Add 2006 to copyright line
[gcc.git] / gcc / combine.c
1 /* Optimize by combining instructions for GNU compiler.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006 Free Software Foundation, Inc.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
20 02110-1301, USA. */
21
22 /* This module is essentially the "combiner" phase of the U. of Arizona
23 Portable Optimizer, but redone to work on our list-structured
24 representation for RTL instead of their string representation.
25
26 The LOG_LINKS of each insn identify the most recent assignment
27 to each REG used in the insn. It is a list of previous insns,
28 each of which contains a SET for a REG that is used in this insn
29 and not used or set in between. LOG_LINKs never cross basic blocks.
30 They were set up by the preceding pass (lifetime analysis).
31
32 We try to combine each pair of insns joined by a logical link.
33 We also try to combine triples of insns A, B and C when
34 C has a link back to B and B has a link back to A.
35
36 LOG_LINKS does not have links for use of the CC0. They don't
37 need to, because the insn that sets the CC0 is always immediately
38 before the insn that tests it. So we always regard a branch
39 insn as having a logical link to the preceding insn. The same is true
40 for an insn explicitly using CC0.
41
42 We check (with use_crosses_set_p) to avoid combining in such a way
43 as to move a computation to a place where its value would be different.
44
45 Combination is done by mathematically substituting the previous
46 insn(s) values for the regs they set into the expressions in
47 the later insns that refer to these regs. If the result is a valid insn
48 for our target machine, according to the machine description,
49 we install it, delete the earlier insns, and update the data flow
50 information (LOG_LINKS and REG_NOTES) for what we did.
51
52 There are a few exceptions where the dataflow information created by
53 flow.c aren't completely updated:
54
55 - reg_live_length is not updated
56 - reg_n_refs is not adjusted in the rare case when a register is
57 no longer required in a computation
58 - there are extremely rare cases (see distribute_notes) when a
59 REG_DEAD note is lost
60 - a LOG_LINKS entry that refers to an insn with multiple SETs may be
61 removed because there is no way to know which register it was
62 linking
63
64 To simplify substitution, we combine only when the earlier insn(s)
65 consist of only a single assignment. To simplify updating afterward,
66 we never combine when a subroutine call appears in the middle.
67
68 Since we do not represent assignments to CC0 explicitly except when that
69 is all an insn does, there is no LOG_LINKS entry in an insn that uses
70 the condition code for the insn that set the condition code.
71 Fortunately, these two insns must be consecutive.
72 Therefore, every JUMP_INSN is taken to have an implicit logical link
73 to the preceding insn. This is not quite right, since non-jumps can
74 also use the condition code; but in practice such insns would not
75 combine anyway. */
76
77 #include "config.h"
78 #include "system.h"
79 #include "coretypes.h"
80 #include "tm.h"
81 #include "rtl.h"
82 #include "tree.h"
83 #include "tm_p.h"
84 #include "flags.h"
85 #include "regs.h"
86 #include "hard-reg-set.h"
87 #include "basic-block.h"
88 #include "insn-config.h"
89 #include "function.h"
90 /* Include expr.h after insn-config.h so we get HAVE_conditional_move. */
91 #include "expr.h"
92 #include "insn-attr.h"
93 #include "recog.h"
94 #include "real.h"
95 #include "toplev.h"
96 #include "target.h"
97 #include "optabs.h"
98 #include "insn-codes.h"
99 #include "rtlhooks-def.h"
100 /* Include output.h for dump_file. */
101 #include "output.h"
102 #include "params.h"
103 #include "timevar.h"
104 #include "tree-pass.h"
105
106 /* Number of attempts to combine instructions in this function. */
107
108 static int combine_attempts;
109
110 /* Number of attempts that got as far as substitution in this function. */
111
112 static int combine_merges;
113
114 /* Number of instructions combined with added SETs in this function. */
115
116 static int combine_extras;
117
118 /* Number of instructions combined in this function. */
119
120 static int combine_successes;
121
122 /* Totals over entire compilation. */
123
124 static int total_attempts, total_merges, total_extras, total_successes;
125
126 \f
127 /* Vector mapping INSN_UIDs to cuids.
128 The cuids are like uids but increase monotonically always.
129 Combine always uses cuids so that it can compare them.
130 But actually renumbering the uids, which we used to do,
131 proves to be a bad idea because it makes it hard to compare
132 the dumps produced by earlier passes with those from later passes. */
133
134 static int *uid_cuid;
135 static int max_uid_cuid;
136
137 /* Get the cuid of an insn. */
138
139 #define INSN_CUID(INSN) \
140 (INSN_UID (INSN) > max_uid_cuid ? insn_cuid (INSN) : uid_cuid[INSN_UID (INSN)])
141
142 /* In case BITS_PER_WORD == HOST_BITS_PER_WIDE_INT, shifting by
143 BITS_PER_WORD would invoke undefined behavior. Work around it. */
144
145 #define UWIDE_SHIFT_LEFT_BY_BITS_PER_WORD(val) \
146 (((unsigned HOST_WIDE_INT) (val) << (BITS_PER_WORD - 1)) << 1)
147
148 /* Maximum register number, which is the size of the tables below. */
149
150 static unsigned int combine_max_regno;
151
152 struct reg_stat {
153 /* Record last point of death of (hard or pseudo) register n. */
154 rtx last_death;
155
156 /* Record last point of modification of (hard or pseudo) register n. */
157 rtx last_set;
158
159 /* The next group of fields allows the recording of the last value assigned
160 to (hard or pseudo) register n. We use this information to see if an
161 operation being processed is redundant given a prior operation performed
162 on the register. For example, an `and' with a constant is redundant if
163 all the zero bits are already known to be turned off.
164
165 We use an approach similar to that used by cse, but change it in the
166 following ways:
167
168 (1) We do not want to reinitialize at each label.
169 (2) It is useful, but not critical, to know the actual value assigned
170 to a register. Often just its form is helpful.
171
172 Therefore, we maintain the following fields:
173
174 last_set_value the last value assigned
175 last_set_label records the value of label_tick when the
176 register was assigned
177 last_set_table_tick records the value of label_tick when a
178 value using the register is assigned
179 last_set_invalid set to nonzero when it is not valid
180 to use the value of this register in some
181 register's value
182
183 To understand the usage of these tables, it is important to understand
184 the distinction between the value in last_set_value being valid and
185 the register being validly contained in some other expression in the
186 table.
187
188 (The next two parameters are out of date).
189
190 reg_stat[i].last_set_value is valid if it is nonzero, and either
191 reg_n_sets[i] is 1 or reg_stat[i].last_set_label == label_tick.
192
193 Register I may validly appear in any expression returned for the value
194 of another register if reg_n_sets[i] is 1. It may also appear in the
195 value for register J if reg_stat[j].last_set_invalid is zero, or
196 reg_stat[i].last_set_label < reg_stat[j].last_set_label.
197
198 If an expression is found in the table containing a register which may
199 not validly appear in an expression, the register is replaced by
200 something that won't match, (clobber (const_int 0)). */
201
202 /* Record last value assigned to (hard or pseudo) register n. */
203
204 rtx last_set_value;
205
206 /* Record the value of label_tick when an expression involving register n
207 is placed in last_set_value. */
208
209 int last_set_table_tick;
210
211 /* Record the value of label_tick when the value for register n is placed in
212 last_set_value. */
213
214 int last_set_label;
215
216 /* These fields are maintained in parallel with last_set_value and are
217 used to store the mode in which the register was last set, the bits
218 that were known to be zero when it was last set, and the number of
219 sign bits copies it was known to have when it was last set. */
220
221 unsigned HOST_WIDE_INT last_set_nonzero_bits;
222 char last_set_sign_bit_copies;
223 ENUM_BITFIELD(machine_mode) last_set_mode : 8;
224
225 /* Set nonzero if references to register n in expressions should not be
226 used. last_set_invalid is set nonzero when this register is being
227 assigned to and last_set_table_tick == label_tick. */
228
229 char last_set_invalid;
230
231 /* Some registers that are set more than once and used in more than one
232 basic block are nevertheless always set in similar ways. For example,
233 a QImode register may be loaded from memory in two places on a machine
234 where byte loads zero extend.
235
236 We record in the following fields if a register has some leading bits
237 that are always equal to the sign bit, and what we know about the
238 nonzero bits of a register, specifically which bits are known to be
239 zero.
240
241 If an entry is zero, it means that we don't know anything special. */
242
243 unsigned char sign_bit_copies;
244
245 unsigned HOST_WIDE_INT nonzero_bits;
246
247 /* Record the value of the label_tick when the last truncation
248 happened. The field truncated_to_mode is only valid if
249 truncation_label == label_tick. */
250
251 int truncation_label;
252
253 /* Record the last truncation seen for this register. If truncation
254 is not a nop to this mode we might be able to save an explicit
255 truncation if we know that value already contains a truncated
256 value. */
257
258 ENUM_BITFIELD(machine_mode) truncated_to_mode : 8;
259 };
260
261 static struct reg_stat *reg_stat;
262
263 /* Record the cuid of the last insn that invalidated memory
264 (anything that writes memory, and subroutine calls, but not pushes). */
265
266 static int mem_last_set;
267
268 /* Record the cuid of the last CALL_INSN
269 so we can tell whether a potential combination crosses any calls. */
270
271 static int last_call_cuid;
272
273 /* When `subst' is called, this is the insn that is being modified
274 (by combining in a previous insn). The PATTERN of this insn
275 is still the old pattern partially modified and it should not be
276 looked at, but this may be used to examine the successors of the insn
277 to judge whether a simplification is valid. */
278
279 static rtx subst_insn;
280
281 /* This is the lowest CUID that `subst' is currently dealing with.
282 get_last_value will not return a value if the register was set at or
283 after this CUID. If not for this mechanism, we could get confused if
284 I2 or I1 in try_combine were an insn that used the old value of a register
285 to obtain a new value. In that case, we might erroneously get the
286 new value of the register when we wanted the old one. */
287
288 static int subst_low_cuid;
289
290 /* This contains any hard registers that are used in newpat; reg_dead_at_p
291 must consider all these registers to be always live. */
292
293 static HARD_REG_SET newpat_used_regs;
294
295 /* This is an insn to which a LOG_LINKS entry has been added. If this
296 insn is the earlier than I2 or I3, combine should rescan starting at
297 that location. */
298
299 static rtx added_links_insn;
300
301 /* Basic block in which we are performing combines. */
302 static basic_block this_basic_block;
303
304 /* A bitmap indicating which blocks had registers go dead at entry.
305 After combine, we'll need to re-do global life analysis with
306 those blocks as starting points. */
307 static sbitmap refresh_blocks;
308 \f
309 /* The following array records the insn_rtx_cost for every insn
310 in the instruction stream. */
311
312 static int *uid_insn_cost;
313
314 /* Length of the currently allocated uid_insn_cost array. */
315
316 static int last_insn_cost;
317
318 /* Incremented for each label. */
319
320 static int label_tick;
321
322 /* Mode used to compute significance in reg_stat[].nonzero_bits. It is the
323 largest integer mode that can fit in HOST_BITS_PER_WIDE_INT. */
324
325 static enum machine_mode nonzero_bits_mode;
326
327 /* Nonzero when reg_stat[].nonzero_bits and reg_stat[].sign_bit_copies can
328 be safely used. It is zero while computing them and after combine has
329 completed. This former test prevents propagating values based on
330 previously set values, which can be incorrect if a variable is modified
331 in a loop. */
332
333 static int nonzero_sign_valid;
334
335 \f
336 /* Record one modification to rtl structure
337 to be undone by storing old_contents into *where. */
338
339 struct undo
340 {
341 struct undo *next;
342 enum { UNDO_RTX, UNDO_INT, UNDO_MODE } kind;
343 union { rtx r; int i; enum machine_mode m; } old_contents;
344 union { rtx *r; int *i; } where;
345 };
346
347 /* Record a bunch of changes to be undone, up to MAX_UNDO of them.
348 num_undo says how many are currently recorded.
349
350 other_insn is nonzero if we have modified some other insn in the process
351 of working on subst_insn. It must be verified too. */
352
353 struct undobuf
354 {
355 struct undo *undos;
356 struct undo *frees;
357 rtx other_insn;
358 };
359
360 static struct undobuf undobuf;
361
362 /* Number of times the pseudo being substituted for
363 was found and replaced. */
364
365 static int n_occurrences;
366
367 static rtx reg_nonzero_bits_for_combine (rtx, enum machine_mode, rtx,
368 enum machine_mode,
369 unsigned HOST_WIDE_INT,
370 unsigned HOST_WIDE_INT *);
371 static rtx reg_num_sign_bit_copies_for_combine (rtx, enum machine_mode, rtx,
372 enum machine_mode,
373 unsigned int, unsigned int *);
374 static void do_SUBST (rtx *, rtx);
375 static void do_SUBST_INT (int *, int);
376 static void init_reg_last (void);
377 static void setup_incoming_promotions (void);
378 static void set_nonzero_bits_and_sign_copies (rtx, rtx, void *);
379 static int cant_combine_insn_p (rtx);
380 static int can_combine_p (rtx, rtx, rtx, rtx, rtx *, rtx *);
381 static int combinable_i3pat (rtx, rtx *, rtx, rtx, int, rtx *);
382 static int contains_muldiv (rtx);
383 static rtx try_combine (rtx, rtx, rtx, int *);
384 static void undo_all (void);
385 static void undo_commit (void);
386 static rtx *find_split_point (rtx *, rtx);
387 static rtx subst (rtx, rtx, rtx, int, int);
388 static rtx combine_simplify_rtx (rtx, enum machine_mode, int);
389 static rtx simplify_if_then_else (rtx);
390 static rtx simplify_set (rtx);
391 static rtx simplify_logical (rtx);
392 static rtx expand_compound_operation (rtx);
393 static rtx expand_field_assignment (rtx);
394 static rtx make_extraction (enum machine_mode, rtx, HOST_WIDE_INT,
395 rtx, unsigned HOST_WIDE_INT, int, int, int);
396 static rtx extract_left_shift (rtx, int);
397 static rtx make_compound_operation (rtx, enum rtx_code);
398 static int get_pos_from_mask (unsigned HOST_WIDE_INT,
399 unsigned HOST_WIDE_INT *);
400 static rtx canon_reg_for_combine (rtx, rtx);
401 static rtx force_to_mode (rtx, enum machine_mode,
402 unsigned HOST_WIDE_INT, int);
403 static rtx if_then_else_cond (rtx, rtx *, rtx *);
404 static rtx known_cond (rtx, enum rtx_code, rtx, rtx);
405 static int rtx_equal_for_field_assignment_p (rtx, rtx);
406 static rtx make_field_assignment (rtx);
407 static rtx apply_distributive_law (rtx);
408 static rtx distribute_and_simplify_rtx (rtx, int);
409 static rtx simplify_and_const_int_1 (enum machine_mode, rtx,
410 unsigned HOST_WIDE_INT);
411 static rtx simplify_and_const_int (rtx, enum machine_mode, rtx,
412 unsigned HOST_WIDE_INT);
413 static int merge_outer_ops (enum rtx_code *, HOST_WIDE_INT *, enum rtx_code,
414 HOST_WIDE_INT, enum machine_mode, int *);
415 static rtx simplify_shift_const_1 (enum rtx_code, enum machine_mode, rtx, int);
416 static rtx simplify_shift_const (rtx, enum rtx_code, enum machine_mode, rtx,
417 int);
418 static int recog_for_combine (rtx *, rtx, rtx *);
419 static rtx gen_lowpart_for_combine (enum machine_mode, rtx);
420 static enum rtx_code simplify_comparison (enum rtx_code, rtx *, rtx *);
421 static void update_table_tick (rtx);
422 static void record_value_for_reg (rtx, rtx, rtx);
423 static void check_conversions (rtx, rtx);
424 static void record_dead_and_set_regs_1 (rtx, rtx, void *);
425 static void record_dead_and_set_regs (rtx);
426 static int get_last_value_validate (rtx *, rtx, int, int);
427 static rtx get_last_value (rtx);
428 static int use_crosses_set_p (rtx, int);
429 static void reg_dead_at_p_1 (rtx, rtx, void *);
430 static int reg_dead_at_p (rtx, rtx);
431 static void move_deaths (rtx, rtx, int, rtx, rtx *);
432 static int reg_bitfield_target_p (rtx, rtx);
433 static void distribute_notes (rtx, rtx, rtx, rtx, rtx, rtx);
434 static void distribute_links (rtx);
435 static void mark_used_regs_combine (rtx);
436 static int insn_cuid (rtx);
437 static void record_promoted_value (rtx, rtx);
438 static int unmentioned_reg_p_1 (rtx *, void *);
439 static bool unmentioned_reg_p (rtx, rtx);
440 static void record_truncated_value (rtx);
441 static bool reg_truncated_to_mode (enum machine_mode, rtx);
442 static rtx gen_lowpart_or_truncate (enum machine_mode, rtx);
443 \f
444
445 /* It is not safe to use ordinary gen_lowpart in combine.
446 See comments in gen_lowpart_for_combine. */
447 #undef RTL_HOOKS_GEN_LOWPART
448 #define RTL_HOOKS_GEN_LOWPART gen_lowpart_for_combine
449
450 /* Our implementation of gen_lowpart never emits a new pseudo. */
451 #undef RTL_HOOKS_GEN_LOWPART_NO_EMIT
452 #define RTL_HOOKS_GEN_LOWPART_NO_EMIT gen_lowpart_for_combine
453
454 #undef RTL_HOOKS_REG_NONZERO_REG_BITS
455 #define RTL_HOOKS_REG_NONZERO_REG_BITS reg_nonzero_bits_for_combine
456
457 #undef RTL_HOOKS_REG_NUM_SIGN_BIT_COPIES
458 #define RTL_HOOKS_REG_NUM_SIGN_BIT_COPIES reg_num_sign_bit_copies_for_combine
459
460 static const struct rtl_hooks combine_rtl_hooks = RTL_HOOKS_INITIALIZER;
461
462 \f
463 /* Substitute NEWVAL, an rtx expression, into INTO, a place in some
464 insn. The substitution can be undone by undo_all. If INTO is already
465 set to NEWVAL, do not record this change. Because computing NEWVAL might
466 also call SUBST, we have to compute it before we put anything into
467 the undo table. */
468
469 static void
470 do_SUBST (rtx *into, rtx newval)
471 {
472 struct undo *buf;
473 rtx oldval = *into;
474
475 if (oldval == newval)
476 return;
477
478 /* We'd like to catch as many invalid transformations here as
479 possible. Unfortunately, there are way too many mode changes
480 that are perfectly valid, so we'd waste too much effort for
481 little gain doing the checks here. Focus on catching invalid
482 transformations involving integer constants. */
483 if (GET_MODE_CLASS (GET_MODE (oldval)) == MODE_INT
484 && GET_CODE (newval) == CONST_INT)
485 {
486 /* Sanity check that we're replacing oldval with a CONST_INT
487 that is a valid sign-extension for the original mode. */
488 gcc_assert (INTVAL (newval)
489 == trunc_int_for_mode (INTVAL (newval), GET_MODE (oldval)));
490
491 /* Replacing the operand of a SUBREG or a ZERO_EXTEND with a
492 CONST_INT is not valid, because after the replacement, the
493 original mode would be gone. Unfortunately, we can't tell
494 when do_SUBST is called to replace the operand thereof, so we
495 perform this test on oldval instead, checking whether an
496 invalid replacement took place before we got here. */
497 gcc_assert (!(GET_CODE (oldval) == SUBREG
498 && GET_CODE (SUBREG_REG (oldval)) == CONST_INT));
499 gcc_assert (!(GET_CODE (oldval) == ZERO_EXTEND
500 && GET_CODE (XEXP (oldval, 0)) == CONST_INT));
501 }
502
503 if (undobuf.frees)
504 buf = undobuf.frees, undobuf.frees = buf->next;
505 else
506 buf = XNEW (struct undo);
507
508 buf->kind = UNDO_RTX;
509 buf->where.r = into;
510 buf->old_contents.r = oldval;
511 *into = newval;
512
513 buf->next = undobuf.undos, undobuf.undos = buf;
514 }
515
516 #define SUBST(INTO, NEWVAL) do_SUBST(&(INTO), (NEWVAL))
517
518 /* Similar to SUBST, but NEWVAL is an int expression. Note that substitution
519 for the value of a HOST_WIDE_INT value (including CONST_INT) is
520 not safe. */
521
522 static void
523 do_SUBST_INT (int *into, int newval)
524 {
525 struct undo *buf;
526 int oldval = *into;
527
528 if (oldval == newval)
529 return;
530
531 if (undobuf.frees)
532 buf = undobuf.frees, undobuf.frees = buf->next;
533 else
534 buf = XNEW (struct undo);
535
536 buf->kind = UNDO_INT;
537 buf->where.i = into;
538 buf->old_contents.i = oldval;
539 *into = newval;
540
541 buf->next = undobuf.undos, undobuf.undos = buf;
542 }
543
544 #define SUBST_INT(INTO, NEWVAL) do_SUBST_INT(&(INTO), (NEWVAL))
545
546 /* Similar to SUBST, but just substitute the mode. This is used when
547 changing the mode of a pseudo-register, so that any other
548 references to the entry in the regno_reg_rtx array will change as
549 well. */
550
551 static void
552 do_SUBST_MODE (rtx *into, enum machine_mode newval)
553 {
554 struct undo *buf;
555 enum machine_mode oldval = GET_MODE (*into);
556
557 if (oldval == newval)
558 return;
559
560 if (undobuf.frees)
561 buf = undobuf.frees, undobuf.frees = buf->next;
562 else
563 buf = XNEW (struct undo);
564
565 buf->kind = UNDO_MODE;
566 buf->where.r = into;
567 buf->old_contents.m = oldval;
568 PUT_MODE (*into, newval);
569
570 buf->next = undobuf.undos, undobuf.undos = buf;
571 }
572
573 #define SUBST_MODE(INTO, NEWVAL) do_SUBST_MODE(&(INTO), (NEWVAL))
574 \f
575 /* Subroutine of try_combine. Determine whether the combine replacement
576 patterns NEWPAT and NEWI2PAT are cheaper according to insn_rtx_cost
577 that the original instruction sequence I1, I2 and I3. Note that I1
578 and/or NEWI2PAT may be NULL_RTX. This function returns false, if the
579 costs of all instructions can be estimated, and the replacements are
580 more expensive than the original sequence. */
581
582 static bool
583 combine_validate_cost (rtx i1, rtx i2, rtx i3, rtx newpat, rtx newi2pat)
584 {
585 int i1_cost, i2_cost, i3_cost;
586 int new_i2_cost, new_i3_cost;
587 int old_cost, new_cost;
588
589 /* Lookup the original insn_rtx_costs. */
590 i2_cost = INSN_UID (i2) <= last_insn_cost
591 ? uid_insn_cost[INSN_UID (i2)] : 0;
592 i3_cost = INSN_UID (i3) <= last_insn_cost
593 ? uid_insn_cost[INSN_UID (i3)] : 0;
594
595 if (i1)
596 {
597 i1_cost = INSN_UID (i1) <= last_insn_cost
598 ? uid_insn_cost[INSN_UID (i1)] : 0;
599 old_cost = (i1_cost > 0 && i2_cost > 0 && i3_cost > 0)
600 ? i1_cost + i2_cost + i3_cost : 0;
601 }
602 else
603 {
604 old_cost = (i2_cost > 0 && i3_cost > 0) ? i2_cost + i3_cost : 0;
605 i1_cost = 0;
606 }
607
608 /* Calculate the replacement insn_rtx_costs. */
609 new_i3_cost = insn_rtx_cost (newpat);
610 if (newi2pat)
611 {
612 new_i2_cost = insn_rtx_cost (newi2pat);
613 new_cost = (new_i2_cost > 0 && new_i3_cost > 0)
614 ? new_i2_cost + new_i3_cost : 0;
615 }
616 else
617 {
618 new_cost = new_i3_cost;
619 new_i2_cost = 0;
620 }
621
622 if (undobuf.other_insn)
623 {
624 int old_other_cost, new_other_cost;
625
626 old_other_cost = (INSN_UID (undobuf.other_insn) <= last_insn_cost
627 ? uid_insn_cost[INSN_UID (undobuf.other_insn)] : 0);
628 new_other_cost = insn_rtx_cost (PATTERN (undobuf.other_insn));
629 if (old_other_cost > 0 && new_other_cost > 0)
630 {
631 old_cost += old_other_cost;
632 new_cost += new_other_cost;
633 }
634 else
635 old_cost = 0;
636 }
637
638 /* Disallow this recombination if both new_cost and old_cost are
639 greater than zero, and new_cost is greater than old cost. */
640 if (old_cost > 0
641 && new_cost > old_cost)
642 {
643 if (dump_file)
644 {
645 if (i1)
646 {
647 fprintf (dump_file,
648 "rejecting combination of insns %d, %d and %d\n",
649 INSN_UID (i1), INSN_UID (i2), INSN_UID (i3));
650 fprintf (dump_file, "original costs %d + %d + %d = %d\n",
651 i1_cost, i2_cost, i3_cost, old_cost);
652 }
653 else
654 {
655 fprintf (dump_file,
656 "rejecting combination of insns %d and %d\n",
657 INSN_UID (i2), INSN_UID (i3));
658 fprintf (dump_file, "original costs %d + %d = %d\n",
659 i2_cost, i3_cost, old_cost);
660 }
661
662 if (newi2pat)
663 {
664 fprintf (dump_file, "replacement costs %d + %d = %d\n",
665 new_i2_cost, new_i3_cost, new_cost);
666 }
667 else
668 fprintf (dump_file, "replacement cost %d\n", new_cost);
669 }
670
671 return false;
672 }
673
674 /* Update the uid_insn_cost array with the replacement costs. */
675 uid_insn_cost[INSN_UID (i2)] = new_i2_cost;
676 uid_insn_cost[INSN_UID (i3)] = new_i3_cost;
677 if (i1)
678 uid_insn_cost[INSN_UID (i1)] = 0;
679
680 return true;
681 }
682 \f
683 /* Main entry point for combiner. F is the first insn of the function.
684 NREGS is the first unused pseudo-reg number.
685
686 Return nonzero if the combiner has turned an indirect jump
687 instruction into a direct jump. */
688 static int
689 combine_instructions (rtx f, unsigned int nregs)
690 {
691 rtx insn, next;
692 #ifdef HAVE_cc0
693 rtx prev;
694 #endif
695 int i;
696 unsigned int j = 0;
697 rtx links, nextlinks;
698 sbitmap_iterator sbi;
699
700 int new_direct_jump_p = 0;
701
702 combine_attempts = 0;
703 combine_merges = 0;
704 combine_extras = 0;
705 combine_successes = 0;
706
707 combine_max_regno = nregs;
708
709 rtl_hooks = combine_rtl_hooks;
710
711 reg_stat = XCNEWVEC (struct reg_stat, nregs);
712
713 init_recog_no_volatile ();
714
715 /* Compute maximum uid value so uid_cuid can be allocated. */
716
717 for (insn = f, i = 0; insn; insn = NEXT_INSN (insn))
718 if (INSN_UID (insn) > i)
719 i = INSN_UID (insn);
720
721 uid_cuid = XNEWVEC (int, i + 1);
722 max_uid_cuid = i;
723
724 nonzero_bits_mode = mode_for_size (HOST_BITS_PER_WIDE_INT, MODE_INT, 0);
725
726 /* Don't use reg_stat[].nonzero_bits when computing it. This can cause
727 problems when, for example, we have j <<= 1 in a loop. */
728
729 nonzero_sign_valid = 0;
730
731 /* Compute the mapping from uids to cuids.
732 Cuids are numbers assigned to insns, like uids,
733 except that cuids increase monotonically through the code.
734
735 Scan all SETs and see if we can deduce anything about what
736 bits are known to be zero for some registers and how many copies
737 of the sign bit are known to exist for those registers.
738
739 Also set any known values so that we can use it while searching
740 for what bits are known to be set. */
741
742 label_tick = 1;
743
744 setup_incoming_promotions ();
745
746 refresh_blocks = sbitmap_alloc (last_basic_block);
747 sbitmap_zero (refresh_blocks);
748
749 /* Allocate array of current insn_rtx_costs. */
750 uid_insn_cost = XCNEWVEC (int, max_uid_cuid + 1);
751 last_insn_cost = max_uid_cuid;
752
753 for (insn = f, i = 0; insn; insn = NEXT_INSN (insn))
754 {
755 uid_cuid[INSN_UID (insn)] = ++i;
756 subst_low_cuid = i;
757 subst_insn = insn;
758
759 if (INSN_P (insn))
760 {
761 note_stores (PATTERN (insn), set_nonzero_bits_and_sign_copies,
762 NULL);
763 record_dead_and_set_regs (insn);
764
765 #ifdef AUTO_INC_DEC
766 for (links = REG_NOTES (insn); links; links = XEXP (links, 1))
767 if (REG_NOTE_KIND (links) == REG_INC)
768 set_nonzero_bits_and_sign_copies (XEXP (links, 0), NULL_RTX,
769 NULL);
770 #endif
771
772 /* Record the current insn_rtx_cost of this instruction. */
773 if (NONJUMP_INSN_P (insn))
774 uid_insn_cost[INSN_UID (insn)] = insn_rtx_cost (PATTERN (insn));
775 if (dump_file)
776 fprintf(dump_file, "insn_cost %d: %d\n",
777 INSN_UID (insn), uid_insn_cost[INSN_UID (insn)]);
778 }
779
780 if (LABEL_P (insn))
781 label_tick++;
782 }
783
784 nonzero_sign_valid = 1;
785
786 /* Now scan all the insns in forward order. */
787
788 label_tick = 1;
789 last_call_cuid = 0;
790 mem_last_set = 0;
791 init_reg_last ();
792 setup_incoming_promotions ();
793
794 FOR_EACH_BB (this_basic_block)
795 {
796 for (insn = BB_HEAD (this_basic_block);
797 insn != NEXT_INSN (BB_END (this_basic_block));
798 insn = next ? next : NEXT_INSN (insn))
799 {
800 next = 0;
801
802 if (LABEL_P (insn))
803 label_tick++;
804
805 else if (INSN_P (insn))
806 {
807 /* See if we know about function return values before this
808 insn based upon SUBREG flags. */
809 check_conversions (insn, PATTERN (insn));
810
811 /* Try this insn with each insn it links back to. */
812
813 for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
814 if ((next = try_combine (insn, XEXP (links, 0),
815 NULL_RTX, &new_direct_jump_p)) != 0)
816 goto retry;
817
818 /* Try each sequence of three linked insns ending with this one. */
819
820 for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
821 {
822 rtx link = XEXP (links, 0);
823
824 /* If the linked insn has been replaced by a note, then there
825 is no point in pursuing this chain any further. */
826 if (NOTE_P (link))
827 continue;
828
829 for (nextlinks = LOG_LINKS (link);
830 nextlinks;
831 nextlinks = XEXP (nextlinks, 1))
832 if ((next = try_combine (insn, link,
833 XEXP (nextlinks, 0),
834 &new_direct_jump_p)) != 0)
835 goto retry;
836 }
837
838 #ifdef HAVE_cc0
839 /* Try to combine a jump insn that uses CC0
840 with a preceding insn that sets CC0, and maybe with its
841 logical predecessor as well.
842 This is how we make decrement-and-branch insns.
843 We need this special code because data flow connections
844 via CC0 do not get entered in LOG_LINKS. */
845
846 if (JUMP_P (insn)
847 && (prev = prev_nonnote_insn (insn)) != 0
848 && NONJUMP_INSN_P (prev)
849 && sets_cc0_p (PATTERN (prev)))
850 {
851 if ((next = try_combine (insn, prev,
852 NULL_RTX, &new_direct_jump_p)) != 0)
853 goto retry;
854
855 for (nextlinks = LOG_LINKS (prev); nextlinks;
856 nextlinks = XEXP (nextlinks, 1))
857 if ((next = try_combine (insn, prev,
858 XEXP (nextlinks, 0),
859 &new_direct_jump_p)) != 0)
860 goto retry;
861 }
862
863 /* Do the same for an insn that explicitly references CC0. */
864 if (NONJUMP_INSN_P (insn)
865 && (prev = prev_nonnote_insn (insn)) != 0
866 && NONJUMP_INSN_P (prev)
867 && sets_cc0_p (PATTERN (prev))
868 && GET_CODE (PATTERN (insn)) == SET
869 && reg_mentioned_p (cc0_rtx, SET_SRC (PATTERN (insn))))
870 {
871 if ((next = try_combine (insn, prev,
872 NULL_RTX, &new_direct_jump_p)) != 0)
873 goto retry;
874
875 for (nextlinks = LOG_LINKS (prev); nextlinks;
876 nextlinks = XEXP (nextlinks, 1))
877 if ((next = try_combine (insn, prev,
878 XEXP (nextlinks, 0),
879 &new_direct_jump_p)) != 0)
880 goto retry;
881 }
882
883 /* Finally, see if any of the insns that this insn links to
884 explicitly references CC0. If so, try this insn, that insn,
885 and its predecessor if it sets CC0. */
886 for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
887 if (NONJUMP_INSN_P (XEXP (links, 0))
888 && GET_CODE (PATTERN (XEXP (links, 0))) == SET
889 && reg_mentioned_p (cc0_rtx, SET_SRC (PATTERN (XEXP (links, 0))))
890 && (prev = prev_nonnote_insn (XEXP (links, 0))) != 0
891 && NONJUMP_INSN_P (prev)
892 && sets_cc0_p (PATTERN (prev))
893 && (next = try_combine (insn, XEXP (links, 0),
894 prev, &new_direct_jump_p)) != 0)
895 goto retry;
896 #endif
897
898 /* Try combining an insn with two different insns whose results it
899 uses. */
900 for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
901 for (nextlinks = XEXP (links, 1); nextlinks;
902 nextlinks = XEXP (nextlinks, 1))
903 if ((next = try_combine (insn, XEXP (links, 0),
904 XEXP (nextlinks, 0),
905 &new_direct_jump_p)) != 0)
906 goto retry;
907
908 /* Try this insn with each REG_EQUAL note it links back to. */
909 for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
910 {
911 rtx set, note;
912 rtx temp = XEXP (links, 0);
913 if ((set = single_set (temp)) != 0
914 && (note = find_reg_equal_equiv_note (temp)) != 0
915 && (note = XEXP (note, 0), GET_CODE (note)) != EXPR_LIST
916 /* Avoid using a register that may already been marked
917 dead by an earlier instruction. */
918 && ! unmentioned_reg_p (note, SET_SRC (set))
919 && (GET_MODE (note) == VOIDmode
920 ? SCALAR_INT_MODE_P (GET_MODE (SET_DEST (set)))
921 : GET_MODE (SET_DEST (set)) == GET_MODE (note)))
922 {
923 /* Temporarily replace the set's source with the
924 contents of the REG_EQUAL note. The insn will
925 be deleted or recognized by try_combine. */
926 rtx orig = SET_SRC (set);
927 SET_SRC (set) = note;
928 next = try_combine (insn, temp, NULL_RTX,
929 &new_direct_jump_p);
930 if (next)
931 goto retry;
932 SET_SRC (set) = orig;
933 }
934 }
935
936 if (!NOTE_P (insn))
937 record_dead_and_set_regs (insn);
938
939 retry:
940 ;
941 }
942 }
943 }
944 clear_bb_flags ();
945
946 EXECUTE_IF_SET_IN_SBITMAP (refresh_blocks, 0, j, sbi)
947 BASIC_BLOCK (j)->flags |= BB_DIRTY;
948 new_direct_jump_p |= purge_all_dead_edges ();
949 delete_noop_moves ();
950
951 update_life_info_in_dirty_blocks (UPDATE_LIFE_GLOBAL_RM_NOTES,
952 PROP_DEATH_NOTES | PROP_SCAN_DEAD_CODE
953 | PROP_KILL_DEAD_CODE);
954
955 /* Clean up. */
956 sbitmap_free (refresh_blocks);
957 free (uid_insn_cost);
958 free (reg_stat);
959 free (uid_cuid);
960
961 {
962 struct undo *undo, *next;
963 for (undo = undobuf.frees; undo; undo = next)
964 {
965 next = undo->next;
966 free (undo);
967 }
968 undobuf.frees = 0;
969 }
970
971 total_attempts += combine_attempts;
972 total_merges += combine_merges;
973 total_extras += combine_extras;
974 total_successes += combine_successes;
975
976 nonzero_sign_valid = 0;
977 rtl_hooks = general_rtl_hooks;
978
979 /* Make recognizer allow volatile MEMs again. */
980 init_recog ();
981
982 return new_direct_jump_p;
983 }
984
985 /* Wipe the last_xxx fields of reg_stat in preparation for another pass. */
986
987 static void
988 init_reg_last (void)
989 {
990 unsigned int i;
991 for (i = 0; i < combine_max_regno; i++)
992 memset (reg_stat + i, 0, offsetof (struct reg_stat, sign_bit_copies));
993 }
994 \f
995 /* Set up any promoted values for incoming argument registers. */
996
997 static void
998 setup_incoming_promotions (void)
999 {
1000 unsigned int regno;
1001 rtx reg;
1002 enum machine_mode mode;
1003 int unsignedp;
1004 rtx first = get_insns ();
1005
1006 if (targetm.calls.promote_function_args (TREE_TYPE (cfun->decl)))
1007 {
1008 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
1009 /* Check whether this register can hold an incoming pointer
1010 argument. FUNCTION_ARG_REGNO_P tests outgoing register
1011 numbers, so translate if necessary due to register windows. */
1012 if (FUNCTION_ARG_REGNO_P (OUTGOING_REGNO (regno))
1013 && (reg = promoted_input_arg (regno, &mode, &unsignedp)) != 0)
1014 {
1015 record_value_for_reg
1016 (reg, first, gen_rtx_fmt_e ((unsignedp ? ZERO_EXTEND
1017 : SIGN_EXTEND),
1018 GET_MODE (reg),
1019 gen_rtx_CLOBBER (mode, const0_rtx)));
1020 }
1021 }
1022 }
1023 \f
1024 /* Called via note_stores. If X is a pseudo that is narrower than
1025 HOST_BITS_PER_WIDE_INT and is being set, record what bits are known zero.
1026
1027 If we are setting only a portion of X and we can't figure out what
1028 portion, assume all bits will be used since we don't know what will
1029 be happening.
1030
1031 Similarly, set how many bits of X are known to be copies of the sign bit
1032 at all locations in the function. This is the smallest number implied
1033 by any set of X. */
1034
1035 static void
1036 set_nonzero_bits_and_sign_copies (rtx x, rtx set,
1037 void *data ATTRIBUTE_UNUSED)
1038 {
1039 unsigned int num;
1040
1041 if (REG_P (x)
1042 && REGNO (x) >= FIRST_PSEUDO_REGISTER
1043 /* If this register is undefined at the start of the file, we can't
1044 say what its contents were. */
1045 && ! REGNO_REG_SET_P
1046 (ENTRY_BLOCK_PTR->next_bb->il.rtl->global_live_at_start, REGNO (x))
1047 && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT)
1048 {
1049 if (set == 0 || GET_CODE (set) == CLOBBER)
1050 {
1051 reg_stat[REGNO (x)].nonzero_bits = GET_MODE_MASK (GET_MODE (x));
1052 reg_stat[REGNO (x)].sign_bit_copies = 1;
1053 return;
1054 }
1055
1056 /* If this is a complex assignment, see if we can convert it into a
1057 simple assignment. */
1058 set = expand_field_assignment (set);
1059
1060 /* If this is a simple assignment, or we have a paradoxical SUBREG,
1061 set what we know about X. */
1062
1063 if (SET_DEST (set) == x
1064 || (GET_CODE (SET_DEST (set)) == SUBREG
1065 && (GET_MODE_SIZE (GET_MODE (SET_DEST (set)))
1066 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (set)))))
1067 && SUBREG_REG (SET_DEST (set)) == x))
1068 {
1069 rtx src = SET_SRC (set);
1070
1071 #ifdef SHORT_IMMEDIATES_SIGN_EXTEND
1072 /* If X is narrower than a word and SRC is a non-negative
1073 constant that would appear negative in the mode of X,
1074 sign-extend it for use in reg_stat[].nonzero_bits because some
1075 machines (maybe most) will actually do the sign-extension
1076 and this is the conservative approach.
1077
1078 ??? For 2.5, try to tighten up the MD files in this regard
1079 instead of this kludge. */
1080
1081 if (GET_MODE_BITSIZE (GET_MODE (x)) < BITS_PER_WORD
1082 && GET_CODE (src) == CONST_INT
1083 && INTVAL (src) > 0
1084 && 0 != (INTVAL (src)
1085 & ((HOST_WIDE_INT) 1
1086 << (GET_MODE_BITSIZE (GET_MODE (x)) - 1))))
1087 src = GEN_INT (INTVAL (src)
1088 | ((HOST_WIDE_INT) (-1)
1089 << GET_MODE_BITSIZE (GET_MODE (x))));
1090 #endif
1091
1092 /* Don't call nonzero_bits if it cannot change anything. */
1093 if (reg_stat[REGNO (x)].nonzero_bits != ~(unsigned HOST_WIDE_INT) 0)
1094 reg_stat[REGNO (x)].nonzero_bits
1095 |= nonzero_bits (src, nonzero_bits_mode);
1096 num = num_sign_bit_copies (SET_SRC (set), GET_MODE (x));
1097 if (reg_stat[REGNO (x)].sign_bit_copies == 0
1098 || reg_stat[REGNO (x)].sign_bit_copies > num)
1099 reg_stat[REGNO (x)].sign_bit_copies = num;
1100 }
1101 else
1102 {
1103 reg_stat[REGNO (x)].nonzero_bits = GET_MODE_MASK (GET_MODE (x));
1104 reg_stat[REGNO (x)].sign_bit_copies = 1;
1105 }
1106 }
1107 }
1108 \f
1109 /* See if INSN can be combined into I3. PRED and SUCC are optionally
1110 insns that were previously combined into I3 or that will be combined
1111 into the merger of INSN and I3.
1112
1113 Return 0 if the combination is not allowed for any reason.
1114
1115 If the combination is allowed, *PDEST will be set to the single
1116 destination of INSN and *PSRC to the single source, and this function
1117 will return 1. */
1118
1119 static int
1120 can_combine_p (rtx insn, rtx i3, rtx pred ATTRIBUTE_UNUSED, rtx succ,
1121 rtx *pdest, rtx *psrc)
1122 {
1123 int i;
1124 rtx set = 0, src, dest;
1125 rtx p;
1126 #ifdef AUTO_INC_DEC
1127 rtx link;
1128 #endif
1129 int all_adjacent = (succ ? (next_active_insn (insn) == succ
1130 && next_active_insn (succ) == i3)
1131 : next_active_insn (insn) == i3);
1132
1133 /* Can combine only if previous insn is a SET of a REG, a SUBREG or CC0.
1134 or a PARALLEL consisting of such a SET and CLOBBERs.
1135
1136 If INSN has CLOBBER parallel parts, ignore them for our processing.
1137 By definition, these happen during the execution of the insn. When it
1138 is merged with another insn, all bets are off. If they are, in fact,
1139 needed and aren't also supplied in I3, they may be added by
1140 recog_for_combine. Otherwise, it won't match.
1141
1142 We can also ignore a SET whose SET_DEST is mentioned in a REG_UNUSED
1143 note.
1144
1145 Get the source and destination of INSN. If more than one, can't
1146 combine. */
1147
1148 if (GET_CODE (PATTERN (insn)) == SET)
1149 set = PATTERN (insn);
1150 else if (GET_CODE (PATTERN (insn)) == PARALLEL
1151 && GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == SET)
1152 {
1153 for (i = 0; i < XVECLEN (PATTERN (insn), 0); i++)
1154 {
1155 rtx elt = XVECEXP (PATTERN (insn), 0, i);
1156 rtx note;
1157
1158 switch (GET_CODE (elt))
1159 {
1160 /* This is important to combine floating point insns
1161 for the SH4 port. */
1162 case USE:
1163 /* Combining an isolated USE doesn't make sense.
1164 We depend here on combinable_i3pat to reject them. */
1165 /* The code below this loop only verifies that the inputs of
1166 the SET in INSN do not change. We call reg_set_between_p
1167 to verify that the REG in the USE does not change between
1168 I3 and INSN.
1169 If the USE in INSN was for a pseudo register, the matching
1170 insn pattern will likely match any register; combining this
1171 with any other USE would only be safe if we knew that the
1172 used registers have identical values, or if there was
1173 something to tell them apart, e.g. different modes. For
1174 now, we forgo such complicated tests and simply disallow
1175 combining of USES of pseudo registers with any other USE. */
1176 if (REG_P (XEXP (elt, 0))
1177 && GET_CODE (PATTERN (i3)) == PARALLEL)
1178 {
1179 rtx i3pat = PATTERN (i3);
1180 int i = XVECLEN (i3pat, 0) - 1;
1181 unsigned int regno = REGNO (XEXP (elt, 0));
1182
1183 do
1184 {
1185 rtx i3elt = XVECEXP (i3pat, 0, i);
1186
1187 if (GET_CODE (i3elt) == USE
1188 && REG_P (XEXP (i3elt, 0))
1189 && (REGNO (XEXP (i3elt, 0)) == regno
1190 ? reg_set_between_p (XEXP (elt, 0),
1191 PREV_INSN (insn), i3)
1192 : regno >= FIRST_PSEUDO_REGISTER))
1193 return 0;
1194 }
1195 while (--i >= 0);
1196 }
1197 break;
1198
1199 /* We can ignore CLOBBERs. */
1200 case CLOBBER:
1201 break;
1202
1203 case SET:
1204 /* Ignore SETs whose result isn't used but not those that
1205 have side-effects. */
1206 if (find_reg_note (insn, REG_UNUSED, SET_DEST (elt))
1207 && (!(note = find_reg_note (insn, REG_EH_REGION, NULL_RTX))
1208 || INTVAL (XEXP (note, 0)) <= 0)
1209 && ! side_effects_p (elt))
1210 break;
1211
1212 /* If we have already found a SET, this is a second one and
1213 so we cannot combine with this insn. */
1214 if (set)
1215 return 0;
1216
1217 set = elt;
1218 break;
1219
1220 default:
1221 /* Anything else means we can't combine. */
1222 return 0;
1223 }
1224 }
1225
1226 if (set == 0
1227 /* If SET_SRC is an ASM_OPERANDS we can't throw away these CLOBBERs,
1228 so don't do anything with it. */
1229 || GET_CODE (SET_SRC (set)) == ASM_OPERANDS)
1230 return 0;
1231 }
1232 else
1233 return 0;
1234
1235 if (set == 0)
1236 return 0;
1237
1238 set = expand_field_assignment (set);
1239 src = SET_SRC (set), dest = SET_DEST (set);
1240
1241 /* Don't eliminate a store in the stack pointer. */
1242 if (dest == stack_pointer_rtx
1243 /* Don't combine with an insn that sets a register to itself if it has
1244 a REG_EQUAL note. This may be part of a REG_NO_CONFLICT sequence. */
1245 || (rtx_equal_p (src, dest) && find_reg_note (insn, REG_EQUAL, NULL_RTX))
1246 /* Can't merge an ASM_OPERANDS. */
1247 || GET_CODE (src) == ASM_OPERANDS
1248 /* Can't merge a function call. */
1249 || GET_CODE (src) == CALL
1250 /* Don't eliminate a function call argument. */
1251 || (CALL_P (i3)
1252 && (find_reg_fusage (i3, USE, dest)
1253 || (REG_P (dest)
1254 && REGNO (dest) < FIRST_PSEUDO_REGISTER
1255 && global_regs[REGNO (dest)])))
1256 /* Don't substitute into an incremented register. */
1257 || FIND_REG_INC_NOTE (i3, dest)
1258 || (succ && FIND_REG_INC_NOTE (succ, dest))
1259 /* Don't substitute into a non-local goto, this confuses CFG. */
1260 || (JUMP_P (i3) && find_reg_note (i3, REG_NON_LOCAL_GOTO, NULL_RTX))
1261 #if 0
1262 /* Don't combine the end of a libcall into anything. */
1263 /* ??? This gives worse code, and appears to be unnecessary, since no
1264 pass after flow uses REG_LIBCALL/REG_RETVAL notes. Local-alloc does
1265 use REG_RETVAL notes for noconflict blocks, but other code here
1266 makes sure that those insns don't disappear. */
1267 || find_reg_note (insn, REG_RETVAL, NULL_RTX)
1268 #endif
1269 /* Make sure that DEST is not used after SUCC but before I3. */
1270 || (succ && ! all_adjacent
1271 && reg_used_between_p (dest, succ, i3))
1272 /* Make sure that the value that is to be substituted for the register
1273 does not use any registers whose values alter in between. However,
1274 If the insns are adjacent, a use can't cross a set even though we
1275 think it might (this can happen for a sequence of insns each setting
1276 the same destination; last_set of that register might point to
1277 a NOTE). If INSN has a REG_EQUIV note, the register is always
1278 equivalent to the memory so the substitution is valid even if there
1279 are intervening stores. Also, don't move a volatile asm or
1280 UNSPEC_VOLATILE across any other insns. */
1281 || (! all_adjacent
1282 && (((!MEM_P (src)
1283 || ! find_reg_note (insn, REG_EQUIV, src))
1284 && use_crosses_set_p (src, INSN_CUID (insn)))
1285 || (GET_CODE (src) == ASM_OPERANDS && MEM_VOLATILE_P (src))
1286 || GET_CODE (src) == UNSPEC_VOLATILE))
1287 /* If there is a REG_NO_CONFLICT note for DEST in I3 or SUCC, we get
1288 better register allocation by not doing the combine. */
1289 || find_reg_note (i3, REG_NO_CONFLICT, dest)
1290 || (succ && find_reg_note (succ, REG_NO_CONFLICT, dest))
1291 /* Don't combine across a CALL_INSN, because that would possibly
1292 change whether the life span of some REGs crosses calls or not,
1293 and it is a pain to update that information.
1294 Exception: if source is a constant, moving it later can't hurt.
1295 Accept that special case, because it helps -fforce-addr a lot. */
1296 || (INSN_CUID (insn) < last_call_cuid && ! CONSTANT_P (src)))
1297 return 0;
1298
1299 /* DEST must either be a REG or CC0. */
1300 if (REG_P (dest))
1301 {
1302 /* If register alignment is being enforced for multi-word items in all
1303 cases except for parameters, it is possible to have a register copy
1304 insn referencing a hard register that is not allowed to contain the
1305 mode being copied and which would not be valid as an operand of most
1306 insns. Eliminate this problem by not combining with such an insn.
1307
1308 Also, on some machines we don't want to extend the life of a hard
1309 register. */
1310
1311 if (REG_P (src)
1312 && ((REGNO (dest) < FIRST_PSEUDO_REGISTER
1313 && ! HARD_REGNO_MODE_OK (REGNO (dest), GET_MODE (dest)))
1314 /* Don't extend the life of a hard register unless it is
1315 user variable (if we have few registers) or it can't
1316 fit into the desired register (meaning something special
1317 is going on).
1318 Also avoid substituting a return register into I3, because
1319 reload can't handle a conflict with constraints of other
1320 inputs. */
1321 || (REGNO (src) < FIRST_PSEUDO_REGISTER
1322 && ! HARD_REGNO_MODE_OK (REGNO (src), GET_MODE (src)))))
1323 return 0;
1324 }
1325 else if (GET_CODE (dest) != CC0)
1326 return 0;
1327
1328
1329 if (GET_CODE (PATTERN (i3)) == PARALLEL)
1330 for (i = XVECLEN (PATTERN (i3), 0) - 1; i >= 0; i--)
1331 if (GET_CODE (XVECEXP (PATTERN (i3), 0, i)) == CLOBBER)
1332 {
1333 /* Don't substitute for a register intended as a clobberable
1334 operand. */
1335 rtx reg = XEXP (XVECEXP (PATTERN (i3), 0, i), 0);
1336 if (rtx_equal_p (reg, dest))
1337 return 0;
1338
1339 /* If the clobber represents an earlyclobber operand, we must not
1340 substitute an expression containing the clobbered register.
1341 As we do not analyze the constraint strings here, we have to
1342 make the conservative assumption. However, if the register is
1343 a fixed hard reg, the clobber cannot represent any operand;
1344 we leave it up to the machine description to either accept or
1345 reject use-and-clobber patterns. */
1346 if (!REG_P (reg)
1347 || REGNO (reg) >= FIRST_PSEUDO_REGISTER
1348 || !fixed_regs[REGNO (reg)])
1349 if (reg_overlap_mentioned_p (reg, src))
1350 return 0;
1351 }
1352
1353 /* If INSN contains anything volatile, or is an `asm' (whether volatile
1354 or not), reject, unless nothing volatile comes between it and I3 */
1355
1356 if (GET_CODE (src) == ASM_OPERANDS || volatile_refs_p (src))
1357 {
1358 /* Make sure succ doesn't contain a volatile reference. */
1359 if (succ != 0 && volatile_refs_p (PATTERN (succ)))
1360 return 0;
1361
1362 for (p = NEXT_INSN (insn); p != i3; p = NEXT_INSN (p))
1363 if (INSN_P (p) && p != succ && volatile_refs_p (PATTERN (p)))
1364 return 0;
1365 }
1366
1367 /* If INSN is an asm, and DEST is a hard register, reject, since it has
1368 to be an explicit register variable, and was chosen for a reason. */
1369
1370 if (GET_CODE (src) == ASM_OPERANDS
1371 && REG_P (dest) && REGNO (dest) < FIRST_PSEUDO_REGISTER)
1372 return 0;
1373
1374 /* If there are any volatile insns between INSN and I3, reject, because
1375 they might affect machine state. */
1376
1377 for (p = NEXT_INSN (insn); p != i3; p = NEXT_INSN (p))
1378 if (INSN_P (p) && p != succ && volatile_insn_p (PATTERN (p)))
1379 return 0;
1380
1381 /* If INSN contains an autoincrement or autodecrement, make sure that
1382 register is not used between there and I3, and not already used in
1383 I3 either. Neither must it be used in PRED or SUCC, if they exist.
1384 Also insist that I3 not be a jump; if it were one
1385 and the incremented register were spilled, we would lose. */
1386
1387 #ifdef AUTO_INC_DEC
1388 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1389 if (REG_NOTE_KIND (link) == REG_INC
1390 && (JUMP_P (i3)
1391 || reg_used_between_p (XEXP (link, 0), insn, i3)
1392 || (pred != NULL_RTX
1393 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (pred)))
1394 || (succ != NULL_RTX
1395 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (succ)))
1396 || reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i3))))
1397 return 0;
1398 #endif
1399
1400 #ifdef HAVE_cc0
1401 /* Don't combine an insn that follows a CC0-setting insn.
1402 An insn that uses CC0 must not be separated from the one that sets it.
1403 We do, however, allow I2 to follow a CC0-setting insn if that insn
1404 is passed as I1; in that case it will be deleted also.
1405 We also allow combining in this case if all the insns are adjacent
1406 because that would leave the two CC0 insns adjacent as well.
1407 It would be more logical to test whether CC0 occurs inside I1 or I2,
1408 but that would be much slower, and this ought to be equivalent. */
1409
1410 p = prev_nonnote_insn (insn);
1411 if (p && p != pred && NONJUMP_INSN_P (p) && sets_cc0_p (PATTERN (p))
1412 && ! all_adjacent)
1413 return 0;
1414 #endif
1415
1416 /* If we get here, we have passed all the tests and the combination is
1417 to be allowed. */
1418
1419 *pdest = dest;
1420 *psrc = src;
1421
1422 return 1;
1423 }
1424 \f
1425 /* LOC is the location within I3 that contains its pattern or the component
1426 of a PARALLEL of the pattern. We validate that it is valid for combining.
1427
1428 One problem is if I3 modifies its output, as opposed to replacing it
1429 entirely, we can't allow the output to contain I2DEST or I1DEST as doing
1430 so would produce an insn that is not equivalent to the original insns.
1431
1432 Consider:
1433
1434 (set (reg:DI 101) (reg:DI 100))
1435 (set (subreg:SI (reg:DI 101) 0) <foo>)
1436
1437 This is NOT equivalent to:
1438
1439 (parallel [(set (subreg:SI (reg:DI 100) 0) <foo>)
1440 (set (reg:DI 101) (reg:DI 100))])
1441
1442 Not only does this modify 100 (in which case it might still be valid
1443 if 100 were dead in I2), it sets 101 to the ORIGINAL value of 100.
1444
1445 We can also run into a problem if I2 sets a register that I1
1446 uses and I1 gets directly substituted into I3 (not via I2). In that
1447 case, we would be getting the wrong value of I2DEST into I3, so we
1448 must reject the combination. This case occurs when I2 and I1 both
1449 feed into I3, rather than when I1 feeds into I2, which feeds into I3.
1450 If I1_NOT_IN_SRC is nonzero, it means that finding I1 in the source
1451 of a SET must prevent combination from occurring.
1452
1453 Before doing the above check, we first try to expand a field assignment
1454 into a set of logical operations.
1455
1456 If PI3_DEST_KILLED is nonzero, it is a pointer to a location in which
1457 we place a register that is both set and used within I3. If more than one
1458 such register is detected, we fail.
1459
1460 Return 1 if the combination is valid, zero otherwise. */
1461
1462 static int
1463 combinable_i3pat (rtx i3, rtx *loc, rtx i2dest, rtx i1dest,
1464 int i1_not_in_src, rtx *pi3dest_killed)
1465 {
1466 rtx x = *loc;
1467
1468 if (GET_CODE (x) == SET)
1469 {
1470 rtx set = x ;
1471 rtx dest = SET_DEST (set);
1472 rtx src = SET_SRC (set);
1473 rtx inner_dest = dest;
1474 rtx subdest;
1475
1476 while (GET_CODE (inner_dest) == STRICT_LOW_PART
1477 || GET_CODE (inner_dest) == SUBREG
1478 || GET_CODE (inner_dest) == ZERO_EXTRACT)
1479 inner_dest = XEXP (inner_dest, 0);
1480
1481 /* Check for the case where I3 modifies its output, as discussed
1482 above. We don't want to prevent pseudos from being combined
1483 into the address of a MEM, so only prevent the combination if
1484 i1 or i2 set the same MEM. */
1485 if ((inner_dest != dest &&
1486 (!MEM_P (inner_dest)
1487 || rtx_equal_p (i2dest, inner_dest)
1488 || (i1dest && rtx_equal_p (i1dest, inner_dest)))
1489 && (reg_overlap_mentioned_p (i2dest, inner_dest)
1490 || (i1dest && reg_overlap_mentioned_p (i1dest, inner_dest))))
1491
1492 /* This is the same test done in can_combine_p except we can't test
1493 all_adjacent; we don't have to, since this instruction will stay
1494 in place, thus we are not considering increasing the lifetime of
1495 INNER_DEST.
1496
1497 Also, if this insn sets a function argument, combining it with
1498 something that might need a spill could clobber a previous
1499 function argument; the all_adjacent test in can_combine_p also
1500 checks this; here, we do a more specific test for this case. */
1501
1502 || (REG_P (inner_dest)
1503 && REGNO (inner_dest) < FIRST_PSEUDO_REGISTER
1504 && (! HARD_REGNO_MODE_OK (REGNO (inner_dest),
1505 GET_MODE (inner_dest))))
1506 || (i1_not_in_src && reg_overlap_mentioned_p (i1dest, src)))
1507 return 0;
1508
1509 /* If DEST is used in I3, it is being killed in this insn, so
1510 record that for later. We have to consider paradoxical
1511 subregs here, since they kill the whole register, but we
1512 ignore partial subregs, STRICT_LOW_PART, etc.
1513 Never add REG_DEAD notes for the FRAME_POINTER_REGNUM or the
1514 STACK_POINTER_REGNUM, since these are always considered to be
1515 live. Similarly for ARG_POINTER_REGNUM if it is fixed. */
1516 subdest = dest;
1517 if (GET_CODE (subdest) == SUBREG
1518 && (GET_MODE_SIZE (GET_MODE (subdest))
1519 >= GET_MODE_SIZE (GET_MODE (SUBREG_REG (subdest)))))
1520 subdest = SUBREG_REG (subdest);
1521 if (pi3dest_killed
1522 && REG_P (subdest)
1523 && reg_referenced_p (subdest, PATTERN (i3))
1524 && REGNO (subdest) != FRAME_POINTER_REGNUM
1525 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
1526 && REGNO (subdest) != HARD_FRAME_POINTER_REGNUM
1527 #endif
1528 #if ARG_POINTER_REGNUM != FRAME_POINTER_REGNUM
1529 && (REGNO (subdest) != ARG_POINTER_REGNUM
1530 || ! fixed_regs [REGNO (subdest)])
1531 #endif
1532 && REGNO (subdest) != STACK_POINTER_REGNUM)
1533 {
1534 if (*pi3dest_killed)
1535 return 0;
1536
1537 *pi3dest_killed = subdest;
1538 }
1539 }
1540
1541 else if (GET_CODE (x) == PARALLEL)
1542 {
1543 int i;
1544
1545 for (i = 0; i < XVECLEN (x, 0); i++)
1546 if (! combinable_i3pat (i3, &XVECEXP (x, 0, i), i2dest, i1dest,
1547 i1_not_in_src, pi3dest_killed))
1548 return 0;
1549 }
1550
1551 return 1;
1552 }
1553 \f
1554 /* Return 1 if X is an arithmetic expression that contains a multiplication
1555 and division. We don't count multiplications by powers of two here. */
1556
1557 static int
1558 contains_muldiv (rtx x)
1559 {
1560 switch (GET_CODE (x))
1561 {
1562 case MOD: case DIV: case UMOD: case UDIV:
1563 return 1;
1564
1565 case MULT:
1566 return ! (GET_CODE (XEXP (x, 1)) == CONST_INT
1567 && exact_log2 (INTVAL (XEXP (x, 1))) >= 0);
1568 default:
1569 if (BINARY_P (x))
1570 return contains_muldiv (XEXP (x, 0))
1571 || contains_muldiv (XEXP (x, 1));
1572
1573 if (UNARY_P (x))
1574 return contains_muldiv (XEXP (x, 0));
1575
1576 return 0;
1577 }
1578 }
1579 \f
1580 /* Determine whether INSN can be used in a combination. Return nonzero if
1581 not. This is used in try_combine to detect early some cases where we
1582 can't perform combinations. */
1583
1584 static int
1585 cant_combine_insn_p (rtx insn)
1586 {
1587 rtx set;
1588 rtx src, dest;
1589
1590 /* If this isn't really an insn, we can't do anything.
1591 This can occur when flow deletes an insn that it has merged into an
1592 auto-increment address. */
1593 if (! INSN_P (insn))
1594 return 1;
1595
1596 /* Never combine loads and stores involving hard regs that are likely
1597 to be spilled. The register allocator can usually handle such
1598 reg-reg moves by tying. If we allow the combiner to make
1599 substitutions of likely-spilled regs, reload might die.
1600 As an exception, we allow combinations involving fixed regs; these are
1601 not available to the register allocator so there's no risk involved. */
1602
1603 set = single_set (insn);
1604 if (! set)
1605 return 0;
1606 src = SET_SRC (set);
1607 dest = SET_DEST (set);
1608 if (GET_CODE (src) == SUBREG)
1609 src = SUBREG_REG (src);
1610 if (GET_CODE (dest) == SUBREG)
1611 dest = SUBREG_REG (dest);
1612 if (REG_P (src) && REG_P (dest)
1613 && ((REGNO (src) < FIRST_PSEUDO_REGISTER
1614 && ! fixed_regs[REGNO (src)]
1615 && CLASS_LIKELY_SPILLED_P (REGNO_REG_CLASS (REGNO (src))))
1616 || (REGNO (dest) < FIRST_PSEUDO_REGISTER
1617 && ! fixed_regs[REGNO (dest)]
1618 && CLASS_LIKELY_SPILLED_P (REGNO_REG_CLASS (REGNO (dest))))))
1619 return 1;
1620
1621 return 0;
1622 }
1623
1624 struct likely_spilled_retval_info
1625 {
1626 unsigned regno, nregs;
1627 unsigned mask;
1628 };
1629
1630 /* Called via note_stores by likely_spilled_retval_p. Remove from info->mask
1631 hard registers that are known to be written to / clobbered in full. */
1632 static void
1633 likely_spilled_retval_1 (rtx x, rtx set, void *data)
1634 {
1635 struct likely_spilled_retval_info *info = data;
1636 unsigned regno, nregs;
1637 unsigned new_mask;
1638
1639 if (!REG_P (XEXP (set, 0)))
1640 return;
1641 regno = REGNO (x);
1642 if (regno >= info->regno + info->nregs)
1643 return;
1644 nregs = hard_regno_nregs[regno][GET_MODE (x)];
1645 if (regno + nregs <= info->regno)
1646 return;
1647 new_mask = (2U << (nregs - 1)) - 1;
1648 if (regno < info->regno)
1649 new_mask >>= info->regno - regno;
1650 else
1651 new_mask <<= regno - info->regno;
1652 info->mask &= new_mask;
1653 }
1654
1655 /* Return nonzero iff part of the return value is live during INSN, and
1656 it is likely spilled. This can happen when more than one insn is needed
1657 to copy the return value, e.g. when we consider to combine into the
1658 second copy insn for a complex value. */
1659
1660 static int
1661 likely_spilled_retval_p (rtx insn)
1662 {
1663 rtx use = BB_END (this_basic_block);
1664 rtx reg, p;
1665 unsigned regno, nregs;
1666 /* We assume here that no machine mode needs more than
1667 32 hard registers when the value overlaps with a register
1668 for which FUNCTION_VALUE_REGNO_P is true. */
1669 unsigned mask;
1670 struct likely_spilled_retval_info info;
1671
1672 if (!NONJUMP_INSN_P (use) || GET_CODE (PATTERN (use)) != USE || insn == use)
1673 return 0;
1674 reg = XEXP (PATTERN (use), 0);
1675 if (!REG_P (reg) || !FUNCTION_VALUE_REGNO_P (REGNO (reg)))
1676 return 0;
1677 regno = REGNO (reg);
1678 nregs = hard_regno_nregs[regno][GET_MODE (reg)];
1679 if (nregs == 1)
1680 return 0;
1681 mask = (2U << (nregs - 1)) - 1;
1682
1683 /* Disregard parts of the return value that are set later. */
1684 info.regno = regno;
1685 info.nregs = nregs;
1686 info.mask = mask;
1687 for (p = PREV_INSN (use); info.mask && p != insn; p = PREV_INSN (p))
1688 note_stores (PATTERN (insn), likely_spilled_retval_1, &info);
1689 mask = info.mask;
1690
1691 /* Check if any of the (probably) live return value registers is
1692 likely spilled. */
1693 nregs --;
1694 do
1695 {
1696 if ((mask & 1 << nregs)
1697 && CLASS_LIKELY_SPILLED_P (REGNO_REG_CLASS (regno + nregs)))
1698 return 1;
1699 } while (nregs--);
1700 return 0;
1701 }
1702
1703 /* Adjust INSN after we made a change to its destination.
