i386.c (legitimize_tls_address): Generate tls_initial_exec_64_sun only when !TARGET_X32.
[gcc.git] / gcc / combine.c
1 /* Optimize by combining instructions for GNU compiler.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010,
4 2011, 2012 Free Software Foundation, Inc.
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22 /* This module is essentially the "combiner" phase of the U. of Arizona
23 Portable Optimizer, but redone to work on our list-structured
24 representation for RTL instead of their string representation.
25
26 The LOG_LINKS of each insn identify the most recent assignment
27 to each REG used in the insn. It is a list of previous insns,
28 each of which contains a SET for a REG that is used in this insn
29 and not used or set in between. LOG_LINKs never cross basic blocks.
30 They were set up by the preceding pass (lifetime analysis).
31
32 We try to combine each pair of insns joined by a logical link.
33 We also try to combine triples of insns A, B and C when
34 C has a link back to B and B has a link back to A.
35
36 LOG_LINKS does not have links for use of the CC0. They don't
37 need to, because the insn that sets the CC0 is always immediately
38 before the insn that tests it. So we always regard a branch
39 insn as having a logical link to the preceding insn. The same is true
40 for an insn explicitly using CC0.
41
42 We check (with use_crosses_set_p) to avoid combining in such a way
43 as to move a computation to a place where its value would be different.
44
45 Combination is done by mathematically substituting the previous
46 insn(s) values for the regs they set into the expressions in
47 the later insns that refer to these regs. If the result is a valid insn
48 for our target machine, according to the machine description,
49 we install it, delete the earlier insns, and update the data flow
50 information (LOG_LINKS and REG_NOTES) for what we did.
51
52 There are a few exceptions where the dataflow information isn't
53 completely updated (however this is only a local issue since it is
54 regenerated before the next pass that uses it):
55
56 - reg_live_length is not updated
57 - reg_n_refs is not adjusted in the rare case when a register is
58 no longer required in a computation
59 - there are extremely rare cases (see distribute_notes) when a
60 REG_DEAD note is lost
61 - a LOG_LINKS entry that refers to an insn with multiple SETs may be
62 removed because there is no way to know which register it was
63 linking
64
65 To simplify substitution, we combine only when the earlier insn(s)
66 consist of only a single assignment. To simplify updating afterward,
67 we never combine when a subroutine call appears in the middle.
68
69 Since we do not represent assignments to CC0 explicitly except when that
70 is all an insn does, there is no LOG_LINKS entry in an insn that uses
71 the condition code for the insn that set the condition code.
72 Fortunately, these two insns must be consecutive.
73 Therefore, every JUMP_INSN is taken to have an implicit logical link
74 to the preceding insn. This is not quite right, since non-jumps can
75 also use the condition code; but in practice such insns would not
76 combine anyway. */
77
78 #include "config.h"
79 #include "system.h"
80 #include "coretypes.h"
81 #include "tm.h"
82 #include "rtl.h"
83 #include "tree.h"
84 #include "tm_p.h"
85 #include "flags.h"
86 #include "regs.h"
87 #include "hard-reg-set.h"
88 #include "basic-block.h"
89 #include "insn-config.h"
90 #include "function.h"
91 /* Include expr.h after insn-config.h so we get HAVE_conditional_move. */
92 #include "expr.h"
93 #include "insn-attr.h"
94 #include "recog.h"
95 #include "diagnostic-core.h"
96 #include "target.h"
97 #include "optabs.h"
98 #include "insn-codes.h"
99 #include "rtlhooks-def.h"
100 /* Include output.h for dump_file. */
101 #include "output.h"
102 #include "params.h"
103 #include "timevar.h"
104 #include "tree-pass.h"
105 #include "df.h"
106 #include "cgraph.h"
107 #include "obstack.h"
108
109 /* Number of attempts to combine instructions in this function. */
110
111 static int combine_attempts;
112
113 /* Number of attempts that got as far as substitution in this function. */
114
115 static int combine_merges;
116
117 /* Number of instructions combined with added SETs in this function. */
118
119 static int combine_extras;
120
121 /* Number of instructions combined in this function. */
122
123 static int combine_successes;
124
125 /* Totals over entire compilation. */
126
127 static int total_attempts, total_merges, total_extras, total_successes;
128
129 /* combine_instructions may try to replace the right hand side of the
130 second instruction with the value of an associated REG_EQUAL note
131 before throwing it at try_combine. That is problematic when there
132 is a REG_DEAD note for a register used in the old right hand side
133 and can cause distribute_notes to do wrong things. This is the
134 second instruction if it has been so modified, null otherwise. */
135
136 static rtx i2mod;
137
138 /* When I2MOD is nonnull, this is a copy of the old right hand side. */
139
140 static rtx i2mod_old_rhs;
141
142 /* When I2MOD is nonnull, this is a copy of the new right hand side. */
143
144 static rtx i2mod_new_rhs;
145 \f
146 typedef struct reg_stat_struct {
147 /* Record last point of death of (hard or pseudo) register n. */
148 rtx last_death;
149
150 /* Record last point of modification of (hard or pseudo) register n. */
151 rtx last_set;
152
153 /* The next group of fields allows the recording of the last value assigned
154 to (hard or pseudo) register n. We use this information to see if an
155 operation being processed is redundant given a prior operation performed
156 on the register. For example, an `and' with a constant is redundant if
157 all the zero bits are already known to be turned off.
