM (I2 may be zero).
12213
12214 ELIM_I2 and ELIM_I1 are either zero or registers that we know will
12215 not need REG_DEAD notes because they are being substituted for. This
12216 saves searching in the most common cases.
12217
12218 Each note in the list is either ignored or placed on some insns, depending
12219 on the type of note. */
12220
12221 static void
12222 distribute_notes (notes, from_insn, i3, i2, elim_i2, elim_i1)
12223 rtx notes;
12224 rtx from_insn;
12225 rtx i3, i2;
12226 rtx elim_i2, elim_i1;
12227 {
12228 rtx note, next_note;
12229 rtx tem;
12230
12231 for (note = notes; note; note = next_note)
12232 {
12233 rtx place = 0, place2 = 0;
12234
12235 /* If this NOTE references a pseudo register, ensure it references
12236 the latest copy of that register. */
12237 if (XEXP (note, 0) && GET_CODE (XEXP (note, 0)) == REG
12238 && REGNO (XEXP (note, 0)) >= FIRST_PSEUDO_REGISTER)
12239 XEXP (note, 0) = regno_reg_rtx[REGNO (XEXP (note, 0))];
12240
12241 next_note = XEXP (note, 1);
12242 switch (REG_NOTE_KIND (note))
12243 {
12244 case REG_BR_PROB:
12245 case REG_BR_PRED:
12246 case REG_EXEC_COUNT:
12247 /* Doesn't matter much where we put this, as long as it's somewhere.
12248 It is preferable to keep these notes on branches, which is most
12249 likely to be i3. */
12250 place = i3;
12251 break;
12252
12253 case REG_VTABLE_REF:
12254 /* ??? Should remain with *a particular* memory load. Given the
12255 nature of vtable data, the last insn seems relatively safe. */
12256 place = i3;
12257 break;
12258
12259 case REG_NON_LOCAL_GOTO:
12260 if (GET_CODE (i3) == JUMP_INSN)
12261 place = i3;
12262 else if (i2 && GET_CODE (i2) == JUMP_INSN)
12263 place = i2;
12264 else
12265 abort ();
12266 break;
12267
12268 case REG_EH_REGION:
12269 /* These notes must remain with the call or trapping instruction. */
12270 if (GET_CODE (i3) == CALL_INSN)
12271 place = i3;
12272 else if (i2 && GET_CODE (i2) == CALL_INSN)
12273 place = i2;
12274 else if (flag_non_call_exceptions)
12275 {
12276 if (may_trap_p (i3))
12277 place = i3;
12278 else if (i2 && may_trap_p (i2))
12279 place = i2;
12280 /* ??? Otherwise assume we've combined things such that we
12281 can now prove that the instructions can't trap. Drop the
12282 note in this case. */
12283 }
12284 else
12285 abort ();
12286 break;
12287
12288 case REG_NORETURN:
12289 case REG_SETJMP:
12290 /* These notes must remain with the call. It should not be
12291 possible for both I2 and I3 to be a call. */
12292 if (GET_CODE (i3) == CALL_INSN)
12293 place = i3;
12294 else if (i2 && GET_CODE (i2) == CALL_INSN)
12295 place = i2;
12296 else
12297 abort ();
12298 break;
12299
12300 case REG_UNUSED:
12301 /* Any clobbers for i3 may still exist, and so we must process
12302 REG_UNUSED notes from that insn.
12303
12304 Any clobbers from i2 or i1 can only exist if they were added by
12305 recog_for_combine. In that case, recog_for_combine created the
12306 necessary REG_UNUSED notes. Trying to keep any original
12307 REG_UNUSED notes from these insns can cause incorrect output
12308 if it is for the same register as the original i3 dest.
