[Ada] Argument_String_To_List creates empty items from whitespace
[gcc.git] / gcc / combine.c
1 /* Optimize by combining instructions for GNU compiler.
2 Copyright (C) 1987-2018 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 /* This module is essentially the "combiner" phase of the U. of Arizona
21 Portable Optimizer, but redone to work on our list-structured
22 representation for RTL instead of their string representation.
23
24 The LOG_LINKS of each insn identify the most recent assignment
25 to each REG used in the insn. It is a list of previous insns,
26 each of which contains a SET for a REG that is used in this insn
27 and not used or set in between. LOG_LINKs never cross basic blocks.
28 They were set up by the preceding pass (lifetime analysis).
29
30 We try to combine each pair of insns joined by a logical link.
31 We also try to combine triplets of insns A, B and C when C has
32 a link back to B and B has a link back to A. Likewise for a
33 small number of quadruplets of insns A, B, C and D for which
34 there's high likelihood of success.
35
36 LOG_LINKS does not have links for use of the CC0. They don't
37 need to, because the insn that sets the CC0 is always immediately
38 before the insn that tests it. So we always regard a branch
39 insn as having a logical link to the preceding insn. The same is true
40 for an insn explicitly using CC0.
41
42 We check (with modified_between_p) to avoid combining in such a way
43 as to move a computation to a place where its value would be different.
44
45 Combination is done by mathematically substituting the previous
46 insn(s) values for the regs they set into the expressions in
47 the later insns that refer to these regs. If the result is a valid insn
48 for our target machine, according to the machine description,
49 we install it, delete the earlier insns, and update the data flow
50 information (LOG_LINKS and REG_NOTES) for what we did.
51
52 There are a few exceptions where the dataflow information isn't
53 completely updated (however this is only a local issue since it is
54 regenerated before the next pass that uses it):
55
56 - reg_live_length is not updated
57 - reg_n_refs is not adjusted in the rare case when a register is
58 no longer required in a computation
59 - there are extremely rare cases (see distribute_notes) when a
60 REG_DEAD note is lost
61 - a LOG_LINKS entry that refers to an insn with multiple SETs may be
62 removed because there is no way to know which register it was
63 linking
64
65 To simplify substitution, we combine only when the earlier insn(s)
66 consist of only a single assignment. To simplify updating afterward,
67 we never combine when a subroutine call appears in the middle.
68
69 Since we do not represent assignments to CC0 explicitly except when that
70 is all an insn does, there is no LOG_LINKS entry in an insn that uses
71 the condition code for the insn that set the condition code.
72 Fortunately, these two insns must be consecutive.
73 Therefore, every JUMP_INSN is taken to have an implicit logical link
74 to the preceding insn. This is not quite right, since non-jumps can
75 also use the condition code; but in practice such insns would not
76 combine anyway. */
77
78 #include "config.h"
79 #include "system.h"
80 #include "coretypes.h"
81 #include "backend.h"
82 #include "target.h"
83 #include "rtl.h"
84 #include "tree.h"
85 #include "cfghooks.h"
86 #include "predict.h"
87 #include "df.h"
88 #include "memmodel.h"
89 #include "tm_p.h"
90 #include "optabs.h"
91 #include "regs.h"
92 #include "emit-rtl.h"
93 #include "recog.h"
94 #include "cgraph.h"
95 #include "stor-layout.h"
96 #include "cfgrtl.h"
97 #include "cfgcleanup.h"
98 /* Include expr.h after insn-config.h so we get HAVE_conditional_move. */
99 #include "explow.h"
100 #include "insn-attr.h"
101 #include "rtlhooks-def.h"
102 #include "params.h"
103 #include "tree-pass.h"
104 #include "valtrack.h"
105 #include "rtl-iter.h"
106 #include "print-rtl.h"
107
108 /* Number of attempts to combine instructions in this function. */
109
110 static int combine_attempts;
111
112 /* Number of attempts that got as far as substitution in this function. */
113
114 static int combine_merges;
115
116 /* Number of instructions combined with added SETs in this function. */
117
118 static int combine_extras;
119
120 /* Number of instructions combined in this function. */
121
122 static int combine_successes;
123
124 /* Totals over entire compilation. */
125
126 static int total_attempts, total_merges, total_extras, total_successes;
127
128 /* combine_instructions may try to replace the right hand side of the
129 second instruction with the value of an associated REG_EQUAL note
130 before throwing it at try_combine. That is problematic when there
131 is a REG_DEAD note for a register used in the old right hand side
132 and can cause distribute_notes to do wrong things. This is the
133 second instruction if it has been so modified, null otherwise. */
134
135 static rtx_insn *i2mod;
136
137 /* When I2MOD is nonnull, this is a copy of the old right hand side. */
138
139 static rtx i2mod_old_rhs;
140
141 /* When I2MOD is nonnull, this is a copy of the new right hand side. */
142
143 static rtx i2mod_new_rhs;
144 \f
145 struct reg_stat_type {
146 /* Record last point of death of (hard or pseudo) register n. */
147 rtx_insn *last_death;
148
149 /* Record last point of modification of (hard or pseudo) register n. */
150 rtx_insn *last_set;
151
152 /* The next group of fields allows the recording of the last value assigned
153 to (hard or pseudo) register n. We use this information to see if an
154 operation being processed is redundant given a prior operation performed
155 on the register. For example, an `and' with a constant is redundant if
156 all the zero bits are already known to be turned off.
157
158 We use an approach similar to that used by cse, but change it in the
159 following ways:
160
161 (1) We do not want to reinitialize at each label.
162 (2) It is useful, but not critical, to know the actual value assigned
163 to a register. Often just its form is helpful.
164
165 Therefore, we maintain the following fields:
166
167 last_set_value the last value assigned
168 last_set_label records the value of label_tick when the
169 register was assigned
170 last_set_table_tick records the value of label_tick when a
171 value using the register is assigned
172 last_set_invalid set to nonzero when it is not valid
173 to use the value of this register in some
174 register's value
175
176 To understand the usage of these tables, it is important to understand
177 the distinction between the value in last_set_value being valid and
178 the register being validly contained in some other expression in the
179 table.
180
181 (The next two parameters are out of date).
182
183 reg_stat[i].last_set_value is valid if it is nonzero, and either
184 reg_n_sets[i] is 1 or reg_stat[i].last_set_label == label_tick.
185
186 Register I may validly appear in any expression returned for the value
187 of another register if reg_n_sets[i] is 1. It may also appear in the
188 value for register J if reg_stat[j].last_set_invalid is zero, or
189 reg_stat[i].last_set_label < reg_stat[j].last_set_label.
190
191 If an expression is found in the table containing a register which may
192 not validly appear in an expression, the register is replaced by
193 something that won't match, (clobber (const_int 0)). */
194
195 /* Record last value assigned to (hard or pseudo) register n. */
196
197 rtx last_set_value;
198
199 /* Record the value of label_tick when an expression involving register n
200 is placed in last_set_value. */
201
202 int last_set_table_tick;
203
204 /* Record the value of label_tick when the value for register n is placed in
205 last_set_value. */
206
207 int last_set_label;
208
209 /* These fields are maintained in parallel with last_set_value and are
210 used to store the mode in which the register was last set, the bits
211 that were known to be zero when it was last set, and the number of
212 sign bits copies it was known to have when it was last set. */
213
214 unsigned HOST_WIDE_INT last_set_nonzero_bits;
215 char last_set_sign_bit_copies;
216 ENUM_BITFIELD(machine_mode) last_set_mode : 8;
217
218 /* Set nonzero if references to register n in expressions should not be
219 used. last_set_invalid is set nonzero when this register is being
220 assigned to and last_set_table_tick == label_tick. */
221
222 char last_set_invalid;
223
224 /* Some registers that are set more than once and used in more than one
225 basic block are nevertheless always set in similar ways. For example,
226 a QImode register may be loaded from memory in two places on a machine
227 where byte loads zero extend.
228
229 We record in the following fields if a register has some leading bits
230 that are always equal to the sign bit, and what we know about the
231 nonzero bits of a register, specifically which bits are known to be
232 zero.
233
234 If an entry is zero, it means that we don't know anything special. */
235
236 unsigned char sign_bit_copies;
237
238 unsigned HOST_WIDE_INT nonzero_bits;
239
240 /* Record the value of the label_tick when the last truncation
241 happened. The field truncated_to_mode is only valid if
242 truncation_label == label_tick. */
243
244 int truncation_label;
245
246 /* Record the last truncation seen for this register. If truncation
247 is not a nop to this mode we might be able to save an explicit
248 truncation if we know that value already contains a truncated
249 value. */
250
251 ENUM_BITFIELD(machine_mode) truncated_to_mode : 8;
252 };
253
254
255 static vec<reg_stat_type> reg_stat;
256
257 /* One plus the highest pseudo for which we track REG_N_SETS.
258 regstat_init_n_sets_and_refs allocates the array for REG_N_SETS just once,
259 but during combine_split_insns new pseudos can be created. As we don't have
260 updated DF information in that case, it is hard to initialize the array
261 after growing. The combiner only cares about REG_N_SETS (regno) == 1,
262 so instead of growing the arrays, just assume all newly created pseudos
263 during combine might be set multiple times. */
264
265 static unsigned int reg_n_sets_max;
266
267 /* Record the luid of the last insn that invalidated memory
268 (anything that writes memory, and subroutine calls, but not pushes). */
269
270 static int mem_last_set;
271
272 /* Record the luid of the last CALL_INSN
273 so we can tell whether a potential combination crosses any calls. */
274
275 static int last_call_luid;
276
277 /* When `subst' is called, this is the insn that is being modified
278 (by combining in a previous insn). The PATTERN of this insn
279 is still the old pattern partially modified and it should not be
280 looked at, but this may be used to examine the successors of the insn
281 to judge whether a simplification is valid. */
282
283 static rtx_insn *subst_insn;
284
285 /* This is the lowest LUID that `subst' is currently dealing with.
286 get_last_value will not return a value if the register was set at or
287 after this LUID. If not for this mechanism, we could get confused if
288 I2 or I1 in try_combine were an insn that used the old value of a register
289 to obtain a new value. In that case, we might erroneously get the
290 new value of the register when we wanted the old one. */
291
292 static int subst_low_luid;
293
294 /* This contains any hard registers that are used in newpat; reg_dead_at_p
295 must consider all these registers to be always live. */
296
297 static HARD_REG_SET newpat_used_regs;
298
299 /* This is an insn to which a LOG_LINKS entry has been added. If this
300 insn is the earlier than I2 or I3, combine should rescan starting at
301 that location. */
302
303 static rtx_insn *added_links_insn;
304
305 /* And similarly, for notes. */
306
307 static rtx_insn *added_notes_insn;
308
309 /* Basic block in which we are performing combines. */
310 static basic_block this_basic_block;
311 static bool optimize_this_for_speed_p;
312
313 \f
314 /* Length of the currently allocated uid_insn_cost array. */
315
316 static int max_uid_known;
317
318 /* The following array records the insn_cost for every insn
319 in the instruction stream. */
320
321 static int *uid_insn_cost;
322
323 /* The following array records the LOG_LINKS for every insn in the
324 instruction stream as struct insn_link pointers. */
325
326 struct insn_link {
327 rtx_insn *insn;
328 unsigned int regno;
329 struct insn_link *next;
330 };
331
332 static struct insn_link **uid_log_links;
333
334 static inline int
335 insn_uid_check (const_rtx insn)
336 {
337 int uid = INSN_UID (insn);
338 gcc_checking_assert (uid <= max_uid_known);
339 return uid;
340 }
341
342 #define INSN_COST(INSN) (uid_insn_cost[insn_uid_check (INSN)])
343 #define LOG_LINKS(INSN) (uid_log_links[insn_uid_check (INSN)])
344
345 #define FOR_EACH_LOG_LINK(L, INSN) \
346 for ((L) = LOG_LINKS (INSN); (L); (L) = (L)->next)
347
348 /* Links for LOG_LINKS are allocated from this obstack. */
349
350 static struct obstack insn_link_obstack;
351
352 /* Allocate a link. */
353
354 static inline struct insn_link *
355 alloc_insn_link (rtx_insn *insn, unsigned int regno, struct insn_link *next)
356 {
357 struct insn_link *l
358 = (struct insn_link *) obstack_alloc (&insn_link_obstack,
359 sizeof (struct insn_link));
360 l->insn = insn;
361 l->regno = regno;
362 l->next = next;
363 return l;
364 }
365
366 /* Incremented for each basic block. */
367
368 static int label_tick;
369
370 /* Reset to label_tick for each extended basic block in scanning order. */
371
372 static int label_tick_ebb_start;
373
374 /* Mode used to compute significance in reg_stat[].nonzero_bits. It is the
375 largest integer mode that can fit in HOST_BITS_PER_WIDE_INT. */
376
377 static scalar_int_mode nonzero_bits_mode;
378
379 /* Nonzero when reg_stat[].nonzero_bits and reg_stat[].sign_bit_copies can
380 be safely used. It is zero while computing them and after combine has
381 completed. This former test prevents propagating values based on
382 previously set values, which can be incorrect if a variable is modified
383 in a loop. */
384
385 static int nonzero_sign_valid;
386
387 \f
388 /* Record one modification to rtl structure
389 to be undone by storing old_contents into *where. */
390
391 enum undo_kind { UNDO_RTX, UNDO_INT, UNDO_MODE, UNDO_LINKS };
392
393 struct undo
394 {
395 struct undo *next;
396 enum undo_kind kind;
397 union { rtx r; int i; machine_mode m; struct insn_link *l; } old_contents;
398 union { rtx *r; int *i; struct insn_link **l; } where;
399 };
400
401 /* Record a bunch of changes to be undone, up to MAX_UNDO of them.
402 num_undo says how many are currently recorded.
403
404 other_insn is nonzero if we have modified some other insn in the process
405 of working on subst_insn. It must be verified too. */
406
407 struct undobuf
408 {
409 struct undo *undos;
410 struct undo *frees;
411 rtx_insn *other_insn;
412 };
413
414 static struct undobuf undobuf;
415
416 /* Number of times the pseudo being substituted for
417 was found and replaced. */
418
419 static int n_occurrences;
420
421 static rtx reg_nonzero_bits_for_combine (const_rtx, scalar_int_mode,
422 scalar_int_mode,
423 unsigned HOST_WIDE_INT *);
424 static rtx reg_num_sign_bit_copies_for_combine (const_rtx, scalar_int_mode,
425 scalar_int_mode,
426 unsigned int *);
427 static void do_SUBST (rtx *, rtx);
428 static void do_SUBST_INT (int *, int);
429 static void init_reg_last (void);
430 static void setup_incoming_promotions (rtx_insn *);
431 static void set_nonzero_bits_and_sign_copies (rtx, const_rtx, void *);
432 static int cant_combine_insn_p (rtx_insn *);
433 static int can_combine_p (rtx_insn *, rtx_insn *, rtx_insn *, rtx_insn *,
434 rtx_insn *, rtx_insn *, rtx *, rtx *);
435 static int combinable_i3pat (rtx_insn *, rtx *, rtx, rtx, rtx, int, int, rtx *);
436 static int contains_muldiv (rtx);
437 static rtx_insn *try_combine (rtx_insn *, rtx_insn *, rtx_insn *, rtx_insn *,
438 int *, rtx_insn *);
439 static void undo_all (void);
440 static void undo_commit (void);
441 static rtx *find_split_point (rtx *, rtx_insn *, bool);
442 static rtx subst (rtx, rtx, rtx, int, int, int);
443 static rtx combine_simplify_rtx (rtx, machine_mode, int, int);
444 static rtx simplify_if_then_else (rtx);
445 static rtx simplify_set (rtx);
446 static rtx simplify_logical (rtx);
447 static rtx expand_compound_operation (rtx);
448 static const_rtx expand_field_assignment (const_rtx);
449 static rtx make_extraction (machine_mode, rtx, HOST_WIDE_INT,
450 rtx, unsigned HOST_WIDE_INT, int, int, int);
451 static int get_pos_from_mask (unsigned HOST_WIDE_INT,
452 unsigned HOST_WIDE_INT *);
453 static rtx canon_reg_for_combine (rtx, rtx);
454 static rtx force_int_to_mode (rtx, scalar_int_mode, scalar_int_mode,
455 scalar_int_mode, unsigned HOST_WIDE_INT, int);
456 static rtx force_to_mode (rtx, machine_mode,
457 unsigned HOST_WIDE_INT, int);
458 static rtx if_then_else_cond (rtx, rtx *, rtx *);
459 static rtx known_cond (rtx, enum rtx_code, rtx, rtx);
460 static int rtx_equal_for_field_assignment_p (rtx, rtx, bool = false);
461 static rtx make_field_assignment (rtx);
462 static rtx apply_distributive_law (rtx);
463 static rtx distribute_and_simplify_rtx (rtx, int);
464 static rtx simplify_and_const_int_1 (scalar_int_mode, rtx,
465 unsigned HOST_WIDE_INT);
466 static rtx simplify_and_const_int (rtx, scalar_int_mode, rtx,
467 unsigned HOST_WIDE_INT);
468 static int merge_outer_ops (enum rtx_code *, HOST_WIDE_INT *, enum rtx_code,
469 HOST_WIDE_INT, machine_mode, int *);
470 static rtx simplify_shift_const_1 (enum rtx_code, machine_mode, rtx, int);
471 static rtx simplify_shift_const (rtx, enum rtx_code, machine_mode, rtx,
472 int);
473 static int recog_for_combine (rtx *, rtx_insn *, rtx *);
474 static rtx gen_lowpart_for_combine (machine_mode, rtx);
475 static enum rtx_code simplify_compare_const (enum rtx_code, machine_mode,
476 rtx, rtx *);
477 static enum rtx_code simplify_comparison (enum rtx_code, rtx *, rtx *);
478 static void update_table_tick (rtx);
479 static void record_value_for_reg (rtx, rtx_insn *, rtx);
480 static void check_promoted_subreg (rtx_insn *, rtx);
481 static void record_dead_and_set_regs_1 (rtx, const_rtx, void *);
482 static void record_dead_and_set_regs (rtx_insn *);
483 static int get_last_value_validate (rtx *, rtx_insn *, int, int);
484 static rtx get_last_value (const_rtx);
485 static void reg_dead_at_p_1 (rtx, const_rtx, void *);
486 static int reg_dead_at_p (rtx, rtx_insn *);
487 static void move_deaths (rtx, rtx, int, rtx_insn *, rtx *);
488 static int reg_bitfield_target_p (rtx, rtx);
489 static void distribute_notes (rtx, rtx_insn *, rtx_insn *, rtx_insn *, rtx, rtx, rtx);
490 static void distribute_links (struct insn_link *);
491 static void mark_used_regs_combine (rtx);
492 static void record_promoted_value (rtx_insn *, rtx);
493 static bool unmentioned_reg_p (rtx, rtx);
494 static void record_truncated_values (rtx *, void *);
495 static bool reg_truncated_to_mode (machine_mode, const_rtx);
496 static rtx gen_lowpart_or_truncate (machine_mode, rtx);
497 \f
498
499 /* It is not safe to use ordinary gen_lowpart in combine.
500 See comments in gen_lowpart_for_combine. */
501 #undef RTL_HOOKS_GEN_LOWPART
502 #define RTL_HOOKS_GEN_LOWPART gen_lowpart_for_combine
503
504 /* Our implementation of gen_lowpart never emits a new pseudo. */
505 #undef RTL_HOOKS_GEN_LOWPART_NO_EMIT
506 #define RTL_HOOKS_GEN_LOWPART_NO_EMIT gen_lowpart_for_combine
507
508 #undef RTL_HOOKS_REG_NONZERO_REG_BITS
509 #define RTL_HOOKS_REG_NONZERO_REG_BITS reg_nonzero_bits_for_combine
510
511 #undef RTL_HOOKS_REG_NUM_SIGN_BIT_COPIES
512 #define RTL_HOOKS_REG_NUM_SIGN_BIT_COPIES reg_num_sign_bit_copies_for_combine
513
514 #undef RTL_HOOKS_REG_TRUNCATED_TO_MODE
515 #define RTL_HOOKS_REG_TRUNCATED_TO_MODE reg_truncated_to_mode
516
517 static const struct rtl_hooks combine_rtl_hooks = RTL_HOOKS_INITIALIZER;
518
519 \f
520 /* Convenience wrapper for the canonicalize_comparison target hook.
521 Target hooks cannot use enum rtx_code. */
522 static inline void
523 target_canonicalize_comparison (enum rtx_code *code, rtx *op0, rtx *op1,
524 bool op0_preserve_value)
525 {
526 int code_int = (int)*code;
527 targetm.canonicalize_comparison (&code_int, op0, op1, op0_preserve_value);
528 *code = (enum rtx_code)code_int;
529 }
530
531 /* Try to split PATTERN found in INSN. This returns NULL_RTX if
532 PATTERN can not be split. Otherwise, it returns an insn sequence.
533 This is a wrapper around split_insns which ensures that the
534 reg_stat vector is made larger if the splitter creates a new
535 register. */
536
537 static rtx_insn *
538 combine_split_insns (rtx pattern, rtx_insn *insn)
539 {
540 rtx_insn *ret;
541 unsigned int nregs;
542
543 ret = split_insns (pattern, insn);
544 nregs = max_reg_num ();
545 if (nregs > reg_stat.length ())
546 reg_stat.safe_grow_cleared (nregs);
547 return ret;
548 }
549
550 /* This is used by find_single_use to locate an rtx in LOC that
551 contains exactly one use of DEST, which is typically either a REG
552 or CC0. It returns a pointer to the innermost rtx expression
553 containing DEST. Appearances of DEST that are being used to
554 totally replace it are not counted. */
555
556 static rtx *
557 find_single_use_1 (rtx dest, rtx *loc)
558 {
559 rtx x = *loc;
560 enum rtx_code code = GET_CODE (x);
561 rtx *result = NULL;
562 rtx *this_result;
563 int i;
564 const char *fmt;
565
566 switch (code)
567 {
568 case CONST:
569 case LABEL_REF:
570 case SYMBOL_REF:
571 CASE_CONST_ANY:
572 case CLOBBER:
573 return 0;
574
575 case SET:
576 /* If the destination is anything other than CC0, PC, a REG or a SUBREG
577 of a REG that occupies all of the REG, the insn uses DEST if
578 it is mentioned in the destination or the source. Otherwise, we
579 need just check the source. */
580 if (GET_CODE (SET_DEST (x)) != CC0
581 && GET_CODE (SET_DEST (x)) != PC
582 && !REG_P (SET_DEST (x))
583 && ! (GET_CODE (SET_DEST (x)) == SUBREG
584 && REG_P (SUBREG_REG (SET_DEST (x)))
585 && !read_modify_subreg_p (SET_DEST (x))))
586 break;
587
588 return find_single_use_1 (dest, &SET_SRC (x));
589
590 case MEM:
591 case SUBREG:
592 return find_single_use_1 (dest, &XEXP (x, 0));
593
594 default:
595 break;
596 }
597
598 /* If it wasn't one of the common cases above, check each expression and
599 vector of this code. Look for a unique usage of DEST. */
600
601 fmt = GET_RTX_FORMAT (code);
602 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
603 {
604 if (fmt[i] == 'e')
605 {
606 if (dest == XEXP (x, i)
607 || (REG_P (dest) && REG_P (XEXP (x, i))
608 && REGNO (dest) == REGNO (XEXP (x, i))))
609 this_result = loc;
610 else
611 this_result = find_single_use_1 (dest, &XEXP (x, i));
612
613 if (result == NULL)
614 result = this_result;
615 else if (this_result)
616 /* Duplicate usage. */
617 return NULL;
618 }
619 else if (fmt[i] == 'E')
620 {
621 int j;
622
623 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
624 {
625 if (XVECEXP (x, i, j) == dest
626 || (REG_P (dest)
627 && REG_P (XVECEXP (x, i, j))
628 && REGNO (XVECEXP (x, i, j)) == REGNO (dest)))
629 this_result = loc;
630 else
631 this_result = find_single_use_1 (dest, &XVECEXP (x, i, j));
632
633 if (result == NULL)
634 result = this_result;
635 else if (this_result)
636 return NULL;
637 }
638 }
639 }
640
641 return result;
642 }
643
644
645 /* See if DEST, produced in INSN, is used only a single time in the
646 sequel. If so, return a pointer to the innermost rtx expression in which
647 it is used.
648
649 If PLOC is nonzero, *PLOC is set to the insn containing the single use.
650
651 If DEST is cc0_rtx, we look only at the next insn. In that case, we don't
652 care about REG_DEAD notes or LOG_LINKS.
653
654 Otherwise, we find the single use by finding an insn that has a
655 LOG_LINKS pointing at INSN and has a REG_DEAD note for DEST. If DEST is
656 only referenced once in that insn, we know that it must be the first
657 and last insn referencing DEST. */
658
659 static rtx *
660 find_single_use (rtx dest, rtx_insn *insn, rtx_insn **ploc)
661 {
662 basic_block bb;
663 rtx_insn *next;
664 rtx *result;
665 struct insn_link *link;
666
667 if (dest == cc0_rtx)
668 {
669 next = NEXT_INSN (insn);
670 if (next == 0
671 || (!NONJUMP_INSN_P (next) && !JUMP_P (next)))
672 return 0;
673
674 result = find_single_use_1 (dest, &PATTERN (next));
675 if (result && ploc)
676 *ploc = next;
677 return result;
678 }
679
680 if (!REG_P (dest))
681 return 0;
682
683 bb = BLOCK_FOR_INSN (insn);
684 for (next = NEXT_INSN (insn);
685 next && BLOCK_FOR_INSN (next) == bb;
686 next = NEXT_INSN (next))
687 if (NONDEBUG_INSN_P (next) && dead_or_set_p (next, dest))
688 {
689 FOR_EACH_LOG_LINK (link, next)
690 if (link->insn == insn && link->regno == REGNO (dest))
691 break;
692
693 if (link)
694 {
695 result = find_single_use_1 (dest, &PATTERN (next));
696 if (ploc)
697 *ploc = next;
698 return result;
699 }
700 }
701
702 return 0;
703 }
704 \f
705 /* Substitute NEWVAL, an rtx expression, into INTO, a place in some
706 insn. The substitution can be undone by undo_all. If INTO is already
707 set to NEWVAL, do not record this change. Because computing NEWVAL might
708 also call SUBST, we have to compute it before we put anything into
709 the undo table. */
710
711 static void
712 do_SUBST (rtx *into, rtx newval)
713 {
714 struct undo *buf;
715 rtx oldval = *into;
716
717 if (oldval == newval)
718 return;
719
720 /* We'd like to catch as many invalid transformations here as
721 possible. Unfortunately, there are way too many mode changes
722 that are perfectly valid, so we'd waste too much effort for
723 little gain doing the checks here. Focus on catching invalid
724 transformations involving integer constants. */
725 if (GET_MODE_CLASS (GET_MODE (oldval)) == MODE_INT
726 && CONST_INT_P (newval))
727 {
728 /* Sanity check that we're replacing oldval with a CONST_INT
729 that is a valid sign-extension for the original mode. */
730 gcc_assert (INTVAL (newval)
731 == trunc_int_for_mode (INTVAL (newval), GET_MODE (oldval)));
732
733 /* Replacing the operand of a SUBREG or a ZERO_EXTEND with a
734 CONST_INT is not valid, because after the replacement, the
735 original mode would be gone. Unfortunately, we can't tell
736 when do_SUBST is called to replace the operand thereof, so we
737 perform this test on oldval instead, checking whether an
738 invalid replacement took place before we got here. */
739 gcc_assert (!(GET_CODE (oldval) == SUBREG
740 && CONST_INT_P (SUBREG_REG (oldval))));
741 gcc_assert (!(GET_CODE (oldval) == ZERO_EXTEND
742 && CONST_INT_P (XEXP (oldval, 0))));
743 }
744
745 if (undobuf.frees)
746 buf = undobuf.frees, undobuf.frees = buf->next;
747 else
748 buf = XNEW (struct undo);
749
750 buf->kind = UNDO_RTX;
751 buf->where.r = into;
752 buf->old_contents.r = oldval;
753 *into = newval;
754
755 buf->next = undobuf.undos, undobuf.undos = buf;
756 }
757
758 #define SUBST(INTO, NEWVAL) do_SUBST (&(INTO), (NEWVAL))
759
760 /* Similar to SUBST, but NEWVAL is an int expression. Note that substitution
761 for the value of a HOST_WIDE_INT value (including CONST_INT) is
762 not safe. */
763
764 static void
765 do_SUBST_INT (int *into, int newval)
766 {
767 struct undo *buf;
768 int oldval = *into;
769
770 if (oldval == newval)
771 return;
772
773 if (undobuf.frees)
774 buf = undobuf.frees, undobuf.frees = buf->next;
775 else
776 buf = XNEW (struct undo);
777
778 buf->kind = UNDO_INT;
779 buf->where.i = into;
780 buf->old_contents.i = oldval;
781 *into = newval;
782
783 buf->next = undobuf.undos, undobuf.undos = buf;
784 }
785
786 #define SUBST_INT(INTO, NEWVAL) do_SUBST_INT (&(INTO), (NEWVAL))
787
788 /* Similar to SUBST, but just substitute the mode. This is used when
789 changing the mode of a pseudo-register, so that any other
790 references to the entry in the regno_reg_rtx array will change as
791 well. */
792
793 static void
794 do_SUBST_MODE (rtx *into, machine_mode newval)
795 {
796 struct undo *buf;
797 machine_mode oldval = GET_MODE (*into);
798
799 if (oldval == newval)
800 return;
801
802 if (undobuf.frees)
803 buf = undobuf.frees, undobuf.frees = buf->next;
804 else
805 buf = XNEW (struct undo);
806
807 buf->kind = UNDO_MODE;
808 buf->where.r = into;
809 buf->old_contents.m = oldval;
810 adjust_reg_mode (*into, newval);
811
812 buf->next = undobuf.undos, undobuf.undos = buf;
813 }
814
815 #define SUBST_MODE(INTO, NEWVAL) do_SUBST_MODE (&(INTO), (NEWVAL))
816
817 /* Similar to SUBST, but NEWVAL is a LOG_LINKS expression. */
818
819 static void
820 do_SUBST_LINK (struct insn_link **into, struct insn_link *newval)
821 {
822 struct undo *buf;
823 struct insn_link * oldval = *into;
824
825 if (oldval == newval)
826 return;
827
828 if (undobuf.frees)
829 buf = undobuf.frees, undobuf.frees = buf->next;
830 else
831 buf = XNEW (struct undo);
832
833 buf->kind = UNDO_LINKS;
834 buf->where.l = into;
835 buf->old_contents.l = oldval;
836 *into = newval;
837
838 buf->next = undobuf.undos, undobuf.undos = buf;
839 }
840
841 #define SUBST_LINK(oldval, newval) do_SUBST_LINK (&oldval, newval)
842 \f
843 /* Subroutine of try_combine. Determine whether the replacement patterns
844 NEWPAT, NEWI2PAT and NEWOTHERPAT are cheaper according to insn_cost
845 than the original sequence I0, I1, I2, I3 and undobuf.other_insn. Note
846 that I0, I1 and/or NEWI2PAT may be NULL_RTX. Similarly, NEWOTHERPAT and
847 undobuf.other_insn may also both be NULL_RTX. Return false if the cost
848 of all the instructions can be estimated and the replacements are more
849 expensive than the original sequence. */
850
851 static bool
852 combine_validate_cost (rtx_insn *i0, rtx_insn *i1, rtx_insn *i2, rtx_insn *i3,
853 rtx newpat, rtx newi2pat, rtx newotherpat)
854 {
855 int i0_cost, i1_cost, i2_cost, i3_cost;
856 int new_i2_cost, new_i3_cost;
857 int old_cost, new_cost;
858
859 /* Lookup the original insn_costs. */
860 i2_cost = INSN_COST (i2);
861 i3_cost = INSN_COST (i3);
862
863 if (i1)
864 {
865 i1_cost = INSN_COST (i1);
866 if (i0)
867 {
868 i0_cost = INSN_COST (i0);
869 old_cost = (i0_cost > 0 && i1_cost > 0 && i2_cost > 0 && i3_cost > 0
870 ? i0_cost + i1_cost + i2_cost + i3_cost : 0);
871 }
872 else
873 {
874 old_cost = (i1_cost > 0 && i2_cost > 0 && i3_cost > 0
875 ? i1_cost + i2_cost + i3_cost : 0);
876 i0_cost = 0;
877 }
878 }
879 else
880 {
881 old_cost = (i2_cost > 0 && i3_cost > 0) ? i2_cost + i3_cost : 0;
882 i1_cost = i0_cost = 0;
883 }
884
885 /* If we have split a PARALLEL I2 to I1,I2, we have counted its cost twice;
886 correct that. */
887 if (old_cost && i1 && INSN_UID (i1) == INSN_UID (i2))
888 old_cost -= i1_cost;
889
890
891 /* Calculate the replacement insn_costs. */
892 rtx tmp = PATTERN (i3);
893 PATTERN (i3) = newpat;
894 int tmpi = INSN_CODE (i3);
895 INSN_CODE (i3) = -1;
896 new_i3_cost = insn_cost (i3, optimize_this_for_speed_p);
897 PATTERN (i3) = tmp;
898 INSN_CODE (i3) = tmpi;
899 if (newi2pat)
900 {
901 tmp = PATTERN (i2);
902 PATTERN (i2) = newi2pat;
903 tmpi = INSN_CODE (i2);
904 INSN_CODE (i2) = -1;
905 new_i2_cost = insn_cost (i2, optimize_this_for_speed_p);
906 PATTERN (i2) = tmp;
907 INSN_CODE (i2) = tmpi;
908 new_cost = (new_i2_cost > 0 && new_i3_cost > 0)
909 ? new_i2_cost + new_i3_cost : 0;
910 }
911 else
912 {
913 new_cost = new_i3_cost;
914 new_i2_cost = 0;
915 }
916
917 if (undobuf.other_insn)
918 {
919 int old_other_cost, new_other_cost;
920
921 old_other_cost = INSN_COST (undobuf.other_insn);
922 tmp = PATTERN (undobuf.other_insn);
923 PATTERN (undobuf.other_insn) = newotherpat;
924 tmpi = INSN_CODE (undobuf.other_insn);
925 INSN_CODE (undobuf.other_insn) = -1;
926 new_other_cost = insn_cost (undobuf.other_insn,
927 optimize_this_for_speed_p);
928 PATTERN (undobuf.other_insn) = tmp;
929 INSN_CODE (undobuf.other_insn) = tmpi;
930 if (old_other_cost > 0 && new_other_cost > 0)
931 {
932 old_cost += old_other_cost;
933 new_cost += new_other_cost;
934 }
935 else
936 old_cost = 0;
937 }
938
939 /* Disallow this combination if both new_cost and old_cost are greater than
940 zero, and new_cost is greater than old cost. */
941 int reject = old_cost > 0 && new_cost > old_cost;
942
943 if (dump_file)
944 {
945 fprintf (dump_file, "%s combination of insns ",
946 reject ? "rejecting" : "allowing");
947 if (i0)
948 fprintf (dump_file, "%d, ", INSN_UID (i0));
949 if (i1 && INSN_UID (i1) != INSN_UID (i2))
950 fprintf (dump_file, "%d, ", INSN_UID (i1));
951 fprintf (dump_file, "%d and %d\n", INSN_UID (i2), INSN_UID (i3));
952
953 fprintf (dump_file, "original costs ");
954 if (i0)
955 fprintf (dump_file, "%d + ", i0_cost);
956 if (i1 && INSN_UID (i1) != INSN_UID (i2))
957 fprintf (dump_file, "%d + ", i1_cost);
958 fprintf (dump_file, "%d + %d = %d\n", i2_cost, i3_cost, old_cost);
959
960 if (newi2pat)
961 fprintf (dump_file, "replacement costs %d + %d = %d\n",
962 new_i2_cost, new_i3_cost, new_cost);
963 else
964 fprintf (dump_file, "replacement cost %d\n", new_cost);
965 }
966
967 if (reject)
968 return false;
969
970 /* Update the uid_insn_cost array with the replacement costs. */
971 INSN_COST (i2) = new_i2_cost;
972 INSN_COST (i3) = new_i3_cost;
973 if (i1)
974 {
975 INSN_COST (i1) = 0;
976 if (i0)
977 INSN_COST (i0) = 0;
978 }
979
980 return true;
981 }
982
983
984 /* Delete any insns that copy a register to itself. */
985
986 static void
987 delete_noop_moves (void)
988 {
989 rtx_insn *insn, *next;
990 basic_block bb;
991
992 FOR_EACH_BB_FN (bb, cfun)
993 {
994 for (insn = BB_HEAD (bb); insn != NEXT_INSN (BB_END (bb)); insn = next)
995 {
996 next = NEXT_INSN (insn);
997 if (INSN_P (insn) && noop_move_p (insn))
998 {
999 if (dump_file)
1000 fprintf (dump_file, "deleting noop move %d\n", INSN_UID (insn));
1001
1002 delete_insn_and_edges (insn);
1003 }
1004 }
1005 }
1006 }
1007
1008 \f
1009 /* Return false if we do not want to (or cannot) combine DEF. */
1010 static bool
1011 can_combine_def_p (df_ref def)
1012 {
1013 /* Do not consider if it is pre/post modification in MEM. */
1014 if (DF_REF_FLAGS (def) & DF_REF_PRE_POST_MODIFY)
1015 return false;
1016
1017 unsigned int regno = DF_REF_REGNO (def);
1018
1019 /* Do not combine frame pointer adjustments. */
1020 if ((regno == FRAME_POINTER_REGNUM
1021 && (!reload_completed || frame_pointer_needed))
1022 || (!HARD_FRAME_POINTER_IS_FRAME_POINTER
1023 && regno == HARD_FRAME_POINTER_REGNUM
1024 && (!reload_completed || frame_pointer_needed))
1025 || (FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
1026 && regno == ARG_POINTER_REGNUM && fixed_regs[regno]))
1027 return false;
1028
1029 return true;
1030 }
1031
1032 /* Return false if we do not want to (or cannot) combine USE. */
1033 static bool
1034 can_combine_use_p (df_ref use)
1035 {
1036 /* Do not consider the usage of the stack pointer by function call. */
1037 if (DF_REF_FLAGS (use) & DF_REF_CALL_STACK_USAGE)
1038 return false;
1039
1040 return true;
1041 }
1042
1043 /* Fill in log links field for all insns. */
1044
1045 static void
1046 create_log_links (void)
1047 {
1048 basic_block bb;
1049 rtx_insn **next_use;
1050 rtx_insn *insn;
1051 df_ref def, use;
1052
1053 next_use = XCNEWVEC (rtx_insn *, max_reg_num ());
1054
1055 /* Pass through each block from the end, recording the uses of each
1056 register and establishing log links when def is encountered.
1057 Note that we do not clear next_use array in order to save time,
1058 so we have to test whether the use is in the same basic block as def.
1059
1060 There are a few cases below when we do not consider the definition or
1061 usage -- these are taken from original flow.c did. Don't ask me why it is
1062 done this way; I don't know and if it works, I don't want to know. */
1063
1064 FOR_EACH_BB_FN (bb, cfun)
1065 {
1066 FOR_BB_INSNS_REVERSE (bb, insn)
1067 {
1068 if (!NONDEBUG_INSN_P (insn))
1069 continue;
1070
1071 /* Log links are created only once. */
1072 gcc_assert (!LOG_LINKS (insn));
1073
1074 FOR_EACH_INSN_DEF (def, insn)
1075 {
1076 unsigned int regno = DF_REF_REGNO (def);
1077 rtx_insn *use_insn;
1078
1079 if (!next_use[regno])
1080 continue;
1081
1082 if (!can_combine_def_p (def))
1083 continue;
1084
1085 use_insn = next_use[regno];
1086 next_use[regno] = NULL;
1087
1088 if (BLOCK_FOR_INSN (use_insn) != bb)
1089 continue;
1090
1091 /* flow.c claimed:
1092
1093 We don't build a LOG_LINK for hard registers contained
1094 in ASM_OPERANDs. If these registers get replaced,
1095 we might wind up changing the semantics of the insn,
1096 even if reload can make what appear to be valid
1097 assignments later. */
1098 if (regno < FIRST_PSEUDO_REGISTER
1099 && asm_noperands (PATTERN (use_insn)) >= 0)
1100 continue;
1101
1102 /* Don't add duplicate links between instructions. */
1103 struct insn_link *links;
1104 FOR_EACH_LOG_LINK (links, use_insn)
1105 if (insn == links->insn && regno == links->regno)
1106 break;
1107
1108 if (!links)
1109 LOG_LINKS (use_insn)
1110 = alloc_insn_link (insn, regno, LOG_LINKS (use_insn));
1111 }
1112
1113 FOR_EACH_INSN_USE (use, insn)
1114 if (can_combine_use_p (use))
1115 next_use[DF_REF_REGNO (use)] = insn;
1116 }
1117 }
1118
1119 free (next_use);
1120 }
1121
1122 /* Walk the LOG_LINKS of insn B to see if we find a reference to A. Return
1123 true if we found a LOG_LINK that proves that A feeds B. This only works
1124 if there are no instructions between A and B which could have a link
1125 depending on A, since in that case we would not record a link for B.
1126 We also check the implicit dependency created by a cc0 setter/user
1127 pair. */
1128
1129 static bool
1130 insn_a_feeds_b (rtx_insn *a, rtx_insn *b)
1131 {
1132 struct insn_link *links;
1133 FOR_EACH_LOG_LINK (links, b)
1134 if (links->insn == a)
1135 return true;
1136 if (HAVE_cc0 && sets_cc0_p (a))
1137 return true;
1138 return false;
1139 }
1140 \f
1141 /* Main entry point for combiner. F is the first insn of the function.
1142 NREGS is the first unused pseudo-reg number.
1143
1144 Return nonzero if the combiner has turned an indirect jump
1145 instruction into a direct jump. */
1146 static int
1147 combine_instructions (rtx_insn *f, unsigned int nregs)
1148 {
1149 rtx_insn *insn, *next;
1150 rtx_insn *prev;
1151 struct insn_link *links, *nextlinks;
1152 rtx_insn *first;
1153 basic_block last_bb;
1154
1155 int new_direct_jump_p = 0;
1156
1157 for (first = f; first && !NONDEBUG_INSN_P (first); )
1158 first = NEXT_INSN (first);
1159 if (!first)
1160 return 0;
1161
1162 combine_attempts = 0;
1163 combine_merges = 0;
1164 combine_extras = 0;
1165 combine_successes = 0;
1166
1167 rtl_hooks = combine_rtl_hooks;
1168
1169 reg_stat.safe_grow_cleared (nregs);
1170
1171 init_recog_no_volatile ();
1172
1173 /* Allocate array for insn info. */
1174 max_uid_known = get_max_uid ();
1175 uid_log_links = XCNEWVEC (struct insn_link *, max_uid_known + 1);
1176 uid_insn_cost = XCNEWVEC (int, max_uid_known + 1);
1177 gcc_obstack_init (&insn_link_obstack);
1178
1179 nonzero_bits_mode = int_mode_for_size (HOST_BITS_PER_WIDE_INT, 0).require ();
1180
1181 /* Don't use reg_stat[].nonzero_bits when computing it. This can cause
1182 problems when, for example, we have j <<= 1 in a loop. */
1183
1184 nonzero_sign_valid = 0;
1185 label_tick = label_tick_ebb_start = 1;
1186
1187 /* Scan all SETs and see if we can deduce anything about what
1188 bits are known to be zero for some registers and how many copies
1189 of the sign bit are known to exist for those registers.
1190
1191 Also set any known values so that we can use it while searching
1192 for what bits are known to be set. */
1193
1194 setup_incoming_promotions (first);
1195 /* Allow the entry block and the first block to fall into the same EBB.
1196 Conceptually the incoming promotions are assigned to the entry block. */
1197 last_bb = ENTRY_BLOCK_PTR_FOR_FN (cfun);
1198
1199 create_log_links ();
1200 FOR_EACH_BB_FN (this_basic_block, cfun)
1201 {
1202 optimize_this_for_speed_p = optimize_bb_for_speed_p (this_basic_block);
1203 last_call_luid = 0;
1204 mem_last_set = -1;
1205
1206 label_tick++;
1207 if (!single_pred_p (this_basic_block)
1208 || single_pred (this_basic_block) != last_bb)
1209 label_tick_ebb_start = label_tick;
1210 last_bb = this_basic_block;
1211
1212 FOR_BB_INSNS (this_basic_block, insn)
1213 if (INSN_P (insn) && BLOCK_FOR_INSN (insn))
1214 {
1215 rtx links;
1216
1217 subst_low_luid = DF_INSN_LUID (insn);
1218 subst_insn = insn;
1219
1220 note_stores (PATTERN (insn), set_nonzero_bits_and_sign_copies,
1221 insn);
1222 record_dead_and_set_regs (insn);
1223
1224 if (AUTO_INC_DEC)
1225 for (links = REG_NOTES (insn); links; links = XEXP (links, 1))
1226 if (REG_NOTE_KIND (links) == REG_INC)
1227 set_nonzero_bits_and_sign_copies (XEXP (links, 0), NULL_RTX,
1228 insn);
1229
1230 /* Record the current insn_cost of this instruction. */
1231 if (NONJUMP_INSN_P (insn))
1232 INSN_COST (insn) = insn_cost (insn, optimize_this_for_speed_p);
1233 if (dump_file)
1234 {
1235 fprintf (dump_file, "insn_cost %d for ", INSN_COST (insn));
1236 dump_insn_slim (dump_file, insn);
1237 }
1238 }
1239 }
1240
1241 nonzero_sign_valid = 1;
1242
1243 /* Now scan all the insns in forward order. */
1244 label_tick = label_tick_ebb_start = 1;
1245 init_reg_last ();
1246 setup_incoming_promotions (first);
1247 last_bb = ENTRY_BLOCK_PTR_FOR_FN (cfun);
1248 int max_combine = PARAM_VALUE (PARAM_MAX_COMBINE_INSNS);
1249
1250 FOR_EACH_BB_FN (this_basic_block, cfun)
1251 {
1252 rtx_insn *last_combined_insn = NULL;
1253
1254 /* Ignore instruction combination in basic blocks that are going to
1255 be removed as unreachable anyway. See PR82386. */
1256 if (EDGE_COUNT (this_basic_block->preds) == 0)
1257 continue;
1258
1259 optimize_this_for_speed_p = optimize_bb_for_speed_p (this_basic_block);
1260 last_call_luid = 0;
1261 mem_last_set = -1;
1262
1263 label_tick++;
1264 if (!single_pred_p (this_basic_block)
1265 || single_pred (this_basic_block) != last_bb)
1266 label_tick_ebb_start = label_tick;
1267 last_bb = this_basic_block;
1268
1269 rtl_profile_for_bb (this_basic_block);
1270 for (insn = BB_HEAD (this_basic_block);
1271 insn != NEXT_INSN (BB_END (this_basic_block));
1272 insn = next ? next : NEXT_INSN (insn))
1273 {
1274 next = 0;
1275 if (!NONDEBUG_INSN_P (insn))
1276 continue;
1277
1278 while (last_combined_insn
1279 && (!NONDEBUG_INSN_P (last_combined_insn)
1280 || last_combined_insn->deleted ()))
1281 last_combined_insn = PREV_INSN (last_combined_insn);
1282 if (last_combined_insn == NULL_RTX
1283 || BLOCK_FOR_INSN (last_combined_insn) != this_basic_block
1284 || DF_INSN_LUID (last_combined_insn) <= DF_INSN_LUID (insn))
1285 last_combined_insn = insn;
1286
1287 /* See if we know about function return values before this
1288 insn based upon SUBREG flags. */
1289 check_promoted_subreg (insn, PATTERN (insn));
1290
1291 /* See if we can find hardregs and subreg of pseudos in
1292 narrower modes. This could help turning TRUNCATEs
1293 into SUBREGs. */
1294 note_uses (&PATTERN (insn), record_truncated_values, NULL);
1295
1296 /* Try this insn with each insn it links back to. */
1297
1298 FOR_EACH_LOG_LINK (links, insn)
1299 if ((next = try_combine (insn, links->insn, NULL,
1300 NULL, &new_direct_jump_p,
1301 last_combined_insn)) != 0)
1302 {
1303 statistics_counter_event (cfun, "two-insn combine", 1);
1304 goto retry;
1305 }
1306
1307 /* Try each sequence of three linked insns ending with this one. */
1308
1309 if (max_combine >= 3)
1310 FOR_EACH_LOG_LINK (links, insn)
1311 {
1312 rtx_insn *link = links->insn;
1313
1314 /* If the linked insn has been replaced by a note, then there
1315 is no point in pursuing this chain any further. */
1316 if (NOTE_P (link))
1317 continue;
1318
1319 FOR_EACH_LOG_LINK (nextlinks, link)
1320 if ((next = try_combine (insn, link, nextlinks->insn,
1321 NULL, &new_direct_jump_p,
1322 last_combined_insn)) != 0)
1323 {
1324 statistics_counter_event (cfun, "three-insn combine", 1);
1325 goto retry;
1326 }
1327 }
1328
1329 /* Try to combine a jump insn that uses CC0
1330 with a preceding insn that sets CC0, and maybe with its
1331 logical predecessor as well.
1332 This is how we make decrement-and-branch insns.
1333 We need this special code because data flow connections
1334 via CC0 do not get entered in LOG_LINKS. */
1335
1336 if (HAVE_cc0
1337 && JUMP_P (insn)
1338 && (prev = prev_nonnote_insn (insn)) != 0
1339 && NONJUMP_INSN_P (prev)
1340 && sets_cc0_p (PATTERN (prev)))
1341 {
1342 if ((next = try_combine (insn, prev, NULL, NULL,
1343 &new_direct_jump_p,
1344 last_combined_insn)) != 0)
1345 goto retry;
1346
1347 FOR_EACH_LOG_LINK (nextlinks, prev)
1348 if ((next = try_combine (insn, prev, nextlinks->insn,
1349 NULL, &new_direct_jump_p,
1350 last_combined_insn)) != 0)
1351 goto retry;
1352 }
1353
1354 /* Do the same for an insn that explicitly references CC0. */
1355 if (HAVE_cc0 && NONJUMP_INSN_P (insn)
1356 && (prev = prev_nonnote_insn (insn)) != 0
1357 && NONJUMP_INSN_P (prev)
1358 && sets_cc0_p (PATTERN (prev))
1359 && GET_CODE (PATTERN (insn)) == SET
1360 && reg_mentioned_p (cc0_rtx, SET_SRC (PATTERN (insn))))
1361 {
1362 if ((next = try_combine (insn, prev, NULL, NULL,
1363 &new_direct_jump_p,
1364 last_combined_insn)) != 0)
1365 goto retry;
1366
1367 FOR_EACH_LOG_LINK (nextlinks, prev)
1368 if ((next = try_combine (insn, prev, nextlinks->insn,
1369 NULL, &new_direct_jump_p,
1370 last_combined_insn)) != 0)
1371 goto retry;
1372 }
1373
1374 /* Finally, see if any of the insns that this insn links to
1375 explicitly references CC0. If so, try this insn, that insn,
1376 and its predecessor if it sets CC0. */
1377 if (HAVE_cc0)
1378 {
1379 FOR_EACH_LOG_LINK (links, insn)
1380 if (NONJUMP_INSN_P (links->insn)
1381 && GET_CODE (PATTERN (links->insn)) == SET
1382 && reg_mentioned_p (cc0_rtx, SET_SRC (PATTERN (links->insn)))
1383 && (prev = prev_nonnote_insn (links->insn)) != 0
1384 && NONJUMP_INSN_P (prev)
1385 && sets_cc0_p (PATTERN (prev))
1386 && (next = try_combine (insn, links->insn,
1387 prev, NULL, &new_direct_jump_p,
1388 last_combined_insn)) != 0)
1389 goto retry;
1390 }
1391
1392 /* Try combining an insn with two different insns whose results it
1393 uses. */
1394 if (max_combine >= 3)
1395 FOR_EACH_LOG_LINK (links, insn)
1396 for (nextlinks = links->next; nextlinks;
1397 nextlinks = nextlinks->next)
1398 if ((next = try_combine (insn, links->insn,
1399 nextlinks->insn, NULL,
1400 &new_direct_jump_p,
1401 last_combined_insn)) != 0)
1402
1403 {
1404 statistics_counter_event (cfun, "three-insn combine", 1);
1405 goto retry;
1406 }
1407
1408 /* Try four-instruction combinations. */
1409 if (max_combine >= 4)
1410 FOR_EACH_LOG_LINK (links, insn)
1411 {
1412 struct insn_link *next1;
1413 rtx_insn *link = links->insn;
1414
1415 /* If the linked insn has been replaced by a note, then there
1416 is no point in pursuing this chain any further. */
1417 if (NOTE_P (link))
1418 continue;
1419
1420 FOR_EACH_LOG_LINK (next1, link)
1421 {
1422 rtx_insn *link1 = next1->insn;
1423 if (NOTE_P (link1))
1424 continue;
1425 /* I0 -> I1 -> I2 -> I3. */
1426 FOR_EACH_LOG_LINK (nextlinks, link1)
1427 if ((next = try_combine (insn, link, link1,
1428 nextlinks->insn,
1429 &new_direct_jump_p,
1430 last_combined_insn)) != 0)
1431 {
1432 statistics_counter_event (cfun, "four-insn combine", 1);
1433 goto retry;
1434 }
1435 /* I0, I1 -> I2, I2 -> I3. */
1436 for (nextlinks = next1->next; nextlinks;
1437 nextlinks = nextlinks->next)
1438 if ((next = try_combine (insn, link, link1,
1439 nextlinks->insn,
1440 &new_direct_jump_p,
1441 last_combined_insn)) != 0)
1442 {
1443 statistics_counter_event (cfun, "four-insn combine", 1);
1444 goto retry;
1445 }
1446 }
1447
1448 for (next1 = links->next; next1; next1 = next1->next)
1449 {
1450 rtx_insn *link1 = next1->insn;
1451 if (NOTE_P (link1))
1452 continue;
1453 /* I0 -> I2; I1, I2 -> I3. */
1454 FOR_EACH_LOG_LINK (nextlinks, link)
1455 if ((next = try_combine (insn, link, link1,
1456 nextlinks->insn,
1457 &new_direct_jump_p,
1458 last_combined_insn)) != 0)
1459 {
1460 statistics_counter_event (cfun, "four-insn combine", 1);
1461 goto retry;
1462 }
1463 /* I0 -> I1; I1, I2 -> I3. */
1464 FOR_EACH_LOG_LINK (nextlinks, link1)
1465 if ((next = try_combine (insn, link, link1,
1466 nextlinks->insn,
1467 &new_direct_jump_p,
1468 last_combined_insn)) != 0)
1469 {
1470 statistics_counter_event (cfun, "four-insn combine", 1);
1471 goto retry;
1472 }
1473 }
1474 }
1475
1476 /* Try this insn with each REG_EQUAL note it links back to. */
1477 FOR_EACH_LOG_LINK (links, insn)
1478 {
1479 rtx set, note;
1480 rtx_insn *temp = links->insn;
1481 if ((set = single_set (temp)) != 0
1482 && (note = find_reg_equal_equiv_note (temp)) != 0
1483 && (note = XEXP (note, 0), GET_CODE (note)) != EXPR_LIST
1484 /* Avoid using a register that may already been marked
1485 dead by an earlier instruction. */
1486 && ! unmentioned_reg_p (note, SET_SRC (set))
1487 && (GET_MODE (note) == VOIDmode
1488 ? SCALAR_INT_MODE_P (GET_MODE (SET_DEST (set)))
1489 : (GET_MODE (SET_DEST (set)) == GET_MODE (note)
1490 && (GET_CODE (SET_DEST (set)) != ZERO_EXTRACT
1491 || (GET_MODE (XEXP (SET_DEST (set), 0))
1492 == GET_MODE (note))))))
1493 {
1494 /* Temporarily replace the set's source with the
1495 contents of the REG_EQUAL note. The insn will
1496 be deleted or recognized by try_combine. */
1497 rtx orig_src = SET_SRC (set);
1498 rtx orig_dest = SET_DEST (set);
1499 if (GET_CODE (SET_DEST (set)) == ZERO_EXTRACT)
1500 SET_DEST (set) = XEXP (SET_DEST (set), 0);
1501 SET_SRC (set) = note;
1502 i2mod = temp;
1503 i2mod_old_rhs = copy_rtx (orig_src);
1504 i2mod_new_rhs = copy_rtx (note);
1505 next = try_combine (insn, i2mod, NULL, NULL,
1506 &new_direct_jump_p,
1507 last_combined_insn);
1508 i2mod = NULL;
1509 if (next)
1510 {
1511 statistics_counter_event (cfun, "insn-with-note combine", 1);
1512 goto retry;
1513 }
1514 SET_SRC (set) = orig_src;
1515 SET_DEST (set) = orig_dest;
1516 }
1517 }
1518
1519 if (!NOTE_P (insn))
1520 record_dead_and_set_regs (insn);
1521
1522 retry:
1523 ;
1524 }
1525 }
1526
1527 default_rtl_profile ();
1528 clear_bb_flags ();
1529 new_direct_jump_p |= purge_all_dead_edges ();
1530 delete_noop_moves ();
1531
1532 /* Clean up. */
1533 obstack_free (&insn_link_obstack, NULL);
1534 free (uid_log_links);
1535 free (uid_insn_cost);
1536 reg_stat.release ();
1537
1538 {
1539 struct undo *undo, *next;
1540 for (undo = undobuf.frees; undo; undo = next)
1541 {
1542 next = undo->next;
1543 free (undo);
1544 }
1545 undobuf.frees = 0;
1546 }
1547
1548 total_attempts += combine_attempts;
1549 total_merges += combine_merges;
1550 total_extras += combine_extras;
1551 total_successes += combine_successes;
1552
1553 nonzero_sign_valid = 0;
1554 rtl_hooks = general_rtl_hooks;
1555
1556 /* Make recognizer allow volatile MEMs again. */
1557 init_recog ();
1558
1559 return new_direct_jump_p;
1560 }
1561
1562 /* Wipe the last_xxx fields of reg_stat in preparation for another pass. */
1563
1564 static void
1565 init_reg_last (void)
1566 {
1567 unsigned int i;
1568 reg_stat_type *p;
1569
1570 FOR_EACH_VEC_ELT (reg_stat, i, p)
1571 memset (p, 0, offsetof (reg_stat_type, sign_bit_copies));
1572 }
1573 \f
1574 /* Set up any promoted values for incoming argument registers. */
1575
1576 static void
1577 setup_incoming_promotions (rtx_insn *first)
1578 {
1579 tree arg;
1580 bool strictly_local = false;
1581
1582 for (arg = DECL_ARGUMENTS (current_function_decl); arg;
1583 arg = DECL_CHAIN (arg))
1584 {
1585 rtx x, reg = DECL_INCOMING_RTL (arg);
1586 int uns1, uns3;
1587 machine_mode mode1, mode2, mode3, mode4;
1588
1589 /* Only continue if the incoming argument is in a register. */
1590 if (!REG_P (reg))
1591 continue;
1592
1593 /* Determine, if possible, whether all call sites of the current
1594 function lie within the current compilation unit. (This does
1595 take into account the exporting of a function via taking its
1596 address, and so forth.) */
1597 strictly_local = cgraph_node::local_info (current_function_decl)->local;
1598
1599 /* The mode and signedness of the argument before any promotions happen
1600 (equal to the mode of the pseudo holding it at that stage). */
1601 mode1 = TYPE_MODE (TREE_TYPE (arg));
1602 uns1 = TYPE_UNSIGNED (TREE_TYPE (arg));
1603
1604 /* The mode and signedness of the argument after any source language and
1605 TARGET_PROMOTE_PROTOTYPES-driven promotions. */
1606 mode2 = TYPE_MODE (DECL_ARG_TYPE (arg));
1607 uns3 = TYPE_UNSIGNED (DECL_ARG_TYPE (arg));
1608
1609 /* The mode and signedness of the argument as it is actually passed,
1610 see assign_parm_setup_reg in function.c. */
1611 mode3 = promote_function_mode (TREE_TYPE (arg), mode1, &uns3,
1612 TREE_TYPE (cfun->decl), 0);
1613
1614 /* The mode of the register in which the argument is being passed. */
1615 mode4 = GET_MODE (reg);
1616
1617 /* Eliminate sign extensions in the callee when:
1618 (a) A mode promotion has occurred; */
1619 if (mode1 == mode3)
1620 continue;
1621 /* (b) The mode of the register is the same as the mode of
1622 the argument as it is passed; */
1623 if (mode3 != mode4)
1624 continue;
1625 /* (c) There's no language level extension; */
1626 if (mode1 == mode2)
1627 ;
1628 /* (c.1) All callers are from the current compilation unit. If that's
1629 the case we don't have to rely on an ABI, we only have to know
1630 what we're generating right now, and we know that we will do the
1631 mode1 to mode2 promotion with the given sign. */
1632 else if (!strictly_local)
1633 continue;
1634 /* (c.2) The combination of the two promotions is useful. This is
1635 true when the signs match, or if the first promotion is unsigned.
1636 In the later case, (sign_extend (zero_extend x)) is the same as
1637 (zero_extend (zero_extend x)), so make sure to force UNS3 true. */
1638 else if (uns1)
1639 uns3 = true;
1640 else if (uns3)
1641 continue;
1642
1643 /* Record that the value was promoted from mode1 to mode3,
1644 so that any sign extension at the head of the current
1645 function may be eliminated. */
1646 x = gen_rtx_CLOBBER (mode1, const0_rtx);
1647 x = gen_rtx_fmt_e ((uns3 ? ZERO_EXTEND : SIGN_EXTEND), mode3, x);
1648 record_value_for_reg (reg, first, x);
1649 }
1650 }
1651
1652 /* If MODE has a precision lower than PREC and SRC is a non-negative constant
1653 that would appear negative in MODE, sign-extend SRC for use in nonzero_bits
1654 because some machines (maybe most) will actually do the sign-extension and
1655 this is the conservative approach.
1656
1657 ??? For 2.5, try to tighten up the MD files in this regard instead of this
1658 kludge. */
1659
1660 static rtx
1661 sign_extend_short_imm (rtx src, machine_mode mode, unsigned int prec)
1662 {
1663 scalar_int_mode int_mode;
1664 if (CONST_INT_P (src)
1665 && is_a <scalar_int_mode> (mode, &int_mode)
1666 && GET_MODE_PRECISION (int_mode) < prec
1667 && INTVAL (src) > 0
1668 && val_signbit_known_set_p (int_mode, INTVAL (src)))
1669 src = GEN_INT (INTVAL (src) | ~GET_MODE_MASK (int_mode));
1670
1671 return src;
1672 }
1673
1674 /* Update RSP for pseudo-register X from INSN's REG_EQUAL note (if one exists)
1675 and SET. */
1676
1677 static void
1678 update_rsp_from_reg_equal (reg_stat_type *rsp, rtx_insn *insn, const_rtx set,
1679 rtx x)
1680 {
1681 rtx reg_equal_note = insn ? find_reg_equal_equiv_note (insn) : NULL_RTX;
1682 unsigned HOST_WIDE_INT bits = 0;
1683 rtx reg_equal = NULL, src = SET_SRC (set);
1684 unsigned int num = 0;
1685
1686 if (reg_equal_note)
1687 reg_equal = XEXP (reg_equal_note, 0);
1688
1689 if (SHORT_IMMEDIATES_SIGN_EXTEND)
1690 {
1691 src = sign_extend_short_imm (src, GET_MODE (x), BITS_PER_WORD);
1692 if (reg_equal)
1693 reg_equal = sign_extend_short_imm (reg_equal, GET_MODE (x), BITS_PER_WORD);
1694 }
1695
1696 /* Don't call nonzero_bits if it cannot change anything. */
1697 if (rsp->nonzero_bits != HOST_WIDE_INT_M1U)
1698 {
1699 bits = nonzero_bits (src, nonzero_bits_mode);
1700 if (reg_equal && bits)
1701 bits &= nonzero_bits (reg_equal, nonzero_bits_mode);
1702 rsp->nonzero_bits |= bits;
1703 }
1704
1705 /* Don't call num_sign_bit_copies if it cannot change anything. */
1706 if (rsp->sign_bit_copies != 1)
1707 {
1708 num = num_sign_bit_copies (SET_SRC (set), GET_MODE (x));
1709 if (reg_equal && maybe_ne (num, GET_MODE_PRECISION (GET_MODE (x))))
1710 {
1711 unsigned int numeq = num_sign_bit_copies (reg_equal, GET_MODE (x));
1712 if (num == 0 || numeq > num)
1713 num = numeq;
1714 }
1715 if (rsp->sign_bit_copies == 0 || num < rsp->sign_bit_copies)
1716 rsp->sign_bit_copies = num;
1717 }
1718 }
1719
1720 /* Called via note_stores. If X is a pseudo that is narrower than
1721 HOST_BITS_PER_WIDE_INT and is being set, record what bits are known zero.
1722
1723 If we are setting only a portion of X and we can't figure out what
1724 portion, assume all bits will be used since we don't know what will
1725 be happening.
1726
1727 Similarly, set how many bits of X are known to be copies of the sign bit
1728 at all locations in the function. This is the smallest number implied
1729 by any set of X. */
1730
1731 static void
1732 set_nonzero_bits_and_sign_copies (rtx x, const_rtx set, void *data)
1733 {
1734 rtx_insn *insn = (rtx_insn *) data;
1735 scalar_int_mode mode;
1736
1737 if (REG_P (x)
1738 && REGNO (x) >= FIRST_PSEUDO_REGISTER
1739 /* If this register is undefined at the start of the file, we can't
1740 say what its contents were. */
1741 && ! REGNO_REG_SET_P
1742 (DF_LR_IN (ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb), REGNO (x))
1743 && is_a <scalar_int_mode> (GET_MODE (x), &mode)
1744 && HWI_COMPUTABLE_MODE_P (mode))
1745 {
1746 reg_stat_type *rsp = &reg_stat[REGNO (x)];
1747
1748 if (set == 0 || GET_CODE (set) == CLOBBER)
1749 {
1750 rsp->nonzero_bits = GET_MODE_MASK (mode);
1751 rsp->sign_bit_copies = 1;
1752 return;
1753 }
1754
1755 /* If this register is being initialized using itself, and the
1756 register is uninitialized in this basic block, and there are
1757 no LOG_LINKS which set the register, then part of the
1758 register is uninitialized. In that case we can't assume
1759 anything about the number of nonzero bits.
1760
1761 ??? We could do better if we checked this in
1762 reg_{nonzero_bits,num_sign_bit_copies}_for_combine. Then we
1763 could avoid making assumptions about the insn which initially
1764 sets the register, while still using the information in other
1765 insns. We would have to be careful to check every insn
1766 involved in the combination. */
1767
1768 if (insn
1769 && reg_referenced_p (x, PATTERN (insn))
1770 && !REGNO_REG_SET_P (DF_LR_IN (BLOCK_FOR_INSN (insn)),
1771 REGNO (x)))
1772 {
1773 struct insn_link *link;
1774
1775 FOR_EACH_LOG_LINK (link, insn)
1776 if (dead_or_set_p (link->insn, x))
1777 break;
1778 if (!link)
1779 {
1780 rsp->nonzero_bits = GET_MODE_MASK (mode);
1781 rsp->sign_bit_copies = 1;
1782 return;
1783 }
1784 }
1785
1786 /* If this is a complex assignment, see if we can convert it into a
1787 simple assignment. */
1788 set = expand_field_assignment (set);
1789
1790 /* If this is a simple assignment, or we have a paradoxical SUBREG,
1791 set what we know about X. */
1792
1793 if (SET_DEST (set) == x
1794 || (paradoxical_subreg_p (SET_DEST (set))
1795 && SUBREG_REG (SET_DEST (set)) == x))
1796 update_rsp_from_reg_equal (rsp, insn, set, x);
1797 else
1798 {
1799 rsp->nonzero_bits = GET_MODE_MASK (mode);
1800 rsp->sign_bit_copies = 1;
1801 }
1802 }
1803 }
1804 \f
1805 /* See if INSN can be combined into I3. PRED, PRED2, SUCC and SUCC2 are
1806 optionally insns that were previously combined into I3 or that will be
1807 combined into the merger of INSN and I3. The order is PRED, PRED2,
1808 INSN, SUCC, SUCC2, I3.
1809
1810 Return 0 if the combination is not allowed for any reason.
1811
1812 If the combination is allowed, *PDEST will be set to the single
1813 destination of INSN and *PSRC to the single source, and this function
1814 will return 1. */
1815
1816 static int
1817 can_combine_p (rtx_insn *insn, rtx_insn *i3, rtx_insn *pred ATTRIBUTE_UNUSED,
1818 rtx_insn *pred2 ATTRIBUTE_UNUSED, rtx_insn *succ, rtx_insn *succ2,
1819 rtx *pdest, rtx *psrc)
1820 {
1821 int i;
1822 const_rtx set = 0;
1823 rtx src, dest;
1824 rtx_insn *p;
1825 rtx link;
1826 bool all_adjacent = true;
1827 int (*is_volatile_p) (const_rtx);
1828
1829 if (succ)
1830 {
1831 if (succ2)
1832 {
1833 if (next_active_insn (succ2) != i3)
1834 all_adjacent = false;
1835 if (next_active_insn (succ) != succ2)
1836 all_adjacent = false;
1837 }
1838 else if (next_active_insn (succ) != i3)
1839 all_adjacent = false;
1840 if (next_active_insn (insn) != succ)
1841 all_adjacent = false;
1842 }
1843 else if (next_active_insn (insn) != i3)
1844 all_adjacent = false;
1845
1846 /* Can combine only if previous insn is a SET of a REG, a SUBREG or CC0.
1847 or a PARALLEL consisting of such a SET and CLOBBERs.
1848
1849 If INSN has CLOBBER parallel parts, ignore them for our processing.
1850 By definition, these happen during the execution of the insn. When it
1851 is merged with another insn, all bets are off. If they are, in fact,
1852 needed and aren't also supplied in I3, they may be added by
1853 recog_for_combine. Otherwise, it won't match.
1854
1855 We can also ignore a SET whose SET_DEST is mentioned in a REG_UNUSED
1856 note.
1857
1858 Get the source and destination of INSN. If more than one, can't
1859 combine. */
1860
1861 if (GET_CODE (PATTERN (insn)) == SET)
1862 set = PATTERN (insn);
1863 else if (GET_CODE (PATTERN (insn)) == PARALLEL
1864 && GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == SET)
1865 {
1866 for (i = 0; i < XVECLEN (PATTERN (insn), 0); i++)
1867 {
1868 rtx elt = XVECEXP (PATTERN (insn), 0, i);
1869
1870 switch (GET_CODE (elt))
1871 {
1872 /* This is important to combine floating point insns
1873 for the SH4 port. */
1874 case USE:
1875 /* Combining an isolated USE doesn't make sense.
1876 We depend here on combinable_i3pat to reject them. */
1877 /* The code below this loop only verifies that the inputs of
1878 the SET in INSN do not change. We call reg_set_between_p
1879 to verify that the REG in the USE does not change between
1880 I3 and INSN.
1881 If the USE in INSN was for a pseudo register, the matching
1882 insn pattern will likely match any register; combining this
1883 with any other USE would only be safe if we knew that the
1884 used registers have identical values, or if there was
1885 something to tell them apart, e.g. different modes. For
1886 now, we forgo such complicated tests and simply disallow
1887 combining of USES of pseudo registers with any other USE. */
1888 if (REG_P (XEXP (elt, 0))
1889 && GET_CODE (PATTERN (i3)) == PARALLEL)
1890 {
1891 rtx i3pat = PATTERN (i3);
1892 int i = XVECLEN (i3pat, 0) - 1;
1893 unsigned int regno = REGNO (XEXP (elt, 0));
1894
1895 do
1896 {
1897 rtx i3elt = XVECEXP (i3pat, 0, i);
1898
1899 if (GET_CODE (i3elt) == USE
1900 && REG_P (XEXP (i3elt, 0))
1901 && (REGNO (XEXP (i3elt, 0)) == regno
1902 ? reg_set_between_p (XEXP (elt, 0),
1903 PREV_INSN (insn), i3)
1904 : regno >= FIRST_PSEUDO_REGISTER))
1905 return 0;
1906 }
1907 while (--i >= 0);
1908 }
1909 break;
1910
1911 /* We can ignore CLOBBERs. */
1912 case CLOBBER:
1913 break;
1914
1915 case SET:
1916 /* Ignore SETs whose result isn't used but not those that
1917 have side-effects. */
1918 if (find_reg_note (insn, REG_UNUSED, SET_DEST (elt))
1919 && insn_nothrow_p (insn)
1920 && !side_effects_p (elt))
1921 break;
1922
1923 /* If we have already found a SET, this is a second one and
1924 so we cannot combine with this insn. */
1925 if (set)
1926 return 0;
1927
1928 set = elt;
1929 break;
1930
1931 default:
1932 /* Anything else means we can't combine. */
1933 return 0;
1934 }
1935 }
1936
1937 if (set == 0
1938 /* If SET_SRC is an ASM_OPERANDS we can't throw away these CLOBBERs,
1939 so don't do anything with it. */
1940 || GET_CODE (SET_SRC (set)) == ASM_OPERANDS)
1941 return 0;
1942 }
1943 else
1944 return 0;
1945
1946 if (set == 0)
1947 return 0;
1948
1949 /* The simplification in expand_field_assignment may call back to
1950 get_last_value, so set safe guard here. */
1951 subst_low_luid = DF_INSN_LUID (insn);
1952
1953 set = expand_field_assignment (set);
1954 src = SET_SRC (set), dest = SET_DEST (set);
1955
1956 /* Do not eliminate user-specified register if it is in an
1957 asm input because we may break the register asm usage defined
1958 in GCC manual if allow to do so.
1959 Be aware that this may cover more cases than we expect but this
1960 should be harmless. */
1961 if (REG_P (dest) && REG_USERVAR_P (dest) && HARD_REGISTER_P (dest)
1962 && extract_asm_operands (PATTERN (i3)))
1963 return 0;
1964
1965 /* Don't eliminate a store in the stack pointer. */
1966 if (dest == stack_pointer_rtx
1967 /* Don't combine with an insn that sets a register to itself if it has
1968 a REG_EQUAL note. This may be part of a LIBCALL sequence. */
1969 || (rtx_equal_p (src, dest) && find_reg_note (insn, REG_EQUAL, NULL_RTX))
1970 /* Can't merge an ASM_OPERANDS. */
1971 || GET_CODE (src) == ASM_OPERANDS
1972 /* Can't merge a function call. */
1973 || GET_CODE (src) == CALL
1974 /* Don't eliminate a function call argument. */
1975 || (CALL_P (i3)
1976 && (find_reg_fusage (i3, USE, dest)
1977 || (REG_P (dest)
1978 && REGNO (dest) < FIRST_PSEUDO_REGISTER
1979 && global_regs[REGNO (dest)])))
1980 /* Don't substitute into an incremented register. */
1981 || FIND_REG_INC_NOTE (i3, dest)
1982 || (succ && FIND_REG_INC_NOTE (succ, dest))
1983 || (succ2 && FIND_REG_INC_NOTE (succ2, dest))
1984 /* Don't substitute into a non-local goto, this confuses CFG. */
1985 || (JUMP_P (i3) && find_reg_note (i3, REG_NON_LOCAL_GOTO, NULL_RTX))
1986 /* Make sure that DEST is not used after INSN but before SUCC, or
1987 after SUCC and before SUCC2, or after SUCC2 but before I3. */
1988 || (!all_adjacent
1989 && ((succ2
1990 && (reg_used_between_p (dest, succ2, i3)
1991 || reg_used_between_p (dest, succ, succ2)))
1992 || (!succ2 && succ && reg_used_between_p (dest, succ, i3))
1993 || (!succ2 && !succ && reg_used_between_p (dest, insn, i3))
1994 || (succ
1995 /* SUCC and SUCC2 can be split halves from a PARALLEL; in
1996 that case SUCC is not in the insn stream, so use SUCC2
1997 instead for this test. */
1998 && reg_used_between_p (dest, insn,
1999 succ2
2000 && INSN_UID (succ) == INSN_UID (succ2)
2001 ? succ2 : succ))))
2002 /* Make sure that the value that is to be substituted for the register
2003 does not use any registers whose values alter in between. However,
2004 If the insns are adjacent, a use can't cross a set even though we
2005 think it might (this can happen for a sequence of insns each setting
2006 the same destination; last_set of that register might point to
2007 a NOTE). If INSN has a REG_EQUIV note, the register is always
2008 equivalent to the memory so the substitution is valid even if there
2009 are intervening stores. Also, don't move a volatile asm or
2010 UNSPEC_VOLATILE across any other insns. */
2011 || (! all_adjacent
2012 && (((!MEM_P (src)
2013 || ! find_reg_note (insn, REG_EQUIV, src))
2014 && modified_between_p (src, insn, i3))
2015 || (GET_CODE (src) == ASM_OPERANDS && MEM_VOLATILE_P (src))
2016 || GET_CODE (src) == UNSPEC_VOLATILE))
2017 /* Don't combine across a CALL_INSN, because that would possibly
2018 change whether the life span of some REGs crosses calls or not,
2019 and it is a pain to update that information.
2020 Exception: if source is a constant, moving it later can't hurt.
2021 Accept that as a special case. */
2022 || (DF_INSN_LUID (insn) < last_call_luid && ! CONSTANT_P (src)))
2023 return 0;
2024
2025 /* DEST must either be a REG or CC0. */
2026 if (REG_P (dest))
2027 {
2028 /* If register alignment is being enforced for multi-word items in all
2029 cases except for parameters, it is possible to have a register copy
2030 insn referencing a hard register that is not allowed to contain the
2031 mode being copied and which would not be valid as an operand of most
2032 insns. Eliminate this problem by not combining with such an insn.
2033
2034 Also, on some machines we don't want to extend the life of a hard
2035 register. */
2036
2037 if (REG_P (src)
2038 && ((REGNO (dest) < FIRST_PSEUDO_REGISTER
2039 && !targetm.hard_regno_mode_ok (REGNO (dest), GET_MODE (dest)))
2040 /* Don't extend the life of a hard register unless it is
2041 user variable (if we have few registers) or it can't
2042 fit into the desired register (meaning something special
2043 is going on).