1704
1705 Changing the destination can invalidate notes that say something about
1706 the results of the insn and a LOG_LINK pointing to the insn. */
1707
1708 static void
1709 adjust_for_new_dest (rtx insn)
1710 {
1711 rtx *loc;
1712
1713 /* For notes, be conservative and simply remove them. */
1714 loc = &REG_NOTES (insn);
1715 while (*loc)
1716 {
1717 enum reg_note kind = REG_NOTE_KIND (*loc);
1718 if (kind == REG_EQUAL || kind == REG_EQUIV)
1719 *loc = XEXP (*loc, 1);
1720 else
1721 loc = &XEXP (*loc, 1);
1722 }
1723
1724 /* The new insn will have a destination that was previously the destination
1725 of an insn just above it. Call distribute_links to make a LOG_LINK from
1726 the next use of that destination. */
1727 distribute_links (gen_rtx_INSN_LIST (VOIDmode, insn, NULL_RTX));
1728 }
1729
1730 /* Return TRUE if combine can reuse reg X in mode MODE.
1731 ADDED_SETS is nonzero if the original set is still required. */
1732 static bool
1733 can_change_dest_mode (rtx x, int added_sets, enum machine_mode mode)
1734 {
1735 unsigned int regno;
1736
1737 if (!REG_P(x))
1738 return false;
1739
1740 regno = REGNO (x);
1741 /* Allow hard registers if the new mode is legal, and occupies no more
1742 registers than the old mode. */
1743 if (regno < FIRST_PSEUDO_REGISTER)
1744 return (HARD_REGNO_MODE_OK (regno, mode)
1745 && (hard_regno_nregs[regno][GET_MODE (x)]
1746 >= hard_regno_nregs[regno][mode]));
1747
1748 /* Or a pseudo that is only used once. */
1749 return (REG_N_SETS (regno) == 1 && !added_sets
1750 && !REG_USERVAR_P (x));
1751 }
1752
1753
1754 /* Check whether X, the destination of a set, refers to part of
1755 the register specified by REG. */
1756
1757 static bool
1758 reg_subword_p (rtx x, rtx reg)
1759 {
1760 /* Check that reg is an integer mode register. */
1761 if (!REG_P (reg) || GET_MODE_CLASS (GET_MODE (reg)) != MODE_INT)
1762 return false;
1763
1764 if (GET_CODE (x) == STRICT_LOW_PART
1765 || GET_CODE (x) == ZERO_EXTRACT)
1766 x = XEXP (x, 0);
1767
1768 return GET_CODE (x) == SUBREG
1769 && SUBREG_REG (x) == reg
1770 && GET_MODE_CLASS (GET_MODE (x)) == MODE_INT;
1771 }
1772
1773
1774 /* Try to combine the insns I1 and I2 into I3.
1775 Here I1 and I2 appear earlier than I3.
1776 I1 can be zero; then we combine just I2 into I3.
1777
1778 If we are combining three insns and the resulting insn is not recognized,
1779 try splitting it into two insns. If that happens, I2 and I3 are retained
1780 and I1 is pseudo-deleted by turning it into a NOTE. Otherwise, I1 and I2
1781 are pseudo-deleted.
1782
1783 Return 0 if the combination does not work. Then nothing is changed.
1784 If we did the combination, return the insn at which combine should
1785 resume scanning.
1786
1787 Set NEW_DIRECT_JUMP_P to a nonzero value if try_combine creates a
1788 new direct jump instruction. */
1789
1790 static rtx
1791 try_combine (rtx i3, rtx i2, rtx i1, int *new_direct_jump_p)
1792 {
1793 /* New patterns for I3 and I2, respectively. */
1794 rtx newpat, newi2pat = 0;
1795 rtvec newpat_vec_with_clobbers = 0;
1796 int substed_i2 = 0, substed_i1 = 0;
1797 /* Indicates need to preserve SET in I1 or I2 in I3 if it is not dead. */
1798 int added_sets_1, added_sets_2;
1799 /* Total number of SETs to put into I3. */
1800 int total_sets;
1801 /* Nonzero if I2's body now appears in I3. */
1802 int i2_is_used;
1803 /* INSN_CODEs for new I3, new I2, and user of condition code. */
1804 int insn_code_number, i2_code_number = 0, other_code_number = 0;
1805 /* Contains I3 if the destination of I3 is used in its source, which means
1806 that the old life of I3 is being killed. If that usage is placed into
1807 I2 and not in I3, a REG_DEAD note must be made. */
1808 rtx i3dest_killed = 0;
1809 /* SET_DEST and SET_SRC of I2 and I1. */
1810 rtx i2dest, i2src, i1dest = 0, i1src = 0;
1811 /* PATTERN (I2), or a copy of it in certain cases. */
1812 rtx i2pat;
1813 /* Indicates if I2DEST or I1DEST is in I2SRC or I1_SRC. */
1814 int i2dest_in_i2src = 0, i1dest_in_i1src = 0, i2dest_in_i1src = 0;
1815 int i2dest_killed = 0, i1dest_killed = 0;
1816 int i1_feeds_i3 = 0;
1817 /* Notes that must be added to REG_NOTES in I3 and I2. */
1818 rtx new_i3_notes, new_i2_notes;
1819 /* Notes that we substituted I3 into I2 instead of the normal case. */
1820 int i3_subst_into_i2 = 0;
1821 /* Notes that I1, I2 or I3 is a MULT operation. */
1822 int have_mult = 0;
1823 int swap_i2i3 = 0;
1824
1825 int maxreg;
1826 rtx temp;
1827 rtx link;
1828 int i;
1829
1830 /* Exit early if one of the insns involved can't be used for
1831 combinations. */
1832 if (cant_combine_insn_p (i3)
1833 || cant_combine_insn_p (i2)
1834 || (i1 && cant_combine_insn_p (i1))
1835 || likely_spilled_retval_p (i3)
1836 /* We also can't do anything if I3 has a
1837 REG_LIBCALL note since we don't want to disrupt the contiguity of a
1838 libcall. */
1839 #if 0
1840 /* ??? This gives worse code, and appears to be unnecessary, since no
1841 pass after flow uses REG_LIBCALL/REG_RETVAL notes. */
1842 || find_reg_note (i3, REG_LIBCALL, NULL_RTX)
1843 #endif
1844 )
1845 return 0;
1846
1847 combine_attempts++;
1848 undobuf.other_insn = 0;
1849
1850 /* Reset the hard register usage information. */
1851 CLEAR_HARD_REG_SET (newpat_used_regs);
1852
1853 /* If I1 and I2 both feed I3, they can be in any order. To simplify the
1854 code below, set I1 to be the earlier of the two insns. */
1855 if (i1 && INSN_CUID (i1) > INSN_CUID (i2))
1856 temp = i1, i1 = i2, i2 = temp;
1857
1858 added_links_insn = 0;
1859
1860 /* First check for one important special-case that the code below will
1861 not handle. Namely, the case where I1 is zero, I2 is a PARALLEL
1862 and I3 is a SET whose SET_SRC is a SET_DEST in I2. In that case,
1863 we may be able to replace that destination with the destination of I3.
1864 This occurs in the common code where we compute both a quotient and
1865 remainder into a structure, in which case we want to do the computation
1866 directly into the structure to avoid register-register copies.
1867
1868 Note that this case handles both multiple sets in I2 and also
1869 cases where I2 has a number of CLOBBER or PARALLELs.
1870
1871 We make very conservative checks below and only try to handle the
1872 most common cases of this. For example, we only handle the case
1873 where I2 and I3 are adjacent to avoid making difficult register
1874 usage tests. */
1875
1876 if (i1 == 0 && NONJUMP_INSN_P (i3) && GET_CODE (PATTERN (i3)) == SET
1877 && REG_P (SET_SRC (PATTERN (i3)))
1878 && REGNO (SET_SRC (PATTERN (i3))) >= FIRST_PSEUDO_REGISTER
1879 && find_reg_note (i3, REG_DEAD, SET_SRC (PATTERN (i3)))
1880 && GET_CODE (PATTERN (i2)) == PARALLEL
1881 && ! side_effects_p (SET_DEST (PATTERN (i3)))
1882 /* If the dest of I3 is a ZERO_EXTRACT or STRICT_LOW_PART, the code
1883 below would need to check what is inside (and reg_overlap_mentioned_p
1884 doesn't support those codes anyway). Don't allow those destinations;
1885 the resulting insn isn't likely to be recognized anyway. */
1886 && GET_CODE (SET_DEST (PATTERN (i3))) != ZERO_EXTRACT
1887 && GET_CODE (SET_DEST (PATTERN (i3))) != STRICT_LOW_PART
1888 && ! reg_overlap_mentioned_p (SET_SRC (PATTERN (i3)),
1889 SET_DEST (PATTERN (i3)))
1890 && next_real_insn (i2) == i3)
1891 {
1892 rtx p2 = PATTERN (i2);
1893
1894 /* Make sure that the destination of I3,
1895 which we are going to substitute into one output of I2,
1896 is not used within another output of I2. We must avoid making this:
1897 (parallel [(set (mem (reg 69)) ...)
1898 (set (reg 69) ...)])
1899 which is not well-defined as to order of actions.
1900 (Besides, reload can't handle output reloads for this.)
1901
1902 The problem can also happen if the dest of I3 is a memory ref,
1903 if another dest in I2 is an indirect memory ref. */
1904 for (i = 0; i < XVECLEN (p2, 0); i++)
1905 if ((GET_CODE (XVECEXP (p2, 0, i)) == SET
1906 || GET_CODE (XVECEXP (p2, 0, i)) == CLOBBER)
1907 && reg_overlap_mentioned_p (SET_DEST (PATTERN (i3)),
1908 SET_DEST (XVECEXP (p2, 0, i))))
1909 break;
1910
1911 if (i == XVECLEN (p2, 0))
1912 for (i = 0; i < XVECLEN (p2, 0); i++)
1913 if ((GET_CODE (XVECEXP (p2, 0, i)) == SET
1914 || GET_CODE (XVECEXP (p2, 0, i)) == CLOBBER)
1915 && SET_DEST (XVECEXP (p2, 0, i)) == SET_SRC (PATTERN (i3)))
1916 {
1917 combine_merges++;
1918
1919 subst_insn = i3;
1920 subst_low_cuid = INSN_CUID (i2);
1921
1922 added_sets_2 = added_sets_1 = 0;
1923 i2dest = SET_SRC (PATTERN (i3));
1924 i2dest_killed = dead_or_set_p (i2, i2dest);
1925
1926 /* Replace the dest in I2 with our dest and make the resulting
1927 insn the new pattern for I3. Then skip to where we
1928 validate the pattern. Everything was set up above. */
1929 SUBST (SET_DEST (XVECEXP (p2, 0, i)),
1930 SET_DEST (PATTERN (i3)));
1931
1932 newpat = p2;
1933 i3_subst_into_i2 = 1;
1934 goto validate_replacement;
1935 }
1936 }
1937
1938 /* If I2 is setting a pseudo to a constant and I3 is setting some
1939 sub-part of it to another constant, merge them by making a new
1940 constant. */
1941 if (i1 == 0
1942 && (temp = single_set (i2)) != 0
1943 && (GET_CODE (SET_SRC (temp)) == CONST_INT
1944 || GET_CODE (SET_SRC (temp)) == CONST_DOUBLE)
1945 && GET_CODE (PATTERN (i3)) == SET
1946 && (GET_CODE (SET_SRC (PATTERN (i3))) == CONST_INT
1947 || GET_CODE (SET_SRC (PATTERN (i3))) == CONST_DOUBLE)
1948 && reg_subword_p (SET_DEST (PATTERN (i3)), SET_DEST (temp)))
1949 {
1950 rtx dest = SET_DEST (PATTERN (i3));
1951 int offset = -1;
1952 int width = 0;
1953
1954 if (GET_CODE (dest) == ZERO_EXTRACT)
1955 {
1956 if (GET_CODE (XEXP (dest, 1)) == CONST_INT
1957 && GET_CODE (XEXP (dest, 2)) == CONST_INT)
1958 {
1959 width = INTVAL (XEXP (dest, 1));
1960 offset = INTVAL (XEXP (dest, 2));
1961 dest = XEXP (dest, 0);
1962 if (BITS_BIG_ENDIAN)
1963 offset = GET_MODE_BITSIZE (GET_MODE (dest)) - width - offset;
1964 }
1965 }
1966 else
1967 {
1968 if (GET_CODE (dest) == STRICT_LOW_PART)
1969 dest = XEXP (dest, 0);
1970 width = GET_MODE_BITSIZE (GET_MODE (dest));
1971 offset = 0;
1972 }
1973
1974 if (offset >= 0)
1975 {
1976 /* If this is the low part, we're done. */
1977 if (subreg_lowpart_p (dest))
1978 ;
1979 /* Handle the case where inner is twice the size of outer. */
1980 else if (GET_MODE_BITSIZE (GET_MODE (SET_DEST (temp)))
1981 == 2 * GET_MODE_BITSIZE (GET_MODE (dest)))
1982 offset += GET_MODE_BITSIZE (GET_MODE (dest));
1983 /* Otherwise give up for now. */
1984 else
1985 offset = -1;
1986 }
1987
1988 if (offset >= 0)
1989 {
1990 HOST_WIDE_INT mhi, ohi, ihi;
1991 HOST_WIDE_INT mlo, olo, ilo;
1992 rtx inner = SET_SRC (PATTERN (i3));
1993 rtx outer = SET_SRC (temp);
1994
1995 if (GET_CODE (outer) == CONST_INT)
1996 {
1997 olo = INTVAL (outer);
1998 ohi = olo < 0 ? -1 : 0;
1999 }
2000 else
2001 {
2002 olo = CONST_DOUBLE_LOW (outer);
2003 ohi = CONST_DOUBLE_HIGH (outer);
2004 }
2005
2006 if (GET_CODE (inner) == CONST_INT)
2007 {
2008 ilo = INTVAL (inner);
2009 ihi = ilo < 0 ? -1 : 0;
2010 }
2011 else
2012 {
2013 ilo = CONST_DOUBLE_LOW (inner);
2014 ihi = CONST_DOUBLE_HIGH (inner);
2015 }
2016
2017 if (width < HOST_BITS_PER_WIDE_INT)
2018 {
2019 mlo = ((unsigned HOST_WIDE_INT) 1 << width) - 1;
2020 mhi = 0;
2021 }
2022 else if (width < HOST_BITS_PER_WIDE_INT * 2)
2023 {
2024 mhi = ((unsigned HOST_WIDE_INT) 1
2025 << (width - HOST_BITS_PER_WIDE_INT)) - 1;
2026 mlo = -1;
2027 }
2028 else
2029 {
2030 mlo = -1;
2031 mhi = -1;
2032 }
2033
2034 ilo &= mlo;
2035 ihi &= mhi;
2036
2037 if (offset >= HOST_BITS_PER_WIDE_INT)
2038 {
2039 mhi = mlo << (offset - HOST_BITS_PER_WIDE_INT);
2040 mlo = 0;
2041 ihi = ilo << (offset - HOST_BITS_PER_WIDE_INT);
2042 ilo = 0;
2043 }
2044 else if (offset > 0)
2045 {
2046 mhi = (mhi << offset) | ((unsigned HOST_WIDE_INT) mlo
2047 >> (HOST_BITS_PER_WIDE_INT - offset));
2048 mlo = mlo << offset;
2049 ihi = (ihi << offset) | ((unsigned HOST_WIDE_INT) ilo
2050 >> (HOST_BITS_PER_WIDE_INT - offset));
2051 ilo = ilo << offset;
2052 }
2053
2054 olo = (olo & ~mlo) | ilo;
2055 ohi = (ohi & ~mhi) | ihi;
2056
2057 combine_merges++;
2058 subst_insn = i3;
2059 subst_low_cuid = INSN_CUID (i2);
2060 added_sets_2 = added_sets_1 = 0;
2061 i2dest = SET_DEST (temp);
2062 i2dest_killed = dead_or_set_p (i2, i2dest);
2063
2064 SUBST (SET_SRC (temp),
2065 immed_double_const (olo, ohi, GET_MODE (SET_DEST (temp))));
2066
2067 newpat = PATTERN (i2);
2068 goto validate_replacement;
2069 }
2070 }
2071
2072 #ifndef HAVE_cc0
2073 /* If we have no I1 and I2 looks like:
2074 (parallel [(set (reg:CC X) (compare:CC OP (const_int 0)))
2075 (set Y OP)])
2076 make up a dummy I1 that is
2077 (set Y OP)
2078 and change I2 to be
2079 (set (reg:CC X) (compare:CC Y (const_int 0)))
2080
2081 (We can ignore any trailing CLOBBERs.)
2082
2083 This undoes a previous combination and allows us to match a branch-and-
2084 decrement insn. */
2085
2086 if (i1 == 0 && GET_CODE (PATTERN (i2)) == PARALLEL
2087 && XVECLEN (PATTERN (i2), 0) >= 2
2088 && GET_CODE (XVECEXP (PATTERN (i2), 0, 0)) == SET
2089 && (GET_MODE_CLASS (GET_MODE (SET_DEST (XVECEXP (PATTERN (i2), 0, 0))))
2090 == MODE_CC)
2091 && GET_CODE (SET_SRC (XVECEXP (PATTERN (i2), 0, 0))) == COMPARE
2092 && XEXP (SET_SRC (XVECEXP (PATTERN (i2), 0, 0)), 1) == const0_rtx
2093 && GET_CODE (XVECEXP (PATTERN (i2), 0, 1)) == SET
2094 && REG_P (SET_DEST (XVECEXP (PATTERN (i2), 0, 1)))
2095 && rtx_equal_p (XEXP (SET_SRC (XVECEXP (PATTERN (i2), 0, 0)), 0),
2096 SET_SRC (XVECEXP (PATTERN (i2), 0, 1))))
2097 {
2098 for (i = XVECLEN (PATTERN (i2), 0) - 1; i >= 2; i--)
2099 if (GET_CODE (XVECEXP (PATTERN (i2), 0, i)) != CLOBBER)
2100 break;
2101
2102 if (i == 1)
2103 {
2104 /* We make I1 with the same INSN_UID as I2. This gives it
2105 the same INSN_CUID for value tracking. Our fake I1 will
2106 never appear in the insn stream so giving it the same INSN_UID
2107 as I2 will not cause a problem. */
2108
2109 i1 = gen_rtx_INSN (VOIDmode, INSN_UID (i2), NULL_RTX, i2,
2110 BLOCK_FOR_INSN (i2), INSN_LOCATOR (i2),
2111 XVECEXP (PATTERN (i2), 0, 1), -1, NULL_RTX,
2112 NULL_RTX);
2113
2114 SUBST (PATTERN (i2), XVECEXP (PATTERN (i2), 0, 0));
2115 SUBST (XEXP (SET_SRC (PATTERN (i2)), 0),
2116 SET_DEST (PATTERN (i1)));
2117 }
2118 }
2119 #endif
2120
2121 /* Verify that I2 and I1 are valid for combining. */
2122 if (! can_combine_p (i2, i3, i1, NULL_RTX, &i2dest, &i2src)
2123 || (i1 && ! can_combine_p (i1, i3, NULL_RTX, i2, &i1dest, &i1src)))
2124 {
2125 undo_all ();
2126 return 0;
2127 }
2128
2129 /* Record whether I2DEST is used in I2SRC and similarly for the other
2130 cases. Knowing this will help in register status updating below. */
2131 i2dest_in_i2src = reg_overlap_mentioned_p (i2dest, i2src);
2132 i1dest_in_i1src = i1 && reg_overlap_mentioned_p (i1dest, i1src);
2133 i2dest_in_i1src = i1 && reg_overlap_mentioned_p (i2dest, i1src);
2134 i2dest_killed = dead_or_set_p (i2, i2dest);
2135 i1dest_killed = i1 && dead_or_set_p (i1, i1dest);
2136
2137 /* See if I1 directly feeds into I3. It does if I1DEST is not used
2138 in I2SRC. */
2139 i1_feeds_i3 = i1 && ! reg_overlap_mentioned_p (i1dest, i2src);
2140
2141 /* Ensure that I3's pattern can be the destination of combines. */
2142 if (! combinable_i3pat (i3, &PATTERN (i3), i2dest, i1dest,
2143 i1 && i2dest_in_i1src && i1_feeds_i3,
2144 &i3dest_killed))
2145 {
2146 undo_all ();
2147 return 0;
2148 }
2149
2150 /* See if any of the insns is a MULT operation. Unless one is, we will
2151 reject a combination that is, since it must be slower. Be conservative
2152 here. */
2153 if (GET_CODE (i2src) == MULT
2154 || (i1 != 0 && GET_CODE (i1src) == MULT)
2155 || (GET_CODE (PATTERN (i3)) == SET
2156 && GET_CODE (SET_SRC (PATTERN (i3))) == MULT))
2157 have_mult = 1;
2158
2159 /* If I3 has an inc, then give up if I1 or I2 uses the reg that is inc'd.
2160 We used to do this EXCEPT in one case: I3 has a post-inc in an
2161 output operand. However, that exception can give rise to insns like
2162 mov r3,(r3)+
2163 which is a famous insn on the PDP-11 where the value of r3 used as the
2164 source was model-dependent. Avoid this sort of thing. */
2165
2166 #if 0
2167 if (!(GET_CODE (PATTERN (i3)) == SET
2168 && REG_P (SET_SRC (PATTERN (i3)))
2169 && MEM_P (SET_DEST (PATTERN (i3)))
2170 && (GET_CODE (XEXP (SET_DEST (PATTERN (i3)), 0)) == POST_INC
2171 || GET_CODE (XEXP (SET_DEST (PATTERN (i3)), 0)) == POST_DEC)))
2172 /* It's not the exception. */
2173 #endif
2174 #ifdef AUTO_INC_DEC
2175 for (link = REG_NOTES (i3); link; link = XEXP (link, 1))
2176 if (REG_NOTE_KIND (link) == REG_INC
2177 && (reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i2))
2178 || (i1 != 0
2179 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i1)))))
2180 {
2181 undo_all ();
2182 return 0;
2183 }
2184 #endif
2185
2186 /* See if the SETs in I1 or I2 need to be kept around in the merged
2187 instruction: whenever the value set there is still needed past I3.
2188 For the SETs in I2, this is easy: we see if I2DEST dies or is set in I3.
2189
2190 For the SET in I1, we have two cases: If I1 and I2 independently
2191 feed into I3, the set in I1 needs to be kept around if I1DEST dies
2192 or is set in I3. Otherwise (if I1 feeds I2 which feeds I3), the set
2193 in I1 needs to be kept around unless I1DEST dies or is set in either
2194 I2 or I3. We can distinguish these cases by seeing if I2SRC mentions
2195 I1DEST. If so, we know I1 feeds into I2. */
2196
2197 added_sets_2 = ! dead_or_set_p (i3, i2dest);
2198
2199 added_sets_1
2200 = i1 && ! (i1_feeds_i3 ? dead_or_set_p (i3, i1dest)
2201 : (dead_or_set_p (i3, i1dest) || dead_or_set_p (i2, i1dest)));
2202
2203 /* If the set in I2 needs to be kept around, we must make a copy of
2204 PATTERN (I2), so that when we substitute I1SRC for I1DEST in
2205 PATTERN (I2), we are only substituting for the original I1DEST, not into
2206 an already-substituted copy. This also prevents making self-referential
2207 rtx. If I2 is a PARALLEL, we just need the piece that assigns I2SRC to
2208 I2DEST. */
2209
2210 i2pat = (GET_CODE (PATTERN (i2)) == PARALLEL
2211 ? gen_rtx_SET (VOIDmode, i2dest, i2src)
2212 : PATTERN (i2));
2213
2214 if (added_sets_2)
2215 i2pat = copy_rtx (i2pat);
2216
2217 combine_merges++;
2218
2219 /* Substitute in the latest insn for the regs set by the earlier ones. */
2220
2221 maxreg = max_reg_num ();
2222
2223 subst_insn = i3;
2224
2225 #ifndef HAVE_cc0
2226 /* Many machines that don't use CC0 have insns that can both perform an
2227 arithmetic operation and set the condition code. These operations will
2228 be represented as a PARALLEL with the first element of the vector
2229 being a COMPARE of an arithmetic operation with the constant zero.
2230 The second element of the vector will set some pseudo to the result
2231 of the same arithmetic operation. If we simplify the COMPARE, we won't
2232 match such a pattern and so will generate an extra insn. Here we test
2233 for this case, where both the comparison and the operation result are
2234 needed, and make the PARALLEL by just replacing I2DEST in I3SRC with
2235 I2SRC. Later we will make the PARALLEL that contains I2. */
2236
2237 if (i1 == 0 && added_sets_2 && GET_CODE (PATTERN (i3)) == SET
2238 && GET_CODE (SET_SRC (PATTERN (i3))) == COMPARE
2239 && XEXP (SET_SRC (PATTERN (i3)), 1) == const0_rtx
2240 && rtx_equal_p (XEXP (SET_SRC (PATTERN (i3)), 0), i2dest))
2241 {
2242 #ifdef SELECT_CC_MODE
2243 rtx *cc_use;
2244 enum machine_mode compare_mode;
2245 #endif
2246
2247 newpat = PATTERN (i3);
2248 SUBST (XEXP (SET_SRC (newpat), 0), i2src);
2249
2250 i2_is_used = 1;
2251
2252 #ifdef SELECT_CC_MODE
2253 /* See if a COMPARE with the operand we substituted in should be done
2254 with the mode that is currently being used. If not, do the same
2255 processing we do in `subst' for a SET; namely, if the destination
2256 is used only once, try to replace it with a register of the proper
2257 mode and also replace the COMPARE. */
2258 if (undobuf.other_insn == 0
2259 && (cc_use = find_single_use (SET_DEST (newpat), i3,
2260 &undobuf.other_insn))
2261 && ((compare_mode = SELECT_CC_MODE (GET_CODE (*cc_use),
2262 i2src, const0_rtx))
2263 != GET_MODE (SET_DEST (newpat))))
2264 {
2265 if (can_change_dest_mode(SET_DEST (newpat), added_sets_2,
2266 compare_mode))
2267 {
2268 unsigned int regno = REGNO (SET_DEST (newpat));
2269 rtx new_dest;
2270
2271 if (regno < FIRST_PSEUDO_REGISTER)
2272 new_dest = gen_rtx_REG (compare_mode, regno);
2273 else
2274 {
2275 SUBST_MODE (regno_reg_rtx[regno], compare_mode);
2276 new_dest = regno_reg_rtx[regno];
2277 }
2278
2279 SUBST (SET_DEST (newpat), new_dest);
2280 SUBST (XEXP (*cc_use, 0), new_dest);
2281 SUBST (SET_SRC (newpat),
2282 gen_rtx_COMPARE (compare_mode, i2src, const0_rtx));
2283 }
2284 else
2285 undobuf.other_insn = 0;
2286 }
2287 #endif
2288 }
2289 else
2290 #endif
2291 {
2292 /* It is possible that the source of I2 or I1 may be performing
2293 an unneeded operation, such as a ZERO_EXTEND of something
2294 that is known to have the high part zero. Handle that case
2295 by letting subst look at the innermost one of them.
2296
2297 Another way to do this would be to have a function that tries
2298 to simplify a single insn instead of merging two or more
2299 insns. We don't do this because of the potential of infinite
2300 loops and because of the potential extra memory required.
2301 However, doing it the way we are is a bit of a kludge and
2302 doesn't catch all cases.
2303
2304 But only do this if -fexpensive-optimizations since it slows
2305 things down and doesn't usually win.
2306
2307 This is not done in the COMPARE case above because the
2308 unmodified I2PAT is used in the PARALLEL and so a pattern
2309 with a modified I2SRC would not match. */
2310
2311 if (flag_expensive_optimizations)
2312 {
2313 /* Pass pc_rtx so no substitutions are done, just
2314 simplifications. */
2315 if (i1)
2316 {
2317 subst_low_cuid = INSN_CUID (i1);
2318 i1src = subst (i1src, pc_rtx, pc_rtx, 0, 0);
2319 }
2320 else
2321 {
2322 subst_low_cuid = INSN_CUID (i2);
2323 i2src = subst (i2src, pc_rtx, pc_rtx, 0, 0);
2324 }
2325 }
2326
2327 n_occurrences = 0; /* `subst' counts here */
2328
2329 /* If I1 feeds into I2 (not into I3) and I1DEST is in I1SRC, we
2330 need to make a unique copy of I2SRC each time we substitute it
2331 to avoid self-referential rtl. */
2332
2333 subst_low_cuid = INSN_CUID (i2);
2334 newpat = subst (PATTERN (i3), i2dest, i2src, 0,
2335 ! i1_feeds_i3 && i1dest_in_i1src);
2336 substed_i2 = 1;
2337
2338 /* Record whether i2's body now appears within i3's body. */
2339 i2_is_used = n_occurrences;
2340 }
2341
2342 /* If we already got a failure, don't try to do more. Otherwise,
2343 try to substitute in I1 if we have it. */
2344
2345 if (i1 && GET_CODE (newpat) != CLOBBER)
2346 {
2347 /* Before we can do this substitution, we must redo the test done
2348 above (see detailed comments there) that ensures that I1DEST
2349 isn't mentioned in any SETs in NEWPAT that are field assignments. */
2350
2351 if (! combinable_i3pat (NULL_RTX, &newpat, i1dest, NULL_RTX,
2352 0, (rtx*) 0))
2353 {
2354 undo_all ();
2355 return 0;
2356 }
2357
2358 n_occurrences = 0;
2359 subst_low_cuid = INSN_CUID (i1);
2360 newpat = subst (newpat, i1dest, i1src, 0, 0);
2361 substed_i1 = 1;
2362 }
2363
2364 /* Fail if an autoincrement side-effect has been duplicated. Be careful
2365 to count all the ways that I2SRC and I1SRC can be used. */
2366 if ((FIND_REG_INC_NOTE (i2, NULL_RTX) != 0
2367 && i2_is_used + added_sets_2 > 1)
2368 || (i1 != 0 && FIND_REG_INC_NOTE (i1, NULL_RTX) != 0
2369 && (n_occurrences + added_sets_1 + (added_sets_2 && ! i1_feeds_i3)
2370 > 1))
2371 /* Fail if we tried to make a new register. */
2372 || max_reg_num () != maxreg
2373 /* Fail if we couldn't do something and have a CLOBBER. */
2374 || GET_CODE (newpat) == CLOBBER
2375 /* Fail if this new pattern is a MULT and we didn't have one before
2376 at the outer level. */
2377 || (GET_CODE (newpat) == SET && GET_CODE (SET_SRC (newpat)) == MULT
2378 && ! have_mult))
2379 {
2380 undo_all ();
2381 return 0;
2382 }
2383
2384 /* If the actions of the earlier insns must be kept
2385 in addition to substituting them into the latest one,
2386 we must make a new PARALLEL for the latest insn
2387 to hold additional the SETs. */
2388
2389 if (added_sets_1 || added_sets_2)
2390 {
2391 combine_extras++;
2392
2393 if (GET_CODE (newpat) == PARALLEL)
2394 {
2395 rtvec old = XVEC (newpat, 0);
2396 total_sets = XVECLEN (newpat, 0) + added_sets_1 + added_sets_2;
2397 newpat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (total_sets));
2398 memcpy (XVEC (newpat, 0)->elem, &old->elem[0],
2399 sizeof (old->elem[0]) * old->num_elem);
2400 }
2401 else
2402 {
2403 rtx old = newpat;
2404 total_sets = 1 + added_sets_1 + added_sets_2;
2405 newpat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (total_sets));
2406 XVECEXP (newpat, 0, 0) = old;
2407 }
2408
2409 if (added_sets_1)
2410 XVECEXP (newpat, 0, --total_sets)
2411 = (GET_CODE (PATTERN (i1)) == PARALLEL
2412 ? gen_rtx_SET (VOIDmode, i1dest, i1src) : PATTERN (i1));
2413
2414 if (added_sets_2)
2415 {
2416 /* If there is no I1, use I2's body as is. We used to also not do
2417 the subst call below if I2 was substituted into I3,
2418 but that could lose a simplification. */
2419 if (i1 == 0)
2420 XVECEXP (newpat, 0, --total_sets) = i2pat;
2421 else
2422 /* See comment where i2pat is assigned. */
2423 XVECEXP (newpat, 0, --total_sets)
2424 = subst (i2pat, i1dest, i1src, 0, 0);
2425 }
2426 }
2427
2428 /* We come here when we are replacing a destination in I2 with the
2429 destination of I3. */
2430 validate_replacement:
2431
2432 /* Note which hard regs this insn has as inputs. */
2433 mark_used_regs_combine (newpat);
2434
2435 /* If recog_for_combine fails, it strips existing clobbers. If we'll
2436 consider splitting this pattern, we might need these clobbers. */
2437 if (i1 && GET_CODE (newpat) == PARALLEL
2438 && GET_CODE (XVECEXP (newpat, 0, XVECLEN (newpat, 0) - 1)) == CLOBBER)
2439 {
2440 int len = XVECLEN (newpat, 0);
2441
2442 newpat_vec_with_clobbers = rtvec_alloc (len);
2443 for (i = 0; i < len; i++)
2444 RTVEC_ELT (newpat_vec_with_clobbers, i) = XVECEXP (newpat, 0, i);
2445 }
2446
2447 /* Is the result of combination a valid instruction? */
2448 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
2449
2450 /* If the result isn't valid, see if it is a PARALLEL of two SETs where
2451 the second SET's destination is a register that is unused and isn't
2452 marked as an instruction that might trap in an EH region. In that case,
2453 we just need the first SET. This can occur when simplifying a divmod
2454 insn. We *must* test for this case here because the code below that
2455 splits two independent SETs doesn't handle this case correctly when it
2456 updates the register status.
2457
2458 It's pointless doing this if we originally had two sets, one from
2459 i3, and one from i2. Combining then splitting the parallel results
2460 in the original i2 again plus an invalid insn (which we delete).
2461 The net effect is only to move instructions around, which makes
2462 debug info less accurate.
2463
2464 Also check the case where the first SET's destination is unused.
2465 That would not cause incorrect code, but does cause an unneeded
2466 insn to remain. */
2467
2468 if (insn_code_number < 0
2469 && !(added_sets_2 && i1 == 0)
2470 && GET_CODE (newpat) == PARALLEL
2471 && XVECLEN (newpat, 0) == 2
2472 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
2473 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
2474 && asm_noperands (newpat) < 0)
2475 {
2476 rtx set0 = XVECEXP (newpat, 0, 0);
2477 rtx set1 = XVECEXP (newpat, 0, 1);
2478 rtx note;
2479
2480 if (((REG_P (SET_DEST (set1))
2481 && find_reg_note (i3, REG_UNUSED, SET_DEST (set1)))
2482 || (GET_CODE (SET_DEST (set1)) == SUBREG
2483 && find_reg_note (i3, REG_UNUSED, SUBREG_REG (SET_DEST (set1)))))
2484 && (!(note = find_reg_note (i3, REG_EH_REGION, NULL_RTX))
2485 || INTVAL (XEXP (note, 0)) <= 0)
2486 && ! side_effects_p (SET_SRC (set1)))
2487 {
2488 newpat = set0;
2489 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
2490 }
2491
2492 else if (((REG_P (SET_DEST (set0))
2493 && find_reg_note (i3, REG_UNUSED, SET_DEST (set0)))
2494 || (GET_CODE (SET_DEST (set0)) == SUBREG
2495 && find_reg_note (i3, REG_UNUSED,
2496 SUBREG_REG (SET_DEST (set0)))))
2497 && (!(note = find_reg_note (i3, REG_EH_REGION, NULL_RTX))
2498 || INTVAL (XEXP (note, 0)) <= 0)
2499 && ! side_effects_p (SET_SRC (set0)))
2500 {
2501 newpat = set1;
2502 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
2503
2504 if (insn_code_number >= 0)
2505 {
2506 /* If we will be able to accept this, we have made a
2507 change to the destination of I3. This requires us to
2508 do a few adjustments. */
2509
2510 PATTERN (i3) = newpat;
2511 adjust_for_new_dest (i3);
2512 }
2513 }
2514 }
2515
2516 /* If we were combining three insns and the result is a simple SET
2517 with no ASM_OPERANDS that wasn't recognized, try to split it into two
2518 insns. There are two ways to do this. It can be split using a
2519 machine-specific method (like when you have an addition of a large
2520 constant) or by combine in the function find_split_point. */
2521
2522 if (i1 && insn_code_number < 0 && GET_CODE (newpat) == SET
2523 && asm_noperands (newpat) < 0)
2524 {
2525 rtx m_split, *split;
2526
2527 /* See if the MD file can split NEWPAT. If it can't, see if letting it
2528 use I2DEST as a scratch register will help. In the latter case,
2529 convert I2DEST to the mode of the source of NEWPAT if we can. */
2530
2531 m_split = split_insns (newpat, i3);
2532
2533 /* We can only use I2DEST as a scratch reg if it doesn't overlap any
2534 inputs of NEWPAT. */
2535
2536 /* ??? If I2DEST is not safe, and I1DEST exists, then it would be
2537 possible to try that as a scratch reg. This would require adding
2538 more code to make it work though. */
2539
2540 if (m_split == 0 && ! reg_overlap_mentioned_p (i2dest, newpat))
2541 {
2542 enum machine_mode new_mode = GET_MODE (SET_DEST (newpat));
2543
2544 /* First try to split using the original register as a
2545 scratch register. */
2546 m_split = split_insns (gen_rtx_PARALLEL
2547 (VOIDmode,
2548 gen_rtvec (2, newpat,
2549 gen_rtx_CLOBBER (VOIDmode,
2550 i2dest))),
2551 i3);
2552
2553 /* If that didn't work, try changing the mode of I2DEST if
2554 we can. */
2555 if (m_split == 0
2556 && new_mode != GET_MODE (i2dest)
2557 && new_mode != VOIDmode
2558 && can_change_dest_mode (i2dest, added_sets_2, new_mode))
2559 {
2560 enum machine_mode old_mode = GET_MODE (i2dest);
2561 rtx ni2dest;
2562
2563 if (REGNO (i2dest) < FIRST_PSEUDO_REGISTER)
2564 ni2dest = gen_rtx_REG (new_mode, REGNO (i2dest));
2565 else
2566 {
2567 SUBST_MODE (regno_reg_rtx[REGNO (i2dest)], new_mode);
2568 ni2dest = regno_reg_rtx[REGNO (i2dest)];
2569 }
2570
2571 m_split = split_insns (gen_rtx_PARALLEL
2572 (VOIDmode,
2573 gen_rtvec (2, newpat,
2574 gen_rtx_CLOBBER (VOIDmode,
2575 ni2dest))),
2576 i3);
2577
2578 if (m_split == 0
2579 && REGNO (i2dest) >= FIRST_PSEUDO_REGISTER)
2580 {
2581 struct undo *buf;
2582
2583 PUT_MODE (regno_reg_rtx[REGNO (i2dest)], old_mode);
2584 buf = undobuf.undos;
2585 undobuf.undos = buf->next;
2586 buf->next = undobuf.frees;
2587 undobuf.frees = buf;
2588 }
2589 }
2590 }
2591
2592 /* If recog_for_combine has discarded clobbers, try to use them
2593 again for the split. */
2594 if (m_split == 0 && newpat_vec_with_clobbers)
2595 m_split
2596 = split_insns (gen_rtx_PARALLEL (VOIDmode,
2597 newpat_vec_with_clobbers), i3);
2598
2599 if (m_split && NEXT_INSN (m_split) == NULL_RTX)
2600 {
2601 m_split = PATTERN (m_split);
2602 insn_code_number = recog_for_combine (&m_split, i3, &new_i3_notes);
2603 if (insn_code_number >= 0)
2604 newpat = m_split;
2605 }
2606 else if (m_split && NEXT_INSN (NEXT_INSN (m_split)) == NULL_RTX
2607 && (next_real_insn (i2) == i3
2608 || ! use_crosses_set_p (PATTERN (m_split), INSN_CUID (i2))))
2609 {
2610 rtx i2set, i3set;
2611 rtx newi3pat = PATTERN (NEXT_INSN (m_split));
2612 newi2pat = PATTERN (m_split);
2613
2614 i3set = single_set (NEXT_INSN (m_split));
2615 i2set = single_set (m_split);
2616
2617 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
2618
2619 /* If I2 or I3 has multiple SETs, we won't know how to track
2620 register status, so don't use these insns. If I2's destination
2621 is used between I2 and I3, we also can't use these insns. */
2622
2623 if (i2_code_number >= 0 && i2set && i3set
2624 && (next_real_insn (i2) == i3
2625 || ! reg_used_between_p (SET_DEST (i2set), i2, i3)))
2626 insn_code_number = recog_for_combine (&newi3pat, i3,
2627 &new_i3_notes);
2628 if (insn_code_number >= 0)
2629 newpat = newi3pat;
2630
2631 /* It is possible that both insns now set the destination of I3.
2632 If so, we must show an extra use of it. */
2633
2634 if (insn_code_number >= 0)
2635 {
2636 rtx new_i3_dest = SET_DEST (i3set);
2637 rtx new_i2_dest = SET_DEST (i2set);
2638
2639 while (GET_CODE (new_i3_dest) == ZERO_EXTRACT
2640 || GET_CODE (new_i3_dest) == STRICT_LOW_PART
2641 || GET_CODE (new_i3_dest) == SUBREG)
2642 new_i3_dest = XEXP (new_i3_dest, 0);
2643
2644 while (GET_CODE (new_i2_dest) == ZERO_EXTRACT
2645 || GET_CODE (new_i2_dest) == STRICT_LOW_PART
2646 || GET_CODE (new_i2_dest) == SUBREG)
2647 new_i2_dest = XEXP (new_i2_dest, 0);
2648
2649 if (REG_P (new_i3_dest)
2650 && REG_P (new_i2_dest)
2651 && REGNO (new_i3_dest) == REGNO (new_i2_dest))
2652 REG_N_SETS (REGNO (new_i2_dest))++;
2653 }
2654 }
2655
2656 /* If we can split it and use I2DEST, go ahead and see if that
2657 helps things be recognized. Verify that none of the registers
2658 are set between I2 and I3. */
2659 if (insn_code_number < 0 && (split = find_split_point (&newpat, i3)) != 0
2660 #ifdef HAVE_cc0
2661 && REG_P (i2dest)
2662 #endif
2663 /* We need I2DEST in the proper mode. If it is a hard register
2664 or the only use of a pseudo, we can change its mode.
2665 Make sure we don't change a hard register to have a mode that
2666 isn't valid for it, or change the number of registers. */
2667 && (GET_MODE (*split) == GET_MODE (i2dest)
2668 || GET_MODE (*split) == VOIDmode
2669 || can_change_dest_mode (i2dest, added_sets_2,
2670 GET_MODE (*split)))
2671 && (next_real_insn (i2) == i3
2672 || ! use_crosses_set_p (*split, INSN_CUID (i2)))
2673 /* We can't overwrite I2DEST if its value is still used by
2674 NEWPAT. */
2675 && ! reg_referenced_p (i2dest, newpat))
2676 {
2677 rtx newdest = i2dest;
2678 enum rtx_code split_code = GET_CODE (*split);
2679 enum machine_mode split_mode = GET_MODE (*split);
2680 bool subst_done = false;
2681 newi2pat = NULL_RTX;
2682
2683 /* Get NEWDEST as a register in the proper mode. We have already
2684 validated that we can do this. */
2685 if (GET_MODE (i2dest) != split_mode && split_mode != VOIDmode)
2686 {
2687 if (REGNO (i2dest) < FIRST_PSEUDO_REGISTER)
2688 newdest = gen_rtx_REG (split_mode, REGNO (i2dest));
2689 else
2690 {
2691 SUBST_MODE (regno_reg_rtx[REGNO (i2dest)], split_mode);
2692 newdest = regno_reg_rtx[REGNO (i2dest)];
2693 }
2694 }
2695
2696 /* If *SPLIT is a (mult FOO (const_int pow2)), convert it to
2697 an ASHIFT. This can occur if it was inside a PLUS and hence
2698 appeared to be a memory address. This is a kludge. */
2699 if (split_code == MULT
2700 && GET_CODE (XEXP (*split, 1)) == CONST_INT
2701 && INTVAL (XEXP (*split, 1)) > 0
2702 && (i = exact_log2 (INTVAL (XEXP (*split, 1)))) >= 0)
2703 {
2704 SUBST (*split, gen_rtx_ASHIFT (split_mode,
2705 XEXP (*split, 0), GEN_INT (i)));
2706 /* Update split_code because we may not have a multiply
2707 anymore. */
2708 split_code = GET_CODE (*split);
2709 }
2710
2711 #ifdef INSN_SCHEDULING
2712 /* If *SPLIT is a paradoxical SUBREG, when we split it, it should
2713 be written as a ZERO_EXTEND. */
2714 if (split_code == SUBREG && MEM_P (SUBREG_REG (*split)))
2715 {
2716 #ifdef LOAD_EXTEND_OP
2717 /* Or as a SIGN_EXTEND if LOAD_EXTEND_OP says that that's
2718 what it really is. */
2719 if (LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (*split)))
2720 == SIGN_EXTEND)
2721 SUBST (*split, gen_rtx_SIGN_EXTEND (split_mode,
2722 SUBREG_REG (*split)));
2723 else
2724 #endif
2725 SUBST (*split, gen_rtx_ZERO_EXTEND (split_mode,
2726 SUBREG_REG (*split)));
2727 }
2728 #endif
2729
2730 /* Attempt to split binary operators using arithmetic identities. */
2731 if (BINARY_P (SET_SRC (newpat))
2732 && split_mode == GET_MODE (SET_SRC (newpat))
2733 && ! side_effects_p (SET_SRC (newpat)))
2734 {
2735 rtx setsrc = SET_SRC (newpat);
2736 enum machine_mode mode = GET_MODE (setsrc);
2737 enum rtx_code code = GET_CODE (setsrc);
2738 rtx src_op0 = XEXP (setsrc, 0);
2739 rtx src_op1 = XEXP (setsrc, 1);
2740
2741 /* Split "X = Y op Y" as "Z = Y; X = Z op Z". */
2742 if (rtx_equal_p (src_op0, src_op1))
2743 {
2744 newi2pat = gen_rtx_SET (VOIDmode, newdest, src_op0);
2745 SUBST (XEXP (setsrc, 0), newdest);
2746 SUBST (XEXP (setsrc, 1), newdest);
2747 subst_done = true;
2748 }
2749 /* Split "((P op Q) op R) op S" where op is PLUS or MULT. */
2750 else if ((code == PLUS || code == MULT)
2751 && GET_CODE (src_op0) == code
2752 && GET_CODE (XEXP (src_op0, 0)) == code
2753 && (INTEGRAL_MODE_P (mode)
2754 || (FLOAT_MODE_P (mode)
2755 && flag_unsafe_math_optimizations)))
2756 {
2757 rtx p = XEXP (XEXP (src_op0, 0), 0);
2758 rtx q = XEXP (XEXP (src_op0, 0), 1);
2759 rtx r = XEXP (src_op0, 1);
2760 rtx s = src_op1;
2761
2762 /* Split both "((X op Y) op X) op Y" and
2763 "((X op Y) op Y) op X" as "T op T" where T is
2764 "X op Y". */
2765 if ((rtx_equal_p (p,r) && rtx_equal_p (q,s))
2766 || (rtx_equal_p (p,s) && rtx_equal_p (q,r)))
2767 {
2768 newi2pat = gen_rtx_SET (VOIDmode, newdest,
2769 XEXP (src_op0, 0));
2770 SUBST (XEXP (setsrc, 0), newdest);
2771 SUBST (XEXP (setsrc, 1), newdest);
2772 subst_done = true;
2773 }
2774 /* Split "((X op X) op Y) op Y)" as "T op T" where
2775 T is "X op Y". */
2776 else if (rtx_equal_p (p,q) && rtx_equal_p (r,s))
2777 {
2778 rtx tmp = simplify_gen_binary (code, mode, p, r);
2779 newi2pat = gen_rtx_SET (VOIDmode, newdest, tmp);
2780 SUBST (XEXP (setsrc, 0), newdest);
2781 SUBST (XEXP (setsrc, 1), newdest);
2782 subst_done = true;
2783 }
2784 }
2785 }
2786
2787 if (!subst_done)
2788 {
2789 newi2pat = gen_rtx_SET (VOIDmode, newdest, *split);
2790 SUBST (*split, newdest);
2791 }
2792
2793 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
2794
2795 /* recog_for_combine might have added CLOBBERs to newi2pat.
2796 Make sure NEWPAT does not depend on the clobbered regs. */
2797 if (GET_CODE (newi2pat) == PARALLEL)
2798 for (i = XVECLEN (newi2pat, 0) - 1; i >= 0; i--)
2799 if (GET_CODE (XVECEXP (newi2pat, 0, i)) == CLOBBER)
2800 {
2801 rtx reg = XEXP (XVECEXP (newi2pat, 0, i), 0);
2802 if (reg_overlap_mentioned_p (reg, newpat))
2803 {
2804 undo_all ();
2805 return 0;
2806 }
2807 }
2808
2809 /* If the split point was a MULT and we didn't have one before,
2810 don't use one now. */
2811 if (i2_code_number >= 0 && ! (split_code == MULT && ! have_mult))
2812 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
2813 }
2814 }
2815
2816 /* Check for a case where we loaded from memory in a narrow mode and
2817 then sign extended it, but we need both registers. In that case,
2818 we have a PARALLEL with both loads from the same memory location.
2819 We can split this into a load from memory followed by a register-register
2820 copy. This saves at least one insn, more if register allocation can
2821 eliminate the copy.
2822
2823 We cannot do this if the destination of the first assignment is a
2824 condition code register or cc0. We eliminate this case by making sure
2825 the SET_DEST and SET_SRC have the same mode.
2826
2827 We cannot do this if the destination of the second assignment is
2828 a register that we have already assumed is zero-extended. Similarly
2829 for a SUBREG of such a register. */
2830
2831 else if (i1 && insn_code_number < 0 && asm_noperands (newpat) < 0
2832 && GET_CODE (newpat) == PARALLEL
2833 && XVECLEN (newpat, 0) == 2
2834 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
2835 && GET_CODE (SET_SRC (XVECEXP (newpat, 0, 0))) == SIGN_EXTEND
2836 && (GET_MODE (SET_DEST (XVECEXP (newpat, 0, 0)))
2837 == GET_MODE (SET_SRC (XVECEXP (newpat, 0, 0))))
2838 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
2839 && rtx_equal_p (SET_SRC (XVECEXP (newpat, 0, 1)),
2840 XEXP (SET_SRC (XVECEXP (newpat, 0, 0)), 0))
2841 && ! use_crosses_set_p (SET_SRC (XVECEXP (newpat, 0, 1)),
2842 INSN_CUID (i2))
2843 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != ZERO_EXTRACT
2844 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != STRICT_LOW_PART
2845 && ! (temp = SET_DEST (XVECEXP (newpat, 0, 1)),
2846 (REG_P (temp)
2847 && reg_stat[REGNO (temp)].nonzero_bits != 0
2848 && GET_MODE_BITSIZE (GET_MODE (temp)) < BITS_PER_WORD
2849 && GET_MODE_BITSIZE (GET_MODE (temp)) < HOST_BITS_PER_INT
2850 && (reg_stat[REGNO (temp)].nonzero_bits
2851 != GET_MODE_MASK (word_mode))))
2852 && ! (GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) == SUBREG
2853 && (temp = SUBREG_REG (SET_DEST (XVECEXP (newpat, 0, 1))),
2854 (REG_P (temp)
2855 && reg_stat[REGNO (temp)].nonzero_bits != 0
2856 && GET_MODE_BITSIZE (GET_MODE (temp)) < BITS_PER_WORD
2857 && GET_MODE_BITSIZE (GET_MODE (temp)) < HOST_BITS_PER_INT
2858 && (reg_stat[REGNO (temp)].nonzero_bits
2859 != GET_MODE_MASK (word_mode)))))
2860 && ! reg_overlap_mentioned_p (SET_DEST (XVECEXP (newpat, 0, 1)),
2861 SET_SRC (XVECEXP (newpat, 0, 1)))
2862 && ! find_reg_note (i3, REG_UNUSED,
2863 SET_DEST (XVECEXP (newpat, 0, 0))))
2864 {
2865 rtx ni2dest;
2866
2867 newi2pat = XVECEXP (newpat, 0, 0);
2868 ni2dest = SET_DEST (XVECEXP (newpat, 0, 0));
2869 newpat = XVECEXP (newpat, 0, 1);
2870 SUBST (SET_SRC (newpat),
2871 gen_lowpart (GET_MODE (SET_SRC (newpat)), ni2dest));
2872 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
2873
2874 if (i2_code_number >= 0)
2875 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
2876
2877 if (insn_code_number >= 0)
2878 swap_i2i3 = 1;
2879 }
2880
2881 /* Similarly, check for a case where we have a PARALLEL of two independent
2882 SETs but we started with three insns. In this case, we can do the sets
2883 as two separate insns. This case occurs when some SET allows two
2884 other insns to combine, but the destination of that SET is still live. */
2885
2886 else if (i1 && insn_code_number < 0 && asm_noperands (newpat) < 0
2887 && GET_CODE (newpat) == PARALLEL
2888 && XVECLEN (newpat, 0) == 2
2889 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
2890 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) != ZERO_EXTRACT
2891 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) != STRICT_LOW_PART
2892 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
2893 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != ZERO_EXTRACT
2894 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != STRICT_LOW_PART
2895 && ! use_crosses_set_p (SET_SRC (XVECEXP (newpat, 0, 1)),
2896 INSN_CUID (i2))
2897 && ! reg_referenced_p (SET_DEST (XVECEXP (newpat, 0, 1)),
2898 XVECEXP (newpat, 0, 0))
2899 && ! reg_referenced_p (SET_DEST (XVECEXP (newpat, 0, 0)),
2900 XVECEXP (newpat, 0, 1))
2901 && ! (contains_muldiv (SET_SRC (XVECEXP (newpat, 0, 0)))
2902 && contains_muldiv (SET_SRC (XVECEXP (newpat, 0, 1)))))
2903 {
2904 /* Normally, it doesn't matter which of the two is done first,
2905 but it does if one references cc0. In that case, it has to
2906 be first. */
2907 #ifdef HAVE_cc0
2908 if (reg_referenced_p (cc0_rtx, XVECEXP (newpat, 0, 0)))
2909 {
2910 newi2pat = XVECEXP (newpat, 0, 0);
2911 newpat = XVECEXP (newpat, 0, 1);
2912 }
2913 else
2914 #endif
2915 {
2916 newi2pat = XVECEXP (newpat, 0, 1);
2917 newpat = XVECEXP (newpat, 0, 0);
2918 }
2919
2920 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
2921
2922 if (i2_code_number >= 0)
2923 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
2924 }
2925
2926 /* If it still isn't recognized, fail and change things back the way they
2927 were. */
2928 if ((insn_code_number < 0
2929 /* Is the result a reasonable ASM_OPERANDS? */
2930 && (! check_asm_operands (newpat) || added_sets_1 || added_sets_2)))
2931 {
2932 undo_all ();
2933 return 0;
2934 }
2935
2936 /* If we had to change another insn, make sure it is valid also. */
2937 if (undobuf.other_insn)
2938 {
2939 rtx other_pat = PATTERN (undobuf.other_insn);
2940 rtx new_other_notes;
2941 rtx note, next;
2942
2943 CLEAR_HARD_REG_SET (newpat_used_regs);
2944
2945 other_code_number = recog_for_combine (&other_pat, undobuf.other_insn,
2946 &new_other_notes);
2947
2948 if (other_code_number < 0 && ! check_asm_operands (other_pat))
2949 {
2950 undo_all ();
2951 return 0;
2952 }
2953
2954 PATTERN (undobuf.other_insn) = other_pat;
2955
2956 /* If any of the notes in OTHER_INSN were REG_UNUSED, ensure that they
2957 are still valid. Then add any non-duplicate notes added by
2958 recog_for_combine. */
2959 for (note = REG_NOTES (undobuf.other_insn); note; note = next)
2960 {
2961 next = XEXP (note, 1);
2962
2963 if (REG_NOTE_KIND (note) == REG_UNUSED
2964 && ! reg_set_p (XEXP (note, 0), PATTERN (undobuf.other_insn)))
2965 {
2966 if (REG_P (XEXP (note, 0)))
2967 REG_N_DEATHS (REGNO (XEXP (note, 0)))--;
2968
2969 remove_note (undobuf.other_insn, note);
2970 }
2971 }
2972
2973 for (note = new_other_notes; note; note = XEXP (note, 1))
2974 if (REG_P (XEXP (note, 0)))
2975 REG_N_DEATHS (REGNO (XEXP (note, 0)))++;
2976
2977 distribute_notes (new_other_notes, undobuf.other_insn,
2978 undobuf.other_insn, NULL_RTX, NULL_RTX, NULL_RTX);
2979 }
2980 #ifdef HAVE_cc0
2981 /* If I2 is the CC0 setter and I3 is the CC0 user then check whether
2982 they are adjacent to each other or not. */
2983 {
2984 rtx p = prev_nonnote_insn (i3);
2985 if (p && p != i2 && NONJUMP_INSN_P (p) && newi2pat
2986 && sets_cc0_p (newi2pat))
2987 {
2988 undo_all ();
2989 return 0;
2990 }
2991 }
2992 #endif
2993
2994 /* Only allow this combination if insn_rtx_costs reports that the
2995 replacement instructions are cheaper than the originals. */
2996 if (!combine_validate_cost (i1, i2, i3, newpat, newi2pat))
2997 {
2998 undo_all ();
2999 return 0;
3000 }
3001
3002 /* We now know that we can do this combination. Merge the insns and
3003 update the status of registers and LOG_LINKS. */
3004
3005 if (swap_i2i3)
3006 {
3007 rtx insn;
3008 rtx link;
3009 rtx ni2dest;
3010
3011 /* I3 now uses what used to be its destination and which is now
3012 I2's destination. This requires us to do a few adjustments. */
3013 PATTERN (i3) = newpat;
3014 adjust_for_new_dest (i3);
3015
3016 /* We need a LOG_LINK from I3 to I2. But we used to have one,
3017 so we still will.
3018
3019 However, some later insn might be using I2's dest and have
3020 a LOG_LINK pointing at I3. We must remove this link.
3021 The simplest way to remove the link is to point it at I1,
3022 which we know will be a NOTE. */
3023
3024 /* newi2pat is usually a SET here; however, recog_for_combine might
3025 have added some clobbers. */
3026 if (GET_CODE (newi2pat) == PARALLEL)
3027 ni2dest = SET_DEST (XVECEXP (newi2pat, 0, 0));
3028 else
3029 ni2dest = SET_DEST (newi2pat);
3030
3031 for (insn = NEXT_INSN (i3);
3032 insn && (this_basic_block->next_bb == EXIT_BLOCK_PTR
3033 || insn != BB_HEAD (this_basic_block->next_bb));
3034 insn = NEXT_INSN (insn))
3035 {
3036 if (INSN_P (insn) && reg_referenced_p (ni2dest, PATTERN (insn)))
3037 {
3038 for (link = LOG_LINKS (insn); link;
3039 link = XEXP (link, 1))
3040 if (XEXP (link, 0) == i3)
3041 XEXP (link, 0) = i1;
3042
3043 break;
3044 }
3045 }
3046 }
3047
3048 {
3049 rtx i3notes, i2notes, i1notes = 0;
3050 rtx i3links, i2links, i1links = 0;
3051 rtx midnotes = 0;
3052 unsigned int regno;
3053 /* Compute which registers we expect to eliminate. newi2pat may be setting
3054 either i3dest or i2dest, so we must check it. Also, i1dest may be the
3055 same as i3dest, in which case newi2pat may be setting i1dest. */
3056 rtx elim_i2 = ((newi2pat && reg_set_p (i2dest, newi2pat))
3057 || i2dest_in_i2src || i2dest_in_i1src
3058 || !i2dest_killed
3059 ? 0 : i2dest);
3060 rtx elim_i1 = (i1 == 0 || i1dest_in_i1src
3061 || (newi2pat && reg_set_p (i1dest, newi2pat))
3062 || !i1dest_killed
3063 ? 0 : i1dest);
3064
3065 /* Get the old REG_NOTES and LOG_LINKS from all our insns and
3066 clear them. */
3067 i3notes = REG_NOTES (i3), i3links = LOG_LINKS (i3);
3068 i2notes = REG_NOTES (i2), i2links = LOG_LINKS (i2);
3069 if (i1)
3070 i1notes = REG_NOTES (i1), i1links = LOG_LINKS (i1);
3071
3072 /* Ensure that we do not have something that should not be shared but
3073 occurs multiple times in the new insns. Check this by first
3074 resetting all the `used' flags and then copying anything is shared. */
3075
3076 reset_used_flags (i3notes);
3077 reset_used_flags (i2notes);
3078 reset_used_flags (i1notes);
3079 reset_used_flags (newpat);
3080 reset_used_flags (newi2pat);
3081 if (undobuf.other_insn)
3082 reset_used_flags (PATTERN (undobuf.other_insn));
3083
3084 i3notes = copy_rtx_if_shared (i3notes);
3085 i2notes = copy_rtx_if_shared (i2notes);
3086 i1notes = copy_rtx_if_shared (i1notes);
3087 newpat = copy_rtx_if_shared (newpat);
3088 newi2pat = copy_rtx_if_shared (newi2pat);
3089 if (undobuf.other_insn)
3090 reset_used_flags (PATTERN (undobuf.other_insn));
3091
3092 INSN_CODE (i3) = insn_code_number;
3093 PATTERN (i3) = newpat;
3094
3095 if (CALL_P (i3) && CALL_INSN_FUNCTION_USAGE (i3))
3096 {
3097 rtx call_usage = CALL_INSN_FUNCTION_USAGE (i3);
3098
3099 reset_used_flags (call_usage);
3100 call_usage = copy_rtx (call_usage);
3101
3102 if (substed_i2)
3103 replace_rtx (call_usage, i2dest, i2src);
3104
3105 if (substed_i1)
3106 replace_rtx (call_usage, i1dest, i1src);
3107
3108 CALL_INSN_FUNCTION_USAGE (i3) = call_usage;
3109 }
3110
3111 if (undobuf.other_insn)
3112 INSN_CODE (undobuf.other_insn) = other_code_number;
3113
3114 /* We had one special case above where I2 had more than one set and
3115 we replaced a destination of one of those sets with the destination
3116 of I3. In that case, we have to update LOG_LINKS of insns later
3117 in this basic block. Note that this (expensive) case is rare.