12309 In that case, we will notice that the register is set in i3,
12310 and then add a REG_UNUSED note for the destination of i3, which
12311 is wrong. However, it is possible to have REG_UNUSED notes from
12312 i2 or i1 for register which were both used and clobbered, so
12313 we keep notes from i2 or i1 if they will turn into REG_DEAD
12314 notes. */
12315
12316 /* If this register is set or clobbered in I3, put the note there
12317 unless there is one already. */
12318 if (reg_set_p (XEXP (note, 0), PATTERN (i3)))
12319 {
12320 if (from_insn != i3)
12321 break;
12322
12323 if (! (GET_CODE (XEXP (note, 0)) == REG
12324 ? find_regno_note (i3, REG_UNUSED, REGNO (XEXP (note, 0)))
12325 : find_reg_note (i3, REG_UNUSED, XEXP (note, 0))))
12326 place = i3;
12327 }
12328 /* Otherwise, if this register is used by I3, then this register
12329 now dies here, so we must put a REG_DEAD note here unless there
12330 is one already. */
12331 else if (reg_referenced_p (XEXP (note, 0), PATTERN (i3))
12332 && ! (GET_CODE (XEXP (note, 0)) == REG
12333 ? find_regno_note (i3, REG_DEAD,
12334 REGNO (XEXP (note, 0)))
12335 : find_reg_note (i3, REG_DEAD, XEXP (note, 0))))
12336 {
12337 PUT_REG_NOTE_KIND (note, REG_DEAD);
12338 place = i3;
12339 }
12340 break;
12341
12342 case REG_EQUAL:
12343 case REG_EQUIV:
12344 case REG_NOALIAS:
12345 /* These notes say something about results of an insn. We can
12346 only support them if they used to be on I3 in which case they
12347 remain on I3. Otherwise they are ignored.
12348
12349 If the note refers to an expression that is not a constant, we
12350 must also ignore the note since we cannot tell whether the
12351 equivalence is still true. It might be possible to do
12352 slightly better than this (we only have a problem if I2DEST
12353 or I1DEST is present in the expression), but it doesn't
12354 seem worth the trouble. */
12355
12356 if (from_insn == i3
12357 && (XEXP (note, 0) == 0 || CONSTANT_P (XEXP (note, 0))))
12358 place = i3;
12359 break;
12360
12361 case REG_INC:
12362 case REG_NO_CONFLICT:
12363 /* These notes say something about how a register is used. They must
12364 be present on any use of the register in I2 or I3. */
12365 if (reg_mentioned_p (XEXP (note, 0), PATTERN (i3)))
12366 place = i3;
12367
12368 if (i2 && reg_mentioned_p (XEXP (note, 0), PATTERN (i2)))
12369 {
12370 if (place)
12371 place2 = i2;
12372 else
12373 place = i2;
12374 }
12375 break;
12376
12377 case REG_LABEL:
12378 /* This can show up in several ways -- either directly in the
12379 pattern, or hidden off in the constant pool with (or without?)
12380 a REG_EQUAL note. */
12381 /* ??? Ignore the without-reg_equal-note problem for now. */
12382 if (reg_mentioned_p (XEXP (note, 0), PATTERN (i3))
12383 || ((tem = find_reg_note (i3, REG_EQUAL, NULL_RTX))
12384 && GET_CODE (XEXP (tem, 0)) == LABEL_REF
12385 && XEXP (XEXP (tem, 0), 0) == XEXP (note, 0)))
12386 place = i3;
12387
12388 if (i2
12389 && (reg_mentioned_p (XEXP (note, 0), PATTERN (i2))
12390 || ((tem = find_reg_note (i2, REG_EQUAL, NULL_RTX))
12391 && GET_CODE (XEXP (tem, 0)) == LABEL_REF
12392 && XEXP (XEXP (tem, 0), 0) == XEXP (note, 0))))
12393 {
12394 if (place)
12395 place2 = i2;
12396 else
12397 place = i2;
12398 }
12399
12400 /* Don't attach REG_LABEL note to a JUMP_INSN which has
12401 JUMP_LABEL already. Instead, decrement LABEL_NUSES. */
12402 if (place && GET_CODE (place) == JUMP_INSN && JUMP_LABEL (place))
12403 {
12404 if (JUMP_LABEL (place) != XEXP (note, 0))
12405 abort ();
12406 if (GET_CODE (JUMP_LABEL (place)) == CODE_LABEL)
12407 LABEL_NUSES (JUMP_LABEL (place))--;
12408 place = 0;
12409 }
12410 if (place2 && GET_CODE (place2) == JUMP_INSN && JUMP_LABEL (place2))
12411 {
12412 if (JUMP_LABEL (place2) != XEXP (note, 0))
12413 abort ();
