Also handle GIMPLE_CALLs in rewrite_cross_bb_scalar_deps.
[gcc.git] / gcc / combine.c
1 /* Optimize by combining instructions for GNU compiler.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010
4 Free Software Foundation, Inc.
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22 /* This module is essentially the "combiner" phase of the U. of Arizona
23 Portable Optimizer, but redone to work on our list-structured
24 representation for RTL instead of their string representation.
25
26 The LOG_LINKS of each insn identify the most recent assignment
27 to each REG used in the insn. It is a list of previous insns,
28 each of which contains a SET for a REG that is used in this insn
29 and not used or set in between. LOG_LINKs never cross basic blocks.
30 They were set up by the preceding pass (lifetime analysis).
31
32 We try to combine each pair of insns joined by a logical link.
33 We also try to combine triples of insns A, B and C when
34 C has a link back to B and B has a link back to A.
35
36 LOG_LINKS does not have links for use of the CC0. They don't
37 need to, because the insn that sets the CC0 is always immediately
38 before the insn that tests it. So we always regard a branch
39 insn as having a logical link to the preceding insn. The same is true
40 for an insn explicitly using CC0.
41
42 We check (with use_crosses_set_p) to avoid combining in such a way
43 as to move a computation to a place where its value would be different.
44
45 Combination is done by mathematically substituting the previous
46 insn(s) values for the regs they set into the expressions in
47 the later insns that refer to these regs. If the result is a valid insn
48 for our target machine, according to the machine description,
49 we install it, delete the earlier insns, and update the data flow
50 information (LOG_LINKS and REG_NOTES) for what we did.
51
52 There are a few exceptions where the dataflow information isn't
53 completely updated (however this is only a local issue since it is
54 regenerated before the next pass that uses it):
55
56 - reg_live_length is not updated
57 - reg_n_refs is not adjusted in the rare case when a register is
58 no longer required in a computation
59 - there are extremely rare cases (see distribute_notes) when a
60 REG_DEAD note is lost
61 - a LOG_LINKS entry that refers to an insn with multiple SETs may be
62 removed because there is no way to know which register it was
63 linking
64
65 To simplify substitution, we combine only when the earlier insn(s)
66 consist of only a single assignment. To simplify updating afterward,
67 we never combine when a subroutine call appears in the middle.
68
69 Since we do not represent assignments to CC0 explicitly except when that
70 is all an insn does, there is no LOG_LINKS entry in an insn that uses
71 the condition code for the insn that set the condition code.
72 Fortunately, these two insns must be consecutive.
73 Therefore, every JUMP_INSN is taken to have an implicit logical link
74 to the preceding insn. This is not quite right, since non-jumps can
75 also use the condition code; but in practice such insns would not
76 combine anyway. */
77
78 #include "config.h"
79 #include "system.h"
80 #include "coretypes.h"
81 #include "tm.h"
82 #include "rtl.h"
83 #include "tree.h"
84 #include "tm_p.h"
85 #include "flags.h"
86 #include "regs.h"
87 #include "hard-reg-set.h"
88 #include "basic-block.h"
89 #include "insn-config.h"
90 #include "function.h"
91 /* Include expr.h after insn-config.h so we get HAVE_conditional_move. */
92 #include "expr.h"
93 #include "insn-attr.h"
94 #include "recog.h"
95 #include "diagnostic-core.h"
96 #include "toplev.h"
97 #include "target.h"
98 #include "optabs.h"
99 #include "insn-codes.h"
100 #include "rtlhooks-def.h"
101 /* Include output.h for dump_file. */
102 #include "output.h"
103 #include "params.h"
104 #include "timevar.h"
105 #include "tree-pass.h"
106 #include "df.h"
107 #include "cgraph.h"
108
109 /* Number of attempts to combine instructions in this function. */
110
111 static int combine_attempts;
112
113 /* Number of attempts that got as far as substitution in this function. */
114
115 static int combine_merges;
116
117 /* Number of instructions combined with added SETs in this function. */
118
119 static int combine_extras;
120
121 /* Number of instructions combined in this function. */
122
123 static int combine_successes;
124
125 /* Totals over entire compilation. */
126
127 static int total_attempts, total_merges, total_extras, total_successes;
128
129 /* combine_instructions may try to replace the right hand side of the
130 second instruction with the value of an associated REG_EQUAL note
131 before throwing it at try_combine. That is problematic when there
132 is a REG_DEAD note for a register used in the old right hand side
133 and can cause distribute_notes to do wrong things. This is the
134 second instruction if it has been so modified, null otherwise. */
135
136 static rtx i2mod;
137
138 /* When I2MOD is nonnull, this is a copy of the old right hand side. */
139
140 static rtx i2mod_old_rhs;
141
142 /* When I2MOD is nonnull, this is a copy of the new right hand side. */
143
144 static rtx i2mod_new_rhs;
145 \f
146 typedef struct reg_stat_struct {
147 /* Record last point of death of (hard or pseudo) register n. */
148 rtx last_death;
149
150 /* Record last point of modification of (hard or pseudo) register n. */
151 rtx last_set;
152
153 /* The next group of fields allows the recording of the last value assigned
154 to (hard or pseudo) register n. We use this information to see if an
155 operation being processed is redundant given a prior operation performed
156 on the register. For example, an `and' with a constant is redundant if
157 all the zero bits are already known to be turned off.
158
159 We use an approach similar to that used by cse, but change it in the
160 following ways:
161
162 (1) We do not want to reinitialize at each label.
163 (2) It is useful, but not critical, to know the actual value assigned
164 to a register. Often just its form is helpful.
165
166 Therefore, we maintain the following fields:
167
168 last_set_value the last value assigned
169 last_set_label records the value of label_tick when the
170 register was assigned
171 last_set_table_tick records the value of label_tick when a
172 value using the register is assigned
173 last_set_invalid set to nonzero when it is not valid
174 to use the value of this register in some
175 register's value
176
177 To understand the usage of these tables, it is important to understand
178 the distinction between the value in last_set_value being valid and
179 the register being validly contained in some other expression in the
180 table.
181
182 (The next two parameters are out of date).
183
184 reg_stat[i].last_set_value is valid if it is nonzero, and either
185 reg_n_sets[i] is 1 or reg_stat[i].last_set_label == label_tick.
186
187 Register I may validly appear in any expression returned for the value
188 of another register if reg_n_sets[i] is 1. It may also appear in the
189 value for register J if reg_stat[j].last_set_invalid is zero, or
190 reg_stat[i].last_set_label < reg_stat[j].last_set_label.
191
192 If an expression is found in the table containing a register which may
193 not validly appear in an expression, the register is replaced by
194 something that won't match, (clobber (const_int 0)). */
195
196 /* Record last value assigned to (hard or pseudo) register n. */
197
198 rtx last_set_value;
199
200 /* Record the value of label_tick when an expression involving register n
201 is placed in last_set_value. */
202
203 int last_set_table_tick;
204
205 /* Record the value of label_tick when the value for register n is placed in
206 last_set_value. */
207
208 int last_set_label;
209
210 /* These fields are maintained in parallel with last_set_value and are
211 used to store the mode in which the register was last set, the bits
212 that were known to be zero when it was last set, and the number of
213 sign bits copies it was known to have when it was last set. */
214
215 unsigned HOST_WIDE_INT last_set_nonzero_bits;
216 char last_set_sign_bit_copies;
217 ENUM_BITFIELD(machine_mode) last_set_mode : 8;
218
219 /* Set nonzero if references to register n in expressions should not be
220 used. last_set_invalid is set nonzero when this register is being
221 assigned to and last_set_table_tick == label_tick. */
222
223 char last_set_invalid;
224
225 /* Some registers that are set more than once and used in more than one
226 basic block are nevertheless always set in similar ways. For example,
227 a QImode register may be loaded from memory in two places on a machine
228 where byte loads zero extend.
229
230 We record in the following fields if a register has some leading bits
231 that are always equal to the sign bit, and what we know about the
232 nonzero bits of a register, specifically which bits are known to be
233 zero.
234
235 If an entry is zero, it means that we don't know anything special. */
236
237 unsigned char sign_bit_copies;
238
239 unsigned HOST_WIDE_INT nonzero_bits;
240
241 /* Record the value of the label_tick when the last truncation
242 happened. The field truncated_to_mode is only valid if
243 truncation_label == label_tick. */
244
245 int truncation_label;
246
247 /* Record the last truncation seen for this register. If truncation
248 is not a nop to this mode we might be able to save an explicit
249 truncation if we know that value already contains a truncated
250 value. */
251
252 ENUM_BITFIELD(machine_mode) truncated_to_mode : 8;
253 } reg_stat_type;
254
255 DEF_VEC_O(reg_stat_type);
256 DEF_VEC_ALLOC_O(reg_stat_type,heap);
257
258 static VEC(reg_stat_type,heap) *reg_stat;
259
260 /* Record the luid of the last insn that invalidated memory
261 (anything that writes memory, and subroutine calls, but not pushes). */
262
263 static int mem_last_set;
264
265 /* Record the luid of the last CALL_INSN
266 so we can tell whether a potential combination crosses any calls. */
267
268 static int last_call_luid;
269
270 /* When `subst' is called, this is the insn that is being modified
271 (by combining in a previous insn). The PATTERN of this insn
272 is still the old pattern partially modified and it should not be
273 looked at, but this may be used to examine the successors of the insn
274 to judge whether a simplification is valid. */
275
276 static rtx subst_insn;
277
278 /* This is the lowest LUID that `subst' is currently dealing with.
279 get_last_value will not return a value if the register was set at or
280 after this LUID. If not for this mechanism, we could get confused if
281 I2 or I1 in try_combine were an insn that used the old value of a register
282 to obtain a new value. In that case, we might erroneously get the
283 new value of the register when we wanted the old one. */
284
285 static int subst_low_luid;
286
287 /* This contains any hard registers that are used in newpat; reg_dead_at_p
288 must consider all these registers to be always live. */
289
290 static HARD_REG_SET newpat_used_regs;
291
292 /* This is an insn to which a LOG_LINKS entry has been added. If this
293 insn is the earlier than I2 or I3, combine should rescan starting at
294 that location. */
295
296 static rtx added_links_insn;
297
298 /* Basic block in which we are performing combines. */
299 static basic_block this_basic_block;
300 static bool optimize_this_for_speed_p;
301
302 \f
303 /* Length of the currently allocated uid_insn_cost array. */
304
305 static int max_uid_known;
306
307 /* The following array records the insn_rtx_cost for every insn
308 in the instruction stream. */
309
310 static int *uid_insn_cost;
311
312 /* The following array records the LOG_LINKS for every insn in the
313 instruction stream as an INSN_LIST rtx. */
314
315 static rtx *uid_log_links;
316
317 #define INSN_COST(INSN) (uid_insn_cost[INSN_UID (INSN)])
318 #define LOG_LINKS(INSN) (uid_log_links[INSN_UID (INSN)])
319
320 /* Incremented for each basic block. */
321
322 static int label_tick;
323
324 /* Reset to label_tick for each extended basic block in scanning order. */
325
326 static int label_tick_ebb_start;
327
328 /* Mode used to compute significance in reg_stat[].nonzero_bits. It is the
329 largest integer mode that can fit in HOST_BITS_PER_WIDE_INT. */
330
331 static enum machine_mode nonzero_bits_mode;
332
333 /* Nonzero when reg_stat[].nonzero_bits and reg_stat[].sign_bit_copies can
334 be safely used. It is zero while computing them and after combine has
335 completed. This former test prevents propagating values based on
336 previously set values, which can be incorrect if a variable is modified
337 in a loop. */
338
339 static int nonzero_sign_valid;
340
341 \f
342 /* Record one modification to rtl structure
343 to be undone by storing old_contents into *where. */
344
345 enum undo_kind { UNDO_RTX, UNDO_INT, UNDO_MODE };
346
347 struct undo
348 {
349 struct undo *next;
350 enum undo_kind kind;
351 union { rtx r; int i; enum machine_mode m; } old_contents;
352 union { rtx *r; int *i; } where;
353 };
354
355 /* Record a bunch of changes to be undone, up to MAX_UNDO of them.
356 num_undo says how many are currently recorded.
357
358 other_insn is nonzero if we have modified some other insn in the process
359 of working on subst_insn. It must be verified too. */
360
361 struct undobuf
362 {
363 struct undo *undos;
364 struct undo *frees;
365 rtx other_insn;
366 };
367
368 static struct undobuf undobuf;
369
370 /* Number of times the pseudo being substituted for
371 was found and replaced. */
372
373 static int n_occurrences;
374
375 static rtx reg_nonzero_bits_for_combine (const_rtx, enum machine_mode, const_rtx,
376 enum machine_mode,
377 unsigned HOST_WIDE_INT,
378 unsigned HOST_WIDE_INT *);
379 static rtx reg_num_sign_bit_copies_for_combine (const_rtx, enum machine_mode, const_rtx,
380 enum machine_mode,
381 unsigned int, unsigned int *);
382 static void do_SUBST (rtx *, rtx);
383 static void do_SUBST_INT (int *, int);
384 static void init_reg_last (void);
385 static void setup_incoming_promotions (rtx);
386 static void set_nonzero_bits_and_sign_copies (rtx, const_rtx, void *);
387 static int cant_combine_insn_p (rtx);
388 static int can_combine_p (rtx, rtx, rtx, rtx, rtx *, rtx *);
389 static int combinable_i3pat (rtx, rtx *, rtx, rtx, int, rtx *);
390 static int contains_muldiv (rtx);
391 static rtx try_combine (rtx, rtx, rtx, int *);
392 static void undo_all (void);
393 static void undo_commit (void);
394 static rtx *find_split_point (rtx *, rtx, bool);
395 static rtx subst (rtx, rtx, rtx, int, int);
396 static rtx combine_simplify_rtx (rtx, enum machine_mode, int);
397 static rtx simplify_if_then_else (rtx);
398 static rtx simplify_set (rtx);
399 static rtx simplify_logical (rtx);
400 static rtx expand_compound_operation (rtx);
401 static const_rtx expand_field_assignment (const_rtx);
402 static rtx make_extraction (enum machine_mode, rtx, HOST_WIDE_INT,
403 rtx, unsigned HOST_WIDE_INT, int, int, int);
404 static rtx extract_left_shift (rtx, int);
405 static rtx make_compound_operation (rtx, enum rtx_code);
406 static int get_pos_from_mask (unsigned HOST_WIDE_INT,
407 unsigned HOST_WIDE_INT *);
408 static rtx canon_reg_for_combine (rtx, rtx);
409 static rtx force_to_mode (rtx, enum machine_mode,
410 unsigned HOST_WIDE_INT, int);
411 static rtx if_then_else_cond (rtx, rtx *, rtx *);
412 static rtx known_cond (rtx, enum rtx_code, rtx, rtx);
413 static int rtx_equal_for_field_assignment_p (rtx, rtx);
414 static rtx make_field_assignment (rtx);
415 static rtx apply_distributive_law (rtx);
416 static rtx distribute_and_simplify_rtx (rtx, int);
417 static rtx simplify_and_const_int_1 (enum machine_mode, rtx,
418 unsigned HOST_WIDE_INT);
419 static rtx simplify_and_const_int (rtx, enum machine_mode, rtx,
420 unsigned HOST_WIDE_INT);
421 static int merge_outer_ops (enum rtx_code *, HOST_WIDE_INT *, enum rtx_code,
422 HOST_WIDE_INT, enum machine_mode, int *);
423 static rtx simplify_shift_const_1 (enum rtx_code, enum machine_mode, rtx, int);
424 static rtx simplify_shift_const (rtx, enum rtx_code, enum machine_mode, rtx,
425 int);
426 static int recog_for_combine (rtx *, rtx, rtx *);
427 static rtx gen_lowpart_for_combine (enum machine_mode, rtx);
428 static enum rtx_code simplify_comparison (enum rtx_code, rtx *, rtx *);
429 static void update_table_tick (rtx);
430 static void record_value_for_reg (rtx, rtx, rtx);
431 static void check_promoted_subreg (rtx, rtx);
432 static void record_dead_and_set_regs_1 (rtx, const_rtx, void *);
433 static void record_dead_and_set_regs (rtx);
434 static int get_last_value_validate (rtx *, rtx, int, int);
435 static rtx get_last_value (const_rtx);
436 static int use_crosses_set_p (const_rtx, int);
437 static void reg_dead_at_p_1 (rtx, const_rtx, void *);
438 static int reg_dead_at_p (rtx, rtx);
439 static void move_deaths (rtx, rtx, int, rtx, rtx *);
440 static int reg_bitfield_target_p (rtx, rtx);
441 static void distribute_notes (rtx, rtx, rtx, rtx, rtx, rtx);
442 static void distribute_links (rtx);
443 static void mark_used_regs_combine (rtx);
444 static void record_promoted_value (rtx, rtx);
445 static int unmentioned_reg_p_1 (rtx *, void *);
446 static bool unmentioned_reg_p (rtx, rtx);
447 static int record_truncated_value (rtx *, void *);
448 static void record_truncated_values (rtx *, void *);
449 static bool reg_truncated_to_mode (enum machine_mode, const_rtx);
450 static rtx gen_lowpart_or_truncate (enum machine_mode, rtx);
451 \f
452
453 /* It is not safe to use ordinary gen_lowpart in combine.
454 See comments in gen_lowpart_for_combine. */
455 #undef RTL_HOOKS_GEN_LOWPART
456 #define RTL_HOOKS_GEN_LOWPART gen_lowpart_for_combine
457
458 /* Our implementation of gen_lowpart never emits a new pseudo. */
459 #undef RTL_HOOKS_GEN_LOWPART_NO_EMIT
460 #define RTL_HOOKS_GEN_LOWPART_NO_EMIT gen_lowpart_for_combine
461
462 #undef RTL_HOOKS_REG_NONZERO_REG_BITS
463 #define RTL_HOOKS_REG_NONZERO_REG_BITS reg_nonzero_bits_for_combine
464
465 #undef RTL_HOOKS_REG_NUM_SIGN_BIT_COPIES
466 #define RTL_HOOKS_REG_NUM_SIGN_BIT_COPIES reg_num_sign_bit_copies_for_combine
467
468 #undef RTL_HOOKS_REG_TRUNCATED_TO_MODE
469 #define RTL_HOOKS_REG_TRUNCATED_TO_MODE reg_truncated_to_mode
470
471 static const struct rtl_hooks combine_rtl_hooks = RTL_HOOKS_INITIALIZER;
472
473 \f
474 /* Try to split PATTERN found in INSN. This returns NULL_RTX if
475 PATTERN can not be split. Otherwise, it returns an insn sequence.
476 This is a wrapper around split_insns which ensures that the
477 reg_stat vector is made larger if the splitter creates a new
478 register. */
479
480 static rtx
481 combine_split_insns (rtx pattern, rtx insn)
482 {
483 rtx ret;
484 unsigned int nregs;
485
486 ret = split_insns (pattern, insn);
487 nregs = max_reg_num ();
488 if (nregs > VEC_length (reg_stat_type, reg_stat))
489 VEC_safe_grow_cleared (reg_stat_type, heap, reg_stat, nregs);
490 return ret;
491 }
492
493 /* This is used by find_single_use to locate an rtx in LOC that
494 contains exactly one use of DEST, which is typically either a REG
495 or CC0. It returns a pointer to the innermost rtx expression
496 containing DEST. Appearances of DEST that are being used to
497 totally replace it are not counted. */
498
499 static rtx *
500 find_single_use_1 (rtx dest, rtx *loc)
501 {
502 rtx x = *loc;
503 enum rtx_code code = GET_CODE (x);
504 rtx *result = NULL;
505 rtx *this_result;
506 int i;
507 const char *fmt;
508
509 switch (code)
510 {
511 case CONST_INT:
512 case CONST:
513 case LABEL_REF:
514 case SYMBOL_REF:
515 case CONST_DOUBLE:
516 case CONST_VECTOR:
517 case CLOBBER:
518 return 0;
519
520 case SET:
521 /* If the destination is anything other than CC0, PC, a REG or a SUBREG
522 of a REG that occupies all of the REG, the insn uses DEST if
523 it is mentioned in the destination or the source. Otherwise, we
524 need just check the source. */
525 if (GET_CODE (SET_DEST (x)) != CC0
526 && GET_CODE (SET_DEST (x)) != PC
527 && !REG_P (SET_DEST (x))
528 && ! (GET_CODE (SET_DEST (x)) == SUBREG
529 && REG_P (SUBREG_REG (SET_DEST (x)))
530 && (((GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (x))))
531 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
532 == ((GET_MODE_SIZE (GET_MODE (SET_DEST (x)))
533 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))))
534 break;
535
536 return find_single_use_1 (dest, &SET_SRC (x));
537
538 case MEM:
539 case SUBREG:
540 return find_single_use_1 (dest, &XEXP (x, 0));
541
542 default:
543 break;
544 }
545
546 /* If it wasn't one of the common cases above, check each expression and
547 vector of this code. Look for a unique usage of DEST. */
548
549 fmt = GET_RTX_FORMAT (code);
550 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
551 {
552 if (fmt[i] == 'e')
553 {
554 if (dest == XEXP (x, i)
555 || (REG_P (dest) && REG_P (XEXP (x, i))
556 && REGNO (dest) == REGNO (XEXP (x, i))))
557 this_result = loc;
558 else
559 this_result = find_single_use_1 (dest, &XEXP (x, i));
560
561 if (result == NULL)
562 result = this_result;
563 else if (this_result)
564 /* Duplicate usage. */
565 return NULL;
566 }
567 else if (fmt[i] == 'E')
568 {
569 int j;
570
571 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
572 {
573 if (XVECEXP (x, i, j) == dest
574 || (REG_P (dest)
575 && REG_P (XVECEXP (x, i, j))
576 && REGNO (XVECEXP (x, i, j)) == REGNO (dest)))
577 this_result = loc;
578 else
579 this_result = find_single_use_1 (dest, &XVECEXP (x, i, j));
580
581 if (result == NULL)
582 result = this_result;
583 else if (this_result)
584 return NULL;
585 }
586 }
587 }
588
589 return result;
590 }
591
592
593 /* See if DEST, produced in INSN, is used only a single time in the
594 sequel. If so, return a pointer to the innermost rtx expression in which
595 it is used.
596
597 If PLOC is nonzero, *PLOC is set to the insn containing the single use.
598
599 If DEST is cc0_rtx, we look only at the next insn. In that case, we don't
600 care about REG_DEAD notes or LOG_LINKS.
601
602 Otherwise, we find the single use by finding an insn that has a
603 LOG_LINKS pointing at INSN and has a REG_DEAD note for DEST. If DEST is
604 only referenced once in that insn, we know that it must be the first
605 and last insn referencing DEST. */
606
607 static rtx *
608 find_single_use (rtx dest, rtx insn, rtx *ploc)
609 {
610 basic_block bb;
611 rtx next;
612 rtx *result;
613 rtx link;
614
615 #ifdef HAVE_cc0
616 if (dest == cc0_rtx)
617 {
618 next = NEXT_INSN (insn);
619 if (next == 0
620 || (!NONJUMP_INSN_P (next) && !JUMP_P (next)))
621 return 0;
622
623 result = find_single_use_1 (dest, &PATTERN (next));
624 if (result && ploc)
625 *ploc = next;
626 return result;
627 }
628 #endif
629
630 if (!REG_P (dest))
631 return 0;
632
633 bb = BLOCK_FOR_INSN (insn);
634 for (next = NEXT_INSN (insn);
635 next && BLOCK_FOR_INSN (next) == bb;
636 next = NEXT_INSN (next))
637 if (INSN_P (next) && dead_or_set_p (next, dest))
638 {
639 for (link = LOG_LINKS (next); link; link = XEXP (link, 1))
640 if (XEXP (link, 0) == insn)
641 break;
642
643 if (link)
644 {
645 result = find_single_use_1 (dest, &PATTERN (next));
646 if (ploc)
647 *ploc = next;
648 return result;
649 }
650 }
651
652 return 0;
653 }
654 \f
655 /* Substitute NEWVAL, an rtx expression, into INTO, a place in some
656 insn. The substitution can be undone by undo_all. If INTO is already
657 set to NEWVAL, do not record this change. Because computing NEWVAL might
658 also call SUBST, we have to compute it before we put anything into
659 the undo table. */
660
661 static void
662 do_SUBST (rtx *into, rtx newval)
663 {
664 struct undo *buf;
665 rtx oldval = *into;
666
667 if (oldval == newval)
668 return;
669
670 /* We'd like to catch as many invalid transformations here as
671 possible. Unfortunately, there are way too many mode changes
672 that are perfectly valid, so we'd waste too much effort for
673 little gain doing the checks here. Focus on catching invalid
674 transformations involving integer constants. */
675 if (GET_MODE_CLASS (GET_MODE (oldval)) == MODE_INT
676 && CONST_INT_P (newval))
677 {
678 /* Sanity check that we're replacing oldval with a CONST_INT
679 that is a valid sign-extension for the original mode. */
680 gcc_assert (INTVAL (newval)
681 == trunc_int_for_mode (INTVAL (newval), GET_MODE (oldval)));
682
683 /* Replacing the operand of a SUBREG or a ZERO_EXTEND with a
684 CONST_INT is not valid, because after the replacement, the
685 original mode would be gone. Unfortunately, we can't tell
686 when do_SUBST is called to replace the operand thereof, so we
687 perform this test on oldval instead, checking whether an
688 invalid replacement took place before we got here. */
689 gcc_assert (!(GET_CODE (oldval) == SUBREG
690 && CONST_INT_P (SUBREG_REG (oldval))));
691 gcc_assert (!(GET_CODE (oldval) == ZERO_EXTEND
692 && CONST_INT_P (XEXP (oldval, 0))));
693 }
694
695 if (undobuf.frees)
696 buf = undobuf.frees, undobuf.frees = buf->next;
697 else
698 buf = XNEW (struct undo);
699
700 buf->kind = UNDO_RTX;
701 buf->where.r = into;
702 buf->old_contents.r = oldval;
703 *into = newval;
704
705 buf->next = undobuf.undos, undobuf.undos = buf;
706 }
707
708 #define SUBST(INTO, NEWVAL) do_SUBST(&(INTO), (NEWVAL))
709
710 /* Similar to SUBST, but NEWVAL is an int expression. Note that substitution
711 for the value of a HOST_WIDE_INT value (including CONST_INT) is
712 not safe. */
713
714 static void
715 do_SUBST_INT (int *into, int newval)
716 {
717 struct undo *buf;
718 int oldval = *into;
719
720 if (oldval == newval)
721 return;
722
723 if (undobuf.frees)
724 buf = undobuf.frees, undobuf.frees = buf->next;
725 else
726 buf = XNEW (struct undo);
727
728 buf->kind = UNDO_INT;
729 buf->where.i = into;
730 buf->old_contents.i = oldval;
731 *into = newval;
732
733 buf->next = undobuf.undos, undobuf.undos = buf;
734 }
735
736 #define SUBST_INT(INTO, NEWVAL) do_SUBST_INT(&(INTO), (NEWVAL))
737
738 /* Similar to SUBST, but just substitute the mode. This is used when
739 changing the mode of a pseudo-register, so that any other
740 references to the entry in the regno_reg_rtx array will change as
741 well. */
742
743 static void
744 do_SUBST_MODE (rtx *into, enum machine_mode newval)
745 {
746 struct undo *buf;
747 enum machine_mode oldval = GET_MODE (*into);
748
749 if (oldval == newval)
750 return;
751
752 if (undobuf.frees)
753 buf = undobuf.frees, undobuf.frees = buf->next;
754 else
755 buf = XNEW (struct undo);
756
757 buf->kind = UNDO_MODE;
758 buf->where.r = into;
759 buf->old_contents.m = oldval;
760 adjust_reg_mode (*into, newval);
761
762 buf->next = undobuf.undos, undobuf.undos = buf;
763 }
764
765 #define SUBST_MODE(INTO, NEWVAL) do_SUBST_MODE(&(INTO), (NEWVAL))
766 \f
767 /* Subroutine of try_combine. Determine whether the combine replacement
768 patterns NEWPAT, NEWI2PAT and NEWOTHERPAT are cheaper according to
769 insn_rtx_cost that the original instruction sequence I1, I2, I3 and
770 undobuf.other_insn. Note that I1 and/or NEWI2PAT may be NULL_RTX.
771 NEWOTHERPAT and undobuf.other_insn may also both be NULL_RTX. This
772 function returns false, if the costs of all instructions can be
773 estimated, and the replacements are more expensive than the original
774 sequence. */
775
776 static bool
777 combine_validate_cost (rtx i1, rtx i2, rtx i3, rtx newpat, rtx newi2pat,
778 rtx newotherpat)
779 {
780 int i1_cost, i2_cost, i3_cost;
781 int new_i2_cost, new_i3_cost;
782 int old_cost, new_cost;
783
784 /* Lookup the original insn_rtx_costs. */
785 i2_cost = INSN_COST (i2);
786 i3_cost = INSN_COST (i3);
787
788 if (i1)
789 {
790 i1_cost = INSN_COST (i1);
791 old_cost = (i1_cost > 0 && i2_cost > 0 && i3_cost > 0)
792 ? i1_cost + i2_cost + i3_cost : 0;
793 }
794 else
795 {
796 old_cost = (i2_cost > 0 && i3_cost > 0) ? i2_cost + i3_cost : 0;
797 i1_cost = 0;
798 }
799
800 /* Calculate the replacement insn_rtx_costs. */
801 new_i3_cost = insn_rtx_cost (newpat, optimize_this_for_speed_p);
802 if (newi2pat)
803 {
804 new_i2_cost = insn_rtx_cost (newi2pat, optimize_this_for_speed_p);
805 new_cost = (new_i2_cost > 0 && new_i3_cost > 0)
806 ? new_i2_cost + new_i3_cost : 0;
807 }
808 else
809 {
810 new_cost = new_i3_cost;
811 new_i2_cost = 0;
812 }
813
814 if (undobuf.other_insn)
815 {
816 int old_other_cost, new_other_cost;
817
818 old_other_cost = INSN_COST (undobuf.other_insn);
819 new_other_cost = insn_rtx_cost (newotherpat, optimize_this_for_speed_p);
820 if (old_other_cost > 0 && new_other_cost > 0)
821 {
822 old_cost += old_other_cost;
823 new_cost += new_other_cost;
824 }
825 else
826 old_cost = 0;
827 }
828
829 /* Disallow this recombination if both new_cost and old_cost are
830 greater than zero, and new_cost is greater than old cost. */
831 if (old_cost > 0
832 && new_cost > old_cost)
833 {
834 if (dump_file)
835 {
836 if (i1)
837 {
838 fprintf (dump_file,
839 "rejecting combination of insns %d, %d and %d\n",
840 INSN_UID (i1), INSN_UID (i2), INSN_UID (i3));
841 fprintf (dump_file, "original costs %d + %d + %d = %d\n",
842 i1_cost, i2_cost, i3_cost, old_cost);
843 }
844 else
845 {
846 fprintf (dump_file,
847 "rejecting combination of insns %d and %d\n",
848 INSN_UID (i2), INSN_UID (i3));
849 fprintf (dump_file, "original costs %d + %d = %d\n",
850 i2_cost, i3_cost, old_cost);
851 }
852
853 if (newi2pat)
854 {
855 fprintf (dump_file, "replacement costs %d + %d = %d\n",
856 new_i2_cost, new_i3_cost, new_cost);
857 }
858 else
859 fprintf (dump_file, "replacement cost %d\n", new_cost);
860 }
861
862 return false;
863 }
864
865 /* Update the uid_insn_cost array with the replacement costs. */
866 INSN_COST (i2) = new_i2_cost;
867 INSN_COST (i3) = new_i3_cost;
868 if (i1)
869 INSN_COST (i1) = 0;
870
871 return true;
872 }
873
874
875 /* Delete any insns that copy a register to itself. */
876
877 static void
878 delete_noop_moves (void)
879 {
880 rtx insn, next;
881 basic_block bb;
882
883 FOR_EACH_BB (bb)
884 {
885 for (insn = BB_HEAD (bb); insn != NEXT_INSN (BB_END (bb)); insn = next)
886 {
887 next = NEXT_INSN (insn);
888 if (INSN_P (insn) && noop_move_p (insn))
889 {
890 if (dump_file)
891 fprintf (dump_file, "deleting noop move %d\n", INSN_UID (insn));
892
893 delete_insn_and_edges (insn);
894 }
895 }
896 }
897 }
898
899 \f
900 /* Fill in log links field for all insns. */
901
902 static void
903 create_log_links (void)
904 {
905 basic_block bb;
906 rtx *next_use, insn;
907 df_ref *def_vec, *use_vec;
908
909 next_use = XCNEWVEC (rtx, max_reg_num ());
910
911 /* Pass through each block from the end, recording the uses of each
912 register and establishing log links when def is encountered.
913 Note that we do not clear next_use array in order to save time,
914 so we have to test whether the use is in the same basic block as def.
915
916 There are a few cases below when we do not consider the definition or
917 usage -- these are taken from original flow.c did. Don't ask me why it is
918 done this way; I don't know and if it works, I don't want to know. */
919
920 FOR_EACH_BB (bb)
921 {
922 FOR_BB_INSNS_REVERSE (bb, insn)
923 {
924 if (!NONDEBUG_INSN_P (insn))
925 continue;
926
927 /* Log links are created only once. */
928 gcc_assert (!LOG_LINKS (insn));
929
930 for (def_vec = DF_INSN_DEFS (insn); *def_vec; def_vec++)
931 {
932 df_ref def = *def_vec;
933 int regno = DF_REF_REGNO (def);
934 rtx use_insn;
935
936 if (!next_use[regno])
937 continue;
938
939 /* Do not consider if it is pre/post modification in MEM. */
940 if (DF_REF_FLAGS (def) & DF_REF_PRE_POST_MODIFY)
941 continue;
942
943 /* Do not make the log link for frame pointer. */
944 if ((regno == FRAME_POINTER_REGNUM
945 && (! reload_completed || frame_pointer_needed))
946 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
947 || (regno == HARD_FRAME_POINTER_REGNUM
948 && (! reload_completed || frame_pointer_needed))
949 #endif
950 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
951 || (regno == ARG_POINTER_REGNUM && fixed_regs[regno])
952 #endif
953 )
954 continue;
955
956 use_insn = next_use[regno];
957 if (BLOCK_FOR_INSN (use_insn) == bb)
958 {
959 /* flow.c claimed:
960
961 We don't build a LOG_LINK for hard registers contained
962 in ASM_OPERANDs. If these registers get replaced,
963 we might wind up changing the semantics of the insn,
964 even if reload can make what appear to be valid
965 assignments later. */
966 if (regno >= FIRST_PSEUDO_REGISTER
967 || asm_noperands (PATTERN (use_insn)) < 0)
968 {
969 /* Don't add duplicate links between instructions. */
970 rtx links;
971 for (links = LOG_LINKS (use_insn); links;
972 links = XEXP (links, 1))
973 if (insn == XEXP (links, 0))
974 break;
975
976 if (!links)
977 LOG_LINKS (use_insn) =
978 alloc_INSN_LIST (insn, LOG_LINKS (use_insn));
979 }
980 }
981 next_use[regno] = NULL_RTX;
982 }
983
984 for (use_vec = DF_INSN_USES (insn); *use_vec; use_vec++)
985 {
986 df_ref use = *use_vec;
987 int regno = DF_REF_REGNO (use);
988
989 /* Do not consider the usage of the stack pointer
990 by function call. */
991 if (DF_REF_FLAGS (use) & DF_REF_CALL_STACK_USAGE)
992 continue;
993
994 next_use[regno] = insn;
995 }
996 }
997 }
998
999 free (next_use);
1000 }
1001
1002 /* Clear LOG_LINKS fields of insns. */
1003
1004 static void
1005 clear_log_links (void)
1006 {
1007 rtx insn;
1008
1009 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
1010 if (INSN_P (insn))
1011 free_INSN_LIST_list (&LOG_LINKS (insn));
1012 }
1013 \f
1014 /* Main entry point for combiner. F is the first insn of the function.
1015 NREGS is the first unused pseudo-reg number.
1016
1017 Return nonzero if the combiner has turned an indirect jump
1018 instruction into a direct jump. */
1019 static int
1020 combine_instructions (rtx f, unsigned int nregs)
1021 {
1022 rtx insn, next;
1023 #ifdef HAVE_cc0
1024 rtx prev;
1025 #endif
1026 rtx links, nextlinks;
1027 rtx first;
1028 basic_block last_bb;
1029
1030 int new_direct_jump_p = 0;
1031
1032 for (first = f; first && !INSN_P (first); )
1033 first = NEXT_INSN (first);
1034 if (!first)
1035 return 0;
1036
1037 combine_attempts = 0;
1038 combine_merges = 0;
1039 combine_extras = 0;
1040 combine_successes = 0;
1041
1042 rtl_hooks = combine_rtl_hooks;
1043
1044 VEC_safe_grow_cleared (reg_stat_type, heap, reg_stat, nregs);
1045
1046 init_recog_no_volatile ();
1047
1048 /* Allocate array for insn info. */
1049 max_uid_known = get_max_uid ();
1050 uid_log_links = XCNEWVEC (rtx, max_uid_known + 1);
1051 uid_insn_cost = XCNEWVEC (int, max_uid_known + 1);
1052
1053 nonzero_bits_mode = mode_for_size (HOST_BITS_PER_WIDE_INT, MODE_INT, 0);
1054
1055 /* Don't use reg_stat[].nonzero_bits when computing it. This can cause
1056 problems when, for example, we have j <<= 1 in a loop. */
1057
1058 nonzero_sign_valid = 0;
1059 label_tick = label_tick_ebb_start = 1;
1060
1061 /* Scan all SETs and see if we can deduce anything about what
1062 bits are known to be zero for some registers and how many copies
1063 of the sign bit are known to exist for those registers.
1064
1065 Also set any known values so that we can use it while searching
1066 for what bits are known to be set. */
1067
1068 setup_incoming_promotions (first);
1069 /* Allow the entry block and the first block to fall into the same EBB.
1070 Conceptually the incoming promotions are assigned to the entry block. */
1071 last_bb = ENTRY_BLOCK_PTR;
1072
1073 create_log_links ();
1074 FOR_EACH_BB (this_basic_block)
1075 {
1076 optimize_this_for_speed_p = optimize_bb_for_speed_p (this_basic_block);
1077 last_call_luid = 0;
1078 mem_last_set = -1;
1079
1080 label_tick++;
1081 if (!single_pred_p (this_basic_block)
1082 || single_pred (this_basic_block) != last_bb)
1083 label_tick_ebb_start = label_tick;
1084 last_bb = this_basic_block;
1085
1086 FOR_BB_INSNS (this_basic_block, insn)
1087 if (INSN_P (insn) && BLOCK_FOR_INSN (insn))
1088 {
1089 subst_low_luid = DF_INSN_LUID (insn);
1090 subst_insn = insn;
1091
1092 note_stores (PATTERN (insn), set_nonzero_bits_and_sign_copies,
1093 insn);
1094 record_dead_and_set_regs (insn);
1095
1096 #ifdef AUTO_INC_DEC
1097 for (links = REG_NOTES (insn); links; links = XEXP (links, 1))
1098 if (REG_NOTE_KIND (links) == REG_INC)
1099 set_nonzero_bits_and_sign_copies (XEXP (links, 0), NULL_RTX,
1100 insn);
1101 #endif
1102
1103 /* Record the current insn_rtx_cost of this instruction. */
1104 if (NONJUMP_INSN_P (insn))
1105 INSN_COST (insn) = insn_rtx_cost (PATTERN (insn),
1106 optimize_this_for_speed_p);
1107 if (dump_file)
1108 fprintf(dump_file, "insn_cost %d: %d\n",
1109 INSN_UID (insn), INSN_COST (insn));
1110 }
1111 }
1112
1113 nonzero_sign_valid = 1;
1114
1115 /* Now scan all the insns in forward order. */
1116 label_tick = label_tick_ebb_start = 1;
1117 init_reg_last ();
1118 setup_incoming_promotions (first);
1119 last_bb = ENTRY_BLOCK_PTR;
1120
1121 FOR_EACH_BB (this_basic_block)
1122 {
1123 optimize_this_for_speed_p = optimize_bb_for_speed_p (this_basic_block);
1124 last_call_luid = 0;
1125 mem_last_set = -1;
1126
1127 label_tick++;
1128 if (!single_pred_p (this_basic_block)
1129 || single_pred (this_basic_block) != last_bb)
1130 label_tick_ebb_start = label_tick;
1131 last_bb = this_basic_block;
1132
1133 rtl_profile_for_bb (this_basic_block);
1134 for (insn = BB_HEAD (this_basic_block);
1135 insn != NEXT_INSN (BB_END (this_basic_block));
1136 insn = next ? next : NEXT_INSN (insn))
1137 {
1138 next = 0;
1139 if (NONDEBUG_INSN_P (insn))
1140 {
1141 /* See if we know about function return values before this
1142 insn based upon SUBREG flags. */
1143 check_promoted_subreg (insn, PATTERN (insn));
1144
1145 /* See if we can find hardregs and subreg of pseudos in
1146 narrower modes. This could help turning TRUNCATEs
1147 into SUBREGs. */
1148 note_uses (&PATTERN (insn), record_truncated_values, NULL);
1149
1150 /* Try this insn with each insn it links back to. */
1151
1152 for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
1153 if ((next = try_combine (insn, XEXP (links, 0),
1154 NULL_RTX, &new_direct_jump_p)) != 0)
1155 goto retry;
1156
1157 /* Try each sequence of three linked insns ending with this one. */
1158
1159 for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
1160 {
1161 rtx link = XEXP (links, 0);
1162
1163 /* If the linked insn has been replaced by a note, then there
1164 is no point in pursuing this chain any further. */
1165 if (NOTE_P (link))
1166 continue;
1167
1168 for (nextlinks = LOG_LINKS (link);
1169 nextlinks;
1170 nextlinks = XEXP (nextlinks, 1))
1171 if ((next = try_combine (insn, link,
1172 XEXP (nextlinks, 0),
1173 &new_direct_jump_p)) != 0)
1174 goto retry;
1175 }
1176
1177 #ifdef HAVE_cc0
1178 /* Try to combine a jump insn that uses CC0
1179 with a preceding insn that sets CC0, and maybe with its
1180 logical predecessor as well.
1181 This is how we make decrement-and-branch insns.
1182 We need this special code because data flow connections
1183 via CC0 do not get entered in LOG_LINKS. */
1184
1185 if (JUMP_P (insn)
1186 && (prev = prev_nonnote_insn (insn)) != 0
1187 && NONJUMP_INSN_P (prev)
1188 && sets_cc0_p (PATTERN (prev)))
1189 {
1190 if ((next = try_combine (insn, prev,
1191 NULL_RTX, &new_direct_jump_p)) != 0)
1192 goto retry;
1193
1194 for (nextlinks = LOG_LINKS (prev); nextlinks;
1195 nextlinks = XEXP (nextlinks, 1))
1196 if ((next = try_combine (insn, prev,
1197 XEXP (nextlinks, 0),
1198 &new_direct_jump_p)) != 0)
1199 goto retry;
1200 }
1201
1202 /* Do the same for an insn that explicitly references CC0. */
1203 if (NONJUMP_INSN_P (insn)
1204 && (prev = prev_nonnote_insn (insn)) != 0
1205 && NONJUMP_INSN_P (prev)
1206 && sets_cc0_p (PATTERN (prev))
1207 && GET_CODE (PATTERN (insn)) == SET
1208 && reg_mentioned_p (cc0_rtx, SET_SRC (PATTERN (insn))))
1209 {
1210 if ((next = try_combine (insn, prev,
1211 NULL_RTX, &new_direct_jump_p)) != 0)
1212 goto retry;
1213
1214 for (nextlinks = LOG_LINKS (prev); nextlinks;
1215 nextlinks = XEXP (nextlinks, 1))
1216 if ((next = try_combine (insn, prev,
1217 XEXP (nextlinks, 0),
1218 &new_direct_jump_p)) != 0)
1219 goto retry;
1220 }
1221
1222 /* Finally, see if any of the insns that this insn links to
1223 explicitly references CC0. If so, try this insn, that insn,
1224 and its predecessor if it sets CC0. */
1225 for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
1226 if (NONJUMP_INSN_P (XEXP (links, 0))
1227 && GET_CODE (PATTERN (XEXP (links, 0))) == SET
1228 && reg_mentioned_p (cc0_rtx, SET_SRC (PATTERN (XEXP (links, 0))))
1229 && (prev = prev_nonnote_insn (XEXP (links, 0))) != 0
1230 && NONJUMP_INSN_P (prev)
1231 && sets_cc0_p (PATTERN (prev))
1232 && (next = try_combine (insn, XEXP (links, 0),
1233 prev, &new_direct_jump_p)) != 0)
1234 goto retry;
1235 #endif
1236
1237 /* Try combining an insn with two different insns whose results it
1238 uses. */
1239 for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
1240 for (nextlinks = XEXP (links, 1); nextlinks;
1241 nextlinks = XEXP (nextlinks, 1))
1242 if ((next = try_combine (insn, XEXP (links, 0),
1243 XEXP (nextlinks, 0),
1244 &new_direct_jump_p)) != 0)
1245 goto retry;
1246
1247 /* Try this insn with each REG_EQUAL note it links back to. */
1248 for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
1249 {
1250 rtx set, note;
1251 rtx temp = XEXP (links, 0);
1252 if ((set = single_set (temp)) != 0
1253 && (note = find_reg_equal_equiv_note (temp)) != 0
1254 && (note = XEXP (note, 0), GET_CODE (note)) != EXPR_LIST
1255 /* Avoid using a register that may already been marked
1256 dead by an earlier instruction. */
1257 && ! unmentioned_reg_p (note, SET_SRC (set))
1258 && (GET_MODE (note) == VOIDmode
1259 ? SCALAR_INT_MODE_P (GET_MODE (SET_DEST (set)))
1260 : GET_MODE (SET_DEST (set)) == GET_MODE (note)))
1261 {
1262 /* Temporarily replace the set's source with the
1263 contents of the REG_EQUAL note. The insn will
1264 be deleted or recognized by try_combine. */
1265 rtx orig = SET_SRC (set);
1266 SET_SRC (set) = note;
1267 i2mod = temp;
1268 i2mod_old_rhs = copy_rtx (orig);
1269 i2mod_new_rhs = copy_rtx (note);
1270 next = try_combine (insn, i2mod, NULL_RTX,
1271 &new_direct_jump_p);
1272 i2mod = NULL_RTX;
1273 if (next)
1274 goto retry;
1275 SET_SRC (set) = orig;
1276 }
1277 }
1278
1279 if (!NOTE_P (insn))
1280 record_dead_and_set_regs (insn);
1281
1282 retry:
1283 ;
1284 }
1285 }
1286 }
1287
1288 default_rtl_profile ();
1289 clear_log_links ();
1290 clear_bb_flags ();
1291 new_direct_jump_p |= purge_all_dead_edges ();
1292 delete_noop_moves ();
1293
1294 /* Clean up. */
1295 free (uid_log_links);
1296 free (uid_insn_cost);
1297 VEC_free (reg_stat_type, heap, reg_stat);
1298
1299 {
1300 struct undo *undo, *next;
1301 for (undo = undobuf.frees; undo; undo = next)
1302 {
1303 next = undo->next;
1304 free (undo);
1305 }
1306 undobuf.frees = 0;
1307 }
1308
1309 total_attempts += combine_attempts;
1310 total_merges += combine_merges;
1311 total_extras += combine_extras;
1312 total_successes += combine_successes;
1313
1314 nonzero_sign_valid = 0;
1315 rtl_hooks = general_rtl_hooks;
1316
1317 /* Make recognizer allow volatile MEMs again. */
1318 init_recog ();
1319
1320 return new_direct_jump_p;
1321 }
1322
1323 /* Wipe the last_xxx fields of reg_stat in preparation for another pass. */
1324
1325 static void
1326 init_reg_last (void)
1327 {
1328 unsigned int i;
1329 reg_stat_type *p;
1330
1331 for (i = 0; VEC_iterate (reg_stat_type, reg_stat, i, p); ++i)
1332 memset (p, 0, offsetof (reg_stat_type, sign_bit_copies));
1333 }
1334 \f
1335 /* Set up any promoted values for incoming argument registers. */
1336
1337 static void
1338 setup_incoming_promotions (rtx first)
1339 {
1340 tree arg;
1341 bool strictly_local = false;
1342
1343 for (arg = DECL_ARGUMENTS (current_function_decl); arg;
1344 arg = DECL_CHAIN (arg))
1345 {
1346 rtx x, reg = DECL_INCOMING_RTL (arg);
1347 int uns1, uns3;
1348 enum machine_mode mode1, mode2, mode3, mode4;
1349
1350 /* Only continue if the incoming argument is in a register. */
1351 if (!REG_P (reg))
1352 continue;
1353
1354 /* Determine, if possible, whether all call sites of the current
1355 function lie within the current compilation unit. (This does
1356 take into account the exporting of a function via taking its
1357 address, and so forth.) */
1358 strictly_local = cgraph_local_info (current_function_decl)->local;
1359
1360 /* The mode and signedness of the argument before any promotions happen
1361 (equal to the mode of the pseudo holding it at that stage). */
1362 mode1 = TYPE_MODE (TREE_TYPE (arg));
1363 uns1 = TYPE_UNSIGNED (TREE_TYPE (arg));
1364
1365 /* The mode and signedness of the argument after any source language and
1366 TARGET_PROMOTE_PROTOTYPES-driven promotions. */
1367 mode2 = TYPE_MODE (DECL_ARG_TYPE (arg));
1368 uns3 = TYPE_UNSIGNED (DECL_ARG_TYPE (arg));
1369
1370 /* The mode and signedness of the argument as it is actually passed,
1371 after any TARGET_PROMOTE_FUNCTION_ARGS-driven ABI promotions. */
1372 mode3 = promote_function_mode (DECL_ARG_TYPE (arg), mode2, &uns3,
1373 TREE_TYPE (cfun->decl), 0);
1374
1375 /* The mode of the register in which the argument is being passed. */
1376 mode4 = GET_MODE (reg);
1377
1378 /* Eliminate sign extensions in the callee when:
1379 (a) A mode promotion has occurred; */
1380 if (mode1 == mode3)
1381 continue;
1382 /* (b) The mode of the register is the same as the mode of
1383 the argument as it is passed; */
1384 if (mode3 != mode4)
1385 continue;
1386 /* (c) There's no language level extension; */
1387 if (mode1 == mode2)
1388 ;
1389 /* (c.1) All callers are from the current compilation unit. If that's
1390 the case we don't have to rely on an ABI, we only have to know
1391 what we're generating right now, and we know that we will do the
1392 mode1 to mode2 promotion with the given sign. */
1393 else if (!strictly_local)
1394 continue;
1395 /* (c.2) The combination of the two promotions is useful. This is
1396 true when the signs match, or if the first promotion is unsigned.
1397 In the later case, (sign_extend (zero_extend x)) is the same as
1398 (zero_extend (zero_extend x)), so make sure to force UNS3 true. */
1399 else if (uns1)
1400 uns3 = true;
1401 else if (uns3)
1402 continue;
1403
1404 /* Record that the value was promoted from mode1 to mode3,
1405 so that any sign extension at the head of the current
1406 function may be eliminated. */
1407 x = gen_rtx_CLOBBER (mode1, const0_rtx);
1408 x = gen_rtx_fmt_e ((uns3 ? ZERO_EXTEND : SIGN_EXTEND), mode3, x);
1409 record_value_for_reg (reg, first, x);
1410 }
1411 }
1412
1413 /* Called via note_stores. If X is a pseudo that is narrower than
1414 HOST_BITS_PER_WIDE_INT and is being set, record what bits are known zero.
1415
1416 If we are setting only a portion of X and we can't figure out what
1417 portion, assume all bits will be used since we don't know what will
1418 be happening.
1419
1420 Similarly, set how many bits of X are known to be copies of the sign bit
1421 at all locations in the function. This is the smallest number implied
1422 by any set of X. */
1423
1424 static void
1425 set_nonzero_bits_and_sign_copies (rtx x, const_rtx set, void *data)
1426 {
1427 rtx insn = (rtx) data;
1428 unsigned int num;
1429
1430 if (REG_P (x)
1431 && REGNO (x) >= FIRST_PSEUDO_REGISTER
1432 /* If this register is undefined at the start of the file, we can't
1433 say what its contents were. */
1434 && ! REGNO_REG_SET_P
1435 (DF_LR_IN (ENTRY_BLOCK_PTR->next_bb), REGNO (x))
1436 && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT)
1437 {
1438 reg_stat_type *rsp = VEC_index (reg_stat_type, reg_stat, REGNO (x));
1439
1440 if (set == 0 || GET_CODE (set) == CLOBBER)
1441 {
1442 rsp->nonzero_bits = GET_MODE_MASK (GET_MODE (x));
1443 rsp->sign_bit_copies = 1;
1444 return;
1445 }
1446
1447 /* If this register is being initialized using itself, and the
1448 register is uninitialized in this basic block, and there are
1449 no LOG_LINKS which set the register, then part of the
1450 register is uninitialized. In that case we can't assume
1451 anything about the number of nonzero bits.
1452
1453 ??? We could do better if we checked this in
1454 reg_{nonzero_bits,num_sign_bit_copies}_for_combine. Then we
1455 could avoid making assumptions about the insn which initially
1456 sets the register, while still using the information in other
1457 insns. We would have to be careful to check every insn
1458 involved in the combination. */
1459
1460 if (insn
1461 && reg_referenced_p (x, PATTERN (insn))
1462 && !REGNO_REG_SET_P (DF_LR_IN (BLOCK_FOR_INSN (insn)),
1463 REGNO (x)))
1464 {
1465 rtx link;
1466
1467 for (link = LOG_LINKS (insn); link; link = XEXP (link, 1))
1468 {
1469 if (dead_or_set_p (XEXP (link, 0), x))
1470 break;
1471 }
1472 if (!link)
1473 {
1474 rsp->nonzero_bits = GET_MODE_MASK (GET_MODE (x));
1475 rsp->sign_bit_copies = 1;
1476 return;
1477 }
1478 }
1479
1480 /* If this is a complex assignment, see if we can convert it into a
1481 simple assignment. */
1482 set = expand_field_assignment (set);
1483
1484 /* If this is a simple assignment, or we have a paradoxical SUBREG,
1485 set what we know about X. */
1486
1487 if (SET_DEST (set) == x
1488 || (GET_CODE (SET_DEST (set)) == SUBREG
1489 && (GET_MODE_SIZE (GET_MODE (SET_DEST (set)))
1490 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (set)))))
1491 && SUBREG_REG (SET_DEST (set)) == x))
1492 {
1493 rtx src = SET_SRC (set);
1494
1495 #ifdef SHORT_IMMEDIATES_SIGN_EXTEND
1496 /* If X is narrower than a word and SRC is a non-negative
1497 constant that would appear negative in the mode of X,
1498 sign-extend it for use in reg_stat[].nonzero_bits because some
1499 machines (maybe most) will actually do the sign-extension
1500 and this is the conservative approach.
1501
1502 ??? For 2.5, try to tighten up the MD files in this regard
1503 instead of this kludge. */
1504
1505 if (GET_MODE_BITSIZE (GET_MODE (x)) < BITS_PER_WORD
1506 && CONST_INT_P (src)
1507 && INTVAL (src) > 0
1508 && 0 != (INTVAL (src)
1509 & ((HOST_WIDE_INT) 1
1510 << (GET_MODE_BITSIZE (GET_MODE (x)) - 1))))
1511 src = GEN_INT (INTVAL (src)
1512 | ((HOST_WIDE_INT) (-1)
1513 << GET_MODE_BITSIZE (GET_MODE (x))));
1514 #endif
1515
1516 /* Don't call nonzero_bits if it cannot change anything. */
1517 if (rsp->nonzero_bits != ~(unsigned HOST_WIDE_INT) 0)
1518 rsp->nonzero_bits |= nonzero_bits (src, nonzero_bits_mode);
1519 num = num_sign_bit_copies (SET_SRC (set), GET_MODE (x));
1520 if (rsp->sign_bit_copies == 0
1521 || rsp->sign_bit_copies > num)
1522 rsp->sign_bit_copies = num;
1523 }
1524 else
1525 {
1526 rsp->nonzero_bits = GET_MODE_MASK (GET_MODE (x));
1527 rsp->sign_bit_copies = 1;
1528 }
1529 }
1530 }
1531 \f
1532 /* See if INSN can be combined into I3. PRED and SUCC are optionally
1533 insns that were previously combined into I3 or that will be combined
1534 into the merger of INSN and I3.
1535
1536 Return 0 if the combination is not allowed for any reason.
1537
1538 If the combination is allowed, *PDEST will be set to the single
1539 destination of INSN and *PSRC to the single source, and this function
1540 will return 1. */
1541
1542 static int
1543 can_combine_p (rtx insn, rtx i3, rtx pred ATTRIBUTE_UNUSED, rtx succ,
1544 rtx *pdest, rtx *psrc)
1545 {
1546 int i;
1547 const_rtx set = 0;
1548 rtx src, dest;
1549 rtx p;
1550 #ifdef AUTO_INC_DEC
1551 rtx link;
1552 #endif
1553 int all_adjacent = (succ ? (next_active_insn (insn) == succ
1554 && next_active_insn (succ) == i3)
1555 : next_active_insn (insn) == i3);
1556
1557 /* Can combine only if previous insn is a SET of a REG, a SUBREG or CC0.
1558 or a PARALLEL consisting of such a SET and CLOBBERs.
1559
1560 If INSN has CLOBBER parallel parts, ignore them for our processing.
1561 By definition, these happen during the execution of the insn. When it
1562 is merged with another insn, all bets are off. If they are, in fact,
1563 needed and aren't also supplied in I3, they may be added by
1564 recog_for_combine. Otherwise, it won't match.
1565
1566 We can also ignore a SET whose SET_DEST is mentioned in a REG_UNUSED
1567 note.
1568
1569 Get the source and destination of INSN. If more than one, can't
1570 combine. */
1571
1572 if (GET_CODE (PATTERN (insn)) == SET)
1573 set = PATTERN (insn);
1574 else if (GET_CODE (PATTERN (insn)) == PARALLEL
1575 && GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == SET)
1576 {
1577 for (i = 0; i < XVECLEN (PATTERN (insn), 0); i++)
1578 {
1579 rtx elt = XVECEXP (PATTERN (insn), 0, i);
1580
1581 switch (GET_CODE (elt))
1582 {
1583 /* This is important to combine floating point insns
1584 for the SH4 port. */
1585 case USE:
1586 /* Combining an isolated USE doesn't make sense.
1587 We depend here on combinable_i3pat to reject them. */
1588 /* The code below this loop only verifies that the inputs of
1589 the SET in INSN do not change. We call reg_set_between_p
1590 to verify that the REG in the USE does not change between
1591 I3 and INSN.
1592 If the USE in INSN was for a pseudo register, the matching
1593 insn pattern will likely match any register; combining this
1594 with any other USE would only be safe if we knew that the
1595 used registers have identical values, or if there was
1596 something to tell them apart, e.g. different modes. For
1597 now, we forgo such complicated tests and simply disallow
1598 combining of USES of pseudo registers with any other USE. */
1599 if (REG_P (XEXP (elt, 0))
1600 && GET_CODE (PATTERN (i3)) == PARALLEL)
1601 {
1602 rtx i3pat = PATTERN (i3);
1603 int i = XVECLEN (i3pat, 0) - 1;
1604 unsigned int regno = REGNO (XEXP (elt, 0));
1605
1606 do
1607 {
1608 rtx i3elt = XVECEXP (i3pat, 0, i);
1609
1610 if (GET_CODE (i3elt) == USE
1611 && REG_P (XEXP (i3elt, 0))
1612 && (REGNO (XEXP (i3elt, 0)) == regno
1613 ? reg_set_between_p (XEXP (elt, 0),
1614 PREV_INSN (insn), i3)
1615 : regno >= FIRST_PSEUDO_REGISTER))
1616 return 0;
1617 }
1618 while (--i >= 0);
1619 }
1620 break;
1621
1622 /* We can ignore CLOBBERs. */
1623 case CLOBBER:
1624 break;
1625
1626 case SET:
1627 /* Ignore SETs whose result isn't used but not those that
1628 have side-effects. */
1629 if (find_reg_note (insn, REG_UNUSED, SET_DEST (elt))
1630 && insn_nothrow_p (insn)
1631 && !side_effects_p (elt))
1632 break;
1633
1634 /* If we have already found a SET, this is a second one and
1635 so we cannot combine with this insn. */
1636 if (set)
1637 return 0;
1638
1639 set = elt;
1640 break;
1641
1642 default:
1643 /* Anything else means we can't combine. */
1644 return 0;
1645 }
1646 }
1647
1648 if (set == 0
1649 /* If SET_SRC is an ASM_OPERANDS we can't throw away these CLOBBERs,
1650 so don't do anything with it. */
1651 || GET_CODE (SET_SRC (set)) == ASM_OPERANDS)
1652 return 0;
1653 }
1654 else
1655 return 0;
1656
1657 if (set == 0)
1658 return 0;
1659
1660 set = expand_field_assignment (set);
1661 src = SET_SRC (set), dest = SET_DEST (set);
1662
1663 /* Don't eliminate a store in the stack pointer. */
1664 if (dest == stack_pointer_rtx
1665 /* Don't combine with an insn that sets a register to itself if it has
1666 a REG_EQUAL note. This may be part of a LIBCALL sequence. */
1667 || (rtx_equal_p (src, dest) && find_reg_note (insn, REG_EQUAL, NULL_RTX))
1668 /* Can't merge an ASM_OPERANDS. */
1669 || GET_CODE (src) == ASM_OPERANDS
1670 /* Can't merge a function call. */
1671 || GET_CODE (src) == CALL
1672 /* Don't eliminate a function call argument. */
1673 || (CALL_P (i3)
1674 && (find_reg_fusage (i3, USE, dest)
1675 || (REG_P (dest)
1676 && REGNO (dest) < FIRST_PSEUDO_REGISTER
1677 && global_regs[REGNO (dest)])))
1678 /* Don't substitute into an incremented register. */
1679 || FIND_REG_INC_NOTE (i3, dest)
1680 || (succ && FIND_REG_INC_NOTE (succ, dest))
1681 /* Don't substitute into a non-local goto, this confuses CFG. */
1682 || (JUMP_P (i3) && find_reg_note (i3, REG_NON_LOCAL_GOTO, NULL_RTX))
1683 /* Make sure that DEST is not used after SUCC but before I3. */
1684 || (succ && ! all_adjacent
1685 && reg_used_between_p (dest, succ, i3))
1686 /* Make sure that the value that is to be substituted for the register
1687 does not use any registers whose values alter in between. However,
1688 If the insns are adjacent, a use can't cross a set even though we
1689 think it might (this can happen for a sequence of insns each setting
1690 the same destination; last_set of that register might point to
1691 a NOTE). If INSN has a REG_EQUIV note, the register is always
1692 equivalent to the memory so the substitution is valid even if there
1693 are intervening stores. Also, don't move a volatile asm or
1694 UNSPEC_VOLATILE across any other insns. */
1695 || (! all_adjacent
1696 && (((!MEM_P (src)
1697 || ! find_reg_note (insn, REG_EQUIV, src))
1698 && use_crosses_set_p (src, DF_INSN_LUID (insn)))
1699 || (GET_CODE (src) == ASM_OPERANDS && MEM_VOLATILE_P (src))
1700 || GET_CODE (src) == UNSPEC_VOLATILE))
1701 /* Don't combine across a CALL_INSN, because that would possibly
1702 change whether the life span of some REGs crosses calls or not,
1703 and it is a pain to update that information.
1704 Exception: if source is a constant, moving it later can't hurt.
1705 Accept that as a special case. */
1706 || (DF_INSN_LUID (insn) < last_call_luid && ! CONSTANT_P (src)))
1707 return 0;
1708
1709 /* DEST must either be a REG or CC0. */
1710 if (REG_P (dest))
1711 {
1712 /* If register alignment is being enforced for multi-word items in all
1713 cases except for parameters, it is possible to have a register copy
1714 insn referencing a hard register that is not allowed to contain the
1715 mode being copied and which would not be valid as an operand of most
1716 insns. Eliminate this problem by not combining with such an insn.
1717
1718 Also, on some machines we don't want to extend the life of a hard
1719 register. */
1720
1721 if (REG_P (src)
1722 && ((REGNO (dest) < FIRST_PSEUDO_REGISTER
1723 && ! HARD_REGNO_MODE_OK (REGNO (dest), GET_MODE (dest)))
1724 /* Don't extend the life of a hard register unless it is
1725 user variable (if we have few registers) or it can't
1726 fit into the desired register (meaning something special
1727 is going on).
1728 Also avoid substituting a return register into I3, because
1729 reload can't handle a conflict with constraints of other
1730 inputs. */
1731 || (REGNO (src) < FIRST_PSEUDO_REGISTER
1732 && ! HARD_REGNO_MODE_OK (REGNO (src), GET_MODE (src)))))
1733 return 0;
1734 }
1735 else if (GET_CODE (dest) != CC0)
1736 return 0;
1737
1738
1739 if (GET_CODE (PATTERN (i3)) == PARALLEL)
1740 for (i = XVECLEN (PATTERN (i3), 0) - 1; i >= 0; i--)
1741 if (GET_CODE (XVECEXP (PATTERN (i3), 0, i)) == CLOBBER)
1742 {
1743 /* Don't substitute for a register intended as a clobberable
1744 operand. */
1745 rtx reg = XEXP (XVECEXP (PATTERN (i3), 0, i), 0);
1746 if (rtx_equal_p (reg, dest))
1747 return 0;
1748
1749 /* If the clobber represents an earlyclobber operand, we must not
1750 substitute an expression containing the clobbered register.
1751 As we do not analyze the constraint strings here, we have to
1752 make the conservative assumption. However, if the register is
1753 a fixed hard reg, the clobber cannot represent any operand;
1754 we leave it up to the machine description to either accept or
1755 reject use-and-clobber patterns. */
1756 if (!REG_P (reg)
1757 || REGNO (reg) >= FIRST_PSEUDO_REGISTER
1758 || !fixed_regs[REGNO (reg)])
1759 if (reg_overlap_mentioned_p (reg, src))
1760 return 0;
1761 }
1762
1763 /* If INSN contains anything volatile, or is an `asm' (whether volatile
1764 or not), reject, unless nothing volatile comes between it and I3 */
1765
1766 if (GET_CODE (src) == ASM_OPERANDS || volatile_refs_p (src))
1767 {
1768 /* Make sure succ doesn't contain a volatile reference. */
1769 if (succ != 0 && volatile_refs_p (PATTERN (succ)))
1770 return 0;
1771
1772 for (p = NEXT_INSN (insn); p != i3; p = NEXT_INSN (p))
1773 if (INSN_P (p) && p != succ && volatile_refs_p (PATTERN (p)))
1774 return 0;
1775 }
1776
1777 /* If INSN is an asm, and DEST is a hard register, reject, since it has
1778 to be an explicit register variable, and was chosen for a reason. */
1779
1780 if (GET_CODE (src) == ASM_OPERANDS
1781 && REG_P (dest) && REGNO (dest) < FIRST_PSEUDO_REGISTER)
1782 return 0;
1783
1784 /* If there are any volatile insns between INSN and I3, reject, because
1785 they might affect machine state. */
1786
1787 for (p = NEXT_INSN (insn); p != i3; p = NEXT_INSN (p))
1788 if (INSN_P (p) && p != succ && volatile_insn_p (PATTERN (p)))
1789 return 0;
1790
1791 /* If INSN contains an autoincrement or autodecrement, make sure that
1792 register is not used between there and I3, and not already used in
1793 I3 either. Neither must it be used in PRED or SUCC, if they exist.
1794 Also insist that I3 not be a jump; if it were one
1795 and the incremented register were spilled, we would lose. */
1796
1797 #ifdef AUTO_INC_DEC
1798 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1799 if (REG_NOTE_KIND (link) == REG_INC
1800 && (JUMP_P (i3)
1801 || reg_used_between_p (XEXP (link, 0), insn, i3)
1802 || (pred != NULL_RTX
1803 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (pred)))
1804 || (succ != NULL_RTX
1805 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (succ)))
1806 || reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i3))))
1807 return 0;
1808 #endif
1809
1810 #ifdef HAVE_cc0
1811 /* Don't combine an insn that follows a CC0-setting insn.
1812 An insn that uses CC0 must not be separated from the one that sets it.
1813 We do, however, allow I2 to follow a CC0-setting insn if that insn
1814 is passed as I1; in that case it will be deleted also.
1815 We also allow combining in this case if all the insns are adjacent
1816 because that would leave the two CC0 insns adjacent as well.
1817 It would be more logical to test whether CC0 occurs inside I1 or I2,
1818 but that would be much slower, and this ought to be equivalent. */
1819
1820 p = prev_nonnote_insn (insn);
1821 if (p && p != pred && NONJUMP_INSN_P (p) && sets_cc0_p (PATTERN (p))
1822 && ! all_adjacent)
1823 return 0;
1824 #endif
1825
1826 /* If we get here, we have passed all the tests and the combination is
1827 to be allowed. */
1828
1829 *pdest = dest;
1830 *psrc = src;
1831
1832 return 1;
1833 }
1834 \f
1835 /* LOC is the location within I3 that contains its pattern or the component
1836 of a PARALLEL of the pattern. We validate that it is valid for combining.
1837
1838 One problem is if I3 modifies its output, as opposed to replacing it
1839 entirely, we can't allow the output to contain I2DEST or I1DEST as doing
1840 so would produce an insn that is not equivalent to the original insns.