158
159 We use an approach similar to that used by cse, but change it in the
160 following ways:
161
162 (1) We do not want to reinitialize at each label.
163 (2) It is useful, but not critical, to know the actual value assigned
164 to a register. Often just its form is helpful.
165
166 Therefore, we maintain the following fields:
167
168 last_set_value the last value assigned
169 last_set_label records the value of label_tick when the
170 register was assigned
171 last_set_table_tick records the value of label_tick when a
172 value using the register is assigned
173 last_set_invalid set to nonzero when it is not valid
174 to use the value of this register in some
175 register's value
176
177 To understand the usage of these tables, it is important to understand
178 the distinction between the value in last_set_value being valid and
179 the register being validly contained in some other expression in the
180 table.
181
182 (The next two parameters are out of date).
183
184 reg_stat[i].last_set_value is valid if it is nonzero, and either
185 reg_n_sets[i] is 1 or reg_stat[i].last_set_label == label_tick.
186
187 Register I may validly appear in any expression returned for the value
188 of another register if reg_n_sets[i] is 1. It may also appear in the
189 value for register J if reg_stat[j].last_set_invalid is zero, or
190 reg_stat[i].last_set_label < reg_stat[j].last_set_label.
191
192 If an expression is found in the table containing a register which may
193 not validly appear in an expression, the register is replaced by
194 something that won't match, (clobber (const_int 0)). */
195
196 /* Record last value assigned to (hard or pseudo) register n. */
197
198 rtx last_set_value;
199
200 /* Record the value of label_tick when an expression involving register n
201 is placed in last_set_value. */
202
203 int last_set_table_tick;
204
205 /* Record the value of label_tick when the value for register n is placed in
206 last_set_value. */
207
208 int last_set_label;
209
210 /* These fields are maintained in parallel with last_set_value and are
211 used to store the mode in which the register was last set, the bits
212 that were known to be zero when it was last set, and the number of
213 sign bits copies it was known to have when it was last set. */
214
215 unsigned HOST_WIDE_INT last_set_nonzero_bits;
216 char last_set_sign_bit_copies;
217 ENUM_BITFIELD(machine_mode) last_set_mode : 8;
218
219 /* Set nonzero if references to register n in expressions should not be
220 used. last_set_invalid is set nonzero when this register is being
221 assigned to and last_set_table_tick == label_tick. */
222
223 char last_set_invalid;
224
225 /* Some registers that are set more than once and used in more than one
226 basic block are nevertheless always set in similar ways. For example,
227 a QImode register may be loaded from memory in two places on a machine
228 where byte loads zero extend.
229
230 We record in the following fields if a register has some leading bits
231 that are always equal to the sign bit, and what we know about the
232 nonzero bits of a register, specifically which bits are known to be
233 zero.
234
235 If an entry is zero, it means that we don't know anything special. */
236
237 unsigned char sign_bit_copies;
238
239 unsigned HOST_WIDE_INT nonzero_bits;
240
241 /* Record the value of the label_tick when the last truncation
242 happened. The field truncated_to_mode is only valid if
243 truncation_label == label_tick. */
244
245 int truncation_label;
246
247 /* Record the last truncation seen for this register. If truncation
248 is not a nop to this mode we might be able to save an explicit
249 truncation if we know that value already contains a truncated
250 value. */
251
252 ENUM_BITFIELD(machine_mode) truncated_to_mode : 8;
253 } reg_stat_type;
254
255 DEF_VEC_O(reg_stat_type);
256 DEF_VEC_ALLOC_O(reg_stat_type,heap);
257
258 static VEC(reg_stat_type,heap) *reg_stat;
259
260 /* Record the luid of the last insn that invalidated memory
261 (anything that writes memory, and subroutine calls, but not pushes). */
262
263 static int mem_last_set;
264
265 /* Record the luid of the last CALL_INSN
266 so we can tell whether a potential combination crosses any calls. */
267
268 static int last_call_luid;
269
270 /* When `subst' is called, this is the insn that is being modified
271 (by combining in a previous insn). The PATTERN of this insn
272 is still the old pattern partially modified and it should not be
273 looked at, but this may be used to examine the successors of the insn
274 to judge whether a simplification is valid. */
275
276 static rtx subst_insn;
277
278 /* This is the lowest LUID that `subst' is currently dealing with.
