re PR tree-optimization/69162 (ICE in create_tmp_var, at gimple-expr.c:468)
[gcc.git] / gcc / combine.c
1 /* Optimize by combining instructions for GNU compiler.
2 Copyright (C) 1987-2016 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 /* This module is essentially the "combiner" phase of the U. of Arizona
21 Portable Optimizer, but redone to work on our list-structured
22 representation for RTL instead of their string representation.
23
24 The LOG_LINKS of each insn identify the most recent assignment
25 to each REG used in the insn. It is a list of previous insns,
26 each of which contains a SET for a REG that is used in this insn
27 and not used or set in between. LOG_LINKs never cross basic blocks.
28 They were set up by the preceding pass (lifetime analysis).
29
30 We try to combine each pair of insns joined by a logical link.
31 We also try to combine triplets of insns A, B and C when C has
32 a link back to B and B has a link back to A. Likewise for a
33 small number of quadruplets of insns A, B, C and D for which
34 there's high likelihood of success.
35
36 LOG_LINKS does not have links for use of the CC0. They don't
37 need to, because the insn that sets the CC0 is always immediately
38 before the insn that tests it. So we always regard a branch
39 insn as having a logical link to the preceding insn. The same is true
40 for an insn explicitly using CC0.
41
42 We check (with use_crosses_set_p) to avoid combining in such a way
43 as to move a computation to a place where its value would be different.
44
45 Combination is done by mathematically substituting the previous
46 insn(s) values for the regs they set into the expressions in
47 the later insns that refer to these regs. If the result is a valid insn
48 for our target machine, according to the machine description,
49 we install it, delete the earlier insns, and update the data flow
50 information (LOG_LINKS and REG_NOTES) for what we did.
51
52 There are a few exceptions where the dataflow information isn't
53 completely updated (however this is only a local issue since it is
54 regenerated before the next pass that uses it):
55
56 - reg_live_length is not updated
57 - reg_n_refs is not adjusted in the rare case when a register is
58 no longer required in a computation
59 - there are extremely rare cases (see distribute_notes) when a
60 REG_DEAD note is lost
61 - a LOG_LINKS entry that refers to an insn with multiple SETs may be
62 removed because there is no way to know which register it was
63 linking
64
65 To simplify substitution, we combine only when the earlier insn(s)
66 consist of only a single assignment. To simplify updating afterward,
67 we never combine when a subroutine call appears in the middle.
68
69 Since we do not represent assignments to CC0 explicitly except when that
70 is all an insn does, there is no LOG_LINKS entry in an insn that uses
71 the condition code for the insn that set the condition code.
72 Fortunately, these two insns must be consecutive.
73 Therefore, every JUMP_INSN is taken to have an implicit logical link
74 to the preceding insn. This is not quite right, since non-jumps can
75 also use the condition code; but in practice such insns would not
76 combine anyway. */
77
78 #include "config.h"
79 #include "system.h"
80 #include "coretypes.h"
81 #include "backend.h"
82 #include "target.h"
83 #include "rtl.h"
84 #include "tree.h"
85 #include "predict.h"
86 #include "df.h"
87 #include "tm_p.h"
88 #include "optabs.h"
89 #include "regs.h"
90 #include "emit-rtl.h"
91 #include "recog.h"
92 #include "cgraph.h"
93 #include "stor-layout.h"
94 #include "cfgrtl.h"
95 #include "cfgcleanup.h"
96 /* Include expr.h after insn-config.h so we get HAVE_conditional_move. */
97 #include "explow.h"
98 #include "insn-attr.h"
99 #include "rtlhooks-def.h"
100 #include "params.h"
101 #include "tree-pass.h"
102 #include "valtrack.h"
103 #include "rtl-iter.h"
104 #include "print-rtl.h"
105
106 #ifndef LOAD_EXTEND_OP
107 #define LOAD_EXTEND_OP(M) UNKNOWN
108 #endif
109
110 /* Number of attempts to combine instructions in this function. */
111
112 static int combine_attempts;
113
114 /* Number of attempts that got as far as substitution in this function. */
115
116 static int combine_merges;
117
118 /* Number of instructions combined with added SETs in this function. */
119
120 static int combine_extras;
121
122 /* Number of instructions combined in this function. */
123
124 static int combine_successes;
125
126 /* Totals over entire compilation. */
127
128 static int total_attempts, total_merges, total_extras, total_successes;
129
130 /* combine_instructions may try to replace the right hand side of the
131 second instruction with the value of an associated REG_EQUAL note
132 before throwing it at try_combine. That is problematic when there
133 is a REG_DEAD note for a register used in the old right hand side
134 and can cause distribute_notes to do wrong things. This is the
135 second instruction if it has been so modified, null otherwise. */
136
137 static rtx_insn *i2mod;
138
139 /* When I2MOD is nonnull, this is a copy of the old right hand side. */
140
141 static rtx i2mod_old_rhs;
142
143 /* When I2MOD is nonnull, this is a copy of the new right hand side. */
144
145 static rtx i2mod_new_rhs;
146 \f
147 struct reg_stat_type {
148 /* Record last point of death of (hard or pseudo) register n. */
149 rtx_insn *last_death;
150
151 /* Record last point of modification of (hard or pseudo) register n. */
152 rtx_insn *last_set;
153
154 /* The next group of fields allows the recording of the last value assigned
155 to (hard or pseudo) register n. We use this information to see if an
156 operation being processed is redundant given a prior operation performed
157 on the register. For example, an `and' with a constant is redundant if
158 all the zero bits are already known to be turned off.
159
160 We use an approach similar to that used by cse, but change it in the
161 following ways:
162
163 (1) We do not want to reinitialize at each label.
164 (2) It is useful, but not critical, to know the actual value assigned
165 to a register. Often just its form is helpful.
166
167 Therefore, we maintain the following fields:
168
169 last_set_value the last value assigned
170 last_set_label records the value of label_tick when the
171 register was assigned
172 last_set_table_tick records the value of label_tick when a
173 value using the register is assigned
174 last_set_invalid set to nonzero when it is not valid
175 to use the value of this register in some
176 register's value
177
178 To understand the usage of these tables, it is important to understand
179 the distinction between the value in last_set_value being valid and
180 the register being validly contained in some other expression in the
181 table.
182
183 (The next two parameters are out of date).
184
185 reg_stat[i].last_set_value is valid if it is nonzero, and either
186 reg_n_sets[i] is 1 or reg_stat[i].last_set_label == label_tick.
187
188 Register I may validly appear in any expression returned for the value
189 of another register if reg_n_sets[i] is 1. It may also appear in the
190 value for register J if reg_stat[j].last_set_invalid is zero, or
191 reg_stat[i].last_set_label < reg_stat[j].last_set_label.
192
193 If an expression is found in the table containing a register which may
194 not validly appear in an expression, the register is replaced by
195 something that won't match, (clobber (const_int 0)). */
196
197 /* Record last value assigned to (hard or pseudo) register n. */
198
199 rtx last_set_value;
200
201 /* Record the value of label_tick when an expression involving register n
202 is placed in last_set_value. */
203
204 int last_set_table_tick;
205
206 /* Record the value of label_tick when the value for register n is placed in
207 last_set_value. */
208
209 int last_set_label;
210
211 /* These fields are maintained in parallel with last_set_value and are
212 used to store the mode in which the register was last set, the bits
213 that were known to be zero when it was last set, and the number of
214 sign bits copies it was known to have when it was last set. */
215
216 unsigned HOST_WIDE_INT last_set_nonzero_bits;
217 char last_set_sign_bit_copies;
218 ENUM_BITFIELD(machine_mode) last_set_mode : 8;
219
220 /* Set nonzero if references to register n in expressions should not be
221 used. last_set_invalid is set nonzero when this register is being
222 assigned to and last_set_table_tick == label_tick. */
223
224 char last_set_invalid;
225
226 /* Some registers that are set more than once and used in more than one
227 basic block are nevertheless always set in similar ways. For example,
228 a QImode register may be loaded from memory in two places on a machine
229 where byte loads zero extend.
230
231 We record in the following fields if a register has some leading bits
232 that are always equal to the sign bit, and what we know about the
233 nonzero bits of a register, specifically which bits are known to be
234 zero.
235
236 If an entry is zero, it means that we don't know anything special. */
237
238 unsigned char sign_bit_copies;
239
240 unsigned HOST_WIDE_INT nonzero_bits;
241
242 /* Record the value of the label_tick when the last truncation
243 happened. The field truncated_to_mode is only valid if
244 truncation_label == label_tick. */
245
246 int truncation_label;
247
248 /* Record the last truncation seen for this register. If truncation
249 is not a nop to this mode we might be able to save an explicit
250 truncation if we know that value already contains a truncated
251 value. */
252
253 ENUM_BITFIELD(machine_mode) truncated_to_mode : 8;
254 };
255
256
257 static vec<reg_stat_type> reg_stat;
258
259 /* One plus the highest pseudo for which we track REG_N_SETS.
260 regstat_init_n_sets_and_refs allocates the array for REG_N_SETS just once,
261 but during combine_split_insns new pseudos can be created. As we don't have
262 updated DF information in that case, it is hard to initialize the array
263 after growing. The combiner only cares about REG_N_SETS (regno) == 1,
264 so instead of growing the arrays, just assume all newly created pseudos
265 during combine might be set multiple times. */
266
267 static unsigned int reg_n_sets_max;
268
269 /* Record the luid of the last insn that invalidated memory
270 (anything that writes memory, and subroutine calls, but not pushes). */
271
272 static int mem_last_set;
273
274 /* Record the luid of the last CALL_INSN
275 so we can tell whether a potential combination crosses any calls. */
276
277 static int last_call_luid;
278
279 /* When `subst' is called, this is the insn that is being modified
280 (by combining in a previous insn). The PATTERN of this insn
281 is still the old pattern partially modified and it should not be
282 looked at, but this may be used to examine the successors of the insn
283 to judge whether a simplification is valid. */
284
285 static rtx_insn *subst_insn;
286
287 /* This is the lowest LUID that `subst' is currently dealing with.
288 get_last_value will not return a value if the register was set at or
289 after this LUID. If not for this mechanism, we could get confused if
290 I2 or I1 in try_combine were an insn that used the old value of a register
291 to obtain a new value. In that case, we might erroneously get the
292 new value of the register when we wanted the old one. */
293
294 static int subst_low_luid;
295
296 /* This contains any hard registers that are used in newpat; reg_dead_at_p
297 must consider all these registers to be always live. */
298
299 static HARD_REG_SET newpat_used_regs;
300
301 /* This is an insn to which a LOG_LINKS entry has been added. If this
302 insn is the earlier than I2 or I3, combine should rescan starting at
303 that location. */
304
305 static rtx_insn *added_links_insn;
306
307 /* Basic block in which we are performing combines. */
308 static basic_block this_basic_block;
309 static bool optimize_this_for_speed_p;
310
311 \f
312 /* Length of the currently allocated uid_insn_cost array. */
313
314 static int max_uid_known;
315
316 /* The following array records the insn_rtx_cost for every insn
317 in the instruction stream. */
318
319 static int *uid_insn_cost;
320
321 /* The following array records the LOG_LINKS for every insn in the
322 instruction stream as struct insn_link pointers. */
323
324 struct insn_link {
325 rtx_insn *insn;
326 unsigned int regno;
327 struct insn_link *next;
328 };
329
330 static struct insn_link **uid_log_links;
331
332 #define INSN_COST(INSN) (uid_insn_cost[INSN_UID (INSN)])
333 #define LOG_LINKS(INSN) (uid_log_links[INSN_UID (INSN)])
334
335 #define FOR_EACH_LOG_LINK(L, INSN) \
336 for ((L) = LOG_LINKS (INSN); (L); (L) = (L)->next)
337
338 /* Links for LOG_LINKS are allocated from this obstack. */
339
340 static struct obstack insn_link_obstack;
341
342 /* Allocate a link. */
343
344 static inline struct insn_link *
345 alloc_insn_link (rtx_insn *insn, unsigned int regno, struct insn_link *next)
346 {
347 struct insn_link *l
348 = (struct insn_link *) obstack_alloc (&insn_link_obstack,
349 sizeof (struct insn_link));
350 l->insn = insn;
351 l->regno = regno;
352 l->next = next;
353 return l;
354 }
355
356 /* Incremented for each basic block. */
357
358 static int label_tick;
359
360 /* Reset to label_tick for each extended basic block in scanning order. */
361
362 static int label_tick_ebb_start;
363
364 /* Mode used to compute significance in reg_stat[].nonzero_bits. It is the
365 largest integer mode that can fit in HOST_BITS_PER_WIDE_INT. */
366
367 static machine_mode nonzero_bits_mode;
368
369 /* Nonzero when reg_stat[].nonzero_bits and reg_stat[].sign_bit_copies can
370 be safely used. It is zero while computing them and after combine has
371 completed. This former test prevents propagating values based on
372 previously set values, which can be incorrect if a variable is modified
373 in a loop. */
374
375 static int nonzero_sign_valid;
376
377 \f
378 /* Record one modification to rtl structure
379 to be undone by storing old_contents into *where. */
380
381 enum undo_kind { UNDO_RTX, UNDO_INT, UNDO_MODE, UNDO_LINKS };
382
383 struct undo
384 {
385 struct undo *next;
386 enum undo_kind kind;
387 union { rtx r; int i; machine_mode m; struct insn_link *l; } old_contents;
388 union { rtx *r; int *i; struct insn_link **l; } where;
389 };
390
391 /* Record a bunch of changes to be undone, up to MAX_UNDO of them.
392 num_undo says how many are currently recorded.
393
394 other_insn is nonzero if we have modified some other insn in the process
395 of working on subst_insn. It must be verified too. */
396
397 struct undobuf
398 {
399 struct undo *undos;
400 struct undo *frees;
401 rtx_insn *other_insn;
402 };
403
404 static struct undobuf undobuf;
405
406 /* Number of times the pseudo being substituted for
407 was found and replaced. */
408
409 static int n_occurrences;
410
411 static rtx reg_nonzero_bits_for_combine (const_rtx, machine_mode, const_rtx,
412 machine_mode,
413 unsigned HOST_WIDE_INT,
414 unsigned HOST_WIDE_INT *);
415 static rtx reg_num_sign_bit_copies_for_combine (const_rtx, machine_mode, const_rtx,
416 machine_mode,
417 unsigned int, unsigned int *);
418 static void do_SUBST (rtx *, rtx);
419 static void do_SUBST_INT (int *, int);
420 static void init_reg_last (void);
421 static void setup_incoming_promotions (rtx_insn *);
422 static void set_nonzero_bits_and_sign_copies (rtx, const_rtx, void *);
423 static int cant_combine_insn_p (rtx_insn *);
424 static int can_combine_p (rtx_insn *, rtx_insn *, rtx_insn *, rtx_insn *,
425 rtx_insn *, rtx_insn *, rtx *, rtx *);
426 static int combinable_i3pat (rtx_insn *, rtx *, rtx, rtx, rtx, int, int, rtx *);
427 static int contains_muldiv (rtx);
428 static rtx_insn *try_combine (rtx_insn *, rtx_insn *, rtx_insn *, rtx_insn *,
429 int *, rtx_insn *);
430 static void undo_all (void);
431 static void undo_commit (void);
432 static rtx *find_split_point (rtx *, rtx_insn *, bool);
433 static rtx subst (rtx, rtx, rtx, int, int, int);
434 static rtx combine_simplify_rtx (rtx, machine_mode, int, int);
435 static rtx simplify_if_then_else (rtx);
436 static rtx simplify_set (rtx);
437 static rtx simplify_logical (rtx);
438 static rtx expand_compound_operation (rtx);
439 static const_rtx expand_field_assignment (const_rtx);
440 static rtx make_extraction (machine_mode, rtx, HOST_WIDE_INT,
441 rtx, unsigned HOST_WIDE_INT, int, int, int);
442 static rtx extract_left_shift (rtx, int);
443 static int get_pos_from_mask (unsigned HOST_WIDE_INT,
444 unsigned HOST_WIDE_INT *);
445 static rtx canon_reg_for_combine (rtx, rtx);
446 static rtx force_to_mode (rtx, machine_mode,
447 unsigned HOST_WIDE_INT, int);
448 static rtx if_then_else_cond (rtx, rtx *, rtx *);
449 static rtx known_cond (rtx, enum rtx_code, rtx, rtx);
450 static int rtx_equal_for_field_assignment_p (rtx, rtx, bool = false);
451 static rtx make_field_assignment (rtx);
452 static rtx apply_distributive_law (rtx);
453 static rtx distribute_and_simplify_rtx (rtx, int);
454 static rtx simplify_and_const_int_1 (machine_mode, rtx,
455 unsigned HOST_WIDE_INT);
456 static rtx simplify_and_const_int (rtx, machine_mode, rtx,
457 unsigned HOST_WIDE_INT);
458 static int merge_outer_ops (enum rtx_code *, HOST_WIDE_INT *, enum rtx_code,
459 HOST_WIDE_INT, machine_mode, int *);
460 static rtx simplify_shift_const_1 (enum rtx_code, machine_mode, rtx, int);
461 static rtx simplify_shift_const (rtx, enum rtx_code, machine_mode, rtx,
462 int);
463 static int recog_for_combine (rtx *, rtx_insn *, rtx *);
464 static rtx gen_lowpart_for_combine (machine_mode, rtx);
465 static enum rtx_code simplify_compare_const (enum rtx_code, machine_mode,
466 rtx, rtx *);
467 static enum rtx_code simplify_comparison (enum rtx_code, rtx *, rtx *);
468 static void update_table_tick (rtx);
469 static void record_value_for_reg (rtx, rtx_insn *, rtx);
470 static void check_promoted_subreg (rtx_insn *, rtx);
471 static void record_dead_and_set_regs_1 (rtx, const_rtx, void *);
472 static void record_dead_and_set_regs (rtx_insn *);
473 static int get_last_value_validate (rtx *, rtx_insn *, int, int);
474 static rtx get_last_value (const_rtx);
475 static int use_crosses_set_p (const_rtx, int);
476 static void reg_dead_at_p_1 (rtx, const_rtx, void *);
477 static int reg_dead_at_p (rtx, rtx_insn *);
478 static void move_deaths (rtx, rtx, int, rtx_insn *, rtx *);
479 static int reg_bitfield_target_p (rtx, rtx);
480 static void distribute_notes (rtx, rtx_insn *, rtx_insn *, rtx_insn *, rtx, rtx, rtx);
481 static void distribute_links (struct insn_link *);
482 static void mark_used_regs_combine (rtx);
483 static void record_promoted_value (rtx_insn *, rtx);
484 static bool unmentioned_reg_p (rtx, rtx);
485 static void record_truncated_values (rtx *, void *);
486 static bool reg_truncated_to_mode (machine_mode, const_rtx);
487 static rtx gen_lowpart_or_truncate (machine_mode, rtx);
488 \f
489
490 /* It is not safe to use ordinary gen_lowpart in combine.
491 See comments in gen_lowpart_for_combine. */
492 #undef RTL_HOOKS_GEN_LOWPART
493 #define RTL_HOOKS_GEN_LOWPART gen_lowpart_for_combine
494
495 /* Our implementation of gen_lowpart never emits a new pseudo. */
496 #undef RTL_HOOKS_GEN_LOWPART_NO_EMIT
497 #define RTL_HOOKS_GEN_LOWPART_NO_EMIT gen_lowpart_for_combine
498
499 #undef RTL_HOOKS_REG_NONZERO_REG_BITS
500 #define RTL_HOOKS_REG_NONZERO_REG_BITS reg_nonzero_bits_for_combine
501
502 #undef RTL_HOOKS_REG_NUM_SIGN_BIT_COPIES
503 #define RTL_HOOKS_REG_NUM_SIGN_BIT_COPIES reg_num_sign_bit_copies_for_combine
504
505 #undef RTL_HOOKS_REG_TRUNCATED_TO_MODE
506 #define RTL_HOOKS_REG_TRUNCATED_TO_MODE reg_truncated_to_mode
507
508 static const struct rtl_hooks combine_rtl_hooks = RTL_HOOKS_INITIALIZER;
509
510 \f
511 /* Convenience wrapper for the canonicalize_comparison target hook.
512 Target hooks cannot use enum rtx_code. */
513 static inline void
514 target_canonicalize_comparison (enum rtx_code *code, rtx *op0, rtx *op1,
515 bool op0_preserve_value)
516 {
517 int code_int = (int)*code;
518 targetm.canonicalize_comparison (&code_int, op0, op1, op0_preserve_value);
519 *code = (enum rtx_code)code_int;
520 }
521
522 /* Try to split PATTERN found in INSN. This returns NULL_RTX if
523 PATTERN can not be split. Otherwise, it returns an insn sequence.
524 This is a wrapper around split_insns which ensures that the
525 reg_stat vector is made larger if the splitter creates a new
526 register. */
527
528 static rtx_insn *
529 combine_split_insns (rtx pattern, rtx_insn *insn)
530 {
531 rtx_insn *ret;
532 unsigned int nregs;
533
534 ret = split_insns (pattern, insn);
535 nregs = max_reg_num ();
536 if (nregs > reg_stat.length ())
537 reg_stat.safe_grow_cleared (nregs);
538 return ret;
539 }
540
541 /* This is used by find_single_use to locate an rtx in LOC that
542 contains exactly one use of DEST, which is typically either a REG
543 or CC0. It returns a pointer to the innermost rtx expression
544 containing DEST. Appearances of DEST that are being used to
545 totally replace it are not counted. */
546
547 static rtx *
548 find_single_use_1 (rtx dest, rtx *loc)
549 {
550 rtx x = *loc;
551 enum rtx_code code = GET_CODE (x);
552 rtx *result = NULL;
553 rtx *this_result;
554 int i;
555 const char *fmt;
556
557 switch (code)
558 {
559 case CONST:
560 case LABEL_REF:
561 case SYMBOL_REF:
562 CASE_CONST_ANY:
563 case CLOBBER:
564 return 0;
565
566 case SET:
567 /* If the destination is anything other than CC0, PC, a REG or a SUBREG
568 of a REG that occupies all of the REG, the insn uses DEST if
569 it is mentioned in the destination or the source. Otherwise, we
570 need just check the source. */
571 if (GET_CODE (SET_DEST (x)) != CC0
572 && GET_CODE (SET_DEST (x)) != PC
573 && !REG_P (SET_DEST (x))
574 && ! (GET_CODE (SET_DEST (x)) == SUBREG
575 && REG_P (SUBREG_REG (SET_DEST (x)))
576 && (((GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (x))))
577 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
578 == ((GET_MODE_SIZE (GET_MODE (SET_DEST (x)))
579 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))))
580 break;
581
582 return find_single_use_1 (dest, &SET_SRC (x));
583
584 case MEM:
585 case SUBREG:
586 return find_single_use_1 (dest, &XEXP (x, 0));
587
588 default:
589 break;
590 }
591
592 /* If it wasn't one of the common cases above, check each expression and
593 vector of this code. Look for a unique usage of DEST. */
594
595 fmt = GET_RTX_FORMAT (code);
596 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
597 {
598 if (fmt[i] == 'e')
599 {
600 if (dest == XEXP (x, i)
601 || (REG_P (dest) && REG_P (XEXP (x, i))
602 && REGNO (dest) == REGNO (XEXP (x, i))))
603 this_result = loc;
604 else
605 this_result = find_single_use_1 (dest, &XEXP (x, i));
606
607 if (result == NULL)
608 result = this_result;
609 else if (this_result)
610 /* Duplicate usage. */
611 return NULL;
612 }
613 else if (fmt[i] == 'E')
614 {
615 int j;
616
617 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
618 {
619 if (XVECEXP (x, i, j) == dest
620 || (REG_P (dest)
621 && REG_P (XVECEXP (x, i, j))
622 && REGNO (XVECEXP (x, i, j)) == REGNO (dest)))
623 this_result = loc;
624 else
625 this_result = find_single_use_1 (dest, &XVECEXP (x, i, j));
626
627 if (result == NULL)
628 result = this_result;
629 else if (this_result)
630 return NULL;
631 }
632 }
633 }
634
635 return result;
636 }
637
638
639 /* See if DEST, produced in INSN, is used only a single time in the
640 sequel. If so, return a pointer to the innermost rtx expression in which
641 it is used.
642
643 If PLOC is nonzero, *PLOC is set to the insn containing the single use.
644
645 If DEST is cc0_rtx, we look only at the next insn. In that case, we don't
646 care about REG_DEAD notes or LOG_LINKS.
647
648 Otherwise, we find the single use by finding an insn that has a
649 LOG_LINKS pointing at INSN and has a REG_DEAD note for DEST. If DEST is
650 only referenced once in that insn, we know that it must be the first
651 and last insn referencing DEST. */
652
653 static rtx *
654 find_single_use (rtx dest, rtx_insn *insn, rtx_insn **ploc)
655 {
656 basic_block bb;
657 rtx_insn *next;
658 rtx *result;
659 struct insn_link *link;
660
661 if (dest == cc0_rtx)
662 {
663 next = NEXT_INSN (insn);
664 if (next == 0
665 || (!NONJUMP_INSN_P (next) && !JUMP_P (next)))
666 return 0;
667
668 result = find_single_use_1 (dest, &PATTERN (next));
669 if (result && ploc)
670 *ploc = next;
671 return result;
672 }
673
674 if (!REG_P (dest))
675 return 0;
676
677 bb = BLOCK_FOR_INSN (insn);
678 for (next = NEXT_INSN (insn);
679 next && BLOCK_FOR_INSN (next) == bb;
680 next = NEXT_INSN (next))
681 if (INSN_P (next) && dead_or_set_p (next, dest))
682 {
683 FOR_EACH_LOG_LINK (link, next)
684 if (link->insn == insn && link->regno == REGNO (dest))
685 break;
686
687 if (link)
688 {
689 result = find_single_use_1 (dest, &PATTERN (next));
690 if (ploc)
691 *ploc = next;
692 return result;
693 }
694 }
695
696 return 0;
697 }
698 \f
699 /* Substitute NEWVAL, an rtx expression, into INTO, a place in some
700 insn. The substitution can be undone by undo_all. If INTO is already
701 set to NEWVAL, do not record this change. Because computing NEWVAL might
702 also call SUBST, we have to compute it before we put anything into
703 the undo table. */
704
705 static void
706 do_SUBST (rtx *into, rtx newval)
707 {
708 struct undo *buf;
709 rtx oldval = *into;
710
711 if (oldval == newval)
712 return;
713
714 /* We'd like to catch as many invalid transformations here as
715 possible. Unfortunately, there are way too many mode changes
716 that are perfectly valid, so we'd waste too much effort for
717 little gain doing the checks here. Focus on catching invalid
718 transformations involving integer constants. */
719 if (GET_MODE_CLASS (GET_MODE (oldval)) == MODE_INT
720 && CONST_INT_P (newval))
721 {
722 /* Sanity check that we're replacing oldval with a CONST_INT
723 that is a valid sign-extension for the original mode. */
724 gcc_assert (INTVAL (newval)
725 == trunc_int_for_mode (INTVAL (newval), GET_MODE (oldval)));
726
727 /* Replacing the operand of a SUBREG or a ZERO_EXTEND with a
728 CONST_INT is not valid, because after the replacement, the
729 original mode would be gone. Unfortunately, we can't tell
730 when do_SUBST is called to replace the operand thereof, so we
731 perform this test on oldval instead, checking whether an
732 invalid replacement took place before we got here. */
733 gcc_assert (!(GET_CODE (oldval) == SUBREG
734 && CONST_INT_P (SUBREG_REG (oldval))));
735 gcc_assert (!(GET_CODE (oldval) == ZERO_EXTEND
736 && CONST_INT_P (XEXP (oldval, 0))));
737 }
738
739 if (undobuf.frees)
740 buf = undobuf.frees, undobuf.frees = buf->next;
741 else
742 buf = XNEW (struct undo);
743
744 buf->kind = UNDO_RTX;
745 buf->where.r = into;
746 buf->old_contents.r = oldval;
747 *into = newval;
748
749 buf->next = undobuf.undos, undobuf.undos = buf;
750 }
751
752 #define SUBST(INTO, NEWVAL) do_SUBST (&(INTO), (NEWVAL))
753
754 /* Similar to SUBST, but NEWVAL is an int expression. Note that substitution
755 for the value of a HOST_WIDE_INT value (including CONST_INT) is
756 not safe. */
757
758 static void
759 do_SUBST_INT (int *into, int newval)
760 {
761 struct undo *buf;
762 int oldval = *into;
763
764 if (oldval == newval)
765 return;
766
767 if (undobuf.frees)
768 buf = undobuf.frees, undobuf.frees = buf->next;
769 else
770 buf = XNEW (struct undo);
771
772 buf->kind = UNDO_INT;
773 buf->where.i = into;
774 buf->old_contents.i = oldval;
775 *into = newval;
776
777 buf->next = undobuf.undos, undobuf.undos = buf;
778 }
779
780 #define SUBST_INT(INTO, NEWVAL) do_SUBST_INT (&(INTO), (NEWVAL))
781
782 /* Similar to SUBST, but just substitute the mode. This is used when
783 changing the mode of a pseudo-register, so that any other
784 references to the entry in the regno_reg_rtx array will change as
785 well. */
786
787 static void
788 do_SUBST_MODE (rtx *into, machine_mode newval)
789 {
790 struct undo *buf;
791 machine_mode oldval = GET_MODE (*into);
792
793 if (oldval == newval)
794 return;
795
796 if (undobuf.frees)
797 buf = undobuf.frees, undobuf.frees = buf->next;
798 else
799 buf = XNEW (struct undo);
800
801 buf->kind = UNDO_MODE;
802 buf->where.r = into;
803 buf->old_contents.m = oldval;
804 adjust_reg_mode (*into, newval);
805
806 buf->next = undobuf.undos, undobuf.undos = buf;
807 }
808
809 #define SUBST_MODE(INTO, NEWVAL) do_SUBST_MODE (&(INTO), (NEWVAL))
810
811 /* Similar to SUBST, but NEWVAL is a LOG_LINKS expression. */
812
813 static void
814 do_SUBST_LINK (struct insn_link **into, struct insn_link *newval)
815 {
816 struct undo *buf;
817 struct insn_link * oldval = *into;
818
819 if (oldval == newval)
820 return;
821
822 if (undobuf.frees)
823 buf = undobuf.frees, undobuf.frees = buf->next;
824 else
825 buf = XNEW (struct undo);
826
827 buf->kind = UNDO_LINKS;
828 buf->where.l = into;
829 buf->old_contents.l = oldval;
830 *into = newval;
831
832 buf->next = undobuf.undos, undobuf.undos = buf;
833 }
834
835 #define SUBST_LINK(oldval, newval) do_SUBST_LINK (&oldval, newval)
836 \f
837 /* Subroutine of try_combine. Determine whether the replacement patterns
838 NEWPAT, NEWI2PAT and NEWOTHERPAT are cheaper according to insn_rtx_cost
839 than the original sequence I0, I1, I2, I3 and undobuf.other_insn. Note
840 that I0, I1 and/or NEWI2PAT may be NULL_RTX. Similarly, NEWOTHERPAT and
841 undobuf.other_insn may also both be NULL_RTX. Return false if the cost
842 of all the instructions can be estimated and the replacements are more
843 expensive than the original sequence. */
844
845 static bool
846 combine_validate_cost (rtx_insn *i0, rtx_insn *i1, rtx_insn *i2, rtx_insn *i3,
847 rtx newpat, rtx newi2pat, rtx newotherpat)
848 {
849 int i0_cost, i1_cost, i2_cost, i3_cost;
850 int new_i2_cost, new_i3_cost;
851 int old_cost, new_cost;
852
853 /* Lookup the original insn_rtx_costs. */
854 i2_cost = INSN_COST (i2);
855 i3_cost = INSN_COST (i3);
856
857 if (i1)
858 {
859 i1_cost = INSN_COST (i1);
860 if (i0)
861 {
862 i0_cost = INSN_COST (i0);
863 old_cost = (i0_cost > 0 && i1_cost > 0 && i2_cost > 0 && i3_cost > 0
864 ? i0_cost + i1_cost + i2_cost + i3_cost : 0);
865 }
866 else
867 {
868 old_cost = (i1_cost > 0 && i2_cost > 0 && i3_cost > 0
869 ? i1_cost + i2_cost + i3_cost : 0);
870 i0_cost = 0;
871 }
872 }
873 else
874 {
875 old_cost = (i2_cost > 0 && i3_cost > 0) ? i2_cost + i3_cost : 0;
876 i1_cost = i0_cost = 0;
877 }
878
879 /* If we have split a PARALLEL I2 to I1,I2, we have counted its cost twice;
880 correct that. */
881 if (old_cost && i1 && INSN_UID (i1) == INSN_UID (i2))
882 old_cost -= i1_cost;
883
884
885 /* Calculate the replacement insn_rtx_costs. */
886 new_i3_cost = insn_rtx_cost (newpat, optimize_this_for_speed_p);
887 if (newi2pat)
888 {
889 new_i2_cost = insn_rtx_cost (newi2pat, optimize_this_for_speed_p);
890 new_cost = (new_i2_cost > 0 && new_i3_cost > 0)
891 ? new_i2_cost + new_i3_cost : 0;
892 }
893 else
894 {
895 new_cost = new_i3_cost;
896 new_i2_cost = 0;
897 }
898
899 if (undobuf.other_insn)
900 {
901 int old_other_cost, new_other_cost;
902
903 old_other_cost = INSN_COST (undobuf.other_insn);
904 new_other_cost = insn_rtx_cost (newotherpat, optimize_this_for_speed_p);
905 if (old_other_cost > 0 && new_other_cost > 0)
906 {
907 old_cost += old_other_cost;
908 new_cost += new_other_cost;
909 }
910 else
911 old_cost = 0;
912 }
913
914 /* Disallow this combination if both new_cost and old_cost are greater than
915 zero, and new_cost is greater than old cost. */
916 int reject = old_cost > 0 && new_cost > old_cost;
917
918 if (dump_file)
919 {
920 fprintf (dump_file, "%s combination of insns ",
921 reject ? "rejecting" : "allowing");
922 if (i0)
923 fprintf (dump_file, "%d, ", INSN_UID (i0));
924 if (i1 && INSN_UID (i1) != INSN_UID (i2))
925 fprintf (dump_file, "%d, ", INSN_UID (i1));
926 fprintf (dump_file, "%d and %d\n", INSN_UID (i2), INSN_UID (i3));
927
928 fprintf (dump_file, "original costs ");
929 if (i0)
930 fprintf (dump_file, "%d + ", i0_cost);
931 if (i1 && INSN_UID (i1) != INSN_UID (i2))
932 fprintf (dump_file, "%d + ", i1_cost);
933 fprintf (dump_file, "%d + %d = %d\n", i2_cost, i3_cost, old_cost);
934
935 if (newi2pat)
936 fprintf (dump_file, "replacement costs %d + %d = %d\n",
937 new_i2_cost, new_i3_cost, new_cost);
938 else
939 fprintf (dump_file, "replacement cost %d\n", new_cost);
940 }
941
942 if (reject)
943 return false;
944
945 /* Update the uid_insn_cost array with the replacement costs. */
946 INSN_COST (i2) = new_i2_cost;
947 INSN_COST (i3) = new_i3_cost;
948 if (i1)
949 {
950 INSN_COST (i1) = 0;
951 if (i0)
952 INSN_COST (i0) = 0;
953 }
954
955 return true;
956 }
957
958
959 /* Delete any insns that copy a register to itself. */
960
961 static void
962 delete_noop_moves (void)
963 {
964 rtx_insn *insn, *next;
965 basic_block bb;
966
967 FOR_EACH_BB_FN (bb, cfun)
968 {
969 for (insn = BB_HEAD (bb); insn != NEXT_INSN (BB_END (bb)); insn = next)
970 {
971 next = NEXT_INSN (insn);
972 if (INSN_P (insn) && noop_move_p (insn))
973 {
974 if (dump_file)
975 fprintf (dump_file, "deleting noop move %d\n", INSN_UID (insn));
976
977 delete_insn_and_edges (insn);
978 }
979 }
980 }
981 }
982
983 \f
984 /* Return false if we do not want to (or cannot) combine DEF. */
985 static bool
986 can_combine_def_p (df_ref def)
987 {
988 /* Do not consider if it is pre/post modification in MEM. */
989 if (DF_REF_FLAGS (def) & DF_REF_PRE_POST_MODIFY)
990 return false;
991
992 unsigned int regno = DF_REF_REGNO (def);
993
994 /* Do not combine frame pointer adjustments. */
995 if ((regno == FRAME_POINTER_REGNUM
996 && (!reload_completed || frame_pointer_needed))
997 || (!HARD_FRAME_POINTER_IS_FRAME_POINTER
998 && regno == HARD_FRAME_POINTER_REGNUM
999 && (!reload_completed || frame_pointer_needed))
1000 || (FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
1001 && regno == ARG_POINTER_REGNUM && fixed_regs[regno]))
1002 return false;
1003
1004 return true;
1005 }
1006
1007 /* Return false if we do not want to (or cannot) combine USE. */
1008 static bool
1009 can_combine_use_p (df_ref use)
1010 {
1011 /* Do not consider the usage of the stack pointer by function call. */
1012 if (DF_REF_FLAGS (use) & DF_REF_CALL_STACK_USAGE)
1013 return false;
1014
1015 return true;
1016 }
1017
1018 /* Fill in log links field for all insns. */
1019
1020 static void
1021 create_log_links (void)
1022 {
1023 basic_block bb;
1024 rtx_insn **next_use;
1025 rtx_insn *insn;
1026 df_ref def, use;
1027
1028 next_use = XCNEWVEC (rtx_insn *, max_reg_num ());
1029
1030 /* Pass through each block from the end, recording the uses of each
1031 register and establishing log links when def is encountered.
1032 Note that we do not clear next_use array in order to save time,
1033 so we have to test whether the use is in the same basic block as def.
1034
1035 There are a few cases below when we do not consider the definition or
1036 usage -- these are taken from original flow.c did. Don't ask me why it is
1037 done this way; I don't know and if it works, I don't want to know. */
1038
1039 FOR_EACH_BB_FN (bb, cfun)
1040 {
1041 FOR_BB_INSNS_REVERSE (bb, insn)
1042 {
1043 if (!NONDEBUG_INSN_P (insn))
1044 continue;
1045
1046 /* Log links are created only once. */
1047 gcc_assert (!LOG_LINKS (insn));
1048
1049 FOR_EACH_INSN_DEF (def, insn)
1050 {
1051 unsigned int regno = DF_REF_REGNO (def);
1052 rtx_insn *use_insn;
1053
1054 if (!next_use[regno])
1055 continue;
1056
1057 if (!can_combine_def_p (def))
1058 continue;
1059
1060 use_insn = next_use[regno];
1061 next_use[regno] = NULL;
1062
1063 if (BLOCK_FOR_INSN (use_insn) != bb)
1064 continue;
1065
1066 /* flow.c claimed:
1067
1068 We don't build a LOG_LINK for hard registers contained
1069 in ASM_OPERANDs. If these registers get replaced,
1070 we might wind up changing the semantics of the insn,
1071 even if reload can make what appear to be valid
1072 assignments later. */
1073 if (regno < FIRST_PSEUDO_REGISTER
1074 && asm_noperands (PATTERN (use_insn)) >= 0)
1075 continue;
1076
1077 /* Don't add duplicate links between instructions. */
1078 struct insn_link *links;
1079 FOR_EACH_LOG_LINK (links, use_insn)
1080 if (insn == links->insn && regno == links->regno)
1081 break;
1082
1083 if (!links)
1084 LOG_LINKS (use_insn)
1085 = alloc_insn_link (insn, regno, LOG_LINKS (use_insn));
1086 }
1087
1088 FOR_EACH_INSN_USE (use, insn)
1089 if (can_combine_use_p (use))
1090 next_use[DF_REF_REGNO (use)] = insn;
1091 }
1092 }
1093
1094 free (next_use);
1095 }
1096
1097 /* Walk the LOG_LINKS of insn B to see if we find a reference to A. Return
1098 true if we found a LOG_LINK that proves that A feeds B. This only works
1099 if there are no instructions between A and B which could have a link
1100 depending on A, since in that case we would not record a link for B.
1101 We also check the implicit dependency created by a cc0 setter/user
1102 pair. */
1103
1104 static bool
1105 insn_a_feeds_b (rtx_insn *a, rtx_insn *b)
1106 {
1107 struct insn_link *links;
1108 FOR_EACH_LOG_LINK (links, b)
1109 if (links->insn == a)
1110 return true;
1111 if (HAVE_cc0 && sets_cc0_p (a))
1112 return true;
1113 return false;
1114 }
1115 \f
1116 /* Main entry point for combiner. F is the first insn of the function.
1117 NREGS is the first unused pseudo-reg number.
1118
1119 Return nonzero if the combiner has turned an indirect jump
1120 instruction into a direct jump. */
1121 static int
1122 combine_instructions (rtx_insn *f, unsigned int nregs)
1123 {
1124 rtx_insn *insn, *next;
1125 rtx_insn *prev;
1126 struct insn_link *links, *nextlinks;
1127 rtx_insn *first;
1128 basic_block last_bb;
1129
1130 int new_direct_jump_p = 0;
1131
1132 for (first = f; first && !INSN_P (first); )
1133 first = NEXT_INSN (first);
1134 if (!first)
1135 return 0;
1136
1137 combine_attempts = 0;
1138 combine_merges = 0;
1139 combine_extras = 0;
1140 combine_successes = 0;
1141
1142 rtl_hooks = combine_rtl_hooks;
1143
1144 reg_stat.safe_grow_cleared (nregs);
1145
1146 init_recog_no_volatile ();
1147
1148 /* Allocate array for insn info. */
1149 max_uid_known = get_max_uid ();
1150 uid_log_links = XCNEWVEC (struct insn_link *, max_uid_known + 1);
1151 uid_insn_cost = XCNEWVEC (int, max_uid_known + 1);
1152 gcc_obstack_init (&insn_link_obstack);
1153
1154 nonzero_bits_mode = mode_for_size (HOST_BITS_PER_WIDE_INT, MODE_INT, 0);
1155
1156 /* Don't use reg_stat[].nonzero_bits when computing it. This can cause
1157 problems when, for example, we have j <<= 1 in a loop. */
1158
1159 nonzero_sign_valid = 0;
1160 label_tick = label_tick_ebb_start = 1;
1161
1162 /* Scan all SETs and see if we can deduce anything about what
1163 bits are known to be zero for some registers and how many copies
1164 of the sign bit are known to exist for those registers.
1165
1166 Also set any known values so that we can use it while searching
1167 for what bits are known to be set. */
1168
1169 setup_incoming_promotions (first);
1170 /* Allow the entry block and the first block to fall into the same EBB.
1171 Conceptually the incoming promotions are assigned to the entry block. */
1172 last_bb = ENTRY_BLOCK_PTR_FOR_FN (cfun);
1173
1174 create_log_links ();
1175 FOR_EACH_BB_FN (this_basic_block, cfun)
1176 {
1177 optimize_this_for_speed_p = optimize_bb_for_speed_p (this_basic_block);
1178 last_call_luid = 0;
1179 mem_last_set = -1;
1180
1181 label_tick++;
1182 if (!single_pred_p (this_basic_block)
1183 || single_pred (this_basic_block) != last_bb)
1184 label_tick_ebb_start = label_tick;
1185 last_bb = this_basic_block;
1186
1187 FOR_BB_INSNS (this_basic_block, insn)
1188 if (INSN_P (insn) && BLOCK_FOR_INSN (insn))
1189 {
1190 rtx links;
1191
1192 subst_low_luid = DF_INSN_LUID (insn);
1193 subst_insn = insn;
1194
1195 note_stores (PATTERN (insn), set_nonzero_bits_and_sign_copies,
1196 insn);
1197 record_dead_and_set_regs (insn);
1198
1199 if (AUTO_INC_DEC)
1200 for (links = REG_NOTES (insn); links; links = XEXP (links, 1))
1201 if (REG_NOTE_KIND (links) == REG_INC)
1202 set_nonzero_bits_and_sign_copies (XEXP (links, 0), NULL_RTX,
1203 insn);
1204
1205 /* Record the current insn_rtx_cost of this instruction. */
1206 if (NONJUMP_INSN_P (insn))
1207 INSN_COST (insn) = insn_rtx_cost (PATTERN (insn),
1208 optimize_this_for_speed_p);
1209 if (dump_file)
1210 fprintf (dump_file, "insn_cost %d: %d\n",
1211 INSN_UID (insn), INSN_COST (insn));
1212 }
1213 }
1214
1215 nonzero_sign_valid = 1;
1216
1217 /* Now scan all the insns in forward order. */
1218 label_tick = label_tick_ebb_start = 1;
1219 init_reg_last ();
1220 setup_incoming_promotions (first);
1221 last_bb = ENTRY_BLOCK_PTR_FOR_FN (cfun);
1222 int max_combine = PARAM_VALUE (PARAM_MAX_COMBINE_INSNS);
1223
1224 FOR_EACH_BB_FN (this_basic_block, cfun)
1225 {
1226 rtx_insn *last_combined_insn = NULL;
1227 optimize_this_for_speed_p = optimize_bb_for_speed_p (this_basic_block);
1228 last_call_luid = 0;
1229 mem_last_set = -1;
1230
1231 label_tick++;
1232 if (!single_pred_p (this_basic_block)
1233 || single_pred (this_basic_block) != last_bb)
1234 label_tick_ebb_start = label_tick;
1235 last_bb = this_basic_block;
1236
1237 rtl_profile_for_bb (this_basic_block);
1238 for (insn = BB_HEAD (this_basic_block);
1239 insn != NEXT_INSN (BB_END (this_basic_block));
1240 insn = next ? next : NEXT_INSN (insn))
1241 {
1242 next = 0;
1243 if (!NONDEBUG_INSN_P (insn))
1244 continue;
1245
1246 while (last_combined_insn
1247 && last_combined_insn->deleted ())
1248 last_combined_insn = PREV_INSN (last_combined_insn);
1249 if (last_combined_insn == NULL_RTX
1250 || BARRIER_P (last_combined_insn)
1251 || BLOCK_FOR_INSN (last_combined_insn) != this_basic_block
1252 || DF_INSN_LUID (last_combined_insn) <= DF_INSN_LUID (insn))
1253 last_combined_insn = insn;
1254
1255 /* See if we know about function return values before this
1256 insn based upon SUBREG flags. */
1257 check_promoted_subreg (insn, PATTERN (insn));
1258
1259 /* See if we can find hardregs and subreg of pseudos in
1260 narrower modes. This could help turning TRUNCATEs
1261 into SUBREGs. */
1262 note_uses (&PATTERN (insn), record_truncated_values, NULL);
1263
1264 /* Try this insn with each insn it links back to. */
1265
1266 FOR_EACH_LOG_LINK (links, insn)
1267 if ((next = try_combine (insn, links->insn, NULL,
1268 NULL, &new_direct_jump_p,
1269 last_combined_insn)) != 0)
1270 {
1271 statistics_counter_event (cfun, "two-insn combine", 1);
1272 goto retry;
1273 }
1274
1275 /* Try each sequence of three linked insns ending with this one. */
1276
1277 if (max_combine >= 3)
1278 FOR_EACH_LOG_LINK (links, insn)
1279 {
1280 rtx_insn *link = links->insn;
1281
1282 /* If the linked insn has been replaced by a note, then there
1283 is no point in pursuing this chain any further. */
1284 if (NOTE_P (link))
1285 continue;
1286
1287 FOR_EACH_LOG_LINK (nextlinks, link)
1288 if ((next = try_combine (insn, link, nextlinks->insn,
1289 NULL, &new_direct_jump_p,
1290 last_combined_insn)) != 0)
1291 {
1292 statistics_counter_event (cfun, "three-insn combine", 1);
1293 goto retry;
1294 }
1295 }
1296
1297 /* Try to combine a jump insn that uses CC0
1298 with a preceding insn that sets CC0, and maybe with its
1299 logical predecessor as well.
1300 This is how we make decrement-and-branch insns.
1301 We need this special code because data flow connections
1302 via CC0 do not get entered in LOG_LINKS. */
1303
1304 if (HAVE_cc0
1305 && JUMP_P (insn)
1306 && (prev = prev_nonnote_insn (insn)) != 0
1307 && NONJUMP_INSN_P (prev)
1308 && sets_cc0_p (PATTERN (prev)))
1309 {
1310 if ((next = try_combine (insn, prev, NULL, NULL,
1311 &new_direct_jump_p,
1312 last_combined_insn)) != 0)
1313 goto retry;
1314
1315 FOR_EACH_LOG_LINK (nextlinks, prev)
1316 if ((next = try_combine (insn, prev, nextlinks->insn,
1317 NULL, &new_direct_jump_p,
1318 last_combined_insn)) != 0)
1319 goto retry;
1320 }
1321
1322 /* Do the same for an insn that explicitly references CC0. */
1323 if (HAVE_cc0 && NONJUMP_INSN_P (insn)
1324 && (prev = prev_nonnote_insn (insn)) != 0
1325 && NONJUMP_INSN_P (prev)
1326 && sets_cc0_p (PATTERN (prev))
1327 && GET_CODE (PATTERN (insn)) == SET
1328 && reg_mentioned_p (cc0_rtx, SET_SRC (PATTERN (insn))))
1329 {
1330 if ((next = try_combine (insn, prev, NULL, NULL,
1331 &new_direct_jump_p,
1332 last_combined_insn)) != 0)
1333 goto retry;
1334
1335 FOR_EACH_LOG_LINK (nextlinks, prev)
1336 if ((next = try_combine (insn, prev, nextlinks->insn,
1337 NULL, &new_direct_jump_p,
1338 last_combined_insn)) != 0)
1339 goto retry;
1340 }
1341
1342 /* Finally, see if any of the insns that this insn links to
1343 explicitly references CC0. If so, try this insn, that insn,
1344 and its predecessor if it sets CC0. */
1345 if (HAVE_cc0)
1346 {
1347 FOR_EACH_LOG_LINK (links, insn)
1348 if (NONJUMP_INSN_P (links->insn)
1349 && GET_CODE (PATTERN (links->insn)) == SET
1350 && reg_mentioned_p (cc0_rtx, SET_SRC (PATTERN (links->insn)))
1351 && (prev = prev_nonnote_insn (links->insn)) != 0
1352 && NONJUMP_INSN_P (prev)
1353 && sets_cc0_p (PATTERN (prev))
1354 && (next = try_combine (insn, links->insn,
1355 prev, NULL, &new_direct_jump_p,
1356 last_combined_insn)) != 0)
1357 goto retry;
1358 }
1359
1360 /* Try combining an insn with two different insns whose results it
1361 uses. */
1362 if (max_combine >= 3)
1363 FOR_EACH_LOG_LINK (links, insn)
1364 for (nextlinks = links->next; nextlinks;
1365 nextlinks = nextlinks->next)
1366 if ((next = try_combine (insn, links->insn,
1367 nextlinks->insn, NULL,
1368 &new_direct_jump_p,
1369 last_combined_insn)) != 0)
1370
1371 {
1372 statistics_counter_event (cfun, "three-insn combine", 1);
1373 goto retry;
1374 }
1375
1376 /* Try four-instruction combinations. */
1377 if (max_combine >= 4)
1378 FOR_EACH_LOG_LINK (links, insn)
1379 {
1380 struct insn_link *next1;
1381 rtx_insn *link = links->insn;
1382
1383 /* If the linked insn has been replaced by a note, then there
1384 is no point in pursuing this chain any further. */
1385 if (NOTE_P (link))
1386 continue;
1387
1388 FOR_EACH_LOG_LINK (next1, link)
1389 {
1390 rtx_insn *link1 = next1->insn;
1391 if (NOTE_P (link1))
1392 continue;
1393 /* I0 -> I1 -> I2 -> I3. */
1394 FOR_EACH_LOG_LINK (nextlinks, link1)
1395 if ((next = try_combine (insn, link, link1,
1396 nextlinks->insn,
1397 &new_direct_jump_p,
1398 last_combined_insn)) != 0)
1399 {
1400 statistics_counter_event (cfun, "four-insn combine", 1);
1401 goto retry;
1402 }
1403 /* I0, I1 -> I2, I2 -> I3. */
1404 for (nextlinks = next1->next; nextlinks;
1405 nextlinks = nextlinks->next)
1406 if ((next = try_combine (insn, link, link1,
1407 nextlinks->insn,
1408 &new_direct_jump_p,
1409 last_combined_insn)) != 0)
1410 {
1411 statistics_counter_event (cfun, "four-insn combine", 1);
1412 goto retry;
1413 }
1414 }
1415
1416 for (next1 = links->next; next1; next1 = next1->next)
1417 {
1418 rtx_insn *link1 = next1->insn;
1419 if (NOTE_P (link1))
1420 continue;
1421 /* I0 -> I2; I1, I2 -> I3. */
1422 FOR_EACH_LOG_LINK (nextlinks, link)
1423 if ((next = try_combine (insn, link, link1,
1424 nextlinks->insn,
1425 &new_direct_jump_p,
1426 last_combined_insn)) != 0)
1427 {
1428 statistics_counter_event (cfun, "four-insn combine", 1);
1429 goto retry;
1430 }
1431 /* I0 -> I1; I1, I2 -> I3. */
1432 FOR_EACH_LOG_LINK (nextlinks, link1)
1433 if ((next = try_combine (insn, link, link1,
1434 nextlinks->insn,
1435 &new_direct_jump_p,
1436 last_combined_insn)) != 0)
1437 {
1438 statistics_counter_event (cfun, "four-insn combine", 1);
1439 goto retry;
1440 }
1441 }
1442 }
1443
1444 /* Try this insn with each REG_EQUAL note it links back to. */
1445 FOR_EACH_LOG_LINK (links, insn)
1446 {
1447 rtx set, note;
1448 rtx_insn *temp = links->insn;
1449 if ((set = single_set (temp)) != 0
1450 && (note = find_reg_equal_equiv_note (temp)) != 0
1451 && (note = XEXP (note, 0), GET_CODE (note)) != EXPR_LIST
1452 /* Avoid using a register that may already been marked
1453 dead by an earlier instruction. */
1454 && ! unmentioned_reg_p (note, SET_SRC (set))
1455 && (GET_MODE (note) == VOIDmode
1456 ? SCALAR_INT_MODE_P (GET_MODE (SET_DEST (set)))
1457 : GET_MODE (SET_DEST (set)) == GET_MODE (note)))
1458 {
1459 /* Temporarily replace the set's source with the
1460 contents of the REG_EQUAL note. The insn will
1461 be deleted or recognized by try_combine. */
1462 rtx orig = SET_SRC (set);
1463 SET_SRC (set) = note;
1464 i2mod = temp;
1465 i2mod_old_rhs = copy_rtx (orig);
1466 i2mod_new_rhs = copy_rtx (note);
1467 next = try_combine (insn, i2mod, NULL, NULL,
1468 &new_direct_jump_p,
1469 last_combined_insn);
1470 i2mod = NULL;
1471 if (next)
1472 {
1473 statistics_counter_event (cfun, "insn-with-note combine", 1);
1474 goto retry;
1475 }
1476 SET_SRC (set) = orig;
1477 }
1478 }
1479
1480 if (!NOTE_P (insn))
1481 record_dead_and_set_regs (insn);
1482
1483 retry:
1484 ;
1485 }
1486 }
1487
1488 default_rtl_profile ();
1489 clear_bb_flags ();
1490 new_direct_jump_p |= purge_all_dead_edges ();
1491 delete_noop_moves ();
1492
1493 /* Clean up. */
1494 obstack_free (&insn_link_obstack, NULL);
1495 free (uid_log_links);
1496 free (uid_insn_cost);
1497 reg_stat.release ();
1498
1499 {
1500 struct undo *undo, *next;
1501 for (undo = undobuf.frees; undo; undo = next)
1502 {
1503 next = undo->next;
1504 free (undo);
1505 }
1506 undobuf.frees = 0;
1507 }
1508
1509 total_attempts += combine_attempts;
1510 total_merges += combine_merges;
1511 total_extras += combine_extras;
1512 total_successes += combine_successes;
1513
1514 nonzero_sign_valid = 0;
1515 rtl_hooks = general_rtl_hooks;
1516
1517 /* Make recognizer allow volatile MEMs again. */
1518 init_recog ();
1519
1520 return new_direct_jump_p;
1521 }
1522
1523 /* Wipe the last_xxx fields of reg_stat in preparation for another pass. */
1524
1525 static void
1526 init_reg_last (void)
1527 {
1528 unsigned int i;
1529 reg_stat_type *p;
1530
1531 FOR_EACH_VEC_ELT (reg_stat, i, p)
1532 memset (p, 0, offsetof (reg_stat_type, sign_bit_copies));
1533 }
1534 \f
1535 /* Set up any promoted values for incoming argument registers. */
1536
1537 static void
1538 setup_incoming_promotions (rtx_insn *first)
1539 {
1540 tree arg;
1541 bool strictly_local = false;
1542
1543 for (arg = DECL_ARGUMENTS (current_function_decl); arg;
1544 arg = DECL_CHAIN (arg))
1545 {
1546 rtx x, reg = DECL_INCOMING_RTL (arg);
1547 int uns1, uns3;
1548 machine_mode mode1, mode2, mode3, mode4;
1549
1550 /* Only continue if the incoming argument is in a register. */
1551 if (!REG_P (reg))
1552 continue;
1553
1554 /* Determine, if possible, whether all call sites of the current
1555 function lie within the current compilation unit. (This does
1556 take into account the exporting of a function via taking its
1557 address, and so forth.) */
1558 strictly_local = cgraph_node::local_info (current_function_decl)->local;
1559
1560 /* The mode and signedness of the argument before any promotions happen
1561 (equal to the mode of the pseudo holding it at that stage). */
1562 mode1 = TYPE_MODE (TREE_TYPE (arg));
1563 uns1 = TYPE_UNSIGNED (TREE_TYPE (arg));
1564
1565 /* The mode and signedness of the argument after any source language and
1566 TARGET_PROMOTE_PROTOTYPES-driven promotions. */
1567 mode2 = TYPE_MODE (DECL_ARG_TYPE (arg));
1568 uns3 = TYPE_UNSIGNED (DECL_ARG_TYPE (arg));
1569
1570 /* The mode and signedness of the argument as it is actually passed,
1571 see assign_parm_setup_reg in function.c. */
1572 mode3 = promote_function_mode (TREE_TYPE (arg), mode1, &uns3,
1573 TREE_TYPE (cfun->decl), 0);
1574
1575 /* The mode of the register in which the argument is being passed. */
1576 mode4 = GET_MODE (reg);
1577
1578 /* Eliminate sign extensions in the callee when:
1579 (a) A mode promotion has occurred; */
1580 if (mode1 == mode3)
1581 continue;
1582 /* (b) The mode of the register is the same as the mode of
1583 the argument as it is passed; */
1584 if (mode3 != mode4)
1585 continue;
1586 /* (c) There's no language level extension; */
1587 if (mode1 == mode2)
1588 ;
1589 /* (c.1) All callers are from the current compilation unit. If that's
1590 the case we don't have to rely on an ABI, we only have to know
1591 what we're generating right now, and we know that we will do the
1592 mode1 to mode2 promotion with the given sign. */
1593 else if (!strictly_local)
1594 continue;
1595 /* (c.2) The combination of the two promotions is useful. This is
1596 true when the signs match, or if the first promotion is unsigned.
1597 In the later case, (sign_extend (zero_extend x)) is the same as
1598 (zero_extend (zero_extend x)), so make sure to force UNS3 true. */
1599 else if (uns1)
1600 uns3 = true;
1601 else if (uns3)
1602 continue;
1603
1604 /* Record that the value was promoted from mode1 to mode3,
1605 so that any sign extension at the head of the current
1606 function may be eliminated. */
1607 x = gen_rtx_CLOBBER (mode1, const0_rtx);
1608 x = gen_rtx_fmt_e ((uns3 ? ZERO_EXTEND : SIGN_EXTEND), mode3, x);
1609 record_value_for_reg (reg, first, x);
1610 }
1611 }
1612
1613 /* If MODE has a precision lower than PREC and SRC is a non-negative constant
1614 that would appear negative in MODE, sign-extend SRC for use in nonzero_bits
1615 because some machines (maybe most) will actually do the sign-extension and
1616 this is the conservative approach.
1617
1618 ??? For 2.5, try to tighten up the MD files in this regard instead of this
1619 kludge. */
1620
1621 static rtx
1622 sign_extend_short_imm (rtx src, machine_mode mode, unsigned int prec)
1623 {
1624 if (GET_MODE_PRECISION (mode) < prec
1625 && CONST_INT_P (src)
1626 && INTVAL (src) > 0
1627 && val_signbit_known_set_p (mode, INTVAL (src)))
1628 src = GEN_INT (INTVAL (src) | ~GET_MODE_MASK (mode));
1629
1630 return src;
1631 }
1632
1633 /* Update RSP for pseudo-register X from INSN's REG_EQUAL note (if one exists)
1634 and SET. */
1635
1636 static void
1637 update_rsp_from_reg_equal (reg_stat_type *rsp, rtx_insn *insn, const_rtx set,
1638 rtx x)
1639 {
1640 rtx reg_equal_note = insn ? find_reg_equal_equiv_note (insn) : NULL_RTX;
1641 unsigned HOST_WIDE_INT bits = 0;
1642 rtx reg_equal = NULL, src = SET_SRC (set);
1643 unsigned int num = 0;
1644
1645 if (reg_equal_note)
1646 reg_equal = XEXP (reg_equal_note, 0);
1647
1648 if (SHORT_IMMEDIATES_SIGN_EXTEND)
1649 {
1650 src = sign_extend_short_imm (src, GET_MODE (x), BITS_PER_WORD);
1651 if (reg_equal)
1652 reg_equal = sign_extend_short_imm (reg_equal, GET_MODE (x), BITS_PER_WORD);
1653 }
1654
1655 /* Don't call nonzero_bits if it cannot change anything. */
1656 if (rsp->nonzero_bits != ~(unsigned HOST_WIDE_INT) 0)
1657 {
1658 bits = nonzero_bits (src, nonzero_bits_mode);
1659 if (reg_equal && bits)
1660 bits &= nonzero_bits (reg_equal, nonzero_bits_mode);
1661 rsp->nonzero_bits |= bits;
1662 }
1663
1664 /* Don't call num_sign_bit_copies if it cannot change anything. */
1665 if (rsp->sign_bit_copies != 1)
1666 {
1667 num = num_sign_bit_copies (SET_SRC (set), GET_MODE (x));
1668 if (reg_equal && num != GET_MODE_PRECISION (GET_MODE (x)))
1669 {
1670 unsigned int numeq = num_sign_bit_copies (reg_equal, GET_MODE (x));
1671 if (num == 0 || numeq > num)
1672 num = numeq;
1673 }
1674 if (rsp->sign_bit_copies == 0 || num < rsp->sign_bit_copies)
1675 rsp->sign_bit_copies = num;
1676 }
1677 }
1678
1679 /* Called via note_stores. If X is a pseudo that is narrower than
1680 HOST_BITS_PER_WIDE_INT and is being set, record what bits are known zero.
1681
1682 If we are setting only a portion of X and we can't figure out what
1683 portion, assume all bits will be used since we don't know what will
1684 be happening.
1685
1686 Similarly, set how many bits of X are known to be copies of the sign bit
1687 at all locations in the function. This is the smallest number implied
1688 by any set of X. */
1689
1690 static void
1691 set_nonzero_bits_and_sign_copies (rtx x, const_rtx set, void *data)
1692 {
1693 rtx_insn *insn = (rtx_insn *) data;
1694
1695 if (REG_P (x)
1696 && REGNO (x) >= FIRST_PSEUDO_REGISTER
1697 /* If this register is undefined at the start of the file, we can't
1698 say what its contents were. */
1699 && ! REGNO_REG_SET_P
1700 (DF_LR_IN (ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb), REGNO (x))
1701 && HWI_COMPUTABLE_MODE_P (GET_MODE (x)))
1702 {
1703 reg_stat_type *rsp = &reg_stat[REGNO (x)];
1704
1705 if (set == 0 || GET_CODE (set) == CLOBBER)
1706 {
1707 rsp->nonzero_bits = GET_MODE_MASK (GET_MODE (x));
1708 rsp->sign_bit_copies = 1;
1709 return;
1710 }
1711
1712 /* If this register is being initialized using itself, and the
1713 register is uninitialized in this basic block, and there are
1714 no LOG_LINKS which set the register, then part of the
1715 register is uninitialized. In that case we can't assume
1716 anything about the number of nonzero bits.
1717
1718 ??? We could do better if we checked this in
1719 reg_{nonzero_bits,num_sign_bit_copies}_for_combine. Then we
1720 could avoid making assumptions about the insn which initially
1721 sets the register, while still using the information in other
1722 insns. We would have to be careful to check every insn
1723 involved in the combination. */
1724
1725 if (insn
1726 && reg_referenced_p (x, PATTERN (insn))
1727 && !REGNO_REG_SET_P (DF_LR_IN (BLOCK_FOR_INSN (insn)),
1728 REGNO (x)))
1729 {
1730 struct insn_link *link;
1731
1732 FOR_EACH_LOG_LINK (link, insn)
1733 if (dead_or_set_p (link->insn, x))
1734 break;
1735 if (!link)
1736 {
1737 rsp->nonzero_bits = GET_MODE_MASK (GET_MODE (x));
1738 rsp->sign_bit_copies = 1;
1739 return;
1740 }
1741 }
1742
1743 /* If this is a complex assignment, see if we can convert it into a
1744 simple assignment. */
1745 set = expand_field_assignment (set);
1746
1747 /* If this is a simple assignment, or we have a paradoxical SUBREG,
1748 set what we know about X. */
1749
1750 if (SET_DEST (set) == x
1751 || (paradoxical_subreg_p (SET_DEST (set))
1752 && SUBREG_REG (SET_DEST (set)) == x))
1753 update_rsp_from_reg_equal (rsp, insn, set, x);
1754 else
1755 {
1756 rsp->nonzero_bits = GET_MODE_MASK (GET_MODE (x));
1757 rsp->sign_bit_copies = 1;
1758 }
1759 }
1760 }
1761 \f
1762 /* See if INSN can be combined into I3. PRED, PRED2, SUCC and SUCC2 are
1763 optionally insns that were previously combined into I3 or that will be
1764 combined into the merger of INSN and I3. The order is PRED, PRED2,
1765 INSN, SUCC, SUCC2, I3.
1766
1767 Return 0 if the combination is not allowed for any reason.
1768
1769 If the combination is allowed, *PDEST will be set to the single
1770 destination of INSN and *PSRC to the single source, and this function
1771 will return 1. */
1772
1773 static int
1774 can_combine_p (rtx_insn *insn, rtx_insn *i3, rtx_insn *pred ATTRIBUTE_UNUSED,
1775 rtx_insn *pred2 ATTRIBUTE_UNUSED, rtx_insn *succ, rtx_insn *succ2,
1776 rtx *pdest, rtx *psrc)
1777 {
1778 int i;
1779 const_rtx set = 0;
1780 rtx src, dest;
1781 rtx_insn *p;
1782 rtx link;
1783 bool all_adjacent = true;
1784 int (*is_volatile_p) (const_rtx);
1785
1786 if (succ)
1787 {
1788 if (succ2)
1789 {
1790 if (next_active_insn (succ2) != i3)
1791 all_adjacent = false;
1792 if (next_active_insn (succ) != succ2)
1793 all_adjacent = false;
1794 }
1795 else if (next_active_insn (succ) != i3)
1796 all_adjacent = false;
1797 if (next_active_insn (insn) != succ)
1798 all_adjacent = false;
1799 }
1800 else if (next_active_insn (insn) != i3)
1801 all_adjacent = false;
1802
1803 /* Can combine only if previous insn is a SET of a REG, a SUBREG or CC0.
1804 or a PARALLEL consisting of such a SET and CLOBBERs.
1805
1806 If INSN has CLOBBER parallel parts, ignore them for our processing.
1807 By definition, these happen during the execution of the insn. When it
1808 is merged with another insn, all bets are off. If they are, in fact,
1809 needed and aren't also supplied in I3, they may be added by
1810 recog_for_combine. Otherwise, it won't match.
1811
1812 We can also ignore a SET whose SET_DEST is mentioned in a REG_UNUSED
1813 note.
1814
1815 Get the source and destination of INSN. If more than one, can't
1816 combine. */
1817
1818 if (GET_CODE (PATTERN (insn)) == SET)
1819 set = PATTERN (insn);
1820 else if (GET_CODE (PATTERN (insn)) == PARALLEL
1821 && GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == SET)
1822 {
1823 for (i = 0; i < XVECLEN (PATTERN (insn), 0); i++)
1824 {
1825 rtx elt = XVECEXP (PATTERN (insn), 0, i);
1826
1827 switch (GET_CODE (elt))
1828 {
1829 /* This is important to combine floating point insns
1830 for the SH4 port. */
1831 case USE:
1832 /* Combining an isolated USE doesn't make sense.
1833 We depend here on combinable_i3pat to reject them. */
1834 /* The code below this loop only verifies that the inputs of
1835 the SET in INSN do not change. We call reg_set_between_p
1836 to verify that the REG in the USE does not change between
1837 I3 and INSN.
1838 If the USE in INSN was for a pseudo register, the matching
1839 insn pattern will likely match any register; combining this
1840 with any other USE would only be safe if we knew that the
1841 used registers have identical values, or if there was
1842 something to tell them apart, e.g. different modes. For
1843 now, we forgo such complicated tests and simply disallow
1844 combining of USES of pseudo registers with any other USE. */
1845 if (REG_P (XEXP (elt, 0))
1846 && GET_CODE (PATTERN (i3)) == PARALLEL)
1847 {
1848 rtx i3pat = PATTERN (i3);
1849 int i = XVECLEN (i3pat, 0) - 1;
1850 unsigned int regno = REGNO (XEXP (elt, 0));
1851
1852 do
1853 {
1854 rtx i3elt = XVECEXP (i3pat, 0, i);
1855
1856 if (GET_CODE (i3elt) == USE
1857 && REG_P (XEXP (i3elt, 0))
1858 && (REGNO (XEXP (i3elt, 0)) == regno
1859 ? reg_set_between_p (XEXP (elt, 0),
1860 PREV_INSN (insn), i3)
1861 : regno >= FIRST_PSEUDO_REGISTER))
1862 return 0;
1863 }
1864 while (--i >= 0);
1865 }
1866 break;
1867
1868 /* We can ignore CLOBBERs. */
1869 case CLOBBER:
1870 break;
1871
1872 case SET:
1873 /* Ignore SETs whose result isn't used but not those that
1874 have side-effects. */
1875 if (find_reg_note (insn, REG_UNUSED, SET_DEST (elt))
1876 && insn_nothrow_p (insn)
1877 && !side_effects_p (elt))
1878 break;
1879
1880 /* If we have already found a SET, this is a second one and
1881 so we cannot combine with this insn. */
1882 if (set)
1883 return 0;
1884
1885 set = elt;
1886 break;
1887
1888 default:
1889 /* Anything else means we can't combine. */
1890 return 0;
1891 }
1892 }
1893
1894 if (set == 0
1895 /* If SET_SRC is an ASM_OPERANDS we can't throw away these CLOBBERs,
1896 so don't do anything with it. */
1897 || GET_CODE (SET_SRC (set)) == ASM_OPERANDS)
1898 return 0;
1899 }
1900 else
1901 return 0;
1902
1903 if (set == 0)
1904 return 0;
1905
1906 /* The simplification in expand_field_assignment may call back to
1907 get_last_value, so set safe guard here. */
1908 subst_low_luid = DF_INSN_LUID (insn);
1909
1910 set = expand_field_assignment (set);
1911 src = SET_SRC (set), dest = SET_DEST (set);
1912
1913 /* Do not eliminate user-specified register if it is in an
1914 asm input because we may break the register asm usage defined
1915 in GCC manual if allow to do so.
1916 Be aware that this may cover more cases than we expect but this
1917 should be harmless. */
1918 if (REG_P (dest) && REG_USERVAR_P (dest) && HARD_REGISTER_P (dest)
1919 && extract_asm_operands (PATTERN (i3)))
1920 return 0;
1921
1922 /* Don't eliminate a store in the stack pointer. */
1923 if (dest == stack_pointer_rtx
1924 /* Don't combine with an insn that sets a register to itself if it has
1925 a REG_EQUAL note. This may be part of a LIBCALL sequence. */
1926 || (rtx_equal_p (src, dest) && find_reg_note (insn, REG_EQUAL, NULL_RTX))
1927 /* Can't merge an ASM_OPERANDS. */
1928 || GET_CODE (src) == ASM_OPERANDS
1929 /* Can't merge a function call. */
1930 || GET_CODE (src) == CALL
1931 /* Don't eliminate a function call argument. */
1932 || (CALL_P (i3)
1933 && (find_reg_fusage (i3, USE, dest)
1934 || (REG_P (dest)
1935 && REGNO (dest) < FIRST_PSEUDO_REGISTER
1936 && global_regs[REGNO (dest)])))
1937 /* Don't substitute into an incremented register. */
1938 || FIND_REG_INC_NOTE (i3, dest)
1939 || (succ && FIND_REG_INC_NOTE (succ, dest))
1940 || (succ2 && FIND_REG_INC_NOTE (succ2, dest))
1941 /* Don't substitute into a non-local goto, this confuses CFG. */
1942 || (JUMP_P (i3) && find_reg_note (i3, REG_NON_LOCAL_GOTO, NULL_RTX))
1943 /* Make sure that DEST is not used after SUCC but before I3. */
1944 || (!all_adjacent
1945 && ((succ2
1946 && (reg_used_between_p (dest, succ2, i3)
1947 || reg_used_between_p (dest, succ, succ2)))
1948 || (!succ2 && succ && reg_used_between_p (dest, succ, i3))))
1949 /* Make sure that the value that is to be substituted for the register
1950 does not use any registers whose values alter in between. However,
1951 If the insns are adjacent, a use can't cross a set even though we
1952 think it might (this can happen for a sequence of insns each setting
1953 the same destination; last_set of that register might point to
1954 a NOTE). If INSN has a REG_EQUIV note, the register is always
1955 equivalent to the memory so the substitution is valid even if there
1956 are intervening stores. Also, don't move a volatile asm or
1957 UNSPEC_VOLATILE across any other insns. */
1958 || (! all_adjacent
1959 && (((!MEM_P (src)
1960 || ! find_reg_note (insn, REG_EQUIV, src))
1961 && use_crosses_set_p (src, DF_INSN_LUID (insn)))
1962 || (GET_CODE (src) == ASM_OPERANDS && MEM_VOLATILE_P (src))
1963 || GET_CODE (src) == UNSPEC_VOLATILE))
1964 /* Don't combine across a CALL_INSN, because that would possibly
1965 change whether the life span of some REGs crosses calls or not,
1966 and it is a pain to update that information.
1967 Exception: if source is a constant, moving it later can't hurt.
1968 Accept that as a special case. */
1969 || (DF_INSN_LUID (insn) < last_call_luid && ! CONSTANT_P (src)))
1970 return 0;
1971
1972 /* DEST must either be a REG or CC0. */
1973 if (REG_P (dest))
1974 {
1975 /* If register alignment is being enforced for multi-word items in all
1976 cases except for parameters, it is possible to have a register copy
1977 insn referencing a hard register that is not allowed to contain the
1978 mode being copied and which would not be valid as an operand of most
1979 insns. Eliminate this problem by not combining with such an insn.