1841
1842 Consider:
1843
1844 (set (reg:DI 101) (reg:DI 100))
1845 (set (subreg:SI (reg:DI 101) 0) <foo>)
1846
1847 This is NOT equivalent to:
1848
1849 (parallel [(set (subreg:SI (reg:DI 100) 0) <foo>)
1850 (set (reg:DI 101) (reg:DI 100))])
1851
1852 Not only does this modify 100 (in which case it might still be valid
1853 if 100 were dead in I2), it sets 101 to the ORIGINAL value of 100.
1854
1855 We can also run into a problem if I2 sets a register that I1
1856 uses and I1 gets directly substituted into I3 (not via I2). In that
1857 case, we would be getting the wrong value of I2DEST into I3, so we
1858 must reject the combination. This case occurs when I2 and I1 both
1859 feed into I3, rather than when I1 feeds into I2, which feeds into I3.
1860 If I1_NOT_IN_SRC is nonzero, it means that finding I1 in the source
1861 of a SET must prevent combination from occurring.
1862
1863 Before doing the above check, we first try to expand a field assignment
1864 into a set of logical operations.
1865
1866 If PI3_DEST_KILLED is nonzero, it is a pointer to a location in which
1867 we place a register that is both set and used within I3. If more than one
1868 such register is detected, we fail.
1869
1870 Return 1 if the combination is valid, zero otherwise. */
1871
1872 static int
1873 combinable_i3pat (rtx i3, rtx *loc, rtx i2dest, rtx i1dest,
1874 int i1_not_in_src, rtx *pi3dest_killed)
1875 {
1876 rtx x = *loc;
1877
1878 if (GET_CODE (x) == SET)
1879 {
1880 rtx set = x ;
1881 rtx dest = SET_DEST (set);
1882 rtx src = SET_SRC (set);
1883 rtx inner_dest = dest;
1884 rtx subdest;
1885
1886 while (GET_CODE (inner_dest) == STRICT_LOW_PART
1887 || GET_CODE (inner_dest) == SUBREG
1888 || GET_CODE (inner_dest) == ZERO_EXTRACT)
1889 inner_dest = XEXP (inner_dest, 0);
1890
1891 /* Check for the case where I3 modifies its output, as discussed
1892 above. We don't want to prevent pseudos from being combined
1893 into the address of a MEM, so only prevent the combination if
1894 i1 or i2 set the same MEM. */
1895 if ((inner_dest != dest &&
1896 (!MEM_P (inner_dest)
1897 || rtx_equal_p (i2dest, inner_dest)
1898 || (i1dest && rtx_equal_p (i1dest, inner_dest)))
1899 && (reg_overlap_mentioned_p (i2dest, inner_dest)
1900 || (i1dest && reg_overlap_mentioned_p (i1dest, inner_dest))))
1901
1902 /* This is the same test done in can_combine_p except we can't test
1903 all_adjacent; we don't have to, since this instruction will stay
1904 in place, thus we are not considering increasing the lifetime of
1905 INNER_DEST.
1906
1907 Also, if this insn sets a function argument, combining it with
1908 something that might need a spill could clobber a previous
1909 function argument; the all_adjacent test in can_combine_p also
1910 checks this; here, we do a more specific test for this case. */
1911
1912 || (REG_P (inner_dest)
1913 && REGNO (inner_dest) < FIRST_PSEUDO_REGISTER
1914 && (! HARD_REGNO_MODE_OK (REGNO (inner_dest),
1915 GET_MODE (inner_dest))))
1916 || (i1_not_in_src && reg_overlap_mentioned_p (i1dest, src)))
1917 return 0;
1918
1919 /* If DEST is used in I3, it is being killed in this insn, so
1920 record that for later. We have to consider paradoxical
1921 subregs here, since they kill the whole register, but we
1922 ignore partial subregs, STRICT_LOW_PART, etc.
1923 Never add REG_DEAD notes for the FRAME_POINTER_REGNUM or the
1924 STACK_POINTER_REGNUM, since these are always considered to be
1925 live. Similarly for ARG_POINTER_REGNUM if it is fixed. */
1926 subdest = dest;
1927 if (GET_CODE (subdest) == SUBREG
1928 && (GET_MODE_SIZE (GET_MODE (subdest))
1929 >= GET_MODE_SIZE (GET_MODE (SUBREG_REG (subdest)))))
1930 subdest = SUBREG_REG (subdest);
1931 if (pi3dest_killed
1932 && REG_P (subdest)
1933 && reg_referenced_p (subdest, PATTERN (i3))
1934 && REGNO (subdest) != FRAME_POINTER_REGNUM
1935 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
1936 && REGNO (subdest) != HARD_FRAME_POINTER_REGNUM
1937 #endif
1938 #if ARG_POINTER_REGNUM != FRAME_POINTER_REGNUM
1939 && (REGNO (subdest) != ARG_POINTER_REGNUM
1940 || ! fixed_regs [REGNO (subdest)])
1941 #endif
1942 && REGNO (subdest) != STACK_POINTER_REGNUM)
1943 {
1944 if (*pi3dest_killed)
1945 return 0;
1946
1947 *pi3dest_killed = subdest;
1948 }
1949 }
1950
1951 else if (GET_CODE (x) == PARALLEL)
1952 {
1953 int i;
1954
1955 for (i = 0; i < XVECLEN (x, 0); i++)
1956 if (! combinable_i3pat (i3, &XVECEXP (x, 0, i), i2dest, i1dest,
1957 i1_not_in_src, pi3dest_killed))
1958 return 0;
1959 }
1960
1961 return 1;
1962 }
1963 \f
1964 /* Return 1 if X is an arithmetic expression that contains a multiplication
1965 and division. We don't count multiplications by powers of two here. */
1966
1967 static int
1968 contains_muldiv (rtx x)
1969 {
1970 switch (GET_CODE (x))
1971 {
1972 case MOD: case DIV: case UMOD: case UDIV:
1973 return 1;
1974
1975 case MULT:
1976 return ! (CONST_INT_P (XEXP (x, 1))
1977 && exact_log2 (INTVAL (XEXP (x, 1))) >= 0);
1978 default:
1979 if (BINARY_P (x))
1980 return contains_muldiv (XEXP (x, 0))
1981 || contains_muldiv (XEXP (x, 1));
1982
1983 if (UNARY_P (x))
1984 return contains_muldiv (XEXP (x, 0));
1985
1986 return 0;
1987 }
1988 }
1989 \f
1990 /* Determine whether INSN can be used in a combination. Return nonzero if
1991 not. This is used in try_combine to detect early some cases where we
1992 can't perform combinations. */
1993
1994 static int
1995 cant_combine_insn_p (rtx insn)
1996 {
1997 rtx set;
1998 rtx src, dest;
1999
2000 /* If this isn't really an insn, we can't do anything.
2001 This can occur when flow deletes an insn that it has merged into an
2002 auto-increment address. */
2003 if (! INSN_P (insn))
2004 return 1;
2005
2006 /* Never combine loads and stores involving hard regs that are likely
2007 to be spilled. The register allocator can usually handle such
2008 reg-reg moves by tying. If we allow the combiner to make
2009 substitutions of likely-spilled regs, reload might die.
2010 As an exception, we allow combinations involving fixed regs; these are
2011 not available to the register allocator so there's no risk involved. */
2012
2013 set = single_set (insn);
2014 if (! set)
2015 return 0;
2016 src = SET_SRC (set);
2017 dest = SET_DEST (set);
2018 if (GET_CODE (src) == SUBREG)
2019 src = SUBREG_REG (src);
2020 if (GET_CODE (dest) == SUBREG)
2021 dest = SUBREG_REG (dest);
2022 if (REG_P (src) && REG_P (dest)
2023 && ((REGNO (src) < FIRST_PSEUDO_REGISTER
2024 && ! fixed_regs[REGNO (src)]
2025 && CLASS_LIKELY_SPILLED_P (REGNO_REG_CLASS (REGNO (src))))
2026 || (REGNO (dest) < FIRST_PSEUDO_REGISTER
2027 && ! fixed_regs[REGNO (dest)]
2028 && CLASS_LIKELY_SPILLED_P (REGNO_REG_CLASS (REGNO (dest))))))
2029 return 1;
2030
2031 return 0;
2032 }
2033
2034 struct likely_spilled_retval_info
2035 {
2036 unsigned regno, nregs;
2037 unsigned mask;
2038 };
2039
2040 /* Called via note_stores by likely_spilled_retval_p. Remove from info->mask
2041 hard registers that are known to be written to / clobbered in full. */
2042 static void
2043 likely_spilled_retval_1 (rtx x, const_rtx set, void *data)
2044 {
2045 struct likely_spilled_retval_info *const info =
2046 (struct likely_spilled_retval_info *) data;
2047 unsigned regno, nregs;
2048 unsigned new_mask;
2049
2050 if (!REG_P (XEXP (set, 0)))
2051 return;
2052 regno = REGNO (x);
2053 if (regno >= info->regno + info->nregs)
2054 return;
2055 nregs = hard_regno_nregs[regno][GET_MODE (x)];
2056 if (regno + nregs <= info->regno)
2057 return;
2058 new_mask = (2U << (nregs - 1)) - 1;
2059 if (regno < info->regno)
2060 new_mask >>= info->regno - regno;
2061 else
2062 new_mask <<= regno - info->regno;
2063 info->mask &= ~new_mask;
2064 }
2065
2066 /* Return nonzero iff part of the return value is live during INSN, and
2067 it is likely spilled. This can happen when more than one insn is needed
2068 to copy the return value, e.g. when we consider to combine into the
2069 second copy insn for a complex value. */
2070
2071 static int
2072 likely_spilled_retval_p (rtx insn)
2073 {
2074 rtx use = BB_END (this_basic_block);
2075 rtx reg, p;
2076 unsigned regno, nregs;
2077 /* We assume here that no machine mode needs more than
2078 32 hard registers when the value overlaps with a register
2079 for which TARGET_FUNCTION_VALUE_REGNO_P is true. */
2080 unsigned mask;
2081 struct likely_spilled_retval_info info;
2082
2083 if (!NONJUMP_INSN_P (use) || GET_CODE (PATTERN (use)) != USE || insn == use)
2084 return 0;
2085 reg = XEXP (PATTERN (use), 0);
2086 if (!REG_P (reg) || !targetm.calls.function_value_regno_p (REGNO (reg)))
2087 return 0;
2088 regno = REGNO (reg);
2089 nregs = hard_regno_nregs[regno][GET_MODE (reg)];
2090 if (nregs == 1)
2091 return 0;
2092 mask = (2U << (nregs - 1)) - 1;
2093
2094 /* Disregard parts of the return value that are set later. */
2095 info.regno = regno;
2096 info.nregs = nregs;
2097 info.mask = mask;
2098 for (p = PREV_INSN (use); info.mask && p != insn; p = PREV_INSN (p))
2099 if (INSN_P (p))
2100 note_stores (PATTERN (p), likely_spilled_retval_1, &info);
2101 mask = info.mask;
2102
2103 /* Check if any of the (probably) live return value registers is
2104 likely spilled. */
2105 nregs --;
2106 do
2107 {
2108 if ((mask & 1 << nregs)
2109 && CLASS_LIKELY_SPILLED_P (REGNO_REG_CLASS (regno + nregs)))
2110 return 1;
2111 } while (nregs--);
2112 return 0;
2113 }
2114
2115 /* Adjust INSN after we made a change to its destination.
2116
2117 Changing the destination can invalidate notes that say something about
2118 the results of the insn and a LOG_LINK pointing to the insn. */
2119
2120 static void
2121 adjust_for_new_dest (rtx insn)
2122 {
2123 /* For notes, be conservative and simply remove them. */
2124 remove_reg_equal_equiv_notes (insn);
2125
2126 /* The new insn will have a destination that was previously the destination
2127 of an insn just above it. Call distribute_links to make a LOG_LINK from
2128 the next use of that destination. */
2129 distribute_links (gen_rtx_INSN_LIST (VOIDmode, insn, NULL_RTX));
2130
2131 df_insn_rescan (insn);
2132 }
2133
2134 /* Return TRUE if combine can reuse reg X in mode MODE.
2135 ADDED_SETS is nonzero if the original set is still required. */
2136 static bool
2137 can_change_dest_mode (rtx x, int added_sets, enum machine_mode mode)
2138 {
2139 unsigned int regno;
2140
2141 if (!REG_P(x))
2142 return false;
2143
2144 regno = REGNO (x);
2145 /* Allow hard registers if the new mode is legal, and occupies no more
2146 registers than the old mode. */
2147 if (regno < FIRST_PSEUDO_REGISTER)
2148 return (HARD_REGNO_MODE_OK (regno, mode)
2149 && (hard_regno_nregs[regno][GET_MODE (x)]
2150 >= hard_regno_nregs[regno][mode]));
2151
2152 /* Or a pseudo that is only used once. */
2153 return (REG_N_SETS (regno) == 1 && !added_sets
2154 && !REG_USERVAR_P (x));
2155 }
2156
2157
2158 /* Check whether X, the destination of a set, refers to part of
2159 the register specified by REG. */
2160
2161 static bool
2162 reg_subword_p (rtx x, rtx reg)
2163 {
2164 /* Check that reg is an integer mode register. */
2165 if (!REG_P (reg) || GET_MODE_CLASS (GET_MODE (reg)) != MODE_INT)
2166 return false;
2167
2168 if (GET_CODE (x) == STRICT_LOW_PART
2169 || GET_CODE (x) == ZERO_EXTRACT)
2170 x = XEXP (x, 0);
2171
2172 return GET_CODE (x) == SUBREG
2173 && SUBREG_REG (x) == reg
2174 && GET_MODE_CLASS (GET_MODE (x)) == MODE_INT;
2175 }
2176
2177 #ifdef AUTO_INC_DEC
2178 /* Replace auto-increment addressing modes with explicit operations to
2179 access the same addresses without modifying the corresponding
2180 registers. If AFTER holds, SRC is meant to be reused after the
2181 side effect, otherwise it is to be reused before that. */
2182
2183 static rtx
2184 cleanup_auto_inc_dec (rtx src, bool after, enum machine_mode mem_mode)
2185 {
2186 rtx x = src;
2187 const RTX_CODE code = GET_CODE (x);
2188 int i;
2189 const char *fmt;
2190
2191 switch (code)
2192 {
2193 case REG:
2194 case CONST_INT:
2195 case CONST_DOUBLE:
2196 case CONST_FIXED:
2197 case CONST_VECTOR:
2198 case SYMBOL_REF:
2199 case CODE_LABEL:
2200 case PC:
2201 case CC0:
2202 case SCRATCH:
2203 /* SCRATCH must be shared because they represent distinct values. */
2204 return x;
2205 case CLOBBER:
2206 if (REG_P (XEXP (x, 0)) && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER)
2207 return x;
2208 break;
2209
2210 case CONST:
2211 if (shared_const_p (x))
2212 return x;
2213 break;
2214
2215 case MEM:
2216 mem_mode = GET_MODE (x);
2217 break;
2218
2219 case PRE_INC:
2220 case PRE_DEC:
2221 case POST_INC:
2222 case POST_DEC:
2223 gcc_assert (mem_mode != VOIDmode && mem_mode != BLKmode);
2224 if (after == (code == PRE_INC || code == PRE_DEC))
2225 x = cleanup_auto_inc_dec (XEXP (x, 0), after, mem_mode);
2226 else
2227 x = gen_rtx_PLUS (GET_MODE (x),
2228 cleanup_auto_inc_dec (XEXP (x, 0), after, mem_mode),
2229 GEN_INT ((code == PRE_INC || code == POST_INC)
2230 ? GET_MODE_SIZE (mem_mode)
2231 : -GET_MODE_SIZE (mem_mode)));
2232 return x;
2233
2234 case PRE_MODIFY:
2235 case POST_MODIFY:
2236 if (after == (code == PRE_MODIFY))
2237 x = XEXP (x, 0);
2238 else
2239 x = XEXP (x, 1);
2240 return cleanup_auto_inc_dec (x, after, mem_mode);
2241
2242 default:
2243 break;
2244 }
2245
2246 /* Copy the various flags, fields, and other information. We assume
2247 that all fields need copying, and then clear the fields that should
2248 not be copied. That is the sensible default behavior, and forces
2249 us to explicitly document why we are *not* copying a flag. */
2250 x = shallow_copy_rtx (x);
2251
2252 /* We do not copy the USED flag, which is used as a mark bit during
2253 walks over the RTL. */
2254 RTX_FLAG (x, used) = 0;
2255
2256 /* We do not copy FRAME_RELATED for INSNs. */
2257 if (INSN_P (x))
2258 RTX_FLAG (x, frame_related) = 0;
2259
2260 fmt = GET_RTX_FORMAT (code);
2261 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2262 if (fmt[i] == 'e')
2263 XEXP (x, i) = cleanup_auto_inc_dec (XEXP (x, i), after, mem_mode);
2264 else if (fmt[i] == 'E' || fmt[i] == 'V')
2265 {
2266 int j;
2267 XVEC (x, i) = rtvec_alloc (XVECLEN (x, i));
2268 for (j = 0; j < XVECLEN (x, i); j++)
2269 XVECEXP (x, i, j)
2270 = cleanup_auto_inc_dec (XVECEXP (src, i, j), after, mem_mode);
2271 }
2272
2273 return x;
2274 }
2275 #endif
2276
2277 /* Auxiliary data structure for propagate_for_debug_stmt. */
2278
2279 struct rtx_subst_pair
2280 {
2281 rtx to;
2282 bool adjusted;
2283 bool after;
2284 };
2285
2286 /* DATA points to an rtx_subst_pair. Return the value that should be
2287 substituted. */
2288
2289 static rtx
2290 propagate_for_debug_subst (rtx from, const_rtx old_rtx, void *data)
2291 {
2292 struct rtx_subst_pair *pair = (struct rtx_subst_pair *)data;
2293
2294 if (!rtx_equal_p (from, old_rtx))
2295 return NULL_RTX;
2296 if (!pair->adjusted)
2297 {
2298 pair->adjusted = true;
2299 #ifdef AUTO_INC_DEC
2300 pair->to = cleanup_auto_inc_dec (pair->to, pair->after, VOIDmode);
2301 #else
2302 pair->to = copy_rtx (pair->to);
2303 #endif
2304 pair->to = make_compound_operation (pair->to, SET);
2305 return pair->to;
2306 }
2307 return copy_rtx (pair->to);
2308 }
2309
2310 /* Replace occurrences of DEST with SRC in DEBUG_INSNs between INSN
2311 and LAST. If MOVE holds, debug insns must also be moved past
2312 LAST. */
2313
2314 static void
2315 propagate_for_debug (rtx insn, rtx last, rtx dest, rtx src, bool move)
2316 {
2317 rtx next, move_pos = move ? last : NULL_RTX, loc;
2318
2319 struct rtx_subst_pair p;
2320 p.to = src;
2321 p.adjusted = false;
2322 p.after = move;
2323
2324 next = NEXT_INSN (insn);
2325 while (next != last)
2326 {
2327 insn = next;
2328 next = NEXT_INSN (insn);
2329 if (DEBUG_INSN_P (insn))
2330 {
2331 loc = simplify_replace_fn_rtx (INSN_VAR_LOCATION_LOC (insn),
2332 dest, propagate_for_debug_subst, &p);
2333 if (loc == INSN_VAR_LOCATION_LOC (insn))
2334 continue;
2335 INSN_VAR_LOCATION_LOC (insn) = loc;
2336 if (move_pos)
2337 {
2338 remove_insn (insn);
2339 PREV_INSN (insn) = NEXT_INSN (insn) = NULL_RTX;
2340 move_pos = emit_debug_insn_after (insn, move_pos);
2341 }
2342 else
2343 df_insn_rescan (insn);
2344 }
2345 }
2346 }
2347
2348 /* Delete the unconditional jump INSN and adjust the CFG correspondingly.
2349 Note that the INSN should be deleted *after* removing dead edges, so
2350 that the kept edge is the fallthrough edge for a (set (pc) (pc))
2351 but not for a (set (pc) (label_ref FOO)). */
2352
2353 static void
2354 update_cfg_for_uncondjump (rtx insn)
2355 {
2356 basic_block bb = BLOCK_FOR_INSN (insn);
2357 bool at_end = (BB_END (bb) == insn);
2358
2359 if (at_end)
2360 purge_dead_edges (bb);
2361
2362 delete_insn (insn);
2363 if (at_end && EDGE_COUNT (bb->succs) == 1)
2364 single_succ_edge (bb)->flags |= EDGE_FALLTHRU;
2365 }
2366
2367
2368 /* Try to combine the insns I1 and I2 into I3.
2369 Here I1 and I2 appear earlier than I3.
2370 I1 can be zero; then we combine just I2 into I3.
2371
2372 If we are combining three insns and the resulting insn is not recognized,
2373 try splitting it into two insns. If that happens, I2 and I3 are retained
2374 and I1 is pseudo-deleted by turning it into a NOTE. Otherwise, I1 and I2
2375 are pseudo-deleted.
2376
2377 Return 0 if the combination does not work. Then nothing is changed.
2378 If we did the combination, return the insn at which combine should
2379 resume scanning.
2380
2381 Set NEW_DIRECT_JUMP_P to a nonzero value if try_combine creates a
2382 new direct jump instruction. */
2383
2384 static rtx
2385 try_combine (rtx i3, rtx i2, rtx i1, int *new_direct_jump_p)
2386 {
2387 /* New patterns for I3 and I2, respectively. */
2388 rtx newpat, newi2pat = 0;
2389 rtvec newpat_vec_with_clobbers = 0;
2390 int substed_i2 = 0, substed_i1 = 0;
2391 /* Indicates need to preserve SET in I1 or I2 in I3 if it is not dead. */
2392 int added_sets_1, added_sets_2;
2393 /* Total number of SETs to put into I3. */
2394 int total_sets;
2395 /* Nonzero if I2's body now appears in I3. */
2396 int i2_is_used;
2397 /* INSN_CODEs for new I3, new I2, and user of condition code. */
2398 int insn_code_number, i2_code_number = 0, other_code_number = 0;
2399 /* Contains I3 if the destination of I3 is used in its source, which means
2400 that the old life of I3 is being killed. If that usage is placed into
2401 I2 and not in I3, a REG_DEAD note must be made. */
2402 rtx i3dest_killed = 0;
2403 /* SET_DEST and SET_SRC of I2 and I1. */
2404 rtx i2dest = 0, i2src = 0, i1dest = 0, i1src = 0;
2405 /* Set if I2DEST was reused as a scratch register. */
2406 bool i2scratch = false;
2407 /* PATTERN (I1) and PATTERN (I2), or a copy of it in certain cases. */
2408 rtx i1pat = 0, i2pat = 0;
2409 /* Indicates if I2DEST or I1DEST is in I2SRC or I1_SRC. */
2410 int i2dest_in_i2src = 0, i1dest_in_i1src = 0, i2dest_in_i1src = 0;
2411 int i2dest_killed = 0, i1dest_killed = 0;
2412 int i1_feeds_i3 = 0;
2413 /* Notes that must be added to REG_NOTES in I3 and I2. */
2414 rtx new_i3_notes, new_i2_notes;
2415 /* Notes that we substituted I3 into I2 instead of the normal case. */
2416 int i3_subst_into_i2 = 0;
2417 /* Notes that I1, I2 or I3 is a MULT operation. */
2418 int have_mult = 0;
2419 int swap_i2i3 = 0;
2420 int changed_i3_dest = 0;
2421
2422 int maxreg;
2423 rtx temp;
2424 rtx link;
2425 rtx other_pat = 0;
2426 rtx new_other_notes;
2427 int i;
2428
2429 /* Exit early if one of the insns involved can't be used for
2430 combinations. */
2431 if (cant_combine_insn_p (i3)
2432 || cant_combine_insn_p (i2)
2433 || (i1 && cant_combine_insn_p (i1))
2434 || likely_spilled_retval_p (i3))
2435 return 0;
2436
2437 combine_attempts++;
2438 undobuf.other_insn = 0;
2439
2440 /* Reset the hard register usage information. */
2441 CLEAR_HARD_REG_SET (newpat_used_regs);
2442
2443 if (dump_file && (dump_flags & TDF_DETAILS))
2444 {
2445 if (i1)
2446 fprintf (dump_file, "\nTrying %d, %d -> %d:\n",
2447 INSN_UID (i1), INSN_UID (i2), INSN_UID (i3));
2448 else
2449 fprintf (dump_file, "\nTrying %d -> %d:\n",
2450 INSN_UID (i2), INSN_UID (i3));
2451 }
2452
2453 /* If I1 and I2 both feed I3, they can be in any order. To simplify the
2454 code below, set I1 to be the earlier of the two insns. */
2455 if (i1 && DF_INSN_LUID (i1) > DF_INSN_LUID (i2))
2456 temp = i1, i1 = i2, i2 = temp;
2457
2458 added_links_insn = 0;
2459
2460 /* First check for one important special-case that the code below will
2461 not handle. Namely, the case where I1 is zero, I2 is a PARALLEL
2462 and I3 is a SET whose SET_SRC is a SET_DEST in I2. In that case,
2463 we may be able to replace that destination with the destination of I3.
2464 This occurs in the common code where we compute both a quotient and
2465 remainder into a structure, in which case we want to do the computation
2466 directly into the structure to avoid register-register copies.
2467
2468 Note that this case handles both multiple sets in I2 and also
2469 cases where I2 has a number of CLOBBER or PARALLELs.
2470
2471 We make very conservative checks below and only try to handle the
2472 most common cases of this. For example, we only handle the case
2473 where I2 and I3 are adjacent to avoid making difficult register
2474 usage tests. */
2475
2476 if (i1 == 0 && NONJUMP_INSN_P (i3) && GET_CODE (PATTERN (i3)) == SET
2477 && REG_P (SET_SRC (PATTERN (i3)))
2478 && REGNO (SET_SRC (PATTERN (i3))) >= FIRST_PSEUDO_REGISTER
2479 && find_reg_note (i3, REG_DEAD, SET_SRC (PATTERN (i3)))
2480 && GET_CODE (PATTERN (i2)) == PARALLEL
2481 && ! side_effects_p (SET_DEST (PATTERN (i3)))
2482 /* If the dest of I3 is a ZERO_EXTRACT or STRICT_LOW_PART, the code
2483 below would need to check what is inside (and reg_overlap_mentioned_p
2484 doesn't support those codes anyway). Don't allow those destinations;
2485 the resulting insn isn't likely to be recognized anyway. */
2486 && GET_CODE (SET_DEST (PATTERN (i3))) != ZERO_EXTRACT
2487 && GET_CODE (SET_DEST (PATTERN (i3))) != STRICT_LOW_PART
2488 && ! reg_overlap_mentioned_p (SET_SRC (PATTERN (i3)),
2489 SET_DEST (PATTERN (i3)))
2490 && next_active_insn (i2) == i3)
2491 {
2492 rtx p2 = PATTERN (i2);
2493
2494 /* Make sure that the destination of I3,
2495 which we are going to substitute into one output of I2,
2496 is not used within another output of I2. We must avoid making this:
2497 (parallel [(set (mem (reg 69)) ...)
2498 (set (reg 69) ...)])
2499 which is not well-defined as to order of actions.
2500 (Besides, reload can't handle output reloads for this.)
2501
2502 The problem can also happen if the dest of I3 is a memory ref,
2503 if another dest in I2 is an indirect memory ref. */
2504 for (i = 0; i < XVECLEN (p2, 0); i++)
2505 if ((GET_CODE (XVECEXP (p2, 0, i)) == SET
2506 || GET_CODE (XVECEXP (p2, 0, i)) == CLOBBER)
2507 && reg_overlap_mentioned_p (SET_DEST (PATTERN (i3)),
2508 SET_DEST (XVECEXP (p2, 0, i))))
2509 break;
2510
2511 if (i == XVECLEN (p2, 0))
2512 for (i = 0; i < XVECLEN (p2, 0); i++)
2513 if ((GET_CODE (XVECEXP (p2, 0, i)) == SET
2514 || GET_CODE (XVECEXP (p2, 0, i)) == CLOBBER)
2515 && SET_DEST (XVECEXP (p2, 0, i)) == SET_SRC (PATTERN (i3)))
2516 {
2517 combine_merges++;
2518
2519 subst_insn = i3;
2520 subst_low_luid = DF_INSN_LUID (i2);
2521
2522 added_sets_2 = added_sets_1 = 0;
2523 i2src = SET_DEST (PATTERN (i3));
2524 i2dest = SET_SRC (PATTERN (i3));
2525 i2dest_killed = dead_or_set_p (i2, i2dest);
2526
2527 /* Replace the dest in I2 with our dest and make the resulting
2528 insn the new pattern for I3. Then skip to where we
2529 validate the pattern. Everything was set up above. */
2530 SUBST (SET_DEST (XVECEXP (p2, 0, i)),
2531 SET_DEST (PATTERN (i3)));
2532
2533 newpat = p2;
2534 i3_subst_into_i2 = 1;
2535 goto validate_replacement;
2536 }
2537 }
2538
2539 /* If I2 is setting a pseudo to a constant and I3 is setting some
2540 sub-part of it to another constant, merge them by making a new
2541 constant. */
2542 if (i1 == 0
2543 && (temp = single_set (i2)) != 0
2544 && (CONST_INT_P (SET_SRC (temp))
2545 || GET_CODE (SET_SRC (temp)) == CONST_DOUBLE)
2546 && GET_CODE (PATTERN (i3)) == SET
2547 && (CONST_INT_P (SET_SRC (PATTERN (i3)))
2548 || GET_CODE (SET_SRC (PATTERN (i3))) == CONST_DOUBLE)
2549 && reg_subword_p (SET_DEST (PATTERN (i3)), SET_DEST (temp)))
2550 {
2551 rtx dest = SET_DEST (PATTERN (i3));
2552 int offset = -1;
2553 int width = 0;
2554
2555 if (GET_CODE (dest) == ZERO_EXTRACT)
2556 {
2557 if (CONST_INT_P (XEXP (dest, 1))
2558 && CONST_INT_P (XEXP (dest, 2)))
2559 {
2560 width = INTVAL (XEXP (dest, 1));
2561 offset = INTVAL (XEXP (dest, 2));
2562 dest = XEXP (dest, 0);
2563 if (BITS_BIG_ENDIAN)
2564 offset = GET_MODE_BITSIZE (GET_MODE (dest)) - width - offset;
2565 }
2566 }
2567 else
2568 {
2569 if (GET_CODE (dest) == STRICT_LOW_PART)
2570 dest = XEXP (dest, 0);
2571 width = GET_MODE_BITSIZE (GET_MODE (dest));
2572 offset = 0;
2573 }
2574
2575 if (offset >= 0)
2576 {
2577 /* If this is the low part, we're done. */
2578 if (subreg_lowpart_p (dest))
2579 ;
2580 /* Handle the case where inner is twice the size of outer. */
2581 else if (GET_MODE_BITSIZE (GET_MODE (SET_DEST (temp)))
2582 == 2 * GET_MODE_BITSIZE (GET_MODE (dest)))
2583 offset += GET_MODE_BITSIZE (GET_MODE (dest));
2584 /* Otherwise give up for now. */
2585 else
2586 offset = -1;
2587 }
2588
2589 if (offset >= 0
2590 && (GET_MODE_BITSIZE (GET_MODE (SET_DEST (temp)))
2591 <= HOST_BITS_PER_DOUBLE_INT))
2592 {
2593 double_int m, o, i;
2594 rtx inner = SET_SRC (PATTERN (i3));
2595 rtx outer = SET_SRC (temp);
2596
2597 o = rtx_to_double_int (outer);
2598 i = rtx_to_double_int (inner);
2599
2600 m = double_int_mask (width);
2601 i = double_int_and (i, m);
2602 m = double_int_lshift (m, offset, HOST_BITS_PER_DOUBLE_INT, false);
2603 i = double_int_lshift (i, offset, HOST_BITS_PER_DOUBLE_INT, false);
2604 o = double_int_ior (double_int_and_not (o, m), i);
2605
2606 combine_merges++;
2607 subst_insn = i3;
2608 subst_low_luid = DF_INSN_LUID (i2);
2609 added_sets_2 = added_sets_1 = 0;
2610 i2dest = SET_DEST (temp);
2611 i2dest_killed = dead_or_set_p (i2, i2dest);
2612
2613 /* Replace the source in I2 with the new constant and make the
2614 resulting insn the new pattern for I3. Then skip to where we
2615 validate the pattern. Everything was set up above. */
2616 SUBST (SET_SRC (temp),
2617 immed_double_int_const (o, GET_MODE (SET_DEST (temp))));
2618
2619 newpat = PATTERN (i2);
2620
2621 /* The dest of I3 has been replaced with the dest of I2. */
2622 changed_i3_dest = 1;
2623 goto validate_replacement;
2624 }
2625 }
2626
2627 #ifndef HAVE_cc0
2628 /* If we have no I1 and I2 looks like:
2629 (parallel [(set (reg:CC X) (compare:CC OP (const_int 0)))
2630 (set Y OP)])
2631 make up a dummy I1 that is
2632 (set Y OP)
2633 and change I2 to be
2634 (set (reg:CC X) (compare:CC Y (const_int 0)))
2635
2636 (We can ignore any trailing CLOBBERs.)
2637
2638 This undoes a previous combination and allows us to match a branch-and-
2639 decrement insn. */
2640
2641 if (i1 == 0 && GET_CODE (PATTERN (i2)) == PARALLEL
2642 && XVECLEN (PATTERN (i2), 0) >= 2
2643 && GET_CODE (XVECEXP (PATTERN (i2), 0, 0)) == SET
2644 && (GET_MODE_CLASS (GET_MODE (SET_DEST (XVECEXP (PATTERN (i2), 0, 0))))
2645 == MODE_CC)
2646 && GET_CODE (SET_SRC (XVECEXP (PATTERN (i2), 0, 0))) == COMPARE
2647 && XEXP (SET_SRC (XVECEXP (PATTERN (i2), 0, 0)), 1) == const0_rtx
2648 && GET_CODE (XVECEXP (PATTERN (i2), 0, 1)) == SET
2649 && REG_P (SET_DEST (XVECEXP (PATTERN (i2), 0, 1)))
2650 && rtx_equal_p (XEXP (SET_SRC (XVECEXP (PATTERN (i2), 0, 0)), 0),
2651 SET_SRC (XVECEXP (PATTERN (i2), 0, 1))))
2652 {
2653 for (i = XVECLEN (PATTERN (i2), 0) - 1; i >= 2; i--)
2654 if (GET_CODE (XVECEXP (PATTERN (i2), 0, i)) != CLOBBER)
2655 break;
2656
2657 if (i == 1)
2658 {
2659 /* We make I1 with the same INSN_UID as I2. This gives it
2660 the same DF_INSN_LUID for value tracking. Our fake I1 will
2661 never appear in the insn stream so giving it the same INSN_UID
2662 as I2 will not cause a problem. */
2663
2664 i1 = gen_rtx_INSN (VOIDmode, INSN_UID (i2), NULL_RTX, i2,
2665 BLOCK_FOR_INSN (i2), XVECEXP (PATTERN (i2), 0, 1),
2666 INSN_LOCATOR (i2), -1, NULL_RTX);
2667
2668 SUBST (PATTERN (i2), XVECEXP (PATTERN (i2), 0, 0));
2669 SUBST (XEXP (SET_SRC (PATTERN (i2)), 0),
2670 SET_DEST (PATTERN (i1)));
2671 }
2672 }
2673 #endif
2674
2675 /* Verify that I2 and I1 are valid for combining. */
2676 if (! can_combine_p (i2, i3, i1, NULL_RTX, &i2dest, &i2src)
2677 || (i1 && ! can_combine_p (i1, i3, NULL_RTX, i2, &i1dest, &i1src)))
2678 {
2679 undo_all ();
2680 return 0;
2681 }
2682
2683 /* Record whether I2DEST is used in I2SRC and similarly for the other
2684 cases. Knowing this will help in register status updating below. */
2685 i2dest_in_i2src = reg_overlap_mentioned_p (i2dest, i2src);
2686 i1dest_in_i1src = i1 && reg_overlap_mentioned_p (i1dest, i1src);
2687 i2dest_in_i1src = i1 && reg_overlap_mentioned_p (i2dest, i1src);
2688 i2dest_killed = dead_or_set_p (i2, i2dest);
2689 i1dest_killed = i1 && dead_or_set_p (i1, i1dest);
2690
2691 /* See if I1 directly feeds into I3. It does if I1DEST is not used
2692 in I2SRC. */
2693 i1_feeds_i3 = i1 && ! reg_overlap_mentioned_p (i1dest, i2src);
2694
2695 /* Ensure that I3's pattern can be the destination of combines. */
2696 if (! combinable_i3pat (i3, &PATTERN (i3), i2dest, i1dest,
2697 i1 && i2dest_in_i1src && i1_feeds_i3,
2698 &i3dest_killed))
2699 {
2700 undo_all ();
2701 return 0;
2702 }
2703
2704 /* See if any of the insns is a MULT operation. Unless one is, we will
2705 reject a combination that is, since it must be slower. Be conservative
2706 here. */
2707 if (GET_CODE (i2src) == MULT
2708 || (i1 != 0 && GET_CODE (i1src) == MULT)
2709 || (GET_CODE (PATTERN (i3)) == SET
2710 && GET_CODE (SET_SRC (PATTERN (i3))) == MULT))
2711 have_mult = 1;
2712
2713 /* If I3 has an inc, then give up if I1 or I2 uses the reg that is inc'd.
2714 We used to do this EXCEPT in one case: I3 has a post-inc in an
2715 output operand. However, that exception can give rise to insns like
2716 mov r3,(r3)+
2717 which is a famous insn on the PDP-11 where the value of r3 used as the
2718 source was model-dependent. Avoid this sort of thing. */
2719
2720 #if 0
2721 if (!(GET_CODE (PATTERN (i3)) == SET
2722 && REG_P (SET_SRC (PATTERN (i3)))
2723 && MEM_P (SET_DEST (PATTERN (i3)))
2724 && (GET_CODE (XEXP (SET_DEST (PATTERN (i3)), 0)) == POST_INC
2725 || GET_CODE (XEXP (SET_DEST (PATTERN (i3)), 0)) == POST_DEC)))
2726 /* It's not the exception. */
2727 #endif
2728 #ifdef AUTO_INC_DEC
2729 for (link = REG_NOTES (i3); link; link = XEXP (link, 1))
2730 if (REG_NOTE_KIND (link) == REG_INC
2731 && (reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i2))
2732 || (i1 != 0
2733 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i1)))))
2734 {
2735 undo_all ();
2736 return 0;
2737 }
2738 #endif
2739
2740 /* See if the SETs in I1 or I2 need to be kept around in the merged
2741 instruction: whenever the value set there is still needed past I3.
2742 For the SETs in I2, this is easy: we see if I2DEST dies or is set in I3.
2743
2744 For the SET in I1, we have two cases: If I1 and I2 independently
2745 feed into I3, the set in I1 needs to be kept around if I1DEST dies
2746 or is set in I3. Otherwise (if I1 feeds I2 which feeds I3), the set
2747 in I1 needs to be kept around unless I1DEST dies or is set in either
2748 I2 or I3. We can distinguish these cases by seeing if I2SRC mentions
2749 I1DEST. If so, we know I1 feeds into I2. */
2750
2751 added_sets_2 = ! dead_or_set_p (i3, i2dest);
2752
2753 added_sets_1
2754 = i1 && ! (i1_feeds_i3 ? dead_or_set_p (i3, i1dest)
2755 : (dead_or_set_p (i3, i1dest) || dead_or_set_p (i2, i1dest)));
2756
2757 /* If the set in I2 needs to be kept around, we must make a copy of
2758 PATTERN (I2), so that when we substitute I1SRC for I1DEST in
2759 PATTERN (I2), we are only substituting for the original I1DEST, not into
2760 an already-substituted copy. This also prevents making self-referential
2761 rtx. If I2 is a PARALLEL, we just need the piece that assigns I2SRC to
2762 I2DEST. */
2763
2764 if (added_sets_2)
2765 {
2766 if (GET_CODE (PATTERN (i2)) == PARALLEL)
2767 i2pat = gen_rtx_SET (VOIDmode, i2dest, copy_rtx (i2src));
2768 else
2769 i2pat = copy_rtx (PATTERN (i2));
2770 }
2771
2772 if (added_sets_1)
2773 {
2774 if (GET_CODE (PATTERN (i1)) == PARALLEL)
2775 i1pat = gen_rtx_SET (VOIDmode, i1dest, copy_rtx (i1src));
2776 else
2777 i1pat = copy_rtx (PATTERN (i1));
2778 }
2779
2780 combine_merges++;
2781
2782 /* Substitute in the latest insn for the regs set by the earlier ones. */
2783
2784 maxreg = max_reg_num ();
2785
2786 subst_insn = i3;
2787
2788 #ifndef HAVE_cc0
2789 /* Many machines that don't use CC0 have insns that can both perform an
2790 arithmetic operation and set the condition code. These operations will
2791 be represented as a PARALLEL with the first element of the vector
2792 being a COMPARE of an arithmetic operation with the constant zero.
2793 The second element of the vector will set some pseudo to the result
2794 of the same arithmetic operation. If we simplify the COMPARE, we won't
2795 match such a pattern and so will generate an extra insn. Here we test
2796 for this case, where both the comparison and the operation result are
2797 needed, and make the PARALLEL by just replacing I2DEST in I3SRC with
2798 I2SRC. Later we will make the PARALLEL that contains I2. */
2799
2800 if (i1 == 0 && added_sets_2 && GET_CODE (PATTERN (i3)) == SET
2801 && GET_CODE (SET_SRC (PATTERN (i3))) == COMPARE
2802 && XEXP (SET_SRC (PATTERN (i3)), 1) == const0_rtx
2803 && rtx_equal_p (XEXP (SET_SRC (PATTERN (i3)), 0), i2dest))
2804 {
2805 #ifdef SELECT_CC_MODE
2806 rtx *cc_use;
2807 enum machine_mode compare_mode;
2808 #endif
2809
2810 newpat = PATTERN (i3);
2811 SUBST (XEXP (SET_SRC (newpat), 0), i2src);
2812
2813 i2_is_used = 1;
2814
2815 #ifdef SELECT_CC_MODE
2816 /* See if a COMPARE with the operand we substituted in should be done
2817 with the mode that is currently being used. If not, do the same
2818 processing we do in `subst' for a SET; namely, if the destination
2819 is used only once, try to replace it with a register of the proper
2820 mode and also replace the COMPARE. */
2821 if (undobuf.other_insn == 0
2822 && (cc_use = find_single_use (SET_DEST (newpat), i3,
2823 &undobuf.other_insn))
2824 && ((compare_mode = SELECT_CC_MODE (GET_CODE (*cc_use),
2825 i2src, const0_rtx))
2826 != GET_MODE (SET_DEST (newpat))))
2827 {
2828 if (can_change_dest_mode(SET_DEST (newpat), added_sets_2,
2829 compare_mode))
2830 {
2831 unsigned int regno = REGNO (SET_DEST (newpat));
2832 rtx new_dest;
2833
2834 if (regno < FIRST_PSEUDO_REGISTER)
2835 new_dest = gen_rtx_REG (compare_mode, regno);
2836 else
2837 {
2838 SUBST_MODE (regno_reg_rtx[regno], compare_mode);
2839 new_dest = regno_reg_rtx[regno];
2840 }
2841
2842 SUBST (SET_DEST (newpat), new_dest);
2843 SUBST (XEXP (*cc_use, 0), new_dest);
2844 SUBST (SET_SRC (newpat),
2845 gen_rtx_COMPARE (compare_mode, i2src, const0_rtx));
2846 }
2847 else
2848 undobuf.other_insn = 0;
2849 }
2850 #endif
2851 }
2852 else
2853 #endif
2854 {
2855 /* It is possible that the source of I2 or I1 may be performing
2856 an unneeded operation, such as a ZERO_EXTEND of something
2857 that is known to have the high part zero. Handle that case
2858 by letting subst look at the innermost one of them.
2859
2860 Another way to do this would be to have a function that tries
2861 to simplify a single insn instead of merging two or more
2862 insns. We don't do this because of the potential of infinite
2863 loops and because of the potential extra memory required.
2864 However, doing it the way we are is a bit of a kludge and
2865 doesn't catch all cases.
2866
2867 But only do this if -fexpensive-optimizations since it slows
2868 things down and doesn't usually win.
2869
2870 This is not done in the COMPARE case above because the
2871 unmodified I2PAT is used in the PARALLEL and so a pattern
2872 with a modified I2SRC would not match. */
2873
2874 if (flag_expensive_optimizations)
2875 {
2876 /* Pass pc_rtx so no substitutions are done, just
2877 simplifications. */
2878 if (i1)
2879 {
2880 subst_low_luid = DF_INSN_LUID (i1);
2881 i1src = subst (i1src, pc_rtx, pc_rtx, 0, 0);
2882 }
2883 else
2884 {
2885 subst_low_luid = DF_INSN_LUID (i2);
2886 i2src = subst (i2src, pc_rtx, pc_rtx, 0, 0);
2887 }
2888 }
2889
2890 n_occurrences = 0; /* `subst' counts here */
2891
2892 /* If I1 feeds into I2 (not into I3) and I1DEST is in I1SRC, we
2893 need to make a unique copy of I2SRC each time we substitute it
2894 to avoid self-referential rtl. */
2895
2896 subst_low_luid = DF_INSN_LUID (i2);
2897 newpat = subst (PATTERN (i3), i2dest, i2src, 0,
2898 ! i1_feeds_i3 && i1dest_in_i1src);
2899 substed_i2 = 1;
2900
2901 /* Record whether i2's body now appears within i3's body. */
2902 i2_is_used = n_occurrences;
2903 }
2904
2905 /* If we already got a failure, don't try to do more. Otherwise,
2906 try to substitute in I1 if we have it. */
2907
2908 if (i1 && GET_CODE (newpat) != CLOBBER)
2909 {
2910 /* Check that an autoincrement side-effect on I1 has not been lost.
2911 This happens if I1DEST is mentioned in I2 and dies there, and
2912 has disappeared from the new pattern. */
2913 if ((FIND_REG_INC_NOTE (i1, NULL_RTX) != 0
2914 && !i1_feeds_i3
2915 && dead_or_set_p (i2, i1dest)
2916 && !reg_overlap_mentioned_p (i1dest, newpat))
2917 /* Before we can do this substitution, we must redo the test done
2918 above (see detailed comments there) that ensures that I1DEST
2919 isn't mentioned in any SETs in NEWPAT that are field assignments. */
2920 || !combinable_i3pat (NULL_RTX, &newpat, i1dest, NULL_RTX, 0, 0))
2921 {
2922 undo_all ();
2923 return 0;
2924 }
2925
2926 n_occurrences = 0;
2927 subst_low_luid = DF_INSN_LUID (i1);
2928 newpat = subst (newpat, i1dest, i1src, 0, 0);
2929 substed_i1 = 1;
2930 }
2931
2932 /* Fail if an autoincrement side-effect has been duplicated. Be careful
2933 to count all the ways that I2SRC and I1SRC can be used. */
2934 if ((FIND_REG_INC_NOTE (i2, NULL_RTX) != 0
2935 && i2_is_used + added_sets_2 > 1)
2936 || (i1 != 0 && FIND_REG_INC_NOTE (i1, NULL_RTX) != 0
2937 && (n_occurrences + added_sets_1 + (added_sets_2 && ! i1_feeds_i3)
2938 > 1))
2939 /* Fail if we tried to make a new register. */
2940 || max_reg_num () != maxreg
2941 /* Fail if we couldn't do something and have a CLOBBER. */
2942 || GET_CODE (newpat) == CLOBBER
2943 /* Fail if this new pattern is a MULT and we didn't have one before
2944 at the outer level. */
2945 || (GET_CODE (newpat) == SET && GET_CODE (SET_SRC (newpat)) == MULT
2946 && ! have_mult))
2947 {
2948 undo_all ();
2949 return 0;
2950 }
2951
2952 /* If the actions of the earlier insns must be kept
2953 in addition to substituting them into the latest one,
2954 we must make a new PARALLEL for the latest insn
2955 to hold additional the SETs. */
2956
2957 if (added_sets_1 || added_sets_2)
2958 {
2959 combine_extras++;
2960
2961 if (GET_CODE (newpat) == PARALLEL)
2962 {
2963 rtvec old = XVEC (newpat, 0);
2964 total_sets = XVECLEN (newpat, 0) + added_sets_1 + added_sets_2;
2965 newpat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (total_sets));
2966 memcpy (XVEC (newpat, 0)->elem, &old->elem[0],
2967 sizeof (old->elem[0]) * old->num_elem);
2968 }
2969 else
2970 {
2971 rtx old = newpat;
2972 total_sets = 1 + added_sets_1 + added_sets_2;
2973 newpat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (total_sets));
2974 XVECEXP (newpat, 0, 0) = old;
2975 }
2976
2977 if (added_sets_1)
2978 XVECEXP (newpat, 0, --total_sets) = i1pat;
2979
2980 if (added_sets_2)
2981 {
2982 /* If there is no I1, use I2's body as is. We used to also not do
2983 the subst call below if I2 was substituted into I3,
2984 but that could lose a simplification. */
2985 if (i1 == 0)
2986 XVECEXP (newpat, 0, --total_sets) = i2pat;
2987 else
2988 /* See comment where i2pat is assigned. */
2989 XVECEXP (newpat, 0, --total_sets)
2990 = subst (i2pat, i1dest, i1src, 0, 0);
2991 }
2992 }
2993
2994 validate_replacement:
2995
2996 /* Note which hard regs this insn has as inputs. */
2997 mark_used_regs_combine (newpat);
2998
2999 /* If recog_for_combine fails, it strips existing clobbers. If we'll
3000 consider splitting this pattern, we might need these clobbers. */
3001 if (i1 && GET_CODE (newpat) == PARALLEL
3002 && GET_CODE (XVECEXP (newpat, 0, XVECLEN (newpat, 0) - 1)) == CLOBBER)
3003 {
3004 int len = XVECLEN (newpat, 0);
3005
3006 newpat_vec_with_clobbers = rtvec_alloc (len);
3007 for (i = 0; i < len; i++)
3008 RTVEC_ELT (newpat_vec_with_clobbers, i) = XVECEXP (newpat, 0, i);
3009 }
3010
3011 /* Is the result of combination a valid instruction? */
3012 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3013
3014 /* If the result isn't valid, see if it is a PARALLEL of two SETs where
3015 the second SET's destination is a register that is unused and isn't
3016 marked as an instruction that might trap in an EH region. In that case,
3017 we just need the first SET. This can occur when simplifying a divmod
3018 insn. We *must* test for this case here because the code below that
3019 splits two independent SETs doesn't handle this case correctly when it
3020 updates the register status.
3021
3022 It's pointless doing this if we originally had two sets, one from
3023 i3, and one from i2. Combining then splitting the parallel results
3024 in the original i2 again plus an invalid insn (which we delete).
3025 The net effect is only to move instructions around, which makes
3026 debug info less accurate.
3027
3028 Also check the case where the first SET's destination is unused.
3029 That would not cause incorrect code, but does cause an unneeded
3030 insn to remain. */
3031
3032 if (insn_code_number < 0
3033 && !(added_sets_2 && i1 == 0)
3034 && GET_CODE (newpat) == PARALLEL
3035 && XVECLEN (newpat, 0) == 2
3036 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
3037 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
3038 && asm_noperands (newpat) < 0)
3039 {
3040 rtx set0 = XVECEXP (newpat, 0, 0);
3041 rtx set1 = XVECEXP (newpat, 0, 1);
3042
3043 if (((REG_P (SET_DEST (set1))
3044 && find_reg_note (i3, REG_UNUSED, SET_DEST (set1)))
3045 || (GET_CODE (SET_DEST (set1)) == SUBREG
3046 && find_reg_note (i3, REG_UNUSED, SUBREG_REG (SET_DEST (set1)))))
3047 && insn_nothrow_p (i3)
3048 && !side_effects_p (SET_SRC (set1)))
3049 {
3050 newpat = set0;
3051 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3052 }
3053
3054 else if (((REG_P (SET_DEST (set0))
3055 && find_reg_note (i3, REG_UNUSED, SET_DEST (set0)))
3056 || (GET_CODE (SET_DEST (set0)) == SUBREG
3057 && find_reg_note (i3, REG_UNUSED,
3058 SUBREG_REG (SET_DEST (set0)))))
3059 && insn_nothrow_p (i3)
3060 && !side_effects_p (SET_SRC (set0)))
3061 {
3062 newpat = set1;
3063 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3064
3065 if (insn_code_number >= 0)
3066 changed_i3_dest = 1;
3067 }
3068 }
3069
3070 /* If we were combining three insns and the result is a simple SET
3071 with no ASM_OPERANDS that wasn't recognized, try to split it into two
3072 insns. There are two ways to do this. It can be split using a
3073 machine-specific method (like when you have an addition of a large
3074 constant) or by combine in the function find_split_point. */
3075
3076 if (i1 && insn_code_number < 0 && GET_CODE (newpat) == SET
3077 && asm_noperands (newpat) < 0)
3078 {
3079 rtx parallel, m_split, *split;
3080
3081 /* See if the MD file can split NEWPAT. If it can't, see if letting it
3082 use I2DEST as a scratch register will help. In the latter case,
3083 convert I2DEST to the mode of the source of NEWPAT if we can. */
3084
3085 m_split = combine_split_insns (newpat, i3);
3086
3087 /* We can only use I2DEST as a scratch reg if it doesn't overlap any
3088 inputs of NEWPAT. */
3089
3090 /* ??? If I2DEST is not safe, and I1DEST exists, then it would be
3091 possible to try that as a scratch reg. This would require adding
3092 more code to make it work though. */
3093
3094 if (m_split == 0 && ! reg_overlap_mentioned_p (i2dest, newpat))
3095 {
3096 enum machine_mode new_mode = GET_MODE (SET_DEST (newpat));
3097
3098 /* First try to split using the original register as a
3099 scratch register. */
3100 parallel = gen_rtx_PARALLEL (VOIDmode,
3101 gen_rtvec (2, newpat,
3102 gen_rtx_CLOBBER (VOIDmode,
3103 i2dest)));
3104 m_split = combine_split_insns (parallel, i3);
3105
3106 /* If that didn't work, try changing the mode of I2DEST if
3107 we can. */
3108 if (m_split == 0
3109 && new_mode != GET_MODE (i2dest)
3110 && new_mode != VOIDmode
3111 && can_change_dest_mode (i2dest, added_sets_2, new_mode))
3112 {
3113 enum machine_mode old_mode = GET_MODE (i2dest);
3114 rtx ni2dest;
3115
3116 if (REGNO (i2dest) < FIRST_PSEUDO_REGISTER)
3117 ni2dest = gen_rtx_REG (new_mode, REGNO (i2dest));
3118 else
3119 {
3120 SUBST_MODE (regno_reg_rtx[REGNO (i2dest)], new_mode);
3121 ni2dest = regno_reg_rtx[REGNO (i2dest)];
3122 }
3123
3124 parallel = (gen_rtx_PARALLEL
3125 (VOIDmode,
3126 gen_rtvec (2, newpat,
3127 gen_rtx_CLOBBER (VOIDmode,
3128 ni2dest))));
3129 m_split = combine_split_insns (parallel, i3);
3130
3131 if (m_split == 0
3132 && REGNO (i2dest) >= FIRST_PSEUDO_REGISTER)
3133 {
3134 struct undo *buf;
3135
3136 adjust_reg_mode (regno_reg_rtx[REGNO (i2dest)], old_mode);
3137 buf = undobuf.undos;
3138 undobuf.undos = buf->next;
3139 buf->next = undobuf.frees;
3140 undobuf.frees = buf;
3141 }
3142 }
3143
3144 i2scratch = m_split != 0;
3145 }
3146
3147 /* If recog_for_combine has discarded clobbers, try to use them
3148 again for the split. */
3149 if (m_split == 0 && newpat_vec_with_clobbers)
3150 {
3151 parallel = gen_rtx_PARALLEL (VOIDmode, newpat_vec_with_clobbers);
3152 m_split = combine_split_insns (parallel, i3);
3153 }
3154
3155 if (m_split && NEXT_INSN (m_split) == NULL_RTX)
3156 {
3157 m_split = PATTERN (m_split);
3158 insn_code_number = recog_for_combine (&m_split, i3, &new_i3_notes);
3159 if (insn_code_number >= 0)
3160 newpat = m_split;
3161 }
3162 else if (m_split && NEXT_INSN (NEXT_INSN (m_split)) == NULL_RTX
3163 && (next_real_insn (i2) == i3
3164 || ! use_crosses_set_p (PATTERN (m_split), DF_INSN_LUID (i2))))
3165 {
3166 rtx i2set, i3set;
3167 rtx newi3pat = PATTERN (NEXT_INSN (m_split));
3168 newi2pat = PATTERN (m_split);
3169
3170 i3set = single_set (NEXT_INSN (m_split));
3171 i2set = single_set (m_split);
3172
3173 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
3174
3175 /* If I2 or I3 has multiple SETs, we won't know how to track
3176 register status, so don't use these insns. If I2's destination
3177 is used between I2 and I3, we also can't use these insns. */
3178
3179 if (i2_code_number >= 0 && i2set && i3set
3180 && (next_real_insn (i2) == i3
3181 || ! reg_used_between_p (SET_DEST (i2set), i2, i3)))
3182 insn_code_number = recog_for_combine (&newi3pat, i3,
3183 &new_i3_notes);
3184 if (insn_code_number >= 0)
3185 newpat = newi3pat;
3186
3187 /* It is possible that both insns now set the destination of I3.
3188 If so, we must show an extra use of it. */
3189
3190 if (insn_code_number >= 0)
3191 {
3192 rtx new_i3_dest = SET_DEST (i3set);
3193 rtx new_i2_dest = SET_DEST (i2set);
3194
3195 while (GET_CODE (new_i3_dest) == ZERO_EXTRACT
3196 || GET_CODE (new_i3_dest) == STRICT_LOW_PART
3197 || GET_CODE (new_i3_dest) == SUBREG)
3198 new_i3_dest = XEXP (new_i3_dest, 0);
3199
3200 while (GET_CODE (new_i2_dest) == ZERO_EXTRACT
3201 || GET_CODE (new_i2_dest) == STRICT_LOW_PART
3202 || GET_CODE (new_i2_dest) == SUBREG)
3203 new_i2_dest = XEXP (new_i2_dest, 0);
3204
3205 if (REG_P (new_i3_dest)
3206 && REG_P (new_i2_dest)
3207 && REGNO (new_i3_dest) == REGNO (new_i2_dest))
3208 INC_REG_N_SETS (REGNO (new_i2_dest), 1);
3209 }
3210 }
3211
3212 /* If we can split it and use I2DEST, go ahead and see if that
3213 helps things be recognized. Verify that none of the registers
3214 are set between I2 and I3. */
3215 if (insn_code_number < 0
3216 && (split = find_split_point (&newpat, i3, false)) != 0
3217 #ifdef HAVE_cc0
3218 && REG_P (i2dest)
3219 #endif
3220 /* We need I2DEST in the proper mode. If it is a hard register
3221 or the only use of a pseudo, we can change its mode.
3222 Make sure we don't change a hard register to have a mode that
3223 isn't valid for it, or change the number of registers. */
3224 && (GET_MODE (*split) == GET_MODE (i2dest)
3225 || GET_MODE (*split) == VOIDmode
3226 || can_change_dest_mode (i2dest, added_sets_2,
3227 GET_MODE (*split)))
3228 && (next_real_insn (i2) == i3
3229 || ! use_crosses_set_p (*split, DF_INSN_LUID (i2)))
3230 /* We can't overwrite I2DEST if its value is still used by
3231 NEWPAT. */
3232 && ! reg_referenced_p (i2dest, newpat))
3233 {
3234 rtx newdest = i2dest;
3235 enum rtx_code split_code = GET_CODE (*split);
3236 enum machine_mode split_mode = GET_MODE (*split);
3237 bool subst_done = false;
3238 newi2pat = NULL_RTX;
3239
3240 i2scratch = true;
3241
3242 /* *SPLIT may be part of I2SRC, so make sure we have the
3243 original expression around for later debug processing.
3244 We should not need I2SRC any more in other cases. */
3245 if (MAY_HAVE_DEBUG_INSNS)
3246 i2src = copy_rtx (i2src);
3247 else
3248 i2src = NULL;
3249
3250 /* Get NEWDEST as a register in the proper mode. We have already
3251 validated that we can do this. */
3252 if (GET_MODE (i2dest) != split_mode && split_mode != VOIDmode)
3253 {
3254 if (REGNO (i2dest) < FIRST_PSEUDO_REGISTER)
3255 newdest = gen_rtx_REG (split_mode, REGNO (i2dest));
3256 else
3257 {
3258 SUBST_MODE (regno_reg_rtx[REGNO (i2dest)], split_mode);
3259 newdest = regno_reg_rtx[REGNO (i2dest)];
3260 }
3261 }
3262
3263 /* If *SPLIT is a (mult FOO (const_int pow2)), convert it to
3264 an ASHIFT. This can occur if it was inside a PLUS and hence
3265 appeared to be a memory address. This is a kludge. */
3266 if (split_code == MULT
3267 && CONST_INT_P (XEXP (*split, 1))
3268 && INTVAL (XEXP (*split, 1)) > 0
3269 && (i = exact_log2 (INTVAL (XEXP (*split, 1)))) >= 0)
3270 {
3271 SUBST (*split, gen_rtx_ASHIFT (split_mode,
3272 XEXP (*split, 0), GEN_INT (i)));
3273 /* Update split_code because we may not have a multiply
3274 anymore. */
3275 split_code = GET_CODE (*split);
3276 }
3277
3278 #ifdef INSN_SCHEDULING
3279 /* If *SPLIT is a paradoxical SUBREG, when we split it, it should
3280 be written as a ZERO_EXTEND. */
3281 if (split_code == SUBREG && MEM_P (SUBREG_REG (*split)))
3282 {
3283 #ifdef LOAD_EXTEND_OP
3284 /* Or as a SIGN_EXTEND if LOAD_EXTEND_OP says that that's
3285 what it really is. */
3286 if (LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (*split)))
3287 == SIGN_EXTEND)
3288 SUBST (*split, gen_rtx_SIGN_EXTEND (split_mode,
3289 SUBREG_REG (*split)));
3290 else
3291 #endif
3292 SUBST (*split, gen_rtx_ZERO_EXTEND (split_mode,
3293 SUBREG_REG (*split)));
3294 }
3295 #endif
3296
3297 /* Attempt to split binary operators using arithmetic identities. */
3298 if (BINARY_P (SET_SRC (newpat))
3299 && split_mode == GET_MODE (SET_SRC (newpat))
3300 && ! side_effects_p (SET_SRC (newpat)))
3301 {
3302 rtx setsrc = SET_SRC (newpat);
3303 enum machine_mode mode = GET_MODE (setsrc);
3304 enum rtx_code code = GET_CODE (setsrc);
3305 rtx src_op0 = XEXP (setsrc, 0);
3306 rtx src_op1 = XEXP (setsrc, 1);
3307
3308 /* Split "X = Y op Y" as "Z = Y; X = Z op Z". */
3309 if (rtx_equal_p (src_op0, src_op1))
3310 {
3311 newi2pat = gen_rtx_SET (VOIDmode, newdest, src_op0);
3312 SUBST (XEXP (setsrc, 0), newdest);
3313 SUBST (XEXP (setsrc, 1), newdest);
3314 subst_done = true;
3315 }
3316 /* Split "((P op Q) op R) op S" where op is PLUS or MULT. */
3317 else if ((code == PLUS || code == MULT)
3318 && GET_CODE (src_op0) == code
3319 && GET_CODE (XEXP (src_op0, 0)) == code
3320 && (INTEGRAL_MODE_P (mode)
3321 || (FLOAT_MODE_P (mode)
3322 && flag_unsafe_math_optimizations)))
3323 {
3324 rtx p = XEXP (XEXP (src_op0, 0), 0);
3325 rtx q = XEXP (XEXP (src_op0, 0), 1);
3326 rtx r = XEXP (src_op0, 1);
3327 rtx s = src_op1;
3328
3329 /* Split both "((X op Y) op X) op Y" and
3330 "((X op Y) op Y) op X" as "T op T" where T is
3331 "X op Y". */
3332 if ((rtx_equal_p (p,r) && rtx_equal_p (q,s))
3333 || (rtx_equal_p (p,s) && rtx_equal_p (q,r)))
3334 {
3335 newi2pat = gen_rtx_SET (VOIDmode, newdest,
3336 XEXP (src_op0, 0));
3337 SUBST (XEXP (setsrc, 0), newdest);
3338 SUBST (XEXP (setsrc, 1), newdest);
3339 subst_done = true;
3340 }
3341 /* Split "((X op X) op Y) op Y)" as "T op T" where
3342 T is "X op Y". */
3343 else if (rtx_equal_p (p,q) && rtx_equal_p (r,s))
3344 {
3345 rtx tmp = simplify_gen_binary (code, mode, p, r);
3346 newi2pat = gen_rtx_SET (VOIDmode, newdest, tmp);
3347 SUBST (XEXP (setsrc, 0), newdest);
3348 SUBST (XEXP (setsrc, 1), newdest);
3349 subst_done = true;
3350 }
3351 }
3352 }
3353
3354 if (!subst_done)
3355 {
3356 newi2pat = gen_rtx_SET (VOIDmode, newdest, *split);
3357 SUBST (*split, newdest);
3358 }
3359
3360 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
3361
3362 /* recog_for_combine might have added CLOBBERs to newi2pat.
3363 Make sure NEWPAT does not depend on the clobbered regs. */
3364 if (GET_CODE (newi2pat) == PARALLEL)
3365 for (i = XVECLEN (newi2pat, 0) - 1; i >= 0; i--)
3366 if (GET_CODE (XVECEXP (newi2pat, 0, i)) == CLOBBER)
3367 {
3368 rtx reg = XEXP (XVECEXP (newi2pat, 0, i), 0);
3369 if (reg_overlap_mentioned_p (reg, newpat))
3370 {
3371 undo_all ();
3372 return 0;
3373 }
3374 }
3375
3376 /* If the split point was a MULT and we didn't have one before,
3377 don't use one now. */
3378 if (i2_code_number >= 0 && ! (split_code == MULT && ! have_mult))
3379 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3380 }
3381 }
3382
3383 /* Check for a case where we loaded from memory in a narrow mode and
3384 then sign extended it, but we need both registers. In that case,
3385 we have a PARALLEL with both loads from the same memory location.
3386 We can split this into a load from memory followed by a register-register
3387 copy. This saves at least one insn, more if register allocation can
3388 eliminate the copy.
3389
3390 We cannot do this if the destination of the first assignment is a
3391 condition code register or cc0. We eliminate this case by making sure
3392 the SET_DEST and SET_SRC have the same mode.