279 get_last_value will not return a value if the register was set at or
280 after this LUID. If not for this mechanism, we could get confused if
281 I2 or I1 in try_combine were an insn that used the old value of a register
282 to obtain a new value. In that case, we might erroneously get the
283 new value of the register when we wanted the old one. */
284
285 static int subst_low_luid;
286
287 /* This contains any hard registers that are used in newpat; reg_dead_at_p
288 must consider all these registers to be always live. */
289
290 static HARD_REG_SET newpat_used_regs;
291
292 /* This is an insn to which a LOG_LINKS entry has been added. If this
293 insn is the earlier than I2 or I3, combine should rescan starting at
294 that location. */
295
296 static rtx added_links_insn;
297
298 /* Basic block in which we are performing combines. */
299 static basic_block this_basic_block;
300 static bool optimize_this_for_speed_p;
301
302 \f
303 /* Length of the currently allocated uid_insn_cost array. */
304
305 static int max_uid_known;
306
307 /* The following array records the insn_rtx_cost for every insn
308 in the instruction stream. */
309
310 static int *uid_insn_cost;
311
312 /* The following array records the LOG_LINKS for every insn in the
313 instruction stream as struct insn_link pointers. */
314
315 struct insn_link {
316 rtx insn;
317 struct insn_link *next;
318 };
319
320 static struct insn_link **uid_log_links;
321
322 #define INSN_COST(INSN) (uid_insn_cost[INSN_UID (INSN)])
323 #define LOG_LINKS(INSN) (uid_log_links[INSN_UID (INSN)])
324
325 #define FOR_EACH_LOG_LINK(L, INSN) \
326 for ((L) = LOG_LINKS (INSN); (L); (L) = (L)->next)
327
328 /* Links for LOG_LINKS are allocated from this obstack. */
329
330 static struct obstack insn_link_obstack;
331
332 /* Allocate a link. */
333
334 static inline struct insn_link *
335 alloc_insn_link (rtx insn, struct insn_link *next)
336 {
337 struct insn_link *l
338 = (struct insn_link *) obstack_alloc (&insn_link_obstack,
339 sizeof (struct insn_link));
340 l->insn = insn;
341 l->next = next;
342 return l;
343 }
344
345 /* Incremented for each basic block. */
346
347 static int label_tick;
348
349 /* Reset to label_tick for each extended basic block in scanning order. */
350
351 static int label_tick_ebb_start;
352
353 /* Mode used to compute significance in reg_stat[].nonzero_bits. It is the
354 largest integer mode that can fit in HOST_BITS_PER_WIDE_INT. */
355
356 static enum machine_mode nonzero_bits_mode;
357
358 /* Nonzero when reg_stat[].nonzero_bits and reg_stat[].sign_bit_copies can
359 be safely used. It is zero while computing them and after combine has
360 completed. This former test prevents propagating values based on
361 previously set values, which can be incorrect if a variable is modified
362 in a loop. */
363
364 static int nonzero_sign_valid;
365
366 \f
367 /* Record one modification to rtl structure
368 to be undone by storing old_contents into *where. */
369
370 enum undo_kind { UNDO_RTX, UNDO_INT, UNDO_MODE, UNDO_LINKS };
371
372 struct undo
373 {
374 struct undo *next;
375 enum undo_kind kind;
376 union { rtx r; int i; enum machine_mode m; struct insn_link *l; } old_contents;
377 union { rtx *r; int *i; struct insn_link **l; } where;
378 };
379
380 /* Record a bunch of changes to be undone, up to MAX_UNDO of them.
381 num_undo says how many are currently recorded.
382
383 other_insn is nonzero if we have modified some other insn in the process
384 of working on subst_insn. It must be verified too. */
385
386 struct undobuf
387 {
388 struct undo *undos;
389 struct undo *frees;
390 rtx other_insn;
391 };
392
393 static struct undobuf undobuf;
394
395 /* Number of times the pseudo being substituted for
396 was found and replaced. */
397
398 static int n_occurrences;
399
400 static rtx reg_nonzero_bits_for_combine (const_rtx, enum machine_mode, const_rtx,
401 enum machine_mode,
402 unsigned HOST_WIDE_INT,
403 unsigned HOST_WIDE_INT *);
404 static rtx reg_num_sign_bit_copies_for_combine (const_rtx, enum machine_mode, const_rtx,
405 enum machine_mode,
406 unsigned int, unsigned int *);
407 static void do_SUBST (rtx *, rtx);
408 static void do_SUBST_INT (int *, int);
409 static void init_reg_last (void);
410 static void setup_incoming_promotions (rtx);
411 static void set_nonzero_bits_and_sign_copies (rtx, const_rtx, void *);