1980
1981 Also, on some machines we don't want to extend the life of a hard
1982 register. */
1983
1984 if (REG_P (src)
1985 && ((REGNO (dest) < FIRST_PSEUDO_REGISTER
1986 && ! HARD_REGNO_MODE_OK (REGNO (dest), GET_MODE (dest)))
1987 /* Don't extend the life of a hard register unless it is
1988 user variable (if we have few registers) or it can't
1989 fit into the desired register (meaning something special
1990 is going on).
1991 Also avoid substituting a return register into I3, because
1992 reload can't handle a conflict with constraints of other
1993 inputs. */
1994 || (REGNO (src) < FIRST_PSEUDO_REGISTER
1995 && ! HARD_REGNO_MODE_OK (REGNO (src), GET_MODE (src)))))
1996 return 0;
1997 }
1998 else if (GET_CODE (dest) != CC0)
1999 return 0;
2000
2001
2002 if (GET_CODE (PATTERN (i3)) == PARALLEL)
2003 for (i = XVECLEN (PATTERN (i3), 0) - 1; i >= 0; i--)
2004 if (GET_CODE (XVECEXP (PATTERN (i3), 0, i)) == CLOBBER)
2005 {
2006 rtx reg = XEXP (XVECEXP (PATTERN (i3), 0, i), 0);
2007
2008 /* If the clobber represents an earlyclobber operand, we must not
2009 substitute an expression containing the clobbered register.
2010 As we do not analyze the constraint strings here, we have to
2011 make the conservative assumption. However, if the register is
2012 a fixed hard reg, the clobber cannot represent any operand;
2013 we leave it up to the machine description to either accept or
2014 reject use-and-clobber patterns. */
2015 if (!REG_P (reg)
2016 || REGNO (reg) >= FIRST_PSEUDO_REGISTER
2017 || !fixed_regs[REGNO (reg)])
2018 if (reg_overlap_mentioned_p (reg, src))
2019 return 0;
2020 }
2021
2022 /* If INSN contains anything volatile, or is an `asm' (whether volatile
2023 or not), reject, unless nothing volatile comes between it and I3 */
2024
2025 if (GET_CODE (src) == ASM_OPERANDS || volatile_refs_p (src))
2026 {
2027 /* Make sure neither succ nor succ2 contains a volatile reference. */
2028 if (succ2 != 0 && volatile_refs_p (PATTERN (succ2)))
2029 return 0;
2030 if (succ != 0 && volatile_refs_p (PATTERN (succ)))
2031 return 0;
2032 /* We'll check insns between INSN and I3 below. */
2033 }
2034
2035 /* If INSN is an asm, and DEST is a hard register, reject, since it has
2036 to be an explicit register variable, and was chosen for a reason. */
2037
2038 if (GET_CODE (src) == ASM_OPERANDS
2039 && REG_P (dest) && REGNO (dest) < FIRST_PSEUDO_REGISTER)
2040 return 0;
2041
2042 /* If INSN contains volatile references (specifically volatile MEMs),
2043 we cannot combine across any other volatile references.
2044 Even if INSN doesn't contain volatile references, any intervening
2045 volatile insn might affect machine state. */
2046
2047 is_volatile_p = volatile_refs_p (PATTERN (insn))
2048 ? volatile_refs_p
2049 : volatile_insn_p;
2050
2051 for (p = NEXT_INSN (insn); p != i3; p = NEXT_INSN (p))
2052 if (INSN_P (p) && p != succ && p != succ2 && is_volatile_p (PATTERN (p)))
2053 return 0;
2054
2055 /* If INSN contains an autoincrement or autodecrement, make sure that
2056 register is not used between there and I3, and not already used in
2057 I3 either. Neither must it be used in PRED or SUCC, if they exist.
2058 Also insist that I3 not be a jump; if it were one
2059 and the incremented register were spilled, we would lose. */
2060
2061 if (AUTO_INC_DEC)
2062 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
2063 if (REG_NOTE_KIND (link) == REG_INC
2064 && (JUMP_P (i3)
2065 || reg_used_between_p (XEXP (link, 0), insn, i3)
2066 || (pred != NULL_RTX
2067 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (pred)))
2068 || (pred2 != NULL_RTX
2069 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (pred2)))
2070 || (succ != NULL_RTX
2071 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (succ)))
2072 || (succ2 != NULL_RTX
2073 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (succ2)))
2074 || reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i3))))
2075 return 0;
2076
2077 /* Don't combine an insn that follows a CC0-setting insn.
2078 An insn that uses CC0 must not be separated from the one that sets it.
2079 We do, however, allow I2 to follow a CC0-setting insn if that insn
2080 is passed as I1; in that case it will be deleted also.
2081 We also allow combining in this case if all the insns are adjacent
2082 because that would leave the two CC0 insns adjacent as well.
2083 It would be more logical to test whether CC0 occurs inside I1 or I2,
2084 but that would be much slower, and this ought to be equivalent. */
2085
2086 if (HAVE_cc0)
2087 {
2088 p = prev_nonnote_insn (insn);
2089 if (p && p != pred && NONJUMP_INSN_P (p) && sets_cc0_p (PATTERN (p))
2090 && ! all_adjacent)
2091 return 0;
2092 }
2093
2094 /* If we get here, we have passed all the tests and the combination is
2095 to be allowed. */
2096
2097 *pdest = dest;
2098 *psrc = src;
2099
2100 return 1;
2101 }
2102 \f
2103 /* LOC is the location within I3 that contains its pattern or the component
2104 of a PARALLEL of the pattern. We validate that it is valid for combining.
2105
2106 One problem is if I3 modifies its output, as opposed to replacing it
2107 entirely, we can't allow the output to contain I2DEST, I1DEST or I0DEST as
2108 doing so would produce an insn that is not equivalent to the original insns.
2109
2110 Consider:
2111
2112 (set (reg:DI 101) (reg:DI 100))
2113 (set (subreg:SI (reg:DI 101) 0) <foo>)
2114
2115 This is NOT equivalent to:
2116
2117 (parallel [(set (subreg:SI (reg:DI 100) 0) <foo>)
2118 (set (reg:DI 101) (reg:DI 100))])
2119
2120 Not only does this modify 100 (in which case it might still be valid
2121 if 100 were dead in I2), it sets 101 to the ORIGINAL value of 100.
2122
2123 We can also run into a problem if I2 sets a register that I1
2124 uses and I1 gets directly substituted into I3 (not via I2). In that
2125 case, we would be getting the wrong value of I2DEST into I3, so we
2126 must reject the combination. This case occurs when I2 and I1 both
2127 feed into I3, rather than when I1 feeds into I2, which feeds into I3.
2128 If I1_NOT_IN_SRC is nonzero, it means that finding I1 in the source
2129 of a SET must prevent combination from occurring. The same situation
2130 can occur for I0, in which case I0_NOT_IN_SRC is set.
2131
2132 Before doing the above check, we first try to expand a field assignment
2133 into a set of logical operations.
2134
2135 If PI3_DEST_KILLED is nonzero, it is a pointer to a location in which
2136 we place a register that is both set and used within I3. If more than one
2137 such register is detected, we fail.
2138
2139 Return 1 if the combination is valid, zero otherwise. */
2140
2141 static int
2142 combinable_i3pat (rtx_insn *i3, rtx *loc, rtx i2dest, rtx i1dest, rtx i0dest,
2143 int i1_not_in_src, int i0_not_in_src, rtx *pi3dest_killed)
2144 {
2145 rtx x = *loc;
2146
2147 if (GET_CODE (x) == SET)
2148 {
2149 rtx set = x ;
2150 rtx dest = SET_DEST (set);
2151 rtx src = SET_SRC (set);
2152 rtx inner_dest = dest;
2153 rtx subdest;
2154
2155 while (GET_CODE (inner_dest) == STRICT_LOW_PART
2156 || GET_CODE (inner_dest) == SUBREG
2157 || GET_CODE (inner_dest) == ZERO_EXTRACT)
2158 inner_dest = XEXP (inner_dest, 0);
2159
2160 /* Check for the case where I3 modifies its output, as discussed
2161 above. We don't want to prevent pseudos from being combined
2162 into the address of a MEM, so only prevent the combination if
2163 i1 or i2 set the same MEM. */
2164 if ((inner_dest != dest &&
2165 (!MEM_P (inner_dest)
2166 || rtx_equal_p (i2dest, inner_dest)
2167 || (i1dest && rtx_equal_p (i1dest, inner_dest))
2168 || (i0dest && rtx_equal_p (i0dest, inner_dest)))
2169 && (reg_overlap_mentioned_p (i2dest, inner_dest)
2170 || (i1dest && reg_overlap_mentioned_p (i1dest, inner_dest))
2171 || (i0dest && reg_overlap_mentioned_p (i0dest, inner_dest))))
2172
2173 /* This is the same test done in can_combine_p except we can't test
2174 all_adjacent; we don't have to, since this instruction will stay
2175 in place, thus we are not considering increasing the lifetime of
2176 INNER_DEST.
2177
2178 Also, if this insn sets a function argument, combining it with
2179 something that might need a spill could clobber a previous
2180 function argument; the all_adjacent test in can_combine_p also
2181 checks this; here, we do a more specific test for this case. */
2182
2183 || (REG_P (inner_dest)
2184 && REGNO (inner_dest) < FIRST_PSEUDO_REGISTER
2185 && (! HARD_REGNO_MODE_OK (REGNO (inner_dest),
2186 GET_MODE (inner_dest))))
2187 || (i1_not_in_src && reg_overlap_mentioned_p (i1dest, src))
2188 || (i0_not_in_src && reg_overlap_mentioned_p (i0dest, src)))
2189 return 0;
2190
2191 /* If DEST is used in I3, it is being killed in this insn, so
2192 record that for later. We have to consider paradoxical
2193 subregs here, since they kill the whole register, but we
2194 ignore partial subregs, STRICT_LOW_PART, etc.
2195 Never add REG_DEAD notes for the FRAME_POINTER_REGNUM or the
2196 STACK_POINTER_REGNUM, since these are always considered to be
2197 live. Similarly for ARG_POINTER_REGNUM if it is fixed. */
2198 subdest = dest;
2199 if (GET_CODE (subdest) == SUBREG
2200 && (GET_MODE_SIZE (GET_MODE (subdest))
2201 >= GET_MODE_SIZE (GET_MODE (SUBREG_REG (subdest)))))
2202 subdest = SUBREG_REG (subdest);
2203 if (pi3dest_killed
2204 && REG_P (subdest)
2205 && reg_referenced_p (subdest, PATTERN (i3))
2206 && REGNO (subdest) != FRAME_POINTER_REGNUM
2207 && (HARD_FRAME_POINTER_IS_FRAME_POINTER
2208 || REGNO (subdest) != HARD_FRAME_POINTER_REGNUM)
2209 && (FRAME_POINTER_REGNUM == ARG_POINTER_REGNUM
2210 || (REGNO (subdest) != ARG_POINTER_REGNUM
2211 || ! fixed_regs [REGNO (subdest)]))
2212 && REGNO (subdest) != STACK_POINTER_REGNUM)
2213 {
2214 if (*pi3dest_killed)
2215 return 0;
2216
2217 *pi3dest_killed = subdest;
2218 }
2219 }
2220
2221 else if (GET_CODE (x) == PARALLEL)
2222 {
2223 int i;
2224
2225 for (i = 0; i < XVECLEN (x, 0); i++)
2226 if (! combinable_i3pat (i3, &XVECEXP (x, 0, i), i2dest, i1dest, i0dest,
2227 i1_not_in_src, i0_not_in_src, pi3dest_killed))
2228 return 0;
2229 }
2230
2231 return 1;
2232 }
2233 \f
2234 /* Return 1 if X is an arithmetic expression that contains a multiplication
2235 and division. We don't count multiplications by powers of two here. */
2236
2237 static int
2238 contains_muldiv (rtx x)
2239 {
2240 switch (GET_CODE (x))
2241 {
2242 case MOD: case DIV: case UMOD: case UDIV:
2243 return 1;
2244
2245 case MULT:
2246 return ! (CONST_INT_P (XEXP (x, 1))
2247 && exact_log2 (UINTVAL (XEXP (x, 1))) >= 0);
2248 default:
2249 if (BINARY_P (x))
2250 return contains_muldiv (XEXP (x, 0))
2251 || contains_muldiv (XEXP (x, 1));
2252
2253 if (UNARY_P (x))
2254 return contains_muldiv (XEXP (x, 0));
2255
2256 return 0;
2257 }
2258 }
2259 \f
2260 /* Determine whether INSN can be used in a combination. Return nonzero if
2261 not. This is used in try_combine to detect early some cases where we
2262 can't perform combinations. */
2263
2264 static int
2265 cant_combine_insn_p (rtx_insn *insn)
2266 {
2267 rtx set;
2268 rtx src, dest;
2269
2270 /* If this isn't really an insn, we can't do anything.
2271 This can occur when flow deletes an insn that it has merged into an
2272 auto-increment address. */
2273 if (! INSN_P (insn))
2274 return 1;
2275
2276 /* Never combine loads and stores involving hard regs that are likely
2277 to be spilled. The register allocator can usually handle such
2278 reg-reg moves by tying. If we allow the combiner to make
2279 substitutions of likely-spilled regs, reload might die.
2280 As an exception, we allow combinations involving fixed regs; these are
2281 not available to the register allocator so there's no risk involved. */
2282
2283 set = single_set (insn);
2284 if (! set)
2285 return 0;
2286 src = SET_SRC (set);
2287 dest = SET_DEST (set);
2288 if (GET_CODE (src) == SUBREG)
2289 src = SUBREG_REG (src);
2290 if (GET_CODE (dest) == SUBREG)
2291 dest = SUBREG_REG (dest);
2292 if (REG_P (src) && REG_P (dest)
2293 && ((HARD_REGISTER_P (src)
2294 && ! TEST_HARD_REG_BIT (fixed_reg_set, REGNO (src))
2295 && targetm.class_likely_spilled_p (REGNO_REG_CLASS (REGNO (src))))
2296 || (HARD_REGISTER_P (dest)
2297 && ! TEST_HARD_REG_BIT (fixed_reg_set, REGNO (dest))
2298 && targetm.class_likely_spilled_p (REGNO_REG_CLASS (REGNO (dest))))))
2299 return 1;
2300
2301 return 0;
2302 }
2303
2304 struct likely_spilled_retval_info
2305 {
2306 unsigned regno, nregs;
2307 unsigned mask;
2308 };
2309
2310 /* Called via note_stores by likely_spilled_retval_p. Remove from info->mask
2311 hard registers that are known to be written to / clobbered in full. */
2312 static void
2313 likely_spilled_retval_1 (rtx x, const_rtx set, void *data)
2314 {
2315 struct likely_spilled_retval_info *const info =
2316 (struct likely_spilled_retval_info *) data;
2317 unsigned regno, nregs;
2318 unsigned new_mask;
2319
2320 if (!REG_P (XEXP (set, 0)))
2321 return;
2322 regno = REGNO (x);
2323 if (regno >= info->regno + info->nregs)
2324 return;
2325 nregs = REG_NREGS (x);
2326 if (regno + nregs <= info->regno)
2327 return;
2328 new_mask = (2U << (nregs - 1)) - 1;
2329 if (regno < info->regno)
2330 new_mask >>= info->regno - regno;
2331 else
2332 new_mask <<= regno - info->regno;
2333 info->mask &= ~new_mask;
2334 }
2335
2336 /* Return nonzero iff part of the return value is live during INSN, and
2337 it is likely spilled. This can happen when more than one insn is needed
2338 to copy the return value, e.g. when we consider to combine into the
2339 second copy insn for a complex value. */
2340
2341 static int
2342 likely_spilled_retval_p (rtx_insn *insn)
2343 {
2344 rtx_insn *use = BB_END (this_basic_block);
2345 rtx reg;
2346 rtx_insn *p;
2347 unsigned regno, nregs;
2348 /* We assume here that no machine mode needs more than
2349 32 hard registers when the value overlaps with a register
2350 for which TARGET_FUNCTION_VALUE_REGNO_P is true. */
2351 unsigned mask;
2352 struct likely_spilled_retval_info info;
2353
2354 if (!NONJUMP_INSN_P (use) || GET_CODE (PATTERN (use)) != USE || insn == use)
2355 return 0;
2356 reg = XEXP (PATTERN (use), 0);
2357 if (!REG_P (reg) || !targetm.calls.function_value_regno_p (REGNO (reg)))
2358 return 0;
2359 regno = REGNO (reg);
2360 nregs = REG_NREGS (reg);
2361 if (nregs == 1)
2362 return 0;
2363 mask = (2U << (nregs - 1)) - 1;
2364
2365 /* Disregard parts of the return value that are set later. */
2366 info.regno = regno;
2367 info.nregs = nregs;
2368 info.mask = mask;
2369 for (p = PREV_INSN (use); info.mask && p != insn; p = PREV_INSN (p))
2370 if (INSN_P (p))
2371 note_stores (PATTERN (p), likely_spilled_retval_1, &info);
2372 mask = info.mask;
2373
2374 /* Check if any of the (probably) live return value registers is
2375 likely spilled. */
2376 nregs --;
2377 do
2378 {
2379 if ((mask & 1 << nregs)
2380 && targetm.class_likely_spilled_p (REGNO_REG_CLASS (regno + nregs)))
2381 return 1;
2382 } while (nregs--);
2383 return 0;
2384 }
2385
2386 /* Adjust INSN after we made a change to its destination.
2387
2388 Changing the destination can invalidate notes that say something about
2389 the results of the insn and a LOG_LINK pointing to the insn. */
2390
2391 static void
2392 adjust_for_new_dest (rtx_insn *insn)
2393 {
2394 /* For notes, be conservative and simply remove them. */
2395 remove_reg_equal_equiv_notes (insn);
2396
2397 /* The new insn will have a destination that was previously the destination
2398 of an insn just above it. Call distribute_links to make a LOG_LINK from
2399 the next use of that destination. */
2400
2401 rtx set = single_set (insn);
2402 gcc_assert (set);
2403
2404 rtx reg = SET_DEST (set);
2405
2406 while (GET_CODE (reg) == ZERO_EXTRACT
2407 || GET_CODE (reg) == STRICT_LOW_PART
2408 || GET_CODE (reg) == SUBREG)
2409 reg = XEXP (reg, 0);
2410 gcc_assert (REG_P (reg));
2411
2412 distribute_links (alloc_insn_link (insn, REGNO (reg), NULL));
2413
2414 df_insn_rescan (insn);
2415 }
2416
2417 /* Return TRUE if combine can reuse reg X in mode MODE.
2418 ADDED_SETS is nonzero if the original set is still required. */
2419 static bool
2420 can_change_dest_mode (rtx x, int added_sets, machine_mode mode)
2421 {
2422 unsigned int regno;
2423
2424 if (!REG_P (x))
2425 return false;
2426
2427 regno = REGNO (x);
2428 /* Allow hard registers if the new mode is legal, and occupies no more
2429 registers than the old mode. */
2430 if (regno < FIRST_PSEUDO_REGISTER)
2431 return (HARD_REGNO_MODE_OK (regno, mode)
2432 && REG_NREGS (x) >= hard_regno_nregs[regno][mode]);
2433
2434 /* Or a pseudo that is only used once. */
2435 return (regno < reg_n_sets_max
2436 && REG_N_SETS (regno) == 1
2437 && !added_sets
2438 && !REG_USERVAR_P (x));
2439 }
2440
2441
2442 /* Check whether X, the destination of a set, refers to part of
2443 the register specified by REG. */
2444
2445 static bool
2446 reg_subword_p (rtx x, rtx reg)
2447 {
2448 /* Check that reg is an integer mode register. */
2449 if (!REG_P (reg) || GET_MODE_CLASS (GET_MODE (reg)) != MODE_INT)
2450 return false;
2451
2452 if (GET_CODE (x) == STRICT_LOW_PART
2453 || GET_CODE (x) == ZERO_EXTRACT)
2454 x = XEXP (x, 0);
2455
2456 return GET_CODE (x) == SUBREG
2457 && SUBREG_REG (x) == reg
2458 && GET_MODE_CLASS (GET_MODE (x)) == MODE_INT;
2459 }
2460
2461 /* Delete the unconditional jump INSN and adjust the CFG correspondingly.
2462 Note that the INSN should be deleted *after* removing dead edges, so
2463 that the kept edge is the fallthrough edge for a (set (pc) (pc))
2464 but not for a (set (pc) (label_ref FOO)). */
2465
2466 static void
2467 update_cfg_for_uncondjump (rtx_insn *insn)
2468 {
2469 basic_block bb = BLOCK_FOR_INSN (insn);
2470 gcc_assert (BB_END (bb) == insn);
2471
2472 purge_dead_edges (bb);
2473
2474 delete_insn (insn);
2475 if (EDGE_COUNT (bb->succs) == 1)
2476 {
2477 rtx_insn *insn;
2478
2479 single_succ_edge (bb)->flags |= EDGE_FALLTHRU;
2480
2481 /* Remove barriers from the footer if there are any. */
2482 for (insn = BB_FOOTER (bb); insn; insn = NEXT_INSN (insn))
2483 if (BARRIER_P (insn))
2484 {
2485 if (PREV_INSN (insn))
2486 SET_NEXT_INSN (PREV_INSN (insn)) = NEXT_INSN (insn);
2487 else
2488 BB_FOOTER (bb) = NEXT_INSN (insn);
2489 if (NEXT_INSN (insn))
2490 SET_PREV_INSN (NEXT_INSN (insn)) = PREV_INSN (insn);
2491 }
2492 else if (LABEL_P (insn))
2493 break;
2494 }
2495 }
2496
2497 /* Return whether PAT is a PARALLEL of exactly N register SETs followed
2498 by an arbitrary number of CLOBBERs. */
2499 static bool
2500 is_parallel_of_n_reg_sets (rtx pat, int n)
2501 {
2502 if (GET_CODE (pat) != PARALLEL)
2503 return false;
2504
2505 int len = XVECLEN (pat, 0);
2506 if (len < n)
2507 return false;
2508
2509 int i;
2510 for (i = 0; i < n; i++)
2511 if (GET_CODE (XVECEXP (pat, 0, i)) != SET
2512 || !REG_P (SET_DEST (XVECEXP (pat, 0, i))))
2513 return false;
2514 for ( ; i < len; i++)
2515 if (GET_CODE (XVECEXP (pat, 0, i)) != CLOBBER
2516 || XEXP (XVECEXP (pat, 0, i), 0) == const0_rtx)
2517 return false;
2518
2519 return true;
2520 }
2521
2522 /* Return whether INSN, a PARALLEL of N register SETs (and maybe some
2523 CLOBBERs), can be split into individual SETs in that order, without
2524 changing semantics. */
2525 static bool
2526 can_split_parallel_of_n_reg_sets (rtx_insn *insn, int n)
2527 {
2528 if (!insn_nothrow_p (insn))
2529 return false;
2530
2531 rtx pat = PATTERN (insn);
2532
2533 int i, j;
2534 for (i = 0; i < n; i++)
2535 {
2536 if (side_effects_p (SET_SRC (XVECEXP (pat, 0, i))))
2537 return false;
2538
2539 rtx reg = SET_DEST (XVECEXP (pat, 0, i));
2540
2541 for (j = i + 1; j < n; j++)
2542 if (reg_referenced_p (reg, XVECEXP (pat, 0, j)))
2543 return false;
2544 }
2545
2546 return true;
2547 }
2548
2549 /* Try to combine the insns I0, I1 and I2 into I3.
2550 Here I0, I1 and I2 appear earlier than I3.
2551 I0 and I1 can be zero; then we combine just I2 into I3, or I1 and I2 into
2552 I3.
2553
2554 If we are combining more than two insns and the resulting insn is not
2555 recognized, try splitting it into two insns. If that happens, I2 and I3
2556 are retained and I1/I0 are pseudo-deleted by turning them into a NOTE.
2557 Otherwise, I0, I1 and I2 are pseudo-deleted.
2558
2559 Return 0 if the combination does not work. Then nothing is changed.
2560 If we did the combination, return the insn at which combine should
2561 resume scanning.
2562
2563 Set NEW_DIRECT_JUMP_P to a nonzero value if try_combine creates a
2564 new direct jump instruction.
2565
2566 LAST_COMBINED_INSN is either I3, or some insn after I3 that has
2567 been I3 passed to an earlier try_combine within the same basic
2568 block. */
2569
2570 static rtx_insn *
2571 try_combine (rtx_insn *i3, rtx_insn *i2, rtx_insn *i1, rtx_insn *i0,
2572 int *new_direct_jump_p, rtx_insn *last_combined_insn)
2573 {
2574 /* New patterns for I3 and I2, respectively. */
2575 rtx newpat, newi2pat = 0;
2576 rtvec newpat_vec_with_clobbers = 0;
2577 int substed_i2 = 0, substed_i1 = 0, substed_i0 = 0;
2578 /* Indicates need to preserve SET in I0, I1 or I2 in I3 if it is not
2579 dead. */
2580 int added_sets_0, added_sets_1, added_sets_2;
2581 /* Total number of SETs to put into I3. */
2582 int total_sets;
2583 /* Nonzero if I2's or I1's body now appears in I3. */
2584 int i2_is_used = 0, i1_is_used = 0;
2585 /* INSN_CODEs for new I3, new I2, and user of condition code. */
2586 int insn_code_number, i2_code_number = 0, other_code_number = 0;
2587 /* Contains I3 if the destination of I3 is used in its source, which means
2588 that the old life of I3 is being killed. If that usage is placed into
2589 I2 and not in I3, a REG_DEAD note must be made. */
2590 rtx i3dest_killed = 0;
2591 /* SET_DEST and SET_SRC of I2, I1 and I0. */
2592 rtx i2dest = 0, i2src = 0, i1dest = 0, i1src = 0, i0dest = 0, i0src = 0;
2593 /* Copy of SET_SRC of I1 and I0, if needed. */
2594 rtx i1src_copy = 0, i0src_copy = 0, i0src_copy2 = 0;
2595 /* Set if I2DEST was reused as a scratch register. */
2596 bool i2scratch = false;
2597 /* The PATTERNs of I0, I1, and I2, or a copy of them in certain cases. */
2598 rtx i0pat = 0, i1pat = 0, i2pat = 0;
2599 /* Indicates if I2DEST or I1DEST is in I2SRC or I1_SRC. */
2600 int i2dest_in_i2src = 0, i1dest_in_i1src = 0, i2dest_in_i1src = 0;
2601 int i0dest_in_i0src = 0, i1dest_in_i0src = 0, i2dest_in_i0src = 0;
2602 int i2dest_killed = 0, i1dest_killed = 0, i0dest_killed = 0;
2603 int i1_feeds_i2_n = 0, i0_feeds_i2_n = 0, i0_feeds_i1_n = 0;
2604 /* Notes that must be added to REG_NOTES in I3 and I2. */
2605 rtx new_i3_notes, new_i2_notes;
2606 /* Notes that we substituted I3 into I2 instead of the normal case. */
2607 int i3_subst_into_i2 = 0;
2608 /* Notes that I1, I2 or I3 is a MULT operation. */
2609 int have_mult = 0;
2610 int swap_i2i3 = 0;
2611 int changed_i3_dest = 0;
2612
2613 int maxreg;
2614 rtx_insn *temp_insn;
2615 rtx temp_expr;
2616 struct insn_link *link;
2617 rtx other_pat = 0;
2618 rtx new_other_notes;
2619 int i;
2620
2621 /* Immediately return if any of I0,I1,I2 are the same insn (I3 can
2622 never be). */
2623 if (i1 == i2 || i0 == i2 || (i0 && i0 == i1))
2624 return 0;
2625
2626 /* Only try four-insn combinations when there's high likelihood of
2627 success. Look for simple insns, such as loads of constants or
2628 binary operations involving a constant. */
2629 if (i0)
2630 {
2631 int i;
2632 int ngood = 0;
2633 int nshift = 0;
2634 rtx set0, set3;
2635
2636 if (!flag_expensive_optimizations)
2637 return 0;
2638
2639 for (i = 0; i < 4; i++)
2640 {
2641 rtx_insn *insn = i == 0 ? i0 : i == 1 ? i1 : i == 2 ? i2 : i3;
2642 rtx set = single_set (insn);
2643 rtx src;
2644 if (!set)
2645 continue;
2646 src = SET_SRC (set);
2647 if (CONSTANT_P (src))
2648 {
2649 ngood += 2;
2650 break;
2651 }
2652 else if (BINARY_P (src) && CONSTANT_P (XEXP (src, 1)))
2653 ngood++;
2654 else if (GET_CODE (src) == ASHIFT || GET_CODE (src) == ASHIFTRT
2655 || GET_CODE (src) == LSHIFTRT)
2656 nshift++;
2657 }
2658
2659 /* If I0 loads a memory and I3 sets the same memory, then I1 and I2
2660 are likely manipulating its value. Ideally we'll be able to combine
2661 all four insns into a bitfield insertion of some kind.
2662
2663 Note the source in I0 might be inside a sign/zero extension and the
2664 memory modes in I0 and I3 might be different. So extract the address
2665 from the destination of I3 and search for it in the source of I0.
2666
2667 In the event that there's a match but the source/dest do not actually
2668 refer to the same memory, the worst that happens is we try some
2669 combinations that we wouldn't have otherwise. */
2670 if ((set0 = single_set (i0))
2671 /* Ensure the source of SET0 is a MEM, possibly buried inside
2672 an extension. */
2673 && (GET_CODE (SET_SRC (set0)) == MEM
2674 || ((GET_CODE (SET_SRC (set0)) == ZERO_EXTEND
2675 || GET_CODE (SET_SRC (set0)) == SIGN_EXTEND)
2676 && GET_CODE (XEXP (SET_SRC (set0), 0)) == MEM))
2677 && (set3 = single_set (i3))
2678 /* Ensure the destination of SET3 is a MEM. */
2679 && GET_CODE (SET_DEST (set3)) == MEM
2680 /* Would it be better to extract the base address for the MEM
2681 in SET3 and look for that? I don't have cases where it matters
2682 but I could envision such cases. */
2683 && rtx_referenced_p (XEXP (SET_DEST (set3), 0), SET_SRC (set0)))
2684 ngood += 2;
2685
2686 if (ngood < 2 && nshift < 2)
2687 return 0;
2688 }
2689
2690 /* Exit early if one of the insns involved can't be used for
2691 combinations. */
2692 if (CALL_P (i2)
2693 || (i1 && CALL_P (i1))
2694 || (i0 && CALL_P (i0))
2695 || cant_combine_insn_p (i3)
2696 || cant_combine_insn_p (i2)
2697 || (i1 && cant_combine_insn_p (i1))
2698 || (i0 && cant_combine_insn_p (i0))
2699 || likely_spilled_retval_p (i3))
2700 return 0;
2701
2702 combine_attempts++;
2703 undobuf.other_insn = 0;
2704
2705 /* Reset the hard register usage information. */
2706 CLEAR_HARD_REG_SET (newpat_used_regs);
2707
2708 if (dump_file && (dump_flags & TDF_DETAILS))
2709 {
2710 if (i0)
2711 fprintf (dump_file, "\nTrying %d, %d, %d -> %d:\n",
2712 INSN_UID (i0), INSN_UID (i1), INSN_UID (i2), INSN_UID (i3));
2713 else if (i1)
2714 fprintf (dump_file, "\nTrying %d, %d -> %d:\n",
2715 INSN_UID (i1), INSN_UID (i2), INSN_UID (i3));
2716 else
2717 fprintf (dump_file, "\nTrying %d -> %d:\n",
2718 INSN_UID (i2), INSN_UID (i3));
2719 }
2720
2721 /* If multiple insns feed into one of I2 or I3, they can be in any
2722 order. To simplify the code below, reorder them in sequence. */
2723 if (i0 && DF_INSN_LUID (i0) > DF_INSN_LUID (i2))
2724 std::swap (i0, i2);
2725 if (i0 && DF_INSN_LUID (i0) > DF_INSN_LUID (i1))
2726 std::swap (i0, i1);
2727 if (i1 && DF_INSN_LUID (i1) > DF_INSN_LUID (i2))
2728 std::swap (i1, i2);
2729
2730 added_links_insn = 0;
2731
2732 /* First check for one important special case that the code below will
2733 not handle. Namely, the case where I1 is zero, I2 is a PARALLEL
2734 and I3 is a SET whose SET_SRC is a SET_DEST in I2. In that case,
2735 we may be able to replace that destination with the destination of I3.
2736 This occurs in the common code where we compute both a quotient and
2737 remainder into a structure, in which case we want to do the computation
2738 directly into the structure to avoid register-register copies.
2739
2740 Note that this case handles both multiple sets in I2 and also cases
2741 where I2 has a number of CLOBBERs inside the PARALLEL.
2742
2743 We make very conservative checks below and only try to handle the
2744 most common cases of this. For example, we only handle the case
2745 where I2 and I3 are adjacent to avoid making difficult register
2746 usage tests. */
2747
2748 if (i1 == 0 && NONJUMP_INSN_P (i3) && GET_CODE (PATTERN (i3)) == SET
2749 && REG_P (SET_SRC (PATTERN (i3)))
2750 && REGNO (SET_SRC (PATTERN (i3))) >= FIRST_PSEUDO_REGISTER
2751 && find_reg_note (i3, REG_DEAD, SET_SRC (PATTERN (i3)))
2752 && GET_CODE (PATTERN (i2)) == PARALLEL
2753 && ! side_effects_p (SET_DEST (PATTERN (i3)))
2754 /* If the dest of I3 is a ZERO_EXTRACT or STRICT_LOW_PART, the code
2755 below would need to check what is inside (and reg_overlap_mentioned_p
2756 doesn't support those codes anyway). Don't allow those destinations;
2757 the resulting insn isn't likely to be recognized anyway. */
2758 && GET_CODE (SET_DEST (PATTERN (i3))) != ZERO_EXTRACT
2759 && GET_CODE (SET_DEST (PATTERN (i3))) != STRICT_LOW_PART
2760 && ! reg_overlap_mentioned_p (SET_SRC (PATTERN (i3)),
2761 SET_DEST (PATTERN (i3)))
2762 && next_active_insn (i2) == i3)
2763 {
2764 rtx p2 = PATTERN (i2);
2765
2766 /* Make sure that the destination of I3,
2767 which we are going to substitute into one output of I2,
2768 is not used within another output of I2. We must avoid making this:
2769 (parallel [(set (mem (reg 69)) ...)
2770 (set (reg 69) ...)])
2771 which is not well-defined as to order of actions.
2772 (Besides, reload can't handle output reloads for this.)
2773
2774 The problem can also happen if the dest of I3 is a memory ref,
2775 if another dest in I2 is an indirect memory ref. */
2776 for (i = 0; i < XVECLEN (p2, 0); i++)
2777 if ((GET_CODE (XVECEXP (p2, 0, i)) == SET
2778 || GET_CODE (XVECEXP (p2, 0, i)) == CLOBBER)
2779 && reg_overlap_mentioned_p (SET_DEST (PATTERN (i3)),
2780 SET_DEST (XVECEXP (p2, 0, i))))
2781 break;
2782
2783 /* Make sure this PARALLEL is not an asm. We do not allow combining
2784 that usually (see can_combine_p), so do not here either. */
2785 for (i = 0; i < XVECLEN (p2, 0); i++)
2786 if (GET_CODE (XVECEXP (p2, 0, i)) == SET
2787 && GET_CODE (SET_SRC (XVECEXP (p2, 0, i))) == ASM_OPERANDS)
2788 break;
2789
2790 if (i == XVECLEN (p2, 0))
2791 for (i = 0; i < XVECLEN (p2, 0); i++)
2792 if (GET_CODE (XVECEXP (p2, 0, i)) == SET
2793 && SET_DEST (XVECEXP (p2, 0, i)) == SET_SRC (PATTERN (i3)))
2794 {
2795 combine_merges++;
2796
2797 subst_insn = i3;
2798 subst_low_luid = DF_INSN_LUID (i2);
2799
2800 added_sets_2 = added_sets_1 = added_sets_0 = 0;
2801 i2src = SET_SRC (XVECEXP (p2, 0, i));
2802 i2dest = SET_DEST (XVECEXP (p2, 0, i));
2803 i2dest_killed = dead_or_set_p (i2, i2dest);
2804
2805 /* Replace the dest in I2 with our dest and make the resulting
2806 insn the new pattern for I3. Then skip to where we validate
2807 the pattern. Everything was set up above. */
2808 SUBST (SET_DEST (XVECEXP (p2, 0, i)), SET_DEST (PATTERN (i3)));
2809 newpat = p2;
2810 i3_subst_into_i2 = 1;
2811 goto validate_replacement;
2812 }
2813 }
2814
2815 /* If I2 is setting a pseudo to a constant and I3 is setting some
2816 sub-part of it to another constant, merge them by making a new
2817 constant. */
2818 if (i1 == 0
2819 && (temp_expr = single_set (i2)) != 0
2820 && CONST_SCALAR_INT_P (SET_SRC (temp_expr))
2821 && GET_CODE (PATTERN (i3)) == SET
2822 && CONST_SCALAR_INT_P (SET_SRC (PATTERN (i3)))
2823 && reg_subword_p (SET_DEST (PATTERN (i3)), SET_DEST (temp_expr)))
2824 {
2825 rtx dest = SET_DEST (PATTERN (i3));
2826 int offset = -1;
2827 int width = 0;
2828
2829 if (GET_CODE (dest) == ZERO_EXTRACT)
2830 {
2831 if (CONST_INT_P (XEXP (dest, 1))
2832 && CONST_INT_P (XEXP (dest, 2)))
2833 {
2834 width = INTVAL (XEXP (dest, 1));
2835 offset = INTVAL (XEXP (dest, 2));
2836 dest = XEXP (dest, 0);
2837 if (BITS_BIG_ENDIAN)
2838 offset = GET_MODE_PRECISION (GET_MODE (dest)) - width - offset;
2839 }
2840 }
2841 else
2842 {
2843 if (GET_CODE (dest) == STRICT_LOW_PART)
2844 dest = XEXP (dest, 0);
2845 width = GET_MODE_PRECISION (GET_MODE (dest));
2846 offset = 0;
2847 }
2848
2849 if (offset >= 0)
2850 {
2851 /* If this is the low part, we're done. */
2852 if (subreg_lowpart_p (dest))
2853 ;
2854 /* Handle the case where inner is twice the size of outer. */
2855 else if (GET_MODE_PRECISION (GET_MODE (SET_DEST (temp_expr)))
2856 == 2 * GET_MODE_PRECISION (GET_MODE (dest)))
2857 offset += GET_MODE_PRECISION (GET_MODE (dest));
2858 /* Otherwise give up for now. */
2859 else
2860 offset = -1;
2861 }
2862
2863 if (offset >= 0)
2864 {
2865 rtx inner = SET_SRC (PATTERN (i3));
2866 rtx outer = SET_SRC (temp_expr);
2867
2868 wide_int o
2869 = wi::insert (std::make_pair (outer, GET_MODE (SET_DEST (temp_expr))),
2870 std::make_pair (inner, GET_MODE (dest)),
2871 offset, width);
2872
2873 combine_merges++;
2874 subst_insn = i3;
2875 subst_low_luid = DF_INSN_LUID (i2);
2876 added_sets_2 = added_sets_1 = added_sets_0 = 0;
2877 i2dest = SET_DEST (temp_expr);
2878 i2dest_killed = dead_or_set_p (i2, i2dest);
2879
2880 /* Replace the source in I2 with the new constant and make the
2881 resulting insn the new pattern for I3. Then skip to where we
2882 validate the pattern. Everything was set up above. */
2883 SUBST (SET_SRC (temp_expr),
2884 immed_wide_int_const (o, GET_MODE (SET_DEST (temp_expr))));
2885
2886 newpat = PATTERN (i2);
2887
2888 /* The dest of I3 has been replaced with the dest of I2. */
2889 changed_i3_dest = 1;
2890 goto validate_replacement;
2891 }
2892 }
2893
2894 /* If we have no I1 and I2 looks like:
2895 (parallel [(set (reg:CC X) (compare:CC OP (const_int 0)))
2896 (set Y OP)])
2897 make up a dummy I1 that is
2898 (set Y OP)
2899 and change I2 to be
2900 (set (reg:CC X) (compare:CC Y (const_int 0)))
2901
2902 (We can ignore any trailing CLOBBERs.)
2903
2904 This undoes a previous combination and allows us to match a branch-and-
2905 decrement insn. */
2906
2907 if (!HAVE_cc0 && i1 == 0
2908 && is_parallel_of_n_reg_sets (PATTERN (i2), 2)
2909 && (GET_MODE_CLASS (GET_MODE (SET_DEST (XVECEXP (PATTERN (i2), 0, 0))))
2910 == MODE_CC)
2911 && GET_CODE (SET_SRC (XVECEXP (PATTERN (i2), 0, 0))) == COMPARE
2912 && XEXP (SET_SRC (XVECEXP (PATTERN (i2), 0, 0)), 1) == const0_rtx
2913 && rtx_equal_p (XEXP (SET_SRC (XVECEXP (PATTERN (i2), 0, 0)), 0),
2914 SET_SRC (XVECEXP (PATTERN (i2), 0, 1)))
2915 && !reg_used_between_p (SET_DEST (XVECEXP (PATTERN (i2), 0, 0)), i2, i3)
2916 && !reg_used_between_p (SET_DEST (XVECEXP (PATTERN (i2), 0, 1)), i2, i3))
2917 {
2918 /* We make I1 with the same INSN_UID as I2. This gives it
2919 the same DF_INSN_LUID for value tracking. Our fake I1 will
2920 never appear in the insn stream so giving it the same INSN_UID
2921 as I2 will not cause a problem. */
2922
2923 i1 = gen_rtx_INSN (VOIDmode, NULL, i2, BLOCK_FOR_INSN (i2),
2924 XVECEXP (PATTERN (i2), 0, 1), INSN_LOCATION (i2),
2925 -1, NULL_RTX);
2926 INSN_UID (i1) = INSN_UID (i2);
2927
2928 SUBST (PATTERN (i2), XVECEXP (PATTERN (i2), 0, 0));
2929 SUBST (XEXP (SET_SRC (PATTERN (i2)), 0),
2930 SET_DEST (PATTERN (i1)));
2931 unsigned int regno = REGNO (SET_DEST (PATTERN (i1)));
2932 SUBST_LINK (LOG_LINKS (i2),
2933 alloc_insn_link (i1, regno, LOG_LINKS (i2)));
2934 }
2935
2936 /* If I2 is a PARALLEL of two SETs of REGs (and perhaps some CLOBBERs),
2937 make those two SETs separate I1 and I2 insns, and make an I0 that is
2938 the original I1. */
2939 if (!HAVE_cc0 && i0 == 0
2940 && is_parallel_of_n_reg_sets (PATTERN (i2), 2)
2941 && can_split_parallel_of_n_reg_sets (i2, 2)
2942 && !reg_used_between_p (SET_DEST (XVECEXP (PATTERN (i2), 0, 0)), i2, i3)
2943 && !reg_used_between_p (SET_DEST (XVECEXP (PATTERN (i2), 0, 1)), i2, i3))
2944 {
2945 /* If there is no I1, there is no I0 either. */
2946 i0 = i1;
2947
2948 /* We make I1 with the same INSN_UID as I2. This gives it
2949 the same DF_INSN_LUID for value tracking. Our fake I1 will
2950 never appear in the insn stream so giving it the same INSN_UID
2951 as I2 will not cause a problem. */
2952
2953 i1 = gen_rtx_INSN (VOIDmode, NULL, i2, BLOCK_FOR_INSN (i2),
2954 XVECEXP (PATTERN (i2), 0, 0), INSN_LOCATION (i2),
2955 -1, NULL_RTX);
2956 INSN_UID (i1) = INSN_UID (i2);
2957
2958 SUBST (PATTERN (i2), XVECEXP (PATTERN (i2), 0, 1));
2959 }
2960
2961 /* Verify that I2 and I1 are valid for combining. */
2962 if (! can_combine_p (i2, i3, i0, i1, NULL, NULL, &i2dest, &i2src)
2963 || (i1 && ! can_combine_p (i1, i3, i0, NULL, i2, NULL,
2964 &i1dest, &i1src))
2965 || (i0 && ! can_combine_p (i0, i3, NULL, NULL, i1, i2,
2966 &i0dest, &i0src)))
2967 {
2968 undo_all ();
2969 return 0;
2970 }
2971
2972 /* Record whether I2DEST is used in I2SRC and similarly for the other
2973 cases. Knowing this will help in register status updating below. */
2974 i2dest_in_i2src = reg_overlap_mentioned_p (i2dest, i2src);
2975 i1dest_in_i1src = i1 && reg_overlap_mentioned_p (i1dest, i1src);
2976 i2dest_in_i1src = i1 && reg_overlap_mentioned_p (i2dest, i1src);
2977 i0dest_in_i0src = i0 && reg_overlap_mentioned_p (i0dest, i0src);
2978 i1dest_in_i0src = i0 && reg_overlap_mentioned_p (i1dest, i0src);
2979 i2dest_in_i0src = i0 && reg_overlap_mentioned_p (i2dest, i0src);
2980 i2dest_killed = dead_or_set_p (i2, i2dest);
2981 i1dest_killed = i1 && dead_or_set_p (i1, i1dest);
2982 i0dest_killed = i0 && dead_or_set_p (i0, i0dest);
2983
2984 /* For the earlier insns, determine which of the subsequent ones they
2985 feed. */
2986 i1_feeds_i2_n = i1 && insn_a_feeds_b (i1, i2);
2987 i0_feeds_i1_n = i0 && insn_a_feeds_b (i0, i1);
2988 i0_feeds_i2_n = (i0 && (!i0_feeds_i1_n ? insn_a_feeds_b (i0, i2)
2989 : (!reg_overlap_mentioned_p (i1dest, i0dest)
2990 && reg_overlap_mentioned_p (i0dest, i2src))));
2991
2992 /* Ensure that I3's pattern can be the destination of combines. */
2993 if (! combinable_i3pat (i3, &PATTERN (i3), i2dest, i1dest, i0dest,
2994 i1 && i2dest_in_i1src && !i1_feeds_i2_n,
2995 i0 && ((i2dest_in_i0src && !i0_feeds_i2_n)
2996 || (i1dest_in_i0src && !i0_feeds_i1_n)),
2997 &i3dest_killed))
2998 {
2999 undo_all ();
3000 return 0;
3001 }
3002
3003 /* See if any of the insns is a MULT operation. Unless one is, we will
3004 reject a combination that is, since it must be slower. Be conservative
3005 here. */
3006 if (GET_CODE (i2src) == MULT
3007 || (i1 != 0 && GET_CODE (i1src) == MULT)
3008 || (i0 != 0 && GET_CODE (i0src) == MULT)
3009 || (GET_CODE (PATTERN (i3)) == SET
3010 && GET_CODE (SET_SRC (PATTERN (i3))) == MULT))
3011 have_mult = 1;
3012
3013 /* If I3 has an inc, then give up if I1 or I2 uses the reg that is inc'd.
3014 We used to do this EXCEPT in one case: I3 has a post-inc in an
3015 output operand. However, that exception can give rise to insns like
3016 mov r3,(r3)+
3017 which is a famous insn on the PDP-11 where the value of r3 used as the
3018 source was model-dependent. Avoid this sort of thing. */
3019
3020 #if 0
3021 if (!(GET_CODE (PATTERN (i3)) == SET
3022 && REG_P (SET_SRC (PATTERN (i3)))
3023 && MEM_P (SET_DEST (PATTERN (i3)))
3024 && (GET_CODE (XEXP (SET_DEST (PATTERN (i3)), 0)) == POST_INC
3025 || GET_CODE (XEXP (SET_DEST (PATTERN (i3)), 0)) == POST_DEC)))
3026 /* It's not the exception. */
3027 #endif
3028 if (AUTO_INC_DEC)
3029 {
3030 rtx link;
3031 for (link = REG_NOTES (i3); link; link = XEXP (link, 1))
3032 if (REG_NOTE_KIND (link) == REG_INC
3033 && (reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i2))
3034 || (i1 != 0
3035 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i1)))))
3036 {
3037 undo_all ();
3038 return 0;
3039 }
3040 }
3041
3042 /* See if the SETs in I1 or I2 need to be kept around in the merged
3043 instruction: whenever the value set there is still needed past I3.
3044 For the SET in I2, this is easy: we see if I2DEST dies or is set in I3.
3045
3046 For the SET in I1, we have two cases: if I1 and I2 independently feed
3047 into I3, the set in I1 needs to be kept around unless I1DEST dies
3048 or is set in I3. Otherwise (if I1 feeds I2 which feeds I3), the set
3049 in I1 needs to be kept around unless I1DEST dies or is set in either
3050 I2 or I3. The same considerations apply to I0. */
3051
3052 added_sets_2 = !dead_or_set_p (i3, i2dest);
3053
3054 if (i1)
3055 added_sets_1 = !(dead_or_set_p (i3, i1dest)
3056 || (i1_feeds_i2_n && dead_or_set_p (i2, i1dest)));
3057 else
3058 added_sets_1 = 0;
3059
3060 if (i0)
3061 added_sets_0 = !(dead_or_set_p (i3, i0dest)
3062 || (i0_feeds_i1_n && dead_or_set_p (i1, i0dest))
3063 || ((i0_feeds_i2_n || (i0_feeds_i1_n && i1_feeds_i2_n))
3064 && dead_or_set_p (i2, i0dest)));
3065 else
3066 added_sets_0 = 0;
3067
3068 /* We are about to copy insns for the case where they need to be kept
3069 around. Check that they can be copied in the merged instruction. */
3070
3071 if (targetm.cannot_copy_insn_p
3072 && ((added_sets_2 && targetm.cannot_copy_insn_p (i2))
3073 || (i1 && added_sets_1 && targetm.cannot_copy_insn_p (i1))
3074 || (i0 && added_sets_0 && targetm.cannot_copy_insn_p (i0))))
3075 {
3076 undo_all ();
3077 return 0;
3078 }
3079
3080 /* If the set in I2 needs to be kept around, we must make a copy of
3081 PATTERN (I2), so that when we substitute I1SRC for I1DEST in
3082 PATTERN (I2), we are only substituting for the original I1DEST, not into
3083 an already-substituted copy. This also prevents making self-referential
3084 rtx. If I2 is a PARALLEL, we just need the piece that assigns I2SRC to
3085 I2DEST. */
3086
3087 if (added_sets_2)
3088 {
3089 if (GET_CODE (PATTERN (i2)) == PARALLEL)
3090 i2pat = gen_rtx_SET (i2dest, copy_rtx (i2src));
3091 else
3092 i2pat = copy_rtx (PATTERN (i2));
3093 }
3094
3095 if (added_sets_1)
3096 {
3097 if (GET_CODE (PATTERN (i1)) == PARALLEL)
3098 i1pat = gen_rtx_SET (i1dest, copy_rtx (i1src));
3099 else
3100 i1pat = copy_rtx (PATTERN (i1));
3101 }
3102
3103 if (added_sets_0)
3104 {
3105 if (GET_CODE (PATTERN (i0)) == PARALLEL)
3106 i0pat = gen_rtx_SET (i0dest, copy_rtx (i0src));
3107 else
3108 i0pat = copy_rtx (PATTERN (i0));
3109 }
3110
3111 combine_merges++;
3112
3113 /* Substitute in the latest insn for the regs set by the earlier ones. */
3114
3115 maxreg = max_reg_num ();
3116
3117 subst_insn = i3;
3118
3119 /* Many machines that don't use CC0 have insns that can both perform an
3120 arithmetic operation and set the condition code. These operations will
3121 be represented as a PARALLEL with the first element of the vector
3122 being a COMPARE of an arithmetic operation with the constant zero.
3123 The second element of the vector will set some pseudo to the result
3124 of the same arithmetic operation. If we simplify the COMPARE, we won't
3125 match such a pattern and so will generate an extra insn. Here we test
3126 for this case, where both the comparison and the operation result are
3127 needed, and make the PARALLEL by just replacing I2DEST in I3SRC with
3128 I2SRC. Later we will make the PARALLEL that contains I2. */
3129
3130 if (!HAVE_cc0 && i1 == 0 && added_sets_2 && GET_CODE (PATTERN (i3)) == SET
3131 && GET_CODE (SET_SRC (PATTERN (i3))) == COMPARE
3132 && CONST_INT_P (XEXP (SET_SRC (PATTERN (i3)), 1))
3133 && rtx_equal_p (XEXP (SET_SRC (PATTERN (i3)), 0), i2dest))
3134 {
3135 rtx newpat_dest;
3136 rtx *cc_use_loc = NULL;
3137 rtx_insn *cc_use_insn = NULL;
3138 rtx op0 = i2src, op1 = XEXP (SET_SRC (PATTERN (i3)), 1);
3139 machine_mode compare_mode, orig_compare_mode;
3140 enum rtx_code compare_code = UNKNOWN, orig_compare_code = UNKNOWN;
3141
3142 newpat = PATTERN (i3);
3143 newpat_dest = SET_DEST (newpat);
3144 compare_mode = orig_compare_mode = GET_MODE (newpat_dest);
3145
3146 if (undobuf.other_insn == 0
3147 && (cc_use_loc = find_single_use (SET_DEST (newpat), i3,
3148 &cc_use_insn)))
3149 {
3150 compare_code = orig_compare_code = GET_CODE (*cc_use_loc);
3151 compare_code = simplify_compare_const (compare_code,
3152 GET_MODE (i2dest), op0, &op1);
3153 target_canonicalize_comparison (&compare_code, &op0, &op1, 1);
3154 }
3155
3156 /* Do the rest only if op1 is const0_rtx, which may be the
3157 result of simplification. */
3158 if (op1 == const0_rtx)
3159 {
3160 /* If a single use of the CC is found, prepare to modify it
3161 when SELECT_CC_MODE returns a new CC-class mode, or when
3162 the above simplify_compare_const() returned a new comparison
3163 operator. undobuf.other_insn is assigned the CC use insn
3164 when modifying it. */
3165 if (cc_use_loc)
3166 {
3167 #ifdef SELECT_CC_MODE
3168 machine_mode new_mode
3169 = SELECT_CC_MODE (compare_code, op0, op1);
3170 if (new_mode != orig_compare_mode
3171 && can_change_dest_mode (SET_DEST (newpat),
3172 added_sets_2, new_mode))
3173 {
3174 unsigned int regno = REGNO (newpat_dest);
3175 compare_mode = new_mode;
3176 if (regno < FIRST_PSEUDO_REGISTER)
3177 newpat_dest = gen_rtx_REG (compare_mode, regno);
3178 else
3179 {
3180 SUBST_MODE (regno_reg_rtx[regno], compare_mode);
3181 newpat_dest = regno_reg_rtx[regno];
3182 }
3183 }
3184 #endif
3185 /* Cases for modifying the CC-using comparison. */
3186 if (compare_code != orig_compare_code
3187 /* ??? Do we need to verify the zero rtx? */
3188 && XEXP (*cc_use_loc, 1) == const0_rtx)
3189 {
3190 /* Replace cc_use_loc with entire new RTX. */
3191 SUBST (*cc_use_loc,
3192 gen_rtx_fmt_ee (compare_code, compare_mode,
3193 newpat_dest, const0_rtx));
3194 undobuf.other_insn = cc_use_insn;
3195 }
3196 else if (compare_mode != orig_compare_mode)
3197 {
3198 /* Just replace the CC reg with a new mode. */
3199 SUBST (XEXP (*cc_use_loc, 0), newpat_dest);
3200 undobuf.other_insn = cc_use_insn;
3201 }
3202 }
3203
3204 /* Now we modify the current newpat:
3205 First, SET_DEST(newpat) is updated if the CC mode has been
3206 altered. For targets without SELECT_CC_MODE, this should be
3207 optimized away. */
3208 if (compare_mode != orig_compare_mode)
3209 SUBST (SET_DEST (newpat), newpat_dest);
3210 /* This is always done to propagate i2src into newpat. */
3211 SUBST (SET_SRC (newpat),
3212 gen_rtx_COMPARE (compare_mode, op0, op1));
3213 /* Create new version of i2pat if needed; the below PARALLEL
3214 creation needs this to work correctly. */
3215 if (! rtx_equal_p (i2src, op0))
3216 i2pat = gen_rtx_SET (i2dest, op0);
3217 i2_is_used = 1;
3218 }
3219 }
3220
3221 if (i2_is_used == 0)
3222 {
3223 /* It is possible that the source of I2 or I1 may be performing
3224 an unneeded operation, such as a ZERO_EXTEND of something
3225 that is known to have the high part zero. Handle that case
3226 by letting subst look at the inner insns.
3227
3228 Another way to do this would be to have a function that tries
3229 to simplify a single insn instead of merging two or more
3230 insns. We don't do this because of the potential of infinite
3231 loops and because of the potential extra memory required.
3232 However, doing it the way we are is a bit of a kludge and
3233 doesn't catch all cases.
3234
3235 But only do this if -fexpensive-optimizations since it slows
3236 things down and doesn't usually win.
3237
3238 This is not done in the COMPARE case above because the
3239 unmodified I2PAT is used in the PARALLEL and so a pattern
3240 with a modified I2SRC would not match. */
3241
3242 if (flag_expensive_optimizations)
3243 {
3244 /* Pass pc_rtx so no substitutions are done, just
3245 simplifications. */
3246 if (i1)
3247 {
3248 subst_low_luid = DF_INSN_LUID (i1);
3249 i1src = subst (i1src, pc_rtx, pc_rtx, 0, 0, 0);
3250 }
3251
3252 subst_low_luid = DF_INSN_LUID (i2);
3253 i2src = subst (i2src, pc_rtx, pc_rtx, 0, 0, 0);
3254 }
3255
3256 n_occurrences = 0; /* `subst' counts here */
3257 subst_low_luid = DF_INSN_LUID (i2);
3258
3259 /* If I1 feeds into I2 and I1DEST is in I1SRC, we need to make a unique
3260 copy of I2SRC each time we substitute it, in order to avoid creating
3261 self-referential RTL when we will be substituting I1SRC for I1DEST
3262 later. Likewise if I0 feeds into I2, either directly or indirectly
3263 through I1, and I0DEST is in I0SRC. */
3264 newpat = subst (PATTERN (i3), i2dest, i2src, 0, 0,
3265 (i1_feeds_i2_n && i1dest_in_i1src)
3266 || ((i0_feeds_i2_n || (i0_feeds_i1_n && i1_feeds_i2_n))
3267 && i0dest_in_i0src));
3268 substed_i2 = 1;
3269
3270 /* Record whether I2's body now appears within I3's body. */
3271 i2_is_used = n_occurrences;
3272 }
3273
3274 /* If we already got a failure, don't try to do more. Otherwise, try to
3275 substitute I1 if we have it. */
3276
3277 if (i1 && GET_CODE (newpat) != CLOBBER)
3278 {
3279 /* Check that an autoincrement side-effect on I1 has not been lost.
3280 This happens if I1DEST is mentioned in I2 and dies there, and
3281 has disappeared from the new pattern. */
3282 if ((FIND_REG_INC_NOTE (i1, NULL_RTX) != 0
3283 && i1_feeds_i2_n
3284 && dead_or_set_p (i2, i1dest)
3285 && !reg_overlap_mentioned_p (i1dest, newpat))
3286 /* Before we can do this substitution, we must redo the test done
3287 above (see detailed comments there) that ensures I1DEST isn't
3288 mentioned in any SETs in NEWPAT that are field assignments. */
3289 || !combinable_i3pat (NULL, &newpat, i1dest, NULL_RTX, NULL_RTX,
3290 0, 0, 0))
3291 {
3292 undo_all ();
3293 return 0;
3294 }
3295
3296 n_occurrences = 0;
3297 subst_low_luid = DF_INSN_LUID (i1);
3298
3299 /* If the following substitution will modify I1SRC, make a copy of it
3300 for the case where it is substituted for I1DEST in I2PAT later. */
3301 if (added_sets_2 && i1_feeds_i2_n)
3302 i1src_copy = copy_rtx (i1src);
3303
3304 /* If I0 feeds into I1 and I0DEST is in I0SRC, we need to make a unique
3305 copy of I1SRC each time we substitute it, in order to avoid creating
3306 self-referential RTL when we will be substituting I0SRC for I0DEST
3307 later. */
3308 newpat = subst (newpat, i1dest, i1src, 0, 0,
3309 i0_feeds_i1_n && i0dest_in_i0src);
3310 substed_i1 = 1;
3311
3312 /* Record whether I1's body now appears within I3's body. */
3313 i1_is_used = n_occurrences;
3314 }
3315
3316 /* Likewise for I0 if we have it. */
3317
3318 if (i0 && GET_CODE (newpat) != CLOBBER)
3319 {
3320 if ((FIND_REG_INC_NOTE (i0, NULL_RTX) != 0
3321 && ((i0_feeds_i2_n && dead_or_set_p (i2, i0dest))
3322 || (i0_feeds_i1_n && dead_or_set_p (i1, i0dest)))
3323 && !reg_overlap_mentioned_p (i0dest, newpat))
3324 || !combinable_i3pat (NULL, &newpat, i0dest, NULL_RTX, NULL_RTX,
3325 0, 0, 0))
3326 {
3327 undo_all ();
3328 return 0;
3329 }
3330
3331 /* If the following substitution will modify I0SRC, make a copy of it
3332 for the case where it is substituted for I0DEST in I1PAT later. */
3333 if (added_sets_1 && i0_feeds_i1_n)
3334 i0src_copy = copy_rtx (i0src);
3335 /* And a copy for I0DEST in I2PAT substitution. */
3336 if (added_sets_2 && ((i0_feeds_i1_n && i1_feeds_i2_n)
3337 || (i0_feeds_i2_n)))
3338 i0src_copy2 = copy_rtx (i0src);
3339
3340 n_occurrences = 0;
3341 subst_low_luid = DF_INSN_LUID (i0);
3342 newpat = subst (newpat, i0dest, i0src, 0, 0, 0);
3343 substed_i0 = 1;
3344 }
3345
3346 /* Fail if an autoincrement side-effect has been duplicated. Be careful
3347 to count all the ways that I2SRC and I1SRC can be used. */
3348 if ((FIND_REG_INC_NOTE (i2, NULL_RTX) != 0
3349 && i2_is_used + added_sets_2 > 1)
3350 || (i1 != 0 && FIND_REG_INC_NOTE (i1, NULL_RTX) != 0
3351 && (i1_is_used + added_sets_1 + (added_sets_2 && i1_feeds_i2_n)
3352 > 1))
3353 || (i0 != 0 && FIND_REG_INC_NOTE (i0, NULL_RTX) != 0
3354 && (n_occurrences + added_sets_0
3355 + (added_sets_1 && i0_feeds_i1_n)
3356 + (added_sets_2 && i0_feeds_i2_n)
3357 > 1))
3358 /* Fail if we tried to make a new register. */
3359 || max_reg_num () != maxreg
3360 /* Fail if we couldn't do something and have a CLOBBER. */
3361 || GET_CODE (newpat) == CLOBBER
3362 /* Fail if this new pattern is a MULT and we didn't have one before
3363 at the outer level. */
3364 || (GET_CODE (newpat) == SET && GET_CODE (SET_SRC (newpat)) == MULT
3365 && ! have_mult))
3366 {
3367 undo_all ();
3368 return 0;
3369 }
3370
3371 /* If the actions of the earlier insns must be kept
3372 in addition to substituting them into the latest one,
3373 we must make a new PARALLEL for the latest insn
3374 to hold additional the SETs. */
3375
3376 if (added_sets_0 || added_sets_1 || added_sets_2)
3377 {
3378 int extra_sets = added_sets_0 + added_sets_1 + added_sets_2;
3379 combine_extras++;
3380
3381 if (GET_CODE (newpat) == PARALLEL)
3382 {
3383 rtvec old = XVEC (newpat, 0);
3384 total_sets = XVECLEN (newpat, 0) + extra_sets;
3385 newpat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (total_sets));
3386 memcpy (XVEC (newpat, 0)->elem, &old->elem[0],
3387 sizeof (old->elem[0]) * old->num_elem);
3388 }
3389 else
3390 {
3391 rtx old = newpat;
3392 total_sets = 1 + extra_sets;
3393 newpat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (total_sets));
3394 XVECEXP (newpat, 0, 0) = old;
3395 }
3396
3397 if (added_sets_0)
3398 XVECEXP (newpat, 0, --total_sets) = i0pat;
3399
3400 if (added_sets_1)
3401 {
3402 rtx t = i1pat;
3403 if (i0_feeds_i1_n)
3404 t = subst (t, i0dest, i0src_copy ? i0src_copy : i0src, 0, 0, 0);
3405
3406 XVECEXP (newpat, 0, --total_sets) = t;
3407 }
3408 if (added_sets_2)
3409 {
3410 rtx t = i2pat;
3411 if (i1_feeds_i2_n)
3412 t = subst (t, i1dest, i1src_copy ? i1src_copy : i1src, 0, 0,
3413 i0_feeds_i1_n && i0dest_in_i0src);
3414 if ((i0_feeds_i1_n && i1_feeds_i2_n) || i0_feeds_i2_n)
3415 t = subst (t, i0dest, i0src_copy2 ? i0src_copy2 : i0src, 0, 0, 0);
3416
3417 XVECEXP (newpat, 0, --total_sets) = t;
3418 }
3419 }
3420
3421 validate_replacement:
3422
3423 /* Note which hard regs this insn has as inputs. */
3424 mark_used_regs_combine (newpat);
3425
3426 /* If recog_for_combine fails, it strips existing clobbers. If we'll
3427 consider splitting this pattern, we might need these clobbers. */
3428 if (i1 && GET_CODE (newpat) == PARALLEL
3429 && GET_CODE (XVECEXP (newpat, 0, XVECLEN (newpat, 0) - 1)) == CLOBBER)
3430 {
3431 int len = XVECLEN (newpat, 0);
3432
3433 newpat_vec_with_clobbers = rtvec_alloc (len);
3434 for (i = 0; i < len; i++)
3435 RTVEC_ELT (newpat_vec_with_clobbers, i) = XVECEXP (newpat, 0, i);
3436 }
3437
3438 /* We have recognized nothing yet. */
3439 insn_code_number = -1;
3440
3441 /* See if this is a PARALLEL of two SETs where one SET's destination is
3442 a register that is unused and this isn't marked as an instruction that
3443 might trap in an EH region. In that case, we just need the other SET.
3444 We prefer this over the PARALLEL.
3445
3446 This can occur when simplifying a divmod insn. We *must* test for this
3447 case here because the code below that splits two independent SETs doesn't
3448 handle this case correctly when it updates the register status.
3449
3450 It's pointless doing this if we originally had two sets, one from
3451 i3, and one from i2. Combining then splitting the parallel results
3452 in the original i2 again plus an invalid insn (which we delete).
3453 The net effect is only to move instructions around, which makes
3454 debug info less accurate. */
3455
3456 if (!(added_sets_2 && i1 == 0)
3457 && is_parallel_of_n_reg_sets (newpat, 2)
3458 && asm_noperands (newpat) < 0)
3459 {
3460 rtx set0 = XVECEXP (newpat, 0, 0);
3461 rtx set1 = XVECEXP (newpat, 0, 1);
3462 rtx oldpat = newpat;
3463
3464 if (((REG_P (SET_DEST (set1))
3465 && find_reg_note (i3, REG_UNUSED, SET_DEST (set1)))
3466 || (GET_CODE (SET_DEST (set1)) == SUBREG
3467 && find_reg_note (i3, REG_UNUSED, SUBREG_REG (SET_DEST (set1)))))
3468 && insn_nothrow_p (i3)
3469 && !side_effects_p (SET_SRC (set1)))
3470 {
3471 newpat = set0;
3472 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3473 }
3474
3475 else if (((REG_P (SET_DEST (set0))
3476 && find_reg_note (i3, REG_UNUSED, SET_DEST (set0)))
3477 || (GET_CODE (SET_DEST (set0)) == SUBREG
3478 && find_reg_note (i3, REG_UNUSED,
3479 SUBREG_REG (SET_DEST (set0)))))
3480 && insn_nothrow_p (i3)
3481 && !side_effects_p (SET_SRC (set0)))
3482 {
3483 newpat = set1;
3484 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3485
3486 if (insn_code_number >= 0)
3487 changed_i3_dest = 1;
3488 }
3489
3490 if (insn_code_number < 0)
3491 newpat = oldpat;
3492 }
3493
3494 /* Is the result of combination a valid instruction? */
3495 if (insn_code_number < 0)
3496 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3497
3498 /* If we were combining three insns and the result is a simple SET
3499 with no ASM_OPERANDS that wasn't recognized, try to split it into two
3500 insns. There are two ways to do this. It can be split using a
3501 machine-specific method (like when you have an addition of a large
3502 constant) or by combine in the function find_split_point. */
3503
3504 if (i1 && insn_code_number < 0 && GET_CODE (newpat) == SET
3505 && asm_noperands (newpat) < 0)
3506 {
3507 rtx parallel, *split;
3508 rtx_insn *m_split_insn;
3509
3510 /* See if the MD file can split NEWPAT. If it can't, see if letting it
3511 use I2DEST as a scratch register will help. In the latter case,
3512 convert I2DEST to the mode of the source of NEWPAT if we can. */
3513
3514 m_split_insn = combine_split_insns (newpat, i3);
3515
3516 /* We can only use I2DEST as a scratch reg if it doesn't overlap any
3517 inputs of NEWPAT. */
3518
3519 /* ??? If I2DEST is not safe, and I1DEST exists, then it would be
3520 possible to try that as a scratch reg. This would require adding
3521 more code to make it work though. */
3522
3523 if (m_split_insn == 0 && ! reg_overlap_mentioned_p (i2dest, newpat))
3524 {
3525 machine_mode new_mode = GET_MODE (SET_DEST (newpat));
3526
3527 /* First try to split using the original register as a
3528 scratch register. */
3529 parallel = gen_rtx_PARALLEL (VOIDmode,
3530 gen_rtvec (2, newpat,
3531 gen_rtx_CLOBBER (VOIDmode,
3532 i2dest)));
3533 m_split_insn = combine_split_insns (parallel, i3);
3534
3535 /* If that didn't work, try changing the mode of I2DEST if
3536 we can. */
3537 if (m_split_insn == 0
3538 && new_mode != GET_MODE (i2dest)
3539 && new_mode != VOIDmode
3540 && can_change_dest_mode (i2dest, added_sets_2, new_mode))
3541 {
3542 machine_mode old_mode = GET_MODE (i2dest);
3543 rtx ni2dest;
3544
3545 if (REGNO (i2dest) < FIRST_PSEUDO_REGISTER)
3546 ni2dest = gen_rtx_REG (new_mode, REGNO (i2dest));
3547 else
3548 {
3549 SUBST_MODE (regno_reg_rtx[REGNO (i2dest)], new_mode);
3550 ni2dest = regno_reg_rtx[REGNO (i2dest)];
3551 }
3552
3553 parallel = (gen_rtx_PARALLEL
3554 (VOIDmode,
3555 gen_rtvec (2, newpat,
3556 gen_rtx_CLOBBER (VOIDmode,
3557 ni2dest))));
3558 m_split_insn = combine_split_insns (parallel, i3);
3559
3560 if (m_split_insn == 0
3561 && REGNO (i2dest) >= FIRST_PSEUDO_REGISTER)
3562 {
3563 struct undo *buf;
3564
3565 adjust_reg_mode (regno_reg_rtx[REGNO (i2dest)], old_mode);
3566 buf = undobuf.undos;
3567 undobuf.undos = buf->next;
3568 buf->next = undobuf.frees;
3569 undobuf.frees = buf;
3570 }
3571 }
3572
3573 i2scratch = m_split_insn != 0;
3574 }
3575
3576 /* If recog_for_combine has discarded clobbers, try to use them
3577 again for the split. */
3578 if (m_split_insn == 0 && newpat_vec_with_clobbers)
3579 {
3580 parallel = gen_rtx_PARALLEL (VOIDmode, newpat_vec_with_clobbers);
3581 m_split_insn = combine_split_insns (parallel, i3);
3582 }
3583
3584 if (m_split_insn && NEXT_INSN (m_split_insn) == NULL_RTX)
3585 {
3586 rtx m_split_pat = PATTERN (m_split_insn);
3587 insn_code_number = recog_for_combine (&m_split_pat, i3, &new_i3_notes);
3588 if (insn_code_number >= 0)
3589 newpat = m_split_pat;
3590 }
3591 else if (m_split_insn && NEXT_INSN (NEXT_INSN (m_split_insn)) == NULL_RTX
3592 && (next_nonnote_nondebug_insn (i2) == i3
3593 || ! use_crosses_set_p (PATTERN (m_split_insn), DF_INSN_LUID (i2))))
3594 {
3595 rtx i2set, i3set;
3596 rtx newi3pat = PATTERN (NEXT_INSN (m_split_insn));
3597 newi2pat = PATTERN (m_split_insn);
3598
3599 i3set = single_set (NEXT_INSN (m_split_insn));
3600 i2set = single_set (m_split_insn);
3601
3602 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
3603
3604 /* If I2 or I3 has multiple SETs, we won't know how to track
3605 register status, so don't use these insns. If I2's destination
3606 is used between I2 and I3, we also can't use these insns. */
3607
3608 if (i2_code_number >= 0 && i2set && i3set
3609 && (next_nonnote_nondebug_insn (i2) == i3
3610 || ! reg_used_between_p (SET_DEST (i2set), i2, i3)))
3611 insn_code_number = recog_for_combine (&newi3pat, i3,
3612 &new_i3_notes);
3613 if (insn_code_number >= 0)
3614 newpat = newi3pat;
3615
3616 /* It is possible that both insns now set the destination of I3.
3617 If so, we must show an extra use of it. */
3618
3619 if (insn_code_number >= 0)
3620 {
3621 rtx new_i3_dest = SET_DEST (i3set);
3622 rtx new_i2_dest = SET_DEST (i2set);
3623
3624 while (GET_CODE (new_i3_dest) == ZERO_EXTRACT
3625 || GET_CODE (new_i3_dest) == STRICT_LOW_PART
3626 || GET_CODE (new_i3_dest) == SUBREG)
3627 new_i3_dest = XEXP (new_i3_dest, 0);
3628
3629 while (GET_CODE (new_i2_dest) == ZERO_EXTRACT
3630 || GET_CODE (new_i2_dest) == STRICT_LOW_PART
3631 || GET_CODE (new_i2_dest) == SUBREG)
3632 new_i2_dest = XEXP (new_i2_dest, 0);
3633
3634 if (REG_P (new_i3_dest)
3635 && REG_P (new_i2_dest)
3636 && REGNO (new_i3_dest) == REGNO (new_i2_dest)
3637 && REGNO (new_i2_dest) < reg_n_sets_max)
3638 INC_REG_N_SETS (REGNO (new_i2_dest), 1);
3639 }
3640 }
3641
3642 /* If we can split it and use I2DEST, go ahead and see if that
3643 helps things be recognized. Verify that none of the registers
3644 are set between I2 and I3. */
3645 if (insn_code_number < 0
3646 && (split = find_split_point (&newpat, i3, false)) != 0
3647 && (!HAVE_cc0 || REG_P (i2dest))
3648 /* We need I2DEST in the proper mode. If it is a hard register
3649 or the only use of a pseudo, we can change its mode.