3393
3394 We cannot do this if the destination of the second assignment is
3395 a register that we have already assumed is zero-extended. Similarly
3396 for a SUBREG of such a register. */
3397
3398 else if (i1 && insn_code_number < 0 && asm_noperands (newpat) < 0
3399 && GET_CODE (newpat) == PARALLEL
3400 && XVECLEN (newpat, 0) == 2
3401 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
3402 && GET_CODE (SET_SRC (XVECEXP (newpat, 0, 0))) == SIGN_EXTEND
3403 && (GET_MODE (SET_DEST (XVECEXP (newpat, 0, 0)))
3404 == GET_MODE (SET_SRC (XVECEXP (newpat, 0, 0))))
3405 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
3406 && rtx_equal_p (SET_SRC (XVECEXP (newpat, 0, 1)),
3407 XEXP (SET_SRC (XVECEXP (newpat, 0, 0)), 0))
3408 && ! use_crosses_set_p (SET_SRC (XVECEXP (newpat, 0, 1)),
3409 DF_INSN_LUID (i2))
3410 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != ZERO_EXTRACT
3411 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != STRICT_LOW_PART
3412 && ! (temp = SET_DEST (XVECEXP (newpat, 0, 1)),
3413 (REG_P (temp)
3414 && VEC_index (reg_stat_type, reg_stat,
3415 REGNO (temp))->nonzero_bits != 0
3416 && GET_MODE_BITSIZE (GET_MODE (temp)) < BITS_PER_WORD
3417 && GET_MODE_BITSIZE (GET_MODE (temp)) < HOST_BITS_PER_INT
3418 && (VEC_index (reg_stat_type, reg_stat,
3419 REGNO (temp))->nonzero_bits
3420 != GET_MODE_MASK (word_mode))))
3421 && ! (GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) == SUBREG
3422 && (temp = SUBREG_REG (SET_DEST (XVECEXP (newpat, 0, 1))),
3423 (REG_P (temp)
3424 && VEC_index (reg_stat_type, reg_stat,
3425 REGNO (temp))->nonzero_bits != 0
3426 && GET_MODE_BITSIZE (GET_MODE (temp)) < BITS_PER_WORD
3427 && GET_MODE_BITSIZE (GET_MODE (temp)) < HOST_BITS_PER_INT
3428 && (VEC_index (reg_stat_type, reg_stat,
3429 REGNO (temp))->nonzero_bits
3430 != GET_MODE_MASK (word_mode)))))
3431 && ! reg_overlap_mentioned_p (SET_DEST (XVECEXP (newpat, 0, 1)),
3432 SET_SRC (XVECEXP (newpat, 0, 1)))
3433 && ! find_reg_note (i3, REG_UNUSED,
3434 SET_DEST (XVECEXP (newpat, 0, 0))))
3435 {
3436 rtx ni2dest;
3437
3438 newi2pat = XVECEXP (newpat, 0, 0);
3439 ni2dest = SET_DEST (XVECEXP (newpat, 0, 0));
3440 newpat = XVECEXP (newpat, 0, 1);
3441 SUBST (SET_SRC (newpat),
3442 gen_lowpart (GET_MODE (SET_SRC (newpat)), ni2dest));
3443 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
3444
3445 if (i2_code_number >= 0)
3446 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3447
3448 if (insn_code_number >= 0)
3449 swap_i2i3 = 1;
3450 }
3451
3452 /* Similarly, check for a case where we have a PARALLEL of two independent
3453 SETs but we started with three insns. In this case, we can do the sets
3454 as two separate insns. This case occurs when some SET allows two
3455 other insns to combine, but the destination of that SET is still live. */
3456
3457 else if (i1 && insn_code_number < 0 && asm_noperands (newpat) < 0
3458 && GET_CODE (newpat) == PARALLEL
3459 && XVECLEN (newpat, 0) == 2
3460 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
3461 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) != ZERO_EXTRACT
3462 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) != STRICT_LOW_PART
3463 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
3464 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != ZERO_EXTRACT
3465 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != STRICT_LOW_PART
3466 && ! use_crosses_set_p (SET_SRC (XVECEXP (newpat, 0, 1)),
3467 DF_INSN_LUID (i2))
3468 && ! reg_referenced_p (SET_DEST (XVECEXP (newpat, 0, 1)),
3469 XVECEXP (newpat, 0, 0))
3470 && ! reg_referenced_p (SET_DEST (XVECEXP (newpat, 0, 0)),
3471 XVECEXP (newpat, 0, 1))
3472 && ! (contains_muldiv (SET_SRC (XVECEXP (newpat, 0, 0)))
3473 && contains_muldiv (SET_SRC (XVECEXP (newpat, 0, 1))))
3474 #ifdef HAVE_cc0
3475 /* We cannot split the parallel into two sets if both sets
3476 reference cc0. */
3477 && ! (reg_referenced_p (cc0_rtx, XVECEXP (newpat, 0, 0))
3478 && reg_referenced_p (cc0_rtx, XVECEXP (newpat, 0, 1)))
3479 #endif
3480 )
3481 {
3482 /* Normally, it doesn't matter which of the two is done first,
3483 but it does if one references cc0. In that case, it has to
3484 be first. */
3485 #ifdef HAVE_cc0
3486 if (reg_referenced_p (cc0_rtx, XVECEXP (newpat, 0, 0)))
3487 {
3488 newi2pat = XVECEXP (newpat, 0, 0);
3489 newpat = XVECEXP (newpat, 0, 1);
3490 }
3491 else
3492 #endif
3493 {
3494 newi2pat = XVECEXP (newpat, 0, 1);
3495 newpat = XVECEXP (newpat, 0, 0);
3496 }
3497
3498 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
3499
3500 if (i2_code_number >= 0)
3501 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3502 }
3503
3504 /* If it still isn't recognized, fail and change things back the way they
3505 were. */
3506 if ((insn_code_number < 0
3507 /* Is the result a reasonable ASM_OPERANDS? */
3508 && (! check_asm_operands (newpat) || added_sets_1 || added_sets_2)))
3509 {
3510 undo_all ();
3511 return 0;
3512 }
3513
3514 /* If we had to change another insn, make sure it is valid also. */
3515 if (undobuf.other_insn)
3516 {
3517 CLEAR_HARD_REG_SET (newpat_used_regs);
3518
3519 other_pat = PATTERN (undobuf.other_insn);
3520 other_code_number = recog_for_combine (&other_pat, undobuf.other_insn,
3521 &new_other_notes);
3522
3523 if (other_code_number < 0 && ! check_asm_operands (other_pat))
3524 {
3525 undo_all ();
3526 return 0;
3527 }
3528 }
3529
3530 #ifdef HAVE_cc0
3531 /* If I2 is the CC0 setter and I3 is the CC0 user then check whether
3532 they are adjacent to each other or not. */
3533 {
3534 rtx p = prev_nonnote_insn (i3);
3535 if (p && p != i2 && NONJUMP_INSN_P (p) && newi2pat
3536 && sets_cc0_p (newi2pat))
3537 {
3538 undo_all ();
3539 return 0;
3540 }
3541 }
3542 #endif
3543
3544 /* Only allow this combination if insn_rtx_costs reports that the
3545 replacement instructions are cheaper than the originals. */
3546 if (!combine_validate_cost (i1, i2, i3, newpat, newi2pat, other_pat))
3547 {
3548 undo_all ();
3549 return 0;
3550 }
3551
3552 if (MAY_HAVE_DEBUG_INSNS)
3553 {
3554 struct undo *undo;
3555
3556 for (undo = undobuf.undos; undo; undo = undo->next)
3557 if (undo->kind == UNDO_MODE)
3558 {
3559 rtx reg = *undo->where.r;
3560 enum machine_mode new_mode = GET_MODE (reg);
3561 enum machine_mode old_mode = undo->old_contents.m;
3562
3563 /* Temporarily revert mode back. */
3564 adjust_reg_mode (reg, old_mode);
3565
3566 if (reg == i2dest && i2scratch)
3567 {
3568 /* If we used i2dest as a scratch register with a
3569 different mode, substitute it for the original
3570 i2src while its original mode is temporarily
3571 restored, and then clear i2scratch so that we don't
3572 do it again later. */
3573 propagate_for_debug (i2, i3, reg, i2src, false);
3574 i2scratch = false;
3575 /* Put back the new mode. */
3576 adjust_reg_mode (reg, new_mode);
3577 }
3578 else
3579 {
3580 rtx tempreg = gen_raw_REG (old_mode, REGNO (reg));
3581 rtx first, last;
3582
3583 if (reg == i2dest)
3584 {
3585 first = i2;
3586 last = i3;
3587 }
3588 else
3589 {
3590 first = i3;
3591 last = undobuf.other_insn;
3592 gcc_assert (last);
3593 }
3594
3595 /* We're dealing with a reg that changed mode but not
3596 meaning, so we want to turn it into a subreg for
3597 the new mode. However, because of REG sharing and
3598 because its mode had already changed, we have to do
3599 it in two steps. First, replace any debug uses of
3600 reg, with its original mode temporarily restored,
3601 with this copy we have created; then, replace the
3602 copy with the SUBREG of the original shared reg,
3603 once again changed to the new mode. */
3604 propagate_for_debug (first, last, reg, tempreg, false);
3605 adjust_reg_mode (reg, new_mode);
3606 propagate_for_debug (first, last, tempreg,
3607 lowpart_subreg (old_mode, reg, new_mode),
3608 false);
3609 }
3610 }
3611 }
3612
3613 /* If we will be able to accept this, we have made a
3614 change to the destination of I3. This requires us to
3615 do a few adjustments. */
3616
3617 if (changed_i3_dest)
3618 {
3619 PATTERN (i3) = newpat;
3620 adjust_for_new_dest (i3);
3621 }
3622
3623 /* We now know that we can do this combination. Merge the insns and
3624 update the status of registers and LOG_LINKS. */
3625
3626 if (undobuf.other_insn)
3627 {
3628 rtx note, next;
3629
3630 PATTERN (undobuf.other_insn) = other_pat;
3631
3632 /* If any of the notes in OTHER_INSN were REG_UNUSED, ensure that they
3633 are still valid. Then add any non-duplicate notes added by
3634 recog_for_combine. */
3635 for (note = REG_NOTES (undobuf.other_insn); note; note = next)
3636 {
3637 next = XEXP (note, 1);
3638
3639 if (REG_NOTE_KIND (note) == REG_UNUSED
3640 && ! reg_set_p (XEXP (note, 0), PATTERN (undobuf.other_insn)))
3641 remove_note (undobuf.other_insn, note);
3642 }
3643
3644 distribute_notes (new_other_notes, undobuf.other_insn,
3645 undobuf.other_insn, NULL_RTX, NULL_RTX, NULL_RTX);
3646 }
3647
3648 if (swap_i2i3)
3649 {
3650 rtx insn;
3651 rtx link;
3652 rtx ni2dest;
3653
3654 /* I3 now uses what used to be its destination and which is now
3655 I2's destination. This requires us to do a few adjustments. */
3656 PATTERN (i3) = newpat;
3657 adjust_for_new_dest (i3);
3658
3659 /* We need a LOG_LINK from I3 to I2. But we used to have one,
3660 so we still will.
3661
3662 However, some later insn might be using I2's dest and have
3663 a LOG_LINK pointing at I3. We must remove this link.
3664 The simplest way to remove the link is to point it at I1,
3665 which we know will be a NOTE. */
3666
3667 /* newi2pat is usually a SET here; however, recog_for_combine might
3668 have added some clobbers. */
3669 if (GET_CODE (newi2pat) == PARALLEL)
3670 ni2dest = SET_DEST (XVECEXP (newi2pat, 0, 0));
3671 else
3672 ni2dest = SET_DEST (newi2pat);
3673
3674 for (insn = NEXT_INSN (i3);
3675 insn && (this_basic_block->next_bb == EXIT_BLOCK_PTR
3676 || insn != BB_HEAD (this_basic_block->next_bb));
3677 insn = NEXT_INSN (insn))
3678 {
3679 if (INSN_P (insn) && reg_referenced_p (ni2dest, PATTERN (insn)))
3680 {
3681 for (link = LOG_LINKS (insn); link;
3682 link = XEXP (link, 1))
3683 if (XEXP (link, 0) == i3)
3684 XEXP (link, 0) = i1;
3685
3686 break;
3687 }
3688 }
3689 }
3690
3691 {
3692 rtx i3notes, i2notes, i1notes = 0;
3693 rtx i3links, i2links, i1links = 0;
3694 rtx midnotes = 0;
3695 unsigned int regno;
3696 /* Compute which registers we expect to eliminate. newi2pat may be setting
3697 either i3dest or i2dest, so we must check it. Also, i1dest may be the
3698 same as i3dest, in which case newi2pat may be setting i1dest. */
3699 rtx elim_i2 = ((newi2pat && reg_set_p (i2dest, newi2pat))
3700 || i2dest_in_i2src || i2dest_in_i1src
3701 || !i2dest_killed
3702 ? 0 : i2dest);
3703 rtx elim_i1 = (i1 == 0 || i1dest_in_i1src
3704 || (newi2pat && reg_set_p (i1dest, newi2pat))
3705 || !i1dest_killed
3706 ? 0 : i1dest);
3707
3708 /* Get the old REG_NOTES and LOG_LINKS from all our insns and
3709 clear them. */
3710 i3notes = REG_NOTES (i3), i3links = LOG_LINKS (i3);
3711 i2notes = REG_NOTES (i2), i2links = LOG_LINKS (i2);
3712 if (i1)
3713 i1notes = REG_NOTES (i1), i1links = LOG_LINKS (i1);
3714
3715 /* Ensure that we do not have something that should not be shared but
3716 occurs multiple times in the new insns. Check this by first
3717 resetting all the `used' flags and then copying anything is shared. */
3718
3719 reset_used_flags (i3notes);
3720 reset_used_flags (i2notes);
3721 reset_used_flags (i1notes);
3722 reset_used_flags (newpat);
3723 reset_used_flags (newi2pat);
3724 if (undobuf.other_insn)
3725 reset_used_flags (PATTERN (undobuf.other_insn));
3726
3727 i3notes = copy_rtx_if_shared (i3notes);
3728 i2notes = copy_rtx_if_shared (i2notes);
3729 i1notes = copy_rtx_if_shared (i1notes);
3730 newpat = copy_rtx_if_shared (newpat);
3731 newi2pat = copy_rtx_if_shared (newi2pat);
3732 if (undobuf.other_insn)
3733 reset_used_flags (PATTERN (undobuf.other_insn));
3734
3735 INSN_CODE (i3) = insn_code_number;
3736 PATTERN (i3) = newpat;
3737
3738 if (CALL_P (i3) && CALL_INSN_FUNCTION_USAGE (i3))
3739 {
3740 rtx call_usage = CALL_INSN_FUNCTION_USAGE (i3);
3741
3742 reset_used_flags (call_usage);
3743 call_usage = copy_rtx (call_usage);
3744
3745 if (substed_i2)
3746 {
3747 /* I2SRC must still be meaningful at this point. Some splitting
3748 operations can invalidate I2SRC, but those operations do not
3749 apply to calls. */
3750 gcc_assert (i2src);
3751 replace_rtx (call_usage, i2dest, i2src);
3752 }
3753
3754 if (substed_i1)
3755 replace_rtx (call_usage, i1dest, i1src);
3756
3757 CALL_INSN_FUNCTION_USAGE (i3) = call_usage;
3758 }
3759
3760 if (undobuf.other_insn)
3761 INSN_CODE (undobuf.other_insn) = other_code_number;
3762
3763 /* We had one special case above where I2 had more than one set and
3764 we replaced a destination of one of those sets with the destination
3765 of I3. In that case, we have to update LOG_LINKS of insns later
3766 in this basic block. Note that this (expensive) case is rare.
3767
3768 Also, in this case, we must pretend that all REG_NOTEs for I2
3769 actually came from I3, so that REG_UNUSED notes from I2 will be
3770 properly handled. */
3771
3772 if (i3_subst_into_i2)
3773 {
3774 for (i = 0; i < XVECLEN (PATTERN (i2), 0); i++)
3775 if ((GET_CODE (XVECEXP (PATTERN (i2), 0, i)) == SET
3776 || GET_CODE (XVECEXP (PATTERN (i2), 0, i)) == CLOBBER)
3777 && REG_P (SET_DEST (XVECEXP (PATTERN (i2), 0, i)))
3778 && SET_DEST (XVECEXP (PATTERN (i2), 0, i)) != i2dest
3779 && ! find_reg_note (i2, REG_UNUSED,
3780 SET_DEST (XVECEXP (PATTERN (i2), 0, i))))
3781 for (temp = NEXT_INSN (i2);
3782 temp && (this_basic_block->next_bb == EXIT_BLOCK_PTR
3783 || BB_HEAD (this_basic_block) != temp);
3784 temp = NEXT_INSN (temp))
3785 if (temp != i3 && INSN_P (temp))
3786 for (link = LOG_LINKS (temp); link; link = XEXP (link, 1))
3787 if (XEXP (link, 0) == i2)
3788 XEXP (link, 0) = i3;
3789
3790 if (i3notes)
3791 {
3792 rtx link = i3notes;
3793 while (XEXP (link, 1))
3794 link = XEXP (link, 1);
3795 XEXP (link, 1) = i2notes;
3796 }
3797 else
3798 i3notes = i2notes;
3799 i2notes = 0;
3800 }
3801
3802 LOG_LINKS (i3) = 0;
3803 REG_NOTES (i3) = 0;
3804 LOG_LINKS (i2) = 0;
3805 REG_NOTES (i2) = 0;
3806
3807 if (newi2pat)
3808 {
3809 if (MAY_HAVE_DEBUG_INSNS && i2scratch)
3810 propagate_for_debug (i2, i3, i2dest, i2src, false);
3811 INSN_CODE (i2) = i2_code_number;
3812 PATTERN (i2) = newi2pat;
3813 }
3814 else
3815 {
3816 if (MAY_HAVE_DEBUG_INSNS && i2src)
3817 propagate_for_debug (i2, i3, i2dest, i2src, i3_subst_into_i2);
3818 SET_INSN_DELETED (i2);
3819 }
3820
3821 if (i1)
3822 {
3823 LOG_LINKS (i1) = 0;
3824 REG_NOTES (i1) = 0;
3825 if (MAY_HAVE_DEBUG_INSNS)
3826 propagate_for_debug (i1, i3, i1dest, i1src, false);
3827 SET_INSN_DELETED (i1);
3828 }
3829
3830 /* Get death notes for everything that is now used in either I3 or
3831 I2 and used to die in a previous insn. If we built two new
3832 patterns, move from I1 to I2 then I2 to I3 so that we get the
3833 proper movement on registers that I2 modifies. */
3834
3835 if (newi2pat)
3836 {
3837 move_deaths (newi2pat, NULL_RTX, DF_INSN_LUID (i1), i2, &midnotes);
3838 move_deaths (newpat, newi2pat, DF_INSN_LUID (i1), i3, &midnotes);
3839 }
3840 else
3841 move_deaths (newpat, NULL_RTX, i1 ? DF_INSN_LUID (i1) : DF_INSN_LUID (i2),
3842 i3, &midnotes);
3843
3844 /* Distribute all the LOG_LINKS and REG_NOTES from I1, I2, and I3. */
3845 if (i3notes)
3846 distribute_notes (i3notes, i3, i3, newi2pat ? i2 : NULL_RTX,
3847 elim_i2, elim_i1);
3848 if (i2notes)
3849 distribute_notes (i2notes, i2, i3, newi2pat ? i2 : NULL_RTX,
3850 elim_i2, elim_i1);
3851 if (i1notes)
3852 distribute_notes (i1notes, i1, i3, newi2pat ? i2 : NULL_RTX,
3853 elim_i2, elim_i1);
3854 if (midnotes)
3855 distribute_notes (midnotes, NULL_RTX, i3, newi2pat ? i2 : NULL_RTX,
3856 elim_i2, elim_i1);
3857
3858 /* Distribute any notes added to I2 or I3 by recog_for_combine. We
3859 know these are REG_UNUSED and want them to go to the desired insn,
3860 so we always pass it as i3. */
3861
3862 if (newi2pat && new_i2_notes)
3863 distribute_notes (new_i2_notes, i2, i2, NULL_RTX, NULL_RTX, NULL_RTX);
3864
3865 if (new_i3_notes)
3866 distribute_notes (new_i3_notes, i3, i3, NULL_RTX, NULL_RTX, NULL_RTX);
3867
3868 /* If I3DEST was used in I3SRC, it really died in I3. We may need to
3869 put a REG_DEAD note for it somewhere. If NEWI2PAT exists and sets
3870 I3DEST, the death must be somewhere before I2, not I3. If we passed I3
3871 in that case, it might delete I2. Similarly for I2 and I1.
3872 Show an additional death due to the REG_DEAD note we make here. If
3873 we discard it in distribute_notes, we will decrement it again. */
3874
3875 if (i3dest_killed)
3876 {
3877 if (newi2pat && reg_set_p (i3dest_killed, newi2pat))
3878 distribute_notes (alloc_reg_note (REG_DEAD, i3dest_killed,
3879 NULL_RTX),
3880 NULL_RTX, i2, NULL_RTX, elim_i2, elim_i1);
3881 else
3882 distribute_notes (alloc_reg_note (REG_DEAD, i3dest_killed,
3883 NULL_RTX),
3884 NULL_RTX, i3, newi2pat ? i2 : NULL_RTX,
3885 elim_i2, elim_i1);
3886 }
3887
3888 if (i2dest_in_i2src)
3889 {
3890 if (newi2pat && reg_set_p (i2dest, newi2pat))
3891 distribute_notes (alloc_reg_note (REG_DEAD, i2dest, NULL_RTX),
3892 NULL_RTX, i2, NULL_RTX, NULL_RTX, NULL_RTX);
3893 else
3894 distribute_notes (alloc_reg_note (REG_DEAD, i2dest, NULL_RTX),
3895 NULL_RTX, i3, newi2pat ? i2 : NULL_RTX,
3896 NULL_RTX, NULL_RTX);
3897 }
3898
3899 if (i1dest_in_i1src)
3900 {
3901 if (newi2pat && reg_set_p (i1dest, newi2pat))
3902 distribute_notes (alloc_reg_note (REG_DEAD, i1dest, NULL_RTX),
3903 NULL_RTX, i2, NULL_RTX, NULL_RTX, NULL_RTX);
3904 else
3905 distribute_notes (alloc_reg_note (REG_DEAD, i1dest, NULL_RTX),
3906 NULL_RTX, i3, newi2pat ? i2 : NULL_RTX,
3907 NULL_RTX, NULL_RTX);
3908 }
3909
3910 distribute_links (i3links);
3911 distribute_links (i2links);
3912 distribute_links (i1links);
3913
3914 if (REG_P (i2dest))
3915 {
3916 rtx link;
3917 rtx i2_insn = 0, i2_val = 0, set;
3918
3919 /* The insn that used to set this register doesn't exist, and
3920 this life of the register may not exist either. See if one of
3921 I3's links points to an insn that sets I2DEST. If it does,
3922 that is now the last known value for I2DEST. If we don't update
3923 this and I2 set the register to a value that depended on its old
3924 contents, we will get confused. If this insn is used, thing
3925 will be set correctly in combine_instructions. */
3926
3927 for (link = LOG_LINKS (i3); link; link = XEXP (link, 1))
3928 if ((set = single_set (XEXP (link, 0))) != 0
3929 && rtx_equal_p (i2dest, SET_DEST (set)))
3930 i2_insn = XEXP (link, 0), i2_val = SET_SRC (set);
3931
3932 record_value_for_reg (i2dest, i2_insn, i2_val);
3933
3934 /* If the reg formerly set in I2 died only once and that was in I3,
3935 zero its use count so it won't make `reload' do any work. */
3936 if (! added_sets_2
3937 && (newi2pat == 0 || ! reg_mentioned_p (i2dest, newi2pat))
3938 && ! i2dest_in_i2src)
3939 {
3940 regno = REGNO (i2dest);
3941 INC_REG_N_SETS (regno, -1);
3942 }
3943 }
3944
3945 if (i1 && REG_P (i1dest))
3946 {
3947 rtx link;
3948 rtx i1_insn = 0, i1_val = 0, set;
3949
3950 for (link = LOG_LINKS (i3); link; link = XEXP (link, 1))
3951 if ((set = single_set (XEXP (link, 0))) != 0
3952 && rtx_equal_p (i1dest, SET_DEST (set)))
3953 i1_insn = XEXP (link, 0), i1_val = SET_SRC (set);
3954
3955 record_value_for_reg (i1dest, i1_insn, i1_val);
3956
3957 regno = REGNO (i1dest);
3958 if (! added_sets_1 && ! i1dest_in_i1src)
3959 INC_REG_N_SETS (regno, -1);
3960 }
3961
3962 /* Update reg_stat[].nonzero_bits et al for any changes that may have
3963 been made to this insn. The order of
3964 set_nonzero_bits_and_sign_copies() is important. Because newi2pat
3965 can affect nonzero_bits of newpat */
3966 if (newi2pat)
3967 note_stores (newi2pat, set_nonzero_bits_and_sign_copies, NULL);
3968 note_stores (newpat, set_nonzero_bits_and_sign_copies, NULL);
3969 }
3970
3971 if (undobuf.other_insn != NULL_RTX)
3972 {
3973 if (dump_file)
3974 {
3975 fprintf (dump_file, "modifying other_insn ");
3976 dump_insn_slim (dump_file, undobuf.other_insn);
3977 }
3978 df_insn_rescan (undobuf.other_insn);
3979 }
3980
3981 if (i1 && !(NOTE_P(i1) && (NOTE_KIND (i1) == NOTE_INSN_DELETED)))
3982 {
3983 if (dump_file)
3984 {
3985 fprintf (dump_file, "modifying insn i1 ");
3986 dump_insn_slim (dump_file, i1);
3987 }
3988 df_insn_rescan (i1);
3989 }
3990
3991 if (i2 && !(NOTE_P(i2) && (NOTE_KIND (i2) == NOTE_INSN_DELETED)))
3992 {
3993 if (dump_file)
3994 {
3995 fprintf (dump_file, "modifying insn i2 ");
3996 dump_insn_slim (dump_file, i2);
3997 }
3998 df_insn_rescan (i2);
3999 }
4000
4001 if (i3 && !(NOTE_P(i3) && (NOTE_KIND (i3) == NOTE_INSN_DELETED)))
4002 {
4003 if (dump_file)
4004 {
4005 fprintf (dump_file, "modifying insn i3 ");
4006 dump_insn_slim (dump_file, i3);
4007 }
4008 df_insn_rescan (i3);
4009 }
4010
4011 /* Set new_direct_jump_p if a new return or simple jump instruction
4012 has been created. Adjust the CFG accordingly. */
4013
4014 if (returnjump_p (i3) || any_uncondjump_p (i3))
4015 {
4016 *new_direct_jump_p = 1;
4017 mark_jump_label (PATTERN (i3), i3, 0);
4018 update_cfg_for_uncondjump (i3);
4019 }
4020
4021 if (undobuf.other_insn != NULL_RTX
4022 && (returnjump_p (undobuf.other_insn)
4023 || any_uncondjump_p (undobuf.other_insn)))
4024 {
4025 *new_direct_jump_p = 1;
4026 update_cfg_for_uncondjump (undobuf.other_insn);
4027 }
4028
4029 /* A noop might also need cleaning up of CFG, if it comes from the
4030 simplification of a jump. */
4031 if (GET_CODE (newpat) == SET
4032 && SET_SRC (newpat) == pc_rtx
4033 && SET_DEST (newpat) == pc_rtx)
4034 {
4035 *new_direct_jump_p = 1;
4036 update_cfg_for_uncondjump (i3);
4037 }
4038
4039 combine_successes++;
4040 undo_commit ();
4041
4042 if (added_links_insn
4043 && (newi2pat == 0 || DF_INSN_LUID (added_links_insn) < DF_INSN_LUID (i2))
4044 && DF_INSN_LUID (added_links_insn) < DF_INSN_LUID (i3))
4045 return added_links_insn;
4046 else
4047 return newi2pat ? i2 : i3;
4048 }
4049 \f
4050 /* Undo all the modifications recorded in undobuf. */
4051
4052 static void
4053 undo_all (void)
4054 {
4055 struct undo *undo, *next;
4056
4057 for (undo = undobuf.undos; undo; undo = next)
4058 {
4059 next = undo->next;
4060 switch (undo->kind)
4061 {
4062 case UNDO_RTX:
4063 *undo->where.r = undo->old_contents.r;
4064 break;
4065 case UNDO_INT:
4066 *undo->where.i = undo->old_contents.i;
4067 break;
4068 case UNDO_MODE:
4069 adjust_reg_mode (*undo->where.r, undo->old_contents.m);
4070 break;
4071 default:
4072 gcc_unreachable ();
4073 }
4074
4075 undo->next = undobuf.frees;
4076 undobuf.frees = undo;
4077 }
4078
4079 undobuf.undos = 0;
4080 }
4081
4082 /* We've committed to accepting the changes we made. Move all
4083 of the undos to the free list. */
4084
4085 static void
4086 undo_commit (void)
4087 {
4088 struct undo *undo, *next;
4089
4090 for (undo = undobuf.undos; undo; undo = next)
4091 {
4092 next = undo->next;
4093 undo->next = undobuf.frees;
4094 undobuf.frees = undo;
4095 }
4096 undobuf.undos = 0;
4097 }
4098 \f
4099 /* Find the innermost point within the rtx at LOC, possibly LOC itself,
4100 where we have an arithmetic expression and return that point. LOC will
4101 be inside INSN.
4102
4103 try_combine will call this function to see if an insn can be split into
4104 two insns. */
4105
4106 static rtx *
4107 find_split_point (rtx *loc, rtx insn, bool set_src)
4108 {
4109 rtx x = *loc;
4110 enum rtx_code code = GET_CODE (x);
4111 rtx *split;
4112 unsigned HOST_WIDE_INT len = 0;
4113 HOST_WIDE_INT pos = 0;
4114 int unsignedp = 0;
4115 rtx inner = NULL_RTX;
4116
4117 /* First special-case some codes. */
4118 switch (code)
4119 {
4120 case SUBREG:
4121 #ifdef INSN_SCHEDULING
4122 /* If we are making a paradoxical SUBREG invalid, it becomes a split
4123 point. */
4124 if (MEM_P (SUBREG_REG (x)))
4125 return loc;
4126 #endif
4127 return find_split_point (&SUBREG_REG (x), insn, false);
4128
4129 case MEM:
4130 #ifdef HAVE_lo_sum
4131 /* If we have (mem (const ..)) or (mem (symbol_ref ...)), split it
4132 using LO_SUM and HIGH. */
4133 if (GET_CODE (XEXP (x, 0)) == CONST
4134 || GET_CODE (XEXP (x, 0)) == SYMBOL_REF)
4135 {
4136 enum machine_mode address_mode
4137 = targetm.addr_space.address_mode (MEM_ADDR_SPACE (x));
4138
4139 SUBST (XEXP (x, 0),
4140 gen_rtx_LO_SUM (address_mode,
4141 gen_rtx_HIGH (address_mode, XEXP (x, 0)),
4142 XEXP (x, 0)));
4143 return &XEXP (XEXP (x, 0), 0);
4144 }
4145 #endif
4146
4147 /* If we have a PLUS whose second operand is a constant and the
4148 address is not valid, perhaps will can split it up using
4149 the machine-specific way to split large constants. We use
4150 the first pseudo-reg (one of the virtual regs) as a placeholder;
4151 it will not remain in the result. */
4152 if (GET_CODE (XEXP (x, 0)) == PLUS
4153 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
4154 && ! memory_address_addr_space_p (GET_MODE (x), XEXP (x, 0),
4155 MEM_ADDR_SPACE (x)))
4156 {
4157 rtx reg = regno_reg_rtx[FIRST_PSEUDO_REGISTER];
4158 rtx seq = combine_split_insns (gen_rtx_SET (VOIDmode, reg,
4159 XEXP (x, 0)),
4160 subst_insn);
4161
4162 /* This should have produced two insns, each of which sets our
4163 placeholder. If the source of the second is a valid address,
4164 we can make put both sources together and make a split point
4165 in the middle. */
4166
4167 if (seq
4168 && NEXT_INSN (seq) != NULL_RTX
4169 && NEXT_INSN (NEXT_INSN (seq)) == NULL_RTX
4170 && NONJUMP_INSN_P (seq)
4171 && GET_CODE (PATTERN (seq)) == SET
4172 && SET_DEST (PATTERN (seq)) == reg
4173 && ! reg_mentioned_p (reg,
4174 SET_SRC (PATTERN (seq)))
4175 && NONJUMP_INSN_P (NEXT_INSN (seq))
4176 && GET_CODE (PATTERN (NEXT_INSN (seq))) == SET
4177 && SET_DEST (PATTERN (NEXT_INSN (seq))) == reg
4178 && memory_address_addr_space_p
4179 (GET_MODE (x), SET_SRC (PATTERN (NEXT_INSN (seq))),
4180 MEM_ADDR_SPACE (x)))
4181 {
4182 rtx src1 = SET_SRC (PATTERN (seq));
4183 rtx src2 = SET_SRC (PATTERN (NEXT_INSN (seq)));
4184
4185 /* Replace the placeholder in SRC2 with SRC1. If we can
4186 find where in SRC2 it was placed, that can become our
4187 split point and we can replace this address with SRC2.
4188 Just try two obvious places. */
4189
4190 src2 = replace_rtx (src2, reg, src1);
4191 split = 0;
4192 if (XEXP (src2, 0) == src1)
4193 split = &XEXP (src2, 0);
4194 else if (GET_RTX_FORMAT (GET_CODE (XEXP (src2, 0)))[0] == 'e'
4195 && XEXP (XEXP (src2, 0), 0) == src1)
4196 split = &XEXP (XEXP (src2, 0), 0);
4197
4198 if (split)
4199 {
4200 SUBST (XEXP (x, 0), src2);
4201 return split;
4202 }
4203 }
4204
4205 /* If that didn't work, perhaps the first operand is complex and
4206 needs to be computed separately, so make a split point there.
4207 This will occur on machines that just support REG + CONST
4208 and have a constant moved through some previous computation. */
4209
4210 else if (!OBJECT_P (XEXP (XEXP (x, 0), 0))
4211 && ! (GET_CODE (XEXP (XEXP (x, 0), 0)) == SUBREG
4212 && OBJECT_P (SUBREG_REG (XEXP (XEXP (x, 0), 0)))))
4213 return &XEXP (XEXP (x, 0), 0);
4214 }
4215
4216 /* If we have a PLUS whose first operand is complex, try computing it
4217 separately by making a split there. */
4218 if (GET_CODE (XEXP (x, 0)) == PLUS
4219 && ! memory_address_addr_space_p (GET_MODE (x), XEXP (x, 0),
4220 MEM_ADDR_SPACE (x))
4221 && ! OBJECT_P (XEXP (XEXP (x, 0), 0))
4222 && ! (GET_CODE (XEXP (XEXP (x, 0), 0)) == SUBREG
4223 && OBJECT_P (SUBREG_REG (XEXP (XEXP (x, 0), 0)))))
4224 return &XEXP (XEXP (x, 0), 0);
4225 break;
4226
4227 case SET:
4228 #ifdef HAVE_cc0
4229 /* If SET_DEST is CC0 and SET_SRC is not an operand, a COMPARE, or a
4230 ZERO_EXTRACT, the most likely reason why this doesn't match is that
4231 we need to put the operand into a register. So split at that
4232 point. */
4233
4234 if (SET_DEST (x) == cc0_rtx
4235 && GET_CODE (SET_SRC (x)) != COMPARE
4236 && GET_CODE (SET_SRC (x)) != ZERO_EXTRACT
4237 && !OBJECT_P (SET_SRC (x))
4238 && ! (GET_CODE (SET_SRC (x)) == SUBREG
4239 && OBJECT_P (SUBREG_REG (SET_SRC (x)))))
4240 return &SET_SRC (x);
4241 #endif
4242
4243 /* See if we can split SET_SRC as it stands. */
4244 split = find_split_point (&SET_SRC (x), insn, true);
4245 if (split && split != &SET_SRC (x))
4246 return split;
4247
4248 /* See if we can split SET_DEST as it stands. */
4249 split = find_split_point (&SET_DEST (x), insn, false);
4250 if (split && split != &SET_DEST (x))
4251 return split;
4252
4253 /* See if this is a bitfield assignment with everything constant. If
4254 so, this is an IOR of an AND, so split it into that. */
4255 if (GET_CODE (SET_DEST (x)) == ZERO_EXTRACT
4256 && (GET_MODE_BITSIZE (GET_MODE (XEXP (SET_DEST (x), 0)))
4257 <= HOST_BITS_PER_WIDE_INT)
4258 && CONST_INT_P (XEXP (SET_DEST (x), 1))
4259 && CONST_INT_P (XEXP (SET_DEST (x), 2))
4260 && CONST_INT_P (SET_SRC (x))
4261 && ((INTVAL (XEXP (SET_DEST (x), 1))
4262 + INTVAL (XEXP (SET_DEST (x), 2)))
4263 <= GET_MODE_BITSIZE (GET_MODE (XEXP (SET_DEST (x), 0))))
4264 && ! side_effects_p (XEXP (SET_DEST (x), 0)))
4265 {
4266 HOST_WIDE_INT pos = INTVAL (XEXP (SET_DEST (x), 2));
4267 unsigned HOST_WIDE_INT len = INTVAL (XEXP (SET_DEST (x), 1));
4268 unsigned HOST_WIDE_INT src = INTVAL (SET_SRC (x));
4269 rtx dest = XEXP (SET_DEST (x), 0);
4270 enum machine_mode mode = GET_MODE (dest);
4271 unsigned HOST_WIDE_INT mask = ((HOST_WIDE_INT) 1 << len) - 1;
4272 rtx or_mask;
4273
4274 if (BITS_BIG_ENDIAN)
4275 pos = GET_MODE_BITSIZE (mode) - len - pos;
4276
4277 or_mask = gen_int_mode (src << pos, mode);
4278 if (src == mask)
4279 SUBST (SET_SRC (x),
4280 simplify_gen_binary (IOR, mode, dest, or_mask));
4281 else
4282 {
4283 rtx negmask = gen_int_mode (~(mask << pos), mode);
4284 SUBST (SET_SRC (x),
4285 simplify_gen_binary (IOR, mode,
4286 simplify_gen_binary (AND, mode,
4287 dest, negmask),
4288 or_mask));
4289 }
4290
4291 SUBST (SET_DEST (x), dest);
4292
4293 split = find_split_point (&SET_SRC (x), insn, true);
4294 if (split && split != &SET_SRC (x))
4295 return split;
4296 }
4297
4298 /* Otherwise, see if this is an operation that we can split into two.
4299 If so, try to split that. */
4300 code = GET_CODE (SET_SRC (x));
4301
4302 switch (code)
4303 {
4304 case AND:
4305 /* If we are AND'ing with a large constant that is only a single
4306 bit and the result is only being used in a context where we
4307 need to know if it is zero or nonzero, replace it with a bit
4308 extraction. This will avoid the large constant, which might
4309 have taken more than one insn to make. If the constant were
4310 not a valid argument to the AND but took only one insn to make,
4311 this is no worse, but if it took more than one insn, it will
4312 be better. */
4313
4314 if (CONST_INT_P (XEXP (SET_SRC (x), 1))
4315 && REG_P (XEXP (SET_SRC (x), 0))
4316 && (pos = exact_log2 (INTVAL (XEXP (SET_SRC (x), 1)))) >= 7
4317 && REG_P (SET_DEST (x))
4318 && (split = find_single_use (SET_DEST (x), insn, (rtx*) 0)) != 0
4319 && (GET_CODE (*split) == EQ || GET_CODE (*split) == NE)
4320 && XEXP (*split, 0) == SET_DEST (x)
4321 && XEXP (*split, 1) == const0_rtx)
4322 {
4323 rtx extraction = make_extraction (GET_MODE (SET_DEST (x)),
4324 XEXP (SET_SRC (x), 0),
4325 pos, NULL_RTX, 1, 1, 0, 0);
4326 if (extraction != 0)
4327 {
4328 SUBST (SET_SRC (x), extraction);
4329 return find_split_point (loc, insn, false);
4330 }
4331 }
4332 break;
4333
4334 case NE:
4335 /* If STORE_FLAG_VALUE is -1, this is (NE X 0) and only one bit of X
4336 is known to be on, this can be converted into a NEG of a shift. */
4337 if (STORE_FLAG_VALUE == -1 && XEXP (SET_SRC (x), 1) == const0_rtx
4338 && GET_MODE (SET_SRC (x)) == GET_MODE (XEXP (SET_SRC (x), 0))
4339 && 1 <= (pos = exact_log2
4340 (nonzero_bits (XEXP (SET_SRC (x), 0),
4341 GET_MODE (XEXP (SET_SRC (x), 0))))))
4342 {
4343 enum machine_mode mode = GET_MODE (XEXP (SET_SRC (x), 0));
4344
4345 SUBST (SET_SRC (x),
4346 gen_rtx_NEG (mode,
4347 gen_rtx_LSHIFTRT (mode,
4348 XEXP (SET_SRC (x), 0),
4349 GEN_INT (pos))));
4350
4351 split = find_split_point (&SET_SRC (x), insn, true);
4352 if (split && split != &SET_SRC (x))
4353 return split;
4354 }
4355 break;
4356
4357 case SIGN_EXTEND:
4358 inner = XEXP (SET_SRC (x), 0);
4359
4360 /* We can't optimize if either mode is a partial integer
4361 mode as we don't know how many bits are significant
4362 in those modes. */
4363 if (GET_MODE_CLASS (GET_MODE (inner)) == MODE_PARTIAL_INT
4364 || GET_MODE_CLASS (GET_MODE (SET_SRC (x))) == MODE_PARTIAL_INT)
4365 break;
4366
4367 pos = 0;
4368 len = GET_MODE_BITSIZE (GET_MODE (inner));
4369 unsignedp = 0;
4370 break;
4371
4372 case SIGN_EXTRACT:
4373 case ZERO_EXTRACT:
4374 if (CONST_INT_P (XEXP (SET_SRC (x), 1))
4375 && CONST_INT_P (XEXP (SET_SRC (x), 2)))
4376 {
4377 inner = XEXP (SET_SRC (x), 0);
4378 len = INTVAL (XEXP (SET_SRC (x), 1));
4379 pos = INTVAL (XEXP (SET_SRC (x), 2));
4380
4381 if (BITS_BIG_ENDIAN)
4382 pos = GET_MODE_BITSIZE (GET_MODE (inner)) - len - pos;
4383 unsignedp = (code == ZERO_EXTRACT);
4384 }
4385 break;
4386
4387 default:
4388 break;
4389 }
4390
4391 if (len && pos >= 0 && pos + len <= GET_MODE_BITSIZE (GET_MODE (inner)))
4392 {
4393 enum machine_mode mode = GET_MODE (SET_SRC (x));
4394
4395 /* For unsigned, we have a choice of a shift followed by an
4396 AND or two shifts. Use two shifts for field sizes where the
4397 constant might be too large. We assume here that we can
4398 always at least get 8-bit constants in an AND insn, which is
4399 true for every current RISC. */
4400
4401 if (unsignedp && len <= 8)
4402 {
4403 SUBST (SET_SRC (x),
4404 gen_rtx_AND (mode,
4405 gen_rtx_LSHIFTRT
4406 (mode, gen_lowpart (mode, inner),
4407 GEN_INT (pos)),
4408 GEN_INT (((HOST_WIDE_INT) 1 << len) - 1)));
4409
4410 split = find_split_point (&SET_SRC (x), insn, true);
4411 if (split && split != &SET_SRC (x))
4412 return split;
4413 }
4414 else
4415 {
4416 SUBST (SET_SRC (x),
4417 gen_rtx_fmt_ee
4418 (unsignedp ? LSHIFTRT : ASHIFTRT, mode,
4419 gen_rtx_ASHIFT (mode,
4420 gen_lowpart (mode, inner),
4421 GEN_INT (GET_MODE_BITSIZE (mode)
4422 - len - pos)),
4423 GEN_INT (GET_MODE_BITSIZE (mode) - len)));
4424
4425 split = find_split_point (&SET_SRC (x), insn, true);
4426 if (split && split != &SET_SRC (x))
4427 return split;
4428 }
4429 }
4430
4431 /* See if this is a simple operation with a constant as the second
4432 operand. It might be that this constant is out of range and hence
4433 could be used as a split point. */
4434 if (BINARY_P (SET_SRC (x))
4435 && CONSTANT_P (XEXP (SET_SRC (x), 1))
4436 && (OBJECT_P (XEXP (SET_SRC (x), 0))
4437 || (GET_CODE (XEXP (SET_SRC (x), 0)) == SUBREG
4438 && OBJECT_P (SUBREG_REG (XEXP (SET_SRC (x), 0))))))
4439 return &XEXP (SET_SRC (x), 1);
4440
4441 /* Finally, see if this is a simple operation with its first operand
4442 not in a register. The operation might require this operand in a
4443 register, so return it as a split point. We can always do this
4444 because if the first operand were another operation, we would have
4445 already found it as a split point. */
4446 if ((BINARY_P (SET_SRC (x)) || UNARY_P (SET_SRC (x)))
4447 && ! register_operand (XEXP (SET_SRC (x), 0), VOIDmode))
4448 return &XEXP (SET_SRC (x), 0);
4449
4450 return 0;
4451
4452 case AND:
4453 case IOR:
4454 /* We write NOR as (and (not A) (not B)), but if we don't have a NOR,
4455 it is better to write this as (not (ior A B)) so we can split it.
4456 Similarly for IOR. */
4457 if (GET_CODE (XEXP (x, 0)) == NOT && GET_CODE (XEXP (x, 1)) == NOT)
4458 {
4459 SUBST (*loc,
4460 gen_rtx_NOT (GET_MODE (x),
4461 gen_rtx_fmt_ee (code == IOR ? AND : IOR,
4462 GET_MODE (x),
4463 XEXP (XEXP (x, 0), 0),
4464 XEXP (XEXP (x, 1), 0))));
4465 return find_split_point (loc, insn, set_src);
4466 }
4467
4468 /* Many RISC machines have a large set of logical insns. If the
4469 second operand is a NOT, put it first so we will try to split the
4470 other operand first. */
4471 if (GET_CODE (XEXP (x, 1)) == NOT)
4472 {
4473 rtx tem = XEXP (x, 0);
4474 SUBST (XEXP (x, 0), XEXP (x, 1));
4475 SUBST (XEXP (x, 1), tem);
4476 }
4477 break;
4478
4479 case PLUS:
4480 case MINUS:
4481 /* Split at a multiply-accumulate instruction. However if this is
4482 the SET_SRC, we likely do not have such an instruction and it's
4483 worthless to try this split. */
4484 if (!set_src && GET_CODE (XEXP (x, 0)) == MULT)
4485 return loc;
4486
4487 default:
4488 break;
4489 }
4490
4491 /* Otherwise, select our actions depending on our rtx class. */
4492 switch (GET_RTX_CLASS (code))
4493 {
4494 case RTX_BITFIELD_OPS: /* This is ZERO_EXTRACT and SIGN_EXTRACT. */
4495 case RTX_TERNARY:
4496 split = find_split_point (&XEXP (x, 2), insn, false);
4497 if (split)
4498 return split;
4499 /* ... fall through ... */
4500 case RTX_BIN_ARITH:
4501 case RTX_COMM_ARITH:
4502 case RTX_COMPARE:
4503 case RTX_COMM_COMPARE:
4504 split = find_split_point (&XEXP (x, 1), insn, false);
4505 if (split)
4506 return split;
4507 /* ... fall through ... */
4508 case RTX_UNARY:
4509 /* Some machines have (and (shift ...) ...) insns. If X is not
4510 an AND, but XEXP (X, 0) is, use it as our split point. */
4511 if (GET_CODE (x) != AND && GET_CODE (XEXP (x, 0)) == AND)
4512 return &XEXP (x, 0);
4513
4514 split = find_split_point (&XEXP (x, 0), insn, false);
4515 if (split)
4516 return split;
4517 return loc;
4518
4519 default:
4520 /* Otherwise, we don't have a split point. */
4521 return 0;
4522 }
4523 }
4524 \f
4525 /* Throughout X, replace FROM with TO, and return the result.
4526 The result is TO if X is FROM;
4527 otherwise the result is X, but its contents may have been modified.
4528 If they were modified, a record was made in undobuf so that
4529 undo_all will (among other things) return X to its original state.
4530
4531 If the number of changes necessary is too much to record to undo,
4532 the excess changes are not made, so the result is invalid.
4533 The changes already made can still be undone.
4534 undobuf.num_undo is incremented for such changes, so by testing that
4535 the caller can tell whether the result is valid.
4536
4537 `n_occurrences' is incremented each time FROM is replaced.
4538
4539 IN_DEST is nonzero if we are processing the SET_DEST of a SET.
4540
4541 UNIQUE_COPY is nonzero if each substitution must be unique. We do this
4542 by copying if `n_occurrences' is nonzero. */
4543
4544 static rtx
4545 subst (rtx x, rtx from, rtx to, int in_dest, int unique_copy)
4546 {
4547 enum rtx_code code = GET_CODE (x);
4548 enum machine_mode op0_mode = VOIDmode;
4549 const char *fmt;
4550 int len, i;
4551 rtx new_rtx;
4552
4553 /* Two expressions are equal if they are identical copies of a shared
4554 RTX or if they are both registers with the same register number
4555 and mode. */
4556
4557 #define COMBINE_RTX_EQUAL_P(X,Y) \
4558 ((X) == (Y) \
4559 || (REG_P (X) && REG_P (Y) \
4560 && REGNO (X) == REGNO (Y) && GET_MODE (X) == GET_MODE (Y)))
4561
4562 if (! in_dest && COMBINE_RTX_EQUAL_P (x, from))
4563 {
4564 n_occurrences++;
4565 return (unique_copy && n_occurrences > 1 ? copy_rtx (to) : to);
4566 }
4567
4568 /* If X and FROM are the same register but different modes, they
4569 will not have been seen as equal above. However, the log links code
4570 will make a LOG_LINKS entry for that case. If we do nothing, we
4571 will try to rerecognize our original insn and, when it succeeds,
4572 we will delete the feeding insn, which is incorrect.
4573
4574 So force this insn not to match in this (rare) case. */
4575 if (! in_dest && code == REG && REG_P (from)
4576 && reg_overlap_mentioned_p (x, from))
4577 return gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
4578
4579 /* If this is an object, we are done unless it is a MEM or LO_SUM, both
4580 of which may contain things that can be combined. */
4581 if (code != MEM && code != LO_SUM && OBJECT_P (x))
4582 return x;
4583
4584 /* It is possible to have a subexpression appear twice in the insn.
4585 Suppose that FROM is a register that appears within TO.
4586 Then, after that subexpression has been scanned once by `subst',
4587 the second time it is scanned, TO may be found. If we were
4588 to scan TO here, we would find FROM within it and create a
4589 self-referent rtl structure which is completely wrong. */
4590 if (COMBINE_RTX_EQUAL_P (x, to))
4591 return to;
4592
4593 /* Parallel asm_operands need special attention because all of the
4594 inputs are shared across the arms. Furthermore, unsharing the
4595 rtl results in recognition failures. Failure to handle this case
4596 specially can result in circular rtl.
4597
4598 Solve this by doing a normal pass across the first entry of the
4599 parallel, and only processing the SET_DESTs of the subsequent
4600 entries. Ug. */
4601
4602 if (code == PARALLEL
4603 && GET_CODE (XVECEXP (x, 0, 0)) == SET
4604 && GET_CODE (SET_SRC (XVECEXP (x, 0, 0))) == ASM_OPERANDS)
4605 {
4606 new_rtx = subst (XVECEXP (x, 0, 0), from, to, 0, unique_copy);
4607
4608 /* If this substitution failed, this whole thing fails. */
4609 if (GET_CODE (new_rtx) == CLOBBER
4610 && XEXP (new_rtx, 0) == const0_rtx)
4611 return new_rtx;
4612
4613 SUBST (XVECEXP (x, 0, 0), new_rtx);
4614
4615 for (i = XVECLEN (x, 0) - 1; i >= 1; i--)
4616 {
4617 rtx dest = SET_DEST (XVECEXP (x, 0, i));
4618
4619 if (!REG_P (dest)
4620 && GET_CODE (dest) != CC0
4621 && GET_CODE (dest) != PC)
4622 {
4623 new_rtx = subst (dest, from, to, 0, unique_copy);
4624
4625 /* If this substitution failed, this whole thing fails. */
4626 if (GET_CODE (new_rtx) == CLOBBER
4627 && XEXP (new_rtx, 0) == const0_rtx)
4628 return new_rtx;
4629
4630 SUBST (SET_DEST (XVECEXP (x, 0, i)), new_rtx);
4631 }
4632 }
4633 }
4634 else
4635 {
4636 len = GET_RTX_LENGTH (code);
4637 fmt = GET_RTX_FORMAT (code);
4638
4639 /* We don't need to process a SET_DEST that is a register, CC0,
4640 or PC, so set up to skip this common case. All other cases
4641 where we want to suppress replacing something inside a
4642 SET_SRC are handled via the IN_DEST operand. */
4643 if (code == SET
4644 && (REG_P (SET_DEST (x))
4645 || GET_CODE (SET_DEST (x)) == CC0
4646 || GET_CODE (SET_DEST (x)) == PC))
4647 fmt = "ie";
4648
4649 /* Get the mode of operand 0 in case X is now a SIGN_EXTEND of a
4650 constant. */
4651 if (fmt[0] == 'e')
4652 op0_mode = GET_MODE (XEXP (x, 0));
4653
4654 for (i = 0; i < len; i++)
4655 {
4656 if (fmt[i] == 'E')
4657 {
4658 int j;
4659 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
4660 {
4661 if (COMBINE_RTX_EQUAL_P (XVECEXP (x, i, j), from))
4662 {
4663 new_rtx = (unique_copy && n_occurrences
4664 ? copy_rtx (to) : to);
4665 n_occurrences++;
4666 }
4667 else
4668 {
4669 new_rtx = subst (XVECEXP (x, i, j), from, to, 0,
4670 unique_copy);
4671
4672 /* If this substitution failed, this whole thing
4673 fails. */
4674 if (GET_CODE (new_rtx) == CLOBBER
4675 && XEXP (new_rtx, 0) == const0_rtx)
4676 return new_rtx;
4677 }
4678
4679 SUBST (XVECEXP (x, i, j), new_rtx);
4680 }
4681 }
4682 else if (fmt[i] == 'e')
4683 {
4684 /* If this is a register being set, ignore it. */
4685 new_rtx = XEXP (x, i);
4686 if (in_dest
4687 && i == 0
4688 && (((code == SUBREG || code == ZERO_EXTRACT)
4689 && REG_P (new_rtx))
4690 || code == STRICT_LOW_PART))
4691 ;
4692
4693 else if (COMBINE_RTX_EQUAL_P (XEXP (x, i), from))
4694 {
4695 /* In general, don't install a subreg involving two
4696 modes not tieable. It can worsen register
4697 allocation, and can even make invalid reload
4698 insns, since the reg inside may need to be copied
4699 from in the outside mode, and that may be invalid
4700 if it is an fp reg copied in integer mode.
4701
4702 We allow two exceptions to this: It is valid if
4703 it is inside another SUBREG and the mode of that
4704 SUBREG and the mode of the inside of TO is
4705 tieable and it is valid if X is a SET that copies
4706 FROM to CC0. */
4707
4708 if (GET_CODE (to) == SUBREG
4709 && ! MODES_TIEABLE_P (GET_MODE (to),
4710 GET_MODE (SUBREG_REG (to)))
4711 && ! (code == SUBREG
4712 && MODES_TIEABLE_P (GET_MODE (x),
4713 GET_MODE (SUBREG_REG (to))))
4714 #ifdef HAVE_cc0
4715 && ! (code == SET && i == 1 && XEXP (x, 0) == cc0_rtx)
4716 #endif
4717 )
4718 return gen_rtx_CLOBBER (VOIDmode, const0_rtx);
4719
4720 #ifdef CANNOT_CHANGE_MODE_CLASS
4721 if (code == SUBREG
4722 && REG_P (to)
4723 && REGNO (to) < FIRST_PSEUDO_REGISTER
4724 && REG_CANNOT_CHANGE_MODE_P (REGNO (to),
4725 GET_MODE (to),
4726 GET_MODE (x)))
4727 return gen_rtx_CLOBBER (VOIDmode, const0_rtx);
4728 #endif
4729
4730 new_rtx = (unique_copy && n_occurrences ? copy_rtx (to) : to);
4731 n_occurrences++;
4732 }
4733 else
4734 /* If we are in a SET_DEST, suppress most cases unless we
4735 have gone inside a MEM, in which case we want to
4736 simplify the address. We assume here that things that
4737 are actually part of the destination have their inner
4738 parts in the first expression. This is true for SUBREG,
4739 STRICT_LOW_PART, and ZERO_EXTRACT, which are the only
4740 things aside from REG and MEM that should appear in a
4741 SET_DEST. */
4742 new_rtx = subst (XEXP (x, i), from, to,
4743 (((in_dest
4744 && (code == SUBREG || code == STRICT_LOW_PART
4745 || code == ZERO_EXTRACT))
4746 || code == SET)
4747 && i == 0), unique_copy);
4748
4749 /* If we found that we will have to reject this combination,
4750 indicate that by returning the CLOBBER ourselves, rather than
4751 an expression containing it. This will speed things up as
4752 well as prevent accidents where two CLOBBERs are considered
4753 to be equal, thus producing an incorrect simplification. */
4754
4755 if (GET_CODE (new_rtx) == CLOBBER && XEXP (new_rtx, 0) == const0_rtx)
4756 return new_rtx;
4757
4758 if (GET_CODE (x) == SUBREG
4759 && (CONST_INT_P (new_rtx)
4760 || GET_CODE (new_rtx) == CONST_DOUBLE))
4761 {
4762 enum machine_mode mode = GET_MODE (x);
4763
4764 x = simplify_subreg (GET_MODE (x), new_rtx,
4765 GET_MODE (SUBREG_REG (x)),
4766 SUBREG_BYTE (x));
4767 if (! x)
4768 x = gen_rtx_CLOBBER (mode, const0_rtx);
4769 }
4770 else if (CONST_INT_P (new_rtx)
4771 && GET_CODE (x) == ZERO_EXTEND)
4772 {
4773 x = simplify_unary_operation (ZERO_EXTEND, GET_MODE (x),
4774 new_rtx, GET_MODE (XEXP (x, 0)));
4775 gcc_assert (x);
4776 }
4777 else
4778 SUBST (XEXP (x, i), new_rtx);
4779 }
4780 }
4781 }
4782
4783 /* Check if we are loading something from the constant pool via float
4784 extension; in this case we would undo compress_float_constant
4785 optimization and degenerate constant load to an immediate value. */
4786 if (GET_CODE (x) == FLOAT_EXTEND
4787 && MEM_P (XEXP (x, 0))
4788 && MEM_READONLY_P (XEXP (x, 0)))
4789 {
4790 rtx tmp = avoid_constant_pool_reference (x);
4791 if (x != tmp)
4792 return x;
4793 }
4794
4795 /* Try to simplify X. If the simplification changed the code, it is likely
4796 that further simplification will help, so loop, but limit the number
4797 of repetitions that will be performed. */
4798
4799 for (i = 0; i < 4; i++)
4800 {
4801 /* If X is sufficiently simple, don't bother trying to do anything
4802 with it. */
4803 if (code != CONST_INT && code != REG && code != CLOBBER)
4804 x = combine_simplify_rtx (x, op0_mode, in_dest);
4805
4806 if (GET_CODE (x) == code)
4807 break;
4808
4809 code = GET_CODE (x);
4810
4811 /* We no longer know the original mode of operand 0 since we
4812 have changed the form of X) */
4813 op0_mode = VOIDmode;
4814 }
4815
4816 return x;
4817 }
4818 \f
4819 /* Simplify X, a piece of RTL. We just operate on the expression at the
4820 outer level; call `subst' to simplify recursively. Return the new
4821 expression.
4822
4823 OP0_MODE is the original mode of XEXP (x, 0). IN_DEST is nonzero
4824 if we are inside a SET_DEST. */
4825
4826 static rtx
4827 combine_simplify_rtx (rtx x, enum machine_mode op0_mode, int in_dest)
4828 {
4829 enum rtx_code code = GET_CODE (x);
4830 enum machine_mode mode = GET_MODE (x);
4831 rtx temp;
4832 int i;
4833
4834 /* If this is a commutative operation, put a constant last and a complex
4835 expression first. We don't need to do this for comparisons here. */
4836 if (COMMUTATIVE_ARITH_P (x)
4837 && swap_commutative_operands_p (XEXP (x, 0), XEXP (x, 1)))
4838 {
4839 temp = XEXP (x, 0);
4840 SUBST (XEXP (x, 0), XEXP (x, 1));
4841 SUBST (XEXP (x, 1), temp);
4842 }
4843
4844 /* If this is a simple operation applied to an IF_THEN_ELSE, try
4845 applying it to the arms of the IF_THEN_ELSE. This often simplifies
4846 things. Check for cases where both arms are testing the same
4847 condition.
4848
4849 Don't do anything if all operands are very simple. */
4850
4851 if ((BINARY_P (x)
4852 && ((!OBJECT_P (XEXP (x, 0))
4853 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
4854 && OBJECT_P (SUBREG_REG (XEXP (x, 0)))))
4855 || (!OBJECT_P (XEXP (x, 1))
4856 && ! (GET_CODE (XEXP (x, 1)) == SUBREG
4857 && OBJECT_P (SUBREG_REG (XEXP (x, 1)))))))
4858 || (UNARY_P (x)
4859 && (!OBJECT_P (XEXP (x, 0))
4860 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
4861 && OBJECT_P (SUBREG_REG (XEXP (x, 0)))))))
4862 {
4863 rtx cond, true_rtx, false_rtx;
4864
4865 cond = if_then_else_cond (x, &true_rtx, &false_rtx);
4866 if (cond != 0
4867 /* If everything is a comparison, what we have is highly unlikely
4868 to be simpler, so don't use it. */
4869 && ! (COMPARISON_P (x)
4870 && (COMPARISON_P (true_rtx) || COMPARISON_P (false_rtx))))
4871 {
4872 rtx cop1 = const0_rtx;
4873 enum rtx_code cond_code = simplify_comparison (NE, &cond, &cop1);
4874
4875 if (cond_code == NE && COMPARISON_P (cond))
4876 return x;
4877
4878 /* Simplify the alternative arms; this may collapse the true and
4879 false arms to store-flag values. Be careful to use copy_rtx
4880 here since true_rtx or false_rtx might share RTL with x as a
4881 result of the if_then_else_cond call above. */
4882 true_rtx = subst (copy_rtx (true_rtx), pc_rtx, pc_rtx, 0, 0);
4883 false_rtx = subst (copy_rtx (false_rtx), pc_rtx, pc_rtx, 0, 0);
4884
4885 /* If true_rtx and false_rtx are not general_operands, an if_then_else
4886 is unlikely to be simpler. */
4887 if (general_operand (true_rtx, VOIDmode)
4888 && general_operand (false_rtx, VOIDmode))
4889 {
4890 enum rtx_code reversed;
4891
4892 /* Restarting if we generate a store-flag expression will cause
4893 us to loop. Just drop through in this case. */
4894
4895 /* If the result values are STORE_FLAG_VALUE and zero, we can
4896 just make the comparison operation. */
4897 if (true_rtx == const_true_rtx && false_rtx == const0_rtx)
4898 x = simplify_gen_relational (cond_code, mode, VOIDmode,
4899 cond, cop1);
4900 else if (true_rtx == const0_rtx && false_rtx == const_true_rtx
4901 && ((reversed = reversed_comparison_code_parts
4902 (cond_code, cond, cop1, NULL))
4903 != UNKNOWN))
4904 x = simplify_gen_relational (reversed, mode, VOIDmode,
4905 cond, cop1);
4906
4907 /* Likewise, we can make the negate of a comparison operation
4908 if the result values are - STORE_FLAG_VALUE and zero. */
4909 else if (CONST_INT_P (true_rtx)
4910 && INTVAL (true_rtx) == - STORE_FLAG_VALUE
4911 && false_rtx == const0_rtx)
4912 x = simplify_gen_unary (NEG, mode,
4913 simplify_gen_relational (cond_code,
4914 mode, VOIDmode,
4915 cond, cop1),
4916 mode);
4917 else if (CONST_INT_P (false_rtx)
4918 && INTVAL (false_rtx) == - STORE_FLAG_VALUE
4919 && true_rtx == const0_rtx
4920 && ((reversed = reversed_comparison_code_parts
4921 (cond_code, cond, cop1, NULL))
4922 != UNKNOWN))
4923 x = simplify_gen_unary (NEG, mode,
4924 simplify_gen_relational (reversed,
4925 mode, VOIDmode,
4926 cond, cop1),
4927 mode);
4928 else
4929 return gen_rtx_IF_THEN_ELSE (mode,
4930 simplify_gen_relational (cond_code,
4931 mode,
4932 VOIDmode,
4933 cond,
4934 cop1),
4935 true_rtx, false_rtx);
4936
4937 code = GET_CODE (x);
4938 op0_mode = VOIDmode;
4939 }
4940 }
4941 }
4942
4943 /* Try to fold this expression in case we have constants that weren't
4944 present before. */
4945 temp = 0;
4946 switch (GET_RTX_CLASS (code))
4947 {
4948 case RTX_UNARY:
4949 if (op0_mode == VOIDmode)
4950 op0_mode = GET_MODE (XEXP (x, 0));
4951 temp = simplify_unary_operation (code, mode, XEXP (x, 0), op0_mode);
4952 break;
4953 case RTX_COMPARE:
4954 case RTX_COMM_COMPARE:
4955 {
4956 enum machine_mode cmp_mode = GET_MODE (XEXP (x, 0));
4957 if (cmp_mode == VOIDmode)
4958 {
4959 cmp_mode = GET_MODE (XEXP (x, 1));
4960 if (cmp_mode == VOIDmode)
4961 cmp_mode = op0_mode;
4962 }
4963 temp = simplify_relational_operation (code, mode, cmp_mode,
4964 XEXP (x, 0), XEXP (x, 1));
4965 }
4966 break;
4967 case RTX_COMM_ARITH:
4968 case RTX_BIN_ARITH:
4969 temp = simplify_binary_operation (code, mode, XEXP (x, 0), XEXP (x, 1));
4970 break;
4971 case RTX_BITFIELD_OPS:
4972 case RTX_TERNARY:
4973 temp = simplify_ternary_operation (code, mode, op0_mode, XEXP (x, 0),
4974 XEXP (x, 1), XEXP (x, 2));
4975 break;
4976 default:
4977 break;
4978 }
4979
4980 if (temp)
4981 {
4982 x = temp;
4983 code = GET_CODE (temp);
4984 op0_mode = VOIDmode;
4985 mode = GET_MODE (temp);
4986 }
4987
4988 /* First see if we can apply the inverse distributive law. */
4989 if (code == PLUS || code == MINUS
4990 || code == AND || code == IOR || code == XOR)
4991 {
4992 x = apply_distributive_law (x);
4993 code = GET_CODE (x);
4994 op0_mode = VOIDmode;
4995 }
4996
4997 /* If CODE is an associative operation not otherwise handled, see if we
4998 can associate some operands. This can win if they are constants or
4999 if they are logically related (i.e. (a & b) & a). */
5000 if ((code == PLUS || code == MINUS || code == MULT || code == DIV
5001 || code == AND || code == IOR || code == XOR
5002 || code == SMAX || code == SMIN || code == UMAX || code == UMIN)
5003 && ((INTEGRAL_MODE_P (mode) && code != DIV)
5004 || (flag_associative_math && FLOAT_MODE_P (mode))))
5005 {
5006 if (GET_CODE (XEXP (x, 0)) == code)
5007 {
5008 rtx other = XEXP (XEXP (x, 0), 0);
5009 rtx inner_op0 = XEXP (XEXP (x, 0), 1);
5010 rtx inner_op1 = XEXP (x, 1);
5011 rtx inner;
5012
5013 /* Make sure we pass the constant operand if any as the second
5014 one if this is a commutative operation. */
5015 if (CONSTANT_P (inner_op0) && COMMUTATIVE_ARITH_P (x))
5016 {
5017 rtx tem = inner_op0;
5018 inner_op0 = inner_op1;
5019 inner_op1 = tem;
5020 }
5021 inner = simplify_binary_operation (code == MINUS ? PLUS
5022 : code == DIV ? MULT
5023 : code,
5024 mode, inner_op0, inner_op1);
5025
5026 /* For commutative operations, try the other pair if that one
5027 didn't simplify. */
5028 if (inner == 0 && COMMUTATIVE_ARITH_P (x))
5029 {
5030 other = XEXP (XEXP (x, 0), 1);
5031 inner = simplify_binary_operation (code, mode,
5032 XEXP (XEXP (x, 0), 0),
5033 XEXP (x, 1));
5034 }
5035
5036 if (inner)
5037 return simplify_gen_binary (code, mode, other, inner);
5038 }
5039 }
5040
5041 /* A little bit of algebraic simplification here. */
5042 switch (code)
5043 {
5044 case MEM:
5045 /* Ensure that our address has any ASHIFTs converted to MULT in case
5046 address-recognizing predicates are called later. */
5047 temp = make_compound_operation (XEXP (x, 0), MEM);
5048 SUBST (XEXP (x, 0), temp);
5049 break;
5050
5051 case SUBREG:
5052 if (op0_mode == VOIDmode)
5053 op0_mode = GET_MODE (SUBREG_REG (x));
5054
5055 /* See if this can be moved to simplify_subreg. */
5056 if (CONSTANT_P (SUBREG_REG (x))
5057 && subreg_lowpart_offset (mode, op0_mode) == SUBREG_BYTE (x)
5058 /* Don't call gen_lowpart if the inner mode
5059 is VOIDmode and we cannot simplify it, as SUBREG without
5060 inner mode is invalid. */
5061 && (GET_MODE (SUBREG_REG (x)) != VOIDmode
5062 || gen_lowpart_common (mode, SUBREG_REG (x))))
5063 return gen_lowpart (mode, SUBREG_REG (x));
5064
5065 if (GET_MODE_CLASS (GET_MODE (SUBREG_REG (x))) == MODE_CC)
5066 break;
5067 {
5068 rtx temp;
5069 temp = simplify_subreg (mode, SUBREG_REG (x), op0_mode,
5070 SUBREG_BYTE (x));
5071 if (temp)
5072 return temp;
5073 }
5074
5075 /* Don't change the mode of the MEM if that would change the meaning
5076 of the address. */
5077 if (MEM_P (SUBREG_REG (x))
5078 && (MEM_VOLATILE_P (SUBREG_REG (x))
5079 || mode_dependent_address_p (XEXP (SUBREG_REG (x), 0))))
5080 return gen_rtx_CLOBBER (mode, const0_rtx);
5081
5082 /* Note that we cannot do any narrowing for non-constants since
5083 we might have been counting on using the fact that some bits were
5084 zero. We now do this in the SET. */
5085
5086 break;
5087
5088 case NEG:
5089 temp = expand_compound_operation (XEXP (x, 0));
5090
5091 /* For C equal to the width of MODE minus 1, (neg (ashiftrt X C)) can be
5092 replaced by (lshiftrt X C). This will convert
5093 (neg (sign_extract X 1 Y)) to (zero_extract X 1 Y). */
5094
5095 if (GET_CODE (temp) == ASHIFTRT
5096 && CONST_INT_P (XEXP (temp, 1))
5097 && INTVAL (XEXP (temp, 1)) == GET_MODE_BITSIZE (mode) - 1)
5098 return simplify_shift_const (NULL_RTX, LSHIFTRT, mode, XEXP (temp, 0),
5099 INTVAL (XEXP (temp, 1)));
5100
5101 /* If X has only a single bit that might be nonzero, say, bit I, convert
5102 (neg X) to (ashiftrt (ashift X C-I) C-I) where C is the bitsize of
5103 MODE minus 1. This will convert (neg (zero_extract X 1 Y)) to
5104 (sign_extract X 1 Y). But only do this if TEMP isn't a register
5105 or a SUBREG of one since we'd be making the expression more
5106 complex if it was just a register. */
5107
5108 if (!REG_P (temp)
5109 && ! (GET_CODE (temp) == SUBREG
5110 && REG_P (SUBREG_REG (temp)))
5111 && (i = exact_log2 (nonzero_bits (temp, mode))) >= 0)
5112 {
5113 rtx temp1 = simplify_shift_const
5114 (NULL_RTX, ASHIFTRT, mode,
5115 simplify_shift_const (NULL_RTX, ASHIFT, mode, temp,
5116 GET_MODE_BITSIZE (mode) - 1 - i),
5117 GET_MODE_BITSIZE (mode) - 1 - i);
5118
5119 /* If all we did was surround TEMP with the two shifts, we
5120 haven't improved anything, so don't use it. Otherwise,
5121 we are better off with TEMP1. */
5122 if (GET_CODE (temp1) != ASHIFTRT
5123 || GET_CODE (XEXP (temp1, 0)) != ASHIFT
5124 || XEXP (XEXP (temp1, 0), 0) != temp)
5125 return temp1;
5126 }
5127 break;
5128
5129 case TRUNCATE:
5130 /* We can't handle truncation to a partial integer mode here
5131 because we don't know the real bitsize of the partial
5132 integer mode. */
5133 if (GET_MODE_CLASS (mode) == MODE_PARTIAL_INT)
5134 break;
5135
5136 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
5137 SUBST (XEXP (x, 0),
5138 force_to_mode (XEXP (x, 0), GET_MODE (XEXP (x, 0)),
5139 GET_MODE_MASK (mode), 0));
5140
5141 /* We can truncate a constant value and return it. */
5142 if (CONST_INT_P (XEXP (x, 0)))
5143 return gen_int_mode (INTVAL (XEXP (x, 0)), mode);
5144
5145 /* Similarly to what we do in simplify-rtx.c, a truncate of a register
5146 whose value is a comparison can be replaced with a subreg if
5147 STORE_FLAG_VALUE permits. */
5148 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5149 && ((HOST_WIDE_INT) STORE_FLAG_VALUE & ~GET_MODE_MASK (mode)) == 0
5150 && (temp = get_last_value (XEXP (x, 0)))
5151 && COMPARISON_P (temp))
5152 return gen_lowpart (mode, XEXP (x, 0));
5153 break;
5154
5155 case CONST:
5156 /* (const (const X)) can become (const X). Do it this way rather than
5157 returning the inner CONST since CONST can be shared with a
5158 REG_EQUAL note. */
5159 if (GET_CODE (XEXP (x, 0)) == CONST)
5160 SUBST (XEXP (x, 0), XEXP (XEXP (x, 0), 0));
5161 break;
5162
5163 #ifdef HAVE_lo_sum
5164 case LO_SUM:
5165 /* Convert (lo_sum (high FOO) FOO) to FOO. This is necessary so we
5166 can add in an offset. find_split_point will split this address up
5167 again if it doesn't match. */
5168 if (GET_CODE (XEXP (x, 0)) == HIGH
5169 && rtx_equal_p (XEXP (XEXP (x, 0), 0), XEXP (x, 1)))
5170 return XEXP (x, 1);
5171 break;
5172 #endif
5173
5174 case PLUS:
5175 /* (plus (xor (and <foo> (const_int pow2 - 1)) <c>) <-c>)
5176 when c is (const_int (pow2 + 1) / 2) is a sign extension of a
5177 bit-field and can be replaced by either a sign_extend or a
5178 sign_extract. The `and' may be a zero_extend and the two
5179 <c>, -<c> constants may be reversed. */
5180 if (GET_CODE (XEXP (x, 0)) == XOR
5181 && CONST_INT_P (XEXP (x, 1))
5182 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
5183 && INTVAL (XEXP (x, 1)) == -INTVAL (XEXP (XEXP (x, 0), 1))
5184 && ((i = exact_log2 (INTVAL (XEXP (XEXP (x, 0), 1)))) >= 0
5185 || (i = exact_log2 (INTVAL (XEXP (x, 1)))) >= 0)
5186 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5187 && ((GET_CODE (XEXP (XEXP (x, 0), 0)) == AND
5188 && CONST_INT_P (XEXP (XEXP (XEXP (x, 0), 0), 1))
5189 && (INTVAL (XEXP (XEXP (XEXP (x, 0), 0), 1))
5190 == ((HOST_WIDE_INT) 1 << (i + 1)) - 1))
5191 || (GET_CODE (XEXP (XEXP (x, 0), 0)) == ZERO_EXTEND
5192 && (GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (XEXP (x, 0), 0), 0)))
5193 == (unsigned int) i + 1))))
5194 return simplify_shift_const
5195 (NULL_RTX, ASHIFTRT, mode,
5196 simplify_shift_const (NULL_RTX, ASHIFT, mode,
5197 XEXP (XEXP (XEXP (x, 0), 0), 0),
5198 GET_MODE_BITSIZE (mode) - (i + 1)),
5199 GET_MODE_BITSIZE (mode) - (i + 1));
5200
5201 /* If only the low-order bit of X is possibly nonzero, (plus x -1)
5202 can become (ashiftrt (ashift (xor x 1) C) C) where C is
5203 the bitsize of the mode - 1. This allows simplification of
5204 "a = (b & 8) == 0;" */
5205 if (XEXP (x, 1) == constm1_rtx
5206 && !REG_P (XEXP (x, 0))
5207 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
5208 && REG_P (SUBREG_REG (XEXP (x, 0))))
5209 && nonzero_bits (XEXP (x, 0), mode) == 1)
5210 return simplify_shift_const (NULL_RTX, ASHIFTRT, mode,
5211 simplify_shift_const (NULL_RTX, ASHIFT, mode,
5212 gen_rtx_XOR (mode, XEXP (x, 0), const1_rtx),
5213 GET_MODE_BITSIZE (mode) - 1),
5214 GET_MODE_BITSIZE (mode) - 1);
5215
5216 /* If we are adding two things that have no bits in common, convert
5217 the addition into an IOR. This will often be further simplified,
5218 for example in cases like ((a & 1) + (a & 2)), which can
5219 become a & 3. */
5220
5221 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5222 && (nonzero_bits (XEXP (x, 0), mode)
5223 & nonzero_bits (XEXP (x, 1), mode)) == 0)
5224 {
5225 /* Try to simplify the expression further. */
5226 rtx tor = simplify_gen_binary (IOR, mode, XEXP (x, 0), XEXP (x, 1));
5227 temp = combine_simplify_rtx (tor, mode, in_dest);
5228
5229 /* If we could, great. If not, do not go ahead with the IOR
5230 replacement, since PLUS appears in many special purpose
5231 address arithmetic instructions. */
5232 if (GET_CODE (temp) != CLOBBER && temp != tor)
5233 return temp;
5234 }
5235 break;
5236
5237 case MINUS:
5238 /* (minus <foo> (and <foo> (const_int -pow2))) becomes
5239 (and <foo> (const_int pow2-1)) */
5240 if (GET_CODE (XEXP (x, 1)) == AND
5241 && CONST_INT_P (XEXP (XEXP (x, 1), 1))
5242 && exact_log2 (-INTVAL (XEXP (XEXP (x, 1), 1))) >= 0
5243 && rtx_equal_p (XEXP (XEXP (x, 1), 0), XEXP (x, 0)))
5244 return simplify_and_const_int (NULL_RTX, mode, XEXP (x, 0),
5245 -INTVAL (XEXP (XEXP (x, 1), 1)) - 1);
5246 break;
5247
5248 case MULT:
5249 /* If we have (mult (plus A B) C), apply the distributive law and then
5250 the inverse distributive law to see if things simplify. This
5251 occurs mostly in addresses, often when unrolling loops. */
5252
5253 if (GET_CODE (XEXP (x, 0)) == PLUS)
5254 {
5255 rtx result = distribute_and_simplify_rtx (x, 0);
5256 if (result)
5257 return result;
5258 }
5259
5260 /* Try simplify a*(b/c) as (a*b)/c. */
5261 if (FLOAT_MODE_P (mode) && flag_associative_math
5262 && GET_CODE (XEXP (x, 0)) == DIV)
5263 {
5264 rtx tem = simplify_binary_operation (MULT, mode,
5265 XEXP (XEXP (x, 0), 0),
5266 XEXP (x, 1));
5267 if (tem)
5268 return simplify_gen_binary (DIV, mode, tem, XEXP (XEXP (x, 0), 1));
5269 }
5270 break;
5271
5272 case UDIV:
5273 /* If this is a divide by a power of two, treat it as a shift if
5274 its first operand is a shift. */
5275 if (CONST_INT_P (XEXP (x, 1))
5276 && (i = exact_log2 (INTVAL (XEXP (x, 1)))) >= 0
5277 && (GET_CODE (XEXP (x, 0)) == ASHIFT
5278 || GET_CODE (XEXP (x, 0)) == LSHIFTRT
5279 || GET_CODE (XEXP (x, 0)) == ASHIFTRT
5280 || GET_CODE (XEXP (x, 0)) == ROTATE
5281 || GET_CODE (XEXP (x, 0)) == ROTATERT))
5282 return simplify_shift_const (NULL_RTX, LSHIFTRT, mode, XEXP (x, 0), i);
5283 break;
5284
5285 case EQ: case NE:
5286 case GT: case GTU: case GE: case GEU:
5287 case LT: case LTU: case LE: case LEU:
5288 case UNEQ: case LTGT:
5289 case UNGT: case UNGE:
5290 case UNLT: case UNLE:
5291 case UNORDERED: case ORDERED:
5292 /* If the first operand is a condition code, we can't do anything
5293 with it. */
5294 if (GET_CODE (XEXP (x, 0)) == COMPARE
5295 || (GET_MODE_CLASS (GET_MODE (XEXP (x, 0))) != MODE_CC
5296 && ! CC0_P (XEXP (x, 0))))
5297 {
5298 rtx op0 = XEXP (x, 0);
5299 rtx op1 = XEXP (x, 1);
5300 enum rtx_code new_code;
5301
5302 if (GET_CODE (op0) == COMPARE)
5303 op1 = XEXP (op0, 1), op0 = XEXP (op0, 0);
5304
5305 /* Simplify our comparison, if possible. */
5306 new_code = simplify_comparison (code, &op0, &op1);
5307
5308 /* If STORE_FLAG_VALUE is 1, we can convert (ne x 0) to simply X
5309 if only the low-order bit is possibly nonzero in X (such as when
5310 X is a ZERO_EXTRACT of one bit). Similarly, we can convert EQ to
5311 (xor X 1) or (minus 1 X); we use the former. Finally, if X is
5312 known to be either 0 or -1, NE becomes a NEG and EQ becomes
5313 (plus X 1).