12414 if (GET_CODE (JUMP_LABEL (place2)) == CODE_LABEL)
12415 LABEL_NUSES (JUMP_LABEL (place2))--;
12416 place2 = 0;
12417 }
12418 break;
12419
12420 case REG_NONNEG:
12421 case REG_WAS_0:
12422 /* These notes say something about the value of a register prior
12423 to the execution of an insn. It is too much trouble to see
12424 if the note is still correct in all situations. It is better
12425 to simply delete it. */
12426 break;
12427
12428 case REG_RETVAL:
12429 /* If the insn previously containing this note still exists,
12430 put it back where it was. Otherwise move it to the previous
12431 insn. Adjust the corresponding REG_LIBCALL note. */
12432 if (GET_CODE (from_insn) != NOTE)
12433 place = from_insn;
12434 else
12435 {
12436 tem = find_reg_note (XEXP (note, 0), REG_LIBCALL, NULL_RTX);
12437 place = prev_real_insn (from_insn);
12438 if (tem && place)
12439 XEXP (tem, 0) = place;
12440 /* If we're deleting the last remaining instruction of a
12441 libcall sequence, don't add the notes. */
12442 else if (XEXP (note, 0) == from_insn)
12443 tem = place = 0;
12444 }
12445 break;
12446
12447 case REG_LIBCALL:
12448 /* This is handled similarly to REG_RETVAL. */
12449 if (GET_CODE (from_insn) != NOTE)
12450 place = from_insn;
12451 else
12452 {
12453 tem = find_reg_note (XEXP (note, 0), REG_RETVAL, NULL_RTX);
12454 place = next_real_insn (from_insn);
12455 if (tem && place)
12456 XEXP (tem, 0) = place;
12457 /* If we're deleting the last remaining instruction of a
12458 libcall sequence, don't add the notes. */
12459 else if (XEXP (note, 0) == from_insn)
12460 tem = place = 0;
12461 }
12462 break;
12463
12464 case REG_DEAD:
12465 /* If the register is used as an input in I3, it dies there.
12466 Similarly for I2, if it is non-zero and adjacent to I3.
12467
12468 If the register is not used as an input in either I3 or I2
12469 and it is not one of the registers we were supposed to eliminate,
12470 there are two possibilities. We might have a non-adjacent I2
12471 or we might have somehow eliminated an additional register
12472 from a computation. For example, we might have had A & B where
12473 we discover that B will always be zero. In this case we will
12474 eliminate the reference to A.
12475
12476 In both cases, we must search to see if we can find a previous
12477 use of A and put the death note there. */
12478
12479 if (from_insn
12480 && GET_CODE (from_insn) == CALL_INSN
12481 && find_reg_fusage (from_insn, USE, XEXP (note, 0)))
12482 place = from_insn;
12483 else if (reg_referenced_p (XEXP (note, 0), PATTERN (i3)))
12484 place = i3;
12485 else if (i2 != 0 && next_nonnote_insn (i2) == i3
12486 && reg_referenced_p (XEXP (note, 0), PATTERN (i2)))
12487 place = i2;
12488
12489 if (rtx_equal_p (XEXP (note, 0), elim_i2)
12490 || rtx_equal_p (XEXP (note, 0), elim_i1))
12491 break;
12492
12493 if (place == 0)
12494 {
12495 basic_block bb = this_basic_block;
12496
12497 for (tem = PREV_INSN (i3); place == 0; tem = PREV_INSN (tem))
12498 {
12499 if (! INSN_P (tem))
12500 {
12501 if (tem == bb->head)
12502 break;
12503 continue;
12504 }
12505
12506 /* If the register is being set at TEM, see if that is all
12507 TEM is doing. If so, delete TEM. Otherwise, make this
12508 into a REG_UNUSED note instead. */
12509 if (reg_set_p (XEXP (note, 0), PATTERN (tem)))
12510 {
12511 rtx set = single_set (tem);
12512 rtx inner_dest = 0;
12513 #ifdef HAVE_cc0
12514 rtx cc0_setter = NULL_RTX;
12515 #endif
12516
12517 if (set != 0)
12518 for (inner_dest = SET_DEST (set);
12519 (GET_CODE (inner_dest) == STRICT_LOW_PART
12520 || GET_CODE (inner_dest) == SUBREG
12521 || GET_CODE (inner_dest) == ZERO_EXTRACT);
12522 inner_dest = XEXP (inner_dest, 0))
12523 ;
12524
12525 /* Verify that it was the set, and not a clobber that
12526 modified the register.