3650 Make sure we don't change a hard register to have a mode that
3651 isn't valid for it, or change the number of registers. */
3652 && (GET_MODE (*split) == GET_MODE (i2dest)
3653 || GET_MODE (*split) == VOIDmode
3654 || can_change_dest_mode (i2dest, added_sets_2,
3655 GET_MODE (*split)))
3656 && (next_nonnote_nondebug_insn (i2) == i3
3657 || ! use_crosses_set_p (*split, DF_INSN_LUID (i2)))
3658 /* We can't overwrite I2DEST if its value is still used by
3659 NEWPAT. */
3660 && ! reg_referenced_p (i2dest, newpat))
3661 {
3662 rtx newdest = i2dest;
3663 enum rtx_code split_code = GET_CODE (*split);
3664 machine_mode split_mode = GET_MODE (*split);
3665 bool subst_done = false;
3666 newi2pat = NULL_RTX;
3667
3668 i2scratch = true;
3669
3670 /* *SPLIT may be part of I2SRC, so make sure we have the
3671 original expression around for later debug processing.
3672 We should not need I2SRC any more in other cases. */
3673 if (MAY_HAVE_DEBUG_INSNS)
3674 i2src = copy_rtx (i2src);
3675 else
3676 i2src = NULL;
3677
3678 /* Get NEWDEST as a register in the proper mode. We have already
3679 validated that we can do this. */
3680 if (GET_MODE (i2dest) != split_mode && split_mode != VOIDmode)
3681 {
3682 if (REGNO (i2dest) < FIRST_PSEUDO_REGISTER)
3683 newdest = gen_rtx_REG (split_mode, REGNO (i2dest));
3684 else
3685 {
3686 SUBST_MODE (regno_reg_rtx[REGNO (i2dest)], split_mode);
3687 newdest = regno_reg_rtx[REGNO (i2dest)];
3688 }
3689 }
3690
3691 /* If *SPLIT is a (mult FOO (const_int pow2)), convert it to
3692 an ASHIFT. This can occur if it was inside a PLUS and hence
3693 appeared to be a memory address. This is a kludge. */
3694 if (split_code == MULT
3695 && CONST_INT_P (XEXP (*split, 1))
3696 && INTVAL (XEXP (*split, 1)) > 0
3697 && (i = exact_log2 (UINTVAL (XEXP (*split, 1)))) >= 0)
3698 {
3699 SUBST (*split, gen_rtx_ASHIFT (split_mode,
3700 XEXP (*split, 0), GEN_INT (i)));
3701 /* Update split_code because we may not have a multiply
3702 anymore. */
3703 split_code = GET_CODE (*split);
3704 }
3705
3706 /* Similarly for (plus (mult FOO (const_int pow2))). */
3707 if (split_code == PLUS
3708 && GET_CODE (XEXP (*split, 0)) == MULT
3709 && CONST_INT_P (XEXP (XEXP (*split, 0), 1))
3710 && INTVAL (XEXP (XEXP (*split, 0), 1)) > 0
3711 && (i = exact_log2 (UINTVAL (XEXP (XEXP (*split, 0), 1)))) >= 0)
3712 {
3713 rtx nsplit = XEXP (*split, 0);
3714 SUBST (XEXP (*split, 0), gen_rtx_ASHIFT (GET_MODE (nsplit),
3715 XEXP (nsplit, 0), GEN_INT (i)));
3716 /* Update split_code because we may not have a multiply
3717 anymore. */
3718 split_code = GET_CODE (*split);
3719 }
3720
3721 #ifdef INSN_SCHEDULING
3722 /* If *SPLIT is a paradoxical SUBREG, when we split it, it should
3723 be written as a ZERO_EXTEND. */
3724 if (split_code == SUBREG && MEM_P (SUBREG_REG (*split)))
3725 {
3726 /* Or as a SIGN_EXTEND if LOAD_EXTEND_OP says that that's
3727 what it really is. */
3728 if (LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (*split)))
3729 == SIGN_EXTEND)
3730 SUBST (*split, gen_rtx_SIGN_EXTEND (split_mode,
3731 SUBREG_REG (*split)));
3732 else
3733 SUBST (*split, gen_rtx_ZERO_EXTEND (split_mode,
3734 SUBREG_REG (*split)));
3735 }
3736 #endif
3737
3738 /* Attempt to split binary operators using arithmetic identities. */
3739 if (BINARY_P (SET_SRC (newpat))
3740 && split_mode == GET_MODE (SET_SRC (newpat))
3741 && ! side_effects_p (SET_SRC (newpat)))
3742 {
3743 rtx setsrc = SET_SRC (newpat);
3744 machine_mode mode = GET_MODE (setsrc);
3745 enum rtx_code code = GET_CODE (setsrc);
3746 rtx src_op0 = XEXP (setsrc, 0);
3747 rtx src_op1 = XEXP (setsrc, 1);
3748
3749 /* Split "X = Y op Y" as "Z = Y; X = Z op Z". */
3750 if (rtx_equal_p (src_op0, src_op1))
3751 {
3752 newi2pat = gen_rtx_SET (newdest, src_op0);
3753 SUBST (XEXP (setsrc, 0), newdest);
3754 SUBST (XEXP (setsrc, 1), newdest);
3755 subst_done = true;
3756 }
3757 /* Split "((P op Q) op R) op S" where op is PLUS or MULT. */
3758 else if ((code == PLUS || code == MULT)
3759 && GET_CODE (src_op0) == code
3760 && GET_CODE (XEXP (src_op0, 0)) == code
3761 && (INTEGRAL_MODE_P (mode)
3762 || (FLOAT_MODE_P (mode)
3763 && flag_unsafe_math_optimizations)))
3764 {
3765 rtx p = XEXP (XEXP (src_op0, 0), 0);
3766 rtx q = XEXP (XEXP (src_op0, 0), 1);
3767 rtx r = XEXP (src_op0, 1);
3768 rtx s = src_op1;
3769
3770 /* Split both "((X op Y) op X) op Y" and
3771 "((X op Y) op Y) op X" as "T op T" where T is
3772 "X op Y". */
3773 if ((rtx_equal_p (p,r) && rtx_equal_p (q,s))
3774 || (rtx_equal_p (p,s) && rtx_equal_p (q,r)))
3775 {
3776 newi2pat = gen_rtx_SET (newdest, XEXP (src_op0, 0));
3777 SUBST (XEXP (setsrc, 0), newdest);
3778 SUBST (XEXP (setsrc, 1), newdest);
3779 subst_done = true;
3780 }
3781 /* Split "((X op X) op Y) op Y)" as "T op T" where
3782 T is "X op Y". */
3783 else if (rtx_equal_p (p,q) && rtx_equal_p (r,s))
3784 {
3785 rtx tmp = simplify_gen_binary (code, mode, p, r);
3786 newi2pat = gen_rtx_SET (newdest, tmp);
3787 SUBST (XEXP (setsrc, 0), newdest);
3788 SUBST (XEXP (setsrc, 1), newdest);
3789 subst_done = true;
3790 }
3791 }
3792 }
3793
3794 if (!subst_done)
3795 {
3796 newi2pat = gen_rtx_SET (newdest, *split);
3797 SUBST (*split, newdest);
3798 }
3799
3800 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
3801
3802 /* recog_for_combine might have added CLOBBERs to newi2pat.
3803 Make sure NEWPAT does not depend on the clobbered regs. */
3804 if (GET_CODE (newi2pat) == PARALLEL)
3805 for (i = XVECLEN (newi2pat, 0) - 1; i >= 0; i--)
3806 if (GET_CODE (XVECEXP (newi2pat, 0, i)) == CLOBBER)
3807 {
3808 rtx reg = XEXP (XVECEXP (newi2pat, 0, i), 0);
3809 if (reg_overlap_mentioned_p (reg, newpat))
3810 {
3811 undo_all ();
3812 return 0;
3813 }
3814 }
3815
3816 /* If the split point was a MULT and we didn't have one before,
3817 don't use one now. */
3818 if (i2_code_number >= 0 && ! (split_code == MULT && ! have_mult))
3819 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3820 }
3821 }
3822
3823 /* Check for a case where we loaded from memory in a narrow mode and
3824 then sign extended it, but we need both registers. In that case,
3825 we have a PARALLEL with both loads from the same memory location.
3826 We can split this into a load from memory followed by a register-register
3827 copy. This saves at least one insn, more if register allocation can
3828 eliminate the copy.
3829
3830 We cannot do this if the destination of the first assignment is a
3831 condition code register or cc0. We eliminate this case by making sure
3832 the SET_DEST and SET_SRC have the same mode.
3833
3834 We cannot do this if the destination of the second assignment is
3835 a register that we have already assumed is zero-extended. Similarly
3836 for a SUBREG of such a register. */
3837
3838 else if (i1 && insn_code_number < 0 && asm_noperands (newpat) < 0
3839 && GET_CODE (newpat) == PARALLEL
3840 && XVECLEN (newpat, 0) == 2
3841 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
3842 && GET_CODE (SET_SRC (XVECEXP (newpat, 0, 0))) == SIGN_EXTEND
3843 && (GET_MODE (SET_DEST (XVECEXP (newpat, 0, 0)))
3844 == GET_MODE (SET_SRC (XVECEXP (newpat, 0, 0))))
3845 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
3846 && rtx_equal_p (SET_SRC (XVECEXP (newpat, 0, 1)),
3847 XEXP (SET_SRC (XVECEXP (newpat, 0, 0)), 0))
3848 && ! use_crosses_set_p (SET_SRC (XVECEXP (newpat, 0, 1)),
3849 DF_INSN_LUID (i2))
3850 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != ZERO_EXTRACT
3851 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != STRICT_LOW_PART
3852 && ! (temp_expr = SET_DEST (XVECEXP (newpat, 0, 1)),
3853 (REG_P (temp_expr)
3854 && reg_stat[REGNO (temp_expr)].nonzero_bits != 0
3855 && GET_MODE_PRECISION (GET_MODE (temp_expr)) < BITS_PER_WORD
3856 && GET_MODE_PRECISION (GET_MODE (temp_expr)) < HOST_BITS_PER_INT
3857 && (reg_stat[REGNO (temp_expr)].nonzero_bits
3858 != GET_MODE_MASK (word_mode))))
3859 && ! (GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) == SUBREG
3860 && (temp_expr = SUBREG_REG (SET_DEST (XVECEXP (newpat, 0, 1))),
3861 (REG_P (temp_expr)
3862 && reg_stat[REGNO (temp_expr)].nonzero_bits != 0
3863 && GET_MODE_PRECISION (GET_MODE (temp_expr)) < BITS_PER_WORD
3864 && GET_MODE_PRECISION (GET_MODE (temp_expr)) < HOST_BITS_PER_INT
3865 && (reg_stat[REGNO (temp_expr)].nonzero_bits
3866 != GET_MODE_MASK (word_mode)))))
3867 && ! reg_overlap_mentioned_p (SET_DEST (XVECEXP (newpat, 0, 1)),
3868 SET_SRC (XVECEXP (newpat, 0, 1)))
3869 && ! find_reg_note (i3, REG_UNUSED,
3870 SET_DEST (XVECEXP (newpat, 0, 0))))
3871 {
3872 rtx ni2dest;
3873
3874 newi2pat = XVECEXP (newpat, 0, 0);
3875 ni2dest = SET_DEST (XVECEXP (newpat, 0, 0));
3876 newpat = XVECEXP (newpat, 0, 1);
3877 SUBST (SET_SRC (newpat),
3878 gen_lowpart (GET_MODE (SET_SRC (newpat)), ni2dest));
3879 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
3880
3881 if (i2_code_number >= 0)
3882 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3883
3884 if (insn_code_number >= 0)
3885 swap_i2i3 = 1;
3886 }
3887
3888 /* Similarly, check for a case where we have a PARALLEL of two independent
3889 SETs but we started with three insns. In this case, we can do the sets
3890 as two separate insns. This case occurs when some SET allows two
3891 other insns to combine, but the destination of that SET is still live.
3892
3893 Also do this if we started with two insns and (at least) one of the
3894 resulting sets is a noop; this noop will be deleted later. */
3895
3896 else if (insn_code_number < 0 && asm_noperands (newpat) < 0
3897 && GET_CODE (newpat) == PARALLEL
3898 && XVECLEN (newpat, 0) == 2
3899 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
3900 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
3901 && (i1 || set_noop_p (XVECEXP (newpat, 0, 0))
3902 || set_noop_p (XVECEXP (newpat, 0, 1)))
3903 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) != ZERO_EXTRACT
3904 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) != STRICT_LOW_PART
3905 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != ZERO_EXTRACT
3906 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != STRICT_LOW_PART
3907 && ! reg_referenced_p (SET_DEST (XVECEXP (newpat, 0, 1)),
3908 XVECEXP (newpat, 0, 0))
3909 && ! reg_referenced_p (SET_DEST (XVECEXP (newpat, 0, 0)),
3910 XVECEXP (newpat, 0, 1))
3911 && ! (contains_muldiv (SET_SRC (XVECEXP (newpat, 0, 0)))
3912 && contains_muldiv (SET_SRC (XVECEXP (newpat, 0, 1)))))
3913 {
3914 rtx set0 = XVECEXP (newpat, 0, 0);
3915 rtx set1 = XVECEXP (newpat, 0, 1);
3916
3917 /* Normally, it doesn't matter which of the two is done first,
3918 but the one that references cc0 can't be the second, and
3919 one which uses any regs/memory set in between i2 and i3 can't
3920 be first. The PARALLEL might also have been pre-existing in i3,
3921 so we need to make sure that we won't wrongly hoist a SET to i2
3922 that would conflict with a death note present in there. */
3923 if (!use_crosses_set_p (SET_SRC (set1), DF_INSN_LUID (i2))
3924 && !(REG_P (SET_DEST (set1))
3925 && find_reg_note (i2, REG_DEAD, SET_DEST (set1)))
3926 && !(GET_CODE (SET_DEST (set1)) == SUBREG
3927 && find_reg_note (i2, REG_DEAD,
3928 SUBREG_REG (SET_DEST (set1))))
3929 && (!HAVE_cc0 || !reg_referenced_p (cc0_rtx, set0))
3930 /* If I3 is a jump, ensure that set0 is a jump so that
3931 we do not create invalid RTL. */
3932 && (!JUMP_P (i3) || SET_DEST (set0) == pc_rtx)
3933 )
3934 {
3935 newi2pat = set1;
3936 newpat = set0;
3937 }
3938 else if (!use_crosses_set_p (SET_SRC (set0), DF_INSN_LUID (i2))
3939 && !(REG_P (SET_DEST (set0))
3940 && find_reg_note (i2, REG_DEAD, SET_DEST (set0)))
3941 && !(GET_CODE (SET_DEST (set0)) == SUBREG
3942 && find_reg_note (i2, REG_DEAD,
3943 SUBREG_REG (SET_DEST (set0))))
3944 && (!HAVE_cc0 || !reg_referenced_p (cc0_rtx, set1))
3945 /* If I3 is a jump, ensure that set1 is a jump so that
3946 we do not create invalid RTL. */
3947 && (!JUMP_P (i3) || SET_DEST (set1) == pc_rtx)
3948 )
3949 {
3950 newi2pat = set0;
3951 newpat = set1;
3952 }
3953 else
3954 {
3955 undo_all ();
3956 return 0;
3957 }
3958
3959 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
3960
3961 if (i2_code_number >= 0)
3962 {
3963 /* recog_for_combine might have added CLOBBERs to newi2pat.
3964 Make sure NEWPAT does not depend on the clobbered regs. */
3965 if (GET_CODE (newi2pat) == PARALLEL)
3966 {
3967 for (i = XVECLEN (newi2pat, 0) - 1; i >= 0; i--)
3968 if (GET_CODE (XVECEXP (newi2pat, 0, i)) == CLOBBER)
3969 {
3970 rtx reg = XEXP (XVECEXP (newi2pat, 0, i), 0);
3971 if (reg_overlap_mentioned_p (reg, newpat))
3972 {
3973 undo_all ();
3974 return 0;
3975 }
3976 }
3977 }
3978
3979 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3980 }
3981 }
3982
3983 /* If it still isn't recognized, fail and change things back the way they
3984 were. */
3985 if ((insn_code_number < 0
3986 /* Is the result a reasonable ASM_OPERANDS? */
3987 && (! check_asm_operands (newpat) || added_sets_1 || added_sets_2)))
3988 {
3989 undo_all ();
3990 return 0;
3991 }
3992
3993 /* If we had to change another insn, make sure it is valid also. */
3994 if (undobuf.other_insn)
3995 {
3996 CLEAR_HARD_REG_SET (newpat_used_regs);
3997
3998 other_pat = PATTERN (undobuf.other_insn);
3999 other_code_number = recog_for_combine (&other_pat, undobuf.other_insn,
4000 &new_other_notes);
4001
4002 if (other_code_number < 0 && ! check_asm_operands (other_pat))
4003 {
4004 undo_all ();
4005 return 0;
4006 }
4007 }
4008
4009 /* If I2 is the CC0 setter and I3 is the CC0 user then check whether
4010 they are adjacent to each other or not. */
4011 if (HAVE_cc0)
4012 {
4013 rtx_insn *p = prev_nonnote_insn (i3);
4014 if (p && p != i2 && NONJUMP_INSN_P (p) && newi2pat
4015 && sets_cc0_p (newi2pat))
4016 {
4017 undo_all ();
4018 return 0;
4019 }
4020 }
4021
4022 /* Only allow this combination if insn_rtx_costs reports that the
4023 replacement instructions are cheaper than the originals. */
4024 if (!combine_validate_cost (i0, i1, i2, i3, newpat, newi2pat, other_pat))
4025 {
4026 undo_all ();
4027 return 0;
4028 }
4029
4030 if (MAY_HAVE_DEBUG_INSNS)
4031 {
4032 struct undo *undo;
4033
4034 for (undo = undobuf.undos; undo; undo = undo->next)
4035 if (undo->kind == UNDO_MODE)
4036 {
4037 rtx reg = *undo->where.r;
4038 machine_mode new_mode = GET_MODE (reg);
4039 machine_mode old_mode = undo->old_contents.m;
4040
4041 /* Temporarily revert mode back. */
4042 adjust_reg_mode (reg, old_mode);
4043
4044 if (reg == i2dest && i2scratch)
4045 {
4046 /* If we used i2dest as a scratch register with a
4047 different mode, substitute it for the original
4048 i2src while its original mode is temporarily
4049 restored, and then clear i2scratch so that we don't
4050 do it again later. */
4051 propagate_for_debug (i2, last_combined_insn, reg, i2src,
4052 this_basic_block);
4053 i2scratch = false;
4054 /* Put back the new mode. */
4055 adjust_reg_mode (reg, new_mode);
4056 }
4057 else
4058 {
4059 rtx tempreg = gen_raw_REG (old_mode, REGNO (reg));
4060 rtx_insn *first, *last;
4061
4062 if (reg == i2dest)
4063 {
4064 first = i2;
4065 last = last_combined_insn;
4066 }
4067 else
4068 {
4069 first = i3;
4070 last = undobuf.other_insn;
4071 gcc_assert (last);
4072 if (DF_INSN_LUID (last)
4073 < DF_INSN_LUID (last_combined_insn))
4074 last = last_combined_insn;
4075 }
4076
4077 /* We're dealing with a reg that changed mode but not
4078 meaning, so we want to turn it into a subreg for
4079 the new mode. However, because of REG sharing and
4080 because its mode had already changed, we have to do
4081 it in two steps. First, replace any debug uses of
4082 reg, with its original mode temporarily restored,
4083 with this copy we have created; then, replace the
4084 copy with the SUBREG of the original shared reg,
4085 once again changed to the new mode. */
4086 propagate_for_debug (first, last, reg, tempreg,
4087 this_basic_block);
4088 adjust_reg_mode (reg, new_mode);
4089 propagate_for_debug (first, last, tempreg,
4090 lowpart_subreg (old_mode, reg, new_mode),
4091 this_basic_block);
4092 }
4093 }
4094 }
4095
4096 /* If we will be able to accept this, we have made a
4097 change to the destination of I3. This requires us to
4098 do a few adjustments. */
4099
4100 if (changed_i3_dest)
4101 {
4102 PATTERN (i3) = newpat;
4103 adjust_for_new_dest (i3);
4104 }
4105
4106 /* We now know that we can do this combination. Merge the insns and
4107 update the status of registers and LOG_LINKS. */
4108
4109 if (undobuf.other_insn)
4110 {
4111 rtx note, next;
4112
4113 PATTERN (undobuf.other_insn) = other_pat;
4114
4115 /* If any of the notes in OTHER_INSN were REG_DEAD or REG_UNUSED,
4116 ensure that they are still valid. Then add any non-duplicate
4117 notes added by recog_for_combine. */
4118 for (note = REG_NOTES (undobuf.other_insn); note; note = next)
4119 {
4120 next = XEXP (note, 1);
4121
4122 if ((REG_NOTE_KIND (note) == REG_DEAD
4123 && !reg_referenced_p (XEXP (note, 0),
4124 PATTERN (undobuf.other_insn)))
4125 ||(REG_NOTE_KIND (note) == REG_UNUSED
4126 && !reg_set_p (XEXP (note, 0),
4127 PATTERN (undobuf.other_insn))))
4128 remove_note (undobuf.other_insn, note);
4129 }
4130
4131 distribute_notes (new_other_notes, undobuf.other_insn,
4132 undobuf.other_insn, NULL, NULL_RTX, NULL_RTX,
4133 NULL_RTX);
4134 }
4135
4136 if (swap_i2i3)
4137 {
4138 rtx_insn *insn;
4139 struct insn_link *link;
4140 rtx ni2dest;
4141
4142 /* I3 now uses what used to be its destination and which is now
4143 I2's destination. This requires us to do a few adjustments. */
4144 PATTERN (i3) = newpat;
4145 adjust_for_new_dest (i3);
4146
4147 /* We need a LOG_LINK from I3 to I2. But we used to have one,
4148 so we still will.
4149
4150 However, some later insn might be using I2's dest and have
4151 a LOG_LINK pointing at I3. We must remove this link.
4152 The simplest way to remove the link is to point it at I1,
4153 which we know will be a NOTE. */
4154
4155 /* newi2pat is usually a SET here; however, recog_for_combine might
4156 have added some clobbers. */
4157 if (GET_CODE (newi2pat) == PARALLEL)
4158 ni2dest = SET_DEST (XVECEXP (newi2pat, 0, 0));
4159 else
4160 ni2dest = SET_DEST (newi2pat);
4161
4162 for (insn = NEXT_INSN (i3);
4163 insn && (this_basic_block->next_bb == EXIT_BLOCK_PTR_FOR_FN (cfun)
4164 || insn != BB_HEAD (this_basic_block->next_bb));
4165 insn = NEXT_INSN (insn))
4166 {
4167 if (INSN_P (insn) && reg_referenced_p (ni2dest, PATTERN (insn)))
4168 {
4169 FOR_EACH_LOG_LINK (link, insn)
4170 if (link->insn == i3)
4171 link->insn = i1;
4172
4173 break;
4174 }
4175 }
4176 }
4177
4178 {
4179 rtx i3notes, i2notes, i1notes = 0, i0notes = 0;
4180 struct insn_link *i3links, *i2links, *i1links = 0, *i0links = 0;
4181 rtx midnotes = 0;
4182 int from_luid;
4183 /* Compute which registers we expect to eliminate. newi2pat may be setting
4184 either i3dest or i2dest, so we must check it. */
4185 rtx elim_i2 = ((newi2pat && reg_set_p (i2dest, newi2pat))
4186 || i2dest_in_i2src || i2dest_in_i1src || i2dest_in_i0src
4187 || !i2dest_killed
4188 ? 0 : i2dest);
4189 /* For i1, we need to compute both local elimination and global
4190 elimination information with respect to newi2pat because i1dest
4191 may be the same as i3dest, in which case newi2pat may be setting
4192 i1dest. Global information is used when distributing REG_DEAD
4193 note for i2 and i3, in which case it does matter if newi2pat sets
4194 i1dest or not.
4195
4196 Local information is used when distributing REG_DEAD note for i1,
4197 in which case it doesn't matter if newi2pat sets i1dest or not.
4198 See PR62151, if we have four insns combination:
4199 i0: r0 <- i0src
4200 i1: r1 <- i1src (using r0)
4201 REG_DEAD (r0)
4202 i2: r0 <- i2src (using r1)
4203 i3: r3 <- i3src (using r0)
4204 ix: using r0
4205 From i1's point of view, r0 is eliminated, no matter if it is set
4206 by newi2pat or not. In other words, REG_DEAD info for r0 in i1
4207 should be discarded.
4208
4209 Note local information only affects cases in forms like "I1->I2->I3",
4210 "I0->I1->I2->I3" or "I0&I1->I2, I2->I3". For other cases like
4211 "I0->I1, I1&I2->I3" or "I1&I2->I3", newi2pat won't set i1dest or
4212 i0dest anyway. */
4213 rtx local_elim_i1 = (i1 == 0 || i1dest_in_i1src || i1dest_in_i0src
4214 || !i1dest_killed
4215 ? 0 : i1dest);
4216 rtx elim_i1 = (local_elim_i1 == 0
4217 || (newi2pat && reg_set_p (i1dest, newi2pat))
4218 ? 0 : i1dest);
4219 /* Same case as i1. */
4220 rtx local_elim_i0 = (i0 == 0 || i0dest_in_i0src || !i0dest_killed
4221 ? 0 : i0dest);
4222 rtx elim_i0 = (local_elim_i0 == 0
4223 || (newi2pat && reg_set_p (i0dest, newi2pat))
4224 ? 0 : i0dest);
4225
4226 /* Get the old REG_NOTES and LOG_LINKS from all our insns and
4227 clear them. */
4228 i3notes = REG_NOTES (i3), i3links = LOG_LINKS (i3);
4229 i2notes = REG_NOTES (i2), i2links = LOG_LINKS (i2);
4230 if (i1)
4231 i1notes = REG_NOTES (i1), i1links = LOG_LINKS (i1);
4232 if (i0)
4233 i0notes = REG_NOTES (i0), i0links = LOG_LINKS (i0);
4234
4235 /* Ensure that we do not have something that should not be shared but
4236 occurs multiple times in the new insns. Check this by first
4237 resetting all the `used' flags and then copying anything is shared. */
4238
4239 reset_used_flags (i3notes);
4240 reset_used_flags (i2notes);
4241 reset_used_flags (i1notes);
4242 reset_used_flags (i0notes);
4243 reset_used_flags (newpat);
4244 reset_used_flags (newi2pat);
4245 if (undobuf.other_insn)
4246 reset_used_flags (PATTERN (undobuf.other_insn));
4247
4248 i3notes = copy_rtx_if_shared (i3notes);
4249 i2notes = copy_rtx_if_shared (i2notes);
4250 i1notes = copy_rtx_if_shared (i1notes);
4251 i0notes = copy_rtx_if_shared (i0notes);
4252 newpat = copy_rtx_if_shared (newpat);
4253 newi2pat = copy_rtx_if_shared (newi2pat);
4254 if (undobuf.other_insn)
4255 reset_used_flags (PATTERN (undobuf.other_insn));
4256
4257 INSN_CODE (i3) = insn_code_number;
4258 PATTERN (i3) = newpat;
4259
4260 if (CALL_P (i3) && CALL_INSN_FUNCTION_USAGE (i3))
4261 {
4262 rtx call_usage = CALL_INSN_FUNCTION_USAGE (i3);
4263
4264 reset_used_flags (call_usage);
4265 call_usage = copy_rtx (call_usage);
4266
4267 if (substed_i2)
4268 {
4269 /* I2SRC must still be meaningful at this point. Some splitting
4270 operations can invalidate I2SRC, but those operations do not
4271 apply to calls. */
4272 gcc_assert (i2src);
4273 replace_rtx (call_usage, i2dest, i2src);
4274 }
4275
4276 if (substed_i1)
4277 replace_rtx (call_usage, i1dest, i1src);
4278 if (substed_i0)
4279 replace_rtx (call_usage, i0dest, i0src);
4280
4281 CALL_INSN_FUNCTION_USAGE (i3) = call_usage;
4282 }
4283
4284 if (undobuf.other_insn)
4285 INSN_CODE (undobuf.other_insn) = other_code_number;
4286
4287 /* We had one special case above where I2 had more than one set and
4288 we replaced a destination of one of those sets with the destination
4289 of I3. In that case, we have to update LOG_LINKS of insns later
4290 in this basic block. Note that this (expensive) case is rare.
4291
4292 Also, in this case, we must pretend that all REG_NOTEs for I2
4293 actually came from I3, so that REG_UNUSED notes from I2 will be
4294 properly handled. */
4295
4296 if (i3_subst_into_i2)
4297 {
4298 for (i = 0; i < XVECLEN (PATTERN (i2), 0); i++)
4299 if ((GET_CODE (XVECEXP (PATTERN (i2), 0, i)) == SET
4300 || GET_CODE (XVECEXP (PATTERN (i2), 0, i)) == CLOBBER)
4301 && REG_P (SET_DEST (XVECEXP (PATTERN (i2), 0, i)))
4302 && SET_DEST (XVECEXP (PATTERN (i2), 0, i)) != i2dest
4303 && ! find_reg_note (i2, REG_UNUSED,
4304 SET_DEST (XVECEXP (PATTERN (i2), 0, i))))
4305 for (temp_insn = NEXT_INSN (i2);
4306 temp_insn
4307 && (this_basic_block->next_bb == EXIT_BLOCK_PTR_FOR_FN (cfun)
4308 || BB_HEAD (this_basic_block) != temp_insn);
4309 temp_insn = NEXT_INSN (temp_insn))
4310 if (temp_insn != i3 && INSN_P (temp_insn))
4311 FOR_EACH_LOG_LINK (link, temp_insn)
4312 if (link->insn == i2)
4313 link->insn = i3;
4314
4315 if (i3notes)
4316 {
4317 rtx link = i3notes;
4318 while (XEXP (link, 1))
4319 link = XEXP (link, 1);
4320 XEXP (link, 1) = i2notes;
4321 }
4322 else
4323 i3notes = i2notes;
4324 i2notes = 0;
4325 }
4326
4327 LOG_LINKS (i3) = NULL;
4328 REG_NOTES (i3) = 0;
4329 LOG_LINKS (i2) = NULL;
4330 REG_NOTES (i2) = 0;
4331
4332 if (newi2pat)
4333 {
4334 if (MAY_HAVE_DEBUG_INSNS && i2scratch)
4335 propagate_for_debug (i2, last_combined_insn, i2dest, i2src,
4336 this_basic_block);
4337 INSN_CODE (i2) = i2_code_number;
4338 PATTERN (i2) = newi2pat;
4339 }
4340 else
4341 {
4342 if (MAY_HAVE_DEBUG_INSNS && i2src)
4343 propagate_for_debug (i2, last_combined_insn, i2dest, i2src,
4344 this_basic_block);
4345 SET_INSN_DELETED (i2);
4346 }
4347
4348 if (i1)
4349 {
4350 LOG_LINKS (i1) = NULL;
4351 REG_NOTES (i1) = 0;
4352 if (MAY_HAVE_DEBUG_INSNS)
4353 propagate_for_debug (i1, last_combined_insn, i1dest, i1src,
4354 this_basic_block);
4355 SET_INSN_DELETED (i1);
4356 }
4357
4358 if (i0)
4359 {
4360 LOG_LINKS (i0) = NULL;
4361 REG_NOTES (i0) = 0;
4362 if (MAY_HAVE_DEBUG_INSNS)
4363 propagate_for_debug (i0, last_combined_insn, i0dest, i0src,
4364 this_basic_block);
4365 SET_INSN_DELETED (i0);
4366 }
4367
4368 /* Get death notes for everything that is now used in either I3 or
4369 I2 and used to die in a previous insn. If we built two new
4370 patterns, move from I1 to I2 then I2 to I3 so that we get the
4371 proper movement on registers that I2 modifies. */
4372
4373 if (i0)
4374 from_luid = DF_INSN_LUID (i0);
4375 else if (i1)
4376 from_luid = DF_INSN_LUID (i1);
4377 else
4378 from_luid = DF_INSN_LUID (i2);
4379 if (newi2pat)
4380 move_deaths (newi2pat, NULL_RTX, from_luid, i2, &midnotes);
4381 move_deaths (newpat, newi2pat, from_luid, i3, &midnotes);
4382
4383 /* Distribute all the LOG_LINKS and REG_NOTES from I1, I2, and I3. */
4384 if (i3notes)
4385 distribute_notes (i3notes, i3, i3, newi2pat ? i2 : NULL,
4386 elim_i2, elim_i1, elim_i0);
4387 if (i2notes)
4388 distribute_notes (i2notes, i2, i3, newi2pat ? i2 : NULL,
4389 elim_i2, elim_i1, elim_i0);
4390 if (i1notes)
4391 distribute_notes (i1notes, i1, i3, newi2pat ? i2 : NULL,
4392 elim_i2, local_elim_i1, local_elim_i0);
4393 if (i0notes)
4394 distribute_notes (i0notes, i0, i3, newi2pat ? i2 : NULL,
4395 elim_i2, elim_i1, local_elim_i0);
4396 if (midnotes)
4397 distribute_notes (midnotes, NULL, i3, newi2pat ? i2 : NULL,
4398 elim_i2, elim_i1, elim_i0);
4399
4400 /* Distribute any notes added to I2 or I3 by recog_for_combine. We
4401 know these are REG_UNUSED and want them to go to the desired insn,
4402 so we always pass it as i3. */
4403
4404 if (newi2pat && new_i2_notes)
4405 distribute_notes (new_i2_notes, i2, i2, NULL, NULL_RTX, NULL_RTX,
4406 NULL_RTX);
4407
4408 if (new_i3_notes)
4409 distribute_notes (new_i3_notes, i3, i3, NULL, NULL_RTX, NULL_RTX,
4410 NULL_RTX);
4411
4412 /* If I3DEST was used in I3SRC, it really died in I3. We may need to
4413 put a REG_DEAD note for it somewhere. If NEWI2PAT exists and sets
4414 I3DEST, the death must be somewhere before I2, not I3. If we passed I3
4415 in that case, it might delete I2. Similarly for I2 and I1.
4416 Show an additional death due to the REG_DEAD note we make here. If
4417 we discard it in distribute_notes, we will decrement it again. */
4418
4419 if (i3dest_killed)
4420 {
4421 rtx new_note = alloc_reg_note (REG_DEAD, i3dest_killed, NULL_RTX);
4422 if (newi2pat && reg_set_p (i3dest_killed, newi2pat))
4423 distribute_notes (new_note, NULL, i2, NULL, elim_i2,
4424 elim_i1, elim_i0);
4425 else
4426 distribute_notes (new_note, NULL, i3, newi2pat ? i2 : NULL,
4427 elim_i2, elim_i1, elim_i0);
4428 }
4429
4430 if (i2dest_in_i2src)
4431 {
4432 rtx new_note = alloc_reg_note (REG_DEAD, i2dest, NULL_RTX);
4433 if (newi2pat && reg_set_p (i2dest, newi2pat))
4434 distribute_notes (new_note, NULL, i2, NULL, NULL_RTX,
4435 NULL_RTX, NULL_RTX);
4436 else
4437 distribute_notes (new_note, NULL, i3, newi2pat ? i2 : NULL,
4438 NULL_RTX, NULL_RTX, NULL_RTX);
4439 }
4440
4441 if (i1dest_in_i1src)
4442 {
4443 rtx new_note = alloc_reg_note (REG_DEAD, i1dest, NULL_RTX);
4444 if (newi2pat && reg_set_p (i1dest, newi2pat))
4445 distribute_notes (new_note, NULL, i2, NULL, NULL_RTX,
4446 NULL_RTX, NULL_RTX);
4447 else
4448 distribute_notes (new_note, NULL, i3, newi2pat ? i2 : NULL,
4449 NULL_RTX, NULL_RTX, NULL_RTX);
4450 }
4451
4452 if (i0dest_in_i0src)
4453 {
4454 rtx new_note = alloc_reg_note (REG_DEAD, i0dest, NULL_RTX);
4455 if (newi2pat && reg_set_p (i0dest, newi2pat))
4456 distribute_notes (new_note, NULL, i2, NULL, NULL_RTX,
4457 NULL_RTX, NULL_RTX);
4458 else
4459 distribute_notes (new_note, NULL, i3, newi2pat ? i2 : NULL,
4460 NULL_RTX, NULL_RTX, NULL_RTX);
4461 }
4462
4463 distribute_links (i3links);
4464 distribute_links (i2links);
4465 distribute_links (i1links);
4466 distribute_links (i0links);
4467
4468 if (REG_P (i2dest))
4469 {
4470 struct insn_link *link;
4471 rtx_insn *i2_insn = 0;
4472 rtx i2_val = 0, set;
4473
4474 /* The insn that used to set this register doesn't exist, and
4475 this life of the register may not exist either. See if one of
4476 I3's links points to an insn that sets I2DEST. If it does,
4477 that is now the last known value for I2DEST. If we don't update
4478 this and I2 set the register to a value that depended on its old
4479 contents, we will get confused. If this insn is used, thing
4480 will be set correctly in combine_instructions. */
4481 FOR_EACH_LOG_LINK (link, i3)
4482 if ((set = single_set (link->insn)) != 0
4483 && rtx_equal_p (i2dest, SET_DEST (set)))
4484 i2_insn = link->insn, i2_val = SET_SRC (set);
4485
4486 record_value_for_reg (i2dest, i2_insn, i2_val);
4487
4488 /* If the reg formerly set in I2 died only once and that was in I3,
4489 zero its use count so it won't make `reload' do any work. */
4490 if (! added_sets_2
4491 && (newi2pat == 0 || ! reg_mentioned_p (i2dest, newi2pat))
4492 && ! i2dest_in_i2src
4493 && REGNO (i2dest) < reg_n_sets_max)
4494 INC_REG_N_SETS (REGNO (i2dest), -1);
4495 }
4496
4497 if (i1 && REG_P (i1dest))
4498 {
4499 struct insn_link *link;
4500 rtx_insn *i1_insn = 0;
4501 rtx i1_val = 0, set;
4502
4503 FOR_EACH_LOG_LINK (link, i3)
4504 if ((set = single_set (link->insn)) != 0
4505 && rtx_equal_p (i1dest, SET_DEST (set)))
4506 i1_insn = link->insn, i1_val = SET_SRC (set);
4507
4508 record_value_for_reg (i1dest, i1_insn, i1_val);
4509
4510 if (! added_sets_1
4511 && ! i1dest_in_i1src
4512 && REGNO (i1dest) < reg_n_sets_max)
4513 INC_REG_N_SETS (REGNO (i1dest), -1);
4514 }
4515
4516 if (i0 && REG_P (i0dest))
4517 {
4518 struct insn_link *link;
4519 rtx_insn *i0_insn = 0;
4520 rtx i0_val = 0, set;
4521
4522 FOR_EACH_LOG_LINK (link, i3)
4523 if ((set = single_set (link->insn)) != 0
4524 && rtx_equal_p (i0dest, SET_DEST (set)))
4525 i0_insn = link->insn, i0_val = SET_SRC (set);
4526
4527 record_value_for_reg (i0dest, i0_insn, i0_val);
4528
4529 if (! added_sets_0
4530 && ! i0dest_in_i0src
4531 && REGNO (i0dest) < reg_n_sets_max)
4532 INC_REG_N_SETS (REGNO (i0dest), -1);
4533 }
4534
4535 /* Update reg_stat[].nonzero_bits et al for any changes that may have
4536 been made to this insn. The order is important, because newi2pat
4537 can affect nonzero_bits of newpat. */
4538 if (newi2pat)
4539 note_stores (newi2pat, set_nonzero_bits_and_sign_copies, NULL);
4540 note_stores (newpat, set_nonzero_bits_and_sign_copies, NULL);
4541 }
4542
4543 if (undobuf.other_insn != NULL_RTX)
4544 {
4545 if (dump_file)
4546 {
4547 fprintf (dump_file, "modifying other_insn ");
4548 dump_insn_slim (dump_file, undobuf.other_insn);
4549 }
4550 df_insn_rescan (undobuf.other_insn);
4551 }
4552
4553 if (i0 && !(NOTE_P (i0) && (NOTE_KIND (i0) == NOTE_INSN_DELETED)))
4554 {
4555 if (dump_file)
4556 {
4557 fprintf (dump_file, "modifying insn i0 ");
4558 dump_insn_slim (dump_file, i0);
4559 }
4560 df_insn_rescan (i0);
4561 }
4562
4563 if (i1 && !(NOTE_P (i1) && (NOTE_KIND (i1) == NOTE_INSN_DELETED)))
4564 {
4565 if (dump_file)
4566 {
4567 fprintf (dump_file, "modifying insn i1 ");
4568 dump_insn_slim (dump_file, i1);
4569 }
4570 df_insn_rescan (i1);
4571 }
4572
4573 if (i2 && !(NOTE_P (i2) && (NOTE_KIND (i2) == NOTE_INSN_DELETED)))
4574 {
4575 if (dump_file)
4576 {
4577 fprintf (dump_file, "modifying insn i2 ");
4578 dump_insn_slim (dump_file, i2);
4579 }
4580 df_insn_rescan (i2);
4581 }
4582
4583 if (i3 && !(NOTE_P (i3) && (NOTE_KIND (i3) == NOTE_INSN_DELETED)))
4584 {
4585 if (dump_file)
4586 {
4587 fprintf (dump_file, "modifying insn i3 ");
4588 dump_insn_slim (dump_file, i3);
4589 }
4590 df_insn_rescan (i3);
4591 }
4592
4593 /* Set new_direct_jump_p if a new return or simple jump instruction
4594 has been created. Adjust the CFG accordingly. */
4595 if (returnjump_p (i3) || any_uncondjump_p (i3))
4596 {
4597 *new_direct_jump_p = 1;
4598 mark_jump_label (PATTERN (i3), i3, 0);
4599 update_cfg_for_uncondjump (i3);
4600 }
4601
4602 if (undobuf.other_insn != NULL_RTX
4603 && (returnjump_p (undobuf.other_insn)
4604 || any_uncondjump_p (undobuf.other_insn)))
4605 {
4606 *new_direct_jump_p = 1;
4607 update_cfg_for_uncondjump (undobuf.other_insn);
4608 }
4609
4610 /* A noop might also need cleaning up of CFG, if it comes from the
4611 simplification of a jump. */
4612 if (JUMP_P (i3)
4613 && GET_CODE (newpat) == SET
4614 && SET_SRC (newpat) == pc_rtx
4615 && SET_DEST (newpat) == pc_rtx)
4616 {
4617 *new_direct_jump_p = 1;
4618 update_cfg_for_uncondjump (i3);
4619 }
4620
4621 if (undobuf.other_insn != NULL_RTX
4622 && JUMP_P (undobuf.other_insn)
4623 && GET_CODE (PATTERN (undobuf.other_insn)) == SET
4624 && SET_SRC (PATTERN (undobuf.other_insn)) == pc_rtx
4625 && SET_DEST (PATTERN (undobuf.other_insn)) == pc_rtx)
4626 {
4627 *new_direct_jump_p = 1;
4628 update_cfg_for_uncondjump (undobuf.other_insn);
4629 }
4630
4631 combine_successes++;
4632 undo_commit ();
4633
4634 if (added_links_insn
4635 && (newi2pat == 0 || DF_INSN_LUID (added_links_insn) < DF_INSN_LUID (i2))
4636 && DF_INSN_LUID (added_links_insn) < DF_INSN_LUID (i3))
4637 return added_links_insn;
4638 else
4639 return newi2pat ? i2 : i3;
4640 }
4641 \f
4642 /* Get a marker for undoing to the current state. */
4643
4644 static void *
4645 get_undo_marker (void)
4646 {
4647 return undobuf.undos;
4648 }
4649
4650 /* Undo the modifications up to the marker. */
4651
4652 static void
4653 undo_to_marker (void *marker)
4654 {
4655 struct undo *undo, *next;
4656
4657 for (undo = undobuf.undos; undo != marker; undo = next)
4658 {
4659 gcc_assert (undo);
4660
4661 next = undo->next;
4662 switch (undo->kind)
4663 {
4664 case UNDO_RTX:
4665 *undo->where.r = undo->old_contents.r;
4666 break;
4667 case UNDO_INT:
4668 *undo->where.i = undo->old_contents.i;
4669 break;
4670 case UNDO_MODE:
4671 adjust_reg_mode (*undo->where.r, undo->old_contents.m);
4672 break;
4673 case UNDO_LINKS:
4674 *undo->where.l = undo->old_contents.l;
4675 break;
4676 default:
4677 gcc_unreachable ();
4678 }
4679
4680 undo->next = undobuf.frees;
4681 undobuf.frees = undo;
4682 }
4683
4684 undobuf.undos = (struct undo *) marker;
4685 }
4686
4687 /* Undo all the modifications recorded in undobuf. */
4688
4689 static void
4690 undo_all (void)
4691 {
4692 undo_to_marker (0);
4693 }
4694
4695 /* We've committed to accepting the changes we made. Move all
4696 of the undos to the free list. */
4697
4698 static void
4699 undo_commit (void)
4700 {
4701 struct undo *undo, *next;
4702
4703 for (undo = undobuf.undos; undo; undo = next)
4704 {
4705 next = undo->next;
4706 undo->next = undobuf.frees;
4707 undobuf.frees = undo;
4708 }
4709 undobuf.undos = 0;
4710 }
4711 \f
4712 /* Find the innermost point within the rtx at LOC, possibly LOC itself,
4713 where we have an arithmetic expression and return that point. LOC will
4714 be inside INSN.
4715
4716 try_combine will call this function to see if an insn can be split into
4717 two insns. */
4718
4719 static rtx *
4720 find_split_point (rtx *loc, rtx_insn *insn, bool set_src)
4721 {
4722 rtx x = *loc;
4723 enum rtx_code code = GET_CODE (x);
4724 rtx *split;
4725 unsigned HOST_WIDE_INT len = 0;
4726 HOST_WIDE_INT pos = 0;
4727 int unsignedp = 0;
4728 rtx inner = NULL_RTX;
4729
4730 /* First special-case some codes. */
4731 switch (code)
4732 {
4733 case SUBREG:
4734 #ifdef INSN_SCHEDULING
4735 /* If we are making a paradoxical SUBREG invalid, it becomes a split
4736 point. */
4737 if (MEM_P (SUBREG_REG (x)))
4738 return loc;
4739 #endif
4740 return find_split_point (&SUBREG_REG (x), insn, false);
4741
4742 case MEM:
4743 /* If we have (mem (const ..)) or (mem (symbol_ref ...)), split it
4744 using LO_SUM and HIGH. */
4745 if (HAVE_lo_sum && (GET_CODE (XEXP (x, 0)) == CONST
4746 || GET_CODE (XEXP (x, 0)) == SYMBOL_REF))
4747 {
4748 machine_mode address_mode = get_address_mode (x);
4749
4750 SUBST (XEXP (x, 0),
4751 gen_rtx_LO_SUM (address_mode,
4752 gen_rtx_HIGH (address_mode, XEXP (x, 0)),
4753 XEXP (x, 0)));
4754 return &XEXP (XEXP (x, 0), 0);
4755 }
4756
4757 /* If we have a PLUS whose second operand is a constant and the
4758 address is not valid, perhaps will can split it up using
4759 the machine-specific way to split large constants. We use
4760 the first pseudo-reg (one of the virtual regs) as a placeholder;
4761 it will not remain in the result. */
4762 if (GET_CODE (XEXP (x, 0)) == PLUS
4763 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
4764 && ! memory_address_addr_space_p (GET_MODE (x), XEXP (x, 0),
4765 MEM_ADDR_SPACE (x)))
4766 {
4767 rtx reg = regno_reg_rtx[FIRST_PSEUDO_REGISTER];
4768 rtx_insn *seq = combine_split_insns (gen_rtx_SET (reg, XEXP (x, 0)),
4769 subst_insn);
4770
4771 /* This should have produced two insns, each of which sets our
4772 placeholder. If the source of the second is a valid address,
4773 we can make put both sources together and make a split point
4774 in the middle. */
4775
4776 if (seq
4777 && NEXT_INSN (seq) != NULL_RTX
4778 && NEXT_INSN (NEXT_INSN (seq)) == NULL_RTX
4779 && NONJUMP_INSN_P (seq)
4780 && GET_CODE (PATTERN (seq)) == SET
4781 && SET_DEST (PATTERN (seq)) == reg
4782 && ! reg_mentioned_p (reg,
4783 SET_SRC (PATTERN (seq)))
4784 && NONJUMP_INSN_P (NEXT_INSN (seq))
4785 && GET_CODE (PATTERN (NEXT_INSN (seq))) == SET
4786 && SET_DEST (PATTERN (NEXT_INSN (seq))) == reg
4787 && memory_address_addr_space_p
4788 (GET_MODE (x), SET_SRC (PATTERN (NEXT_INSN (seq))),
4789 MEM_ADDR_SPACE (x)))
4790 {
4791 rtx src1 = SET_SRC (PATTERN (seq));
4792 rtx src2 = SET_SRC (PATTERN (NEXT_INSN (seq)));
4793
4794 /* Replace the placeholder in SRC2 with SRC1. If we can
4795 find where in SRC2 it was placed, that can become our
4796 split point and we can replace this address with SRC2.
4797 Just try two obvious places. */
4798
4799 src2 = replace_rtx (src2, reg, src1);
4800 split = 0;
4801 if (XEXP (src2, 0) == src1)
4802 split = &XEXP (src2, 0);
4803 else if (GET_RTX_FORMAT (GET_CODE (XEXP (src2, 0)))[0] == 'e'
4804 && XEXP (XEXP (src2, 0), 0) == src1)
4805 split = &XEXP (XEXP (src2, 0), 0);
4806
4807 if (split)
4808 {
4809 SUBST (XEXP (x, 0), src2);
4810 return split;
4811 }
4812 }
4813
4814 /* If that didn't work, perhaps the first operand is complex and
4815 needs to be computed separately, so make a split point there.
4816 This will occur on machines that just support REG + CONST
4817 and have a constant moved through some previous computation. */
4818
4819 else if (!OBJECT_P (XEXP (XEXP (x, 0), 0))
4820 && ! (GET_CODE (XEXP (XEXP (x, 0), 0)) == SUBREG
4821 && OBJECT_P (SUBREG_REG (XEXP (XEXP (x, 0), 0)))))
4822 return &XEXP (XEXP (x, 0), 0);
4823 }
4824
4825 /* If we have a PLUS whose first operand is complex, try computing it
4826 separately by making a split there. */
4827 if (GET_CODE (XEXP (x, 0)) == PLUS
4828 && ! memory_address_addr_space_p (GET_MODE (x), XEXP (x, 0),
4829 MEM_ADDR_SPACE (x))
4830 && ! OBJECT_P (XEXP (XEXP (x, 0), 0))
4831 && ! (GET_CODE (XEXP (XEXP (x, 0), 0)) == SUBREG
4832 && OBJECT_P (SUBREG_REG (XEXP (XEXP (x, 0), 0)))))
4833 return &XEXP (XEXP (x, 0), 0);
4834 break;
4835
4836 case SET:
4837 /* If SET_DEST is CC0 and SET_SRC is not an operand, a COMPARE, or a
4838 ZERO_EXTRACT, the most likely reason why this doesn't match is that
4839 we need to put the operand into a register. So split at that
4840 point. */
4841
4842 if (SET_DEST (x) == cc0_rtx
4843 && GET_CODE (SET_SRC (x)) != COMPARE
4844 && GET_CODE (SET_SRC (x)) != ZERO_EXTRACT
4845 && !OBJECT_P (SET_SRC (x))
4846 && ! (GET_CODE (SET_SRC (x)) == SUBREG
4847 && OBJECT_P (SUBREG_REG (SET_SRC (x)))))
4848 return &SET_SRC (x);
4849
4850 /* See if we can split SET_SRC as it stands. */
4851 split = find_split_point (&SET_SRC (x), insn, true);
4852 if (split && split != &SET_SRC (x))
4853 return split;
4854
4855 /* See if we can split SET_DEST as it stands. */
4856 split = find_split_point (&SET_DEST (x), insn, false);
4857 if (split && split != &SET_DEST (x))
4858 return split;
4859
4860 /* See if this is a bitfield assignment with everything constant. If
4861 so, this is an IOR of an AND, so split it into that. */
4862 if (GET_CODE (SET_DEST (x)) == ZERO_EXTRACT
4863 && HWI_COMPUTABLE_MODE_P (GET_MODE (XEXP (SET_DEST (x), 0)))
4864 && CONST_INT_P (XEXP (SET_DEST (x), 1))
4865 && CONST_INT_P (XEXP (SET_DEST (x), 2))
4866 && CONST_INT_P (SET_SRC (x))
4867 && ((INTVAL (XEXP (SET_DEST (x), 1))
4868 + INTVAL (XEXP (SET_DEST (x), 2)))
4869 <= GET_MODE_PRECISION (GET_MODE (XEXP (SET_DEST (x), 0))))
4870 && ! side_effects_p (XEXP (SET_DEST (x), 0)))
4871 {
4872 HOST_WIDE_INT pos = INTVAL (XEXP (SET_DEST (x), 2));
4873 unsigned HOST_WIDE_INT len = INTVAL (XEXP (SET_DEST (x), 1));
4874 unsigned HOST_WIDE_INT src = INTVAL (SET_SRC (x));
4875 rtx dest = XEXP (SET_DEST (x), 0);
4876 machine_mode mode = GET_MODE (dest);
4877 unsigned HOST_WIDE_INT mask
4878 = ((unsigned HOST_WIDE_INT) 1 << len) - 1;
4879 rtx or_mask;
4880
4881 if (BITS_BIG_ENDIAN)
4882 pos = GET_MODE_PRECISION (mode) - len - pos;
4883
4884 or_mask = gen_int_mode (src << pos, mode);
4885 if (src == mask)
4886 SUBST (SET_SRC (x),
4887 simplify_gen_binary (IOR, mode, dest, or_mask));
4888 else
4889 {
4890 rtx negmask = gen_int_mode (~(mask << pos), mode);
4891 SUBST (SET_SRC (x),
4892 simplify_gen_binary (IOR, mode,
4893 simplify_gen_binary (AND, mode,
4894 dest, negmask),
4895 or_mask));
4896 }
4897
4898 SUBST (SET_DEST (x), dest);
4899
4900 split = find_split_point (&SET_SRC (x), insn, true);
4901 if (split && split != &SET_SRC (x))
4902 return split;
4903 }
4904
4905 /* Otherwise, see if this is an operation that we can split into two.
4906 If so, try to split that. */
4907 code = GET_CODE (SET_SRC (x));
4908
4909 switch (code)
4910 {
4911 case AND:
4912 /* If we are AND'ing with a large constant that is only a single
4913 bit and the result is only being used in a context where we
4914 need to know if it is zero or nonzero, replace it with a bit
4915 extraction. This will avoid the large constant, which might
4916 have taken more than one insn to make. If the constant were
4917 not a valid argument to the AND but took only one insn to make,
4918 this is no worse, but if it took more than one insn, it will
4919 be better. */
4920
4921 if (CONST_INT_P (XEXP (SET_SRC (x), 1))
4922 && REG_P (XEXP (SET_SRC (x), 0))
4923 && (pos = exact_log2 (UINTVAL (XEXP (SET_SRC (x), 1)))) >= 7
4924 && REG_P (SET_DEST (x))
4925 && (split = find_single_use (SET_DEST (x), insn, NULL)) != 0
4926 && (GET_CODE (*split) == EQ || GET_CODE (*split) == NE)
4927 && XEXP (*split, 0) == SET_DEST (x)
4928 && XEXP (*split, 1) == const0_rtx)
4929 {
4930 rtx extraction = make_extraction (GET_MODE (SET_DEST (x)),
4931 XEXP (SET_SRC (x), 0),
4932 pos, NULL_RTX, 1, 1, 0, 0);
4933 if (extraction != 0)
4934 {
4935 SUBST (SET_SRC (x), extraction);
4936 return find_split_point (loc, insn, false);
4937 }
4938 }
4939 break;
4940
4941 case NE:
4942 /* If STORE_FLAG_VALUE is -1, this is (NE X 0) and only one bit of X
4943 is known to be on, this can be converted into a NEG of a shift. */
4944 if (STORE_FLAG_VALUE == -1 && XEXP (SET_SRC (x), 1) == const0_rtx
4945 && GET_MODE (SET_SRC (x)) == GET_MODE (XEXP (SET_SRC (x), 0))
4946 && 1 <= (pos = exact_log2
4947 (nonzero_bits (XEXP (SET_SRC (x), 0),
4948 GET_MODE (XEXP (SET_SRC (x), 0))))))
4949 {
4950 machine_mode mode = GET_MODE (XEXP (SET_SRC (x), 0));
4951
4952 SUBST (SET_SRC (x),
4953 gen_rtx_NEG (mode,
4954 gen_rtx_LSHIFTRT (mode,
4955 XEXP (SET_SRC (x), 0),
4956 GEN_INT (pos))));
4957
4958 split = find_split_point (&SET_SRC (x), insn, true);
4959 if (split && split != &SET_SRC (x))
4960 return split;
4961 }
4962 break;
4963
4964 case SIGN_EXTEND:
4965 inner = XEXP (SET_SRC (x), 0);
4966
4967 /* We can't optimize if either mode is a partial integer
4968 mode as we don't know how many bits are significant
4969 in those modes. */
4970 if (GET_MODE_CLASS (GET_MODE (inner)) == MODE_PARTIAL_INT
4971 || GET_MODE_CLASS (GET_MODE (SET_SRC (x))) == MODE_PARTIAL_INT)
4972 break;
4973
4974 pos = 0;
4975 len = GET_MODE_PRECISION (GET_MODE (inner));
4976 unsignedp = 0;
4977 break;
4978
4979 case SIGN_EXTRACT:
4980 case ZERO_EXTRACT:
4981 if (CONST_INT_P (XEXP (SET_SRC (x), 1))
4982 && CONST_INT_P (XEXP (SET_SRC (x), 2)))
4983 {
4984 inner = XEXP (SET_SRC (x), 0);
4985 len = INTVAL (XEXP (SET_SRC (x), 1));
4986 pos = INTVAL (XEXP (SET_SRC (x), 2));
4987
4988 if (BITS_BIG_ENDIAN)
4989 pos = GET_MODE_PRECISION (GET_MODE (inner)) - len - pos;
4990 unsignedp = (code == ZERO_EXTRACT);
4991 }
4992 break;
4993
4994 default:
4995 break;
4996 }
4997
4998 if (len && pos >= 0
4999 && pos + len <= GET_MODE_PRECISION (GET_MODE (inner)))
5000 {
5001 machine_mode mode = GET_MODE (SET_SRC (x));
5002
5003 /* For unsigned, we have a choice of a shift followed by an
5004 AND or two shifts. Use two shifts for field sizes where the
5005 constant might be too large. We assume here that we can
5006 always at least get 8-bit constants in an AND insn, which is
5007 true for every current RISC. */
5008
5009 if (unsignedp && len <= 8)
5010 {
5011 unsigned HOST_WIDE_INT mask
5012 = ((unsigned HOST_WIDE_INT) 1 << len) - 1;
5013 SUBST (SET_SRC (x),
5014 gen_rtx_AND (mode,
5015 gen_rtx_LSHIFTRT
5016 (mode, gen_lowpart (mode, inner),
5017 GEN_INT (pos)),
5018 gen_int_mode (mask, mode)));
5019
5020 split = find_split_point (&SET_SRC (x), insn, true);
5021 if (split && split != &SET_SRC (x))
5022 return split;
5023 }
5024 else
5025 {
5026 SUBST (SET_SRC (x),
5027 gen_rtx_fmt_ee
5028 (unsignedp ? LSHIFTRT : ASHIFTRT, mode,
5029 gen_rtx_ASHIFT (mode,
5030 gen_lowpart (mode, inner),
5031 GEN_INT (GET_MODE_PRECISION (mode)
5032 - len - pos)),
5033 GEN_INT (GET_MODE_PRECISION (mode) - len)));
5034
5035 split = find_split_point (&SET_SRC (x), insn, true);
5036 if (split && split != &SET_SRC (x))
5037 return split;
5038 }
5039 }
5040
5041 /* See if this is a simple operation with a constant as the second
5042 operand. It might be that this constant is out of range and hence
5043 could be used as a split point. */
5044 if (BINARY_P (SET_SRC (x))
5045 && CONSTANT_P (XEXP (SET_SRC (x), 1))
5046 && (OBJECT_P (XEXP (SET_SRC (x), 0))
5047 || (GET_CODE (XEXP (SET_SRC (x), 0)) == SUBREG
5048 && OBJECT_P (SUBREG_REG (XEXP (SET_SRC (x), 0))))))
5049 return &XEXP (SET_SRC (x), 1);
5050
5051 /* Finally, see if this is a simple operation with its first operand
5052 not in a register. The operation might require this operand in a
5053 register, so return it as a split point. We can always do this
5054 because if the first operand were another operation, we would have
5055 already found it as a split point. */
5056 if ((BINARY_P (SET_SRC (x)) || UNARY_P (SET_SRC (x)))
5057 && ! register_operand (XEXP (SET_SRC (x), 0), VOIDmode))
5058 return &XEXP (SET_SRC (x), 0);
5059
5060 return 0;
5061
5062 case AND:
5063 case IOR:
5064 /* We write NOR as (and (not A) (not B)), but if we don't have a NOR,
5065 it is better to write this as (not (ior A B)) so we can split it.
5066 Similarly for IOR. */
5067 if (GET_CODE (XEXP (x, 0)) == NOT && GET_CODE (XEXP (x, 1)) == NOT)
5068 {
5069 SUBST (*loc,
5070 gen_rtx_NOT (GET_MODE (x),
5071 gen_rtx_fmt_ee (code == IOR ? AND : IOR,
5072 GET_MODE (x),
5073 XEXP (XEXP (x, 0), 0),
5074 XEXP (XEXP (x, 1), 0))));
5075 return find_split_point (loc, insn, set_src);
5076 }
5077
5078 /* Many RISC machines have a large set of logical insns. If the
5079 second operand is a NOT, put it first so we will try to split the
5080 other operand first. */
5081 if (GET_CODE (XEXP (x, 1)) == NOT)
5082 {
5083 rtx tem = XEXP (x, 0);
5084 SUBST (XEXP (x, 0), XEXP (x, 1));
5085 SUBST (XEXP (x, 1), tem);
5086 }
5087 break;
5088
5089 case PLUS:
5090 case MINUS:
5091 /* Canonicalization can produce (minus A (mult B C)), where C is a
5092 constant. It may be better to try splitting (plus (mult B -C) A)
5093 instead if this isn't a multiply by a power of two. */
5094 if (set_src && code == MINUS && GET_CODE (XEXP (x, 1)) == MULT
5095 && GET_CODE (XEXP (XEXP (x, 1), 1)) == CONST_INT
5096 && exact_log2 (INTVAL (XEXP (XEXP (x, 1), 1))) < 0)
5097 {
5098 machine_mode mode = GET_MODE (x);
5099 unsigned HOST_WIDE_INT this_int = INTVAL (XEXP (XEXP (x, 1), 1));
5100 HOST_WIDE_INT other_int = trunc_int_for_mode (-this_int, mode);
5101 SUBST (*loc, gen_rtx_PLUS (mode,
5102 gen_rtx_MULT (mode,
5103 XEXP (XEXP (x, 1), 0),
5104 gen_int_mode (other_int,
5105 mode)),
5106 XEXP (x, 0)));
5107 return find_split_point (loc, insn, set_src);
5108 }
5109
5110 /* Split at a multiply-accumulate instruction. However if this is
5111 the SET_SRC, we likely do not have such an instruction and it's
5112 worthless to try this split. */
5113 if (!set_src
5114 && (GET_CODE (XEXP (x, 0)) == MULT
5115 || (GET_CODE (XEXP (x, 0)) == ASHIFT
5116 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT)))
5117 return loc;
5118
5119 default:
5120 break;
5121 }
5122
5123 /* Otherwise, select our actions depending on our rtx class. */
5124 switch (GET_RTX_CLASS (code))
5125 {
5126 case RTX_BITFIELD_OPS: /* This is ZERO_EXTRACT and SIGN_EXTRACT. */
5127 case RTX_TERNARY:
5128 split = find_split_point (&XEXP (x, 2), insn, false);
5129 if (split)
5130 return split;
5131 /* ... fall through ... */
5132 case RTX_BIN_ARITH:
5133 case RTX_COMM_ARITH:
5134 case RTX_COMPARE:
5135 case RTX_COMM_COMPARE:
5136 split = find_split_point (&XEXP (x, 1), insn, false);
5137 if (split)
5138 return split;
5139 /* ... fall through ... */
5140 case RTX_UNARY:
5141 /* Some machines have (and (shift ...) ...) insns. If X is not
5142 an AND, but XEXP (X, 0) is, use it as our split point. */
5143 if (GET_CODE (x) != AND && GET_CODE (XEXP (x, 0)) == AND)
5144 return &XEXP (x, 0);
5145
5146 split = find_split_point (&XEXP (x, 0), insn, false);
5147 if (split)
5148 return split;
5149 return loc;
5150
5151 default:
5152 /* Otherwise, we don't have a split point. */
5153 return 0;
5154 }
5155 }
5156 \f
5157 /* Throughout X, replace FROM with TO, and return the result.
5158 The result is TO if X is FROM;
5159 otherwise the result is X, but its contents may have been modified.
5160 If they were modified, a record was made in undobuf so that
5161 undo_all will (among other things) return X to its original state.
5162
5163 If the number of changes necessary is too much to record to undo,
5164 the excess changes are not made, so the result is invalid.
5165 The changes already made can still be undone.
5166 undobuf.num_undo is incremented for such changes, so by testing that
5167 the caller can tell whether the result is valid.
5168
5169 `n_occurrences' is incremented each time FROM is replaced.
5170
5171 IN_DEST is nonzero if we are processing the SET_DEST of a SET.
5172
5173 IN_COND is nonzero if we are at the top level of a condition.
5174
5175 UNIQUE_COPY is nonzero if each substitution must be unique. We do this
5176 by copying if `n_occurrences' is nonzero. */
5177
5178 static rtx
5179 subst (rtx x, rtx from, rtx to, int in_dest, int in_cond, int unique_copy)
5180 {
5181 enum rtx_code code = GET_CODE (x);
5182 machine_mode op0_mode = VOIDmode;
5183 const char *fmt;
5184 int len, i;
5185 rtx new_rtx;
5186
5187 /* Two expressions are equal if they are identical copies of a shared
5188 RTX or if they are both registers with the same register number
5189 and mode. */
5190
5191 #define COMBINE_RTX_EQUAL_P(X,Y) \
5192 ((X) == (Y) \
5193 || (REG_P (X) && REG_P (Y) \
5194 && REGNO (X) == REGNO (Y) && GET_MODE (X) == GET_MODE (Y)))
5195
5196 /* Do not substitute into clobbers of regs -- this will never result in
5197 valid RTL. */
5198 if (GET_CODE (x) == CLOBBER && REG_P (XEXP (x, 0)))
5199 return x;
5200
5201 if (! in_dest && COMBINE_RTX_EQUAL_P (x, from))
5202 {
5203 n_occurrences++;
5204 return (unique_copy && n_occurrences > 1 ? copy_rtx (to) : to);
5205 }
5206
5207 /* If X and FROM are the same register but different modes, they
5208 will not have been seen as equal above. However, the log links code
5209 will make a LOG_LINKS entry for that case. If we do nothing, we
5210 will try to rerecognize our original insn and, when it succeeds,
5211 we will delete the feeding insn, which is incorrect.
5212
5213 So force this insn not to match in this (rare) case. */
5214 if (! in_dest && code == REG && REG_P (from)
5215 && reg_overlap_mentioned_p (x, from))
5216 return gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
5217
5218 /* If this is an object, we are done unless it is a MEM or LO_SUM, both
5219 of which may contain things that can be combined. */
5220 if (code != MEM && code != LO_SUM && OBJECT_P (x))
5221 return x;
5222
5223 /* It is possible to have a subexpression appear twice in the insn.
5224 Suppose that FROM is a register that appears within TO.
5225 Then, after that subexpression has been scanned once by `subst',
5226 the second time it is scanned, TO may be found. If we were
5227 to scan TO here, we would find FROM within it and create a
5228 self-referent rtl structure which is completely wrong. */
5229 if (COMBINE_RTX_EQUAL_P (x, to))
5230 return to;
5231
5232 /* Parallel asm_operands need special attention because all of the
5233 inputs are shared across the arms. Furthermore, unsharing the
5234 rtl results in recognition failures. Failure to handle this case
5235 specially can result in circular rtl.
5236
5237 Solve this by doing a normal pass across the first entry of the
5238 parallel, and only processing the SET_DESTs of the subsequent
5239 entries. Ug. */
5240
5241 if (code == PARALLEL
5242 && GET_CODE (XVECEXP (x, 0, 0)) == SET
5243 && GET_CODE (SET_SRC (XVECEXP (x, 0, 0))) == ASM_OPERANDS)
5244 {
5245 new_rtx = subst (XVECEXP (x, 0, 0), from, to, 0, 0, unique_copy);
5246
5247 /* If this substitution failed, this whole thing fails. */
5248 if (GET_CODE (new_rtx) == CLOBBER
5249 && XEXP (new_rtx, 0) == const0_rtx)
5250 return new_rtx;
5251
5252 SUBST (XVECEXP (x, 0, 0), new_rtx);
5253
5254 for (i = XVECLEN (x, 0) - 1; i >= 1; i--)
5255 {
5256 rtx dest = SET_DEST (XVECEXP (x, 0, i));
5257
5258 if (!REG_P (dest)
5259 && GET_CODE (dest) != CC0
5260 && GET_CODE (dest) != PC)
5261 {
5262 new_rtx = subst (dest, from, to, 0, 0, unique_copy);
5263
5264 /* If this substitution failed, this whole thing fails. */
5265 if (GET_CODE (new_rtx) == CLOBBER
5266 && XEXP (new_rtx, 0) == const0_rtx)
5267 return new_rtx;
5268
5269 SUBST (SET_DEST (XVECEXP (x, 0, i)), new_rtx);
5270 }
5271 }
5272 }
5273 else
5274 {
5275 len = GET_RTX_LENGTH (code);
5276 fmt = GET_RTX_FORMAT (code);
5277
5278 /* We don't need to process a SET_DEST that is a register, CC0,
5279 or PC, so set up to skip this common case. All other cases
5280 where we want to suppress replacing something inside a
5281 SET_SRC are handled via the IN_DEST operand. */
5282 if (code == SET
5283 && (REG_P (SET_DEST (x))
5284 || GET_CODE (SET_DEST (x)) == CC0
5285 || GET_CODE (SET_DEST (x)) == PC))
5286 fmt = "ie";
5287
5288 /* Trying to simplify the operands of a widening MULT is not likely
5289 to create RTL matching a machine insn. */
5290 if (code == MULT
5291 && (GET_CODE (XEXP (x, 0)) == ZERO_EXTEND
5292 || GET_CODE (XEXP (x, 0)) == SIGN_EXTEND)
5293 && (GET_CODE (XEXP (x, 1)) == ZERO_EXTEND
5294 || GET_CODE (XEXP (x, 1)) == SIGN_EXTEND)
5295 && REG_P (XEXP (XEXP (x, 0), 0))
5296 && REG_P (XEXP (XEXP (x, 1), 0))
5297 && from == to)
5298 return x;
5299
5300
5301 /* Get the mode of operand 0 in case X is now a SIGN_EXTEND of a
5302 constant. */
5303 if (fmt[0] == 'e')
5304 op0_mode = GET_MODE (XEXP (x, 0));
5305
5306 for (i = 0; i < len; i++)
5307 {
5308 if (fmt[i] == 'E')
5309 {
5310 int j;
5311 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
5312 {
5313 if (COMBINE_RTX_EQUAL_P (XVECEXP (x, i, j), from))
5314 {
5315 new_rtx = (unique_copy && n_occurrences
5316 ? copy_rtx (to) : to);
5317 n_occurrences++;
5318 }
5319 else
5320 {
5321 new_rtx = subst (XVECEXP (x, i, j), from, to, 0, 0,
5322 unique_copy);
5323
5324 /* If this substitution failed, this whole thing
5325 fails. */
5326 if (GET_CODE (new_rtx) == CLOBBER
5327 && XEXP (new_rtx, 0) == const0_rtx)
5328 return new_rtx;
5329 }
5330
5331 SUBST (XVECEXP (x, i, j), new_rtx);
5332 }
5333 }
5334 else if (fmt[i] == 'e')
5335 {
5336 /* If this is a register being set, ignore it. */
5337 new_rtx = XEXP (x, i);
5338 if (in_dest
5339 && i == 0
5340 && (((code == SUBREG || code == ZERO_EXTRACT)
5341 && REG_P (new_rtx))
5342 || code == STRICT_LOW_PART))
5343 ;
5344
5345 else if (COMBINE_RTX_EQUAL_P (XEXP (x, i), from))
5346 {
5347 /* In general, don't install a subreg involving two
5348 modes not tieable. It can worsen register
5349 allocation, and can even make invalid reload
5350 insns, since the reg inside may need to be copied
5351 from in the outside mode, and that may be invalid
5352 if it is an fp reg copied in integer mode.
5353
5354 We allow two exceptions to this: It is valid if
5355 it is inside another SUBREG and the mode of that
5356 SUBREG and the mode of the inside of TO is
5357 tieable and it is valid if X is a SET that copies
5358 FROM to CC0. */
5359
5360 if (GET_CODE (to) == SUBREG
5361 && ! MODES_TIEABLE_P (GET_MODE (to),
5362 GET_MODE (SUBREG_REG (to)))
5363 && ! (code == SUBREG
5364 && MODES_TIEABLE_P (GET_MODE (x),
5365 GET_MODE (SUBREG_REG (to))))
5366 && (!HAVE_cc0
5367 || (! (code == SET
5368 && i == 1
5369 && XEXP (x, 0) == cc0_rtx))))
5370 return gen_rtx_CLOBBER (VOIDmode, const0_rtx);
5371
5372 if (code == SUBREG
5373 && REG_P (to)
5374 && REGNO (to) < FIRST_PSEUDO_REGISTER
5375 && simplify_subreg_regno (REGNO (to), GET_MODE (to),
5376 SUBREG_BYTE (x),
5377 GET_MODE (x)) < 0)
5378 return gen_rtx_CLOBBER (VOIDmode, const0_rtx);
5379
5380 new_rtx = (unique_copy && n_occurrences ? copy_rtx (to) : to);
5381 n_occurrences++;
5382 }
5383 else
5384 /* If we are in a SET_DEST, suppress most cases unless we
5385 have gone inside a MEM, in which case we want to
5386 simplify the address. We assume here that things that
5387 are actually part of the destination have their inner
5388 parts in the first expression. This is true for SUBREG,
5389 STRICT_LOW_PART, and ZERO_EXTRACT, which are the only
5390 things aside from REG and MEM that should appear in a
5391 SET_DEST. */
5392 new_rtx = subst (XEXP (x, i), from, to,
5393 (((in_dest
5394 && (code == SUBREG || code == STRICT_LOW_PART
5395 || code == ZERO_EXTRACT))
5396 || code == SET)
5397 && i == 0),
5398 code == IF_THEN_ELSE && i == 0,
5399 unique_copy);
5400
5401 /* If we found that we will have to reject this combination,
5402 indicate that by returning the CLOBBER ourselves, rather than
5403 an expression containing it. This will speed things up as
5404 well as prevent accidents where two CLOBBERs are considered
5405 to be equal, thus producing an incorrect simplification. */
5406
5407 if (GET_CODE (new_rtx) == CLOBBER && XEXP (new_rtx, 0) == const0_rtx)
5408 return new_rtx;
5409
5410 if (GET_CODE (x) == SUBREG && CONST_SCALAR_INT_P (new_rtx))
5411 {
5412 machine_mode mode = GET_MODE (x);
5413
5414 x = simplify_subreg (GET_MODE (x), new_rtx,
5415 GET_MODE (SUBREG_REG (x)),
5416 SUBREG_BYTE (x));
5417 if (! x)
5418 x = gen_rtx_CLOBBER (mode, const0_rtx);
5419 }
5420 else if (CONST_SCALAR_INT_P (new_rtx)
5421 && GET_CODE (x) == ZERO_EXTEND)
5422 {
5423 x = simplify_unary_operation (ZERO_EXTEND, GET_MODE (x),
5424 new_rtx, GET_MODE (XEXP (x, 0)));
5425 gcc_assert (x);
5426 }
5427 else
5428 SUBST (XEXP (x, i), new_rtx);
5429 }
5430 }
5431 }
5432
5433 /* Check if we are loading something from the constant pool via float
5434 extension; in this case we would undo compress_float_constant
5435 optimization and degenerate constant load to an immediate value. */
5436 if (GET_CODE (x) == FLOAT_EXTEND
5437 && MEM_P (XEXP (x, 0))
5438 && MEM_READONLY_P (XEXP (x, 0)))
5439 {
5440 rtx tmp = avoid_constant_pool_reference (x);
5441 if (x != tmp)
5442 return x;
5443 }
5444
5445 /* Try to simplify X. If the simplification changed the code, it is likely
5446 that further simplification will help, so loop, but limit the number
5447 of repetitions that will be performed. */
5448
5449 for (i = 0; i < 4; i++)
5450 {
5451 /* If X is sufficiently simple, don't bother trying to do anything
5452 with it. */
5453 if (code != CONST_INT && code != REG && code != CLOBBER)
5454 x = combine_simplify_rtx (x, op0_mode, in_dest, in_cond);
5455
5456 if (GET_CODE (x) == code)
5457 break;
5458
5459 code = GET_CODE (x);
5460
5461 /* We no longer know the original mode of operand 0 since we
5462 have changed the form of X) */
5463 op0_mode = VOIDmode;
5464 }
5465
5466 return x;
5467 }
5468 \f
5469 /* Simplify X, a piece of RTL. We just operate on the expression at the
5470 outer level; call `subst' to simplify recursively. Return the new
5471 expression.