5314
5315 Remove any ZERO_EXTRACT we made when thinking this was a
5316 comparison. It may now be simpler to use, e.g., an AND. If a
5317 ZERO_EXTRACT is indeed appropriate, it will be placed back by
5318 the call to make_compound_operation in the SET case. */
5319
5320 if (STORE_FLAG_VALUE == 1
5321 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
5322 && op1 == const0_rtx
5323 && mode == GET_MODE (op0)
5324 && nonzero_bits (op0, mode) == 1)
5325 return gen_lowpart (mode,
5326 expand_compound_operation (op0));
5327
5328 else if (STORE_FLAG_VALUE == 1
5329 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
5330 && op1 == const0_rtx
5331 && mode == GET_MODE (op0)
5332 && (num_sign_bit_copies (op0, mode)
5333 == GET_MODE_BITSIZE (mode)))
5334 {
5335 op0 = expand_compound_operation (op0);
5336 return simplify_gen_unary (NEG, mode,
5337 gen_lowpart (mode, op0),
5338 mode);
5339 }
5340
5341 else if (STORE_FLAG_VALUE == 1
5342 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
5343 && op1 == const0_rtx
5344 && mode == GET_MODE (op0)
5345 && nonzero_bits (op0, mode) == 1)
5346 {
5347 op0 = expand_compound_operation (op0);
5348 return simplify_gen_binary (XOR, mode,
5349 gen_lowpart (mode, op0),
5350 const1_rtx);
5351 }
5352
5353 else if (STORE_FLAG_VALUE == 1
5354 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
5355 && op1 == const0_rtx
5356 && mode == GET_MODE (op0)
5357 && (num_sign_bit_copies (op0, mode)
5358 == GET_MODE_BITSIZE (mode)))
5359 {
5360 op0 = expand_compound_operation (op0);
5361 return plus_constant (gen_lowpart (mode, op0), 1);
5362 }
5363
5364 /* If STORE_FLAG_VALUE is -1, we have cases similar to
5365 those above. */
5366 if (STORE_FLAG_VALUE == -1
5367 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
5368 && op1 == const0_rtx
5369 && (num_sign_bit_copies (op0, mode)
5370 == GET_MODE_BITSIZE (mode)))
5371 return gen_lowpart (mode,
5372 expand_compound_operation (op0));
5373
5374 else if (STORE_FLAG_VALUE == -1
5375 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
5376 && op1 == const0_rtx
5377 && mode == GET_MODE (op0)
5378 && nonzero_bits (op0, mode) == 1)
5379 {
5380 op0 = expand_compound_operation (op0);
5381 return simplify_gen_unary (NEG, mode,
5382 gen_lowpart (mode, op0),
5383 mode);
5384 }
5385
5386 else if (STORE_FLAG_VALUE == -1
5387 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
5388 && op1 == const0_rtx
5389 && mode == GET_MODE (op0)
5390 && (num_sign_bit_copies (op0, mode)
5391 == GET_MODE_BITSIZE (mode)))
5392 {
5393 op0 = expand_compound_operation (op0);
5394 return simplify_gen_unary (NOT, mode,
5395 gen_lowpart (mode, op0),
5396 mode);
5397 }
5398
5399 /* If X is 0/1, (eq X 0) is X-1. */
5400 else if (STORE_FLAG_VALUE == -1
5401 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
5402 && op1 == const0_rtx
5403 && mode == GET_MODE (op0)
5404 && nonzero_bits (op0, mode) == 1)
5405 {
5406 op0 = expand_compound_operation (op0);
5407 return plus_constant (gen_lowpart (mode, op0), -1);
5408 }
5409
5410 /* If STORE_FLAG_VALUE says to just test the sign bit and X has just
5411 one bit that might be nonzero, we can convert (ne x 0) to
5412 (ashift x c) where C puts the bit in the sign bit. Remove any
5413 AND with STORE_FLAG_VALUE when we are done, since we are only
5414 going to test the sign bit. */
5415 if (new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
5416 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5417 && ((STORE_FLAG_VALUE & GET_MODE_MASK (mode))
5418 == (unsigned HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (mode) - 1))
5419 && op1 == const0_rtx
5420 && mode == GET_MODE (op0)
5421 && (i = exact_log2 (nonzero_bits (op0, mode))) >= 0)
5422 {
5423 x = simplify_shift_const (NULL_RTX, ASHIFT, mode,
5424 expand_compound_operation (op0),
5425 GET_MODE_BITSIZE (mode) - 1 - i);
5426 if (GET_CODE (x) == AND && XEXP (x, 1) == const_true_rtx)
5427 return XEXP (x, 0);
5428 else
5429 return x;
5430 }
5431
5432 /* If the code changed, return a whole new comparison. */
5433 if (new_code != code)
5434 return gen_rtx_fmt_ee (new_code, mode, op0, op1);
5435
5436 /* Otherwise, keep this operation, but maybe change its operands.
5437 This also converts (ne (compare FOO BAR) 0) to (ne FOO BAR). */
5438 SUBST (XEXP (x, 0), op0);
5439 SUBST (XEXP (x, 1), op1);
5440 }
5441 break;
5442
5443 case IF_THEN_ELSE:
5444 return simplify_if_then_else (x);
5445
5446 case ZERO_EXTRACT:
5447 case SIGN_EXTRACT:
5448 case ZERO_EXTEND:
5449 case SIGN_EXTEND:
5450 /* If we are processing SET_DEST, we are done. */
5451 if (in_dest)
5452 return x;
5453
5454 return expand_compound_operation (x);
5455
5456 case SET:
5457 return simplify_set (x);
5458
5459 case AND:
5460 case IOR:
5461 return simplify_logical (x);
5462
5463 case ASHIFT:
5464 case LSHIFTRT:
5465 case ASHIFTRT:
5466 case ROTATE:
5467 case ROTATERT:
5468 /* If this is a shift by a constant amount, simplify it. */
5469 if (CONST_INT_P (XEXP (x, 1)))
5470 return simplify_shift_const (x, code, mode, XEXP (x, 0),
5471 INTVAL (XEXP (x, 1)));
5472
5473 else if (SHIFT_COUNT_TRUNCATED && !REG_P (XEXP (x, 1)))
5474 SUBST (XEXP (x, 1),
5475 force_to_mode (XEXP (x, 1), GET_MODE (XEXP (x, 1)),
5476 ((HOST_WIDE_INT) 1
5477 << exact_log2 (GET_MODE_BITSIZE (GET_MODE (x))))
5478 - 1,
5479 0));
5480 break;
5481
5482 default:
5483 break;
5484 }
5485
5486 return x;
5487 }
5488 \f
5489 /* Simplify X, an IF_THEN_ELSE expression. Return the new expression. */
5490
5491 static rtx
5492 simplify_if_then_else (rtx x)
5493 {
5494 enum machine_mode mode = GET_MODE (x);
5495 rtx cond = XEXP (x, 0);
5496 rtx true_rtx = XEXP (x, 1);
5497 rtx false_rtx = XEXP (x, 2);
5498 enum rtx_code true_code = GET_CODE (cond);
5499 int comparison_p = COMPARISON_P (cond);
5500 rtx temp;
5501 int i;
5502 enum rtx_code false_code;
5503 rtx reversed;
5504
5505 /* Simplify storing of the truth value. */
5506 if (comparison_p && true_rtx == const_true_rtx && false_rtx == const0_rtx)
5507 return simplify_gen_relational (true_code, mode, VOIDmode,
5508 XEXP (cond, 0), XEXP (cond, 1));
5509
5510 /* Also when the truth value has to be reversed. */
5511 if (comparison_p
5512 && true_rtx == const0_rtx && false_rtx == const_true_rtx
5513 && (reversed = reversed_comparison (cond, mode)))
5514 return reversed;
5515
5516 /* Sometimes we can simplify the arm of an IF_THEN_ELSE if a register used
5517 in it is being compared against certain values. Get the true and false
5518 comparisons and see if that says anything about the value of each arm. */
5519
5520 if (comparison_p
5521 && ((false_code = reversed_comparison_code (cond, NULL))
5522 != UNKNOWN)
5523 && REG_P (XEXP (cond, 0)))
5524 {
5525 HOST_WIDE_INT nzb;
5526 rtx from = XEXP (cond, 0);
5527 rtx true_val = XEXP (cond, 1);
5528 rtx false_val = true_val;
5529 int swapped = 0;
5530
5531 /* If FALSE_CODE is EQ, swap the codes and arms. */
5532
5533 if (false_code == EQ)
5534 {
5535 swapped = 1, true_code = EQ, false_code = NE;
5536 temp = true_rtx, true_rtx = false_rtx, false_rtx = temp;
5537 }
5538
5539 /* If we are comparing against zero and the expression being tested has
5540 only a single bit that might be nonzero, that is its value when it is
5541 not equal to zero. Similarly if it is known to be -1 or 0. */
5542
5543 if (true_code == EQ && true_val == const0_rtx
5544 && exact_log2 (nzb = nonzero_bits (from, GET_MODE (from))) >= 0)
5545 {
5546 false_code = EQ;
5547 false_val = GEN_INT (trunc_int_for_mode (nzb, GET_MODE (from)));
5548 }
5549 else if (true_code == EQ && true_val == const0_rtx
5550 && (num_sign_bit_copies (from, GET_MODE (from))
5551 == GET_MODE_BITSIZE (GET_MODE (from))))
5552 {
5553 false_code = EQ;
5554 false_val = constm1_rtx;
5555 }
5556
5557 /* Now simplify an arm if we know the value of the register in the
5558 branch and it is used in the arm. Be careful due to the potential
5559 of locally-shared RTL. */
5560
5561 if (reg_mentioned_p (from, true_rtx))
5562 true_rtx = subst (known_cond (copy_rtx (true_rtx), true_code,
5563 from, true_val),
5564 pc_rtx, pc_rtx, 0, 0);
5565 if (reg_mentioned_p (from, false_rtx))
5566 false_rtx = subst (known_cond (copy_rtx (false_rtx), false_code,
5567 from, false_val),
5568 pc_rtx, pc_rtx, 0, 0);
5569
5570 SUBST (XEXP (x, 1), swapped ? false_rtx : true_rtx);
5571 SUBST (XEXP (x, 2), swapped ? true_rtx : false_rtx);
5572
5573 true_rtx = XEXP (x, 1);
5574 false_rtx = XEXP (x, 2);
5575 true_code = GET_CODE (cond);
5576 }
5577
5578 /* If we have (if_then_else FOO (pc) (label_ref BAR)) and FOO can be
5579 reversed, do so to avoid needing two sets of patterns for
5580 subtract-and-branch insns. Similarly if we have a constant in the true
5581 arm, the false arm is the same as the first operand of the comparison, or
5582 the false arm is more complicated than the true arm. */
5583
5584 if (comparison_p
5585 && reversed_comparison_code (cond, NULL) != UNKNOWN
5586 && (true_rtx == pc_rtx
5587 || (CONSTANT_P (true_rtx)
5588 && !CONST_INT_P (false_rtx) && false_rtx != pc_rtx)
5589 || true_rtx == const0_rtx
5590 || (OBJECT_P (true_rtx) && !OBJECT_P (false_rtx))
5591 || (GET_CODE (true_rtx) == SUBREG && OBJECT_P (SUBREG_REG (true_rtx))
5592 && !OBJECT_P (false_rtx))
5593 || reg_mentioned_p (true_rtx, false_rtx)
5594 || rtx_equal_p (false_rtx, XEXP (cond, 0))))
5595 {
5596 true_code = reversed_comparison_code (cond, NULL);
5597 SUBST (XEXP (x, 0), reversed_comparison (cond, GET_MODE (cond)));
5598 SUBST (XEXP (x, 1), false_rtx);
5599 SUBST (XEXP (x, 2), true_rtx);
5600
5601 temp = true_rtx, true_rtx = false_rtx, false_rtx = temp;
5602 cond = XEXP (x, 0);
5603
5604 /* It is possible that the conditional has been simplified out. */
5605 true_code = GET_CODE (cond);
5606 comparison_p = COMPARISON_P (cond);
5607 }
5608
5609 /* If the two arms are identical, we don't need the comparison. */
5610
5611 if (rtx_equal_p (true_rtx, false_rtx) && ! side_effects_p (cond))
5612 return true_rtx;
5613
5614 /* Convert a == b ? b : a to "a". */
5615 if (true_code == EQ && ! side_effects_p (cond)
5616 && !HONOR_NANS (mode)
5617 && rtx_equal_p (XEXP (cond, 0), false_rtx)
5618 && rtx_equal_p (XEXP (cond, 1), true_rtx))
5619 return false_rtx;
5620 else if (true_code == NE && ! side_effects_p (cond)
5621 && !HONOR_NANS (mode)
5622 && rtx_equal_p (XEXP (cond, 0), true_rtx)
5623 && rtx_equal_p (XEXP (cond, 1), false_rtx))
5624 return true_rtx;
5625
5626 /* Look for cases where we have (abs x) or (neg (abs X)). */
5627
5628 if (GET_MODE_CLASS (mode) == MODE_INT
5629 && comparison_p
5630 && XEXP (cond, 1) == const0_rtx
5631 && GET_CODE (false_rtx) == NEG
5632 && rtx_equal_p (true_rtx, XEXP (false_rtx, 0))
5633 && rtx_equal_p (true_rtx, XEXP (cond, 0))
5634 && ! side_effects_p (true_rtx))
5635 switch (true_code)
5636 {
5637 case GT:
5638 case GE:
5639 return simplify_gen_unary (ABS, mode, true_rtx, mode);
5640 case LT:
5641 case LE:
5642 return
5643 simplify_gen_unary (NEG, mode,
5644 simplify_gen_unary (ABS, mode, true_rtx, mode),
5645 mode);
5646 default:
5647 break;
5648 }
5649
5650 /* Look for MIN or MAX. */
5651
5652 if ((! FLOAT_MODE_P (mode) || flag_unsafe_math_optimizations)
5653 && comparison_p
5654 && rtx_equal_p (XEXP (cond, 0), true_rtx)
5655 && rtx_equal_p (XEXP (cond, 1), false_rtx)
5656 && ! side_effects_p (cond))
5657 switch (true_code)
5658 {
5659 case GE:
5660 case GT:
5661 return simplify_gen_binary (SMAX, mode, true_rtx, false_rtx);
5662 case LE:
5663 case LT:
5664 return simplify_gen_binary (SMIN, mode, true_rtx, false_rtx);
5665 case GEU:
5666 case GTU:
5667 return simplify_gen_binary (UMAX, mode, true_rtx, false_rtx);
5668 case LEU:
5669 case LTU:
5670 return simplify_gen_binary (UMIN, mode, true_rtx, false_rtx);
5671 default:
5672 break;
5673 }
5674
5675 /* If we have (if_then_else COND (OP Z C1) Z) and OP is an identity when its
5676 second operand is zero, this can be done as (OP Z (mult COND C2)) where
5677 C2 = C1 * STORE_FLAG_VALUE. Similarly if OP has an outer ZERO_EXTEND or
5678 SIGN_EXTEND as long as Z is already extended (so we don't destroy it).
5679 We can do this kind of thing in some cases when STORE_FLAG_VALUE is
5680 neither 1 or -1, but it isn't worth checking for. */
5681
5682 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
5683 && comparison_p
5684 && GET_MODE_CLASS (mode) == MODE_INT
5685 && ! side_effects_p (x))
5686 {
5687 rtx t = make_compound_operation (true_rtx, SET);
5688 rtx f = make_compound_operation (false_rtx, SET);
5689 rtx cond_op0 = XEXP (cond, 0);
5690 rtx cond_op1 = XEXP (cond, 1);
5691 enum rtx_code op = UNKNOWN, extend_op = UNKNOWN;
5692 enum machine_mode m = mode;
5693 rtx z = 0, c1 = NULL_RTX;
5694
5695 if ((GET_CODE (t) == PLUS || GET_CODE (t) == MINUS
5696 || GET_CODE (t) == IOR || GET_CODE (t) == XOR
5697 || GET_CODE (t) == ASHIFT
5698 || GET_CODE (t) == LSHIFTRT || GET_CODE (t) == ASHIFTRT)
5699 && rtx_equal_p (XEXP (t, 0), f))
5700 c1 = XEXP (t, 1), op = GET_CODE (t), z = f;
5701
5702 /* If an identity-zero op is commutative, check whether there
5703 would be a match if we swapped the operands. */
5704 else if ((GET_CODE (t) == PLUS || GET_CODE (t) == IOR
5705 || GET_CODE (t) == XOR)
5706 && rtx_equal_p (XEXP (t, 1), f))
5707 c1 = XEXP (t, 0), op = GET_CODE (t), z = f;
5708 else if (GET_CODE (t) == SIGN_EXTEND
5709 && (GET_CODE (XEXP (t, 0)) == PLUS
5710 || GET_CODE (XEXP (t, 0)) == MINUS
5711 || GET_CODE (XEXP (t, 0)) == IOR
5712 || GET_CODE (XEXP (t, 0)) == XOR
5713 || GET_CODE (XEXP (t, 0)) == ASHIFT
5714 || GET_CODE (XEXP (t, 0)) == LSHIFTRT
5715 || GET_CODE (XEXP (t, 0)) == ASHIFTRT)
5716 && GET_CODE (XEXP (XEXP (t, 0), 0)) == SUBREG
5717 && subreg_lowpart_p (XEXP (XEXP (t, 0), 0))
5718 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 0)), f)
5719 && (num_sign_bit_copies (f, GET_MODE (f))
5720 > (unsigned int)
5721 (GET_MODE_BITSIZE (mode)
5722 - GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (t, 0), 0))))))
5723 {
5724 c1 = XEXP (XEXP (t, 0), 1); z = f; op = GET_CODE (XEXP (t, 0));
5725 extend_op = SIGN_EXTEND;
5726 m = GET_MODE (XEXP (t, 0));
5727 }
5728 else if (GET_CODE (t) == SIGN_EXTEND
5729 && (GET_CODE (XEXP (t, 0)) == PLUS
5730 || GET_CODE (XEXP (t, 0)) == IOR
5731 || GET_CODE (XEXP (t, 0)) == XOR)
5732 && GET_CODE (XEXP (XEXP (t, 0), 1)) == SUBREG
5733 && subreg_lowpart_p (XEXP (XEXP (t, 0), 1))
5734 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 1)), f)
5735 && (num_sign_bit_copies (f, GET_MODE (f))
5736 > (unsigned int)
5737 (GET_MODE_BITSIZE (mode)
5738 - GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (t, 0), 1))))))
5739 {
5740 c1 = XEXP (XEXP (t, 0), 0); z = f; op = GET_CODE (XEXP (t, 0));
5741 extend_op = SIGN_EXTEND;
5742 m = GET_MODE (XEXP (t, 0));
5743 }
5744 else if (GET_CODE (t) == ZERO_EXTEND
5745 && (GET_CODE (XEXP (t, 0)) == PLUS
5746 || GET_CODE (XEXP (t, 0)) == MINUS
5747 || GET_CODE (XEXP (t, 0)) == IOR
5748 || GET_CODE (XEXP (t, 0)) == XOR
5749 || GET_CODE (XEXP (t, 0)) == ASHIFT
5750 || GET_CODE (XEXP (t, 0)) == LSHIFTRT
5751 || GET_CODE (XEXP (t, 0)) == ASHIFTRT)
5752 && GET_CODE (XEXP (XEXP (t, 0), 0)) == SUBREG
5753 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5754 && subreg_lowpart_p (XEXP (XEXP (t, 0), 0))
5755 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 0)), f)
5756 && ((nonzero_bits (f, GET_MODE (f))
5757 & ~GET_MODE_MASK (GET_MODE (XEXP (XEXP (t, 0), 0))))
5758 == 0))
5759 {
5760 c1 = XEXP (XEXP (t, 0), 1); z = f; op = GET_CODE (XEXP (t, 0));
5761 extend_op = ZERO_EXTEND;
5762 m = GET_MODE (XEXP (t, 0));
5763 }
5764 else if (GET_CODE (t) == ZERO_EXTEND
5765 && (GET_CODE (XEXP (t, 0)) == PLUS
5766 || GET_CODE (XEXP (t, 0)) == IOR
5767 || GET_CODE (XEXP (t, 0)) == XOR)
5768 && GET_CODE (XEXP (XEXP (t, 0), 1)) == SUBREG
5769 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5770 && subreg_lowpart_p (XEXP (XEXP (t, 0), 1))
5771 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 1)), f)
5772 && ((nonzero_bits (f, GET_MODE (f))
5773 & ~GET_MODE_MASK (GET_MODE (XEXP (XEXP (t, 0), 1))))
5774 == 0))
5775 {
5776 c1 = XEXP (XEXP (t, 0), 0); z = f; op = GET_CODE (XEXP (t, 0));
5777 extend_op = ZERO_EXTEND;
5778 m = GET_MODE (XEXP (t, 0));
5779 }
5780
5781 if (z)
5782 {
5783 temp = subst (simplify_gen_relational (true_code, m, VOIDmode,
5784 cond_op0, cond_op1),
5785 pc_rtx, pc_rtx, 0, 0);
5786 temp = simplify_gen_binary (MULT, m, temp,
5787 simplify_gen_binary (MULT, m, c1,
5788 const_true_rtx));
5789 temp = subst (temp, pc_rtx, pc_rtx, 0, 0);
5790 temp = simplify_gen_binary (op, m, gen_lowpart (m, z), temp);
5791
5792 if (extend_op != UNKNOWN)
5793 temp = simplify_gen_unary (extend_op, mode, temp, m);
5794
5795 return temp;
5796 }
5797 }
5798
5799 /* If we have (if_then_else (ne A 0) C1 0) and either A is known to be 0 or
5800 1 and C1 is a single bit or A is known to be 0 or -1 and C1 is the
5801 negation of a single bit, we can convert this operation to a shift. We
5802 can actually do this more generally, but it doesn't seem worth it. */
5803
5804 if (true_code == NE && XEXP (cond, 1) == const0_rtx
5805 && false_rtx == const0_rtx && CONST_INT_P (true_rtx)
5806 && ((1 == nonzero_bits (XEXP (cond, 0), mode)
5807 && (i = exact_log2 (INTVAL (true_rtx))) >= 0)
5808 || ((num_sign_bit_copies (XEXP (cond, 0), mode)
5809 == GET_MODE_BITSIZE (mode))
5810 && (i = exact_log2 (-INTVAL (true_rtx))) >= 0)))
5811 return
5812 simplify_shift_const (NULL_RTX, ASHIFT, mode,
5813 gen_lowpart (mode, XEXP (cond, 0)), i);
5814
5815 /* (IF_THEN_ELSE (NE REG 0) (0) (8)) is REG for nonzero_bits (REG) == 8. */
5816 if (true_code == NE && XEXP (cond, 1) == const0_rtx
5817 && false_rtx == const0_rtx && CONST_INT_P (true_rtx)
5818 && GET_MODE (XEXP (cond, 0)) == mode
5819 && (INTVAL (true_rtx) & GET_MODE_MASK (mode))
5820 == nonzero_bits (XEXP (cond, 0), mode)
5821 && (i = exact_log2 (INTVAL (true_rtx) & GET_MODE_MASK (mode))) >= 0)
5822 return XEXP (cond, 0);
5823
5824 return x;
5825 }
5826 \f
5827 /* Simplify X, a SET expression. Return the new expression. */
5828
5829 static rtx
5830 simplify_set (rtx x)
5831 {
5832 rtx src = SET_SRC (x);
5833 rtx dest = SET_DEST (x);
5834 enum machine_mode mode
5835 = GET_MODE (src) != VOIDmode ? GET_MODE (src) : GET_MODE (dest);
5836 rtx other_insn;
5837 rtx *cc_use;
5838
5839 /* (set (pc) (return)) gets written as (return). */
5840 if (GET_CODE (dest) == PC && GET_CODE (src) == RETURN)
5841 return src;
5842
5843 /* Now that we know for sure which bits of SRC we are using, see if we can
5844 simplify the expression for the object knowing that we only need the
5845 low-order bits. */
5846
5847 if (GET_MODE_CLASS (mode) == MODE_INT
5848 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
5849 {
5850 src = force_to_mode (src, mode, ~(HOST_WIDE_INT) 0, 0);
5851 SUBST (SET_SRC (x), src);
5852 }
5853
5854 /* If we are setting CC0 or if the source is a COMPARE, look for the use of
5855 the comparison result and try to simplify it unless we already have used
5856 undobuf.other_insn. */
5857 if ((GET_MODE_CLASS (mode) == MODE_CC
5858 || GET_CODE (src) == COMPARE
5859 || CC0_P (dest))
5860 && (cc_use = find_single_use (dest, subst_insn, &other_insn)) != 0
5861 && (undobuf.other_insn == 0 || other_insn == undobuf.other_insn)
5862 && COMPARISON_P (*cc_use)
5863 && rtx_equal_p (XEXP (*cc_use, 0), dest))
5864 {
5865 enum rtx_code old_code = GET_CODE (*cc_use);
5866 enum rtx_code new_code;
5867 rtx op0, op1, tmp;
5868 int other_changed = 0;
5869 enum machine_mode compare_mode = GET_MODE (dest);
5870
5871 if (GET_CODE (src) == COMPARE)
5872 op0 = XEXP (src, 0), op1 = XEXP (src, 1);
5873 else
5874 op0 = src, op1 = CONST0_RTX (GET_MODE (src));
5875
5876 tmp = simplify_relational_operation (old_code, compare_mode, VOIDmode,
5877 op0, op1);
5878 if (!tmp)
5879 new_code = old_code;
5880 else if (!CONSTANT_P (tmp))
5881 {
5882 new_code = GET_CODE (tmp);
5883 op0 = XEXP (tmp, 0);
5884 op1 = XEXP (tmp, 1);
5885 }
5886 else
5887 {
5888 rtx pat = PATTERN (other_insn);
5889 undobuf.other_insn = other_insn;
5890 SUBST (*cc_use, tmp);
5891
5892 /* Attempt to simplify CC user. */
5893 if (GET_CODE (pat) == SET)
5894 {
5895 rtx new_rtx = simplify_rtx (SET_SRC (pat));
5896 if (new_rtx != NULL_RTX)
5897 SUBST (SET_SRC (pat), new_rtx);
5898 }
5899
5900 /* Convert X into a no-op move. */
5901 SUBST (SET_DEST (x), pc_rtx);
5902 SUBST (SET_SRC (x), pc_rtx);
5903 return x;
5904 }
5905
5906 /* Simplify our comparison, if possible. */
5907 new_code = simplify_comparison (new_code, &op0, &op1);
5908
5909 #ifdef SELECT_CC_MODE
5910 /* If this machine has CC modes other than CCmode, check to see if we
5911 need to use a different CC mode here. */
5912 if (GET_MODE_CLASS (GET_MODE (op0)) == MODE_CC)
5913 compare_mode = GET_MODE (op0);
5914 else
5915 compare_mode = SELECT_CC_MODE (new_code, op0, op1);
5916
5917 #ifndef HAVE_cc0
5918 /* If the mode changed, we have to change SET_DEST, the mode in the
5919 compare, and the mode in the place SET_DEST is used. If SET_DEST is
5920 a hard register, just build new versions with the proper mode. If it
5921 is a pseudo, we lose unless it is only time we set the pseudo, in
5922 which case we can safely change its mode. */
5923 if (compare_mode != GET_MODE (dest))
5924 {
5925 if (can_change_dest_mode (dest, 0, compare_mode))
5926 {
5927 unsigned int regno = REGNO (dest);
5928 rtx new_dest;
5929
5930 if (regno < FIRST_PSEUDO_REGISTER)
5931 new_dest = gen_rtx_REG (compare_mode, regno);
5932 else
5933 {
5934 SUBST_MODE (regno_reg_rtx[regno], compare_mode);
5935 new_dest = regno_reg_rtx[regno];
5936 }
5937
5938 SUBST (SET_DEST (x), new_dest);
5939 SUBST (XEXP (*cc_use, 0), new_dest);
5940 other_changed = 1;
5941
5942 dest = new_dest;
5943 }
5944 }
5945 #endif /* cc0 */
5946 #endif /* SELECT_CC_MODE */
5947
5948 /* If the code changed, we have to build a new comparison in
5949 undobuf.other_insn. */
5950 if (new_code != old_code)
5951 {
5952 int other_changed_previously = other_changed;
5953 unsigned HOST_WIDE_INT mask;
5954 rtx old_cc_use = *cc_use;
5955
5956 SUBST (*cc_use, gen_rtx_fmt_ee (new_code, GET_MODE (*cc_use),
5957 dest, const0_rtx));
5958 other_changed = 1;
5959
5960 /* If the only change we made was to change an EQ into an NE or
5961 vice versa, OP0 has only one bit that might be nonzero, and OP1
5962 is zero, check if changing the user of the condition code will
5963 produce a valid insn. If it won't, we can keep the original code
5964 in that insn by surrounding our operation with an XOR. */
5965
5966 if (((old_code == NE && new_code == EQ)
5967 || (old_code == EQ && new_code == NE))
5968 && ! other_changed_previously && op1 == const0_rtx
5969 && GET_MODE_BITSIZE (GET_MODE (op0)) <= HOST_BITS_PER_WIDE_INT
5970 && exact_log2 (mask = nonzero_bits (op0, GET_MODE (op0))) >= 0)
5971 {
5972 rtx pat = PATTERN (other_insn), note = 0;
5973
5974 if ((recog_for_combine (&pat, other_insn, &note) < 0
5975 && ! check_asm_operands (pat)))
5976 {
5977 *cc_use = old_cc_use;
5978 other_changed = 0;
5979
5980 op0 = simplify_gen_binary (XOR, GET_MODE (op0),
5981 op0, GEN_INT (mask));
5982 }
5983 }
5984 }
5985
5986 if (other_changed)
5987 undobuf.other_insn = other_insn;
5988
5989 /* Otherwise, if we didn't previously have a COMPARE in the
5990 correct mode, we need one. */
5991 if (GET_CODE (src) != COMPARE || GET_MODE (src) != compare_mode)
5992 {
5993 SUBST (SET_SRC (x), gen_rtx_COMPARE (compare_mode, op0, op1));
5994 src = SET_SRC (x);
5995 }
5996 else if (GET_MODE (op0) == compare_mode && op1 == const0_rtx)
5997 {
5998 SUBST (SET_SRC (x), op0);
5999 src = SET_SRC (x);
6000 }
6001 /* Otherwise, update the COMPARE if needed. */
6002 else if (XEXP (src, 0) != op0 || XEXP (src, 1) != op1)
6003 {
6004 SUBST (SET_SRC (x), gen_rtx_COMPARE (compare_mode, op0, op1));
6005 src = SET_SRC (x);
6006 }
6007 }
6008 else
6009 {
6010 /* Get SET_SRC in a form where we have placed back any
6011 compound expressions. Then do the checks below. */
6012 src = make_compound_operation (src, SET);
6013 SUBST (SET_SRC (x), src);
6014 }
6015
6016 /* If we have (set x (subreg:m1 (op:m2 ...) 0)) with OP being some operation,
6017 and X being a REG or (subreg (reg)), we may be able to convert this to
6018 (set (subreg:m2 x) (op)).
6019
6020 We can always do this if M1 is narrower than M2 because that means that
6021 we only care about the low bits of the result.
6022
6023 However, on machines without WORD_REGISTER_OPERATIONS defined, we cannot
6024 perform a narrower operation than requested since the high-order bits will
6025 be undefined. On machine where it is defined, this transformation is safe
6026 as long as M1 and M2 have the same number of words. */
6027
6028 if (GET_CODE (src) == SUBREG && subreg_lowpart_p (src)
6029 && !OBJECT_P (SUBREG_REG (src))
6030 && (((GET_MODE_SIZE (GET_MODE (src)) + (UNITS_PER_WORD - 1))
6031 / UNITS_PER_WORD)
6032 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (src)))
6033 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))
6034 #ifndef WORD_REGISTER_OPERATIONS
6035 && (GET_MODE_SIZE (GET_MODE (src))
6036 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (src))))
6037 #endif
6038 #ifdef CANNOT_CHANGE_MODE_CLASS
6039 && ! (REG_P (dest) && REGNO (dest) < FIRST_PSEUDO_REGISTER
6040 && REG_CANNOT_CHANGE_MODE_P (REGNO (dest),
6041 GET_MODE (SUBREG_REG (src)),
6042 GET_MODE (src)))
6043 #endif
6044 && (REG_P (dest)
6045 || (GET_CODE (dest) == SUBREG
6046 && REG_P (SUBREG_REG (dest)))))
6047 {
6048 SUBST (SET_DEST (x),
6049 gen_lowpart (GET_MODE (SUBREG_REG (src)),
6050 dest));
6051 SUBST (SET_SRC (x), SUBREG_REG (src));
6052
6053 src = SET_SRC (x), dest = SET_DEST (x);
6054 }
6055
6056 #ifdef HAVE_cc0
6057 /* If we have (set (cc0) (subreg ...)), we try to remove the subreg
6058 in SRC. */
6059 if (dest == cc0_rtx
6060 && GET_CODE (src) == SUBREG
6061 && subreg_lowpart_p (src)
6062 && (GET_MODE_BITSIZE (GET_MODE (src))
6063 < GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (src)))))
6064 {
6065 rtx inner = SUBREG_REG (src);
6066 enum machine_mode inner_mode = GET_MODE (inner);
6067
6068 /* Here we make sure that we don't have a sign bit on. */
6069 if (GET_MODE_BITSIZE (inner_mode) <= HOST_BITS_PER_WIDE_INT
6070 && (nonzero_bits (inner, inner_mode)
6071 < ((unsigned HOST_WIDE_INT) 1
6072 << (GET_MODE_BITSIZE (GET_MODE (src)) - 1))))
6073 {
6074 SUBST (SET_SRC (x), inner);
6075 src = SET_SRC (x);
6076 }
6077 }
6078 #endif
6079
6080 #ifdef LOAD_EXTEND_OP
6081 /* If we have (set FOO (subreg:M (mem:N BAR) 0)) with M wider than N, this
6082 would require a paradoxical subreg. Replace the subreg with a
6083 zero_extend to avoid the reload that would otherwise be required. */
6084
6085 if (GET_CODE (src) == SUBREG && subreg_lowpart_p (src)
6086 && INTEGRAL_MODE_P (GET_MODE (SUBREG_REG (src)))
6087 && LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (src))) != UNKNOWN
6088 && SUBREG_BYTE (src) == 0
6089 && (GET_MODE_SIZE (GET_MODE (src))
6090 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (src))))
6091 && MEM_P (SUBREG_REG (src)))
6092 {
6093 SUBST (SET_SRC (x),
6094 gen_rtx_fmt_e (LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (src))),
6095 GET_MODE (src), SUBREG_REG (src)));
6096
6097 src = SET_SRC (x);
6098 }
6099 #endif
6100
6101 /* If we don't have a conditional move, SET_SRC is an IF_THEN_ELSE, and we
6102 are comparing an item known to be 0 or -1 against 0, use a logical
6103 operation instead. Check for one of the arms being an IOR of the other
6104 arm with some value. We compute three terms to be IOR'ed together. In
6105 practice, at most two will be nonzero. Then we do the IOR's. */
6106
6107 if (GET_CODE (dest) != PC
6108 && GET_CODE (src) == IF_THEN_ELSE
6109 && GET_MODE_CLASS (GET_MODE (src)) == MODE_INT
6110 && (GET_CODE (XEXP (src, 0)) == EQ || GET_CODE (XEXP (src, 0)) == NE)
6111 && XEXP (XEXP (src, 0), 1) == const0_rtx
6112 && GET_MODE (src) == GET_MODE (XEXP (XEXP (src, 0), 0))
6113 #ifdef HAVE_conditional_move
6114 && ! can_conditionally_move_p (GET_MODE (src))
6115 #endif
6116 && (num_sign_bit_copies (XEXP (XEXP (src, 0), 0),
6117 GET_MODE (XEXP (XEXP (src, 0), 0)))
6118 == GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (src, 0), 0))))
6119 && ! side_effects_p (src))
6120 {
6121 rtx true_rtx = (GET_CODE (XEXP (src, 0)) == NE
6122 ? XEXP (src, 1) : XEXP (src, 2));
6123 rtx false_rtx = (GET_CODE (XEXP (src, 0)) == NE
6124 ? XEXP (src, 2) : XEXP (src, 1));
6125 rtx term1 = const0_rtx, term2, term3;
6126
6127 if (GET_CODE (true_rtx) == IOR
6128 && rtx_equal_p (XEXP (true_rtx, 0), false_rtx))
6129 term1 = false_rtx, true_rtx = XEXP (true_rtx, 1), false_rtx = const0_rtx;
6130 else if (GET_CODE (true_rtx) == IOR
6131 && rtx_equal_p (XEXP (true_rtx, 1), false_rtx))
6132 term1 = false_rtx, true_rtx = XEXP (true_rtx, 0), false_rtx = const0_rtx;
6133 else if (GET_CODE (false_rtx) == IOR
6134 && rtx_equal_p (XEXP (false_rtx, 0), true_rtx))
6135 term1 = true_rtx, false_rtx = XEXP (false_rtx, 1), true_rtx = const0_rtx;
6136 else if (GET_CODE (false_rtx) == IOR
6137 && rtx_equal_p (XEXP (false_rtx, 1), true_rtx))
6138 term1 = true_rtx, false_rtx = XEXP (false_rtx, 0), true_rtx = const0_rtx;
6139
6140 term2 = simplify_gen_binary (AND, GET_MODE (src),
6141 XEXP (XEXP (src, 0), 0), true_rtx);
6142 term3 = simplify_gen_binary (AND, GET_MODE (src),
6143 simplify_gen_unary (NOT, GET_MODE (src),
6144 XEXP (XEXP (src, 0), 0),
6145 GET_MODE (src)),
6146 false_rtx);
6147
6148 SUBST (SET_SRC (x),
6149 simplify_gen_binary (IOR, GET_MODE (src),
6150 simplify_gen_binary (IOR, GET_MODE (src),
6151 term1, term2),
6152 term3));
6153
6154 src = SET_SRC (x);
6155 }
6156
6157 /* If either SRC or DEST is a CLOBBER of (const_int 0), make this
6158 whole thing fail. */
6159 if (GET_CODE (src) == CLOBBER && XEXP (src, 0) == const0_rtx)
6160 return src;
6161 else if (GET_CODE (dest) == CLOBBER && XEXP (dest, 0) == const0_rtx)
6162 return dest;
6163 else
6164 /* Convert this into a field assignment operation, if possible. */
6165 return make_field_assignment (x);
6166 }
6167 \f
6168 /* Simplify, X, and AND, IOR, or XOR operation, and return the simplified
6169 result. */
6170
6171 static rtx
6172 simplify_logical (rtx x)
6173 {
6174 enum machine_mode mode = GET_MODE (x);
6175 rtx op0 = XEXP (x, 0);
6176 rtx op1 = XEXP (x, 1);
6177
6178 switch (GET_CODE (x))
6179 {
6180 case AND:
6181 /* We can call simplify_and_const_int only if we don't lose
6182 any (sign) bits when converting INTVAL (op1) to
6183 "unsigned HOST_WIDE_INT". */
6184 if (CONST_INT_P (op1)
6185 && (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
6186 || INTVAL (op1) > 0))
6187 {
6188 x = simplify_and_const_int (x, mode, op0, INTVAL (op1));
6189 if (GET_CODE (x) != AND)
6190 return x;
6191
6192 op0 = XEXP (x, 0);
6193 op1 = XEXP (x, 1);
6194 }
6195
6196 /* If we have any of (and (ior A B) C) or (and (xor A B) C),
6197 apply the distributive law and then the inverse distributive
6198 law to see if things simplify. */
6199 if (GET_CODE (op0) == IOR || GET_CODE (op0) == XOR)
6200 {
6201 rtx result = distribute_and_simplify_rtx (x, 0);
6202 if (result)
6203 return result;
6204 }
6205 if (GET_CODE (op1) == IOR || GET_CODE (op1) == XOR)
6206 {
6207 rtx result = distribute_and_simplify_rtx (x, 1);
6208 if (result)
6209 return result;
6210 }
6211 break;
6212
6213 case IOR:
6214 /* If we have (ior (and A B) C), apply the distributive law and then
6215 the inverse distributive law to see if things simplify. */
6216
6217 if (GET_CODE (op0) == AND)
6218 {
6219 rtx result = distribute_and_simplify_rtx (x, 0);
6220 if (result)
6221 return result;
6222 }
6223
6224 if (GET_CODE (op1) == AND)
6225 {
6226 rtx result = distribute_and_simplify_rtx (x, 1);
6227 if (result)
6228 return result;
6229 }
6230 break;
6231
6232 default:
6233 gcc_unreachable ();
6234 }
6235
6236 return x;
6237 }
6238 \f
6239 /* We consider ZERO_EXTRACT, SIGN_EXTRACT, and SIGN_EXTEND as "compound
6240 operations" because they can be replaced with two more basic operations.
6241 ZERO_EXTEND is also considered "compound" because it can be replaced with
6242 an AND operation, which is simpler, though only one operation.
6243
6244 The function expand_compound_operation is called with an rtx expression
6245 and will convert it to the appropriate shifts and AND operations,
6246 simplifying at each stage.
6247
6248 The function make_compound_operation is called to convert an expression
6249 consisting of shifts and ANDs into the equivalent compound expression.
6250 It is the inverse of this function, loosely speaking. */
6251
6252 static rtx
6253 expand_compound_operation (rtx x)
6254 {
6255 unsigned HOST_WIDE_INT pos = 0, len;
6256 int unsignedp = 0;
6257 unsigned int modewidth;
6258 rtx tem;
6259
6260 switch (GET_CODE (x))
6261 {
6262 case ZERO_EXTEND:
6263 unsignedp = 1;
6264 case SIGN_EXTEND:
6265 /* We can't necessarily use a const_int for a multiword mode;
6266 it depends on implicitly extending the value.
6267 Since we don't know the right way to extend it,
6268 we can't tell whether the implicit way is right.
6269
6270 Even for a mode that is no wider than a const_int,
6271 we can't win, because we need to sign extend one of its bits through
6272 the rest of it, and we don't know which bit. */
6273 if (CONST_INT_P (XEXP (x, 0)))
6274 return x;
6275
6276 /* Return if (subreg:MODE FROM 0) is not a safe replacement for
6277 (zero_extend:MODE FROM) or (sign_extend:MODE FROM). It is for any MEM
6278 because (SUBREG (MEM...)) is guaranteed to cause the MEM to be
6279 reloaded. If not for that, MEM's would very rarely be safe.
6280
6281 Reject MODEs bigger than a word, because we might not be able
6282 to reference a two-register group starting with an arbitrary register
6283 (and currently gen_lowpart might crash for a SUBREG). */
6284
6285 if (GET_MODE_SIZE (GET_MODE (XEXP (x, 0))) > UNITS_PER_WORD)
6286 return x;
6287
6288 /* Reject MODEs that aren't scalar integers because turning vector
6289 or complex modes into shifts causes problems. */
6290
6291 if (! SCALAR_INT_MODE_P (GET_MODE (XEXP (x, 0))))
6292 return x;
6293
6294 len = GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)));
6295 /* If the inner object has VOIDmode (the only way this can happen
6296 is if it is an ASM_OPERANDS), we can't do anything since we don't
6297 know how much masking to do. */
6298 if (len == 0)
6299 return x;
6300
6301 break;
6302
6303 case ZERO_EXTRACT:
6304 unsignedp = 1;
6305
6306 /* ... fall through ... */
6307
6308 case SIGN_EXTRACT:
6309 /* If the operand is a CLOBBER, just return it. */
6310 if (GET_CODE (XEXP (x, 0)) == CLOBBER)
6311 return XEXP (x, 0);
6312
6313 if (!CONST_INT_P (XEXP (x, 1))
6314 || !CONST_INT_P (XEXP (x, 2))
6315 || GET_MODE (XEXP (x, 0)) == VOIDmode)
6316 return x;
6317
6318 /* Reject MODEs that aren't scalar integers because turning vector
6319 or complex modes into shifts causes problems. */
6320
6321 if (! SCALAR_INT_MODE_P (GET_MODE (XEXP (x, 0))))
6322 return x;
6323
6324 len = INTVAL (XEXP (x, 1));
6325 pos = INTVAL (XEXP (x, 2));
6326
6327 /* This should stay within the object being extracted, fail otherwise. */
6328 if (len + pos > GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0))))
6329 return x;
6330
6331 if (BITS_BIG_ENDIAN)
6332 pos = GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0))) - len - pos;
6333
6334 break;
6335
6336 default:
6337 return x;
6338 }
6339 /* Convert sign extension to zero extension, if we know that the high
6340 bit is not set, as this is easier to optimize. It will be converted
6341 back to cheaper alternative in make_extraction. */
6342 if (GET_CODE (x) == SIGN_EXTEND
6343 && (GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
6344 && ((nonzero_bits (XEXP (x, 0), GET_MODE (XEXP (x, 0)))
6345 & ~(((unsigned HOST_WIDE_INT)
6346 GET_MODE_MASK (GET_MODE (XEXP (x, 0))))
6347 >> 1))
6348 == 0)))
6349 {
6350 rtx temp = gen_rtx_ZERO_EXTEND (GET_MODE (x), XEXP (x, 0));
6351 rtx temp2 = expand_compound_operation (temp);
6352
6353 /* Make sure this is a profitable operation. */
6354 if (rtx_cost (x, SET, optimize_this_for_speed_p)
6355 > rtx_cost (temp2, SET, optimize_this_for_speed_p))
6356 return temp2;
6357 else if (rtx_cost (x, SET, optimize_this_for_speed_p)
6358 > rtx_cost (temp, SET, optimize_this_for_speed_p))
6359 return temp;
6360 else
6361 return x;
6362 }
6363
6364 /* We can optimize some special cases of ZERO_EXTEND. */
6365 if (GET_CODE (x) == ZERO_EXTEND)
6366 {
6367 /* (zero_extend:DI (truncate:SI foo:DI)) is just foo:DI if we
6368 know that the last value didn't have any inappropriate bits
6369 set. */
6370 if (GET_CODE (XEXP (x, 0)) == TRUNCATE
6371 && GET_MODE (XEXP (XEXP (x, 0), 0)) == GET_MODE (x)
6372 && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
6373 && (nonzero_bits (XEXP (XEXP (x, 0), 0), GET_MODE (x))
6374 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
6375 return XEXP (XEXP (x, 0), 0);
6376
6377 /* Likewise for (zero_extend:DI (subreg:SI foo:DI 0)). */
6378 if (GET_CODE (XEXP (x, 0)) == SUBREG
6379 && GET_MODE (SUBREG_REG (XEXP (x, 0))) == GET_MODE (x)
6380 && subreg_lowpart_p (XEXP (x, 0))
6381 && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
6382 && (nonzero_bits (SUBREG_REG (XEXP (x, 0)), GET_MODE (x))
6383 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
6384 return SUBREG_REG (XEXP (x, 0));
6385
6386 /* (zero_extend:DI (truncate:SI foo:DI)) is just foo:DI when foo
6387 is a comparison and STORE_FLAG_VALUE permits. This is like
6388 the first case, but it works even when GET_MODE (x) is larger
6389 than HOST_WIDE_INT. */
6390 if (GET_CODE (XEXP (x, 0)) == TRUNCATE
6391 && GET_MODE (XEXP (XEXP (x, 0), 0)) == GET_MODE (x)
6392 && COMPARISON_P (XEXP (XEXP (x, 0), 0))
6393 && (GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))
6394 <= HOST_BITS_PER_WIDE_INT)
6395 && ((HOST_WIDE_INT) STORE_FLAG_VALUE
6396 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
6397 return XEXP (XEXP (x, 0), 0);
6398
6399 /* Likewise for (zero_extend:DI (subreg:SI foo:DI 0)). */
6400 if (GET_CODE (XEXP (x, 0)) == SUBREG
6401 && GET_MODE (SUBREG_REG (XEXP (x, 0))) == GET_MODE (x)
6402 && subreg_lowpart_p (XEXP (x, 0))
6403 && COMPARISON_P (SUBREG_REG (XEXP (x, 0)))
6404 && (GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))
6405 <= HOST_BITS_PER_WIDE_INT)
6406 && ((HOST_WIDE_INT) STORE_FLAG_VALUE
6407 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
6408 return SUBREG_REG (XEXP (x, 0));
6409
6410 }
6411
6412 /* If we reach here, we want to return a pair of shifts. The inner
6413 shift is a left shift of BITSIZE - POS - LEN bits. The outer
6414 shift is a right shift of BITSIZE - LEN bits. It is arithmetic or
6415 logical depending on the value of UNSIGNEDP.
6416
6417 If this was a ZERO_EXTEND or ZERO_EXTRACT, this pair of shifts will be
6418 converted into an AND of a shift.
6419
6420 We must check for the case where the left shift would have a negative
6421 count. This can happen in a case like (x >> 31) & 255 on machines
6422 that can't shift by a constant. On those machines, we would first
6423 combine the shift with the AND to produce a variable-position
6424 extraction. Then the constant of 31 would be substituted in to produce
6425 a such a position. */
6426
6427 modewidth = GET_MODE_BITSIZE (GET_MODE (x));
6428 if (modewidth + len >= pos)
6429 {
6430 enum machine_mode mode = GET_MODE (x);
6431 tem = gen_lowpart (mode, XEXP (x, 0));
6432 if (!tem || GET_CODE (tem) == CLOBBER)
6433 return x;
6434 tem = simplify_shift_const (NULL_RTX, ASHIFT, mode,
6435 tem, modewidth - pos - len);
6436 tem = simplify_shift_const (NULL_RTX, unsignedp ? LSHIFTRT : ASHIFTRT,
6437 mode, tem, modewidth - len);
6438 }
6439 else if (unsignedp && len < HOST_BITS_PER_WIDE_INT)
6440 tem = simplify_and_const_int (NULL_RTX, GET_MODE (x),
6441 simplify_shift_const (NULL_RTX, LSHIFTRT,
6442 GET_MODE (x),
6443 XEXP (x, 0), pos),
6444 ((HOST_WIDE_INT) 1 << len) - 1);
6445 else
6446 /* Any other cases we can't handle. */
6447 return x;
6448
6449 /* If we couldn't do this for some reason, return the original
6450 expression. */
6451 if (GET_CODE (tem) == CLOBBER)
6452 return x;
6453
6454 return tem;
6455 }
6456 \f
6457 /* X is a SET which contains an assignment of one object into
6458 a part of another (such as a bit-field assignment, STRICT_LOW_PART,
6459 or certain SUBREGS). If possible, convert it into a series of
6460 logical operations.
6461
6462 We half-heartedly support variable positions, but do not at all
6463 support variable lengths. */
6464
6465 static const_rtx
6466 expand_field_assignment (const_rtx x)
6467 {
6468 rtx inner;
6469 rtx pos; /* Always counts from low bit. */
6470 int len;
6471 rtx mask, cleared, masked;
6472 enum machine_mode compute_mode;
6473
6474 /* Loop until we find something we can't simplify. */
6475 while (1)
6476 {
6477 if (GET_CODE (SET_DEST (x)) == STRICT_LOW_PART
6478 && GET_CODE (XEXP (SET_DEST (x), 0)) == SUBREG)
6479 {
6480 inner = SUBREG_REG (XEXP (SET_DEST (x), 0));
6481 len = GET_MODE_BITSIZE (GET_MODE (XEXP (SET_DEST (x), 0)));
6482 pos = GEN_INT (subreg_lsb (XEXP (SET_DEST (x), 0)));
6483 }
6484 else if (GET_CODE (SET_DEST (x)) == ZERO_EXTRACT
6485 && CONST_INT_P (XEXP (SET_DEST (x), 1)))
6486 {
6487 inner = XEXP (SET_DEST (x), 0);
6488 len = INTVAL (XEXP (SET_DEST (x), 1));
6489 pos = XEXP (SET_DEST (x), 2);
6490
6491 /* A constant position should stay within the width of INNER. */
6492 if (CONST_INT_P (pos)
6493 && INTVAL (pos) + len > GET_MODE_BITSIZE (GET_MODE (inner)))
6494 break;
6495
6496 if (BITS_BIG_ENDIAN)
6497 {
6498 if (CONST_INT_P (pos))
6499 pos = GEN_INT (GET_MODE_BITSIZE (GET_MODE (inner)) - len
6500 - INTVAL (pos));
6501 else if (GET_CODE (pos) == MINUS
6502 && CONST_INT_P (XEXP (pos, 1))
6503 && (INTVAL (XEXP (pos, 1))
6504 == GET_MODE_BITSIZE (GET_MODE (inner)) - len))
6505 /* If position is ADJUST - X, new position is X. */
6506 pos = XEXP (pos, 0);
6507 else
6508 pos = simplify_gen_binary (MINUS, GET_MODE (pos),
6509 GEN_INT (GET_MODE_BITSIZE (
6510 GET_MODE (inner))
6511 - len),
6512 pos);
6513 }
6514 }
6515
6516 /* A SUBREG between two modes that occupy the same numbers of words
6517 can be done by moving the SUBREG to the source. */
6518 else if (GET_CODE (SET_DEST (x)) == SUBREG
6519 /* We need SUBREGs to compute nonzero_bits properly. */
6520 && nonzero_sign_valid
6521 && (((GET_MODE_SIZE (GET_MODE (SET_DEST (x)))
6522 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
6523 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (x))))
6524 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)))
6525 {
6526 x = gen_rtx_SET (VOIDmode, SUBREG_REG (SET_DEST (x)),
6527 gen_lowpart
6528 (GET_MODE (SUBREG_REG (SET_DEST (x))),
6529 SET_SRC (x)));
6530 continue;
6531 }
6532 else
6533 break;
6534
6535 while (GET_CODE (inner) == SUBREG && subreg_lowpart_p (inner))
6536 inner = SUBREG_REG (inner);
6537
6538 compute_mode = GET_MODE (inner);
6539
6540 /* Don't attempt bitwise arithmetic on non scalar integer modes. */
6541 if (! SCALAR_INT_MODE_P (compute_mode))
6542 {
6543 enum machine_mode imode;
6544
6545 /* Don't do anything for vector or complex integral types. */
6546 if (! FLOAT_MODE_P (compute_mode))
6547 break;
6548
6549 /* Try to find an integral mode to pun with. */
6550 imode = mode_for_size (GET_MODE_BITSIZE (compute_mode), MODE_INT, 0);
6551 if (imode == BLKmode)
6552 break;
6553
6554 compute_mode = imode;
6555 inner = gen_lowpart (imode, inner);
6556 }
6557
6558 /* Compute a mask of LEN bits, if we can do this on the host machine. */
6559 if (len >= HOST_BITS_PER_WIDE_INT)
6560 break;
6561
6562 /* Now compute the equivalent expression. Make a copy of INNER
6563 for the SET_DEST in case it is a MEM into which we will substitute;
6564 we don't want shared RTL in that case. */
6565 mask = GEN_INT (((HOST_WIDE_INT) 1 << len) - 1);
6566 cleared = simplify_gen_binary (AND, compute_mode,
6567 simplify_gen_unary (NOT, compute_mode,
6568 simplify_gen_binary (ASHIFT,
6569 compute_mode,
6570 mask, pos),
6571 compute_mode),
6572 inner);
6573 masked = simplify_gen_binary (ASHIFT, compute_mode,
6574 simplify_gen_binary (
6575 AND, compute_mode,
6576 gen_lowpart (compute_mode, SET_SRC (x)),
6577 mask),
6578 pos);
6579
6580 x = gen_rtx_SET (VOIDmode, copy_rtx (inner),
6581 simplify_gen_binary (IOR, compute_mode,
6582 cleared, masked));
6583 }
6584
6585 return x;
6586 }
6587 \f
6588 /* Return an RTX for a reference to LEN bits of INNER. If POS_RTX is nonzero,
6589 it is an RTX that represents a variable starting position; otherwise,
6590 POS is the (constant) starting bit position (counted from the LSB).
6591
6592 UNSIGNEDP is nonzero for an unsigned reference and zero for a
6593 signed reference.
6594
6595 IN_DEST is nonzero if this is a reference in the destination of a
6596 SET. This is used when a ZERO_ or SIGN_EXTRACT isn't needed. If nonzero,
6597 a STRICT_LOW_PART will be used, if zero, ZERO_EXTEND or SIGN_EXTEND will
6598 be used.
6599
6600 IN_COMPARE is nonzero if we are in a COMPARE. This means that a
6601 ZERO_EXTRACT should be built even for bits starting at bit 0.
6602
6603 MODE is the desired mode of the result (if IN_DEST == 0).
6604
6605 The result is an RTX for the extraction or NULL_RTX if the target
6606 can't handle it. */
6607
6608 static rtx
6609 make_extraction (enum machine_mode mode, rtx inner, HOST_WIDE_INT pos,
6610 rtx pos_rtx, unsigned HOST_WIDE_INT len, int unsignedp,
6611 int in_dest, int in_compare)
6612 {
6613 /* This mode describes the size of the storage area
6614 to fetch the overall value from. Within that, we
6615 ignore the POS lowest bits, etc. */
6616 enum machine_mode is_mode = GET_MODE (inner);
6617 enum machine_mode inner_mode;
6618 enum machine_mode wanted_inner_mode;
6619 enum machine_mode wanted_inner_reg_mode = word_mode;
6620 enum machine_mode pos_mode = word_mode;
6621 enum machine_mode extraction_mode = word_mode;
6622 enum machine_mode tmode = mode_for_size (len, MODE_INT, 1);
6623 rtx new_rtx = 0;
6624 rtx orig_pos_rtx = pos_rtx;
6625 HOST_WIDE_INT orig_pos;
6626
6627 if (GET_CODE (inner) == SUBREG && subreg_lowpart_p (inner))
6628 {
6629 /* If going from (subreg:SI (mem:QI ...)) to (mem:QI ...),
6630 consider just the QI as the memory to extract from.
6631 The subreg adds or removes high bits; its mode is
6632 irrelevant to the meaning of this extraction,
6633 since POS and LEN count from the lsb. */
6634 if (MEM_P (SUBREG_REG (inner)))
6635 is_mode = GET_MODE (SUBREG_REG (inner));
6636 inner = SUBREG_REG (inner);
6637 }
6638 else if (GET_CODE (inner) == ASHIFT
6639 && CONST_INT_P (XEXP (inner, 1))
6640 && pos_rtx == 0 && pos == 0
6641 && len > (unsigned HOST_WIDE_INT) INTVAL (XEXP (inner, 1)))
6642 {
6643 /* We're extracting the least significant bits of an rtx
6644 (ashift X (const_int C)), where LEN > C. Extract the
6645 least significant (LEN - C) bits of X, giving an rtx
6646 whose mode is MODE, then shift it left C times. */
6647 new_rtx = make_extraction (mode, XEXP (inner, 0),
6648 0, 0, len - INTVAL (XEXP (inner, 1)),
6649 unsignedp, in_dest, in_compare);
6650 if (new_rtx != 0)
6651 return gen_rtx_ASHIFT (mode, new_rtx, XEXP (inner, 1));
6652 }
6653
6654 inner_mode = GET_MODE (inner);
6655
6656 if (pos_rtx && CONST_INT_P (pos_rtx))
6657 pos = INTVAL (pos_rtx), pos_rtx = 0;
6658
6659 /* See if this can be done without an extraction. We never can if the
6660 width of the field is not the same as that of some integer mode. For
6661 registers, we can only avoid the extraction if the position is at the
6662 low-order bit and this is either not in the destination or we have the
6663 appropriate STRICT_LOW_PART operation available.