3118
3119 Also, in this case, we must pretend that all REG_NOTEs for I2
3120 actually came from I3, so that REG_UNUSED notes from I2 will be
3121 properly handled. */
3122
3123 if (i3_subst_into_i2)
3124 {
3125 for (i = 0; i < XVECLEN (PATTERN (i2), 0); i++)
3126 if (GET_CODE (XVECEXP (PATTERN (i2), 0, i)) != USE
3127 && REG_P (SET_DEST (XVECEXP (PATTERN (i2), 0, i)))
3128 && SET_DEST (XVECEXP (PATTERN (i2), 0, i)) != i2dest
3129 && ! find_reg_note (i2, REG_UNUSED,
3130 SET_DEST (XVECEXP (PATTERN (i2), 0, i))))
3131 for (temp = NEXT_INSN (i2);
3132 temp && (this_basic_block->next_bb == EXIT_BLOCK_PTR
3133 || BB_HEAD (this_basic_block) != temp);
3134 temp = NEXT_INSN (temp))
3135 if (temp != i3 && INSN_P (temp))
3136 for (link = LOG_LINKS (temp); link; link = XEXP (link, 1))
3137 if (XEXP (link, 0) == i2)
3138 XEXP (link, 0) = i3;
3139
3140 if (i3notes)
3141 {
3142 rtx link = i3notes;
3143 while (XEXP (link, 1))
3144 link = XEXP (link, 1);
3145 XEXP (link, 1) = i2notes;
3146 }
3147 else
3148 i3notes = i2notes;
3149 i2notes = 0;
3150 }
3151
3152 LOG_LINKS (i3) = 0;
3153 REG_NOTES (i3) = 0;
3154 LOG_LINKS (i2) = 0;
3155 REG_NOTES (i2) = 0;
3156
3157 if (newi2pat)
3158 {
3159 INSN_CODE (i2) = i2_code_number;
3160 PATTERN (i2) = newi2pat;
3161 }
3162 else
3163 SET_INSN_DELETED (i2);
3164
3165 if (i1)
3166 {
3167 LOG_LINKS (i1) = 0;
3168 REG_NOTES (i1) = 0;
3169 SET_INSN_DELETED (i1);
3170 }
3171
3172 /* Get death notes for everything that is now used in either I3 or
3173 I2 and used to die in a previous insn. If we built two new
3174 patterns, move from I1 to I2 then I2 to I3 so that we get the
3175 proper movement on registers that I2 modifies. */
3176
3177 if (newi2pat)
3178 {
3179 move_deaths (newi2pat, NULL_RTX, INSN_CUID (i1), i2, &midnotes);
3180 move_deaths (newpat, newi2pat, INSN_CUID (i1), i3, &midnotes);
3181 }
3182 else
3183 move_deaths (newpat, NULL_RTX, i1 ? INSN_CUID (i1) : INSN_CUID (i2),
3184 i3, &midnotes);
3185
3186 /* Distribute all the LOG_LINKS and REG_NOTES from I1, I2, and I3. */
3187 if (i3notes)
3188 distribute_notes (i3notes, i3, i3, newi2pat ? i2 : NULL_RTX,
3189 elim_i2, elim_i1);
3190 if (i2notes)
3191 distribute_notes (i2notes, i2, i3, newi2pat ? i2 : NULL_RTX,
3192 elim_i2, elim_i1);
3193 if (i1notes)
3194 distribute_notes (i1notes, i1, i3, newi2pat ? i2 : NULL_RTX,
3195 elim_i2, elim_i1);
3196 if (midnotes)
3197 distribute_notes (midnotes, NULL_RTX, i3, newi2pat ? i2 : NULL_RTX,
3198 elim_i2, elim_i1);
3199
3200 /* Distribute any notes added to I2 or I3 by recog_for_combine. We
3201 know these are REG_UNUSED and want them to go to the desired insn,
3202 so we always pass it as i3. We have not counted the notes in
3203 reg_n_deaths yet, so we need to do so now. */
3204
3205 if (newi2pat && new_i2_notes)
3206 {
3207 for (temp = new_i2_notes; temp; temp = XEXP (temp, 1))
3208 if (REG_P (XEXP (temp, 0)))
3209 REG_N_DEATHS (REGNO (XEXP (temp, 0)))++;
3210
3211 distribute_notes (new_i2_notes, i2, i2, NULL_RTX, NULL_RTX, NULL_RTX);
3212 }
3213
3214 if (new_i3_notes)
3215 {
3216 for (temp = new_i3_notes; temp; temp = XEXP (temp, 1))
3217 if (REG_P (XEXP (temp, 0)))
3218 REG_N_DEATHS (REGNO (XEXP (temp, 0)))++;
3219
3220 distribute_notes (new_i3_notes, i3, i3, NULL_RTX, NULL_RTX, NULL_RTX);
3221 }
3222
3223 /* If I3DEST was used in I3SRC, it really died in I3. We may need to
3224 put a REG_DEAD note for it somewhere. If NEWI2PAT exists and sets
3225 I3DEST, the death must be somewhere before I2, not I3. If we passed I3
3226 in that case, it might delete I2. Similarly for I2 and I1.
3227 Show an additional death due to the REG_DEAD note we make here. If
3228 we discard it in distribute_notes, we will decrement it again. */
3229
3230 if (i3dest_killed)
3231 {
3232 if (REG_P (i3dest_killed))
3233 REG_N_DEATHS (REGNO (i3dest_killed))++;
3234
3235 if (newi2pat && reg_set_p (i3dest_killed, newi2pat))
3236 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i3dest_killed,
3237 NULL_RTX),
3238 NULL_RTX, i2, NULL_RTX, elim_i2, elim_i1);
3239 else
3240 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i3dest_killed,
3241 NULL_RTX),
3242 NULL_RTX, i3, newi2pat ? i2 : NULL_RTX,
3243 elim_i2, elim_i1);
3244 }
3245
3246 if (i2dest_in_i2src)
3247 {
3248 if (REG_P (i2dest))
3249 REG_N_DEATHS (REGNO (i2dest))++;
3250
3251 if (newi2pat && reg_set_p (i2dest, newi2pat))
3252 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i2dest, NULL_RTX),
3253 NULL_RTX, i2, NULL_RTX, NULL_RTX, NULL_RTX);
3254 else
3255 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i2dest, NULL_RTX),
3256 NULL_RTX, i3, newi2pat ? i2 : NULL_RTX,
3257 NULL_RTX, NULL_RTX);
3258 }
3259
3260 if (i1dest_in_i1src)
3261 {
3262 if (REG_P (i1dest))
3263 REG_N_DEATHS (REGNO (i1dest))++;
3264
3265 if (newi2pat && reg_set_p (i1dest, newi2pat))
3266 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i1dest, NULL_RTX),
3267 NULL_RTX, i2, NULL_RTX, NULL_RTX, NULL_RTX);
3268 else
3269 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i1dest, NULL_RTX),
3270 NULL_RTX, i3, newi2pat ? i2 : NULL_RTX,
3271 NULL_RTX, NULL_RTX);
3272 }
3273
3274 distribute_links (i3links);
3275 distribute_links (i2links);
3276 distribute_links (i1links);
3277
3278 if (REG_P (i2dest))
3279 {
3280 rtx link;
3281 rtx i2_insn = 0, i2_val = 0, set;
3282
3283 /* The insn that used to set this register doesn't exist, and
3284 this life of the register may not exist either. See if one of
3285 I3's links points to an insn that sets I2DEST. If it does,
3286 that is now the last known value for I2DEST. If we don't update
3287 this and I2 set the register to a value that depended on its old
3288 contents, we will get confused. If this insn is used, thing
3289 will be set correctly in combine_instructions. */
3290
3291 for (link = LOG_LINKS (i3); link; link = XEXP (link, 1))
3292 if ((set = single_set (XEXP (link, 0))) != 0
3293 && rtx_equal_p (i2dest, SET_DEST (set)))
3294 i2_insn = XEXP (link, 0), i2_val = SET_SRC (set);
3295
3296 record_value_for_reg (i2dest, i2_insn, i2_val);
3297
3298 /* If the reg formerly set in I2 died only once and that was in I3,
3299 zero its use count so it won't make `reload' do any work. */
3300 if (! added_sets_2
3301 && (newi2pat == 0 || ! reg_mentioned_p (i2dest, newi2pat))
3302 && ! i2dest_in_i2src)
3303 {
3304 regno = REGNO (i2dest);
3305 REG_N_SETS (regno)--;
3306 }
3307 }
3308
3309 if (i1 && REG_P (i1dest))
3310 {
3311 rtx link;
3312 rtx i1_insn = 0, i1_val = 0, set;
3313
3314 for (link = LOG_LINKS (i3); link; link = XEXP (link, 1))
3315 if ((set = single_set (XEXP (link, 0))) != 0
3316 && rtx_equal_p (i1dest, SET_DEST (set)))
3317 i1_insn = XEXP (link, 0), i1_val = SET_SRC (set);
3318
3319 record_value_for_reg (i1dest, i1_insn, i1_val);
3320
3321 regno = REGNO (i1dest);
3322 if (! added_sets_1 && ! i1dest_in_i1src)
3323 REG_N_SETS (regno)--;
3324 }
3325
3326 /* Update reg_stat[].nonzero_bits et al for any changes that may have
3327 been made to this insn. The order of
3328 set_nonzero_bits_and_sign_copies() is important. Because newi2pat
3329 can affect nonzero_bits of newpat */
3330 if (newi2pat)
3331 note_stores (newi2pat, set_nonzero_bits_and_sign_copies, NULL);
3332 note_stores (newpat, set_nonzero_bits_and_sign_copies, NULL);
3333
3334 /* Set new_direct_jump_p if a new return or simple jump instruction
3335 has been created.
3336
3337 If I3 is now an unconditional jump, ensure that it has a
3338 BARRIER following it since it may have initially been a
3339 conditional jump. It may also be the last nonnote insn. */
3340
3341 if (returnjump_p (i3) || any_uncondjump_p (i3))
3342 {
3343 *new_direct_jump_p = 1;
3344 mark_jump_label (PATTERN (i3), i3, 0);
3345
3346 if ((temp = next_nonnote_insn (i3)) == NULL_RTX
3347 || !BARRIER_P (temp))
3348 emit_barrier_after (i3);
3349 }
3350
3351 if (undobuf.other_insn != NULL_RTX
3352 && (returnjump_p (undobuf.other_insn)
3353 || any_uncondjump_p (undobuf.other_insn)))
3354 {
3355 *new_direct_jump_p = 1;
3356
3357 if ((temp = next_nonnote_insn (undobuf.other_insn)) == NULL_RTX
3358 || !BARRIER_P (temp))
3359 emit_barrier_after (undobuf.other_insn);
3360 }
3361
3362 /* An NOOP jump does not need barrier, but it does need cleaning up
3363 of CFG. */
3364 if (GET_CODE (newpat) == SET
3365 && SET_SRC (newpat) == pc_rtx
3366 && SET_DEST (newpat) == pc_rtx)
3367 *new_direct_jump_p = 1;
3368 }
3369
3370 combine_successes++;
3371 undo_commit ();
3372
3373 if (added_links_insn
3374 && (newi2pat == 0 || INSN_CUID (added_links_insn) < INSN_CUID (i2))
3375 && INSN_CUID (added_links_insn) < INSN_CUID (i3))
3376 return added_links_insn;
3377 else
3378 return newi2pat ? i2 : i3;
3379 }
3380 \f
3381 /* Undo all the modifications recorded in undobuf. */
3382
3383 static void
3384 undo_all (void)
3385 {
3386 struct undo *undo, *next;
3387
3388 for (undo = undobuf.undos; undo; undo = next)
3389 {
3390 next = undo->next;
3391 switch (undo->kind)
3392 {
3393 case UNDO_RTX:
3394 *undo->where.r = undo->old_contents.r;
3395 break;
3396 case UNDO_INT:
3397 *undo->where.i = undo->old_contents.i;
3398 break;
3399 case UNDO_MODE:
3400 PUT_MODE (*undo->where.r, undo->old_contents.m);
3401 break;
3402 default:
3403 gcc_unreachable ();
3404 }
3405
3406 undo->next = undobuf.frees;
3407 undobuf.frees = undo;
3408 }
3409
3410 undobuf.undos = 0;
3411 }
3412
3413 /* We've committed to accepting the changes we made. Move all
3414 of the undos to the free list. */
3415
3416 static void
3417 undo_commit (void)
3418 {
3419 struct undo *undo, *next;
3420
3421 for (undo = undobuf.undos; undo; undo = next)
3422 {
3423 next = undo->next;
3424 undo->next = undobuf.frees;
3425 undobuf.frees = undo;
3426 }
3427 undobuf.undos = 0;
3428 }
3429
3430 \f
3431 /* Find the innermost point within the rtx at LOC, possibly LOC itself,
3432 where we have an arithmetic expression and return that point. LOC will
3433 be inside INSN.
3434
3435 try_combine will call this function to see if an insn can be split into
3436 two insns. */
3437
3438 static rtx *
3439 find_split_point (rtx *loc, rtx insn)
3440 {
3441 rtx x = *loc;
3442 enum rtx_code code = GET_CODE (x);
3443 rtx *split;
3444 unsigned HOST_WIDE_INT len = 0;
3445 HOST_WIDE_INT pos = 0;
3446 int unsignedp = 0;
3447 rtx inner = NULL_RTX;
3448
3449 /* First special-case some codes. */
3450 switch (code)
3451 {
3452 case SUBREG:
3453 #ifdef INSN_SCHEDULING
3454 /* If we are making a paradoxical SUBREG invalid, it becomes a split
3455 point. */
3456 if (MEM_P (SUBREG_REG (x)))
3457 return loc;
3458 #endif
3459 return find_split_point (&SUBREG_REG (x), insn);
3460
3461 case MEM:
3462 #ifdef HAVE_lo_sum
3463 /* If we have (mem (const ..)) or (mem (symbol_ref ...)), split it
3464 using LO_SUM and HIGH. */
3465 if (GET_CODE (XEXP (x, 0)) == CONST
3466 || GET_CODE (XEXP (x, 0)) == SYMBOL_REF)
3467 {
3468 SUBST (XEXP (x, 0),
3469 gen_rtx_LO_SUM (Pmode,
3470 gen_rtx_HIGH (Pmode, XEXP (x, 0)),
3471 XEXP (x, 0)));
3472 return &XEXP (XEXP (x, 0), 0);
3473 }
3474 #endif
3475
3476 /* If we have a PLUS whose second operand is a constant and the
3477 address is not valid, perhaps will can split it up using
3478 the machine-specific way to split large constants. We use
3479 the first pseudo-reg (one of the virtual regs) as a placeholder;
3480 it will not remain in the result. */
3481 if (GET_CODE (XEXP (x, 0)) == PLUS
3482 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
3483 && ! memory_address_p (GET_MODE (x), XEXP (x, 0)))
3484 {
3485 rtx reg = regno_reg_rtx[FIRST_PSEUDO_REGISTER];
3486 rtx seq = split_insns (gen_rtx_SET (VOIDmode, reg, XEXP (x, 0)),
3487 subst_insn);
3488
3489 /* This should have produced two insns, each of which sets our
3490 placeholder. If the source of the second is a valid address,
3491 we can make put both sources together and make a split point
3492 in the middle. */
3493
3494 if (seq
3495 && NEXT_INSN (seq) != NULL_RTX
3496 && NEXT_INSN (NEXT_INSN (seq)) == NULL_RTX
3497 && NONJUMP_INSN_P (seq)
3498 && GET_CODE (PATTERN (seq)) == SET
3499 && SET_DEST (PATTERN (seq)) == reg
3500 && ! reg_mentioned_p (reg,
3501 SET_SRC (PATTERN (seq)))
3502 && NONJUMP_INSN_P (NEXT_INSN (seq))
3503 && GET_CODE (PATTERN (NEXT_INSN (seq))) == SET
3504 && SET_DEST (PATTERN (NEXT_INSN (seq))) == reg
3505 && memory_address_p (GET_MODE (x),
3506 SET_SRC (PATTERN (NEXT_INSN (seq)))))
3507 {
3508 rtx src1 = SET_SRC (PATTERN (seq));
3509 rtx src2 = SET_SRC (PATTERN (NEXT_INSN (seq)));
3510
3511 /* Replace the placeholder in SRC2 with SRC1. If we can
3512 find where in SRC2 it was placed, that can become our
3513 split point and we can replace this address with SRC2.
3514 Just try two obvious places. */
3515
3516 src2 = replace_rtx (src2, reg, src1);
3517 split = 0;
3518 if (XEXP (src2, 0) == src1)
3519 split = &XEXP (src2, 0);
3520 else if (GET_RTX_FORMAT (GET_CODE (XEXP (src2, 0)))[0] == 'e'
3521 && XEXP (XEXP (src2, 0), 0) == src1)
3522 split = &XEXP (XEXP (src2, 0), 0);
3523
3524 if (split)
3525 {
3526 SUBST (XEXP (x, 0), src2);
3527 return split;
3528 }
3529 }
3530
3531 /* If that didn't work, perhaps the first operand is complex and
3532 needs to be computed separately, so make a split point there.
3533 This will occur on machines that just support REG + CONST
3534 and have a constant moved through some previous computation. */
3535
3536 else if (!OBJECT_P (XEXP (XEXP (x, 0), 0))
3537 && ! (GET_CODE (XEXP (XEXP (x, 0), 0)) == SUBREG
3538 && OBJECT_P (SUBREG_REG (XEXP (XEXP (x, 0), 0)))))
3539 return &XEXP (XEXP (x, 0), 0);
3540 }
3541 break;
3542
3543 case SET:
3544 #ifdef HAVE_cc0
3545 /* If SET_DEST is CC0 and SET_SRC is not an operand, a COMPARE, or a
3546 ZERO_EXTRACT, the most likely reason why this doesn't match is that
3547 we need to put the operand into a register. So split at that
3548 point. */
3549
3550 if (SET_DEST (x) == cc0_rtx
3551 && GET_CODE (SET_SRC (x)) != COMPARE
3552 && GET_CODE (SET_SRC (x)) != ZERO_EXTRACT
3553 && !OBJECT_P (SET_SRC (x))
3554 && ! (GET_CODE (SET_SRC (x)) == SUBREG
3555 && OBJECT_P (SUBREG_REG (SET_SRC (x)))))
3556 return &SET_SRC (x);
3557 #endif
3558
3559 /* See if we can split SET_SRC as it stands. */
3560 split = find_split_point (&SET_SRC (x), insn);
3561 if (split && split != &SET_SRC (x))
3562 return split;
3563
3564 /* See if we can split SET_DEST as it stands. */
3565 split = find_split_point (&SET_DEST (x), insn);
3566 if (split && split != &SET_DEST (x))
3567 return split;
3568
3569 /* See if this is a bitfield assignment with everything constant. If
3570 so, this is an IOR of an AND, so split it into that. */
3571 if (GET_CODE (SET_DEST (x)) == ZERO_EXTRACT
3572 && (GET_MODE_BITSIZE (GET_MODE (XEXP (SET_DEST (x), 0)))
3573 <= HOST_BITS_PER_WIDE_INT)
3574 && GET_CODE (XEXP (SET_DEST (x), 1)) == CONST_INT
3575 && GET_CODE (XEXP (SET_DEST (x), 2)) == CONST_INT
3576 && GET_CODE (SET_SRC (x)) == CONST_INT
3577 && ((INTVAL (XEXP (SET_DEST (x), 1))
3578 + INTVAL (XEXP (SET_DEST (x), 2)))
3579 <= GET_MODE_BITSIZE (GET_MODE (XEXP (SET_DEST (x), 0))))
3580 && ! side_effects_p (XEXP (SET_DEST (x), 0)))
3581 {
3582 HOST_WIDE_INT pos = INTVAL (XEXP (SET_DEST (x), 2));
3583 unsigned HOST_WIDE_INT len = INTVAL (XEXP (SET_DEST (x), 1));
3584 unsigned HOST_WIDE_INT src = INTVAL (SET_SRC (x));
3585 rtx dest = XEXP (SET_DEST (x), 0);
3586 enum machine_mode mode = GET_MODE (dest);
3587 unsigned HOST_WIDE_INT mask = ((HOST_WIDE_INT) 1 << len) - 1;
3588 rtx or_mask;
3589
3590 if (BITS_BIG_ENDIAN)
3591 pos = GET_MODE_BITSIZE (mode) - len - pos;
3592
3593 or_mask = gen_int_mode (src << pos, mode);
3594 if (src == mask)
3595 SUBST (SET_SRC (x),
3596 simplify_gen_binary (IOR, mode, dest, or_mask));
3597 else
3598 {
3599 rtx negmask = gen_int_mode (~(mask << pos), mode);
3600 SUBST (SET_SRC (x),
3601 simplify_gen_binary (IOR, mode,
3602 simplify_gen_binary (AND, mode,
3603 dest, negmask),
3604 or_mask));
3605 }
3606
3607 SUBST (SET_DEST (x), dest);
3608
3609 split = find_split_point (&SET_SRC (x), insn);
3610 if (split && split != &SET_SRC (x))
3611 return split;
3612 }
3613
3614 /* Otherwise, see if this is an operation that we can split into two.
3615 If so, try to split that. */
3616 code = GET_CODE (SET_SRC (x));
3617
3618 switch (code)
3619 {
3620 case AND:
3621 /* If we are AND'ing with a large constant that is only a single
3622 bit and the result is only being used in a context where we
3623 need to know if it is zero or nonzero, replace it with a bit
3624 extraction. This will avoid the large constant, which might
3625 have taken more than one insn to make. If the constant were
3626 not a valid argument to the AND but took only one insn to make,
3627 this is no worse, but if it took more than one insn, it will
3628 be better. */
3629
3630 if (GET_CODE (XEXP (SET_SRC (x), 1)) == CONST_INT
3631 && REG_P (XEXP (SET_SRC (x), 0))
3632 && (pos = exact_log2 (INTVAL (XEXP (SET_SRC (x), 1)))) >= 7
3633 && REG_P (SET_DEST (x))
3634 && (split = find_single_use (SET_DEST (x), insn, (rtx*) 0)) != 0
3635 && (GET_CODE (*split) == EQ || GET_CODE (*split) == NE)
3636 && XEXP (*split, 0) == SET_DEST (x)
3637 && XEXP (*split, 1) == const0_rtx)
3638 {
3639 rtx extraction = make_extraction (GET_MODE (SET_DEST (x)),
3640 XEXP (SET_SRC (x), 0),
3641 pos, NULL_RTX, 1, 1, 0, 0);
3642 if (extraction != 0)
3643 {
3644 SUBST (SET_SRC (x), extraction);
3645 return find_split_point (loc, insn);
3646 }
3647 }
3648 break;
3649
3650 case NE:
3651 /* If STORE_FLAG_VALUE is -1, this is (NE X 0) and only one bit of X
3652 is known to be on, this can be converted into a NEG of a shift. */
3653 if (STORE_FLAG_VALUE == -1 && XEXP (SET_SRC (x), 1) == const0_rtx
3654 && GET_MODE (SET_SRC (x)) == GET_MODE (XEXP (SET_SRC (x), 0))
3655 && 1 <= (pos = exact_log2
3656 (nonzero_bits (XEXP (SET_SRC (x), 0),
3657 GET_MODE (XEXP (SET_SRC (x), 0))))))
3658 {
3659 enum machine_mode mode = GET_MODE (XEXP (SET_SRC (x), 0));
3660
3661 SUBST (SET_SRC (x),
3662 gen_rtx_NEG (mode,
3663 gen_rtx_LSHIFTRT (mode,
3664 XEXP (SET_SRC (x), 0),
3665 GEN_INT (pos))));
3666
3667 split = find_split_point (&SET_SRC (x), insn);
3668 if (split && split != &SET_SRC (x))
3669 return split;
3670 }
3671 break;
3672
3673 case SIGN_EXTEND:
3674 inner = XEXP (SET_SRC (x), 0);
3675
3676 /* We can't optimize if either mode is a partial integer
3677 mode as we don't know how many bits are significant
3678 in those modes. */
3679 if (GET_MODE_CLASS (GET_MODE (inner)) == MODE_PARTIAL_INT
3680 || GET_MODE_CLASS (GET_MODE (SET_SRC (x))) == MODE_PARTIAL_INT)
3681 break;
3682
3683 pos = 0;
3684 len = GET_MODE_BITSIZE (GET_MODE (inner));
3685 unsignedp = 0;
3686 break;
3687
3688 case SIGN_EXTRACT:
3689 case ZERO_EXTRACT:
3690 if (GET_CODE (XEXP (SET_SRC (x), 1)) == CONST_INT
3691 && GET_CODE (XEXP (SET_SRC (x), 2)) == CONST_INT)
3692 {
3693 inner = XEXP (SET_SRC (x), 0);
3694 len = INTVAL (XEXP (SET_SRC (x), 1));
3695 pos = INTVAL (XEXP (SET_SRC (x), 2));
3696
3697 if (BITS_BIG_ENDIAN)
3698 pos = GET_MODE_BITSIZE (GET_MODE (inner)) - len - pos;
3699 unsignedp = (code == ZERO_EXTRACT);
3700 }
3701 break;
3702
3703 default:
3704 break;
3705 }
3706
3707 if (len && pos >= 0 && pos + len <= GET_MODE_BITSIZE (GET_MODE (inner)))
3708 {
3709 enum machine_mode mode = GET_MODE (SET_SRC (x));
3710
3711 /* For unsigned, we have a choice of a shift followed by an
3712 AND or two shifts. Use two shifts for field sizes where the
3713 constant might be too large. We assume here that we can
3714 always at least get 8-bit constants in an AND insn, which is
3715 true for every current RISC. */
3716
3717 if (unsignedp && len <= 8)
3718 {
3719 SUBST (SET_SRC (x),
3720 gen_rtx_AND (mode,
3721 gen_rtx_LSHIFTRT
3722 (mode, gen_lowpart (mode, inner),
3723 GEN_INT (pos)),
3724 GEN_INT (((HOST_WIDE_INT) 1 << len) - 1)));
3725
3726 split = find_split_point (&SET_SRC (x), insn);
3727 if (split && split != &SET_SRC (x))
3728 return split;
3729 }
3730 else
3731 {
3732 SUBST (SET_SRC (x),
3733 gen_rtx_fmt_ee
3734 (unsignedp ? LSHIFTRT : ASHIFTRT, mode,
3735 gen_rtx_ASHIFT (mode,
3736 gen_lowpart (mode, inner),
3737 GEN_INT (GET_MODE_BITSIZE (mode)
3738 - len - pos)),
3739 GEN_INT (GET_MODE_BITSIZE (mode) - len)));
3740
3741 split = find_split_point (&SET_SRC (x), insn);
3742 if (split && split != &SET_SRC (x))
3743 return split;
3744 }
3745 }
3746
3747 /* See if this is a simple operation with a constant as the second
3748 operand. It might be that this constant is out of range and hence
3749 could be used as a split point. */
3750 if (BINARY_P (SET_SRC (x))
3751 && CONSTANT_P (XEXP (SET_SRC (x), 1))
3752 && (OBJECT_P (XEXP (SET_SRC (x), 0))
3753 || (GET_CODE (XEXP (SET_SRC (x), 0)) == SUBREG
3754 && OBJECT_P (SUBREG_REG (XEXP (SET_SRC (x), 0))))))
3755 return &XEXP (SET_SRC (x), 1);
3756
3757 /* Finally, see if this is a simple operation with its first operand
3758 not in a register. The operation might require this operand in a
3759 register, so return it as a split point. We can always do this
3760 because if the first operand were another operation, we would have
3761 already found it as a split point. */
3762 if ((BINARY_P (SET_SRC (x)) || UNARY_P (SET_SRC (x)))
3763 && ! register_operand (XEXP (SET_SRC (x), 0), VOIDmode))
3764 return &XEXP (SET_SRC (x), 0);
3765
3766 return 0;
3767
3768 case AND:
3769 case IOR:
3770 /* We write NOR as (and (not A) (not B)), but if we don't have a NOR,
3771 it is better to write this as (not (ior A B)) so we can split it.
3772 Similarly for IOR. */
3773 if (GET_CODE (XEXP (x, 0)) == NOT && GET_CODE (XEXP (x, 1)) == NOT)
3774 {
3775 SUBST (*loc,
3776 gen_rtx_NOT (GET_MODE (x),
3777 gen_rtx_fmt_ee (code == IOR ? AND : IOR,
3778 GET_MODE (x),
3779 XEXP (XEXP (x, 0), 0),
3780 XEXP (XEXP (x, 1), 0))));
3781 return find_split_point (loc, insn);
3782 }
3783
3784 /* Many RISC machines have a large set of logical insns. If the
3785 second operand is a NOT, put it first so we will try to split the
3786 other operand first. */
3787 if (GET_CODE (XEXP (x, 1)) == NOT)
3788 {
3789 rtx tem = XEXP (x, 0);
3790 SUBST (XEXP (x, 0), XEXP (x, 1));
3791 SUBST (XEXP (x, 1), tem);
3792 }
3793 break;
3794
3795 default:
3796 break;
3797 }
3798
3799 /* Otherwise, select our actions depending on our rtx class. */
3800 switch (GET_RTX_CLASS (code))
3801 {
3802 case RTX_BITFIELD_OPS: /* This is ZERO_EXTRACT and SIGN_EXTRACT. */
3803 case RTX_TERNARY:
3804 split = find_split_point (&XEXP (x, 2), insn);
3805 if (split)
3806 return split;
3807 /* ... fall through ... */
3808 case RTX_BIN_ARITH:
3809 case RTX_COMM_ARITH:
3810 case RTX_COMPARE:
3811 case RTX_COMM_COMPARE:
3812 split = find_split_point (&XEXP (x, 1), insn);
3813 if (split)
3814 return split;
3815 /* ... fall through ... */
3816 case RTX_UNARY:
3817 /* Some machines have (and (shift ...) ...) insns. If X is not
3818 an AND, but XEXP (X, 0) is, use it as our split point. */
3819 if (GET_CODE (x) != AND && GET_CODE (XEXP (x, 0)) == AND)
3820 return &XEXP (x, 0);
3821
3822 split = find_split_point (&XEXP (x, 0), insn);
3823 if (split)
3824 return split;
3825 return loc;
3826
3827 default:
3828 /* Otherwise, we don't have a split point. */
3829 return 0;
3830 }
3831 }
3832 \f
3833 /* Throughout X, replace FROM with TO, and return the result.
3834 The result is TO if X is FROM;
3835 otherwise the result is X, but its contents may have been modified.
3836 If they were modified, a record was made in undobuf so that
3837 undo_all will (among other things) return X to its original state.
3838
3839 If the number of changes necessary is too much to record to undo,
3840 the excess changes are not made, so the result is invalid.
3841 The changes already made can still be undone.
3842 undobuf.num_undo is incremented for such changes, so by testing that
3843 the caller can tell whether the result is valid.
3844
3845 `n_occurrences' is incremented each time FROM is replaced.
3846
3847 IN_DEST is nonzero if we are processing the SET_DEST of a SET.
3848
3849 UNIQUE_COPY is nonzero if each substitution must be unique. We do this
3850 by copying if `n_occurrences' is nonzero. */
3851
3852 static rtx
3853 subst (rtx x, rtx from, rtx to, int in_dest, int unique_copy)
3854 {
3855 enum rtx_code code = GET_CODE (x);
3856 enum machine_mode op0_mode = VOIDmode;
3857 const char *fmt;
3858 int len, i;
3859 rtx new;
3860
3861 /* Two expressions are equal if they are identical copies of a shared
3862 RTX or if they are both registers with the same register number
3863 and mode. */
3864
3865 #define COMBINE_RTX_EQUAL_P(X,Y) \
3866 ((X) == (Y) \
3867 || (REG_P (X) && REG_P (Y) \
3868 && REGNO (X) == REGNO (Y) && GET_MODE (X) == GET_MODE (Y)))
3869
3870 if (! in_dest && COMBINE_RTX_EQUAL_P (x, from))
3871 {
3872 n_occurrences++;
3873 return (unique_copy && n_occurrences > 1 ? copy_rtx (to) : to);
3874 }
3875
3876 /* If X and FROM are the same register but different modes, they will
3877 not have been seen as equal above. However, flow.c will make a
3878 LOG_LINKS entry for that case. If we do nothing, we will try to
3879 rerecognize our original insn and, when it succeeds, we will
3880 delete the feeding insn, which is incorrect.
3881
3882 So force this insn not to match in this (rare) case. */
3883 if (! in_dest && code == REG && REG_P (from)
3884 && REGNO (x) == REGNO (from))
3885 return gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
3886
3887 /* If this is an object, we are done unless it is a MEM or LO_SUM, both
3888 of which may contain things that can be combined. */
3889 if (code != MEM && code != LO_SUM && OBJECT_P (x))
3890 return x;
3891
3892 /* It is possible to have a subexpression appear twice in the insn.
3893 Suppose that FROM is a register that appears within TO.
3894 Then, after that subexpression has been scanned once by `subst',
3895 the second time it is scanned, TO may be found. If we were
3896 to scan TO here, we would find FROM within it and create a
3897 self-referent rtl structure which is completely wrong. */
3898 if (COMBINE_RTX_EQUAL_P (x, to))
3899 return to;
3900
3901 /* Parallel asm_operands need special attention because all of the
3902 inputs are shared across the arms. Furthermore, unsharing the
3903 rtl results in recognition failures. Failure to handle this case
3904 specially can result in circular rtl.
3905
3906 Solve this by doing a normal pass across the first entry of the
3907 parallel, and only processing the SET_DESTs of the subsequent
3908 entries. Ug. */
3909
3910 if (code == PARALLEL
3911 && GET_CODE (XVECEXP (x, 0, 0)) == SET
3912 && GET_CODE (SET_SRC (XVECEXP (x, 0, 0))) == ASM_OPERANDS)
3913 {
3914 new = subst (XVECEXP (x, 0, 0), from, to, 0, unique_copy);
3915
3916 /* If this substitution failed, this whole thing fails. */
3917 if (GET_CODE (new) == CLOBBER
3918 && XEXP (new, 0) == const0_rtx)
3919 return new;
3920
3921 SUBST (XVECEXP (x, 0, 0), new);
3922
3923 for (i = XVECLEN (x, 0) - 1; i >= 1; i--)
3924 {
3925 rtx dest = SET_DEST (XVECEXP (x, 0, i));
3926
3927 if (!REG_P (dest)
3928 && GET_CODE (dest) != CC0
3929 && GET_CODE (dest) != PC)
3930 {
3931 new = subst (dest, from, to, 0, unique_copy);
3932
3933 /* If this substitution failed, this whole thing fails. */
3934 if (GET_CODE (new) == CLOBBER
3935 && XEXP (new, 0) == const0_rtx)
3936 return new;
3937
3938 SUBST (SET_DEST (XVECEXP (x, 0, i)), new);
3939 }
3940 }
3941 }
3942 else
3943 {
3944 len = GET_RTX_LENGTH (code);
3945 fmt = GET_RTX_FORMAT (code);
3946
3947 /* We don't need to process a SET_DEST that is a register, CC0,
3948 or PC, so set up to skip this common case. All other cases
3949 where we want to suppress replacing something inside a
3950 SET_SRC are handled via the IN_DEST operand. */
3951 if (code == SET
3952 && (REG_P (SET_DEST (x))
3953 || GET_CODE (SET_DEST (x)) == CC0
3954 || GET_CODE (SET_DEST (x)) == PC))
3955 fmt = "ie";
3956
3957 /* Get the mode of operand 0 in case X is now a SIGN_EXTEND of a
3958 constant. */
3959 if (fmt[0] == 'e')
3960 op0_mode = GET_MODE (XEXP (x, 0));
3961
3962 for (i = 0; i < len; i++)
3963 {
3964 if (fmt[i] == 'E')
3965 {
3966 int j;
3967 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3968 {
3969 if (COMBINE_RTX_EQUAL_P (XVECEXP (x, i, j), from))
3970 {
3971 new = (unique_copy && n_occurrences
3972 ? copy_rtx (to) : to);
3973 n_occurrences++;
3974 }
3975 else
3976 {
3977 new = subst (XVECEXP (x, i, j), from, to, 0,
3978 unique_copy);
3979
3980 /* If this substitution failed, this whole thing
3981 fails. */
3982 if (GET_CODE (new) == CLOBBER
3983 && XEXP (new, 0) == const0_rtx)
3984 return new;
3985 }
3986
3987 SUBST (XVECEXP (x, i, j), new);
3988 }
3989 }
3990 else if (fmt[i] == 'e')
3991 {
3992 /* If this is a register being set, ignore it. */
3993 new = XEXP (x, i);
3994 if (in_dest
3995 && i == 0
3996 && (((code == SUBREG || code == ZERO_EXTRACT)
3997 && REG_P (new))
3998 || code == STRICT_LOW_PART))
3999 ;
4000
4001 else if (COMBINE_RTX_EQUAL_P (XEXP (x, i), from))
4002 {
4003 /* In general, don't install a subreg involving two
4004 modes not tieable. It can worsen register
4005 allocation, and can even make invalid reload
4006 insns, since the reg inside may need to be copied
4007 from in the outside mode, and that may be invalid
4008 if it is an fp reg copied in integer mode.
4009
4010 We allow two exceptions to this: It is valid if
4011 it is inside another SUBREG and the mode of that
4012 SUBREG and the mode of the inside of TO is
4013 tieable and it is valid if X is a SET that copies
4014 FROM to CC0. */
4015
4016 if (GET_CODE (to) == SUBREG
4017 && ! MODES_TIEABLE_P (GET_MODE (to),
4018 GET_MODE (SUBREG_REG (to)))
4019 && ! (code == SUBREG
4020 && MODES_TIEABLE_P (GET_MODE (x),
4021 GET_MODE (SUBREG_REG (to))))
4022 #ifdef HAVE_cc0
4023 && ! (code == SET && i == 1 && XEXP (x, 0) == cc0_rtx)
4024 #endif
4025 )
4026 return gen_rtx_CLOBBER (VOIDmode, const0_rtx);
4027
4028 #ifdef CANNOT_CHANGE_MODE_CLASS
4029 if (code == SUBREG
4030 && REG_P (to)
4031 && REGNO (to) < FIRST_PSEUDO_REGISTER
4032 && REG_CANNOT_CHANGE_MODE_P (REGNO (to),
4033 GET_MODE (to),
4034 GET_MODE (x)))
4035 return gen_rtx_CLOBBER (VOIDmode, const0_rtx);
4036 #endif
4037
4038 new = (unique_copy && n_occurrences ? copy_rtx (to) : to);
4039 n_occurrences++;
4040 }
4041 else
4042 /* If we are in a SET_DEST, suppress most cases unless we
4043 have gone inside a MEM, in which case we want to
4044 simplify the address. We assume here that things that
4045 are actually part of the destination have their inner
4046 parts in the first expression. This is true for SUBREG,
4047 STRICT_LOW_PART, and ZERO_EXTRACT, which are the only
4048 things aside from REG and MEM that should appear in a
4049 SET_DEST. */
4050 new = subst (XEXP (x, i), from, to,
4051 (((in_dest
4052 && (code == SUBREG || code == STRICT_LOW_PART
4053 || code == ZERO_EXTRACT))
4054 || code == SET)
4055 && i == 0), unique_copy);
4056
4057 /* If we found that we will have to reject this combination,
4058 indicate that by returning the CLOBBER ourselves, rather than
4059 an expression containing it. This will speed things up as
4060 well as prevent accidents where two CLOBBERs are considered
4061 to be equal, thus producing an incorrect simplification. */
4062
4063 if (GET_CODE (new) == CLOBBER && XEXP (new, 0) == const0_rtx)
4064 return new;
4065
4066 if (GET_CODE (x) == SUBREG
4067 && (GET_CODE (new) == CONST_INT
4068 || GET_CODE (new) == CONST_DOUBLE))
4069 {
4070 enum machine_mode mode = GET_MODE (x);
4071
4072 x = simplify_subreg (GET_MODE (x), new,
4073 GET_MODE (SUBREG_REG (x)),
4074 SUBREG_BYTE (x));
4075 if (! x)
4076 x = gen_rtx_CLOBBER (mode, const0_rtx);
4077 }
4078 else if (GET_CODE (new) == CONST_INT
4079 && GET_CODE (x) == ZERO_EXTEND)
4080 {
4081 x = simplify_unary_operation (ZERO_EXTEND, GET_MODE (x),
4082 new, GET_MODE (XEXP (x, 0)));
4083 gcc_assert (x);
4084 }
4085 else
4086 SUBST (XEXP (x, i), new);
4087 }
4088 }
4089 }
4090
4091 /* Try to simplify X. If the simplification changed the code, it is likely
4092 that further simplification will help, so loop, but limit the number
4093 of repetitions that will be performed. */
4094
4095 for (i = 0; i < 4; i++)
4096 {
4097 /* If X is sufficiently simple, don't bother trying to do anything
4098 with it. */
4099 if (code != CONST_INT && code != REG && code != CLOBBER)
4100 x = combine_simplify_rtx (x, op0_mode, in_dest);
4101
4102 if (GET_CODE (x) == code)
4103 break;
4104
4105 code = GET_CODE (x);
4106
4107 /* We no longer know the original mode of operand 0 since we
4108 have changed the form of X) */
4109 op0_mode = VOIDmode;
4110 }
4111
4112 return x;
4113 }
4114 \f
4115 /* Simplify X, a piece of RTL. We just operate on the expression at the
4116 outer level; call `subst' to simplify recursively. Return the new
4117 expression.
4118
4119 OP0_MODE is the original mode of XEXP (x, 0). IN_DEST is nonzero
4120 if we are inside a SET_DEST. */
4121
4122 static rtx
4123 combine_simplify_rtx (rtx x, enum machine_mode op0_mode, int in_dest)
4124 {
4125 enum rtx_code code = GET_CODE (x);
4126 enum machine_mode mode = GET_MODE (x);
4127 rtx temp;
4128 int i;
4129
4130 /* If this is a commutative operation, put a constant last and a complex
4131 expression first. We don't need to do this for comparisons here. */
4132 if (COMMUTATIVE_ARITH_P (x)
4133 && swap_commutative_operands_p (XEXP (x, 0), XEXP (x, 1)))
4134 {
4135 temp = XEXP (x, 0);
4136 SUBST (XEXP (x, 0), XEXP (x, 1));
4137 SUBST (XEXP (x, 1), temp);
4138 }
4139
4140 /* If this is a simple operation applied to an IF_THEN_ELSE, try
4141 applying it to the arms of the IF_THEN_ELSE. This often simplifies
4142 things. Check for cases where both arms are testing the same
4143 condition.
4144
4145 Don't do anything if all operands are very simple. */
4146
4147 if ((BINARY_P (x)
4148 && ((!OBJECT_P (XEXP (x, 0))
4149 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
4150 && OBJECT_P (SUBREG_REG (XEXP (x, 0)))))
4151 || (!OBJECT_P (XEXP (x, 1))
4152 && ! (GET_CODE (XEXP (x, 1)) == SUBREG
4153 && OBJECT_P (SUBREG_REG (XEXP (x, 1)))))))
4154 || (UNARY_P (x)
4155 && (!OBJECT_P (XEXP (x, 0))
4156 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
4157 && OBJECT_P (SUBREG_REG (XEXP (x, 0)))))))
4158 {
4159 rtx cond, true_rtx, false_rtx;
4160
4161 cond = if_then_else_cond (x, &true_rtx, &false_rtx);
4162 if (cond != 0
4163 /* If everything is a comparison, what we have is highly unlikely
4164 to be simpler, so don't use it. */
4165 && ! (COMPARISON_P (x)
4166 && (COMPARISON_P (true_rtx) || COMPARISON_P (false_rtx))))
4167 {
4168 rtx cop1 = const0_rtx;
4169 enum rtx_code cond_code = simplify_comparison (NE, &cond, &cop1);
4170
4171 if (cond_code == NE && COMPARISON_P (cond))
4172 return x;
4173
4174 /* Simplify the alternative arms; this may collapse the true and
4175 false arms to store-flag values. Be careful to use copy_rtx
4176 here since true_rtx or false_rtx might share RTL with x as a
4177 result of the if_then_else_cond call above. */
4178 true_rtx = subst (copy_rtx (true_rtx), pc_rtx, pc_rtx, 0, 0);
4179 false_rtx = subst (copy_rtx (false_rtx), pc_rtx, pc_rtx, 0, 0);
4180
4181 /* If true_rtx and false_rtx are not general_operands, an if_then_else
4182 is unlikely to be simpler. */
4183 if (general_operand (true_rtx, VOIDmode)
4184 && general_operand (false_rtx, VOIDmode))
4185 {
4186 enum rtx_code reversed;
4187
4188 /* Restarting if we generate a store-flag expression will cause
4189 us to loop. Just drop through in this case. */
4190
4191 /* If the result values are STORE_FLAG_VALUE and zero, we can
4192 just make the comparison operation. */
4193 if (true_rtx == const_true_rtx && false_rtx == const0_rtx)
4194 x = simplify_gen_relational (cond_code, mode, VOIDmode,
4195 cond, cop1);
4196 else if (true_rtx == const0_rtx && false_rtx == const_true_rtx
4197 && ((reversed = reversed_comparison_code_parts
4198 (cond_code, cond, cop1, NULL))
4199 != UNKNOWN))
4200 x = simplify_gen_relational (reversed, mode, VOIDmode,
4201 cond, cop1);
4202
4203 /* Likewise, we can make the negate of a comparison operation
4204 if the result values are - STORE_FLAG_VALUE and zero. */
4205 else if (GET_CODE (true_rtx) == CONST_INT
4206 && INTVAL (true_rtx) == - STORE_FLAG_VALUE
4207 && false_rtx == const0_rtx)
4208 x = simplify_gen_unary (NEG, mode,
4209 simplify_gen_relational (cond_code,
4210 mode, VOIDmode,
4211 cond, cop1),
4212 mode);
4213 else if (GET_CODE (false_rtx) == CONST_INT
4214 && INTVAL (false_rtx) == - STORE_FLAG_VALUE
4215 && true_rtx == const0_rtx
4216 && ((reversed = reversed_comparison_code_parts
4217 (cond_code, cond, cop1, NULL))
4218 != UNKNOWN))
4219 x = simplify_gen_unary (NEG, mode,
4220 simplify_gen_relational (reversed,
4221 mode, VOIDmode,
4222 cond, cop1),
4223 mode);
4224 else
4225 return gen_rtx_IF_THEN_ELSE (mode,
4226 simplify_gen_relational (cond_code,
4227 mode,
4228 VOIDmode,
4229 cond,
4230 cop1),
4231 true_rtx, false_rtx);
4232
4233 code = GET_CODE (x);
4234 op0_mode = VOIDmode;
4235 }
4236 }
4237 }
4238
4239 /* Try to fold this expression in case we have constants that weren't
4240 present before. */
4241 temp = 0;
4242 switch (GET_RTX_CLASS (code))
4243 {
4244 case RTX_UNARY:
4245 if (op0_mode == VOIDmode)
4246 op0_mode = GET_MODE (XEXP (x, 0));
4247 temp = simplify_unary_operation (code, mode, XEXP (x, 0), op0_mode);
4248 break;
4249 case RTX_COMPARE:
4250 case RTX_COMM_COMPARE:
4251 {
4252 enum machine_mode cmp_mode = GET_MODE (XEXP (x, 0));
4253 if (cmp_mode == VOIDmode)
4254 {
4255 cmp_mode = GET_MODE (XEXP (x, 1));
4256 if (cmp_mode == VOIDmode)
4257 cmp_mode = op0_mode;
4258 }
4259 temp = simplify_relational_operation (code, mode, cmp_mode,
4260 XEXP (x, 0), XEXP (x, 1));
4261 }
4262 break;
4263 case RTX_COMM_ARITH:
4264 case RTX_BIN_ARITH:
4265 temp = simplify_binary_operation (code, mode, XEXP (x, 0), XEXP (x, 1));
4266 break;
4267 case RTX_BITFIELD_OPS:
4268 case RTX_TERNARY:
4269 temp = simplify_ternary_operation (code, mode, op0_mode, XEXP (x, 0),
4270 XEXP (x, 1), XEXP (x, 2));
4271 break;
4272 default:
4273 break;
4274 }
4275
4276 if (temp)
4277 {
4278 x = temp;
4279 code = GET_CODE (temp);
4280 op0_mode = VOIDmode;
4281 mode = GET_MODE (temp);
4282 }
4283
4284 /* First see if we can apply the inverse distributive law. */
4285 if (code == PLUS || code == MINUS
4286 || code == AND || code == IOR || code == XOR)
4287 {
4288 x = apply_distributive_law (x);
4289 code = GET_CODE (x);
4290 op0_mode = VOIDmode;
4291 }
4292
4293 /* If CODE is an associative operation not otherwise handled, see if we
4294 can associate some operands. This can win if they are constants or
4295 if they are logically related (i.e. (a & b) & a). */
4296 if ((code == PLUS || code == MINUS || code == MULT || code == DIV
4297 || code == AND || code == IOR || code == XOR
4298 || code == SMAX || code == SMIN || code == UMAX || code == UMIN)
4299 && ((INTEGRAL_MODE_P (mode) && code != DIV)
4300 || (flag_unsafe_math_optimizations && FLOAT_MODE_P (mode))))
4301 {
4302 if (GET_CODE (XEXP (x, 0)) == code)
4303 {
4304 rtx other = XEXP (XEXP (x, 0), 0);
4305 rtx inner_op0 = XEXP (XEXP (x, 0), 1);
4306 rtx inner_op1 = XEXP (x, 1);
4307 rtx inner;
4308
4309 /* Make sure we pass the constant operand if any as the second
4310 one if this is a commutative operation. */
4311 if (CONSTANT_P (inner_op0) && COMMUTATIVE_ARITH_P (x))
4312 {
4313 rtx tem = inner_op0;
4314 inner_op0 = inner_op1;
4315 inner_op1 = tem;
4316 }
4317 inner = simplify_binary_operation (code == MINUS ? PLUS
4318 : code == DIV ? MULT
4319 : code,
4320 mode, inner_op0, inner_op1);
4321
4322 /* For commutative operations, try the other pair if that one
4323 didn't simplify. */
4324 if (inner == 0 && COMMUTATIVE_ARITH_P (x))
4325 {
4326 other = XEXP (XEXP (x, 0), 1);
4327 inner = simplify_binary_operation (code, mode,
4328 XEXP (XEXP (x, 0), 0),
4329 XEXP (x, 1));
4330 }
4331
4332 if (inner)
4333 return simplify_gen_binary (code, mode, other, inner);
4334 }
4335 }
4336
4337 /* A little bit of algebraic simplification here. */
4338 switch (code)
4339 {
4340 case MEM:
4341 /* Ensure that our address has any ASHIFTs converted to MULT in case
4342 address-recognizing predicates are called later. */
4343 temp = make_compound_operation (XEXP (x, 0), MEM);
4344 SUBST (XEXP (x, 0), temp);
4345 break;
4346
4347 case SUBREG:
4348 if (op0_mode == VOIDmode)
4349 op0_mode = GET_MODE (SUBREG_REG (x));
4350
4351 /* See if this can be moved to simplify_subreg. */
4352 if (CONSTANT_P (SUBREG_REG (x))
4353 && subreg_lowpart_offset (mode, op0_mode) == SUBREG_BYTE (x)
4354 /* Don't call gen_lowpart if the inner mode
4355 is VOIDmode and we cannot simplify it, as SUBREG without
4356 inner mode is invalid. */
4357 && (GET_MODE (SUBREG_REG (x)) != VOIDmode
4358 || gen_lowpart_common (mode, SUBREG_REG (x))))
4359 return gen_lowpart (mode, SUBREG_REG (x));
4360
4361 if (GET_MODE_CLASS (GET_MODE (SUBREG_REG (x))) == MODE_CC)
4362 break;
4363 {
4364 rtx temp;
4365 temp = simplify_subreg (mode, SUBREG_REG (x), op0_mode,
4366 SUBREG_BYTE (x));
4367 if (temp)
4368 return temp;
4369 }
4370
4371 /* Don't change the mode of the MEM if that would change the meaning
4372 of the address. */
4373 if (MEM_P (SUBREG_REG (x))
4374 && (MEM_VOLATILE_P (SUBREG_REG (x))
4375 || mode_dependent_address_p (XEXP (SUBREG_REG (x), 0))))
4376 return gen_rtx_CLOBBER (mode, const0_rtx);
4377
4378 /* Note that we cannot do any narrowing for non-constants since
4379 we might have been counting on using the fact that some bits were
4380 zero. We now do this in the SET. */
4381
4382 break;
4383
4384 case NEG:
4385 temp = expand_compound_operation (XEXP (x, 0));
4386
4387 /* For C equal to the width of MODE minus 1, (neg (ashiftrt X C)) can be
4388 replaced by (lshiftrt X C). This will convert
4389 (neg (sign_extract X 1 Y)) to (zero_extract X 1 Y). */
4390
4391 if (GET_CODE (temp) == ASHIFTRT
4392 && GET_CODE (XEXP (temp, 1)) == CONST_INT
4393 && INTVAL (XEXP (temp, 1)) == GET_MODE_BITSIZE (mode) - 1)
4394 return simplify_shift_const (NULL_RTX, LSHIFTRT, mode, XEXP (temp, 0),
4395 INTVAL (XEXP (temp, 1)));
4396
4397 /* If X has only a single bit that might be nonzero, say, bit I, convert
4398 (neg X) to (ashiftrt (ashift X C-I) C-I) where C is the bitsize of
4399 MODE minus 1. This will convert (neg (zero_extract X 1 Y)) to
4400 (sign_extract X 1 Y). But only do this if TEMP isn't a register
4401 or a SUBREG of one since we'd be making the expression more
4402 complex if it was just a register. */
4403
4404 if (!REG_P (temp)
4405 && ! (GET_CODE (temp) == SUBREG
4406 && REG_P (SUBREG_REG (temp)))
4407 && (i = exact_log2 (nonzero_bits (temp, mode))) >= 0)
4408 {
4409 rtx temp1 = simplify_shift_const
4410 (NULL_RTX, ASHIFTRT, mode,
4411 simplify_shift_const (NULL_RTX, ASHIFT, mode, temp,
4412 GET_MODE_BITSIZE (mode) - 1 - i),
4413 GET_MODE_BITSIZE (mode) - 1 - i);
4414
4415 /* If all we did was surround TEMP with the two shifts, we
4416 haven't improved anything, so don't use it. Otherwise,
4417 we are better off with TEMP1. */
4418 if (GET_CODE (temp1) != ASHIFTRT
4419 || GET_CODE (XEXP (temp1, 0)) != ASHIFT
4420 || XEXP (XEXP (temp1, 0), 0) != temp)
4421 return temp1;
4422 }
4423 break;
4424
4425 case TRUNCATE:
4426 /* We can't handle truncation to a partial integer mode here
4427 because we don't know the real bitsize of the partial
4428 integer mode. */
4429 if (GET_MODE_CLASS (mode) == MODE_PARTIAL_INT)
4430 break;
4431
4432 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4433 && TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (mode),
4434 GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))))
4435 SUBST (XEXP (x, 0),
4436 force_to_mode (XEXP (x, 0), GET_MODE (XEXP (x, 0)),
4437 GET_MODE_MASK (mode), 0));
4438
4439 /* Similarly to what we do in simplify-rtx.c, a truncate of a register
4440 whose value is a comparison can be replaced with a subreg if
4441 STORE_FLAG_VALUE permits. */
4442 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4443 && ((HOST_WIDE_INT) STORE_FLAG_VALUE & ~GET_MODE_MASK (mode)) == 0
4444 && (temp = get_last_value (XEXP (x, 0)))
4445 && COMPARISON_P (temp))
4446 return gen_lowpart (mode, XEXP (x, 0));
4447 break;
4448
4449 #ifdef HAVE_cc0
4450 case COMPARE:
4451 /* Convert (compare FOO (const_int 0)) to FOO unless we aren't
4452 using cc0, in which case we want to leave it as a COMPARE
4453 so we can distinguish it from a register-register-copy. */
4454 if (XEXP (x, 1) == const0_rtx)
4455 return XEXP (x, 0);
4456
4457 /* x - 0 is the same as x unless x's mode has signed zeros and
4458 allows rounding towards -infinity. Under those conditions,
4459 0 - 0 is -0. */
4460 if (!(HONOR_SIGNED_ZEROS (GET_MODE (XEXP (x, 0)))
4461 && HONOR_SIGN_DEPENDENT_ROUNDING (GET_MODE (XEXP (x, 0))))
4462 && XEXP (x, 1) == CONST0_RTX (GET_MODE (XEXP (x, 0))))
4463 return XEXP (x, 0);
4464 break;
4465 #endif
4466
4467 case CONST:
4468 /* (const (const X)) can become (const X). Do it this way rather than
4469 returning the inner CONST since CONST can be shared with a
4470 REG_EQUAL note. */
4471 if (GET_CODE (XEXP (x, 0)) == CONST)
4472 SUBST (XEXP (x, 0), XEXP (XEXP (x, 0), 0));
4473 break;
4474
4475 #ifdef HAVE_lo_sum
4476 case LO_SUM:
4477 /* Convert (lo_sum (high FOO) FOO) to FOO. This is necessary so we
4478 can add in an offset. find_split_point will split this address up
4479 again if it doesn't match. */
4480 if (GET_CODE (XEXP (x, 0)) == HIGH
4481 && rtx_equal_p (XEXP (XEXP (x, 0), 0), XEXP (x, 1)))
4482 return XEXP (x, 1);
4483 break;
4484 #endif
4485
4486 case PLUS:
4487 /* (plus (xor (and <foo> (const_int pow2 - 1)) <c>) <-c>)
4488 when c is (const_int (pow2 + 1) / 2) is a sign extension of a
4489 bit-field and can be replaced by either a sign_extend or a
4490 sign_extract. The `and' may be a zero_extend and the two
4491 <c>, -<c> constants may be reversed. */
4492 if (GET_CODE (XEXP (x, 0)) == XOR
4493 && GET_CODE (XEXP (x, 1)) == CONST_INT
4494 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
4495 && INTVAL (XEXP (x, 1)) == -INTVAL (XEXP (XEXP (x, 0), 1))
4496 && ((i = exact_log2 (INTVAL (XEXP (XEXP (x, 0), 1)))) >= 0
4497 || (i = exact_log2 (INTVAL (XEXP (x, 1)))) >= 0)
4498 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4499 && ((GET_CODE (XEXP (XEXP (x, 0), 0)) == AND
4500 && GET_CODE (XEXP (XEXP (XEXP (x, 0), 0), 1)) == CONST_INT
4501 && (INTVAL (XEXP (XEXP (XEXP (x, 0), 0), 1))
4502 == ((HOST_WIDE_INT) 1 << (i + 1)) - 1))
4503 || (GET_CODE (XEXP (XEXP (x, 0), 0)) == ZERO_EXTEND
4504 && (GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (XEXP (x, 0), 0), 0)))
4505 == (unsigned int) i + 1))))
4506 return simplify_shift_const
4507 (NULL_RTX, ASHIFTRT, mode,
4508 simplify_shift_const (NULL_RTX, ASHIFT, mode,
4509 XEXP (XEXP (XEXP (x, 0), 0), 0),
4510 GET_MODE_BITSIZE (mode) - (i + 1)),
4511 GET_MODE_BITSIZE (mode) - (i + 1));
4512
4513 /* If only the low-order bit of X is possibly nonzero, (plus x -1)
4514 can become (ashiftrt (ashift (xor x 1) C) C) where C is
4515 the bitsize of the mode - 1. This allows simplification of
4516 "a = (b & 8) == 0;" */
4517 if (XEXP (x, 1) == constm1_rtx
4518 && !REG_P (XEXP (x, 0))
4519 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
4520 && REG_P (SUBREG_REG (XEXP (x, 0))))
4521 && nonzero_bits (XEXP (x, 0), mode) == 1)
4522 return simplify_shift_const (NULL_RTX, ASHIFTRT, mode,
4523 simplify_shift_const (NULL_RTX, ASHIFT, mode,
4524 gen_rtx_XOR (mode, XEXP (x, 0), const1_rtx),
4525 GET_MODE_BITSIZE (mode) - 1),
4526 GET_MODE_BITSIZE (mode) - 1);
4527
4528 /* If we are adding two things that have no bits in common, convert
4529 the addition into an IOR. This will often be further simplified,
4530 for example in cases like ((a & 1) + (a & 2)), which can
4531 become a & 3. */
4532
4533 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4534 && (nonzero_bits (XEXP (x, 0), mode)
4535 & nonzero_bits (XEXP (x, 1), mode)) == 0)
4536 {
4537 /* Try to simplify the expression further. */
4538 rtx tor = simplify_gen_binary (IOR, mode, XEXP (x, 0), XEXP (x, 1));
4539 temp = combine_simplify_rtx (tor, mode, in_dest);
4540
4541 /* If we could, great. If not, do not go ahead with the IOR
4542 replacement, since PLUS appears in many special purpose
4543 address arithmetic instructions. */
4544 if (GET_CODE (temp) != CLOBBER && temp != tor)
4545 return temp;
4546 }
4547 break;
4548
4549 case MINUS:
4550 /* (minus <foo> (and <foo> (const_int -pow2))) becomes
4551 (and <foo> (const_int pow2-1)) */
4552 if (GET_CODE (XEXP (x, 1)) == AND
4553 && GET_CODE (XEXP (XEXP (x, 1), 1)) == CONST_INT
4554 && exact_log2 (-INTVAL (XEXP (XEXP (x, 1), 1))) >= 0
4555 && rtx_equal_p (XEXP (XEXP (x, 1), 0), XEXP (x, 0)))
4556 return simplify_and_const_int (NULL_RTX, mode, XEXP (x, 0),
4557 -INTVAL (XEXP (XEXP (x, 1), 1)) - 1);
4558 break;
4559
4560 case MULT:
4561 /* If we have (mult (plus A B) C), apply the distributive law and then
4562 the inverse distributive law to see if things simplify. This
4563 occurs mostly in addresses, often when unrolling loops. */
4564
4565 if (GET_CODE (XEXP (x, 0)) == PLUS)
4566 {
4567 rtx result = distribute_and_simplify_rtx (x, 0);
4568 if (result)
4569 return result;
4570 }
4571
4572 /* Try simplify a*(b/c) as (a*b)/c. */
4573 if (FLOAT_MODE_P (mode) && flag_unsafe_math_optimizations
4574 && GET_CODE (XEXP (x, 0)) == DIV)
4575 {
4576 rtx tem = simplify_binary_operation (MULT, mode,
4577 XEXP (XEXP (x, 0), 0),
4578 XEXP (x, 1));
4579 if (tem)
4580 return simplify_gen_binary (DIV, mode, tem, XEXP (XEXP (x, 0), 1));
4581 }
4582 break;
4583
4584 case UDIV:
4585 /* If this is a divide by a power of two, treat it as a shift if
4586 its first operand is a shift. */
4587 if (GET_CODE (XEXP (x, 1)) == CONST_INT
4588 && (i = exact_log2 (INTVAL (XEXP (x, 1)))) >= 0
4589 && (GET_CODE (XEXP (x, 0)) == ASHIFT
4590 || GET_CODE (XEXP (x, 0)) == LSHIFTRT
4591 || GET_CODE (XEXP (x, 0)) == ASHIFTRT
4592 || GET_CODE (XEXP (x, 0)) == ROTATE
4593 || GET_CODE (XEXP (x, 0)) == ROTATERT))
4594 return simplify_shift_const (NULL_RTX, LSHIFTRT, mode, XEXP (x, 0), i);
4595 break;
4596
4597 case EQ: case NE:
4598 case GT: case GTU: case GE: case GEU:
4599 case LT: case LTU: case LE: case LEU:
4600 case UNEQ: case LTGT:
4601 case UNGT: case UNGE:
4602 case UNLT: case UNLE:
4603 case UNORDERED: case ORDERED:
4604 /* If the first operand is a condition code, we can't do anything
4605 with it. */
4606 if (GET_CODE (XEXP (x, 0)) == COMPARE
4607 || (GET_MODE_CLASS (GET_MODE (XEXP (x, 0))) != MODE_CC
4608 && ! CC0_P (XEXP (x, 0))))
4609 {
4610 rtx op0 = XEXP (x, 0);
4611 rtx op1 = XEXP (x, 1);
4612 enum rtx_code new_code;
4613
4614 if (GET_CODE (op0) == COMPARE)
4615 op1 = XEXP (op0, 1), op0 = XEXP (op0, 0);
4616
4617 /* Simplify our comparison, if possible. */
4618 new_code = simplify_comparison (code, &op0, &op1);
4619
4620 /* If STORE_FLAG_VALUE is 1, we can convert (ne x 0) to simply X
4621 if only the low-order bit is possibly nonzero in X (such as when
4622 X is a ZERO_EXTRACT of one bit). Similarly, we can convert EQ to
4623 (xor X 1) or (minus 1 X); we use the former. Finally, if X is
4624 known to be either 0 or -1, NE becomes a NEG and EQ becomes
4625 (plus X 1).
4626
4627 Remove any ZERO_EXTRACT we made when thinking this was a
4628 comparison. It may now be simpler to use, e.g., an AND. If a
4629 ZERO_EXTRACT is indeed appropriate, it will be placed back by
4630 the call to make_compound_operation in the SET case. */
4631
4632 if (STORE_FLAG_VALUE == 1
4633 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
4634 && op1 == const0_rtx
4635 && mode == GET_MODE (op0)
4636 && nonzero_bits (op0, mode) == 1)
4637 return gen_lowpart (mode,
4638 expand_compound_operation (op0));
4639
4640 else if (STORE_FLAG_VALUE == 1
4641 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
4642 && op1 == const0_rtx
4643 && mode == GET_MODE (op0)
4644 && (num_sign_bit_copies (op0, mode)
4645 == GET_MODE_BITSIZE (mode)))
4646 {
4647 op0 = expand_compound_operation (op0);
4648 return simplify_gen_unary (NEG, mode,
4649 gen_lowpart (mode, op0),
4650 mode);
4651 }
4652
4653 else if (STORE_FLAG_VALUE == 1
4654 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
4655 && op1 == const0_rtx
4656 && mode == GET_MODE (op0)
4657 && nonzero_bits (op0, mode) == 1)
4658 {
4659 op0 = expand_compound_operation (op0);
4660 return simplify_gen_binary (XOR, mode,
4661 gen_lowpart (mode, op0),
4662 const1_rtx);
4663 }
4664
4665 else if (STORE_FLAG_VALUE == 1
4666 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
4667 && op1 == const0_rtx
4668 && mode == GET_MODE (op0)
4669 && (num_sign_bit_copies (op0, mode)
4670 == GET_MODE_BITSIZE (mode)))
4671 {
4672 op0 = expand_compound_operation (op0);
4673 return plus_constant (gen_lowpart (mode, op0), 1);
4674 }
4675
4676 /* If STORE_FLAG_VALUE is -1, we have cases similar to
4677 those above. */
4678 if (STORE_FLAG_VALUE == -1
4679 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
4680 && op1 == const0_rtx
4681 && (num_sign_bit_copies (op0, mode)
4682 == GET_MODE_BITSIZE (mode)))
4683 return gen_lowpart (mode,
4684 expand_compound_operation (op0));
4685
4686 else if (STORE_FLAG_VALUE == -1
4687 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
4688 && op1 == const0_rtx
4689 && mode == GET_MODE (op0)
4690 && nonzero_bits (op0, mode) == 1)
4691 {
4692 op0 = expand_compound_operation (op0);
4693 return simplify_gen_unary (NEG, mode,
4694 gen_lowpart (mode, op0),
4695 mode);
4696 }
4697
4698 else if (STORE_FLAG_VALUE == -1
4699 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
4700 && op1 == const0_rtx
4701 && mode == GET_MODE (op0)
4702 && (num_sign_bit_copies (op0, mode)
4703 == GET_MODE_BITSIZE (mode)))
4704 {
4705 op0 = expand_compound_operation (op0);
4706 return simplify_gen_unary (NOT, mode,
4707 gen_lowpart (mode, op0),
4708 mode);
4709 }
4710
4711 /* If X is 0/1, (eq X 0) is X-1. */
4712 else if (STORE_FLAG_VALUE == -1
4713 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
4714 && op1 == const0_rtx
4715 && mode == GET_MODE (op0)
4716 && nonzero_bits (op0, mode) == 1)
4717 {
4718 op0 = expand_compound_operation (op0);
4719 return plus_constant (gen_lowpart (mode, op0), -1);
4720 }
4721
4722 /* If STORE_FLAG_VALUE says to just test the sign bit and X has just
4723 one bit that might be nonzero, we can convert (ne x 0) to
4724 (ashift x c) where C puts the bit in the sign bit. Remove any
4725 AND with STORE_FLAG_VALUE when we are done, since we are only
4726 going to test the sign bit. */
4727 if (new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
4728 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4729 && ((STORE_FLAG_VALUE & GET_MODE_MASK (mode))
4730 == (unsigned HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (mode) - 1))
4731 && op1 == const0_rtx
4732 && mode == GET_MODE (op0)
4733 && (i = exact_log2 (nonzero_bits (op0, mode))) >= 0)
4734 {
4735 x = simplify_shift_const (NULL_RTX, ASHIFT, mode,
4736 expand_compound_operation (op0),
4737 GET_MODE_BITSIZE (mode) - 1 - i);
4738 if (GET_CODE (x) == AND && XEXP (x, 1) == const_true_rtx)
4739 return XEXP (x, 0);
4740 else
4741 return x;
4742 }
4743
4744 /* If the code changed, return a whole new comparison. */
4745 if (new_code != code)
4746 return gen_rtx_fmt_ee (new_code, mode, op0, op1);
4747
4748 /* Otherwise, keep this operation, but maybe change its operands.