412 static int cant_combine_insn_p (rtx);
413 static int can_combine_p (rtx, rtx, rtx, rtx, rtx, rtx, rtx *, rtx *);
414 static int combinable_i3pat (rtx, rtx *, rtx, rtx, rtx, int, int, rtx *);
415 static int contains_muldiv (rtx);
416 static rtx try_combine (rtx, rtx, rtx, rtx, int *, rtx);
417 static void undo_all (void);
418 static void undo_commit (void);
419 static rtx *find_split_point (rtx *, rtx, bool);
420 static rtx subst (rtx, rtx, rtx, int, int, int);
421 static rtx combine_simplify_rtx (rtx, enum machine_mode, int, int);
422 static rtx simplify_if_then_else (rtx);
423 static rtx simplify_set (rtx);
424 static rtx simplify_logical (rtx);
425 static rtx expand_compound_operation (rtx);
426 static const_rtx expand_field_assignment (const_rtx);
427 static rtx make_extraction (enum machine_mode, rtx, HOST_WIDE_INT,
428 rtx, unsigned HOST_WIDE_INT, int, int, int);
429 static rtx extract_left_shift (rtx, int);
430 static rtx make_compound_operation (rtx, enum rtx_code);
431 static int get_pos_from_mask (unsigned HOST_WIDE_INT,
432 unsigned HOST_WIDE_INT *);
433 static rtx canon_reg_for_combine (rtx, rtx);
434 static rtx force_to_mode (rtx, enum machine_mode,
435 unsigned HOST_WIDE_INT, int);
436 static rtx if_then_else_cond (rtx, rtx *, rtx *);
437 static rtx known_cond (rtx, enum rtx_code, rtx, rtx);
438 static int rtx_equal_for_field_assignment_p (rtx, rtx);
439 static rtx make_field_assignment (rtx);
440 static rtx apply_distributive_law (rtx);
441 static rtx distribute_and_simplify_rtx (rtx, int);
442 static rtx simplify_and_const_int_1 (enum machine_mode, rtx,
443 unsigned HOST_WIDE_INT);
444 static rtx simplify_and_const_int (rtx, enum machine_mode, rtx,
445 unsigned HOST_WIDE_INT);
446 static int merge_outer_ops (enum rtx_code *, HOST_WIDE_INT *, enum rtx_code,
447 HOST_WIDE_INT, enum machine_mode, int *);
448 static rtx simplify_shift_const_1 (enum rtx_code, enum machine_mode, rtx, int);
449 static rtx simplify_shift_const (rtx, enum rtx_code, enum machine_mode, rtx,
450 int);
451 static int recog_for_combine (rtx *, rtx, rtx *);
452 static rtx gen_lowpart_for_combine (enum machine_mode, rtx);
453 static enum rtx_code simplify_compare_const (enum rtx_code, rtx, rtx *);
454 static enum rtx_code simplify_comparison (enum rtx_code, rtx *, rtx *);
455 static void update_table_tick (rtx);
456 static void record_value_for_reg (rtx, rtx, rtx);
457 static void check_promoted_subreg (rtx, rtx);
458 static void record_dead_and_set_regs_1 (rtx, const_rtx, void *);
459 static void record_dead_and_set_regs (rtx);
460 static int get_last_value_validate (rtx *, rtx, int, int);
461 static rtx get_last_value (const_rtx);
462 static int use_crosses_set_p (const_rtx, int);
463 static void reg_dead_at_p_1 (rtx, const_rtx, void *);
464 static int reg_dead_at_p (rtx, rtx);
465 static void move_deaths (rtx, rtx, int, rtx, rtx *);
466 static int reg_bitfield_target_p (rtx, rtx);
467 static void distribute_notes (rtx, rtx, rtx, rtx, rtx, rtx, rtx);
468 static void distribute_links (struct insn_link *);
469 static void mark_used_regs_combine (rtx);
470 static void record_promoted_value (rtx, rtx);
471 static int unmentioned_reg_p_1 (rtx *, void *);
472 static bool unmentioned_reg_p (rtx, rtx);
473 static int record_truncated_value (rtx *, void *);
474 static void record_truncated_values (rtx *, void *);
475 static bool reg_truncated_to_mode (enum machine_mode, const_rtx);
476 static rtx gen_lowpart_or_truncate (enum machine_mode, rtx);
477 \f
478
479 /* It is not safe to use ordinary gen_lowpart in combine.
480 See comments in gen_lowpart_for_combine. */
481 #undef RTL_HOOKS_GEN_LOWPART
482 #define RTL_HOOKS_GEN_LOWPART gen_lowpart_for_combine
483
484 /* Our implementation of gen_lowpart never emits a new pseudo. */
485 #undef RTL_HOOKS_GEN_LOWPART_NO_EMIT
486 #define RTL_HOOKS_GEN_LOWPART_NO_EMIT gen_lowpart_for_combine
487
488 #undef RTL_HOOKS_REG_NONZERO_REG_BITS
489 #define RTL_HOOKS_REG_NONZERO_REG_BITS reg_nonzero_bits_for_combine
490
491 #undef RTL_HOOKS_REG_NUM_SIGN_BIT_COPIES
492 #define RTL_HOOKS_REG_NUM_SIGN_BIT_COPIES reg_num_sign_bit_copies_for_combine
493
494 #undef RTL_HOOKS_REG_TRUNCATED_TO_MODE
495 #define RTL_HOOKS_REG_TRUNCATED_TO_MODE reg_truncated_to_mode
496
497 static const struct rtl_hooks combine_rtl_hooks = RTL_HOOKS_INITIALIZER;