6664
6665 For MEM, we can avoid an extract if the field starts on an appropriate
6666 boundary and we can change the mode of the memory reference. */
6667
6668 if (tmode != BLKmode
6669 && ((pos_rtx == 0 && (pos % BITS_PER_WORD) == 0
6670 && !MEM_P (inner)
6671 && (inner_mode == tmode
6672 || !REG_P (inner)
6673 || TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (tmode),
6674 GET_MODE_BITSIZE (inner_mode))
6675 || reg_truncated_to_mode (tmode, inner))
6676 && (! in_dest
6677 || (REG_P (inner)
6678 && have_insn_for (STRICT_LOW_PART, tmode))))
6679 || (MEM_P (inner) && pos_rtx == 0
6680 && (pos
6681 % (STRICT_ALIGNMENT ? GET_MODE_ALIGNMENT (tmode)
6682 : BITS_PER_UNIT)) == 0
6683 /* We can't do this if we are widening INNER_MODE (it
6684 may not be aligned, for one thing). */
6685 && GET_MODE_BITSIZE (inner_mode) >= GET_MODE_BITSIZE (tmode)
6686 && (inner_mode == tmode
6687 || (! mode_dependent_address_p (XEXP (inner, 0))
6688 && ! MEM_VOLATILE_P (inner))))))
6689 {
6690 /* If INNER is a MEM, make a new MEM that encompasses just the desired
6691 field. If the original and current mode are the same, we need not
6692 adjust the offset. Otherwise, we do if bytes big endian.
6693
6694 If INNER is not a MEM, get a piece consisting of just the field
6695 of interest (in this case POS % BITS_PER_WORD must be 0). */
6696
6697 if (MEM_P (inner))
6698 {
6699 HOST_WIDE_INT offset;
6700
6701 /* POS counts from lsb, but make OFFSET count in memory order. */
6702 if (BYTES_BIG_ENDIAN)
6703 offset = (GET_MODE_BITSIZE (is_mode) - len - pos) / BITS_PER_UNIT;
6704 else
6705 offset = pos / BITS_PER_UNIT;
6706
6707 new_rtx = adjust_address_nv (inner, tmode, offset);
6708 }
6709 else if (REG_P (inner))
6710 {
6711 if (tmode != inner_mode)
6712 {
6713 /* We can't call gen_lowpart in a DEST since we
6714 always want a SUBREG (see below) and it would sometimes
6715 return a new hard register. */
6716 if (pos || in_dest)
6717 {
6718 HOST_WIDE_INT final_word = pos / BITS_PER_WORD;
6719
6720 if (WORDS_BIG_ENDIAN
6721 && GET_MODE_SIZE (inner_mode) > UNITS_PER_WORD)
6722 final_word = ((GET_MODE_SIZE (inner_mode)
6723 - GET_MODE_SIZE (tmode))
6724 / UNITS_PER_WORD) - final_word;
6725
6726 final_word *= UNITS_PER_WORD;
6727 if (BYTES_BIG_ENDIAN &&
6728 GET_MODE_SIZE (inner_mode) > GET_MODE_SIZE (tmode))
6729 final_word += (GET_MODE_SIZE (inner_mode)
6730 - GET_MODE_SIZE (tmode)) % UNITS_PER_WORD;
6731
6732 /* Avoid creating invalid subregs, for example when
6733 simplifying (x>>32)&255. */
6734 if (!validate_subreg (tmode, inner_mode, inner, final_word))
6735 return NULL_RTX;
6736
6737 new_rtx = gen_rtx_SUBREG (tmode, inner, final_word);
6738 }
6739 else
6740 new_rtx = gen_lowpart (tmode, inner);
6741 }
6742 else
6743 new_rtx = inner;
6744 }
6745 else
6746 new_rtx = force_to_mode (inner, tmode,
6747 len >= HOST_BITS_PER_WIDE_INT
6748 ? ~(unsigned HOST_WIDE_INT) 0
6749 : ((unsigned HOST_WIDE_INT) 1 << len) - 1,
6750 0);
6751
6752 /* If this extraction is going into the destination of a SET,
6753 make a STRICT_LOW_PART unless we made a MEM. */
6754
6755 if (in_dest)
6756 return (MEM_P (new_rtx) ? new_rtx
6757 : (GET_CODE (new_rtx) != SUBREG
6758 ? gen_rtx_CLOBBER (tmode, const0_rtx)
6759 : gen_rtx_STRICT_LOW_PART (VOIDmode, new_rtx)));
6760
6761 if (mode == tmode)
6762 return new_rtx;
6763
6764 if (CONST_INT_P (new_rtx)
6765 || GET_CODE (new_rtx) == CONST_DOUBLE)
6766 return simplify_unary_operation (unsignedp ? ZERO_EXTEND : SIGN_EXTEND,
6767 mode, new_rtx, tmode);
6768
6769 /* If we know that no extraneous bits are set, and that the high
6770 bit is not set, convert the extraction to the cheaper of
6771 sign and zero extension, that are equivalent in these cases. */
6772 if (flag_expensive_optimizations
6773 && (GET_MODE_BITSIZE (tmode) <= HOST_BITS_PER_WIDE_INT
6774 && ((nonzero_bits (new_rtx, tmode)
6775 & ~(((unsigned HOST_WIDE_INT)
6776 GET_MODE_MASK (tmode))
6777 >> 1))
6778 == 0)))
6779 {
6780 rtx temp = gen_rtx_ZERO_EXTEND (mode, new_rtx);
6781 rtx temp1 = gen_rtx_SIGN_EXTEND (mode, new_rtx);
6782
6783 /* Prefer ZERO_EXTENSION, since it gives more information to
6784 backends. */
6785 if (rtx_cost (temp, SET, optimize_this_for_speed_p)
6786 <= rtx_cost (temp1, SET, optimize_this_for_speed_p))
6787 return temp;
6788 return temp1;
6789 }
6790
6791 /* Otherwise, sign- or zero-extend unless we already are in the
6792 proper mode. */
6793
6794 return (gen_rtx_fmt_e (unsignedp ? ZERO_EXTEND : SIGN_EXTEND,
6795 mode, new_rtx));
6796 }
6797
6798 /* Unless this is a COMPARE or we have a funny memory reference,
6799 don't do anything with zero-extending field extracts starting at
6800 the low-order bit since they are simple AND operations. */
6801 if (pos_rtx == 0 && pos == 0 && ! in_dest
6802 && ! in_compare && unsignedp)
6803 return 0;
6804
6805 /* Unless INNER is not MEM, reject this if we would be spanning bytes or
6806 if the position is not a constant and the length is not 1. In all
6807 other cases, we would only be going outside our object in cases when
6808 an original shift would have been undefined. */
6809 if (MEM_P (inner)
6810 && ((pos_rtx == 0 && pos + len > GET_MODE_BITSIZE (is_mode))
6811 || (pos_rtx != 0 && len != 1)))
6812 return 0;
6813
6814 /* Get the mode to use should INNER not be a MEM, the mode for the position,
6815 and the mode for the result. */
6816 if (in_dest && mode_for_extraction (EP_insv, -1) != MAX_MACHINE_MODE)
6817 {
6818 wanted_inner_reg_mode = mode_for_extraction (EP_insv, 0);
6819 pos_mode = mode_for_extraction (EP_insv, 2);
6820 extraction_mode = mode_for_extraction (EP_insv, 3);
6821 }
6822
6823 if (! in_dest && unsignedp
6824 && mode_for_extraction (EP_extzv, -1) != MAX_MACHINE_MODE)
6825 {
6826 wanted_inner_reg_mode = mode_for_extraction (EP_extzv, 1);
6827 pos_mode = mode_for_extraction (EP_extzv, 3);
6828 extraction_mode = mode_for_extraction (EP_extzv, 0);
6829 }
6830
6831 if (! in_dest && ! unsignedp
6832 && mode_for_extraction (EP_extv, -1) != MAX_MACHINE_MODE)
6833 {
6834 wanted_inner_reg_mode = mode_for_extraction (EP_extv, 1);
6835 pos_mode = mode_for_extraction (EP_extv, 3);
6836 extraction_mode = mode_for_extraction (EP_extv, 0);
6837 }
6838
6839 /* Never narrow an object, since that might not be safe. */
6840
6841 if (mode != VOIDmode
6842 && GET_MODE_SIZE (extraction_mode) < GET_MODE_SIZE (mode))
6843 extraction_mode = mode;
6844
6845 if (pos_rtx && GET_MODE (pos_rtx) != VOIDmode
6846 && GET_MODE_SIZE (pos_mode) < GET_MODE_SIZE (GET_MODE (pos_rtx)))
6847 pos_mode = GET_MODE (pos_rtx);
6848
6849 /* If this is not from memory, the desired mode is the preferred mode
6850 for an extraction pattern's first input operand, or word_mode if there
6851 is none. */
6852 if (!MEM_P (inner))
6853 wanted_inner_mode = wanted_inner_reg_mode;
6854 else
6855 {
6856 /* Be careful not to go beyond the extracted object and maintain the
6857 natural alignment of the memory. */
6858 wanted_inner_mode = smallest_mode_for_size (len, MODE_INT);
6859 while (pos % GET_MODE_BITSIZE (wanted_inner_mode) + len
6860 > GET_MODE_BITSIZE (wanted_inner_mode))
6861 {
6862 wanted_inner_mode = GET_MODE_WIDER_MODE (wanted_inner_mode);
6863 gcc_assert (wanted_inner_mode != VOIDmode);
6864 }
6865
6866 /* If we have to change the mode of memory and cannot, the desired mode
6867 is EXTRACTION_MODE. */
6868 if (inner_mode != wanted_inner_mode
6869 && (mode_dependent_address_p (XEXP (inner, 0))
6870 || MEM_VOLATILE_P (inner)
6871 || pos_rtx))
6872 wanted_inner_mode = extraction_mode;
6873 }
6874
6875 orig_pos = pos;
6876
6877 if (BITS_BIG_ENDIAN)
6878 {
6879 /* POS is passed as if BITS_BIG_ENDIAN == 0, so we need to convert it to
6880 BITS_BIG_ENDIAN style. If position is constant, compute new
6881 position. Otherwise, build subtraction.
6882 Note that POS is relative to the mode of the original argument.
6883 If it's a MEM we need to recompute POS relative to that.
6884 However, if we're extracting from (or inserting into) a register,
6885 we want to recompute POS relative to wanted_inner_mode. */
6886 int width = (MEM_P (inner)
6887 ? GET_MODE_BITSIZE (is_mode)
6888 : GET_MODE_BITSIZE (wanted_inner_mode));
6889
6890 if (pos_rtx == 0)
6891 pos = width - len - pos;
6892 else
6893 pos_rtx
6894 = gen_rtx_MINUS (GET_MODE (pos_rtx), GEN_INT (width - len), pos_rtx);
6895 /* POS may be less than 0 now, but we check for that below.
6896 Note that it can only be less than 0 if !MEM_P (inner). */
6897 }
6898
6899 /* If INNER has a wider mode, and this is a constant extraction, try to
6900 make it smaller and adjust the byte to point to the byte containing
6901 the value. */
6902 if (wanted_inner_mode != VOIDmode
6903 && inner_mode != wanted_inner_mode
6904 && ! pos_rtx
6905 && GET_MODE_SIZE (wanted_inner_mode) < GET_MODE_SIZE (is_mode)
6906 && MEM_P (inner)
6907 && ! mode_dependent_address_p (XEXP (inner, 0))
6908 && ! MEM_VOLATILE_P (inner))
6909 {
6910 int offset = 0;
6911
6912 /* The computations below will be correct if the machine is big
6913 endian in both bits and bytes or little endian in bits and bytes.
6914 If it is mixed, we must adjust. */
6915
6916 /* If bytes are big endian and we had a paradoxical SUBREG, we must
6917 adjust OFFSET to compensate. */
6918 if (BYTES_BIG_ENDIAN
6919 && GET_MODE_SIZE (inner_mode) < GET_MODE_SIZE (is_mode))
6920 offset -= GET_MODE_SIZE (is_mode) - GET_MODE_SIZE (inner_mode);
6921
6922 /* We can now move to the desired byte. */
6923 offset += (pos / GET_MODE_BITSIZE (wanted_inner_mode))
6924 * GET_MODE_SIZE (wanted_inner_mode);
6925 pos %= GET_MODE_BITSIZE (wanted_inner_mode);
6926
6927 if (BYTES_BIG_ENDIAN != BITS_BIG_ENDIAN
6928 && is_mode != wanted_inner_mode)
6929 offset = (GET_MODE_SIZE (is_mode)
6930 - GET_MODE_SIZE (wanted_inner_mode) - offset);
6931
6932 inner = adjust_address_nv (inner, wanted_inner_mode, offset);
6933 }
6934
6935 /* If INNER is not memory, get it into the proper mode. If we are changing
6936 its mode, POS must be a constant and smaller than the size of the new
6937 mode. */
6938 else if (!MEM_P (inner))
6939 {
6940 /* On the LHS, don't create paradoxical subregs implicitely truncating
6941 the register unless TRULY_NOOP_TRUNCATION. */
6942 if (in_dest
6943 && !TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (GET_MODE (inner)),
6944 GET_MODE_BITSIZE (wanted_inner_mode)))
6945 return NULL_RTX;
6946
6947 if (GET_MODE (inner) != wanted_inner_mode
6948 && (pos_rtx != 0
6949 || orig_pos + len > GET_MODE_BITSIZE (wanted_inner_mode)))
6950 return NULL_RTX;
6951
6952 if (orig_pos < 0)
6953 return NULL_RTX;
6954
6955 inner = force_to_mode (inner, wanted_inner_mode,
6956 pos_rtx
6957 || len + orig_pos >= HOST_BITS_PER_WIDE_INT
6958 ? ~(unsigned HOST_WIDE_INT) 0
6959 : ((((unsigned HOST_WIDE_INT) 1 << len) - 1)
6960 << orig_pos),
6961 0);
6962 }
6963
6964 /* Adjust mode of POS_RTX, if needed. If we want a wider mode, we
6965 have to zero extend. Otherwise, we can just use a SUBREG. */
6966 if (pos_rtx != 0
6967 && GET_MODE_SIZE (pos_mode) > GET_MODE_SIZE (GET_MODE (pos_rtx)))
6968 {
6969 rtx temp = gen_rtx_ZERO_EXTEND (pos_mode, pos_rtx);
6970
6971 /* If we know that no extraneous bits are set, and that the high
6972 bit is not set, convert extraction to cheaper one - either
6973 SIGN_EXTENSION or ZERO_EXTENSION, that are equivalent in these
6974 cases. */
6975 if (flag_expensive_optimizations
6976 && (GET_MODE_BITSIZE (GET_MODE (pos_rtx)) <= HOST_BITS_PER_WIDE_INT
6977 && ((nonzero_bits (pos_rtx, GET_MODE (pos_rtx))
6978 & ~(((unsigned HOST_WIDE_INT)
6979 GET_MODE_MASK (GET_MODE (pos_rtx)))
6980 >> 1))
6981 == 0)))
6982 {
6983 rtx temp1 = gen_rtx_SIGN_EXTEND (pos_mode, pos_rtx);
6984
6985 /* Prefer ZERO_EXTENSION, since it gives more information to
6986 backends. */
6987 if (rtx_cost (temp1, SET, optimize_this_for_speed_p)
6988 < rtx_cost (temp, SET, optimize_this_for_speed_p))
6989 temp = temp1;
6990 }
6991 pos_rtx = temp;
6992 }
6993 else if (pos_rtx != 0
6994 && GET_MODE_SIZE (pos_mode) < GET_MODE_SIZE (GET_MODE (pos_rtx)))
6995 pos_rtx = gen_lowpart (pos_mode, pos_rtx);
6996
6997 /* Make POS_RTX unless we already have it and it is correct. If we don't
6998 have a POS_RTX but we do have an ORIG_POS_RTX, the latter must
6999 be a CONST_INT. */
7000 if (pos_rtx == 0 && orig_pos_rtx != 0 && INTVAL (orig_pos_rtx) == pos)
7001 pos_rtx = orig_pos_rtx;
7002
7003 else if (pos_rtx == 0)
7004 pos_rtx = GEN_INT (pos);
7005
7006 /* Make the required operation. See if we can use existing rtx. */
7007 new_rtx = gen_rtx_fmt_eee (unsignedp ? ZERO_EXTRACT : SIGN_EXTRACT,
7008 extraction_mode, inner, GEN_INT (len), pos_rtx);
7009 if (! in_dest)
7010 new_rtx = gen_lowpart (mode, new_rtx);
7011
7012 return new_rtx;
7013 }
7014 \f
7015 /* See if X contains an ASHIFT of COUNT or more bits that can be commuted
7016 with any other operations in X. Return X without that shift if so. */
7017
7018 static rtx
7019 extract_left_shift (rtx x, int count)
7020 {
7021 enum rtx_code code = GET_CODE (x);
7022 enum machine_mode mode = GET_MODE (x);
7023 rtx tem;
7024
7025 switch (code)
7026 {
7027 case ASHIFT:
7028 /* This is the shift itself. If it is wide enough, we will return
7029 either the value being shifted if the shift count is equal to
7030 COUNT or a shift for the difference. */
7031 if (CONST_INT_P (XEXP (x, 1))
7032 && INTVAL (XEXP (x, 1)) >= count)
7033 return simplify_shift_const (NULL_RTX, ASHIFT, mode, XEXP (x, 0),
7034 INTVAL (XEXP (x, 1)) - count);
7035 break;
7036
7037 case NEG: case NOT:
7038 if ((tem = extract_left_shift (XEXP (x, 0), count)) != 0)
7039 return simplify_gen_unary (code, mode, tem, mode);
7040
7041 break;
7042
7043 case PLUS: case IOR: case XOR: case AND:
7044 /* If we can safely shift this constant and we find the inner shift,
7045 make a new operation. */
7046 if (CONST_INT_P (XEXP (x, 1))
7047 && (INTVAL (XEXP (x, 1)) & ((((HOST_WIDE_INT) 1 << count)) - 1)) == 0
7048 && (tem = extract_left_shift (XEXP (x, 0), count)) != 0)
7049 return simplify_gen_binary (code, mode, tem,
7050 GEN_INT (INTVAL (XEXP (x, 1)) >> count));
7051
7052 break;
7053
7054 default:
7055 break;
7056 }
7057
7058 return 0;
7059 }
7060 \f
7061 /* Look at the expression rooted at X. Look for expressions
7062 equivalent to ZERO_EXTRACT, SIGN_EXTRACT, ZERO_EXTEND, SIGN_EXTEND.
7063 Form these expressions.
7064
7065 Return the new rtx, usually just X.
7066
7067 Also, for machines like the VAX that don't have logical shift insns,
7068 try to convert logical to arithmetic shift operations in cases where
7069 they are equivalent. This undoes the canonicalizations to logical
7070 shifts done elsewhere.
7071
7072 We try, as much as possible, to re-use rtl expressions to save memory.
7073
7074 IN_CODE says what kind of expression we are processing. Normally, it is
7075 SET. In a memory address (inside a MEM, PLUS or minus, the latter two
7076 being kludges), it is MEM. When processing the arguments of a comparison
7077 or a COMPARE against zero, it is COMPARE. */
7078
7079 static rtx
7080 make_compound_operation (rtx x, enum rtx_code in_code)
7081 {
7082 enum rtx_code code = GET_CODE (x);
7083 enum machine_mode mode = GET_MODE (x);
7084 int mode_width = GET_MODE_BITSIZE (mode);
7085 rtx rhs, lhs;
7086 enum rtx_code next_code;
7087 int i, j;
7088 rtx new_rtx = 0;
7089 rtx tem;
7090 const char *fmt;
7091
7092 /* Select the code to be used in recursive calls. Once we are inside an
7093 address, we stay there. If we have a comparison, set to COMPARE,
7094 but once inside, go back to our default of SET. */
7095
7096 next_code = (code == MEM ? MEM
7097 : ((code == PLUS || code == MINUS)
7098 && SCALAR_INT_MODE_P (mode)) ? MEM
7099 : ((code == COMPARE || COMPARISON_P (x))
7100 && XEXP (x, 1) == const0_rtx) ? COMPARE
7101 : in_code == COMPARE ? SET : in_code);
7102
7103 /* Process depending on the code of this operation. If NEW is set
7104 nonzero, it will be returned. */
7105
7106 switch (code)
7107 {
7108 case ASHIFT:
7109 /* Convert shifts by constants into multiplications if inside
7110 an address. */
7111 if (in_code == MEM && CONST_INT_P (XEXP (x, 1))
7112 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT
7113 && INTVAL (XEXP (x, 1)) >= 0)
7114 {
7115 HOST_WIDE_INT count = INTVAL (XEXP (x, 1));
7116 HOST_WIDE_INT multval = (HOST_WIDE_INT) 1 << count;
7117
7118 new_rtx = make_compound_operation (XEXP (x, 0), next_code);
7119 if (GET_CODE (new_rtx) == NEG)
7120 {
7121 new_rtx = XEXP (new_rtx, 0);
7122 multval = -multval;
7123 }
7124 multval = trunc_int_for_mode (multval, mode);
7125 new_rtx = gen_rtx_MULT (mode, new_rtx, GEN_INT (multval));
7126 }
7127 break;
7128
7129 case PLUS:
7130 lhs = XEXP (x, 0);
7131 rhs = XEXP (x, 1);
7132 lhs = make_compound_operation (lhs, next_code);
7133 rhs = make_compound_operation (rhs, next_code);
7134 if (GET_CODE (lhs) == MULT && GET_CODE (XEXP (lhs, 0)) == NEG
7135 && SCALAR_INT_MODE_P (mode))
7136 {
7137 tem = simplify_gen_binary (MULT, mode, XEXP (XEXP (lhs, 0), 0),
7138 XEXP (lhs, 1));
7139 new_rtx = simplify_gen_binary (MINUS, mode, rhs, tem);
7140 }
7141 else if (GET_CODE (lhs) == MULT
7142 && (CONST_INT_P (XEXP (lhs, 1)) && INTVAL (XEXP (lhs, 1)) < 0))
7143 {
7144 tem = simplify_gen_binary (MULT, mode, XEXP (lhs, 0),
7145 simplify_gen_unary (NEG, mode,
7146 XEXP (lhs, 1),
7147 mode));
7148 new_rtx = simplify_gen_binary (MINUS, mode, rhs, tem);
7149 }
7150 else
7151 {
7152 SUBST (XEXP (x, 0), lhs);
7153 SUBST (XEXP (x, 1), rhs);
7154 goto maybe_swap;
7155 }
7156 x = gen_lowpart (mode, new_rtx);
7157 goto maybe_swap;
7158
7159 case MINUS:
7160 lhs = XEXP (x, 0);
7161 rhs = XEXP (x, 1);
7162 lhs = make_compound_operation (lhs, next_code);
7163 rhs = make_compound_operation (rhs, next_code);
7164 if (GET_CODE (rhs) == MULT && GET_CODE (XEXP (rhs, 0)) == NEG
7165 && SCALAR_INT_MODE_P (mode))
7166 {
7167 tem = simplify_gen_binary (MULT, mode, XEXP (XEXP (rhs, 0), 0),
7168 XEXP (rhs, 1));
7169 new_rtx = simplify_gen_binary (PLUS, mode, tem, lhs);
7170 }
7171 else if (GET_CODE (rhs) == MULT
7172 && (CONST_INT_P (XEXP (rhs, 1)) && INTVAL (XEXP (rhs, 1)) < 0))
7173 {
7174 tem = simplify_gen_binary (MULT, mode, XEXP (rhs, 0),
7175 simplify_gen_unary (NEG, mode,
7176 XEXP (rhs, 1),
7177 mode));
7178 new_rtx = simplify_gen_binary (PLUS, mode, tem, lhs);
7179 }
7180 else
7181 {
7182 SUBST (XEXP (x, 0), lhs);
7183 SUBST (XEXP (x, 1), rhs);
7184 return x;
7185 }
7186 return gen_lowpart (mode, new_rtx);
7187
7188 case AND:
7189 /* If the second operand is not a constant, we can't do anything
7190 with it. */
7191 if (!CONST_INT_P (XEXP (x, 1)))
7192 break;
7193
7194 /* If the constant is a power of two minus one and the first operand
7195 is a logical right shift, make an extraction. */
7196 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
7197 && (i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0)
7198 {
7199 new_rtx = make_compound_operation (XEXP (XEXP (x, 0), 0), next_code);
7200 new_rtx = make_extraction (mode, new_rtx, 0, XEXP (XEXP (x, 0), 1), i, 1,
7201 0, in_code == COMPARE);
7202 }
7203
7204 /* Same as previous, but for (subreg (lshiftrt ...)) in first op. */
7205 else if (GET_CODE (XEXP (x, 0)) == SUBREG
7206 && subreg_lowpart_p (XEXP (x, 0))
7207 && GET_CODE (SUBREG_REG (XEXP (x, 0))) == LSHIFTRT
7208 && (i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0)
7209 {
7210 new_rtx = make_compound_operation (XEXP (SUBREG_REG (XEXP (x, 0)), 0),
7211 next_code);
7212 new_rtx = make_extraction (GET_MODE (SUBREG_REG (XEXP (x, 0))), new_rtx, 0,
7213 XEXP (SUBREG_REG (XEXP (x, 0)), 1), i, 1,
7214 0, in_code == COMPARE);
7215 }
7216 /* Same as previous, but for (xor/ior (lshiftrt...) (lshiftrt...)). */
7217 else if ((GET_CODE (XEXP (x, 0)) == XOR
7218 || GET_CODE (XEXP (x, 0)) == IOR)
7219 && GET_CODE (XEXP (XEXP (x, 0), 0)) == LSHIFTRT
7220 && GET_CODE (XEXP (XEXP (x, 0), 1)) == LSHIFTRT
7221 && (i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0)
7222 {
7223 /* Apply the distributive law, and then try to make extractions. */
7224 new_rtx = gen_rtx_fmt_ee (GET_CODE (XEXP (x, 0)), mode,
7225 gen_rtx_AND (mode, XEXP (XEXP (x, 0), 0),
7226 XEXP (x, 1)),
7227 gen_rtx_AND (mode, XEXP (XEXP (x, 0), 1),
7228 XEXP (x, 1)));
7229 new_rtx = make_compound_operation (new_rtx, in_code);
7230 }
7231
7232 /* If we are have (and (rotate X C) M) and C is larger than the number
7233 of bits in M, this is an extraction. */
7234
7235 else if (GET_CODE (XEXP (x, 0)) == ROTATE
7236 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
7237 && (i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0
7238 && i <= INTVAL (XEXP (XEXP (x, 0), 1)))
7239 {
7240 new_rtx = make_compound_operation (XEXP (XEXP (x, 0), 0), next_code);
7241 new_rtx = make_extraction (mode, new_rtx,
7242 (GET_MODE_BITSIZE (mode)
7243 - INTVAL (XEXP (XEXP (x, 0), 1))),
7244 NULL_RTX, i, 1, 0, in_code == COMPARE);
7245 }
7246
7247 /* On machines without logical shifts, if the operand of the AND is
7248 a logical shift and our mask turns off all the propagated sign
7249 bits, we can replace the logical shift with an arithmetic shift. */
7250 else if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
7251 && !have_insn_for (LSHIFTRT, mode)
7252 && have_insn_for (ASHIFTRT, mode)
7253 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
7254 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
7255 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT
7256 && mode_width <= HOST_BITS_PER_WIDE_INT)
7257 {
7258 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
7259
7260 mask >>= INTVAL (XEXP (XEXP (x, 0), 1));
7261 if ((INTVAL (XEXP (x, 1)) & ~mask) == 0)
7262 SUBST (XEXP (x, 0),
7263 gen_rtx_ASHIFTRT (mode,
7264 make_compound_operation
7265 (XEXP (XEXP (x, 0), 0), next_code),
7266 XEXP (XEXP (x, 0), 1)));
7267 }
7268
7269 /* If the constant is one less than a power of two, this might be
7270 representable by an extraction even if no shift is present.
7271 If it doesn't end up being a ZERO_EXTEND, we will ignore it unless
7272 we are in a COMPARE. */
7273 else if ((i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0)
7274 new_rtx = make_extraction (mode,
7275 make_compound_operation (XEXP (x, 0),
7276 next_code),
7277 0, NULL_RTX, i, 1, 0, in_code == COMPARE);
7278
7279 /* If we are in a comparison and this is an AND with a power of two,
7280 convert this into the appropriate bit extract. */
7281 else if (in_code == COMPARE
7282 && (i = exact_log2 (INTVAL (XEXP (x, 1)))) >= 0)
7283 new_rtx = make_extraction (mode,
7284 make_compound_operation (XEXP (x, 0),
7285 next_code),
7286 i, NULL_RTX, 1, 1, 0, 1);
7287
7288 break;
7289
7290 case LSHIFTRT:
7291 /* If the sign bit is known to be zero, replace this with an
7292 arithmetic shift. */
7293 if (have_insn_for (ASHIFTRT, mode)
7294 && ! have_insn_for (LSHIFTRT, mode)
7295 && mode_width <= HOST_BITS_PER_WIDE_INT
7296 && (nonzero_bits (XEXP (x, 0), mode) & (1 << (mode_width - 1))) == 0)
7297 {
7298 new_rtx = gen_rtx_ASHIFTRT (mode,
7299 make_compound_operation (XEXP (x, 0),
7300 next_code),
7301 XEXP (x, 1));
7302 break;
7303 }
7304
7305 /* ... fall through ... */
7306
7307 case ASHIFTRT:
7308 lhs = XEXP (x, 0);
7309 rhs = XEXP (x, 1);
7310
7311 /* If we have (ashiftrt (ashift foo C1) C2) with C2 >= C1,
7312 this is a SIGN_EXTRACT. */
7313 if (CONST_INT_P (rhs)
7314 && GET_CODE (lhs) == ASHIFT
7315 && CONST_INT_P (XEXP (lhs, 1))
7316 && INTVAL (rhs) >= INTVAL (XEXP (lhs, 1))
7317 && INTVAL (rhs) < mode_width)
7318 {
7319 new_rtx = make_compound_operation (XEXP (lhs, 0), next_code);
7320 new_rtx = make_extraction (mode, new_rtx,
7321 INTVAL (rhs) - INTVAL (XEXP (lhs, 1)),
7322 NULL_RTX, mode_width - INTVAL (rhs),
7323 code == LSHIFTRT, 0, in_code == COMPARE);
7324 break;
7325 }
7326
7327 /* See if we have operations between an ASHIFTRT and an ASHIFT.
7328 If so, try to merge the shifts into a SIGN_EXTEND. We could
7329 also do this for some cases of SIGN_EXTRACT, but it doesn't
7330 seem worth the effort; the case checked for occurs on Alpha. */
7331
7332 if (!OBJECT_P (lhs)
7333 && ! (GET_CODE (lhs) == SUBREG
7334 && (OBJECT_P (SUBREG_REG (lhs))))
7335 && CONST_INT_P (rhs)
7336 && INTVAL (rhs) < HOST_BITS_PER_WIDE_INT
7337 && INTVAL (rhs) < mode_width
7338 && (new_rtx = extract_left_shift (lhs, INTVAL (rhs))) != 0)
7339 new_rtx = make_extraction (mode, make_compound_operation (new_rtx, next_code),
7340 0, NULL_RTX, mode_width - INTVAL (rhs),
7341 code == LSHIFTRT, 0, in_code == COMPARE);
7342
7343 break;
7344
7345 case SUBREG:
7346 /* Call ourselves recursively on the inner expression. If we are
7347 narrowing the object and it has a different RTL code from
7348 what it originally did, do this SUBREG as a force_to_mode. */
7349 {
7350 rtx inner = SUBREG_REG (x), simplified;
7351
7352 tem = make_compound_operation (inner, in_code);
7353
7354 simplified
7355 = simplify_subreg (mode, tem, GET_MODE (inner), SUBREG_BYTE (x));
7356 if (simplified)
7357 tem = simplified;
7358
7359 if (GET_CODE (tem) != GET_CODE (inner)
7360 && GET_MODE_SIZE (mode) < GET_MODE_SIZE (GET_MODE (inner))
7361 && subreg_lowpart_p (x))
7362 {
7363 rtx newer = force_to_mode (tem, mode, ~(HOST_WIDE_INT) 0, 0);
7364
7365 /* If we have something other than a SUBREG, we might have
7366 done an expansion, so rerun ourselves. */
7367 if (GET_CODE (newer) != SUBREG)
7368 newer = make_compound_operation (newer, in_code);
7369
7370 /* force_to_mode can expand compounds. If it just re-expanded the
7371 compound, use gen_lowpart to convert to the desired mode. */
7372 if (rtx_equal_p (newer, x)
7373 /* Likewise if it re-expanded the compound only partially.
7374 This happens for SUBREG of ZERO_EXTRACT if they extract
7375 the same number of bits. */
7376 || (GET_CODE (newer) == SUBREG
7377 && (GET_CODE (SUBREG_REG (newer)) == LSHIFTRT
7378 || GET_CODE (SUBREG_REG (newer)) == ASHIFTRT)
7379 && GET_CODE (inner) == AND
7380 && rtx_equal_p (SUBREG_REG (newer), XEXP (inner, 0))))
7381 return gen_lowpart (GET_MODE (x), tem);
7382
7383 return newer;
7384 }
7385
7386 if (simplified)
7387 return tem;
7388 }
7389 break;
7390
7391 default:
7392 break;
7393 }
7394
7395 if (new_rtx)
7396 {
7397 x = gen_lowpart (mode, new_rtx);
7398 code = GET_CODE (x);
7399 }
7400
7401 /* Now recursively process each operand of this operation. */
7402 fmt = GET_RTX_FORMAT (code);
7403 for (i = 0; i < GET_RTX_LENGTH (code); i++)
7404 if (fmt[i] == 'e')
7405 {
7406 new_rtx = make_compound_operation (XEXP (x, i), next_code);
7407 SUBST (XEXP (x, i), new_rtx);
7408 }
7409 else if (fmt[i] == 'E')
7410 for (j = 0; j < XVECLEN (x, i); j++)
7411 {
7412 new_rtx = make_compound_operation (XVECEXP (x, i, j), next_code);
7413 SUBST (XVECEXP (x, i, j), new_rtx);
7414 }
7415
7416 maybe_swap:
7417 /* If this is a commutative operation, the changes to the operands
7418 may have made it noncanonical. */
7419 if (COMMUTATIVE_ARITH_P (x)
7420 && swap_commutative_operands_p (XEXP (x, 0), XEXP (x, 1)))
7421 {
7422 tem = XEXP (x, 0);
7423 SUBST (XEXP (x, 0), XEXP (x, 1));
7424 SUBST (XEXP (x, 1), tem);
7425 }
7426
7427 return x;
7428 }
7429 \f
7430 /* Given M see if it is a value that would select a field of bits
7431 within an item, but not the entire word. Return -1 if not.
7432 Otherwise, return the starting position of the field, where 0 is the
7433 low-order bit.
7434
7435 *PLEN is set to the length of the field. */
7436
7437 static int
7438 get_pos_from_mask (unsigned HOST_WIDE_INT m, unsigned HOST_WIDE_INT *plen)
7439 {
7440 /* Get the bit number of the first 1 bit from the right, -1 if none. */
7441 int pos = m ? ctz_hwi (m) : -1;
7442 int len = 0;
7443
7444 if (pos >= 0)
7445 /* Now shift off the low-order zero bits and see if we have a
7446 power of two minus 1. */
7447 len = exact_log2 ((m >> pos) + 1);
7448
7449 if (len <= 0)
7450 pos = -1;
7451
7452 *plen = len;
7453 return pos;
7454 }
7455 \f
7456 /* If X refers to a register that equals REG in value, replace these
7457 references with REG. */
7458 static rtx
7459 canon_reg_for_combine (rtx x, rtx reg)
7460 {
7461 rtx op0, op1, op2;
7462 const char *fmt;
7463 int i;
7464 bool copied;
7465
7466 enum rtx_code code = GET_CODE (x);
7467 switch (GET_RTX_CLASS (code))
7468 {
7469 case RTX_UNARY:
7470 op0 = canon_reg_for_combine (XEXP (x, 0), reg);
7471 if (op0 != XEXP (x, 0))
7472 return simplify_gen_unary (GET_CODE (x), GET_MODE (x), op0,
7473 GET_MODE (reg));
7474 break;
7475
7476 case RTX_BIN_ARITH:
7477 case RTX_COMM_ARITH:
7478 op0 = canon_reg_for_combine (XEXP (x, 0), reg);
7479 op1 = canon_reg_for_combine (XEXP (x, 1), reg);
7480 if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
7481 return simplify_gen_binary (GET_CODE (x), GET_MODE (x), op0, op1);
7482 break;
7483
7484 case RTX_COMPARE:
7485 case RTX_COMM_COMPARE:
7486 op0 = canon_reg_for_combine (XEXP (x, 0), reg);
7487 op1 = canon_reg_for_combine (XEXP (x, 1), reg);
7488 if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
7489 return simplify_gen_relational (GET_CODE (x), GET_MODE (x),
7490 GET_MODE (op0), op0, op1);
7491 break;
7492
7493 case RTX_TERNARY:
7494 case RTX_BITFIELD_OPS:
7495 op0 = canon_reg_for_combine (XEXP (x, 0), reg);
7496 op1 = canon_reg_for_combine (XEXP (x, 1), reg);
7497 op2 = canon_reg_for_combine (XEXP (x, 2), reg);
7498 if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1) || op2 != XEXP (x, 2))
7499 return simplify_gen_ternary (GET_CODE (x), GET_MODE (x),
7500 GET_MODE (op0), op0, op1, op2);
7501
7502 case RTX_OBJ:
7503 if (REG_P (x))
7504 {
7505 if (rtx_equal_p (get_last_value (reg), x)
7506 || rtx_equal_p (reg, get_last_value (x)))
7507 return reg;
7508 else
7509 break;
7510 }
7511
7512 /* fall through */
7513
7514 default:
7515 fmt = GET_RTX_FORMAT (code);
7516 copied = false;
7517 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
7518 if (fmt[i] == 'e')
7519 {
7520 rtx op = canon_reg_for_combine (XEXP (x, i), reg);
7521 if (op != XEXP (x, i))
7522 {
7523 if (!copied)
7524 {
7525 copied = true;
7526 x = copy_rtx (x);
7527 }
7528 XEXP (x, i) = op;
7529 }
7530 }
7531 else if (fmt[i] == 'E')
7532 {
7533 int j;
7534 for (j = 0; j < XVECLEN (x, i); j++)
7535 {
7536 rtx op = canon_reg_for_combine (XVECEXP (x, i, j), reg);
7537 if (op != XVECEXP (x, i, j))
7538 {
7539 if (!copied)
7540 {
7541 copied = true;
7542 x = copy_rtx (x);
7543 }
7544 XVECEXP (x, i, j) = op;
7545 }
7546 }
7547 }
7548
7549 break;
7550 }
7551
7552 return x;
7553 }
7554
7555 /* Return X converted to MODE. If the value is already truncated to
7556 MODE we can just return a subreg even though in the general case we
7557 would need an explicit truncation. */
7558
7559 static rtx
7560 gen_lowpart_or_truncate (enum machine_mode mode, rtx x)
7561 {
7562 if (!CONST_INT_P (x)
7563 && GET_MODE_SIZE (mode) < GET_MODE_SIZE (GET_MODE (x))
7564 && !TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (mode),
7565 GET_MODE_BITSIZE (GET_MODE (x)))
7566 && !(REG_P (x) && reg_truncated_to_mode (mode, x)))
7567 {
7568 /* Bit-cast X into an integer mode. */
7569 if (!SCALAR_INT_MODE_P (GET_MODE (x)))
7570 x = gen_lowpart (int_mode_for_mode (GET_MODE (x)), x);
7571 x = simplify_gen_unary (TRUNCATE, int_mode_for_mode (mode),
7572 x, GET_MODE (x));
7573 }
7574
7575 return gen_lowpart (mode, x);
7576 }
7577
7578 /* See if X can be simplified knowing that we will only refer to it in
7579 MODE and will only refer to those bits that are nonzero in MASK.
7580 If other bits are being computed or if masking operations are done
7581 that select a superset of the bits in MASK, they can sometimes be
7582 ignored.
7583
7584 Return a possibly simplified expression, but always convert X to
7585 MODE. If X is a CONST_INT, AND the CONST_INT with MASK.
7586
7587 If JUST_SELECT is nonzero, don't optimize by noticing that bits in MASK
7588 are all off in X. This is used when X will be complemented, by either
7589 NOT, NEG, or XOR. */
7590
7591 static rtx
7592 force_to_mode (rtx x, enum machine_mode mode, unsigned HOST_WIDE_INT mask,
7593 int just_select)
7594 {
7595 enum rtx_code code = GET_CODE (x);
7596 int next_select = just_select || code == XOR || code == NOT || code == NEG;
7597 enum machine_mode op_mode;
7598 unsigned HOST_WIDE_INT fuller_mask, nonzero;
7599 rtx op0, op1, temp;
7600
7601 /* If this is a CALL or ASM_OPERANDS, don't do anything. Some of the
7602 code below will do the wrong thing since the mode of such an
7603 expression is VOIDmode.
7604
7605 Also do nothing if X is a CLOBBER; this can happen if X was
7606 the return value from a call to gen_lowpart. */
7607 if (code == CALL || code == ASM_OPERANDS || code == CLOBBER)
7608 return x;
7609
7610 /* We want to perform the operation is its present mode unless we know
7611 that the operation is valid in MODE, in which case we do the operation
7612 in MODE. */
7613 op_mode = ((GET_MODE_CLASS (mode) == GET_MODE_CLASS (GET_MODE (x))
7614 && have_insn_for (code, mode))
7615 ? mode : GET_MODE (x));
7616
7617 /* It is not valid to do a right-shift in a narrower mode
7618 than the one it came in with. */
7619 if ((code == LSHIFTRT || code == ASHIFTRT)
7620 && GET_MODE_BITSIZE (mode) < GET_MODE_BITSIZE (GET_MODE (x)))
7621 op_mode = GET_MODE (x);
7622
7623 /* Truncate MASK to fit OP_MODE. */
7624 if (op_mode)
7625 mask &= GET_MODE_MASK (op_mode);
7626
7627 /* When we have an arithmetic operation, or a shift whose count we
7628 do not know, we need to assume that all bits up to the highest-order
7629 bit in MASK will be needed. This is how we form such a mask. */
7630 if (mask & ((unsigned HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT - 1)))
7631 fuller_mask = ~(unsigned HOST_WIDE_INT) 0;
7632 else
7633 fuller_mask = (((unsigned HOST_WIDE_INT) 1 << (floor_log2 (mask) + 1))
7634 - 1);
7635
7636 /* Determine what bits of X are guaranteed to be (non)zero. */
7637 nonzero = nonzero_bits (x, mode);
7638
7639 /* If none of the bits in X are needed, return a zero. */
7640 if (!just_select && (nonzero & mask) == 0 && !side_effects_p (x))
7641 x = const0_rtx;
7642
7643 /* If X is a CONST_INT, return a new one. Do this here since the
7644 test below will fail. */
7645 if (CONST_INT_P (x))
7646 {
7647 if (SCALAR_INT_MODE_P (mode))
7648 return gen_int_mode (INTVAL (x) & mask, mode);
7649 else
7650 {
7651 x = GEN_INT (INTVAL (x) & mask);
7652 return gen_lowpart_common (mode, x);
7653 }
7654 }
7655
7656 /* If X is narrower than MODE and we want all the bits in X's mode, just
7657 get X in the proper mode. */
7658 if (GET_MODE_SIZE (GET_MODE (x)) < GET_MODE_SIZE (mode)
7659 && (GET_MODE_MASK (GET_MODE (x)) & ~mask) == 0)
7660 return gen_lowpart (mode, x);
7661
7662 /* We can ignore the effect of a SUBREG if it narrows the mode or
7663 if the constant masks to zero all the bits the mode doesn't have. */
7664 if (GET_CODE (x) == SUBREG
7665 && subreg_lowpart_p (x)
7666 && ((GET_MODE_SIZE (GET_MODE (x))
7667 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
7668 || (0 == (mask
7669 & GET_MODE_MASK (GET_MODE (x))
7670 & ~GET_MODE_MASK (GET_MODE (SUBREG_REG (x)))))))
7671 return force_to_mode (SUBREG_REG (x), mode, mask, next_select);
7672
7673 /* The arithmetic simplifications here only work for scalar integer modes. */
7674 if (!SCALAR_INT_MODE_P (mode) || !SCALAR_INT_MODE_P (GET_MODE (x)))
7675 return gen_lowpart_or_truncate (mode, x);
7676
7677 switch (code)
7678 {
7679 case CLOBBER:
7680 /* If X is a (clobber (const_int)), return it since we know we are
7681 generating something that won't match. */
7682 return x;
7683
7684 case SIGN_EXTEND:
7685 case ZERO_EXTEND:
7686 case ZERO_EXTRACT:
7687 case SIGN_EXTRACT:
7688 x = expand_compound_operation (x);
7689 if (GET_CODE (x) != code)
7690 return force_to_mode (x, mode, mask, next_select);
7691 break;
7692
7693 case TRUNCATE:
7694 /* Similarly for a truncate. */
7695 return force_to_mode (XEXP (x, 0), mode, mask, next_select);
7696
7697 case AND:
7698 /* If this is an AND with a constant, convert it into an AND
7699 whose constant is the AND of that constant with MASK. If it
7700 remains an AND of MASK, delete it since it is redundant. */
7701
7702 if (CONST_INT_P (XEXP (x, 1)))
7703 {
7704 x = simplify_and_const_int (x, op_mode, XEXP (x, 0),
7705 mask & INTVAL (XEXP (x, 1)));
7706
7707 /* If X is still an AND, see if it is an AND with a mask that
7708 is just some low-order bits. If so, and it is MASK, we don't
7709 need it. */
7710
7711 if (GET_CODE (x) == AND && CONST_INT_P (XEXP (x, 1))
7712 && ((INTVAL (XEXP (x, 1)) & GET_MODE_MASK (GET_MODE (x)))
7713 == mask))
7714 x = XEXP (x, 0);
7715
7716 /* If it remains an AND, try making another AND with the bits
7717 in the mode mask that aren't in MASK turned on. If the
7718 constant in the AND is wide enough, this might make a
7719 cheaper constant. */
7720
7721 if (GET_CODE (x) == AND && CONST_INT_P (XEXP (x, 1))
7722 && GET_MODE_MASK (GET_MODE (x)) != mask
7723 && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT)
7724 {
7725 HOST_WIDE_INT cval = (INTVAL (XEXP (x, 1))
7726 | (GET_MODE_MASK (GET_MODE (x)) & ~mask));
7727 int width = GET_MODE_BITSIZE (GET_MODE (x));
7728 rtx y;
7729
7730 /* If MODE is narrower than HOST_WIDE_INT and CVAL is a negative
7731 number, sign extend it. */
7732 if (width > 0 && width < HOST_BITS_PER_WIDE_INT
7733 && (cval & ((HOST_WIDE_INT) 1 << (width - 1))) != 0)
7734 cval |= (HOST_WIDE_INT) -1 << width;
7735
7736 y = simplify_gen_binary (AND, GET_MODE (x),
7737 XEXP (x, 0), GEN_INT (cval));
7738 if (rtx_cost (y, SET, optimize_this_for_speed_p)
7739 < rtx_cost (x, SET, optimize_this_for_speed_p))
7740 x = y;
7741 }
7742
7743 break;
7744 }
7745
7746 goto binop;
7747
7748 case PLUS:
7749 /* In (and (plus FOO C1) M), if M is a mask that just turns off
7750 low-order bits (as in an alignment operation) and FOO is already
7751 aligned to that boundary, mask C1 to that boundary as well.
7752 This may eliminate that PLUS and, later, the AND. */
7753
7754 {
7755 unsigned int width = GET_MODE_BITSIZE (mode);
7756 unsigned HOST_WIDE_INT smask = mask;
7757
7758 /* If MODE is narrower than HOST_WIDE_INT and mask is a negative
7759 number, sign extend it. */
7760
7761 if (width < HOST_BITS_PER_WIDE_INT
7762 && (smask & ((HOST_WIDE_INT) 1 << (width - 1))) != 0)
7763 smask |= (HOST_WIDE_INT) -1 << width;
7764
7765 if (CONST_INT_P (XEXP (x, 1))
7766 && exact_log2 (- smask) >= 0
7767 && (nonzero_bits (XEXP (x, 0), mode) & ~smask) == 0
7768 && (INTVAL (XEXP (x, 1)) & ~smask) != 0)
7769 return force_to_mode (plus_constant (XEXP (x, 0),
7770 (INTVAL (XEXP (x, 1)) & smask)),
7771 mode, smask, next_select);
7772 }
7773
7774 /* ... fall through ... */
7775
7776 case MULT:
7777 /* For PLUS, MINUS and MULT, we need any bits less significant than the
7778 most significant bit in MASK since carries from those bits will
7779 affect the bits we are interested in. */
7780 mask = fuller_mask;
7781 goto binop;
7782
7783 case MINUS:
7784 /* If X is (minus C Y) where C's least set bit is larger than any bit
7785 in the mask, then we may replace with (neg Y). */
7786 if (CONST_INT_P (XEXP (x, 0))
7787 && (((unsigned HOST_WIDE_INT) (INTVAL (XEXP (x, 0))
7788 & -INTVAL (XEXP (x, 0))))
7789 > mask))
7790 {
7791 x = simplify_gen_unary (NEG, GET_MODE (x), XEXP (x, 1),
7792 GET_MODE (x));
7793 return force_to_mode (x, mode, mask, next_select);
7794 }
7795
7796 /* Similarly, if C contains every bit in the fuller_mask, then we may
7797 replace with (not Y). */
7798 if (CONST_INT_P (XEXP (x, 0))
7799 && ((INTVAL (XEXP (x, 0)) | (HOST_WIDE_INT) fuller_mask)
7800 == INTVAL (XEXP (x, 0))))
7801 {
7802 x = simplify_gen_unary (NOT, GET_MODE (x),
7803 XEXP (x, 1), GET_MODE (x));
7804 return force_to_mode (x, mode, mask, next_select);
7805 }
7806
7807 mask = fuller_mask;
7808 goto binop;
7809
7810 case IOR:
7811 case XOR:
7812 /* If X is (ior (lshiftrt FOO C1) C2), try to commute the IOR and
7813 LSHIFTRT so we end up with an (and (lshiftrt (ior ...) ...) ...)
7814 operation which may be a bitfield extraction. Ensure that the
7815 constant we form is not wider than the mode of X. */
7816
7817 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
7818 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
7819 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
7820 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT
7821 && CONST_INT_P (XEXP (x, 1))
7822 && ((INTVAL (XEXP (XEXP (x, 0), 1))
7823 + floor_log2 (INTVAL (XEXP (x, 1))))
7824 < GET_MODE_BITSIZE (GET_MODE (x)))
7825 && (INTVAL (XEXP (x, 1))
7826 & ~nonzero_bits (XEXP (x, 0), GET_MODE (x))) == 0)
7827 {
7828 temp = GEN_INT ((INTVAL (XEXP (x, 1)) & mask)
7829 << INTVAL (XEXP (XEXP (x, 0), 1)));
7830 temp = simplify_gen_binary (GET_CODE (x), GET_MODE (x),
7831 XEXP (XEXP (x, 0), 0), temp);
7832 x = simplify_gen_binary (LSHIFTRT, GET_MODE (x), temp,
7833 XEXP (XEXP (x, 0), 1));
7834 return force_to_mode (x, mode, mask, next_select);
7835 }
7836
7837 binop:
7838 /* For most binary operations, just propagate into the operation and
7839 change the mode if we have an operation of that mode. */
7840
7841 op0 = force_to_mode (XEXP (x, 0), mode, mask, next_select);
7842 op1 = force_to_mode (XEXP (x, 1), mode, mask, next_select);
7843
7844 /* If we ended up truncating both operands, truncate the result of the
7845 operation instead. */
7846 if (GET_CODE (op0) == TRUNCATE
7847 && GET_CODE (op1) == TRUNCATE)
7848 {
7849 op0 = XEXP (op0, 0);
7850 op1 = XEXP (op1, 0);
7851 }
7852
7853 op0 = gen_lowpart_or_truncate (op_mode, op0);
7854 op1 = gen_lowpart_or_truncate (op_mode, op1);
7855
7856 if (op_mode != GET_MODE (x) || op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
7857 x = simplify_gen_binary (code, op_mode, op0, op1);
7858 break;
7859
7860 case ASHIFT:
7861 /* For left shifts, do the same, but just for the first operand.
7862 However, we cannot do anything with shifts where we cannot
7863 guarantee that the counts are smaller than the size of the mode
7864 because such a count will have a different meaning in a
7865 wider mode. */
7866
7867 if (! (CONST_INT_P (XEXP (x, 1))
7868 && INTVAL (XEXP (x, 1)) >= 0
7869 && INTVAL (XEXP (x, 1)) < GET_MODE_BITSIZE (mode))
7870 && ! (GET_MODE (XEXP (x, 1)) != VOIDmode
7871 && (nonzero_bits (XEXP (x, 1), GET_MODE (XEXP (x, 1)))
7872 < (unsigned HOST_WIDE_INT) GET_MODE_BITSIZE (mode))))
7873 break;
7874
7875 /* If the shift count is a constant and we can do arithmetic in
7876 the mode of the shift, refine which bits we need. Otherwise, use the
7877 conservative form of the mask. */
7878 if (CONST_INT_P (XEXP (x, 1))
7879 && INTVAL (XEXP (x, 1)) >= 0
7880 && INTVAL (XEXP (x, 1)) < GET_MODE_BITSIZE (op_mode)
7881 && GET_MODE_BITSIZE (op_mode) <= HOST_BITS_PER_WIDE_INT)
7882 mask >>= INTVAL (XEXP (x, 1));
7883 else
7884 mask = fuller_mask;
7885
7886 op0 = gen_lowpart_or_truncate (op_mode,
7887 force_to_mode (XEXP (x, 0), op_mode,
7888 mask, next_select));
7889
7890 if (op_mode != GET_MODE (x) || op0 != XEXP (x, 0))
7891 x = simplify_gen_binary (code, op_mode, op0, XEXP (x, 1));
7892 break;
7893
7894 case LSHIFTRT:
7895 /* Here we can only do something if the shift count is a constant,
7896 this shift constant is valid for the host, and we can do arithmetic
7897 in OP_MODE. */
7898
7899 if (CONST_INT_P (XEXP (x, 1))
7900 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT
7901 && GET_MODE_BITSIZE (op_mode) <= HOST_BITS_PER_WIDE_INT)
7902 {
7903 rtx inner = XEXP (x, 0);
7904 unsigned HOST_WIDE_INT inner_mask;
7905
7906 /* Select the mask of the bits we need for the shift operand. */
7907 inner_mask = mask << INTVAL (XEXP (x, 1));
7908
7909 /* We can only change the mode of the shift if we can do arithmetic
7910 in the mode of the shift and INNER_MASK is no wider than the
7911 width of X's mode. */
7912 if ((inner_mask & ~GET_MODE_MASK (GET_MODE (x))) != 0)
7913 op_mode = GET_MODE (x);
7914
7915 inner = force_to_mode (inner, op_mode, inner_mask, next_select);
7916
7917 if (GET_MODE (x) != op_mode || inner != XEXP (x, 0))
7918 x = simplify_gen_binary (LSHIFTRT, op_mode, inner, XEXP (x, 1));
7919 }
7920
7921 /* If we have (and (lshiftrt FOO C1) C2) where the combination of the
7922 shift and AND produces only copies of the sign bit (C2 is one less
7923 than a power of two), we can do this with just a shift. */
7924
7925 if (GET_CODE (x) == LSHIFTRT
7926 && CONST_INT_P (XEXP (x, 1))
7927 /* The shift puts one of the sign bit copies in the least significant
7928 bit. */
7929 && ((INTVAL (XEXP (x, 1))
7930 + num_sign_bit_copies (XEXP (x, 0), GET_MODE (XEXP (x, 0))))
7931 >= GET_MODE_BITSIZE (GET_MODE (x)))
7932 && exact_log2 (mask + 1) >= 0
7933 /* Number of bits left after the shift must be more than the mask
7934 needs. */
7935 && ((INTVAL (XEXP (x, 1)) + exact_log2 (mask + 1))
7936 <= GET_MODE_BITSIZE (GET_MODE (x)))
7937 /* Must be more sign bit copies than the mask needs. */
7938 && ((int) num_sign_bit_copies (XEXP (x, 0), GET_MODE (XEXP (x, 0)))
7939 >= exact_log2 (mask + 1)))
7940 x = simplify_gen_binary (LSHIFTRT, GET_MODE (x), XEXP (x, 0),
7941 GEN_INT (GET_MODE_BITSIZE (GET_MODE (x))
7942 - exact_log2 (mask + 1)));
7943
7944 goto shiftrt;
7945
7946 case ASHIFTRT:
7947 /* If we are just looking for the sign bit, we don't need this shift at
7948 all, even if it has a variable count. */
7949 if (GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
7950 && (mask == ((unsigned HOST_WIDE_INT) 1
7951 << (GET_MODE_BITSIZE (GET_MODE (x)) - 1))))
7952 return force_to_mode (XEXP (x, 0), mode, mask, next_select);
7953
7954 /* If this is a shift by a constant, get a mask that contains those bits
7955 that are not copies of the sign bit. We then have two cases: If
7956 MASK only includes those bits, this can be a logical shift, which may
7957 allow simplifications. If MASK is a single-bit field not within
7958 those bits, we are requesting a copy of the sign bit and hence can
7959 shift the sign bit to the appropriate location. */
7960
7961 if (CONST_INT_P (XEXP (x, 1)) && INTVAL (XEXP (x, 1)) >= 0
7962 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT)
7963 {
7964 int i;
7965
7966 /* If the considered data is wider than HOST_WIDE_INT, we can't
7967 represent a mask for all its bits in a single scalar.
7968 But we only care about the lower bits, so calculate these. */
7969
7970 if (GET_MODE_BITSIZE (GET_MODE (x)) > HOST_BITS_PER_WIDE_INT)
7971 {
7972 nonzero = ~(HOST_WIDE_INT) 0;
7973
7974 /* GET_MODE_BITSIZE (GET_MODE (x)) - INTVAL (XEXP (x, 1))
7975 is the number of bits a full-width mask would have set.
7976 We need only shift if these are fewer than nonzero can
7977 hold. If not, we must keep all bits set in nonzero. */
7978
7979 if (GET_MODE_BITSIZE (GET_MODE (x)) - INTVAL (XEXP (x, 1))
7980 < HOST_BITS_PER_WIDE_INT)
7981 nonzero >>= INTVAL (XEXP (x, 1))
7982 + HOST_BITS_PER_WIDE_INT
7983 - GET_MODE_BITSIZE (GET_MODE (x)) ;
7984 }
7985 else
7986 {
7987 nonzero = GET_MODE_MASK (GET_MODE (x));
7988 nonzero >>= INTVAL (XEXP (x, 1));
7989 }
7990
7991 if ((mask & ~nonzero) == 0)
7992 {
7993 x = simplify_shift_const (NULL_RTX, LSHIFTRT, GET_MODE (x),
7994 XEXP (x, 0), INTVAL (XEXP (x, 1)));
7995 if (GET_CODE (x) != ASHIFTRT)
7996 return force_to_mode (x, mode, mask, next_select);
7997 }
7998
7999 else if ((i = exact_log2 (mask)) >= 0)
8000 {
8001 x = simplify_shift_const
8002 (NULL_RTX, LSHIFTRT, GET_MODE (x), XEXP (x, 0),
8003 GET_MODE_BITSIZE (GET_MODE (x)) - 1 - i);
8004
8005 if (GET_CODE (x) != ASHIFTRT)
8006 return force_to_mode (x, mode, mask, next_select);
8007 }
8008 }
8009
8010 /* If MASK is 1, convert this to an LSHIFTRT. This can be done
8011 even if the shift count isn't a constant. */
8012 if (mask == 1)
8013 x = simplify_gen_binary (LSHIFTRT, GET_MODE (x),
8014 XEXP (x, 0), XEXP (x, 1));
8015
8016 shiftrt:
8017
8018 /* If this is a zero- or sign-extension operation that just affects bits
8019 we don't care about, remove it. Be sure the call above returned
8020 something that is still a shift. */
8021
8022 if ((GET_CODE (x) == LSHIFTRT || GET_CODE (x) == ASHIFTRT)
8023 && CONST_INT_P (XEXP (x, 1))
8024 && INTVAL (XEXP (x, 1)) >= 0
8025 && (INTVAL (XEXP (x, 1))
8026 <= GET_MODE_BITSIZE (GET_MODE (x)) - (floor_log2 (mask) + 1))
8027 && GET_CODE (XEXP (x, 0)) == ASHIFT
8028 && XEXP (XEXP (x, 0), 1) == XEXP (x, 1))
8029 return force_to_mode (XEXP (XEXP (x, 0), 0), mode, mask,
8030 next_select);
8031
8032 break;
8033
8034 case ROTATE:
8035 case ROTATERT:
8036 /* If the shift count is constant and we can do computations
8037 in the mode of X, compute where the bits we care about are.
8038 Otherwise, we can't do anything. Don't change the mode of
8039 the shift or propagate MODE into the shift, though. */
8040 if (CONST_INT_P (XEXP (x, 1))
8041 && INTVAL (XEXP (x, 1)) >= 0)
8042 {
8043 temp = simplify_binary_operation (code == ROTATE ? ROTATERT : ROTATE,
8044 GET_MODE (x), GEN_INT (mask),
8045 XEXP (x, 1));
8046 if (temp && CONST_INT_P (temp))
8047 SUBST (XEXP (x, 0),
8048 force_to_mode (XEXP (x, 0), GET_MODE (x),
8049 INTVAL (temp), next_select));
8050 }
8051 break;
8052
8053 case NEG:
8054 /* If we just want the low-order bit, the NEG isn't needed since it
8055 won't change the low-order bit. */
8056 if (mask == 1)
8057 return force_to_mode (XEXP (x, 0), mode, mask, just_select);
8058
8059 /* We need any bits less significant than the most significant bit in
8060 MASK since carries from those bits will affect the bits we are
8061 interested in. */
8062 mask = fuller_mask;
8063 goto unop;
8064
8065 case NOT:
8066 /* (not FOO) is (xor FOO CONST), so if FOO is an LSHIFTRT, we can do the
8067 same as the XOR case above. Ensure that the constant we form is not
8068 wider than the mode of X. */
8069
8070 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
8071 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
8072 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
8073 && (INTVAL (XEXP (XEXP (x, 0), 1)) + floor_log2 (mask)
8074 < GET_MODE_BITSIZE (GET_MODE (x)))
8075 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT)
8076 {
8077 temp = gen_int_mode (mask << INTVAL (XEXP (XEXP (x, 0), 1)),
8078 GET_MODE (x));
8079 temp = simplify_gen_binary (XOR, GET_MODE (x),
8080 XEXP (XEXP (x, 0), 0), temp);
8081 x = simplify_gen_binary (LSHIFTRT, GET_MODE (x),
8082 temp, XEXP (XEXP (x, 0), 1));
8083
8084 return force_to_mode (x, mode, mask, next_select);
8085 }
8086
8087 /* (and (not FOO) CONST) is (not (or FOO (not CONST))), so we must
8088 use the full mask inside the NOT. */
8089 mask = fuller_mask;
8090
8091 unop:
8092 op0 = gen_lowpart_or_truncate (op_mode,
8093 force_to_mode (XEXP (x, 0), mode, mask,
8094 next_select));
8095 if (op_mode != GET_MODE (x) || op0 != XEXP (x, 0))
8096 x = simplify_gen_unary (code, op_mode, op0, op_mode);
8097 break;
8098
8099 case NE:
8100 /* (and (ne FOO 0) CONST) can be (and FOO CONST) if CONST is included
8101 in STORE_FLAG_VALUE and FOO has a single bit that might be nonzero,
8102 which is equal to STORE_FLAG_VALUE. */
8103 if ((mask & ~STORE_FLAG_VALUE) == 0 && XEXP (x, 1) == const0_rtx
8104 && GET_MODE (XEXP (x, 0)) == mode
8105 && exact_log2 (nonzero_bits (XEXP (x, 0), mode)) >= 0
8106 && (nonzero_bits (XEXP (x, 0), mode)
8107 == (unsigned HOST_WIDE_INT) STORE_FLAG_VALUE))
8108 return force_to_mode (XEXP (x, 0), mode, mask, next_select);
8109
8110 break;
8111
8112 case IF_THEN_ELSE:
8113 /* We have no way of knowing if the IF_THEN_ELSE can itself be
8114 written in a narrower mode. We play it safe and do not do so. */
8115
8116 SUBST (XEXP (x, 1),
8117 gen_lowpart_or_truncate (GET_MODE (x),
8118 force_to_mode (XEXP (x, 1), mode,
8119 mask, next_select)));
8120 SUBST (XEXP (x, 2),
8121 gen_lowpart_or_truncate (GET_MODE (x),
8122 force_to_mode (XEXP (x, 2), mode,
8123 mask, next_select)));
8124 break;
8125
8126 default:
8127 break;
8128 }
8129
8130 /* Ensure we return a value of the proper mode. */
8131 return gen_lowpart_or_truncate (mode, x);
8132 }
8133 \f
8134 /* Return nonzero if X is an expression that has one of two values depending on
8135 whether some other value is zero or nonzero. In that case, we return the
8136 value that is being tested, *PTRUE is set to the value if the rtx being
8137 returned has a nonzero value, and *PFALSE is set to the other alternative.
8138
8139 If we return zero, we set *PTRUE and *PFALSE to X. */
8140
8141 static rtx
8142 if_then_else_cond (rtx x, rtx *ptrue, rtx *pfalse)
8143 {
8144 enum machine_mode mode = GET_MODE (x);
8145 enum rtx_code code = GET_CODE (x);
8146 rtx cond0, cond1, true0, true1, false0, false1;
8147 unsigned HOST_WIDE_INT nz;
8148
8149 /* If we are comparing a value against zero, we are done. */
8150 if ((code == NE || code == EQ)
8151 && XEXP (x, 1) == const0_rtx)
8152 {
8153 *ptrue = (code == NE) ? const_true_rtx : const0_rtx;
8154 *pfalse = (code == NE) ? const0_rtx : const_true_rtx;
8155 return XEXP (x, 0);
8156 }
8157
8158 /* If this is a unary operation whose operand has one of two values, apply
8159 our opcode to compute those values. */
8160 else if (UNARY_P (x)
8161 && (cond0 = if_then_else_cond (XEXP (x, 0), &true0, &false0)) != 0)
8162 {
8163 *ptrue = simplify_gen_unary (code, mode, true0, GET_MODE (XEXP (x, 0)));
8164 *pfalse = simplify_gen_unary (code, mode, false0,
8165 GET_MODE (XEXP (x, 0)));
8166 return cond0;
8167 }
8168
8169 /* If this is a COMPARE, do nothing, since the IF_THEN_ELSE we would
8170 make can't possibly match and would suppress other optimizations. */
8171 else if (code == COMPARE)
8172 ;
8173
8174 /* If this is a binary operation, see if either side has only one of two
8175 values. If either one does or if both do and they are conditional on
8176 the same value, compute the new true and false values. */
8177 else if (BINARY_P (x))
8178 {
8179 cond0 = if_then_else_cond (XEXP (x, 0), &true0, &false0);
8180 cond1 = if_then_else_cond (XEXP (x, 1), &true1, &false1);
8181
8182 if ((cond0 != 0 || cond1 != 0)
8183 && ! (cond0 != 0 && cond1 != 0 && ! rtx_equal_p (cond0, cond1)))
8184 {
8185 /* If if_then_else_cond returned zero, then true/false are the
8186 same rtl. We must copy one of them to prevent invalid rtl
8187 sharing. */
8188 if (cond0 == 0)
8189 true0 = copy_rtx (true0);
8190 else if (cond1 == 0)
8191 true1 = copy_rtx (true1);
8192
8193 if (COMPARISON_P (x))
8194 {
8195 *ptrue = simplify_gen_relational (code, mode, VOIDmode,
8196 true0, true1);
8197 *pfalse = simplify_gen_relational (code, mode, VOIDmode,
8198 false0, false1);
8199 }
8200 else
8201 {
8202 *ptrue = simplify_gen_binary (code, mode, true0, true1);
8203 *pfalse = simplify_gen_binary (code, mode, false0, false1);
8204 }
8205
8206 return cond0 ? cond0 : cond1;
8207 }
8208
8209 /* See if we have PLUS, IOR, XOR, MINUS or UMAX, where one of the
8210 operands is zero when the other is nonzero, and vice-versa,
8211 and STORE_FLAG_VALUE is 1 or -1. */
8212
8213 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
8214 && (code == PLUS || code == IOR || code == XOR || code == MINUS
8215 || code == UMAX)
8216 && GET_CODE (XEXP (x, 0)) == MULT && GET_CODE (XEXP (x, 1)) == MULT)
8217 {
8218 rtx op0 = XEXP (XEXP (x, 0), 1);
8219 rtx op1 = XEXP (XEXP (x, 1), 1);
8220
8221 cond0 = XEXP (XEXP (x, 0), 0);
8222 cond1 = XEXP (XEXP (x, 1), 0);
8223
8224 if (COMPARISON_P (cond0)
8225 && COMPARISON_P (cond1)
8226 && ((GET_CODE (cond0) == reversed_comparison_code (cond1, NULL)
8227 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 0))
8228 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 1)))
8229 || ((swap_condition (GET_CODE (cond0))
8230 == reversed_comparison_code (cond1, NULL))
8231 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 1))
8232 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 0))))
8233 && ! side_effects_p (x))
8234 {
8235 *ptrue = simplify_gen_binary (MULT, mode, op0, const_true_rtx);
8236 *pfalse = simplify_gen_binary (MULT, mode,
8237 (code == MINUS
8238 ? simplify_gen_unary (NEG, mode,
8239 op1, mode)
8240 : op1),
8241 const_true_rtx);
8242 return cond0;
8243 }
8244 }
8245
8246 /* Similarly for MULT, AND and UMIN, except that for these the result
8247 is always zero. */
8248 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
8249 && (code == MULT || code == AND || code == UMIN)
8250 && GET_CODE (XEXP (x, 0)) == MULT && GET_CODE (XEXP (x, 1)) == MULT)
8251 {
8252 cond0 = XEXP (XEXP (x, 0), 0);
8253 cond1 = XEXP (XEXP (x, 1), 0);
8254
8255 if (COMPARISON_P (cond0)
8256 && COMPARISON_P (cond1)
8257 && ((GET_CODE (cond0) == reversed_comparison_code (cond1, NULL)
8258 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 0))
8259 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 1)))
8260 || ((swap_condition (GET_CODE (cond0))
8261 == reversed_comparison_code (cond1, NULL))
8262 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 1))
8263 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 0))))
8264 && ! side_effects_p (x))
8265 {
8266 *ptrue = *pfalse = const0_rtx;
8267 return cond0;
8268 }
8269 }
8270 }
8271
8272 else if (code == IF_THEN_ELSE)
8273 {
8274 /* If we have IF_THEN_ELSE already, extract the condition and
8275 canonicalize it if it is NE or EQ. */
8276 cond0 = XEXP (x, 0);
8277 *ptrue = XEXP (x, 1), *pfalse = XEXP (x, 2);
8278 if (GET_CODE (cond0) == NE && XEXP (cond0, 1) == const0_rtx)
8279 return XEXP (cond0, 0);
8280 else if (GET_CODE (cond0) == EQ && XEXP (cond0, 1) == const0_rtx)
8281 {
8282 *ptrue = XEXP (x, 2), *pfalse = XEXP (x, 1);
8283 return XEXP (cond0, 0);
8284 }
8285 else
8286 return cond0;
8287 }
8288
8289 /* If X is a SUBREG, we can narrow both the true and false values
8290 if the inner expression, if there is a condition. */
8291 else if (code == SUBREG
8292 && 0 != (cond0 = if_then_else_cond (SUBREG_REG (x),
8293 &true0, &false0)))
8294 {
8295 true0 = simplify_gen_subreg (mode, true0,
8296 GET_MODE (SUBREG_REG (x)), SUBREG_BYTE (x));
8297 false0 = simplify_gen_subreg (mode, false0,
8298 GET_MODE (SUBREG_REG (x)), SUBREG_BYTE (x));
8299 if (true0 && false0)
8300 {
8301 *ptrue = true0;
8302 *pfalse = false0;
8303 return cond0;
8304 }
8305 }
8306
8307 /* If X is a constant, this isn't special and will cause confusions
8308 if we treat it as such. Likewise if it is equivalent to a constant. */
8309 else if (CONSTANT_P (x)
8310 || ((cond0 = get_last_value (x)) != 0 && CONSTANT_P (cond0)))
8311 ;
8312
8313 /* If we're in BImode, canonicalize on 0 and STORE_FLAG_VALUE, as that
8314 will be least confusing to the rest of the compiler. */
8315 else if (mode == BImode)
8316 {
8317 *ptrue = GEN_INT (STORE_FLAG_VALUE), *pfalse = const0_rtx;
8318 return x;
8319 }
8320
8321 /* If X is known to be either 0 or -1, those are the true and
8322 false values when testing X. */
8323 else if (x == constm1_rtx || x == const0_rtx
8324 || (mode != VOIDmode
8325 && num_sign_bit_copies (x, mode) == GET_MODE_BITSIZE (mode)))
8326 {
8327 *ptrue = constm1_rtx, *pfalse = const0_rtx;
8328 return x;
8329 }
8330
8331 /* Likewise for 0 or a single bit. */
8332 else if (SCALAR_INT_MODE_P (mode)
8333 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
8334 && exact_log2 (nz = nonzero_bits (x, mode)) >= 0)
8335 {
8336 *ptrue = gen_int_mode (nz, mode), *pfalse = const0_rtx;
8337 return x;
8338 }
8339
8340 /* Otherwise fail; show no condition with true and false values the same. */
8341 *ptrue = *pfalse = x;
8342 return 0;
8343 }
8344 \f
8345 /* Return the value of expression X given the fact that condition COND
8346 is known to be true when applied to REG as its first operand and VAL
8347 as its second. X is known to not be shared and so can be modified in
8348 place.