4749 This also converts (ne (compare FOO BAR) 0) to (ne FOO BAR). */
4750 SUBST (XEXP (x, 0), op0);
4751 SUBST (XEXP (x, 1), op1);
4752 }
4753 break;
4754
4755 case IF_THEN_ELSE:
4756 return simplify_if_then_else (x);
4757
4758 case ZERO_EXTRACT:
4759 case SIGN_EXTRACT:
4760 case ZERO_EXTEND:
4761 case SIGN_EXTEND:
4762 /* If we are processing SET_DEST, we are done. */
4763 if (in_dest)
4764 return x;
4765
4766 return expand_compound_operation (x);
4767
4768 case SET:
4769 return simplify_set (x);
4770
4771 case AND:
4772 case IOR:
4773 return simplify_logical (x);
4774
4775 case ASHIFT:
4776 case LSHIFTRT:
4777 case ASHIFTRT:
4778 case ROTATE:
4779 case ROTATERT:
4780 /* If this is a shift by a constant amount, simplify it. */
4781 if (GET_CODE (XEXP (x, 1)) == CONST_INT)
4782 return simplify_shift_const (x, code, mode, XEXP (x, 0),
4783 INTVAL (XEXP (x, 1)));
4784
4785 else if (SHIFT_COUNT_TRUNCATED && !REG_P (XEXP (x, 1)))
4786 SUBST (XEXP (x, 1),
4787 force_to_mode (XEXP (x, 1), GET_MODE (XEXP (x, 1)),
4788 ((HOST_WIDE_INT) 1
4789 << exact_log2 (GET_MODE_BITSIZE (GET_MODE (x))))
4790 - 1,
4791 0));
4792 break;
4793
4794 default:
4795 break;
4796 }
4797
4798 return x;
4799 }
4800 \f
4801 /* Simplify X, an IF_THEN_ELSE expression. Return the new expression. */
4802
4803 static rtx
4804 simplify_if_then_else (rtx x)
4805 {
4806 enum machine_mode mode = GET_MODE (x);
4807 rtx cond = XEXP (x, 0);
4808 rtx true_rtx = XEXP (x, 1);
4809 rtx false_rtx = XEXP (x, 2);
4810 enum rtx_code true_code = GET_CODE (cond);
4811 int comparison_p = COMPARISON_P (cond);
4812 rtx temp;
4813 int i;
4814 enum rtx_code false_code;
4815 rtx reversed;
4816
4817 /* Simplify storing of the truth value. */
4818 if (comparison_p && true_rtx == const_true_rtx && false_rtx == const0_rtx)
4819 return simplify_gen_relational (true_code, mode, VOIDmode,
4820 XEXP (cond, 0), XEXP (cond, 1));
4821
4822 /* Also when the truth value has to be reversed. */
4823 if (comparison_p
4824 && true_rtx == const0_rtx && false_rtx == const_true_rtx
4825 && (reversed = reversed_comparison (cond, mode)))
4826 return reversed;
4827
4828 /* Sometimes we can simplify the arm of an IF_THEN_ELSE if a register used
4829 in it is being compared against certain values. Get the true and false
4830 comparisons and see if that says anything about the value of each arm. */
4831
4832 if (comparison_p
4833 && ((false_code = reversed_comparison_code (cond, NULL))
4834 != UNKNOWN)
4835 && REG_P (XEXP (cond, 0)))
4836 {
4837 HOST_WIDE_INT nzb;
4838 rtx from = XEXP (cond, 0);
4839 rtx true_val = XEXP (cond, 1);
4840 rtx false_val = true_val;
4841 int swapped = 0;
4842
4843 /* If FALSE_CODE is EQ, swap the codes and arms. */
4844
4845 if (false_code == EQ)
4846 {
4847 swapped = 1, true_code = EQ, false_code = NE;
4848 temp = true_rtx, true_rtx = false_rtx, false_rtx = temp;
4849 }
4850
4851 /* If we are comparing against zero and the expression being tested has
4852 only a single bit that might be nonzero, that is its value when it is
4853 not equal to zero. Similarly if it is known to be -1 or 0. */
4854
4855 if (true_code == EQ && true_val == const0_rtx
4856 && exact_log2 (nzb = nonzero_bits (from, GET_MODE (from))) >= 0)
4857 false_code = EQ, false_val = GEN_INT (nzb);
4858 else if (true_code == EQ && true_val == const0_rtx
4859 && (num_sign_bit_copies (from, GET_MODE (from))
4860 == GET_MODE_BITSIZE (GET_MODE (from))))
4861 false_code = EQ, false_val = constm1_rtx;
4862
4863 /* Now simplify an arm if we know the value of the register in the
4864 branch and it is used in the arm. Be careful due to the potential
4865 of locally-shared RTL. */
4866
4867 if (reg_mentioned_p (from, true_rtx))
4868 true_rtx = subst (known_cond (copy_rtx (true_rtx), true_code,
4869 from, true_val),
4870 pc_rtx, pc_rtx, 0, 0);
4871 if (reg_mentioned_p (from, false_rtx))
4872 false_rtx = subst (known_cond (copy_rtx (false_rtx), false_code,
4873 from, false_val),
4874 pc_rtx, pc_rtx, 0, 0);
4875
4876 SUBST (XEXP (x, 1), swapped ? false_rtx : true_rtx);
4877 SUBST (XEXP (x, 2), swapped ? true_rtx : false_rtx);
4878
4879 true_rtx = XEXP (x, 1);
4880 false_rtx = XEXP (x, 2);
4881 true_code = GET_CODE (cond);
4882 }
4883
4884 /* If we have (if_then_else FOO (pc) (label_ref BAR)) and FOO can be
4885 reversed, do so to avoid needing two sets of patterns for
4886 subtract-and-branch insns. Similarly if we have a constant in the true
4887 arm, the false arm is the same as the first operand of the comparison, or
4888 the false arm is more complicated than the true arm. */
4889
4890 if (comparison_p
4891 && reversed_comparison_code (cond, NULL) != UNKNOWN
4892 && (true_rtx == pc_rtx
4893 || (CONSTANT_P (true_rtx)
4894 && GET_CODE (false_rtx) != CONST_INT && false_rtx != pc_rtx)
4895 || true_rtx == const0_rtx
4896 || (OBJECT_P (true_rtx) && !OBJECT_P (false_rtx))
4897 || (GET_CODE (true_rtx) == SUBREG && OBJECT_P (SUBREG_REG (true_rtx))
4898 && !OBJECT_P (false_rtx))
4899 || reg_mentioned_p (true_rtx, false_rtx)
4900 || rtx_equal_p (false_rtx, XEXP (cond, 0))))
4901 {
4902 true_code = reversed_comparison_code (cond, NULL);
4903 SUBST (XEXP (x, 0), reversed_comparison (cond, GET_MODE (cond)));
4904 SUBST (XEXP (x, 1), false_rtx);
4905 SUBST (XEXP (x, 2), true_rtx);
4906
4907 temp = true_rtx, true_rtx = false_rtx, false_rtx = temp;
4908 cond = XEXP (x, 0);
4909
4910 /* It is possible that the conditional has been simplified out. */
4911 true_code = GET_CODE (cond);
4912 comparison_p = COMPARISON_P (cond);
4913 }
4914
4915 /* If the two arms are identical, we don't need the comparison. */
4916
4917 if (rtx_equal_p (true_rtx, false_rtx) && ! side_effects_p (cond))
4918 return true_rtx;
4919
4920 /* Convert a == b ? b : a to "a". */
4921 if (true_code == EQ && ! side_effects_p (cond)
4922 && !HONOR_NANS (mode)
4923 && rtx_equal_p (XEXP (cond, 0), false_rtx)
4924 && rtx_equal_p (XEXP (cond, 1), true_rtx))
4925 return false_rtx;
4926 else if (true_code == NE && ! side_effects_p (cond)
4927 && !HONOR_NANS (mode)
4928 && rtx_equal_p (XEXP (cond, 0), true_rtx)
4929 && rtx_equal_p (XEXP (cond, 1), false_rtx))
4930 return true_rtx;
4931
4932 /* Look for cases where we have (abs x) or (neg (abs X)). */
4933
4934 if (GET_MODE_CLASS (mode) == MODE_INT
4935 && GET_CODE (false_rtx) == NEG
4936 && rtx_equal_p (true_rtx, XEXP (false_rtx, 0))
4937 && comparison_p
4938 && rtx_equal_p (true_rtx, XEXP (cond, 0))
4939 && ! side_effects_p (true_rtx))
4940 switch (true_code)
4941 {
4942 case GT:
4943 case GE:
4944 return simplify_gen_unary (ABS, mode, true_rtx, mode);
4945 case LT:
4946 case LE:
4947 return
4948 simplify_gen_unary (NEG, mode,
4949 simplify_gen_unary (ABS, mode, true_rtx, mode),
4950 mode);
4951 default:
4952 break;
4953 }
4954
4955 /* Look for MIN or MAX. */
4956
4957 if ((! FLOAT_MODE_P (mode) || flag_unsafe_math_optimizations)
4958 && comparison_p
4959 && rtx_equal_p (XEXP (cond, 0), true_rtx)
4960 && rtx_equal_p (XEXP (cond, 1), false_rtx)
4961 && ! side_effects_p (cond))
4962 switch (true_code)
4963 {
4964 case GE:
4965 case GT:
4966 return simplify_gen_binary (SMAX, mode, true_rtx, false_rtx);
4967 case LE:
4968 case LT:
4969 return simplify_gen_binary (SMIN, mode, true_rtx, false_rtx);
4970 case GEU:
4971 case GTU:
4972 return simplify_gen_binary (UMAX, mode, true_rtx, false_rtx);
4973 case LEU:
4974 case LTU:
4975 return simplify_gen_binary (UMIN, mode, true_rtx, false_rtx);
4976 default:
4977 break;
4978 }
4979
4980 /* If we have (if_then_else COND (OP Z C1) Z) and OP is an identity when its
4981 second operand is zero, this can be done as (OP Z (mult COND C2)) where
4982 C2 = C1 * STORE_FLAG_VALUE. Similarly if OP has an outer ZERO_EXTEND or
4983 SIGN_EXTEND as long as Z is already extended (so we don't destroy it).
4984 We can do this kind of thing in some cases when STORE_FLAG_VALUE is
4985 neither 1 or -1, but it isn't worth checking for. */
4986
4987 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
4988 && comparison_p
4989 && GET_MODE_CLASS (mode) == MODE_INT
4990 && ! side_effects_p (x))
4991 {
4992 rtx t = make_compound_operation (true_rtx, SET);
4993 rtx f = make_compound_operation (false_rtx, SET);
4994 rtx cond_op0 = XEXP (cond, 0);
4995 rtx cond_op1 = XEXP (cond, 1);
4996 enum rtx_code op = UNKNOWN, extend_op = UNKNOWN;
4997 enum machine_mode m = mode;
4998 rtx z = 0, c1 = NULL_RTX;
4999
5000 if ((GET_CODE (t) == PLUS || GET_CODE (t) == MINUS
5001 || GET_CODE (t) == IOR || GET_CODE (t) == XOR
5002 || GET_CODE (t) == ASHIFT
5003 || GET_CODE (t) == LSHIFTRT || GET_CODE (t) == ASHIFTRT)
5004 && rtx_equal_p (XEXP (t, 0), f))
5005 c1 = XEXP (t, 1), op = GET_CODE (t), z = f;
5006
5007 /* If an identity-zero op is commutative, check whether there
5008 would be a match if we swapped the operands. */
5009 else if ((GET_CODE (t) == PLUS || GET_CODE (t) == IOR
5010 || GET_CODE (t) == XOR)
5011 && rtx_equal_p (XEXP (t, 1), f))
5012 c1 = XEXP (t, 0), op = GET_CODE (t), z = f;
5013 else if (GET_CODE (t) == SIGN_EXTEND
5014 && (GET_CODE (XEXP (t, 0)) == PLUS
5015 || GET_CODE (XEXP (t, 0)) == MINUS
5016 || GET_CODE (XEXP (t, 0)) == IOR
5017 || GET_CODE (XEXP (t, 0)) == XOR
5018 || GET_CODE (XEXP (t, 0)) == ASHIFT
5019 || GET_CODE (XEXP (t, 0)) == LSHIFTRT
5020 || GET_CODE (XEXP (t, 0)) == ASHIFTRT)
5021 && GET_CODE (XEXP (XEXP (t, 0), 0)) == SUBREG
5022 && subreg_lowpart_p (XEXP (XEXP (t, 0), 0))
5023 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 0)), f)
5024 && (num_sign_bit_copies (f, GET_MODE (f))
5025 > (unsigned int)
5026 (GET_MODE_BITSIZE (mode)
5027 - GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (t, 0), 0))))))
5028 {
5029 c1 = XEXP (XEXP (t, 0), 1); z = f; op = GET_CODE (XEXP (t, 0));
5030 extend_op = SIGN_EXTEND;
5031 m = GET_MODE (XEXP (t, 0));
5032 }
5033 else if (GET_CODE (t) == SIGN_EXTEND
5034 && (GET_CODE (XEXP (t, 0)) == PLUS
5035 || GET_CODE (XEXP (t, 0)) == IOR
5036 || GET_CODE (XEXP (t, 0)) == XOR)
5037 && GET_CODE (XEXP (XEXP (t, 0), 1)) == SUBREG
5038 && subreg_lowpart_p (XEXP (XEXP (t, 0), 1))
5039 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 1)), f)
5040 && (num_sign_bit_copies (f, GET_MODE (f))
5041 > (unsigned int)
5042 (GET_MODE_BITSIZE (mode)
5043 - GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (t, 0), 1))))))
5044 {
5045 c1 = XEXP (XEXP (t, 0), 0); z = f; op = GET_CODE (XEXP (t, 0));
5046 extend_op = SIGN_EXTEND;
5047 m = GET_MODE (XEXP (t, 0));
5048 }
5049 else if (GET_CODE (t) == ZERO_EXTEND
5050 && (GET_CODE (XEXP (t, 0)) == PLUS
5051 || GET_CODE (XEXP (t, 0)) == MINUS
5052 || GET_CODE (XEXP (t, 0)) == IOR
5053 || GET_CODE (XEXP (t, 0)) == XOR
5054 || GET_CODE (XEXP (t, 0)) == ASHIFT
5055 || GET_CODE (XEXP (t, 0)) == LSHIFTRT
5056 || GET_CODE (XEXP (t, 0)) == ASHIFTRT)
5057 && GET_CODE (XEXP (XEXP (t, 0), 0)) == SUBREG
5058 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5059 && subreg_lowpart_p (XEXP (XEXP (t, 0), 0))
5060 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 0)), f)
5061 && ((nonzero_bits (f, GET_MODE (f))
5062 & ~GET_MODE_MASK (GET_MODE (XEXP (XEXP (t, 0), 0))))
5063 == 0))
5064 {
5065 c1 = XEXP (XEXP (t, 0), 1); z = f; op = GET_CODE (XEXP (t, 0));
5066 extend_op = ZERO_EXTEND;
5067 m = GET_MODE (XEXP (t, 0));
5068 }
5069 else if (GET_CODE (t) == ZERO_EXTEND
5070 && (GET_CODE (XEXP (t, 0)) == PLUS
5071 || GET_CODE (XEXP (t, 0)) == IOR
5072 || GET_CODE (XEXP (t, 0)) == XOR)
5073 && GET_CODE (XEXP (XEXP (t, 0), 1)) == SUBREG
5074 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5075 && subreg_lowpart_p (XEXP (XEXP (t, 0), 1))
5076 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 1)), f)
5077 && ((nonzero_bits (f, GET_MODE (f))
5078 & ~GET_MODE_MASK (GET_MODE (XEXP (XEXP (t, 0), 1))))
5079 == 0))
5080 {
5081 c1 = XEXP (XEXP (t, 0), 0); z = f; op = GET_CODE (XEXP (t, 0));
5082 extend_op = ZERO_EXTEND;
5083 m = GET_MODE (XEXP (t, 0));
5084 }
5085
5086 if (z)
5087 {
5088 temp = subst (simplify_gen_relational (true_code, m, VOIDmode,
5089 cond_op0, cond_op1),
5090 pc_rtx, pc_rtx, 0, 0);
5091 temp = simplify_gen_binary (MULT, m, temp,
5092 simplify_gen_binary (MULT, m, c1,
5093 const_true_rtx));
5094 temp = subst (temp, pc_rtx, pc_rtx, 0, 0);
5095 temp = simplify_gen_binary (op, m, gen_lowpart (m, z), temp);
5096
5097 if (extend_op != UNKNOWN)
5098 temp = simplify_gen_unary (extend_op, mode, temp, m);
5099
5100 return temp;
5101 }
5102 }
5103
5104 /* If we have (if_then_else (ne A 0) C1 0) and either A is known to be 0 or
5105 1 and C1 is a single bit or A is known to be 0 or -1 and C1 is the
5106 negation of a single bit, we can convert this operation to a shift. We
5107 can actually do this more generally, but it doesn't seem worth it. */
5108
5109 if (true_code == NE && XEXP (cond, 1) == const0_rtx
5110 && false_rtx == const0_rtx && GET_CODE (true_rtx) == CONST_INT
5111 && ((1 == nonzero_bits (XEXP (cond, 0), mode)
5112 && (i = exact_log2 (INTVAL (true_rtx))) >= 0)
5113 || ((num_sign_bit_copies (XEXP (cond, 0), mode)
5114 == GET_MODE_BITSIZE (mode))
5115 && (i = exact_log2 (-INTVAL (true_rtx))) >= 0)))
5116 return
5117 simplify_shift_const (NULL_RTX, ASHIFT, mode,
5118 gen_lowpart (mode, XEXP (cond, 0)), i);
5119
5120 /* (IF_THEN_ELSE (NE REG 0) (0) (8)) is REG for nonzero_bits (REG) == 8. */
5121 if (true_code == NE && XEXP (cond, 1) == const0_rtx
5122 && false_rtx == const0_rtx && GET_CODE (true_rtx) == CONST_INT
5123 && GET_MODE (XEXP (cond, 0)) == mode
5124 && (INTVAL (true_rtx) & GET_MODE_MASK (mode))
5125 == nonzero_bits (XEXP (cond, 0), mode)
5126 && (i = exact_log2 (INTVAL (true_rtx) & GET_MODE_MASK (mode))) >= 0)
5127 return XEXP (cond, 0);
5128
5129 return x;
5130 }
5131 \f
5132 /* Simplify X, a SET expression. Return the new expression. */
5133
5134 static rtx
5135 simplify_set (rtx x)
5136 {
5137 rtx src = SET_SRC (x);
5138 rtx dest = SET_DEST (x);
5139 enum machine_mode mode
5140 = GET_MODE (src) != VOIDmode ? GET_MODE (src) : GET_MODE (dest);
5141 rtx other_insn;
5142 rtx *cc_use;
5143
5144 /* (set (pc) (return)) gets written as (return). */
5145 if (GET_CODE (dest) == PC && GET_CODE (src) == RETURN)
5146 return src;
5147
5148 /* Now that we know for sure which bits of SRC we are using, see if we can
5149 simplify the expression for the object knowing that we only need the
5150 low-order bits. */
5151
5152 if (GET_MODE_CLASS (mode) == MODE_INT
5153 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
5154 {
5155 src = force_to_mode (src, mode, ~(HOST_WIDE_INT) 0, 0);
5156 SUBST (SET_SRC (x), src);
5157 }
5158
5159 /* If we are setting CC0 or if the source is a COMPARE, look for the use of
5160 the comparison result and try to simplify it unless we already have used
5161 undobuf.other_insn. */
5162 if ((GET_MODE_CLASS (mode) == MODE_CC
5163 || GET_CODE (src) == COMPARE
5164 || CC0_P (dest))
5165 && (cc_use = find_single_use (dest, subst_insn, &other_insn)) != 0
5166 && (undobuf.other_insn == 0 || other_insn == undobuf.other_insn)
5167 && COMPARISON_P (*cc_use)
5168 && rtx_equal_p (XEXP (*cc_use, 0), dest))
5169 {
5170 enum rtx_code old_code = GET_CODE (*cc_use);
5171 enum rtx_code new_code;
5172 rtx op0, op1, tmp;
5173 int other_changed = 0;
5174 enum machine_mode compare_mode = GET_MODE (dest);
5175
5176 if (GET_CODE (src) == COMPARE)
5177 op0 = XEXP (src, 0), op1 = XEXP (src, 1);
5178 else
5179 op0 = src, op1 = CONST0_RTX (GET_MODE (src));
5180
5181 tmp = simplify_relational_operation (old_code, compare_mode, VOIDmode,
5182 op0, op1);
5183 if (!tmp)
5184 new_code = old_code;
5185 else if (!CONSTANT_P (tmp))
5186 {
5187 new_code = GET_CODE (tmp);
5188 op0 = XEXP (tmp, 0);
5189 op1 = XEXP (tmp, 1);
5190 }
5191 else
5192 {
5193 rtx pat = PATTERN (other_insn);
5194 undobuf.other_insn = other_insn;
5195 SUBST (*cc_use, tmp);
5196
5197 /* Attempt to simplify CC user. */
5198 if (GET_CODE (pat) == SET)
5199 {
5200 rtx new = simplify_rtx (SET_SRC (pat));
5201 if (new != NULL_RTX)
5202 SUBST (SET_SRC (pat), new);
5203 }
5204
5205 /* Convert X into a no-op move. */
5206 SUBST (SET_DEST (x), pc_rtx);
5207 SUBST (SET_SRC (x), pc_rtx);
5208 return x;
5209 }
5210
5211 /* Simplify our comparison, if possible. */
5212 new_code = simplify_comparison (new_code, &op0, &op1);
5213
5214 #ifdef SELECT_CC_MODE
5215 /* If this machine has CC modes other than CCmode, check to see if we
5216 need to use a different CC mode here. */
5217 if (GET_MODE_CLASS (GET_MODE (op0)) == MODE_CC)
5218 compare_mode = GET_MODE (op0);
5219 else
5220 compare_mode = SELECT_CC_MODE (new_code, op0, op1);
5221
5222 #ifndef HAVE_cc0
5223 /* If the mode changed, we have to change SET_DEST, the mode in the
5224 compare, and the mode in the place SET_DEST is used. If SET_DEST is
5225 a hard register, just build new versions with the proper mode. If it
5226 is a pseudo, we lose unless it is only time we set the pseudo, in
5227 which case we can safely change its mode. */
5228 if (compare_mode != GET_MODE (dest))
5229 {
5230 if (can_change_dest_mode (dest, 0, compare_mode))
5231 {
5232 unsigned int regno = REGNO (dest);
5233 rtx new_dest;
5234
5235 if (regno < FIRST_PSEUDO_REGISTER)
5236 new_dest = gen_rtx_REG (compare_mode, regno);
5237 else
5238 {
5239 SUBST_MODE (regno_reg_rtx[regno], compare_mode);
5240 new_dest = regno_reg_rtx[regno];
5241 }
5242
5243 SUBST (SET_DEST (x), new_dest);
5244 SUBST (XEXP (*cc_use, 0), new_dest);
5245 other_changed = 1;
5246
5247 dest = new_dest;
5248 }
5249 }
5250 #endif /* cc0 */
5251 #endif /* SELECT_CC_MODE */
5252
5253 /* If the code changed, we have to build a new comparison in
5254 undobuf.other_insn. */
5255 if (new_code != old_code)
5256 {
5257 int other_changed_previously = other_changed;
5258 unsigned HOST_WIDE_INT mask;
5259
5260 SUBST (*cc_use, gen_rtx_fmt_ee (new_code, GET_MODE (*cc_use),
5261 dest, const0_rtx));
5262 other_changed = 1;
5263
5264 /* If the only change we made was to change an EQ into an NE or
5265 vice versa, OP0 has only one bit that might be nonzero, and OP1
5266 is zero, check if changing the user of the condition code will
5267 produce a valid insn. If it won't, we can keep the original code
5268 in that insn by surrounding our operation with an XOR. */
5269
5270 if (((old_code == NE && new_code == EQ)
5271 || (old_code == EQ && new_code == NE))
5272 && ! other_changed_previously && op1 == const0_rtx
5273 && GET_MODE_BITSIZE (GET_MODE (op0)) <= HOST_BITS_PER_WIDE_INT
5274 && exact_log2 (mask = nonzero_bits (op0, GET_MODE (op0))) >= 0)
5275 {
5276 rtx pat = PATTERN (other_insn), note = 0;
5277
5278 if ((recog_for_combine (&pat, other_insn, &note) < 0
5279 && ! check_asm_operands (pat)))
5280 {
5281 PUT_CODE (*cc_use, old_code);
5282 other_changed = 0;
5283
5284 op0 = simplify_gen_binary (XOR, GET_MODE (op0),
5285 op0, GEN_INT (mask));
5286 }
5287 }
5288 }
5289
5290 if (other_changed)
5291 undobuf.other_insn = other_insn;
5292
5293 #ifdef HAVE_cc0
5294 /* If we are now comparing against zero, change our source if
5295 needed. If we do not use cc0, we always have a COMPARE. */
5296 if (op1 == const0_rtx && dest == cc0_rtx)
5297 {
5298 SUBST (SET_SRC (x), op0);
5299 src = op0;
5300 }
5301 else
5302 #endif
5303
5304 /* Otherwise, if we didn't previously have a COMPARE in the
5305 correct mode, we need one. */
5306 if (GET_CODE (src) != COMPARE || GET_MODE (src) != compare_mode)
5307 {
5308 SUBST (SET_SRC (x), gen_rtx_COMPARE (compare_mode, op0, op1));
5309 src = SET_SRC (x);
5310 }
5311 else if (GET_MODE (op0) == compare_mode && op1 == const0_rtx)
5312 {
5313 SUBST(SET_SRC (x), op0);
5314 src = SET_SRC (x);
5315 }
5316 else
5317 {
5318 /* Otherwise, update the COMPARE if needed. */
5319 SUBST (XEXP (src, 0), op0);
5320 SUBST (XEXP (src, 1), op1);
5321 }
5322 }
5323 else
5324 {
5325 /* Get SET_SRC in a form where we have placed back any
5326 compound expressions. Then do the checks below. */
5327 src = make_compound_operation (src, SET);
5328 SUBST (SET_SRC (x), src);
5329 }
5330
5331 /* If we have (set x (subreg:m1 (op:m2 ...) 0)) with OP being some operation,
5332 and X being a REG or (subreg (reg)), we may be able to convert this to
5333 (set (subreg:m2 x) (op)).
5334
5335 We can always do this if M1 is narrower than M2 because that means that
5336 we only care about the low bits of the result.
5337
5338 However, on machines without WORD_REGISTER_OPERATIONS defined, we cannot
5339 perform a narrower operation than requested since the high-order bits will
5340 be undefined. On machine where it is defined, this transformation is safe
5341 as long as M1 and M2 have the same number of words. */
5342
5343 if (GET_CODE (src) == SUBREG && subreg_lowpart_p (src)
5344 && !OBJECT_P (SUBREG_REG (src))
5345 && (((GET_MODE_SIZE (GET_MODE (src)) + (UNITS_PER_WORD - 1))
5346 / UNITS_PER_WORD)
5347 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (src)))
5348 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))
5349 #ifndef WORD_REGISTER_OPERATIONS
5350 && (GET_MODE_SIZE (GET_MODE (src))
5351 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (src))))
5352 #endif
5353 #ifdef CANNOT_CHANGE_MODE_CLASS
5354 && ! (REG_P (dest) && REGNO (dest) < FIRST_PSEUDO_REGISTER
5355 && REG_CANNOT_CHANGE_MODE_P (REGNO (dest),
5356 GET_MODE (SUBREG_REG (src)),
5357 GET_MODE (src)))
5358 #endif
5359 && (REG_P (dest)
5360 || (GET_CODE (dest) == SUBREG
5361 && REG_P (SUBREG_REG (dest)))))
5362 {
5363 SUBST (SET_DEST (x),
5364 gen_lowpart (GET_MODE (SUBREG_REG (src)),
5365 dest));
5366 SUBST (SET_SRC (x), SUBREG_REG (src));
5367
5368 src = SET_SRC (x), dest = SET_DEST (x);
5369 }
5370
5371 #ifdef HAVE_cc0
5372 /* If we have (set (cc0) (subreg ...)), we try to remove the subreg
5373 in SRC. */
5374 if (dest == cc0_rtx
5375 && GET_CODE (src) == SUBREG
5376 && subreg_lowpart_p (src)
5377 && (GET_MODE_BITSIZE (GET_MODE (src))
5378 < GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (src)))))
5379 {
5380 rtx inner = SUBREG_REG (src);
5381 enum machine_mode inner_mode = GET_MODE (inner);
5382
5383 /* Here we make sure that we don't have a sign bit on. */
5384 if (GET_MODE_BITSIZE (inner_mode) <= HOST_BITS_PER_WIDE_INT
5385 && (nonzero_bits (inner, inner_mode)
5386 < ((unsigned HOST_WIDE_INT) 1
5387 << (GET_MODE_BITSIZE (GET_MODE (src)) - 1))))
5388 {
5389 SUBST (SET_SRC (x), inner);
5390 src = SET_SRC (x);
5391 }
5392 }
5393 #endif
5394
5395 #ifdef LOAD_EXTEND_OP
5396 /* If we have (set FOO (subreg:M (mem:N BAR) 0)) with M wider than N, this
5397 would require a paradoxical subreg. Replace the subreg with a
5398 zero_extend to avoid the reload that would otherwise be required. */
5399
5400 if (GET_CODE (src) == SUBREG && subreg_lowpart_p (src)
5401 && LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (src))) != UNKNOWN
5402 && SUBREG_BYTE (src) == 0
5403 && (GET_MODE_SIZE (GET_MODE (src))
5404 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (src))))
5405 && MEM_P (SUBREG_REG (src)))
5406 {
5407 SUBST (SET_SRC (x),
5408 gen_rtx_fmt_e (LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (src))),
5409 GET_MODE (src), SUBREG_REG (src)));
5410
5411 src = SET_SRC (x);
5412 }
5413 #endif
5414
5415 /* If we don't have a conditional move, SET_SRC is an IF_THEN_ELSE, and we
5416 are comparing an item known to be 0 or -1 against 0, use a logical
5417 operation instead. Check for one of the arms being an IOR of the other
5418 arm with some value. We compute three terms to be IOR'ed together. In
5419 practice, at most two will be nonzero. Then we do the IOR's. */
5420
5421 if (GET_CODE (dest) != PC
5422 && GET_CODE (src) == IF_THEN_ELSE
5423 && GET_MODE_CLASS (GET_MODE (src)) == MODE_INT
5424 && (GET_CODE (XEXP (src, 0)) == EQ || GET_CODE (XEXP (src, 0)) == NE)
5425 && XEXP (XEXP (src, 0), 1) == const0_rtx
5426 && GET_MODE (src) == GET_MODE (XEXP (XEXP (src, 0), 0))
5427 #ifdef HAVE_conditional_move
5428 && ! can_conditionally_move_p (GET_MODE (src))
5429 #endif
5430 && (num_sign_bit_copies (XEXP (XEXP (src, 0), 0),
5431 GET_MODE (XEXP (XEXP (src, 0), 0)))
5432 == GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (src, 0), 0))))
5433 && ! side_effects_p (src))
5434 {
5435 rtx true_rtx = (GET_CODE (XEXP (src, 0)) == NE
5436 ? XEXP (src, 1) : XEXP (src, 2));
5437 rtx false_rtx = (GET_CODE (XEXP (src, 0)) == NE
5438 ? XEXP (src, 2) : XEXP (src, 1));
5439 rtx term1 = const0_rtx, term2, term3;
5440
5441 if (GET_CODE (true_rtx) == IOR
5442 && rtx_equal_p (XEXP (true_rtx, 0), false_rtx))
5443 term1 = false_rtx, true_rtx = XEXP (true_rtx, 1), false_rtx = const0_rtx;
5444 else if (GET_CODE (true_rtx) == IOR
5445 && rtx_equal_p (XEXP (true_rtx, 1), false_rtx))
5446 term1 = false_rtx, true_rtx = XEXP (true_rtx, 0), false_rtx = const0_rtx;
5447 else if (GET_CODE (false_rtx) == IOR
5448 && rtx_equal_p (XEXP (false_rtx, 0), true_rtx))
5449 term1 = true_rtx, false_rtx = XEXP (false_rtx, 1), true_rtx = const0_rtx;
5450 else if (GET_CODE (false_rtx) == IOR
5451 && rtx_equal_p (XEXP (false_rtx, 1), true_rtx))
5452 term1 = true_rtx, false_rtx = XEXP (false_rtx, 0), true_rtx = const0_rtx;
5453
5454 term2 = simplify_gen_binary (AND, GET_MODE (src),
5455 XEXP (XEXP (src, 0), 0), true_rtx);
5456 term3 = simplify_gen_binary (AND, GET_MODE (src),
5457 simplify_gen_unary (NOT, GET_MODE (src),
5458 XEXP (XEXP (src, 0), 0),
5459 GET_MODE (src)),
5460 false_rtx);
5461
5462 SUBST (SET_SRC (x),
5463 simplify_gen_binary (IOR, GET_MODE (src),
5464 simplify_gen_binary (IOR, GET_MODE (src),
5465 term1, term2),
5466 term3));
5467
5468 src = SET_SRC (x);
5469 }
5470
5471 /* If either SRC or DEST is a CLOBBER of (const_int 0), make this
5472 whole thing fail. */
5473 if (GET_CODE (src) == CLOBBER && XEXP (src, 0) == const0_rtx)
5474 return src;
5475 else if (GET_CODE (dest) == CLOBBER && XEXP (dest, 0) == const0_rtx)
5476 return dest;
5477 else
5478 /* Convert this into a field assignment operation, if possible. */
5479 return make_field_assignment (x);
5480 }
5481 \f
5482 /* Simplify, X, and AND, IOR, or XOR operation, and return the simplified
5483 result. */
5484
5485 static rtx
5486 simplify_logical (rtx x)
5487 {
5488 enum machine_mode mode = GET_MODE (x);
5489 rtx op0 = XEXP (x, 0);
5490 rtx op1 = XEXP (x, 1);
5491
5492 switch (GET_CODE (x))
5493 {
5494 case AND:
5495 /* We can call simplify_and_const_int only if we don't lose
5496 any (sign) bits when converting INTVAL (op1) to
5497 "unsigned HOST_WIDE_INT". */
5498 if (GET_CODE (op1) == CONST_INT
5499 && (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5500 || INTVAL (op1) > 0))
5501 {
5502 x = simplify_and_const_int (x, mode, op0, INTVAL (op1));
5503 if (GET_CODE (x) != AND)
5504 return x;
5505
5506 op0 = XEXP (x, 0);
5507 op1 = XEXP (x, 1);
5508 }
5509
5510 /* If we have any of (and (ior A B) C) or (and (xor A B) C),
5511 apply the distributive law and then the inverse distributive
5512 law to see if things simplify. */
5513 if (GET_CODE (op0) == IOR || GET_CODE (op0) == XOR)
5514 {
5515 rtx result = distribute_and_simplify_rtx (x, 0);
5516 if (result)
5517 return result;
5518 }
5519 if (GET_CODE (op1) == IOR || GET_CODE (op1) == XOR)
5520 {
5521 rtx result = distribute_and_simplify_rtx (x, 1);
5522 if (result)
5523 return result;
5524 }
5525 break;
5526
5527 case IOR:
5528 /* If we have (ior (and A B) C), apply the distributive law and then
5529 the inverse distributive law to see if things simplify. */
5530
5531 if (GET_CODE (op0) == AND)
5532 {
5533 rtx result = distribute_and_simplify_rtx (x, 0);
5534 if (result)
5535 return result;
5536 }
5537
5538 if (GET_CODE (op1) == AND)
5539 {
5540 rtx result = distribute_and_simplify_rtx (x, 1);
5541 if (result)
5542 return result;
5543 }
5544 break;
5545
5546 default:
5547 gcc_unreachable ();
5548 }
5549
5550 return x;
5551 }
5552 \f
5553 /* We consider ZERO_EXTRACT, SIGN_EXTRACT, and SIGN_EXTEND as "compound
5554 operations" because they can be replaced with two more basic operations.
5555 ZERO_EXTEND is also considered "compound" because it can be replaced with
5556 an AND operation, which is simpler, though only one operation.
5557
5558 The function expand_compound_operation is called with an rtx expression
5559 and will convert it to the appropriate shifts and AND operations,
5560 simplifying at each stage.
5561
5562 The function make_compound_operation is called to convert an expression
5563 consisting of shifts and ANDs into the equivalent compound expression.
5564 It is the inverse of this function, loosely speaking. */
5565
5566 static rtx
5567 expand_compound_operation (rtx x)
5568 {
5569 unsigned HOST_WIDE_INT pos = 0, len;
5570 int unsignedp = 0;
5571 unsigned int modewidth;
5572 rtx tem;
5573
5574 switch (GET_CODE (x))
5575 {
5576 case ZERO_EXTEND:
5577 unsignedp = 1;
5578 case SIGN_EXTEND:
5579 /* We can't necessarily use a const_int for a multiword mode;
5580 it depends on implicitly extending the value.
5581 Since we don't know the right way to extend it,
5582 we can't tell whether the implicit way is right.
5583
5584 Even for a mode that is no wider than a const_int,
5585 we can't win, because we need to sign extend one of its bits through
5586 the rest of it, and we don't know which bit. */
5587 if (GET_CODE (XEXP (x, 0)) == CONST_INT)
5588 return x;
5589
5590 /* Return if (subreg:MODE FROM 0) is not a safe replacement for
5591 (zero_extend:MODE FROM) or (sign_extend:MODE FROM). It is for any MEM
5592 because (SUBREG (MEM...)) is guaranteed to cause the MEM to be
5593 reloaded. If not for that, MEM's would very rarely be safe.
5594
5595 Reject MODEs bigger than a word, because we might not be able
5596 to reference a two-register group starting with an arbitrary register
5597 (and currently gen_lowpart might crash for a SUBREG). */
5598
5599 if (GET_MODE_SIZE (GET_MODE (XEXP (x, 0))) > UNITS_PER_WORD)
5600 return x;
5601
5602 /* Reject MODEs that aren't scalar integers because turning vector
5603 or complex modes into shifts causes problems. */
5604
5605 if (! SCALAR_INT_MODE_P (GET_MODE (XEXP (x, 0))))
5606 return x;
5607
5608 len = GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)));
5609 /* If the inner object has VOIDmode (the only way this can happen
5610 is if it is an ASM_OPERANDS), we can't do anything since we don't
5611 know how much masking to do. */
5612 if (len == 0)
5613 return x;
5614
5615 break;
5616
5617 case ZERO_EXTRACT:
5618 unsignedp = 1;
5619
5620 /* ... fall through ... */
5621
5622 case SIGN_EXTRACT:
5623 /* If the operand is a CLOBBER, just return it. */
5624 if (GET_CODE (XEXP (x, 0)) == CLOBBER)
5625 return XEXP (x, 0);
5626
5627 if (GET_CODE (XEXP (x, 1)) != CONST_INT
5628 || GET_CODE (XEXP (x, 2)) != CONST_INT
5629 || GET_MODE (XEXP (x, 0)) == VOIDmode)
5630 return x;
5631
5632 /* Reject MODEs that aren't scalar integers because turning vector
5633 or complex modes into shifts causes problems. */
5634
5635 if (! SCALAR_INT_MODE_P (GET_MODE (XEXP (x, 0))))
5636 return x;
5637
5638 len = INTVAL (XEXP (x, 1));
5639 pos = INTVAL (XEXP (x, 2));
5640
5641 /* This should stay within the object being extracted, fail otherwise. */
5642 if (len + pos > GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0))))
5643 return x;
5644
5645 if (BITS_BIG_ENDIAN)
5646 pos = GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0))) - len - pos;
5647
5648 break;
5649
5650 default:
5651 return x;
5652 }
5653 /* Convert sign extension to zero extension, if we know that the high
5654 bit is not set, as this is easier to optimize. It will be converted
5655 back to cheaper alternative in make_extraction. */
5656 if (GET_CODE (x) == SIGN_EXTEND
5657 && (GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
5658 && ((nonzero_bits (XEXP (x, 0), GET_MODE (XEXP (x, 0)))
5659 & ~(((unsigned HOST_WIDE_INT)
5660 GET_MODE_MASK (GET_MODE (XEXP (x, 0))))
5661 >> 1))
5662 == 0)))
5663 {
5664 rtx temp = gen_rtx_ZERO_EXTEND (GET_MODE (x), XEXP (x, 0));
5665 rtx temp2 = expand_compound_operation (temp);
5666
5667 /* Make sure this is a profitable operation. */
5668 if (rtx_cost (x, SET) > rtx_cost (temp2, SET))
5669 return temp2;
5670 else if (rtx_cost (x, SET) > rtx_cost (temp, SET))
5671 return temp;
5672 else
5673 return x;
5674 }
5675
5676 /* We can optimize some special cases of ZERO_EXTEND. */
5677 if (GET_CODE (x) == ZERO_EXTEND)
5678 {
5679 /* (zero_extend:DI (truncate:SI foo:DI)) is just foo:DI if we
5680 know that the last value didn't have any inappropriate bits
5681 set. */
5682 if (GET_CODE (XEXP (x, 0)) == TRUNCATE
5683 && GET_MODE (XEXP (XEXP (x, 0), 0)) == GET_MODE (x)
5684 && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
5685 && (nonzero_bits (XEXP (XEXP (x, 0), 0), GET_MODE (x))
5686 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
5687 return XEXP (XEXP (x, 0), 0);
5688
5689 /* Likewise for (zero_extend:DI (subreg:SI foo:DI 0)). */
5690 if (GET_CODE (XEXP (x, 0)) == SUBREG
5691 && GET_MODE (SUBREG_REG (XEXP (x, 0))) == GET_MODE (x)
5692 && subreg_lowpart_p (XEXP (x, 0))
5693 && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
5694 && (nonzero_bits (SUBREG_REG (XEXP (x, 0)), GET_MODE (x))
5695 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
5696 return SUBREG_REG (XEXP (x, 0));
5697
5698 /* (zero_extend:DI (truncate:SI foo:DI)) is just foo:DI when foo
5699 is a comparison and STORE_FLAG_VALUE permits. This is like
5700 the first case, but it works even when GET_MODE (x) is larger
5701 than HOST_WIDE_INT. */
5702 if (GET_CODE (XEXP (x, 0)) == TRUNCATE
5703 && GET_MODE (XEXP (XEXP (x, 0), 0)) == GET_MODE (x)
5704 && COMPARISON_P (XEXP (XEXP (x, 0), 0))
5705 && (GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))
5706 <= HOST_BITS_PER_WIDE_INT)
5707 && ((HOST_WIDE_INT) STORE_FLAG_VALUE
5708 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
5709 return XEXP (XEXP (x, 0), 0);
5710
5711 /* Likewise for (zero_extend:DI (subreg:SI foo:DI 0)). */
5712 if (GET_CODE (XEXP (x, 0)) == SUBREG
5713 && GET_MODE (SUBREG_REG (XEXP (x, 0))) == GET_MODE (x)
5714 && subreg_lowpart_p (XEXP (x, 0))
5715 && COMPARISON_P (SUBREG_REG (XEXP (x, 0)))
5716 && (GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))
5717 <= HOST_BITS_PER_WIDE_INT)
5718 && ((HOST_WIDE_INT) STORE_FLAG_VALUE
5719 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
5720 return SUBREG_REG (XEXP (x, 0));
5721
5722 }
5723
5724 /* If we reach here, we want to return a pair of shifts. The inner
5725 shift is a left shift of BITSIZE - POS - LEN bits. The outer
5726 shift is a right shift of BITSIZE - LEN bits. It is arithmetic or
5727 logical depending on the value of UNSIGNEDP.
5728
5729 If this was a ZERO_EXTEND or ZERO_EXTRACT, this pair of shifts will be
5730 converted into an AND of a shift.
5731
5732 We must check for the case where the left shift would have a negative
5733 count. This can happen in a case like (x >> 31) & 255 on machines
5734 that can't shift by a constant. On those machines, we would first
5735 combine the shift with the AND to produce a variable-position
5736 extraction. Then the constant of 31 would be substituted in to produce
5737 a such a position. */
5738
5739 modewidth = GET_MODE_BITSIZE (GET_MODE (x));
5740 if (modewidth + len >= pos)
5741 tem = simplify_shift_const (NULL_RTX, unsignedp ? LSHIFTRT : ASHIFTRT,
5742 GET_MODE (x),
5743 simplify_shift_const (NULL_RTX, ASHIFT,
5744 GET_MODE (x),
5745 XEXP (x, 0),
5746 modewidth - pos - len),
5747 modewidth - len);
5748
5749 else if (unsignedp && len < HOST_BITS_PER_WIDE_INT)
5750 tem = simplify_and_const_int (NULL_RTX, GET_MODE (x),
5751 simplify_shift_const (NULL_RTX, LSHIFTRT,
5752 GET_MODE (x),
5753 XEXP (x, 0), pos),
5754 ((HOST_WIDE_INT) 1 << len) - 1);
5755 else
5756 /* Any other cases we can't handle. */
5757 return x;
5758
5759 /* If we couldn't do this for some reason, return the original
5760 expression. */
5761 if (GET_CODE (tem) == CLOBBER)
5762 return x;
5763
5764 return tem;
5765 }
5766 \f
5767 /* X is a SET which contains an assignment of one object into
5768 a part of another (such as a bit-field assignment, STRICT_LOW_PART,
5769 or certain SUBREGS). If possible, convert it into a series of
5770 logical operations.
5771
5772 We half-heartedly support variable positions, but do not at all
5773 support variable lengths. */
5774
5775 static rtx
5776 expand_field_assignment (rtx x)
5777 {
5778 rtx inner;
5779 rtx pos; /* Always counts from low bit. */
5780 int len;
5781 rtx mask, cleared, masked;
5782 enum machine_mode compute_mode;
5783
5784 /* Loop until we find something we can't simplify. */
5785 while (1)
5786 {
5787 if (GET_CODE (SET_DEST (x)) == STRICT_LOW_PART
5788 && GET_CODE (XEXP (SET_DEST (x), 0)) == SUBREG)
5789 {
5790 inner = SUBREG_REG (XEXP (SET_DEST (x), 0));
5791 len = GET_MODE_BITSIZE (GET_MODE (XEXP (SET_DEST (x), 0)));
5792 pos = GEN_INT (subreg_lsb (XEXP (SET_DEST (x), 0)));
5793 }
5794 else if (GET_CODE (SET_DEST (x)) == ZERO_EXTRACT
5795 && GET_CODE (XEXP (SET_DEST (x), 1)) == CONST_INT)
5796 {
5797 inner = XEXP (SET_DEST (x), 0);
5798 len = INTVAL (XEXP (SET_DEST (x), 1));
5799 pos = XEXP (SET_DEST (x), 2);
5800
5801 /* A constant position should stay within the width of INNER. */
5802 if (GET_CODE (pos) == CONST_INT
5803 && INTVAL (pos) + len > GET_MODE_BITSIZE (GET_MODE (inner)))
5804 break;
5805
5806 if (BITS_BIG_ENDIAN)
5807 {
5808 if (GET_CODE (pos) == CONST_INT)
5809 pos = GEN_INT (GET_MODE_BITSIZE (GET_MODE (inner)) - len
5810 - INTVAL (pos));
5811 else if (GET_CODE (pos) == MINUS
5812 && GET_CODE (XEXP (pos, 1)) == CONST_INT
5813 && (INTVAL (XEXP (pos, 1))
5814 == GET_MODE_BITSIZE (GET_MODE (inner)) - len))
5815 /* If position is ADJUST - X, new position is X. */
5816 pos = XEXP (pos, 0);
5817 else
5818 pos = simplify_gen_binary (MINUS, GET_MODE (pos),
5819 GEN_INT (GET_MODE_BITSIZE (
5820 GET_MODE (inner))
5821 - len),
5822 pos);
5823 }
5824 }
5825
5826 /* A SUBREG between two modes that occupy the same numbers of words
5827 can be done by moving the SUBREG to the source. */
5828 else if (GET_CODE (SET_DEST (x)) == SUBREG
5829 /* We need SUBREGs to compute nonzero_bits properly. */
5830 && nonzero_sign_valid
5831 && (((GET_MODE_SIZE (GET_MODE (SET_DEST (x)))
5832 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
5833 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (x))))
5834 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)))
5835 {
5836 x = gen_rtx_SET (VOIDmode, SUBREG_REG (SET_DEST (x)),
5837 gen_lowpart
5838 (GET_MODE (SUBREG_REG (SET_DEST (x))),
5839 SET_SRC (x)));
5840 continue;
5841 }
5842 else
5843 break;
5844
5845 while (GET_CODE (inner) == SUBREG && subreg_lowpart_p (inner))
5846 inner = SUBREG_REG (inner);
5847
5848 compute_mode = GET_MODE (inner);
5849
5850 /* Don't attempt bitwise arithmetic on non scalar integer modes. */
5851 if (! SCALAR_INT_MODE_P (compute_mode))
5852 {
5853 enum machine_mode imode;
5854
5855 /* Don't do anything for vector or complex integral types. */
5856 if (! FLOAT_MODE_P (compute_mode))
5857 break;
5858
5859 /* Try to find an integral mode to pun with. */
5860 imode = mode_for_size (GET_MODE_BITSIZE (compute_mode), MODE_INT, 0);
5861 if (imode == BLKmode)
5862 break;
5863
5864 compute_mode = imode;
5865 inner = gen_lowpart (imode, inner);
5866 }
5867
5868 /* Compute a mask of LEN bits, if we can do this on the host machine. */
5869 if (len >= HOST_BITS_PER_WIDE_INT)
5870 break;
5871
5872 /* Now compute the equivalent expression. Make a copy of INNER
5873 for the SET_DEST in case it is a MEM into which we will substitute;
5874 we don't want shared RTL in that case. */
5875 mask = GEN_INT (((HOST_WIDE_INT) 1 << len) - 1);
5876 cleared = simplify_gen_binary (AND, compute_mode,
5877 simplify_gen_unary (NOT, compute_mode,
5878 simplify_gen_binary (ASHIFT,
5879 compute_mode,
5880 mask, pos),
5881 compute_mode),
5882 inner);
5883 masked = simplify_gen_binary (ASHIFT, compute_mode,
5884 simplify_gen_binary (
5885 AND, compute_mode,
5886 gen_lowpart (compute_mode, SET_SRC (x)),
5887 mask),
5888 pos);
5889
5890 x = gen_rtx_SET (VOIDmode, copy_rtx (inner),
5891 simplify_gen_binary (IOR, compute_mode,
5892 cleared, masked));
5893 }
5894
5895 return x;
5896 }
5897 \f
5898 /* Return an RTX for a reference to LEN bits of INNER. If POS_RTX is nonzero,
5899 it is an RTX that represents a variable starting position; otherwise,
5900 POS is the (constant) starting bit position (counted from the LSB).
5901
5902 UNSIGNEDP is nonzero for an unsigned reference and zero for a
5903 signed reference.
5904
5905 IN_DEST is nonzero if this is a reference in the destination of a
5906 SET. This is used when a ZERO_ or SIGN_EXTRACT isn't needed. If nonzero,
5907 a STRICT_LOW_PART will be used, if zero, ZERO_EXTEND or SIGN_EXTEND will
5908 be used.
5909
5910 IN_COMPARE is nonzero if we are in a COMPARE. This means that a
5911 ZERO_EXTRACT should be built even for bits starting at bit 0.
5912
5913 MODE is the desired mode of the result (if IN_DEST == 0).
5914
5915 The result is an RTX for the extraction or NULL_RTX if the target
5916 can't handle it. */
5917
5918 static rtx
5919 make_extraction (enum machine_mode mode, rtx inner, HOST_WIDE_INT pos,
5920 rtx pos_rtx, unsigned HOST_WIDE_INT len, int unsignedp,
5921 int in_dest, int in_compare)
5922 {
5923 /* This mode describes the size of the storage area
5924 to fetch the overall value from. Within that, we
5925 ignore the POS lowest bits, etc. */
5926 enum machine_mode is_mode = GET_MODE (inner);
5927 enum machine_mode inner_mode;
5928 enum machine_mode wanted_inner_mode;
5929 enum machine_mode wanted_inner_reg_mode = word_mode;
5930 enum machine_mode pos_mode = word_mode;
5931 enum machine_mode extraction_mode = word_mode;
5932 enum machine_mode tmode = mode_for_size (len, MODE_INT, 1);
5933 rtx new = 0;
5934 rtx orig_pos_rtx = pos_rtx;
5935 HOST_WIDE_INT orig_pos;
5936
5937 if (GET_CODE (inner) == SUBREG && subreg_lowpart_p (inner))
5938 {
5939 /* If going from (subreg:SI (mem:QI ...)) to (mem:QI ...),
5940 consider just the QI as the memory to extract from.
5941 The subreg adds or removes high bits; its mode is
5942 irrelevant to the meaning of this extraction,
5943 since POS and LEN count from the lsb. */
5944 if (MEM_P (SUBREG_REG (inner)))
5945 is_mode = GET_MODE (SUBREG_REG (inner));
5946 inner = SUBREG_REG (inner);
5947 }
5948 else if (GET_CODE (inner) == ASHIFT
5949 && GET_CODE (XEXP (inner, 1)) == CONST_INT
5950 && pos_rtx == 0 && pos == 0
5951 && len > (unsigned HOST_WIDE_INT) INTVAL (XEXP (inner, 1)))
5952 {
5953 /* We're extracting the least significant bits of an rtx
5954 (ashift X (const_int C)), where LEN > C. Extract the
5955 least significant (LEN - C) bits of X, giving an rtx
5956 whose mode is MODE, then shift it left C times. */
5957 new = make_extraction (mode, XEXP (inner, 0),
5958 0, 0, len - INTVAL (XEXP (inner, 1)),
5959 unsignedp, in_dest, in_compare);
5960 if (new != 0)
5961 return gen_rtx_ASHIFT (mode, new, XEXP (inner, 1));
5962 }
5963
5964 inner_mode = GET_MODE (inner);
5965
5966 if (pos_rtx && GET_CODE (pos_rtx) == CONST_INT)
5967 pos = INTVAL (pos_rtx), pos_rtx = 0;
5968
5969 /* See if this can be done without an extraction. We never can if the
5970 width of the field is not the same as that of some integer mode. For
5971 registers, we can only avoid the extraction if the position is at the
5972 low-order bit and this is either not in the destination or we have the
5973 appropriate STRICT_LOW_PART operation available.
5974
5975 For MEM, we can avoid an extract if the field starts on an appropriate
5976 boundary and we can change the mode of the memory reference. */
5977
5978 if (tmode != BLKmode
5979 && ((pos_rtx == 0 && (pos % BITS_PER_WORD) == 0
5980 && !MEM_P (inner)
5981 && (inner_mode == tmode
5982 || !REG_P (inner)
5983 || TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (tmode),
5984 GET_MODE_BITSIZE (inner_mode))
5985 || reg_truncated_to_mode (tmode, inner))
5986 && (! in_dest
5987 || (REG_P (inner)
5988 && have_insn_for (STRICT_LOW_PART, tmode))))
5989 || (MEM_P (inner) && pos_rtx == 0
5990 && (pos
5991 % (STRICT_ALIGNMENT ? GET_MODE_ALIGNMENT (tmode)
5992 : BITS_PER_UNIT)) == 0
5993 /* We can't do this if we are widening INNER_MODE (it
5994 may not be aligned, for one thing). */
5995 && GET_MODE_BITSIZE (inner_mode) >= GET_MODE_BITSIZE (tmode)
5996 && (inner_mode == tmode
5997 || (! mode_dependent_address_p (XEXP (inner, 0))
5998 && ! MEM_VOLATILE_P (inner))))))
5999 {
6000 /* If INNER is a MEM, make a new MEM that encompasses just the desired
6001 field. If the original and current mode are the same, we need not
6002 adjust the offset. Otherwise, we do if bytes big endian.
6003
6004 If INNER is not a MEM, get a piece consisting of just the field
6005 of interest (in this case POS % BITS_PER_WORD must be 0). */
6006
6007 if (MEM_P (inner))
6008 {
6009 HOST_WIDE_INT offset;
6010
6011 /* POS counts from lsb, but make OFFSET count in memory order. */
6012 if (BYTES_BIG_ENDIAN)
6013 offset = (GET_MODE_BITSIZE (is_mode) - len - pos) / BITS_PER_UNIT;
6014 else
6015 offset = pos / BITS_PER_UNIT;
6016
6017 new = adjust_address_nv (inner, tmode, offset);
6018 }
6019 else if (REG_P (inner))
6020 {
6021 if (tmode != inner_mode)
6022 {
6023 /* We can't call gen_lowpart in a DEST since we
6024 always want a SUBREG (see below) and it would sometimes
6025 return a new hard register. */
6026 if (pos || in_dest)
6027 {
6028 HOST_WIDE_INT final_word = pos / BITS_PER_WORD;
6029
6030 if (WORDS_BIG_ENDIAN
6031 && GET_MODE_SIZE (inner_mode) > UNITS_PER_WORD)
6032 final_word = ((GET_MODE_SIZE (inner_mode)
6033 - GET_MODE_SIZE (tmode))
6034 / UNITS_PER_WORD) - final_word;
6035
6036 final_word *= UNITS_PER_WORD;
6037 if (BYTES_BIG_ENDIAN &&
6038 GET_MODE_SIZE (inner_mode) > GET_MODE_SIZE (tmode))
6039 final_word += (GET_MODE_SIZE (inner_mode)
6040 - GET_MODE_SIZE (tmode)) % UNITS_PER_WORD;
6041
6042 /* Avoid creating invalid subregs, for example when
6043 simplifying (x>>32)&255. */
6044 if (!validate_subreg (tmode, inner_mode, inner, final_word))
6045 return NULL_RTX;
6046
6047 new = gen_rtx_SUBREG (tmode, inner, final_word);
6048 }
6049 else
6050 new = gen_lowpart (tmode, inner);
6051 }
6052 else
6053 new = inner;
6054 }
6055 else
6056 new = force_to_mode (inner, tmode,
6057 len >= HOST_BITS_PER_WIDE_INT
6058 ? ~(unsigned HOST_WIDE_INT) 0
6059 : ((unsigned HOST_WIDE_INT) 1 << len) - 1,
6060 0);
6061
6062 /* If this extraction is going into the destination of a SET,
6063 make a STRICT_LOW_PART unless we made a MEM. */
6064
6065 if (in_dest)
6066 return (MEM_P (new) ? new
6067 : (GET_CODE (new) != SUBREG
6068 ? gen_rtx_CLOBBER (tmode, const0_rtx)
6069 : gen_rtx_STRICT_LOW_PART (VOIDmode, new)));
6070
6071 if (mode == tmode)
6072 return new;
6073
6074 if (GET_CODE (new) == CONST_INT)
6075 return gen_int_mode (INTVAL (new), mode);
6076
6077 /* If we know that no extraneous bits are set, and that the high
6078 bit is not set, convert the extraction to the cheaper of
6079 sign and zero extension, that are equivalent in these cases. */
6080 if (flag_expensive_optimizations
6081 && (GET_MODE_BITSIZE (tmode) <= HOST_BITS_PER_WIDE_INT
6082 && ((nonzero_bits (new, tmode)
6083 & ~(((unsigned HOST_WIDE_INT)
6084 GET_MODE_MASK (tmode))
6085 >> 1))
6086 == 0)))
6087 {
6088 rtx temp = gen_rtx_ZERO_EXTEND (mode, new);
6089 rtx temp1 = gen_rtx_SIGN_EXTEND (mode, new);
6090
6091 /* Prefer ZERO_EXTENSION, since it gives more information to
6092 backends. */
6093 if (rtx_cost (temp, SET) <= rtx_cost (temp1, SET))
6094 return temp;
6095 return temp1;
6096 }
6097
6098 /* Otherwise, sign- or zero-extend unless we already are in the
6099 proper mode. */
6100
6101 return (gen_rtx_fmt_e (unsignedp ? ZERO_EXTEND : SIGN_EXTEND,
6102 mode, new));
6103 }
6104
6105 /* Unless this is a COMPARE or we have a funny memory reference,
6106 don't do anything with zero-extending field extracts starting at
6107 the low-order bit since they are simple AND operations. */
6108 if (pos_rtx == 0 && pos == 0 && ! in_dest
6109 && ! in_compare && unsignedp)
6110 return 0;
6111
6112 /* Unless INNER is not MEM, reject this if we would be spanning bytes or
6113 if the position is not a constant and the length is not 1. In all
6114 other cases, we would only be going outside our object in cases when
6115 an original shift would have been undefined. */
6116 if (MEM_P (inner)
6117 && ((pos_rtx == 0 && pos + len > GET_MODE_BITSIZE (is_mode))
6118 || (pos_rtx != 0 && len != 1)))
6119 return 0;
6120
6121 /* Get the mode to use should INNER not be a MEM, the mode for the position,
6122 and the mode for the result. */
6123 if (in_dest && mode_for_extraction (EP_insv, -1) != MAX_MACHINE_MODE)
6124 {
6125 wanted_inner_reg_mode = mode_for_extraction (EP_insv, 0);
6126 pos_mode = mode_for_extraction (EP_insv, 2);
6127 extraction_mode = mode_for_extraction (EP_insv, 3);
6128 }
6129
6130 if (! in_dest && unsignedp
6131 && mode_for_extraction (EP_extzv, -1) != MAX_MACHINE_MODE)
6132 {
6133 wanted_inner_reg_mode = mode_for_extraction (EP_extzv, 1);
6134 pos_mode = mode_for_extraction (EP_extzv, 3);
6135 extraction_mode = mode_for_extraction (EP_extzv, 0);
6136 }
6137
6138 if (! in_dest && ! unsignedp
6139 && mode_for_extraction (EP_extv, -1) != MAX_MACHINE_MODE)
6140 {
6141 wanted_inner_reg_mode = mode_for_extraction (EP_extv, 1);
6142 pos_mode = mode_for_extraction (EP_extv, 3);
6143 extraction_mode = mode_for_extraction (EP_extv, 0);
6144 }
6145
6146 /* Never narrow an object, since that might not be safe. */
6147
6148 if (mode != VOIDmode
6149 && GET_MODE_SIZE (extraction_mode) < GET_MODE_SIZE (mode))
6150 extraction_mode = mode;
6151
6152 if (pos_rtx && GET_MODE (pos_rtx) != VOIDmode
6153 && GET_MODE_SIZE (pos_mode) < GET_MODE_SIZE (GET_MODE (pos_rtx)))
6154 pos_mode = GET_MODE (pos_rtx);
6155
6156 /* If this is not from memory, the desired mode is the preferred mode
6157 for an extraction pattern's first input operand, or word_mode if there
6158 is none. */
6159 if (!MEM_P (inner))
6160 wanted_inner_mode = wanted_inner_reg_mode;
6161 else
6162 {
6163 /* Be careful not to go beyond the extracted object and maintain the
6164 natural alignment of the memory. */
6165 wanted_inner_mode = smallest_mode_for_size (len, MODE_INT);
6166 while (pos % GET_MODE_BITSIZE (wanted_inner_mode) + len
6167 > GET_MODE_BITSIZE (wanted_inner_mode))
6168 {
6169 wanted_inner_mode = GET_MODE_WIDER_MODE (wanted_inner_mode);
6170 gcc_assert (wanted_inner_mode != VOIDmode);
6171 }
6172
6173 /* If we have to change the mode of memory and cannot, the desired mode
6174 is EXTRACTION_MODE. */
6175 if (inner_mode != wanted_inner_mode
6176 && (mode_dependent_address_p (XEXP (inner, 0))
6177 || MEM_VOLATILE_P (inner)
6178 || pos_rtx))
6179 wanted_inner_mode = extraction_mode;
6180 }
6181
6182 orig_pos = pos;
6183
6184 if (BITS_BIG_ENDIAN)
6185 {
6186 /* POS is passed as if BITS_BIG_ENDIAN == 0, so we need to convert it to
6187 BITS_BIG_ENDIAN style. If position is constant, compute new
6188 position. Otherwise, build subtraction.