5472
5473 OP0_MODE is the original mode of XEXP (x, 0). IN_DEST is nonzero
5474 if we are inside a SET_DEST. IN_COND is nonzero if we are at the top level
5475 of a condition. */
5476
5477 static rtx
5478 combine_simplify_rtx (rtx x, machine_mode op0_mode, int in_dest,
5479 int in_cond)
5480 {
5481 enum rtx_code code = GET_CODE (x);
5482 machine_mode mode = GET_MODE (x);
5483 rtx temp;
5484 int i;
5485
5486 /* If this is a commutative operation, put a constant last and a complex
5487 expression first. We don't need to do this for comparisons here. */
5488 if (COMMUTATIVE_ARITH_P (x)
5489 && swap_commutative_operands_p (XEXP (x, 0), XEXP (x, 1)))
5490 {
5491 temp = XEXP (x, 0);
5492 SUBST (XEXP (x, 0), XEXP (x, 1));
5493 SUBST (XEXP (x, 1), temp);
5494 }
5495
5496 /* Try to fold this expression in case we have constants that weren't
5497 present before. */
5498 temp = 0;
5499 switch (GET_RTX_CLASS (code))
5500 {
5501 case RTX_UNARY:
5502 if (op0_mode == VOIDmode)
5503 op0_mode = GET_MODE (XEXP (x, 0));
5504 temp = simplify_unary_operation (code, mode, XEXP (x, 0), op0_mode);
5505 break;
5506 case RTX_COMPARE:
5507 case RTX_COMM_COMPARE:
5508 {
5509 machine_mode cmp_mode = GET_MODE (XEXP (x, 0));
5510 if (cmp_mode == VOIDmode)
5511 {
5512 cmp_mode = GET_MODE (XEXP (x, 1));
5513 if (cmp_mode == VOIDmode)
5514 cmp_mode = op0_mode;
5515 }
5516 temp = simplify_relational_operation (code, mode, cmp_mode,
5517 XEXP (x, 0), XEXP (x, 1));
5518 }
5519 break;
5520 case RTX_COMM_ARITH:
5521 case RTX_BIN_ARITH:
5522 temp = simplify_binary_operation (code, mode, XEXP (x, 0), XEXP (x, 1));
5523 break;
5524 case RTX_BITFIELD_OPS:
5525 case RTX_TERNARY:
5526 temp = simplify_ternary_operation (code, mode, op0_mode, XEXP (x, 0),
5527 XEXP (x, 1), XEXP (x, 2));
5528 break;
5529 default:
5530 break;
5531 }
5532
5533 if (temp)
5534 {
5535 x = temp;
5536 code = GET_CODE (temp);
5537 op0_mode = VOIDmode;
5538 mode = GET_MODE (temp);
5539 }
5540
5541 /* If this is a simple operation applied to an IF_THEN_ELSE, try
5542 applying it to the arms of the IF_THEN_ELSE. This often simplifies
5543 things. Check for cases where both arms are testing the same
5544 condition.
5545
5546 Don't do anything if all operands are very simple. */
5547
5548 if ((BINARY_P (x)
5549 && ((!OBJECT_P (XEXP (x, 0))
5550 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
5551 && OBJECT_P (SUBREG_REG (XEXP (x, 0)))))
5552 || (!OBJECT_P (XEXP (x, 1))
5553 && ! (GET_CODE (XEXP (x, 1)) == SUBREG
5554 && OBJECT_P (SUBREG_REG (XEXP (x, 1)))))))
5555 || (UNARY_P (x)
5556 && (!OBJECT_P (XEXP (x, 0))
5557 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
5558 && OBJECT_P (SUBREG_REG (XEXP (x, 0)))))))
5559 {
5560 rtx cond, true_rtx, false_rtx;
5561
5562 cond = if_then_else_cond (x, &true_rtx, &false_rtx);
5563 if (cond != 0
5564 /* If everything is a comparison, what we have is highly unlikely
5565 to be simpler, so don't use it. */
5566 && ! (COMPARISON_P (x)
5567 && (COMPARISON_P (true_rtx) || COMPARISON_P (false_rtx))))
5568 {
5569 rtx cop1 = const0_rtx;
5570 enum rtx_code cond_code = simplify_comparison (NE, &cond, &cop1);
5571
5572 if (cond_code == NE && COMPARISON_P (cond))
5573 return x;
5574
5575 /* Simplify the alternative arms; this may collapse the true and
5576 false arms to store-flag values. Be careful to use copy_rtx
5577 here since true_rtx or false_rtx might share RTL with x as a
5578 result of the if_then_else_cond call above. */
5579 true_rtx = subst (copy_rtx (true_rtx), pc_rtx, pc_rtx, 0, 0, 0);
5580 false_rtx = subst (copy_rtx (false_rtx), pc_rtx, pc_rtx, 0, 0, 0);
5581
5582 /* If true_rtx and false_rtx are not general_operands, an if_then_else
5583 is unlikely to be simpler. */
5584 if (general_operand (true_rtx, VOIDmode)
5585 && general_operand (false_rtx, VOIDmode))
5586 {
5587 enum rtx_code reversed;
5588
5589 /* Restarting if we generate a store-flag expression will cause
5590 us to loop. Just drop through in this case. */
5591
5592 /* If the result values are STORE_FLAG_VALUE and zero, we can
5593 just make the comparison operation. */
5594 if (true_rtx == const_true_rtx && false_rtx == const0_rtx)
5595 x = simplify_gen_relational (cond_code, mode, VOIDmode,
5596 cond, cop1);
5597 else if (true_rtx == const0_rtx && false_rtx == const_true_rtx
5598 && ((reversed = reversed_comparison_code_parts
5599 (cond_code, cond, cop1, NULL))
5600 != UNKNOWN))
5601 x = simplify_gen_relational (reversed, mode, VOIDmode,
5602 cond, cop1);
5603
5604 /* Likewise, we can make the negate of a comparison operation
5605 if the result values are - STORE_FLAG_VALUE and zero. */
5606 else if (CONST_INT_P (true_rtx)
5607 && INTVAL (true_rtx) == - STORE_FLAG_VALUE
5608 && false_rtx == const0_rtx)
5609 x = simplify_gen_unary (NEG, mode,
5610 simplify_gen_relational (cond_code,
5611 mode, VOIDmode,
5612 cond, cop1),
5613 mode);
5614 else if (CONST_INT_P (false_rtx)
5615 && INTVAL (false_rtx) == - STORE_FLAG_VALUE
5616 && true_rtx == const0_rtx
5617 && ((reversed = reversed_comparison_code_parts
5618 (cond_code, cond, cop1, NULL))
5619 != UNKNOWN))
5620 x = simplify_gen_unary (NEG, mode,
5621 simplify_gen_relational (reversed,
5622 mode, VOIDmode,
5623 cond, cop1),
5624 mode);
5625 else
5626 return gen_rtx_IF_THEN_ELSE (mode,
5627 simplify_gen_relational (cond_code,
5628 mode,
5629 VOIDmode,
5630 cond,
5631 cop1),
5632 true_rtx, false_rtx);
5633
5634 code = GET_CODE (x);
5635 op0_mode = VOIDmode;
5636 }
5637 }
5638 }
5639
5640 /* First see if we can apply the inverse distributive law. */
5641 if (code == PLUS || code == MINUS
5642 || code == AND || code == IOR || code == XOR)
5643 {
5644 x = apply_distributive_law (x);
5645 code = GET_CODE (x);
5646 op0_mode = VOIDmode;
5647 }
5648
5649 /* If CODE is an associative operation not otherwise handled, see if we
5650 can associate some operands. This can win if they are constants or
5651 if they are logically related (i.e. (a & b) & a). */
5652 if ((code == PLUS || code == MINUS || code == MULT || code == DIV
5653 || code == AND || code == IOR || code == XOR
5654 || code == SMAX || code == SMIN || code == UMAX || code == UMIN)
5655 && ((INTEGRAL_MODE_P (mode) && code != DIV)
5656 || (flag_associative_math && FLOAT_MODE_P (mode))))
5657 {
5658 if (GET_CODE (XEXP (x, 0)) == code)
5659 {
5660 rtx other = XEXP (XEXP (x, 0), 0);
5661 rtx inner_op0 = XEXP (XEXP (x, 0), 1);
5662 rtx inner_op1 = XEXP (x, 1);
5663 rtx inner;
5664
5665 /* Make sure we pass the constant operand if any as the second
5666 one if this is a commutative operation. */
5667 if (CONSTANT_P (inner_op0) && COMMUTATIVE_ARITH_P (x))
5668 std::swap (inner_op0, inner_op1);
5669 inner = simplify_binary_operation (code == MINUS ? PLUS
5670 : code == DIV ? MULT
5671 : code,
5672 mode, inner_op0, inner_op1);
5673
5674 /* For commutative operations, try the other pair if that one
5675 didn't simplify. */
5676 if (inner == 0 && COMMUTATIVE_ARITH_P (x))
5677 {
5678 other = XEXP (XEXP (x, 0), 1);
5679 inner = simplify_binary_operation (code, mode,
5680 XEXP (XEXP (x, 0), 0),
5681 XEXP (x, 1));
5682 }
5683
5684 if (inner)
5685 return simplify_gen_binary (code, mode, other, inner);
5686 }
5687 }
5688
5689 /* A little bit of algebraic simplification here. */
5690 switch (code)
5691 {
5692 case MEM:
5693 /* Ensure that our address has any ASHIFTs converted to MULT in case
5694 address-recognizing predicates are called later. */
5695 temp = make_compound_operation (XEXP (x, 0), MEM);
5696 SUBST (XEXP (x, 0), temp);
5697 break;
5698
5699 case SUBREG:
5700 if (op0_mode == VOIDmode)
5701 op0_mode = GET_MODE (SUBREG_REG (x));
5702
5703 /* See if this can be moved to simplify_subreg. */
5704 if (CONSTANT_P (SUBREG_REG (x))
5705 && subreg_lowpart_offset (mode, op0_mode) == SUBREG_BYTE (x)
5706 /* Don't call gen_lowpart if the inner mode
5707 is VOIDmode and we cannot simplify it, as SUBREG without
5708 inner mode is invalid. */
5709 && (GET_MODE (SUBREG_REG (x)) != VOIDmode
5710 || gen_lowpart_common (mode, SUBREG_REG (x))))
5711 return gen_lowpart (mode, SUBREG_REG (x));
5712
5713 if (GET_MODE_CLASS (GET_MODE (SUBREG_REG (x))) == MODE_CC)
5714 break;
5715 {
5716 rtx temp;
5717 temp = simplify_subreg (mode, SUBREG_REG (x), op0_mode,
5718 SUBREG_BYTE (x));
5719 if (temp)
5720 return temp;
5721
5722 /* If op is known to have all lower bits zero, the result is zero. */
5723 if (!in_dest
5724 && SCALAR_INT_MODE_P (mode)
5725 && SCALAR_INT_MODE_P (op0_mode)
5726 && GET_MODE_PRECISION (mode) < GET_MODE_PRECISION (op0_mode)
5727 && subreg_lowpart_offset (mode, op0_mode) == SUBREG_BYTE (x)
5728 && HWI_COMPUTABLE_MODE_P (op0_mode)
5729 && (nonzero_bits (SUBREG_REG (x), op0_mode)
5730 & GET_MODE_MASK (mode)) == 0)
5731 return CONST0_RTX (mode);
5732 }
5733
5734 /* Don't change the mode of the MEM if that would change the meaning
5735 of the address. */
5736 if (MEM_P (SUBREG_REG (x))
5737 && (MEM_VOLATILE_P (SUBREG_REG (x))
5738 || mode_dependent_address_p (XEXP (SUBREG_REG (x), 0),
5739 MEM_ADDR_SPACE (SUBREG_REG (x)))))
5740 return gen_rtx_CLOBBER (mode, const0_rtx);
5741
5742 /* Note that we cannot do any narrowing for non-constants since
5743 we might have been counting on using the fact that some bits were
5744 zero. We now do this in the SET. */
5745
5746 break;
5747
5748 case NEG:
5749 temp = expand_compound_operation (XEXP (x, 0));
5750
5751 /* For C equal to the width of MODE minus 1, (neg (ashiftrt X C)) can be
5752 replaced by (lshiftrt X C). This will convert
5753 (neg (sign_extract X 1 Y)) to (zero_extract X 1 Y). */
5754
5755 if (GET_CODE (temp) == ASHIFTRT
5756 && CONST_INT_P (XEXP (temp, 1))
5757 && INTVAL (XEXP (temp, 1)) == GET_MODE_PRECISION (mode) - 1)
5758 return simplify_shift_const (NULL_RTX, LSHIFTRT, mode, XEXP (temp, 0),
5759 INTVAL (XEXP (temp, 1)));
5760
5761 /* If X has only a single bit that might be nonzero, say, bit I, convert
5762 (neg X) to (ashiftrt (ashift X C-I) C-I) where C is the bitsize of
5763 MODE minus 1. This will convert (neg (zero_extract X 1 Y)) to
5764 (sign_extract X 1 Y). But only do this if TEMP isn't a register
5765 or a SUBREG of one since we'd be making the expression more
5766 complex if it was just a register. */
5767
5768 if (!REG_P (temp)
5769 && ! (GET_CODE (temp) == SUBREG
5770 && REG_P (SUBREG_REG (temp)))
5771 && (i = exact_log2 (nonzero_bits (temp, mode))) >= 0)
5772 {
5773 rtx temp1 = simplify_shift_const
5774 (NULL_RTX, ASHIFTRT, mode,
5775 simplify_shift_const (NULL_RTX, ASHIFT, mode, temp,
5776 GET_MODE_PRECISION (mode) - 1 - i),
5777 GET_MODE_PRECISION (mode) - 1 - i);
5778
5779 /* If all we did was surround TEMP with the two shifts, we
5780 haven't improved anything, so don't use it. Otherwise,
5781 we are better off with TEMP1. */
5782 if (GET_CODE (temp1) != ASHIFTRT
5783 || GET_CODE (XEXP (temp1, 0)) != ASHIFT
5784 || XEXP (XEXP (temp1, 0), 0) != temp)
5785 return temp1;
5786 }
5787 break;
5788
5789 case TRUNCATE:
5790 /* We can't handle truncation to a partial integer mode here
5791 because we don't know the real bitsize of the partial
5792 integer mode. */
5793 if (GET_MODE_CLASS (mode) == MODE_PARTIAL_INT)
5794 break;
5795
5796 if (HWI_COMPUTABLE_MODE_P (mode))
5797 SUBST (XEXP (x, 0),
5798 force_to_mode (XEXP (x, 0), GET_MODE (XEXP (x, 0)),
5799 GET_MODE_MASK (mode), 0));
5800
5801 /* We can truncate a constant value and return it. */
5802 if (CONST_INT_P (XEXP (x, 0)))
5803 return gen_int_mode (INTVAL (XEXP (x, 0)), mode);
5804
5805 /* Similarly to what we do in simplify-rtx.c, a truncate of a register
5806 whose value is a comparison can be replaced with a subreg if
5807 STORE_FLAG_VALUE permits. */
5808 if (HWI_COMPUTABLE_MODE_P (mode)
5809 && (STORE_FLAG_VALUE & ~GET_MODE_MASK (mode)) == 0
5810 && (temp = get_last_value (XEXP (x, 0)))
5811 && COMPARISON_P (temp))
5812 return gen_lowpart (mode, XEXP (x, 0));
5813 break;
5814
5815 case CONST:
5816 /* (const (const X)) can become (const X). Do it this way rather than
5817 returning the inner CONST since CONST can be shared with a
5818 REG_EQUAL note. */
5819 if (GET_CODE (XEXP (x, 0)) == CONST)
5820 SUBST (XEXP (x, 0), XEXP (XEXP (x, 0), 0));
5821 break;
5822
5823 case LO_SUM:
5824 /* Convert (lo_sum (high FOO) FOO) to FOO. This is necessary so we
5825 can add in an offset. find_split_point will split this address up
5826 again if it doesn't match. */
5827 if (HAVE_lo_sum && GET_CODE (XEXP (x, 0)) == HIGH
5828 && rtx_equal_p (XEXP (XEXP (x, 0), 0), XEXP (x, 1)))
5829 return XEXP (x, 1);
5830 break;
5831
5832 case PLUS:
5833 /* (plus (xor (and <foo> (const_int pow2 - 1)) <c>) <-c>)
5834 when c is (const_int (pow2 + 1) / 2) is a sign extension of a
5835 bit-field and can be replaced by either a sign_extend or a
5836 sign_extract. The `and' may be a zero_extend and the two
5837 <c>, -<c> constants may be reversed. */
5838 if (GET_CODE (XEXP (x, 0)) == XOR
5839 && CONST_INT_P (XEXP (x, 1))
5840 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
5841 && INTVAL (XEXP (x, 1)) == -INTVAL (XEXP (XEXP (x, 0), 1))
5842 && ((i = exact_log2 (UINTVAL (XEXP (XEXP (x, 0), 1)))) >= 0
5843 || (i = exact_log2 (UINTVAL (XEXP (x, 1)))) >= 0)
5844 && HWI_COMPUTABLE_MODE_P (mode)
5845 && ((GET_CODE (XEXP (XEXP (x, 0), 0)) == AND
5846 && CONST_INT_P (XEXP (XEXP (XEXP (x, 0), 0), 1))
5847 && (UINTVAL (XEXP (XEXP (XEXP (x, 0), 0), 1))
5848 == ((unsigned HOST_WIDE_INT) 1 << (i + 1)) - 1))
5849 || (GET_CODE (XEXP (XEXP (x, 0), 0)) == ZERO_EXTEND
5850 && (GET_MODE_PRECISION (GET_MODE (XEXP (XEXP (XEXP (x, 0), 0), 0)))
5851 == (unsigned int) i + 1))))
5852 return simplify_shift_const
5853 (NULL_RTX, ASHIFTRT, mode,
5854 simplify_shift_const (NULL_RTX, ASHIFT, mode,
5855 XEXP (XEXP (XEXP (x, 0), 0), 0),
5856 GET_MODE_PRECISION (mode) - (i + 1)),
5857 GET_MODE_PRECISION (mode) - (i + 1));
5858
5859 /* If only the low-order bit of X is possibly nonzero, (plus x -1)
5860 can become (ashiftrt (ashift (xor x 1) C) C) where C is
5861 the bitsize of the mode - 1. This allows simplification of
5862 "a = (b & 8) == 0;" */
5863 if (XEXP (x, 1) == constm1_rtx
5864 && !REG_P (XEXP (x, 0))
5865 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
5866 && REG_P (SUBREG_REG (XEXP (x, 0))))
5867 && nonzero_bits (XEXP (x, 0), mode) == 1)
5868 return simplify_shift_const (NULL_RTX, ASHIFTRT, mode,
5869 simplify_shift_const (NULL_RTX, ASHIFT, mode,
5870 gen_rtx_XOR (mode, XEXP (x, 0), const1_rtx),
5871 GET_MODE_PRECISION (mode) - 1),
5872 GET_MODE_PRECISION (mode) - 1);
5873
5874 /* If we are adding two things that have no bits in common, convert
5875 the addition into an IOR. This will often be further simplified,
5876 for example in cases like ((a & 1) + (a & 2)), which can
5877 become a & 3. */
5878
5879 if (HWI_COMPUTABLE_MODE_P (mode)
5880 && (nonzero_bits (XEXP (x, 0), mode)
5881 & nonzero_bits (XEXP (x, 1), mode)) == 0)
5882 {
5883 /* Try to simplify the expression further. */
5884 rtx tor = simplify_gen_binary (IOR, mode, XEXP (x, 0), XEXP (x, 1));
5885 temp = combine_simplify_rtx (tor, VOIDmode, in_dest, 0);
5886
5887 /* If we could, great. If not, do not go ahead with the IOR
5888 replacement, since PLUS appears in many special purpose
5889 address arithmetic instructions. */
5890 if (GET_CODE (temp) != CLOBBER
5891 && (GET_CODE (temp) != IOR
5892 || ((XEXP (temp, 0) != XEXP (x, 0)
5893 || XEXP (temp, 1) != XEXP (x, 1))
5894 && (XEXP (temp, 0) != XEXP (x, 1)
5895 || XEXP (temp, 1) != XEXP (x, 0)))))
5896 return temp;
5897 }
5898
5899 /* Canonicalize x + x into x << 1. */
5900 if (GET_MODE_CLASS (mode) == MODE_INT
5901 && rtx_equal_p (XEXP (x, 0), XEXP (x, 1))
5902 && !side_effects_p (XEXP (x, 0)))
5903 return simplify_gen_binary (ASHIFT, mode, XEXP (x, 0), const1_rtx);
5904
5905 break;
5906
5907 case MINUS:
5908 /* (minus <foo> (and <foo> (const_int -pow2))) becomes
5909 (and <foo> (const_int pow2-1)) */
5910 if (GET_CODE (XEXP (x, 1)) == AND
5911 && CONST_INT_P (XEXP (XEXP (x, 1), 1))
5912 && exact_log2 (-UINTVAL (XEXP (XEXP (x, 1), 1))) >= 0
5913 && rtx_equal_p (XEXP (XEXP (x, 1), 0), XEXP (x, 0)))
5914 return simplify_and_const_int (NULL_RTX, mode, XEXP (x, 0),
5915 -INTVAL (XEXP (XEXP (x, 1), 1)) - 1);
5916 break;
5917
5918 case MULT:
5919 /* If we have (mult (plus A B) C), apply the distributive law and then
5920 the inverse distributive law to see if things simplify. This
5921 occurs mostly in addresses, often when unrolling loops. */
5922
5923 if (GET_CODE (XEXP (x, 0)) == PLUS)
5924 {
5925 rtx result = distribute_and_simplify_rtx (x, 0);
5926 if (result)
5927 return result;
5928 }
5929
5930 /* Try simplify a*(b/c) as (a*b)/c. */
5931 if (FLOAT_MODE_P (mode) && flag_associative_math
5932 && GET_CODE (XEXP (x, 0)) == DIV)
5933 {
5934 rtx tem = simplify_binary_operation (MULT, mode,
5935 XEXP (XEXP (x, 0), 0),
5936 XEXP (x, 1));
5937 if (tem)
5938 return simplify_gen_binary (DIV, mode, tem, XEXP (XEXP (x, 0), 1));
5939 }
5940 break;
5941
5942 case UDIV:
5943 /* If this is a divide by a power of two, treat it as a shift if
5944 its first operand is a shift. */
5945 if (CONST_INT_P (XEXP (x, 1))
5946 && (i = exact_log2 (UINTVAL (XEXP (x, 1)))) >= 0
5947 && (GET_CODE (XEXP (x, 0)) == ASHIFT
5948 || GET_CODE (XEXP (x, 0)) == LSHIFTRT
5949 || GET_CODE (XEXP (x, 0)) == ASHIFTRT
5950 || GET_CODE (XEXP (x, 0)) == ROTATE
5951 || GET_CODE (XEXP (x, 0)) == ROTATERT))
5952 return simplify_shift_const (NULL_RTX, LSHIFTRT, mode, XEXP (x, 0), i);
5953 break;
5954
5955 case EQ: case NE:
5956 case GT: case GTU: case GE: case GEU:
5957 case LT: case LTU: case LE: case LEU:
5958 case UNEQ: case LTGT:
5959 case UNGT: case UNGE:
5960 case UNLT: case UNLE:
5961 case UNORDERED: case ORDERED:
5962 /* If the first operand is a condition code, we can't do anything
5963 with it. */
5964 if (GET_CODE (XEXP (x, 0)) == COMPARE
5965 || (GET_MODE_CLASS (GET_MODE (XEXP (x, 0))) != MODE_CC
5966 && ! CC0_P (XEXP (x, 0))))
5967 {
5968 rtx op0 = XEXP (x, 0);
5969 rtx op1 = XEXP (x, 1);
5970 enum rtx_code new_code;
5971
5972 if (GET_CODE (op0) == COMPARE)
5973 op1 = XEXP (op0, 1), op0 = XEXP (op0, 0);
5974
5975 /* Simplify our comparison, if possible. */
5976 new_code = simplify_comparison (code, &op0, &op1);
5977
5978 /* If STORE_FLAG_VALUE is 1, we can convert (ne x 0) to simply X
5979 if only the low-order bit is possibly nonzero in X (such as when
5980 X is a ZERO_EXTRACT of one bit). Similarly, we can convert EQ to
5981 (xor X 1) or (minus 1 X); we use the former. Finally, if X is
5982 known to be either 0 or -1, NE becomes a NEG and EQ becomes
5983 (plus X 1).
5984
5985 Remove any ZERO_EXTRACT we made when thinking this was a
5986 comparison. It may now be simpler to use, e.g., an AND. If a
5987 ZERO_EXTRACT is indeed appropriate, it will be placed back by
5988 the call to make_compound_operation in the SET case.
5989
5990 Don't apply these optimizations if the caller would
5991 prefer a comparison rather than a value.
5992 E.g., for the condition in an IF_THEN_ELSE most targets need
5993 an explicit comparison. */
5994
5995 if (in_cond)
5996 ;
5997
5998 else if (STORE_FLAG_VALUE == 1
5999 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
6000 && op1 == const0_rtx
6001 && mode == GET_MODE (op0)
6002 && nonzero_bits (op0, mode) == 1)
6003 return gen_lowpart (mode,
6004 expand_compound_operation (op0));
6005
6006 else if (STORE_FLAG_VALUE == 1
6007 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
6008 && op1 == const0_rtx
6009 && mode == GET_MODE (op0)
6010 && (num_sign_bit_copies (op0, mode)
6011 == GET_MODE_PRECISION (mode)))
6012 {
6013 op0 = expand_compound_operation (op0);
6014 return simplify_gen_unary (NEG, mode,
6015 gen_lowpart (mode, op0),
6016 mode);
6017 }
6018
6019 else if (STORE_FLAG_VALUE == 1
6020 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
6021 && op1 == const0_rtx
6022 && mode == GET_MODE (op0)
6023 && nonzero_bits (op0, mode) == 1)
6024 {
6025 op0 = expand_compound_operation (op0);
6026 return simplify_gen_binary (XOR, mode,
6027 gen_lowpart (mode, op0),
6028 const1_rtx);
6029 }
6030
6031 else if (STORE_FLAG_VALUE == 1
6032 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
6033 && op1 == const0_rtx
6034 && mode == GET_MODE (op0)
6035 && (num_sign_bit_copies (op0, mode)
6036 == GET_MODE_PRECISION (mode)))
6037 {
6038 op0 = expand_compound_operation (op0);
6039 return plus_constant (mode, gen_lowpart (mode, op0), 1);
6040 }
6041
6042 /* If STORE_FLAG_VALUE is -1, we have cases similar to
6043 those above. */
6044 if (in_cond)
6045 ;
6046
6047 else if (STORE_FLAG_VALUE == -1
6048 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
6049 && op1 == const0_rtx
6050 && mode == GET_MODE (op0)
6051 && (num_sign_bit_copies (op0, mode)
6052 == GET_MODE_PRECISION (mode)))
6053 return gen_lowpart (mode,
6054 expand_compound_operation (op0));
6055
6056 else if (STORE_FLAG_VALUE == -1
6057 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
6058 && op1 == const0_rtx
6059 && mode == GET_MODE (op0)
6060 && nonzero_bits (op0, mode) == 1)
6061 {
6062 op0 = expand_compound_operation (op0);
6063 return simplify_gen_unary (NEG, mode,
6064 gen_lowpart (mode, op0),
6065 mode);
6066 }
6067
6068 else if (STORE_FLAG_VALUE == -1
6069 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
6070 && op1 == const0_rtx
6071 && mode == GET_MODE (op0)
6072 && (num_sign_bit_copies (op0, mode)
6073 == GET_MODE_PRECISION (mode)))
6074 {
6075 op0 = expand_compound_operation (op0);
6076 return simplify_gen_unary (NOT, mode,
6077 gen_lowpart (mode, op0),
6078 mode);
6079 }
6080
6081 /* If X is 0/1, (eq X 0) is X-1. */
6082 else if (STORE_FLAG_VALUE == -1
6083 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
6084 && op1 == const0_rtx
6085 && mode == GET_MODE (op0)
6086 && nonzero_bits (op0, mode) == 1)
6087 {
6088 op0 = expand_compound_operation (op0);
6089 return plus_constant (mode, gen_lowpart (mode, op0), -1);
6090 }
6091
6092 /* If STORE_FLAG_VALUE says to just test the sign bit and X has just
6093 one bit that might be nonzero, we can convert (ne x 0) to
6094 (ashift x c) where C puts the bit in the sign bit. Remove any
6095 AND with STORE_FLAG_VALUE when we are done, since we are only
6096 going to test the sign bit. */
6097 if (new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
6098 && HWI_COMPUTABLE_MODE_P (mode)
6099 && val_signbit_p (mode, STORE_FLAG_VALUE)
6100 && op1 == const0_rtx
6101 && mode == GET_MODE (op0)
6102 && (i = exact_log2 (nonzero_bits (op0, mode))) >= 0)
6103 {
6104 x = simplify_shift_const (NULL_RTX, ASHIFT, mode,
6105 expand_compound_operation (op0),
6106 GET_MODE_PRECISION (mode) - 1 - i);
6107 if (GET_CODE (x) == AND && XEXP (x, 1) == const_true_rtx)
6108 return XEXP (x, 0);
6109 else
6110 return x;
6111 }
6112
6113 /* If the code changed, return a whole new comparison.
6114 We also need to avoid using SUBST in cases where
6115 simplify_comparison has widened a comparison with a CONST_INT,
6116 since in that case the wider CONST_INT may fail the sanity
6117 checks in do_SUBST. */
6118 if (new_code != code
6119 || (CONST_INT_P (op1)
6120 && GET_MODE (op0) != GET_MODE (XEXP (x, 0))
6121 && GET_MODE (op0) != GET_MODE (XEXP (x, 1))))
6122 return gen_rtx_fmt_ee (new_code, mode, op0, op1);
6123
6124 /* Otherwise, keep this operation, but maybe change its operands.
6125 This also converts (ne (compare FOO BAR) 0) to (ne FOO BAR). */
6126 SUBST (XEXP (x, 0), op0);
6127 SUBST (XEXP (x, 1), op1);
6128 }
6129 break;
6130
6131 case IF_THEN_ELSE:
6132 return simplify_if_then_else (x);
6133
6134 case ZERO_EXTRACT:
6135 case SIGN_EXTRACT:
6136 case ZERO_EXTEND:
6137 case SIGN_EXTEND:
6138 /* If we are processing SET_DEST, we are done. */
6139 if (in_dest)
6140 return x;
6141
6142 return expand_compound_operation (x);
6143
6144 case SET:
6145 return simplify_set (x);
6146
6147 case AND:
6148 case IOR:
6149 return simplify_logical (x);
6150
6151 case ASHIFT:
6152 case LSHIFTRT:
6153 case ASHIFTRT:
6154 case ROTATE:
6155 case ROTATERT:
6156 /* If this is a shift by a constant amount, simplify it. */
6157 if (CONST_INT_P (XEXP (x, 1)))
6158 return simplify_shift_const (x, code, mode, XEXP (x, 0),
6159 INTVAL (XEXP (x, 1)));
6160
6161 else if (SHIFT_COUNT_TRUNCATED && !REG_P (XEXP (x, 1)))
6162 SUBST (XEXP (x, 1),
6163 force_to_mode (XEXP (x, 1), GET_MODE (XEXP (x, 1)),
6164 ((unsigned HOST_WIDE_INT) 1
6165 << exact_log2 (GET_MODE_BITSIZE (GET_MODE (x))))
6166 - 1,
6167 0));
6168 break;
6169
6170 default:
6171 break;
6172 }
6173
6174 return x;
6175 }
6176 \f
6177 /* Simplify X, an IF_THEN_ELSE expression. Return the new expression. */
6178
6179 static rtx
6180 simplify_if_then_else (rtx x)
6181 {
6182 machine_mode mode = GET_MODE (x);
6183 rtx cond = XEXP (x, 0);
6184 rtx true_rtx = XEXP (x, 1);
6185 rtx false_rtx = XEXP (x, 2);
6186 enum rtx_code true_code = GET_CODE (cond);
6187 int comparison_p = COMPARISON_P (cond);
6188 rtx temp;
6189 int i;
6190 enum rtx_code false_code;
6191 rtx reversed;
6192
6193 /* Simplify storing of the truth value. */
6194 if (comparison_p && true_rtx == const_true_rtx && false_rtx == const0_rtx)
6195 return simplify_gen_relational (true_code, mode, VOIDmode,
6196 XEXP (cond, 0), XEXP (cond, 1));
6197
6198 /* Also when the truth value has to be reversed. */
6199 if (comparison_p
6200 && true_rtx == const0_rtx && false_rtx == const_true_rtx
6201 && (reversed = reversed_comparison (cond, mode)))
6202 return reversed;
6203
6204 /* Sometimes we can simplify the arm of an IF_THEN_ELSE if a register used
6205 in it is being compared against certain values. Get the true and false
6206 comparisons and see if that says anything about the value of each arm. */
6207
6208 if (comparison_p
6209 && ((false_code = reversed_comparison_code (cond, NULL))
6210 != UNKNOWN)
6211 && REG_P (XEXP (cond, 0)))
6212 {
6213 HOST_WIDE_INT nzb;
6214 rtx from = XEXP (cond, 0);
6215 rtx true_val = XEXP (cond, 1);
6216 rtx false_val = true_val;
6217 int swapped = 0;
6218
6219 /* If FALSE_CODE is EQ, swap the codes and arms. */
6220
6221 if (false_code == EQ)
6222 {
6223 swapped = 1, true_code = EQ, false_code = NE;
6224 std::swap (true_rtx, false_rtx);
6225 }
6226
6227 /* If we are comparing against zero and the expression being tested has
6228 only a single bit that might be nonzero, that is its value when it is
6229 not equal to zero. Similarly if it is known to be -1 or 0. */
6230
6231 if (true_code == EQ && true_val == const0_rtx
6232 && exact_log2 (nzb = nonzero_bits (from, GET_MODE (from))) >= 0)
6233 {
6234 false_code = EQ;
6235 false_val = gen_int_mode (nzb, GET_MODE (from));
6236 }
6237 else if (true_code == EQ && true_val == const0_rtx
6238 && (num_sign_bit_copies (from, GET_MODE (from))
6239 == GET_MODE_PRECISION (GET_MODE (from))))
6240 {
6241 false_code = EQ;
6242 false_val = constm1_rtx;
6243 }
6244
6245 /* Now simplify an arm if we know the value of the register in the
6246 branch and it is used in the arm. Be careful due to the potential
6247 of locally-shared RTL. */
6248
6249 if (reg_mentioned_p (from, true_rtx))
6250 true_rtx = subst (known_cond (copy_rtx (true_rtx), true_code,
6251 from, true_val),
6252 pc_rtx, pc_rtx, 0, 0, 0);
6253 if (reg_mentioned_p (from, false_rtx))
6254 false_rtx = subst (known_cond (copy_rtx (false_rtx), false_code,
6255 from, false_val),
6256 pc_rtx, pc_rtx, 0, 0, 0);
6257
6258 SUBST (XEXP (x, 1), swapped ? false_rtx : true_rtx);
6259 SUBST (XEXP (x, 2), swapped ? true_rtx : false_rtx);
6260
6261 true_rtx = XEXP (x, 1);
6262 false_rtx = XEXP (x, 2);
6263 true_code = GET_CODE (cond);
6264 }
6265
6266 /* If we have (if_then_else FOO (pc) (label_ref BAR)) and FOO can be
6267 reversed, do so to avoid needing two sets of patterns for
6268 subtract-and-branch insns. Similarly if we have a constant in the true
6269 arm, the false arm is the same as the first operand of the comparison, or
6270 the false arm is more complicated than the true arm. */
6271
6272 if (comparison_p
6273 && reversed_comparison_code (cond, NULL) != UNKNOWN
6274 && (true_rtx == pc_rtx
6275 || (CONSTANT_P (true_rtx)
6276 && !CONST_INT_P (false_rtx) && false_rtx != pc_rtx)
6277 || true_rtx == const0_rtx
6278 || (OBJECT_P (true_rtx) && !OBJECT_P (false_rtx))
6279 || (GET_CODE (true_rtx) == SUBREG && OBJECT_P (SUBREG_REG (true_rtx))
6280 && !OBJECT_P (false_rtx))
6281 || reg_mentioned_p (true_rtx, false_rtx)
6282 || rtx_equal_p (false_rtx, XEXP (cond, 0))))
6283 {
6284 true_code = reversed_comparison_code (cond, NULL);
6285 SUBST (XEXP (x, 0), reversed_comparison (cond, GET_MODE (cond)));
6286 SUBST (XEXP (x, 1), false_rtx);
6287 SUBST (XEXP (x, 2), true_rtx);
6288
6289 std::swap (true_rtx, false_rtx);
6290 cond = XEXP (x, 0);
6291
6292 /* It is possible that the conditional has been simplified out. */
6293 true_code = GET_CODE (cond);
6294 comparison_p = COMPARISON_P (cond);
6295 }
6296
6297 /* If the two arms are identical, we don't need the comparison. */
6298
6299 if (rtx_equal_p (true_rtx, false_rtx) && ! side_effects_p (cond))
6300 return true_rtx;
6301
6302 /* Convert a == b ? b : a to "a". */
6303 if (true_code == EQ && ! side_effects_p (cond)
6304 && !HONOR_NANS (mode)
6305 && rtx_equal_p (XEXP (cond, 0), false_rtx)
6306 && rtx_equal_p (XEXP (cond, 1), true_rtx))
6307 return false_rtx;
6308 else if (true_code == NE && ! side_effects_p (cond)
6309 && !HONOR_NANS (mode)
6310 && rtx_equal_p (XEXP (cond, 0), true_rtx)
6311 && rtx_equal_p (XEXP (cond, 1), false_rtx))
6312 return true_rtx;
6313
6314 /* Look for cases where we have (abs x) or (neg (abs X)). */
6315
6316 if (GET_MODE_CLASS (mode) == MODE_INT
6317 && comparison_p
6318 && XEXP (cond, 1) == const0_rtx
6319 && GET_CODE (false_rtx) == NEG
6320 && rtx_equal_p (true_rtx, XEXP (false_rtx, 0))
6321 && rtx_equal_p (true_rtx, XEXP (cond, 0))
6322 && ! side_effects_p (true_rtx))
6323 switch (true_code)
6324 {
6325 case GT:
6326 case GE:
6327 return simplify_gen_unary (ABS, mode, true_rtx, mode);
6328 case LT:
6329 case LE:
6330 return
6331 simplify_gen_unary (NEG, mode,
6332 simplify_gen_unary (ABS, mode, true_rtx, mode),
6333 mode);
6334 default:
6335 break;
6336 }
6337
6338 /* Look for MIN or MAX. */
6339
6340 if ((! FLOAT_MODE_P (mode) || flag_unsafe_math_optimizations)
6341 && comparison_p
6342 && rtx_equal_p (XEXP (cond, 0), true_rtx)
6343 && rtx_equal_p (XEXP (cond, 1), false_rtx)
6344 && ! side_effects_p (cond))
6345 switch (true_code)
6346 {
6347 case GE:
6348 case GT:
6349 return simplify_gen_binary (SMAX, mode, true_rtx, false_rtx);
6350 case LE:
6351 case LT:
6352 return simplify_gen_binary (SMIN, mode, true_rtx, false_rtx);
6353 case GEU:
6354 case GTU:
6355 return simplify_gen_binary (UMAX, mode, true_rtx, false_rtx);
6356 case LEU:
6357 case LTU:
6358 return simplify_gen_binary (UMIN, mode, true_rtx, false_rtx);
6359 default:
6360 break;
6361 }
6362
6363 /* If we have (if_then_else COND (OP Z C1) Z) and OP is an identity when its
6364 second operand is zero, this can be done as (OP Z (mult COND C2)) where
6365 C2 = C1 * STORE_FLAG_VALUE. Similarly if OP has an outer ZERO_EXTEND or
6366 SIGN_EXTEND as long as Z is already extended (so we don't destroy it).
6367 We can do this kind of thing in some cases when STORE_FLAG_VALUE is
6368 neither 1 or -1, but it isn't worth checking for. */
6369
6370 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
6371 && comparison_p
6372 && GET_MODE_CLASS (mode) == MODE_INT
6373 && ! side_effects_p (x))
6374 {
6375 rtx t = make_compound_operation (true_rtx, SET);
6376 rtx f = make_compound_operation (false_rtx, SET);
6377 rtx cond_op0 = XEXP (cond, 0);
6378 rtx cond_op1 = XEXP (cond, 1);
6379 enum rtx_code op = UNKNOWN, extend_op = UNKNOWN;
6380 machine_mode m = mode;
6381 rtx z = 0, c1 = NULL_RTX;
6382
6383 if ((GET_CODE (t) == PLUS || GET_CODE (t) == MINUS
6384 || GET_CODE (t) == IOR || GET_CODE (t) == XOR
6385 || GET_CODE (t) == ASHIFT
6386 || GET_CODE (t) == LSHIFTRT || GET_CODE (t) == ASHIFTRT)
6387 && rtx_equal_p (XEXP (t, 0), f))
6388 c1 = XEXP (t, 1), op = GET_CODE (t), z = f;
6389
6390 /* If an identity-zero op is commutative, check whether there
6391 would be a match if we swapped the operands. */
6392 else if ((GET_CODE (t) == PLUS || GET_CODE (t) == IOR
6393 || GET_CODE (t) == XOR)
6394 && rtx_equal_p (XEXP (t, 1), f))
6395 c1 = XEXP (t, 0), op = GET_CODE (t), z = f;
6396 else if (GET_CODE (t) == SIGN_EXTEND
6397 && (GET_CODE (XEXP (t, 0)) == PLUS
6398 || GET_CODE (XEXP (t, 0)) == MINUS
6399 || GET_CODE (XEXP (t, 0)) == IOR
6400 || GET_CODE (XEXP (t, 0)) == XOR
6401 || GET_CODE (XEXP (t, 0)) == ASHIFT
6402 || GET_CODE (XEXP (t, 0)) == LSHIFTRT
6403 || GET_CODE (XEXP (t, 0)) == ASHIFTRT)
6404 && GET_CODE (XEXP (XEXP (t, 0), 0)) == SUBREG
6405 && subreg_lowpart_p (XEXP (XEXP (t, 0), 0))
6406 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 0)), f)
6407 && (num_sign_bit_copies (f, GET_MODE (f))
6408 > (unsigned int)
6409 (GET_MODE_PRECISION (mode)
6410 - GET_MODE_PRECISION (GET_MODE (XEXP (XEXP (t, 0), 0))))))
6411 {
6412 c1 = XEXP (XEXP (t, 0), 1); z = f; op = GET_CODE (XEXP (t, 0));
6413 extend_op = SIGN_EXTEND;
6414 m = GET_MODE (XEXP (t, 0));
6415 }
6416 else if (GET_CODE (t) == SIGN_EXTEND
6417 && (GET_CODE (XEXP (t, 0)) == PLUS
6418 || GET_CODE (XEXP (t, 0)) == IOR
6419 || GET_CODE (XEXP (t, 0)) == XOR)
6420 && GET_CODE (XEXP (XEXP (t, 0), 1)) == SUBREG
6421 && subreg_lowpart_p (XEXP (XEXP (t, 0), 1))
6422 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 1)), f)
6423 && (num_sign_bit_copies (f, GET_MODE (f))
6424 > (unsigned int)
6425 (GET_MODE_PRECISION (mode)
6426 - GET_MODE_PRECISION (GET_MODE (XEXP (XEXP (t, 0), 1))))))
6427 {
6428 c1 = XEXP (XEXP (t, 0), 0); z = f; op = GET_CODE (XEXP (t, 0));
6429 extend_op = SIGN_EXTEND;
6430 m = GET_MODE (XEXP (t, 0));
6431 }
6432 else if (GET_CODE (t) == ZERO_EXTEND
6433 && (GET_CODE (XEXP (t, 0)) == PLUS
6434 || GET_CODE (XEXP (t, 0)) == MINUS
6435 || GET_CODE (XEXP (t, 0)) == IOR
6436 || GET_CODE (XEXP (t, 0)) == XOR
6437 || GET_CODE (XEXP (t, 0)) == ASHIFT
6438 || GET_CODE (XEXP (t, 0)) == LSHIFTRT
6439 || GET_CODE (XEXP (t, 0)) == ASHIFTRT)
6440 && GET_CODE (XEXP (XEXP (t, 0), 0)) == SUBREG
6441 && HWI_COMPUTABLE_MODE_P (mode)
6442 && subreg_lowpart_p (XEXP (XEXP (t, 0), 0))
6443 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 0)), f)
6444 && ((nonzero_bits (f, GET_MODE (f))
6445 & ~GET_MODE_MASK (GET_MODE (XEXP (XEXP (t, 0), 0))))
6446 == 0))
6447 {
6448 c1 = XEXP (XEXP (t, 0), 1); z = f; op = GET_CODE (XEXP (t, 0));
6449 extend_op = ZERO_EXTEND;
6450 m = GET_MODE (XEXP (t, 0));
6451 }
6452 else if (GET_CODE (t) == ZERO_EXTEND
6453 && (GET_CODE (XEXP (t, 0)) == PLUS
6454 || GET_CODE (XEXP (t, 0)) == IOR
6455 || GET_CODE (XEXP (t, 0)) == XOR)
6456 && GET_CODE (XEXP (XEXP (t, 0), 1)) == SUBREG
6457 && HWI_COMPUTABLE_MODE_P (mode)
6458 && subreg_lowpart_p (XEXP (XEXP (t, 0), 1))
6459 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 1)), f)
6460 && ((nonzero_bits (f, GET_MODE (f))
6461 & ~GET_MODE_MASK (GET_MODE (XEXP (XEXP (t, 0), 1))))
6462 == 0))
6463 {
6464 c1 = XEXP (XEXP (t, 0), 0); z = f; op = GET_CODE (XEXP (t, 0));
6465 extend_op = ZERO_EXTEND;
6466 m = GET_MODE (XEXP (t, 0));
6467 }
6468
6469 if (z)
6470 {
6471 temp = subst (simplify_gen_relational (true_code, m, VOIDmode,
6472 cond_op0, cond_op1),
6473 pc_rtx, pc_rtx, 0, 0, 0);
6474 temp = simplify_gen_binary (MULT, m, temp,
6475 simplify_gen_binary (MULT, m, c1,
6476 const_true_rtx));
6477 temp = subst (temp, pc_rtx, pc_rtx, 0, 0, 0);
6478 temp = simplify_gen_binary (op, m, gen_lowpart (m, z), temp);
6479
6480 if (extend_op != UNKNOWN)
6481 temp = simplify_gen_unary (extend_op, mode, temp, m);
6482
6483 return temp;
6484 }
6485 }
6486
6487 /* If we have (if_then_else (ne A 0) C1 0) and either A is known to be 0 or
6488 1 and C1 is a single bit or A is known to be 0 or -1 and C1 is the
6489 negation of a single bit, we can convert this operation to a shift. We
6490 can actually do this more generally, but it doesn't seem worth it. */
6491
6492 if (true_code == NE && XEXP (cond, 1) == const0_rtx
6493 && false_rtx == const0_rtx && CONST_INT_P (true_rtx)
6494 && ((1 == nonzero_bits (XEXP (cond, 0), mode)
6495 && (i = exact_log2 (UINTVAL (true_rtx))) >= 0)
6496 || ((num_sign_bit_copies (XEXP (cond, 0), mode)
6497 == GET_MODE_PRECISION (mode))
6498 && (i = exact_log2 (-UINTVAL (true_rtx))) >= 0)))
6499 return
6500 simplify_shift_const (NULL_RTX, ASHIFT, mode,
6501 gen_lowpart (mode, XEXP (cond, 0)), i);
6502
6503 /* (IF_THEN_ELSE (NE REG 0) (0) (8)) is REG for nonzero_bits (REG) == 8. */
6504 if (true_code == NE && XEXP (cond, 1) == const0_rtx
6505 && false_rtx == const0_rtx && CONST_INT_P (true_rtx)
6506 && GET_MODE (XEXP (cond, 0)) == mode
6507 && (UINTVAL (true_rtx) & GET_MODE_MASK (mode))
6508 == nonzero_bits (XEXP (cond, 0), mode)
6509 && (i = exact_log2 (UINTVAL (true_rtx) & GET_MODE_MASK (mode))) >= 0)
6510 return XEXP (cond, 0);
6511
6512 return x;
6513 }
6514 \f
6515 /* Simplify X, a SET expression. Return the new expression. */
6516
6517 static rtx
6518 simplify_set (rtx x)
6519 {
6520 rtx src = SET_SRC (x);
6521 rtx dest = SET_DEST (x);
6522 machine_mode mode
6523 = GET_MODE (src) != VOIDmode ? GET_MODE (src) : GET_MODE (dest);
6524 rtx_insn *other_insn;
6525 rtx *cc_use;
6526
6527 /* (set (pc) (return)) gets written as (return). */
6528 if (GET_CODE (dest) == PC && ANY_RETURN_P (src))
6529 return src;
6530
6531 /* Now that we know for sure which bits of SRC we are using, see if we can
6532 simplify the expression for the object knowing that we only need the
6533 low-order bits. */
6534
6535 if (GET_MODE_CLASS (mode) == MODE_INT && HWI_COMPUTABLE_MODE_P (mode))
6536 {
6537 src = force_to_mode (src, mode, ~(unsigned HOST_WIDE_INT) 0, 0);
6538 SUBST (SET_SRC (x), src);
6539 }
6540
6541 /* If we are setting CC0 or if the source is a COMPARE, look for the use of
6542 the comparison result and try to simplify it unless we already have used
6543 undobuf.other_insn. */
6544 if ((GET_MODE_CLASS (mode) == MODE_CC
6545 || GET_CODE (src) == COMPARE
6546 || CC0_P (dest))
6547 && (cc_use = find_single_use (dest, subst_insn, &other_insn)) != 0
6548 && (undobuf.other_insn == 0 || other_insn == undobuf.other_insn)
6549 && COMPARISON_P (*cc_use)
6550 && rtx_equal_p (XEXP (*cc_use, 0), dest))
6551 {
6552 enum rtx_code old_code = GET_CODE (*cc_use);
6553 enum rtx_code new_code;
6554 rtx op0, op1, tmp;
6555 int other_changed = 0;
6556 rtx inner_compare = NULL_RTX;
6557 machine_mode compare_mode = GET_MODE (dest);
6558
6559 if (GET_CODE (src) == COMPARE)
6560 {
6561 op0 = XEXP (src, 0), op1 = XEXP (src, 1);
6562 if (GET_CODE (op0) == COMPARE && op1 == const0_rtx)
6563 {
6564 inner_compare = op0;
6565 op0 = XEXP (inner_compare, 0), op1 = XEXP (inner_compare, 1);
6566 }
6567 }
6568 else
6569 op0 = src, op1 = CONST0_RTX (GET_MODE (src));
6570
6571 tmp = simplify_relational_operation (old_code, compare_mode, VOIDmode,
6572 op0, op1);
6573 if (!tmp)
6574 new_code = old_code;
6575 else if (!CONSTANT_P (tmp))
6576 {
6577 new_code = GET_CODE (tmp);
6578 op0 = XEXP (tmp, 0);
6579 op1 = XEXP (tmp, 1);
6580 }
6581 else
6582 {
6583 rtx pat = PATTERN (other_insn);
6584 undobuf.other_insn = other_insn;
6585 SUBST (*cc_use, tmp);
6586
6587 /* Attempt to simplify CC user. */
6588 if (GET_CODE (pat) == SET)
6589 {
6590 rtx new_rtx = simplify_rtx (SET_SRC (pat));
6591 if (new_rtx != NULL_RTX)
6592 SUBST (SET_SRC (pat), new_rtx);
6593 }
6594
6595 /* Convert X into a no-op move. */
6596 SUBST (SET_DEST (x), pc_rtx);
6597 SUBST (SET_SRC (x), pc_rtx);
6598 return x;
6599 }
6600
6601 /* Simplify our comparison, if possible. */
6602 new_code = simplify_comparison (new_code, &op0, &op1);
6603
6604 #ifdef SELECT_CC_MODE
6605 /* If this machine has CC modes other than CCmode, check to see if we
6606 need to use a different CC mode here. */
6607 if (GET_MODE_CLASS (GET_MODE (op0)) == MODE_CC)
6608 compare_mode = GET_MODE (op0);
6609 else if (inner_compare
6610 && GET_MODE_CLASS (GET_MODE (inner_compare)) == MODE_CC
6611 && new_code == old_code
6612 && op0 == XEXP (inner_compare, 0)
6613 && op1 == XEXP (inner_compare, 1))
6614 compare_mode = GET_MODE (inner_compare);
6615 else
6616 compare_mode = SELECT_CC_MODE (new_code, op0, op1);
6617
6618 /* If the mode changed, we have to change SET_DEST, the mode in the
6619 compare, and the mode in the place SET_DEST is used. If SET_DEST is
6620 a hard register, just build new versions with the proper mode. If it
6621 is a pseudo, we lose unless it is only time we set the pseudo, in
6622 which case we can safely change its mode. */
6623 if (!HAVE_cc0 && compare_mode != GET_MODE (dest))
6624 {
6625 if (can_change_dest_mode (dest, 0, compare_mode))
6626 {
6627 unsigned int regno = REGNO (dest);
6628 rtx new_dest;
6629
6630 if (regno < FIRST_PSEUDO_REGISTER)
6631 new_dest = gen_rtx_REG (compare_mode, regno);
6632 else
6633 {
6634 SUBST_MODE (regno_reg_rtx[regno], compare_mode);
6635 new_dest = regno_reg_rtx[regno];
6636 }
6637
6638 SUBST (SET_DEST (x), new_dest);
6639 SUBST (XEXP (*cc_use, 0), new_dest);
6640 other_changed = 1;
6641
6642 dest = new_dest;
6643 }
6644 }
6645 #endif /* SELECT_CC_MODE */
6646
6647 /* If the code changed, we have to build a new comparison in
6648 undobuf.other_insn. */
6649 if (new_code != old_code)
6650 {
6651 int other_changed_previously = other_changed;
6652 unsigned HOST_WIDE_INT mask;
6653 rtx old_cc_use = *cc_use;
6654
6655 SUBST (*cc_use, gen_rtx_fmt_ee (new_code, GET_MODE (*cc_use),
6656 dest, const0_rtx));
6657 other_changed = 1;
6658
6659 /* If the only change we made was to change an EQ into an NE or
6660 vice versa, OP0 has only one bit that might be nonzero, and OP1
6661 is zero, check if changing the user of the condition code will
6662 produce a valid insn. If it won't, we can keep the original code
6663 in that insn by surrounding our operation with an XOR. */
6664
6665 if (((old_code == NE && new_code == EQ)
6666 || (old_code == EQ && new_code == NE))
6667 && ! other_changed_previously && op1 == const0_rtx
6668 && HWI_COMPUTABLE_MODE_P (GET_MODE (op0))
6669 && exact_log2 (mask = nonzero_bits (op0, GET_MODE (op0))) >= 0)
6670 {
6671 rtx pat = PATTERN (other_insn), note = 0;
6672
6673 if ((recog_for_combine (&pat, other_insn, &note) < 0
6674 && ! check_asm_operands (pat)))
6675 {
6676 *cc_use = old_cc_use;
6677 other_changed = 0;
6678
6679 op0 = simplify_gen_binary (XOR, GET_MODE (op0), op0,
6680 gen_int_mode (mask,
6681 GET_MODE (op0)));
6682 }
6683 }
6684 }
6685
6686 if (other_changed)
6687 undobuf.other_insn = other_insn;
6688
6689 /* Don't generate a compare of a CC with 0, just use that CC. */
6690 if (GET_MODE (op0) == compare_mode && op1 == const0_rtx)
6691 {
6692 SUBST (SET_SRC (x), op0);
6693 src = SET_SRC (x);
6694 }
6695 /* Otherwise, if we didn't previously have the same COMPARE we
6696 want, create it from scratch. */
6697 else if (GET_CODE (src) != COMPARE || GET_MODE (src) != compare_mode
6698 || XEXP (src, 0) != op0 || XEXP (src, 1) != op1)
6699 {
6700 SUBST (SET_SRC (x), gen_rtx_COMPARE (compare_mode, op0, op1));
6701 src = SET_SRC (x);
6702 }
6703 }
6704 else
6705 {
6706 /* Get SET_SRC in a form where we have placed back any
6707 compound expressions. Then do the checks below. */
6708 src = make_compound_operation (src, SET);
6709 SUBST (SET_SRC (x), src);
6710 }
6711
6712 /* If we have (set x (subreg:m1 (op:m2 ...) 0)) with OP being some operation,
6713 and X being a REG or (subreg (reg)), we may be able to convert this to
6714 (set (subreg:m2 x) (op)).
6715
6716 We can always do this if M1 is narrower than M2 because that means that
6717 we only care about the low bits of the result.
6718
6719 However, on machines without WORD_REGISTER_OPERATIONS defined, we cannot
6720 perform a narrower operation than requested since the high-order bits will
6721 be undefined. On machine where it is defined, this transformation is safe
6722 as long as M1 and M2 have the same number of words. */
6723
6724 if (GET_CODE (src) == SUBREG && subreg_lowpart_p (src)
6725 && !OBJECT_P (SUBREG_REG (src))
6726 && (((GET_MODE_SIZE (GET_MODE (src)) + (UNITS_PER_WORD - 1))
6727 / UNITS_PER_WORD)
6728 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (src)))
6729 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))
6730 && (WORD_REGISTER_OPERATIONS
6731 || (GET_MODE_SIZE (GET_MODE (src))
6732 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (src)))))
6733 #ifdef CANNOT_CHANGE_MODE_CLASS
6734 && ! (REG_P (dest) && REGNO (dest) < FIRST_PSEUDO_REGISTER
6735 && REG_CANNOT_CHANGE_MODE_P (REGNO (dest),
6736 GET_MODE (SUBREG_REG (src)),
6737 GET_MODE (src)))
6738 #endif
6739 && (REG_P (dest)
6740 || (GET_CODE (dest) == SUBREG
6741 && REG_P (SUBREG_REG (dest)))))
6742 {
6743 SUBST (SET_DEST (x),
6744 gen_lowpart (GET_MODE (SUBREG_REG (src)),
6745 dest));
6746 SUBST (SET_SRC (x), SUBREG_REG (src));
6747
6748 src = SET_SRC (x), dest = SET_DEST (x);
6749 }
6750
6751 /* If we have (set (cc0) (subreg ...)), we try to remove the subreg
6752 in SRC. */
6753 if (dest == cc0_rtx
6754 && GET_CODE (src) == SUBREG
6755 && subreg_lowpart_p (src)
6756 && (GET_MODE_PRECISION (GET_MODE (src))
6757 < GET_MODE_PRECISION (GET_MODE (SUBREG_REG (src)))))
6758 {
6759 rtx inner = SUBREG_REG (src);
6760 machine_mode inner_mode = GET_MODE (inner);
6761
6762 /* Here we make sure that we don't have a sign bit on. */
6763 if (val_signbit_known_clear_p (GET_MODE (src),
6764 nonzero_bits (inner, inner_mode)))
6765 {
6766 SUBST (SET_SRC (x), inner);
6767 src = SET_SRC (x);
6768 }
6769 }
6770
6771 /* If we have (set FOO (subreg:M (mem:N BAR) 0)) with M wider than N, this
6772 would require a paradoxical subreg. Replace the subreg with a
6773 zero_extend to avoid the reload that would otherwise be required. */
6774
6775 if (GET_CODE (src) == SUBREG && subreg_lowpart_p (src)
6776 && INTEGRAL_MODE_P (GET_MODE (SUBREG_REG (src)))
6777 && LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (src))) != UNKNOWN
6778 && SUBREG_BYTE (src) == 0
6779 && paradoxical_subreg_p (src)
6780 && MEM_P (SUBREG_REG (src)))
6781 {
6782 SUBST (SET_SRC (x),
6783 gen_rtx_fmt_e (LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (src))),
6784 GET_MODE (src), SUBREG_REG (src)));
6785
6786 src = SET_SRC (x);
6787 }
6788
6789 /* If we don't have a conditional move, SET_SRC is an IF_THEN_ELSE, and we
6790 are comparing an item known to be 0 or -1 against 0, use a logical
6791 operation instead. Check for one of the arms being an IOR of the other
6792 arm with some value. We compute three terms to be IOR'ed together. In
6793 practice, at most two will be nonzero. Then we do the IOR's. */
6794
6795 if (GET_CODE (dest) != PC
6796 && GET_CODE (src) == IF_THEN_ELSE
6797 && GET_MODE_CLASS (GET_MODE (src)) == MODE_INT
6798 && (GET_CODE (XEXP (src, 0)) == EQ || GET_CODE (XEXP (src, 0)) == NE)
6799 && XEXP (XEXP (src, 0), 1) == const0_rtx
6800 && GET_MODE (src) == GET_MODE (XEXP (XEXP (src, 0), 0))
6801 && (!HAVE_conditional_move
6802 || ! can_conditionally_move_p (GET_MODE (src)))
6803 && (num_sign_bit_copies (XEXP (XEXP (src, 0), 0),
6804 GET_MODE (XEXP (XEXP (src, 0), 0)))
6805 == GET_MODE_PRECISION (GET_MODE (XEXP (XEXP (src, 0), 0))))
6806 && ! side_effects_p (src))
6807 {
6808 rtx true_rtx = (GET_CODE (XEXP (src, 0)) == NE
6809 ? XEXP (src, 1) : XEXP (src, 2));
6810 rtx false_rtx = (GET_CODE (XEXP (src, 0)) == NE
6811 ? XEXP (src, 2) : XEXP (src, 1));
6812 rtx term1 = const0_rtx, term2, term3;
6813
6814 if (GET_CODE (true_rtx) == IOR
6815 && rtx_equal_p (XEXP (true_rtx, 0), false_rtx))
6816 term1 = false_rtx, true_rtx = XEXP (true_rtx, 1), false_rtx = const0_rtx;
6817 else if (GET_CODE (true_rtx) == IOR
6818 && rtx_equal_p (XEXP (true_rtx, 1), false_rtx))
6819 term1 = false_rtx, true_rtx = XEXP (true_rtx, 0), false_rtx = const0_rtx;
6820 else if (GET_CODE (false_rtx) == IOR
6821 && rtx_equal_p (XEXP (false_rtx, 0), true_rtx))
6822 term1 = true_rtx, false_rtx = XEXP (false_rtx, 1), true_rtx = const0_rtx;
6823 else if (GET_CODE (false_rtx) == IOR
6824 && rtx_equal_p (XEXP (false_rtx, 1), true_rtx))
6825 term1 = true_rtx, false_rtx = XEXP (false_rtx, 0), true_rtx = const0_rtx;
6826
6827 term2 = simplify_gen_binary (AND, GET_MODE (src),
6828 XEXP (XEXP (src, 0), 0), true_rtx);
6829 term3 = simplify_gen_binary (AND, GET_MODE (src),
6830 simplify_gen_unary (NOT, GET_MODE (src),
6831 XEXP (XEXP (src, 0), 0),
6832 GET_MODE (src)),
6833 false_rtx);
6834
6835 SUBST (SET_SRC (x),
6836 simplify_gen_binary (IOR, GET_MODE (src),
6837 simplify_gen_binary (IOR, GET_MODE (src),
6838 term1, term2),
6839 term3));
6840
6841 src = SET_SRC (x);
6842 }
6843
6844 /* If either SRC or DEST is a CLOBBER of (const_int 0), make this
6845 whole thing fail. */
6846 if (GET_CODE (src) == CLOBBER && XEXP (src, 0) == const0_rtx)
6847 return src;
6848 else if (GET_CODE (dest) == CLOBBER && XEXP (dest, 0) == const0_rtx)
6849 return dest;
6850 else
6851 /* Convert this into a field assignment operation, if possible. */
6852 return make_field_assignment (x);
6853 }
6854 \f
6855 /* Simplify, X, and AND, IOR, or XOR operation, and return the simplified
6856 result. */
6857
6858 static rtx
6859 simplify_logical (rtx x)
6860 {
6861 machine_mode mode = GET_MODE (x);
6862 rtx op0 = XEXP (x, 0);
6863 rtx op1 = XEXP (x, 1);
6864
6865 switch (GET_CODE (x))
6866 {
6867 case AND:
6868 /* We can call simplify_and_const_int only if we don't lose
6869 any (sign) bits when converting INTVAL (op1) to
6870 "unsigned HOST_WIDE_INT". */
6871 if (CONST_INT_P (op1)
6872 && (HWI_COMPUTABLE_MODE_P (mode)
6873 || INTVAL (op1) > 0))
6874 {
6875 x = simplify_and_const_int (x, mode, op0, INTVAL (op1));
6876 if (GET_CODE (x) != AND)
6877 return x;
6878
6879 op0 = XEXP (x, 0);
6880 op1 = XEXP (x, 1);
6881 }
6882
6883 /* If we have any of (and (ior A B) C) or (and (xor A B) C),
6884 apply the distributive law and then the inverse distributive
6885 law to see if things simplify. */
6886 if (GET_CODE (op0) == IOR || GET_CODE (op0) == XOR)
6887 {
6888 rtx result = distribute_and_simplify_rtx (x, 0);
6889 if (result)
6890 return result;
6891 }
6892 if (GET_CODE (op1) == IOR || GET_CODE (op1) == XOR)
6893 {
6894 rtx result = distribute_and_simplify_rtx (x, 1);
6895 if (result)
6896 return result;
6897 }
6898 break;
6899
6900 case IOR:
6901 /* If we have (ior (and A B) C), apply the distributive law and then
6902 the inverse distributive law to see if things simplify. */
6903
6904 if (GET_CODE (op0) == AND)
6905 {
6906 rtx result = distribute_and_simplify_rtx (x, 0);
6907 if (result)
6908 return result;
6909 }
6910
6911 if (GET_CODE (op1) == AND)
6912 {
6913 rtx result = distribute_and_simplify_rtx (x, 1);
6914 if (result)
6915 return result;
6916 }
6917 break;
6918
6919 default:
6920 gcc_unreachable ();
6921 }
6922
6923 return x;
6924 }
6925 \f
6926 /* We consider ZERO_EXTRACT, SIGN_EXTRACT, and SIGN_EXTEND as "compound
6927 operations" because they can be replaced with two more basic operations.
6928 ZERO_EXTEND is also considered "compound" because it can be replaced with
6929 an AND operation, which is simpler, though only one operation.
6930
6931 The function expand_compound_operation is called with an rtx expression
6932 and will convert it to the appropriate shifts and AND operations,
6933 simplifying at each stage.
6934
6935 The function make_compound_operation is called to convert an expression
6936 consisting of shifts and ANDs into the equivalent compound expression.
6937 It is the inverse of this function, loosely speaking. */
6938
6939 static rtx
6940 expand_compound_operation (rtx x)
6941 {
6942 unsigned HOST_WIDE_INT pos = 0, len;
6943 int unsignedp = 0;
6944 unsigned int modewidth;
6945 rtx tem;
6946
6947 switch (GET_CODE (x))
6948 {
6949 case ZERO_EXTEND:
6950 unsignedp = 1;
6951 case SIGN_EXTEND:
6952 /* We can't necessarily use a const_int for a multiword mode;
6953 it depends on implicitly extending the value.
6954 Since we don't know the right way to extend it,
6955 we can't tell whether the implicit way is right.
6956
6957 Even for a mode that is no wider than a const_int,
6958 we can't win, because we need to sign extend one of its bits through
6959 the rest of it, and we don't know which bit. */
6960 if (CONST_INT_P (XEXP (x, 0)))
6961 return x;
6962
6963 /* Return if (subreg:MODE FROM 0) is not a safe replacement for
6964 (zero_extend:MODE FROM) or (sign_extend:MODE FROM). It is for any MEM
6965 because (SUBREG (MEM...)) is guaranteed to cause the MEM to be
6966 reloaded. If not for that, MEM's would very rarely be safe.
6967
6968 Reject MODEs bigger than a word, because we might not be able
6969 to reference a two-register group starting with an arbitrary register
6970 (and currently gen_lowpart might crash for a SUBREG). */
6971
6972 if (GET_MODE_SIZE (GET_MODE (XEXP (x, 0))) > UNITS_PER_WORD)
6973 return x;
6974
6975 /* Reject MODEs that aren't scalar integers because turning vector
6976 or complex modes into shifts causes problems. */
6977
6978 if (! SCALAR_INT_MODE_P (GET_MODE (XEXP (x, 0))))
6979 return x;
6980
6981 len = GET_MODE_PRECISION (GET_MODE (XEXP (x, 0)));
6982 /* If the inner object has VOIDmode (the only way this can happen
6983 is if it is an ASM_OPERANDS), we can't do anything since we don't
6984 know how much masking to do. */
6985 if (len == 0)
6986 return x;
6987
6988 break;
6989
6990 case ZERO_EXTRACT:
6991 unsignedp = 1;
6992
6993 /* ... fall through ... */
6994
6995 case SIGN_EXTRACT:
6996 /* If the operand is a CLOBBER, just return it. */
6997 if (GET_CODE (XEXP (x, 0)) == CLOBBER)
6998 return XEXP (x, 0);
6999
7000 if (!CONST_INT_P (XEXP (x, 1))
7001 || !CONST_INT_P (XEXP (x, 2))
7002 || GET_MODE (XEXP (x, 0)) == VOIDmode)
7003 return x;
7004
7005 /* Reject MODEs that aren't scalar integers because turning vector
7006 or complex modes into shifts causes problems. */
7007
7008 if (! SCALAR_INT_MODE_P (GET_MODE (XEXP (x, 0))))
7009 return x;
7010
7011 len = INTVAL (XEXP (x, 1));
7012 pos = INTVAL (XEXP (x, 2));
7013
7014 /* This should stay within the object being extracted, fail otherwise. */
7015 if (len + pos > GET_MODE_PRECISION (GET_MODE (XEXP (x, 0))))
7016 return x;
7017
7018 if (BITS_BIG_ENDIAN)
7019 pos = GET_MODE_PRECISION (GET_MODE (XEXP (x, 0))) - len - pos;
7020
7021 break;
7022
7023 default:
7024 return x;
7025 }
7026 /* Convert sign extension to zero extension, if we know that the high
7027 bit is not set, as this is easier to optimize. It will be converted
7028 back to cheaper alternative in make_extraction. */
7029 if (GET_CODE (x) == SIGN_EXTEND
7030 && (HWI_COMPUTABLE_MODE_P (GET_MODE (x))
7031 && ((nonzero_bits (XEXP (x, 0), GET_MODE (XEXP (x, 0)))
7032 & ~(((unsigned HOST_WIDE_INT)
7033 GET_MODE_MASK (GET_MODE (XEXP (x, 0))))
7034 >> 1))
7035 == 0)))
7036 {
7037 machine_mode mode = GET_MODE (x);
7038 rtx temp = gen_rtx_ZERO_EXTEND (mode, XEXP (x, 0));
7039 rtx temp2 = expand_compound_operation (temp);
7040
7041 /* Make sure this is a profitable operation. */
7042 if (set_src_cost (x, mode, optimize_this_for_speed_p)
7043 > set_src_cost (temp2, mode, optimize_this_for_speed_p))
7044 return temp2;
7045 else if (set_src_cost (x, mode, optimize_this_for_speed_p)
7046 > set_src_cost (temp, mode, optimize_this_for_speed_p))
7047 return temp;
7048 else
7049 return x;
7050 }
7051
7052 /* We can optimize some special cases of ZERO_EXTEND. */
7053 if (GET_CODE (x) == ZERO_EXTEND)
7054 {
7055 /* (zero_extend:DI (truncate:SI foo:DI)) is just foo:DI if we
7056 know that the last value didn't have any inappropriate bits
7057 set. */
7058 if (GET_CODE (XEXP (x, 0)) == TRUNCATE
7059 && GET_MODE (XEXP (XEXP (x, 0), 0)) == GET_MODE (x)
7060 && HWI_COMPUTABLE_MODE_P (GET_MODE (x))
7061 && (nonzero_bits (XEXP (XEXP (x, 0), 0), GET_MODE (x))
7062 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
7063 return XEXP (XEXP (x, 0), 0);
7064
7065 /* Likewise for (zero_extend:DI (subreg:SI foo:DI 0)). */
7066 if (GET_CODE (XEXP (x, 0)) == SUBREG
7067 && GET_MODE (SUBREG_REG (XEXP (x, 0))) == GET_MODE (x)
7068 && subreg_lowpart_p (XEXP (x, 0))
7069 && HWI_COMPUTABLE_MODE_P (GET_MODE (x))
7070 && (nonzero_bits (SUBREG_REG (XEXP (x, 0)), GET_MODE (x))
7071 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
7072 return SUBREG_REG (XEXP (x, 0));
7073
7074 /* (zero_extend:DI (truncate:SI foo:DI)) is just foo:DI when foo
7075 is a comparison and STORE_FLAG_VALUE permits. This is like
7076 the first case, but it works even when GET_MODE (x) is larger
7077 than HOST_WIDE_INT. */
7078 if (GET_CODE (XEXP (x, 0)) == TRUNCATE
7079 && GET_MODE (XEXP (XEXP (x, 0), 0)) == GET_MODE (x)
7080 && COMPARISON_P (XEXP (XEXP (x, 0), 0))
7081 && (GET_MODE_PRECISION (GET_MODE (XEXP (x, 0)))
7082 <= HOST_BITS_PER_WIDE_INT)
7083 && (STORE_FLAG_VALUE & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
7084 return XEXP (XEXP (x, 0), 0);
7085
7086 /* Likewise for (zero_extend:DI (subreg:SI foo:DI 0)). */
7087 if (GET_CODE (XEXP (x, 0)) == SUBREG
7088 && GET_MODE (SUBREG_REG (XEXP (x, 0))) == GET_MODE (x)
7089 && subreg_lowpart_p (XEXP (x, 0))
7090 && COMPARISON_P (SUBREG_REG (XEXP (x, 0)))
7091 && (GET_MODE_PRECISION (GET_MODE (XEXP (x, 0)))
7092 <= HOST_BITS_PER_WIDE_INT)
7093 && (STORE_FLAG_VALUE & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
7094 return SUBREG_REG (XEXP (x, 0));
7095
7096 }
7097
7098 /* If we reach here, we want to return a pair of shifts. The inner
7099 shift is a left shift of BITSIZE - POS - LEN bits. The outer
7100 shift is a right shift of BITSIZE - LEN bits. It is arithmetic or
7101 logical depending on the value of UNSIGNEDP.