8349
8350 We only handle the simplest cases, and specifically those cases that
8351 arise with IF_THEN_ELSE expressions. */
8352
8353 static rtx
8354 known_cond (rtx x, enum rtx_code cond, rtx reg, rtx val)
8355 {
8356 enum rtx_code code = GET_CODE (x);
8357 rtx temp;
8358 const char *fmt;
8359 int i, j;
8360
8361 if (side_effects_p (x))
8362 return x;
8363
8364 /* If either operand of the condition is a floating point value,
8365 then we have to avoid collapsing an EQ comparison. */
8366 if (cond == EQ
8367 && rtx_equal_p (x, reg)
8368 && ! FLOAT_MODE_P (GET_MODE (x))
8369 && ! FLOAT_MODE_P (GET_MODE (val)))
8370 return val;
8371
8372 if (cond == UNEQ && rtx_equal_p (x, reg))
8373 return val;
8374
8375 /* If X is (abs REG) and we know something about REG's relationship
8376 with zero, we may be able to simplify this. */
8377
8378 if (code == ABS && rtx_equal_p (XEXP (x, 0), reg) && val == const0_rtx)
8379 switch (cond)
8380 {
8381 case GE: case GT: case EQ:
8382 return XEXP (x, 0);
8383 case LT: case LE:
8384 return simplify_gen_unary (NEG, GET_MODE (XEXP (x, 0)),
8385 XEXP (x, 0),
8386 GET_MODE (XEXP (x, 0)));
8387 default:
8388 break;
8389 }
8390
8391 /* The only other cases we handle are MIN, MAX, and comparisons if the
8392 operands are the same as REG and VAL. */
8393
8394 else if (COMPARISON_P (x) || COMMUTATIVE_ARITH_P (x))
8395 {
8396 if (rtx_equal_p (XEXP (x, 0), val))
8397 cond = swap_condition (cond), temp = val, val = reg, reg = temp;
8398
8399 if (rtx_equal_p (XEXP (x, 0), reg) && rtx_equal_p (XEXP (x, 1), val))
8400 {
8401 if (COMPARISON_P (x))
8402 {
8403 if (comparison_dominates_p (cond, code))
8404 return const_true_rtx;
8405
8406 code = reversed_comparison_code (x, NULL);
8407 if (code != UNKNOWN
8408 && comparison_dominates_p (cond, code))
8409 return const0_rtx;
8410 else
8411 return x;
8412 }
8413 else if (code == SMAX || code == SMIN
8414 || code == UMIN || code == UMAX)
8415 {
8416 int unsignedp = (code == UMIN || code == UMAX);
8417
8418 /* Do not reverse the condition when it is NE or EQ.
8419 This is because we cannot conclude anything about
8420 the value of 'SMAX (x, y)' when x is not equal to y,
8421 but we can when x equals y. */
8422 if ((code == SMAX || code == UMAX)
8423 && ! (cond == EQ || cond == NE))
8424 cond = reverse_condition (cond);
8425
8426 switch (cond)
8427 {
8428 case GE: case GT:
8429 return unsignedp ? x : XEXP (x, 1);
8430 case LE: case LT:
8431 return unsignedp ? x : XEXP (x, 0);
8432 case GEU: case GTU:
8433 return unsignedp ? XEXP (x, 1) : x;
8434 case LEU: case LTU:
8435 return unsignedp ? XEXP (x, 0) : x;
8436 default:
8437 break;
8438 }
8439 }
8440 }
8441 }
8442 else if (code == SUBREG)
8443 {
8444 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (x));
8445 rtx new_rtx, r = known_cond (SUBREG_REG (x), cond, reg, val);
8446
8447 if (SUBREG_REG (x) != r)
8448 {
8449 /* We must simplify subreg here, before we lose track of the
8450 original inner_mode. */
8451 new_rtx = simplify_subreg (GET_MODE (x), r,
8452 inner_mode, SUBREG_BYTE (x));
8453 if (new_rtx)
8454 return new_rtx;
8455 else
8456 SUBST (SUBREG_REG (x), r);
8457 }
8458
8459 return x;
8460 }
8461 /* We don't have to handle SIGN_EXTEND here, because even in the
8462 case of replacing something with a modeless CONST_INT, a
8463 CONST_INT is already (supposed to be) a valid sign extension for
8464 its narrower mode, which implies it's already properly
8465 sign-extended for the wider mode. Now, for ZERO_EXTEND, the
8466 story is different. */
8467 else if (code == ZERO_EXTEND)
8468 {
8469 enum machine_mode inner_mode = GET_MODE (XEXP (x, 0));
8470 rtx new_rtx, r = known_cond (XEXP (x, 0), cond, reg, val);
8471
8472 if (XEXP (x, 0) != r)
8473 {
8474 /* We must simplify the zero_extend here, before we lose
8475 track of the original inner_mode. */
8476 new_rtx = simplify_unary_operation (ZERO_EXTEND, GET_MODE (x),
8477 r, inner_mode);
8478 if (new_rtx)
8479 return new_rtx;
8480 else
8481 SUBST (XEXP (x, 0), r);
8482 }
8483
8484 return x;
8485 }
8486
8487 fmt = GET_RTX_FORMAT (code);
8488 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
8489 {
8490 if (fmt[i] == 'e')
8491 SUBST (XEXP (x, i), known_cond (XEXP (x, i), cond, reg, val));
8492 else if (fmt[i] == 'E')
8493 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
8494 SUBST (XVECEXP (x, i, j), known_cond (XVECEXP (x, i, j),
8495 cond, reg, val));
8496 }
8497
8498 return x;
8499 }
8500 \f
8501 /* See if X and Y are equal for the purposes of seeing if we can rewrite an
8502 assignment as a field assignment. */
8503
8504 static int
8505 rtx_equal_for_field_assignment_p (rtx x, rtx y)
8506 {
8507 if (x == y || rtx_equal_p (x, y))
8508 return 1;
8509
8510 if (x == 0 || y == 0 || GET_MODE (x) != GET_MODE (y))
8511 return 0;
8512
8513 /* Check for a paradoxical SUBREG of a MEM compared with the MEM.
8514 Note that all SUBREGs of MEM are paradoxical; otherwise they
8515 would have been rewritten. */
8516 if (MEM_P (x) && GET_CODE (y) == SUBREG
8517 && MEM_P (SUBREG_REG (y))
8518 && rtx_equal_p (SUBREG_REG (y),
8519 gen_lowpart (GET_MODE (SUBREG_REG (y)), x)))
8520 return 1;
8521
8522 if (MEM_P (y) && GET_CODE (x) == SUBREG
8523 && MEM_P (SUBREG_REG (x))
8524 && rtx_equal_p (SUBREG_REG (x),
8525 gen_lowpart (GET_MODE (SUBREG_REG (x)), y)))
8526 return 1;
8527
8528 /* We used to see if get_last_value of X and Y were the same but that's
8529 not correct. In one direction, we'll cause the assignment to have
8530 the wrong destination and in the case, we'll import a register into this
8531 insn that might have already have been dead. So fail if none of the
8532 above cases are true. */
8533 return 0;
8534 }
8535 \f
8536 /* See if X, a SET operation, can be rewritten as a bit-field assignment.
8537 Return that assignment if so.
8538
8539 We only handle the most common cases. */
8540
8541 static rtx
8542 make_field_assignment (rtx x)
8543 {
8544 rtx dest = SET_DEST (x);
8545 rtx src = SET_SRC (x);
8546 rtx assign;
8547 rtx rhs, lhs;
8548 HOST_WIDE_INT c1;
8549 HOST_WIDE_INT pos;
8550 unsigned HOST_WIDE_INT len;
8551 rtx other;
8552 enum machine_mode mode;
8553
8554 /* If SRC was (and (not (ashift (const_int 1) POS)) DEST), this is
8555 a clear of a one-bit field. We will have changed it to
8556 (and (rotate (const_int -2) POS) DEST), so check for that. Also check
8557 for a SUBREG. */
8558
8559 if (GET_CODE (src) == AND && GET_CODE (XEXP (src, 0)) == ROTATE
8560 && CONST_INT_P (XEXP (XEXP (src, 0), 0))
8561 && INTVAL (XEXP (XEXP (src, 0), 0)) == -2
8562 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
8563 {
8564 assign = make_extraction (VOIDmode, dest, 0, XEXP (XEXP (src, 0), 1),
8565 1, 1, 1, 0);
8566 if (assign != 0)
8567 return gen_rtx_SET (VOIDmode, assign, const0_rtx);
8568 return x;
8569 }
8570
8571 if (GET_CODE (src) == AND && GET_CODE (XEXP (src, 0)) == SUBREG
8572 && subreg_lowpart_p (XEXP (src, 0))
8573 && (GET_MODE_SIZE (GET_MODE (XEXP (src, 0)))
8574 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (XEXP (src, 0)))))
8575 && GET_CODE (SUBREG_REG (XEXP (src, 0))) == ROTATE
8576 && CONST_INT_P (XEXP (SUBREG_REG (XEXP (src, 0)), 0))
8577 && INTVAL (XEXP (SUBREG_REG (XEXP (src, 0)), 0)) == -2
8578 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
8579 {
8580 assign = make_extraction (VOIDmode, dest, 0,
8581 XEXP (SUBREG_REG (XEXP (src, 0)), 1),
8582 1, 1, 1, 0);
8583 if (assign != 0)
8584 return gen_rtx_SET (VOIDmode, assign, const0_rtx);
8585 return x;
8586 }
8587
8588 /* If SRC is (ior (ashift (const_int 1) POS) DEST), this is a set of a
8589 one-bit field. */
8590 if (GET_CODE (src) == IOR && GET_CODE (XEXP (src, 0)) == ASHIFT
8591 && XEXP (XEXP (src, 0), 0) == const1_rtx
8592 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
8593 {
8594 assign = make_extraction (VOIDmode, dest, 0, XEXP (XEXP (src, 0), 1),
8595 1, 1, 1, 0);
8596 if (assign != 0)
8597 return gen_rtx_SET (VOIDmode, assign, const1_rtx);
8598 return x;
8599 }
8600
8601 /* If DEST is already a field assignment, i.e. ZERO_EXTRACT, and the
8602 SRC is an AND with all bits of that field set, then we can discard
8603 the AND. */
8604 if (GET_CODE (dest) == ZERO_EXTRACT
8605 && CONST_INT_P (XEXP (dest, 1))
8606 && GET_CODE (src) == AND
8607 && CONST_INT_P (XEXP (src, 1)))
8608 {
8609 HOST_WIDE_INT width = INTVAL (XEXP (dest, 1));
8610 unsigned HOST_WIDE_INT and_mask = INTVAL (XEXP (src, 1));
8611 unsigned HOST_WIDE_INT ze_mask;
8612
8613 if (width >= HOST_BITS_PER_WIDE_INT)
8614 ze_mask = -1;
8615 else
8616 ze_mask = ((unsigned HOST_WIDE_INT)1 << width) - 1;
8617
8618 /* Complete overlap. We can remove the source AND. */
8619 if ((and_mask & ze_mask) == ze_mask)
8620 return gen_rtx_SET (VOIDmode, dest, XEXP (src, 0));
8621
8622 /* Partial overlap. We can reduce the source AND. */
8623 if ((and_mask & ze_mask) != and_mask)
8624 {
8625 mode = GET_MODE (src);
8626 src = gen_rtx_AND (mode, XEXP (src, 0),
8627 gen_int_mode (and_mask & ze_mask, mode));
8628 return gen_rtx_SET (VOIDmode, dest, src);
8629 }
8630 }
8631
8632 /* The other case we handle is assignments into a constant-position
8633 field. They look like (ior/xor (and DEST C1) OTHER). If C1 represents
8634 a mask that has all one bits except for a group of zero bits and
8635 OTHER is known to have zeros where C1 has ones, this is such an
8636 assignment. Compute the position and length from C1. Shift OTHER
8637 to the appropriate position, force it to the required mode, and
8638 make the extraction. Check for the AND in both operands. */
8639
8640 if (GET_CODE (src) != IOR && GET_CODE (src) != XOR)
8641 return x;
8642
8643 rhs = expand_compound_operation (XEXP (src, 0));
8644 lhs = expand_compound_operation (XEXP (src, 1));
8645
8646 if (GET_CODE (rhs) == AND
8647 && CONST_INT_P (XEXP (rhs, 1))
8648 && rtx_equal_for_field_assignment_p (XEXP (rhs, 0), dest))
8649 c1 = INTVAL (XEXP (rhs, 1)), other = lhs;
8650 else if (GET_CODE (lhs) == AND
8651 && CONST_INT_P (XEXP (lhs, 1))
8652 && rtx_equal_for_field_assignment_p (XEXP (lhs, 0), dest))
8653 c1 = INTVAL (XEXP (lhs, 1)), other = rhs;
8654 else
8655 return x;
8656
8657 pos = get_pos_from_mask ((~c1) & GET_MODE_MASK (GET_MODE (dest)), &len);
8658 if (pos < 0 || pos + len > GET_MODE_BITSIZE (GET_MODE (dest))
8659 || GET_MODE_BITSIZE (GET_MODE (dest)) > HOST_BITS_PER_WIDE_INT
8660 || (c1 & nonzero_bits (other, GET_MODE (dest))) != 0)
8661 return x;
8662
8663 assign = make_extraction (VOIDmode, dest, pos, NULL_RTX, len, 1, 1, 0);
8664 if (assign == 0)
8665 return x;
8666
8667 /* The mode to use for the source is the mode of the assignment, or of
8668 what is inside a possible STRICT_LOW_PART. */
8669 mode = (GET_CODE (assign) == STRICT_LOW_PART
8670 ? GET_MODE (XEXP (assign, 0)) : GET_MODE (assign));
8671
8672 /* Shift OTHER right POS places and make it the source, restricting it
8673 to the proper length and mode. */
8674
8675 src = canon_reg_for_combine (simplify_shift_const (NULL_RTX, LSHIFTRT,
8676 GET_MODE (src),
8677 other, pos),
8678 dest);
8679 src = force_to_mode (src, mode,
8680 GET_MODE_BITSIZE (mode) >= HOST_BITS_PER_WIDE_INT
8681 ? ~(unsigned HOST_WIDE_INT) 0
8682 : ((unsigned HOST_WIDE_INT) 1 << len) - 1,
8683 0);
8684
8685 /* If SRC is masked by an AND that does not make a difference in
8686 the value being stored, strip it. */
8687 if (GET_CODE (assign) == ZERO_EXTRACT
8688 && CONST_INT_P (XEXP (assign, 1))
8689 && INTVAL (XEXP (assign, 1)) < HOST_BITS_PER_WIDE_INT
8690 && GET_CODE (src) == AND
8691 && CONST_INT_P (XEXP (src, 1))
8692 && ((unsigned HOST_WIDE_INT) INTVAL (XEXP (src, 1))
8693 == ((unsigned HOST_WIDE_INT) 1 << INTVAL (XEXP (assign, 1))) - 1))
8694 src = XEXP (src, 0);
8695
8696 return gen_rtx_SET (VOIDmode, assign, src);
8697 }
8698 \f
8699 /* See if X is of the form (+ (* a c) (* b c)) and convert to (* (+ a b) c)
8700 if so. */
8701
8702 static rtx
8703 apply_distributive_law (rtx x)
8704 {
8705 enum rtx_code code = GET_CODE (x);
8706 enum rtx_code inner_code;
8707 rtx lhs, rhs, other;
8708 rtx tem;
8709
8710 /* Distributivity is not true for floating point as it can change the
8711 value. So we don't do it unless -funsafe-math-optimizations. */
8712 if (FLOAT_MODE_P (GET_MODE (x))
8713 && ! flag_unsafe_math_optimizations)
8714 return x;
8715
8716 /* The outer operation can only be one of the following: */
8717 if (code != IOR && code != AND && code != XOR
8718 && code != PLUS && code != MINUS)
8719 return x;
8720
8721 lhs = XEXP (x, 0);
8722 rhs = XEXP (x, 1);
8723
8724 /* If either operand is a primitive we can't do anything, so get out
8725 fast. */
8726 if (OBJECT_P (lhs) || OBJECT_P (rhs))
8727 return x;
8728
8729 lhs = expand_compound_operation (lhs);
8730 rhs = expand_compound_operation (rhs);
8731 inner_code = GET_CODE (lhs);
8732 if (inner_code != GET_CODE (rhs))
8733 return x;
8734
8735 /* See if the inner and outer operations distribute. */
8736 switch (inner_code)
8737 {
8738 case LSHIFTRT:
8739 case ASHIFTRT:
8740 case AND:
8741 case IOR:
8742 /* These all distribute except over PLUS. */
8743 if (code == PLUS || code == MINUS)
8744 return x;
8745 break;
8746
8747 case MULT:
8748 if (code != PLUS && code != MINUS)
8749 return x;
8750 break;
8751
8752 case ASHIFT:
8753 /* This is also a multiply, so it distributes over everything. */
8754 break;
8755
8756 case SUBREG:
8757 /* Non-paradoxical SUBREGs distributes over all operations,
8758 provided the inner modes and byte offsets are the same, this
8759 is an extraction of a low-order part, we don't convert an fp
8760 operation to int or vice versa, this is not a vector mode,
8761 and we would not be converting a single-word operation into a
8762 multi-word operation. The latter test is not required, but
8763 it prevents generating unneeded multi-word operations. Some
8764 of the previous tests are redundant given the latter test,
8765 but are retained because they are required for correctness.
8766
8767 We produce the result slightly differently in this case. */
8768
8769 if (GET_MODE (SUBREG_REG (lhs)) != GET_MODE (SUBREG_REG (rhs))
8770 || SUBREG_BYTE (lhs) != SUBREG_BYTE (rhs)
8771 || ! subreg_lowpart_p (lhs)
8772 || (GET_MODE_CLASS (GET_MODE (lhs))
8773 != GET_MODE_CLASS (GET_MODE (SUBREG_REG (lhs))))
8774 || (GET_MODE_SIZE (GET_MODE (lhs))
8775 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (lhs))))
8776 || VECTOR_MODE_P (GET_MODE (lhs))
8777 || GET_MODE_SIZE (GET_MODE (SUBREG_REG (lhs))) > UNITS_PER_WORD
8778 /* Result might need to be truncated. Don't change mode if
8779 explicit truncation is needed. */
8780 || !TRULY_NOOP_TRUNCATION
8781 (GET_MODE_BITSIZE (GET_MODE (x)),
8782 GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (lhs)))))
8783 return x;
8784
8785 tem = simplify_gen_binary (code, GET_MODE (SUBREG_REG (lhs)),
8786 SUBREG_REG (lhs), SUBREG_REG (rhs));
8787 return gen_lowpart (GET_MODE (x), tem);
8788
8789 default:
8790 return x;
8791 }
8792
8793 /* Set LHS and RHS to the inner operands (A and B in the example
8794 above) and set OTHER to the common operand (C in the example).
8795 There is only one way to do this unless the inner operation is
8796 commutative. */
8797 if (COMMUTATIVE_ARITH_P (lhs)
8798 && rtx_equal_p (XEXP (lhs, 0), XEXP (rhs, 0)))
8799 other = XEXP (lhs, 0), lhs = XEXP (lhs, 1), rhs = XEXP (rhs, 1);
8800 else if (COMMUTATIVE_ARITH_P (lhs)
8801 && rtx_equal_p (XEXP (lhs, 0), XEXP (rhs, 1)))
8802 other = XEXP (lhs, 0), lhs = XEXP (lhs, 1), rhs = XEXP (rhs, 0);
8803 else if (COMMUTATIVE_ARITH_P (lhs)
8804 && rtx_equal_p (XEXP (lhs, 1), XEXP (rhs, 0)))
8805 other = XEXP (lhs, 1), lhs = XEXP (lhs, 0), rhs = XEXP (rhs, 1);
8806 else if (rtx_equal_p (XEXP (lhs, 1), XEXP (rhs, 1)))
8807 other = XEXP (lhs, 1), lhs = XEXP (lhs, 0), rhs = XEXP (rhs, 0);
8808 else
8809 return x;
8810
8811 /* Form the new inner operation, seeing if it simplifies first. */
8812 tem = simplify_gen_binary (code, GET_MODE (x), lhs, rhs);
8813
8814 /* There is one exception to the general way of distributing:
8815 (a | c) ^ (b | c) -> (a ^ b) & ~c */
8816 if (code == XOR && inner_code == IOR)
8817 {
8818 inner_code = AND;
8819 other = simplify_gen_unary (NOT, GET_MODE (x), other, GET_MODE (x));
8820 }
8821
8822 /* We may be able to continuing distributing the result, so call
8823 ourselves recursively on the inner operation before forming the
8824 outer operation, which we return. */
8825 return simplify_gen_binary (inner_code, GET_MODE (x),
8826 apply_distributive_law (tem), other);
8827 }
8828
8829 /* See if X is of the form (* (+ A B) C), and if so convert to
8830 (+ (* A C) (* B C)) and try to simplify.
8831
8832 Most of the time, this results in no change. However, if some of
8833 the operands are the same or inverses of each other, simplifications
8834 will result.
8835
8836 For example, (and (ior A B) (not B)) can occur as the result of
8837 expanding a bit field assignment. When we apply the distributive
8838 law to this, we get (ior (and (A (not B))) (and (B (not B)))),
8839 which then simplifies to (and (A (not B))).
8840
8841 Note that no checks happen on the validity of applying the inverse
8842 distributive law. This is pointless since we can do it in the
8843 few places where this routine is called.
8844
8845 N is the index of the term that is decomposed (the arithmetic operation,
8846 i.e. (+ A B) in the first example above). !N is the index of the term that
8847 is distributed, i.e. of C in the first example above. */
8848 static rtx
8849 distribute_and_simplify_rtx (rtx x, int n)
8850 {
8851 enum machine_mode mode;
8852 enum rtx_code outer_code, inner_code;
8853 rtx decomposed, distributed, inner_op0, inner_op1, new_op0, new_op1, tmp;
8854
8855 /* Distributivity is not true for floating point as it can change the
8856 value. So we don't do it unless -funsafe-math-optimizations. */
8857 if (FLOAT_MODE_P (GET_MODE (x))
8858 && ! flag_unsafe_math_optimizations)
8859 return NULL_RTX;
8860
8861 decomposed = XEXP (x, n);
8862 if (!ARITHMETIC_P (decomposed))
8863 return NULL_RTX;
8864
8865 mode = GET_MODE (x);
8866 outer_code = GET_CODE (x);
8867 distributed = XEXP (x, !n);
8868
8869 inner_code = GET_CODE (decomposed);
8870 inner_op0 = XEXP (decomposed, 0);
8871 inner_op1 = XEXP (decomposed, 1);
8872
8873 /* Special case (and (xor B C) (not A)), which is equivalent to
8874 (xor (ior A B) (ior A C)) */
8875 if (outer_code == AND && inner_code == XOR && GET_CODE (distributed) == NOT)
8876 {
8877 distributed = XEXP (distributed, 0);
8878 outer_code = IOR;
8879 }
8880
8881 if (n == 0)
8882 {
8883 /* Distribute the second term. */
8884 new_op0 = simplify_gen_binary (outer_code, mode, inner_op0, distributed);
8885 new_op1 = simplify_gen_binary (outer_code, mode, inner_op1, distributed);
8886 }
8887 else
8888 {
8889 /* Distribute the first term. */
8890 new_op0 = simplify_gen_binary (outer_code, mode, distributed, inner_op0);
8891 new_op1 = simplify_gen_binary (outer_code, mode, distributed, inner_op1);
8892 }
8893
8894 tmp = apply_distributive_law (simplify_gen_binary (inner_code, mode,
8895 new_op0, new_op1));
8896 if (GET_CODE (tmp) != outer_code
8897 && rtx_cost (tmp, SET, optimize_this_for_speed_p)
8898 < rtx_cost (x, SET, optimize_this_for_speed_p))
8899 return tmp;
8900
8901 return NULL_RTX;
8902 }
8903 \f
8904 /* Simplify a logical `and' of VAROP with the constant CONSTOP, to be done
8905 in MODE. Return an equivalent form, if different from (and VAROP
8906 (const_int CONSTOP)). Otherwise, return NULL_RTX. */
8907
8908 static rtx
8909 simplify_and_const_int_1 (enum machine_mode mode, rtx varop,
8910 unsigned HOST_WIDE_INT constop)
8911 {
8912 unsigned HOST_WIDE_INT nonzero;
8913 unsigned HOST_WIDE_INT orig_constop;
8914 rtx orig_varop;
8915 int i;
8916
8917 orig_varop = varop;
8918 orig_constop = constop;
8919 if (GET_CODE (varop) == CLOBBER)
8920 return NULL_RTX;
8921
8922 /* Simplify VAROP knowing that we will be only looking at some of the
8923 bits in it.
8924
8925 Note by passing in CONSTOP, we guarantee that the bits not set in
8926 CONSTOP are not significant and will never be examined. We must
8927 ensure that is the case by explicitly masking out those bits
8928 before returning. */
8929 varop = force_to_mode (varop, mode, constop, 0);
8930
8931 /* If VAROP is a CLOBBER, we will fail so return it. */
8932 if (GET_CODE (varop) == CLOBBER)
8933 return varop;
8934
8935 /* If VAROP is a CONST_INT, then we need to apply the mask in CONSTOP
8936 to VAROP and return the new constant. */
8937 if (CONST_INT_P (varop))
8938 return gen_int_mode (INTVAL (varop) & constop, mode);
8939
8940 /* See what bits may be nonzero in VAROP. Unlike the general case of
8941 a call to nonzero_bits, here we don't care about bits outside
8942 MODE. */
8943
8944 nonzero = nonzero_bits (varop, mode) & GET_MODE_MASK (mode);
8945
8946 /* Turn off all bits in the constant that are known to already be zero.
8947 Thus, if the AND isn't needed at all, we will have CONSTOP == NONZERO_BITS
8948 which is tested below. */
8949
8950 constop &= nonzero;
8951
8952 /* If we don't have any bits left, return zero. */
8953 if (constop == 0)
8954 return const0_rtx;
8955
8956 /* If VAROP is a NEG of something known to be zero or 1 and CONSTOP is
8957 a power of two, we can replace this with an ASHIFT. */
8958 if (GET_CODE (varop) == NEG && nonzero_bits (XEXP (varop, 0), mode) == 1
8959 && (i = exact_log2 (constop)) >= 0)
8960 return simplify_shift_const (NULL_RTX, ASHIFT, mode, XEXP (varop, 0), i);
8961
8962 /* If VAROP is an IOR or XOR, apply the AND to both branches of the IOR
8963 or XOR, then try to apply the distributive law. This may eliminate
8964 operations if either branch can be simplified because of the AND.
8965 It may also make some cases more complex, but those cases probably
8966 won't match a pattern either with or without this. */
8967
8968 if (GET_CODE (varop) == IOR || GET_CODE (varop) == XOR)
8969 return
8970 gen_lowpart
8971 (mode,
8972 apply_distributive_law
8973 (simplify_gen_binary (GET_CODE (varop), GET_MODE (varop),
8974 simplify_and_const_int (NULL_RTX,
8975 GET_MODE (varop),
8976 XEXP (varop, 0),
8977 constop),
8978 simplify_and_const_int (NULL_RTX,
8979 GET_MODE (varop),
8980 XEXP (varop, 1),
8981 constop))));
8982
8983 /* If VAROP is PLUS, and the constant is a mask of low bits, distribute
8984 the AND and see if one of the operands simplifies to zero. If so, we
8985 may eliminate it. */
8986
8987 if (GET_CODE (varop) == PLUS
8988 && exact_log2 (constop + 1) >= 0)
8989 {
8990 rtx o0, o1;
8991
8992 o0 = simplify_and_const_int (NULL_RTX, mode, XEXP (varop, 0), constop);
8993 o1 = simplify_and_const_int (NULL_RTX, mode, XEXP (varop, 1), constop);
8994 if (o0 == const0_rtx)
8995 return o1;
8996 if (o1 == const0_rtx)
8997 return o0;
8998 }
8999
9000 /* Make a SUBREG if necessary. If we can't make it, fail. */
9001 varop = gen_lowpart (mode, varop);
9002 if (varop == NULL_RTX || GET_CODE (varop) == CLOBBER)
9003 return NULL_RTX;
9004
9005 /* If we are only masking insignificant bits, return VAROP. */
9006 if (constop == nonzero)
9007 return varop;
9008
9009 if (varop == orig_varop && constop == orig_constop)
9010 return NULL_RTX;
9011
9012 /* Otherwise, return an AND. */
9013 return simplify_gen_binary (AND, mode, varop, gen_int_mode (constop, mode));
9014 }
9015
9016
9017 /* We have X, a logical `and' of VAROP with the constant CONSTOP, to be done
9018 in MODE.
9019
9020 Return an equivalent form, if different from X. Otherwise, return X. If
9021 X is zero, we are to always construct the equivalent form. */
9022
9023 static rtx
9024 simplify_and_const_int (rtx x, enum machine_mode mode, rtx varop,
9025 unsigned HOST_WIDE_INT constop)
9026 {
9027 rtx tem = simplify_and_const_int_1 (mode, varop, constop);
9028 if (tem)
9029 return tem;
9030
9031 if (!x)
9032 x = simplify_gen_binary (AND, GET_MODE (varop), varop,
9033 gen_int_mode (constop, mode));
9034 if (GET_MODE (x) != mode)
9035 x = gen_lowpart (mode, x);
9036 return x;
9037 }
9038 \f
9039 /* Given a REG, X, compute which bits in X can be nonzero.
9040 We don't care about bits outside of those defined in MODE.
9041
9042 For most X this is simply GET_MODE_MASK (GET_MODE (MODE)), but if X is
9043 a shift, AND, or zero_extract, we can do better. */
9044
9045 static rtx
9046 reg_nonzero_bits_for_combine (const_rtx x, enum machine_mode mode,
9047 const_rtx known_x ATTRIBUTE_UNUSED,
9048 enum machine_mode known_mode ATTRIBUTE_UNUSED,
9049 unsigned HOST_WIDE_INT known_ret ATTRIBUTE_UNUSED,
9050 unsigned HOST_WIDE_INT *nonzero)
9051 {
9052 rtx tem;
9053 reg_stat_type *rsp;
9054
9055 /* If X is a register whose nonzero bits value is current, use it.
9056 Otherwise, if X is a register whose value we can find, use that
9057 value. Otherwise, use the previously-computed global nonzero bits
9058 for this register. */
9059
9060 rsp = VEC_index (reg_stat_type, reg_stat, REGNO (x));
9061 if (rsp->last_set_value != 0
9062 && (rsp->last_set_mode == mode
9063 || (GET_MODE_CLASS (rsp->last_set_mode) == MODE_INT
9064 && GET_MODE_CLASS (mode) == MODE_INT))
9065 && ((rsp->last_set_label >= label_tick_ebb_start
9066 && rsp->last_set_label < label_tick)
9067 || (rsp->last_set_label == label_tick
9068 && DF_INSN_LUID (rsp->last_set) < subst_low_luid)
9069 || (REGNO (x) >= FIRST_PSEUDO_REGISTER
9070 && REG_N_SETS (REGNO (x)) == 1
9071 && !REGNO_REG_SET_P
9072 (DF_LR_IN (ENTRY_BLOCK_PTR->next_bb), REGNO (x)))))
9073 {
9074 *nonzero &= rsp->last_set_nonzero_bits;
9075 return NULL;
9076 }
9077
9078 tem = get_last_value (x);
9079
9080 if (tem)
9081 {
9082 #ifdef SHORT_IMMEDIATES_SIGN_EXTEND
9083 /* If X is narrower than MODE and TEM is a non-negative
9084 constant that would appear negative in the mode of X,
9085 sign-extend it for use in reg_nonzero_bits because some
9086 machines (maybe most) will actually do the sign-extension
9087 and this is the conservative approach.
9088
9089 ??? For 2.5, try to tighten up the MD files in this regard
9090 instead of this kludge. */
9091
9092 if (GET_MODE_BITSIZE (GET_MODE (x)) < GET_MODE_BITSIZE (mode)
9093 && CONST_INT_P (tem)
9094 && INTVAL (tem) > 0
9095 && 0 != (INTVAL (tem)
9096 & ((HOST_WIDE_INT) 1
9097 << (GET_MODE_BITSIZE (GET_MODE (x)) - 1))))
9098 tem = GEN_INT (INTVAL (tem)
9099 | ((HOST_WIDE_INT) (-1)
9100 << GET_MODE_BITSIZE (GET_MODE (x))));
9101 #endif
9102 return tem;
9103 }
9104 else if (nonzero_sign_valid && rsp->nonzero_bits)
9105 {
9106 unsigned HOST_WIDE_INT mask = rsp->nonzero_bits;
9107
9108 if (GET_MODE_BITSIZE (GET_MODE (x)) < GET_MODE_BITSIZE (mode))
9109 /* We don't know anything about the upper bits. */
9110 mask |= GET_MODE_MASK (mode) ^ GET_MODE_MASK (GET_MODE (x));
9111 *nonzero &= mask;
9112 }
9113
9114 return NULL;
9115 }
9116
9117 /* Return the number of bits at the high-order end of X that are known to
9118 be equal to the sign bit. X will be used in mode MODE; if MODE is
9119 VOIDmode, X will be used in its own mode. The returned value will always
9120 be between 1 and the number of bits in MODE. */
9121
9122 static rtx
9123 reg_num_sign_bit_copies_for_combine (const_rtx x, enum machine_mode mode,
9124 const_rtx known_x ATTRIBUTE_UNUSED,
9125 enum machine_mode known_mode
9126 ATTRIBUTE_UNUSED,
9127 unsigned int known_ret ATTRIBUTE_UNUSED,
9128 unsigned int *result)
9129 {
9130 rtx tem;
9131 reg_stat_type *rsp;
9132
9133 rsp = VEC_index (reg_stat_type, reg_stat, REGNO (x));
9134 if (rsp->last_set_value != 0
9135 && rsp->last_set_mode == mode
9136 && ((rsp->last_set_label >= label_tick_ebb_start
9137 && rsp->last_set_label < label_tick)
9138 || (rsp->last_set_label == label_tick
9139 && DF_INSN_LUID (rsp->last_set) < subst_low_luid)
9140 || (REGNO (x) >= FIRST_PSEUDO_REGISTER
9141 && REG_N_SETS (REGNO (x)) == 1
9142 && !REGNO_REG_SET_P
9143 (DF_LR_IN (ENTRY_BLOCK_PTR->next_bb), REGNO (x)))))
9144 {
9145 *result = rsp->last_set_sign_bit_copies;
9146 return NULL;
9147 }
9148
9149 tem = get_last_value (x);
9150 if (tem != 0)
9151 return tem;
9152
9153 if (nonzero_sign_valid && rsp->sign_bit_copies != 0
9154 && GET_MODE_BITSIZE (GET_MODE (x)) == GET_MODE_BITSIZE (mode))
9155 *result = rsp->sign_bit_copies;
9156
9157 return NULL;
9158 }
9159 \f
9160 /* Return the number of "extended" bits there are in X, when interpreted
9161 as a quantity in MODE whose signedness is indicated by UNSIGNEDP. For
9162 unsigned quantities, this is the number of high-order zero bits.
9163 For signed quantities, this is the number of copies of the sign bit
9164 minus 1. In both case, this function returns the number of "spare"
9165 bits. For example, if two quantities for which this function returns
9166 at least 1 are added, the addition is known not to overflow.
9167
9168 This function will always return 0 unless called during combine, which
9169 implies that it must be called from a define_split. */
9170
9171 unsigned int
9172 extended_count (const_rtx x, enum machine_mode mode, int unsignedp)
9173 {
9174 if (nonzero_sign_valid == 0)
9175 return 0;
9176
9177 return (unsignedp
9178 ? (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
9179 ? (unsigned int) (GET_MODE_BITSIZE (mode) - 1
9180 - floor_log2 (nonzero_bits (x, mode)))
9181 : 0)
9182 : num_sign_bit_copies (x, mode) - 1);
9183 }
9184 \f
9185 /* This function is called from `simplify_shift_const' to merge two
9186 outer operations. Specifically, we have already found that we need
9187 to perform operation *POP0 with constant *PCONST0 at the outermost
9188 position. We would now like to also perform OP1 with constant CONST1
9189 (with *POP0 being done last).
9190
9191 Return 1 if we can do the operation and update *POP0 and *PCONST0 with
9192 the resulting operation. *PCOMP_P is set to 1 if we would need to
9193 complement the innermost operand, otherwise it is unchanged.
9194
9195 MODE is the mode in which the operation will be done. No bits outside
9196 the width of this mode matter. It is assumed that the width of this mode
9197 is smaller than or equal to HOST_BITS_PER_WIDE_INT.
9198
9199 If *POP0 or OP1 are UNKNOWN, it means no operation is required. Only NEG, PLUS,
9200 IOR, XOR, and AND are supported. We may set *POP0 to SET if the proper
9201 result is simply *PCONST0.
9202
9203 If the resulting operation cannot be expressed as one operation, we
9204 return 0 and do not change *POP0, *PCONST0, and *PCOMP_P. */
9205
9206 static int
9207 merge_outer_ops (enum rtx_code *pop0, HOST_WIDE_INT *pconst0, enum rtx_code op1, HOST_WIDE_INT const1, enum machine_mode mode, int *pcomp_p)
9208 {
9209 enum rtx_code op0 = *pop0;
9210 HOST_WIDE_INT const0 = *pconst0;
9211
9212 const0 &= GET_MODE_MASK (mode);
9213 const1 &= GET_MODE_MASK (mode);
9214
9215 /* If OP0 is an AND, clear unimportant bits in CONST1. */
9216 if (op0 == AND)
9217 const1 &= const0;
9218
9219 /* If OP0 or OP1 is UNKNOWN, this is easy. Similarly if they are the same or
9220 if OP0 is SET. */
9221
9222 if (op1 == UNKNOWN || op0 == SET)
9223 return 1;
9224
9225 else if (op0 == UNKNOWN)
9226 op0 = op1, const0 = const1;
9227
9228 else if (op0 == op1)
9229 {
9230 switch (op0)
9231 {
9232 case AND:
9233 const0 &= const1;
9234 break;
9235 case IOR:
9236 const0 |= const1;
9237 break;
9238 case XOR:
9239 const0 ^= const1;
9240 break;
9241 case PLUS:
9242 const0 += const1;
9243 break;
9244 case NEG:
9245 op0 = UNKNOWN;
9246 break;
9247 default:
9248 break;
9249 }
9250 }
9251
9252 /* Otherwise, if either is a PLUS or NEG, we can't do anything. */
9253 else if (op0 == PLUS || op1 == PLUS || op0 == NEG || op1 == NEG)
9254 return 0;
9255
9256 /* If the two constants aren't the same, we can't do anything. The
9257 remaining six cases can all be done. */
9258 else if (const0 != const1)
9259 return 0;
9260
9261 else
9262 switch (op0)
9263 {
9264 case IOR:
9265 if (op1 == AND)
9266 /* (a & b) | b == b */
9267 op0 = SET;
9268 else /* op1 == XOR */
9269 /* (a ^ b) | b == a | b */
9270 {;}
9271 break;
9272
9273 case XOR:
9274 if (op1 == AND)
9275 /* (a & b) ^ b == (~a) & b */
9276 op0 = AND, *pcomp_p = 1;
9277 else /* op1 == IOR */
9278 /* (a | b) ^ b == a & ~b */
9279 op0 = AND, const0 = ~const0;
9280 break;
9281
9282 case AND:
9283 if (op1 == IOR)
9284 /* (a | b) & b == b */
9285 op0 = SET;
9286 else /* op1 == XOR */
9287 /* (a ^ b) & b) == (~a) & b */
9288 *pcomp_p = 1;
9289 break;
9290 default:
9291 break;
9292 }
9293
9294 /* Check for NO-OP cases. */
9295 const0 &= GET_MODE_MASK (mode);
9296 if (const0 == 0
9297 && (op0 == IOR || op0 == XOR || op0 == PLUS))
9298 op0 = UNKNOWN;
9299 else if (const0 == 0 && op0 == AND)
9300 op0 = SET;
9301 else if ((unsigned HOST_WIDE_INT) const0 == GET_MODE_MASK (mode)
9302 && op0 == AND)
9303 op0 = UNKNOWN;
9304
9305 *pop0 = op0;
9306
9307 /* ??? Slightly redundant with the above mask, but not entirely.
9308 Moving this above means we'd have to sign-extend the mode mask
9309 for the final test. */
9310 if (op0 != UNKNOWN && op0 != NEG)
9311 *pconst0 = trunc_int_for_mode (const0, mode);
9312
9313 return 1;
9314 }
9315 \f
9316 /* A helper to simplify_shift_const_1 to determine the mode we can perform
9317 the shift in. The original shift operation CODE is performed on OP in
9318 ORIG_MODE. Return the wider mode MODE if we can perform the operation
9319 in that mode. Return ORIG_MODE otherwise. We can also assume that the
9320 result of the shift is subject to operation OUTER_CODE with operand
9321 OUTER_CONST. */
9322
9323 static enum machine_mode
9324 try_widen_shift_mode (enum rtx_code code, rtx op, int count,
9325 enum machine_mode orig_mode, enum machine_mode mode,
9326 enum rtx_code outer_code, HOST_WIDE_INT outer_const)
9327 {
9328 if (orig_mode == mode)
9329 return mode;
9330 gcc_assert (GET_MODE_BITSIZE (mode) > GET_MODE_BITSIZE (orig_mode));
9331
9332 /* In general we can't perform in wider mode for right shift and rotate. */
9333 switch (code)
9334 {
9335 case ASHIFTRT:
9336 /* We can still widen if the bits brought in from the left are identical
9337 to the sign bit of ORIG_MODE. */
9338 if (num_sign_bit_copies (op, mode)
9339 > (unsigned) (GET_MODE_BITSIZE (mode)
9340 - GET_MODE_BITSIZE (orig_mode)))
9341 return mode;
9342 return orig_mode;
9343
9344 case LSHIFTRT:
9345 /* Similarly here but with zero bits. */
9346 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
9347 && (nonzero_bits (op, mode) & ~GET_MODE_MASK (orig_mode)) == 0)
9348 return mode;
9349
9350 /* We can also widen if the bits brought in will be masked off. This
9351 operation is performed in ORIG_MODE. */
9352 if (outer_code == AND)
9353 {
9354 int care_bits = low_bitmask_len (orig_mode, outer_const);
9355
9356 if (care_bits >= 0
9357 && GET_MODE_BITSIZE (orig_mode) - care_bits >= count)
9358 return mode;
9359 }
9360 /* fall through */
9361
9362 case ROTATE:
9363 return orig_mode;
9364
9365 case ROTATERT:
9366 gcc_unreachable ();
9367
9368 default:
9369 return mode;
9370 }
9371 }
9372
9373 /* Simplify a shift of VAROP by COUNT bits. CODE says what kind of shift.
9374 The result of the shift is RESULT_MODE. Return NULL_RTX if we cannot
9375 simplify it. Otherwise, return a simplified value.
9376
9377 The shift is normally computed in the widest mode we find in VAROP, as
9378 long as it isn't a different number of words than RESULT_MODE. Exceptions
9379 are ASHIFTRT and ROTATE, which are always done in their original mode. */
9380
9381 static rtx
9382 simplify_shift_const_1 (enum rtx_code code, enum machine_mode result_mode,
9383 rtx varop, int orig_count)
9384 {
9385 enum rtx_code orig_code = code;
9386 rtx orig_varop = varop;
9387 int count;
9388 enum machine_mode mode = result_mode;
9389 enum machine_mode shift_mode, tmode;
9390 unsigned int mode_words
9391 = (GET_MODE_SIZE (mode) + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD;
9392 /* We form (outer_op (code varop count) (outer_const)). */
9393 enum rtx_code outer_op = UNKNOWN;
9394 HOST_WIDE_INT outer_const = 0;
9395 int complement_p = 0;
9396 rtx new_rtx, x;
9397
9398 /* Make sure and truncate the "natural" shift on the way in. We don't
9399 want to do this inside the loop as it makes it more difficult to
9400 combine shifts. */
9401 if (SHIFT_COUNT_TRUNCATED)
9402 orig_count &= GET_MODE_BITSIZE (mode) - 1;
9403
9404 /* If we were given an invalid count, don't do anything except exactly
9405 what was requested. */
9406
9407 if (orig_count < 0 || orig_count >= (int) GET_MODE_BITSIZE (mode))
9408 return NULL_RTX;
9409
9410 count = orig_count;
9411
9412 /* Unless one of the branches of the `if' in this loop does a `continue',
9413 we will `break' the loop after the `if'. */
9414
9415 while (count != 0)
9416 {
9417 /* If we have an operand of (clobber (const_int 0)), fail. */
9418 if (GET_CODE (varop) == CLOBBER)
9419 return NULL_RTX;
9420
9421 /* Convert ROTATERT to ROTATE. */
9422 if (code == ROTATERT)
9423 {
9424 unsigned int bitsize = GET_MODE_BITSIZE (result_mode);;
9425 code = ROTATE;
9426 if (VECTOR_MODE_P (result_mode))
9427 count = bitsize / GET_MODE_NUNITS (result_mode) - count;
9428 else
9429 count = bitsize - count;
9430 }
9431
9432 shift_mode = try_widen_shift_mode (code, varop, count, result_mode,
9433 mode, outer_op, outer_const);
9434
9435 /* Handle cases where the count is greater than the size of the mode
9436 minus 1. For ASHIFT, use the size minus one as the count (this can
9437 occur when simplifying (lshiftrt (ashiftrt ..))). For rotates,
9438 take the count modulo the size. For other shifts, the result is
9439 zero.
9440
9441 Since these shifts are being produced by the compiler by combining
9442 multiple operations, each of which are defined, we know what the
9443 result is supposed to be. */
9444
9445 if (count > (GET_MODE_BITSIZE (shift_mode) - 1))
9446 {
9447 if (code == ASHIFTRT)
9448 count = GET_MODE_BITSIZE (shift_mode) - 1;
9449 else if (code == ROTATE || code == ROTATERT)
9450 count %= GET_MODE_BITSIZE (shift_mode);
9451 else
9452 {
9453 /* We can't simply return zero because there may be an
9454 outer op. */
9455 varop = const0_rtx;
9456 count = 0;
9457 break;
9458 }
9459 }
9460
9461 /* If we discovered we had to complement VAROP, leave. Making a NOT
9462 here would cause an infinite loop. */
9463 if (complement_p)
9464 break;
9465
9466 /* An arithmetic right shift of a quantity known to be -1 or 0
9467 is a no-op. */
9468 if (code == ASHIFTRT
9469 && (num_sign_bit_copies (varop, shift_mode)
9470 == GET_MODE_BITSIZE (shift_mode)))
9471 {
9472 count = 0;
9473 break;
9474 }
9475
9476 /* If we are doing an arithmetic right shift and discarding all but
9477 the sign bit copies, this is equivalent to doing a shift by the
9478 bitsize minus one. Convert it into that shift because it will often
9479 allow other simplifications. */
9480
9481 if (code == ASHIFTRT
9482 && (count + num_sign_bit_copies (varop, shift_mode)
9483 >= GET_MODE_BITSIZE (shift_mode)))
9484 count = GET_MODE_BITSIZE (shift_mode) - 1;
9485
9486 /* We simplify the tests below and elsewhere by converting
9487 ASHIFTRT to LSHIFTRT if we know the sign bit is clear.
9488 `make_compound_operation' will convert it to an ASHIFTRT for
9489 those machines (such as VAX) that don't have an LSHIFTRT. */
9490 if (GET_MODE_BITSIZE (shift_mode) <= HOST_BITS_PER_WIDE_INT
9491 && code == ASHIFTRT
9492 && ((nonzero_bits (varop, shift_mode)
9493 & ((HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (shift_mode) - 1)))
9494 == 0))
9495 code = LSHIFTRT;
9496
9497 if (((code == LSHIFTRT
9498 && GET_MODE_BITSIZE (shift_mode) <= HOST_BITS_PER_WIDE_INT
9499 && !(nonzero_bits (varop, shift_mode) >> count))
9500 || (code == ASHIFT
9501 && GET_MODE_BITSIZE (shift_mode) <= HOST_BITS_PER_WIDE_INT
9502 && !((nonzero_bits (varop, shift_mode) << count)
9503 & GET_MODE_MASK (shift_mode))))
9504 && !side_effects_p (varop))
9505 varop = const0_rtx;
9506
9507 switch (GET_CODE (varop))
9508 {
9509 case SIGN_EXTEND:
9510 case ZERO_EXTEND:
9511 case SIGN_EXTRACT:
9512 case ZERO_EXTRACT:
9513 new_rtx = expand_compound_operation (varop);
9514 if (new_rtx != varop)
9515 {
9516 varop = new_rtx;
9517 continue;
9518 }
9519 break;
9520
9521 case MEM:
9522 /* If we have (xshiftrt (mem ...) C) and C is MODE_WIDTH
9523 minus the width of a smaller mode, we can do this with a
9524 SIGN_EXTEND or ZERO_EXTEND from the narrower memory location. */
9525 if ((code == ASHIFTRT || code == LSHIFTRT)
9526 && ! mode_dependent_address_p (XEXP (varop, 0))
9527 && ! MEM_VOLATILE_P (varop)
9528 && (tmode = mode_for_size (GET_MODE_BITSIZE (mode) - count,
9529 MODE_INT, 1)) != BLKmode)
9530 {
9531 new_rtx = adjust_address_nv (varop, tmode,
9532 BYTES_BIG_ENDIAN ? 0
9533 : count / BITS_PER_UNIT);
9534
9535 varop = gen_rtx_fmt_e (code == ASHIFTRT ? SIGN_EXTEND
9536 : ZERO_EXTEND, mode, new_rtx);
9537 count = 0;
9538 continue;
9539 }
9540 break;
9541
9542 case SUBREG:
9543 /* If VAROP is a SUBREG, strip it as long as the inner operand has
9544 the same number of words as what we've seen so far. Then store
9545 the widest mode in MODE. */
9546 if (subreg_lowpart_p (varop)
9547 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (varop)))
9548 > GET_MODE_SIZE (GET_MODE (varop)))
9549 && (unsigned int) ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (varop)))
9550 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
9551 == mode_words)
9552 {
9553 varop = SUBREG_REG (varop);
9554 if (GET_MODE_SIZE (GET_MODE (varop)) > GET_MODE_SIZE (mode))
9555 mode = GET_MODE (varop);
9556 continue;
9557 }
9558 break;
9559
9560 case MULT:
9561 /* Some machines use MULT instead of ASHIFT because MULT
9562 is cheaper. But it is still better on those machines to
9563 merge two shifts into one. */
9564 if (CONST_INT_P (XEXP (varop, 1))
9565 && exact_log2 (INTVAL (XEXP (varop, 1))) >= 0)
9566 {
9567 varop
9568 = simplify_gen_binary (ASHIFT, GET_MODE (varop),
9569 XEXP (varop, 0),
9570 GEN_INT (exact_log2 (
9571 INTVAL (XEXP (varop, 1)))));
9572 continue;
9573 }
9574 break;
9575
9576 case UDIV:
9577 /* Similar, for when divides are cheaper. */
9578 if (CONST_INT_P (XEXP (varop, 1))
9579 && exact_log2 (INTVAL (XEXP (varop, 1))) >= 0)
9580 {
9581 varop
9582 = simplify_gen_binary (LSHIFTRT, GET_MODE (varop),
9583 XEXP (varop, 0),
9584 GEN_INT (exact_log2 (
9585 INTVAL (XEXP (varop, 1)))));
9586 continue;
9587 }
9588 break;
9589
9590 case ASHIFTRT:
9591 /* If we are extracting just the sign bit of an arithmetic
9592 right shift, that shift is not needed. However, the sign
9593 bit of a wider mode may be different from what would be
9594 interpreted as the sign bit in a narrower mode, so, if
9595 the result is narrower, don't discard the shift. */
9596 if (code == LSHIFTRT
9597 && count == (GET_MODE_BITSIZE (result_mode) - 1)
9598 && (GET_MODE_BITSIZE (result_mode)
9599 >= GET_MODE_BITSIZE (GET_MODE (varop))))
9600 {
9601 varop = XEXP (varop, 0);
9602 continue;
9603 }
9604
9605 /* ... fall through ... */
9606
9607 case LSHIFTRT:
9608 case ASHIFT:
9609 case ROTATE:
9610 /* Here we have two nested shifts. The result is usually the
9611 AND of a new shift with a mask. We compute the result below. */
9612 if (CONST_INT_P (XEXP (varop, 1))
9613 && INTVAL (XEXP (varop, 1)) >= 0
9614 && INTVAL (XEXP (varop, 1)) < GET_MODE_BITSIZE (GET_MODE (varop))
9615 && GET_MODE_BITSIZE (result_mode) <= HOST_BITS_PER_WIDE_INT
9616 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
9617 && !VECTOR_MODE_P (result_mode))
9618 {
9619 enum rtx_code first_code = GET_CODE (varop);
9620 unsigned int first_count = INTVAL (XEXP (varop, 1));
9621 unsigned HOST_WIDE_INT mask;
9622 rtx mask_rtx;
9623
9624 /* We have one common special case. We can't do any merging if
9625 the inner code is an ASHIFTRT of a smaller mode. However, if
9626 we have (ashift:M1 (subreg:M1 (ashiftrt:M2 FOO C1) 0) C2)
9627 with C2 == GET_MODE_BITSIZE (M1) - GET_MODE_BITSIZE (M2),
9628 we can convert it to
9629 (ashiftrt:M1 (ashift:M1 (and:M1 (subreg:M1 FOO 0 C2) C3) C1).
9630 This simplifies certain SIGN_EXTEND operations. */
9631 if (code == ASHIFT && first_code == ASHIFTRT
9632 && count == (GET_MODE_BITSIZE (result_mode)
9633 - GET_MODE_BITSIZE (GET_MODE (varop))))
9634 {
9635 /* C3 has the low-order C1 bits zero. */
9636
9637 mask = (GET_MODE_MASK (mode)
9638 & ~(((HOST_WIDE_INT) 1 << first_count) - 1));
9639
9640 varop = simplify_and_const_int (NULL_RTX, result_mode,
9641 XEXP (varop, 0), mask);
9642 varop = simplify_shift_const (NULL_RTX, ASHIFT, result_mode,
9643 varop, count);
9644 count = first_count;
9645 code = ASHIFTRT;
9646 continue;
9647 }
9648
9649 /* If this was (ashiftrt (ashift foo C1) C2) and FOO has more
9650 than C1 high-order bits equal to the sign bit, we can convert
9651 this to either an ASHIFT or an ASHIFTRT depending on the
9652 two counts.
9653
9654 We cannot do this if VAROP's mode is not SHIFT_MODE. */
9655
9656 if (code == ASHIFTRT && first_code == ASHIFT
9657 && GET_MODE (varop) == shift_mode
9658 && (num_sign_bit_copies (XEXP (varop, 0), shift_mode)
9659 > first_count))
9660 {
9661 varop = XEXP (varop, 0);
9662 count -= first_count;
9663 if (count < 0)
9664 {
9665 count = -count;
9666 code = ASHIFT;
9667 }
9668
9669 continue;
9670 }
9671
9672 /* There are some cases we can't do. If CODE is ASHIFTRT,
9673 we can only do this if FIRST_CODE is also ASHIFTRT.
9674
9675 We can't do the case when CODE is ROTATE and FIRST_CODE is
9676 ASHIFTRT.
9677
9678 If the mode of this shift is not the mode of the outer shift,
9679 we can't do this if either shift is a right shift or ROTATE.
9680
9681 Finally, we can't do any of these if the mode is too wide
9682 unless the codes are the same.
9683
9684 Handle the case where the shift codes are the same
9685 first. */
9686
9687 if (code == first_code)
9688 {
9689 if (GET_MODE (varop) != result_mode
9690 && (code == ASHIFTRT || code == LSHIFTRT
9691 || code == ROTATE))
9692 break;
9693
9694 count += first_count;
9695 varop = XEXP (varop, 0);
9696 continue;
9697 }
9698
9699 if (code == ASHIFTRT
9700 || (code == ROTATE && first_code == ASHIFTRT)
9701 || GET_MODE_BITSIZE (mode) > HOST_BITS_PER_WIDE_INT
9702 || (GET_MODE (varop) != result_mode
9703 && (first_code == ASHIFTRT || first_code == LSHIFTRT
9704 || first_code == ROTATE
9705 || code == ROTATE)))
9706 break;
9707
9708 /* To compute the mask to apply after the shift, shift the
9709 nonzero bits of the inner shift the same way the
9710 outer shift will. */
9711
9712 mask_rtx = GEN_INT (nonzero_bits (varop, GET_MODE (varop)));
9713
9714 mask_rtx
9715 = simplify_const_binary_operation (code, result_mode, mask_rtx,
9716 GEN_INT (count));
9717
9718 /* Give up if we can't compute an outer operation to use. */
9719 if (mask_rtx == 0
9720 || !CONST_INT_P (mask_rtx)
9721 || ! merge_outer_ops (&outer_op, &outer_const, AND,
9722 INTVAL (mask_rtx),
9723 result_mode, &complement_p))
9724 break;
9725
9726 /* If the shifts are in the same direction, we add the
9727 counts. Otherwise, we subtract them. */
9728 if ((code == ASHIFTRT || code == LSHIFTRT)
9729 == (first_code == ASHIFTRT || first_code == LSHIFTRT))
9730 count += first_count;
9731 else
9732 count -= first_count;
9733
9734 /* If COUNT is positive, the new shift is usually CODE,
9735 except for the two exceptions below, in which case it is
9736 FIRST_CODE. If the count is negative, FIRST_CODE should
9737 always be used */
9738 if (count > 0
9739 && ((first_code == ROTATE && code == ASHIFT)
9740 || (first_code == ASHIFTRT && code == LSHIFTRT)))
9741 code = first_code;
9742 else if (count < 0)
9743 code = first_code, count = -count;
9744
9745 varop = XEXP (varop, 0);
9746 continue;
9747 }
9748
9749 /* If we have (A << B << C) for any shift, we can convert this to
9750 (A << C << B). This wins if A is a constant. Only try this if
9751 B is not a constant. */
9752
9753 else if (GET_CODE (varop) == code
9754 && CONST_INT_P (XEXP (varop, 0))
9755 && !CONST_INT_P (XEXP (varop, 1)))
9756 {
9757 rtx new_rtx = simplify_const_binary_operation (code, mode,
9758 XEXP (varop, 0),
9759 GEN_INT (count));
9760 varop = gen_rtx_fmt_ee (code, mode, new_rtx, XEXP (varop, 1));
9761 count = 0;
9762 continue;
9763 }
9764 break;
9765
9766 case NOT:
9767 if (VECTOR_MODE_P (mode))
9768 break;
9769
9770 /* Make this fit the case below. */
9771 varop = gen_rtx_XOR (mode, XEXP (varop, 0),
9772 GEN_INT (GET_MODE_MASK (mode)));
9773 continue;
9774
9775 case IOR:
9776 case AND:
9777 case XOR:
9778 /* If we have (xshiftrt (ior (plus X (const_int -1)) X) C)
9779 with C the size of VAROP - 1 and the shift is logical if
9780 STORE_FLAG_VALUE is 1 and arithmetic if STORE_FLAG_VALUE is -1,
9781 we have an (le X 0) operation. If we have an arithmetic shift
9782 and STORE_FLAG_VALUE is 1 or we have a logical shift with
9783 STORE_FLAG_VALUE of -1, we have a (neg (le X 0)) operation. */
9784
9785 if (GET_CODE (varop) == IOR && GET_CODE (XEXP (varop, 0)) == PLUS
9786 && XEXP (XEXP (varop, 0), 1) == constm1_rtx
9787 && (STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
9788 && (code == LSHIFTRT || code == ASHIFTRT)
9789 && count == (GET_MODE_BITSIZE (GET_MODE (varop)) - 1)
9790 && rtx_equal_p (XEXP (XEXP (varop, 0), 0), XEXP (varop, 1)))
9791 {
9792 count = 0;
9793 varop = gen_rtx_LE (GET_MODE (varop), XEXP (varop, 1),
9794 const0_rtx);
9795
9796 if (STORE_FLAG_VALUE == 1 ? code == ASHIFTRT : code == LSHIFTRT)
9797 varop = gen_rtx_NEG (GET_MODE (varop), varop);
9798
9799 continue;
9800 }
9801
9802 /* If we have (shift (logical)), move the logical to the outside
9803 to allow it to possibly combine with another logical and the
9804 shift to combine with another shift. This also canonicalizes to
9805 what a ZERO_EXTRACT looks like. Also, some machines have
9806 (and (shift)) insns. */
9807
9808 if (CONST_INT_P (XEXP (varop, 1))
9809 /* We can't do this if we have (ashiftrt (xor)) and the
9810 constant has its sign bit set in shift_mode. */
9811 && !(code == ASHIFTRT && GET_CODE (varop) == XOR
9812 && 0 > trunc_int_for_mode (INTVAL (XEXP (varop, 1)),
9813 shift_mode))
9814 && (new_rtx = simplify_const_binary_operation (code, result_mode,
9815 XEXP (varop, 1),
9816 GEN_INT (count))) != 0
9817 && CONST_INT_P (new_rtx)
9818 && merge_outer_ops (&outer_op, &outer_const, GET_CODE (varop),
9819 INTVAL (new_rtx), result_mode, &complement_p))
9820 {
9821 varop = XEXP (varop, 0);
9822 continue;
9823 }
9824
9825 /* If we can't do that, try to simplify the shift in each arm of the
9826 logical expression, make a new logical expression, and apply
9827 the inverse distributive law. This also can't be done
9828 for some (ashiftrt (xor)). */
9829 if (CONST_INT_P (XEXP (varop, 1))
9830 && !(code == ASHIFTRT && GET_CODE (varop) == XOR
9831 && 0 > trunc_int_for_mode (INTVAL (XEXP (varop, 1)),
9832 shift_mode)))
9833 {
9834 rtx lhs = simplify_shift_const (NULL_RTX, code, shift_mode,
9835 XEXP (varop, 0), count);
9836 rtx rhs = simplify_shift_const (NULL_RTX, code, shift_mode,
9837 XEXP (varop, 1), count);
9838
9839 varop = simplify_gen_binary (GET_CODE (varop), shift_mode,
9840 lhs, rhs);
9841 varop = apply_distributive_law (varop);
9842
9843 count = 0;
9844 continue;
9845 }
9846 break;
9847
9848 case EQ:
9849 /* Convert (lshiftrt (eq FOO 0) C) to (xor FOO 1) if STORE_FLAG_VALUE
9850 says that the sign bit can be tested, FOO has mode MODE, C is
9851 GET_MODE_BITSIZE (MODE) - 1, and FOO has only its low-order bit
9852 that may be nonzero. */
9853 if (code == LSHIFTRT
9854 && XEXP (varop, 1) == const0_rtx
9855 && GET_MODE (XEXP (varop, 0)) == result_mode
9856 && count == (GET_MODE_BITSIZE (result_mode) - 1)
9857 && GET_MODE_BITSIZE (result_mode) <= HOST_BITS_PER_WIDE_INT
9858 && STORE_FLAG_VALUE == -1
9859 && nonzero_bits (XEXP (varop, 0), result_mode) == 1
9860 && merge_outer_ops (&outer_op, &outer_const, XOR,
9861 (HOST_WIDE_INT) 1, result_mode,
9862 &complement_p))
9863 {
9864 varop = XEXP (varop, 0);
9865 count = 0;
9866 continue;
9867 }
9868 break;
9869
9870 case NEG:
9871 /* (lshiftrt (neg A) C) where A is either 0 or 1 and C is one less
9872 than the number of bits in the mode is equivalent to A. */
9873 if (code == LSHIFTRT
9874 && count == (GET_MODE_BITSIZE (result_mode) - 1)
9875 && nonzero_bits (XEXP (varop, 0), result_mode) == 1)
9876 {
9877 varop = XEXP (varop, 0);
9878 count = 0;
9879 continue;
9880 }
9881
9882 /* NEG commutes with ASHIFT since it is multiplication. Move the
9883 NEG outside to allow shifts to combine. */
9884 if (code == ASHIFT
9885 && merge_outer_ops (&outer_op, &outer_const, NEG,
9886 (HOST_WIDE_INT) 0, result_mode,
9887 &complement_p))
9888 {
9889 varop = XEXP (varop, 0);
9890 continue;
9891 }
9892 break;
9893
9894 case PLUS:
9895 /* (lshiftrt (plus A -1) C) where A is either 0 or 1 and C
9896 is one less than the number of bits in the mode is
9897 equivalent to (xor A 1). */
9898 if (code == LSHIFTRT
9899 && count == (GET_MODE_BITSIZE (result_mode) - 1)
9900 && XEXP (varop, 1) == constm1_rtx
9901 && nonzero_bits (XEXP (varop, 0), result_mode) == 1
9902 && merge_outer_ops (&outer_op, &outer_const, XOR,
9903 (HOST_WIDE_INT) 1, result_mode,
9904 &complement_p))
9905 {
9906 count = 0;
9907 varop = XEXP (varop, 0);
9908 continue;
9909 }
9910
9911 /* If we have (xshiftrt (plus FOO BAR) C), and the only bits
9912 that might be nonzero in BAR are those being shifted out and those
9913 bits are known zero in FOO, we can replace the PLUS with FOO.