2044 Also avoid substituting a return register into I3, because
2045 reload can't handle a conflict with constraints of other
2046 inputs. */
2047 || (REGNO (src) < FIRST_PSEUDO_REGISTER
2048 && !targetm.hard_regno_mode_ok (REGNO (src),
2049 GET_MODE (src)))))
2050 return 0;
2051 }
2052 else if (GET_CODE (dest) != CC0)
2053 return 0;
2054
2055
2056 if (GET_CODE (PATTERN (i3)) == PARALLEL)
2057 for (i = XVECLEN (PATTERN (i3), 0) - 1; i >= 0; i--)
2058 if (GET_CODE (XVECEXP (PATTERN (i3), 0, i)) == CLOBBER)
2059 {
2060 rtx reg = XEXP (XVECEXP (PATTERN (i3), 0, i), 0);
2061
2062 /* If the clobber represents an earlyclobber operand, we must not
2063 substitute an expression containing the clobbered register.
2064 As we do not analyze the constraint strings here, we have to
2065 make the conservative assumption. However, if the register is
2066 a fixed hard reg, the clobber cannot represent any operand;
2067 we leave it up to the machine description to either accept or
2068 reject use-and-clobber patterns. */
2069 if (!REG_P (reg)
2070 || REGNO (reg) >= FIRST_PSEUDO_REGISTER
2071 || !fixed_regs[REGNO (reg)])
2072 if (reg_overlap_mentioned_p (reg, src))
2073 return 0;
2074 }
2075
2076 /* If INSN contains anything volatile, or is an `asm' (whether volatile
2077 or not), reject, unless nothing volatile comes between it and I3 */
2078
2079 if (GET_CODE (src) == ASM_OPERANDS || volatile_refs_p (src))
2080 {
2081 /* Make sure neither succ nor succ2 contains a volatile reference. */
2082 if (succ2 != 0 && volatile_refs_p (PATTERN (succ2)))
2083 return 0;
2084 if (succ != 0 && volatile_refs_p (PATTERN (succ)))
2085 return 0;
2086 /* We'll check insns between INSN and I3 below. */
2087 }
2088
2089 /* If INSN is an asm, and DEST is a hard register, reject, since it has
2090 to be an explicit register variable, and was chosen for a reason. */
2091
2092 if (GET_CODE (src) == ASM_OPERANDS
2093 && REG_P (dest) && REGNO (dest) < FIRST_PSEUDO_REGISTER)
2094 return 0;
2095
2096 /* If INSN contains volatile references (specifically volatile MEMs),
2097 we cannot combine across any other volatile references.
2098 Even if INSN doesn't contain volatile references, any intervening
2099 volatile insn might affect machine state. */
2100
2101 is_volatile_p = volatile_refs_p (PATTERN (insn))
2102 ? volatile_refs_p
2103 : volatile_insn_p;
2104
2105 for (p = NEXT_INSN (insn); p != i3; p = NEXT_INSN (p))
2106 if (INSN_P (p) && p != succ && p != succ2 && is_volatile_p (PATTERN (p)))
2107 return 0;
2108
2109 /* If INSN contains an autoincrement or autodecrement, make sure that
2110 register is not used between there and I3, and not already used in
2111 I3 either. Neither must it be used in PRED or SUCC, if they exist.
2112 Also insist that I3 not be a jump; if it were one
2113 and the incremented register were spilled, we would lose. */
2114
2115 if (AUTO_INC_DEC)
2116 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
2117 if (REG_NOTE_KIND (link) == REG_INC
2118 && (JUMP_P (i3)
2119 || reg_used_between_p (XEXP (link, 0), insn, i3)
2120 || (pred != NULL_RTX
2121 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (pred)))
2122 || (pred2 != NULL_RTX
2123 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (pred2)))
2124 || (succ != NULL_RTX
2125 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (succ)))
2126 || (succ2 != NULL_RTX
2127 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (succ2)))
2128 || reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i3))))
2129 return 0;
2130
2131 /* Don't combine an insn that follows a CC0-setting insn.
2132 An insn that uses CC0 must not be separated from the one that sets it.
2133 We do, however, allow I2 to follow a CC0-setting insn if that insn
2134 is passed as I1; in that case it will be deleted also.
2135 We also allow combining in this case if all the insns are adjacent
2136 because that would leave the two CC0 insns adjacent as well.
2137 It would be more logical to test whether CC0 occurs inside I1 or I2,
2138 but that would be much slower, and this ought to be equivalent. */
2139
2140 if (HAVE_cc0)
2141 {
2142 p = prev_nonnote_insn (insn);
2143 if (p && p != pred && NONJUMP_INSN_P (p) && sets_cc0_p (PATTERN (p))
2144 && ! all_adjacent)
2145 return 0;
2146 }
2147
2148 /* If we get here, we have passed all the tests and the combination is
2149 to be allowed. */
2150
2151 *pdest = dest;
2152 *psrc = src;
2153
2154 return 1;
2155 }
2156 \f
2157 /* LOC is the location within I3 that contains its pattern or the component
2158 of a PARALLEL of the pattern. We validate that it is valid for combining.
2159
2160 One problem is if I3 modifies its output, as opposed to replacing it
2161 entirely, we can't allow the output to contain I2DEST, I1DEST or I0DEST as
2162 doing so would produce an insn that is not equivalent to the original insns.
2163
2164 Consider:
2165
2166 (set (reg:DI 101) (reg:DI 100))
2167 (set (subreg:SI (reg:DI 101) 0) <foo>)
2168
2169 This is NOT equivalent to:
2170
2171 (parallel [(set (subreg:SI (reg:DI 100) 0) <foo>)
2172 (set (reg:DI 101) (reg:DI 100))])
2173
2174 Not only does this modify 100 (in which case it might still be valid
2175 if 100 were dead in I2), it sets 101 to the ORIGINAL value of 100.
2176
2177 We can also run into a problem if I2 sets a register that I1
2178 uses and I1 gets directly substituted into I3 (not via I2). In that
2179 case, we would be getting the wrong value of I2DEST into I3, so we
2180 must reject the combination. This case occurs when I2 and I1 both
2181 feed into I3, rather than when I1 feeds into I2, which feeds into I3.
2182 If I1_NOT_IN_SRC is nonzero, it means that finding I1 in the source
2183 of a SET must prevent combination from occurring. The same situation
2184 can occur for I0, in which case I0_NOT_IN_SRC is set.
2185
2186 Before doing the above check, we first try to expand a field assignment
2187 into a set of logical operations.
2188
2189 If PI3_DEST_KILLED is nonzero, it is a pointer to a location in which
2190 we place a register that is both set and used within I3. If more than one
2191 such register is detected, we fail.
2192
2193 Return 1 if the combination is valid, zero otherwise. */
2194
2195 static int
2196 combinable_i3pat (rtx_insn *i3, rtx *loc, rtx i2dest, rtx i1dest, rtx i0dest,
2197 int i1_not_in_src, int i0_not_in_src, rtx *pi3dest_killed)
2198 {
2199 rtx x = *loc;
2200
2201 if (GET_CODE (x) == SET)
2202 {
2203 rtx set = x ;
2204 rtx dest = SET_DEST (set);
2205 rtx src = SET_SRC (set);
2206 rtx inner_dest = dest;
2207 rtx subdest;
2208
2209 while (GET_CODE (inner_dest) == STRICT_LOW_PART
2210 || GET_CODE (inner_dest) == SUBREG
2211 || GET_CODE (inner_dest) == ZERO_EXTRACT)
2212 inner_dest = XEXP (inner_dest, 0);
2213
2214 /* Check for the case where I3 modifies its output, as discussed
2215 above. We don't want to prevent pseudos from being combined
2216 into the address of a MEM, so only prevent the combination if
2217 i1 or i2 set the same MEM. */
2218 if ((inner_dest != dest &&
2219 (!MEM_P (inner_dest)
2220 || rtx_equal_p (i2dest, inner_dest)
2221 || (i1dest && rtx_equal_p (i1dest, inner_dest))
2222 || (i0dest && rtx_equal_p (i0dest, inner_dest)))
2223 && (reg_overlap_mentioned_p (i2dest, inner_dest)
2224 || (i1dest && reg_overlap_mentioned_p (i1dest, inner_dest))
2225 || (i0dest && reg_overlap_mentioned_p (i0dest, inner_dest))))
2226
2227 /* This is the same test done in can_combine_p except we can't test
2228 all_adjacent; we don't have to, since this instruction will stay
2229 in place, thus we are not considering increasing the lifetime of
2230 INNER_DEST.
2231
2232 Also, if this insn sets a function argument, combining it with
2233 something that might need a spill could clobber a previous
2234 function argument; the all_adjacent test in can_combine_p also
2235 checks this; here, we do a more specific test for this case. */
2236
2237 || (REG_P (inner_dest)
2238 && REGNO (inner_dest) < FIRST_PSEUDO_REGISTER
2239 && !targetm.hard_regno_mode_ok (REGNO (inner_dest),
2240 GET_MODE (inner_dest)))
2241 || (i1_not_in_src && reg_overlap_mentioned_p (i1dest, src))
2242 || (i0_not_in_src && reg_overlap_mentioned_p (i0dest, src)))
2243 return 0;
2244
2245 /* If DEST is used in I3, it is being killed in this insn, so
2246 record that for later. We have to consider paradoxical
2247 subregs here, since they kill the whole register, but we
2248 ignore partial subregs, STRICT_LOW_PART, etc.
2249 Never add REG_DEAD notes for the FRAME_POINTER_REGNUM or the
2250 STACK_POINTER_REGNUM, since these are always considered to be
2251 live. Similarly for ARG_POINTER_REGNUM if it is fixed. */
2252 subdest = dest;
2253 if (GET_CODE (subdest) == SUBREG && !partial_subreg_p (subdest))
2254 subdest = SUBREG_REG (subdest);
2255 if (pi3dest_killed
2256 && REG_P (subdest)
2257 && reg_referenced_p (subdest, PATTERN (i3))
2258 && REGNO (subdest) != FRAME_POINTER_REGNUM
2259 && (HARD_FRAME_POINTER_IS_FRAME_POINTER
2260 || REGNO (subdest) != HARD_FRAME_POINTER_REGNUM)
2261 && (FRAME_POINTER_REGNUM == ARG_POINTER_REGNUM
2262 || (REGNO (subdest) != ARG_POINTER_REGNUM
2263 || ! fixed_regs [REGNO (subdest)]))
2264 && REGNO (subdest) != STACK_POINTER_REGNUM)
2265 {
2266 if (*pi3dest_killed)
2267 return 0;
2268
2269 *pi3dest_killed = subdest;
2270 }
2271 }
2272
2273 else if (GET_CODE (x) == PARALLEL)
2274 {
2275 int i;
2276
2277 for (i = 0; i < XVECLEN (x, 0); i++)
2278 if (! combinable_i3pat (i3, &XVECEXP (x, 0, i), i2dest, i1dest, i0dest,
2279 i1_not_in_src, i0_not_in_src, pi3dest_killed))
2280 return 0;
2281 }
2282
2283 return 1;
2284 }
2285 \f
2286 /* Return 1 if X is an arithmetic expression that contains a multiplication
2287 and division. We don't count multiplications by powers of two here. */
2288
2289 static int
2290 contains_muldiv (rtx x)
2291 {
2292 switch (GET_CODE (x))
2293 {
2294 case MOD: case DIV: case UMOD: case UDIV:
2295 return 1;
2296
2297 case MULT:
2298 return ! (CONST_INT_P (XEXP (x, 1))
2299 && pow2p_hwi (UINTVAL (XEXP (x, 1))));
2300 default:
2301 if (BINARY_P (x))
2302 return contains_muldiv (XEXP (x, 0))
2303 || contains_muldiv (XEXP (x, 1));
2304
2305 if (UNARY_P (x))
2306 return contains_muldiv (XEXP (x, 0));
2307
2308 return 0;
2309 }
2310 }
2311 \f
2312 /* Determine whether INSN can be used in a combination. Return nonzero if
2313 not. This is used in try_combine to detect early some cases where we
2314 can't perform combinations. */
2315
2316 static int
2317 cant_combine_insn_p (rtx_insn *insn)
2318 {
2319 rtx set;
2320 rtx src, dest;
2321
2322 /* If this isn't really an insn, we can't do anything.
2323 This can occur when flow deletes an insn that it has merged into an
2324 auto-increment address. */
2325 if (!NONDEBUG_INSN_P (insn))
2326 return 1;
2327
2328 /* Never combine loads and stores involving hard regs that are likely
2329 to be spilled. The register allocator can usually handle such
2330 reg-reg moves by tying. If we allow the combiner to make
2331 substitutions of likely-spilled regs, reload might die.
2332 As an exception, we allow combinations involving fixed regs; these are
2333 not available to the register allocator so there's no risk involved. */
2334
2335 set = single_set (insn);
2336 if (! set)
2337 return 0;
2338 src = SET_SRC (set);
2339 dest = SET_DEST (set);
2340 if (GET_CODE (src) == SUBREG)
2341 src = SUBREG_REG (src);
2342 if (GET_CODE (dest) == SUBREG)
2343 dest = SUBREG_REG (dest);
2344 if (REG_P (src) && REG_P (dest)
2345 && ((HARD_REGISTER_P (src)
2346 && ! TEST_HARD_REG_BIT (fixed_reg_set, REGNO (src))
2347 && targetm.class_likely_spilled_p (REGNO_REG_CLASS (REGNO (src))))
2348 || (HARD_REGISTER_P (dest)
2349 && ! TEST_HARD_REG_BIT (fixed_reg_set, REGNO (dest))
2350 && targetm.class_likely_spilled_p (REGNO_REG_CLASS (REGNO (dest))))))
2351 return 1;
2352
2353 return 0;
2354 }
2355
2356 struct likely_spilled_retval_info
2357 {
2358 unsigned regno, nregs;
2359 unsigned mask;
2360 };
2361
2362 /* Called via note_stores by likely_spilled_retval_p. Remove from info->mask
2363 hard registers that are known to be written to / clobbered in full. */
2364 static void
2365 likely_spilled_retval_1 (rtx x, const_rtx set, void *data)
2366 {
2367 struct likely_spilled_retval_info *const info =
2368 (struct likely_spilled_retval_info *) data;
2369 unsigned regno, nregs;
2370 unsigned new_mask;
2371
2372 if (!REG_P (XEXP (set, 0)))
2373 return;
2374 regno = REGNO (x);
2375 if (regno >= info->regno + info->nregs)
2376 return;
2377 nregs = REG_NREGS (x);
2378 if (regno + nregs <= info->regno)
2379 return;
2380 new_mask = (2U << (nregs - 1)) - 1;
2381 if (regno < info->regno)
2382 new_mask >>= info->regno - regno;
2383 else
2384 new_mask <<= regno - info->regno;
2385 info->mask &= ~new_mask;
2386 }
2387
2388 /* Return nonzero iff part of the return value is live during INSN, and
2389 it is likely spilled. This can happen when more than one insn is needed
2390 to copy the return value, e.g. when we consider to combine into the
2391 second copy insn for a complex value. */
2392
2393 static int
2394 likely_spilled_retval_p (rtx_insn *insn)
2395 {
2396 rtx_insn *use = BB_END (this_basic_block);
2397 rtx reg;
2398 rtx_insn *p;
2399 unsigned regno, nregs;
2400 /* We assume here that no machine mode needs more than
2401 32 hard registers when the value overlaps with a register
2402 for which TARGET_FUNCTION_VALUE_REGNO_P is true. */
2403 unsigned mask;
2404 struct likely_spilled_retval_info info;
2405
2406 if (!NONJUMP_INSN_P (use) || GET_CODE (PATTERN (use)) != USE || insn == use)
2407 return 0;
2408 reg = XEXP (PATTERN (use), 0);
2409 if (!REG_P (reg) || !targetm.calls.function_value_regno_p (REGNO (reg)))
2410 return 0;
2411 regno = REGNO (reg);
2412 nregs = REG_NREGS (reg);
2413 if (nregs == 1)
2414 return 0;
2415 mask = (2U << (nregs - 1)) - 1;
2416
2417 /* Disregard parts of the return value that are set later. */
2418 info.regno = regno;
2419 info.nregs = nregs;
2420 info.mask = mask;
2421 for (p = PREV_INSN (use); info.mask && p != insn; p = PREV_INSN (p))
2422 if (INSN_P (p))
2423 note_stores (PATTERN (p), likely_spilled_retval_1, &info);
2424 mask = info.mask;
2425
2426 /* Check if any of the (probably) live return value registers is
2427 likely spilled. */
2428 nregs --;
2429 do
2430 {
2431 if ((mask & 1 << nregs)
2432 && targetm.class_likely_spilled_p (REGNO_REG_CLASS (regno + nregs)))
2433 return 1;
2434 } while (nregs--);
2435 return 0;
2436 }
2437
2438 /* Adjust INSN after we made a change to its destination.
2439
2440 Changing the destination can invalidate notes that say something about
2441 the results of the insn and a LOG_LINK pointing to the insn. */
2442
2443 static void
2444 adjust_for_new_dest (rtx_insn *insn)
2445 {
2446 /* For notes, be conservative and simply remove them. */
2447 remove_reg_equal_equiv_notes (insn);
2448
2449 /* The new insn will have a destination that was previously the destination
2450 of an insn just above it. Call distribute_links to make a LOG_LINK from
2451 the next use of that destination. */
2452
2453 rtx set = single_set (insn);
2454 gcc_assert (set);
2455
2456 rtx reg = SET_DEST (set);
2457
2458 while (GET_CODE (reg) == ZERO_EXTRACT
2459 || GET_CODE (reg) == STRICT_LOW_PART
2460 || GET_CODE (reg) == SUBREG)
2461 reg = XEXP (reg, 0);
2462 gcc_assert (REG_P (reg));
2463
2464 distribute_links (alloc_insn_link (insn, REGNO (reg), NULL));
2465
2466 df_insn_rescan (insn);
2467 }
2468
2469 /* Return TRUE if combine can reuse reg X in mode MODE.
2470 ADDED_SETS is nonzero if the original set is still required. */
2471 static bool
2472 can_change_dest_mode (rtx x, int added_sets, machine_mode mode)
2473 {
2474 unsigned int regno;
2475
2476 if (!REG_P (x))
2477 return false;
2478
2479 /* Don't change between modes with different underlying register sizes,
2480 since this could lead to invalid subregs. */
2481 if (maybe_ne (REGMODE_NATURAL_SIZE (mode),
2482 REGMODE_NATURAL_SIZE (GET_MODE (x))))
2483 return false;
2484
2485 regno = REGNO (x);
2486 /* Allow hard registers if the new mode is legal, and occupies no more
2487 registers than the old mode. */
2488 if (regno < FIRST_PSEUDO_REGISTER)
2489 return (targetm.hard_regno_mode_ok (regno, mode)
2490 && REG_NREGS (x) >= hard_regno_nregs (regno, mode));
2491
2492 /* Or a pseudo that is only used once. */
2493 return (regno < reg_n_sets_max
2494 && REG_N_SETS (regno) == 1
2495 && !added_sets
2496 && !REG_USERVAR_P (x));
2497 }
2498
2499
2500 /* Check whether X, the destination of a set, refers to part of
2501 the register specified by REG. */
2502
2503 static bool
2504 reg_subword_p (rtx x, rtx reg)
2505 {
2506 /* Check that reg is an integer mode register. */
2507 if (!REG_P (reg) || GET_MODE_CLASS (GET_MODE (reg)) != MODE_INT)
2508 return false;
2509
2510 if (GET_CODE (x) == STRICT_LOW_PART
2511 || GET_CODE (x) == ZERO_EXTRACT)
2512 x = XEXP (x, 0);
2513
2514 return GET_CODE (x) == SUBREG
2515 && SUBREG_REG (x) == reg
2516 && GET_MODE_CLASS (GET_MODE (x)) == MODE_INT;
2517 }
2518
2519 /* Delete the unconditional jump INSN and adjust the CFG correspondingly.
2520 Note that the INSN should be deleted *after* removing dead edges, so
2521 that the kept edge is the fallthrough edge for a (set (pc) (pc))
2522 but not for a (set (pc) (label_ref FOO)). */
2523
2524 static void
2525 update_cfg_for_uncondjump (rtx_insn *insn)
2526 {
2527 basic_block bb = BLOCK_FOR_INSN (insn);
2528 gcc_assert (BB_END (bb) == insn);
2529
2530 purge_dead_edges (bb);
2531
2532 delete_insn (insn);
2533 if (EDGE_COUNT (bb->succs) == 1)
2534 {
2535 rtx_insn *insn;
2536
2537 single_succ_edge (bb)->flags |= EDGE_FALLTHRU;
2538
2539 /* Remove barriers from the footer if there are any. */
2540 for (insn = BB_FOOTER (bb); insn; insn = NEXT_INSN (insn))
2541 if (BARRIER_P (insn))
2542 {
2543 if (PREV_INSN (insn))
2544 SET_NEXT_INSN (PREV_INSN (insn)) = NEXT_INSN (insn);
2545 else
2546 BB_FOOTER (bb) = NEXT_INSN (insn);
2547 if (NEXT_INSN (insn))
2548 SET_PREV_INSN (NEXT_INSN (insn)) = PREV_INSN (insn);
2549 }
2550 else if (LABEL_P (insn))
2551 break;
2552 }
2553 }
2554
2555 /* Return whether PAT is a PARALLEL of exactly N register SETs followed
2556 by an arbitrary number of CLOBBERs. */
2557 static bool
2558 is_parallel_of_n_reg_sets (rtx pat, int n)
2559 {
2560 if (GET_CODE (pat) != PARALLEL)
2561 return false;
2562
2563 int len = XVECLEN (pat, 0);
2564 if (len < n)
2565 return false;
2566
2567 int i;
2568 for (i = 0; i < n; i++)
2569 if (GET_CODE (XVECEXP (pat, 0, i)) != SET
2570 || !REG_P (SET_DEST (XVECEXP (pat, 0, i))))
2571 return false;
2572 for ( ; i < len; i++)
2573 if (GET_CODE (XVECEXP (pat, 0, i)) != CLOBBER
2574 || XEXP (XVECEXP (pat, 0, i), 0) == const0_rtx)
2575 return false;
2576
2577 return true;
2578 }
2579
2580 /* Return whether INSN, a PARALLEL of N register SETs (and maybe some
2581 CLOBBERs), can be split into individual SETs in that order, without
2582 changing semantics. */
2583 static bool
2584 can_split_parallel_of_n_reg_sets (rtx_insn *insn, int n)
2585 {
2586 if (!insn_nothrow_p (insn))
2587 return false;
2588
2589 rtx pat = PATTERN (insn);
2590
2591 int i, j;
2592 for (i = 0; i < n; i++)
2593 {
2594 if (side_effects_p (SET_SRC (XVECEXP (pat, 0, i))))
2595 return false;
2596
2597 rtx reg = SET_DEST (XVECEXP (pat, 0, i));
2598
2599 for (j = i + 1; j < n; j++)
2600 if (reg_referenced_p (reg, XVECEXP (pat, 0, j)))
2601 return false;
2602 }
2603
2604 return true;
2605 }
2606
2607 /* Try to combine the insns I0, I1 and I2 into I3.
2608 Here I0, I1 and I2 appear earlier than I3.
2609 I0 and I1 can be zero; then we combine just I2 into I3, or I1 and I2 into
2610 I3.
2611
2612 If we are combining more than two insns and the resulting insn is not
2613 recognized, try splitting it into two insns. If that happens, I2 and I3
2614 are retained and I1/I0 are pseudo-deleted by turning them into a NOTE.
2615 Otherwise, I0, I1 and I2 are pseudo-deleted.
2616
2617 Return 0 if the combination does not work. Then nothing is changed.
2618 If we did the combination, return the insn at which combine should
2619 resume scanning.
2620
2621 Set NEW_DIRECT_JUMP_P to a nonzero value if try_combine creates a
2622 new direct jump instruction.
2623
2624 LAST_COMBINED_INSN is either I3, or some insn after I3 that has
2625 been I3 passed to an earlier try_combine within the same basic
2626 block. */
2627
2628 static rtx_insn *
2629 try_combine (rtx_insn *i3, rtx_insn *i2, rtx_insn *i1, rtx_insn *i0,
2630 int *new_direct_jump_p, rtx_insn *last_combined_insn)
2631 {
2632 /* New patterns for I3 and I2, respectively. */
2633 rtx newpat, newi2pat = 0;
2634 rtvec newpat_vec_with_clobbers = 0;
2635 int substed_i2 = 0, substed_i1 = 0, substed_i0 = 0;
2636 /* Indicates need to preserve SET in I0, I1 or I2 in I3 if it is not
2637 dead. */
2638 int added_sets_0, added_sets_1, added_sets_2;
2639 /* Total number of SETs to put into I3. */
2640 int total_sets;
2641 /* Nonzero if I2's or I1's body now appears in I3. */
2642 int i2_is_used = 0, i1_is_used = 0;
2643 /* INSN_CODEs for new I3, new I2, and user of condition code. */
2644 int insn_code_number, i2_code_number = 0, other_code_number = 0;
2645 /* Contains I3 if the destination of I3 is used in its source, which means
2646 that the old life of I3 is being killed. If that usage is placed into
2647 I2 and not in I3, a REG_DEAD note must be made. */
2648 rtx i3dest_killed = 0;
2649 /* SET_DEST and SET_SRC of I2, I1 and I0. */
2650 rtx i2dest = 0, i2src = 0, i1dest = 0, i1src = 0, i0dest = 0, i0src = 0;
2651 /* Copy of SET_SRC of I1 and I0, if needed. */
2652 rtx i1src_copy = 0, i0src_copy = 0, i0src_copy2 = 0;
2653 /* Set if I2DEST was reused as a scratch register. */
2654 bool i2scratch = false;
2655 /* The PATTERNs of I0, I1, and I2, or a copy of them in certain cases. */
2656 rtx i0pat = 0, i1pat = 0, i2pat = 0;
2657 /* Indicates if I2DEST or I1DEST is in I2SRC or I1_SRC. */
2658 int i2dest_in_i2src = 0, i1dest_in_i1src = 0, i2dest_in_i1src = 0;
2659 int i0dest_in_i0src = 0, i1dest_in_i0src = 0, i2dest_in_i0src = 0;
2660 int i2dest_killed = 0, i1dest_killed = 0, i0dest_killed = 0;
2661 int i1_feeds_i2_n = 0, i0_feeds_i2_n = 0, i0_feeds_i1_n = 0;
2662 /* Notes that must be added to REG_NOTES in I3 and I2. */
2663 rtx new_i3_notes, new_i2_notes;
2664 /* Notes that we substituted I3 into I2 instead of the normal case. */
2665 int i3_subst_into_i2 = 0;
2666 /* Notes that I1, I2 or I3 is a MULT operation. */
2667 int have_mult = 0;
2668 int swap_i2i3 = 0;
2669 int split_i2i3 = 0;
2670 int changed_i3_dest = 0;
2671
2672 int maxreg;
2673 rtx_insn *temp_insn;
2674 rtx temp_expr;
2675 struct insn_link *link;
2676 rtx other_pat = 0;
2677 rtx new_other_notes;
2678 int i;
2679 scalar_int_mode dest_mode, temp_mode;
2680
2681 /* Immediately return if any of I0,I1,I2 are the same insn (I3 can
2682 never be). */
2683 if (i1 == i2 || i0 == i2 || (i0 && i0 == i1))
2684 return 0;
2685
2686 /* Only try four-insn combinations when there's high likelihood of
2687 success. Look for simple insns, such as loads of constants or
2688 binary operations involving a constant. */
2689 if (i0)
2690 {
2691 int i;
2692 int ngood = 0;
2693 int nshift = 0;
2694 rtx set0, set3;
2695
2696 if (!flag_expensive_optimizations)
2697 return 0;
2698
2699 for (i = 0; i < 4; i++)
2700 {
2701 rtx_insn *insn = i == 0 ? i0 : i == 1 ? i1 : i == 2 ? i2 : i3;
2702 rtx set = single_set (insn);
2703 rtx src;
2704 if (!set)
2705 continue;
2706 src = SET_SRC (set);
2707 if (CONSTANT_P (src))
2708 {
2709 ngood += 2;
2710 break;
2711 }
2712 else if (BINARY_P (src) && CONSTANT_P (XEXP (src, 1)))
2713 ngood++;
2714 else if (GET_CODE (src) == ASHIFT || GET_CODE (src) == ASHIFTRT
2715 || GET_CODE (src) == LSHIFTRT)
2716 nshift++;
2717 }
2718
2719 /* If I0 loads a memory and I3 sets the same memory, then I1 and I2
2720 are likely manipulating its value. Ideally we'll be able to combine
2721 all four insns into a bitfield insertion of some kind.
2722
2723 Note the source in I0 might be inside a sign/zero extension and the
2724 memory modes in I0 and I3 might be different. So extract the address
2725 from the destination of I3 and search for it in the source of I0.
2726
2727 In the event that there's a match but the source/dest do not actually
2728 refer to the same memory, the worst that happens is we try some
2729 combinations that we wouldn't have otherwise. */
2730 if ((set0 = single_set (i0))
2731 /* Ensure the source of SET0 is a MEM, possibly buried inside
2732 an extension. */
2733 && (GET_CODE (SET_SRC (set0)) == MEM
2734 || ((GET_CODE (SET_SRC (set0)) == ZERO_EXTEND
2735 || GET_CODE (SET_SRC (set0)) == SIGN_EXTEND)
2736 && GET_CODE (XEXP (SET_SRC (set0), 0)) == MEM))
2737 && (set3 = single_set (i3))
2738 /* Ensure the destination of SET3 is a MEM. */
2739 && GET_CODE (SET_DEST (set3)) == MEM
2740 /* Would it be better to extract the base address for the MEM
2741 in SET3 and look for that? I don't have cases where it matters
2742 but I could envision such cases. */
2743 && rtx_referenced_p (XEXP (SET_DEST (set3), 0), SET_SRC (set0)))
2744 ngood += 2;
2745
2746 if (ngood < 2 && nshift < 2)
2747 return 0;
2748 }
2749
2750 /* Exit early if one of the insns involved can't be used for
2751 combinations. */
2752 if (CALL_P (i2)
2753 || (i1 && CALL_P (i1))
2754 || (i0 && CALL_P (i0))
2755 || cant_combine_insn_p (i3)
2756 || cant_combine_insn_p (i2)
2757 || (i1 && cant_combine_insn_p (i1))
2758 || (i0 && cant_combine_insn_p (i0))
2759 || likely_spilled_retval_p (i3))
2760 return 0;
2761
2762 combine_attempts++;
2763 undobuf.other_insn = 0;
2764
2765 /* Reset the hard register usage information. */
2766 CLEAR_HARD_REG_SET (newpat_used_regs);
2767
2768 if (dump_file && (dump_flags & TDF_DETAILS))
2769 {
2770 if (i0)
2771 fprintf (dump_file, "\nTrying %d, %d, %d -> %d:\n",
2772 INSN_UID (i0), INSN_UID (i1), INSN_UID (i2), INSN_UID (i3));
2773 else if (i1)
2774 fprintf (dump_file, "\nTrying %d, %d -> %d:\n",
2775 INSN_UID (i1), INSN_UID (i2), INSN_UID (i3));
2776 else
2777 fprintf (dump_file, "\nTrying %d -> %d:\n",
2778 INSN_UID (i2), INSN_UID (i3));
2779
2780 if (i0)
2781 dump_insn_slim (dump_file, i0);
2782 if (i1)
2783 dump_insn_slim (dump_file, i1);
2784 dump_insn_slim (dump_file, i2);
2785 dump_insn_slim (dump_file, i3);
2786 }
2787
2788 /* If multiple insns feed into one of I2 or I3, they can be in any
2789 order. To simplify the code below, reorder them in sequence. */
2790 if (i0 && DF_INSN_LUID (i0) > DF_INSN_LUID (i2))
2791 std::swap (i0, i2);
2792 if (i0 && DF_INSN_LUID (i0) > DF_INSN_LUID (i1))
2793 std::swap (i0, i1);
2794 if (i1 && DF_INSN_LUID (i1) > DF_INSN_LUID (i2))
2795 std::swap (i1, i2);
2796
2797 added_links_insn = 0;
2798 added_notes_insn = 0;
2799
2800 /* First check for one important special case that the code below will
2801 not handle. Namely, the case where I1 is zero, I2 is a PARALLEL
2802 and I3 is a SET whose SET_SRC is a SET_DEST in I2. In that case,
2803 we may be able to replace that destination with the destination of I3.
2804 This occurs in the common code where we compute both a quotient and
2805 remainder into a structure, in which case we want to do the computation
2806 directly into the structure to avoid register-register copies.
2807
2808 Note that this case handles both multiple sets in I2 and also cases
2809 where I2 has a number of CLOBBERs inside the PARALLEL.
2810
2811 We make very conservative checks below and only try to handle the
2812 most common cases of this. For example, we only handle the case
2813 where I2 and I3 are adjacent to avoid making difficult register
2814 usage tests. */
2815
2816 if (i1 == 0 && NONJUMP_INSN_P (i3) && GET_CODE (PATTERN (i3)) == SET
2817 && REG_P (SET_SRC (PATTERN (i3)))
2818 && REGNO (SET_SRC (PATTERN (i3))) >= FIRST_PSEUDO_REGISTER
2819 && find_reg_note (i3, REG_DEAD, SET_SRC (PATTERN (i3)))
2820 && GET_CODE (PATTERN (i2)) == PARALLEL
2821 && ! side_effects_p (SET_DEST (PATTERN (i3)))
2822 /* If the dest of I3 is a ZERO_EXTRACT or STRICT_LOW_PART, the code
2823 below would need to check what is inside (and reg_overlap_mentioned_p
2824 doesn't support those codes anyway). Don't allow those destinations;
2825 the resulting insn isn't likely to be recognized anyway. */
2826 && GET_CODE (SET_DEST (PATTERN (i3))) != ZERO_EXTRACT
2827 && GET_CODE (SET_DEST (PATTERN (i3))) != STRICT_LOW_PART
2828 && ! reg_overlap_mentioned_p (SET_SRC (PATTERN (i3)),
2829 SET_DEST (PATTERN (i3)))
2830 && next_active_insn (i2) == i3)
2831 {
2832 rtx p2 = PATTERN (i2);
2833
2834 /* Make sure that the destination of I3,
2835 which we are going to substitute into one output of I2,
2836 is not used within another output of I2. We must avoid making this:
2837 (parallel [(set (mem (reg 69)) ...)
2838 (set (reg 69) ...)])
2839 which is not well-defined as to order of actions.
2840 (Besides, reload can't handle output reloads for this.)
2841
2842 The problem can also happen if the dest of I3 is a memory ref,
2843 if another dest in I2 is an indirect memory ref.
2844
2845 Neither can this PARALLEL be an asm. We do not allow combining
2846 that usually (see can_combine_p), so do not here either. */
2847 bool ok = true;
2848 for (i = 0; ok && i < XVECLEN (p2, 0); i++)
2849 {
2850 if ((GET_CODE (XVECEXP (p2, 0, i)) == SET
2851 || GET_CODE (XVECEXP (p2, 0, i)) == CLOBBER)
2852 && reg_overlap_mentioned_p (SET_DEST (PATTERN (i3)),
2853 SET_DEST (XVECEXP (p2, 0, i))))
2854 ok = false;
2855 else if (GET_CODE (XVECEXP (p2, 0, i)) == SET
2856 && GET_CODE (SET_SRC (XVECEXP (p2, 0, i))) == ASM_OPERANDS)
2857 ok = false;
2858 }
2859
2860 if (ok)
2861 for (i = 0; i < XVECLEN (p2, 0); i++)
2862 if (GET_CODE (XVECEXP (p2, 0, i)) == SET
2863 && SET_DEST (XVECEXP (p2, 0, i)) == SET_SRC (PATTERN (i3)))
2864 {
2865 combine_merges++;
2866
2867 subst_insn = i3;
2868 subst_low_luid = DF_INSN_LUID (i2);
2869
2870 added_sets_2 = added_sets_1 = added_sets_0 = 0;
2871 i2src = SET_SRC (XVECEXP (p2, 0, i));
2872 i2dest = SET_DEST (XVECEXP (p2, 0, i));
2873 i2dest_killed = dead_or_set_p (i2, i2dest);
2874
2875 /* Replace the dest in I2 with our dest and make the resulting
2876 insn the new pattern for I3. Then skip to where we validate
2877 the pattern. Everything was set up above. */
2878 SUBST (SET_DEST (XVECEXP (p2, 0, i)), SET_DEST (PATTERN (i3)));
2879 newpat = p2;
2880 i3_subst_into_i2 = 1;
2881 goto validate_replacement;
2882 }
2883 }
2884
2885 /* If I2 is setting a pseudo to a constant and I3 is setting some
2886 sub-part of it to another constant, merge them by making a new
2887 constant. */
2888 if (i1 == 0
2889 && (temp_expr = single_set (i2)) != 0
2890 && is_a <scalar_int_mode> (GET_MODE (SET_DEST (temp_expr)), &temp_mode)
2891 && CONST_SCALAR_INT_P (SET_SRC (temp_expr))
2892 && GET_CODE (PATTERN (i3)) == SET
2893 && CONST_SCALAR_INT_P (SET_SRC (PATTERN (i3)))
2894 && reg_subword_p (SET_DEST (PATTERN (i3)), SET_DEST (temp_expr)))
2895 {
2896 rtx dest = SET_DEST (PATTERN (i3));
2897 rtx temp_dest = SET_DEST (temp_expr);
2898 int offset = -1;
2899 int width = 0;
2900
2901 if (GET_CODE (dest) == ZERO_EXTRACT)
2902 {
2903 if (CONST_INT_P (XEXP (dest, 1))
2904 && CONST_INT_P (XEXP (dest, 2))
2905 && is_a <scalar_int_mode> (GET_MODE (XEXP (dest, 0)),
2906 &dest_mode))
2907 {
2908 width = INTVAL (XEXP (dest, 1));
2909 offset = INTVAL (XEXP (dest, 2));
2910 dest = XEXP (dest, 0);
2911 if (BITS_BIG_ENDIAN)
2912 offset = GET_MODE_PRECISION (dest_mode) - width - offset;
2913 }
2914 }
2915 else
2916 {
2917 if (GET_CODE (dest) == STRICT_LOW_PART)
2918 dest = XEXP (dest, 0);
2919 if (is_a <scalar_int_mode> (GET_MODE (dest), &dest_mode))
2920 {
2921 width = GET_MODE_PRECISION (dest_mode);
2922 offset = 0;
2923 }
2924 }
2925
2926 if (offset >= 0)
2927 {
2928 /* If this is the low part, we're done. */
2929 if (subreg_lowpart_p (dest))
2930 ;
2931 /* Handle the case where inner is twice the size of outer. */
2932 else if (GET_MODE_PRECISION (temp_mode)
2933 == 2 * GET_MODE_PRECISION (dest_mode))
2934 offset += GET_MODE_PRECISION (dest_mode);
2935 /* Otherwise give up for now. */
2936 else
2937 offset = -1;
2938 }
2939
2940 if (offset >= 0)
2941 {
2942 rtx inner = SET_SRC (PATTERN (i3));
2943 rtx outer = SET_SRC (temp_expr);
2944
2945 wide_int o = wi::insert (rtx_mode_t (outer, temp_mode),
2946 rtx_mode_t (inner, dest_mode),
2947 offset, width);
2948
2949 combine_merges++;
2950 subst_insn = i3;
2951 subst_low_luid = DF_INSN_LUID (i2);
2952 added_sets_2 = added_sets_1 = added_sets_0 = 0;
2953 i2dest = temp_dest;
2954 i2dest_killed = dead_or_set_p (i2, i2dest);
2955
2956 /* Replace the source in I2 with the new constant and make the
2957 resulting insn the new pattern for I3. Then skip to where we
2958 validate the pattern. Everything was set up above. */
2959 SUBST (SET_SRC (temp_expr),
2960 immed_wide_int_const (o, temp_mode));
2961
2962 newpat = PATTERN (i2);
2963
2964 /* The dest of I3 has been replaced with the dest of I2. */
2965 changed_i3_dest = 1;
2966 goto validate_replacement;
2967 }
2968 }
2969
2970 /* If we have no I1 and I2 looks like:
2971 (parallel [(set (reg:CC X) (compare:CC OP (const_int 0)))
2972 (set Y OP)])
2973 make up a dummy I1 that is
2974 (set Y OP)
2975 and change I2 to be
2976 (set (reg:CC X) (compare:CC Y (const_int 0)))
2977
2978 (We can ignore any trailing CLOBBERs.)
2979
2980 This undoes a previous combination and allows us to match a branch-and-
2981 decrement insn. */
2982
2983 if (!HAVE_cc0 && i1 == 0
2984 && is_parallel_of_n_reg_sets (PATTERN (i2), 2)
2985 && (GET_MODE_CLASS (GET_MODE (SET_DEST (XVECEXP (PATTERN (i2), 0, 0))))
2986 == MODE_CC)
2987 && GET_CODE (SET_SRC (XVECEXP (PATTERN (i2), 0, 0))) == COMPARE
2988 && XEXP (SET_SRC (XVECEXP (PATTERN (i2), 0, 0)), 1) == const0_rtx
2989 && rtx_equal_p (XEXP (SET_SRC (XVECEXP (PATTERN (i2), 0, 0)), 0),
2990 SET_SRC (XVECEXP (PATTERN (i2), 0, 1)))
2991 && !reg_used_between_p (SET_DEST (XVECEXP (PATTERN (i2), 0, 0)), i2, i3)
2992 && !reg_used_between_p (SET_DEST (XVECEXP (PATTERN (i2), 0, 1)), i2, i3))
2993 {
2994 /* We make I1 with the same INSN_UID as I2. This gives it
2995 the same DF_INSN_LUID for value tracking. Our fake I1 will
2996 never appear in the insn stream so giving it the same INSN_UID
2997 as I2 will not cause a problem. */
2998
2999 i1 = gen_rtx_INSN (VOIDmode, NULL, i2, BLOCK_FOR_INSN (i2),
3000 XVECEXP (PATTERN (i2), 0, 1), INSN_LOCATION (i2),
3001 -1, NULL_RTX);
3002 INSN_UID (i1) = INSN_UID (i2);
3003
3004 SUBST (PATTERN (i2), XVECEXP (PATTERN (i2), 0, 0));
3005 SUBST (XEXP (SET_SRC (PATTERN (i2)), 0),
3006 SET_DEST (PATTERN (i1)));
3007 unsigned int regno = REGNO (SET_DEST (PATTERN (i1)));
3008 SUBST_LINK (LOG_LINKS (i2),
3009 alloc_insn_link (i1, regno, LOG_LINKS (i2)));
3010 }
3011
3012 /* If I2 is a PARALLEL of two SETs of REGs (and perhaps some CLOBBERs),
3013 make those two SETs separate I1 and I2 insns, and make an I0 that is
3014 the original I1. */
3015 if (!HAVE_cc0 && i0 == 0
3016 && is_parallel_of_n_reg_sets (PATTERN (i2), 2)
3017 && can_split_parallel_of_n_reg_sets (i2, 2)
3018 && !reg_used_between_p (SET_DEST (XVECEXP (PATTERN (i2), 0, 0)), i2, i3)
3019 && !reg_used_between_p (SET_DEST (XVECEXP (PATTERN (i2), 0, 1)), i2, i3)
3020 && !reg_set_between_p (SET_DEST (XVECEXP (PATTERN (i2), 0, 0)), i2, i3)
3021 && !reg_set_between_p (SET_DEST (XVECEXP (PATTERN (i2), 0, 1)), i2, i3))
3022 {
3023 /* If there is no I1, there is no I0 either. */
3024 i0 = i1;
3025
3026 /* We make I1 with the same INSN_UID as I2. This gives it
3027 the same DF_INSN_LUID for value tracking. Our fake I1 will
3028 never appear in the insn stream so giving it the same INSN_UID
3029 as I2 will not cause a problem. */
3030
3031 i1 = gen_rtx_INSN (VOIDmode, NULL, i2, BLOCK_FOR_INSN (i2),
3032 XVECEXP (PATTERN (i2), 0, 0), INSN_LOCATION (i2),
3033 -1, NULL_RTX);
3034 INSN_UID (i1) = INSN_UID (i2);
3035
3036 SUBST (PATTERN (i2), XVECEXP (PATTERN (i2), 0, 1));
3037 }
3038
3039 /* Verify that I2 and maybe I1 and I0 can be combined into I3. */
3040 if (!can_combine_p (i2, i3, i0, i1, NULL, NULL, &i2dest, &i2src))
3041 {
3042 if (dump_file)
3043 fprintf (dump_file, "Can't combine i2 into i3\n");
3044 undo_all ();
3045 return 0;
3046 }
3047 if (i1 && !can_combine_p (i1, i3, i0, NULL, i2, NULL, &i1dest, &i1src))
3048 {
3049 if (dump_file)
3050 fprintf (dump_file, "Can't combine i1 into i3\n");
3051 undo_all ();
3052 return 0;
3053 }
3054 if (i0 && !can_combine_p (i0, i3, NULL, NULL, i1, i2, &i0dest, &i0src))
3055 {
3056 if (dump_file)
3057 fprintf (dump_file, "Can't combine i0 into i3\n");
3058 undo_all ();
3059 return 0;
3060 }
3061
3062 /* Record whether I2DEST is used in I2SRC and similarly for the other
3063 cases. Knowing this will help in register status updating below. */
3064 i2dest_in_i2src = reg_overlap_mentioned_p (i2dest, i2src);
3065 i1dest_in_i1src = i1 && reg_overlap_mentioned_p (i1dest, i1src);
3066 i2dest_in_i1src = i1 && reg_overlap_mentioned_p (i2dest, i1src);
3067 i0dest_in_i0src = i0 && reg_overlap_mentioned_p (i0dest, i0src);
3068 i1dest_in_i0src = i0 && reg_overlap_mentioned_p (i1dest, i0src);
3069 i2dest_in_i0src = i0 && reg_overlap_mentioned_p (i2dest, i0src);
3070 i2dest_killed = dead_or_set_p (i2, i2dest);
3071 i1dest_killed = i1 && dead_or_set_p (i1, i1dest);
3072 i0dest_killed = i0 && dead_or_set_p (i0, i0dest);
3073
3074 /* For the earlier insns, determine which of the subsequent ones they
3075 feed. */
3076 i1_feeds_i2_n = i1 && insn_a_feeds_b (i1, i2);
3077 i0_feeds_i1_n = i0 && insn_a_feeds_b (i0, i1);
3078 i0_feeds_i2_n = (i0 && (!i0_feeds_i1_n ? insn_a_feeds_b (i0, i2)
3079 : (!reg_overlap_mentioned_p (i1dest, i0dest)
3080 && reg_overlap_mentioned_p (i0dest, i2src))));
3081
3082 /* Ensure that I3's pattern can be the destination of combines. */
3083 if (! combinable_i3pat (i3, &PATTERN (i3), i2dest, i1dest, i0dest,
3084 i1 && i2dest_in_i1src && !i1_feeds_i2_n,
3085 i0 && ((i2dest_in_i0src && !i0_feeds_i2_n)
3086 || (i1dest_in_i0src && !i0_feeds_i1_n)),
3087 &i3dest_killed))
3088 {
3089 undo_all ();
3090 return 0;
3091 }
3092
3093 /* See if any of the insns is a MULT operation. Unless one is, we will
3094 reject a combination that is, since it must be slower. Be conservative
3095 here. */
3096 if (GET_CODE (i2src) == MULT
3097 || (i1 != 0 && GET_CODE (i1src) == MULT)
3098 || (i0 != 0 && GET_CODE (i0src) == MULT)
3099 || (GET_CODE (PATTERN (i3)) == SET
3100 && GET_CODE (SET_SRC (PATTERN (i3))) == MULT))
3101 have_mult = 1;
3102
3103 /* If I3 has an inc, then give up if I1 or I2 uses the reg that is inc'd.
3104 We used to do this EXCEPT in one case: I3 has a post-inc in an
3105 output operand. However, that exception can give rise to insns like
3106 mov r3,(r3)+
3107 which is a famous insn on the PDP-11 where the value of r3 used as the
3108 source was model-dependent. Avoid this sort of thing. */
3109
3110 #if 0
3111 if (!(GET_CODE (PATTERN (i3)) == SET
3112 && REG_P (SET_SRC (PATTERN (i3)))
3113 && MEM_P (SET_DEST (PATTERN (i3)))
3114 && (GET_CODE (XEXP (SET_DEST (PATTERN (i3)), 0)) == POST_INC
3115 || GET_CODE (XEXP (SET_DEST (PATTERN (i3)), 0)) == POST_DEC)))
3116 /* It's not the exception. */
3117 #endif
3118 if (AUTO_INC_DEC)
3119 {
3120 rtx link;
3121 for (link = REG_NOTES (i3); link; link = XEXP (link, 1))
3122 if (REG_NOTE_KIND (link) == REG_INC
3123 && (reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i2))
3124 || (i1 != 0
3125 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i1)))))
3126 {
3127 undo_all ();
3128 return 0;
3129 }
3130 }
3131
3132 /* See if the SETs in I1 or I2 need to be kept around in the merged
3133 instruction: whenever the value set there is still needed past I3.
3134 For the SET in I2, this is easy: we see if I2DEST dies or is set in I3.
3135
3136 For the SET in I1, we have two cases: if I1 and I2 independently feed
3137 into I3, the set in I1 needs to be kept around unless I1DEST dies
3138 or is set in I3. Otherwise (if I1 feeds I2 which feeds I3), the set
3139 in I1 needs to be kept around unless I1DEST dies or is set in either
3140 I2 or I3. The same considerations apply to I0. */
3141
3142 added_sets_2 = !dead_or_set_p (i3, i2dest);
3143
3144 if (i1)
3145 added_sets_1 = !(dead_or_set_p (i3, i1dest)
3146 || (i1_feeds_i2_n && dead_or_set_p (i2, i1dest)));
3147 else
3148 added_sets_1 = 0;
3149
3150 if (i0)
3151 added_sets_0 = !(dead_or_set_p (i3, i0dest)
3152 || (i0_feeds_i1_n && dead_or_set_p (i1, i0dest))
3153 || ((i0_feeds_i2_n || (i0_feeds_i1_n && i1_feeds_i2_n))
3154 && dead_or_set_p (i2, i0dest)));
3155 else
3156 added_sets_0 = 0;
3157
3158 /* We are about to copy insns for the case where they need to be kept
3159 around. Check that they can be copied in the merged instruction. */
3160
3161 if (targetm.cannot_copy_insn_p
3162 && ((added_sets_2 && targetm.cannot_copy_insn_p (i2))
3163 || (i1 && added_sets_1 && targetm.cannot_copy_insn_p (i1))
3164 || (i0 && added_sets_0 && targetm.cannot_copy_insn_p (i0))))
3165 {
3166 undo_all ();
3167 return 0;
3168 }
3169
3170 /* If the set in I2 needs to be kept around, we must make a copy of
3171 PATTERN (I2), so that when we substitute I1SRC for I1DEST in
3172 PATTERN (I2), we are only substituting for the original I1DEST, not into
3173 an already-substituted copy. This also prevents making self-referential
3174 rtx. If I2 is a PARALLEL, we just need the piece that assigns I2SRC to
3175 I2DEST. */
3176
3177 if (added_sets_2)
3178 {
3179 if (GET_CODE (PATTERN (i2)) == PARALLEL)
3180 i2pat = gen_rtx_SET (i2dest, copy_rtx (i2src));
3181 else
3182 i2pat = copy_rtx (PATTERN (i2));
3183 }
3184
3185 if (added_sets_1)
3186 {
3187 if (GET_CODE (PATTERN (i1)) == PARALLEL)
3188 i1pat = gen_rtx_SET (i1dest, copy_rtx (i1src));
3189 else
3190 i1pat = copy_rtx (PATTERN (i1));
3191 }
3192
3193 if (added_sets_0)
3194 {
3195 if (GET_CODE (PATTERN (i0)) == PARALLEL)
3196 i0pat = gen_rtx_SET (i0dest, copy_rtx (i0src));
3197 else
3198 i0pat = copy_rtx (PATTERN (i0));
3199 }
3200
3201 combine_merges++;
3202
3203 /* Substitute in the latest insn for the regs set by the earlier ones. */
3204
3205 maxreg = max_reg_num ();
3206
3207 subst_insn = i3;
3208
3209 /* Many machines that don't use CC0 have insns that can both perform an
3210 arithmetic operation and set the condition code. These operations will
3211 be represented as a PARALLEL with the first element of the vector
3212 being a COMPARE of an arithmetic operation with the constant zero.
3213 The second element of the vector will set some pseudo to the result
3214 of the same arithmetic operation. If we simplify the COMPARE, we won't
3215 match such a pattern and so will generate an extra insn. Here we test
3216 for this case, where both the comparison and the operation result are
3217 needed, and make the PARALLEL by just replacing I2DEST in I3SRC with
3218 I2SRC. Later we will make the PARALLEL that contains I2. */
3219
3220 if (!HAVE_cc0 && i1 == 0 && added_sets_2 && GET_CODE (PATTERN (i3)) == SET
3221 && GET_CODE (SET_SRC (PATTERN (i3))) == COMPARE
3222 && CONST_INT_P (XEXP (SET_SRC (PATTERN (i3)), 1))
3223 && rtx_equal_p (XEXP (SET_SRC (PATTERN (i3)), 0), i2dest))
3224 {
3225 rtx newpat_dest;
3226 rtx *cc_use_loc = NULL;
3227 rtx_insn *cc_use_insn = NULL;
3228 rtx op0 = i2src, op1 = XEXP (SET_SRC (PATTERN (i3)), 1);
3229 machine_mode compare_mode, orig_compare_mode;
3230 enum rtx_code compare_code = UNKNOWN, orig_compare_code = UNKNOWN;
3231 scalar_int_mode mode;
3232
3233 newpat = PATTERN (i3);
3234 newpat_dest = SET_DEST (newpat);
3235 compare_mode = orig_compare_mode = GET_MODE (newpat_dest);
3236
3237 if (undobuf.other_insn == 0
3238 && (cc_use_loc = find_single_use (SET_DEST (newpat), i3,
3239 &cc_use_insn)))
3240 {
3241 compare_code = orig_compare_code = GET_CODE (*cc_use_loc);
3242 if (is_a <scalar_int_mode> (GET_MODE (i2dest), &mode))
3243 compare_code = simplify_compare_const (compare_code, mode,
3244 op0, &op1);
3245 target_canonicalize_comparison (&compare_code, &op0, &op1, 1);
3246 }
3247
3248 /* Do the rest only if op1 is const0_rtx, which may be the
3249 result of simplification. */
3250 if (op1 == const0_rtx)
3251 {
3252 /* If a single use of the CC is found, prepare to modify it
3253 when SELECT_CC_MODE returns a new CC-class mode, or when
3254 the above simplify_compare_const() returned a new comparison
3255 operator. undobuf.other_insn is assigned the CC use insn
3256 when modifying it. */
3257 if (cc_use_loc)
3258 {
3259 #ifdef SELECT_CC_MODE
3260 machine_mode new_mode
3261 = SELECT_CC_MODE (compare_code, op0, op1);
3262 if (new_mode != orig_compare_mode
3263 && can_change_dest_mode (SET_DEST (newpat),
3264 added_sets_2, new_mode))
3265 {
3266 unsigned int regno = REGNO (newpat_dest);
3267 compare_mode = new_mode;
3268 if (regno < FIRST_PSEUDO_REGISTER)
3269 newpat_dest = gen_rtx_REG (compare_mode, regno);
3270 else
3271 {
3272 SUBST_MODE (regno_reg_rtx[regno], compare_mode);
3273 newpat_dest = regno_reg_rtx[regno];
3274 }
3275 }
3276 #endif
3277 /* Cases for modifying the CC-using comparison. */
3278 if (compare_code != orig_compare_code
3279 /* ??? Do we need to verify the zero rtx? */
3280 && XEXP (*cc_use_loc, 1) == const0_rtx)
3281 {
3282 /* Replace cc_use_loc with entire new RTX. */
3283 SUBST (*cc_use_loc,
3284 gen_rtx_fmt_ee (compare_code, compare_mode,
3285 newpat_dest, const0_rtx));
3286 undobuf.other_insn = cc_use_insn;
3287 }
3288 else if (compare_mode != orig_compare_mode)
3289 {
3290 /* Just replace the CC reg with a new mode. */
3291 SUBST (XEXP (*cc_use_loc, 0), newpat_dest);
3292 undobuf.other_insn = cc_use_insn;
3293 }
3294 }
3295
3296 /* Now we modify the current newpat:
3297 First, SET_DEST(newpat) is updated if the CC mode has been
3298 altered. For targets without SELECT_CC_MODE, this should be
3299 optimized away. */
3300 if (compare_mode != orig_compare_mode)
3301 SUBST (SET_DEST (newpat), newpat_dest);
3302 /* This is always done to propagate i2src into newpat. */
3303 SUBST (SET_SRC (newpat),
3304 gen_rtx_COMPARE (compare_mode, op0, op1));
3305 /* Create new version of i2pat if needed; the below PARALLEL
3306 creation needs this to work correctly. */
3307 if (! rtx_equal_p (i2src, op0))
3308 i2pat = gen_rtx_SET (i2dest, op0);
3309 i2_is_used = 1;
3310 }
3311 }
3312
3313 if (i2_is_used == 0)
3314 {
3315 /* It is possible that the source of I2 or I1 may be performing
3316 an unneeded operation, such as a ZERO_EXTEND of something
3317 that is known to have the high part zero. Handle that case
3318 by letting subst look at the inner insns.
3319
3320 Another way to do this would be to have a function that tries
3321 to simplify a single insn instead of merging two or more
3322 insns. We don't do this because of the potential of infinite
3323 loops and because of the potential extra memory required.
3324 However, doing it the way we are is a bit of a kludge and
3325 doesn't catch all cases.
3326
3327 But only do this if -fexpensive-optimizations since it slows
3328 things down and doesn't usually win.
3329
3330 This is not done in the COMPARE case above because the
3331 unmodified I2PAT is used in the PARALLEL and so a pattern
3332 with a modified I2SRC would not match. */
3333
3334 if (flag_expensive_optimizations)
3335 {
3336 /* Pass pc_rtx so no substitutions are done, just
3337 simplifications. */
3338 if (i1)
3339 {
3340 subst_low_luid = DF_INSN_LUID (i1);
3341 i1src = subst (i1src, pc_rtx, pc_rtx, 0, 0, 0);
3342 }
3343
3344 subst_low_luid = DF_INSN_LUID (i2);
3345 i2src = subst (i2src, pc_rtx, pc_rtx, 0, 0, 0);
3346 }
3347
3348 n_occurrences = 0; /* `subst' counts here */
3349 subst_low_luid = DF_INSN_LUID (i2);
3350
3351 /* If I1 feeds into I2 and I1DEST is in I1SRC, we need to make a unique
3352 copy of I2SRC each time we substitute it, in order to avoid creating
3353 self-referential RTL when we will be substituting I1SRC for I1DEST
3354 later. Likewise if I0 feeds into I2, either directly or indirectly
3355 through I1, and I0DEST is in I0SRC. */
3356 newpat = subst (PATTERN (i3), i2dest, i2src, 0, 0,
3357 (i1_feeds_i2_n && i1dest_in_i1src)
3358 || ((i0_feeds_i2_n || (i0_feeds_i1_n && i1_feeds_i2_n))
3359 && i0dest_in_i0src));
3360 substed_i2 = 1;
3361
3362 /* Record whether I2's body now appears within I3's body. */
3363 i2_is_used = n_occurrences;
3364 }
3365
3366 /* If we already got a failure, don't try to do more. Otherwise, try to
3367 substitute I1 if we have it. */
3368
3369 if (i1 && GET_CODE (newpat) != CLOBBER)
3370 {
3371 /* Check that an autoincrement side-effect on I1 has not been lost.
3372 This happens if I1DEST is mentioned in I2 and dies there, and
3373 has disappeared from the new pattern. */
3374 if ((FIND_REG_INC_NOTE (i1, NULL_RTX) != 0
3375 && i1_feeds_i2_n
3376 && dead_or_set_p (i2, i1dest)
3377 && !reg_overlap_mentioned_p (i1dest, newpat))
3378 /* Before we can do this substitution, we must redo the test done
3379 above (see detailed comments there) that ensures I1DEST isn't
3380 mentioned in any SETs in NEWPAT that are field assignments. */
3381 || !combinable_i3pat (NULL, &newpat, i1dest, NULL_RTX, NULL_RTX,
3382 0, 0, 0))
3383 {
3384 undo_all ();
3385 return 0;
3386 }
3387
3388 n_occurrences = 0;
3389 subst_low_luid = DF_INSN_LUID (i1);
3390
3391 /* If the following substitution will modify I1SRC, make a copy of it
3392 for the case where it is substituted for I1DEST in I2PAT later. */
3393 if (added_sets_2 && i1_feeds_i2_n)
3394 i1src_copy = copy_rtx (i1src);
3395
3396 /* If I0 feeds into I1 and I0DEST is in I0SRC, we need to make a unique
3397 copy of I1SRC each time we substitute it, in order to avoid creating
3398 self-referential RTL when we will be substituting I0SRC for I0DEST
3399 later. */
3400 newpat = subst (newpat, i1dest, i1src, 0, 0,
3401 i0_feeds_i1_n && i0dest_in_i0src);
3402 substed_i1 = 1;
3403
3404 /* Record whether I1's body now appears within I3's body. */
3405 i1_is_used = n_occurrences;
3406 }
3407
3408 /* Likewise for I0 if we have it. */
3409
3410 if (i0 && GET_CODE (newpat) != CLOBBER)
3411 {
3412 if ((FIND_REG_INC_NOTE (i0, NULL_RTX) != 0
3413 && ((i0_feeds_i2_n && dead_or_set_p (i2, i0dest))
3414 || (i0_feeds_i1_n && dead_or_set_p (i1, i0dest)))
3415 && !reg_overlap_mentioned_p (i0dest, newpat))
3416 || !combinable_i3pat (NULL, &newpat, i0dest, NULL_RTX, NULL_RTX,
3417 0, 0, 0))
3418 {
3419 undo_all ();
3420 return 0;
3421 }
3422
3423 /* If the following substitution will modify I0SRC, make a copy of it
3424 for the case where it is substituted for I0DEST in I1PAT later. */
3425 if (added_sets_1 && i0_feeds_i1_n)
3426 i0src_copy = copy_rtx (i0src);
3427 /* And a copy for I0DEST in I2PAT substitution. */
3428 if (added_sets_2 && ((i0_feeds_i1_n && i1_feeds_i2_n)
3429 || (i0_feeds_i2_n)))
3430 i0src_copy2 = copy_rtx (i0src);
3431
3432 n_occurrences = 0;
3433 subst_low_luid = DF_INSN_LUID (i0);
3434 newpat = subst (newpat, i0dest, i0src, 0, 0, 0);
3435 substed_i0 = 1;
3436 }
3437
3438 /* Fail if an autoincrement side-effect has been duplicated. Be careful
3439 to count all the ways that I2SRC and I1SRC can be used. */
3440 if ((FIND_REG_INC_NOTE (i2, NULL_RTX) != 0
3441 && i2_is_used + added_sets_2 > 1)
3442 || (i1 != 0 && FIND_REG_INC_NOTE (i1, NULL_RTX) != 0
3443 && (i1_is_used + added_sets_1 + (added_sets_2 && i1_feeds_i2_n)
3444 > 1))
3445 || (i0 != 0 && FIND_REG_INC_NOTE (i0, NULL_RTX) != 0
3446 && (n_occurrences + added_sets_0
3447 + (added_sets_1 && i0_feeds_i1_n)
3448 + (added_sets_2 && i0_feeds_i2_n)
3449 > 1))
3450 /* Fail if we tried to make a new register. */
3451 || max_reg_num () != maxreg
3452 /* Fail if we couldn't do something and have a CLOBBER. */
3453 || GET_CODE (newpat) == CLOBBER
3454 /* Fail if this new pattern is a MULT and we didn't have one before
3455 at the outer level. */
3456 || (GET_CODE (newpat) == SET && GET_CODE (SET_SRC (newpat)) == MULT
3457 && ! have_mult))
3458 {
3459 undo_all ();
3460 return 0;
3461 }
3462
3463 /* If the actions of the earlier insns must be kept
3464 in addition to substituting them into the latest one,
3465 we must make a new PARALLEL for the latest insn
3466 to hold additional the SETs. */
3467
3468 if (added_sets_0 || added_sets_1 || added_sets_2)
3469 {
3470 int extra_sets = added_sets_0 + added_sets_1 + added_sets_2;
3471 combine_extras++;
3472
3473 if (GET_CODE (newpat) == PARALLEL)
3474 {
3475 rtvec old = XVEC (newpat, 0);
3476 total_sets = XVECLEN (newpat, 0) + extra_sets;
3477 newpat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (total_sets));
3478 memcpy (XVEC (newpat, 0)->elem, &old->elem[0],
3479 sizeof (old->elem[0]) * old->num_elem);
3480 }
3481 else
3482 {
3483 rtx old = newpat;
3484 total_sets = 1 + extra_sets;
3485 newpat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (total_sets));
3486 XVECEXP (newpat, 0, 0) = old;
3487 }
3488
3489 if (added_sets_0)
3490 XVECEXP (newpat, 0, --total_sets) = i0pat;
3491
3492 if (added_sets_1)
3493 {
3494 rtx t = i1pat;
3495 if (i0_feeds_i1_n)
3496 t = subst (t, i0dest, i0src_copy ? i0src_copy : i0src, 0, 0, 0);
3497
3498 XVECEXP (newpat, 0, --total_sets) = t;
3499 }
3500 if (added_sets_2)
3501 {
3502 rtx t = i2pat;
3503 if (i1_feeds_i2_n)
3504 t = subst (t, i1dest, i1src_copy ? i1src_copy : i1src, 0, 0,
3505 i0_feeds_i1_n && i0dest_in_i0src);
3506 if ((i0_feeds_i1_n && i1_feeds_i2_n) || i0_feeds_i2_n)
3507 t = subst (t, i0dest, i0src_copy2 ? i0src_copy2 : i0src, 0, 0, 0);
3508
3509 XVECEXP (newpat, 0, --total_sets) = t;
3510 }
3511 }
3512
3513 validate_replacement:
3514
3515 /* Note which hard regs this insn has as inputs. */
3516 mark_used_regs_combine (newpat);
3517
3518 /* If recog_for_combine fails, it strips existing clobbers. If we'll
3519 consider splitting this pattern, we might need these clobbers. */
3520 if (i1 && GET_CODE (newpat) == PARALLEL
3521 && GET_CODE (XVECEXP (newpat, 0, XVECLEN (newpat, 0) - 1)) == CLOBBER)
3522 {
3523 int len = XVECLEN (newpat, 0);
3524
3525 newpat_vec_with_clobbers = rtvec_alloc (len);
3526 for (i = 0; i < len; i++)
3527 RTVEC_ELT (newpat_vec_with_clobbers, i) = XVECEXP (newpat, 0, i);
3528 }
3529
3530 /* We have recognized nothing yet. */
3531 insn_code_number = -1;
3532
3533 /* See if this is a PARALLEL of two SETs where one SET's destination is
3534 a register that is unused and this isn't marked as an instruction that
3535 might trap in an EH region. In that case, we just need the other SET.
3536 We prefer this over the PARALLEL.
3537
3538 This can occur when simplifying a divmod insn. We *must* test for this
3539 case here because the code below that splits two independent SETs doesn't
3540 handle this case correctly when it updates the register status.
3541
3542 It's pointless doing this if we originally had two sets, one from
3543 i3, and one from i2. Combining then splitting the parallel results
3544 in the original i2 again plus an invalid insn (which we delete).
3545 The net effect is only to move instructions around, which makes
3546 debug info less accurate.
3547
3548 If the remaining SET came from I2 its destination should not be used
3549 between I2 and I3. See PR82024. */
3550
3551 if (!(added_sets_2 && i1 == 0)
3552 && is_parallel_of_n_reg_sets (newpat, 2)
3553 && asm_noperands (newpat) < 0)
3554 {
3555 rtx set0 = XVECEXP (newpat, 0, 0);
3556 rtx set1 = XVECEXP (newpat, 0, 1);
3557 rtx oldpat = newpat;
3558
3559 if (((REG_P (SET_DEST (set1))
3560 && find_reg_note (i3, REG_UNUSED, SET_DEST (set1)))
3561 || (GET_CODE (SET_DEST (set1)) == SUBREG
3562 && find_reg_note (i3, REG_UNUSED, SUBREG_REG (SET_DEST (set1)))))
3563 && insn_nothrow_p (i3)
3564 && !side_effects_p (SET_SRC (set1)))
3565 {
3566 newpat = set0;
3567 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3568 }
3569
3570 else if (((REG_P (SET_DEST (set0))
3571 && find_reg_note (i3, REG_UNUSED, SET_DEST (set0)))
3572 || (GET_CODE (SET_DEST (set0)) == SUBREG
3573 && find_reg_note (i3, REG_UNUSED,
3574 SUBREG_REG (SET_DEST (set0)))))
3575 && insn_nothrow_p (i3)
3576 && !side_effects_p (SET_SRC (set0)))
3577 {
3578 rtx dest = SET_DEST (set1);
3579 if (GET_CODE (dest) == SUBREG)
3580 dest = SUBREG_REG (dest);
3581 if (!reg_used_between_p (dest, i2, i3))
3582 {
3583 newpat = set1;
3584 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3585
3586 if (insn_code_number >= 0)
3587 changed_i3_dest = 1;
3588 }
3589 }
3590
3591 if (insn_code_number < 0)
3592 newpat = oldpat;
3593 }
3594
3595 /* Is the result of combination a valid instruction? */
3596 if (insn_code_number < 0)
3597 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3598
3599 /* If we were combining three insns and the result is a simple SET
3600 with no ASM_OPERANDS that wasn't recognized, try to split it into two
3601 insns. There are two ways to do this. It can be split using a
3602 machine-specific method (like when you have an addition of a large
3603 constant) or by combine in the function find_split_point. */
3604
3605 if (i1 && insn_code_number < 0 && GET_CODE (newpat) == SET
3606 && asm_noperands (newpat) < 0)
3607 {
3608 rtx parallel, *split;
3609 rtx_insn *m_split_insn;
3610
3611 /* See if the MD file can split NEWPAT. If it can't, see if letting it
3612 use I2DEST as a scratch register will help. In the latter case,
3613 convert I2DEST to the mode of the source of NEWPAT if we can. */
3614
3615 m_split_insn = combine_split_insns (newpat, i3);
3616
3617 /* We can only use I2DEST as a scratch reg if it doesn't overlap any
3618 inputs of NEWPAT. */
3619
3620 /* ??? If I2DEST is not safe, and I1DEST exists, then it would be
3621 possible to try that as a scratch reg. This would require adding
3622 more code to make it work though. */
3623
3624 if (m_split_insn == 0 && ! reg_overlap_mentioned_p (i2dest, newpat))
3625 {
3626 machine_mode new_mode = GET_MODE (SET_DEST (newpat));
3627
3628 /* ??? Reusing i2dest without resetting the reg_stat entry for it
3629 (temporarily, until we are committed to this instruction
3630 combination) does not work: for example, any call to nonzero_bits
3631 on the register (from a splitter in the MD file, for example)
3632 will get the old information, which is invalid.
3633
3634 Since nowadays we can create registers during combine just fine,
3635 we should just create a new one here, not reuse i2dest. */
3636
3637 /* First try to split using the original register as a
3638 scratch register. */
3639 parallel = gen_rtx_PARALLEL (VOIDmode,
3640 gen_rtvec (2, newpat,
3641 gen_rtx_CLOBBER (VOIDmode,
3642 i2dest)));
3643 m_split_insn = combine_split_insns (parallel, i3);
3644
3645 /* If that didn't work, try changing the mode of I2DEST if
3646 we can. */
3647 if (m_split_insn == 0
3648 && new_mode != GET_MODE (i2dest)
3649 && new_mode != VOIDmode
3650 && can_change_dest_mode (i2dest, added_sets_2, new_mode))
3651 {
3652 machine_mode old_mode = GET_MODE (i2dest);
3653 rtx ni2dest;
3654
3655 if (REGNO (i2dest) < FIRST_PSEUDO_REGISTER)
3656 ni2dest = gen_rtx_REG (new_mode, REGNO (i2dest));
3657 else
3658 {
3659 SUBST_MODE (regno_reg_rtx[REGNO (i2dest)], new_mode);
3660 ni2dest = regno_reg_rtx[REGNO (i2dest)];
3661 }
3662
3663 parallel = (gen_rtx_PARALLEL
3664 (VOIDmode,
3665 gen_rtvec (2, newpat,
3666 gen_rtx_CLOBBER (VOIDmode,
3667 ni2dest))));
3668 m_split_insn = combine_split_insns (parallel, i3);
3669
3670 if (m_split_insn == 0
3671 && REGNO (i2dest) >= FIRST_PSEUDO_REGISTER)
3672 {
3673 struct undo *buf;
3674
3675 adjust_reg_mode (regno_reg_rtx[REGNO (i2dest)], old_mode);
3676 buf = undobuf.undos;
3677 undobuf.undos = buf->next;
3678 buf->next = undobuf.frees;
3679 undobuf.frees = buf;
3680 }
3681 }
3682
3683 i2scratch = m_split_insn != 0;
3684 }
3685
3686 /* If recog_for_combine has discarded clobbers, try to use them
3687 again for the split. */
3688 if (m_split_insn == 0 && newpat_vec_with_clobbers)
3689 {
3690 parallel = gen_rtx_PARALLEL (VOIDmode, newpat_vec_with_clobbers);
3691 m_split_insn = combine_split_insns (parallel, i3);
3692 }
3693
3694 if (m_split_insn && NEXT_INSN (m_split_insn) == NULL_RTX)
3695 {
3696 rtx m_split_pat = PATTERN (m_split_insn);
3697 insn_code_number = recog_for_combine (&m_split_pat, i3, &new_i3_notes);
3698 if (insn_code_number >= 0)
3699 newpat = m_split_pat;
3700 }
3701 else if (m_split_insn && NEXT_INSN (NEXT_INSN (m_split_insn)) == NULL_RTX
3702 && (next_nonnote_nondebug_insn (i2) == i3
3703 || !modified_between_p (PATTERN (m_split_insn), i2, i3)))
3704 {
3705 rtx i2set, i3set;
3706 rtx newi3pat = PATTERN (NEXT_INSN (m_split_insn));
3707 newi2pat = PATTERN (m_split_insn);
3708
3709 i3set = single_set (NEXT_INSN (m_split_insn));
3710 i2set = single_set (m_split_insn);
3711
3712 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
3713
3714 /* If I2 or I3 has multiple SETs, we won't know how to track
3715 register status, so don't use these insns. If I2's destination
3716 is used between I2 and I3, we also can't use these insns. */
3717
3718 if (i2_code_number >= 0 && i2set && i3set
3719 && (next_nonnote_nondebug_insn (i2) == i3
3720 || ! reg_used_between_p (SET_DEST (i2set), i2, i3)))
3721 insn_code_number = recog_for_combine (&newi3pat, i3,
3722 &new_i3_notes);
3723 if (insn_code_number >= 0)
3724 newpat = newi3pat;
3725
3726 /* It is possible that both insns now set the destination of I3.
3727 If so, we must show an extra use of it. */
3728
3729 if (insn_code_number >= 0)
3730 {
3731 rtx new_i3_dest = SET_DEST (i3set);
3732 rtx new_i2_dest = SET_DEST (i2set);
3733
3734 while (GET_CODE (new_i3_dest) == ZERO_EXTRACT
3735 || GET_CODE (new_i3_dest) == STRICT_LOW_PART
3736 || GET_CODE (new_i3_dest) == SUBREG)
3737 new_i3_dest = XEXP (new_i3_dest, 0);
3738
3739 while (GET_CODE (new_i2_dest) == ZERO_EXTRACT
3740 || GET_CODE (new_i2_dest) == STRICT_LOW_PART
3741 || GET_CODE (new_i2_dest) == SUBREG)
3742 new_i2_dest = XEXP (new_i2_dest, 0);
3743
3744 if (REG_P (new_i3_dest)
3745 && REG_P (new_i2_dest)
3746 && REGNO (new_i3_dest) == REGNO (new_i2_dest)
3747 && REGNO (new_i2_dest) < reg_n_sets_max)
3748 INC_REG_N_SETS (REGNO (new_i2_dest), 1);
3749 }
3750 }
3751
3752 /* If we can split it and use I2DEST, go ahead and see if that
3753 helps things be recognized. Verify that none of the registers
3754 are set between I2 and I3. */
3755 if (insn_code_number < 0
3756 && (split = find_split_point (&newpat, i3, false)) != 0
3757 && (!HAVE_cc0 || REG_P (i2dest))
3758 /* We need I2DEST in the proper mode. If it is a hard register
3759 or the only use of a pseudo, we can change its mode.
3760 Make sure we don't change a hard register to have a mode that
3761 isn't valid for it, or change the number of registers. */
3762 && (GET_MODE (*split) == GET_MODE (i2dest)
3763 || GET_MODE (*split) == VOIDmode
3764 || can_change_dest_mode (i2dest, added_sets_2,
3765 GET_MODE (*split)))
3766 && (next_nonnote_nondebug_insn (i2) == i3
3767 || !modified_between_p (*split, i2, i3))
3768 /* We can't overwrite I2DEST if its value is still used by
3769 NEWPAT. */
3770 && ! reg_referenced_p (i2dest, newpat))
3771 {
3772 rtx newdest = i2dest;
3773 enum rtx_code split_code = GET_CODE (*split);
3774 machine_mode split_mode = GET_MODE (*split);
3775 bool subst_done = false;
3776 newi2pat = NULL_RTX;
3777
3778 i2scratch = true;
3779
3780 /* *SPLIT may be part of I2SRC, so make sure we have the
3781 original expression around for later debug processing.