12527
12528 CC0 targets must be careful to maintain setter/user
12529 pairs. If we cannot delete the setter due to side
12530 effects, mark the user with an UNUSED note instead
12531 of deleting it. */
12532
12533 if (set != 0 && ! side_effects_p (SET_SRC (set))
12534 && rtx_equal_p (XEXP (note, 0), inner_dest)
12535 #ifdef HAVE_cc0
12536 && (! reg_mentioned_p (cc0_rtx, SET_SRC (set))
12537 || ((cc0_setter = prev_cc0_setter (tem)) != NULL
12538 && sets_cc0_p (PATTERN (cc0_setter)) > 0))
12539 #endif
12540 )
12541 {
12542 /* Move the notes and links of TEM elsewhere.
12543 This might delete other dead insns recursively.
12544 First set the pattern to something that won't use
12545 any register. */
12546
12547 PATTERN (tem) = pc_rtx;
12548
12549 distribute_notes (REG_NOTES (tem), tem, tem,
12550 NULL_RTX, NULL_RTX, NULL_RTX);
12551 distribute_links (LOG_LINKS (tem));
12552
12553 PUT_CODE (tem, NOTE);
12554 NOTE_LINE_NUMBER (tem) = NOTE_INSN_DELETED;
12555 NOTE_SOURCE_FILE (tem) = 0;
12556
12557 #ifdef HAVE_cc0
12558 /* Delete the setter too. */
12559 if (cc0_setter)
12560 {
12561 PATTERN (cc0_setter) = pc_rtx;
12562
12563 distribute_notes (REG_NOTES (cc0_setter),
12564 cc0_setter, cc0_setter,
12565 NULL_RTX, NULL_RTX, NULL_RTX);
12566 distribute_links (LOG_LINKS (cc0_setter));
12567
12568 PUT_CODE (cc0_setter, NOTE);
12569 NOTE_LINE_NUMBER (cc0_setter)
12570 = NOTE_INSN_DELETED;
12571 NOTE_SOURCE_FILE (cc0_setter) = 0;
12572 }
12573 #endif
12574 }
12575 /* If the register is both set and used here, put the
12576 REG_DEAD note here, but place a REG_UNUSED note
12577 here too unless there already is one. */
12578 else if (reg_referenced_p (XEXP (note, 0),
12579 PATTERN (tem)))
12580 {
12581 place = tem;
12582
12583 if (! find_regno_note (tem, REG_UNUSED,
12584 REGNO (XEXP (note, 0))))
12585 REG_NOTES (tem)
12586 = gen_rtx_EXPR_LIST (REG_UNUSED, XEXP (note, 0),
12587 REG_NOTES (tem));
12588 }
12589 else
12590 {
12591 PUT_REG_NOTE_KIND (note, REG_UNUSED);
12592
12593 /* If there isn't already a REG_UNUSED note, put one
12594 here. */
12595 if (! find_regno_note (tem, REG_UNUSED,
12596 REGNO (XEXP (note, 0))))
12597 place = tem;
12598 break;
12599 }
12600 }
12601 else if (reg_referenced_p (XEXP (note, 0), PATTERN (tem))
12602 || (GET_CODE (tem) == CALL_INSN
12603 && find_reg_fusage (tem, USE, XEXP (note, 0))))
12604 {
12605 place = tem;
12606
12607 /* If we are doing a 3->2 combination, and we have a
12608 register which formerly died in i3 and was not used
12609 by i2, which now no longer dies in i3 and is used in
12610 i2 but does not die in i2, and place is between i2
12611 and i3, then we may need to move a link from place to
12612 i2. */
12613 if (i2 && INSN_UID (place) <= max_uid_cuid
12614 && INSN_CUID (place) > INSN_CUID (i2)
12615 && from_insn
12616 && INSN_CUID (from_insn) > INSN_CUID (i2)
12617 && reg_referenced_p (XEXP (note, 0), PATTERN (i2)))
