cond.md (stzx_16): Use register_operand for operand 0.
[gcc.git] / gcc / combine.c
1 /* Optimize by combining instructions for GNU compiler.
2 Copyright (C) 1987-2013 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 /* This module is essentially the "combiner" phase of the U. of Arizona
21 Portable Optimizer, but redone to work on our list-structured
22 representation for RTL instead of their string representation.
23
24 The LOG_LINKS of each insn identify the most recent assignment
25 to each REG used in the insn. It is a list of previous insns,
26 each of which contains a SET for a REG that is used in this insn
27 and not used or set in between. LOG_LINKs never cross basic blocks.
28 They were set up by the preceding pass (lifetime analysis).
29
30 We try to combine each pair of insns joined by a logical link.
31 We also try to combine triplets of insns A, B and C when C has
32 a link back to B and B has a link back to A. Likewise for a
33 small number of quadruplets of insns A, B, C and D for which
34 there's high likelihood of of success.
35
36 LOG_LINKS does not have links for use of the CC0. They don't
37 need to, because the insn that sets the CC0 is always immediately
38 before the insn that tests it. So we always regard a branch
39 insn as having a logical link to the preceding insn. The same is true
40 for an insn explicitly using CC0.
41
42 We check (with use_crosses_set_p) to avoid combining in such a way
43 as to move a computation to a place where its value would be different.
44
45 Combination is done by mathematically substituting the previous
46 insn(s) values for the regs they set into the expressions in
47 the later insns that refer to these regs. If the result is a valid insn
48 for our target machine, according to the machine description,
49 we install it, delete the earlier insns, and update the data flow
50 information (LOG_LINKS and REG_NOTES) for what we did.
51
52 There are a few exceptions where the dataflow information isn't
53 completely updated (however this is only a local issue since it is
54 regenerated before the next pass that uses it):
55
56 - reg_live_length is not updated
57 - reg_n_refs is not adjusted in the rare case when a register is
58 no longer required in a computation
59 - there are extremely rare cases (see distribute_notes) when a
60 REG_DEAD note is lost
61 - a LOG_LINKS entry that refers to an insn with multiple SETs may be
62 removed because there is no way to know which register it was
63 linking
64
65 To simplify substitution, we combine only when the earlier insn(s)
66 consist of only a single assignment. To simplify updating afterward,
67 we never combine when a subroutine call appears in the middle.
68
69 Since we do not represent assignments to CC0 explicitly except when that
70 is all an insn does, there is no LOG_LINKS entry in an insn that uses
71 the condition code for the insn that set the condition code.
72 Fortunately, these two insns must be consecutive.
73 Therefore, every JUMP_INSN is taken to have an implicit logical link
74 to the preceding insn. This is not quite right, since non-jumps can
75 also use the condition code; but in practice such insns would not
76 combine anyway. */
77
78 #include "config.h"
79 #include "system.h"
80 #include "coretypes.h"
81 #include "tm.h"
82 #include "rtl.h"
83 #include "tree.h"
84 #include "stor-layout.h"
85 #include "tm_p.h"
86 #include "flags.h"
87 #include "regs.h"
88 #include "hard-reg-set.h"
89 #include "basic-block.h"
90 #include "insn-config.h"
91 #include "function.h"
92 /* Include expr.h after insn-config.h so we get HAVE_conditional_move. */
93 #include "expr.h"
94 #include "insn-attr.h"
95 #include "recog.h"
96 #include "diagnostic-core.h"
97 #include "target.h"
98 #include "optabs.h"
99 #include "insn-codes.h"
100 #include "rtlhooks-def.h"
101 #include "params.h"
102 #include "tree-pass.h"
103 #include "df.h"
104 #include "valtrack.h"
105 #include "cgraph.h"
106 #include "obstack.h"
107
108 /* Number of attempts to combine instructions in this function. */
109
110 static int combine_attempts;
111
112 /* Number of attempts that got as far as substitution in this function. */
113
114 static int combine_merges;
115
116 /* Number of instructions combined with added SETs in this function. */
117
118 static int combine_extras;
119
120 /* Number of instructions combined in this function. */
121
122 static int combine_successes;
123
124 /* Totals over entire compilation. */
125
126 static int total_attempts, total_merges, total_extras, total_successes;
127
128 /* combine_instructions may try to replace the right hand side of the
129 second instruction with the value of an associated REG_EQUAL note
130 before throwing it at try_combine. That is problematic when there
131 is a REG_DEAD note for a register used in the old right hand side
132 and can cause distribute_notes to do wrong things. This is the
133 second instruction if it has been so modified, null otherwise. */
134
135 static rtx i2mod;
136
137 /* When I2MOD is nonnull, this is a copy of the old right hand side. */
138
139 static rtx i2mod_old_rhs;
140
141 /* When I2MOD is nonnull, this is a copy of the new right hand side. */
142
143 static rtx i2mod_new_rhs;
144 \f
145 typedef struct reg_stat_struct {
146 /* Record last point of death of (hard or pseudo) register n. */
147 rtx last_death;
148
149 /* Record last point of modification of (hard or pseudo) register n. */
150 rtx last_set;
151
152 /* The next group of fields allows the recording of the last value assigned
153 to (hard or pseudo) register n. We use this information to see if an
154 operation being processed is redundant given a prior operation performed
155 on the register. For example, an `and' with a constant is redundant if
156 all the zero bits are already known to be turned off.
157
158 We use an approach similar to that used by cse, but change it in the
159 following ways:
160
161 (1) We do not want to reinitialize at each label.
162 (2) It is useful, but not critical, to know the actual value assigned
163 to a register. Often just its form is helpful.
164
165 Therefore, we maintain the following fields:
166
167 last_set_value the last value assigned
168 last_set_label records the value of label_tick when the
169 register was assigned
170 last_set_table_tick records the value of label_tick when a
171 value using the register is assigned
172 last_set_invalid set to nonzero when it is not valid
173 to use the value of this register in some
174 register's value
175
176 To understand the usage of these tables, it is important to understand
177 the distinction between the value in last_set_value being valid and
178 the register being validly contained in some other expression in the
179 table.
180
181 (The next two parameters are out of date).
182
183 reg_stat[i].last_set_value is valid if it is nonzero, and either
184 reg_n_sets[i] is 1 or reg_stat[i].last_set_label == label_tick.
185
186 Register I may validly appear in any expression returned for the value
187 of another register if reg_n_sets[i] is 1. It may also appear in the
188 value for register J if reg_stat[j].last_set_invalid is zero, or
189 reg_stat[i].last_set_label < reg_stat[j].last_set_label.
190
191 If an expression is found in the table containing a register which may
192 not validly appear in an expression, the register is replaced by
193 something that won't match, (clobber (const_int 0)). */
194
195 /* Record last value assigned to (hard or pseudo) register n. */
196
197 rtx last_set_value;
198
199 /* Record the value of label_tick when an expression involving register n
200 is placed in last_set_value. */
201
202 int last_set_table_tick;
203
204 /* Record the value of label_tick when the value for register n is placed in
205 last_set_value. */
206
207 int last_set_label;
208
209 /* These fields are maintained in parallel with last_set_value and are
210 used to store the mode in which the register was last set, the bits
211 that were known to be zero when it was last set, and the number of
212 sign bits copies it was known to have when it was last set. */
213
214 unsigned HOST_WIDE_INT last_set_nonzero_bits;
215 char last_set_sign_bit_copies;
216 ENUM_BITFIELD(machine_mode) last_set_mode : 8;
217
218 /* Set nonzero if references to register n in expressions should not be
219 used. last_set_invalid is set nonzero when this register is being
220 assigned to and last_set_table_tick == label_tick. */
221
222 char last_set_invalid;
223
224 /* Some registers that are set more than once and used in more than one
225 basic block are nevertheless always set in similar ways. For example,
226 a QImode register may be loaded from memory in two places on a machine
227 where byte loads zero extend.
228
229 We record in the following fields if a register has some leading bits
230 that are always equal to the sign bit, and what we know about the
231 nonzero bits of a register, specifically which bits are known to be
232 zero.
233
234 If an entry is zero, it means that we don't know anything special. */
235
236 unsigned char sign_bit_copies;
237
238 unsigned HOST_WIDE_INT nonzero_bits;
239
240 /* Record the value of the label_tick when the last truncation
241 happened. The field truncated_to_mode is only valid if
242 truncation_label == label_tick. */
243
244 int truncation_label;
245
246 /* Record the last truncation seen for this register. If truncation
247 is not a nop to this mode we might be able to save an explicit
248 truncation if we know that value already contains a truncated
249 value. */
250
251 ENUM_BITFIELD(machine_mode) truncated_to_mode : 8;
252 } reg_stat_type;
253
254
255 static vec<reg_stat_type> reg_stat;
256
257 /* Record the luid of the last insn that invalidated memory
258 (anything that writes memory, and subroutine calls, but not pushes). */
259
260 static int mem_last_set;
261
262 /* Record the luid of the last CALL_INSN
263 so we can tell whether a potential combination crosses any calls. */
264
265 static int last_call_luid;
266
267 /* When `subst' is called, this is the insn that is being modified
268 (by combining in a previous insn). The PATTERN of this insn
269 is still the old pattern partially modified and it should not be
270 looked at, but this may be used to examine the successors of the insn
271 to judge whether a simplification is valid. */
272
273 static rtx subst_insn;
274
275 /* This is the lowest LUID that `subst' is currently dealing with.
276 get_last_value will not return a value if the register was set at or
277 after this LUID. If not for this mechanism, we could get confused if
278 I2 or I1 in try_combine were an insn that used the old value of a register
279 to obtain a new value. In that case, we might erroneously get the
280 new value of the register when we wanted the old one. */
281
282 static int subst_low_luid;
283
284 /* This contains any hard registers that are used in newpat; reg_dead_at_p
285 must consider all these registers to be always live. */
286
287 static HARD_REG_SET newpat_used_regs;
288
289 /* This is an insn to which a LOG_LINKS entry has been added. If this
290 insn is the earlier than I2 or I3, combine should rescan starting at
291 that location. */
292
293 static rtx added_links_insn;
294
295 /* Basic block in which we are performing combines. */
296 static basic_block this_basic_block;
297 static bool optimize_this_for_speed_p;
298
299 \f
300 /* Length of the currently allocated uid_insn_cost array. */
301
302 static int max_uid_known;
303
304 /* The following array records the insn_rtx_cost for every insn
305 in the instruction stream. */
306
307 static int *uid_insn_cost;
308
309 /* The following array records the LOG_LINKS for every insn in the
310 instruction stream as struct insn_link pointers. */
311
312 struct insn_link {
313 rtx insn;
314 struct insn_link *next;
315 };
316
317 static struct insn_link **uid_log_links;
318
319 #define INSN_COST(INSN) (uid_insn_cost[INSN_UID (INSN)])
320 #define LOG_LINKS(INSN) (uid_log_links[INSN_UID (INSN)])
321
322 #define FOR_EACH_LOG_LINK(L, INSN) \
323 for ((L) = LOG_LINKS (INSN); (L); (L) = (L)->next)
324
325 /* Links for LOG_LINKS are allocated from this obstack. */
326
327 static struct obstack insn_link_obstack;
328
329 /* Allocate a link. */
330
331 static inline struct insn_link *
332 alloc_insn_link (rtx insn, struct insn_link *next)
333 {
334 struct insn_link *l
335 = (struct insn_link *) obstack_alloc (&insn_link_obstack,
336 sizeof (struct insn_link));
337 l->insn = insn;
338 l->next = next;
339 return l;
340 }
341
342 /* Incremented for each basic block. */
343
344 static int label_tick;
345
346 /* Reset to label_tick for each extended basic block in scanning order. */
347
348 static int label_tick_ebb_start;
349
350 /* Mode used to compute significance in reg_stat[].nonzero_bits. It is the
351 largest integer mode that can fit in HOST_BITS_PER_WIDE_INT. */
352
353 static enum machine_mode nonzero_bits_mode;
354
355 /* Nonzero when reg_stat[].nonzero_bits and reg_stat[].sign_bit_copies can
356 be safely used. It is zero while computing them and after combine has
357 completed. This former test prevents propagating values based on
358 previously set values, which can be incorrect if a variable is modified
359 in a loop. */
360
361 static int nonzero_sign_valid;
362
363 \f
364 /* Record one modification to rtl structure
365 to be undone by storing old_contents into *where. */
366
367 enum undo_kind { UNDO_RTX, UNDO_INT, UNDO_MODE, UNDO_LINKS };
368
369 struct undo
370 {
371 struct undo *next;
372 enum undo_kind kind;
373 union { rtx r; int i; enum machine_mode m; struct insn_link *l; } old_contents;
374 union { rtx *r; int *i; struct insn_link **l; } where;
375 };
376
377 /* Record a bunch of changes to be undone, up to MAX_UNDO of them.
378 num_undo says how many are currently recorded.
379
380 other_insn is nonzero if we have modified some other insn in the process
381 of working on subst_insn. It must be verified too. */
382
383 struct undobuf
384 {
385 struct undo *undos;
386 struct undo *frees;
387 rtx other_insn;
388 };
389
390 static struct undobuf undobuf;
391
392 /* Number of times the pseudo being substituted for
393 was found and replaced. */
394
395 static int n_occurrences;
396
397 static rtx reg_nonzero_bits_for_combine (const_rtx, enum machine_mode, const_rtx,
398 enum machine_mode,
399 unsigned HOST_WIDE_INT,
400 unsigned HOST_WIDE_INT *);
401 static rtx reg_num_sign_bit_copies_for_combine (const_rtx, enum machine_mode, const_rtx,
402 enum machine_mode,
403 unsigned int, unsigned int *);
404 static void do_SUBST (rtx *, rtx);
405 static void do_SUBST_INT (int *, int);
406 static void init_reg_last (void);
407 static void setup_incoming_promotions (rtx);
408 static void set_nonzero_bits_and_sign_copies (rtx, const_rtx, void *);
409 static int cant_combine_insn_p (rtx);
410 static int can_combine_p (rtx, rtx, rtx, rtx, rtx, rtx, rtx *, rtx *);
411 static int combinable_i3pat (rtx, rtx *, rtx, rtx, rtx, int, int, rtx *);
412 static int contains_muldiv (rtx);
413 static rtx try_combine (rtx, rtx, rtx, rtx, int *, rtx);
414 static void undo_all (void);
415 static void undo_commit (void);
416 static rtx *find_split_point (rtx *, rtx, bool);
417 static rtx subst (rtx, rtx, rtx, int, int, int);
418 static rtx combine_simplify_rtx (rtx, enum machine_mode, int, int);
419 static rtx simplify_if_then_else (rtx);
420 static rtx simplify_set (rtx);
421 static rtx simplify_logical (rtx);
422 static rtx expand_compound_operation (rtx);
423 static const_rtx expand_field_assignment (const_rtx);
424 static rtx make_extraction (enum machine_mode, rtx, HOST_WIDE_INT,
425 rtx, unsigned HOST_WIDE_INT, int, int, int);
426 static rtx extract_left_shift (rtx, int);
427 static int get_pos_from_mask (unsigned HOST_WIDE_INT,
428 unsigned HOST_WIDE_INT *);
429 static rtx canon_reg_for_combine (rtx, rtx);
430 static rtx force_to_mode (rtx, enum machine_mode,
431 unsigned HOST_WIDE_INT, int);
432 static rtx if_then_else_cond (rtx, rtx *, rtx *);
433 static rtx known_cond (rtx, enum rtx_code, rtx, rtx);
434 static int rtx_equal_for_field_assignment_p (rtx, rtx);
435 static rtx make_field_assignment (rtx);
436 static rtx apply_distributive_law (rtx);
437 static rtx distribute_and_simplify_rtx (rtx, int);
438 static rtx simplify_and_const_int_1 (enum machine_mode, rtx,
439 unsigned HOST_WIDE_INT);
440 static rtx simplify_and_const_int (rtx, enum machine_mode, rtx,
441 unsigned HOST_WIDE_INT);
442 static int merge_outer_ops (enum rtx_code *, HOST_WIDE_INT *, enum rtx_code,
443 HOST_WIDE_INT, enum machine_mode, int *);
444 static rtx simplify_shift_const_1 (enum rtx_code, enum machine_mode, rtx, int);
445 static rtx simplify_shift_const (rtx, enum rtx_code, enum machine_mode, rtx,
446 int);
447 static int recog_for_combine (rtx *, rtx, rtx *);
448 static rtx gen_lowpart_for_combine (enum machine_mode, rtx);
449 static enum rtx_code simplify_compare_const (enum rtx_code, rtx, rtx *);
450 static enum rtx_code simplify_comparison (enum rtx_code, rtx *, rtx *);
451 static void update_table_tick (rtx);
452 static void record_value_for_reg (rtx, rtx, rtx);
453 static void check_promoted_subreg (rtx, rtx);
454 static void record_dead_and_set_regs_1 (rtx, const_rtx, void *);
455 static void record_dead_and_set_regs (rtx);
456 static int get_last_value_validate (rtx *, rtx, int, int);
457 static rtx get_last_value (const_rtx);
458 static int use_crosses_set_p (const_rtx, int);
459 static void reg_dead_at_p_1 (rtx, const_rtx, void *);
460 static int reg_dead_at_p (rtx, rtx);
461 static void move_deaths (rtx, rtx, int, rtx, rtx *);
462 static int reg_bitfield_target_p (rtx, rtx);
463 static void distribute_notes (rtx, rtx, rtx, rtx, rtx, rtx, rtx);
464 static void distribute_links (struct insn_link *);
465 static void mark_used_regs_combine (rtx);
466 static void record_promoted_value (rtx, rtx);
467 static int unmentioned_reg_p_1 (rtx *, void *);
468 static bool unmentioned_reg_p (rtx, rtx);
469 static int record_truncated_value (rtx *, void *);
470 static void record_truncated_values (rtx *, void *);
471 static bool reg_truncated_to_mode (enum machine_mode, const_rtx);
472 static rtx gen_lowpart_or_truncate (enum machine_mode, rtx);
473 \f
474
475 /* It is not safe to use ordinary gen_lowpart in combine.
476 See comments in gen_lowpart_for_combine. */
477 #undef RTL_HOOKS_GEN_LOWPART
478 #define RTL_HOOKS_GEN_LOWPART gen_lowpart_for_combine
479
480 /* Our implementation of gen_lowpart never emits a new pseudo. */
481 #undef RTL_HOOKS_GEN_LOWPART_NO_EMIT
482 #define RTL_HOOKS_GEN_LOWPART_NO_EMIT gen_lowpart_for_combine
483
484 #undef RTL_HOOKS_REG_NONZERO_REG_BITS
485 #define RTL_HOOKS_REG_NONZERO_REG_BITS reg_nonzero_bits_for_combine
486
487 #undef RTL_HOOKS_REG_NUM_SIGN_BIT_COPIES
488 #define RTL_HOOKS_REG_NUM_SIGN_BIT_COPIES reg_num_sign_bit_copies_for_combine
489
490 #undef RTL_HOOKS_REG_TRUNCATED_TO_MODE
491 #define RTL_HOOKS_REG_TRUNCATED_TO_MODE reg_truncated_to_mode
492
493 static const struct rtl_hooks combine_rtl_hooks = RTL_HOOKS_INITIALIZER;
494
495 \f
496 /* Convenience wrapper for the canonicalize_comparison target hook.
497 Target hooks cannot use enum rtx_code. */
498 static inline void
499 target_canonicalize_comparison (enum rtx_code *code, rtx *op0, rtx *op1,
500 bool op0_preserve_value)
501 {
502 int code_int = (int)*code;
503 targetm.canonicalize_comparison (&code_int, op0, op1, op0_preserve_value);
504 *code = (enum rtx_code)code_int;
505 }
506
507 /* Try to split PATTERN found in INSN. This returns NULL_RTX if
508 PATTERN can not be split. Otherwise, it returns an insn sequence.
509 This is a wrapper around split_insns which ensures that the
510 reg_stat vector is made larger if the splitter creates a new
511 register. */
512
513 static rtx
514 combine_split_insns (rtx pattern, rtx insn)
515 {
516 rtx ret;
517 unsigned int nregs;
518
519 ret = split_insns (pattern, insn);
520 nregs = max_reg_num ();
521 if (nregs > reg_stat.length ())
522 reg_stat.safe_grow_cleared (nregs);
523 return ret;
524 }
525
526 /* This is used by find_single_use to locate an rtx in LOC that
527 contains exactly one use of DEST, which is typically either a REG
528 or CC0. It returns a pointer to the innermost rtx expression
529 containing DEST. Appearances of DEST that are being used to
530 totally replace it are not counted. */
531
532 static rtx *
533 find_single_use_1 (rtx dest, rtx *loc)
534 {
535 rtx x = *loc;
536 enum rtx_code code = GET_CODE (x);
537 rtx *result = NULL;
538 rtx *this_result;
539 int i;
540 const char *fmt;
541
542 switch (code)
543 {
544 case CONST:
545 case LABEL_REF:
546 case SYMBOL_REF:
547 CASE_CONST_ANY:
548 case CLOBBER:
549 return 0;
550
551 case SET:
552 /* If the destination is anything other than CC0, PC, a REG or a SUBREG
553 of a REG that occupies all of the REG, the insn uses DEST if
554 it is mentioned in the destination or the source. Otherwise, we
555 need just check the source. */
556 if (GET_CODE (SET_DEST (x)) != CC0
557 && GET_CODE (SET_DEST (x)) != PC
558 && !REG_P (SET_DEST (x))
559 && ! (GET_CODE (SET_DEST (x)) == SUBREG
560 && REG_P (SUBREG_REG (SET_DEST (x)))
561 && (((GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (x))))
562 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
563 == ((GET_MODE_SIZE (GET_MODE (SET_DEST (x)))
564 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))))
565 break;
566
567 return find_single_use_1 (dest, &SET_SRC (x));
568
569 case MEM:
570 case SUBREG:
571 return find_single_use_1 (dest, &XEXP (x, 0));
572
573 default:
574 break;
575 }
576
577 /* If it wasn't one of the common cases above, check each expression and
578 vector of this code. Look for a unique usage of DEST. */
579
580 fmt = GET_RTX_FORMAT (code);
581 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
582 {
583 if (fmt[i] == 'e')
584 {
585 if (dest == XEXP (x, i)
586 || (REG_P (dest) && REG_P (XEXP (x, i))
587 && REGNO (dest) == REGNO (XEXP (x, i))))
588 this_result = loc;
589 else
590 this_result = find_single_use_1 (dest, &XEXP (x, i));
591
592 if (result == NULL)
593 result = this_result;
594 else if (this_result)
595 /* Duplicate usage. */
596 return NULL;
597 }
598 else if (fmt[i] == 'E')
599 {
600 int j;
601
602 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
603 {
604 if (XVECEXP (x, i, j) == dest
605 || (REG_P (dest)
606 && REG_P (XVECEXP (x, i, j))
607 && REGNO (XVECEXP (x, i, j)) == REGNO (dest)))
608 this_result = loc;
609 else
610 this_result = find_single_use_1 (dest, &XVECEXP (x, i, j));
611
612 if (result == NULL)
613 result = this_result;
614 else if (this_result)
615 return NULL;
616 }
617 }
618 }
619
620 return result;
621 }
622
623
624 /* See if DEST, produced in INSN, is used only a single time in the
625 sequel. If so, return a pointer to the innermost rtx expression in which
626 it is used.
627
628 If PLOC is nonzero, *PLOC is set to the insn containing the single use.
629
630 If DEST is cc0_rtx, we look only at the next insn. In that case, we don't
631 care about REG_DEAD notes or LOG_LINKS.
632
633 Otherwise, we find the single use by finding an insn that has a
634 LOG_LINKS pointing at INSN and has a REG_DEAD note for DEST. If DEST is
635 only referenced once in that insn, we know that it must be the first
636 and last insn referencing DEST. */
637
638 static rtx *
639 find_single_use (rtx dest, rtx insn, rtx *ploc)
640 {
641 basic_block bb;
642 rtx next;
643 rtx *result;
644 struct insn_link *link;
645
646 #ifdef HAVE_cc0
647 if (dest == cc0_rtx)
648 {
649 next = NEXT_INSN (insn);
650 if (next == 0
651 || (!NONJUMP_INSN_P (next) && !JUMP_P (next)))
652 return 0;
653
654 result = find_single_use_1 (dest, &PATTERN (next));
655 if (result && ploc)
656 *ploc = next;
657 return result;
658 }
659 #endif
660
661 if (!REG_P (dest))
662 return 0;
663
664 bb = BLOCK_FOR_INSN (insn);
665 for (next = NEXT_INSN (insn);
666 next && BLOCK_FOR_INSN (next) == bb;
667 next = NEXT_INSN (next))
668 if (INSN_P (next) && dead_or_set_p (next, dest))
669 {
670 FOR_EACH_LOG_LINK (link, next)
671 if (link->insn == insn)
672 break;
673
674 if (link)
675 {
676 result = find_single_use_1 (dest, &PATTERN (next));
677 if (ploc)
678 *ploc = next;
679 return result;
680 }
681 }
682
683 return 0;
684 }
685 \f
686 /* Substitute NEWVAL, an rtx expression, into INTO, a place in some
687 insn. The substitution can be undone by undo_all. If INTO is already
688 set to NEWVAL, do not record this change. Because computing NEWVAL might
689 also call SUBST, we have to compute it before we put anything into
690 the undo table. */
691
692 static void
693 do_SUBST (rtx *into, rtx newval)
694 {
695 struct undo *buf;
696 rtx oldval = *into;
697
698 if (oldval == newval)
699 return;
700
701 /* We'd like to catch as many invalid transformations here as
702 possible. Unfortunately, there are way too many mode changes
703 that are perfectly valid, so we'd waste too much effort for
704 little gain doing the checks here. Focus on catching invalid
705 transformations involving integer constants. */
706 if (GET_MODE_CLASS (GET_MODE (oldval)) == MODE_INT
707 && CONST_INT_P (newval))
708 {
709 /* Sanity check that we're replacing oldval with a CONST_INT
710 that is a valid sign-extension for the original mode. */
711 gcc_assert (INTVAL (newval)
712 == trunc_int_for_mode (INTVAL (newval), GET_MODE (oldval)));
713
714 /* Replacing the operand of a SUBREG or a ZERO_EXTEND with a
715 CONST_INT is not valid, because after the replacement, the
716 original mode would be gone. Unfortunately, we can't tell
717 when do_SUBST is called to replace the operand thereof, so we
718 perform this test on oldval instead, checking whether an
719 invalid replacement took place before we got here. */
720 gcc_assert (!(GET_CODE (oldval) == SUBREG
721 && CONST_INT_P (SUBREG_REG (oldval))));
722 gcc_assert (!(GET_CODE (oldval) == ZERO_EXTEND
723 && CONST_INT_P (XEXP (oldval, 0))));
724 }
725
726 if (undobuf.frees)
727 buf = undobuf.frees, undobuf.frees = buf->next;
728 else
729 buf = XNEW (struct undo);
730
731 buf->kind = UNDO_RTX;
732 buf->where.r = into;
733 buf->old_contents.r = oldval;
734 *into = newval;
735
736 buf->next = undobuf.undos, undobuf.undos = buf;
737 }
738
739 #define SUBST(INTO, NEWVAL) do_SUBST (&(INTO), (NEWVAL))
740
741 /* Similar to SUBST, but NEWVAL is an int expression. Note that substitution
742 for the value of a HOST_WIDE_INT value (including CONST_INT) is
743 not safe. */
744
745 static void
746 do_SUBST_INT (int *into, int newval)
747 {
748 struct undo *buf;
749 int oldval = *into;
750
751 if (oldval == newval)
752 return;
753
754 if (undobuf.frees)
755 buf = undobuf.frees, undobuf.frees = buf->next;
756 else
757 buf = XNEW (struct undo);
758
759 buf->kind = UNDO_INT;
760 buf->where.i = into;
761 buf->old_contents.i = oldval;
762 *into = newval;
763
764 buf->next = undobuf.undos, undobuf.undos = buf;
765 }
766
767 #define SUBST_INT(INTO, NEWVAL) do_SUBST_INT (&(INTO), (NEWVAL))
768
769 /* Similar to SUBST, but just substitute the mode. This is used when
770 changing the mode of a pseudo-register, so that any other
771 references to the entry in the regno_reg_rtx array will change as
772 well. */
773
774 static void
775 do_SUBST_MODE (rtx *into, enum machine_mode newval)
776 {
777 struct undo *buf;
778 enum machine_mode oldval = GET_MODE (*into);
779
780 if (oldval == newval)
781 return;
782
783 if (undobuf.frees)
784 buf = undobuf.frees, undobuf.frees = buf->next;
785 else
786 buf = XNEW (struct undo);
787
788 buf->kind = UNDO_MODE;
789 buf->where.r = into;
790 buf->old_contents.m = oldval;
791 adjust_reg_mode (*into, newval);
792
793 buf->next = undobuf.undos, undobuf.undos = buf;
794 }
795
796 #define SUBST_MODE(INTO, NEWVAL) do_SUBST_MODE (&(INTO), (NEWVAL))
797
798 #ifndef HAVE_cc0
799 /* Similar to SUBST, but NEWVAL is a LOG_LINKS expression. */
800
801 static void
802 do_SUBST_LINK (struct insn_link **into, struct insn_link *newval)
803 {
804 struct undo *buf;
805 struct insn_link * oldval = *into;
806
807 if (oldval == newval)
808 return;
809
810 if (undobuf.frees)
811 buf = undobuf.frees, undobuf.frees = buf->next;
812 else
813 buf = XNEW (struct undo);
814
815 buf->kind = UNDO_LINKS;
816 buf->where.l = into;
817 buf->old_contents.l = oldval;
818 *into = newval;
819
820 buf->next = undobuf.undos, undobuf.undos = buf;
821 }
822
823 #define SUBST_LINK(oldval, newval) do_SUBST_LINK (&oldval, newval)
824 #endif
825 \f
826 /* Subroutine of try_combine. Determine whether the replacement patterns
827 NEWPAT, NEWI2PAT and NEWOTHERPAT are cheaper according to insn_rtx_cost
828 than the original sequence I0, I1, I2, I3 and undobuf.other_insn. Note
829 that I0, I1 and/or NEWI2PAT may be NULL_RTX. Similarly, NEWOTHERPAT and
830 undobuf.other_insn may also both be NULL_RTX. Return false if the cost
831 of all the instructions can be estimated and the replacements are more
832 expensive than the original sequence. */
833
834 static bool
835 combine_validate_cost (rtx i0, rtx i1, rtx i2, rtx i3, rtx newpat,
836 rtx newi2pat, rtx newotherpat)
837 {
838 int i0_cost, i1_cost, i2_cost, i3_cost;
839 int new_i2_cost, new_i3_cost;
840 int old_cost, new_cost;
841
842 /* Lookup the original insn_rtx_costs. */
843 i2_cost = INSN_COST (i2);
844 i3_cost = INSN_COST (i3);
845
846 if (i1)
847 {
848 i1_cost = INSN_COST (i1);
849 if (i0)
850 {
851 i0_cost = INSN_COST (i0);
852 old_cost = (i0_cost > 0 && i1_cost > 0 && i2_cost > 0 && i3_cost > 0
853 ? i0_cost + i1_cost + i2_cost + i3_cost : 0);
854 }
855 else
856 {
857 old_cost = (i1_cost > 0 && i2_cost > 0 && i3_cost > 0
858 ? i1_cost + i2_cost + i3_cost : 0);
859 i0_cost = 0;
860 }
861 }
862 else
863 {
864 old_cost = (i2_cost > 0 && i3_cost > 0) ? i2_cost + i3_cost : 0;
865 i1_cost = i0_cost = 0;
866 }
867
868 /* Calculate the replacement insn_rtx_costs. */
869 new_i3_cost = insn_rtx_cost (newpat, optimize_this_for_speed_p);
870 if (newi2pat)
871 {
872 new_i2_cost = insn_rtx_cost (newi2pat, optimize_this_for_speed_p);
873 new_cost = (new_i2_cost > 0 && new_i3_cost > 0)
874 ? new_i2_cost + new_i3_cost : 0;
875 }
876 else
877 {
878 new_cost = new_i3_cost;
879 new_i2_cost = 0;
880 }
881
882 if (undobuf.other_insn)
883 {
884 int old_other_cost, new_other_cost;
885
886 old_other_cost = INSN_COST (undobuf.other_insn);
887 new_other_cost = insn_rtx_cost (newotherpat, optimize_this_for_speed_p);
888 if (old_other_cost > 0 && new_other_cost > 0)
889 {
890 old_cost += old_other_cost;
891 new_cost += new_other_cost;
892 }
893 else
894 old_cost = 0;
895 }
896
897 /* Disallow this combination if both new_cost and old_cost are greater than
898 zero, and new_cost is greater than old cost. */
899 if (old_cost > 0 && new_cost > old_cost)
900 {
901 if (dump_file)
902 {
903 if (i0)
904 {
905 fprintf (dump_file,
906 "rejecting combination of insns %d, %d, %d and %d\n",
907 INSN_UID (i0), INSN_UID (i1), INSN_UID (i2),
908 INSN_UID (i3));
909 fprintf (dump_file, "original costs %d + %d + %d + %d = %d\n",
910 i0_cost, i1_cost, i2_cost, i3_cost, old_cost);
911 }
912 else if (i1)
913 {
914 fprintf (dump_file,
915 "rejecting combination of insns %d, %d and %d\n",
916 INSN_UID (i1), INSN_UID (i2), INSN_UID (i3));
917 fprintf (dump_file, "original costs %d + %d + %d = %d\n",
918 i1_cost, i2_cost, i3_cost, old_cost);
919 }
920 else
921 {
922 fprintf (dump_file,
923 "rejecting combination of insns %d and %d\n",
924 INSN_UID (i2), INSN_UID (i3));
925 fprintf (dump_file, "original costs %d + %d = %d\n",
926 i2_cost, i3_cost, old_cost);
927 }
928
929 if (newi2pat)
930 {
931 fprintf (dump_file, "replacement costs %d + %d = %d\n",
932 new_i2_cost, new_i3_cost, new_cost);
933 }
934 else
935 fprintf (dump_file, "replacement cost %d\n", new_cost);
936 }
937
938 return false;
939 }
940
941 /* Update the uid_insn_cost array with the replacement costs. */
942 INSN_COST (i2) = new_i2_cost;
943 INSN_COST (i3) = new_i3_cost;
944 if (i1)
945 {
946 INSN_COST (i1) = 0;
947 if (i0)
948 INSN_COST (i0) = 0;
949 }
950
951 return true;
952 }
953
954
955 /* Delete any insns that copy a register to itself. */
956
957 static void
958 delete_noop_moves (void)
959 {
960 rtx insn, next;
961 basic_block bb;
962
963 FOR_EACH_BB (bb)
964 {
965 for (insn = BB_HEAD (bb); insn != NEXT_INSN (BB_END (bb)); insn = next)
966 {
967 next = NEXT_INSN (insn);
968 if (INSN_P (insn) && noop_move_p (insn))
969 {
970 if (dump_file)
971 fprintf (dump_file, "deleting noop move %d\n", INSN_UID (insn));
972
973 delete_insn_and_edges (insn);
974 }
975 }
976 }
977 }
978
979 \f
980 /* Fill in log links field for all insns. */
981
982 static void
983 create_log_links (void)
984 {
985 basic_block bb;
986 rtx *next_use, insn;
987 df_ref *def_vec, *use_vec;
988
989 next_use = XCNEWVEC (rtx, max_reg_num ());
990
991 /* Pass through each block from the end, recording the uses of each
992 register and establishing log links when def is encountered.
993 Note that we do not clear next_use array in order to save time,
994 so we have to test whether the use is in the same basic block as def.
995
996 There are a few cases below when we do not consider the definition or
997 usage -- these are taken from original flow.c did. Don't ask me why it is
998 done this way; I don't know and if it works, I don't want to know. */
999
1000 FOR_EACH_BB (bb)
1001 {
1002 FOR_BB_INSNS_REVERSE (bb, insn)
1003 {
1004 if (!NONDEBUG_INSN_P (insn))
1005 continue;
1006
1007 /* Log links are created only once. */
1008 gcc_assert (!LOG_LINKS (insn));
1009
1010 for (def_vec = DF_INSN_DEFS (insn); *def_vec; def_vec++)
1011 {
1012 df_ref def = *def_vec;
1013 int regno = DF_REF_REGNO (def);
1014 rtx use_insn;
1015
1016 if (!next_use[regno])
1017 continue;
1018
1019 /* Do not consider if it is pre/post modification in MEM. */
1020 if (DF_REF_FLAGS (def) & DF_REF_PRE_POST_MODIFY)
1021 continue;
1022
1023 /* Do not make the log link for frame pointer. */
1024 if ((regno == FRAME_POINTER_REGNUM
1025 && (! reload_completed || frame_pointer_needed))
1026 #if !HARD_FRAME_POINTER_IS_FRAME_POINTER
1027 || (regno == HARD_FRAME_POINTER_REGNUM
1028 && (! reload_completed || frame_pointer_needed))
1029 #endif
1030 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
1031 || (regno == ARG_POINTER_REGNUM && fixed_regs[regno])
1032 #endif
1033 )
1034 continue;
1035
1036 use_insn = next_use[regno];
1037 if (BLOCK_FOR_INSN (use_insn) == bb)
1038 {
1039 /* flow.c claimed:
1040
1041 We don't build a LOG_LINK for hard registers contained
1042 in ASM_OPERANDs. If these registers get replaced,
1043 we might wind up changing the semantics of the insn,
1044 even if reload can make what appear to be valid
1045 assignments later. */
1046 if (regno >= FIRST_PSEUDO_REGISTER
1047 || asm_noperands (PATTERN (use_insn)) < 0)
1048 {
1049 /* Don't add duplicate links between instructions. */
1050 struct insn_link *links;
1051 FOR_EACH_LOG_LINK (links, use_insn)
1052 if (insn == links->insn)
1053 break;
1054
1055 if (!links)
1056 LOG_LINKS (use_insn)
1057 = alloc_insn_link (insn, LOG_LINKS (use_insn));
1058 }
1059 }
1060 next_use[regno] = NULL_RTX;
1061 }
1062
1063 for (use_vec = DF_INSN_USES (insn); *use_vec; use_vec++)
1064 {
1065 df_ref use = *use_vec;
1066 int regno = DF_REF_REGNO (use);
1067
1068 /* Do not consider the usage of the stack pointer
1069 by function call. */
1070 if (DF_REF_FLAGS (use) & DF_REF_CALL_STACK_USAGE)
1071 continue;
1072
1073 next_use[regno] = insn;
1074 }
1075 }
1076 }
1077
1078 free (next_use);
1079 }
1080
1081 /* Walk the LOG_LINKS of insn B to see if we find a reference to A. Return
1082 true if we found a LOG_LINK that proves that A feeds B. This only works
1083 if there are no instructions between A and B which could have a link
1084 depending on A, since in that case we would not record a link for B.
1085 We also check the implicit dependency created by a cc0 setter/user
1086 pair. */
1087
1088 static bool
1089 insn_a_feeds_b (rtx a, rtx b)
1090 {
1091 struct insn_link *links;
1092 FOR_EACH_LOG_LINK (links, b)
1093 if (links->insn == a)
1094 return true;
1095 #ifdef HAVE_cc0
1096 if (sets_cc0_p (a))
1097 return true;
1098 #endif
1099 return false;
1100 }
1101 \f
1102 /* Main entry point for combiner. F is the first insn of the function.
1103 NREGS is the first unused pseudo-reg number.
1104
1105 Return nonzero if the combiner has turned an indirect jump
1106 instruction into a direct jump. */
1107 static int
1108 combine_instructions (rtx f, unsigned int nregs)
1109 {
1110 rtx insn, next;
1111 #ifdef HAVE_cc0
1112 rtx prev;
1113 #endif
1114 struct insn_link *links, *nextlinks;
1115 rtx first;
1116 basic_block last_bb;
1117
1118 int new_direct_jump_p = 0;
1119
1120 for (first = f; first && !INSN_P (first); )
1121 first = NEXT_INSN (first);
1122 if (!first)
1123 return 0;
1124
1125 combine_attempts = 0;
1126 combine_merges = 0;
1127 combine_extras = 0;
1128 combine_successes = 0;
1129
1130 rtl_hooks = combine_rtl_hooks;
1131
1132 reg_stat.safe_grow_cleared (nregs);
1133
1134 init_recog_no_volatile ();
1135
1136 /* Allocate array for insn info. */
1137 max_uid_known = get_max_uid ();
1138 uid_log_links = XCNEWVEC (struct insn_link *, max_uid_known + 1);
1139 uid_insn_cost = XCNEWVEC (int, max_uid_known + 1);
1140 gcc_obstack_init (&insn_link_obstack);
1141
1142 nonzero_bits_mode = mode_for_size (HOST_BITS_PER_WIDE_INT, MODE_INT, 0);
1143
1144 /* Don't use reg_stat[].nonzero_bits when computing it. This can cause
1145 problems when, for example, we have j <<= 1 in a loop. */
1146
1147 nonzero_sign_valid = 0;
1148 label_tick = label_tick_ebb_start = 1;
1149
1150 /* Scan all SETs and see if we can deduce anything about what
1151 bits are known to be zero for some registers and how many copies
1152 of the sign bit are known to exist for those registers.
1153
1154 Also set any known values so that we can use it while searching
1155 for what bits are known to be set. */
1156
1157 setup_incoming_promotions (first);
1158 /* Allow the entry block and the first block to fall into the same EBB.
1159 Conceptually the incoming promotions are assigned to the entry block. */
1160 last_bb = ENTRY_BLOCK_PTR_FOR_FN (cfun);
1161
1162 create_log_links ();
1163 FOR_EACH_BB (this_basic_block)
1164 {
1165 optimize_this_for_speed_p = optimize_bb_for_speed_p (this_basic_block);
1166 last_call_luid = 0;
1167 mem_last_set = -1;
1168
1169 label_tick++;
1170 if (!single_pred_p (this_basic_block)
1171 || single_pred (this_basic_block) != last_bb)
1172 label_tick_ebb_start = label_tick;
1173 last_bb = this_basic_block;
1174
1175 FOR_BB_INSNS (this_basic_block, insn)
1176 if (INSN_P (insn) && BLOCK_FOR_INSN (insn))
1177 {
1178 #ifdef AUTO_INC_DEC
1179 rtx links;
1180 #endif
1181
1182 subst_low_luid = DF_INSN_LUID (insn);
1183 subst_insn = insn;
1184
1185 note_stores (PATTERN (insn), set_nonzero_bits_and_sign_copies,
1186 insn);
1187 record_dead_and_set_regs (insn);
1188
1189 #ifdef AUTO_INC_DEC
1190 for (links = REG_NOTES (insn); links; links = XEXP (links, 1))
1191 if (REG_NOTE_KIND (links) == REG_INC)
1192 set_nonzero_bits_and_sign_copies (XEXP (links, 0), NULL_RTX,
1193 insn);
1194 #endif
1195
1196 /* Record the current insn_rtx_cost of this instruction. */
1197 if (NONJUMP_INSN_P (insn))
1198 INSN_COST (insn) = insn_rtx_cost (PATTERN (insn),
1199 optimize_this_for_speed_p);
1200 if (dump_file)
1201 fprintf (dump_file, "insn_cost %d: %d\n",
1202 INSN_UID (insn), INSN_COST (insn));
1203 }
1204 }
1205
1206 nonzero_sign_valid = 1;
1207
1208 /* Now scan all the insns in forward order. */
1209 label_tick = label_tick_ebb_start = 1;
1210 init_reg_last ();
1211 setup_incoming_promotions (first);
1212 last_bb = ENTRY_BLOCK_PTR_FOR_FN (cfun);
1213
1214 FOR_EACH_BB (this_basic_block)
1215 {
1216 rtx last_combined_insn = NULL_RTX;
1217 optimize_this_for_speed_p = optimize_bb_for_speed_p (this_basic_block);
1218 last_call_luid = 0;
1219 mem_last_set = -1;
1220
1221 label_tick++;
1222 if (!single_pred_p (this_basic_block)
1223 || single_pred (this_basic_block) != last_bb)
1224 label_tick_ebb_start = label_tick;
1225 last_bb = this_basic_block;
1226
1227 rtl_profile_for_bb (this_basic_block);
1228 for (insn = BB_HEAD (this_basic_block);
1229 insn != NEXT_INSN (BB_END (this_basic_block));
1230 insn = next ? next : NEXT_INSN (insn))
1231 {
1232 next = 0;
1233 if (NONDEBUG_INSN_P (insn))
1234 {
1235 while (last_combined_insn
1236 && INSN_DELETED_P (last_combined_insn))
1237 last_combined_insn = PREV_INSN (last_combined_insn);
1238 if (last_combined_insn == NULL_RTX
1239 || BARRIER_P (last_combined_insn)
1240 || BLOCK_FOR_INSN (last_combined_insn) != this_basic_block
1241 || DF_INSN_LUID (last_combined_insn) <= DF_INSN_LUID (insn))
1242 last_combined_insn = insn;
1243
1244 /* See if we know about function return values before this
1245 insn based upon SUBREG flags. */
1246 check_promoted_subreg (insn, PATTERN (insn));
1247
1248 /* See if we can find hardregs and subreg of pseudos in
1249 narrower modes. This could help turning TRUNCATEs
1250 into SUBREGs. */
1251 note_uses (&PATTERN (insn), record_truncated_values, NULL);
1252
1253 /* Try this insn with each insn it links back to. */
1254
1255 FOR_EACH_LOG_LINK (links, insn)
1256 if ((next = try_combine (insn, links->insn, NULL_RTX,
1257 NULL_RTX, &new_direct_jump_p,
1258 last_combined_insn)) != 0)
1259 goto retry;
1260
1261 /* Try each sequence of three linked insns ending with this one. */
1262
1263 FOR_EACH_LOG_LINK (links, insn)
1264 {
1265 rtx link = links->insn;
1266
1267 /* If the linked insn has been replaced by a note, then there
1268 is no point in pursuing this chain any further. */
1269 if (NOTE_P (link))
1270 continue;
1271
1272 FOR_EACH_LOG_LINK (nextlinks, link)
1273 if ((next = try_combine (insn, link, nextlinks->insn,
1274 NULL_RTX, &new_direct_jump_p,
1275 last_combined_insn)) != 0)
1276 goto retry;
1277 }
1278
1279 #ifdef HAVE_cc0
1280 /* Try to combine a jump insn that uses CC0
1281 with a preceding insn that sets CC0, and maybe with its
1282 logical predecessor as well.
1283 This is how we make decrement-and-branch insns.
1284 We need this special code because data flow connections
1285 via CC0 do not get entered in LOG_LINKS. */
1286
1287 if (JUMP_P (insn)
1288 && (prev = prev_nonnote_insn (insn)) != 0
1289 && NONJUMP_INSN_P (prev)
1290 && sets_cc0_p (PATTERN (prev)))
1291 {
1292 if ((next = try_combine (insn, prev, NULL_RTX, NULL_RTX,
1293 &new_direct_jump_p,
1294 last_combined_insn)) != 0)
1295 goto retry;
1296
1297 FOR_EACH_LOG_LINK (nextlinks, prev)
1298 if ((next = try_combine (insn, prev, nextlinks->insn,
1299 NULL_RTX, &new_direct_jump_p,
1300 last_combined_insn)) != 0)
1301 goto retry;
1302 }
1303
1304 /* Do the same for an insn that explicitly references CC0. */
1305 if (NONJUMP_INSN_P (insn)
1306 && (prev = prev_nonnote_insn (insn)) != 0
1307 && NONJUMP_INSN_P (prev)
1308 && sets_cc0_p (PATTERN (prev))
1309 && GET_CODE (PATTERN (insn)) == SET
1310 && reg_mentioned_p (cc0_rtx, SET_SRC (PATTERN (insn))))
1311 {
1312 if ((next = try_combine (insn, prev, NULL_RTX, NULL_RTX,
1313 &new_direct_jump_p,
1314 last_combined_insn)) != 0)
1315 goto retry;
1316
1317 FOR_EACH_LOG_LINK (nextlinks, prev)
1318 if ((next = try_combine (insn, prev, nextlinks->insn,
1319 NULL_RTX, &new_direct_jump_p,
1320 last_combined_insn)) != 0)
1321 goto retry;
1322 }
1323
1324 /* Finally, see if any of the insns that this insn links to
1325 explicitly references CC0. If so, try this insn, that insn,
1326 and its predecessor if it sets CC0. */
1327 FOR_EACH_LOG_LINK (links, insn)
1328 if (NONJUMP_INSN_P (links->insn)
1329 && GET_CODE (PATTERN (links->insn)) == SET
1330 && reg_mentioned_p (cc0_rtx, SET_SRC (PATTERN (links->insn)))
1331 && (prev = prev_nonnote_insn (links->insn)) != 0
1332 && NONJUMP_INSN_P (prev)
1333 && sets_cc0_p (PATTERN (prev))
1334 && (next = try_combine (insn, links->insn,
1335 prev, NULL_RTX, &new_direct_jump_p,
1336 last_combined_insn)) != 0)
1337 goto retry;
1338 #endif
1339
1340 /* Try combining an insn with two different insns whose results it
1341 uses. */
1342 FOR_EACH_LOG_LINK (links, insn)
1343 for (nextlinks = links->next; nextlinks;
1344 nextlinks = nextlinks->next)
1345 if ((next = try_combine (insn, links->insn,
1346 nextlinks->insn, NULL_RTX,
1347 &new_direct_jump_p,
1348 last_combined_insn)) != 0)
1349 goto retry;
1350
1351 /* Try four-instruction combinations. */
1352 FOR_EACH_LOG_LINK (links, insn)
1353 {
1354 struct insn_link *next1;
1355 rtx link = links->insn;
1356
1357 /* If the linked insn has been replaced by a note, then there
1358 is no point in pursuing this chain any further. */
1359 if (NOTE_P (link))
1360 continue;
1361
1362 FOR_EACH_LOG_LINK (next1, link)
1363 {
1364 rtx link1 = next1->insn;
1365 if (NOTE_P (link1))
1366 continue;
1367 /* I0 -> I1 -> I2 -> I3. */
1368 FOR_EACH_LOG_LINK (nextlinks, link1)
1369 if ((next = try_combine (insn, link, link1,
1370 nextlinks->insn,
1371 &new_direct_jump_p,
1372 last_combined_insn)) != 0)
1373 goto retry;
1374 /* I0, I1 -> I2, I2 -> I3. */
1375 for (nextlinks = next1->next; nextlinks;
1376 nextlinks = nextlinks->next)
1377 if ((next = try_combine (insn, link, link1,
1378 nextlinks->insn,
1379 &new_direct_jump_p,
1380 last_combined_insn)) != 0)
1381 goto retry;
1382 }
1383
1384 for (next1 = links->next; next1; next1 = next1->next)
1385 {
1386 rtx link1 = next1->insn;
1387 if (NOTE_P (link1))
1388 continue;
1389 /* I0 -> I2; I1, I2 -> I3. */
1390 FOR_EACH_LOG_LINK (nextlinks, link)
1391 if ((next = try_combine (insn, link, link1,
1392 nextlinks->insn,
1393 &new_direct_jump_p,
1394 last_combined_insn)) != 0)
1395 goto retry;
1396 /* I0 -> I1; I1, I2 -> I3. */
1397 FOR_EACH_LOG_LINK (nextlinks, link1)
1398 if ((next = try_combine (insn, link, link1,
1399 nextlinks->insn,
1400 &new_direct_jump_p,
1401 last_combined_insn)) != 0)
1402 goto retry;
1403 }
1404 }
1405
1406 /* Try this insn with each REG_EQUAL note it links back to. */
1407 FOR_EACH_LOG_LINK (links, insn)
1408 {
1409 rtx set, note;
1410 rtx temp = links->insn;
1411 if ((set = single_set (temp)) != 0
1412 && (note = find_reg_equal_equiv_note (temp)) != 0
1413 && (note = XEXP (note, 0), GET_CODE (note)) != EXPR_LIST
1414 /* Avoid using a register that may already been marked
1415 dead by an earlier instruction. */
1416 && ! unmentioned_reg_p (note, SET_SRC (set))
1417 && (GET_MODE (note) == VOIDmode
1418 ? SCALAR_INT_MODE_P (GET_MODE (SET_DEST (set)))
1419 : GET_MODE (SET_DEST (set)) == GET_MODE (note)))
1420 {
1421 /* Temporarily replace the set's source with the
1422 contents of the REG_EQUAL note. The insn will
1423 be deleted or recognized by try_combine. */
1424 rtx orig = SET_SRC (set);
1425 SET_SRC (set) = note;
1426 i2mod = temp;
1427 i2mod_old_rhs = copy_rtx (orig);
1428 i2mod_new_rhs = copy_rtx (note);
1429 next = try_combine (insn, i2mod, NULL_RTX, NULL_RTX,
1430 &new_direct_jump_p,
1431 last_combined_insn);
1432 i2mod = NULL_RTX;
1433 if (next)
1434 goto retry;
1435 SET_SRC (set) = orig;
1436 }
1437 }
1438
1439 if (!NOTE_P (insn))
1440 record_dead_and_set_regs (insn);
1441
1442 retry:
1443 ;
1444 }
1445 }
1446 }
1447
1448 default_rtl_profile ();
1449 clear_bb_flags ();
1450 new_direct_jump_p |= purge_all_dead_edges ();
1451 delete_noop_moves ();
1452
1453 /* Clean up. */
1454 obstack_free (&insn_link_obstack, NULL);
1455 free (uid_log_links);
1456 free (uid_insn_cost);
1457 reg_stat.release ();
1458
1459 {
1460 struct undo *undo, *next;
1461 for (undo = undobuf.frees; undo; undo = next)
1462 {
1463 next = undo->next;
1464 free (undo);
1465 }
1466 undobuf.frees = 0;
1467 }
1468
1469 total_attempts += combine_attempts;
1470 total_merges += combine_merges;
1471 total_extras += combine_extras;
1472 total_successes += combine_successes;
1473
1474 nonzero_sign_valid = 0;
1475 rtl_hooks = general_rtl_hooks;
1476
1477 /* Make recognizer allow volatile MEMs again. */
1478 init_recog ();
1479
1480 return new_direct_jump_p;
1481 }
1482
1483 /* Wipe the last_xxx fields of reg_stat in preparation for another pass. */
1484
1485 static void
1486 init_reg_last (void)
1487 {
1488 unsigned int i;
1489 reg_stat_type *p;
1490
1491 FOR_EACH_VEC_ELT (reg_stat, i, p)
1492 memset (p, 0, offsetof (reg_stat_type, sign_bit_copies));
1493 }
1494 \f
1495 /* Set up any promoted values for incoming argument registers. */
1496
1497 static void
1498 setup_incoming_promotions (rtx first)
1499 {
1500 tree arg;
1501 bool strictly_local = false;
1502
1503 for (arg = DECL_ARGUMENTS (current_function_decl); arg;
1504 arg = DECL_CHAIN (arg))
1505 {
1506 rtx x, reg = DECL_INCOMING_RTL (arg);
1507 int uns1, uns3;
1508 enum machine_mode mode1, mode2, mode3, mode4;
1509
1510 /* Only continue if the incoming argument is in a register. */
1511 if (!REG_P (reg))
1512 continue;
1513
1514 /* Determine, if possible, whether all call sites of the current
1515 function lie within the current compilation unit. (This does
1516 take into account the exporting of a function via taking its
1517 address, and so forth.) */
1518 strictly_local = cgraph_local_info (current_function_decl)->local;
1519
1520 /* The mode and signedness of the argument before any promotions happen
1521 (equal to the mode of the pseudo holding it at that stage). */
1522 mode1 = TYPE_MODE (TREE_TYPE (arg));
1523 uns1 = TYPE_UNSIGNED (TREE_TYPE (arg));
1524
1525 /* The mode and signedness of the argument after any source language and
1526 TARGET_PROMOTE_PROTOTYPES-driven promotions. */
1527 mode2 = TYPE_MODE (DECL_ARG_TYPE (arg));
1528 uns3 = TYPE_UNSIGNED (DECL_ARG_TYPE (arg));
1529
1530 /* The mode and signedness of the argument as it is actually passed,
1531 after any TARGET_PROMOTE_FUNCTION_ARGS-driven ABI promotions. */
1532 mode3 = promote_function_mode (DECL_ARG_TYPE (arg), mode2, &uns3,
1533 TREE_TYPE (cfun->decl), 0);
1534
1535 /* The mode of the register in which the argument is being passed. */
1536 mode4 = GET_MODE (reg);
1537
1538 /* Eliminate sign extensions in the callee when:
1539 (a) A mode promotion has occurred; */
1540 if (mode1 == mode3)
1541 continue;
1542 /* (b) The mode of the register is the same as the mode of
1543 the argument as it is passed; */
1544 if (mode3 != mode4)
1545 continue;
1546 /* (c) There's no language level extension; */
1547 if (mode1 == mode2)
1548 ;
1549 /* (c.1) All callers are from the current compilation unit. If that's
1550 the case we don't have to rely on an ABI, we only have to know
1551 what we're generating right now, and we know that we will do the
1552 mode1 to mode2 promotion with the given sign. */
1553 else if (!strictly_local)
1554 continue;
1555 /* (c.2) The combination of the two promotions is useful. This is
1556 true when the signs match, or if the first promotion is unsigned.
1557 In the later case, (sign_extend (zero_extend x)) is the same as
1558 (zero_extend (zero_extend x)), so make sure to force UNS3 true. */
1559 else if (uns1)
1560 uns3 = true;
1561 else if (uns3)
1562 continue;
1563
1564 /* Record that the value was promoted from mode1 to mode3,
1565 so that any sign extension at the head of the current
1566 function may be eliminated. */
1567 x = gen_rtx_CLOBBER (mode1, const0_rtx);
1568 x = gen_rtx_fmt_e ((uns3 ? ZERO_EXTEND : SIGN_EXTEND), mode3, x);
1569 record_value_for_reg (reg, first, x);
1570 }
1571 }
1572
1573 /* Called via note_stores. If X is a pseudo that is narrower than
1574 HOST_BITS_PER_WIDE_INT and is being set, record what bits are known zero.
1575
1576 If we are setting only a portion of X and we can't figure out what
1577 portion, assume all bits will be used since we don't know what will
1578 be happening.
1579
1580 Similarly, set how many bits of X are known to be copies of the sign bit
1581 at all locations in the function. This is the smallest number implied
1582 by any set of X. */
1583
1584 static void
1585 set_nonzero_bits_and_sign_copies (rtx x, const_rtx set, void *data)
1586 {
1587 rtx insn = (rtx) data;
1588 unsigned int num;
1589
1590 if (REG_P (x)
1591 && REGNO (x) >= FIRST_PSEUDO_REGISTER
1592 /* If this register is undefined at the start of the file, we can't
1593 say what its contents were. */
1594 && ! REGNO_REG_SET_P
1595 (DF_LR_IN (ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb), REGNO (x))
1596 && HWI_COMPUTABLE_MODE_P (GET_MODE (x)))
1597 {
1598 reg_stat_type *rsp = &reg_stat[REGNO (x)];
1599
1600 if (set == 0 || GET_CODE (set) == CLOBBER)
1601 {
1602 rsp->nonzero_bits = GET_MODE_MASK (GET_MODE (x));
1603 rsp->sign_bit_copies = 1;
1604 return;
1605 }
1606
1607 /* If this register is being initialized using itself, and the
1608 register is uninitialized in this basic block, and there are
1609 no LOG_LINKS which set the register, then part of the
1610 register is uninitialized. In that case we can't assume
1611 anything about the number of nonzero bits.
1612
1613 ??? We could do better if we checked this in
1614 reg_{nonzero_bits,num_sign_bit_copies}_for_combine. Then we
1615 could avoid making assumptions about the insn which initially
1616 sets the register, while still using the information in other
1617 insns. We would have to be careful to check every insn
1618 involved in the combination. */
1619
1620 if (insn
1621 && reg_referenced_p (x, PATTERN (insn))
1622 && !REGNO_REG_SET_P (DF_LR_IN (BLOCK_FOR_INSN (insn)),
1623 REGNO (x)))
1624 {
1625 struct insn_link *link;
1626
1627 FOR_EACH_LOG_LINK (link, insn)
1628 if (dead_or_set_p (link->insn, x))
1629 break;
1630 if (!link)
1631 {
1632 rsp->nonzero_bits = GET_MODE_MASK (GET_MODE (x));
1633 rsp->sign_bit_copies = 1;
1634 return;
1635 }
1636 }
1637
1638 /* If this is a complex assignment, see if we can convert it into a
1639 simple assignment. */
1640 set = expand_field_assignment (set);
1641
1642 /* If this is a simple assignment, or we have a paradoxical SUBREG,
1643 set what we know about X. */
1644
1645 if (SET_DEST (set) == x
1646 || (paradoxical_subreg_p (SET_DEST (set))
1647 && SUBREG_REG (SET_DEST (set)) == x))
1648 {
1649 rtx src = SET_SRC (set);
1650
1651 #ifdef SHORT_IMMEDIATES_SIGN_EXTEND
1652 /* If X is narrower than a word and SRC is a non-negative
1653 constant that would appear negative in the mode of X,
1654 sign-extend it for use in reg_stat[].nonzero_bits because some
1655 machines (maybe most) will actually do the sign-extension
1656 and this is the conservative approach.
1657
1658 ??? For 2.5, try to tighten up the MD files in this regard
1659 instead of this kludge. */
1660
1661 if (GET_MODE_PRECISION (GET_MODE (x)) < BITS_PER_WORD
1662 && CONST_INT_P (src)
1663 && INTVAL (src) > 0
1664 && val_signbit_known_set_p (GET_MODE (x), INTVAL (src)))
1665 src = GEN_INT (INTVAL (src) | ~GET_MODE_MASK (GET_MODE (x)));
1666 #endif
1667
1668 /* Don't call nonzero_bits if it cannot change anything. */
1669 if (rsp->nonzero_bits != ~(unsigned HOST_WIDE_INT) 0)
1670 rsp->nonzero_bits |= nonzero_bits (src, nonzero_bits_mode);
1671 num = num_sign_bit_copies (SET_SRC (set), GET_MODE (x));
1672 if (rsp->sign_bit_copies == 0
1673 || rsp->sign_bit_copies > num)
1674 rsp->sign_bit_copies = num;
1675 }
1676 else
1677 {
1678 rsp->nonzero_bits = GET_MODE_MASK (GET_MODE (x));
1679 rsp->sign_bit_copies = 1;
1680 }
1681 }
1682 }
1683 \f
1684 /* See if INSN can be combined into I3. PRED, PRED2, SUCC and SUCC2 are
1685 optionally insns that were previously combined into I3 or that will be
1686 combined into the merger of INSN and I3. The order is PRED, PRED2,
1687 INSN, SUCC, SUCC2, I3.
1688
1689 Return 0 if the combination is not allowed for any reason.
1690
1691 If the combination is allowed, *PDEST will be set to the single
1692 destination of INSN and *PSRC to the single source, and this function
1693 will return 1. */
1694
1695 static int
1696 can_combine_p (rtx insn, rtx i3, rtx pred ATTRIBUTE_UNUSED,
1697 rtx pred2 ATTRIBUTE_UNUSED, rtx succ, rtx succ2,
1698 rtx *pdest, rtx *psrc)
1699 {
1700 int i;
1701 const_rtx set = 0;
1702 rtx src, dest;
1703 rtx p;
1704 #ifdef AUTO_INC_DEC
1705 rtx link;
1706 #endif
1707 bool all_adjacent = true;
1708 int (*is_volatile_p) (const_rtx);
1709
1710 if (succ)
1711 {
1712 if (succ2)
1713 {
1714 if (next_active_insn (succ2) != i3)
1715 all_adjacent = false;
1716 if (next_active_insn (succ) != succ2)
1717 all_adjacent = false;
1718 }
1719 else if (next_active_insn (succ) != i3)
1720 all_adjacent = false;
1721 if (next_active_insn (insn) != succ)
1722 all_adjacent = false;
1723 }
1724 else if (next_active_insn (insn) != i3)
1725 all_adjacent = false;
1726
1727 /* Can combine only if previous insn is a SET of a REG, a SUBREG or CC0.
1728 or a PARALLEL consisting of such a SET and CLOBBERs.
1729
1730 If INSN has CLOBBER parallel parts, ignore them for our processing.
1731 By definition, these happen during the execution of the insn. When it
1732 is merged with another insn, all bets are off. If they are, in fact,
1733 needed and aren't also supplied in I3, they may be added by
1734 recog_for_combine. Otherwise, it won't match.
1735
1736 We can also ignore a SET whose SET_DEST is mentioned in a REG_UNUSED
1737 note.
1738
1739 Get the source and destination of INSN. If more than one, can't
1740 combine. */
1741
1742 if (GET_CODE (PATTERN (insn)) == SET)
1743 set = PATTERN (insn);
1744 else if (GET_CODE (PATTERN (insn)) == PARALLEL
1745 && GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == SET)
1746 {
1747 for (i = 0; i < XVECLEN (PATTERN (insn), 0); i++)
1748 {
1749 rtx elt = XVECEXP (PATTERN (insn), 0, i);
1750
1751 switch (GET_CODE (elt))
1752 {
1753 /* This is important to combine floating point insns
1754 for the SH4 port. */
1755 case USE:
1756 /* Combining an isolated USE doesn't make sense.
1757 We depend here on combinable_i3pat to reject them. */
1758 /* The code below this loop only verifies that the inputs of
1759 the SET in INSN do not change. We call reg_set_between_p
1760 to verify that the REG in the USE does not change between
1761 I3 and INSN.
1762 If the USE in INSN was for a pseudo register, the matching
1763 insn pattern will likely match any register; combining this
1764 with any other USE would only be safe if we knew that the
1765 used registers have identical values, or if there was
1766 something to tell them apart, e.g. different modes. For
1767 now, we forgo such complicated tests and simply disallow
1768 combining of USES of pseudo registers with any other USE. */
1769 if (REG_P (XEXP (elt, 0))
1770 && GET_CODE (PATTERN (i3)) == PARALLEL)
1771 {
1772 rtx i3pat = PATTERN (i3);
1773 int i = XVECLEN (i3pat, 0) - 1;
1774 unsigned int regno = REGNO (XEXP (elt, 0));
1775
1776 do
1777 {
1778 rtx i3elt = XVECEXP (i3pat, 0, i);
1779
1780 if (GET_CODE (i3elt) == USE
1781 && REG_P (XEXP (i3elt, 0))
1782 && (REGNO (XEXP (i3elt, 0)) == regno
1783 ? reg_set_between_p (XEXP (elt, 0),
1784 PREV_INSN (insn), i3)
1785 : regno >= FIRST_PSEUDO_REGISTER))
1786 return 0;
1787 }
1788 while (--i >= 0);
1789 }
1790 break;
1791
1792 /* We can ignore CLOBBERs. */
1793 case CLOBBER:
1794 break;
1795
1796 case SET:
1797 /* Ignore SETs whose result isn't used but not those that
1798 have side-effects. */
1799 if (find_reg_note (insn, REG_UNUSED, SET_DEST (elt))
1800 && insn_nothrow_p (insn)
1801 && !side_effects_p (elt))
1802 break;
1803
1804 /* If we have already found a SET, this is a second one and
1805 so we cannot combine with this insn. */
1806 if (set)
1807 return 0;
1808
1809 set = elt;
1810 break;
1811
1812 default:
1813 /* Anything else means we can't combine. */
1814 return 0;
1815 }
1816 }
1817
1818 if (set == 0
1819 /* If SET_SRC is an ASM_OPERANDS we can't throw away these CLOBBERs,
1820 so don't do anything with it. */
1821 || GET_CODE (SET_SRC (set)) == ASM_OPERANDS)
1822 return 0;
1823 }
1824 else
1825 return 0;
1826
1827 if (set == 0)
1828 return 0;
1829
1830 /* The simplification in expand_field_assignment may call back to
1831 get_last_value, so set safe guard here. */
1832 subst_low_luid = DF_INSN_LUID (insn);
1833
1834 set = expand_field_assignment (set);
1835 src = SET_SRC (set), dest = SET_DEST (set);
1836
1837 /* Don't eliminate a store in the stack pointer. */
1838 if (dest == stack_pointer_rtx
1839 /* Don't combine with an insn that sets a register to itself if it has
1840 a REG_EQUAL note. This may be part of a LIBCALL sequence. */
1841 || (rtx_equal_p (src, dest) && find_reg_note (insn, REG_EQUAL, NULL_RTX))
1842 /* Can't merge an ASM_OPERANDS. */
1843 || GET_CODE (src) == ASM_OPERANDS
1844 /* Can't merge a function call. */
1845 || GET_CODE (src) == CALL
1846 /* Don't eliminate a function call argument. */
1847 || (CALL_P (i3)
1848 && (find_reg_fusage (i3, USE, dest)
1849 || (REG_P (dest)
1850 && REGNO (dest) < FIRST_PSEUDO_REGISTER
1851 && global_regs[REGNO (dest)])))
1852 /* Don't substitute into an incremented register. */
1853 || FIND_REG_INC_NOTE (i3, dest)
1854 || (succ && FIND_REG_INC_NOTE (succ, dest))
1855 || (succ2 && FIND_REG_INC_NOTE (succ2, dest))
1856 /* Don't substitute into a non-local goto, this confuses CFG. */
1857 || (JUMP_P (i3) && find_reg_note (i3, REG_NON_LOCAL_GOTO, NULL_RTX))
1858 /* Make sure that DEST is not used after SUCC but before I3. */
1859 || (!all_adjacent
1860 && ((succ2
1861 && (reg_used_between_p (dest, succ2, i3)
1862 || reg_used_between_p (dest, succ, succ2)))
1863 || (!succ2 && succ && reg_used_between_p (dest, succ, i3))))
1864 /* Make sure that the value that is to be substituted for the register
1865 does not use any registers whose values alter in between. However,
1866 If the insns are adjacent, a use can't cross a set even though we
1867 think it might (this can happen for a sequence of insns each setting
1868 the same destination; last_set of that register might point to
1869 a NOTE). If INSN has a REG_EQUIV note, the register is always
1870 equivalent to the memory so the substitution is valid even if there
1871 are intervening stores. Also, don't move a volatile asm or
1872 UNSPEC_VOLATILE across any other insns. */
1873 || (! all_adjacent
1874 && (((!MEM_P (src)
1875 || ! find_reg_note (insn, REG_EQUIV, src))
1876 && use_crosses_set_p (src, DF_INSN_LUID (insn)))
1877 || (GET_CODE (src) == ASM_OPERANDS && MEM_VOLATILE_P (src))
1878 || GET_CODE (src) == UNSPEC_VOLATILE))
1879 /* Don't combine across a CALL_INSN, because that would possibly
1880 change whether the life span of some REGs crosses calls or not,
1881 and it is a pain to update that information.
1882 Exception: if source is a constant, moving it later can't hurt.
1883 Accept that as a special case. */
1884 || (DF_INSN_LUID (insn) < last_call_luid && ! CONSTANT_P (src)))
1885 return 0;
1886
1887 /* DEST must either be a REG or CC0. */
1888 if (REG_P (dest))
1889 {
1890 /* If register alignment is being enforced for multi-word items in all
1891 cases except for parameters, it is possible to have a register copy
1892 insn referencing a hard register that is not allowed to contain the
1893 mode being copied and which would not be valid as an operand of most
1894 insns. Eliminate this problem by not combining with such an insn.
1895
1896 Also, on some machines we don't want to extend the life of a hard
1897 register. */
1898
1899 if (REG_P (src)
1900 && ((REGNO (dest) < FIRST_PSEUDO_REGISTER
1901 && ! HARD_REGNO_MODE_OK (REGNO (dest), GET_MODE (dest)))
1902 /* Don't extend the life of a hard register unless it is
1903 user variable (if we have few registers) or it can't
1904 fit into the desired register (meaning something special
1905 is going on).
1906 Also avoid substituting a return register into I3, because
1907 reload can't handle a conflict with constraints of other
1908 inputs. */
1909 || (REGNO (src) < FIRST_PSEUDO_REGISTER
1910 && ! HARD_REGNO_MODE_OK (REGNO (src), GET_MODE (src)))))
1911 return 0;
1912 }
1913 else if (GET_CODE (dest) != CC0)
1914 return 0;
1915
1916
1917 if (GET_CODE (PATTERN (i3)) == PARALLEL)
1918 for (i = XVECLEN (PATTERN (i3), 0) - 1; i >= 0; i--)
1919 if (GET_CODE (XVECEXP (PATTERN (i3), 0, i)) == CLOBBER)
1920 {
1921 /* Don't substitute for a register intended as a clobberable
1922 operand. */
1923 rtx reg = XEXP (XVECEXP (PATTERN (i3), 0, i), 0);
1924 if (rtx_equal_p (reg, dest))
1925 return 0;
1926
1927 /* If the clobber represents an earlyclobber operand, we must not
1928 substitute an expression containing the clobbered register.