3782 We should not need I2SRC any more in other cases. */
3783 if (MAY_HAVE_DEBUG_BIND_INSNS)
3784 i2src = copy_rtx (i2src);
3785 else
3786 i2src = NULL;
3787
3788 /* Get NEWDEST as a register in the proper mode. We have already
3789 validated that we can do this. */
3790 if (GET_MODE (i2dest) != split_mode && split_mode != VOIDmode)
3791 {
3792 if (REGNO (i2dest) < FIRST_PSEUDO_REGISTER)
3793 newdest = gen_rtx_REG (split_mode, REGNO (i2dest));
3794 else
3795 {
3796 SUBST_MODE (regno_reg_rtx[REGNO (i2dest)], split_mode);
3797 newdest = regno_reg_rtx[REGNO (i2dest)];
3798 }
3799 }
3800
3801 /* If *SPLIT is a (mult FOO (const_int pow2)), convert it to
3802 an ASHIFT. This can occur if it was inside a PLUS and hence
3803 appeared to be a memory address. This is a kludge. */
3804 if (split_code == MULT
3805 && CONST_INT_P (XEXP (*split, 1))
3806 && INTVAL (XEXP (*split, 1)) > 0
3807 && (i = exact_log2 (UINTVAL (XEXP (*split, 1)))) >= 0)
3808 {
3809 rtx i_rtx = gen_int_shift_amount (split_mode, i);
3810 SUBST (*split, gen_rtx_ASHIFT (split_mode,
3811 XEXP (*split, 0), i_rtx));
3812 /* Update split_code because we may not have a multiply
3813 anymore. */
3814 split_code = GET_CODE (*split);
3815 }
3816
3817 /* Similarly for (plus (mult FOO (const_int pow2))). */
3818 if (split_code == PLUS
3819 && GET_CODE (XEXP (*split, 0)) == MULT
3820 && CONST_INT_P (XEXP (XEXP (*split, 0), 1))
3821 && INTVAL (XEXP (XEXP (*split, 0), 1)) > 0
3822 && (i = exact_log2 (UINTVAL (XEXP (XEXP (*split, 0), 1)))) >= 0)
3823 {
3824 rtx nsplit = XEXP (*split, 0);
3825 rtx i_rtx = gen_int_shift_amount (GET_MODE (nsplit), i);
3826 SUBST (XEXP (*split, 0), gen_rtx_ASHIFT (GET_MODE (nsplit),
3827 XEXP (nsplit, 0),
3828 i_rtx));
3829 /* Update split_code because we may not have a multiply
3830 anymore. */
3831 split_code = GET_CODE (*split);
3832 }
3833
3834 #ifdef INSN_SCHEDULING
3835 /* If *SPLIT is a paradoxical SUBREG, when we split it, it should
3836 be written as a ZERO_EXTEND. */
3837 if (split_code == SUBREG && MEM_P (SUBREG_REG (*split)))
3838 {
3839 /* Or as a SIGN_EXTEND if LOAD_EXTEND_OP says that that's
3840 what it really is. */
3841 if (load_extend_op (GET_MODE (SUBREG_REG (*split)))
3842 == SIGN_EXTEND)
3843 SUBST (*split, gen_rtx_SIGN_EXTEND (split_mode,
3844 SUBREG_REG (*split)));
3845 else
3846 SUBST (*split, gen_rtx_ZERO_EXTEND (split_mode,
3847 SUBREG_REG (*split)));
3848 }
3849 #endif
3850
3851 /* Attempt to split binary operators using arithmetic identities. */
3852 if (BINARY_P (SET_SRC (newpat))
3853 && split_mode == GET_MODE (SET_SRC (newpat))
3854 && ! side_effects_p (SET_SRC (newpat)))
3855 {
3856 rtx setsrc = SET_SRC (newpat);
3857 machine_mode mode = GET_MODE (setsrc);
3858 enum rtx_code code = GET_CODE (setsrc);
3859 rtx src_op0 = XEXP (setsrc, 0);
3860 rtx src_op1 = XEXP (setsrc, 1);
3861
3862 /* Split "X = Y op Y" as "Z = Y; X = Z op Z". */
3863 if (rtx_equal_p (src_op0, src_op1))
3864 {
3865 newi2pat = gen_rtx_SET (newdest, src_op0);
3866 SUBST (XEXP (setsrc, 0), newdest);
3867 SUBST (XEXP (setsrc, 1), newdest);
3868 subst_done = true;
3869 }
3870 /* Split "((P op Q) op R) op S" where op is PLUS or MULT. */
3871 else if ((code == PLUS || code == MULT)
3872 && GET_CODE (src_op0) == code
3873 && GET_CODE (XEXP (src_op0, 0)) == code
3874 && (INTEGRAL_MODE_P (mode)
3875 || (FLOAT_MODE_P (mode)
3876 && flag_unsafe_math_optimizations)))
3877 {
3878 rtx p = XEXP (XEXP (src_op0, 0), 0);
3879 rtx q = XEXP (XEXP (src_op0, 0), 1);
3880 rtx r = XEXP (src_op0, 1);
3881 rtx s = src_op1;
3882
3883 /* Split both "((X op Y) op X) op Y" and
3884 "((X op Y) op Y) op X" as "T op T" where T is
3885 "X op Y". */
3886 if ((rtx_equal_p (p,r) && rtx_equal_p (q,s))
3887 || (rtx_equal_p (p,s) && rtx_equal_p (q,r)))
3888 {
3889 newi2pat = gen_rtx_SET (newdest, XEXP (src_op0, 0));
3890 SUBST (XEXP (setsrc, 0), newdest);
3891 SUBST (XEXP (setsrc, 1), newdest);
3892 subst_done = true;
3893 }
3894 /* Split "((X op X) op Y) op Y)" as "T op T" where
3895 T is "X op Y". */
3896 else if (rtx_equal_p (p,q) && rtx_equal_p (r,s))
3897 {
3898 rtx tmp = simplify_gen_binary (code, mode, p, r);
3899 newi2pat = gen_rtx_SET (newdest, tmp);
3900 SUBST (XEXP (setsrc, 0), newdest);
3901 SUBST (XEXP (setsrc, 1), newdest);
3902 subst_done = true;
3903 }
3904 }
3905 }
3906
3907 if (!subst_done)
3908 {
3909 newi2pat = gen_rtx_SET (newdest, *split);
3910 SUBST (*split, newdest);
3911 }
3912
3913 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
3914
3915 /* recog_for_combine might have added CLOBBERs to newi2pat.
3916 Make sure NEWPAT does not depend on the clobbered regs. */
3917 if (GET_CODE (newi2pat) == PARALLEL)
3918 for (i = XVECLEN (newi2pat, 0) - 1; i >= 0; i--)
3919 if (GET_CODE (XVECEXP (newi2pat, 0, i)) == CLOBBER)
3920 {
3921 rtx reg = XEXP (XVECEXP (newi2pat, 0, i), 0);
3922 if (reg_overlap_mentioned_p (reg, newpat))
3923 {
3924 undo_all ();
3925 return 0;
3926 }
3927 }
3928
3929 /* If the split point was a MULT and we didn't have one before,
3930 don't use one now. */
3931 if (i2_code_number >= 0 && ! (split_code == MULT && ! have_mult))
3932 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3933 }
3934 }
3935
3936 /* Check for a case where we loaded from memory in a narrow mode and
3937 then sign extended it, but we need both registers. In that case,
3938 we have a PARALLEL with both loads from the same memory location.
3939 We can split this into a load from memory followed by a register-register
3940 copy. This saves at least one insn, more if register allocation can
3941 eliminate the copy.
3942
3943 We cannot do this if the destination of the first assignment is a
3944 condition code register or cc0. We eliminate this case by making sure
3945 the SET_DEST and SET_SRC have the same mode.
3946
3947 We cannot do this if the destination of the second assignment is
3948 a register that we have already assumed is zero-extended. Similarly
3949 for a SUBREG of such a register. */
3950
3951 else if (i1 && insn_code_number < 0 && asm_noperands (newpat) < 0
3952 && GET_CODE (newpat) == PARALLEL
3953 && XVECLEN (newpat, 0) == 2
3954 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
3955 && GET_CODE (SET_SRC (XVECEXP (newpat, 0, 0))) == SIGN_EXTEND
3956 && (GET_MODE (SET_DEST (XVECEXP (newpat, 0, 0)))
3957 == GET_MODE (SET_SRC (XVECEXP (newpat, 0, 0))))
3958 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
3959 && rtx_equal_p (SET_SRC (XVECEXP (newpat, 0, 1)),
3960 XEXP (SET_SRC (XVECEXP (newpat, 0, 0)), 0))
3961 && !modified_between_p (SET_SRC (XVECEXP (newpat, 0, 1)), i2, i3)
3962 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != ZERO_EXTRACT
3963 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != STRICT_LOW_PART
3964 && ! (temp_expr = SET_DEST (XVECEXP (newpat, 0, 1)),
3965 (REG_P (temp_expr)
3966 && reg_stat[REGNO (temp_expr)].nonzero_bits != 0
3967 && known_lt (GET_MODE_PRECISION (GET_MODE (temp_expr)),
3968 BITS_PER_WORD)
3969 && known_lt (GET_MODE_PRECISION (GET_MODE (temp_expr)),
3970 HOST_BITS_PER_INT)
3971 && (reg_stat[REGNO (temp_expr)].nonzero_bits
3972 != GET_MODE_MASK (word_mode))))
3973 && ! (GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) == SUBREG
3974 && (temp_expr = SUBREG_REG (SET_DEST (XVECEXP (newpat, 0, 1))),
3975 (REG_P (temp_expr)
3976 && reg_stat[REGNO (temp_expr)].nonzero_bits != 0
3977 && known_lt (GET_MODE_PRECISION (GET_MODE (temp_expr)),
3978 BITS_PER_WORD)
3979 && known_lt (GET_MODE_PRECISION (GET_MODE (temp_expr)),
3980 HOST_BITS_PER_INT)
3981 && (reg_stat[REGNO (temp_expr)].nonzero_bits
3982 != GET_MODE_MASK (word_mode)))))
3983 && ! reg_overlap_mentioned_p (SET_DEST (XVECEXP (newpat, 0, 1)),
3984 SET_SRC (XVECEXP (newpat, 0, 1)))
3985 && ! find_reg_note (i3, REG_UNUSED,
3986 SET_DEST (XVECEXP (newpat, 0, 0))))
3987 {
3988 rtx ni2dest;
3989
3990 newi2pat = XVECEXP (newpat, 0, 0);
3991 ni2dest = SET_DEST (XVECEXP (newpat, 0, 0));
3992 newpat = XVECEXP (newpat, 0, 1);
3993 SUBST (SET_SRC (newpat),
3994 gen_lowpart (GET_MODE (SET_SRC (newpat)), ni2dest));
3995 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
3996
3997 if (i2_code_number >= 0)
3998 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3999
4000 if (insn_code_number >= 0)
4001 swap_i2i3 = 1;
4002 }
4003
4004 /* Similarly, check for a case where we have a PARALLEL of two independent
4005 SETs but we started with three insns. In this case, we can do the sets
4006 as two separate insns. This case occurs when some SET allows two
4007 other insns to combine, but the destination of that SET is still live.
4008
4009 Also do this if we started with two insns and (at least) one of the
4010 resulting sets is a noop; this noop will be deleted later. */
4011
4012 else if (insn_code_number < 0 && asm_noperands (newpat) < 0
4013 && GET_CODE (newpat) == PARALLEL
4014 && XVECLEN (newpat, 0) == 2
4015 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
4016 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
4017 && (i1 || set_noop_p (XVECEXP (newpat, 0, 0))
4018 || set_noop_p (XVECEXP (newpat, 0, 1)))
4019 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) != ZERO_EXTRACT
4020 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) != STRICT_LOW_PART
4021 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != ZERO_EXTRACT
4022 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != STRICT_LOW_PART
4023 && ! reg_referenced_p (SET_DEST (XVECEXP (newpat, 0, 1)),
4024 XVECEXP (newpat, 0, 0))
4025 && ! reg_referenced_p (SET_DEST (XVECEXP (newpat, 0, 0)),
4026 XVECEXP (newpat, 0, 1))
4027 && ! (contains_muldiv (SET_SRC (XVECEXP (newpat, 0, 0)))
4028 && contains_muldiv (SET_SRC (XVECEXP (newpat, 0, 1)))))
4029 {
4030 rtx set0 = XVECEXP (newpat, 0, 0);
4031 rtx set1 = XVECEXP (newpat, 0, 1);
4032
4033 /* Normally, it doesn't matter which of the two is done first,
4034 but the one that references cc0 can't be the second, and
4035 one which uses any regs/memory set in between i2 and i3 can't
4036 be first. The PARALLEL might also have been pre-existing in i3,
4037 so we need to make sure that we won't wrongly hoist a SET to i2
4038 that would conflict with a death note present in there. */
4039 if (!modified_between_p (SET_SRC (set1), i2, i3)
4040 && !(REG_P (SET_DEST (set1))
4041 && find_reg_note (i2, REG_DEAD, SET_DEST (set1)))
4042 && !(GET_CODE (SET_DEST (set1)) == SUBREG
4043 && find_reg_note (i2, REG_DEAD,
4044 SUBREG_REG (SET_DEST (set1))))
4045 && (!HAVE_cc0 || !reg_referenced_p (cc0_rtx, set0))
4046 /* If I3 is a jump, ensure that set0 is a jump so that
4047 we do not create invalid RTL. */
4048 && (!JUMP_P (i3) || SET_DEST (set0) == pc_rtx)
4049 )
4050 {
4051 newi2pat = set1;
4052 newpat = set0;
4053 }
4054 else if (!modified_between_p (SET_SRC (set0), i2, i3)
4055 && !(REG_P (SET_DEST (set0))
4056 && find_reg_note (i2, REG_DEAD, SET_DEST (set0)))
4057 && !(GET_CODE (SET_DEST (set0)) == SUBREG
4058 && find_reg_note (i2, REG_DEAD,
4059 SUBREG_REG (SET_DEST (set0))))
4060 && (!HAVE_cc0 || !reg_referenced_p (cc0_rtx, set1))
4061 /* If I3 is a jump, ensure that set1 is a jump so that
4062 we do not create invalid RTL. */
4063 && (!JUMP_P (i3) || SET_DEST (set1) == pc_rtx)
4064 )
4065 {
4066 newi2pat = set0;
4067 newpat = set1;
4068 }
4069 else
4070 {
4071 undo_all ();
4072 return 0;
4073 }
4074
4075 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
4076
4077 if (i2_code_number >= 0)
4078 {
4079 /* recog_for_combine might have added CLOBBERs to newi2pat.
4080 Make sure NEWPAT does not depend on the clobbered regs. */
4081 if (GET_CODE (newi2pat) == PARALLEL)
4082 {
4083 for (i = XVECLEN (newi2pat, 0) - 1; i >= 0; i--)
4084 if (GET_CODE (XVECEXP (newi2pat, 0, i)) == CLOBBER)
4085 {
4086 rtx reg = XEXP (XVECEXP (newi2pat, 0, i), 0);
4087 if (reg_overlap_mentioned_p (reg, newpat))
4088 {
4089 undo_all ();
4090 return 0;
4091 }
4092 }
4093 }
4094
4095 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
4096
4097 if (insn_code_number >= 0)
4098 split_i2i3 = 1;
4099 }
4100 }
4101
4102 /* If it still isn't recognized, fail and change things back the way they
4103 were. */
4104 if ((insn_code_number < 0
4105 /* Is the result a reasonable ASM_OPERANDS? */
4106 && (! check_asm_operands (newpat) || added_sets_1 || added_sets_2)))
4107 {
4108 undo_all ();
4109 return 0;
4110 }
4111
4112 /* If we had to change another insn, make sure it is valid also. */
4113 if (undobuf.other_insn)
4114 {
4115 CLEAR_HARD_REG_SET (newpat_used_regs);
4116
4117 other_pat = PATTERN (undobuf.other_insn);
4118 other_code_number = recog_for_combine (&other_pat, undobuf.other_insn,
4119 &new_other_notes);
4120
4121 if (other_code_number < 0 && ! check_asm_operands (other_pat))
4122 {
4123 undo_all ();
4124 return 0;
4125 }
4126 }
4127
4128 /* If I2 is the CC0 setter and I3 is the CC0 user then check whether
4129 they are adjacent to each other or not. */
4130 if (HAVE_cc0)
4131 {
4132 rtx_insn *p = prev_nonnote_insn (i3);
4133 if (p && p != i2 && NONJUMP_INSN_P (p) && newi2pat
4134 && sets_cc0_p (newi2pat))
4135 {
4136 undo_all ();
4137 return 0;
4138 }
4139 }
4140
4141 /* Only allow this combination if insn_cost reports that the
4142 replacement instructions are cheaper than the originals. */
4143 if (!combine_validate_cost (i0, i1, i2, i3, newpat, newi2pat, other_pat))
4144 {
4145 undo_all ();
4146 return 0;
4147 }
4148
4149 if (MAY_HAVE_DEBUG_BIND_INSNS)
4150 {
4151 struct undo *undo;
4152
4153 for (undo = undobuf.undos; undo; undo = undo->next)
4154 if (undo->kind == UNDO_MODE)
4155 {
4156 rtx reg = *undo->where.r;
4157 machine_mode new_mode = GET_MODE (reg);
4158 machine_mode old_mode = undo->old_contents.m;
4159
4160 /* Temporarily revert mode back. */
4161 adjust_reg_mode (reg, old_mode);
4162
4163 if (reg == i2dest && i2scratch)
4164 {
4165 /* If we used i2dest as a scratch register with a
4166 different mode, substitute it for the original
4167 i2src while its original mode is temporarily
4168 restored, and then clear i2scratch so that we don't
4169 do it again later. */
4170 propagate_for_debug (i2, last_combined_insn, reg, i2src,
4171 this_basic_block);
4172 i2scratch = false;
4173 /* Put back the new mode. */
4174 adjust_reg_mode (reg, new_mode);
4175 }
4176 else
4177 {
4178 rtx tempreg = gen_raw_REG (old_mode, REGNO (reg));
4179 rtx_insn *first, *last;
4180
4181 if (reg == i2dest)
4182 {
4183 first = i2;
4184 last = last_combined_insn;
4185 }
4186 else
4187 {
4188 first = i3;
4189 last = undobuf.other_insn;
4190 gcc_assert (last);
4191 if (DF_INSN_LUID (last)
4192 < DF_INSN_LUID (last_combined_insn))
4193 last = last_combined_insn;
4194 }
4195
4196 /* We're dealing with a reg that changed mode but not
4197 meaning, so we want to turn it into a subreg for
4198 the new mode. However, because of REG sharing and
4199 because its mode had already changed, we have to do
4200 it in two steps. First, replace any debug uses of
4201 reg, with its original mode temporarily restored,
4202 with this copy we have created; then, replace the
4203 copy with the SUBREG of the original shared reg,
4204 once again changed to the new mode. */
4205 propagate_for_debug (first, last, reg, tempreg,
4206 this_basic_block);
4207 adjust_reg_mode (reg, new_mode);
4208 propagate_for_debug (first, last, tempreg,
4209 lowpart_subreg (old_mode, reg, new_mode),
4210 this_basic_block);
4211 }
4212 }
4213 }
4214
4215 /* If we will be able to accept this, we have made a
4216 change to the destination of I3. This requires us to
4217 do a few adjustments. */
4218
4219 if (changed_i3_dest)
4220 {
4221 PATTERN (i3) = newpat;
4222 adjust_for_new_dest (i3);
4223 }
4224
4225 /* We now know that we can do this combination. Merge the insns and
4226 update the status of registers and LOG_LINKS. */
4227
4228 if (undobuf.other_insn)
4229 {
4230 rtx note, next;
4231
4232 PATTERN (undobuf.other_insn) = other_pat;
4233
4234 /* If any of the notes in OTHER_INSN were REG_DEAD or REG_UNUSED,
4235 ensure that they are still valid. Then add any non-duplicate
4236 notes added by recog_for_combine. */
4237 for (note = REG_NOTES (undobuf.other_insn); note; note = next)
4238 {
4239 next = XEXP (note, 1);
4240
4241 if ((REG_NOTE_KIND (note) == REG_DEAD
4242 && !reg_referenced_p (XEXP (note, 0),
4243 PATTERN (undobuf.other_insn)))
4244 ||(REG_NOTE_KIND (note) == REG_UNUSED
4245 && !reg_set_p (XEXP (note, 0),
4246 PATTERN (undobuf.other_insn)))
4247 /* Simply drop equal note since it may be no longer valid
4248 for other_insn. It may be possible to record that CC
4249 register is changed and only discard those notes, but
4250 in practice it's unnecessary complication and doesn't
4251 give any meaningful improvement.
4252
4253 See PR78559. */
4254 || REG_NOTE_KIND (note) == REG_EQUAL
4255 || REG_NOTE_KIND (note) == REG_EQUIV)
4256 remove_note (undobuf.other_insn, note);
4257 }
4258
4259 distribute_notes (new_other_notes, undobuf.other_insn,
4260 undobuf.other_insn, NULL, NULL_RTX, NULL_RTX,
4261 NULL_RTX);
4262 }
4263
4264 if (swap_i2i3)
4265 {
4266 /* I3 now uses what used to be its destination and which is now
4267 I2's destination. This requires us to do a few adjustments. */
4268 PATTERN (i3) = newpat;
4269 adjust_for_new_dest (i3);
4270 }
4271
4272 if (swap_i2i3 || split_i2i3)
4273 {
4274 /* We might need a LOG_LINK from I3 to I2. But then we used to
4275 have one, so we still will.
4276
4277 However, some later insn might be using I2's dest and have
4278 a LOG_LINK pointing at I3. We should change it to point at
4279 I2 instead. */
4280
4281 /* newi2pat is usually a SET here; however, recog_for_combine might
4282 have added some clobbers. */
4283 rtx x = newi2pat;
4284 if (GET_CODE (x) == PARALLEL)
4285 x = XVECEXP (newi2pat, 0, 0);
4286
4287 /* It can only be a SET of a REG or of a SUBREG of a REG. */
4288 unsigned int regno = reg_or_subregno (SET_DEST (x));
4289
4290 bool done = false;
4291 for (rtx_insn *insn = NEXT_INSN (i3);
4292 !done
4293 && insn
4294 && NONDEBUG_INSN_P (insn)
4295 && BLOCK_FOR_INSN (insn) == this_basic_block;
4296 insn = NEXT_INSN (insn))
4297 {
4298 struct insn_link *link;
4299 FOR_EACH_LOG_LINK (link, insn)
4300 if (link->insn == i3 && link->regno == regno)
4301 {
4302 link->insn = i2;
4303 done = true;
4304 break;
4305 }
4306 }
4307 }
4308
4309 {
4310 rtx i3notes, i2notes, i1notes = 0, i0notes = 0;
4311 struct insn_link *i3links, *i2links, *i1links = 0, *i0links = 0;
4312 rtx midnotes = 0;
4313 int from_luid;
4314 /* Compute which registers we expect to eliminate. newi2pat may be setting
4315 either i3dest or i2dest, so we must check it. */
4316 rtx elim_i2 = ((newi2pat && reg_set_p (i2dest, newi2pat))
4317 || i2dest_in_i2src || i2dest_in_i1src || i2dest_in_i0src
4318 || !i2dest_killed
4319 ? 0 : i2dest);
4320 /* For i1, we need to compute both local elimination and global
4321 elimination information with respect to newi2pat because i1dest
4322 may be the same as i3dest, in which case newi2pat may be setting
4323 i1dest. Global information is used when distributing REG_DEAD
4324 note for i2 and i3, in which case it does matter if newi2pat sets
4325 i1dest or not.
4326
4327 Local information is used when distributing REG_DEAD note for i1,
4328 in which case it doesn't matter if newi2pat sets i1dest or not.
4329 See PR62151, if we have four insns combination:
4330 i0: r0 <- i0src
4331 i1: r1 <- i1src (using r0)
4332 REG_DEAD (r0)
4333 i2: r0 <- i2src (using r1)
4334 i3: r3 <- i3src (using r0)
4335 ix: using r0
4336 From i1's point of view, r0 is eliminated, no matter if it is set
4337 by newi2pat or not. In other words, REG_DEAD info for r0 in i1
4338 should be discarded.
4339
4340 Note local information only affects cases in forms like "I1->I2->I3",
4341 "I0->I1->I2->I3" or "I0&I1->I2, I2->I3". For other cases like
4342 "I0->I1, I1&I2->I3" or "I1&I2->I3", newi2pat won't set i1dest or
4343 i0dest anyway. */
4344 rtx local_elim_i1 = (i1 == 0 || i1dest_in_i1src || i1dest_in_i0src
4345 || !i1dest_killed
4346 ? 0 : i1dest);
4347 rtx elim_i1 = (local_elim_i1 == 0
4348 || (newi2pat && reg_set_p (i1dest, newi2pat))
4349 ? 0 : i1dest);
4350 /* Same case as i1. */
4351 rtx local_elim_i0 = (i0 == 0 || i0dest_in_i0src || !i0dest_killed
4352 ? 0 : i0dest);
4353 rtx elim_i0 = (local_elim_i0 == 0
4354 || (newi2pat && reg_set_p (i0dest, newi2pat))
4355 ? 0 : i0dest);
4356
4357 /* Get the old REG_NOTES and LOG_LINKS from all our insns and
4358 clear them. */
4359 i3notes = REG_NOTES (i3), i3links = LOG_LINKS (i3);
4360 i2notes = REG_NOTES (i2), i2links = LOG_LINKS (i2);
4361 if (i1)
4362 i1notes = REG_NOTES (i1), i1links = LOG_LINKS (i1);
4363 if (i0)
4364 i0notes = REG_NOTES (i0), i0links = LOG_LINKS (i0);
4365
4366 /* Ensure that we do not have something that should not be shared but
4367 occurs multiple times in the new insns. Check this by first
4368 resetting all the `used' flags and then copying anything is shared. */
4369
4370 reset_used_flags (i3notes);
4371 reset_used_flags (i2notes);
4372 reset_used_flags (i1notes);
4373 reset_used_flags (i0notes);
4374 reset_used_flags (newpat);
4375 reset_used_flags (newi2pat);
4376 if (undobuf.other_insn)
4377 reset_used_flags (PATTERN (undobuf.other_insn));
4378
4379 i3notes = copy_rtx_if_shared (i3notes);
4380 i2notes = copy_rtx_if_shared (i2notes);
4381 i1notes = copy_rtx_if_shared (i1notes);
4382 i0notes = copy_rtx_if_shared (i0notes);
4383 newpat = copy_rtx_if_shared (newpat);
4384 newi2pat = copy_rtx_if_shared (newi2pat);
4385 if (undobuf.other_insn)
4386 reset_used_flags (PATTERN (undobuf.other_insn));
4387
4388 INSN_CODE (i3) = insn_code_number;
4389 PATTERN (i3) = newpat;
4390
4391 if (CALL_P (i3) && CALL_INSN_FUNCTION_USAGE (i3))
4392 {
4393 for (rtx link = CALL_INSN_FUNCTION_USAGE (i3); link;
4394 link = XEXP (link, 1))
4395 {
4396 if (substed_i2)
4397 {
4398 /* I2SRC must still be meaningful at this point. Some
4399 splitting operations can invalidate I2SRC, but those
4400 operations do not apply to calls. */
4401 gcc_assert (i2src);
4402 XEXP (link, 0) = simplify_replace_rtx (XEXP (link, 0),
4403 i2dest, i2src);
4404 }
4405 if (substed_i1)
4406 XEXP (link, 0) = simplify_replace_rtx (XEXP (link, 0),
4407 i1dest, i1src);
4408 if (substed_i0)
4409 XEXP (link, 0) = simplify_replace_rtx (XEXP (link, 0),
4410 i0dest, i0src);
4411 }
4412 }
4413
4414 if (undobuf.other_insn)
4415 INSN_CODE (undobuf.other_insn) = other_code_number;
4416
4417 /* We had one special case above where I2 had more than one set and
4418 we replaced a destination of one of those sets with the destination
4419 of I3. In that case, we have to update LOG_LINKS of insns later
4420 in this basic block. Note that this (expensive) case is rare.
4421
4422 Also, in this case, we must pretend that all REG_NOTEs for I2
4423 actually came from I3, so that REG_UNUSED notes from I2 will be
4424 properly handled. */
4425
4426 if (i3_subst_into_i2)
4427 {
4428 for (i = 0; i < XVECLEN (PATTERN (i2), 0); i++)
4429 if ((GET_CODE (XVECEXP (PATTERN (i2), 0, i)) == SET
4430 || GET_CODE (XVECEXP (PATTERN (i2), 0, i)) == CLOBBER)
4431 && REG_P (SET_DEST (XVECEXP (PATTERN (i2), 0, i)))
4432 && SET_DEST (XVECEXP (PATTERN (i2), 0, i)) != i2dest
4433 && ! find_reg_note (i2, REG_UNUSED,
4434 SET_DEST (XVECEXP (PATTERN (i2), 0, i))))
4435 for (temp_insn = NEXT_INSN (i2);
4436 temp_insn
4437 && (this_basic_block->next_bb == EXIT_BLOCK_PTR_FOR_FN (cfun)
4438 || BB_HEAD (this_basic_block) != temp_insn);
4439 temp_insn = NEXT_INSN (temp_insn))
4440 if (temp_insn != i3 && NONDEBUG_INSN_P (temp_insn))
4441 FOR_EACH_LOG_LINK (link, temp_insn)
4442 if (link->insn == i2)
4443 link->insn = i3;
4444
4445 if (i3notes)
4446 {
4447 rtx link = i3notes;
4448 while (XEXP (link, 1))
4449 link = XEXP (link, 1);
4450 XEXP (link, 1) = i2notes;
4451 }
4452 else
4453 i3notes = i2notes;
4454 i2notes = 0;
4455 }
4456
4457 LOG_LINKS (i3) = NULL;
4458 REG_NOTES (i3) = 0;
4459 LOG_LINKS (i2) = NULL;
4460 REG_NOTES (i2) = 0;
4461
4462 if (newi2pat)
4463 {
4464 if (MAY_HAVE_DEBUG_BIND_INSNS && i2scratch)
4465 propagate_for_debug (i2, last_combined_insn, i2dest, i2src,
4466 this_basic_block);
4467 INSN_CODE (i2) = i2_code_number;
4468 PATTERN (i2) = newi2pat;
4469 }
4470 else
4471 {
4472 if (MAY_HAVE_DEBUG_BIND_INSNS && i2src)
4473 propagate_for_debug (i2, last_combined_insn, i2dest, i2src,
4474 this_basic_block);
4475 SET_INSN_DELETED (i2);
4476 }
4477
4478 if (i1)
4479 {
4480 LOG_LINKS (i1) = NULL;
4481 REG_NOTES (i1) = 0;
4482 if (MAY_HAVE_DEBUG_BIND_INSNS)
4483 propagate_for_debug (i1, last_combined_insn, i1dest, i1src,
4484 this_basic_block);
4485 SET_INSN_DELETED (i1);
4486 }
4487
4488 if (i0)
4489 {
4490 LOG_LINKS (i0) = NULL;
4491 REG_NOTES (i0) = 0;
4492 if (MAY_HAVE_DEBUG_BIND_INSNS)
4493 propagate_for_debug (i0, last_combined_insn, i0dest, i0src,
4494 this_basic_block);
4495 SET_INSN_DELETED (i0);
4496 }
4497
4498 /* Get death notes for everything that is now used in either I3 or
4499 I2 and used to die in a previous insn. If we built two new
4500 patterns, move from I1 to I2 then I2 to I3 so that we get the
4501 proper movement on registers that I2 modifies. */
4502
4503 if (i0)
4504 from_luid = DF_INSN_LUID (i0);
4505 else if (i1)
4506 from_luid = DF_INSN_LUID (i1);
4507 else
4508 from_luid = DF_INSN_LUID (i2);
4509 if (newi2pat)
4510 move_deaths (newi2pat, NULL_RTX, from_luid, i2, &midnotes);
4511 move_deaths (newpat, newi2pat, from_luid, i3, &midnotes);
4512
4513 /* Distribute all the LOG_LINKS and REG_NOTES from I1, I2, and I3. */
4514 if (i3notes)
4515 distribute_notes (i3notes, i3, i3, newi2pat ? i2 : NULL,
4516 elim_i2, elim_i1, elim_i0);
4517 if (i2notes)
4518 distribute_notes (i2notes, i2, i3, newi2pat ? i2 : NULL,
4519 elim_i2, elim_i1, elim_i0);
4520 if (i1notes)
4521 distribute_notes (i1notes, i1, i3, newi2pat ? i2 : NULL,
4522 elim_i2, local_elim_i1, local_elim_i0);
4523 if (i0notes)
4524 distribute_notes (i0notes, i0, i3, newi2pat ? i2 : NULL,
4525 elim_i2, elim_i1, local_elim_i0);
4526 if (midnotes)
4527 distribute_notes (midnotes, NULL, i3, newi2pat ? i2 : NULL,
4528 elim_i2, elim_i1, elim_i0);
4529
4530 /* Distribute any notes added to I2 or I3 by recog_for_combine. We
4531 know these are REG_UNUSED and want them to go to the desired insn,
4532 so we always pass it as i3. */
4533
4534 if (newi2pat && new_i2_notes)
4535 distribute_notes (new_i2_notes, i2, i2, NULL, NULL_RTX, NULL_RTX,
4536 NULL_RTX);
4537
4538 if (new_i3_notes)
4539 distribute_notes (new_i3_notes, i3, i3, NULL, NULL_RTX, NULL_RTX,
4540 NULL_RTX);
4541
4542 /* If I3DEST was used in I3SRC, it really died in I3. We may need to
4543 put a REG_DEAD note for it somewhere. If NEWI2PAT exists and sets
4544 I3DEST, the death must be somewhere before I2, not I3. If we passed I3
4545 in that case, it might delete I2. Similarly for I2 and I1.
4546 Show an additional death due to the REG_DEAD note we make here. If
4547 we discard it in distribute_notes, we will decrement it again. */
4548
4549 if (i3dest_killed)
4550 {
4551 rtx new_note = alloc_reg_note (REG_DEAD, i3dest_killed, NULL_RTX);
4552 if (newi2pat && reg_set_p (i3dest_killed, newi2pat))
4553 distribute_notes (new_note, NULL, i2, NULL, elim_i2,
4554 elim_i1, elim_i0);
4555 else
4556 distribute_notes (new_note, NULL, i3, newi2pat ? i2 : NULL,
4557 elim_i2, elim_i1, elim_i0);
4558 }
4559
4560 if (i2dest_in_i2src)
4561 {
4562 rtx new_note = alloc_reg_note (REG_DEAD, i2dest, NULL_RTX);
4563 if (newi2pat && reg_set_p (i2dest, newi2pat))
4564 distribute_notes (new_note, NULL, i2, NULL, NULL_RTX,
4565 NULL_RTX, NULL_RTX);
4566 else
4567 distribute_notes (new_note, NULL, i3, newi2pat ? i2 : NULL,
4568 NULL_RTX, NULL_RTX, NULL_RTX);
4569 }
4570
4571 if (i1dest_in_i1src)
4572 {
4573 rtx new_note = alloc_reg_note (REG_DEAD, i1dest, NULL_RTX);
4574 if (newi2pat && reg_set_p (i1dest, newi2pat))
4575 distribute_notes (new_note, NULL, i2, NULL, NULL_RTX,
4576 NULL_RTX, NULL_RTX);
4577 else
4578 distribute_notes (new_note, NULL, i3, newi2pat ? i2 : NULL,
4579 NULL_RTX, NULL_RTX, NULL_RTX);
4580 }
4581
4582 if (i0dest_in_i0src)
4583 {
4584 rtx new_note = alloc_reg_note (REG_DEAD, i0dest, NULL_RTX);
4585 if (newi2pat && reg_set_p (i0dest, newi2pat))
4586 distribute_notes (new_note, NULL, i2, NULL, NULL_RTX,
4587 NULL_RTX, NULL_RTX);
4588 else
4589 distribute_notes (new_note, NULL, i3, newi2pat ? i2 : NULL,
4590 NULL_RTX, NULL_RTX, NULL_RTX);
4591 }
4592
4593 distribute_links (i3links);
4594 distribute_links (i2links);
4595 distribute_links (i1links);
4596 distribute_links (i0links);
4597
4598 if (REG_P (i2dest))
4599 {
4600 struct insn_link *link;
4601 rtx_insn *i2_insn = 0;
4602 rtx i2_val = 0, set;
4603
4604 /* The insn that used to set this register doesn't exist, and
4605 this life of the register may not exist either. See if one of
4606 I3's links points to an insn that sets I2DEST. If it does,
4607 that is now the last known value for I2DEST. If we don't update
4608 this and I2 set the register to a value that depended on its old
4609 contents, we will get confused. If this insn is used, thing
4610 will be set correctly in combine_instructions. */
4611 FOR_EACH_LOG_LINK (link, i3)
4612 if ((set = single_set (link->insn)) != 0
4613 && rtx_equal_p (i2dest, SET_DEST (set)))
4614 i2_insn = link->insn, i2_val = SET_SRC (set);
4615
4616 record_value_for_reg (i2dest, i2_insn, i2_val);
4617
4618 /* If the reg formerly set in I2 died only once and that was in I3,
4619 zero its use count so it won't make `reload' do any work. */
4620 if (! added_sets_2
4621 && (newi2pat == 0 || ! reg_mentioned_p (i2dest, newi2pat))
4622 && ! i2dest_in_i2src
4623 && REGNO (i2dest) < reg_n_sets_max)
4624 INC_REG_N_SETS (REGNO (i2dest), -1);
4625 }
4626
4627 if (i1 && REG_P (i1dest))
4628 {
4629 struct insn_link *link;
4630 rtx_insn *i1_insn = 0;
4631 rtx i1_val = 0, set;
4632
4633 FOR_EACH_LOG_LINK (link, i3)
4634 if ((set = single_set (link->insn)) != 0
4635 && rtx_equal_p (i1dest, SET_DEST (set)))
4636 i1_insn = link->insn, i1_val = SET_SRC (set);
4637
4638 record_value_for_reg (i1dest, i1_insn, i1_val);
4639
4640 if (! added_sets_1
4641 && ! i1dest_in_i1src
4642 && REGNO (i1dest) < reg_n_sets_max)
4643 INC_REG_N_SETS (REGNO (i1dest), -1);
4644 }
4645
4646 if (i0 && REG_P (i0dest))
4647 {
4648 struct insn_link *link;
4649 rtx_insn *i0_insn = 0;
4650 rtx i0_val = 0, set;
4651
4652 FOR_EACH_LOG_LINK (link, i3)
4653 if ((set = single_set (link->insn)) != 0
4654 && rtx_equal_p (i0dest, SET_DEST (set)))
4655 i0_insn = link->insn, i0_val = SET_SRC (set);
4656
4657 record_value_for_reg (i0dest, i0_insn, i0_val);
4658
4659 if (! added_sets_0
4660 && ! i0dest_in_i0src
4661 && REGNO (i0dest) < reg_n_sets_max)
4662 INC_REG_N_SETS (REGNO (i0dest), -1);
4663 }
4664
4665 /* Update reg_stat[].nonzero_bits et al for any changes that may have
4666 been made to this insn. The order is important, because newi2pat
4667 can affect nonzero_bits of newpat. */
4668 if (newi2pat)
4669 note_stores (newi2pat, set_nonzero_bits_and_sign_copies, NULL);
4670 note_stores (newpat, set_nonzero_bits_and_sign_copies, NULL);
4671 }
4672
4673 if (undobuf.other_insn != NULL_RTX)
4674 {
4675 if (dump_file)
4676 {
4677 fprintf (dump_file, "modifying other_insn ");
4678 dump_insn_slim (dump_file, undobuf.other_insn);
4679 }
4680 df_insn_rescan (undobuf.other_insn);
4681 }
4682
4683 if (i0 && !(NOTE_P (i0) && (NOTE_KIND (i0) == NOTE_INSN_DELETED)))
4684 {
4685 if (dump_file)
4686 {
4687 fprintf (dump_file, "modifying insn i0 ");
4688 dump_insn_slim (dump_file, i0);
4689 }
4690 df_insn_rescan (i0);
4691 }
4692
4693 if (i1 && !(NOTE_P (i1) && (NOTE_KIND (i1) == NOTE_INSN_DELETED)))
4694 {
4695 if (dump_file)
4696 {
4697 fprintf (dump_file, "modifying insn i1 ");
4698 dump_insn_slim (dump_file, i1);
4699 }
4700 df_insn_rescan (i1);
4701 }
4702
4703 if (i2 && !(NOTE_P (i2) && (NOTE_KIND (i2) == NOTE_INSN_DELETED)))
4704 {
4705 if (dump_file)
4706 {
4707 fprintf (dump_file, "modifying insn i2 ");
4708 dump_insn_slim (dump_file, i2);
4709 }
4710 df_insn_rescan (i2);
4711 }
4712
4713 if (i3 && !(NOTE_P (i3) && (NOTE_KIND (i3) == NOTE_INSN_DELETED)))
4714 {
4715 if (dump_file)
4716 {
4717 fprintf (dump_file, "modifying insn i3 ");
4718 dump_insn_slim (dump_file, i3);
4719 }
4720 df_insn_rescan (i3);
4721 }
4722
4723 /* Set new_direct_jump_p if a new return or simple jump instruction
4724 has been created. Adjust the CFG accordingly. */
4725 if (returnjump_p (i3) || any_uncondjump_p (i3))
4726 {
4727 *new_direct_jump_p = 1;
4728 mark_jump_label (PATTERN (i3), i3, 0);
4729 update_cfg_for_uncondjump (i3);
4730 }
4731
4732 if (undobuf.other_insn != NULL_RTX
4733 && (returnjump_p (undobuf.other_insn)
4734 || any_uncondjump_p (undobuf.other_insn)))
4735 {
4736 *new_direct_jump_p = 1;
4737 update_cfg_for_uncondjump (undobuf.other_insn);
4738 }
4739
4740 if (GET_CODE (PATTERN (i3)) == TRAP_IF
4741 && XEXP (PATTERN (i3), 0) == const1_rtx)
4742 {
4743 basic_block bb = BLOCK_FOR_INSN (i3);
4744 gcc_assert (bb);
4745 remove_edge (split_block (bb, i3));
4746 emit_barrier_after_bb (bb);
4747 *new_direct_jump_p = 1;
4748 }
4749
4750 if (undobuf.other_insn
4751 && GET_CODE (PATTERN (undobuf.other_insn)) == TRAP_IF
4752 && XEXP (PATTERN (undobuf.other_insn), 0) == const1_rtx)
4753 {
4754 basic_block bb = BLOCK_FOR_INSN (undobuf.other_insn);
4755 gcc_assert (bb);
4756 remove_edge (split_block (bb, undobuf.other_insn));
4757 emit_barrier_after_bb (bb);
4758 *new_direct_jump_p = 1;
4759 }
4760
4761 /* A noop might also need cleaning up of CFG, if it comes from the
4762 simplification of a jump. */
4763 if (JUMP_P (i3)
4764 && GET_CODE (newpat) == SET
4765 && SET_SRC (newpat) == pc_rtx
4766 && SET_DEST (newpat) == pc_rtx)
4767 {
4768 *new_direct_jump_p = 1;
4769 update_cfg_for_uncondjump (i3);
4770 }
4771
4772 if (undobuf.other_insn != NULL_RTX
4773 && JUMP_P (undobuf.other_insn)
4774 && GET_CODE (PATTERN (undobuf.other_insn)) == SET
4775 && SET_SRC (PATTERN (undobuf.other_insn)) == pc_rtx
4776 && SET_DEST (PATTERN (undobuf.other_insn)) == pc_rtx)
4777 {
4778 *new_direct_jump_p = 1;
4779 update_cfg_for_uncondjump (undobuf.other_insn);
4780 }
4781
4782 combine_successes++;
4783 undo_commit ();
4784
4785 rtx_insn *ret = newi2pat ? i2 : i3;
4786 if (added_links_insn && DF_INSN_LUID (added_links_insn) < DF_INSN_LUID (ret))
4787 ret = added_links_insn;
4788 if (added_notes_insn && DF_INSN_LUID (added_notes_insn) < DF_INSN_LUID (ret))
4789 ret = added_notes_insn;
4790
4791 return ret;
4792 }
4793 \f
4794 /* Get a marker for undoing to the current state. */
4795
4796 static void *
4797 get_undo_marker (void)
4798 {
4799 return undobuf.undos;
4800 }
4801
4802 /* Undo the modifications up to the marker. */
4803
4804 static void
4805 undo_to_marker (void *marker)
4806 {
4807 struct undo *undo, *next;
4808
4809 for (undo = undobuf.undos; undo != marker; undo = next)
4810 {
4811 gcc_assert (undo);
4812
4813 next = undo->next;
4814 switch (undo->kind)
4815 {
4816 case UNDO_RTX:
4817 *undo->where.r = undo->old_contents.r;
4818 break;
4819 case UNDO_INT:
4820 *undo->where.i = undo->old_contents.i;
4821 break;
4822 case UNDO_MODE:
4823 adjust_reg_mode (*undo->where.r, undo->old_contents.m);
4824 break;
4825 case UNDO_LINKS:
4826 *undo->where.l = undo->old_contents.l;
4827 break;
4828 default:
4829 gcc_unreachable ();
4830 }
4831
4832 undo->next = undobuf.frees;
4833 undobuf.frees = undo;
4834 }
4835
4836 undobuf.undos = (struct undo *) marker;
4837 }
4838
4839 /* Undo all the modifications recorded in undobuf. */
4840
4841 static void
4842 undo_all (void)
4843 {
4844 undo_to_marker (0);
4845 }
4846
4847 /* We've committed to accepting the changes we made. Move all
4848 of the undos to the free list. */
4849
4850 static void
4851 undo_commit (void)
4852 {
4853 struct undo *undo, *next;
4854
4855 for (undo = undobuf.undos; undo; undo = next)
4856 {
4857 next = undo->next;
4858 undo->next = undobuf.frees;
4859 undobuf.frees = undo;
4860 }
4861 undobuf.undos = 0;
4862 }
4863 \f
4864 /* Find the innermost point within the rtx at LOC, possibly LOC itself,
4865 where we have an arithmetic expression and return that point. LOC will
4866 be inside INSN.
4867
4868 try_combine will call this function to see if an insn can be split into
4869 two insns. */
4870
4871 static rtx *
4872 find_split_point (rtx *loc, rtx_insn *insn, bool set_src)
4873 {
4874 rtx x = *loc;
4875 enum rtx_code code = GET_CODE (x);
4876 rtx *split;
4877 unsigned HOST_WIDE_INT len = 0;
4878 HOST_WIDE_INT pos = 0;
4879 int unsignedp = 0;
4880 rtx inner = NULL_RTX;
4881 scalar_int_mode mode, inner_mode;
4882
4883 /* First special-case some codes. */
4884 switch (code)
4885 {
4886 case SUBREG:
4887 #ifdef INSN_SCHEDULING
4888 /* If we are making a paradoxical SUBREG invalid, it becomes a split
4889 point. */
4890 if (MEM_P (SUBREG_REG (x)))
4891 return loc;
4892 #endif
4893 return find_split_point (&SUBREG_REG (x), insn, false);
4894
4895 case MEM:
4896 /* If we have (mem (const ..)) or (mem (symbol_ref ...)), split it
4897 using LO_SUM and HIGH. */
4898 if (HAVE_lo_sum && (GET_CODE (XEXP (x, 0)) == CONST
4899 || GET_CODE (XEXP (x, 0)) == SYMBOL_REF))
4900 {
4901 machine_mode address_mode = get_address_mode (x);
4902
4903 SUBST (XEXP (x, 0),
4904 gen_rtx_LO_SUM (address_mode,
4905 gen_rtx_HIGH (address_mode, XEXP (x, 0)),
4906 XEXP (x, 0)));
4907 return &XEXP (XEXP (x, 0), 0);
4908 }
4909
4910 /* If we have a PLUS whose second operand is a constant and the
4911 address is not valid, perhaps will can split it up using
4912 the machine-specific way to split large constants. We use
4913 the first pseudo-reg (one of the virtual regs) as a placeholder;
4914 it will not remain in the result. */
4915 if (GET_CODE (XEXP (x, 0)) == PLUS
4916 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
4917 && ! memory_address_addr_space_p (GET_MODE (x), XEXP (x, 0),
4918 MEM_ADDR_SPACE (x)))
4919 {
4920 rtx reg = regno_reg_rtx[FIRST_PSEUDO_REGISTER];
4921 rtx_insn *seq = combine_split_insns (gen_rtx_SET (reg, XEXP (x, 0)),
4922 subst_insn);
4923
4924 /* This should have produced two insns, each of which sets our
4925 placeholder. If the source of the second is a valid address,
4926 we can make put both sources together and make a split point
4927 in the middle. */
4928
4929 if (seq
4930 && NEXT_INSN (seq) != NULL_RTX
4931 && NEXT_INSN (NEXT_INSN (seq)) == NULL_RTX
4932 && NONJUMP_INSN_P (seq)
4933 && GET_CODE (PATTERN (seq)) == SET
4934 && SET_DEST (PATTERN (seq)) == reg
4935 && ! reg_mentioned_p (reg,
4936 SET_SRC (PATTERN (seq)))
4937 && NONJUMP_INSN_P (NEXT_INSN (seq))
4938 && GET_CODE (PATTERN (NEXT_INSN (seq))) == SET
4939 && SET_DEST (PATTERN (NEXT_INSN (seq))) == reg
4940 && memory_address_addr_space_p
4941 (GET_MODE (x), SET_SRC (PATTERN (NEXT_INSN (seq))),
4942 MEM_ADDR_SPACE (x)))
4943 {
4944 rtx src1 = SET_SRC (PATTERN (seq));
4945 rtx src2 = SET_SRC (PATTERN (NEXT_INSN (seq)));
4946
4947 /* Replace the placeholder in SRC2 with SRC1. If we can
4948 find where in SRC2 it was placed, that can become our
4949 split point and we can replace this address with SRC2.
4950 Just try two obvious places. */
4951
4952 src2 = replace_rtx (src2, reg, src1);
4953 split = 0;
4954 if (XEXP (src2, 0) == src1)
4955 split = &XEXP (src2, 0);
4956 else if (GET_RTX_FORMAT (GET_CODE (XEXP (src2, 0)))[0] == 'e'
4957 && XEXP (XEXP (src2, 0), 0) == src1)
4958 split = &XEXP (XEXP (src2, 0), 0);
4959
4960 if (split)
4961 {
4962 SUBST (XEXP (x, 0), src2);
4963 return split;
4964 }
4965 }
4966
4967 /* If that didn't work, perhaps the first operand is complex and
4968 needs to be computed separately, so make a split point there.
4969 This will occur on machines that just support REG + CONST
4970 and have a constant moved through some previous computation. */
4971
4972 else if (!OBJECT_P (XEXP (XEXP (x, 0), 0))
4973 && ! (GET_CODE (XEXP (XEXP (x, 0), 0)) == SUBREG
4974 && OBJECT_P (SUBREG_REG (XEXP (XEXP (x, 0), 0)))))
4975 return &XEXP (XEXP (x, 0), 0);
4976 }
4977
4978 /* If we have a PLUS whose first operand is complex, try computing it
4979 separately by making a split there. */
4980 if (GET_CODE (XEXP (x, 0)) == PLUS
4981 && ! memory_address_addr_space_p (GET_MODE (x), XEXP (x, 0),
4982 MEM_ADDR_SPACE (x))
4983 && ! OBJECT_P (XEXP (XEXP (x, 0), 0))
4984 && ! (GET_CODE (XEXP (XEXP (x, 0), 0)) == SUBREG
4985 && OBJECT_P (SUBREG_REG (XEXP (XEXP (x, 0), 0)))))
4986 return &XEXP (XEXP (x, 0), 0);
4987 break;
4988
4989 case SET:
4990 /* If SET_DEST is CC0 and SET_SRC is not an operand, a COMPARE, or a
4991 ZERO_EXTRACT, the most likely reason why this doesn't match is that
4992 we need to put the operand into a register. So split at that
4993 point. */
4994
4995 if (SET_DEST (x) == cc0_rtx
4996 && GET_CODE (SET_SRC (x)) != COMPARE
4997 && GET_CODE (SET_SRC (x)) != ZERO_EXTRACT
4998 && !OBJECT_P (SET_SRC (x))
4999 && ! (GET_CODE (SET_SRC (x)) == SUBREG
5000 && OBJECT_P (SUBREG_REG (SET_SRC (x)))))
5001 return &SET_SRC (x);
5002
5003 /* See if we can split SET_SRC as it stands. */
5004 split = find_split_point (&SET_SRC (x), insn, true);
5005 if (split && split != &SET_SRC (x))
5006 return split;
5007
5008 /* See if we can split SET_DEST as it stands. */
5009 split = find_split_point (&SET_DEST (x), insn, false);
5010 if (split && split != &SET_DEST (x))
5011 return split;
5012
5013 /* See if this is a bitfield assignment with everything constant. If
5014 so, this is an IOR of an AND, so split it into that. */
5015 if (GET_CODE (SET_DEST (x)) == ZERO_EXTRACT
5016 && is_a <scalar_int_mode> (GET_MODE (XEXP (SET_DEST (x), 0)),
5017 &inner_mode)
5018 && HWI_COMPUTABLE_MODE_P (inner_mode)
5019 && CONST_INT_P (XEXP (SET_DEST (x), 1))
5020 && CONST_INT_P (XEXP (SET_DEST (x), 2))
5021 && CONST_INT_P (SET_SRC (x))
5022 && ((INTVAL (XEXP (SET_DEST (x), 1))
5023 + INTVAL (XEXP (SET_DEST (x), 2)))
5024 <= GET_MODE_PRECISION (inner_mode))
5025 && ! side_effects_p (XEXP (SET_DEST (x), 0)))
5026 {
5027 HOST_WIDE_INT pos = INTVAL (XEXP (SET_DEST (x), 2));
5028 unsigned HOST_WIDE_INT len = INTVAL (XEXP (SET_DEST (x), 1));
5029 unsigned HOST_WIDE_INT src = INTVAL (SET_SRC (x));
5030 rtx dest = XEXP (SET_DEST (x), 0);
5031 unsigned HOST_WIDE_INT mask
5032 = (HOST_WIDE_INT_1U << len) - 1;
5033 rtx or_mask;
5034
5035 if (BITS_BIG_ENDIAN)
5036 pos = GET_MODE_PRECISION (inner_mode) - len - pos;
5037
5038 or_mask = gen_int_mode (src << pos, inner_mode);
5039 if (src == mask)
5040 SUBST (SET_SRC (x),
5041 simplify_gen_binary (IOR, inner_mode, dest, or_mask));
5042 else
5043 {
5044 rtx negmask = gen_int_mode (~(mask << pos), inner_mode);
5045 SUBST (SET_SRC (x),
5046 simplify_gen_binary (IOR, inner_mode,
5047 simplify_gen_binary (AND, inner_mode,
5048 dest, negmask),
5049 or_mask));
5050 }
5051
5052 SUBST (SET_DEST (x), dest);
5053
5054 split = find_split_point (&SET_SRC (x), insn, true);
5055 if (split && split != &SET_SRC (x))
5056 return split;
5057 }
5058
5059 /* Otherwise, see if this is an operation that we can split into two.
5060 If so, try to split that. */
5061 code = GET_CODE (SET_SRC (x));
5062
5063 switch (code)
5064 {
5065 case AND:
5066 /* If we are AND'ing with a large constant that is only a single
5067 bit and the result is only being used in a context where we
5068 need to know if it is zero or nonzero, replace it with a bit
5069 extraction. This will avoid the large constant, which might
5070 have taken more than one insn to make. If the constant were
5071 not a valid argument to the AND but took only one insn to make,
5072 this is no worse, but if it took more than one insn, it will
5073 be better. */
5074
5075 if (CONST_INT_P (XEXP (SET_SRC (x), 1))
5076 && REG_P (XEXP (SET_SRC (x), 0))
5077 && (pos = exact_log2 (UINTVAL (XEXP (SET_SRC (x), 1)))) >= 7
5078 && REG_P (SET_DEST (x))
5079 && (split = find_single_use (SET_DEST (x), insn, NULL)) != 0
5080 && (GET_CODE (*split) == EQ || GET_CODE (*split) == NE)
5081 && XEXP (*split, 0) == SET_DEST (x)
5082 && XEXP (*split, 1) == const0_rtx)
5083 {
5084 rtx extraction = make_extraction (GET_MODE (SET_DEST (x)),
5085 XEXP (SET_SRC (x), 0),
5086 pos, NULL_RTX, 1, 1, 0, 0);
5087 if (extraction != 0)
5088 {
5089 SUBST (SET_SRC (x), extraction);
5090 return find_split_point (loc, insn, false);
5091 }
5092 }
5093 break;
5094
5095 case NE:
5096 /* If STORE_FLAG_VALUE is -1, this is (NE X 0) and only one bit of X
5097 is known to be on, this can be converted into a NEG of a shift. */
5098 if (STORE_FLAG_VALUE == -1 && XEXP (SET_SRC (x), 1) == const0_rtx
5099 && GET_MODE (SET_SRC (x)) == GET_MODE (XEXP (SET_SRC (x), 0))
5100 && ((pos = exact_log2 (nonzero_bits (XEXP (SET_SRC (x), 0),
5101 GET_MODE (XEXP (SET_SRC (x),
5102 0))))) >= 1))
5103 {
5104 machine_mode mode = GET_MODE (XEXP (SET_SRC (x), 0));
5105 rtx pos_rtx = gen_int_shift_amount (mode, pos);
5106 SUBST (SET_SRC (x),
5107 gen_rtx_NEG (mode,
5108 gen_rtx_LSHIFTRT (mode,
5109 XEXP (SET_SRC (x), 0),
5110 pos_rtx)));
5111
5112 split = find_split_point (&SET_SRC (x), insn, true);
5113 if (split && split != &SET_SRC (x))
5114 return split;
5115 }
5116 break;
5117
5118 case SIGN_EXTEND:
5119 inner = XEXP (SET_SRC (x), 0);
5120
5121 /* We can't optimize if either mode is a partial integer
5122 mode as we don't know how many bits are significant
5123 in those modes. */
5124 if (!is_int_mode (GET_MODE (inner), &inner_mode)
5125 || GET_MODE_CLASS (GET_MODE (SET_SRC (x))) == MODE_PARTIAL_INT)
5126 break;
5127
5128 pos = 0;
5129 len = GET_MODE_PRECISION (inner_mode);
5130 unsignedp = 0;
5131 break;
5132
5133 case SIGN_EXTRACT:
5134 case ZERO_EXTRACT:
5135 if (is_a <scalar_int_mode> (GET_MODE (XEXP (SET_SRC (x), 0)),
5136 &inner_mode)
5137 && CONST_INT_P (XEXP (SET_SRC (x), 1))
5138 && CONST_INT_P (XEXP (SET_SRC (x), 2)))
5139 {
5140 inner = XEXP (SET_SRC (x), 0);
5141 len = INTVAL (XEXP (SET_SRC (x), 1));
5142 pos = INTVAL (XEXP (SET_SRC (x), 2));
5143
5144 if (BITS_BIG_ENDIAN)
5145 pos = GET_MODE_PRECISION (inner_mode) - len - pos;
5146 unsignedp = (code == ZERO_EXTRACT);
5147 }
5148 break;
5149
5150 default:
5151 break;
5152 }
5153
5154 if (len
5155 && known_subrange_p (pos, len,
5156 0, GET_MODE_PRECISION (GET_MODE (inner)))
5157 && is_a <scalar_int_mode> (GET_MODE (SET_SRC (x)), &mode))
5158 {
5159 /* For unsigned, we have a choice of a shift followed by an
5160 AND or two shifts. Use two shifts for field sizes where the
5161 constant might be too large. We assume here that we can
5162 always at least get 8-bit constants in an AND insn, which is
5163 true for every current RISC. */
5164
5165 if (unsignedp && len <= 8)
5166 {
5167 unsigned HOST_WIDE_INT mask
5168 = (HOST_WIDE_INT_1U << len) - 1;
5169 rtx pos_rtx = gen_int_shift_amount (mode, pos);
5170 SUBST (SET_SRC (x),
5171 gen_rtx_AND (mode,
5172 gen_rtx_LSHIFTRT
5173 (mode, gen_lowpart (mode, inner), pos_rtx),
5174 gen_int_mode (mask, mode)));
5175
5176 split = find_split_point (&SET_SRC (x), insn, true);
5177 if (split && split != &SET_SRC (x))
5178 return split;
5179 }
5180 else
5181 {
5182 int left_bits = GET_MODE_PRECISION (mode) - len - pos;
5183 int right_bits = GET_MODE_PRECISION (mode) - len;
5184 SUBST (SET_SRC (x),
5185 gen_rtx_fmt_ee
5186 (unsignedp ? LSHIFTRT : ASHIFTRT, mode,
5187 gen_rtx_ASHIFT (mode,
5188 gen_lowpart (mode, inner),
5189 gen_int_shift_amount (mode, left_bits)),
5190 gen_int_shift_amount (mode, right_bits)));
5191
5192 split = find_split_point (&SET_SRC (x), insn, true);
5193 if (split && split != &SET_SRC (x))
5194 return split;
5195 }
5196 }
5197
5198 /* See if this is a simple operation with a constant as the second
5199 operand. It might be that this constant is out of range and hence
5200 could be used as a split point. */
5201 if (BINARY_P (SET_SRC (x))
5202 && CONSTANT_P (XEXP (SET_SRC (x), 1))
5203 && (OBJECT_P (XEXP (SET_SRC (x), 0))
5204 || (GET_CODE (XEXP (SET_SRC (x), 0)) == SUBREG
5205 && OBJECT_P (SUBREG_REG (XEXP (SET_SRC (x), 0))))))
5206 return &XEXP (SET_SRC (x), 1);
5207
5208 /* Finally, see if this is a simple operation with its first operand
5209 not in a register. The operation might require this operand in a
5210 register, so return it as a split point. We can always do this
5211 because if the first operand were another operation, we would have
5212 already found it as a split point. */
5213 if ((BINARY_P (SET_SRC (x)) || UNARY_P (SET_SRC (x)))
5214 && ! register_operand (XEXP (SET_SRC (x), 0), VOIDmode))
5215 return &XEXP (SET_SRC (x), 0);
5216
5217 return 0;
5218
5219 case AND:
5220 case IOR:
5221 /* We write NOR as (and (not A) (not B)), but if we don't have a NOR,
5222 it is better to write this as (not (ior A B)) so we can split it.
5223 Similarly for IOR. */
5224 if (GET_CODE (XEXP (x, 0)) == NOT && GET_CODE (XEXP (x, 1)) == NOT)
5225 {
5226 SUBST (*loc,
5227 gen_rtx_NOT (GET_MODE (x),
5228 gen_rtx_fmt_ee (code == IOR ? AND : IOR,
5229 GET_MODE (x),
5230 XEXP (XEXP (x, 0), 0),
5231 XEXP (XEXP (x, 1), 0))));
5232 return find_split_point (loc, insn, set_src);
5233 }
5234
5235 /* Many RISC machines have a large set of logical insns. If the
5236 second operand is a NOT, put it first so we will try to split the
5237 other operand first. */
5238 if (GET_CODE (XEXP (x, 1)) == NOT)
5239 {
5240 rtx tem = XEXP (x, 0);
5241 SUBST (XEXP (x, 0), XEXP (x, 1));
5242 SUBST (XEXP (x, 1), tem);
5243 }
5244 break;
5245
5246 case PLUS:
5247 case MINUS:
5248 /* Canonicalization can produce (minus A (mult B C)), where C is a
5249 constant. It may be better to try splitting (plus (mult B -C) A)
5250 instead if this isn't a multiply by a power of two. */
5251 if (set_src && code == MINUS && GET_CODE (XEXP (x, 1)) == MULT
5252 && GET_CODE (XEXP (XEXP (x, 1), 1)) == CONST_INT
5253 && !pow2p_hwi (INTVAL (XEXP (XEXP (x, 1), 1))))
5254 {
5255 machine_mode mode = GET_MODE (x);
5256 unsigned HOST_WIDE_INT this_int = INTVAL (XEXP (XEXP (x, 1), 1));
5257 HOST_WIDE_INT other_int = trunc_int_for_mode (-this_int, mode);
5258 SUBST (*loc, gen_rtx_PLUS (mode,
5259 gen_rtx_MULT (mode,
5260 XEXP (XEXP (x, 1), 0),
5261 gen_int_mode (other_int,
5262 mode)),
5263 XEXP (x, 0)));
5264 return find_split_point (loc, insn, set_src);
5265 }
5266
5267 /* Split at a multiply-accumulate instruction. However if this is
5268 the SET_SRC, we likely do not have such an instruction and it's
5269 worthless to try this split. */
5270 if (!set_src
5271 && (GET_CODE (XEXP (x, 0)) == MULT
5272 || (GET_CODE (XEXP (x, 0)) == ASHIFT
5273 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT)))
5274 return loc;
5275
5276 default:
5277 break;
5278 }
5279
5280 /* Otherwise, select our actions depending on our rtx class. */
5281 switch (GET_RTX_CLASS (code))
5282 {
5283 case RTX_BITFIELD_OPS: /* This is ZERO_EXTRACT and SIGN_EXTRACT. */
5284 case RTX_TERNARY:
5285 split = find_split_point (&XEXP (x, 2), insn, false);
5286 if (split)
5287 return split;
5288 /* fall through */
5289 case RTX_BIN_ARITH:
5290 case RTX_COMM_ARITH:
5291 case RTX_COMPARE:
5292 case RTX_COMM_COMPARE:
5293 split = find_split_point (&XEXP (x, 1), insn, false);
5294 if (split)
5295 return split;
5296 /* fall through */
5297 case RTX_UNARY:
5298 /* Some machines have (and (shift ...) ...) insns. If X is not
5299 an AND, but XEXP (X, 0) is, use it as our split point. */
5300 if (GET_CODE (x) != AND && GET_CODE (XEXP (x, 0)) == AND)
5301 return &XEXP (x, 0);
5302
5303 split = find_split_point (&XEXP (x, 0), insn, false);
5304 if (split)
5305 return split;
5306 return loc;
5307
5308 default:
5309 /* Otherwise, we don't have a split point. */
5310 return 0;
5311 }
5312 }
5313 \f
5314 /* Throughout X, replace FROM with TO, and return the result.
5315 The result is TO if X is FROM;
5316 otherwise the result is X, but its contents may have been modified.
5317 If they were modified, a record was made in undobuf so that
5318 undo_all will (among other things) return X to its original state.
5319
5320 If the number of changes necessary is too much to record to undo,
5321 the excess changes are not made, so the result is invalid.
5322 The changes already made can still be undone.
5323 undobuf.num_undo is incremented for such changes, so by testing that
5324 the caller can tell whether the result is valid.
5325
5326 `n_occurrences' is incremented each time FROM is replaced.
5327
5328 IN_DEST is nonzero if we are processing the SET_DEST of a SET.
5329
5330 IN_COND is nonzero if we are at the top level of a condition.
5331
5332 UNIQUE_COPY is nonzero if each substitution must be unique. We do this
5333 by copying if `n_occurrences' is nonzero. */
5334
5335 static rtx
5336 subst (rtx x, rtx from, rtx to, int in_dest, int in_cond, int unique_copy)
5337 {
5338 enum rtx_code code = GET_CODE (x);
5339 machine_mode op0_mode = VOIDmode;
5340 const char *fmt;
5341 int len, i;
5342 rtx new_rtx;
5343
5344 /* Two expressions are equal if they are identical copies of a shared
5345 RTX or if they are both registers with the same register number
5346 and mode. */
5347
5348 #define COMBINE_RTX_EQUAL_P(X,Y) \
5349 ((X) == (Y) \
5350 || (REG_P (X) && REG_P (Y) \
5351 && REGNO (X) == REGNO (Y) && GET_MODE (X) == GET_MODE (Y)))
5352
5353 /* Do not substitute into clobbers of regs -- this will never result in
5354 valid RTL. */
5355 if (GET_CODE (x) == CLOBBER && REG_P (XEXP (x, 0)))
5356 return x;
5357
5358 if (! in_dest && COMBINE_RTX_EQUAL_P (x, from))
5359 {
5360 n_occurrences++;
5361 return (unique_copy && n_occurrences > 1 ? copy_rtx (to) : to);
5362 }
5363
5364 /* If X and FROM are the same register but different modes, they
5365 will not have been seen as equal above. However, the log links code
5366 will make a LOG_LINKS entry for that case. If we do nothing, we
5367 will try to rerecognize our original insn and, when it succeeds,
5368 we will delete the feeding insn, which is incorrect.
5369
5370 So force this insn not to match in this (rare) case. */
5371 if (! in_dest && code == REG && REG_P (from)
5372 && reg_overlap_mentioned_p (x, from))
5373 return gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
5374
5375 /* If this is an object, we are done unless it is a MEM or LO_SUM, both
5376 of which may contain things that can be combined. */
5377 if (code != MEM && code != LO_SUM && OBJECT_P (x))
5378 return x;
5379
5380 /* It is possible to have a subexpression appear twice in the insn.
5381 Suppose that FROM is a register that appears within TO.
5382 Then, after that subexpression has been scanned once by `subst',
5383 the second time it is scanned, TO may be found. If we were
5384 to scan TO here, we would find FROM within it and create a
5385 self-referent rtl structure which is completely wrong. */
5386 if (COMBINE_RTX_EQUAL_P (x, to))
5387 return to;
5388
5389 /* Parallel asm_operands need special attention because all of the
5390 inputs are shared across the arms. Furthermore, unsharing the
5391 rtl results in recognition failures. Failure to handle this case
5392 specially can result in circular rtl.
5393
5394 Solve this by doing a normal pass across the first entry of the
5395 parallel, and only processing the SET_DESTs of the subsequent
5396 entries. Ug. */
5397
5398 if (code == PARALLEL
5399 && GET_CODE (XVECEXP (x, 0, 0)) == SET
5400 && GET_CODE (SET_SRC (XVECEXP (x, 0, 0))) == ASM_OPERANDS)
5401 {
5402 new_rtx = subst (XVECEXP (x, 0, 0), from, to, 0, 0, unique_copy);
5403
5404 /* If this substitution failed, this whole thing fails. */
5405 if (GET_CODE (new_rtx) == CLOBBER
5406 && XEXP (new_rtx, 0) == const0_rtx)
5407 return new_rtx;
5408
5409 SUBST (XVECEXP (x, 0, 0), new_rtx);
5410
5411 for (i = XVECLEN (x, 0) - 1; i >= 1; i--)
5412 {
5413 rtx dest = SET_DEST (XVECEXP (x, 0, i));
5414
5415 if (!REG_P (dest)
5416 && GET_CODE (dest) != CC0
5417 && GET_CODE (dest) != PC)
5418 {
5419 new_rtx = subst (dest, from, to, 0, 0, unique_copy);
5420
5421 /* If this substitution failed, this whole thing fails. */
5422 if (GET_CODE (new_rtx) == CLOBBER
5423 && XEXP (new_rtx, 0) == const0_rtx)
5424 return new_rtx;
5425
5426 SUBST (SET_DEST (XVECEXP (x, 0, i)), new_rtx);
5427 }
5428 }
5429 }
5430 else
5431 {
5432 len = GET_RTX_LENGTH (code);
5433 fmt = GET_RTX_FORMAT (code);
5434
5435 /* We don't need to process a SET_DEST that is a register, CC0,
5436 or PC, so set up to skip this common case. All other cases
5437 where we want to suppress replacing something inside a
5438 SET_SRC are handled via the IN_DEST operand. */
5439 if (code == SET
5440 && (REG_P (SET_DEST (x))
5441 || GET_CODE (SET_DEST (x)) == CC0
5442 || GET_CODE (SET_DEST (x)) == PC))
5443 fmt = "ie";
5444
5445 /* Trying to simplify the operands of a widening MULT is not likely
5446 to create RTL matching a machine insn. */
5447 if (code == MULT
5448 && (GET_CODE (XEXP (x, 0)) == ZERO_EXTEND
5449 || GET_CODE (XEXP (x, 0)) == SIGN_EXTEND)
5450 && (GET_CODE (XEXP (x, 1)) == ZERO_EXTEND
5451 || GET_CODE (XEXP (x, 1)) == SIGN_EXTEND)
5452 && REG_P (XEXP (XEXP (x, 0), 0))
5453 && REG_P (XEXP (XEXP (x, 1), 0))
5454 && from == to)
5455 return x;
5456
5457
5458 /* Get the mode of operand 0 in case X is now a SIGN_EXTEND of a
5459 constant. */
5460 if (fmt[0] == 'e')
5461 op0_mode = GET_MODE (XEXP (x, 0));
5462
5463 for (i = 0; i < len; i++)
5464 {
5465 if (fmt[i] == 'E')
5466 {
5467 int j;
5468 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
5469 {
5470 if (COMBINE_RTX_EQUAL_P (XVECEXP (x, i, j), from))
5471 {
5472 new_rtx = (unique_copy && n_occurrences
5473 ? copy_rtx (to) : to);
5474 n_occurrences++;
5475 }
5476 else
5477 {
5478 new_rtx = subst (XVECEXP (x, i, j), from, to, 0, 0,
5479 unique_copy);
5480
5481 /* If this substitution failed, this whole thing
5482 fails. */
5483 if (GET_CODE (new_rtx) == CLOBBER
5484 && XEXP (new_rtx, 0) == const0_rtx)
5485 return new_rtx;
5486 }
5487
5488 SUBST (XVECEXP (x, i, j), new_rtx);
5489 }
5490 }
5491 else if (fmt[i] == 'e')
5492 {
5493 /* If this is a register being set, ignore it. */
5494 new_rtx = XEXP (x, i);
5495 if (in_dest
5496 && i == 0
5497 && (((code == SUBREG || code == ZERO_EXTRACT)
5498 && REG_P (new_rtx))
5499 || code == STRICT_LOW_PART))
5500 ;
5501
5502 else if (COMBINE_RTX_EQUAL_P (XEXP (x, i), from))
5503 {
5504 /* In general, don't install a subreg involving two
5505 modes not tieable. It can worsen register
5506 allocation, and can even make invalid reload
5507 insns, since the reg inside may need to be copied
5508 from in the outside mode, and that may be invalid
5509 if it is an fp reg copied in integer mode.
5510
5511 We allow two exceptions to this: It is valid if
5512 it is inside another SUBREG and the mode of that
5513 SUBREG and the mode of the inside of TO is
5514 tieable and it is valid if X is a SET that copies
5515 FROM to CC0. */
5516
5517 if (GET_CODE (to) == SUBREG
5518 && !targetm.modes_tieable_p (GET_MODE (to),
5519 GET_MODE (SUBREG_REG (to)))
5520 && ! (code == SUBREG
5521 && (targetm.modes_tieable_p
5522 (GET_MODE (x), GET_MODE (SUBREG_REG (to)))))
5523 && (!HAVE_cc0
5524 || (! (code == SET
5525 && i == 1
5526 && XEXP (x, 0) == cc0_rtx))))
5527 return gen_rtx_CLOBBER (VOIDmode, const0_rtx);
5528
5529 if (code == SUBREG
5530 && REG_P (to)
5531 && REGNO (to) < FIRST_PSEUDO_REGISTER
5532 && simplify_subreg_regno (REGNO (to), GET_MODE (to),
5533 SUBREG_BYTE (x),
5534 GET_MODE (x)) < 0)
5535 return gen_rtx_CLOBBER (VOIDmode, const0_rtx);
5536
5537 new_rtx = (unique_copy && n_occurrences ? copy_rtx (to) : to);
5538 n_occurrences++;
5539 }
5540 else
5541 /* If we are in a SET_DEST, suppress most cases unless we
5542 have gone inside a MEM, in which case we want to
5543 simplify the address. We assume here that things that
5544 are actually part of the destination have their inner
5545 parts in the first expression. This is true for SUBREG,
5546 STRICT_LOW_PART, and ZERO_EXTRACT, which are the only
5547 things aside from REG and MEM that should appear in a
5548 SET_DEST. */
5549 new_rtx = subst (XEXP (x, i), from, to,
5550 (((in_dest
5551 && (code == SUBREG || code == STRICT_LOW_PART
5552 || code == ZERO_EXTRACT))
5553 || code == SET)
5554 && i == 0),
5555 code == IF_THEN_ELSE && i == 0,
5556 unique_copy);
5557
5558 /* If we found that we will have to reject this combination,
5559 indicate that by returning the CLOBBER ourselves, rather than
5560 an expression containing it. This will speed things up as
5561 well as prevent accidents where two CLOBBERs are considered
5562 to be equal, thus producing an incorrect simplification. */
5563
5564 if (GET_CODE (new_rtx) == CLOBBER && XEXP (new_rtx, 0) == const0_rtx)
5565 return new_rtx;
5566
5567 if (GET_CODE (x) == SUBREG && CONST_SCALAR_INT_P (new_rtx))
5568 {
5569 machine_mode mode = GET_MODE (x);
5570
5571 x = simplify_subreg (GET_MODE (x), new_rtx,
5572 GET_MODE (SUBREG_REG (x)),
5573 SUBREG_BYTE (x));
5574 if (! x)
5575 x = gen_rtx_CLOBBER (mode, const0_rtx);
5576 }
5577 else if (CONST_SCALAR_INT_P (new_rtx)
5578 && (GET_CODE (x) == ZERO_EXTEND
5579 || GET_CODE (x) == FLOAT
5580 || GET_CODE (x) == UNSIGNED_FLOAT))
5581 {
5582 x = simplify_unary_operation (GET_CODE (x), GET_MODE (x),
5583 new_rtx,
5584 GET_MODE (XEXP (x, 0)));
5585 if (!x)
5586 return gen_rtx_CLOBBER (VOIDmode, const0_rtx);
5587 }
5588 else
5589 SUBST (XEXP (x, i), new_rtx);
5590 }
5591 }
5592 }
5593
5594 /* Check if we are loading something from the constant pool via float
5595 extension; in this case we would undo compress_float_constant
5596 optimization and degenerate constant load to an immediate value. */
5597 if (GET_CODE (x) == FLOAT_EXTEND
5598 && MEM_P (XEXP (x, 0))
5599 && MEM_READONLY_P (XEXP (x, 0)))
5600 {
5601 rtx tmp = avoid_constant_pool_reference (x);
5602 if (x != tmp)
5603 return x;
5604 }
5605
5606 /* Try to simplify X. If the simplification changed the code, it is likely
5607 that further simplification will help, so loop, but limit the number
5608 of repetitions that will be performed. */
5609
5610 for (i = 0; i < 4; i++)
5611 {
5612 /* If X is sufficiently simple, don't bother trying to do anything
5613 with it. */
5614 if (code != CONST_INT && code != REG && code != CLOBBER)
5615 x = combine_simplify_rtx (x, op0_mode, in_dest, in_cond);
5616
5617 if (GET_CODE (x) == code)
5618 break;
5619
5620 code = GET_CODE (x);
5621
5622 /* We no longer know the original mode of operand 0 since we
5623 have changed the form of X) */
5624 op0_mode = VOIDmode;
5625 }
5626
5627 return x;
5628 }
5629 \f
5630 /* If X is a commutative operation whose operands are not in the canonical
5631 order, use substitutions to swap them. */
5632
5633 static void
5634 maybe_swap_commutative_operands (rtx x)
5635 {
5636 if (COMMUTATIVE_ARITH_P (x)
5637 && swap_commutative_operands_p (XEXP (x, 0), XEXP (x, 1)))
5638 {
5639 rtx temp = XEXP (x, 0);
5640 SUBST (XEXP (x, 0), XEXP (x, 1));
5641 SUBST (XEXP (x, 1), temp);
5642 }
5643 }
5644
5645 /* Simplify X, a piece of RTL. We just operate on the expression at the
5646 outer level; call `subst' to simplify recursively. Return the new
5647 expression.