6189 Note that POS is relative to the mode of the original argument.
6190 If it's a MEM we need to recompute POS relative to that.
6191 However, if we're extracting from (or inserting into) a register,
6192 we want to recompute POS relative to wanted_inner_mode. */
6193 int width = (MEM_P (inner)
6194 ? GET_MODE_BITSIZE (is_mode)
6195 : GET_MODE_BITSIZE (wanted_inner_mode));
6196
6197 if (pos_rtx == 0)
6198 pos = width - len - pos;
6199 else
6200 pos_rtx
6201 = gen_rtx_MINUS (GET_MODE (pos_rtx), GEN_INT (width - len), pos_rtx);
6202 /* POS may be less than 0 now, but we check for that below.
6203 Note that it can only be less than 0 if !MEM_P (inner). */
6204 }
6205
6206 /* If INNER has a wider mode, and this is a constant extraction, try to
6207 make it smaller and adjust the byte to point to the byte containing
6208 the value. */
6209 if (wanted_inner_mode != VOIDmode
6210 && inner_mode != wanted_inner_mode
6211 && ! pos_rtx
6212 && GET_MODE_SIZE (wanted_inner_mode) < GET_MODE_SIZE (is_mode)
6213 && MEM_P (inner)
6214 && ! mode_dependent_address_p (XEXP (inner, 0))
6215 && ! MEM_VOLATILE_P (inner))
6216 {
6217 int offset = 0;
6218
6219 /* The computations below will be correct if the machine is big
6220 endian in both bits and bytes or little endian in bits and bytes.
6221 If it is mixed, we must adjust. */
6222
6223 /* If bytes are big endian and we had a paradoxical SUBREG, we must
6224 adjust OFFSET to compensate. */
6225 if (BYTES_BIG_ENDIAN
6226 && GET_MODE_SIZE (inner_mode) < GET_MODE_SIZE (is_mode))
6227 offset -= GET_MODE_SIZE (is_mode) - GET_MODE_SIZE (inner_mode);
6228
6229 /* We can now move to the desired byte. */
6230 offset += (pos / GET_MODE_BITSIZE (wanted_inner_mode))
6231 * GET_MODE_SIZE (wanted_inner_mode);
6232 pos %= GET_MODE_BITSIZE (wanted_inner_mode);
6233
6234 if (BYTES_BIG_ENDIAN != BITS_BIG_ENDIAN
6235 && is_mode != wanted_inner_mode)
6236 offset = (GET_MODE_SIZE (is_mode)
6237 - GET_MODE_SIZE (wanted_inner_mode) - offset);
6238
6239 inner = adjust_address_nv (inner, wanted_inner_mode, offset);
6240 }
6241
6242 /* If INNER is not memory, we can always get it into the proper mode. If we
6243 are changing its mode, POS must be a constant and smaller than the size
6244 of the new mode. */
6245 else if (!MEM_P (inner))
6246 {
6247 if (GET_MODE (inner) != wanted_inner_mode
6248 && (pos_rtx != 0
6249 || orig_pos + len > GET_MODE_BITSIZE (wanted_inner_mode)))
6250 return 0;
6251
6252 inner = force_to_mode (inner, wanted_inner_mode,
6253 pos_rtx
6254 || len + orig_pos >= HOST_BITS_PER_WIDE_INT
6255 ? ~(unsigned HOST_WIDE_INT) 0
6256 : ((((unsigned HOST_WIDE_INT) 1 << len) - 1)
6257 << orig_pos),
6258 0);
6259 }
6260
6261 /* Adjust mode of POS_RTX, if needed. If we want a wider mode, we
6262 have to zero extend. Otherwise, we can just use a SUBREG. */
6263 if (pos_rtx != 0
6264 && GET_MODE_SIZE (pos_mode) > GET_MODE_SIZE (GET_MODE (pos_rtx)))
6265 {
6266 rtx temp = gen_rtx_ZERO_EXTEND (pos_mode, pos_rtx);
6267
6268 /* If we know that no extraneous bits are set, and that the high
6269 bit is not set, convert extraction to cheaper one - either
6270 SIGN_EXTENSION or ZERO_EXTENSION, that are equivalent in these
6271 cases. */
6272 if (flag_expensive_optimizations
6273 && (GET_MODE_BITSIZE (GET_MODE (pos_rtx)) <= HOST_BITS_PER_WIDE_INT
6274 && ((nonzero_bits (pos_rtx, GET_MODE (pos_rtx))
6275 & ~(((unsigned HOST_WIDE_INT)
6276 GET_MODE_MASK (GET_MODE (pos_rtx)))
6277 >> 1))
6278 == 0)))
6279 {
6280 rtx temp1 = gen_rtx_SIGN_EXTEND (pos_mode, pos_rtx);
6281
6282 /* Prefer ZERO_EXTENSION, since it gives more information to
6283 backends. */
6284 if (rtx_cost (temp1, SET) < rtx_cost (temp, SET))
6285 temp = temp1;
6286 }
6287 pos_rtx = temp;
6288 }
6289 else if (pos_rtx != 0
6290 && GET_MODE_SIZE (pos_mode) < GET_MODE_SIZE (GET_MODE (pos_rtx)))
6291 pos_rtx = gen_lowpart (pos_mode, pos_rtx);
6292
6293 /* Make POS_RTX unless we already have it and it is correct. If we don't
6294 have a POS_RTX but we do have an ORIG_POS_RTX, the latter must
6295 be a CONST_INT. */
6296 if (pos_rtx == 0 && orig_pos_rtx != 0 && INTVAL (orig_pos_rtx) == pos)
6297 pos_rtx = orig_pos_rtx;
6298
6299 else if (pos_rtx == 0)
6300 pos_rtx = GEN_INT (pos);
6301
6302 /* Make the required operation. See if we can use existing rtx. */
6303 new = gen_rtx_fmt_eee (unsignedp ? ZERO_EXTRACT : SIGN_EXTRACT,
6304 extraction_mode, inner, GEN_INT (len), pos_rtx);
6305 if (! in_dest)
6306 new = gen_lowpart (mode, new);
6307
6308 return new;
6309 }
6310 \f
6311 /* See if X contains an ASHIFT of COUNT or more bits that can be commuted
6312 with any other operations in X. Return X without that shift if so. */
6313
6314 static rtx
6315 extract_left_shift (rtx x, int count)
6316 {
6317 enum rtx_code code = GET_CODE (x);
6318 enum machine_mode mode = GET_MODE (x);
6319 rtx tem;
6320
6321 switch (code)
6322 {
6323 case ASHIFT:
6324 /* This is the shift itself. If it is wide enough, we will return
6325 either the value being shifted if the shift count is equal to
6326 COUNT or a shift for the difference. */
6327 if (GET_CODE (XEXP (x, 1)) == CONST_INT
6328 && INTVAL (XEXP (x, 1)) >= count)
6329 return simplify_shift_const (NULL_RTX, ASHIFT, mode, XEXP (x, 0),
6330 INTVAL (XEXP (x, 1)) - count);
6331 break;
6332
6333 case NEG: case NOT:
6334 if ((tem = extract_left_shift (XEXP (x, 0), count)) != 0)
6335 return simplify_gen_unary (code, mode, tem, mode);
6336
6337 break;
6338
6339 case PLUS: case IOR: case XOR: case AND:
6340 /* If we can safely shift this constant and we find the inner shift,
6341 make a new operation. */
6342 if (GET_CODE (XEXP (x, 1)) == CONST_INT
6343 && (INTVAL (XEXP (x, 1)) & ((((HOST_WIDE_INT) 1 << count)) - 1)) == 0
6344 && (tem = extract_left_shift (XEXP (x, 0), count)) != 0)
6345 return simplify_gen_binary (code, mode, tem,
6346 GEN_INT (INTVAL (XEXP (x, 1)) >> count));
6347
6348 break;
6349
6350 default:
6351 break;
6352 }
6353
6354 return 0;
6355 }
6356 \f
6357 /* Look at the expression rooted at X. Look for expressions
6358 equivalent to ZERO_EXTRACT, SIGN_EXTRACT, ZERO_EXTEND, SIGN_EXTEND.
6359 Form these expressions.
6360
6361 Return the new rtx, usually just X.
6362
6363 Also, for machines like the VAX that don't have logical shift insns,
6364 try to convert logical to arithmetic shift operations in cases where
6365 they are equivalent. This undoes the canonicalizations to logical
6366 shifts done elsewhere.
6367
6368 We try, as much as possible, to re-use rtl expressions to save memory.
6369
6370 IN_CODE says what kind of expression we are processing. Normally, it is
6371 SET. In a memory address (inside a MEM, PLUS or minus, the latter two
6372 being kludges), it is MEM. When processing the arguments of a comparison
6373 or a COMPARE against zero, it is COMPARE. */
6374
6375 static rtx
6376 make_compound_operation (rtx x, enum rtx_code in_code)
6377 {
6378 enum rtx_code code = GET_CODE (x);
6379 enum machine_mode mode = GET_MODE (x);
6380 int mode_width = GET_MODE_BITSIZE (mode);
6381 rtx rhs, lhs;
6382 enum rtx_code next_code;
6383 int i;
6384 rtx new = 0;
6385 rtx tem;
6386 const char *fmt;
6387
6388 /* Select the code to be used in recursive calls. Once we are inside an
6389 address, we stay there. If we have a comparison, set to COMPARE,
6390 but once inside, go back to our default of SET. */
6391
6392 next_code = (code == MEM || code == PLUS || code == MINUS ? MEM
6393 : ((code == COMPARE || COMPARISON_P (x))
6394 && XEXP (x, 1) == const0_rtx) ? COMPARE
6395 : in_code == COMPARE ? SET : in_code);
6396
6397 /* Process depending on the code of this operation. If NEW is set
6398 nonzero, it will be returned. */
6399
6400 switch (code)
6401 {
6402 case ASHIFT:
6403 /* Convert shifts by constants into multiplications if inside
6404 an address. */
6405 if (in_code == MEM && GET_CODE (XEXP (x, 1)) == CONST_INT
6406 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT
6407 && INTVAL (XEXP (x, 1)) >= 0)
6408 {
6409 new = make_compound_operation (XEXP (x, 0), next_code);
6410 new = gen_rtx_MULT (mode, new,
6411 GEN_INT ((HOST_WIDE_INT) 1
6412 << INTVAL (XEXP (x, 1))));
6413 }
6414 break;
6415
6416 case AND:
6417 /* If the second operand is not a constant, we can't do anything
6418 with it. */
6419 if (GET_CODE (XEXP (x, 1)) != CONST_INT)
6420 break;
6421
6422 /* If the constant is a power of two minus one and the first operand
6423 is a logical right shift, make an extraction. */
6424 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
6425 && (i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0)
6426 {
6427 new = make_compound_operation (XEXP (XEXP (x, 0), 0), next_code);
6428 new = make_extraction (mode, new, 0, XEXP (XEXP (x, 0), 1), i, 1,
6429 0, in_code == COMPARE);
6430 }
6431
6432 /* Same as previous, but for (subreg (lshiftrt ...)) in first op. */
6433 else if (GET_CODE (XEXP (x, 0)) == SUBREG
6434 && subreg_lowpart_p (XEXP (x, 0))
6435 && GET_CODE (SUBREG_REG (XEXP (x, 0))) == LSHIFTRT
6436 && (i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0)
6437 {
6438 new = make_compound_operation (XEXP (SUBREG_REG (XEXP (x, 0)), 0),
6439 next_code);
6440 new = make_extraction (GET_MODE (SUBREG_REG (XEXP (x, 0))), new, 0,
6441 XEXP (SUBREG_REG (XEXP (x, 0)), 1), i, 1,
6442 0, in_code == COMPARE);
6443 }
6444 /* Same as previous, but for (xor/ior (lshiftrt...) (lshiftrt...)). */
6445 else if ((GET_CODE (XEXP (x, 0)) == XOR
6446 || GET_CODE (XEXP (x, 0)) == IOR)
6447 && GET_CODE (XEXP (XEXP (x, 0), 0)) == LSHIFTRT
6448 && GET_CODE (XEXP (XEXP (x, 0), 1)) == LSHIFTRT
6449 && (i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0)
6450 {
6451 /* Apply the distributive law, and then try to make extractions. */
6452 new = gen_rtx_fmt_ee (GET_CODE (XEXP (x, 0)), mode,
6453 gen_rtx_AND (mode, XEXP (XEXP (x, 0), 0),
6454 XEXP (x, 1)),
6455 gen_rtx_AND (mode, XEXP (XEXP (x, 0), 1),
6456 XEXP (x, 1)));
6457 new = make_compound_operation (new, in_code);
6458 }
6459
6460 /* If we are have (and (rotate X C) M) and C is larger than the number
6461 of bits in M, this is an extraction. */
6462
6463 else if (GET_CODE (XEXP (x, 0)) == ROTATE
6464 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
6465 && (i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0
6466 && i <= INTVAL (XEXP (XEXP (x, 0), 1)))
6467 {
6468 new = make_compound_operation (XEXP (XEXP (x, 0), 0), next_code);
6469 new = make_extraction (mode, new,
6470 (GET_MODE_BITSIZE (mode)
6471 - INTVAL (XEXP (XEXP (x, 0), 1))),
6472 NULL_RTX, i, 1, 0, in_code == COMPARE);
6473 }
6474
6475 /* On machines without logical shifts, if the operand of the AND is
6476 a logical shift and our mask turns off all the propagated sign
6477 bits, we can replace the logical shift with an arithmetic shift. */
6478 else if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
6479 && !have_insn_for (LSHIFTRT, mode)
6480 && have_insn_for (ASHIFTRT, mode)
6481 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
6482 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
6483 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT
6484 && mode_width <= HOST_BITS_PER_WIDE_INT)
6485 {
6486 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
6487
6488 mask >>= INTVAL (XEXP (XEXP (x, 0), 1));
6489 if ((INTVAL (XEXP (x, 1)) & ~mask) == 0)
6490 SUBST (XEXP (x, 0),
6491 gen_rtx_ASHIFTRT (mode,
6492 make_compound_operation
6493 (XEXP (XEXP (x, 0), 0), next_code),
6494 XEXP (XEXP (x, 0), 1)));
6495 }
6496
6497 /* If the constant is one less than a power of two, this might be
6498 representable by an extraction even if no shift is present.
6499 If it doesn't end up being a ZERO_EXTEND, we will ignore it unless
6500 we are in a COMPARE. */
6501 else if ((i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0)
6502 new = make_extraction (mode,
6503 make_compound_operation (XEXP (x, 0),
6504 next_code),
6505 0, NULL_RTX, i, 1, 0, in_code == COMPARE);
6506
6507 /* If we are in a comparison and this is an AND with a power of two,
6508 convert this into the appropriate bit extract. */
6509 else if (in_code == COMPARE
6510 && (i = exact_log2 (INTVAL (XEXP (x, 1)))) >= 0)
6511 new = make_extraction (mode,
6512 make_compound_operation (XEXP (x, 0),
6513 next_code),
6514 i, NULL_RTX, 1, 1, 0, 1);
6515
6516 break;
6517
6518 case LSHIFTRT:
6519 /* If the sign bit is known to be zero, replace this with an
6520 arithmetic shift. */
6521 if (have_insn_for (ASHIFTRT, mode)
6522 && ! have_insn_for (LSHIFTRT, mode)
6523 && mode_width <= HOST_BITS_PER_WIDE_INT
6524 && (nonzero_bits (XEXP (x, 0), mode) & (1 << (mode_width - 1))) == 0)
6525 {
6526 new = gen_rtx_ASHIFTRT (mode,
6527 make_compound_operation (XEXP (x, 0),
6528 next_code),
6529 XEXP (x, 1));
6530 break;
6531 }
6532
6533 /* ... fall through ... */
6534
6535 case ASHIFTRT:
6536 lhs = XEXP (x, 0);
6537 rhs = XEXP (x, 1);
6538
6539 /* If we have (ashiftrt (ashift foo C1) C2) with C2 >= C1,
6540 this is a SIGN_EXTRACT. */
6541 if (GET_CODE (rhs) == CONST_INT
6542 && GET_CODE (lhs) == ASHIFT
6543 && GET_CODE (XEXP (lhs, 1)) == CONST_INT
6544 && INTVAL (rhs) >= INTVAL (XEXP (lhs, 1)))
6545 {
6546 new = make_compound_operation (XEXP (lhs, 0), next_code);
6547 new = make_extraction (mode, new,
6548 INTVAL (rhs) - INTVAL (XEXP (lhs, 1)),
6549 NULL_RTX, mode_width - INTVAL (rhs),
6550 code == LSHIFTRT, 0, in_code == COMPARE);
6551 break;
6552 }
6553
6554 /* See if we have operations between an ASHIFTRT and an ASHIFT.
6555 If so, try to merge the shifts into a SIGN_EXTEND. We could
6556 also do this for some cases of SIGN_EXTRACT, but it doesn't
6557 seem worth the effort; the case checked for occurs on Alpha. */
6558
6559 if (!OBJECT_P (lhs)
6560 && ! (GET_CODE (lhs) == SUBREG
6561 && (OBJECT_P (SUBREG_REG (lhs))))
6562 && GET_CODE (rhs) == CONST_INT
6563 && INTVAL (rhs) < HOST_BITS_PER_WIDE_INT
6564 && (new = extract_left_shift (lhs, INTVAL (rhs))) != 0)
6565 new = make_extraction (mode, make_compound_operation (new, next_code),
6566 0, NULL_RTX, mode_width - INTVAL (rhs),
6567 code == LSHIFTRT, 0, in_code == COMPARE);
6568
6569 break;
6570
6571 case SUBREG:
6572 /* Call ourselves recursively on the inner expression. If we are
6573 narrowing the object and it has a different RTL code from
6574 what it originally did, do this SUBREG as a force_to_mode. */
6575
6576 tem = make_compound_operation (SUBREG_REG (x), in_code);
6577
6578 {
6579 rtx simplified;
6580 simplified = simplify_subreg (GET_MODE (x), tem, GET_MODE (tem),
6581 SUBREG_BYTE (x));
6582
6583 if (simplified)
6584 tem = simplified;
6585
6586 if (GET_CODE (tem) != GET_CODE (SUBREG_REG (x))
6587 && GET_MODE_SIZE (mode) < GET_MODE_SIZE (GET_MODE (tem))
6588 && subreg_lowpart_p (x))
6589 {
6590 rtx newer = force_to_mode (tem, mode, ~(HOST_WIDE_INT) 0,
6591 0);
6592
6593 /* If we have something other than a SUBREG, we might have
6594 done an expansion, so rerun ourselves. */
6595 if (GET_CODE (newer) != SUBREG)
6596 newer = make_compound_operation (newer, in_code);
6597
6598 return newer;
6599 }
6600
6601 if (simplified)
6602 return tem;
6603 }
6604 break;
6605
6606 default:
6607 break;
6608 }
6609
6610 if (new)
6611 {
6612 x = gen_lowpart (mode, new);
6613 code = GET_CODE (x);
6614 }
6615
6616 /* Now recursively process each operand of this operation. */
6617 fmt = GET_RTX_FORMAT (code);
6618 for (i = 0; i < GET_RTX_LENGTH (code); i++)
6619 if (fmt[i] == 'e')
6620 {
6621 new = make_compound_operation (XEXP (x, i), next_code);
6622 SUBST (XEXP (x, i), new);
6623 }
6624
6625 /* If this is a commutative operation, the changes to the operands
6626 may have made it noncanonical. */
6627 if (COMMUTATIVE_ARITH_P (x)
6628 && swap_commutative_operands_p (XEXP (x, 0), XEXP (x, 1)))
6629 {
6630 tem = XEXP (x, 0);
6631 SUBST (XEXP (x, 0), XEXP (x, 1));
6632 SUBST (XEXP (x, 1), tem);
6633 }
6634
6635 return x;
6636 }
6637 \f
6638 /* Given M see if it is a value that would select a field of bits
6639 within an item, but not the entire word. Return -1 if not.
6640 Otherwise, return the starting position of the field, where 0 is the
6641 low-order bit.
6642
6643 *PLEN is set to the length of the field. */
6644
6645 static int
6646 get_pos_from_mask (unsigned HOST_WIDE_INT m, unsigned HOST_WIDE_INT *plen)
6647 {
6648 /* Get the bit number of the first 1 bit from the right, -1 if none. */
6649 int pos = exact_log2 (m & -m);
6650 int len = 0;
6651
6652 if (pos >= 0)
6653 /* Now shift off the low-order zero bits and see if we have a
6654 power of two minus 1. */
6655 len = exact_log2 ((m >> pos) + 1);
6656
6657 if (len <= 0)
6658 pos = -1;
6659
6660 *plen = len;
6661 return pos;
6662 }
6663 \f
6664 /* If X refers to a register that equals REG in value, replace these
6665 references with REG. */
6666 static rtx
6667 canon_reg_for_combine (rtx x, rtx reg)
6668 {
6669 rtx op0, op1, op2;
6670 const char *fmt;
6671 int i;
6672 bool copied;
6673
6674 enum rtx_code code = GET_CODE (x);
6675 switch (GET_RTX_CLASS (code))
6676 {
6677 case RTX_UNARY:
6678 op0 = canon_reg_for_combine (XEXP (x, 0), reg);
6679 if (op0 != XEXP (x, 0))
6680 return simplify_gen_unary (GET_CODE (x), GET_MODE (x), op0,
6681 GET_MODE (reg));
6682 break;
6683
6684 case RTX_BIN_ARITH:
6685 case RTX_COMM_ARITH:
6686 op0 = canon_reg_for_combine (XEXP (x, 0), reg);
6687 op1 = canon_reg_for_combine (XEXP (x, 1), reg);
6688 if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
6689 return simplify_gen_binary (GET_CODE (x), GET_MODE (x), op0, op1);
6690 break;
6691
6692 case RTX_COMPARE:
6693 case RTX_COMM_COMPARE:
6694 op0 = canon_reg_for_combine (XEXP (x, 0), reg);
6695 op1 = canon_reg_for_combine (XEXP (x, 1), reg);
6696 if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
6697 return simplify_gen_relational (GET_CODE (x), GET_MODE (x),
6698 GET_MODE (op0), op0, op1);
6699 break;
6700
6701 case RTX_TERNARY:
6702 case RTX_BITFIELD_OPS:
6703 op0 = canon_reg_for_combine (XEXP (x, 0), reg);
6704 op1 = canon_reg_for_combine (XEXP (x, 1), reg);
6705 op2 = canon_reg_for_combine (XEXP (x, 2), reg);
6706 if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1) || op2 != XEXP (x, 2))
6707 return simplify_gen_ternary (GET_CODE (x), GET_MODE (x),
6708 GET_MODE (op0), op0, op1, op2);
6709
6710 case RTX_OBJ:
6711 if (REG_P (x))
6712 {
6713 if (rtx_equal_p (get_last_value (reg), x)
6714 || rtx_equal_p (reg, get_last_value (x)))
6715 return reg;
6716 else
6717 break;
6718 }
6719
6720 /* fall through */
6721
6722 default:
6723 fmt = GET_RTX_FORMAT (code);
6724 copied = false;
6725 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
6726 if (fmt[i] == 'e')
6727 {
6728 rtx op = canon_reg_for_combine (XEXP (x, i), reg);
6729 if (op != XEXP (x, i))
6730 {
6731 if (!copied)
6732 {
6733 copied = true;
6734 x = copy_rtx (x);
6735 }
6736 XEXP (x, i) = op;
6737 }
6738 }
6739 else if (fmt[i] == 'E')
6740 {
6741 int j;
6742 for (j = 0; j < XVECLEN (x, i); j++)
6743 {
6744 rtx op = canon_reg_for_combine (XVECEXP (x, i, j), reg);
6745 if (op != XVECEXP (x, i, j))
6746 {
6747 if (!copied)
6748 {
6749 copied = true;
6750 x = copy_rtx (x);
6751 }
6752 XVECEXP (x, i, j) = op;
6753 }
6754 }
6755 }
6756
6757 break;
6758 }
6759
6760 return x;
6761 }
6762
6763 /* Return X converted to MODE. If the value is already truncated to
6764 MODE we can just return a subreg even though in the general case we
6765 would need an explicit truncation. */
6766
6767 static rtx
6768 gen_lowpart_or_truncate (enum machine_mode mode, rtx x)
6769 {
6770 if (GET_MODE_SIZE (GET_MODE (x)) <= GET_MODE_SIZE (mode)
6771 || TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (mode),
6772 GET_MODE_BITSIZE (GET_MODE (x)))
6773 || (REG_P (x) && reg_truncated_to_mode (mode, x)))
6774 return gen_lowpart (mode, x);
6775 else
6776 return gen_rtx_TRUNCATE (mode, x);
6777 }
6778
6779 /* See if X can be simplified knowing that we will only refer to it in
6780 MODE and will only refer to those bits that are nonzero in MASK.
6781 If other bits are being computed or if masking operations are done
6782 that select a superset of the bits in MASK, they can sometimes be
6783 ignored.
6784
6785 Return a possibly simplified expression, but always convert X to
6786 MODE. If X is a CONST_INT, AND the CONST_INT with MASK.
6787
6788 If JUST_SELECT is nonzero, don't optimize by noticing that bits in MASK
6789 are all off in X. This is used when X will be complemented, by either
6790 NOT, NEG, or XOR. */
6791
6792 static rtx
6793 force_to_mode (rtx x, enum machine_mode mode, unsigned HOST_WIDE_INT mask,
6794 int just_select)
6795 {
6796 enum rtx_code code = GET_CODE (x);
6797 int next_select = just_select || code == XOR || code == NOT || code == NEG;
6798 enum machine_mode op_mode;
6799 unsigned HOST_WIDE_INT fuller_mask, nonzero;
6800 rtx op0, op1, temp;
6801
6802 /* If this is a CALL or ASM_OPERANDS, don't do anything. Some of the
6803 code below will do the wrong thing since the mode of such an
6804 expression is VOIDmode.
6805
6806 Also do nothing if X is a CLOBBER; this can happen if X was
6807 the return value from a call to gen_lowpart. */
6808 if (code == CALL || code == ASM_OPERANDS || code == CLOBBER)
6809 return x;
6810
6811 /* We want to perform the operation is its present mode unless we know
6812 that the operation is valid in MODE, in which case we do the operation
6813 in MODE. */
6814 op_mode = ((GET_MODE_CLASS (mode) == GET_MODE_CLASS (GET_MODE (x))
6815 && have_insn_for (code, mode))
6816 ? mode : GET_MODE (x));
6817
6818 /* It is not valid to do a right-shift in a narrower mode
6819 than the one it came in with. */
6820 if ((code == LSHIFTRT || code == ASHIFTRT)
6821 && GET_MODE_BITSIZE (mode) < GET_MODE_BITSIZE (GET_MODE (x)))
6822 op_mode = GET_MODE (x);
6823
6824 /* Truncate MASK to fit OP_MODE. */
6825 if (op_mode)
6826 mask &= GET_MODE_MASK (op_mode);
6827
6828 /* When we have an arithmetic operation, or a shift whose count we
6829 do not know, we need to assume that all bits up to the highest-order
6830 bit in MASK will be needed. This is how we form such a mask. */
6831 if (mask & ((unsigned HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT - 1)))
6832 fuller_mask = ~(unsigned HOST_WIDE_INT) 0;
6833 else
6834 fuller_mask = (((unsigned HOST_WIDE_INT) 1 << (floor_log2 (mask) + 1))
6835 - 1);
6836
6837 /* Determine what bits of X are guaranteed to be (non)zero. */
6838 nonzero = nonzero_bits (x, mode);
6839
6840 /* If none of the bits in X are needed, return a zero. */
6841 if (! just_select && (nonzero & mask) == 0)
6842 x = const0_rtx;
6843
6844 /* If X is a CONST_INT, return a new one. Do this here since the
6845 test below will fail. */
6846 if (GET_CODE (x) == CONST_INT)
6847 {
6848 if (SCALAR_INT_MODE_P (mode))
6849 return gen_int_mode (INTVAL (x) & mask, mode);
6850 else
6851 {
6852 x = GEN_INT (INTVAL (x) & mask);
6853 return gen_lowpart_common (mode, x);
6854 }
6855 }
6856
6857 /* If X is narrower than MODE and we want all the bits in X's mode, just
6858 get X in the proper mode. */
6859 if (GET_MODE_SIZE (GET_MODE (x)) < GET_MODE_SIZE (mode)
6860 && (GET_MODE_MASK (GET_MODE (x)) & ~mask) == 0)
6861 return gen_lowpart (mode, x);
6862
6863 switch (code)
6864 {
6865 case CLOBBER:
6866 /* If X is a (clobber (const_int)), return it since we know we are
6867 generating something that won't match. */
6868 return x;
6869
6870 case SIGN_EXTEND:
6871 case ZERO_EXTEND:
6872 case ZERO_EXTRACT:
6873 case SIGN_EXTRACT:
6874 x = expand_compound_operation (x);
6875 if (GET_CODE (x) != code)
6876 return force_to_mode (x, mode, mask, next_select);
6877 break;
6878
6879 case SUBREG:
6880 if (subreg_lowpart_p (x)
6881 /* We can ignore the effect of this SUBREG if it narrows the mode or
6882 if the constant masks to zero all the bits the mode doesn't
6883 have. */
6884 && ((GET_MODE_SIZE (GET_MODE (x))
6885 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
6886 || (0 == (mask
6887 & GET_MODE_MASK (GET_MODE (x))
6888 & ~GET_MODE_MASK (GET_MODE (SUBREG_REG (x)))))))
6889 return force_to_mode (SUBREG_REG (x), mode, mask, next_select);
6890 break;
6891
6892 case AND:
6893 /* If this is an AND with a constant, convert it into an AND
6894 whose constant is the AND of that constant with MASK. If it
6895 remains an AND of MASK, delete it since it is redundant. */
6896
6897 if (GET_CODE (XEXP (x, 1)) == CONST_INT)
6898 {
6899 x = simplify_and_const_int (x, op_mode, XEXP (x, 0),
6900 mask & INTVAL (XEXP (x, 1)));
6901
6902 /* If X is still an AND, see if it is an AND with a mask that
6903 is just some low-order bits. If so, and it is MASK, we don't
6904 need it. */
6905
6906 if (GET_CODE (x) == AND && GET_CODE (XEXP (x, 1)) == CONST_INT
6907 && ((INTVAL (XEXP (x, 1)) & GET_MODE_MASK (GET_MODE (x)))
6908 == mask))
6909 x = XEXP (x, 0);
6910
6911 /* If it remains an AND, try making another AND with the bits
6912 in the mode mask that aren't in MASK turned on. If the
6913 constant in the AND is wide enough, this might make a
6914 cheaper constant. */
6915
6916 if (GET_CODE (x) == AND && GET_CODE (XEXP (x, 1)) == CONST_INT
6917 && GET_MODE_MASK (GET_MODE (x)) != mask
6918 && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT)
6919 {
6920 HOST_WIDE_INT cval = (INTVAL (XEXP (x, 1))
6921 | (GET_MODE_MASK (GET_MODE (x)) & ~mask));
6922 int width = GET_MODE_BITSIZE (GET_MODE (x));
6923 rtx y;
6924
6925 /* If MODE is narrower than HOST_WIDE_INT and CVAL is a negative
6926 number, sign extend it. */
6927 if (width > 0 && width < HOST_BITS_PER_WIDE_INT
6928 && (cval & ((HOST_WIDE_INT) 1 << (width - 1))) != 0)
6929 cval |= (HOST_WIDE_INT) -1 << width;
6930
6931 y = simplify_gen_binary (AND, GET_MODE (x),
6932 XEXP (x, 0), GEN_INT (cval));
6933 if (rtx_cost (y, SET) < rtx_cost (x, SET))
6934 x = y;
6935 }
6936
6937 break;
6938 }
6939
6940 goto binop;
6941
6942 case PLUS:
6943 /* In (and (plus FOO C1) M), if M is a mask that just turns off
6944 low-order bits (as in an alignment operation) and FOO is already
6945 aligned to that boundary, mask C1 to that boundary as well.
6946 This may eliminate that PLUS and, later, the AND. */
6947
6948 {
6949 unsigned int width = GET_MODE_BITSIZE (mode);
6950 unsigned HOST_WIDE_INT smask = mask;
6951
6952 /* If MODE is narrower than HOST_WIDE_INT and mask is a negative
6953 number, sign extend it. */
6954
6955 if (width < HOST_BITS_PER_WIDE_INT
6956 && (smask & ((HOST_WIDE_INT) 1 << (width - 1))) != 0)
6957 smask |= (HOST_WIDE_INT) -1 << width;
6958
6959 if (GET_CODE (XEXP (x, 1)) == CONST_INT
6960 && exact_log2 (- smask) >= 0
6961 && (nonzero_bits (XEXP (x, 0), mode) & ~smask) == 0
6962 && (INTVAL (XEXP (x, 1)) & ~smask) != 0)
6963 return force_to_mode (plus_constant (XEXP (x, 0),
6964 (INTVAL (XEXP (x, 1)) & smask)),
6965 mode, smask, next_select);
6966 }
6967
6968 /* ... fall through ... */
6969
6970 case MULT:
6971 /* For PLUS, MINUS and MULT, we need any bits less significant than the
6972 most significant bit in MASK since carries from those bits will
6973 affect the bits we are interested in. */
6974 mask = fuller_mask;
6975 goto binop;
6976
6977 case MINUS:
6978 /* If X is (minus C Y) where C's least set bit is larger than any bit
6979 in the mask, then we may replace with (neg Y). */
6980 if (GET_CODE (XEXP (x, 0)) == CONST_INT
6981 && (((unsigned HOST_WIDE_INT) (INTVAL (XEXP (x, 0))
6982 & -INTVAL (XEXP (x, 0))))
6983 > mask))
6984 {
6985 x = simplify_gen_unary (NEG, GET_MODE (x), XEXP (x, 1),
6986 GET_MODE (x));
6987 return force_to_mode (x, mode, mask, next_select);
6988 }
6989
6990 /* Similarly, if C contains every bit in the fuller_mask, then we may
6991 replace with (not Y). */
6992 if (GET_CODE (XEXP (x, 0)) == CONST_INT
6993 && ((INTVAL (XEXP (x, 0)) | (HOST_WIDE_INT) fuller_mask)
6994 == INTVAL (XEXP (x, 0))))
6995 {
6996 x = simplify_gen_unary (NOT, GET_MODE (x),
6997 XEXP (x, 1), GET_MODE (x));
6998 return force_to_mode (x, mode, mask, next_select);
6999 }
7000
7001 mask = fuller_mask;
7002 goto binop;
7003
7004 case IOR:
7005 case XOR:
7006 /* If X is (ior (lshiftrt FOO C1) C2), try to commute the IOR and
7007 LSHIFTRT so we end up with an (and (lshiftrt (ior ...) ...) ...)
7008 operation which may be a bitfield extraction. Ensure that the
7009 constant we form is not wider than the mode of X. */
7010
7011 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
7012 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
7013 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
7014 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT
7015 && GET_CODE (XEXP (x, 1)) == CONST_INT
7016 && ((INTVAL (XEXP (XEXP (x, 0), 1))
7017 + floor_log2 (INTVAL (XEXP (x, 1))))
7018 < GET_MODE_BITSIZE (GET_MODE (x)))
7019 && (INTVAL (XEXP (x, 1))
7020 & ~nonzero_bits (XEXP (x, 0), GET_MODE (x))) == 0)
7021 {
7022 temp = GEN_INT ((INTVAL (XEXP (x, 1)) & mask)
7023 << INTVAL (XEXP (XEXP (x, 0), 1)));
7024 temp = simplify_gen_binary (GET_CODE (x), GET_MODE (x),
7025 XEXP (XEXP (x, 0), 0), temp);
7026 x = simplify_gen_binary (LSHIFTRT, GET_MODE (x), temp,
7027 XEXP (XEXP (x, 0), 1));
7028 return force_to_mode (x, mode, mask, next_select);
7029 }
7030
7031 binop:
7032 /* For most binary operations, just propagate into the operation and
7033 change the mode if we have an operation of that mode. */
7034
7035 op0 = gen_lowpart_or_truncate (op_mode,
7036 force_to_mode (XEXP (x, 0), mode, mask,
7037 next_select));
7038 op1 = gen_lowpart_or_truncate (op_mode,
7039 force_to_mode (XEXP (x, 1), mode, mask,
7040 next_select));
7041
7042 if (op_mode != GET_MODE (x) || op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
7043 x = simplify_gen_binary (code, op_mode, op0, op1);
7044 break;
7045
7046 case ASHIFT:
7047 /* For left shifts, do the same, but just for the first operand.
7048 However, we cannot do anything with shifts where we cannot
7049 guarantee that the counts are smaller than the size of the mode
7050 because such a count will have a different meaning in a
7051 wider mode. */
7052
7053 if (! (GET_CODE (XEXP (x, 1)) == CONST_INT
7054 && INTVAL (XEXP (x, 1)) >= 0
7055 && INTVAL (XEXP (x, 1)) < GET_MODE_BITSIZE (mode))
7056 && ! (GET_MODE (XEXP (x, 1)) != VOIDmode
7057 && (nonzero_bits (XEXP (x, 1), GET_MODE (XEXP (x, 1)))
7058 < (unsigned HOST_WIDE_INT) GET_MODE_BITSIZE (mode))))
7059 break;
7060
7061 /* If the shift count is a constant and we can do arithmetic in
7062 the mode of the shift, refine which bits we need. Otherwise, use the
7063 conservative form of the mask. */
7064 if (GET_CODE (XEXP (x, 1)) == CONST_INT
7065 && INTVAL (XEXP (x, 1)) >= 0
7066 && INTVAL (XEXP (x, 1)) < GET_MODE_BITSIZE (op_mode)
7067 && GET_MODE_BITSIZE (op_mode) <= HOST_BITS_PER_WIDE_INT)
7068 mask >>= INTVAL (XEXP (x, 1));
7069 else
7070 mask = fuller_mask;
7071
7072 op0 = gen_lowpart_or_truncate (op_mode,
7073 force_to_mode (XEXP (x, 0), op_mode,
7074 mask, next_select));
7075
7076 if (op_mode != GET_MODE (x) || op0 != XEXP (x, 0))
7077 x = simplify_gen_binary (code, op_mode, op0, XEXP (x, 1));
7078 break;
7079
7080 case LSHIFTRT:
7081 /* Here we can only do something if the shift count is a constant,
7082 this shift constant is valid for the host, and we can do arithmetic
7083 in OP_MODE. */
7084
7085 if (GET_CODE (XEXP (x, 1)) == CONST_INT
7086 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT
7087 && GET_MODE_BITSIZE (op_mode) <= HOST_BITS_PER_WIDE_INT)
7088 {
7089 rtx inner = XEXP (x, 0);
7090 unsigned HOST_WIDE_INT inner_mask;
7091
7092 /* Select the mask of the bits we need for the shift operand. */
7093 inner_mask = mask << INTVAL (XEXP (x, 1));
7094
7095 /* We can only change the mode of the shift if we can do arithmetic
7096 in the mode of the shift and INNER_MASK is no wider than the
7097 width of X's mode. */
7098 if ((inner_mask & ~GET_MODE_MASK (GET_MODE (x))) != 0)
7099 op_mode = GET_MODE (x);
7100
7101 inner = force_to_mode (inner, op_mode, inner_mask, next_select);
7102
7103 if (GET_MODE (x) != op_mode || inner != XEXP (x, 0))
7104 x = simplify_gen_binary (LSHIFTRT, op_mode, inner, XEXP (x, 1));
7105 }
7106
7107 /* If we have (and (lshiftrt FOO C1) C2) where the combination of the
7108 shift and AND produces only copies of the sign bit (C2 is one less
7109 than a power of two), we can do this with just a shift. */
7110
7111 if (GET_CODE (x) == LSHIFTRT
7112 && GET_CODE (XEXP (x, 1)) == CONST_INT
7113 /* The shift puts one of the sign bit copies in the least significant
7114 bit. */
7115 && ((INTVAL (XEXP (x, 1))
7116 + num_sign_bit_copies (XEXP (x, 0), GET_MODE (XEXP (x, 0))))
7117 >= GET_MODE_BITSIZE (GET_MODE (x)))
7118 && exact_log2 (mask + 1) >= 0
7119 /* Number of bits left after the shift must be more than the mask
7120 needs. */
7121 && ((INTVAL (XEXP (x, 1)) + exact_log2 (mask + 1))
7122 <= GET_MODE_BITSIZE (GET_MODE (x)))
7123 /* Must be more sign bit copies than the mask needs. */
7124 && ((int) num_sign_bit_copies (XEXP (x, 0), GET_MODE (XEXP (x, 0)))
7125 >= exact_log2 (mask + 1)))
7126 x = simplify_gen_binary (LSHIFTRT, GET_MODE (x), XEXP (x, 0),
7127 GEN_INT (GET_MODE_BITSIZE (GET_MODE (x))
7128 - exact_log2 (mask + 1)));
7129
7130 goto shiftrt;
7131
7132 case ASHIFTRT:
7133 /* If we are just looking for the sign bit, we don't need this shift at
7134 all, even if it has a variable count. */
7135 if (GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
7136 && (mask == ((unsigned HOST_WIDE_INT) 1
7137 << (GET_MODE_BITSIZE (GET_MODE (x)) - 1))))
7138 return force_to_mode (XEXP (x, 0), mode, mask, next_select);
7139
7140 /* If this is a shift by a constant, get a mask that contains those bits
7141 that are not copies of the sign bit. We then have two cases: If
7142 MASK only includes those bits, this can be a logical shift, which may
7143 allow simplifications. If MASK is a single-bit field not within
7144 those bits, we are requesting a copy of the sign bit and hence can
7145 shift the sign bit to the appropriate location. */
7146
7147 if (GET_CODE (XEXP (x, 1)) == CONST_INT && INTVAL (XEXP (x, 1)) >= 0
7148 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT)
7149 {
7150 int i;
7151
7152 /* If the considered data is wider than HOST_WIDE_INT, we can't
7153 represent a mask for all its bits in a single scalar.
7154 But we only care about the lower bits, so calculate these. */
7155
7156 if (GET_MODE_BITSIZE (GET_MODE (x)) > HOST_BITS_PER_WIDE_INT)
7157 {
7158 nonzero = ~(HOST_WIDE_INT) 0;
7159
7160 /* GET_MODE_BITSIZE (GET_MODE (x)) - INTVAL (XEXP (x, 1))
7161 is the number of bits a full-width mask would have set.
7162 We need only shift if these are fewer than nonzero can
7163 hold. If not, we must keep all bits set in nonzero. */
7164
7165 if (GET_MODE_BITSIZE (GET_MODE (x)) - INTVAL (XEXP (x, 1))
7166 < HOST_BITS_PER_WIDE_INT)
7167 nonzero >>= INTVAL (XEXP (x, 1))
7168 + HOST_BITS_PER_WIDE_INT
7169 - GET_MODE_BITSIZE (GET_MODE (x)) ;
7170 }
7171 else
7172 {
7173 nonzero = GET_MODE_MASK (GET_MODE (x));
7174 nonzero >>= INTVAL (XEXP (x, 1));
7175 }
7176
7177 if ((mask & ~nonzero) == 0)
7178 {
7179 x = simplify_shift_const (NULL_RTX, LSHIFTRT, GET_MODE (x),
7180 XEXP (x, 0), INTVAL (XEXP (x, 1)));
7181 if (GET_CODE (x) != ASHIFTRT)
7182 return force_to_mode (x, mode, mask, next_select);
7183 }
7184
7185 else if ((i = exact_log2 (mask)) >= 0)
7186 {
7187 x = simplify_shift_const
7188 (NULL_RTX, LSHIFTRT, GET_MODE (x), XEXP (x, 0),
7189 GET_MODE_BITSIZE (GET_MODE (x)) - 1 - i);
7190
7191 if (GET_CODE (x) != ASHIFTRT)
7192 return force_to_mode (x, mode, mask, next_select);
7193 }
7194 }
7195
7196 /* If MASK is 1, convert this to an LSHIFTRT. This can be done
7197 even if the shift count isn't a constant. */
7198 if (mask == 1)
7199 x = simplify_gen_binary (LSHIFTRT, GET_MODE (x),
7200 XEXP (x, 0), XEXP (x, 1));
7201
7202 shiftrt:
7203
7204 /* If this is a zero- or sign-extension operation that just affects bits
7205 we don't care about, remove it. Be sure the call above returned
7206 something that is still a shift. */
7207
7208 if ((GET_CODE (x) == LSHIFTRT || GET_CODE (x) == ASHIFTRT)
7209 && GET_CODE (XEXP (x, 1)) == CONST_INT
7210 && INTVAL (XEXP (x, 1)) >= 0
7211 && (INTVAL (XEXP (x, 1))
7212 <= GET_MODE_BITSIZE (GET_MODE (x)) - (floor_log2 (mask) + 1))
7213 && GET_CODE (XEXP (x, 0)) == ASHIFT
7214 && XEXP (XEXP (x, 0), 1) == XEXP (x, 1))
7215 return force_to_mode (XEXP (XEXP (x, 0), 0), mode, mask,
7216 next_select);
7217
7218 break;
7219
7220 case ROTATE:
7221 case ROTATERT:
7222 /* If the shift count is constant and we can do computations
7223 in the mode of X, compute where the bits we care about are.
7224 Otherwise, we can't do anything. Don't change the mode of
7225 the shift or propagate MODE into the shift, though. */
7226 if (GET_CODE (XEXP (x, 1)) == CONST_INT
7227 && INTVAL (XEXP (x, 1)) >= 0)
7228 {
7229 temp = simplify_binary_operation (code == ROTATE ? ROTATERT : ROTATE,
7230 GET_MODE (x), GEN_INT (mask),
7231 XEXP (x, 1));
7232 if (temp && GET_CODE (temp) == CONST_INT)
7233 SUBST (XEXP (x, 0),
7234 force_to_mode (XEXP (x, 0), GET_MODE (x),
7235 INTVAL (temp), next_select));
7236 }
7237 break;
7238
7239 case NEG:
7240 /* If we just want the low-order bit, the NEG isn't needed since it
7241 won't change the low-order bit. */
7242 if (mask == 1)
7243 return force_to_mode (XEXP (x, 0), mode, mask, just_select);
7244
7245 /* We need any bits less significant than the most significant bit in
7246 MASK since carries from those bits will affect the bits we are
7247 interested in. */
7248 mask = fuller_mask;
7249 goto unop;
7250
7251 case NOT:
7252 /* (not FOO) is (xor FOO CONST), so if FOO is an LSHIFTRT, we can do the
7253 same as the XOR case above. Ensure that the constant we form is not
7254 wider than the mode of X. */
7255
7256 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
7257 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
7258 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
7259 && (INTVAL (XEXP (XEXP (x, 0), 1)) + floor_log2 (mask)
7260 < GET_MODE_BITSIZE (GET_MODE (x)))
7261 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT)
7262 {
7263 temp = gen_int_mode (mask << INTVAL (XEXP (XEXP (x, 0), 1)),
7264 GET_MODE (x));
7265 temp = simplify_gen_binary (XOR, GET_MODE (x),
7266 XEXP (XEXP (x, 0), 0), temp);
7267 x = simplify_gen_binary (LSHIFTRT, GET_MODE (x),
7268 temp, XEXP (XEXP (x, 0), 1));
7269
7270 return force_to_mode (x, mode, mask, next_select);
7271 }
7272
7273 /* (and (not FOO) CONST) is (not (or FOO (not CONST))), so we must
7274 use the full mask inside the NOT. */
7275 mask = fuller_mask;
7276
7277 unop:
7278 op0 = gen_lowpart_or_truncate (op_mode,
7279 force_to_mode (XEXP (x, 0), mode, mask,
7280 next_select));
7281 if (op_mode != GET_MODE (x) || op0 != XEXP (x, 0))
7282 x = simplify_gen_unary (code, op_mode, op0, op_mode);
7283 break;
7284
7285 case NE:
7286 /* (and (ne FOO 0) CONST) can be (and FOO CONST) if CONST is included
7287 in STORE_FLAG_VALUE and FOO has a single bit that might be nonzero,
7288 which is equal to STORE_FLAG_VALUE. */
7289 if ((mask & ~STORE_FLAG_VALUE) == 0 && XEXP (x, 1) == const0_rtx
7290 && GET_MODE (XEXP (x, 0)) == mode
7291 && exact_log2 (nonzero_bits (XEXP (x, 0), mode)) >= 0
7292 && (nonzero_bits (XEXP (x, 0), mode)
7293 == (unsigned HOST_WIDE_INT) STORE_FLAG_VALUE))
7294 return force_to_mode (XEXP (x, 0), mode, mask, next_select);
7295
7296 break;
7297
7298 case IF_THEN_ELSE:
7299 /* We have no way of knowing if the IF_THEN_ELSE can itself be
7300 written in a narrower mode. We play it safe and do not do so. */
7301
7302 SUBST (XEXP (x, 1),
7303 gen_lowpart_or_truncate (GET_MODE (x),
7304 force_to_mode (XEXP (x, 1), mode,
7305 mask, next_select)));
7306 SUBST (XEXP (x, 2),
7307 gen_lowpart_or_truncate (GET_MODE (x),
7308 force_to_mode (XEXP (x, 2), mode,
7309 mask, next_select)));
7310 break;
7311
7312 default:
7313 break;
7314 }
7315
7316 /* Ensure we return a value of the proper mode. */
7317 return gen_lowpart_or_truncate (mode, x);
7318 }
7319 \f
7320 /* Return nonzero if X is an expression that has one of two values depending on
7321 whether some other value is zero or nonzero. In that case, we return the
7322 value that is being tested, *PTRUE is set to the value if the rtx being
7323 returned has a nonzero value, and *PFALSE is set to the other alternative.
7324
7325 If we return zero, we set *PTRUE and *PFALSE to X. */
7326
7327 static rtx
7328 if_then_else_cond (rtx x, rtx *ptrue, rtx *pfalse)
7329 {
7330 enum machine_mode mode = GET_MODE (x);
7331 enum rtx_code code = GET_CODE (x);
7332 rtx cond0, cond1, true0, true1, false0, false1;
7333 unsigned HOST_WIDE_INT nz;
7334
7335 /* If we are comparing a value against zero, we are done. */
7336 if ((code == NE || code == EQ)
7337 && XEXP (x, 1) == const0_rtx)
7338 {
7339 *ptrue = (code == NE) ? const_true_rtx : const0_rtx;
7340 *pfalse = (code == NE) ? const0_rtx : const_true_rtx;
7341 return XEXP (x, 0);
7342 }
7343
7344 /* If this is a unary operation whose operand has one of two values, apply
7345 our opcode to compute those values. */
7346 else if (UNARY_P (x)
7347 && (cond0 = if_then_else_cond (XEXP (x, 0), &true0, &false0)) != 0)
7348 {
7349 *ptrue = simplify_gen_unary (code, mode, true0, GET_MODE (XEXP (x, 0)));
7350 *pfalse = simplify_gen_unary (code, mode, false0,
7351 GET_MODE (XEXP (x, 0)));
7352 return cond0;
7353 }
7354
7355 /* If this is a COMPARE, do nothing, since the IF_THEN_ELSE we would
7356 make can't possibly match and would suppress other optimizations. */
7357 else if (code == COMPARE)
7358 ;
7359
7360 /* If this is a binary operation, see if either side has only one of two
7361 values. If either one does or if both do and they are conditional on
7362 the same value, compute the new true and false values. */
7363 else if (BINARY_P (x))
7364 {
7365 cond0 = if_then_else_cond (XEXP (x, 0), &true0, &false0);
7366 cond1 = if_then_else_cond (XEXP (x, 1), &true1, &false1);
7367
7368 if ((cond0 != 0 || cond1 != 0)
7369 && ! (cond0 != 0 && cond1 != 0 && ! rtx_equal_p (cond0, cond1)))
7370 {
7371 /* If if_then_else_cond returned zero, then true/false are the
7372 same rtl. We must copy one of them to prevent invalid rtl
7373 sharing. */
7374 if (cond0 == 0)
7375 true0 = copy_rtx (true0);
7376 else if (cond1 == 0)
7377 true1 = copy_rtx (true1);
7378
7379 if (COMPARISON_P (x))
7380 {
7381 *ptrue = simplify_gen_relational (code, mode, VOIDmode,
7382 true0, true1);
7383 *pfalse = simplify_gen_relational (code, mode, VOIDmode,
7384 false0, false1);
7385 }
7386 else
7387 {
7388 *ptrue = simplify_gen_binary (code, mode, true0, true1);
7389 *pfalse = simplify_gen_binary (code, mode, false0, false1);
7390 }
7391
7392 return cond0 ? cond0 : cond1;
7393 }
7394
7395 /* See if we have PLUS, IOR, XOR, MINUS or UMAX, where one of the
7396 operands is zero when the other is nonzero, and vice-versa,
7397 and STORE_FLAG_VALUE is 1 or -1. */
7398
7399 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
7400 && (code == PLUS || code == IOR || code == XOR || code == MINUS
7401 || code == UMAX)
7402 && GET_CODE (XEXP (x, 0)) == MULT && GET_CODE (XEXP (x, 1)) == MULT)
7403 {
7404 rtx op0 = XEXP (XEXP (x, 0), 1);
7405 rtx op1 = XEXP (XEXP (x, 1), 1);
7406
7407 cond0 = XEXP (XEXP (x, 0), 0);
7408 cond1 = XEXP (XEXP (x, 1), 0);
7409
7410 if (COMPARISON_P (cond0)
7411 && COMPARISON_P (cond1)
7412 && ((GET_CODE (cond0) == reversed_comparison_code (cond1, NULL)
7413 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 0))
7414 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 1)))
7415 || ((swap_condition (GET_CODE (cond0))
7416 == reversed_comparison_code (cond1, NULL))
7417 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 1))
7418 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 0))))
7419 && ! side_effects_p (x))
7420 {
7421 *ptrue = simplify_gen_binary (MULT, mode, op0, const_true_rtx);
7422 *pfalse = simplify_gen_binary (MULT, mode,
7423 (code == MINUS
7424 ? simplify_gen_unary (NEG, mode,
7425 op1, mode)
7426 : op1),
7427 const_true_rtx);
7428 return cond0;
7429 }
7430 }
7431
7432 /* Similarly for MULT, AND and UMIN, except that for these the result
7433 is always zero. */
7434 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
7435 && (code == MULT || code == AND || code == UMIN)
7436 && GET_CODE (XEXP (x, 0)) == MULT && GET_CODE (XEXP (x, 1)) == MULT)
7437 {
7438 cond0 = XEXP (XEXP (x, 0), 0);
7439 cond1 = XEXP (XEXP (x, 1), 0);
7440
7441 if (COMPARISON_P (cond0)
7442 && COMPARISON_P (cond1)
7443 && ((GET_CODE (cond0) == reversed_comparison_code (cond1, NULL)
7444 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 0))
7445 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 1)))
7446 || ((swap_condition (GET_CODE (cond0))
7447 == reversed_comparison_code (cond1, NULL))
7448 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 1))
7449 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 0))))
7450 && ! side_effects_p (x))
7451 {
7452 *ptrue = *pfalse = const0_rtx;
7453 return cond0;
7454 }
7455 }
7456 }
7457
7458 else if (code == IF_THEN_ELSE)
7459 {
7460 /* If we have IF_THEN_ELSE already, extract the condition and
7461 canonicalize it if it is NE or EQ. */
7462 cond0 = XEXP (x, 0);
7463 *ptrue = XEXP (x, 1), *pfalse = XEXP (x, 2);
7464 if (GET_CODE (cond0) == NE && XEXP (cond0, 1) == const0_rtx)
7465 return XEXP (cond0, 0);
7466 else if (GET_CODE (cond0) == EQ && XEXP (cond0, 1) == const0_rtx)
7467 {
7468 *ptrue = XEXP (x, 2), *pfalse = XEXP (x, 1);
7469 return XEXP (cond0, 0);
7470 }
7471 else
7472 return cond0;
7473 }
7474
7475 /* If X is a SUBREG, we can narrow both the true and false values
7476 if the inner expression, if there is a condition. */
7477 else if (code == SUBREG
7478 && 0 != (cond0 = if_then_else_cond (SUBREG_REG (x),
7479 &true0, &false0)))
7480 {
7481 true0 = simplify_gen_subreg (mode, true0,
7482 GET_MODE (SUBREG_REG (x)), SUBREG_BYTE (x));
7483 false0 = simplify_gen_subreg (mode, false0,
7484 GET_MODE (SUBREG_REG (x)), SUBREG_BYTE (x));
7485 if (true0 && false0)
7486 {
7487 *ptrue = true0;
7488 *pfalse = false0;
7489 return cond0;
7490 }
7491 }
7492
7493 /* If X is a constant, this isn't special and will cause confusions
7494 if we treat it as such. Likewise if it is equivalent to a constant. */
7495 else if (CONSTANT_P (x)
7496 || ((cond0 = get_last_value (x)) != 0 && CONSTANT_P (cond0)))
7497 ;
7498
7499 /* If we're in BImode, canonicalize on 0 and STORE_FLAG_VALUE, as that
7500 will be least confusing to the rest of the compiler. */
7501 else if (mode == BImode)
7502 {
7503 *ptrue = GEN_INT (STORE_FLAG_VALUE), *pfalse = const0_rtx;
7504 return x;
7505 }
7506
7507 /* If X is known to be either 0 or -1, those are the true and
7508 false values when testing X. */
7509 else if (x == constm1_rtx || x == const0_rtx
7510 || (mode != VOIDmode
7511 && num_sign_bit_copies (x, mode) == GET_MODE_BITSIZE (mode)))
7512 {
7513 *ptrue = constm1_rtx, *pfalse = const0_rtx;
7514 return x;
7515 }
7516
7517 /* Likewise for 0 or a single bit. */
7518 else if (SCALAR_INT_MODE_P (mode)
7519 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
7520 && exact_log2 (nz = nonzero_bits (x, mode)) >= 0)
7521 {
7522 *ptrue = gen_int_mode (nz, mode), *pfalse = const0_rtx;
7523 return x;
7524 }
7525
7526 /* Otherwise fail; show no condition with true and false values the same. */
7527 *ptrue = *pfalse = x;
7528 return 0;
7529 }
7530 \f
7531 /* Return the value of expression X given the fact that condition COND
7532 is known to be true when applied to REG as its first operand and VAL
7533 as its second. X is known to not be shared and so can be modified in
7534 place.
7535
7536 We only handle the simplest cases, and specifically those cases that
7537 arise with IF_THEN_ELSE expressions. */
7538
7539 static rtx
7540 known_cond (rtx x, enum rtx_code cond, rtx reg, rtx val)
7541 {
7542 enum rtx_code code = GET_CODE (x);
7543 rtx temp;
7544 const char *fmt;
7545 int i, j;
7546
7547 if (side_effects_p (x))
7548 return x;
7549
7550 /* If either operand of the condition is a floating point value,
7551 then we have to avoid collapsing an EQ comparison. */
7552 if (cond == EQ
7553 && rtx_equal_p (x, reg)
7554 && ! FLOAT_MODE_P (GET_MODE (x))
7555 && ! FLOAT_MODE_P (GET_MODE (val)))
7556 return val;
7557
7558 if (cond == UNEQ && rtx_equal_p (x, reg))
7559 return val;
7560
7561 /* If X is (abs REG) and we know something about REG's relationship
7562 with zero, we may be able to simplify this. */
7563
7564 if (code == ABS && rtx_equal_p (XEXP (x, 0), reg) && val == const0_rtx)
7565 switch (cond)
7566 {
7567 case GE: case GT: case EQ:
7568 return XEXP (x, 0);
7569 case LT: case LE:
7570 return simplify_gen_unary (NEG, GET_MODE (XEXP (x, 0)),
7571 XEXP (x, 0),
7572 GET_MODE (XEXP (x, 0)));
7573 default:
7574 break;
7575 }
7576
7577 /* The only other cases we handle are MIN, MAX, and comparisons if the
7578 operands are the same as REG and VAL. */
7579
7580 else if (COMPARISON_P (x) || COMMUTATIVE_ARITH_P (x))
7581 {
7582 if (rtx_equal_p (XEXP (x, 0), val))
7583 cond = swap_condition (cond), temp = val, val = reg, reg = temp;
7584
7585 if (rtx_equal_p (XEXP (x, 0), reg) && rtx_equal_p (XEXP (x, 1), val))
7586 {
7587 if (COMPARISON_P (x))
7588 {
7589 if (comparison_dominates_p (cond, code))
7590 return const_true_rtx;
7591
7592 code = reversed_comparison_code (x, NULL);
7593 if (code != UNKNOWN
7594 && comparison_dominates_p (cond, code))
7595 return const0_rtx;
7596 else
7597 return x;
7598 }
7599 else if (code == SMAX || code == SMIN
7600 || code == UMIN || code == UMAX)
7601 {
7602 int unsignedp = (code == UMIN || code == UMAX);
7603
7604 /* Do not reverse the condition when it is NE or EQ.
7605 This is because we cannot conclude anything about
7606 the value of 'SMAX (x, y)' when x is not equal to y,
7607 but we can when x equals y. */
7608 if ((code == SMAX || code == UMAX)
7609 && ! (cond == EQ || cond == NE))
7610 cond = reverse_condition (cond);
7611
7612 switch (cond)
7613 {
7614 case GE: case GT:
7615 return unsignedp ? x : XEXP (x, 1);
7616 case LE: case LT:
7617 return unsignedp ? x : XEXP (x, 0);
7618 case GEU: case GTU:
7619 return unsignedp ? XEXP (x, 1) : x;
7620 case LEU: case LTU:
7621 return unsignedp ? XEXP (x, 0) : x;
7622 default:
7623 break;
7624 }
7625 }
7626 }
7627 }
7628 else if (code == SUBREG)
7629 {
7630 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (x));
7631 rtx new, r = known_cond (SUBREG_REG (x), cond, reg, val);
7632
7633 if (SUBREG_REG (x) != r)
7634 {
7635 /* We must simplify subreg here, before we lose track of the
7636 original inner_mode. */
7637 new = simplify_subreg (GET_MODE (x), r,
7638 inner_mode, SUBREG_BYTE (x));
7639 if (new)
7640 return new;
7641 else
7642 SUBST (SUBREG_REG (x), r);
7643 }
7644
7645 return x;
7646 }
7647 /* We don't have to handle SIGN_EXTEND here, because even in the
7648 case of replacing something with a modeless CONST_INT, a
7649 CONST_INT is already (supposed to be) a valid sign extension for
7650 its narrower mode, which implies it's already properly
7651 sign-extended for the wider mode. Now, for ZERO_EXTEND, the
7652 story is different. */
7653 else if (code == ZERO_EXTEND)
7654 {
7655 enum machine_mode inner_mode = GET_MODE (XEXP (x, 0));
7656 rtx new, r = known_cond (XEXP (x, 0), cond, reg, val);
7657
7658 if (XEXP (x, 0) != r)
7659 {
7660 /* We must simplify the zero_extend here, before we lose
7661 track of the original inner_mode. */
7662 new = simplify_unary_operation (ZERO_EXTEND, GET_MODE (x),
7663 r, inner_mode);
7664 if (new)
7665 return new;
7666 else
7667 SUBST (XEXP (x, 0), r);
7668 }
7669
7670 return x;
7671 }
7672
7673 fmt = GET_RTX_FORMAT (code);
7674 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
7675 {
7676 if (fmt[i] == 'e')
7677 SUBST (XEXP (x, i), known_cond (XEXP (x, i), cond, reg, val));
7678 else if (fmt[i] == 'E')
7679 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
7680 SUBST (XVECEXP (x, i, j), known_cond (XVECEXP (x, i, j),
7681 cond, reg, val));
7682 }
7683
7684 return x;
7685 }
7686 \f
7687 /* See if X and Y are equal for the purposes of seeing if we can rewrite an
7688 assignment as a field assignment. */
7689
7690 static int
7691 rtx_equal_for_field_assignment_p (rtx x, rtx y)
7692 {
7693 if (x == y || rtx_equal_p (x, y))
7694 return 1;
7695
7696 if (x == 0 || y == 0 || GET_MODE (x) != GET_MODE (y))
7697 return 0;
7698
7699 /* Check for a paradoxical SUBREG of a MEM compared with the MEM.
7700 Note that all SUBREGs of MEM are paradoxical; otherwise they
7701 would have been rewritten. */
7702 if (MEM_P (x) && GET_CODE (y) == SUBREG
7703 && MEM_P (SUBREG_REG (y))
7704 && rtx_equal_p (SUBREG_REG (y),
7705 gen_lowpart (GET_MODE (SUBREG_REG (y)), x)))
7706 return 1;
7707
7708 if (MEM_P (y) && GET_CODE (x) == SUBREG
7709 && MEM_P (SUBREG_REG (x))
7710 && rtx_equal_p (SUBREG_REG (x),
7711 gen_lowpart (GET_MODE (SUBREG_REG (x)), y)))
7712 return 1;
7713
7714 /* We used to see if get_last_value of X and Y were the same but that's
7715 not correct. In one direction, we'll cause the assignment to have
7716 the wrong destination and in the case, we'll import a register into this
7717 insn that might have already have been dead. So fail if none of the
7718 above cases are true. */
7719 return 0;
7720 }
7721 \f
7722 /* See if X, a SET operation, can be rewritten as a bit-field assignment.