1929 As we do not analyze the constraint strings here, we have to
1930 make the conservative assumption. However, if the register is
1931 a fixed hard reg, the clobber cannot represent any operand;
1932 we leave it up to the machine description to either accept or
1933 reject use-and-clobber patterns. */
1934 if (!REG_P (reg)
1935 || REGNO (reg) >= FIRST_PSEUDO_REGISTER
1936 || !fixed_regs[REGNO (reg)])
1937 if (reg_overlap_mentioned_p (reg, src))
1938 return 0;
1939 }
1940
1941 /* If INSN contains anything volatile, or is an `asm' (whether volatile
1942 or not), reject, unless nothing volatile comes between it and I3 */
1943
1944 if (GET_CODE (src) == ASM_OPERANDS || volatile_refs_p (src))
1945 {
1946 /* Make sure neither succ nor succ2 contains a volatile reference. */
1947 if (succ2 != 0 && volatile_refs_p (PATTERN (succ2)))
1948 return 0;
1949 if (succ != 0 && volatile_refs_p (PATTERN (succ)))
1950 return 0;
1951 /* We'll check insns between INSN and I3 below. */
1952 }
1953
1954 /* If INSN is an asm, and DEST is a hard register, reject, since it has
1955 to be an explicit register variable, and was chosen for a reason. */
1956
1957 if (GET_CODE (src) == ASM_OPERANDS
1958 && REG_P (dest) && REGNO (dest) < FIRST_PSEUDO_REGISTER)
1959 return 0;
1960
1961 /* If INSN contains volatile references (specifically volatile MEMs),
1962 we cannot combine across any other volatile references.
1963 Even if INSN doesn't contain volatile references, any intervening
1964 volatile insn might affect machine state. */
1965
1966 is_volatile_p = volatile_refs_p (PATTERN (insn))
1967 ? volatile_refs_p
1968 : volatile_insn_p;
1969
1970 for (p = NEXT_INSN (insn); p != i3; p = NEXT_INSN (p))
1971 if (INSN_P (p) && p != succ && p != succ2 && is_volatile_p (PATTERN (p)))
1972 return 0;
1973
1974 /* If INSN contains an autoincrement or autodecrement, make sure that
1975 register is not used between there and I3, and not already used in
1976 I3 either. Neither must it be used in PRED or SUCC, if they exist.
1977 Also insist that I3 not be a jump; if it were one
1978 and the incremented register were spilled, we would lose. */
1979
1980 #ifdef AUTO_INC_DEC
1981 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1982 if (REG_NOTE_KIND (link) == REG_INC
1983 && (JUMP_P (i3)
1984 || reg_used_between_p (XEXP (link, 0), insn, i3)
1985 || (pred != NULL_RTX
1986 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (pred)))
1987 || (pred2 != NULL_RTX
1988 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (pred2)))
1989 || (succ != NULL_RTX
1990 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (succ)))
1991 || (succ2 != NULL_RTX
1992 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (succ2)))
1993 || reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i3))))
1994 return 0;
1995 #endif
1996
1997 #ifdef HAVE_cc0
1998 /* Don't combine an insn that follows a CC0-setting insn.
1999 An insn that uses CC0 must not be separated from the one that sets it.
2000 We do, however, allow I2 to follow a CC0-setting insn if that insn
2001 is passed as I1; in that case it will be deleted also.
2002 We also allow combining in this case if all the insns are adjacent
2003 because that would leave the two CC0 insns adjacent as well.
2004 It would be more logical to test whether CC0 occurs inside I1 or I2,
2005 but that would be much slower, and this ought to be equivalent. */
2006
2007 p = prev_nonnote_insn (insn);
2008 if (p && p != pred && NONJUMP_INSN_P (p) && sets_cc0_p (PATTERN (p))
2009 && ! all_adjacent)
2010 return 0;
2011 #endif
2012
2013 /* If we get here, we have passed all the tests and the combination is
2014 to be allowed. */
2015
2016 *pdest = dest;
2017 *psrc = src;
2018
2019 return 1;
2020 }
2021 \f
2022 /* LOC is the location within I3 that contains its pattern or the component
2023 of a PARALLEL of the pattern. We validate that it is valid for combining.
2024
2025 One problem is if I3 modifies its output, as opposed to replacing it
2026 entirely, we can't allow the output to contain I2DEST, I1DEST or I0DEST as
2027 doing so would produce an insn that is not equivalent to the original insns.
2028
2029 Consider:
2030
2031 (set (reg:DI 101) (reg:DI 100))
2032 (set (subreg:SI (reg:DI 101) 0) <foo>)
2033
2034 This is NOT equivalent to:
2035
2036 (parallel [(set (subreg:SI (reg:DI 100) 0) <foo>)
2037 (set (reg:DI 101) (reg:DI 100))])
2038
2039 Not only does this modify 100 (in which case it might still be valid
2040 if 100 were dead in I2), it sets 101 to the ORIGINAL value of 100.
2041
2042 We can also run into a problem if I2 sets a register that I1
2043 uses and I1 gets directly substituted into I3 (not via I2). In that
2044 case, we would be getting the wrong value of I2DEST into I3, so we
2045 must reject the combination. This case occurs when I2 and I1 both
2046 feed into I3, rather than when I1 feeds into I2, which feeds into I3.
2047 If I1_NOT_IN_SRC is nonzero, it means that finding I1 in the source
2048 of a SET must prevent combination from occurring. The same situation
2049 can occur for I0, in which case I0_NOT_IN_SRC is set.
2050
2051 Before doing the above check, we first try to expand a field assignment
2052 into a set of logical operations.
2053
2054 If PI3_DEST_KILLED is nonzero, it is a pointer to a location in which
2055 we place a register that is both set and used within I3. If more than one
2056 such register is detected, we fail.
2057
2058 Return 1 if the combination is valid, zero otherwise. */
2059
2060 static int
2061 combinable_i3pat (rtx i3, rtx *loc, rtx i2dest, rtx i1dest, rtx i0dest,
2062 int i1_not_in_src, int i0_not_in_src, rtx *pi3dest_killed)
2063 {
2064 rtx x = *loc;
2065
2066 if (GET_CODE (x) == SET)
2067 {
2068 rtx set = x ;
2069 rtx dest = SET_DEST (set);
2070 rtx src = SET_SRC (set);
2071 rtx inner_dest = dest;
2072 rtx subdest;
2073
2074 while (GET_CODE (inner_dest) == STRICT_LOW_PART
2075 || GET_CODE (inner_dest) == SUBREG
2076 || GET_CODE (inner_dest) == ZERO_EXTRACT)
2077 inner_dest = XEXP (inner_dest, 0);
2078
2079 /* Check for the case where I3 modifies its output, as discussed
2080 above. We don't want to prevent pseudos from being combined
2081 into the address of a MEM, so only prevent the combination if
2082 i1 or i2 set the same MEM. */
2083 if ((inner_dest != dest &&
2084 (!MEM_P (inner_dest)
2085 || rtx_equal_p (i2dest, inner_dest)
2086 || (i1dest && rtx_equal_p (i1dest, inner_dest))
2087 || (i0dest && rtx_equal_p (i0dest, inner_dest)))
2088 && (reg_overlap_mentioned_p (i2dest, inner_dest)
2089 || (i1dest && reg_overlap_mentioned_p (i1dest, inner_dest))
2090 || (i0dest && reg_overlap_mentioned_p (i0dest, inner_dest))))
2091
2092 /* This is the same test done in can_combine_p except we can't test
2093 all_adjacent; we don't have to, since this instruction will stay
2094 in place, thus we are not considering increasing the lifetime of
2095 INNER_DEST.
2096
2097 Also, if this insn sets a function argument, combining it with
2098 something that might need a spill could clobber a previous
2099 function argument; the all_adjacent test in can_combine_p also
2100 checks this; here, we do a more specific test for this case. */
2101
2102 || (REG_P (inner_dest)
2103 && REGNO (inner_dest) < FIRST_PSEUDO_REGISTER
2104 && (! HARD_REGNO_MODE_OK (REGNO (inner_dest),
2105 GET_MODE (inner_dest))))
2106 || (i1_not_in_src && reg_overlap_mentioned_p (i1dest, src))
2107 || (i0_not_in_src && reg_overlap_mentioned_p (i0dest, src)))
2108 return 0;
2109
2110 /* If DEST is used in I3, it is being killed in this insn, so
2111 record that for later. We have to consider paradoxical
2112 subregs here, since they kill the whole register, but we
2113 ignore partial subregs, STRICT_LOW_PART, etc.
2114 Never add REG_DEAD notes for the FRAME_POINTER_REGNUM or the
2115 STACK_POINTER_REGNUM, since these are always considered to be
2116 live. Similarly for ARG_POINTER_REGNUM if it is fixed. */
2117 subdest = dest;
2118 if (GET_CODE (subdest) == SUBREG
2119 && (GET_MODE_SIZE (GET_MODE (subdest))
2120 >= GET_MODE_SIZE (GET_MODE (SUBREG_REG (subdest)))))
2121 subdest = SUBREG_REG (subdest);
2122 if (pi3dest_killed
2123 && REG_P (subdest)
2124 && reg_referenced_p (subdest, PATTERN (i3))
2125 && REGNO (subdest) != FRAME_POINTER_REGNUM
2126 #if !HARD_FRAME_POINTER_IS_FRAME_POINTER
2127 && REGNO (subdest) != HARD_FRAME_POINTER_REGNUM
2128 #endif
2129 #if ARG_POINTER_REGNUM != FRAME_POINTER_REGNUM
2130 && (REGNO (subdest) != ARG_POINTER_REGNUM
2131 || ! fixed_regs [REGNO (subdest)])
2132 #endif
2133 && REGNO (subdest) != STACK_POINTER_REGNUM)
2134 {
2135 if (*pi3dest_killed)
2136 return 0;
2137
2138 *pi3dest_killed = subdest;
2139 }
2140 }
2141
2142 else if (GET_CODE (x) == PARALLEL)
2143 {
2144 int i;
2145
2146 for (i = 0; i < XVECLEN (x, 0); i++)
2147 if (! combinable_i3pat (i3, &XVECEXP (x, 0, i), i2dest, i1dest, i0dest,
2148 i1_not_in_src, i0_not_in_src, pi3dest_killed))
2149 return 0;
2150 }
2151
2152 return 1;
2153 }
2154 \f
2155 /* Return 1 if X is an arithmetic expression that contains a multiplication
2156 and division. We don't count multiplications by powers of two here. */
2157
2158 static int
2159 contains_muldiv (rtx x)
2160 {
2161 switch (GET_CODE (x))
2162 {
2163 case MOD: case DIV: case UMOD: case UDIV:
2164 return 1;
2165
2166 case MULT:
2167 return ! (CONST_INT_P (XEXP (x, 1))
2168 && exact_log2 (UINTVAL (XEXP (x, 1))) >= 0);
2169 default:
2170 if (BINARY_P (x))
2171 return contains_muldiv (XEXP (x, 0))
2172 || contains_muldiv (XEXP (x, 1));
2173
2174 if (UNARY_P (x))
2175 return contains_muldiv (XEXP (x, 0));
2176
2177 return 0;
2178 }
2179 }
2180 \f
2181 /* Determine whether INSN can be used in a combination. Return nonzero if
2182 not. This is used in try_combine to detect early some cases where we
2183 can't perform combinations. */
2184
2185 static int
2186 cant_combine_insn_p (rtx insn)
2187 {
2188 rtx set;
2189 rtx src, dest;
2190
2191 /* If this isn't really an insn, we can't do anything.
2192 This can occur when flow deletes an insn that it has merged into an
2193 auto-increment address. */
2194 if (! INSN_P (insn))
2195 return 1;
2196
2197 /* Never combine loads and stores involving hard regs that are likely
2198 to be spilled. The register allocator can usually handle such
2199 reg-reg moves by tying. If we allow the combiner to make
2200 substitutions of likely-spilled regs, reload might die.
2201 As an exception, we allow combinations involving fixed regs; these are
2202 not available to the register allocator so there's no risk involved. */
2203
2204 set = single_set (insn);
2205 if (! set)
2206 return 0;
2207 src = SET_SRC (set);
2208 dest = SET_DEST (set);
2209 if (GET_CODE (src) == SUBREG)
2210 src = SUBREG_REG (src);
2211 if (GET_CODE (dest) == SUBREG)
2212 dest = SUBREG_REG (dest);
2213 if (REG_P (src) && REG_P (dest)
2214 && ((HARD_REGISTER_P (src)
2215 && ! TEST_HARD_REG_BIT (fixed_reg_set, REGNO (src))
2216 && targetm.class_likely_spilled_p (REGNO_REG_CLASS (REGNO (src))))
2217 || (HARD_REGISTER_P (dest)
2218 && ! TEST_HARD_REG_BIT (fixed_reg_set, REGNO (dest))
2219 && targetm.class_likely_spilled_p (REGNO_REG_CLASS (REGNO (dest))))))
2220 return 1;
2221
2222 return 0;
2223 }
2224
2225 struct likely_spilled_retval_info
2226 {
2227 unsigned regno, nregs;
2228 unsigned mask;
2229 };
2230
2231 /* Called via note_stores by likely_spilled_retval_p. Remove from info->mask
2232 hard registers that are known to be written to / clobbered in full. */
2233 static void
2234 likely_spilled_retval_1 (rtx x, const_rtx set, void *data)
2235 {
2236 struct likely_spilled_retval_info *const info =
2237 (struct likely_spilled_retval_info *) data;
2238 unsigned regno, nregs;
2239 unsigned new_mask;
2240
2241 if (!REG_P (XEXP (set, 0)))
2242 return;
2243 regno = REGNO (x);
2244 if (regno >= info->regno + info->nregs)
2245 return;
2246 nregs = hard_regno_nregs[regno][GET_MODE (x)];
2247 if (regno + nregs <= info->regno)
2248 return;
2249 new_mask = (2U << (nregs - 1)) - 1;
2250 if (regno < info->regno)
2251 new_mask >>= info->regno - regno;
2252 else
2253 new_mask <<= regno - info->regno;
2254 info->mask &= ~new_mask;
2255 }
2256
2257 /* Return nonzero iff part of the return value is live during INSN, and
2258 it is likely spilled. This can happen when more than one insn is needed
2259 to copy the return value, e.g. when we consider to combine into the
2260 second copy insn for a complex value. */
2261
2262 static int
2263 likely_spilled_retval_p (rtx insn)
2264 {
2265 rtx use = BB_END (this_basic_block);
2266 rtx reg, p;
2267 unsigned regno, nregs;
2268 /* We assume here that no machine mode needs more than
2269 32 hard registers when the value overlaps with a register
2270 for which TARGET_FUNCTION_VALUE_REGNO_P is true. */
2271 unsigned mask;
2272 struct likely_spilled_retval_info info;
2273
2274 if (!NONJUMP_INSN_P (use) || GET_CODE (PATTERN (use)) != USE || insn == use)
2275 return 0;
2276 reg = XEXP (PATTERN (use), 0);
2277 if (!REG_P (reg) || !targetm.calls.function_value_regno_p (REGNO (reg)))
2278 return 0;
2279 regno = REGNO (reg);
2280 nregs = hard_regno_nregs[regno][GET_MODE (reg)];
2281 if (nregs == 1)
2282 return 0;
2283 mask = (2U << (nregs - 1)) - 1;
2284
2285 /* Disregard parts of the return value that are set later. */
2286 info.regno = regno;
2287 info.nregs = nregs;
2288 info.mask = mask;
2289 for (p = PREV_INSN (use); info.mask && p != insn; p = PREV_INSN (p))
2290 if (INSN_P (p))
2291 note_stores (PATTERN (p), likely_spilled_retval_1, &info);
2292 mask = info.mask;
2293
2294 /* Check if any of the (probably) live return value registers is
2295 likely spilled. */
2296 nregs --;
2297 do
2298 {
2299 if ((mask & 1 << nregs)
2300 && targetm.class_likely_spilled_p (REGNO_REG_CLASS (regno + nregs)))
2301 return 1;
2302 } while (nregs--);
2303 return 0;
2304 }
2305
2306 /* Adjust INSN after we made a change to its destination.
2307
2308 Changing the destination can invalidate notes that say something about
2309 the results of the insn and a LOG_LINK pointing to the insn. */
2310
2311 static void
2312 adjust_for_new_dest (rtx insn)
2313 {
2314 /* For notes, be conservative and simply remove them. */
2315 remove_reg_equal_equiv_notes (insn);
2316
2317 /* The new insn will have a destination that was previously the destination
2318 of an insn just above it. Call distribute_links to make a LOG_LINK from
2319 the next use of that destination. */
2320 distribute_links (alloc_insn_link (insn, NULL));
2321
2322 df_insn_rescan (insn);
2323 }
2324
2325 /* Return TRUE if combine can reuse reg X in mode MODE.
2326 ADDED_SETS is nonzero if the original set is still required. */
2327 static bool
2328 can_change_dest_mode (rtx x, int added_sets, enum machine_mode mode)
2329 {
2330 unsigned int regno;
2331
2332 if (!REG_P (x))
2333 return false;
2334
2335 regno = REGNO (x);
2336 /* Allow hard registers if the new mode is legal, and occupies no more
2337 registers than the old mode. */
2338 if (regno < FIRST_PSEUDO_REGISTER)
2339 return (HARD_REGNO_MODE_OK (regno, mode)
2340 && (hard_regno_nregs[regno][GET_MODE (x)]
2341 >= hard_regno_nregs[regno][mode]));
2342
2343 /* Or a pseudo that is only used once. */
2344 return (REG_N_SETS (regno) == 1 && !added_sets
2345 && !REG_USERVAR_P (x));
2346 }
2347
2348
2349 /* Check whether X, the destination of a set, refers to part of
2350 the register specified by REG. */
2351
2352 static bool
2353 reg_subword_p (rtx x, rtx reg)
2354 {
2355 /* Check that reg is an integer mode register. */
2356 if (!REG_P (reg) || GET_MODE_CLASS (GET_MODE (reg)) != MODE_INT)
2357 return false;
2358
2359 if (GET_CODE (x) == STRICT_LOW_PART
2360 || GET_CODE (x) == ZERO_EXTRACT)
2361 x = XEXP (x, 0);
2362
2363 return GET_CODE (x) == SUBREG
2364 && SUBREG_REG (x) == reg
2365 && GET_MODE_CLASS (GET_MODE (x)) == MODE_INT;
2366 }
2367
2368 /* Delete the unconditional jump INSN and adjust the CFG correspondingly.
2369 Note that the INSN should be deleted *after* removing dead edges, so
2370 that the kept edge is the fallthrough edge for a (set (pc) (pc))
2371 but not for a (set (pc) (label_ref FOO)). */
2372
2373 static void
2374 update_cfg_for_uncondjump (rtx insn)
2375 {
2376 basic_block bb = BLOCK_FOR_INSN (insn);
2377 gcc_assert (BB_END (bb) == insn);
2378
2379 purge_dead_edges (bb);
2380
2381 delete_insn (insn);
2382 if (EDGE_COUNT (bb->succs) == 1)
2383 {
2384 rtx insn;
2385
2386 single_succ_edge (bb)->flags |= EDGE_FALLTHRU;
2387
2388 /* Remove barriers from the footer if there are any. */
2389 for (insn = BB_FOOTER (bb); insn; insn = NEXT_INSN (insn))
2390 if (BARRIER_P (insn))
2391 {
2392 if (PREV_INSN (insn))
2393 NEXT_INSN (PREV_INSN (insn)) = NEXT_INSN (insn);
2394 else
2395 BB_FOOTER (bb) = NEXT_INSN (insn);
2396 if (NEXT_INSN (insn))
2397 PREV_INSN (NEXT_INSN (insn)) = PREV_INSN (insn);
2398 }
2399 else if (LABEL_P (insn))
2400 break;
2401 }
2402 }
2403
2404 /* Try to combine the insns I0, I1 and I2 into I3.
2405 Here I0, I1 and I2 appear earlier than I3.
2406 I0 and I1 can be zero; then we combine just I2 into I3, or I1 and I2 into
2407 I3.
2408
2409 If we are combining more than two insns and the resulting insn is not
2410 recognized, try splitting it into two insns. If that happens, I2 and I3
2411 are retained and I1/I0 are pseudo-deleted by turning them into a NOTE.
2412 Otherwise, I0, I1 and I2 are pseudo-deleted.
2413
2414 Return 0 if the combination does not work. Then nothing is changed.
2415 If we did the combination, return the insn at which combine should
2416 resume scanning.
2417
2418 Set NEW_DIRECT_JUMP_P to a nonzero value if try_combine creates a
2419 new direct jump instruction.
2420
2421 LAST_COMBINED_INSN is either I3, or some insn after I3 that has
2422 been I3 passed to an earlier try_combine within the same basic
2423 block. */
2424
2425 static rtx
2426 try_combine (rtx i3, rtx i2, rtx i1, rtx i0, int *new_direct_jump_p,
2427 rtx last_combined_insn)
2428 {
2429 /* New patterns for I3 and I2, respectively. */
2430 rtx newpat, newi2pat = 0;
2431 rtvec newpat_vec_with_clobbers = 0;
2432 int substed_i2 = 0, substed_i1 = 0, substed_i0 = 0;
2433 /* Indicates need to preserve SET in I0, I1 or I2 in I3 if it is not
2434 dead. */
2435 int added_sets_0, added_sets_1, added_sets_2;
2436 /* Total number of SETs to put into I3. */
2437 int total_sets;
2438 /* Nonzero if I2's or I1's body now appears in I3. */
2439 int i2_is_used = 0, i1_is_used = 0;
2440 /* INSN_CODEs for new I3, new I2, and user of condition code. */
2441 int insn_code_number, i2_code_number = 0, other_code_number = 0;
2442 /* Contains I3 if the destination of I3 is used in its source, which means
2443 that the old life of I3 is being killed. If that usage is placed into
2444 I2 and not in I3, a REG_DEAD note must be made. */
2445 rtx i3dest_killed = 0;
2446 /* SET_DEST and SET_SRC of I2, I1 and I0. */
2447 rtx i2dest = 0, i2src = 0, i1dest = 0, i1src = 0, i0dest = 0, i0src = 0;
2448 /* Copy of SET_SRC of I1 and I0, if needed. */
2449 rtx i1src_copy = 0, i0src_copy = 0, i0src_copy2 = 0;
2450 /* Set if I2DEST was reused as a scratch register. */
2451 bool i2scratch = false;
2452 /* The PATTERNs of I0, I1, and I2, or a copy of them in certain cases. */
2453 rtx i0pat = 0, i1pat = 0, i2pat = 0;
2454 /* Indicates if I2DEST or I1DEST is in I2SRC or I1_SRC. */
2455 int i2dest_in_i2src = 0, i1dest_in_i1src = 0, i2dest_in_i1src = 0;
2456 int i0dest_in_i0src = 0, i1dest_in_i0src = 0, i2dest_in_i0src = 0;
2457 int i2dest_killed = 0, i1dest_killed = 0, i0dest_killed = 0;
2458 int i1_feeds_i2_n = 0, i0_feeds_i2_n = 0, i0_feeds_i1_n = 0;
2459 /* Notes that must be added to REG_NOTES in I3 and I2. */
2460 rtx new_i3_notes, new_i2_notes;
2461 /* Notes that we substituted I3 into I2 instead of the normal case. */
2462 int i3_subst_into_i2 = 0;
2463 /* Notes that I1, I2 or I3 is a MULT operation. */
2464 int have_mult = 0;
2465 int swap_i2i3 = 0;
2466 int changed_i3_dest = 0;
2467
2468 int maxreg;
2469 rtx temp;
2470 struct insn_link *link;
2471 rtx other_pat = 0;
2472 rtx new_other_notes;
2473 int i;
2474
2475 /* Only try four-insn combinations when there's high likelihood of
2476 success. Look for simple insns, such as loads of constants or
2477 binary operations involving a constant. */
2478 if (i0)
2479 {
2480 int i;
2481 int ngood = 0;
2482 int nshift = 0;
2483
2484 if (!flag_expensive_optimizations)
2485 return 0;
2486
2487 for (i = 0; i < 4; i++)
2488 {
2489 rtx insn = i == 0 ? i0 : i == 1 ? i1 : i == 2 ? i2 : i3;
2490 rtx set = single_set (insn);
2491 rtx src;
2492 if (!set)
2493 continue;
2494 src = SET_SRC (set);
2495 if (CONSTANT_P (src))
2496 {
2497 ngood += 2;
2498 break;
2499 }
2500 else if (BINARY_P (src) && CONSTANT_P (XEXP (src, 1)))
2501 ngood++;
2502 else if (GET_CODE (src) == ASHIFT || GET_CODE (src) == ASHIFTRT
2503 || GET_CODE (src) == LSHIFTRT)
2504 nshift++;
2505 }
2506 if (ngood < 2 && nshift < 2)
2507 return 0;
2508 }
2509
2510 /* Exit early if one of the insns involved can't be used for
2511 combinations. */
2512 if (cant_combine_insn_p (i3)
2513 || cant_combine_insn_p (i2)
2514 || (i1 && cant_combine_insn_p (i1))
2515 || (i0 && cant_combine_insn_p (i0))
2516 || likely_spilled_retval_p (i3))
2517 return 0;
2518
2519 combine_attempts++;
2520 undobuf.other_insn = 0;
2521
2522 /* Reset the hard register usage information. */
2523 CLEAR_HARD_REG_SET (newpat_used_regs);
2524
2525 if (dump_file && (dump_flags & TDF_DETAILS))
2526 {
2527 if (i0)
2528 fprintf (dump_file, "\nTrying %d, %d, %d -> %d:\n",
2529 INSN_UID (i0), INSN_UID (i1), INSN_UID (i2), INSN_UID (i3));
2530 else if (i1)
2531 fprintf (dump_file, "\nTrying %d, %d -> %d:\n",
2532 INSN_UID (i1), INSN_UID (i2), INSN_UID (i3));
2533 else
2534 fprintf (dump_file, "\nTrying %d -> %d:\n",
2535 INSN_UID (i2), INSN_UID (i3));
2536 }
2537
2538 /* If multiple insns feed into one of I2 or I3, they can be in any
2539 order. To simplify the code below, reorder them in sequence. */
2540 if (i0 && DF_INSN_LUID (i0) > DF_INSN_LUID (i2))
2541 temp = i2, i2 = i0, i0 = temp;
2542 if (i0 && DF_INSN_LUID (i0) > DF_INSN_LUID (i1))
2543 temp = i1, i1 = i0, i0 = temp;
2544 if (i1 && DF_INSN_LUID (i1) > DF_INSN_LUID (i2))
2545 temp = i1, i1 = i2, i2 = temp;
2546
2547 added_links_insn = 0;
2548
2549 /* First check for one important special case that the code below will
2550 not handle. Namely, the case where I1 is zero, I2 is a PARALLEL
2551 and I3 is a SET whose SET_SRC is a SET_DEST in I2. In that case,
2552 we may be able to replace that destination with the destination of I3.
2553 This occurs in the common code where we compute both a quotient and
2554 remainder into a structure, in which case we want to do the computation
2555 directly into the structure to avoid register-register copies.
2556
2557 Note that this case handles both multiple sets in I2 and also cases
2558 where I2 has a number of CLOBBERs inside the PARALLEL.
2559
2560 We make very conservative checks below and only try to handle the
2561 most common cases of this. For example, we only handle the case
2562 where I2 and I3 are adjacent to avoid making difficult register
2563 usage tests. */
2564
2565 if (i1 == 0 && NONJUMP_INSN_P (i3) && GET_CODE (PATTERN (i3)) == SET
2566 && REG_P (SET_SRC (PATTERN (i3)))
2567 && REGNO (SET_SRC (PATTERN (i3))) >= FIRST_PSEUDO_REGISTER
2568 && find_reg_note (i3, REG_DEAD, SET_SRC (PATTERN (i3)))
2569 && GET_CODE (PATTERN (i2)) == PARALLEL
2570 && ! side_effects_p (SET_DEST (PATTERN (i3)))
2571 /* If the dest of I3 is a ZERO_EXTRACT or STRICT_LOW_PART, the code
2572 below would need to check what is inside (and reg_overlap_mentioned_p
2573 doesn't support those codes anyway). Don't allow those destinations;
2574 the resulting insn isn't likely to be recognized anyway. */
2575 && GET_CODE (SET_DEST (PATTERN (i3))) != ZERO_EXTRACT
2576 && GET_CODE (SET_DEST (PATTERN (i3))) != STRICT_LOW_PART
2577 && ! reg_overlap_mentioned_p (SET_SRC (PATTERN (i3)),
2578 SET_DEST (PATTERN (i3)))
2579 && next_active_insn (i2) == i3)
2580 {
2581 rtx p2 = PATTERN (i2);
2582
2583 /* Make sure that the destination of I3,
2584 which we are going to substitute into one output of I2,
2585 is not used within another output of I2. We must avoid making this:
2586 (parallel [(set (mem (reg 69)) ...)
2587 (set (reg 69) ...)])
2588 which is not well-defined as to order of actions.
2589 (Besides, reload can't handle output reloads for this.)
2590
2591 The problem can also happen if the dest of I3 is a memory ref,
2592 if another dest in I2 is an indirect memory ref. */
2593 for (i = 0; i < XVECLEN (p2, 0); i++)
2594 if ((GET_CODE (XVECEXP (p2, 0, i)) == SET
2595 || GET_CODE (XVECEXP (p2, 0, i)) == CLOBBER)
2596 && reg_overlap_mentioned_p (SET_DEST (PATTERN (i3)),
2597 SET_DEST (XVECEXP (p2, 0, i))))
2598 break;
2599
2600 if (i == XVECLEN (p2, 0))
2601 for (i = 0; i < XVECLEN (p2, 0); i++)
2602 if (GET_CODE (XVECEXP (p2, 0, i)) == SET
2603 && SET_DEST (XVECEXP (p2, 0, i)) == SET_SRC (PATTERN (i3)))
2604 {
2605 combine_merges++;
2606
2607 subst_insn = i3;
2608 subst_low_luid = DF_INSN_LUID (i2);
2609
2610 added_sets_2 = added_sets_1 = added_sets_0 = 0;
2611 i2src = SET_SRC (XVECEXP (p2, 0, i));
2612 i2dest = SET_DEST (XVECEXP (p2, 0, i));
2613 i2dest_killed = dead_or_set_p (i2, i2dest);
2614
2615 /* Replace the dest in I2 with our dest and make the resulting
2616 insn the new pattern for I3. Then skip to where we validate
2617 the pattern. Everything was set up above. */
2618 SUBST (SET_DEST (XVECEXP (p2, 0, i)), SET_DEST (PATTERN (i3)));
2619 newpat = p2;
2620 i3_subst_into_i2 = 1;
2621 goto validate_replacement;
2622 }
2623 }
2624
2625 /* If I2 is setting a pseudo to a constant and I3 is setting some
2626 sub-part of it to another constant, merge them by making a new
2627 constant. */
2628 if (i1 == 0
2629 && (temp = single_set (i2)) != 0
2630 && CONST_SCALAR_INT_P (SET_SRC (temp))
2631 && GET_CODE (PATTERN (i3)) == SET
2632 && CONST_SCALAR_INT_P (SET_SRC (PATTERN (i3)))
2633 && reg_subword_p (SET_DEST (PATTERN (i3)), SET_DEST (temp)))
2634 {
2635 rtx dest = SET_DEST (PATTERN (i3));
2636 int offset = -1;
2637 int width = 0;
2638
2639 if (GET_CODE (dest) == ZERO_EXTRACT)
2640 {
2641 if (CONST_INT_P (XEXP (dest, 1))
2642 && CONST_INT_P (XEXP (dest, 2)))
2643 {
2644 width = INTVAL (XEXP (dest, 1));
2645 offset = INTVAL (XEXP (dest, 2));
2646 dest = XEXP (dest, 0);
2647 if (BITS_BIG_ENDIAN)
2648 offset = GET_MODE_PRECISION (GET_MODE (dest)) - width - offset;
2649 }
2650 }
2651 else
2652 {
2653 if (GET_CODE (dest) == STRICT_LOW_PART)
2654 dest = XEXP (dest, 0);
2655 width = GET_MODE_PRECISION (GET_MODE (dest));
2656 offset = 0;
2657 }
2658
2659 if (offset >= 0)
2660 {
2661 /* If this is the low part, we're done. */
2662 if (subreg_lowpart_p (dest))
2663 ;
2664 /* Handle the case where inner is twice the size of outer. */
2665 else if (GET_MODE_PRECISION (GET_MODE (SET_DEST (temp)))
2666 == 2 * GET_MODE_PRECISION (GET_MODE (dest)))
2667 offset += GET_MODE_PRECISION (GET_MODE (dest));
2668 /* Otherwise give up for now. */
2669 else
2670 offset = -1;
2671 }
2672
2673 if (offset >= 0
2674 && (GET_MODE_PRECISION (GET_MODE (SET_DEST (temp)))
2675 <= HOST_BITS_PER_DOUBLE_INT))
2676 {
2677 double_int m, o, i;
2678 rtx inner = SET_SRC (PATTERN (i3));
2679 rtx outer = SET_SRC (temp);
2680
2681 o = rtx_to_double_int (outer);
2682 i = rtx_to_double_int (inner);
2683
2684 m = double_int::mask (width);
2685 i &= m;
2686 m = m.llshift (offset, HOST_BITS_PER_DOUBLE_INT);
2687 i = i.llshift (offset, HOST_BITS_PER_DOUBLE_INT);
2688 o = o.and_not (m) | i;
2689
2690 combine_merges++;
2691 subst_insn = i3;
2692 subst_low_luid = DF_INSN_LUID (i2);
2693 added_sets_2 = added_sets_1 = added_sets_0 = 0;
2694 i2dest = SET_DEST (temp);
2695 i2dest_killed = dead_or_set_p (i2, i2dest);
2696
2697 /* Replace the source in I2 with the new constant and make the
2698 resulting insn the new pattern for I3. Then skip to where we
2699 validate the pattern. Everything was set up above. */
2700 SUBST (SET_SRC (temp),
2701 immed_double_int_const (o, GET_MODE (SET_DEST (temp))));
2702
2703 newpat = PATTERN (i2);
2704
2705 /* The dest of I3 has been replaced with the dest of I2. */
2706 changed_i3_dest = 1;
2707 goto validate_replacement;
2708 }
2709 }
2710
2711 #ifndef HAVE_cc0
2712 /* If we have no I1 and I2 looks like:
2713 (parallel [(set (reg:CC X) (compare:CC OP (const_int 0)))
2714 (set Y OP)])
2715 make up a dummy I1 that is
2716 (set Y OP)
2717 and change I2 to be
2718 (set (reg:CC X) (compare:CC Y (const_int 0)))
2719
2720 (We can ignore any trailing CLOBBERs.)
2721
2722 This undoes a previous combination and allows us to match a branch-and-
2723 decrement insn. */
2724
2725 if (i1 == 0 && GET_CODE (PATTERN (i2)) == PARALLEL
2726 && XVECLEN (PATTERN (i2), 0) >= 2
2727 && GET_CODE (XVECEXP (PATTERN (i2), 0, 0)) == SET
2728 && (GET_MODE_CLASS (GET_MODE (SET_DEST (XVECEXP (PATTERN (i2), 0, 0))))
2729 == MODE_CC)
2730 && GET_CODE (SET_SRC (XVECEXP (PATTERN (i2), 0, 0))) == COMPARE
2731 && XEXP (SET_SRC (XVECEXP (PATTERN (i2), 0, 0)), 1) == const0_rtx
2732 && GET_CODE (XVECEXP (PATTERN (i2), 0, 1)) == SET
2733 && REG_P (SET_DEST (XVECEXP (PATTERN (i2), 0, 1)))
2734 && rtx_equal_p (XEXP (SET_SRC (XVECEXP (PATTERN (i2), 0, 0)), 0),
2735 SET_SRC (XVECEXP (PATTERN (i2), 0, 1))))
2736 {
2737 for (i = XVECLEN (PATTERN (i2), 0) - 1; i >= 2; i--)
2738 if (GET_CODE (XVECEXP (PATTERN (i2), 0, i)) != CLOBBER)
2739 break;
2740
2741 if (i == 1)
2742 {
2743 /* We make I1 with the same INSN_UID as I2. This gives it
2744 the same DF_INSN_LUID for value tracking. Our fake I1 will
2745 never appear in the insn stream so giving it the same INSN_UID
2746 as I2 will not cause a problem. */
2747
2748 i1 = gen_rtx_INSN (VOIDmode, INSN_UID (i2), NULL_RTX, i2,
2749 BLOCK_FOR_INSN (i2), XVECEXP (PATTERN (i2), 0, 1),
2750 INSN_LOCATION (i2), -1, NULL_RTX);
2751
2752 SUBST (PATTERN (i2), XVECEXP (PATTERN (i2), 0, 0));
2753 SUBST (XEXP (SET_SRC (PATTERN (i2)), 0),
2754 SET_DEST (PATTERN (i1)));
2755 SUBST_LINK (LOG_LINKS (i2), alloc_insn_link (i1, LOG_LINKS (i2)));
2756 }
2757 }
2758 #endif
2759
2760 /* Verify that I2 and I1 are valid for combining. */
2761 if (! can_combine_p (i2, i3, i0, i1, NULL_RTX, NULL_RTX, &i2dest, &i2src)
2762 || (i1 && ! can_combine_p (i1, i3, i0, NULL_RTX, i2, NULL_RTX,
2763 &i1dest, &i1src))
2764 || (i0 && ! can_combine_p (i0, i3, NULL_RTX, NULL_RTX, i1, i2,
2765 &i0dest, &i0src)))
2766 {
2767 undo_all ();
2768 return 0;
2769 }
2770
2771 /* Record whether I2DEST is used in I2SRC and similarly for the other
2772 cases. Knowing this will help in register status updating below. */
2773 i2dest_in_i2src = reg_overlap_mentioned_p (i2dest, i2src);
2774 i1dest_in_i1src = i1 && reg_overlap_mentioned_p (i1dest, i1src);
2775 i2dest_in_i1src = i1 && reg_overlap_mentioned_p (i2dest, i1src);
2776 i0dest_in_i0src = i0 && reg_overlap_mentioned_p (i0dest, i0src);
2777 i1dest_in_i0src = i0 && reg_overlap_mentioned_p (i1dest, i0src);
2778 i2dest_in_i0src = i0 && reg_overlap_mentioned_p (i2dest, i0src);
2779 i2dest_killed = dead_or_set_p (i2, i2dest);
2780 i1dest_killed = i1 && dead_or_set_p (i1, i1dest);
2781 i0dest_killed = i0 && dead_or_set_p (i0, i0dest);
2782
2783 /* For the earlier insns, determine which of the subsequent ones they
2784 feed. */
2785 i1_feeds_i2_n = i1 && insn_a_feeds_b (i1, i2);
2786 i0_feeds_i1_n = i0 && insn_a_feeds_b (i0, i1);
2787 i0_feeds_i2_n = (i0 && (!i0_feeds_i1_n ? insn_a_feeds_b (i0, i2)
2788 : (!reg_overlap_mentioned_p (i1dest, i0dest)
2789 && reg_overlap_mentioned_p (i0dest, i2src))));
2790
2791 /* Ensure that I3's pattern can be the destination of combines. */
2792 if (! combinable_i3pat (i3, &PATTERN (i3), i2dest, i1dest, i0dest,
2793 i1 && i2dest_in_i1src && !i1_feeds_i2_n,
2794 i0 && ((i2dest_in_i0src && !i0_feeds_i2_n)
2795 || (i1dest_in_i0src && !i0_feeds_i1_n)),
2796 &i3dest_killed))
2797 {
2798 undo_all ();
2799 return 0;
2800 }
2801
2802 /* See if any of the insns is a MULT operation. Unless one is, we will
2803 reject a combination that is, since it must be slower. Be conservative
2804 here. */
2805 if (GET_CODE (i2src) == MULT
2806 || (i1 != 0 && GET_CODE (i1src) == MULT)
2807 || (i0 != 0 && GET_CODE (i0src) == MULT)
2808 || (GET_CODE (PATTERN (i3)) == SET
2809 && GET_CODE (SET_SRC (PATTERN (i3))) == MULT))
2810 have_mult = 1;
2811
2812 /* If I3 has an inc, then give up if I1 or I2 uses the reg that is inc'd.
2813 We used to do this EXCEPT in one case: I3 has a post-inc in an
2814 output operand. However, that exception can give rise to insns like
2815 mov r3,(r3)+
2816 which is a famous insn on the PDP-11 where the value of r3 used as the
2817 source was model-dependent. Avoid this sort of thing. */
2818
2819 #if 0
2820 if (!(GET_CODE (PATTERN (i3)) == SET
2821 && REG_P (SET_SRC (PATTERN (i3)))
2822 && MEM_P (SET_DEST (PATTERN (i3)))
2823 && (GET_CODE (XEXP (SET_DEST (PATTERN (i3)), 0)) == POST_INC
2824 || GET_CODE (XEXP (SET_DEST (PATTERN (i3)), 0)) == POST_DEC)))
2825 /* It's not the exception. */
2826 #endif
2827 #ifdef AUTO_INC_DEC
2828 {
2829 rtx link;
2830 for (link = REG_NOTES (i3); link; link = XEXP (link, 1))
2831 if (REG_NOTE_KIND (link) == REG_INC
2832 && (reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i2))
2833 || (i1 != 0
2834 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i1)))))
2835 {
2836 undo_all ();
2837 return 0;
2838 }
2839 }
2840 #endif
2841
2842 /* See if the SETs in I1 or I2 need to be kept around in the merged
2843 instruction: whenever the value set there is still needed past I3.
2844 For the SET in I2, this is easy: we see if I2DEST dies or is set in I3.
2845
2846 For the SET in I1, we have two cases: if I1 and I2 independently feed
2847 into I3, the set in I1 needs to be kept around unless I1DEST dies
2848 or is set in I3. Otherwise (if I1 feeds I2 which feeds I3), the set
2849 in I1 needs to be kept around unless I1DEST dies or is set in either
2850 I2 or I3. The same considerations apply to I0. */
2851
2852 added_sets_2 = !dead_or_set_p (i3, i2dest);
2853
2854 if (i1)
2855 added_sets_1 = !(dead_or_set_p (i3, i1dest)
2856 || (i1_feeds_i2_n && dead_or_set_p (i2, i1dest)));
2857 else
2858 added_sets_1 = 0;
2859
2860 if (i0)
2861 added_sets_0 = !(dead_or_set_p (i3, i0dest)
2862 || (i0_feeds_i1_n && dead_or_set_p (i1, i0dest))
2863 || ((i0_feeds_i2_n || (i0_feeds_i1_n && i1_feeds_i2_n))
2864 && dead_or_set_p (i2, i0dest)));
2865 else
2866 added_sets_0 = 0;
2867
2868 /* We are about to copy insns for the case where they need to be kept
2869 around. Check that they can be copied in the merged instruction. */
2870
2871 if (targetm.cannot_copy_insn_p
2872 && ((added_sets_2 && targetm.cannot_copy_insn_p (i2))
2873 || (i1 && added_sets_1 && targetm.cannot_copy_insn_p (i1))
2874 || (i0 && added_sets_0 && targetm.cannot_copy_insn_p (i0))))
2875 {
2876 undo_all ();
2877 return 0;
2878 }
2879
2880 /* If the set in I2 needs to be kept around, we must make a copy of
2881 PATTERN (I2), so that when we substitute I1SRC for I1DEST in
2882 PATTERN (I2), we are only substituting for the original I1DEST, not into
2883 an already-substituted copy. This also prevents making self-referential
2884 rtx. If I2 is a PARALLEL, we just need the piece that assigns I2SRC to
2885 I2DEST. */
2886
2887 if (added_sets_2)
2888 {
2889 if (GET_CODE (PATTERN (i2)) == PARALLEL)
2890 i2pat = gen_rtx_SET (VOIDmode, i2dest, copy_rtx (i2src));
2891 else
2892 i2pat = copy_rtx (PATTERN (i2));
2893 }
2894
2895 if (added_sets_1)
2896 {
2897 if (GET_CODE (PATTERN (i1)) == PARALLEL)
2898 i1pat = gen_rtx_SET (VOIDmode, i1dest, copy_rtx (i1src));
2899 else
2900 i1pat = copy_rtx (PATTERN (i1));
2901 }
2902
2903 if (added_sets_0)
2904 {
2905 if (GET_CODE (PATTERN (i0)) == PARALLEL)
2906 i0pat = gen_rtx_SET (VOIDmode, i0dest, copy_rtx (i0src));
2907 else
2908 i0pat = copy_rtx (PATTERN (i0));
2909 }
2910
2911 combine_merges++;
2912
2913 /* Substitute in the latest insn for the regs set by the earlier ones. */
2914
2915 maxreg = max_reg_num ();
2916
2917 subst_insn = i3;
2918
2919 #ifndef HAVE_cc0
2920 /* Many machines that don't use CC0 have insns that can both perform an
2921 arithmetic operation and set the condition code. These operations will
2922 be represented as a PARALLEL with the first element of the vector
2923 being a COMPARE of an arithmetic operation with the constant zero.
2924 The second element of the vector will set some pseudo to the result
2925 of the same arithmetic operation. If we simplify the COMPARE, we won't
2926 match such a pattern and so will generate an extra insn. Here we test
2927 for this case, where both the comparison and the operation result are
2928 needed, and make the PARALLEL by just replacing I2DEST in I3SRC with
2929 I2SRC. Later we will make the PARALLEL that contains I2. */
2930
2931 if (i1 == 0 && added_sets_2 && GET_CODE (PATTERN (i3)) == SET
2932 && GET_CODE (SET_SRC (PATTERN (i3))) == COMPARE
2933 && CONST_INT_P (XEXP (SET_SRC (PATTERN (i3)), 1))
2934 && rtx_equal_p (XEXP (SET_SRC (PATTERN (i3)), 0), i2dest))
2935 {
2936 rtx newpat_dest;
2937 rtx *cc_use_loc = NULL, cc_use_insn = NULL_RTX;
2938 rtx op0 = i2src, op1 = XEXP (SET_SRC (PATTERN (i3)), 1);
2939 enum machine_mode compare_mode, orig_compare_mode;
2940 enum rtx_code compare_code = UNKNOWN, orig_compare_code = UNKNOWN;
2941
2942 newpat = PATTERN (i3);
2943 newpat_dest = SET_DEST (newpat);
2944 compare_mode = orig_compare_mode = GET_MODE (newpat_dest);
2945
2946 if (undobuf.other_insn == 0
2947 && (cc_use_loc = find_single_use (SET_DEST (newpat), i3,
2948 &cc_use_insn)))
2949 {
2950 compare_code = orig_compare_code = GET_CODE (*cc_use_loc);
2951 compare_code = simplify_compare_const (compare_code,
2952 op0, &op1);
2953 target_canonicalize_comparison (&compare_code, &op0, &op1, 1);
2954 }
2955
2956 /* Do the rest only if op1 is const0_rtx, which may be the
2957 result of simplification. */
2958 if (op1 == const0_rtx)
2959 {
2960 /* If a single use of the CC is found, prepare to modify it
2961 when SELECT_CC_MODE returns a new CC-class mode, or when
2962 the above simplify_compare_const() returned a new comparison
2963 operator. undobuf.other_insn is assigned the CC use insn
2964 when modifying it. */
2965 if (cc_use_loc)
2966 {
2967 #ifdef SELECT_CC_MODE
2968 enum machine_mode new_mode
2969 = SELECT_CC_MODE (compare_code, op0, op1);
2970 if (new_mode != orig_compare_mode
2971 && can_change_dest_mode (SET_DEST (newpat),
2972 added_sets_2, new_mode))
2973 {
2974 unsigned int regno = REGNO (newpat_dest);
2975 compare_mode = new_mode;
2976 if (regno < FIRST_PSEUDO_REGISTER)
2977 newpat_dest = gen_rtx_REG (compare_mode, regno);
2978 else
2979 {
2980 SUBST_MODE (regno_reg_rtx[regno], compare_mode);
2981 newpat_dest = regno_reg_rtx[regno];
2982 }
2983 }
2984 #endif
2985 /* Cases for modifying the CC-using comparison. */
2986 if (compare_code != orig_compare_code
2987 /* ??? Do we need to verify the zero rtx? */
2988 && XEXP (*cc_use_loc, 1) == const0_rtx)
2989 {
2990 /* Replace cc_use_loc with entire new RTX. */
2991 SUBST (*cc_use_loc,
2992 gen_rtx_fmt_ee (compare_code, compare_mode,
2993 newpat_dest, const0_rtx));
2994 undobuf.other_insn = cc_use_insn;
2995 }
2996 else if (compare_mode != orig_compare_mode)
2997 {
2998 /* Just replace the CC reg with a new mode. */
2999 SUBST (XEXP (*cc_use_loc, 0), newpat_dest);
3000 undobuf.other_insn = cc_use_insn;
3001 }
3002 }
3003
3004 /* Now we modify the current newpat:
3005 First, SET_DEST(newpat) is updated if the CC mode has been
3006 altered. For targets without SELECT_CC_MODE, this should be
3007 optimized away. */
3008 if (compare_mode != orig_compare_mode)
3009 SUBST (SET_DEST (newpat), newpat_dest);
3010 /* This is always done to propagate i2src into newpat. */
3011 SUBST (SET_SRC (newpat),
3012 gen_rtx_COMPARE (compare_mode, op0, op1));
3013 /* Create new version of i2pat if needed; the below PARALLEL
3014 creation needs this to work correctly. */
3015 if (! rtx_equal_p (i2src, op0))
3016 i2pat = gen_rtx_SET (VOIDmode, i2dest, op0);
3017 i2_is_used = 1;
3018 }
3019 }
3020 #endif
3021
3022 if (i2_is_used == 0)
3023 {
3024 /* It is possible that the source of I2 or I1 may be performing
3025 an unneeded operation, such as a ZERO_EXTEND of something
3026 that is known to have the high part zero. Handle that case
3027 by letting subst look at the inner insns.
3028
3029 Another way to do this would be to have a function that tries
3030 to simplify a single insn instead of merging two or more
3031 insns. We don't do this because of the potential of infinite
3032 loops and because of the potential extra memory required.
3033 However, doing it the way we are is a bit of a kludge and
3034 doesn't catch all cases.
3035
3036 But only do this if -fexpensive-optimizations since it slows
3037 things down and doesn't usually win.
3038
3039 This is not done in the COMPARE case above because the
3040 unmodified I2PAT is used in the PARALLEL and so a pattern
3041 with a modified I2SRC would not match. */
3042
3043 if (flag_expensive_optimizations)
3044 {
3045 /* Pass pc_rtx so no substitutions are done, just
3046 simplifications. */
3047 if (i1)
3048 {
3049 subst_low_luid = DF_INSN_LUID (i1);
3050 i1src = subst (i1src, pc_rtx, pc_rtx, 0, 0, 0);
3051 }
3052
3053 subst_low_luid = DF_INSN_LUID (i2);
3054 i2src = subst (i2src, pc_rtx, pc_rtx, 0, 0, 0);
3055 }
3056
3057 n_occurrences = 0; /* `subst' counts here */
3058 subst_low_luid = DF_INSN_LUID (i2);
3059
3060 /* If I1 feeds into I2 and I1DEST is in I1SRC, we need to make a unique
3061 copy of I2SRC each time we substitute it, in order to avoid creating
3062 self-referential RTL when we will be substituting I1SRC for I1DEST
3063 later. Likewise if I0 feeds into I2, either directly or indirectly
3064 through I1, and I0DEST is in I0SRC. */
3065 newpat = subst (PATTERN (i3), i2dest, i2src, 0, 0,
3066 (i1_feeds_i2_n && i1dest_in_i1src)
3067 || ((i0_feeds_i2_n || (i0_feeds_i1_n && i1_feeds_i2_n))
3068 && i0dest_in_i0src));
3069 substed_i2 = 1;
3070
3071 /* Record whether I2's body now appears within I3's body. */
3072 i2_is_used = n_occurrences;
3073 }
3074
3075 /* If we already got a failure, don't try to do more. Otherwise, try to
3076 substitute I1 if we have it. */
3077
3078 if (i1 && GET_CODE (newpat) != CLOBBER)
3079 {
3080 /* Check that an autoincrement side-effect on I1 has not been lost.
3081 This happens if I1DEST is mentioned in I2 and dies there, and
3082 has disappeared from the new pattern. */
3083 if ((FIND_REG_INC_NOTE (i1, NULL_RTX) != 0
3084 && i1_feeds_i2_n
3085 && dead_or_set_p (i2, i1dest)
3086 && !reg_overlap_mentioned_p (i1dest, newpat))
3087 /* Before we can do this substitution, we must redo the test done
3088 above (see detailed comments there) that ensures I1DEST isn't
3089 mentioned in any SETs in NEWPAT that are field assignments. */
3090 || !combinable_i3pat (NULL_RTX, &newpat, i1dest, NULL_RTX, NULL_RTX,
3091 0, 0, 0))
3092 {
3093 undo_all ();
3094 return 0;
3095 }
3096
3097 n_occurrences = 0;
3098 subst_low_luid = DF_INSN_LUID (i1);
3099
3100 /* If the following substitution will modify I1SRC, make a copy of it
3101 for the case where it is substituted for I1DEST in I2PAT later. */
3102 if (added_sets_2 && i1_feeds_i2_n)
3103 i1src_copy = copy_rtx (i1src);
3104
3105 /* If I0 feeds into I1 and I0DEST is in I0SRC, we need to make a unique
3106 copy of I1SRC each time we substitute it, in order to avoid creating
3107 self-referential RTL when we will be substituting I0SRC for I0DEST
3108 later. */
3109 newpat = subst (newpat, i1dest, i1src, 0, 0,
3110 i0_feeds_i1_n && i0dest_in_i0src);
3111 substed_i1 = 1;
3112
3113 /* Record whether I1's body now appears within I3's body. */
3114 i1_is_used = n_occurrences;
3115 }
3116
3117 /* Likewise for I0 if we have it. */
3118
3119 if (i0 && GET_CODE (newpat) != CLOBBER)
3120 {
3121 if ((FIND_REG_INC_NOTE (i0, NULL_RTX) != 0
3122 && ((i0_feeds_i2_n && dead_or_set_p (i2, i0dest))
3123 || (i0_feeds_i1_n && dead_or_set_p (i1, i0dest)))
3124 && !reg_overlap_mentioned_p (i0dest, newpat))
3125 || !combinable_i3pat (NULL_RTX, &newpat, i0dest, NULL_RTX, NULL_RTX,
3126 0, 0, 0))
3127 {
3128 undo_all ();
3129 return 0;
3130 }
3131
3132 /* If the following substitution will modify I0SRC, make a copy of it
3133 for the case where it is substituted for I0DEST in I1PAT later. */
3134 if (added_sets_1 && i0_feeds_i1_n)
3135 i0src_copy = copy_rtx (i0src);
3136 /* And a copy for I0DEST in I2PAT substitution. */
3137 if (added_sets_2 && ((i0_feeds_i1_n && i1_feeds_i2_n)
3138 || (i0_feeds_i2_n)))
3139 i0src_copy2 = copy_rtx (i0src);
3140
3141 n_occurrences = 0;
3142 subst_low_luid = DF_INSN_LUID (i0);
3143 newpat = subst (newpat, i0dest, i0src, 0, 0, 0);
3144 substed_i0 = 1;
3145 }
3146
3147 /* Fail if an autoincrement side-effect has been duplicated. Be careful
3148 to count all the ways that I2SRC and I1SRC can be used. */
3149 if ((FIND_REG_INC_NOTE (i2, NULL_RTX) != 0
3150 && i2_is_used + added_sets_2 > 1)
3151 || (i1 != 0 && FIND_REG_INC_NOTE (i1, NULL_RTX) != 0
3152 && (i1_is_used + added_sets_1 + (added_sets_2 && i1_feeds_i2_n)
3153 > 1))
3154 || (i0 != 0 && FIND_REG_INC_NOTE (i0, NULL_RTX) != 0
3155 && (n_occurrences + added_sets_0
3156 + (added_sets_1 && i0_feeds_i1_n)
3157 + (added_sets_2 && i0_feeds_i2_n)
3158 > 1))
3159 /* Fail if we tried to make a new register. */
3160 || max_reg_num () != maxreg
3161 /* Fail if we couldn't do something and have a CLOBBER. */
3162 || GET_CODE (newpat) == CLOBBER
3163 /* Fail if this new pattern is a MULT and we didn't have one before
3164 at the outer level. */
3165 || (GET_CODE (newpat) == SET && GET_CODE (SET_SRC (newpat)) == MULT
3166 && ! have_mult))
3167 {
3168 undo_all ();
3169 return 0;
3170 }
3171
3172 /* If the actions of the earlier insns must be kept
3173 in addition to substituting them into the latest one,
3174 we must make a new PARALLEL for the latest insn
3175 to hold additional the SETs. */
3176
3177 if (added_sets_0 || added_sets_1 || added_sets_2)
3178 {
3179 int extra_sets = added_sets_0 + added_sets_1 + added_sets_2;
3180 combine_extras++;
3181
3182 if (GET_CODE (newpat) == PARALLEL)
3183 {
3184 rtvec old = XVEC (newpat, 0);
3185 total_sets = XVECLEN (newpat, 0) + extra_sets;
3186 newpat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (total_sets));
3187 memcpy (XVEC (newpat, 0)->elem, &old->elem[0],
3188 sizeof (old->elem[0]) * old->num_elem);
3189 }
3190 else
3191 {
3192 rtx old = newpat;
3193 total_sets = 1 + extra_sets;
3194 newpat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (total_sets));
3195 XVECEXP (newpat, 0, 0) = old;
3196 }
3197
3198 if (added_sets_0)
3199 XVECEXP (newpat, 0, --total_sets) = i0pat;
3200
3201 if (added_sets_1)
3202 {
3203 rtx t = i1pat;
3204 if (i0_feeds_i1_n)
3205 t = subst (t, i0dest, i0src_copy ? i0src_copy : i0src, 0, 0, 0);
3206
3207 XVECEXP (newpat, 0, --total_sets) = t;
3208 }
3209 if (added_sets_2)
3210 {
3211 rtx t = i2pat;
3212 if (i1_feeds_i2_n)
3213 t = subst (t, i1dest, i1src_copy ? i1src_copy : i1src, 0, 0,
3214 i0_feeds_i1_n && i0dest_in_i0src);
3215 if ((i0_feeds_i1_n && i1_feeds_i2_n) || i0_feeds_i2_n)
3216 t = subst (t, i0dest, i0src_copy2 ? i0src_copy2 : i0src, 0, 0, 0);
3217
3218 XVECEXP (newpat, 0, --total_sets) = t;
3219 }
3220 }
3221
3222 validate_replacement:
3223
3224 /* Note which hard regs this insn has as inputs. */
3225 mark_used_regs_combine (newpat);
3226
3227 /* If recog_for_combine fails, it strips existing clobbers. If we'll
3228 consider splitting this pattern, we might need these clobbers. */
3229 if (i1 && GET_CODE (newpat) == PARALLEL
3230 && GET_CODE (XVECEXP (newpat, 0, XVECLEN (newpat, 0) - 1)) == CLOBBER)
3231 {
3232 int len = XVECLEN (newpat, 0);
3233
3234 newpat_vec_with_clobbers = rtvec_alloc (len);
3235 for (i = 0; i < len; i++)
3236 RTVEC_ELT (newpat_vec_with_clobbers, i) = XVECEXP (newpat, 0, i);
3237 }
3238
3239 /* Is the result of combination a valid instruction? */
3240 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3241
3242 /* If the result isn't valid, see if it is a PARALLEL of two SETs where
3243 the second SET's destination is a register that is unused and isn't
3244 marked as an instruction that might trap in an EH region. In that case,
3245 we just need the first SET. This can occur when simplifying a divmod
3246 insn. We *must* test for this case here because the code below that
3247 splits two independent SETs doesn't handle this case correctly when it
3248 updates the register status.
3249
3250 It's pointless doing this if we originally had two sets, one from
3251 i3, and one from i2. Combining then splitting the parallel results
3252 in the original i2 again plus an invalid insn (which we delete).
3253 The net effect is only to move instructions around, which makes
3254 debug info less accurate.
3255
3256 Also check the case where the first SET's destination is unused.
3257 That would not cause incorrect code, but does cause an unneeded
3258 insn to remain. */
3259
3260 if (insn_code_number < 0
3261 && !(added_sets_2 && i1 == 0)
3262 && GET_CODE (newpat) == PARALLEL
3263 && XVECLEN (newpat, 0) == 2
3264 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
3265 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
3266 && asm_noperands (newpat) < 0)
3267 {
3268 rtx set0 = XVECEXP (newpat, 0, 0);
3269 rtx set1 = XVECEXP (newpat, 0, 1);
3270
3271 if (((REG_P (SET_DEST (set1))
3272 && find_reg_note (i3, REG_UNUSED, SET_DEST (set1)))
3273 || (GET_CODE (SET_DEST (set1)) == SUBREG
3274 && find_reg_note (i3, REG_UNUSED, SUBREG_REG (SET_DEST (set1)))))
3275 && insn_nothrow_p (i3)
3276 && !side_effects_p (SET_SRC (set1)))
3277 {
3278 newpat = set0;
3279 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3280 }
3281
3282 else if (((REG_P (SET_DEST (set0))
3283 && find_reg_note (i3, REG_UNUSED, SET_DEST (set0)))
3284 || (GET_CODE (SET_DEST (set0)) == SUBREG
3285 && find_reg_note (i3, REG_UNUSED,
3286 SUBREG_REG (SET_DEST (set0)))))
3287 && insn_nothrow_p (i3)
3288 && !side_effects_p (SET_SRC (set0)))
3289 {
3290 newpat = set1;
3291 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3292
3293 if (insn_code_number >= 0)
3294 changed_i3_dest = 1;
3295 }
3296 }
3297
3298 /* If we were combining three insns and the result is a simple SET
3299 with no ASM_OPERANDS that wasn't recognized, try to split it into two
3300 insns. There are two ways to do this. It can be split using a
3301 machine-specific method (like when you have an addition of a large
3302 constant) or by combine in the function find_split_point. */
3303
3304 if (i1 && insn_code_number < 0 && GET_CODE (newpat) == SET
3305 && asm_noperands (newpat) < 0)
3306 {
3307 rtx parallel, m_split, *split;
3308
3309 /* See if the MD file can split NEWPAT. If it can't, see if letting it
3310 use I2DEST as a scratch register will help. In the latter case,
3311 convert I2DEST to the mode of the source of NEWPAT if we can. */
3312
3313 m_split = combine_split_insns (newpat, i3);
3314
3315 /* We can only use I2DEST as a scratch reg if it doesn't overlap any
3316 inputs of NEWPAT. */
3317
3318 /* ??? If I2DEST is not safe, and I1DEST exists, then it would be
3319 possible to try that as a scratch reg. This would require adding
3320 more code to make it work though. */
3321
3322 if (m_split == 0 && ! reg_overlap_mentioned_p (i2dest, newpat))
3323 {
3324 enum machine_mode new_mode = GET_MODE (SET_DEST (newpat));
3325
3326 /* First try to split using the original register as a
3327 scratch register. */
3328 parallel = gen_rtx_PARALLEL (VOIDmode,
3329 gen_rtvec (2, newpat,
3330 gen_rtx_CLOBBER (VOIDmode,
3331 i2dest)));
3332 m_split = combine_split_insns (parallel, i3);
3333
3334 /* If that didn't work, try changing the mode of I2DEST if
3335 we can. */
3336 if (m_split == 0
3337 && new_mode != GET_MODE (i2dest)
3338 && new_mode != VOIDmode
3339 && can_change_dest_mode (i2dest, added_sets_2, new_mode))
3340 {
3341 enum machine_mode old_mode = GET_MODE (i2dest);
3342 rtx ni2dest;
3343
3344 if (REGNO (i2dest) < FIRST_PSEUDO_REGISTER)
3345 ni2dest = gen_rtx_REG (new_mode, REGNO (i2dest));
3346 else
3347 {
3348 SUBST_MODE (regno_reg_rtx[REGNO (i2dest)], new_mode);
3349 ni2dest = regno_reg_rtx[REGNO (i2dest)];
3350 }
3351
3352 parallel = (gen_rtx_PARALLEL
3353 (VOIDmode,
3354 gen_rtvec (2, newpat,
3355 gen_rtx_CLOBBER (VOIDmode,
3356 ni2dest))));
3357 m_split = combine_split_insns (parallel, i3);
3358
3359 if (m_split == 0
3360 && REGNO (i2dest) >= FIRST_PSEUDO_REGISTER)
3361 {
3362 struct undo *buf;
3363
3364 adjust_reg_mode (regno_reg_rtx[REGNO (i2dest)], old_mode);
3365 buf = undobuf.undos;
3366 undobuf.undos = buf->next;
3367 buf->next = undobuf.frees;
3368 undobuf.frees = buf;
3369 }
3370 }
3371
3372 i2scratch = m_split != 0;
3373 }
3374
3375 /* If recog_for_combine has discarded clobbers, try to use them
3376 again for the split. */
3377 if (m_split == 0 && newpat_vec_with_clobbers)
3378 {
3379 parallel = gen_rtx_PARALLEL (VOIDmode, newpat_vec_with_clobbers);
3380 m_split = combine_split_insns (parallel, i3);
3381 }
3382
3383 if (m_split && NEXT_INSN (m_split) == NULL_RTX)
3384 {
3385 m_split = PATTERN (m_split);
3386 insn_code_number = recog_for_combine (&m_split, i3, &new_i3_notes);
3387 if (insn_code_number >= 0)
3388 newpat = m_split;
3389 }
3390 else if (m_split && NEXT_INSN (NEXT_INSN (m_split)) == NULL_RTX
3391 && (next_nonnote_nondebug_insn (i2) == i3
3392 || ! use_crosses_set_p (PATTERN (m_split), DF_INSN_LUID (i2))))
3393 {
3394 rtx i2set, i3set;
3395 rtx newi3pat = PATTERN (NEXT_INSN (m_split));
3396 newi2pat = PATTERN (m_split);
3397
3398 i3set = single_set (NEXT_INSN (m_split));
3399 i2set = single_set (m_split);
3400
3401 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
3402
3403 /* If I2 or I3 has multiple SETs, we won't know how to track
3404 register status, so don't use these insns. If I2's destination
3405 is used between I2 and I3, we also can't use these insns. */
3406
3407 if (i2_code_number >= 0 && i2set && i3set
3408 && (next_nonnote_nondebug_insn (i2) == i3
3409 || ! reg_used_between_p (SET_DEST (i2set), i2, i3)))
3410 insn_code_number = recog_for_combine (&newi3pat, i3,
3411 &new_i3_notes);
3412 if (insn_code_number >= 0)
3413 newpat = newi3pat;
3414
3415 /* It is possible that both insns now set the destination of I3.
3416 If so, we must show an extra use of it. */
3417
3418 if (insn_code_number >= 0)
3419 {
3420 rtx new_i3_dest = SET_DEST (i3set);
3421 rtx new_i2_dest = SET_DEST (i2set);
3422
3423 while (GET_CODE (new_i3_dest) == ZERO_EXTRACT
3424 || GET_CODE (new_i3_dest) == STRICT_LOW_PART
3425 || GET_CODE (new_i3_dest) == SUBREG)
3426 new_i3_dest = XEXP (new_i3_dest, 0);
3427
3428 while (GET_CODE (new_i2_dest) == ZERO_EXTRACT
3429 || GET_CODE (new_i2_dest) == STRICT_LOW_PART
3430 || GET_CODE (new_i2_dest) == SUBREG)
3431 new_i2_dest = XEXP (new_i2_dest, 0);
3432
3433 if (REG_P (new_i3_dest)
3434 && REG_P (new_i2_dest)
3435 && REGNO (new_i3_dest) == REGNO (new_i2_dest))
3436 INC_REG_N_SETS (REGNO (new_i2_dest), 1);
3437 }
3438 }
3439
3440 /* If we can split it and use I2DEST, go ahead and see if that
3441 helps things be recognized. Verify that none of the registers
3442 are set between I2 and I3. */
3443 if (insn_code_number < 0
3444 && (split = find_split_point (&newpat, i3, false)) != 0
3445 #ifdef HAVE_cc0
3446 && REG_P (i2dest)
3447 #endif
3448 /* We need I2DEST in the proper mode. If it is a hard register
3449 or the only use of a pseudo, we can change its mode.
3450 Make sure we don't change a hard register to have a mode that
3451 isn't valid for it, or change the number of registers. */
3452 && (GET_MODE (*split) == GET_MODE (i2dest)
3453 || GET_MODE (*split) == VOIDmode
3454 || can_change_dest_mode (i2dest, added_sets_2,
3455 GET_MODE (*split)))
3456 && (next_nonnote_nondebug_insn (i2) == i3
3457 || ! use_crosses_set_p (*split, DF_INSN_LUID (i2)))
3458 /* We can't overwrite I2DEST if its value is still used by
3459 NEWPAT. */
3460 && ! reg_referenced_p (i2dest, newpat))
3461 {
3462 rtx newdest = i2dest;
3463 enum rtx_code split_code = GET_CODE (*split);
3464 enum machine_mode split_mode = GET_MODE (*split);
3465 bool subst_done = false;
3466 newi2pat = NULL_RTX;
3467
3468 i2scratch = true;
3469
3470 /* *SPLIT may be part of I2SRC, so make sure we have the
3471 original expression around for later debug processing.
3472 We should not need I2SRC any more in other cases. */
3473 if (MAY_HAVE_DEBUG_INSNS)
3474 i2src = copy_rtx (i2src);
3475 else
3476 i2src = NULL;
3477
3478 /* Get NEWDEST as a register in the proper mode. We have already
3479 validated that we can do this. */
3480 if (GET_MODE (i2dest) != split_mode && split_mode != VOIDmode)
3481 {
3482 if (REGNO (i2dest) < FIRST_PSEUDO_REGISTER)
3483 newdest = gen_rtx_REG (split_mode, REGNO (i2dest));
3484 else
3485 {
3486 SUBST_MODE (regno_reg_rtx[REGNO (i2dest)], split_mode);
3487 newdest = regno_reg_rtx[REGNO (i2dest)];
3488 }
3489 }
3490
3491 /* If *SPLIT is a (mult FOO (const_int pow2)), convert it to
3492 an ASHIFT. This can occur if it was inside a PLUS and hence
3493 appeared to be a memory address. This is a kludge. */
3494 if (split_code == MULT
3495 && CONST_INT_P (XEXP (*split, 1))
3496 && INTVAL (XEXP (*split, 1)) > 0
3497 && (i = exact_log2 (UINTVAL (XEXP (*split, 1)))) >= 0)
3498 {
3499 SUBST (*split, gen_rtx_ASHIFT (split_mode,
3500 XEXP (*split, 0), GEN_INT (i)));
3501 /* Update split_code because we may not have a multiply
3502 anymore. */
3503 split_code = GET_CODE (*split);
3504 }
3505
3506 #ifdef INSN_SCHEDULING
3507 /* If *SPLIT is a paradoxical SUBREG, when we split it, it should
3508 be written as a ZERO_EXTEND. */
3509 if (split_code == SUBREG && MEM_P (SUBREG_REG (*split)))
3510 {
3511 #ifdef LOAD_EXTEND_OP
3512 /* Or as a SIGN_EXTEND if LOAD_EXTEND_OP says that that's
3513 what it really is. */
3514 if (LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (*split)))
3515 == SIGN_EXTEND)
3516 SUBST (*split, gen_rtx_SIGN_EXTEND (split_mode,
3517 SUBREG_REG (*split)));
3518 else
3519 #endif
3520 SUBST (*split, gen_rtx_ZERO_EXTEND (split_mode,
3521 SUBREG_REG (*split)));
3522 }
3523 #endif
3524
3525 /* Attempt to split binary operators using arithmetic identities. */
3526 if (BINARY_P (SET_SRC (newpat))
3527 && split_mode == GET_MODE (SET_SRC (newpat))
3528 && ! side_effects_p (SET_SRC (newpat)))
3529 {
3530 rtx setsrc = SET_SRC (newpat);
3531 enum machine_mode mode = GET_MODE (setsrc);
3532 enum rtx_code code = GET_CODE (setsrc);
3533 rtx src_op0 = XEXP (setsrc, 0);
3534 rtx src_op1 = XEXP (setsrc, 1);
3535
3536 /* Split "X = Y op Y" as "Z = Y; X = Z op Z". */
3537 if (rtx_equal_p (src_op0, src_op1))
3538 {
3539 newi2pat = gen_rtx_SET (VOIDmode, newdest, src_op0);
3540 SUBST (XEXP (setsrc, 0), newdest);
3541 SUBST (XEXP (setsrc, 1), newdest);
3542 subst_done = true;
3543 }
3544 /* Split "((P op Q) op R) op S" where op is PLUS or MULT. */
3545 else if ((code == PLUS || code == MULT)
3546 && GET_CODE (src_op0) == code
3547 && GET_CODE (XEXP (src_op0, 0)) == code
3548 && (INTEGRAL_MODE_P (mode)
3549 || (FLOAT_MODE_P (mode)
3550 && flag_unsafe_math_optimizations)))
3551 {
3552 rtx p = XEXP (XEXP (src_op0, 0), 0);
3553 rtx q = XEXP (XEXP (src_op0, 0), 1);
3554 rtx r = XEXP (src_op0, 1);
3555 rtx s = src_op1;
3556
3557 /* Split both "((X op Y) op X) op Y" and
3558 "((X op Y) op Y) op X" as "T op T" where T is
3559 "X op Y". */
3560 if ((rtx_equal_p (p,r) && rtx_equal_p (q,s))
3561 || (rtx_equal_p (p,s) && rtx_equal_p (q,r)))
3562 {
3563 newi2pat = gen_rtx_SET (VOIDmode, newdest,
3564 XEXP (src_op0, 0));
3565 SUBST (XEXP (setsrc, 0), newdest);
3566 SUBST (XEXP (setsrc, 1), newdest);
3567 subst_done = true;
3568 }
3569 /* Split "((X op X) op Y) op Y)" as "T op T" where
3570 T is "X op Y". */
3571 else if (rtx_equal_p (p,q) && rtx_equal_p (r,s))
3572 {
3573 rtx tmp = simplify_gen_binary (code, mode, p, r);
3574 newi2pat = gen_rtx_SET (VOIDmode, newdest, tmp);
3575 SUBST (XEXP (setsrc, 0), newdest);
3576 SUBST (XEXP (setsrc, 1), newdest);
3577 subst_done = true;
3578 }
3579 }
3580 }
3581
3582 if (!subst_done)
3583 {
3584 newi2pat = gen_rtx_SET (VOIDmode, newdest, *split);
3585 SUBST (*split, newdest);
3586 }
3587
3588 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
3589
3590 /* recog_for_combine might have added CLOBBERs to newi2pat.