9914 Similarly in the other operand order. This code occurs when
9915 we are computing the size of a variable-size array. */
9916
9917 if ((code == ASHIFTRT || code == LSHIFTRT)
9918 && count < HOST_BITS_PER_WIDE_INT
9919 && nonzero_bits (XEXP (varop, 1), result_mode) >> count == 0
9920 && (nonzero_bits (XEXP (varop, 1), result_mode)
9921 & nonzero_bits (XEXP (varop, 0), result_mode)) == 0)
9922 {
9923 varop = XEXP (varop, 0);
9924 continue;
9925 }
9926 else if ((code == ASHIFTRT || code == LSHIFTRT)
9927 && count < HOST_BITS_PER_WIDE_INT
9928 && GET_MODE_BITSIZE (result_mode) <= HOST_BITS_PER_WIDE_INT
9929 && 0 == (nonzero_bits (XEXP (varop, 0), result_mode)
9930 >> count)
9931 && 0 == (nonzero_bits (XEXP (varop, 0), result_mode)
9932 & nonzero_bits (XEXP (varop, 1),
9933 result_mode)))
9934 {
9935 varop = XEXP (varop, 1);
9936 continue;
9937 }
9938
9939 /* (ashift (plus foo C) N) is (plus (ashift foo N) C'). */
9940 if (code == ASHIFT
9941 && CONST_INT_P (XEXP (varop, 1))
9942 && (new_rtx = simplify_const_binary_operation (ASHIFT, result_mode,
9943 XEXP (varop, 1),
9944 GEN_INT (count))) != 0
9945 && CONST_INT_P (new_rtx)
9946 && merge_outer_ops (&outer_op, &outer_const, PLUS,
9947 INTVAL (new_rtx), result_mode, &complement_p))
9948 {
9949 varop = XEXP (varop, 0);
9950 continue;
9951 }
9952
9953 /* Check for 'PLUS signbit', which is the canonical form of 'XOR
9954 signbit', and attempt to change the PLUS to an XOR and move it to
9955 the outer operation as is done above in the AND/IOR/XOR case
9956 leg for shift(logical). See details in logical handling above
9957 for reasoning in doing so. */
9958 if (code == LSHIFTRT
9959 && CONST_INT_P (XEXP (varop, 1))
9960 && mode_signbit_p (result_mode, XEXP (varop, 1))
9961 && (new_rtx = simplify_const_binary_operation (code, result_mode,
9962 XEXP (varop, 1),
9963 GEN_INT (count))) != 0
9964 && CONST_INT_P (new_rtx)
9965 && merge_outer_ops (&outer_op, &outer_const, XOR,
9966 INTVAL (new_rtx), result_mode, &complement_p))
9967 {
9968 varop = XEXP (varop, 0);
9969 continue;
9970 }
9971
9972 break;
9973
9974 case MINUS:
9975 /* If we have (xshiftrt (minus (ashiftrt X C)) X) C)
9976 with C the size of VAROP - 1 and the shift is logical if
9977 STORE_FLAG_VALUE is 1 and arithmetic if STORE_FLAG_VALUE is -1,
9978 we have a (gt X 0) operation. If the shift is arithmetic with
9979 STORE_FLAG_VALUE of 1 or logical with STORE_FLAG_VALUE == -1,
9980 we have a (neg (gt X 0)) operation. */
9981
9982 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
9983 && GET_CODE (XEXP (varop, 0)) == ASHIFTRT
9984 && count == (GET_MODE_BITSIZE (GET_MODE (varop)) - 1)
9985 && (code == LSHIFTRT || code == ASHIFTRT)
9986 && CONST_INT_P (XEXP (XEXP (varop, 0), 1))
9987 && INTVAL (XEXP (XEXP (varop, 0), 1)) == count
9988 && rtx_equal_p (XEXP (XEXP (varop, 0), 0), XEXP (varop, 1)))
9989 {
9990 count = 0;
9991 varop = gen_rtx_GT (GET_MODE (varop), XEXP (varop, 1),
9992 const0_rtx);
9993
9994 if (STORE_FLAG_VALUE == 1 ? code == ASHIFTRT : code == LSHIFTRT)
9995 varop = gen_rtx_NEG (GET_MODE (varop), varop);
9996
9997 continue;
9998 }
9999 break;
10000
10001 case TRUNCATE:
10002 /* Change (lshiftrt (truncate (lshiftrt))) to (truncate (lshiftrt))
10003 if the truncate does not affect the value. */
10004 if (code == LSHIFTRT
10005 && GET_CODE (XEXP (varop, 0)) == LSHIFTRT
10006 && CONST_INT_P (XEXP (XEXP (varop, 0), 1))
10007 && (INTVAL (XEXP (XEXP (varop, 0), 1))
10008 >= (GET_MODE_BITSIZE (GET_MODE (XEXP (varop, 0)))
10009 - GET_MODE_BITSIZE (GET_MODE (varop)))))
10010 {
10011 rtx varop_inner = XEXP (varop, 0);
10012
10013 varop_inner
10014 = gen_rtx_LSHIFTRT (GET_MODE (varop_inner),
10015 XEXP (varop_inner, 0),
10016 GEN_INT
10017 (count + INTVAL (XEXP (varop_inner, 1))));
10018 varop = gen_rtx_TRUNCATE (GET_MODE (varop), varop_inner);
10019 count = 0;
10020 continue;
10021 }
10022 break;
10023
10024 default:
10025 break;
10026 }
10027
10028 break;
10029 }
10030
10031 shift_mode = try_widen_shift_mode (code, varop, count, result_mode, mode,
10032 outer_op, outer_const);
10033
10034 /* We have now finished analyzing the shift. The result should be
10035 a shift of type CODE with SHIFT_MODE shifting VAROP COUNT places. If
10036 OUTER_OP is non-UNKNOWN, it is an operation that needs to be applied
10037 to the result of the shift. OUTER_CONST is the relevant constant,
10038 but we must turn off all bits turned off in the shift. */
10039
10040 if (outer_op == UNKNOWN
10041 && orig_code == code && orig_count == count
10042 && varop == orig_varop
10043 && shift_mode == GET_MODE (varop))
10044 return NULL_RTX;
10045
10046 /* Make a SUBREG if necessary. If we can't make it, fail. */
10047 varop = gen_lowpart (shift_mode, varop);
10048 if (varop == NULL_RTX || GET_CODE (varop) == CLOBBER)
10049 return NULL_RTX;
10050
10051 /* If we have an outer operation and we just made a shift, it is
10052 possible that we could have simplified the shift were it not
10053 for the outer operation. So try to do the simplification
10054 recursively. */
10055
10056 if (outer_op != UNKNOWN)
10057 x = simplify_shift_const_1 (code, shift_mode, varop, count);
10058 else
10059 x = NULL_RTX;
10060
10061 if (x == NULL_RTX)
10062 x = simplify_gen_binary (code, shift_mode, varop, GEN_INT (count));
10063
10064 /* If we were doing an LSHIFTRT in a wider mode than it was originally,
10065 turn off all the bits that the shift would have turned off. */
10066 if (orig_code == LSHIFTRT && result_mode != shift_mode)
10067 x = simplify_and_const_int (NULL_RTX, shift_mode, x,
10068 GET_MODE_MASK (result_mode) >> orig_count);
10069
10070 /* Do the remainder of the processing in RESULT_MODE. */
10071 x = gen_lowpart_or_truncate (result_mode, x);
10072
10073 /* If COMPLEMENT_P is set, we have to complement X before doing the outer
10074 operation. */
10075 if (complement_p)
10076 x = simplify_gen_unary (NOT, result_mode, x, result_mode);
10077
10078 if (outer_op != UNKNOWN)
10079 {
10080 if (GET_RTX_CLASS (outer_op) != RTX_UNARY
10081 && GET_MODE_BITSIZE (result_mode) < HOST_BITS_PER_WIDE_INT)
10082 outer_const = trunc_int_for_mode (outer_const, result_mode);
10083
10084 if (outer_op == AND)
10085 x = simplify_and_const_int (NULL_RTX, result_mode, x, outer_const);
10086 else if (outer_op == SET)
10087 {
10088 /* This means that we have determined that the result is
10089 equivalent to a constant. This should be rare. */
10090 if (!side_effects_p (x))
10091 x = GEN_INT (outer_const);
10092 }
10093 else if (GET_RTX_CLASS (outer_op) == RTX_UNARY)
10094 x = simplify_gen_unary (outer_op, result_mode, x, result_mode);
10095 else
10096 x = simplify_gen_binary (outer_op, result_mode, x,
10097 GEN_INT (outer_const));
10098 }
10099
10100 return x;
10101 }
10102
10103 /* Simplify a shift of VAROP by COUNT bits. CODE says what kind of shift.
10104 The result of the shift is RESULT_MODE. If we cannot simplify it,
10105 return X or, if it is NULL, synthesize the expression with
10106 simplify_gen_binary. Otherwise, return a simplified value.
10107
10108 The shift is normally computed in the widest mode we find in VAROP, as
10109 long as it isn't a different number of words than RESULT_MODE. Exceptions
10110 are ASHIFTRT and ROTATE, which are always done in their original mode. */
10111
10112 static rtx
10113 simplify_shift_const (rtx x, enum rtx_code code, enum machine_mode result_mode,
10114 rtx varop, int count)
10115 {
10116 rtx tem = simplify_shift_const_1 (code, result_mode, varop, count);
10117 if (tem)
10118 return tem;
10119
10120 if (!x)
10121 x = simplify_gen_binary (code, GET_MODE (varop), varop, GEN_INT (count));
10122 if (GET_MODE (x) != result_mode)
10123 x = gen_lowpart (result_mode, x);
10124 return x;
10125 }
10126
10127 \f
10128 /* Like recog, but we receive the address of a pointer to a new pattern.
10129 We try to match the rtx that the pointer points to.
10130 If that fails, we may try to modify or replace the pattern,
10131 storing the replacement into the same pointer object.
10132
10133 Modifications include deletion or addition of CLOBBERs.
10134
10135 PNOTES is a pointer to a location where any REG_UNUSED notes added for
10136 the CLOBBERs are placed.
10137
10138 The value is the final insn code from the pattern ultimately matched,
10139 or -1. */
10140
10141 static int
10142 recog_for_combine (rtx *pnewpat, rtx insn, rtx *pnotes)
10143 {
10144 rtx pat = *pnewpat;
10145 int insn_code_number;
10146 int num_clobbers_to_add = 0;
10147 int i;
10148 rtx notes = 0;
10149 rtx old_notes, old_pat;
10150
10151 /* If PAT is a PARALLEL, check to see if it contains the CLOBBER
10152 we use to indicate that something didn't match. If we find such a
10153 thing, force rejection. */
10154 if (GET_CODE (pat) == PARALLEL)
10155 for (i = XVECLEN (pat, 0) - 1; i >= 0; i--)
10156 if (GET_CODE (XVECEXP (pat, 0, i)) == CLOBBER
10157 && XEXP (XVECEXP (pat, 0, i), 0) == const0_rtx)
10158 return -1;
10159
10160 old_pat = PATTERN (insn);
10161 old_notes = REG_NOTES (insn);
10162 PATTERN (insn) = pat;
10163 REG_NOTES (insn) = 0;
10164
10165 insn_code_number = recog (pat, insn, &num_clobbers_to_add);
10166 if (dump_file && (dump_flags & TDF_DETAILS))
10167 {
10168 if (insn_code_number < 0)
10169 fputs ("Failed to match this instruction:\n", dump_file);
10170 else
10171 fputs ("Successfully matched this instruction:\n", dump_file);
10172 print_rtl_single (dump_file, pat);
10173 }
10174
10175 /* If it isn't, there is the possibility that we previously had an insn
10176 that clobbered some register as a side effect, but the combined
10177 insn doesn't need to do that. So try once more without the clobbers
10178 unless this represents an ASM insn. */
10179
10180 if (insn_code_number < 0 && ! check_asm_operands (pat)
10181 && GET_CODE (pat) == PARALLEL)
10182 {
10183 int pos;
10184
10185 for (pos = 0, i = 0; i < XVECLEN (pat, 0); i++)
10186 if (GET_CODE (XVECEXP (pat, 0, i)) != CLOBBER)
10187 {
10188 if (i != pos)
10189 SUBST (XVECEXP (pat, 0, pos), XVECEXP (pat, 0, i));
10190 pos++;
10191 }
10192
10193 SUBST_INT (XVECLEN (pat, 0), pos);
10194
10195 if (pos == 1)
10196 pat = XVECEXP (pat, 0, 0);
10197
10198 PATTERN (insn) = pat;
10199 insn_code_number = recog (pat, insn, &num_clobbers_to_add);
10200 if (dump_file && (dump_flags & TDF_DETAILS))
10201 {
10202 if (insn_code_number < 0)
10203 fputs ("Failed to match this instruction:\n", dump_file);
10204 else
10205 fputs ("Successfully matched this instruction:\n", dump_file);
10206 print_rtl_single (dump_file, pat);
10207 }
10208 }
10209 PATTERN (insn) = old_pat;
10210 REG_NOTES (insn) = old_notes;
10211
10212 /* Recognize all noop sets, these will be killed by followup pass. */
10213 if (insn_code_number < 0 && GET_CODE (pat) == SET && set_noop_p (pat))
10214 insn_code_number = NOOP_MOVE_INSN_CODE, num_clobbers_to_add = 0;
10215
10216 /* If we had any clobbers to add, make a new pattern than contains
10217 them. Then check to make sure that all of them are dead. */
10218 if (num_clobbers_to_add)
10219 {
10220 rtx newpat = gen_rtx_PARALLEL (VOIDmode,
10221 rtvec_alloc (GET_CODE (pat) == PARALLEL
10222 ? (XVECLEN (pat, 0)
10223 + num_clobbers_to_add)
10224 : num_clobbers_to_add + 1));
10225
10226 if (GET_CODE (pat) == PARALLEL)
10227 for (i = 0; i < XVECLEN (pat, 0); i++)
10228 XVECEXP (newpat, 0, i) = XVECEXP (pat, 0, i);
10229 else
10230 XVECEXP (newpat, 0, 0) = pat;
10231
10232 add_clobbers (newpat, insn_code_number);
10233
10234 for (i = XVECLEN (newpat, 0) - num_clobbers_to_add;
10235 i < XVECLEN (newpat, 0); i++)
10236 {
10237 if (REG_P (XEXP (XVECEXP (newpat, 0, i), 0))
10238 && ! reg_dead_at_p (XEXP (XVECEXP (newpat, 0, i), 0), insn))
10239 return -1;
10240 if (GET_CODE (XEXP (XVECEXP (newpat, 0, i), 0)) != SCRATCH)
10241 {
10242 gcc_assert (REG_P (XEXP (XVECEXP (newpat, 0, i), 0)));
10243 notes = alloc_reg_note (REG_UNUSED,
10244 XEXP (XVECEXP (newpat, 0, i), 0), notes);
10245 }
10246 }
10247 pat = newpat;
10248 }
10249
10250 *pnewpat = pat;
10251 *pnotes = notes;
10252
10253 return insn_code_number;
10254 }
10255 \f
10256 /* Like gen_lowpart_general but for use by combine. In combine it
10257 is not possible to create any new pseudoregs. However, it is
10258 safe to create invalid memory addresses, because combine will
10259 try to recognize them and all they will do is make the combine
10260 attempt fail.
10261
10262 If for some reason this cannot do its job, an rtx
10263 (clobber (const_int 0)) is returned.
10264 An insn containing that will not be recognized. */
10265
10266 static rtx
10267 gen_lowpart_for_combine (enum machine_mode omode, rtx x)
10268 {
10269 enum machine_mode imode = GET_MODE (x);
10270 unsigned int osize = GET_MODE_SIZE (omode);
10271 unsigned int isize = GET_MODE_SIZE (imode);
10272 rtx result;
10273
10274 if (omode == imode)
10275 return x;
10276
10277 /* Return identity if this is a CONST or symbolic reference. */
10278 if (omode == Pmode
10279 && (GET_CODE (x) == CONST
10280 || GET_CODE (x) == SYMBOL_REF
10281 || GET_CODE (x) == LABEL_REF))
10282 return x;
10283
10284 /* We can only support MODE being wider than a word if X is a
10285 constant integer or has a mode the same size. */
10286 if (GET_MODE_SIZE (omode) > UNITS_PER_WORD
10287 && ! ((imode == VOIDmode
10288 && (CONST_INT_P (x)
10289 || GET_CODE (x) == CONST_DOUBLE))
10290 || isize == osize))
10291 goto fail;
10292
10293 /* X might be a paradoxical (subreg (mem)). In that case, gen_lowpart
10294 won't know what to do. So we will strip off the SUBREG here and
10295 process normally. */
10296 if (GET_CODE (x) == SUBREG && MEM_P (SUBREG_REG (x)))
10297 {
10298 x = SUBREG_REG (x);
10299
10300 /* For use in case we fall down into the address adjustments
10301 further below, we need to adjust the known mode and size of
10302 x; imode and isize, since we just adjusted x. */
10303 imode = GET_MODE (x);
10304
10305 if (imode == omode)
10306 return x;
10307
10308 isize = GET_MODE_SIZE (imode);
10309 }
10310
10311 result = gen_lowpart_common (omode, x);
10312
10313 if (result)
10314 return result;
10315
10316 if (MEM_P (x))
10317 {
10318 int offset = 0;
10319
10320 /* Refuse to work on a volatile memory ref or one with a mode-dependent
10321 address. */
10322 if (MEM_VOLATILE_P (x) || mode_dependent_address_p (XEXP (x, 0)))
10323 goto fail;
10324
10325 /* If we want to refer to something bigger than the original memref,
10326 generate a paradoxical subreg instead. That will force a reload
10327 of the original memref X. */
10328 if (isize < osize)
10329 return gen_rtx_SUBREG (omode, x, 0);
10330
10331 if (WORDS_BIG_ENDIAN)
10332 offset = MAX (isize, UNITS_PER_WORD) - MAX (osize, UNITS_PER_WORD);
10333
10334 /* Adjust the address so that the address-after-the-data is
10335 unchanged. */
10336 if (BYTES_BIG_ENDIAN)
10337 offset -= MIN (UNITS_PER_WORD, osize) - MIN (UNITS_PER_WORD, isize);
10338
10339 return adjust_address_nv (x, omode, offset);
10340 }
10341
10342 /* If X is a comparison operator, rewrite it in a new mode. This
10343 probably won't match, but may allow further simplifications. */
10344 else if (COMPARISON_P (x))
10345 return gen_rtx_fmt_ee (GET_CODE (x), omode, XEXP (x, 0), XEXP (x, 1));
10346
10347 /* If we couldn't simplify X any other way, just enclose it in a
10348 SUBREG. Normally, this SUBREG won't match, but some patterns may
10349 include an explicit SUBREG or we may simplify it further in combine. */
10350 else
10351 {
10352 int offset = 0;
10353 rtx res;
10354
10355 offset = subreg_lowpart_offset (omode, imode);
10356 if (imode == VOIDmode)
10357 {
10358 imode = int_mode_for_mode (omode);
10359 x = gen_lowpart_common (imode, x);
10360 if (x == NULL)
10361 goto fail;
10362 }
10363 res = simplify_gen_subreg (omode, x, imode, offset);
10364 if (res)
10365 return res;
10366 }
10367
10368 fail:
10369 return gen_rtx_CLOBBER (omode, const0_rtx);
10370 }
10371 \f
10372 /* Simplify a comparison between *POP0 and *POP1 where CODE is the
10373 comparison code that will be tested.
10374
10375 The result is a possibly different comparison code to use. *POP0 and
10376 *POP1 may be updated.
10377
10378 It is possible that we might detect that a comparison is either always
10379 true or always false. However, we do not perform general constant
10380 folding in combine, so this knowledge isn't useful. Such tautologies
10381 should have been detected earlier. Hence we ignore all such cases. */
10382
10383 static enum rtx_code
10384 simplify_comparison (enum rtx_code code, rtx *pop0, rtx *pop1)
10385 {
10386 rtx op0 = *pop0;
10387 rtx op1 = *pop1;
10388 rtx tem, tem1;
10389 int i;
10390 enum machine_mode mode, tmode;
10391
10392 /* Try a few ways of applying the same transformation to both operands. */
10393 while (1)
10394 {
10395 #ifndef WORD_REGISTER_OPERATIONS
10396 /* The test below this one won't handle SIGN_EXTENDs on these machines,
10397 so check specially. */
10398 if (code != GTU && code != GEU && code != LTU && code != LEU
10399 && GET_CODE (op0) == ASHIFTRT && GET_CODE (op1) == ASHIFTRT
10400 && GET_CODE (XEXP (op0, 0)) == ASHIFT
10401 && GET_CODE (XEXP (op1, 0)) == ASHIFT
10402 && GET_CODE (XEXP (XEXP (op0, 0), 0)) == SUBREG
10403 && GET_CODE (XEXP (XEXP (op1, 0), 0)) == SUBREG
10404 && (GET_MODE (SUBREG_REG (XEXP (XEXP (op0, 0), 0)))
10405 == GET_MODE (SUBREG_REG (XEXP (XEXP (op1, 0), 0))))
10406 && CONST_INT_P (XEXP (op0, 1))
10407 && XEXP (op0, 1) == XEXP (op1, 1)
10408 && XEXP (op0, 1) == XEXP (XEXP (op0, 0), 1)
10409 && XEXP (op0, 1) == XEXP (XEXP (op1, 0), 1)
10410 && (INTVAL (XEXP (op0, 1))
10411 == (GET_MODE_BITSIZE (GET_MODE (op0))
10412 - (GET_MODE_BITSIZE
10413 (GET_MODE (SUBREG_REG (XEXP (XEXP (op0, 0), 0))))))))
10414 {
10415 op0 = SUBREG_REG (XEXP (XEXP (op0, 0), 0));
10416 op1 = SUBREG_REG (XEXP (XEXP (op1, 0), 0));
10417 }
10418 #endif
10419
10420 /* If both operands are the same constant shift, see if we can ignore the
10421 shift. We can if the shift is a rotate or if the bits shifted out of
10422 this shift are known to be zero for both inputs and if the type of
10423 comparison is compatible with the shift. */
10424 if (GET_CODE (op0) == GET_CODE (op1)
10425 && GET_MODE_BITSIZE (GET_MODE (op0)) <= HOST_BITS_PER_WIDE_INT
10426 && ((GET_CODE (op0) == ROTATE && (code == NE || code == EQ))
10427 || ((GET_CODE (op0) == LSHIFTRT || GET_CODE (op0) == ASHIFT)
10428 && (code != GT && code != LT && code != GE && code != LE))
10429 || (GET_CODE (op0) == ASHIFTRT
10430 && (code != GTU && code != LTU
10431 && code != GEU && code != LEU)))
10432 && CONST_INT_P (XEXP (op0, 1))
10433 && INTVAL (XEXP (op0, 1)) >= 0
10434 && INTVAL (XEXP (op0, 1)) < HOST_BITS_PER_WIDE_INT
10435 && XEXP (op0, 1) == XEXP (op1, 1))
10436 {
10437 enum machine_mode mode = GET_MODE (op0);
10438 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
10439 int shift_count = INTVAL (XEXP (op0, 1));
10440
10441 if (GET_CODE (op0) == LSHIFTRT || GET_CODE (op0) == ASHIFTRT)
10442 mask &= (mask >> shift_count) << shift_count;
10443 else if (GET_CODE (op0) == ASHIFT)
10444 mask = (mask & (mask << shift_count)) >> shift_count;
10445
10446 if ((nonzero_bits (XEXP (op0, 0), mode) & ~mask) == 0
10447 && (nonzero_bits (XEXP (op1, 0), mode) & ~mask) == 0)
10448 op0 = XEXP (op0, 0), op1 = XEXP (op1, 0);
10449 else
10450 break;
10451 }
10452
10453 /* If both operands are AND's of a paradoxical SUBREG by constant, the
10454 SUBREGs are of the same mode, and, in both cases, the AND would
10455 be redundant if the comparison was done in the narrower mode,
10456 do the comparison in the narrower mode (e.g., we are AND'ing with 1
10457 and the operand's possibly nonzero bits are 0xffffff01; in that case
10458 if we only care about QImode, we don't need the AND). This case
10459 occurs if the output mode of an scc insn is not SImode and
10460 STORE_FLAG_VALUE == 1 (e.g., the 386).
10461
10462 Similarly, check for a case where the AND's are ZERO_EXTEND
10463 operations from some narrower mode even though a SUBREG is not
10464 present. */
10465
10466 else if (GET_CODE (op0) == AND && GET_CODE (op1) == AND
10467 && CONST_INT_P (XEXP (op0, 1))
10468 && CONST_INT_P (XEXP (op1, 1)))
10469 {
10470 rtx inner_op0 = XEXP (op0, 0);
10471 rtx inner_op1 = XEXP (op1, 0);
10472 HOST_WIDE_INT c0 = INTVAL (XEXP (op0, 1));
10473 HOST_WIDE_INT c1 = INTVAL (XEXP (op1, 1));
10474 int changed = 0;
10475
10476 if (GET_CODE (inner_op0) == SUBREG && GET_CODE (inner_op1) == SUBREG
10477 && (GET_MODE_SIZE (GET_MODE (inner_op0))
10478 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (inner_op0))))
10479 && (GET_MODE (SUBREG_REG (inner_op0))
10480 == GET_MODE (SUBREG_REG (inner_op1)))
10481 && (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (inner_op0)))
10482 <= HOST_BITS_PER_WIDE_INT)
10483 && (0 == ((~c0) & nonzero_bits (SUBREG_REG (inner_op0),
10484 GET_MODE (SUBREG_REG (inner_op0)))))
10485 && (0 == ((~c1) & nonzero_bits (SUBREG_REG (inner_op1),
10486 GET_MODE (SUBREG_REG (inner_op1))))))
10487 {
10488 op0 = SUBREG_REG (inner_op0);
10489 op1 = SUBREG_REG (inner_op1);
10490
10491 /* The resulting comparison is always unsigned since we masked
10492 off the original sign bit. */
10493 code = unsigned_condition (code);
10494
10495 changed = 1;
10496 }
10497
10498 else if (c0 == c1)
10499 for (tmode = GET_CLASS_NARROWEST_MODE
10500 (GET_MODE_CLASS (GET_MODE (op0)));
10501 tmode != GET_MODE (op0); tmode = GET_MODE_WIDER_MODE (tmode))
10502 if ((unsigned HOST_WIDE_INT) c0 == GET_MODE_MASK (tmode))
10503 {
10504 op0 = gen_lowpart (tmode, inner_op0);
10505 op1 = gen_lowpart (tmode, inner_op1);
10506 code = unsigned_condition (code);
10507 changed = 1;
10508 break;
10509 }
10510
10511 if (! changed)
10512 break;
10513 }
10514
10515 /* If both operands are NOT, we can strip off the outer operation
10516 and adjust the comparison code for swapped operands; similarly for
10517 NEG, except that this must be an equality comparison. */
10518 else if ((GET_CODE (op0) == NOT && GET_CODE (op1) == NOT)
10519 || (GET_CODE (op0) == NEG && GET_CODE (op1) == NEG
10520 && (code == EQ || code == NE)))
10521 op0 = XEXP (op0, 0), op1 = XEXP (op1, 0), code = swap_condition (code);
10522
10523 else
10524 break;
10525 }
10526
10527 /* If the first operand is a constant, swap the operands and adjust the
10528 comparison code appropriately, but don't do this if the second operand
10529 is already a constant integer. */
10530 if (swap_commutative_operands_p (op0, op1))
10531 {
10532 tem = op0, op0 = op1, op1 = tem;
10533 code = swap_condition (code);
10534 }
10535
10536 /* We now enter a loop during which we will try to simplify the comparison.
10537 For the most part, we only are concerned with comparisons with zero,
10538 but some things may really be comparisons with zero but not start
10539 out looking that way. */
10540
10541 while (CONST_INT_P (op1))
10542 {
10543 enum machine_mode mode = GET_MODE (op0);
10544 unsigned int mode_width = GET_MODE_BITSIZE (mode);
10545 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
10546 int equality_comparison_p;
10547 int sign_bit_comparison_p;
10548 int unsigned_comparison_p;
10549 HOST_WIDE_INT const_op;
10550
10551 /* We only want to handle integral modes. This catches VOIDmode,
10552 CCmode, and the floating-point modes. An exception is that we
10553 can handle VOIDmode if OP0 is a COMPARE or a comparison
10554 operation. */
10555
10556 if (GET_MODE_CLASS (mode) != MODE_INT
10557 && ! (mode == VOIDmode
10558 && (GET_CODE (op0) == COMPARE || COMPARISON_P (op0))))
10559 break;
10560
10561 /* Get the constant we are comparing against and turn off all bits
10562 not on in our mode. */
10563 const_op = INTVAL (op1);
10564 if (mode != VOIDmode)
10565 const_op = trunc_int_for_mode (const_op, mode);
10566 op1 = GEN_INT (const_op);
10567
10568 /* If we are comparing against a constant power of two and the value
10569 being compared can only have that single bit nonzero (e.g., it was
10570 `and'ed with that bit), we can replace this with a comparison
10571 with zero. */
10572 if (const_op
10573 && (code == EQ || code == NE || code == GE || code == GEU
10574 || code == LT || code == LTU)
10575 && mode_width <= HOST_BITS_PER_WIDE_INT
10576 && exact_log2 (const_op) >= 0
10577 && nonzero_bits (op0, mode) == (unsigned HOST_WIDE_INT) const_op)
10578 {
10579 code = (code == EQ || code == GE || code == GEU ? NE : EQ);
10580 op1 = const0_rtx, const_op = 0;
10581 }
10582
10583 /* Similarly, if we are comparing a value known to be either -1 or
10584 0 with -1, change it to the opposite comparison against zero. */
10585
10586 if (const_op == -1
10587 && (code == EQ || code == NE || code == GT || code == LE
10588 || code == GEU || code == LTU)
10589 && num_sign_bit_copies (op0, mode) == mode_width)
10590 {
10591 code = (code == EQ || code == LE || code == GEU ? NE : EQ);
10592 op1 = const0_rtx, const_op = 0;
10593 }
10594
10595 /* Do some canonicalizations based on the comparison code. We prefer
10596 comparisons against zero and then prefer equality comparisons.
10597 If we can reduce the size of a constant, we will do that too. */
10598
10599 switch (code)
10600 {
10601 case LT:
10602 /* < C is equivalent to <= (C - 1) */
10603 if (const_op > 0)
10604 {
10605 const_op -= 1;
10606 op1 = GEN_INT (const_op);
10607 code = LE;
10608 /* ... fall through to LE case below. */
10609 }
10610 else
10611 break;
10612
10613 case LE:
10614 /* <= C is equivalent to < (C + 1); we do this for C < 0 */
10615 if (const_op < 0)
10616 {
10617 const_op += 1;
10618 op1 = GEN_INT (const_op);
10619 code = LT;
10620 }
10621
10622 /* If we are doing a <= 0 comparison on a value known to have
10623 a zero sign bit, we can replace this with == 0. */
10624 else if (const_op == 0
10625 && mode_width <= HOST_BITS_PER_WIDE_INT
10626 && (nonzero_bits (op0, mode)
10627 & ((HOST_WIDE_INT) 1 << (mode_width - 1))) == 0)
10628 code = EQ;
10629 break;
10630
10631 case GE:
10632 /* >= C is equivalent to > (C - 1). */
10633 if (const_op > 0)
10634 {
10635 const_op -= 1;
10636 op1 = GEN_INT (const_op);
10637 code = GT;
10638 /* ... fall through to GT below. */
10639 }
10640 else
10641 break;
10642
10643 case GT:
10644 /* > C is equivalent to >= (C + 1); we do this for C < 0. */
10645 if (const_op < 0)
10646 {
10647 const_op += 1;
10648 op1 = GEN_INT (const_op);
10649 code = GE;
10650 }
10651
10652 /* If we are doing a > 0 comparison on a value known to have
10653 a zero sign bit, we can replace this with != 0. */
10654 else if (const_op == 0
10655 && mode_width <= HOST_BITS_PER_WIDE_INT
10656 && (nonzero_bits (op0, mode)
10657 & ((HOST_WIDE_INT) 1 << (mode_width - 1))) == 0)
10658 code = NE;
10659 break;
10660
10661 case LTU:
10662 /* < C is equivalent to <= (C - 1). */
10663 if (const_op > 0)
10664 {
10665 const_op -= 1;
10666 op1 = GEN_INT (const_op);
10667 code = LEU;
10668 /* ... fall through ... */
10669 }
10670
10671 /* (unsigned) < 0x80000000 is equivalent to >= 0. */
10672 else if ((mode_width <= HOST_BITS_PER_WIDE_INT)
10673 && (const_op == (HOST_WIDE_INT) 1 << (mode_width - 1)))
10674 {
10675 const_op = 0, op1 = const0_rtx;
10676 code = GE;
10677 break;
10678 }
10679 else
10680 break;
10681
10682 case LEU:
10683 /* unsigned <= 0 is equivalent to == 0 */
10684 if (const_op == 0)
10685 code = EQ;
10686
10687 /* (unsigned) <= 0x7fffffff is equivalent to >= 0. */
10688 else if ((mode_width <= HOST_BITS_PER_WIDE_INT)
10689 && (const_op == ((HOST_WIDE_INT) 1 << (mode_width - 1)) - 1))
10690 {
10691 const_op = 0, op1 = const0_rtx;
10692 code = GE;
10693 }
10694 break;
10695
10696 case GEU:
10697 /* >= C is equivalent to > (C - 1). */
10698 if (const_op > 1)
10699 {
10700 const_op -= 1;
10701 op1 = GEN_INT (const_op);
10702 code = GTU;
10703 /* ... fall through ... */
10704 }
10705
10706 /* (unsigned) >= 0x80000000 is equivalent to < 0. */
10707 else if ((mode_width <= HOST_BITS_PER_WIDE_INT)
10708 && (const_op == (HOST_WIDE_INT) 1 << (mode_width - 1)))
10709 {
10710 const_op = 0, op1 = const0_rtx;
10711 code = LT;
10712 break;
10713 }
10714 else
10715 break;
10716
10717 case GTU:
10718 /* unsigned > 0 is equivalent to != 0 */
10719 if (const_op == 0)
10720 code = NE;
10721
10722 /* (unsigned) > 0x7fffffff is equivalent to < 0. */
10723 else if ((mode_width <= HOST_BITS_PER_WIDE_INT)
10724 && (const_op == ((HOST_WIDE_INT) 1 << (mode_width - 1)) - 1))
10725 {
10726 const_op = 0, op1 = const0_rtx;
10727 code = LT;
10728 }
10729 break;
10730
10731 default:
10732 break;
10733 }
10734
10735 /* Compute some predicates to simplify code below. */
10736
10737 equality_comparison_p = (code == EQ || code == NE);
10738 sign_bit_comparison_p = ((code == LT || code == GE) && const_op == 0);
10739 unsigned_comparison_p = (code == LTU || code == LEU || code == GTU
10740 || code == GEU);
10741
10742 /* If this is a sign bit comparison and we can do arithmetic in
10743 MODE, say that we will only be needing the sign bit of OP0. */
10744 if (sign_bit_comparison_p
10745 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
10746 op0 = force_to_mode (op0, mode,
10747 ((HOST_WIDE_INT) 1
10748 << (GET_MODE_BITSIZE (mode) - 1)),
10749 0);
10750
10751 /* Now try cases based on the opcode of OP0. If none of the cases
10752 does a "continue", we exit this loop immediately after the
10753 switch. */
10754
10755 switch (GET_CODE (op0))
10756 {
10757 case ZERO_EXTRACT:
10758 /* If we are extracting a single bit from a variable position in
10759 a constant that has only a single bit set and are comparing it
10760 with zero, we can convert this into an equality comparison
10761 between the position and the location of the single bit. */
10762 /* Except we can't if SHIFT_COUNT_TRUNCATED is set, since we might
10763 have already reduced the shift count modulo the word size. */
10764 if (!SHIFT_COUNT_TRUNCATED
10765 && CONST_INT_P (XEXP (op0, 0))
10766 && XEXP (op0, 1) == const1_rtx
10767 && equality_comparison_p && const_op == 0
10768 && (i = exact_log2 (INTVAL (XEXP (op0, 0)))) >= 0)
10769 {
10770 if (BITS_BIG_ENDIAN)
10771 {
10772 enum machine_mode new_mode
10773 = mode_for_extraction (EP_extzv, 1);
10774 if (new_mode == MAX_MACHINE_MODE)
10775 i = BITS_PER_WORD - 1 - i;
10776 else
10777 {
10778 mode = new_mode;
10779 i = (GET_MODE_BITSIZE (mode) - 1 - i);
10780 }
10781 }
10782
10783 op0 = XEXP (op0, 2);
10784 op1 = GEN_INT (i);
10785 const_op = i;
10786
10787 /* Result is nonzero iff shift count is equal to I. */
10788 code = reverse_condition (code);
10789 continue;
10790 }
10791
10792 /* ... fall through ... */
10793
10794 case SIGN_EXTRACT:
10795 tem = expand_compound_operation (op0);
10796 if (tem != op0)
10797 {
10798 op0 = tem;
10799 continue;
10800 }
10801 break;
10802
10803 case NOT:
10804 /* If testing for equality, we can take the NOT of the constant. */
10805 if (equality_comparison_p
10806 && (tem = simplify_unary_operation (NOT, mode, op1, mode)) != 0)
10807 {
10808 op0 = XEXP (op0, 0);
10809 op1 = tem;
10810 continue;
10811 }
10812
10813 /* If just looking at the sign bit, reverse the sense of the
10814 comparison. */
10815 if (sign_bit_comparison_p)
10816 {
10817 op0 = XEXP (op0, 0);
10818 code = (code == GE ? LT : GE);
10819 continue;
10820 }
10821 break;
10822
10823 case NEG:
10824 /* If testing for equality, we can take the NEG of the constant. */
10825 if (equality_comparison_p
10826 && (tem = simplify_unary_operation (NEG, mode, op1, mode)) != 0)
10827 {
10828 op0 = XEXP (op0, 0);
10829 op1 = tem;
10830 continue;
10831 }
10832
10833 /* The remaining cases only apply to comparisons with zero. */
10834 if (const_op != 0)
10835 break;
10836
10837 /* When X is ABS or is known positive,
10838 (neg X) is < 0 if and only if X != 0. */
10839
10840 if (sign_bit_comparison_p
10841 && (GET_CODE (XEXP (op0, 0)) == ABS
10842 || (mode_width <= HOST_BITS_PER_WIDE_INT
10843 && (nonzero_bits (XEXP (op0, 0), mode)
10844 & ((HOST_WIDE_INT) 1 << (mode_width - 1))) == 0)))
10845 {
10846 op0 = XEXP (op0, 0);
10847 code = (code == LT ? NE : EQ);
10848 continue;
10849 }
10850
10851 /* If we have NEG of something whose two high-order bits are the
10852 same, we know that "(-a) < 0" is equivalent to "a > 0". */
10853 if (num_sign_bit_copies (op0, mode) >= 2)
10854 {
10855 op0 = XEXP (op0, 0);
10856 code = swap_condition (code);
10857 continue;
10858 }
10859 break;
10860
10861 case ROTATE:
10862 /* If we are testing equality and our count is a constant, we
10863 can perform the inverse operation on our RHS. */
10864 if (equality_comparison_p && CONST_INT_P (XEXP (op0, 1))
10865 && (tem = simplify_binary_operation (ROTATERT, mode,
10866 op1, XEXP (op0, 1))) != 0)
10867 {
10868 op0 = XEXP (op0, 0);
10869 op1 = tem;
10870 continue;
10871 }
10872
10873 /* If we are doing a < 0 or >= 0 comparison, it means we are testing
10874 a particular bit. Convert it to an AND of a constant of that
10875 bit. This will be converted into a ZERO_EXTRACT. */
10876 if (const_op == 0 && sign_bit_comparison_p
10877 && CONST_INT_P (XEXP (op0, 1))
10878 && mode_width <= HOST_BITS_PER_WIDE_INT)
10879 {
10880 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
10881 ((HOST_WIDE_INT) 1
10882 << (mode_width - 1
10883 - INTVAL (XEXP (op0, 1)))));
10884 code = (code == LT ? NE : EQ);
10885 continue;
10886 }
10887
10888 /* Fall through. */
10889
10890 case ABS:
10891 /* ABS is ignorable inside an equality comparison with zero. */
10892 if (const_op == 0 && equality_comparison_p)
10893 {
10894 op0 = XEXP (op0, 0);
10895 continue;
10896 }
10897 break;
10898
10899 case SIGN_EXTEND:
10900 /* Can simplify (compare (zero/sign_extend FOO) CONST) to
10901 (compare FOO CONST) if CONST fits in FOO's mode and we
10902 are either testing inequality or have an unsigned
10903 comparison with ZERO_EXTEND or a signed comparison with
10904 SIGN_EXTEND. But don't do it if we don't have a compare
10905 insn of the given mode, since we'd have to revert it
10906 later on, and then we wouldn't know whether to sign- or
10907 zero-extend. */
10908 mode = GET_MODE (XEXP (op0, 0));
10909 if (mode != VOIDmode && GET_MODE_CLASS (mode) == MODE_INT
10910 && ! unsigned_comparison_p
10911 && (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
10912 && ((unsigned HOST_WIDE_INT) const_op
10913 < (((unsigned HOST_WIDE_INT) 1
10914 << (GET_MODE_BITSIZE (mode) - 1))))
10915 && have_insn_for (COMPARE, mode))
10916 {
10917 op0 = XEXP (op0, 0);
10918 continue;
10919 }
10920 break;
10921
10922 case SUBREG:
10923 /* Check for the case where we are comparing A - C1 with C2, that is
10924
10925 (subreg:MODE (plus (A) (-C1))) op (C2)
10926
10927 with C1 a constant, and try to lift the SUBREG, i.e. to do the
10928 comparison in the wider mode. One of the following two conditions
10929 must be true in order for this to be valid:
10930
10931 1. The mode extension results in the same bit pattern being added
10932 on both sides and the comparison is equality or unsigned. As
10933 C2 has been truncated to fit in MODE, the pattern can only be
10934 all 0s or all 1s.
10935
10936 2. The mode extension results in the sign bit being copied on
10937 each side.
10938
10939 The difficulty here is that we have predicates for A but not for
10940 (A - C1) so we need to check that C1 is within proper bounds so
10941 as to perturbate A as little as possible. */
10942
10943 if (mode_width <= HOST_BITS_PER_WIDE_INT
10944 && subreg_lowpart_p (op0)
10945 && GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (op0))) > mode_width
10946 && GET_CODE (SUBREG_REG (op0)) == PLUS
10947 && CONST_INT_P (XEXP (SUBREG_REG (op0), 1)))
10948 {
10949 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (op0));
10950 rtx a = XEXP (SUBREG_REG (op0), 0);
10951 HOST_WIDE_INT c1 = -INTVAL (XEXP (SUBREG_REG (op0), 1));
10952
10953 if ((c1 > 0
10954 && (unsigned HOST_WIDE_INT) c1
10955 < (unsigned HOST_WIDE_INT) 1 << (mode_width - 1)
10956 && (equality_comparison_p || unsigned_comparison_p)
10957 /* (A - C1) zero-extends if it is positive and sign-extends
10958 if it is negative, C2 both zero- and sign-extends. */
10959 && ((0 == (nonzero_bits (a, inner_mode)
10960 & ~GET_MODE_MASK (mode))
10961 && const_op >= 0)
10962 /* (A - C1) sign-extends if it is positive and 1-extends
10963 if it is negative, C2 both sign- and 1-extends. */
10964 || (num_sign_bit_copies (a, inner_mode)
10965 > (unsigned int) (GET_MODE_BITSIZE (inner_mode)
10966 - mode_width)
10967 && const_op < 0)))
10968 || ((unsigned HOST_WIDE_INT) c1
10969 < (unsigned HOST_WIDE_INT) 1 << (mode_width - 2)
10970 /* (A - C1) always sign-extends, like C2. */
10971 && num_sign_bit_copies (a, inner_mode)
10972 > (unsigned int) (GET_MODE_BITSIZE (inner_mode)
10973 - (mode_width - 1))))
10974 {
10975 op0 = SUBREG_REG (op0);
10976 continue;
10977 }
10978 }
10979
10980 /* If the inner mode is narrower and we are extracting the low part,
10981 we can treat the SUBREG as if it were a ZERO_EXTEND. */
10982 if (subreg_lowpart_p (op0)
10983 && GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (op0))) < mode_width)
10984 /* Fall through */ ;
10985 else
10986 break;
10987
10988 /* ... fall through ... */
10989
10990 case ZERO_EXTEND:
10991 mode = GET_MODE (XEXP (op0, 0));
10992 if (mode != VOIDmode && GET_MODE_CLASS (mode) == MODE_INT
10993 && (unsigned_comparison_p || equality_comparison_p)
10994 && (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
10995 && ((unsigned HOST_WIDE_INT) const_op < GET_MODE_MASK (mode))
10996 && have_insn_for (COMPARE, mode))
10997 {
10998 op0 = XEXP (op0, 0);
10999 continue;
11000 }
11001 break;
11002
11003 case PLUS:
11004 /* (eq (plus X A) B) -> (eq X (minus B A)). We can only do
11005 this for equality comparisons due to pathological cases involving
11006 overflows. */
11007 if (equality_comparison_p
11008 && 0 != (tem = simplify_binary_operation (MINUS, mode,
11009 op1, XEXP (op0, 1))))
11010 {
11011 op0 = XEXP (op0, 0);
11012 op1 = tem;
11013 continue;
11014 }
11015
11016 /* (plus (abs X) (const_int -1)) is < 0 if and only if X == 0. */
11017 if (const_op == 0 && XEXP (op0, 1) == constm1_rtx
11018 && GET_CODE (XEXP (op0, 0)) == ABS && sign_bit_comparison_p)
11019 {
11020 op0 = XEXP (XEXP (op0, 0), 0);
11021 code = (code == LT ? EQ : NE);
11022 continue;
11023 }
11024 break;
11025
11026 case MINUS:
11027 /* We used to optimize signed comparisons against zero, but that
11028 was incorrect. Unsigned comparisons against zero (GTU, LEU)
11029 arrive here as equality comparisons, or (GEU, LTU) are
11030 optimized away. No need to special-case them. */
11031
11032 /* (eq (minus A B) C) -> (eq A (plus B C)) or
11033 (eq B (minus A C)), whichever simplifies. We can only do
11034 this for equality comparisons due to pathological cases involving
11035 overflows. */
11036 if (equality_comparison_p
11037 && 0 != (tem = simplify_binary_operation (PLUS, mode,
11038 XEXP (op0, 1), op1)))
11039 {
11040 op0 = XEXP (op0, 0);
11041 op1 = tem;
11042 continue;
11043 }
11044
11045 if (equality_comparison_p
11046 && 0 != (tem = simplify_binary_operation (MINUS, mode,
11047 XEXP (op0, 0), op1)))
11048 {
11049 op0 = XEXP (op0, 1);
11050 op1 = tem;
11051 continue;
11052 }
11053
11054 /* The sign bit of (minus (ashiftrt X C) X), where C is the number
11055 of bits in X minus 1, is one iff X > 0. */
11056 if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 0)) == ASHIFTRT
11057 && CONST_INT_P (XEXP (XEXP (op0, 0), 1))
11058 && (unsigned HOST_WIDE_INT) INTVAL (XEXP (XEXP (op0, 0), 1))
11059 == mode_width - 1
11060 && rtx_equal_p (XEXP (XEXP (op0, 0), 0), XEXP (op0, 1)))
11061 {
11062 op0 = XEXP (op0, 1);
11063 code = (code == GE ? LE : GT);
11064 continue;
11065 }
11066 break;
11067
11068 case XOR:
11069 /* (eq (xor A B) C) -> (eq A (xor B C)). This is a simplification
11070 if C is zero or B is a constant. */
11071 if (equality_comparison_p
11072 && 0 != (tem = simplify_binary_operation (XOR, mode,
11073 XEXP (op0, 1), op1)))
11074 {
11075 op0 = XEXP (op0, 0);
11076 op1 = tem;
11077 continue;
11078 }
11079 break;
11080
11081 case EQ: case NE:
11082 case UNEQ: case LTGT:
11083 case LT: case LTU: case UNLT: case LE: case LEU: case UNLE:
11084 case GT: case GTU: case UNGT: case GE: case GEU: case UNGE:
11085 case UNORDERED: case ORDERED:
11086 /* We can't do anything if OP0 is a condition code value, rather
11087 than an actual data value. */
11088 if (const_op != 0
11089 || CC0_P (XEXP (op0, 0))
11090 || GET_MODE_CLASS (GET_MODE (XEXP (op0, 0))) == MODE_CC)
11091 break;
11092
11093 /* Get the two operands being compared. */
11094 if (GET_CODE (XEXP (op0, 0)) == COMPARE)
11095 tem = XEXP (XEXP (op0, 0), 0), tem1 = XEXP (XEXP (op0, 0), 1);
11096 else
11097 tem = XEXP (op0, 0), tem1 = XEXP (op0, 1);
11098
11099 /* Check for the cases where we simply want the result of the
11100 earlier test or the opposite of that result. */
11101 if (code == NE || code == EQ
11102 || (GET_MODE_BITSIZE (GET_MODE (op0)) <= HOST_BITS_PER_WIDE_INT
11103 && GET_MODE_CLASS (GET_MODE (op0)) == MODE_INT
11104 && (STORE_FLAG_VALUE
11105 & (((HOST_WIDE_INT) 1
11106 << (GET_MODE_BITSIZE (GET_MODE (op0)) - 1))))
11107 && (code == LT || code == GE)))
11108 {
11109 enum rtx_code new_code;
11110 if (code == LT || code == NE)
11111 new_code = GET_CODE (op0);
11112 else
11113 new_code = reversed_comparison_code (op0, NULL);
11114
11115 if (new_code != UNKNOWN)
11116 {
11117 code = new_code;
11118 op0 = tem;
11119 op1 = tem1;
11120 continue;
11121 }
11122 }
11123 break;
11124
11125 case IOR:
11126 /* The sign bit of (ior (plus X (const_int -1)) X) is nonzero
11127 iff X <= 0. */
11128 if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 0)) == PLUS
11129 && XEXP (XEXP (op0, 0), 1) == constm1_rtx
11130 && rtx_equal_p (XEXP (XEXP (op0, 0), 0), XEXP (op0, 1)))
11131 {
11132 op0 = XEXP (op0, 1);
11133 code = (code == GE ? GT : LE);
11134 continue;
11135 }
11136 break;
11137
11138 case AND:
11139 /* Convert (and (xshift 1 X) Y) to (and (lshiftrt Y X) 1). This
11140 will be converted to a ZERO_EXTRACT later. */
11141 if (const_op == 0 && equality_comparison_p
11142 && GET_CODE (XEXP (op0, 0)) == ASHIFT
11143 && XEXP (XEXP (op0, 0), 0) == const1_rtx)
11144 {
11145 op0 = simplify_and_const_int
11146 (NULL_RTX, mode, gen_rtx_LSHIFTRT (mode,
11147 XEXP (op0, 1),
11148 XEXP (XEXP (op0, 0), 1)),
11149 (HOST_WIDE_INT) 1);
11150 continue;
11151 }
11152
11153 /* If we are comparing (and (lshiftrt X C1) C2) for equality with
11154 zero and X is a comparison and C1 and C2 describe only bits set
11155 in STORE_FLAG_VALUE, we can compare with X. */
11156 if (const_op == 0 && equality_comparison_p
11157 && mode_width <= HOST_BITS_PER_WIDE_INT
11158 && CONST_INT_P (XEXP (op0, 1))
11159 && GET_CODE (XEXP (op0, 0)) == LSHIFTRT
11160 && CONST_INT_P (XEXP (XEXP (op0, 0), 1))
11161 && INTVAL (XEXP (XEXP (op0, 0), 1)) >= 0
11162 && INTVAL (XEXP (XEXP (op0, 0), 1)) < HOST_BITS_PER_WIDE_INT)
11163 {
11164 mask = ((INTVAL (XEXP (op0, 1)) & GET_MODE_MASK (mode))
11165 << INTVAL (XEXP (XEXP (op0, 0), 1)));
11166 if ((~STORE_FLAG_VALUE & mask) == 0
11167 && (COMPARISON_P (XEXP (XEXP (op0, 0), 0))
11168 || ((tem = get_last_value (XEXP (XEXP (op0, 0), 0))) != 0
11169 && COMPARISON_P (tem))))
11170 {
11171 op0 = XEXP (XEXP (op0, 0), 0);
11172 continue;
11173 }
11174 }
11175
11176 /* If we are doing an equality comparison of an AND of a bit equal
11177 to the sign bit, replace this with a LT or GE comparison of
11178 the underlying value. */
11179 if (equality_comparison_p
11180 && const_op == 0
11181 && CONST_INT_P (XEXP (op0, 1))
11182 && mode_width <= HOST_BITS_PER_WIDE_INT
11183 && ((INTVAL (XEXP (op0, 1)) & GET_MODE_MASK (mode))
11184 == (unsigned HOST_WIDE_INT) 1 << (mode_width - 1)))
11185 {
11186 op0 = XEXP (op0, 0);
11187 code = (code == EQ ? GE : LT);
11188 continue;
11189 }
11190
11191 /* If this AND operation is really a ZERO_EXTEND from a narrower
11192 mode, the constant fits within that mode, and this is either an
11193 equality or unsigned comparison, try to do this comparison in
11194 the narrower mode.
11195
11196 Note that in:
11197
11198 (ne:DI (and:DI (reg:DI 4) (const_int 0xffffffff)) (const_int 0))
11199 -> (ne:DI (reg:SI 4) (const_int 0))
11200
11201 unless TRULY_NOOP_TRUNCATION allows it or the register is
11202 known to hold a value of the required mode the
11203 transformation is invalid. */
11204 if ((equality_comparison_p || unsigned_comparison_p)
11205 && CONST_INT_P (XEXP (op0, 1))
11206 && (i = exact_log2 ((INTVAL (XEXP (op0, 1))
11207 & GET_MODE_MASK (mode))
11208 + 1)) >= 0
11209 && const_op >> i == 0
11210 && (tmode = mode_for_size (i, MODE_INT, 1)) != BLKmode
11211 && (TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (tmode),
11212 GET_MODE_BITSIZE (GET_MODE (op0)))
11213 || (REG_P (XEXP (op0, 0))
11214 && reg_truncated_to_mode (tmode, XEXP (op0, 0)))))
11215 {
11216 op0 = gen_lowpart (tmode, XEXP (op0, 0));
11217 continue;
11218 }
11219
11220 /* If this is (and:M1 (subreg:M2 X 0) (const_int C1)) where C1
11221 fits in both M1 and M2 and the SUBREG is either paradoxical
11222 or represents the low part, permute the SUBREG and the AND
11223 and try again. */
11224 if (GET_CODE (XEXP (op0, 0)) == SUBREG)
11225 {
11226 unsigned HOST_WIDE_INT c1;
11227 tmode = GET_MODE (SUBREG_REG (XEXP (op0, 0)));
11228 /* Require an integral mode, to avoid creating something like
11229 (AND:SF ...). */
11230 if (SCALAR_INT_MODE_P (tmode)
11231 /* It is unsafe to commute the AND into the SUBREG if the
11232 SUBREG is paradoxical and WORD_REGISTER_OPERATIONS is
11233 not defined. As originally written the upper bits
11234 have a defined value due to the AND operation.
11235 However, if we commute the AND inside the SUBREG then
11236 they no longer have defined values and the meaning of
11237 the code has been changed. */
11238 && (0
11239 #ifdef WORD_REGISTER_OPERATIONS
11240 || (mode_width > GET_MODE_BITSIZE (tmode)
11241 && mode_width <= BITS_PER_WORD)
11242 #endif
11243 || (mode_width <= GET_MODE_BITSIZE (tmode)
11244 && subreg_lowpart_p (XEXP (op0, 0))))
11245 && CONST_INT_P (XEXP (op0, 1))
11246 && mode_width <= HOST_BITS_PER_WIDE_INT
11247 && GET_MODE_BITSIZE (tmode) <= HOST_BITS_PER_WIDE_INT
11248 && ((c1 = INTVAL (XEXP (op0, 1))) & ~mask) == 0
11249 && (c1 & ~GET_MODE_MASK (tmode)) == 0
11250 && c1 != mask
11251 && c1 != GET_MODE_MASK (tmode))
11252 {
11253 op0 = simplify_gen_binary (AND, tmode,
11254 SUBREG_REG (XEXP (op0, 0)),
11255 gen_int_mode (c1, tmode));
11256 op0 = gen_lowpart (mode, op0);
11257 continue;
11258 }
11259 }
11260
11261 /* Convert (ne (and (not X) 1) 0) to (eq (and X 1) 0). */
11262 if (const_op == 0 && equality_comparison_p
11263 && XEXP (op0, 1) == const1_rtx
11264 && GET_CODE (XEXP (op0, 0)) == NOT)
11265 {
11266 op0 = simplify_and_const_int
11267 (NULL_RTX, mode, XEXP (XEXP (op0, 0), 0), (HOST_WIDE_INT) 1);
11268 code = (code == NE ? EQ : NE);
11269 continue;
11270 }
11271
11272 /* Convert (ne (and (lshiftrt (not X)) 1) 0) to
11273 (eq (and (lshiftrt X) 1) 0).
11274 Also handle the case where (not X) is expressed using xor. */
11275 if (const_op == 0 && equality_comparison_p
11276 && XEXP (op0, 1) == const1_rtx
11277 && GET_CODE (XEXP (op0, 0)) == LSHIFTRT)
11278 {
11279 rtx shift_op = XEXP (XEXP (op0, 0), 0);
11280 rtx shift_count = XEXP (XEXP (op0, 0), 1);
11281
11282 if (GET_CODE (shift_op) == NOT
11283 || (GET_CODE (shift_op) == XOR
11284 && CONST_INT_P (XEXP (shift_op, 1))
11285 && CONST_INT_P (shift_count)
11286 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
11287 && (INTVAL (XEXP (shift_op, 1))
11288 == (HOST_WIDE_INT) 1 << INTVAL (shift_count))))
11289 {
11290 op0 = simplify_and_const_int
11291 (NULL_RTX, mode,
11292 gen_rtx_LSHIFTRT (mode, XEXP (shift_op, 0), shift_count),
11293 (HOST_WIDE_INT) 1);
11294 code = (code == NE ? EQ : NE);
11295 continue;
11296 }
11297 }
11298 break;
11299
11300 case ASHIFT:
11301 /* If we have (compare (ashift FOO N) (const_int C)) and
11302 the high order N bits of FOO (N+1 if an inequality comparison)
11303 are known to be zero, we can do this by comparing FOO with C
11304 shifted right N bits so long as the low-order N bits of C are
11305 zero. */
11306 if (CONST_INT_P (XEXP (op0, 1))
11307 && INTVAL (XEXP (op0, 1)) >= 0
11308 && ((INTVAL (XEXP (op0, 1)) + ! equality_comparison_p)
11309 < HOST_BITS_PER_WIDE_INT)
11310 && ((const_op
11311 & (((HOST_WIDE_INT) 1 << INTVAL (XEXP (op0, 1))) - 1)) == 0)
11312 && mode_width <= HOST_BITS_PER_WIDE_INT
11313 && (nonzero_bits (XEXP (op0, 0), mode)
11314 & ~(mask >> (INTVAL (XEXP (op0, 1))
11315 + ! equality_comparison_p))) == 0)
11316 {
11317 /* We must perform a logical shift, not an arithmetic one,
11318 as we want the top N bits of C to be zero. */
11319 unsigned HOST_WIDE_INT temp = const_op & GET_MODE_MASK (mode);
11320
11321 temp >>= INTVAL (XEXP (op0, 1));
11322 op1 = gen_int_mode (temp, mode);
11323 op0 = XEXP (op0, 0);
11324 continue;
11325 }
11326
11327 /* If we are doing a sign bit comparison, it means we are testing
11328 a particular bit. Convert it to the appropriate AND. */
11329 if (sign_bit_comparison_p && CONST_INT_P (XEXP (op0, 1))
11330 && mode_width <= HOST_BITS_PER_WIDE_INT)
11331 {
11332 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
11333 ((HOST_WIDE_INT) 1
11334 << (mode_width - 1
11335 - INTVAL (XEXP (op0, 1)))));
11336 code = (code == LT ? NE : EQ);
11337 continue;
11338 }
11339
11340 /* If this an equality comparison with zero and we are shifting
11341 the low bit to the sign bit, we can convert this to an AND of the
11342 low-order bit. */
11343 if (const_op == 0 && equality_comparison_p
11344 && CONST_INT_P (XEXP (op0, 1))
11345 && (unsigned HOST_WIDE_INT) INTVAL (XEXP (op0, 1))
11346 == mode_width - 1)
11347 {
11348 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
11349 (HOST_WIDE_INT) 1);
11350 continue;
11351 }
11352 break;
11353
11354 case ASHIFTRT:
11355 /* If this is an equality comparison with zero, we can do this
11356 as a logical shift, which might be much simpler. */
11357 if (equality_comparison_p && const_op == 0
11358 && CONST_INT_P (XEXP (op0, 1)))
11359 {
11360 op0 = simplify_shift_const (NULL_RTX, LSHIFTRT, mode,
11361 XEXP (op0, 0),
11362 INTVAL (XEXP (op0, 1)));
11363 continue;
11364 }
11365
11366 /* If OP0 is a sign extension and CODE is not an unsigned comparison,
11367 do the comparison in a narrower mode. */
11368 if (! unsigned_comparison_p
11369 && CONST_INT_P (XEXP (op0, 1))
11370 && GET_CODE (XEXP (op0, 0)) == ASHIFT
11371 && XEXP (op0, 1) == XEXP (XEXP (op0, 0), 1)
11372 && (tmode = mode_for_size (mode_width - INTVAL (XEXP (op0, 1)),
11373 MODE_INT, 1)) != BLKmode
11374 && (((unsigned HOST_WIDE_INT) const_op
11375 + (GET_MODE_MASK (tmode) >> 1) + 1)
11376 <= GET_MODE_MASK (tmode)))
11377 {
11378 op0 = gen_lowpart (tmode, XEXP (XEXP (op0, 0), 0));
11379 continue;
11380 }
11381
11382 /* Likewise if OP0 is a PLUS of a sign extension with a
11383 constant, which is usually represented with the PLUS
11384 between the shifts. */
11385 if (! unsigned_comparison_p
11386 && CONST_INT_P (XEXP (op0, 1))
11387 && GET_CODE (XEXP (op0, 0)) == PLUS
11388 && CONST_INT_P (XEXP (XEXP (op0, 0), 1))
11389 && GET_CODE (XEXP (XEXP (op0, 0), 0)) == ASHIFT
11390 && XEXP (op0, 1) == XEXP (XEXP (XEXP (op0, 0), 0), 1)
11391 && (tmode = mode_for_size (mode_width - INTVAL (XEXP (op0, 1)),
11392 MODE_INT, 1)) != BLKmode
11393 && (((unsigned HOST_WIDE_INT) const_op
11394 + (GET_MODE_MASK (tmode) >> 1) + 1)
11395 <= GET_MODE_MASK (tmode)))
11396 {
11397 rtx inner = XEXP (XEXP (XEXP (op0, 0), 0), 0);
11398 rtx add_const = XEXP (XEXP (op0, 0), 1);
11399 rtx new_const = simplify_gen_binary (ASHIFTRT, GET_MODE (op0),
11400 add_const, XEXP (op0, 1));
11401
11402 op0 = simplify_gen_binary (PLUS, tmode,
11403 gen_lowpart (tmode, inner),
11404 new_const);
11405 continue;
11406 }
11407
11408 /* ... fall through ... */
11409 case LSHIFTRT:
11410 /* If we have (compare (xshiftrt FOO N) (const_int C)) and
11411 the low order N bits of FOO are known to be zero, we can do this
11412 by comparing FOO with C shifted left N bits so long as no
11413 overflow occurs. */
11414 if (CONST_INT_P (XEXP (op0, 1))
11415 && INTVAL (XEXP (op0, 1)) >= 0
11416 && INTVAL (XEXP (op0, 1)) < HOST_BITS_PER_WIDE_INT
11417 && mode_width <= HOST_BITS_PER_WIDE_INT
11418 && (nonzero_bits (XEXP (op0, 0), mode)
11419 & (((HOST_WIDE_INT) 1 << INTVAL (XEXP (op0, 1))) - 1)) == 0
11420 && (((unsigned HOST_WIDE_INT) const_op
11421 + (GET_CODE (op0) != LSHIFTRT
11422 ? ((GET_MODE_MASK (mode) >> INTVAL (XEXP (op0, 1)) >> 1)
11423 + 1)
11424 : 0))
11425 <= GET_MODE_MASK (mode) >> INTVAL (XEXP (op0, 1))))
11426 {
11427 /* If the shift was logical, then we must make the condition
11428 unsigned. */
11429 if (GET_CODE (op0) == LSHIFTRT)
11430 code = unsigned_condition (code);
11431
11432 const_op <<= INTVAL (XEXP (op0, 1));
11433 op1 = GEN_INT (const_op);
11434 op0 = XEXP (op0, 0);
11435 continue;
11436 }
11437
11438 /* If we are using this shift to extract just the sign bit, we
11439 can replace this with an LT or GE comparison. */
11440 if (const_op == 0
11441 && (equality_comparison_p || sign_bit_comparison_p)
11442 && CONST_INT_P (XEXP (op0, 1))
11443 && (unsigned HOST_WIDE_INT) INTVAL (XEXP (op0, 1))
11444 == mode_width - 1)
11445 {
11446 op0 = XEXP (op0, 0);
11447 code = (code == NE || code == GT ? LT : GE);
11448 continue;
11449 }
11450 break;
11451
11452 default:
11453 break;
11454 }
11455
11456 break;
11457 }
11458
11459 /* Now make any compound operations involved in this comparison. Then,
11460 check for an outmost SUBREG on OP0 that is not doing anything or is
11461 paradoxical. The latter transformation must only be performed when
11462 it is known that the "extra" bits will be the same in op0 and op1 or
11463 that they don't matter. There are three cases to consider:
11464
11465 1. SUBREG_REG (op0) is a register. In this case the bits are don't
11466 care bits and we can assume they have any convenient value. So
11467 making the transformation is safe.
11468
11469 2. SUBREG_REG (op0) is a memory and LOAD_EXTEND_OP is not defined.
11470 In this case the upper bits of op0 are undefined. We should not make
11471 the simplification in that case as we do not know the contents of
11472 those bits.
11473
11474 3. SUBREG_REG (op0) is a memory and LOAD_EXTEND_OP is defined and not
11475 UNKNOWN. In that case we know those bits are zeros or ones. We must
11476 also be sure that they are the same as the upper bits of op1.