7102
7103 If this was a ZERO_EXTEND or ZERO_EXTRACT, this pair of shifts will be
7104 converted into an AND of a shift.
7105
7106 We must check for the case where the left shift would have a negative
7107 count. This can happen in a case like (x >> 31) & 255 on machines
7108 that can't shift by a constant. On those machines, we would first
7109 combine the shift with the AND to produce a variable-position
7110 extraction. Then the constant of 31 would be substituted in
7111 to produce such a position. */
7112
7113 modewidth = GET_MODE_PRECISION (GET_MODE (x));
7114 if (modewidth >= pos + len)
7115 {
7116 machine_mode mode = GET_MODE (x);
7117 tem = gen_lowpart (mode, XEXP (x, 0));
7118 if (!tem || GET_CODE (tem) == CLOBBER)
7119 return x;
7120 tem = simplify_shift_const (NULL_RTX, ASHIFT, mode,
7121 tem, modewidth - pos - len);
7122 tem = simplify_shift_const (NULL_RTX, unsignedp ? LSHIFTRT : ASHIFTRT,
7123 mode, tem, modewidth - len);
7124 }
7125 else if (unsignedp && len < HOST_BITS_PER_WIDE_INT)
7126 tem = simplify_and_const_int (NULL_RTX, GET_MODE (x),
7127 simplify_shift_const (NULL_RTX, LSHIFTRT,
7128 GET_MODE (x),
7129 XEXP (x, 0), pos),
7130 ((unsigned HOST_WIDE_INT) 1 << len) - 1);
7131 else
7132 /* Any other cases we can't handle. */
7133 return x;
7134
7135 /* If we couldn't do this for some reason, return the original
7136 expression. */
7137 if (GET_CODE (tem) == CLOBBER)
7138 return x;
7139
7140 return tem;
7141 }
7142 \f
7143 /* X is a SET which contains an assignment of one object into
7144 a part of another (such as a bit-field assignment, STRICT_LOW_PART,
7145 or certain SUBREGS). If possible, convert it into a series of
7146 logical operations.
7147
7148 We half-heartedly support variable positions, but do not at all
7149 support variable lengths. */
7150
7151 static const_rtx
7152 expand_field_assignment (const_rtx x)
7153 {
7154 rtx inner;
7155 rtx pos; /* Always counts from low bit. */
7156 int len;
7157 rtx mask, cleared, masked;
7158 machine_mode compute_mode;
7159
7160 /* Loop until we find something we can't simplify. */
7161 while (1)
7162 {
7163 if (GET_CODE (SET_DEST (x)) == STRICT_LOW_PART
7164 && GET_CODE (XEXP (SET_DEST (x), 0)) == SUBREG)
7165 {
7166 inner = SUBREG_REG (XEXP (SET_DEST (x), 0));
7167 len = GET_MODE_PRECISION (GET_MODE (XEXP (SET_DEST (x), 0)));
7168 pos = GEN_INT (subreg_lsb (XEXP (SET_DEST (x), 0)));
7169 }
7170 else if (GET_CODE (SET_DEST (x)) == ZERO_EXTRACT
7171 && CONST_INT_P (XEXP (SET_DEST (x), 1)))
7172 {
7173 inner = XEXP (SET_DEST (x), 0);
7174 len = INTVAL (XEXP (SET_DEST (x), 1));
7175 pos = XEXP (SET_DEST (x), 2);
7176
7177 /* A constant position should stay within the width of INNER. */
7178 if (CONST_INT_P (pos)
7179 && INTVAL (pos) + len > GET_MODE_PRECISION (GET_MODE (inner)))
7180 break;
7181
7182 if (BITS_BIG_ENDIAN)
7183 {
7184 if (CONST_INT_P (pos))
7185 pos = GEN_INT (GET_MODE_PRECISION (GET_MODE (inner)) - len
7186 - INTVAL (pos));
7187 else if (GET_CODE (pos) == MINUS
7188 && CONST_INT_P (XEXP (pos, 1))
7189 && (INTVAL (XEXP (pos, 1))
7190 == GET_MODE_PRECISION (GET_MODE (inner)) - len))
7191 /* If position is ADJUST - X, new position is X. */
7192 pos = XEXP (pos, 0);
7193 else
7194 {
7195 HOST_WIDE_INT prec = GET_MODE_PRECISION (GET_MODE (inner));
7196 pos = simplify_gen_binary (MINUS, GET_MODE (pos),
7197 gen_int_mode (prec - len,
7198 GET_MODE (pos)),
7199 pos);
7200 }
7201 }
7202 }
7203
7204 /* A SUBREG between two modes that occupy the same numbers of words
7205 can be done by moving the SUBREG to the source. */
7206 else if (GET_CODE (SET_DEST (x)) == SUBREG
7207 /* We need SUBREGs to compute nonzero_bits properly. */
7208 && nonzero_sign_valid
7209 && (((GET_MODE_SIZE (GET_MODE (SET_DEST (x)))
7210 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
7211 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (x))))
7212 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)))
7213 {
7214 x = gen_rtx_SET (SUBREG_REG (SET_DEST (x)),
7215 gen_lowpart
7216 (GET_MODE (SUBREG_REG (SET_DEST (x))),
7217 SET_SRC (x)));
7218 continue;
7219 }
7220 else
7221 break;
7222
7223 while (GET_CODE (inner) == SUBREG && subreg_lowpart_p (inner))
7224 inner = SUBREG_REG (inner);
7225
7226 compute_mode = GET_MODE (inner);
7227
7228 /* Don't attempt bitwise arithmetic on non scalar integer modes. */
7229 if (! SCALAR_INT_MODE_P (compute_mode))
7230 {
7231 machine_mode imode;
7232
7233 /* Don't do anything for vector or complex integral types. */
7234 if (! FLOAT_MODE_P (compute_mode))
7235 break;
7236
7237 /* Try to find an integral mode to pun with. */
7238 imode = mode_for_size (GET_MODE_BITSIZE (compute_mode), MODE_INT, 0);
7239 if (imode == BLKmode)
7240 break;
7241
7242 compute_mode = imode;
7243 inner = gen_lowpart (imode, inner);
7244 }
7245
7246 /* Compute a mask of LEN bits, if we can do this on the host machine. */
7247 if (len >= HOST_BITS_PER_WIDE_INT)
7248 break;
7249
7250 /* Now compute the equivalent expression. Make a copy of INNER
7251 for the SET_DEST in case it is a MEM into which we will substitute;
7252 we don't want shared RTL in that case. */
7253 mask = gen_int_mode (((unsigned HOST_WIDE_INT) 1 << len) - 1,
7254 compute_mode);
7255 cleared = simplify_gen_binary (AND, compute_mode,
7256 simplify_gen_unary (NOT, compute_mode,
7257 simplify_gen_binary (ASHIFT,
7258 compute_mode,
7259 mask, pos),
7260 compute_mode),
7261 inner);
7262 masked = simplify_gen_binary (ASHIFT, compute_mode,
7263 simplify_gen_binary (
7264 AND, compute_mode,
7265 gen_lowpart (compute_mode, SET_SRC (x)),
7266 mask),
7267 pos);
7268
7269 x = gen_rtx_SET (copy_rtx (inner),
7270 simplify_gen_binary (IOR, compute_mode,
7271 cleared, masked));
7272 }
7273
7274 return x;
7275 }
7276 \f
7277 /* Return an RTX for a reference to LEN bits of INNER. If POS_RTX is nonzero,
7278 it is an RTX that represents the (variable) starting position; otherwise,
7279 POS is the (constant) starting bit position. Both are counted from the LSB.
7280
7281 UNSIGNEDP is nonzero for an unsigned reference and zero for a signed one.
7282
7283 IN_DEST is nonzero if this is a reference in the destination of a SET.
7284 This is used when a ZERO_ or SIGN_EXTRACT isn't needed. If nonzero,
7285 a STRICT_LOW_PART will be used, if zero, ZERO_EXTEND or SIGN_EXTEND will
7286 be used.
7287
7288 IN_COMPARE is nonzero if we are in a COMPARE. This means that a
7289 ZERO_EXTRACT should be built even for bits starting at bit 0.
7290
7291 MODE is the desired mode of the result (if IN_DEST == 0).
7292
7293 The result is an RTX for the extraction or NULL_RTX if the target
7294 can't handle it. */
7295
7296 static rtx
7297 make_extraction (machine_mode mode, rtx inner, HOST_WIDE_INT pos,
7298 rtx pos_rtx, unsigned HOST_WIDE_INT len, int unsignedp,
7299 int in_dest, int in_compare)
7300 {
7301 /* This mode describes the size of the storage area
7302 to fetch the overall value from. Within that, we
7303 ignore the POS lowest bits, etc. */
7304 machine_mode is_mode = GET_MODE (inner);
7305 machine_mode inner_mode;
7306 machine_mode wanted_inner_mode;
7307 machine_mode wanted_inner_reg_mode = word_mode;
7308 machine_mode pos_mode = word_mode;
7309 machine_mode extraction_mode = word_mode;
7310 machine_mode tmode = mode_for_size (len, MODE_INT, 1);
7311 rtx new_rtx = 0;
7312 rtx orig_pos_rtx = pos_rtx;
7313 HOST_WIDE_INT orig_pos;
7314
7315 if (pos_rtx && CONST_INT_P (pos_rtx))
7316 pos = INTVAL (pos_rtx), pos_rtx = 0;
7317
7318 if (GET_CODE (inner) == SUBREG && subreg_lowpart_p (inner))
7319 {
7320 /* If going from (subreg:SI (mem:QI ...)) to (mem:QI ...),
7321 consider just the QI as the memory to extract from.
7322 The subreg adds or removes high bits; its mode is
7323 irrelevant to the meaning of this extraction,
7324 since POS and LEN count from the lsb. */
7325 if (MEM_P (SUBREG_REG (inner)))
7326 is_mode = GET_MODE (SUBREG_REG (inner));
7327 inner = SUBREG_REG (inner);
7328 }
7329 else if (GET_CODE (inner) == ASHIFT
7330 && CONST_INT_P (XEXP (inner, 1))
7331 && pos_rtx == 0 && pos == 0
7332 && len > UINTVAL (XEXP (inner, 1)))
7333 {
7334 /* We're extracting the least significant bits of an rtx
7335 (ashift X (const_int C)), where LEN > C. Extract the
7336 least significant (LEN - C) bits of X, giving an rtx
7337 whose mode is MODE, then shift it left C times. */
7338 new_rtx = make_extraction (mode, XEXP (inner, 0),
7339 0, 0, len - INTVAL (XEXP (inner, 1)),
7340 unsignedp, in_dest, in_compare);
7341 if (new_rtx != 0)
7342 return gen_rtx_ASHIFT (mode, new_rtx, XEXP (inner, 1));
7343 }
7344 else if (GET_CODE (inner) == TRUNCATE)
7345 inner = XEXP (inner, 0);
7346
7347 inner_mode = GET_MODE (inner);
7348
7349 /* See if this can be done without an extraction. We never can if the
7350 width of the field is not the same as that of some integer mode. For
7351 registers, we can only avoid the extraction if the position is at the
7352 low-order bit and this is either not in the destination or we have the
7353 appropriate STRICT_LOW_PART operation available.
7354
7355 For MEM, we can avoid an extract if the field starts on an appropriate
7356 boundary and we can change the mode of the memory reference. */
7357
7358 if (tmode != BLKmode
7359 && ((pos_rtx == 0 && (pos % BITS_PER_WORD) == 0
7360 && !MEM_P (inner)
7361 && (inner_mode == tmode
7362 || !REG_P (inner)
7363 || TRULY_NOOP_TRUNCATION_MODES_P (tmode, inner_mode)
7364 || reg_truncated_to_mode (tmode, inner))
7365 && (! in_dest
7366 || (REG_P (inner)
7367 && have_insn_for (STRICT_LOW_PART, tmode))))
7368 || (MEM_P (inner) && pos_rtx == 0
7369 && (pos
7370 % (STRICT_ALIGNMENT ? GET_MODE_ALIGNMENT (tmode)
7371 : BITS_PER_UNIT)) == 0
7372 /* We can't do this if we are widening INNER_MODE (it
7373 may not be aligned, for one thing). */
7374 && GET_MODE_PRECISION (inner_mode) >= GET_MODE_PRECISION (tmode)
7375 && (inner_mode == tmode
7376 || (! mode_dependent_address_p (XEXP (inner, 0),
7377 MEM_ADDR_SPACE (inner))
7378 && ! MEM_VOLATILE_P (inner))))))
7379 {
7380 /* If INNER is a MEM, make a new MEM that encompasses just the desired
7381 field. If the original and current mode are the same, we need not
7382 adjust the offset. Otherwise, we do if bytes big endian.
7383
7384 If INNER is not a MEM, get a piece consisting of just the field
7385 of interest (in this case POS % BITS_PER_WORD must be 0). */
7386
7387 if (MEM_P (inner))
7388 {
7389 HOST_WIDE_INT offset;
7390
7391 /* POS counts from lsb, but make OFFSET count in memory order. */
7392 if (BYTES_BIG_ENDIAN)
7393 offset = (GET_MODE_PRECISION (is_mode) - len - pos) / BITS_PER_UNIT;
7394 else
7395 offset = pos / BITS_PER_UNIT;
7396
7397 new_rtx = adjust_address_nv (inner, tmode, offset);
7398 }
7399 else if (REG_P (inner))
7400 {
7401 if (tmode != inner_mode)
7402 {
7403 /* We can't call gen_lowpart in a DEST since we
7404 always want a SUBREG (see below) and it would sometimes
7405 return a new hard register. */
7406 if (pos || in_dest)
7407 {
7408 HOST_WIDE_INT final_word = pos / BITS_PER_WORD;
7409
7410 if (WORDS_BIG_ENDIAN
7411 && GET_MODE_SIZE (inner_mode) > UNITS_PER_WORD)
7412 final_word = ((GET_MODE_SIZE (inner_mode)
7413 - GET_MODE_SIZE (tmode))
7414 / UNITS_PER_WORD) - final_word;
7415
7416 final_word *= UNITS_PER_WORD;
7417 if (BYTES_BIG_ENDIAN &&
7418 GET_MODE_SIZE (inner_mode) > GET_MODE_SIZE (tmode))
7419 final_word += (GET_MODE_SIZE (inner_mode)
7420 - GET_MODE_SIZE (tmode)) % UNITS_PER_WORD;
7421
7422 /* Avoid creating invalid subregs, for example when
7423 simplifying (x>>32)&255. */
7424 if (!validate_subreg (tmode, inner_mode, inner, final_word))
7425 return NULL_RTX;
7426
7427 new_rtx = gen_rtx_SUBREG (tmode, inner, final_word);
7428 }
7429 else
7430 new_rtx = gen_lowpart (tmode, inner);
7431 }
7432 else
7433 new_rtx = inner;
7434 }
7435 else
7436 new_rtx = force_to_mode (inner, tmode,
7437 len >= HOST_BITS_PER_WIDE_INT
7438 ? ~(unsigned HOST_WIDE_INT) 0
7439 : ((unsigned HOST_WIDE_INT) 1 << len) - 1,
7440 0);
7441
7442 /* If this extraction is going into the destination of a SET,
7443 make a STRICT_LOW_PART unless we made a MEM. */
7444
7445 if (in_dest)
7446 return (MEM_P (new_rtx) ? new_rtx
7447 : (GET_CODE (new_rtx) != SUBREG
7448 ? gen_rtx_CLOBBER (tmode, const0_rtx)
7449 : gen_rtx_STRICT_LOW_PART (VOIDmode, new_rtx)));
7450
7451 if (mode == tmode)
7452 return new_rtx;
7453
7454 if (CONST_SCALAR_INT_P (new_rtx))
7455 return simplify_unary_operation (unsignedp ? ZERO_EXTEND : SIGN_EXTEND,
7456 mode, new_rtx, tmode);
7457
7458 /* If we know that no extraneous bits are set, and that the high
7459 bit is not set, convert the extraction to the cheaper of
7460 sign and zero extension, that are equivalent in these cases. */
7461 if (flag_expensive_optimizations
7462 && (HWI_COMPUTABLE_MODE_P (tmode)
7463 && ((nonzero_bits (new_rtx, tmode)
7464 & ~(((unsigned HOST_WIDE_INT)GET_MODE_MASK (tmode)) >> 1))
7465 == 0)))
7466 {
7467 rtx temp = gen_rtx_ZERO_EXTEND (mode, new_rtx);
7468 rtx temp1 = gen_rtx_SIGN_EXTEND (mode, new_rtx);
7469
7470 /* Prefer ZERO_EXTENSION, since it gives more information to
7471 backends. */
7472 if (set_src_cost (temp, mode, optimize_this_for_speed_p)
7473 <= set_src_cost (temp1, mode, optimize_this_for_speed_p))
7474 return temp;
7475 return temp1;
7476 }
7477
7478 /* Otherwise, sign- or zero-extend unless we already are in the
7479 proper mode. */
7480
7481 return (gen_rtx_fmt_e (unsignedp ? ZERO_EXTEND : SIGN_EXTEND,
7482 mode, new_rtx));
7483 }
7484
7485 /* Unless this is a COMPARE or we have a funny memory reference,
7486 don't do anything with zero-extending field extracts starting at
7487 the low-order bit since they are simple AND operations. */
7488 if (pos_rtx == 0 && pos == 0 && ! in_dest
7489 && ! in_compare && unsignedp)
7490 return 0;
7491
7492 /* Unless INNER is not MEM, reject this if we would be spanning bytes or
7493 if the position is not a constant and the length is not 1. In all
7494 other cases, we would only be going outside our object in cases when
7495 an original shift would have been undefined. */
7496 if (MEM_P (inner)
7497 && ((pos_rtx == 0 && pos + len > GET_MODE_PRECISION (is_mode))
7498 || (pos_rtx != 0 && len != 1)))
7499 return 0;
7500
7501 enum extraction_pattern pattern = (in_dest ? EP_insv
7502 : unsignedp ? EP_extzv : EP_extv);
7503
7504 /* If INNER is not from memory, we want it to have the mode of a register
7505 extraction pattern's structure operand, or word_mode if there is no
7506 such pattern. The same applies to extraction_mode and pos_mode
7507 and their respective operands.
7508
7509 For memory, assume that the desired extraction_mode and pos_mode
7510 are the same as for a register operation, since at present we don't
7511 have named patterns for aligned memory structures. */
7512 struct extraction_insn insn;
7513 if (get_best_reg_extraction_insn (&insn, pattern,
7514 GET_MODE_BITSIZE (inner_mode), mode))
7515 {
7516 wanted_inner_reg_mode = insn.struct_mode;
7517 pos_mode = insn.pos_mode;
7518 extraction_mode = insn.field_mode;
7519 }
7520
7521 /* Never narrow an object, since that might not be safe. */
7522
7523 if (mode != VOIDmode
7524 && GET_MODE_SIZE (extraction_mode) < GET_MODE_SIZE (mode))
7525 extraction_mode = mode;
7526
7527 if (!MEM_P (inner))
7528 wanted_inner_mode = wanted_inner_reg_mode;
7529 else
7530 {
7531 /* Be careful not to go beyond the extracted object and maintain the
7532 natural alignment of the memory. */
7533 wanted_inner_mode = smallest_mode_for_size (len, MODE_INT);
7534 while (pos % GET_MODE_BITSIZE (wanted_inner_mode) + len
7535 > GET_MODE_BITSIZE (wanted_inner_mode))
7536 {
7537 wanted_inner_mode = GET_MODE_WIDER_MODE (wanted_inner_mode);
7538 gcc_assert (wanted_inner_mode != VOIDmode);
7539 }
7540 }
7541
7542 orig_pos = pos;
7543
7544 if (BITS_BIG_ENDIAN)
7545 {
7546 /* POS is passed as if BITS_BIG_ENDIAN == 0, so we need to convert it to
7547 BITS_BIG_ENDIAN style. If position is constant, compute new
7548 position. Otherwise, build subtraction.
7549 Note that POS is relative to the mode of the original argument.
7550 If it's a MEM we need to recompute POS relative to that.
7551 However, if we're extracting from (or inserting into) a register,
7552 we want to recompute POS relative to wanted_inner_mode. */
7553 int width = (MEM_P (inner)
7554 ? GET_MODE_BITSIZE (is_mode)
7555 : GET_MODE_BITSIZE (wanted_inner_mode));
7556
7557 if (pos_rtx == 0)
7558 pos = width - len - pos;
7559 else
7560 pos_rtx
7561 = gen_rtx_MINUS (GET_MODE (pos_rtx),
7562 gen_int_mode (width - len, GET_MODE (pos_rtx)),
7563 pos_rtx);
7564 /* POS may be less than 0 now, but we check for that below.
7565 Note that it can only be less than 0 if !MEM_P (inner). */
7566 }
7567
7568 /* If INNER has a wider mode, and this is a constant extraction, try to
7569 make it smaller and adjust the byte to point to the byte containing
7570 the value. */
7571 if (wanted_inner_mode != VOIDmode
7572 && inner_mode != wanted_inner_mode
7573 && ! pos_rtx
7574 && GET_MODE_SIZE (wanted_inner_mode) < GET_MODE_SIZE (is_mode)
7575 && MEM_P (inner)
7576 && ! mode_dependent_address_p (XEXP (inner, 0), MEM_ADDR_SPACE (inner))
7577 && ! MEM_VOLATILE_P (inner))
7578 {
7579 int offset = 0;
7580
7581 /* The computations below will be correct if the machine is big
7582 endian in both bits and bytes or little endian in bits and bytes.
7583 If it is mixed, we must adjust. */
7584
7585 /* If bytes are big endian and we had a paradoxical SUBREG, we must
7586 adjust OFFSET to compensate. */
7587 if (BYTES_BIG_ENDIAN
7588 && GET_MODE_SIZE (inner_mode) < GET_MODE_SIZE (is_mode))
7589 offset -= GET_MODE_SIZE (is_mode) - GET_MODE_SIZE (inner_mode);
7590
7591 /* We can now move to the desired byte. */
7592 offset += (pos / GET_MODE_BITSIZE (wanted_inner_mode))
7593 * GET_MODE_SIZE (wanted_inner_mode);
7594 pos %= GET_MODE_BITSIZE (wanted_inner_mode);
7595
7596 if (BYTES_BIG_ENDIAN != BITS_BIG_ENDIAN
7597 && is_mode != wanted_inner_mode)
7598 offset = (GET_MODE_SIZE (is_mode)
7599 - GET_MODE_SIZE (wanted_inner_mode) - offset);
7600
7601 inner = adjust_address_nv (inner, wanted_inner_mode, offset);
7602 }
7603
7604 /* If INNER is not memory, get it into the proper mode. If we are changing
7605 its mode, POS must be a constant and smaller than the size of the new
7606 mode. */
7607 else if (!MEM_P (inner))
7608 {
7609 /* On the LHS, don't create paradoxical subregs implicitely truncating
7610 the register unless TRULY_NOOP_TRUNCATION. */
7611 if (in_dest
7612 && !TRULY_NOOP_TRUNCATION_MODES_P (GET_MODE (inner),
7613 wanted_inner_mode))
7614 return NULL_RTX;
7615
7616 if (GET_MODE (inner) != wanted_inner_mode
7617 && (pos_rtx != 0
7618 || orig_pos + len > GET_MODE_BITSIZE (wanted_inner_mode)))
7619 return NULL_RTX;
7620
7621 if (orig_pos < 0)
7622 return NULL_RTX;
7623
7624 inner = force_to_mode (inner, wanted_inner_mode,
7625 pos_rtx
7626 || len + orig_pos >= HOST_BITS_PER_WIDE_INT
7627 ? ~(unsigned HOST_WIDE_INT) 0
7628 : ((((unsigned HOST_WIDE_INT) 1 << len) - 1)
7629 << orig_pos),
7630 0);
7631 }
7632
7633 /* Adjust mode of POS_RTX, if needed. If we want a wider mode, we
7634 have to zero extend. Otherwise, we can just use a SUBREG. */
7635 if (pos_rtx != 0
7636 && GET_MODE_SIZE (pos_mode) > GET_MODE_SIZE (GET_MODE (pos_rtx)))
7637 {
7638 rtx temp = simplify_gen_unary (ZERO_EXTEND, pos_mode, pos_rtx,
7639 GET_MODE (pos_rtx));
7640
7641 /* If we know that no extraneous bits are set, and that the high
7642 bit is not set, convert extraction to cheaper one - either
7643 SIGN_EXTENSION or ZERO_EXTENSION, that are equivalent in these
7644 cases. */
7645 if (flag_expensive_optimizations
7646 && (HWI_COMPUTABLE_MODE_P (GET_MODE (pos_rtx))
7647 && ((nonzero_bits (pos_rtx, GET_MODE (pos_rtx))
7648 & ~(((unsigned HOST_WIDE_INT)
7649 GET_MODE_MASK (GET_MODE (pos_rtx)))
7650 >> 1))
7651 == 0)))
7652 {
7653 rtx temp1 = simplify_gen_unary (SIGN_EXTEND, pos_mode, pos_rtx,
7654 GET_MODE (pos_rtx));
7655
7656 /* Prefer ZERO_EXTENSION, since it gives more information to
7657 backends. */
7658 if (set_src_cost (temp1, pos_mode, optimize_this_for_speed_p)
7659 < set_src_cost (temp, pos_mode, optimize_this_for_speed_p))
7660 temp = temp1;
7661 }
7662 pos_rtx = temp;
7663 }
7664
7665 /* Make POS_RTX unless we already have it and it is correct. If we don't
7666 have a POS_RTX but we do have an ORIG_POS_RTX, the latter must
7667 be a CONST_INT. */
7668 if (pos_rtx == 0 && orig_pos_rtx != 0 && INTVAL (orig_pos_rtx) == pos)
7669 pos_rtx = orig_pos_rtx;
7670
7671 else if (pos_rtx == 0)
7672 pos_rtx = GEN_INT (pos);
7673
7674 /* Make the required operation. See if we can use existing rtx. */
7675 new_rtx = gen_rtx_fmt_eee (unsignedp ? ZERO_EXTRACT : SIGN_EXTRACT,
7676 extraction_mode, inner, GEN_INT (len), pos_rtx);
7677 if (! in_dest)
7678 new_rtx = gen_lowpart (mode, new_rtx);
7679
7680 return new_rtx;
7681 }
7682 \f
7683 /* See if X contains an ASHIFT of COUNT or more bits that can be commuted
7684 with any other operations in X. Return X without that shift if so. */
7685
7686 static rtx
7687 extract_left_shift (rtx x, int count)
7688 {
7689 enum rtx_code code = GET_CODE (x);
7690 machine_mode mode = GET_MODE (x);
7691 rtx tem;
7692
7693 switch (code)
7694 {
7695 case ASHIFT:
7696 /* This is the shift itself. If it is wide enough, we will return
7697 either the value being shifted if the shift count is equal to
7698 COUNT or a shift for the difference. */
7699 if (CONST_INT_P (XEXP (x, 1))
7700 && INTVAL (XEXP (x, 1)) >= count)
7701 return simplify_shift_const (NULL_RTX, ASHIFT, mode, XEXP (x, 0),
7702 INTVAL (XEXP (x, 1)) - count);
7703 break;
7704
7705 case NEG: case NOT:
7706 if ((tem = extract_left_shift (XEXP (x, 0), count)) != 0)
7707 return simplify_gen_unary (code, mode, tem, mode);
7708
7709 break;
7710
7711 case PLUS: case IOR: case XOR: case AND:
7712 /* If we can safely shift this constant and we find the inner shift,
7713 make a new operation. */
7714 if (CONST_INT_P (XEXP (x, 1))
7715 && (UINTVAL (XEXP (x, 1))
7716 & ((((unsigned HOST_WIDE_INT) 1 << count)) - 1)) == 0
7717 && (tem = extract_left_shift (XEXP (x, 0), count)) != 0)
7718 {
7719 HOST_WIDE_INT val = INTVAL (XEXP (x, 1)) >> count;
7720 return simplify_gen_binary (code, mode, tem,
7721 gen_int_mode (val, mode));
7722 }
7723 break;
7724
7725 default:
7726 break;
7727 }
7728
7729 return 0;
7730 }
7731 \f
7732 /* Look at the expression rooted at X. Look for expressions
7733 equivalent to ZERO_EXTRACT, SIGN_EXTRACT, ZERO_EXTEND, SIGN_EXTEND.
7734 Form these expressions.
7735
7736 Return the new rtx, usually just X.
7737
7738 Also, for machines like the VAX that don't have logical shift insns,
7739 try to convert logical to arithmetic shift operations in cases where
7740 they are equivalent. This undoes the canonicalizations to logical
7741 shifts done elsewhere.
7742
7743 We try, as much as possible, to re-use rtl expressions to save memory.
7744
7745 IN_CODE says what kind of expression we are processing. Normally, it is
7746 SET. In a memory address it is MEM. When processing the arguments of
7747 a comparison or a COMPARE against zero, it is COMPARE. */
7748
7749 rtx
7750 make_compound_operation (rtx x, enum rtx_code in_code)
7751 {
7752 enum rtx_code code = GET_CODE (x);
7753 machine_mode mode = GET_MODE (x);
7754 int mode_width = GET_MODE_PRECISION (mode);
7755 rtx rhs, lhs;
7756 enum rtx_code next_code;
7757 int i, j;
7758 rtx new_rtx = 0;
7759 rtx tem;
7760 const char *fmt;
7761
7762 /* Select the code to be used in recursive calls. Once we are inside an
7763 address, we stay there. If we have a comparison, set to COMPARE,
7764 but once inside, go back to our default of SET. */
7765
7766 next_code = (code == MEM ? MEM
7767 : ((code == COMPARE || COMPARISON_P (x))
7768 && XEXP (x, 1) == const0_rtx) ? COMPARE
7769 : in_code == COMPARE ? SET : in_code);
7770
7771 /* Process depending on the code of this operation. If NEW is set
7772 nonzero, it will be returned. */
7773
7774 switch (code)
7775 {
7776 case ASHIFT:
7777 /* Convert shifts by constants into multiplications if inside
7778 an address. */
7779 if (in_code == MEM && CONST_INT_P (XEXP (x, 1))
7780 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT
7781 && INTVAL (XEXP (x, 1)) >= 0
7782 && SCALAR_INT_MODE_P (mode))
7783 {
7784 HOST_WIDE_INT count = INTVAL (XEXP (x, 1));
7785 HOST_WIDE_INT multval = (HOST_WIDE_INT) 1 << count;
7786
7787 new_rtx = make_compound_operation (XEXP (x, 0), next_code);
7788 if (GET_CODE (new_rtx) == NEG)
7789 {
7790 new_rtx = XEXP (new_rtx, 0);
7791 multval = -multval;
7792 }
7793 multval = trunc_int_for_mode (multval, mode);
7794 new_rtx = gen_rtx_MULT (mode, new_rtx, gen_int_mode (multval, mode));
7795 }
7796 break;
7797
7798 case PLUS:
7799 lhs = XEXP (x, 0);
7800 rhs = XEXP (x, 1);
7801 lhs = make_compound_operation (lhs, next_code);
7802 rhs = make_compound_operation (rhs, next_code);
7803 if (GET_CODE (lhs) == MULT && GET_CODE (XEXP (lhs, 0)) == NEG
7804 && SCALAR_INT_MODE_P (mode))
7805 {
7806 tem = simplify_gen_binary (MULT, mode, XEXP (XEXP (lhs, 0), 0),
7807 XEXP (lhs, 1));
7808 new_rtx = simplify_gen_binary (MINUS, mode, rhs, tem);
7809 }
7810 else if (GET_CODE (lhs) == MULT
7811 && (CONST_INT_P (XEXP (lhs, 1)) && INTVAL (XEXP (lhs, 1)) < 0))
7812 {
7813 tem = simplify_gen_binary (MULT, mode, XEXP (lhs, 0),
7814 simplify_gen_unary (NEG, mode,
7815 XEXP (lhs, 1),
7816 mode));
7817 new_rtx = simplify_gen_binary (MINUS, mode, rhs, tem);
7818 }
7819 else
7820 {
7821 SUBST (XEXP (x, 0), lhs);
7822 SUBST (XEXP (x, 1), rhs);
7823 goto maybe_swap;
7824 }
7825 x = gen_lowpart (mode, new_rtx);
7826 goto maybe_swap;
7827
7828 case MINUS:
7829 lhs = XEXP (x, 0);
7830 rhs = XEXP (x, 1);
7831 lhs = make_compound_operation (lhs, next_code);
7832 rhs = make_compound_operation (rhs, next_code);
7833 if (GET_CODE (rhs) == MULT && GET_CODE (XEXP (rhs, 0)) == NEG
7834 && SCALAR_INT_MODE_P (mode))
7835 {
7836 tem = simplify_gen_binary (MULT, mode, XEXP (XEXP (rhs, 0), 0),
7837 XEXP (rhs, 1));
7838 new_rtx = simplify_gen_binary (PLUS, mode, tem, lhs);
7839 }
7840 else if (GET_CODE (rhs) == MULT
7841 && (CONST_INT_P (XEXP (rhs, 1)) && INTVAL (XEXP (rhs, 1)) < 0))
7842 {
7843 tem = simplify_gen_binary (MULT, mode, XEXP (rhs, 0),
7844 simplify_gen_unary (NEG, mode,
7845 XEXP (rhs, 1),
7846 mode));
7847 new_rtx = simplify_gen_binary (PLUS, mode, tem, lhs);
7848 }
7849 else
7850 {
7851 SUBST (XEXP (x, 0), lhs);
7852 SUBST (XEXP (x, 1), rhs);
7853 return x;
7854 }
7855 return gen_lowpart (mode, new_rtx);
7856
7857 case AND:
7858 /* If the second operand is not a constant, we can't do anything
7859 with it. */
7860 if (!CONST_INT_P (XEXP (x, 1)))
7861 break;
7862
7863 /* If the constant is a power of two minus one and the first operand
7864 is a logical right shift, make an extraction. */
7865 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
7866 && (i = exact_log2 (UINTVAL (XEXP (x, 1)) + 1)) >= 0)
7867 {
7868 new_rtx = make_compound_operation (XEXP (XEXP (x, 0), 0), next_code);
7869 new_rtx = make_extraction (mode, new_rtx, 0, XEXP (XEXP (x, 0), 1), i, 1,
7870 0, in_code == COMPARE);
7871 }
7872
7873 /* Same as previous, but for (subreg (lshiftrt ...)) in first op. */
7874 else if (GET_CODE (XEXP (x, 0)) == SUBREG
7875 && subreg_lowpart_p (XEXP (x, 0))
7876 && GET_CODE (SUBREG_REG (XEXP (x, 0))) == LSHIFTRT
7877 && (i = exact_log2 (UINTVAL (XEXP (x, 1)) + 1)) >= 0)
7878 {
7879 new_rtx = make_compound_operation (XEXP (SUBREG_REG (XEXP (x, 0)), 0),
7880 next_code);
7881 new_rtx = make_extraction (GET_MODE (SUBREG_REG (XEXP (x, 0))), new_rtx, 0,
7882 XEXP (SUBREG_REG (XEXP (x, 0)), 1), i, 1,
7883 0, in_code == COMPARE);
7884
7885 /* If that didn't give anything, see if the AND simplifies on
7886 its own. */
7887 if (!new_rtx && i >= 0)
7888 {
7889 new_rtx = make_compound_operation (XEXP (x, 0), next_code);
7890 new_rtx = make_extraction (mode, new_rtx, 0, NULL_RTX, i, 1,
7891 0, in_code == COMPARE);
7892 }
7893 }
7894 /* Same as previous, but for (xor/ior (lshiftrt...) (lshiftrt...)). */
7895 else if ((GET_CODE (XEXP (x, 0)) == XOR
7896 || GET_CODE (XEXP (x, 0)) == IOR)
7897 && GET_CODE (XEXP (XEXP (x, 0), 0)) == LSHIFTRT
7898 && GET_CODE (XEXP (XEXP (x, 0), 1)) == LSHIFTRT
7899 && (i = exact_log2 (UINTVAL (XEXP (x, 1)) + 1)) >= 0)
7900 {
7901 /* Apply the distributive law, and then try to make extractions. */
7902 new_rtx = gen_rtx_fmt_ee (GET_CODE (XEXP (x, 0)), mode,
7903 gen_rtx_AND (mode, XEXP (XEXP (x, 0), 0),
7904 XEXP (x, 1)),
7905 gen_rtx_AND (mode, XEXP (XEXP (x, 0), 1),
7906 XEXP (x, 1)));
7907 new_rtx = make_compound_operation (new_rtx, in_code);
7908 }
7909
7910 /* If we are have (and (rotate X C) M) and C is larger than the number
7911 of bits in M, this is an extraction. */
7912
7913 else if (GET_CODE (XEXP (x, 0)) == ROTATE
7914 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
7915 && (i = exact_log2 (UINTVAL (XEXP (x, 1)) + 1)) >= 0
7916 && i <= INTVAL (XEXP (XEXP (x, 0), 1)))
7917 {
7918 new_rtx = make_compound_operation (XEXP (XEXP (x, 0), 0), next_code);
7919 new_rtx = make_extraction (mode, new_rtx,
7920 (GET_MODE_PRECISION (mode)
7921 - INTVAL (XEXP (XEXP (x, 0), 1))),
7922 NULL_RTX, i, 1, 0, in_code == COMPARE);
7923 }
7924
7925 /* On machines without logical shifts, if the operand of the AND is
7926 a logical shift and our mask turns off all the propagated sign
7927 bits, we can replace the logical shift with an arithmetic shift. */
7928 else if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
7929 && !have_insn_for (LSHIFTRT, mode)
7930 && have_insn_for (ASHIFTRT, mode)
7931 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
7932 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
7933 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT
7934 && mode_width <= HOST_BITS_PER_WIDE_INT)
7935 {
7936 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
7937
7938 mask >>= INTVAL (XEXP (XEXP (x, 0), 1));
7939 if ((INTVAL (XEXP (x, 1)) & ~mask) == 0)
7940 SUBST (XEXP (x, 0),
7941 gen_rtx_ASHIFTRT (mode,
7942 make_compound_operation
7943 (XEXP (XEXP (x, 0), 0), next_code),
7944 XEXP (XEXP (x, 0), 1)));
7945 }
7946
7947 /* If the constant is one less than a power of two, this might be
7948 representable by an extraction even if no shift is present.
7949 If it doesn't end up being a ZERO_EXTEND, we will ignore it unless
7950 we are in a COMPARE. */
7951 else if ((i = exact_log2 (UINTVAL (XEXP (x, 1)) + 1)) >= 0)
7952 new_rtx = make_extraction (mode,
7953 make_compound_operation (XEXP (x, 0),
7954 next_code),
7955 0, NULL_RTX, i, 1, 0, in_code == COMPARE);
7956
7957 /* If we are in a comparison and this is an AND with a power of two,
7958 convert this into the appropriate bit extract. */
7959 else if (in_code == COMPARE
7960 && (i = exact_log2 (UINTVAL (XEXP (x, 1)))) >= 0)
7961 new_rtx = make_extraction (mode,
7962 make_compound_operation (XEXP (x, 0),
7963 next_code),
7964 i, NULL_RTX, 1, 1, 0, 1);
7965
7966 break;
7967
7968 case LSHIFTRT:
7969 /* If the sign bit is known to be zero, replace this with an
7970 arithmetic shift. */
7971 if (have_insn_for (ASHIFTRT, mode)
7972 && ! have_insn_for (LSHIFTRT, mode)
7973 && mode_width <= HOST_BITS_PER_WIDE_INT
7974 && (nonzero_bits (XEXP (x, 0), mode) & (1 << (mode_width - 1))) == 0)
7975 {
7976 new_rtx = gen_rtx_ASHIFTRT (mode,
7977 make_compound_operation (XEXP (x, 0),
7978 next_code),
7979 XEXP (x, 1));
7980 break;
7981 }
7982
7983 /* ... fall through ... */
7984
7985 case ASHIFTRT:
7986 lhs = XEXP (x, 0);
7987 rhs = XEXP (x, 1);
7988
7989 /* If we have (ashiftrt (ashift foo C1) C2) with C2 >= C1,
7990 this is a SIGN_EXTRACT. */
7991 if (CONST_INT_P (rhs)
7992 && GET_CODE (lhs) == ASHIFT
7993 && CONST_INT_P (XEXP (lhs, 1))
7994 && INTVAL (rhs) >= INTVAL (XEXP (lhs, 1))
7995 && INTVAL (XEXP (lhs, 1)) >= 0
7996 && INTVAL (rhs) < mode_width)
7997 {
7998 new_rtx = make_compound_operation (XEXP (lhs, 0), next_code);
7999 new_rtx = make_extraction (mode, new_rtx,
8000 INTVAL (rhs) - INTVAL (XEXP (lhs, 1)),
8001 NULL_RTX, mode_width - INTVAL (rhs),
8002 code == LSHIFTRT, 0, in_code == COMPARE);
8003 break;
8004 }
8005
8006 /* See if we have operations between an ASHIFTRT and an ASHIFT.
8007 If so, try to merge the shifts into a SIGN_EXTEND. We could
8008 also do this for some cases of SIGN_EXTRACT, but it doesn't
8009 seem worth the effort; the case checked for occurs on Alpha. */
8010
8011 if (!OBJECT_P (lhs)
8012 && ! (GET_CODE (lhs) == SUBREG
8013 && (OBJECT_P (SUBREG_REG (lhs))))
8014 && CONST_INT_P (rhs)
8015 && INTVAL (rhs) < HOST_BITS_PER_WIDE_INT
8016 && INTVAL (rhs) < mode_width
8017 && (new_rtx = extract_left_shift (lhs, INTVAL (rhs))) != 0)
8018 new_rtx = make_extraction (mode, make_compound_operation (new_rtx, next_code),
8019 0, NULL_RTX, mode_width - INTVAL (rhs),
8020 code == LSHIFTRT, 0, in_code == COMPARE);
8021
8022 break;
8023
8024 case SUBREG:
8025 /* Call ourselves recursively on the inner expression. If we are
8026 narrowing the object and it has a different RTL code from
8027 what it originally did, do this SUBREG as a force_to_mode. */
8028 {
8029 rtx inner = SUBREG_REG (x), simplified;
8030 enum rtx_code subreg_code = in_code;
8031
8032 /* If in_code is COMPARE, it isn't always safe to pass it through
8033 to the recursive make_compound_operation call. */
8034 if (subreg_code == COMPARE
8035 && (!subreg_lowpart_p (x)
8036 || GET_CODE (inner) == SUBREG
8037 /* (subreg:SI (and:DI (reg:DI) (const_int 0x800000000)) 0)
8038 is (const_int 0), rather than
8039 (subreg:SI (lshiftrt:DI (reg:DI) (const_int 35)) 0). */
8040 || (GET_CODE (inner) == AND
8041 && CONST_INT_P (XEXP (inner, 1))
8042 && GET_MODE_SIZE (mode) < GET_MODE_SIZE (GET_MODE (inner))
8043 && exact_log2 (UINTVAL (XEXP (inner, 1)))
8044 >= GET_MODE_BITSIZE (mode))))
8045 subreg_code = SET;
8046
8047 tem = make_compound_operation (inner, subreg_code);
8048
8049 simplified
8050 = simplify_subreg (mode, tem, GET_MODE (inner), SUBREG_BYTE (x));
8051 if (simplified)
8052 tem = simplified;
8053
8054 if (GET_CODE (tem) != GET_CODE (inner)
8055 && GET_MODE_SIZE (mode) < GET_MODE_SIZE (GET_MODE (inner))
8056 && subreg_lowpart_p (x))
8057 {
8058 rtx newer
8059 = force_to_mode (tem, mode, ~(unsigned HOST_WIDE_INT) 0, 0);
8060
8061 /* If we have something other than a SUBREG, we might have
8062 done an expansion, so rerun ourselves. */
8063 if (GET_CODE (newer) != SUBREG)
8064 newer = make_compound_operation (newer, in_code);
8065
8066 /* force_to_mode can expand compounds. If it just re-expanded the
8067 compound, use gen_lowpart to convert to the desired mode. */
8068 if (rtx_equal_p (newer, x)
8069 /* Likewise if it re-expanded the compound only partially.
8070 This happens for SUBREG of ZERO_EXTRACT if they extract
8071 the same number of bits. */
8072 || (GET_CODE (newer) == SUBREG
8073 && (GET_CODE (SUBREG_REG (newer)) == LSHIFTRT
8074 || GET_CODE (SUBREG_REG (newer)) == ASHIFTRT)
8075 && GET_CODE (inner) == AND
8076 && rtx_equal_p (SUBREG_REG (newer), XEXP (inner, 0))))
8077 return gen_lowpart (GET_MODE (x), tem);
8078
8079 return newer;
8080 }
8081
8082 if (simplified)
8083 return tem;
8084 }
8085 break;
8086
8087 default:
8088 break;
8089 }
8090
8091 if (new_rtx)
8092 {
8093 x = gen_lowpart (mode, new_rtx);
8094 code = GET_CODE (x);
8095 }
8096
8097 /* Now recursively process each operand of this operation. We need to
8098 handle ZERO_EXTEND specially so that we don't lose track of the
8099 inner mode. */
8100 if (GET_CODE (x) == ZERO_EXTEND)
8101 {
8102 new_rtx = make_compound_operation (XEXP (x, 0), next_code);
8103 tem = simplify_const_unary_operation (ZERO_EXTEND, GET_MODE (x),
8104 new_rtx, GET_MODE (XEXP (x, 0)));
8105 if (tem)
8106 return tem;
8107 SUBST (XEXP (x, 0), new_rtx);
8108 return x;
8109 }
8110
8111 fmt = GET_RTX_FORMAT (code);
8112 for (i = 0; i < GET_RTX_LENGTH (code); i++)
8113 if (fmt[i] == 'e')
8114 {
8115 new_rtx = make_compound_operation (XEXP (x, i), next_code);
8116 SUBST (XEXP (x, i), new_rtx);
8117 }
8118 else if (fmt[i] == 'E')
8119 for (j = 0; j < XVECLEN (x, i); j++)
8120 {
8121 new_rtx = make_compound_operation (XVECEXP (x, i, j), next_code);
8122 SUBST (XVECEXP (x, i, j), new_rtx);
8123 }
8124
8125 maybe_swap:
8126 /* If this is a commutative operation, the changes to the operands
8127 may have made it noncanonical. */
8128 if (COMMUTATIVE_ARITH_P (x)
8129 && swap_commutative_operands_p (XEXP (x, 0), XEXP (x, 1)))
8130 {
8131 tem = XEXP (x, 0);
8132 SUBST (XEXP (x, 0), XEXP (x, 1));
8133 SUBST (XEXP (x, 1), tem);
8134 }
8135
8136 return x;
8137 }
8138 \f
8139 /* Given M see if it is a value that would select a field of bits
8140 within an item, but not the entire word. Return -1 if not.
8141 Otherwise, return the starting position of the field, where 0 is the
8142 low-order bit.
8143
8144 *PLEN is set to the length of the field. */
8145
8146 static int
8147 get_pos_from_mask (unsigned HOST_WIDE_INT m, unsigned HOST_WIDE_INT *plen)
8148 {
8149 /* Get the bit number of the first 1 bit from the right, -1 if none. */
8150 int pos = m ? ctz_hwi (m) : -1;
8151 int len = 0;
8152
8153 if (pos >= 0)
8154 /* Now shift off the low-order zero bits and see if we have a
8155 power of two minus 1. */
8156 len = exact_log2 ((m >> pos) + 1);
8157
8158 if (len <= 0)
8159 pos = -1;
8160
8161 *plen = len;
8162 return pos;
8163 }
8164 \f
8165 /* If X refers to a register that equals REG in value, replace these
8166 references with REG. */
8167 static rtx
8168 canon_reg_for_combine (rtx x, rtx reg)
8169 {
8170 rtx op0, op1, op2;
8171 const char *fmt;
8172 int i;
8173 bool copied;
8174
8175 enum rtx_code code = GET_CODE (x);
8176 switch (GET_RTX_CLASS (code))
8177 {
8178 case RTX_UNARY:
8179 op0 = canon_reg_for_combine (XEXP (x, 0), reg);
8180 if (op0 != XEXP (x, 0))
8181 return simplify_gen_unary (GET_CODE (x), GET_MODE (x), op0,
8182 GET_MODE (reg));
8183 break;
8184
8185 case RTX_BIN_ARITH:
8186 case RTX_COMM_ARITH:
8187 op0 = canon_reg_for_combine (XEXP (x, 0), reg);
8188 op1 = canon_reg_for_combine (XEXP (x, 1), reg);
8189 if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
8190 return simplify_gen_binary (GET_CODE (x), GET_MODE (x), op0, op1);
8191 break;
8192
8193 case RTX_COMPARE:
8194 case RTX_COMM_COMPARE:
8195 op0 = canon_reg_for_combine (XEXP (x, 0), reg);
8196 op1 = canon_reg_for_combine (XEXP (x, 1), reg);
8197 if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
8198 return simplify_gen_relational (GET_CODE (x), GET_MODE (x),
8199 GET_MODE (op0), op0, op1);
8200 break;
8201
8202 case RTX_TERNARY:
8203 case RTX_BITFIELD_OPS:
8204 op0 = canon_reg_for_combine (XEXP (x, 0), reg);
8205 op1 = canon_reg_for_combine (XEXP (x, 1), reg);
8206 op2 = canon_reg_for_combine (XEXP (x, 2), reg);
8207 if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1) || op2 != XEXP (x, 2))
8208 return simplify_gen_ternary (GET_CODE (x), GET_MODE (x),
8209 GET_MODE (op0), op0, op1, op2);
8210
8211 case RTX_OBJ:
8212 if (REG_P (x))
8213 {
8214 if (rtx_equal_p (get_last_value (reg), x)
8215 || rtx_equal_p (reg, get_last_value (x)))
8216 return reg;
8217 else
8218 break;
8219 }
8220
8221 /* fall through */
8222
8223 default:
8224 fmt = GET_RTX_FORMAT (code);
8225 copied = false;
8226 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
8227 if (fmt[i] == 'e')
8228 {
8229 rtx op = canon_reg_for_combine (XEXP (x, i), reg);
8230 if (op != XEXP (x, i))
8231 {
8232 if (!copied)
8233 {
8234 copied = true;
8235 x = copy_rtx (x);
8236 }
8237 XEXP (x, i) = op;
8238 }
8239 }
8240 else if (fmt[i] == 'E')
8241 {
8242 int j;
8243 for (j = 0; j < XVECLEN (x, i); j++)
8244 {
8245 rtx op = canon_reg_for_combine (XVECEXP (x, i, j), reg);
8246 if (op != XVECEXP (x, i, j))
8247 {
8248 if (!copied)
8249 {
8250 copied = true;
8251 x = copy_rtx (x);
8252 }
8253 XVECEXP (x, i, j) = op;
8254 }
8255 }
8256 }
8257
8258 break;
8259 }
8260
8261 return x;
8262 }
8263
8264 /* Return X converted to MODE. If the value is already truncated to
8265 MODE we can just return a subreg even though in the general case we
8266 would need an explicit truncation. */
8267
8268 static rtx
8269 gen_lowpart_or_truncate (machine_mode mode, rtx x)
8270 {
8271 if (!CONST_INT_P (x)
8272 && GET_MODE_SIZE (mode) < GET_MODE_SIZE (GET_MODE (x))
8273 && !TRULY_NOOP_TRUNCATION_MODES_P (mode, GET_MODE (x))
8274 && !(REG_P (x) && reg_truncated_to_mode (mode, x)))
8275 {
8276 /* Bit-cast X into an integer mode. */
8277 if (!SCALAR_INT_MODE_P (GET_MODE (x)))
8278 x = gen_lowpart (int_mode_for_mode (GET_MODE (x)), x);
8279 x = simplify_gen_unary (TRUNCATE, int_mode_for_mode (mode),
8280 x, GET_MODE (x));
8281 }
8282
8283 return gen_lowpart (mode, x);
8284 }
8285
8286 /* See if X can be simplified knowing that we will only refer to it in
8287 MODE and will only refer to those bits that are nonzero in MASK.
8288 If other bits are being computed or if masking operations are done
8289 that select a superset of the bits in MASK, they can sometimes be
8290 ignored.
8291
8292 Return a possibly simplified expression, but always convert X to
8293 MODE. If X is a CONST_INT, AND the CONST_INT with MASK.
8294
8295 If JUST_SELECT is nonzero, don't optimize by noticing that bits in MASK
8296 are all off in X. This is used when X will be complemented, by either
8297 NOT, NEG, or XOR. */
8298
8299 static rtx
8300 force_to_mode (rtx x, machine_mode mode, unsigned HOST_WIDE_INT mask,
8301 int just_select)
8302 {
8303 enum rtx_code code = GET_CODE (x);
8304 int next_select = just_select || code == XOR || code == NOT || code == NEG;
8305 machine_mode op_mode;
8306 unsigned HOST_WIDE_INT fuller_mask, nonzero;
8307 rtx op0, op1, temp;
8308
8309 /* If this is a CALL or ASM_OPERANDS, don't do anything. Some of the
8310 code below will do the wrong thing since the mode of such an
8311 expression is VOIDmode.
8312
8313 Also do nothing if X is a CLOBBER; this can happen if X was
8314 the return value from a call to gen_lowpart. */
8315 if (code == CALL || code == ASM_OPERANDS || code == CLOBBER)
8316 return x;
8317
8318 /* We want to perform the operation in its present mode unless we know
8319 that the operation is valid in MODE, in which case we do the operation
8320 in MODE. */
8321 op_mode = ((GET_MODE_CLASS (mode) == GET_MODE_CLASS (GET_MODE (x))
8322 && have_insn_for (code, mode))
8323 ? mode : GET_MODE (x));
8324
8325 /* It is not valid to do a right-shift in a narrower mode
8326 than the one it came in with. */
8327 if ((code == LSHIFTRT || code == ASHIFTRT)
8328 && GET_MODE_PRECISION (mode) < GET_MODE_PRECISION (GET_MODE (x)))
8329 op_mode = GET_MODE (x);
8330
8331 /* Truncate MASK to fit OP_MODE. */
8332 if (op_mode)
8333 mask &= GET_MODE_MASK (op_mode);
8334
8335 /* When we have an arithmetic operation, or a shift whose count we
8336 do not know, we need to assume that all bits up to the highest-order
8337 bit in MASK will be needed. This is how we form such a mask. */
8338 if (mask & ((unsigned HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT - 1)))
8339 fuller_mask = ~(unsigned HOST_WIDE_INT) 0;
8340 else
8341 fuller_mask = (((unsigned HOST_WIDE_INT) 1 << (floor_log2 (mask) + 1))
8342 - 1);
8343
8344 /* Determine what bits of X are guaranteed to be (non)zero. */
8345 nonzero = nonzero_bits (x, mode);
8346
8347 /* If none of the bits in X are needed, return a zero. */
8348 if (!just_select && (nonzero & mask) == 0 && !side_effects_p (x))
8349 x = const0_rtx;
8350
8351 /* If X is a CONST_INT, return a new one. Do this here since the
8352 test below will fail. */
8353 if (CONST_INT_P (x))
8354 {
8355 if (SCALAR_INT_MODE_P (mode))
8356 return gen_int_mode (INTVAL (x) & mask, mode);
8357 else
8358 {
8359 x = GEN_INT (INTVAL (x) & mask);
8360 return gen_lowpart_common (mode, x);
8361 }
8362 }
8363
8364 /* If X is narrower than MODE and we want all the bits in X's mode, just
8365 get X in the proper mode. */
8366 if (GET_MODE_SIZE (GET_MODE (x)) < GET_MODE_SIZE (mode)
8367 && (GET_MODE_MASK (GET_MODE (x)) & ~mask) == 0)
8368 return gen_lowpart (mode, x);
8369
8370 /* We can ignore the effect of a SUBREG if it narrows the mode or
8371 if the constant masks to zero all the bits the mode doesn't have. */
8372 if (GET_CODE (x) == SUBREG
8373 && subreg_lowpart_p (x)
8374 && ((GET_MODE_SIZE (GET_MODE (x))
8375 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
8376 || (0 == (mask
8377 & GET_MODE_MASK (GET_MODE (x))
8378 & ~GET_MODE_MASK (GET_MODE (SUBREG_REG (x)))))))
8379 return force_to_mode (SUBREG_REG (x), mode, mask, next_select);
8380
8381 /* The arithmetic simplifications here only work for scalar integer modes. */
8382 if (!SCALAR_INT_MODE_P (mode) || !SCALAR_INT_MODE_P (GET_MODE (x)))
8383 return gen_lowpart_or_truncate (mode, x);
8384
8385 switch (code)
8386 {
8387 case CLOBBER:
8388 /* If X is a (clobber (const_int)), return it since we know we are
8389 generating something that won't match. */
8390 return x;
8391
8392 case SIGN_EXTEND:
8393 case ZERO_EXTEND:
8394 case ZERO_EXTRACT:
8395 case SIGN_EXTRACT:
8396 x = expand_compound_operation (x);
8397 if (GET_CODE (x) != code)
8398 return force_to_mode (x, mode, mask, next_select);
8399 break;
8400
8401 case TRUNCATE:
8402 /* Similarly for a truncate. */
8403 return force_to_mode (XEXP (x, 0), mode, mask, next_select);
8404
8405 case AND:
8406 /* If this is an AND with a constant, convert it into an AND
8407 whose constant is the AND of that constant with MASK. If it
8408 remains an AND of MASK, delete it since it is redundant. */
8409
8410 if (CONST_INT_P (XEXP (x, 1)))
8411 {
8412 x = simplify_and_const_int (x, op_mode, XEXP (x, 0),
8413 mask & INTVAL (XEXP (x, 1)));
8414
8415 /* If X is still an AND, see if it is an AND with a mask that
8416 is just some low-order bits. If so, and it is MASK, we don't
8417 need it. */
8418
8419 if (GET_CODE (x) == AND && CONST_INT_P (XEXP (x, 1))
8420 && ((INTVAL (XEXP (x, 1)) & GET_MODE_MASK (GET_MODE (x)))
8421 == mask))
8422 x = XEXP (x, 0);
8423
8424 /* If it remains an AND, try making another AND with the bits
8425 in the mode mask that aren't in MASK turned on. If the
8426 constant in the AND is wide enough, this might make a
8427 cheaper constant. */
8428
8429 if (GET_CODE (x) == AND && CONST_INT_P (XEXP (x, 1))
8430 && GET_MODE_MASK (GET_MODE (x)) != mask
8431 && HWI_COMPUTABLE_MODE_P (GET_MODE (x)))
8432 {
8433 unsigned HOST_WIDE_INT cval
8434 = UINTVAL (XEXP (x, 1))
8435 | (GET_MODE_MASK (GET_MODE (x)) & ~mask);
8436 rtx y;
8437
8438 y = simplify_gen_binary (AND, GET_MODE (x), XEXP (x, 0),
8439 gen_int_mode (cval, GET_MODE (x)));
8440 if (set_src_cost (y, GET_MODE (x), optimize_this_for_speed_p)
8441 < set_src_cost (x, GET_MODE (x), optimize_this_for_speed_p))
8442 x = y;
8443 }
8444
8445 break;
8446 }
8447
8448 goto binop;
8449
8450 case PLUS:
8451 /* In (and (plus FOO C1) M), if M is a mask that just turns off
8452 low-order bits (as in an alignment operation) and FOO is already
8453 aligned to that boundary, mask C1 to that boundary as well.
8454 This may eliminate that PLUS and, later, the AND. */
8455
8456 {
8457 unsigned int width = GET_MODE_PRECISION (mode);
8458 unsigned HOST_WIDE_INT smask = mask;
8459
8460 /* If MODE is narrower than HOST_WIDE_INT and mask is a negative
8461 number, sign extend it. */
8462
8463 if (width < HOST_BITS_PER_WIDE_INT
8464 && (smask & (HOST_WIDE_INT_1U << (width - 1))) != 0)
8465 smask |= HOST_WIDE_INT_M1U << width;
8466
8467 if (CONST_INT_P (XEXP (x, 1))
8468 && exact_log2 (- smask) >= 0
8469 && (nonzero_bits (XEXP (x, 0), mode) & ~smask) == 0
8470 && (INTVAL (XEXP (x, 1)) & ~smask) != 0)
8471 return force_to_mode (plus_constant (GET_MODE (x), XEXP (x, 0),
8472 (INTVAL (XEXP (x, 1)) & smask)),
8473 mode, smask, next_select);
8474 }
8475
8476 /* ... fall through ... */
8477
8478 case MULT:
8479 /* Substituting into the operands of a widening MULT is not likely to
8480 create RTL matching a machine insn. */
8481 if (code == MULT
8482 && (GET_CODE (XEXP (x, 0)) == ZERO_EXTEND
8483 || GET_CODE (XEXP (x, 0)) == SIGN_EXTEND)
8484 && (GET_CODE (XEXP (x, 1)) == ZERO_EXTEND
8485 || GET_CODE (XEXP (x, 1)) == SIGN_EXTEND)
8486 && REG_P (XEXP (XEXP (x, 0), 0))
8487 && REG_P (XEXP (XEXP (x, 1), 0)))
8488 return gen_lowpart_or_truncate (mode, x);
8489
8490 /* For PLUS, MINUS and MULT, we need any bits less significant than the
8491 most significant bit in MASK since carries from those bits will
8492 affect the bits we are interested in. */
8493 mask = fuller_mask;
8494 goto binop;
8495
8496 case MINUS:
8497 /* If X is (minus C Y) where C's least set bit is larger than any bit
8498 in the mask, then we may replace with (neg Y). */
8499 if (CONST_INT_P (XEXP (x, 0))
8500 && ((UINTVAL (XEXP (x, 0)) & -UINTVAL (XEXP (x, 0))) > mask))
8501 {
8502 x = simplify_gen_unary (NEG, GET_MODE (x), XEXP (x, 1),
8503 GET_MODE (x));
8504 return force_to_mode (x, mode, mask, next_select);
8505 }
8506
8507 /* Similarly, if C contains every bit in the fuller_mask, then we may
8508 replace with (not Y). */
8509 if (CONST_INT_P (XEXP (x, 0))
8510 && ((UINTVAL (XEXP (x, 0)) | fuller_mask) == UINTVAL (XEXP (x, 0))))
8511 {
8512 x = simplify_gen_unary (NOT, GET_MODE (x),
8513 XEXP (x, 1), GET_MODE (x));
8514 return force_to_mode (x, mode, mask, next_select);
8515 }
8516
8517 mask = fuller_mask;
8518 goto binop;
8519
8520 case IOR:
8521 case XOR:
8522 /* If X is (ior (lshiftrt FOO C1) C2), try to commute the IOR and
8523 LSHIFTRT so we end up with an (and (lshiftrt (ior ...) ...) ...)
8524 operation which may be a bitfield extraction. Ensure that the
8525 constant we form is not wider than the mode of X. */
8526
8527 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
8528 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
8529 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
8530 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT
8531 && CONST_INT_P (XEXP (x, 1))
8532 && ((INTVAL (XEXP (XEXP (x, 0), 1))
8533 + floor_log2 (INTVAL (XEXP (x, 1))))
8534 < GET_MODE_PRECISION (GET_MODE (x)))
8535 && (UINTVAL (XEXP (x, 1))
8536 & ~nonzero_bits (XEXP (x, 0), GET_MODE (x))) == 0)
8537 {
8538 temp = gen_int_mode ((INTVAL (XEXP (x, 1)) & mask)
8539 << INTVAL (XEXP (XEXP (x, 0), 1)),
8540 GET_MODE (x));
8541 temp = simplify_gen_binary (GET_CODE (x), GET_MODE (x),
8542 XEXP (XEXP (x, 0), 0), temp);
8543 x = simplify_gen_binary (LSHIFTRT, GET_MODE (x), temp,
8544 XEXP (XEXP (x, 0), 1));
8545 return force_to_mode (x, mode, mask, next_select);
8546 }
8547
8548 binop:
8549 /* For most binary operations, just propagate into the operation and
8550 change the mode if we have an operation of that mode. */
8551
8552 op0 = force_to_mode (XEXP (x, 0), mode, mask, next_select);
8553 op1 = force_to_mode (XEXP (x, 1), mode, mask, next_select);
8554
8555 /* If we ended up truncating both operands, truncate the result of the
8556 operation instead. */
8557 if (GET_CODE (op0) == TRUNCATE
8558 && GET_CODE (op1) == TRUNCATE)
8559 {
8560 op0 = XEXP (op0, 0);
8561 op1 = XEXP (op1, 0);
8562 }
8563
8564 op0 = gen_lowpart_or_truncate (op_mode, op0);
8565 op1 = gen_lowpart_or_truncate (op_mode, op1);
8566
8567 if (op_mode != GET_MODE (x) || op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
8568 x = simplify_gen_binary (code, op_mode, op0, op1);
8569 break;
8570
8571 case ASHIFT:
8572 /* For left shifts, do the same, but just for the first operand.
8573 However, we cannot do anything with shifts where we cannot
8574 guarantee that the counts are smaller than the size of the mode
8575 because such a count will have a different meaning in a
8576 wider mode. */
8577
8578 if (! (CONST_INT_P (XEXP (x, 1))
8579 && INTVAL (XEXP (x, 1)) >= 0
8580 && INTVAL (XEXP (x, 1)) < GET_MODE_PRECISION (mode))
8581 && ! (GET_MODE (XEXP (x, 1)) != VOIDmode
8582 && (nonzero_bits (XEXP (x, 1), GET_MODE (XEXP (x, 1)))
8583 < (unsigned HOST_WIDE_INT) GET_MODE_PRECISION (mode))))
8584 break;
8585
8586 /* If the shift count is a constant and we can do arithmetic in
8587 the mode of the shift, refine which bits we need. Otherwise, use the
8588 conservative form of the mask. */
8589 if (CONST_INT_P (XEXP (x, 1))
8590 && INTVAL (XEXP (x, 1)) >= 0
8591 && INTVAL (XEXP (x, 1)) < GET_MODE_PRECISION (op_mode)
8592 && HWI_COMPUTABLE_MODE_P (op_mode))
8593 mask >>= INTVAL (XEXP (x, 1));
8594 else
8595 mask = fuller_mask;
8596
8597 op0 = gen_lowpart_or_truncate (op_mode,
8598 force_to_mode (XEXP (x, 0), op_mode,
8599 mask, next_select));
8600
8601 if (op_mode != GET_MODE (x) || op0 != XEXP (x, 0))
8602 x = simplify_gen_binary (code, op_mode, op0, XEXP (x, 1));
8603 break;
8604
8605 case LSHIFTRT:
8606 /* Here we can only do something if the shift count is a constant,
8607 this shift constant is valid for the host, and we can do arithmetic
8608 in OP_MODE. */
8609
8610 if (CONST_INT_P (XEXP (x, 1))
8611 && INTVAL (XEXP (x, 1)) >= 0
8612 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT
8613 && HWI_COMPUTABLE_MODE_P (op_mode))
8614 {
8615 rtx inner = XEXP (x, 0);
8616 unsigned HOST_WIDE_INT inner_mask;
8617
8618 /* Select the mask of the bits we need for the shift operand. */
8619 inner_mask = mask << INTVAL (XEXP (x, 1));
8620
8621 /* We can only change the mode of the shift if we can do arithmetic
8622 in the mode of the shift and INNER_MASK is no wider than the
8623 width of X's mode. */
8624 if ((inner_mask & ~GET_MODE_MASK (GET_MODE (x))) != 0)
8625 op_mode = GET_MODE (x);
8626
8627 inner = force_to_mode (inner, op_mode, inner_mask, next_select);
8628
8629 if (GET_MODE (x) != op_mode || inner != XEXP (x, 0))
8630 x = simplify_gen_binary (LSHIFTRT, op_mode, inner, XEXP (x, 1));
8631 }
8632
8633 /* If we have (and (lshiftrt FOO C1) C2) where the combination of the
8634 shift and AND produces only copies of the sign bit (C2 is one less
8635 than a power of two), we can do this with just a shift. */
8636
8637 if (GET_CODE (x) == LSHIFTRT
8638 && CONST_INT_P (XEXP (x, 1))
8639 /* The shift puts one of the sign bit copies in the least significant
8640 bit. */
8641 && ((INTVAL (XEXP (x, 1))
8642 + num_sign_bit_copies (XEXP (x, 0), GET_MODE (XEXP (x, 0))))
8643 >= GET_MODE_PRECISION (GET_MODE (x)))
8644 && exact_log2 (mask + 1) >= 0
8645 /* Number of bits left after the shift must be more than the mask
8646 needs. */
8647 && ((INTVAL (XEXP (x, 1)) + exact_log2 (mask + 1))
8648 <= GET_MODE_PRECISION (GET_MODE (x)))
8649 /* Must be more sign bit copies than the mask needs. */
8650 && ((int) num_sign_bit_copies (XEXP (x, 0), GET_MODE (XEXP (x, 0)))
8651 >= exact_log2 (mask + 1)))
8652 x = simplify_gen_binary (LSHIFTRT, GET_MODE (x), XEXP (x, 0),
8653 GEN_INT (GET_MODE_PRECISION (GET_MODE (x))
8654 - exact_log2 (mask + 1)));
8655
8656 goto shiftrt;
8657
8658 case ASHIFTRT:
8659 /* If we are just looking for the sign bit, we don't need this shift at
8660 all, even if it has a variable count. */
8661 if (val_signbit_p (GET_MODE (x), mask))
8662 return force_to_mode (XEXP (x, 0), mode, mask, next_select);
8663
8664 /* If this is a shift by a constant, get a mask that contains those bits
8665 that are not copies of the sign bit. We then have two cases: If
8666 MASK only includes those bits, this can be a logical shift, which may
8667 allow simplifications. If MASK is a single-bit field not within
8668 those bits, we are requesting a copy of the sign bit and hence can
8669 shift the sign bit to the appropriate location. */
8670
8671 if (CONST_INT_P (XEXP (x, 1)) && INTVAL (XEXP (x, 1)) >= 0
8672 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT)
8673 {
8674 int i;
8675
8676 /* If the considered data is wider than HOST_WIDE_INT, we can't
8677 represent a mask for all its bits in a single scalar.
8678 But we only care about the lower bits, so calculate these. */
8679
8680 if (GET_MODE_PRECISION (GET_MODE (x)) > HOST_BITS_PER_WIDE_INT)
8681 {
8682 nonzero = ~(unsigned HOST_WIDE_INT) 0;
8683
8684 /* GET_MODE_PRECISION (GET_MODE (x)) - INTVAL (XEXP (x, 1))
8685 is the number of bits a full-width mask would have set.
8686 We need only shift if these are fewer than nonzero can
8687 hold. If not, we must keep all bits set in nonzero. */
8688
8689 if (GET_MODE_PRECISION (GET_MODE (x)) - INTVAL (XEXP (x, 1))
8690 < HOST_BITS_PER_WIDE_INT)
8691 nonzero >>= INTVAL (XEXP (x, 1))
8692 + HOST_BITS_PER_WIDE_INT
8693 - GET_MODE_PRECISION (GET_MODE (x)) ;
8694 }
8695 else
8696 {
8697 nonzero = GET_MODE_MASK (GET_MODE (x));
8698 nonzero >>= INTVAL (XEXP (x, 1));
8699 }
8700
8701 if ((mask & ~nonzero) == 0)
8702 {
8703 x = simplify_shift_const (NULL_RTX, LSHIFTRT, GET_MODE (x),
8704 XEXP (x, 0), INTVAL (XEXP (x, 1)));
8705 if (GET_CODE (x) != ASHIFTRT)
8706 return force_to_mode (x, mode, mask, next_select);
8707 }
8708
8709 else if ((i = exact_log2 (mask)) >= 0)
8710 {
8711 x = simplify_shift_const
8712 (NULL_RTX, LSHIFTRT, GET_MODE (x), XEXP (x, 0),
8713 GET_MODE_PRECISION (GET_MODE (x)) - 1 - i);
8714
8715 if (GET_CODE (x) != ASHIFTRT)
8716 return force_to_mode (x, mode, mask, next_select);
8717 }
8718 }
8719
8720 /* If MASK is 1, convert this to an LSHIFTRT. This can be done
8721 even if the shift count isn't a constant. */
8722 if (mask == 1)
8723 x = simplify_gen_binary (LSHIFTRT, GET_MODE (x),
8724 XEXP (x, 0), XEXP (x, 1));
8725
8726 shiftrt:
8727
8728 /* If this is a zero- or sign-extension operation that just affects bits
8729 we don't care about, remove it. Be sure the call above returned
8730 something that is still a shift. */
8731
8732 if ((GET_CODE (x) == LSHIFTRT || GET_CODE (x) == ASHIFTRT)
8733 && CONST_INT_P (XEXP (x, 1))
8734 && INTVAL (XEXP (x, 1)) >= 0
8735 && (INTVAL (XEXP (x, 1))
8736 <= GET_MODE_PRECISION (GET_MODE (x)) - (floor_log2 (mask) + 1))
8737 && GET_CODE (XEXP (x, 0)) == ASHIFT
8738 && XEXP (XEXP (x, 0), 1) == XEXP (x, 1))
8739 return force_to_mode (XEXP (XEXP (x, 0), 0), mode, mask,
8740 next_select);
8741
8742 break;
8743
8744 case ROTATE:
8745 case ROTATERT:
8746 /* If the shift count is constant and we can do computations
8747 in the mode of X, compute where the bits we care about are.