3591 Make sure NEWPAT does not depend on the clobbered regs. */
3592 if (GET_CODE (newi2pat) == PARALLEL)
3593 for (i = XVECLEN (newi2pat, 0) - 1; i >= 0; i--)
3594 if (GET_CODE (XVECEXP (newi2pat, 0, i)) == CLOBBER)
3595 {
3596 rtx reg = XEXP (XVECEXP (newi2pat, 0, i), 0);
3597 if (reg_overlap_mentioned_p (reg, newpat))
3598 {
3599 undo_all ();
3600 return 0;
3601 }
3602 }
3603
3604 /* If the split point was a MULT and we didn't have one before,
3605 don't use one now. */
3606 if (i2_code_number >= 0 && ! (split_code == MULT && ! have_mult))
3607 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3608 }
3609 }
3610
3611 /* Check for a case where we loaded from memory in a narrow mode and
3612 then sign extended it, but we need both registers. In that case,
3613 we have a PARALLEL with both loads from the same memory location.
3614 We can split this into a load from memory followed by a register-register
3615 copy. This saves at least one insn, more if register allocation can
3616 eliminate the copy.
3617
3618 We cannot do this if the destination of the first assignment is a
3619 condition code register or cc0. We eliminate this case by making sure
3620 the SET_DEST and SET_SRC have the same mode.
3621
3622 We cannot do this if the destination of the second assignment is
3623 a register that we have already assumed is zero-extended. Similarly
3624 for a SUBREG of such a register. */
3625
3626 else if (i1 && insn_code_number < 0 && asm_noperands (newpat) < 0
3627 && GET_CODE (newpat) == PARALLEL
3628 && XVECLEN (newpat, 0) == 2
3629 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
3630 && GET_CODE (SET_SRC (XVECEXP (newpat, 0, 0))) == SIGN_EXTEND
3631 && (GET_MODE (SET_DEST (XVECEXP (newpat, 0, 0)))
3632 == GET_MODE (SET_SRC (XVECEXP (newpat, 0, 0))))
3633 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
3634 && rtx_equal_p (SET_SRC (XVECEXP (newpat, 0, 1)),
3635 XEXP (SET_SRC (XVECEXP (newpat, 0, 0)), 0))
3636 && ! use_crosses_set_p (SET_SRC (XVECEXP (newpat, 0, 1)),
3637 DF_INSN_LUID (i2))
3638 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != ZERO_EXTRACT
3639 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != STRICT_LOW_PART
3640 && ! (temp = SET_DEST (XVECEXP (newpat, 0, 1)),
3641 (REG_P (temp)
3642 && reg_stat[REGNO (temp)].nonzero_bits != 0
3643 && GET_MODE_PRECISION (GET_MODE (temp)) < BITS_PER_WORD
3644 && GET_MODE_PRECISION (GET_MODE (temp)) < HOST_BITS_PER_INT
3645 && (reg_stat[REGNO (temp)].nonzero_bits
3646 != GET_MODE_MASK (word_mode))))
3647 && ! (GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) == SUBREG
3648 && (temp = SUBREG_REG (SET_DEST (XVECEXP (newpat, 0, 1))),
3649 (REG_P (temp)
3650 && reg_stat[REGNO (temp)].nonzero_bits != 0
3651 && GET_MODE_PRECISION (GET_MODE (temp)) < BITS_PER_WORD
3652 && GET_MODE_PRECISION (GET_MODE (temp)) < HOST_BITS_PER_INT
3653 && (reg_stat[REGNO (temp)].nonzero_bits
3654 != GET_MODE_MASK (word_mode)))))
3655 && ! reg_overlap_mentioned_p (SET_DEST (XVECEXP (newpat, 0, 1)),
3656 SET_SRC (XVECEXP (newpat, 0, 1)))
3657 && ! find_reg_note (i3, REG_UNUSED,
3658 SET_DEST (XVECEXP (newpat, 0, 0))))
3659 {
3660 rtx ni2dest;
3661
3662 newi2pat = XVECEXP (newpat, 0, 0);
3663 ni2dest = SET_DEST (XVECEXP (newpat, 0, 0));
3664 newpat = XVECEXP (newpat, 0, 1);
3665 SUBST (SET_SRC (newpat),
3666 gen_lowpart (GET_MODE (SET_SRC (newpat)), ni2dest));
3667 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
3668
3669 if (i2_code_number >= 0)
3670 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3671
3672 if (insn_code_number >= 0)
3673 swap_i2i3 = 1;
3674 }
3675
3676 /* Similarly, check for a case where we have a PARALLEL of two independent
3677 SETs but we started with three insns. In this case, we can do the sets
3678 as two separate insns. This case occurs when some SET allows two
3679 other insns to combine, but the destination of that SET is still live. */
3680
3681 else if (i1 && insn_code_number < 0 && asm_noperands (newpat) < 0
3682 && GET_CODE (newpat) == PARALLEL
3683 && XVECLEN (newpat, 0) == 2
3684 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
3685 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) != ZERO_EXTRACT
3686 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) != STRICT_LOW_PART
3687 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
3688 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != ZERO_EXTRACT
3689 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != STRICT_LOW_PART
3690 && ! reg_referenced_p (SET_DEST (XVECEXP (newpat, 0, 1)),
3691 XVECEXP (newpat, 0, 0))
3692 && ! reg_referenced_p (SET_DEST (XVECEXP (newpat, 0, 0)),
3693 XVECEXP (newpat, 0, 1))
3694 && ! (contains_muldiv (SET_SRC (XVECEXP (newpat, 0, 0)))
3695 && contains_muldiv (SET_SRC (XVECEXP (newpat, 0, 1)))))
3696 {
3697 rtx set0 = XVECEXP (newpat, 0, 0);
3698 rtx set1 = XVECEXP (newpat, 0, 1);
3699
3700 /* Normally, it doesn't matter which of the two is done first,
3701 but the one that references cc0 can't be the second, and
3702 one which uses any regs/memory set in between i2 and i3 can't
3703 be first. The PARALLEL might also have been pre-existing in i3,
3704 so we need to make sure that we won't wrongly hoist a SET to i2
3705 that would conflict with a death note present in there. */
3706 if (!use_crosses_set_p (SET_SRC (set1), DF_INSN_LUID (i2))
3707 && !(REG_P (SET_DEST (set1))
3708 && find_reg_note (i2, REG_DEAD, SET_DEST (set1)))
3709 && !(GET_CODE (SET_DEST (set1)) == SUBREG
3710 && find_reg_note (i2, REG_DEAD,
3711 SUBREG_REG (SET_DEST (set1))))
3712 #ifdef HAVE_cc0
3713 && !reg_referenced_p (cc0_rtx, set0)
3714 #endif
3715 )
3716 {
3717 newi2pat = set1;
3718 newpat = set0;
3719 }
3720 else if (!use_crosses_set_p (SET_SRC (set0), DF_INSN_LUID (i2))
3721 && !(REG_P (SET_DEST (set0))
3722 && find_reg_note (i2, REG_DEAD, SET_DEST (set0)))
3723 && !(GET_CODE (SET_DEST (set0)) == SUBREG
3724 && find_reg_note (i2, REG_DEAD,
3725 SUBREG_REG (SET_DEST (set0))))
3726 #ifdef HAVE_cc0
3727 && !reg_referenced_p (cc0_rtx, set1)
3728 #endif
3729 )
3730 {
3731 newi2pat = set0;
3732 newpat = set1;
3733 }
3734 else
3735 {
3736 undo_all ();
3737 return 0;
3738 }
3739
3740 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
3741
3742 if (i2_code_number >= 0)
3743 {
3744 /* recog_for_combine might have added CLOBBERs to newi2pat.
3745 Make sure NEWPAT does not depend on the clobbered regs. */
3746 if (GET_CODE (newi2pat) == PARALLEL)
3747 {
3748 for (i = XVECLEN (newi2pat, 0) - 1; i >= 0; i--)
3749 if (GET_CODE (XVECEXP (newi2pat, 0, i)) == CLOBBER)
3750 {
3751 rtx reg = XEXP (XVECEXP (newi2pat, 0, i), 0);
3752 if (reg_overlap_mentioned_p (reg, newpat))
3753 {
3754 undo_all ();
3755 return 0;
3756 }
3757 }
3758 }
3759
3760 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3761 }
3762 }
3763
3764 /* If it still isn't recognized, fail and change things back the way they
3765 were. */
3766 if ((insn_code_number < 0
3767 /* Is the result a reasonable ASM_OPERANDS? */
3768 && (! check_asm_operands (newpat) || added_sets_1 || added_sets_2)))
3769 {
3770 undo_all ();
3771 return 0;
3772 }
3773
3774 /* If we had to change another insn, make sure it is valid also. */
3775 if (undobuf.other_insn)
3776 {
3777 CLEAR_HARD_REG_SET (newpat_used_regs);
3778
3779 other_pat = PATTERN (undobuf.other_insn);
3780 other_code_number = recog_for_combine (&other_pat, undobuf.other_insn,
3781 &new_other_notes);
3782
3783 if (other_code_number < 0 && ! check_asm_operands (other_pat))
3784 {
3785 undo_all ();
3786 return 0;
3787 }
3788 }
3789
3790 #ifdef HAVE_cc0
3791 /* If I2 is the CC0 setter and I3 is the CC0 user then check whether
3792 they are adjacent to each other or not. */
3793 {
3794 rtx p = prev_nonnote_insn (i3);
3795 if (p && p != i2 && NONJUMP_INSN_P (p) && newi2pat
3796 && sets_cc0_p (newi2pat))
3797 {
3798 undo_all ();
3799 return 0;
3800 }
3801 }
3802 #endif
3803
3804 /* Only allow this combination if insn_rtx_costs reports that the
3805 replacement instructions are cheaper than the originals. */
3806 if (!combine_validate_cost (i0, i1, i2, i3, newpat, newi2pat, other_pat))
3807 {
3808 undo_all ();
3809 return 0;
3810 }
3811
3812 if (MAY_HAVE_DEBUG_INSNS)
3813 {
3814 struct undo *undo;
3815
3816 for (undo = undobuf.undos; undo; undo = undo->next)
3817 if (undo->kind == UNDO_MODE)
3818 {
3819 rtx reg = *undo->where.r;
3820 enum machine_mode new_mode = GET_MODE (reg);
3821 enum machine_mode old_mode = undo->old_contents.m;
3822
3823 /* Temporarily revert mode back. */
3824 adjust_reg_mode (reg, old_mode);
3825
3826 if (reg == i2dest && i2scratch)
3827 {
3828 /* If we used i2dest as a scratch register with a
3829 different mode, substitute it for the original
3830 i2src while its original mode is temporarily
3831 restored, and then clear i2scratch so that we don't
3832 do it again later. */
3833 propagate_for_debug (i2, last_combined_insn, reg, i2src,
3834 this_basic_block);
3835 i2scratch = false;
3836 /* Put back the new mode. */
3837 adjust_reg_mode (reg, new_mode);
3838 }
3839 else
3840 {
3841 rtx tempreg = gen_raw_REG (old_mode, REGNO (reg));
3842 rtx first, last;
3843
3844 if (reg == i2dest)
3845 {
3846 first = i2;
3847 last = last_combined_insn;
3848 }
3849 else
3850 {
3851 first = i3;
3852 last = undobuf.other_insn;
3853 gcc_assert (last);
3854 if (DF_INSN_LUID (last)
3855 < DF_INSN_LUID (last_combined_insn))
3856 last = last_combined_insn;
3857 }
3858
3859 /* We're dealing with a reg that changed mode but not
3860 meaning, so we want to turn it into a subreg for
3861 the new mode. However, because of REG sharing and
3862 because its mode had already changed, we have to do
3863 it in two steps. First, replace any debug uses of
3864 reg, with its original mode temporarily restored,
3865 with this copy we have created; then, replace the
3866 copy with the SUBREG of the original shared reg,
3867 once again changed to the new mode. */
3868 propagate_for_debug (first, last, reg, tempreg,
3869 this_basic_block);
3870 adjust_reg_mode (reg, new_mode);
3871 propagate_for_debug (first, last, tempreg,
3872 lowpart_subreg (old_mode, reg, new_mode),
3873 this_basic_block);
3874 }
3875 }
3876 }
3877
3878 /* If we will be able to accept this, we have made a
3879 change to the destination of I3. This requires us to
3880 do a few adjustments. */
3881
3882 if (changed_i3_dest)
3883 {
3884 PATTERN (i3) = newpat;
3885 adjust_for_new_dest (i3);
3886 }
3887
3888 /* We now know that we can do this combination. Merge the insns and
3889 update the status of registers and LOG_LINKS. */
3890
3891 if (undobuf.other_insn)
3892 {
3893 rtx note, next;
3894
3895 PATTERN (undobuf.other_insn) = other_pat;
3896
3897 /* If any of the notes in OTHER_INSN were REG_UNUSED, ensure that they
3898 are still valid. Then add any non-duplicate notes added by
3899 recog_for_combine. */
3900 for (note = REG_NOTES (undobuf.other_insn); note; note = next)
3901 {
3902 next = XEXP (note, 1);
3903
3904 if (REG_NOTE_KIND (note) == REG_UNUSED
3905 && ! reg_set_p (XEXP (note, 0), PATTERN (undobuf.other_insn)))
3906 remove_note (undobuf.other_insn, note);
3907 }
3908
3909 distribute_notes (new_other_notes, undobuf.other_insn,
3910 undobuf.other_insn, NULL_RTX, NULL_RTX, NULL_RTX,
3911 NULL_RTX);
3912 }
3913
3914 if (swap_i2i3)
3915 {
3916 rtx insn;
3917 struct insn_link *link;
3918 rtx ni2dest;
3919
3920 /* I3 now uses what used to be its destination and which is now
3921 I2's destination. This requires us to do a few adjustments. */
3922 PATTERN (i3) = newpat;
3923 adjust_for_new_dest (i3);
3924
3925 /* We need a LOG_LINK from I3 to I2. But we used to have one,
3926 so we still will.
3927
3928 However, some later insn might be using I2's dest and have
3929 a LOG_LINK pointing at I3. We must remove this link.
3930 The simplest way to remove the link is to point it at I1,
3931 which we know will be a NOTE. */
3932
3933 /* newi2pat is usually a SET here; however, recog_for_combine might
3934 have added some clobbers. */
3935 if (GET_CODE (newi2pat) == PARALLEL)
3936 ni2dest = SET_DEST (XVECEXP (newi2pat, 0, 0));
3937 else
3938 ni2dest = SET_DEST (newi2pat);
3939
3940 for (insn = NEXT_INSN (i3);
3941 insn && (this_basic_block->next_bb == EXIT_BLOCK_PTR_FOR_FN (cfun)
3942 || insn != BB_HEAD (this_basic_block->next_bb));
3943 insn = NEXT_INSN (insn))
3944 {
3945 if (INSN_P (insn) && reg_referenced_p (ni2dest, PATTERN (insn)))
3946 {
3947 FOR_EACH_LOG_LINK (link, insn)
3948 if (link->insn == i3)
3949 link->insn = i1;
3950
3951 break;
3952 }
3953 }
3954 }
3955
3956 {
3957 rtx i3notes, i2notes, i1notes = 0, i0notes = 0;
3958 struct insn_link *i3links, *i2links, *i1links = 0, *i0links = 0;
3959 rtx midnotes = 0;
3960 int from_luid;
3961 /* Compute which registers we expect to eliminate. newi2pat may be setting
3962 either i3dest or i2dest, so we must check it. Also, i1dest may be the
3963 same as i3dest, in which case newi2pat may be setting i1dest. */
3964 rtx elim_i2 = ((newi2pat && reg_set_p (i2dest, newi2pat))
3965 || i2dest_in_i2src || i2dest_in_i1src || i2dest_in_i0src
3966 || !i2dest_killed
3967 ? 0 : i2dest);
3968 rtx elim_i1 = (i1 == 0 || i1dest_in_i1src || i1dest_in_i0src
3969 || (newi2pat && reg_set_p (i1dest, newi2pat))
3970 || !i1dest_killed
3971 ? 0 : i1dest);
3972 rtx elim_i0 = (i0 == 0 || i0dest_in_i0src
3973 || (newi2pat && reg_set_p (i0dest, newi2pat))
3974 || !i0dest_killed
3975 ? 0 : i0dest);
3976
3977 /* Get the old REG_NOTES and LOG_LINKS from all our insns and
3978 clear them. */
3979 i3notes = REG_NOTES (i3), i3links = LOG_LINKS (i3);
3980 i2notes = REG_NOTES (i2), i2links = LOG_LINKS (i2);
3981 if (i1)
3982 i1notes = REG_NOTES (i1), i1links = LOG_LINKS (i1);
3983 if (i0)
3984 i0notes = REG_NOTES (i0), i0links = LOG_LINKS (i0);
3985
3986 /* Ensure that we do not have something that should not be shared but
3987 occurs multiple times in the new insns. Check this by first
3988 resetting all the `used' flags and then copying anything is shared. */
3989
3990 reset_used_flags (i3notes);
3991 reset_used_flags (i2notes);
3992 reset_used_flags (i1notes);
3993 reset_used_flags (i0notes);
3994 reset_used_flags (newpat);
3995 reset_used_flags (newi2pat);
3996 if (undobuf.other_insn)
3997 reset_used_flags (PATTERN (undobuf.other_insn));
3998
3999 i3notes = copy_rtx_if_shared (i3notes);
4000 i2notes = copy_rtx_if_shared (i2notes);
4001 i1notes = copy_rtx_if_shared (i1notes);
4002 i0notes = copy_rtx_if_shared (i0notes);
4003 newpat = copy_rtx_if_shared (newpat);
4004 newi2pat = copy_rtx_if_shared (newi2pat);
4005 if (undobuf.other_insn)
4006 reset_used_flags (PATTERN (undobuf.other_insn));
4007
4008 INSN_CODE (i3) = insn_code_number;
4009 PATTERN (i3) = newpat;
4010
4011 if (CALL_P (i3) && CALL_INSN_FUNCTION_USAGE (i3))
4012 {
4013 rtx call_usage = CALL_INSN_FUNCTION_USAGE (i3);
4014
4015 reset_used_flags (call_usage);
4016 call_usage = copy_rtx (call_usage);
4017
4018 if (substed_i2)
4019 {
4020 /* I2SRC must still be meaningful at this point. Some splitting
4021 operations can invalidate I2SRC, but those operations do not
4022 apply to calls. */
4023 gcc_assert (i2src);
4024 replace_rtx (call_usage, i2dest, i2src);
4025 }
4026
4027 if (substed_i1)
4028 replace_rtx (call_usage, i1dest, i1src);
4029 if (substed_i0)
4030 replace_rtx (call_usage, i0dest, i0src);
4031
4032 CALL_INSN_FUNCTION_USAGE (i3) = call_usage;
4033 }
4034
4035 if (undobuf.other_insn)
4036 INSN_CODE (undobuf.other_insn) = other_code_number;
4037
4038 /* We had one special case above where I2 had more than one set and
4039 we replaced a destination of one of those sets with the destination
4040 of I3. In that case, we have to update LOG_LINKS of insns later
4041 in this basic block. Note that this (expensive) case is rare.
4042
4043 Also, in this case, we must pretend that all REG_NOTEs for I2
4044 actually came from I3, so that REG_UNUSED notes from I2 will be
4045 properly handled. */
4046
4047 if (i3_subst_into_i2)
4048 {
4049 for (i = 0; i < XVECLEN (PATTERN (i2), 0); i++)
4050 if ((GET_CODE (XVECEXP (PATTERN (i2), 0, i)) == SET
4051 || GET_CODE (XVECEXP (PATTERN (i2), 0, i)) == CLOBBER)
4052 && REG_P (SET_DEST (XVECEXP (PATTERN (i2), 0, i)))
4053 && SET_DEST (XVECEXP (PATTERN (i2), 0, i)) != i2dest
4054 && ! find_reg_note (i2, REG_UNUSED,
4055 SET_DEST (XVECEXP (PATTERN (i2), 0, i))))
4056 for (temp = NEXT_INSN (i2);
4057 temp
4058 && (this_basic_block->next_bb == EXIT_BLOCK_PTR_FOR_FN (cfun)
4059 || BB_HEAD (this_basic_block) != temp);
4060 temp = NEXT_INSN (temp))
4061 if (temp != i3 && INSN_P (temp))
4062 FOR_EACH_LOG_LINK (link, temp)
4063 if (link->insn == i2)
4064 link->insn = i3;
4065
4066 if (i3notes)
4067 {
4068 rtx link = i3notes;
4069 while (XEXP (link, 1))
4070 link = XEXP (link, 1);
4071 XEXP (link, 1) = i2notes;
4072 }
4073 else
4074 i3notes = i2notes;
4075 i2notes = 0;
4076 }
4077
4078 LOG_LINKS (i3) = NULL;
4079 REG_NOTES (i3) = 0;
4080 LOG_LINKS (i2) = NULL;
4081 REG_NOTES (i2) = 0;
4082
4083 if (newi2pat)
4084 {
4085 if (MAY_HAVE_DEBUG_INSNS && i2scratch)
4086 propagate_for_debug (i2, last_combined_insn, i2dest, i2src,
4087 this_basic_block);
4088 INSN_CODE (i2) = i2_code_number;
4089 PATTERN (i2) = newi2pat;
4090 }
4091 else
4092 {
4093 if (MAY_HAVE_DEBUG_INSNS && i2src)
4094 propagate_for_debug (i2, last_combined_insn, i2dest, i2src,
4095 this_basic_block);
4096 SET_INSN_DELETED (i2);
4097 }
4098
4099 if (i1)
4100 {
4101 LOG_LINKS (i1) = NULL;
4102 REG_NOTES (i1) = 0;
4103 if (MAY_HAVE_DEBUG_INSNS)
4104 propagate_for_debug (i1, last_combined_insn, i1dest, i1src,
4105 this_basic_block);
4106 SET_INSN_DELETED (i1);
4107 }
4108
4109 if (i0)
4110 {
4111 LOG_LINKS (i0) = NULL;
4112 REG_NOTES (i0) = 0;
4113 if (MAY_HAVE_DEBUG_INSNS)
4114 propagate_for_debug (i0, last_combined_insn, i0dest, i0src,
4115 this_basic_block);
4116 SET_INSN_DELETED (i0);
4117 }
4118
4119 /* Get death notes for everything that is now used in either I3 or
4120 I2 and used to die in a previous insn. If we built two new
4121 patterns, move from I1 to I2 then I2 to I3 so that we get the
4122 proper movement on registers that I2 modifies. */
4123
4124 if (i0)
4125 from_luid = DF_INSN_LUID (i0);
4126 else if (i1)
4127 from_luid = DF_INSN_LUID (i1);
4128 else
4129 from_luid = DF_INSN_LUID (i2);
4130 if (newi2pat)
4131 move_deaths (newi2pat, NULL_RTX, from_luid, i2, &midnotes);
4132 move_deaths (newpat, newi2pat, from_luid, i3, &midnotes);
4133
4134 /* Distribute all the LOG_LINKS and REG_NOTES from I1, I2, and I3. */
4135 if (i3notes)
4136 distribute_notes (i3notes, i3, i3, newi2pat ? i2 : NULL_RTX,
4137 elim_i2, elim_i1, elim_i0);
4138 if (i2notes)
4139 distribute_notes (i2notes, i2, i3, newi2pat ? i2 : NULL_RTX,
4140 elim_i2, elim_i1, elim_i0);
4141 if (i1notes)
4142 distribute_notes (i1notes, i1, i3, newi2pat ? i2 : NULL_RTX,
4143 elim_i2, elim_i1, elim_i0);
4144 if (i0notes)
4145 distribute_notes (i0notes, i0, i3, newi2pat ? i2 : NULL_RTX,
4146 elim_i2, elim_i1, elim_i0);
4147 if (midnotes)
4148 distribute_notes (midnotes, NULL_RTX, i3, newi2pat ? i2 : NULL_RTX,
4149 elim_i2, elim_i1, elim_i0);
4150
4151 /* Distribute any notes added to I2 or I3 by recog_for_combine. We
4152 know these are REG_UNUSED and want them to go to the desired insn,
4153 so we always pass it as i3. */
4154
4155 if (newi2pat && new_i2_notes)
4156 distribute_notes (new_i2_notes, i2, i2, NULL_RTX, NULL_RTX, NULL_RTX,
4157 NULL_RTX);
4158
4159 if (new_i3_notes)
4160 distribute_notes (new_i3_notes, i3, i3, NULL_RTX, NULL_RTX, NULL_RTX,
4161 NULL_RTX);
4162
4163 /* If I3DEST was used in I3SRC, it really died in I3. We may need to
4164 put a REG_DEAD note for it somewhere. If NEWI2PAT exists and sets
4165 I3DEST, the death must be somewhere before I2, not I3. If we passed I3
4166 in that case, it might delete I2. Similarly for I2 and I1.
4167 Show an additional death due to the REG_DEAD note we make here. If
4168 we discard it in distribute_notes, we will decrement it again. */
4169
4170 if (i3dest_killed)
4171 {
4172 rtx new_note = alloc_reg_note (REG_DEAD, i3dest_killed, NULL_RTX);
4173 if (newi2pat && reg_set_p (i3dest_killed, newi2pat))
4174 distribute_notes (new_note, NULL_RTX, i2, NULL_RTX, elim_i2,
4175 elim_i1, elim_i0);
4176 else
4177 distribute_notes (new_note, NULL_RTX, i3, newi2pat ? i2 : NULL_RTX,
4178 elim_i2, elim_i1, elim_i0);
4179 }
4180
4181 if (i2dest_in_i2src)
4182 {
4183 rtx new_note = alloc_reg_note (REG_DEAD, i2dest, NULL_RTX);
4184 if (newi2pat && reg_set_p (i2dest, newi2pat))
4185 distribute_notes (new_note, NULL_RTX, i2, NULL_RTX, NULL_RTX,
4186 NULL_RTX, NULL_RTX);
4187 else
4188 distribute_notes (new_note, NULL_RTX, i3, newi2pat ? i2 : NULL_RTX,
4189 NULL_RTX, NULL_RTX, NULL_RTX);
4190 }
4191
4192 if (i1dest_in_i1src)
4193 {
4194 rtx new_note = alloc_reg_note (REG_DEAD, i1dest, NULL_RTX);
4195 if (newi2pat && reg_set_p (i1dest, newi2pat))
4196 distribute_notes (new_note, NULL_RTX, i2, NULL_RTX, NULL_RTX,
4197 NULL_RTX, NULL_RTX);
4198 else
4199 distribute_notes (new_note, NULL_RTX, i3, newi2pat ? i2 : NULL_RTX,
4200 NULL_RTX, NULL_RTX, NULL_RTX);
4201 }
4202
4203 if (i0dest_in_i0src)
4204 {
4205 rtx new_note = alloc_reg_note (REG_DEAD, i0dest, NULL_RTX);
4206 if (newi2pat && reg_set_p (i0dest, newi2pat))
4207 distribute_notes (new_note, NULL_RTX, i2, NULL_RTX, NULL_RTX,
4208 NULL_RTX, NULL_RTX);
4209 else
4210 distribute_notes (new_note, NULL_RTX, i3, newi2pat ? i2 : NULL_RTX,
4211 NULL_RTX, NULL_RTX, NULL_RTX);
4212 }
4213
4214 distribute_links (i3links);
4215 distribute_links (i2links);
4216 distribute_links (i1links);
4217 distribute_links (i0links);
4218
4219 if (REG_P (i2dest))
4220 {
4221 struct insn_link *link;
4222 rtx i2_insn = 0, i2_val = 0, set;
4223
4224 /* The insn that used to set this register doesn't exist, and
4225 this life of the register may not exist either. See if one of
4226 I3's links points to an insn that sets I2DEST. If it does,
4227 that is now the last known value for I2DEST. If we don't update
4228 this and I2 set the register to a value that depended on its old
4229 contents, we will get confused. If this insn is used, thing
4230 will be set correctly in combine_instructions. */
4231 FOR_EACH_LOG_LINK (link, i3)
4232 if ((set = single_set (link->insn)) != 0
4233 && rtx_equal_p (i2dest, SET_DEST (set)))
4234 i2_insn = link->insn, i2_val = SET_SRC (set);
4235
4236 record_value_for_reg (i2dest, i2_insn, i2_val);
4237
4238 /* If the reg formerly set in I2 died only once and that was in I3,
4239 zero its use count so it won't make `reload' do any work. */
4240 if (! added_sets_2
4241 && (newi2pat == 0 || ! reg_mentioned_p (i2dest, newi2pat))
4242 && ! i2dest_in_i2src)
4243 INC_REG_N_SETS (REGNO (i2dest), -1);
4244 }
4245
4246 if (i1 && REG_P (i1dest))
4247 {
4248 struct insn_link *link;
4249 rtx i1_insn = 0, i1_val = 0, set;
4250
4251 FOR_EACH_LOG_LINK (link, i3)
4252 if ((set = single_set (link->insn)) != 0
4253 && rtx_equal_p (i1dest, SET_DEST (set)))
4254 i1_insn = link->insn, i1_val = SET_SRC (set);
4255
4256 record_value_for_reg (i1dest, i1_insn, i1_val);
4257
4258 if (! added_sets_1 && ! i1dest_in_i1src)
4259 INC_REG_N_SETS (REGNO (i1dest), -1);
4260 }
4261
4262 if (i0 && REG_P (i0dest))
4263 {
4264 struct insn_link *link;
4265 rtx i0_insn = 0, i0_val = 0, set;
4266
4267 FOR_EACH_LOG_LINK (link, i3)
4268 if ((set = single_set (link->insn)) != 0
4269 && rtx_equal_p (i0dest, SET_DEST (set)))
4270 i0_insn = link->insn, i0_val = SET_SRC (set);
4271
4272 record_value_for_reg (i0dest, i0_insn, i0_val);
4273
4274 if (! added_sets_0 && ! i0dest_in_i0src)
4275 INC_REG_N_SETS (REGNO (i0dest), -1);
4276 }
4277
4278 /* Update reg_stat[].nonzero_bits et al for any changes that may have
4279 been made to this insn. The order is important, because newi2pat
4280 can affect nonzero_bits of newpat. */
4281 if (newi2pat)
4282 note_stores (newi2pat, set_nonzero_bits_and_sign_copies, NULL);
4283 note_stores (newpat, set_nonzero_bits_and_sign_copies, NULL);
4284 }
4285
4286 if (undobuf.other_insn != NULL_RTX)
4287 {
4288 if (dump_file)
4289 {
4290 fprintf (dump_file, "modifying other_insn ");
4291 dump_insn_slim (dump_file, undobuf.other_insn);
4292 }
4293 df_insn_rescan (undobuf.other_insn);
4294 }
4295
4296 if (i0 && !(NOTE_P (i0) && (NOTE_KIND (i0) == NOTE_INSN_DELETED)))
4297 {
4298 if (dump_file)
4299 {
4300 fprintf (dump_file, "modifying insn i0 ");
4301 dump_insn_slim (dump_file, i0);
4302 }
4303 df_insn_rescan (i0);
4304 }
4305
4306 if (i1 && !(NOTE_P (i1) && (NOTE_KIND (i1) == NOTE_INSN_DELETED)))
4307 {
4308 if (dump_file)
4309 {
4310 fprintf (dump_file, "modifying insn i1 ");
4311 dump_insn_slim (dump_file, i1);
4312 }
4313 df_insn_rescan (i1);
4314 }
4315
4316 if (i2 && !(NOTE_P (i2) && (NOTE_KIND (i2) == NOTE_INSN_DELETED)))
4317 {
4318 if (dump_file)
4319 {
4320 fprintf (dump_file, "modifying insn i2 ");
4321 dump_insn_slim (dump_file, i2);
4322 }
4323 df_insn_rescan (i2);
4324 }
4325
4326 if (i3 && !(NOTE_P (i3) && (NOTE_KIND (i3) == NOTE_INSN_DELETED)))
4327 {
4328 if (dump_file)
4329 {
4330 fprintf (dump_file, "modifying insn i3 ");
4331 dump_insn_slim (dump_file, i3);
4332 }
4333 df_insn_rescan (i3);
4334 }
4335
4336 /* Set new_direct_jump_p if a new return or simple jump instruction
4337 has been created. Adjust the CFG accordingly. */
4338 if (returnjump_p (i3) || any_uncondjump_p (i3))
4339 {
4340 *new_direct_jump_p = 1;
4341 mark_jump_label (PATTERN (i3), i3, 0);
4342 update_cfg_for_uncondjump (i3);
4343 }
4344
4345 if (undobuf.other_insn != NULL_RTX
4346 && (returnjump_p (undobuf.other_insn)
4347 || any_uncondjump_p (undobuf.other_insn)))
4348 {
4349 *new_direct_jump_p = 1;
4350 update_cfg_for_uncondjump (undobuf.other_insn);
4351 }
4352
4353 /* A noop might also need cleaning up of CFG, if it comes from the
4354 simplification of a jump. */
4355 if (JUMP_P (i3)
4356 && GET_CODE (newpat) == SET
4357 && SET_SRC (newpat) == pc_rtx
4358 && SET_DEST (newpat) == pc_rtx)
4359 {
4360 *new_direct_jump_p = 1;
4361 update_cfg_for_uncondjump (i3);
4362 }
4363
4364 if (undobuf.other_insn != NULL_RTX
4365 && JUMP_P (undobuf.other_insn)
4366 && GET_CODE (PATTERN (undobuf.other_insn)) == SET
4367 && SET_SRC (PATTERN (undobuf.other_insn)) == pc_rtx
4368 && SET_DEST (PATTERN (undobuf.other_insn)) == pc_rtx)
4369 {
4370 *new_direct_jump_p = 1;
4371 update_cfg_for_uncondjump (undobuf.other_insn);
4372 }
4373
4374 combine_successes++;
4375 undo_commit ();
4376
4377 if (added_links_insn
4378 && (newi2pat == 0 || DF_INSN_LUID (added_links_insn) < DF_INSN_LUID (i2))
4379 && DF_INSN_LUID (added_links_insn) < DF_INSN_LUID (i3))
4380 return added_links_insn;
4381 else
4382 return newi2pat ? i2 : i3;
4383 }
4384 \f
4385 /* Undo all the modifications recorded in undobuf. */
4386
4387 static void
4388 undo_all (void)
4389 {
4390 struct undo *undo, *next;
4391
4392 for (undo = undobuf.undos; undo; undo = next)
4393 {
4394 next = undo->next;
4395 switch (undo->kind)
4396 {
4397 case UNDO_RTX:
4398 *undo->where.r = undo->old_contents.r;
4399 break;
4400 case UNDO_INT:
4401 *undo->where.i = undo->old_contents.i;
4402 break;
4403 case UNDO_MODE:
4404 adjust_reg_mode (*undo->where.r, undo->old_contents.m);
4405 break;
4406 case UNDO_LINKS:
4407 *undo->where.l = undo->old_contents.l;
4408 break;
4409 default:
4410 gcc_unreachable ();
4411 }
4412
4413 undo->next = undobuf.frees;
4414 undobuf.frees = undo;
4415 }
4416
4417 undobuf.undos = 0;
4418 }
4419
4420 /* We've committed to accepting the changes we made. Move all
4421 of the undos to the free list. */
4422
4423 static void
4424 undo_commit (void)
4425 {
4426 struct undo *undo, *next;
4427
4428 for (undo = undobuf.undos; undo; undo = next)
4429 {
4430 next = undo->next;
4431 undo->next = undobuf.frees;
4432 undobuf.frees = undo;
4433 }
4434 undobuf.undos = 0;
4435 }
4436 \f
4437 /* Find the innermost point within the rtx at LOC, possibly LOC itself,
4438 where we have an arithmetic expression and return that point. LOC will
4439 be inside INSN.
4440
4441 try_combine will call this function to see if an insn can be split into
4442 two insns. */
4443
4444 static rtx *
4445 find_split_point (rtx *loc, rtx insn, bool set_src)
4446 {
4447 rtx x = *loc;
4448 enum rtx_code code = GET_CODE (x);
4449 rtx *split;
4450 unsigned HOST_WIDE_INT len = 0;
4451 HOST_WIDE_INT pos = 0;
4452 int unsignedp = 0;
4453 rtx inner = NULL_RTX;
4454
4455 /* First special-case some codes. */
4456 switch (code)
4457 {
4458 case SUBREG:
4459 #ifdef INSN_SCHEDULING
4460 /* If we are making a paradoxical SUBREG invalid, it becomes a split
4461 point. */
4462 if (MEM_P (SUBREG_REG (x)))
4463 return loc;
4464 #endif
4465 return find_split_point (&SUBREG_REG (x), insn, false);
4466
4467 case MEM:
4468 #ifdef HAVE_lo_sum
4469 /* If we have (mem (const ..)) or (mem (symbol_ref ...)), split it
4470 using LO_SUM and HIGH. */
4471 if (GET_CODE (XEXP (x, 0)) == CONST
4472 || GET_CODE (XEXP (x, 0)) == SYMBOL_REF)
4473 {
4474 enum machine_mode address_mode = get_address_mode (x);
4475
4476 SUBST (XEXP (x, 0),
4477 gen_rtx_LO_SUM (address_mode,
4478 gen_rtx_HIGH (address_mode, XEXP (x, 0)),
4479 XEXP (x, 0)));
4480 return &XEXP (XEXP (x, 0), 0);
4481 }
4482 #endif
4483
4484 /* If we have a PLUS whose second operand is a constant and the
4485 address is not valid, perhaps will can split it up using
4486 the machine-specific way to split large constants. We use
4487 the first pseudo-reg (one of the virtual regs) as a placeholder;
4488 it will not remain in the result. */
4489 if (GET_CODE (XEXP (x, 0)) == PLUS
4490 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
4491 && ! memory_address_addr_space_p (GET_MODE (x), XEXP (x, 0),
4492 MEM_ADDR_SPACE (x)))
4493 {
4494 rtx reg = regno_reg_rtx[FIRST_PSEUDO_REGISTER];
4495 rtx seq = combine_split_insns (gen_rtx_SET (VOIDmode, reg,
4496 XEXP (x, 0)),
4497 subst_insn);
4498
4499 /* This should have produced two insns, each of which sets our
4500 placeholder. If the source of the second is a valid address,
4501 we can make put both sources together and make a split point
4502 in the middle. */
4503
4504 if (seq
4505 && NEXT_INSN (seq) != NULL_RTX
4506 && NEXT_INSN (NEXT_INSN (seq)) == NULL_RTX
4507 && NONJUMP_INSN_P (seq)
4508 && GET_CODE (PATTERN (seq)) == SET
4509 && SET_DEST (PATTERN (seq)) == reg
4510 && ! reg_mentioned_p (reg,
4511 SET_SRC (PATTERN (seq)))
4512 && NONJUMP_INSN_P (NEXT_INSN (seq))
4513 && GET_CODE (PATTERN (NEXT_INSN (seq))) == SET
4514 && SET_DEST (PATTERN (NEXT_INSN (seq))) == reg
4515 && memory_address_addr_space_p
4516 (GET_MODE (x), SET_SRC (PATTERN (NEXT_INSN (seq))),
4517 MEM_ADDR_SPACE (x)))
4518 {
4519 rtx src1 = SET_SRC (PATTERN (seq));
4520 rtx src2 = SET_SRC (PATTERN (NEXT_INSN (seq)));
4521
4522 /* Replace the placeholder in SRC2 with SRC1. If we can
4523 find where in SRC2 it was placed, that can become our
4524 split point and we can replace this address with SRC2.
4525 Just try two obvious places. */
4526
4527 src2 = replace_rtx (src2, reg, src1);
4528 split = 0;
4529 if (XEXP (src2, 0) == src1)
4530 split = &XEXP (src2, 0);
4531 else if (GET_RTX_FORMAT (GET_CODE (XEXP (src2, 0)))[0] == 'e'
4532 && XEXP (XEXP (src2, 0), 0) == src1)
4533 split = &XEXP (XEXP (src2, 0), 0);
4534
4535 if (split)
4536 {
4537 SUBST (XEXP (x, 0), src2);
4538 return split;
4539 }
4540 }
4541
4542 /* If that didn't work, perhaps the first operand is complex and
4543 needs to be computed separately, so make a split point there.
4544 This will occur on machines that just support REG + CONST
4545 and have a constant moved through some previous computation. */
4546
4547 else if (!OBJECT_P (XEXP (XEXP (x, 0), 0))
4548 && ! (GET_CODE (XEXP (XEXP (x, 0), 0)) == SUBREG
4549 && OBJECT_P (SUBREG_REG (XEXP (XEXP (x, 0), 0)))))
4550 return &XEXP (XEXP (x, 0), 0);
4551 }
4552
4553 /* If we have a PLUS whose first operand is complex, try computing it
4554 separately by making a split there. */
4555 if (GET_CODE (XEXP (x, 0)) == PLUS
4556 && ! memory_address_addr_space_p (GET_MODE (x), XEXP (x, 0),
4557 MEM_ADDR_SPACE (x))
4558 && ! OBJECT_P (XEXP (XEXP (x, 0), 0))
4559 && ! (GET_CODE (XEXP (XEXP (x, 0), 0)) == SUBREG
4560 && OBJECT_P (SUBREG_REG (XEXP (XEXP (x, 0), 0)))))
4561 return &XEXP (XEXP (x, 0), 0);
4562 break;
4563
4564 case SET:
4565 #ifdef HAVE_cc0
4566 /* If SET_DEST is CC0 and SET_SRC is not an operand, a COMPARE, or a
4567 ZERO_EXTRACT, the most likely reason why this doesn't match is that
4568 we need to put the operand into a register. So split at that
4569 point. */
4570
4571 if (SET_DEST (x) == cc0_rtx
4572 && GET_CODE (SET_SRC (x)) != COMPARE
4573 && GET_CODE (SET_SRC (x)) != ZERO_EXTRACT
4574 && !OBJECT_P (SET_SRC (x))
4575 && ! (GET_CODE (SET_SRC (x)) == SUBREG
4576 && OBJECT_P (SUBREG_REG (SET_SRC (x)))))
4577 return &SET_SRC (x);
4578 #endif
4579
4580 /* See if we can split SET_SRC as it stands. */
4581 split = find_split_point (&SET_SRC (x), insn, true);
4582 if (split && split != &SET_SRC (x))
4583 return split;
4584
4585 /* See if we can split SET_DEST as it stands. */
4586 split = find_split_point (&SET_DEST (x), insn, false);
4587 if (split && split != &SET_DEST (x))
4588 return split;
4589
4590 /* See if this is a bitfield assignment with everything constant. If
4591 so, this is an IOR of an AND, so split it into that. */
4592 if (GET_CODE (SET_DEST (x)) == ZERO_EXTRACT
4593 && HWI_COMPUTABLE_MODE_P (GET_MODE (XEXP (SET_DEST (x), 0)))
4594 && CONST_INT_P (XEXP (SET_DEST (x), 1))
4595 && CONST_INT_P (XEXP (SET_DEST (x), 2))
4596 && CONST_INT_P (SET_SRC (x))
4597 && ((INTVAL (XEXP (SET_DEST (x), 1))
4598 + INTVAL (XEXP (SET_DEST (x), 2)))
4599 <= GET_MODE_PRECISION (GET_MODE (XEXP (SET_DEST (x), 0))))
4600 && ! side_effects_p (XEXP (SET_DEST (x), 0)))
4601 {
4602 HOST_WIDE_INT pos = INTVAL (XEXP (SET_DEST (x), 2));
4603 unsigned HOST_WIDE_INT len = INTVAL (XEXP (SET_DEST (x), 1));
4604 unsigned HOST_WIDE_INT src = INTVAL (SET_SRC (x));
4605 rtx dest = XEXP (SET_DEST (x), 0);
4606 enum machine_mode mode = GET_MODE (dest);
4607 unsigned HOST_WIDE_INT mask
4608 = ((unsigned HOST_WIDE_INT) 1 << len) - 1;
4609 rtx or_mask;
4610
4611 if (BITS_BIG_ENDIAN)
4612 pos = GET_MODE_PRECISION (mode) - len - pos;
4613
4614 or_mask = gen_int_mode (src << pos, mode);
4615 if (src == mask)
4616 SUBST (SET_SRC (x),
4617 simplify_gen_binary (IOR, mode, dest, or_mask));
4618 else
4619 {
4620 rtx negmask = gen_int_mode (~(mask << pos), mode);
4621 SUBST (SET_SRC (x),
4622 simplify_gen_binary (IOR, mode,
4623 simplify_gen_binary (AND, mode,
4624 dest, negmask),
4625 or_mask));
4626 }
4627
4628 SUBST (SET_DEST (x), dest);
4629
4630 split = find_split_point (&SET_SRC (x), insn, true);
4631 if (split && split != &SET_SRC (x))
4632 return split;
4633 }
4634
4635 /* Otherwise, see if this is an operation that we can split into two.
4636 If so, try to split that. */
4637 code = GET_CODE (SET_SRC (x));
4638
4639 switch (code)
4640 {
4641 case AND:
4642 /* If we are AND'ing with a large constant that is only a single
4643 bit and the result is only being used in a context where we
4644 need to know if it is zero or nonzero, replace it with a bit
4645 extraction. This will avoid the large constant, which might
4646 have taken more than one insn to make. If the constant were
4647 not a valid argument to the AND but took only one insn to make,
4648 this is no worse, but if it took more than one insn, it will
4649 be better. */
4650
4651 if (CONST_INT_P (XEXP (SET_SRC (x), 1))
4652 && REG_P (XEXP (SET_SRC (x), 0))
4653 && (pos = exact_log2 (UINTVAL (XEXP (SET_SRC (x), 1)))) >= 7
4654 && REG_P (SET_DEST (x))
4655 && (split = find_single_use (SET_DEST (x), insn, (rtx*) 0)) != 0
4656 && (GET_CODE (*split) == EQ || GET_CODE (*split) == NE)
4657 && XEXP (*split, 0) == SET_DEST (x)
4658 && XEXP (*split, 1) == const0_rtx)
4659 {
4660 rtx extraction = make_extraction (GET_MODE (SET_DEST (x)),
4661 XEXP (SET_SRC (x), 0),
4662 pos, NULL_RTX, 1, 1, 0, 0);
4663 if (extraction != 0)
4664 {
4665 SUBST (SET_SRC (x), extraction);
4666 return find_split_point (loc, insn, false);
4667 }
4668 }
4669 break;
4670
4671 case NE:
4672 /* If STORE_FLAG_VALUE is -1, this is (NE X 0) and only one bit of X
4673 is known to be on, this can be converted into a NEG of a shift. */
4674 if (STORE_FLAG_VALUE == -1 && XEXP (SET_SRC (x), 1) == const0_rtx
4675 && GET_MODE (SET_SRC (x)) == GET_MODE (XEXP (SET_SRC (x), 0))
4676 && 1 <= (pos = exact_log2
4677 (nonzero_bits (XEXP (SET_SRC (x), 0),
4678 GET_MODE (XEXP (SET_SRC (x), 0))))))
4679 {
4680 enum machine_mode mode = GET_MODE (XEXP (SET_SRC (x), 0));
4681
4682 SUBST (SET_SRC (x),
4683 gen_rtx_NEG (mode,
4684 gen_rtx_LSHIFTRT (mode,
4685 XEXP (SET_SRC (x), 0),
4686 GEN_INT (pos))));
4687
4688 split = find_split_point (&SET_SRC (x), insn, true);
4689 if (split && split != &SET_SRC (x))
4690 return split;
4691 }
4692 break;
4693
4694 case SIGN_EXTEND:
4695 inner = XEXP (SET_SRC (x), 0);
4696
4697 /* We can't optimize if either mode is a partial integer
4698 mode as we don't know how many bits are significant
4699 in those modes. */
4700 if (GET_MODE_CLASS (GET_MODE (inner)) == MODE_PARTIAL_INT
4701 || GET_MODE_CLASS (GET_MODE (SET_SRC (x))) == MODE_PARTIAL_INT)
4702 break;
4703
4704 pos = 0;
4705 len = GET_MODE_PRECISION (GET_MODE (inner));
4706 unsignedp = 0;
4707 break;
4708
4709 case SIGN_EXTRACT:
4710 case ZERO_EXTRACT:
4711 if (CONST_INT_P (XEXP (SET_SRC (x), 1))
4712 && CONST_INT_P (XEXP (SET_SRC (x), 2)))
4713 {
4714 inner = XEXP (SET_SRC (x), 0);
4715 len = INTVAL (XEXP (SET_SRC (x), 1));
4716 pos = INTVAL (XEXP (SET_SRC (x), 2));
4717
4718 if (BITS_BIG_ENDIAN)
4719 pos = GET_MODE_PRECISION (GET_MODE (inner)) - len - pos;
4720 unsignedp = (code == ZERO_EXTRACT);
4721 }
4722 break;
4723
4724 default:
4725 break;
4726 }
4727
4728 if (len && pos >= 0
4729 && pos + len <= GET_MODE_PRECISION (GET_MODE (inner)))
4730 {
4731 enum machine_mode mode = GET_MODE (SET_SRC (x));
4732
4733 /* For unsigned, we have a choice of a shift followed by an
4734 AND or two shifts. Use two shifts for field sizes where the
4735 constant might be too large. We assume here that we can
4736 always at least get 8-bit constants in an AND insn, which is
4737 true for every current RISC. */
4738
4739 if (unsignedp && len <= 8)
4740 {
4741 unsigned HOST_WIDE_INT mask
4742 = ((unsigned HOST_WIDE_INT) 1 << len) - 1;
4743 SUBST (SET_SRC (x),
4744 gen_rtx_AND (mode,
4745 gen_rtx_LSHIFTRT
4746 (mode, gen_lowpart (mode, inner),
4747 GEN_INT (pos)),
4748 gen_int_mode (mask, mode)));
4749
4750 split = find_split_point (&SET_SRC (x), insn, true);
4751 if (split && split != &SET_SRC (x))
4752 return split;
4753 }
4754 else
4755 {
4756 SUBST (SET_SRC (x),
4757 gen_rtx_fmt_ee
4758 (unsignedp ? LSHIFTRT : ASHIFTRT, mode,
4759 gen_rtx_ASHIFT (mode,
4760 gen_lowpart (mode, inner),
4761 GEN_INT (GET_MODE_PRECISION (mode)
4762 - len - pos)),
4763 GEN_INT (GET_MODE_PRECISION (mode) - len)));
4764
4765 split = find_split_point (&SET_SRC (x), insn, true);
4766 if (split && split != &SET_SRC (x))
4767 return split;
4768 }
4769 }
4770
4771 /* See if this is a simple operation with a constant as the second
4772 operand. It might be that this constant is out of range and hence
4773 could be used as a split point. */
4774 if (BINARY_P (SET_SRC (x))
4775 && CONSTANT_P (XEXP (SET_SRC (x), 1))
4776 && (OBJECT_P (XEXP (SET_SRC (x), 0))
4777 || (GET_CODE (XEXP (SET_SRC (x), 0)) == SUBREG
4778 && OBJECT_P (SUBREG_REG (XEXP (SET_SRC (x), 0))))))
4779 return &XEXP (SET_SRC (x), 1);
4780
4781 /* Finally, see if this is a simple operation with its first operand
4782 not in a register. The operation might require this operand in a
4783 register, so return it as a split point. We can always do this
4784 because if the first operand were another operation, we would have
4785 already found it as a split point. */
4786 if ((BINARY_P (SET_SRC (x)) || UNARY_P (SET_SRC (x)))
4787 && ! register_operand (XEXP (SET_SRC (x), 0), VOIDmode))
4788 return &XEXP (SET_SRC (x), 0);
4789
4790 return 0;
4791
4792 case AND:
4793 case IOR:
4794 /* We write NOR as (and (not A) (not B)), but if we don't have a NOR,
4795 it is better to write this as (not (ior A B)) so we can split it.
4796 Similarly for IOR. */
4797 if (GET_CODE (XEXP (x, 0)) == NOT && GET_CODE (XEXP (x, 1)) == NOT)
4798 {
4799 SUBST (*loc,
4800 gen_rtx_NOT (GET_MODE (x),
4801 gen_rtx_fmt_ee (code == IOR ? AND : IOR,
4802 GET_MODE (x),
4803 XEXP (XEXP (x, 0), 0),
4804 XEXP (XEXP (x, 1), 0))));
4805 return find_split_point (loc, insn, set_src);
4806 }
4807
4808 /* Many RISC machines have a large set of logical insns. If the
4809 second operand is a NOT, put it first so we will try to split the
4810 other operand first. */
4811 if (GET_CODE (XEXP (x, 1)) == NOT)
4812 {
4813 rtx tem = XEXP (x, 0);
4814 SUBST (XEXP (x, 0), XEXP (x, 1));
4815 SUBST (XEXP (x, 1), tem);
4816 }
4817 break;
4818
4819 case PLUS:
4820 case MINUS:
4821 /* Canonicalization can produce (minus A (mult B C)), where C is a
4822 constant. It may be better to try splitting (plus (mult B -C) A)
4823 instead if this isn't a multiply by a power of two. */
4824 if (set_src && code == MINUS && GET_CODE (XEXP (x, 1)) == MULT
4825 && GET_CODE (XEXP (XEXP (x, 1), 1)) == CONST_INT
4826 && exact_log2 (INTVAL (XEXP (XEXP (x, 1), 1))) < 0)
4827 {
4828 enum machine_mode mode = GET_MODE (x);
4829 unsigned HOST_WIDE_INT this_int = INTVAL (XEXP (XEXP (x, 1), 1));
4830 HOST_WIDE_INT other_int = trunc_int_for_mode (-this_int, mode);
4831 SUBST (*loc, gen_rtx_PLUS (mode,
4832 gen_rtx_MULT (mode,
4833 XEXP (XEXP (x, 1), 0),
4834 gen_int_mode (other_int,
4835 mode)),
4836 XEXP (x, 0)));
4837 return find_split_point (loc, insn, set_src);
4838 }
4839
4840 /* Split at a multiply-accumulate instruction. However if this is
4841 the SET_SRC, we likely do not have such an instruction and it's
4842 worthless to try this split. */
4843 if (!set_src && GET_CODE (XEXP (x, 0)) == MULT)
4844 return loc;
4845
4846 default:
4847 break;
4848 }
4849
4850 /* Otherwise, select our actions depending on our rtx class. */
4851 switch (GET_RTX_CLASS (code))
4852 {
4853 case RTX_BITFIELD_OPS: /* This is ZERO_EXTRACT and SIGN_EXTRACT. */
4854 case RTX_TERNARY:
4855 split = find_split_point (&XEXP (x, 2), insn, false);
4856 if (split)
4857 return split;
4858 /* ... fall through ... */
4859 case RTX_BIN_ARITH:
4860 case RTX_COMM_ARITH:
4861 case RTX_COMPARE:
4862 case RTX_COMM_COMPARE:
4863 split = find_split_point (&XEXP (x, 1), insn, false);
4864 if (split)
4865 return split;
4866 /* ... fall through ... */
4867 case RTX_UNARY:
4868 /* Some machines have (and (shift ...) ...) insns. If X is not
4869 an AND, but XEXP (X, 0) is, use it as our split point. */
4870 if (GET_CODE (x) != AND && GET_CODE (XEXP (x, 0)) == AND)
4871 return &XEXP (x, 0);
4872
4873 split = find_split_point (&XEXP (x, 0), insn, false);
4874 if (split)
4875 return split;
4876 return loc;
4877
4878 default:
4879 /* Otherwise, we don't have a split point. */
4880 return 0;
4881 }
4882 }
4883 \f
4884 /* Throughout X, replace FROM with TO, and return the result.
4885 The result is TO if X is FROM;
4886 otherwise the result is X, but its contents may have been modified.
4887 If they were modified, a record was made in undobuf so that
4888 undo_all will (among other things) return X to its original state.
4889
4890 If the number of changes necessary is too much to record to undo,
4891 the excess changes are not made, so the result is invalid.
4892 The changes already made can still be undone.
4893 undobuf.num_undo is incremented for such changes, so by testing that
4894 the caller can tell whether the result is valid.
4895
4896 `n_occurrences' is incremented each time FROM is replaced.
4897
4898 IN_DEST is nonzero if we are processing the SET_DEST of a SET.
4899
4900 IN_COND is nonzero if we are at the top level of a condition.
4901
4902 UNIQUE_COPY is nonzero if each substitution must be unique. We do this
4903 by copying if `n_occurrences' is nonzero. */
4904
4905 static rtx
4906 subst (rtx x, rtx from, rtx to, int in_dest, int in_cond, int unique_copy)
4907 {
4908 enum rtx_code code = GET_CODE (x);
4909 enum machine_mode op0_mode = VOIDmode;
4910 const char *fmt;
4911 int len, i;
4912 rtx new_rtx;
4913
4914 /* Two expressions are equal if they are identical copies of a shared
4915 RTX or if they are both registers with the same register number
4916 and mode. */
4917
4918 #define COMBINE_RTX_EQUAL_P(X,Y) \
4919 ((X) == (Y) \
4920 || (REG_P (X) && REG_P (Y) \
4921 && REGNO (X) == REGNO (Y) && GET_MODE (X) == GET_MODE (Y)))
4922
4923 if (! in_dest && COMBINE_RTX_EQUAL_P (x, from))
4924 {
4925 n_occurrences++;
4926 return (unique_copy && n_occurrences > 1 ? copy_rtx (to) : to);
4927 }
4928
4929 /* If X and FROM are the same register but different modes, they
4930 will not have been seen as equal above. However, the log links code
4931 will make a LOG_LINKS entry for that case. If we do nothing, we
4932 will try to rerecognize our original insn and, when it succeeds,
4933 we will delete the feeding insn, which is incorrect.
4934
4935 So force this insn not to match in this (rare) case. */
4936 if (! in_dest && code == REG && REG_P (from)
4937 && reg_overlap_mentioned_p (x, from))
4938 return gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
4939
4940 /* If this is an object, we are done unless it is a MEM or LO_SUM, both
4941 of which may contain things that can be combined. */
4942 if (code != MEM && code != LO_SUM && OBJECT_P (x))
4943 return x;
4944
4945 /* It is possible to have a subexpression appear twice in the insn.
4946 Suppose that FROM is a register that appears within TO.
4947 Then, after that subexpression has been scanned once by `subst',
4948 the second time it is scanned, TO may be found. If we were
4949 to scan TO here, we would find FROM within it and create a
4950 self-referent rtl structure which is completely wrong. */
4951 if (COMBINE_RTX_EQUAL_P (x, to))
4952 return to;
4953
4954 /* Parallel asm_operands need special attention because all of the
4955 inputs are shared across the arms. Furthermore, unsharing the
4956 rtl results in recognition failures. Failure to handle this case
4957 specially can result in circular rtl.
4958
4959 Solve this by doing a normal pass across the first entry of the
4960 parallel, and only processing the SET_DESTs of the subsequent
4961 entries. Ug. */
4962
4963 if (code == PARALLEL
4964 && GET_CODE (XVECEXP (x, 0, 0)) == SET
4965 && GET_CODE (SET_SRC (XVECEXP (x, 0, 0))) == ASM_OPERANDS)
4966 {
4967 new_rtx = subst (XVECEXP (x, 0, 0), from, to, 0, 0, unique_copy);
4968
4969 /* If this substitution failed, this whole thing fails. */
4970 if (GET_CODE (new_rtx) == CLOBBER
4971 && XEXP (new_rtx, 0) == const0_rtx)
4972 return new_rtx;
4973
4974 SUBST (XVECEXP (x, 0, 0), new_rtx);
4975
4976 for (i = XVECLEN (x, 0) - 1; i >= 1; i--)
4977 {
4978 rtx dest = SET_DEST (XVECEXP (x, 0, i));
4979
4980 if (!REG_P (dest)
4981 && GET_CODE (dest) != CC0
4982 && GET_CODE (dest) != PC)
4983 {
4984 new_rtx = subst (dest, from, to, 0, 0, unique_copy);
4985
4986 /* If this substitution failed, this whole thing fails. */
4987 if (GET_CODE (new_rtx) == CLOBBER
4988 && XEXP (new_rtx, 0) == const0_rtx)
4989 return new_rtx;
4990
4991 SUBST (SET_DEST (XVECEXP (x, 0, i)), new_rtx);
4992 }
4993 }
4994 }
4995 else
4996 {
4997 len = GET_RTX_LENGTH (code);
4998 fmt = GET_RTX_FORMAT (code);
4999
5000 /* We don't need to process a SET_DEST that is a register, CC0,
5001 or PC, so set up to skip this common case. All other cases
5002 where we want to suppress replacing something inside a
5003 SET_SRC are handled via the IN_DEST operand. */
5004 if (code == SET
5005 && (REG_P (SET_DEST (x))
5006 || GET_CODE (SET_DEST (x)) == CC0
5007 || GET_CODE (SET_DEST (x)) == PC))
5008 fmt = "ie";
5009
5010 /* Get the mode of operand 0 in case X is now a SIGN_EXTEND of a
5011 constant. */
5012 if (fmt[0] == 'e')
5013 op0_mode = GET_MODE (XEXP (x, 0));
5014
5015 for (i = 0; i < len; i++)
5016 {
5017 if (fmt[i] == 'E')
5018 {
5019 int j;
5020 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
5021 {
5022 if (COMBINE_RTX_EQUAL_P (XVECEXP (x, i, j), from))
5023 {
5024 new_rtx = (unique_copy && n_occurrences
5025 ? copy_rtx (to) : to);
5026 n_occurrences++;
5027 }
5028 else
5029 {
5030 new_rtx = subst (XVECEXP (x, i, j), from, to, 0, 0,
5031 unique_copy);
5032
5033 /* If this substitution failed, this whole thing
5034 fails. */
5035 if (GET_CODE (new_rtx) == CLOBBER
5036 && XEXP (new_rtx, 0) == const0_rtx)
5037 return new_rtx;
5038 }
5039
5040 SUBST (XVECEXP (x, i, j), new_rtx);
5041 }
5042 }
5043 else if (fmt[i] == 'e')
5044 {
5045 /* If this is a register being set, ignore it. */
5046 new_rtx = XEXP (x, i);
5047 if (in_dest
5048 && i == 0
5049 && (((code == SUBREG || code == ZERO_EXTRACT)
5050 && REG_P (new_rtx))
5051 || code == STRICT_LOW_PART))
5052 ;
5053
5054 else if (COMBINE_RTX_EQUAL_P (XEXP (x, i), from))
5055 {
5056 /* In general, don't install a subreg involving two
5057 modes not tieable. It can worsen register
5058 allocation, and can even make invalid reload
5059 insns, since the reg inside may need to be copied
5060 from in the outside mode, and that may be invalid
5061 if it is an fp reg copied in integer mode.
5062
5063 We allow two exceptions to this: It is valid if
5064 it is inside another SUBREG and the mode of that
5065 SUBREG and the mode of the inside of TO is
5066 tieable and it is valid if X is a SET that copies
5067 FROM to CC0. */
5068
5069 if (GET_CODE (to) == SUBREG
5070 && ! MODES_TIEABLE_P (GET_MODE (to),
5071 GET_MODE (SUBREG_REG (to)))
5072 && ! (code == SUBREG
5073 && MODES_TIEABLE_P (GET_MODE (x),
5074 GET_MODE (SUBREG_REG (to))))
5075 #ifdef HAVE_cc0
5076 && ! (code == SET && i == 1 && XEXP (x, 0) == cc0_rtx)
5077 #endif
5078 )
5079 return gen_rtx_CLOBBER (VOIDmode, const0_rtx);
5080
5081 #ifdef CANNOT_CHANGE_MODE_CLASS
5082 if (code == SUBREG
5083 && REG_P (to)
5084 && REGNO (to) < FIRST_PSEUDO_REGISTER
5085 && REG_CANNOT_CHANGE_MODE_P (REGNO (to),
5086 GET_MODE (to),
5087 GET_MODE (x)))
5088 return gen_rtx_CLOBBER (VOIDmode, const0_rtx);
5089 #endif
5090
5091 new_rtx = (unique_copy && n_occurrences ? copy_rtx (to) : to);
5092 n_occurrences++;
5093 }
5094 else
5095 /* If we are in a SET_DEST, suppress most cases unless we
5096 have gone inside a MEM, in which case we want to
5097 simplify the address. We assume here that things that
5098 are actually part of the destination have their inner
5099 parts in the first expression. This is true for SUBREG,
5100 STRICT_LOW_PART, and ZERO_EXTRACT, which are the only
5101 things aside from REG and MEM that should appear in a
5102 SET_DEST. */
5103 new_rtx = subst (XEXP (x, i), from, to,
5104 (((in_dest
5105 && (code == SUBREG || code == STRICT_LOW_PART
5106 || code == ZERO_EXTRACT))
5107 || code == SET)
5108 && i == 0),
5109 code == IF_THEN_ELSE && i == 0,
5110 unique_copy);
5111
5112 /* If we found that we will have to reject this combination,
5113 indicate that by returning the CLOBBER ourselves, rather than
5114 an expression containing it. This will speed things up as
5115 well as prevent accidents where two CLOBBERs are considered
5116 to be equal, thus producing an incorrect simplification. */
5117
5118 if (GET_CODE (new_rtx) == CLOBBER && XEXP (new_rtx, 0) == const0_rtx)
5119 return new_rtx;
5120
5121 if (GET_CODE (x) == SUBREG && CONST_SCALAR_INT_P (new_rtx))
5122 {
5123 enum machine_mode mode = GET_MODE (x);
5124
5125 x = simplify_subreg (GET_MODE (x), new_rtx,
5126 GET_MODE (SUBREG_REG (x)),
5127 SUBREG_BYTE (x));
5128 if (! x)
5129 x = gen_rtx_CLOBBER (mode, const0_rtx);
5130 }
5131 else if (CONST_INT_P (new_rtx)
5132 && GET_CODE (x) == ZERO_EXTEND)
5133 {
5134 x = simplify_unary_operation (ZERO_EXTEND, GET_MODE (x),
5135 new_rtx, GET_MODE (XEXP (x, 0)));
5136 gcc_assert (x);
5137 }
5138 else
5139 SUBST (XEXP (x, i), new_rtx);
5140 }
5141 }
5142 }
5143
5144 /* Check if we are loading something from the constant pool via float
5145 extension; in this case we would undo compress_float_constant
5146 optimization and degenerate constant load to an immediate value. */
5147 if (GET_CODE (x) == FLOAT_EXTEND
5148 && MEM_P (XEXP (x, 0))
5149 && MEM_READONLY_P (XEXP (x, 0)))
5150 {
5151 rtx tmp = avoid_constant_pool_reference (x);
5152 if (x != tmp)
5153 return x;
5154 }
5155
5156 /* Try to simplify X. If the simplification changed the code, it is likely
5157 that further simplification will help, so loop, but limit the number
5158 of repetitions that will be performed. */
5159
5160 for (i = 0; i < 4; i++)
5161 {
5162 /* If X is sufficiently simple, don't bother trying to do anything
5163 with it. */
5164 if (code != CONST_INT && code != REG && code != CLOBBER)
5165 x = combine_simplify_rtx (x, op0_mode, in_dest, in_cond);
5166
5167 if (GET_CODE (x) == code)
5168 break;
5169
5170 code = GET_CODE (x);
5171
5172 /* We no longer know the original mode of operand 0 since we
5173 have changed the form of X) */
5174 op0_mode = VOIDmode;
5175 }
5176
5177 return x;
5178 }
5179 \f
5180 /* Simplify X, a piece of RTL. We just operate on the expression at the
5181 outer level; call `subst' to simplify recursively. Return the new
5182 expression.
5183
5184 OP0_MODE is the original mode of XEXP (x, 0). IN_DEST is nonzero
5185 if we are inside a SET_DEST. IN_COND is nonzero if we are at the top level
5186 of a condition. */
5187
5188 static rtx
5189 combine_simplify_rtx (rtx x, enum machine_mode op0_mode, int in_dest,
5190 int in_cond)
5191 {
5192 enum rtx_code code = GET_CODE (x);
5193 enum machine_mode mode = GET_MODE (x);
5194 rtx temp;
5195 int i;
5196
5197 /* If this is a commutative operation, put a constant last and a complex
5198 expression first. We don't need to do this for comparisons here. */
5199 if (COMMUTATIVE_ARITH_P (x)
5200 && swap_commutative_operands_p (XEXP (x, 0), XEXP (x, 1)))
5201 {
5202 temp = XEXP (x, 0);
5203 SUBST (XEXP (x, 0), XEXP (x, 1));
5204 SUBST (XEXP (x, 1), temp);
5205 }
5206
5207 /* If this is a simple operation applied to an IF_THEN_ELSE, try
5208 applying it to the arms of the IF_THEN_ELSE. This often simplifies
5209 things. Check for cases where both arms are testing the same
5210 condition.