7723 Return that assignment if so.
7724
7725 We only handle the most common cases. */
7726
7727 static rtx
7728 make_field_assignment (rtx x)
7729 {
7730 rtx dest = SET_DEST (x);
7731 rtx src = SET_SRC (x);
7732 rtx assign;
7733 rtx rhs, lhs;
7734 HOST_WIDE_INT c1;
7735 HOST_WIDE_INT pos;
7736 unsigned HOST_WIDE_INT len;
7737 rtx other;
7738 enum machine_mode mode;
7739
7740 /* If SRC was (and (not (ashift (const_int 1) POS)) DEST), this is
7741 a clear of a one-bit field. We will have changed it to
7742 (and (rotate (const_int -2) POS) DEST), so check for that. Also check
7743 for a SUBREG. */
7744
7745 if (GET_CODE (src) == AND && GET_CODE (XEXP (src, 0)) == ROTATE
7746 && GET_CODE (XEXP (XEXP (src, 0), 0)) == CONST_INT
7747 && INTVAL (XEXP (XEXP (src, 0), 0)) == -2
7748 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
7749 {
7750 assign = make_extraction (VOIDmode, dest, 0, XEXP (XEXP (src, 0), 1),
7751 1, 1, 1, 0);
7752 if (assign != 0)
7753 return gen_rtx_SET (VOIDmode, assign, const0_rtx);
7754 return x;
7755 }
7756
7757 if (GET_CODE (src) == AND && GET_CODE (XEXP (src, 0)) == SUBREG
7758 && subreg_lowpart_p (XEXP (src, 0))
7759 && (GET_MODE_SIZE (GET_MODE (XEXP (src, 0)))
7760 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (XEXP (src, 0)))))
7761 && GET_CODE (SUBREG_REG (XEXP (src, 0))) == ROTATE
7762 && GET_CODE (XEXP (SUBREG_REG (XEXP (src, 0)), 0)) == CONST_INT
7763 && INTVAL (XEXP (SUBREG_REG (XEXP (src, 0)), 0)) == -2
7764 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
7765 {
7766 assign = make_extraction (VOIDmode, dest, 0,
7767 XEXP (SUBREG_REG (XEXP (src, 0)), 1),
7768 1, 1, 1, 0);
7769 if (assign != 0)
7770 return gen_rtx_SET (VOIDmode, assign, const0_rtx);
7771 return x;
7772 }
7773
7774 /* If SRC is (ior (ashift (const_int 1) POS) DEST), this is a set of a
7775 one-bit field. */
7776 if (GET_CODE (src) == IOR && GET_CODE (XEXP (src, 0)) == ASHIFT
7777 && XEXP (XEXP (src, 0), 0) == const1_rtx
7778 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
7779 {
7780 assign = make_extraction (VOIDmode, dest, 0, XEXP (XEXP (src, 0), 1),
7781 1, 1, 1, 0);
7782 if (assign != 0)
7783 return gen_rtx_SET (VOIDmode, assign, const1_rtx);
7784 return x;
7785 }
7786
7787 /* If DEST is already a field assignment, i.e. ZERO_EXTRACT, and the
7788 SRC is an AND with all bits of that field set, then we can discard
7789 the AND. */
7790 if (GET_CODE (dest) == ZERO_EXTRACT
7791 && GET_CODE (XEXP (dest, 1)) == CONST_INT
7792 && GET_CODE (src) == AND
7793 && GET_CODE (XEXP (src, 1)) == CONST_INT)
7794 {
7795 HOST_WIDE_INT width = INTVAL (XEXP (dest, 1));
7796 unsigned HOST_WIDE_INT and_mask = INTVAL (XEXP (src, 1));
7797 unsigned HOST_WIDE_INT ze_mask;
7798
7799 if (width >= HOST_BITS_PER_WIDE_INT)
7800 ze_mask = -1;
7801 else
7802 ze_mask = ((unsigned HOST_WIDE_INT)1 << width) - 1;
7803
7804 /* Complete overlap. We can remove the source AND. */
7805 if ((and_mask & ze_mask) == ze_mask)
7806 return gen_rtx_SET (VOIDmode, dest, XEXP (src, 0));
7807
7808 /* Partial overlap. We can reduce the source AND. */
7809 if ((and_mask & ze_mask) != and_mask)
7810 {
7811 mode = GET_MODE (src);
7812 src = gen_rtx_AND (mode, XEXP (src, 0),
7813 gen_int_mode (and_mask & ze_mask, mode));
7814 return gen_rtx_SET (VOIDmode, dest, src);
7815 }
7816 }
7817
7818 /* The other case we handle is assignments into a constant-position
7819 field. They look like (ior/xor (and DEST C1) OTHER). If C1 represents
7820 a mask that has all one bits except for a group of zero bits and
7821 OTHER is known to have zeros where C1 has ones, this is such an
7822 assignment. Compute the position and length from C1. Shift OTHER
7823 to the appropriate position, force it to the required mode, and
7824 make the extraction. Check for the AND in both operands. */
7825
7826 if (GET_CODE (src) != IOR && GET_CODE (src) != XOR)
7827 return x;
7828
7829 rhs = expand_compound_operation (XEXP (src, 0));
7830 lhs = expand_compound_operation (XEXP (src, 1));
7831
7832 if (GET_CODE (rhs) == AND
7833 && GET_CODE (XEXP (rhs, 1)) == CONST_INT
7834 && rtx_equal_for_field_assignment_p (XEXP (rhs, 0), dest))
7835 c1 = INTVAL (XEXP (rhs, 1)), other = lhs;
7836 else if (GET_CODE (lhs) == AND
7837 && GET_CODE (XEXP (lhs, 1)) == CONST_INT
7838 && rtx_equal_for_field_assignment_p (XEXP (lhs, 0), dest))
7839 c1 = INTVAL (XEXP (lhs, 1)), other = rhs;
7840 else
7841 return x;
7842
7843 pos = get_pos_from_mask ((~c1) & GET_MODE_MASK (GET_MODE (dest)), &len);
7844 if (pos < 0 || pos + len > GET_MODE_BITSIZE (GET_MODE (dest))
7845 || GET_MODE_BITSIZE (GET_MODE (dest)) > HOST_BITS_PER_WIDE_INT
7846 || (c1 & nonzero_bits (other, GET_MODE (dest))) != 0)
7847 return x;
7848
7849 assign = make_extraction (VOIDmode, dest, pos, NULL_RTX, len, 1, 1, 0);
7850 if (assign == 0)
7851 return x;
7852
7853 /* The mode to use for the source is the mode of the assignment, or of
7854 what is inside a possible STRICT_LOW_PART. */
7855 mode = (GET_CODE (assign) == STRICT_LOW_PART
7856 ? GET_MODE (XEXP (assign, 0)) : GET_MODE (assign));
7857
7858 /* Shift OTHER right POS places and make it the source, restricting it
7859 to the proper length and mode. */
7860
7861 src = canon_reg_for_combine (simplify_shift_const (NULL_RTX, LSHIFTRT,
7862 GET_MODE (src),
7863 other, pos),
7864 dest);
7865 src = force_to_mode (src, mode,
7866 GET_MODE_BITSIZE (mode) >= HOST_BITS_PER_WIDE_INT
7867 ? ~(unsigned HOST_WIDE_INT) 0
7868 : ((unsigned HOST_WIDE_INT) 1 << len) - 1,
7869 0);
7870
7871 /* If SRC is masked by an AND that does not make a difference in
7872 the value being stored, strip it. */
7873 if (GET_CODE (assign) == ZERO_EXTRACT
7874 && GET_CODE (XEXP (assign, 1)) == CONST_INT
7875 && INTVAL (XEXP (assign, 1)) < HOST_BITS_PER_WIDE_INT
7876 && GET_CODE (src) == AND
7877 && GET_CODE (XEXP (src, 1)) == CONST_INT
7878 && ((unsigned HOST_WIDE_INT) INTVAL (XEXP (src, 1))
7879 == ((unsigned HOST_WIDE_INT) 1 << INTVAL (XEXP (assign, 1))) - 1))
7880 src = XEXP (src, 0);
7881
7882 return gen_rtx_SET (VOIDmode, assign, src);
7883 }
7884 \f
7885 /* See if X is of the form (+ (* a c) (* b c)) and convert to (* (+ a b) c)
7886 if so. */
7887
7888 static rtx
7889 apply_distributive_law (rtx x)
7890 {
7891 enum rtx_code code = GET_CODE (x);
7892 enum rtx_code inner_code;
7893 rtx lhs, rhs, other;
7894 rtx tem;
7895
7896 /* Distributivity is not true for floating point as it can change the
7897 value. So we don't do it unless -funsafe-math-optimizations. */
7898 if (FLOAT_MODE_P (GET_MODE (x))
7899 && ! flag_unsafe_math_optimizations)
7900 return x;
7901
7902 /* The outer operation can only be one of the following: */
7903 if (code != IOR && code != AND && code != XOR
7904 && code != PLUS && code != MINUS)
7905 return x;
7906
7907 lhs = XEXP (x, 0);
7908 rhs = XEXP (x, 1);
7909
7910 /* If either operand is a primitive we can't do anything, so get out
7911 fast. */
7912 if (OBJECT_P (lhs) || OBJECT_P (rhs))
7913 return x;
7914
7915 lhs = expand_compound_operation (lhs);
7916 rhs = expand_compound_operation (rhs);
7917 inner_code = GET_CODE (lhs);
7918 if (inner_code != GET_CODE (rhs))
7919 return x;
7920
7921 /* See if the inner and outer operations distribute. */
7922 switch (inner_code)
7923 {
7924 case LSHIFTRT:
7925 case ASHIFTRT:
7926 case AND:
7927 case IOR:
7928 /* These all distribute except over PLUS. */
7929 if (code == PLUS || code == MINUS)
7930 return x;
7931 break;
7932
7933 case MULT:
7934 if (code != PLUS && code != MINUS)
7935 return x;
7936 break;
7937
7938 case ASHIFT:
7939 /* This is also a multiply, so it distributes over everything. */
7940 break;
7941
7942 case SUBREG:
7943 /* Non-paradoxical SUBREGs distributes over all operations,
7944 provided the inner modes and byte offsets are the same, this
7945 is an extraction of a low-order part, we don't convert an fp
7946 operation to int or vice versa, this is not a vector mode,
7947 and we would not be converting a single-word operation into a
7948 multi-word operation. The latter test is not required, but
7949 it prevents generating unneeded multi-word operations. Some
7950 of the previous tests are redundant given the latter test,
7951 but are retained because they are required for correctness.
7952
7953 We produce the result slightly differently in this case. */
7954
7955 if (GET_MODE (SUBREG_REG (lhs)) != GET_MODE (SUBREG_REG (rhs))
7956 || SUBREG_BYTE (lhs) != SUBREG_BYTE (rhs)
7957 || ! subreg_lowpart_p (lhs)
7958 || (GET_MODE_CLASS (GET_MODE (lhs))
7959 != GET_MODE_CLASS (GET_MODE (SUBREG_REG (lhs))))
7960 || (GET_MODE_SIZE (GET_MODE (lhs))
7961 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (lhs))))
7962 || VECTOR_MODE_P (GET_MODE (lhs))
7963 || GET_MODE_SIZE (GET_MODE (SUBREG_REG (lhs))) > UNITS_PER_WORD
7964 /* Result might need to be truncated. Don't change mode if
7965 explicit truncation is needed. */
7966 || !TRULY_NOOP_TRUNCATION
7967 (GET_MODE_BITSIZE (GET_MODE (x)),
7968 GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (lhs)))))
7969 return x;
7970
7971 tem = simplify_gen_binary (code, GET_MODE (SUBREG_REG (lhs)),
7972 SUBREG_REG (lhs), SUBREG_REG (rhs));
7973 return gen_lowpart (GET_MODE (x), tem);
7974
7975 default:
7976 return x;
7977 }
7978
7979 /* Set LHS and RHS to the inner operands (A and B in the example
7980 above) and set OTHER to the common operand (C in the example).
7981 There is only one way to do this unless the inner operation is
7982 commutative. */
7983 if (COMMUTATIVE_ARITH_P (lhs)
7984 && rtx_equal_p (XEXP (lhs, 0), XEXP (rhs, 0)))
7985 other = XEXP (lhs, 0), lhs = XEXP (lhs, 1), rhs = XEXP (rhs, 1);
7986 else if (COMMUTATIVE_ARITH_P (lhs)
7987 && rtx_equal_p (XEXP (lhs, 0), XEXP (rhs, 1)))
7988 other = XEXP (lhs, 0), lhs = XEXP (lhs, 1), rhs = XEXP (rhs, 0);
7989 else if (COMMUTATIVE_ARITH_P (lhs)
7990 && rtx_equal_p (XEXP (lhs, 1), XEXP (rhs, 0)))
7991 other = XEXP (lhs, 1), lhs = XEXP (lhs, 0), rhs = XEXP (rhs, 1);
7992 else if (rtx_equal_p (XEXP (lhs, 1), XEXP (rhs, 1)))
7993 other = XEXP (lhs, 1), lhs = XEXP (lhs, 0), rhs = XEXP (rhs, 0);
7994 else
7995 return x;
7996
7997 /* Form the new inner operation, seeing if it simplifies first. */
7998 tem = simplify_gen_binary (code, GET_MODE (x), lhs, rhs);
7999
8000 /* There is one exception to the general way of distributing:
8001 (a | c) ^ (b | c) -> (a ^ b) & ~c */
8002 if (code == XOR && inner_code == IOR)
8003 {
8004 inner_code = AND;
8005 other = simplify_gen_unary (NOT, GET_MODE (x), other, GET_MODE (x));
8006 }
8007
8008 /* We may be able to continuing distributing the result, so call
8009 ourselves recursively on the inner operation before forming the
8010 outer operation, which we return. */
8011 return simplify_gen_binary (inner_code, GET_MODE (x),
8012 apply_distributive_law (tem), other);
8013 }
8014
8015 /* See if X is of the form (* (+ A B) C), and if so convert to
8016 (+ (* A C) (* B C)) and try to simplify.
8017
8018 Most of the time, this results in no change. However, if some of
8019 the operands are the same or inverses of each other, simplifications
8020 will result.
8021
8022 For example, (and (ior A B) (not B)) can occur as the result of
8023 expanding a bit field assignment. When we apply the distributive
8024 law to this, we get (ior (and (A (not B))) (and (B (not B)))),
8025 which then simplifies to (and (A (not B))).
8026
8027 Note that no checks happen on the validity of applying the inverse
8028 distributive law. This is pointless since we can do it in the
8029 few places where this routine is called.
8030
8031 N is the index of the term that is decomposed (the arithmetic operation,
8032 i.e. (+ A B) in the first example above). !N is the index of the term that
8033 is distributed, i.e. of C in the first example above. */
8034 static rtx
8035 distribute_and_simplify_rtx (rtx x, int n)
8036 {
8037 enum machine_mode mode;
8038 enum rtx_code outer_code, inner_code;
8039 rtx decomposed, distributed, inner_op0, inner_op1, new_op0, new_op1, tmp;
8040
8041 decomposed = XEXP (x, n);
8042 if (!ARITHMETIC_P (decomposed))
8043 return NULL_RTX;
8044
8045 mode = GET_MODE (x);
8046 outer_code = GET_CODE (x);
8047 distributed = XEXP (x, !n);
8048
8049 inner_code = GET_CODE (decomposed);
8050 inner_op0 = XEXP (decomposed, 0);
8051 inner_op1 = XEXP (decomposed, 1);
8052
8053 /* Special case (and (xor B C) (not A)), which is equivalent to
8054 (xor (ior A B) (ior A C)) */
8055 if (outer_code == AND && inner_code == XOR && GET_CODE (distributed) == NOT)
8056 {
8057 distributed = XEXP (distributed, 0);
8058 outer_code = IOR;
8059 }
8060
8061 if (n == 0)
8062 {
8063 /* Distribute the second term. */
8064 new_op0 = simplify_gen_binary (outer_code, mode, inner_op0, distributed);
8065 new_op1 = simplify_gen_binary (outer_code, mode, inner_op1, distributed);
8066 }
8067 else
8068 {
8069 /* Distribute the first term. */
8070 new_op0 = simplify_gen_binary (outer_code, mode, distributed, inner_op0);
8071 new_op1 = simplify_gen_binary (outer_code, mode, distributed, inner_op1);
8072 }
8073
8074 tmp = apply_distributive_law (simplify_gen_binary (inner_code, mode,
8075 new_op0, new_op1));
8076 if (GET_CODE (tmp) != outer_code
8077 && rtx_cost (tmp, SET) < rtx_cost (x, SET))
8078 return tmp;
8079
8080 return NULL_RTX;
8081 }
8082 \f
8083 /* Simplify a logical `and' of VAROP with the constant CONSTOP, to be done
8084 in MODE. Return an equivalent form, if different from (and VAROP
8085 (const_int CONSTOP)). Otherwise, return NULL_RTX. */
8086
8087 static rtx
8088 simplify_and_const_int_1 (enum machine_mode mode, rtx varop,
8089 unsigned HOST_WIDE_INT constop)
8090 {
8091 unsigned HOST_WIDE_INT nonzero;
8092 unsigned HOST_WIDE_INT orig_constop;
8093 rtx orig_varop;
8094 int i;
8095
8096 orig_varop = varop;
8097 orig_constop = constop;
8098 if (GET_CODE (varop) == CLOBBER)
8099 return NULL_RTX;
8100
8101 /* Simplify VAROP knowing that we will be only looking at some of the
8102 bits in it.
8103
8104 Note by passing in CONSTOP, we guarantee that the bits not set in
8105 CONSTOP are not significant and will never be examined. We must
8106 ensure that is the case by explicitly masking out those bits
8107 before returning. */
8108 varop = force_to_mode (varop, mode, constop, 0);
8109
8110 /* If VAROP is a CLOBBER, we will fail so return it. */
8111 if (GET_CODE (varop) == CLOBBER)
8112 return varop;
8113
8114 /* If VAROP is a CONST_INT, then we need to apply the mask in CONSTOP
8115 to VAROP and return the new constant. */
8116 if (GET_CODE (varop) == CONST_INT)
8117 return gen_int_mode (INTVAL (varop) & constop, mode);
8118
8119 /* See what bits may be nonzero in VAROP. Unlike the general case of
8120 a call to nonzero_bits, here we don't care about bits outside
8121 MODE. */
8122
8123 nonzero = nonzero_bits (varop, mode) & GET_MODE_MASK (mode);
8124
8125 /* Turn off all bits in the constant that are known to already be zero.
8126 Thus, if the AND isn't needed at all, we will have CONSTOP == NONZERO_BITS
8127 which is tested below. */
8128
8129 constop &= nonzero;
8130
8131 /* If we don't have any bits left, return zero. */
8132 if (constop == 0)
8133 return const0_rtx;
8134
8135 /* If VAROP is a NEG of something known to be zero or 1 and CONSTOP is
8136 a power of two, we can replace this with an ASHIFT. */
8137 if (GET_CODE (varop) == NEG && nonzero_bits (XEXP (varop, 0), mode) == 1
8138 && (i = exact_log2 (constop)) >= 0)
8139 return simplify_shift_const (NULL_RTX, ASHIFT, mode, XEXP (varop, 0), i);
8140
8141 /* If VAROP is an IOR or XOR, apply the AND to both branches of the IOR
8142 or XOR, then try to apply the distributive law. This may eliminate
8143 operations if either branch can be simplified because of the AND.
8144 It may also make some cases more complex, but those cases probably
8145 won't match a pattern either with or without this. */
8146
8147 if (GET_CODE (varop) == IOR || GET_CODE (varop) == XOR)
8148 return
8149 gen_lowpart
8150 (mode,
8151 apply_distributive_law
8152 (simplify_gen_binary (GET_CODE (varop), GET_MODE (varop),
8153 simplify_and_const_int (NULL_RTX,
8154 GET_MODE (varop),
8155 XEXP (varop, 0),
8156 constop),
8157 simplify_and_const_int (NULL_RTX,
8158 GET_MODE (varop),
8159 XEXP (varop, 1),
8160 constop))));
8161
8162 /* If VAROP is PLUS, and the constant is a mask of low bits, distribute
8163 the AND and see if one of the operands simplifies to zero. If so, we
8164 may eliminate it. */
8165
8166 if (GET_CODE (varop) == PLUS
8167 && exact_log2 (constop + 1) >= 0)
8168 {
8169 rtx o0, o1;
8170
8171 o0 = simplify_and_const_int (NULL_RTX, mode, XEXP (varop, 0), constop);
8172 o1 = simplify_and_const_int (NULL_RTX, mode, XEXP (varop, 1), constop);
8173 if (o0 == const0_rtx)
8174 return o1;
8175 if (o1 == const0_rtx)
8176 return o0;
8177 }
8178
8179 /* Make a SUBREG if necessary. If we can't make it, fail. */
8180 varop = gen_lowpart (mode, varop);
8181 if (varop == NULL_RTX || GET_CODE (varop) == CLOBBER)
8182 return NULL_RTX;
8183
8184 /* If we are only masking insignificant bits, return VAROP. */
8185 if (constop == nonzero)
8186 return varop;
8187
8188 if (varop == orig_varop && constop == orig_constop)
8189 return NULL_RTX;
8190
8191 /* Otherwise, return an AND. */
8192 constop = trunc_int_for_mode (constop, mode);
8193 return simplify_gen_binary (AND, mode, varop, GEN_INT (constop));
8194 }
8195
8196
8197 /* We have X, a logical `and' of VAROP with the constant CONSTOP, to be done
8198 in MODE.
8199
8200 Return an equivalent form, if different from X. Otherwise, return X. If
8201 X is zero, we are to always construct the equivalent form. */
8202
8203 static rtx
8204 simplify_and_const_int (rtx x, enum machine_mode mode, rtx varop,
8205 unsigned HOST_WIDE_INT constop)
8206 {
8207 rtx tem = simplify_and_const_int_1 (mode, varop, constop);
8208 if (tem)
8209 return tem;
8210
8211 if (!x)
8212 x = simplify_gen_binary (AND, GET_MODE (varop), varop, GEN_INT (constop));
8213 if (GET_MODE (x) != mode)
8214 x = gen_lowpart (mode, x);
8215 return x;
8216 }
8217 \f
8218 /* Given a REG, X, compute which bits in X can be nonzero.
8219 We don't care about bits outside of those defined in MODE.
8220
8221 For most X this is simply GET_MODE_MASK (GET_MODE (MODE)), but if X is
8222 a shift, AND, or zero_extract, we can do better. */
8223
8224 static rtx
8225 reg_nonzero_bits_for_combine (rtx x, enum machine_mode mode,
8226 rtx known_x ATTRIBUTE_UNUSED,
8227 enum machine_mode known_mode ATTRIBUTE_UNUSED,
8228 unsigned HOST_WIDE_INT known_ret ATTRIBUTE_UNUSED,
8229 unsigned HOST_WIDE_INT *nonzero)
8230 {
8231 rtx tem;
8232
8233 /* If X is a register whose nonzero bits value is current, use it.
8234 Otherwise, if X is a register whose value we can find, use that
8235 value. Otherwise, use the previously-computed global nonzero bits
8236 for this register. */
8237
8238 if (reg_stat[REGNO (x)].last_set_value != 0
8239 && (reg_stat[REGNO (x)].last_set_mode == mode
8240 || (GET_MODE_CLASS (reg_stat[REGNO (x)].last_set_mode) == MODE_INT
8241 && GET_MODE_CLASS (mode) == MODE_INT))
8242 && (reg_stat[REGNO (x)].last_set_label == label_tick
8243 || (REGNO (x) >= FIRST_PSEUDO_REGISTER
8244 && REG_N_SETS (REGNO (x)) == 1
8245 && ! REGNO_REG_SET_P
8246 (ENTRY_BLOCK_PTR->next_bb->il.rtl->global_live_at_start,
8247 REGNO (x))))
8248 && INSN_CUID (reg_stat[REGNO (x)].last_set) < subst_low_cuid)
8249 {
8250 *nonzero &= reg_stat[REGNO (x)].last_set_nonzero_bits;
8251 return NULL;
8252 }
8253
8254 tem = get_last_value (x);
8255
8256 if (tem)
8257 {
8258 #ifdef SHORT_IMMEDIATES_SIGN_EXTEND
8259 /* If X is narrower than MODE and TEM is a non-negative
8260 constant that would appear negative in the mode of X,
8261 sign-extend it for use in reg_nonzero_bits because some
8262 machines (maybe most) will actually do the sign-extension
8263 and this is the conservative approach.
8264
8265 ??? For 2.5, try to tighten up the MD files in this regard
8266 instead of this kludge. */
8267
8268 if (GET_MODE_BITSIZE (GET_MODE (x)) < GET_MODE_BITSIZE (mode)
8269 && GET_CODE (tem) == CONST_INT
8270 && INTVAL (tem) > 0
8271 && 0 != (INTVAL (tem)
8272 & ((HOST_WIDE_INT) 1
8273 << (GET_MODE_BITSIZE (GET_MODE (x)) - 1))))
8274 tem = GEN_INT (INTVAL (tem)
8275 | ((HOST_WIDE_INT) (-1)
8276 << GET_MODE_BITSIZE (GET_MODE (x))));
8277 #endif
8278 return tem;
8279 }
8280 else if (nonzero_sign_valid && reg_stat[REGNO (x)].nonzero_bits)
8281 {
8282 unsigned HOST_WIDE_INT mask = reg_stat[REGNO (x)].nonzero_bits;
8283
8284 if (GET_MODE_BITSIZE (GET_MODE (x)) < GET_MODE_BITSIZE (mode))
8285 /* We don't know anything about the upper bits. */
8286 mask |= GET_MODE_MASK (mode) ^ GET_MODE_MASK (GET_MODE (x));
8287 *nonzero &= mask;
8288 }
8289
8290 return NULL;
8291 }
8292
8293 /* Return the number of bits at the high-order end of X that are known to
8294 be equal to the sign bit. X will be used in mode MODE; if MODE is
8295 VOIDmode, X will be used in its own mode. The returned value will always
8296 be between 1 and the number of bits in MODE. */
8297
8298 static rtx
8299 reg_num_sign_bit_copies_for_combine (rtx x, enum machine_mode mode,
8300 rtx known_x ATTRIBUTE_UNUSED,
8301 enum machine_mode known_mode
8302 ATTRIBUTE_UNUSED,
8303 unsigned int known_ret ATTRIBUTE_UNUSED,
8304 unsigned int *result)
8305 {
8306 rtx tem;
8307
8308 if (reg_stat[REGNO (x)].last_set_value != 0
8309 && reg_stat[REGNO (x)].last_set_mode == mode
8310 && (reg_stat[REGNO (x)].last_set_label == label_tick
8311 || (REGNO (x) >= FIRST_PSEUDO_REGISTER
8312 && REG_N_SETS (REGNO (x)) == 1
8313 && ! REGNO_REG_SET_P
8314 (ENTRY_BLOCK_PTR->next_bb->il.rtl->global_live_at_start,
8315 REGNO (x))))
8316 && INSN_CUID (reg_stat[REGNO (x)].last_set) < subst_low_cuid)
8317 {
8318 *result = reg_stat[REGNO (x)].last_set_sign_bit_copies;
8319 return NULL;
8320 }
8321
8322 tem = get_last_value (x);
8323 if (tem != 0)
8324 return tem;
8325
8326 if (nonzero_sign_valid && reg_stat[REGNO (x)].sign_bit_copies != 0
8327 && GET_MODE_BITSIZE (GET_MODE (x)) == GET_MODE_BITSIZE (mode))
8328 *result = reg_stat[REGNO (x)].sign_bit_copies;
8329
8330 return NULL;
8331 }
8332 \f
8333 /* Return the number of "extended" bits there are in X, when interpreted
8334 as a quantity in MODE whose signedness is indicated by UNSIGNEDP. For
8335 unsigned quantities, this is the number of high-order zero bits.
8336 For signed quantities, this is the number of copies of the sign bit
8337 minus 1. In both case, this function returns the number of "spare"
8338 bits. For example, if two quantities for which this function returns
8339 at least 1 are added, the addition is known not to overflow.
8340
8341 This function will always return 0 unless called during combine, which
8342 implies that it must be called from a define_split. */
8343
8344 unsigned int
8345 extended_count (rtx x, enum machine_mode mode, int unsignedp)
8346 {
8347 if (nonzero_sign_valid == 0)
8348 return 0;
8349
8350 return (unsignedp
8351 ? (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
8352 ? (unsigned int) (GET_MODE_BITSIZE (mode) - 1
8353 - floor_log2 (nonzero_bits (x, mode)))
8354 : 0)
8355 : num_sign_bit_copies (x, mode) - 1);
8356 }
8357 \f
8358 /* This function is called from `simplify_shift_const' to merge two
8359 outer operations. Specifically, we have already found that we need
8360 to perform operation *POP0 with constant *PCONST0 at the outermost
8361 position. We would now like to also perform OP1 with constant CONST1
8362 (with *POP0 being done last).
8363
8364 Return 1 if we can do the operation and update *POP0 and *PCONST0 with
8365 the resulting operation. *PCOMP_P is set to 1 if we would need to
8366 complement the innermost operand, otherwise it is unchanged.
8367
8368 MODE is the mode in which the operation will be done. No bits outside
8369 the width of this mode matter. It is assumed that the width of this mode
8370 is smaller than or equal to HOST_BITS_PER_WIDE_INT.
8371
8372 If *POP0 or OP1 are UNKNOWN, it means no operation is required. Only NEG, PLUS,
8373 IOR, XOR, and AND are supported. We may set *POP0 to SET if the proper
8374 result is simply *PCONST0.
8375
8376 If the resulting operation cannot be expressed as one operation, we
8377 return 0 and do not change *POP0, *PCONST0, and *PCOMP_P. */
8378
8379 static int
8380 merge_outer_ops (enum rtx_code *pop0, HOST_WIDE_INT *pconst0, enum rtx_code op1, HOST_WIDE_INT const1, enum machine_mode mode, int *pcomp_p)
8381 {
8382 enum rtx_code op0 = *pop0;
8383 HOST_WIDE_INT const0 = *pconst0;
8384
8385 const0 &= GET_MODE_MASK (mode);
8386 const1 &= GET_MODE_MASK (mode);
8387
8388 /* If OP0 is an AND, clear unimportant bits in CONST1. */
8389 if (op0 == AND)
8390 const1 &= const0;
8391
8392 /* If OP0 or OP1 is UNKNOWN, this is easy. Similarly if they are the same or
8393 if OP0 is SET. */
8394
8395 if (op1 == UNKNOWN || op0 == SET)
8396 return 1;
8397
8398 else if (op0 == UNKNOWN)
8399 op0 = op1, const0 = const1;
8400
8401 else if (op0 == op1)
8402 {
8403 switch (op0)
8404 {
8405 case AND:
8406 const0 &= const1;
8407 break;
8408 case IOR:
8409 const0 |= const1;
8410 break;
8411 case XOR:
8412 const0 ^= const1;
8413 break;
8414 case PLUS:
8415 const0 += const1;
8416 break;
8417 case NEG:
8418 op0 = UNKNOWN;
8419 break;
8420 default:
8421 break;
8422 }
8423 }
8424
8425 /* Otherwise, if either is a PLUS or NEG, we can't do anything. */
8426 else if (op0 == PLUS || op1 == PLUS || op0 == NEG || op1 == NEG)
8427 return 0;
8428
8429 /* If the two constants aren't the same, we can't do anything. The
8430 remaining six cases can all be done. */
8431 else if (const0 != const1)
8432 return 0;
8433
8434 else
8435 switch (op0)
8436 {
8437 case IOR:
8438 if (op1 == AND)
8439 /* (a & b) | b == b */
8440 op0 = SET;
8441 else /* op1 == XOR */
8442 /* (a ^ b) | b == a | b */
8443 {;}
8444 break;
8445
8446 case XOR:
8447 if (op1 == AND)
8448 /* (a & b) ^ b == (~a) & b */
8449 op0 = AND, *pcomp_p = 1;
8450 else /* op1 == IOR */
8451 /* (a | b) ^ b == a & ~b */
8452 op0 = AND, const0 = ~const0;
8453 break;
8454
8455 case AND:
8456 if (op1 == IOR)
8457 /* (a | b) & b == b */
8458 op0 = SET;
8459 else /* op1 == XOR */
8460 /* (a ^ b) & b) == (~a) & b */
8461 *pcomp_p = 1;
8462 break;
8463 default:
8464 break;
8465 }
8466
8467 /* Check for NO-OP cases. */
8468 const0 &= GET_MODE_MASK (mode);
8469 if (const0 == 0
8470 && (op0 == IOR || op0 == XOR || op0 == PLUS))
8471 op0 = UNKNOWN;
8472 else if (const0 == 0 && op0 == AND)
8473 op0 = SET;
8474 else if ((unsigned HOST_WIDE_INT) const0 == GET_MODE_MASK (mode)
8475 && op0 == AND)
8476 op0 = UNKNOWN;
8477
8478 /* ??? Slightly redundant with the above mask, but not entirely.
8479 Moving this above means we'd have to sign-extend the mode mask
8480 for the final test. */
8481 const0 = trunc_int_for_mode (const0, mode);
8482
8483 *pop0 = op0;
8484 *pconst0 = const0;
8485
8486 return 1;
8487 }
8488 \f
8489 /* Simplify a shift of VAROP by COUNT bits. CODE says what kind of shift.
8490 The result of the shift is RESULT_MODE. Return NULL_RTX if we cannot
8491 simplify it. Otherwise, return a simplified value.
8492
8493 The shift is normally computed in the widest mode we find in VAROP, as
8494 long as it isn't a different number of words than RESULT_MODE. Exceptions
8495 are ASHIFTRT and ROTATE, which are always done in their original mode. */
8496
8497 static rtx
8498 simplify_shift_const_1 (enum rtx_code code, enum machine_mode result_mode,
8499 rtx varop, int orig_count)
8500 {
8501 enum rtx_code orig_code = code;
8502 rtx orig_varop = varop;
8503 int count;
8504 enum machine_mode mode = result_mode;
8505 enum machine_mode shift_mode, tmode;
8506 unsigned int mode_words
8507 = (GET_MODE_SIZE (mode) + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD;
8508 /* We form (outer_op (code varop count) (outer_const)). */
8509 enum rtx_code outer_op = UNKNOWN;
8510 HOST_WIDE_INT outer_const = 0;
8511 int complement_p = 0;
8512 rtx new, x;
8513
8514 /* Make sure and truncate the "natural" shift on the way in. We don't
8515 want to do this inside the loop as it makes it more difficult to
8516 combine shifts. */
8517 if (SHIFT_COUNT_TRUNCATED)
8518 orig_count &= GET_MODE_BITSIZE (mode) - 1;
8519
8520 /* If we were given an invalid count, don't do anything except exactly
8521 what was requested. */
8522
8523 if (orig_count < 0 || orig_count >= (int) GET_MODE_BITSIZE (mode))
8524 return NULL_RTX;
8525
8526 count = orig_count;
8527
8528 /* Unless one of the branches of the `if' in this loop does a `continue',
8529 we will `break' the loop after the `if'. */
8530
8531 while (count != 0)
8532 {
8533 /* If we have an operand of (clobber (const_int 0)), fail. */
8534 if (GET_CODE (varop) == CLOBBER)
8535 return NULL_RTX;
8536
8537 /* If we discovered we had to complement VAROP, leave. Making a NOT
8538 here would cause an infinite loop. */
8539 if (complement_p)
8540 break;
8541
8542 /* Convert ROTATERT to ROTATE. */
8543 if (code == ROTATERT)
8544 {
8545 unsigned int bitsize = GET_MODE_BITSIZE (result_mode);;
8546 code = ROTATE;
8547 if (VECTOR_MODE_P (result_mode))
8548 count = bitsize / GET_MODE_NUNITS (result_mode) - count;
8549 else
8550 count = bitsize - count;
8551 }
8552
8553 /* We need to determine what mode we will do the shift in. If the
8554 shift is a right shift or a ROTATE, we must always do it in the mode
8555 it was originally done in. Otherwise, we can do it in MODE, the
8556 widest mode encountered. */
8557 shift_mode
8558 = (code == ASHIFTRT || code == LSHIFTRT || code == ROTATE
8559 ? result_mode : mode);
8560
8561 /* Handle cases where the count is greater than the size of the mode
8562 minus 1. For ASHIFT, use the size minus one as the count (this can
8563 occur when simplifying (lshiftrt (ashiftrt ..))). For rotates,
8564 take the count modulo the size. For other shifts, the result is
8565 zero.
8566
8567 Since these shifts are being produced by the compiler by combining
8568 multiple operations, each of which are defined, we know what the
8569 result is supposed to be. */
8570
8571 if (count > (GET_MODE_BITSIZE (shift_mode) - 1))
8572 {
8573 if (code == ASHIFTRT)
8574 count = GET_MODE_BITSIZE (shift_mode) - 1;
8575 else if (code == ROTATE || code == ROTATERT)
8576 count %= GET_MODE_BITSIZE (shift_mode);
8577 else
8578 {
8579 /* We can't simply return zero because there may be an
8580 outer op. */
8581 varop = const0_rtx;
8582 count = 0;
8583 break;
8584 }
8585 }
8586
8587 /* An arithmetic right shift of a quantity known to be -1 or 0
8588 is a no-op. */
8589 if (code == ASHIFTRT
8590 && (num_sign_bit_copies (varop, shift_mode)
8591 == GET_MODE_BITSIZE (shift_mode)))
8592 {
8593 count = 0;
8594 break;
8595 }
8596
8597 /* If we are doing an arithmetic right shift and discarding all but
8598 the sign bit copies, this is equivalent to doing a shift by the
8599 bitsize minus one. Convert it into that shift because it will often
8600 allow other simplifications. */
8601
8602 if (code == ASHIFTRT
8603 && (count + num_sign_bit_copies (varop, shift_mode)
8604 >= GET_MODE_BITSIZE (shift_mode)))
8605 count = GET_MODE_BITSIZE (shift_mode) - 1;
8606
8607 /* We simplify the tests below and elsewhere by converting
8608 ASHIFTRT to LSHIFTRT if we know the sign bit is clear.
8609 `make_compound_operation' will convert it to an ASHIFTRT for
8610 those machines (such as VAX) that don't have an LSHIFTRT. */
8611 if (GET_MODE_BITSIZE (shift_mode) <= HOST_BITS_PER_WIDE_INT
8612 && code == ASHIFTRT
8613 && ((nonzero_bits (varop, shift_mode)
8614 & ((HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (shift_mode) - 1)))
8615 == 0))
8616 code = LSHIFTRT;
8617
8618 if (code == LSHIFTRT
8619 && GET_MODE_BITSIZE (shift_mode) <= HOST_BITS_PER_WIDE_INT
8620 && !(nonzero_bits (varop, shift_mode) >> count))
8621 varop = const0_rtx;
8622 if (code == ASHIFT
8623 && GET_MODE_BITSIZE (shift_mode) <= HOST_BITS_PER_WIDE_INT
8624 && !((nonzero_bits (varop, shift_mode) << count)
8625 & GET_MODE_MASK (shift_mode)))
8626 varop = const0_rtx;
8627
8628 switch (GET_CODE (varop))
8629 {
8630 case SIGN_EXTEND:
8631 case ZERO_EXTEND:
8632 case SIGN_EXTRACT:
8633 case ZERO_EXTRACT:
8634 new = expand_compound_operation (varop);
8635 if (new != varop)
8636 {
8637 varop = new;
8638 continue;
8639 }
8640 break;
8641
8642 case MEM:
8643 /* If we have (xshiftrt (mem ...) C) and C is MODE_WIDTH
8644 minus the width of a smaller mode, we can do this with a
8645 SIGN_EXTEND or ZERO_EXTEND from the narrower memory location. */
8646 if ((code == ASHIFTRT || code == LSHIFTRT)
8647 && ! mode_dependent_address_p (XEXP (varop, 0))
8648 && ! MEM_VOLATILE_P (varop)
8649 && (tmode = mode_for_size (GET_MODE_BITSIZE (mode) - count,
8650 MODE_INT, 1)) != BLKmode)
8651 {
8652 new = adjust_address_nv (varop, tmode,
8653 BYTES_BIG_ENDIAN ? 0
8654 : count / BITS_PER_UNIT);
8655
8656 varop = gen_rtx_fmt_e (code == ASHIFTRT ? SIGN_EXTEND
8657 : ZERO_EXTEND, mode, new);
8658 count = 0;
8659 continue;
8660 }
8661 break;
8662
8663 case SUBREG:
8664 /* If VAROP is a SUBREG, strip it as long as the inner operand has
8665 the same number of words as what we've seen so far. Then store
8666 the widest mode in MODE. */
8667 if (subreg_lowpart_p (varop)
8668 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (varop)))
8669 > GET_MODE_SIZE (GET_MODE (varop)))
8670 && (unsigned int) ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (varop)))
8671 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
8672 == mode_words)
8673 {
8674 varop = SUBREG_REG (varop);
8675 if (GET_MODE_SIZE (GET_MODE (varop)) > GET_MODE_SIZE (mode))
8676 mode = GET_MODE (varop);
8677 continue;
8678 }
8679 break;
8680
8681 case MULT:
8682 /* Some machines use MULT instead of ASHIFT because MULT
8683 is cheaper. But it is still better on those machines to
8684 merge two shifts into one. */
8685 if (GET_CODE (XEXP (varop, 1)) == CONST_INT
8686 && exact_log2 (INTVAL (XEXP (varop, 1))) >= 0)
8687 {
8688 varop
8689 = simplify_gen_binary (ASHIFT, GET_MODE (varop),
8690 XEXP (varop, 0),
8691 GEN_INT (exact_log2 (
8692 INTVAL (XEXP (varop, 1)))));
8693 continue;
8694 }
8695 break;
8696
8697 case UDIV:
8698 /* Similar, for when divides are cheaper. */
8699 if (GET_CODE (XEXP (varop, 1)) == CONST_INT
8700 && exact_log2 (INTVAL (XEXP (varop, 1))) >= 0)
8701 {
8702 varop
8703 = simplify_gen_binary (LSHIFTRT, GET_MODE (varop),
8704 XEXP (varop, 0),
8705 GEN_INT (exact_log2 (
8706 INTVAL (XEXP (varop, 1)))));
8707 continue;
8708 }
8709 break;
8710
8711 case ASHIFTRT:
8712 /* If we are extracting just the sign bit of an arithmetic
8713 right shift, that shift is not needed. However, the sign
8714 bit of a wider mode may be different from what would be
8715 interpreted as the sign bit in a narrower mode, so, if
8716 the result is narrower, don't discard the shift. */
8717 if (code == LSHIFTRT
8718 && count == (GET_MODE_BITSIZE (result_mode) - 1)
8719 && (GET_MODE_BITSIZE (result_mode)
8720 >= GET_MODE_BITSIZE (GET_MODE (varop))))
8721 {
8722 varop = XEXP (varop, 0);
8723 continue;
8724 }
8725
8726 /* ... fall through ... */
8727
8728 case LSHIFTRT:
8729 case ASHIFT:
8730 case ROTATE:
8731 /* Here we have two nested shifts. The result is usually the
8732 AND of a new shift with a mask. We compute the result below. */
8733 if (GET_CODE (XEXP (varop, 1)) == CONST_INT
8734 && INTVAL (XEXP (varop, 1)) >= 0
8735 && INTVAL (XEXP (varop, 1)) < GET_MODE_BITSIZE (GET_MODE (varop))
8736 && GET_MODE_BITSIZE (result_mode) <= HOST_BITS_PER_WIDE_INT
8737 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
8738 {
8739 enum rtx_code first_code = GET_CODE (varop);
8740 unsigned int first_count = INTVAL (XEXP (varop, 1));
8741 unsigned HOST_WIDE_INT mask;
8742 rtx mask_rtx;
8743
8744 /* We have one common special case. We can't do any merging if
8745 the inner code is an ASHIFTRT of a smaller mode. However, if
8746 we have (ashift:M1 (subreg:M1 (ashiftrt:M2 FOO C1) 0) C2)
8747 with C2 == GET_MODE_BITSIZE (M1) - GET_MODE_BITSIZE (M2),
8748 we can convert it to
8749 (ashiftrt:M1 (ashift:M1 (and:M1 (subreg:M1 FOO 0 C2) C3) C1).
8750 This simplifies certain SIGN_EXTEND operations. */
8751 if (code == ASHIFT && first_code == ASHIFTRT
8752 && count == (GET_MODE_BITSIZE (result_mode)
8753 - GET_MODE_BITSIZE (GET_MODE (varop))))
8754 {
8755 /* C3 has the low-order C1 bits zero. */
8756
8757 mask = (GET_MODE_MASK (mode)
8758 & ~(((HOST_WIDE_INT) 1 << first_count) - 1));
8759
8760 varop = simplify_and_const_int (NULL_RTX, result_mode,
8761 XEXP (varop, 0), mask);
8762 varop = simplify_shift_const (NULL_RTX, ASHIFT, result_mode,
8763 varop, count);
8764 count = first_count;
8765 code = ASHIFTRT;
8766 continue;
8767 }
8768
8769 /* If this was (ashiftrt (ashift foo C1) C2) and FOO has more
8770 than C1 high-order bits equal to the sign bit, we can convert
8771 this to either an ASHIFT or an ASHIFTRT depending on the
8772 two counts.
8773
8774 We cannot do this if VAROP's mode is not SHIFT_MODE. */
8775
8776 if (code == ASHIFTRT && first_code == ASHIFT
8777 && GET_MODE (varop) == shift_mode
8778 && (num_sign_bit_copies (XEXP (varop, 0), shift_mode)
8779 > first_count))
8780 {
8781 varop = XEXP (varop, 0);
8782 count -= first_count;
8783 if (count < 0)
8784 {
8785 count = -count;
8786 code = ASHIFT;
8787 }
8788
8789 continue;
8790 }
8791
8792 /* There are some cases we can't do. If CODE is ASHIFTRT,
8793 we can only do this if FIRST_CODE is also ASHIFTRT.
8794
8795 We can't do the case when CODE is ROTATE and FIRST_CODE is
8796 ASHIFTRT.
8797
8798 If the mode of this shift is not the mode of the outer shift,
8799 we can't do this if either shift is a right shift or ROTATE.
8800
8801 Finally, we can't do any of these if the mode is too wide
8802 unless the codes are the same.
8803
8804 Handle the case where the shift codes are the same
8805 first. */
8806
8807 if (code == first_code)
8808 {
8809 if (GET_MODE (varop) != result_mode
8810 && (code == ASHIFTRT || code == LSHIFTRT
8811 || code == ROTATE))
8812 break;
8813
8814 count += first_count;
8815 varop = XEXP (varop, 0);
8816 continue;
8817 }
8818
8819 if (code == ASHIFTRT
8820 || (code == ROTATE && first_code == ASHIFTRT)
8821 || GET_MODE_BITSIZE (mode) > HOST_BITS_PER_WIDE_INT
8822 || (GET_MODE (varop) != result_mode
8823 && (first_code == ASHIFTRT || first_code == LSHIFTRT
8824 || first_code == ROTATE
8825 || code == ROTATE)))
8826 break;
8827
8828 /* To compute the mask to apply after the shift, shift the
8829 nonzero bits of the inner shift the same way the
8830 outer shift will. */
8831
8832 mask_rtx = GEN_INT (nonzero_bits (varop, GET_MODE (varop)));
8833
8834 mask_rtx
8835 = simplify_const_binary_operation (code, result_mode, mask_rtx,
8836 GEN_INT (count));
8837
8838 /* Give up if we can't compute an outer operation to use. */
8839 if (mask_rtx == 0
8840 || GET_CODE (mask_rtx) != CONST_INT
8841 || ! merge_outer_ops (&outer_op, &outer_const, AND,
8842 INTVAL (mask_rtx),
8843 result_mode, &complement_p))
8844 break;
8845
8846 /* If the shifts are in the same direction, we add the
8847 counts. Otherwise, we subtract them. */
8848 if ((code == ASHIFTRT || code == LSHIFTRT)
8849 == (first_code == ASHIFTRT || first_code == LSHIFTRT))
8850 count += first_count;
8851 else
8852 count -= first_count;
8853
8854 /* If COUNT is positive, the new shift is usually CODE,
8855 except for the two exceptions below, in which case it is
8856 FIRST_CODE. If the count is negative, FIRST_CODE should
8857 always be used */
8858 if (count > 0
8859 && ((first_code == ROTATE && code == ASHIFT)
8860 || (first_code == ASHIFTRT && code == LSHIFTRT)))
8861 code = first_code;
8862 else if (count < 0)
8863 code = first_code, count = -count;
8864
8865 varop = XEXP (varop, 0);
8866 continue;
8867 }
8868
8869 /* If we have (A << B << C) for any shift, we can convert this to
8870 (A << C << B). This wins if A is a constant. Only try this if
8871 B is not a constant. */
8872
8873 else if (GET_CODE (varop) == code
8874 && GET_CODE (XEXP (varop, 0)) == CONST_INT
8875 && GET_CODE (XEXP (varop, 1)) != CONST_INT)
8876 {
8877 rtx new = simplify_const_binary_operation (code, mode,
8878 XEXP (varop, 0),
8879 GEN_INT (count));
8880 varop = gen_rtx_fmt_ee (code, mode, new, XEXP (varop, 1));
8881 count = 0;
8882 continue;
8883 }
8884 break;
8885
8886 case NOT:
8887 /* Make this fit the case below. */
8888 varop = gen_rtx_XOR (mode, XEXP (varop, 0),
8889 GEN_INT (GET_MODE_MASK (mode)));
8890 continue;
8891
8892 case IOR:
8893 case AND:
8894 case XOR:
8895 /* If we have (xshiftrt (ior (plus X (const_int -1)) X) C)
8896 with C the size of VAROP - 1 and the shift is logical if
8897 STORE_FLAG_VALUE is 1 and arithmetic if STORE_FLAG_VALUE is -1,
8898 we have an (le X 0) operation. If we have an arithmetic shift
8899 and STORE_FLAG_VALUE is 1 or we have a logical shift with
8900 STORE_FLAG_VALUE of -1, we have a (neg (le X 0)) operation. */
8901
8902 if (GET_CODE (varop) == IOR && GET_CODE (XEXP (varop, 0)) == PLUS
8903 && XEXP (XEXP (varop, 0), 1) == constm1_rtx
8904 && (STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
8905 && (code == LSHIFTRT || code == ASHIFTRT)
8906 && count == (GET_MODE_BITSIZE (GET_MODE (varop)) - 1)
8907 && rtx_equal_p (XEXP (XEXP (varop, 0), 0), XEXP (varop, 1)))
8908 {
8909 count = 0;
8910 varop = gen_rtx_LE (GET_MODE (varop), XEXP (varop, 1),
8911 const0_rtx);
8912
8913 if (STORE_FLAG_VALUE == 1 ? code == ASHIFTRT : code == LSHIFTRT)
8914 varop = gen_rtx_NEG (GET_MODE (varop), varop);
8915
8916 continue;
8917 }
8918
8919 /* If we have (shift (logical)), move the logical to the outside
8920 to allow it to possibly combine with another logical and the
8921 shift to combine with another shift. This also canonicalizes to
8922 what a ZERO_EXTRACT looks like. Also, some machines have
8923 (and (shift)) insns. */
8924
8925 if (GET_CODE (XEXP (varop, 1)) == CONST_INT
8926 /* We can't do this if we have (ashiftrt (xor)) and the
8927 constant has its sign bit set in shift_mode. */
8928 && !(code == ASHIFTRT && GET_CODE (varop) == XOR
8929 && 0 > trunc_int_for_mode (INTVAL (XEXP (varop, 1)),
8930 shift_mode))
8931 && (new = simplify_const_binary_operation (code, result_mode,
8932 XEXP (varop, 1),
8933 GEN_INT (count))) != 0
8934 && GET_CODE (new) == CONST_INT
8935 && merge_outer_ops (&outer_op, &outer_const, GET_CODE (varop),
8936 INTVAL (new), result_mode, &complement_p))
8937 {
8938 varop = XEXP (varop, 0);
8939 continue;
8940 }
8941
8942 /* If we can't do that, try to simplify the shift in each arm of the
8943 logical expression, make a new logical expression, and apply
8944 the inverse distributive law. This also can't be done
8945 for some (ashiftrt (xor)). */
8946 if (GET_CODE (XEXP (varop, 1)) == CONST_INT
8947 && !(code == ASHIFTRT && GET_CODE (varop) == XOR
8948 && 0 > trunc_int_for_mode (INTVAL (XEXP (varop, 1)),
8949 shift_mode)))
8950 {
8951 rtx lhs = simplify_shift_const (NULL_RTX, code, shift_mode,
8952 XEXP (varop, 0), count);
8953 rtx rhs = simplify_shift_const (NULL_RTX, code, shift_mode,
8954 XEXP (varop, 1), count);
8955
8956 varop = simplify_gen_binary (GET_CODE (varop), shift_mode,
8957 lhs, rhs);
8958 varop = apply_distributive_law (varop);
8959
8960 count = 0;
8961 continue;
8962 }
8963 break;
8964
8965 case EQ:
8966 /* Convert (lshiftrt (eq FOO 0) C) to (xor FOO 1) if STORE_FLAG_VALUE
8967 says that the sign bit can be tested, FOO has mode MODE, C is
8968 GET_MODE_BITSIZE (MODE) - 1, and FOO has only its low-order bit
8969 that may be nonzero. */
8970 if (code == LSHIFTRT
8971 && XEXP (varop, 1) == const0_rtx
8972 && GET_MODE (XEXP (varop, 0)) == result_mode
8973 && count == (GET_MODE_BITSIZE (result_mode) - 1)
8974 && GET_MODE_BITSIZE (result_mode) <= HOST_BITS_PER_WIDE_INT
8975 && STORE_FLAG_VALUE == -1
8976 && nonzero_bits (XEXP (varop, 0), result_mode) == 1
8977 && merge_outer_ops (&outer_op, &outer_const, XOR,
8978 (HOST_WIDE_INT) 1, result_mode,
8979 &complement_p))
8980 {
8981 varop = XEXP (varop, 0);
8982 count = 0;
8983 continue;
8984 }
8985 break;
8986
8987 case NEG:
8988 /* (lshiftrt (neg A) C) where A is either 0 or 1 and C is one less
8989 than the number of bits in the mode is equivalent to A. */
8990 if (code == LSHIFTRT
8991 && count == (GET_MODE_BITSIZE (result_mode) - 1)
8992 && nonzero_bits (XEXP (varop, 0), result_mode) == 1)
8993 {
8994 varop = XEXP (varop, 0);
8995 count = 0;
8996 continue;
8997 }
8998
8999 /* NEG commutes with ASHIFT since it is multiplication. Move the
9000 NEG outside to allow shifts to combine. */
9001 if (code == ASHIFT
9002 && merge_outer_ops (&outer_op, &outer_const, NEG,
9003 (HOST_WIDE_INT) 0, result_mode,
9004 &complement_p))
9005 {
9006 varop = XEXP (varop, 0);
9007 continue;
9008 }
9009 break;
9010
9011 case PLUS:
9012 /* (lshiftrt (plus A -1) C) where A is either 0 or 1 and C
9013 is one less than the number of bits in the mode is
9014 equivalent to (xor A 1). */
9015 if (code == LSHIFTRT
9016 && count == (GET_MODE_BITSIZE (result_mode) - 1)
9017 && XEXP (varop, 1) == constm1_rtx
9018 && nonzero_bits (XEXP (varop, 0), result_mode) == 1
9019 && merge_outer_ops (&outer_op, &outer_const, XOR,
9020 (HOST_WIDE_INT) 1, result_mode,
9021 &complement_p))
9022 {
9023 count = 0;
9024 varop = XEXP (varop, 0);
9025 continue;
9026 }
9027
9028 /* If we have (xshiftrt (plus FOO BAR) C), and the only bits
9029 that might be nonzero in BAR are those being shifted out and those
9030 bits are known zero in FOO, we can replace the PLUS with FOO.
9031 Similarly in the other operand order. This code occurs when
9032 we are computing the size of a variable-size array. */
9033
9034 if ((code == ASHIFTRT || code == LSHIFTRT)
9035 && count < HOST_BITS_PER_WIDE_INT
9036 && nonzero_bits (XEXP (varop, 1), result_mode) >> count == 0
9037 && (nonzero_bits (XEXP (varop, 1), result_mode)
9038 & nonzero_bits (XEXP (varop, 0), result_mode)) == 0)
9039 {
9040 varop = XEXP (varop, 0);
9041 continue;
9042 }
9043 else if ((code == ASHIFTRT || code == LSHIFTRT)
9044 && count < HOST_BITS_PER_WIDE_INT
9045 && GET_MODE_BITSIZE (result_mode) <= HOST_BITS_PER_WIDE_INT
9046 && 0 == (nonzero_bits (XEXP (varop, 0), result_mode)
9047 >> count)
9048 && 0 == (nonzero_bits (XEXP (varop, 0), result_mode)
9049 & nonzero_bits (XEXP (varop, 1),
9050 result_mode)))
9051 {
9052 varop = XEXP (varop, 1);
9053 continue;
9054 }
9055
9056 /* (ashift (plus foo C) N) is (plus (ashift foo N) C'). */
9057 if (code == ASHIFT
9058 && GET_CODE (XEXP (varop, 1)) == CONST_INT
9059 && (new = simplify_const_binary_operation (ASHIFT, result_mode,
9060 XEXP (varop, 1),
9061 GEN_INT (count))) != 0
9062 && GET_CODE (new) == CONST_INT
9063 && merge_outer_ops (&outer_op, &outer_const, PLUS,
9064 INTVAL (new), result_mode, &complement_p))
9065 {
9066 varop = XEXP (varop, 0);
9067 continue;
9068 }
9069
9070 /* Check for 'PLUS signbit', which is the canonical form of 'XOR
9071 signbit', and attempt to change the PLUS to an XOR and move it to
9072 the outer operation as is done above in the AND/IOR/XOR case
9073 leg for shift(logical). See details in logical handling above
9074 for reasoning in doing so. */
9075 if (code == LSHIFTRT
9076 && GET_CODE (XEXP (varop, 1)) == CONST_INT
9077 && mode_signbit_p (result_mode, XEXP (varop, 1))
9078 && (new = simplify_const_binary_operation (code, result_mode,
9079 XEXP (varop, 1),
9080 GEN_INT (count))) != 0
9081 && GET_CODE (new) == CONST_INT
9082 && merge_outer_ops (&outer_op, &outer_const, XOR,
9083 INTVAL (new), result_mode, &complement_p))
9084 {
9085 varop = XEXP (varop, 0);
9086 continue;
9087 }
9088
9089 break;
9090
9091 case MINUS:
9092 /* If we have (xshiftrt (minus (ashiftrt X C)) X) C)
9093 with C the size of VAROP - 1 and the shift is logical if
9094 STORE_FLAG_VALUE is 1 and arithmetic if STORE_FLAG_VALUE is -1,
9095 we have a (gt X 0) operation. If the shift is arithmetic with
9096 STORE_FLAG_VALUE of 1 or logical with STORE_FLAG_VALUE == -1,
9097 we have a (neg (gt X 0)) operation. */
9098
9099 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
9100 && GET_CODE (XEXP (varop, 0)) == ASHIFTRT
9101 && count == (GET_MODE_BITSIZE (GET_MODE (varop)) - 1)
9102 && (code == LSHIFTRT || code == ASHIFTRT)
9103 && GET_CODE (XEXP (XEXP (varop, 0), 1)) == CONST_INT
9104 && INTVAL (XEXP (XEXP (varop, 0), 1)) == count
9105 && rtx_equal_p (XEXP (XEXP (varop, 0), 0), XEXP (varop, 1)))
9106 {
9107 count = 0;
9108 varop = gen_rtx_GT (GET_MODE (varop), XEXP (varop, 1),
9109 const0_rtx);
9110
9111 if (STORE_FLAG_VALUE == 1 ? code == ASHIFTRT : code == LSHIFTRT)
9112 varop = gen_rtx_NEG (GET_MODE (varop), varop);
9113
9114 continue;
9115 }
9116 break;
9117
9118 case TRUNCATE:
9119 /* Change (lshiftrt (truncate (lshiftrt))) to (truncate (lshiftrt))
9120 if the truncate does not affect the value. */
9121 if (code == LSHIFTRT
9122 && GET_CODE (XEXP (varop, 0)) == LSHIFTRT
9123 && GET_CODE (XEXP (XEXP (varop, 0), 1)) == CONST_INT
9124 && (INTVAL (XEXP (XEXP (varop, 0), 1))
9125 >= (GET_MODE_BITSIZE (GET_MODE (XEXP (varop, 0)))
9126 - GET_MODE_BITSIZE (GET_MODE (varop)))))
9127 {
9128 rtx varop_inner = XEXP (varop, 0);
9129
9130 varop_inner
9131 = gen_rtx_LSHIFTRT (GET_MODE (varop_inner),
9132 XEXP (varop_inner, 0),
9133 GEN_INT
9134 (count + INTVAL (XEXP (varop_inner, 1))));
9135 varop = gen_rtx_TRUNCATE (GET_MODE (varop), varop_inner);
9136 count = 0;
9137 continue;
9138 }
9139 break;
9140
9141 default:
9142 break;
9143 }
9144
9145 break;
9146 }
9147
9148 /* We need to determine what mode to do the shift in. If the shift is
9149 a right shift or ROTATE, we must always do it in the mode it was
9150 originally done in. Otherwise, we can do it in MODE, the widest mode
9151 encountered. The code we care about is that of the shift that will
9152 actually be done, not the shift that was originally requested. */
9153 shift_mode
9154 = (code == ASHIFTRT || code == LSHIFTRT || code == ROTATE
9155 ? result_mode : mode);
9156
9157 /* We have now finished analyzing the shift. The result should be
9158 a shift of type CODE with SHIFT_MODE shifting VAROP COUNT places. If
9159 OUTER_OP is non-UNKNOWN, it is an operation that needs to be applied
9160 to the result of the shift. OUTER_CONST is the relevant constant,
9161 but we must turn off all bits turned off in the shift. */
9162
9163 if (outer_op == UNKNOWN
9164 && orig_code == code && orig_count == count
9165 && varop == orig_varop
9166 && shift_mode == GET_MODE (varop))
9167 return NULL_RTX;
9168
9169 /* Make a SUBREG if necessary. If we can't make it, fail. */
9170 varop = gen_lowpart (shift_mode, varop);
9171 if (varop == NULL_RTX || GET_CODE (varop) == CLOBBER)
9172 return NULL_RTX;
9173
9174 /* If we have an outer operation and we just made a shift, it is
9175 possible that we could have simplified the shift were it not
9176 for the outer operation. So try to do the simplification
9177 recursively. */
9178
9179 if (outer_op != UNKNOWN)
9180 x = simplify_shift_const_1 (code, shift_mode, varop, count);
9181 else
9182 x = NULL_RTX;
9183
9184 if (x == NULL_RTX)
9185 x = simplify_gen_binary (code, shift_mode, varop, GEN_INT (count));
9186
9187 /* If we were doing an LSHIFTRT in a wider mode than it was originally,
9188 turn off all the bits that the shift would have turned off. */
9189 if (orig_code == LSHIFTRT && result_mode != shift_mode)
9190 x = simplify_and_const_int (NULL_RTX, shift_mode, x,
9191 GET_MODE_MASK (result_mode) >> orig_count);
9192
9193 /* Do the remainder of the processing in RESULT_MODE. */
9194 x = gen_lowpart (result_mode, x);
9195
9196 /* If COMPLEMENT_P is set, we have to complement X before doing the outer
9197 operation. */
9198 if (complement_p)
9199 x = simplify_gen_unary (NOT, result_mode, x, result_mode);
9200
9201 if (outer_op != UNKNOWN)
9202 {
9203 if (GET_MODE_BITSIZE (result_mode) < HOST_BITS_PER_WIDE_INT)
9204 outer_const = trunc_int_for_mode (outer_const, result_mode);
9205
9206 if (outer_op == AND)
9207 x = simplify_and_const_int (NULL_RTX, result_mode, x, outer_const);
9208 else if (outer_op == SET)
9209 /* This means that we have determined that the result is
9210 equivalent to a constant. This should be rare. */
9211 x = GEN_INT (outer_const);
9212 else if (GET_RTX_CLASS (outer_op) == RTX_UNARY)
9213 x = simplify_gen_unary (outer_op, result_mode, x, result_mode);
9214 else
9215 x = simplify_gen_binary (outer_op, result_mode, x,
9216 GEN_INT (outer_const));
9217 }
9218
9219 return x;
9220 }
9221
9222 /* Simplify a shift of VAROP by COUNT bits. CODE says what kind of shift.
9223 The result of the shift is RESULT_MODE. If we cannot simplify it,
9224 return X or, if it is NULL, synthesize the expression with
9225 simplify_gen_binary. Otherwise, return a simplified value.
9226
9227 The shift is normally computed in the widest mode we find in VAROP, as
9228 long as it isn't a different number of words than RESULT_MODE. Exceptions
9229 are ASHIFTRT and ROTATE, which are always done in their original mode. */
9230
9231 static rtx
9232 simplify_shift_const (rtx x, enum rtx_code code, enum machine_mode result_mode,
9233 rtx varop, int count)
9234 {
9235 rtx tem = simplify_shift_const_1 (code, result_mode, varop, count);
9236 if (tem)
9237 return tem;
9238
9239 if (!x)
9240 x = simplify_gen_binary (code, GET_MODE (varop), varop, GEN_INT (count));
9241 if (GET_MODE (x) != result_mode)
9242 x = gen_lowpart (result_mode, x);
9243 return x;
9244 }
9245
9246 \f
9247 /* Like recog, but we receive the address of a pointer to a new pattern.
9248 We try to match the rtx that the pointer points to.
9249 If that fails, we may try to modify or replace the pattern,
9250 storing the replacement into the same pointer object.
9251
9252 Modifications include deletion or addition of CLOBBERs.
9253
9254 PNOTES is a pointer to a location where any REG_UNUSED notes added for
9255 the CLOBBERs are placed.