498
499 \f
500 /* Try to split PATTERN found in INSN. This returns NULL_RTX if
501 PATTERN can not be split. Otherwise, it returns an insn sequence.
502 This is a wrapper around split_insns which ensures that the
503 reg_stat vector is made larger if the splitter creates a new
504 register. */
505
506 static rtx
507 combine_split_insns (rtx pattern, rtx insn)
508 {
509 rtx ret;
510 unsigned int nregs;
511
512 ret = split_insns (pattern, insn);
513 nregs = max_reg_num ();
514 if (nregs > VEC_length (reg_stat_type, reg_stat))
515 VEC_safe_grow_cleared (reg_stat_type, heap, reg_stat, nregs);
516 return ret;
517 }
518
519 /* This is used by find_single_use to locate an rtx in LOC that
520 contains exactly one use of DEST, which is typically either a REG
521 or CC0. It returns a pointer to the innermost rtx expression
522 containing DEST. Appearances of DEST that are being used to
523 totally replace it are not counted. */
524
525 static rtx *
526 find_single_use_1 (rtx dest, rtx *loc)
527 {
528 rtx x = *loc;
529 enum rtx_code code = GET_CODE (x);
530 rtx *result = NULL;
531 rtx *this_result;
532 int i;
533 const char *fmt;
534
535 switch (code)
536 {
537 case CONST_INT:
538 case CONST:
539 case LABEL_REF:
540 case SYMBOL_REF:
541 case CONST_DOUBLE:
542 case CONST_VECTOR:
543 case CLOBBER:
544 return 0;
545
546 case SET:
547 /* If the destination is anything other than CC0, PC, a REG or a SUBREG
548 of a REG that occupies all of the REG, the insn uses DEST if
549 it is mentioned in the destination or the source. Otherwise, we
550 need just check the source. */
551 if (GET_CODE (SET_DEST (x)) != CC0
552 && GET_CODE (SET_DEST (x)) != PC
553 && !REG_P (SET_DEST (x))
554 && ! (GET_CODE (SET_DEST (x)) == SUBREG
555 && REG_P (SUBREG_REG (SET_DEST (x)))
556 && (((GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (x))))
557 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
558 == ((GET_MODE_SIZE (GET_MODE (SET_DEST (x)))
559 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))))
560 break;
561
562 return find_single_use_1 (dest, &SET_SRC (x));
563
564 case MEM:
565 case SUBREG:
566 return find_single_use_1 (dest, &XEXP (x, 0));
567
568 default:
569 break;
570 }
571
572 /* If it wasn't one of the common cases above, check each expression and
573 vector of this code. Look for a unique usage of DEST. */
574
575 fmt = GET_RTX_FORMAT (code);
576 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
577 {
578 if (fmt[i] == 'e')
579 {
580 if (dest == XEXP (x, i)
581 || (REG_P (dest) && REG_P (XEXP (x, i))
582 && REGNO (dest) == REGNO (XEXP (x, i))))
583 this_result = loc;
584 else
585 this_result = find_single_use_1 (dest, &XEXP (x, i));
586
587 if (result == NULL)
588 result = this_result;
589 else if (this_result)
590 /* Duplicate usage. */
591 return NULL;
592 }
593 else if (fmt[i] == 'E')
594 {
595 int j;
596
597 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
598 {
599 if (XVECEXP (x, i, j) == dest
600 || (REG_P (dest)
601 && REG_P (XVECEXP (x, i, j))
602 && REGNO (XVECEXP (x, i, j)) == REGNO (dest)))
603 this_result = loc;
604 else
605 this_result = find_single_use_1 (dest, &XVECEXP (x, i, j));
606
607 if (result == NULL)
608 result = this_result;
609 else if (this_result)
610 return NULL;
611 }
612 }
613 }
614
615 return result;
616 }
617
618
619 /* See if DEST, produced in INSN, is used only a single time in the
620 sequel. If so, return a pointer to the innermost rtx expression in which
621 it is used.
622
623 If PLOC is nonzero, *PLOC is set to the insn containing the single use.
624
625 If DEST is cc0_rtx, we look only at the next insn. In that case, we don't
626 care about REG_DEAD notes or LOG_LINKS.
627
628 Otherwise, we find the single use by finding an insn that has a
629 LOG_LINKS pointing at INSN and has a REG_DEAD note for DEST. If DEST is
630 only referenced once in that insn, we know that it must be the first
631 and last insn referencing DEST. */
632
633 static rtx *
634 find_single_use (rtx dest, rtx insn, rtx *ploc)
635 {
636 basic_block bb;
637 rtx next;
638 rtx *result;
639 struct insn_link *link;
640
641 #ifdef HAVE_cc0
642 if (dest == cc0_rtx)
643 {
644 next = NEXT_INSN (insn);
645 if (next == 0
646 || (!NONJUMP_INSN_P (next) && !JUMP_P (next)))
647 return 0;
648
649 result = find_single_use_1 (dest, &PATTERN (next));
650 if (result && ploc)
651 *ploc = next;
652 return result;
653 }
654 #endif
655
656 if (!REG_P (dest))
657 return 0;
658
659 bb = BLOCK_FOR_INSN (insn);
660 for (next = NEXT_INSN (insn);
661 next && BLOCK_FOR_INSN (next) == bb;