5211
5212 Don't do anything if all operands are very simple. */
5213
5214 if ((BINARY_P (x)
5215 && ((!OBJECT_P (XEXP (x, 0))
5216 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
5217 && OBJECT_P (SUBREG_REG (XEXP (x, 0)))))
5218 || (!OBJECT_P (XEXP (x, 1))
5219 && ! (GET_CODE (XEXP (x, 1)) == SUBREG
5220 && OBJECT_P (SUBREG_REG (XEXP (x, 1)))))))
5221 || (UNARY_P (x)
5222 && (!OBJECT_P (XEXP (x, 0))
5223 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
5224 && OBJECT_P (SUBREG_REG (XEXP (x, 0)))))))
5225 {
5226 rtx cond, true_rtx, false_rtx;
5227
5228 cond = if_then_else_cond (x, &true_rtx, &false_rtx);
5229 if (cond != 0
5230 /* If everything is a comparison, what we have is highly unlikely
5231 to be simpler, so don't use it. */
5232 && ! (COMPARISON_P (x)
5233 && (COMPARISON_P (true_rtx) || COMPARISON_P (false_rtx))))
5234 {
5235 rtx cop1 = const0_rtx;
5236 enum rtx_code cond_code = simplify_comparison (NE, &cond, &cop1);
5237
5238 if (cond_code == NE && COMPARISON_P (cond))
5239 return x;
5240
5241 /* Simplify the alternative arms; this may collapse the true and
5242 false arms to store-flag values. Be careful to use copy_rtx
5243 here since true_rtx or false_rtx might share RTL with x as a
5244 result of the if_then_else_cond call above. */
5245 true_rtx = subst (copy_rtx (true_rtx), pc_rtx, pc_rtx, 0, 0, 0);
5246 false_rtx = subst (copy_rtx (false_rtx), pc_rtx, pc_rtx, 0, 0, 0);
5247
5248 /* If true_rtx and false_rtx are not general_operands, an if_then_else
5249 is unlikely to be simpler. */
5250 if (general_operand (true_rtx, VOIDmode)
5251 && general_operand (false_rtx, VOIDmode))
5252 {
5253 enum rtx_code reversed;
5254
5255 /* Restarting if we generate a store-flag expression will cause
5256 us to loop. Just drop through in this case. */
5257
5258 /* If the result values are STORE_FLAG_VALUE and zero, we can
5259 just make the comparison operation. */
5260 if (true_rtx == const_true_rtx && false_rtx == const0_rtx)
5261 x = simplify_gen_relational (cond_code, mode, VOIDmode,
5262 cond, cop1);
5263 else if (true_rtx == const0_rtx && false_rtx == const_true_rtx
5264 && ((reversed = reversed_comparison_code_parts
5265 (cond_code, cond, cop1, NULL))
5266 != UNKNOWN))
5267 x = simplify_gen_relational (reversed, mode, VOIDmode,
5268 cond, cop1);
5269
5270 /* Likewise, we can make the negate of a comparison operation
5271 if the result values are - STORE_FLAG_VALUE and zero. */
5272 else if (CONST_INT_P (true_rtx)
5273 && INTVAL (true_rtx) == - STORE_FLAG_VALUE
5274 && false_rtx == const0_rtx)
5275 x = simplify_gen_unary (NEG, mode,
5276 simplify_gen_relational (cond_code,
5277 mode, VOIDmode,
5278 cond, cop1),
5279 mode);
5280 else if (CONST_INT_P (false_rtx)
5281 && INTVAL (false_rtx) == - STORE_FLAG_VALUE
5282 && true_rtx == const0_rtx
5283 && ((reversed = reversed_comparison_code_parts
5284 (cond_code, cond, cop1, NULL))
5285 != UNKNOWN))
5286 x = simplify_gen_unary (NEG, mode,
5287 simplify_gen_relational (reversed,
5288 mode, VOIDmode,
5289 cond, cop1),
5290 mode);
5291 else
5292 return gen_rtx_IF_THEN_ELSE (mode,
5293 simplify_gen_relational (cond_code,
5294 mode,
5295 VOIDmode,
5296 cond,
5297 cop1),
5298 true_rtx, false_rtx);
5299
5300 code = GET_CODE (x);
5301 op0_mode = VOIDmode;
5302 }
5303 }
5304 }
5305
5306 /* Try to fold this expression in case we have constants that weren't
5307 present before. */
5308 temp = 0;
5309 switch (GET_RTX_CLASS (code))
5310 {
5311 case RTX_UNARY:
5312 if (op0_mode == VOIDmode)
5313 op0_mode = GET_MODE (XEXP (x, 0));
5314 temp = simplify_unary_operation (code, mode, XEXP (x, 0), op0_mode);
5315 break;
5316 case RTX_COMPARE:
5317 case RTX_COMM_COMPARE:
5318 {
5319 enum machine_mode cmp_mode = GET_MODE (XEXP (x, 0));
5320 if (cmp_mode == VOIDmode)
5321 {
5322 cmp_mode = GET_MODE (XEXP (x, 1));
5323 if (cmp_mode == VOIDmode)
5324 cmp_mode = op0_mode;
5325 }
5326 temp = simplify_relational_operation (code, mode, cmp_mode,
5327 XEXP (x, 0), XEXP (x, 1));
5328 }
5329 break;
5330 case RTX_COMM_ARITH:
5331 case RTX_BIN_ARITH:
5332 temp = simplify_binary_operation (code, mode, XEXP (x, 0), XEXP (x, 1));
5333 break;
5334 case RTX_BITFIELD_OPS:
5335 case RTX_TERNARY:
5336 temp = simplify_ternary_operation (code, mode, op0_mode, XEXP (x, 0),
5337 XEXP (x, 1), XEXP (x, 2));
5338 break;
5339 default:
5340 break;
5341 }
5342
5343 if (temp)
5344 {
5345 x = temp;
5346 code = GET_CODE (temp);
5347 op0_mode = VOIDmode;
5348 mode = GET_MODE (temp);
5349 }
5350
5351 /* First see if we can apply the inverse distributive law. */
5352 if (code == PLUS || code == MINUS
5353 || code == AND || code == IOR || code == XOR)
5354 {
5355 x = apply_distributive_law (x);
5356 code = GET_CODE (x);
5357 op0_mode = VOIDmode;
5358 }
5359
5360 /* If CODE is an associative operation not otherwise handled, see if we
5361 can associate some operands. This can win if they are constants or
5362 if they are logically related (i.e. (a & b) & a). */
5363 if ((code == PLUS || code == MINUS || code == MULT || code == DIV
5364 || code == AND || code == IOR || code == XOR
5365 || code == SMAX || code == SMIN || code == UMAX || code == UMIN)
5366 && ((INTEGRAL_MODE_P (mode) && code != DIV)
5367 || (flag_associative_math && FLOAT_MODE_P (mode))))
5368 {
5369 if (GET_CODE (XEXP (x, 0)) == code)
5370 {
5371 rtx other = XEXP (XEXP (x, 0), 0);
5372 rtx inner_op0 = XEXP (XEXP (x, 0), 1);
5373 rtx inner_op1 = XEXP (x, 1);
5374 rtx inner;
5375
5376 /* Make sure we pass the constant operand if any as the second
5377 one if this is a commutative operation. */
5378 if (CONSTANT_P (inner_op0) && COMMUTATIVE_ARITH_P (x))
5379 {
5380 rtx tem = inner_op0;
5381 inner_op0 = inner_op1;
5382 inner_op1 = tem;
5383 }
5384 inner = simplify_binary_operation (code == MINUS ? PLUS
5385 : code == DIV ? MULT
5386 : code,
5387 mode, inner_op0, inner_op1);
5388
5389 /* For commutative operations, try the other pair if that one
5390 didn't simplify. */
5391 if (inner == 0 && COMMUTATIVE_ARITH_P (x))
5392 {
5393 other = XEXP (XEXP (x, 0), 1);
5394 inner = simplify_binary_operation (code, mode,
5395 XEXP (XEXP (x, 0), 0),
5396 XEXP (x, 1));
5397 }
5398
5399 if (inner)
5400 return simplify_gen_binary (code, mode, other, inner);
5401 }
5402 }
5403
5404 /* A little bit of algebraic simplification here. */
5405 switch (code)
5406 {
5407 case MEM:
5408 /* Ensure that our address has any ASHIFTs converted to MULT in case
5409 address-recognizing predicates are called later. */
5410 temp = make_compound_operation (XEXP (x, 0), MEM);
5411 SUBST (XEXP (x, 0), temp);
5412 break;
5413
5414 case SUBREG:
5415 if (op0_mode == VOIDmode)
5416 op0_mode = GET_MODE (SUBREG_REG (x));
5417
5418 /* See if this can be moved to simplify_subreg. */
5419 if (CONSTANT_P (SUBREG_REG (x))
5420 && subreg_lowpart_offset (mode, op0_mode) == SUBREG_BYTE (x)
5421 /* Don't call gen_lowpart if the inner mode
5422 is VOIDmode and we cannot simplify it, as SUBREG without
5423 inner mode is invalid. */
5424 && (GET_MODE (SUBREG_REG (x)) != VOIDmode
5425 || gen_lowpart_common (mode, SUBREG_REG (x))))
5426 return gen_lowpart (mode, SUBREG_REG (x));
5427
5428 if (GET_MODE_CLASS (GET_MODE (SUBREG_REG (x))) == MODE_CC)
5429 break;
5430 {
5431 rtx temp;
5432 temp = simplify_subreg (mode, SUBREG_REG (x), op0_mode,
5433 SUBREG_BYTE (x));
5434 if (temp)
5435 return temp;
5436
5437 /* If op is known to have all lower bits zero, the result is zero. */
5438 if (!in_dest
5439 && SCALAR_INT_MODE_P (mode)
5440 && SCALAR_INT_MODE_P (op0_mode)
5441 && GET_MODE_PRECISION (mode) < GET_MODE_PRECISION (op0_mode)
5442 && subreg_lowpart_offset (mode, op0_mode) == SUBREG_BYTE (x)
5443 && HWI_COMPUTABLE_MODE_P (op0_mode)
5444 && (nonzero_bits (SUBREG_REG (x), op0_mode)
5445 & GET_MODE_MASK (mode)) == 0)
5446 return CONST0_RTX (mode);
5447 }
5448
5449 /* Don't change the mode of the MEM if that would change the meaning
5450 of the address. */
5451 if (MEM_P (SUBREG_REG (x))
5452 && (MEM_VOLATILE_P (SUBREG_REG (x))
5453 || mode_dependent_address_p (XEXP (SUBREG_REG (x), 0),
5454 MEM_ADDR_SPACE (SUBREG_REG (x)))))
5455 return gen_rtx_CLOBBER (mode, const0_rtx);
5456
5457 /* Note that we cannot do any narrowing for non-constants since
5458 we might have been counting on using the fact that some bits were
5459 zero. We now do this in the SET. */
5460
5461 break;
5462
5463 case NEG:
5464 temp = expand_compound_operation (XEXP (x, 0));
5465
5466 /* For C equal to the width of MODE minus 1, (neg (ashiftrt X C)) can be
5467 replaced by (lshiftrt X C). This will convert
5468 (neg (sign_extract X 1 Y)) to (zero_extract X 1 Y). */
5469
5470 if (GET_CODE (temp) == ASHIFTRT
5471 && CONST_INT_P (XEXP (temp, 1))
5472 && INTVAL (XEXP (temp, 1)) == GET_MODE_PRECISION (mode) - 1)
5473 return simplify_shift_const (NULL_RTX, LSHIFTRT, mode, XEXP (temp, 0),
5474 INTVAL (XEXP (temp, 1)));
5475
5476 /* If X has only a single bit that might be nonzero, say, bit I, convert
5477 (neg X) to (ashiftrt (ashift X C-I) C-I) where C is the bitsize of
5478 MODE minus 1. This will convert (neg (zero_extract X 1 Y)) to
5479 (sign_extract X 1 Y). But only do this if TEMP isn't a register
5480 or a SUBREG of one since we'd be making the expression more
5481 complex if it was just a register. */
5482
5483 if (!REG_P (temp)
5484 && ! (GET_CODE (temp) == SUBREG
5485 && REG_P (SUBREG_REG (temp)))
5486 && (i = exact_log2 (nonzero_bits (temp, mode))) >= 0)
5487 {
5488 rtx temp1 = simplify_shift_const
5489 (NULL_RTX, ASHIFTRT, mode,
5490 simplify_shift_const (NULL_RTX, ASHIFT, mode, temp,
5491 GET_MODE_PRECISION (mode) - 1 - i),
5492 GET_MODE_PRECISION (mode) - 1 - i);
5493
5494 /* If all we did was surround TEMP with the two shifts, we
5495 haven't improved anything, so don't use it. Otherwise,
5496 we are better off with TEMP1. */
5497 if (GET_CODE (temp1) != ASHIFTRT
5498 || GET_CODE (XEXP (temp1, 0)) != ASHIFT
5499 || XEXP (XEXP (temp1, 0), 0) != temp)
5500 return temp1;
5501 }
5502 break;
5503
5504 case TRUNCATE:
5505 /* We can't handle truncation to a partial integer mode here
5506 because we don't know the real bitsize of the partial
5507 integer mode. */
5508 if (GET_MODE_CLASS (mode) == MODE_PARTIAL_INT)
5509 break;
5510
5511 if (HWI_COMPUTABLE_MODE_P (mode))
5512 SUBST (XEXP (x, 0),
5513 force_to_mode (XEXP (x, 0), GET_MODE (XEXP (x, 0)),
5514 GET_MODE_MASK (mode), 0));
5515
5516 /* We can truncate a constant value and return it. */
5517 if (CONST_INT_P (XEXP (x, 0)))
5518 return gen_int_mode (INTVAL (XEXP (x, 0)), mode);
5519
5520 /* Similarly to what we do in simplify-rtx.c, a truncate of a register
5521 whose value is a comparison can be replaced with a subreg if
5522 STORE_FLAG_VALUE permits. */
5523 if (HWI_COMPUTABLE_MODE_P (mode)
5524 && (STORE_FLAG_VALUE & ~GET_MODE_MASK (mode)) == 0
5525 && (temp = get_last_value (XEXP (x, 0)))
5526 && COMPARISON_P (temp))
5527 return gen_lowpart (mode, XEXP (x, 0));
5528 break;
5529
5530 case CONST:
5531 /* (const (const X)) can become (const X). Do it this way rather than
5532 returning the inner CONST since CONST can be shared with a
5533 REG_EQUAL note. */
5534 if (GET_CODE (XEXP (x, 0)) == CONST)
5535 SUBST (XEXP (x, 0), XEXP (XEXP (x, 0), 0));
5536 break;
5537
5538 #ifdef HAVE_lo_sum
5539 case LO_SUM:
5540 /* Convert (lo_sum (high FOO) FOO) to FOO. This is necessary so we
5541 can add in an offset. find_split_point will split this address up
5542 again if it doesn't match. */
5543 if (GET_CODE (XEXP (x, 0)) == HIGH
5544 && rtx_equal_p (XEXP (XEXP (x, 0), 0), XEXP (x, 1)))
5545 return XEXP (x, 1);
5546 break;
5547 #endif
5548
5549 case PLUS:
5550 /* (plus (xor (and <foo> (const_int pow2 - 1)) <c>) <-c>)
5551 when c is (const_int (pow2 + 1) / 2) is a sign extension of a
5552 bit-field and can be replaced by either a sign_extend or a
5553 sign_extract. The `and' may be a zero_extend and the two
5554 <c>, -<c> constants may be reversed. */
5555 if (GET_CODE (XEXP (x, 0)) == XOR
5556 && CONST_INT_P (XEXP (x, 1))
5557 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
5558 && INTVAL (XEXP (x, 1)) == -INTVAL (XEXP (XEXP (x, 0), 1))
5559 && ((i = exact_log2 (UINTVAL (XEXP (XEXP (x, 0), 1)))) >= 0
5560 || (i = exact_log2 (UINTVAL (XEXP (x, 1)))) >= 0)
5561 && HWI_COMPUTABLE_MODE_P (mode)
5562 && ((GET_CODE (XEXP (XEXP (x, 0), 0)) == AND
5563 && CONST_INT_P (XEXP (XEXP (XEXP (x, 0), 0), 1))
5564 && (UINTVAL (XEXP (XEXP (XEXP (x, 0), 0), 1))
5565 == ((unsigned HOST_WIDE_INT) 1 << (i + 1)) - 1))
5566 || (GET_CODE (XEXP (XEXP (x, 0), 0)) == ZERO_EXTEND
5567 && (GET_MODE_PRECISION (GET_MODE (XEXP (XEXP (XEXP (x, 0), 0), 0)))
5568 == (unsigned int) i + 1))))
5569 return simplify_shift_const
5570 (NULL_RTX, ASHIFTRT, mode,
5571 simplify_shift_const (NULL_RTX, ASHIFT, mode,
5572 XEXP (XEXP (XEXP (x, 0), 0), 0),
5573 GET_MODE_PRECISION (mode) - (i + 1)),
5574 GET_MODE_PRECISION (mode) - (i + 1));
5575
5576 /* If only the low-order bit of X is possibly nonzero, (plus x -1)
5577 can become (ashiftrt (ashift (xor x 1) C) C) where C is
5578 the bitsize of the mode - 1. This allows simplification of
5579 "a = (b & 8) == 0;" */
5580 if (XEXP (x, 1) == constm1_rtx
5581 && !REG_P (XEXP (x, 0))
5582 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
5583 && REG_P (SUBREG_REG (XEXP (x, 0))))
5584 && nonzero_bits (XEXP (x, 0), mode) == 1)
5585 return simplify_shift_const (NULL_RTX, ASHIFTRT, mode,
5586 simplify_shift_const (NULL_RTX, ASHIFT, mode,
5587 gen_rtx_XOR (mode, XEXP (x, 0), const1_rtx),
5588 GET_MODE_PRECISION (mode) - 1),
5589 GET_MODE_PRECISION (mode) - 1);
5590
5591 /* If we are adding two things that have no bits in common, convert
5592 the addition into an IOR. This will often be further simplified,
5593 for example in cases like ((a & 1) + (a & 2)), which can
5594 become a & 3. */
5595
5596 if (HWI_COMPUTABLE_MODE_P (mode)
5597 && (nonzero_bits (XEXP (x, 0), mode)
5598 & nonzero_bits (XEXP (x, 1), mode)) == 0)
5599 {
5600 /* Try to simplify the expression further. */
5601 rtx tor = simplify_gen_binary (IOR, mode, XEXP (x, 0), XEXP (x, 1));
5602 temp = combine_simplify_rtx (tor, VOIDmode, in_dest, 0);
5603
5604 /* If we could, great. If not, do not go ahead with the IOR
5605 replacement, since PLUS appears in many special purpose
5606 address arithmetic instructions. */
5607 if (GET_CODE (temp) != CLOBBER
5608 && (GET_CODE (temp) != IOR
5609 || ((XEXP (temp, 0) != XEXP (x, 0)
5610 || XEXP (temp, 1) != XEXP (x, 1))
5611 && (XEXP (temp, 0) != XEXP (x, 1)
5612 || XEXP (temp, 1) != XEXP (x, 0)))))
5613 return temp;
5614 }
5615 break;
5616
5617 case MINUS:
5618 /* (minus <foo> (and <foo> (const_int -pow2))) becomes
5619 (and <foo> (const_int pow2-1)) */
5620 if (GET_CODE (XEXP (x, 1)) == AND
5621 && CONST_INT_P (XEXP (XEXP (x, 1), 1))
5622 && exact_log2 (-UINTVAL (XEXP (XEXP (x, 1), 1))) >= 0
5623 && rtx_equal_p (XEXP (XEXP (x, 1), 0), XEXP (x, 0)))
5624 return simplify_and_const_int (NULL_RTX, mode, XEXP (x, 0),
5625 -INTVAL (XEXP (XEXP (x, 1), 1)) - 1);
5626 break;
5627
5628 case MULT:
5629 /* If we have (mult (plus A B) C), apply the distributive law and then
5630 the inverse distributive law to see if things simplify. This
5631 occurs mostly in addresses, often when unrolling loops. */
5632
5633 if (GET_CODE (XEXP (x, 0)) == PLUS)
5634 {
5635 rtx result = distribute_and_simplify_rtx (x, 0);
5636 if (result)
5637 return result;
5638 }
5639
5640 /* Try simplify a*(b/c) as (a*b)/c. */
5641 if (FLOAT_MODE_P (mode) && flag_associative_math
5642 && GET_CODE (XEXP (x, 0)) == DIV)
5643 {
5644 rtx tem = simplify_binary_operation (MULT, mode,
5645 XEXP (XEXP (x, 0), 0),
5646 XEXP (x, 1));
5647 if (tem)
5648 return simplify_gen_binary (DIV, mode, tem, XEXP (XEXP (x, 0), 1));
5649 }
5650 break;
5651
5652 case UDIV:
5653 /* If this is a divide by a power of two, treat it as a shift if
5654 its first operand is a shift. */
5655 if (CONST_INT_P (XEXP (x, 1))
5656 && (i = exact_log2 (UINTVAL (XEXP (x, 1)))) >= 0
5657 && (GET_CODE (XEXP (x, 0)) == ASHIFT
5658 || GET_CODE (XEXP (x, 0)) == LSHIFTRT
5659 || GET_CODE (XEXP (x, 0)) == ASHIFTRT
5660 || GET_CODE (XEXP (x, 0)) == ROTATE
5661 || GET_CODE (XEXP (x, 0)) == ROTATERT))
5662 return simplify_shift_const (NULL_RTX, LSHIFTRT, mode, XEXP (x, 0), i);
5663 break;
5664
5665 case EQ: case NE:
5666 case GT: case GTU: case GE: case GEU:
5667 case LT: case LTU: case LE: case LEU:
5668 case UNEQ: case LTGT:
5669 case UNGT: case UNGE:
5670 case UNLT: case UNLE:
5671 case UNORDERED: case ORDERED:
5672 /* If the first operand is a condition code, we can't do anything
5673 with it. */
5674 if (GET_CODE (XEXP (x, 0)) == COMPARE
5675 || (GET_MODE_CLASS (GET_MODE (XEXP (x, 0))) != MODE_CC
5676 && ! CC0_P (XEXP (x, 0))))
5677 {
5678 rtx op0 = XEXP (x, 0);
5679 rtx op1 = XEXP (x, 1);
5680 enum rtx_code new_code;
5681
5682 if (GET_CODE (op0) == COMPARE)
5683 op1 = XEXP (op0, 1), op0 = XEXP (op0, 0);
5684
5685 /* Simplify our comparison, if possible. */
5686 new_code = simplify_comparison (code, &op0, &op1);
5687
5688 /* If STORE_FLAG_VALUE is 1, we can convert (ne x 0) to simply X
5689 if only the low-order bit is possibly nonzero in X (such as when
5690 X is a ZERO_EXTRACT of one bit). Similarly, we can convert EQ to
5691 (xor X 1) or (minus 1 X); we use the former. Finally, if X is
5692 known to be either 0 or -1, NE becomes a NEG and EQ becomes
5693 (plus X 1).
5694
5695 Remove any ZERO_EXTRACT we made when thinking this was a
5696 comparison. It may now be simpler to use, e.g., an AND. If a
5697 ZERO_EXTRACT is indeed appropriate, it will be placed back by
5698 the call to make_compound_operation in the SET case.
5699
5700 Don't apply these optimizations if the caller would
5701 prefer a comparison rather than a value.
5702 E.g., for the condition in an IF_THEN_ELSE most targets need
5703 an explicit comparison. */
5704
5705 if (in_cond)
5706 ;
5707
5708 else if (STORE_FLAG_VALUE == 1
5709 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
5710 && op1 == const0_rtx
5711 && mode == GET_MODE (op0)
5712 && nonzero_bits (op0, mode) == 1)
5713 return gen_lowpart (mode,
5714 expand_compound_operation (op0));
5715
5716 else if (STORE_FLAG_VALUE == 1
5717 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
5718 && op1 == const0_rtx
5719 && mode == GET_MODE (op0)
5720 && (num_sign_bit_copies (op0, mode)
5721 == GET_MODE_PRECISION (mode)))
5722 {
5723 op0 = expand_compound_operation (op0);
5724 return simplify_gen_unary (NEG, mode,
5725 gen_lowpart (mode, op0),
5726 mode);
5727 }
5728
5729 else if (STORE_FLAG_VALUE == 1
5730 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
5731 && op1 == const0_rtx
5732 && mode == GET_MODE (op0)
5733 && nonzero_bits (op0, mode) == 1)
5734 {
5735 op0 = expand_compound_operation (op0);
5736 return simplify_gen_binary (XOR, mode,
5737 gen_lowpart (mode, op0),
5738 const1_rtx);
5739 }
5740
5741 else if (STORE_FLAG_VALUE == 1
5742 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
5743 && op1 == const0_rtx
5744 && mode == GET_MODE (op0)
5745 && (num_sign_bit_copies (op0, mode)
5746 == GET_MODE_PRECISION (mode)))
5747 {
5748 op0 = expand_compound_operation (op0);
5749 return plus_constant (mode, gen_lowpart (mode, op0), 1);
5750 }
5751
5752 /* If STORE_FLAG_VALUE is -1, we have cases similar to
5753 those above. */
5754 if (in_cond)
5755 ;
5756
5757 else if (STORE_FLAG_VALUE == -1
5758 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
5759 && op1 == const0_rtx
5760 && (num_sign_bit_copies (op0, mode)
5761 == GET_MODE_PRECISION (mode)))
5762 return gen_lowpart (mode,
5763 expand_compound_operation (op0));
5764
5765 else if (STORE_FLAG_VALUE == -1
5766 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
5767 && op1 == const0_rtx
5768 && mode == GET_MODE (op0)
5769 && nonzero_bits (op0, mode) == 1)
5770 {
5771 op0 = expand_compound_operation (op0);
5772 return simplify_gen_unary (NEG, mode,
5773 gen_lowpart (mode, op0),
5774 mode);
5775 }
5776
5777 else if (STORE_FLAG_VALUE == -1
5778 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
5779 && op1 == const0_rtx
5780 && mode == GET_MODE (op0)
5781 && (num_sign_bit_copies (op0, mode)
5782 == GET_MODE_PRECISION (mode)))
5783 {
5784 op0 = expand_compound_operation (op0);
5785 return simplify_gen_unary (NOT, mode,
5786 gen_lowpart (mode, op0),
5787 mode);
5788 }
5789
5790 /* If X is 0/1, (eq X 0) is X-1. */
5791 else if (STORE_FLAG_VALUE == -1
5792 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
5793 && op1 == const0_rtx
5794 && mode == GET_MODE (op0)
5795 && nonzero_bits (op0, mode) == 1)
5796 {
5797 op0 = expand_compound_operation (op0);
5798 return plus_constant (mode, gen_lowpart (mode, op0), -1);
5799 }
5800
5801 /* If STORE_FLAG_VALUE says to just test the sign bit and X has just
5802 one bit that might be nonzero, we can convert (ne x 0) to
5803 (ashift x c) where C puts the bit in the sign bit. Remove any
5804 AND with STORE_FLAG_VALUE when we are done, since we are only
5805 going to test the sign bit. */
5806 if (new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
5807 && HWI_COMPUTABLE_MODE_P (mode)
5808 && val_signbit_p (mode, STORE_FLAG_VALUE)
5809 && op1 == const0_rtx
5810 && mode == GET_MODE (op0)
5811 && (i = exact_log2 (nonzero_bits (op0, mode))) >= 0)
5812 {
5813 x = simplify_shift_const (NULL_RTX, ASHIFT, mode,
5814 expand_compound_operation (op0),
5815 GET_MODE_PRECISION (mode) - 1 - i);
5816 if (GET_CODE (x) == AND && XEXP (x, 1) == const_true_rtx)
5817 return XEXP (x, 0);
5818 else
5819 return x;
5820 }
5821
5822 /* If the code changed, return a whole new comparison.
5823 We also need to avoid using SUBST in cases where
5824 simplify_comparison has widened a comparison with a CONST_INT,
5825 since in that case the wider CONST_INT may fail the sanity
5826 checks in do_SUBST. */
5827 if (new_code != code
5828 || (CONST_INT_P (op1)
5829 && GET_MODE (op0) != GET_MODE (XEXP (x, 0))
5830 && GET_MODE (op0) != GET_MODE (XEXP (x, 1))))
5831 return gen_rtx_fmt_ee (new_code, mode, op0, op1);
5832
5833 /* Otherwise, keep this operation, but maybe change its operands.
5834 This also converts (ne (compare FOO BAR) 0) to (ne FOO BAR). */
5835 SUBST (XEXP (x, 0), op0);
5836 SUBST (XEXP (x, 1), op1);
5837 }
5838 break;
5839
5840 case IF_THEN_ELSE:
5841 return simplify_if_then_else (x);
5842
5843 case ZERO_EXTRACT:
5844 case SIGN_EXTRACT:
5845 case ZERO_EXTEND:
5846 case SIGN_EXTEND:
5847 /* If we are processing SET_DEST, we are done. */
5848 if (in_dest)
5849 return x;
5850
5851 return expand_compound_operation (x);
5852
5853 case SET:
5854 return simplify_set (x);
5855
5856 case AND:
5857 case IOR:
5858 return simplify_logical (x);
5859
5860 case ASHIFT:
5861 case LSHIFTRT:
5862 case ASHIFTRT:
5863 case ROTATE:
5864 case ROTATERT:
5865 /* If this is a shift by a constant amount, simplify it. */
5866 if (CONST_INT_P (XEXP (x, 1)))
5867 return simplify_shift_const (x, code, mode, XEXP (x, 0),
5868 INTVAL (XEXP (x, 1)));
5869
5870 else if (SHIFT_COUNT_TRUNCATED && !REG_P (XEXP (x, 1)))
5871 SUBST (XEXP (x, 1),
5872 force_to_mode (XEXP (x, 1), GET_MODE (XEXP (x, 1)),
5873 ((unsigned HOST_WIDE_INT) 1
5874 << exact_log2 (GET_MODE_BITSIZE (GET_MODE (x))))
5875 - 1,
5876 0));
5877 break;
5878
5879 default:
5880 break;
5881 }
5882
5883 return x;
5884 }
5885 \f
5886 /* Simplify X, an IF_THEN_ELSE expression. Return the new expression. */
5887
5888 static rtx
5889 simplify_if_then_else (rtx x)
5890 {
5891 enum machine_mode mode = GET_MODE (x);
5892 rtx cond = XEXP (x, 0);
5893 rtx true_rtx = XEXP (x, 1);
5894 rtx false_rtx = XEXP (x, 2);
5895 enum rtx_code true_code = GET_CODE (cond);
5896 int comparison_p = COMPARISON_P (cond);
5897 rtx temp;
5898 int i;
5899 enum rtx_code false_code;
5900 rtx reversed;
5901
5902 /* Simplify storing of the truth value. */
5903 if (comparison_p && true_rtx == const_true_rtx && false_rtx == const0_rtx)
5904 return simplify_gen_relational (true_code, mode, VOIDmode,
5905 XEXP (cond, 0), XEXP (cond, 1));
5906
5907 /* Also when the truth value has to be reversed. */
5908 if (comparison_p
5909 && true_rtx == const0_rtx && false_rtx == const_true_rtx
5910 && (reversed = reversed_comparison (cond, mode)))
5911 return reversed;
5912
5913 /* Sometimes we can simplify the arm of an IF_THEN_ELSE if a register used
5914 in it is being compared against certain values. Get the true and false
5915 comparisons and see if that says anything about the value of each arm. */
5916
5917 if (comparison_p
5918 && ((false_code = reversed_comparison_code (cond, NULL))
5919 != UNKNOWN)
5920 && REG_P (XEXP (cond, 0)))
5921 {
5922 HOST_WIDE_INT nzb;
5923 rtx from = XEXP (cond, 0);
5924 rtx true_val = XEXP (cond, 1);
5925 rtx false_val = true_val;
5926 int swapped = 0;
5927
5928 /* If FALSE_CODE is EQ, swap the codes and arms. */
5929
5930 if (false_code == EQ)
5931 {
5932 swapped = 1, true_code = EQ, false_code = NE;
5933 temp = true_rtx, true_rtx = false_rtx, false_rtx = temp;
5934 }
5935
5936 /* If we are comparing against zero and the expression being tested has
5937 only a single bit that might be nonzero, that is its value when it is
5938 not equal to zero. Similarly if it is known to be -1 or 0. */
5939
5940 if (true_code == EQ && true_val == const0_rtx
5941 && exact_log2 (nzb = nonzero_bits (from, GET_MODE (from))) >= 0)
5942 {
5943 false_code = EQ;
5944 false_val = gen_int_mode (nzb, GET_MODE (from));
5945 }
5946 else if (true_code == EQ && true_val == const0_rtx
5947 && (num_sign_bit_copies (from, GET_MODE (from))
5948 == GET_MODE_PRECISION (GET_MODE (from))))
5949 {
5950 false_code = EQ;
5951 false_val = constm1_rtx;
5952 }
5953
5954 /* Now simplify an arm if we know the value of the register in the
5955 branch and it is used in the arm. Be careful due to the potential
5956 of locally-shared RTL. */
5957
5958 if (reg_mentioned_p (from, true_rtx))
5959 true_rtx = subst (known_cond (copy_rtx (true_rtx), true_code,
5960 from, true_val),
5961 pc_rtx, pc_rtx, 0, 0, 0);
5962 if (reg_mentioned_p (from, false_rtx))
5963 false_rtx = subst (known_cond (copy_rtx (false_rtx), false_code,
5964 from, false_val),
5965 pc_rtx, pc_rtx, 0, 0, 0);
5966
5967 SUBST (XEXP (x, 1), swapped ? false_rtx : true_rtx);
5968 SUBST (XEXP (x, 2), swapped ? true_rtx : false_rtx);
5969
5970 true_rtx = XEXP (x, 1);
5971 false_rtx = XEXP (x, 2);
5972 true_code = GET_CODE (cond);
5973 }
5974
5975 /* If we have (if_then_else FOO (pc) (label_ref BAR)) and FOO can be
5976 reversed, do so to avoid needing two sets of patterns for
5977 subtract-and-branch insns. Similarly if we have a constant in the true
5978 arm, the false arm is the same as the first operand of the comparison, or
5979 the false arm is more complicated than the true arm. */
5980
5981 if (comparison_p
5982 && reversed_comparison_code (cond, NULL) != UNKNOWN
5983 && (true_rtx == pc_rtx
5984 || (CONSTANT_P (true_rtx)
5985 && !CONST_INT_P (false_rtx) && false_rtx != pc_rtx)
5986 || true_rtx == const0_rtx
5987 || (OBJECT_P (true_rtx) && !OBJECT_P (false_rtx))
5988 || (GET_CODE (true_rtx) == SUBREG && OBJECT_P (SUBREG_REG (true_rtx))
5989 && !OBJECT_P (false_rtx))
5990 || reg_mentioned_p (true_rtx, false_rtx)
5991 || rtx_equal_p (false_rtx, XEXP (cond, 0))))
5992 {
5993 true_code = reversed_comparison_code (cond, NULL);
5994 SUBST (XEXP (x, 0), reversed_comparison (cond, GET_MODE (cond)));
5995 SUBST (XEXP (x, 1), false_rtx);
5996 SUBST (XEXP (x, 2), true_rtx);
5997
5998 temp = true_rtx, true_rtx = false_rtx, false_rtx = temp;
5999 cond = XEXP (x, 0);
6000
6001 /* It is possible that the conditional has been simplified out. */
6002 true_code = GET_CODE (cond);
6003 comparison_p = COMPARISON_P (cond);
6004 }
6005
6006 /* If the two arms are identical, we don't need the comparison. */
6007
6008 if (rtx_equal_p (true_rtx, false_rtx) && ! side_effects_p (cond))
6009 return true_rtx;
6010
6011 /* Convert a == b ? b : a to "a". */
6012 if (true_code == EQ && ! side_effects_p (cond)
6013 && !HONOR_NANS (mode)
6014 && rtx_equal_p (XEXP (cond, 0), false_rtx)
6015 && rtx_equal_p (XEXP (cond, 1), true_rtx))
6016 return false_rtx;
6017 else if (true_code == NE && ! side_effects_p (cond)
6018 && !HONOR_NANS (mode)
6019 && rtx_equal_p (XEXP (cond, 0), true_rtx)
6020 && rtx_equal_p (XEXP (cond, 1), false_rtx))
6021 return true_rtx;
6022
6023 /* Look for cases where we have (abs x) or (neg (abs X)). */
6024
6025 if (GET_MODE_CLASS (mode) == MODE_INT
6026 && comparison_p
6027 && XEXP (cond, 1) == const0_rtx
6028 && GET_CODE (false_rtx) == NEG
6029 && rtx_equal_p (true_rtx, XEXP (false_rtx, 0))
6030 && rtx_equal_p (true_rtx, XEXP (cond, 0))
6031 && ! side_effects_p (true_rtx))
6032 switch (true_code)
6033 {
6034 case GT:
6035 case GE:
6036 return simplify_gen_unary (ABS, mode, true_rtx, mode);
6037 case LT:
6038 case LE:
6039 return
6040 simplify_gen_unary (NEG, mode,
6041 simplify_gen_unary (ABS, mode, true_rtx, mode),
6042 mode);
6043 default:
6044 break;
6045 }
6046
6047 /* Look for MIN or MAX. */
6048
6049 if ((! FLOAT_MODE_P (mode) || flag_unsafe_math_optimizations)
6050 && comparison_p
6051 && rtx_equal_p (XEXP (cond, 0), true_rtx)
6052 && rtx_equal_p (XEXP (cond, 1), false_rtx)
6053 && ! side_effects_p (cond))
6054 switch (true_code)
6055 {
6056 case GE:
6057 case GT:
6058 return simplify_gen_binary (SMAX, mode, true_rtx, false_rtx);
6059 case LE:
6060 case LT:
6061 return simplify_gen_binary (SMIN, mode, true_rtx, false_rtx);
6062 case GEU:
6063 case GTU:
6064 return simplify_gen_binary (UMAX, mode, true_rtx, false_rtx);
6065 case LEU:
6066 case LTU:
6067 return simplify_gen_binary (UMIN, mode, true_rtx, false_rtx);
6068 default:
6069 break;
6070 }
6071
6072 /* If we have (if_then_else COND (OP Z C1) Z) and OP is an identity when its
6073 second operand is zero, this can be done as (OP Z (mult COND C2)) where
6074 C2 = C1 * STORE_FLAG_VALUE. Similarly if OP has an outer ZERO_EXTEND or
6075 SIGN_EXTEND as long as Z is already extended (so we don't destroy it).
6076 We can do this kind of thing in some cases when STORE_FLAG_VALUE is
6077 neither 1 or -1, but it isn't worth checking for. */
6078
6079 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
6080 && comparison_p
6081 && GET_MODE_CLASS (mode) == MODE_INT
6082 && ! side_effects_p (x))
6083 {
6084 rtx t = make_compound_operation (true_rtx, SET);
6085 rtx f = make_compound_operation (false_rtx, SET);
6086 rtx cond_op0 = XEXP (cond, 0);
6087 rtx cond_op1 = XEXP (cond, 1);
6088 enum rtx_code op = UNKNOWN, extend_op = UNKNOWN;
6089 enum machine_mode m = mode;
6090 rtx z = 0, c1 = NULL_RTX;
6091
6092 if ((GET_CODE (t) == PLUS || GET_CODE (t) == MINUS
6093 || GET_CODE (t) == IOR || GET_CODE (t) == XOR
6094 || GET_CODE (t) == ASHIFT
6095 || GET_CODE (t) == LSHIFTRT || GET_CODE (t) == ASHIFTRT)
6096 && rtx_equal_p (XEXP (t, 0), f))
6097 c1 = XEXP (t, 1), op = GET_CODE (t), z = f;
6098
6099 /* If an identity-zero op is commutative, check whether there
6100 would be a match if we swapped the operands. */
6101 else if ((GET_CODE (t) == PLUS || GET_CODE (t) == IOR
6102 || GET_CODE (t) == XOR)
6103 && rtx_equal_p (XEXP (t, 1), f))
6104 c1 = XEXP (t, 0), op = GET_CODE (t), z = f;
6105 else if (GET_CODE (t) == SIGN_EXTEND
6106 && (GET_CODE (XEXP (t, 0)) == PLUS
6107 || GET_CODE (XEXP (t, 0)) == MINUS
6108 || GET_CODE (XEXP (t, 0)) == IOR
6109 || GET_CODE (XEXP (t, 0)) == XOR
6110 || GET_CODE (XEXP (t, 0)) == ASHIFT
6111 || GET_CODE (XEXP (t, 0)) == LSHIFTRT
6112 || GET_CODE (XEXP (t, 0)) == ASHIFTRT)
6113 && GET_CODE (XEXP (XEXP (t, 0), 0)) == SUBREG
6114 && subreg_lowpart_p (XEXP (XEXP (t, 0), 0))
6115 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 0)), f)
6116 && (num_sign_bit_copies (f, GET_MODE (f))
6117 > (unsigned int)
6118 (GET_MODE_PRECISION (mode)
6119 - GET_MODE_PRECISION (GET_MODE (XEXP (XEXP (t, 0), 0))))))
6120 {
6121 c1 = XEXP (XEXP (t, 0), 1); z = f; op = GET_CODE (XEXP (t, 0));
6122 extend_op = SIGN_EXTEND;
6123 m = GET_MODE (XEXP (t, 0));
6124 }
6125 else if (GET_CODE (t) == SIGN_EXTEND
6126 && (GET_CODE (XEXP (t, 0)) == PLUS
6127 || GET_CODE (XEXP (t, 0)) == IOR
6128 || GET_CODE (XEXP (t, 0)) == XOR)
6129 && GET_CODE (XEXP (XEXP (t, 0), 1)) == SUBREG
6130 && subreg_lowpart_p (XEXP (XEXP (t, 0), 1))
6131 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 1)), f)
6132 && (num_sign_bit_copies (f, GET_MODE (f))
6133 > (unsigned int)
6134 (GET_MODE_PRECISION (mode)
6135 - GET_MODE_PRECISION (GET_MODE (XEXP (XEXP (t, 0), 1))))))
6136 {
6137 c1 = XEXP (XEXP (t, 0), 0); z = f; op = GET_CODE (XEXP (t, 0));
6138 extend_op = SIGN_EXTEND;
6139 m = GET_MODE (XEXP (t, 0));
6140 }
6141 else if (GET_CODE (t) == ZERO_EXTEND
6142 && (GET_CODE (XEXP (t, 0)) == PLUS
6143 || GET_CODE (XEXP (t, 0)) == MINUS
6144 || GET_CODE (XEXP (t, 0)) == IOR
6145 || GET_CODE (XEXP (t, 0)) == XOR
6146 || GET_CODE (XEXP (t, 0)) == ASHIFT
6147 || GET_CODE (XEXP (t, 0)) == LSHIFTRT
6148 || GET_CODE (XEXP (t, 0)) == ASHIFTRT)
6149 && GET_CODE (XEXP (XEXP (t, 0), 0)) == SUBREG
6150 && HWI_COMPUTABLE_MODE_P (mode)
6151 && subreg_lowpart_p (XEXP (XEXP (t, 0), 0))
6152 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 0)), f)
6153 && ((nonzero_bits (f, GET_MODE (f))
6154 & ~GET_MODE_MASK (GET_MODE (XEXP (XEXP (t, 0), 0))))
6155 == 0))
6156 {
6157 c1 = XEXP (XEXP (t, 0), 1); z = f; op = GET_CODE (XEXP (t, 0));
6158 extend_op = ZERO_EXTEND;
6159 m = GET_MODE (XEXP (t, 0));
6160 }
6161 else if (GET_CODE (t) == ZERO_EXTEND
6162 && (GET_CODE (XEXP (t, 0)) == PLUS
6163 || GET_CODE (XEXP (t, 0)) == IOR
6164 || GET_CODE (XEXP (t, 0)) == XOR)
6165 && GET_CODE (XEXP (XEXP (t, 0), 1)) == SUBREG
6166 && HWI_COMPUTABLE_MODE_P (mode)
6167 && subreg_lowpart_p (XEXP (XEXP (t, 0), 1))
6168 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 1)), f)
6169 && ((nonzero_bits (f, GET_MODE (f))
6170 & ~GET_MODE_MASK (GET_MODE (XEXP (XEXP (t, 0), 1))))
6171 == 0))
6172 {
6173 c1 = XEXP (XEXP (t, 0), 0); z = f; op = GET_CODE (XEXP (t, 0));
6174 extend_op = ZERO_EXTEND;
6175 m = GET_MODE (XEXP (t, 0));
6176 }
6177
6178 if (z)
6179 {
6180 temp = subst (simplify_gen_relational (true_code, m, VOIDmode,
6181 cond_op0, cond_op1),
6182 pc_rtx, pc_rtx, 0, 0, 0);
6183 temp = simplify_gen_binary (MULT, m, temp,
6184 simplify_gen_binary (MULT, m, c1,
6185 const_true_rtx));
6186 temp = subst (temp, pc_rtx, pc_rtx, 0, 0, 0);
6187 temp = simplify_gen_binary (op, m, gen_lowpart (m, z), temp);
6188
6189 if (extend_op != UNKNOWN)
6190 temp = simplify_gen_unary (extend_op, mode, temp, m);
6191
6192 return temp;
6193 }
6194 }
6195
6196 /* If we have (if_then_else (ne A 0) C1 0) and either A is known to be 0 or
6197 1 and C1 is a single bit or A is known to be 0 or -1 and C1 is the
6198 negation of a single bit, we can convert this operation to a shift. We
6199 can actually do this more generally, but it doesn't seem worth it. */
6200
6201 if (true_code == NE && XEXP (cond, 1) == const0_rtx
6202 && false_rtx == const0_rtx && CONST_INT_P (true_rtx)
6203 && ((1 == nonzero_bits (XEXP (cond, 0), mode)
6204 && (i = exact_log2 (UINTVAL (true_rtx))) >= 0)
6205 || ((num_sign_bit_copies (XEXP (cond, 0), mode)
6206 == GET_MODE_PRECISION (mode))
6207 && (i = exact_log2 (-UINTVAL (true_rtx))) >= 0)))
6208 return
6209 simplify_shift_const (NULL_RTX, ASHIFT, mode,
6210 gen_lowpart (mode, XEXP (cond, 0)), i);
6211
6212 /* (IF_THEN_ELSE (NE REG 0) (0) (8)) is REG for nonzero_bits (REG) == 8. */
6213 if (true_code == NE && XEXP (cond, 1) == const0_rtx
6214 && false_rtx == const0_rtx && CONST_INT_P (true_rtx)
6215 && GET_MODE (XEXP (cond, 0)) == mode
6216 && (UINTVAL (true_rtx) & GET_MODE_MASK (mode))
6217 == nonzero_bits (XEXP (cond, 0), mode)
6218 && (i = exact_log2 (UINTVAL (true_rtx) & GET_MODE_MASK (mode))) >= 0)
6219 return XEXP (cond, 0);
6220
6221 return x;
6222 }
6223 \f
6224 /* Simplify X, a SET expression. Return the new expression. */
6225
6226 static rtx
6227 simplify_set (rtx x)
6228 {
6229 rtx src = SET_SRC (x);
6230 rtx dest = SET_DEST (x);
6231 enum machine_mode mode
6232 = GET_MODE (src) != VOIDmode ? GET_MODE (src) : GET_MODE (dest);
6233 rtx other_insn;
6234 rtx *cc_use;
6235
6236 /* (set (pc) (return)) gets written as (return). */
6237 if (GET_CODE (dest) == PC && ANY_RETURN_P (src))
6238 return src;
6239
6240 /* Now that we know for sure which bits of SRC we are using, see if we can
6241 simplify the expression for the object knowing that we only need the
6242 low-order bits. */
6243
6244 if (GET_MODE_CLASS (mode) == MODE_INT && HWI_COMPUTABLE_MODE_P (mode))
6245 {
6246 src = force_to_mode (src, mode, ~(unsigned HOST_WIDE_INT) 0, 0);
6247 SUBST (SET_SRC (x), src);
6248 }
6249
6250 /* If we are setting CC0 or if the source is a COMPARE, look for the use of
6251 the comparison result and try to simplify it unless we already have used
6252 undobuf.other_insn. */
6253 if ((GET_MODE_CLASS (mode) == MODE_CC
6254 || GET_CODE (src) == COMPARE
6255 || CC0_P (dest))
6256 && (cc_use = find_single_use (dest, subst_insn, &other_insn)) != 0
6257 && (undobuf.other_insn == 0 || other_insn == undobuf.other_insn)
6258 && COMPARISON_P (*cc_use)
6259 && rtx_equal_p (XEXP (*cc_use, 0), dest))
6260 {
6261 enum rtx_code old_code = GET_CODE (*cc_use);
6262 enum rtx_code new_code;
6263 rtx op0, op1, tmp;
6264 int other_changed = 0;
6265 rtx inner_compare = NULL_RTX;
6266 enum machine_mode compare_mode = GET_MODE (dest);
6267
6268 if (GET_CODE (src) == COMPARE)
6269 {
6270 op0 = XEXP (src, 0), op1 = XEXP (src, 1);
6271 if (GET_CODE (op0) == COMPARE && op1 == const0_rtx)
6272 {
6273 inner_compare = op0;
6274 op0 = XEXP (inner_compare, 0), op1 = XEXP (inner_compare, 1);
6275 }
6276 }
6277 else
6278 op0 = src, op1 = CONST0_RTX (GET_MODE (src));
6279
6280 tmp = simplify_relational_operation (old_code, compare_mode, VOIDmode,
6281 op0, op1);
6282 if (!tmp)
6283 new_code = old_code;
6284 else if (!CONSTANT_P (tmp))
6285 {
6286 new_code = GET_CODE (tmp);
6287 op0 = XEXP (tmp, 0);
6288 op1 = XEXP (tmp, 1);
6289 }
6290 else
6291 {
6292 rtx pat = PATTERN (other_insn);
6293 undobuf.other_insn = other_insn;
6294 SUBST (*cc_use, tmp);
6295
6296 /* Attempt to simplify CC user. */
6297 if (GET_CODE (pat) == SET)
6298 {
6299 rtx new_rtx = simplify_rtx (SET_SRC (pat));
6300 if (new_rtx != NULL_RTX)
6301 SUBST (SET_SRC (pat), new_rtx);
6302 }
6303
6304 /* Convert X into a no-op move. */
6305 SUBST (SET_DEST (x), pc_rtx);
6306 SUBST (SET_SRC (x), pc_rtx);
6307 return x;
6308 }
6309
6310 /* Simplify our comparison, if possible. */
6311 new_code = simplify_comparison (new_code, &op0, &op1);
6312
6313 #ifdef SELECT_CC_MODE
6314 /* If this machine has CC modes other than CCmode, check to see if we
6315 need to use a different CC mode here. */
6316 if (GET_MODE_CLASS (GET_MODE (op0)) == MODE_CC)
6317 compare_mode = GET_MODE (op0);
6318 else if (inner_compare
6319 && GET_MODE_CLASS (GET_MODE (inner_compare)) == MODE_CC
6320 && new_code == old_code
6321 && op0 == XEXP (inner_compare, 0)
6322 && op1 == XEXP (inner_compare, 1))
6323 compare_mode = GET_MODE (inner_compare);
6324 else
6325 compare_mode = SELECT_CC_MODE (new_code, op0, op1);
6326
6327 #ifndef HAVE_cc0
6328 /* If the mode changed, we have to change SET_DEST, the mode in the
6329 compare, and the mode in the place SET_DEST is used. If SET_DEST is
6330 a hard register, just build new versions with the proper mode. If it
6331 is a pseudo, we lose unless it is only time we set the pseudo, in
6332 which case we can safely change its mode. */
6333 if (compare_mode != GET_MODE (dest))
6334 {
6335 if (can_change_dest_mode (dest, 0, compare_mode))
6336 {
6337 unsigned int regno = REGNO (dest);
6338 rtx new_dest;
6339
6340 if (regno < FIRST_PSEUDO_REGISTER)
6341 new_dest = gen_rtx_REG (compare_mode, regno);
6342 else
6343 {
6344 SUBST_MODE (regno_reg_rtx[regno], compare_mode);
6345 new_dest = regno_reg_rtx[regno];
6346 }
6347
6348 SUBST (SET_DEST (x), new_dest);
6349 SUBST (XEXP (*cc_use, 0), new_dest);
6350 other_changed = 1;
6351
6352 dest = new_dest;
6353 }
6354 }
6355 #endif /* cc0 */
6356 #endif /* SELECT_CC_MODE */
6357
6358 /* If the code changed, we have to build a new comparison in
6359 undobuf.other_insn. */
6360 if (new_code != old_code)
6361 {
6362 int other_changed_previously = other_changed;
6363 unsigned HOST_WIDE_INT mask;
6364 rtx old_cc_use = *cc_use;
6365
6366 SUBST (*cc_use, gen_rtx_fmt_ee (new_code, GET_MODE (*cc_use),
6367 dest, const0_rtx));
6368 other_changed = 1;
6369
6370 /* If the only change we made was to change an EQ into an NE or
6371 vice versa, OP0 has only one bit that might be nonzero, and OP1
6372 is zero, check if changing the user of the condition code will
6373 produce a valid insn. If it won't, we can keep the original code
6374 in that insn by surrounding our operation with an XOR. */
6375
6376 if (((old_code == NE && new_code == EQ)
6377 || (old_code == EQ && new_code == NE))
6378 && ! other_changed_previously && op1 == const0_rtx
6379 && HWI_COMPUTABLE_MODE_P (GET_MODE (op0))
6380 && exact_log2 (mask = nonzero_bits (op0, GET_MODE (op0))) >= 0)
6381 {
6382 rtx pat = PATTERN (other_insn), note = 0;
6383
6384 if ((recog_for_combine (&pat, other_insn, &note) < 0
6385 && ! check_asm_operands (pat)))
6386 {
6387 *cc_use = old_cc_use;
6388 other_changed = 0;
6389
6390 op0 = simplify_gen_binary (XOR, GET_MODE (op0), op0,
6391 gen_int_mode (mask,
6392 GET_MODE (op0)));
6393 }
6394 }
6395 }
6396
6397 if (other_changed)
6398 undobuf.other_insn = other_insn;
6399
6400 /* Otherwise, if we didn't previously have a COMPARE in the
6401 correct mode, we need one. */
6402 if (GET_CODE (src) != COMPARE || GET_MODE (src) != compare_mode)
6403 {
6404 SUBST (SET_SRC (x), gen_rtx_COMPARE (compare_mode, op0, op1));
6405 src = SET_SRC (x);
6406 }
6407 else if (GET_MODE (op0) == compare_mode && op1 == const0_rtx)
6408 {
6409 SUBST (SET_SRC (x), op0);
6410 src = SET_SRC (x);
6411 }
6412 /* Otherwise, update the COMPARE if needed. */
6413 else if (XEXP (src, 0) != op0 || XEXP (src, 1) != op1)
6414 {
6415 SUBST (SET_SRC (x), gen_rtx_COMPARE (compare_mode, op0, op1));
6416 src = SET_SRC (x);
6417 }
6418 }
6419 else
6420 {
6421 /* Get SET_SRC in a form where we have placed back any
6422 compound expressions. Then do the checks below. */
6423 src = make_compound_operation (src, SET);
6424 SUBST (SET_SRC (x), src);
6425 }
6426
6427 /* If we have (set x (subreg:m1 (op:m2 ...) 0)) with OP being some operation,
6428 and X being a REG or (subreg (reg)), we may be able to convert this to
6429 (set (subreg:m2 x) (op)).
6430
6431 We can always do this if M1 is narrower than M2 because that means that
6432 we only care about the low bits of the result.
6433
6434 However, on machines without WORD_REGISTER_OPERATIONS defined, we cannot
6435 perform a narrower operation than requested since the high-order bits will
6436 be undefined. On machine where it is defined, this transformation is safe
6437 as long as M1 and M2 have the same number of words. */
6438
6439 if (GET_CODE (src) == SUBREG && subreg_lowpart_p (src)
6440 && !OBJECT_P (SUBREG_REG (src))
6441 && (((GET_MODE_SIZE (GET_MODE (src)) + (UNITS_PER_WORD - 1))
6442 / UNITS_PER_WORD)
6443 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (src)))
6444 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))
6445 #ifndef WORD_REGISTER_OPERATIONS
6446 && (GET_MODE_SIZE (GET_MODE (src))
6447 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (src))))
6448 #endif
6449 #ifdef CANNOT_CHANGE_MODE_CLASS
6450 && ! (REG_P (dest) && REGNO (dest) < FIRST_PSEUDO_REGISTER
6451 && REG_CANNOT_CHANGE_MODE_P (REGNO (dest),
6452 GET_MODE (SUBREG_REG (src)),
6453 GET_MODE (src)))
6454 #endif
6455 && (REG_P (dest)
6456 || (GET_CODE (dest) == SUBREG
6457 && REG_P (SUBREG_REG (dest)))))
6458 {
6459 SUBST (SET_DEST (x),
6460 gen_lowpart (GET_MODE (SUBREG_REG (src)),
6461 dest));
6462 SUBST (SET_SRC (x), SUBREG_REG (src));
6463
6464 src = SET_SRC (x), dest = SET_DEST (x);
6465 }
6466
6467 #ifdef HAVE_cc0
6468 /* If we have (set (cc0) (subreg ...)), we try to remove the subreg
6469 in SRC. */
6470 if (dest == cc0_rtx
6471 && GET_CODE (src) == SUBREG
6472 && subreg_lowpart_p (src)
6473 && (GET_MODE_PRECISION (GET_MODE (src))
6474 < GET_MODE_PRECISION (GET_MODE (SUBREG_REG (src)))))
6475 {
6476 rtx inner = SUBREG_REG (src);
6477 enum machine_mode inner_mode = GET_MODE (inner);
6478
6479 /* Here we make sure that we don't have a sign bit on. */
6480 if (val_signbit_known_clear_p (GET_MODE (src),
6481 nonzero_bits (inner, inner_mode)))
6482 {
6483 SUBST (SET_SRC (x), inner);
6484 src = SET_SRC (x);
6485 }
6486 }
6487 #endif
6488
6489 #ifdef LOAD_EXTEND_OP
6490 /* If we have (set FOO (subreg:M (mem:N BAR) 0)) with M wider than N, this
6491 would require a paradoxical subreg. Replace the subreg with a
6492 zero_extend to avoid the reload that would otherwise be required. */
6493
6494 if (GET_CODE (src) == SUBREG && subreg_lowpart_p (src)
6495 && INTEGRAL_MODE_P (GET_MODE (SUBREG_REG (src)))
6496 && LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (src))) != UNKNOWN
6497 && SUBREG_BYTE (src) == 0
6498 && paradoxical_subreg_p (src)
6499 && MEM_P (SUBREG_REG (src)))
6500 {
6501 SUBST (SET_SRC (x),
6502 gen_rtx_fmt_e (LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (src))),
6503 GET_MODE (src), SUBREG_REG (src)));
6504
6505 src = SET_SRC (x);
6506 }
6507 #endif
6508
6509 /* If we don't have a conditional move, SET_SRC is an IF_THEN_ELSE, and we
6510 are comparing an item known to be 0 or -1 against 0, use a logical
6511 operation instead. Check for one of the arms being an IOR of the other
6512 arm with some value. We compute three terms to be IOR'ed together. In
6513 practice, at most two will be nonzero. Then we do the IOR's. */
6514
6515 if (GET_CODE (dest) != PC
6516 && GET_CODE (src) == IF_THEN_ELSE
6517 && GET_MODE_CLASS (GET_MODE (src)) == MODE_INT
6518 && (GET_CODE (XEXP (src, 0)) == EQ || GET_CODE (XEXP (src, 0)) == NE)
6519 && XEXP (XEXP (src, 0), 1) == const0_rtx
6520 && GET_MODE (src) == GET_MODE (XEXP (XEXP (src, 0), 0))
6521 #ifdef HAVE_conditional_move
6522 && ! can_conditionally_move_p (GET_MODE (src))
6523 #endif
6524 && (num_sign_bit_copies (XEXP (XEXP (src, 0), 0),
6525 GET_MODE (XEXP (XEXP (src, 0), 0)))
6526 == GET_MODE_PRECISION (GET_MODE (XEXP (XEXP (src, 0), 0))))
6527 && ! side_effects_p (src))
6528 {
6529 rtx true_rtx = (GET_CODE (XEXP (src, 0)) == NE
6530 ? XEXP (src, 1) : XEXP (src, 2));
6531 rtx false_rtx = (GET_CODE (XEXP (src, 0)) == NE
6532 ? XEXP (src, 2) : XEXP (src, 1));
6533 rtx term1 = const0_rtx, term2, term3;
6534
6535 if (GET_CODE (true_rtx) == IOR
6536 && rtx_equal_p (XEXP (true_rtx, 0), false_rtx))
6537 term1 = false_rtx, true_rtx = XEXP (true_rtx, 1), false_rtx = const0_rtx;
6538 else if (GET_CODE (true_rtx) == IOR
6539 && rtx_equal_p (XEXP (true_rtx, 1), false_rtx))
6540 term1 = false_rtx, true_rtx = XEXP (true_rtx, 0), false_rtx = const0_rtx;
6541 else if (GET_CODE (false_rtx) == IOR
6542 && rtx_equal_p (XEXP (false_rtx, 0), true_rtx))
6543 term1 = true_rtx, false_rtx = XEXP (false_rtx, 1), true_rtx = const0_rtx;
6544 else if (GET_CODE (false_rtx) == IOR
6545 && rtx_equal_p (XEXP (false_rtx, 1), true_rtx))
6546 term1 = true_rtx, false_rtx = XEXP (false_rtx, 0), true_rtx = const0_rtx;
6547
6548 term2 = simplify_gen_binary (AND, GET_MODE (src),
6549 XEXP (XEXP (src, 0), 0), true_rtx);
6550 term3 = simplify_gen_binary (AND, GET_MODE (src),
6551 simplify_gen_unary (NOT, GET_MODE (src),
6552 XEXP (XEXP (src, 0), 0),
6553 GET_MODE (src)),
6554 false_rtx);
6555
6556 SUBST (SET_SRC (x),
6557 simplify_gen_binary (IOR, GET_MODE (src),
6558 simplify_gen_binary (IOR, GET_MODE (src),
6559 term1, term2),
6560 term3));
6561
6562 src = SET_SRC (x);
6563 }
6564
6565 /* If either SRC or DEST is a CLOBBER of (const_int 0), make this
6566 whole thing fail. */
6567 if (GET_CODE (src) == CLOBBER && XEXP (src, 0) == const0_rtx)
6568 return src;
6569 else if (GET_CODE (dest) == CLOBBER && XEXP (dest, 0) == const0_rtx)
6570 return dest;
6571 else
6572 /* Convert this into a field assignment operation, if possible. */
6573 return make_field_assignment (x);
6574 }
6575 \f
6576 /* Simplify, X, and AND, IOR, or XOR operation, and return the simplified
6577 result. */
6578
6579 static rtx
6580 simplify_logical (rtx x)
6581 {
6582 enum machine_mode mode = GET_MODE (x);
6583 rtx op0 = XEXP (x, 0);
6584 rtx op1 = XEXP (x, 1);
6585
6586 switch (GET_CODE (x))
6587 {
6588 case AND:
6589 /* We can call simplify_and_const_int only if we don't lose
6590 any (sign) bits when converting INTVAL (op1) to
6591 "unsigned HOST_WIDE_INT". */
6592 if (CONST_INT_P (op1)
6593 && (HWI_COMPUTABLE_MODE_P (mode)
6594 || INTVAL (op1) > 0))
6595 {
6596 x = simplify_and_const_int (x, mode, op0, INTVAL (op1));
6597 if (GET_CODE (x) != AND)
6598 return x;
6599
6600 op0 = XEXP (x, 0);
6601 op1 = XEXP (x, 1);
6602 }
6603
6604 /* If we have any of (and (ior A B) C) or (and (xor A B) C),
6605 apply the distributive law and then the inverse distributive
6606 law to see if things simplify. */
6607 if (GET_CODE (op0) == IOR || GET_CODE (op0) == XOR)
6608 {
6609 rtx result = distribute_and_simplify_rtx (x, 0);
6610 if (result)
6611 return result;
6612 }
6613 if (GET_CODE (op1) == IOR || GET_CODE (op1) == XOR)
6614 {
6615 rtx result = distribute_and_simplify_rtx (x, 1);
6616 if (result)
6617 return result;
6618 }
6619 break;
6620
6621 case IOR:
6622 /* If we have (ior (and A B) C), apply the distributive law and then
6623 the inverse distributive law to see if things simplify. */
6624
6625 if (GET_CODE (op0) == AND)
6626 {
6627 rtx result = distribute_and_simplify_rtx (x, 0);
6628 if (result)
6629 return result;
6630 }
6631
6632 if (GET_CODE (op1) == AND)
6633 {
6634 rtx result = distribute_and_simplify_rtx (x, 1);
6635 if (result)
6636 return result;
6637 }
6638 break;
6639
6640 default:
6641 gcc_unreachable ();
6642 }
6643
6644 return x;
6645 }
6646 \f
6647 /* We consider ZERO_EXTRACT, SIGN_EXTRACT, and SIGN_EXTEND as "compound
6648 operations" because they can be replaced with two more basic operations.
6649 ZERO_EXTEND is also considered "compound" because it can be replaced with
6650 an AND operation, which is simpler, though only one operation.
6651
6652 The function expand_compound_operation is called with an rtx expression
6653 and will convert it to the appropriate shifts and AND operations,
6654 simplifying at each stage.
6655
6656 The function make_compound_operation is called to convert an expression
6657 consisting of shifts and ANDs into the equivalent compound expression.
6658 It is the inverse of this function, loosely speaking. */
6659
6660 static rtx
6661 expand_compound_operation (rtx x)
6662 {
6663 unsigned HOST_WIDE_INT pos = 0, len;
6664 int unsignedp = 0;
6665 unsigned int modewidth;
6666 rtx tem;
6667
6668 switch (GET_CODE (x))
6669 {
6670 case ZERO_EXTEND:
6671 unsignedp = 1;
6672 case SIGN_EXTEND:
6673 /* We can't necessarily use a const_int for a multiword mode;
6674 it depends on implicitly extending the value.
6675 Since we don't know the right way to extend it,
6676 we can't tell whether the implicit way is right.
6677
6678 Even for a mode that is no wider than a const_int,
6679 we can't win, because we need to sign extend one of its bits through
6680 the rest of it, and we don't know which bit. */
6681 if (CONST_INT_P (XEXP (x, 0)))
6682 return x;
6683
6684 /* Return if (subreg:MODE FROM 0) is not a safe replacement for
6685 (zero_extend:MODE FROM) or (sign_extend:MODE FROM). It is for any MEM
6686 because (SUBREG (MEM...)) is guaranteed to cause the MEM to be
6687 reloaded. If not for that, MEM's would very rarely be safe.
6688
6689 Reject MODEs bigger than a word, because we might not be able
6690 to reference a two-register group starting with an arbitrary register
6691 (and currently gen_lowpart might crash for a SUBREG). */
6692
6693 if (GET_MODE_SIZE (GET_MODE (XEXP (x, 0))) > UNITS_PER_WORD)
6694 return x;
6695
6696 /* Reject MODEs that aren't scalar integers because turning vector
6697 or complex modes into shifts causes problems. */
6698
6699 if (! SCALAR_INT_MODE_P (GET_MODE (XEXP (x, 0))))
6700 return x;
6701
6702 len = GET_MODE_PRECISION (GET_MODE (XEXP (x, 0)));
6703 /* If the inner object has VOIDmode (the only way this can happen
6704 is if it is an ASM_OPERANDS), we can't do anything since we don't
6705 know how much masking to do. */
6706 if (len == 0)
6707 return x;
6708
6709 break;
6710
6711 case ZERO_EXTRACT:
6712 unsignedp = 1;
6713
6714 /* ... fall through ... */
6715
6716 case SIGN_EXTRACT:
6717 /* If the operand is a CLOBBER, just return it. */
6718 if (GET_CODE (XEXP (x, 0)) == CLOBBER)
6719 return XEXP (x, 0);
6720
6721 if (!CONST_INT_P (XEXP (x, 1))
6722 || !CONST_INT_P (XEXP (x, 2))
6723 || GET_MODE (XEXP (x, 0)) == VOIDmode)
6724 return x;
6725
6726 /* Reject MODEs that aren't scalar integers because turning vector
6727 or complex modes into shifts causes problems. */
6728
6729 if (! SCALAR_INT_MODE_P (GET_MODE (XEXP (x, 0))))
6730 return x;
6731
6732 len = INTVAL (XEXP (x, 1));
6733 pos = INTVAL (XEXP (x, 2));
6734
6735 /* This should stay within the object being extracted, fail otherwise. */
6736 if (len + pos > GET_MODE_PRECISION (GET_MODE (XEXP (x, 0))))
6737 return x;
6738
6739 if (BITS_BIG_ENDIAN)
6740 pos = GET_MODE_PRECISION (GET_MODE (XEXP (x, 0))) - len - pos;
6741
6742 break;
6743
6744 default:
6745 return x;
6746 }
6747 /* Convert sign extension to zero extension, if we know that the high
6748 bit is not set, as this is easier to optimize. It will be converted
6749 back to cheaper alternative in make_extraction. */
6750 if (GET_CODE (x) == SIGN_EXTEND
6751 && (HWI_COMPUTABLE_MODE_P (GET_MODE (x))
6752 && ((nonzero_bits (XEXP (x, 0), GET_MODE (XEXP (x, 0)))
6753 & ~(((unsigned HOST_WIDE_INT)
6754 GET_MODE_MASK (GET_MODE (XEXP (x, 0))))
6755 >> 1))
6756 == 0)))
6757 {
6758 rtx temp = gen_rtx_ZERO_EXTEND (GET_MODE (x), XEXP (x, 0));
6759 rtx temp2 = expand_compound_operation (temp);
6760
6761 /* Make sure this is a profitable operation. */
6762 if (set_src_cost (x, optimize_this_for_speed_p)
6763 > set_src_cost (temp2, optimize_this_for_speed_p))
6764 return temp2;
6765 else if (set_src_cost (x, optimize_this_for_speed_p)
6766 > set_src_cost (temp, optimize_this_for_speed_p))
6767 return temp;
6768 else
6769 return x;
6770 }
6771
6772 /* We can optimize some special cases of ZERO_EXTEND. */
6773 if (GET_CODE (x) == ZERO_EXTEND)
6774 {
6775 /* (zero_extend:DI (truncate:SI foo:DI)) is just foo:DI if we
6776 know that the last value didn't have any inappropriate bits
6777 set. */
6778 if (GET_CODE (XEXP (x, 0)) == TRUNCATE
6779 && GET_MODE (XEXP (XEXP (x, 0), 0)) == GET_MODE (x)
6780 && HWI_COMPUTABLE_MODE_P (GET_MODE (x))
6781 && (nonzero_bits (XEXP (XEXP (x, 0), 0), GET_MODE (x))
6782 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
6783 return XEXP (XEXP (x, 0), 0);
6784
6785 /* Likewise for (zero_extend:DI (subreg:SI foo:DI 0)). */
6786 if (GET_CODE (XEXP (x, 0)) == SUBREG
6787 && GET_MODE (SUBREG_REG (XEXP (x, 0))) == GET_MODE (x)
6788 && subreg_lowpart_p (XEXP (x, 0))
6789 && HWI_COMPUTABLE_MODE_P (GET_MODE (x))
6790 && (nonzero_bits (SUBREG_REG (XEXP (x, 0)), GET_MODE (x))
6791 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
6792 return SUBREG_REG (XEXP (x, 0));
6793
6794 /* (zero_extend:DI (truncate:SI foo:DI)) is just foo:DI when foo
6795 is a comparison and STORE_FLAG_VALUE permits. This is like
6796 the first case, but it works even when GET_MODE (x) is larger
6797 than HOST_WIDE_INT. */
6798 if (GET_CODE (XEXP (x, 0)) == TRUNCATE
6799 && GET_MODE (XEXP (XEXP (x, 0), 0)) == GET_MODE (x)
6800 && COMPARISON_P (XEXP (XEXP (x, 0), 0))
6801 && (GET_MODE_PRECISION (GET_MODE (XEXP (x, 0)))
6802 <= HOST_BITS_PER_WIDE_INT)
6803 && (STORE_FLAG_VALUE & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
6804 return XEXP (XEXP (x, 0), 0);
6805
6806 /* Likewise for (zero_extend:DI (subreg:SI foo:DI 0)). */
6807 if (GET_CODE (XEXP (x, 0)) == SUBREG
6808 && GET_MODE (SUBREG_REG (XEXP (x, 0))) == GET_MODE (x)
6809 && subreg_lowpart_p (XEXP (x, 0))
6810 && COMPARISON_P (SUBREG_REG (XEXP (x, 0)))
6811 && (GET_MODE_PRECISION (GET_MODE (XEXP (x, 0)))
6812 <= HOST_BITS_PER_WIDE_INT)
6813 && (STORE_FLAG_VALUE & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
6814 return SUBREG_REG (XEXP (x, 0));
6815
6816 }
6817
6818 /* If we reach here, we want to return a pair of shifts. The inner
6819 shift is a left shift of BITSIZE - POS - LEN bits. The outer
6820 shift is a right shift of BITSIZE - LEN bits. It is arithmetic or
6821 logical depending on the value of UNSIGNEDP.
6822
6823 If this was a ZERO_EXTEND or ZERO_EXTRACT, this pair of shifts will be
6824 converted into an AND of a shift.
6825
6826 We must check for the case where the left shift would have a negative
6827 count. This can happen in a case like (x >> 31) & 255 on machines
6828 that can't shift by a constant. On those machines, we would first
6829 combine the shift with the AND to produce a variable-position
6830 extraction. Then the constant of 31 would be substituted in
6831 to produce such a position. */
6832
6833 modewidth = GET_MODE_PRECISION (GET_MODE (x));
6834 if (modewidth >= pos + len)
6835 {
6836 enum machine_mode mode = GET_MODE (x);
6837 tem = gen_lowpart (mode, XEXP (x, 0));
6838 if (!tem || GET_CODE (tem) == CLOBBER)
6839 return x;
6840 tem = simplify_shift_const (NULL_RTX, ASHIFT, mode,
6841 tem, modewidth - pos - len);
6842 tem = simplify_shift_const (NULL_RTX, unsignedp ? LSHIFTRT : ASHIFTRT,
6843 mode, tem, modewidth - len);
6844 }
6845 else if (unsignedp && len < HOST_BITS_PER_WIDE_INT)
6846 tem = simplify_and_const_int (NULL_RTX, GET_MODE (x),
6847 simplify_shift_const (NULL_RTX, LSHIFTRT,
6848 GET_MODE (x),
6849 XEXP (x, 0), pos),
6850 ((unsigned HOST_WIDE_INT) 1 << len) - 1);
6851 else
6852 /* Any other cases we can't handle. */
6853 return x;
6854
6855 /* If we couldn't do this for some reason, return the original
6856 expression. */
6857 if (GET_CODE (tem) == CLOBBER)
6858 return x;
6859
6860 return tem;
6861 }
6862 \f
6863 /* X is a SET which contains an assignment of one object into
6864 a part of another (such as a bit-field assignment, STRICT_LOW_PART,
6865 or certain SUBREGS). If possible, convert it into a series of
6866 logical operations.