5648
5649 OP0_MODE is the original mode of XEXP (x, 0). IN_DEST is nonzero
5650 if we are inside a SET_DEST. IN_COND is nonzero if we are at the top level
5651 of a condition. */
5652
5653 static rtx
5654 combine_simplify_rtx (rtx x, machine_mode op0_mode, int in_dest,
5655 int in_cond)
5656 {
5657 enum rtx_code code = GET_CODE (x);
5658 machine_mode mode = GET_MODE (x);
5659 scalar_int_mode int_mode;
5660 rtx temp;
5661 int i;
5662
5663 /* If this is a commutative operation, put a constant last and a complex
5664 expression first. We don't need to do this for comparisons here. */
5665 maybe_swap_commutative_operands (x);
5666
5667 /* Try to fold this expression in case we have constants that weren't
5668 present before. */
5669 temp = 0;
5670 switch (GET_RTX_CLASS (code))
5671 {
5672 case RTX_UNARY:
5673 if (op0_mode == VOIDmode)
5674 op0_mode = GET_MODE (XEXP (x, 0));
5675 temp = simplify_unary_operation (code, mode, XEXP (x, 0), op0_mode);
5676 break;
5677 case RTX_COMPARE:
5678 case RTX_COMM_COMPARE:
5679 {
5680 machine_mode cmp_mode = GET_MODE (XEXP (x, 0));
5681 if (cmp_mode == VOIDmode)
5682 {
5683 cmp_mode = GET_MODE (XEXP (x, 1));
5684 if (cmp_mode == VOIDmode)
5685 cmp_mode = op0_mode;
5686 }
5687 temp = simplify_relational_operation (code, mode, cmp_mode,
5688 XEXP (x, 0), XEXP (x, 1));
5689 }
5690 break;
5691 case RTX_COMM_ARITH:
5692 case RTX_BIN_ARITH:
5693 temp = simplify_binary_operation (code, mode, XEXP (x, 0), XEXP (x, 1));
5694 break;
5695 case RTX_BITFIELD_OPS:
5696 case RTX_TERNARY:
5697 temp = simplify_ternary_operation (code, mode, op0_mode, XEXP (x, 0),
5698 XEXP (x, 1), XEXP (x, 2));
5699 break;
5700 default:
5701 break;
5702 }
5703
5704 if (temp)
5705 {
5706 x = temp;
5707 code = GET_CODE (temp);
5708 op0_mode = VOIDmode;
5709 mode = GET_MODE (temp);
5710 }
5711
5712 /* If this is a simple operation applied to an IF_THEN_ELSE, try
5713 applying it to the arms of the IF_THEN_ELSE. This often simplifies
5714 things. Check for cases where both arms are testing the same
5715 condition.
5716
5717 Don't do anything if all operands are very simple. */
5718
5719 if ((BINARY_P (x)
5720 && ((!OBJECT_P (XEXP (x, 0))
5721 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
5722 && OBJECT_P (SUBREG_REG (XEXP (x, 0)))))
5723 || (!OBJECT_P (XEXP (x, 1))
5724 && ! (GET_CODE (XEXP (x, 1)) == SUBREG
5725 && OBJECT_P (SUBREG_REG (XEXP (x, 1)))))))
5726 || (UNARY_P (x)
5727 && (!OBJECT_P (XEXP (x, 0))
5728 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
5729 && OBJECT_P (SUBREG_REG (XEXP (x, 0)))))))
5730 {
5731 rtx cond, true_rtx, false_rtx;
5732
5733 cond = if_then_else_cond (x, &true_rtx, &false_rtx);
5734 if (cond != 0
5735 /* If everything is a comparison, what we have is highly unlikely
5736 to be simpler, so don't use it. */
5737 && ! (COMPARISON_P (x)
5738 && (COMPARISON_P (true_rtx) || COMPARISON_P (false_rtx)))
5739 /* Similarly, if we end up with one of the expressions the same
5740 as the original, it is certainly not simpler. */
5741 && ! rtx_equal_p (x, true_rtx)
5742 && ! rtx_equal_p (x, false_rtx))
5743 {
5744 rtx cop1 = const0_rtx;
5745 enum rtx_code cond_code = simplify_comparison (NE, &cond, &cop1);
5746
5747 if (cond_code == NE && COMPARISON_P (cond))
5748 return x;
5749
5750 /* Simplify the alternative arms; this may collapse the true and
5751 false arms to store-flag values. Be careful to use copy_rtx
5752 here since true_rtx or false_rtx might share RTL with x as a
5753 result of the if_then_else_cond call above. */
5754 true_rtx = subst (copy_rtx (true_rtx), pc_rtx, pc_rtx, 0, 0, 0);
5755 false_rtx = subst (copy_rtx (false_rtx), pc_rtx, pc_rtx, 0, 0, 0);
5756
5757 /* If true_rtx and false_rtx are not general_operands, an if_then_else
5758 is unlikely to be simpler. */
5759 if (general_operand (true_rtx, VOIDmode)
5760 && general_operand (false_rtx, VOIDmode))
5761 {
5762 enum rtx_code reversed;
5763
5764 /* Restarting if we generate a store-flag expression will cause
5765 us to loop. Just drop through in this case. */
5766
5767 /* If the result values are STORE_FLAG_VALUE and zero, we can
5768 just make the comparison operation. */
5769 if (true_rtx == const_true_rtx && false_rtx == const0_rtx)
5770 x = simplify_gen_relational (cond_code, mode, VOIDmode,
5771 cond, cop1);
5772 else if (true_rtx == const0_rtx && false_rtx == const_true_rtx
5773 && ((reversed = reversed_comparison_code_parts
5774 (cond_code, cond, cop1, NULL))
5775 != UNKNOWN))
5776 x = simplify_gen_relational (reversed, mode, VOIDmode,
5777 cond, cop1);
5778
5779 /* Likewise, we can make the negate of a comparison operation
5780 if the result values are - STORE_FLAG_VALUE and zero. */
5781 else if (CONST_INT_P (true_rtx)
5782 && INTVAL (true_rtx) == - STORE_FLAG_VALUE
5783 && false_rtx == const0_rtx)
5784 x = simplify_gen_unary (NEG, mode,
5785 simplify_gen_relational (cond_code,
5786 mode, VOIDmode,
5787 cond, cop1),
5788 mode);
5789 else if (CONST_INT_P (false_rtx)
5790 && INTVAL (false_rtx) == - STORE_FLAG_VALUE
5791 && true_rtx == const0_rtx
5792 && ((reversed = reversed_comparison_code_parts
5793 (cond_code, cond, cop1, NULL))
5794 != UNKNOWN))
5795 x = simplify_gen_unary (NEG, mode,
5796 simplify_gen_relational (reversed,
5797 mode, VOIDmode,
5798 cond, cop1),
5799 mode);
5800 else
5801 return gen_rtx_IF_THEN_ELSE (mode,
5802 simplify_gen_relational (cond_code,
5803 mode,
5804 VOIDmode,
5805 cond,
5806 cop1),
5807 true_rtx, false_rtx);
5808
5809 code = GET_CODE (x);
5810 op0_mode = VOIDmode;
5811 }
5812 }
5813 }
5814
5815 /* First see if we can apply the inverse distributive law. */
5816 if (code == PLUS || code == MINUS
5817 || code == AND || code == IOR || code == XOR)
5818 {
5819 x = apply_distributive_law (x);
5820 code = GET_CODE (x);
5821 op0_mode = VOIDmode;
5822 }
5823
5824 /* If CODE is an associative operation not otherwise handled, see if we
5825 can associate some operands. This can win if they are constants or
5826 if they are logically related (i.e. (a & b) & a). */
5827 if ((code == PLUS || code == MINUS || code == MULT || code == DIV
5828 || code == AND || code == IOR || code == XOR
5829 || code == SMAX || code == SMIN || code == UMAX || code == UMIN)
5830 && ((INTEGRAL_MODE_P (mode) && code != DIV)
5831 || (flag_associative_math && FLOAT_MODE_P (mode))))
5832 {
5833 if (GET_CODE (XEXP (x, 0)) == code)
5834 {
5835 rtx other = XEXP (XEXP (x, 0), 0);
5836 rtx inner_op0 = XEXP (XEXP (x, 0), 1);
5837 rtx inner_op1 = XEXP (x, 1);
5838 rtx inner;
5839
5840 /* Make sure we pass the constant operand if any as the second
5841 one if this is a commutative operation. */
5842 if (CONSTANT_P (inner_op0) && COMMUTATIVE_ARITH_P (x))
5843 std::swap (inner_op0, inner_op1);
5844 inner = simplify_binary_operation (code == MINUS ? PLUS
5845 : code == DIV ? MULT
5846 : code,
5847 mode, inner_op0, inner_op1);
5848
5849 /* For commutative operations, try the other pair if that one
5850 didn't simplify. */
5851 if (inner == 0 && COMMUTATIVE_ARITH_P (x))
5852 {
5853 other = XEXP (XEXP (x, 0), 1);
5854 inner = simplify_binary_operation (code, mode,
5855 XEXP (XEXP (x, 0), 0),
5856 XEXP (x, 1));
5857 }
5858
5859 if (inner)
5860 return simplify_gen_binary (code, mode, other, inner);
5861 }
5862 }
5863
5864 /* A little bit of algebraic simplification here. */
5865 switch (code)
5866 {
5867 case MEM:
5868 /* Ensure that our address has any ASHIFTs converted to MULT in case
5869 address-recognizing predicates are called later. */
5870 temp = make_compound_operation (XEXP (x, 0), MEM);
5871 SUBST (XEXP (x, 0), temp);
5872 break;
5873
5874 case SUBREG:
5875 if (op0_mode == VOIDmode)
5876 op0_mode = GET_MODE (SUBREG_REG (x));
5877
5878 /* See if this can be moved to simplify_subreg. */
5879 if (CONSTANT_P (SUBREG_REG (x))
5880 && known_eq (subreg_lowpart_offset (mode, op0_mode), SUBREG_BYTE (x))
5881 /* Don't call gen_lowpart if the inner mode
5882 is VOIDmode and we cannot simplify it, as SUBREG without
5883 inner mode is invalid. */
5884 && (GET_MODE (SUBREG_REG (x)) != VOIDmode
5885 || gen_lowpart_common (mode, SUBREG_REG (x))))
5886 return gen_lowpart (mode, SUBREG_REG (x));
5887
5888 if (GET_MODE_CLASS (GET_MODE (SUBREG_REG (x))) == MODE_CC)
5889 break;
5890 {
5891 rtx temp;
5892 temp = simplify_subreg (mode, SUBREG_REG (x), op0_mode,
5893 SUBREG_BYTE (x));
5894 if (temp)
5895 return temp;
5896
5897 /* If op is known to have all lower bits zero, the result is zero. */
5898 scalar_int_mode int_mode, int_op0_mode;
5899 if (!in_dest
5900 && is_a <scalar_int_mode> (mode, &int_mode)
5901 && is_a <scalar_int_mode> (op0_mode, &int_op0_mode)
5902 && (GET_MODE_PRECISION (int_mode)
5903 < GET_MODE_PRECISION (int_op0_mode))
5904 && known_eq (subreg_lowpart_offset (int_mode, int_op0_mode),
5905 SUBREG_BYTE (x))
5906 && HWI_COMPUTABLE_MODE_P (int_op0_mode)
5907 && (nonzero_bits (SUBREG_REG (x), int_op0_mode)
5908 & GET_MODE_MASK (int_mode)) == 0)
5909 return CONST0_RTX (int_mode);
5910 }
5911
5912 /* Don't change the mode of the MEM if that would change the meaning
5913 of the address. */
5914 if (MEM_P (SUBREG_REG (x))
5915 && (MEM_VOLATILE_P (SUBREG_REG (x))
5916 || mode_dependent_address_p (XEXP (SUBREG_REG (x), 0),
5917 MEM_ADDR_SPACE (SUBREG_REG (x)))))
5918 return gen_rtx_CLOBBER (mode, const0_rtx);
5919
5920 /* Note that we cannot do any narrowing for non-constants since
5921 we might have been counting on using the fact that some bits were
5922 zero. We now do this in the SET. */
5923
5924 break;
5925
5926 case NEG:
5927 temp = expand_compound_operation (XEXP (x, 0));
5928
5929 /* For C equal to the width of MODE minus 1, (neg (ashiftrt X C)) can be
5930 replaced by (lshiftrt X C). This will convert
5931 (neg (sign_extract X 1 Y)) to (zero_extract X 1 Y). */
5932
5933 if (GET_CODE (temp) == ASHIFTRT
5934 && CONST_INT_P (XEXP (temp, 1))
5935 && INTVAL (XEXP (temp, 1)) == GET_MODE_UNIT_PRECISION (mode) - 1)
5936 return simplify_shift_const (NULL_RTX, LSHIFTRT, mode, XEXP (temp, 0),
5937 INTVAL (XEXP (temp, 1)));
5938
5939 /* If X has only a single bit that might be nonzero, say, bit I, convert
5940 (neg X) to (ashiftrt (ashift X C-I) C-I) where C is the bitsize of
5941 MODE minus 1. This will convert (neg (zero_extract X 1 Y)) to
5942 (sign_extract X 1 Y). But only do this if TEMP isn't a register
5943 or a SUBREG of one since we'd be making the expression more
5944 complex if it was just a register. */
5945
5946 if (!REG_P (temp)
5947 && ! (GET_CODE (temp) == SUBREG
5948 && REG_P (SUBREG_REG (temp)))
5949 && is_a <scalar_int_mode> (mode, &int_mode)
5950 && (i = exact_log2 (nonzero_bits (temp, int_mode))) >= 0)
5951 {
5952 rtx temp1 = simplify_shift_const
5953 (NULL_RTX, ASHIFTRT, int_mode,
5954 simplify_shift_const (NULL_RTX, ASHIFT, int_mode, temp,
5955 GET_MODE_PRECISION (int_mode) - 1 - i),
5956 GET_MODE_PRECISION (int_mode) - 1 - i);
5957
5958 /* If all we did was surround TEMP with the two shifts, we
5959 haven't improved anything, so don't use it. Otherwise,
5960 we are better off with TEMP1. */
5961 if (GET_CODE (temp1) != ASHIFTRT
5962 || GET_CODE (XEXP (temp1, 0)) != ASHIFT
5963 || XEXP (XEXP (temp1, 0), 0) != temp)
5964 return temp1;
5965 }
5966 break;
5967
5968 case TRUNCATE:
5969 /* We can't handle truncation to a partial integer mode here
5970 because we don't know the real bitsize of the partial
5971 integer mode. */
5972 if (GET_MODE_CLASS (mode) == MODE_PARTIAL_INT)
5973 break;
5974
5975 if (HWI_COMPUTABLE_MODE_P (mode))
5976 SUBST (XEXP (x, 0),
5977 force_to_mode (XEXP (x, 0), GET_MODE (XEXP (x, 0)),
5978 GET_MODE_MASK (mode), 0));
5979
5980 /* We can truncate a constant value and return it. */
5981 {
5982 poly_int64 c;
5983 if (poly_int_rtx_p (XEXP (x, 0), &c))
5984 return gen_int_mode (c, mode);
5985 }
5986
5987 /* Similarly to what we do in simplify-rtx.c, a truncate of a register
5988 whose value is a comparison can be replaced with a subreg if
5989 STORE_FLAG_VALUE permits. */
5990 if (HWI_COMPUTABLE_MODE_P (mode)
5991 && (STORE_FLAG_VALUE & ~GET_MODE_MASK (mode)) == 0
5992 && (temp = get_last_value (XEXP (x, 0)))
5993 && COMPARISON_P (temp))
5994 return gen_lowpart (mode, XEXP (x, 0));
5995 break;
5996
5997 case CONST:
5998 /* (const (const X)) can become (const X). Do it this way rather than
5999 returning the inner CONST since CONST can be shared with a
6000 REG_EQUAL note. */
6001 if (GET_CODE (XEXP (x, 0)) == CONST)
6002 SUBST (XEXP (x, 0), XEXP (XEXP (x, 0), 0));
6003 break;
6004
6005 case LO_SUM:
6006 /* Convert (lo_sum (high FOO) FOO) to FOO. This is necessary so we
6007 can add in an offset. find_split_point will split this address up
6008 again if it doesn't match. */
6009 if (HAVE_lo_sum && GET_CODE (XEXP (x, 0)) == HIGH
6010 && rtx_equal_p (XEXP (XEXP (x, 0), 0), XEXP (x, 1)))
6011 return XEXP (x, 1);
6012 break;
6013
6014 case PLUS:
6015 /* (plus (xor (and <foo> (const_int pow2 - 1)) <c>) <-c>)
6016 when c is (const_int (pow2 + 1) / 2) is a sign extension of a
6017 bit-field and can be replaced by either a sign_extend or a
6018 sign_extract. The `and' may be a zero_extend and the two
6019 <c>, -<c> constants may be reversed. */
6020 if (GET_CODE (XEXP (x, 0)) == XOR
6021 && is_a <scalar_int_mode> (mode, &int_mode)
6022 && CONST_INT_P (XEXP (x, 1))
6023 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
6024 && INTVAL (XEXP (x, 1)) == -INTVAL (XEXP (XEXP (x, 0), 1))
6025 && ((i = exact_log2 (UINTVAL (XEXP (XEXP (x, 0), 1)))) >= 0
6026 || (i = exact_log2 (UINTVAL (XEXP (x, 1)))) >= 0)
6027 && HWI_COMPUTABLE_MODE_P (int_mode)
6028 && ((GET_CODE (XEXP (XEXP (x, 0), 0)) == AND
6029 && CONST_INT_P (XEXP (XEXP (XEXP (x, 0), 0), 1))
6030 && (UINTVAL (XEXP (XEXP (XEXP (x, 0), 0), 1))
6031 == (HOST_WIDE_INT_1U << (i + 1)) - 1))
6032 || (GET_CODE (XEXP (XEXP (x, 0), 0)) == ZERO_EXTEND
6033 && known_eq ((GET_MODE_PRECISION
6034 (GET_MODE (XEXP (XEXP (XEXP (x, 0), 0), 0)))),
6035 (unsigned int) i + 1))))
6036 return simplify_shift_const
6037 (NULL_RTX, ASHIFTRT, int_mode,
6038 simplify_shift_const (NULL_RTX, ASHIFT, int_mode,
6039 XEXP (XEXP (XEXP (x, 0), 0), 0),
6040 GET_MODE_PRECISION (int_mode) - (i + 1)),
6041 GET_MODE_PRECISION (int_mode) - (i + 1));
6042
6043 /* If only the low-order bit of X is possibly nonzero, (plus x -1)
6044 can become (ashiftrt (ashift (xor x 1) C) C) where C is
6045 the bitsize of the mode - 1. This allows simplification of
6046 "a = (b & 8) == 0;" */
6047 if (XEXP (x, 1) == constm1_rtx
6048 && !REG_P (XEXP (x, 0))
6049 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
6050 && REG_P (SUBREG_REG (XEXP (x, 0))))
6051 && is_a <scalar_int_mode> (mode, &int_mode)
6052 && nonzero_bits (XEXP (x, 0), int_mode) == 1)
6053 return simplify_shift_const
6054 (NULL_RTX, ASHIFTRT, int_mode,
6055 simplify_shift_const (NULL_RTX, ASHIFT, int_mode,
6056 gen_rtx_XOR (int_mode, XEXP (x, 0),
6057 const1_rtx),
6058 GET_MODE_PRECISION (int_mode) - 1),
6059 GET_MODE_PRECISION (int_mode) - 1);
6060
6061 /* If we are adding two things that have no bits in common, convert
6062 the addition into an IOR. This will often be further simplified,
6063 for example in cases like ((a & 1) + (a & 2)), which can
6064 become a & 3. */
6065
6066 if (HWI_COMPUTABLE_MODE_P (mode)
6067 && (nonzero_bits (XEXP (x, 0), mode)
6068 & nonzero_bits (XEXP (x, 1), mode)) == 0)
6069 {
6070 /* Try to simplify the expression further. */
6071 rtx tor = simplify_gen_binary (IOR, mode, XEXP (x, 0), XEXP (x, 1));
6072 temp = combine_simplify_rtx (tor, VOIDmode, in_dest, 0);
6073
6074 /* If we could, great. If not, do not go ahead with the IOR
6075 replacement, since PLUS appears in many special purpose
6076 address arithmetic instructions. */
6077 if (GET_CODE (temp) != CLOBBER
6078 && (GET_CODE (temp) != IOR
6079 || ((XEXP (temp, 0) != XEXP (x, 0)
6080 || XEXP (temp, 1) != XEXP (x, 1))
6081 && (XEXP (temp, 0) != XEXP (x, 1)
6082 || XEXP (temp, 1) != XEXP (x, 0)))))
6083 return temp;
6084 }
6085
6086 /* Canonicalize x + x into x << 1. */
6087 if (GET_MODE_CLASS (mode) == MODE_INT
6088 && rtx_equal_p (XEXP (x, 0), XEXP (x, 1))
6089 && !side_effects_p (XEXP (x, 0)))
6090 return simplify_gen_binary (ASHIFT, mode, XEXP (x, 0), const1_rtx);
6091
6092 break;
6093
6094 case MINUS:
6095 /* (minus <foo> (and <foo> (const_int -pow2))) becomes
6096 (and <foo> (const_int pow2-1)) */
6097 if (is_a <scalar_int_mode> (mode, &int_mode)
6098 && GET_CODE (XEXP (x, 1)) == AND
6099 && CONST_INT_P (XEXP (XEXP (x, 1), 1))
6100 && pow2p_hwi (-UINTVAL (XEXP (XEXP (x, 1), 1)))
6101 && rtx_equal_p (XEXP (XEXP (x, 1), 0), XEXP (x, 0)))
6102 return simplify_and_const_int (NULL_RTX, int_mode, XEXP (x, 0),
6103 -INTVAL (XEXP (XEXP (x, 1), 1)) - 1);
6104 break;
6105
6106 case MULT:
6107 /* If we have (mult (plus A B) C), apply the distributive law and then
6108 the inverse distributive law to see if things simplify. This
6109 occurs mostly in addresses, often when unrolling loops. */
6110
6111 if (GET_CODE (XEXP (x, 0)) == PLUS)
6112 {
6113 rtx result = distribute_and_simplify_rtx (x, 0);
6114 if (result)
6115 return result;
6116 }
6117
6118 /* Try simplify a*(b/c) as (a*b)/c. */
6119 if (FLOAT_MODE_P (mode) && flag_associative_math
6120 && GET_CODE (XEXP (x, 0)) == DIV)
6121 {
6122 rtx tem = simplify_binary_operation (MULT, mode,
6123 XEXP (XEXP (x, 0), 0),
6124 XEXP (x, 1));
6125 if (tem)
6126 return simplify_gen_binary (DIV, mode, tem, XEXP (XEXP (x, 0), 1));
6127 }
6128 break;
6129
6130 case UDIV:
6131 /* If this is a divide by a power of two, treat it as a shift if
6132 its first operand is a shift. */
6133 if (is_a <scalar_int_mode> (mode, &int_mode)
6134 && CONST_INT_P (XEXP (x, 1))
6135 && (i = exact_log2 (UINTVAL (XEXP (x, 1)))) >= 0
6136 && (GET_CODE (XEXP (x, 0)) == ASHIFT
6137 || GET_CODE (XEXP (x, 0)) == LSHIFTRT
6138 || GET_CODE (XEXP (x, 0)) == ASHIFTRT
6139 || GET_CODE (XEXP (x, 0)) == ROTATE
6140 || GET_CODE (XEXP (x, 0)) == ROTATERT))
6141 return simplify_shift_const (NULL_RTX, LSHIFTRT, int_mode,
6142 XEXP (x, 0), i);
6143 break;
6144
6145 case EQ: case NE:
6146 case GT: case GTU: case GE: case GEU:
6147 case LT: case LTU: case LE: case LEU:
6148 case UNEQ: case LTGT:
6149 case UNGT: case UNGE:
6150 case UNLT: case UNLE:
6151 case UNORDERED: case ORDERED:
6152 /* If the first operand is a condition code, we can't do anything
6153 with it. */
6154 if (GET_CODE (XEXP (x, 0)) == COMPARE
6155 || (GET_MODE_CLASS (GET_MODE (XEXP (x, 0))) != MODE_CC
6156 && ! CC0_P (XEXP (x, 0))))
6157 {
6158 rtx op0 = XEXP (x, 0);
6159 rtx op1 = XEXP (x, 1);
6160 enum rtx_code new_code;
6161
6162 if (GET_CODE (op0) == COMPARE)
6163 op1 = XEXP (op0, 1), op0 = XEXP (op0, 0);
6164
6165 /* Simplify our comparison, if possible. */
6166 new_code = simplify_comparison (code, &op0, &op1);
6167
6168 /* If STORE_FLAG_VALUE is 1, we can convert (ne x 0) to simply X
6169 if only the low-order bit is possibly nonzero in X (such as when
6170 X is a ZERO_EXTRACT of one bit). Similarly, we can convert EQ to
6171 (xor X 1) or (minus 1 X); we use the former. Finally, if X is
6172 known to be either 0 or -1, NE becomes a NEG and EQ becomes
6173 (plus X 1).
6174
6175 Remove any ZERO_EXTRACT we made when thinking this was a
6176 comparison. It may now be simpler to use, e.g., an AND. If a
6177 ZERO_EXTRACT is indeed appropriate, it will be placed back by
6178 the call to make_compound_operation in the SET case.
6179
6180 Don't apply these optimizations if the caller would
6181 prefer a comparison rather than a value.
6182 E.g., for the condition in an IF_THEN_ELSE most targets need
6183 an explicit comparison. */
6184
6185 if (in_cond)
6186 ;
6187
6188 else if (STORE_FLAG_VALUE == 1
6189 && new_code == NE
6190 && is_int_mode (mode, &int_mode)
6191 && op1 == const0_rtx
6192 && int_mode == GET_MODE (op0)
6193 && nonzero_bits (op0, int_mode) == 1)
6194 return gen_lowpart (int_mode,
6195 expand_compound_operation (op0));
6196
6197 else if (STORE_FLAG_VALUE == 1
6198 && new_code == NE
6199 && is_int_mode (mode, &int_mode)
6200 && op1 == const0_rtx
6201 && int_mode == GET_MODE (op0)
6202 && (num_sign_bit_copies (op0, int_mode)
6203 == GET_MODE_PRECISION (int_mode)))
6204 {
6205 op0 = expand_compound_operation (op0);
6206 return simplify_gen_unary (NEG, int_mode,
6207 gen_lowpart (int_mode, op0),
6208 int_mode);
6209 }
6210
6211 else if (STORE_FLAG_VALUE == 1
6212 && new_code == EQ
6213 && is_int_mode (mode, &int_mode)
6214 && op1 == const0_rtx
6215 && int_mode == GET_MODE (op0)
6216 && nonzero_bits (op0, int_mode) == 1)
6217 {
6218 op0 = expand_compound_operation (op0);
6219 return simplify_gen_binary (XOR, int_mode,
6220 gen_lowpart (int_mode, op0),
6221 const1_rtx);
6222 }
6223
6224 else if (STORE_FLAG_VALUE == 1
6225 && new_code == EQ
6226 && is_int_mode (mode, &int_mode)
6227 && op1 == const0_rtx
6228 && int_mode == GET_MODE (op0)
6229 && (num_sign_bit_copies (op0, int_mode)
6230 == GET_MODE_PRECISION (int_mode)))
6231 {
6232 op0 = expand_compound_operation (op0);
6233 return plus_constant (int_mode, gen_lowpart (int_mode, op0), 1);
6234 }
6235
6236 /* If STORE_FLAG_VALUE is -1, we have cases similar to
6237 those above. */
6238 if (in_cond)
6239 ;
6240
6241 else if (STORE_FLAG_VALUE == -1
6242 && new_code == NE
6243 && is_int_mode (mode, &int_mode)
6244 && op1 == const0_rtx
6245 && int_mode == GET_MODE (op0)
6246 && (num_sign_bit_copies (op0, int_mode)
6247 == GET_MODE_PRECISION (int_mode)))
6248 return gen_lowpart (int_mode, expand_compound_operation (op0));
6249
6250 else if (STORE_FLAG_VALUE == -1
6251 && new_code == NE
6252 && is_int_mode (mode, &int_mode)
6253 && op1 == const0_rtx
6254 && int_mode == GET_MODE (op0)
6255 && nonzero_bits (op0, int_mode) == 1)
6256 {
6257 op0 = expand_compound_operation (op0);
6258 return simplify_gen_unary (NEG, int_mode,
6259 gen_lowpart (int_mode, op0),
6260 int_mode);
6261 }
6262
6263 else if (STORE_FLAG_VALUE == -1
6264 && new_code == EQ
6265 && is_int_mode (mode, &int_mode)
6266 && op1 == const0_rtx
6267 && int_mode == GET_MODE (op0)
6268 && (num_sign_bit_copies (op0, int_mode)
6269 == GET_MODE_PRECISION (int_mode)))
6270 {
6271 op0 = expand_compound_operation (op0);
6272 return simplify_gen_unary (NOT, int_mode,
6273 gen_lowpart (int_mode, op0),
6274 int_mode);
6275 }
6276
6277 /* If X is 0/1, (eq X 0) is X-1. */
6278 else if (STORE_FLAG_VALUE == -1
6279 && new_code == EQ
6280 && is_int_mode (mode, &int_mode)
6281 && op1 == const0_rtx
6282 && int_mode == GET_MODE (op0)
6283 && nonzero_bits (op0, int_mode) == 1)
6284 {
6285 op0 = expand_compound_operation (op0);
6286 return plus_constant (int_mode, gen_lowpart (int_mode, op0), -1);
6287 }
6288
6289 /* If STORE_FLAG_VALUE says to just test the sign bit and X has just
6290 one bit that might be nonzero, we can convert (ne x 0) to
6291 (ashift x c) where C puts the bit in the sign bit. Remove any
6292 AND with STORE_FLAG_VALUE when we are done, since we are only
6293 going to test the sign bit. */
6294 if (new_code == NE
6295 && is_int_mode (mode, &int_mode)
6296 && HWI_COMPUTABLE_MODE_P (int_mode)
6297 && val_signbit_p (int_mode, STORE_FLAG_VALUE)
6298 && op1 == const0_rtx
6299 && int_mode == GET_MODE (op0)
6300 && (i = exact_log2 (nonzero_bits (op0, int_mode))) >= 0)
6301 {
6302 x = simplify_shift_const (NULL_RTX, ASHIFT, int_mode,
6303 expand_compound_operation (op0),
6304 GET_MODE_PRECISION (int_mode) - 1 - i);
6305 if (GET_CODE (x) == AND && XEXP (x, 1) == const_true_rtx)
6306 return XEXP (x, 0);
6307 else
6308 return x;
6309 }
6310
6311 /* If the code changed, return a whole new comparison.
6312 We also need to avoid using SUBST in cases where
6313 simplify_comparison has widened a comparison with a CONST_INT,
6314 since in that case the wider CONST_INT may fail the sanity
6315 checks in do_SUBST. */
6316 if (new_code != code
6317 || (CONST_INT_P (op1)
6318 && GET_MODE (op0) != GET_MODE (XEXP (x, 0))
6319 && GET_MODE (op0) != GET_MODE (XEXP (x, 1))))
6320 return gen_rtx_fmt_ee (new_code, mode, op0, op1);
6321
6322 /* Otherwise, keep this operation, but maybe change its operands.
6323 This also converts (ne (compare FOO BAR) 0) to (ne FOO BAR). */
6324 SUBST (XEXP (x, 0), op0);
6325 SUBST (XEXP (x, 1), op1);
6326 }
6327 break;
6328
6329 case IF_THEN_ELSE:
6330 return simplify_if_then_else (x);
6331
6332 case ZERO_EXTRACT:
6333 case SIGN_EXTRACT:
6334 case ZERO_EXTEND:
6335 case SIGN_EXTEND:
6336 /* If we are processing SET_DEST, we are done. */
6337 if (in_dest)
6338 return x;
6339
6340 return expand_compound_operation (x);
6341
6342 case SET:
6343 return simplify_set (x);
6344
6345 case AND:
6346 case IOR:
6347 return simplify_logical (x);
6348
6349 case ASHIFT:
6350 case LSHIFTRT:
6351 case ASHIFTRT:
6352 case ROTATE:
6353 case ROTATERT:
6354 /* If this is a shift by a constant amount, simplify it. */
6355 if (CONST_INT_P (XEXP (x, 1)))
6356 return simplify_shift_const (x, code, mode, XEXP (x, 0),
6357 INTVAL (XEXP (x, 1)));
6358
6359 else if (SHIFT_COUNT_TRUNCATED && !REG_P (XEXP (x, 1)))
6360 SUBST (XEXP (x, 1),
6361 force_to_mode (XEXP (x, 1), GET_MODE (XEXP (x, 1)),
6362 (HOST_WIDE_INT_1U
6363 << exact_log2 (GET_MODE_UNIT_BITSIZE
6364 (GET_MODE (x))))
6365 - 1,
6366 0));
6367 break;
6368
6369 default:
6370 break;
6371 }
6372
6373 return x;
6374 }
6375 \f
6376 /* Simplify X, an IF_THEN_ELSE expression. Return the new expression. */
6377
6378 static rtx
6379 simplify_if_then_else (rtx x)
6380 {
6381 machine_mode mode = GET_MODE (x);
6382 rtx cond = XEXP (x, 0);
6383 rtx true_rtx = XEXP (x, 1);
6384 rtx false_rtx = XEXP (x, 2);
6385 enum rtx_code true_code = GET_CODE (cond);
6386 int comparison_p = COMPARISON_P (cond);
6387 rtx temp;
6388 int i;
6389 enum rtx_code false_code;
6390 rtx reversed;
6391 scalar_int_mode int_mode, inner_mode;
6392
6393 /* Simplify storing of the truth value. */
6394 if (comparison_p && true_rtx == const_true_rtx && false_rtx == const0_rtx)
6395 return simplify_gen_relational (true_code, mode, VOIDmode,
6396 XEXP (cond, 0), XEXP (cond, 1));
6397
6398 /* Also when the truth value has to be reversed. */
6399 if (comparison_p
6400 && true_rtx == const0_rtx && false_rtx == const_true_rtx
6401 && (reversed = reversed_comparison (cond, mode)))
6402 return reversed;
6403
6404 /* Sometimes we can simplify the arm of an IF_THEN_ELSE if a register used
6405 in it is being compared against certain values. Get the true and false
6406 comparisons and see if that says anything about the value of each arm. */
6407
6408 if (comparison_p
6409 && ((false_code = reversed_comparison_code (cond, NULL))
6410 != UNKNOWN)
6411 && REG_P (XEXP (cond, 0)))
6412 {
6413 HOST_WIDE_INT nzb;
6414 rtx from = XEXP (cond, 0);
6415 rtx true_val = XEXP (cond, 1);
6416 rtx false_val = true_val;
6417 int swapped = 0;
6418
6419 /* If FALSE_CODE is EQ, swap the codes and arms. */
6420
6421 if (false_code == EQ)
6422 {
6423 swapped = 1, true_code = EQ, false_code = NE;
6424 std::swap (true_rtx, false_rtx);
6425 }
6426
6427 scalar_int_mode from_mode;
6428 if (is_a <scalar_int_mode> (GET_MODE (from), &from_mode))
6429 {
6430 /* If we are comparing against zero and the expression being
6431 tested has only a single bit that might be nonzero, that is
6432 its value when it is not equal to zero. Similarly if it is
6433 known to be -1 or 0. */
6434 if (true_code == EQ
6435 && true_val == const0_rtx
6436 && pow2p_hwi (nzb = nonzero_bits (from, from_mode)))
6437 {
6438 false_code = EQ;
6439 false_val = gen_int_mode (nzb, from_mode);
6440 }
6441 else if (true_code == EQ
6442 && true_val == const0_rtx
6443 && (num_sign_bit_copies (from, from_mode)
6444 == GET_MODE_PRECISION (from_mode)))
6445 {
6446 false_code = EQ;
6447 false_val = constm1_rtx;
6448 }
6449 }
6450
6451 /* Now simplify an arm if we know the value of the register in the
6452 branch and it is used in the arm. Be careful due to the potential
6453 of locally-shared RTL. */
6454
6455 if (reg_mentioned_p (from, true_rtx))
6456 true_rtx = subst (known_cond (copy_rtx (true_rtx), true_code,
6457 from, true_val),
6458 pc_rtx, pc_rtx, 0, 0, 0);
6459 if (reg_mentioned_p (from, false_rtx))
6460 false_rtx = subst (known_cond (copy_rtx (false_rtx), false_code,
6461 from, false_val),
6462 pc_rtx, pc_rtx, 0, 0, 0);
6463
6464 SUBST (XEXP (x, 1), swapped ? false_rtx : true_rtx);
6465 SUBST (XEXP (x, 2), swapped ? true_rtx : false_rtx);
6466
6467 true_rtx = XEXP (x, 1);
6468 false_rtx = XEXP (x, 2);
6469 true_code = GET_CODE (cond);
6470 }
6471
6472 /* If we have (if_then_else FOO (pc) (label_ref BAR)) and FOO can be
6473 reversed, do so to avoid needing two sets of patterns for
6474 subtract-and-branch insns. Similarly if we have a constant in the true
6475 arm, the false arm is the same as the first operand of the comparison, or
6476 the false arm is more complicated than the true arm. */
6477
6478 if (comparison_p
6479 && reversed_comparison_code (cond, NULL) != UNKNOWN
6480 && (true_rtx == pc_rtx
6481 || (CONSTANT_P (true_rtx)
6482 && !CONST_INT_P (false_rtx) && false_rtx != pc_rtx)
6483 || true_rtx == const0_rtx
6484 || (OBJECT_P (true_rtx) && !OBJECT_P (false_rtx))
6485 || (GET_CODE (true_rtx) == SUBREG && OBJECT_P (SUBREG_REG (true_rtx))
6486 && !OBJECT_P (false_rtx))
6487 || reg_mentioned_p (true_rtx, false_rtx)
6488 || rtx_equal_p (false_rtx, XEXP (cond, 0))))
6489 {
6490 true_code = reversed_comparison_code (cond, NULL);
6491 SUBST (XEXP (x, 0), reversed_comparison (cond, GET_MODE (cond)));
6492 SUBST (XEXP (x, 1), false_rtx);
6493 SUBST (XEXP (x, 2), true_rtx);
6494
6495 std::swap (true_rtx, false_rtx);
6496 cond = XEXP (x, 0);
6497
6498 /* It is possible that the conditional has been simplified out. */
6499 true_code = GET_CODE (cond);
6500 comparison_p = COMPARISON_P (cond);
6501 }
6502
6503 /* If the two arms are identical, we don't need the comparison. */
6504
6505 if (rtx_equal_p (true_rtx, false_rtx) && ! side_effects_p (cond))
6506 return true_rtx;
6507
6508 /* Convert a == b ? b : a to "a". */
6509 if (true_code == EQ && ! side_effects_p (cond)
6510 && !HONOR_NANS (mode)
6511 && rtx_equal_p (XEXP (cond, 0), false_rtx)
6512 && rtx_equal_p (XEXP (cond, 1), true_rtx))
6513 return false_rtx;
6514 else if (true_code == NE && ! side_effects_p (cond)
6515 && !HONOR_NANS (mode)
6516 && rtx_equal_p (XEXP (cond, 0), true_rtx)
6517 && rtx_equal_p (XEXP (cond, 1), false_rtx))
6518 return true_rtx;
6519
6520 /* Look for cases where we have (abs x) or (neg (abs X)). */
6521
6522 if (GET_MODE_CLASS (mode) == MODE_INT
6523 && comparison_p
6524 && XEXP (cond, 1) == const0_rtx
6525 && GET_CODE (false_rtx) == NEG
6526 && rtx_equal_p (true_rtx, XEXP (false_rtx, 0))
6527 && rtx_equal_p (true_rtx, XEXP (cond, 0))
6528 && ! side_effects_p (true_rtx))
6529 switch (true_code)
6530 {
6531 case GT:
6532 case GE:
6533 return simplify_gen_unary (ABS, mode, true_rtx, mode);
6534 case LT:
6535 case LE:
6536 return
6537 simplify_gen_unary (NEG, mode,
6538 simplify_gen_unary (ABS, mode, true_rtx, mode),
6539 mode);
6540 default:
6541 break;
6542 }
6543
6544 /* Look for MIN or MAX. */
6545
6546 if ((! FLOAT_MODE_P (mode) || flag_unsafe_math_optimizations)
6547 && comparison_p
6548 && rtx_equal_p (XEXP (cond, 0), true_rtx)
6549 && rtx_equal_p (XEXP (cond, 1), false_rtx)
6550 && ! side_effects_p (cond))
6551 switch (true_code)
6552 {
6553 case GE:
6554 case GT:
6555 return simplify_gen_binary (SMAX, mode, true_rtx, false_rtx);
6556 case LE:
6557 case LT:
6558 return simplify_gen_binary (SMIN, mode, true_rtx, false_rtx);
6559 case GEU:
6560 case GTU:
6561 return simplify_gen_binary (UMAX, mode, true_rtx, false_rtx);
6562 case LEU:
6563 case LTU:
6564 return simplify_gen_binary (UMIN, mode, true_rtx, false_rtx);
6565 default:
6566 break;
6567 }
6568
6569 /* If we have (if_then_else COND (OP Z C1) Z) and OP is an identity when its
6570 second operand is zero, this can be done as (OP Z (mult COND C2)) where
6571 C2 = C1 * STORE_FLAG_VALUE. Similarly if OP has an outer ZERO_EXTEND or
6572 SIGN_EXTEND as long as Z is already extended (so we don't destroy it).
6573 We can do this kind of thing in some cases when STORE_FLAG_VALUE is
6574 neither 1 or -1, but it isn't worth checking for. */
6575
6576 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
6577 && comparison_p
6578 && is_int_mode (mode, &int_mode)
6579 && ! side_effects_p (x))
6580 {
6581 rtx t = make_compound_operation (true_rtx, SET);
6582 rtx f = make_compound_operation (false_rtx, SET);
6583 rtx cond_op0 = XEXP (cond, 0);
6584 rtx cond_op1 = XEXP (cond, 1);
6585 enum rtx_code op = UNKNOWN, extend_op = UNKNOWN;
6586 scalar_int_mode m = int_mode;
6587 rtx z = 0, c1 = NULL_RTX;
6588
6589 if ((GET_CODE (t) == PLUS || GET_CODE (t) == MINUS
6590 || GET_CODE (t) == IOR || GET_CODE (t) == XOR
6591 || GET_CODE (t) == ASHIFT
6592 || GET_CODE (t) == LSHIFTRT || GET_CODE (t) == ASHIFTRT)
6593 && rtx_equal_p (XEXP (t, 0), f))
6594 c1 = XEXP (t, 1), op = GET_CODE (t), z = f;
6595
6596 /* If an identity-zero op is commutative, check whether there
6597 would be a match if we swapped the operands. */
6598 else if ((GET_CODE (t) == PLUS || GET_CODE (t) == IOR
6599 || GET_CODE (t) == XOR)
6600 && rtx_equal_p (XEXP (t, 1), f))
6601 c1 = XEXP (t, 0), op = GET_CODE (t), z = f;
6602 else if (GET_CODE (t) == SIGN_EXTEND
6603 && is_a <scalar_int_mode> (GET_MODE (XEXP (t, 0)), &inner_mode)
6604 && (GET_CODE (XEXP (t, 0)) == PLUS
6605 || GET_CODE (XEXP (t, 0)) == MINUS
6606 || GET_CODE (XEXP (t, 0)) == IOR
6607 || GET_CODE (XEXP (t, 0)) == XOR
6608 || GET_CODE (XEXP (t, 0)) == ASHIFT
6609 || GET_CODE (XEXP (t, 0)) == LSHIFTRT
6610 || GET_CODE (XEXP (t, 0)) == ASHIFTRT)
6611 && GET_CODE (XEXP (XEXP (t, 0), 0)) == SUBREG
6612 && subreg_lowpart_p (XEXP (XEXP (t, 0), 0))
6613 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 0)), f)
6614 && (num_sign_bit_copies (f, GET_MODE (f))
6615 > (unsigned int)
6616 (GET_MODE_PRECISION (int_mode)
6617 - GET_MODE_PRECISION (inner_mode))))
6618 {
6619 c1 = XEXP (XEXP (t, 0), 1); z = f; op = GET_CODE (XEXP (t, 0));
6620 extend_op = SIGN_EXTEND;
6621 m = inner_mode;
6622 }
6623 else if (GET_CODE (t) == SIGN_EXTEND
6624 && is_a <scalar_int_mode> (GET_MODE (XEXP (t, 0)), &inner_mode)
6625 && (GET_CODE (XEXP (t, 0)) == PLUS
6626 || GET_CODE (XEXP (t, 0)) == IOR
6627 || GET_CODE (XEXP (t, 0)) == XOR)
6628 && GET_CODE (XEXP (XEXP (t, 0), 1)) == SUBREG
6629 && subreg_lowpart_p (XEXP (XEXP (t, 0), 1))
6630 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 1)), f)
6631 && (num_sign_bit_copies (f, GET_MODE (f))
6632 > (unsigned int)
6633 (GET_MODE_PRECISION (int_mode)
6634 - GET_MODE_PRECISION (inner_mode))))
6635 {
6636 c1 = XEXP (XEXP (t, 0), 0); z = f; op = GET_CODE (XEXP (t, 0));
6637 extend_op = SIGN_EXTEND;
6638 m = inner_mode;
6639 }
6640 else if (GET_CODE (t) == ZERO_EXTEND
6641 && is_a <scalar_int_mode> (GET_MODE (XEXP (t, 0)), &inner_mode)
6642 && (GET_CODE (XEXP (t, 0)) == PLUS
6643 || GET_CODE (XEXP (t, 0)) == MINUS
6644 || GET_CODE (XEXP (t, 0)) == IOR
6645 || GET_CODE (XEXP (t, 0)) == XOR
6646 || GET_CODE (XEXP (t, 0)) == ASHIFT
6647 || GET_CODE (XEXP (t, 0)) == LSHIFTRT
6648 || GET_CODE (XEXP (t, 0)) == ASHIFTRT)
6649 && GET_CODE (XEXP (XEXP (t, 0), 0)) == SUBREG
6650 && HWI_COMPUTABLE_MODE_P (int_mode)
6651 && subreg_lowpart_p (XEXP (XEXP (t, 0), 0))
6652 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 0)), f)
6653 && ((nonzero_bits (f, GET_MODE (f))
6654 & ~GET_MODE_MASK (inner_mode))
6655 == 0))
6656 {
6657 c1 = XEXP (XEXP (t, 0), 1); z = f; op = GET_CODE (XEXP (t, 0));
6658 extend_op = ZERO_EXTEND;
6659 m = inner_mode;
6660 }
6661 else if (GET_CODE (t) == ZERO_EXTEND
6662 && is_a <scalar_int_mode> (GET_MODE (XEXP (t, 0)), &inner_mode)
6663 && (GET_CODE (XEXP (t, 0)) == PLUS
6664 || GET_CODE (XEXP (t, 0)) == IOR
6665 || GET_CODE (XEXP (t, 0)) == XOR)
6666 && GET_CODE (XEXP (XEXP (t, 0), 1)) == SUBREG
6667 && HWI_COMPUTABLE_MODE_P (int_mode)
6668 && subreg_lowpart_p (XEXP (XEXP (t, 0), 1))
6669 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 1)), f)
6670 && ((nonzero_bits (f, GET_MODE (f))
6671 & ~GET_MODE_MASK (inner_mode))
6672 == 0))
6673 {
6674 c1 = XEXP (XEXP (t, 0), 0); z = f; op = GET_CODE (XEXP (t, 0));
6675 extend_op = ZERO_EXTEND;
6676 m = inner_mode;
6677 }
6678
6679 if (z)
6680 {
6681 machine_mode cm = m;
6682 if ((op == ASHIFT || op == LSHIFTRT || op == ASHIFTRT)
6683 && GET_MODE (c1) != VOIDmode)
6684 cm = GET_MODE (c1);
6685 temp = subst (simplify_gen_relational (true_code, cm, VOIDmode,
6686 cond_op0, cond_op1),
6687 pc_rtx, pc_rtx, 0, 0, 0);
6688 temp = simplify_gen_binary (MULT, cm, temp,
6689 simplify_gen_binary (MULT, cm, c1,
6690 const_true_rtx));
6691 temp = subst (temp, pc_rtx, pc_rtx, 0, 0, 0);
6692 temp = simplify_gen_binary (op, m, gen_lowpart (m, z), temp);
6693
6694 if (extend_op != UNKNOWN)
6695 temp = simplify_gen_unary (extend_op, int_mode, temp, m);
6696
6697 return temp;
6698 }
6699 }
6700
6701 /* If we have (if_then_else (ne A 0) C1 0) and either A is known to be 0 or
6702 1 and C1 is a single bit or A is known to be 0 or -1 and C1 is the
6703 negation of a single bit, we can convert this operation to a shift. We
6704 can actually do this more generally, but it doesn't seem worth it. */
6705
6706 if (true_code == NE
6707 && is_a <scalar_int_mode> (mode, &int_mode)
6708 && XEXP (cond, 1) == const0_rtx
6709 && false_rtx == const0_rtx
6710 && CONST_INT_P (true_rtx)
6711 && ((nonzero_bits (XEXP (cond, 0), int_mode) == 1
6712 && (i = exact_log2 (UINTVAL (true_rtx))) >= 0)
6713 || ((num_sign_bit_copies (XEXP (cond, 0), int_mode)
6714 == GET_MODE_PRECISION (int_mode))
6715 && (i = exact_log2 (-UINTVAL (true_rtx))) >= 0)))
6716 return
6717 simplify_shift_const (NULL_RTX, ASHIFT, int_mode,
6718 gen_lowpart (int_mode, XEXP (cond, 0)), i);
6719
6720 /* (IF_THEN_ELSE (NE A 0) C1 0) is A or a zero-extend of A if the only
6721 non-zero bit in A is C1. */
6722 if (true_code == NE && XEXP (cond, 1) == const0_rtx
6723 && false_rtx == const0_rtx && CONST_INT_P (true_rtx)
6724 && is_a <scalar_int_mode> (mode, &int_mode)
6725 && is_a <scalar_int_mode> (GET_MODE (XEXP (cond, 0)), &inner_mode)
6726 && (UINTVAL (true_rtx) & GET_MODE_MASK (int_mode))
6727 == nonzero_bits (XEXP (cond, 0), inner_mode)
6728 && (i = exact_log2 (UINTVAL (true_rtx) & GET_MODE_MASK (int_mode))) >= 0)
6729 {
6730 rtx val = XEXP (cond, 0);
6731 if (inner_mode == int_mode)
6732 return val;
6733 else if (GET_MODE_PRECISION (inner_mode) < GET_MODE_PRECISION (int_mode))
6734 return simplify_gen_unary (ZERO_EXTEND, int_mode, val, inner_mode);
6735 }
6736
6737 return x;
6738 }
6739 \f
6740 /* Simplify X, a SET expression. Return the new expression. */
6741
6742 static rtx
6743 simplify_set (rtx x)
6744 {
6745 rtx src = SET_SRC (x);
6746 rtx dest = SET_DEST (x);
6747 machine_mode mode
6748 = GET_MODE (src) != VOIDmode ? GET_MODE (src) : GET_MODE (dest);
6749 rtx_insn *other_insn;
6750 rtx *cc_use;
6751 scalar_int_mode int_mode;
6752
6753 /* (set (pc) (return)) gets written as (return). */
6754 if (GET_CODE (dest) == PC && ANY_RETURN_P (src))
6755 return src;
6756
6757 /* Now that we know for sure which bits of SRC we are using, see if we can
6758 simplify the expression for the object knowing that we only need the
6759 low-order bits. */
6760
6761 if (GET_MODE_CLASS (mode) == MODE_INT && HWI_COMPUTABLE_MODE_P (mode))
6762 {
6763 src = force_to_mode (src, mode, HOST_WIDE_INT_M1U, 0);
6764 SUBST (SET_SRC (x), src);
6765 }
6766
6767 /* If we are setting CC0 or if the source is a COMPARE, look for the use of
6768 the comparison result and try to simplify it unless we already have used
6769 undobuf.other_insn. */
6770 if ((GET_MODE_CLASS (mode) == MODE_CC
6771 || GET_CODE (src) == COMPARE
6772 || CC0_P (dest))
6773 && (cc_use = find_single_use (dest, subst_insn, &other_insn)) != 0
6774 && (undobuf.other_insn == 0 || other_insn == undobuf.other_insn)
6775 && COMPARISON_P (*cc_use)
6776 && rtx_equal_p (XEXP (*cc_use, 0), dest))
6777 {
6778 enum rtx_code old_code = GET_CODE (*cc_use);
6779 enum rtx_code new_code;
6780 rtx op0, op1, tmp;
6781 int other_changed = 0;
6782 rtx inner_compare = NULL_RTX;
6783 machine_mode compare_mode = GET_MODE (dest);
6784
6785 if (GET_CODE (src) == COMPARE)
6786 {
6787 op0 = XEXP (src, 0), op1 = XEXP (src, 1);
6788 if (GET_CODE (op0) == COMPARE && op1 == const0_rtx)
6789 {
6790 inner_compare = op0;
6791 op0 = XEXP (inner_compare, 0), op1 = XEXP (inner_compare, 1);
6792 }
6793 }
6794 else
6795 op0 = src, op1 = CONST0_RTX (GET_MODE (src));
6796
6797 tmp = simplify_relational_operation (old_code, compare_mode, VOIDmode,
6798 op0, op1);
6799 if (!tmp)
6800 new_code = old_code;
6801 else if (!CONSTANT_P (tmp))
6802 {
6803 new_code = GET_CODE (tmp);
6804 op0 = XEXP (tmp, 0);
6805 op1 = XEXP (tmp, 1);
6806 }
6807 else
6808 {
6809 rtx pat = PATTERN (other_insn);
6810 undobuf.other_insn = other_insn;
6811 SUBST (*cc_use, tmp);
6812
6813 /* Attempt to simplify CC user. */
6814 if (GET_CODE (pat) == SET)
6815 {
6816 rtx new_rtx = simplify_rtx (SET_SRC (pat));
6817 if (new_rtx != NULL_RTX)
6818 SUBST (SET_SRC (pat), new_rtx);
6819 }
6820
6821 /* Convert X into a no-op move. */
6822 SUBST (SET_DEST (x), pc_rtx);
6823 SUBST (SET_SRC (x), pc_rtx);
6824 return x;
6825 }
6826
6827 /* Simplify our comparison, if possible. */
6828 new_code = simplify_comparison (new_code, &op0, &op1);
6829
6830 #ifdef SELECT_CC_MODE
6831 /* If this machine has CC modes other than CCmode, check to see if we
6832 need to use a different CC mode here. */
6833 if (GET_MODE_CLASS (GET_MODE (op0)) == MODE_CC)
6834 compare_mode = GET_MODE (op0);
6835 else if (inner_compare
6836 && GET_MODE_CLASS (GET_MODE (inner_compare)) == MODE_CC
6837 && new_code == old_code
6838 && op0 == XEXP (inner_compare, 0)
6839 && op1 == XEXP (inner_compare, 1))
6840 compare_mode = GET_MODE (inner_compare);
6841 else
6842 compare_mode = SELECT_CC_MODE (new_code, op0, op1);
6843
6844 /* If the mode changed, we have to change SET_DEST, the mode in the
6845 compare, and the mode in the place SET_DEST is used. If SET_DEST is
6846 a hard register, just build new versions with the proper mode. If it
6847 is a pseudo, we lose unless it is only time we set the pseudo, in
6848 which case we can safely change its mode. */
6849 if (!HAVE_cc0 && compare_mode != GET_MODE (dest))
6850 {
6851 if (can_change_dest_mode (dest, 0, compare_mode))
6852 {
6853 unsigned int regno = REGNO (dest);
6854 rtx new_dest;
6855
6856 if (regno < FIRST_PSEUDO_REGISTER)
6857 new_dest = gen_rtx_REG (compare_mode, regno);
6858 else
6859 {
6860 SUBST_MODE (regno_reg_rtx[regno], compare_mode);
6861 new_dest = regno_reg_rtx[regno];
6862 }
6863
6864 SUBST (SET_DEST (x), new_dest);
6865 SUBST (XEXP (*cc_use, 0), new_dest);
6866 other_changed = 1;
6867
6868 dest = new_dest;
6869 }
6870 }
6871 #endif /* SELECT_CC_MODE */
6872
6873 /* If the code changed, we have to build a new comparison in
6874 undobuf.other_insn. */
6875 if (new_code != old_code)
6876 {
6877 int other_changed_previously = other_changed;
6878 unsigned HOST_WIDE_INT mask;
6879 rtx old_cc_use = *cc_use;
6880
6881 SUBST (*cc_use, gen_rtx_fmt_ee (new_code, GET_MODE (*cc_use),
6882 dest, const0_rtx));
6883 other_changed = 1;
6884
6885 /* If the only change we made was to change an EQ into an NE or
6886 vice versa, OP0 has only one bit that might be nonzero, and OP1
6887 is zero, check if changing the user of the condition code will
6888 produce a valid insn. If it won't, we can keep the original code
6889 in that insn by surrounding our operation with an XOR. */
6890
6891 if (((old_code == NE && new_code == EQ)
6892 || (old_code == EQ && new_code == NE))
6893 && ! other_changed_previously && op1 == const0_rtx
6894 && HWI_COMPUTABLE_MODE_P (GET_MODE (op0))
6895 && pow2p_hwi (mask = nonzero_bits (op0, GET_MODE (op0))))
6896 {
6897 rtx pat = PATTERN (other_insn), note = 0;
6898
6899 if ((recog_for_combine (&pat, other_insn, &note) < 0
6900 && ! check_asm_operands (pat)))
6901 {
6902 *cc_use = old_cc_use;
6903 other_changed = 0;
6904
6905 op0 = simplify_gen_binary (XOR, GET_MODE (op0), op0,
6906 gen_int_mode (mask,
6907 GET_MODE (op0)));
6908 }
6909 }
6910 }
6911
6912 if (other_changed)
6913 undobuf.other_insn = other_insn;
6914
6915 /* Don't generate a compare of a CC with 0, just use that CC. */
6916 if (GET_MODE (op0) == compare_mode && op1 == const0_rtx)
6917 {
6918 SUBST (SET_SRC (x), op0);
6919 src = SET_SRC (x);
6920 }
6921 /* Otherwise, if we didn't previously have the same COMPARE we
6922 want, create it from scratch. */
6923 else if (GET_CODE (src) != COMPARE || GET_MODE (src) != compare_mode
6924 || XEXP (src, 0) != op0 || XEXP (src, 1) != op1)
6925 {
6926 SUBST (SET_SRC (x), gen_rtx_COMPARE (compare_mode, op0, op1));
6927 src = SET_SRC (x);
6928 }
6929 }
6930 else
6931 {
6932 /* Get SET_SRC in a form where we have placed back any
6933 compound expressions. Then do the checks below. */
6934 src = make_compound_operation (src, SET);
6935 SUBST (SET_SRC (x), src);
6936 }
6937
6938 /* If we have (set x (subreg:m1 (op:m2 ...) 0)) with OP being some operation,
6939 and X being a REG or (subreg (reg)), we may be able to convert this to
6940 (set (subreg:m2 x) (op)).
6941
6942 We can always do this if M1 is narrower than M2 because that means that
6943 we only care about the low bits of the result.
6944
6945 However, on machines without WORD_REGISTER_OPERATIONS defined, we cannot
6946 perform a narrower operation than requested since the high-order bits will
6947 be undefined. On machine where it is defined, this transformation is safe
6948 as long as M1 and M2 have the same number of words. */
6949
6950 if (GET_CODE (src) == SUBREG && subreg_lowpart_p (src)
6951 && !OBJECT_P (SUBREG_REG (src))
6952 && (known_equal_after_align_up
6953 (GET_MODE_SIZE (GET_MODE (src)),
6954 GET_MODE_SIZE (GET_MODE (SUBREG_REG (src))),
6955 UNITS_PER_WORD))
6956 && (WORD_REGISTER_OPERATIONS || !paradoxical_subreg_p (src))
6957 && ! (REG_P (dest) && REGNO (dest) < FIRST_PSEUDO_REGISTER
6958 && !REG_CAN_CHANGE_MODE_P (REGNO (dest),
6959 GET_MODE (SUBREG_REG (src)),
6960 GET_MODE (src)))
6961 && (REG_P (dest)
6962 || (GET_CODE (dest) == SUBREG
6963 && REG_P (SUBREG_REG (dest)))))
6964 {
6965 SUBST (SET_DEST (x),
6966 gen_lowpart (GET_MODE (SUBREG_REG (src)),
6967 dest));
6968 SUBST (SET_SRC (x), SUBREG_REG (src));
6969
6970 src = SET_SRC (x), dest = SET_DEST (x);
6971 }
6972
6973 /* If we have (set (cc0) (subreg ...)), we try to remove the subreg
6974 in SRC. */
6975 if (dest == cc0_rtx
6976 && partial_subreg_p (src)
6977 && subreg_lowpart_p (src))
6978 {
6979 rtx inner = SUBREG_REG (src);
6980 machine_mode inner_mode = GET_MODE (inner);
6981
6982 /* Here we make sure that we don't have a sign bit on. */
6983 if (val_signbit_known_clear_p (GET_MODE (src),
6984 nonzero_bits (inner, inner_mode)))
6985 {
6986 SUBST (SET_SRC (x), inner);
6987 src = SET_SRC (x);
6988 }
6989 }
6990
6991 /* If we have (set FOO (subreg:M (mem:N BAR) 0)) with M wider than N, this
6992 would require a paradoxical subreg. Replace the subreg with a
6993 zero_extend to avoid the reload that would otherwise be required.
6994 Don't do this unless we have a scalar integer mode, otherwise the
6995 transformation is incorrect. */
6996
6997 enum rtx_code extend_op;
6998 if (paradoxical_subreg_p (src)
6999 && MEM_P (SUBREG_REG (src))
7000 && SCALAR_INT_MODE_P (GET_MODE (src))
7001 && (extend_op = load_extend_op (GET_MODE (SUBREG_REG (src)))) != UNKNOWN)
7002 {
7003 SUBST (SET_SRC (x),
7004 gen_rtx_fmt_e (extend_op, GET_MODE (src), SUBREG_REG (src)));
7005
7006 src = SET_SRC (x);
7007 }
7008
7009 /* If we don't have a conditional move, SET_SRC is an IF_THEN_ELSE, and we
7010 are comparing an item known to be 0 or -1 against 0, use a logical
7011 operation instead. Check for one of the arms being an IOR of the other
7012 arm with some value. We compute three terms to be IOR'ed together. In
7013 practice, at most two will be nonzero. Then we do the IOR's. */
7014
7015 if (GET_CODE (dest) != PC
7016 && GET_CODE (src) == IF_THEN_ELSE
7017 && is_int_mode (GET_MODE (src), &int_mode)
7018 && (GET_CODE (XEXP (src, 0)) == EQ || GET_CODE (XEXP (src, 0)) == NE)
7019 && XEXP (XEXP (src, 0), 1) == const0_rtx
7020 && int_mode == GET_MODE (XEXP (XEXP (src, 0), 0))
7021 && (!HAVE_conditional_move
7022 || ! can_conditionally_move_p (int_mode))
7023 && (num_sign_bit_copies (XEXP (XEXP (src, 0), 0), int_mode)
7024 == GET_MODE_PRECISION (int_mode))
7025 && ! side_effects_p (src))
7026 {
7027 rtx true_rtx = (GET_CODE (XEXP (src, 0)) == NE
7028 ? XEXP (src, 1) : XEXP (src, 2));
7029 rtx false_rtx = (GET_CODE (XEXP (src, 0)) == NE
7030 ? XEXP (src, 2) : XEXP (src, 1));
7031 rtx term1 = const0_rtx, term2, term3;
7032
7033 if (GET_CODE (true_rtx) == IOR
7034 && rtx_equal_p (XEXP (true_rtx, 0), false_rtx))
7035 term1 = false_rtx, true_rtx = XEXP (true_rtx, 1), false_rtx = const0_rtx;
7036 else if (GET_CODE (true_rtx) == IOR
7037 && rtx_equal_p (XEXP (true_rtx, 1), false_rtx))
7038 term1 = false_rtx, true_rtx = XEXP (true_rtx, 0), false_rtx = const0_rtx;
7039 else if (GET_CODE (false_rtx) == IOR
7040 && rtx_equal_p (XEXP (false_rtx, 0), true_rtx))
7041 term1 = true_rtx, false_rtx = XEXP (false_rtx, 1), true_rtx = const0_rtx;
7042 else if (GET_CODE (false_rtx) == IOR
7043 && rtx_equal_p (XEXP (false_rtx, 1), true_rtx))
7044 term1 = true_rtx, false_rtx = XEXP (false_rtx, 0), true_rtx = const0_rtx;
7045
7046 term2 = simplify_gen_binary (AND, int_mode,
7047 XEXP (XEXP (src, 0), 0), true_rtx);
7048 term3 = simplify_gen_binary (AND, int_mode,
7049 simplify_gen_unary (NOT, int_mode,
7050 XEXP (XEXP (src, 0), 0),
7051 int_mode),
7052 false_rtx);
7053
7054 SUBST (SET_SRC (x),
7055 simplify_gen_binary (IOR, int_mode,
7056 simplify_gen_binary (IOR, int_mode,
7057 term1, term2),
7058 term3));
7059
7060 src = SET_SRC (x);
7061 }
7062
7063 /* If either SRC or DEST is a CLOBBER of (const_int 0), make this
7064 whole thing fail. */
7065 if (GET_CODE (src) == CLOBBER && XEXP (src, 0) == const0_rtx)
7066 return src;
7067 else if (GET_CODE (dest) == CLOBBER && XEXP (dest, 0) == const0_rtx)
7068 return dest;
7069 else
7070 /* Convert this into a field assignment operation, if possible. */
7071 return make_field_assignment (x);
7072 }
7073 \f
7074 /* Simplify, X, and AND, IOR, or XOR operation, and return the simplified
7075 result. */
7076
7077 static rtx
7078 simplify_logical (rtx x)
7079 {
7080 rtx op0 = XEXP (x, 0);
7081 rtx op1 = XEXP (x, 1);
7082 scalar_int_mode mode;
7083
7084 switch (GET_CODE (x))
7085 {
7086 case AND:
7087 /* We can call simplify_and_const_int only if we don't lose
7088 any (sign) bits when converting INTVAL (op1) to
7089 "unsigned HOST_WIDE_INT". */
7090 if (is_a <scalar_int_mode> (GET_MODE (x), &mode)
7091 && CONST_INT_P (op1)
7092 && (HWI_COMPUTABLE_MODE_P (mode)
7093 || INTVAL (op1) > 0))
7094 {
7095 x = simplify_and_const_int (x, mode, op0, INTVAL (op1));
7096 if (GET_CODE (x) != AND)
7097 return x;
7098
7099 op0 = XEXP (x, 0);
7100 op1 = XEXP (x, 1);
7101 }
7102
7103 /* If we have any of (and (ior A B) C) or (and (xor A B) C),
7104 apply the distributive law and then the inverse distributive
7105 law to see if things simplify. */
7106 if (GET_CODE (op0) == IOR || GET_CODE (op0) == XOR)
7107 {
7108 rtx result = distribute_and_simplify_rtx (x, 0);
7109 if (result)
7110 return result;
7111 }
7112 if (GET_CODE (op1) == IOR || GET_CODE (op1) == XOR)
7113 {
7114 rtx result = distribute_and_simplify_rtx (x, 1);
7115 if (result)
7116 return result;
7117 }
7118 break;
7119
7120 case IOR:
7121 /* If we have (ior (and A B) C), apply the distributive law and then
7122 the inverse distributive law to see if things simplify. */
7123
7124 if (GET_CODE (op0) == AND)
7125 {
7126 rtx result = distribute_and_simplify_rtx (x, 0);
7127 if (result)
7128 return result;
7129 }
7130
7131 if (GET_CODE (op1) == AND)
7132 {
7133 rtx result = distribute_and_simplify_rtx (x, 1);
7134 if (result)
7135 return result;
7136 }
7137 break;
7138
7139 default:
7140 gcc_unreachable ();
7141 }
7142
7143 return x;
7144 }
7145 \f
7146 /* We consider ZERO_EXTRACT, SIGN_EXTRACT, and SIGN_EXTEND as "compound
7147 operations" because they can be replaced with two more basic operations.
7148 ZERO_EXTEND is also considered "compound" because it can be replaced with
7149 an AND operation, which is simpler, though only one operation.
7150
7151 The function expand_compound_operation is called with an rtx expression
7152 and will convert it to the appropriate shifts and AND operations,
7153 simplifying at each stage.
7154
7155 The function make_compound_operation is called to convert an expression
7156 consisting of shifts and ANDs into the equivalent compound expression.
7157 It is the inverse of this function, loosely speaking. */
7158
7159 static rtx
7160 expand_compound_operation (rtx x)
7161 {
7162 unsigned HOST_WIDE_INT pos = 0, len;
7163 int unsignedp = 0;
7164 unsigned int modewidth;
7165 rtx tem;
7166 scalar_int_mode inner_mode;
7167
7168 switch (GET_CODE (x))
7169 {
7170 case ZERO_EXTEND:
7171 unsignedp = 1;
7172 /* FALLTHRU */
7173 case SIGN_EXTEND:
7174 /* We can't necessarily use a const_int for a multiword mode;
7175 it depends on implicitly extending the value.
7176 Since we don't know the right way to extend it,
7177 we can't tell whether the implicit way is right.
7178
7179 Even for a mode that is no wider than a const_int,
7180 we can't win, because we need to sign extend one of its bits through
7181 the rest of it, and we don't know which bit. */
7182 if (CONST_INT_P (XEXP (x, 0)))
7183 return x;
7184
7185 /* Reject modes that aren't scalar integers because turning vector
7186 or complex modes into shifts causes problems. */
7187 if (!is_a <scalar_int_mode> (GET_MODE (XEXP (x, 0)), &inner_mode))
7188 return x;
7189
7190 /* Return if (subreg:MODE FROM 0) is not a safe replacement for
7191 (zero_extend:MODE FROM) or (sign_extend:MODE FROM). It is for any MEM
7192 because (SUBREG (MEM...)) is guaranteed to cause the MEM to be
7193 reloaded. If not for that, MEM's would very rarely be safe.
7194
7195 Reject modes bigger than a word, because we might not be able
7196 to reference a two-register group starting with an arbitrary register
7197 (and currently gen_lowpart might crash for a SUBREG). */
7198
7199 if (GET_MODE_SIZE (inner_mode) > UNITS_PER_WORD)
7200 return x;
7201
7202 len = GET_MODE_PRECISION (inner_mode);
7203 /* If the inner object has VOIDmode (the only way this can happen
7204 is if it is an ASM_OPERANDS), we can't do anything since we don't
7205 know how much masking to do. */
7206 if (len == 0)
7207 return x;
7208
7209 break;
7210
7211 case ZERO_EXTRACT:
7212 unsignedp = 1;
7213
7214 /* fall through */
7215
7216 case SIGN_EXTRACT:
7217 /* If the operand is a CLOBBER, just return it. */
7218 if (GET_CODE (XEXP (x, 0)) == CLOBBER)
7219 return XEXP (x, 0);
7220
7221 if (!CONST_INT_P (XEXP (x, 1))
7222 || !CONST_INT_P (XEXP (x, 2)))
7223 return x;
7224
7225 /* Reject modes that aren't scalar integers because turning vector
7226 or complex modes into shifts causes problems. */
7227 if (!is_a <scalar_int_mode> (GET_MODE (XEXP (x, 0)), &inner_mode))
7228 return x;
7229
7230 len = INTVAL (XEXP (x, 1));
7231 pos = INTVAL (XEXP (x, 2));
7232
7233 /* This should stay within the object being extracted, fail otherwise. */
7234 if (len + pos > GET_MODE_PRECISION (inner_mode))
7235 return x;
7236
7237 if (BITS_BIG_ENDIAN)
7238 pos = GET_MODE_PRECISION (inner_mode) - len - pos;
7239
7240 break;
7241
7242 default:
7243 return x;
7244 }
7245
7246 /* We've rejected non-scalar operations by now. */
7247 scalar_int_mode mode = as_a <scalar_int_mode> (GET_MODE (x));
7248
7249 /* Convert sign extension to zero extension, if we know that the high
7250 bit is not set, as this is easier to optimize. It will be converted
7251 back to cheaper alternative in make_extraction. */
7252 if (GET_CODE (x) == SIGN_EXTEND
7253 && HWI_COMPUTABLE_MODE_P (mode)
7254 && ((nonzero_bits (XEXP (x, 0), inner_mode)
7255 & ~(((unsigned HOST_WIDE_INT) GET_MODE_MASK (inner_mode)) >> 1))
7256 == 0))
7257 {
7258 rtx temp = gen_rtx_ZERO_EXTEND (mode, XEXP (x, 0));
7259 rtx temp2 = expand_compound_operation (temp);
7260
7261 /* Make sure this is a profitable operation. */
7262 if (set_src_cost (x, mode, optimize_this_for_speed_p)
7263 > set_src_cost (temp2, mode, optimize_this_for_speed_p))
7264 return temp2;
7265 else if (set_src_cost (x, mode, optimize_this_for_speed_p)
7266 > set_src_cost (temp, mode, optimize_this_for_speed_p))
7267 return temp;
7268 else
7269 return x;
7270 }
7271
7272 /* We can optimize some special cases of ZERO_EXTEND. */
7273 if (GET_CODE (x) == ZERO_EXTEND)
7274 {
7275 /* (zero_extend:DI (truncate:SI foo:DI)) is just foo:DI if we
7276 know that the last value didn't have any inappropriate bits
7277 set. */
7278 if (GET_CODE (XEXP (x, 0)) == TRUNCATE
7279 && GET_MODE (XEXP (XEXP (x, 0), 0)) == mode
7280 && HWI_COMPUTABLE_MODE_P (mode)
7281 && (nonzero_bits (XEXP (XEXP (x, 0), 0), mode)
7282 & ~GET_MODE_MASK (inner_mode)) == 0)
7283 return XEXP (XEXP (x, 0), 0);
7284
7285 /* Likewise for (zero_extend:DI (subreg:SI foo:DI 0)). */
7286 if (GET_CODE (XEXP (x, 0)) == SUBREG
7287 && GET_MODE (SUBREG_REG (XEXP (x, 0))) == mode
7288 && subreg_lowpart_p (XEXP (x, 0))
7289 && HWI_COMPUTABLE_MODE_P (mode)
7290 && (nonzero_bits (SUBREG_REG (XEXP (x, 0)), mode)
7291 & ~GET_MODE_MASK (inner_mode)) == 0)
7292 return SUBREG_REG (XEXP (x, 0));
7293
7294 /* (zero_extend:DI (truncate:SI foo:DI)) is just foo:DI when foo
7295 is a comparison and STORE_FLAG_VALUE permits. This is like
7296 the first case, but it works even when MODE is larger
7297 than HOST_WIDE_INT. */
7298 if (GET_CODE (XEXP (x, 0)) == TRUNCATE
7299 && GET_MODE (XEXP (XEXP (x, 0), 0)) == mode
7300 && COMPARISON_P (XEXP (XEXP (x, 0), 0))
7301 && GET_MODE_PRECISION (inner_mode) <= HOST_BITS_PER_WIDE_INT
7302 && (STORE_FLAG_VALUE & ~GET_MODE_MASK (inner_mode)) == 0)
7303 return XEXP (XEXP (x, 0), 0);
7304
7305 /* Likewise for (zero_extend:DI (subreg:SI foo:DI 0)). */
7306 if (GET_CODE (XEXP (x, 0)) == SUBREG
7307 && GET_MODE (SUBREG_REG (XEXP (x, 0))) == mode
7308 && subreg_lowpart_p (XEXP (x, 0))
7309 && COMPARISON_P (SUBREG_REG (XEXP (x, 0)))
7310 && GET_MODE_PRECISION (inner_mode) <= HOST_BITS_PER_WIDE_INT
7311 && (STORE_FLAG_VALUE & ~GET_MODE_MASK (inner_mode)) == 0)
7312 return SUBREG_REG (XEXP (x, 0));
7313
7314 }
7315
7316 /* If we reach here, we want to return a pair of shifts. The inner
7317 shift is a left shift of BITSIZE - POS - LEN bits. The outer
7318 shift is a right shift of BITSIZE - LEN bits. It is arithmetic or
7319 logical depending on the value of UNSIGNEDP.
7320
7321 If this was a ZERO_EXTEND or ZERO_EXTRACT, this pair of shifts will be
7322 converted into an AND of a shift.
7323
7324 We must check for the case where the left shift would have a negative
7325 count. This can happen in a case like (x >> 31) & 255 on machines
7326 that can't shift by a constant. On those machines, we would first
7327 combine the shift with the AND to produce a variable-position
7328 extraction. Then the constant of 31 would be substituted in
7329 to produce such a position. */
7330
7331 modewidth = GET_MODE_PRECISION (mode);
7332 if (modewidth >= pos + len)
7333 {
7334 tem = gen_lowpart (mode, XEXP (x, 0));
7335 if (!tem || GET_CODE (tem) == CLOBBER)
7336 return x;
7337 tem = simplify_shift_const (NULL_RTX, ASHIFT, mode,
7338 tem, modewidth - pos - len);
7339 tem = simplify_shift_const (NULL_RTX, unsignedp ? LSHIFTRT : ASHIFTRT,
7340 mode, tem, modewidth - len);
7341 }
7342 else if (unsignedp && len < HOST_BITS_PER_WIDE_INT)
7343 tem = simplify_and_const_int (NULL_RTX, mode,
7344 simplify_shift_const (NULL_RTX, LSHIFTRT,
7345 mode, XEXP (x, 0),
7346 pos),
7347 (HOST_WIDE_INT_1U << len) - 1);
7348 else
7349 /* Any other cases we can't handle. */
7350 return x;
7351
7352 /* If we couldn't do this for some reason, return the original
7353 expression. */
7354 if (GET_CODE (tem) == CLOBBER)
7355 return x;
7356
7357 return tem;
7358 }
7359 \f
7360 /* X is a SET which contains an assignment of one object into
7361 a part of another (such as a bit-field assignment, STRICT_LOW_PART,
7362 or certain SUBREGS). If possible, convert it into a series of
7363 logical operations.