662 next = NEXT_INSN (next))
663 if (INSN_P (next) && dead_or_set_p (next, dest))
664 {
665 FOR_EACH_LOG_LINK (link, next)
666 if (link->insn == insn)
667 break;
668
669 if (link)
670 {
671 result = find_single_use_1 (dest, &PATTERN (next));
672 if (ploc)
673 *ploc = next;
674 return result;
675 }
676 }
677
678 return 0;
679 }
680 \f
681 /* Substitute NEWVAL, an rtx expression, into INTO, a place in some
682 insn. The substitution can be undone by undo_all. If INTO is already
683 set to NEWVAL, do not record this change. Because computing NEWVAL might
684 also call SUBST, we have to compute it before we put anything into
685 the undo table. */
686
687 static void
688 do_SUBST (rtx *into, rtx newval)
689 {
690 struct undo *buf;
691 rtx oldval = *into;
692
693 if (oldval == newval)
694 return;
695
696 /* We'd like to catch as many invalid transformations here as
697 possible. Unfortunately, there are way too many mode changes
698 that are perfectly valid, so we'd waste too much effort for
699 little gain doing the checks here. Focus on catching invalid
700 transformations involving integer constants. */
701 if (GET_MODE_CLASS (GET_MODE (oldval)) == MODE_INT
702 && CONST_INT_P (newval))
703 {
704 /* Sanity check that we're replacing oldval with a CONST_INT
705 that is a valid sign-extension for the original mode. */
706 gcc_assert (INTVAL (newval)
707 == trunc_int_for_mode (INTVAL (newval), GET_MODE (oldval)));
708
709 /* Replacing the operand of a SUBREG or a ZERO_EXTEND with a
710 CONST_INT is not valid, because after the replacement, the
711 original mode would be gone. Unfortunately, we can't tell
712 when do_SUBST is called to replace the operand thereof, so we
713 perform this test on oldval instead, checking whether an
714 invalid replacement took place before we got here. */
715 gcc_assert (!(GET_CODE (oldval) == SUBREG
716 && CONST_INT_P (SUBREG_REG (oldval))));
717 gcc_assert (!(GET_CODE (oldval) == ZERO_EXTEND
718 && CONST_INT_P (XEXP (oldval, 0))));
719 }
720
721 if (undobuf.frees)
722 buf = undobuf.frees, undobuf.frees = buf->next;
723 else
724 buf = XNEW (struct undo);
725
726 buf->kind = UNDO_RTX;
727 buf->where.r = into;
728 buf->old_contents.r = oldval;
729 *into = newval;
730
731 buf->next = undobuf.undos, undobuf.undos = buf;
732 }
733
734 #define SUBST(INTO, NEWVAL) do_SUBST(&(INTO), (NEWVAL))
735
736 /* Similar to SUBST, but NEWVAL is an int expression. Note that substitution
737 for the value of a HOST_WIDE_INT value (including CONST_INT) is
738 not safe. */
739
740 static void
741 do_SUBST_INT (int *into, int newval)
742 {
743 struct undo *buf;
744 int oldval = *into;
745
746 if (oldval == newval)
747 return;
748
749 if (undobuf.frees)
750 buf = undobuf.frees, undobuf.frees = buf->next;
751 else
752 buf = XNEW (struct undo);
753
754 buf->kind = UNDO_INT;
755 buf->where.i = into;
756 buf->old_contents.i = oldval;
757 *into = newval;
758
759 buf->next = undobuf.undos, undobuf.undos = buf;
760 }
761
762 #define SUBST_INT(INTO, NEWVAL) do_SUBST_INT(&(INTO), (NEWVAL))
763
764 /* Similar to SUBST, but just substitute the mode. This is used when
765 changing the mode of a pseudo-register, so that any other
766 references to the entry in the regno_reg_rtx array will change as
767 well. */
768
769 static void
770 do_SUBST_MODE (rtx *into, enum machine_mode newval)
771 {
772 struct undo *buf;
773 enum machine_mode oldval = GET_MODE (*into);
774
775 if (oldval == newval)
776 return;
777
778 if (undobuf.frees)
779 buf = undobuf.frees, undobuf.frees = buf->next;
780 else
781 buf = XNEW (struct undo);
782
783 buf->kind = UNDO_MODE;
784 buf->where.r = into;
785 buf->old_contents.m = oldval;
786 adjust_reg_mode (*into, newval);
787
788 buf->next = undobuf.undos, undobuf.undos = buf;
789 }
790
791 #define SUBST_MODE(INTO, NEWVAL) do_SUBST_MODE(&(INTO), (NEWVAL))
792
793 #ifndef HAVE_cc0
794 /* Similar to SUBST, but NEWVAL is a LOG_LINKS expression. */
795
796 static void
797 do_SUBST_LINK (struct insn_link **into, struct insn_link *newval)
798 {
799 struct undo *buf;
800 struct insn_link * oldval = *into;
801
802 if (oldval == newval)
803 return;
804
805 if (undobuf.frees)
806 buf = undobuf.frees, undobuf.frees = buf->next;
807 else
808 buf = XNEW (struct undo);
809
810 buf->kind = UNDO_LINKS;
811 buf->where.l = into;
812 buf->old_contents.l = oldval;
813 *into = newval;
814
815 buf->next = undobuf.undos, undobuf.undos = buf;
816 }
817
818 #define SUBST_LINK(oldval, newval) do_SUBST_LINK (&oldval, newval)
819 #endif
820 \f
821 /* Subroutine of try_combine. Determine whether the replacement patterns