6867
6868 We half-heartedly support variable positions, but do not at all
6869 support variable lengths. */
6870
6871 static const_rtx
6872 expand_field_assignment (const_rtx x)
6873 {
6874 rtx inner;
6875 rtx pos; /* Always counts from low bit. */
6876 int len;
6877 rtx mask, cleared, masked;
6878 enum machine_mode compute_mode;
6879
6880 /* Loop until we find something we can't simplify. */
6881 while (1)
6882 {
6883 if (GET_CODE (SET_DEST (x)) == STRICT_LOW_PART
6884 && GET_CODE (XEXP (SET_DEST (x), 0)) == SUBREG)
6885 {
6886 inner = SUBREG_REG (XEXP (SET_DEST (x), 0));
6887 len = GET_MODE_PRECISION (GET_MODE (XEXP (SET_DEST (x), 0)));
6888 pos = GEN_INT (subreg_lsb (XEXP (SET_DEST (x), 0)));
6889 }
6890 else if (GET_CODE (SET_DEST (x)) == ZERO_EXTRACT
6891 && CONST_INT_P (XEXP (SET_DEST (x), 1)))
6892 {
6893 inner = XEXP (SET_DEST (x), 0);
6894 len = INTVAL (XEXP (SET_DEST (x), 1));
6895 pos = XEXP (SET_DEST (x), 2);
6896
6897 /* A constant position should stay within the width of INNER. */
6898 if (CONST_INT_P (pos)
6899 && INTVAL (pos) + len > GET_MODE_PRECISION (GET_MODE (inner)))
6900 break;
6901
6902 if (BITS_BIG_ENDIAN)
6903 {
6904 if (CONST_INT_P (pos))
6905 pos = GEN_INT (GET_MODE_PRECISION (GET_MODE (inner)) - len
6906 - INTVAL (pos));
6907 else if (GET_CODE (pos) == MINUS
6908 && CONST_INT_P (XEXP (pos, 1))
6909 && (INTVAL (XEXP (pos, 1))
6910 == GET_MODE_PRECISION (GET_MODE (inner)) - len))
6911 /* If position is ADJUST - X, new position is X. */
6912 pos = XEXP (pos, 0);
6913 else
6914 {
6915 HOST_WIDE_INT prec = GET_MODE_PRECISION (GET_MODE (inner));
6916 pos = simplify_gen_binary (MINUS, GET_MODE (pos),
6917 gen_int_mode (prec - len,
6918 GET_MODE (pos)),
6919 pos);
6920 }
6921 }
6922 }
6923
6924 /* A SUBREG between two modes that occupy the same numbers of words
6925 can be done by moving the SUBREG to the source. */
6926 else if (GET_CODE (SET_DEST (x)) == SUBREG
6927 /* We need SUBREGs to compute nonzero_bits properly. */
6928 && nonzero_sign_valid
6929 && (((GET_MODE_SIZE (GET_MODE (SET_DEST (x)))
6930 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
6931 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (x))))
6932 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)))
6933 {
6934 x = gen_rtx_SET (VOIDmode, SUBREG_REG (SET_DEST (x)),
6935 gen_lowpart
6936 (GET_MODE (SUBREG_REG (SET_DEST (x))),
6937 SET_SRC (x)));
6938 continue;
6939 }
6940 else
6941 break;
6942
6943 while (GET_CODE (inner) == SUBREG && subreg_lowpart_p (inner))
6944 inner = SUBREG_REG (inner);
6945
6946 compute_mode = GET_MODE (inner);
6947
6948 /* Don't attempt bitwise arithmetic on non scalar integer modes. */
6949 if (! SCALAR_INT_MODE_P (compute_mode))
6950 {
6951 enum machine_mode imode;
6952
6953 /* Don't do anything for vector or complex integral types. */
6954 if (! FLOAT_MODE_P (compute_mode))
6955 break;
6956
6957 /* Try to find an integral mode to pun with. */
6958 imode = mode_for_size (GET_MODE_BITSIZE (compute_mode), MODE_INT, 0);
6959 if (imode == BLKmode)
6960 break;
6961
6962 compute_mode = imode;
6963 inner = gen_lowpart (imode, inner);
6964 }
6965
6966 /* Compute a mask of LEN bits, if we can do this on the host machine. */
6967 if (len >= HOST_BITS_PER_WIDE_INT)
6968 break;
6969
6970 /* Now compute the equivalent expression. Make a copy of INNER
6971 for the SET_DEST in case it is a MEM into which we will substitute;
6972 we don't want shared RTL in that case. */
6973 mask = gen_int_mode (((unsigned HOST_WIDE_INT) 1 << len) - 1,
6974 compute_mode);
6975 cleared = simplify_gen_binary (AND, compute_mode,
6976 simplify_gen_unary (NOT, compute_mode,
6977 simplify_gen_binary (ASHIFT,
6978 compute_mode,
6979 mask, pos),
6980 compute_mode),
6981 inner);
6982 masked = simplify_gen_binary (ASHIFT, compute_mode,
6983 simplify_gen_binary (
6984 AND, compute_mode,
6985 gen_lowpart (compute_mode, SET_SRC (x)),
6986 mask),
6987 pos);
6988
6989 x = gen_rtx_SET (VOIDmode, copy_rtx (inner),
6990 simplify_gen_binary (IOR, compute_mode,
6991 cleared, masked));
6992 }
6993
6994 return x;
6995 }
6996 \f
6997 /* Return an RTX for a reference to LEN bits of INNER. If POS_RTX is nonzero,
6998 it is an RTX that represents the (variable) starting position; otherwise,
6999 POS is the (constant) starting bit position. Both are counted from the LSB.
7000
7001 UNSIGNEDP is nonzero for an unsigned reference and zero for a signed one.
7002
7003 IN_DEST is nonzero if this is a reference in the destination of a SET.
7004 This is used when a ZERO_ or SIGN_EXTRACT isn't needed. If nonzero,
7005 a STRICT_LOW_PART will be used, if zero, ZERO_EXTEND or SIGN_EXTEND will
7006 be used.
7007
7008 IN_COMPARE is nonzero if we are in a COMPARE. This means that a
7009 ZERO_EXTRACT should be built even for bits starting at bit 0.
7010
7011 MODE is the desired mode of the result (if IN_DEST == 0).
7012
7013 The result is an RTX for the extraction or NULL_RTX if the target
7014 can't handle it. */
7015
7016 static rtx
7017 make_extraction (enum machine_mode mode, rtx inner, HOST_WIDE_INT pos,
7018 rtx pos_rtx, unsigned HOST_WIDE_INT len, int unsignedp,
7019 int in_dest, int in_compare)
7020 {
7021 /* This mode describes the size of the storage area
7022 to fetch the overall value from. Within that, we
7023 ignore the POS lowest bits, etc. */
7024 enum machine_mode is_mode = GET_MODE (inner);
7025 enum machine_mode inner_mode;
7026 enum machine_mode wanted_inner_mode;
7027 enum machine_mode wanted_inner_reg_mode = word_mode;
7028 enum machine_mode pos_mode = word_mode;
7029 enum machine_mode extraction_mode = word_mode;
7030 enum machine_mode tmode = mode_for_size (len, MODE_INT, 1);
7031 rtx new_rtx = 0;
7032 rtx orig_pos_rtx = pos_rtx;
7033 HOST_WIDE_INT orig_pos;
7034
7035 if (pos_rtx && CONST_INT_P (pos_rtx))
7036 pos = INTVAL (pos_rtx), pos_rtx = 0;
7037
7038 if (GET_CODE (inner) == SUBREG && subreg_lowpart_p (inner))
7039 {
7040 /* If going from (subreg:SI (mem:QI ...)) to (mem:QI ...),
7041 consider just the QI as the memory to extract from.
7042 The subreg adds or removes high bits; its mode is
7043 irrelevant to the meaning of this extraction,
7044 since POS and LEN count from the lsb. */
7045 if (MEM_P (SUBREG_REG (inner)))
7046 is_mode = GET_MODE (SUBREG_REG (inner));
7047 inner = SUBREG_REG (inner);
7048 }
7049 else if (GET_CODE (inner) == ASHIFT
7050 && CONST_INT_P (XEXP (inner, 1))
7051 && pos_rtx == 0 && pos == 0
7052 && len > UINTVAL (XEXP (inner, 1)))
7053 {
7054 /* We're extracting the least significant bits of an rtx
7055 (ashift X (const_int C)), where LEN > C. Extract the
7056 least significant (LEN - C) bits of X, giving an rtx
7057 whose mode is MODE, then shift it left C times. */
7058 new_rtx = make_extraction (mode, XEXP (inner, 0),
7059 0, 0, len - INTVAL (XEXP (inner, 1)),
7060 unsignedp, in_dest, in_compare);
7061 if (new_rtx != 0)
7062 return gen_rtx_ASHIFT (mode, new_rtx, XEXP (inner, 1));
7063 }
7064 else if (GET_CODE (inner) == TRUNCATE)
7065 inner = XEXP (inner, 0);
7066
7067 inner_mode = GET_MODE (inner);
7068
7069 /* See if this can be done without an extraction. We never can if the
7070 width of the field is not the same as that of some integer mode. For
7071 registers, we can only avoid the extraction if the position is at the
7072 low-order bit and this is either not in the destination or we have the
7073 appropriate STRICT_LOW_PART operation available.
7074
7075 For MEM, we can avoid an extract if the field starts on an appropriate
7076 boundary and we can change the mode of the memory reference. */
7077
7078 if (tmode != BLKmode
7079 && ((pos_rtx == 0 && (pos % BITS_PER_WORD) == 0
7080 && !MEM_P (inner)
7081 && (inner_mode == tmode
7082 || !REG_P (inner)
7083 || TRULY_NOOP_TRUNCATION_MODES_P (tmode, inner_mode)
7084 || reg_truncated_to_mode (tmode, inner))
7085 && (! in_dest
7086 || (REG_P (inner)
7087 && have_insn_for (STRICT_LOW_PART, tmode))))
7088 || (MEM_P (inner) && pos_rtx == 0
7089 && (pos
7090 % (STRICT_ALIGNMENT ? GET_MODE_ALIGNMENT (tmode)
7091 : BITS_PER_UNIT)) == 0
7092 /* We can't do this if we are widening INNER_MODE (it
7093 may not be aligned, for one thing). */
7094 && GET_MODE_PRECISION (inner_mode) >= GET_MODE_PRECISION (tmode)
7095 && (inner_mode == tmode
7096 || (! mode_dependent_address_p (XEXP (inner, 0),
7097 MEM_ADDR_SPACE (inner))
7098 && ! MEM_VOLATILE_P (inner))))))
7099 {
7100 /* If INNER is a MEM, make a new MEM that encompasses just the desired
7101 field. If the original and current mode are the same, we need not
7102 adjust the offset. Otherwise, we do if bytes big endian.
7103
7104 If INNER is not a MEM, get a piece consisting of just the field
7105 of interest (in this case POS % BITS_PER_WORD must be 0). */
7106
7107 if (MEM_P (inner))
7108 {
7109 HOST_WIDE_INT offset;
7110
7111 /* POS counts from lsb, but make OFFSET count in memory order. */
7112 if (BYTES_BIG_ENDIAN)
7113 offset = (GET_MODE_PRECISION (is_mode) - len - pos) / BITS_PER_UNIT;
7114 else
7115 offset = pos / BITS_PER_UNIT;
7116
7117 new_rtx = adjust_address_nv (inner, tmode, offset);
7118 }
7119 else if (REG_P (inner))
7120 {
7121 if (tmode != inner_mode)
7122 {
7123 /* We can't call gen_lowpart in a DEST since we
7124 always want a SUBREG (see below) and it would sometimes
7125 return a new hard register. */
7126 if (pos || in_dest)
7127 {
7128 HOST_WIDE_INT final_word = pos / BITS_PER_WORD;
7129
7130 if (WORDS_BIG_ENDIAN
7131 && GET_MODE_SIZE (inner_mode) > UNITS_PER_WORD)
7132 final_word = ((GET_MODE_SIZE (inner_mode)
7133 - GET_MODE_SIZE (tmode))
7134 / UNITS_PER_WORD) - final_word;
7135
7136 final_word *= UNITS_PER_WORD;
7137 if (BYTES_BIG_ENDIAN &&
7138 GET_MODE_SIZE (inner_mode) > GET_MODE_SIZE (tmode))
7139 final_word += (GET_MODE_SIZE (inner_mode)
7140 - GET_MODE_SIZE (tmode)) % UNITS_PER_WORD;
7141
7142 /* Avoid creating invalid subregs, for example when
7143 simplifying (x>>32)&255. */
7144 if (!validate_subreg (tmode, inner_mode, inner, final_word))
7145 return NULL_RTX;
7146
7147 new_rtx = gen_rtx_SUBREG (tmode, inner, final_word);
7148 }
7149 else
7150 new_rtx = gen_lowpart (tmode, inner);
7151 }
7152 else
7153 new_rtx = inner;
7154 }
7155 else
7156 new_rtx = force_to_mode (inner, tmode,
7157 len >= HOST_BITS_PER_WIDE_INT
7158 ? ~(unsigned HOST_WIDE_INT) 0
7159 : ((unsigned HOST_WIDE_INT) 1 << len) - 1,
7160 0);
7161
7162 /* If this extraction is going into the destination of a SET,
7163 make a STRICT_LOW_PART unless we made a MEM. */
7164
7165 if (in_dest)
7166 return (MEM_P (new_rtx) ? new_rtx
7167 : (GET_CODE (new_rtx) != SUBREG
7168 ? gen_rtx_CLOBBER (tmode, const0_rtx)
7169 : gen_rtx_STRICT_LOW_PART (VOIDmode, new_rtx)));
7170
7171 if (mode == tmode)
7172 return new_rtx;
7173
7174 if (CONST_SCALAR_INT_P (new_rtx))
7175 return simplify_unary_operation (unsignedp ? ZERO_EXTEND : SIGN_EXTEND,
7176 mode, new_rtx, tmode);
7177
7178 /* If we know that no extraneous bits are set, and that the high
7179 bit is not set, convert the extraction to the cheaper of
7180 sign and zero extension, that are equivalent in these cases. */
7181 if (flag_expensive_optimizations
7182 && (HWI_COMPUTABLE_MODE_P (tmode)
7183 && ((nonzero_bits (new_rtx, tmode)
7184 & ~(((unsigned HOST_WIDE_INT)GET_MODE_MASK (tmode)) >> 1))
7185 == 0)))
7186 {
7187 rtx temp = gen_rtx_ZERO_EXTEND (mode, new_rtx);
7188 rtx temp1 = gen_rtx_SIGN_EXTEND (mode, new_rtx);
7189
7190 /* Prefer ZERO_EXTENSION, since it gives more information to
7191 backends. */
7192 if (set_src_cost (temp, optimize_this_for_speed_p)
7193 <= set_src_cost (temp1, optimize_this_for_speed_p))
7194 return temp;
7195 return temp1;
7196 }
7197
7198 /* Otherwise, sign- or zero-extend unless we already are in the
7199 proper mode. */
7200
7201 return (gen_rtx_fmt_e (unsignedp ? ZERO_EXTEND : SIGN_EXTEND,
7202 mode, new_rtx));
7203 }
7204
7205 /* Unless this is a COMPARE or we have a funny memory reference,
7206 don't do anything with zero-extending field extracts starting at
7207 the low-order bit since they are simple AND operations. */
7208 if (pos_rtx == 0 && pos == 0 && ! in_dest
7209 && ! in_compare && unsignedp)
7210 return 0;
7211
7212 /* Unless INNER is not MEM, reject this if we would be spanning bytes or
7213 if the position is not a constant and the length is not 1. In all
7214 other cases, we would only be going outside our object in cases when
7215 an original shift would have been undefined. */
7216 if (MEM_P (inner)
7217 && ((pos_rtx == 0 && pos + len > GET_MODE_PRECISION (is_mode))
7218 || (pos_rtx != 0 && len != 1)))
7219 return 0;
7220
7221 enum extraction_pattern pattern = (in_dest ? EP_insv
7222 : unsignedp ? EP_extzv : EP_extv);
7223
7224 /* If INNER is not from memory, we want it to have the mode of a register
7225 extraction pattern's structure operand, or word_mode if there is no
7226 such pattern. The same applies to extraction_mode and pos_mode
7227 and their respective operands.
7228
7229 For memory, assume that the desired extraction_mode and pos_mode
7230 are the same as for a register operation, since at present we don't
7231 have named patterns for aligned memory structures. */
7232 struct extraction_insn insn;
7233 if (get_best_reg_extraction_insn (&insn, pattern,
7234 GET_MODE_BITSIZE (inner_mode), mode))
7235 {
7236 wanted_inner_reg_mode = insn.struct_mode;
7237 pos_mode = insn.pos_mode;
7238 extraction_mode = insn.field_mode;
7239 }
7240
7241 /* Never narrow an object, since that might not be safe. */
7242
7243 if (mode != VOIDmode
7244 && GET_MODE_SIZE (extraction_mode) < GET_MODE_SIZE (mode))
7245 extraction_mode = mode;
7246
7247 if (!MEM_P (inner))
7248 wanted_inner_mode = wanted_inner_reg_mode;
7249 else
7250 {
7251 /* Be careful not to go beyond the extracted object and maintain the
7252 natural alignment of the memory. */
7253 wanted_inner_mode = smallest_mode_for_size (len, MODE_INT);
7254 while (pos % GET_MODE_BITSIZE (wanted_inner_mode) + len
7255 > GET_MODE_BITSIZE (wanted_inner_mode))
7256 {
7257 wanted_inner_mode = GET_MODE_WIDER_MODE (wanted_inner_mode);
7258 gcc_assert (wanted_inner_mode != VOIDmode);
7259 }
7260 }
7261
7262 orig_pos = pos;
7263
7264 if (BITS_BIG_ENDIAN)
7265 {
7266 /* POS is passed as if BITS_BIG_ENDIAN == 0, so we need to convert it to
7267 BITS_BIG_ENDIAN style. If position is constant, compute new
7268 position. Otherwise, build subtraction.
7269 Note that POS is relative to the mode of the original argument.
7270 If it's a MEM we need to recompute POS relative to that.
7271 However, if we're extracting from (or inserting into) a register,
7272 we want to recompute POS relative to wanted_inner_mode. */
7273 int width = (MEM_P (inner)
7274 ? GET_MODE_BITSIZE (is_mode)
7275 : GET_MODE_BITSIZE (wanted_inner_mode));
7276
7277 if (pos_rtx == 0)
7278 pos = width - len - pos;
7279 else
7280 pos_rtx
7281 = gen_rtx_MINUS (GET_MODE (pos_rtx),
7282 gen_int_mode (width - len, GET_MODE (pos_rtx)),
7283 pos_rtx);
7284 /* POS may be less than 0 now, but we check for that below.
7285 Note that it can only be less than 0 if !MEM_P (inner). */
7286 }
7287
7288 /* If INNER has a wider mode, and this is a constant extraction, try to
7289 make it smaller and adjust the byte to point to the byte containing
7290 the value. */
7291 if (wanted_inner_mode != VOIDmode
7292 && inner_mode != wanted_inner_mode
7293 && ! pos_rtx
7294 && GET_MODE_SIZE (wanted_inner_mode) < GET_MODE_SIZE (is_mode)
7295 && MEM_P (inner)
7296 && ! mode_dependent_address_p (XEXP (inner, 0), MEM_ADDR_SPACE (inner))
7297 && ! MEM_VOLATILE_P (inner))
7298 {
7299 int offset = 0;
7300
7301 /* The computations below will be correct if the machine is big
7302 endian in both bits and bytes or little endian in bits and bytes.
7303 If it is mixed, we must adjust. */
7304
7305 /* If bytes are big endian and we had a paradoxical SUBREG, we must
7306 adjust OFFSET to compensate. */
7307 if (BYTES_BIG_ENDIAN
7308 && GET_MODE_SIZE (inner_mode) < GET_MODE_SIZE (is_mode))
7309 offset -= GET_MODE_SIZE (is_mode) - GET_MODE_SIZE (inner_mode);
7310
7311 /* We can now move to the desired byte. */
7312 offset += (pos / GET_MODE_BITSIZE (wanted_inner_mode))
7313 * GET_MODE_SIZE (wanted_inner_mode);
7314 pos %= GET_MODE_BITSIZE (wanted_inner_mode);
7315
7316 if (BYTES_BIG_ENDIAN != BITS_BIG_ENDIAN
7317 && is_mode != wanted_inner_mode)
7318 offset = (GET_MODE_SIZE (is_mode)
7319 - GET_MODE_SIZE (wanted_inner_mode) - offset);
7320
7321 inner = adjust_address_nv (inner, wanted_inner_mode, offset);
7322 }
7323
7324 /* If INNER is not memory, get it into the proper mode. If we are changing
7325 its mode, POS must be a constant and smaller than the size of the new
7326 mode. */
7327 else if (!MEM_P (inner))
7328 {
7329 /* On the LHS, don't create paradoxical subregs implicitely truncating
7330 the register unless TRULY_NOOP_TRUNCATION. */
7331 if (in_dest
7332 && !TRULY_NOOP_TRUNCATION_MODES_P (GET_MODE (inner),
7333 wanted_inner_mode))
7334 return NULL_RTX;
7335
7336 if (GET_MODE (inner) != wanted_inner_mode
7337 && (pos_rtx != 0
7338 || orig_pos + len > GET_MODE_BITSIZE (wanted_inner_mode)))
7339 return NULL_RTX;
7340
7341 if (orig_pos < 0)
7342 return NULL_RTX;
7343
7344 inner = force_to_mode (inner, wanted_inner_mode,
7345 pos_rtx
7346 || len + orig_pos >= HOST_BITS_PER_WIDE_INT
7347 ? ~(unsigned HOST_WIDE_INT) 0
7348 : ((((unsigned HOST_WIDE_INT) 1 << len) - 1)
7349 << orig_pos),
7350 0);
7351 }
7352
7353 /* Adjust mode of POS_RTX, if needed. If we want a wider mode, we
7354 have to zero extend. Otherwise, we can just use a SUBREG. */
7355 if (pos_rtx != 0
7356 && GET_MODE_SIZE (pos_mode) > GET_MODE_SIZE (GET_MODE (pos_rtx)))
7357 {
7358 rtx temp = simplify_gen_unary (ZERO_EXTEND, pos_mode, pos_rtx,
7359 GET_MODE (pos_rtx));
7360
7361 /* If we know that no extraneous bits are set, and that the high
7362 bit is not set, convert extraction to cheaper one - either
7363 SIGN_EXTENSION or ZERO_EXTENSION, that are equivalent in these
7364 cases. */
7365 if (flag_expensive_optimizations
7366 && (HWI_COMPUTABLE_MODE_P (GET_MODE (pos_rtx))
7367 && ((nonzero_bits (pos_rtx, GET_MODE (pos_rtx))
7368 & ~(((unsigned HOST_WIDE_INT)
7369 GET_MODE_MASK (GET_MODE (pos_rtx)))
7370 >> 1))
7371 == 0)))
7372 {
7373 rtx temp1 = simplify_gen_unary (SIGN_EXTEND, pos_mode, pos_rtx,
7374 GET_MODE (pos_rtx));
7375
7376 /* Prefer ZERO_EXTENSION, since it gives more information to
7377 backends. */
7378 if (set_src_cost (temp1, optimize_this_for_speed_p)
7379 < set_src_cost (temp, optimize_this_for_speed_p))
7380 temp = temp1;
7381 }
7382 pos_rtx = temp;
7383 }
7384
7385 /* Make POS_RTX unless we already have it and it is correct. If we don't
7386 have a POS_RTX but we do have an ORIG_POS_RTX, the latter must
7387 be a CONST_INT. */
7388 if (pos_rtx == 0 && orig_pos_rtx != 0 && INTVAL (orig_pos_rtx) == pos)
7389 pos_rtx = orig_pos_rtx;
7390
7391 else if (pos_rtx == 0)
7392 pos_rtx = GEN_INT (pos);
7393
7394 /* Make the required operation. See if we can use existing rtx. */
7395 new_rtx = gen_rtx_fmt_eee (unsignedp ? ZERO_EXTRACT : SIGN_EXTRACT,
7396 extraction_mode, inner, GEN_INT (len), pos_rtx);
7397 if (! in_dest)
7398 new_rtx = gen_lowpart (mode, new_rtx);
7399
7400 return new_rtx;
7401 }
7402 \f
7403 /* See if X contains an ASHIFT of COUNT or more bits that can be commuted
7404 with any other operations in X. Return X without that shift if so. */
7405
7406 static rtx
7407 extract_left_shift (rtx x, int count)
7408 {
7409 enum rtx_code code = GET_CODE (x);
7410 enum machine_mode mode = GET_MODE (x);
7411 rtx tem;
7412
7413 switch (code)
7414 {
7415 case ASHIFT:
7416 /* This is the shift itself. If it is wide enough, we will return
7417 either the value being shifted if the shift count is equal to
7418 COUNT or a shift for the difference. */
7419 if (CONST_INT_P (XEXP (x, 1))
7420 && INTVAL (XEXP (x, 1)) >= count)
7421 return simplify_shift_const (NULL_RTX, ASHIFT, mode, XEXP (x, 0),
7422 INTVAL (XEXP (x, 1)) - count);
7423 break;
7424
7425 case NEG: case NOT:
7426 if ((tem = extract_left_shift (XEXP (x, 0), count)) != 0)
7427 return simplify_gen_unary (code, mode, tem, mode);
7428
7429 break;
7430
7431 case PLUS: case IOR: case XOR: case AND:
7432 /* If we can safely shift this constant and we find the inner shift,
7433 make a new operation. */
7434 if (CONST_INT_P (XEXP (x, 1))
7435 && (UINTVAL (XEXP (x, 1))
7436 & ((((unsigned HOST_WIDE_INT) 1 << count)) - 1)) == 0
7437 && (tem = extract_left_shift (XEXP (x, 0), count)) != 0)
7438 {
7439 HOST_WIDE_INT val = INTVAL (XEXP (x, 1)) >> count;
7440 return simplify_gen_binary (code, mode, tem,
7441 gen_int_mode (val, mode));
7442 }
7443 break;
7444
7445 default:
7446 break;
7447 }
7448
7449 return 0;
7450 }
7451 \f
7452 /* Look at the expression rooted at X. Look for expressions
7453 equivalent to ZERO_EXTRACT, SIGN_EXTRACT, ZERO_EXTEND, SIGN_EXTEND.
7454 Form these expressions.
7455
7456 Return the new rtx, usually just X.
7457
7458 Also, for machines like the VAX that don't have logical shift insns,
7459 try to convert logical to arithmetic shift operations in cases where
7460 they are equivalent. This undoes the canonicalizations to logical
7461 shifts done elsewhere.
7462
7463 We try, as much as possible, to re-use rtl expressions to save memory.
7464
7465 IN_CODE says what kind of expression we are processing. Normally, it is
7466 SET. In a memory address (inside a MEM, PLUS or minus, the latter two
7467 being kludges), it is MEM. When processing the arguments of a comparison
7468 or a COMPARE against zero, it is COMPARE. */
7469
7470 rtx
7471 make_compound_operation (rtx x, enum rtx_code in_code)
7472 {
7473 enum rtx_code code = GET_CODE (x);
7474 enum machine_mode mode = GET_MODE (x);
7475 int mode_width = GET_MODE_PRECISION (mode);
7476 rtx rhs, lhs;
7477 enum rtx_code next_code;
7478 int i, j;
7479 rtx new_rtx = 0;
7480 rtx tem;
7481 const char *fmt;
7482
7483 /* Select the code to be used in recursive calls. Once we are inside an
7484 address, we stay there. If we have a comparison, set to COMPARE,
7485 but once inside, go back to our default of SET. */
7486
7487 next_code = (code == MEM ? MEM
7488 : ((code == PLUS || code == MINUS)
7489 && SCALAR_INT_MODE_P (mode)) ? MEM
7490 : ((code == COMPARE || COMPARISON_P (x))
7491 && XEXP (x, 1) == const0_rtx) ? COMPARE
7492 : in_code == COMPARE ? SET : in_code);
7493
7494 /* Process depending on the code of this operation. If NEW is set
7495 nonzero, it will be returned. */
7496
7497 switch (code)
7498 {
7499 case ASHIFT:
7500 /* Convert shifts by constants into multiplications if inside
7501 an address. */
7502 if (in_code == MEM && CONST_INT_P (XEXP (x, 1))
7503 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT
7504 && INTVAL (XEXP (x, 1)) >= 0
7505 && SCALAR_INT_MODE_P (mode))
7506 {
7507 HOST_WIDE_INT count = INTVAL (XEXP (x, 1));
7508 HOST_WIDE_INT multval = (HOST_WIDE_INT) 1 << count;
7509
7510 new_rtx = make_compound_operation (XEXP (x, 0), next_code);
7511 if (GET_CODE (new_rtx) == NEG)
7512 {
7513 new_rtx = XEXP (new_rtx, 0);
7514 multval = -multval;
7515 }
7516 multval = trunc_int_for_mode (multval, mode);
7517 new_rtx = gen_rtx_MULT (mode, new_rtx, gen_int_mode (multval, mode));
7518 }
7519 break;
7520
7521 case PLUS:
7522 lhs = XEXP (x, 0);
7523 rhs = XEXP (x, 1);
7524 lhs = make_compound_operation (lhs, next_code);
7525 rhs = make_compound_operation (rhs, next_code);
7526 if (GET_CODE (lhs) == MULT && GET_CODE (XEXP (lhs, 0)) == NEG
7527 && SCALAR_INT_MODE_P (mode))
7528 {
7529 tem = simplify_gen_binary (MULT, mode, XEXP (XEXP (lhs, 0), 0),
7530 XEXP (lhs, 1));
7531 new_rtx = simplify_gen_binary (MINUS, mode, rhs, tem);
7532 }
7533 else if (GET_CODE (lhs) == MULT
7534 && (CONST_INT_P (XEXP (lhs, 1)) && INTVAL (XEXP (lhs, 1)) < 0))
7535 {
7536 tem = simplify_gen_binary (MULT, mode, XEXP (lhs, 0),
7537 simplify_gen_unary (NEG, mode,
7538 XEXP (lhs, 1),
7539 mode));
7540 new_rtx = simplify_gen_binary (MINUS, mode, rhs, tem);
7541 }
7542 else
7543 {
7544 SUBST (XEXP (x, 0), lhs);
7545 SUBST (XEXP (x, 1), rhs);
7546 goto maybe_swap;
7547 }
7548 x = gen_lowpart (mode, new_rtx);
7549 goto maybe_swap;
7550
7551 case MINUS:
7552 lhs = XEXP (x, 0);
7553 rhs = XEXP (x, 1);
7554 lhs = make_compound_operation (lhs, next_code);
7555 rhs = make_compound_operation (rhs, next_code);
7556 if (GET_CODE (rhs) == MULT && GET_CODE (XEXP (rhs, 0)) == NEG
7557 && SCALAR_INT_MODE_P (mode))
7558 {
7559 tem = simplify_gen_binary (MULT, mode, XEXP (XEXP (rhs, 0), 0),
7560 XEXP (rhs, 1));
7561 new_rtx = simplify_gen_binary (PLUS, mode, tem, lhs);
7562 }
7563 else if (GET_CODE (rhs) == MULT
7564 && (CONST_INT_P (XEXP (rhs, 1)) && INTVAL (XEXP (rhs, 1)) < 0))
7565 {
7566 tem = simplify_gen_binary (MULT, mode, XEXP (rhs, 0),
7567 simplify_gen_unary (NEG, mode,
7568 XEXP (rhs, 1),
7569 mode));
7570 new_rtx = simplify_gen_binary (PLUS, mode, tem, lhs);
7571 }
7572 else
7573 {
7574 SUBST (XEXP (x, 0), lhs);
7575 SUBST (XEXP (x, 1), rhs);
7576 return x;
7577 }
7578 return gen_lowpart (mode, new_rtx);
7579
7580 case AND:
7581 /* If the second operand is not a constant, we can't do anything
7582 with it. */
7583 if (!CONST_INT_P (XEXP (x, 1)))
7584 break;
7585
7586 /* If the constant is a power of two minus one and the first operand
7587 is a logical right shift, make an extraction. */
7588 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
7589 && (i = exact_log2 (UINTVAL (XEXP (x, 1)) + 1)) >= 0)
7590 {
7591 new_rtx = make_compound_operation (XEXP (XEXP (x, 0), 0), next_code);
7592 new_rtx = make_extraction (mode, new_rtx, 0, XEXP (XEXP (x, 0), 1), i, 1,
7593 0, in_code == COMPARE);
7594 }
7595
7596 /* Same as previous, but for (subreg (lshiftrt ...)) in first op. */
7597 else if (GET_CODE (XEXP (x, 0)) == SUBREG
7598 && subreg_lowpart_p (XEXP (x, 0))
7599 && GET_CODE (SUBREG_REG (XEXP (x, 0))) == LSHIFTRT
7600 && (i = exact_log2 (UINTVAL (XEXP (x, 1)) + 1)) >= 0)
7601 {
7602 new_rtx = make_compound_operation (XEXP (SUBREG_REG (XEXP (x, 0)), 0),
7603 next_code);
7604 new_rtx = make_extraction (GET_MODE (SUBREG_REG (XEXP (x, 0))), new_rtx, 0,
7605 XEXP (SUBREG_REG (XEXP (x, 0)), 1), i, 1,
7606 0, in_code == COMPARE);
7607 }
7608 /* Same as previous, but for (xor/ior (lshiftrt...) (lshiftrt...)). */
7609 else if ((GET_CODE (XEXP (x, 0)) == XOR
7610 || GET_CODE (XEXP (x, 0)) == IOR)
7611 && GET_CODE (XEXP (XEXP (x, 0), 0)) == LSHIFTRT
7612 && GET_CODE (XEXP (XEXP (x, 0), 1)) == LSHIFTRT
7613 && (i = exact_log2 (UINTVAL (XEXP (x, 1)) + 1)) >= 0)
7614 {
7615 /* Apply the distributive law, and then try to make extractions. */
7616 new_rtx = gen_rtx_fmt_ee (GET_CODE (XEXP (x, 0)), mode,
7617 gen_rtx_AND (mode, XEXP (XEXP (x, 0), 0),
7618 XEXP (x, 1)),
7619 gen_rtx_AND (mode, XEXP (XEXP (x, 0), 1),
7620 XEXP (x, 1)));
7621 new_rtx = make_compound_operation (new_rtx, in_code);
7622 }
7623
7624 /* If we are have (and (rotate X C) M) and C is larger than the number
7625 of bits in M, this is an extraction. */
7626
7627 else if (GET_CODE (XEXP (x, 0)) == ROTATE
7628 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
7629 && (i = exact_log2 (UINTVAL (XEXP (x, 1)) + 1)) >= 0
7630 && i <= INTVAL (XEXP (XEXP (x, 0), 1)))
7631 {
7632 new_rtx = make_compound_operation (XEXP (XEXP (x, 0), 0), next_code);
7633 new_rtx = make_extraction (mode, new_rtx,
7634 (GET_MODE_PRECISION (mode)
7635 - INTVAL (XEXP (XEXP (x, 0), 1))),
7636 NULL_RTX, i, 1, 0, in_code == COMPARE);
7637 }
7638
7639 /* On machines without logical shifts, if the operand of the AND is
7640 a logical shift and our mask turns off all the propagated sign
7641 bits, we can replace the logical shift with an arithmetic shift. */
7642 else if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
7643 && !have_insn_for (LSHIFTRT, mode)
7644 && have_insn_for (ASHIFTRT, mode)
7645 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
7646 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
7647 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT
7648 && mode_width <= HOST_BITS_PER_WIDE_INT)
7649 {
7650 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
7651
7652 mask >>= INTVAL (XEXP (XEXP (x, 0), 1));
7653 if ((INTVAL (XEXP (x, 1)) & ~mask) == 0)
7654 SUBST (XEXP (x, 0),
7655 gen_rtx_ASHIFTRT (mode,
7656 make_compound_operation
7657 (XEXP (XEXP (x, 0), 0), next_code),
7658 XEXP (XEXP (x, 0), 1)));
7659 }
7660
7661 /* If the constant is one less than a power of two, this might be
7662 representable by an extraction even if no shift is present.
7663 If it doesn't end up being a ZERO_EXTEND, we will ignore it unless
7664 we are in a COMPARE. */
7665 else if ((i = exact_log2 (UINTVAL (XEXP (x, 1)) + 1)) >= 0)
7666 new_rtx = make_extraction (mode,
7667 make_compound_operation (XEXP (x, 0),
7668 next_code),
7669 0, NULL_RTX, i, 1, 0, in_code == COMPARE);
7670
7671 /* If we are in a comparison and this is an AND with a power of two,
7672 convert this into the appropriate bit extract. */
7673 else if (in_code == COMPARE
7674 && (i = exact_log2 (UINTVAL (XEXP (x, 1)))) >= 0)
7675 new_rtx = make_extraction (mode,
7676 make_compound_operation (XEXP (x, 0),
7677 next_code),
7678 i, NULL_RTX, 1, 1, 0, 1);
7679
7680 break;
7681
7682 case LSHIFTRT:
7683 /* If the sign bit is known to be zero, replace this with an
7684 arithmetic shift. */
7685 if (have_insn_for (ASHIFTRT, mode)
7686 && ! have_insn_for (LSHIFTRT, mode)
7687 && mode_width <= HOST_BITS_PER_WIDE_INT
7688 && (nonzero_bits (XEXP (x, 0), mode) & (1 << (mode_width - 1))) == 0)
7689 {
7690 new_rtx = gen_rtx_ASHIFTRT (mode,
7691 make_compound_operation (XEXP (x, 0),
7692 next_code),
7693 XEXP (x, 1));
7694 break;
7695 }
7696
7697 /* ... fall through ... */
7698
7699 case ASHIFTRT:
7700 lhs = XEXP (x, 0);
7701 rhs = XEXP (x, 1);
7702
7703 /* If we have (ashiftrt (ashift foo C1) C2) with C2 >= C1,
7704 this is a SIGN_EXTRACT. */
7705 if (CONST_INT_P (rhs)
7706 && GET_CODE (lhs) == ASHIFT
7707 && CONST_INT_P (XEXP (lhs, 1))
7708 && INTVAL (rhs) >= INTVAL (XEXP (lhs, 1))
7709 && INTVAL (XEXP (lhs, 1)) >= 0
7710 && INTVAL (rhs) < mode_width)
7711 {
7712 new_rtx = make_compound_operation (XEXP (lhs, 0), next_code);
7713 new_rtx = make_extraction (mode, new_rtx,
7714 INTVAL (rhs) - INTVAL (XEXP (lhs, 1)),
7715 NULL_RTX, mode_width - INTVAL (rhs),
7716 code == LSHIFTRT, 0, in_code == COMPARE);
7717 break;
7718 }
7719
7720 /* See if we have operations between an ASHIFTRT and an ASHIFT.
7721 If so, try to merge the shifts into a SIGN_EXTEND. We could
7722 also do this for some cases of SIGN_EXTRACT, but it doesn't
7723 seem worth the effort; the case checked for occurs on Alpha. */
7724
7725 if (!OBJECT_P (lhs)
7726 && ! (GET_CODE (lhs) == SUBREG
7727 && (OBJECT_P (SUBREG_REG (lhs))))
7728 && CONST_INT_P (rhs)
7729 && INTVAL (rhs) < HOST_BITS_PER_WIDE_INT
7730 && INTVAL (rhs) < mode_width
7731 && (new_rtx = extract_left_shift (lhs, INTVAL (rhs))) != 0)
7732 new_rtx = make_extraction (mode, make_compound_operation (new_rtx, next_code),
7733 0, NULL_RTX, mode_width - INTVAL (rhs),
7734 code == LSHIFTRT, 0, in_code == COMPARE);
7735
7736 break;
7737
7738 case SUBREG:
7739 /* Call ourselves recursively on the inner expression. If we are
7740 narrowing the object and it has a different RTL code from
7741 what it originally did, do this SUBREG as a force_to_mode. */
7742 {
7743 rtx inner = SUBREG_REG (x), simplified;
7744 enum rtx_code subreg_code = in_code;
7745
7746 /* If in_code is COMPARE, it isn't always safe to pass it through
7747 to the recursive make_compound_operation call. */
7748 if (subreg_code == COMPARE
7749 && (!subreg_lowpart_p (x)
7750 || GET_CODE (inner) == SUBREG
7751 /* (subreg:SI (and:DI (reg:DI) (const_int 0x800000000)) 0)
7752 is (const_int 0), rather than
7753 (subreg:SI (lshiftrt:DI (reg:DI) (const_int 35)) 0). */
7754 || (GET_CODE (inner) == AND
7755 && CONST_INT_P (XEXP (inner, 1))
7756 && GET_MODE_SIZE (mode) < GET_MODE_SIZE (GET_MODE (inner))
7757 && exact_log2 (UINTVAL (XEXP (inner, 1)))
7758 >= GET_MODE_BITSIZE (mode))))
7759 subreg_code = SET;
7760
7761 tem = make_compound_operation (inner, subreg_code);
7762
7763 simplified
7764 = simplify_subreg (mode, tem, GET_MODE (inner), SUBREG_BYTE (x));
7765 if (simplified)
7766 tem = simplified;
7767
7768 if (GET_CODE (tem) != GET_CODE (inner)
7769 && GET_MODE_SIZE (mode) < GET_MODE_SIZE (GET_MODE (inner))
7770 && subreg_lowpart_p (x))
7771 {
7772 rtx newer
7773 = force_to_mode (tem, mode, ~(unsigned HOST_WIDE_INT) 0, 0);
7774
7775 /* If we have something other than a SUBREG, we might have
7776 done an expansion, so rerun ourselves. */
7777 if (GET_CODE (newer) != SUBREG)
7778 newer = make_compound_operation (newer, in_code);
7779
7780 /* force_to_mode can expand compounds. If it just re-expanded the
7781 compound, use gen_lowpart to convert to the desired mode. */
7782 if (rtx_equal_p (newer, x)
7783 /* Likewise if it re-expanded the compound only partially.
7784 This happens for SUBREG of ZERO_EXTRACT if they extract
7785 the same number of bits. */
7786 || (GET_CODE (newer) == SUBREG
7787 && (GET_CODE (SUBREG_REG (newer)) == LSHIFTRT
7788 || GET_CODE (SUBREG_REG (newer)) == ASHIFTRT)
7789 && GET_CODE (inner) == AND
7790 && rtx_equal_p (SUBREG_REG (newer), XEXP (inner, 0))))
7791 return gen_lowpart (GET_MODE (x), tem);
7792
7793 return newer;
7794 }
7795
7796 if (simplified)
7797 return tem;
7798 }
7799 break;
7800
7801 default:
7802 break;
7803 }
7804
7805 if (new_rtx)
7806 {
7807 x = gen_lowpart (mode, new_rtx);
7808 code = GET_CODE (x);
7809 }
7810
7811 /* Now recursively process each operand of this operation. We need to
7812 handle ZERO_EXTEND specially so that we don't lose track of the
7813 inner mode. */
7814 if (GET_CODE (x) == ZERO_EXTEND)
7815 {
7816 new_rtx = make_compound_operation (XEXP (x, 0), next_code);
7817 tem = simplify_const_unary_operation (ZERO_EXTEND, GET_MODE (x),
7818 new_rtx, GET_MODE (XEXP (x, 0)));
7819 if (tem)
7820 return tem;
7821 SUBST (XEXP (x, 0), new_rtx);
7822 return x;
7823 }
7824
7825 fmt = GET_RTX_FORMAT (code);
7826 for (i = 0; i < GET_RTX_LENGTH (code); i++)
7827 if (fmt[i] == 'e')
7828 {
7829 new_rtx = make_compound_operation (XEXP (x, i), next_code);
7830 SUBST (XEXP (x, i), new_rtx);
7831 }
7832 else if (fmt[i] == 'E')
7833 for (j = 0; j < XVECLEN (x, i); j++)
7834 {
7835 new_rtx = make_compound_operation (XVECEXP (x, i, j), next_code);
7836 SUBST (XVECEXP (x, i, j), new_rtx);
7837 }
7838
7839 maybe_swap:
7840 /* If this is a commutative operation, the changes to the operands
7841 may have made it noncanonical. */
7842 if (COMMUTATIVE_ARITH_P (x)
7843 && swap_commutative_operands_p (XEXP (x, 0), XEXP (x, 1)))
7844 {
7845 tem = XEXP (x, 0);
7846 SUBST (XEXP (x, 0), XEXP (x, 1));
7847 SUBST (XEXP (x, 1), tem);
7848 }
7849
7850 return x;
7851 }
7852 \f
7853 /* Given M see if it is a value that would select a field of bits
7854 within an item, but not the entire word. Return -1 if not.
7855 Otherwise, return the starting position of the field, where 0 is the
7856 low-order bit.
7857
7858 *PLEN is set to the length of the field. */
7859
7860 static int
7861 get_pos_from_mask (unsigned HOST_WIDE_INT m, unsigned HOST_WIDE_INT *plen)
7862 {
7863 /* Get the bit number of the first 1 bit from the right, -1 if none. */
7864 int pos = m ? ctz_hwi (m) : -1;
7865 int len = 0;
7866
7867 if (pos >= 0)
7868 /* Now shift off the low-order zero bits and see if we have a
7869 power of two minus 1. */
7870 len = exact_log2 ((m >> pos) + 1);
7871
7872 if (len <= 0)
7873 pos = -1;
7874
7875 *plen = len;
7876 return pos;
7877 }
7878 \f
7879 /* If X refers to a register that equals REG in value, replace these
7880 references with REG. */
7881 static rtx
7882 canon_reg_for_combine (rtx x, rtx reg)
7883 {
7884 rtx op0, op1, op2;
7885 const char *fmt;
7886 int i;
7887 bool copied;
7888
7889 enum rtx_code code = GET_CODE (x);
7890 switch (GET_RTX_CLASS (code))
7891 {
7892 case RTX_UNARY:
7893 op0 = canon_reg_for_combine (XEXP (x, 0), reg);
7894 if (op0 != XEXP (x, 0))
7895 return simplify_gen_unary (GET_CODE (x), GET_MODE (x), op0,
7896 GET_MODE (reg));
7897 break;
7898
7899 case RTX_BIN_ARITH:
7900 case RTX_COMM_ARITH:
7901 op0 = canon_reg_for_combine (XEXP (x, 0), reg);
7902 op1 = canon_reg_for_combine (XEXP (x, 1), reg);
7903 if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
7904 return simplify_gen_binary (GET_CODE (x), GET_MODE (x), op0, op1);
7905 break;
7906
7907 case RTX_COMPARE:
7908 case RTX_COMM_COMPARE:
7909 op0 = canon_reg_for_combine (XEXP (x, 0), reg);
7910 op1 = canon_reg_for_combine (XEXP (x, 1), reg);
7911 if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
7912 return simplify_gen_relational (GET_CODE (x), GET_MODE (x),
7913 GET_MODE (op0), op0, op1);
7914 break;
7915
7916 case RTX_TERNARY:
7917 case RTX_BITFIELD_OPS:
7918 op0 = canon_reg_for_combine (XEXP (x, 0), reg);
7919 op1 = canon_reg_for_combine (XEXP (x, 1), reg);
7920 op2 = canon_reg_for_combine (XEXP (x, 2), reg);
7921 if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1) || op2 != XEXP (x, 2))
7922 return simplify_gen_ternary (GET_CODE (x), GET_MODE (x),
7923 GET_MODE (op0), op0, op1, op2);
7924
7925 case RTX_OBJ:
7926 if (REG_P (x))
7927 {
7928 if (rtx_equal_p (get_last_value (reg), x)
7929 || rtx_equal_p (reg, get_last_value (x)))
7930 return reg;
7931 else
7932 break;
7933 }
7934
7935 /* fall through */
7936
7937 default:
7938 fmt = GET_RTX_FORMAT (code);
7939 copied = false;
7940 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
7941 if (fmt[i] == 'e')
7942 {
7943 rtx op = canon_reg_for_combine (XEXP (x, i), reg);
7944 if (op != XEXP (x, i))
7945 {
7946 if (!copied)
7947 {
7948 copied = true;
7949 x = copy_rtx (x);
7950 }
7951 XEXP (x, i) = op;
7952 }
7953 }
7954 else if (fmt[i] == 'E')
7955 {
7956 int j;
7957 for (j = 0; j < XVECLEN (x, i); j++)
7958 {
7959 rtx op = canon_reg_for_combine (XVECEXP (x, i, j), reg);
7960 if (op != XVECEXP (x, i, j))
7961 {
7962 if (!copied)
7963 {
7964 copied = true;
7965 x = copy_rtx (x);
7966 }
7967 XVECEXP (x, i, j) = op;
7968 }
7969 }
7970 }
7971
7972 break;
7973 }
7974
7975 return x;
7976 }
7977
7978 /* Return X converted to MODE. If the value is already truncated to
7979 MODE we can just return a subreg even though in the general case we
7980 would need an explicit truncation. */
7981
7982 static rtx
7983 gen_lowpart_or_truncate (enum machine_mode mode, rtx x)
7984 {
7985 if (!CONST_INT_P (x)
7986 && GET_MODE_SIZE (mode) < GET_MODE_SIZE (GET_MODE (x))
7987 && !TRULY_NOOP_TRUNCATION_MODES_P (mode, GET_MODE (x))
7988 && !(REG_P (x) && reg_truncated_to_mode (mode, x)))
7989 {
7990 /* Bit-cast X into an integer mode. */
7991 if (!SCALAR_INT_MODE_P (GET_MODE (x)))
7992 x = gen_lowpart (int_mode_for_mode (GET_MODE (x)), x);
7993 x = simplify_gen_unary (TRUNCATE, int_mode_for_mode (mode),
7994 x, GET_MODE (x));
7995 }
7996
7997 return gen_lowpart (mode, x);
7998 }
7999
8000 /* See if X can be simplified knowing that we will only refer to it in
8001 MODE and will only refer to those bits that are nonzero in MASK.
8002 If other bits are being computed or if masking operations are done
8003 that select a superset of the bits in MASK, they can sometimes be
8004 ignored.
8005
8006 Return a possibly simplified expression, but always convert X to
8007 MODE. If X is a CONST_INT, AND the CONST_INT with MASK.
8008
8009 If JUST_SELECT is nonzero, don't optimize by noticing that bits in MASK
8010 are all off in X. This is used when X will be complemented, by either
8011 NOT, NEG, or XOR. */
8012
8013 static rtx
8014 force_to_mode (rtx x, enum machine_mode mode, unsigned HOST_WIDE_INT mask,
8015 int just_select)
8016 {
8017 enum rtx_code code = GET_CODE (x);
8018 int next_select = just_select || code == XOR || code == NOT || code == NEG;
8019 enum machine_mode op_mode;
8020 unsigned HOST_WIDE_INT fuller_mask, nonzero;
8021 rtx op0, op1, temp;
8022
8023 /* If this is a CALL or ASM_OPERANDS, don't do anything. Some of the
8024 code below will do the wrong thing since the mode of such an
8025 expression is VOIDmode.
8026
8027 Also do nothing if X is a CLOBBER; this can happen if X was
8028 the return value from a call to gen_lowpart. */
8029 if (code == CALL || code == ASM_OPERANDS || code == CLOBBER)
8030 return x;
8031
8032 /* We want to perform the operation is its present mode unless we know
8033 that the operation is valid in MODE, in which case we do the operation
8034 in MODE. */
8035 op_mode = ((GET_MODE_CLASS (mode) == GET_MODE_CLASS (GET_MODE (x))
8036 && have_insn_for (code, mode))
8037 ? mode : GET_MODE (x));
8038
8039 /* It is not valid to do a right-shift in a narrower mode
8040 than the one it came in with. */
8041 if ((code == LSHIFTRT || code == ASHIFTRT)
8042 && GET_MODE_PRECISION (mode) < GET_MODE_PRECISION (GET_MODE (x)))
8043 op_mode = GET_MODE (x);
8044
8045 /* Truncate MASK to fit OP_MODE. */
8046 if (op_mode)
8047 mask &= GET_MODE_MASK (op_mode);
8048
8049 /* When we have an arithmetic operation, or a shift whose count we
8050 do not know, we need to assume that all bits up to the highest-order
8051 bit in MASK will be needed. This is how we form such a mask. */
8052 if (mask & ((unsigned HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT - 1)))
8053 fuller_mask = ~(unsigned HOST_WIDE_INT) 0;
8054 else
8055 fuller_mask = (((unsigned HOST_WIDE_INT) 1 << (floor_log2 (mask) + 1))
8056 - 1);
8057
8058 /* Determine what bits of X are guaranteed to be (non)zero. */
8059 nonzero = nonzero_bits (x, mode);
8060
8061 /* If none of the bits in X are needed, return a zero. */
8062 if (!just_select && (nonzero & mask) == 0 && !side_effects_p (x))
8063 x = const0_rtx;
8064
8065 /* If X is a CONST_INT, return a new one. Do this here since the
8066 test below will fail. */
8067 if (CONST_INT_P (x))
8068 {
8069 if (SCALAR_INT_MODE_P (mode))
8070 return gen_int_mode (INTVAL (x) & mask, mode);
8071 else
8072 {
8073 x = GEN_INT (INTVAL (x) & mask);
8074 return gen_lowpart_common (mode, x);
8075 }
8076 }
8077
8078 /* If X is narrower than MODE and we want all the bits in X's mode, just
8079 get X in the proper mode. */
8080 if (GET_MODE_SIZE (GET_MODE (x)) < GET_MODE_SIZE (mode)
8081 && (GET_MODE_MASK (GET_MODE (x)) & ~mask) == 0)
8082 return gen_lowpart (mode, x);
8083
8084 /* We can ignore the effect of a SUBREG if it narrows the mode or
8085 if the constant masks to zero all the bits the mode doesn't have. */
8086 if (GET_CODE (x) == SUBREG
8087 && subreg_lowpart_p (x)
8088 && ((GET_MODE_SIZE (GET_MODE (x))
8089 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
8090 || (0 == (mask
8091 & GET_MODE_MASK (GET_MODE (x))
8092 & ~GET_MODE_MASK (GET_MODE (SUBREG_REG (x)))))))
8093 return force_to_mode (SUBREG_REG (x), mode, mask, next_select);
8094
8095 /* The arithmetic simplifications here only work for scalar integer modes. */
8096 if (!SCALAR_INT_MODE_P (mode) || !SCALAR_INT_MODE_P (GET_MODE (x)))
8097 return gen_lowpart_or_truncate (mode, x);
8098
8099 switch (code)
8100 {
8101 case CLOBBER:
8102 /* If X is a (clobber (const_int)), return it since we know we are
8103 generating something that won't match. */
8104 return x;
8105
8106 case SIGN_EXTEND:
8107 case ZERO_EXTEND:
8108 case ZERO_EXTRACT:
8109 case SIGN_EXTRACT:
8110 x = expand_compound_operation (x);
8111 if (GET_CODE (x) != code)
8112 return force_to_mode (x, mode, mask, next_select);
8113 break;
8114
8115 case TRUNCATE:
8116 /* Similarly for a truncate. */
8117 return force_to_mode (XEXP (x, 0), mode, mask, next_select);
8118
8119 case AND:
8120 /* If this is an AND with a constant, convert it into an AND
8121 whose constant is the AND of that constant with MASK. If it
8122 remains an AND of MASK, delete it since it is redundant. */
8123
8124 if (CONST_INT_P (XEXP (x, 1)))
8125 {
8126 x = simplify_and_const_int (x, op_mode, XEXP (x, 0),
8127 mask & INTVAL (XEXP (x, 1)));
8128
8129 /* If X is still an AND, see if it is an AND with a mask that
8130 is just some low-order bits. If so, and it is MASK, we don't
8131 need it. */
8132
8133 if (GET_CODE (x) == AND && CONST_INT_P (XEXP (x, 1))
8134 && ((INTVAL (XEXP (x, 1)) & GET_MODE_MASK (GET_MODE (x)))
8135 == mask))
8136 x = XEXP (x, 0);
8137
8138 /* If it remains an AND, try making another AND with the bits
8139 in the mode mask that aren't in MASK turned on. If the
8140 constant in the AND is wide enough, this might make a
8141 cheaper constant. */
8142
8143 if (GET_CODE (x) == AND && CONST_INT_P (XEXP (x, 1))
8144 && GET_MODE_MASK (GET_MODE (x)) != mask
8145 && HWI_COMPUTABLE_MODE_P (GET_MODE (x)))
8146 {
8147 unsigned HOST_WIDE_INT cval
8148 = UINTVAL (XEXP (x, 1))
8149 | (GET_MODE_MASK (GET_MODE (x)) & ~mask);
8150 rtx y;
8151
8152 y = simplify_gen_binary (AND, GET_MODE (x), XEXP (x, 0),
8153 gen_int_mode (cval, GET_MODE (x)));
8154 if (set_src_cost (y, optimize_this_for_speed_p)
8155 < set_src_cost (x, optimize_this_for_speed_p))
8156 x = y;
8157 }
8158
8159 break;
8160 }
8161
8162 goto binop;
8163
8164 case PLUS:
8165 /* In (and (plus FOO C1) M), if M is a mask that just turns off
8166 low-order bits (as in an alignment operation) and FOO is already
8167 aligned to that boundary, mask C1 to that boundary as well.
8168 This may eliminate that PLUS and, later, the AND. */
8169
8170 {
8171 unsigned int width = GET_MODE_PRECISION (mode);
8172 unsigned HOST_WIDE_INT smask = mask;
8173
8174 /* If MODE is narrower than HOST_WIDE_INT and mask is a negative
8175 number, sign extend it. */
8176
8177 if (width < HOST_BITS_PER_WIDE_INT
8178 && (smask & (HOST_WIDE_INT_1U << (width - 1))) != 0)
8179 smask |= HOST_WIDE_INT_M1U << width;
8180
8181 if (CONST_INT_P (XEXP (x, 1))
8182 && exact_log2 (- smask) >= 0
8183 && (nonzero_bits (XEXP (x, 0), mode) & ~smask) == 0
8184 && (INTVAL (XEXP (x, 1)) & ~smask) != 0)
8185 return force_to_mode (plus_constant (GET_MODE (x), XEXP (x, 0),
8186 (INTVAL (XEXP (x, 1)) & smask)),
8187 mode, smask, next_select);
8188 }
8189
8190 /* ... fall through ... */
8191
8192 case MULT:
8193 /* For PLUS, MINUS and MULT, we need any bits less significant than the
8194 most significant bit in MASK since carries from those bits will
8195 affect the bits we are interested in. */
8196 mask = fuller_mask;
8197 goto binop;
8198
8199 case MINUS:
8200 /* If X is (minus C Y) where C's least set bit is larger than any bit
8201 in the mask, then we may replace with (neg Y). */
8202 if (CONST_INT_P (XEXP (x, 0))
8203 && (((unsigned HOST_WIDE_INT) (INTVAL (XEXP (x, 0))
8204 & -INTVAL (XEXP (x, 0))))
8205 > mask))
8206 {
8207 x = simplify_gen_unary (NEG, GET_MODE (x), XEXP (x, 1),
8208 GET_MODE (x));
8209 return force_to_mode (x, mode, mask, next_select);
8210 }
8211
8212 /* Similarly, if C contains every bit in the fuller_mask, then we may
8213 replace with (not Y). */
8214 if (CONST_INT_P (XEXP (x, 0))
8215 && ((UINTVAL (XEXP (x, 0)) | fuller_mask) == UINTVAL (XEXP (x, 0))))
8216 {
8217 x = simplify_gen_unary (NOT, GET_MODE (x),
8218 XEXP (x, 1), GET_MODE (x));
8219 return force_to_mode (x, mode, mask, next_select);
8220 }
8221
8222 mask = fuller_mask;
8223 goto binop;
8224
8225 case IOR:
8226 case XOR:
8227 /* If X is (ior (lshiftrt FOO C1) C2), try to commute the IOR and
8228 LSHIFTRT so we end up with an (and (lshiftrt (ior ...) ...) ...)
8229 operation which may be a bitfield extraction. Ensure that the
8230 constant we form is not wider than the mode of X. */
8231
8232 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
8233 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
8234 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
8235 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT
8236 && CONST_INT_P (XEXP (x, 1))
8237 && ((INTVAL (XEXP (XEXP (x, 0), 1))
8238 + floor_log2 (INTVAL (XEXP (x, 1))))
8239 < GET_MODE_PRECISION (GET_MODE (x)))
8240 && (UINTVAL (XEXP (x, 1))
8241 & ~nonzero_bits (XEXP (x, 0), GET_MODE (x))) == 0)
8242 {
8243 temp = gen_int_mode ((INTVAL (XEXP (x, 1)) & mask)
8244 << INTVAL (XEXP (XEXP (x, 0), 1)),
8245 GET_MODE (x));
8246 temp = simplify_gen_binary (GET_CODE (x), GET_MODE (x),
8247 XEXP (XEXP (x, 0), 0), temp);
8248 x = simplify_gen_binary (LSHIFTRT, GET_MODE (x), temp,
8249 XEXP (XEXP (x, 0), 1));
8250 return force_to_mode (x, mode, mask, next_select);
8251 }
8252
8253 binop:
8254 /* For most binary operations, just propagate into the operation and
8255 change the mode if we have an operation of that mode. */
8256
8257 op0 = force_to_mode (XEXP (x, 0), mode, mask, next_select);
8258 op1 = force_to_mode (XEXP (x, 1), mode, mask, next_select);
8259
8260 /* If we ended up truncating both operands, truncate the result of the
8261 operation instead. */
8262 if (GET_CODE (op0) == TRUNCATE
8263 && GET_CODE (op1) == TRUNCATE)
8264 {
8265 op0 = XEXP (op0, 0);
8266 op1 = XEXP (op1, 0);
8267 }
8268
8269 op0 = gen_lowpart_or_truncate (op_mode, op0);
8270 op1 = gen_lowpart_or_truncate (op_mode, op1);
8271
8272 if (op_mode != GET_MODE (x) || op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
8273 x = simplify_gen_binary (code, op_mode, op0, op1);
8274 break;
8275
8276 case ASHIFT:
8277 /* For left shifts, do the same, but just for the first operand.
8278 However, we cannot do anything with shifts where we cannot
8279 guarantee that the counts are smaller than the size of the mode
8280 because such a count will have a different meaning in a
8281 wider mode. */
8282
8283 if (! (CONST_INT_P (XEXP (x, 1))
8284 && INTVAL (XEXP (x, 1)) >= 0
8285 && INTVAL (XEXP (x, 1)) < GET_MODE_PRECISION (mode))
8286 && ! (GET_MODE (XEXP (x, 1)) != VOIDmode
8287 && (nonzero_bits (XEXP (x, 1), GET_MODE (XEXP (x, 1)))
8288 < (unsigned HOST_WIDE_INT) GET_MODE_PRECISION (mode))))
8289 break;
8290
8291 /* If the shift count is a constant and we can do arithmetic in
8292 the mode of the shift, refine which bits we need. Otherwise, use the
8293 conservative form of the mask. */
8294 if (CONST_INT_P (XEXP (x, 1))
8295 && INTVAL (XEXP (x, 1)) >= 0
8296 && INTVAL (XEXP (x, 1)) < GET_MODE_PRECISION (op_mode)
8297 && HWI_COMPUTABLE_MODE_P (op_mode))
8298 mask >>= INTVAL (XEXP (x, 1));
8299 else
8300 mask = fuller_mask;
8301
8302 op0 = gen_lowpart_or_truncate (op_mode,
8303 force_to_mode (XEXP (x, 0), op_mode,
8304 mask, next_select));
8305
8306 if (op_mode != GET_MODE (x) || op0 != XEXP (x, 0))
8307 x = simplify_gen_binary (code, op_mode, op0, XEXP (x, 1));
8308 break;
8309
8310 case LSHIFTRT:
8311 /* Here we can only do something if the shift count is a constant,
8312 this shift constant is valid for the host, and we can do arithmetic
8313 in OP_MODE. */
8314
8315 if (CONST_INT_P (XEXP (x, 1))
8316 && INTVAL (XEXP (x, 1)) >= 0
8317 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT
8318 && HWI_COMPUTABLE_MODE_P (op_mode))
8319 {
8320 rtx inner = XEXP (x, 0);
8321 unsigned HOST_WIDE_INT inner_mask;
8322
8323 /* Select the mask of the bits we need for the shift operand. */
8324 inner_mask = mask << INTVAL (XEXP (x, 1));
8325
8326 /* We can only change the mode of the shift if we can do arithmetic
8327 in the mode of the shift and INNER_MASK is no wider than the
8328 width of X's mode. */
8329 if ((inner_mask & ~GET_MODE_MASK (GET_MODE (x))) != 0)
8330 op_mode = GET_MODE (x);
8331
8332 inner = force_to_mode (inner, op_mode, inner_mask, next_select);
8333
8334 if (GET_MODE (x) != op_mode || inner != XEXP (x, 0))
8335 x = simplify_gen_binary (LSHIFTRT, op_mode, inner, XEXP (x, 1));
8336 }
8337
8338 /* If we have (and (lshiftrt FOO C1) C2) where the combination of the
8339 shift and AND produces only copies of the sign bit (C2 is one less
8340 than a power of two), we can do this with just a shift. */
8341
8342 if (GET_CODE (x) == LSHIFTRT
8343 && CONST_INT_P (XEXP (x, 1))
8344 /* The shift puts one of the sign bit copies in the least significant
8345 bit. */
8346 && ((INTVAL (XEXP (x, 1))
8347 + num_sign_bit_copies (XEXP (x, 0), GET_MODE (XEXP (x, 0))))
8348 >= GET_MODE_PRECISION (GET_MODE (x)))
8349 && exact_log2 (mask + 1) >= 0
8350 /* Number of bits left after the shift must be more than the mask
8351 needs. */
8352 && ((INTVAL (XEXP (x, 1)) + exact_log2 (mask + 1))
8353 <= GET_MODE_PRECISION (GET_MODE (x)))
8354 /* Must be more sign bit copies than the mask needs. */
8355 && ((int) num_sign_bit_copies (XEXP (x, 0), GET_MODE (XEXP (x, 0)))
8356 >= exact_log2 (mask + 1)))
8357 x = simplify_gen_binary (LSHIFTRT, GET_MODE (x), XEXP (x, 0),
8358 GEN_INT (GET_MODE_PRECISION (GET_MODE (x))
8359 - exact_log2 (mask + 1)));
8360
8361 goto shiftrt;
8362
8363 case ASHIFTRT:
8364 /* If we are just looking for the sign bit, we don't need this shift at
8365 all, even if it has a variable count. */
8366 if (val_signbit_p (GET_MODE (x), mask))
8367 return force_to_mode (XEXP (x, 0), mode, mask, next_select);
8368
8369 /* If this is a shift by a constant, get a mask that contains those bits
8370 that are not copies of the sign bit. We then have two cases: If
8371 MASK only includes those bits, this can be a logical shift, which may
8372 allow simplifications. If MASK is a single-bit field not within
8373 those bits, we are requesting a copy of the sign bit and hence can
8374 shift the sign bit to the appropriate location. */
8375
8376 if (CONST_INT_P (XEXP (x, 1)) && INTVAL (XEXP (x, 1)) >= 0
8377 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT)
8378 {
8379 int i;
8380
8381 /* If the considered data is wider than HOST_WIDE_INT, we can't
8382 represent a mask for all its bits in a single scalar.
8383 But we only care about the lower bits, so calculate these. */
8384
8385 if (GET_MODE_PRECISION (GET_MODE (x)) > HOST_BITS_PER_WIDE_INT)
8386 {
8387 nonzero = ~(unsigned HOST_WIDE_INT) 0;
8388
8389 /* GET_MODE_PRECISION (GET_MODE (x)) - INTVAL (XEXP (x, 1))
8390 is the number of bits a full-width mask would have set.
8391 We need only shift if these are fewer than nonzero can
8392 hold. If not, we must keep all bits set in nonzero. */
8393
8394 if (GET_MODE_PRECISION (GET_MODE (x)) - INTVAL (XEXP (x, 1))
8395 < HOST_BITS_PER_WIDE_INT)
8396 nonzero >>= INTVAL (XEXP (x, 1))
8397 + HOST_BITS_PER_WIDE_INT
8398 - GET_MODE_PRECISION (GET_MODE (x)) ;
8399 }
8400 else
8401 {
8402 nonzero = GET_MODE_MASK (GET_MODE (x));
8403 nonzero >>= INTVAL (XEXP (x, 1));
8404 }
8405
8406 if ((mask & ~nonzero) == 0)
8407 {
8408 x = simplify_shift_const (NULL_RTX, LSHIFTRT, GET_MODE (x),
8409 XEXP (x, 0), INTVAL (XEXP (x, 1)));
8410 if (GET_CODE (x) != ASHIFTRT)
8411 return force_to_mode (x, mode, mask, next_select);
8412 }
8413
8414 else if ((i = exact_log2 (mask)) >= 0)
8415 {
8416 x = simplify_shift_const
8417 (NULL_RTX, LSHIFTRT, GET_MODE (x), XEXP (x, 0),
8418 GET_MODE_PRECISION (GET_MODE (x)) - 1 - i);
8419
8420 if (GET_CODE (x) != ASHIFTRT)
8421 return force_to_mode (x, mode, mask, next_select);
8422 }
8423 }
8424
8425 /* If MASK is 1, convert this to an LSHIFTRT. This can be done
8426 even if the shift count isn't a constant. */
8427 if (mask == 1)
8428 x = simplify_gen_binary (LSHIFTRT, GET_MODE (x),
8429 XEXP (x, 0), XEXP (x, 1));
8430
8431 shiftrt:
8432
8433 /* If this is a zero- or sign-extension operation that just affects bits
8434 we don't care about, remove it. Be sure the call above returned
8435 something that is still a shift. */
8436
8437 if ((GET_CODE (x) == LSHIFTRT || GET_CODE (x) == ASHIFTRT)
8438 && CONST_INT_P (XEXP (x, 1))
8439 && INTVAL (XEXP (x, 1)) >= 0
8440 && (INTVAL (XEXP (x, 1))
8441 <= GET_MODE_PRECISION (GET_MODE (x)) - (floor_log2 (mask) + 1))
8442 && GET_CODE (XEXP (x, 0)) == ASHIFT
8443 && XEXP (XEXP (x, 0), 1) == XEXP (x, 1))
8444 return force_to_mode (XEXP (XEXP (x, 0), 0), mode, mask,
8445 next_select);
8446
8447 break;
8448
8449 case ROTATE:
8450 case ROTATERT:
8451 /* If the shift count is constant and we can do computations
8452 in the mode of X, compute where the bits we care about are.