12618 {
12619 rtx links = LOG_LINKS (place);
12620 LOG_LINKS (place) = 0;
12621 distribute_links (links);
12622 }
12623 break;
12624 }
12625
12626 if (tem == bb->head)
12627 break;
12628 }
12629
12630 /* We haven't found an insn for the death note and it
12631 is still a REG_DEAD note, but we have hit the beginning
12632 of the block. If the existing life info says the reg
12633 was dead, there's nothing left to do. Otherwise, we'll
12634 need to do a global life update after combine. */
12635 if (REG_NOTE_KIND (note) == REG_DEAD && place == 0
12636 && REGNO_REG_SET_P (bb->global_live_at_start,
12637 REGNO (XEXP (note, 0))))
12638 {
12639 SET_BIT (refresh_blocks, this_basic_block->index);
12640 need_refresh = 1;
12641 }
12642 }
12643
12644 /* If the register is set or already dead at PLACE, we needn't do
12645 anything with this note if it is still a REG_DEAD note.
12646 We can here if it is set at all, not if is it totally replace,
12647 which is what `dead_or_set_p' checks, so also check for it being
12648 set partially. */
12649
12650 if (place && REG_NOTE_KIND (note) == REG_DEAD)
12651 {
12652 unsigned int regno = REGNO (XEXP (note, 0));
12653
12654 /* Similarly, if the instruction on which we want to place
12655 the note is a noop, we'll need do a global live update
12656 after we remove them in delete_noop_moves. */
12657 if (noop_move_p (place))
12658 {
12659 SET_BIT (refresh_blocks, this_basic_block->index);
12660 need_refresh = 1;
12661 }
12662
12663 if (dead_or_set_p (place, XEXP (note, 0))
12664 || reg_bitfield_target_p (XEXP (note, 0), PATTERN (place)))
12665 {
12666 /* Unless the register previously died in PLACE, clear
12667 reg_last_death. [I no longer understand why this is
12668 being done.] */
12669 if (reg_last_death[regno] != place)
12670 reg_last_death[regno] = 0;
12671 place = 0;
12672 }
12673 else
12674 reg_last_death[regno] = place;
12675
12676 /* If this is a death note for a hard reg that is occupying
12677 multiple registers, ensure that we are still using all
12678 parts of the object. If we find a piece of the object
12679 that is unused, we must arrange for an appropriate REG_DEAD
12680 note to be added for it. However, we can't just emit a USE
12681 and tag the note to it, since the register might actually
12682 be dead; so we recourse, and the recursive call then finds
12683 the previous insn that used this register. */
12684
12685 if (place && regno < FIRST_PSEUDO_REGISTER
12686 && HARD_REGNO_NREGS (regno, GET_MODE (XEXP (note, 0))) > 1)
12687 {
12688 unsigned int endregno
12689 = regno + HARD_REGNO_NREGS (regno,
12690 GET_MODE (XEXP (note, 0)));
12691 int all_used = 1;
12692 unsigned int i;
12693
12694 for (i = regno; i < endregno; i++)
12695 if ((! refers_to_regno_p (i, i + 1, PATTERN (place), 0)
12696 && ! find_regno_fusage (place, USE, i))
12697 || dead_or_set_regno_p (place, i))
12698 all_used = 0;