7364
7365 We half-heartedly support variable positions, but do not at all
7366 support variable lengths. */
7367
7368 static const_rtx
7369 expand_field_assignment (const_rtx x)
7370 {
7371 rtx inner;
7372 rtx pos; /* Always counts from low bit. */
7373 int len, inner_len;
7374 rtx mask, cleared, masked;
7375 scalar_int_mode compute_mode;
7376
7377 /* Loop until we find something we can't simplify. */
7378 while (1)
7379 {
7380 if (GET_CODE (SET_DEST (x)) == STRICT_LOW_PART
7381 && GET_CODE (XEXP (SET_DEST (x), 0)) == SUBREG)
7382 {
7383 rtx x0 = XEXP (SET_DEST (x), 0);
7384 if (!GET_MODE_PRECISION (GET_MODE (x0)).is_constant (&len))
7385 break;
7386 inner = SUBREG_REG (XEXP (SET_DEST (x), 0));
7387 pos = gen_int_mode (subreg_lsb (XEXP (SET_DEST (x), 0)),
7388 MAX_MODE_INT);
7389 }
7390 else if (GET_CODE (SET_DEST (x)) == ZERO_EXTRACT
7391 && CONST_INT_P (XEXP (SET_DEST (x), 1)))
7392 {
7393 inner = XEXP (SET_DEST (x), 0);
7394 if (!GET_MODE_PRECISION (GET_MODE (inner)).is_constant (&inner_len))
7395 break;
7396
7397 len = INTVAL (XEXP (SET_DEST (x), 1));
7398 pos = XEXP (SET_DEST (x), 2);
7399
7400 /* A constant position should stay within the width of INNER. */
7401 if (CONST_INT_P (pos) && INTVAL (pos) + len > inner_len)
7402 break;
7403
7404 if (BITS_BIG_ENDIAN)
7405 {
7406 if (CONST_INT_P (pos))
7407 pos = GEN_INT (inner_len - len - INTVAL (pos));
7408 else if (GET_CODE (pos) == MINUS
7409 && CONST_INT_P (XEXP (pos, 1))
7410 && INTVAL (XEXP (pos, 1)) == inner_len - len)
7411 /* If position is ADJUST - X, new position is X. */
7412 pos = XEXP (pos, 0);
7413 else
7414 pos = simplify_gen_binary (MINUS, GET_MODE (pos),
7415 gen_int_mode (inner_len - len,
7416 GET_MODE (pos)),
7417 pos);
7418 }
7419 }
7420
7421 /* If the destination is a subreg that overwrites the whole of the inner
7422 register, we can move the subreg to the source. */
7423 else if (GET_CODE (SET_DEST (x)) == SUBREG
7424 /* We need SUBREGs to compute nonzero_bits properly. */
7425 && nonzero_sign_valid
7426 && !read_modify_subreg_p (SET_DEST (x)))
7427 {
7428 x = gen_rtx_SET (SUBREG_REG (SET_DEST (x)),
7429 gen_lowpart
7430 (GET_MODE (SUBREG_REG (SET_DEST (x))),
7431 SET_SRC (x)));
7432 continue;
7433 }
7434 else
7435 break;
7436
7437 while (GET_CODE (inner) == SUBREG && subreg_lowpart_p (inner))
7438 inner = SUBREG_REG (inner);
7439
7440 /* Don't attempt bitwise arithmetic on non scalar integer modes. */
7441 if (!is_a <scalar_int_mode> (GET_MODE (inner), &compute_mode))
7442 {
7443 /* Don't do anything for vector or complex integral types. */
7444 if (! FLOAT_MODE_P (GET_MODE (inner)))
7445 break;
7446
7447 /* Try to find an integral mode to pun with. */
7448 if (!int_mode_for_size (GET_MODE_BITSIZE (GET_MODE (inner)), 0)
7449 .exists (&compute_mode))
7450 break;
7451
7452 inner = gen_lowpart (compute_mode, inner);
7453 }
7454
7455 /* Compute a mask of LEN bits, if we can do this on the host machine. */
7456 if (len >= HOST_BITS_PER_WIDE_INT)
7457 break;
7458
7459 /* Don't try to compute in too wide unsupported modes. */
7460 if (!targetm.scalar_mode_supported_p (compute_mode))
7461 break;
7462
7463 /* Now compute the equivalent expression. Make a copy of INNER
7464 for the SET_DEST in case it is a MEM into which we will substitute;
7465 we don't want shared RTL in that case. */
7466 mask = gen_int_mode ((HOST_WIDE_INT_1U << len) - 1,
7467 compute_mode);
7468 cleared = simplify_gen_binary (AND, compute_mode,
7469 simplify_gen_unary (NOT, compute_mode,
7470 simplify_gen_binary (ASHIFT,
7471 compute_mode,
7472 mask, pos),
7473 compute_mode),
7474 inner);
7475 masked = simplify_gen_binary (ASHIFT, compute_mode,
7476 simplify_gen_binary (
7477 AND, compute_mode,
7478 gen_lowpart (compute_mode, SET_SRC (x)),
7479 mask),
7480 pos);
7481
7482 x = gen_rtx_SET (copy_rtx (inner),
7483 simplify_gen_binary (IOR, compute_mode,
7484 cleared, masked));
7485 }
7486
7487 return x;
7488 }
7489 \f
7490 /* Return an RTX for a reference to LEN bits of INNER. If POS_RTX is nonzero,
7491 it is an RTX that represents the (variable) starting position; otherwise,
7492 POS is the (constant) starting bit position. Both are counted from the LSB.
7493
7494 UNSIGNEDP is nonzero for an unsigned reference and zero for a signed one.
7495
7496 IN_DEST is nonzero if this is a reference in the destination of a SET.
7497 This is used when a ZERO_ or SIGN_EXTRACT isn't needed. If nonzero,
7498 a STRICT_LOW_PART will be used, if zero, ZERO_EXTEND or SIGN_EXTEND will
7499 be used.
7500
7501 IN_COMPARE is nonzero if we are in a COMPARE. This means that a
7502 ZERO_EXTRACT should be built even for bits starting at bit 0.
7503
7504 MODE is the desired mode of the result (if IN_DEST == 0).
7505
7506 The result is an RTX for the extraction or NULL_RTX if the target
7507 can't handle it. */
7508
7509 static rtx
7510 make_extraction (machine_mode mode, rtx inner, HOST_WIDE_INT pos,
7511 rtx pos_rtx, unsigned HOST_WIDE_INT len, int unsignedp,
7512 int in_dest, int in_compare)
7513 {
7514 /* This mode describes the size of the storage area
7515 to fetch the overall value from. Within that, we
7516 ignore the POS lowest bits, etc. */
7517 machine_mode is_mode = GET_MODE (inner);
7518 machine_mode inner_mode;
7519 scalar_int_mode wanted_inner_mode;
7520 scalar_int_mode wanted_inner_reg_mode = word_mode;
7521 scalar_int_mode pos_mode = word_mode;
7522 machine_mode extraction_mode = word_mode;
7523 rtx new_rtx = 0;
7524 rtx orig_pos_rtx = pos_rtx;
7525 HOST_WIDE_INT orig_pos;
7526
7527 if (pos_rtx && CONST_INT_P (pos_rtx))
7528 pos = INTVAL (pos_rtx), pos_rtx = 0;
7529
7530 if (GET_CODE (inner) == SUBREG
7531 && subreg_lowpart_p (inner)
7532 && (paradoxical_subreg_p (inner)
7533 /* If trying or potentionally trying to extract
7534 bits outside of is_mode, don't look through
7535 non-paradoxical SUBREGs. See PR82192. */
7536 || (pos_rtx == NULL_RTX
7537 && known_le (pos + len, GET_MODE_PRECISION (is_mode)))))
7538 {
7539 /* If going from (subreg:SI (mem:QI ...)) to (mem:QI ...),
7540 consider just the QI as the memory to extract from.
7541 The subreg adds or removes high bits; its mode is
7542 irrelevant to the meaning of this extraction,
7543 since POS and LEN count from the lsb. */
7544 if (MEM_P (SUBREG_REG (inner)))
7545 is_mode = GET_MODE (SUBREG_REG (inner));
7546 inner = SUBREG_REG (inner);
7547 }
7548 else if (GET_CODE (inner) == ASHIFT
7549 && CONST_INT_P (XEXP (inner, 1))
7550 && pos_rtx == 0 && pos == 0
7551 && len > UINTVAL (XEXP (inner, 1)))
7552 {
7553 /* We're extracting the least significant bits of an rtx
7554 (ashift X (const_int C)), where LEN > C. Extract the
7555 least significant (LEN - C) bits of X, giving an rtx
7556 whose mode is MODE, then shift it left C times. */
7557 new_rtx = make_extraction (mode, XEXP (inner, 0),
7558 0, 0, len - INTVAL (XEXP (inner, 1)),
7559 unsignedp, in_dest, in_compare);
7560 if (new_rtx != 0)
7561 return gen_rtx_ASHIFT (mode, new_rtx, XEXP (inner, 1));
7562 }
7563 else if (GET_CODE (inner) == TRUNCATE
7564 /* If trying or potentionally trying to extract
7565 bits outside of is_mode, don't look through
7566 TRUNCATE. See PR82192. */
7567 && pos_rtx == NULL_RTX
7568 && known_le (pos + len, GET_MODE_PRECISION (is_mode)))
7569 inner = XEXP (inner, 0);
7570
7571 inner_mode = GET_MODE (inner);
7572
7573 /* See if this can be done without an extraction. We never can if the
7574 width of the field is not the same as that of some integer mode. For
7575 registers, we can only avoid the extraction if the position is at the
7576 low-order bit and this is either not in the destination or we have the
7577 appropriate STRICT_LOW_PART operation available.
7578
7579 For MEM, we can avoid an extract if the field starts on an appropriate
7580 boundary and we can change the mode of the memory reference. */
7581
7582 scalar_int_mode tmode;
7583 if (int_mode_for_size (len, 1).exists (&tmode)
7584 && ((pos_rtx == 0 && (pos % BITS_PER_WORD) == 0
7585 && !MEM_P (inner)
7586 && (pos == 0 || REG_P (inner))
7587 && (inner_mode == tmode
7588 || !REG_P (inner)
7589 || TRULY_NOOP_TRUNCATION_MODES_P (tmode, inner_mode)
7590 || reg_truncated_to_mode (tmode, inner))
7591 && (! in_dest
7592 || (REG_P (inner)
7593 && have_insn_for (STRICT_LOW_PART, tmode))))
7594 || (MEM_P (inner) && pos_rtx == 0
7595 && (pos
7596 % (STRICT_ALIGNMENT ? GET_MODE_ALIGNMENT (tmode)
7597 : BITS_PER_UNIT)) == 0
7598 /* We can't do this if we are widening INNER_MODE (it
7599 may not be aligned, for one thing). */
7600 && !paradoxical_subreg_p (tmode, inner_mode)
7601 && (inner_mode == tmode
7602 || (! mode_dependent_address_p (XEXP (inner, 0),
7603 MEM_ADDR_SPACE (inner))
7604 && ! MEM_VOLATILE_P (inner))))))
7605 {
7606 /* If INNER is a MEM, make a new MEM that encompasses just the desired
7607 field. If the original and current mode are the same, we need not
7608 adjust the offset. Otherwise, we do if bytes big endian.
7609
7610 If INNER is not a MEM, get a piece consisting of just the field
7611 of interest (in this case POS % BITS_PER_WORD must be 0). */
7612
7613 if (MEM_P (inner))
7614 {
7615 poly_int64 offset;
7616
7617 /* POS counts from lsb, but make OFFSET count in memory order. */
7618 if (BYTES_BIG_ENDIAN)
7619 offset = bits_to_bytes_round_down (GET_MODE_PRECISION (is_mode)
7620 - len - pos);
7621 else
7622 offset = pos / BITS_PER_UNIT;
7623
7624 new_rtx = adjust_address_nv (inner, tmode, offset);
7625 }
7626 else if (REG_P (inner))
7627 {
7628 if (tmode != inner_mode)
7629 {
7630 /* We can't call gen_lowpart in a DEST since we
7631 always want a SUBREG (see below) and it would sometimes
7632 return a new hard register. */
7633 if (pos || in_dest)
7634 {
7635 poly_uint64 offset
7636 = subreg_offset_from_lsb (tmode, inner_mode, pos);
7637
7638 /* Avoid creating invalid subregs, for example when
7639 simplifying (x>>32)&255. */
7640 if (!validate_subreg (tmode, inner_mode, inner, offset))
7641 return NULL_RTX;
7642
7643 new_rtx = gen_rtx_SUBREG (tmode, inner, offset);
7644 }
7645 else
7646 new_rtx = gen_lowpart (tmode, inner);
7647 }
7648 else
7649 new_rtx = inner;
7650 }
7651 else
7652 new_rtx = force_to_mode (inner, tmode,
7653 len >= HOST_BITS_PER_WIDE_INT
7654 ? HOST_WIDE_INT_M1U
7655 : (HOST_WIDE_INT_1U << len) - 1, 0);
7656
7657 /* If this extraction is going into the destination of a SET,
7658 make a STRICT_LOW_PART unless we made a MEM. */
7659
7660 if (in_dest)
7661 return (MEM_P (new_rtx) ? new_rtx
7662 : (GET_CODE (new_rtx) != SUBREG
7663 ? gen_rtx_CLOBBER (tmode, const0_rtx)
7664 : gen_rtx_STRICT_LOW_PART (VOIDmode, new_rtx)));
7665
7666 if (mode == tmode)
7667 return new_rtx;
7668
7669 if (CONST_SCALAR_INT_P (new_rtx))
7670 return simplify_unary_operation (unsignedp ? ZERO_EXTEND : SIGN_EXTEND,
7671 mode, new_rtx, tmode);
7672
7673 /* If we know that no extraneous bits are set, and that the high
7674 bit is not set, convert the extraction to the cheaper of
7675 sign and zero extension, that are equivalent in these cases. */
7676 if (flag_expensive_optimizations
7677 && (HWI_COMPUTABLE_MODE_P (tmode)
7678 && ((nonzero_bits (new_rtx, tmode)
7679 & ~(((unsigned HOST_WIDE_INT)GET_MODE_MASK (tmode)) >> 1))
7680 == 0)))
7681 {
7682 rtx temp = gen_rtx_ZERO_EXTEND (mode, new_rtx);
7683 rtx temp1 = gen_rtx_SIGN_EXTEND (mode, new_rtx);
7684
7685 /* Prefer ZERO_EXTENSION, since it gives more information to
7686 backends. */
7687 if (set_src_cost (temp, mode, optimize_this_for_speed_p)
7688 <= set_src_cost (temp1, mode, optimize_this_for_speed_p))
7689 return temp;
7690 return temp1;
7691 }
7692
7693 /* Otherwise, sign- or zero-extend unless we already are in the
7694 proper mode. */
7695
7696 return (gen_rtx_fmt_e (unsignedp ? ZERO_EXTEND : SIGN_EXTEND,
7697 mode, new_rtx));
7698 }
7699
7700 /* Unless this is a COMPARE or we have a funny memory reference,
7701 don't do anything with zero-extending field extracts starting at
7702 the low-order bit since they are simple AND operations. */
7703 if (pos_rtx == 0 && pos == 0 && ! in_dest
7704 && ! in_compare && unsignedp)
7705 return 0;
7706
7707 /* Unless INNER is not MEM, reject this if we would be spanning bytes or
7708 if the position is not a constant and the length is not 1. In all
7709 other cases, we would only be going outside our object in cases when
7710 an original shift would have been undefined. */
7711 if (MEM_P (inner)
7712 && ((pos_rtx == 0 && maybe_gt (pos + len, GET_MODE_PRECISION (is_mode)))
7713 || (pos_rtx != 0 && len != 1)))
7714 return 0;
7715
7716 enum extraction_pattern pattern = (in_dest ? EP_insv
7717 : unsignedp ? EP_extzv : EP_extv);
7718
7719 /* If INNER is not from memory, we want it to have the mode of a register
7720 extraction pattern's structure operand, or word_mode if there is no
7721 such pattern. The same applies to extraction_mode and pos_mode
7722 and their respective operands.
7723
7724 For memory, assume that the desired extraction_mode and pos_mode
7725 are the same as for a register operation, since at present we don't
7726 have named patterns for aligned memory structures. */
7727 struct extraction_insn insn;
7728 unsigned int inner_size;
7729 if (GET_MODE_BITSIZE (inner_mode).is_constant (&inner_size)
7730 && get_best_reg_extraction_insn (&insn, pattern, inner_size, mode))
7731 {
7732 wanted_inner_reg_mode = insn.struct_mode.require ();
7733 pos_mode = insn.pos_mode;
7734 extraction_mode = insn.field_mode;
7735 }
7736
7737 /* Never narrow an object, since that might not be safe. */
7738
7739 if (mode != VOIDmode
7740 && partial_subreg_p (extraction_mode, mode))
7741 extraction_mode = mode;
7742
7743 if (!MEM_P (inner))
7744 wanted_inner_mode = wanted_inner_reg_mode;
7745 else
7746 {
7747 /* Be careful not to go beyond the extracted object and maintain the
7748 natural alignment of the memory. */
7749 wanted_inner_mode = smallest_int_mode_for_size (len);
7750 while (pos % GET_MODE_BITSIZE (wanted_inner_mode) + len
7751 > GET_MODE_BITSIZE (wanted_inner_mode))
7752 wanted_inner_mode = GET_MODE_WIDER_MODE (wanted_inner_mode).require ();
7753 }
7754
7755 orig_pos = pos;
7756
7757 if (BITS_BIG_ENDIAN)
7758 {
7759 /* POS is passed as if BITS_BIG_ENDIAN == 0, so we need to convert it to
7760 BITS_BIG_ENDIAN style. If position is constant, compute new
7761 position. Otherwise, build subtraction.
7762 Note that POS is relative to the mode of the original argument.
7763 If it's a MEM we need to recompute POS relative to that.
7764 However, if we're extracting from (or inserting into) a register,
7765 we want to recompute POS relative to wanted_inner_mode. */
7766 int width;
7767 if (!MEM_P (inner))
7768 width = GET_MODE_BITSIZE (wanted_inner_mode);
7769 else if (!GET_MODE_BITSIZE (is_mode).is_constant (&width))
7770 return NULL_RTX;
7771
7772 if (pos_rtx == 0)
7773 pos = width - len - pos;
7774 else
7775 pos_rtx
7776 = gen_rtx_MINUS (GET_MODE (pos_rtx),
7777 gen_int_mode (width - len, GET_MODE (pos_rtx)),
7778 pos_rtx);
7779 /* POS may be less than 0 now, but we check for that below.
7780 Note that it can only be less than 0 if !MEM_P (inner). */
7781 }
7782
7783 /* If INNER has a wider mode, and this is a constant extraction, try to
7784 make it smaller and adjust the byte to point to the byte containing
7785 the value. */
7786 if (wanted_inner_mode != VOIDmode
7787 && inner_mode != wanted_inner_mode
7788 && ! pos_rtx
7789 && partial_subreg_p (wanted_inner_mode, is_mode)
7790 && MEM_P (inner)
7791 && ! mode_dependent_address_p (XEXP (inner, 0), MEM_ADDR_SPACE (inner))
7792 && ! MEM_VOLATILE_P (inner))
7793 {
7794 poly_int64 offset = 0;
7795
7796 /* The computations below will be correct if the machine is big
7797 endian in both bits and bytes or little endian in bits and bytes.
7798 If it is mixed, we must adjust. */
7799
7800 /* If bytes are big endian and we had a paradoxical SUBREG, we must
7801 adjust OFFSET to compensate. */
7802 if (BYTES_BIG_ENDIAN
7803 && paradoxical_subreg_p (is_mode, inner_mode))
7804 offset -= GET_MODE_SIZE (is_mode) - GET_MODE_SIZE (inner_mode);
7805
7806 /* We can now move to the desired byte. */
7807 offset += (pos / GET_MODE_BITSIZE (wanted_inner_mode))
7808 * GET_MODE_SIZE (wanted_inner_mode);
7809 pos %= GET_MODE_BITSIZE (wanted_inner_mode);
7810
7811 if (BYTES_BIG_ENDIAN != BITS_BIG_ENDIAN
7812 && is_mode != wanted_inner_mode)
7813 offset = (GET_MODE_SIZE (is_mode)
7814 - GET_MODE_SIZE (wanted_inner_mode) - offset);
7815
7816 inner = adjust_address_nv (inner, wanted_inner_mode, offset);
7817 }
7818
7819 /* If INNER is not memory, get it into the proper mode. If we are changing
7820 its mode, POS must be a constant and smaller than the size of the new
7821 mode. */
7822 else if (!MEM_P (inner))
7823 {
7824 /* On the LHS, don't create paradoxical subregs implicitely truncating
7825 the register unless TARGET_TRULY_NOOP_TRUNCATION. */
7826 if (in_dest
7827 && !TRULY_NOOP_TRUNCATION_MODES_P (GET_MODE (inner),
7828 wanted_inner_mode))
7829 return NULL_RTX;
7830
7831 if (GET_MODE (inner) != wanted_inner_mode
7832 && (pos_rtx != 0
7833 || orig_pos + len > GET_MODE_BITSIZE (wanted_inner_mode)))
7834 return NULL_RTX;
7835
7836 if (orig_pos < 0)
7837 return NULL_RTX;
7838
7839 inner = force_to_mode (inner, wanted_inner_mode,
7840 pos_rtx
7841 || len + orig_pos >= HOST_BITS_PER_WIDE_INT
7842 ? HOST_WIDE_INT_M1U
7843 : (((HOST_WIDE_INT_1U << len) - 1)
7844 << orig_pos),
7845 0);
7846 }
7847
7848 /* Adjust mode of POS_RTX, if needed. If we want a wider mode, we
7849 have to zero extend. Otherwise, we can just use a SUBREG.
7850
7851 We dealt with constant rtxes earlier, so pos_rtx cannot
7852 have VOIDmode at this point. */
7853 if (pos_rtx != 0
7854 && (GET_MODE_SIZE (pos_mode)
7855 > GET_MODE_SIZE (as_a <scalar_int_mode> (GET_MODE (pos_rtx)))))
7856 {
7857 rtx temp = simplify_gen_unary (ZERO_EXTEND, pos_mode, pos_rtx,
7858 GET_MODE (pos_rtx));
7859
7860 /* If we know that no extraneous bits are set, and that the high
7861 bit is not set, convert extraction to cheaper one - either
7862 SIGN_EXTENSION or ZERO_EXTENSION, that are equivalent in these
7863 cases. */
7864 if (flag_expensive_optimizations
7865 && (HWI_COMPUTABLE_MODE_P (GET_MODE (pos_rtx))
7866 && ((nonzero_bits (pos_rtx, GET_MODE (pos_rtx))
7867 & ~(((unsigned HOST_WIDE_INT)
7868 GET_MODE_MASK (GET_MODE (pos_rtx)))
7869 >> 1))
7870 == 0)))
7871 {
7872 rtx temp1 = simplify_gen_unary (SIGN_EXTEND, pos_mode, pos_rtx,
7873 GET_MODE (pos_rtx));
7874
7875 /* Prefer ZERO_EXTENSION, since it gives more information to
7876 backends. */
7877 if (set_src_cost (temp1, pos_mode, optimize_this_for_speed_p)
7878 < set_src_cost (temp, pos_mode, optimize_this_for_speed_p))
7879 temp = temp1;
7880 }
7881 pos_rtx = temp;
7882 }
7883
7884 /* Make POS_RTX unless we already have it and it is correct. If we don't
7885 have a POS_RTX but we do have an ORIG_POS_RTX, the latter must
7886 be a CONST_INT. */
7887 if (pos_rtx == 0 && orig_pos_rtx != 0 && INTVAL (orig_pos_rtx) == pos)
7888 pos_rtx = orig_pos_rtx;
7889
7890 else if (pos_rtx == 0)
7891 pos_rtx = GEN_INT (pos);
7892
7893 /* Make the required operation. See if we can use existing rtx. */
7894 new_rtx = gen_rtx_fmt_eee (unsignedp ? ZERO_EXTRACT : SIGN_EXTRACT,
7895 extraction_mode, inner, GEN_INT (len), pos_rtx);
7896 if (! in_dest)
7897 new_rtx = gen_lowpart (mode, new_rtx);
7898
7899 return new_rtx;
7900 }
7901 \f
7902 /* See if X (of mode MODE) contains an ASHIFT of COUNT or more bits that
7903 can be commuted with any other operations in X. Return X without
7904 that shift if so. */
7905
7906 static rtx
7907 extract_left_shift (scalar_int_mode mode, rtx x, int count)
7908 {
7909 enum rtx_code code = GET_CODE (x);
7910 rtx tem;
7911
7912 switch (code)
7913 {
7914 case ASHIFT:
7915 /* This is the shift itself. If it is wide enough, we will return
7916 either the value being shifted if the shift count is equal to
7917 COUNT or a shift for the difference. */
7918 if (CONST_INT_P (XEXP (x, 1))
7919 && INTVAL (XEXP (x, 1)) >= count)
7920 return simplify_shift_const (NULL_RTX, ASHIFT, mode, XEXP (x, 0),
7921 INTVAL (XEXP (x, 1)) - count);
7922 break;
7923
7924 case NEG: case NOT:
7925 if ((tem = extract_left_shift (mode, XEXP (x, 0), count)) != 0)
7926 return simplify_gen_unary (code, mode, tem, mode);
7927
7928 break;
7929
7930 case PLUS: case IOR: case XOR: case AND:
7931 /* If we can safely shift this constant and we find the inner shift,
7932 make a new operation. */
7933 if (CONST_INT_P (XEXP (x, 1))
7934 && (UINTVAL (XEXP (x, 1))
7935 & (((HOST_WIDE_INT_1U << count)) - 1)) == 0
7936 && (tem = extract_left_shift (mode, XEXP (x, 0), count)) != 0)
7937 {
7938 HOST_WIDE_INT val = INTVAL (XEXP (x, 1)) >> count;
7939 return simplify_gen_binary (code, mode, tem,
7940 gen_int_mode (val, mode));
7941 }
7942 break;
7943
7944 default:
7945 break;
7946 }
7947
7948 return 0;
7949 }
7950 \f
7951 /* Subroutine of make_compound_operation. *X_PTR is the rtx at the current
7952 level of the expression and MODE is its mode. IN_CODE is as for
7953 make_compound_operation. *NEXT_CODE_PTR is the value of IN_CODE
7954 that should be used when recursing on operands of *X_PTR.
7955
7956 There are two possible actions:
7957
7958 - Return null. This tells the caller to recurse on *X_PTR with IN_CODE
7959 equal to *NEXT_CODE_PTR, after which *X_PTR holds the final value.
7960
7961 - Return a new rtx, which the caller returns directly. */
7962
7963 static rtx
7964 make_compound_operation_int (scalar_int_mode mode, rtx *x_ptr,
7965 enum rtx_code in_code,
7966 enum rtx_code *next_code_ptr)
7967 {
7968 rtx x = *x_ptr;
7969 enum rtx_code next_code = *next_code_ptr;
7970 enum rtx_code code = GET_CODE (x);
7971 int mode_width = GET_MODE_PRECISION (mode);
7972 rtx rhs, lhs;
7973 rtx new_rtx = 0;
7974 int i;
7975 rtx tem;
7976 scalar_int_mode inner_mode;
7977 bool equality_comparison = false;
7978
7979 if (in_code == EQ)
7980 {
7981 equality_comparison = true;
7982 in_code = COMPARE;
7983 }
7984
7985 /* Process depending on the code of this operation. If NEW is set
7986 nonzero, it will be returned. */
7987
7988 switch (code)
7989 {
7990 case ASHIFT:
7991 /* Convert shifts by constants into multiplications if inside
7992 an address. */
7993 if (in_code == MEM && CONST_INT_P (XEXP (x, 1))
7994 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT
7995 && INTVAL (XEXP (x, 1)) >= 0)
7996 {
7997 HOST_WIDE_INT count = INTVAL (XEXP (x, 1));
7998 HOST_WIDE_INT multval = HOST_WIDE_INT_1 << count;
7999
8000 new_rtx = make_compound_operation (XEXP (x, 0), next_code);
8001 if (GET_CODE (new_rtx) == NEG)
8002 {
8003 new_rtx = XEXP (new_rtx, 0);
8004 multval = -multval;
8005 }
8006 multval = trunc_int_for_mode (multval, mode);
8007 new_rtx = gen_rtx_MULT (mode, new_rtx, gen_int_mode (multval, mode));
8008 }
8009 break;
8010
8011 case PLUS:
8012 lhs = XEXP (x, 0);
8013 rhs = XEXP (x, 1);
8014 lhs = make_compound_operation (lhs, next_code);
8015 rhs = make_compound_operation (rhs, next_code);
8016 if (GET_CODE (lhs) == MULT && GET_CODE (XEXP (lhs, 0)) == NEG)
8017 {
8018 tem = simplify_gen_binary (MULT, mode, XEXP (XEXP (lhs, 0), 0),
8019 XEXP (lhs, 1));
8020 new_rtx = simplify_gen_binary (MINUS, mode, rhs, tem);
8021 }
8022 else if (GET_CODE (lhs) == MULT
8023 && (CONST_INT_P (XEXP (lhs, 1)) && INTVAL (XEXP (lhs, 1)) < 0))
8024 {
8025 tem = simplify_gen_binary (MULT, mode, XEXP (lhs, 0),
8026 simplify_gen_unary (NEG, mode,
8027 XEXP (lhs, 1),
8028 mode));
8029 new_rtx = simplify_gen_binary (MINUS, mode, rhs, tem);
8030 }
8031 else
8032 {
8033 SUBST (XEXP (x, 0), lhs);
8034 SUBST (XEXP (x, 1), rhs);
8035 }
8036 maybe_swap_commutative_operands (x);
8037 return x;
8038
8039 case MINUS:
8040 lhs = XEXP (x, 0);
8041 rhs = XEXP (x, 1);
8042 lhs = make_compound_operation (lhs, next_code);
8043 rhs = make_compound_operation (rhs, next_code);
8044 if (GET_CODE (rhs) == MULT && GET_CODE (XEXP (rhs, 0)) == NEG)
8045 {
8046 tem = simplify_gen_binary (MULT, mode, XEXP (XEXP (rhs, 0), 0),
8047 XEXP (rhs, 1));
8048 return simplify_gen_binary (PLUS, mode, tem, lhs);
8049 }
8050 else if (GET_CODE (rhs) == MULT
8051 && (CONST_INT_P (XEXP (rhs, 1)) && INTVAL (XEXP (rhs, 1)) < 0))
8052 {
8053 tem = simplify_gen_binary (MULT, mode, XEXP (rhs, 0),
8054 simplify_gen_unary (NEG, mode,
8055 XEXP (rhs, 1),
8056 mode));
8057 return simplify_gen_binary (PLUS, mode, tem, lhs);
8058 }
8059 else
8060 {
8061 SUBST (XEXP (x, 0), lhs);
8062 SUBST (XEXP (x, 1), rhs);
8063 return x;
8064 }
8065
8066 case AND:
8067 /* If the second operand is not a constant, we can't do anything
8068 with it. */
8069 if (!CONST_INT_P (XEXP (x, 1)))
8070 break;
8071
8072 /* If the constant is a power of two minus one and the first operand
8073 is a logical right shift, make an extraction. */
8074 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
8075 && (i = exact_log2 (UINTVAL (XEXP (x, 1)) + 1)) >= 0)
8076 {
8077 new_rtx = make_compound_operation (XEXP (XEXP (x, 0), 0), next_code);
8078 new_rtx = make_extraction (mode, new_rtx, 0, XEXP (XEXP (x, 0), 1),
8079 i, 1, 0, in_code == COMPARE);
8080 }
8081
8082 /* Same as previous, but for (subreg (lshiftrt ...)) in first op. */
8083 else if (GET_CODE (XEXP (x, 0)) == SUBREG
8084 && subreg_lowpart_p (XEXP (x, 0))
8085 && is_a <scalar_int_mode> (GET_MODE (SUBREG_REG (XEXP (x, 0))),
8086 &inner_mode)
8087 && GET_CODE (SUBREG_REG (XEXP (x, 0))) == LSHIFTRT
8088 && (i = exact_log2 (UINTVAL (XEXP (x, 1)) + 1)) >= 0)
8089 {
8090 rtx inner_x0 = SUBREG_REG (XEXP (x, 0));
8091 new_rtx = make_compound_operation (XEXP (inner_x0, 0), next_code);
8092 new_rtx = make_extraction (inner_mode, new_rtx, 0,
8093 XEXP (inner_x0, 1),
8094 i, 1, 0, in_code == COMPARE);
8095
8096 /* If we narrowed the mode when dropping the subreg, then we lose. */
8097 if (GET_MODE_SIZE (inner_mode) < GET_MODE_SIZE (mode))
8098 new_rtx = NULL;
8099
8100 /* If that didn't give anything, see if the AND simplifies on
8101 its own. */
8102 if (!new_rtx && i >= 0)
8103 {
8104 new_rtx = make_compound_operation (XEXP (x, 0), next_code);
8105 new_rtx = make_extraction (mode, new_rtx, 0, NULL_RTX, i, 1,
8106 0, in_code == COMPARE);
8107 }
8108 }
8109 /* Same as previous, but for (xor/ior (lshiftrt...) (lshiftrt...)). */
8110 else if ((GET_CODE (XEXP (x, 0)) == XOR
8111 || GET_CODE (XEXP (x, 0)) == IOR)
8112 && GET_CODE (XEXP (XEXP (x, 0), 0)) == LSHIFTRT
8113 && GET_CODE (XEXP (XEXP (x, 0), 1)) == LSHIFTRT
8114 && (i = exact_log2 (UINTVAL (XEXP (x, 1)) + 1)) >= 0)
8115 {
8116 /* Apply the distributive law, and then try to make extractions. */
8117 new_rtx = gen_rtx_fmt_ee (GET_CODE (XEXP (x, 0)), mode,
8118 gen_rtx_AND (mode, XEXP (XEXP (x, 0), 0),
8119 XEXP (x, 1)),
8120 gen_rtx_AND (mode, XEXP (XEXP (x, 0), 1),
8121 XEXP (x, 1)));
8122 new_rtx = make_compound_operation (new_rtx, in_code);
8123 }
8124
8125 /* If we are have (and (rotate X C) M) and C is larger than the number
8126 of bits in M, this is an extraction. */
8127
8128 else if (GET_CODE (XEXP (x, 0)) == ROTATE
8129 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
8130 && (i = exact_log2 (UINTVAL (XEXP (x, 1)) + 1)) >= 0
8131 && i <= INTVAL (XEXP (XEXP (x, 0), 1)))
8132 {
8133 new_rtx = make_compound_operation (XEXP (XEXP (x, 0), 0), next_code);
8134 new_rtx = make_extraction (mode, new_rtx,
8135 (GET_MODE_PRECISION (mode)
8136 - INTVAL (XEXP (XEXP (x, 0), 1))),
8137 NULL_RTX, i, 1, 0, in_code == COMPARE);
8138 }
8139
8140 /* On machines without logical shifts, if the operand of the AND is
8141 a logical shift and our mask turns off all the propagated sign
8142 bits, we can replace the logical shift with an arithmetic shift. */
8143 else if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
8144 && !have_insn_for (LSHIFTRT, mode)
8145 && have_insn_for (ASHIFTRT, mode)
8146 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
8147 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
8148 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT
8149 && mode_width <= HOST_BITS_PER_WIDE_INT)
8150 {
8151 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
8152
8153 mask >>= INTVAL (XEXP (XEXP (x, 0), 1));
8154 if ((INTVAL (XEXP (x, 1)) & ~mask) == 0)
8155 SUBST (XEXP (x, 0),
8156 gen_rtx_ASHIFTRT (mode,
8157 make_compound_operation (XEXP (XEXP (x,
8158 0),
8159 0),
8160 next_code),
8161 XEXP (XEXP (x, 0), 1)));
8162 }
8163
8164 /* If the constant is one less than a power of two, this might be
8165 representable by an extraction even if no shift is present.
8166 If it doesn't end up being a ZERO_EXTEND, we will ignore it unless
8167 we are in a COMPARE. */
8168 else if ((i = exact_log2 (UINTVAL (XEXP (x, 1)) + 1)) >= 0)
8169 new_rtx = make_extraction (mode,
8170 make_compound_operation (XEXP (x, 0),
8171 next_code),
8172 0, NULL_RTX, i, 1, 0, in_code == COMPARE);
8173
8174 /* If we are in a comparison and this is an AND with a power of two,
8175 convert this into the appropriate bit extract. */
8176 else if (in_code == COMPARE
8177 && (i = exact_log2 (UINTVAL (XEXP (x, 1)))) >= 0
8178 && (equality_comparison || i < GET_MODE_PRECISION (mode) - 1))
8179 new_rtx = make_extraction (mode,
8180 make_compound_operation (XEXP (x, 0),
8181 next_code),
8182 i, NULL_RTX, 1, 1, 0, 1);
8183
8184 /* If the one operand is a paradoxical subreg of a register or memory and
8185 the constant (limited to the smaller mode) has only zero bits where
8186 the sub expression has known zero bits, this can be expressed as
8187 a zero_extend. */
8188 else if (GET_CODE (XEXP (x, 0)) == SUBREG)
8189 {
8190 rtx sub;
8191
8192 sub = XEXP (XEXP (x, 0), 0);
8193 machine_mode sub_mode = GET_MODE (sub);
8194 int sub_width;
8195 if ((REG_P (sub) || MEM_P (sub))
8196 && GET_MODE_PRECISION (sub_mode).is_constant (&sub_width)
8197 && sub_width < mode_width)
8198 {
8199 unsigned HOST_WIDE_INT mode_mask = GET_MODE_MASK (sub_mode);
8200 unsigned HOST_WIDE_INT mask;
8201
8202 /* original AND constant with all the known zero bits set */
8203 mask = UINTVAL (XEXP (x, 1)) | (~nonzero_bits (sub, sub_mode));
8204 if ((mask & mode_mask) == mode_mask)
8205 {
8206 new_rtx = make_compound_operation (sub, next_code);
8207 new_rtx = make_extraction (mode, new_rtx, 0, 0, sub_width,
8208 1, 0, in_code == COMPARE);
8209 }
8210 }
8211 }
8212
8213 break;
8214
8215 case LSHIFTRT:
8216 /* If the sign bit is known to be zero, replace this with an
8217 arithmetic shift. */
8218 if (have_insn_for (ASHIFTRT, mode)
8219 && ! have_insn_for (LSHIFTRT, mode)
8220 && mode_width <= HOST_BITS_PER_WIDE_INT
8221 && (nonzero_bits (XEXP (x, 0), mode) & (1 << (mode_width - 1))) == 0)
8222 {
8223 new_rtx = gen_rtx_ASHIFTRT (mode,
8224 make_compound_operation (XEXP (x, 0),
8225 next_code),
8226 XEXP (x, 1));
8227 break;
8228 }
8229
8230 /* fall through */
8231
8232 case ASHIFTRT:
8233 lhs = XEXP (x, 0);
8234 rhs = XEXP (x, 1);
8235
8236 /* If we have (ashiftrt (ashift foo C1) C2) with C2 >= C1,
8237 this is a SIGN_EXTRACT. */
8238 if (CONST_INT_P (rhs)
8239 && GET_CODE (lhs) == ASHIFT
8240 && CONST_INT_P (XEXP (lhs, 1))
8241 && INTVAL (rhs) >= INTVAL (XEXP (lhs, 1))
8242 && INTVAL (XEXP (lhs, 1)) >= 0
8243 && INTVAL (rhs) < mode_width)
8244 {
8245 new_rtx = make_compound_operation (XEXP (lhs, 0), next_code);
8246 new_rtx = make_extraction (mode, new_rtx,
8247 INTVAL (rhs) - INTVAL (XEXP (lhs, 1)),
8248 NULL_RTX, mode_width - INTVAL (rhs),
8249 code == LSHIFTRT, 0, in_code == COMPARE);
8250 break;
8251 }
8252
8253 /* See if we have operations between an ASHIFTRT and an ASHIFT.
8254 If so, try to merge the shifts into a SIGN_EXTEND. We could
8255 also do this for some cases of SIGN_EXTRACT, but it doesn't
8256 seem worth the effort; the case checked for occurs on Alpha. */
8257
8258 if (!OBJECT_P (lhs)
8259 && ! (GET_CODE (lhs) == SUBREG
8260 && (OBJECT_P (SUBREG_REG (lhs))))
8261 && CONST_INT_P (rhs)
8262 && INTVAL (rhs) >= 0
8263 && INTVAL (rhs) < HOST_BITS_PER_WIDE_INT
8264 && INTVAL (rhs) < mode_width
8265 && (new_rtx = extract_left_shift (mode, lhs, INTVAL (rhs))) != 0)
8266 new_rtx = make_extraction (mode, make_compound_operation (new_rtx,
8267 next_code),
8268 0, NULL_RTX, mode_width - INTVAL (rhs),
8269 code == LSHIFTRT, 0, in_code == COMPARE);
8270
8271 break;
8272
8273 case SUBREG:
8274 /* Call ourselves recursively on the inner expression. If we are
8275 narrowing the object and it has a different RTL code from
8276 what it originally did, do this SUBREG as a force_to_mode. */
8277 {
8278 rtx inner = SUBREG_REG (x), simplified;
8279 enum rtx_code subreg_code = in_code;
8280
8281 /* If the SUBREG is masking of a logical right shift,
8282 make an extraction. */
8283 if (GET_CODE (inner) == LSHIFTRT
8284 && is_a <scalar_int_mode> (GET_MODE (inner), &inner_mode)
8285 && GET_MODE_SIZE (mode) < GET_MODE_SIZE (inner_mode)
8286 && CONST_INT_P (XEXP (inner, 1))
8287 && UINTVAL (XEXP (inner, 1)) < GET_MODE_PRECISION (inner_mode)
8288 && subreg_lowpart_p (x))
8289 {
8290 new_rtx = make_compound_operation (XEXP (inner, 0), next_code);
8291 int width = GET_MODE_PRECISION (inner_mode)
8292 - INTVAL (XEXP (inner, 1));
8293 if (width > mode_width)
8294 width = mode_width;
8295 new_rtx = make_extraction (mode, new_rtx, 0, XEXP (inner, 1),
8296 width, 1, 0, in_code == COMPARE);
8297 break;
8298 }
8299
8300 /* If in_code is COMPARE, it isn't always safe to pass it through
8301 to the recursive make_compound_operation call. */
8302 if (subreg_code == COMPARE
8303 && (!subreg_lowpart_p (x)
8304 || GET_CODE (inner) == SUBREG
8305 /* (subreg:SI (and:DI (reg:DI) (const_int 0x800000000)) 0)
8306 is (const_int 0), rather than
8307 (subreg:SI (lshiftrt:DI (reg:DI) (const_int 35)) 0).
8308 Similarly (subreg:QI (and:SI (reg:SI) (const_int 0x80)) 0)
8309 for non-equality comparisons against 0 is not equivalent
8310 to (subreg:QI (lshiftrt:SI (reg:SI) (const_int 7)) 0). */
8311 || (GET_CODE (inner) == AND
8312 && CONST_INT_P (XEXP (inner, 1))
8313 && partial_subreg_p (x)
8314 && exact_log2 (UINTVAL (XEXP (inner, 1)))
8315 >= GET_MODE_BITSIZE (mode) - 1)))
8316 subreg_code = SET;
8317
8318 tem = make_compound_operation (inner, subreg_code);
8319
8320 simplified
8321 = simplify_subreg (mode, tem, GET_MODE (inner), SUBREG_BYTE (x));
8322 if (simplified)
8323 tem = simplified;
8324
8325 if (GET_CODE (tem) != GET_CODE (inner)
8326 && partial_subreg_p (x)
8327 && subreg_lowpart_p (x))
8328 {
8329 rtx newer
8330 = force_to_mode (tem, mode, HOST_WIDE_INT_M1U, 0);
8331
8332 /* If we have something other than a SUBREG, we might have
8333 done an expansion, so rerun ourselves. */
8334 if (GET_CODE (newer) != SUBREG)
8335 newer = make_compound_operation (newer, in_code);
8336
8337 /* force_to_mode can expand compounds. If it just re-expanded
8338 the compound, use gen_lowpart to convert to the desired
8339 mode. */
8340 if (rtx_equal_p (newer, x)
8341 /* Likewise if it re-expanded the compound only partially.
8342 This happens for SUBREG of ZERO_EXTRACT if they extract
8343 the same number of bits. */
8344 || (GET_CODE (newer) == SUBREG
8345 && (GET_CODE (SUBREG_REG (newer)) == LSHIFTRT
8346 || GET_CODE (SUBREG_REG (newer)) == ASHIFTRT)
8347 && GET_CODE (inner) == AND
8348 && rtx_equal_p (SUBREG_REG (newer), XEXP (inner, 0))))
8349 return gen_lowpart (GET_MODE (x), tem);
8350
8351 return newer;
8352 }
8353
8354 if (simplified)
8355 return tem;
8356 }
8357 break;
8358
8359 default:
8360 break;
8361 }
8362
8363 if (new_rtx)
8364 *x_ptr = gen_lowpart (mode, new_rtx);
8365 *next_code_ptr = next_code;
8366 return NULL_RTX;
8367 }
8368
8369 /* Look at the expression rooted at X. Look for expressions
8370 equivalent to ZERO_EXTRACT, SIGN_EXTRACT, ZERO_EXTEND, SIGN_EXTEND.
8371 Form these expressions.
8372
8373 Return the new rtx, usually just X.
8374
8375 Also, for machines like the VAX that don't have logical shift insns,
8376 try to convert logical to arithmetic shift operations in cases where
8377 they are equivalent. This undoes the canonicalizations to logical
8378 shifts done elsewhere.
8379
8380 We try, as much as possible, to re-use rtl expressions to save memory.
8381
8382 IN_CODE says what kind of expression we are processing. Normally, it is
8383 SET. In a memory address it is MEM. When processing the arguments of
8384 a comparison or a COMPARE against zero, it is COMPARE, or EQ if more
8385 precisely it is an equality comparison against zero. */
8386
8387 rtx
8388 make_compound_operation (rtx x, enum rtx_code in_code)
8389 {
8390 enum rtx_code code = GET_CODE (x);
8391 const char *fmt;
8392 int i, j;
8393 enum rtx_code next_code;
8394 rtx new_rtx, tem;
8395
8396 /* Select the code to be used in recursive calls. Once we are inside an
8397 address, we stay there. If we have a comparison, set to COMPARE,
8398 but once inside, go back to our default of SET. */
8399
8400 next_code = (code == MEM ? MEM
8401 : ((code == COMPARE || COMPARISON_P (x))
8402 && XEXP (x, 1) == const0_rtx) ? COMPARE
8403 : in_code == COMPARE || in_code == EQ ? SET : in_code);
8404
8405 scalar_int_mode mode;
8406 if (is_a <scalar_int_mode> (GET_MODE (x), &mode))
8407 {
8408 rtx new_rtx = make_compound_operation_int (mode, &x, in_code,
8409 &next_code);
8410 if (new_rtx)
8411 return new_rtx;
8412 code = GET_CODE (x);
8413 }
8414
8415 /* Now recursively process each operand of this operation. We need to
8416 handle ZERO_EXTEND specially so that we don't lose track of the
8417 inner mode. */
8418 if (code == ZERO_EXTEND)
8419 {
8420 new_rtx = make_compound_operation (XEXP (x, 0), next_code);
8421 tem = simplify_const_unary_operation (ZERO_EXTEND, GET_MODE (x),
8422 new_rtx, GET_MODE (XEXP (x, 0)));
8423 if (tem)
8424 return tem;
8425 SUBST (XEXP (x, 0), new_rtx);
8426 return x;
8427 }
8428
8429 fmt = GET_RTX_FORMAT (code);
8430 for (i = 0; i < GET_RTX_LENGTH (code); i++)
8431 if (fmt[i] == 'e')
8432 {
8433 new_rtx = make_compound_operation (XEXP (x, i), next_code);
8434 SUBST (XEXP (x, i), new_rtx);
8435 }
8436 else if (fmt[i] == 'E')
8437 for (j = 0; j < XVECLEN (x, i); j++)
8438 {
8439 new_rtx = make_compound_operation (XVECEXP (x, i, j), next_code);
8440 SUBST (XVECEXP (x, i, j), new_rtx);
8441 }
8442
8443 maybe_swap_commutative_operands (x);
8444 return x;
8445 }
8446 \f
8447 /* Given M see if it is a value that would select a field of bits
8448 within an item, but not the entire word. Return -1 if not.
8449 Otherwise, return the starting position of the field, where 0 is the
8450 low-order bit.
8451
8452 *PLEN is set to the length of the field. */
8453
8454 static int
8455 get_pos_from_mask (unsigned HOST_WIDE_INT m, unsigned HOST_WIDE_INT *plen)
8456 {
8457 /* Get the bit number of the first 1 bit from the right, -1 if none. */
8458 int pos = m ? ctz_hwi (m) : -1;
8459 int len = 0;
8460
8461 if (pos >= 0)
8462 /* Now shift off the low-order zero bits and see if we have a
8463 power of two minus 1. */
8464 len = exact_log2 ((m >> pos) + 1);
8465
8466 if (len <= 0)
8467 pos = -1;
8468
8469 *plen = len;
8470 return pos;
8471 }
8472 \f
8473 /* If X refers to a register that equals REG in value, replace these
8474 references with REG. */
8475 static rtx
8476 canon_reg_for_combine (rtx x, rtx reg)
8477 {
8478 rtx op0, op1, op2;
8479 const char *fmt;
8480 int i;
8481 bool copied;
8482
8483 enum rtx_code code = GET_CODE (x);
8484 switch (GET_RTX_CLASS (code))
8485 {
8486 case RTX_UNARY:
8487 op0 = canon_reg_for_combine (XEXP (x, 0), reg);
8488 if (op0 != XEXP (x, 0))
8489 return simplify_gen_unary (GET_CODE (x), GET_MODE (x), op0,
8490 GET_MODE (reg));
8491 break;
8492
8493 case RTX_BIN_ARITH:
8494 case RTX_COMM_ARITH:
8495 op0 = canon_reg_for_combine (XEXP (x, 0), reg);
8496 op1 = canon_reg_for_combine (XEXP (x, 1), reg);
8497 if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
8498 return simplify_gen_binary (GET_CODE (x), GET_MODE (x), op0, op1);
8499 break;
8500
8501 case RTX_COMPARE:
8502 case RTX_COMM_COMPARE:
8503 op0 = canon_reg_for_combine (XEXP (x, 0), reg);
8504 op1 = canon_reg_for_combine (XEXP (x, 1), reg);
8505 if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
8506 return simplify_gen_relational (GET_CODE (x), GET_MODE (x),
8507 GET_MODE (op0), op0, op1);
8508 break;
8509
8510 case RTX_TERNARY:
8511 case RTX_BITFIELD_OPS:
8512 op0 = canon_reg_for_combine (XEXP (x, 0), reg);
8513 op1 = canon_reg_for_combine (XEXP (x, 1), reg);
8514 op2 = canon_reg_for_combine (XEXP (x, 2), reg);
8515 if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1) || op2 != XEXP (x, 2))
8516 return simplify_gen_ternary (GET_CODE (x), GET_MODE (x),
8517 GET_MODE (op0), op0, op1, op2);
8518 /* FALLTHRU */
8519
8520 case RTX_OBJ:
8521 if (REG_P (x))
8522 {
8523 if (rtx_equal_p (get_last_value (reg), x)
8524 || rtx_equal_p (reg, get_last_value (x)))
8525 return reg;
8526 else
8527 break;
8528 }
8529
8530 /* fall through */
8531
8532 default:
8533 fmt = GET_RTX_FORMAT (code);
8534 copied = false;
8535 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
8536 if (fmt[i] == 'e')
8537 {
8538 rtx op = canon_reg_for_combine (XEXP (x, i), reg);
8539 if (op != XEXP (x, i))
8540 {
8541 if (!copied)
8542 {
8543 copied = true;
8544 x = copy_rtx (x);
8545 }
8546 XEXP (x, i) = op;
8547 }
8548 }
8549 else if (fmt[i] == 'E')
8550 {
8551 int j;
8552 for (j = 0; j < XVECLEN (x, i); j++)
8553 {
8554 rtx op = canon_reg_for_combine (XVECEXP (x, i, j), reg);
8555 if (op != XVECEXP (x, i, j))
8556 {
8557 if (!copied)
8558 {
8559 copied = true;
8560 x = copy_rtx (x);
8561 }
8562 XVECEXP (x, i, j) = op;
8563 }
8564 }
8565 }
8566
8567 break;
8568 }
8569
8570 return x;
8571 }
8572
8573 /* Return X converted to MODE. If the value is already truncated to
8574 MODE we can just return a subreg even though in the general case we
8575 would need an explicit truncation. */
8576
8577 static rtx
8578 gen_lowpart_or_truncate (machine_mode mode, rtx x)
8579 {
8580 if (!CONST_INT_P (x)
8581 && partial_subreg_p (mode, GET_MODE (x))
8582 && !TRULY_NOOP_TRUNCATION_MODES_P (mode, GET_MODE (x))
8583 && !(REG_P (x) && reg_truncated_to_mode (mode, x)))
8584 {
8585 /* Bit-cast X into an integer mode. */
8586 if (!SCALAR_INT_MODE_P (GET_MODE (x)))
8587 x = gen_lowpart (int_mode_for_mode (GET_MODE (x)).require (), x);
8588 x = simplify_gen_unary (TRUNCATE, int_mode_for_mode (mode).require (),
8589 x, GET_MODE (x));
8590 }
8591
8592 return gen_lowpart (mode, x);
8593 }
8594
8595 /* See if X can be simplified knowing that we will only refer to it in
8596 MODE and will only refer to those bits that are nonzero in MASK.
8597 If other bits are being computed or if masking operations are done
8598 that select a superset of the bits in MASK, they can sometimes be
8599 ignored.
8600
8601 Return a possibly simplified expression, but always convert X to
8602 MODE. If X is a CONST_INT, AND the CONST_INT with MASK.
8603
8604 If JUST_SELECT is nonzero, don't optimize by noticing that bits in MASK
8605 are all off in X. This is used when X will be complemented, by either
8606 NOT, NEG, or XOR. */
8607
8608 static rtx
8609 force_to_mode (rtx x, machine_mode mode, unsigned HOST_WIDE_INT mask,
8610 int just_select)
8611 {
8612 enum rtx_code code = GET_CODE (x);
8613 int next_select = just_select || code == XOR || code == NOT || code == NEG;
8614 machine_mode op_mode;
8615 unsigned HOST_WIDE_INT nonzero;
8616
8617 /* If this is a CALL or ASM_OPERANDS, don't do anything. Some of the
8618 code below will do the wrong thing since the mode of such an
8619 expression is VOIDmode.
8620
8621 Also do nothing if X is a CLOBBER; this can happen if X was
8622 the return value from a call to gen_lowpart. */
8623 if (code == CALL || code == ASM_OPERANDS || code == CLOBBER)
8624 return x;
8625
8626 /* We want to perform the operation in its present mode unless we know
8627 that the operation is valid in MODE, in which case we do the operation
8628 in MODE. */
8629 op_mode = ((GET_MODE_CLASS (mode) == GET_MODE_CLASS (GET_MODE (x))
8630 && have_insn_for (code, mode))
8631 ? mode : GET_MODE (x));
8632
8633 /* It is not valid to do a right-shift in a narrower mode
8634 than the one it came in with. */
8635 if ((code == LSHIFTRT || code == ASHIFTRT)
8636 && partial_subreg_p (mode, GET_MODE (x)))
8637 op_mode = GET_MODE (x);
8638
8639 /* Truncate MASK to fit OP_MODE. */
8640 if (op_mode)
8641 mask &= GET_MODE_MASK (op_mode);
8642
8643 /* Determine what bits of X are guaranteed to be (non)zero. */
8644 nonzero = nonzero_bits (x, mode);
8645
8646 /* If none of the bits in X are needed, return a zero. */
8647 if (!just_select && (nonzero & mask) == 0 && !side_effects_p (x))
8648 x = const0_rtx;
8649
8650 /* If X is a CONST_INT, return a new one. Do this here since the
8651 test below will fail. */
8652 if (CONST_INT_P (x))
8653 {
8654 if (SCALAR_INT_MODE_P (mode))
8655 return gen_int_mode (INTVAL (x) & mask, mode);
8656 else
8657 {
8658 x = GEN_INT (INTVAL (x) & mask);
8659 return gen_lowpart_common (mode, x);
8660 }
8661 }
8662
8663 /* If X is narrower than MODE and we want all the bits in X's mode, just
8664 get X in the proper mode. */
8665 if (paradoxical_subreg_p (mode, GET_MODE (x))
8666 && (GET_MODE_MASK (GET_MODE (x)) & ~mask) == 0)
8667 return gen_lowpart (mode, x);
8668
8669 /* We can ignore the effect of a SUBREG if it narrows the mode or
8670 if the constant masks to zero all the bits the mode doesn't have. */
8671 if (GET_CODE (x) == SUBREG
8672 && subreg_lowpart_p (x)
8673 && (partial_subreg_p (x)
8674 || (mask
8675 & GET_MODE_MASK (GET_MODE (x))
8676 & ~GET_MODE_MASK (GET_MODE (SUBREG_REG (x)))) == 0))
8677 return force_to_mode (SUBREG_REG (x), mode, mask, next_select);
8678
8679 scalar_int_mode int_mode, xmode;
8680 if (is_a <scalar_int_mode> (mode, &int_mode)
8681 && is_a <scalar_int_mode> (GET_MODE (x), &xmode))
8682 /* OP_MODE is either MODE or XMODE, so it must be a scalar
8683 integer too. */
8684 return force_int_to_mode (x, int_mode, xmode,
8685 as_a <scalar_int_mode> (op_mode),
8686 mask, just_select);
8687
8688 return gen_lowpart_or_truncate (mode, x);
8689 }
8690
8691 /* Subroutine of force_to_mode that handles cases in which both X and
8692 the result are scalar integers. MODE is the mode of the result,
8693 XMODE is the mode of X, and OP_MODE says which of MODE or XMODE
8694 is preferred for simplified versions of X. The other arguments
8695 are as for force_to_mode. */
8696
8697 static rtx
8698 force_int_to_mode (rtx x, scalar_int_mode mode, scalar_int_mode xmode,
8699 scalar_int_mode op_mode, unsigned HOST_WIDE_INT mask,
8700 int just_select)
8701 {
8702 enum rtx_code code = GET_CODE (x);
8703 int next_select = just_select || code == XOR || code == NOT || code == NEG;
8704 unsigned HOST_WIDE_INT fuller_mask;
8705 rtx op0, op1, temp;
8706 poly_int64 const_op0;
8707
8708 /* When we have an arithmetic operation, or a shift whose count we
8709 do not know, we need to assume that all bits up to the highest-order
8710 bit in MASK will be needed. This is how we form such a mask. */
8711 if (mask & (HOST_WIDE_INT_1U << (HOST_BITS_PER_WIDE_INT - 1)))
8712 fuller_mask = HOST_WIDE_INT_M1U;
8713 else
8714 fuller_mask = ((HOST_WIDE_INT_1U << (floor_log2 (mask) + 1))
8715 - 1);
8716
8717 switch (code)
8718 {
8719 case CLOBBER:
8720 /* If X is a (clobber (const_int)), return it since we know we are
8721 generating something that won't match. */
8722 return x;
8723
8724 case SIGN_EXTEND:
8725 case ZERO_EXTEND:
8726 case ZERO_EXTRACT:
8727 case SIGN_EXTRACT:
8728 x = expand_compound_operation (x);
8729 if (GET_CODE (x) != code)
8730 return force_to_mode (x, mode, mask, next_select);
8731 break;
8732
8733 case TRUNCATE:
8734 /* Similarly for a truncate. */
8735 return force_to_mode (XEXP (x, 0), mode, mask, next_select);
8736
8737 case AND:
8738 /* If this is an AND with a constant, convert it into an AND
8739 whose constant is the AND of that constant with MASK. If it
8740 remains an AND of MASK, delete it since it is redundant. */
8741
8742 if (CONST_INT_P (XEXP (x, 1)))
8743 {
8744 x = simplify_and_const_int (x, op_mode, XEXP (x, 0),
8745 mask & INTVAL (XEXP (x, 1)));
8746 xmode = op_mode;
8747
8748 /* If X is still an AND, see if it is an AND with a mask that
8749 is just some low-order bits. If so, and it is MASK, we don't
8750 need it. */
8751
8752 if (GET_CODE (x) == AND && CONST_INT_P (XEXP (x, 1))
8753 && (INTVAL (XEXP (x, 1)) & GET_MODE_MASK (xmode)) == mask)
8754 x = XEXP (x, 0);
8755
8756 /* If it remains an AND, try making another AND with the bits
8757 in the mode mask that aren't in MASK turned on. If the
8758 constant in the AND is wide enough, this might make a
8759 cheaper constant. */
8760
8761 if (GET_CODE (x) == AND && CONST_INT_P (XEXP (x, 1))
8762 && GET_MODE_MASK (xmode) != mask
8763 && HWI_COMPUTABLE_MODE_P (xmode))
8764 {
8765 unsigned HOST_WIDE_INT cval
8766 = UINTVAL (XEXP (x, 1)) | (GET_MODE_MASK (xmode) & ~mask);
8767 rtx y;
8768
8769 y = simplify_gen_binary (AND, xmode, XEXP (x, 0),
8770 gen_int_mode (cval, xmode));
8771 if (set_src_cost (y, xmode, optimize_this_for_speed_p)
8772 < set_src_cost (x, xmode, optimize_this_for_speed_p))
8773 x = y;
8774 }
8775
8776 break;
8777 }
8778
8779 goto binop;
8780
8781 case PLUS:
8782 /* In (and (plus FOO C1) M), if M is a mask that just turns off
8783 low-order bits (as in an alignment operation) and FOO is already
8784 aligned to that boundary, mask C1 to that boundary as well.
8785 This may eliminate that PLUS and, later, the AND. */
8786
8787 {
8788 unsigned int width = GET_MODE_PRECISION (mode);
8789 unsigned HOST_WIDE_INT smask = mask;
8790
8791 /* If MODE is narrower than HOST_WIDE_INT and mask is a negative
8792 number, sign extend it. */
8793
8794 if (width < HOST_BITS_PER_WIDE_INT
8795 && (smask & (HOST_WIDE_INT_1U << (width - 1))) != 0)
8796 smask |= HOST_WIDE_INT_M1U << width;
8797
8798 if (CONST_INT_P (XEXP (x, 1))
8799 && pow2p_hwi (- smask)
8800 && (nonzero_bits (XEXP (x, 0), mode) & ~smask) == 0
8801 && (INTVAL (XEXP (x, 1)) & ~smask) != 0)
8802 return force_to_mode (plus_constant (xmode, XEXP (x, 0),
8803 (INTVAL (XEXP (x, 1)) & smask)),
8804 mode, smask, next_select);
8805 }
8806
8807 /* fall through */
8808
8809 case MULT:
8810 /* Substituting into the operands of a widening MULT is not likely to
8811 create RTL matching a machine insn. */
8812 if (code == MULT
8813 && (GET_CODE (XEXP (x, 0)) == ZERO_EXTEND
8814 || GET_CODE (XEXP (x, 0)) == SIGN_EXTEND)
8815 && (GET_CODE (XEXP (x, 1)) == ZERO_EXTEND
8816 || GET_CODE (XEXP (x, 1)) == SIGN_EXTEND)
8817 && REG_P (XEXP (XEXP (x, 0), 0))
8818 && REG_P (XEXP (XEXP (x, 1), 0)))
8819 return gen_lowpart_or_truncate (mode, x);
8820
8821 /* For PLUS, MINUS and MULT, we need any bits less significant than the
8822 most significant bit in MASK since carries from those bits will
8823 affect the bits we are interested in. */
8824 mask = fuller_mask;
8825 goto binop;
8826
8827 case MINUS:
8828 /* If X is (minus C Y) where C's least set bit is larger than any bit
8829 in the mask, then we may replace with (neg Y). */
8830 if (poly_int_rtx_p (XEXP (x, 0), &const_op0)
8831 && (unsigned HOST_WIDE_INT) known_alignment (const_op0) > mask)
8832 {
8833 x = simplify_gen_unary (NEG, xmode, XEXP (x, 1), xmode);
8834 return force_to_mode (x, mode, mask, next_select);
8835 }
8836
8837 /* Similarly, if C contains every bit in the fuller_mask, then we may
8838 replace with (not Y). */
8839 if (CONST_INT_P (XEXP (x, 0))
8840 && ((UINTVAL (XEXP (x, 0)) | fuller_mask) == UINTVAL (XEXP (x, 0))))
8841 {
8842 x = simplify_gen_unary (NOT, xmode, XEXP (x, 1), xmode);
8843 return force_to_mode (x, mode, mask, next_select);
8844 }
8845
8846 mask = fuller_mask;
8847 goto binop;
8848
8849 case IOR:
8850 case XOR:
8851 /* If X is (ior (lshiftrt FOO C1) C2), try to commute the IOR and
8852 LSHIFTRT so we end up with an (and (lshiftrt (ior ...) ...) ...)
8853 operation which may be a bitfield extraction. Ensure that the
8854 constant we form is not wider than the mode of X. */
8855
8856 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
8857 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
8858 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
8859 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT
8860 && CONST_INT_P (XEXP (x, 1))
8861 && ((INTVAL (XEXP (XEXP (x, 0), 1))
8862 + floor_log2 (INTVAL (XEXP (x, 1))))
8863 < GET_MODE_PRECISION (xmode))
8864 && (UINTVAL (XEXP (x, 1))
8865 & ~nonzero_bits (XEXP (x, 0), xmode)) == 0)
8866 {
8867 temp = gen_int_mode ((INTVAL (XEXP (x, 1)) & mask)
8868 << INTVAL (XEXP (XEXP (x, 0), 1)),
8869 xmode);
8870 temp = simplify_gen_binary (GET_CODE (x), xmode,
8871 XEXP (XEXP (x, 0), 0), temp);
8872 x = simplify_gen_binary (LSHIFTRT, xmode, temp,
8873 XEXP (XEXP (x, 0), 1));
8874 return force_to_mode (x, mode, mask, next_select);
8875 }
8876
8877 binop:
8878 /* For most binary operations, just propagate into the operation and
8879 change the mode if we have an operation of that mode. */
8880
8881 op0 = force_to_mode (XEXP (x, 0), mode, mask, next_select);
8882 op1 = force_to_mode (XEXP (x, 1), mode, mask, next_select);
8883
8884 /* If we ended up truncating both operands, truncate the result of the
8885 operation instead. */
8886 if (GET_CODE (op0) == TRUNCATE
8887 && GET_CODE (op1) == TRUNCATE)
8888 {
8889 op0 = XEXP (op0, 0);
8890 op1 = XEXP (op1, 0);
8891 }
8892
8893 op0 = gen_lowpart_or_truncate (op_mode, op0);
8894 op1 = gen_lowpart_or_truncate (op_mode, op1);
8895
8896 if (op_mode != xmode || op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
8897 {
8898 x = simplify_gen_binary (code, op_mode, op0, op1);
8899 xmode = op_mode;
8900 }
8901 break;
8902
8903 case ASHIFT:
8904 /* For left shifts, do the same, but just for the first operand.
8905 However, we cannot do anything with shifts where we cannot
8906 guarantee that the counts are smaller than the size of the mode
8907 because such a count will have a different meaning in a
8908 wider mode. */
8909
8910 if (! (CONST_INT_P (XEXP (x, 1))
8911 && INTVAL (XEXP (x, 1)) >= 0
8912 && INTVAL (XEXP (x, 1)) < GET_MODE_PRECISION (mode))
8913 && ! (GET_MODE (XEXP (x, 1)) != VOIDmode
8914 && (nonzero_bits (XEXP (x, 1), GET_MODE (XEXP (x, 1)))
8915 < (unsigned HOST_WIDE_INT) GET_MODE_PRECISION (mode))))
8916 break;
8917
8918 /* If the shift count is a constant and we can do arithmetic in
8919 the mode of the shift, refine which bits we need. Otherwise, use the
8920 conservative form of the mask. */
8921 if (CONST_INT_P (XEXP (x, 1))
8922 && INTVAL (XEXP (x, 1)) >= 0
8923 && INTVAL (XEXP (x, 1)) < GET_MODE_PRECISION (op_mode)
8924 && HWI_COMPUTABLE_MODE_P (op_mode))
8925 mask >>= INTVAL (XEXP (x, 1));
8926 else
8927 mask = fuller_mask;
8928
8929 op0 = gen_lowpart_or_truncate (op_mode,
8930 force_to_mode (XEXP (x, 0), mode,
8931 mask, next_select));
8932
8933 if (op_mode != xmode || op0 != XEXP (x, 0))
8934 {
8935 x = simplify_gen_binary (code, op_mode, op0, XEXP (x, 1));
8936 xmode = op_mode;
8937 }
8938 break;
8939
8940 case LSHIFTRT:
8941 /* Here we can only do something if the shift count is a constant,
8942 this shift constant is valid for the host, and we can do arithmetic
8943 in OP_MODE. */
8944
8945 if (CONST_INT_P (XEXP (x, 1))
8946 && INTVAL (XEXP (x, 1)) >= 0
8947 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT
8948 && HWI_COMPUTABLE_MODE_P (op_mode))
8949 {
8950 rtx inner = XEXP (x, 0);
8951 unsigned HOST_WIDE_INT inner_mask;
8952
8953 /* Select the mask of the bits we need for the shift operand. */
8954 inner_mask = mask << INTVAL (XEXP (x, 1));
8955
8956 /* We can only change the mode of the shift if we can do arithmetic
8957 in the mode of the shift and INNER_MASK is no wider than the
8958 width of X's mode. */
8959 if ((inner_mask & ~GET_MODE_MASK (xmode)) != 0)
8960 op_mode = xmode;
8961
8962 inner = force_to_mode (inner, op_mode, inner_mask, next_select);
8963
8964 if (xmode != op_mode || inner != XEXP (x, 0))
8965 {
8966 x = simplify_gen_binary (LSHIFTRT, op_mode, inner, XEXP (x, 1));
8967 xmode = op_mode;
8968 }
8969 }
8970
8971 /* If we have (and (lshiftrt FOO C1) C2) where the combination of the
8972 shift and AND produces only copies of the sign bit (C2 is one less
8973 than a power of two), we can do this with just a shift. */
8974
8975 if (GET_CODE (x) == LSHIFTRT
8976 && CONST_INT_P (XEXP (x, 1))
8977 /* The shift puts one of the sign bit copies in the least significant
8978 bit. */
8979 && ((INTVAL (XEXP (x, 1))
8980 + num_sign_bit_copies (XEXP (x, 0), GET_MODE (XEXP (x, 0))))
8981 >= GET_MODE_PRECISION (xmode))
8982 && pow2p_hwi (mask + 1)
8983 /* Number of bits left after the shift must be more than the mask
8984 needs. */
8985 && ((INTVAL (XEXP (x, 1)) + exact_log2 (mask + 1))
8986 <= GET_MODE_PRECISION (xmode))
8987 /* Must be more sign bit copies than the mask needs. */
8988 && ((int) num_sign_bit_copies (XEXP (x, 0), GET_MODE (XEXP (x, 0)))
8989 >= exact_log2 (mask + 1)))
8990 {
8991 int nbits = GET_MODE_PRECISION (xmode) - exact_log2 (mask + 1);
8992 x = simplify_gen_binary (LSHIFTRT, xmode, XEXP (x, 0),
8993 gen_int_shift_amount (xmode, nbits));
8994 }
8995 goto shiftrt;
8996
8997 case ASHIFTRT:
8998 /* If we are just looking for the sign bit, we don't need this shift at
8999 all, even if it has a variable count. */
9000 if (val_signbit_p (xmode, mask))
9001 return force_to_mode (XEXP (x, 0), mode, mask, next_select);
9002
9003 /* If this is a shift by a constant, get a mask that contains those bits
9004 that are not copies of the sign bit. We then have two cases: If
9005 MASK only includes those bits, this can be a logical shift, which may
9006 allow simplifications. If MASK is a single-bit field not within
9007 those bits, we are requesting a copy of the sign bit and hence can
9008 shift the sign bit to the appropriate location. */
9009
9010 if (CONST_INT_P (XEXP (x, 1)) && INTVAL (XEXP (x, 1)) >= 0
9011 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT)
9012 {
9013 unsigned HOST_WIDE_INT nonzero;
9014 int i;
9015
9016 /* If the considered data is wider than HOST_WIDE_INT, we can't
9017 represent a mask for all its bits in a single scalar.
9018 But we only care about the lower bits, so calculate these. */
9019
9020 if (GET_MODE_PRECISION (xmode) > HOST_BITS_PER_WIDE_INT)
9021 {
9022 nonzero = HOST_WIDE_INT_M1U;
9023
9024 /* GET_MODE_PRECISION (GET_MODE (x)) - INTVAL (XEXP (x, 1))
9025 is the number of bits a full-width mask would have set.
9026 We need only shift if these are fewer than nonzero can
9027 hold. If not, we must keep all bits set in nonzero. */
9028
9029 if (GET_MODE_PRECISION (xmode) - INTVAL (XEXP (x, 1))
9030 < HOST_BITS_PER_WIDE_INT)
9031 nonzero >>= INTVAL (XEXP (x, 1))
9032 + HOST_BITS_PER_WIDE_INT
9033 - GET_MODE_PRECISION (xmode);
9034 }
9035 else
9036 {
9037 nonzero = GET_MODE_MASK (xmode);
9038 nonzero >>= INTVAL (XEXP (x, 1));
9039 }
9040
9041 if ((mask & ~nonzero) == 0)
9042 {
9043 x = simplify_shift_const (NULL_RTX, LSHIFTRT, xmode,
9044 XEXP (x, 0), INTVAL (XEXP (x, 1)));
9045 if (GET_CODE (x) != ASHIFTRT)
9046 return force_to_mode (x, mode, mask, next_select);
9047 }
9048
9049 else if ((i = exact_log2 (mask)) >= 0)
9050 {
9051 x = simplify_shift_const
9052 (NULL_RTX, LSHIFTRT, xmode, XEXP (x, 0),
9053 GET_MODE_PRECISION (xmode) - 1 - i);
9054
9055 if (GET_CODE (x) != ASHIFTRT)
9056 return force_to_mode (x, mode, mask, next_select);
9057 }
9058 }
9059
9060 /* If MASK is 1, convert this to an LSHIFTRT. This can be done
9061 even if the shift count isn't a constant. */
9062 if (mask == 1)
9063 x = simplify_gen_binary (LSHIFTRT, xmode, XEXP (x, 0), XEXP (x, 1));
9064
9065 shiftrt:
9066
9067 /* If this is a zero- or sign-extension operation that just affects bits
9068 we don't care about, remove it. Be sure the call above returned
9069 something that is still a shift. */
9070
9071 if ((GET_CODE (x) == LSHIFTRT || GET_CODE (x) == ASHIFTRT)
9072 && CONST_INT_P (XEXP (x, 1))
9073 && INTVAL (XEXP (x, 1)) >= 0
9074 && (INTVAL (XEXP (x, 1))
9075 <= GET_MODE_PRECISION (xmode) - (floor_log2 (mask) + 1))
9076 && GET_CODE (XEXP (x, 0)) == ASHIFT
9077 && XEXP (XEXP (x, 0), 1) == XEXP (x, 1))
9078 return force_to_mode (XEXP (XEXP (x, 0), 0), mode, mask,
9079 next_select);
9080
9081 break;
9082
9083 case ROTATE:
9084 case ROTATERT:
9085 /* If the shift count is constant and we can do computations
9086 in the mode of X, compute where the bits we care about are.
9087 Otherwise, we can't do anything. Don't change the mode of
9088 the shift or propagate MODE into the shift, though. */
9089 if (CONST_INT_P (XEXP (x, 1))
9090 && INTVAL (XEXP (x, 1)) >= 0)
9091 {
9092 temp = simplify_binary_operation (code == ROTATE ? ROTATERT : ROTATE,
9093 xmode, gen_int_mode (mask, xmode),
9094 XEXP (x, 1));
9095 if (temp && CONST_INT_P (temp))
9096 x = simplify_gen_binary (code, xmode,
9097 force_to_mode (XEXP (x, 0), xmode,
9098 INTVAL (temp), next_select),
9099 XEXP (x, 1));
9100 }
9101 break;
9102
9103 case NEG:
9104 /* If we just want the low-order bit, the NEG isn't needed since it
9105 won't change the low-order bit. */
9106 if (mask == 1)
9107 return force_to_mode (XEXP (x, 0), mode, mask, just_select);
9108
9109 /* We need any bits less significant than the most significant bit in
9110 MASK since carries from those bits will affect the bits we are
9111 interested in. */
9112 mask = fuller_mask;
9113 goto unop;
9114
9115 case NOT:
9116 /* (not FOO) is (xor FOO CONST), so if FOO is an LSHIFTRT, we can do the
9117 same as the XOR case above. Ensure that the constant we form is not
9118 wider than the mode of X. */
9119
9120 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
9121 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
9122 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
9123 && (INTVAL (XEXP (XEXP (x, 0), 1)) + floor_log2 (mask)
9124 < GET_MODE_PRECISION (xmode))
9125 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT)
9126 {
9127 temp = gen_int_mode (mask << INTVAL (XEXP (XEXP (x, 0), 1)), xmode);
9128 temp = simplify_gen_binary (XOR, xmode, XEXP (XEXP (x, 0), 0), temp);
9129 x = simplify_gen_binary (LSHIFTRT, xmode,
9130 temp, XEXP (XEXP (x, 0), 1));
9131
9132 return force_to_mode (x, mode, mask, next_select);
9133 }
9134
9135 /* (and (not FOO) CONST) is (not (or FOO (not CONST))), so we must
9136 use the full mask inside the NOT. */
9137 mask = fuller_mask;
9138
9139 unop:
9140 op0 = gen_lowpart_or_truncate (op_mode,
9141 force_to_mode (XEXP (x, 0), mode, mask,
9142 next_select));
9143 if (op_mode != xmode || op0 != XEXP (x, 0))
9144 {
9145 x = simplify_gen_unary (code, op_mode, op0, op_mode);
9146 xmode = op_mode;
9147 }
9148 break;
9149
9150 case NE:
9151 /* (and (ne FOO 0) CONST) can be (and FOO CONST) if CONST is included
9152 in STORE_FLAG_VALUE and FOO has a single bit that might be nonzero,
9153 which is equal to STORE_FLAG_VALUE. */
9154 if ((mask & ~STORE_FLAG_VALUE) == 0
9155 && XEXP (x, 1) == const0_rtx
9156 && GET_MODE (XEXP (x, 0)) == mode
9157 && pow2p_hwi (nonzero_bits (XEXP (x, 0), mode))
9158 && (nonzero_bits (XEXP (x, 0), mode)
9159 == (unsigned HOST_WIDE_INT) STORE_FLAG_VALUE))
9160 return force_to_mode (XEXP (x, 0), mode, mask, next_select);
9161
9162 break;
9163
9164 case IF_THEN_ELSE:
9165 /* We have no way of knowing if the IF_THEN_ELSE can itself be
9166 written in a narrower mode. We play it safe and do not do so. */
9167
9168 op0 = gen_lowpart_or_truncate (xmode,
9169 force_to_mode (XEXP (x, 1), mode,
9170 mask, next_select));
9171 op1 = gen_lowpart_or_truncate (xmode,
9172 force_to_mode (XEXP (x, 2), mode,
9173 mask, next_select));
9174 if (op0 != XEXP (x, 1) || op1 != XEXP (x, 2))
9175 x = simplify_gen_ternary (IF_THEN_ELSE, xmode,
9176 GET_MODE (XEXP (x, 0)), XEXP (x, 0),
9177 op0, op1);
9178 break;
9179
9180 default:
9181 break;
9182 }
9183
9184 /* Ensure we return a value of the proper mode. */
9185 return gen_lowpart_or_truncate (mode, x);
9186 }
9187 \f
9188 /* Return nonzero if X is an expression that has one of two values depending on
9189 whether some other value is zero or nonzero. In that case, we return the
9190 value that is being tested, *PTRUE is set to the value if the rtx being
9191 returned has a nonzero value, and *PFALSE is set to the other alternative.