8748 Otherwise, we can't do anything. Don't change the mode of
8749 the shift or propagate MODE into the shift, though. */
8750 if (CONST_INT_P (XEXP (x, 1))
8751 && INTVAL (XEXP (x, 1)) >= 0)
8752 {
8753 temp = simplify_binary_operation (code == ROTATE ? ROTATERT : ROTATE,
8754 GET_MODE (x),
8755 gen_int_mode (mask, GET_MODE (x)),
8756 XEXP (x, 1));
8757 if (temp && CONST_INT_P (temp))
8758 x = simplify_gen_binary (code, GET_MODE (x),
8759 force_to_mode (XEXP (x, 0), GET_MODE (x),
8760 INTVAL (temp), next_select),
8761 XEXP (x, 1));
8762 }
8763 break;
8764
8765 case NEG:
8766 /* If we just want the low-order bit, the NEG isn't needed since it
8767 won't change the low-order bit. */
8768 if (mask == 1)
8769 return force_to_mode (XEXP (x, 0), mode, mask, just_select);
8770
8771 /* We need any bits less significant than the most significant bit in
8772 MASK since carries from those bits will affect the bits we are
8773 interested in. */
8774 mask = fuller_mask;
8775 goto unop;
8776
8777 case NOT:
8778 /* (not FOO) is (xor FOO CONST), so if FOO is an LSHIFTRT, we can do the
8779 same as the XOR case above. Ensure that the constant we form is not
8780 wider than the mode of X. */
8781
8782 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
8783 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
8784 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
8785 && (INTVAL (XEXP (XEXP (x, 0), 1)) + floor_log2 (mask)
8786 < GET_MODE_PRECISION (GET_MODE (x)))
8787 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT)
8788 {
8789 temp = gen_int_mode (mask << INTVAL (XEXP (XEXP (x, 0), 1)),
8790 GET_MODE (x));
8791 temp = simplify_gen_binary (XOR, GET_MODE (x),
8792 XEXP (XEXP (x, 0), 0), temp);
8793 x = simplify_gen_binary (LSHIFTRT, GET_MODE (x),
8794 temp, XEXP (XEXP (x, 0), 1));
8795
8796 return force_to_mode (x, mode, mask, next_select);
8797 }
8798
8799 /* (and (not FOO) CONST) is (not (or FOO (not CONST))), so we must
8800 use the full mask inside the NOT. */
8801 mask = fuller_mask;
8802
8803 unop:
8804 op0 = gen_lowpart_or_truncate (op_mode,
8805 force_to_mode (XEXP (x, 0), mode, mask,
8806 next_select));
8807 if (op_mode != GET_MODE (x) || op0 != XEXP (x, 0))
8808 x = simplify_gen_unary (code, op_mode, op0, op_mode);
8809 break;
8810
8811 case NE:
8812 /* (and (ne FOO 0) CONST) can be (and FOO CONST) if CONST is included
8813 in STORE_FLAG_VALUE and FOO has a single bit that might be nonzero,
8814 which is equal to STORE_FLAG_VALUE. */
8815 if ((mask & ~STORE_FLAG_VALUE) == 0
8816 && XEXP (x, 1) == const0_rtx
8817 && GET_MODE (XEXP (x, 0)) == mode
8818 && exact_log2 (nonzero_bits (XEXP (x, 0), mode)) >= 0
8819 && (nonzero_bits (XEXP (x, 0), mode)
8820 == (unsigned HOST_WIDE_INT) STORE_FLAG_VALUE))
8821 return force_to_mode (XEXP (x, 0), mode, mask, next_select);
8822
8823 break;
8824
8825 case IF_THEN_ELSE:
8826 /* We have no way of knowing if the IF_THEN_ELSE can itself be
8827 written in a narrower mode. We play it safe and do not do so. */
8828
8829 op0 = gen_lowpart_or_truncate (GET_MODE (x),
8830 force_to_mode (XEXP (x, 1), mode,
8831 mask, next_select));
8832 op1 = gen_lowpart_or_truncate (GET_MODE (x),
8833 force_to_mode (XEXP (x, 2), mode,
8834 mask, next_select));
8835 if (op0 != XEXP (x, 1) || op1 != XEXP (x, 2))
8836 x = simplify_gen_ternary (IF_THEN_ELSE, GET_MODE (x),
8837 GET_MODE (XEXP (x, 0)), XEXP (x, 0),
8838 op0, op1);
8839 break;
8840
8841 default:
8842 break;
8843 }
8844
8845 /* Ensure we return a value of the proper mode. */
8846 return gen_lowpart_or_truncate (mode, x);
8847 }
8848 \f
8849 /* Return nonzero if X is an expression that has one of two values depending on
8850 whether some other value is zero or nonzero. In that case, we return the
8851 value that is being tested, *PTRUE is set to the value if the rtx being
8852 returned has a nonzero value, and *PFALSE is set to the other alternative.
8853
8854 If we return zero, we set *PTRUE and *PFALSE to X. */
8855
8856 static rtx
8857 if_then_else_cond (rtx x, rtx *ptrue, rtx *pfalse)
8858 {
8859 machine_mode mode = GET_MODE (x);
8860 enum rtx_code code = GET_CODE (x);
8861 rtx cond0, cond1, true0, true1, false0, false1;
8862 unsigned HOST_WIDE_INT nz;
8863
8864 /* If we are comparing a value against zero, we are done. */
8865 if ((code == NE || code == EQ)
8866 && XEXP (x, 1) == const0_rtx)
8867 {
8868 *ptrue = (code == NE) ? const_true_rtx : const0_rtx;
8869 *pfalse = (code == NE) ? const0_rtx : const_true_rtx;
8870 return XEXP (x, 0);
8871 }
8872
8873 /* If this is a unary operation whose operand has one of two values, apply
8874 our opcode to compute those values. */
8875 else if (UNARY_P (x)
8876 && (cond0 = if_then_else_cond (XEXP (x, 0), &true0, &false0)) != 0)
8877 {
8878 *ptrue = simplify_gen_unary (code, mode, true0, GET_MODE (XEXP (x, 0)));
8879 *pfalse = simplify_gen_unary (code, mode, false0,
8880 GET_MODE (XEXP (x, 0)));
8881 return cond0;
8882 }
8883
8884 /* If this is a COMPARE, do nothing, since the IF_THEN_ELSE we would
8885 make can't possibly match and would suppress other optimizations. */
8886 else if (code == COMPARE)
8887 ;
8888
8889 /* If this is a binary operation, see if either side has only one of two
8890 values. If either one does or if both do and they are conditional on
8891 the same value, compute the new true and false values. */
8892 else if (BINARY_P (x))
8893 {
8894 cond0 = if_then_else_cond (XEXP (x, 0), &true0, &false0);
8895 cond1 = if_then_else_cond (XEXP (x, 1), &true1, &false1);
8896
8897 if ((cond0 != 0 || cond1 != 0)
8898 && ! (cond0 != 0 && cond1 != 0 && ! rtx_equal_p (cond0, cond1)))
8899 {
8900 /* If if_then_else_cond returned zero, then true/false are the
8901 same rtl. We must copy one of them to prevent invalid rtl
8902 sharing. */
8903 if (cond0 == 0)
8904 true0 = copy_rtx (true0);
8905 else if (cond1 == 0)
8906 true1 = copy_rtx (true1);
8907
8908 if (COMPARISON_P (x))
8909 {
8910 *ptrue = simplify_gen_relational (code, mode, VOIDmode,
8911 true0, true1);
8912 *pfalse = simplify_gen_relational (code, mode, VOIDmode,
8913 false0, false1);
8914 }
8915 else
8916 {
8917 *ptrue = simplify_gen_binary (code, mode, true0, true1);
8918 *pfalse = simplify_gen_binary (code, mode, false0, false1);
8919 }
8920
8921 return cond0 ? cond0 : cond1;
8922 }
8923
8924 /* See if we have PLUS, IOR, XOR, MINUS or UMAX, where one of the
8925 operands is zero when the other is nonzero, and vice-versa,
8926 and STORE_FLAG_VALUE is 1 or -1. */
8927
8928 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
8929 && (code == PLUS || code == IOR || code == XOR || code == MINUS
8930 || code == UMAX)
8931 && GET_CODE (XEXP (x, 0)) == MULT && GET_CODE (XEXP (x, 1)) == MULT)
8932 {
8933 rtx op0 = XEXP (XEXP (x, 0), 1);
8934 rtx op1 = XEXP (XEXP (x, 1), 1);
8935
8936 cond0 = XEXP (XEXP (x, 0), 0);
8937 cond1 = XEXP (XEXP (x, 1), 0);
8938
8939 if (COMPARISON_P (cond0)
8940 && COMPARISON_P (cond1)
8941 && ((GET_CODE (cond0) == reversed_comparison_code (cond1, NULL)
8942 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 0))
8943 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 1)))
8944 || ((swap_condition (GET_CODE (cond0))
8945 == reversed_comparison_code (cond1, NULL))
8946 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 1))
8947 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 0))))
8948 && ! side_effects_p (x))
8949 {
8950 *ptrue = simplify_gen_binary (MULT, mode, op0, const_true_rtx);
8951 *pfalse = simplify_gen_binary (MULT, mode,
8952 (code == MINUS
8953 ? simplify_gen_unary (NEG, mode,
8954 op1, mode)
8955 : op1),
8956 const_true_rtx);
8957 return cond0;
8958 }
8959 }
8960
8961 /* Similarly for MULT, AND and UMIN, except that for these the result
8962 is always zero. */
8963 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
8964 && (code == MULT || code == AND || code == UMIN)
8965 && GET_CODE (XEXP (x, 0)) == MULT && GET_CODE (XEXP (x, 1)) == MULT)
8966 {
8967 cond0 = XEXP (XEXP (x, 0), 0);
8968 cond1 = XEXP (XEXP (x, 1), 0);
8969
8970 if (COMPARISON_P (cond0)
8971 && COMPARISON_P (cond1)
8972 && ((GET_CODE (cond0) == reversed_comparison_code (cond1, NULL)
8973 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 0))
8974 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 1)))
8975 || ((swap_condition (GET_CODE (cond0))
8976 == reversed_comparison_code (cond1, NULL))
8977 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 1))
8978 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 0))))
8979 && ! side_effects_p (x))
8980 {
8981 *ptrue = *pfalse = const0_rtx;
8982 return cond0;
8983 }
8984 }
8985 }
8986
8987 else if (code == IF_THEN_ELSE)
8988 {
8989 /* If we have IF_THEN_ELSE already, extract the condition and
8990 canonicalize it if it is NE or EQ. */
8991 cond0 = XEXP (x, 0);
8992 *ptrue = XEXP (x, 1), *pfalse = XEXP (x, 2);
8993 if (GET_CODE (cond0) == NE && XEXP (cond0, 1) == const0_rtx)
8994 return XEXP (cond0, 0);
8995 else if (GET_CODE (cond0) == EQ && XEXP (cond0, 1) == const0_rtx)
8996 {
8997 *ptrue = XEXP (x, 2), *pfalse = XEXP (x, 1);
8998 return XEXP (cond0, 0);
8999 }
9000 else
9001 return cond0;
9002 }
9003
9004 /* If X is a SUBREG, we can narrow both the true and false values
9005 if the inner expression, if there is a condition. */
9006 else if (code == SUBREG
9007 && 0 != (cond0 = if_then_else_cond (SUBREG_REG (x),
9008 &true0, &false0)))
9009 {
9010 true0 = simplify_gen_subreg (mode, true0,
9011 GET_MODE (SUBREG_REG (x)), SUBREG_BYTE (x));
9012 false0 = simplify_gen_subreg (mode, false0,
9013 GET_MODE (SUBREG_REG (x)), SUBREG_BYTE (x));
9014 if (true0 && false0)
9015 {
9016 *ptrue = true0;
9017 *pfalse = false0;
9018 return cond0;
9019 }
9020 }
9021
9022 /* If X is a constant, this isn't special and will cause confusions
9023 if we treat it as such. Likewise if it is equivalent to a constant. */
9024 else if (CONSTANT_P (x)
9025 || ((cond0 = get_last_value (x)) != 0 && CONSTANT_P (cond0)))
9026 ;
9027
9028 /* If we're in BImode, canonicalize on 0 and STORE_FLAG_VALUE, as that
9029 will be least confusing to the rest of the compiler. */
9030 else if (mode == BImode)
9031 {
9032 *ptrue = GEN_INT (STORE_FLAG_VALUE), *pfalse = const0_rtx;
9033 return x;
9034 }
9035
9036 /* If X is known to be either 0 or -1, those are the true and
9037 false values when testing X. */
9038 else if (x == constm1_rtx || x == const0_rtx
9039 || (mode != VOIDmode
9040 && num_sign_bit_copies (x, mode) == GET_MODE_PRECISION (mode)))
9041 {
9042 *ptrue = constm1_rtx, *pfalse = const0_rtx;
9043 return x;
9044 }
9045
9046 /* Likewise for 0 or a single bit. */
9047 else if (HWI_COMPUTABLE_MODE_P (mode)
9048 && exact_log2 (nz = nonzero_bits (x, mode)) >= 0)
9049 {
9050 *ptrue = gen_int_mode (nz, mode), *pfalse = const0_rtx;
9051 return x;
9052 }
9053
9054 /* Otherwise fail; show no condition with true and false values the same. */
9055 *ptrue = *pfalse = x;
9056 return 0;
9057 }
9058 \f
9059 /* Return the value of expression X given the fact that condition COND
9060 is known to be true when applied to REG as its first operand and VAL
9061 as its second. X is known to not be shared and so can be modified in
9062 place.
9063
9064 We only handle the simplest cases, and specifically those cases that
9065 arise with IF_THEN_ELSE expressions. */
9066
9067 static rtx
9068 known_cond (rtx x, enum rtx_code cond, rtx reg, rtx val)
9069 {
9070 enum rtx_code code = GET_CODE (x);
9071 const char *fmt;
9072 int i, j;
9073
9074 if (side_effects_p (x))
9075 return x;
9076
9077 /* If either operand of the condition is a floating point value,
9078 then we have to avoid collapsing an EQ comparison. */
9079 if (cond == EQ
9080 && rtx_equal_p (x, reg)
9081 && ! FLOAT_MODE_P (GET_MODE (x))
9082 && ! FLOAT_MODE_P (GET_MODE (val)))
9083 return val;
9084
9085 if (cond == UNEQ && rtx_equal_p (x, reg))
9086 return val;
9087
9088 /* If X is (abs REG) and we know something about REG's relationship
9089 with zero, we may be able to simplify this. */
9090
9091 if (code == ABS && rtx_equal_p (XEXP (x, 0), reg) && val == const0_rtx)
9092 switch (cond)
9093 {
9094 case GE: case GT: case EQ:
9095 return XEXP (x, 0);
9096 case LT: case LE:
9097 return simplify_gen_unary (NEG, GET_MODE (XEXP (x, 0)),
9098 XEXP (x, 0),
9099 GET_MODE (XEXP (x, 0)));
9100 default:
9101 break;
9102 }
9103
9104 /* The only other cases we handle are MIN, MAX, and comparisons if the
9105 operands are the same as REG and VAL. */
9106
9107 else if (COMPARISON_P (x) || COMMUTATIVE_ARITH_P (x))
9108 {
9109 if (rtx_equal_p (XEXP (x, 0), val))
9110 {
9111 std::swap (val, reg);
9112 cond = swap_condition (cond);
9113 }
9114
9115 if (rtx_equal_p (XEXP (x, 0), reg) && rtx_equal_p (XEXP (x, 1), val))
9116 {
9117 if (COMPARISON_P (x))
9118 {
9119 if (comparison_dominates_p (cond, code))
9120 return const_true_rtx;
9121
9122 code = reversed_comparison_code (x, NULL);
9123 if (code != UNKNOWN
9124 && comparison_dominates_p (cond, code))
9125 return const0_rtx;
9126 else
9127 return x;
9128 }
9129 else if (code == SMAX || code == SMIN
9130 || code == UMIN || code == UMAX)
9131 {
9132 int unsignedp = (code == UMIN || code == UMAX);
9133
9134 /* Do not reverse the condition when it is NE or EQ.
9135 This is because we cannot conclude anything about
9136 the value of 'SMAX (x, y)' when x is not equal to y,
9137 but we can when x equals y. */
9138 if ((code == SMAX || code == UMAX)
9139 && ! (cond == EQ || cond == NE))
9140 cond = reverse_condition (cond);
9141
9142 switch (cond)
9143 {
9144 case GE: case GT:
9145 return unsignedp ? x : XEXP (x, 1);
9146 case LE: case LT:
9147 return unsignedp ? x : XEXP (x, 0);
9148 case GEU: case GTU:
9149 return unsignedp ? XEXP (x, 1) : x;
9150 case LEU: case LTU:
9151 return unsignedp ? XEXP (x, 0) : x;
9152 default:
9153 break;
9154 }
9155 }
9156 }
9157 }
9158 else if (code == SUBREG)
9159 {
9160 machine_mode inner_mode = GET_MODE (SUBREG_REG (x));
9161 rtx new_rtx, r = known_cond (SUBREG_REG (x), cond, reg, val);
9162
9163 if (SUBREG_REG (x) != r)
9164 {
9165 /* We must simplify subreg here, before we lose track of the
9166 original inner_mode. */
9167 new_rtx = simplify_subreg (GET_MODE (x), r,
9168 inner_mode, SUBREG_BYTE (x));
9169 if (new_rtx)
9170 return new_rtx;
9171 else
9172 SUBST (SUBREG_REG (x), r);
9173 }
9174
9175 return x;
9176 }
9177 /* We don't have to handle SIGN_EXTEND here, because even in the
9178 case of replacing something with a modeless CONST_INT, a
9179 CONST_INT is already (supposed to be) a valid sign extension for
9180 its narrower mode, which implies it's already properly
9181 sign-extended for the wider mode. Now, for ZERO_EXTEND, the
9182 story is different. */
9183 else if (code == ZERO_EXTEND)
9184 {
9185 machine_mode inner_mode = GET_MODE (XEXP (x, 0));
9186 rtx new_rtx, r = known_cond (XEXP (x, 0), cond, reg, val);
9187
9188 if (XEXP (x, 0) != r)
9189 {
9190 /* We must simplify the zero_extend here, before we lose
9191 track of the original inner_mode. */
9192 new_rtx = simplify_unary_operation (ZERO_EXTEND, GET_MODE (x),
9193 r, inner_mode);
9194 if (new_rtx)
9195 return new_rtx;
9196 else
9197 SUBST (XEXP (x, 0), r);
9198 }
9199
9200 return x;
9201 }
9202
9203 fmt = GET_RTX_FORMAT (code);
9204 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
9205 {
9206 if (fmt[i] == 'e')
9207 SUBST (XEXP (x, i), known_cond (XEXP (x, i), cond, reg, val));
9208 else if (fmt[i] == 'E')
9209 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
9210 SUBST (XVECEXP (x, i, j), known_cond (XVECEXP (x, i, j),
9211 cond, reg, val));
9212 }
9213
9214 return x;
9215 }
9216 \f
9217 /* See if X and Y are equal for the purposes of seeing if we can rewrite an
9218 assignment as a field assignment. */
9219
9220 static int
9221 rtx_equal_for_field_assignment_p (rtx x, rtx y, bool widen_x)
9222 {
9223 if (widen_x && GET_MODE (x) != GET_MODE (y))
9224 {
9225 if (GET_MODE_SIZE (GET_MODE (x)) > GET_MODE_SIZE (GET_MODE (y)))
9226 return 0;
9227 if (BYTES_BIG_ENDIAN != WORDS_BIG_ENDIAN)
9228 return 0;
9229 /* For big endian, adjust the memory offset. */
9230 if (BYTES_BIG_ENDIAN)
9231 x = adjust_address_nv (x, GET_MODE (y),
9232 -subreg_lowpart_offset (GET_MODE (x),
9233 GET_MODE (y)));
9234 else
9235 x = adjust_address_nv (x, GET_MODE (y), 0);
9236 }
9237
9238 if (x == y || rtx_equal_p (x, y))
9239 return 1;
9240
9241 if (x == 0 || y == 0 || GET_MODE (x) != GET_MODE (y))
9242 return 0;
9243
9244 /* Check for a paradoxical SUBREG of a MEM compared with the MEM.
9245 Note that all SUBREGs of MEM are paradoxical; otherwise they
9246 would have been rewritten. */
9247 if (MEM_P (x) && GET_CODE (y) == SUBREG
9248 && MEM_P (SUBREG_REG (y))
9249 && rtx_equal_p (SUBREG_REG (y),
9250 gen_lowpart (GET_MODE (SUBREG_REG (y)), x)))
9251 return 1;
9252
9253 if (MEM_P (y) && GET_CODE (x) == SUBREG
9254 && MEM_P (SUBREG_REG (x))
9255 && rtx_equal_p (SUBREG_REG (x),
9256 gen_lowpart (GET_MODE (SUBREG_REG (x)), y)))
9257 return 1;
9258
9259 /* We used to see if get_last_value of X and Y were the same but that's
9260 not correct. In one direction, we'll cause the assignment to have
9261 the wrong destination and in the case, we'll import a register into this
9262 insn that might have already have been dead. So fail if none of the
9263 above cases are true. */
9264 return 0;
9265 }
9266 \f
9267 /* See if X, a SET operation, can be rewritten as a bit-field assignment.
9268 Return that assignment if so.
9269
9270 We only handle the most common cases. */
9271
9272 static rtx
9273 make_field_assignment (rtx x)
9274 {
9275 rtx dest = SET_DEST (x);
9276 rtx src = SET_SRC (x);
9277 rtx assign;
9278 rtx rhs, lhs;
9279 HOST_WIDE_INT c1;
9280 HOST_WIDE_INT pos;
9281 unsigned HOST_WIDE_INT len;
9282 rtx other;
9283 machine_mode mode;
9284
9285 /* If SRC was (and (not (ashift (const_int 1) POS)) DEST), this is
9286 a clear of a one-bit field. We will have changed it to
9287 (and (rotate (const_int -2) POS) DEST), so check for that. Also check
9288 for a SUBREG. */
9289
9290 if (GET_CODE (src) == AND && GET_CODE (XEXP (src, 0)) == ROTATE
9291 && CONST_INT_P (XEXP (XEXP (src, 0), 0))
9292 && INTVAL (XEXP (XEXP (src, 0), 0)) == -2
9293 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
9294 {
9295 assign = make_extraction (VOIDmode, dest, 0, XEXP (XEXP (src, 0), 1),
9296 1, 1, 1, 0);
9297 if (assign != 0)
9298 return gen_rtx_SET (assign, const0_rtx);
9299 return x;
9300 }
9301
9302 if (GET_CODE (src) == AND && GET_CODE (XEXP (src, 0)) == SUBREG
9303 && subreg_lowpart_p (XEXP (src, 0))
9304 && (GET_MODE_SIZE (GET_MODE (XEXP (src, 0)))
9305 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (XEXP (src, 0)))))
9306 && GET_CODE (SUBREG_REG (XEXP (src, 0))) == ROTATE
9307 && CONST_INT_P (XEXP (SUBREG_REG (XEXP (src, 0)), 0))
9308 && INTVAL (XEXP (SUBREG_REG (XEXP (src, 0)), 0)) == -2
9309 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
9310 {
9311 assign = make_extraction (VOIDmode, dest, 0,
9312 XEXP (SUBREG_REG (XEXP (src, 0)), 1),
9313 1, 1, 1, 0);
9314 if (assign != 0)
9315 return gen_rtx_SET (assign, const0_rtx);
9316 return x;
9317 }
9318
9319 /* If SRC is (ior (ashift (const_int 1) POS) DEST), this is a set of a
9320 one-bit field. */
9321 if (GET_CODE (src) == IOR && GET_CODE (XEXP (src, 0)) == ASHIFT
9322 && XEXP (XEXP (src, 0), 0) == const1_rtx
9323 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
9324 {
9325 assign = make_extraction (VOIDmode, dest, 0, XEXP (XEXP (src, 0), 1),
9326 1, 1, 1, 0);
9327 if (assign != 0)
9328 return gen_rtx_SET (assign, const1_rtx);
9329 return x;
9330 }
9331
9332 /* If DEST is already a field assignment, i.e. ZERO_EXTRACT, and the
9333 SRC is an AND with all bits of that field set, then we can discard
9334 the AND. */
9335 if (GET_CODE (dest) == ZERO_EXTRACT
9336 && CONST_INT_P (XEXP (dest, 1))
9337 && GET_CODE (src) == AND
9338 && CONST_INT_P (XEXP (src, 1)))
9339 {
9340 HOST_WIDE_INT width = INTVAL (XEXP (dest, 1));
9341 unsigned HOST_WIDE_INT and_mask = INTVAL (XEXP (src, 1));
9342 unsigned HOST_WIDE_INT ze_mask;
9343
9344 if (width >= HOST_BITS_PER_WIDE_INT)
9345 ze_mask = -1;
9346 else
9347 ze_mask = ((unsigned HOST_WIDE_INT)1 << width) - 1;
9348
9349 /* Complete overlap. We can remove the source AND. */
9350 if ((and_mask & ze_mask) == ze_mask)
9351 return gen_rtx_SET (dest, XEXP (src, 0));
9352
9353 /* Partial overlap. We can reduce the source AND. */
9354 if ((and_mask & ze_mask) != and_mask)
9355 {
9356 mode = GET_MODE (src);
9357 src = gen_rtx_AND (mode, XEXP (src, 0),
9358 gen_int_mode (and_mask & ze_mask, mode));
9359 return gen_rtx_SET (dest, src);
9360 }
9361 }
9362
9363 /* The other case we handle is assignments into a constant-position
9364 field. They look like (ior/xor (and DEST C1) OTHER). If C1 represents
9365 a mask that has all one bits except for a group of zero bits and
9366 OTHER is known to have zeros where C1 has ones, this is such an
9367 assignment. Compute the position and length from C1. Shift OTHER
9368 to the appropriate position, force it to the required mode, and
9369 make the extraction. Check for the AND in both operands. */
9370
9371 /* One or more SUBREGs might obscure the constant-position field
9372 assignment. The first one we are likely to encounter is an outer
9373 narrowing SUBREG, which we can just strip for the purposes of
9374 identifying the constant-field assignment. */
9375 if (GET_CODE (src) == SUBREG && subreg_lowpart_p (src))
9376 src = SUBREG_REG (src);
9377
9378 if (GET_CODE (src) != IOR && GET_CODE (src) != XOR)
9379 return x;
9380
9381 rhs = expand_compound_operation (XEXP (src, 0));
9382 lhs = expand_compound_operation (XEXP (src, 1));
9383
9384 if (GET_CODE (rhs) == AND
9385 && CONST_INT_P (XEXP (rhs, 1))
9386 && rtx_equal_for_field_assignment_p (XEXP (rhs, 0), dest))
9387 c1 = INTVAL (XEXP (rhs, 1)), other = lhs;
9388 /* The second SUBREG that might get in the way is a paradoxical
9389 SUBREG around the first operand of the AND. We want to
9390 pretend the operand is as wide as the destination here. We
9391 do this by adjusting the MEM to wider mode for the sole
9392 purpose of the call to rtx_equal_for_field_assignment_p. Also
9393 note this trick only works for MEMs. */
9394 else if (GET_CODE (rhs) == AND
9395 && paradoxical_subreg_p (XEXP (rhs, 0))
9396 && MEM_P (SUBREG_REG (XEXP (rhs, 0)))
9397 && CONST_INT_P (XEXP (rhs, 1))
9398 && rtx_equal_for_field_assignment_p (SUBREG_REG (XEXP (rhs, 0)),
9399 dest, true))
9400 c1 = INTVAL (XEXP (rhs, 1)), other = lhs;
9401 else if (GET_CODE (lhs) == AND
9402 && CONST_INT_P (XEXP (lhs, 1))
9403 && rtx_equal_for_field_assignment_p (XEXP (lhs, 0), dest))
9404 c1 = INTVAL (XEXP (lhs, 1)), other = rhs;
9405 /* The second SUBREG that might get in the way is a paradoxical
9406 SUBREG around the first operand of the AND. We want to
9407 pretend the operand is as wide as the destination here. We
9408 do this by adjusting the MEM to wider mode for the sole
9409 purpose of the call to rtx_equal_for_field_assignment_p. Also
9410 note this trick only works for MEMs. */
9411 else if (GET_CODE (lhs) == AND
9412 && paradoxical_subreg_p (XEXP (lhs, 0))
9413 && MEM_P (SUBREG_REG (XEXP (lhs, 0)))
9414 && CONST_INT_P (XEXP (lhs, 1))
9415 && rtx_equal_for_field_assignment_p (SUBREG_REG (XEXP (lhs, 0)),
9416 dest, true))
9417 c1 = INTVAL (XEXP (lhs, 1)), other = rhs;
9418 else
9419 return x;
9420
9421 pos = get_pos_from_mask ((~c1) & GET_MODE_MASK (GET_MODE (dest)), &len);
9422 if (pos < 0 || pos + len > GET_MODE_PRECISION (GET_MODE (dest))
9423 || GET_MODE_PRECISION (GET_MODE (dest)) > HOST_BITS_PER_WIDE_INT
9424 || (c1 & nonzero_bits (other, GET_MODE (dest))) != 0)
9425 return x;
9426
9427 assign = make_extraction (VOIDmode, dest, pos, NULL_RTX, len, 1, 1, 0);
9428 if (assign == 0)
9429 return x;
9430
9431 /* The mode to use for the source is the mode of the assignment, or of
9432 what is inside a possible STRICT_LOW_PART. */
9433 mode = (GET_CODE (assign) == STRICT_LOW_PART
9434 ? GET_MODE (XEXP (assign, 0)) : GET_MODE (assign));
9435
9436 /* Shift OTHER right POS places and make it the source, restricting it
9437 to the proper length and mode. */
9438
9439 src = canon_reg_for_combine (simplify_shift_const (NULL_RTX, LSHIFTRT,
9440 GET_MODE (src),
9441 other, pos),
9442 dest);
9443 src = force_to_mode (src, mode,
9444 GET_MODE_PRECISION (mode) >= HOST_BITS_PER_WIDE_INT
9445 ? ~(unsigned HOST_WIDE_INT) 0
9446 : ((unsigned HOST_WIDE_INT) 1 << len) - 1,
9447 0);
9448
9449 /* If SRC is masked by an AND that does not make a difference in
9450 the value being stored, strip it. */
9451 if (GET_CODE (assign) == ZERO_EXTRACT
9452 && CONST_INT_P (XEXP (assign, 1))
9453 && INTVAL (XEXP (assign, 1)) < HOST_BITS_PER_WIDE_INT
9454 && GET_CODE (src) == AND
9455 && CONST_INT_P (XEXP (src, 1))
9456 && UINTVAL (XEXP (src, 1))
9457 == ((unsigned HOST_WIDE_INT) 1 << INTVAL (XEXP (assign, 1))) - 1)
9458 src = XEXP (src, 0);
9459
9460 return gen_rtx_SET (assign, src);
9461 }
9462 \f
9463 /* See if X is of the form (+ (* a c) (* b c)) and convert to (* (+ a b) c)
9464 if so. */
9465
9466 static rtx
9467 apply_distributive_law (rtx x)
9468 {
9469 enum rtx_code code = GET_CODE (x);
9470 enum rtx_code inner_code;
9471 rtx lhs, rhs, other;
9472 rtx tem;
9473
9474 /* Distributivity is not true for floating point as it can change the
9475 value. So we don't do it unless -funsafe-math-optimizations. */
9476 if (FLOAT_MODE_P (GET_MODE (x))
9477 && ! flag_unsafe_math_optimizations)
9478 return x;
9479
9480 /* The outer operation can only be one of the following: */
9481 if (code != IOR && code != AND && code != XOR
9482 && code != PLUS && code != MINUS)
9483 return x;
9484
9485 lhs = XEXP (x, 0);
9486 rhs = XEXP (x, 1);
9487
9488 /* If either operand is a primitive we can't do anything, so get out
9489 fast. */
9490 if (OBJECT_P (lhs) || OBJECT_P (rhs))
9491 return x;
9492
9493 lhs = expand_compound_operation (lhs);
9494 rhs = expand_compound_operation (rhs);
9495 inner_code = GET_CODE (lhs);
9496 if (inner_code != GET_CODE (rhs))
9497 return x;
9498
9499 /* See if the inner and outer operations distribute. */
9500 switch (inner_code)
9501 {
9502 case LSHIFTRT:
9503 case ASHIFTRT:
9504 case AND:
9505 case IOR:
9506 /* These all distribute except over PLUS. */
9507 if (code == PLUS || code == MINUS)
9508 return x;
9509 break;
9510
9511 case MULT:
9512 if (code != PLUS && code != MINUS)
9513 return x;
9514 break;
9515
9516 case ASHIFT:
9517 /* This is also a multiply, so it distributes over everything. */
9518 break;
9519
9520 /* This used to handle SUBREG, but this turned out to be counter-
9521 productive, since (subreg (op ...)) usually is not handled by
9522 insn patterns, and this "optimization" therefore transformed
9523 recognizable patterns into unrecognizable ones. Therefore the
9524 SUBREG case was removed from here.
9525
9526 It is possible that distributing SUBREG over arithmetic operations
9527 leads to an intermediate result than can then be optimized further,
9528 e.g. by moving the outer SUBREG to the other side of a SET as done
9529 in simplify_set. This seems to have been the original intent of
9530 handling SUBREGs here.
9531
9532 However, with current GCC this does not appear to actually happen,
9533 at least on major platforms. If some case is found where removing
9534 the SUBREG case here prevents follow-on optimizations, distributing
9535 SUBREGs ought to be re-added at that place, e.g. in simplify_set. */
9536
9537 default:
9538 return x;
9539 }
9540
9541 /* Set LHS and RHS to the inner operands (A and B in the example
9542 above) and set OTHER to the common operand (C in the example).
9543 There is only one way to do this unless the inner operation is
9544 commutative. */
9545 if (COMMUTATIVE_ARITH_P (lhs)
9546 && rtx_equal_p (XEXP (lhs, 0), XEXP (rhs, 0)))
9547 other = XEXP (lhs, 0), lhs = XEXP (lhs, 1), rhs = XEXP (rhs, 1);
9548 else if (COMMUTATIVE_ARITH_P (lhs)
9549 && rtx_equal_p (XEXP (lhs, 0), XEXP (rhs, 1)))
9550 other = XEXP (lhs, 0), lhs = XEXP (lhs, 1), rhs = XEXP (rhs, 0);
9551 else if (COMMUTATIVE_ARITH_P (lhs)
9552 && rtx_equal_p (XEXP (lhs, 1), XEXP (rhs, 0)))
9553 other = XEXP (lhs, 1), lhs = XEXP (lhs, 0), rhs = XEXP (rhs, 1);
9554 else if (rtx_equal_p (XEXP (lhs, 1), XEXP (rhs, 1)))
9555 other = XEXP (lhs, 1), lhs = XEXP (lhs, 0), rhs = XEXP (rhs, 0);
9556 else
9557 return x;
9558
9559 /* Form the new inner operation, seeing if it simplifies first. */
9560 tem = simplify_gen_binary (code, GET_MODE (x), lhs, rhs);
9561
9562 /* There is one exception to the general way of distributing:
9563 (a | c) ^ (b | c) -> (a ^ b) & ~c */
9564 if (code == XOR && inner_code == IOR)
9565 {
9566 inner_code = AND;
9567 other = simplify_gen_unary (NOT, GET_MODE (x), other, GET_MODE (x));
9568 }
9569
9570 /* We may be able to continuing distributing the result, so call
9571 ourselves recursively on the inner operation before forming the
9572 outer operation, which we return. */
9573 return simplify_gen_binary (inner_code, GET_MODE (x),
9574 apply_distributive_law (tem), other);
9575 }
9576
9577 /* See if X is of the form (* (+ A B) C), and if so convert to
9578 (+ (* A C) (* B C)) and try to simplify.
9579
9580 Most of the time, this results in no change. However, if some of
9581 the operands are the same or inverses of each other, simplifications
9582 will result.
9583
9584 For example, (and (ior A B) (not B)) can occur as the result of
9585 expanding a bit field assignment. When we apply the distributive
9586 law to this, we get (ior (and (A (not B))) (and (B (not B)))),
9587 which then simplifies to (and (A (not B))).
9588
9589 Note that no checks happen on the validity of applying the inverse
9590 distributive law. This is pointless since we can do it in the
9591 few places where this routine is called.
9592
9593 N is the index of the term that is decomposed (the arithmetic operation,
9594 i.e. (+ A B) in the first example above). !N is the index of the term that
9595 is distributed, i.e. of C in the first example above. */
9596 static rtx
9597 distribute_and_simplify_rtx (rtx x, int n)
9598 {
9599 machine_mode mode;
9600 enum rtx_code outer_code, inner_code;
9601 rtx decomposed, distributed, inner_op0, inner_op1, new_op0, new_op1, tmp;
9602
9603 /* Distributivity is not true for floating point as it can change the
9604 value. So we don't do it unless -funsafe-math-optimizations. */
9605 if (FLOAT_MODE_P (GET_MODE (x))
9606 && ! flag_unsafe_math_optimizations)
9607 return NULL_RTX;
9608
9609 decomposed = XEXP (x, n);
9610 if (!ARITHMETIC_P (decomposed))
9611 return NULL_RTX;
9612
9613 mode = GET_MODE (x);
9614 outer_code = GET_CODE (x);
9615 distributed = XEXP (x, !n);
9616
9617 inner_code = GET_CODE (decomposed);
9618 inner_op0 = XEXP (decomposed, 0);
9619 inner_op1 = XEXP (decomposed, 1);
9620
9621 /* Special case (and (xor B C) (not A)), which is equivalent to
9622 (xor (ior A B) (ior A C)) */
9623 if (outer_code == AND && inner_code == XOR && GET_CODE (distributed) == NOT)
9624 {
9625 distributed = XEXP (distributed, 0);
9626 outer_code = IOR;
9627 }
9628
9629 if (n == 0)
9630 {
9631 /* Distribute the second term. */
9632 new_op0 = simplify_gen_binary (outer_code, mode, inner_op0, distributed);
9633 new_op1 = simplify_gen_binary (outer_code, mode, inner_op1, distributed);
9634 }
9635 else
9636 {
9637 /* Distribute the first term. */
9638 new_op0 = simplify_gen_binary (outer_code, mode, distributed, inner_op0);
9639 new_op1 = simplify_gen_binary (outer_code, mode, distributed, inner_op1);
9640 }
9641
9642 tmp = apply_distributive_law (simplify_gen_binary (inner_code, mode,
9643 new_op0, new_op1));
9644 if (GET_CODE (tmp) != outer_code
9645 && (set_src_cost (tmp, mode, optimize_this_for_speed_p)
9646 < set_src_cost (x, mode, optimize_this_for_speed_p)))
9647 return tmp;
9648
9649 return NULL_RTX;
9650 }
9651 \f
9652 /* Simplify a logical `and' of VAROP with the constant CONSTOP, to be done
9653 in MODE. Return an equivalent form, if different from (and VAROP
9654 (const_int CONSTOP)). Otherwise, return NULL_RTX. */
9655
9656 static rtx
9657 simplify_and_const_int_1 (machine_mode mode, rtx varop,
9658 unsigned HOST_WIDE_INT constop)
9659 {
9660 unsigned HOST_WIDE_INT nonzero;
9661 unsigned HOST_WIDE_INT orig_constop;
9662 rtx orig_varop;
9663 int i;
9664
9665 orig_varop = varop;
9666 orig_constop = constop;
9667 if (GET_CODE (varop) == CLOBBER)
9668 return NULL_RTX;
9669
9670 /* Simplify VAROP knowing that we will be only looking at some of the
9671 bits in it.
9672
9673 Note by passing in CONSTOP, we guarantee that the bits not set in
9674 CONSTOP are not significant and will never be examined. We must
9675 ensure that is the case by explicitly masking out those bits
9676 before returning. */
9677 varop = force_to_mode (varop, mode, constop, 0);
9678
9679 /* If VAROP is a CLOBBER, we will fail so return it. */
9680 if (GET_CODE (varop) == CLOBBER)
9681 return varop;
9682
9683 /* If VAROP is a CONST_INT, then we need to apply the mask in CONSTOP
9684 to VAROP and return the new constant. */
9685 if (CONST_INT_P (varop))
9686 return gen_int_mode (INTVAL (varop) & constop, mode);
9687
9688 /* See what bits may be nonzero in VAROP. Unlike the general case of
9689 a call to nonzero_bits, here we don't care about bits outside
9690 MODE. */
9691
9692 nonzero = nonzero_bits (varop, mode) & GET_MODE_MASK (mode);
9693
9694 /* Turn off all bits in the constant that are known to already be zero.
9695 Thus, if the AND isn't needed at all, we will have CONSTOP == NONZERO_BITS
9696 which is tested below. */
9697
9698 constop &= nonzero;
9699
9700 /* If we don't have any bits left, return zero. */
9701 if (constop == 0)
9702 return const0_rtx;
9703
9704 /* If VAROP is a NEG of something known to be zero or 1 and CONSTOP is
9705 a power of two, we can replace this with an ASHIFT. */
9706 if (GET_CODE (varop) == NEG && nonzero_bits (XEXP (varop, 0), mode) == 1
9707 && (i = exact_log2 (constop)) >= 0)
9708 return simplify_shift_const (NULL_RTX, ASHIFT, mode, XEXP (varop, 0), i);
9709
9710 /* If VAROP is an IOR or XOR, apply the AND to both branches of the IOR
9711 or XOR, then try to apply the distributive law. This may eliminate
9712 operations if either branch can be simplified because of the AND.
9713 It may also make some cases more complex, but those cases probably
9714 won't match a pattern either with or without this. */
9715
9716 if (GET_CODE (varop) == IOR || GET_CODE (varop) == XOR)
9717 return
9718 gen_lowpart
9719 (mode,
9720 apply_distributive_law
9721 (simplify_gen_binary (GET_CODE (varop), GET_MODE (varop),
9722 simplify_and_const_int (NULL_RTX,
9723 GET_MODE (varop),
9724 XEXP (varop, 0),
9725 constop),
9726 simplify_and_const_int (NULL_RTX,
9727 GET_MODE (varop),
9728 XEXP (varop, 1),
9729 constop))));
9730
9731 /* If VAROP is PLUS, and the constant is a mask of low bits, distribute
9732 the AND and see if one of the operands simplifies to zero. If so, we
9733 may eliminate it. */
9734
9735 if (GET_CODE (varop) == PLUS
9736 && exact_log2 (constop + 1) >= 0)
9737 {
9738 rtx o0, o1;
9739
9740 o0 = simplify_and_const_int (NULL_RTX, mode, XEXP (varop, 0), constop);
9741 o1 = simplify_and_const_int (NULL_RTX, mode, XEXP (varop, 1), constop);
9742 if (o0 == const0_rtx)
9743 return o1;
9744 if (o1 == const0_rtx)
9745 return o0;
9746 }
9747
9748 /* Make a SUBREG if necessary. If we can't make it, fail. */
9749 varop = gen_lowpart (mode, varop);
9750 if (varop == NULL_RTX || GET_CODE (varop) == CLOBBER)
9751 return NULL_RTX;
9752
9753 /* If we are only masking insignificant bits, return VAROP. */
9754 if (constop == nonzero)
9755 return varop;
9756
9757 if (varop == orig_varop && constop == orig_constop)
9758 return NULL_RTX;
9759
9760 /* Otherwise, return an AND. */
9761 return simplify_gen_binary (AND, mode, varop, gen_int_mode (constop, mode));
9762 }
9763
9764
9765 /* We have X, a logical `and' of VAROP with the constant CONSTOP, to be done
9766 in MODE.
9767
9768 Return an equivalent form, if different from X. Otherwise, return X. If
9769 X is zero, we are to always construct the equivalent form. */
9770
9771 static rtx
9772 simplify_and_const_int (rtx x, machine_mode mode, rtx varop,
9773 unsigned HOST_WIDE_INT constop)
9774 {
9775 rtx tem = simplify_and_const_int_1 (mode, varop, constop);
9776 if (tem)
9777 return tem;
9778
9779 if (!x)
9780 x = simplify_gen_binary (AND, GET_MODE (varop), varop,
9781 gen_int_mode (constop, mode));
9782 if (GET_MODE (x) != mode)
9783 x = gen_lowpart (mode, x);
9784 return x;
9785 }
9786 \f
9787 /* Given a REG, X, compute which bits in X can be nonzero.
9788 We don't care about bits outside of those defined in MODE.
9789
9790 For most X this is simply GET_MODE_MASK (GET_MODE (MODE)), but if X is
9791 a shift, AND, or zero_extract, we can do better. */
9792
9793 static rtx
9794 reg_nonzero_bits_for_combine (const_rtx x, machine_mode mode,
9795 const_rtx known_x ATTRIBUTE_UNUSED,
9796 machine_mode known_mode ATTRIBUTE_UNUSED,
9797 unsigned HOST_WIDE_INT known_ret ATTRIBUTE_UNUSED,
9798 unsigned HOST_WIDE_INT *nonzero)
9799 {
9800 rtx tem;
9801 reg_stat_type *rsp;
9802
9803 /* If X is a register whose nonzero bits value is current, use it.
9804 Otherwise, if X is a register whose value we can find, use that
9805 value. Otherwise, use the previously-computed global nonzero bits
9806 for this register. */
9807
9808 rsp = &reg_stat[REGNO (x)];
9809 if (rsp->last_set_value != 0
9810 && (rsp->last_set_mode == mode
9811 || (GET_MODE_CLASS (rsp->last_set_mode) == MODE_INT
9812 && GET_MODE_CLASS (mode) == MODE_INT))
9813 && ((rsp->last_set_label >= label_tick_ebb_start
9814 && rsp->last_set_label < label_tick)
9815 || (rsp->last_set_label == label_tick
9816 && DF_INSN_LUID (rsp->last_set) < subst_low_luid)
9817 || (REGNO (x) >= FIRST_PSEUDO_REGISTER
9818 && REGNO (x) < reg_n_sets_max
9819 && REG_N_SETS (REGNO (x)) == 1
9820 && !REGNO_REG_SET_P
9821 (DF_LR_IN (ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb),
9822 REGNO (x)))))
9823 {
9824 unsigned HOST_WIDE_INT mask = rsp->last_set_nonzero_bits;
9825
9826 if (GET_MODE_PRECISION (rsp->last_set_mode) < GET_MODE_PRECISION (mode))
9827 /* We don't know anything about the upper bits. */
9828 mask |= GET_MODE_MASK (mode) ^ GET_MODE_MASK (rsp->last_set_mode);
9829
9830 *nonzero &= mask;
9831 return NULL;
9832 }
9833
9834 tem = get_last_value (x);
9835
9836 if (tem)
9837 {
9838 if (SHORT_IMMEDIATES_SIGN_EXTEND)
9839 tem = sign_extend_short_imm (tem, GET_MODE (x),
9840 GET_MODE_PRECISION (mode));
9841
9842 return tem;
9843 }
9844 else if (nonzero_sign_valid && rsp->nonzero_bits)
9845 {
9846 unsigned HOST_WIDE_INT mask = rsp->nonzero_bits;
9847
9848 if (GET_MODE_PRECISION (GET_MODE (x)) < GET_MODE_PRECISION (mode))
9849 /* We don't know anything about the upper bits. */
9850 mask |= GET_MODE_MASK (mode) ^ GET_MODE_MASK (GET_MODE (x));
9851
9852 *nonzero &= mask;
9853 }
9854
9855 return NULL;
9856 }
9857
9858 /* Return the number of bits at the high-order end of X that are known to
9859 be equal to the sign bit. X will be used in mode MODE; if MODE is
9860 VOIDmode, X will be used in its own mode. The returned value will always
9861 be between 1 and the number of bits in MODE. */
9862
9863 static rtx
9864 reg_num_sign_bit_copies_for_combine (const_rtx x, machine_mode mode,
9865 const_rtx known_x ATTRIBUTE_UNUSED,
9866 machine_mode known_mode
9867 ATTRIBUTE_UNUSED,
9868 unsigned int known_ret ATTRIBUTE_UNUSED,
9869 unsigned int *result)
9870 {
9871 rtx tem;
9872 reg_stat_type *rsp;
9873
9874 rsp = &reg_stat[REGNO (x)];
9875 if (rsp->last_set_value != 0
9876 && rsp->last_set_mode == mode
9877 && ((rsp->last_set_label >= label_tick_ebb_start
9878 && rsp->last_set_label < label_tick)
9879 || (rsp->last_set_label == label_tick
9880 && DF_INSN_LUID (rsp->last_set) < subst_low_luid)
9881 || (REGNO (x) >= FIRST_PSEUDO_REGISTER
9882 && REGNO (x) < reg_n_sets_max
9883 && REG_N_SETS (REGNO (x)) == 1
9884 && !REGNO_REG_SET_P
9885 (DF_LR_IN (ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb),
9886 REGNO (x)))))
9887 {
9888 *result = rsp->last_set_sign_bit_copies;
9889 return NULL;
9890 }
9891
9892 tem = get_last_value (x);
9893 if (tem != 0)
9894 return tem;
9895
9896 if (nonzero_sign_valid && rsp->sign_bit_copies != 0
9897 && GET_MODE_PRECISION (GET_MODE (x)) == GET_MODE_PRECISION (mode))
9898 *result = rsp->sign_bit_copies;
9899
9900 return NULL;
9901 }
9902 \f
9903 /* Return the number of "extended" bits there are in X, when interpreted
9904 as a quantity in MODE whose signedness is indicated by UNSIGNEDP. For
9905 unsigned quantities, this is the number of high-order zero bits.
9906 For signed quantities, this is the number of copies of the sign bit
9907 minus 1. In both case, this function returns the number of "spare"
9908 bits. For example, if two quantities for which this function returns
9909 at least 1 are added, the addition is known not to overflow.
9910
9911 This function will always return 0 unless called during combine, which
9912 implies that it must be called from a define_split. */
9913
9914 unsigned int
9915 extended_count (const_rtx x, machine_mode mode, int unsignedp)
9916 {
9917 if (nonzero_sign_valid == 0)
9918 return 0;
9919
9920 return (unsignedp
9921 ? (HWI_COMPUTABLE_MODE_P (mode)
9922 ? (unsigned int) (GET_MODE_PRECISION (mode) - 1
9923 - floor_log2 (nonzero_bits (x, mode)))
9924 : 0)
9925 : num_sign_bit_copies (x, mode) - 1);
9926 }
9927
9928 /* This function is called from `simplify_shift_const' to merge two
9929 outer operations. Specifically, we have already found that we need
9930 to perform operation *POP0 with constant *PCONST0 at the outermost
9931 position. We would now like to also perform OP1 with constant CONST1
9932 (with *POP0 being done last).
9933
9934 Return 1 if we can do the operation and update *POP0 and *PCONST0 with
9935 the resulting operation. *PCOMP_P is set to 1 if we would need to
9936 complement the innermost operand, otherwise it is unchanged.
9937
9938 MODE is the mode in which the operation will be done. No bits outside
9939 the width of this mode matter. It is assumed that the width of this mode
9940 is smaller than or equal to HOST_BITS_PER_WIDE_INT.
9941
9942 If *POP0 or OP1 are UNKNOWN, it means no operation is required. Only NEG, PLUS,
9943 IOR, XOR, and AND are supported. We may set *POP0 to SET if the proper
9944 result is simply *PCONST0.
9945
9946 If the resulting operation cannot be expressed as one operation, we
9947 return 0 and do not change *POP0, *PCONST0, and *PCOMP_P. */
9948
9949 static int
9950 merge_outer_ops (enum rtx_code *pop0, HOST_WIDE_INT *pconst0, enum rtx_code op1, HOST_WIDE_INT const1, machine_mode mode, int *pcomp_p)
9951 {
9952 enum rtx_code op0 = *pop0;
9953 HOST_WIDE_INT const0 = *pconst0;
9954
9955 const0 &= GET_MODE_MASK (mode);
9956 const1 &= GET_MODE_MASK (mode);
9957
9958 /* If OP0 is an AND, clear unimportant bits in CONST1. */
9959 if (op0 == AND)
9960 const1 &= const0;
9961
9962 /* If OP0 or OP1 is UNKNOWN, this is easy. Similarly if they are the same or
9963 if OP0 is SET. */
9964
9965 if (op1 == UNKNOWN || op0 == SET)
9966 return 1;
9967
9968 else if (op0 == UNKNOWN)
9969 op0 = op1, const0 = const1;
9970
9971 else if (op0 == op1)
9972 {
9973 switch (op0)
9974 {
9975 case AND:
9976 const0 &= const1;
9977 break;
9978 case IOR:
9979 const0 |= const1;
9980 break;
9981 case XOR:
9982 const0 ^= const1;
9983 break;
9984 case PLUS:
9985 const0 += const1;
9986 break;
9987 case NEG:
9988 op0 = UNKNOWN;
9989 break;
9990 default:
9991 break;
9992 }
9993 }
9994
9995 /* Otherwise, if either is a PLUS or NEG, we can't do anything. */
9996 else if (op0 == PLUS || op1 == PLUS || op0 == NEG || op1 == NEG)
9997 return 0;
9998
9999 /* If the two constants aren't the same, we can't do anything. The
10000 remaining six cases can all be done. */
10001 else if (const0 != const1)
10002 return 0;
10003
10004 else
10005 switch (op0)
10006 {
10007 case IOR:
10008 if (op1 == AND)
10009 /* (a & b) | b == b */
10010 op0 = SET;
10011 else /* op1 == XOR */
10012 /* (a ^ b) | b == a | b */
10013 {;}
10014 break;
10015
10016 case XOR:
10017 if (op1 == AND)
10018 /* (a & b) ^ b == (~a) & b */
10019 op0 = AND, *pcomp_p = 1;
10020 else /* op1 == IOR */
10021 /* (a | b) ^ b == a & ~b */
10022 op0 = AND, const0 = ~const0;
10023 break;
10024
10025 case AND:
10026 if (op1 == IOR)
10027 /* (a | b) & b == b */
10028 op0 = SET;
10029 else /* op1 == XOR */
10030 /* (a ^ b) & b) == (~a) & b */
10031 *pcomp_p = 1;
10032 break;
10033 default:
10034 break;
10035 }
10036
10037 /* Check for NO-OP cases. */
10038 const0 &= GET_MODE_MASK (mode);
10039 if (const0 == 0
10040 && (op0 == IOR || op0 == XOR || op0 == PLUS))
10041 op0 = UNKNOWN;
10042 else if (const0 == 0 && op0 == AND)
10043 op0 = SET;
10044 else if ((unsigned HOST_WIDE_INT) const0 == GET_MODE_MASK (mode)
10045 && op0 == AND)
10046 op0 = UNKNOWN;
10047
10048 *pop0 = op0;
10049
10050 /* ??? Slightly redundant with the above mask, but not entirely.
10051 Moving this above means we'd have to sign-extend the mode mask
10052 for the final test. */
10053 if (op0 != UNKNOWN && op0 != NEG)
10054 *pconst0 = trunc_int_for_mode (const0, mode);
10055
10056 return 1;
10057 }
10058 \f
10059 /* A helper to simplify_shift_const_1 to determine the mode we can perform
10060 the shift in. The original shift operation CODE is performed on OP in
10061 ORIG_MODE. Return the wider mode MODE if we can perform the operation
10062 in that mode. Return ORIG_MODE otherwise. We can also assume that the
10063 result of the shift is subject to operation OUTER_CODE with operand
10064 OUTER_CONST. */
10065
10066 static machine_mode
10067 try_widen_shift_mode (enum rtx_code code, rtx op, int count,
10068 machine_mode orig_mode, machine_mode mode,
10069 enum rtx_code outer_code, HOST_WIDE_INT outer_const)
10070 {
10071 if (orig_mode == mode)
10072 return mode;
10073 gcc_assert (GET_MODE_PRECISION (mode) > GET_MODE_PRECISION (orig_mode));
10074
10075 /* In general we can't perform in wider mode for right shift and rotate. */
10076 switch (code)
10077 {
10078 case ASHIFTRT:
10079 /* We can still widen if the bits brought in from the left are identical
10080 to the sign bit of ORIG_MODE. */
10081 if (num_sign_bit_copies (op, mode)
10082 > (unsigned) (GET_MODE_PRECISION (mode)
10083 - GET_MODE_PRECISION (orig_mode)))
10084 return mode;
10085 return orig_mode;
10086
10087 case LSHIFTRT:
10088 /* Similarly here but with zero bits. */
10089 if (HWI_COMPUTABLE_MODE_P (mode)
10090 && (nonzero_bits (op, mode) & ~GET_MODE_MASK (orig_mode)) == 0)
10091 return mode;
10092
10093 /* We can also widen if the bits brought in will be masked off. This
10094 operation is performed in ORIG_MODE. */
10095 if (outer_code == AND)
10096 {
10097 int care_bits = low_bitmask_len (orig_mode, outer_const);
10098
10099 if (care_bits >= 0
10100 && GET_MODE_PRECISION (orig_mode) - care_bits >= count)
10101 return mode;
10102 }
10103 /* fall through */
10104
10105 case ROTATE:
10106 return orig_mode;
10107
10108 case ROTATERT:
10109 gcc_unreachable ();
10110
10111 default:
10112 return mode;
10113 }
10114 }
10115
10116 /* Simplify a shift of VAROP by ORIG_COUNT bits. CODE says what kind
10117 of shift. The result of the shift is RESULT_MODE. Return NULL_RTX
10118 if we cannot simplify it. Otherwise, return a simplified value.
10119
10120 The shift is normally computed in the widest mode we find in VAROP, as
10121 long as it isn't a different number of words than RESULT_MODE. Exceptions
10122 are ASHIFTRT and ROTATE, which are always done in their original mode. */
10123
10124 static rtx
10125 simplify_shift_const_1 (enum rtx_code code, machine_mode result_mode,
10126 rtx varop, int orig_count)
10127 {
10128 enum rtx_code orig_code = code;
10129 rtx orig_varop = varop;
10130 int count;
10131 machine_mode mode = result_mode;
10132 machine_mode shift_mode, tmode;
10133 unsigned int mode_words
10134 = (GET_MODE_SIZE (mode) + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD;
10135 /* We form (outer_op (code varop count) (outer_const)). */
10136 enum rtx_code outer_op = UNKNOWN;
10137 HOST_WIDE_INT outer_const = 0;
10138 int complement_p = 0;
10139 rtx new_rtx, x;
10140
10141 /* Make sure and truncate the "natural" shift on the way in. We don't
10142 want to do this inside the loop as it makes it more difficult to
10143 combine shifts. */
10144 if (SHIFT_COUNT_TRUNCATED)
10145 orig_count &= GET_MODE_BITSIZE (mode) - 1;
10146
10147 /* If we were given an invalid count, don't do anything except exactly
10148 what was requested. */
10149
10150 if (orig_count < 0 || orig_count >= (int) GET_MODE_PRECISION (mode))
10151 return NULL_RTX;
10152
10153 count = orig_count;
10154
10155 /* Unless one of the branches of the `if' in this loop does a `continue',
10156 we will `break' the loop after the `if'. */
10157
10158 while (count != 0)
10159 {
10160 /* If we have an operand of (clobber (const_int 0)), fail. */
10161 if (GET_CODE (varop) == CLOBBER)
10162 return NULL_RTX;
10163
10164 /* Convert ROTATERT to ROTATE. */
10165 if (code == ROTATERT)
10166 {
10167 unsigned int bitsize = GET_MODE_PRECISION (result_mode);
10168 code = ROTATE;
10169 if (VECTOR_MODE_P (result_mode))
10170 count = bitsize / GET_MODE_NUNITS (result_mode) - count;
10171 else
10172 count = bitsize - count;
10173 }
10174
10175 shift_mode = try_widen_shift_mode (code, varop, count, result_mode,
10176 mode, outer_op, outer_const);
10177
10178 /* Handle cases where the count is greater than the size of the mode
10179 minus 1. For ASHIFT, use the size minus one as the count (this can
10180 occur when simplifying (lshiftrt (ashiftrt ..))). For rotates,
10181 take the count modulo the size. For other shifts, the result is
10182 zero.
10183
10184 Since these shifts are being produced by the compiler by combining
10185 multiple operations, each of which are defined, we know what the
10186 result is supposed to be. */
10187
10188 if (count > (GET_MODE_PRECISION (shift_mode) - 1))
10189 {
10190 if (code == ASHIFTRT)
10191 count = GET_MODE_PRECISION (shift_mode) - 1;
10192 else if (code == ROTATE || code == ROTATERT)
10193 count %= GET_MODE_PRECISION (shift_mode);
10194 else
10195 {
10196 /* We can't simply return zero because there may be an
10197 outer op. */
10198 varop = const0_rtx;
10199 count = 0;
10200 break;
10201 }
10202 }
10203
10204 /* If we discovered we had to complement VAROP, leave. Making a NOT
10205 here would cause an infinite loop. */
10206 if (complement_p)
10207 break;
10208
10209 /* An arithmetic right shift of a quantity known to be -1 or 0
10210 is a no-op. */
10211 if (code == ASHIFTRT
10212 && (num_sign_bit_copies (varop, shift_mode)
10213 == GET_MODE_PRECISION (shift_mode)))
10214 {
10215 count = 0;
10216 break;
10217 }
10218
10219 /* If we are doing an arithmetic right shift and discarding all but
10220 the sign bit copies, this is equivalent to doing a shift by the
10221 bitsize minus one. Convert it into that shift because it will often
10222 allow other simplifications. */
10223
10224 if (code == ASHIFTRT
10225 && (count + num_sign_bit_copies (varop, shift_mode)
10226 >= GET_MODE_PRECISION (shift_mode)))
10227 count = GET_MODE_PRECISION (shift_mode) - 1;
10228
10229 /* We simplify the tests below and elsewhere by converting
10230 ASHIFTRT to LSHIFTRT if we know the sign bit is clear.
10231 `make_compound_operation' will convert it to an ASHIFTRT for
10232 those machines (such as VAX) that don't have an LSHIFTRT. */
10233 if (code == ASHIFTRT
10234 && val_signbit_known_clear_p (shift_mode,
10235 nonzero_bits (varop, shift_mode)))
10236 code = LSHIFTRT;
10237
10238 if (((code == LSHIFTRT
10239 && HWI_COMPUTABLE_MODE_P (shift_mode)
10240 && !(nonzero_bits (varop, shift_mode) >> count))
10241 || (code == ASHIFT
10242 && HWI_COMPUTABLE_MODE_P (shift_mode)
10243 && !((nonzero_bits (varop, shift_mode) << count)
10244 & GET_MODE_MASK (shift_mode))))
10245 && !side_effects_p (varop))
10246 varop = const0_rtx;
10247
10248 switch (GET_CODE (varop))
10249 {
10250 case SIGN_EXTEND:
10251 case ZERO_EXTEND:
10252 case SIGN_EXTRACT:
10253 case ZERO_EXTRACT:
10254 new_rtx = expand_compound_operation (varop);
10255 if (new_rtx != varop)
10256 {
10257 varop = new_rtx;
10258 continue;
10259 }
10260 break;
10261
10262 case MEM:
10263 /* If we have (xshiftrt (mem ...) C) and C is MODE_WIDTH
10264 minus the width of a smaller mode, we can do this with a
10265 SIGN_EXTEND or ZERO_EXTEND from the narrower memory location. */
10266 if ((code == ASHIFTRT || code == LSHIFTRT)
10267 && ! mode_dependent_address_p (XEXP (varop, 0),
10268 MEM_ADDR_SPACE (varop))
10269 && ! MEM_VOLATILE_P (varop)
10270 && (tmode = mode_for_size (GET_MODE_BITSIZE (mode) - count,
10271 MODE_INT, 1)) != BLKmode)
10272 {
10273 new_rtx = adjust_address_nv (varop, tmode,
10274 BYTES_BIG_ENDIAN ? 0
10275 : count / BITS_PER_UNIT);
10276
10277 varop = gen_rtx_fmt_e (code == ASHIFTRT ? SIGN_EXTEND
10278 : ZERO_EXTEND, mode, new_rtx);
10279 count = 0;
10280 continue;
10281 }
10282 break;
10283
10284 case SUBREG:
10285 /* If VAROP is a SUBREG, strip it as long as the inner operand has
10286 the same number of words as what we've seen so far. Then store
10287 the widest mode in MODE. */
10288 if (subreg_lowpart_p (varop)
10289 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (varop)))
10290 > GET_MODE_SIZE (GET_MODE (varop)))
10291 && (unsigned int) ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (varop)))
10292 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
10293 == mode_words
10294 && GET_MODE_CLASS (GET_MODE (varop)) == MODE_INT
10295 && GET_MODE_CLASS (GET_MODE (SUBREG_REG (varop))) == MODE_INT)
10296 {
10297 varop = SUBREG_REG (varop);
10298 if (GET_MODE_SIZE (GET_MODE (varop)) > GET_MODE_SIZE (mode))
10299 mode = GET_MODE (varop);
10300 continue;
10301 }
10302 break;
10303
10304 case MULT:
10305 /* Some machines use MULT instead of ASHIFT because MULT
10306 is cheaper. But it is still better on those machines to
10307 merge two shifts into one. */
10308 if (CONST_INT_P (XEXP (varop, 1))
10309 && exact_log2 (UINTVAL (XEXP (varop, 1))) >= 0)
10310 {
10311 varop
10312 = simplify_gen_binary (ASHIFT, GET_MODE (varop),
10313 XEXP (varop, 0),
10314 GEN_INT (exact_log2 (
10315 UINTVAL (XEXP (varop, 1)))));
10316 continue;
10317 }
10318 break;
10319
10320 case UDIV:
10321 /* Similar, for when divides are cheaper. */
10322 if (CONST_INT_P (XEXP (varop, 1))
10323 && exact_log2 (UINTVAL (XEXP (varop, 1))) >= 0)
10324 {
10325 varop
10326 = simplify_gen_binary (LSHIFTRT, GET_MODE (varop),
10327 XEXP (varop, 0),
10328 GEN_INT (exact_log2 (
10329 UINTVAL (XEXP (varop, 1)))));
10330 continue;
10331 }
10332 break;
10333
10334 case ASHIFTRT:
10335 /* If we are extracting just the sign bit of an arithmetic
10336 right shift, that shift is not needed. However, the sign
10337 bit of a wider mode may be different from what would be
10338 interpreted as the sign bit in a narrower mode, so, if
10339 the result is narrower, don't discard the shift. */
10340 if (code == LSHIFTRT
10341 && count == (GET_MODE_BITSIZE (result_mode) - 1)
10342 && (GET_MODE_BITSIZE (result_mode)
10343 >= GET_MODE_BITSIZE (GET_MODE (varop))))
10344 {
10345 varop = XEXP (varop, 0);
10346 continue;
10347 }
10348
10349 /* ... fall through ... */
10350
10351 case LSHIFTRT:
10352 case ASHIFT:
10353 case ROTATE:
10354 /* Here we have two nested shifts. The result is usually the
10355 AND of a new shift with a mask. We compute the result below. */
10356 if (CONST_INT_P (XEXP (varop, 1))
10357 && INTVAL (XEXP (varop, 1)) >= 0
10358 && INTVAL (XEXP (varop, 1)) < GET_MODE_PRECISION (GET_MODE (varop))
10359 && HWI_COMPUTABLE_MODE_P (result_mode)
10360 && HWI_COMPUTABLE_MODE_P (mode)
10361 && !VECTOR_MODE_P (result_mode))
10362 {
10363 enum rtx_code first_code = GET_CODE (varop);
10364 unsigned int first_count = INTVAL (XEXP (varop, 1));
10365 unsigned HOST_WIDE_INT mask;
10366 rtx mask_rtx;
10367
10368 /* We have one common special case. We can't do any merging if
10369 the inner code is an ASHIFTRT of a smaller mode. However, if
10370 we have (ashift:M1 (subreg:M1 (ashiftrt:M2 FOO C1) 0) C2)
10371 with C2 == GET_MODE_BITSIZE (M1) - GET_MODE_BITSIZE (M2),
10372 we can convert it to
10373 (ashiftrt:M1 (ashift:M1 (and:M1 (subreg:M1 FOO 0) C3) C2) C1).
10374 This simplifies certain SIGN_EXTEND operations. */
10375 if (code == ASHIFT && first_code == ASHIFTRT
10376 && count == (GET_MODE_PRECISION (result_mode)
10377 - GET_MODE_PRECISION (GET_MODE (varop))))
10378 {
10379 /* C3 has the low-order C1 bits zero. */
10380
10381 mask = GET_MODE_MASK (mode)
10382 & ~(((unsigned HOST_WIDE_INT) 1 << first_count) - 1);
10383
10384 varop = simplify_and_const_int (NULL_RTX, result_mode,
10385 XEXP (varop, 0), mask);
10386 varop = simplify_shift_const (NULL_RTX, ASHIFT, result_mode,
10387 varop, count);
10388 count = first_count;
10389 code = ASHIFTRT;
10390 continue;
10391 }
10392
10393 /* If this was (ashiftrt (ashift foo C1) C2) and FOO has more
10394 than C1 high-order bits equal to the sign bit, we can convert
10395 this to either an ASHIFT or an ASHIFTRT depending on the
10396 two counts.
10397
10398 We cannot do this if VAROP's mode is not SHIFT_MODE. */
10399
10400 if (code == ASHIFTRT && first_code == ASHIFT
10401 && GET_MODE (varop) == shift_mode
10402 && (num_sign_bit_copies (XEXP (varop, 0), shift_mode)
10403 > first_count))
10404 {
10405 varop = XEXP (varop, 0);
10406 count -= first_count;
10407 if (count < 0)
10408 {
10409 count = -count;
10410 code = ASHIFT;
10411 }
10412
10413 continue;
10414 }
10415
10416 /* There are some cases we can't do. If CODE is ASHIFTRT,
10417 we can only do this if FIRST_CODE is also ASHIFTRT.
10418
10419 We can't do the case when CODE is ROTATE and FIRST_CODE is
10420 ASHIFTRT.
10421
10422 If the mode of this shift is not the mode of the outer shift,
10423 we can't do this if either shift is a right shift or ROTATE.
10424
10425 Finally, we can't do any of these if the mode is too wide
10426 unless the codes are the same.
10427
10428 Handle the case where the shift codes are the same
10429 first. */
10430
10431 if (code == first_code)
10432 {
10433 if (GET_MODE (varop) != result_mode
10434 && (code == ASHIFTRT || code == LSHIFTRT
10435 || code == ROTATE))
10436 break;
10437
10438 count += first_count;
10439 varop = XEXP (varop, 0);
10440 continue;
10441 }
10442
10443 if (code == ASHIFTRT
10444 || (code == ROTATE && first_code == ASHIFTRT)
10445 || GET_MODE_PRECISION (mode) > HOST_BITS_PER_WIDE_INT
10446 || (GET_MODE (varop) != result_mode
10447 && (first_code == ASHIFTRT || first_code == LSHIFTRT
10448 || first_code == ROTATE
10449 || code == ROTATE)))
10450 break;
10451
10452 /* To compute the mask to apply after the shift, shift the
10453 nonzero bits of the inner shift the same way the
10454 outer shift will. */
10455
10456 mask_rtx = gen_int_mode (nonzero_bits (varop, GET_MODE (varop)),
10457 result_mode);
10458
10459 mask_rtx
10460 = simplify_const_binary_operation (code, result_mode, mask_rtx,
10461 GEN_INT (count));
10462
10463 /* Give up if we can't compute an outer operation to use. */
10464 if (mask_rtx == 0
10465 || !CONST_INT_P (mask_rtx)
10466 || ! merge_outer_ops (&outer_op, &outer_const, AND,
10467 INTVAL (mask_rtx),
10468 result_mode, &complement_p))
10469 break;
10470
10471 /* If the shifts are in the same direction, we add the
10472 counts. Otherwise, we subtract them. */
10473 if ((code == ASHIFTRT || code == LSHIFTRT)
10474 == (first_code == ASHIFTRT || first_code == LSHIFTRT))
10475 count += first_count;
10476 else
10477 count -= first_count;
10478
10479 /* If COUNT is positive, the new shift is usually CODE,
10480 except for the two exceptions below, in which case it is
10481 FIRST_CODE. If the count is negative, FIRST_CODE should
10482 always be used */
10483 if (count > 0
10484 && ((first_code == ROTATE && code == ASHIFT)
10485 || (first_code == ASHIFTRT && code == LSHIFTRT)))
10486 code = first_code;
10487 else if (count < 0)
10488 code = first_code, count = -count;
10489
10490 varop = XEXP (varop, 0);
10491 continue;
10492 }
10493
10494 /* If we have (A << B << C) for any shift, we can convert this to
10495 (A << C << B). This wins if A is a constant. Only try this if
10496 B is not a constant. */
10497
10498 else if (GET_CODE (varop) == code
10499 && CONST_INT_P (XEXP (varop, 0))
10500 && !CONST_INT_P (XEXP (varop, 1)))
10501 {
10502 rtx new_rtx = simplify_const_binary_operation (code, mode,
10503 XEXP (varop, 0),
10504 GEN_INT (count));
10505 varop = gen_rtx_fmt_ee (code, mode, new_rtx, XEXP (varop, 1));
10506 count = 0;
10507 continue;
10508 }
10509 break;
10510
10511 case NOT:
10512 if (VECTOR_MODE_P (mode))
10513 break;
10514
10515 /* Make this fit the case below. */
10516 varop = gen_rtx_XOR (mode, XEXP (varop, 0), constm1_rtx);
10517 continue;
10518
10519 case IOR:
10520 case AND:
10521 case XOR:
10522 /* If we have (xshiftrt (ior (plus X (const_int -1)) X) C)
10523 with C the size of VAROP - 1 and the shift is logical if
10524 STORE_FLAG_VALUE is 1 and arithmetic if STORE_FLAG_VALUE is -1,
10525 we have an (le X 0) operation. If we have an arithmetic shift
10526 and STORE_FLAG_VALUE is 1 or we have a logical shift with
10527 STORE_FLAG_VALUE of -1, we have a (neg (le X 0)) operation. */
10528
10529 if (GET_CODE (varop) == IOR && GET_CODE (XEXP (varop, 0)) == PLUS
10530 && XEXP (XEXP (varop, 0), 1) == constm1_rtx
10531 && (STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
10532 && (code == LSHIFTRT || code == ASHIFTRT)
10533 && count == (GET_MODE_PRECISION (GET_MODE (varop)) - 1)
10534 && rtx_equal_p (XEXP (XEXP (varop, 0), 0), XEXP (varop, 1)))
10535 {
10536 count = 0;
10537 varop = gen_rtx_LE (GET_MODE (varop), XEXP (varop, 1),
10538 const0_rtx);
10539
10540 if (STORE_FLAG_VALUE == 1 ? code == ASHIFTRT : code == LSHIFTRT)
10541 varop = gen_rtx_NEG (GET_MODE (varop), varop);
10542
10543 continue;
10544 }
10545
10546 /* If we have (shift (logical)), move the logical to the outside
10547 to allow it to possibly combine with another logical and the
10548 shift to combine with another shift. This also canonicalizes to
10549 what a ZERO_EXTRACT looks like. Also, some machines have
10550 (and (shift)) insns. */
10551
10552 if (CONST_INT_P (XEXP (varop, 1))
10553 /* We can't do this if we have (ashiftrt (xor)) and the
10554 constant has its sign bit set in shift_mode with shift_mode
10555 wider than result_mode. */
10556 && !(code == ASHIFTRT && GET_CODE (varop) == XOR
10557 && result_mode != shift_mode
10558 && 0 > trunc_int_for_mode (INTVAL (XEXP (varop, 1)),
10559 shift_mode))
10560 && (new_rtx = simplify_const_binary_operation
10561 (code, result_mode,
10562 gen_int_mode (INTVAL (XEXP (varop, 1)), result_mode),
10563 GEN_INT (count))) != 0
10564 && CONST_INT_P (new_rtx)
10565 && merge_outer_ops (&outer_op, &outer_const, GET_CODE (varop),
10566 INTVAL (new_rtx), result_mode, &complement_p))
10567 {
10568 varop = XEXP (varop, 0);
10569 continue;
10570 }
10571
10572 /* If we can't do that, try to simplify the shift in each arm of the
10573 logical expression, make a new logical expression, and apply
10574 the inverse distributive law. This also can't be done for
10575 (ashiftrt (xor)) where we've widened the shift and the constant
10576 changes the sign bit. */
10577 if (CONST_INT_P (XEXP (varop, 1))
10578 && !(code == ASHIFTRT && GET_CODE (varop) == XOR
10579 && result_mode != shift_mode
10580 && 0 > trunc_int_for_mode (INTVAL (XEXP (varop, 1)),
10581 shift_mode)))
10582 {
10583 rtx lhs = simplify_shift_const (NULL_RTX, code, shift_mode,
10584 XEXP (varop, 0), count);
10585 rtx rhs = simplify_shift_const (NULL_RTX, code, shift_mode,
10586 XEXP (varop, 1), count);
10587
10588 varop = simplify_gen_binary (GET_CODE (varop), shift_mode,
10589 lhs, rhs);
10590 varop = apply_distributive_law (varop);
10591
10592 count = 0;
10593 continue;
10594 }
10595 break;
10596
10597 case EQ:
10598 /* Convert (lshiftrt (eq FOO 0) C) to (xor FOO 1) if STORE_FLAG_VALUE
10599 says that the sign bit can be tested, FOO has mode MODE, C is
10600 GET_MODE_PRECISION (MODE) - 1, and FOO has only its low-order bit
10601 that may be nonzero. */
10602 if (code == LSHIFTRT
10603 && XEXP (varop, 1) == const0_rtx
10604 && GET_MODE (XEXP (varop, 0)) == result_mode
10605 && count == (GET_MODE_PRECISION (result_mode) - 1)
10606 && HWI_COMPUTABLE_MODE_P (result_mode)
10607 && STORE_FLAG_VALUE == -1
10608 && nonzero_bits (XEXP (varop, 0), result_mode) == 1
10609 && merge_outer_ops (&outer_op, &outer_const, XOR, 1, result_mode,
10610 &complement_p))
10611 {
10612 varop = XEXP (varop, 0);
10613 count = 0;
10614 continue;
10615 }
10616 break;
10617
10618 case NEG:
10619 /* (lshiftrt (neg A) C) where A is either 0 or 1 and C is one less
10620 than the number of bits in the mode is equivalent to A. */
10621 if (code == LSHIFTRT
10622 && count == (GET_MODE_PRECISION (result_mode) - 1)
10623 && nonzero_bits (XEXP (varop, 0), result_mode) == 1)
10624 {
10625 varop = XEXP (varop, 0);
10626 count = 0;
10627 continue;
10628 }
10629
10630 /* NEG commutes with ASHIFT since it is multiplication. Move the
10631 NEG outside to allow shifts to combine. */
10632 if (code == ASHIFT
10633 && merge_outer_ops (&outer_op, &outer_const, NEG, 0, result_mode,
10634 &complement_p))
10635 {
10636 varop = XEXP (varop, 0);
10637 continue;
10638 }
10639 break;
10640
10641 case PLUS:
10642 /* (lshiftrt (plus A -1) C) where A is either 0 or 1 and C
10643 is one less than the number of bits in the mode is
10644 equivalent to (xor A 1). */
10645 if (code == LSHIFTRT
10646 && count == (GET_MODE_PRECISION (result_mode) - 1)
10647 && XEXP (varop, 1) == constm1_rtx
10648 && nonzero_bits (XEXP (varop, 0), result_mode) == 1
10649 && merge_outer_ops (&outer_op, &outer_const, XOR, 1, result_mode,
10650 &complement_p))
10651 {
10652 count = 0;
10653 varop = XEXP (varop, 0);
10654 continue;
10655 }
10656
10657 /* If we have (xshiftrt (plus FOO BAR) C), and the only bits
10658 that might be nonzero in BAR are those being shifted out and those
10659 bits are known zero in FOO, we can replace the PLUS with FOO.