12699
12700 if (! all_used)
12701 {
12702 /* Put only REG_DEAD notes for pieces that are
12703 not already dead or set. */
12704
12705 for (i = regno; i < endregno;
12706 i += HARD_REGNO_NREGS (i, reg_raw_mode[i]))
12707 {
12708 rtx piece = regno_reg_rtx[i];
12709 basic_block bb = this_basic_block;
12710
12711 if (! dead_or_set_p (place, piece)
12712 && ! reg_bitfield_target_p (piece,
12713 PATTERN (place)))
12714 {
12715 rtx new_note
12716 = gen_rtx_EXPR_LIST (REG_DEAD, piece, NULL_RTX);
12717
12718 distribute_notes (new_note, place, place,
12719 NULL_RTX, NULL_RTX, NULL_RTX);
12720 }
12721 else if (! refers_to_regno_p (i, i + 1,
12722 PATTERN (place), 0)
12723 && ! find_regno_fusage (place, USE, i))
12724 for (tem = PREV_INSN (place); ;
12725 tem = PREV_INSN (tem))
12726 {
12727 if (! INSN_P (tem))
12728 {
12729 if (tem == bb->head)
12730 {
12731 SET_BIT (refresh_blocks,
12732 this_basic_block->index);
12733 need_refresh = 1;
12734 break;
12735 }
12736 continue;
12737 }
12738 if (dead_or_set_p (tem, piece)
12739 || reg_bitfield_target_p (piece,
12740 PATTERN (tem)))
12741 {
12742 REG_NOTES (tem)
12743 = gen_rtx_EXPR_LIST (REG_UNUSED, piece,
12744 REG_NOTES (tem));
12745 break;
12746 }
12747 }
12748
12749 }
12750
12751 place = 0;
12752 }
12753 }
12754 }
12755 break;
12756
12757 default:
12758 /* Any other notes should not be present at this point in the
12759 compilation. */
12760 abort ();
12761 }
12762
12763 if (place)
12764 {
12765 XEXP (note, 1) = REG_NOTES (place);
12766 REG_NOTES (place) = note;
12767 }
12768 else if ((REG_NOTE_KIND (note) == REG_DEAD
12769 || REG_NOTE_KIND (note) == REG_UNUSED)
12770 && GET_CODE (XEXP (note, 0)) == REG)
12771 REG_N_DEATHS (REGNO (XEXP (note, 0)))--;
12772
12773 if (place2)
12774 {
12775 if ((REG_NOTE_KIND (note) == REG_DEAD
12776 || REG_NOTE_KIND (note) == REG_UNUSED)
12777 && GET_CODE (XEXP (note, 0)) == REG)
12778 REG_N_DEATHS (REGNO (XEXP (note, 0)))++;
12779
12780 REG_NOTES (place2) = gen_rtx_fmt_ee (GET_CODE (note),
12781 REG_NOTE_KIND (note),
12782 XEXP (note, 0),
12783 REG_NOTES (place2));
12784 }
12785 }
12786 }
12787 \f
12788 /* Similarly to above, distribute the LOG_LINKS that used to be present on
12789 I3, I2, and I1 to new locations. This is also called in one case to
12790 add a link pointing at I3 when I3's destination is changed. */
12791
12792 static void
12793 distribute_links (links)
12794 rtx links;
12795 {
12796 rtx link, next_link;
12797
12798 for (link = links; link; link = next_link)
12799 {
12800 rtx place = 0;
12801 rtx insn;
12802 rtx set, reg;
12803
12804 next_link = XEXP (link, 1);
12805
12806 /* If the insn that this link points to is a NOTE or isn't a single
12807 set, ignore it. In the latter case, it isn't clear what we
12808 can do other than ignore the link, since we can't tell which
12809 register it was for. Such links wouldn't be used by combine
12810 anyway.