8453 Otherwise, we can't do anything. Don't change the mode of
8454 the shift or propagate MODE into the shift, though. */
8455 if (CONST_INT_P (XEXP (x, 1))
8456 && INTVAL (XEXP (x, 1)) >= 0)
8457 {
8458 temp = simplify_binary_operation (code == ROTATE ? ROTATERT : ROTATE,
8459 GET_MODE (x),
8460 gen_int_mode (mask, GET_MODE (x)),
8461 XEXP (x, 1));
8462 if (temp && CONST_INT_P (temp))
8463 SUBST (XEXP (x, 0),
8464 force_to_mode (XEXP (x, 0), GET_MODE (x),
8465 INTVAL (temp), next_select));
8466 }
8467 break;
8468
8469 case NEG:
8470 /* If we just want the low-order bit, the NEG isn't needed since it
8471 won't change the low-order bit. */
8472 if (mask == 1)
8473 return force_to_mode (XEXP (x, 0), mode, mask, just_select);
8474
8475 /* We need any bits less significant than the most significant bit in
8476 MASK since carries from those bits will affect the bits we are
8477 interested in. */
8478 mask = fuller_mask;
8479 goto unop;
8480
8481 case NOT:
8482 /* (not FOO) is (xor FOO CONST), so if FOO is an LSHIFTRT, we can do the
8483 same as the XOR case above. Ensure that the constant we form is not
8484 wider than the mode of X. */
8485
8486 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
8487 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
8488 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
8489 && (INTVAL (XEXP (XEXP (x, 0), 1)) + floor_log2 (mask)
8490 < GET_MODE_PRECISION (GET_MODE (x)))
8491 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT)
8492 {
8493 temp = gen_int_mode (mask << INTVAL (XEXP (XEXP (x, 0), 1)),
8494 GET_MODE (x));
8495 temp = simplify_gen_binary (XOR, GET_MODE (x),
8496 XEXP (XEXP (x, 0), 0), temp);
8497 x = simplify_gen_binary (LSHIFTRT, GET_MODE (x),
8498 temp, XEXP (XEXP (x, 0), 1));
8499
8500 return force_to_mode (x, mode, mask, next_select);
8501 }
8502
8503 /* (and (not FOO) CONST) is (not (or FOO (not CONST))), so we must
8504 use the full mask inside the NOT. */
8505 mask = fuller_mask;
8506
8507 unop:
8508 op0 = gen_lowpart_or_truncate (op_mode,
8509 force_to_mode (XEXP (x, 0), mode, mask,
8510 next_select));
8511 if (op_mode != GET_MODE (x) || op0 != XEXP (x, 0))
8512 x = simplify_gen_unary (code, op_mode, op0, op_mode);
8513 break;
8514
8515 case NE:
8516 /* (and (ne FOO 0) CONST) can be (and FOO CONST) if CONST is included
8517 in STORE_FLAG_VALUE and FOO has a single bit that might be nonzero,
8518 which is equal to STORE_FLAG_VALUE. */
8519 if ((mask & ~STORE_FLAG_VALUE) == 0
8520 && XEXP (x, 1) == const0_rtx
8521 && GET_MODE (XEXP (x, 0)) == mode
8522 && exact_log2 (nonzero_bits (XEXP (x, 0), mode)) >= 0
8523 && (nonzero_bits (XEXP (x, 0), mode)
8524 == (unsigned HOST_WIDE_INT) STORE_FLAG_VALUE))
8525 return force_to_mode (XEXP (x, 0), mode, mask, next_select);
8526
8527 break;
8528
8529 case IF_THEN_ELSE:
8530 /* We have no way of knowing if the IF_THEN_ELSE can itself be
8531 written in a narrower mode. We play it safe and do not do so. */
8532
8533 SUBST (XEXP (x, 1),
8534 gen_lowpart_or_truncate (GET_MODE (x),
8535 force_to_mode (XEXP (x, 1), mode,
8536 mask, next_select)));
8537 SUBST (XEXP (x, 2),
8538 gen_lowpart_or_truncate (GET_MODE (x),
8539 force_to_mode (XEXP (x, 2), mode,
8540 mask, next_select)));
8541 break;
8542
8543 default:
8544 break;
8545 }
8546
8547 /* Ensure we return a value of the proper mode. */
8548 return gen_lowpart_or_truncate (mode, x);
8549 }
8550 \f
8551 /* Return nonzero if X is an expression that has one of two values depending on
8552 whether some other value is zero or nonzero. In that case, we return the
8553 value that is being tested, *PTRUE is set to the value if the rtx being
8554 returned has a nonzero value, and *PFALSE is set to the other alternative.
8555
8556 If we return zero, we set *PTRUE and *PFALSE to X. */
8557
8558 static rtx
8559 if_then_else_cond (rtx x, rtx *ptrue, rtx *pfalse)
8560 {
8561 enum machine_mode mode = GET_MODE (x);
8562 enum rtx_code code = GET_CODE (x);
8563 rtx cond0, cond1, true0, true1, false0, false1;
8564 unsigned HOST_WIDE_INT nz;
8565
8566 /* If we are comparing a value against zero, we are done. */
8567 if ((code == NE || code == EQ)
8568 && XEXP (x, 1) == const0_rtx)
8569 {
8570 *ptrue = (code == NE) ? const_true_rtx : const0_rtx;
8571 *pfalse = (code == NE) ? const0_rtx : const_true_rtx;
8572 return XEXP (x, 0);
8573 }
8574
8575 /* If this is a unary operation whose operand has one of two values, apply
8576 our opcode to compute those values. */
8577 else if (UNARY_P (x)
8578 && (cond0 = if_then_else_cond (XEXP (x, 0), &true0, &false0)) != 0)
8579 {
8580 *ptrue = simplify_gen_unary (code, mode, true0, GET_MODE (XEXP (x, 0)));
8581 *pfalse = simplify_gen_unary (code, mode, false0,
8582 GET_MODE (XEXP (x, 0)));
8583 return cond0;
8584 }
8585
8586 /* If this is a COMPARE, do nothing, since the IF_THEN_ELSE we would
8587 make can't possibly match and would suppress other optimizations. */
8588 else if (code == COMPARE)
8589 ;
8590
8591 /* If this is a binary operation, see if either side has only one of two
8592 values. If either one does or if both do and they are conditional on
8593 the same value, compute the new true and false values. */
8594 else if (BINARY_P (x))
8595 {
8596 cond0 = if_then_else_cond (XEXP (x, 0), &true0, &false0);
8597 cond1 = if_then_else_cond (XEXP (x, 1), &true1, &false1);
8598
8599 if ((cond0 != 0 || cond1 != 0)
8600 && ! (cond0 != 0 && cond1 != 0 && ! rtx_equal_p (cond0, cond1)))
8601 {
8602 /* If if_then_else_cond returned zero, then true/false are the
8603 same rtl. We must copy one of them to prevent invalid rtl
8604 sharing. */
8605 if (cond0 == 0)
8606 true0 = copy_rtx (true0);
8607 else if (cond1 == 0)
8608 true1 = copy_rtx (true1);
8609
8610 if (COMPARISON_P (x))
8611 {
8612 *ptrue = simplify_gen_relational (code, mode, VOIDmode,
8613 true0, true1);
8614 *pfalse = simplify_gen_relational (code, mode, VOIDmode,
8615 false0, false1);
8616 }
8617 else
8618 {
8619 *ptrue = simplify_gen_binary (code, mode, true0, true1);
8620 *pfalse = simplify_gen_binary (code, mode, false0, false1);
8621 }
8622
8623 return cond0 ? cond0 : cond1;
8624 }
8625
8626 /* See if we have PLUS, IOR, XOR, MINUS or UMAX, where one of the
8627 operands is zero when the other is nonzero, and vice-versa,
8628 and STORE_FLAG_VALUE is 1 or -1. */
8629
8630 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
8631 && (code == PLUS || code == IOR || code == XOR || code == MINUS
8632 || code == UMAX)
8633 && GET_CODE (XEXP (x, 0)) == MULT && GET_CODE (XEXP (x, 1)) == MULT)
8634 {
8635 rtx op0 = XEXP (XEXP (x, 0), 1);
8636 rtx op1 = XEXP (XEXP (x, 1), 1);
8637
8638 cond0 = XEXP (XEXP (x, 0), 0);
8639 cond1 = XEXP (XEXP (x, 1), 0);
8640
8641 if (COMPARISON_P (cond0)
8642 && COMPARISON_P (cond1)
8643 && ((GET_CODE (cond0) == reversed_comparison_code (cond1, NULL)
8644 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 0))
8645 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 1)))
8646 || ((swap_condition (GET_CODE (cond0))
8647 == reversed_comparison_code (cond1, NULL))
8648 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 1))
8649 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 0))))
8650 && ! side_effects_p (x))
8651 {
8652 *ptrue = simplify_gen_binary (MULT, mode, op0, const_true_rtx);
8653 *pfalse = simplify_gen_binary (MULT, mode,
8654 (code == MINUS
8655 ? simplify_gen_unary (NEG, mode,
8656 op1, mode)
8657 : op1),
8658 const_true_rtx);
8659 return cond0;
8660 }
8661 }
8662
8663 /* Similarly for MULT, AND and UMIN, except that for these the result
8664 is always zero. */
8665 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
8666 && (code == MULT || code == AND || code == UMIN)
8667 && GET_CODE (XEXP (x, 0)) == MULT && GET_CODE (XEXP (x, 1)) == MULT)
8668 {
8669 cond0 = XEXP (XEXP (x, 0), 0);
8670 cond1 = XEXP (XEXP (x, 1), 0);
8671
8672 if (COMPARISON_P (cond0)
8673 && COMPARISON_P (cond1)
8674 && ((GET_CODE (cond0) == reversed_comparison_code (cond1, NULL)
8675 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 0))
8676 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 1)))
8677 || ((swap_condition (GET_CODE (cond0))
8678 == reversed_comparison_code (cond1, NULL))
8679 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 1))
8680 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 0))))
8681 && ! side_effects_p (x))
8682 {
8683 *ptrue = *pfalse = const0_rtx;
8684 return cond0;
8685 }
8686 }
8687 }
8688
8689 else if (code == IF_THEN_ELSE)
8690 {
8691 /* If we have IF_THEN_ELSE already, extract the condition and
8692 canonicalize it if it is NE or EQ. */
8693 cond0 = XEXP (x, 0);
8694 *ptrue = XEXP (x, 1), *pfalse = XEXP (x, 2);
8695 if (GET_CODE (cond0) == NE && XEXP (cond0, 1) == const0_rtx)
8696 return XEXP (cond0, 0);
8697 else if (GET_CODE (cond0) == EQ && XEXP (cond0, 1) == const0_rtx)
8698 {
8699 *ptrue = XEXP (x, 2), *pfalse = XEXP (x, 1);
8700 return XEXP (cond0, 0);
8701 }
8702 else
8703 return cond0;
8704 }
8705
8706 /* If X is a SUBREG, we can narrow both the true and false values
8707 if the inner expression, if there is a condition. */
8708 else if (code == SUBREG
8709 && 0 != (cond0 = if_then_else_cond (SUBREG_REG (x),
8710 &true0, &false0)))
8711 {
8712 true0 = simplify_gen_subreg (mode, true0,
8713 GET_MODE (SUBREG_REG (x)), SUBREG_BYTE (x));
8714 false0 = simplify_gen_subreg (mode, false0,
8715 GET_MODE (SUBREG_REG (x)), SUBREG_BYTE (x));
8716 if (true0 && false0)
8717 {
8718 *ptrue = true0;
8719 *pfalse = false0;
8720 return cond0;
8721 }
8722 }
8723
8724 /* If X is a constant, this isn't special and will cause confusions
8725 if we treat it as such. Likewise if it is equivalent to a constant. */
8726 else if (CONSTANT_P (x)
8727 || ((cond0 = get_last_value (x)) != 0 && CONSTANT_P (cond0)))
8728 ;
8729
8730 /* If we're in BImode, canonicalize on 0 and STORE_FLAG_VALUE, as that
8731 will be least confusing to the rest of the compiler. */
8732 else if (mode == BImode)
8733 {
8734 *ptrue = GEN_INT (STORE_FLAG_VALUE), *pfalse = const0_rtx;
8735 return x;
8736 }
8737
8738 /* If X is known to be either 0 or -1, those are the true and
8739 false values when testing X. */
8740 else if (x == constm1_rtx || x == const0_rtx
8741 || (mode != VOIDmode
8742 && num_sign_bit_copies (x, mode) == GET_MODE_PRECISION (mode)))
8743 {
8744 *ptrue = constm1_rtx, *pfalse = const0_rtx;
8745 return x;
8746 }
8747
8748 /* Likewise for 0 or a single bit. */
8749 else if (HWI_COMPUTABLE_MODE_P (mode)
8750 && exact_log2 (nz = nonzero_bits (x, mode)) >= 0)
8751 {
8752 *ptrue = gen_int_mode (nz, mode), *pfalse = const0_rtx;
8753 return x;
8754 }
8755
8756 /* Otherwise fail; show no condition with true and false values the same. */
8757 *ptrue = *pfalse = x;
8758 return 0;
8759 }
8760 \f
8761 /* Return the value of expression X given the fact that condition COND
8762 is known to be true when applied to REG as its first operand and VAL
8763 as its second. X is known to not be shared and so can be modified in
8764 place.
8765
8766 We only handle the simplest cases, and specifically those cases that
8767 arise with IF_THEN_ELSE expressions. */
8768
8769 static rtx
8770 known_cond (rtx x, enum rtx_code cond, rtx reg, rtx val)
8771 {
8772 enum rtx_code code = GET_CODE (x);
8773 rtx temp;
8774 const char *fmt;
8775 int i, j;
8776
8777 if (side_effects_p (x))
8778 return x;
8779
8780 /* If either operand of the condition is a floating point value,
8781 then we have to avoid collapsing an EQ comparison. */
8782 if (cond == EQ
8783 && rtx_equal_p (x, reg)
8784 && ! FLOAT_MODE_P (GET_MODE (x))
8785 && ! FLOAT_MODE_P (GET_MODE (val)))
8786 return val;
8787
8788 if (cond == UNEQ && rtx_equal_p (x, reg))
8789 return val;
8790
8791 /* If X is (abs REG) and we know something about REG's relationship
8792 with zero, we may be able to simplify this. */
8793
8794 if (code == ABS && rtx_equal_p (XEXP (x, 0), reg) && val == const0_rtx)
8795 switch (cond)
8796 {
8797 case GE: case GT: case EQ:
8798 return XEXP (x, 0);
8799 case LT: case LE:
8800 return simplify_gen_unary (NEG, GET_MODE (XEXP (x, 0)),
8801 XEXP (x, 0),
8802 GET_MODE (XEXP (x, 0)));
8803 default:
8804 break;
8805 }
8806
8807 /* The only other cases we handle are MIN, MAX, and comparisons if the
8808 operands are the same as REG and VAL. */
8809
8810 else if (COMPARISON_P (x) || COMMUTATIVE_ARITH_P (x))
8811 {
8812 if (rtx_equal_p (XEXP (x, 0), val))
8813 cond = swap_condition (cond), temp = val, val = reg, reg = temp;
8814
8815 if (rtx_equal_p (XEXP (x, 0), reg) && rtx_equal_p (XEXP (x, 1), val))
8816 {
8817 if (COMPARISON_P (x))
8818 {
8819 if (comparison_dominates_p (cond, code))
8820 return const_true_rtx;
8821
8822 code = reversed_comparison_code (x, NULL);
8823 if (code != UNKNOWN
8824 && comparison_dominates_p (cond, code))
8825 return const0_rtx;
8826 else
8827 return x;
8828 }
8829 else if (code == SMAX || code == SMIN
8830 || code == UMIN || code == UMAX)
8831 {
8832 int unsignedp = (code == UMIN || code == UMAX);
8833
8834 /* Do not reverse the condition when it is NE or EQ.
8835 This is because we cannot conclude anything about
8836 the value of 'SMAX (x, y)' when x is not equal to y,
8837 but we can when x equals y. */
8838 if ((code == SMAX || code == UMAX)
8839 && ! (cond == EQ || cond == NE))
8840 cond = reverse_condition (cond);
8841
8842 switch (cond)
8843 {
8844 case GE: case GT:
8845 return unsignedp ? x : XEXP (x, 1);
8846 case LE: case LT:
8847 return unsignedp ? x : XEXP (x, 0);
8848 case GEU: case GTU:
8849 return unsignedp ? XEXP (x, 1) : x;
8850 case LEU: case LTU:
8851 return unsignedp ? XEXP (x, 0) : x;
8852 default:
8853 break;
8854 }
8855 }
8856 }
8857 }
8858 else if (code == SUBREG)
8859 {
8860 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (x));
8861 rtx new_rtx, r = known_cond (SUBREG_REG (x), cond, reg, val);
8862
8863 if (SUBREG_REG (x) != r)
8864 {
8865 /* We must simplify subreg here, before we lose track of the
8866 original inner_mode. */
8867 new_rtx = simplify_subreg (GET_MODE (x), r,
8868 inner_mode, SUBREG_BYTE (x));
8869 if (new_rtx)
8870 return new_rtx;
8871 else
8872 SUBST (SUBREG_REG (x), r);
8873 }
8874
8875 return x;
8876 }
8877 /* We don't have to handle SIGN_EXTEND here, because even in the
8878 case of replacing something with a modeless CONST_INT, a
8879 CONST_INT is already (supposed to be) a valid sign extension for
8880 its narrower mode, which implies it's already properly
8881 sign-extended for the wider mode. Now, for ZERO_EXTEND, the
8882 story is different. */
8883 else if (code == ZERO_EXTEND)
8884 {
8885 enum machine_mode inner_mode = GET_MODE (XEXP (x, 0));
8886 rtx new_rtx, r = known_cond (XEXP (x, 0), cond, reg, val);
8887
8888 if (XEXP (x, 0) != r)
8889 {
8890 /* We must simplify the zero_extend here, before we lose
8891 track of the original inner_mode. */
8892 new_rtx = simplify_unary_operation (ZERO_EXTEND, GET_MODE (x),
8893 r, inner_mode);
8894 if (new_rtx)
8895 return new_rtx;
8896 else
8897 SUBST (XEXP (x, 0), r);
8898 }
8899
8900 return x;
8901 }
8902
8903 fmt = GET_RTX_FORMAT (code);
8904 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
8905 {
8906 if (fmt[i] == 'e')
8907 SUBST (XEXP (x, i), known_cond (XEXP (x, i), cond, reg, val));
8908 else if (fmt[i] == 'E')
8909 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
8910 SUBST (XVECEXP (x, i, j), known_cond (XVECEXP (x, i, j),
8911 cond, reg, val));
8912 }
8913
8914 return x;
8915 }
8916 \f
8917 /* See if X and Y are equal for the purposes of seeing if we can rewrite an
8918 assignment as a field assignment. */
8919
8920 static int
8921 rtx_equal_for_field_assignment_p (rtx x, rtx y)
8922 {
8923 if (x == y || rtx_equal_p (x, y))
8924 return 1;
8925
8926 if (x == 0 || y == 0 || GET_MODE (x) != GET_MODE (y))
8927 return 0;
8928
8929 /* Check for a paradoxical SUBREG of a MEM compared with the MEM.
8930 Note that all SUBREGs of MEM are paradoxical; otherwise they
8931 would have been rewritten. */
8932 if (MEM_P (x) && GET_CODE (y) == SUBREG
8933 && MEM_P (SUBREG_REG (y))
8934 && rtx_equal_p (SUBREG_REG (y),
8935 gen_lowpart (GET_MODE (SUBREG_REG (y)), x)))
8936 return 1;
8937
8938 if (MEM_P (y) && GET_CODE (x) == SUBREG
8939 && MEM_P (SUBREG_REG (x))
8940 && rtx_equal_p (SUBREG_REG (x),
8941 gen_lowpart (GET_MODE (SUBREG_REG (x)), y)))
8942 return 1;
8943
8944 /* We used to see if get_last_value of X and Y were the same but that's
8945 not correct. In one direction, we'll cause the assignment to have
8946 the wrong destination and in the case, we'll import a register into this
8947 insn that might have already have been dead. So fail if none of the
8948 above cases are true. */
8949 return 0;
8950 }
8951 \f
8952 /* See if X, a SET operation, can be rewritten as a bit-field assignment.
8953 Return that assignment if so.
8954
8955 We only handle the most common cases. */
8956
8957 static rtx
8958 make_field_assignment (rtx x)
8959 {
8960 rtx dest = SET_DEST (x);
8961 rtx src = SET_SRC (x);
8962 rtx assign;
8963 rtx rhs, lhs;
8964 HOST_WIDE_INT c1;
8965 HOST_WIDE_INT pos;
8966 unsigned HOST_WIDE_INT len;
8967 rtx other;
8968 enum machine_mode mode;
8969
8970 /* If SRC was (and (not (ashift (const_int 1) POS)) DEST), this is
8971 a clear of a one-bit field. We will have changed it to
8972 (and (rotate (const_int -2) POS) DEST), so check for that. Also check
8973 for a SUBREG. */
8974
8975 if (GET_CODE (src) == AND && GET_CODE (XEXP (src, 0)) == ROTATE
8976 && CONST_INT_P (XEXP (XEXP (src, 0), 0))
8977 && INTVAL (XEXP (XEXP (src, 0), 0)) == -2
8978 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
8979 {
8980 assign = make_extraction (VOIDmode, dest, 0, XEXP (XEXP (src, 0), 1),
8981 1, 1, 1, 0);
8982 if (assign != 0)
8983 return gen_rtx_SET (VOIDmode, assign, const0_rtx);
8984 return x;
8985 }
8986
8987 if (GET_CODE (src) == AND && GET_CODE (XEXP (src, 0)) == SUBREG
8988 && subreg_lowpart_p (XEXP (src, 0))
8989 && (GET_MODE_SIZE (GET_MODE (XEXP (src, 0)))
8990 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (XEXP (src, 0)))))
8991 && GET_CODE (SUBREG_REG (XEXP (src, 0))) == ROTATE
8992 && CONST_INT_P (XEXP (SUBREG_REG (XEXP (src, 0)), 0))
8993 && INTVAL (XEXP (SUBREG_REG (XEXP (src, 0)), 0)) == -2
8994 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
8995 {
8996 assign = make_extraction (VOIDmode, dest, 0,
8997 XEXP (SUBREG_REG (XEXP (src, 0)), 1),
8998 1, 1, 1, 0);
8999 if (assign != 0)
9000 return gen_rtx_SET (VOIDmode, assign, const0_rtx);
9001 return x;
9002 }
9003
9004 /* If SRC is (ior (ashift (const_int 1) POS) DEST), this is a set of a
9005 one-bit field. */
9006 if (GET_CODE (src) == IOR && GET_CODE (XEXP (src, 0)) == ASHIFT
9007 && XEXP (XEXP (src, 0), 0) == const1_rtx
9008 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
9009 {
9010 assign = make_extraction (VOIDmode, dest, 0, XEXP (XEXP (src, 0), 1),
9011 1, 1, 1, 0);
9012 if (assign != 0)
9013 return gen_rtx_SET (VOIDmode, assign, const1_rtx);
9014 return x;
9015 }
9016
9017 /* If DEST is already a field assignment, i.e. ZERO_EXTRACT, and the
9018 SRC is an AND with all bits of that field set, then we can discard
9019 the AND. */
9020 if (GET_CODE (dest) == ZERO_EXTRACT
9021 && CONST_INT_P (XEXP (dest, 1))
9022 && GET_CODE (src) == AND
9023 && CONST_INT_P (XEXP (src, 1)))
9024 {
9025 HOST_WIDE_INT width = INTVAL (XEXP (dest, 1));
9026 unsigned HOST_WIDE_INT and_mask = INTVAL (XEXP (src, 1));
9027 unsigned HOST_WIDE_INT ze_mask;
9028
9029 if (width >= HOST_BITS_PER_WIDE_INT)
9030 ze_mask = -1;
9031 else
9032 ze_mask = ((unsigned HOST_WIDE_INT)1 << width) - 1;
9033
9034 /* Complete overlap. We can remove the source AND. */
9035 if ((and_mask & ze_mask) == ze_mask)
9036 return gen_rtx_SET (VOIDmode, dest, XEXP (src, 0));
9037
9038 /* Partial overlap. We can reduce the source AND. */
9039 if ((and_mask & ze_mask) != and_mask)
9040 {
9041 mode = GET_MODE (src);
9042 src = gen_rtx_AND (mode, XEXP (src, 0),
9043 gen_int_mode (and_mask & ze_mask, mode));
9044 return gen_rtx_SET (VOIDmode, dest, src);
9045 }
9046 }
9047
9048 /* The other case we handle is assignments into a constant-position
9049 field. They look like (ior/xor (and DEST C1) OTHER). If C1 represents
9050 a mask that has all one bits except for a group of zero bits and
9051 OTHER is known to have zeros where C1 has ones, this is such an
9052 assignment. Compute the position and length from C1. Shift OTHER
9053 to the appropriate position, force it to the required mode, and
9054 make the extraction. Check for the AND in both operands. */
9055
9056 if (GET_CODE (src) != IOR && GET_CODE (src) != XOR)
9057 return x;
9058
9059 rhs = expand_compound_operation (XEXP (src, 0));
9060 lhs = expand_compound_operation (XEXP (src, 1));
9061
9062 if (GET_CODE (rhs) == AND
9063 && CONST_INT_P (XEXP (rhs, 1))
9064 && rtx_equal_for_field_assignment_p (XEXP (rhs, 0), dest))
9065 c1 = INTVAL (XEXP (rhs, 1)), other = lhs;
9066 else if (GET_CODE (lhs) == AND
9067 && CONST_INT_P (XEXP (lhs, 1))
9068 && rtx_equal_for_field_assignment_p (XEXP (lhs, 0), dest))
9069 c1 = INTVAL (XEXP (lhs, 1)), other = rhs;
9070 else
9071 return x;
9072
9073 pos = get_pos_from_mask ((~c1) & GET_MODE_MASK (GET_MODE (dest)), &len);
9074 if (pos < 0 || pos + len > GET_MODE_PRECISION (GET_MODE (dest))
9075 || GET_MODE_PRECISION (GET_MODE (dest)) > HOST_BITS_PER_WIDE_INT
9076 || (c1 & nonzero_bits (other, GET_MODE (dest))) != 0)
9077 return x;
9078
9079 assign = make_extraction (VOIDmode, dest, pos, NULL_RTX, len, 1, 1, 0);
9080 if (assign == 0)
9081 return x;
9082
9083 /* The mode to use for the source is the mode of the assignment, or of
9084 what is inside a possible STRICT_LOW_PART. */
9085 mode = (GET_CODE (assign) == STRICT_LOW_PART
9086 ? GET_MODE (XEXP (assign, 0)) : GET_MODE (assign));
9087
9088 /* Shift OTHER right POS places and make it the source, restricting it
9089 to the proper length and mode. */
9090
9091 src = canon_reg_for_combine (simplify_shift_const (NULL_RTX, LSHIFTRT,
9092 GET_MODE (src),
9093 other, pos),
9094 dest);
9095 src = force_to_mode (src, mode,
9096 GET_MODE_PRECISION (mode) >= HOST_BITS_PER_WIDE_INT
9097 ? ~(unsigned HOST_WIDE_INT) 0
9098 : ((unsigned HOST_WIDE_INT) 1 << len) - 1,
9099 0);
9100
9101 /* If SRC is masked by an AND that does not make a difference in
9102 the value being stored, strip it. */
9103 if (GET_CODE (assign) == ZERO_EXTRACT
9104 && CONST_INT_P (XEXP (assign, 1))
9105 && INTVAL (XEXP (assign, 1)) < HOST_BITS_PER_WIDE_INT
9106 && GET_CODE (src) == AND
9107 && CONST_INT_P (XEXP (src, 1))
9108 && UINTVAL (XEXP (src, 1))
9109 == ((unsigned HOST_WIDE_INT) 1 << INTVAL (XEXP (assign, 1))) - 1)
9110 src = XEXP (src, 0);
9111
9112 return gen_rtx_SET (VOIDmode, assign, src);
9113 }
9114 \f
9115 /* See if X is of the form (+ (* a c) (* b c)) and convert to (* (+ a b) c)
9116 if so. */
9117
9118 static rtx
9119 apply_distributive_law (rtx x)
9120 {
9121 enum rtx_code code = GET_CODE (x);
9122 enum rtx_code inner_code;
9123 rtx lhs, rhs, other;
9124 rtx tem;
9125
9126 /* Distributivity is not true for floating point as it can change the
9127 value. So we don't do it unless -funsafe-math-optimizations. */
9128 if (FLOAT_MODE_P (GET_MODE (x))
9129 && ! flag_unsafe_math_optimizations)
9130 return x;
9131
9132 /* The outer operation can only be one of the following: */
9133 if (code != IOR && code != AND && code != XOR
9134 && code != PLUS && code != MINUS)
9135 return x;
9136
9137 lhs = XEXP (x, 0);
9138 rhs = XEXP (x, 1);
9139
9140 /* If either operand is a primitive we can't do anything, so get out
9141 fast. */
9142 if (OBJECT_P (lhs) || OBJECT_P (rhs))
9143 return x;
9144
9145 lhs = expand_compound_operation (lhs);
9146 rhs = expand_compound_operation (rhs);
9147 inner_code = GET_CODE (lhs);
9148 if (inner_code != GET_CODE (rhs))
9149 return x;
9150
9151 /* See if the inner and outer operations distribute. */
9152 switch (inner_code)
9153 {
9154 case LSHIFTRT:
9155 case ASHIFTRT:
9156 case AND:
9157 case IOR:
9158 /* These all distribute except over PLUS. */
9159 if (code == PLUS || code == MINUS)
9160 return x;
9161 break;
9162
9163 case MULT:
9164 if (code != PLUS && code != MINUS)
9165 return x;
9166 break;
9167
9168 case ASHIFT:
9169 /* This is also a multiply, so it distributes over everything. */
9170 break;
9171
9172 /* This used to handle SUBREG, but this turned out to be counter-
9173 productive, since (subreg (op ...)) usually is not handled by
9174 insn patterns, and this "optimization" therefore transformed
9175 recognizable patterns into unrecognizable ones. Therefore the
9176 SUBREG case was removed from here.
9177
9178 It is possible that distributing SUBREG over arithmetic operations
9179 leads to an intermediate result than can then be optimized further,
9180 e.g. by moving the outer SUBREG to the other side of a SET as done
9181 in simplify_set. This seems to have been the original intent of
9182 handling SUBREGs here.
9183
9184 However, with current GCC this does not appear to actually happen,
9185 at least on major platforms. If some case is found where removing
9186 the SUBREG case here prevents follow-on optimizations, distributing
9187 SUBREGs ought to be re-added at that place, e.g. in simplify_set. */
9188
9189 default:
9190 return x;
9191 }
9192
9193 /* Set LHS and RHS to the inner operands (A and B in the example
9194 above) and set OTHER to the common operand (C in the example).
9195 There is only one way to do this unless the inner operation is
9196 commutative. */
9197 if (COMMUTATIVE_ARITH_P (lhs)
9198 && rtx_equal_p (XEXP (lhs, 0), XEXP (rhs, 0)))
9199 other = XEXP (lhs, 0), lhs = XEXP (lhs, 1), rhs = XEXP (rhs, 1);
9200 else if (COMMUTATIVE_ARITH_P (lhs)
9201 && rtx_equal_p (XEXP (lhs, 0), XEXP (rhs, 1)))
9202 other = XEXP (lhs, 0), lhs = XEXP (lhs, 1), rhs = XEXP (rhs, 0);
9203 else if (COMMUTATIVE_ARITH_P (lhs)
9204 && rtx_equal_p (XEXP (lhs, 1), XEXP (rhs, 0)))
9205 other = XEXP (lhs, 1), lhs = XEXP (lhs, 0), rhs = XEXP (rhs, 1);
9206 else if (rtx_equal_p (XEXP (lhs, 1), XEXP (rhs, 1)))
9207 other = XEXP (lhs, 1), lhs = XEXP (lhs, 0), rhs = XEXP (rhs, 0);
9208 else
9209 return x;
9210
9211 /* Form the new inner operation, seeing if it simplifies first. */
9212 tem = simplify_gen_binary (code, GET_MODE (x), lhs, rhs);
9213
9214 /* There is one exception to the general way of distributing:
9215 (a | c) ^ (b | c) -> (a ^ b) & ~c */
9216 if (code == XOR && inner_code == IOR)
9217 {
9218 inner_code = AND;
9219 other = simplify_gen_unary (NOT, GET_MODE (x), other, GET_MODE (x));
9220 }
9221
9222 /* We may be able to continuing distributing the result, so call
9223 ourselves recursively on the inner operation before forming the
9224 outer operation, which we return. */
9225 return simplify_gen_binary (inner_code, GET_MODE (x),
9226 apply_distributive_law (tem), other);
9227 }
9228
9229 /* See if X is of the form (* (+ A B) C), and if so convert to
9230 (+ (* A C) (* B C)) and try to simplify.
9231
9232 Most of the time, this results in no change. However, if some of
9233 the operands are the same or inverses of each other, simplifications
9234 will result.
9235
9236 For example, (and (ior A B) (not B)) can occur as the result of
9237 expanding a bit field assignment. When we apply the distributive
9238 law to this, we get (ior (and (A (not B))) (and (B (not B)))),
9239 which then simplifies to (and (A (not B))).
9240
9241 Note that no checks happen on the validity of applying the inverse
9242 distributive law. This is pointless since we can do it in the
9243 few places where this routine is called.
9244
9245 N is the index of the term that is decomposed (the arithmetic operation,
9246 i.e. (+ A B) in the first example above). !N is the index of the term that
9247 is distributed, i.e. of C in the first example above. */
9248 static rtx
9249 distribute_and_simplify_rtx (rtx x, int n)
9250 {
9251 enum machine_mode mode;
9252 enum rtx_code outer_code, inner_code;
9253 rtx decomposed, distributed, inner_op0, inner_op1, new_op0, new_op1, tmp;
9254
9255 /* Distributivity is not true for floating point as it can change the
9256 value. So we don't do it unless -funsafe-math-optimizations. */
9257 if (FLOAT_MODE_P (GET_MODE (x))
9258 && ! flag_unsafe_math_optimizations)
9259 return NULL_RTX;
9260
9261 decomposed = XEXP (x, n);
9262 if (!ARITHMETIC_P (decomposed))
9263 return NULL_RTX;
9264
9265 mode = GET_MODE (x);
9266 outer_code = GET_CODE (x);
9267 distributed = XEXP (x, !n);
9268
9269 inner_code = GET_CODE (decomposed);
9270 inner_op0 = XEXP (decomposed, 0);
9271 inner_op1 = XEXP (decomposed, 1);
9272
9273 /* Special case (and (xor B C) (not A)), which is equivalent to
9274 (xor (ior A B) (ior A C)) */
9275 if (outer_code == AND && inner_code == XOR && GET_CODE (distributed) == NOT)
9276 {
9277 distributed = XEXP (distributed, 0);
9278 outer_code = IOR;
9279 }
9280
9281 if (n == 0)
9282 {
9283 /* Distribute the second term. */
9284 new_op0 = simplify_gen_binary (outer_code, mode, inner_op0, distributed);
9285 new_op1 = simplify_gen_binary (outer_code, mode, inner_op1, distributed);
9286 }
9287 else
9288 {
9289 /* Distribute the first term. */
9290 new_op0 = simplify_gen_binary (outer_code, mode, distributed, inner_op0);
9291 new_op1 = simplify_gen_binary (outer_code, mode, distributed, inner_op1);
9292 }
9293
9294 tmp = apply_distributive_law (simplify_gen_binary (inner_code, mode,
9295 new_op0, new_op1));
9296 if (GET_CODE (tmp) != outer_code
9297 && (set_src_cost (tmp, optimize_this_for_speed_p)
9298 < set_src_cost (x, optimize_this_for_speed_p)))
9299 return tmp;
9300
9301 return NULL_RTX;
9302 }
9303 \f
9304 /* Simplify a logical `and' of VAROP with the constant CONSTOP, to be done
9305 in MODE. Return an equivalent form, if different from (and VAROP
9306 (const_int CONSTOP)). Otherwise, return NULL_RTX. */
9307
9308 static rtx
9309 simplify_and_const_int_1 (enum machine_mode mode, rtx varop,
9310 unsigned HOST_WIDE_INT constop)
9311 {
9312 unsigned HOST_WIDE_INT nonzero;
9313 unsigned HOST_WIDE_INT orig_constop;
9314 rtx orig_varop;
9315 int i;
9316
9317 orig_varop = varop;
9318 orig_constop = constop;
9319 if (GET_CODE (varop) == CLOBBER)
9320 return NULL_RTX;
9321
9322 /* Simplify VAROP knowing that we will be only looking at some of the
9323 bits in it.
9324
9325 Note by passing in CONSTOP, we guarantee that the bits not set in
9326 CONSTOP are not significant and will never be examined. We must
9327 ensure that is the case by explicitly masking out those bits
9328 before returning. */
9329 varop = force_to_mode (varop, mode, constop, 0);
9330
9331 /* If VAROP is a CLOBBER, we will fail so return it. */
9332 if (GET_CODE (varop) == CLOBBER)
9333 return varop;
9334
9335 /* If VAROP is a CONST_INT, then we need to apply the mask in CONSTOP
9336 to VAROP and return the new constant. */
9337 if (CONST_INT_P (varop))
9338 return gen_int_mode (INTVAL (varop) & constop, mode);
9339
9340 /* See what bits may be nonzero in VAROP. Unlike the general case of
9341 a call to nonzero_bits, here we don't care about bits outside
9342 MODE. */
9343
9344 nonzero = nonzero_bits (varop, mode) & GET_MODE_MASK (mode);
9345
9346 /* Turn off all bits in the constant that are known to already be zero.
9347 Thus, if the AND isn't needed at all, we will have CONSTOP == NONZERO_BITS
9348 which is tested below. */
9349
9350 constop &= nonzero;
9351
9352 /* If we don't have any bits left, return zero. */
9353 if (constop == 0)
9354 return const0_rtx;
9355
9356 /* If VAROP is a NEG of something known to be zero or 1 and CONSTOP is
9357 a power of two, we can replace this with an ASHIFT. */
9358 if (GET_CODE (varop) == NEG && nonzero_bits (XEXP (varop, 0), mode) == 1
9359 && (i = exact_log2 (constop)) >= 0)
9360 return simplify_shift_const (NULL_RTX, ASHIFT, mode, XEXP (varop, 0), i);
9361
9362 /* If VAROP is an IOR or XOR, apply the AND to both branches of the IOR
9363 or XOR, then try to apply the distributive law. This may eliminate
9364 operations if either branch can be simplified because of the AND.
9365 It may also make some cases more complex, but those cases probably
9366 won't match a pattern either with or without this. */
9367
9368 if (GET_CODE (varop) == IOR || GET_CODE (varop) == XOR)
9369 return
9370 gen_lowpart
9371 (mode,
9372 apply_distributive_law
9373 (simplify_gen_binary (GET_CODE (varop), GET_MODE (varop),
9374 simplify_and_const_int (NULL_RTX,
9375 GET_MODE (varop),
9376 XEXP (varop, 0),
9377 constop),
9378 simplify_and_const_int (NULL_RTX,
9379 GET_MODE (varop),
9380 XEXP (varop, 1),
9381 constop))));
9382
9383 /* If VAROP is PLUS, and the constant is a mask of low bits, distribute
9384 the AND and see if one of the operands simplifies to zero. If so, we
9385 may eliminate it. */
9386
9387 if (GET_CODE (varop) == PLUS
9388 && exact_log2 (constop + 1) >= 0)
9389 {
9390 rtx o0, o1;
9391
9392 o0 = simplify_and_const_int (NULL_RTX, mode, XEXP (varop, 0), constop);
9393 o1 = simplify_and_const_int (NULL_RTX, mode, XEXP (varop, 1), constop);
9394 if (o0 == const0_rtx)
9395 return o1;
9396 if (o1 == const0_rtx)
9397 return o0;
9398 }
9399
9400 /* Make a SUBREG if necessary. If we can't make it, fail. */
9401 varop = gen_lowpart (mode, varop);
9402 if (varop == NULL_RTX || GET_CODE (varop) == CLOBBER)
9403 return NULL_RTX;
9404
9405 /* If we are only masking insignificant bits, return VAROP. */
9406 if (constop == nonzero)
9407 return varop;
9408
9409 if (varop == orig_varop && constop == orig_constop)
9410 return NULL_RTX;
9411
9412 /* Otherwise, return an AND. */
9413 return simplify_gen_binary (AND, mode, varop, gen_int_mode (constop, mode));
9414 }
9415
9416
9417 /* We have X, a logical `and' of VAROP with the constant CONSTOP, to be done
9418 in MODE.
9419
9420 Return an equivalent form, if different from X. Otherwise, return X. If
9421 X is zero, we are to always construct the equivalent form. */
9422
9423 static rtx
9424 simplify_and_const_int (rtx x, enum machine_mode mode, rtx varop,
9425 unsigned HOST_WIDE_INT constop)
9426 {
9427 rtx tem = simplify_and_const_int_1 (mode, varop, constop);
9428 if (tem)
9429 return tem;
9430
9431 if (!x)
9432 x = simplify_gen_binary (AND, GET_MODE (varop), varop,
9433 gen_int_mode (constop, mode));
9434 if (GET_MODE (x) != mode)
9435 x = gen_lowpart (mode, x);
9436 return x;
9437 }
9438 \f
9439 /* Given a REG, X, compute which bits in X can be nonzero.
9440 We don't care about bits outside of those defined in MODE.
9441
9442 For most X this is simply GET_MODE_MASK (GET_MODE (MODE)), but if X is
9443 a shift, AND, or zero_extract, we can do better. */
9444
9445 static rtx
9446 reg_nonzero_bits_for_combine (const_rtx x, enum machine_mode mode,
9447 const_rtx known_x ATTRIBUTE_UNUSED,
9448 enum machine_mode known_mode ATTRIBUTE_UNUSED,
9449 unsigned HOST_WIDE_INT known_ret ATTRIBUTE_UNUSED,
9450 unsigned HOST_WIDE_INT *nonzero)
9451 {
9452 rtx tem;
9453 reg_stat_type *rsp;
9454
9455 /* If X is a register whose nonzero bits value is current, use it.
9456 Otherwise, if X is a register whose value we can find, use that
9457 value. Otherwise, use the previously-computed global nonzero bits
9458 for this register. */
9459
9460 rsp = &reg_stat[REGNO (x)];
9461 if (rsp->last_set_value != 0
9462 && (rsp->last_set_mode == mode
9463 || (GET_MODE_CLASS (rsp->last_set_mode) == MODE_INT
9464 && GET_MODE_CLASS (mode) == MODE_INT))
9465 && ((rsp->last_set_label >= label_tick_ebb_start
9466 && rsp->last_set_label < label_tick)
9467 || (rsp->last_set_label == label_tick
9468 && DF_INSN_LUID (rsp->last_set) < subst_low_luid)
9469 || (REGNO (x) >= FIRST_PSEUDO_REGISTER
9470 && REG_N_SETS (REGNO (x)) == 1
9471 && !REGNO_REG_SET_P
9472 (DF_LR_IN (ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb),
9473 REGNO (x)))))
9474 {
9475 *nonzero &= rsp->last_set_nonzero_bits;
9476 return NULL;
9477 }
9478
9479 tem = get_last_value (x);
9480
9481 if (tem)
9482 {
9483 #ifdef SHORT_IMMEDIATES_SIGN_EXTEND
9484 /* If X is narrower than MODE and TEM is a non-negative
9485 constant that would appear negative in the mode of X,
9486 sign-extend it for use in reg_nonzero_bits because some
9487 machines (maybe most) will actually do the sign-extension
9488 and this is the conservative approach.
9489
9490 ??? For 2.5, try to tighten up the MD files in this regard
9491 instead of this kludge. */
9492
9493 if (GET_MODE_PRECISION (GET_MODE (x)) < GET_MODE_PRECISION (mode)
9494 && CONST_INT_P (tem)
9495 && INTVAL (tem) > 0
9496 && val_signbit_known_set_p (GET_MODE (x), INTVAL (tem)))
9497 tem = GEN_INT (INTVAL (tem) | ~GET_MODE_MASK (GET_MODE (x)));
9498 #endif
9499 return tem;
9500 }
9501 else if (nonzero_sign_valid && rsp->nonzero_bits)
9502 {
9503 unsigned HOST_WIDE_INT mask = rsp->nonzero_bits;
9504
9505 if (GET_MODE_PRECISION (GET_MODE (x)) < GET_MODE_PRECISION (mode))
9506 /* We don't know anything about the upper bits. */
9507 mask |= GET_MODE_MASK (mode) ^ GET_MODE_MASK (GET_MODE (x));
9508 *nonzero &= mask;
9509 }
9510
9511 return NULL;
9512 }
9513
9514 /* Return the number of bits at the high-order end of X that are known to
9515 be equal to the sign bit. X will be used in mode MODE; if MODE is
9516 VOIDmode, X will be used in its own mode. The returned value will always
9517 be between 1 and the number of bits in MODE. */
9518
9519 static rtx
9520 reg_num_sign_bit_copies_for_combine (const_rtx x, enum machine_mode mode,
9521 const_rtx known_x ATTRIBUTE_UNUSED,
9522 enum machine_mode known_mode
9523 ATTRIBUTE_UNUSED,
9524 unsigned int known_ret ATTRIBUTE_UNUSED,
9525 unsigned int *result)
9526 {
9527 rtx tem;
9528 reg_stat_type *rsp;
9529
9530 rsp = &reg_stat[REGNO (x)];
9531 if (rsp->last_set_value != 0
9532 && rsp->last_set_mode == mode
9533 && ((rsp->last_set_label >= label_tick_ebb_start
9534 && rsp->last_set_label < label_tick)
9535 || (rsp->last_set_label == label_tick
9536 && DF_INSN_LUID (rsp->last_set) < subst_low_luid)
9537 || (REGNO (x) >= FIRST_PSEUDO_REGISTER
9538 && REG_N_SETS (REGNO (x)) == 1
9539 && !REGNO_REG_SET_P
9540 (DF_LR_IN (ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb),
9541 REGNO (x)))))
9542 {
9543 *result = rsp->last_set_sign_bit_copies;
9544 return NULL;
9545 }
9546
9547 tem = get_last_value (x);
9548 if (tem != 0)
9549 return tem;
9550
9551 if (nonzero_sign_valid && rsp->sign_bit_copies != 0
9552 && GET_MODE_PRECISION (GET_MODE (x)) == GET_MODE_PRECISION (mode))
9553 *result = rsp->sign_bit_copies;
9554
9555 return NULL;
9556 }
9557 \f
9558 /* Return the number of "extended" bits there are in X, when interpreted
9559 as a quantity in MODE whose signedness is indicated by UNSIGNEDP. For
9560 unsigned quantities, this is the number of high-order zero bits.
9561 For signed quantities, this is the number of copies of the sign bit
9562 minus 1. In both case, this function returns the number of "spare"
9563 bits. For example, if two quantities for which this function returns
9564 at least 1 are added, the addition is known not to overflow.
9565
9566 This function will always return 0 unless called during combine, which
9567 implies that it must be called from a define_split. */
9568
9569 unsigned int
9570 extended_count (const_rtx x, enum machine_mode mode, int unsignedp)
9571 {
9572 if (nonzero_sign_valid == 0)
9573 return 0;
9574
9575 return (unsignedp
9576 ? (HWI_COMPUTABLE_MODE_P (mode)
9577 ? (unsigned int) (GET_MODE_PRECISION (mode) - 1
9578 - floor_log2 (nonzero_bits (x, mode)))
9579 : 0)
9580 : num_sign_bit_copies (x, mode) - 1);
9581 }
9582
9583 /* This function is called from `simplify_shift_const' to merge two
9584 outer operations. Specifically, we have already found that we need
9585 to perform operation *POP0 with constant *PCONST0 at the outermost
9586 position. We would now like to also perform OP1 with constant CONST1
9587 (with *POP0 being done last).
9588
9589 Return 1 if we can do the operation and update *POP0 and *PCONST0 with
9590 the resulting operation. *PCOMP_P is set to 1 if we would need to
9591 complement the innermost operand, otherwise it is unchanged.
9592
9593 MODE is the mode in which the operation will be done. No bits outside
9594 the width of this mode matter. It is assumed that the width of this mode
9595 is smaller than or equal to HOST_BITS_PER_WIDE_INT.
9596
9597 If *POP0 or OP1 are UNKNOWN, it means no operation is required. Only NEG, PLUS,
9598 IOR, XOR, and AND are supported. We may set *POP0 to SET if the proper
9599 result is simply *PCONST0.
9600
9601 If the resulting operation cannot be expressed as one operation, we
9602 return 0 and do not change *POP0, *PCONST0, and *PCOMP_P. */
9603
9604 static int
9605 merge_outer_ops (enum rtx_code *pop0, HOST_WIDE_INT *pconst0, enum rtx_code op1, HOST_WIDE_INT const1, enum machine_mode mode, int *pcomp_p)
9606 {
9607 enum rtx_code op0 = *pop0;
9608 HOST_WIDE_INT const0 = *pconst0;
9609
9610 const0 &= GET_MODE_MASK (mode);
9611 const1 &= GET_MODE_MASK (mode);
9612
9613 /* If OP0 is an AND, clear unimportant bits in CONST1. */
9614 if (op0 == AND)
9615 const1 &= const0;
9616
9617 /* If OP0 or OP1 is UNKNOWN, this is easy. Similarly if they are the same or
9618 if OP0 is SET. */
9619
9620 if (op1 == UNKNOWN || op0 == SET)
9621 return 1;
9622
9623 else if (op0 == UNKNOWN)
9624 op0 = op1, const0 = const1;
9625
9626 else if (op0 == op1)
9627 {
9628 switch (op0)
9629 {
9630 case AND:
9631 const0 &= const1;
9632 break;
9633 case IOR:
9634 const0 |= const1;
9635 break;
9636 case XOR:
9637 const0 ^= const1;
9638 break;
9639 case PLUS:
9640 const0 += const1;
9641 break;
9642 case NEG:
9643 op0 = UNKNOWN;
9644 break;
9645 default:
9646 break;
9647 }
9648 }
9649
9650 /* Otherwise, if either is a PLUS or NEG, we can't do anything. */
9651 else if (op0 == PLUS || op1 == PLUS || op0 == NEG || op1 == NEG)
9652 return 0;
9653
9654 /* If the two constants aren't the same, we can't do anything. The
9655 remaining six cases can all be done. */
9656 else if (const0 != const1)
9657 return 0;
9658
9659 else
9660 switch (op0)
9661 {
9662 case IOR:
9663 if (op1 == AND)
9664 /* (a & b) | b == b */
9665 op0 = SET;
9666 else /* op1 == XOR */
9667 /* (a ^ b) | b == a | b */
9668 {;}
9669 break;
9670
9671 case XOR:
9672 if (op1 == AND)
9673 /* (a & b) ^ b == (~a) & b */
9674 op0 = AND, *pcomp_p = 1;
9675 else /* op1 == IOR */
9676 /* (a | b) ^ b == a & ~b */
9677 op0 = AND, const0 = ~const0;
9678 break;
9679
9680 case AND:
9681 if (op1 == IOR)
9682 /* (a | b) & b == b */
9683 op0 = SET;
9684 else /* op1 == XOR */
9685 /* (a ^ b) & b) == (~a) & b */
9686 *pcomp_p = 1;
9687 break;
9688 default:
9689 break;
9690 }
9691
9692 /* Check for NO-OP cases. */
9693 const0 &= GET_MODE_MASK (mode);
9694 if (const0 == 0
9695 && (op0 == IOR || op0 == XOR || op0 == PLUS))
9696 op0 = UNKNOWN;
9697 else if (const0 == 0 && op0 == AND)
9698 op0 = SET;
9699 else if ((unsigned HOST_WIDE_INT) const0 == GET_MODE_MASK (mode)
9700 && op0 == AND)
9701 op0 = UNKNOWN;
9702
9703 *pop0 = op0;
9704
9705 /* ??? Slightly redundant with the above mask, but not entirely.
9706 Moving this above means we'd have to sign-extend the mode mask
9707 for the final test. */
9708 if (op0 != UNKNOWN && op0 != NEG)
9709 *pconst0 = trunc_int_for_mode (const0, mode);
9710
9711 return 1;
9712 }
9713 \f
9714 /* A helper to simplify_shift_const_1 to determine the mode we can perform
9715 the shift in. The original shift operation CODE is performed on OP in
9716 ORIG_MODE. Return the wider mode MODE if we can perform the operation
9717 in that mode. Return ORIG_MODE otherwise. We can also assume that the
9718 result of the shift is subject to operation OUTER_CODE with operand
9719 OUTER_CONST. */
9720
9721 static enum machine_mode
9722 try_widen_shift_mode (enum rtx_code code, rtx op, int count,
9723 enum machine_mode orig_mode, enum machine_mode mode,
9724 enum rtx_code outer_code, HOST_WIDE_INT outer_const)
9725 {
9726 if (orig_mode == mode)
9727 return mode;
9728 gcc_assert (GET_MODE_PRECISION (mode) > GET_MODE_PRECISION (orig_mode));
9729
9730 /* In general we can't perform in wider mode for right shift and rotate. */
9731 switch (code)
9732 {
9733 case ASHIFTRT:
9734 /* We can still widen if the bits brought in from the left are identical
9735 to the sign bit of ORIG_MODE. */
9736 if (num_sign_bit_copies (op, mode)
9737 > (unsigned) (GET_MODE_PRECISION (mode)
9738 - GET_MODE_PRECISION (orig_mode)))
9739 return mode;
9740 return orig_mode;
9741
9742 case LSHIFTRT:
9743 /* Similarly here but with zero bits. */
9744 if (HWI_COMPUTABLE_MODE_P (mode)
9745 && (nonzero_bits (op, mode) & ~GET_MODE_MASK (orig_mode)) == 0)
9746 return mode;
9747
9748 /* We can also widen if the bits brought in will be masked off. This
9749 operation is performed in ORIG_MODE. */
9750 if (outer_code == AND)
9751 {
9752 int care_bits = low_bitmask_len (orig_mode, outer_const);
9753
9754 if (care_bits >= 0
9755 && GET_MODE_PRECISION (orig_mode) - care_bits >= count)
9756 return mode;
9757 }
9758 /* fall through */
9759
9760 case ROTATE:
9761 return orig_mode;
9762
9763 case ROTATERT:
9764 gcc_unreachable ();
9765
9766 default:
9767 return mode;
9768 }
9769 }
9770
9771 /* Simplify a shift of VAROP by ORIG_COUNT bits. CODE says what kind
9772 of shift. The result of the shift is RESULT_MODE. Return NULL_RTX
9773 if we cannot simplify it. Otherwise, return a simplified value.
9774
9775 The shift is normally computed in the widest mode we find in VAROP, as
9776 long as it isn't a different number of words than RESULT_MODE. Exceptions
9777 are ASHIFTRT and ROTATE, which are always done in their original mode. */
9778
9779 static rtx
9780 simplify_shift_const_1 (enum rtx_code code, enum machine_mode result_mode,
9781 rtx varop, int orig_count)
9782 {
9783 enum rtx_code orig_code = code;
9784 rtx orig_varop = varop;
9785 int count;
9786 enum machine_mode mode = result_mode;
9787 enum machine_mode shift_mode, tmode;
9788 unsigned int mode_words
9789 = (GET_MODE_SIZE (mode) + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD;
9790 /* We form (outer_op (code varop count) (outer_const)). */
9791 enum rtx_code outer_op = UNKNOWN;
9792 HOST_WIDE_INT outer_const = 0;
9793 int complement_p = 0;
9794 rtx new_rtx, x;
9795
9796 /* Make sure and truncate the "natural" shift on the way in. We don't
9797 want to do this inside the loop as it makes it more difficult to
9798 combine shifts. */
9799 if (SHIFT_COUNT_TRUNCATED)
9800 orig_count &= GET_MODE_BITSIZE (mode) - 1;
9801
9802 /* If we were given an invalid count, don't do anything except exactly
9803 what was requested. */
9804
9805 if (orig_count < 0 || orig_count >= (int) GET_MODE_PRECISION (mode))
9806 return NULL_RTX;
9807
9808 count = orig_count;
9809
9810 /* Unless one of the branches of the `if' in this loop does a `continue',
9811 we will `break' the loop after the `if'. */
9812
9813 while (count != 0)
9814 {
9815 /* If we have an operand of (clobber (const_int 0)), fail. */
9816 if (GET_CODE (varop) == CLOBBER)
9817 return NULL_RTX;
9818
9819 /* Convert ROTATERT to ROTATE. */
9820 if (code == ROTATERT)
9821 {
9822 unsigned int bitsize = GET_MODE_PRECISION (result_mode);
9823 code = ROTATE;
9824 if (VECTOR_MODE_P (result_mode))
9825 count = bitsize / GET_MODE_NUNITS (result_mode) - count;
9826 else
9827 count = bitsize - count;
9828 }
9829
9830 shift_mode = try_widen_shift_mode (code, varop, count, result_mode,
9831 mode, outer_op, outer_const);
9832
9833 /* Handle cases where the count is greater than the size of the mode
9834 minus 1. For ASHIFT, use the size minus one as the count (this can
9835 occur when simplifying (lshiftrt (ashiftrt ..))). For rotates,
9836 take the count modulo the size. For other shifts, the result is
9837 zero.
9838
9839 Since these shifts are being produced by the compiler by combining
9840 multiple operations, each of which are defined, we know what the
9841 result is supposed to be. */
9842
9843 if (count > (GET_MODE_PRECISION (shift_mode) - 1))
9844 {
9845 if (code == ASHIFTRT)
9846 count = GET_MODE_PRECISION (shift_mode) - 1;
9847 else if (code == ROTATE || code == ROTATERT)
9848 count %= GET_MODE_PRECISION (shift_mode);
9849 else
9850 {
9851 /* We can't simply return zero because there may be an
9852 outer op. */
9853 varop = const0_rtx;
9854 count = 0;
9855 break;
9856 }
9857 }
9858
9859 /* If we discovered we had to complement VAROP, leave. Making a NOT
9860 here would cause an infinite loop. */
9861 if (complement_p)
9862 break;
9863
9864 /* An arithmetic right shift of a quantity known to be -1 or 0
9865 is a no-op. */
9866 if (code == ASHIFTRT
9867 && (num_sign_bit_copies (varop, shift_mode)
9868 == GET_MODE_PRECISION (shift_mode)))
9869 {
9870 count = 0;
9871 break;
9872 }
9873
9874 /* If we are doing an arithmetic right shift and discarding all but
9875 the sign bit copies, this is equivalent to doing a shift by the
9876 bitsize minus one. Convert it into that shift because it will often
9877 allow other simplifications. */
9878
9879 if (code == ASHIFTRT
9880 && (count + num_sign_bit_copies (varop, shift_mode)
9881 >= GET_MODE_PRECISION (shift_mode)))
9882 count = GET_MODE_PRECISION (shift_mode) - 1;
9883
9884 /* We simplify the tests below and elsewhere by converting
9885 ASHIFTRT to LSHIFTRT if we know the sign bit is clear.
9886 `make_compound_operation' will convert it to an ASHIFTRT for
9887 those machines (such as VAX) that don't have an LSHIFTRT. */
9888 if (code == ASHIFTRT
9889 && val_signbit_known_clear_p (shift_mode,
9890 nonzero_bits (varop, shift_mode)))
9891 code = LSHIFTRT;
9892
9893 if (((code == LSHIFTRT
9894 && HWI_COMPUTABLE_MODE_P (shift_mode)
9895 && !(nonzero_bits (varop, shift_mode) >> count))
9896 || (code == ASHIFT
9897 && HWI_COMPUTABLE_MODE_P (shift_mode)
9898 && !((nonzero_bits (varop, shift_mode) << count)
9899 & GET_MODE_MASK (shift_mode))))
9900 && !side_effects_p (varop))
9901 varop = const0_rtx;
9902
9903 switch (GET_CODE (varop))
9904 {
9905 case SIGN_EXTEND:
9906 case ZERO_EXTEND:
9907 case SIGN_EXTRACT:
9908 case ZERO_EXTRACT:
9909 new_rtx = expand_compound_operation (varop);
9910 if (new_rtx != varop)
9911 {
9912 varop = new_rtx;
9913 continue;
9914 }
9915 break;
9916
9917 case MEM:
9918 /* If we have (xshiftrt (mem ...) C) and C is MODE_WIDTH
9919 minus the width of a smaller mode, we can do this with a
9920 SIGN_EXTEND or ZERO_EXTEND from the narrower memory location. */
9921 if ((code == ASHIFTRT || code == LSHIFTRT)
9922 && ! mode_dependent_address_p (XEXP (varop, 0),
9923 MEM_ADDR_SPACE (varop))
9924 && ! MEM_VOLATILE_P (varop)
9925 && (tmode = mode_for_size (GET_MODE_BITSIZE (mode) - count,
9926 MODE_INT, 1)) != BLKmode)
9927 {
9928 new_rtx = adjust_address_nv (varop, tmode,
9929 BYTES_BIG_ENDIAN ? 0
9930 : count / BITS_PER_UNIT);
9931
9932 varop = gen_rtx_fmt_e (code == ASHIFTRT ? SIGN_EXTEND
9933 : ZERO_EXTEND, mode, new_rtx);
9934 count = 0;
9935 continue;
9936 }
9937 break;
9938
9939 case SUBREG:
9940 /* If VAROP is a SUBREG, strip it as long as the inner operand has
9941 the same number of words as what we've seen so far. Then store
9942 the widest mode in MODE. */
9943 if (subreg_lowpart_p (varop)
9944 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (varop)))
9945 > GET_MODE_SIZE (GET_MODE (varop)))
9946 && (unsigned int) ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (varop)))
9947 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
9948 == mode_words
9949 && GET_MODE_CLASS (GET_MODE (varop)) == MODE_INT
9950 && GET_MODE_CLASS (GET_MODE (SUBREG_REG (varop))) == MODE_INT)
9951 {
9952 varop = SUBREG_REG (varop);
9953 if (GET_MODE_SIZE (GET_MODE (varop)) > GET_MODE_SIZE (mode))
9954 mode = GET_MODE (varop);
9955 continue;
9956 }
9957 break;
9958
9959 case MULT:
9960 /* Some machines use MULT instead of ASHIFT because MULT
9961 is cheaper. But it is still better on those machines to
9962 merge two shifts into one. */
9963 if (CONST_INT_P (XEXP (varop, 1))
9964 && exact_log2 (UINTVAL (XEXP (varop, 1))) >= 0)
9965 {
9966 varop
9967 = simplify_gen_binary (ASHIFT, GET_MODE (varop),
9968 XEXP (varop, 0),
9969 GEN_INT (exact_log2 (
9970 UINTVAL (XEXP (varop, 1)))));
9971 continue;
9972 }
9973 break;
9974
9975 case UDIV:
9976 /* Similar, for when divides are cheaper. */
9977 if (CONST_INT_P (XEXP (varop, 1))
9978 && exact_log2 (UINTVAL (XEXP (varop, 1))) >= 0)
9979 {
9980 varop
9981 = simplify_gen_binary (LSHIFTRT, GET_MODE (varop),
9982 XEXP (varop, 0),
9983 GEN_INT (exact_log2 (
9984 UINTVAL (XEXP (varop, 1)))));
9985 continue;
9986 }
9987 break;
9988
9989 case ASHIFTRT:
9990 /* If we are extracting just the sign bit of an arithmetic
9991 right shift, that shift is not needed. However, the sign
9992 bit of a wider mode may be different from what would be
9993 interpreted as the sign bit in a narrower mode, so, if
9994 the result is narrower, don't discard the shift. */
9995 if (code == LSHIFTRT
9996 && count == (GET_MODE_BITSIZE (result_mode) - 1)
9997 && (GET_MODE_BITSIZE (result_mode)
9998 >= GET_MODE_BITSIZE (GET_MODE (varop))))
9999 {
10000 varop = XEXP (varop, 0);
10001 continue;
10002 }
10003
10004 /* ... fall through ... */
10005
10006 case LSHIFTRT:
10007 case ASHIFT:
10008 case ROTATE:
10009 /* Here we have two nested shifts. The result is usually the
10010 AND of a new shift with a mask. We compute the result below. */
10011 if (CONST_INT_P (XEXP (varop, 1))
10012 && INTVAL (XEXP (varop, 1)) >= 0
10013 && INTVAL (XEXP (varop, 1)) < GET_MODE_PRECISION (GET_MODE (varop))
10014 && HWI_COMPUTABLE_MODE_P (result_mode)
10015 && HWI_COMPUTABLE_MODE_P (mode)
10016 && !VECTOR_MODE_P (result_mode))
10017 {
10018 enum rtx_code first_code = GET_CODE (varop);
10019 unsigned int first_count = INTVAL (XEXP (varop, 1));
10020 unsigned HOST_WIDE_INT mask;
10021 rtx mask_rtx;
10022
10023 /* We have one common special case. We can't do any merging if
10024 the inner code is an ASHIFTRT of a smaller mode. However, if
10025 we have (ashift:M1 (subreg:M1 (ashiftrt:M2 FOO C1) 0) C2)
10026 with C2 == GET_MODE_BITSIZE (M1) - GET_MODE_BITSIZE (M2),
10027 we can convert it to
10028 (ashiftrt:M1 (ashift:M1 (and:M1 (subreg:M1 FOO 0) C3) C2) C1).
10029 This simplifies certain SIGN_EXTEND operations. */
10030 if (code == ASHIFT && first_code == ASHIFTRT
10031 && count == (GET_MODE_PRECISION (result_mode)
10032 - GET_MODE_PRECISION (GET_MODE (varop))))
10033 {
10034 /* C3 has the low-order C1 bits zero. */
10035
10036 mask = GET_MODE_MASK (mode)
10037 & ~(((unsigned HOST_WIDE_INT) 1 << first_count) - 1);
10038
10039 varop = simplify_and_const_int (NULL_RTX, result_mode,
10040 XEXP (varop, 0), mask);
10041 varop = simplify_shift_const (NULL_RTX, ASHIFT, result_mode,
10042 varop, count);
10043 count = first_count;
10044 code = ASHIFTRT;
10045 continue;
10046 }
10047
10048 /* If this was (ashiftrt (ashift foo C1) C2) and FOO has more
10049 than C1 high-order bits equal to the sign bit, we can convert
10050 this to either an ASHIFT or an ASHIFTRT depending on the
10051 two counts.
10052
10053 We cannot do this if VAROP's mode is not SHIFT_MODE. */
10054
10055 if (code == ASHIFTRT && first_code == ASHIFT
10056 && GET_MODE (varop) == shift_mode
10057 && (num_sign_bit_copies (XEXP (varop, 0), shift_mode)
10058 > first_count))
10059 {
10060 varop = XEXP (varop, 0);
10061 count -= first_count;
10062 if (count < 0)
10063 {
10064 count = -count;
10065 code = ASHIFT;
10066 }
10067
10068 continue;
10069 }
10070
10071 /* There are some cases we can't do. If CODE is ASHIFTRT,
10072 we can only do this if FIRST_CODE is also ASHIFTRT.
10073
10074 We can't do the case when CODE is ROTATE and FIRST_CODE is
10075 ASHIFTRT.
10076
10077 If the mode of this shift is not the mode of the outer shift,
10078 we can't do this if either shift is a right shift or ROTATE.
10079
10080 Finally, we can't do any of these if the mode is too wide
10081 unless the codes are the same.
10082
10083 Handle the case where the shift codes are the same
10084 first. */
10085
10086 if (code == first_code)
10087 {
10088 if (GET_MODE (varop) != result_mode
10089 && (code == ASHIFTRT || code == LSHIFTRT
10090 || code == ROTATE))
10091 break;
10092
10093 count += first_count;
10094 varop = XEXP (varop, 0);
10095 continue;
10096 }
10097
10098 if (code == ASHIFTRT
10099 || (code == ROTATE && first_code == ASHIFTRT)
10100 || GET_MODE_PRECISION (mode) > HOST_BITS_PER_WIDE_INT
10101 || (GET_MODE (varop) != result_mode
10102 && (first_code == ASHIFTRT || first_code == LSHIFTRT
10103 || first_code == ROTATE
10104 || code == ROTATE)))
10105 break;
10106
10107 /* To compute the mask to apply after the shift, shift the
10108 nonzero bits of the inner shift the same way the
10109 outer shift will. */
10110
10111 mask_rtx = gen_int_mode (nonzero_bits (varop, GET_MODE (varop)),
10112 result_mode);
10113
10114 mask_rtx
10115 = simplify_const_binary_operation (code, result_mode, mask_rtx,
10116 GEN_INT (count));
10117
10118 /* Give up if we can't compute an outer operation to use. */
10119 if (mask_rtx == 0
10120 || !CONST_INT_P (mask_rtx)
10121 || ! merge_outer_ops (&outer_op, &outer_const, AND,
10122 INTVAL (mask_rtx),
10123 result_mode, &complement_p))
10124 break;
10125
10126 /* If the shifts are in the same direction, we add the
10127 counts. Otherwise, we subtract them. */
10128 if ((code == ASHIFTRT || code == LSHIFTRT)
10129 == (first_code == ASHIFTRT || first_code == LSHIFTRT))
10130 count += first_count;
10131 else
10132 count -= first_count;
10133
10134 /* If COUNT is positive, the new shift is usually CODE,
10135 except for the two exceptions below, in which case it is
10136 FIRST_CODE. If the count is negative, FIRST_CODE should
10137 always be used */
10138 if (count > 0
10139 && ((first_code == ROTATE && code == ASHIFT)
10140 || (first_code == ASHIFTRT && code == LSHIFTRT)))
10141 code = first_code;
10142 else if (count < 0)
10143 code = first_code, count = -count;
10144
10145 varop = XEXP (varop, 0);
10146 continue;
10147 }
10148
10149 /* If we have (A << B << C) for any shift, we can convert this to
10150 (A << C << B). This wins if A is a constant. Only try this if
10151 B is not a constant. */
10152
10153 else if (GET_CODE (varop) == code
10154 && CONST_INT_P (XEXP (varop, 0))
10155 && !CONST_INT_P (XEXP (varop, 1)))
10156 {
10157 rtx new_rtx = simplify_const_binary_operation (code, mode,
10158 XEXP (varop, 0),
10159 GEN_INT (count));
10160 varop = gen_rtx_fmt_ee (code, mode, new_rtx, XEXP (varop, 1));
10161 count = 0;
10162 continue;
10163 }
10164 break;
10165
10166 case NOT:
10167 if (VECTOR_MODE_P (mode))
10168 break;
10169
10170 /* Make this fit the case below. */
10171 varop = gen_rtx_XOR (mode, XEXP (varop, 0), constm1_rtx);
10172 continue;
10173
10174 case IOR:
10175 case AND:
10176 case XOR:
10177 /* If we have (xshiftrt (ior (plus X (const_int -1)) X) C)
10178 with C the size of VAROP - 1 and the shift is logical if
10179 STORE_FLAG_VALUE is 1 and arithmetic if STORE_FLAG_VALUE is -1,
10180 we have an (le X 0) operation. If we have an arithmetic shift
10181 and STORE_FLAG_VALUE is 1 or we have a logical shift with
10182 STORE_FLAG_VALUE of -1, we have a (neg (le X 0)) operation. */
10183
10184 if (GET_CODE (varop) == IOR && GET_CODE (XEXP (varop, 0)) == PLUS
10185 && XEXP (XEXP (varop, 0), 1) == constm1_rtx
10186 && (STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
10187 && (code == LSHIFTRT || code == ASHIFTRT)
10188 && count == (GET_MODE_PRECISION (GET_MODE (varop)) - 1)
10189 && rtx_equal_p (XEXP (XEXP (varop, 0), 0), XEXP (varop, 1)))
10190 {
10191 count = 0;
10192 varop = gen_rtx_LE (GET_MODE (varop), XEXP (varop, 1),
10193 const0_rtx);
10194
10195 if (STORE_FLAG_VALUE == 1 ? code == ASHIFTRT : code == LSHIFTRT)
10196 varop = gen_rtx_NEG (GET_MODE (varop), varop);
10197
10198 continue;
10199 }
10200
10201 /* If we have (shift (logical)), move the logical to the outside
10202 to allow it to possibly combine with another logical and the
10203 shift to combine with another shift. This also canonicalizes to
10204 what a ZERO_EXTRACT looks like. Also, some machines have
10205 (and (shift)) insns. */
10206
10207 if (CONST_INT_P (XEXP (varop, 1))
10208 /* We can't do this if we have (ashiftrt (xor)) and the
10209 constant has its sign bit set in shift_mode. */
10210 && !(code == ASHIFTRT && GET_CODE (varop) == XOR
10211 && 0 > trunc_int_for_mode (INTVAL (XEXP (varop, 1)),
10212 shift_mode))
10213 && (new_rtx = simplify_const_binary_operation
10214 (code, result_mode,
10215 gen_int_mode (INTVAL (XEXP (varop, 1)), result_mode),
10216 GEN_INT (count))) != 0
10217 && CONST_INT_P (new_rtx)
10218 && merge_outer_ops (&outer_op, &outer_const, GET_CODE (varop),
10219 INTVAL (new_rtx), result_mode, &complement_p))
10220 {
10221 varop = XEXP (varop, 0);
10222 continue;
10223 }
10224
10225 /* If we can't do that, try to simplify the shift in each arm of the
10226 logical expression, make a new logical expression, and apply
10227 the inverse distributive law. This also can't be done
10228 for some (ashiftrt (xor)). */
10229 if (CONST_INT_P (XEXP (varop, 1))
10230 && !(code == ASHIFTRT && GET_CODE (varop) == XOR
10231 && 0 > trunc_int_for_mode (INTVAL (XEXP (varop, 1)),
10232 shift_mode)))
10233 {
10234 rtx lhs = simplify_shift_const (NULL_RTX, code, shift_mode,
10235 XEXP (varop, 0), count);
10236 rtx rhs = simplify_shift_const (NULL_RTX, code, shift_mode,
10237 XEXP (varop, 1), count);
10238
10239 varop = simplify_gen_binary (GET_CODE (varop), shift_mode,
10240 lhs, rhs);
10241 varop = apply_distributive_law (varop);
10242
10243 count = 0;
10244 continue;
10245 }
10246 break;
10247
10248 case EQ:
10249 /* Convert (lshiftrt (eq FOO 0) C) to (xor FOO 1) if STORE_FLAG_VALUE
10250 says that the sign bit can be tested, FOO has mode MODE, C is
10251 GET_MODE_PRECISION (MODE) - 1, and FOO has only its low-order bit
10252 that may be nonzero. */
10253 if (code == LSHIFTRT
10254 && XEXP (varop, 1) == const0_rtx
10255 && GET_MODE (XEXP (varop, 0)) == result_mode
10256 && count == (GET_MODE_PRECISION (result_mode) - 1)
10257 && HWI_COMPUTABLE_MODE_P (result_mode)
10258 && STORE_FLAG_VALUE == -1
10259 && nonzero_bits (XEXP (varop, 0), result_mode) == 1
10260 && merge_outer_ops (&outer_op, &outer_const, XOR, 1, result_mode,
10261 &complement_p))
10262 {
10263 varop = XEXP (varop, 0);
10264 count = 0;
10265 continue;
10266 }
10267 break;
10268
10269 case NEG:
10270 /* (lshiftrt (neg A) C) where A is either 0 or 1 and C is one less
10271 than the number of bits in the mode is equivalent to A. */
10272 if (code == LSHIFTRT
10273 && count == (GET_MODE_PRECISION (result_mode) - 1)
10274 && nonzero_bits (XEXP (varop, 0), result_mode) == 1)
10275 {
10276 varop = XEXP (varop, 0);
10277 count = 0;
10278 continue;
10279 }
10280
10281 /* NEG commutes with ASHIFT since it is multiplication. Move the
10282 NEG outside to allow shifts to combine. */
10283 if (code == ASHIFT
10284 && merge_outer_ops (&outer_op, &outer_const, NEG, 0, result_mode,
10285 &complement_p))
10286 {
10287 varop = XEXP (varop, 0);
10288 continue;
10289 }
10290 break;
10291
10292 case PLUS:
10293 /* (lshiftrt (plus A -1) C) where A is either 0 or 1 and C
10294 is one less than the number of bits in the mode is
10295 equivalent to (xor A 1). */
10296 if (code == LSHIFTRT
10297 && count == (GET_MODE_PRECISION (result_mode) - 1)
10298 && XEXP (varop, 1) == constm1_rtx
10299 && nonzero_bits (XEXP (varop, 0), result_mode) == 1
10300 && merge_outer_ops (&outer_op, &outer_const, XOR, 1, result_mode,
10301 &complement_p))
10302 {
10303 count = 0;
10304 varop = XEXP (varop, 0);
10305 continue;
10306 }
10307
10308 /* If we have (xshiftrt (plus FOO BAR) C), and the only bits
10309 that might be nonzero in BAR are those being shifted out and those
10310 bits are known zero in FOO, we can replace the PLUS with FOO.