10660 Similarly in the other operand order. This code occurs when
10661 we are computing the size of a variable-size array. */
10662
10663 if ((code == ASHIFTRT || code == LSHIFTRT)
10664 && count < HOST_BITS_PER_WIDE_INT
10665 && nonzero_bits (XEXP (varop, 1), result_mode) >> count == 0
10666 && (nonzero_bits (XEXP (varop, 1), result_mode)
10667 & nonzero_bits (XEXP (varop, 0), result_mode)) == 0)
10668 {
10669 varop = XEXP (varop, 0);
10670 continue;
10671 }
10672 else if ((code == ASHIFTRT || code == LSHIFTRT)
10673 && count < HOST_BITS_PER_WIDE_INT
10674 && HWI_COMPUTABLE_MODE_P (result_mode)
10675 && 0 == (nonzero_bits (XEXP (varop, 0), result_mode)
10676 >> count)
10677 && 0 == (nonzero_bits (XEXP (varop, 0), result_mode)
10678 & nonzero_bits (XEXP (varop, 1),
10679 result_mode)))
10680 {
10681 varop = XEXP (varop, 1);
10682 continue;
10683 }
10684
10685 /* (ashift (plus foo C) N) is (plus (ashift foo N) C'). */
10686 if (code == ASHIFT
10687 && CONST_INT_P (XEXP (varop, 1))
10688 && (new_rtx = simplify_const_binary_operation
10689 (ASHIFT, result_mode,
10690 gen_int_mode (INTVAL (XEXP (varop, 1)), result_mode),
10691 GEN_INT (count))) != 0
10692 && CONST_INT_P (new_rtx)
10693 && merge_outer_ops (&outer_op, &outer_const, PLUS,
10694 INTVAL (new_rtx), result_mode, &complement_p))
10695 {
10696 varop = XEXP (varop, 0);
10697 continue;
10698 }
10699
10700 /* Check for 'PLUS signbit', which is the canonical form of 'XOR
10701 signbit', and attempt to change the PLUS to an XOR and move it to
10702 the outer operation as is done above in the AND/IOR/XOR case
10703 leg for shift(logical). See details in logical handling above
10704 for reasoning in doing so. */
10705 if (code == LSHIFTRT
10706 && CONST_INT_P (XEXP (varop, 1))
10707 && mode_signbit_p (result_mode, XEXP (varop, 1))
10708 && (new_rtx = simplify_const_binary_operation
10709 (code, result_mode,
10710 gen_int_mode (INTVAL (XEXP (varop, 1)), result_mode),
10711 GEN_INT (count))) != 0
10712 && CONST_INT_P (new_rtx)
10713 && merge_outer_ops (&outer_op, &outer_const, XOR,
10714 INTVAL (new_rtx), result_mode, &complement_p))
10715 {
10716 varop = XEXP (varop, 0);
10717 continue;
10718 }
10719
10720 break;
10721
10722 case MINUS:
10723 /* If we have (xshiftrt (minus (ashiftrt X C)) X) C)
10724 with C the size of VAROP - 1 and the shift is logical if
10725 STORE_FLAG_VALUE is 1 and arithmetic if STORE_FLAG_VALUE is -1,
10726 we have a (gt X 0) operation. If the shift is arithmetic with
10727 STORE_FLAG_VALUE of 1 or logical with STORE_FLAG_VALUE == -1,
10728 we have a (neg (gt X 0)) operation. */
10729
10730 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
10731 && GET_CODE (XEXP (varop, 0)) == ASHIFTRT
10732 && count == (GET_MODE_PRECISION (GET_MODE (varop)) - 1)
10733 && (code == LSHIFTRT || code == ASHIFTRT)
10734 && CONST_INT_P (XEXP (XEXP (varop, 0), 1))
10735 && INTVAL (XEXP (XEXP (varop, 0), 1)) == count
10736 && rtx_equal_p (XEXP (XEXP (varop, 0), 0), XEXP (varop, 1)))
10737 {
10738 count = 0;
10739 varop = gen_rtx_GT (GET_MODE (varop), XEXP (varop, 1),
10740 const0_rtx);
10741
10742 if (STORE_FLAG_VALUE == 1 ? code == ASHIFTRT : code == LSHIFTRT)
10743 varop = gen_rtx_NEG (GET_MODE (varop), varop);
10744
10745 continue;
10746 }
10747 break;
10748
10749 case TRUNCATE:
10750 /* Change (lshiftrt (truncate (lshiftrt))) to (truncate (lshiftrt))
10751 if the truncate does not affect the value. */
10752 if (code == LSHIFTRT
10753 && GET_CODE (XEXP (varop, 0)) == LSHIFTRT
10754 && CONST_INT_P (XEXP (XEXP (varop, 0), 1))
10755 && (INTVAL (XEXP (XEXP (varop, 0), 1))
10756 >= (GET_MODE_PRECISION (GET_MODE (XEXP (varop, 0)))
10757 - GET_MODE_PRECISION (GET_MODE (varop)))))
10758 {
10759 rtx varop_inner = XEXP (varop, 0);
10760
10761 varop_inner
10762 = gen_rtx_LSHIFTRT (GET_MODE (varop_inner),
10763 XEXP (varop_inner, 0),
10764 GEN_INT
10765 (count + INTVAL (XEXP (varop_inner, 1))));
10766 varop = gen_rtx_TRUNCATE (GET_MODE (varop), varop_inner);
10767 count = 0;
10768 continue;
10769 }
10770 break;
10771
10772 default:
10773 break;
10774 }
10775
10776 break;
10777 }
10778
10779 shift_mode = try_widen_shift_mode (code, varop, count, result_mode, mode,
10780 outer_op, outer_const);
10781
10782 /* We have now finished analyzing the shift. The result should be
10783 a shift of type CODE with SHIFT_MODE shifting VAROP COUNT places. If
10784 OUTER_OP is non-UNKNOWN, it is an operation that needs to be applied
10785 to the result of the shift. OUTER_CONST is the relevant constant,
10786 but we must turn off all bits turned off in the shift. */
10787
10788 if (outer_op == UNKNOWN
10789 && orig_code == code && orig_count == count
10790 && varop == orig_varop
10791 && shift_mode == GET_MODE (varop))
10792 return NULL_RTX;
10793
10794 /* Make a SUBREG if necessary. If we can't make it, fail. */
10795 varop = gen_lowpart (shift_mode, varop);
10796 if (varop == NULL_RTX || GET_CODE (varop) == CLOBBER)
10797 return NULL_RTX;
10798
10799 /* If we have an outer operation and we just made a shift, it is
10800 possible that we could have simplified the shift were it not
10801 for the outer operation. So try to do the simplification
10802 recursively. */
10803
10804 if (outer_op != UNKNOWN)
10805 x = simplify_shift_const_1 (code, shift_mode, varop, count);
10806 else
10807 x = NULL_RTX;
10808
10809 if (x == NULL_RTX)
10810 x = simplify_gen_binary (code, shift_mode, varop, GEN_INT (count));
10811
10812 /* If we were doing an LSHIFTRT in a wider mode than it was originally,
10813 turn off all the bits that the shift would have turned off. */
10814 if (orig_code == LSHIFTRT && result_mode != shift_mode)
10815 x = simplify_and_const_int (NULL_RTX, shift_mode, x,
10816 GET_MODE_MASK (result_mode) >> orig_count);
10817
10818 /* Do the remainder of the processing in RESULT_MODE. */
10819 x = gen_lowpart_or_truncate (result_mode, x);
10820
10821 /* If COMPLEMENT_P is set, we have to complement X before doing the outer
10822 operation. */
10823 if (complement_p)
10824 x = simplify_gen_unary (NOT, result_mode, x, result_mode);
10825
10826 if (outer_op != UNKNOWN)
10827 {
10828 if (GET_RTX_CLASS (outer_op) != RTX_UNARY
10829 && GET_MODE_PRECISION (result_mode) < HOST_BITS_PER_WIDE_INT)
10830 outer_const = trunc_int_for_mode (outer_const, result_mode);
10831
10832 if (outer_op == AND)
10833 x = simplify_and_const_int (NULL_RTX, result_mode, x, outer_const);
10834 else if (outer_op == SET)
10835 {
10836 /* This means that we have determined that the result is
10837 equivalent to a constant. This should be rare. */
10838 if (!side_effects_p (x))
10839 x = GEN_INT (outer_const);
10840 }
10841 else if (GET_RTX_CLASS (outer_op) == RTX_UNARY)
10842 x = simplify_gen_unary (outer_op, result_mode, x, result_mode);
10843 else
10844 x = simplify_gen_binary (outer_op, result_mode, x,
10845 GEN_INT (outer_const));
10846 }
10847
10848 return x;
10849 }
10850
10851 /* Simplify a shift of VAROP by COUNT bits. CODE says what kind of shift.
10852 The result of the shift is RESULT_MODE. If we cannot simplify it,
10853 return X or, if it is NULL, synthesize the expression with
10854 simplify_gen_binary. Otherwise, return a simplified value.
10855
10856 The shift is normally computed in the widest mode we find in VAROP, as
10857 long as it isn't a different number of words than RESULT_MODE. Exceptions
10858 are ASHIFTRT and ROTATE, which are always done in their original mode. */
10859
10860 static rtx
10861 simplify_shift_const (rtx x, enum rtx_code code, machine_mode result_mode,
10862 rtx varop, int count)
10863 {
10864 rtx tem = simplify_shift_const_1 (code, result_mode, varop, count);
10865 if (tem)
10866 return tem;
10867
10868 if (!x)
10869 x = simplify_gen_binary (code, GET_MODE (varop), varop, GEN_INT (count));
10870 if (GET_MODE (x) != result_mode)
10871 x = gen_lowpart (result_mode, x);
10872 return x;
10873 }
10874
10875 \f
10876 /* A subroutine of recog_for_combine. See there for arguments and
10877 return value. */
10878
10879 static int
10880 recog_for_combine_1 (rtx *pnewpat, rtx_insn *insn, rtx *pnotes)
10881 {
10882 rtx pat = *pnewpat;
10883 rtx pat_without_clobbers;
10884 int insn_code_number;
10885 int num_clobbers_to_add = 0;
10886 int i;
10887 rtx notes = NULL_RTX;
10888 rtx old_notes, old_pat;
10889 int old_icode;
10890
10891 /* If PAT is a PARALLEL, check to see if it contains the CLOBBER
10892 we use to indicate that something didn't match. If we find such a
10893 thing, force rejection. */
10894 if (GET_CODE (pat) == PARALLEL)
10895 for (i = XVECLEN (pat, 0) - 1; i >= 0; i--)
10896 if (GET_CODE (XVECEXP (pat, 0, i)) == CLOBBER
10897 && XEXP (XVECEXP (pat, 0, i), 0) == const0_rtx)
10898 return -1;
10899
10900 old_pat = PATTERN (insn);
10901 old_notes = REG_NOTES (insn);
10902 PATTERN (insn) = pat;
10903 REG_NOTES (insn) = NULL_RTX;
10904
10905 insn_code_number = recog (pat, insn, &num_clobbers_to_add);
10906 if (dump_file && (dump_flags & TDF_DETAILS))
10907 {
10908 if (insn_code_number < 0)
10909 fputs ("Failed to match this instruction:\n", dump_file);
10910 else
10911 fputs ("Successfully matched this instruction:\n", dump_file);
10912 print_rtl_single (dump_file, pat);
10913 }
10914
10915 /* If it isn't, there is the possibility that we previously had an insn
10916 that clobbered some register as a side effect, but the combined
10917 insn doesn't need to do that. So try once more without the clobbers
10918 unless this represents an ASM insn. */
10919
10920 if (insn_code_number < 0 && ! check_asm_operands (pat)
10921 && GET_CODE (pat) == PARALLEL)
10922 {
10923 int pos;
10924
10925 for (pos = 0, i = 0; i < XVECLEN (pat, 0); i++)
10926 if (GET_CODE (XVECEXP (pat, 0, i)) != CLOBBER)
10927 {
10928 if (i != pos)
10929 SUBST (XVECEXP (pat, 0, pos), XVECEXP (pat, 0, i));
10930 pos++;
10931 }
10932
10933 SUBST_INT (XVECLEN (pat, 0), pos);
10934
10935 if (pos == 1)
10936 pat = XVECEXP (pat, 0, 0);
10937
10938 PATTERN (insn) = pat;
10939 insn_code_number = recog (pat, insn, &num_clobbers_to_add);
10940 if (dump_file && (dump_flags & TDF_DETAILS))
10941 {
10942 if (insn_code_number < 0)
10943 fputs ("Failed to match this instruction:\n", dump_file);
10944 else
10945 fputs ("Successfully matched this instruction:\n", dump_file);
10946 print_rtl_single (dump_file, pat);
10947 }
10948 }
10949
10950 pat_without_clobbers = pat;
10951
10952 PATTERN (insn) = old_pat;
10953 REG_NOTES (insn) = old_notes;
10954
10955 /* Recognize all noop sets, these will be killed by followup pass. */
10956 if (insn_code_number < 0 && GET_CODE (pat) == SET && set_noop_p (pat))
10957 insn_code_number = NOOP_MOVE_INSN_CODE, num_clobbers_to_add = 0;
10958
10959 /* If we had any clobbers to add, make a new pattern than contains
10960 them. Then check to make sure that all of them are dead. */
10961 if (num_clobbers_to_add)
10962 {
10963 rtx newpat = gen_rtx_PARALLEL (VOIDmode,
10964 rtvec_alloc (GET_CODE (pat) == PARALLEL
10965 ? (XVECLEN (pat, 0)
10966 + num_clobbers_to_add)
10967 : num_clobbers_to_add + 1));
10968
10969 if (GET_CODE (pat) == PARALLEL)
10970 for (i = 0; i < XVECLEN (pat, 0); i++)
10971 XVECEXP (newpat, 0, i) = XVECEXP (pat, 0, i);
10972 else
10973 XVECEXP (newpat, 0, 0) = pat;
10974
10975 add_clobbers (newpat, insn_code_number);
10976
10977 for (i = XVECLEN (newpat, 0) - num_clobbers_to_add;
10978 i < XVECLEN (newpat, 0); i++)
10979 {
10980 if (REG_P (XEXP (XVECEXP (newpat, 0, i), 0))
10981 && ! reg_dead_at_p (XEXP (XVECEXP (newpat, 0, i), 0), insn))
10982 return -1;
10983 if (GET_CODE (XEXP (XVECEXP (newpat, 0, i), 0)) != SCRATCH)
10984 {
10985 gcc_assert (REG_P (XEXP (XVECEXP (newpat, 0, i), 0)));
10986 notes = alloc_reg_note (REG_UNUSED,
10987 XEXP (XVECEXP (newpat, 0, i), 0), notes);
10988 }
10989 }
10990 pat = newpat;
10991 }
10992
10993 if (insn_code_number >= 0
10994 && insn_code_number != NOOP_MOVE_INSN_CODE)
10995 {
10996 old_pat = PATTERN (insn);
10997 old_notes = REG_NOTES (insn);
10998 old_icode = INSN_CODE (insn);
10999 PATTERN (insn) = pat;
11000 REG_NOTES (insn) = notes;
11001
11002 /* Allow targets to reject combined insn. */
11003 if (!targetm.legitimate_combined_insn (insn))
11004 {
11005 if (dump_file && (dump_flags & TDF_DETAILS))
11006 fputs ("Instruction not appropriate for target.",
11007 dump_file);
11008
11009 /* Callers expect recog_for_combine to strip
11010 clobbers from the pattern on failure. */
11011 pat = pat_without_clobbers;
11012 notes = NULL_RTX;
11013
11014 insn_code_number = -1;
11015 }
11016
11017 PATTERN (insn) = old_pat;
11018 REG_NOTES (insn) = old_notes;
11019 INSN_CODE (insn) = old_icode;
11020 }
11021
11022 *pnewpat = pat;
11023 *pnotes = notes;
11024
11025 return insn_code_number;
11026 }
11027
11028 /* Change every ZERO_EXTRACT and ZERO_EXTEND of a SUBREG that can be
11029 expressed as an AND and maybe an LSHIFTRT, to that formulation.
11030 Return whether anything was so changed. */
11031
11032 static bool
11033 change_zero_ext (rtx *src)
11034 {
11035 bool changed = false;
11036
11037 subrtx_ptr_iterator::array_type array;
11038 FOR_EACH_SUBRTX_PTR (iter, array, src, NONCONST)
11039 {
11040 rtx x = **iter;
11041 machine_mode mode = GET_MODE (x);
11042 int size;
11043
11044 if (GET_CODE (x) == ZERO_EXTRACT
11045 && CONST_INT_P (XEXP (x, 1))
11046 && CONST_INT_P (XEXP (x, 2))
11047 && GET_MODE (XEXP (x, 0)) == mode)
11048 {
11049 size = INTVAL (XEXP (x, 1));
11050
11051 int start = INTVAL (XEXP (x, 2));
11052 if (BITS_BIG_ENDIAN)
11053 start = GET_MODE_PRECISION (mode) - size - start;
11054
11055 x = simplify_gen_binary (LSHIFTRT, mode,
11056 XEXP (x, 0), GEN_INT (start));
11057 }
11058 else if (GET_CODE (x) == ZERO_EXTEND
11059 && GET_CODE (XEXP (x, 0)) == SUBREG
11060 && GET_MODE (SUBREG_REG (XEXP (x, 0))) == mode
11061 && subreg_lowpart_p (XEXP (x, 0)))
11062 {
11063 size = GET_MODE_PRECISION (GET_MODE (XEXP (x, 0)));
11064 x = SUBREG_REG (XEXP (x, 0));
11065 }
11066 else
11067 continue;
11068
11069 unsigned HOST_WIDE_INT mask = 1;
11070 mask <<= size;
11071 mask--;
11072
11073 x = gen_rtx_AND (mode, x, GEN_INT (mask));
11074
11075 SUBST (**iter, x);
11076 changed = true;
11077 }
11078
11079 return changed;
11080 }
11081
11082 /* Like recog, but we receive the address of a pointer to a new pattern.
11083 We try to match the rtx that the pointer points to.
11084 If that fails, we may try to modify or replace the pattern,
11085 storing the replacement into the same pointer object.
11086
11087 Modifications include deletion or addition of CLOBBERs. If the
11088 instruction will still not match, we change ZERO_EXTEND and ZERO_EXTRACT
11089 to the equivalent AND and perhaps LSHIFTRT patterns, and try with that
11090 (and undo if that fails).
11091
11092 PNOTES is a pointer to a location where any REG_UNUSED notes added for
11093 the CLOBBERs are placed.
11094
11095 The value is the final insn code from the pattern ultimately matched,
11096 or -1. */
11097
11098 static int
11099 recog_for_combine (rtx *pnewpat, rtx_insn *insn, rtx *pnotes)
11100 {
11101 rtx pat = PATTERN (insn);
11102 int insn_code_number = recog_for_combine_1 (pnewpat, insn, pnotes);
11103 if (insn_code_number >= 0 || check_asm_operands (pat))
11104 return insn_code_number;
11105
11106 void *marker = get_undo_marker ();
11107 bool changed = false;
11108
11109 if (GET_CODE (pat) == SET)
11110 changed = change_zero_ext (&SET_SRC (pat));
11111 else if (GET_CODE (pat) == PARALLEL)
11112 {
11113 int i;
11114 for (i = 0; i < XVECLEN (pat, 0); i++)
11115 {
11116 rtx set = XVECEXP (pat, 0, i);
11117 if (GET_CODE (set) == SET)
11118 changed |= change_zero_ext (&SET_SRC (set));
11119 }
11120 }
11121
11122 if (changed)
11123 {
11124 insn_code_number = recog_for_combine_1 (pnewpat, insn, pnotes);
11125
11126 if (insn_code_number < 0)
11127 undo_to_marker (marker);
11128 }
11129
11130 return insn_code_number;
11131 }
11132 \f
11133 /* Like gen_lowpart_general but for use by combine. In combine it
11134 is not possible to create any new pseudoregs. However, it is
11135 safe to create invalid memory addresses, because combine will
11136 try to recognize them and all they will do is make the combine
11137 attempt fail.
11138
11139 If for some reason this cannot do its job, an rtx
11140 (clobber (const_int 0)) is returned.
11141 An insn containing that will not be recognized. */
11142
11143 static rtx
11144 gen_lowpart_for_combine (machine_mode omode, rtx x)
11145 {
11146 machine_mode imode = GET_MODE (x);
11147 unsigned int osize = GET_MODE_SIZE (omode);
11148 unsigned int isize = GET_MODE_SIZE (imode);
11149 rtx result;
11150
11151 if (omode == imode)
11152 return x;
11153
11154 /* We can only support MODE being wider than a word if X is a
11155 constant integer or has a mode the same size. */
11156 if (GET_MODE_SIZE (omode) > UNITS_PER_WORD
11157 && ! (CONST_SCALAR_INT_P (x) || isize == osize))
11158 goto fail;
11159
11160 /* X might be a paradoxical (subreg (mem)). In that case, gen_lowpart
11161 won't know what to do. So we will strip off the SUBREG here and
11162 process normally. */
11163 if (GET_CODE (x) == SUBREG && MEM_P (SUBREG_REG (x)))
11164 {
11165 x = SUBREG_REG (x);
11166
11167 /* For use in case we fall down into the address adjustments
11168 further below, we need to adjust the known mode and size of
11169 x; imode and isize, since we just adjusted x. */
11170 imode = GET_MODE (x);
11171
11172 if (imode == omode)
11173 return x;
11174
11175 isize = GET_MODE_SIZE (imode);
11176 }
11177
11178 result = gen_lowpart_common (omode, x);
11179
11180 if (result)
11181 return result;
11182
11183 if (MEM_P (x))
11184 {
11185 int offset = 0;
11186
11187 /* Refuse to work on a volatile memory ref or one with a mode-dependent
11188 address. */
11189 if (MEM_VOLATILE_P (x)
11190 || mode_dependent_address_p (XEXP (x, 0), MEM_ADDR_SPACE (x)))
11191 goto fail;
11192
11193 /* If we want to refer to something bigger than the original memref,
11194 generate a paradoxical subreg instead. That will force a reload
11195 of the original memref X. */
11196 if (isize < osize)
11197 return gen_rtx_SUBREG (omode, x, 0);
11198
11199 if (WORDS_BIG_ENDIAN)
11200 offset = MAX (isize, UNITS_PER_WORD) - MAX (osize, UNITS_PER_WORD);
11201
11202 /* Adjust the address so that the address-after-the-data is
11203 unchanged. */
11204 if (BYTES_BIG_ENDIAN)
11205 offset -= MIN (UNITS_PER_WORD, osize) - MIN (UNITS_PER_WORD, isize);
11206
11207 return adjust_address_nv (x, omode, offset);
11208 }
11209
11210 /* If X is a comparison operator, rewrite it in a new mode. This
11211 probably won't match, but may allow further simplifications. */
11212 else if (COMPARISON_P (x))
11213 return gen_rtx_fmt_ee (GET_CODE (x), omode, XEXP (x, 0), XEXP (x, 1));
11214
11215 /* If we couldn't simplify X any other way, just enclose it in a
11216 SUBREG. Normally, this SUBREG won't match, but some patterns may
11217 include an explicit SUBREG or we may simplify it further in combine. */
11218 else
11219 {
11220 rtx res;
11221
11222 if (imode == VOIDmode)
11223 {
11224 imode = int_mode_for_mode (omode);
11225 x = gen_lowpart_common (imode, x);
11226 if (x == NULL)
11227 goto fail;
11228 }
11229 res = lowpart_subreg (omode, x, imode);
11230 if (res)
11231 return res;
11232 }
11233
11234 fail:
11235 return gen_rtx_CLOBBER (omode, const0_rtx);
11236 }
11237 \f
11238 /* Try to simplify a comparison between OP0 and a constant OP1,
11239 where CODE is the comparison code that will be tested, into a
11240 (CODE OP0 const0_rtx) form.
11241
11242 The result is a possibly different comparison code to use.
11243 *POP1 may be updated. */
11244
11245 static enum rtx_code
11246 simplify_compare_const (enum rtx_code code, machine_mode mode,
11247 rtx op0, rtx *pop1)
11248 {
11249 unsigned int mode_width = GET_MODE_PRECISION (mode);
11250 HOST_WIDE_INT const_op = INTVAL (*pop1);
11251
11252 /* Get the constant we are comparing against and turn off all bits
11253 not on in our mode. */
11254 if (mode != VOIDmode)
11255 const_op = trunc_int_for_mode (const_op, mode);
11256
11257 /* If we are comparing against a constant power of two and the value
11258 being compared can only have that single bit nonzero (e.g., it was
11259 `and'ed with that bit), we can replace this with a comparison
11260 with zero. */
11261 if (const_op
11262 && (code == EQ || code == NE || code == GE || code == GEU
11263 || code == LT || code == LTU)
11264 && mode_width - 1 < HOST_BITS_PER_WIDE_INT
11265 && exact_log2 (const_op & GET_MODE_MASK (mode)) >= 0
11266 && (nonzero_bits (op0, mode)
11267 == (unsigned HOST_WIDE_INT) (const_op & GET_MODE_MASK (mode))))
11268 {
11269 code = (code == EQ || code == GE || code == GEU ? NE : EQ);
11270 const_op = 0;
11271 }
11272
11273 /* Similarly, if we are comparing a value known to be either -1 or
11274 0 with -1, change it to the opposite comparison against zero. */
11275 if (const_op == -1
11276 && (code == EQ || code == NE || code == GT || code == LE
11277 || code == GEU || code == LTU)
11278 && num_sign_bit_copies (op0, mode) == mode_width)
11279 {
11280 code = (code == EQ || code == LE || code == GEU ? NE : EQ);
11281 const_op = 0;
11282 }
11283
11284 /* Do some canonicalizations based on the comparison code. We prefer
11285 comparisons against zero and then prefer equality comparisons.
11286 If we can reduce the size of a constant, we will do that too. */
11287 switch (code)
11288 {
11289 case LT:
11290 /* < C is equivalent to <= (C - 1) */
11291 if (const_op > 0)
11292 {
11293 const_op -= 1;
11294 code = LE;
11295 /* ... fall through to LE case below. */
11296 }
11297 else
11298 break;
11299
11300 case LE:
11301 /* <= C is equivalent to < (C + 1); we do this for C < 0 */
11302 if (const_op < 0)
11303 {
11304 const_op += 1;
11305 code = LT;
11306 }
11307
11308 /* If we are doing a <= 0 comparison on a value known to have
11309 a zero sign bit, we can replace this with == 0. */
11310 else if (const_op == 0
11311 && mode_width - 1 < HOST_BITS_PER_WIDE_INT
11312 && (nonzero_bits (op0, mode)
11313 & ((unsigned HOST_WIDE_INT) 1 << (mode_width - 1)))
11314 == 0)
11315 code = EQ;
11316 break;
11317
11318 case GE:
11319 /* >= C is equivalent to > (C - 1). */
11320 if (const_op > 0)
11321 {
11322 const_op -= 1;
11323 code = GT;
11324 /* ... fall through to GT below. */
11325 }
11326 else
11327 break;
11328
11329 case GT:
11330 /* > C is equivalent to >= (C + 1); we do this for C < 0. */
11331 if (const_op < 0)
11332 {
11333 const_op += 1;
11334 code = GE;
11335 }
11336
11337 /* If we are doing a > 0 comparison on a value known to have
11338 a zero sign bit, we can replace this with != 0. */
11339 else if (const_op == 0
11340 && mode_width - 1 < HOST_BITS_PER_WIDE_INT
11341 && (nonzero_bits (op0, mode)
11342 & ((unsigned HOST_WIDE_INT) 1 << (mode_width - 1)))
11343 == 0)
11344 code = NE;
11345 break;
11346
11347 case LTU:
11348 /* < C is equivalent to <= (C - 1). */
11349 if (const_op > 0)
11350 {
11351 const_op -= 1;
11352 code = LEU;
11353 /* ... fall through ... */
11354 }
11355 /* (unsigned) < 0x80000000 is equivalent to >= 0. */
11356 else if (mode_width - 1 < HOST_BITS_PER_WIDE_INT
11357 && (unsigned HOST_WIDE_INT) const_op
11358 == (unsigned HOST_WIDE_INT) 1 << (mode_width - 1))
11359 {
11360 const_op = 0;
11361 code = GE;
11362 break;
11363 }
11364 else
11365 break;
11366
11367 case LEU:
11368 /* unsigned <= 0 is equivalent to == 0 */
11369 if (const_op == 0)
11370 code = EQ;
11371 /* (unsigned) <= 0x7fffffff is equivalent to >= 0. */
11372 else if (mode_width - 1 < HOST_BITS_PER_WIDE_INT
11373 && (unsigned HOST_WIDE_INT) const_op
11374 == ((unsigned HOST_WIDE_INT) 1 << (mode_width - 1)) - 1)
11375 {
11376 const_op = 0;
11377 code = GE;
11378 }
11379 break;
11380
11381 case GEU:
11382 /* >= C is equivalent to > (C - 1). */
11383 if (const_op > 1)
11384 {
11385 const_op -= 1;
11386 code = GTU;
11387 /* ... fall through ... */
11388 }
11389
11390 /* (unsigned) >= 0x80000000 is equivalent to < 0. */
11391 else if (mode_width - 1 < HOST_BITS_PER_WIDE_INT
11392 && (unsigned HOST_WIDE_INT) const_op
11393 == (unsigned HOST_WIDE_INT) 1 << (mode_width - 1))
11394 {
11395 const_op = 0;
11396 code = LT;
11397 break;
11398 }
11399 else
11400 break;
11401
11402 case GTU:
11403 /* unsigned > 0 is equivalent to != 0 */
11404 if (const_op == 0)
11405 code = NE;
11406 /* (unsigned) > 0x7fffffff is equivalent to < 0. */
11407 else if (mode_width - 1 < HOST_BITS_PER_WIDE_INT
11408 && (unsigned HOST_WIDE_INT) const_op
11409 == ((unsigned HOST_WIDE_INT) 1 << (mode_width - 1)) - 1)
11410 {
11411 const_op = 0;
11412 code = LT;
11413 }
11414 break;
11415
11416 default:
11417 break;
11418 }
11419
11420 *pop1 = GEN_INT (const_op);
11421 return code;
11422 }
11423 \f
11424 /* Simplify a comparison between *POP0 and *POP1 where CODE is the
11425 comparison code that will be tested.
11426
11427 The result is a possibly different comparison code to use. *POP0 and
11428 *POP1 may be updated.
11429
11430 It is possible that we might detect that a comparison is either always
11431 true or always false. However, we do not perform general constant
11432 folding in combine, so this knowledge isn't useful. Such tautologies
11433 should have been detected earlier. Hence we ignore all such cases. */
11434
11435 static enum rtx_code
11436 simplify_comparison (enum rtx_code code, rtx *pop0, rtx *pop1)
11437 {
11438 rtx op0 = *pop0;
11439 rtx op1 = *pop1;
11440 rtx tem, tem1;
11441 int i;
11442 machine_mode mode, tmode;
11443
11444 /* Try a few ways of applying the same transformation to both operands. */
11445 while (1)
11446 {
11447 /* The test below this one won't handle SIGN_EXTENDs on these machines,
11448 so check specially. */
11449 if (!WORD_REGISTER_OPERATIONS
11450 && code != GTU && code != GEU && code != LTU && code != LEU
11451 && GET_CODE (op0) == ASHIFTRT && GET_CODE (op1) == ASHIFTRT
11452 && GET_CODE (XEXP (op0, 0)) == ASHIFT
11453 && GET_CODE (XEXP (op1, 0)) == ASHIFT
11454 && GET_CODE (XEXP (XEXP (op0, 0), 0)) == SUBREG
11455 && GET_CODE (XEXP (XEXP (op1, 0), 0)) == SUBREG
11456 && (GET_MODE (SUBREG_REG (XEXP (XEXP (op0, 0), 0)))
11457 == GET_MODE (SUBREG_REG (XEXP (XEXP (op1, 0), 0))))
11458 && CONST_INT_P (XEXP (op0, 1))
11459 && XEXP (op0, 1) == XEXP (op1, 1)
11460 && XEXP (op0, 1) == XEXP (XEXP (op0, 0), 1)
11461 && XEXP (op0, 1) == XEXP (XEXP (op1, 0), 1)
11462 && (INTVAL (XEXP (op0, 1))
11463 == (GET_MODE_PRECISION (GET_MODE (op0))
11464 - (GET_MODE_PRECISION
11465 (GET_MODE (SUBREG_REG (XEXP (XEXP (op0, 0), 0))))))))
11466 {
11467 op0 = SUBREG_REG (XEXP (XEXP (op0, 0), 0));
11468 op1 = SUBREG_REG (XEXP (XEXP (op1, 0), 0));
11469 }
11470
11471 /* If both operands are the same constant shift, see if we can ignore the
11472 shift. We can if the shift is a rotate or if the bits shifted out of
11473 this shift are known to be zero for both inputs and if the type of
11474 comparison is compatible with the shift. */
11475 if (GET_CODE (op0) == GET_CODE (op1)
11476 && HWI_COMPUTABLE_MODE_P (GET_MODE (op0))
11477 && ((GET_CODE (op0) == ROTATE && (code == NE || code == EQ))
11478 || ((GET_CODE (op0) == LSHIFTRT || GET_CODE (op0) == ASHIFT)
11479 && (code != GT && code != LT && code != GE && code != LE))
11480 || (GET_CODE (op0) == ASHIFTRT
11481 && (code != GTU && code != LTU
11482 && code != GEU && code != LEU)))
11483 && CONST_INT_P (XEXP (op0, 1))
11484 && INTVAL (XEXP (op0, 1)) >= 0
11485 && INTVAL (XEXP (op0, 1)) < HOST_BITS_PER_WIDE_INT
11486 && XEXP (op0, 1) == XEXP (op1, 1))
11487 {
11488 machine_mode mode = GET_MODE (op0);
11489 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
11490 int shift_count = INTVAL (XEXP (op0, 1));
11491
11492 if (GET_CODE (op0) == LSHIFTRT || GET_CODE (op0) == ASHIFTRT)
11493 mask &= (mask >> shift_count) << shift_count;
11494 else if (GET_CODE (op0) == ASHIFT)
11495 mask = (mask & (mask << shift_count)) >> shift_count;
11496
11497 if ((nonzero_bits (XEXP (op0, 0), mode) & ~mask) == 0
11498 && (nonzero_bits (XEXP (op1, 0), mode) & ~mask) == 0)
11499 op0 = XEXP (op0, 0), op1 = XEXP (op1, 0);
11500 else
11501 break;
11502 }
11503
11504 /* If both operands are AND's of a paradoxical SUBREG by constant, the
11505 SUBREGs are of the same mode, and, in both cases, the AND would
11506 be redundant if the comparison was done in the narrower mode,
11507 do the comparison in the narrower mode (e.g., we are AND'ing with 1
11508 and the operand's possibly nonzero bits are 0xffffff01; in that case
11509 if we only care about QImode, we don't need the AND). This case
11510 occurs if the output mode of an scc insn is not SImode and
11511 STORE_FLAG_VALUE == 1 (e.g., the 386).
11512
11513 Similarly, check for a case where the AND's are ZERO_EXTEND
11514 operations from some narrower mode even though a SUBREG is not
11515 present. */
11516
11517 else if (GET_CODE (op0) == AND && GET_CODE (op1) == AND
11518 && CONST_INT_P (XEXP (op0, 1))
11519 && CONST_INT_P (XEXP (op1, 1)))
11520 {
11521 rtx inner_op0 = XEXP (op0, 0);
11522 rtx inner_op1 = XEXP (op1, 0);
11523 HOST_WIDE_INT c0 = INTVAL (XEXP (op0, 1));
11524 HOST_WIDE_INT c1 = INTVAL (XEXP (op1, 1));
11525 int changed = 0;
11526
11527 if (paradoxical_subreg_p (inner_op0)
11528 && GET_CODE (inner_op1) == SUBREG
11529 && (GET_MODE (SUBREG_REG (inner_op0))
11530 == GET_MODE (SUBREG_REG (inner_op1)))
11531 && (GET_MODE_PRECISION (GET_MODE (SUBREG_REG (inner_op0)))
11532 <= HOST_BITS_PER_WIDE_INT)
11533 && (0 == ((~c0) & nonzero_bits (SUBREG_REG (inner_op0),
11534 GET_MODE (SUBREG_REG (inner_op0)))))
11535 && (0 == ((~c1) & nonzero_bits (SUBREG_REG (inner_op1),
11536 GET_MODE (SUBREG_REG (inner_op1))))))
11537 {
11538 op0 = SUBREG_REG (inner_op0);
11539 op1 = SUBREG_REG (inner_op1);
11540
11541 /* The resulting comparison is always unsigned since we masked
11542 off the original sign bit. */
11543 code = unsigned_condition (code);
11544
11545 changed = 1;
11546 }
11547
11548 else if (c0 == c1)
11549 for (tmode = GET_CLASS_NARROWEST_MODE
11550 (GET_MODE_CLASS (GET_MODE (op0)));
11551 tmode != GET_MODE (op0); tmode = GET_MODE_WIDER_MODE (tmode))
11552 if ((unsigned HOST_WIDE_INT) c0 == GET_MODE_MASK (tmode))
11553 {
11554 op0 = gen_lowpart_or_truncate (tmode, inner_op0);
11555 op1 = gen_lowpart_or_truncate (tmode, inner_op1);
11556 code = unsigned_condition (code);
11557 changed = 1;
11558 break;
11559 }
11560
11561 if (! changed)
11562 break;
11563 }
11564
11565 /* If both operands are NOT, we can strip off the outer operation
11566 and adjust the comparison code for swapped operands; similarly for
11567 NEG, except that this must be an equality comparison. */
11568 else if ((GET_CODE (op0) == NOT && GET_CODE (op1) == NOT)
11569 || (GET_CODE (op0) == NEG && GET_CODE (op1) == NEG
11570 && (code == EQ || code == NE)))
11571 op0 = XEXP (op0, 0), op1 = XEXP (op1, 0), code = swap_condition (code);
11572
11573 else
11574 break;
11575 }
11576
11577 /* If the first operand is a constant, swap the operands and adjust the
11578 comparison code appropriately, but don't do this if the second operand
11579 is already a constant integer. */
11580 if (swap_commutative_operands_p (op0, op1))
11581 {
11582 std::swap (op0, op1);
11583 code = swap_condition (code);
11584 }
11585
11586 /* We now enter a loop during which we will try to simplify the comparison.
11587 For the most part, we only are concerned with comparisons with zero,
11588 but some things may really be comparisons with zero but not start
11589 out looking that way. */
11590
11591 while (CONST_INT_P (op1))
11592 {
11593 machine_mode mode = GET_MODE (op0);
11594 unsigned int mode_width = GET_MODE_PRECISION (mode);
11595 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
11596 int equality_comparison_p;
11597 int sign_bit_comparison_p;
11598 int unsigned_comparison_p;
11599 HOST_WIDE_INT const_op;
11600
11601 /* We only want to handle integral modes. This catches VOIDmode,
11602 CCmode, and the floating-point modes. An exception is that we
11603 can handle VOIDmode if OP0 is a COMPARE or a comparison
11604 operation. */
11605
11606 if (GET_MODE_CLASS (mode) != MODE_INT
11607 && ! (mode == VOIDmode
11608 && (GET_CODE (op0) == COMPARE || COMPARISON_P (op0))))
11609 break;
11610
11611 /* Try to simplify the compare to constant, possibly changing the
11612 comparison op, and/or changing op1 to zero. */
11613 code = simplify_compare_const (code, mode, op0, &op1);
11614 const_op = INTVAL (op1);
11615
11616 /* Compute some predicates to simplify code below. */
11617
11618 equality_comparison_p = (code == EQ || code == NE);
11619 sign_bit_comparison_p = ((code == LT || code == GE) && const_op == 0);
11620 unsigned_comparison_p = (code == LTU || code == LEU || code == GTU
11621 || code == GEU);
11622
11623 /* If this is a sign bit comparison and we can do arithmetic in
11624 MODE, say that we will only be needing the sign bit of OP0. */
11625 if (sign_bit_comparison_p && HWI_COMPUTABLE_MODE_P (mode))
11626 op0 = force_to_mode (op0, mode,
11627 (unsigned HOST_WIDE_INT) 1
11628 << (GET_MODE_PRECISION (mode) - 1),
11629 0);
11630
11631 /* Now try cases based on the opcode of OP0. If none of the cases
11632 does a "continue", we exit this loop immediately after the
11633 switch. */
11634
11635 switch (GET_CODE (op0))
11636 {
11637 case ZERO_EXTRACT:
11638 /* If we are extracting a single bit from a variable position in
11639 a constant that has only a single bit set and are comparing it
11640 with zero, we can convert this into an equality comparison
11641 between the position and the location of the single bit. */
11642 /* Except we can't if SHIFT_COUNT_TRUNCATED is set, since we might
11643 have already reduced the shift count modulo the word size. */
11644 if (!SHIFT_COUNT_TRUNCATED
11645 && CONST_INT_P (XEXP (op0, 0))
11646 && XEXP (op0, 1) == const1_rtx
11647 && equality_comparison_p && const_op == 0
11648 && (i = exact_log2 (UINTVAL (XEXP (op0, 0)))) >= 0)
11649 {
11650 if (BITS_BIG_ENDIAN)
11651 i = BITS_PER_WORD - 1 - i;
11652
11653 op0 = XEXP (op0, 2);
11654 op1 = GEN_INT (i);
11655 const_op = i;
11656
11657 /* Result is nonzero iff shift count is equal to I. */
11658 code = reverse_condition (code);
11659 continue;
11660 }
11661
11662 /* ... fall through ... */
11663
11664 case SIGN_EXTRACT:
11665 tem = expand_compound_operation (op0);
11666 if (tem != op0)
11667 {
11668 op0 = tem;
11669 continue;
11670 }
11671 break;
11672
11673 case NOT:
11674 /* If testing for equality, we can take the NOT of the constant. */
11675 if (equality_comparison_p
11676 && (tem = simplify_unary_operation (NOT, mode, op1, mode)) != 0)
11677 {
11678 op0 = XEXP (op0, 0);
11679 op1 = tem;
11680 continue;
11681 }
11682
11683 /* If just looking at the sign bit, reverse the sense of the
11684 comparison. */
11685 if (sign_bit_comparison_p)
11686 {
11687 op0 = XEXP (op0, 0);
11688 code = (code == GE ? LT : GE);
11689 continue;
11690 }
11691 break;
11692
11693 case NEG:
11694 /* If testing for equality, we can take the NEG of the constant. */
11695 if (equality_comparison_p
11696 && (tem = simplify_unary_operation (NEG, mode, op1, mode)) != 0)
11697 {
11698 op0 = XEXP (op0, 0);
11699 op1 = tem;
11700 continue;
11701 }
11702
11703 /* The remaining cases only apply to comparisons with zero. */
11704 if (const_op != 0)
11705 break;
11706
11707 /* When X is ABS or is known positive,
11708 (neg X) is < 0 if and only if X != 0. */
11709
11710 if (sign_bit_comparison_p
11711 && (GET_CODE (XEXP (op0, 0)) == ABS
11712 || (mode_width <= HOST_BITS_PER_WIDE_INT
11713 && (nonzero_bits (XEXP (op0, 0), mode)
11714 & ((unsigned HOST_WIDE_INT) 1 << (mode_width - 1)))
11715 == 0)))
11716 {
11717 op0 = XEXP (op0, 0);
11718 code = (code == LT ? NE : EQ);
11719 continue;
11720 }
11721
11722 /* If we have NEG of something whose two high-order bits are the
11723 same, we know that "(-a) < 0" is equivalent to "a > 0". */
11724 if (num_sign_bit_copies (op0, mode) >= 2)
11725 {
11726 op0 = XEXP (op0, 0);
11727 code = swap_condition (code);
11728 continue;
11729 }
11730 break;
11731
11732 case ROTATE:
11733 /* If we are testing equality and our count is a constant, we
11734 can perform the inverse operation on our RHS. */
11735 if (equality_comparison_p && CONST_INT_P (XEXP (op0, 1))
11736 && (tem = simplify_binary_operation (ROTATERT, mode,
11737 op1, XEXP (op0, 1))) != 0)
11738 {
11739 op0 = XEXP (op0, 0);
11740 op1 = tem;
11741 continue;
11742 }
11743
11744 /* If we are doing a < 0 or >= 0 comparison, it means we are testing
11745 a particular bit. Convert it to an AND of a constant of that
11746 bit. This will be converted into a ZERO_EXTRACT. */
11747 if (const_op == 0 && sign_bit_comparison_p
11748 && CONST_INT_P (XEXP (op0, 1))
11749 && mode_width <= HOST_BITS_PER_WIDE_INT)
11750 {
11751 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
11752 ((unsigned HOST_WIDE_INT) 1
11753 << (mode_width - 1
11754 - INTVAL (XEXP (op0, 1)))));
11755 code = (code == LT ? NE : EQ);
11756 continue;
11757 }
11758
11759 /* Fall through. */
11760
11761 case ABS:
11762 /* ABS is ignorable inside an equality comparison with zero. */
11763 if (const_op == 0 && equality_comparison_p)
11764 {
11765 op0 = XEXP (op0, 0);
11766 continue;
11767 }
11768 break;
11769
11770 case SIGN_EXTEND:
11771 /* Can simplify (compare (zero/sign_extend FOO) CONST) to
11772 (compare FOO CONST) if CONST fits in FOO's mode and we
11773 are either testing inequality or have an unsigned
11774 comparison with ZERO_EXTEND or a signed comparison with
11775 SIGN_EXTEND. But don't do it if we don't have a compare
11776 insn of the given mode, since we'd have to revert it
11777 later on, and then we wouldn't know whether to sign- or
11778 zero-extend. */
11779 mode = GET_MODE (XEXP (op0, 0));
11780 if (GET_MODE_CLASS (mode) == MODE_INT
11781 && ! unsigned_comparison_p
11782 && HWI_COMPUTABLE_MODE_P (mode)
11783 && trunc_int_for_mode (const_op, mode) == const_op
11784 && have_insn_for (COMPARE, mode))
11785 {
11786 op0 = XEXP (op0, 0);
11787 continue;
11788 }
11789 break;
11790
11791 case SUBREG:
11792 /* Check for the case where we are comparing A - C1 with C2, that is
11793
11794 (subreg:MODE (plus (A) (-C1))) op (C2)
11795
11796 with C1 a constant, and try to lift the SUBREG, i.e. to do the
11797 comparison in the wider mode. One of the following two conditions
11798 must be true in order for this to be valid:
11799
11800 1. The mode extension results in the same bit pattern being added
11801 on both sides and the comparison is equality or unsigned. As
11802 C2 has been truncated to fit in MODE, the pattern can only be
11803 all 0s or all 1s.
11804
11805 2. The mode extension results in the sign bit being copied on
11806 each side.
11807
11808 The difficulty here is that we have predicates for A but not for
11809 (A - C1) so we need to check that C1 is within proper bounds so
11810 as to perturbate A as little as possible. */
11811
11812 if (mode_width <= HOST_BITS_PER_WIDE_INT
11813 && subreg_lowpart_p (op0)
11814 && GET_MODE_PRECISION (GET_MODE (SUBREG_REG (op0))) > mode_width
11815 && GET_CODE (SUBREG_REG (op0)) == PLUS
11816 && CONST_INT_P (XEXP (SUBREG_REG (op0), 1)))
11817 {
11818 machine_mode inner_mode = GET_MODE (SUBREG_REG (op0));
11819 rtx a = XEXP (SUBREG_REG (op0), 0);
11820 HOST_WIDE_INT c1 = -INTVAL (XEXP (SUBREG_REG (op0), 1));
11821
11822 if ((c1 > 0
11823 && (unsigned HOST_WIDE_INT) c1
11824 < (unsigned HOST_WIDE_INT) 1 << (mode_width - 1)
11825 && (equality_comparison_p || unsigned_comparison_p)
11826 /* (A - C1) zero-extends if it is positive and sign-extends
11827 if it is negative, C2 both zero- and sign-extends. */
11828 && ((0 == (nonzero_bits (a, inner_mode)
11829 & ~GET_MODE_MASK (mode))
11830 && const_op >= 0)
11831 /* (A - C1) sign-extends if it is positive and 1-extends
11832 if it is negative, C2 both sign- and 1-extends. */
11833 || (num_sign_bit_copies (a, inner_mode)
11834 > (unsigned int) (GET_MODE_PRECISION (inner_mode)
11835 - mode_width)
11836 && const_op < 0)))
11837 || ((unsigned HOST_WIDE_INT) c1
11838 < (unsigned HOST_WIDE_INT) 1 << (mode_width - 2)
11839 /* (A - C1) always sign-extends, like C2. */
11840 && num_sign_bit_copies (a, inner_mode)
11841 > (unsigned int) (GET_MODE_PRECISION (inner_mode)
11842 - (mode_width - 1))))
11843 {
11844 op0 = SUBREG_REG (op0);
11845 continue;
11846 }
11847 }
11848
11849 /* If the inner mode is narrower and we are extracting the low part,
11850 we can treat the SUBREG as if it were a ZERO_EXTEND. */
11851 if (subreg_lowpart_p (op0)
11852 && GET_MODE_PRECISION (GET_MODE (SUBREG_REG (op0))) < mode_width)
11853 /* Fall through */ ;
11854 else
11855 break;
11856
11857 /* ... fall through ... */
11858
11859 case ZERO_EXTEND:
11860 mode = GET_MODE (XEXP (op0, 0));
11861 if (GET_MODE_CLASS (mode) == MODE_INT
11862 && (unsigned_comparison_p || equality_comparison_p)
11863 && HWI_COMPUTABLE_MODE_P (mode)
11864 && (unsigned HOST_WIDE_INT) const_op <= GET_MODE_MASK (mode)
11865 && const_op >= 0
11866 && have_insn_for (COMPARE, mode))
11867 {
11868 op0 = XEXP (op0, 0);
11869 continue;
11870 }
11871 break;
11872
11873 case PLUS:
11874 /* (eq (plus X A) B) -> (eq X (minus B A)). We can only do
11875 this for equality comparisons due to pathological cases involving
11876 overflows. */
11877 if (equality_comparison_p
11878 && 0 != (tem = simplify_binary_operation (MINUS, mode,
11879 op1, XEXP (op0, 1))))
11880 {
11881 op0 = XEXP (op0, 0);
11882 op1 = tem;
11883 continue;
11884 }
11885
11886 /* (plus (abs X) (const_int -1)) is < 0 if and only if X == 0. */
11887 if (const_op == 0 && XEXP (op0, 1) == constm1_rtx
11888 && GET_CODE (XEXP (op0, 0)) == ABS && sign_bit_comparison_p)
11889 {
11890 op0 = XEXP (XEXP (op0, 0), 0);
11891 code = (code == LT ? EQ : NE);
11892 continue;
11893 }
11894 break;
11895
11896 case MINUS:
11897 /* We used to optimize signed comparisons against zero, but that
11898 was incorrect. Unsigned comparisons against zero (GTU, LEU)
11899 arrive here as equality comparisons, or (GEU, LTU) are
11900 optimized away. No need to special-case them. */
11901
11902 /* (eq (minus A B) C) -> (eq A (plus B C)) or
11903 (eq B (minus A C)), whichever simplifies. We can only do
11904 this for equality comparisons due to pathological cases involving
11905 overflows. */
11906 if (equality_comparison_p
11907 && 0 != (tem = simplify_binary_operation (PLUS, mode,
11908 XEXP (op0, 1), op1)))
11909 {
11910 op0 = XEXP (op0, 0);
11911 op1 = tem;
11912 continue;
11913 }
11914
11915 if (equality_comparison_p
11916 && 0 != (tem = simplify_binary_operation (MINUS, mode,
11917 XEXP (op0, 0), op1)))
11918 {
11919 op0 = XEXP (op0, 1);
11920 op1 = tem;
11921 continue;
11922 }
11923
11924 /* The sign bit of (minus (ashiftrt X C) X), where C is the number
11925 of bits in X minus 1, is one iff X > 0. */
11926 if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 0)) == ASHIFTRT
11927 && CONST_INT_P (XEXP (XEXP (op0, 0), 1))
11928 && UINTVAL (XEXP (XEXP (op0, 0), 1)) == mode_width - 1
11929 && rtx_equal_p (XEXP (XEXP (op0, 0), 0), XEXP (op0, 1)))
11930 {
11931 op0 = XEXP (op0, 1);
11932 code = (code == GE ? LE : GT);
11933 continue;
11934 }
11935 break;
11936
11937 case XOR:
11938 /* (eq (xor A B) C) -> (eq A (xor B C)). This is a simplification
11939 if C is zero or B is a constant. */
11940 if (equality_comparison_p
11941 && 0 != (tem = simplify_binary_operation (XOR, mode,
11942 XEXP (op0, 1), op1)))
11943 {
11944 op0 = XEXP (op0, 0);
11945 op1 = tem;
11946 continue;
11947 }
11948 break;
11949
11950 case EQ: case NE:
11951 case UNEQ: case LTGT:
11952 case LT: case LTU: case UNLT: case LE: case LEU: case UNLE:
11953 case GT: case GTU: case UNGT: case GE: case GEU: case UNGE:
11954 case UNORDERED: case ORDERED:
11955 /* We can't do anything if OP0 is a condition code value, rather
11956 than an actual data value. */
11957 if (const_op != 0
11958 || CC0_P (XEXP (op0, 0))
11959 || GET_MODE_CLASS (GET_MODE (XEXP (op0, 0))) == MODE_CC)
11960 break;
11961
11962 /* Get the two operands being compared. */
11963 if (GET_CODE (XEXP (op0, 0)) == COMPARE)
11964 tem = XEXP (XEXP (op0, 0), 0), tem1 = XEXP (XEXP (op0, 0), 1);
11965 else
11966 tem = XEXP (op0, 0), tem1 = XEXP (op0, 1);
11967
11968 /* Check for the cases where we simply want the result of the
11969 earlier test or the opposite of that result. */
11970 if (code == NE || code == EQ
11971 || (val_signbit_known_set_p (GET_MODE (op0), STORE_FLAG_VALUE)
11972 && (code == LT || code == GE)))
11973 {
11974 enum rtx_code new_code;
11975 if (code == LT || code == NE)
11976 new_code = GET_CODE (op0);
11977 else
11978 new_code = reversed_comparison_code (op0, NULL);
11979
11980 if (new_code != UNKNOWN)
11981 {
11982 code = new_code;
11983 op0 = tem;
11984 op1 = tem1;
11985 continue;
11986 }
11987 }
11988 break;
11989
11990 case IOR:
11991 /* The sign bit of (ior (plus X (const_int -1)) X) is nonzero
11992 iff X <= 0. */
11993 if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 0)) == PLUS
11994 && XEXP (XEXP (op0, 0), 1) == constm1_rtx
11995 && rtx_equal_p (XEXP (XEXP (op0, 0), 0), XEXP (op0, 1)))
11996 {
11997 op0 = XEXP (op0, 1);
11998 code = (code == GE ? GT : LE);
11999 continue;
12000 }
12001 break;
12002
12003 case AND:
12004 /* Convert (and (xshift 1 X) Y) to (and (lshiftrt Y X) 1). This
12005 will be converted to a ZERO_EXTRACT later. */
12006 if (const_op == 0 && equality_comparison_p
12007 && GET_CODE (XEXP (op0, 0)) == ASHIFT
12008 && XEXP (XEXP (op0, 0), 0) == const1_rtx)
12009 {
12010 op0 = gen_rtx_LSHIFTRT (mode, XEXP (op0, 1),
12011 XEXP (XEXP (op0, 0), 1));
12012 op0 = simplify_and_const_int (NULL_RTX, mode, op0, 1);
12013 continue;
12014 }
12015
12016 /* If we are comparing (and (lshiftrt X C1) C2) for equality with
12017 zero and X is a comparison and C1 and C2 describe only bits set
12018 in STORE_FLAG_VALUE, we can compare with X. */
12019 if (const_op == 0 && equality_comparison_p
12020 && mode_width <= HOST_BITS_PER_WIDE_INT
12021 && CONST_INT_P (XEXP (op0, 1))
12022 && GET_CODE (XEXP (op0, 0)) == LSHIFTRT
12023 && CONST_INT_P (XEXP (XEXP (op0, 0), 1))
12024 && INTVAL (XEXP (XEXP (op0, 0), 1)) >= 0
12025 && INTVAL (XEXP (XEXP (op0, 0), 1)) < HOST_BITS_PER_WIDE_INT)
12026 {
12027 mask = ((INTVAL (XEXP (op0, 1)) & GET_MODE_MASK (mode))
12028 << INTVAL (XEXP (XEXP (op0, 0), 1)));
12029 if ((~STORE_FLAG_VALUE & mask) == 0
12030 && (COMPARISON_P (XEXP (XEXP (op0, 0), 0))
12031 || ((tem = get_last_value (XEXP (XEXP (op0, 0), 0))) != 0
12032 && COMPARISON_P (tem))))
12033 {
12034 op0 = XEXP (XEXP (op0, 0), 0);
12035 continue;
12036 }
12037 }
12038
12039 /* If we are doing an equality comparison of an AND of a bit equal
12040 to the sign bit, replace this with a LT or GE comparison of
12041 the underlying value. */
12042 if (equality_comparison_p
12043 && const_op == 0
12044 && CONST_INT_P (XEXP (op0, 1))
12045 && mode_width <= HOST_BITS_PER_WIDE_INT
12046 && ((INTVAL (XEXP (op0, 1)) & GET_MODE_MASK (mode))
12047 == (unsigned HOST_WIDE_INT) 1 << (mode_width - 1)))
12048 {
12049 op0 = XEXP (op0, 0);
12050 code = (code == EQ ? GE : LT);
12051 continue;
12052 }
12053
12054 /* If this AND operation is really a ZERO_EXTEND from a narrower
12055 mode, the constant fits within that mode, and this is either an
12056 equality or unsigned comparison, try to do this comparison in
12057 the narrower mode.
12058
12059 Note that in:
12060
12061 (ne:DI (and:DI (reg:DI 4) (const_int 0xffffffff)) (const_int 0))
12062 -> (ne:DI (reg:SI 4) (const_int 0))
12063
12064 unless TRULY_NOOP_TRUNCATION allows it or the register is
12065 known to hold a value of the required mode the
12066 transformation is invalid. */
12067 if ((equality_comparison_p || unsigned_comparison_p)
12068 && CONST_INT_P (XEXP (op0, 1))
12069 && (i = exact_log2 ((UINTVAL (XEXP (op0, 1))
12070 & GET_MODE_MASK (mode))
12071 + 1)) >= 0
12072 && const_op >> i == 0
12073 && (tmode = mode_for_size (i, MODE_INT, 1)) != BLKmode)
12074 {
12075 op0 = gen_lowpart_or_truncate (tmode, XEXP (op0, 0));
12076 continue;
12077 }
12078
12079 /* If this is (and:M1 (subreg:M1 X:M2 0) (const_int C1)) where C1
12080 fits in both M1 and M2 and the SUBREG is either paradoxical
12081 or represents the low part, permute the SUBREG and the AND
12082 and try again. */
12083 if (GET_CODE (XEXP (op0, 0)) == SUBREG
12084 && CONST_INT_P (XEXP (op0, 1)))
12085 {
12086 tmode = GET_MODE (SUBREG_REG (XEXP (op0, 0)));
12087 unsigned HOST_WIDE_INT c1 = INTVAL (XEXP (op0, 1));
12088 /* Require an integral mode, to avoid creating something like
12089 (AND:SF ...). */
12090 if (SCALAR_INT_MODE_P (tmode)
12091 /* It is unsafe to commute the AND into the SUBREG if the
12092 SUBREG is paradoxical and WORD_REGISTER_OPERATIONS is
12093 not defined. As originally written the upper bits
12094 have a defined value due to the AND operation.
12095 However, if we commute the AND inside the SUBREG then
12096 they no longer have defined values and the meaning of
12097 the code has been changed.
12098 Also C1 should not change value in the smaller mode,
12099 see PR67028 (a positive C1 can become negative in the
12100 smaller mode, so that the AND does no longer mask the
12101 upper bits). */
12102 && ((WORD_REGISTER_OPERATIONS
12103 && mode_width > GET_MODE_PRECISION (tmode)
12104 && mode_width <= BITS_PER_WORD
12105 && trunc_int_for_mode (c1, tmode) == (HOST_WIDE_INT) c1)
12106 || (mode_width <= GET_MODE_PRECISION (tmode)
12107 && subreg_lowpart_p (XEXP (op0, 0))))
12108 && mode_width <= HOST_BITS_PER_WIDE_INT
12109 && HWI_COMPUTABLE_MODE_P (tmode)
12110 && (c1 & ~mask) == 0
12111 && (c1 & ~GET_MODE_MASK (tmode)) == 0
12112 && c1 != mask
12113 && c1 != GET_MODE_MASK (tmode))
12114 {
12115 op0 = simplify_gen_binary (AND, tmode,
12116 SUBREG_REG (XEXP (op0, 0)),
12117 gen_int_mode (c1, tmode));
12118 op0 = gen_lowpart (mode, op0);
12119 continue;
12120 }
12121 }
12122
12123 /* Convert (ne (and (not X) 1) 0) to (eq (and X 1) 0). */
12124 if (const_op == 0 && equality_comparison_p
12125 && XEXP (op0, 1) == const1_rtx
12126 && GET_CODE (XEXP (op0, 0)) == NOT)
12127 {
12128 op0 = simplify_and_const_int (NULL_RTX, mode,
12129 XEXP (XEXP (op0, 0), 0), 1);
12130 code = (code == NE ? EQ : NE);
12131 continue;
12132 }
12133
12134 /* Convert (ne (and (lshiftrt (not X)) 1) 0) to
12135 (eq (and (lshiftrt X) 1) 0).
12136 Also handle the case where (not X) is expressed using xor. */
12137 if (const_op == 0 && equality_comparison_p
12138 && XEXP (op0, 1) == const1_rtx
12139 && GET_CODE (XEXP (op0, 0)) == LSHIFTRT)
12140 {
12141 rtx shift_op = XEXP (XEXP (op0, 0), 0);
12142 rtx shift_count = XEXP (XEXP (op0, 0), 1);
12143
12144 if (GET_CODE (shift_op) == NOT
12145 || (GET_CODE (shift_op) == XOR
12146 && CONST_INT_P (XEXP (shift_op, 1))
12147 && CONST_INT_P (shift_count)
12148 && HWI_COMPUTABLE_MODE_P (mode)
12149 && (UINTVAL (XEXP (shift_op, 1))
12150 == (unsigned HOST_WIDE_INT) 1
12151 << INTVAL (shift_count))))
12152 {
12153 op0
12154 = gen_rtx_LSHIFTRT (mode, XEXP (shift_op, 0), shift_count);
12155 op0 = simplify_and_const_int (NULL_RTX, mode, op0, 1);
12156 code = (code == NE ? EQ : NE);
12157 continue;
12158 }
12159 }
12160 break;
12161
12162 case ASHIFT:
12163 /* If we have (compare (ashift FOO N) (const_int C)) and
12164 the high order N bits of FOO (N+1 if an inequality comparison)
12165 are known to be zero, we can do this by comparing FOO with C
12166 shifted right N bits so long as the low-order N bits of C are
12167 zero. */
12168 if (CONST_INT_P (XEXP (op0, 1))
12169 && INTVAL (XEXP (op0, 1)) >= 0
12170 && ((INTVAL (XEXP (op0, 1)) + ! equality_comparison_p)
12171 < HOST_BITS_PER_WIDE_INT)
12172 && (((unsigned HOST_WIDE_INT) const_op
12173 & (((unsigned HOST_WIDE_INT) 1 << INTVAL (XEXP (op0, 1)))
12174 - 1)) == 0)
12175 && mode_width <= HOST_BITS_PER_WIDE_INT
12176 && (nonzero_bits (XEXP (op0, 0), mode)
12177 & ~(mask >> (INTVAL (XEXP (op0, 1))
12178 + ! equality_comparison_p))) == 0)
12179 {
12180 /* We must perform a logical shift, not an arithmetic one,
12181 as we want the top N bits of C to be zero. */
12182 unsigned HOST_WIDE_INT temp = const_op & GET_MODE_MASK (mode);
12183
12184 temp >>= INTVAL (XEXP (op0, 1));
12185 op1 = gen_int_mode (temp, mode);
12186 op0 = XEXP (op0, 0);
12187 continue;
12188 }
12189
12190 /* If we are doing a sign bit comparison, it means we are testing
12191 a particular bit. Convert it to the appropriate AND. */
12192 if (sign_bit_comparison_p && CONST_INT_P (XEXP (op0, 1))
12193 && mode_width <= HOST_BITS_PER_WIDE_INT)
12194 {
12195 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
12196 ((unsigned HOST_WIDE_INT) 1
12197 << (mode_width - 1
12198 - INTVAL (XEXP (op0, 1)))));
12199 code = (code == LT ? NE : EQ);
12200 continue;
12201 }
12202
12203 /* If this an equality comparison with zero and we are shifting
12204 the low bit to the sign bit, we can convert this to an AND of the
12205 low-order bit. */
12206 if (const_op == 0 && equality_comparison_p
12207 && CONST_INT_P (XEXP (op0, 1))
12208 && UINTVAL (XEXP (op0, 1)) == mode_width - 1)
12209 {
12210 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0), 1);
12211 continue;
12212 }
12213 break;
12214
12215 case ASHIFTRT:
12216 /* If this is an equality comparison with zero, we can do this
12217 as a logical shift, which might be much simpler. */
12218 if (equality_comparison_p && const_op == 0
12219 && CONST_INT_P (XEXP (op0, 1)))
12220 {
12221 op0 = simplify_shift_const (NULL_RTX, LSHIFTRT, mode,
12222 XEXP (op0, 0),
12223 INTVAL (XEXP (op0, 1)));
12224 continue;
12225 }
12226
12227 /* If OP0 is a sign extension and CODE is not an unsigned comparison,
12228 do the comparison in a narrower mode. */
12229 if (! unsigned_comparison_p
12230 && CONST_INT_P (XEXP (op0, 1))
12231 && GET_CODE (XEXP (op0, 0)) == ASHIFT
12232 && XEXP (op0, 1) == XEXP (XEXP (op0, 0), 1)
12233 && (tmode = mode_for_size (mode_width - INTVAL (XEXP (op0, 1)),
12234 MODE_INT, 1)) != BLKmode
12235 && (((unsigned HOST_WIDE_INT) const_op
12236 + (GET_MODE_MASK (tmode) >> 1) + 1)
12237 <= GET_MODE_MASK (tmode)))
12238 {
12239 op0 = gen_lowpart (tmode, XEXP (XEXP (op0, 0), 0));
12240 continue;
12241 }
12242
12243 /* Likewise if OP0 is a PLUS of a sign extension with a
12244 constant, which is usually represented with the PLUS
12245 between the shifts. */
12246 if (! unsigned_comparison_p
12247 && CONST_INT_P (XEXP (op0, 1))
12248 && GET_CODE (XEXP (op0, 0)) == PLUS
12249 && CONST_INT_P (XEXP (XEXP (op0, 0), 1))
12250 && GET_CODE (XEXP (XEXP (op0, 0), 0)) == ASHIFT
12251 && XEXP (op0, 1) == XEXP (XEXP (XEXP (op0, 0), 0), 1)
12252 && (tmode = mode_for_size (mode_width - INTVAL (XEXP (op0, 1)),
12253 MODE_INT, 1)) != BLKmode
12254 && (((unsigned HOST_WIDE_INT) const_op
12255 + (GET_MODE_MASK (tmode) >> 1) + 1)
12256 <= GET_MODE_MASK (tmode)))
12257 {
12258 rtx inner = XEXP (XEXP (XEXP (op0, 0), 0), 0);
12259 rtx add_const = XEXP (XEXP (op0, 0), 1);
12260 rtx new_const = simplify_gen_binary (ASHIFTRT, GET_MODE (op0),
12261 add_const, XEXP (op0, 1));
12262
12263 op0 = simplify_gen_binary (PLUS, tmode,
12264 gen_lowpart (tmode, inner),
12265 new_const);
12266 continue;
12267 }
12268
12269 /* ... fall through ... */
12270 case LSHIFTRT:
12271 /* If we have (compare (xshiftrt FOO N) (const_int C)) and
12272 the low order N bits of FOO are known to be zero, we can do this
12273 by comparing FOO with C shifted left N bits so long as no
12274 overflow occurs. Even if the low order N bits of FOO aren't known
12275 to be zero, if the comparison is >= or < we can use the same
12276 optimization and for > or <= by setting all the low
12277 order N bits in the comparison constant. */
12278 if (CONST_INT_P (XEXP (op0, 1))
12279 && INTVAL (XEXP (op0, 1)) > 0
12280 && INTVAL (XEXP (op0, 1)) < HOST_BITS_PER_WIDE_INT
12281 && mode_width <= HOST_BITS_PER_WIDE_INT
12282 && (((unsigned HOST_WIDE_INT) const_op
12283 + (GET_CODE (op0) != LSHIFTRT
12284 ? ((GET_MODE_MASK (mode) >> INTVAL (XEXP (op0, 1)) >> 1)
12285 + 1)
12286 : 0))
12287 <= GET_MODE_MASK (mode) >> INTVAL (XEXP (op0, 1))))
12288 {
12289 unsigned HOST_WIDE_INT low_bits
12290 = (nonzero_bits (XEXP (op0, 0), mode)
12291 & (((unsigned HOST_WIDE_INT) 1
12292 << INTVAL (XEXP (op0, 1))) - 1));
12293 if (low_bits == 0 || !equality_comparison_p)
12294 {
12295 /* If the shift was logical, then we must make the condition
12296 unsigned. */
12297 if (GET_CODE (op0) == LSHIFTRT)
12298 code = unsigned_condition (code);
12299
12300 const_op <<= INTVAL (XEXP (op0, 1));
12301 if (low_bits != 0
12302 && (code == GT || code == GTU
12303 || code == LE || code == LEU))
12304 const_op
12305 |= (((HOST_WIDE_INT) 1 << INTVAL (XEXP (op0, 1))) - 1);
12306 op1 = GEN_INT (const_op);
12307 op0 = XEXP (op0, 0);
12308 continue;
12309 }
12310 }
12311
12312 /* If we are using this shift to extract just the sign bit, we
12313 can replace this with an LT or GE comparison. */
12314 if (const_op == 0
12315 && (equality_comparison_p || sign_bit_comparison_p)
12316 && CONST_INT_P (XEXP (op0, 1))
12317 && UINTVAL (XEXP (op0, 1)) == mode_width - 1)
12318 {
12319 op0 = XEXP (op0, 0);
12320 code = (code == NE || code == GT ? LT : GE);
12321 continue;
12322 }
12323 break;
12324
12325 default:
12326 break;
12327 }
12328
12329 break;
12330 }
12331
12332 /* Now make any compound operations involved in this comparison. Then,
12333 check for an outmost SUBREG on OP0 that is not doing anything or is
12334 paradoxical. The latter transformation must only be performed when
12335 it is known that the "extra" bits will be the same in op0 and op1 or
12336 that they don't matter. There are three cases to consider:
12337
12338 1. SUBREG_REG (op0) is a register. In this case the bits are don't
12339 care bits and we can assume they have any convenient value. So
12340 making the transformation is safe.
12341
12342 2. SUBREG_REG (op0) is a memory and LOAD_EXTEND_OP is not defined.
12343 In this case the upper bits of op0 are undefined. We should not make
12344 the simplification in that case as we do not know the contents of
12345 those bits.
12346
12347 3. SUBREG_REG (op0) is a memory and LOAD_EXTEND_OP is defined and not
12348 UNKNOWN. In that case we know those bits are zeros or ones. We must
12349 also be sure that they are the same as the upper bits of op1.