9256
9257 The value is the final insn code from the pattern ultimately matched,
9258 or -1. */
9259
9260 static int
9261 recog_for_combine (rtx *pnewpat, rtx insn, rtx *pnotes)
9262 {
9263 rtx pat = *pnewpat;
9264 int insn_code_number;
9265 int num_clobbers_to_add = 0;
9266 int i;
9267 rtx notes = 0;
9268 rtx old_notes, old_pat;
9269
9270 /* If PAT is a PARALLEL, check to see if it contains the CLOBBER
9271 we use to indicate that something didn't match. If we find such a
9272 thing, force rejection. */
9273 if (GET_CODE (pat) == PARALLEL)
9274 for (i = XVECLEN (pat, 0) - 1; i >= 0; i--)
9275 if (GET_CODE (XVECEXP (pat, 0, i)) == CLOBBER
9276 && XEXP (XVECEXP (pat, 0, i), 0) == const0_rtx)
9277 return -1;
9278
9279 old_pat = PATTERN (insn);
9280 old_notes = REG_NOTES (insn);
9281 PATTERN (insn) = pat;
9282 REG_NOTES (insn) = 0;
9283
9284 insn_code_number = recog (pat, insn, &num_clobbers_to_add);
9285
9286 /* If it isn't, there is the possibility that we previously had an insn
9287 that clobbered some register as a side effect, but the combined
9288 insn doesn't need to do that. So try once more without the clobbers
9289 unless this represents an ASM insn. */
9290
9291 if (insn_code_number < 0 && ! check_asm_operands (pat)
9292 && GET_CODE (pat) == PARALLEL)
9293 {
9294 int pos;
9295
9296 for (pos = 0, i = 0; i < XVECLEN (pat, 0); i++)
9297 if (GET_CODE (XVECEXP (pat, 0, i)) != CLOBBER)
9298 {
9299 if (i != pos)
9300 SUBST (XVECEXP (pat, 0, pos), XVECEXP (pat, 0, i));
9301 pos++;
9302 }
9303
9304 SUBST_INT (XVECLEN (pat, 0), pos);
9305
9306 if (pos == 1)
9307 pat = XVECEXP (pat, 0, 0);
9308
9309 PATTERN (insn) = pat;
9310 insn_code_number = recog (pat, insn, &num_clobbers_to_add);
9311 }
9312 PATTERN (insn) = old_pat;
9313 REG_NOTES (insn) = old_notes;
9314
9315 /* Recognize all noop sets, these will be killed by followup pass. */
9316 if (insn_code_number < 0 && GET_CODE (pat) == SET && set_noop_p (pat))
9317 insn_code_number = NOOP_MOVE_INSN_CODE, num_clobbers_to_add = 0;
9318
9319 /* If we had any clobbers to add, make a new pattern than contains
9320 them. Then check to make sure that all of them are dead. */
9321 if (num_clobbers_to_add)
9322 {
9323 rtx newpat = gen_rtx_PARALLEL (VOIDmode,
9324 rtvec_alloc (GET_CODE (pat) == PARALLEL
9325 ? (XVECLEN (pat, 0)
9326 + num_clobbers_to_add)
9327 : num_clobbers_to_add + 1));
9328
9329 if (GET_CODE (pat) == PARALLEL)
9330 for (i = 0; i < XVECLEN (pat, 0); i++)
9331 XVECEXP (newpat, 0, i) = XVECEXP (pat, 0, i);
9332 else
9333 XVECEXP (newpat, 0, 0) = pat;
9334
9335 add_clobbers (newpat, insn_code_number);
9336
9337 for (i = XVECLEN (newpat, 0) - num_clobbers_to_add;
9338 i < XVECLEN (newpat, 0); i++)
9339 {
9340 if (REG_P (XEXP (XVECEXP (newpat, 0, i), 0))
9341 && ! reg_dead_at_p (XEXP (XVECEXP (newpat, 0, i), 0), insn))
9342 return -1;
9343 notes = gen_rtx_EXPR_LIST (REG_UNUSED,
9344 XEXP (XVECEXP (newpat, 0, i), 0), notes);
9345 }
9346 pat = newpat;
9347 }
9348
9349 *pnewpat = pat;
9350 *pnotes = notes;
9351
9352 return insn_code_number;
9353 }
9354 \f
9355 /* Like gen_lowpart_general but for use by combine. In combine it
9356 is not possible to create any new pseudoregs. However, it is
9357 safe to create invalid memory addresses, because combine will
9358 try to recognize them and all they will do is make the combine
9359 attempt fail.
9360
9361 If for some reason this cannot do its job, an rtx
9362 (clobber (const_int 0)) is returned.
9363 An insn containing that will not be recognized. */
9364
9365 static rtx
9366 gen_lowpart_for_combine (enum machine_mode omode, rtx x)
9367 {
9368 enum machine_mode imode = GET_MODE (x);
9369 unsigned int osize = GET_MODE_SIZE (omode);
9370 unsigned int isize = GET_MODE_SIZE (imode);
9371 rtx result;
9372
9373 if (omode == imode)
9374 return x;
9375
9376 /* Return identity if this is a CONST or symbolic reference. */
9377 if (omode == Pmode
9378 && (GET_CODE (x) == CONST
9379 || GET_CODE (x) == SYMBOL_REF
9380 || GET_CODE (x) == LABEL_REF))
9381 return x;
9382
9383 /* We can only support MODE being wider than a word if X is a
9384 constant integer or has a mode the same size. */
9385 if (GET_MODE_SIZE (omode) > UNITS_PER_WORD
9386 && ! ((imode == VOIDmode
9387 && (GET_CODE (x) == CONST_INT
9388 || GET_CODE (x) == CONST_DOUBLE))
9389 || isize == osize))
9390 goto fail;
9391
9392 /* X might be a paradoxical (subreg (mem)). In that case, gen_lowpart
9393 won't know what to do. So we will strip off the SUBREG here and
9394 process normally. */
9395 if (GET_CODE (x) == SUBREG && MEM_P (SUBREG_REG (x)))
9396 {
9397 x = SUBREG_REG (x);
9398
9399 /* For use in case we fall down into the address adjustments
9400 further below, we need to adjust the known mode and size of
9401 x; imode and isize, since we just adjusted x. */
9402 imode = GET_MODE (x);
9403
9404 if (imode == omode)
9405 return x;
9406
9407 isize = GET_MODE_SIZE (imode);
9408 }
9409
9410 result = gen_lowpart_common (omode, x);
9411
9412 #ifdef CANNOT_CHANGE_MODE_CLASS
9413 if (result != 0 && GET_CODE (result) == SUBREG)
9414 record_subregs_of_mode (result);
9415 #endif
9416
9417 if (result)
9418 return result;
9419
9420 if (MEM_P (x))
9421 {
9422 int offset = 0;
9423
9424 /* Refuse to work on a volatile memory ref or one with a mode-dependent
9425 address. */
9426 if (MEM_VOLATILE_P (x) || mode_dependent_address_p (XEXP (x, 0)))
9427 goto fail;
9428
9429 /* If we want to refer to something bigger than the original memref,
9430 generate a paradoxical subreg instead. That will force a reload
9431 of the original memref X. */
9432 if (isize < osize)
9433 return gen_rtx_SUBREG (omode, x, 0);
9434
9435 if (WORDS_BIG_ENDIAN)
9436 offset = MAX (isize, UNITS_PER_WORD) - MAX (osize, UNITS_PER_WORD);
9437
9438 /* Adjust the address so that the address-after-the-data is
9439 unchanged. */
9440 if (BYTES_BIG_ENDIAN)
9441 offset -= MIN (UNITS_PER_WORD, osize) - MIN (UNITS_PER_WORD, isize);
9442
9443 return adjust_address_nv (x, omode, offset);
9444 }
9445
9446 /* If X is a comparison operator, rewrite it in a new mode. This
9447 probably won't match, but may allow further simplifications. */
9448 else if (COMPARISON_P (x))
9449 return gen_rtx_fmt_ee (GET_CODE (x), omode, XEXP (x, 0), XEXP (x, 1));
9450
9451 /* If we couldn't simplify X any other way, just enclose it in a
9452 SUBREG. Normally, this SUBREG won't match, but some patterns may
9453 include an explicit SUBREG or we may simplify it further in combine. */
9454 else
9455 {
9456 int offset = 0;
9457 rtx res;
9458
9459 offset = subreg_lowpart_offset (omode, imode);
9460 if (imode == VOIDmode)
9461 {
9462 imode = int_mode_for_mode (omode);
9463 x = gen_lowpart_common (imode, x);
9464 if (x == NULL)
9465 goto fail;
9466 }
9467 res = simplify_gen_subreg (omode, x, imode, offset);
9468 if (res)
9469 return res;
9470 }
9471
9472 fail:
9473 return gen_rtx_CLOBBER (imode, const0_rtx);
9474 }
9475 \f
9476 /* Simplify a comparison between *POP0 and *POP1 where CODE is the
9477 comparison code that will be tested.
9478
9479 The result is a possibly different comparison code to use. *POP0 and
9480 *POP1 may be updated.
9481
9482 It is possible that we might detect that a comparison is either always
9483 true or always false. However, we do not perform general constant
9484 folding in combine, so this knowledge isn't useful. Such tautologies
9485 should have been detected earlier. Hence we ignore all such cases. */
9486
9487 static enum rtx_code
9488 simplify_comparison (enum rtx_code code, rtx *pop0, rtx *pop1)
9489 {
9490 rtx op0 = *pop0;
9491 rtx op1 = *pop1;
9492 rtx tem, tem1;
9493 int i;
9494 enum machine_mode mode, tmode;
9495
9496 /* Try a few ways of applying the same transformation to both operands. */
9497 while (1)
9498 {
9499 #ifndef WORD_REGISTER_OPERATIONS
9500 /* The test below this one won't handle SIGN_EXTENDs on these machines,
9501 so check specially. */
9502 if (code != GTU && code != GEU && code != LTU && code != LEU
9503 && GET_CODE (op0) == ASHIFTRT && GET_CODE (op1) == ASHIFTRT
9504 && GET_CODE (XEXP (op0, 0)) == ASHIFT
9505 && GET_CODE (XEXP (op1, 0)) == ASHIFT
9506 && GET_CODE (XEXP (XEXP (op0, 0), 0)) == SUBREG
9507 && GET_CODE (XEXP (XEXP (op1, 0), 0)) == SUBREG
9508 && (GET_MODE (SUBREG_REG (XEXP (XEXP (op0, 0), 0)))
9509 == GET_MODE (SUBREG_REG (XEXP (XEXP (op1, 0), 0))))
9510 && GET_CODE (XEXP (op0, 1)) == CONST_INT
9511 && XEXP (op0, 1) == XEXP (op1, 1)
9512 && XEXP (op0, 1) == XEXP (XEXP (op0, 0), 1)
9513 && XEXP (op0, 1) == XEXP (XEXP (op1, 0), 1)
9514 && (INTVAL (XEXP (op0, 1))
9515 == (GET_MODE_BITSIZE (GET_MODE (op0))
9516 - (GET_MODE_BITSIZE
9517 (GET_MODE (SUBREG_REG (XEXP (XEXP (op0, 0), 0))))))))
9518 {
9519 op0 = SUBREG_REG (XEXP (XEXP (op0, 0), 0));
9520 op1 = SUBREG_REG (XEXP (XEXP (op1, 0), 0));
9521 }
9522 #endif
9523
9524 /* If both operands are the same constant shift, see if we can ignore the
9525 shift. We can if the shift is a rotate or if the bits shifted out of
9526 this shift are known to be zero for both inputs and if the type of
9527 comparison is compatible with the shift. */
9528 if (GET_CODE (op0) == GET_CODE (op1)
9529 && GET_MODE_BITSIZE (GET_MODE (op0)) <= HOST_BITS_PER_WIDE_INT
9530 && ((GET_CODE (op0) == ROTATE && (code == NE || code == EQ))
9531 || ((GET_CODE (op0) == LSHIFTRT || GET_CODE (op0) == ASHIFT)
9532 && (code != GT && code != LT && code != GE && code != LE))
9533 || (GET_CODE (op0) == ASHIFTRT
9534 && (code != GTU && code != LTU
9535 && code != GEU && code != LEU)))
9536 && GET_CODE (XEXP (op0, 1)) == CONST_INT
9537 && INTVAL (XEXP (op0, 1)) >= 0
9538 && INTVAL (XEXP (op0, 1)) < HOST_BITS_PER_WIDE_INT
9539 && XEXP (op0, 1) == XEXP (op1, 1))
9540 {
9541 enum machine_mode mode = GET_MODE (op0);
9542 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
9543 int shift_count = INTVAL (XEXP (op0, 1));
9544
9545 if (GET_CODE (op0) == LSHIFTRT || GET_CODE (op0) == ASHIFTRT)
9546 mask &= (mask >> shift_count) << shift_count;
9547 else if (GET_CODE (op0) == ASHIFT)
9548 mask = (mask & (mask << shift_count)) >> shift_count;
9549
9550 if ((nonzero_bits (XEXP (op0, 0), mode) & ~mask) == 0
9551 && (nonzero_bits (XEXP (op1, 0), mode) & ~mask) == 0)
9552 op0 = XEXP (op0, 0), op1 = XEXP (op1, 0);
9553 else
9554 break;
9555 }
9556
9557 /* If both operands are AND's of a paradoxical SUBREG by constant, the
9558 SUBREGs are of the same mode, and, in both cases, the AND would
9559 be redundant if the comparison was done in the narrower mode,
9560 do the comparison in the narrower mode (e.g., we are AND'ing with 1
9561 and the operand's possibly nonzero bits are 0xffffff01; in that case
9562 if we only care about QImode, we don't need the AND). This case
9563 occurs if the output mode of an scc insn is not SImode and
9564 STORE_FLAG_VALUE == 1 (e.g., the 386).
9565
9566 Similarly, check for a case where the AND's are ZERO_EXTEND
9567 operations from some narrower mode even though a SUBREG is not
9568 present. */
9569
9570 else if (GET_CODE (op0) == AND && GET_CODE (op1) == AND
9571 && GET_CODE (XEXP (op0, 1)) == CONST_INT
9572 && GET_CODE (XEXP (op1, 1)) == CONST_INT)
9573 {
9574 rtx inner_op0 = XEXP (op0, 0);
9575 rtx inner_op1 = XEXP (op1, 0);
9576 HOST_WIDE_INT c0 = INTVAL (XEXP (op0, 1));
9577 HOST_WIDE_INT c1 = INTVAL (XEXP (op1, 1));
9578 int changed = 0;
9579
9580 if (GET_CODE (inner_op0) == SUBREG && GET_CODE (inner_op1) == SUBREG
9581 && (GET_MODE_SIZE (GET_MODE (inner_op0))
9582 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (inner_op0))))
9583 && (GET_MODE (SUBREG_REG (inner_op0))
9584 == GET_MODE (SUBREG_REG (inner_op1)))
9585 && (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (inner_op0)))
9586 <= HOST_BITS_PER_WIDE_INT)
9587 && (0 == ((~c0) & nonzero_bits (SUBREG_REG (inner_op0),
9588 GET_MODE (SUBREG_REG (inner_op0)))))
9589 && (0 == ((~c1) & nonzero_bits (SUBREG_REG (inner_op1),
9590 GET_MODE (SUBREG_REG (inner_op1))))))
9591 {
9592 op0 = SUBREG_REG (inner_op0);
9593 op1 = SUBREG_REG (inner_op1);
9594
9595 /* The resulting comparison is always unsigned since we masked
9596 off the original sign bit. */
9597 code = unsigned_condition (code);
9598
9599 changed = 1;
9600 }
9601
9602 else if (c0 == c1)
9603 for (tmode = GET_CLASS_NARROWEST_MODE
9604 (GET_MODE_CLASS (GET_MODE (op0)));
9605 tmode != GET_MODE (op0); tmode = GET_MODE_WIDER_MODE (tmode))
9606 if ((unsigned HOST_WIDE_INT) c0 == GET_MODE_MASK (tmode))
9607 {
9608 op0 = gen_lowpart (tmode, inner_op0);
9609 op1 = gen_lowpart (tmode, inner_op1);
9610 code = unsigned_condition (code);
9611 changed = 1;
9612 break;
9613 }
9614
9615 if (! changed)
9616 break;
9617 }
9618
9619 /* If both operands are NOT, we can strip off the outer operation
9620 and adjust the comparison code for swapped operands; similarly for
9621 NEG, except that this must be an equality comparison. */
9622 else if ((GET_CODE (op0) == NOT && GET_CODE (op1) == NOT)
9623 || (GET_CODE (op0) == NEG && GET_CODE (op1) == NEG
9624 && (code == EQ || code == NE)))
9625 op0 = XEXP (op0, 0), op1 = XEXP (op1, 0), code = swap_condition (code);
9626
9627 else
9628 break;
9629 }
9630
9631 /* If the first operand is a constant, swap the operands and adjust the
9632 comparison code appropriately, but don't do this if the second operand
9633 is already a constant integer. */
9634 if (swap_commutative_operands_p (op0, op1))
9635 {
9636 tem = op0, op0 = op1, op1 = tem;
9637 code = swap_condition (code);
9638 }
9639
9640 /* We now enter a loop during which we will try to simplify the comparison.
9641 For the most part, we only are concerned with comparisons with zero,
9642 but some things may really be comparisons with zero but not start
9643 out looking that way. */
9644
9645 while (GET_CODE (op1) == CONST_INT)
9646 {
9647 enum machine_mode mode = GET_MODE (op0);
9648 unsigned int mode_width = GET_MODE_BITSIZE (mode);
9649 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
9650 int equality_comparison_p;
9651 int sign_bit_comparison_p;
9652 int unsigned_comparison_p;
9653 HOST_WIDE_INT const_op;
9654
9655 /* We only want to handle integral modes. This catches VOIDmode,
9656 CCmode, and the floating-point modes. An exception is that we
9657 can handle VOIDmode if OP0 is a COMPARE or a comparison
9658 operation. */
9659
9660 if (GET_MODE_CLASS (mode) != MODE_INT
9661 && ! (mode == VOIDmode
9662 && (GET_CODE (op0) == COMPARE || COMPARISON_P (op0))))
9663 break;
9664
9665 /* Get the constant we are comparing against and turn off all bits
9666 not on in our mode. */
9667 const_op = INTVAL (op1);
9668 if (mode != VOIDmode)
9669 const_op = trunc_int_for_mode (const_op, mode);
9670 op1 = GEN_INT (const_op);
9671
9672 /* If we are comparing against a constant power of two and the value
9673 being compared can only have that single bit nonzero (e.g., it was
9674 `and'ed with that bit), we can replace this with a comparison
9675 with zero. */
9676 if (const_op
9677 && (code == EQ || code == NE || code == GE || code == GEU
9678 || code == LT || code == LTU)
9679 && mode_width <= HOST_BITS_PER_WIDE_INT
9680 && exact_log2 (const_op) >= 0
9681 && nonzero_bits (op0, mode) == (unsigned HOST_WIDE_INT) const_op)
9682 {
9683 code = (code == EQ || code == GE || code == GEU ? NE : EQ);
9684 op1 = const0_rtx, const_op = 0;
9685 }
9686
9687 /* Similarly, if we are comparing a value known to be either -1 or
9688 0 with -1, change it to the opposite comparison against zero. */
9689
9690 if (const_op == -1
9691 && (code == EQ || code == NE || code == GT || code == LE
9692 || code == GEU || code == LTU)
9693 && num_sign_bit_copies (op0, mode) == mode_width)
9694 {
9695 code = (code == EQ || code == LE || code == GEU ? NE : EQ);
9696 op1 = const0_rtx, const_op = 0;
9697 }
9698
9699 /* Do some canonicalizations based on the comparison code. We prefer
9700 comparisons against zero and then prefer equality comparisons.
9701 If we can reduce the size of a constant, we will do that too. */
9702
9703 switch (code)
9704 {
9705 case LT:
9706 /* < C is equivalent to <= (C - 1) */
9707 if (const_op > 0)
9708 {
9709 const_op -= 1;
9710 op1 = GEN_INT (const_op);
9711 code = LE;
9712 /* ... fall through to LE case below. */
9713 }
9714 else
9715 break;
9716
9717 case LE:
9718 /* <= C is equivalent to < (C + 1); we do this for C < 0 */
9719 if (const_op < 0)
9720 {
9721 const_op += 1;
9722 op1 = GEN_INT (const_op);
9723 code = LT;
9724 }
9725
9726 /* If we are doing a <= 0 comparison on a value known to have
9727 a zero sign bit, we can replace this with == 0. */
9728 else if (const_op == 0
9729 && mode_width <= HOST_BITS_PER_WIDE_INT
9730 && (nonzero_bits (op0, mode)
9731 & ((HOST_WIDE_INT) 1 << (mode_width - 1))) == 0)
9732 code = EQ;
9733 break;
9734
9735 case GE:
9736 /* >= C is equivalent to > (C - 1). */
9737 if (const_op > 0)
9738 {
9739 const_op -= 1;
9740 op1 = GEN_INT (const_op);
9741 code = GT;
9742 /* ... fall through to GT below. */
9743 }
9744 else
9745 break;
9746
9747 case GT:
9748 /* > C is equivalent to >= (C + 1); we do this for C < 0. */
9749 if (const_op < 0)
9750 {
9751 const_op += 1;
9752 op1 = GEN_INT (const_op);
9753 code = GE;
9754 }
9755
9756 /* If we are doing a > 0 comparison on a value known to have
9757 a zero sign bit, we can replace this with != 0. */
9758 else if (const_op == 0
9759 && mode_width <= HOST_BITS_PER_WIDE_INT
9760 && (nonzero_bits (op0, mode)
9761 & ((HOST_WIDE_INT) 1 << (mode_width - 1))) == 0)
9762 code = NE;
9763 break;
9764
9765 case LTU:
9766 /* < C is equivalent to <= (C - 1). */
9767 if (const_op > 0)
9768 {
9769 const_op -= 1;
9770 op1 = GEN_INT (const_op);
9771 code = LEU;
9772 /* ... fall through ... */
9773 }
9774
9775 /* (unsigned) < 0x80000000 is equivalent to >= 0. */
9776 else if ((mode_width <= HOST_BITS_PER_WIDE_INT)
9777 && (const_op == (HOST_WIDE_INT) 1 << (mode_width - 1)))
9778 {
9779 const_op = 0, op1 = const0_rtx;
9780 code = GE;
9781 break;
9782 }
9783 else
9784 break;
9785
9786 case LEU:
9787 /* unsigned <= 0 is equivalent to == 0 */
9788 if (const_op == 0)
9789 code = EQ;
9790
9791 /* (unsigned) <= 0x7fffffff is equivalent to >= 0. */
9792 else if ((mode_width <= HOST_BITS_PER_WIDE_INT)
9793 && (const_op == ((HOST_WIDE_INT) 1 << (mode_width - 1)) - 1))
9794 {
9795 const_op = 0, op1 = const0_rtx;
9796 code = GE;
9797 }
9798 break;
9799
9800 case GEU:
9801 /* >= C is equivalent to > (C - 1). */
9802 if (const_op > 1)
9803 {
9804 const_op -= 1;
9805 op1 = GEN_INT (const_op);
9806 code = GTU;
9807 /* ... fall through ... */
9808 }
9809
9810 /* (unsigned) >= 0x80000000 is equivalent to < 0. */
9811 else if ((mode_width <= HOST_BITS_PER_WIDE_INT)
9812 && (const_op == (HOST_WIDE_INT) 1 << (mode_width - 1)))
9813 {
9814 const_op = 0, op1 = const0_rtx;
9815 code = LT;
9816 break;
9817 }
9818 else
9819 break;
9820
9821 case GTU:
9822 /* unsigned > 0 is equivalent to != 0 */
9823 if (const_op == 0)
9824 code = NE;
9825
9826 /* (unsigned) > 0x7fffffff is equivalent to < 0. */
9827 else if ((mode_width <= HOST_BITS_PER_WIDE_INT)
9828 && (const_op == ((HOST_WIDE_INT) 1 << (mode_width - 1)) - 1))
9829 {
9830 const_op = 0, op1 = const0_rtx;
9831 code = LT;
9832 }
9833 break;
9834
9835 default:
9836 break;
9837 }
9838
9839 /* Compute some predicates to simplify code below. */
9840
9841 equality_comparison_p = (code == EQ || code == NE);
9842 sign_bit_comparison_p = ((code == LT || code == GE) && const_op == 0);
9843 unsigned_comparison_p = (code == LTU || code == LEU || code == GTU
9844 || code == GEU);
9845
9846 /* If this is a sign bit comparison and we can do arithmetic in
9847 MODE, say that we will only be needing the sign bit of OP0. */
9848 if (sign_bit_comparison_p
9849 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
9850 op0 = force_to_mode (op0, mode,
9851 ((HOST_WIDE_INT) 1
9852 << (GET_MODE_BITSIZE (mode) - 1)),
9853 0);
9854
9855 /* Now try cases based on the opcode of OP0. If none of the cases
9856 does a "continue", we exit this loop immediately after the
9857 switch. */
9858
9859 switch (GET_CODE (op0))
9860 {
9861 case ZERO_EXTRACT:
9862 /* If we are extracting a single bit from a variable position in
9863 a constant that has only a single bit set and are comparing it
9864 with zero, we can convert this into an equality comparison
9865 between the position and the location of the single bit. */
9866 /* Except we can't if SHIFT_COUNT_TRUNCATED is set, since we might
9867 have already reduced the shift count modulo the word size. */
9868 if (!SHIFT_COUNT_TRUNCATED
9869 && GET_CODE (XEXP (op0, 0)) == CONST_INT
9870 && XEXP (op0, 1) == const1_rtx
9871 && equality_comparison_p && const_op == 0
9872 && (i = exact_log2 (INTVAL (XEXP (op0, 0)))) >= 0)
9873 {
9874 if (BITS_BIG_ENDIAN)
9875 {
9876 enum machine_mode new_mode
9877 = mode_for_extraction (EP_extzv, 1);
9878 if (new_mode == MAX_MACHINE_MODE)
9879 i = BITS_PER_WORD - 1 - i;
9880 else
9881 {
9882 mode = new_mode;
9883 i = (GET_MODE_BITSIZE (mode) - 1 - i);
9884 }
9885 }
9886
9887 op0 = XEXP (op0, 2);
9888 op1 = GEN_INT (i);
9889 const_op = i;
9890
9891 /* Result is nonzero iff shift count is equal to I. */
9892 code = reverse_condition (code);
9893 continue;
9894 }
9895
9896 /* ... fall through ... */
9897
9898 case SIGN_EXTRACT:
9899 tem = expand_compound_operation (op0);
9900 if (tem != op0)
9901 {
9902 op0 = tem;
9903 continue;
9904 }
9905 break;
9906
9907 case NOT:
9908 /* If testing for equality, we can take the NOT of the constant. */
9909 if (equality_comparison_p
9910 && (tem = simplify_unary_operation (NOT, mode, op1, mode)) != 0)
9911 {
9912 op0 = XEXP (op0, 0);
9913 op1 = tem;
9914 continue;
9915 }
9916
9917 /* If just looking at the sign bit, reverse the sense of the
9918 comparison. */
9919 if (sign_bit_comparison_p)
9920 {
9921 op0 = XEXP (op0, 0);
9922 code = (code == GE ? LT : GE);
9923 continue;
9924 }
9925 break;
9926
9927 case NEG:
9928 /* If testing for equality, we can take the NEG of the constant. */
9929 if (equality_comparison_p
9930 && (tem = simplify_unary_operation (NEG, mode, op1, mode)) != 0)
9931 {
9932 op0 = XEXP (op0, 0);
9933 op1 = tem;
9934 continue;
9935 }
9936
9937 /* The remaining cases only apply to comparisons with zero. */
9938 if (const_op != 0)
9939 break;
9940
9941 /* When X is ABS or is known positive,
9942 (neg X) is < 0 if and only if X != 0. */
9943
9944 if (sign_bit_comparison_p
9945 && (GET_CODE (XEXP (op0, 0)) == ABS
9946 || (mode_width <= HOST_BITS_PER_WIDE_INT
9947 && (nonzero_bits (XEXP (op0, 0), mode)
9948 & ((HOST_WIDE_INT) 1 << (mode_width - 1))) == 0)))
9949 {
9950 op0 = XEXP (op0, 0);
9951 code = (code == LT ? NE : EQ);
9952 continue;
9953 }
9954
9955 /* If we have NEG of something whose two high-order bits are the
9956 same, we know that "(-a) < 0" is equivalent to "a > 0". */
9957 if (num_sign_bit_copies (op0, mode) >= 2)
9958 {
9959 op0 = XEXP (op0, 0);
9960 code = swap_condition (code);
9961 continue;
9962 }
9963 break;
9964
9965 case ROTATE:
9966 /* If we are testing equality and our count is a constant, we
9967 can perform the inverse operation on our RHS. */
9968 if (equality_comparison_p && GET_CODE (XEXP (op0, 1)) == CONST_INT
9969 && (tem = simplify_binary_operation (ROTATERT, mode,
9970 op1, XEXP (op0, 1))) != 0)
9971 {
9972 op0 = XEXP (op0, 0);
9973 op1 = tem;
9974 continue;
9975 }
9976
9977 /* If we are doing a < 0 or >= 0 comparison, it means we are testing
9978 a particular bit. Convert it to an AND of a constant of that
9979 bit. This will be converted into a ZERO_EXTRACT. */
9980 if (const_op == 0 && sign_bit_comparison_p
9981 && GET_CODE (XEXP (op0, 1)) == CONST_INT
9982 && mode_width <= HOST_BITS_PER_WIDE_INT)
9983 {
9984 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
9985 ((HOST_WIDE_INT) 1
9986 << (mode_width - 1
9987 - INTVAL (XEXP (op0, 1)))));
9988 code = (code == LT ? NE : EQ);
9989 continue;
9990 }
9991
9992 /* Fall through. */
9993
9994 case ABS:
9995 /* ABS is ignorable inside an equality comparison with zero. */
9996 if (const_op == 0 && equality_comparison_p)
9997 {
9998 op0 = XEXP (op0, 0);
9999 continue;
10000 }
10001 break;
10002
10003 case SIGN_EXTEND:
10004 /* Can simplify (compare (zero/sign_extend FOO) CONST) to
10005 (compare FOO CONST) if CONST fits in FOO's mode and we
10006 are either testing inequality or have an unsigned
10007 comparison with ZERO_EXTEND or a signed comparison with
10008 SIGN_EXTEND. But don't do it if we don't have a compare
10009 insn of the given mode, since we'd have to revert it
10010 later on, and then we wouldn't know whether to sign- or
10011 zero-extend. */
10012 mode = GET_MODE (XEXP (op0, 0));
10013 if (mode != VOIDmode && GET_MODE_CLASS (mode) == MODE_INT
10014 && ! unsigned_comparison_p
10015 && (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
10016 && ((unsigned HOST_WIDE_INT) const_op
10017 < (((unsigned HOST_WIDE_INT) 1
10018 << (GET_MODE_BITSIZE (mode) - 1))))
10019 && cmp_optab->handlers[(int) mode].insn_code != CODE_FOR_nothing)
10020 {
10021 op0 = XEXP (op0, 0);
10022 continue;
10023 }
10024 break;
10025
10026 case SUBREG:
10027 /* Check for the case where we are comparing A - C1 with C2, that is
10028
10029 (subreg:MODE (plus (A) (-C1))) op (C2)
10030
10031 with C1 a constant, and try to lift the SUBREG, i.e. to do the
10032 comparison in the wider mode. One of the following two conditions
10033 must be true in order for this to be valid:
10034
10035 1. The mode extension results in the same bit pattern being added
10036 on both sides and the comparison is equality or unsigned. As
10037 C2 has been truncated to fit in MODE, the pattern can only be
10038 all 0s or all 1s.
10039
10040 2. The mode extension results in the sign bit being copied on
10041 each side.
10042
10043 The difficulty here is that we have predicates for A but not for
10044 (A - C1) so we need to check that C1 is within proper bounds so
10045 as to perturbate A as little as possible. */
10046
10047 if (mode_width <= HOST_BITS_PER_WIDE_INT
10048 && subreg_lowpart_p (op0)
10049 && GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (op0))) > mode_width
10050 && GET_CODE (SUBREG_REG (op0)) == PLUS
10051 && GET_CODE (XEXP (SUBREG_REG (op0), 1)) == CONST_INT)
10052 {
10053 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (op0));
10054 rtx a = XEXP (SUBREG_REG (op0), 0);
10055 HOST_WIDE_INT c1 = -INTVAL (XEXP (SUBREG_REG (op0), 1));
10056
10057 if ((c1 > 0
10058 && (unsigned HOST_WIDE_INT) c1
10059 < (unsigned HOST_WIDE_INT) 1 << (mode_width - 1)
10060 && (equality_comparison_p || unsigned_comparison_p)
10061 /* (A - C1) zero-extends if it is positive and sign-extends
10062 if it is negative, C2 both zero- and sign-extends. */
10063 && ((0 == (nonzero_bits (a, inner_mode)
10064 & ~GET_MODE_MASK (mode))
10065 && const_op >= 0)
10066 /* (A - C1) sign-extends if it is positive and 1-extends
10067 if it is negative, C2 both sign- and 1-extends. */
10068 || (num_sign_bit_copies (a, inner_mode)
10069 > (unsigned int) (GET_MODE_BITSIZE (inner_mode)
10070 - mode_width)
10071 && const_op < 0)))
10072 || ((unsigned HOST_WIDE_INT) c1
10073 < (unsigned HOST_WIDE_INT) 1 << (mode_width - 2)
10074 /* (A - C1) always sign-extends, like C2. */
10075 && num_sign_bit_copies (a, inner_mode)
10076 > (unsigned int) (GET_MODE_BITSIZE (inner_mode)
10077 - (mode_width - 1))))
10078 {
10079 op0 = SUBREG_REG (op0);
10080 continue;
10081 }
10082 }
10083
10084 /* If the inner mode is narrower and we are extracting the low part,
10085 we can treat the SUBREG as if it were a ZERO_EXTEND. */
10086 if (subreg_lowpart_p (op0)
10087 && GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (op0))) < mode_width)
10088 /* Fall through */ ;
10089 else
10090 break;
10091
10092 /* ... fall through ... */
10093
10094 case ZERO_EXTEND:
10095 mode = GET_MODE (XEXP (op0, 0));
10096 if (mode != VOIDmode && GET_MODE_CLASS (mode) == MODE_INT
10097 && (unsigned_comparison_p || equality_comparison_p)
10098 && (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
10099 && ((unsigned HOST_WIDE_INT) const_op < GET_MODE_MASK (mode))
10100 && cmp_optab->handlers[(int) mode].insn_code != CODE_FOR_nothing)
10101 {
10102 op0 = XEXP (op0, 0);
10103 continue;
10104 }
10105 break;
10106
10107 case PLUS:
10108 /* (eq (plus X A) B) -> (eq X (minus B A)). We can only do
10109 this for equality comparisons due to pathological cases involving
10110 overflows. */
10111 if (equality_comparison_p
10112 && 0 != (tem = simplify_binary_operation (MINUS, mode,
10113 op1, XEXP (op0, 1))))
10114 {
10115 op0 = XEXP (op0, 0);
10116 op1 = tem;
10117 continue;
10118 }
10119
10120 /* (plus (abs X) (const_int -1)) is < 0 if and only if X == 0. */
10121 if (const_op == 0 && XEXP (op0, 1) == constm1_rtx
10122 && GET_CODE (XEXP (op0, 0)) == ABS && sign_bit_comparison_p)
10123 {
10124 op0 = XEXP (XEXP (op0, 0), 0);
10125 code = (code == LT ? EQ : NE);
10126 continue;
10127 }
10128 break;
10129
10130 case MINUS:
10131 /* We used to optimize signed comparisons against zero, but that
10132 was incorrect. Unsigned comparisons against zero (GTU, LEU)
10133 arrive here as equality comparisons, or (GEU, LTU) are
10134 optimized away. No need to special-case them. */
10135
10136 /* (eq (minus A B) C) -> (eq A (plus B C)) or
10137 (eq B (minus A C)), whichever simplifies. We can only do
10138 this for equality comparisons due to pathological cases involving
10139 overflows. */
10140 if (equality_comparison_p
10141 && 0 != (tem = simplify_binary_operation (PLUS, mode,
10142 XEXP (op0, 1), op1)))
10143 {
10144 op0 = XEXP (op0, 0);
10145 op1 = tem;
10146 continue;
10147 }
10148
10149 if (equality_comparison_p
10150 && 0 != (tem = simplify_binary_operation (MINUS, mode,
10151 XEXP (op0, 0), op1)))
10152 {
10153 op0 = XEXP (op0, 1);
10154 op1 = tem;
10155 continue;
10156 }
10157
10158 /* The sign bit of (minus (ashiftrt X C) X), where C is the number
10159 of bits in X minus 1, is one iff X > 0. */
10160 if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 0)) == ASHIFTRT
10161 && GET_CODE (XEXP (XEXP (op0, 0), 1)) == CONST_INT
10162 && (unsigned HOST_WIDE_INT) INTVAL (XEXP (XEXP (op0, 0), 1))
10163 == mode_width - 1
10164 && rtx_equal_p (XEXP (XEXP (op0, 0), 0), XEXP (op0, 1)))
10165 {
10166 op0 = XEXP (op0, 1);
10167 code = (code == GE ? LE : GT);
10168 continue;
10169 }
10170 break;
10171
10172 case XOR:
10173 /* (eq (xor A B) C) -> (eq A (xor B C)). This is a simplification
10174 if C is zero or B is a constant. */
10175 if (equality_comparison_p
10176 && 0 != (tem = simplify_binary_operation (XOR, mode,
10177 XEXP (op0, 1), op1)))
10178 {
10179 op0 = XEXP (op0, 0);
10180 op1 = tem;
10181 continue;
10182 }
10183 break;
10184
10185 case EQ: case NE:
10186 case UNEQ: case LTGT:
10187 case LT: case LTU: case UNLT: case LE: case LEU: case UNLE:
10188 case GT: case GTU: case UNGT: case GE: case GEU: case UNGE:
10189 case UNORDERED: case ORDERED:
10190 /* We can't do anything if OP0 is a condition code value, rather
10191 than an actual data value. */
10192 if (const_op != 0
10193 || CC0_P (XEXP (op0, 0))
10194 || GET_MODE_CLASS (GET_MODE (XEXP (op0, 0))) == MODE_CC)
10195 break;
10196
10197 /* Get the two operands being compared. */
10198 if (GET_CODE (XEXP (op0, 0)) == COMPARE)
10199 tem = XEXP (XEXP (op0, 0), 0), tem1 = XEXP (XEXP (op0, 0), 1);
10200 else
10201 tem = XEXP (op0, 0), tem1 = XEXP (op0, 1);
10202
10203 /* Check for the cases where we simply want the result of the
10204 earlier test or the opposite of that result. */
10205 if (code == NE || code == EQ
10206 || (GET_MODE_BITSIZE (GET_MODE (op0)) <= HOST_BITS_PER_WIDE_INT
10207 && GET_MODE_CLASS (GET_MODE (op0)) == MODE_INT
10208 && (STORE_FLAG_VALUE
10209 & (((HOST_WIDE_INT) 1
10210 << (GET_MODE_BITSIZE (GET_MODE (op0)) - 1))))
10211 && (code == LT || code == GE)))
10212 {
10213 enum rtx_code new_code;
10214 if (code == LT || code == NE)
10215 new_code = GET_CODE (op0);
10216 else
10217 new_code = reversed_comparison_code (op0, NULL);
10218
10219 if (new_code != UNKNOWN)
10220 {
10221 code = new_code;
10222 op0 = tem;
10223 op1 = tem1;
10224 continue;
10225 }
10226 }
10227 break;
10228
10229 case IOR:
10230 /* The sign bit of (ior (plus X (const_int -1)) X) is nonzero
10231 iff X <= 0. */
10232 if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 0)) == PLUS
10233 && XEXP (XEXP (op0, 0), 1) == constm1_rtx
10234 && rtx_equal_p (XEXP (XEXP (op0, 0), 0), XEXP (op0, 1)))
10235 {
10236 op0 = XEXP (op0, 1);
10237 code = (code == GE ? GT : LE);
10238 continue;
10239 }
10240 break;
10241
10242 case AND:
10243 /* Convert (and (xshift 1 X) Y) to (and (lshiftrt Y X) 1). This
10244 will be converted to a ZERO_EXTRACT later. */
10245 if (const_op == 0 && equality_comparison_p
10246 && GET_CODE (XEXP (op0, 0)) == ASHIFT
10247 && XEXP (XEXP (op0, 0), 0) == const1_rtx)
10248 {
10249 op0 = simplify_and_const_int
10250 (NULL_RTX, mode, gen_rtx_LSHIFTRT (mode,
10251 XEXP (op0, 1),
10252 XEXP (XEXP (op0, 0), 1)),
10253 (HOST_WIDE_INT) 1);
10254 continue;
10255 }
10256
10257 /* If we are comparing (and (lshiftrt X C1) C2) for equality with
10258 zero and X is a comparison and C1 and C2 describe only bits set
10259 in STORE_FLAG_VALUE, we can compare with X. */
10260 if (const_op == 0 && equality_comparison_p
10261 && mode_width <= HOST_BITS_PER_WIDE_INT
10262 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10263 && GET_CODE (XEXP (op0, 0)) == LSHIFTRT
10264 && GET_CODE (XEXP (XEXP (op0, 0), 1)) == CONST_INT
10265 && INTVAL (XEXP (XEXP (op0, 0), 1)) >= 0
10266 && INTVAL (XEXP (XEXP (op0, 0), 1)) < HOST_BITS_PER_WIDE_INT)
10267 {
10268 mask = ((INTVAL (XEXP (op0, 1)) & GET_MODE_MASK (mode))
10269 << INTVAL (XEXP (XEXP (op0, 0), 1)));
10270 if ((~STORE_FLAG_VALUE & mask) == 0
10271 && (COMPARISON_P (XEXP (XEXP (op0, 0), 0))
10272 || ((tem = get_last_value (XEXP (XEXP (op0, 0), 0))) != 0
10273 && COMPARISON_P (tem))))
10274 {
10275 op0 = XEXP (XEXP (op0, 0), 0);
10276 continue;
10277 }
10278 }
10279
10280 /* If we are doing an equality comparison of an AND of a bit equal
10281 to the sign bit, replace this with a LT or GE comparison of
10282 the underlying value. */
10283 if (equality_comparison_p
10284 && const_op == 0
10285 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10286 && mode_width <= HOST_BITS_PER_WIDE_INT
10287 && ((INTVAL (XEXP (op0, 1)) & GET_MODE_MASK (mode))
10288 == (unsigned HOST_WIDE_INT) 1 << (mode_width - 1)))
10289 {
10290 op0 = XEXP (op0, 0);
10291 code = (code == EQ ? GE : LT);
10292 continue;
10293 }
10294
10295 /* If this AND operation is really a ZERO_EXTEND from a narrower
10296 mode, the constant fits within that mode, and this is either an
10297 equality or unsigned comparison, try to do this comparison in
10298 the narrower mode.
10299
10300 Note that in:
10301
10302 (ne:DI (and:DI (reg:DI 4) (const_int 0xffffffff)) (const_int 0))
10303 -> (ne:DI (reg:SI 4) (const_int 0))
10304
10305 unless TRULY_NOOP_TRUNCATION allows it or the register is
10306 known to hold a value of the required mode the
10307 transformation is invalid. */
10308 if ((equality_comparison_p || unsigned_comparison_p)
10309 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10310 && (i = exact_log2 ((INTVAL (XEXP (op0, 1))
10311 & GET_MODE_MASK (mode))
10312 + 1)) >= 0
10313 && const_op >> i == 0
10314 && (tmode = mode_for_size (i, MODE_INT, 1)) != BLKmode
10315 && (TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (tmode),
10316 GET_MODE_BITSIZE (GET_MODE (op0)))
10317 || (REG_P (XEXP (op0, 0))
10318 && reg_truncated_to_mode (tmode, XEXP (op0, 0)))))
10319 {
10320 op0 = gen_lowpart (tmode, XEXP (op0, 0));
10321 continue;
10322 }
10323
10324 /* If this is (and:M1 (subreg:M2 X 0) (const_int C1)) where C1
10325 fits in both M1 and M2 and the SUBREG is either paradoxical
10326 or represents the low part, permute the SUBREG and the AND
10327 and try again. */
10328 if (GET_CODE (XEXP (op0, 0)) == SUBREG)
10329 {
10330 unsigned HOST_WIDE_INT c1;
10331 tmode = GET_MODE (SUBREG_REG (XEXP (op0, 0)));
10332 /* Require an integral mode, to avoid creating something like
10333 (AND:SF ...). */
10334 if (SCALAR_INT_MODE_P (tmode)
10335 /* It is unsafe to commute the AND into the SUBREG if the
10336 SUBREG is paradoxical and WORD_REGISTER_OPERATIONS is
10337 not defined. As originally written the upper bits
10338 have a defined value due to the AND operation.
10339 However, if we commute the AND inside the SUBREG then
10340 they no longer have defined values and the meaning of
10341 the code has been changed. */
10342 && (0
10343 #ifdef WORD_REGISTER_OPERATIONS
10344 || (mode_width > GET_MODE_BITSIZE (tmode)
10345 && mode_width <= BITS_PER_WORD)
10346 #endif
10347 || (mode_width <= GET_MODE_BITSIZE (tmode)
10348 && subreg_lowpart_p (XEXP (op0, 0))))
10349 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10350 && mode_width <= HOST_BITS_PER_WIDE_INT
10351 && GET_MODE_BITSIZE (tmode) <= HOST_BITS_PER_WIDE_INT
10352 && ((c1 = INTVAL (XEXP (op0, 1))) & ~mask) == 0
10353 && (c1 & ~GET_MODE_MASK (tmode)) == 0
10354 && c1 != mask
10355 && c1 != GET_MODE_MASK (tmode))
10356 {
10357 op0 = simplify_gen_binary (AND, tmode,
10358 SUBREG_REG (XEXP (op0, 0)),
10359 gen_int_mode (c1, tmode));
10360 op0 = gen_lowpart (mode, op0);
10361 continue;
10362 }
10363 }
10364
10365 /* Convert (ne (and (not X) 1) 0) to (eq (and X 1) 0). */
10366 if (const_op == 0 && equality_comparison_p
10367 && XEXP (op0, 1) == const1_rtx
10368 && GET_CODE (XEXP (op0, 0)) == NOT)
10369 {
10370 op0 = simplify_and_const_int
10371 (NULL_RTX, mode, XEXP (XEXP (op0, 0), 0), (HOST_WIDE_INT) 1);
10372 code = (code == NE ? EQ : NE);
10373 continue;
10374 }
10375
10376 /* Convert (ne (and (lshiftrt (not X)) 1) 0) to
10377 (eq (and (lshiftrt X) 1) 0).
10378 Also handle the case where (not X) is expressed using xor. */
10379 if (const_op == 0 && equality_comparison_p
10380 && XEXP (op0, 1) == const1_rtx
10381 && GET_CODE (XEXP (op0, 0)) == LSHIFTRT)
10382 {
10383 rtx shift_op = XEXP (XEXP (op0, 0), 0);
10384 rtx shift_count = XEXP (XEXP (op0, 0), 1);
10385
10386 if (GET_CODE (shift_op) == NOT
10387 || (GET_CODE (shift_op) == XOR
10388 && GET_CODE (XEXP (shift_op, 1)) == CONST_INT
10389 && GET_CODE (shift_count) == CONST_INT
10390 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
10391 && (INTVAL (XEXP (shift_op, 1))
10392 == (HOST_WIDE_INT) 1 << INTVAL (shift_count))))
10393 {
10394 op0 = simplify_and_const_int
10395 (NULL_RTX, mode,
10396 gen_rtx_LSHIFTRT (mode, XEXP (shift_op, 0), shift_count),
10397 (HOST_WIDE_INT) 1);
10398 code = (code == NE ? EQ : NE);
10399 continue;
10400 }
10401 }
10402 break;
10403
10404 case ASHIFT:
10405 /* If we have (compare (ashift FOO N) (const_int C)) and
10406 the high order N bits of FOO (N+1 if an inequality comparison)
10407 are known to be zero, we can do this by comparing FOO with C
10408 shifted right N bits so long as the low-order N bits of C are
10409 zero. */
10410 if (GET_CODE (XEXP (op0, 1)) == CONST_INT
10411 && INTVAL (XEXP (op0, 1)) >= 0
10412 && ((INTVAL (XEXP (op0, 1)) + ! equality_comparison_p)
10413 < HOST_BITS_PER_WIDE_INT)
10414 && ((const_op
10415 & (((HOST_WIDE_INT) 1 << INTVAL (XEXP (op0, 1))) - 1)) == 0)
10416 && mode_width <= HOST_BITS_PER_WIDE_INT
10417 && (nonzero_bits (XEXP (op0, 0), mode)
10418 & ~(mask >> (INTVAL (XEXP (op0, 1))
10419 + ! equality_comparison_p))) == 0)
10420 {
10421 /* We must perform a logical shift, not an arithmetic one,
10422 as we want the top N bits of C to be zero. */
10423 unsigned HOST_WIDE_INT temp = const_op & GET_MODE_MASK (mode);
10424
10425 temp >>= INTVAL (XEXP (op0, 1));
10426 op1 = gen_int_mode (temp, mode);
10427 op0 = XEXP (op0, 0);
10428 continue;
10429 }
10430
10431 /* If we are doing a sign bit comparison, it means we are testing
10432 a particular bit. Convert it to the appropriate AND. */
10433 if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 1)) == CONST_INT
10434 && mode_width <= HOST_BITS_PER_WIDE_INT)
10435 {
10436 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
10437 ((HOST_WIDE_INT) 1
10438 << (mode_width - 1
10439 - INTVAL (XEXP (op0, 1)))));
10440 code = (code == LT ? NE : EQ);
10441 continue;
10442 }
10443
10444 /* If this an equality comparison with zero and we are shifting
10445 the low bit to the sign bit, we can convert this to an AND of the
10446 low-order bit. */
10447 if (const_op == 0 && equality_comparison_p
10448 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10449 && (unsigned HOST_WIDE_INT) INTVAL (XEXP (op0, 1))
10450 == mode_width - 1)
10451 {
10452 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
10453 (HOST_WIDE_INT) 1);
10454 continue;
10455 }
10456 break;
10457
10458 case ASHIFTRT:
10459 /* If this is an equality comparison with zero, we can do this
10460 as a logical shift, which might be much simpler. */
10461 if (equality_comparison_p && const_op == 0
10462 && GET_CODE (XEXP (op0, 1)) == CONST_INT)
10463 {
10464 op0 = simplify_shift_const (NULL_RTX, LSHIFTRT, mode,
10465 XEXP (op0, 0),
10466 INTVAL (XEXP (op0, 1)));
10467 continue;
10468 }
10469
10470 /* If OP0 is a sign extension and CODE is not an unsigned comparison,
10471 do the comparison in a narrower mode. */
10472 if (! unsigned_comparison_p
10473 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10474 && GET_CODE (XEXP (op0, 0)) == ASHIFT
10475 && XEXP (op0, 1) == XEXP (XEXP (op0, 0), 1)
10476 && (tmode = mode_for_size (mode_width - INTVAL (XEXP (op0, 1)),
10477 MODE_INT, 1)) != BLKmode
10478 && (((unsigned HOST_WIDE_INT) const_op
10479 + (GET_MODE_MASK (tmode) >> 1) + 1)
10480 <= GET_MODE_MASK (tmode)))
10481 {
10482 op0 = gen_lowpart (tmode, XEXP (XEXP (op0, 0), 0));
10483 continue;
10484 }
10485
10486 /* Likewise if OP0 is a PLUS of a sign extension with a
10487 constant, which is usually represented with the PLUS
10488 between the shifts. */
10489 if (! unsigned_comparison_p
10490 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10491 && GET_CODE (XEXP (op0, 0)) == PLUS
10492 && GET_CODE (XEXP (XEXP (op0, 0), 1)) == CONST_INT
10493 && GET_CODE (XEXP (XEXP (op0, 0), 0)) == ASHIFT
10494 && XEXP (op0, 1) == XEXP (XEXP (XEXP (op0, 0), 0), 1)
10495 && (tmode = mode_for_size (mode_width - INTVAL (XEXP (op0, 1)),
10496 MODE_INT, 1)) != BLKmode
10497 && (((unsigned HOST_WIDE_INT) const_op
10498 + (GET_MODE_MASK (tmode) >> 1) + 1)
10499 <= GET_MODE_MASK (tmode)))
10500 {
10501 rtx inner = XEXP (XEXP (XEXP (op0, 0), 0), 0);
10502 rtx add_const = XEXP (XEXP (op0, 0), 1);
10503 rtx new_const = simplify_gen_binary (ASHIFTRT, GET_MODE (op0),
10504 add_const, XEXP (op0, 1));
10505
10506 op0 = simplify_gen_binary (PLUS, tmode,
10507 gen_lowpart (tmode, inner),
10508 new_const);
10509 continue;
10510 }
10511
10512 /* ... fall through ... */
10513 case LSHIFTRT:
10514 /* If we have (compare (xshiftrt FOO N) (const_int C)) and
10515 the low order N bits of FOO are known to be zero, we can do this
10516 by comparing FOO with C shifted left N bits so long as no
10517 overflow occurs. */
10518 if (GET_CODE (XEXP (op0, 1)) == CONST_INT
10519 && INTVAL (XEXP (op0, 1)) >= 0
10520 && INTVAL (XEXP (op0, 1)) < HOST_BITS_PER_WIDE_INT
10521 && mode_width <= HOST_BITS_PER_WIDE_INT
10522 && (nonzero_bits (XEXP (op0, 0), mode)
10523 & (((HOST_WIDE_INT) 1 << INTVAL (XEXP (op0, 1))) - 1)) == 0
10524 && (((unsigned HOST_WIDE_INT) const_op
10525 + (GET_CODE (op0) != LSHIFTRT
10526 ? ((GET_MODE_MASK (mode) >> INTVAL (XEXP (op0, 1)) >> 1)
10527 + 1)
10528 : 0))
10529 <= GET_MODE_MASK (mode) >> INTVAL (XEXP (op0, 1))))
10530 {
10531 /* If the shift was logical, then we must make the condition
10532 unsigned. */
10533 if (GET_CODE (op0) == LSHIFTRT)
10534 code = unsigned_condition (code);
10535
10536 const_op <<= INTVAL (XEXP (op0, 1));
10537 op1 = GEN_INT (const_op);
10538 op0 = XEXP (op0, 0);
10539 continue;
10540 }
10541
10542 /* If we are using this shift to extract just the sign bit, we
10543 can replace this with an LT or GE comparison. */
10544 if (const_op == 0
10545 && (equality_comparison_p || sign_bit_comparison_p)
10546 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10547 && (unsigned HOST_WIDE_INT) INTVAL (XEXP (op0, 1))
10548 == mode_width - 1)
10549 {
10550 op0 = XEXP (op0, 0);
10551 code = (code == NE || code == GT ? LT : GE);
10552 continue;
10553 }
10554 break;
10555
10556 default:
10557 break;
10558 }
10559
10560 break;
10561 }
10562
10563 /* Now make any compound operations involved in this comparison. Then,
10564 check for an outmost SUBREG on OP0 that is not doing anything or is
10565 paradoxical. The latter transformation must only be performed when
10566 it is known that the "extra" bits will be the same in op0 and op1 or
10567 that they don't matter. There are three cases to consider:
10568
10569 1. SUBREG_REG (op0) is a register. In this case the bits are don't
10570 care bits and we can assume they have any convenient value. So
10571 making the transformation is safe.
10572
10573 2. SUBREG_REG (op0) is a memory and LOAD_EXTEND_OP is not defined.
10574 In this case the upper bits of op0 are undefined. We should not make
10575 the simplification in that case as we do not know the contents of
10576 those bits.
10577
10578 3. SUBREG_REG (op0) is a memory and LOAD_EXTEND_OP is defined and not
10579 UNKNOWN. In that case we know those bits are zeros or ones. We must
10580 also be sure that they are the same as the upper bits of op1.
10581
10582 We can never remove a SUBREG for a non-equality comparison because
10583 the sign bit is in a different place in the underlying object. */
10584
10585 op0 = make_compound_operation (op0, op1 == const0_rtx ? COMPARE : SET);
10586 op1 = make_compound_operation (op1, SET);
10587
10588 if (GET_CODE (op0) == SUBREG && subreg_lowpart_p (op0)
10589 && GET_MODE_CLASS (GET_MODE (op0)) == MODE_INT
10590 && GET_MODE_CLASS (GET_MODE (SUBREG_REG (op0))) == MODE_INT
10591 && (code == NE || code == EQ))
10592 {
10593 if (GET_MODE_SIZE (GET_MODE (op0))
10594 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (op0))))
10595 {
10596 /* For paradoxical subregs, allow case 1 as above. Case 3 isn't
10597 implemented. */
10598 if (REG_P (SUBREG_REG (op0)))
10599 {
10600 op0 = SUBREG_REG (op0);
10601 op1 = gen_lowpart (GET_MODE (op0), op1);
10602 }
10603 }
10604 else if ((GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (op0)))
10605 <= HOST_BITS_PER_WIDE_INT)
10606 && (nonzero_bits (SUBREG_REG (op0),
10607 GET_MODE (SUBREG_REG (op0)))
10608 & ~GET_MODE_MASK (GET_MODE (op0))) == 0)
10609 {
10610 tem = gen_lowpart (GET_MODE (SUBREG_REG (op0)), op1);
10611
10612 if ((nonzero_bits (tem, GET_MODE (SUBREG_REG (op0)))
10613 & ~GET_MODE_MASK (GET_MODE (op0))) == 0)
10614 op0 = SUBREG_REG (op0), op1 = tem;
10615 }
10616 }
10617
10618 /* We now do the opposite procedure: Some machines don't have compare
10619 insns in all modes. If OP0's mode is an integer mode smaller than a
10620 word and we can't do a compare in that mode, see if there is a larger
10621 mode for which we can do the compare. There are a number of cases in
10622 which we can use the wider mode. */
10623
10624 mode = GET_MODE (op0);
10625 if (mode != VOIDmode && GET_MODE_CLASS (mode) == MODE_INT
10626 && GET_MODE_SIZE (mode) < UNITS_PER_WORD
10627 && ! have_insn_for (COMPARE, mode))
10628 for (tmode = GET_MODE_WIDER_MODE (mode);
10629 (tmode != VOIDmode
10630 && GET_MODE_BITSIZE (tmode) <= HOST_BITS_PER_WIDE_INT);
10631 tmode = GET_MODE_WIDER_MODE (tmode))
10632 if (have_insn_for (COMPARE, tmode))
10633 {
10634 int zero_extended;
10635
10636 /* If the only nonzero bits in OP0 and OP1 are those in the
10637 narrower mode and this is an equality or unsigned comparison,
10638 we can use the wider mode. Similarly for sign-extended
10639 values, in which case it is true for all comparisons. */
10640 zero_extended = ((code == EQ || code == NE
10641 || code == GEU || code == GTU
10642 || code == LEU || code == LTU)
10643 && (nonzero_bits (op0, tmode)
10644 & ~GET_MODE_MASK (mode)) == 0
10645 && ((GET_CODE (op1) == CONST_INT
10646 || (nonzero_bits (op1, tmode)
10647 & ~GET_MODE_MASK (mode)) == 0)));
10648
10649 if (zero_extended
10650 || ((num_sign_bit_copies (op0, tmode)
10651 > (unsigned int) (GET_MODE_BITSIZE (tmode)
10652 - GET_MODE_BITSIZE (mode)))
10653 && (num_sign_bit_copies (op1, tmode)
10654 > (unsigned int) (GET_MODE_BITSIZE (tmode)
10655 - GET_MODE_BITSIZE (mode)))))
10656 {
10657 /* If OP0 is an AND and we don't have an AND in MODE either,
10658 make a new AND in the proper mode. */
10659 if (GET_CODE (op0) == AND
10660 && !have_insn_for (AND, mode))
10661 op0 = simplify_gen_binary (AND, tmode,
10662 gen_lowpart (tmode,
10663 XEXP (op0, 0)),
10664 gen_lowpart (tmode,
10665 XEXP (op0, 1)));
10666
10667 op0 = gen_lowpart (tmode, op0);
10668 if (zero_extended && GET_CODE (op1) == CONST_INT)
10669 op1 = GEN_INT (INTVAL (op1) & GET_MODE_MASK (mode));
10670 op1 = gen_lowpart (tmode, op1);
10671 break;
10672 }
10673
10674 /* If this is a test for negative, we can make an explicit
10675 test of the sign bit. */
10676
10677 if (op1 == const0_rtx && (code == LT || code == GE)
10678 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
10679 {
10680 op0 = simplify_gen_binary (AND, tmode,
10681 gen_lowpart (tmode, op0),
10682 GEN_INT ((HOST_WIDE_INT) 1
10683 << (GET_MODE_BITSIZE (mode)
10684 - 1)));
10685 code = (code == LT) ? NE : EQ;
10686 break;
10687 }
10688 }
10689
10690 #ifdef CANONICALIZE_COMPARISON
10691 /* If this machine only supports a subset of valid comparisons, see if we
10692 can convert an unsupported one into a supported one. */
10693 CANONICALIZE_COMPARISON (code, op0, op1);
10694 #endif
10695
10696 *pop0 = op0;
10697 *pop1 = op1;
10698
10699 return code;
10700 }
10701 \f
10702 /* Utility function for record_value_for_reg. Count number of
10703 rtxs in X. */
10704 static int
10705 count_rtxs (rtx x)
10706 {
10707 enum rtx_code code = GET_CODE (x);
10708 const char *fmt;
10709 int i, ret = 1;
10710
10711 if (GET_RTX_CLASS (code) == '2'
10712 || GET_RTX_CLASS (code) == 'c')
10713 {
10714 rtx x0 = XEXP (x, 0);
10715 rtx x1 = XEXP (x, 1);
10716
10717 if (x0 == x1)
10718 return 1 + 2 * count_rtxs (x0);
10719
10720 if ((GET_RTX_CLASS (GET_CODE (x1)) == '2'
10721 || GET_RTX_CLASS (GET_CODE (x1)) == 'c')
10722 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
10723 return 2 + 2 * count_rtxs (x0)
10724 + count_rtxs (x == XEXP (x1, 0)
10725 ? XEXP (x1, 1) : XEXP (x1, 0));
10726
10727 if ((GET_RTX_CLASS (GET_CODE (x0)) == '2'
10728 || GET_RTX_CLASS (GET_CODE (x0)) == 'c')
10729 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
10730 return 2 + 2 * count_rtxs (x1)
10731 + count_rtxs (x == XEXP (x0, 0)
10732 ? XEXP (x0, 1) : XEXP (x0, 0));
10733 }
10734
10735 fmt = GET_RTX_FORMAT (code);
10736 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
10737 if (fmt[i] == 'e')
10738 ret += count_rtxs (XEXP (x, i));
10739
10740 return ret;
10741 }
10742 \f
10743 /* Utility function for following routine. Called when X is part of a value
10744 being stored into last_set_value. Sets last_set_table_tick
10745 for each register mentioned. Similar to mention_regs in cse.c */
10746
10747 static void
10748 update_table_tick (rtx x)
10749 {
10750 enum rtx_code code = GET_CODE (x);
10751 const char *fmt = GET_RTX_FORMAT (code);
10752 int i;
10753
10754 if (code == REG)
10755 {
10756 unsigned int regno = REGNO (x);
10757 unsigned int endregno
10758 = regno + (regno < FIRST_PSEUDO_REGISTER
10759 ? hard_regno_nregs[regno][GET_MODE (x)] : 1);
10760 unsigned int r;
10761
10762 for (r = regno; r < endregno; r++)
10763 reg_stat[r].last_set_table_tick = label_tick;
10764
10765 return;
10766 }
10767
10768 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
10769 /* Note that we can't have an "E" in values stored; see
10770 get_last_value_validate. */
10771 if (fmt[i] == 'e')
10772 {
10773 /* Check for identical subexpressions. If x contains
10774 identical subexpression we only have to traverse one of
10775 them. */
10776 if (i == 0 && ARITHMETIC_P (x))
10777 {
10778 /* Note that at this point x1 has already been
10779 processed. */
10780 rtx x0 = XEXP (x, 0);
10781 rtx x1 = XEXP (x, 1);
10782
10783 /* If x0 and x1 are identical then there is no need to
10784 process x0. */
10785 if (x0 == x1)
10786 break;
10787
10788 /* If x0 is identical to a subexpression of x1 then while
10789 processing x1, x0 has already been processed. Thus we
10790 are done with x. */
10791 if (ARITHMETIC_P (x1)
10792 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
10793 break;
10794
10795 /* If x1 is identical to a subexpression of x0 then we
10796 still have to process the rest of x0. */
10797 if (ARITHMETIC_P (x0)
10798 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
10799 {
10800 update_table_tick (XEXP (x0, x1 == XEXP (x0, 0) ? 1 : 0));
10801 break;
10802 }
10803 }
10804
10805 update_table_tick (XEXP (x, i));
10806 }
10807 }
10808
10809 /* Record that REG is set to VALUE in insn INSN. If VALUE is zero, we
10810 are saying that the register is clobbered and we no longer know its
10811 value. If INSN is zero, don't update reg_stat[].last_set; this is
10812 only permitted with VALUE also zero and is used to invalidate the
10813 register. */
10814
10815 static void
10816 record_value_for_reg (rtx reg, rtx insn, rtx value)
10817 {
10818 unsigned int regno = REGNO (reg);
10819 unsigned int endregno
10820 = regno + (regno < FIRST_PSEUDO_REGISTER
10821 ? hard_regno_nregs[regno][GET_MODE (reg)] : 1);
10822 unsigned int i;
10823
10824 /* If VALUE contains REG and we have a previous value for REG, substitute
10825 the previous value. */
10826 if (value && insn && reg_overlap_mentioned_p (reg, value))
10827 {
10828 rtx tem;
10829
10830 /* Set things up so get_last_value is allowed to see anything set up to
10831 our insn. */
10832 subst_low_cuid = INSN_CUID (insn);
10833 tem = get_last_value (reg);
10834
10835 /* If TEM is simply a binary operation with two CLOBBERs as operands,
10836 it isn't going to be useful and will take a lot of time to process,
10837 so just use the CLOBBER. */
10838
10839 if (tem)
10840 {
10841 if (ARITHMETIC_P (tem)
10842 && GET_CODE (XEXP (tem, 0)) == CLOBBER
10843 && GET_CODE (XEXP (tem, 1)) == CLOBBER)
10844 tem = XEXP (tem, 0);
10845 else if (count_occurrences (value, reg, 1) >= 2)
10846 {
10847 /* If there are two or more occurrences of REG in VALUE,
10848 prevent the value from growing too much. */
10849 if (count_rtxs (tem) > MAX_LAST_VALUE_RTL)
10850 tem = gen_rtx_CLOBBER (GET_MODE (tem), const0_rtx);
10851 }
10852
10853 value = replace_rtx (copy_rtx (value), reg, tem);
10854 }
10855 }
10856
10857 /* For each register modified, show we don't know its value, that
10858 we don't know about its bitwise content, that its value has been
10859 updated, and that we don't know the location of the death of the
10860 register. */
10861 for (i = regno; i < endregno; i++)
10862 {
10863 if (insn)
10864 reg_stat[i].last_set = insn;
10865
10866 reg_stat[i].last_set_value = 0;
10867 reg_stat[i].last_set_mode = 0;
10868 reg_stat[i].last_set_nonzero_bits = 0;
10869 reg_stat[i].last_set_sign_bit_copies = 0;
10870 reg_stat[i].last_death = 0;
10871 reg_stat[i].truncated_to_mode = 0;
10872 }
10873
10874 /* Mark registers that are being referenced in this value. */
10875 if (value)
10876 update_table_tick (value);
10877
10878 /* Now update the status of each register being set.