10311 Similarly in the other operand order. This code occurs when
10312 we are computing the size of a variable-size array. */
10313
10314 if ((code == ASHIFTRT || code == LSHIFTRT)
10315 && count < HOST_BITS_PER_WIDE_INT
10316 && nonzero_bits (XEXP (varop, 1), result_mode) >> count == 0
10317 && (nonzero_bits (XEXP (varop, 1), result_mode)
10318 & nonzero_bits (XEXP (varop, 0), result_mode)) == 0)
10319 {
10320 varop = XEXP (varop, 0);
10321 continue;
10322 }
10323 else if ((code == ASHIFTRT || code == LSHIFTRT)
10324 && count < HOST_BITS_PER_WIDE_INT
10325 && HWI_COMPUTABLE_MODE_P (result_mode)
10326 && 0 == (nonzero_bits (XEXP (varop, 0), result_mode)
10327 >> count)
10328 && 0 == (nonzero_bits (XEXP (varop, 0), result_mode)
10329 & nonzero_bits (XEXP (varop, 1),
10330 result_mode)))
10331 {
10332 varop = XEXP (varop, 1);
10333 continue;
10334 }
10335
10336 /* (ashift (plus foo C) N) is (plus (ashift foo N) C'). */
10337 if (code == ASHIFT
10338 && CONST_INT_P (XEXP (varop, 1))
10339 && (new_rtx = simplify_const_binary_operation (ASHIFT, result_mode,
10340 XEXP (varop, 1),
10341 GEN_INT (count))) != 0
10342 && CONST_INT_P (new_rtx)
10343 && merge_outer_ops (&outer_op, &outer_const, PLUS,
10344 INTVAL (new_rtx), result_mode, &complement_p))
10345 {
10346 varop = XEXP (varop, 0);
10347 continue;
10348 }
10349
10350 /* Check for 'PLUS signbit', which is the canonical form of 'XOR
10351 signbit', and attempt to change the PLUS to an XOR and move it to
10352 the outer operation as is done above in the AND/IOR/XOR case
10353 leg for shift(logical). See details in logical handling above
10354 for reasoning in doing so. */
10355 if (code == LSHIFTRT
10356 && CONST_INT_P (XEXP (varop, 1))
10357 && mode_signbit_p (result_mode, XEXP (varop, 1))
10358 && (new_rtx = simplify_const_binary_operation (code, result_mode,
10359 XEXP (varop, 1),
10360 GEN_INT (count))) != 0
10361 && CONST_INT_P (new_rtx)
10362 && merge_outer_ops (&outer_op, &outer_const, XOR,
10363 INTVAL (new_rtx), result_mode, &complement_p))
10364 {
10365 varop = XEXP (varop, 0);
10366 continue;
10367 }
10368
10369 break;
10370
10371 case MINUS:
10372 /* If we have (xshiftrt (minus (ashiftrt X C)) X) C)
10373 with C the size of VAROP - 1 and the shift is logical if
10374 STORE_FLAG_VALUE is 1 and arithmetic if STORE_FLAG_VALUE is -1,
10375 we have a (gt X 0) operation. If the shift is arithmetic with
10376 STORE_FLAG_VALUE of 1 or logical with STORE_FLAG_VALUE == -1,
10377 we have a (neg (gt X 0)) operation. */
10378
10379 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
10380 && GET_CODE (XEXP (varop, 0)) == ASHIFTRT
10381 && count == (GET_MODE_PRECISION (GET_MODE (varop)) - 1)
10382 && (code == LSHIFTRT || code == ASHIFTRT)
10383 && CONST_INT_P (XEXP (XEXP (varop, 0), 1))
10384 && INTVAL (XEXP (XEXP (varop, 0), 1)) == count
10385 && rtx_equal_p (XEXP (XEXP (varop, 0), 0), XEXP (varop, 1)))
10386 {
10387 count = 0;
10388 varop = gen_rtx_GT (GET_MODE (varop), XEXP (varop, 1),
10389 const0_rtx);
10390
10391 if (STORE_FLAG_VALUE == 1 ? code == ASHIFTRT : code == LSHIFTRT)
10392 varop = gen_rtx_NEG (GET_MODE (varop), varop);
10393
10394 continue;
10395 }
10396 break;
10397
10398 case TRUNCATE:
10399 /* Change (lshiftrt (truncate (lshiftrt))) to (truncate (lshiftrt))
10400 if the truncate does not affect the value. */
10401 if (code == LSHIFTRT
10402 && GET_CODE (XEXP (varop, 0)) == LSHIFTRT
10403 && CONST_INT_P (XEXP (XEXP (varop, 0), 1))
10404 && (INTVAL (XEXP (XEXP (varop, 0), 1))
10405 >= (GET_MODE_PRECISION (GET_MODE (XEXP (varop, 0)))
10406 - GET_MODE_PRECISION (GET_MODE (varop)))))
10407 {
10408 rtx varop_inner = XEXP (varop, 0);
10409
10410 varop_inner
10411 = gen_rtx_LSHIFTRT (GET_MODE (varop_inner),
10412 XEXP (varop_inner, 0),
10413 GEN_INT
10414 (count + INTVAL (XEXP (varop_inner, 1))));
10415 varop = gen_rtx_TRUNCATE (GET_MODE (varop), varop_inner);
10416 count = 0;
10417 continue;
10418 }
10419 break;
10420
10421 default:
10422 break;
10423 }
10424
10425 break;
10426 }
10427
10428 shift_mode = try_widen_shift_mode (code, varop, count, result_mode, mode,
10429 outer_op, outer_const);
10430
10431 /* We have now finished analyzing the shift. The result should be
10432 a shift of type CODE with SHIFT_MODE shifting VAROP COUNT places. If
10433 OUTER_OP is non-UNKNOWN, it is an operation that needs to be applied
10434 to the result of the shift. OUTER_CONST is the relevant constant,
10435 but we must turn off all bits turned off in the shift. */
10436
10437 if (outer_op == UNKNOWN
10438 && orig_code == code && orig_count == count
10439 && varop == orig_varop
10440 && shift_mode == GET_MODE (varop))
10441 return NULL_RTX;
10442
10443 /* Make a SUBREG if necessary. If we can't make it, fail. */
10444 varop = gen_lowpart (shift_mode, varop);
10445 if (varop == NULL_RTX || GET_CODE (varop) == CLOBBER)
10446 return NULL_RTX;
10447
10448 /* If we have an outer operation and we just made a shift, it is
10449 possible that we could have simplified the shift were it not
10450 for the outer operation. So try to do the simplification
10451 recursively. */
10452
10453 if (outer_op != UNKNOWN)
10454 x = simplify_shift_const_1 (code, shift_mode, varop, count);
10455 else
10456 x = NULL_RTX;
10457
10458 if (x == NULL_RTX)
10459 x = simplify_gen_binary (code, shift_mode, varop, GEN_INT (count));
10460
10461 /* If we were doing an LSHIFTRT in a wider mode than it was originally,
10462 turn off all the bits that the shift would have turned off. */
10463 if (orig_code == LSHIFTRT && result_mode != shift_mode)
10464 x = simplify_and_const_int (NULL_RTX, shift_mode, x,
10465 GET_MODE_MASK (result_mode) >> orig_count);
10466
10467 /* Do the remainder of the processing in RESULT_MODE. */
10468 x = gen_lowpart_or_truncate (result_mode, x);
10469
10470 /* If COMPLEMENT_P is set, we have to complement X before doing the outer
10471 operation. */
10472 if (complement_p)
10473 x = simplify_gen_unary (NOT, result_mode, x, result_mode);
10474
10475 if (outer_op != UNKNOWN)
10476 {
10477 if (GET_RTX_CLASS (outer_op) != RTX_UNARY
10478 && GET_MODE_PRECISION (result_mode) < HOST_BITS_PER_WIDE_INT)
10479 outer_const = trunc_int_for_mode (outer_const, result_mode);
10480
10481 if (outer_op == AND)
10482 x = simplify_and_const_int (NULL_RTX, result_mode, x, outer_const);
10483 else if (outer_op == SET)
10484 {
10485 /* This means that we have determined that the result is
10486 equivalent to a constant. This should be rare. */
10487 if (!side_effects_p (x))
10488 x = GEN_INT (outer_const);
10489 }
10490 else if (GET_RTX_CLASS (outer_op) == RTX_UNARY)
10491 x = simplify_gen_unary (outer_op, result_mode, x, result_mode);
10492 else
10493 x = simplify_gen_binary (outer_op, result_mode, x,
10494 GEN_INT (outer_const));
10495 }
10496
10497 return x;
10498 }
10499
10500 /* Simplify a shift of VAROP by COUNT bits. CODE says what kind of shift.
10501 The result of the shift is RESULT_MODE. If we cannot simplify it,
10502 return X or, if it is NULL, synthesize the expression with
10503 simplify_gen_binary. Otherwise, return a simplified value.
10504
10505 The shift is normally computed in the widest mode we find in VAROP, as
10506 long as it isn't a different number of words than RESULT_MODE. Exceptions
10507 are ASHIFTRT and ROTATE, which are always done in their original mode. */
10508
10509 static rtx
10510 simplify_shift_const (rtx x, enum rtx_code code, enum machine_mode result_mode,
10511 rtx varop, int count)
10512 {
10513 rtx tem = simplify_shift_const_1 (code, result_mode, varop, count);
10514 if (tem)
10515 return tem;
10516
10517 if (!x)
10518 x = simplify_gen_binary (code, GET_MODE (varop), varop, GEN_INT (count));
10519 if (GET_MODE (x) != result_mode)
10520 x = gen_lowpart (result_mode, x);
10521 return x;
10522 }
10523
10524 \f
10525 /* Like recog, but we receive the address of a pointer to a new pattern.
10526 We try to match the rtx that the pointer points to.
10527 If that fails, we may try to modify or replace the pattern,
10528 storing the replacement into the same pointer object.
10529
10530 Modifications include deletion or addition of CLOBBERs.
10531
10532 PNOTES is a pointer to a location where any REG_UNUSED notes added for
10533 the CLOBBERs are placed.
10534
10535 The value is the final insn code from the pattern ultimately matched,
10536 or -1. */
10537
10538 static int
10539 recog_for_combine (rtx *pnewpat, rtx insn, rtx *pnotes)
10540 {
10541 rtx pat = *pnewpat;
10542 rtx pat_without_clobbers;
10543 int insn_code_number;
10544 int num_clobbers_to_add = 0;
10545 int i;
10546 rtx notes = NULL_RTX;
10547 rtx old_notes, old_pat;
10548 int old_icode;
10549
10550 /* If PAT is a PARALLEL, check to see if it contains the CLOBBER
10551 we use to indicate that something didn't match. If we find such a
10552 thing, force rejection. */
10553 if (GET_CODE (pat) == PARALLEL)
10554 for (i = XVECLEN (pat, 0) - 1; i >= 0; i--)
10555 if (GET_CODE (XVECEXP (pat, 0, i)) == CLOBBER
10556 && XEXP (XVECEXP (pat, 0, i), 0) == const0_rtx)
10557 return -1;
10558
10559 old_pat = PATTERN (insn);
10560 old_notes = REG_NOTES (insn);
10561 PATTERN (insn) = pat;
10562 REG_NOTES (insn) = NULL_RTX;
10563
10564 insn_code_number = recog (pat, insn, &num_clobbers_to_add);
10565 if (dump_file && (dump_flags & TDF_DETAILS))
10566 {
10567 if (insn_code_number < 0)
10568 fputs ("Failed to match this instruction:\n", dump_file);
10569 else
10570 fputs ("Successfully matched this instruction:\n", dump_file);
10571 print_rtl_single (dump_file, pat);
10572 }
10573
10574 /* If it isn't, there is the possibility that we previously had an insn
10575 that clobbered some register as a side effect, but the combined
10576 insn doesn't need to do that. So try once more without the clobbers
10577 unless this represents an ASM insn. */
10578
10579 if (insn_code_number < 0 && ! check_asm_operands (pat)
10580 && GET_CODE (pat) == PARALLEL)
10581 {
10582 int pos;
10583
10584 for (pos = 0, i = 0; i < XVECLEN (pat, 0); i++)
10585 if (GET_CODE (XVECEXP (pat, 0, i)) != CLOBBER)
10586 {
10587 if (i != pos)
10588 SUBST (XVECEXP (pat, 0, pos), XVECEXP (pat, 0, i));
10589 pos++;
10590 }
10591
10592 SUBST_INT (XVECLEN (pat, 0), pos);
10593
10594 if (pos == 1)
10595 pat = XVECEXP (pat, 0, 0);
10596
10597 PATTERN (insn) = pat;
10598 insn_code_number = recog (pat, insn, &num_clobbers_to_add);
10599 if (dump_file && (dump_flags & TDF_DETAILS))
10600 {
10601 if (insn_code_number < 0)
10602 fputs ("Failed to match this instruction:\n", dump_file);
10603 else
10604 fputs ("Successfully matched this instruction:\n", dump_file);
10605 print_rtl_single (dump_file, pat);
10606 }
10607 }
10608
10609 pat_without_clobbers = pat;
10610
10611 PATTERN (insn) = old_pat;
10612 REG_NOTES (insn) = old_notes;
10613
10614 /* Recognize all noop sets, these will be killed by followup pass. */
10615 if (insn_code_number < 0 && GET_CODE (pat) == SET && set_noop_p (pat))
10616 insn_code_number = NOOP_MOVE_INSN_CODE, num_clobbers_to_add = 0;
10617
10618 /* If we had any clobbers to add, make a new pattern than contains
10619 them. Then check to make sure that all of them are dead. */
10620 if (num_clobbers_to_add)
10621 {
10622 rtx newpat = gen_rtx_PARALLEL (VOIDmode,
10623 rtvec_alloc (GET_CODE (pat) == PARALLEL
10624 ? (XVECLEN (pat, 0)
10625 + num_clobbers_to_add)
10626 : num_clobbers_to_add + 1));
10627
10628 if (GET_CODE (pat) == PARALLEL)
10629 for (i = 0; i < XVECLEN (pat, 0); i++)
10630 XVECEXP (newpat, 0, i) = XVECEXP (pat, 0, i);
10631 else
10632 XVECEXP (newpat, 0, 0) = pat;
10633
10634 add_clobbers (newpat, insn_code_number);
10635
10636 for (i = XVECLEN (newpat, 0) - num_clobbers_to_add;
10637 i < XVECLEN (newpat, 0); i++)
10638 {
10639 if (REG_P (XEXP (XVECEXP (newpat, 0, i), 0))
10640 && ! reg_dead_at_p (XEXP (XVECEXP (newpat, 0, i), 0), insn))
10641 return -1;
10642 if (GET_CODE (XEXP (XVECEXP (newpat, 0, i), 0)) != SCRATCH)
10643 {
10644 gcc_assert (REG_P (XEXP (XVECEXP (newpat, 0, i), 0)));
10645 notes = alloc_reg_note (REG_UNUSED,
10646 XEXP (XVECEXP (newpat, 0, i), 0), notes);
10647 }
10648 }
10649 pat = newpat;
10650 }
10651
10652 if (insn_code_number >= 0
10653 && insn_code_number != NOOP_MOVE_INSN_CODE)
10654 {
10655 old_pat = PATTERN (insn);
10656 old_notes = REG_NOTES (insn);
10657 old_icode = INSN_CODE (insn);
10658 PATTERN (insn) = pat;
10659 REG_NOTES (insn) = notes;
10660
10661 /* Allow targets to reject combined insn. */
10662 if (!targetm.legitimate_combined_insn (insn))
10663 {
10664 if (dump_file && (dump_flags & TDF_DETAILS))
10665 fputs ("Instruction not appropriate for target.",
10666 dump_file);
10667
10668 /* Callers expect recog_for_combine to strip
10669 clobbers from the pattern on failure. */
10670 pat = pat_without_clobbers;
10671 notes = NULL_RTX;
10672
10673 insn_code_number = -1;
10674 }
10675
10676 PATTERN (insn) = old_pat;
10677 REG_NOTES (insn) = old_notes;
10678 INSN_CODE (insn) = old_icode;
10679 }
10680
10681 *pnewpat = pat;
10682 *pnotes = notes;
10683
10684 return insn_code_number;
10685 }
10686 \f
10687 /* Like gen_lowpart_general but for use by combine. In combine it
10688 is not possible to create any new pseudoregs. However, it is
10689 safe to create invalid memory addresses, because combine will
10690 try to recognize them and all they will do is make the combine
10691 attempt fail.
10692
10693 If for some reason this cannot do its job, an rtx
10694 (clobber (const_int 0)) is returned.
10695 An insn containing that will not be recognized. */
10696
10697 static rtx
10698 gen_lowpart_for_combine (enum machine_mode omode, rtx x)
10699 {
10700 enum machine_mode imode = GET_MODE (x);
10701 unsigned int osize = GET_MODE_SIZE (omode);
10702 unsigned int isize = GET_MODE_SIZE (imode);
10703 rtx result;
10704
10705 if (omode == imode)
10706 return x;
10707
10708 /* We can only support MODE being wider than a word if X is a
10709 constant integer or has a mode the same size. */
10710 if (GET_MODE_SIZE (omode) > UNITS_PER_WORD
10711 && ! (CONST_SCALAR_INT_P (x) || isize == osize))
10712 goto fail;
10713
10714 /* X might be a paradoxical (subreg (mem)). In that case, gen_lowpart
10715 won't know what to do. So we will strip off the SUBREG here and
10716 process normally. */
10717 if (GET_CODE (x) == SUBREG && MEM_P (SUBREG_REG (x)))
10718 {
10719 x = SUBREG_REG (x);
10720
10721 /* For use in case we fall down into the address adjustments
10722 further below, we need to adjust the known mode and size of
10723 x; imode and isize, since we just adjusted x. */
10724 imode = GET_MODE (x);
10725
10726 if (imode == omode)
10727 return x;
10728
10729 isize = GET_MODE_SIZE (imode);
10730 }
10731
10732 result = gen_lowpart_common (omode, x);
10733
10734 if (result)
10735 return result;
10736
10737 if (MEM_P (x))
10738 {
10739 int offset = 0;
10740
10741 /* Refuse to work on a volatile memory ref or one with a mode-dependent
10742 address. */
10743 if (MEM_VOLATILE_P (x)
10744 || mode_dependent_address_p (XEXP (x, 0), MEM_ADDR_SPACE (x)))
10745 goto fail;
10746
10747 /* If we want to refer to something bigger than the original memref,
10748 generate a paradoxical subreg instead. That will force a reload
10749 of the original memref X. */
10750 if (isize < osize)
10751 return gen_rtx_SUBREG (omode, x, 0);
10752
10753 if (WORDS_BIG_ENDIAN)
10754 offset = MAX (isize, UNITS_PER_WORD) - MAX (osize, UNITS_PER_WORD);
10755
10756 /* Adjust the address so that the address-after-the-data is
10757 unchanged. */
10758 if (BYTES_BIG_ENDIAN)
10759 offset -= MIN (UNITS_PER_WORD, osize) - MIN (UNITS_PER_WORD, isize);
10760
10761 return adjust_address_nv (x, omode, offset);
10762 }
10763
10764 /* If X is a comparison operator, rewrite it in a new mode. This
10765 probably won't match, but may allow further simplifications. */
10766 else if (COMPARISON_P (x))
10767 return gen_rtx_fmt_ee (GET_CODE (x), omode, XEXP (x, 0), XEXP (x, 1));
10768
10769 /* If we couldn't simplify X any other way, just enclose it in a
10770 SUBREG. Normally, this SUBREG won't match, but some patterns may
10771 include an explicit SUBREG or we may simplify it further in combine. */
10772 else
10773 {
10774 int offset = 0;
10775 rtx res;
10776
10777 offset = subreg_lowpart_offset (omode, imode);
10778 if (imode == VOIDmode)
10779 {
10780 imode = int_mode_for_mode (omode);
10781 x = gen_lowpart_common (imode, x);
10782 if (x == NULL)
10783 goto fail;
10784 }
10785 res = simplify_gen_subreg (omode, x, imode, offset);
10786 if (res)
10787 return res;
10788 }
10789
10790 fail:
10791 return gen_rtx_CLOBBER (omode, const0_rtx);
10792 }
10793 \f
10794 /* Try to simplify a comparison between OP0 and a constant OP1,
10795 where CODE is the comparison code that will be tested, into a
10796 (CODE OP0 const0_rtx) form.
10797
10798 The result is a possibly different comparison code to use.
10799 *POP1 may be updated. */
10800
10801 static enum rtx_code
10802 simplify_compare_const (enum rtx_code code, rtx op0, rtx *pop1)
10803 {
10804 enum machine_mode mode = GET_MODE (op0);
10805 unsigned int mode_width = GET_MODE_PRECISION (mode);
10806 HOST_WIDE_INT const_op = INTVAL (*pop1);
10807
10808 /* Get the constant we are comparing against and turn off all bits
10809 not on in our mode. */
10810 if (mode != VOIDmode)
10811 const_op = trunc_int_for_mode (const_op, mode);
10812
10813 /* If we are comparing against a constant power of two and the value
10814 being compared can only have that single bit nonzero (e.g., it was
10815 `and'ed with that bit), we can replace this with a comparison
10816 with zero. */
10817 if (const_op
10818 && (code == EQ || code == NE || code == GE || code == GEU
10819 || code == LT || code == LTU)
10820 && mode_width <= HOST_BITS_PER_WIDE_INT
10821 && exact_log2 (const_op & GET_MODE_MASK (mode)) >= 0
10822 && (nonzero_bits (op0, mode)
10823 == (unsigned HOST_WIDE_INT) (const_op & GET_MODE_MASK (mode))))
10824 {
10825 code = (code == EQ || code == GE || code == GEU ? NE : EQ);
10826 const_op = 0;
10827 }
10828
10829 /* Similarly, if we are comparing a value known to be either -1 or
10830 0 with -1, change it to the opposite comparison against zero. */
10831 if (const_op == -1
10832 && (code == EQ || code == NE || code == GT || code == LE
10833 || code == GEU || code == LTU)
10834 && num_sign_bit_copies (op0, mode) == mode_width)
10835 {
10836 code = (code == EQ || code == LE || code == GEU ? NE : EQ);
10837 const_op = 0;
10838 }
10839
10840 /* Do some canonicalizations based on the comparison code. We prefer
10841 comparisons against zero and then prefer equality comparisons.
10842 If we can reduce the size of a constant, we will do that too. */
10843 switch (code)
10844 {
10845 case LT:
10846 /* < C is equivalent to <= (C - 1) */
10847 if (const_op > 0)
10848 {
10849 const_op -= 1;
10850 code = LE;
10851 /* ... fall through to LE case below. */
10852 }
10853 else
10854 break;
10855
10856 case LE:
10857 /* <= C is equivalent to < (C + 1); we do this for C < 0 */
10858 if (const_op < 0)
10859 {
10860 const_op += 1;
10861 code = LT;
10862 }
10863
10864 /* If we are doing a <= 0 comparison on a value known to have
10865 a zero sign bit, we can replace this with == 0. */
10866 else if (const_op == 0
10867 && mode_width <= HOST_BITS_PER_WIDE_INT
10868 && (nonzero_bits (op0, mode)
10869 & ((unsigned HOST_WIDE_INT) 1 << (mode_width - 1)))
10870 == 0)
10871 code = EQ;
10872 break;
10873
10874 case GE:
10875 /* >= C is equivalent to > (C - 1). */
10876 if (const_op > 0)
10877 {
10878 const_op -= 1;
10879 code = GT;
10880 /* ... fall through to GT below. */
10881 }
10882 else
10883 break;
10884
10885 case GT:
10886 /* > C is equivalent to >= (C + 1); we do this for C < 0. */
10887 if (const_op < 0)
10888 {
10889 const_op += 1;
10890 code = GE;
10891 }
10892
10893 /* If we are doing a > 0 comparison on a value known to have
10894 a zero sign bit, we can replace this with != 0. */
10895 else if (const_op == 0
10896 && mode_width <= HOST_BITS_PER_WIDE_INT
10897 && (nonzero_bits (op0, mode)
10898 & ((unsigned HOST_WIDE_INT) 1 << (mode_width - 1)))
10899 == 0)
10900 code = NE;
10901 break;
10902
10903 case LTU:
10904 /* < C is equivalent to <= (C - 1). */
10905 if (const_op > 0)
10906 {
10907 const_op -= 1;
10908 code = LEU;
10909 /* ... fall through ... */
10910 }
10911 /* (unsigned) < 0x80000000 is equivalent to >= 0. */
10912 else if (mode_width <= HOST_BITS_PER_WIDE_INT
10913 && (unsigned HOST_WIDE_INT) const_op
10914 == (unsigned HOST_WIDE_INT) 1 << (mode_width - 1))
10915 {
10916 const_op = 0;
10917 code = GE;
10918 break;
10919 }
10920 else
10921 break;
10922
10923 case LEU:
10924 /* unsigned <= 0 is equivalent to == 0 */
10925 if (const_op == 0)
10926 code = EQ;
10927 /* (unsigned) <= 0x7fffffff is equivalent to >= 0. */
10928 else if (mode_width <= HOST_BITS_PER_WIDE_INT
10929 && (unsigned HOST_WIDE_INT) const_op
10930 == ((unsigned HOST_WIDE_INT) 1 << (mode_width - 1)) - 1)
10931 {
10932 const_op = 0;
10933 code = GE;
10934 }
10935 break;
10936
10937 case GEU:
10938 /* >= C is equivalent to > (C - 1). */
10939 if (const_op > 1)
10940 {
10941 const_op -= 1;
10942 code = GTU;
10943 /* ... fall through ... */
10944 }
10945
10946 /* (unsigned) >= 0x80000000 is equivalent to < 0. */
10947 else if (mode_width <= HOST_BITS_PER_WIDE_INT
10948 && (unsigned HOST_WIDE_INT) const_op
10949 == (unsigned HOST_WIDE_INT) 1 << (mode_width - 1))
10950 {
10951 const_op = 0;
10952 code = LT;
10953 break;
10954 }
10955 else
10956 break;
10957
10958 case GTU:
10959 /* unsigned > 0 is equivalent to != 0 */
10960 if (const_op == 0)
10961 code = NE;
10962 /* (unsigned) > 0x7fffffff is equivalent to < 0. */
10963 else if (mode_width <= HOST_BITS_PER_WIDE_INT
10964 && (unsigned HOST_WIDE_INT) const_op
10965 == ((unsigned HOST_WIDE_INT) 1 << (mode_width - 1)) - 1)
10966 {
10967 const_op = 0;
10968 code = LT;
10969 }
10970 break;
10971
10972 default:
10973 break;
10974 }
10975
10976 *pop1 = GEN_INT (const_op);
10977 return code;
10978 }
10979 \f
10980 /* Simplify a comparison between *POP0 and *POP1 where CODE is the
10981 comparison code that will be tested.
10982
10983 The result is a possibly different comparison code to use. *POP0 and
10984 *POP1 may be updated.
10985
10986 It is possible that we might detect that a comparison is either always
10987 true or always false. However, we do not perform general constant
10988 folding in combine, so this knowledge isn't useful. Such tautologies
10989 should have been detected earlier. Hence we ignore all such cases. */
10990
10991 static enum rtx_code
10992 simplify_comparison (enum rtx_code code, rtx *pop0, rtx *pop1)
10993 {
10994 rtx op0 = *pop0;
10995 rtx op1 = *pop1;
10996 rtx tem, tem1;
10997 int i;
10998 enum machine_mode mode, tmode;
10999
11000 /* Try a few ways of applying the same transformation to both operands. */
11001 while (1)
11002 {
11003 #ifndef WORD_REGISTER_OPERATIONS
11004 /* The test below this one won't handle SIGN_EXTENDs on these machines,
11005 so check specially. */
11006 if (code != GTU && code != GEU && code != LTU && code != LEU
11007 && GET_CODE (op0) == ASHIFTRT && GET_CODE (op1) == ASHIFTRT
11008 && GET_CODE (XEXP (op0, 0)) == ASHIFT
11009 && GET_CODE (XEXP (op1, 0)) == ASHIFT
11010 && GET_CODE (XEXP (XEXP (op0, 0), 0)) == SUBREG
11011 && GET_CODE (XEXP (XEXP (op1, 0), 0)) == SUBREG
11012 && (GET_MODE (SUBREG_REG (XEXP (XEXP (op0, 0), 0)))
11013 == GET_MODE (SUBREG_REG (XEXP (XEXP (op1, 0), 0))))
11014 && CONST_INT_P (XEXP (op0, 1))
11015 && XEXP (op0, 1) == XEXP (op1, 1)
11016 && XEXP (op0, 1) == XEXP (XEXP (op0, 0), 1)
11017 && XEXP (op0, 1) == XEXP (XEXP (op1, 0), 1)
11018 && (INTVAL (XEXP (op0, 1))
11019 == (GET_MODE_PRECISION (GET_MODE (op0))
11020 - (GET_MODE_PRECISION
11021 (GET_MODE (SUBREG_REG (XEXP (XEXP (op0, 0), 0))))))))
11022 {
11023 op0 = SUBREG_REG (XEXP (XEXP (op0, 0), 0));
11024 op1 = SUBREG_REG (XEXP (XEXP (op1, 0), 0));
11025 }
11026 #endif
11027
11028 /* If both operands are the same constant shift, see if we can ignore the
11029 shift. We can if the shift is a rotate or if the bits shifted out of
11030 this shift are known to be zero for both inputs and if the type of
11031 comparison is compatible with the shift. */
11032 if (GET_CODE (op0) == GET_CODE (op1)
11033 && HWI_COMPUTABLE_MODE_P (GET_MODE (op0))
11034 && ((GET_CODE (op0) == ROTATE && (code == NE || code == EQ))
11035 || ((GET_CODE (op0) == LSHIFTRT || GET_CODE (op0) == ASHIFT)
11036 && (code != GT && code != LT && code != GE && code != LE))
11037 || (GET_CODE (op0) == ASHIFTRT
11038 && (code != GTU && code != LTU
11039 && code != GEU && code != LEU)))
11040 && CONST_INT_P (XEXP (op0, 1))
11041 && INTVAL (XEXP (op0, 1)) >= 0
11042 && INTVAL (XEXP (op0, 1)) < HOST_BITS_PER_WIDE_INT
11043 && XEXP (op0, 1) == XEXP (op1, 1))
11044 {
11045 enum machine_mode mode = GET_MODE (op0);
11046 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
11047 int shift_count = INTVAL (XEXP (op0, 1));
11048
11049 if (GET_CODE (op0) == LSHIFTRT || GET_CODE (op0) == ASHIFTRT)
11050 mask &= (mask >> shift_count) << shift_count;
11051 else if (GET_CODE (op0) == ASHIFT)
11052 mask = (mask & (mask << shift_count)) >> shift_count;
11053
11054 if ((nonzero_bits (XEXP (op0, 0), mode) & ~mask) == 0
11055 && (nonzero_bits (XEXP (op1, 0), mode) & ~mask) == 0)
11056 op0 = XEXP (op0, 0), op1 = XEXP (op1, 0);
11057 else
11058 break;
11059 }
11060
11061 /* If both operands are AND's of a paradoxical SUBREG by constant, the
11062 SUBREGs are of the same mode, and, in both cases, the AND would
11063 be redundant if the comparison was done in the narrower mode,
11064 do the comparison in the narrower mode (e.g., we are AND'ing with 1
11065 and the operand's possibly nonzero bits are 0xffffff01; in that case
11066 if we only care about QImode, we don't need the AND). This case
11067 occurs if the output mode of an scc insn is not SImode and
11068 STORE_FLAG_VALUE == 1 (e.g., the 386).
11069
11070 Similarly, check for a case where the AND's are ZERO_EXTEND
11071 operations from some narrower mode even though a SUBREG is not
11072 present. */
11073
11074 else if (GET_CODE (op0) == AND && GET_CODE (op1) == AND
11075 && CONST_INT_P (XEXP (op0, 1))
11076 && CONST_INT_P (XEXP (op1, 1)))
11077 {
11078 rtx inner_op0 = XEXP (op0, 0);
11079 rtx inner_op1 = XEXP (op1, 0);
11080 HOST_WIDE_INT c0 = INTVAL (XEXP (op0, 1));
11081 HOST_WIDE_INT c1 = INTVAL (XEXP (op1, 1));
11082 int changed = 0;
11083
11084 if (paradoxical_subreg_p (inner_op0)
11085 && GET_CODE (inner_op1) == SUBREG
11086 && (GET_MODE (SUBREG_REG (inner_op0))
11087 == GET_MODE (SUBREG_REG (inner_op1)))
11088 && (GET_MODE_PRECISION (GET_MODE (SUBREG_REG (inner_op0)))
11089 <= HOST_BITS_PER_WIDE_INT)
11090 && (0 == ((~c0) & nonzero_bits (SUBREG_REG (inner_op0),
11091 GET_MODE (SUBREG_REG (inner_op0)))))
11092 && (0 == ((~c1) & nonzero_bits (SUBREG_REG (inner_op1),
11093 GET_MODE (SUBREG_REG (inner_op1))))))
11094 {
11095 op0 = SUBREG_REG (inner_op0);
11096 op1 = SUBREG_REG (inner_op1);
11097
11098 /* The resulting comparison is always unsigned since we masked
11099 off the original sign bit. */
11100 code = unsigned_condition (code);
11101
11102 changed = 1;
11103 }
11104
11105 else if (c0 == c1)
11106 for (tmode = GET_CLASS_NARROWEST_MODE
11107 (GET_MODE_CLASS (GET_MODE (op0)));
11108 tmode != GET_MODE (op0); tmode = GET_MODE_WIDER_MODE (tmode))
11109 if ((unsigned HOST_WIDE_INT) c0 == GET_MODE_MASK (tmode))
11110 {
11111 op0 = gen_lowpart (tmode, inner_op0);
11112 op1 = gen_lowpart (tmode, inner_op1);
11113 code = unsigned_condition (code);
11114 changed = 1;
11115 break;
11116 }
11117
11118 if (! changed)
11119 break;
11120 }
11121
11122 /* If both operands are NOT, we can strip off the outer operation
11123 and adjust the comparison code for swapped operands; similarly for
11124 NEG, except that this must be an equality comparison. */
11125 else if ((GET_CODE (op0) == NOT && GET_CODE (op1) == NOT)
11126 || (GET_CODE (op0) == NEG && GET_CODE (op1) == NEG
11127 && (code == EQ || code == NE)))
11128 op0 = XEXP (op0, 0), op1 = XEXP (op1, 0), code = swap_condition (code);
11129
11130 else
11131 break;
11132 }
11133
11134 /* If the first operand is a constant, swap the operands and adjust the
11135 comparison code appropriately, but don't do this if the second operand
11136 is already a constant integer. */
11137 if (swap_commutative_operands_p (op0, op1))
11138 {
11139 tem = op0, op0 = op1, op1 = tem;
11140 code = swap_condition (code);
11141 }
11142
11143 /* We now enter a loop during which we will try to simplify the comparison.
11144 For the most part, we only are concerned with comparisons with zero,
11145 but some things may really be comparisons with zero but not start
11146 out looking that way. */
11147
11148 while (CONST_INT_P (op1))
11149 {
11150 enum machine_mode mode = GET_MODE (op0);
11151 unsigned int mode_width = GET_MODE_PRECISION (mode);
11152 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
11153 int equality_comparison_p;
11154 int sign_bit_comparison_p;
11155 int unsigned_comparison_p;
11156 HOST_WIDE_INT const_op;
11157
11158 /* We only want to handle integral modes. This catches VOIDmode,
11159 CCmode, and the floating-point modes. An exception is that we
11160 can handle VOIDmode if OP0 is a COMPARE or a comparison
11161 operation. */
11162
11163 if (GET_MODE_CLASS (mode) != MODE_INT
11164 && ! (mode == VOIDmode
11165 && (GET_CODE (op0) == COMPARE || COMPARISON_P (op0))))
11166 break;
11167
11168 /* Try to simplify the compare to constant, possibly changing the
11169 comparison op, and/or changing op1 to zero. */
11170 code = simplify_compare_const (code, op0, &op1);
11171 const_op = INTVAL (op1);
11172
11173 /* Compute some predicates to simplify code below. */
11174
11175 equality_comparison_p = (code == EQ || code == NE);
11176 sign_bit_comparison_p = ((code == LT || code == GE) && const_op == 0);
11177 unsigned_comparison_p = (code == LTU || code == LEU || code == GTU
11178 || code == GEU);
11179
11180 /* If this is a sign bit comparison and we can do arithmetic in
11181 MODE, say that we will only be needing the sign bit of OP0. */
11182 if (sign_bit_comparison_p && HWI_COMPUTABLE_MODE_P (mode))
11183 op0 = force_to_mode (op0, mode,
11184 (unsigned HOST_WIDE_INT) 1
11185 << (GET_MODE_PRECISION (mode) - 1),
11186 0);
11187
11188 /* Now try cases based on the opcode of OP0. If none of the cases
11189 does a "continue", we exit this loop immediately after the
11190 switch. */
11191
11192 switch (GET_CODE (op0))
11193 {
11194 case ZERO_EXTRACT:
11195 /* If we are extracting a single bit from a variable position in
11196 a constant that has only a single bit set and are comparing it
11197 with zero, we can convert this into an equality comparison
11198 between the position and the location of the single bit. */
11199 /* Except we can't if SHIFT_COUNT_TRUNCATED is set, since we might
11200 have already reduced the shift count modulo the word size. */
11201 if (!SHIFT_COUNT_TRUNCATED
11202 && CONST_INT_P (XEXP (op0, 0))
11203 && XEXP (op0, 1) == const1_rtx
11204 && equality_comparison_p && const_op == 0
11205 && (i = exact_log2 (UINTVAL (XEXP (op0, 0)))) >= 0)
11206 {
11207 if (BITS_BIG_ENDIAN)
11208 i = BITS_PER_WORD - 1 - i;
11209
11210 op0 = XEXP (op0, 2);
11211 op1 = GEN_INT (i);
11212 const_op = i;
11213
11214 /* Result is nonzero iff shift count is equal to I. */
11215 code = reverse_condition (code);
11216 continue;
11217 }
11218
11219 /* ... fall through ... */
11220
11221 case SIGN_EXTRACT:
11222 tem = expand_compound_operation (op0);
11223 if (tem != op0)
11224 {
11225 op0 = tem;
11226 continue;
11227 }
11228 break;
11229
11230 case NOT:
11231 /* If testing for equality, we can take the NOT of the constant. */
11232 if (equality_comparison_p
11233 && (tem = simplify_unary_operation (NOT, mode, op1, mode)) != 0)
11234 {
11235 op0 = XEXP (op0, 0);
11236 op1 = tem;
11237 continue;
11238 }
11239
11240 /* If just looking at the sign bit, reverse the sense of the
11241 comparison. */
11242 if (sign_bit_comparison_p)
11243 {
11244 op0 = XEXP (op0, 0);
11245 code = (code == GE ? LT : GE);
11246 continue;
11247 }
11248 break;
11249
11250 case NEG:
11251 /* If testing for equality, we can take the NEG of the constant. */
11252 if (equality_comparison_p
11253 && (tem = simplify_unary_operation (NEG, mode, op1, mode)) != 0)
11254 {
11255 op0 = XEXP (op0, 0);
11256 op1 = tem;
11257 continue;
11258 }
11259
11260 /* The remaining cases only apply to comparisons with zero. */
11261 if (const_op != 0)
11262 break;
11263
11264 /* When X is ABS or is known positive,
11265 (neg X) is < 0 if and only if X != 0. */
11266
11267 if (sign_bit_comparison_p
11268 && (GET_CODE (XEXP (op0, 0)) == ABS
11269 || (mode_width <= HOST_BITS_PER_WIDE_INT
11270 && (nonzero_bits (XEXP (op0, 0), mode)
11271 & ((unsigned HOST_WIDE_INT) 1 << (mode_width - 1)))
11272 == 0)))
11273 {
11274 op0 = XEXP (op0, 0);
11275 code = (code == LT ? NE : EQ);
11276 continue;
11277 }
11278
11279 /* If we have NEG of something whose two high-order bits are the
11280 same, we know that "(-a) < 0" is equivalent to "a > 0". */
11281 if (num_sign_bit_copies (op0, mode) >= 2)
11282 {
11283 op0 = XEXP (op0, 0);
11284 code = swap_condition (code);
11285 continue;
11286 }
11287 break;
11288
11289 case ROTATE:
11290 /* If we are testing equality and our count is a constant, we
11291 can perform the inverse operation on our RHS. */
11292 if (equality_comparison_p && CONST_INT_P (XEXP (op0, 1))
11293 && (tem = simplify_binary_operation (ROTATERT, mode,
11294 op1, XEXP (op0, 1))) != 0)
11295 {
11296 op0 = XEXP (op0, 0);
11297 op1 = tem;
11298 continue;
11299 }
11300
11301 /* If we are doing a < 0 or >= 0 comparison, it means we are testing
11302 a particular bit. Convert it to an AND of a constant of that
11303 bit. This will be converted into a ZERO_EXTRACT. */
11304 if (const_op == 0 && sign_bit_comparison_p
11305 && CONST_INT_P (XEXP (op0, 1))
11306 && mode_width <= HOST_BITS_PER_WIDE_INT)
11307 {
11308 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
11309 ((unsigned HOST_WIDE_INT) 1
11310 << (mode_width - 1
11311 - INTVAL (XEXP (op0, 1)))));
11312 code = (code == LT ? NE : EQ);
11313 continue;
11314 }
11315
11316 /* Fall through. */
11317
11318 case ABS:
11319 /* ABS is ignorable inside an equality comparison with zero. */
11320 if (const_op == 0 && equality_comparison_p)
11321 {
11322 op0 = XEXP (op0, 0);
11323 continue;
11324 }
11325 break;
11326
11327 case SIGN_EXTEND:
11328 /* Can simplify (compare (zero/sign_extend FOO) CONST) to
11329 (compare FOO CONST) if CONST fits in FOO's mode and we
11330 are either testing inequality or have an unsigned
11331 comparison with ZERO_EXTEND or a signed comparison with
11332 SIGN_EXTEND. But don't do it if we don't have a compare
11333 insn of the given mode, since we'd have to revert it
11334 later on, and then we wouldn't know whether to sign- or
11335 zero-extend. */
11336 mode = GET_MODE (XEXP (op0, 0));
11337 if (GET_MODE_CLASS (mode) == MODE_INT
11338 && ! unsigned_comparison_p
11339 && HWI_COMPUTABLE_MODE_P (mode)
11340 && trunc_int_for_mode (const_op, mode) == const_op
11341 && have_insn_for (COMPARE, mode))
11342 {
11343 op0 = XEXP (op0, 0);
11344 continue;
11345 }
11346 break;
11347
11348 case SUBREG:
11349 /* Check for the case where we are comparing A - C1 with C2, that is
11350
11351 (subreg:MODE (plus (A) (-C1))) op (C2)
11352
11353 with C1 a constant, and try to lift the SUBREG, i.e. to do the
11354 comparison in the wider mode. One of the following two conditions
11355 must be true in order for this to be valid:
11356
11357 1. The mode extension results in the same bit pattern being added
11358 on both sides and the comparison is equality or unsigned. As
11359 C2 has been truncated to fit in MODE, the pattern can only be
11360 all 0s or all 1s.
11361
11362 2. The mode extension results in the sign bit being copied on
11363 each side.
11364
11365 The difficulty here is that we have predicates for A but not for
11366 (A - C1) so we need to check that C1 is within proper bounds so
11367 as to perturbate A as little as possible. */
11368
11369 if (mode_width <= HOST_BITS_PER_WIDE_INT
11370 && subreg_lowpart_p (op0)
11371 && GET_MODE_PRECISION (GET_MODE (SUBREG_REG (op0))) > mode_width
11372 && GET_CODE (SUBREG_REG (op0)) == PLUS
11373 && CONST_INT_P (XEXP (SUBREG_REG (op0), 1)))
11374 {
11375 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (op0));
11376 rtx a = XEXP (SUBREG_REG (op0), 0);
11377 HOST_WIDE_INT c1 = -INTVAL (XEXP (SUBREG_REG (op0), 1));
11378
11379 if ((c1 > 0
11380 && (unsigned HOST_WIDE_INT) c1
11381 < (unsigned HOST_WIDE_INT) 1 << (mode_width - 1)
11382 && (equality_comparison_p || unsigned_comparison_p)
11383 /* (A - C1) zero-extends if it is positive and sign-extends
11384 if it is negative, C2 both zero- and sign-extends. */
11385 && ((0 == (nonzero_bits (a, inner_mode)
11386 & ~GET_MODE_MASK (mode))
11387 && const_op >= 0)
11388 /* (A - C1) sign-extends if it is positive and 1-extends
11389 if it is negative, C2 both sign- and 1-extends. */
11390 || (num_sign_bit_copies (a, inner_mode)
11391 > (unsigned int) (GET_MODE_PRECISION (inner_mode)
11392 - mode_width)
11393 && const_op < 0)))
11394 || ((unsigned HOST_WIDE_INT) c1
11395 < (unsigned HOST_WIDE_INT) 1 << (mode_width - 2)
11396 /* (A - C1) always sign-extends, like C2. */
11397 && num_sign_bit_copies (a, inner_mode)
11398 > (unsigned int) (GET_MODE_PRECISION (inner_mode)
11399 - (mode_width - 1))))
11400 {
11401 op0 = SUBREG_REG (op0);
11402 continue;
11403 }
11404 }
11405
11406 /* If the inner mode is narrower and we are extracting the low part,
11407 we can treat the SUBREG as if it were a ZERO_EXTEND. */
11408 if (subreg_lowpart_p (op0)
11409 && GET_MODE_PRECISION (GET_MODE (SUBREG_REG (op0))) < mode_width)
11410 /* Fall through */ ;
11411 else
11412 break;
11413
11414 /* ... fall through ... */
11415
11416 case ZERO_EXTEND:
11417 mode = GET_MODE (XEXP (op0, 0));
11418 if (GET_MODE_CLASS (mode) == MODE_INT
11419 && (unsigned_comparison_p || equality_comparison_p)
11420 && HWI_COMPUTABLE_MODE_P (mode)
11421 && (unsigned HOST_WIDE_INT) const_op <= GET_MODE_MASK (mode)
11422 && const_op >= 0
11423 && have_insn_for (COMPARE, mode))
11424 {
11425 op0 = XEXP (op0, 0);
11426 continue;
11427 }
11428 break;
11429
11430 case PLUS:
11431 /* (eq (plus X A) B) -> (eq X (minus B A)). We can only do
11432 this for equality comparisons due to pathological cases involving
11433 overflows. */
11434 if (equality_comparison_p
11435 && 0 != (tem = simplify_binary_operation (MINUS, mode,
11436 op1, XEXP (op0, 1))))
11437 {
11438 op0 = XEXP (op0, 0);
11439 op1 = tem;
11440 continue;
11441 }
11442
11443 /* (plus (abs X) (const_int -1)) is < 0 if and only if X == 0. */
11444 if (const_op == 0 && XEXP (op0, 1) == constm1_rtx
11445 && GET_CODE (XEXP (op0, 0)) == ABS && sign_bit_comparison_p)
11446 {
11447 op0 = XEXP (XEXP (op0, 0), 0);
11448 code = (code == LT ? EQ : NE);
11449 continue;
11450 }
11451 break;
11452
11453 case MINUS:
11454 /* We used to optimize signed comparisons against zero, but that
11455 was incorrect. Unsigned comparisons against zero (GTU, LEU)
11456 arrive here as equality comparisons, or (GEU, LTU) are
11457 optimized away. No need to special-case them. */
11458
11459 /* (eq (minus A B) C) -> (eq A (plus B C)) or
11460 (eq B (minus A C)), whichever simplifies. We can only do
11461 this for equality comparisons due to pathological cases involving
11462 overflows. */
11463 if (equality_comparison_p
11464 && 0 != (tem = simplify_binary_operation (PLUS, mode,
11465 XEXP (op0, 1), op1)))
11466 {
11467 op0 = XEXP (op0, 0);
11468 op1 = tem;
11469 continue;
11470 }
11471
11472 if (equality_comparison_p
11473 && 0 != (tem = simplify_binary_operation (MINUS, mode,
11474 XEXP (op0, 0), op1)))
11475 {
11476 op0 = XEXP (op0, 1);
11477 op1 = tem;
11478 continue;
11479 }
11480
11481 /* The sign bit of (minus (ashiftrt X C) X), where C is the number
11482 of bits in X minus 1, is one iff X > 0. */
11483 if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 0)) == ASHIFTRT
11484 && CONST_INT_P (XEXP (XEXP (op0, 0), 1))
11485 && UINTVAL (XEXP (XEXP (op0, 0), 1)) == mode_width - 1
11486 && rtx_equal_p (XEXP (XEXP (op0, 0), 0), XEXP (op0, 1)))
11487 {
11488 op0 = XEXP (op0, 1);
11489 code = (code == GE ? LE : GT);
11490 continue;
11491 }
11492 break;
11493
11494 case XOR:
11495 /* (eq (xor A B) C) -> (eq A (xor B C)). This is a simplification
11496 if C is zero or B is a constant. */
11497 if (equality_comparison_p
11498 && 0 != (tem = simplify_binary_operation (XOR, mode,
11499 XEXP (op0, 1), op1)))
11500 {
11501 op0 = XEXP (op0, 0);
11502 op1 = tem;
11503 continue;
11504 }
11505 break;
11506
11507 case EQ: case NE:
11508 case UNEQ: case LTGT:
11509 case LT: case LTU: case UNLT: case LE: case LEU: case UNLE:
11510 case GT: case GTU: case UNGT: case GE: case GEU: case UNGE:
11511 case UNORDERED: case ORDERED:
11512 /* We can't do anything if OP0 is a condition code value, rather
11513 than an actual data value. */
11514 if (const_op != 0
11515 || CC0_P (XEXP (op0, 0))
11516 || GET_MODE_CLASS (GET_MODE (XEXP (op0, 0))) == MODE_CC)
11517 break;
11518
11519 /* Get the two operands being compared. */
11520 if (GET_CODE (XEXP (op0, 0)) == COMPARE)
11521 tem = XEXP (XEXP (op0, 0), 0), tem1 = XEXP (XEXP (op0, 0), 1);
11522 else
11523 tem = XEXP (op0, 0), tem1 = XEXP (op0, 1);
11524
11525 /* Check for the cases where we simply want the result of the
11526 earlier test or the opposite of that result. */
11527 if (code == NE || code == EQ
11528 || (val_signbit_known_set_p (GET_MODE (op0), STORE_FLAG_VALUE)
11529 && (code == LT || code == GE)))
11530 {
11531 enum rtx_code new_code;
11532 if (code == LT || code == NE)
11533 new_code = GET_CODE (op0);
11534 else
11535 new_code = reversed_comparison_code (op0, NULL);
11536
11537 if (new_code != UNKNOWN)
11538 {
11539 code = new_code;
11540 op0 = tem;
11541 op1 = tem1;
11542 continue;
11543 }
11544 }
11545 break;
11546
11547 case IOR:
11548 /* The sign bit of (ior (plus X (const_int -1)) X) is nonzero
11549 iff X <= 0. */
11550 if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 0)) == PLUS
11551 && XEXP (XEXP (op0, 0), 1) == constm1_rtx
11552 && rtx_equal_p (XEXP (XEXP (op0, 0), 0), XEXP (op0, 1)))
11553 {
11554 op0 = XEXP (op0, 1);
11555 code = (code == GE ? GT : LE);
11556 continue;
11557 }
11558 break;
11559
11560 case AND:
11561 /* Convert (and (xshift 1 X) Y) to (and (lshiftrt Y X) 1). This
11562 will be converted to a ZERO_EXTRACT later. */
11563 if (const_op == 0 && equality_comparison_p
11564 && GET_CODE (XEXP (op0, 0)) == ASHIFT
11565 && XEXP (XEXP (op0, 0), 0) == const1_rtx)
11566 {
11567 op0 = gen_rtx_LSHIFTRT (mode, XEXP (op0, 1),
11568 XEXP (XEXP (op0, 0), 1));
11569 op0 = simplify_and_const_int (NULL_RTX, mode, op0, 1);
11570 continue;
11571 }
11572
11573 /* If we are comparing (and (lshiftrt X C1) C2) for equality with
11574 zero and X is a comparison and C1 and C2 describe only bits set
11575 in STORE_FLAG_VALUE, we can compare with X. */
11576 if (const_op == 0 && equality_comparison_p
11577 && mode_width <= HOST_BITS_PER_WIDE_INT
11578 && CONST_INT_P (XEXP (op0, 1))
11579 && GET_CODE (XEXP (op0, 0)) == LSHIFTRT
11580 && CONST_INT_P (XEXP (XEXP (op0, 0), 1))
11581 && INTVAL (XEXP (XEXP (op0, 0), 1)) >= 0
11582 && INTVAL (XEXP (XEXP (op0, 0), 1)) < HOST_BITS_PER_WIDE_INT)
11583 {
11584 mask = ((INTVAL (XEXP (op0, 1)) & GET_MODE_MASK (mode))
11585 << INTVAL (XEXP (XEXP (op0, 0), 1)));
11586 if ((~STORE_FLAG_VALUE & mask) == 0
11587 && (COMPARISON_P (XEXP (XEXP (op0, 0), 0))
11588 || ((tem = get_last_value (XEXP (XEXP (op0, 0), 0))) != 0
11589 && COMPARISON_P (tem))))
11590 {
11591 op0 = XEXP (XEXP (op0, 0), 0);
11592 continue;
11593 }
11594 }
11595
11596 /* If we are doing an equality comparison of an AND of a bit equal
11597 to the sign bit, replace this with a LT or GE comparison of
11598 the underlying value. */
11599 if (equality_comparison_p
11600 && const_op == 0
11601 && CONST_INT_P (XEXP (op0, 1))
11602 && mode_width <= HOST_BITS_PER_WIDE_INT
11603 && ((INTVAL (XEXP (op0, 1)) & GET_MODE_MASK (mode))
11604 == (unsigned HOST_WIDE_INT) 1 << (mode_width - 1)))
11605 {
11606 op0 = XEXP (op0, 0);
11607 code = (code == EQ ? GE : LT);
11608 continue;
11609 }
11610
11611 /* If this AND operation is really a ZERO_EXTEND from a narrower
11612 mode, the constant fits within that mode, and this is either an
11613 equality or unsigned comparison, try to do this comparison in
11614 the narrower mode.
11615
11616 Note that in:
11617
11618 (ne:DI (and:DI (reg:DI 4) (const_int 0xffffffff)) (const_int 0))
11619 -> (ne:DI (reg:SI 4) (const_int 0))
11620
11621 unless TRULY_NOOP_TRUNCATION allows it or the register is
11622 known to hold a value of the required mode the
11623 transformation is invalid. */
11624 if ((equality_comparison_p || unsigned_comparison_p)
11625 && CONST_INT_P (XEXP (op0, 1))
11626 && (i = exact_log2 ((UINTVAL (XEXP (op0, 1))
11627 & GET_MODE_MASK (mode))
11628 + 1)) >= 0
11629 && const_op >> i == 0
11630 && (tmode = mode_for_size (i, MODE_INT, 1)) != BLKmode
11631 && (TRULY_NOOP_TRUNCATION_MODES_P (tmode, GET_MODE (op0))
11632 || (REG_P (XEXP (op0, 0))
11633 && reg_truncated_to_mode (tmode, XEXP (op0, 0)))))
11634 {
11635 op0 = gen_lowpart (tmode, XEXP (op0, 0));
11636 continue;
11637 }
11638
11639 /* If this is (and:M1 (subreg:M2 X 0) (const_int C1)) where C1
11640 fits in both M1 and M2 and the SUBREG is either paradoxical
11641 or represents the low part, permute the SUBREG and the AND
11642 and try again. */
11643 if (GET_CODE (XEXP (op0, 0)) == SUBREG)
11644 {
11645 unsigned HOST_WIDE_INT c1;
11646 tmode = GET_MODE (SUBREG_REG (XEXP (op0, 0)));
11647 /* Require an integral mode, to avoid creating something like
11648 (AND:SF ...). */
11649 if (SCALAR_INT_MODE_P (tmode)
11650 /* It is unsafe to commute the AND into the SUBREG if the
11651 SUBREG is paradoxical and WORD_REGISTER_OPERATIONS is
11652 not defined. As originally written the upper bits
11653 have a defined value due to the AND operation.
11654 However, if we commute the AND inside the SUBREG then
11655 they no longer have defined values and the meaning of
11656 the code has been changed. */
11657 && (0
11658 #ifdef WORD_REGISTER_OPERATIONS
11659 || (mode_width > GET_MODE_PRECISION (tmode)
11660 && mode_width <= BITS_PER_WORD)
11661 #endif
11662 || (mode_width <= GET_MODE_PRECISION (tmode)
11663 && subreg_lowpart_p (XEXP (op0, 0))))
11664 && CONST_INT_P (XEXP (op0, 1))
11665 && mode_width <= HOST_BITS_PER_WIDE_INT
11666 && HWI_COMPUTABLE_MODE_P (tmode)
11667 && ((c1 = INTVAL (XEXP (op0, 1))) & ~mask) == 0
11668 && (c1 & ~GET_MODE_MASK (tmode)) == 0
11669 && c1 != mask
11670 && c1 != GET_MODE_MASK (tmode))
11671 {
11672 op0 = simplify_gen_binary (AND, tmode,
11673 SUBREG_REG (XEXP (op0, 0)),
11674 gen_int_mode (c1, tmode));
11675 op0 = gen_lowpart (mode, op0);
11676 continue;
11677 }
11678 }
11679
11680 /* Convert (ne (and (not X) 1) 0) to (eq (and X 1) 0). */
11681 if (const_op == 0 && equality_comparison_p
11682 && XEXP (op0, 1) == const1_rtx
11683 && GET_CODE (XEXP (op0, 0)) == NOT)
11684 {
11685 op0 = simplify_and_const_int (NULL_RTX, mode,
11686 XEXP (XEXP (op0, 0), 0), 1);
11687 code = (code == NE ? EQ : NE);
11688 continue;
11689 }
11690
11691 /* Convert (ne (and (lshiftrt (not X)) 1) 0) to
11692 (eq (and (lshiftrt X) 1) 0).
11693 Also handle the case where (not X) is expressed using xor. */
11694 if (const_op == 0 && equality_comparison_p
11695 && XEXP (op0, 1) == const1_rtx
11696 && GET_CODE (XEXP (op0, 0)) == LSHIFTRT)
11697 {
11698 rtx shift_op = XEXP (XEXP (op0, 0), 0);
11699 rtx shift_count = XEXP (XEXP (op0, 0), 1);
11700
11701 if (GET_CODE (shift_op) == NOT
11702 || (GET_CODE (shift_op) == XOR
11703 && CONST_INT_P (XEXP (shift_op, 1))
11704 && CONST_INT_P (shift_count)
11705 && HWI_COMPUTABLE_MODE_P (mode)
11706 && (UINTVAL (XEXP (shift_op, 1))
11707 == (unsigned HOST_WIDE_INT) 1
11708 << INTVAL (shift_count))))
11709 {
11710 op0
11711 = gen_rtx_LSHIFTRT (mode, XEXP (shift_op, 0), shift_count);
11712 op0 = simplify_and_const_int (NULL_RTX, mode, op0, 1);
11713 code = (code == NE ? EQ : NE);
11714 continue;
11715 }
11716 }
11717 break;
11718
11719 case ASHIFT:
11720 /* If we have (compare (ashift FOO N) (const_int C)) and
11721 the high order N bits of FOO (N+1 if an inequality comparison)
11722 are known to be zero, we can do this by comparing FOO with C
11723 shifted right N bits so long as the low-order N bits of C are
11724 zero. */
11725 if (CONST_INT_P (XEXP (op0, 1))
11726 && INTVAL (XEXP (op0, 1)) >= 0
11727 && ((INTVAL (XEXP (op0, 1)) + ! equality_comparison_p)
11728 < HOST_BITS_PER_WIDE_INT)
11729 && (((unsigned HOST_WIDE_INT) const_op
11730 & (((unsigned HOST_WIDE_INT) 1 << INTVAL (XEXP (op0, 1)))
11731 - 1)) == 0)
11732 && mode_width <= HOST_BITS_PER_WIDE_INT
11733 && (nonzero_bits (XEXP (op0, 0), mode)
11734 & ~(mask >> (INTVAL (XEXP (op0, 1))
11735 + ! equality_comparison_p))) == 0)
11736 {
11737 /* We must perform a logical shift, not an arithmetic one,
11738 as we want the top N bits of C to be zero. */
11739 unsigned HOST_WIDE_INT temp = const_op & GET_MODE_MASK (mode);
11740
11741 temp >>= INTVAL (XEXP (op0, 1));
11742 op1 = gen_int_mode (temp, mode);
11743 op0 = XEXP (op0, 0);
11744 continue;
11745 }
11746
11747 /* If we are doing a sign bit comparison, it means we are testing
11748 a particular bit. Convert it to the appropriate AND. */
11749 if (sign_bit_comparison_p && CONST_INT_P (XEXP (op0, 1))
11750 && mode_width <= HOST_BITS_PER_WIDE_INT)
11751 {
11752 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
11753 ((unsigned HOST_WIDE_INT) 1
11754 << (mode_width - 1
11755 - INTVAL (XEXP (op0, 1)))));
11756 code = (code == LT ? NE : EQ);
11757 continue;
11758 }
11759
11760 /* If this an equality comparison with zero and we are shifting
11761 the low bit to the sign bit, we can convert this to an AND of the
11762 low-order bit. */
11763 if (const_op == 0 && equality_comparison_p
11764 && CONST_INT_P (XEXP (op0, 1))
11765 && UINTVAL (XEXP (op0, 1)) == mode_width - 1)
11766 {
11767 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0), 1);
11768 continue;
11769 }
11770 break;
11771
11772 case ASHIFTRT:
11773 /* If this is an equality comparison with zero, we can do this
11774 as a logical shift, which might be much simpler. */
11775 if (equality_comparison_p && const_op == 0
11776 && CONST_INT_P (XEXP (op0, 1)))
11777 {
11778 op0 = simplify_shift_const (NULL_RTX, LSHIFTRT, mode,
11779 XEXP (op0, 0),
11780 INTVAL (XEXP (op0, 1)));
11781 continue;
11782 }
11783
11784 /* If OP0 is a sign extension and CODE is not an unsigned comparison,
11785 do the comparison in a narrower mode. */
11786 if (! unsigned_comparison_p
11787 && CONST_INT_P (XEXP (op0, 1))
11788 && GET_CODE (XEXP (op0, 0)) == ASHIFT
11789 && XEXP (op0, 1) == XEXP (XEXP (op0, 0), 1)
11790 && (tmode = mode_for_size (mode_width - INTVAL (XEXP (op0, 1)),
11791 MODE_INT, 1)) != BLKmode
11792 && (((unsigned HOST_WIDE_INT) const_op
11793 + (GET_MODE_MASK (tmode) >> 1) + 1)
11794 <= GET_MODE_MASK (tmode)))
11795 {
11796 op0 = gen_lowpart (tmode, XEXP (XEXP (op0, 0), 0));
11797 continue;
11798 }
11799
11800 /* Likewise if OP0 is a PLUS of a sign extension with a
11801 constant, which is usually represented with the PLUS
11802 between the shifts. */
11803 if (! unsigned_comparison_p
11804 && CONST_INT_P (XEXP (op0, 1))
11805 && GET_CODE (XEXP (op0, 0)) == PLUS
11806 && CONST_INT_P (XEXP (XEXP (op0, 0), 1))
11807 && GET_CODE (XEXP (XEXP (op0, 0), 0)) == ASHIFT
11808 && XEXP (op0, 1) == XEXP (XEXP (XEXP (op0, 0), 0), 1)
11809 && (tmode = mode_for_size (mode_width - INTVAL (XEXP (op0, 1)),
11810 MODE_INT, 1)) != BLKmode
11811 && (((unsigned HOST_WIDE_INT) const_op
11812 + (GET_MODE_MASK (tmode) >> 1) + 1)
11813 <= GET_MODE_MASK (tmode)))
11814 {
11815 rtx inner = XEXP (XEXP (XEXP (op0, 0), 0), 0);
11816 rtx add_const = XEXP (XEXP (op0, 0), 1);
11817 rtx new_const = simplify_gen_binary (ASHIFTRT, GET_MODE (op0),
11818 add_const, XEXP (op0, 1));
11819
11820 op0 = simplify_gen_binary (PLUS, tmode,
11821 gen_lowpart (tmode, inner),
11822 new_const);
11823 continue;
11824 }
11825
11826 /* ... fall through ... */
11827 case LSHIFTRT:
11828 /* If we have (compare (xshiftrt FOO N) (const_int C)) and
11829 the low order N bits of FOO are known to be zero, we can do this
11830 by comparing FOO with C shifted left N bits so long as no
11831 overflow occurs. Even if the low order N bits of FOO aren't known
11832 to be zero, if the comparison is >= or < we can use the same
11833 optimization and for > or <= by setting all the low
11834 order N bits in the comparison constant. */
11835 if (CONST_INT_P (XEXP (op0, 1))
11836 && INTVAL (XEXP (op0, 1)) > 0
11837 && INTVAL (XEXP (op0, 1)) < HOST_BITS_PER_WIDE_INT
11838 && mode_width <= HOST_BITS_PER_WIDE_INT
11839 && (((unsigned HOST_WIDE_INT) const_op
11840 + (GET_CODE (op0) != LSHIFTRT
11841 ? ((GET_MODE_MASK (mode) >> INTVAL (XEXP (op0, 1)) >> 1)
11842 + 1)
11843 : 0))
11844 <= GET_MODE_MASK (mode) >> INTVAL (XEXP (op0, 1))))
11845 {
11846 unsigned HOST_WIDE_INT low_bits
11847 = (nonzero_bits (XEXP (op0, 0), mode)
11848 & (((unsigned HOST_WIDE_INT) 1
11849 << INTVAL (XEXP (op0, 1))) - 1));
11850 if (low_bits == 0 || !equality_comparison_p)
11851 {
11852 /* If the shift was logical, then we must make the condition
11853 unsigned. */
11854 if (GET_CODE (op0) == LSHIFTRT)
11855 code = unsigned_condition (code);
11856
11857 const_op <<= INTVAL (XEXP (op0, 1));
11858 if (low_bits != 0
11859 && (code == GT || code == GTU
11860 || code == LE || code == LEU))
11861 const_op
11862 |= (((HOST_WIDE_INT) 1 << INTVAL (XEXP (op0, 1))) - 1);
11863 op1 = GEN_INT (const_op);
11864 op0 = XEXP (op0, 0);
11865 continue;
11866 }
11867 }
11868
11869 /* If we are using this shift to extract just the sign bit, we
11870 can replace this with an LT or GE comparison. */
11871 if (const_op == 0
11872 && (equality_comparison_p || sign_bit_comparison_p)
11873 && CONST_INT_P (XEXP (op0, 1))
11874 && UINTVAL (XEXP (op0, 1)) == mode_width - 1)
11875 {
11876 op0 = XEXP (op0, 0);
11877 code = (code == NE || code == GT ? LT : GE);
11878 continue;
11879 }
11880 break;
11881
11882 default:
11883 break;
11884 }
11885
11886 break;
11887 }
11888
11889 /* Now make any compound operations involved in this comparison. Then,
11890 check for an outmost SUBREG on OP0 that is not doing anything or is
11891 paradoxical. The latter transformation must only be performed when
11892 it is known that the "extra" bits will be the same in op0 and op1 or
11893 that they don't matter. There are three cases to consider:
11894
11895 1. SUBREG_REG (op0) is a register. In this case the bits are don't
11896 care bits and we can assume they have any convenient value. So
11897 making the transformation is safe.
11898
11899 2. SUBREG_REG (op0) is a memory and LOAD_EXTEND_OP is not defined.
11900 In this case the upper bits of op0 are undefined. We should not make
11901 the simplification in that case as we do not know the contents of
11902 those bits.
11903
11904 3. SUBREG_REG (op0) is a memory and LOAD_EXTEND_OP is defined and not
11905 UNKNOWN. In that case we know those bits are zeros or ones. We must
11906 also be sure that they are the same as the upper bits of op1.