11477
11478 We can never remove a SUBREG for a non-equality comparison because
11479 the sign bit is in a different place in the underlying object. */
11480
11481 op0 = make_compound_operation (op0, op1 == const0_rtx ? COMPARE : SET);
11482 op1 = make_compound_operation (op1, SET);
11483
11484 if (GET_CODE (op0) == SUBREG && subreg_lowpart_p (op0)
11485 && GET_MODE_CLASS (GET_MODE (op0)) == MODE_INT
11486 && GET_MODE_CLASS (GET_MODE (SUBREG_REG (op0))) == MODE_INT
11487 && (code == NE || code == EQ))
11488 {
11489 if (GET_MODE_SIZE (GET_MODE (op0))
11490 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (op0))))
11491 {
11492 /* For paradoxical subregs, allow case 1 as above. Case 3 isn't
11493 implemented. */
11494 if (REG_P (SUBREG_REG (op0)))
11495 {
11496 op0 = SUBREG_REG (op0);
11497 op1 = gen_lowpart (GET_MODE (op0), op1);
11498 }
11499 }
11500 else if ((GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (op0)))
11501 <= HOST_BITS_PER_WIDE_INT)
11502 && (nonzero_bits (SUBREG_REG (op0),
11503 GET_MODE (SUBREG_REG (op0)))
11504 & ~GET_MODE_MASK (GET_MODE (op0))) == 0)
11505 {
11506 tem = gen_lowpart (GET_MODE (SUBREG_REG (op0)), op1);
11507
11508 if ((nonzero_bits (tem, GET_MODE (SUBREG_REG (op0)))
11509 & ~GET_MODE_MASK (GET_MODE (op0))) == 0)
11510 op0 = SUBREG_REG (op0), op1 = tem;
11511 }
11512 }
11513
11514 /* We now do the opposite procedure: Some machines don't have compare
11515 insns in all modes. If OP0's mode is an integer mode smaller than a
11516 word and we can't do a compare in that mode, see if there is a larger
11517 mode for which we can do the compare. There are a number of cases in
11518 which we can use the wider mode. */
11519
11520 mode = GET_MODE (op0);
11521 if (mode != VOIDmode && GET_MODE_CLASS (mode) == MODE_INT
11522 && GET_MODE_SIZE (mode) < UNITS_PER_WORD
11523 && ! have_insn_for (COMPARE, mode))
11524 for (tmode = GET_MODE_WIDER_MODE (mode);
11525 (tmode != VOIDmode
11526 && GET_MODE_BITSIZE (tmode) <= HOST_BITS_PER_WIDE_INT);
11527 tmode = GET_MODE_WIDER_MODE (tmode))
11528 if (have_insn_for (COMPARE, tmode))
11529 {
11530 int zero_extended;
11531
11532 /* If this is a test for negative, we can make an explicit
11533 test of the sign bit. Test this first so we can use
11534 a paradoxical subreg to extend OP0. */
11535
11536 if (op1 == const0_rtx && (code == LT || code == GE)
11537 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
11538 {
11539 op0 = simplify_gen_binary (AND, tmode,
11540 gen_lowpart (tmode, op0),
11541 GEN_INT ((HOST_WIDE_INT) 1
11542 << (GET_MODE_BITSIZE (mode)
11543 - 1)));
11544 code = (code == LT) ? NE : EQ;
11545 break;
11546 }
11547
11548 /* If the only nonzero bits in OP0 and OP1 are those in the
11549 narrower mode and this is an equality or unsigned comparison,
11550 we can use the wider mode. Similarly for sign-extended
11551 values, in which case it is true for all comparisons. */
11552 zero_extended = ((code == EQ || code == NE
11553 || code == GEU || code == GTU
11554 || code == LEU || code == LTU)
11555 && (nonzero_bits (op0, tmode)
11556 & ~GET_MODE_MASK (mode)) == 0
11557 && ((CONST_INT_P (op1)
11558 || (nonzero_bits (op1, tmode)
11559 & ~GET_MODE_MASK (mode)) == 0)));
11560
11561 if (zero_extended
11562 || ((num_sign_bit_copies (op0, tmode)
11563 > (unsigned int) (GET_MODE_BITSIZE (tmode)
11564 - GET_MODE_BITSIZE (mode)))
11565 && (num_sign_bit_copies (op1, tmode)
11566 > (unsigned int) (GET_MODE_BITSIZE (tmode)
11567 - GET_MODE_BITSIZE (mode)))))
11568 {
11569 /* If OP0 is an AND and we don't have an AND in MODE either,
11570 make a new AND in the proper mode. */
11571 if (GET_CODE (op0) == AND
11572 && !have_insn_for (AND, mode))
11573 op0 = simplify_gen_binary (AND, tmode,
11574 gen_lowpart (tmode,
11575 XEXP (op0, 0)),
11576 gen_lowpart (tmode,
11577 XEXP (op0, 1)));
11578 else
11579 {
11580 if (zero_extended)
11581 {
11582 op0 = simplify_gen_unary (ZERO_EXTEND, tmode, op0, mode);
11583 op1 = simplify_gen_unary (ZERO_EXTEND, tmode, op1, mode);
11584 }
11585 else
11586 {
11587 op0 = simplify_gen_unary (SIGN_EXTEND, tmode, op0, mode);
11588 op1 = simplify_gen_unary (SIGN_EXTEND, tmode, op1, mode);
11589 }
11590 break;
11591 }
11592 }
11593 }
11594
11595 #ifdef CANONICALIZE_COMPARISON
11596 /* If this machine only supports a subset of valid comparisons, see if we
11597 can convert an unsupported one into a supported one. */
11598 CANONICALIZE_COMPARISON (code, op0, op1);
11599 #endif
11600
11601 *pop0 = op0;
11602 *pop1 = op1;
11603
11604 return code;
11605 }
11606 \f
11607 /* Utility function for record_value_for_reg. Count number of
11608 rtxs in X. */
11609 static int
11610 count_rtxs (rtx x)
11611 {
11612 enum rtx_code code = GET_CODE (x);
11613 const char *fmt;
11614 int i, j, ret = 1;
11615
11616 if (GET_RTX_CLASS (code) == '2'
11617 || GET_RTX_CLASS (code) == 'c')
11618 {
11619 rtx x0 = XEXP (x, 0);
11620 rtx x1 = XEXP (x, 1);
11621
11622 if (x0 == x1)
11623 return 1 + 2 * count_rtxs (x0);
11624
11625 if ((GET_RTX_CLASS (GET_CODE (x1)) == '2'
11626 || GET_RTX_CLASS (GET_CODE (x1)) == 'c')
11627 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
11628 return 2 + 2 * count_rtxs (x0)
11629 + count_rtxs (x == XEXP (x1, 0)
11630 ? XEXP (x1, 1) : XEXP (x1, 0));
11631
11632 if ((GET_RTX_CLASS (GET_CODE (x0)) == '2'
11633 || GET_RTX_CLASS (GET_CODE (x0)) == 'c')
11634 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
11635 return 2 + 2 * count_rtxs (x1)
11636 + count_rtxs (x == XEXP (x0, 0)
11637 ? XEXP (x0, 1) : XEXP (x0, 0));
11638 }
11639
11640 fmt = GET_RTX_FORMAT (code);
11641 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
11642 if (fmt[i] == 'e')
11643 ret += count_rtxs (XEXP (x, i));
11644 else if (fmt[i] == 'E')
11645 for (j = 0; j < XVECLEN (x, i); j++)
11646 ret += count_rtxs (XVECEXP (x, i, j));
11647
11648 return ret;
11649 }
11650 \f
11651 /* Utility function for following routine. Called when X is part of a value
11652 being stored into last_set_value. Sets last_set_table_tick
11653 for each register mentioned. Similar to mention_regs in cse.c */
11654
11655 static void
11656 update_table_tick (rtx x)
11657 {
11658 enum rtx_code code = GET_CODE (x);
11659 const char *fmt = GET_RTX_FORMAT (code);
11660 int i, j;
11661
11662 if (code == REG)
11663 {
11664 unsigned int regno = REGNO (x);
11665 unsigned int endregno = END_REGNO (x);
11666 unsigned int r;
11667
11668 for (r = regno; r < endregno; r++)
11669 {
11670 reg_stat_type *rsp = VEC_index (reg_stat_type, reg_stat, r);
11671 rsp->last_set_table_tick = label_tick;
11672 }
11673
11674 return;
11675 }
11676
11677 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
11678 if (fmt[i] == 'e')
11679 {
11680 /* Check for identical subexpressions. If x contains
11681 identical subexpression we only have to traverse one of
11682 them. */
11683 if (i == 0 && ARITHMETIC_P (x))
11684 {
11685 /* Note that at this point x1 has already been
11686 processed. */
11687 rtx x0 = XEXP (x, 0);
11688 rtx x1 = XEXP (x, 1);
11689
11690 /* If x0 and x1 are identical then there is no need to
11691 process x0. */
11692 if (x0 == x1)
11693 break;
11694
11695 /* If x0 is identical to a subexpression of x1 then while
11696 processing x1, x0 has already been processed. Thus we
11697 are done with x. */
11698 if (ARITHMETIC_P (x1)
11699 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
11700 break;
11701
11702 /* If x1 is identical to a subexpression of x0 then we
11703 still have to process the rest of x0. */
11704 if (ARITHMETIC_P (x0)
11705 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
11706 {
11707 update_table_tick (XEXP (x0, x1 == XEXP (x0, 0) ? 1 : 0));
11708 break;
11709 }
11710 }
11711
11712 update_table_tick (XEXP (x, i));
11713 }
11714 else if (fmt[i] == 'E')
11715 for (j = 0; j < XVECLEN (x, i); j++)
11716 update_table_tick (XVECEXP (x, i, j));
11717 }
11718
11719 /* Record that REG is set to VALUE in insn INSN. If VALUE is zero, we
11720 are saying that the register is clobbered and we no longer know its
11721 value. If INSN is zero, don't update reg_stat[].last_set; this is
11722 only permitted with VALUE also zero and is used to invalidate the
11723 register. */
11724
11725 static void
11726 record_value_for_reg (rtx reg, rtx insn, rtx value)
11727 {
11728 unsigned int regno = REGNO (reg);
11729 unsigned int endregno = END_REGNO (reg);
11730 unsigned int i;
11731 reg_stat_type *rsp;
11732
11733 /* If VALUE contains REG and we have a previous value for REG, substitute
11734 the previous value. */
11735 if (value && insn && reg_overlap_mentioned_p (reg, value))
11736 {
11737 rtx tem;
11738
11739 /* Set things up so get_last_value is allowed to see anything set up to
11740 our insn. */
11741 subst_low_luid = DF_INSN_LUID (insn);
11742 tem = get_last_value (reg);
11743
11744 /* If TEM is simply a binary operation with two CLOBBERs as operands,
11745 it isn't going to be useful and will take a lot of time to process,
11746 so just use the CLOBBER. */
11747
11748 if (tem)
11749 {
11750 if (ARITHMETIC_P (tem)
11751 && GET_CODE (XEXP (tem, 0)) == CLOBBER
11752 && GET_CODE (XEXP (tem, 1)) == CLOBBER)
11753 tem = XEXP (tem, 0);
11754 else if (count_occurrences (value, reg, 1) >= 2)
11755 {
11756 /* If there are two or more occurrences of REG in VALUE,
11757 prevent the value from growing too much. */
11758 if (count_rtxs (tem) > MAX_LAST_VALUE_RTL)
11759 tem = gen_rtx_CLOBBER (GET_MODE (tem), const0_rtx);
11760 }
11761
11762 value = replace_rtx (copy_rtx (value), reg, tem);
11763 }
11764 }
11765
11766 /* For each register modified, show we don't know its value, that
11767 we don't know about its bitwise content, that its value has been
11768 updated, and that we don't know the location of the death of the
11769 register. */
11770 for (i = regno; i < endregno; i++)
11771 {
11772 rsp = VEC_index (reg_stat_type, reg_stat, i);
11773
11774 if (insn)
11775 rsp->last_set = insn;
11776
11777 rsp->last_set_value = 0;
11778 rsp->last_set_mode = VOIDmode;
11779 rsp->last_set_nonzero_bits = 0;
11780 rsp->last_set_sign_bit_copies = 0;
11781 rsp->last_death = 0;
11782 rsp->truncated_to_mode = VOIDmode;
11783 }
11784
11785 /* Mark registers that are being referenced in this value. */
11786 if (value)
11787 update_table_tick (value);
11788
11789 /* Now update the status of each register being set.
11790 If someone is using this register in this block, set this register
11791 to invalid since we will get confused between the two lives in this
11792 basic block. This makes using this register always invalid. In cse, we
11793 scan the table to invalidate all entries using this register, but this
11794 is too much work for us. */
11795
11796 for (i = regno; i < endregno; i++)
11797 {
11798 rsp = VEC_index (reg_stat_type, reg_stat, i);
11799 rsp->last_set_label = label_tick;
11800 if (!insn
11801 || (value && rsp->last_set_table_tick >= label_tick_ebb_start))
11802 rsp->last_set_invalid = 1;
11803 else
11804 rsp->last_set_invalid = 0;
11805 }
11806
11807 /* The value being assigned might refer to X (like in "x++;"). In that
11808 case, we must replace it with (clobber (const_int 0)) to prevent
11809 infinite loops. */
11810 rsp = VEC_index (reg_stat_type, reg_stat, regno);
11811 if (value && !get_last_value_validate (&value, insn, label_tick, 0))
11812 {
11813 value = copy_rtx (value);
11814 if (!get_last_value_validate (&value, insn, label_tick, 1))
11815 value = 0;
11816 }
11817
11818 /* For the main register being modified, update the value, the mode, the
11819 nonzero bits, and the number of sign bit copies. */
11820
11821 rsp->last_set_value = value;
11822
11823 if (value)
11824 {
11825 enum machine_mode mode = GET_MODE (reg);
11826 subst_low_luid = DF_INSN_LUID (insn);
11827 rsp->last_set_mode = mode;
11828 if (GET_MODE_CLASS (mode) == MODE_INT
11829 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
11830 mode = nonzero_bits_mode;
11831 rsp->last_set_nonzero_bits = nonzero_bits (value, mode);
11832 rsp->last_set_sign_bit_copies
11833 = num_sign_bit_copies (value, GET_MODE (reg));
11834 }
11835 }
11836
11837 /* Called via note_stores from record_dead_and_set_regs to handle one
11838 SET or CLOBBER in an insn. DATA is the instruction in which the
11839 set is occurring. */
11840
11841 static void
11842 record_dead_and_set_regs_1 (rtx dest, const_rtx setter, void *data)
11843 {
11844 rtx record_dead_insn = (rtx) data;
11845
11846 if (GET_CODE (dest) == SUBREG)
11847 dest = SUBREG_REG (dest);
11848
11849 if (!record_dead_insn)
11850 {
11851 if (REG_P (dest))
11852 record_value_for_reg (dest, NULL_RTX, NULL_RTX);
11853 return;
11854 }
11855
11856 if (REG_P (dest))
11857 {
11858 /* If we are setting the whole register, we know its value. Otherwise
11859 show that we don't know the value. We can handle SUBREG in
11860 some cases. */
11861 if (GET_CODE (setter) == SET && dest == SET_DEST (setter))
11862 record_value_for_reg (dest, record_dead_insn, SET_SRC (setter));
11863 else if (GET_CODE (setter) == SET
11864 && GET_CODE (SET_DEST (setter)) == SUBREG
11865 && SUBREG_REG (SET_DEST (setter)) == dest
11866 && GET_MODE_BITSIZE (GET_MODE (dest)) <= BITS_PER_WORD
11867 && subreg_lowpart_p (SET_DEST (setter)))
11868 record_value_for_reg (dest, record_dead_insn,
11869 gen_lowpart (GET_MODE (dest),
11870 SET_SRC (setter)));
11871 else
11872 record_value_for_reg (dest, record_dead_insn, NULL_RTX);
11873 }
11874 else if (MEM_P (dest)
11875 /* Ignore pushes, they clobber nothing. */
11876 && ! push_operand (dest, GET_MODE (dest)))
11877 mem_last_set = DF_INSN_LUID (record_dead_insn);
11878 }
11879
11880 /* Update the records of when each REG was most recently set or killed
11881 for the things done by INSN. This is the last thing done in processing
11882 INSN in the combiner loop.
11883
11884 We update reg_stat[], in particular fields last_set, last_set_value,
11885 last_set_mode, last_set_nonzero_bits, last_set_sign_bit_copies,
11886 last_death, and also the similar information mem_last_set (which insn
11887 most recently modified memory) and last_call_luid (which insn was the
11888 most recent subroutine call). */
11889
11890 static void
11891 record_dead_and_set_regs (rtx insn)
11892 {
11893 rtx link;
11894 unsigned int i;
11895
11896 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
11897 {
11898 if (REG_NOTE_KIND (link) == REG_DEAD
11899 && REG_P (XEXP (link, 0)))
11900 {
11901 unsigned int regno = REGNO (XEXP (link, 0));
11902 unsigned int endregno = END_REGNO (XEXP (link, 0));
11903
11904 for (i = regno; i < endregno; i++)
11905 {
11906 reg_stat_type *rsp;
11907
11908 rsp = VEC_index (reg_stat_type, reg_stat, i);
11909 rsp->last_death = insn;
11910 }
11911 }
11912 else if (REG_NOTE_KIND (link) == REG_INC)
11913 record_value_for_reg (XEXP (link, 0), insn, NULL_RTX);
11914 }
11915
11916 if (CALL_P (insn))
11917 {
11918 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
11919 if (TEST_HARD_REG_BIT (regs_invalidated_by_call, i))
11920 {
11921 reg_stat_type *rsp;
11922
11923 rsp = VEC_index (reg_stat_type, reg_stat, i);
11924 rsp->last_set_invalid = 1;
11925 rsp->last_set = insn;
11926 rsp->last_set_value = 0;
11927 rsp->last_set_mode = VOIDmode;
11928 rsp->last_set_nonzero_bits = 0;
11929 rsp->last_set_sign_bit_copies = 0;
11930 rsp->last_death = 0;
11931 rsp->truncated_to_mode = VOIDmode;
11932 }
11933
11934 last_call_luid = mem_last_set = DF_INSN_LUID (insn);
11935
11936 /* We can't combine into a call pattern. Remember, though, that
11937 the return value register is set at this LUID. We could
11938 still replace a register with the return value from the
11939 wrong subroutine call! */
11940 note_stores (PATTERN (insn), record_dead_and_set_regs_1, NULL_RTX);
11941 }
11942 else
11943 note_stores (PATTERN (insn), record_dead_and_set_regs_1, insn);
11944 }
11945
11946 /* If a SUBREG has the promoted bit set, it is in fact a property of the
11947 register present in the SUBREG, so for each such SUBREG go back and
11948 adjust nonzero and sign bit information of the registers that are
11949 known to have some zero/sign bits set.
11950
11951 This is needed because when combine blows the SUBREGs away, the
11952 information on zero/sign bits is lost and further combines can be
11953 missed because of that. */
11954
11955 static void
11956 record_promoted_value (rtx insn, rtx subreg)
11957 {
11958 rtx links, set;
11959 unsigned int regno = REGNO (SUBREG_REG (subreg));
11960 enum machine_mode mode = GET_MODE (subreg);
11961
11962 if (GET_MODE_BITSIZE (mode) > HOST_BITS_PER_WIDE_INT)
11963 return;
11964
11965 for (links = LOG_LINKS (insn); links;)
11966 {
11967 reg_stat_type *rsp;
11968
11969 insn = XEXP (links, 0);
11970 set = single_set (insn);
11971
11972 if (! set || !REG_P (SET_DEST (set))
11973 || REGNO (SET_DEST (set)) != regno
11974 || GET_MODE (SET_DEST (set)) != GET_MODE (SUBREG_REG (subreg)))
11975 {
11976 links = XEXP (links, 1);
11977 continue;
11978 }
11979
11980 rsp = VEC_index (reg_stat_type, reg_stat, regno);
11981 if (rsp->last_set == insn)
11982 {
11983 if (SUBREG_PROMOTED_UNSIGNED_P (subreg) > 0)
11984 rsp->last_set_nonzero_bits &= GET_MODE_MASK (mode);
11985 }
11986
11987 if (REG_P (SET_SRC (set)))
11988 {
11989 regno = REGNO (SET_SRC (set));
11990 links = LOG_LINKS (insn);
11991 }
11992 else
11993 break;
11994 }
11995 }
11996
11997 /* Check if X, a register, is known to contain a value already
11998 truncated to MODE. In this case we can use a subreg to refer to
11999 the truncated value even though in the generic case we would need
12000 an explicit truncation. */
12001
12002 static bool
12003 reg_truncated_to_mode (enum machine_mode mode, const_rtx x)
12004 {
12005 reg_stat_type *rsp = VEC_index (reg_stat_type, reg_stat, REGNO (x));
12006 enum machine_mode truncated = rsp->truncated_to_mode;
12007
12008 if (truncated == 0
12009 || rsp->truncation_label < label_tick_ebb_start)
12010 return false;
12011 if (GET_MODE_SIZE (truncated) <= GET_MODE_SIZE (mode))
12012 return true;
12013 if (TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (mode),
12014 GET_MODE_BITSIZE (truncated)))
12015 return true;
12016 return false;
12017 }
12018
12019 /* Callback for for_each_rtx. If *P is a hard reg or a subreg record the mode
12020 that the register is accessed in. For non-TRULY_NOOP_TRUNCATION targets we
12021 might be able to turn a truncate into a subreg using this information.
12022 Return -1 if traversing *P is complete or 0 otherwise. */
12023
12024 static int
12025 record_truncated_value (rtx *p, void *data ATTRIBUTE_UNUSED)
12026 {
12027 rtx x = *p;
12028 enum machine_mode truncated_mode;
12029 reg_stat_type *rsp;
12030
12031 if (GET_CODE (x) == SUBREG && REG_P (SUBREG_REG (x)))
12032 {
12033 enum machine_mode original_mode = GET_MODE (SUBREG_REG (x));
12034 truncated_mode = GET_MODE (x);
12035
12036 if (GET_MODE_SIZE (original_mode) <= GET_MODE_SIZE (truncated_mode))
12037 return -1;
12038
12039 if (TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (truncated_mode),
12040 GET_MODE_BITSIZE (original_mode)))
12041 return -1;
12042
12043 x = SUBREG_REG (x);
12044 }
12045 /* ??? For hard-regs we now record everything. We might be able to
12046 optimize this using last_set_mode. */
12047 else if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
12048 truncated_mode = GET_MODE (x);
12049 else
12050 return 0;
12051
12052 rsp = VEC_index (reg_stat_type, reg_stat, REGNO (x));
12053 if (rsp->truncated_to_mode == 0
12054 || rsp->truncation_label < label_tick_ebb_start
12055 || (GET_MODE_SIZE (truncated_mode)
12056 < GET_MODE_SIZE (rsp->truncated_to_mode)))
12057 {
12058 rsp->truncated_to_mode = truncated_mode;
12059 rsp->truncation_label = label_tick;
12060 }
12061
12062 return -1;
12063 }
12064
12065 /* Callback for note_uses. Find hardregs and subregs of pseudos and
12066 the modes they are used in. This can help truning TRUNCATEs into
12067 SUBREGs. */
12068
12069 static void
12070 record_truncated_values (rtx *x, void *data ATTRIBUTE_UNUSED)
12071 {
12072 for_each_rtx (x, record_truncated_value, NULL);
12073 }
12074
12075 /* Scan X for promoted SUBREGs. For each one found,
12076 note what it implies to the registers used in it. */
12077
12078 static void
12079 check_promoted_subreg (rtx insn, rtx x)
12080 {
12081 if (GET_CODE (x) == SUBREG
12082 && SUBREG_PROMOTED_VAR_P (x)
12083 && REG_P (SUBREG_REG (x)))
12084 record_promoted_value (insn, x);
12085 else
12086 {
12087 const char *format = GET_RTX_FORMAT (GET_CODE (x));
12088 int i, j;
12089
12090 for (i = 0; i < GET_RTX_LENGTH (GET_CODE (x)); i++)
12091 switch (format[i])
12092 {
12093 case 'e':
12094 check_promoted_subreg (insn, XEXP (x, i));
12095 break;
12096 case 'V':
12097 case 'E':
12098 if (XVEC (x, i) != 0)
12099 for (j = 0; j < XVECLEN (x, i); j++)
12100 check_promoted_subreg (insn, XVECEXP (x, i, j));
12101 break;
12102 }
12103 }
12104 }
12105 \f
12106 /* Verify that all the registers and memory references mentioned in *LOC are
12107 still valid. *LOC was part of a value set in INSN when label_tick was
12108 equal to TICK. Return 0 if some are not. If REPLACE is nonzero, replace
12109 the invalid references with (clobber (const_int 0)) and return 1. This
12110 replacement is useful because we often can get useful information about
12111 the form of a value (e.g., if it was produced by a shift that always
12112 produces -1 or 0) even though we don't know exactly what registers it
12113 was produced from. */
12114
12115 static int
12116 get_last_value_validate (rtx *loc, rtx insn, int tick, int replace)
12117 {
12118 rtx x = *loc;
12119 const char *fmt = GET_RTX_FORMAT (GET_CODE (x));
12120 int len = GET_RTX_LENGTH (GET_CODE (x));
12121 int i, j;
12122
12123 if (REG_P (x))
12124 {
12125 unsigned int regno = REGNO (x);
12126 unsigned int endregno = END_REGNO (x);
12127 unsigned int j;
12128
12129 for (j = regno; j < endregno; j++)
12130 {
12131 reg_stat_type *rsp = VEC_index (reg_stat_type, reg_stat, j);
12132 if (rsp->last_set_invalid
12133 /* If this is a pseudo-register that was only set once and not
12134 live at the beginning of the function, it is always valid. */
12135 || (! (regno >= FIRST_PSEUDO_REGISTER
12136 && REG_N_SETS (regno) == 1
12137 && (!REGNO_REG_SET_P
12138 (DF_LR_IN (ENTRY_BLOCK_PTR->next_bb), regno)))
12139 && rsp->last_set_label > tick))
12140 {
12141 if (replace)
12142 *loc = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
12143 return replace;
12144 }
12145 }
12146
12147 return 1;
12148 }
12149 /* If this is a memory reference, make sure that there were no stores after
12150 it that might have clobbered the value. We don't have alias info, so we
12151 assume any store invalidates it. Moreover, we only have local UIDs, so
12152 we also assume that there were stores in the intervening basic blocks. */
12153 else if (MEM_P (x) && !MEM_READONLY_P (x)
12154 && (tick != label_tick || DF_INSN_LUID (insn) <= mem_last_set))
12155 {
12156 if (replace)
12157 *loc = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
12158 return replace;
12159 }
12160
12161 for (i = 0; i < len; i++)
12162 {
12163 if (fmt[i] == 'e')
12164 {
12165 /* Check for identical subexpressions. If x contains
12166 identical subexpression we only have to traverse one of
12167 them. */
12168 if (i == 1 && ARITHMETIC_P (x))
12169 {
12170 /* Note that at this point x0 has already been checked
12171 and found valid. */
12172 rtx x0 = XEXP (x, 0);
12173 rtx x1 = XEXP (x, 1);
12174
12175 /* If x0 and x1 are identical then x is also valid. */
12176 if (x0 == x1)
12177 return 1;
12178
12179 /* If x1 is identical to a subexpression of x0 then
12180 while checking x0, x1 has already been checked. Thus
12181 it is valid and so as x. */
12182 if (ARITHMETIC_P (x0)
12183 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
12184 return 1;
12185
12186 /* If x0 is identical to a subexpression of x1 then x is
12187 valid iff the rest of x1 is valid. */
12188 if (ARITHMETIC_P (x1)
12189 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
12190 return
12191 get_last_value_validate (&XEXP (x1,
12192 x0 == XEXP (x1, 0) ? 1 : 0),
12193 insn, tick, replace);
12194 }
12195
12196 if (get_last_value_validate (&XEXP (x, i), insn, tick,
12197 replace) == 0)
12198 return 0;
12199 }
12200 else if (fmt[i] == 'E')
12201 for (j = 0; j < XVECLEN (x, i); j++)
12202 if (get_last_value_validate (&XVECEXP (x, i, j),
12203 insn, tick, replace) == 0)
12204 return 0;
12205 }
12206
12207 /* If we haven't found a reason for it to be invalid, it is valid. */
12208 return 1;
12209 }
12210
12211 /* Get the last value assigned to X, if known. Some registers
12212 in the value may be replaced with (clobber (const_int 0)) if their value
12213 is known longer known reliably. */
12214
12215 static rtx
12216 get_last_value (const_rtx x)
12217 {
12218 unsigned int regno;
12219 rtx value;
12220 reg_stat_type *rsp;
12221
12222 /* If this is a non-paradoxical SUBREG, get the value of its operand and
12223 then convert it to the desired mode. If this is a paradoxical SUBREG,
12224 we cannot predict what values the "extra" bits might have. */
12225 if (GET_CODE (x) == SUBREG
12226 && subreg_lowpart_p (x)
12227 && (GET_MODE_SIZE (GET_MODE (x))
12228 <= GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
12229 && (value = get_last_value (SUBREG_REG (x))) != 0)
12230 return gen_lowpart (GET_MODE (x), value);
12231
12232 if (!REG_P (x))
12233 return 0;
12234
12235 regno = REGNO (x);
12236 rsp = VEC_index (reg_stat_type, reg_stat, regno);
12237 value = rsp->last_set_value;
12238
12239 /* If we don't have a value, or if it isn't for this basic block and
12240 it's either a hard register, set more than once, or it's a live
12241 at the beginning of the function, return 0.
12242
12243 Because if it's not live at the beginning of the function then the reg
12244 is always set before being used (is never used without being set).
12245 And, if it's set only once, and it's always set before use, then all
12246 uses must have the same last value, even if it's not from this basic
12247 block. */
12248
12249 if (value == 0
12250 || (rsp->last_set_label < label_tick_ebb_start
12251 && (regno < FIRST_PSEUDO_REGISTER
12252 || REG_N_SETS (regno) != 1
12253 || REGNO_REG_SET_P
12254 (DF_LR_IN (ENTRY_BLOCK_PTR->next_bb), regno))))
12255 return 0;
12256
12257 /* If the value was set in a later insn than the ones we are processing,
12258 we can't use it even if the register was only set once. */
12259 if (rsp->last_set_label == label_tick
12260 && DF_INSN_LUID (rsp->last_set) >= subst_low_luid)
12261 return 0;
12262
12263 /* If the value has all its registers valid, return it. */
12264 if (get_last_value_validate (&value, rsp->last_set, rsp->last_set_label, 0))
12265 return value;
12266
12267 /* Otherwise, make a copy and replace any invalid register with
12268 (clobber (const_int 0)). If that fails for some reason, return 0. */
12269
12270 value = copy_rtx (value);
12271 if (get_last_value_validate (&value, rsp->last_set, rsp->last_set_label, 1))
12272 return value;
12273
12274 return 0;
12275 }
12276 \f
12277 /* Return nonzero if expression X refers to a REG or to memory
12278 that is set in an instruction more recent than FROM_LUID. */
12279
12280 static int
12281 use_crosses_set_p (const_rtx x, int from_luid)
12282 {
12283 const char *fmt;
12284 int i;
12285 enum rtx_code code = GET_CODE (x);
12286
12287 if (code == REG)
12288 {
12289 unsigned int regno = REGNO (x);
12290 unsigned endreg = END_REGNO (x);
12291
12292 #ifdef PUSH_ROUNDING
12293 /* Don't allow uses of the stack pointer to be moved,
12294 because we don't know whether the move crosses a push insn. */
12295 if (regno == STACK_POINTER_REGNUM && PUSH_ARGS)
12296 return 1;
12297 #endif
12298 for (; regno < endreg; regno++)
12299 {
12300 reg_stat_type *rsp = VEC_index (reg_stat_type, reg_stat, regno);
12301 if (rsp->last_set
12302 && rsp->last_set_label == label_tick
12303 && DF_INSN_LUID (rsp->last_set) > from_luid)
12304 return 1;
12305 }
12306 return 0;
12307 }
12308
12309 if (code == MEM && mem_last_set > from_luid)
12310 return 1;
12311
12312 fmt = GET_RTX_FORMAT (code);
12313
12314 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
12315 {
12316 if (fmt[i] == 'E')
12317 {
12318 int j;
12319 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
12320 if (use_crosses_set_p (XVECEXP (x, i, j), from_luid))
12321 return 1;
12322 }
12323 else if (fmt[i] == 'e'
12324 && use_crosses_set_p (XEXP (x, i), from_luid))
12325 return 1;
12326 }
12327 return 0;
12328 }
12329 \f
12330 /* Define three variables used for communication between the following
12331 routines. */
12332
12333 static unsigned int reg_dead_regno, reg_dead_endregno;
12334 static int reg_dead_flag;
12335
12336 /* Function called via note_stores from reg_dead_at_p.
12337
12338 If DEST is within [reg_dead_regno, reg_dead_endregno), set
12339 reg_dead_flag to 1 if X is a CLOBBER and to -1 it is a SET. */
12340
12341 static void
12342 reg_dead_at_p_1 (rtx dest, const_rtx x, void *data ATTRIBUTE_UNUSED)
12343 {
12344 unsigned int regno, endregno;
12345
12346 if (!REG_P (dest))
12347 return;
12348
12349 regno = REGNO (dest);
12350 endregno = END_REGNO (dest);
12351 if (reg_dead_endregno > regno && reg_dead_regno < endregno)
12352 reg_dead_flag = (GET_CODE (x) == CLOBBER) ? 1 : -1;
12353 }
12354
12355 /* Return nonzero if REG is known to be dead at INSN.
12356
12357 We scan backwards from INSN. If we hit a REG_DEAD note or a CLOBBER
12358 referencing REG, it is dead. If we hit a SET referencing REG, it is
12359 live. Otherwise, see if it is live or dead at the start of the basic
12360 block we are in. Hard regs marked as being live in NEWPAT_USED_REGS
12361 must be assumed to be always live. */
12362
12363 static int
12364 reg_dead_at_p (rtx reg, rtx insn)
12365 {
12366 basic_block block;
12367 unsigned int i;
12368
12369 /* Set variables for reg_dead_at_p_1. */
12370 reg_dead_regno = REGNO (reg);
12371 reg_dead_endregno = END_REGNO (reg);
12372
12373 reg_dead_flag = 0;
12374
12375 /* Check that reg isn't mentioned in NEWPAT_USED_REGS. For fixed registers
12376 we allow the machine description to decide whether use-and-clobber
12377 patterns are OK. */
12378 if (reg_dead_regno < FIRST_PSEUDO_REGISTER)
12379 {
12380 for (i = reg_dead_regno; i < reg_dead_endregno; i++)
12381 if (!fixed_regs[i] && TEST_HARD_REG_BIT (newpat_used_regs, i))
12382 return 0;
12383 }
12384
12385 /* Scan backwards until we find a REG_DEAD note, SET, CLOBBER, or
12386 beginning of basic block. */
12387 block = BLOCK_FOR_INSN (insn);
12388 for (;;)
12389 {
12390 if (INSN_P (insn))
12391 {
12392 note_stores (PATTERN (insn), reg_dead_at_p_1, NULL);
12393 if (reg_dead_flag)
12394 return reg_dead_flag == 1 ? 1 : 0;
12395
12396 if (find_regno_note (insn, REG_DEAD, reg_dead_regno))
12397 return 1;
12398 }
12399
12400 if (insn == BB_HEAD (block))
12401 break;
12402
12403 insn = PREV_INSN (insn);
12404 }
12405
12406 /* Look at live-in sets for the basic block that we were in. */
12407 for (i = reg_dead_regno; i < reg_dead_endregno; i++)
12408 if (REGNO_REG_SET_P (df_get_live_in (block), i))
12409 return 0;
12410
12411 return 1;
12412 }
12413 \f
12414 /* Note hard registers in X that are used. */
12415
12416 static void
12417 mark_used_regs_combine (rtx x)
12418 {
12419 RTX_CODE code = GET_CODE (x);
12420 unsigned int regno;
12421 int i;
12422
12423 switch (code)
12424 {
12425 case LABEL_REF:
12426 case SYMBOL_REF:
12427 case CONST_INT:
12428 case CONST:
12429 case CONST_DOUBLE:
12430 case CONST_VECTOR:
12431 case PC:
12432 case ADDR_VEC:
12433 case ADDR_DIFF_VEC:
12434 case ASM_INPUT:
12435 #ifdef HAVE_cc0
12436 /* CC0 must die in the insn after it is set, so we don't need to take
12437 special note of it here. */
12438 case CC0:
12439 #endif
12440 return;
12441
12442 case CLOBBER:
12443 /* If we are clobbering a MEM, mark any hard registers inside the
12444 address as used. */
12445 if (MEM_P (XEXP (x, 0)))
12446 mark_used_regs_combine (XEXP (XEXP (x, 0), 0));
12447 return;
12448
12449 case REG:
12450 regno = REGNO (x);
12451 /* A hard reg in a wide mode may really be multiple registers.
12452 If so, mark all of them just like the first. */
12453 if (regno < FIRST_PSEUDO_REGISTER)
12454 {
12455 /* None of this applies to the stack, frame or arg pointers. */
12456 if (regno == STACK_POINTER_REGNUM
12457 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
12458 || regno == HARD_FRAME_POINTER_REGNUM
12459 #endif
12460 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
12461 || (regno == ARG_POINTER_REGNUM && fixed_regs[regno])
12462 #endif
12463 || regno == FRAME_POINTER_REGNUM)
12464 return;
12465
12466 add_to_hard_reg_set (&newpat_used_regs, GET_MODE (x), regno);
12467 }
12468 return;
12469
12470 case SET:
12471 {
12472 /* If setting a MEM, or a SUBREG of a MEM, then note any hard regs in
12473 the address. */
12474 rtx testreg = SET_DEST (x);
12475
12476 while (GET_CODE (testreg) == SUBREG
12477 || GET_CODE (testreg) == ZERO_EXTRACT
12478 || GET_CODE (testreg) == STRICT_LOW_PART)
12479 testreg = XEXP (testreg, 0);
12480
12481 if (MEM_P (testreg))
12482 mark_used_regs_combine (XEXP (testreg, 0));
12483
12484 mark_used_regs_combine (SET_SRC (x));
12485 }
12486 return;
12487
12488 default:
12489 break;
12490 }
12491
12492 /* Recursively scan the operands of this expression. */
12493
12494 {
12495 const char *fmt = GET_RTX_FORMAT (code);
12496
12497 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
12498 {
12499 if (fmt[i] == 'e')
12500 mark_used_regs_combine (XEXP (x, i));
12501 else if (fmt[i] == 'E')
12502 {
12503 int j;
12504
12505 for (j = 0; j < XVECLEN (x, i); j++)
12506 mark_used_regs_combine (XVECEXP (x, i, j));
12507 }
12508 }
12509 }
12510 }
12511 \f
12512 /* Remove register number REGNO from the dead registers list of INSN.
12513
12514 Return the note used to record the death, if there was one. */
12515
12516 rtx
12517 remove_death (unsigned int regno, rtx insn)
12518 {
12519 rtx note = find_regno_note (insn, REG_DEAD, regno);
12520
12521 if (note)
12522 remove_note (insn, note);
12523
12524 return note;
12525 }
12526
12527 /* For each register (hardware or pseudo) used within expression X, if its
12528 death is in an instruction with luid between FROM_LUID (inclusive) and
12529 TO_INSN (exclusive), put a REG_DEAD note for that register in the
12530 list headed by PNOTES.
12531
12532 That said, don't move registers killed by maybe_kill_insn.
12533
12534 This is done when X is being merged by combination into TO_INSN. These
12535 notes will then be distributed as needed. */
12536
12537 static void
12538 move_deaths (rtx x, rtx maybe_kill_insn, int from_luid, rtx to_insn,
12539 rtx *pnotes)
12540 {
12541 const char *fmt;
12542 int len, i;
12543 enum rtx_code code = GET_CODE (x);
12544
12545 if (code == REG)
12546 {
12547 unsigned int regno = REGNO (x);
12548 rtx where_dead = VEC_index (reg_stat_type, reg_stat, regno)->last_death;
12549
12550 /* Don't move the register if it gets killed in between from and to. */
12551 if (maybe_kill_insn && reg_set_p (x, maybe_kill_insn)
12552 && ! reg_referenced_p (x, maybe_kill_insn))
12553 return;
12554
12555 if (where_dead
12556 && BLOCK_FOR_INSN (where_dead) == BLOCK_FOR_INSN (to_insn)
12557 && DF_INSN_LUID (where_dead) >= from_luid
12558 && DF_INSN_LUID (where_dead) < DF_INSN_LUID (to_insn))
12559 {
12560 rtx note = remove_death (regno, where_dead);
12561
12562 /* It is possible for the call above to return 0. This can occur
12563 when last_death points to I2 or I1 that we combined with.
12564 In that case make a new note.
12565
12566 We must also check for the case where X is a hard register
12567 and NOTE is a death note for a range of hard registers
12568 including X. In that case, we must put REG_DEAD notes for
12569 the remaining registers in place of NOTE. */
12570
12571 if (note != 0 && regno < FIRST_PSEUDO_REGISTER
12572 && (GET_MODE_SIZE (GET_MODE (XEXP (note, 0)))
12573 > GET_MODE_SIZE (GET_MODE (x))))
12574 {
12575 unsigned int deadregno = REGNO (XEXP (note, 0));
12576 unsigned int deadend = END_HARD_REGNO (XEXP (note, 0));
12577 unsigned int ourend = END_HARD_REGNO (x);
12578 unsigned int i;
12579
12580 for (i = deadregno; i < deadend; i++)
12581 if (i < regno || i >= ourend)
12582 add_reg_note (where_dead, REG_DEAD, regno_reg_rtx[i]);
12583 }
12584
12585 /* If we didn't find any note, or if we found a REG_DEAD note that
12586 covers only part of the given reg, and we have a multi-reg hard
12587 register, then to be safe we must check for REG_DEAD notes
12588 for each register other than the first. They could have
12589 their own REG_DEAD notes lying around. */
12590 else if ((note == 0
12591 || (note != 0
12592 && (GET_MODE_SIZE (GET_MODE (XEXP (note, 0)))
12593 < GET_MODE_SIZE (GET_MODE (x)))))
12594 && regno < FIRST_PSEUDO_REGISTER
12595 && hard_regno_nregs[regno][GET_MODE (x)] > 1)
12596 {
12597 unsigned int ourend = END_HARD_REGNO (x);
12598 unsigned int i, offset;
12599 rtx oldnotes = 0;
12600
12601 if (note)
12602 offset = hard_regno_nregs[regno][GET_MODE (XEXP (note, 0))];
12603 else
12604 offset = 1;
12605
12606 for (i = regno + offset; i < ourend; i++)
12607 move_deaths (regno_reg_rtx[i],
12608 maybe_kill_insn, from_luid, to_insn, &oldnotes);
12609 }
12610
12611 if (note != 0 && GET_MODE (XEXP (note, 0)) == GET_MODE (x))
12612 {
12613 XEXP (note, 1) = *pnotes;
12614 *pnotes = note;
12615 }
12616 else
12617 *pnotes = alloc_reg_note (REG_DEAD, x, *pnotes);
12618 }
12619
12620 return;
12621 }
12622
12623 else if (GET_CODE (x) == SET)
12624 {
12625 rtx dest = SET_DEST (x);
12626
12627 move_deaths (SET_SRC (x), maybe_kill_insn, from_luid, to_insn, pnotes);
12628
12629 /* In the case of a ZERO_EXTRACT, a STRICT_LOW_PART, or a SUBREG
12630 that accesses one word of a multi-word item, some
12631 piece of everything register in the expression is used by
12632 this insn, so remove any old death. */
12633 /* ??? So why do we test for equality of the sizes? */
12634
12635 if (GET_CODE (dest) == ZERO_EXTRACT
12636 || GET_CODE (dest) == STRICT_LOW_PART
12637 || (GET_CODE (dest) == SUBREG
12638 && (((GET_MODE_SIZE (GET_MODE (dest))
12639 + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
12640 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest)))
12641 + UNITS_PER_WORD - 1) / UNITS_PER_WORD))))
12642 {
12643 move_deaths (dest, maybe_kill_insn, from_luid, to_insn, pnotes);
12644 return;
12645 }
12646
12647 /* If this is some other SUBREG, we know it replaces the entire
12648 value, so use that as the destination. */
12649 if (GET_CODE (dest) == SUBREG)
12650 dest = SUBREG_REG (dest);
12651
12652 /* If this is a MEM, adjust deaths of anything used in the address.
12653 For a REG (the only other possibility), the entire value is
12654 being replaced so the old value is not used in this insn. */
12655
12656 if (MEM_P (dest))
12657 move_deaths (XEXP (dest, 0), maybe_kill_insn, from_luid,
12658 to_insn, pnotes);
12659 return;
12660 }
12661
12662 else if (GET_CODE (x) == CLOBBER)
12663 return;
12664
12665 len = GET_RTX_LENGTH (code);
12666 fmt = GET_RTX_FORMAT (code);
12667
12668 for (i = 0; i < len; i++)
12669 {
12670 if (fmt[i] == 'E')
12671 {
12672 int j;
12673 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
12674 move_deaths (XVECEXP (x, i, j), maybe_kill_insn, from_luid,
12675 to_insn, pnotes);
12676 }
12677 else if (fmt[i] == 'e')
12678 move_deaths (XEXP (x, i), maybe_kill_insn, from_luid, to_insn, pnotes);
12679 }
12680 }
12681 \f
12682 /* Return 1 if X is the target of a bit-field assignment in BODY, the
12683 pattern of an insn. X must be a REG. */
12684
12685 static int
12686 reg_bitfield_target_p (rtx x, rtx body)
12687 {
12688 int i;
12689
12690 if (GET_CODE (body) == SET)
12691 {
12692 rtx dest = SET_DEST (body);
12693 rtx target;
12694 unsigned int regno, tregno, endregno, endtregno;
12695
12696 if (GET_CODE (dest) == ZERO_EXTRACT)
12697 target = XEXP (dest, 0);
12698 else if (GET_CODE (dest) == STRICT_LOW_PART)
12699 target = SUBREG_REG (XEXP (dest, 0));
12700 else
12701 return 0;
12702
12703 if (GET_CODE (target) == SUBREG)
12704 target = SUBREG_REG (target);
12705
12706 if (!REG_P (target))
12707 return 0;
12708
12709 tregno = REGNO (target), regno = REGNO (x);
12710 if (tregno >= FIRST_PSEUDO_REGISTER || regno >= FIRST_PSEUDO_REGISTER)
12711 return target == x;
12712
12713 endtregno = end_hard_regno (GET_MODE (target), tregno);
12714 endregno = end_hard_regno (GET_MODE (x), regno);
12715
12716 return endregno > tregno && regno < endtregno;
12717 }
12718
12719 else if (GET_CODE (body) == PARALLEL)
12720 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
12721 if (reg_bitfield_target_p (x, XVECEXP (body, 0, i)))
12722 return 1;
12723
12724 return 0;
12725 }
12726 \f
12727 /* Given a chain of REG_NOTES originally from FROM_INSN, try to place them
12728 as appropriate. I3 and I2 are the insns resulting from the combination
12729 insns including FROM (I2 may be zero).
12730
12731 ELIM_I2 and ELIM_I1 are either zero or registers that we know will
12732 not need REG_DEAD notes because they are being substituted for. This
12733 saves searching in the most common cases.
12734
12735 Each note in the list is either ignored or placed on some insns, depending
12736 on the type of note. */
12737
12738 static void
12739 distribute_notes (rtx notes, rtx from_insn, rtx i3, rtx i2, rtx elim_i2,
12740 rtx elim_i1)
12741 {
12742 rtx note, next_note;
12743 rtx tem;
12744
12745 for (note = notes; note; note = next_note)
12746 {
12747 rtx place = 0, place2 = 0;
12748
12749 next_note = XEXP (note, 1);
12750 switch (REG_NOTE_KIND (note))
12751 {
12752 case REG_BR_PROB:
12753 case REG_BR_PRED:
12754 /* Doesn't matter much where we put this, as long as it's somewhere.
12755 It is preferable to keep these notes on branches, which is most
12756 likely to be i3. */
12757 place = i3;
12758 break;
12759
12760 case REG_VALUE_PROFILE:
12761 /* Just get rid of this note, as it is unused later anyway. */
12762 break;
12763
12764 case REG_NON_LOCAL_GOTO:
12765 if (JUMP_P (i3))
12766 place = i3;
12767 else
12768 {
12769 gcc_assert (i2 && JUMP_P (i2));
12770 place = i2;
12771 }
12772 break;
12773
12774 case REG_EH_REGION:
12775 /* These notes must remain with the call or trapping instruction. */
12776 if (CALL_P (i3))
12777 place = i3;
12778 else if (i2 && CALL_P (i2))
12779 place = i2;
12780 else
12781 {
12782 gcc_assert (cfun->can_throw_non_call_exceptions);
12783 if (may_trap_p (i3))
12784 place = i3;
12785 else if (i2 && may_trap_p (i2))
12786 place = i2;
12787 /* ??? Otherwise assume we've combined things such that we
12788 can now prove that the instructions can't trap. Drop the
12789 note in this case. */
12790 }
12791 break;
12792
12793 case REG_NORETURN:
12794 case REG_SETJMP:
12795 /* These notes must remain with the call. It should not be
12796 possible for both I2 and I3 to be a call. */
12797 if (CALL_P (i3))
12798 place = i3;
12799 else
12800 {
12801 gcc_assert (i2 && CALL_P (i2));
12802 place = i2;
12803 }
12804 break;
12805
12806 case REG_UNUSED:
12807 /* Any clobbers for i3 may still exist, and so we must process
12808 REG_UNUSED notes from that insn.
12809
12810 Any clobbers from i2 or i1 can only exist if they were added by
12811 recog_for_combine. In that case, recog_for_combine created the
12812 necessary REG_UNUSED notes. Trying to keep any original
12813 REG_UNUSED notes from these insns can cause incorrect output
12814 if it is for the same register as the original i3 dest.
12815 In that case, we will notice that the register is set in i3,
12816 and then add a REG_UNUSED note for the destination of i3, which
12817 is wrong. However, it is possible to have REG_UNUSED notes from
12818 i2 or i1 for register which were both used and clobbered, so
12819 we keep notes from i2 or i1 if they will turn into REG_DEAD
12820 notes. */
12821
12822 /* If this register is set or clobbered in I3, put the note there
12823 unless there is one already. */
12824 if (reg_set_p (XEXP (note, 0), PATTERN (i3)))
12825 {
12826 if (from_insn != i3)
12827 break;
12828
12829 if (! (REG_P (XEXP (note, 0))
12830 ? find_regno_note (i3, REG_UNUSED, REGNO (XEXP (note, 0)))
12831 : find_reg_note (i3, REG_UNUSED, XEXP (note, 0))))
12832 place = i3;
12833 }
12834 /* Otherwise, if this register is used by I3, then this register
12835 now dies here, so we must put a REG_DEAD note here unless there
12836 is one already. */
12837 else if (reg_referenced_p (XEXP (note, 0), PATTERN (i3))
12838 && ! (REG_P (XEXP (note, 0))
12839 ? find_regno_note (i3, REG_DEAD,
12840 REGNO (XEXP (note, 0)))
12841 : find_reg_note (i3, REG_DEAD, XEXP (note, 0))))
12842 {
12843 PUT_REG_NOTE_KIND (note, REG_DEAD);
12844 place = i3;
12845 }
12846 break;
12847
12848 case REG_EQUAL:
12849 case REG_EQUIV:
12850 case REG_NOALIAS:
12851 /* These notes say something about results of an insn. We can
12852 only support them if they used to be on I3 in which case they
12853 remain on I3. Otherwise they are ignored.
12854
12855 If the note refers to an expression that is not a constant, we
12856 must also ignore the note since we cannot tell whether the
12857 equivalence is still true. It might be possible to do
12858 slightly better than this (we only have a problem if I2DEST
12859 or I1DEST is present in the expression), but it doesn't
12860 seem worth the trouble. */
12861
12862 if (from_insn == i3
12863 && (XEXP (note, 0) == 0 || CONSTANT_P (XEXP (note, 0))))
12864 place = i3;
12865 break;
12866
12867 case REG_INC:
12868 /* These notes say something about how a register is used. They must
12869 be present on any use of the register in I2 or I3. */
12870 if (reg_mentioned_p (XEXP (note, 0), PATTERN (i3)))
12871 place = i3;
12872
12873 if (i2 && reg_mentioned_p (XEXP (note, 0), PATTERN (i2)))
12874 {
12875 if (place)
12876 place2 = i2;
12877 else
12878 place = i2;
12879 }
12880 break;
12881
12882 case REG_LABEL_TARGET:
12883 case REG_LABEL_OPERAND:
12884 /* This can show up in several ways -- either directly in the
12885 pattern, or hidden off in the constant pool with (or without?)
12886 a REG_EQUAL note. */
12887 /* ??? Ignore the without-reg_equal-note problem for now. */
12888 if (reg_mentioned_p (XEXP (note, 0), PATTERN (i3))
12889 || ((tem = find_reg_note (i3, REG_EQUAL, NULL_RTX))
12890 && GET_CODE (XEXP (tem, 0)) == LABEL_REF
12891 && XEXP (XEXP (tem, 0), 0) == XEXP (note, 0)))
12892 place = i3;
12893
12894 if (i2
12895 && (reg_mentioned_p (XEXP (note, 0), PATTERN (i2))
12896 || ((tem = find_reg_note (i2, REG_EQUAL, NULL_RTX))
12897 && GET_CODE (XEXP (tem, 0)) == LABEL_REF
12898 && XEXP (XEXP (tem, 0), 0) == XEXP (note, 0))))
12899 {
12900 if (place)
12901 place2 = i2;
12902 else
12903 place = i2;
12904 }
12905
12906 /* For REG_LABEL_TARGET on a JUMP_P, we prefer to put the note
12907 as a JUMP_LABEL or decrement LABEL_NUSES if it's already
12908 there. */
12909 if (place && JUMP_P (place)
12910 && REG_NOTE_KIND (note) == REG_LABEL_TARGET
12911 && (JUMP_LABEL (place) == NULL
12912 || JUMP_LABEL (place) == XEXP (note, 0)))
12913 {
12914 rtx label = JUMP_LABEL (place);
12915
12916 if (!label)
12917 JUMP_LABEL (place) = XEXP (note, 0);
12918 else if (LABEL_P (label))
12919 LABEL_NUSES (label)--;
12920 }
12921
12922 if (place2 && JUMP_P (place2)
12923 && REG_NOTE_KIND (note) == REG_LABEL_TARGET
12924 && (JUMP_LABEL (place2) == NULL
12925 || JUMP_LABEL (place2) == XEXP (note, 0)))
12926 {
12927 rtx label = JUMP_LABEL (place2);
12928
12929 if (!label)
12930 JUMP_LABEL (place2) = XEXP (note, 0);
12931 else if (LABEL_P (label))
12932 LABEL_NUSES (label)--;
12933 place2 = 0;
12934 }
12935 break;
12936
12937 case REG_NONNEG:
12938 /* This note says something about the value of a register prior
12939 to the execution of an insn. It is too much trouble to see
12940 if the note is still correct in all situations. It is better
12941 to simply delete it. */
12942 break;
12943
12944 case REG_DEAD:
12945 /* If we replaced the right hand side of FROM_INSN with a
12946 REG_EQUAL note, the original use of the dying register
12947 will not have been combined into I3 and I2. In such cases,
12948 FROM_INSN is guaranteed to be the first of the combined
12949 instructions, so we simply need to search back before
12950 FROM_INSN for the previous use or set of this register,
12951 then alter the notes there appropriately.
12952
12953 If the register is used as an input in I3, it dies there.
12954 Similarly for I2, if it is nonzero and adjacent to I3.
12955
12956 If the register is not used as an input in either I3 or I2
12957 and it is not one of the registers we were supposed to eliminate,
12958 there are two possibilities. We might have a non-adjacent I2
12959 or we might have somehow eliminated an additional register
12960 from a computation. For example, we might have had A & B where
12961 we discover that B will always be zero. In this case we will
12962 eliminate the reference to A.
12963
12964 In both cases, we must search to see if we can find a previous
12965 use of A and put the death note there. */
12966
12967 if (from_insn
12968 && from_insn == i2mod
12969 && !reg_overlap_mentioned_p (XEXP (note, 0), i2mod_new_rhs))
12970 tem = from_insn;
12971 else
12972 {
12973 if (from_insn
12974 && CALL_P (from_insn)
12975 && find_reg_fusage (from_insn, USE, XEXP (note, 0)))
12976 place = from_insn;
12977 else if (reg_referenced_p (XEXP (note, 0), PATTERN (i3)))
12978 place = i3;
12979 else if (i2 != 0 && next_nonnote_nondebug_insn (i2) == i3
12980 && reg_referenced_p (XEXP (note, 0), PATTERN (i2)))
12981 place = i2;
12982 else if ((rtx_equal_p (XEXP (note, 0), elim_i2)
12983 && !(i2mod
12984 && reg_overlap_mentioned_p (XEXP (note, 0),
12985 i2mod_old_rhs)))
12986 || rtx_equal_p (XEXP (note, 0), elim_i1))
12987 break;
12988 tem = i3;
12989 }
12990
12991 if (place == 0)
12992 {
12993 basic_block bb = this_basic_block;
12994
12995 for (tem = PREV_INSN (tem); place == 0; tem = PREV_INSN (tem))
12996 {
12997 if (!NONDEBUG_INSN_P (tem))
12998 {
12999 if (tem == BB_HEAD (bb))
13000 break;
13001 continue;
13002 }
13003
13004 /* If the register is being set at TEM, see if that is all
13005 TEM is doing. If so, delete TEM. Otherwise, make this
13006 into a REG_UNUSED note instead. Don't delete sets to
13007 global register vars. */
13008 if ((REGNO (XEXP (note, 0)) >= FIRST_PSEUDO_REGISTER
13009 || !global_regs[REGNO (XEXP (note, 0))])
13010 && reg_set_p (XEXP (note, 0), PATTERN (tem)))
13011 {
13012 rtx set = single_set (tem);
13013 rtx inner_dest = 0;
13014 #ifdef HAVE_cc0
13015 rtx cc0_setter = NULL_RTX;
13016 #endif
13017
13018 if (set != 0)
13019 for (inner_dest = SET_DEST (set);
13020 (GET_CODE (inner_dest) == STRICT_LOW_PART
13021 || GET_CODE (inner_dest) == SUBREG
13022 || GET_CODE (inner_dest) == ZERO_EXTRACT);
13023 inner_dest = XEXP (inner_dest, 0))
13024 ;
13025
13026 /* Verify that it was the set, and not a clobber that
13027 modified the register.
13028
13029 CC0 targets must be careful to maintain setter/user
13030 pairs. If we cannot delete the setter due to side
13031 effects, mark the user with an UNUSED note instead
13032 of deleting it. */
13033
13034 if (set != 0 && ! side_effects_p (SET_SRC (set))
13035 && rtx_equal_p (XEXP (note, 0), inner_dest)
13036 #ifdef HAVE_cc0
13037 && (! reg_mentioned_p (cc0_rtx, SET_SRC (set))
13038 || ((cc0_setter = prev_cc0_setter (tem)) != NULL
13039 && sets_cc0_p (PATTERN (cc0_setter)) > 0))
13040 #endif
13041 )
13042 {
13043 /* Move the notes and links of TEM elsewhere.
13044 This might delete other dead insns recursively.
13045 First set the pattern to something that won't use
13046 any register. */
13047 rtx old_notes = REG_NOTES (tem);
13048
13049 PATTERN (tem) = pc_rtx;
13050 REG_NOTES (tem) = NULL;
13051
13052 distribute_notes (old_notes, tem, tem, NULL_RTX,
13053 NULL_RTX, NULL_RTX);
13054 distribute_links (LOG_LINKS (tem));
13055
13056 SET_INSN_DELETED (tem);
13057 if (tem == i2)
13058 i2 = NULL_RTX;
13059
13060 #ifdef HAVE_cc0
13061 /* Delete the setter too. */
13062 if (cc0_setter)
13063 {
13064 PATTERN (cc0_setter) = pc_rtx;
13065 old_notes = REG_NOTES (cc0_setter);
13066 REG_NOTES (cc0_setter) = NULL;
13067
13068 distribute_notes (old_notes, cc0_setter,
13069 cc0_setter, NULL_RTX,
13070 NULL_RTX, NULL_RTX);
13071 distribute_links (LOG_LINKS (cc0_setter));
13072
13073 SET_INSN_DELETED (cc0_setter);
13074 if (cc0_setter == i2)
13075 i2 = NULL_RTX;
13076 }
13077 #endif
13078 }
13079 else
13080 {
13081 PUT_REG_NOTE_KIND (note, REG_UNUSED);
13082
13083 /* If there isn't already a REG_UNUSED note, put one
13084 here. Do not place a REG_DEAD note, even if
13085 the register is also used here; that would not
13086 match the algorithm used in lifetime analysis
13087 and can cause the consistency check in the
13088 scheduler to fail. */
13089 if (! find_regno_note (tem, REG_UNUSED,
13090 REGNO (XEXP (note, 0))))
13091 place = tem;
13092 break;
13093 }
13094 }
13095 else if (reg_referenced_p (XEXP (note, 0), PATTERN (tem))
13096 || (CALL_P (tem)
13097 && find_reg_fusage (tem, USE, XEXP (note, 0))))
13098 {
13099 place = tem;
13100
13101 /* If we are doing a 3->2 combination, and we have a
13102 register which formerly died in i3 and was not used
13103 by i2, which now no longer dies in i3 and is used in
13104 i2 but does not die in i2, and place is between i2
13105 and i3, then we may need to move a link from place to
13106 i2. */
13107 if (i2 && DF_INSN_LUID (place) > DF_INSN_LUID (i2)
13108 && from_insn
13109 && DF_INSN_LUID (from_insn) > DF_INSN_LUID (i2)
13110 && reg_referenced_p (XEXP (note, 0), PATTERN (i2)))
13111 {
13112 rtx links = LOG_LINKS (place);
13113 LOG_LINKS (place) = 0;
13114 distribute_links (links);
13115 }
13116 break;
13117 }
13118
13119 if (tem == BB_HEAD (bb))
13120 break;
13121 }
13122
13123 }
13124
13125 /* If the register is set or already dead at PLACE, we needn't do
13126 anything with this note if it is still a REG_DEAD note.
13127 We check here if it is set at all, not if is it totally replaced,
13128 which is what `dead_or_set_p' checks, so also check for it being
13129 set partially. */
13130
13131 if (place && REG_NOTE_KIND (note) == REG_DEAD)
13132 {
13133 unsigned int regno = REGNO (XEXP (note, 0));
13134 reg_stat_type *rsp = VEC_index (reg_stat_type, reg_stat, regno);
13135
13136 if (dead_or_set_p (place, XEXP (note, 0))
13137 || reg_bitfield_target_p (XEXP (note, 0), PATTERN (place)))
13138 {
13139 /* Unless the register previously died in PLACE, clear
13140 last_death. [I no longer understand why this is
13141 being done.] */
13142 if (rsp->last_death != place)
13143 rsp->last_death = 0;
13144 place = 0;
13145 }
13146 else
13147 rsp->last_death = place;
13148
13149 /* If this is a death note for a hard reg that is occupying
13150 multiple registers, ensure that we are still using all
13151 parts of the object. If we find a piece of the object
13152 that is unused, we must arrange for an appropriate REG_DEAD
13153 note to be added for it. However, we can't just emit a USE
13154 and tag the note to it, since the register might actually
13155 be dead; so we recourse, and the recursive call then finds
13156 the previous insn that used this register. */
13157
13158 if (place && regno < FIRST_PSEUDO_REGISTER
13159 && hard_regno_nregs[regno][GET_MODE (XEXP (note, 0))] > 1)
13160 {
13161 unsigned int endregno = END_HARD_REGNO (XEXP (note, 0));
13162 int all_used = 1;
13163 unsigned int i;
13164
13165 for (i = regno; i < endregno; i++)
13166 if ((! refers_to_regno_p (i, i + 1, PATTERN (place), 0)
13167 && ! find_regno_fusage (place, USE, i))
13168 || dead_or_set_regno_p (place, i))
13169 all_used = 0;
13170
13171 if (! all_used)
13172 {
13173 /* Put only REG_DEAD notes for pieces that are
13174 not already dead or set. */
13175
13176 for (i = regno; i < endregno;
13177 i += hard_regno_nregs[i][reg_raw_mode[i]])
13178 {
13179 rtx piece = regno_reg_rtx[i];
13180 basic_block bb = this_basic_block;
13181
13182 if (! dead_or_set_p (place, piece)
13183 && ! reg_bitfield_target_p (piece,
13184 PATTERN (place)))
13185 {
13186 rtx new_note = alloc_reg_note (REG_DEAD, piece,
13187 NULL_RTX);
13188
13189 distribute_notes (new_note, place, place,
13190 NULL_RTX, NULL_RTX, NULL_RTX);
13191 }
13192 else if (! refers_to_regno_p (i, i + 1,
13193 PATTERN (place), 0)
13194 && ! find_regno_fusage (place, USE, i))
13195 for (tem = PREV_INSN (place); ;
13196 tem = PREV_INSN (tem))
13197 {
13198 if (!NONDEBUG_INSN_P (tem))
13199 {
13200 if (tem == BB_HEAD (bb))
13201 break;
13202 continue;
13203 }
13204 if (dead_or_set_p (tem, piece)
13205 || reg_bitfield_target_p (piece,
13206 PATTERN (tem)))
13207 {
13208 add_reg_note (tem, REG_UNUSED, piece);
13209 break;
13210 }
13211 }
13212
13213 }
13214
13215 place = 0;
13216 }
13217 }
13218 }
13219 break;
13220
13221 default:
13222 /* Any other notes should not be present at this point in the
13223 compilation. */
13224 gcc_unreachable ();
13225 }
13226
13227 if (place)
13228 {
13229 XEXP (note, 1) = REG_NOTES (place);
13230 REG_NOTES (place) = note;
13231 }
13232
13233 if (place2)
13234 add_reg_note (place2, REG_NOTE_KIND (note), XEXP (note, 0));
13235 }
13236 }
13237 \f
13238 /* Similarly to above, distribute the LOG_LINKS that used to be present on
13239 I3, I2, and I1 to new locations. This is also called to add a link
13240 pointing at I3 when I3's destination is changed. */
13241
13242 static void
13243 distribute_links (rtx links)
13244 {
13245 rtx link, next_link;
13246
13247 for (link = links; link; link = next_link)
13248 {
13249 rtx place = 0;
13250 rtx insn;
13251 rtx set, reg;
13252
13253 next_link = XEXP (link, 1);
13254
13255 /* If the insn that this link points to is a NOTE or isn't a single
13256 set, ignore it. In the latter case, it isn't clear what we
13257 can do other than ignore the link, since we can't tell which
13258 register it was for. Such links wouldn't be used by combine
13259 anyway.
13260
13261 It is not possible for the destination of the target of the link to
13262 have been changed by combine. The only potential of this is if we
13263 replace I3, I2, and I1 by I3 and I2. But in that case the
13264 destination of I2 also remains unchanged. */
13265
13266 if (NOTE_P (XEXP (link, 0))
13267 || (set = single_set (XEXP (link, 0))) == 0)
13268 continue;
13269
13270 reg = SET_DEST (set);
13271 while (GET_CODE (reg) == SUBREG || GET_CODE (reg) == ZERO_EXTRACT
13272 || GET_CODE (reg) == STRICT_LOW_PART)
13273 reg = XEXP (reg, 0);
13274
13275 /* A LOG_LINK is defined as being placed on the first insn that uses
13276 a register and points to the insn that sets the register. Start
13277 searching at the next insn after the target of the link and stop
13278 when we reach a set of the register or the end of the basic block.
13279
13280 Note that this correctly handles the link that used to point from
13281 I3 to I2. Also note that not much searching is typically done here
13282 since most links don't point very far away. */
13283
13284 for (insn = NEXT_INSN (XEXP (link, 0));
13285 (insn && (this_basic_block->next_bb == EXIT_BLOCK_PTR
13286 || BB_HEAD (this_basic_block->next_bb) != insn));
13287 insn = NEXT_INSN (insn))
13288 if (DEBUG_INSN_P (insn))
13289 continue;
13290 else if (INSN_P (insn) && reg_overlap_mentioned_p (reg, PATTERN (insn)))
13291 {
13292 if (reg_referenced_p (reg, PATTERN (insn)))
13293 place = insn;
13294 break;
13295 }
13296 else if (CALL_P (insn)
13297 && find_reg_fusage (insn, USE, reg))
13298 {
13299 place = insn;
13300 break;
13301 }
13302 else if (INSN_P (insn) && reg_set_p (reg, insn))
13303 break;
13304
13305 /* If we found a place to put the link, place it there unless there
13306 is already a link to the same insn as LINK at that point. */
13307
13308 if (place)
13309 {
13310 rtx link2;
13311
13312 for (link2 = LOG_LINKS (place); link2; link2 = XEXP (link2, 1))
13313 if (XEXP (link2, 0) == XEXP (link, 0))
13314 break;
13315
13316 if (link2 == 0)
13317 {
13318 XEXP (link, 1) = LOG_LINKS (place);
13319 LOG_LINKS (place) = link;
13320
13321 /* Set added_links_insn to the earliest insn we added a
13322 link to. */
13323 if (added_links_insn == 0
13324 || DF_INSN_LUID (added_links_insn) > DF_INSN_LUID (place))
13325 added_links_insn = place;
13326 }
13327 }
13328 }
13329 }
13330 \f
13331 /* Subroutine of unmentioned_reg_p and callback from for_each_rtx.
13332 Check whether the expression pointer to by LOC is a register or
13333 memory, and if so return 1 if it isn't mentioned in the rtx EXPR.
13334 Otherwise return zero. */
13335
13336 static int
13337 unmentioned_reg_p_1 (rtx *loc, void *expr)
13338 {
13339 rtx x = *loc;
13340
13341 if (x != NULL_RTX
13342 && (REG_P (x) || MEM_P (x))
13343 && ! reg_mentioned_p (x, (rtx) expr))
13344 return 1;
13345 return 0;
13346 }
13347
13348 /* Check for any register or memory mentioned in EQUIV that is not
13349 mentioned in EXPR. This is used to restrict EQUIV to "specializations"
13350 of EXPR where some registers may have been replaced by constants. */
13351
13352 static bool
13353 unmentioned_reg_p (rtx equiv, rtx expr)
13354 {
13355 return for_each_rtx (&equiv, unmentioned_reg_p_1, expr);
13356 }
13357 \f
13358 void
13359 dump_combine_stats (FILE *file)
13360 {
13361 fprintf
13362 (file,
13363 ";; Combiner statistics: %d attempts, %d substitutions (%d requiring new space),\n;; %d successes.\n\n",
13364 combine_attempts, combine_merges, combine_extras, combine_successes);
13365 }
13366
13367 void
13368 dump_combine_total_stats (FILE *file)
13369 {
13370 fprintf
13371 (file,
13372 "\n;; Combiner totals: %d attempts, %d substitutions (%d requiring new space),\n;; %d successes.\n",
13373 total_attempts, total_merges, total_extras, total_successes);
13374 }
13375 \f
13376 static bool
13377 gate_handle_combine (void)
13378 {
13379 return (optimize > 0);
13380 }
13381
13382 /* Try combining insns through substitution. */
13383 static unsigned int
13384 rest_of_handle_combine (void)
13385 {
13386 int rebuild_jump_labels_after_combine;
13387
13388 df_set_flags (DF_LR_RUN_DCE + DF_DEFER_INSN_RESCAN);
13389 df_note_add_problem ();
13390 df_analyze ();
13391
13392 regstat_init_n_sets_and_refs ();
13393
13394 rebuild_jump_labels_after_combine
13395 = combine_instructions (get_insns (), max_reg_num ());
13396
13397 /* Combining insns may have turned an indirect jump into a
13398 direct jump. Rebuild the JUMP_LABEL fields of jumping
13399 instructions. */
13400 if (rebuild_jump_labels_after_combine)
13401 {
13402 timevar_push (TV_JUMP);
13403 rebuild_jump_labels (get_insns ());
13404 cleanup_cfg (0);
13405 timevar_pop (TV_JUMP);
13406 }
13407
13408 regstat_free_n_sets_and_refs ();
13409 return 0;
13410 }
13411
13412 struct rtl_opt_pass pass_combine =
13413 {
13414 {
13415 RTL_PASS,
13416 "combine", /* name */
13417 gate_handle_combine, /* gate */
13418 rest_of_handle_combine, /* execute */
13419 NULL, /* sub */
13420 NULL, /* next */
13421 0, /* static_pass_number */
13422 TV_COMBINE, /* tv_id */
13423 PROP_cfglayout, /* properties_required */
13424 0, /* properties_provided */
13425 0, /* properties_destroyed */
13426 0, /* todo_flags_start */
13427 TODO_dump_func |
13428 TODO_df_finish | TODO_verify_rtl_sharing |
13429 TODO_ggc_collect, /* todo_flags_finish */
13430 }
13431 };