9192
9193 If we return zero, we set *PTRUE and *PFALSE to X. */
9194
9195 static rtx
9196 if_then_else_cond (rtx x, rtx *ptrue, rtx *pfalse)
9197 {
9198 machine_mode mode = GET_MODE (x);
9199 enum rtx_code code = GET_CODE (x);
9200 rtx cond0, cond1, true0, true1, false0, false1;
9201 unsigned HOST_WIDE_INT nz;
9202 scalar_int_mode int_mode;
9203
9204 /* If we are comparing a value against zero, we are done. */
9205 if ((code == NE || code == EQ)
9206 && XEXP (x, 1) == const0_rtx)
9207 {
9208 *ptrue = (code == NE) ? const_true_rtx : const0_rtx;
9209 *pfalse = (code == NE) ? const0_rtx : const_true_rtx;
9210 return XEXP (x, 0);
9211 }
9212
9213 /* If this is a unary operation whose operand has one of two values, apply
9214 our opcode to compute those values. */
9215 else if (UNARY_P (x)
9216 && (cond0 = if_then_else_cond (XEXP (x, 0), &true0, &false0)) != 0)
9217 {
9218 *ptrue = simplify_gen_unary (code, mode, true0, GET_MODE (XEXP (x, 0)));
9219 *pfalse = simplify_gen_unary (code, mode, false0,
9220 GET_MODE (XEXP (x, 0)));
9221 return cond0;
9222 }
9223
9224 /* If this is a COMPARE, do nothing, since the IF_THEN_ELSE we would
9225 make can't possibly match and would suppress other optimizations. */
9226 else if (code == COMPARE)
9227 ;
9228
9229 /* If this is a binary operation, see if either side has only one of two
9230 values. If either one does or if both do and they are conditional on
9231 the same value, compute the new true and false values. */
9232 else if (BINARY_P (x))
9233 {
9234 rtx op0 = XEXP (x, 0);
9235 rtx op1 = XEXP (x, 1);
9236 cond0 = if_then_else_cond (op0, &true0, &false0);
9237 cond1 = if_then_else_cond (op1, &true1, &false1);
9238
9239 if ((cond0 != 0 && cond1 != 0 && !rtx_equal_p (cond0, cond1))
9240 && (REG_P (op0) || REG_P (op1)))
9241 {
9242 /* Try to enable a simplification by undoing work done by
9243 if_then_else_cond if it converted a REG into something more
9244 complex. */
9245 if (REG_P (op0))
9246 {
9247 cond0 = 0;
9248 true0 = false0 = op0;
9249 }
9250 else
9251 {
9252 cond1 = 0;
9253 true1 = false1 = op1;
9254 }
9255 }
9256
9257 if ((cond0 != 0 || cond1 != 0)
9258 && ! (cond0 != 0 && cond1 != 0 && !rtx_equal_p (cond0, cond1)))
9259 {
9260 /* If if_then_else_cond returned zero, then true/false are the
9261 same rtl. We must copy one of them to prevent invalid rtl
9262 sharing. */
9263 if (cond0 == 0)
9264 true0 = copy_rtx (true0);
9265 else if (cond1 == 0)
9266 true1 = copy_rtx (true1);
9267
9268 if (COMPARISON_P (x))
9269 {
9270 *ptrue = simplify_gen_relational (code, mode, VOIDmode,
9271 true0, true1);
9272 *pfalse = simplify_gen_relational (code, mode, VOIDmode,
9273 false0, false1);
9274 }
9275 else
9276 {
9277 *ptrue = simplify_gen_binary (code, mode, true0, true1);
9278 *pfalse = simplify_gen_binary (code, mode, false0, false1);
9279 }
9280
9281 return cond0 ? cond0 : cond1;
9282 }
9283
9284 /* See if we have PLUS, IOR, XOR, MINUS or UMAX, where one of the
9285 operands is zero when the other is nonzero, and vice-versa,
9286 and STORE_FLAG_VALUE is 1 or -1. */
9287
9288 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
9289 && (code == PLUS || code == IOR || code == XOR || code == MINUS
9290 || code == UMAX)
9291 && GET_CODE (XEXP (x, 0)) == MULT && GET_CODE (XEXP (x, 1)) == MULT)
9292 {
9293 rtx op0 = XEXP (XEXP (x, 0), 1);
9294 rtx op1 = XEXP (XEXP (x, 1), 1);
9295
9296 cond0 = XEXP (XEXP (x, 0), 0);
9297 cond1 = XEXP (XEXP (x, 1), 0);
9298
9299 if (COMPARISON_P (cond0)
9300 && COMPARISON_P (cond1)
9301 && ((GET_CODE (cond0) == reversed_comparison_code (cond1, NULL)
9302 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 0))
9303 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 1)))
9304 || ((swap_condition (GET_CODE (cond0))
9305 == reversed_comparison_code (cond1, NULL))
9306 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 1))
9307 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 0))))
9308 && ! side_effects_p (x))
9309 {
9310 *ptrue = simplify_gen_binary (MULT, mode, op0, const_true_rtx);
9311 *pfalse = simplify_gen_binary (MULT, mode,
9312 (code == MINUS
9313 ? simplify_gen_unary (NEG, mode,
9314 op1, mode)
9315 : op1),
9316 const_true_rtx);
9317 return cond0;
9318 }
9319 }
9320
9321 /* Similarly for MULT, AND and UMIN, except that for these the result
9322 is always zero. */
9323 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
9324 && (code == MULT || code == AND || code == UMIN)
9325 && GET_CODE (XEXP (x, 0)) == MULT && GET_CODE (XEXP (x, 1)) == MULT)
9326 {
9327 cond0 = XEXP (XEXP (x, 0), 0);
9328 cond1 = XEXP (XEXP (x, 1), 0);
9329
9330 if (COMPARISON_P (cond0)
9331 && COMPARISON_P (cond1)
9332 && ((GET_CODE (cond0) == reversed_comparison_code (cond1, NULL)
9333 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 0))
9334 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 1)))
9335 || ((swap_condition (GET_CODE (cond0))
9336 == reversed_comparison_code (cond1, NULL))
9337 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 1))
9338 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 0))))
9339 && ! side_effects_p (x))
9340 {
9341 *ptrue = *pfalse = const0_rtx;
9342 return cond0;
9343 }
9344 }
9345 }
9346
9347 else if (code == IF_THEN_ELSE)
9348 {
9349 /* If we have IF_THEN_ELSE already, extract the condition and
9350 canonicalize it if it is NE or EQ. */
9351 cond0 = XEXP (x, 0);
9352 *ptrue = XEXP (x, 1), *pfalse = XEXP (x, 2);
9353 if (GET_CODE (cond0) == NE && XEXP (cond0, 1) == const0_rtx)
9354 return XEXP (cond0, 0);
9355 else if (GET_CODE (cond0) == EQ && XEXP (cond0, 1) == const0_rtx)
9356 {
9357 *ptrue = XEXP (x, 2), *pfalse = XEXP (x, 1);
9358 return XEXP (cond0, 0);
9359 }
9360 else
9361 return cond0;
9362 }
9363
9364 /* If X is a SUBREG, we can narrow both the true and false values
9365 if the inner expression, if there is a condition. */
9366 else if (code == SUBREG
9367 && (cond0 = if_then_else_cond (SUBREG_REG (x), &true0,
9368 &false0)) != 0)
9369 {
9370 true0 = simplify_gen_subreg (mode, true0,
9371 GET_MODE (SUBREG_REG (x)), SUBREG_BYTE (x));
9372 false0 = simplify_gen_subreg (mode, false0,
9373 GET_MODE (SUBREG_REG (x)), SUBREG_BYTE (x));
9374 if (true0 && false0)
9375 {
9376 *ptrue = true0;
9377 *pfalse = false0;
9378 return cond0;
9379 }
9380 }
9381
9382 /* If X is a constant, this isn't special and will cause confusions
9383 if we treat it as such. Likewise if it is equivalent to a constant. */
9384 else if (CONSTANT_P (x)
9385 || ((cond0 = get_last_value (x)) != 0 && CONSTANT_P (cond0)))
9386 ;
9387
9388 /* If we're in BImode, canonicalize on 0 and STORE_FLAG_VALUE, as that
9389 will be least confusing to the rest of the compiler. */
9390 else if (mode == BImode)
9391 {
9392 *ptrue = GEN_INT (STORE_FLAG_VALUE), *pfalse = const0_rtx;
9393 return x;
9394 }
9395
9396 /* If X is known to be either 0 or -1, those are the true and
9397 false values when testing X. */
9398 else if (x == constm1_rtx || x == const0_rtx
9399 || (is_a <scalar_int_mode> (mode, &int_mode)
9400 && (num_sign_bit_copies (x, int_mode)
9401 == GET_MODE_PRECISION (int_mode))))
9402 {
9403 *ptrue = constm1_rtx, *pfalse = const0_rtx;
9404 return x;
9405 }
9406
9407 /* Likewise for 0 or a single bit. */
9408 else if (HWI_COMPUTABLE_MODE_P (mode)
9409 && pow2p_hwi (nz = nonzero_bits (x, mode)))
9410 {
9411 *ptrue = gen_int_mode (nz, mode), *pfalse = const0_rtx;
9412 return x;
9413 }
9414
9415 /* Otherwise fail; show no condition with true and false values the same. */
9416 *ptrue = *pfalse = x;
9417 return 0;
9418 }
9419 \f
9420 /* Return the value of expression X given the fact that condition COND
9421 is known to be true when applied to REG as its first operand and VAL
9422 as its second. X is known to not be shared and so can be modified in
9423 place.
9424
9425 We only handle the simplest cases, and specifically those cases that
9426 arise with IF_THEN_ELSE expressions. */
9427
9428 static rtx
9429 known_cond (rtx x, enum rtx_code cond, rtx reg, rtx val)
9430 {
9431 enum rtx_code code = GET_CODE (x);
9432 const char *fmt;
9433 int i, j;
9434
9435 if (side_effects_p (x))
9436 return x;
9437
9438 /* If either operand of the condition is a floating point value,
9439 then we have to avoid collapsing an EQ comparison. */
9440 if (cond == EQ
9441 && rtx_equal_p (x, reg)
9442 && ! FLOAT_MODE_P (GET_MODE (x))
9443 && ! FLOAT_MODE_P (GET_MODE (val)))
9444 return val;
9445
9446 if (cond == UNEQ && rtx_equal_p (x, reg))
9447 return val;
9448
9449 /* If X is (abs REG) and we know something about REG's relationship
9450 with zero, we may be able to simplify this. */
9451
9452 if (code == ABS && rtx_equal_p (XEXP (x, 0), reg) && val == const0_rtx)
9453 switch (cond)
9454 {
9455 case GE: case GT: case EQ:
9456 return XEXP (x, 0);
9457 case LT: case LE:
9458 return simplify_gen_unary (NEG, GET_MODE (XEXP (x, 0)),
9459 XEXP (x, 0),
9460 GET_MODE (XEXP (x, 0)));
9461 default:
9462 break;
9463 }
9464
9465 /* The only other cases we handle are MIN, MAX, and comparisons if the
9466 operands are the same as REG and VAL. */
9467
9468 else if (COMPARISON_P (x) || COMMUTATIVE_ARITH_P (x))
9469 {
9470 if (rtx_equal_p (XEXP (x, 0), val))
9471 {
9472 std::swap (val, reg);
9473 cond = swap_condition (cond);
9474 }
9475
9476 if (rtx_equal_p (XEXP (x, 0), reg) && rtx_equal_p (XEXP (x, 1), val))
9477 {
9478 if (COMPARISON_P (x))
9479 {
9480 if (comparison_dominates_p (cond, code))
9481 return const_true_rtx;
9482
9483 code = reversed_comparison_code (x, NULL);
9484 if (code != UNKNOWN
9485 && comparison_dominates_p (cond, code))
9486 return const0_rtx;
9487 else
9488 return x;
9489 }
9490 else if (code == SMAX || code == SMIN
9491 || code == UMIN || code == UMAX)
9492 {
9493 int unsignedp = (code == UMIN || code == UMAX);
9494
9495 /* Do not reverse the condition when it is NE or EQ.
9496 This is because we cannot conclude anything about
9497 the value of 'SMAX (x, y)' when x is not equal to y,
9498 but we can when x equals y. */
9499 if ((code == SMAX || code == UMAX)
9500 && ! (cond == EQ || cond == NE))
9501 cond = reverse_condition (cond);
9502
9503 switch (cond)
9504 {
9505 case GE: case GT:
9506 return unsignedp ? x : XEXP (x, 1);
9507 case LE: case LT:
9508 return unsignedp ? x : XEXP (x, 0);
9509 case GEU: case GTU:
9510 return unsignedp ? XEXP (x, 1) : x;
9511 case LEU: case LTU:
9512 return unsignedp ? XEXP (x, 0) : x;
9513 default:
9514 break;
9515 }
9516 }
9517 }
9518 }
9519 else if (code == SUBREG)
9520 {
9521 machine_mode inner_mode = GET_MODE (SUBREG_REG (x));
9522 rtx new_rtx, r = known_cond (SUBREG_REG (x), cond, reg, val);
9523
9524 if (SUBREG_REG (x) != r)
9525 {
9526 /* We must simplify subreg here, before we lose track of the
9527 original inner_mode. */
9528 new_rtx = simplify_subreg (GET_MODE (x), r,
9529 inner_mode, SUBREG_BYTE (x));
9530 if (new_rtx)
9531 return new_rtx;
9532 else
9533 SUBST (SUBREG_REG (x), r);
9534 }
9535
9536 return x;
9537 }
9538 /* We don't have to handle SIGN_EXTEND here, because even in the
9539 case of replacing something with a modeless CONST_INT, a
9540 CONST_INT is already (supposed to be) a valid sign extension for
9541 its narrower mode, which implies it's already properly
9542 sign-extended for the wider mode. Now, for ZERO_EXTEND, the
9543 story is different. */
9544 else if (code == ZERO_EXTEND)
9545 {
9546 machine_mode inner_mode = GET_MODE (XEXP (x, 0));
9547 rtx new_rtx, r = known_cond (XEXP (x, 0), cond, reg, val);
9548
9549 if (XEXP (x, 0) != r)
9550 {
9551 /* We must simplify the zero_extend here, before we lose
9552 track of the original inner_mode. */
9553 new_rtx = simplify_unary_operation (ZERO_EXTEND, GET_MODE (x),
9554 r, inner_mode);
9555 if (new_rtx)
9556 return new_rtx;
9557 else
9558 SUBST (XEXP (x, 0), r);
9559 }
9560
9561 return x;
9562 }
9563
9564 fmt = GET_RTX_FORMAT (code);
9565 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
9566 {
9567 if (fmt[i] == 'e')
9568 SUBST (XEXP (x, i), known_cond (XEXP (x, i), cond, reg, val));
9569 else if (fmt[i] == 'E')
9570 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
9571 SUBST (XVECEXP (x, i, j), known_cond (XVECEXP (x, i, j),
9572 cond, reg, val));
9573 }
9574
9575 return x;
9576 }
9577 \f
9578 /* See if X and Y are equal for the purposes of seeing if we can rewrite an
9579 assignment as a field assignment. */
9580
9581 static int
9582 rtx_equal_for_field_assignment_p (rtx x, rtx y, bool widen_x)
9583 {
9584 if (widen_x && GET_MODE (x) != GET_MODE (y))
9585 {
9586 if (paradoxical_subreg_p (GET_MODE (x), GET_MODE (y)))
9587 return 0;
9588 if (BYTES_BIG_ENDIAN != WORDS_BIG_ENDIAN)
9589 return 0;
9590 x = adjust_address_nv (x, GET_MODE (y),
9591 byte_lowpart_offset (GET_MODE (y),
9592 GET_MODE (x)));
9593 }
9594
9595 if (x == y || rtx_equal_p (x, y))
9596 return 1;
9597
9598 if (x == 0 || y == 0 || GET_MODE (x) != GET_MODE (y))
9599 return 0;
9600
9601 /* Check for a paradoxical SUBREG of a MEM compared with the MEM.
9602 Note that all SUBREGs of MEM are paradoxical; otherwise they
9603 would have been rewritten. */
9604 if (MEM_P (x) && GET_CODE (y) == SUBREG
9605 && MEM_P (SUBREG_REG (y))
9606 && rtx_equal_p (SUBREG_REG (y),
9607 gen_lowpart (GET_MODE (SUBREG_REG (y)), x)))
9608 return 1;
9609
9610 if (MEM_P (y) && GET_CODE (x) == SUBREG
9611 && MEM_P (SUBREG_REG (x))
9612 && rtx_equal_p (SUBREG_REG (x),
9613 gen_lowpart (GET_MODE (SUBREG_REG (x)), y)))
9614 return 1;
9615
9616 /* We used to see if get_last_value of X and Y were the same but that's
9617 not correct. In one direction, we'll cause the assignment to have
9618 the wrong destination and in the case, we'll import a register into this
9619 insn that might have already have been dead. So fail if none of the
9620 above cases are true. */
9621 return 0;
9622 }
9623 \f
9624 /* See if X, a SET operation, can be rewritten as a bit-field assignment.
9625 Return that assignment if so.
9626
9627 We only handle the most common cases. */
9628
9629 static rtx
9630 make_field_assignment (rtx x)
9631 {
9632 rtx dest = SET_DEST (x);
9633 rtx src = SET_SRC (x);
9634 rtx assign;
9635 rtx rhs, lhs;
9636 HOST_WIDE_INT c1;
9637 HOST_WIDE_INT pos;
9638 unsigned HOST_WIDE_INT len;
9639 rtx other;
9640
9641 /* All the rules in this function are specific to scalar integers. */
9642 scalar_int_mode mode;
9643 if (!is_a <scalar_int_mode> (GET_MODE (dest), &mode))
9644 return x;
9645
9646 /* If SRC was (and (not (ashift (const_int 1) POS)) DEST), this is
9647 a clear of a one-bit field. We will have changed it to
9648 (and (rotate (const_int -2) POS) DEST), so check for that. Also check
9649 for a SUBREG. */
9650
9651 if (GET_CODE (src) == AND && GET_CODE (XEXP (src, 0)) == ROTATE
9652 && CONST_INT_P (XEXP (XEXP (src, 0), 0))
9653 && INTVAL (XEXP (XEXP (src, 0), 0)) == -2
9654 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
9655 {
9656 assign = make_extraction (VOIDmode, dest, 0, XEXP (XEXP (src, 0), 1),
9657 1, 1, 1, 0);
9658 if (assign != 0)
9659 return gen_rtx_SET (assign, const0_rtx);
9660 return x;
9661 }
9662
9663 if (GET_CODE (src) == AND && GET_CODE (XEXP (src, 0)) == SUBREG
9664 && subreg_lowpart_p (XEXP (src, 0))
9665 && partial_subreg_p (XEXP (src, 0))
9666 && GET_CODE (SUBREG_REG (XEXP (src, 0))) == ROTATE
9667 && CONST_INT_P (XEXP (SUBREG_REG (XEXP (src, 0)), 0))
9668 && INTVAL (XEXP (SUBREG_REG (XEXP (src, 0)), 0)) == -2
9669 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
9670 {
9671 assign = make_extraction (VOIDmode, dest, 0,
9672 XEXP (SUBREG_REG (XEXP (src, 0)), 1),
9673 1, 1, 1, 0);
9674 if (assign != 0)
9675 return gen_rtx_SET (assign, const0_rtx);
9676 return x;
9677 }
9678
9679 /* If SRC is (ior (ashift (const_int 1) POS) DEST), this is a set of a
9680 one-bit field. */
9681 if (GET_CODE (src) == IOR && GET_CODE (XEXP (src, 0)) == ASHIFT
9682 && XEXP (XEXP (src, 0), 0) == const1_rtx
9683 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
9684 {
9685 assign = make_extraction (VOIDmode, dest, 0, XEXP (XEXP (src, 0), 1),
9686 1, 1, 1, 0);
9687 if (assign != 0)
9688 return gen_rtx_SET (assign, const1_rtx);
9689 return x;
9690 }
9691
9692 /* If DEST is already a field assignment, i.e. ZERO_EXTRACT, and the
9693 SRC is an AND with all bits of that field set, then we can discard
9694 the AND. */
9695 if (GET_CODE (dest) == ZERO_EXTRACT
9696 && CONST_INT_P (XEXP (dest, 1))
9697 && GET_CODE (src) == AND
9698 && CONST_INT_P (XEXP (src, 1)))
9699 {
9700 HOST_WIDE_INT width = INTVAL (XEXP (dest, 1));
9701 unsigned HOST_WIDE_INT and_mask = INTVAL (XEXP (src, 1));
9702 unsigned HOST_WIDE_INT ze_mask;
9703
9704 if (width >= HOST_BITS_PER_WIDE_INT)
9705 ze_mask = -1;
9706 else
9707 ze_mask = ((unsigned HOST_WIDE_INT)1 << width) - 1;
9708
9709 /* Complete overlap. We can remove the source AND. */
9710 if ((and_mask & ze_mask) == ze_mask)
9711 return gen_rtx_SET (dest, XEXP (src, 0));
9712
9713 /* Partial overlap. We can reduce the source AND. */
9714 if ((and_mask & ze_mask) != and_mask)
9715 {
9716 src = gen_rtx_AND (mode, XEXP (src, 0),
9717 gen_int_mode (and_mask & ze_mask, mode));
9718 return gen_rtx_SET (dest, src);
9719 }
9720 }
9721
9722 /* The other case we handle is assignments into a constant-position
9723 field. They look like (ior/xor (and DEST C1) OTHER). If C1 represents
9724 a mask that has all one bits except for a group of zero bits and
9725 OTHER is known to have zeros where C1 has ones, this is such an
9726 assignment. Compute the position and length from C1. Shift OTHER
9727 to the appropriate position, force it to the required mode, and
9728 make the extraction. Check for the AND in both operands. */
9729
9730 /* One or more SUBREGs might obscure the constant-position field
9731 assignment. The first one we are likely to encounter is an outer
9732 narrowing SUBREG, which we can just strip for the purposes of
9733 identifying the constant-field assignment. */
9734 scalar_int_mode src_mode = mode;
9735 if (GET_CODE (src) == SUBREG
9736 && subreg_lowpart_p (src)
9737 && is_a <scalar_int_mode> (GET_MODE (SUBREG_REG (src)), &src_mode))
9738 src = SUBREG_REG (src);
9739
9740 if (GET_CODE (src) != IOR && GET_CODE (src) != XOR)
9741 return x;
9742
9743 rhs = expand_compound_operation (XEXP (src, 0));
9744 lhs = expand_compound_operation (XEXP (src, 1));
9745
9746 if (GET_CODE (rhs) == AND
9747 && CONST_INT_P (XEXP (rhs, 1))
9748 && rtx_equal_for_field_assignment_p (XEXP (rhs, 0), dest))
9749 c1 = INTVAL (XEXP (rhs, 1)), other = lhs;
9750 /* The second SUBREG that might get in the way is a paradoxical
9751 SUBREG around the first operand of the AND. We want to
9752 pretend the operand is as wide as the destination here. We
9753 do this by adjusting the MEM to wider mode for the sole
9754 purpose of the call to rtx_equal_for_field_assignment_p. Also
9755 note this trick only works for MEMs. */
9756 else if (GET_CODE (rhs) == AND
9757 && paradoxical_subreg_p (XEXP (rhs, 0))
9758 && MEM_P (SUBREG_REG (XEXP (rhs, 0)))
9759 && CONST_INT_P (XEXP (rhs, 1))
9760 && rtx_equal_for_field_assignment_p (SUBREG_REG (XEXP (rhs, 0)),
9761 dest, true))
9762 c1 = INTVAL (XEXP (rhs, 1)), other = lhs;
9763 else if (GET_CODE (lhs) == AND
9764 && CONST_INT_P (XEXP (lhs, 1))
9765 && rtx_equal_for_field_assignment_p (XEXP (lhs, 0), dest))
9766 c1 = INTVAL (XEXP (lhs, 1)), other = rhs;
9767 /* The second SUBREG that might get in the way is a paradoxical
9768 SUBREG around the first operand of the AND. We want to
9769 pretend the operand is as wide as the destination here. We
9770 do this by adjusting the MEM to wider mode for the sole
9771 purpose of the call to rtx_equal_for_field_assignment_p. Also
9772 note this trick only works for MEMs. */
9773 else if (GET_CODE (lhs) == AND
9774 && paradoxical_subreg_p (XEXP (lhs, 0))
9775 && MEM_P (SUBREG_REG (XEXP (lhs, 0)))
9776 && CONST_INT_P (XEXP (lhs, 1))
9777 && rtx_equal_for_field_assignment_p (SUBREG_REG (XEXP (lhs, 0)),
9778 dest, true))
9779 c1 = INTVAL (XEXP (lhs, 1)), other = rhs;
9780 else
9781 return x;
9782
9783 pos = get_pos_from_mask ((~c1) & GET_MODE_MASK (mode), &len);
9784 if (pos < 0
9785 || pos + len > GET_MODE_PRECISION (mode)
9786 || GET_MODE_PRECISION (mode) > HOST_BITS_PER_WIDE_INT
9787 || (c1 & nonzero_bits (other, mode)) != 0)
9788 return x;
9789
9790 assign = make_extraction (VOIDmode, dest, pos, NULL_RTX, len, 1, 1, 0);
9791 if (assign == 0)
9792 return x;
9793
9794 /* The mode to use for the source is the mode of the assignment, or of
9795 what is inside a possible STRICT_LOW_PART. */
9796 machine_mode new_mode = (GET_CODE (assign) == STRICT_LOW_PART
9797 ? GET_MODE (XEXP (assign, 0)) : GET_MODE (assign));
9798
9799 /* Shift OTHER right POS places and make it the source, restricting it
9800 to the proper length and mode. */
9801
9802 src = canon_reg_for_combine (simplify_shift_const (NULL_RTX, LSHIFTRT,
9803 src_mode, other, pos),
9804 dest);
9805 src = force_to_mode (src, new_mode,
9806 len >= HOST_BITS_PER_WIDE_INT
9807 ? HOST_WIDE_INT_M1U
9808 : (HOST_WIDE_INT_1U << len) - 1,
9809 0);
9810
9811 /* If SRC is masked by an AND that does not make a difference in
9812 the value being stored, strip it. */
9813 if (GET_CODE (assign) == ZERO_EXTRACT
9814 && CONST_INT_P (XEXP (assign, 1))
9815 && INTVAL (XEXP (assign, 1)) < HOST_BITS_PER_WIDE_INT
9816 && GET_CODE (src) == AND
9817 && CONST_INT_P (XEXP (src, 1))
9818 && UINTVAL (XEXP (src, 1))
9819 == (HOST_WIDE_INT_1U << INTVAL (XEXP (assign, 1))) - 1)
9820 src = XEXP (src, 0);
9821
9822 return gen_rtx_SET (assign, src);
9823 }
9824 \f
9825 /* See if X is of the form (+ (* a c) (* b c)) and convert to (* (+ a b) c)
9826 if so. */
9827
9828 static rtx
9829 apply_distributive_law (rtx x)
9830 {
9831 enum rtx_code code = GET_CODE (x);
9832 enum rtx_code inner_code;
9833 rtx lhs, rhs, other;
9834 rtx tem;
9835
9836 /* Distributivity is not true for floating point as it can change the
9837 value. So we don't do it unless -funsafe-math-optimizations. */
9838 if (FLOAT_MODE_P (GET_MODE (x))
9839 && ! flag_unsafe_math_optimizations)
9840 return x;
9841
9842 /* The outer operation can only be one of the following: */
9843 if (code != IOR && code != AND && code != XOR
9844 && code != PLUS && code != MINUS)
9845 return x;
9846
9847 lhs = XEXP (x, 0);
9848 rhs = XEXP (x, 1);
9849
9850 /* If either operand is a primitive we can't do anything, so get out
9851 fast. */
9852 if (OBJECT_P (lhs) || OBJECT_P (rhs))
9853 return x;
9854
9855 lhs = expand_compound_operation (lhs);
9856 rhs = expand_compound_operation (rhs);
9857 inner_code = GET_CODE (lhs);
9858 if (inner_code != GET_CODE (rhs))
9859 return x;
9860
9861 /* See if the inner and outer operations distribute. */
9862 switch (inner_code)
9863 {
9864 case LSHIFTRT:
9865 case ASHIFTRT:
9866 case AND:
9867 case IOR:
9868 /* These all distribute except over PLUS. */
9869 if (code == PLUS || code == MINUS)
9870 return x;
9871 break;
9872
9873 case MULT:
9874 if (code != PLUS && code != MINUS)
9875 return x;
9876 break;
9877
9878 case ASHIFT:
9879 /* This is also a multiply, so it distributes over everything. */
9880 break;
9881
9882 /* This used to handle SUBREG, but this turned out to be counter-
9883 productive, since (subreg (op ...)) usually is not handled by
9884 insn patterns, and this "optimization" therefore transformed
9885 recognizable patterns into unrecognizable ones. Therefore the
9886 SUBREG case was removed from here.
9887
9888 It is possible that distributing SUBREG over arithmetic operations
9889 leads to an intermediate result than can then be optimized further,
9890 e.g. by moving the outer SUBREG to the other side of a SET as done
9891 in simplify_set. This seems to have been the original intent of
9892 handling SUBREGs here.
9893
9894 However, with current GCC this does not appear to actually happen,
9895 at least on major platforms. If some case is found where removing
9896 the SUBREG case here prevents follow-on optimizations, distributing
9897 SUBREGs ought to be re-added at that place, e.g. in simplify_set. */
9898
9899 default:
9900 return x;
9901 }
9902
9903 /* Set LHS and RHS to the inner operands (A and B in the example
9904 above) and set OTHER to the common operand (C in the example).
9905 There is only one way to do this unless the inner operation is
9906 commutative. */
9907 if (COMMUTATIVE_ARITH_P (lhs)
9908 && rtx_equal_p (XEXP (lhs, 0), XEXP (rhs, 0)))
9909 other = XEXP (lhs, 0), lhs = XEXP (lhs, 1), rhs = XEXP (rhs, 1);
9910 else if (COMMUTATIVE_ARITH_P (lhs)
9911 && rtx_equal_p (XEXP (lhs, 0), XEXP (rhs, 1)))
9912 other = XEXP (lhs, 0), lhs = XEXP (lhs, 1), rhs = XEXP (rhs, 0);
9913 else if (COMMUTATIVE_ARITH_P (lhs)
9914 && rtx_equal_p (XEXP (lhs, 1), XEXP (rhs, 0)))
9915 other = XEXP (lhs, 1), lhs = XEXP (lhs, 0), rhs = XEXP (rhs, 1);
9916 else if (rtx_equal_p (XEXP (lhs, 1), XEXP (rhs, 1)))
9917 other = XEXP (lhs, 1), lhs = XEXP (lhs, 0), rhs = XEXP (rhs, 0);
9918 else
9919 return x;
9920
9921 /* Form the new inner operation, seeing if it simplifies first. */
9922 tem = simplify_gen_binary (code, GET_MODE (x), lhs, rhs);
9923
9924 /* There is one exception to the general way of distributing:
9925 (a | c) ^ (b | c) -> (a ^ b) & ~c */
9926 if (code == XOR && inner_code == IOR)
9927 {
9928 inner_code = AND;
9929 other = simplify_gen_unary (NOT, GET_MODE (x), other, GET_MODE (x));
9930 }
9931
9932 /* We may be able to continuing distributing the result, so call
9933 ourselves recursively on the inner operation before forming the
9934 outer operation, which we return. */
9935 return simplify_gen_binary (inner_code, GET_MODE (x),
9936 apply_distributive_law (tem), other);
9937 }
9938
9939 /* See if X is of the form (* (+ A B) C), and if so convert to
9940 (+ (* A C) (* B C)) and try to simplify.
9941
9942 Most of the time, this results in no change. However, if some of
9943 the operands are the same or inverses of each other, simplifications
9944 will result.
9945
9946 For example, (and (ior A B) (not B)) can occur as the result of
9947 expanding a bit field assignment. When we apply the distributive
9948 law to this, we get (ior (and (A (not B))) (and (B (not B)))),
9949 which then simplifies to (and (A (not B))).
9950
9951 Note that no checks happen on the validity of applying the inverse
9952 distributive law. This is pointless since we can do it in the
9953 few places where this routine is called.
9954
9955 N is the index of the term that is decomposed (the arithmetic operation,
9956 i.e. (+ A B) in the first example above). !N is the index of the term that
9957 is distributed, i.e. of C in the first example above. */
9958 static rtx
9959 distribute_and_simplify_rtx (rtx x, int n)
9960 {
9961 machine_mode mode;
9962 enum rtx_code outer_code, inner_code;
9963 rtx decomposed, distributed, inner_op0, inner_op1, new_op0, new_op1, tmp;
9964
9965 /* Distributivity is not true for floating point as it can change the
9966 value. So we don't do it unless -funsafe-math-optimizations. */
9967 if (FLOAT_MODE_P (GET_MODE (x))
9968 && ! flag_unsafe_math_optimizations)
9969 return NULL_RTX;
9970
9971 decomposed = XEXP (x, n);
9972 if (!ARITHMETIC_P (decomposed))
9973 return NULL_RTX;
9974
9975 mode = GET_MODE (x);
9976 outer_code = GET_CODE (x);
9977 distributed = XEXP (x, !n);
9978
9979 inner_code = GET_CODE (decomposed);
9980 inner_op0 = XEXP (decomposed, 0);
9981 inner_op1 = XEXP (decomposed, 1);
9982
9983 /* Special case (and (xor B C) (not A)), which is equivalent to
9984 (xor (ior A B) (ior A C)) */
9985 if (outer_code == AND && inner_code == XOR && GET_CODE (distributed) == NOT)
9986 {
9987 distributed = XEXP (distributed, 0);
9988 outer_code = IOR;
9989 }
9990
9991 if (n == 0)
9992 {
9993 /* Distribute the second term. */
9994 new_op0 = simplify_gen_binary (outer_code, mode, inner_op0, distributed);
9995 new_op1 = simplify_gen_binary (outer_code, mode, inner_op1, distributed);
9996 }
9997 else
9998 {
9999 /* Distribute the first term. */
10000 new_op0 = simplify_gen_binary (outer_code, mode, distributed, inner_op0);
10001 new_op1 = simplify_gen_binary (outer_code, mode, distributed, inner_op1);
10002 }
10003
10004 tmp = apply_distributive_law (simplify_gen_binary (inner_code, mode,
10005 new_op0, new_op1));
10006 if (GET_CODE (tmp) != outer_code
10007 && (set_src_cost (tmp, mode, optimize_this_for_speed_p)
10008 < set_src_cost (x, mode, optimize_this_for_speed_p)))
10009 return tmp;
10010
10011 return NULL_RTX;
10012 }
10013 \f
10014 /* Simplify a logical `and' of VAROP with the constant CONSTOP, to be done
10015 in MODE. Return an equivalent form, if different from (and VAROP
10016 (const_int CONSTOP)). Otherwise, return NULL_RTX. */
10017
10018 static rtx
10019 simplify_and_const_int_1 (scalar_int_mode mode, rtx varop,
10020 unsigned HOST_WIDE_INT constop)
10021 {
10022 unsigned HOST_WIDE_INT nonzero;
10023 unsigned HOST_WIDE_INT orig_constop;
10024 rtx orig_varop;
10025 int i;
10026
10027 orig_varop = varop;
10028 orig_constop = constop;
10029 if (GET_CODE (varop) == CLOBBER)
10030 return NULL_RTX;
10031
10032 /* Simplify VAROP knowing that we will be only looking at some of the
10033 bits in it.
10034
10035 Note by passing in CONSTOP, we guarantee that the bits not set in
10036 CONSTOP are not significant and will never be examined. We must
10037 ensure that is the case by explicitly masking out those bits
10038 before returning. */
10039 varop = force_to_mode (varop, mode, constop, 0);
10040
10041 /* If VAROP is a CLOBBER, we will fail so return it. */
10042 if (GET_CODE (varop) == CLOBBER)
10043 return varop;
10044
10045 /* If VAROP is a CONST_INT, then we need to apply the mask in CONSTOP
10046 to VAROP and return the new constant. */
10047 if (CONST_INT_P (varop))
10048 return gen_int_mode (INTVAL (varop) & constop, mode);
10049
10050 /* See what bits may be nonzero in VAROP. Unlike the general case of
10051 a call to nonzero_bits, here we don't care about bits outside
10052 MODE. */
10053
10054 nonzero = nonzero_bits (varop, mode) & GET_MODE_MASK (mode);
10055
10056 /* Turn off all bits in the constant that are known to already be zero.
10057 Thus, if the AND isn't needed at all, we will have CONSTOP == NONZERO_BITS
10058 which is tested below. */
10059
10060 constop &= nonzero;
10061
10062 /* If we don't have any bits left, return zero. */
10063 if (constop == 0)
10064 return const0_rtx;
10065
10066 /* If VAROP is a NEG of something known to be zero or 1 and CONSTOP is
10067 a power of two, we can replace this with an ASHIFT. */
10068 if (GET_CODE (varop) == NEG && nonzero_bits (XEXP (varop, 0), mode) == 1
10069 && (i = exact_log2 (constop)) >= 0)
10070 return simplify_shift_const (NULL_RTX, ASHIFT, mode, XEXP (varop, 0), i);
10071
10072 /* If VAROP is an IOR or XOR, apply the AND to both branches of the IOR
10073 or XOR, then try to apply the distributive law. This may eliminate
10074 operations if either branch can be simplified because of the AND.
10075 It may also make some cases more complex, but those cases probably
10076 won't match a pattern either with or without this. */
10077
10078 if (GET_CODE (varop) == IOR || GET_CODE (varop) == XOR)
10079 {
10080 scalar_int_mode varop_mode = as_a <scalar_int_mode> (GET_MODE (varop));
10081 return
10082 gen_lowpart
10083 (mode,
10084 apply_distributive_law
10085 (simplify_gen_binary (GET_CODE (varop), varop_mode,
10086 simplify_and_const_int (NULL_RTX, varop_mode,
10087 XEXP (varop, 0),
10088 constop),
10089 simplify_and_const_int (NULL_RTX, varop_mode,
10090 XEXP (varop, 1),
10091 constop))));
10092 }
10093
10094 /* If VAROP is PLUS, and the constant is a mask of low bits, distribute
10095 the AND and see if one of the operands simplifies to zero. If so, we
10096 may eliminate it. */
10097
10098 if (GET_CODE (varop) == PLUS
10099 && pow2p_hwi (constop + 1))
10100 {
10101 rtx o0, o1;
10102
10103 o0 = simplify_and_const_int (NULL_RTX, mode, XEXP (varop, 0), constop);
10104 o1 = simplify_and_const_int (NULL_RTX, mode, XEXP (varop, 1), constop);
10105 if (o0 == const0_rtx)
10106 return o1;
10107 if (o1 == const0_rtx)
10108 return o0;
10109 }
10110
10111 /* Make a SUBREG if necessary. If we can't make it, fail. */
10112 varop = gen_lowpart (mode, varop);
10113 if (varop == NULL_RTX || GET_CODE (varop) == CLOBBER)
10114 return NULL_RTX;
10115
10116 /* If we are only masking insignificant bits, return VAROP. */
10117 if (constop == nonzero)
10118 return varop;
10119
10120 if (varop == orig_varop && constop == orig_constop)
10121 return NULL_RTX;
10122
10123 /* Otherwise, return an AND. */
10124 return simplify_gen_binary (AND, mode, varop, gen_int_mode (constop, mode));
10125 }
10126
10127
10128 /* We have X, a logical `and' of VAROP with the constant CONSTOP, to be done
10129 in MODE.
10130
10131 Return an equivalent form, if different from X. Otherwise, return X. If
10132 X is zero, we are to always construct the equivalent form. */
10133
10134 static rtx
10135 simplify_and_const_int (rtx x, scalar_int_mode mode, rtx varop,
10136 unsigned HOST_WIDE_INT constop)
10137 {
10138 rtx tem = simplify_and_const_int_1 (mode, varop, constop);
10139 if (tem)
10140 return tem;
10141
10142 if (!x)
10143 x = simplify_gen_binary (AND, GET_MODE (varop), varop,
10144 gen_int_mode (constop, mode));
10145 if (GET_MODE (x) != mode)
10146 x = gen_lowpart (mode, x);
10147 return x;
10148 }
10149 \f
10150 /* Given a REG X of mode XMODE, compute which bits in X can be nonzero.
10151 We don't care about bits outside of those defined in MODE.
10152
10153 For most X this is simply GET_MODE_MASK (GET_MODE (MODE)), but if X is
10154 a shift, AND, or zero_extract, we can do better. */
10155
10156 static rtx
10157 reg_nonzero_bits_for_combine (const_rtx x, scalar_int_mode xmode,
10158 scalar_int_mode mode,
10159 unsigned HOST_WIDE_INT *nonzero)
10160 {
10161 rtx tem;
10162 reg_stat_type *rsp;
10163
10164 /* If X is a register whose nonzero bits value is current, use it.
10165 Otherwise, if X is a register whose value we can find, use that
10166 value. Otherwise, use the previously-computed global nonzero bits
10167 for this register. */
10168
10169 rsp = &reg_stat[REGNO (x)];
10170 if (rsp->last_set_value != 0
10171 && (rsp->last_set_mode == mode
10172 || (GET_MODE_CLASS (rsp->last_set_mode) == MODE_INT
10173 && GET_MODE_CLASS (mode) == MODE_INT))
10174 && ((rsp->last_set_label >= label_tick_ebb_start
10175 && rsp->last_set_label < label_tick)
10176 || (rsp->last_set_label == label_tick
10177 && DF_INSN_LUID (rsp->last_set) < subst_low_luid)
10178 || (REGNO (x) >= FIRST_PSEUDO_REGISTER
10179 && REGNO (x) < reg_n_sets_max
10180 && REG_N_SETS (REGNO (x)) == 1
10181 && !REGNO_REG_SET_P
10182 (DF_LR_IN (ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb),
10183 REGNO (x)))))
10184 {
10185 /* Note that, even if the precision of last_set_mode is lower than that
10186 of mode, record_value_for_reg invoked nonzero_bits on the register
10187 with nonzero_bits_mode (because last_set_mode is necessarily integral
10188 and HWI_COMPUTABLE_MODE_P in this case) so bits in nonzero_bits_mode
10189 are all valid, hence in mode too since nonzero_bits_mode is defined
10190 to the largest HWI_COMPUTABLE_MODE_P mode. */
10191 *nonzero &= rsp->last_set_nonzero_bits;
10192 return NULL;
10193 }
10194
10195 tem = get_last_value (x);
10196 if (tem)
10197 {
10198 if (SHORT_IMMEDIATES_SIGN_EXTEND)
10199 tem = sign_extend_short_imm (tem, xmode, GET_MODE_PRECISION (mode));
10200
10201 return tem;
10202 }
10203
10204 if (nonzero_sign_valid && rsp->nonzero_bits)
10205 {
10206 unsigned HOST_WIDE_INT mask = rsp->nonzero_bits;
10207
10208 if (GET_MODE_PRECISION (xmode) < GET_MODE_PRECISION (mode))
10209 /* We don't know anything about the upper bits. */
10210 mask |= GET_MODE_MASK (mode) ^ GET_MODE_MASK (xmode);
10211
10212 *nonzero &= mask;
10213 }
10214
10215 return NULL;
10216 }
10217
10218 /* Given a reg X of mode XMODE, return the number of bits at the high-order
10219 end of X that are known to be equal to the sign bit. X will be used
10220 in mode MODE; the returned value will always be between 1 and the
10221 number of bits in MODE. */
10222
10223 static rtx
10224 reg_num_sign_bit_copies_for_combine (const_rtx x, scalar_int_mode xmode,
10225 scalar_int_mode mode,
10226 unsigned int *result)
10227 {
10228 rtx tem;
10229 reg_stat_type *rsp;
10230
10231 rsp = &reg_stat[REGNO (x)];
10232 if (rsp->last_set_value != 0
10233 && rsp->last_set_mode == mode
10234 && ((rsp->last_set_label >= label_tick_ebb_start
10235 && rsp->last_set_label < label_tick)
10236 || (rsp->last_set_label == label_tick
10237 && DF_INSN_LUID (rsp->last_set) < subst_low_luid)
10238 || (REGNO (x) >= FIRST_PSEUDO_REGISTER
10239 && REGNO (x) < reg_n_sets_max
10240 && REG_N_SETS (REGNO (x)) == 1
10241 && !REGNO_REG_SET_P
10242 (DF_LR_IN (ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb),
10243 REGNO (x)))))
10244 {
10245 *result = rsp->last_set_sign_bit_copies;
10246 return NULL;
10247 }
10248
10249 tem = get_last_value (x);
10250 if (tem != 0)
10251 return tem;
10252
10253 if (nonzero_sign_valid && rsp->sign_bit_copies != 0
10254 && GET_MODE_PRECISION (xmode) == GET_MODE_PRECISION (mode))
10255 *result = rsp->sign_bit_copies;
10256
10257 return NULL;
10258 }
10259 \f
10260 /* Return the number of "extended" bits there are in X, when interpreted
10261 as a quantity in MODE whose signedness is indicated by UNSIGNEDP. For
10262 unsigned quantities, this is the number of high-order zero bits.
10263 For signed quantities, this is the number of copies of the sign bit
10264 minus 1. In both case, this function returns the number of "spare"
10265 bits. For example, if two quantities for which this function returns
10266 at least 1 are added, the addition is known not to overflow.
10267
10268 This function will always return 0 unless called during combine, which
10269 implies that it must be called from a define_split. */
10270
10271 unsigned int
10272 extended_count (const_rtx x, machine_mode mode, int unsignedp)
10273 {
10274 if (nonzero_sign_valid == 0)
10275 return 0;
10276
10277 scalar_int_mode int_mode;
10278 return (unsignedp
10279 ? (is_a <scalar_int_mode> (mode, &int_mode)
10280 && HWI_COMPUTABLE_MODE_P (int_mode)
10281 ? (unsigned int) (GET_MODE_PRECISION (int_mode) - 1
10282 - floor_log2 (nonzero_bits (x, int_mode)))
10283 : 0)
10284 : num_sign_bit_copies (x, mode) - 1);
10285 }
10286
10287 /* This function is called from `simplify_shift_const' to merge two
10288 outer operations. Specifically, we have already found that we need
10289 to perform operation *POP0 with constant *PCONST0 at the outermost
10290 position. We would now like to also perform OP1 with constant CONST1
10291 (with *POP0 being done last).
10292
10293 Return 1 if we can do the operation and update *POP0 and *PCONST0 with
10294 the resulting operation. *PCOMP_P is set to 1 if we would need to
10295 complement the innermost operand, otherwise it is unchanged.
10296
10297 MODE is the mode in which the operation will be done. No bits outside
10298 the width of this mode matter. It is assumed that the width of this mode
10299 is smaller than or equal to HOST_BITS_PER_WIDE_INT.
10300
10301 If *POP0 or OP1 are UNKNOWN, it means no operation is required. Only NEG, PLUS,
10302 IOR, XOR, and AND are supported. We may set *POP0 to SET if the proper
10303 result is simply *PCONST0.
10304
10305 If the resulting operation cannot be expressed as one operation, we
10306 return 0 and do not change *POP0, *PCONST0, and *PCOMP_P. */
10307
10308 static int
10309 merge_outer_ops (enum rtx_code *pop0, HOST_WIDE_INT *pconst0, enum rtx_code op1, HOST_WIDE_INT const1, machine_mode mode, int *pcomp_p)
10310 {
10311 enum rtx_code op0 = *pop0;
10312 HOST_WIDE_INT const0 = *pconst0;
10313
10314 const0 &= GET_MODE_MASK (mode);
10315 const1 &= GET_MODE_MASK (mode);
10316
10317 /* If OP0 is an AND, clear unimportant bits in CONST1. */
10318 if (op0 == AND)
10319 const1 &= const0;
10320
10321 /* If OP0 or OP1 is UNKNOWN, this is easy. Similarly if they are the same or
10322 if OP0 is SET. */
10323
10324 if (op1 == UNKNOWN || op0 == SET)
10325 return 1;
10326
10327 else if (op0 == UNKNOWN)
10328 op0 = op1, const0 = const1;
10329
10330 else if (op0 == op1)
10331 {
10332 switch (op0)
10333 {
10334 case AND:
10335 const0 &= const1;
10336 break;
10337 case IOR:
10338 const0 |= const1;
10339 break;
10340 case XOR:
10341 const0 ^= const1;
10342 break;
10343 case PLUS:
10344 const0 += const1;
10345 break;
10346 case NEG:
10347 op0 = UNKNOWN;
10348 break;
10349 default:
10350 break;
10351 }
10352 }
10353
10354 /* Otherwise, if either is a PLUS or NEG, we can't do anything. */
10355 else if (op0 == PLUS || op1 == PLUS || op0 == NEG || op1 == NEG)
10356 return 0;
10357
10358 /* If the two constants aren't the same, we can't do anything. The
10359 remaining six cases can all be done. */
10360 else if (const0 != const1)
10361 return 0;
10362
10363 else
10364 switch (op0)
10365 {
10366 case IOR:
10367 if (op1 == AND)
10368 /* (a & b) | b == b */
10369 op0 = SET;
10370 else /* op1 == XOR */
10371 /* (a ^ b) | b == a | b */
10372 {;}
10373 break;
10374
10375 case XOR:
10376 if (op1 == AND)
10377 /* (a & b) ^ b == (~a) & b */
10378 op0 = AND, *pcomp_p = 1;
10379 else /* op1 == IOR */
10380 /* (a | b) ^ b == a & ~b */
10381 op0 = AND, const0 = ~const0;
10382 break;
10383
10384 case AND:
10385 if (op1 == IOR)
10386 /* (a | b) & b == b */
10387 op0 = SET;
10388 else /* op1 == XOR */
10389 /* (a ^ b) & b) == (~a) & b */
10390 *pcomp_p = 1;
10391 break;
10392 default:
10393 break;
10394 }
10395
10396 /* Check for NO-OP cases. */
10397 const0 &= GET_MODE_MASK (mode);
10398 if (const0 == 0
10399 && (op0 == IOR || op0 == XOR || op0 == PLUS))
10400 op0 = UNKNOWN;
10401 else if (const0 == 0 && op0 == AND)
10402 op0 = SET;
10403 else if ((unsigned HOST_WIDE_INT) const0 == GET_MODE_MASK (mode)
10404 && op0 == AND)
10405 op0 = UNKNOWN;
10406
10407 *pop0 = op0;
10408
10409 /* ??? Slightly redundant with the above mask, but not entirely.
10410 Moving this above means we'd have to sign-extend the mode mask
10411 for the final test. */
10412 if (op0 != UNKNOWN && op0 != NEG)
10413 *pconst0 = trunc_int_for_mode (const0, mode);
10414
10415 return 1;
10416 }
10417 \f
10418 /* A helper to simplify_shift_const_1 to determine the mode we can perform
10419 the shift in. The original shift operation CODE is performed on OP in
10420 ORIG_MODE. Return the wider mode MODE if we can perform the operation
10421 in that mode. Return ORIG_MODE otherwise. We can also assume that the
10422 result of the shift is subject to operation OUTER_CODE with operand
10423 OUTER_CONST. */
10424
10425 static scalar_int_mode
10426 try_widen_shift_mode (enum rtx_code code, rtx op, int count,
10427 scalar_int_mode orig_mode, scalar_int_mode mode,
10428 enum rtx_code outer_code, HOST_WIDE_INT outer_const)
10429 {
10430 gcc_assert (GET_MODE_PRECISION (mode) > GET_MODE_PRECISION (orig_mode));
10431
10432 /* In general we can't perform in wider mode for right shift and rotate. */
10433 switch (code)
10434 {
10435 case ASHIFTRT:
10436 /* We can still widen if the bits brought in from the left are identical
10437 to the sign bit of ORIG_MODE. */
10438 if (num_sign_bit_copies (op, mode)
10439 > (unsigned) (GET_MODE_PRECISION (mode)
10440 - GET_MODE_PRECISION (orig_mode)))
10441 return mode;
10442 return orig_mode;
10443
10444 case LSHIFTRT:
10445 /* Similarly here but with zero bits. */
10446 if (HWI_COMPUTABLE_MODE_P (mode)
10447 && (nonzero_bits (op, mode) & ~GET_MODE_MASK (orig_mode)) == 0)
10448 return mode;
10449
10450 /* We can also widen if the bits brought in will be masked off. This
10451 operation is performed in ORIG_MODE. */
10452 if (outer_code == AND)
10453 {
10454 int care_bits = low_bitmask_len (orig_mode, outer_const);
10455
10456 if (care_bits >= 0
10457 && GET_MODE_PRECISION (orig_mode) - care_bits >= count)
10458 return mode;
10459 }
10460 /* fall through */
10461
10462 case ROTATE:
10463 return orig_mode;
10464
10465 case ROTATERT:
10466 gcc_unreachable ();
10467
10468 default:
10469 return mode;
10470 }
10471 }
10472
10473 /* Simplify a shift of VAROP by ORIG_COUNT bits. CODE says what kind
10474 of shift. The result of the shift is RESULT_MODE. Return NULL_RTX
10475 if we cannot simplify it. Otherwise, return a simplified value.
10476
10477 The shift is normally computed in the widest mode we find in VAROP, as
10478 long as it isn't a different number of words than RESULT_MODE. Exceptions
10479 are ASHIFTRT and ROTATE, which are always done in their original mode. */
10480
10481 static rtx
10482 simplify_shift_const_1 (enum rtx_code code, machine_mode result_mode,
10483 rtx varop, int orig_count)
10484 {
10485 enum rtx_code orig_code = code;
10486 rtx orig_varop = varop;
10487 int count, log2;
10488 machine_mode mode = result_mode;
10489 machine_mode shift_mode;
10490 scalar_int_mode tmode, inner_mode, int_mode, int_varop_mode, int_result_mode;
10491 /* We form (outer_op (code varop count) (outer_const)). */
10492 enum rtx_code outer_op = UNKNOWN;
10493 HOST_WIDE_INT outer_const = 0;
10494 int complement_p = 0;
10495 rtx new_rtx, x;
10496
10497 /* Make sure and truncate the "natural" shift on the way in. We don't
10498 want to do this inside the loop as it makes it more difficult to
10499 combine shifts. */
10500 if (SHIFT_COUNT_TRUNCATED)
10501 orig_count &= GET_MODE_UNIT_BITSIZE (mode) - 1;
10502
10503 /* If we were given an invalid count, don't do anything except exactly
10504 what was requested. */
10505
10506 if (orig_count < 0 || orig_count >= (int) GET_MODE_UNIT_PRECISION (mode))
10507 return NULL_RTX;
10508
10509 count = orig_count;
10510
10511 /* Unless one of the branches of the `if' in this loop does a `continue',
10512 we will `break' the loop after the `if'. */
10513
10514 while (count != 0)
10515 {
10516 /* If we have an operand of (clobber (const_int 0)), fail. */
10517 if (GET_CODE (varop) == CLOBBER)
10518 return NULL_RTX;
10519
10520 /* Convert ROTATERT to ROTATE. */
10521 if (code == ROTATERT)
10522 {
10523 unsigned int bitsize = GET_MODE_UNIT_PRECISION (result_mode);
10524 code = ROTATE;
10525 count = bitsize - count;
10526 }
10527
10528 shift_mode = result_mode;
10529 if (shift_mode != mode)
10530 {
10531 /* We only change the modes of scalar shifts. */
10532 int_mode = as_a <scalar_int_mode> (mode);
10533 int_result_mode = as_a <scalar_int_mode> (result_mode);
10534 shift_mode = try_widen_shift_mode (code, varop, count,
10535 int_result_mode, int_mode,
10536 outer_op, outer_const);
10537 }
10538
10539 scalar_int_mode shift_unit_mode
10540 = as_a <scalar_int_mode> (GET_MODE_INNER (shift_mode));
10541
10542 /* Handle cases where the count is greater than the size of the mode
10543 minus 1. For ASHIFT, use the size minus one as the count (this can
10544 occur when simplifying (lshiftrt (ashiftrt ..))). For rotates,
10545 take the count modulo the size. For other shifts, the result is
10546 zero.
10547
10548 Since these shifts are being produced by the compiler by combining
10549 multiple operations, each of which are defined, we know what the
10550 result is supposed to be. */
10551
10552 if (count > (GET_MODE_PRECISION (shift_unit_mode) - 1))
10553 {
10554 if (code == ASHIFTRT)
10555 count = GET_MODE_PRECISION (shift_unit_mode) - 1;
10556 else if (code == ROTATE || code == ROTATERT)
10557 count %= GET_MODE_PRECISION (shift_unit_mode);
10558 else
10559 {
10560 /* We can't simply return zero because there may be an
10561 outer op. */
10562 varop = const0_rtx;
10563 count = 0;
10564 break;
10565 }
10566 }
10567
10568 /* If we discovered we had to complement VAROP, leave. Making a NOT
10569 here would cause an infinite loop. */
10570 if (complement_p)
10571 break;
10572
10573 if (shift_mode == shift_unit_mode)
10574 {
10575 /* An arithmetic right shift of a quantity known to be -1 or 0
10576 is a no-op. */
10577 if (code == ASHIFTRT
10578 && (num_sign_bit_copies (varop, shift_unit_mode)
10579 == GET_MODE_PRECISION (shift_unit_mode)))
10580 {
10581 count = 0;
10582 break;
10583 }
10584
10585 /* If we are doing an arithmetic right shift and discarding all but
10586 the sign bit copies, this is equivalent to doing a shift by the
10587 bitsize minus one. Convert it into that shift because it will
10588 often allow other simplifications. */
10589
10590 if (code == ASHIFTRT
10591 && (count + num_sign_bit_copies (varop, shift_unit_mode)
10592 >= GET_MODE_PRECISION (shift_unit_mode)))
10593 count = GET_MODE_PRECISION (shift_unit_mode) - 1;
10594
10595 /* We simplify the tests below and elsewhere by converting
10596 ASHIFTRT to LSHIFTRT if we know the sign bit is clear.
10597 `make_compound_operation' will convert it to an ASHIFTRT for
10598 those machines (such as VAX) that don't have an LSHIFTRT. */
10599 if (code == ASHIFTRT
10600 && HWI_COMPUTABLE_MODE_P (shift_unit_mode)
10601 && val_signbit_known_clear_p (shift_unit_mode,
10602 nonzero_bits (varop,
10603 shift_unit_mode)))
10604 code = LSHIFTRT;
10605
10606 if (((code == LSHIFTRT
10607 && HWI_COMPUTABLE_MODE_P (shift_unit_mode)
10608 && !(nonzero_bits (varop, shift_unit_mode) >> count))
10609 || (code == ASHIFT
10610 && HWI_COMPUTABLE_MODE_P (shift_unit_mode)
10611 && !((nonzero_bits (varop, shift_unit_mode) << count)
10612 & GET_MODE_MASK (shift_unit_mode))))
10613 && !side_effects_p (varop))
10614 varop = const0_rtx;
10615 }
10616
10617 switch (GET_CODE (varop))
10618 {
10619 case SIGN_EXTEND:
10620 case ZERO_EXTEND:
10621 case SIGN_EXTRACT:
10622 case ZERO_EXTRACT:
10623 new_rtx = expand_compound_operation (varop);
10624 if (new_rtx != varop)
10625 {
10626 varop = new_rtx;
10627 continue;
10628 }
10629 break;
10630
10631 case MEM:
10632 /* The following rules apply only to scalars. */
10633 if (shift_mode != shift_unit_mode)
10634 break;
10635 int_mode = as_a <scalar_int_mode> (mode);
10636
10637 /* If we have (xshiftrt (mem ...) C) and C is MODE_WIDTH
10638 minus the width of a smaller mode, we can do this with a
10639 SIGN_EXTEND or ZERO_EXTEND from the narrower memory location. */
10640 if ((code == ASHIFTRT || code == LSHIFTRT)
10641 && ! mode_dependent_address_p (XEXP (varop, 0),
10642 MEM_ADDR_SPACE (varop))
10643 && ! MEM_VOLATILE_P (varop)
10644 && (int_mode_for_size (GET_MODE_BITSIZE (int_mode) - count, 1)
10645 .exists (&tmode)))
10646 {
10647 new_rtx = adjust_address_nv (varop, tmode,
10648 BYTES_BIG_ENDIAN ? 0
10649 : count / BITS_PER_UNIT);
10650
10651 varop = gen_rtx_fmt_e (code == ASHIFTRT ? SIGN_EXTEND
10652 : ZERO_EXTEND, int_mode, new_rtx);
10653 count = 0;
10654 continue;
10655 }
10656 break;
10657
10658 case SUBREG:
10659 /* The following rules apply only to scalars. */
10660 if (shift_mode != shift_unit_mode)
10661 break;
10662 int_mode = as_a <scalar_int_mode> (mode);
10663 int_varop_mode = as_a <scalar_int_mode> (GET_MODE (varop));
10664
10665 /* If VAROP is a SUBREG, strip it as long as the inner operand has
10666 the same number of words as what we've seen so far. Then store
10667 the widest mode in MODE. */
10668 if (subreg_lowpart_p (varop)
10669 && is_int_mode (GET_MODE (SUBREG_REG (varop)), &inner_mode)
10670 && GET_MODE_SIZE (inner_mode) > GET_MODE_SIZE (int_varop_mode)
10671 && (CEIL (GET_MODE_SIZE (inner_mode), UNITS_PER_WORD)
10672 == CEIL (GET_MODE_SIZE (int_mode), UNITS_PER_WORD))
10673 && GET_MODE_CLASS (int_varop_mode) == MODE_INT)
10674 {
10675 varop = SUBREG_REG (varop);
10676 if (GET_MODE_SIZE (inner_mode) > GET_MODE_SIZE (int_mode))
10677 mode = inner_mode;
10678 continue;
10679 }
10680 break;
10681
10682 case MULT:
10683 /* Some machines use MULT instead of ASHIFT because MULT
10684 is cheaper. But it is still better on those machines to
10685 merge two shifts into one. */
10686 if (CONST_INT_P (XEXP (varop, 1))
10687 && (log2 = exact_log2 (UINTVAL (XEXP (varop, 1)))) >= 0)
10688 {
10689 rtx log2_rtx = gen_int_shift_amount (GET_MODE (varop), log2);
10690 varop = simplify_gen_binary (ASHIFT, GET_MODE (varop),
10691 XEXP (varop, 0), log2_rtx);
10692 continue;
10693 }
10694 break;
10695
10696 case UDIV:
10697 /* Similar, for when divides are cheaper. */
10698 if (CONST_INT_P (XEXP (varop, 1))
10699 && (log2 = exact_log2 (UINTVAL (XEXP (varop, 1)))) >= 0)
10700 {
10701 rtx log2_rtx = gen_int_shift_amount (GET_MODE (varop), log2);
10702 varop = simplify_gen_binary (LSHIFTRT, GET_MODE (varop),
10703 XEXP (varop, 0), log2_rtx);
10704 continue;
10705 }
10706 break;
10707
10708 case ASHIFTRT:
10709 /* If we are extracting just the sign bit of an arithmetic
10710 right shift, that shift is not needed. However, the sign
10711 bit of a wider mode may be different from what would be
10712 interpreted as the sign bit in a narrower mode, so, if
10713 the result is narrower, don't discard the shift. */
10714 if (code == LSHIFTRT
10715 && count == (GET_MODE_UNIT_BITSIZE (result_mode) - 1)
10716 && (GET_MODE_UNIT_BITSIZE (result_mode)
10717 >= GET_MODE_UNIT_BITSIZE (GET_MODE (varop))))
10718 {
10719 varop = XEXP (varop, 0);
10720 continue;
10721 }
10722
10723 /* fall through */
10724
10725 case LSHIFTRT:
10726 case ASHIFT:
10727 case ROTATE:
10728 /* The following rules apply only to scalars. */
10729 if (shift_mode != shift_unit_mode)
10730 break;
10731 int_mode = as_a <scalar_int_mode> (mode);
10732 int_varop_mode = as_a <scalar_int_mode> (GET_MODE (varop));
10733 int_result_mode = as_a <scalar_int_mode> (result_mode);
10734
10735 /* Here we have two nested shifts. The result is usually the
10736 AND of a new shift with a mask. We compute the result below. */
10737 if (CONST_INT_P (XEXP (varop, 1))
10738 && INTVAL (XEXP (varop, 1)) >= 0
10739 && INTVAL (XEXP (varop, 1)) < GET_MODE_PRECISION (int_varop_mode)
10740 && HWI_COMPUTABLE_MODE_P (int_result_mode)
10741 && HWI_COMPUTABLE_MODE_P (int_mode))
10742 {
10743 enum rtx_code first_code = GET_CODE (varop);
10744 unsigned int first_count = INTVAL (XEXP (varop, 1));
10745 unsigned HOST_WIDE_INT mask;
10746 rtx mask_rtx;
10747
10748 /* We have one common special case. We can't do any merging if
10749 the inner code is an ASHIFTRT of a smaller mode. However, if
10750 we have (ashift:M1 (subreg:M1 (ashiftrt:M2 FOO C1) 0) C2)
10751 with C2 == GET_MODE_BITSIZE (M1) - GET_MODE_BITSIZE (M2),
10752 we can convert it to
10753 (ashiftrt:M1 (ashift:M1 (and:M1 (subreg:M1 FOO 0) C3) C2) C1).
10754 This simplifies certain SIGN_EXTEND operations. */
10755 if (code == ASHIFT && first_code == ASHIFTRT
10756 && count == (GET_MODE_PRECISION (int_result_mode)
10757 - GET_MODE_PRECISION (int_varop_mode)))
10758 {
10759 /* C3 has the low-order C1 bits zero. */
10760
10761 mask = GET_MODE_MASK (int_mode)
10762 & ~((HOST_WIDE_INT_1U << first_count) - 1);
10763
10764 varop = simplify_and_const_int (NULL_RTX, int_result_mode,
10765 XEXP (varop, 0), mask);
10766 varop = simplify_shift_const (NULL_RTX, ASHIFT,
10767 int_result_mode, varop, count);
10768 count = first_count;
10769 code = ASHIFTRT;
10770 continue;
10771 }
10772
10773 /* If this was (ashiftrt (ashift foo C1) C2) and FOO has more
10774 than C1 high-order bits equal to the sign bit, we can convert
10775 this to either an ASHIFT or an ASHIFTRT depending on the
10776 two counts.
10777
10778 We cannot do this if VAROP's mode is not SHIFT_UNIT_MODE. */
10779
10780 if (code == ASHIFTRT && first_code == ASHIFT
10781 && int_varop_mode == shift_unit_mode
10782 && (num_sign_bit_copies (XEXP (varop, 0), shift_unit_mode)
10783 > first_count))
10784 {
10785 varop = XEXP (varop, 0);
10786 count -= first_count;
10787 if (count < 0)
10788 {
10789 count = -count;
10790 code = ASHIFT;
10791 }
10792
10793 continue;
10794 }
10795
10796 /* There are some cases we can't do. If CODE is ASHIFTRT,
10797 we can only do this if FIRST_CODE is also ASHIFTRT.
10798
10799 We can't do the case when CODE is ROTATE and FIRST_CODE is
10800 ASHIFTRT.
10801
10802 If the mode of this shift is not the mode of the outer shift,
10803 we can't do this if either shift is a right shift or ROTATE.
10804
10805 Finally, we can't do any of these if the mode is too wide
10806 unless the codes are the same.
10807
10808 Handle the case where the shift codes are the same
10809 first. */
10810
10811 if (code == first_code)
10812 {
10813 if (int_varop_mode != int_result_mode
10814 && (code == ASHIFTRT || code == LSHIFTRT
10815 || code == ROTATE))
10816 break;
10817
10818 count += first_count;
10819 varop = XEXP (varop, 0);
10820 continue;
10821 }
10822
10823 if (code == ASHIFTRT
10824 || (code == ROTATE && first_code == ASHIFTRT)
10825 || GET_MODE_PRECISION (int_mode) > HOST_BITS_PER_WIDE_INT
10826 || (int_varop_mode != int_result_mode
10827 && (first_code == ASHIFTRT || first_code == LSHIFTRT
10828 || first_code == ROTATE
10829 || code == ROTATE)))
10830 break;
10831
10832 /* To compute the mask to apply after the shift, shift the
10833 nonzero bits of the inner shift the same way the
10834 outer shift will. */
10835
10836 mask_rtx = gen_int_mode (nonzero_bits (varop, int_varop_mode),
10837 int_result_mode);
10838 rtx count_rtx = gen_int_shift_amount (int_result_mode, count);
10839 mask_rtx
10840 = simplify_const_binary_operation (code, int_result_mode,
10841 mask_rtx, count_rtx);
10842
10843 /* Give up if we can't compute an outer operation to use. */
10844 if (mask_rtx == 0
10845 || !CONST_INT_P (mask_rtx)
10846 || ! merge_outer_ops (&outer_op, &outer_const, AND,
10847 INTVAL (mask_rtx),
10848 int_result_mode, &complement_p))
10849 break;
10850
10851 /* If the shifts are in the same direction, we add the
10852 counts. Otherwise, we subtract them. */
10853 if ((code == ASHIFTRT || code == LSHIFTRT)
10854 == (first_code == ASHIFTRT || first_code == LSHIFTRT))
10855 count += first_count;
10856 else
10857 count -= first_count;
10858
10859 /* If COUNT is positive, the new shift is usually CODE,
10860 except for the two exceptions below, in which case it is
10861 FIRST_CODE. If the count is negative, FIRST_CODE should
10862 always be used */
10863 if (count > 0
10864 && ((first_code == ROTATE && code == ASHIFT)
10865 || (first_code == ASHIFTRT && code == LSHIFTRT)))
10866 code = first_code;
10867 else if (count < 0)
10868 code = first_code, count = -count;
10869
10870 varop = XEXP (varop, 0);
10871 continue;
10872 }
10873
10874 /* If we have (A << B << C) for any shift, we can convert this to
10875 (A << C << B). This wins if A is a constant. Only try this if
10876 B is not a constant. */
10877
10878 else if (GET_CODE (varop) == code
10879 && CONST_INT_P (XEXP (varop, 0))
10880 && !CONST_INT_P (XEXP (varop, 1)))
10881 {
10882 /* For ((unsigned) (cstULL >> count)) >> cst2 we have to make
10883 sure the result will be masked. See PR70222. */
10884 if (code == LSHIFTRT
10885 && int_mode != int_result_mode
10886 && !merge_outer_ops (&outer_op, &outer_const, AND,
10887 GET_MODE_MASK (int_result_mode)
10888 >> orig_count, int_result_mode,
10889 &complement_p))
10890 break;
10891 /* For ((int) (cstLL >> count)) >> cst2 just give up. Queuing
10892 up outer sign extension (often left and right shift) is
10893 hardly more efficient than the original. See PR70429. */
10894 if (code == ASHIFTRT && int_mode != int_result_mode)
10895 break;
10896
10897 rtx count_rtx = gen_int_shift_amount (int_result_mode, count);
10898 rtx new_rtx = simplify_const_binary_operation (code, int_mode,
10899 XEXP (varop, 0),
10900 count_rtx);
10901 varop = gen_rtx_fmt_ee (code, int_mode, new_rtx, XEXP (varop, 1));
10902 count = 0;
10903 continue;
10904 }
10905 break;
10906
10907 case NOT:
10908 /* The following rules apply only to scalars. */
10909 if (shift_mode != shift_unit_mode)
10910 break;
10911
10912 /* Make this fit the case below. */
10913 varop = gen_rtx_XOR (mode, XEXP (varop, 0), constm1_rtx);
10914 continue;
10915
10916 case IOR:
10917 case AND:
10918 case XOR:
10919 /* The following rules apply only to scalars. */
10920 if (shift_mode != shift_unit_mode)
10921 break;
10922 int_varop_mode = as_a <scalar_int_mode> (GET_MODE (varop));
10923 int_result_mode = as_a <scalar_int_mode> (result_mode);
10924
10925 /* If we have (xshiftrt (ior (plus X (const_int -1)) X) C)
10926 with C the size of VAROP - 1 and the shift is logical if
10927 STORE_FLAG_VALUE is 1 and arithmetic if STORE_FLAG_VALUE is -1,
10928 we have an (le X 0) operation. If we have an arithmetic shift
10929 and STORE_FLAG_VALUE is 1 or we have a logical shift with
10930 STORE_FLAG_VALUE of -1, we have a (neg (le X 0)) operation. */
10931
10932 if (GET_CODE (varop) == IOR && GET_CODE (XEXP (varop, 0)) == PLUS
10933 && XEXP (XEXP (varop, 0), 1) == constm1_rtx
10934 && (STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
10935 && (code == LSHIFTRT || code == ASHIFTRT)
10936 && count == (GET_MODE_PRECISION (int_varop_mode) - 1)
10937 && rtx_equal_p (XEXP (XEXP (varop, 0), 0), XEXP (varop, 1)))
10938 {
10939 count = 0;
10940 varop = gen_rtx_LE (int_varop_mode, XEXP (varop, 1),
10941 const0_rtx);
10942
10943 if (STORE_FLAG_VALUE == 1 ? code == ASHIFTRT : code == LSHIFTRT)
10944 varop = gen_rtx_NEG (int_varop_mode, varop);
10945
10946 continue;
10947 }
10948
10949 /* If we have (shift (logical)), move the logical to the outside
10950 to allow it to possibly combine with another logical and the
10951 shift to combine with another shift. This also canonicalizes to
10952 what a ZERO_EXTRACT looks like. Also, some machines have
10953 (and (shift)) insns. */
10954
10955 if (CONST_INT_P (XEXP (varop, 1))
10956 /* We can't do this if we have (ashiftrt (xor)) and the
10957 constant has its sign bit set in shift_unit_mode with
10958 shift_unit_mode wider than result_mode. */
10959 && !(code == ASHIFTRT && GET_CODE (varop) == XOR
10960 && int_result_mode != shift_unit_mode
10961 && trunc_int_for_mode (INTVAL (XEXP (varop, 1)),
10962 shift_unit_mode) < 0)
10963 && (new_rtx = simplify_const_binary_operation
10964 (code, int_result_mode,
10965 gen_int_mode (INTVAL (XEXP (varop, 1)), int_result_mode),
10966 gen_int_shift_amount (int_result_mode, count))) != 0
10967 && CONST_INT_P (new_rtx)
10968 && merge_outer_ops (&outer_op, &outer_const, GET_CODE (varop),
10969 INTVAL (new_rtx), int_result_mode,
10970 &complement_p))
10971 {
10972 varop = XEXP (varop, 0);
10973 continue;
10974 }
10975
10976 /* If we can't do that, try to simplify the shift in each arm of the
10977 logical expression, make a new logical expression, and apply
10978 the inverse distributive law. This also can't be done for
10979 (ashiftrt (xor)) where we've widened the shift and the constant
10980 changes the sign bit. */
10981 if (CONST_INT_P (XEXP (varop, 1))
10982 && !(code == ASHIFTRT && GET_CODE (varop) == XOR
10983 && int_result_mode != shift_unit_mode
10984 && trunc_int_for_mode (INTVAL (XEXP (varop, 1)),
10985 shift_unit_mode) < 0))
10986 {
10987 rtx lhs = simplify_shift_const (NULL_RTX, code, shift_unit_mode,
10988 XEXP (varop, 0), count);
10989 rtx rhs = simplify_shift_const (NULL_RTX, code, shift_unit_mode,
10990 XEXP (varop, 1), count);
10991
10992 varop = simplify_gen_binary (GET_CODE (varop), shift_unit_mode,
10993 lhs, rhs);
10994 varop = apply_distributive_law (varop);
10995
10996 count = 0;
10997 continue;
10998 }
10999 break;
11000
11001 case EQ:
11002 /* The following rules apply only to scalars. */
11003 if (shift_mode != shift_unit_mode)
11004 break;
11005 int_result_mode = as_a <scalar_int_mode> (result_mode);
11006
11007 /* Convert (lshiftrt (eq FOO 0) C) to (xor FOO 1) if STORE_FLAG_VALUE
11008 says that the sign bit can be tested, FOO has mode MODE, C is
11009 GET_MODE_PRECISION (MODE) - 1, and FOO has only its low-order bit
11010 that may be nonzero. */
11011 if (code == LSHIFTRT
11012 && XEXP (varop, 1) == const0_rtx
11013 && GET_MODE (XEXP (varop, 0)) == int_result_mode
11014 && count == (GET_MODE_PRECISION (int_result_mode) - 1)
11015 && HWI_COMPUTABLE_MODE_P (int_result_mode)
11016 && STORE_FLAG_VALUE == -1
11017 && nonzero_bits (XEXP (varop, 0), int_result_mode) == 1
11018 && merge_outer_ops (&outer_op, &outer_const, XOR, 1,
11019 int_result_mode, &complement_p))
11020 {
11021 varop = XEXP (varop, 0);
11022 count = 0;
11023 continue;
11024 }
11025 break;
11026
11027 case NEG:
11028 /* The following rules apply only to scalars. */
11029 if (shift_mode != shift_unit_mode)
11030 break;
11031 int_result_mode = as_a <scalar_int_mode> (result_mode);
11032
11033 /* (lshiftrt (neg A) C) where A is either 0 or 1 and C is one less
11034 than the number of bits in the mode is equivalent to A. */
11035 if (code == LSHIFTRT
11036 && count == (GET_MODE_PRECISION (int_result_mode) - 1)
11037 && nonzero_bits (XEXP (varop, 0), int_result_mode) == 1)
11038 {
11039 varop = XEXP (varop, 0);
11040 count = 0;
11041 continue;
11042 }
11043
11044 /* NEG commutes with ASHIFT since it is multiplication. Move the
11045 NEG outside to allow shifts to combine. */
11046 if (code == ASHIFT
11047 && merge_outer_ops (&outer_op, &outer_const, NEG, 0,
11048 int_result_mode, &complement_p))
11049 {
11050 varop = XEXP (varop, 0);
11051 continue;
11052 }
11053 break;
11054
11055 case PLUS:
11056 /* The following rules apply only to scalars. */
11057 if (shift_mode != shift_unit_mode)
11058 break;
11059 int_result_mode = as_a <scalar_int_mode> (result_mode);
11060
11061 /* (lshiftrt (plus A -1) C) where A is either 0 or 1 and C
11062 is one less than the number of bits in the mode is
11063 equivalent to (xor A 1). */
11064 if (code == LSHIFTRT
11065 && count == (GET_MODE_PRECISION (int_result_mode) - 1)
11066 && XEXP (varop, 1) == constm1_rtx
11067 && nonzero_bits (XEXP (varop, 0), int_result_mode) == 1
11068 && merge_outer_ops (&outer_op, &outer_const, XOR, 1,
11069 int_result_mode, &complement_p))
11070 {
11071 count = 0;
11072 varop = XEXP (varop, 0);
11073 continue;
11074 }
11075
11076 /* If we have (xshiftrt (plus FOO BAR) C), and the only bits
11077 that might be nonzero in BAR are those being shifted out and those
11078 bits are known zero in FOO, we can replace the PLUS with FOO.