12811
12812 It is not possible for the destination of the target of the link to
12813 have been changed by combine. The only potential of this is if we
12814 replace I3, I2, and I1 by I3 and I2. But in that case the
12815 destination of I2 also remains unchanged. */
12816
12817 if (GET_CODE (XEXP (link, 0)) == NOTE
12818 || (set = single_set (XEXP (link, 0))) == 0)
12819 continue;
12820
12821 reg = SET_DEST (set);
12822 while (GET_CODE (reg) == SUBREG || GET_CODE (reg) == ZERO_EXTRACT
12823 || GET_CODE (reg) == SIGN_EXTRACT
12824 || GET_CODE (reg) == STRICT_LOW_PART)
12825 reg = XEXP (reg, 0);
12826
12827 /* A LOG_LINK is defined as being placed on the first insn that uses
12828 a register and points to the insn that sets the register. Start
12829 searching at the next insn after the target of the link and stop
12830 when we reach a set of the register or the end of the basic block.
12831
12832 Note that this correctly handles the link that used to point from
12833 I3 to I2. Also note that not much searching is typically done here
12834 since most links don't point very far away. */
12835
12836 for (insn = NEXT_INSN (XEXP (link, 0));
12837 (insn && (this_basic_block->next_bb == EXIT_BLOCK_PTR
12838 || this_basic_block->next_bb->head != insn));
12839 insn = NEXT_INSN (insn))
12840 if (INSN_P (insn) && reg_overlap_mentioned_p (reg, PATTERN (insn)))
12841 {
12842 if (reg_referenced_p (reg, PATTERN (insn)))
12843 place = insn;
12844 break;
12845 }
12846 else if (GET_CODE (insn) == CALL_INSN
12847 && find_reg_fusage (insn, USE, reg))
12848 {
12849 place = insn;
12850 break;
12851 }
12852
12853 /* If we found a place to put the link, place it there unless there
12854 is already a link to the same insn as LINK at that point. */
12855
12856 if (place)
12857 {
12858 rtx link2;
12859
12860 for (link2 = LOG_LINKS (place); link2; link2 = XEXP (link2, 1))
12861 if (XEXP (link2, 0) == XEXP (link, 0))
12862 break;
12863
12864 if (link2 == 0)
12865 {
12866 XEXP (link, 1) = LOG_LINKS (place);
12867 LOG_LINKS (place) = link;
12868
12869 /* Set added_links_insn to the earliest insn we added a
12870 link to. */
12871 if (added_links_insn == 0
12872 || INSN_CUID (added_links_insn) > INSN_CUID (place))
12873 added_links_insn = place;
12874 }
12875 }
12876 }
12877 }
12878 \f
12879 /* Compute INSN_CUID for INSN, which is an insn made by combine. */
12880
12881 static int
12882 insn_cuid (insn)
12883 rtx insn;
12884 {
12885 while (insn != 0 && INSN_UID (insn) > max_uid_cuid
12886 && GET_CODE (insn) == INSN && GET_CODE (PATTERN (insn)) == USE)
12887 insn = NEXT_INSN (insn);
12888
12889 if (INSN_UID (insn) > max_uid_cuid)
12890 abort ();
12891
12892 return INSN_CUID (insn);
12893 }
12894 \f
12895 void
12896 dump_combine_stats (file)
12897 FILE *file;
12898 {
12899 fnotice
12900 (file,
12901 ";; Combiner statistics: %d attempts, %d substitutions (%d requiring new space),\n;; %d successes.\n\n",
12902 combine_attempts, combine_merges, combine_extras, combine_successes);
12903 }
12904
12905 void
12906 dump_combine_total_stats (file)
12907 FILE *file;
12908 {
12909 fnotice
12910 (file,
12911 "\n;; Combiner totals: %d attempts, %d substitutions (%d requiring new space),\n;; %d successes.\n",
12912 total_attempts, total_merges, total_extras, total_successes);
12913 }