822 NEWPAT, NEWI2PAT and NEWOTHERPAT are cheaper according to insn_rtx_cost
823 than the original sequence I0, I1, I2, I3 and undobuf.other_insn. Note
824 that I0, I1 and/or NEWI2PAT may be NULL_RTX. Similarly, NEWOTHERPAT and
825 undobuf.other_insn may also both be NULL_RTX. Return false if the cost
826 of all the instructions can be estimated and the replacements are more
827 expensive than the original sequence. */
828
829 static bool
830 combine_validate_cost (rtx i0, rtx i1, rtx i2, rtx i3, rtx newpat,
831 rtx newi2pat, rtx newotherpat)
832 {
833 int i0_cost, i1_cost, i2_cost, i3_cost;
834 int new_i2_cost, new_i3_cost;
835 int old_cost, new_cost;
836
837 /* Lookup the original insn_rtx_costs. */
838 i2_cost = INSN_COST (i2);
839 i3_cost = INSN_COST (i3);
840
841 if (i1)
842 {
843 i1_cost = INSN_COST (i1);
844 if (i0)
845 {
846 i0_cost = INSN_COST (i0);
847 old_cost = (i0_cost > 0 && i1_cost > 0 && i2_cost > 0 && i3_cost > 0
848 ? i0_cost + i1_cost + i2_cost + i3_cost : 0);
849 }
850 else
851 {
852 old_cost = (i1_cost > 0 && i2_cost > 0 && i3_cost > 0
853 ? i1_cost + i2_cost + i3_cost : 0);
854 i0_cost = 0;
855 }
856 }
857 else
858 {
859 old_cost = (i2_cost > 0 && i3_cost > 0) ? i2_cost + i3_cost : 0;
860 i1_cost = i0_cost = 0;
861 }
862
863 /* Calculate the replacement insn_rtx_costs. */
864 new_i3_cost = insn_rtx_cost (newpat, optimize_this_for_speed_p);
865 if (newi2pat)
866 {
867 new_i2_cost = insn_rtx_cost (newi2pat, optimize_this_for_speed_p);
868 new_cost = (new_i2_cost > 0 && new_i3_cost > 0)
869 ? new_i2_cost + new_i3_cost : 0;
870 }
871 else
872 {
873 new_cost = new_i3_cost;
874 new_i2_cost = 0;
875 }
876
877 if (undobuf.other_insn)
878 {
879 int old_other_cost, new_other_cost;
880
881 old_other_cost = INSN_COST (undobuf.other_insn);
882 new_other_cost = insn_rtx_cost (newotherpat, optimize_this_for_speed_p);
883 if (old_other_cost > 0 && new_other_cost > 0)
884 {
885 old_cost += old_other_cost;
886 new_cost += new_other_cost;
887 }
888 else
889 old_cost = 0;
890 }
891
892 /* Disallow this combination if both new_cost and old_cost are greater than
893 zero, and new_cost is greater than old cost. */
894 if (old_cost > 0 && new_cost > old_cost)
895 {
896 if (dump_file)
897 {
898 if (i0)
899 {
900 fprintf (dump_file,
901 "rejecting combination of insns %d, %d, %d and %d\n",
902 INSN_UID (i0), INSN_UID (i1), INSN_UID (i2),
903 INSN_UID (i3));
904 fprintf (dump_file, "original costs %d + %d + %d + %d = %d\n",
905 i0_cost, i1_cost, i2_cost, i3_cost, old_cost);
906 }
907 else if (i1)
908 {
909 fprintf (dump_file,
910 "rejecting combination of insns %d, %d and %d\n",
911 INSN_UID (i1), INSN_UID (i2), INSN_UID (i3));
912 fprintf (dump_file, "original costs %d + %d + %d = %d\n",
913 i1_cost, i2_cost, i3_cost, old_cost);
914 }
915 else
916 {
917 fprintf (dump_file,
918 "rejecting combination of insns %d and %d\n",
919 INSN_UID (i2), INSN_UID (i3));
920 fprintf (dump_file, "original costs %d + %d = %d\n",
921 i2_cost, i3_cost, old_cost);
922 }
923
924 if (newi2pat)
925 {
926 fprintf (dump_file, "replacement costs %d + %d = %d\n",
927 new_i2_cost, new_i3_cost, new_cost);
928 }
929 else
930 fprintf (dump_file, "replacement cost %d\n", new_cost);
931 }
932
933 return false;
934 }
935
936 /* Update the uid_insn_cost array with the replacement costs. */
937 INSN_COST (i2) = new_i2_cost;
938 INSN_COST (i3) = new_i3_cost;
939 if (i1)
940 {
941 INSN_COST (i1) = 0;
942 if (i0)
943 INSN_COST (i0) = 0;
944 }
945
946 return true;
947 }
948
949
950 /* Delete any insns that copy a register to itself. */
951
952 static void
953 delete_noop_moves (void)
954 {
955 rtx insn, next;
956 basic_block bb;
957
958 FOR_EACH_BB (bb)
959 {
960 for (insn = BB_HEAD (bb); insn != NEXT_INSN (BB_END (bb)); insn = next)
961 {
962 next = NEXT_INSN (insn);
963 if (INSN_P (insn) && noop_move_p (insn))
964 {
965 if (dump_file)
966 fprintf (dump_file, "deleting noop move %d\n", INSN_UID (insn));
967
968 delete_insn_and_edges (insn);
969 }
970 }
971 }
972 }
973
974 \f
975 /* Fill in log links field for all insns. */
976
977 static void
978 create_log_links (void)
979 {
980 basic_block bb;
981 rtx *next_use, insn;
982 df_ref *def_vec, *use_vec;
983
984 next_use = XCNEWVEC (rtx, max_reg_num ());
985
986 /* Pass through each block from the end, recording the uses of each
987 register and establishing log links when def is encountered.
988 Note that we do not clear next_use array in order to save time,
989 so we have to test whether the use is in the same basic block as def.