11907
11908 We can never remove a SUBREG for a non-equality comparison because
11909 the sign bit is in a different place in the underlying object. */
11910
11911 op0 = make_compound_operation (op0, op1 == const0_rtx ? COMPARE : SET);
11912 op1 = make_compound_operation (op1, SET);
11913
11914 if (GET_CODE (op0) == SUBREG && subreg_lowpart_p (op0)
11915 && GET_MODE_CLASS (GET_MODE (op0)) == MODE_INT
11916 && GET_MODE_CLASS (GET_MODE (SUBREG_REG (op0))) == MODE_INT
11917 && (code == NE || code == EQ))
11918 {
11919 if (paradoxical_subreg_p (op0))
11920 {
11921 /* For paradoxical subregs, allow case 1 as above. Case 3 isn't
11922 implemented. */
11923 if (REG_P (SUBREG_REG (op0)))
11924 {
11925 op0 = SUBREG_REG (op0);
11926 op1 = gen_lowpart (GET_MODE (op0), op1);
11927 }
11928 }
11929 else if ((GET_MODE_PRECISION (GET_MODE (SUBREG_REG (op0)))
11930 <= HOST_BITS_PER_WIDE_INT)
11931 && (nonzero_bits (SUBREG_REG (op0),
11932 GET_MODE (SUBREG_REG (op0)))
11933 & ~GET_MODE_MASK (GET_MODE (op0))) == 0)
11934 {
11935 tem = gen_lowpart (GET_MODE (SUBREG_REG (op0)), op1);
11936
11937 if ((nonzero_bits (tem, GET_MODE (SUBREG_REG (op0)))
11938 & ~GET_MODE_MASK (GET_MODE (op0))) == 0)
11939 op0 = SUBREG_REG (op0), op1 = tem;
11940 }
11941 }
11942
11943 /* We now do the opposite procedure: Some machines don't have compare
11944 insns in all modes. If OP0's mode is an integer mode smaller than a
11945 word and we can't do a compare in that mode, see if there is a larger
11946 mode for which we can do the compare. There are a number of cases in
11947 which we can use the wider mode. */
11948
11949 mode = GET_MODE (op0);
11950 if (mode != VOIDmode && GET_MODE_CLASS (mode) == MODE_INT
11951 && GET_MODE_SIZE (mode) < UNITS_PER_WORD
11952 && ! have_insn_for (COMPARE, mode))
11953 for (tmode = GET_MODE_WIDER_MODE (mode);
11954 (tmode != VOIDmode && HWI_COMPUTABLE_MODE_P (tmode));
11955 tmode = GET_MODE_WIDER_MODE (tmode))
11956 if (have_insn_for (COMPARE, tmode))
11957 {
11958 int zero_extended;
11959
11960 /* If this is a test for negative, we can make an explicit
11961 test of the sign bit. Test this first so we can use
11962 a paradoxical subreg to extend OP0. */
11963
11964 if (op1 == const0_rtx && (code == LT || code == GE)
11965 && HWI_COMPUTABLE_MODE_P (mode))
11966 {
11967 unsigned HOST_WIDE_INT sign
11968 = (unsigned HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (mode) - 1);
11969 op0 = simplify_gen_binary (AND, tmode,
11970 gen_lowpart (tmode, op0),
11971 gen_int_mode (sign, mode));
11972 code = (code == LT) ? NE : EQ;
11973 break;
11974 }
11975
11976 /* If the only nonzero bits in OP0 and OP1 are those in the
11977 narrower mode and this is an equality or unsigned comparison,
11978 we can use the wider mode. Similarly for sign-extended
11979 values, in which case it is true for all comparisons. */
11980 zero_extended = ((code == EQ || code == NE
11981 || code == GEU || code == GTU
11982 || code == LEU || code == LTU)
11983 && (nonzero_bits (op0, tmode)
11984 & ~GET_MODE_MASK (mode)) == 0
11985 && ((CONST_INT_P (op1)
11986 || (nonzero_bits (op1, tmode)
11987 & ~GET_MODE_MASK (mode)) == 0)));
11988
11989 if (zero_extended
11990 || ((num_sign_bit_copies (op0, tmode)
11991 > (unsigned int) (GET_MODE_PRECISION (tmode)
11992 - GET_MODE_PRECISION (mode)))
11993 && (num_sign_bit_copies (op1, tmode)
11994 > (unsigned int) (GET_MODE_PRECISION (tmode)
11995 - GET_MODE_PRECISION (mode)))))
11996 {
11997 /* If OP0 is an AND and we don't have an AND in MODE either,
11998 make a new AND in the proper mode. */
11999 if (GET_CODE (op0) == AND
12000 && !have_insn_for (AND, mode))
12001 op0 = simplify_gen_binary (AND, tmode,
12002 gen_lowpart (tmode,
12003 XEXP (op0, 0)),
12004 gen_lowpart (tmode,
12005 XEXP (op0, 1)));
12006 else
12007 {
12008 if (zero_extended)
12009 {
12010 op0 = simplify_gen_unary (ZERO_EXTEND, tmode, op0, mode);
12011 op1 = simplify_gen_unary (ZERO_EXTEND, tmode, op1, mode);
12012 }
12013 else
12014 {
12015 op0 = simplify_gen_unary (SIGN_EXTEND, tmode, op0, mode);
12016 op1 = simplify_gen_unary (SIGN_EXTEND, tmode, op1, mode);
12017 }
12018 break;
12019 }
12020 }
12021 }
12022
12023 /* We may have changed the comparison operands. Re-canonicalize. */
12024 if (swap_commutative_operands_p (op0, op1))
12025 {
12026 tem = op0, op0 = op1, op1 = tem;
12027 code = swap_condition (code);
12028 }
12029
12030 /* If this machine only supports a subset of valid comparisons, see if we
12031 can convert an unsupported one into a supported one. */
12032 target_canonicalize_comparison (&code, &op0, &op1, 0);
12033
12034 *pop0 = op0;
12035 *pop1 = op1;
12036
12037 return code;
12038 }
12039 \f
12040 /* Utility function for record_value_for_reg. Count number of
12041 rtxs in X. */
12042 static int
12043 count_rtxs (rtx x)
12044 {
12045 enum rtx_code code = GET_CODE (x);
12046 const char *fmt;
12047 int i, j, ret = 1;
12048
12049 if (GET_RTX_CLASS (code) == RTX_BIN_ARITH
12050 || GET_RTX_CLASS (code) == RTX_COMM_ARITH)
12051 {
12052 rtx x0 = XEXP (x, 0);
12053 rtx x1 = XEXP (x, 1);
12054
12055 if (x0 == x1)
12056 return 1 + 2 * count_rtxs (x0);
12057
12058 if ((GET_RTX_CLASS (GET_CODE (x1)) == RTX_BIN_ARITH
12059 || GET_RTX_CLASS (GET_CODE (x1)) == RTX_COMM_ARITH)
12060 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
12061 return 2 + 2 * count_rtxs (x0)
12062 + count_rtxs (x == XEXP (x1, 0)
12063 ? XEXP (x1, 1) : XEXP (x1, 0));
12064
12065 if ((GET_RTX_CLASS (GET_CODE (x0)) == RTX_BIN_ARITH
12066 || GET_RTX_CLASS (GET_CODE (x0)) == RTX_COMM_ARITH)
12067 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
12068 return 2 + 2 * count_rtxs (x1)
12069 + count_rtxs (x == XEXP (x0, 0)
12070 ? XEXP (x0, 1) : XEXP (x0, 0));
12071 }
12072
12073 fmt = GET_RTX_FORMAT (code);
12074 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
12075 if (fmt[i] == 'e')
12076 ret += count_rtxs (XEXP (x, i));
12077 else if (fmt[i] == 'E')
12078 for (j = 0; j < XVECLEN (x, i); j++)
12079 ret += count_rtxs (XVECEXP (x, i, j));
12080
12081 return ret;
12082 }
12083 \f
12084 /* Utility function for following routine. Called when X is part of a value
12085 being stored into last_set_value. Sets last_set_table_tick
12086 for each register mentioned. Similar to mention_regs in cse.c */
12087
12088 static void
12089 update_table_tick (rtx x)
12090 {
12091 enum rtx_code code = GET_CODE (x);
12092 const char *fmt = GET_RTX_FORMAT (code);
12093 int i, j;
12094
12095 if (code == REG)
12096 {
12097 unsigned int regno = REGNO (x);
12098 unsigned int endregno = END_REGNO (x);
12099 unsigned int r;
12100
12101 for (r = regno; r < endregno; r++)
12102 {
12103 reg_stat_type *rsp = &reg_stat[r];
12104 rsp->last_set_table_tick = label_tick;
12105 }
12106
12107 return;
12108 }
12109
12110 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
12111 if (fmt[i] == 'e')
12112 {
12113 /* Check for identical subexpressions. If x contains
12114 identical subexpression we only have to traverse one of
12115 them. */
12116 if (i == 0 && ARITHMETIC_P (x))
12117 {
12118 /* Note that at this point x1 has already been
12119 processed. */
12120 rtx x0 = XEXP (x, 0);
12121 rtx x1 = XEXP (x, 1);
12122
12123 /* If x0 and x1 are identical then there is no need to
12124 process x0. */
12125 if (x0 == x1)
12126 break;
12127
12128 /* If x0 is identical to a subexpression of x1 then while
12129 processing x1, x0 has already been processed. Thus we
12130 are done with x. */
12131 if (ARITHMETIC_P (x1)
12132 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
12133 break;
12134
12135 /* If x1 is identical to a subexpression of x0 then we
12136 still have to process the rest of x0. */
12137 if (ARITHMETIC_P (x0)
12138 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
12139 {
12140 update_table_tick (XEXP (x0, x1 == XEXP (x0, 0) ? 1 : 0));
12141 break;
12142 }
12143 }
12144
12145 update_table_tick (XEXP (x, i));
12146 }
12147 else if (fmt[i] == 'E')
12148 for (j = 0; j < XVECLEN (x, i); j++)
12149 update_table_tick (XVECEXP (x, i, j));
12150 }
12151
12152 /* Record that REG is set to VALUE in insn INSN. If VALUE is zero, we
12153 are saying that the register is clobbered and we no longer know its
12154 value. If INSN is zero, don't update reg_stat[].last_set; this is
12155 only permitted with VALUE also zero and is used to invalidate the
12156 register. */
12157
12158 static void
12159 record_value_for_reg (rtx reg, rtx insn, rtx value)
12160 {
12161 unsigned int regno = REGNO (reg);
12162 unsigned int endregno = END_REGNO (reg);
12163 unsigned int i;
12164 reg_stat_type *rsp;
12165
12166 /* If VALUE contains REG and we have a previous value for REG, substitute
12167 the previous value. */
12168 if (value && insn && reg_overlap_mentioned_p (reg, value))
12169 {
12170 rtx tem;
12171
12172 /* Set things up so get_last_value is allowed to see anything set up to
12173 our insn. */
12174 subst_low_luid = DF_INSN_LUID (insn);
12175 tem = get_last_value (reg);
12176
12177 /* If TEM is simply a binary operation with two CLOBBERs as operands,
12178 it isn't going to be useful and will take a lot of time to process,
12179 so just use the CLOBBER. */
12180
12181 if (tem)
12182 {
12183 if (ARITHMETIC_P (tem)
12184 && GET_CODE (XEXP (tem, 0)) == CLOBBER
12185 && GET_CODE (XEXP (tem, 1)) == CLOBBER)
12186 tem = XEXP (tem, 0);
12187 else if (count_occurrences (value, reg, 1) >= 2)
12188 {
12189 /* If there are two or more occurrences of REG in VALUE,
12190 prevent the value from growing too much. */
12191 if (count_rtxs (tem) > MAX_LAST_VALUE_RTL)
12192 tem = gen_rtx_CLOBBER (GET_MODE (tem), const0_rtx);
12193 }
12194
12195 value = replace_rtx (copy_rtx (value), reg, tem);
12196 }
12197 }
12198
12199 /* For each register modified, show we don't know its value, that
12200 we don't know about its bitwise content, that its value has been
12201 updated, and that we don't know the location of the death of the
12202 register. */
12203 for (i = regno; i < endregno; i++)
12204 {
12205 rsp = &reg_stat[i];
12206
12207 if (insn)
12208 rsp->last_set = insn;
12209
12210 rsp->last_set_value = 0;
12211 rsp->last_set_mode = VOIDmode;
12212 rsp->last_set_nonzero_bits = 0;
12213 rsp->last_set_sign_bit_copies = 0;
12214 rsp->last_death = 0;
12215 rsp->truncated_to_mode = VOIDmode;
12216 }
12217
12218 /* Mark registers that are being referenced in this value. */
12219 if (value)
12220 update_table_tick (value);
12221
12222 /* Now update the status of each register being set.
12223 If someone is using this register in this block, set this register
12224 to invalid since we will get confused between the two lives in this
12225 basic block. This makes using this register always invalid. In cse, we
12226 scan the table to invalidate all entries using this register, but this
12227 is too much work for us. */
12228
12229 for (i = regno; i < endregno; i++)
12230 {
12231 rsp = &reg_stat[i];
12232 rsp->last_set_label = label_tick;
12233 if (!insn
12234 || (value && rsp->last_set_table_tick >= label_tick_ebb_start))
12235 rsp->last_set_invalid = 1;
12236 else
12237 rsp->last_set_invalid = 0;
12238 }
12239
12240 /* The value being assigned might refer to X (like in "x++;"). In that
12241 case, we must replace it with (clobber (const_int 0)) to prevent
12242 infinite loops. */
12243 rsp = &reg_stat[regno];
12244 if (value && !get_last_value_validate (&value, insn, label_tick, 0))
12245 {
12246 value = copy_rtx (value);
12247 if (!get_last_value_validate (&value, insn, label_tick, 1))
12248 value = 0;
12249 }
12250
12251 /* For the main register being modified, update the value, the mode, the
12252 nonzero bits, and the number of sign bit copies. */
12253
12254 rsp->last_set_value = value;
12255
12256 if (value)
12257 {
12258 enum machine_mode mode = GET_MODE (reg);
12259 subst_low_luid = DF_INSN_LUID (insn);
12260 rsp->last_set_mode = mode;
12261 if (GET_MODE_CLASS (mode) == MODE_INT
12262 && HWI_COMPUTABLE_MODE_P (mode))
12263 mode = nonzero_bits_mode;
12264 rsp->last_set_nonzero_bits = nonzero_bits (value, mode);
12265 rsp->last_set_sign_bit_copies
12266 = num_sign_bit_copies (value, GET_MODE (reg));
12267 }
12268 }
12269
12270 /* Called via note_stores from record_dead_and_set_regs to handle one
12271 SET or CLOBBER in an insn. DATA is the instruction in which the
12272 set is occurring. */
12273
12274 static void
12275 record_dead_and_set_regs_1 (rtx dest, const_rtx setter, void *data)
12276 {
12277 rtx record_dead_insn = (rtx) data;
12278
12279 if (GET_CODE (dest) == SUBREG)
12280 dest = SUBREG_REG (dest);
12281
12282 if (!record_dead_insn)
12283 {
12284 if (REG_P (dest))
12285 record_value_for_reg (dest, NULL_RTX, NULL_RTX);
12286 return;
12287 }
12288
12289 if (REG_P (dest))
12290 {
12291 /* If we are setting the whole register, we know its value. Otherwise
12292 show that we don't know the value. We can handle SUBREG in
12293 some cases. */
12294 if (GET_CODE (setter) == SET && dest == SET_DEST (setter))
12295 record_value_for_reg (dest, record_dead_insn, SET_SRC (setter));
12296 else if (GET_CODE (setter) == SET
12297 && GET_CODE (SET_DEST (setter)) == SUBREG
12298 && SUBREG_REG (SET_DEST (setter)) == dest
12299 && GET_MODE_PRECISION (GET_MODE (dest)) <= BITS_PER_WORD
12300 && subreg_lowpart_p (SET_DEST (setter)))
12301 record_value_for_reg (dest, record_dead_insn,
12302 gen_lowpart (GET_MODE (dest),
12303 SET_SRC (setter)));
12304 else
12305 record_value_for_reg (dest, record_dead_insn, NULL_RTX);
12306 }
12307 else if (MEM_P (dest)
12308 /* Ignore pushes, they clobber nothing. */
12309 && ! push_operand (dest, GET_MODE (dest)))
12310 mem_last_set = DF_INSN_LUID (record_dead_insn);
12311 }
12312
12313 /* Update the records of when each REG was most recently set or killed
12314 for the things done by INSN. This is the last thing done in processing
12315 INSN in the combiner loop.
12316
12317 We update reg_stat[], in particular fields last_set, last_set_value,
12318 last_set_mode, last_set_nonzero_bits, last_set_sign_bit_copies,
12319 last_death, and also the similar information mem_last_set (which insn
12320 most recently modified memory) and last_call_luid (which insn was the
12321 most recent subroutine call). */
12322
12323 static void
12324 record_dead_and_set_regs (rtx insn)
12325 {
12326 rtx link;
12327 unsigned int i;
12328
12329 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
12330 {
12331 if (REG_NOTE_KIND (link) == REG_DEAD
12332 && REG_P (XEXP (link, 0)))
12333 {
12334 unsigned int regno = REGNO (XEXP (link, 0));
12335 unsigned int endregno = END_REGNO (XEXP (link, 0));
12336
12337 for (i = regno; i < endregno; i++)
12338 {
12339 reg_stat_type *rsp;
12340
12341 rsp = &reg_stat[i];
12342 rsp->last_death = insn;
12343 }
12344 }
12345 else if (REG_NOTE_KIND (link) == REG_INC)
12346 record_value_for_reg (XEXP (link, 0), insn, NULL_RTX);
12347 }
12348
12349 if (CALL_P (insn))
12350 {
12351 hard_reg_set_iterator hrsi;
12352 EXECUTE_IF_SET_IN_HARD_REG_SET (regs_invalidated_by_call, 0, i, hrsi)
12353 {
12354 reg_stat_type *rsp;
12355
12356 rsp = &reg_stat[i];
12357 rsp->last_set_invalid = 1;
12358 rsp->last_set = insn;
12359 rsp->last_set_value = 0;
12360 rsp->last_set_mode = VOIDmode;
12361 rsp->last_set_nonzero_bits = 0;
12362 rsp->last_set_sign_bit_copies = 0;
12363 rsp->last_death = 0;
12364 rsp->truncated_to_mode = VOIDmode;
12365 }
12366
12367 last_call_luid = mem_last_set = DF_INSN_LUID (insn);
12368
12369 /* We can't combine into a call pattern. Remember, though, that
12370 the return value register is set at this LUID. We could
12371 still replace a register with the return value from the
12372 wrong subroutine call! */
12373 note_stores (PATTERN (insn), record_dead_and_set_regs_1, NULL_RTX);
12374 }
12375 else
12376 note_stores (PATTERN (insn), record_dead_and_set_regs_1, insn);
12377 }
12378
12379 /* If a SUBREG has the promoted bit set, it is in fact a property of the
12380 register present in the SUBREG, so for each such SUBREG go back and
12381 adjust nonzero and sign bit information of the registers that are
12382 known to have some zero/sign bits set.
12383
12384 This is needed because when combine blows the SUBREGs away, the
12385 information on zero/sign bits is lost and further combines can be
12386 missed because of that. */
12387
12388 static void
12389 record_promoted_value (rtx insn, rtx subreg)
12390 {
12391 struct insn_link *links;
12392 rtx set;
12393 unsigned int regno = REGNO (SUBREG_REG (subreg));
12394 enum machine_mode mode = GET_MODE (subreg);
12395
12396 if (GET_MODE_PRECISION (mode) > HOST_BITS_PER_WIDE_INT)
12397 return;
12398
12399 for (links = LOG_LINKS (insn); links;)
12400 {
12401 reg_stat_type *rsp;
12402
12403 insn = links->insn;
12404 set = single_set (insn);
12405
12406 if (! set || !REG_P (SET_DEST (set))
12407 || REGNO (SET_DEST (set)) != regno
12408 || GET_MODE (SET_DEST (set)) != GET_MODE (SUBREG_REG (subreg)))
12409 {
12410 links = links->next;
12411 continue;
12412 }
12413
12414 rsp = &reg_stat[regno];
12415 if (rsp->last_set == insn)
12416 {
12417 if (SUBREG_PROMOTED_UNSIGNED_P (subreg) > 0)
12418 rsp->last_set_nonzero_bits &= GET_MODE_MASK (mode);
12419 }
12420
12421 if (REG_P (SET_SRC (set)))
12422 {
12423 regno = REGNO (SET_SRC (set));
12424 links = LOG_LINKS (insn);
12425 }
12426 else
12427 break;
12428 }
12429 }
12430
12431 /* Check if X, a register, is known to contain a value already
12432 truncated to MODE. In this case we can use a subreg to refer to
12433 the truncated value even though in the generic case we would need
12434 an explicit truncation. */
12435
12436 static bool
12437 reg_truncated_to_mode (enum machine_mode mode, const_rtx x)
12438 {
12439 reg_stat_type *rsp = &reg_stat[REGNO (x)];
12440 enum machine_mode truncated = rsp->truncated_to_mode;
12441
12442 if (truncated == 0
12443 || rsp->truncation_label < label_tick_ebb_start)
12444 return false;
12445 if (GET_MODE_SIZE (truncated) <= GET_MODE_SIZE (mode))
12446 return true;
12447 if (TRULY_NOOP_TRUNCATION_MODES_P (mode, truncated))
12448 return true;
12449 return false;
12450 }
12451
12452 /* Callback for for_each_rtx. If *P is a hard reg or a subreg record the mode
12453 that the register is accessed in. For non-TRULY_NOOP_TRUNCATION targets we
12454 might be able to turn a truncate into a subreg using this information.
12455 Return -1 if traversing *P is complete or 0 otherwise. */
12456
12457 static int
12458 record_truncated_value (rtx *p, void *data ATTRIBUTE_UNUSED)
12459 {
12460 rtx x = *p;
12461 enum machine_mode truncated_mode;
12462 reg_stat_type *rsp;
12463
12464 if (GET_CODE (x) == SUBREG && REG_P (SUBREG_REG (x)))
12465 {
12466 enum machine_mode original_mode = GET_MODE (SUBREG_REG (x));
12467 truncated_mode = GET_MODE (x);
12468
12469 if (GET_MODE_SIZE (original_mode) <= GET_MODE_SIZE (truncated_mode))
12470 return -1;
12471
12472 if (TRULY_NOOP_TRUNCATION_MODES_P (truncated_mode, original_mode))
12473 return -1;
12474
12475 x = SUBREG_REG (x);
12476 }
12477 /* ??? For hard-regs we now record everything. We might be able to
12478 optimize this using last_set_mode. */
12479 else if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
12480 truncated_mode = GET_MODE (x);
12481 else
12482 return 0;
12483
12484 rsp = &reg_stat[REGNO (x)];
12485 if (rsp->truncated_to_mode == 0
12486 || rsp->truncation_label < label_tick_ebb_start
12487 || (GET_MODE_SIZE (truncated_mode)
12488 < GET_MODE_SIZE (rsp->truncated_to_mode)))
12489 {
12490 rsp->truncated_to_mode = truncated_mode;
12491 rsp->truncation_label = label_tick;
12492 }
12493
12494 return -1;
12495 }
12496
12497 /* Callback for note_uses. Find hardregs and subregs of pseudos and
12498 the modes they are used in. This can help truning TRUNCATEs into
12499 SUBREGs. */
12500
12501 static void
12502 record_truncated_values (rtx *x, void *data ATTRIBUTE_UNUSED)
12503 {
12504 for_each_rtx (x, record_truncated_value, NULL);
12505 }
12506
12507 /* Scan X for promoted SUBREGs. For each one found,
12508 note what it implies to the registers used in it. */
12509
12510 static void
12511 check_promoted_subreg (rtx insn, rtx x)
12512 {
12513 if (GET_CODE (x) == SUBREG
12514 && SUBREG_PROMOTED_VAR_P (x)
12515 && REG_P (SUBREG_REG (x)))
12516 record_promoted_value (insn, x);
12517 else
12518 {
12519 const char *format = GET_RTX_FORMAT (GET_CODE (x));
12520 int i, j;
12521
12522 for (i = 0; i < GET_RTX_LENGTH (GET_CODE (x)); i++)
12523 switch (format[i])
12524 {
12525 case 'e':
12526 check_promoted_subreg (insn, XEXP (x, i));
12527 break;
12528 case 'V':
12529 case 'E':
12530 if (XVEC (x, i) != 0)
12531 for (j = 0; j < XVECLEN (x, i); j++)
12532 check_promoted_subreg (insn, XVECEXP (x, i, j));
12533 break;
12534 }
12535 }
12536 }
12537 \f
12538 /* Verify that all the registers and memory references mentioned in *LOC are
12539 still valid. *LOC was part of a value set in INSN when label_tick was
12540 equal to TICK. Return 0 if some are not. If REPLACE is nonzero, replace
12541 the invalid references with (clobber (const_int 0)) and return 1. This
12542 replacement is useful because we often can get useful information about
12543 the form of a value (e.g., if it was produced by a shift that always
12544 produces -1 or 0) even though we don't know exactly what registers it
12545 was produced from. */
12546
12547 static int
12548 get_last_value_validate (rtx *loc, rtx insn, int tick, int replace)
12549 {
12550 rtx x = *loc;
12551 const char *fmt = GET_RTX_FORMAT (GET_CODE (x));
12552 int len = GET_RTX_LENGTH (GET_CODE (x));
12553 int i, j;
12554
12555 if (REG_P (x))
12556 {
12557 unsigned int regno = REGNO (x);
12558 unsigned int endregno = END_REGNO (x);
12559 unsigned int j;
12560
12561 for (j = regno; j < endregno; j++)
12562 {
12563 reg_stat_type *rsp = &reg_stat[j];
12564 if (rsp->last_set_invalid
12565 /* If this is a pseudo-register that was only set once and not
12566 live at the beginning of the function, it is always valid. */
12567 || (! (regno >= FIRST_PSEUDO_REGISTER
12568 && REG_N_SETS (regno) == 1
12569 && (!REGNO_REG_SET_P
12570 (DF_LR_IN (ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb),
12571 regno)))
12572 && rsp->last_set_label > tick))
12573 {
12574 if (replace)
12575 *loc = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
12576 return replace;
12577 }
12578 }
12579
12580 return 1;
12581 }
12582 /* If this is a memory reference, make sure that there were no stores after
12583 it that might have clobbered the value. We don't have alias info, so we
12584 assume any store invalidates it. Moreover, we only have local UIDs, so
12585 we also assume that there were stores in the intervening basic blocks. */
12586 else if (MEM_P (x) && !MEM_READONLY_P (x)
12587 && (tick != label_tick || DF_INSN_LUID (insn) <= mem_last_set))
12588 {
12589 if (replace)
12590 *loc = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
12591 return replace;
12592 }
12593
12594 for (i = 0; i < len; i++)
12595 {
12596 if (fmt[i] == 'e')
12597 {
12598 /* Check for identical subexpressions. If x contains
12599 identical subexpression we only have to traverse one of
12600 them. */
12601 if (i == 1 && ARITHMETIC_P (x))
12602 {
12603 /* Note that at this point x0 has already been checked
12604 and found valid. */
12605 rtx x0 = XEXP (x, 0);
12606 rtx x1 = XEXP (x, 1);
12607
12608 /* If x0 and x1 are identical then x is also valid. */
12609 if (x0 == x1)
12610 return 1;
12611
12612 /* If x1 is identical to a subexpression of x0 then
12613 while checking x0, x1 has already been checked. Thus
12614 it is valid and so as x. */
12615 if (ARITHMETIC_P (x0)
12616 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
12617 return 1;
12618
12619 /* If x0 is identical to a subexpression of x1 then x is
12620 valid iff the rest of x1 is valid. */
12621 if (ARITHMETIC_P (x1)
12622 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
12623 return
12624 get_last_value_validate (&XEXP (x1,
12625 x0 == XEXP (x1, 0) ? 1 : 0),
12626 insn, tick, replace);
12627 }
12628
12629 if (get_last_value_validate (&XEXP (x, i), insn, tick,
12630 replace) == 0)
12631 return 0;
12632 }
12633 else if (fmt[i] == 'E')
12634 for (j = 0; j < XVECLEN (x, i); j++)
12635 if (get_last_value_validate (&XVECEXP (x, i, j),
12636 insn, tick, replace) == 0)
12637 return 0;
12638 }
12639
12640 /* If we haven't found a reason for it to be invalid, it is valid. */
12641 return 1;
12642 }
12643
12644 /* Get the last value assigned to X, if known. Some registers
12645 in the value may be replaced with (clobber (const_int 0)) if their value
12646 is known longer known reliably. */
12647
12648 static rtx
12649 get_last_value (const_rtx x)
12650 {
12651 unsigned int regno;
12652 rtx value;
12653 reg_stat_type *rsp;
12654
12655 /* If this is a non-paradoxical SUBREG, get the value of its operand and
12656 then convert it to the desired mode. If this is a paradoxical SUBREG,
12657 we cannot predict what values the "extra" bits might have. */
12658 if (GET_CODE (x) == SUBREG
12659 && subreg_lowpart_p (x)
12660 && !paradoxical_subreg_p (x)
12661 && (value = get_last_value (SUBREG_REG (x))) != 0)
12662 return gen_lowpart (GET_MODE (x), value);
12663
12664 if (!REG_P (x))
12665 return 0;
12666
12667 regno = REGNO (x);
12668 rsp = &reg_stat[regno];
12669 value = rsp->last_set_value;
12670
12671 /* If we don't have a value, or if it isn't for this basic block and
12672 it's either a hard register, set more than once, or it's a live
12673 at the beginning of the function, return 0.
12674
12675 Because if it's not live at the beginning of the function then the reg
12676 is always set before being used (is never used without being set).
12677 And, if it's set only once, and it's always set before use, then all
12678 uses must have the same last value, even if it's not from this basic
12679 block. */
12680
12681 if (value == 0
12682 || (rsp->last_set_label < label_tick_ebb_start
12683 && (regno < FIRST_PSEUDO_REGISTER
12684 || REG_N_SETS (regno) != 1
12685 || REGNO_REG_SET_P
12686 (DF_LR_IN (ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb), regno))))
12687 return 0;
12688
12689 /* If the value was set in a later insn than the ones we are processing,
12690 we can't use it even if the register was only set once. */
12691 if (rsp->last_set_label == label_tick
12692 && DF_INSN_LUID (rsp->last_set) >= subst_low_luid)
12693 return 0;
12694
12695 /* If the value has all its registers valid, return it. */
12696 if (get_last_value_validate (&value, rsp->last_set, rsp->last_set_label, 0))
12697 return value;
12698
12699 /* Otherwise, make a copy and replace any invalid register with
12700 (clobber (const_int 0)). If that fails for some reason, return 0. */
12701
12702 value = copy_rtx (value);
12703 if (get_last_value_validate (&value, rsp->last_set, rsp->last_set_label, 1))
12704 return value;
12705
12706 return 0;
12707 }
12708 \f
12709 /* Return nonzero if expression X refers to a REG or to memory
12710 that is set in an instruction more recent than FROM_LUID. */
12711
12712 static int
12713 use_crosses_set_p (const_rtx x, int from_luid)
12714 {
12715 const char *fmt;
12716 int i;
12717 enum rtx_code code = GET_CODE (x);
12718
12719 if (code == REG)
12720 {
12721 unsigned int regno = REGNO (x);
12722 unsigned endreg = END_REGNO (x);
12723
12724 #ifdef PUSH_ROUNDING
12725 /* Don't allow uses of the stack pointer to be moved,
12726 because we don't know whether the move crosses a push insn. */
12727 if (regno == STACK_POINTER_REGNUM && PUSH_ARGS)
12728 return 1;
12729 #endif
12730 for (; regno < endreg; regno++)
12731 {
12732 reg_stat_type *rsp = &reg_stat[regno];
12733 if (rsp->last_set
12734 && rsp->last_set_label == label_tick
12735 && DF_INSN_LUID (rsp->last_set) > from_luid)
12736 return 1;
12737 }
12738 return 0;
12739 }
12740
12741 if (code == MEM && mem_last_set > from_luid)
12742 return 1;
12743
12744 fmt = GET_RTX_FORMAT (code);
12745
12746 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
12747 {
12748 if (fmt[i] == 'E')
12749 {
12750 int j;
12751 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
12752 if (use_crosses_set_p (XVECEXP (x, i, j), from_luid))
12753 return 1;
12754 }
12755 else if (fmt[i] == 'e'
12756 && use_crosses_set_p (XEXP (x, i), from_luid))
12757 return 1;
12758 }
12759 return 0;
12760 }
12761 \f
12762 /* Define three variables used for communication between the following
12763 routines. */
12764
12765 static unsigned int reg_dead_regno, reg_dead_endregno;
12766 static int reg_dead_flag;
12767
12768 /* Function called via note_stores from reg_dead_at_p.
12769
12770 If DEST is within [reg_dead_regno, reg_dead_endregno), set
12771 reg_dead_flag to 1 if X is a CLOBBER and to -1 it is a SET. */
12772
12773 static void
12774 reg_dead_at_p_1 (rtx dest, const_rtx x, void *data ATTRIBUTE_UNUSED)
12775 {
12776 unsigned int regno, endregno;
12777
12778 if (!REG_P (dest))
12779 return;
12780
12781 regno = REGNO (dest);
12782 endregno = END_REGNO (dest);
12783 if (reg_dead_endregno > regno && reg_dead_regno < endregno)
12784 reg_dead_flag = (GET_CODE (x) == CLOBBER) ? 1 : -1;
12785 }
12786
12787 /* Return nonzero if REG is known to be dead at INSN.
12788
12789 We scan backwards from INSN. If we hit a REG_DEAD note or a CLOBBER
12790 referencing REG, it is dead. If we hit a SET referencing REG, it is
12791 live. Otherwise, see if it is live or dead at the start of the basic
12792 block we are in. Hard regs marked as being live in NEWPAT_USED_REGS
12793 must be assumed to be always live. */
12794
12795 static int
12796 reg_dead_at_p (rtx reg, rtx insn)
12797 {
12798 basic_block block;
12799 unsigned int i;
12800
12801 /* Set variables for reg_dead_at_p_1. */
12802 reg_dead_regno = REGNO (reg);
12803 reg_dead_endregno = END_REGNO (reg);
12804
12805 reg_dead_flag = 0;
12806
12807 /* Check that reg isn't mentioned in NEWPAT_USED_REGS. For fixed registers
12808 we allow the machine description to decide whether use-and-clobber
12809 patterns are OK. */
12810 if (reg_dead_regno < FIRST_PSEUDO_REGISTER)
12811 {
12812 for (i = reg_dead_regno; i < reg_dead_endregno; i++)
12813 if (!fixed_regs[i] && TEST_HARD_REG_BIT (newpat_used_regs, i))
12814 return 0;
12815 }
12816
12817 /* Scan backwards until we find a REG_DEAD note, SET, CLOBBER, or
12818 beginning of basic block. */
12819 block = BLOCK_FOR_INSN (insn);
12820 for (;;)
12821 {
12822 if (INSN_P (insn))
12823 {
12824 note_stores (PATTERN (insn), reg_dead_at_p_1, NULL);
12825 if (reg_dead_flag)
12826 return reg_dead_flag == 1 ? 1 : 0;
12827
12828 if (find_regno_note (insn, REG_DEAD, reg_dead_regno))
12829 return 1;
12830 }
12831
12832 if (insn == BB_HEAD (block))
12833 break;
12834
12835 insn = PREV_INSN (insn);
12836 }
12837
12838 /* Look at live-in sets for the basic block that we were in. */
12839 for (i = reg_dead_regno; i < reg_dead_endregno; i++)
12840 if (REGNO_REG_SET_P (df_get_live_in (block), i))
12841 return 0;
12842
12843 return 1;
12844 }
12845 \f
12846 /* Note hard registers in X that are used. */
12847
12848 static void
12849 mark_used_regs_combine (rtx x)
12850 {
12851 RTX_CODE code = GET_CODE (x);
12852 unsigned int regno;
12853 int i;
12854
12855 switch (code)
12856 {
12857 case LABEL_REF:
12858 case SYMBOL_REF:
12859 case CONST:
12860 CASE_CONST_ANY:
12861 case PC:
12862 case ADDR_VEC:
12863 case ADDR_DIFF_VEC:
12864 case ASM_INPUT:
12865 #ifdef HAVE_cc0
12866 /* CC0 must die in the insn after it is set, so we don't need to take
12867 special note of it here. */
12868 case CC0:
12869 #endif
12870 return;
12871
12872 case CLOBBER:
12873 /* If we are clobbering a MEM, mark any hard registers inside the
12874 address as used. */
12875 if (MEM_P (XEXP (x, 0)))
12876 mark_used_regs_combine (XEXP (XEXP (x, 0), 0));
12877 return;
12878
12879 case REG:
12880 regno = REGNO (x);
12881 /* A hard reg in a wide mode may really be multiple registers.
12882 If so, mark all of them just like the first. */
12883 if (regno < FIRST_PSEUDO_REGISTER)
12884 {
12885 /* None of this applies to the stack, frame or arg pointers. */
12886 if (regno == STACK_POINTER_REGNUM
12887 #if !HARD_FRAME_POINTER_IS_FRAME_POINTER
12888 || regno == HARD_FRAME_POINTER_REGNUM
12889 #endif
12890 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
12891 || (regno == ARG_POINTER_REGNUM && fixed_regs[regno])
12892 #endif
12893 || regno == FRAME_POINTER_REGNUM)
12894 return;
12895
12896 add_to_hard_reg_set (&newpat_used_regs, GET_MODE (x), regno);
12897 }
12898 return;
12899
12900 case SET:
12901 {
12902 /* If setting a MEM, or a SUBREG of a MEM, then note any hard regs in
12903 the address. */
12904 rtx testreg = SET_DEST (x);
12905
12906 while (GET_CODE (testreg) == SUBREG
12907 || GET_CODE (testreg) == ZERO_EXTRACT
12908 || GET_CODE (testreg) == STRICT_LOW_PART)
12909 testreg = XEXP (testreg, 0);
12910
12911 if (MEM_P (testreg))
12912 mark_used_regs_combine (XEXP (testreg, 0));
12913
12914 mark_used_regs_combine (SET_SRC (x));
12915 }
12916 return;
12917
12918 default:
12919 break;
12920 }
12921
12922 /* Recursively scan the operands of this expression. */
12923
12924 {
12925 const char *fmt = GET_RTX_FORMAT (code);
12926
12927 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
12928 {
12929 if (fmt[i] == 'e')
12930 mark_used_regs_combine (XEXP (x, i));
12931 else if (fmt[i] == 'E')
12932 {
12933 int j;
12934
12935 for (j = 0; j < XVECLEN (x, i); j++)
12936 mark_used_regs_combine (XVECEXP (x, i, j));
12937 }
12938 }
12939 }
12940 }
12941 \f
12942 /* Remove register number REGNO from the dead registers list of INSN.
12943
12944 Return the note used to record the death, if there was one. */
12945
12946 rtx
12947 remove_death (unsigned int regno, rtx insn)
12948 {
12949 rtx note = find_regno_note (insn, REG_DEAD, regno);
12950
12951 if (note)
12952 remove_note (insn, note);
12953
12954 return note;
12955 }
12956
12957 /* For each register (hardware or pseudo) used within expression X, if its
12958 death is in an instruction with luid between FROM_LUID (inclusive) and
12959 TO_INSN (exclusive), put a REG_DEAD note for that register in the
12960 list headed by PNOTES.
12961
12962 That said, don't move registers killed by maybe_kill_insn.
12963
12964 This is done when X is being merged by combination into TO_INSN. These
12965 notes will then be distributed as needed. */
12966
12967 static void
12968 move_deaths (rtx x, rtx maybe_kill_insn, int from_luid, rtx to_insn,
12969 rtx *pnotes)
12970 {
12971 const char *fmt;
12972 int len, i;
12973 enum rtx_code code = GET_CODE (x);
12974
12975 if (code == REG)
12976 {
12977 unsigned int regno = REGNO (x);
12978 rtx where_dead = reg_stat[regno].last_death;
12979
12980 /* Don't move the register if it gets killed in between from and to. */
12981 if (maybe_kill_insn && reg_set_p (x, maybe_kill_insn)
12982 && ! reg_referenced_p (x, maybe_kill_insn))
12983 return;
12984
12985 if (where_dead
12986 && BLOCK_FOR_INSN (where_dead) == BLOCK_FOR_INSN (to_insn)
12987 && DF_INSN_LUID (where_dead) >= from_luid
12988 && DF_INSN_LUID (where_dead) < DF_INSN_LUID (to_insn))
12989 {
12990 rtx note = remove_death (regno, where_dead);
12991
12992 /* It is possible for the call above to return 0. This can occur
12993 when last_death points to I2 or I1 that we combined with.
12994 In that case make a new note.
12995
12996 We must also check for the case where X is a hard register
12997 and NOTE is a death note for a range of hard registers
12998 including X. In that case, we must put REG_DEAD notes for
12999 the remaining registers in place of NOTE. */
13000
13001 if (note != 0 && regno < FIRST_PSEUDO_REGISTER
13002 && (GET_MODE_SIZE (GET_MODE (XEXP (note, 0)))
13003 > GET_MODE_SIZE (GET_MODE (x))))
13004 {
13005 unsigned int deadregno = REGNO (XEXP (note, 0));
13006 unsigned int deadend = END_HARD_REGNO (XEXP (note, 0));
13007 unsigned int ourend = END_HARD_REGNO (x);
13008 unsigned int i;
13009
13010 for (i = deadregno; i < deadend; i++)
13011 if (i < regno || i >= ourend)
13012 add_reg_note (where_dead, REG_DEAD, regno_reg_rtx[i]);
13013 }
13014
13015 /* If we didn't find any note, or if we found a REG_DEAD note that
13016 covers only part of the given reg, and we have a multi-reg hard
13017 register, then to be safe we must check for REG_DEAD notes
13018 for each register other than the first. They could have
13019 their own REG_DEAD notes lying around. */
13020 else if ((note == 0
13021 || (note != 0
13022 && (GET_MODE_SIZE (GET_MODE (XEXP (note, 0)))
13023 < GET_MODE_SIZE (GET_MODE (x)))))
13024 && regno < FIRST_PSEUDO_REGISTER
13025 && hard_regno_nregs[regno][GET_MODE (x)] > 1)
13026 {
13027 unsigned int ourend = END_HARD_REGNO (x);
13028 unsigned int i, offset;
13029 rtx oldnotes = 0;
13030
13031 if (note)
13032 offset = hard_regno_nregs[regno][GET_MODE (XEXP (note, 0))];
13033 else
13034 offset = 1;
13035
13036 for (i = regno + offset; i < ourend; i++)
13037 move_deaths (regno_reg_rtx[i],
13038 maybe_kill_insn, from_luid, to_insn, &oldnotes);
13039 }
13040
13041 if (note != 0 && GET_MODE (XEXP (note, 0)) == GET_MODE (x))
13042 {
13043 XEXP (note, 1) = *pnotes;
13044 *pnotes = note;
13045 }
13046 else
13047 *pnotes = alloc_reg_note (REG_DEAD, x, *pnotes);
13048 }
13049
13050 return;
13051 }
13052
13053 else if (GET_CODE (x) == SET)
13054 {
13055 rtx dest = SET_DEST (x);
13056
13057 move_deaths (SET_SRC (x), maybe_kill_insn, from_luid, to_insn, pnotes);
13058
13059 /* In the case of a ZERO_EXTRACT, a STRICT_LOW_PART, or a SUBREG
13060 that accesses one word of a multi-word item, some
13061 piece of everything register in the expression is used by
13062 this insn, so remove any old death. */
13063 /* ??? So why do we test for equality of the sizes? */
13064
13065 if (GET_CODE (dest) == ZERO_EXTRACT
13066 || GET_CODE (dest) == STRICT_LOW_PART
13067 || (GET_CODE (dest) == SUBREG
13068 && (((GET_MODE_SIZE (GET_MODE (dest))
13069 + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
13070 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest)))
13071 + UNITS_PER_WORD - 1) / UNITS_PER_WORD))))
13072 {
13073 move_deaths (dest, maybe_kill_insn, from_luid, to_insn, pnotes);
13074 return;
13075 }
13076
13077 /* If this is some other SUBREG, we know it replaces the entire
13078 value, so use that as the destination. */
13079 if (GET_CODE (dest) == SUBREG)
13080 dest = SUBREG_REG (dest);
13081
13082 /* If this is a MEM, adjust deaths of anything used in the address.
13083 For a REG (the only other possibility), the entire value is
13084 being replaced so the old value is not used in this insn. */
13085
13086 if (MEM_P (dest))
13087 move_deaths (XEXP (dest, 0), maybe_kill_insn, from_luid,
13088 to_insn, pnotes);
13089 return;
13090 }
13091
13092 else if (GET_CODE (x) == CLOBBER)
13093 return;
13094
13095 len = GET_RTX_LENGTH (code);
13096 fmt = GET_RTX_FORMAT (code);
13097
13098 for (i = 0; i < len; i++)
13099 {
13100 if (fmt[i] == 'E')
13101 {
13102 int j;
13103 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
13104 move_deaths (XVECEXP (x, i, j), maybe_kill_insn, from_luid,
13105 to_insn, pnotes);
13106 }
13107 else if (fmt[i] == 'e')
13108 move_deaths (XEXP (x, i), maybe_kill_insn, from_luid, to_insn, pnotes);
13109 }
13110 }
13111 \f
13112 /* Return 1 if X is the target of a bit-field assignment in BODY, the
13113 pattern of an insn. X must be a REG. */
13114
13115 static int
13116 reg_bitfield_target_p (rtx x, rtx body)
13117 {
13118 int i;
13119
13120 if (GET_CODE (body) == SET)
13121 {
13122 rtx dest = SET_DEST (body);
13123 rtx target;
13124 unsigned int regno, tregno, endregno, endtregno;
13125
13126 if (GET_CODE (dest) == ZERO_EXTRACT)
13127 target = XEXP (dest, 0);
13128 else if (GET_CODE (dest) == STRICT_LOW_PART)
13129 target = SUBREG_REG (XEXP (dest, 0));
13130 else
13131 return 0;
13132
13133 if (GET_CODE (target) == SUBREG)
13134 target = SUBREG_REG (target);
13135
13136 if (!REG_P (target))
13137 return 0;
13138
13139 tregno = REGNO (target), regno = REGNO (x);
13140 if (tregno >= FIRST_PSEUDO_REGISTER || regno >= FIRST_PSEUDO_REGISTER)
13141 return target == x;
13142
13143 endtregno = end_hard_regno (GET_MODE (target), tregno);
13144 endregno = end_hard_regno (GET_MODE (x), regno);
13145
13146 return endregno > tregno && regno < endtregno;
13147 }
13148
13149 else if (GET_CODE (body) == PARALLEL)
13150 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
13151 if (reg_bitfield_target_p (x, XVECEXP (body, 0, i)))
13152 return 1;
13153
13154 return 0;
13155 }
13156 \f
13157 /* Given a chain of REG_NOTES originally from FROM_INSN, try to place them
13158 as appropriate. I3 and I2 are the insns resulting from the combination
13159 insns including FROM (I2 may be zero).
13160
13161 ELIM_I2 and ELIM_I1 are either zero or registers that we know will
13162 not need REG_DEAD notes because they are being substituted for. This
13163 saves searching in the most common cases.
13164
13165 Each note in the list is either ignored or placed on some insns, depending
13166 on the type of note. */
13167
13168 static void
13169 distribute_notes (rtx notes, rtx from_insn, rtx i3, rtx i2, rtx elim_i2,
13170 rtx elim_i1, rtx elim_i0)
13171 {
13172 rtx note, next_note;
13173 rtx tem;
13174
13175 for (note = notes; note; note = next_note)
13176 {
13177 rtx place = 0, place2 = 0;
13178
13179 next_note = XEXP (note, 1);
13180 switch (REG_NOTE_KIND (note))
13181 {
13182 case REG_BR_PROB:
13183 case REG_BR_PRED:
13184 /* Doesn't matter much where we put this, as long as it's somewhere.
13185 It is preferable to keep these notes on branches, which is most
13186 likely to be i3. */
13187 place = i3;
13188 break;
13189
13190 case REG_NON_LOCAL_GOTO:
13191 if (JUMP_P (i3))
13192 place = i3;
13193 else
13194 {
13195 gcc_assert (i2 && JUMP_P (i2));
13196 place = i2;
13197 }
13198 break;
13199
13200 case REG_EH_REGION:
13201 /* These notes must remain with the call or trapping instruction. */
13202 if (CALL_P (i3))
13203 place = i3;
13204 else if (i2 && CALL_P (i2))
13205 place = i2;
13206 else
13207 {
13208 gcc_assert (cfun->can_throw_non_call_exceptions);
13209 if (may_trap_p (i3))
13210 place = i3;
13211 else if (i2 && may_trap_p (i2))
13212 place = i2;
13213 /* ??? Otherwise assume we've combined things such that we
13214 can now prove that the instructions can't trap. Drop the
13215 note in this case. */
13216 }
13217 break;
13218
13219 case REG_ARGS_SIZE:
13220 /* ??? How to distribute between i3-i1. Assume i3 contains the
13221 entire adjustment. Assert i3 contains at least some adjust. */
13222 if (!noop_move_p (i3))
13223 {
13224 int old_size, args_size = INTVAL (XEXP (note, 0));
13225 /* fixup_args_size_notes looks at REG_NORETURN note,
13226 so ensure the note is placed there first. */
13227 if (CALL_P (i3))
13228 {
13229 rtx *np;
13230 for (np = &next_note; *np; np = &XEXP (*np, 1))
13231 if (REG_NOTE_KIND (*np) == REG_NORETURN)
13232 {
13233 rtx n = *np;
13234 *np = XEXP (n, 1);
13235 XEXP (n, 1) = REG_NOTES (i3);
13236 REG_NOTES (i3) = n;
13237 break;
13238 }
13239 }
13240 old_size = fixup_args_size_notes (PREV_INSN (i3), i3, args_size);
13241 /* emit_call_1 adds for !ACCUMULATE_OUTGOING_ARGS
13242 REG_ARGS_SIZE note to all noreturn calls, allow that here. */
13243 gcc_assert (old_size != args_size
13244 || (CALL_P (i3)
13245 && !ACCUMULATE_OUTGOING_ARGS
13246 && find_reg_note (i3, REG_NORETURN, NULL_RTX)));
13247 }
13248 break;
13249
13250 case REG_NORETURN:
13251 case REG_SETJMP:
13252 case REG_TM:
13253 /* These notes must remain with the call. It should not be
13254 possible for both I2 and I3 to be a call. */
13255 if (CALL_P (i3))
13256 place = i3;
13257 else
13258 {
13259 gcc_assert (i2 && CALL_P (i2));
13260 place = i2;
13261 }
13262 break;
13263
13264 case REG_UNUSED:
13265 /* Any clobbers for i3 may still exist, and so we must process
13266 REG_UNUSED notes from that insn.
13267
13268 Any clobbers from i2 or i1 can only exist if they were added by
13269 recog_for_combine. In that case, recog_for_combine created the
13270 necessary REG_UNUSED notes. Trying to keep any original
13271 REG_UNUSED notes from these insns can cause incorrect output
13272 if it is for the same register as the original i3 dest.
13273 In that case, we will notice that the register is set in i3,
13274 and then add a REG_UNUSED note for the destination of i3, which
13275 is wrong. However, it is possible to have REG_UNUSED notes from
13276 i2 or i1 for register which were both used and clobbered, so
13277 we keep notes from i2 or i1 if they will turn into REG_DEAD
13278 notes. */
13279
13280 /* If this register is set or clobbered in I3, put the note there
13281 unless there is one already. */
13282 if (reg_set_p (XEXP (note, 0), PATTERN (i3)))
13283 {
13284 if (from_insn != i3)
13285 break;
13286
13287 if (! (REG_P (XEXP (note, 0))
13288 ? find_regno_note (i3, REG_UNUSED, REGNO (XEXP (note, 0)))
13289 : find_reg_note (i3, REG_UNUSED, XEXP (note, 0))))
13290 place = i3;
13291 }
13292 /* Otherwise, if this register is used by I3, then this register
13293 now dies here, so we must put a REG_DEAD note here unless there
13294 is one already. */
13295 else if (reg_referenced_p (XEXP (note, 0), PATTERN (i3))
13296 && ! (REG_P (XEXP (note, 0))
13297 ? find_regno_note (i3, REG_DEAD,
13298 REGNO (XEXP (note, 0)))
13299 : find_reg_note (i3, REG_DEAD, XEXP (note, 0))))
13300 {
13301 PUT_REG_NOTE_KIND (note, REG_DEAD);
13302 place = i3;
13303 }
13304 break;
13305
13306 case REG_EQUAL:
13307 case REG_EQUIV:
13308 case REG_NOALIAS:
13309 /* These notes say something about results of an insn. We can
13310 only support them if they used to be on I3 in which case they
13311 remain on I3. Otherwise they are ignored.
13312
13313 If the note refers to an expression that is not a constant, we
13314 must also ignore the note since we cannot tell whether the
13315 equivalence is still true. It might be possible to do
13316 slightly better than this (we only have a problem if I2DEST
13317 or I1DEST is present in the expression), but it doesn't
13318 seem worth the trouble. */
13319
13320 if (from_insn == i3
13321 && (XEXP (note, 0) == 0 || CONSTANT_P (XEXP (note, 0))))
13322 place = i3;
13323 break;
13324
13325 case REG_INC:
13326 /* These notes say something about how a register is used. They must
13327 be present on any use of the register in I2 or I3. */
13328 if (reg_mentioned_p (XEXP (note, 0), PATTERN (i3)))
13329 place = i3;
13330
13331 if (i2 && reg_mentioned_p (XEXP (note, 0), PATTERN (i2)))
13332 {
13333 if (place)
13334 place2 = i2;
13335 else
13336 place = i2;
13337 }
13338 break;
13339
13340 case REG_LABEL_TARGET:
13341 case REG_LABEL_OPERAND:
13342 /* This can show up in several ways -- either directly in the
13343 pattern, or hidden off in the constant pool with (or without?)
13344 a REG_EQUAL note. */
13345 /* ??? Ignore the without-reg_equal-note problem for now. */
13346 if (reg_mentioned_p (XEXP (note, 0), PATTERN (i3))
13347 || ((tem = find_reg_note (i3, REG_EQUAL, NULL_RTX))
13348 && GET_CODE (XEXP (tem, 0)) == LABEL_REF
13349 && XEXP (XEXP (tem, 0), 0) == XEXP (note, 0)))
13350 place = i3;
13351
13352 if (i2
13353 && (reg_mentioned_p (XEXP (note, 0), PATTERN (i2))
13354 || ((tem = find_reg_note (i2, REG_EQUAL, NULL_RTX))
13355 && GET_CODE (XEXP (tem, 0)) == LABEL_REF
13356 && XEXP (XEXP (tem, 0), 0) == XEXP (note, 0))))
13357 {
13358 if (place)
13359 place2 = i2;
13360 else
13361 place = i2;
13362 }
13363
13364 /* For REG_LABEL_TARGET on a JUMP_P, we prefer to put the note
13365 as a JUMP_LABEL or decrement LABEL_NUSES if it's already
13366 there. */
13367 if (place && JUMP_P (place)
13368 && REG_NOTE_KIND (note) == REG_LABEL_TARGET
13369 && (JUMP_LABEL (place) == NULL
13370 || JUMP_LABEL (place) == XEXP (note, 0)))
13371 {
13372 rtx label = JUMP_LABEL (place);
13373
13374 if (!label)
13375 JUMP_LABEL (place) = XEXP (note, 0);
13376 else if (LABEL_P (label))
13377 LABEL_NUSES (label)--;
13378 }
13379
13380 if (place2 && JUMP_P (place2)
13381 && REG_NOTE_KIND (note) == REG_LABEL_TARGET
13382 && (JUMP_LABEL (place2) == NULL
13383 || JUMP_LABEL (place2) == XEXP (note, 0)))
13384 {
13385 rtx label = JUMP_LABEL (place2);
13386
13387 if (!label)
13388 JUMP_LABEL (place2) = XEXP (note, 0);
13389 else if (LABEL_P (label))
13390 LABEL_NUSES (label)--;
13391 place2 = 0;
13392 }
13393 break;
13394
13395 case REG_NONNEG:
13396 /* This note says something about the value of a register prior
13397 to the execution of an insn. It is too much trouble to see
13398 if the note is still correct in all situations. It is better
13399 to simply delete it. */
13400 break;
13401
13402 case REG_DEAD:
13403 /* If we replaced the right hand side of FROM_INSN with a
13404 REG_EQUAL note, the original use of the dying register
13405 will not have been combined into I3 and I2. In such cases,
13406 FROM_INSN is guaranteed to be the first of the combined
13407 instructions, so we simply need to search back before
13408 FROM_INSN for the previous use or set of this register,
13409 then alter the notes there appropriately.
13410
13411 If the register is used as an input in I3, it dies there.
13412 Similarly for I2, if it is nonzero and adjacent to I3.
13413
13414 If the register is not used as an input in either I3 or I2
13415 and it is not one of the registers we were supposed to eliminate,
13416 there are two possibilities. We might have a non-adjacent I2
13417 or we might have somehow eliminated an additional register
13418 from a computation. For example, we might have had A & B where
13419 we discover that B will always be zero. In this case we will
13420 eliminate the reference to A.
13421
13422 In both cases, we must search to see if we can find a previous
13423 use of A and put the death note there. */
13424
13425 if (from_insn
13426 && from_insn == i2mod
13427 && !reg_overlap_mentioned_p (XEXP (note, 0), i2mod_new_rhs))
13428 tem = from_insn;
13429 else
13430 {
13431 if (from_insn
13432 && CALL_P (from_insn)
13433 && find_reg_fusage (from_insn, USE, XEXP (note, 0)))
13434 place = from_insn;
13435 else if (reg_referenced_p (XEXP (note, 0), PATTERN (i3)))
13436 place = i3;
13437 else if (i2 != 0 && next_nonnote_nondebug_insn (i2) == i3
13438 && reg_referenced_p (XEXP (note, 0), PATTERN (i2)))
13439 place = i2;
13440 else if ((rtx_equal_p (XEXP (note, 0), elim_i2)
13441 && !(i2mod
13442 && reg_overlap_mentioned_p (XEXP (note, 0),
13443 i2mod_old_rhs)))
13444 || rtx_equal_p (XEXP (note, 0), elim_i1)
13445 || rtx_equal_p (XEXP (note, 0), elim_i0))
13446 break;
13447 tem = i3;
13448 }
13449
13450 if (place == 0)
13451 {
13452 basic_block bb = this_basic_block;
13453
13454 for (tem = PREV_INSN (tem); place == 0; tem = PREV_INSN (tem))
13455 {
13456 if (!NONDEBUG_INSN_P (tem))
13457 {
13458 if (tem == BB_HEAD (bb))
13459 break;
13460 continue;
13461 }
13462
13463 /* If the register is being set at TEM, see if that is all
13464 TEM is doing. If so, delete TEM. Otherwise, make this
13465 into a REG_UNUSED note instead. Don't delete sets to
13466 global register vars. */
13467 if ((REGNO (XEXP (note, 0)) >= FIRST_PSEUDO_REGISTER
13468 || !global_regs[REGNO (XEXP (note, 0))])
13469 && reg_set_p (XEXP (note, 0), PATTERN (tem)))
13470 {
13471 rtx set = single_set (tem);
13472 rtx inner_dest = 0;
13473 #ifdef HAVE_cc0
13474 rtx cc0_setter = NULL_RTX;
13475 #endif
13476
13477 if (set != 0)
13478 for (inner_dest = SET_DEST (set);
13479 (GET_CODE (inner_dest) == STRICT_LOW_PART
13480 || GET_CODE (inner_dest) == SUBREG
13481 || GET_CODE (inner_dest) == ZERO_EXTRACT);
13482 inner_dest = XEXP (inner_dest, 0))
13483 ;
13484
13485 /* Verify that it was the set, and not a clobber that
13486 modified the register.
13487
13488 CC0 targets must be careful to maintain setter/user
13489 pairs. If we cannot delete the setter due to side
13490 effects, mark the user with an UNUSED note instead
13491 of deleting it. */
13492
13493 if (set != 0 && ! side_effects_p (SET_SRC (set))
13494 && rtx_equal_p (XEXP (note, 0), inner_dest)
13495 #ifdef HAVE_cc0
13496 && (! reg_mentioned_p (cc0_rtx, SET_SRC (set))
13497 || ((cc0_setter = prev_cc0_setter (tem)) != NULL
13498 && sets_cc0_p (PATTERN (cc0_setter)) > 0))
13499 #endif
13500 )
13501 {
13502 /* Move the notes and links of TEM elsewhere.
13503 This might delete other dead insns recursively.
13504 First set the pattern to something that won't use
13505 any register. */
13506 rtx old_notes = REG_NOTES (tem);
13507
13508 PATTERN (tem) = pc_rtx;
13509 REG_NOTES (tem) = NULL;
13510
13511 distribute_notes (old_notes, tem, tem, NULL_RTX,
13512 NULL_RTX, NULL_RTX, NULL_RTX);
13513 distribute_links (LOG_LINKS (tem));
13514
13515 SET_INSN_DELETED (tem);
13516 if (tem == i2)
13517 i2 = NULL_RTX;
13518
13519 #ifdef HAVE_cc0
13520 /* Delete the setter too. */
13521 if (cc0_setter)
13522 {
13523 PATTERN (cc0_setter) = pc_rtx;
13524 old_notes = REG_NOTES (cc0_setter);
13525 REG_NOTES (cc0_setter) = NULL;
13526
13527 distribute_notes (old_notes, cc0_setter,
13528 cc0_setter, NULL_RTX,
13529 NULL_RTX, NULL_RTX, NULL_RTX);
13530 distribute_links (LOG_LINKS (cc0_setter));
13531
13532 SET_INSN_DELETED (cc0_setter);
13533 if (cc0_setter == i2)
13534 i2 = NULL_RTX;
13535 }
13536 #endif
13537 }
13538 else
13539 {
13540 PUT_REG_NOTE_KIND (note, REG_UNUSED);
13541
13542 /* If there isn't already a REG_UNUSED note, put one
13543 here. Do not place a REG_DEAD note, even if
13544 the register is also used here; that would not
13545 match the algorithm used in lifetime analysis
13546 and can cause the consistency check in the
13547 scheduler to fail. */
13548 if (! find_regno_note (tem, REG_UNUSED,
13549 REGNO (XEXP (note, 0))))
13550 place = tem;
13551 break;
13552 }
13553 }
13554 else if (reg_referenced_p (XEXP (note, 0), PATTERN (tem))
13555 || (CALL_P (tem)
13556 && find_reg_fusage (tem, USE, XEXP (note, 0))))
13557 {
13558 place = tem;
13559
13560 /* If we are doing a 3->2 combination, and we have a
13561 register which formerly died in i3 and was not used
13562 by i2, which now no longer dies in i3 and is used in
13563 i2 but does not die in i2, and place is between i2
13564 and i3, then we may need to move a link from place to
13565 i2. */
13566 if (i2 && DF_INSN_LUID (place) > DF_INSN_LUID (i2)
13567 && from_insn
13568 && DF_INSN_LUID (from_insn) > DF_INSN_LUID (i2)
13569 && reg_referenced_p (XEXP (note, 0), PATTERN (i2)))
13570 {
13571 struct insn_link *links = LOG_LINKS (place);
13572 LOG_LINKS (place) = NULL;
13573 distribute_links (links);
13574 }
13575 break;
13576 }
13577
13578 if (tem == BB_HEAD (bb))
13579 break;
13580 }
13581
13582 }
13583
13584 /* If the register is set or already dead at PLACE, we needn't do
13585 anything with this note if it is still a REG_DEAD note.
13586 We check here if it is set at all, not if is it totally replaced,
13587 which is what `dead_or_set_p' checks, so also check for it being
13588 set partially. */
13589
13590 if (place && REG_NOTE_KIND (note) == REG_DEAD)
13591 {
13592 unsigned int regno = REGNO (XEXP (note, 0));
13593 reg_stat_type *rsp = &reg_stat[regno];
13594
13595 if (dead_or_set_p (place, XEXP (note, 0))
13596 || reg_bitfield_target_p (XEXP (note, 0), PATTERN (place)))
13597 {
13598 /* Unless the register previously died in PLACE, clear
13599 last_death. [I no longer understand why this is
13600 being done.] */
13601 if (rsp->last_death != place)
13602 rsp->last_death = 0;
13603 place = 0;
13604 }
13605 else
13606 rsp->last_death = place;
13607
13608 /* If this is a death note for a hard reg that is occupying
13609 multiple registers, ensure that we are still using all
13610 parts of the object. If we find a piece of the object
13611 that is unused, we must arrange for an appropriate REG_DEAD
13612 note to be added for it. However, we can't just emit a USE
13613 and tag the note to it, since the register might actually
13614 be dead; so we recourse, and the recursive call then finds
13615 the previous insn that used this register. */
13616
13617 if (place && regno < FIRST_PSEUDO_REGISTER
13618 && hard_regno_nregs[regno][GET_MODE (XEXP (note, 0))] > 1)
13619 {
13620 unsigned int endregno = END_HARD_REGNO (XEXP (note, 0));
13621 bool all_used = true;
13622 unsigned int i;
13623
13624 for (i = regno; i < endregno; i++)
13625 if ((! refers_to_regno_p (i, i + 1, PATTERN (place), 0)
13626 && ! find_regno_fusage (place, USE, i))
13627 || dead_or_set_regno_p (place, i))
13628 {
13629 all_used = false;
13630 break;
13631 }
13632
13633 if (! all_used)
13634 {
13635 /* Put only REG_DEAD notes for pieces that are
13636 not already dead or set. */
13637
13638 for (i = regno; i < endregno;
13639 i += hard_regno_nregs[i][reg_raw_mode[i]])
13640 {
13641 rtx piece = regno_reg_rtx[i];
13642 basic_block bb = this_basic_block;
13643
13644 if (! dead_or_set_p (place, piece)
13645 && ! reg_bitfield_target_p (piece,
13646 PATTERN (place)))
13647 {
13648 rtx new_note = alloc_reg_note (REG_DEAD, piece,
13649 NULL_RTX);
13650
13651 distribute_notes (new_note, place, place,
13652 NULL_RTX, NULL_RTX, NULL_RTX,
13653 NULL_RTX);
13654 }
13655 else if (! refers_to_regno_p (i, i + 1,
13656 PATTERN (place), 0)
13657 && ! find_regno_fusage (place, USE, i))
13658 for (tem = PREV_INSN (place); ;
13659 tem = PREV_INSN (tem))
13660 {
13661 if (!NONDEBUG_INSN_P (tem))
13662 {
13663 if (tem == BB_HEAD (bb))
13664 break;
13665 continue;
13666 }
13667 if (dead_or_set_p (tem, piece)
13668 || reg_bitfield_target_p (piece,
13669 PATTERN (tem)))
13670 {
13671 add_reg_note (tem, REG_UNUSED, piece);
13672 break;
13673 }
13674 }
13675 }
13676
13677 place = 0;
13678 }
13679 }
13680 }
13681 break;
13682
13683 default:
13684 /* Any other notes should not be present at this point in the
13685 compilation. */
13686 gcc_unreachable ();
13687 }
13688
13689 if (place)
13690 {
13691 XEXP (note, 1) = REG_NOTES (place);
13692 REG_NOTES (place) = note;
13693 }
13694
13695 if (place2)
13696 add_shallow_copy_of_reg_note (place2, note);
13697 }
13698 }
13699 \f
13700 /* Similarly to above, distribute the LOG_LINKS that used to be present on
13701 I3, I2, and I1 to new locations. This is also called to add a link
13702 pointing at I3 when I3's destination is changed. */
13703
13704 static void
13705 distribute_links (struct insn_link *links)
13706 {
13707 struct insn_link *link, *next_link;
13708
13709 for (link = links; link; link = next_link)
13710 {
13711 rtx place = 0;
13712 rtx insn;
13713 rtx set, reg;
13714
13715 next_link = link->next;
13716
13717 /* If the insn that this link points to is a NOTE or isn't a single
13718 set, ignore it. In the latter case, it isn't clear what we
13719 can do other than ignore the link, since we can't tell which
13720 register it was for. Such links wouldn't be used by combine
13721 anyway.
13722
13723 It is not possible for the destination of the target of the link to
13724 have been changed by combine. The only potential of this is if we
13725 replace I3, I2, and I1 by I3 and I2. But in that case the
13726 destination of I2 also remains unchanged. */
13727
13728 if (NOTE_P (link->insn)
13729 || (set = single_set (link->insn)) == 0)
13730 continue;
13731
13732 reg = SET_DEST (set);
13733 while (GET_CODE (reg) == SUBREG || GET_CODE (reg) == ZERO_EXTRACT
13734 || GET_CODE (reg) == STRICT_LOW_PART)
13735 reg = XEXP (reg, 0);
13736
13737 /* A LOG_LINK is defined as being placed on the first insn that uses
13738 a register and points to the insn that sets the register. Start
13739 searching at the next insn after the target of the link and stop
13740 when we reach a set of the register or the end of the basic block.
13741
13742 Note that this correctly handles the link that used to point from
13743 I3 to I2. Also note that not much searching is typically done here
13744 since most links don't point very far away. */
13745
13746 for (insn = NEXT_INSN (link->insn);
13747 (insn && (this_basic_block->next_bb == EXIT_BLOCK_PTR_FOR_FN (cfun)
13748 || BB_HEAD (this_basic_block->next_bb) != insn));
13749 insn = NEXT_INSN (insn))
13750 if (DEBUG_INSN_P (insn))
13751 continue;
13752 else if (INSN_P (insn) && reg_overlap_mentioned_p (reg, PATTERN (insn)))
13753 {
13754 if (reg_referenced_p (reg, PATTERN (insn)))
13755 place = insn;
13756 break;
13757 }
13758 else if (CALL_P (insn)
13759 && find_reg_fusage (insn, USE, reg))
13760 {
13761 place = insn;
13762 break;
13763 }
13764 else if (INSN_P (insn) && reg_set_p (reg, insn))
13765 break;
13766
13767 /* If we found a place to put the link, place it there unless there
13768 is already a link to the same insn as LINK at that point. */
13769
13770 if (place)
13771 {
13772 struct insn_link *link2;
13773
13774 FOR_EACH_LOG_LINK (link2, place)
13775 if (link2->insn == link->insn)
13776 break;
13777
13778 if (link2 == NULL)
13779 {
13780 link->next = LOG_LINKS (place);
13781 LOG_LINKS (place) = link;
13782
13783 /* Set added_links_insn to the earliest insn we added a
13784 link to. */
13785 if (added_links_insn == 0
13786 || DF_INSN_LUID (added_links_insn) > DF_INSN_LUID (place))
13787 added_links_insn = place;
13788 }
13789 }
13790 }
13791 }
13792 \f
13793 /* Subroutine of unmentioned_reg_p and callback from for_each_rtx.
13794 Check whether the expression pointer to by LOC is a register or
13795 memory, and if so return 1 if it isn't mentioned in the rtx EXPR.
13796 Otherwise return zero. */
13797
13798 static int
13799 unmentioned_reg_p_1 (rtx *loc, void *expr)
13800 {
13801 rtx x = *loc;
13802
13803 if (x != NULL_RTX
13804 && (REG_P (x) || MEM_P (x))
13805 && ! reg_mentioned_p (x, (rtx) expr))
13806 return 1;
13807 return 0;
13808 }
13809
13810 /* Check for any register or memory mentioned in EQUIV that is not
13811 mentioned in EXPR. This is used to restrict EQUIV to "specializations"
13812 of EXPR where some registers may have been replaced by constants. */
13813
13814 static bool
13815 unmentioned_reg_p (rtx equiv, rtx expr)
13816 {
13817 return for_each_rtx (&equiv, unmentioned_reg_p_1, expr);
13818 }
13819 \f
13820 DEBUG_FUNCTION void
13821 dump_combine_stats (FILE *file)
13822 {
13823 fprintf
13824 (file,
13825 ";; Combiner statistics: %d attempts, %d substitutions (%d requiring new space),\n;; %d successes.\n\n",
13826 combine_attempts, combine_merges, combine_extras, combine_successes);
13827 }
13828
13829 void
13830 dump_combine_total_stats (FILE *file)
13831 {
13832 fprintf
13833 (file,
13834 "\n;; Combiner totals: %d attempts, %d substitutions (%d requiring new space),\n;; %d successes.\n",
13835 total_attempts, total_merges, total_extras, total_successes);
13836 }
13837 \f
13838 static bool
13839 gate_handle_combine (void)
13840 {
13841 return (optimize > 0);
13842 }
13843
13844 /* Try combining insns through substitution. */
13845 static unsigned int
13846 rest_of_handle_combine (void)
13847 {
13848 int rebuild_jump_labels_after_combine;
13849
13850 df_set_flags (DF_LR_RUN_DCE + DF_DEFER_INSN_RESCAN);
13851 df_note_add_problem ();
13852 df_analyze ();
13853
13854 regstat_init_n_sets_and_refs ();
13855
13856 rebuild_jump_labels_after_combine
13857 = combine_instructions (get_insns (), max_reg_num ());
13858
13859 /* Combining insns may have turned an indirect jump into a
13860 direct jump. Rebuild the JUMP_LABEL fields of jumping
13861 instructions. */
13862 if (rebuild_jump_labels_after_combine)
13863 {
13864 timevar_push (TV_JUMP);
13865 rebuild_jump_labels (get_insns ());
13866 cleanup_cfg (0);
13867 timevar_pop (TV_JUMP);
13868 }
13869
13870 regstat_free_n_sets_and_refs ();
13871 return 0;
13872 }
13873
13874 namespace {
13875
13876 const pass_data pass_data_combine =
13877 {
13878 RTL_PASS, /* type */
13879 "combine", /* name */
13880 OPTGROUP_NONE, /* optinfo_flags */
13881 true, /* has_gate */
13882 true, /* has_execute */
13883 TV_COMBINE, /* tv_id */
13884 PROP_cfglayout, /* properties_required */
13885 0, /* properties_provided */
13886 0, /* properties_destroyed */
13887 0, /* todo_flags_start */
13888 ( TODO_df_finish | TODO_verify_rtl_sharing ), /* todo_flags_finish */
13889 };
13890
13891 class pass_combine : public rtl_opt_pass
13892 {
13893 public:
13894 pass_combine (gcc::context *ctxt)
13895 : rtl_opt_pass (pass_data_combine, ctxt)
13896 {}
13897
13898 /* opt_pass methods: */
13899 bool gate () { return gate_handle_combine (); }
13900 unsigned int execute () { return rest_of_handle_combine (); }
13901
13902 }; // class pass_combine
13903
13904 } // anon namespace
13905
13906 rtl_opt_pass *
13907 make_pass_combine (gcc::context *ctxt)
13908 {
13909 return new pass_combine (ctxt);
13910 }