11079 Similarly in the other operand order. This code occurs when
11080 we are computing the size of a variable-size array. */
11081
11082 if ((code == ASHIFTRT || code == LSHIFTRT)
11083 && count < HOST_BITS_PER_WIDE_INT
11084 && nonzero_bits (XEXP (varop, 1), int_result_mode) >> count == 0
11085 && (nonzero_bits (XEXP (varop, 1), int_result_mode)
11086 & nonzero_bits (XEXP (varop, 0), int_result_mode)) == 0)
11087 {
11088 varop = XEXP (varop, 0);
11089 continue;
11090 }
11091 else if ((code == ASHIFTRT || code == LSHIFTRT)
11092 && count < HOST_BITS_PER_WIDE_INT
11093 && HWI_COMPUTABLE_MODE_P (int_result_mode)
11094 && (nonzero_bits (XEXP (varop, 0), int_result_mode)
11095 >> count) == 0
11096 && (nonzero_bits (XEXP (varop, 0), int_result_mode)
11097 & nonzero_bits (XEXP (varop, 1), int_result_mode)) == 0)
11098 {
11099 varop = XEXP (varop, 1);
11100 continue;
11101 }
11102
11103 /* (ashift (plus foo C) N) is (plus (ashift foo N) C'). */
11104 if (code == ASHIFT
11105 && CONST_INT_P (XEXP (varop, 1))
11106 && (new_rtx = simplify_const_binary_operation
11107 (ASHIFT, int_result_mode,
11108 gen_int_mode (INTVAL (XEXP (varop, 1)), int_result_mode),
11109 gen_int_shift_amount (int_result_mode, count))) != 0
11110 && CONST_INT_P (new_rtx)
11111 && merge_outer_ops (&outer_op, &outer_const, PLUS,
11112 INTVAL (new_rtx), int_result_mode,
11113 &complement_p))
11114 {
11115 varop = XEXP (varop, 0);
11116 continue;
11117 }
11118
11119 /* Check for 'PLUS signbit', which is the canonical form of 'XOR
11120 signbit', and attempt to change the PLUS to an XOR and move it to
11121 the outer operation as is done above in the AND/IOR/XOR case
11122 leg for shift(logical). See details in logical handling above
11123 for reasoning in doing so. */
11124 if (code == LSHIFTRT
11125 && CONST_INT_P (XEXP (varop, 1))
11126 && mode_signbit_p (int_result_mode, XEXP (varop, 1))
11127 && (new_rtx = simplify_const_binary_operation
11128 (code, int_result_mode,
11129 gen_int_mode (INTVAL (XEXP (varop, 1)), int_result_mode),
11130 gen_int_shift_amount (int_result_mode, count))) != 0
11131 && CONST_INT_P (new_rtx)
11132 && merge_outer_ops (&outer_op, &outer_const, XOR,
11133 INTVAL (new_rtx), int_result_mode,
11134 &complement_p))
11135 {
11136 varop = XEXP (varop, 0);
11137 continue;
11138 }
11139
11140 break;
11141
11142 case MINUS:
11143 /* The following rules apply only to scalars. */
11144 if (shift_mode != shift_unit_mode)
11145 break;
11146 int_varop_mode = as_a <scalar_int_mode> (GET_MODE (varop));
11147
11148 /* If we have (xshiftrt (minus (ashiftrt X C)) X) C)
11149 with C the size of VAROP - 1 and the shift is logical if
11150 STORE_FLAG_VALUE is 1 and arithmetic if STORE_FLAG_VALUE is -1,
11151 we have a (gt X 0) operation. If the shift is arithmetic with
11152 STORE_FLAG_VALUE of 1 or logical with STORE_FLAG_VALUE == -1,
11153 we have a (neg (gt X 0)) operation. */
11154
11155 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
11156 && GET_CODE (XEXP (varop, 0)) == ASHIFTRT
11157 && count == (GET_MODE_PRECISION (int_varop_mode) - 1)
11158 && (code == LSHIFTRT || code == ASHIFTRT)
11159 && CONST_INT_P (XEXP (XEXP (varop, 0), 1))
11160 && INTVAL (XEXP (XEXP (varop, 0), 1)) == count
11161 && rtx_equal_p (XEXP (XEXP (varop, 0), 0), XEXP (varop, 1)))
11162 {
11163 count = 0;
11164 varop = gen_rtx_GT (int_varop_mode, XEXP (varop, 1),
11165 const0_rtx);
11166
11167 if (STORE_FLAG_VALUE == 1 ? code == ASHIFTRT : code == LSHIFTRT)
11168 varop = gen_rtx_NEG (int_varop_mode, varop);
11169
11170 continue;
11171 }
11172 break;
11173
11174 case TRUNCATE:
11175 /* Change (lshiftrt (truncate (lshiftrt))) to (truncate (lshiftrt))
11176 if the truncate does not affect the value. */
11177 if (code == LSHIFTRT
11178 && GET_CODE (XEXP (varop, 0)) == LSHIFTRT
11179 && CONST_INT_P (XEXP (XEXP (varop, 0), 1))
11180 && (INTVAL (XEXP (XEXP (varop, 0), 1))
11181 >= (GET_MODE_UNIT_PRECISION (GET_MODE (XEXP (varop, 0)))
11182 - GET_MODE_UNIT_PRECISION (GET_MODE (varop)))))
11183 {
11184 rtx varop_inner = XEXP (varop, 0);
11185 int new_count = count + INTVAL (XEXP (varop_inner, 1));
11186 rtx new_count_rtx = gen_int_shift_amount (GET_MODE (varop_inner),
11187 new_count);
11188 varop_inner = gen_rtx_LSHIFTRT (GET_MODE (varop_inner),
11189 XEXP (varop_inner, 0),
11190 new_count_rtx);
11191 varop = gen_rtx_TRUNCATE (GET_MODE (varop), varop_inner);
11192 count = 0;
11193 continue;
11194 }
11195 break;
11196
11197 default:
11198 break;
11199 }
11200
11201 break;
11202 }
11203
11204 shift_mode = result_mode;
11205 if (shift_mode != mode)
11206 {
11207 /* We only change the modes of scalar shifts. */
11208 int_mode = as_a <scalar_int_mode> (mode);
11209 int_result_mode = as_a <scalar_int_mode> (result_mode);
11210 shift_mode = try_widen_shift_mode (code, varop, count, int_result_mode,
11211 int_mode, outer_op, outer_const);
11212 }
11213
11214 /* We have now finished analyzing the shift. The result should be
11215 a shift of type CODE with SHIFT_MODE shifting VAROP COUNT places. If
11216 OUTER_OP is non-UNKNOWN, it is an operation that needs to be applied
11217 to the result of the shift. OUTER_CONST is the relevant constant,
11218 but we must turn off all bits turned off in the shift. */
11219
11220 if (outer_op == UNKNOWN
11221 && orig_code == code && orig_count == count
11222 && varop == orig_varop
11223 && shift_mode == GET_MODE (varop))
11224 return NULL_RTX;
11225
11226 /* Make a SUBREG if necessary. If we can't make it, fail. */
11227 varop = gen_lowpart (shift_mode, varop);
11228 if (varop == NULL_RTX || GET_CODE (varop) == CLOBBER)
11229 return NULL_RTX;
11230
11231 /* If we have an outer operation and we just made a shift, it is
11232 possible that we could have simplified the shift were it not
11233 for the outer operation. So try to do the simplification
11234 recursively. */
11235
11236 if (outer_op != UNKNOWN)
11237 x = simplify_shift_const_1 (code, shift_mode, varop, count);
11238 else
11239 x = NULL_RTX;
11240
11241 if (x == NULL_RTX)
11242 x = simplify_gen_binary (code, shift_mode, varop,
11243 gen_int_shift_amount (shift_mode, count));
11244
11245 /* If we were doing an LSHIFTRT in a wider mode than it was originally,
11246 turn off all the bits that the shift would have turned off. */
11247 if (orig_code == LSHIFTRT && result_mode != shift_mode)
11248 /* We only change the modes of scalar shifts. */
11249 x = simplify_and_const_int (NULL_RTX, as_a <scalar_int_mode> (shift_mode),
11250 x, GET_MODE_MASK (result_mode) >> orig_count);
11251
11252 /* Do the remainder of the processing in RESULT_MODE. */
11253 x = gen_lowpart_or_truncate (result_mode, x);
11254
11255 /* If COMPLEMENT_P is set, we have to complement X before doing the outer
11256 operation. */
11257 if (complement_p)
11258 x = simplify_gen_unary (NOT, result_mode, x, result_mode);
11259
11260 if (outer_op != UNKNOWN)
11261 {
11262 int_result_mode = as_a <scalar_int_mode> (result_mode);
11263
11264 if (GET_RTX_CLASS (outer_op) != RTX_UNARY
11265 && GET_MODE_PRECISION (int_result_mode) < HOST_BITS_PER_WIDE_INT)
11266 outer_const = trunc_int_for_mode (outer_const, int_result_mode);
11267
11268 if (outer_op == AND)
11269 x = simplify_and_const_int (NULL_RTX, int_result_mode, x, outer_const);
11270 else if (outer_op == SET)
11271 {
11272 /* This means that we have determined that the result is
11273 equivalent to a constant. This should be rare. */
11274 if (!side_effects_p (x))
11275 x = GEN_INT (outer_const);
11276 }
11277 else if (GET_RTX_CLASS (outer_op) == RTX_UNARY)
11278 x = simplify_gen_unary (outer_op, int_result_mode, x, int_result_mode);
11279 else
11280 x = simplify_gen_binary (outer_op, int_result_mode, x,
11281 GEN_INT (outer_const));
11282 }
11283
11284 return x;
11285 }
11286
11287 /* Simplify a shift of VAROP by COUNT bits. CODE says what kind of shift.
11288 The result of the shift is RESULT_MODE. If we cannot simplify it,
11289 return X or, if it is NULL, synthesize the expression with
11290 simplify_gen_binary. Otherwise, return a simplified value.
11291
11292 The shift is normally computed in the widest mode we find in VAROP, as
11293 long as it isn't a different number of words than RESULT_MODE. Exceptions
11294 are ASHIFTRT and ROTATE, which are always done in their original mode. */
11295
11296 static rtx
11297 simplify_shift_const (rtx x, enum rtx_code code, machine_mode result_mode,
11298 rtx varop, int count)
11299 {
11300 rtx tem = simplify_shift_const_1 (code, result_mode, varop, count);
11301 if (tem)
11302 return tem;
11303
11304 if (!x)
11305 x = simplify_gen_binary (code, GET_MODE (varop), varop,
11306 gen_int_shift_amount (GET_MODE (varop), count));
11307 if (GET_MODE (x) != result_mode)
11308 x = gen_lowpart (result_mode, x);
11309 return x;
11310 }
11311
11312 \f
11313 /* A subroutine of recog_for_combine. See there for arguments and
11314 return value. */
11315
11316 static int
11317 recog_for_combine_1 (rtx *pnewpat, rtx_insn *insn, rtx *pnotes)
11318 {
11319 rtx pat = *pnewpat;
11320 rtx pat_without_clobbers;
11321 int insn_code_number;
11322 int num_clobbers_to_add = 0;
11323 int i;
11324 rtx notes = NULL_RTX;
11325 rtx old_notes, old_pat;
11326 int old_icode;
11327
11328 /* If PAT is a PARALLEL, check to see if it contains the CLOBBER
11329 we use to indicate that something didn't match. If we find such a
11330 thing, force rejection. */
11331 if (GET_CODE (pat) == PARALLEL)
11332 for (i = XVECLEN (pat, 0) - 1; i >= 0; i--)
11333 if (GET_CODE (XVECEXP (pat, 0, i)) == CLOBBER
11334 && XEXP (XVECEXP (pat, 0, i), 0) == const0_rtx)
11335 return -1;
11336
11337 old_pat = PATTERN (insn);
11338 old_notes = REG_NOTES (insn);
11339 PATTERN (insn) = pat;
11340 REG_NOTES (insn) = NULL_RTX;
11341
11342 insn_code_number = recog (pat, insn, &num_clobbers_to_add);
11343 if (dump_file && (dump_flags & TDF_DETAILS))
11344 {
11345 if (insn_code_number < 0)
11346 fputs ("Failed to match this instruction:\n", dump_file);
11347 else
11348 fputs ("Successfully matched this instruction:\n", dump_file);
11349 print_rtl_single (dump_file, pat);
11350 }
11351
11352 /* If it isn't, there is the possibility that we previously had an insn
11353 that clobbered some register as a side effect, but the combined
11354 insn doesn't need to do that. So try once more without the clobbers
11355 unless this represents an ASM insn. */
11356
11357 if (insn_code_number < 0 && ! check_asm_operands (pat)
11358 && GET_CODE (pat) == PARALLEL)
11359 {
11360 int pos;
11361
11362 for (pos = 0, i = 0; i < XVECLEN (pat, 0); i++)
11363 if (GET_CODE (XVECEXP (pat, 0, i)) != CLOBBER)
11364 {
11365 if (i != pos)
11366 SUBST (XVECEXP (pat, 0, pos), XVECEXP (pat, 0, i));
11367 pos++;
11368 }
11369
11370 SUBST_INT (XVECLEN (pat, 0), pos);
11371
11372 if (pos == 1)
11373 pat = XVECEXP (pat, 0, 0);
11374
11375 PATTERN (insn) = pat;
11376 insn_code_number = recog (pat, insn, &num_clobbers_to_add);
11377 if (dump_file && (dump_flags & TDF_DETAILS))
11378 {
11379 if (insn_code_number < 0)
11380 fputs ("Failed to match this instruction:\n", dump_file);
11381 else
11382 fputs ("Successfully matched this instruction:\n", dump_file);
11383 print_rtl_single (dump_file, pat);
11384 }
11385 }
11386
11387 pat_without_clobbers = pat;
11388
11389 PATTERN (insn) = old_pat;
11390 REG_NOTES (insn) = old_notes;
11391
11392 /* Recognize all noop sets, these will be killed by followup pass. */
11393 if (insn_code_number < 0 && GET_CODE (pat) == SET && set_noop_p (pat))
11394 insn_code_number = NOOP_MOVE_INSN_CODE, num_clobbers_to_add = 0;
11395
11396 /* If we had any clobbers to add, make a new pattern than contains
11397 them. Then check to make sure that all of them are dead. */
11398 if (num_clobbers_to_add)
11399 {
11400 rtx newpat = gen_rtx_PARALLEL (VOIDmode,
11401 rtvec_alloc (GET_CODE (pat) == PARALLEL
11402 ? (XVECLEN (pat, 0)
11403 + num_clobbers_to_add)
11404 : num_clobbers_to_add + 1));
11405
11406 if (GET_CODE (pat) == PARALLEL)
11407 for (i = 0; i < XVECLEN (pat, 0); i++)
11408 XVECEXP (newpat, 0, i) = XVECEXP (pat, 0, i);
11409 else
11410 XVECEXP (newpat, 0, 0) = pat;
11411
11412 add_clobbers (newpat, insn_code_number);
11413
11414 for (i = XVECLEN (newpat, 0) - num_clobbers_to_add;
11415 i < XVECLEN (newpat, 0); i++)
11416 {
11417 if (REG_P (XEXP (XVECEXP (newpat, 0, i), 0))
11418 && ! reg_dead_at_p (XEXP (XVECEXP (newpat, 0, i), 0), insn))
11419 return -1;
11420 if (GET_CODE (XEXP (XVECEXP (newpat, 0, i), 0)) != SCRATCH)
11421 {
11422 gcc_assert (REG_P (XEXP (XVECEXP (newpat, 0, i), 0)));
11423 notes = alloc_reg_note (REG_UNUSED,
11424 XEXP (XVECEXP (newpat, 0, i), 0), notes);
11425 }
11426 }
11427 pat = newpat;
11428 }
11429
11430 if (insn_code_number >= 0
11431 && insn_code_number != NOOP_MOVE_INSN_CODE)
11432 {
11433 old_pat = PATTERN (insn);
11434 old_notes = REG_NOTES (insn);
11435 old_icode = INSN_CODE (insn);
11436 PATTERN (insn) = pat;
11437 REG_NOTES (insn) = notes;
11438 INSN_CODE (insn) = insn_code_number;
11439
11440 /* Allow targets to reject combined insn. */
11441 if (!targetm.legitimate_combined_insn (insn))
11442 {
11443 if (dump_file && (dump_flags & TDF_DETAILS))
11444 fputs ("Instruction not appropriate for target.",
11445 dump_file);
11446
11447 /* Callers expect recog_for_combine to strip
11448 clobbers from the pattern on failure. */
11449 pat = pat_without_clobbers;
11450 notes = NULL_RTX;
11451
11452 insn_code_number = -1;
11453 }
11454
11455 PATTERN (insn) = old_pat;
11456 REG_NOTES (insn) = old_notes;
11457 INSN_CODE (insn) = old_icode;
11458 }
11459
11460 *pnewpat = pat;
11461 *pnotes = notes;
11462
11463 return insn_code_number;
11464 }
11465
11466 /* Change every ZERO_EXTRACT and ZERO_EXTEND of a SUBREG that can be
11467 expressed as an AND and maybe an LSHIFTRT, to that formulation.
11468 Return whether anything was so changed. */
11469
11470 static bool
11471 change_zero_ext (rtx pat)
11472 {
11473 bool changed = false;
11474 rtx *src = &SET_SRC (pat);
11475
11476 subrtx_ptr_iterator::array_type array;
11477 FOR_EACH_SUBRTX_PTR (iter, array, src, NONCONST)
11478 {
11479 rtx x = **iter;
11480 scalar_int_mode mode, inner_mode;
11481 if (!is_a <scalar_int_mode> (GET_MODE (x), &mode))
11482 continue;
11483 int size;
11484
11485 if (GET_CODE (x) == ZERO_EXTRACT
11486 && CONST_INT_P (XEXP (x, 1))
11487 && CONST_INT_P (XEXP (x, 2))
11488 && is_a <scalar_int_mode> (GET_MODE (XEXP (x, 0)), &inner_mode)
11489 && GET_MODE_PRECISION (inner_mode) <= GET_MODE_PRECISION (mode))
11490 {
11491 size = INTVAL (XEXP (x, 1));
11492
11493 int start = INTVAL (XEXP (x, 2));
11494 if (BITS_BIG_ENDIAN)
11495 start = GET_MODE_PRECISION (inner_mode) - size - start;
11496
11497 if (start != 0)
11498 x = gen_rtx_LSHIFTRT (inner_mode, XEXP (x, 0),
11499 gen_int_shift_amount (inner_mode, start));
11500 else
11501 x = XEXP (x, 0);
11502
11503 if (mode != inner_mode)
11504 {
11505 if (REG_P (x) && HARD_REGISTER_P (x)
11506 && !can_change_dest_mode (x, 0, mode))
11507 continue;
11508
11509 x = gen_lowpart_SUBREG (mode, x);
11510 }
11511 }
11512 else if (GET_CODE (x) == ZERO_EXTEND
11513 && GET_CODE (XEXP (x, 0)) == SUBREG
11514 && SCALAR_INT_MODE_P (GET_MODE (SUBREG_REG (XEXP (x, 0))))
11515 && !paradoxical_subreg_p (XEXP (x, 0))
11516 && subreg_lowpart_p (XEXP (x, 0)))
11517 {
11518 inner_mode = as_a <scalar_int_mode> (GET_MODE (XEXP (x, 0)));
11519 size = GET_MODE_PRECISION (inner_mode);
11520 x = SUBREG_REG (XEXP (x, 0));
11521 if (GET_MODE (x) != mode)
11522 {
11523 if (REG_P (x) && HARD_REGISTER_P (x)
11524 && !can_change_dest_mode (x, 0, mode))
11525 continue;
11526
11527 x = gen_lowpart_SUBREG (mode, x);
11528 }
11529 }
11530 else if (GET_CODE (x) == ZERO_EXTEND
11531 && REG_P (XEXP (x, 0))
11532 && HARD_REGISTER_P (XEXP (x, 0))
11533 && can_change_dest_mode (XEXP (x, 0), 0, mode))
11534 {
11535 inner_mode = as_a <scalar_int_mode> (GET_MODE (XEXP (x, 0)));
11536 size = GET_MODE_PRECISION (inner_mode);
11537 x = gen_rtx_REG (mode, REGNO (XEXP (x, 0)));
11538 }
11539 else
11540 continue;
11541
11542 if (!(GET_CODE (x) == LSHIFTRT
11543 && CONST_INT_P (XEXP (x, 1))
11544 && size + INTVAL (XEXP (x, 1)) == GET_MODE_PRECISION (mode)))
11545 {
11546 wide_int mask = wi::mask (size, false, GET_MODE_PRECISION (mode));
11547 x = gen_rtx_AND (mode, x, immed_wide_int_const (mask, mode));
11548 }
11549
11550 SUBST (**iter, x);
11551 changed = true;
11552 }
11553
11554 if (changed)
11555 FOR_EACH_SUBRTX_PTR (iter, array, src, NONCONST)
11556 maybe_swap_commutative_operands (**iter);
11557
11558 rtx *dst = &SET_DEST (pat);
11559 scalar_int_mode mode;
11560 if (GET_CODE (*dst) == ZERO_EXTRACT
11561 && REG_P (XEXP (*dst, 0))
11562 && is_a <scalar_int_mode> (GET_MODE (XEXP (*dst, 0)), &mode)
11563 && CONST_INT_P (XEXP (*dst, 1))
11564 && CONST_INT_P (XEXP (*dst, 2)))
11565 {
11566 rtx reg = XEXP (*dst, 0);
11567 int width = INTVAL (XEXP (*dst, 1));
11568 int offset = INTVAL (XEXP (*dst, 2));
11569 int reg_width = GET_MODE_PRECISION (mode);
11570 if (BITS_BIG_ENDIAN)
11571 offset = reg_width - width - offset;
11572
11573 rtx x, y, z, w;
11574 wide_int mask = wi::shifted_mask (offset, width, true, reg_width);
11575 wide_int mask2 = wi::shifted_mask (offset, width, false, reg_width);
11576 x = gen_rtx_AND (mode, reg, immed_wide_int_const (mask, mode));
11577 if (offset)
11578 y = gen_rtx_ASHIFT (mode, SET_SRC (pat), GEN_INT (offset));
11579 else
11580 y = SET_SRC (pat);
11581 z = gen_rtx_AND (mode, y, immed_wide_int_const (mask2, mode));
11582 w = gen_rtx_IOR (mode, x, z);
11583 SUBST (SET_DEST (pat), reg);
11584 SUBST (SET_SRC (pat), w);
11585
11586 changed = true;
11587 }
11588
11589 return changed;
11590 }
11591
11592 /* Like recog, but we receive the address of a pointer to a new pattern.
11593 We try to match the rtx that the pointer points to.
11594 If that fails, we may try to modify or replace the pattern,
11595 storing the replacement into the same pointer object.
11596
11597 Modifications include deletion or addition of CLOBBERs. If the
11598 instruction will still not match, we change ZERO_EXTEND and ZERO_EXTRACT
11599 to the equivalent AND and perhaps LSHIFTRT patterns, and try with that
11600 (and undo if that fails).
11601
11602 PNOTES is a pointer to a location where any REG_UNUSED notes added for
11603 the CLOBBERs are placed.
11604
11605 The value is the final insn code from the pattern ultimately matched,
11606 or -1. */
11607
11608 static int
11609 recog_for_combine (rtx *pnewpat, rtx_insn *insn, rtx *pnotes)
11610 {
11611 rtx pat = *pnewpat;
11612 int insn_code_number = recog_for_combine_1 (pnewpat, insn, pnotes);
11613 if (insn_code_number >= 0 || check_asm_operands (pat))
11614 return insn_code_number;
11615
11616 void *marker = get_undo_marker ();
11617 bool changed = false;
11618
11619 if (GET_CODE (pat) == SET)
11620 changed = change_zero_ext (pat);
11621 else if (GET_CODE (pat) == PARALLEL)
11622 {
11623 int i;
11624 for (i = 0; i < XVECLEN (pat, 0); i++)
11625 {
11626 rtx set = XVECEXP (pat, 0, i);
11627 if (GET_CODE (set) == SET)
11628 changed |= change_zero_ext (set);
11629 }
11630 }
11631
11632 if (changed)
11633 {
11634 insn_code_number = recog_for_combine_1 (pnewpat, insn, pnotes);
11635
11636 if (insn_code_number < 0)
11637 undo_to_marker (marker);
11638 }
11639
11640 return insn_code_number;
11641 }
11642 \f
11643 /* Like gen_lowpart_general but for use by combine. In combine it
11644 is not possible to create any new pseudoregs. However, it is
11645 safe to create invalid memory addresses, because combine will
11646 try to recognize them and all they will do is make the combine
11647 attempt fail.
11648
11649 If for some reason this cannot do its job, an rtx
11650 (clobber (const_int 0)) is returned.
11651 An insn containing that will not be recognized. */
11652
11653 static rtx
11654 gen_lowpart_for_combine (machine_mode omode, rtx x)
11655 {
11656 machine_mode imode = GET_MODE (x);
11657 rtx result;
11658
11659 if (omode == imode)
11660 return x;
11661
11662 /* We can only support MODE being wider than a word if X is a
11663 constant integer or has a mode the same size. */
11664 if (maybe_gt (GET_MODE_SIZE (omode), UNITS_PER_WORD)
11665 && ! (CONST_SCALAR_INT_P (x)
11666 || known_eq (GET_MODE_SIZE (imode), GET_MODE_SIZE (omode))))
11667 goto fail;
11668
11669 /* X might be a paradoxical (subreg (mem)). In that case, gen_lowpart
11670 won't know what to do. So we will strip off the SUBREG here and
11671 process normally. */
11672 if (GET_CODE (x) == SUBREG && MEM_P (SUBREG_REG (x)))
11673 {
11674 x = SUBREG_REG (x);
11675
11676 /* For use in case we fall down into the address adjustments
11677 further below, we need to adjust the known mode and size of
11678 x; imode and isize, since we just adjusted x. */
11679 imode = GET_MODE (x);
11680
11681 if (imode == omode)
11682 return x;
11683 }
11684
11685 result = gen_lowpart_common (omode, x);
11686
11687 if (result)
11688 return result;
11689
11690 if (MEM_P (x))
11691 {
11692 /* Refuse to work on a volatile memory ref or one with a mode-dependent
11693 address. */
11694 if (MEM_VOLATILE_P (x)
11695 || mode_dependent_address_p (XEXP (x, 0), MEM_ADDR_SPACE (x)))
11696 goto fail;
11697
11698 /* If we want to refer to something bigger than the original memref,
11699 generate a paradoxical subreg instead. That will force a reload
11700 of the original memref X. */
11701 if (paradoxical_subreg_p (omode, imode))
11702 return gen_rtx_SUBREG (omode, x, 0);
11703
11704 poly_int64 offset = byte_lowpart_offset (omode, imode);
11705 return adjust_address_nv (x, omode, offset);
11706 }
11707
11708 /* If X is a comparison operator, rewrite it in a new mode. This
11709 probably won't match, but may allow further simplifications. */
11710 else if (COMPARISON_P (x))
11711 return gen_rtx_fmt_ee (GET_CODE (x), omode, XEXP (x, 0), XEXP (x, 1));
11712
11713 /* If we couldn't simplify X any other way, just enclose it in a
11714 SUBREG. Normally, this SUBREG won't match, but some patterns may
11715 include an explicit SUBREG or we may simplify it further in combine. */
11716 else
11717 {
11718 rtx res;
11719
11720 if (imode == VOIDmode)
11721 {
11722 imode = int_mode_for_mode (omode).require ();
11723 x = gen_lowpart_common (imode, x);
11724 if (x == NULL)
11725 goto fail;
11726 }
11727 res = lowpart_subreg (omode, x, imode);
11728 if (res)
11729 return res;
11730 }
11731
11732 fail:
11733 return gen_rtx_CLOBBER (omode, const0_rtx);
11734 }
11735 \f
11736 /* Try to simplify a comparison between OP0 and a constant OP1,
11737 where CODE is the comparison code that will be tested, into a
11738 (CODE OP0 const0_rtx) form.
11739
11740 The result is a possibly different comparison code to use.
11741 *POP1 may be updated. */
11742
11743 static enum rtx_code
11744 simplify_compare_const (enum rtx_code code, machine_mode mode,
11745 rtx op0, rtx *pop1)
11746 {
11747 scalar_int_mode int_mode;
11748 HOST_WIDE_INT const_op = INTVAL (*pop1);
11749
11750 /* Get the constant we are comparing against and turn off all bits
11751 not on in our mode. */
11752 if (mode != VOIDmode)
11753 const_op = trunc_int_for_mode (const_op, mode);
11754
11755 /* If we are comparing against a constant power of two and the value
11756 being compared can only have that single bit nonzero (e.g., it was
11757 `and'ed with that bit), we can replace this with a comparison
11758 with zero. */
11759 if (const_op
11760 && (code == EQ || code == NE || code == GE || code == GEU
11761 || code == LT || code == LTU)
11762 && is_a <scalar_int_mode> (mode, &int_mode)
11763 && GET_MODE_PRECISION (int_mode) - 1 < HOST_BITS_PER_WIDE_INT
11764 && pow2p_hwi (const_op & GET_MODE_MASK (int_mode))
11765 && (nonzero_bits (op0, int_mode)
11766 == (unsigned HOST_WIDE_INT) (const_op & GET_MODE_MASK (int_mode))))
11767 {
11768 code = (code == EQ || code == GE || code == GEU ? NE : EQ);
11769 const_op = 0;
11770 }
11771
11772 /* Similarly, if we are comparing a value known to be either -1 or
11773 0 with -1, change it to the opposite comparison against zero. */
11774 if (const_op == -1
11775 && (code == EQ || code == NE || code == GT || code == LE
11776 || code == GEU || code == LTU)
11777 && is_a <scalar_int_mode> (mode, &int_mode)
11778 && num_sign_bit_copies (op0, int_mode) == GET_MODE_PRECISION (int_mode))
11779 {
11780 code = (code == EQ || code == LE || code == GEU ? NE : EQ);
11781 const_op = 0;
11782 }
11783
11784 /* Do some canonicalizations based on the comparison code. We prefer
11785 comparisons against zero and then prefer equality comparisons.
11786 If we can reduce the size of a constant, we will do that too. */
11787 switch (code)
11788 {
11789 case LT:
11790 /* < C is equivalent to <= (C - 1) */
11791 if (const_op > 0)
11792 {
11793 const_op -= 1;
11794 code = LE;
11795 /* ... fall through to LE case below. */
11796 gcc_fallthrough ();
11797 }
11798 else
11799 break;
11800
11801 case LE:
11802 /* <= C is equivalent to < (C + 1); we do this for C < 0 */
11803 if (const_op < 0)
11804 {
11805 const_op += 1;
11806 code = LT;
11807 }
11808
11809 /* If we are doing a <= 0 comparison on a value known to have
11810 a zero sign bit, we can replace this with == 0. */
11811 else if (const_op == 0
11812 && is_a <scalar_int_mode> (mode, &int_mode)
11813 && GET_MODE_PRECISION (int_mode) - 1 < HOST_BITS_PER_WIDE_INT
11814 && (nonzero_bits (op0, int_mode)
11815 & (HOST_WIDE_INT_1U << (GET_MODE_PRECISION (int_mode) - 1)))
11816 == 0)
11817 code = EQ;
11818 break;
11819
11820 case GE:
11821 /* >= C is equivalent to > (C - 1). */
11822 if (const_op > 0)
11823 {
11824 const_op -= 1;
11825 code = GT;
11826 /* ... fall through to GT below. */
11827 gcc_fallthrough ();
11828 }
11829 else
11830 break;
11831
11832 case GT:
11833 /* > C is equivalent to >= (C + 1); we do this for C < 0. */
11834 if (const_op < 0)
11835 {
11836 const_op += 1;
11837 code = GE;
11838 }
11839
11840 /* If we are doing a > 0 comparison on a value known to have
11841 a zero sign bit, we can replace this with != 0. */
11842 else if (const_op == 0
11843 && is_a <scalar_int_mode> (mode, &int_mode)
11844 && GET_MODE_PRECISION (int_mode) - 1 < HOST_BITS_PER_WIDE_INT
11845 && (nonzero_bits (op0, int_mode)
11846 & (HOST_WIDE_INT_1U << (GET_MODE_PRECISION (int_mode) - 1)))
11847 == 0)
11848 code = NE;
11849 break;
11850
11851 case LTU:
11852 /* < C is equivalent to <= (C - 1). */
11853 if (const_op > 0)
11854 {
11855 const_op -= 1;
11856 code = LEU;
11857 /* ... fall through ... */
11858 gcc_fallthrough ();
11859 }
11860 /* (unsigned) < 0x80000000 is equivalent to >= 0. */
11861 else if (is_a <scalar_int_mode> (mode, &int_mode)
11862 && GET_MODE_PRECISION (int_mode) - 1 < HOST_BITS_PER_WIDE_INT
11863 && ((unsigned HOST_WIDE_INT) const_op
11864 == HOST_WIDE_INT_1U << (GET_MODE_PRECISION (int_mode) - 1)))
11865 {
11866 const_op = 0;
11867 code = GE;
11868 break;
11869 }
11870 else
11871 break;
11872
11873 case LEU:
11874 /* unsigned <= 0 is equivalent to == 0 */
11875 if (const_op == 0)
11876 code = EQ;
11877 /* (unsigned) <= 0x7fffffff is equivalent to >= 0. */
11878 else if (is_a <scalar_int_mode> (mode, &int_mode)
11879 && GET_MODE_PRECISION (int_mode) - 1 < HOST_BITS_PER_WIDE_INT
11880 && ((unsigned HOST_WIDE_INT) const_op
11881 == ((HOST_WIDE_INT_1U
11882 << (GET_MODE_PRECISION (int_mode) - 1)) - 1)))
11883 {
11884 const_op = 0;
11885 code = GE;
11886 }
11887 break;
11888
11889 case GEU:
11890 /* >= C is equivalent to > (C - 1). */
11891 if (const_op > 1)
11892 {
11893 const_op -= 1;
11894 code = GTU;
11895 /* ... fall through ... */
11896 gcc_fallthrough ();
11897 }
11898
11899 /* (unsigned) >= 0x80000000 is equivalent to < 0. */
11900 else if (is_a <scalar_int_mode> (mode, &int_mode)
11901 && GET_MODE_PRECISION (int_mode) - 1 < HOST_BITS_PER_WIDE_INT
11902 && ((unsigned HOST_WIDE_INT) const_op
11903 == HOST_WIDE_INT_1U << (GET_MODE_PRECISION (int_mode) - 1)))
11904 {
11905 const_op = 0;
11906 code = LT;
11907 break;
11908 }
11909 else
11910 break;
11911
11912 case GTU:
11913 /* unsigned > 0 is equivalent to != 0 */
11914 if (const_op == 0)
11915 code = NE;
11916 /* (unsigned) > 0x7fffffff is equivalent to < 0. */
11917 else if (is_a <scalar_int_mode> (mode, &int_mode)
11918 && GET_MODE_PRECISION (int_mode) - 1 < HOST_BITS_PER_WIDE_INT
11919 && ((unsigned HOST_WIDE_INT) const_op
11920 == (HOST_WIDE_INT_1U
11921 << (GET_MODE_PRECISION (int_mode) - 1)) - 1))
11922 {
11923 const_op = 0;
11924 code = LT;
11925 }
11926 break;
11927
11928 default:
11929 break;
11930 }
11931
11932 *pop1 = GEN_INT (const_op);
11933 return code;
11934 }
11935 \f
11936 /* Simplify a comparison between *POP0 and *POP1 where CODE is the
11937 comparison code that will be tested.
11938
11939 The result is a possibly different comparison code to use. *POP0 and
11940 *POP1 may be updated.
11941
11942 It is possible that we might detect that a comparison is either always
11943 true or always false. However, we do not perform general constant
11944 folding in combine, so this knowledge isn't useful. Such tautologies
11945 should have been detected earlier. Hence we ignore all such cases. */
11946
11947 static enum rtx_code
11948 simplify_comparison (enum rtx_code code, rtx *pop0, rtx *pop1)
11949 {
11950 rtx op0 = *pop0;
11951 rtx op1 = *pop1;
11952 rtx tem, tem1;
11953 int i;
11954 scalar_int_mode mode, inner_mode, tmode;
11955 opt_scalar_int_mode tmode_iter;
11956
11957 /* Try a few ways of applying the same transformation to both operands. */
11958 while (1)
11959 {
11960 /* The test below this one won't handle SIGN_EXTENDs on these machines,
11961 so check specially. */
11962 if (!WORD_REGISTER_OPERATIONS
11963 && code != GTU && code != GEU && code != LTU && code != LEU
11964 && GET_CODE (op0) == ASHIFTRT && GET_CODE (op1) == ASHIFTRT
11965 && GET_CODE (XEXP (op0, 0)) == ASHIFT
11966 && GET_CODE (XEXP (op1, 0)) == ASHIFT
11967 && GET_CODE (XEXP (XEXP (op0, 0), 0)) == SUBREG
11968 && GET_CODE (XEXP (XEXP (op1, 0), 0)) == SUBREG
11969 && is_a <scalar_int_mode> (GET_MODE (op0), &mode)
11970 && (is_a <scalar_int_mode>
11971 (GET_MODE (SUBREG_REG (XEXP (XEXP (op0, 0), 0))), &inner_mode))
11972 && inner_mode == GET_MODE (SUBREG_REG (XEXP (XEXP (op1, 0), 0)))
11973 && CONST_INT_P (XEXP (op0, 1))
11974 && XEXP (op0, 1) == XEXP (op1, 1)
11975 && XEXP (op0, 1) == XEXP (XEXP (op0, 0), 1)
11976 && XEXP (op0, 1) == XEXP (XEXP (op1, 0), 1)
11977 && (INTVAL (XEXP (op0, 1))
11978 == (GET_MODE_PRECISION (mode)
11979 - GET_MODE_PRECISION (inner_mode))))
11980 {
11981 op0 = SUBREG_REG (XEXP (XEXP (op0, 0), 0));
11982 op1 = SUBREG_REG (XEXP (XEXP (op1, 0), 0));
11983 }
11984
11985 /* If both operands are the same constant shift, see if we can ignore the
11986 shift. We can if the shift is a rotate or if the bits shifted out of
11987 this shift are known to be zero for both inputs and if the type of
11988 comparison is compatible with the shift. */
11989 if (GET_CODE (op0) == GET_CODE (op1)
11990 && HWI_COMPUTABLE_MODE_P (GET_MODE (op0))
11991 && ((GET_CODE (op0) == ROTATE && (code == NE || code == EQ))
11992 || ((GET_CODE (op0) == LSHIFTRT || GET_CODE (op0) == ASHIFT)
11993 && (code != GT && code != LT && code != GE && code != LE))
11994 || (GET_CODE (op0) == ASHIFTRT
11995 && (code != GTU && code != LTU
11996 && code != GEU && code != LEU)))
11997 && CONST_INT_P (XEXP (op0, 1))
11998 && INTVAL (XEXP (op0, 1)) >= 0
11999 && INTVAL (XEXP (op0, 1)) < HOST_BITS_PER_WIDE_INT
12000 && XEXP (op0, 1) == XEXP (op1, 1))
12001 {
12002 machine_mode mode = GET_MODE (op0);
12003 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
12004 int shift_count = INTVAL (XEXP (op0, 1));
12005
12006 if (GET_CODE (op0) == LSHIFTRT || GET_CODE (op0) == ASHIFTRT)
12007 mask &= (mask >> shift_count) << shift_count;
12008 else if (GET_CODE (op0) == ASHIFT)
12009 mask = (mask & (mask << shift_count)) >> shift_count;
12010
12011 if ((nonzero_bits (XEXP (op0, 0), mode) & ~mask) == 0
12012 && (nonzero_bits (XEXP (op1, 0), mode) & ~mask) == 0)
12013 op0 = XEXP (op0, 0), op1 = XEXP (op1, 0);
12014 else
12015 break;
12016 }
12017
12018 /* If both operands are AND's of a paradoxical SUBREG by constant, the
12019 SUBREGs are of the same mode, and, in both cases, the AND would
12020 be redundant if the comparison was done in the narrower mode,
12021 do the comparison in the narrower mode (e.g., we are AND'ing with 1
12022 and the operand's possibly nonzero bits are 0xffffff01; in that case
12023 if we only care about QImode, we don't need the AND). This case
12024 occurs if the output mode of an scc insn is not SImode and
12025 STORE_FLAG_VALUE == 1 (e.g., the 386).
12026
12027 Similarly, check for a case where the AND's are ZERO_EXTEND
12028 operations from some narrower mode even though a SUBREG is not
12029 present. */
12030
12031 else if (GET_CODE (op0) == AND && GET_CODE (op1) == AND
12032 && CONST_INT_P (XEXP (op0, 1))
12033 && CONST_INT_P (XEXP (op1, 1)))
12034 {
12035 rtx inner_op0 = XEXP (op0, 0);
12036 rtx inner_op1 = XEXP (op1, 0);
12037 HOST_WIDE_INT c0 = INTVAL (XEXP (op0, 1));
12038 HOST_WIDE_INT c1 = INTVAL (XEXP (op1, 1));
12039 int changed = 0;
12040
12041 if (paradoxical_subreg_p (inner_op0)
12042 && GET_CODE (inner_op1) == SUBREG
12043 && HWI_COMPUTABLE_MODE_P (GET_MODE (SUBREG_REG (inner_op0)))
12044 && (GET_MODE (SUBREG_REG (inner_op0))
12045 == GET_MODE (SUBREG_REG (inner_op1)))
12046 && ((~c0) & nonzero_bits (SUBREG_REG (inner_op0),
12047 GET_MODE (SUBREG_REG (inner_op0)))) == 0
12048 && ((~c1) & nonzero_bits (SUBREG_REG (inner_op1),
12049 GET_MODE (SUBREG_REG (inner_op1)))) == 0)
12050 {
12051 op0 = SUBREG_REG (inner_op0);
12052 op1 = SUBREG_REG (inner_op1);
12053
12054 /* The resulting comparison is always unsigned since we masked
12055 off the original sign bit. */
12056 code = unsigned_condition (code);
12057
12058 changed = 1;
12059 }
12060
12061 else if (c0 == c1)
12062 FOR_EACH_MODE_UNTIL (tmode,
12063 as_a <scalar_int_mode> (GET_MODE (op0)))
12064 if ((unsigned HOST_WIDE_INT) c0 == GET_MODE_MASK (tmode))
12065 {
12066 op0 = gen_lowpart_or_truncate (tmode, inner_op0);
12067 op1 = gen_lowpart_or_truncate (tmode, inner_op1);
12068 code = unsigned_condition (code);
12069 changed = 1;
12070 break;
12071 }
12072
12073 if (! changed)
12074 break;
12075 }
12076
12077 /* If both operands are NOT, we can strip off the outer operation
12078 and adjust the comparison code for swapped operands; similarly for
12079 NEG, except that this must be an equality comparison. */
12080 else if ((GET_CODE (op0) == NOT && GET_CODE (op1) == NOT)
12081 || (GET_CODE (op0) == NEG && GET_CODE (op1) == NEG
12082 && (code == EQ || code == NE)))
12083 op0 = XEXP (op0, 0), op1 = XEXP (op1, 0), code = swap_condition (code);
12084
12085 else
12086 break;
12087 }
12088
12089 /* If the first operand is a constant, swap the operands and adjust the
12090 comparison code appropriately, but don't do this if the second operand
12091 is already a constant integer. */
12092 if (swap_commutative_operands_p (op0, op1))
12093 {
12094 std::swap (op0, op1);
12095 code = swap_condition (code);
12096 }
12097
12098 /* We now enter a loop during which we will try to simplify the comparison.
12099 For the most part, we only are concerned with comparisons with zero,
12100 but some things may really be comparisons with zero but not start
12101 out looking that way. */
12102
12103 while (CONST_INT_P (op1))
12104 {
12105 machine_mode raw_mode = GET_MODE (op0);
12106 scalar_int_mode int_mode;
12107 int equality_comparison_p;
12108 int sign_bit_comparison_p;
12109 int unsigned_comparison_p;
12110 HOST_WIDE_INT const_op;
12111
12112 /* We only want to handle integral modes. This catches VOIDmode,
12113 CCmode, and the floating-point modes. An exception is that we
12114 can handle VOIDmode if OP0 is a COMPARE or a comparison
12115 operation. */
12116
12117 if (GET_MODE_CLASS (raw_mode) != MODE_INT
12118 && ! (raw_mode == VOIDmode
12119 && (GET_CODE (op0) == COMPARE || COMPARISON_P (op0))))
12120 break;
12121
12122 /* Try to simplify the compare to constant, possibly changing the
12123 comparison op, and/or changing op1 to zero. */
12124 code = simplify_compare_const (code, raw_mode, op0, &op1);
12125 const_op = INTVAL (op1);
12126
12127 /* Compute some predicates to simplify code below. */
12128
12129 equality_comparison_p = (code == EQ || code == NE);
12130 sign_bit_comparison_p = ((code == LT || code == GE) && const_op == 0);
12131 unsigned_comparison_p = (code == LTU || code == LEU || code == GTU
12132 || code == GEU);
12133
12134 /* If this is a sign bit comparison and we can do arithmetic in
12135 MODE, say that we will only be needing the sign bit of OP0. */
12136 if (sign_bit_comparison_p
12137 && is_a <scalar_int_mode> (raw_mode, &int_mode)
12138 && HWI_COMPUTABLE_MODE_P (int_mode))
12139 op0 = force_to_mode (op0, int_mode,
12140 HOST_WIDE_INT_1U
12141 << (GET_MODE_PRECISION (int_mode) - 1),
12142 0);
12143
12144 if (COMPARISON_P (op0))
12145 {
12146 /* We can't do anything if OP0 is a condition code value, rather
12147 than an actual data value. */
12148 if (const_op != 0
12149 || CC0_P (XEXP (op0, 0))
12150 || GET_MODE_CLASS (GET_MODE (XEXP (op0, 0))) == MODE_CC)
12151 break;
12152
12153 /* Get the two operands being compared. */
12154 if (GET_CODE (XEXP (op0, 0)) == COMPARE)
12155 tem = XEXP (XEXP (op0, 0), 0), tem1 = XEXP (XEXP (op0, 0), 1);
12156 else
12157 tem = XEXP (op0, 0), tem1 = XEXP (op0, 1);
12158
12159 /* Check for the cases where we simply want the result of the
12160 earlier test or the opposite of that result. */
12161 if (code == NE || code == EQ
12162 || (val_signbit_known_set_p (raw_mode, STORE_FLAG_VALUE)
12163 && (code == LT || code == GE)))
12164 {
12165 enum rtx_code new_code;
12166 if (code == LT || code == NE)
12167 new_code = GET_CODE (op0);
12168 else
12169 new_code = reversed_comparison_code (op0, NULL);
12170
12171 if (new_code != UNKNOWN)
12172 {
12173 code = new_code;
12174 op0 = tem;
12175 op1 = tem1;
12176 continue;
12177 }
12178 }
12179 break;
12180 }
12181
12182 if (raw_mode == VOIDmode)
12183 break;
12184 scalar_int_mode mode = as_a <scalar_int_mode> (raw_mode);
12185
12186 /* Now try cases based on the opcode of OP0. If none of the cases
12187 does a "continue", we exit this loop immediately after the
12188 switch. */
12189
12190 unsigned int mode_width = GET_MODE_PRECISION (mode);
12191 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
12192 switch (GET_CODE (op0))
12193 {
12194 case ZERO_EXTRACT:
12195 /* If we are extracting a single bit from a variable position in
12196 a constant that has only a single bit set and are comparing it
12197 with zero, we can convert this into an equality comparison
12198 between the position and the location of the single bit. */
12199 /* Except we can't if SHIFT_COUNT_TRUNCATED is set, since we might
12200 have already reduced the shift count modulo the word size. */
12201 if (!SHIFT_COUNT_TRUNCATED
12202 && CONST_INT_P (XEXP (op0, 0))
12203 && XEXP (op0, 1) == const1_rtx
12204 && equality_comparison_p && const_op == 0
12205 && (i = exact_log2 (UINTVAL (XEXP (op0, 0)))) >= 0)
12206 {
12207 if (BITS_BIG_ENDIAN)
12208 i = BITS_PER_WORD - 1 - i;
12209
12210 op0 = XEXP (op0, 2);
12211 op1 = GEN_INT (i);
12212 const_op = i;
12213
12214 /* Result is nonzero iff shift count is equal to I. */
12215 code = reverse_condition (code);
12216 continue;
12217 }
12218
12219 /* fall through */
12220
12221 case SIGN_EXTRACT:
12222 tem = expand_compound_operation (op0);
12223 if (tem != op0)
12224 {
12225 op0 = tem;
12226 continue;
12227 }
12228 break;
12229
12230 case NOT:
12231 /* If testing for equality, we can take the NOT of the constant. */
12232 if (equality_comparison_p
12233 && (tem = simplify_unary_operation (NOT, mode, op1, mode)) != 0)
12234 {
12235 op0 = XEXP (op0, 0);
12236 op1 = tem;
12237 continue;
12238 }
12239
12240 /* If just looking at the sign bit, reverse the sense of the
12241 comparison. */
12242 if (sign_bit_comparison_p)
12243 {
12244 op0 = XEXP (op0, 0);
12245 code = (code == GE ? LT : GE);
12246 continue;
12247 }
12248 break;
12249
12250 case NEG:
12251 /* If testing for equality, we can take the NEG of the constant. */
12252 if (equality_comparison_p
12253 && (tem = simplify_unary_operation (NEG, mode, op1, mode)) != 0)
12254 {
12255 op0 = XEXP (op0, 0);
12256 op1 = tem;
12257 continue;
12258 }
12259
12260 /* The remaining cases only apply to comparisons with zero. */
12261 if (const_op != 0)
12262 break;
12263
12264 /* When X is ABS or is known positive,
12265 (neg X) is < 0 if and only if X != 0. */
12266
12267 if (sign_bit_comparison_p
12268 && (GET_CODE (XEXP (op0, 0)) == ABS
12269 || (mode_width <= HOST_BITS_PER_WIDE_INT
12270 && (nonzero_bits (XEXP (op0, 0), mode)
12271 & (HOST_WIDE_INT_1U << (mode_width - 1)))
12272 == 0)))
12273 {
12274 op0 = XEXP (op0, 0);
12275 code = (code == LT ? NE : EQ);
12276 continue;
12277 }
12278
12279 /* If we have NEG of something whose two high-order bits are the
12280 same, we know that "(-a) < 0" is equivalent to "a > 0". */
12281 if (num_sign_bit_copies (op0, mode) >= 2)
12282 {
12283 op0 = XEXP (op0, 0);
12284 code = swap_condition (code);
12285 continue;
12286 }
12287 break;
12288
12289 case ROTATE:
12290 /* If we are testing equality and our count is a constant, we
12291 can perform the inverse operation on our RHS. */
12292 if (equality_comparison_p && CONST_INT_P (XEXP (op0, 1))
12293 && (tem = simplify_binary_operation (ROTATERT, mode,
12294 op1, XEXP (op0, 1))) != 0)
12295 {
12296 op0 = XEXP (op0, 0);
12297 op1 = tem;
12298 continue;
12299 }
12300
12301 /* If we are doing a < 0 or >= 0 comparison, it means we are testing
12302 a particular bit. Convert it to an AND of a constant of that
12303 bit. This will be converted into a ZERO_EXTRACT. */
12304 if (const_op == 0 && sign_bit_comparison_p
12305 && CONST_INT_P (XEXP (op0, 1))
12306 && mode_width <= HOST_BITS_PER_WIDE_INT)
12307 {
12308 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
12309 (HOST_WIDE_INT_1U
12310 << (mode_width - 1
12311 - INTVAL (XEXP (op0, 1)))));
12312 code = (code == LT ? NE : EQ);
12313 continue;
12314 }
12315
12316 /* Fall through. */
12317
12318 case ABS:
12319 /* ABS is ignorable inside an equality comparison with zero. */
12320 if (const_op == 0 && equality_comparison_p)
12321 {
12322 op0 = XEXP (op0, 0);
12323 continue;
12324 }
12325 break;
12326
12327 case SIGN_EXTEND:
12328 /* Can simplify (compare (zero/sign_extend FOO) CONST) to
12329 (compare FOO CONST) if CONST fits in FOO's mode and we
12330 are either testing inequality or have an unsigned
12331 comparison with ZERO_EXTEND or a signed comparison with
12332 SIGN_EXTEND. But don't do it if we don't have a compare
12333 insn of the given mode, since we'd have to revert it
12334 later on, and then we wouldn't know whether to sign- or
12335 zero-extend. */
12336 if (is_int_mode (GET_MODE (XEXP (op0, 0)), &mode)
12337 && ! unsigned_comparison_p
12338 && HWI_COMPUTABLE_MODE_P (mode)
12339 && trunc_int_for_mode (const_op, mode) == const_op
12340 && have_insn_for (COMPARE, mode))
12341 {
12342 op0 = XEXP (op0, 0);
12343 continue;
12344 }
12345 break;
12346
12347 case SUBREG:
12348 /* Check for the case where we are comparing A - C1 with C2, that is
12349
12350 (subreg:MODE (plus (A) (-C1))) op (C2)
12351
12352 with C1 a constant, and try to lift the SUBREG, i.e. to do the
12353 comparison in the wider mode. One of the following two conditions
12354 must be true in order for this to be valid:
12355
12356 1. The mode extension results in the same bit pattern being added
12357 on both sides and the comparison is equality or unsigned. As
12358 C2 has been truncated to fit in MODE, the pattern can only be
12359 all 0s or all 1s.
12360
12361 2. The mode extension results in the sign bit being copied on
12362 each side.
12363
12364 The difficulty here is that we have predicates for A but not for
12365 (A - C1) so we need to check that C1 is within proper bounds so
12366 as to perturbate A as little as possible. */
12367
12368 if (mode_width <= HOST_BITS_PER_WIDE_INT
12369 && subreg_lowpart_p (op0)
12370 && is_a <scalar_int_mode> (GET_MODE (SUBREG_REG (op0)),
12371 &inner_mode)
12372 && GET_MODE_PRECISION (inner_mode) > mode_width
12373 && GET_CODE (SUBREG_REG (op0)) == PLUS
12374 && CONST_INT_P (XEXP (SUBREG_REG (op0), 1)))
12375 {
12376 rtx a = XEXP (SUBREG_REG (op0), 0);
12377 HOST_WIDE_INT c1 = -INTVAL (XEXP (SUBREG_REG (op0), 1));
12378
12379 if ((c1 > 0
12380 && (unsigned HOST_WIDE_INT) c1
12381 < HOST_WIDE_INT_1U << (mode_width - 1)
12382 && (equality_comparison_p || unsigned_comparison_p)
12383 /* (A - C1) zero-extends if it is positive and sign-extends
12384 if it is negative, C2 both zero- and sign-extends. */
12385 && (((nonzero_bits (a, inner_mode)
12386 & ~GET_MODE_MASK (mode)) == 0
12387 && const_op >= 0)
12388 /* (A - C1) sign-extends if it is positive and 1-extends
12389 if it is negative, C2 both sign- and 1-extends. */
12390 || (num_sign_bit_copies (a, inner_mode)
12391 > (unsigned int) (GET_MODE_PRECISION (inner_mode)
12392 - mode_width)
12393 && const_op < 0)))
12394 || ((unsigned HOST_WIDE_INT) c1
12395 < HOST_WIDE_INT_1U << (mode_width - 2)
12396 /* (A - C1) always sign-extends, like C2. */
12397 && num_sign_bit_copies (a, inner_mode)
12398 > (unsigned int) (GET_MODE_PRECISION (inner_mode)
12399 - (mode_width - 1))))
12400 {
12401 op0 = SUBREG_REG (op0);
12402 continue;
12403 }
12404 }
12405
12406 /* If the inner mode is narrower and we are extracting the low part,
12407 we can treat the SUBREG as if it were a ZERO_EXTEND. */
12408 if (paradoxical_subreg_p (op0))
12409 ;
12410 else if (subreg_lowpart_p (op0)
12411 && GET_MODE_CLASS (mode) == MODE_INT
12412 && is_int_mode (GET_MODE (SUBREG_REG (op0)), &inner_mode)
12413 && (code == NE || code == EQ)
12414 && GET_MODE_PRECISION (inner_mode) <= HOST_BITS_PER_WIDE_INT
12415 && !paradoxical_subreg_p (op0)
12416 && (nonzero_bits (SUBREG_REG (op0), inner_mode)
12417 & ~GET_MODE_MASK (mode)) == 0)
12418 {
12419 /* Remove outer subregs that don't do anything. */
12420 tem = gen_lowpart (inner_mode, op1);
12421
12422 if ((nonzero_bits (tem, inner_mode)
12423 & ~GET_MODE_MASK (mode)) == 0)
12424 {
12425 op0 = SUBREG_REG (op0);
12426 op1 = tem;
12427 continue;
12428 }
12429 break;
12430 }
12431 else
12432 break;
12433
12434 /* FALLTHROUGH */
12435
12436 case ZERO_EXTEND:
12437 if (is_int_mode (GET_MODE (XEXP (op0, 0)), &mode)
12438 && (unsigned_comparison_p || equality_comparison_p)
12439 && HWI_COMPUTABLE_MODE_P (mode)
12440 && (unsigned HOST_WIDE_INT) const_op <= GET_MODE_MASK (mode)
12441 && const_op >= 0
12442 && have_insn_for (COMPARE, mode))
12443 {
12444 op0 = XEXP (op0, 0);
12445 continue;
12446 }
12447 break;
12448
12449 case PLUS:
12450 /* (eq (plus X A) B) -> (eq X (minus B A)). We can only do
12451 this for equality comparisons due to pathological cases involving
12452 overflows. */
12453 if (equality_comparison_p
12454 && (tem = simplify_binary_operation (MINUS, mode,
12455 op1, XEXP (op0, 1))) != 0)
12456 {
12457 op0 = XEXP (op0, 0);
12458 op1 = tem;
12459 continue;
12460 }
12461
12462 /* (plus (abs X) (const_int -1)) is < 0 if and only if X == 0. */
12463 if (const_op == 0 && XEXP (op0, 1) == constm1_rtx
12464 && GET_CODE (XEXP (op0, 0)) == ABS && sign_bit_comparison_p)
12465 {
12466 op0 = XEXP (XEXP (op0, 0), 0);
12467 code = (code == LT ? EQ : NE);
12468 continue;
12469 }
12470 break;
12471
12472 case MINUS:
12473 /* We used to optimize signed comparisons against zero, but that
12474 was incorrect. Unsigned comparisons against zero (GTU, LEU)
12475 arrive here as equality comparisons, or (GEU, LTU) are
12476 optimized away. No need to special-case them. */
12477
12478 /* (eq (minus A B) C) -> (eq A (plus B C)) or
12479 (eq B (minus A C)), whichever simplifies. We can only do
12480 this for equality comparisons due to pathological cases involving
12481 overflows. */
12482 if (equality_comparison_p
12483 && (tem = simplify_binary_operation (PLUS, mode,
12484 XEXP (op0, 1), op1)) != 0)
12485 {
12486 op0 = XEXP (op0, 0);
12487 op1 = tem;
12488 continue;
12489 }
12490
12491 if (equality_comparison_p
12492 && (tem = simplify_binary_operation (MINUS, mode,
12493 XEXP (op0, 0), op1)) != 0)
12494 {
12495 op0 = XEXP (op0, 1);
12496 op1 = tem;
12497 continue;
12498 }
12499
12500 /* The sign bit of (minus (ashiftrt X C) X), where C is the number
12501 of bits in X minus 1, is one iff X > 0. */
12502 if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 0)) == ASHIFTRT
12503 && CONST_INT_P (XEXP (XEXP (op0, 0), 1))
12504 && UINTVAL (XEXP (XEXP (op0, 0), 1)) == mode_width - 1
12505 && rtx_equal_p (XEXP (XEXP (op0, 0), 0), XEXP (op0, 1)))
12506 {
12507 op0 = XEXP (op0, 1);
12508 code = (code == GE ? LE : GT);
12509 continue;
12510 }
12511 break;
12512
12513 case XOR:
12514 /* (eq (xor A B) C) -> (eq A (xor B C)). This is a simplification
12515 if C is zero or B is a constant. */
12516 if (equality_comparison_p
12517 && (tem = simplify_binary_operation (XOR, mode,
12518 XEXP (op0, 1), op1)) != 0)
12519 {
12520 op0 = XEXP (op0, 0);
12521 op1 = tem;
12522 continue;
12523 }
12524 break;
12525
12526
12527 case IOR:
12528 /* The sign bit of (ior (plus X (const_int -1)) X) is nonzero
12529 iff X <= 0. */
12530 if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 0)) == PLUS
12531 && XEXP (XEXP (op0, 0), 1) == constm1_rtx
12532 && rtx_equal_p (XEXP (XEXP (op0, 0), 0), XEXP (op0, 1)))
12533 {
12534 op0 = XEXP (op0, 1);
12535 code = (code == GE ? GT : LE);
12536 continue;
12537 }
12538 break;
12539
12540 case AND:
12541 /* Convert (and (xshift 1 X) Y) to (and (lshiftrt Y X) 1). This
12542 will be converted to a ZERO_EXTRACT later. */
12543 if (const_op == 0 && equality_comparison_p
12544 && GET_CODE (XEXP (op0, 0)) == ASHIFT
12545 && XEXP (XEXP (op0, 0), 0) == const1_rtx)
12546 {
12547 op0 = gen_rtx_LSHIFTRT (mode, XEXP (op0, 1),
12548 XEXP (XEXP (op0, 0), 1));
12549 op0 = simplify_and_const_int (NULL_RTX, mode, op0, 1);
12550 continue;
12551 }
12552
12553 /* If we are comparing (and (lshiftrt X C1) C2) for equality with
12554 zero and X is a comparison and C1 and C2 describe only bits set
12555 in STORE_FLAG_VALUE, we can compare with X. */
12556 if (const_op == 0 && equality_comparison_p
12557 && mode_width <= HOST_BITS_PER_WIDE_INT
12558 && CONST_INT_P (XEXP (op0, 1))
12559 && GET_CODE (XEXP (op0, 0)) == LSHIFTRT
12560 && CONST_INT_P (XEXP (XEXP (op0, 0), 1))
12561 && INTVAL (XEXP (XEXP (op0, 0), 1)) >= 0
12562 && INTVAL (XEXP (XEXP (op0, 0), 1)) < HOST_BITS_PER_WIDE_INT)
12563 {
12564 mask = ((INTVAL (XEXP (op0, 1)) & GET_MODE_MASK (mode))
12565 << INTVAL (XEXP (XEXP (op0, 0), 1)));
12566 if ((~STORE_FLAG_VALUE & mask) == 0
12567 && (COMPARISON_P (XEXP (XEXP (op0, 0), 0))
12568 || ((tem = get_last_value (XEXP (XEXP (op0, 0), 0))) != 0
12569 && COMPARISON_P (tem))))
12570 {
12571 op0 = XEXP (XEXP (op0, 0), 0);
12572 continue;
12573 }
12574 }
12575
12576 /* If we are doing an equality comparison of an AND of a bit equal
12577 to the sign bit, replace this with a LT or GE comparison of
12578 the underlying value. */
12579 if (equality_comparison_p
12580 && const_op == 0
12581 && CONST_INT_P (XEXP (op0, 1))
12582 && mode_width <= HOST_BITS_PER_WIDE_INT
12583 && ((INTVAL (XEXP (op0, 1)) & GET_MODE_MASK (mode))
12584 == HOST_WIDE_INT_1U << (mode_width - 1)))
12585 {
12586 op0 = XEXP (op0, 0);
12587 code = (code == EQ ? GE : LT);
12588 continue;
12589 }
12590
12591 /* If this AND operation is really a ZERO_EXTEND from a narrower
12592 mode, the constant fits within that mode, and this is either an
12593 equality or unsigned comparison, try to do this comparison in
12594 the narrower mode.
12595
12596 Note that in:
12597
12598 (ne:DI (and:DI (reg:DI 4) (const_int 0xffffffff)) (const_int 0))
12599 -> (ne:DI (reg:SI 4) (const_int 0))
12600
12601 unless TARGET_TRULY_NOOP_TRUNCATION allows it or the register is
12602 known to hold a value of the required mode the
12603 transformation is invalid. */
12604 if ((equality_comparison_p || unsigned_comparison_p)
12605 && CONST_INT_P (XEXP (op0, 1))
12606 && (i = exact_log2 ((UINTVAL (XEXP (op0, 1))
12607 & GET_MODE_MASK (mode))
12608 + 1)) >= 0
12609 && const_op >> i == 0
12610 && int_mode_for_size (i, 1).exists (&tmode))
12611 {
12612 op0 = gen_lowpart_or_truncate (tmode, XEXP (op0, 0));
12613 continue;
12614 }
12615
12616 /* If this is (and:M1 (subreg:M1 X:M2 0) (const_int C1)) where C1
12617 fits in both M1 and M2 and the SUBREG is either paradoxical
12618 or represents the low part, permute the SUBREG and the AND
12619 and try again. */
12620 if (GET_CODE (XEXP (op0, 0)) == SUBREG
12621 && CONST_INT_P (XEXP (op0, 1)))
12622 {
12623 unsigned HOST_WIDE_INT c1 = INTVAL (XEXP (op0, 1));
12624 /* Require an integral mode, to avoid creating something like
12625 (AND:SF ...). */
12626 if ((is_a <scalar_int_mode>
12627 (GET_MODE (SUBREG_REG (XEXP (op0, 0))), &tmode))
12628 /* It is unsafe to commute the AND into the SUBREG if the
12629 SUBREG is paradoxical and WORD_REGISTER_OPERATIONS is
12630 not defined. As originally written the upper bits
12631 have a defined value due to the AND operation.
12632 However, if we commute the AND inside the SUBREG then
12633 they no longer have defined values and the meaning of
12634 the code has been changed.
12635 Also C1 should not change value in the smaller mode,
12636 see PR67028 (a positive C1 can become negative in the
12637 smaller mode, so that the AND does no longer mask the
12638 upper bits). */
12639 && ((WORD_REGISTER_OPERATIONS
12640 && mode_width > GET_MODE_PRECISION (tmode)
12641 && mode_width <= BITS_PER_WORD
12642 && trunc_int_for_mode (c1, tmode) == (HOST_WIDE_INT) c1)
12643 || (mode_width <= GET_MODE_PRECISION (tmode)
12644 && subreg_lowpart_p (XEXP (op0, 0))))
12645 && mode_width <= HOST_BITS_PER_WIDE_INT
12646 && HWI_COMPUTABLE_MODE_P (tmode)
12647 && (c1 & ~mask) == 0
12648 && (c1 & ~GET_MODE_MASK (tmode)) == 0
12649 && c1 != mask
12650 && c1 != GET_MODE_MASK (tmode))
12651 {
12652 op0 = simplify_gen_binary (AND, tmode,
12653 SUBREG_REG (XEXP (op0, 0)),
12654 gen_int_mode (c1, tmode));
12655 op0 = gen_lowpart (mode, op0);
12656 continue;
12657 }
12658 }
12659
12660 /* Convert (ne (and (not X) 1) 0) to (eq (and X 1) 0). */
12661 if (const_op == 0 && equality_comparison_p
12662 && XEXP (op0, 1) == const1_rtx
12663 && GET_CODE (XEXP (op0, 0)) == NOT)
12664 {
12665 op0 = simplify_and_const_int (NULL_RTX, mode,
12666 XEXP (XEXP (op0, 0), 0), 1);
12667 code = (code == NE ? EQ : NE);
12668 continue;
12669 }
12670
12671 /* Convert (ne (and (lshiftrt (not X)) 1) 0) to
12672 (eq (and (lshiftrt X) 1) 0).
12673 Also handle the case where (not X) is expressed using xor. */
12674 if (const_op == 0 && equality_comparison_p
12675 && XEXP (op0, 1) == const1_rtx
12676 && GET_CODE (XEXP (op0, 0)) == LSHIFTRT)
12677 {
12678 rtx shift_op = XEXP (XEXP (op0, 0), 0);
12679 rtx shift_count = XEXP (XEXP (op0, 0), 1);
12680
12681 if (GET_CODE (shift_op) == NOT
12682 || (GET_CODE (shift_op) == XOR
12683 && CONST_INT_P (XEXP (shift_op, 1))
12684 && CONST_INT_P (shift_count)
12685 && HWI_COMPUTABLE_MODE_P (mode)
12686 && (UINTVAL (XEXP (shift_op, 1))
12687 == HOST_WIDE_INT_1U
12688 << INTVAL (shift_count))))
12689 {
12690 op0
12691 = gen_rtx_LSHIFTRT (mode, XEXP (shift_op, 0), shift_count);
12692 op0 = simplify_and_const_int (NULL_RTX, mode, op0, 1);
12693 code = (code == NE ? EQ : NE);
12694 continue;
12695 }
12696 }
12697 break;
12698
12699 case ASHIFT:
12700 /* If we have (compare (ashift FOO N) (const_int C)) and
12701 the high order N bits of FOO (N+1 if an inequality comparison)
12702 are known to be zero, we can do this by comparing FOO with C
12703 shifted right N bits so long as the low-order N bits of C are
12704 zero. */
12705 if (CONST_INT_P (XEXP (op0, 1))
12706 && INTVAL (XEXP (op0, 1)) >= 0
12707 && ((INTVAL (XEXP (op0, 1)) + ! equality_comparison_p)
12708 < HOST_BITS_PER_WIDE_INT)
12709 && (((unsigned HOST_WIDE_INT) const_op
12710 & ((HOST_WIDE_INT_1U << INTVAL (XEXP (op0, 1)))
12711 - 1)) == 0)
12712 && mode_width <= HOST_BITS_PER_WIDE_INT
12713 && (nonzero_bits (XEXP (op0, 0), mode)
12714 & ~(mask >> (INTVAL (XEXP (op0, 1))
12715 + ! equality_comparison_p))) == 0)
12716 {
12717 /* We must perform a logical shift, not an arithmetic one,
12718 as we want the top N bits of C to be zero. */
12719 unsigned HOST_WIDE_INT temp = const_op & GET_MODE_MASK (mode);
12720
12721 temp >>= INTVAL (XEXP (op0, 1));
12722 op1 = gen_int_mode (temp, mode);
12723 op0 = XEXP (op0, 0);
12724 continue;
12725 }
12726
12727 /* If we are doing a sign bit comparison, it means we are testing
12728 a particular bit. Convert it to the appropriate AND. */
12729 if (sign_bit_comparison_p && CONST_INT_P (XEXP (op0, 1))
12730 && mode_width <= HOST_BITS_PER_WIDE_INT)
12731 {
12732 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
12733 (HOST_WIDE_INT_1U
12734 << (mode_width - 1
12735 - INTVAL (XEXP (op0, 1)))));
12736 code = (code == LT ? NE : EQ);
12737 continue;
12738 }
12739
12740 /* If this an equality comparison with zero and we are shifting
12741 the low bit to the sign bit, we can convert this to an AND of the
12742 low-order bit. */
12743 if (const_op == 0 && equality_comparison_p
12744 && CONST_INT_P (XEXP (op0, 1))
12745 && UINTVAL (XEXP (op0, 1)) == mode_width - 1)
12746 {
12747 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0), 1);
12748 continue;
12749 }
12750 break;
12751
12752 case ASHIFTRT:
12753 /* If this is an equality comparison with zero, we can do this
12754 as a logical shift, which might be much simpler. */
12755 if (equality_comparison_p && const_op == 0
12756 && CONST_INT_P (XEXP (op0, 1)))
12757 {
12758 op0 = simplify_shift_const (NULL_RTX, LSHIFTRT, mode,
12759 XEXP (op0, 0),
12760 INTVAL (XEXP (op0, 1)));
12761 continue;
12762 }
12763
12764 /* If OP0 is a sign extension and CODE is not an unsigned comparison,
12765 do the comparison in a narrower mode. */
12766 if (! unsigned_comparison_p
12767 && CONST_INT_P (XEXP (op0, 1))
12768 && GET_CODE (XEXP (op0, 0)) == ASHIFT
12769 && XEXP (op0, 1) == XEXP (XEXP (op0, 0), 1)
12770 && (int_mode_for_size (mode_width - INTVAL (XEXP (op0, 1)), 1)
12771 .exists (&tmode))
12772 && (((unsigned HOST_WIDE_INT) const_op
12773 + (GET_MODE_MASK (tmode) >> 1) + 1)
12774 <= GET_MODE_MASK (tmode)))
12775 {
12776 op0 = gen_lowpart (tmode, XEXP (XEXP (op0, 0), 0));
12777 continue;
12778 }
12779
12780 /* Likewise if OP0 is a PLUS of a sign extension with a
12781 constant, which is usually represented with the PLUS
12782 between the shifts. */
12783 if (! unsigned_comparison_p
12784 && CONST_INT_P (XEXP (op0, 1))
12785 && GET_CODE (XEXP (op0, 0)) == PLUS
12786 && CONST_INT_P (XEXP (XEXP (op0, 0), 1))
12787 && GET_CODE (XEXP (XEXP (op0, 0), 0)) == ASHIFT
12788 && XEXP (op0, 1) == XEXP (XEXP (XEXP (op0, 0), 0), 1)
12789 && (int_mode_for_size (mode_width - INTVAL (XEXP (op0, 1)), 1)
12790 .exists (&tmode))
12791 && (((unsigned HOST_WIDE_INT) const_op
12792 + (GET_MODE_MASK (tmode) >> 1) + 1)
12793 <= GET_MODE_MASK (tmode)))
12794 {
12795 rtx inner = XEXP (XEXP (XEXP (op0, 0), 0), 0);
12796 rtx add_const = XEXP (XEXP (op0, 0), 1);
12797 rtx new_const = simplify_gen_binary (ASHIFTRT, mode,
12798 add_const, XEXP (op0, 1));
12799
12800 op0 = simplify_gen_binary (PLUS, tmode,
12801 gen_lowpart (tmode, inner),
12802 new_const);
12803 continue;
12804 }
12805
12806 /* FALLTHROUGH */
12807 case LSHIFTRT:
12808 /* If we have (compare (xshiftrt FOO N) (const_int C)) and
12809 the low order N bits of FOO are known to be zero, we can do this
12810 by comparing FOO with C shifted left N bits so long as no
12811 overflow occurs. Even if the low order N bits of FOO aren't known
12812 to be zero, if the comparison is >= or < we can use the same
12813 optimization and for > or <= by setting all the low
12814 order N bits in the comparison constant. */
12815 if (CONST_INT_P (XEXP (op0, 1))
12816 && INTVAL (XEXP (op0, 1)) > 0
12817 && INTVAL (XEXP (op0, 1)) < HOST_BITS_PER_WIDE_INT
12818 && mode_width <= HOST_BITS_PER_WIDE_INT
12819 && (((unsigned HOST_WIDE_INT) const_op
12820 + (GET_CODE (op0) != LSHIFTRT
12821 ? ((GET_MODE_MASK (mode) >> INTVAL (XEXP (op0, 1)) >> 1)
12822 + 1)
12823 : 0))
12824 <= GET_MODE_MASK (mode) >> INTVAL (XEXP (op0, 1))))
12825 {
12826 unsigned HOST_WIDE_INT low_bits
12827 = (nonzero_bits (XEXP (op0, 0), mode)
12828 & ((HOST_WIDE_INT_1U
12829 << INTVAL (XEXP (op0, 1))) - 1));
12830 if (low_bits == 0 || !equality_comparison_p)
12831 {
12832 /* If the shift was logical, then we must make the condition
12833 unsigned. */
12834 if (GET_CODE (op0) == LSHIFTRT)
12835 code = unsigned_condition (code);
12836
12837 const_op = (unsigned HOST_WIDE_INT) const_op
12838 << INTVAL (XEXP (op0, 1));
12839 if (low_bits != 0
12840 && (code == GT || code == GTU
12841 || code == LE || code == LEU))
12842 const_op
12843 |= ((HOST_WIDE_INT_1 << INTVAL (XEXP (op0, 1))) - 1);
12844 op1 = GEN_INT (const_op);
12845 op0 = XEXP (op0, 0);
12846 continue;
12847 }
12848 }
12849
12850 /* If we are using this shift to extract just the sign bit, we
12851 can replace this with an LT or GE comparison. */
12852 if (const_op == 0
12853 && (equality_comparison_p || sign_bit_comparison_p)
12854 && CONST_INT_P (XEXP (op0, 1))
12855 && UINTVAL (XEXP (op0, 1)) == mode_width - 1)
12856 {
12857 op0 = XEXP (op0, 0);
12858 code = (code == NE || code == GT ? LT : GE);
12859 continue;
12860 }
12861 break;
12862
12863 default:
12864 break;
12865 }
12866
12867 break;
12868 }
12869
12870 /* Now make any compound operations involved in this comparison. Then,
12871 check for an outmost SUBREG on OP0 that is not doing anything or is
12872 paradoxical. The latter transformation must only be performed when
12873 it is known that the "extra" bits will be the same in op0 and op1 or
12874 that they don't matter. There are three cases to consider:
12875
12876 1. SUBREG_REG (op0) is a register. In this case the bits are don't
12877 care bits and we can assume they have any convenient value. So
12878 making the transformation is safe.