12350
12351 We can never remove a SUBREG for a non-equality comparison because
12352 the sign bit is in a different place in the underlying object. */
12353
12354 op0 = make_compound_operation (op0, op1 == const0_rtx ? COMPARE : SET);
12355 op1 = make_compound_operation (op1, SET);
12356
12357 if (GET_CODE (op0) == SUBREG && subreg_lowpart_p (op0)
12358 && GET_MODE_CLASS (GET_MODE (op0)) == MODE_INT
12359 && GET_MODE_CLASS (GET_MODE (SUBREG_REG (op0))) == MODE_INT
12360 && (code == NE || code == EQ))
12361 {
12362 if (paradoxical_subreg_p (op0))
12363 {
12364 /* For paradoxical subregs, allow case 1 as above. Case 3 isn't
12365 implemented. */
12366 if (REG_P (SUBREG_REG (op0)))
12367 {
12368 op0 = SUBREG_REG (op0);
12369 op1 = gen_lowpart (GET_MODE (op0), op1);
12370 }
12371 }
12372 else if ((GET_MODE_PRECISION (GET_MODE (SUBREG_REG (op0)))
12373 <= HOST_BITS_PER_WIDE_INT)
12374 && (nonzero_bits (SUBREG_REG (op0),
12375 GET_MODE (SUBREG_REG (op0)))
12376 & ~GET_MODE_MASK (GET_MODE (op0))) == 0)
12377 {
12378 tem = gen_lowpart (GET_MODE (SUBREG_REG (op0)), op1);
12379
12380 if ((nonzero_bits (tem, GET_MODE (SUBREG_REG (op0)))
12381 & ~GET_MODE_MASK (GET_MODE (op0))) == 0)
12382 op0 = SUBREG_REG (op0), op1 = tem;
12383 }
12384 }
12385
12386 /* We now do the opposite procedure: Some machines don't have compare
12387 insns in all modes. If OP0's mode is an integer mode smaller than a
12388 word and we can't do a compare in that mode, see if there is a larger
12389 mode for which we can do the compare. There are a number of cases in
12390 which we can use the wider mode. */
12391
12392 mode = GET_MODE (op0);
12393 if (mode != VOIDmode && GET_MODE_CLASS (mode) == MODE_INT
12394 && GET_MODE_SIZE (mode) < UNITS_PER_WORD
12395 && ! have_insn_for (COMPARE, mode))
12396 for (tmode = GET_MODE_WIDER_MODE (mode);
12397 (tmode != VOIDmode && HWI_COMPUTABLE_MODE_P (tmode));
12398 tmode = GET_MODE_WIDER_MODE (tmode))
12399 if (have_insn_for (COMPARE, tmode))
12400 {
12401 int zero_extended;
12402
12403 /* If this is a test for negative, we can make an explicit
12404 test of the sign bit. Test this first so we can use
12405 a paradoxical subreg to extend OP0. */
12406
12407 if (op1 == const0_rtx && (code == LT || code == GE)
12408 && HWI_COMPUTABLE_MODE_P (mode))
12409 {
12410 unsigned HOST_WIDE_INT sign
12411 = (unsigned HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (mode) - 1);
12412 op0 = simplify_gen_binary (AND, tmode,
12413 gen_lowpart (tmode, op0),
12414 gen_int_mode (sign, tmode));
12415 code = (code == LT) ? NE : EQ;
12416 break;
12417 }
12418
12419 /* If the only nonzero bits in OP0 and OP1 are those in the
12420 narrower mode and this is an equality or unsigned comparison,
12421 we can use the wider mode. Similarly for sign-extended
12422 values, in which case it is true for all comparisons. */
12423 zero_extended = ((code == EQ || code == NE
12424 || code == GEU || code == GTU
12425 || code == LEU || code == LTU)
12426 && (nonzero_bits (op0, tmode)
12427 & ~GET_MODE_MASK (mode)) == 0
12428 && ((CONST_INT_P (op1)
12429 || (nonzero_bits (op1, tmode)
12430 & ~GET_MODE_MASK (mode)) == 0)));
12431
12432 if (zero_extended
12433 || ((num_sign_bit_copies (op0, tmode)
12434 > (unsigned int) (GET_MODE_PRECISION (tmode)
12435 - GET_MODE_PRECISION (mode)))
12436 && (num_sign_bit_copies (op1, tmode)
12437 > (unsigned int) (GET_MODE_PRECISION (tmode)
12438 - GET_MODE_PRECISION (mode)))))
12439 {
12440 /* If OP0 is an AND and we don't have an AND in MODE either,
12441 make a new AND in the proper mode. */
12442 if (GET_CODE (op0) == AND
12443 && !have_insn_for (AND, mode))
12444 op0 = simplify_gen_binary (AND, tmode,
12445 gen_lowpart (tmode,
12446 XEXP (op0, 0)),
12447 gen_lowpart (tmode,
12448 XEXP (op0, 1)));
12449 else
12450 {
12451 if (zero_extended)
12452 {
12453 op0 = simplify_gen_unary (ZERO_EXTEND, tmode, op0, mode);
12454 op1 = simplify_gen_unary (ZERO_EXTEND, tmode, op1, mode);
12455 }
12456 else
12457 {
12458 op0 = simplify_gen_unary (SIGN_EXTEND, tmode, op0, mode);
12459 op1 = simplify_gen_unary (SIGN_EXTEND, tmode, op1, mode);
12460 }
12461 break;
12462 }
12463 }
12464 }
12465
12466 /* We may have changed the comparison operands. Re-canonicalize. */
12467 if (swap_commutative_operands_p (op0, op1))
12468 {
12469 std::swap (op0, op1);
12470 code = swap_condition (code);
12471 }
12472
12473 /* If this machine only supports a subset of valid comparisons, see if we
12474 can convert an unsupported one into a supported one. */
12475 target_canonicalize_comparison (&code, &op0, &op1, 0);
12476
12477 *pop0 = op0;
12478 *pop1 = op1;
12479
12480 return code;
12481 }
12482 \f
12483 /* Utility function for record_value_for_reg. Count number of
12484 rtxs in X. */
12485 static int
12486 count_rtxs (rtx x)
12487 {
12488 enum rtx_code code = GET_CODE (x);
12489 const char *fmt;
12490 int i, j, ret = 1;
12491
12492 if (GET_RTX_CLASS (code) == RTX_BIN_ARITH
12493 || GET_RTX_CLASS (code) == RTX_COMM_ARITH)
12494 {
12495 rtx x0 = XEXP (x, 0);
12496 rtx x1 = XEXP (x, 1);
12497
12498 if (x0 == x1)
12499 return 1 + 2 * count_rtxs (x0);
12500
12501 if ((GET_RTX_CLASS (GET_CODE (x1)) == RTX_BIN_ARITH
12502 || GET_RTX_CLASS (GET_CODE (x1)) == RTX_COMM_ARITH)
12503 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
12504 return 2 + 2 * count_rtxs (x0)
12505 + count_rtxs (x == XEXP (x1, 0)
12506 ? XEXP (x1, 1) : XEXP (x1, 0));
12507
12508 if ((GET_RTX_CLASS (GET_CODE (x0)) == RTX_BIN_ARITH
12509 || GET_RTX_CLASS (GET_CODE (x0)) == RTX_COMM_ARITH)
12510 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
12511 return 2 + 2 * count_rtxs (x1)
12512 + count_rtxs (x == XEXP (x0, 0)
12513 ? XEXP (x0, 1) : XEXP (x0, 0));
12514 }
12515
12516 fmt = GET_RTX_FORMAT (code);
12517 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
12518 if (fmt[i] == 'e')
12519 ret += count_rtxs (XEXP (x, i));
12520 else if (fmt[i] == 'E')
12521 for (j = 0; j < XVECLEN (x, i); j++)
12522 ret += count_rtxs (XVECEXP (x, i, j));
12523
12524 return ret;
12525 }
12526 \f
12527 /* Utility function for following routine. Called when X is part of a value
12528 being stored into last_set_value. Sets last_set_table_tick
12529 for each register mentioned. Similar to mention_regs in cse.c */
12530
12531 static void
12532 update_table_tick (rtx x)
12533 {
12534 enum rtx_code code = GET_CODE (x);
12535 const char *fmt = GET_RTX_FORMAT (code);
12536 int i, j;
12537
12538 if (code == REG)
12539 {
12540 unsigned int regno = REGNO (x);
12541 unsigned int endregno = END_REGNO (x);
12542 unsigned int r;
12543
12544 for (r = regno; r < endregno; r++)
12545 {
12546 reg_stat_type *rsp = &reg_stat[r];
12547 rsp->last_set_table_tick = label_tick;
12548 }
12549
12550 return;
12551 }
12552
12553 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
12554 if (fmt[i] == 'e')
12555 {
12556 /* Check for identical subexpressions. If x contains
12557 identical subexpression we only have to traverse one of
12558 them. */
12559 if (i == 0 && ARITHMETIC_P (x))
12560 {
12561 /* Note that at this point x1 has already been
12562 processed. */
12563 rtx x0 = XEXP (x, 0);
12564 rtx x1 = XEXP (x, 1);
12565
12566 /* If x0 and x1 are identical then there is no need to
12567 process x0. */
12568 if (x0 == x1)
12569 break;
12570
12571 /* If x0 is identical to a subexpression of x1 then while
12572 processing x1, x0 has already been processed. Thus we
12573 are done with x. */
12574 if (ARITHMETIC_P (x1)
12575 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
12576 break;
12577
12578 /* If x1 is identical to a subexpression of x0 then we
12579 still have to process the rest of x0. */
12580 if (ARITHMETIC_P (x0)
12581 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
12582 {
12583 update_table_tick (XEXP (x0, x1 == XEXP (x0, 0) ? 1 : 0));
12584 break;
12585 }
12586 }
12587
12588 update_table_tick (XEXP (x, i));
12589 }
12590 else if (fmt[i] == 'E')
12591 for (j = 0; j < XVECLEN (x, i); j++)
12592 update_table_tick (XVECEXP (x, i, j));
12593 }
12594
12595 /* Record that REG is set to VALUE in insn INSN. If VALUE is zero, we
12596 are saying that the register is clobbered and we no longer know its
12597 value. If INSN is zero, don't update reg_stat[].last_set; this is
12598 only permitted with VALUE also zero and is used to invalidate the
12599 register. */
12600
12601 static void
12602 record_value_for_reg (rtx reg, rtx_insn *insn, rtx value)
12603 {
12604 unsigned int regno = REGNO (reg);
12605 unsigned int endregno = END_REGNO (reg);
12606 unsigned int i;
12607 reg_stat_type *rsp;
12608
12609 /* If VALUE contains REG and we have a previous value for REG, substitute
12610 the previous value. */
12611 if (value && insn && reg_overlap_mentioned_p (reg, value))
12612 {
12613 rtx tem;
12614
12615 /* Set things up so get_last_value is allowed to see anything set up to
12616 our insn. */
12617 subst_low_luid = DF_INSN_LUID (insn);
12618 tem = get_last_value (reg);
12619
12620 /* If TEM is simply a binary operation with two CLOBBERs as operands,
12621 it isn't going to be useful and will take a lot of time to process,
12622 so just use the CLOBBER. */
12623
12624 if (tem)
12625 {
12626 if (ARITHMETIC_P (tem)
12627 && GET_CODE (XEXP (tem, 0)) == CLOBBER
12628 && GET_CODE (XEXP (tem, 1)) == CLOBBER)
12629 tem = XEXP (tem, 0);
12630 else if (count_occurrences (value, reg, 1) >= 2)
12631 {
12632 /* If there are two or more occurrences of REG in VALUE,
12633 prevent the value from growing too much. */
12634 if (count_rtxs (tem) > MAX_LAST_VALUE_RTL)
12635 tem = gen_rtx_CLOBBER (GET_MODE (tem), const0_rtx);
12636 }
12637
12638 value = replace_rtx (copy_rtx (value), reg, tem);
12639 }
12640 }
12641
12642 /* For each register modified, show we don't know its value, that
12643 we don't know about its bitwise content, that its value has been
12644 updated, and that we don't know the location of the death of the
12645 register. */
12646 for (i = regno; i < endregno; i++)
12647 {
12648 rsp = &reg_stat[i];
12649
12650 if (insn)
12651 rsp->last_set = insn;
12652
12653 rsp->last_set_value = 0;
12654 rsp->last_set_mode = VOIDmode;
12655 rsp->last_set_nonzero_bits = 0;
12656 rsp->last_set_sign_bit_copies = 0;
12657 rsp->last_death = 0;
12658 rsp->truncated_to_mode = VOIDmode;
12659 }
12660
12661 /* Mark registers that are being referenced in this value. */
12662 if (value)
12663 update_table_tick (value);
12664
12665 /* Now update the status of each register being set.
12666 If someone is using this register in this block, set this register
12667 to invalid since we will get confused between the two lives in this
12668 basic block. This makes using this register always invalid. In cse, we
12669 scan the table to invalidate all entries using this register, but this
12670 is too much work for us. */
12671
12672 for (i = regno; i < endregno; i++)
12673 {
12674 rsp = &reg_stat[i];
12675 rsp->last_set_label = label_tick;
12676 if (!insn
12677 || (value && rsp->last_set_table_tick >= label_tick_ebb_start))
12678 rsp->last_set_invalid = 1;
12679 else
12680 rsp->last_set_invalid = 0;
12681 }
12682
12683 /* The value being assigned might refer to X (like in "x++;"). In that
12684 case, we must replace it with (clobber (const_int 0)) to prevent
12685 infinite loops. */
12686 rsp = &reg_stat[regno];
12687 if (value && !get_last_value_validate (&value, insn, label_tick, 0))
12688 {
12689 value = copy_rtx (value);
12690 if (!get_last_value_validate (&value, insn, label_tick, 1))
12691 value = 0;
12692 }
12693
12694 /* For the main register being modified, update the value, the mode, the
12695 nonzero bits, and the number of sign bit copies. */
12696
12697 rsp->last_set_value = value;
12698
12699 if (value)
12700 {
12701 machine_mode mode = GET_MODE (reg);
12702 subst_low_luid = DF_INSN_LUID (insn);
12703 rsp->last_set_mode = mode;
12704 if (GET_MODE_CLASS (mode) == MODE_INT
12705 && HWI_COMPUTABLE_MODE_P (mode))
12706 mode = nonzero_bits_mode;
12707 rsp->last_set_nonzero_bits = nonzero_bits (value, mode);
12708 rsp->last_set_sign_bit_copies
12709 = num_sign_bit_copies (value, GET_MODE (reg));
12710 }
12711 }
12712
12713 /* Called via note_stores from record_dead_and_set_regs to handle one
12714 SET or CLOBBER in an insn. DATA is the instruction in which the
12715 set is occurring. */
12716
12717 static void
12718 record_dead_and_set_regs_1 (rtx dest, const_rtx setter, void *data)
12719 {
12720 rtx_insn *record_dead_insn = (rtx_insn *) data;
12721
12722 if (GET_CODE (dest) == SUBREG)
12723 dest = SUBREG_REG (dest);
12724
12725 if (!record_dead_insn)
12726 {
12727 if (REG_P (dest))
12728 record_value_for_reg (dest, NULL, NULL_RTX);
12729 return;
12730 }
12731
12732 if (REG_P (dest))
12733 {
12734 /* If we are setting the whole register, we know its value. Otherwise
12735 show that we don't know the value. We can handle SUBREG in
12736 some cases. */
12737 if (GET_CODE (setter) == SET && dest == SET_DEST (setter))
12738 record_value_for_reg (dest, record_dead_insn, SET_SRC (setter));
12739 else if (GET_CODE (setter) == SET
12740 && GET_CODE (SET_DEST (setter)) == SUBREG
12741 && SUBREG_REG (SET_DEST (setter)) == dest
12742 && GET_MODE_PRECISION (GET_MODE (dest)) <= BITS_PER_WORD
12743 && subreg_lowpart_p (SET_DEST (setter)))
12744 record_value_for_reg (dest, record_dead_insn,
12745 gen_lowpart (GET_MODE (dest),
12746 SET_SRC (setter)));
12747 else
12748 record_value_for_reg (dest, record_dead_insn, NULL_RTX);
12749 }
12750 else if (MEM_P (dest)
12751 /* Ignore pushes, they clobber nothing. */
12752 && ! push_operand (dest, GET_MODE (dest)))
12753 mem_last_set = DF_INSN_LUID (record_dead_insn);
12754 }
12755
12756 /* Update the records of when each REG was most recently set or killed
12757 for the things done by INSN. This is the last thing done in processing
12758 INSN in the combiner loop.
12759
12760 We update reg_stat[], in particular fields last_set, last_set_value,
12761 last_set_mode, last_set_nonzero_bits, last_set_sign_bit_copies,
12762 last_death, and also the similar information mem_last_set (which insn
12763 most recently modified memory) and last_call_luid (which insn was the
12764 most recent subroutine call). */
12765
12766 static void
12767 record_dead_and_set_regs (rtx_insn *insn)
12768 {
12769 rtx link;
12770 unsigned int i;
12771
12772 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
12773 {
12774 if (REG_NOTE_KIND (link) == REG_DEAD
12775 && REG_P (XEXP (link, 0)))
12776 {
12777 unsigned int regno = REGNO (XEXP (link, 0));
12778 unsigned int endregno = END_REGNO (XEXP (link, 0));
12779
12780 for (i = regno; i < endregno; i++)
12781 {
12782 reg_stat_type *rsp;
12783
12784 rsp = &reg_stat[i];
12785 rsp->last_death = insn;
12786 }
12787 }
12788 else if (REG_NOTE_KIND (link) == REG_INC)
12789 record_value_for_reg (XEXP (link, 0), insn, NULL_RTX);
12790 }
12791
12792 if (CALL_P (insn))
12793 {
12794 hard_reg_set_iterator hrsi;
12795 EXECUTE_IF_SET_IN_HARD_REG_SET (regs_invalidated_by_call, 0, i, hrsi)
12796 {
12797 reg_stat_type *rsp;
12798
12799 rsp = &reg_stat[i];
12800 rsp->last_set_invalid = 1;
12801 rsp->last_set = insn;
12802 rsp->last_set_value = 0;
12803 rsp->last_set_mode = VOIDmode;
12804 rsp->last_set_nonzero_bits = 0;
12805 rsp->last_set_sign_bit_copies = 0;
12806 rsp->last_death = 0;
12807 rsp->truncated_to_mode = VOIDmode;
12808 }
12809
12810 last_call_luid = mem_last_set = DF_INSN_LUID (insn);
12811
12812 /* We can't combine into a call pattern. Remember, though, that
12813 the return value register is set at this LUID. We could
12814 still replace a register with the return value from the
12815 wrong subroutine call! */
12816 note_stores (PATTERN (insn), record_dead_and_set_regs_1, NULL_RTX);
12817 }
12818 else
12819 note_stores (PATTERN (insn), record_dead_and_set_regs_1, insn);
12820 }
12821
12822 /* If a SUBREG has the promoted bit set, it is in fact a property of the
12823 register present in the SUBREG, so for each such SUBREG go back and
12824 adjust nonzero and sign bit information of the registers that are
12825 known to have some zero/sign bits set.
12826
12827 This is needed because when combine blows the SUBREGs away, the
12828 information on zero/sign bits is lost and further combines can be
12829 missed because of that. */
12830
12831 static void
12832 record_promoted_value (rtx_insn *insn, rtx subreg)
12833 {
12834 struct insn_link *links;
12835 rtx set;
12836 unsigned int regno = REGNO (SUBREG_REG (subreg));
12837 machine_mode mode = GET_MODE (subreg);
12838
12839 if (GET_MODE_PRECISION (mode) > HOST_BITS_PER_WIDE_INT)
12840 return;
12841
12842 for (links = LOG_LINKS (insn); links;)
12843 {
12844 reg_stat_type *rsp;
12845
12846 insn = links->insn;
12847 set = single_set (insn);
12848
12849 if (! set || !REG_P (SET_DEST (set))
12850 || REGNO (SET_DEST (set)) != regno
12851 || GET_MODE (SET_DEST (set)) != GET_MODE (SUBREG_REG (subreg)))
12852 {
12853 links = links->next;
12854 continue;
12855 }
12856
12857 rsp = &reg_stat[regno];
12858 if (rsp->last_set == insn)
12859 {
12860 if (SUBREG_PROMOTED_UNSIGNED_P (subreg))
12861 rsp->last_set_nonzero_bits &= GET_MODE_MASK (mode);
12862 }
12863
12864 if (REG_P (SET_SRC (set)))
12865 {
12866 regno = REGNO (SET_SRC (set));
12867 links = LOG_LINKS (insn);
12868 }
12869 else
12870 break;
12871 }
12872 }
12873
12874 /* Check if X, a register, is known to contain a value already
12875 truncated to MODE. In this case we can use a subreg to refer to
12876 the truncated value even though in the generic case we would need
12877 an explicit truncation. */
12878
12879 static bool
12880 reg_truncated_to_mode (machine_mode mode, const_rtx x)
12881 {
12882 reg_stat_type *rsp = &reg_stat[REGNO (x)];
12883 machine_mode truncated = rsp->truncated_to_mode;
12884
12885 if (truncated == 0
12886 || rsp->truncation_label < label_tick_ebb_start)
12887 return false;
12888 if (GET_MODE_SIZE (truncated) <= GET_MODE_SIZE (mode))
12889 return true;
12890 if (TRULY_NOOP_TRUNCATION_MODES_P (mode, truncated))
12891 return true;
12892 return false;
12893 }
12894
12895 /* If X is a hard reg or a subreg record the mode that the register is
12896 accessed in. For non-TRULY_NOOP_TRUNCATION targets we might be able
12897 to turn a truncate into a subreg using this information. Return true
12898 if traversing X is complete. */
12899
12900 static bool
12901 record_truncated_value (rtx x)
12902 {
12903 machine_mode truncated_mode;
12904 reg_stat_type *rsp;
12905
12906 if (GET_CODE (x) == SUBREG && REG_P (SUBREG_REG (x)))
12907 {
12908 machine_mode original_mode = GET_MODE (SUBREG_REG (x));
12909 truncated_mode = GET_MODE (x);
12910
12911 if (GET_MODE_SIZE (original_mode) <= GET_MODE_SIZE (truncated_mode))
12912 return true;
12913
12914 if (TRULY_NOOP_TRUNCATION_MODES_P (truncated_mode, original_mode))
12915 return true;
12916
12917 x = SUBREG_REG (x);
12918 }
12919 /* ??? For hard-regs we now record everything. We might be able to
12920 optimize this using last_set_mode. */
12921 else if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
12922 truncated_mode = GET_MODE (x);
12923 else
12924 return false;
12925
12926 rsp = &reg_stat[REGNO (x)];
12927 if (rsp->truncated_to_mode == 0
12928 || rsp->truncation_label < label_tick_ebb_start
12929 || (GET_MODE_SIZE (truncated_mode)
12930 < GET_MODE_SIZE (rsp->truncated_to_mode)))
12931 {
12932 rsp->truncated_to_mode = truncated_mode;
12933 rsp->truncation_label = label_tick;
12934 }
12935
12936 return true;
12937 }
12938
12939 /* Callback for note_uses. Find hardregs and subregs of pseudos and
12940 the modes they are used in. This can help truning TRUNCATEs into
12941 SUBREGs. */
12942
12943 static void
12944 record_truncated_values (rtx *loc, void *data ATTRIBUTE_UNUSED)
12945 {
12946 subrtx_var_iterator::array_type array;
12947 FOR_EACH_SUBRTX_VAR (iter, array, *loc, NONCONST)
12948 if (record_truncated_value (*iter))
12949 iter.skip_subrtxes ();
12950 }
12951
12952 /* Scan X for promoted SUBREGs. For each one found,
12953 note what it implies to the registers used in it. */
12954
12955 static void
12956 check_promoted_subreg (rtx_insn *insn, rtx x)
12957 {
12958 if (GET_CODE (x) == SUBREG
12959 && SUBREG_PROMOTED_VAR_P (x)
12960 && REG_P (SUBREG_REG (x)))
12961 record_promoted_value (insn, x);
12962 else
12963 {
12964 const char *format = GET_RTX_FORMAT (GET_CODE (x));
12965 int i, j;
12966
12967 for (i = 0; i < GET_RTX_LENGTH (GET_CODE (x)); i++)
12968 switch (format[i])
12969 {
12970 case 'e':
12971 check_promoted_subreg (insn, XEXP (x, i));
12972 break;
12973 case 'V':
12974 case 'E':
12975 if (XVEC (x, i) != 0)
12976 for (j = 0; j < XVECLEN (x, i); j++)
12977 check_promoted_subreg (insn, XVECEXP (x, i, j));
12978 break;
12979 }
12980 }
12981 }
12982 \f
12983 /* Verify that all the registers and memory references mentioned in *LOC are
12984 still valid. *LOC was part of a value set in INSN when label_tick was
12985 equal to TICK. Return 0 if some are not. If REPLACE is nonzero, replace
12986 the invalid references with (clobber (const_int 0)) and return 1. This
12987 replacement is useful because we often can get useful information about
12988 the form of a value (e.g., if it was produced by a shift that always
12989 produces -1 or 0) even though we don't know exactly what registers it
12990 was produced from. */
12991
12992 static int
12993 get_last_value_validate (rtx *loc, rtx_insn *insn, int tick, int replace)
12994 {
12995 rtx x = *loc;
12996 const char *fmt = GET_RTX_FORMAT (GET_CODE (x));
12997 int len = GET_RTX_LENGTH (GET_CODE (x));
12998 int i, j;
12999
13000 if (REG_P (x))
13001 {
13002 unsigned int regno = REGNO (x);
13003 unsigned int endregno = END_REGNO (x);
13004 unsigned int j;
13005
13006 for (j = regno; j < endregno; j++)
13007 {
13008 reg_stat_type *rsp = &reg_stat[j];
13009 if (rsp->last_set_invalid
13010 /* If this is a pseudo-register that was only set once and not
13011 live at the beginning of the function, it is always valid. */
13012 || (! (regno >= FIRST_PSEUDO_REGISTER
13013 && regno < reg_n_sets_max
13014 && REG_N_SETS (regno) == 1
13015 && (!REGNO_REG_SET_P
13016 (DF_LR_IN (ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb),
13017 regno)))
13018 && rsp->last_set_label > tick))
13019 {
13020 if (replace)
13021 *loc = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
13022 return replace;
13023 }
13024 }
13025
13026 return 1;
13027 }
13028 /* If this is a memory reference, make sure that there were no stores after
13029 it that might have clobbered the value. We don't have alias info, so we
13030 assume any store invalidates it. Moreover, we only have local UIDs, so
13031 we also assume that there were stores in the intervening basic blocks. */
13032 else if (MEM_P (x) && !MEM_READONLY_P (x)
13033 && (tick != label_tick || DF_INSN_LUID (insn) <= mem_last_set))
13034 {
13035 if (replace)
13036 *loc = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
13037 return replace;
13038 }
13039
13040 for (i = 0; i < len; i++)
13041 {
13042 if (fmt[i] == 'e')
13043 {
13044 /* Check for identical subexpressions. If x contains
13045 identical subexpression we only have to traverse one of
13046 them. */
13047 if (i == 1 && ARITHMETIC_P (x))
13048 {
13049 /* Note that at this point x0 has already been checked
13050 and found valid. */
13051 rtx x0 = XEXP (x, 0);
13052 rtx x1 = XEXP (x, 1);
13053
13054 /* If x0 and x1 are identical then x is also valid. */
13055 if (x0 == x1)
13056 return 1;
13057
13058 /* If x1 is identical to a subexpression of x0 then
13059 while checking x0, x1 has already been checked. Thus
13060 it is valid and so as x. */
13061 if (ARITHMETIC_P (x0)
13062 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
13063 return 1;
13064
13065 /* If x0 is identical to a subexpression of x1 then x is
13066 valid iff the rest of x1 is valid. */
13067 if (ARITHMETIC_P (x1)
13068 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
13069 return
13070 get_last_value_validate (&XEXP (x1,
13071 x0 == XEXP (x1, 0) ? 1 : 0),
13072 insn, tick, replace);
13073 }
13074
13075 if (get_last_value_validate (&XEXP (x, i), insn, tick,
13076 replace) == 0)
13077 return 0;
13078 }
13079 else if (fmt[i] == 'E')
13080 for (j = 0; j < XVECLEN (x, i); j++)
13081 if (get_last_value_validate (&XVECEXP (x, i, j),
13082 insn, tick, replace) == 0)
13083 return 0;
13084 }
13085
13086 /* If we haven't found a reason for it to be invalid, it is valid. */
13087 return 1;
13088 }
13089
13090 /* Get the last value assigned to X, if known. Some registers
13091 in the value may be replaced with (clobber (const_int 0)) if their value
13092 is known longer known reliably. */
13093
13094 static rtx
13095 get_last_value (const_rtx x)
13096 {
13097 unsigned int regno;
13098 rtx value;
13099 reg_stat_type *rsp;
13100
13101 /* If this is a non-paradoxical SUBREG, get the value of its operand and
13102 then convert it to the desired mode. If this is a paradoxical SUBREG,
13103 we cannot predict what values the "extra" bits might have. */
13104 if (GET_CODE (x) == SUBREG
13105 && subreg_lowpart_p (x)
13106 && !paradoxical_subreg_p (x)
13107 && (value = get_last_value (SUBREG_REG (x))) != 0)
13108 return gen_lowpart (GET_MODE (x), value);
13109
13110 if (!REG_P (x))
13111 return 0;
13112
13113 regno = REGNO (x);
13114 rsp = &reg_stat[regno];
13115 value = rsp->last_set_value;
13116
13117 /* If we don't have a value, or if it isn't for this basic block and
13118 it's either a hard register, set more than once, or it's a live
13119 at the beginning of the function, return 0.
13120
13121 Because if it's not live at the beginning of the function then the reg
13122 is always set before being used (is never used without being set).
13123 And, if it's set only once, and it's always set before use, then all
13124 uses must have the same last value, even if it's not from this basic
13125 block. */
13126
13127 if (value == 0
13128 || (rsp->last_set_label < label_tick_ebb_start
13129 && (regno < FIRST_PSEUDO_REGISTER
13130 || regno >= reg_n_sets_max
13131 || REG_N_SETS (regno) != 1
13132 || REGNO_REG_SET_P
13133 (DF_LR_IN (ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb), regno))))
13134 return 0;
13135
13136 /* If the value was set in a later insn than the ones we are processing,
13137 we can't use it even if the register was only set once. */
13138 if (rsp->last_set_label == label_tick
13139 && DF_INSN_LUID (rsp->last_set) >= subst_low_luid)
13140 return 0;
13141
13142 /* If the value has all its registers valid, return it. */
13143 if (get_last_value_validate (&value, rsp->last_set, rsp->last_set_label, 0))
13144 return value;
13145
13146 /* Otherwise, make a copy and replace any invalid register with
13147 (clobber (const_int 0)). If that fails for some reason, return 0. */
13148
13149 value = copy_rtx (value);
13150 if (get_last_value_validate (&value, rsp->last_set, rsp->last_set_label, 1))
13151 return value;
13152
13153 return 0;
13154 }
13155 \f
13156 /* Return nonzero if expression X refers to a REG or to memory
13157 that is set in an instruction more recent than FROM_LUID. */
13158
13159 static int
13160 use_crosses_set_p (const_rtx x, int from_luid)
13161 {
13162 const char *fmt;
13163 int i;
13164 enum rtx_code code = GET_CODE (x);
13165
13166 if (code == REG)
13167 {
13168 unsigned int regno = REGNO (x);
13169 unsigned endreg = END_REGNO (x);
13170
13171 #ifdef PUSH_ROUNDING
13172 /* Don't allow uses of the stack pointer to be moved,
13173 because we don't know whether the move crosses a push insn. */
13174 if (regno == STACK_POINTER_REGNUM && PUSH_ARGS)
13175 return 1;
13176 #endif
13177 for (; regno < endreg; regno++)
13178 {
13179 reg_stat_type *rsp = &reg_stat[regno];
13180 if (rsp->last_set
13181 && rsp->last_set_label == label_tick
13182 && DF_INSN_LUID (rsp->last_set) > from_luid)
13183 return 1;
13184 }
13185 return 0;
13186 }
13187
13188 if (code == MEM && mem_last_set > from_luid)
13189 return 1;
13190
13191 fmt = GET_RTX_FORMAT (code);
13192
13193 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
13194 {
13195 if (fmt[i] == 'E')
13196 {
13197 int j;
13198 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
13199 if (use_crosses_set_p (XVECEXP (x, i, j), from_luid))
13200 return 1;
13201 }
13202 else if (fmt[i] == 'e'
13203 && use_crosses_set_p (XEXP (x, i), from_luid))
13204 return 1;
13205 }
13206 return 0;
13207 }
13208 \f
13209 /* Define three variables used for communication between the following
13210 routines. */
13211
13212 static unsigned int reg_dead_regno, reg_dead_endregno;
13213 static int reg_dead_flag;
13214
13215 /* Function called via note_stores from reg_dead_at_p.
13216
13217 If DEST is within [reg_dead_regno, reg_dead_endregno), set
13218 reg_dead_flag to 1 if X is a CLOBBER and to -1 it is a SET. */
13219
13220 static void
13221 reg_dead_at_p_1 (rtx dest, const_rtx x, void *data ATTRIBUTE_UNUSED)
13222 {
13223 unsigned int regno, endregno;
13224
13225 if (!REG_P (dest))
13226 return;
13227
13228 regno = REGNO (dest);
13229 endregno = END_REGNO (dest);
13230 if (reg_dead_endregno > regno && reg_dead_regno < endregno)
13231 reg_dead_flag = (GET_CODE (x) == CLOBBER) ? 1 : -1;
13232 }
13233
13234 /* Return nonzero if REG is known to be dead at INSN.
13235
13236 We scan backwards from INSN. If we hit a REG_DEAD note or a CLOBBER
13237 referencing REG, it is dead. If we hit a SET referencing REG, it is
13238 live. Otherwise, see if it is live or dead at the start of the basic
13239 block we are in. Hard regs marked as being live in NEWPAT_USED_REGS
13240 must be assumed to be always live. */
13241
13242 static int
13243 reg_dead_at_p (rtx reg, rtx_insn *insn)
13244 {
13245 basic_block block;
13246 unsigned int i;
13247
13248 /* Set variables for reg_dead_at_p_1. */
13249 reg_dead_regno = REGNO (reg);
13250 reg_dead_endregno = END_REGNO (reg);
13251
13252 reg_dead_flag = 0;
13253
13254 /* Check that reg isn't mentioned in NEWPAT_USED_REGS. For fixed registers
13255 we allow the machine description to decide whether use-and-clobber
13256 patterns are OK. */
13257 if (reg_dead_regno < FIRST_PSEUDO_REGISTER)
13258 {
13259 for (i = reg_dead_regno; i < reg_dead_endregno; i++)
13260 if (!fixed_regs[i] && TEST_HARD_REG_BIT (newpat_used_regs, i))
13261 return 0;
13262 }
13263
13264 /* Scan backwards until we find a REG_DEAD note, SET, CLOBBER, or
13265 beginning of basic block. */
13266 block = BLOCK_FOR_INSN (insn);
13267 for (;;)
13268 {
13269 if (INSN_P (insn))
13270 {
13271 if (find_regno_note (insn, REG_UNUSED, reg_dead_regno))
13272 return 1;
13273
13274 note_stores (PATTERN (insn), reg_dead_at_p_1, NULL);
13275 if (reg_dead_flag)
13276 return reg_dead_flag == 1 ? 1 : 0;
13277
13278 if (find_regno_note (insn, REG_DEAD, reg_dead_regno))
13279 return 1;
13280 }
13281
13282 if (insn == BB_HEAD (block))
13283 break;
13284
13285 insn = PREV_INSN (insn);
13286 }
13287
13288 /* Look at live-in sets for the basic block that we were in. */
13289 for (i = reg_dead_regno; i < reg_dead_endregno; i++)
13290 if (REGNO_REG_SET_P (df_get_live_in (block), i))
13291 return 0;
13292
13293 return 1;
13294 }
13295 \f
13296 /* Note hard registers in X that are used. */
13297
13298 static void
13299 mark_used_regs_combine (rtx x)
13300 {
13301 RTX_CODE code = GET_CODE (x);
13302 unsigned int regno;
13303 int i;
13304
13305 switch (code)
13306 {
13307 case LABEL_REF:
13308 case SYMBOL_REF:
13309 case CONST:
13310 CASE_CONST_ANY:
13311 case PC:
13312 case ADDR_VEC:
13313 case ADDR_DIFF_VEC:
13314 case ASM_INPUT:
13315 /* CC0 must die in the insn after it is set, so we don't need to take
13316 special note of it here. */
13317 case CC0:
13318 return;
13319
13320 case CLOBBER:
13321 /* If we are clobbering a MEM, mark any hard registers inside the
13322 address as used. */
13323 if (MEM_P (XEXP (x, 0)))
13324 mark_used_regs_combine (XEXP (XEXP (x, 0), 0));
13325 return;
13326
13327 case REG:
13328 regno = REGNO (x);
13329 /* A hard reg in a wide mode may really be multiple registers.
13330 If so, mark all of them just like the first. */
13331 if (regno < FIRST_PSEUDO_REGISTER)
13332 {
13333 /* None of this applies to the stack, frame or arg pointers. */
13334 if (regno == STACK_POINTER_REGNUM
13335 || (!HARD_FRAME_POINTER_IS_FRAME_POINTER
13336 && regno == HARD_FRAME_POINTER_REGNUM)
13337 || (FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
13338 && regno == ARG_POINTER_REGNUM && fixed_regs[regno])
13339 || regno == FRAME_POINTER_REGNUM)
13340 return;
13341
13342 add_to_hard_reg_set (&newpat_used_regs, GET_MODE (x), regno);
13343 }
13344 return;
13345
13346 case SET:
13347 {
13348 /* If setting a MEM, or a SUBREG of a MEM, then note any hard regs in
13349 the address. */
13350 rtx testreg = SET_DEST (x);
13351
13352 while (GET_CODE (testreg) == SUBREG
13353 || GET_CODE (testreg) == ZERO_EXTRACT
13354 || GET_CODE (testreg) == STRICT_LOW_PART)
13355 testreg = XEXP (testreg, 0);
13356
13357 if (MEM_P (testreg))
13358 mark_used_regs_combine (XEXP (testreg, 0));
13359
13360 mark_used_regs_combine (SET_SRC (x));
13361 }
13362 return;
13363
13364 default:
13365 break;
13366 }
13367
13368 /* Recursively scan the operands of this expression. */
13369
13370 {
13371 const char *fmt = GET_RTX_FORMAT (code);
13372
13373 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
13374 {
13375 if (fmt[i] == 'e')
13376 mark_used_regs_combine (XEXP (x, i));
13377 else if (fmt[i] == 'E')
13378 {
13379 int j;
13380
13381 for (j = 0; j < XVECLEN (x, i); j++)
13382 mark_used_regs_combine (XVECEXP (x, i, j));
13383 }
13384 }
13385 }
13386 }
13387 \f
13388 /* Remove register number REGNO from the dead registers list of INSN.
13389
13390 Return the note used to record the death, if there was one. */
13391
13392 rtx
13393 remove_death (unsigned int regno, rtx_insn *insn)
13394 {
13395 rtx note = find_regno_note (insn, REG_DEAD, regno);
13396
13397 if (note)
13398 remove_note (insn, note);
13399
13400 return note;
13401 }
13402
13403 /* For each register (hardware or pseudo) used within expression X, if its
13404 death is in an instruction with luid between FROM_LUID (inclusive) and
13405 TO_INSN (exclusive), put a REG_DEAD note for that register in the
13406 list headed by PNOTES.
13407
13408 That said, don't move registers killed by maybe_kill_insn.
13409
13410 This is done when X is being merged by combination into TO_INSN. These
13411 notes will then be distributed as needed. */
13412
13413 static void
13414 move_deaths (rtx x, rtx maybe_kill_insn, int from_luid, rtx_insn *to_insn,
13415 rtx *pnotes)
13416 {
13417 const char *fmt;
13418 int len, i;
13419 enum rtx_code code = GET_CODE (x);
13420
13421 if (code == REG)
13422 {
13423 unsigned int regno = REGNO (x);
13424 rtx_insn *where_dead = reg_stat[regno].last_death;
13425
13426 /* Don't move the register if it gets killed in between from and to. */
13427 if (maybe_kill_insn && reg_set_p (x, maybe_kill_insn)
13428 && ! reg_referenced_p (x, maybe_kill_insn))
13429 return;
13430
13431 if (where_dead
13432 && BLOCK_FOR_INSN (where_dead) == BLOCK_FOR_INSN (to_insn)
13433 && DF_INSN_LUID (where_dead) >= from_luid
13434 && DF_INSN_LUID (where_dead) < DF_INSN_LUID (to_insn))
13435 {
13436 rtx note = remove_death (regno, where_dead);
13437
13438 /* It is possible for the call above to return 0. This can occur
13439 when last_death points to I2 or I1 that we combined with.
13440 In that case make a new note.
13441
13442 We must also check for the case where X is a hard register
13443 and NOTE is a death note for a range of hard registers
13444 including X. In that case, we must put REG_DEAD notes for
13445 the remaining registers in place of NOTE. */
13446
13447 if (note != 0 && regno < FIRST_PSEUDO_REGISTER
13448 && (GET_MODE_SIZE (GET_MODE (XEXP (note, 0)))
13449 > GET_MODE_SIZE (GET_MODE (x))))
13450 {
13451 unsigned int deadregno = REGNO (XEXP (note, 0));
13452 unsigned int deadend = END_REGNO (XEXP (note, 0));
13453 unsigned int ourend = END_REGNO (x);
13454 unsigned int i;
13455
13456 for (i = deadregno; i < deadend; i++)
13457 if (i < regno || i >= ourend)
13458 add_reg_note (where_dead, REG_DEAD, regno_reg_rtx[i]);
13459 }
13460
13461 /* If we didn't find any note, or if we found a REG_DEAD note that
13462 covers only part of the given reg, and we have a multi-reg hard
13463 register, then to be safe we must check for REG_DEAD notes
13464 for each register other than the first. They could have
13465 their own REG_DEAD notes lying around. */
13466 else if ((note == 0
13467 || (note != 0
13468 && (GET_MODE_SIZE (GET_MODE (XEXP (note, 0)))
13469 < GET_MODE_SIZE (GET_MODE (x)))))
13470 && regno < FIRST_PSEUDO_REGISTER
13471 && REG_NREGS (x) > 1)
13472 {
13473 unsigned int ourend = END_REGNO (x);
13474 unsigned int i, offset;
13475 rtx oldnotes = 0;
13476
13477 if (note)
13478 offset = hard_regno_nregs[regno][GET_MODE (XEXP (note, 0))];
13479 else
13480 offset = 1;
13481
13482 for (i = regno + offset; i < ourend; i++)
13483 move_deaths (regno_reg_rtx[i],
13484 maybe_kill_insn, from_luid, to_insn, &oldnotes);
13485 }
13486
13487 if (note != 0 && GET_MODE (XEXP (note, 0)) == GET_MODE (x))
13488 {
13489 XEXP (note, 1) = *pnotes;
13490 *pnotes = note;
13491 }
13492 else
13493 *pnotes = alloc_reg_note (REG_DEAD, x, *pnotes);
13494 }
13495
13496 return;
13497 }
13498
13499 else if (GET_CODE (x) == SET)
13500 {
13501 rtx dest = SET_DEST (x);
13502
13503 move_deaths (SET_SRC (x), maybe_kill_insn, from_luid, to_insn, pnotes);
13504
13505 /* In the case of a ZERO_EXTRACT, a STRICT_LOW_PART, or a SUBREG
13506 that accesses one word of a multi-word item, some
13507 piece of everything register in the expression is used by
13508 this insn, so remove any old death. */
13509 /* ??? So why do we test for equality of the sizes? */
13510
13511 if (GET_CODE (dest) == ZERO_EXTRACT
13512 || GET_CODE (dest) == STRICT_LOW_PART
13513 || (GET_CODE (dest) == SUBREG
13514 && (((GET_MODE_SIZE (GET_MODE (dest))
13515 + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
13516 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest)))
13517 + UNITS_PER_WORD - 1) / UNITS_PER_WORD))))
13518 {
13519 move_deaths (dest, maybe_kill_insn, from_luid, to_insn, pnotes);
13520 return;
13521 }
13522
13523 /* If this is some other SUBREG, we know it replaces the entire
13524 value, so use that as the destination. */
13525 if (GET_CODE (dest) == SUBREG)
13526 dest = SUBREG_REG (dest);
13527
13528 /* If this is a MEM, adjust deaths of anything used in the address.
13529 For a REG (the only other possibility), the entire value is
13530 being replaced so the old value is not used in this insn. */
13531
13532 if (MEM_P (dest))
13533 move_deaths (XEXP (dest, 0), maybe_kill_insn, from_luid,
13534 to_insn, pnotes);
13535 return;
13536 }
13537
13538 else if (GET_CODE (x) == CLOBBER)
13539 return;
13540
13541 len = GET_RTX_LENGTH (code);
13542 fmt = GET_RTX_FORMAT (code);
13543
13544 for (i = 0; i < len; i++)
13545 {
13546 if (fmt[i] == 'E')
13547 {
13548 int j;
13549 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
13550 move_deaths (XVECEXP (x, i, j), maybe_kill_insn, from_luid,
13551 to_insn, pnotes);
13552 }
13553 else if (fmt[i] == 'e')
13554 move_deaths (XEXP (x, i), maybe_kill_insn, from_luid, to_insn, pnotes);
13555 }
13556 }
13557 \f
13558 /* Return 1 if X is the target of a bit-field assignment in BODY, the
13559 pattern of an insn. X must be a REG. */
13560
13561 static int
13562 reg_bitfield_target_p (rtx x, rtx body)
13563 {
13564 int i;
13565
13566 if (GET_CODE (body) == SET)
13567 {
13568 rtx dest = SET_DEST (body);
13569 rtx target;
13570 unsigned int regno, tregno, endregno, endtregno;
13571
13572 if (GET_CODE (dest) == ZERO_EXTRACT)
13573 target = XEXP (dest, 0);
13574 else if (GET_CODE (dest) == STRICT_LOW_PART)
13575 target = SUBREG_REG (XEXP (dest, 0));
13576 else
13577 return 0;
13578
13579 if (GET_CODE (target) == SUBREG)
13580 target = SUBREG_REG (target);
13581
13582 if (!REG_P (target))
13583 return 0;
13584
13585 tregno = REGNO (target), regno = REGNO (x);
13586 if (tregno >= FIRST_PSEUDO_REGISTER || regno >= FIRST_PSEUDO_REGISTER)
13587 return target == x;
13588
13589 endtregno = end_hard_regno (GET_MODE (target), tregno);
13590 endregno = end_hard_regno (GET_MODE (x), regno);
13591
13592 return endregno > tregno && regno < endtregno;
13593 }
13594
13595 else if (GET_CODE (body) == PARALLEL)
13596 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
13597 if (reg_bitfield_target_p (x, XVECEXP (body, 0, i)))
13598 return 1;
13599
13600 return 0;
13601 }
13602 \f
13603 /* Given a chain of REG_NOTES originally from FROM_INSN, try to place them
13604 as appropriate. I3 and I2 are the insns resulting from the combination
13605 insns including FROM (I2 may be zero).
13606
13607 ELIM_I2 and ELIM_I1 are either zero or registers that we know will
13608 not need REG_DEAD notes because they are being substituted for. This
13609 saves searching in the most common cases.
13610
13611 Each note in the list is either ignored or placed on some insns, depending
13612 on the type of note. */
13613
13614 static void
13615 distribute_notes (rtx notes, rtx_insn *from_insn, rtx_insn *i3, rtx_insn *i2,
13616 rtx elim_i2, rtx elim_i1, rtx elim_i0)
13617 {
13618 rtx note, next_note;
13619 rtx tem_note;
13620 rtx_insn *tem_insn;
13621
13622 for (note = notes; note; note = next_note)
13623 {
13624 rtx_insn *place = 0, *place2 = 0;
13625
13626 next_note = XEXP (note, 1);
13627 switch (REG_NOTE_KIND (note))
13628 {
13629 case REG_BR_PROB:
13630 case REG_BR_PRED:
13631 /* Doesn't matter much where we put this, as long as it's somewhere.
13632 It is preferable to keep these notes on branches, which is most
13633 likely to be i3. */
13634 place = i3;
13635 break;
13636
13637 case REG_NON_LOCAL_GOTO:
13638 if (JUMP_P (i3))
13639 place = i3;
13640 else
13641 {
13642 gcc_assert (i2 && JUMP_P (i2));
13643 place = i2;
13644 }
13645 break;
13646
13647 case REG_EH_REGION:
13648 /* These notes must remain with the call or trapping instruction. */
13649 if (CALL_P (i3))
13650 place = i3;
13651 else if (i2 && CALL_P (i2))
13652 place = i2;
13653 else
13654 {
13655 gcc_assert (cfun->can_throw_non_call_exceptions);
13656 if (may_trap_p (i3))
13657 place = i3;
13658 else if (i2 && may_trap_p (i2))
13659 place = i2;
13660 /* ??? Otherwise assume we've combined things such that we
13661 can now prove that the instructions can't trap. Drop the
13662 note in this case. */
13663 }
13664 break;
13665
13666 case REG_ARGS_SIZE:
13667 /* ??? How to distribute between i3-i1. Assume i3 contains the
13668 entire adjustment. Assert i3 contains at least some adjust. */
13669 if (!noop_move_p (i3))
13670 {
13671 int old_size, args_size = INTVAL (XEXP (note, 0));
13672 /* fixup_args_size_notes looks at REG_NORETURN note,
13673 so ensure the note is placed there first. */
13674 if (CALL_P (i3))
13675 {
13676 rtx *np;
13677 for (np = &next_note; *np; np = &XEXP (*np, 1))
13678 if (REG_NOTE_KIND (*np) == REG_NORETURN)
13679 {
13680 rtx n = *np;
13681 *np = XEXP (n, 1);
13682 XEXP (n, 1) = REG_NOTES (i3);
13683 REG_NOTES (i3) = n;
13684 break;
13685 }
13686 }
13687 old_size = fixup_args_size_notes (PREV_INSN (i3), i3, args_size);
13688 /* emit_call_1 adds for !ACCUMULATE_OUTGOING_ARGS
13689 REG_ARGS_SIZE note to all noreturn calls, allow that here. */
13690 gcc_assert (old_size != args_size
13691 || (CALL_P (i3)
13692 && !ACCUMULATE_OUTGOING_ARGS
13693 && find_reg_note (i3, REG_NORETURN, NULL_RTX)));
13694 }
13695 break;
13696
13697 case REG_NORETURN:
13698 case REG_SETJMP:
13699 case REG_TM:
13700 case REG_CALL_DECL:
13701 /* These notes must remain with the call. It should not be
13702 possible for both I2 and I3 to be a call. */
13703 if (CALL_P (i3))
13704 place = i3;
13705 else
13706 {
13707 gcc_assert (i2 && CALL_P (i2));
13708 place = i2;
13709 }
13710 break;
13711
13712 case REG_UNUSED:
13713 /* Any clobbers for i3 may still exist, and so we must process
13714 REG_UNUSED notes from that insn.
13715
13716 Any clobbers from i2 or i1 can only exist if they were added by
13717 recog_for_combine. In that case, recog_for_combine created the
13718 necessary REG_UNUSED notes. Trying to keep any original
13719 REG_UNUSED notes from these insns can cause incorrect output
13720 if it is for the same register as the original i3 dest.
13721 In that case, we will notice that the register is set in i3,
13722 and then add a REG_UNUSED note for the destination of i3, which
13723 is wrong. However, it is possible to have REG_UNUSED notes from
13724 i2 or i1 for register which were both used and clobbered, so
13725 we keep notes from i2 or i1 if they will turn into REG_DEAD
13726 notes. */
13727
13728 /* If this register is set or clobbered in I3, put the note there
13729 unless there is one already. */
13730 if (reg_set_p (XEXP (note, 0), PATTERN (i3)))
13731 {
13732 if (from_insn != i3)
13733 break;
13734
13735 if (! (REG_P (XEXP (note, 0))
13736 ? find_regno_note (i3, REG_UNUSED, REGNO (XEXP (note, 0)))
13737 : find_reg_note (i3, REG_UNUSED, XEXP (note, 0))))
13738 place = i3;
13739 }
13740 /* Otherwise, if this register is used by I3, then this register
13741 now dies here, so we must put a REG_DEAD note here unless there
13742 is one already. */
13743 else if (reg_referenced_p (XEXP (note, 0), PATTERN (i3))
13744 && ! (REG_P (XEXP (note, 0))
13745 ? find_regno_note (i3, REG_DEAD,
13746 REGNO (XEXP (note, 0)))
13747 : find_reg_note (i3, REG_DEAD, XEXP (note, 0))))
13748 {
13749 PUT_REG_NOTE_KIND (note, REG_DEAD);
13750 place = i3;
13751 }
13752 break;
13753
13754 case REG_EQUAL:
13755 case REG_EQUIV:
13756 case REG_NOALIAS:
13757 /* These notes say something about results of an insn. We can
13758 only support them if they used to be on I3 in which case they
13759 remain on I3. Otherwise they are ignored.
13760
13761 If the note refers to an expression that is not a constant, we
13762 must also ignore the note since we cannot tell whether the
13763 equivalence is still true. It might be possible to do
13764 slightly better than this (we only have a problem if I2DEST
13765 or I1DEST is present in the expression), but it doesn't
13766 seem worth the trouble. */
13767
13768 if (from_insn == i3
13769 && (XEXP (note, 0) == 0 || CONSTANT_P (XEXP (note, 0))))
13770 place = i3;
13771 break;
13772
13773 case REG_INC:
13774 /* These notes say something about how a register is used. They must
13775 be present on any use of the register in I2 or I3. */
13776 if (reg_mentioned_p (XEXP (note, 0), PATTERN (i3)))
13777 place = i3;
13778
13779 if (i2 && reg_mentioned_p (XEXP (note, 0), PATTERN (i2)))
13780 {
13781 if (place)
13782 place2 = i2;
13783 else
13784 place = i2;
13785 }
13786 break;
13787
13788 case REG_LABEL_TARGET:
13789 case REG_LABEL_OPERAND:
13790 /* This can show up in several ways -- either directly in the
13791 pattern, or hidden off in the constant pool with (or without?)
13792 a REG_EQUAL note. */
13793 /* ??? Ignore the without-reg_equal-note problem for now. */
13794 if (reg_mentioned_p (XEXP (note, 0), PATTERN (i3))
13795 || ((tem_note = find_reg_note (i3, REG_EQUAL, NULL_RTX))
13796 && GET_CODE (XEXP (tem_note, 0)) == LABEL_REF
13797 && LABEL_REF_LABEL (XEXP (tem_note, 0)) == XEXP (note, 0)))
13798 place = i3;
13799
13800 if (i2
13801 && (reg_mentioned_p (XEXP (note, 0), PATTERN (i2))
13802 || ((tem_note = find_reg_note (i2, REG_EQUAL, NULL_RTX))
13803 && GET_CODE (XEXP (tem_note, 0)) == LABEL_REF
13804 && LABEL_REF_LABEL (XEXP (tem_note, 0)) == XEXP (note, 0))))
13805 {
13806 if (place)
13807 place2 = i2;
13808 else
13809 place = i2;
13810 }
13811
13812 /* For REG_LABEL_TARGET on a JUMP_P, we prefer to put the note
13813 as a JUMP_LABEL or decrement LABEL_NUSES if it's already
13814 there. */
13815 if (place && JUMP_P (place)
13816 && REG_NOTE_KIND (note) == REG_LABEL_TARGET
13817 && (JUMP_LABEL (place) == NULL
13818 || JUMP_LABEL (place) == XEXP (note, 0)))
13819 {
13820 rtx label = JUMP_LABEL (place);
13821
13822 if (!label)
13823 JUMP_LABEL (place) = XEXP (note, 0);
13824 else if (LABEL_P (label))
13825 LABEL_NUSES (label)--;
13826 }
13827
13828 if (place2 && JUMP_P (place2)
13829 && REG_NOTE_KIND (note) == REG_LABEL_TARGET
13830 && (JUMP_LABEL (place2) == NULL
13831 || JUMP_LABEL (place2) == XEXP (note, 0)))
13832 {
13833 rtx label = JUMP_LABEL (place2);
13834
13835 if (!label)
13836 JUMP_LABEL (place2) = XEXP (note, 0);
13837 else if (LABEL_P (label))
13838 LABEL_NUSES (label)--;
13839 place2 = 0;
13840 }
13841 break;
13842
13843 case REG_NONNEG:
13844 /* This note says something about the value of a register prior
13845 to the execution of an insn. It is too much trouble to see
13846 if the note is still correct in all situations. It is better
13847 to simply delete it. */
13848 break;
13849
13850 case REG_DEAD:
13851 /* If we replaced the right hand side of FROM_INSN with a
13852 REG_EQUAL note, the original use of the dying register
13853 will not have been combined into I3 and I2. In such cases,
13854 FROM_INSN is guaranteed to be the first of the combined
13855 instructions, so we simply need to search back before
13856 FROM_INSN for the previous use or set of this register,
13857 then alter the notes there appropriately.
13858
13859 If the register is used as an input in I3, it dies there.
13860 Similarly for I2, if it is nonzero and adjacent to I3.
13861
13862 If the register is not used as an input in either I3 or I2
13863 and it is not one of the registers we were supposed to eliminate,
13864 there are two possibilities. We might have a non-adjacent I2
13865 or we might have somehow eliminated an additional register
13866 from a computation. For example, we might have had A & B where
13867 we discover that B will always be zero. In this case we will
13868 eliminate the reference to A.
13869
13870 In both cases, we must search to see if we can find a previous
13871 use of A and put the death note there. */
13872
13873 if (from_insn
13874 && from_insn == i2mod
13875 && !reg_overlap_mentioned_p (XEXP (note, 0), i2mod_new_rhs))
13876 tem_insn = from_insn;
13877 else
13878 {
13879 if (from_insn
13880 && CALL_P (from_insn)
13881 && find_reg_fusage (from_insn, USE, XEXP (note, 0)))
13882 place = from_insn;
13883 else if (reg_referenced_p (XEXP (note, 0), PATTERN (i3)))
13884 place = i3;
13885 else if (i2 != 0 && next_nonnote_nondebug_insn (i2) == i3
13886 && reg_referenced_p (XEXP (note, 0), PATTERN (i2)))
13887 place = i2;
13888 else if ((rtx_equal_p (XEXP (note, 0), elim_i2)
13889 && !(i2mod
13890 && reg_overlap_mentioned_p (XEXP (note, 0),
13891 i2mod_old_rhs)))
13892 || rtx_equal_p (XEXP (note, 0), elim_i1)
13893 || rtx_equal_p (XEXP (note, 0), elim_i0))
13894 break;
13895 tem_insn = i3;
13896 /* If the new I2 sets the same register that is marked dead
13897 in the note, the note now should not be put on I2, as the
13898 note refers to a previous incarnation of the reg. */
13899 if (i2 != 0 && reg_set_p (XEXP (note, 0), PATTERN (i2)))
13900 tem_insn = i2;
13901 }
13902
13903 if (place == 0)
13904 {
13905 basic_block bb = this_basic_block;
13906
13907 for (tem_insn = PREV_INSN (tem_insn); place == 0; tem_insn = PREV_INSN (tem_insn))
13908 {
13909 if (!NONDEBUG_INSN_P (tem_insn))
13910 {
13911 if (tem_insn == BB_HEAD (bb))
13912 break;
13913 continue;
13914 }
13915
13916 /* If the register is being set at TEM_INSN, see if that is all
13917 TEM_INSN is doing. If so, delete TEM_INSN. Otherwise, make this
13918 into a REG_UNUSED note instead. Don't delete sets to
13919 global register vars. */
13920 if ((REGNO (XEXP (note, 0)) >= FIRST_PSEUDO_REGISTER
13921 || !global_regs[REGNO (XEXP (note, 0))])
13922 && reg_set_p (XEXP (note, 0), PATTERN (tem_insn)))
13923 {
13924 rtx set = single_set (tem_insn);
13925 rtx inner_dest = 0;
13926 rtx_insn *cc0_setter = NULL;
13927
13928 if (set != 0)
13929 for (inner_dest = SET_DEST (set);
13930 (GET_CODE (inner_dest) == STRICT_LOW_PART
13931 || GET_CODE (inner_dest) == SUBREG
13932 || GET_CODE (inner_dest) == ZERO_EXTRACT);
13933 inner_dest = XEXP (inner_dest, 0))
13934 ;
13935
13936 /* Verify that it was the set, and not a clobber that
13937 modified the register.
13938
13939 CC0 targets must be careful to maintain setter/user
13940 pairs. If we cannot delete the setter due to side
13941 effects, mark the user with an UNUSED note instead
13942 of deleting it. */
13943
13944 if (set != 0 && ! side_effects_p (SET_SRC (set))
13945 && rtx_equal_p (XEXP (note, 0), inner_dest)
13946 && (!HAVE_cc0
13947 || (! reg_mentioned_p (cc0_rtx, SET_SRC (set))
13948 || ((cc0_setter = prev_cc0_setter (tem_insn)) != NULL
13949 && sets_cc0_p (PATTERN (cc0_setter)) > 0))))
13950 {
13951 /* Move the notes and links of TEM_INSN elsewhere.
13952 This might delete other dead insns recursively.
13953 First set the pattern to something that won't use
13954 any register. */
13955 rtx old_notes = REG_NOTES (tem_insn);
13956
13957 PATTERN (tem_insn) = pc_rtx;
13958 REG_NOTES (tem_insn) = NULL;
13959
13960 distribute_notes (old_notes, tem_insn, tem_insn, NULL,
13961 NULL_RTX, NULL_RTX, NULL_RTX);
13962 distribute_links (LOG_LINKS (tem_insn));
13963
13964 SET_INSN_DELETED (tem_insn);
13965 if (tem_insn == i2)
13966 i2 = NULL;
13967
13968 /* Delete the setter too. */
13969 if (cc0_setter)
13970 {
13971 PATTERN (cc0_setter) = pc_rtx;
13972 old_notes = REG_NOTES (cc0_setter);
13973 REG_NOTES (cc0_setter) = NULL;
13974
13975 distribute_notes (old_notes, cc0_setter,
13976 cc0_setter, NULL,
13977 NULL_RTX, NULL_RTX, NULL_RTX);
13978 distribute_links (LOG_LINKS (cc0_setter));
13979
13980 SET_INSN_DELETED (cc0_setter);
13981 if (cc0_setter == i2)
13982 i2 = NULL;
13983 }
13984 }
13985 else
13986 {
13987 PUT_REG_NOTE_KIND (note, REG_UNUSED);
13988
13989 /* If there isn't already a REG_UNUSED note, put one
13990 here. Do not place a REG_DEAD note, even if
13991 the register is also used here; that would not
13992 match the algorithm used in lifetime analysis
13993 and can cause the consistency check in the
13994 scheduler to fail. */
13995 if (! find_regno_note (tem_insn, REG_UNUSED,
13996 REGNO (XEXP (note, 0))))
13997 place = tem_insn;
13998 break;
13999 }
14000 }
14001 else if (reg_referenced_p (XEXP (note, 0), PATTERN (tem_insn))
14002 || (CALL_P (tem_insn)
14003 && find_reg_fusage (tem_insn, USE, XEXP (note, 0))))
14004 {
14005 place = tem_insn;
14006
14007 /* If we are doing a 3->2 combination, and we have a
14008 register which formerly died in i3 and was not used
14009 by i2, which now no longer dies in i3 and is used in
14010 i2 but does not die in i2, and place is between i2
14011 and i3, then we may need to move a link from place to
14012 i2. */
14013 if (i2 && DF_INSN_LUID (place) > DF_INSN_LUID (i2)
14014 && from_insn
14015 && DF_INSN_LUID (from_insn) > DF_INSN_LUID (i2)
14016 && reg_referenced_p (XEXP (note, 0), PATTERN (i2)))
14017 {
14018 struct insn_link *links = LOG_LINKS (place);
14019 LOG_LINKS (place) = NULL;
14020 distribute_links (links);
14021 }
14022 break;
14023 }
14024
14025 if (tem_insn == BB_HEAD (bb))
14026 break;
14027 }
14028
14029 }
14030
14031 /* If the register is set or already dead at PLACE, we needn't do
14032 anything with this note if it is still a REG_DEAD note.
14033 We check here if it is set at all, not if is it totally replaced,
14034 which is what `dead_or_set_p' checks, so also check for it being
14035 set partially. */
14036
14037 if (place && REG_NOTE_KIND (note) == REG_DEAD)
14038 {
14039 unsigned int regno = REGNO (XEXP (note, 0));
14040 reg_stat_type *rsp = &reg_stat[regno];
14041
14042 if (dead_or_set_p (place, XEXP (note, 0))
14043 || reg_bitfield_target_p (XEXP (note, 0), PATTERN (place)))
14044 {
14045 /* Unless the register previously died in PLACE, clear
14046 last_death. [I no longer understand why this is
14047 being done.] */
14048 if (rsp->last_death != place)
14049 rsp->last_death = 0;
14050 place = 0;
14051 }
14052 else
14053 rsp->last_death = place;
14054
14055 /* If this is a death note for a hard reg that is occupying
14056 multiple registers, ensure that we are still using all
14057 parts of the object. If we find a piece of the object
14058 that is unused, we must arrange for an appropriate REG_DEAD
14059 note to be added for it. However, we can't just emit a USE
14060 and tag the note to it, since the register might actually
14061 be dead; so we recourse, and the recursive call then finds
14062 the previous insn that used this register. */
14063
14064 if (place && REG_NREGS (XEXP (note, 0)) > 1)
14065 {
14066 unsigned int endregno = END_REGNO (XEXP (note, 0));
14067 bool all_used = true;
14068 unsigned int i;
14069
14070 for (i = regno; i < endregno; i++)
14071 if ((! refers_to_regno_p (i, PATTERN (place))
14072 && ! find_regno_fusage (place, USE, i))
14073 || dead_or_set_regno_p (place, i))
14074 {
14075 all_used = false;
14076 break;
14077 }
14078
14079 if (! all_used)
14080 {
14081 /* Put only REG_DEAD notes for pieces that are
14082 not already dead or set. */
14083
14084 for (i = regno; i < endregno;
14085 i += hard_regno_nregs[i][reg_raw_mode[i]])
14086 {
14087 rtx piece = regno_reg_rtx[i];
14088 basic_block bb = this_basic_block;
14089
14090 if (! dead_or_set_p (place, piece)
14091 && ! reg_bitfield_target_p (piece,
14092 PATTERN (place)))
14093 {
14094 rtx new_note = alloc_reg_note (REG_DEAD, piece,
14095 NULL_RTX);
14096
14097 distribute_notes (new_note, place, place,
14098 NULL, NULL_RTX, NULL_RTX,
14099 NULL_RTX);
14100 }
14101 else if (! refers_to_regno_p (i, PATTERN (place))
14102 && ! find_regno_fusage (place, USE, i))
14103 for (tem_insn = PREV_INSN (place); ;
14104 tem_insn = PREV_INSN (tem_insn))
14105 {
14106 if (!NONDEBUG_INSN_P (tem_insn))
14107 {
14108 if (tem_insn == BB_HEAD (bb))
14109 break;
14110 continue;
14111 }
14112 if (dead_or_set_p (tem_insn, piece)
14113 || reg_bitfield_target_p (piece,
14114 PATTERN (tem_insn)))
14115 {
14116 add_reg_note (tem_insn, REG_UNUSED, piece);
14117 break;
14118 }
14119 }
14120 }
14121
14122 place = 0;
14123 }
14124 }
14125 }
14126 break;
14127
14128 default:
14129 /* Any other notes should not be present at this point in the
14130 compilation. */
14131 gcc_unreachable ();
14132 }
14133
14134 if (place)
14135 {
14136 XEXP (note, 1) = REG_NOTES (place);
14137 REG_NOTES (place) = note;
14138 }
14139
14140 if (place2)
14141 add_shallow_copy_of_reg_note (place2, note);
14142 }
14143 }
14144 \f
14145 /* Similarly to above, distribute the LOG_LINKS that used to be present on
14146 I3, I2, and I1 to new locations. This is also called to add a link
14147 pointing at I3 when I3's destination is changed. */
14148
14149 static void
14150 distribute_links (struct insn_link *links)
14151 {
14152 struct insn_link *link, *next_link;
14153
14154 for (link = links; link; link = next_link)
14155 {
14156 rtx_insn *place = 0;
14157 rtx_insn *insn;
14158 rtx set, reg;
14159
14160 next_link = link->next;
14161
14162 /* If the insn that this link points to is a NOTE, ignore it. */
14163 if (NOTE_P (link->insn))
14164 continue;
14165
14166 set = 0;
14167 rtx pat = PATTERN (link->insn);
14168 if (GET_CODE (pat) == SET)
14169 set = pat;
14170 else if (GET_CODE (pat) == PARALLEL)
14171 {
14172 int i;
14173 for (i = 0; i < XVECLEN (pat, 0); i++)
14174 {
14175 set = XVECEXP (pat, 0, i);
14176 if (GET_CODE (set) != SET)
14177 continue;
14178
14179 reg = SET_DEST (set);
14180 while (GET_CODE (reg) == ZERO_EXTRACT
14181 || GET_CODE (reg) == STRICT_LOW_PART
14182 || GET_CODE (reg) == SUBREG)
14183 reg = XEXP (reg, 0);
14184
14185 if (!REG_P (reg))
14186 continue;
14187
14188 if (REGNO (reg) == link->regno)
14189 break;
14190 }
14191 if (i == XVECLEN (pat, 0))
14192 continue;
14193 }
14194 else
14195 continue;
14196
14197 reg = SET_DEST (set);
14198
14199 while (GET_CODE (reg) == ZERO_EXTRACT
14200 || GET_CODE (reg) == STRICT_LOW_PART
14201 || GET_CODE (reg) == SUBREG)
14202 reg = XEXP (reg, 0);
14203
14204 /* A LOG_LINK is defined as being placed on the first insn that uses
14205 a register and points to the insn that sets the register. Start
14206 searching at the next insn after the target of the link and stop
14207 when we reach a set of the register or the end of the basic block.
14208
14209 Note that this correctly handles the link that used to point from
14210 I3 to I2. Also note that not much searching is typically done here
14211 since most links don't point very far away. */
14212
14213 for (insn = NEXT_INSN (link->insn);
14214 (insn && (this_basic_block->next_bb == EXIT_BLOCK_PTR_FOR_FN (cfun)
14215 || BB_HEAD (this_basic_block->next_bb) != insn));
14216 insn = NEXT_INSN (insn))
14217 if (DEBUG_INSN_P (insn))
14218 continue;
14219 else if (INSN_P (insn) && reg_overlap_mentioned_p (reg, PATTERN (insn)))
14220 {
14221 if (reg_referenced_p (reg, PATTERN (insn)))
14222 place = insn;
14223 break;
14224 }
14225 else if (CALL_P (insn)
14226 && find_reg_fusage (insn, USE, reg))
14227 {
14228 place = insn;
14229 break;
14230 }
14231 else if (INSN_P (insn) && reg_set_p (reg, insn))
14232 break;
14233
14234 /* If we found a place to put the link, place it there unless there
14235 is already a link to the same insn as LINK at that point. */
14236
14237 if (place)
14238 {
14239 struct insn_link *link2;
14240
14241 FOR_EACH_LOG_LINK (link2, place)
14242 if (link2->insn == link->insn && link2->regno == link->regno)
14243 break;
14244
14245 if (link2 == NULL)
14246 {
14247 link->next = LOG_LINKS (place);
14248 LOG_LINKS (place) = link;
14249
14250 /* Set added_links_insn to the earliest insn we added a
14251 link to. */
14252 if (added_links_insn == 0
14253 || DF_INSN_LUID (added_links_insn) > DF_INSN_LUID (place))
14254 added_links_insn = place;
14255 }
14256 }
14257 }
14258 }
14259 \f
14260 /* Check for any register or memory mentioned in EQUIV that is not
14261 mentioned in EXPR. This is used to restrict EQUIV to "specializations"
14262 of EXPR where some registers may have been replaced by constants. */
14263
14264 static bool
14265 unmentioned_reg_p (rtx equiv, rtx expr)
14266 {
14267 subrtx_iterator::array_type array;
14268 FOR_EACH_SUBRTX (iter, array, equiv, NONCONST)
14269 {
14270 const_rtx x = *iter;
14271 if ((REG_P (x) || MEM_P (x))
14272 && !reg_mentioned_p (x, expr))
14273 return true;
14274 }
14275 return false;
14276 }
14277 \f
14278 DEBUG_FUNCTION void
14279 dump_combine_stats (FILE *file)
14280 {
14281 fprintf
14282 (file,
14283 ";; Combiner statistics: %d attempts, %d substitutions (%d requiring new space),\n;; %d successes.\n\n",
14284 combine_attempts, combine_merges, combine_extras, combine_successes);
14285 }
14286
14287 void
14288 dump_combine_total_stats (FILE *file)
14289 {
14290 fprintf
14291 (file,
14292 "\n;; Combiner totals: %d attempts, %d substitutions (%d requiring new space),\n;; %d successes.\n",
14293 total_attempts, total_merges, total_extras, total_successes);
14294 }
14295 \f
14296 /* Try combining insns through substitution. */
14297 static unsigned int
14298 rest_of_handle_combine (void)
14299 {
14300 int rebuild_jump_labels_after_combine;
14301
14302 df_set_flags (DF_LR_RUN_DCE + DF_DEFER_INSN_RESCAN);
14303 df_note_add_problem ();
14304 df_analyze ();
14305
14306 regstat_init_n_sets_and_refs ();
14307 reg_n_sets_max = max_reg_num ();
14308
14309 rebuild_jump_labels_after_combine
14310 = combine_instructions (get_insns (), max_reg_num ());
14311
14312 /* Combining insns may have turned an indirect jump into a
14313 direct jump. Rebuild the JUMP_LABEL fields of jumping
14314 instructions. */
14315 if (rebuild_jump_labels_after_combine)
14316 {
14317 timevar_push (TV_JUMP);
14318 rebuild_jump_labels (get_insns ());
14319 cleanup_cfg (0);
14320 timevar_pop (TV_JUMP);
14321 }
14322
14323 regstat_free_n_sets_and_refs ();
14324 return 0;
14325 }
14326
14327 namespace {
14328
14329 const pass_data pass_data_combine =
14330 {
14331 RTL_PASS, /* type */
14332 "combine", /* name */
14333 OPTGROUP_NONE, /* optinfo_flags */
14334 TV_COMBINE, /* tv_id */
14335 PROP_cfglayout, /* properties_required */
14336 0, /* properties_provided */
14337 0, /* properties_destroyed */
14338 0, /* todo_flags_start */
14339 TODO_df_finish, /* todo_flags_finish */
14340 };
14341
14342 class pass_combine : public rtl_opt_pass
14343 {
14344 public:
14345 pass_combine (gcc::context *ctxt)
14346 : rtl_opt_pass (pass_data_combine, ctxt)
14347 {}
14348
14349 /* opt_pass methods: */
14350 virtual bool gate (function *) { return (optimize > 0); }
14351 virtual unsigned int execute (function *)
14352 {
14353 return rest_of_handle_combine ();
14354 }
14355
14356 }; // class pass_combine
14357
14358 } // anon namespace
14359
14360 rtl_opt_pass *
14361 make_pass_combine (gcc::context *ctxt)
14362 {
14363 return new pass_combine (ctxt);
14364 }