10879 If someone is using this register in this block, set this register
10880 to invalid since we will get confused between the two lives in this
10881 basic block. This makes using this register always invalid. In cse, we
10882 scan the table to invalidate all entries using this register, but this
10883 is too much work for us. */
10884
10885 for (i = regno; i < endregno; i++)
10886 {
10887 reg_stat[i].last_set_label = label_tick;
10888 if (!insn || (value && reg_stat[i].last_set_table_tick == label_tick))
10889 reg_stat[i].last_set_invalid = 1;
10890 else
10891 reg_stat[i].last_set_invalid = 0;
10892 }
10893
10894 /* The value being assigned might refer to X (like in "x++;"). In that
10895 case, we must replace it with (clobber (const_int 0)) to prevent
10896 infinite loops. */
10897 if (value && ! get_last_value_validate (&value, insn,
10898 reg_stat[regno].last_set_label, 0))
10899 {
10900 value = copy_rtx (value);
10901 if (! get_last_value_validate (&value, insn,
10902 reg_stat[regno].last_set_label, 1))
10903 value = 0;
10904 }
10905
10906 /* For the main register being modified, update the value, the mode, the
10907 nonzero bits, and the number of sign bit copies. */
10908
10909 reg_stat[regno].last_set_value = value;
10910
10911 if (value)
10912 {
10913 enum machine_mode mode = GET_MODE (reg);
10914 subst_low_cuid = INSN_CUID (insn);
10915 reg_stat[regno].last_set_mode = mode;
10916 if (GET_MODE_CLASS (mode) == MODE_INT
10917 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
10918 mode = nonzero_bits_mode;
10919 reg_stat[regno].last_set_nonzero_bits = nonzero_bits (value, mode);
10920 reg_stat[regno].last_set_sign_bit_copies
10921 = num_sign_bit_copies (value, GET_MODE (reg));
10922 }
10923 }
10924
10925 /* Called via note_stores from record_dead_and_set_regs to handle one
10926 SET or CLOBBER in an insn. DATA is the instruction in which the
10927 set is occurring. */
10928
10929 static void
10930 record_dead_and_set_regs_1 (rtx dest, rtx setter, void *data)
10931 {
10932 rtx record_dead_insn = (rtx) data;
10933
10934 if (GET_CODE (dest) == SUBREG)
10935 dest = SUBREG_REG (dest);
10936
10937 if (!record_dead_insn)
10938 {
10939 if (REG_P (dest))
10940 record_value_for_reg (dest, NULL_RTX, NULL_RTX);
10941 return;
10942 }
10943
10944 if (REG_P (dest))
10945 {
10946 /* If we are setting the whole register, we know its value. Otherwise
10947 show that we don't know the value. We can handle SUBREG in
10948 some cases. */
10949 if (GET_CODE (setter) == SET && dest == SET_DEST (setter))
10950 record_value_for_reg (dest, record_dead_insn, SET_SRC (setter));
10951 else if (GET_CODE (setter) == SET
10952 && GET_CODE (SET_DEST (setter)) == SUBREG
10953 && SUBREG_REG (SET_DEST (setter)) == dest
10954 && GET_MODE_BITSIZE (GET_MODE (dest)) <= BITS_PER_WORD
10955 && subreg_lowpart_p (SET_DEST (setter)))
10956 record_value_for_reg (dest, record_dead_insn,
10957 gen_lowpart (GET_MODE (dest),
10958 SET_SRC (setter)));
10959 else
10960 record_value_for_reg (dest, record_dead_insn, NULL_RTX);
10961 }
10962 else if (MEM_P (dest)
10963 /* Ignore pushes, they clobber nothing. */
10964 && ! push_operand (dest, GET_MODE (dest)))
10965 mem_last_set = INSN_CUID (record_dead_insn);
10966 }
10967
10968 /* Update the records of when each REG was most recently set or killed
10969 for the things done by INSN. This is the last thing done in processing
10970 INSN in the combiner loop.
10971
10972 We update reg_stat[], in particular fields last_set, last_set_value,
10973 last_set_mode, last_set_nonzero_bits, last_set_sign_bit_copies,
10974 last_death, and also the similar information mem_last_set (which insn
10975 most recently modified memory) and last_call_cuid (which insn was the
10976 most recent subroutine call). */
10977
10978 static void
10979 record_dead_and_set_regs (rtx insn)
10980 {
10981 rtx link;
10982 unsigned int i;
10983
10984 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
10985 {
10986 if (REG_NOTE_KIND (link) == REG_DEAD
10987 && REG_P (XEXP (link, 0)))
10988 {
10989 unsigned int regno = REGNO (XEXP (link, 0));
10990 unsigned int endregno
10991 = regno + (regno < FIRST_PSEUDO_REGISTER
10992 ? hard_regno_nregs[regno][GET_MODE (XEXP (link, 0))]
10993 : 1);
10994
10995 for (i = regno; i < endregno; i++)
10996 reg_stat[i].last_death = insn;
10997 }
10998 else if (REG_NOTE_KIND (link) == REG_INC)
10999 record_value_for_reg (XEXP (link, 0), insn, NULL_RTX);
11000 }
11001
11002 if (CALL_P (insn))
11003 {
11004 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
11005 if (TEST_HARD_REG_BIT (regs_invalidated_by_call, i))
11006 {
11007 reg_stat[i].last_set_value = 0;
11008 reg_stat[i].last_set_mode = 0;
11009 reg_stat[i].last_set_nonzero_bits = 0;
11010 reg_stat[i].last_set_sign_bit_copies = 0;
11011 reg_stat[i].last_death = 0;
11012 reg_stat[i].truncated_to_mode = 0;
11013 }
11014
11015 last_call_cuid = mem_last_set = INSN_CUID (insn);
11016
11017 /* We can't combine into a call pattern. Remember, though, that
11018 the return value register is set at this CUID. We could
11019 still replace a register with the return value from the
11020 wrong subroutine call! */
11021 note_stores (PATTERN (insn), record_dead_and_set_regs_1, NULL_RTX);
11022 }
11023 else
11024 note_stores (PATTERN (insn), record_dead_and_set_regs_1, insn);
11025 }
11026
11027 /* If a SUBREG has the promoted bit set, it is in fact a property of the
11028 register present in the SUBREG, so for each such SUBREG go back and
11029 adjust nonzero and sign bit information of the registers that are
11030 known to have some zero/sign bits set.
11031
11032 This is needed because when combine blows the SUBREGs away, the
11033 information on zero/sign bits is lost and further combines can be
11034 missed because of that. */
11035
11036 static void
11037 record_promoted_value (rtx insn, rtx subreg)
11038 {
11039 rtx links, set;
11040 unsigned int regno = REGNO (SUBREG_REG (subreg));
11041 enum machine_mode mode = GET_MODE (subreg);
11042
11043 if (GET_MODE_BITSIZE (mode) > HOST_BITS_PER_WIDE_INT)
11044 return;
11045
11046 for (links = LOG_LINKS (insn); links;)
11047 {
11048 insn = XEXP (links, 0);
11049 set = single_set (insn);
11050
11051 if (! set || !REG_P (SET_DEST (set))
11052 || REGNO (SET_DEST (set)) != regno
11053 || GET_MODE (SET_DEST (set)) != GET_MODE (SUBREG_REG (subreg)))
11054 {
11055 links = XEXP (links, 1);
11056 continue;
11057 }
11058
11059 if (reg_stat[regno].last_set == insn)
11060 {
11061 if (SUBREG_PROMOTED_UNSIGNED_P (subreg) > 0)
11062 reg_stat[regno].last_set_nonzero_bits &= GET_MODE_MASK (mode);
11063 }
11064
11065 if (REG_P (SET_SRC (set)))
11066 {
11067 regno = REGNO (SET_SRC (set));
11068 links = LOG_LINKS (insn);
11069 }
11070 else
11071 break;
11072 }
11073 }
11074
11075 /* Check if X, a register, is known to contain a value already
11076 truncated to MODE. In this case we can use a subreg to refer to
11077 the truncated value even though in the generic case we would need
11078 an explicit truncation. */
11079
11080 static bool
11081 reg_truncated_to_mode (enum machine_mode mode, rtx x)
11082 {
11083 enum machine_mode truncated = reg_stat[REGNO (x)].truncated_to_mode;
11084
11085 if (truncated == 0 || reg_stat[REGNO (x)].truncation_label != label_tick)
11086 return false;
11087 if (GET_MODE_SIZE (truncated) <= GET_MODE_SIZE (mode))
11088 return true;
11089 if (TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (mode),
11090 GET_MODE_BITSIZE (truncated)))
11091 return true;
11092 return false;
11093 }
11094
11095 /* X is a REG or a SUBREG. If X is some sort of a truncation record
11096 it. For non-TRULY_NOOP_TRUNCATION targets we might be able to turn
11097 a truncate into a subreg using this information. */
11098
11099 static void
11100 record_truncated_value (rtx x)
11101 {
11102 enum machine_mode truncated_mode;
11103
11104 if (GET_CODE (x) == SUBREG && REG_P (SUBREG_REG (x)))
11105 {
11106 enum machine_mode original_mode = GET_MODE (SUBREG_REG (x));
11107 truncated_mode = GET_MODE (x);
11108
11109 if (GET_MODE_SIZE (original_mode) <= GET_MODE_SIZE (truncated_mode))
11110 return;
11111
11112 if (TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (truncated_mode),
11113 GET_MODE_BITSIZE (original_mode)))
11114 return;
11115
11116 x = SUBREG_REG (x);
11117 }
11118 /* ??? For hard-regs we now record everthing. We might be able to
11119 optimize this using last_set_mode. */
11120 else if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
11121 truncated_mode = GET_MODE (x);
11122 else
11123 return;
11124
11125 if (reg_stat[REGNO (x)].truncated_to_mode == 0
11126 || reg_stat[REGNO (x)].truncation_label < label_tick
11127 || (GET_MODE_SIZE (truncated_mode)
11128 < GET_MODE_SIZE (reg_stat[REGNO (x)].truncated_to_mode)))
11129 {
11130 reg_stat[REGNO (x)].truncated_to_mode = truncated_mode;
11131 reg_stat[REGNO (x)].truncation_label = label_tick;
11132 }
11133 }
11134
11135 /* Scan X for promoted SUBREGs and truncated REGs. For each one
11136 found, note what it implies to the registers used in it. */
11137
11138 static void
11139 check_conversions (rtx insn, rtx x)
11140 {
11141 if (GET_CODE (x) == SUBREG || REG_P (x))
11142 {
11143 if (GET_CODE (x) == SUBREG
11144 && SUBREG_PROMOTED_VAR_P (x)
11145 && REG_P (SUBREG_REG (x)))
11146 record_promoted_value (insn, x);
11147
11148 record_truncated_value (x);
11149 }
11150 else
11151 {
11152 const char *format = GET_RTX_FORMAT (GET_CODE (x));
11153 int i, j;
11154
11155 for (i = 0; i < GET_RTX_LENGTH (GET_CODE (x)); i++)
11156 switch (format[i])
11157 {
11158 case 'e':
11159 check_conversions (insn, XEXP (x, i));
11160 break;
11161 case 'V':
11162 case 'E':
11163 if (XVEC (x, i) != 0)
11164 for (j = 0; j < XVECLEN (x, i); j++)
11165 check_conversions (insn, XVECEXP (x, i, j));
11166 break;
11167 }
11168 }
11169 }
11170 \f
11171 /* Utility routine for the following function. Verify that all the registers
11172 mentioned in *LOC are valid when *LOC was part of a value set when
11173 label_tick == TICK. Return 0 if some are not.
11174
11175 If REPLACE is nonzero, replace the invalid reference with
11176 (clobber (const_int 0)) and return 1. This replacement is useful because
11177 we often can get useful information about the form of a value (e.g., if
11178 it was produced by a shift that always produces -1 or 0) even though
11179 we don't know exactly what registers it was produced from. */
11180
11181 static int
11182 get_last_value_validate (rtx *loc, rtx insn, int tick, int replace)
11183 {
11184 rtx x = *loc;
11185 const char *fmt = GET_RTX_FORMAT (GET_CODE (x));
11186 int len = GET_RTX_LENGTH (GET_CODE (x));
11187 int i;
11188
11189 if (REG_P (x))
11190 {
11191 unsigned int regno = REGNO (x);
11192 unsigned int endregno
11193 = regno + (regno < FIRST_PSEUDO_REGISTER
11194 ? hard_regno_nregs[regno][GET_MODE (x)] : 1);
11195 unsigned int j;
11196
11197 for (j = regno; j < endregno; j++)
11198 if (reg_stat[j].last_set_invalid
11199 /* If this is a pseudo-register that was only set once and not
11200 live at the beginning of the function, it is always valid. */
11201 || (! (regno >= FIRST_PSEUDO_REGISTER
11202 && REG_N_SETS (regno) == 1
11203 && (! REGNO_REG_SET_P
11204 (ENTRY_BLOCK_PTR->next_bb->il.rtl->global_live_at_start,
11205 regno)))
11206 && reg_stat[j].last_set_label > tick))
11207 {
11208 if (replace)
11209 *loc = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
11210 return replace;
11211 }
11212
11213 return 1;
11214 }
11215 /* If this is a memory reference, make sure that there were
11216 no stores after it that might have clobbered the value. We don't
11217 have alias info, so we assume any store invalidates it. */
11218 else if (MEM_P (x) && !MEM_READONLY_P (x)
11219 && INSN_CUID (insn) <= mem_last_set)
11220 {
11221 if (replace)
11222 *loc = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
11223 return replace;
11224 }
11225
11226 for (i = 0; i < len; i++)
11227 {
11228 if (fmt[i] == 'e')
11229 {
11230 /* Check for identical subexpressions. If x contains
11231 identical subexpression we only have to traverse one of
11232 them. */
11233 if (i == 1 && ARITHMETIC_P (x))
11234 {
11235 /* Note that at this point x0 has already been checked
11236 and found valid. */
11237 rtx x0 = XEXP (x, 0);
11238 rtx x1 = XEXP (x, 1);
11239
11240 /* If x0 and x1 are identical then x is also valid. */
11241 if (x0 == x1)
11242 return 1;
11243
11244 /* If x1 is identical to a subexpression of x0 then
11245 while checking x0, x1 has already been checked. Thus
11246 it is valid and so as x. */
11247 if (ARITHMETIC_P (x0)
11248 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
11249 return 1;
11250
11251 /* If x0 is identical to a subexpression of x1 then x is
11252 valid iff the rest of x1 is valid. */
11253 if (ARITHMETIC_P (x1)
11254 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
11255 return
11256 get_last_value_validate (&XEXP (x1,
11257 x0 == XEXP (x1, 0) ? 1 : 0),
11258 insn, tick, replace);
11259 }
11260
11261 if (get_last_value_validate (&XEXP (x, i), insn, tick,
11262 replace) == 0)
11263 return 0;
11264 }
11265 /* Don't bother with these. They shouldn't occur anyway. */
11266 else if (fmt[i] == 'E')
11267 return 0;
11268 }
11269
11270 /* If we haven't found a reason for it to be invalid, it is valid. */
11271 return 1;
11272 }
11273
11274 /* Get the last value assigned to X, if known. Some registers
11275 in the value may be replaced with (clobber (const_int 0)) if their value
11276 is known longer known reliably. */
11277
11278 static rtx
11279 get_last_value (rtx x)
11280 {
11281 unsigned int regno;
11282 rtx value;
11283
11284 /* If this is a non-paradoxical SUBREG, get the value of its operand and
11285 then convert it to the desired mode. If this is a paradoxical SUBREG,
11286 we cannot predict what values the "extra" bits might have. */
11287 if (GET_CODE (x) == SUBREG
11288 && subreg_lowpart_p (x)
11289 && (GET_MODE_SIZE (GET_MODE (x))
11290 <= GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
11291 && (value = get_last_value (SUBREG_REG (x))) != 0)
11292 return gen_lowpart (GET_MODE (x), value);
11293
11294 if (!REG_P (x))
11295 return 0;
11296
11297 regno = REGNO (x);
11298 value = reg_stat[regno].last_set_value;
11299
11300 /* If we don't have a value, or if it isn't for this basic block and
11301 it's either a hard register, set more than once, or it's a live
11302 at the beginning of the function, return 0.
11303
11304 Because if it's not live at the beginning of the function then the reg
11305 is always set before being used (is never used without being set).
11306 And, if it's set only once, and it's always set before use, then all
11307 uses must have the same last value, even if it's not from this basic
11308 block. */
11309
11310 if (value == 0
11311 || (reg_stat[regno].last_set_label != label_tick
11312 && (regno < FIRST_PSEUDO_REGISTER
11313 || REG_N_SETS (regno) != 1
11314 || (REGNO_REG_SET_P
11315 (ENTRY_BLOCK_PTR->next_bb->il.rtl->global_live_at_start,
11316 regno)))))
11317 return 0;
11318
11319 /* If the value was set in a later insn than the ones we are processing,
11320 we can't use it even if the register was only set once. */
11321 if (INSN_CUID (reg_stat[regno].last_set) >= subst_low_cuid)
11322 return 0;
11323
11324 /* If the value has all its registers valid, return it. */
11325 if (get_last_value_validate (&value, reg_stat[regno].last_set,
11326 reg_stat[regno].last_set_label, 0))
11327 return value;
11328
11329 /* Otherwise, make a copy and replace any invalid register with
11330 (clobber (const_int 0)). If that fails for some reason, return 0. */
11331
11332 value = copy_rtx (value);
11333 if (get_last_value_validate (&value, reg_stat[regno].last_set,
11334 reg_stat[regno].last_set_label, 1))
11335 return value;
11336
11337 return 0;
11338 }
11339 \f
11340 /* Return nonzero if expression X refers to a REG or to memory
11341 that is set in an instruction more recent than FROM_CUID. */
11342
11343 static int
11344 use_crosses_set_p (rtx x, int from_cuid)
11345 {
11346 const char *fmt;
11347 int i;
11348 enum rtx_code code = GET_CODE (x);
11349
11350 if (code == REG)
11351 {
11352 unsigned int regno = REGNO (x);
11353 unsigned endreg = regno + (regno < FIRST_PSEUDO_REGISTER
11354 ? hard_regno_nregs[regno][GET_MODE (x)] : 1);
11355
11356 #ifdef PUSH_ROUNDING
11357 /* Don't allow uses of the stack pointer to be moved,
11358 because we don't know whether the move crosses a push insn. */
11359 if (regno == STACK_POINTER_REGNUM && PUSH_ARGS)
11360 return 1;
11361 #endif
11362 for (; regno < endreg; regno++)
11363 if (reg_stat[regno].last_set
11364 && INSN_CUID (reg_stat[regno].last_set) > from_cuid)
11365 return 1;
11366 return 0;
11367 }
11368
11369 if (code == MEM && mem_last_set > from_cuid)
11370 return 1;
11371
11372 fmt = GET_RTX_FORMAT (code);
11373
11374 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
11375 {
11376 if (fmt[i] == 'E')
11377 {
11378 int j;
11379 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
11380 if (use_crosses_set_p (XVECEXP (x, i, j), from_cuid))
11381 return 1;
11382 }
11383 else if (fmt[i] == 'e'
11384 && use_crosses_set_p (XEXP (x, i), from_cuid))
11385 return 1;
11386 }
11387 return 0;
11388 }
11389 \f
11390 /* Define three variables used for communication between the following
11391 routines. */
11392
11393 static unsigned int reg_dead_regno, reg_dead_endregno;
11394 static int reg_dead_flag;
11395
11396 /* Function called via note_stores from reg_dead_at_p.
11397
11398 If DEST is within [reg_dead_regno, reg_dead_endregno), set
11399 reg_dead_flag to 1 if X is a CLOBBER and to -1 it is a SET. */
11400
11401 static void
11402 reg_dead_at_p_1 (rtx dest, rtx x, void *data ATTRIBUTE_UNUSED)
11403 {
11404 unsigned int regno, endregno;
11405
11406 if (!REG_P (dest))
11407 return;
11408
11409 regno = REGNO (dest);
11410 endregno = regno + (regno < FIRST_PSEUDO_REGISTER
11411 ? hard_regno_nregs[regno][GET_MODE (dest)] : 1);
11412
11413 if (reg_dead_endregno > regno && reg_dead_regno < endregno)
11414 reg_dead_flag = (GET_CODE (x) == CLOBBER) ? 1 : -1;
11415 }
11416
11417 /* Return nonzero if REG is known to be dead at INSN.
11418
11419 We scan backwards from INSN. If we hit a REG_DEAD note or a CLOBBER
11420 referencing REG, it is dead. If we hit a SET referencing REG, it is
11421 live. Otherwise, see if it is live or dead at the start of the basic
11422 block we are in. Hard regs marked as being live in NEWPAT_USED_REGS
11423 must be assumed to be always live. */
11424
11425 static int
11426 reg_dead_at_p (rtx reg, rtx insn)
11427 {
11428 basic_block block;
11429 unsigned int i;
11430
11431 /* Set variables for reg_dead_at_p_1. */
11432 reg_dead_regno = REGNO (reg);
11433 reg_dead_endregno = reg_dead_regno + (reg_dead_regno < FIRST_PSEUDO_REGISTER
11434 ? hard_regno_nregs[reg_dead_regno]
11435 [GET_MODE (reg)]
11436 : 1);
11437
11438 reg_dead_flag = 0;
11439
11440 /* Check that reg isn't mentioned in NEWPAT_USED_REGS. For fixed registers
11441 we allow the machine description to decide whether use-and-clobber
11442 patterns are OK. */
11443 if (reg_dead_regno < FIRST_PSEUDO_REGISTER)
11444 {
11445 for (i = reg_dead_regno; i < reg_dead_endregno; i++)
11446 if (!fixed_regs[i] && TEST_HARD_REG_BIT (newpat_used_regs, i))
11447 return 0;
11448 }
11449
11450 /* Scan backwards until we find a REG_DEAD note, SET, CLOBBER, label, or
11451 beginning of function. */
11452 for (; insn && !LABEL_P (insn) && !BARRIER_P (insn);
11453 insn = prev_nonnote_insn (insn))
11454 {
11455 note_stores (PATTERN (insn), reg_dead_at_p_1, NULL);
11456 if (reg_dead_flag)
11457 return reg_dead_flag == 1 ? 1 : 0;
11458
11459 if (find_regno_note (insn, REG_DEAD, reg_dead_regno))
11460 return 1;
11461 }
11462
11463 /* Get the basic block that we were in. */
11464 if (insn == 0)
11465 block = ENTRY_BLOCK_PTR->next_bb;
11466 else
11467 {
11468 FOR_EACH_BB (block)
11469 if (insn == BB_HEAD (block))
11470 break;
11471
11472 if (block == EXIT_BLOCK_PTR)
11473 return 0;
11474 }
11475
11476 for (i = reg_dead_regno; i < reg_dead_endregno; i++)
11477 if (REGNO_REG_SET_P (block->il.rtl->global_live_at_start, i))
11478 return 0;
11479
11480 return 1;
11481 }
11482 \f
11483 /* Note hard registers in X that are used. This code is similar to
11484 that in flow.c, but much simpler since we don't care about pseudos. */
11485
11486 static void
11487 mark_used_regs_combine (rtx x)
11488 {
11489 RTX_CODE code = GET_CODE (x);
11490 unsigned int regno;
11491 int i;
11492
11493 switch (code)
11494 {
11495 case LABEL_REF:
11496 case SYMBOL_REF:
11497 case CONST_INT:
11498 case CONST:
11499 case CONST_DOUBLE:
11500 case CONST_VECTOR:
11501 case PC:
11502 case ADDR_VEC:
11503 case ADDR_DIFF_VEC:
11504 case ASM_INPUT:
11505 #ifdef HAVE_cc0
11506 /* CC0 must die in the insn after it is set, so we don't need to take
11507 special note of it here. */
11508 case CC0:
11509 #endif
11510 return;
11511
11512 case CLOBBER:
11513 /* If we are clobbering a MEM, mark any hard registers inside the
11514 address as used. */
11515 if (MEM_P (XEXP (x, 0)))
11516 mark_used_regs_combine (XEXP (XEXP (x, 0), 0));
11517 return;
11518
11519 case REG:
11520 regno = REGNO (x);
11521 /* A hard reg in a wide mode may really be multiple registers.
11522 If so, mark all of them just like the first. */
11523 if (regno < FIRST_PSEUDO_REGISTER)
11524 {
11525 unsigned int endregno, r;
11526
11527 /* None of this applies to the stack, frame or arg pointers. */
11528 if (regno == STACK_POINTER_REGNUM
11529 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
11530 || regno == HARD_FRAME_POINTER_REGNUM
11531 #endif
11532 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
11533 || (regno == ARG_POINTER_REGNUM && fixed_regs[regno])
11534 #endif
11535 || regno == FRAME_POINTER_REGNUM)
11536 return;
11537
11538 endregno = regno + hard_regno_nregs[regno][GET_MODE (x)];
11539 for (r = regno; r < endregno; r++)
11540 SET_HARD_REG_BIT (newpat_used_regs, r);
11541 }
11542 return;
11543
11544 case SET:
11545 {
11546 /* If setting a MEM, or a SUBREG of a MEM, then note any hard regs in
11547 the address. */
11548 rtx testreg = SET_DEST (x);
11549
11550 while (GET_CODE (testreg) == SUBREG
11551 || GET_CODE (testreg) == ZERO_EXTRACT
11552 || GET_CODE (testreg) == STRICT_LOW_PART)
11553 testreg = XEXP (testreg, 0);
11554
11555 if (MEM_P (testreg))
11556 mark_used_regs_combine (XEXP (testreg, 0));
11557
11558 mark_used_regs_combine (SET_SRC (x));
11559 }
11560 return;
11561
11562 default:
11563 break;
11564 }
11565
11566 /* Recursively scan the operands of this expression. */
11567
11568 {
11569 const char *fmt = GET_RTX_FORMAT (code);
11570
11571 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
11572 {
11573 if (fmt[i] == 'e')
11574 mark_used_regs_combine (XEXP (x, i));
11575 else if (fmt[i] == 'E')
11576 {
11577 int j;
11578
11579 for (j = 0; j < XVECLEN (x, i); j++)
11580 mark_used_regs_combine (XVECEXP (x, i, j));
11581 }
11582 }
11583 }
11584 }
11585 \f
11586 /* Remove register number REGNO from the dead registers list of INSN.
11587
11588 Return the note used to record the death, if there was one. */
11589
11590 rtx
11591 remove_death (unsigned int regno, rtx insn)
11592 {
11593 rtx note = find_regno_note (insn, REG_DEAD, regno);
11594
11595 if (note)
11596 {
11597 REG_N_DEATHS (regno)--;
11598 remove_note (insn, note);
11599 }
11600
11601 return note;
11602 }
11603
11604 /* For each register (hardware or pseudo) used within expression X, if its
11605 death is in an instruction with cuid between FROM_CUID (inclusive) and
11606 TO_INSN (exclusive), put a REG_DEAD note for that register in the
11607 list headed by PNOTES.
11608
11609 That said, don't move registers killed by maybe_kill_insn.
11610
11611 This is done when X is being merged by combination into TO_INSN. These
11612 notes will then be distributed as needed. */
11613
11614 static void
11615 move_deaths (rtx x, rtx maybe_kill_insn, int from_cuid, rtx to_insn,
11616 rtx *pnotes)
11617 {
11618 const char *fmt;
11619 int len, i;
11620 enum rtx_code code = GET_CODE (x);
11621
11622 if (code == REG)
11623 {
11624 unsigned int regno = REGNO (x);
11625 rtx where_dead = reg_stat[regno].last_death;
11626 rtx before_dead, after_dead;
11627
11628 /* Don't move the register if it gets killed in between from and to. */
11629 if (maybe_kill_insn && reg_set_p (x, maybe_kill_insn)
11630 && ! reg_referenced_p (x, maybe_kill_insn))
11631 return;
11632
11633 /* WHERE_DEAD could be a USE insn made by combine, so first we
11634 make sure that we have insns with valid INSN_CUID values. */
11635 before_dead = where_dead;
11636 while (before_dead && INSN_UID (before_dead) > max_uid_cuid)
11637 before_dead = PREV_INSN (before_dead);
11638
11639 after_dead = where_dead;
11640 while (after_dead && INSN_UID (after_dead) > max_uid_cuid)
11641 after_dead = NEXT_INSN (after_dead);
11642
11643 if (before_dead && after_dead
11644 && INSN_CUID (before_dead) >= from_cuid
11645 && (INSN_CUID (after_dead) < INSN_CUID (to_insn)
11646 || (where_dead != after_dead
11647 && INSN_CUID (after_dead) == INSN_CUID (to_insn))))
11648 {
11649 rtx note = remove_death (regno, where_dead);
11650
11651 /* It is possible for the call above to return 0. This can occur
11652 when last_death points to I2 or I1 that we combined with.
11653 In that case make a new note.
11654
11655 We must also check for the case where X is a hard register
11656 and NOTE is a death note for a range of hard registers
11657 including X. In that case, we must put REG_DEAD notes for
11658 the remaining registers in place of NOTE. */
11659
11660 if (note != 0 && regno < FIRST_PSEUDO_REGISTER
11661 && (GET_MODE_SIZE (GET_MODE (XEXP (note, 0)))
11662 > GET_MODE_SIZE (GET_MODE (x))))
11663 {
11664 unsigned int deadregno = REGNO (XEXP (note, 0));
11665 unsigned int deadend
11666 = (deadregno + hard_regno_nregs[deadregno]
11667 [GET_MODE (XEXP (note, 0))]);
11668 unsigned int ourend
11669 = regno + hard_regno_nregs[regno][GET_MODE (x)];
11670 unsigned int i;
11671
11672 for (i = deadregno; i < deadend; i++)
11673 if (i < regno || i >= ourend)
11674 REG_NOTES (where_dead)
11675 = gen_rtx_EXPR_LIST (REG_DEAD,
11676 regno_reg_rtx[i],
11677 REG_NOTES (where_dead));
11678 }
11679
11680 /* If we didn't find any note, or if we found a REG_DEAD note that
11681 covers only part of the given reg, and we have a multi-reg hard
11682 register, then to be safe we must check for REG_DEAD notes
11683 for each register other than the first. They could have
11684 their own REG_DEAD notes lying around. */
11685 else if ((note == 0
11686 || (note != 0
11687 && (GET_MODE_SIZE (GET_MODE (XEXP (note, 0)))
11688 < GET_MODE_SIZE (GET_MODE (x)))))
11689 && regno < FIRST_PSEUDO_REGISTER
11690 && hard_regno_nregs[regno][GET_MODE (x)] > 1)
11691 {
11692 unsigned int ourend
11693 = regno + hard_regno_nregs[regno][GET_MODE (x)];
11694 unsigned int i, offset;
11695 rtx oldnotes = 0;
11696
11697 if (note)
11698 offset = hard_regno_nregs[regno][GET_MODE (XEXP (note, 0))];
11699 else
11700 offset = 1;
11701
11702 for (i = regno + offset; i < ourend; i++)
11703 move_deaths (regno_reg_rtx[i],
11704 maybe_kill_insn, from_cuid, to_insn, &oldnotes);
11705 }
11706
11707 if (note != 0 && GET_MODE (XEXP (note, 0)) == GET_MODE (x))
11708 {
11709 XEXP (note, 1) = *pnotes;
11710 *pnotes = note;
11711 }
11712 else
11713 *pnotes = gen_rtx_EXPR_LIST (REG_DEAD, x, *pnotes);
11714
11715 REG_N_DEATHS (regno)++;
11716 }
11717
11718 return;
11719 }
11720
11721 else if (GET_CODE (x) == SET)
11722 {
11723 rtx dest = SET_DEST (x);
11724
11725 move_deaths (SET_SRC (x), maybe_kill_insn, from_cuid, to_insn, pnotes);
11726
11727 /* In the case of a ZERO_EXTRACT, a STRICT_LOW_PART, or a SUBREG
11728 that accesses one word of a multi-word item, some
11729 piece of everything register in the expression is used by
11730 this insn, so remove any old death. */
11731 /* ??? So why do we test for equality of the sizes? */
11732
11733 if (GET_CODE (dest) == ZERO_EXTRACT
11734 || GET_CODE (dest) == STRICT_LOW_PART
11735 || (GET_CODE (dest) == SUBREG
11736 && (((GET_MODE_SIZE (GET_MODE (dest))
11737 + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
11738 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest)))
11739 + UNITS_PER_WORD - 1) / UNITS_PER_WORD))))
11740 {
11741 move_deaths (dest, maybe_kill_insn, from_cuid, to_insn, pnotes);
11742 return;
11743 }
11744
11745 /* If this is some other SUBREG, we know it replaces the entire
11746 value, so use that as the destination. */
11747 if (GET_CODE (dest) == SUBREG)
11748 dest = SUBREG_REG (dest);
11749
11750 /* If this is a MEM, adjust deaths of anything used in the address.
11751 For a REG (the only other possibility), the entire value is
11752 being replaced so the old value is not used in this insn. */
11753
11754 if (MEM_P (dest))
11755 move_deaths (XEXP (dest, 0), maybe_kill_insn, from_cuid,
11756 to_insn, pnotes);
11757 return;
11758 }
11759
11760 else if (GET_CODE (x) == CLOBBER)
11761 return;
11762
11763 len = GET_RTX_LENGTH (code);
11764 fmt = GET_RTX_FORMAT (code);
11765
11766 for (i = 0; i < len; i++)
11767 {
11768 if (fmt[i] == 'E')
11769 {
11770 int j;
11771 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
11772 move_deaths (XVECEXP (x, i, j), maybe_kill_insn, from_cuid,
11773 to_insn, pnotes);
11774 }
11775 else if (fmt[i] == 'e')
11776 move_deaths (XEXP (x, i), maybe_kill_insn, from_cuid, to_insn, pnotes);
11777 }
11778 }
11779 \f
11780 /* Return 1 if X is the target of a bit-field assignment in BODY, the
11781 pattern of an insn. X must be a REG. */
11782
11783 static int
11784 reg_bitfield_target_p (rtx x, rtx body)
11785 {
11786 int i;
11787
11788 if (GET_CODE (body) == SET)
11789 {
11790 rtx dest = SET_DEST (body);
11791 rtx target;
11792 unsigned int regno, tregno, endregno, endtregno;
11793
11794 if (GET_CODE (dest) == ZERO_EXTRACT)
11795 target = XEXP (dest, 0);
11796 else if (GET_CODE (dest) == STRICT_LOW_PART)
11797 target = SUBREG_REG (XEXP (dest, 0));
11798 else
11799 return 0;
11800
11801 if (GET_CODE (target) == SUBREG)
11802 target = SUBREG_REG (target);
11803
11804 if (!REG_P (target))
11805 return 0;
11806
11807 tregno = REGNO (target), regno = REGNO (x);
11808 if (tregno >= FIRST_PSEUDO_REGISTER || regno >= FIRST_PSEUDO_REGISTER)
11809 return target == x;
11810
11811 endtregno = tregno + hard_regno_nregs[tregno][GET_MODE (target)];
11812 endregno = regno + hard_regno_nregs[regno][GET_MODE (x)];
11813
11814 return endregno > tregno && regno < endtregno;
11815 }
11816
11817 else if (GET_CODE (body) == PARALLEL)
11818 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
11819 if (reg_bitfield_target_p (x, XVECEXP (body, 0, i)))
11820 return 1;
11821
11822 return 0;
11823 }
11824 \f
11825 /* Given a chain of REG_NOTES originally from FROM_INSN, try to place them
11826 as appropriate. I3 and I2 are the insns resulting from the combination
11827 insns including FROM (I2 may be zero).
11828
11829 ELIM_I2 and ELIM_I1 are either zero or registers that we know will
11830 not need REG_DEAD notes because they are being substituted for. This
11831 saves searching in the most common cases.
11832
11833 Each note in the list is either ignored or placed on some insns, depending
11834 on the type of note. */
11835
11836 static void
11837 distribute_notes (rtx notes, rtx from_insn, rtx i3, rtx i2, rtx elim_i2,
11838 rtx elim_i1)
11839 {
11840 rtx note, next_note;
11841 rtx tem;
11842
11843 for (note = notes; note; note = next_note)
11844 {
11845 rtx place = 0, place2 = 0;
11846
11847 next_note = XEXP (note, 1);
11848 switch (REG_NOTE_KIND (note))
11849 {
11850 case REG_BR_PROB:
11851 case REG_BR_PRED:
11852 /* Doesn't matter much where we put this, as long as it's somewhere.
11853 It is preferable to keep these notes on branches, which is most
11854 likely to be i3. */
11855 place = i3;
11856 break;
11857
11858 case REG_VALUE_PROFILE:
11859 /* Just get rid of this note, as it is unused later anyway. */
11860 break;
11861
11862 case REG_NON_LOCAL_GOTO:
11863 if (JUMP_P (i3))
11864 place = i3;
11865 else
11866 {
11867 gcc_assert (i2 && JUMP_P (i2));
11868 place = i2;
11869 }
11870 break;
11871
11872 case REG_EH_REGION:
11873 /* These notes must remain with the call or trapping instruction. */
11874 if (CALL_P (i3))
11875 place = i3;
11876 else if (i2 && CALL_P (i2))
11877 place = i2;
11878 else
11879 {
11880 gcc_assert (flag_non_call_exceptions);
11881 if (may_trap_p (i3))
11882 place = i3;
11883 else if (i2 && may_trap_p (i2))
11884 place = i2;
11885 /* ??? Otherwise assume we've combined things such that we
11886 can now prove that the instructions can't trap. Drop the
11887 note in this case. */
11888 }
11889 break;
11890
11891 case REG_NORETURN:
11892 case REG_SETJMP:
11893 /* These notes must remain with the call. It should not be
11894 possible for both I2 and I3 to be a call. */
11895 if (CALL_P (i3))
11896 place = i3;
11897 else
11898 {
11899 gcc_assert (i2 && CALL_P (i2));
11900 place = i2;
11901 }
11902 break;
11903
11904 case REG_UNUSED:
11905 /* Any clobbers for i3 may still exist, and so we must process
11906 REG_UNUSED notes from that insn.
11907
11908 Any clobbers from i2 or i1 can only exist if they were added by
11909 recog_for_combine. In that case, recog_for_combine created the
11910 necessary REG_UNUSED notes. Trying to keep any original
11911 REG_UNUSED notes from these insns can cause incorrect output
11912 if it is for the same register as the original i3 dest.
11913 In that case, we will notice that the register is set in i3,
11914 and then add a REG_UNUSED note for the destination of i3, which
11915 is wrong. However, it is possible to have REG_UNUSED notes from
11916 i2 or i1 for register which were both used and clobbered, so
11917 we keep notes from i2 or i1 if they will turn into REG_DEAD
11918 notes. */
11919
11920 /* If this register is set or clobbered in I3, put the note there
11921 unless there is one already. */
11922 if (reg_set_p (XEXP (note, 0), PATTERN (i3)))
11923 {
11924 if (from_insn != i3)
11925 break;
11926
11927 if (! (REG_P (XEXP (note, 0))
11928 ? find_regno_note (i3, REG_UNUSED, REGNO (XEXP (note, 0)))
11929 : find_reg_note (i3, REG_UNUSED, XEXP (note, 0))))
11930 place = i3;
11931 }
11932 /* Otherwise, if this register is used by I3, then this register
11933 now dies here, so we must put a REG_DEAD note here unless there
11934 is one already. */
11935 else if (reg_referenced_p (XEXP (note, 0), PATTERN (i3))
11936 && ! (REG_P (XEXP (note, 0))
11937 ? find_regno_note (i3, REG_DEAD,
11938 REGNO (XEXP (note, 0)))
11939 : find_reg_note (i3, REG_DEAD, XEXP (note, 0))))
11940 {
11941 PUT_REG_NOTE_KIND (note, REG_DEAD);
11942 place = i3;
11943 }
11944 break;
11945
11946 case REG_EQUAL:
11947 case REG_EQUIV:
11948 case REG_NOALIAS:
11949 /* These notes say something about results of an insn. We can
11950 only support them if they used to be on I3 in which case they
11951 remain on I3. Otherwise they are ignored.
11952
11953 If the note refers to an expression that is not a constant, we
11954 must also ignore the note since we cannot tell whether the
11955 equivalence is still true. It might be possible to do
11956 slightly better than this (we only have a problem if I2DEST
11957 or I1DEST is present in the expression), but it doesn't
11958 seem worth the trouble. */
11959
11960 if (from_insn == i3
11961 && (XEXP (note, 0) == 0 || CONSTANT_P (XEXP (note, 0))))
11962 place = i3;
11963 break;
11964
11965 case REG_INC:
11966 case REG_NO_CONFLICT:
11967 /* These notes say something about how a register is used. They must
11968 be present on any use of the register in I2 or I3. */
11969 if (reg_mentioned_p (XEXP (note, 0), PATTERN (i3)))
11970 place = i3;
11971
11972 if (i2 && reg_mentioned_p (XEXP (note, 0), PATTERN (i2)))
11973 {
11974 if (place)
11975 place2 = i2;
11976 else
11977 place = i2;
11978 }
11979 break;
11980
11981 case REG_LABEL:
11982 /* This can show up in several ways -- either directly in the
11983 pattern, or hidden off in the constant pool with (or without?)
11984 a REG_EQUAL note. */
11985 /* ??? Ignore the without-reg_equal-note problem for now. */
11986 if (reg_mentioned_p (XEXP (note, 0), PATTERN (i3))
11987 || ((tem = find_reg_note (i3, REG_EQUAL, NULL_RTX))
11988 && GET_CODE (XEXP (tem, 0)) == LABEL_REF
11989 && XEXP (XEXP (tem, 0), 0) == XEXP (note, 0)))
11990 place = i3;
11991
11992 if (i2
11993 && (reg_mentioned_p (XEXP (note, 0), PATTERN (i2))
11994 || ((tem = find_reg_note (i2, REG_EQUAL, NULL_RTX))
11995 && GET_CODE (XEXP (tem, 0)) == LABEL_REF
11996 && XEXP (XEXP (tem, 0), 0) == XEXP (note, 0))))
11997 {
11998 if (place)
11999 place2 = i2;
12000 else
12001 place = i2;
12002 }
12003
12004 /* Don't attach REG_LABEL note to a JUMP_INSN. Add
12005 a JUMP_LABEL instead or decrement LABEL_NUSES. */
12006 if (place && JUMP_P (place))
12007 {
12008 rtx label = JUMP_LABEL (place);
12009
12010 if (!label)
12011 JUMP_LABEL (place) = XEXP (note, 0);
12012 else
12013 {
12014 gcc_assert (label == XEXP (note, 0));
12015 if (LABEL_P (label))
12016 LABEL_NUSES (label)--;
12017 }
12018 place = 0;
12019 }
12020 if (place2 && JUMP_P (place2))
12021 {
12022 rtx label = JUMP_LABEL (place2);
12023
12024 if (!label)
12025 JUMP_LABEL (place2) = XEXP (note, 0);
12026 else
12027 {
12028 gcc_assert (label == XEXP (note, 0));
12029 if (LABEL_P (label))
12030 LABEL_NUSES (label)--;
12031 }
12032 place2 = 0;
12033 }
12034 break;
12035
12036 case REG_NONNEG:
12037 /* This note says something about the value of a register prior
12038 to the execution of an insn. It is too much trouble to see
12039 if the note is still correct in all situations. It is better
12040 to simply delete it. */
12041 break;
12042
12043 case REG_RETVAL:
12044 /* If the insn previously containing this note still exists,
12045 put it back where it was. Otherwise move it to the previous
12046 insn. Adjust the corresponding REG_LIBCALL note. */
12047 if (!NOTE_P (from_insn))
12048 place = from_insn;
12049 else
12050 {
12051 tem = find_reg_note (XEXP (note, 0), REG_LIBCALL, NULL_RTX);
12052 place = prev_real_insn (from_insn);
12053 if (tem && place)
12054 XEXP (tem, 0) = place;
12055 /* If we're deleting the last remaining instruction of a
12056 libcall sequence, don't add the notes. */
12057 else if (XEXP (note, 0) == from_insn)
12058 tem = place = 0;
12059 /* Don't add the dangling REG_RETVAL note. */
12060 else if (! tem)
12061 place = 0;
12062 }
12063 break;
12064
12065 case REG_LIBCALL:
12066 /* This is handled similarly to REG_RETVAL. */
12067 if (!NOTE_P (from_insn))
12068 place = from_insn;
12069 else
12070 {
12071 tem = find_reg_note (XEXP (note, 0), REG_RETVAL, NULL_RTX);
12072 place = next_real_insn (from_insn);
12073 if (tem && place)
12074 XEXP (tem, 0) = place;
12075 /* If we're deleting the last remaining instruction of a
12076 libcall sequence, don't add the notes. */
12077 else if (XEXP (note, 0) == from_insn)
12078 tem = place = 0;
12079 /* Don't add the dangling REG_LIBCALL note. */
12080 else if (! tem)
12081 place = 0;
12082 }
12083 break;
12084
12085 case REG_DEAD:
12086 /* If the register is used as an input in I3, it dies there.
12087 Similarly for I2, if it is nonzero and adjacent to I3.
12088
12089 If the register is not used as an input in either I3 or I2
12090 and it is not one of the registers we were supposed to eliminate,
12091 there are two possibilities. We might have a non-adjacent I2
12092 or we might have somehow eliminated an additional register
12093 from a computation. For example, we might have had A & B where
12094 we discover that B will always be zero. In this case we will
12095 eliminate the reference to A.
12096
12097 In both cases, we must search to see if we can find a previous
12098 use of A and put the death note there. */
12099
12100 if (from_insn
12101 && CALL_P (from_insn)
12102 && find_reg_fusage (from_insn, USE, XEXP (note, 0)))
12103 place = from_insn;
12104 else if (reg_referenced_p (XEXP (note, 0), PATTERN (i3)))
12105 place = i3;
12106 else if (i2 != 0 && next_nonnote_insn (i2) == i3
12107 && reg_referenced_p (XEXP (note, 0), PATTERN (i2)))
12108 place = i2;
12109
12110 if (place == 0
12111 && (rtx_equal_p (XEXP (note, 0), elim_i2)
12112 || rtx_equal_p (XEXP (note, 0), elim_i1)))
12113 break;
12114
12115 if (place == 0)
12116 {
12117 basic_block bb = this_basic_block;
12118
12119 /* You might think you could search back from FROM_INSN
12120 rather than from I3, but combine tries to split invalid
12121 combined instructions. This can result in the old I2
12122 or I1 moving later in the insn sequence. */
12123 for (tem = PREV_INSN (i3); place == 0; tem = PREV_INSN (tem))
12124 {
12125 if (! INSN_P (tem))
12126 {
12127 if (tem == BB_HEAD (bb))
12128 break;
12129 continue;
12130 }
12131
12132 /* If the register is being set at TEM, see if that is all
12133 TEM is doing. If so, delete TEM. Otherwise, make this
12134 into a REG_UNUSED note instead. Don't delete sets to
12135 global register vars. */
12136 if ((REGNO (XEXP (note, 0)) >= FIRST_PSEUDO_REGISTER
12137 || !global_regs[REGNO (XEXP (note, 0))])
12138 && reg_set_p (XEXP (note, 0), PATTERN (tem)))
12139 {
12140 rtx set = single_set (tem);
12141 rtx inner_dest = 0;
12142 #ifdef HAVE_cc0
12143 rtx cc0_setter = NULL_RTX;
12144 #endif
12145
12146 if (set != 0)
12147 for (inner_dest = SET_DEST (set);
12148 (GET_CODE (inner_dest) == STRICT_LOW_PART
12149 || GET_CODE (inner_dest) == SUBREG
12150 || GET_CODE (inner_dest) == ZERO_EXTRACT);
12151 inner_dest = XEXP (inner_dest, 0))
12152 ;
12153
12154 /* Verify that it was the set, and not a clobber that
12155 modified the register.
12156
12157 CC0 targets must be careful to maintain setter/user
12158 pairs. If we cannot delete the setter due to side
12159 effects, mark the user with an UNUSED note instead
12160 of deleting it. */
12161
12162 if (set != 0 && ! side_effects_p (SET_SRC (set))
12163 && rtx_equal_p (XEXP (note, 0), inner_dest)
12164 #ifdef HAVE_cc0
12165 && (! reg_mentioned_p (cc0_rtx, SET_SRC (set))
12166 || ((cc0_setter = prev_cc0_setter (tem)) != NULL
12167 && sets_cc0_p (PATTERN (cc0_setter)) > 0))
12168 #endif
12169 )
12170 {
12171 /* Move the notes and links of TEM elsewhere.
12172 This might delete other dead insns recursively.
12173 First set the pattern to something that won't use
12174 any register. */
12175 rtx old_notes = REG_NOTES (tem);
12176
12177 PATTERN (tem) = pc_rtx;
12178 REG_NOTES (tem) = NULL;
12179
12180 distribute_notes (old_notes, tem, tem, NULL_RTX,
12181 NULL_RTX, NULL_RTX);
12182 distribute_links (LOG_LINKS (tem));
12183
12184 SET_INSN_DELETED (tem);
12185
12186 #ifdef HAVE_cc0
12187 /* Delete the setter too. */
12188 if (cc0_setter)
12189 {
12190 PATTERN (cc0_setter) = pc_rtx;
12191 old_notes = REG_NOTES (cc0_setter);
12192 REG_NOTES (cc0_setter) = NULL;
12193
12194 distribute_notes (old_notes, cc0_setter,
12195 cc0_setter, NULL_RTX,
12196 NULL_RTX, NULL_RTX);
12197 distribute_links (LOG_LINKS (cc0_setter));
12198
12199 SET_INSN_DELETED (cc0_setter);
12200 }
12201 #endif
12202 }
12203 else
12204 {
12205 PUT_REG_NOTE_KIND (note, REG_UNUSED);
12206
12207 /* If there isn't already a REG_UNUSED note, put one
12208 here. Do not place a REG_DEAD note, even if
12209 the register is also used here; that would not
12210 match the algorithm used in lifetime analysis
12211 and can cause the consistency check in the
12212 scheduler to fail. */
12213 if (! find_regno_note (tem, REG_UNUSED,
12214 REGNO (XEXP (note, 0))))
12215 place = tem;
12216 break;
12217 }
12218 }
12219 else if (reg_referenced_p (XEXP (note, 0), PATTERN (tem))
12220 || (CALL_P (tem)
12221 && find_reg_fusage (tem, USE, XEXP (note, 0))))
12222 {
12223 /* This may not be the correct place for the death
12224 note if FROM_INSN is before TEM, and the reg is
12225 set between FROM_INSN and TEM. The reg might
12226 die two or more times. An existing death note
12227 means we are looking at the wrong live range. */
12228 if (from_insn
12229 && INSN_CUID (from_insn) < INSN_CUID (tem)
12230 && find_regno_note (tem, REG_DEAD,
12231 REGNO (XEXP (note, 0))))
12232 {
12233 tem = from_insn;
12234 if (tem == BB_HEAD (bb))
12235 break;
12236 continue;
12237 }
12238
12239 place = tem;
12240
12241 /* If we are doing a 3->2 combination, and we have a
12242 register which formerly died in i3 and was not used
12243 by i2, which now no longer dies in i3 and is used in
12244 i2 but does not die in i2, and place is between i2
12245 and i3, then we may need to move a link from place to
12246 i2. */
12247 if (i2 && INSN_UID (place) <= max_uid_cuid
12248 && INSN_CUID (place) > INSN_CUID (i2)
12249 && from_insn
12250 && INSN_CUID (from_insn) > INSN_CUID (i2)
12251 && reg_referenced_p (XEXP (note, 0), PATTERN (i2)))
12252 {
12253 rtx links = LOG_LINKS (place);
12254 LOG_LINKS (place) = 0;
12255 distribute_links (links);
12256 }
12257 break;
12258 }
12259
12260 if (tem == BB_HEAD (bb))
12261 break;
12262 }
12263
12264 /* We haven't found an insn for the death note and it
12265 is still a REG_DEAD note, but we have hit the beginning
12266 of the block. If the existing life info says the reg
12267 was dead, there's nothing left to do. Otherwise, we'll
12268 need to do a global life update after combine. */
12269 if (REG_NOTE_KIND (note) == REG_DEAD && place == 0
12270 && REGNO_REG_SET_P (bb->il.rtl->global_live_at_start,
12271 REGNO (XEXP (note, 0))))
12272 SET_BIT (refresh_blocks, this_basic_block->index);
12273 }
12274
12275 /* If the register is set or already dead at PLACE, we needn't do
12276 anything with this note if it is still a REG_DEAD note.
12277 We check here if it is set at all, not if is it totally replaced,
12278 which is what `dead_or_set_p' checks, so also check for it being
12279 set partially. */
12280
12281 if (place && REG_NOTE_KIND (note) == REG_DEAD)
12282 {
12283 unsigned int regno = REGNO (XEXP (note, 0));
12284
12285 /* Similarly, if the instruction on which we want to place
12286 the note is a noop, we'll need do a global live update
12287 after we remove them in delete_noop_moves. */
12288 if (noop_move_p (place))
12289 SET_BIT (refresh_blocks, this_basic_block->index);
12290
12291 if (dead_or_set_p (place, XEXP (note, 0))
12292 || reg_bitfield_target_p (XEXP (note, 0), PATTERN (place)))
12293 {
12294 /* Unless the register previously died in PLACE, clear
12295 last_death. [I no longer understand why this is
12296 being done.] */
12297 if (reg_stat[regno].last_death != place)
12298 reg_stat[regno].last_death = 0;
12299 place = 0;
12300 }
12301 else
12302 reg_stat[regno].last_death = place;
12303
12304 /* If this is a death note for a hard reg that is occupying
12305 multiple registers, ensure that we are still using all
12306 parts of the object. If we find a piece of the object
12307 that is unused, we must arrange for an appropriate REG_DEAD
12308 note to be added for it. However, we can't just emit a USE
12309 and tag the note to it, since the register might actually
12310 be dead; so we recourse, and the recursive call then finds
12311 the previous insn that used this register. */
12312
12313 if (place && regno < FIRST_PSEUDO_REGISTER
12314 && hard_regno_nregs[regno][GET_MODE (XEXP (note, 0))] > 1)
12315 {
12316 unsigned int endregno
12317 = regno + hard_regno_nregs[regno]
12318 [GET_MODE (XEXP (note, 0))];
12319 int all_used = 1;
12320 unsigned int i;
12321
12322 for (i = regno; i < endregno; i++)
12323 if ((! refers_to_regno_p (i, i + 1, PATTERN (place), 0)
12324 && ! find_regno_fusage (place, USE, i))
12325 || dead_or_set_regno_p (place, i))
12326 all_used = 0;
12327
12328 if (! all_used)
12329 {
12330 /* Put only REG_DEAD notes for pieces that are
12331 not already dead or set. */
12332
12333 for (i = regno; i < endregno;
12334 i += hard_regno_nregs[i][reg_raw_mode[i]])
12335 {
12336 rtx piece = regno_reg_rtx[i];
12337 basic_block bb = this_basic_block;
12338
12339 if (! dead_or_set_p (place, piece)
12340 && ! reg_bitfield_target_p (piece,
12341 PATTERN (place)))
12342 {
12343 rtx new_note
12344 = gen_rtx_EXPR_LIST (REG_DEAD, piece, NULL_RTX);
12345
12346 distribute_notes (new_note, place, place,
12347 NULL_RTX, NULL_RTX, NULL_RTX);
12348 }
12349 else if (! refers_to_regno_p (i, i + 1,
12350 PATTERN (place), 0)
12351 && ! find_regno_fusage (place, USE, i))
12352 for (tem = PREV_INSN (place); ;
12353 tem = PREV_INSN (tem))
12354 {
12355 if (! INSN_P (tem))
12356 {
12357 if (tem == BB_HEAD (bb))
12358 {
12359 SET_BIT (refresh_blocks,
12360 this_basic_block->index);
12361 break;
12362 }
12363 continue;
12364 }
12365 if (dead_or_set_p (tem, piece)
12366 || reg_bitfield_target_p (piece,
12367 PATTERN (tem)))
12368 {
12369 REG_NOTES (tem)
12370 = gen_rtx_EXPR_LIST (REG_UNUSED, piece,
12371 REG_NOTES (tem));
12372 break;
12373 }
12374 }
12375
12376 }
12377
12378 place = 0;
12379 }
12380 }
12381 }
12382 break;
12383
12384 default:
12385 /* Any other notes should not be present at this point in the
12386 compilation. */
12387 gcc_unreachable ();
12388 }
12389
12390 if (place)
12391 {
12392 XEXP (note, 1) = REG_NOTES (place);
12393 REG_NOTES (place) = note;
12394 }
12395 else if ((REG_NOTE_KIND (note) == REG_DEAD
12396 || REG_NOTE_KIND (note) == REG_UNUSED)
12397 && REG_P (XEXP (note, 0)))
12398 REG_N_DEATHS (REGNO (XEXP (note, 0)))--;
12399
12400 if (place2)
12401 {
12402 if ((REG_NOTE_KIND (note) == REG_DEAD
12403 || REG_NOTE_KIND (note) == REG_UNUSED)
12404 && REG_P (XEXP (note, 0)))
12405 REG_N_DEATHS (REGNO (XEXP (note, 0)))++;
12406
12407 REG_NOTES (place2) = gen_rtx_fmt_ee (GET_CODE (note),
12408 REG_NOTE_KIND (note),
12409 XEXP (note, 0),
12410 REG_NOTES (place2));
12411 }
12412 }
12413 }
12414 \f
12415 /* Similarly to above, distribute the LOG_LINKS that used to be present on
12416 I3, I2, and I1 to new locations. This is also called to add a link
12417 pointing at I3 when I3's destination is changed. */
12418
12419 static void
12420 distribute_links (rtx links)
12421 {
12422 rtx link, next_link;
12423
12424 for (link = links; link; link = next_link)
12425 {
12426 rtx place = 0;
12427 rtx insn;
12428 rtx set, reg;
12429
12430 next_link = XEXP (link, 1);
12431
12432 /* If the insn that this link points to is a NOTE or isn't a single
12433 set, ignore it. In the latter case, it isn't clear what we
12434 can do other than ignore the link, since we can't tell which
12435 register it was for. Such links wouldn't be used by combine
12436 anyway.
12437
12438 It is not possible for the destination of the target of the link to
12439 have been changed by combine. The only potential of this is if we
12440 replace I3, I2, and I1 by I3 and I2. But in that case the
12441 destination of I2 also remains unchanged. */
12442
12443 if (NOTE_P (XEXP (link, 0))
12444 || (set = single_set (XEXP (link, 0))) == 0)
12445 continue;
12446
12447 reg = SET_DEST (set);
12448 while (GET_CODE (reg) == SUBREG || GET_CODE (reg) == ZERO_EXTRACT
12449 || GET_CODE (reg) == STRICT_LOW_PART)
12450 reg = XEXP (reg, 0);
12451
12452 /* A LOG_LINK is defined as being placed on the first insn that uses
12453 a register and points to the insn that sets the register. Start
12454 searching at the next insn after the target of the link and stop
12455 when we reach a set of the register or the end of the basic block.
12456
12457 Note that this correctly handles the link that used to point from
12458 I3 to I2. Also note that not much searching is typically done here
12459 since most links don't point very far away. */
12460
12461 for (insn = NEXT_INSN (XEXP (link, 0));
12462 (insn && (this_basic_block->next_bb == EXIT_BLOCK_PTR
12463 || BB_HEAD (this_basic_block->next_bb) != insn));
12464 insn = NEXT_INSN (insn))
12465 if (INSN_P (insn) && reg_overlap_mentioned_p (reg, PATTERN (insn)))
12466 {
12467 if (reg_referenced_p (reg, PATTERN (insn)))
12468 place = insn;
12469 break;
12470 }
12471 else if (CALL_P (insn)
12472 && find_reg_fusage (insn, USE, reg))
12473 {
12474 place = insn;
12475 break;
12476 }
12477 else if (INSN_P (insn) && reg_set_p (reg, insn))
12478 break;
12479
12480 /* If we found a place to put the link, place it there unless there
12481 is already a link to the same insn as LINK at that point. */
12482
12483 if (place)
12484 {
12485 rtx link2;
12486
12487 for (link2 = LOG_LINKS (place); link2; link2 = XEXP (link2, 1))
12488 if (XEXP (link2, 0) == XEXP (link, 0))
12489 break;
12490
12491 if (link2 == 0)
12492 {
12493 XEXP (link, 1) = LOG_LINKS (place);
12494 LOG_LINKS (place) = link;
12495
12496 /* Set added_links_insn to the earliest insn we added a
12497 link to. */
12498 if (added_links_insn == 0
12499 || INSN_CUID (added_links_insn) > INSN_CUID (place))
12500 added_links_insn = place;
12501 }
12502 }
12503 }
12504 }
12505 \f
12506 /* Subroutine of unmentioned_reg_p and callback from for_each_rtx.
12507 Check whether the expression pointer to by LOC is a register or
12508 memory, and if so return 1 if it isn't mentioned in the rtx EXPR.
12509 Otherwise return zero. */
12510
12511 static int
12512 unmentioned_reg_p_1 (rtx *loc, void *expr)
12513 {
12514 rtx x = *loc;
12515
12516 if (x != NULL_RTX
12517 && (REG_P (x) || MEM_P (x))
12518 && ! reg_mentioned_p (x, (rtx) expr))
12519 return 1;
12520 return 0;
12521 }
12522
12523 /* Check for any register or memory mentioned in EQUIV that is not
12524 mentioned in EXPR. This is used to restrict EQUIV to "specializations"
12525 of EXPR where some registers may have been replaced by constants. */
12526
12527 static bool
12528 unmentioned_reg_p (rtx equiv, rtx expr)
12529 {
12530 return for_each_rtx (&equiv, unmentioned_reg_p_1, expr);
12531 }
12532 \f
12533 /* Compute INSN_CUID for INSN, which is an insn made by combine. */
12534
12535 static int
12536 insn_cuid (rtx insn)
12537 {
12538 while (insn != 0 && INSN_UID (insn) > max_uid_cuid
12539 && NONJUMP_INSN_P (insn) && GET_CODE (PATTERN (insn)) == USE)
12540 insn = NEXT_INSN (insn);
12541
12542 gcc_assert (INSN_UID (insn) <= max_uid_cuid);
12543
12544 return INSN_CUID (insn);
12545 }
12546 \f
12547 void
12548 dump_combine_stats (FILE *file)
12549 {
12550 fprintf
12551 (file,
12552 ";; Combiner statistics: %d attempts, %d substitutions (%d requiring new space),\n;; %d successes.\n\n",
12553 combine_attempts, combine_merges, combine_extras, combine_successes);
12554 }
12555
12556 void
12557 dump_combine_total_stats (FILE *file)
12558 {
12559 fprintf
12560 (file,
12561 "\n;; Combiner totals: %d attempts, %d substitutions (%d requiring new space),\n;; %d successes.\n",
12562 total_attempts, total_merges, total_extras, total_successes);
12563 }
12564 \f
12565
12566 static bool
12567 gate_handle_combine (void)
12568 {
12569 return (optimize > 0);
12570 }
12571
12572 /* Try combining insns through substitution. */
12573 static void
12574 rest_of_handle_combine (void)
12575 {
12576 int rebuild_jump_labels_after_combine
12577 = combine_instructions (get_insns (), max_reg_num ());
12578
12579 /* Combining insns may have turned an indirect jump into a
12580 direct jump. Rebuild the JUMP_LABEL fields of jumping
12581 instructions. */
12582 if (rebuild_jump_labels_after_combine)
12583 {
12584 timevar_push (TV_JUMP);
12585 rebuild_jump_labels (get_insns ());
12586 timevar_pop (TV_JUMP);
12587
12588 delete_dead_jumptables ();
12589 cleanup_cfg (CLEANUP_EXPENSIVE | CLEANUP_UPDATE_LIFE);
12590 }
12591 }
12592
12593 struct tree_opt_pass pass_combine =
12594 {
12595 "combine", /* name */
12596 gate_handle_combine, /* gate */
12597 rest_of_handle_combine, /* execute */
12598 NULL, /* sub */
12599 NULL, /* next */
12600 0, /* static_pass_number */
12601 TV_COMBINE, /* tv_id */
12602 0, /* properties_required */
12603 0, /* properties_provided */
12604 0, /* properties_destroyed */
12605 0, /* todo_flags_start */
12606 TODO_dump_func |
12607 TODO_ggc_collect, /* todo_flags_finish */
12608 'c' /* letter */
12609 };
12610