12879
12880 2. SUBREG_REG (op0) is a memory and LOAD_EXTEND_OP is UNKNOWN.
12881 In this case the upper bits of op0 are undefined. We should not make
12882 the simplification in that case as we do not know the contents of
12883 those bits.
12884
12885 3. SUBREG_REG (op0) is a memory and LOAD_EXTEND_OP is not UNKNOWN.
12886 In that case we know those bits are zeros or ones. We must also be
12887 sure that they are the same as the upper bits of op1.
12888
12889 We can never remove a SUBREG for a non-equality comparison because
12890 the sign bit is in a different place in the underlying object. */
12891
12892 rtx_code op0_mco_code = SET;
12893 if (op1 == const0_rtx)
12894 op0_mco_code = code == NE || code == EQ ? EQ : COMPARE;
12895
12896 op0 = make_compound_operation (op0, op0_mco_code);
12897 op1 = make_compound_operation (op1, SET);
12898
12899 if (GET_CODE (op0) == SUBREG && subreg_lowpart_p (op0)
12900 && is_int_mode (GET_MODE (op0), &mode)
12901 && is_int_mode (GET_MODE (SUBREG_REG (op0)), &inner_mode)
12902 && (code == NE || code == EQ))
12903 {
12904 if (paradoxical_subreg_p (op0))
12905 {
12906 /* For paradoxical subregs, allow case 1 as above. Case 3 isn't
12907 implemented. */
12908 if (REG_P (SUBREG_REG (op0)))
12909 {
12910 op0 = SUBREG_REG (op0);
12911 op1 = gen_lowpart (inner_mode, op1);
12912 }
12913 }
12914 else if (GET_MODE_PRECISION (inner_mode) <= HOST_BITS_PER_WIDE_INT
12915 && (nonzero_bits (SUBREG_REG (op0), inner_mode)
12916 & ~GET_MODE_MASK (mode)) == 0)
12917 {
12918 tem = gen_lowpart (inner_mode, op1);
12919
12920 if ((nonzero_bits (tem, inner_mode) & ~GET_MODE_MASK (mode)) == 0)
12921 op0 = SUBREG_REG (op0), op1 = tem;
12922 }
12923 }
12924
12925 /* We now do the opposite procedure: Some machines don't have compare
12926 insns in all modes. If OP0's mode is an integer mode smaller than a
12927 word and we can't do a compare in that mode, see if there is a larger
12928 mode for which we can do the compare. There are a number of cases in
12929 which we can use the wider mode. */
12930
12931 if (is_int_mode (GET_MODE (op0), &mode)
12932 && GET_MODE_SIZE (mode) < UNITS_PER_WORD
12933 && ! have_insn_for (COMPARE, mode))
12934 FOR_EACH_WIDER_MODE (tmode_iter, mode)
12935 {
12936 tmode = tmode_iter.require ();
12937 if (!HWI_COMPUTABLE_MODE_P (tmode))
12938 break;
12939 if (have_insn_for (COMPARE, tmode))
12940 {
12941 int zero_extended;
12942
12943 /* If this is a test for negative, we can make an explicit
12944 test of the sign bit. Test this first so we can use
12945 a paradoxical subreg to extend OP0. */
12946
12947 if (op1 == const0_rtx && (code == LT || code == GE)
12948 && HWI_COMPUTABLE_MODE_P (mode))
12949 {
12950 unsigned HOST_WIDE_INT sign
12951 = HOST_WIDE_INT_1U << (GET_MODE_BITSIZE (mode) - 1);
12952 op0 = simplify_gen_binary (AND, tmode,
12953 gen_lowpart (tmode, op0),
12954 gen_int_mode (sign, tmode));
12955 code = (code == LT) ? NE : EQ;
12956 break;
12957 }
12958
12959 /* If the only nonzero bits in OP0 and OP1 are those in the
12960 narrower mode and this is an equality or unsigned comparison,
12961 we can use the wider mode. Similarly for sign-extended
12962 values, in which case it is true for all comparisons. */
12963 zero_extended = ((code == EQ || code == NE
12964 || code == GEU || code == GTU
12965 || code == LEU || code == LTU)
12966 && (nonzero_bits (op0, tmode)
12967 & ~GET_MODE_MASK (mode)) == 0
12968 && ((CONST_INT_P (op1)
12969 || (nonzero_bits (op1, tmode)
12970 & ~GET_MODE_MASK (mode)) == 0)));
12971
12972 if (zero_extended
12973 || ((num_sign_bit_copies (op0, tmode)
12974 > (unsigned int) (GET_MODE_PRECISION (tmode)
12975 - GET_MODE_PRECISION (mode)))
12976 && (num_sign_bit_copies (op1, tmode)
12977 > (unsigned int) (GET_MODE_PRECISION (tmode)
12978 - GET_MODE_PRECISION (mode)))))
12979 {
12980 /* If OP0 is an AND and we don't have an AND in MODE either,
12981 make a new AND in the proper mode. */
12982 if (GET_CODE (op0) == AND
12983 && !have_insn_for (AND, mode))
12984 op0 = simplify_gen_binary (AND, tmode,
12985 gen_lowpart (tmode,
12986 XEXP (op0, 0)),
12987 gen_lowpart (tmode,
12988 XEXP (op0, 1)));
12989 else
12990 {
12991 if (zero_extended)
12992 {
12993 op0 = simplify_gen_unary (ZERO_EXTEND, tmode,
12994 op0, mode);
12995 op1 = simplify_gen_unary (ZERO_EXTEND, tmode,
12996 op1, mode);
12997 }
12998 else
12999 {
13000 op0 = simplify_gen_unary (SIGN_EXTEND, tmode,
13001 op0, mode);
13002 op1 = simplify_gen_unary (SIGN_EXTEND, tmode,
13003 op1, mode);
13004 }
13005 break;
13006 }
13007 }
13008 }
13009 }
13010
13011 /* We may have changed the comparison operands. Re-canonicalize. */
13012 if (swap_commutative_operands_p (op0, op1))
13013 {
13014 std::swap (op0, op1);
13015 code = swap_condition (code);
13016 }
13017
13018 /* If this machine only supports a subset of valid comparisons, see if we
13019 can convert an unsupported one into a supported one. */
13020 target_canonicalize_comparison (&code, &op0, &op1, 0);
13021
13022 *pop0 = op0;
13023 *pop1 = op1;
13024
13025 return code;
13026 }
13027 \f
13028 /* Utility function for record_value_for_reg. Count number of
13029 rtxs in X. */
13030 static int
13031 count_rtxs (rtx x)
13032 {
13033 enum rtx_code code = GET_CODE (x);
13034 const char *fmt;
13035 int i, j, ret = 1;
13036
13037 if (GET_RTX_CLASS (code) == RTX_BIN_ARITH
13038 || GET_RTX_CLASS (code) == RTX_COMM_ARITH)
13039 {
13040 rtx x0 = XEXP (x, 0);
13041 rtx x1 = XEXP (x, 1);
13042
13043 if (x0 == x1)
13044 return 1 + 2 * count_rtxs (x0);
13045
13046 if ((GET_RTX_CLASS (GET_CODE (x1)) == RTX_BIN_ARITH
13047 || GET_RTX_CLASS (GET_CODE (x1)) == RTX_COMM_ARITH)
13048 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
13049 return 2 + 2 * count_rtxs (x0)
13050 + count_rtxs (x == XEXP (x1, 0)
13051 ? XEXP (x1, 1) : XEXP (x1, 0));
13052
13053 if ((GET_RTX_CLASS (GET_CODE (x0)) == RTX_BIN_ARITH
13054 || GET_RTX_CLASS (GET_CODE (x0)) == RTX_COMM_ARITH)
13055 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
13056 return 2 + 2 * count_rtxs (x1)
13057 + count_rtxs (x == XEXP (x0, 0)
13058 ? XEXP (x0, 1) : XEXP (x0, 0));
13059 }
13060
13061 fmt = GET_RTX_FORMAT (code);
13062 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
13063 if (fmt[i] == 'e')
13064 ret += count_rtxs (XEXP (x, i));
13065 else if (fmt[i] == 'E')
13066 for (j = 0; j < XVECLEN (x, i); j++)
13067 ret += count_rtxs (XVECEXP (x, i, j));
13068
13069 return ret;
13070 }
13071 \f
13072 /* Utility function for following routine. Called when X is part of a value
13073 being stored into last_set_value. Sets last_set_table_tick
13074 for each register mentioned. Similar to mention_regs in cse.c */
13075
13076 static void
13077 update_table_tick (rtx x)
13078 {
13079 enum rtx_code code = GET_CODE (x);
13080 const char *fmt = GET_RTX_FORMAT (code);
13081 int i, j;
13082
13083 if (code == REG)
13084 {
13085 unsigned int regno = REGNO (x);
13086 unsigned int endregno = END_REGNO (x);
13087 unsigned int r;
13088
13089 for (r = regno; r < endregno; r++)
13090 {
13091 reg_stat_type *rsp = &reg_stat[r];
13092 rsp->last_set_table_tick = label_tick;
13093 }
13094
13095 return;
13096 }
13097
13098 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
13099 if (fmt[i] == 'e')
13100 {
13101 /* Check for identical subexpressions. If x contains
13102 identical subexpression we only have to traverse one of
13103 them. */
13104 if (i == 0 && ARITHMETIC_P (x))
13105 {
13106 /* Note that at this point x1 has already been
13107 processed. */
13108 rtx x0 = XEXP (x, 0);
13109 rtx x1 = XEXP (x, 1);
13110
13111 /* If x0 and x1 are identical then there is no need to
13112 process x0. */
13113 if (x0 == x1)
13114 break;
13115
13116 /* If x0 is identical to a subexpression of x1 then while
13117 processing x1, x0 has already been processed. Thus we
13118 are done with x. */
13119 if (ARITHMETIC_P (x1)
13120 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
13121 break;
13122
13123 /* If x1 is identical to a subexpression of x0 then we
13124 still have to process the rest of x0. */
13125 if (ARITHMETIC_P (x0)
13126 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
13127 {
13128 update_table_tick (XEXP (x0, x1 == XEXP (x0, 0) ? 1 : 0));
13129 break;
13130 }
13131 }
13132
13133 update_table_tick (XEXP (x, i));
13134 }
13135 else if (fmt[i] == 'E')
13136 for (j = 0; j < XVECLEN (x, i); j++)
13137 update_table_tick (XVECEXP (x, i, j));
13138 }
13139
13140 /* Record that REG is set to VALUE in insn INSN. If VALUE is zero, we
13141 are saying that the register is clobbered and we no longer know its
13142 value. If INSN is zero, don't update reg_stat[].last_set; this is
13143 only permitted with VALUE also zero and is used to invalidate the
13144 register. */
13145
13146 static void
13147 record_value_for_reg (rtx reg, rtx_insn *insn, rtx value)
13148 {
13149 unsigned int regno = REGNO (reg);
13150 unsigned int endregno = END_REGNO (reg);
13151 unsigned int i;
13152 reg_stat_type *rsp;
13153
13154 /* If VALUE contains REG and we have a previous value for REG, substitute
13155 the previous value. */
13156 if (value && insn && reg_overlap_mentioned_p (reg, value))
13157 {
13158 rtx tem;
13159
13160 /* Set things up so get_last_value is allowed to see anything set up to
13161 our insn. */
13162 subst_low_luid = DF_INSN_LUID (insn);
13163 tem = get_last_value (reg);
13164
13165 /* If TEM is simply a binary operation with two CLOBBERs as operands,
13166 it isn't going to be useful and will take a lot of time to process,
13167 so just use the CLOBBER. */
13168
13169 if (tem)
13170 {
13171 if (ARITHMETIC_P (tem)
13172 && GET_CODE (XEXP (tem, 0)) == CLOBBER
13173 && GET_CODE (XEXP (tem, 1)) == CLOBBER)
13174 tem = XEXP (tem, 0);
13175 else if (count_occurrences (value, reg, 1) >= 2)
13176 {
13177 /* If there are two or more occurrences of REG in VALUE,
13178 prevent the value from growing too much. */
13179 if (count_rtxs (tem) > MAX_LAST_VALUE_RTL)
13180 tem = gen_rtx_CLOBBER (GET_MODE (tem), const0_rtx);
13181 }
13182
13183 value = replace_rtx (copy_rtx (value), reg, tem);
13184 }
13185 }
13186
13187 /* For each register modified, show we don't know its value, that
13188 we don't know about its bitwise content, that its value has been
13189 updated, and that we don't know the location of the death of the
13190 register. */
13191 for (i = regno; i < endregno; i++)
13192 {
13193 rsp = &reg_stat[i];
13194
13195 if (insn)
13196 rsp->last_set = insn;
13197
13198 rsp->last_set_value = 0;
13199 rsp->last_set_mode = VOIDmode;
13200 rsp->last_set_nonzero_bits = 0;
13201 rsp->last_set_sign_bit_copies = 0;
13202 rsp->last_death = 0;
13203 rsp->truncated_to_mode = VOIDmode;
13204 }
13205
13206 /* Mark registers that are being referenced in this value. */
13207 if (value)
13208 update_table_tick (value);
13209
13210 /* Now update the status of each register being set.
13211 If someone is using this register in this block, set this register
13212 to invalid since we will get confused between the two lives in this
13213 basic block. This makes using this register always invalid. In cse, we
13214 scan the table to invalidate all entries using this register, but this
13215 is too much work for us. */
13216
13217 for (i = regno; i < endregno; i++)
13218 {
13219 rsp = &reg_stat[i];
13220 rsp->last_set_label = label_tick;
13221 if (!insn
13222 || (value && rsp->last_set_table_tick >= label_tick_ebb_start))
13223 rsp->last_set_invalid = 1;
13224 else
13225 rsp->last_set_invalid = 0;
13226 }
13227
13228 /* The value being assigned might refer to X (like in "x++;"). In that
13229 case, we must replace it with (clobber (const_int 0)) to prevent
13230 infinite loops. */
13231 rsp = &reg_stat[regno];
13232 if (value && !get_last_value_validate (&value, insn, label_tick, 0))
13233 {
13234 value = copy_rtx (value);
13235 if (!get_last_value_validate (&value, insn, label_tick, 1))
13236 value = 0;
13237 }
13238
13239 /* For the main register being modified, update the value, the mode, the
13240 nonzero bits, and the number of sign bit copies. */
13241
13242 rsp->last_set_value = value;
13243
13244 if (value)
13245 {
13246 machine_mode mode = GET_MODE (reg);
13247 subst_low_luid = DF_INSN_LUID (insn);
13248 rsp->last_set_mode = mode;
13249 if (GET_MODE_CLASS (mode) == MODE_INT
13250 && HWI_COMPUTABLE_MODE_P (mode))
13251 mode = nonzero_bits_mode;
13252 rsp->last_set_nonzero_bits = nonzero_bits (value, mode);
13253 rsp->last_set_sign_bit_copies
13254 = num_sign_bit_copies (value, GET_MODE (reg));
13255 }
13256 }
13257
13258 /* Called via note_stores from record_dead_and_set_regs to handle one
13259 SET or CLOBBER in an insn. DATA is the instruction in which the
13260 set is occurring. */
13261
13262 static void
13263 record_dead_and_set_regs_1 (rtx dest, const_rtx setter, void *data)
13264 {
13265 rtx_insn *record_dead_insn = (rtx_insn *) data;
13266
13267 if (GET_CODE (dest) == SUBREG)
13268 dest = SUBREG_REG (dest);
13269
13270 if (!record_dead_insn)
13271 {
13272 if (REG_P (dest))
13273 record_value_for_reg (dest, NULL, NULL_RTX);
13274 return;
13275 }
13276
13277 if (REG_P (dest))
13278 {
13279 /* If we are setting the whole register, we know its value. Otherwise
13280 show that we don't know the value. We can handle a SUBREG if it's
13281 the low part, but we must be careful with paradoxical SUBREGs on
13282 RISC architectures because we cannot strip e.g. an extension around
13283 a load and record the naked load since the RTL middle-end considers
13284 that the upper bits are defined according to LOAD_EXTEND_OP. */
13285 if (GET_CODE (setter) == SET && dest == SET_DEST (setter))
13286 record_value_for_reg (dest, record_dead_insn, SET_SRC (setter));
13287 else if (GET_CODE (setter) == SET
13288 && GET_CODE (SET_DEST (setter)) == SUBREG
13289 && SUBREG_REG (SET_DEST (setter)) == dest
13290 && known_le (GET_MODE_PRECISION (GET_MODE (dest)),
13291 BITS_PER_WORD)
13292 && subreg_lowpart_p (SET_DEST (setter)))
13293 record_value_for_reg (dest, record_dead_insn,
13294 WORD_REGISTER_OPERATIONS
13295 && paradoxical_subreg_p (SET_DEST (setter))
13296 ? SET_SRC (setter)
13297 : gen_lowpart (GET_MODE (dest),
13298 SET_SRC (setter)));
13299 else
13300 record_value_for_reg (dest, record_dead_insn, NULL_RTX);
13301 }
13302 else if (MEM_P (dest)
13303 /* Ignore pushes, they clobber nothing. */
13304 && ! push_operand (dest, GET_MODE (dest)))
13305 mem_last_set = DF_INSN_LUID (record_dead_insn);
13306 }
13307
13308 /* Update the records of when each REG was most recently set or killed
13309 for the things done by INSN. This is the last thing done in processing
13310 INSN in the combiner loop.
13311
13312 We update reg_stat[], in particular fields last_set, last_set_value,
13313 last_set_mode, last_set_nonzero_bits, last_set_sign_bit_copies,
13314 last_death, and also the similar information mem_last_set (which insn
13315 most recently modified memory) and last_call_luid (which insn was the
13316 most recent subroutine call). */
13317
13318 static void
13319 record_dead_and_set_regs (rtx_insn *insn)
13320 {
13321 rtx link;
13322 unsigned int i;
13323
13324 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
13325 {
13326 if (REG_NOTE_KIND (link) == REG_DEAD
13327 && REG_P (XEXP (link, 0)))
13328 {
13329 unsigned int regno = REGNO (XEXP (link, 0));
13330 unsigned int endregno = END_REGNO (XEXP (link, 0));
13331
13332 for (i = regno; i < endregno; i++)
13333 {
13334 reg_stat_type *rsp;
13335
13336 rsp = &reg_stat[i];
13337 rsp->last_death = insn;
13338 }
13339 }
13340 else if (REG_NOTE_KIND (link) == REG_INC)
13341 record_value_for_reg (XEXP (link, 0), insn, NULL_RTX);
13342 }
13343
13344 if (CALL_P (insn))
13345 {
13346 hard_reg_set_iterator hrsi;
13347 EXECUTE_IF_SET_IN_HARD_REG_SET (regs_invalidated_by_call, 0, i, hrsi)
13348 {
13349 reg_stat_type *rsp;
13350
13351 rsp = &reg_stat[i];
13352 rsp->last_set_invalid = 1;
13353 rsp->last_set = insn;
13354 rsp->last_set_value = 0;
13355 rsp->last_set_mode = VOIDmode;
13356 rsp->last_set_nonzero_bits = 0;
13357 rsp->last_set_sign_bit_copies = 0;
13358 rsp->last_death = 0;
13359 rsp->truncated_to_mode = VOIDmode;
13360 }
13361
13362 last_call_luid = mem_last_set = DF_INSN_LUID (insn);
13363
13364 /* We can't combine into a call pattern. Remember, though, that
13365 the return value register is set at this LUID. We could
13366 still replace a register with the return value from the
13367 wrong subroutine call! */
13368 note_stores (PATTERN (insn), record_dead_and_set_regs_1, NULL_RTX);
13369 }
13370 else
13371 note_stores (PATTERN (insn), record_dead_and_set_regs_1, insn);
13372 }
13373
13374 /* If a SUBREG has the promoted bit set, it is in fact a property of the
13375 register present in the SUBREG, so for each such SUBREG go back and
13376 adjust nonzero and sign bit information of the registers that are
13377 known to have some zero/sign bits set.
13378
13379 This is needed because when combine blows the SUBREGs away, the
13380 information on zero/sign bits is lost and further combines can be
13381 missed because of that. */
13382
13383 static void
13384 record_promoted_value (rtx_insn *insn, rtx subreg)
13385 {
13386 struct insn_link *links;
13387 rtx set;
13388 unsigned int regno = REGNO (SUBREG_REG (subreg));
13389 machine_mode mode = GET_MODE (subreg);
13390
13391 if (!HWI_COMPUTABLE_MODE_P (mode))
13392 return;
13393
13394 for (links = LOG_LINKS (insn); links;)
13395 {
13396 reg_stat_type *rsp;
13397
13398 insn = links->insn;
13399 set = single_set (insn);
13400
13401 if (! set || !REG_P (SET_DEST (set))
13402 || REGNO (SET_DEST (set)) != regno
13403 || GET_MODE (SET_DEST (set)) != GET_MODE (SUBREG_REG (subreg)))
13404 {
13405 links = links->next;
13406 continue;
13407 }
13408
13409 rsp = &reg_stat[regno];
13410 if (rsp->last_set == insn)
13411 {
13412 if (SUBREG_PROMOTED_UNSIGNED_P (subreg))
13413 rsp->last_set_nonzero_bits &= GET_MODE_MASK (mode);
13414 }
13415
13416 if (REG_P (SET_SRC (set)))
13417 {
13418 regno = REGNO (SET_SRC (set));
13419 links = LOG_LINKS (insn);
13420 }
13421 else
13422 break;
13423 }
13424 }
13425
13426 /* Check if X, a register, is known to contain a value already
13427 truncated to MODE. In this case we can use a subreg to refer to
13428 the truncated value even though in the generic case we would need
13429 an explicit truncation. */
13430
13431 static bool
13432 reg_truncated_to_mode (machine_mode mode, const_rtx x)
13433 {
13434 reg_stat_type *rsp = &reg_stat[REGNO (x)];
13435 machine_mode truncated = rsp->truncated_to_mode;
13436
13437 if (truncated == 0
13438 || rsp->truncation_label < label_tick_ebb_start)
13439 return false;
13440 if (!partial_subreg_p (mode, truncated))
13441 return true;
13442 if (TRULY_NOOP_TRUNCATION_MODES_P (mode, truncated))
13443 return true;
13444 return false;
13445 }
13446
13447 /* If X is a hard reg or a subreg record the mode that the register is
13448 accessed in. For non-TARGET_TRULY_NOOP_TRUNCATION targets we might be
13449 able to turn a truncate into a subreg using this information. Return true
13450 if traversing X is complete. */
13451
13452 static bool
13453 record_truncated_value (rtx x)
13454 {
13455 machine_mode truncated_mode;
13456 reg_stat_type *rsp;
13457
13458 if (GET_CODE (x) == SUBREG && REG_P (SUBREG_REG (x)))
13459 {
13460 machine_mode original_mode = GET_MODE (SUBREG_REG (x));
13461 truncated_mode = GET_MODE (x);
13462
13463 if (!partial_subreg_p (truncated_mode, original_mode))
13464 return true;
13465
13466 truncated_mode = GET_MODE (x);
13467 if (TRULY_NOOP_TRUNCATION_MODES_P (truncated_mode, original_mode))
13468 return true;
13469
13470 x = SUBREG_REG (x);
13471 }
13472 /* ??? For hard-regs we now record everything. We might be able to
13473 optimize this using last_set_mode. */
13474 else if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
13475 truncated_mode = GET_MODE (x);
13476 else
13477 return false;
13478
13479 rsp = &reg_stat[REGNO (x)];
13480 if (rsp->truncated_to_mode == 0
13481 || rsp->truncation_label < label_tick_ebb_start
13482 || partial_subreg_p (truncated_mode, rsp->truncated_to_mode))
13483 {
13484 rsp->truncated_to_mode = truncated_mode;
13485 rsp->truncation_label = label_tick;
13486 }
13487
13488 return true;
13489 }
13490
13491 /* Callback for note_uses. Find hardregs and subregs of pseudos and
13492 the modes they are used in. This can help truning TRUNCATEs into
13493 SUBREGs. */
13494
13495 static void
13496 record_truncated_values (rtx *loc, void *data ATTRIBUTE_UNUSED)
13497 {
13498 subrtx_var_iterator::array_type array;
13499 FOR_EACH_SUBRTX_VAR (iter, array, *loc, NONCONST)
13500 if (record_truncated_value (*iter))
13501 iter.skip_subrtxes ();
13502 }
13503
13504 /* Scan X for promoted SUBREGs. For each one found,
13505 note what it implies to the registers used in it. */
13506
13507 static void
13508 check_promoted_subreg (rtx_insn *insn, rtx x)
13509 {
13510 if (GET_CODE (x) == SUBREG
13511 && SUBREG_PROMOTED_VAR_P (x)
13512 && REG_P (SUBREG_REG (x)))
13513 record_promoted_value (insn, x);
13514 else
13515 {
13516 const char *format = GET_RTX_FORMAT (GET_CODE (x));
13517 int i, j;
13518
13519 for (i = 0; i < GET_RTX_LENGTH (GET_CODE (x)); i++)
13520 switch (format[i])
13521 {
13522 case 'e':
13523 check_promoted_subreg (insn, XEXP (x, i));
13524 break;
13525 case 'V':
13526 case 'E':
13527 if (XVEC (x, i) != 0)
13528 for (j = 0; j < XVECLEN (x, i); j++)
13529 check_promoted_subreg (insn, XVECEXP (x, i, j));
13530 break;
13531 }
13532 }
13533 }
13534 \f
13535 /* Verify that all the registers and memory references mentioned in *LOC are
13536 still valid. *LOC was part of a value set in INSN when label_tick was
13537 equal to TICK. Return 0 if some are not. If REPLACE is nonzero, replace
13538 the invalid references with (clobber (const_int 0)) and return 1. This
13539 replacement is useful because we often can get useful information about
13540 the form of a value (e.g., if it was produced by a shift that always
13541 produces -1 or 0) even though we don't know exactly what registers it
13542 was produced from. */
13543
13544 static int
13545 get_last_value_validate (rtx *loc, rtx_insn *insn, int tick, int replace)
13546 {
13547 rtx x = *loc;
13548 const char *fmt = GET_RTX_FORMAT (GET_CODE (x));
13549 int len = GET_RTX_LENGTH (GET_CODE (x));
13550 int i, j;
13551
13552 if (REG_P (x))
13553 {
13554 unsigned int regno = REGNO (x);
13555 unsigned int endregno = END_REGNO (x);
13556 unsigned int j;
13557
13558 for (j = regno; j < endregno; j++)
13559 {
13560 reg_stat_type *rsp = &reg_stat[j];
13561 if (rsp->last_set_invalid
13562 /* If this is a pseudo-register that was only set once and not
13563 live at the beginning of the function, it is always valid. */
13564 || (! (regno >= FIRST_PSEUDO_REGISTER
13565 && regno < reg_n_sets_max
13566 && REG_N_SETS (regno) == 1
13567 && (!REGNO_REG_SET_P
13568 (DF_LR_IN (ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb),
13569 regno)))
13570 && rsp->last_set_label > tick))
13571 {
13572 if (replace)
13573 *loc = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
13574 return replace;
13575 }
13576 }
13577
13578 return 1;
13579 }
13580 /* If this is a memory reference, make sure that there were no stores after
13581 it that might have clobbered the value. We don't have alias info, so we
13582 assume any store invalidates it. Moreover, we only have local UIDs, so
13583 we also assume that there were stores in the intervening basic blocks. */
13584 else if (MEM_P (x) && !MEM_READONLY_P (x)
13585 && (tick != label_tick || DF_INSN_LUID (insn) <= mem_last_set))
13586 {
13587 if (replace)
13588 *loc = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
13589 return replace;
13590 }
13591
13592 for (i = 0; i < len; i++)
13593 {
13594 if (fmt[i] == 'e')
13595 {
13596 /* Check for identical subexpressions. If x contains
13597 identical subexpression we only have to traverse one of
13598 them. */
13599 if (i == 1 && ARITHMETIC_P (x))
13600 {
13601 /* Note that at this point x0 has already been checked
13602 and found valid. */
13603 rtx x0 = XEXP (x, 0);
13604 rtx x1 = XEXP (x, 1);
13605
13606 /* If x0 and x1 are identical then x is also valid. */
13607 if (x0 == x1)
13608 return 1;
13609
13610 /* If x1 is identical to a subexpression of x0 then
13611 while checking x0, x1 has already been checked. Thus
13612 it is valid and so as x. */
13613 if (ARITHMETIC_P (x0)
13614 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
13615 return 1;
13616
13617 /* If x0 is identical to a subexpression of x1 then x is
13618 valid iff the rest of x1 is valid. */
13619 if (ARITHMETIC_P (x1)
13620 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
13621 return
13622 get_last_value_validate (&XEXP (x1,
13623 x0 == XEXP (x1, 0) ? 1 : 0),
13624 insn, tick, replace);
13625 }
13626
13627 if (get_last_value_validate (&XEXP (x, i), insn, tick,
13628 replace) == 0)
13629 return 0;
13630 }
13631 else if (fmt[i] == 'E')
13632 for (j = 0; j < XVECLEN (x, i); j++)
13633 if (get_last_value_validate (&XVECEXP (x, i, j),
13634 insn, tick, replace) == 0)
13635 return 0;
13636 }
13637
13638 /* If we haven't found a reason for it to be invalid, it is valid. */
13639 return 1;
13640 }
13641
13642 /* Get the last value assigned to X, if known. Some registers
13643 in the value may be replaced with (clobber (const_int 0)) if their value
13644 is known longer known reliably. */
13645
13646 static rtx
13647 get_last_value (const_rtx x)
13648 {
13649 unsigned int regno;
13650 rtx value;
13651 reg_stat_type *rsp;
13652
13653 /* If this is a non-paradoxical SUBREG, get the value of its operand and
13654 then convert it to the desired mode. If this is a paradoxical SUBREG,
13655 we cannot predict what values the "extra" bits might have. */
13656 if (GET_CODE (x) == SUBREG
13657 && subreg_lowpart_p (x)
13658 && !paradoxical_subreg_p (x)
13659 && (value = get_last_value (SUBREG_REG (x))) != 0)
13660 return gen_lowpart (GET_MODE (x), value);
13661
13662 if (!REG_P (x))
13663 return 0;
13664
13665 regno = REGNO (x);
13666 rsp = &reg_stat[regno];
13667 value = rsp->last_set_value;
13668
13669 /* If we don't have a value, or if it isn't for this basic block and
13670 it's either a hard register, set more than once, or it's a live
13671 at the beginning of the function, return 0.
13672
13673 Because if it's not live at the beginning of the function then the reg
13674 is always set before being used (is never used without being set).
13675 And, if it's set only once, and it's always set before use, then all
13676 uses must have the same last value, even if it's not from this basic
13677 block. */
13678
13679 if (value == 0
13680 || (rsp->last_set_label < label_tick_ebb_start
13681 && (regno < FIRST_PSEUDO_REGISTER
13682 || regno >= reg_n_sets_max
13683 || REG_N_SETS (regno) != 1
13684 || REGNO_REG_SET_P
13685 (DF_LR_IN (ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb), regno))))
13686 return 0;
13687
13688 /* If the value was set in a later insn than the ones we are processing,
13689 we can't use it even if the register was only set once. */
13690 if (rsp->last_set_label == label_tick
13691 && DF_INSN_LUID (rsp->last_set) >= subst_low_luid)
13692 return 0;
13693
13694 /* If fewer bits were set than what we are asked for now, we cannot use
13695 the value. */
13696 if (maybe_lt (GET_MODE_PRECISION (rsp->last_set_mode),
13697 GET_MODE_PRECISION (GET_MODE (x))))
13698 return 0;
13699
13700 /* If the value has all its registers valid, return it. */
13701 if (get_last_value_validate (&value, rsp->last_set, rsp->last_set_label, 0))
13702 return value;
13703
13704 /* Otherwise, make a copy and replace any invalid register with
13705 (clobber (const_int 0)). If that fails for some reason, return 0. */
13706
13707 value = copy_rtx (value);
13708 if (get_last_value_validate (&value, rsp->last_set, rsp->last_set_label, 1))
13709 return value;
13710
13711 return 0;
13712 }
13713 \f
13714 /* Define three variables used for communication between the following
13715 routines. */
13716
13717 static unsigned int reg_dead_regno, reg_dead_endregno;
13718 static int reg_dead_flag;
13719
13720 /* Function called via note_stores from reg_dead_at_p.
13721
13722 If DEST is within [reg_dead_regno, reg_dead_endregno), set
13723 reg_dead_flag to 1 if X is a CLOBBER and to -1 it is a SET. */
13724
13725 static void
13726 reg_dead_at_p_1 (rtx dest, const_rtx x, void *data ATTRIBUTE_UNUSED)
13727 {
13728 unsigned int regno, endregno;
13729
13730 if (!REG_P (dest))
13731 return;
13732
13733 regno = REGNO (dest);
13734 endregno = END_REGNO (dest);
13735 if (reg_dead_endregno > regno && reg_dead_regno < endregno)
13736 reg_dead_flag = (GET_CODE (x) == CLOBBER) ? 1 : -1;
13737 }
13738
13739 /* Return nonzero if REG is known to be dead at INSN.
13740
13741 We scan backwards from INSN. If we hit a REG_DEAD note or a CLOBBER
13742 referencing REG, it is dead. If we hit a SET referencing REG, it is
13743 live. Otherwise, see if it is live or dead at the start of the basic
13744 block we are in. Hard regs marked as being live in NEWPAT_USED_REGS
13745 must be assumed to be always live. */
13746
13747 static int
13748 reg_dead_at_p (rtx reg, rtx_insn *insn)
13749 {
13750 basic_block block;
13751 unsigned int i;
13752
13753 /* Set variables for reg_dead_at_p_1. */
13754 reg_dead_regno = REGNO (reg);
13755 reg_dead_endregno = END_REGNO (reg);
13756
13757 reg_dead_flag = 0;
13758
13759 /* Check that reg isn't mentioned in NEWPAT_USED_REGS. For fixed registers
13760 we allow the machine description to decide whether use-and-clobber
13761 patterns are OK. */
13762 if (reg_dead_regno < FIRST_PSEUDO_REGISTER)
13763 {
13764 for (i = reg_dead_regno; i < reg_dead_endregno; i++)
13765 if (!fixed_regs[i] && TEST_HARD_REG_BIT (newpat_used_regs, i))
13766 return 0;
13767 }
13768
13769 /* Scan backwards until we find a REG_DEAD note, SET, CLOBBER, or
13770 beginning of basic block. */
13771 block = BLOCK_FOR_INSN (insn);
13772 for (;;)
13773 {
13774 if (INSN_P (insn))
13775 {
13776 if (find_regno_note (insn, REG_UNUSED, reg_dead_regno))
13777 return 1;
13778
13779 note_stores (PATTERN (insn), reg_dead_at_p_1, NULL);
13780 if (reg_dead_flag)
13781 return reg_dead_flag == 1 ? 1 : 0;
13782
13783 if (find_regno_note (insn, REG_DEAD, reg_dead_regno))
13784 return 1;
13785 }
13786
13787 if (insn == BB_HEAD (block))
13788 break;
13789
13790 insn = PREV_INSN (insn);
13791 }
13792
13793 /* Look at live-in sets for the basic block that we were in. */
13794 for (i = reg_dead_regno; i < reg_dead_endregno; i++)
13795 if (REGNO_REG_SET_P (df_get_live_in (block), i))
13796 return 0;
13797
13798 return 1;
13799 }
13800 \f
13801 /* Note hard registers in X that are used. */
13802
13803 static void
13804 mark_used_regs_combine (rtx x)
13805 {
13806 RTX_CODE code = GET_CODE (x);
13807 unsigned int regno;
13808 int i;
13809
13810 switch (code)
13811 {
13812 case LABEL_REF:
13813 case SYMBOL_REF:
13814 case CONST:
13815 CASE_CONST_ANY:
13816 case PC:
13817 case ADDR_VEC:
13818 case ADDR_DIFF_VEC:
13819 case ASM_INPUT:
13820 /* CC0 must die in the insn after it is set, so we don't need to take
13821 special note of it here. */
13822 case CC0:
13823 return;
13824
13825 case CLOBBER:
13826 /* If we are clobbering a MEM, mark any hard registers inside the
13827 address as used. */
13828 if (MEM_P (XEXP (x, 0)))
13829 mark_used_regs_combine (XEXP (XEXP (x, 0), 0));
13830 return;
13831
13832 case REG:
13833 regno = REGNO (x);
13834 /* A hard reg in a wide mode may really be multiple registers.
13835 If so, mark all of them just like the first. */
13836 if (regno < FIRST_PSEUDO_REGISTER)
13837 {
13838 /* None of this applies to the stack, frame or arg pointers. */
13839 if (regno == STACK_POINTER_REGNUM
13840 || (!HARD_FRAME_POINTER_IS_FRAME_POINTER
13841 && regno == HARD_FRAME_POINTER_REGNUM)
13842 || (FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
13843 && regno == ARG_POINTER_REGNUM && fixed_regs[regno])
13844 || regno == FRAME_POINTER_REGNUM)
13845 return;
13846
13847 add_to_hard_reg_set (&newpat_used_regs, GET_MODE (x), regno);
13848 }
13849 return;
13850
13851 case SET:
13852 {
13853 /* If setting a MEM, or a SUBREG of a MEM, then note any hard regs in
13854 the address. */
13855 rtx testreg = SET_DEST (x);
13856
13857 while (GET_CODE (testreg) == SUBREG
13858 || GET_CODE (testreg) == ZERO_EXTRACT
13859 || GET_CODE (testreg) == STRICT_LOW_PART)
13860 testreg = XEXP (testreg, 0);
13861
13862 if (MEM_P (testreg))
13863 mark_used_regs_combine (XEXP (testreg, 0));
13864
13865 mark_used_regs_combine (SET_SRC (x));
13866 }
13867 return;
13868
13869 default:
13870 break;
13871 }
13872
13873 /* Recursively scan the operands of this expression. */
13874
13875 {
13876 const char *fmt = GET_RTX_FORMAT (code);
13877
13878 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
13879 {
13880 if (fmt[i] == 'e')
13881 mark_used_regs_combine (XEXP (x, i));
13882 else if (fmt[i] == 'E')
13883 {
13884 int j;
13885
13886 for (j = 0; j < XVECLEN (x, i); j++)
13887 mark_used_regs_combine (XVECEXP (x, i, j));
13888 }
13889 }
13890 }
13891 }
13892 \f
13893 /* Remove register number REGNO from the dead registers list of INSN.
13894
13895 Return the note used to record the death, if there was one. */
13896
13897 rtx
13898 remove_death (unsigned int regno, rtx_insn *insn)
13899 {
13900 rtx note = find_regno_note (insn, REG_DEAD, regno);
13901
13902 if (note)
13903 remove_note (insn, note);
13904
13905 return note;
13906 }
13907
13908 /* For each register (hardware or pseudo) used within expression X, if its
13909 death is in an instruction with luid between FROM_LUID (inclusive) and
13910 TO_INSN (exclusive), put a REG_DEAD note for that register in the
13911 list headed by PNOTES.
13912
13913 That said, don't move registers killed by maybe_kill_insn.
13914
13915 This is done when X is being merged by combination into TO_INSN. These
13916 notes will then be distributed as needed. */
13917
13918 static void
13919 move_deaths (rtx x, rtx maybe_kill_insn, int from_luid, rtx_insn *to_insn,
13920 rtx *pnotes)
13921 {
13922 const char *fmt;
13923 int len, i;
13924 enum rtx_code code = GET_CODE (x);
13925
13926 if (code == REG)
13927 {
13928 unsigned int regno = REGNO (x);
13929 rtx_insn *where_dead = reg_stat[regno].last_death;
13930
13931 /* If we do not know where the register died, it may still die between
13932 FROM_LUID and TO_INSN. If so, find it. This is PR83304. */
13933 if (!where_dead || DF_INSN_LUID (where_dead) >= DF_INSN_LUID (to_insn))
13934 {
13935 rtx_insn *insn = prev_real_nondebug_insn (to_insn);
13936 while (insn
13937 && BLOCK_FOR_INSN (insn) == BLOCK_FOR_INSN (to_insn)
13938 && DF_INSN_LUID (insn) >= from_luid)
13939 {
13940 if (dead_or_set_regno_p (insn, regno))
13941 {
13942 if (find_regno_note (insn, REG_DEAD, regno))
13943 where_dead = insn;
13944 break;
13945 }
13946
13947 insn = prev_real_nondebug_insn (insn);
13948 }
13949 }
13950
13951 /* Don't move the register if it gets killed in between from and to. */
13952 if (maybe_kill_insn && reg_set_p (x, maybe_kill_insn)
13953 && ! reg_referenced_p (x, maybe_kill_insn))
13954 return;
13955
13956 if (where_dead
13957 && BLOCK_FOR_INSN (where_dead) == BLOCK_FOR_INSN (to_insn)
13958 && DF_INSN_LUID (where_dead) >= from_luid
13959 && DF_INSN_LUID (where_dead) < DF_INSN_LUID (to_insn))
13960 {
13961 rtx note = remove_death (regno, where_dead);
13962
13963 /* It is possible for the call above to return 0. This can occur
13964 when last_death points to I2 or I1 that we combined with.
13965 In that case make a new note.
13966
13967 We must also check for the case where X is a hard register
13968 and NOTE is a death note for a range of hard registers
13969 including X. In that case, we must put REG_DEAD notes for
13970 the remaining registers in place of NOTE. */
13971
13972 if (note != 0 && regno < FIRST_PSEUDO_REGISTER
13973 && partial_subreg_p (GET_MODE (x), GET_MODE (XEXP (note, 0))))
13974 {
13975 unsigned int deadregno = REGNO (XEXP (note, 0));
13976 unsigned int deadend = END_REGNO (XEXP (note, 0));
13977 unsigned int ourend = END_REGNO (x);
13978 unsigned int i;
13979
13980 for (i = deadregno; i < deadend; i++)
13981 if (i < regno || i >= ourend)
13982 add_reg_note (where_dead, REG_DEAD, regno_reg_rtx[i]);
13983 }
13984
13985 /* If we didn't find any note, or if we found a REG_DEAD note that
13986 covers only part of the given reg, and we have a multi-reg hard
13987 register, then to be safe we must check for REG_DEAD notes
13988 for each register other than the first. They could have
13989 their own REG_DEAD notes lying around. */
13990 else if ((note == 0
13991 || (note != 0
13992 && partial_subreg_p (GET_MODE (XEXP (note, 0)),
13993 GET_MODE (x))))
13994 && regno < FIRST_PSEUDO_REGISTER
13995 && REG_NREGS (x) > 1)
13996 {
13997 unsigned int ourend = END_REGNO (x);
13998 unsigned int i, offset;
13999 rtx oldnotes = 0;
14000
14001 if (note)
14002 offset = hard_regno_nregs (regno, GET_MODE (XEXP (note, 0)));
14003 else
14004 offset = 1;
14005
14006 for (i = regno + offset; i < ourend; i++)
14007 move_deaths (regno_reg_rtx[i],
14008 maybe_kill_insn, from_luid, to_insn, &oldnotes);
14009 }
14010
14011 if (note != 0 && GET_MODE (XEXP (note, 0)) == GET_MODE (x))
14012 {
14013 XEXP (note, 1) = *pnotes;
14014 *pnotes = note;
14015 }
14016 else
14017 *pnotes = alloc_reg_note (REG_DEAD, x, *pnotes);
14018 }
14019
14020 return;
14021 }
14022
14023 else if (GET_CODE (x) == SET)
14024 {
14025 rtx dest = SET_DEST (x);
14026
14027 move_deaths (SET_SRC (x), maybe_kill_insn, from_luid, to_insn, pnotes);
14028
14029 /* In the case of a ZERO_EXTRACT, a STRICT_LOW_PART, or a SUBREG
14030 that accesses one word of a multi-word item, some
14031 piece of everything register in the expression is used by
14032 this insn, so remove any old death. */
14033 /* ??? So why do we test for equality of the sizes? */
14034
14035 if (GET_CODE (dest) == ZERO_EXTRACT
14036 || GET_CODE (dest) == STRICT_LOW_PART
14037 || (GET_CODE (dest) == SUBREG
14038 && !read_modify_subreg_p (dest)))
14039 {
14040 move_deaths (dest, maybe_kill_insn, from_luid, to_insn, pnotes);
14041 return;
14042 }
14043
14044 /* If this is some other SUBREG, we know it replaces the entire
14045 value, so use that as the destination. */
14046 if (GET_CODE (dest) == SUBREG)
14047 dest = SUBREG_REG (dest);
14048
14049 /* If this is a MEM, adjust deaths of anything used in the address.
14050 For a REG (the only other possibility), the entire value is
14051 being replaced so the old value is not used in this insn. */
14052
14053 if (MEM_P (dest))
14054 move_deaths (XEXP (dest, 0), maybe_kill_insn, from_luid,
14055 to_insn, pnotes);
14056 return;
14057 }
14058
14059 else if (GET_CODE (x) == CLOBBER)
14060 return;
14061
14062 len = GET_RTX_LENGTH (code);
14063 fmt = GET_RTX_FORMAT (code);
14064
14065 for (i = 0; i < len; i++)
14066 {
14067 if (fmt[i] == 'E')
14068 {
14069 int j;
14070 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
14071 move_deaths (XVECEXP (x, i, j), maybe_kill_insn, from_luid,
14072 to_insn, pnotes);
14073 }
14074 else if (fmt[i] == 'e')
14075 move_deaths (XEXP (x, i), maybe_kill_insn, from_luid, to_insn, pnotes);
14076 }
14077 }
14078 \f
14079 /* Return 1 if X is the target of a bit-field assignment in BODY, the
14080 pattern of an insn. X must be a REG. */
14081
14082 static int
14083 reg_bitfield_target_p (rtx x, rtx body)
14084 {
14085 int i;
14086
14087 if (GET_CODE (body) == SET)
14088 {
14089 rtx dest = SET_DEST (body);
14090 rtx target;
14091 unsigned int regno, tregno, endregno, endtregno;
14092
14093 if (GET_CODE (dest) == ZERO_EXTRACT)
14094 target = XEXP (dest, 0);
14095 else if (GET_CODE (dest) == STRICT_LOW_PART)
14096 target = SUBREG_REG (XEXP (dest, 0));
14097 else
14098 return 0;
14099
14100 if (GET_CODE (target) == SUBREG)
14101 target = SUBREG_REG (target);
14102
14103 if (!REG_P (target))
14104 return 0;
14105
14106 tregno = REGNO (target), regno = REGNO (x);
14107 if (tregno >= FIRST_PSEUDO_REGISTER || regno >= FIRST_PSEUDO_REGISTER)
14108 return target == x;
14109
14110 endtregno = end_hard_regno (GET_MODE (target), tregno);
14111 endregno = end_hard_regno (GET_MODE (x), regno);
14112
14113 return endregno > tregno && regno < endtregno;
14114 }
14115
14116 else if (GET_CODE (body) == PARALLEL)
14117 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
14118 if (reg_bitfield_target_p (x, XVECEXP (body, 0, i)))
14119 return 1;
14120
14121 return 0;
14122 }
14123 \f
14124 /* Given a chain of REG_NOTES originally from FROM_INSN, try to place them
14125 as appropriate. I3 and I2 are the insns resulting from the combination
14126 insns including FROM (I2 may be zero).
14127
14128 ELIM_I2 and ELIM_I1 are either zero or registers that we know will
14129 not need REG_DEAD notes because they are being substituted for. This
14130 saves searching in the most common cases.
14131
14132 Each note in the list is either ignored or placed on some insns, depending
14133 on the type of note. */
14134
14135 static void
14136 distribute_notes (rtx notes, rtx_insn *from_insn, rtx_insn *i3, rtx_insn *i2,
14137 rtx elim_i2, rtx elim_i1, rtx elim_i0)
14138 {
14139 rtx note, next_note;
14140 rtx tem_note;
14141 rtx_insn *tem_insn;
14142
14143 for (note = notes; note; note = next_note)
14144 {
14145 rtx_insn *place = 0, *place2 = 0;
14146
14147 next_note = XEXP (note, 1);
14148 switch (REG_NOTE_KIND (note))
14149 {
14150 case REG_BR_PROB:
14151 case REG_BR_PRED:
14152 /* Doesn't matter much where we put this, as long as it's somewhere.
14153 It is preferable to keep these notes on branches, which is most
14154 likely to be i3. */
14155 place = i3;
14156 break;
14157
14158 case REG_NON_LOCAL_GOTO:
14159 if (JUMP_P (i3))
14160 place = i3;
14161 else
14162 {
14163 gcc_assert (i2 && JUMP_P (i2));
14164 place = i2;
14165 }
14166 break;
14167
14168 case REG_EH_REGION:
14169 /* These notes must remain with the call or trapping instruction. */
14170 if (CALL_P (i3))
14171 place = i3;
14172 else if (i2 && CALL_P (i2))
14173 place = i2;
14174 else
14175 {
14176 gcc_assert (cfun->can_throw_non_call_exceptions);
14177 if (may_trap_p (i3))
14178 place = i3;
14179 else if (i2 && may_trap_p (i2))
14180 place = i2;
14181 /* ??? Otherwise assume we've combined things such that we
14182 can now prove that the instructions can't trap. Drop the
14183 note in this case. */
14184 }
14185 break;
14186
14187 case REG_ARGS_SIZE:
14188 /* ??? How to distribute between i3-i1. Assume i3 contains the
14189 entire adjustment. Assert i3 contains at least some adjust. */
14190 if (!noop_move_p (i3))
14191 {
14192 poly_int64 old_size, args_size = get_args_size (note);
14193 /* fixup_args_size_notes looks at REG_NORETURN note,
14194 so ensure the note is placed there first. */
14195 if (CALL_P (i3))
14196 {
14197 rtx *np;
14198 for (np = &next_note; *np; np = &XEXP (*np, 1))
14199 if (REG_NOTE_KIND (*np) == REG_NORETURN)
14200 {
14201 rtx n = *np;
14202 *np = XEXP (n, 1);
14203 XEXP (n, 1) = REG_NOTES (i3);
14204 REG_NOTES (i3) = n;
14205 break;
14206 }
14207 }
14208 old_size = fixup_args_size_notes (PREV_INSN (i3), i3, args_size);
14209 /* emit_call_1 adds for !ACCUMULATE_OUTGOING_ARGS
14210 REG_ARGS_SIZE note to all noreturn calls, allow that here. */
14211 gcc_assert (maybe_ne (old_size, args_size)
14212 || (CALL_P (i3)
14213 && !ACCUMULATE_OUTGOING_ARGS
14214 && find_reg_note (i3, REG_NORETURN, NULL_RTX)));
14215 }
14216 break;
14217
14218 case REG_NORETURN:
14219 case REG_SETJMP:
14220 case REG_TM:
14221 case REG_CALL_DECL:
14222 case REG_CALL_NOCF_CHECK:
14223 /* These notes must remain with the call. It should not be
14224 possible for both I2 and I3 to be a call. */
14225 if (CALL_P (i3))
14226 place = i3;
14227 else
14228 {
14229 gcc_assert (i2 && CALL_P (i2));
14230 place = i2;
14231 }
14232 break;
14233
14234 case REG_UNUSED:
14235 /* Any clobbers for i3 may still exist, and so we must process
14236 REG_UNUSED notes from that insn.
14237
14238 Any clobbers from i2 or i1 can only exist if they were added by
14239 recog_for_combine. In that case, recog_for_combine created the
14240 necessary REG_UNUSED notes. Trying to keep any original
14241 REG_UNUSED notes from these insns can cause incorrect output
14242 if it is for the same register as the original i3 dest.
14243 In that case, we will notice that the register is set in i3,
14244 and then add a REG_UNUSED note for the destination of i3, which
14245 is wrong. However, it is possible to have REG_UNUSED notes from
14246 i2 or i1 for register which were both used and clobbered, so
14247 we keep notes from i2 or i1 if they will turn into REG_DEAD
14248 notes. */
14249
14250 /* If this register is set or clobbered in I3, put the note there
14251 unless there is one already. */
14252 if (reg_set_p (XEXP (note, 0), PATTERN (i3)))
14253 {
14254 if (from_insn != i3)
14255 break;
14256
14257 if (! (REG_P (XEXP (note, 0))
14258 ? find_regno_note (i3, REG_UNUSED, REGNO (XEXP (note, 0)))
14259 : find_reg_note (i3, REG_UNUSED, XEXP (note, 0))))
14260 place = i3;
14261 }
14262 /* Otherwise, if this register is used by I3, then this register
14263 now dies here, so we must put a REG_DEAD note here unless there
14264 is one already. */
14265 else if (reg_referenced_p (XEXP (note, 0), PATTERN (i3))
14266 && ! (REG_P (XEXP (note, 0))
14267 ? find_regno_note (i3, REG_DEAD,
14268 REGNO (XEXP (note, 0)))
14269 : find_reg_note (i3, REG_DEAD, XEXP (note, 0))))
14270 {
14271 PUT_REG_NOTE_KIND (note, REG_DEAD);
14272 place = i3;
14273 }
14274
14275 /* A SET or CLOBBER of the REG_UNUSED reg has been removed,
14276 but we can't tell which at this point. We must reset any
14277 expectations we had about the value that was previously
14278 stored in the reg. ??? Ideally, we'd adjust REG_N_SETS
14279 and, if appropriate, restore its previous value, but we
14280 don't have enough information for that at this point. */
14281 else
14282 {
14283 record_value_for_reg (XEXP (note, 0), NULL, NULL_RTX);
14284
14285 /* Otherwise, if this register is now referenced in i2
14286 then the register used to be modified in one of the
14287 original insns. If it was i3 (say, in an unused
14288 parallel), it's now completely gone, so the note can
14289 be discarded. But if it was modified in i2, i1 or i0
14290 and we still reference it in i2, then we're
14291 referencing the previous value, and since the
14292 register was modified and REG_UNUSED, we know that
14293 the previous value is now dead. So, if we only
14294 reference the register in i2, we change the note to
14295 REG_DEAD, to reflect the previous value. However, if
14296 we're also setting or clobbering the register as
14297 scratch, we know (because the register was not
14298 referenced in i3) that it's unused, just as it was
14299 unused before, and we place the note in i2. */
14300 if (from_insn != i3 && i2 && INSN_P (i2)
14301 && reg_referenced_p (XEXP (note, 0), PATTERN (i2)))
14302 {
14303 if (!reg_set_p (XEXP (note, 0), PATTERN (i2)))
14304 PUT_REG_NOTE_KIND (note, REG_DEAD);
14305 if (! (REG_P (XEXP (note, 0))
14306 ? find_regno_note (i2, REG_NOTE_KIND (note),
14307 REGNO (XEXP (note, 0)))
14308 : find_reg_note (i2, REG_NOTE_KIND (note),
14309 XEXP (note, 0))))
14310 place = i2;
14311 }
14312 }
14313
14314 break;
14315
14316 case REG_EQUAL:
14317 case REG_EQUIV:
14318 case REG_NOALIAS:
14319 /* These notes say something about results of an insn. We can
14320 only support them if they used to be on I3 in which case they
14321 remain on I3. Otherwise they are ignored.
14322
14323 If the note refers to an expression that is not a constant, we
14324 must also ignore the note since we cannot tell whether the
14325 equivalence is still true. It might be possible to do
14326 slightly better than this (we only have a problem if I2DEST
14327 or I1DEST is present in the expression), but it doesn't
14328 seem worth the trouble. */
14329
14330 if (from_insn == i3
14331 && (XEXP (note, 0) == 0 || CONSTANT_P (XEXP (note, 0))))
14332 place = i3;
14333 break;
14334
14335 case REG_INC:
14336 /* These notes say something about how a register is used. They must
14337 be present on any use of the register in I2 or I3. */
14338 if (reg_mentioned_p (XEXP (note, 0), PATTERN (i3)))
14339 place = i3;
14340
14341 if (i2 && reg_mentioned_p (XEXP (note, 0), PATTERN (i2)))
14342 {
14343 if (place)
14344 place2 = i2;
14345 else
14346 place = i2;
14347 }
14348 break;
14349
14350 case REG_LABEL_TARGET:
14351 case REG_LABEL_OPERAND:
14352 /* This can show up in several ways -- either directly in the
14353 pattern, or hidden off in the constant pool with (or without?)
14354 a REG_EQUAL note. */
14355 /* ??? Ignore the without-reg_equal-note problem for now. */
14356 if (reg_mentioned_p (XEXP (note, 0), PATTERN (i3))
14357 || ((tem_note = find_reg_note (i3, REG_EQUAL, NULL_RTX))
14358 && GET_CODE (XEXP (tem_note, 0)) == LABEL_REF
14359 && label_ref_label (XEXP (tem_note, 0)) == XEXP (note, 0)))
14360 place = i3;
14361
14362 if (i2
14363 && (reg_mentioned_p (XEXP (note, 0), PATTERN (i2))
14364 || ((tem_note = find_reg_note (i2, REG_EQUAL, NULL_RTX))
14365 && GET_CODE (XEXP (tem_note, 0)) == LABEL_REF
14366 && label_ref_label (XEXP (tem_note, 0)) == XEXP (note, 0))))
14367 {
14368 if (place)
14369 place2 = i2;
14370 else
14371 place = i2;
14372 }
14373
14374 /* For REG_LABEL_TARGET on a JUMP_P, we prefer to put the note
14375 as a JUMP_LABEL or decrement LABEL_NUSES if it's already
14376 there. */
14377 if (place && JUMP_P (place)
14378 && REG_NOTE_KIND (note) == REG_LABEL_TARGET
14379 && (JUMP_LABEL (place) == NULL
14380 || JUMP_LABEL (place) == XEXP (note, 0)))
14381 {
14382 rtx label = JUMP_LABEL (place);
14383
14384 if (!label)
14385 JUMP_LABEL (place) = XEXP (note, 0);
14386 else if (LABEL_P (label))
14387 LABEL_NUSES (label)--;
14388 }
14389
14390 if (place2 && JUMP_P (place2)
14391 && REG_NOTE_KIND (note) == REG_LABEL_TARGET
14392 && (JUMP_LABEL (place2) == NULL
14393 || JUMP_LABEL (place2) == XEXP (note, 0)))
14394 {
14395 rtx label = JUMP_LABEL (place2);
14396
14397 if (!label)
14398 JUMP_LABEL (place2) = XEXP (note, 0);
14399 else if (LABEL_P (label))
14400 LABEL_NUSES (label)--;
14401 place2 = 0;
14402 }
14403 break;
14404
14405 case REG_NONNEG:
14406 /* This note says something about the value of a register prior
14407 to the execution of an insn. It is too much trouble to see
14408 if the note is still correct in all situations. It is better
14409 to simply delete it. */
14410 break;
14411
14412 case REG_DEAD:
14413 /* If we replaced the right hand side of FROM_INSN with a
14414 REG_EQUAL note, the original use of the dying register
14415 will not have been combined into I3 and I2. In such cases,
14416 FROM_INSN is guaranteed to be the first of the combined
14417 instructions, so we simply need to search back before
14418 FROM_INSN for the previous use or set of this register,
14419 then alter the notes there appropriately.
14420
14421 If the register is used as an input in I3, it dies there.
14422 Similarly for I2, if it is nonzero and adjacent to I3.
14423
14424 If the register is not used as an input in either I3 or I2
14425 and it is not one of the registers we were supposed to eliminate,
14426 there are two possibilities. We might have a non-adjacent I2
14427 or we might have somehow eliminated an additional register
14428 from a computation. For example, we might have had A & B where
14429 we discover that B will always be zero. In this case we will
14430 eliminate the reference to A.
14431
14432 In both cases, we must search to see if we can find a previous
14433 use of A and put the death note there. */
14434
14435 if (from_insn
14436 && from_insn == i2mod
14437 && !reg_overlap_mentioned_p (XEXP (note, 0), i2mod_new_rhs))
14438 tem_insn = from_insn;
14439 else
14440 {
14441 if (from_insn
14442 && CALL_P (from_insn)
14443 && find_reg_fusage (from_insn, USE, XEXP (note, 0)))
14444 place = from_insn;
14445 else if (i2 && reg_set_p (XEXP (note, 0), PATTERN (i2)))
14446 {
14447 /* If the new I2 sets the same register that is marked
14448 dead in the note, we do not in general know where to
14449 put the note. One important case we _can_ handle is
14450 when the note comes from I3. */
14451 if (from_insn == i3)
14452 place = i3;
14453 else
14454 break;
14455 }
14456 else if (reg_referenced_p (XEXP (note, 0), PATTERN (i3)))
14457 place = i3;
14458 else if (i2 != 0 && next_nonnote_nondebug_insn (i2) == i3
14459 && reg_referenced_p (XEXP (note, 0), PATTERN (i2)))
14460 place = i2;
14461 else if ((rtx_equal_p (XEXP (note, 0), elim_i2)
14462 && !(i2mod
14463 && reg_overlap_mentioned_p (XEXP (note, 0),
14464 i2mod_old_rhs)))
14465 || rtx_equal_p (XEXP (note, 0), elim_i1)
14466 || rtx_equal_p (XEXP (note, 0), elim_i0))
14467 break;
14468 tem_insn = i3;
14469 }
14470
14471 if (place == 0)
14472 {
14473 basic_block bb = this_basic_block;
14474
14475 for (tem_insn = PREV_INSN (tem_insn); place == 0; tem_insn = PREV_INSN (tem_insn))
14476 {
14477 if (!NONDEBUG_INSN_P (tem_insn))
14478 {
14479 if (tem_insn == BB_HEAD (bb))
14480 break;
14481 continue;
14482 }
14483
14484 /* If the register is being set at TEM_INSN, see if that is all
14485 TEM_INSN is doing. If so, delete TEM_INSN. Otherwise, make this
14486 into a REG_UNUSED note instead. Don't delete sets to
14487 global register vars. */
14488 if ((REGNO (XEXP (note, 0)) >= FIRST_PSEUDO_REGISTER
14489 || !global_regs[REGNO (XEXP (note, 0))])
14490 && reg_set_p (XEXP (note, 0), PATTERN (tem_insn)))
14491 {
14492 rtx set = single_set (tem_insn);
14493 rtx inner_dest = 0;
14494 rtx_insn *cc0_setter = NULL;
14495
14496 if (set != 0)
14497 for (inner_dest = SET_DEST (set);
14498 (GET_CODE (inner_dest) == STRICT_LOW_PART
14499 || GET_CODE (inner_dest) == SUBREG
14500 || GET_CODE (inner_dest) == ZERO_EXTRACT);
14501 inner_dest = XEXP (inner_dest, 0))
14502 ;
14503
14504 /* Verify that it was the set, and not a clobber that
14505 modified the register.
14506
14507 CC0 targets must be careful to maintain setter/user
14508 pairs. If we cannot delete the setter due to side
14509 effects, mark the user with an UNUSED note instead
14510 of deleting it. */
14511
14512 if (set != 0 && ! side_effects_p (SET_SRC (set))
14513 && rtx_equal_p (XEXP (note, 0), inner_dest)
14514 && (!HAVE_cc0
14515 || (! reg_mentioned_p (cc0_rtx, SET_SRC (set))
14516 || ((cc0_setter = prev_cc0_setter (tem_insn)) != NULL
14517 && sets_cc0_p (PATTERN (cc0_setter)) > 0))))
14518 {
14519 /* Move the notes and links of TEM_INSN elsewhere.
14520 This might delete other dead insns recursively.
14521 First set the pattern to something that won't use
14522 any register. */
14523 rtx old_notes = REG_NOTES (tem_insn);
14524
14525 PATTERN (tem_insn) = pc_rtx;
14526 REG_NOTES (tem_insn) = NULL;
14527
14528 distribute_notes (old_notes, tem_insn, tem_insn, NULL,
14529 NULL_RTX, NULL_RTX, NULL_RTX);
14530 distribute_links (LOG_LINKS (tem_insn));
14531
14532 unsigned int regno = REGNO (XEXP (note, 0));
14533 reg_stat_type *rsp = &reg_stat[regno];
14534 if (rsp->last_set == tem_insn)
14535 record_value_for_reg (XEXP (note, 0), NULL, NULL_RTX);
14536
14537 SET_INSN_DELETED (tem_insn);
14538 if (tem_insn == i2)
14539 i2 = NULL;
14540
14541 /* Delete the setter too. */
14542 if (cc0_setter)
14543 {
14544 PATTERN (cc0_setter) = pc_rtx;
14545 old_notes = REG_NOTES (cc0_setter);
14546 REG_NOTES (cc0_setter) = NULL;
14547
14548 distribute_notes (old_notes, cc0_setter,
14549 cc0_setter, NULL,
14550 NULL_RTX, NULL_RTX, NULL_RTX);
14551 distribute_links (LOG_LINKS (cc0_setter));
14552
14553 SET_INSN_DELETED (cc0_setter);
14554 if (cc0_setter == i2)
14555 i2 = NULL;
14556 }
14557 }
14558 else
14559 {
14560 PUT_REG_NOTE_KIND (note, REG_UNUSED);
14561
14562 /* If there isn't already a REG_UNUSED note, put one
14563 here. Do not place a REG_DEAD note, even if
14564 the register is also used here; that would not
14565 match the algorithm used in lifetime analysis
14566 and can cause the consistency check in the
14567 scheduler to fail. */
14568 if (! find_regno_note (tem_insn, REG_UNUSED,
14569 REGNO (XEXP (note, 0))))
14570 place = tem_insn;
14571 break;
14572 }
14573 }
14574 else if (reg_referenced_p (XEXP (note, 0), PATTERN (tem_insn))
14575 || (CALL_P (tem_insn)
14576 && find_reg_fusage (tem_insn, USE, XEXP (note, 0))))
14577 {
14578 place = tem_insn;
14579
14580 /* If we are doing a 3->2 combination, and we have a
14581 register which formerly died in i3 and was not used
14582 by i2, which now no longer dies in i3 and is used in
14583 i2 but does not die in i2, and place is between i2
14584 and i3, then we may need to move a link from place to
14585 i2. */
14586 if (i2 && DF_INSN_LUID (place) > DF_INSN_LUID (i2)
14587 && from_insn
14588 && DF_INSN_LUID (from_insn) > DF_INSN_LUID (i2)
14589 && reg_referenced_p (XEXP (note, 0), PATTERN (i2)))
14590 {
14591 struct insn_link *links = LOG_LINKS (place);
14592 LOG_LINKS (place) = NULL;
14593 distribute_links (links);
14594 }
14595 break;
14596 }
14597
14598 if (tem_insn == BB_HEAD (bb))
14599 break;
14600 }
14601
14602 }
14603
14604 /* If the register is set or already dead at PLACE, we needn't do
14605 anything with this note if it is still a REG_DEAD note.
14606 We check here if it is set at all, not if is it totally replaced,
14607 which is what `dead_or_set_p' checks, so also check for it being
14608 set partially. */
14609
14610 if (place && REG_NOTE_KIND (note) == REG_DEAD)
14611 {
14612 unsigned int regno = REGNO (XEXP (note, 0));
14613 reg_stat_type *rsp = &reg_stat[regno];
14614
14615 if (dead_or_set_p (place, XEXP (note, 0))
14616 || reg_bitfield_target_p (XEXP (note, 0), PATTERN (place)))
14617 {
14618 /* Unless the register previously died in PLACE, clear
14619 last_death. [I no longer understand why this is
14620 being done.] */
14621 if (rsp->last_death != place)
14622 rsp->last_death = 0;
14623 place = 0;
14624 }
14625 else
14626 rsp->last_death = place;
14627
14628 /* If this is a death note for a hard reg that is occupying
14629 multiple registers, ensure that we are still using all
14630 parts of the object. If we find a piece of the object
14631 that is unused, we must arrange for an appropriate REG_DEAD
14632 note to be added for it. However, we can't just emit a USE
14633 and tag the note to it, since the register might actually
14634 be dead; so we recourse, and the recursive call then finds
14635 the previous insn that used this register. */
14636
14637 if (place && REG_NREGS (XEXP (note, 0)) > 1)
14638 {
14639 unsigned int endregno = END_REGNO (XEXP (note, 0));
14640 bool all_used = true;
14641 unsigned int i;
14642
14643 for (i = regno; i < endregno; i++)
14644 if ((! refers_to_regno_p (i, PATTERN (place))
14645 && ! find_regno_fusage (place, USE, i))
14646 || dead_or_set_regno_p (place, i))
14647 {
14648 all_used = false;
14649 break;
14650 }
14651
14652 if (! all_used)
14653 {
14654 /* Put only REG_DEAD notes for pieces that are
14655 not already dead or set. */
14656
14657 for (i = regno; i < endregno;
14658 i += hard_regno_nregs (i, reg_raw_mode[i]))
14659 {
14660 rtx piece = regno_reg_rtx[i];
14661 basic_block bb = this_basic_block;
14662
14663 if (! dead_or_set_p (place, piece)
14664 && ! reg_bitfield_target_p (piece,
14665 PATTERN (place)))
14666 {
14667 rtx new_note = alloc_reg_note (REG_DEAD, piece,
14668 NULL_RTX);
14669
14670 distribute_notes (new_note, place, place,
14671 NULL, NULL_RTX, NULL_RTX,
14672 NULL_RTX);
14673 }
14674 else if (! refers_to_regno_p (i, PATTERN (place))
14675 && ! find_regno_fusage (place, USE, i))
14676 for (tem_insn = PREV_INSN (place); ;
14677 tem_insn = PREV_INSN (tem_insn))
14678 {
14679 if (!NONDEBUG_INSN_P (tem_insn))
14680 {
14681 if (tem_insn == BB_HEAD (bb))
14682 break;
14683 continue;
14684 }
14685 if (dead_or_set_p (tem_insn, piece)
14686 || reg_bitfield_target_p (piece,
14687 PATTERN (tem_insn)))
14688 {
14689 add_reg_note (tem_insn, REG_UNUSED, piece);
14690 break;
14691 }
14692 }
14693 }
14694
14695 place = 0;
14696 }
14697 }
14698 }
14699 break;
14700
14701 default:
14702 /* Any other notes should not be present at this point in the
14703 compilation. */
14704 gcc_unreachable ();
14705 }
14706
14707 if (place)
14708 {
14709 XEXP (note, 1) = REG_NOTES (place);
14710 REG_NOTES (place) = note;
14711
14712 /* Set added_notes_insn to the earliest insn we added a note to. */
14713 if (added_notes_insn == 0
14714 || DF_INSN_LUID (added_notes_insn) > DF_INSN_LUID (place))
14715 added_notes_insn = place;
14716 }
14717
14718 if (place2)
14719 {
14720 add_shallow_copy_of_reg_note (place2, note);
14721
14722 /* Set added_notes_insn to the earliest insn we added a note to. */
14723 if (added_notes_insn == 0
14724 || DF_INSN_LUID (added_notes_insn) > DF_INSN_LUID (place2))
14725 added_notes_insn = place2;
14726 }
14727 }
14728 }
14729 \f
14730 /* Similarly to above, distribute the LOG_LINKS that used to be present on
14731 I3, I2, and I1 to new locations. This is also called to add a link
14732 pointing at I3 when I3's destination is changed. */
14733
14734 static void
14735 distribute_links (struct insn_link *links)
14736 {
14737 struct insn_link *link, *next_link;
14738
14739 for (link = links; link; link = next_link)
14740 {
14741 rtx_insn *place = 0;
14742 rtx_insn *insn;
14743 rtx set, reg;
14744
14745 next_link = link->next;
14746
14747 /* If the insn that this link points to is a NOTE, ignore it. */
14748 if (NOTE_P (link->insn))
14749 continue;
14750
14751 set = 0;
14752 rtx pat = PATTERN (link->insn);
14753 if (GET_CODE (pat) == SET)
14754 set = pat;
14755 else if (GET_CODE (pat) == PARALLEL)
14756 {
14757 int i;
14758 for (i = 0; i < XVECLEN (pat, 0); i++)
14759 {
14760 set = XVECEXP (pat, 0, i);
14761 if (GET_CODE (set) != SET)
14762 continue;
14763
14764 reg = SET_DEST (set);
14765 while (GET_CODE (reg) == ZERO_EXTRACT
14766 || GET_CODE (reg) == STRICT_LOW_PART
14767 || GET_CODE (reg) == SUBREG)
14768 reg = XEXP (reg, 0);
14769
14770 if (!REG_P (reg))
14771 continue;
14772
14773 if (REGNO (reg) == link->regno)
14774 break;
14775 }
14776 if (i == XVECLEN (pat, 0))
14777 continue;
14778 }
14779 else
14780 continue;
14781
14782 reg = SET_DEST (set);
14783
14784 while (GET_CODE (reg) == ZERO_EXTRACT
14785 || GET_CODE (reg) == STRICT_LOW_PART
14786 || GET_CODE (reg) == SUBREG)
14787 reg = XEXP (reg, 0);
14788
14789 if (reg == pc_rtx)
14790 continue;
14791
14792 /* A LOG_LINK is defined as being placed on the first insn that uses
14793 a register and points to the insn that sets the register. Start
14794 searching at the next insn after the target of the link and stop
14795 when we reach a set of the register or the end of the basic block.
14796
14797 Note that this correctly handles the link that used to point from
14798 I3 to I2. Also note that not much searching is typically done here
14799 since most links don't point very far away. */
14800
14801 for (insn = NEXT_INSN (link->insn);
14802 (insn && (this_basic_block->next_bb == EXIT_BLOCK_PTR_FOR_FN (cfun)
14803 || BB_HEAD (this_basic_block->next_bb) != insn));
14804 insn = NEXT_INSN (insn))
14805 if (DEBUG_INSN_P (insn))
14806 continue;
14807 else if (INSN_P (insn) && reg_overlap_mentioned_p (reg, PATTERN (insn)))
14808 {
14809 if (reg_referenced_p (reg, PATTERN (insn)))
14810 place = insn;
14811 break;
14812 }
14813 else if (CALL_P (insn)
14814 && find_reg_fusage (insn, USE, reg))
14815 {
14816 place = insn;
14817 break;
14818 }
14819 else if (INSN_P (insn) && reg_set_p (reg, insn))
14820 break;
14821
14822 /* If we found a place to put the link, place it there unless there
14823 is already a link to the same insn as LINK at that point. */
14824
14825 if (place)
14826 {
14827 struct insn_link *link2;
14828
14829 FOR_EACH_LOG_LINK (link2, place)
14830 if (link2->insn == link->insn && link2->regno == link->regno)
14831 break;
14832
14833 if (link2 == NULL)
14834 {
14835 link->next = LOG_LINKS (place);
14836 LOG_LINKS (place) = link;
14837
14838 /* Set added_links_insn to the earliest insn we added a
14839 link to. */
14840 if (added_links_insn == 0
14841 || DF_INSN_LUID (added_links_insn) > DF_INSN_LUID (place))
14842 added_links_insn = place;
14843 }
14844 }
14845 }
14846 }
14847 \f
14848 /* Check for any register or memory mentioned in EQUIV that is not
14849 mentioned in EXPR. This is used to restrict EQUIV to "specializations"
14850 of EXPR where some registers may have been replaced by constants. */
14851
14852 static bool
14853 unmentioned_reg_p (rtx equiv, rtx expr)
14854 {
14855 subrtx_iterator::array_type array;
14856 FOR_EACH_SUBRTX (iter, array, equiv, NONCONST)
14857 {
14858 const_rtx x = *iter;
14859 if ((REG_P (x) || MEM_P (x))
14860 && !reg_mentioned_p (x, expr))
14861 return true;
14862 }
14863 return false;
14864 }
14865 \f
14866 DEBUG_FUNCTION void
14867 dump_combine_stats (FILE *file)
14868 {
14869 fprintf
14870 (file,
14871 ";; Combiner statistics: %d attempts, %d substitutions (%d requiring new space),\n;; %d successes.\n\n",
14872 combine_attempts, combine_merges, combine_extras, combine_successes);
14873 }
14874
14875 void
14876 dump_combine_total_stats (FILE *file)
14877 {
14878 fprintf
14879 (file,
14880 "\n;; Combiner totals: %d attempts, %d substitutions (%d requiring new space),\n;; %d successes.\n",
14881 total_attempts, total_merges, total_extras, total_successes);
14882 }
14883 \f
14884 /* Try combining insns through substitution. */
14885 static unsigned int
14886 rest_of_handle_combine (void)
14887 {
14888 int rebuild_jump_labels_after_combine;
14889
14890 df_set_flags (DF_LR_RUN_DCE + DF_DEFER_INSN_RESCAN);
14891 df_note_add_problem ();
14892 df_analyze ();
14893
14894 regstat_init_n_sets_and_refs ();
14895 reg_n_sets_max = max_reg_num ();
14896
14897 rebuild_jump_labels_after_combine
14898 = combine_instructions (get_insns (), max_reg_num ());
14899
14900 /* Combining insns may have turned an indirect jump into a
14901 direct jump. Rebuild the JUMP_LABEL fields of jumping
14902 instructions. */
14903 if (rebuild_jump_labels_after_combine)
14904 {
14905 if (dom_info_available_p (CDI_DOMINATORS))
14906 free_dominance_info (CDI_DOMINATORS);
14907 timevar_push (TV_JUMP);
14908 rebuild_jump_labels (get_insns ());
14909 cleanup_cfg (0);
14910 timevar_pop (TV_JUMP);
14911 }
14912
14913 regstat_free_n_sets_and_refs ();
14914 return 0;
14915 }
14916
14917 namespace {
14918
14919 const pass_data pass_data_combine =
14920 {
14921 RTL_PASS, /* type */
14922 "combine", /* name */
14923 OPTGROUP_NONE, /* optinfo_flags */
14924 TV_COMBINE, /* tv_id */
14925 PROP_cfglayout, /* properties_required */
14926 0, /* properties_provided */
14927 0, /* properties_destroyed */
14928 0, /* todo_flags_start */
14929 TODO_df_finish, /* todo_flags_finish */
14930 };
14931
14932 class pass_combine : public rtl_opt_pass
14933 {
14934 public:
14935 pass_combine (gcc::context *ctxt)
14936 : rtl_opt_pass (pass_data_combine, ctxt)
14937 {}
14938
14939 /* opt_pass methods: */
14940 virtual bool gate (function *) { return (optimize > 0); }
14941 virtual unsigned int execute (function *)
14942 {
14943 return rest_of_handle_combine ();
14944 }
14945
14946 }; // class pass_combine
14947
14948 } // anon namespace
14949
14950 rtl_opt_pass *
14951 make_pass_combine (gcc::context *ctxt)
14952 {
14953 return new pass_combine (ctxt);
14954 }