990
991 There are a few cases below when we do not consider the definition or
992 usage -- these are taken from original flow.c did. Don't ask me why it is
993 done this way; I don't know and if it works, I don't want to know. */
994
995 FOR_EACH_BB (bb)
996 {
997 FOR_BB_INSNS_REVERSE (bb, insn)
998 {
999 if (!NONDEBUG_INSN_P (insn))
1000 continue;
1001
1002 /* Log links are created only once. */
1003 gcc_assert (!LOG_LINKS (insn));
1004
1005 for (def_vec = DF_INSN_DEFS (insn); *def_vec; def_vec++)
1006 {
1007 df_ref def = *def_vec;
1008 int regno = DF_REF_REGNO (def);
1009 rtx use_insn;
1010
1011 if (!next_use[regno])
1012 continue;
1013
1014 /* Do not consider if it is pre/post modification in MEM. */
1015 if (DF_REF_FLAGS (def) & DF_REF_PRE_POST_MODIFY)
1016 continue;
1017
1018 /* Do not make the log link for frame pointer. */
1019 if ((regno == FRAME_POINTER_REGNUM
1020 && (! reload_completed || frame_pointer_needed))
1021 #if !HARD_FRAME_POINTER_IS_FRAME_POINTER
1022 || (regno == HARD_FRAME_POINTER_REGNUM
1023 && (! reload_completed || frame_pointer_needed))
1024 #endif
1025 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
1026 || (regno == ARG_POINTER_REGNUM && fixed_regs[regno])
1027 #endif
1028 )
1029 continue;
1030
1031 use_insn = next_use[regno];
1032 if (BLOCK_FOR_INSN (use_insn) == bb)
1033 {
1034 /* flow.c claimed:
1035
1036 We don't build a LOG_LINK for hard registers contained
1037 in ASM_OPERANDs. If these registers get replaced,
1038 we might wind up changing the semantics of the insn,
1039 even if reload can make what appear to be valid
1040 assignments later. */
1041 if (regno >= FIRST_PSEUDO_REGISTER
1042 || asm_noperands (PATTERN (use_insn)) < 0)
1043 {
1044 /* Don't add duplicate links between instructions. */
1045 struct insn_link *links;
1046 FOR_EACH_LOG_LINK (links, use_insn)
1047 if (insn == links->insn)
1048 break;
1049
1050 if (!links)
1051 LOG_LINKS (use_insn)
1052 = alloc_insn_link (insn, LOG_LINKS (use_insn));
1053 }
1054 }
1055 next_use[regno] = NULL_RTX;
1056 }
1057
1058 for (use_vec = DF_INSN_USES (insn); *use_vec; use_vec++)
1059 {
1060 df_ref use = *use_vec;
1061 int regno = DF_REF_REGNO (use);
1062
1063 /* Do not consider the usage of the stack pointer
1064 by function call. */
1065 if (DF_REF_FLAGS (use) & DF_REF_CALL_STACK_USAGE)
1066 continue;
1067
1068 next_use[regno] = insn;
1069 }
1070 }
1071 }
1072
1073 free (next_use);
1074 }
1075
1076 /* Walk the LOG_LINKS of insn B to see if we find a reference to A. Return
1077 true if we found a LOG_LINK that proves that A feeds B. This only works
1078 if there are no instructions between A and B which could have a link
1079 depending on A, since in that case we would not record a link for B.
1080 We also check the implicit dependency created by a cc0 setter/user
1081 pair. */
1082
1083 static bool
1084 insn_a_feeds_b (rtx a, rtx b)
1085 {
1086 struct insn_link *links;
1087 FOR_EACH_LOG_LINK (links, b)
1088 if (links->insn == a)
1089 return true;
1090 #ifdef HAVE_cc0
1091 if (sets_cc0_p (a))
1092 return true;
1093 #endif
1094 return false;
1095 }
1096 \f
1097 /* Main entry point for combiner. F is the first insn of the function.
1098 NREGS is the first unused pseudo-reg number.
1099
1100 Return nonzero if the combiner has turned an indirect jump
1101 instruction into a direct jump. */
1102 static int
1103 combine_instructions (rtx f, unsigned int nregs)
1104 {
1105 rtx insn, next;
1106 #ifdef HAVE_cc0
1107 rtx prev;
1108 #endif
1109 struct insn_link *links, *nextlinks;
1110 rtx first;
1111 basic_block last_bb;
1112
1113 int new_direct_jump_p = 0;
1114
1115 for (first = f; first && !INSN_P (first); )
1116 first = NEXT_INSN (first);
1117 if (!first)
1118 return 0;
1119
1120 combine_attempts = 0;
1121 combine_merges = 0;
1122 combine_extras = 0;
1123 combine_successes = 0;
1124
1125 rtl_hooks = combine_rtl_hooks;
1126
1127 VEC_safe_grow_cleared (reg_stat_type, heap, reg_stat, nregs);
1128
1129 init_recog_no_volatile ();
1130
1131 /* Allocate array for insn info. */
1132 max_uid_known = get_max_uid ();
1133 uid_log_links = XCNEWVEC (struct insn_link *, max_uid_known + 1);
1134 uid_insn_cost = XCNEWVEC (int, max_uid_known + 1);
1135 gcc_obstack_init (&insn_link_obstack);
1136
1137 nonzero_bits_mode = mode_for_size (HOST_BITS_PER_WIDE_INT, MODE_INT, 0);
1138
1139 /* Don't use reg_stat[].nonzero_bits when computing it. This can cause
1140 problems when, for example, we have j <<= 1 in a loop. */
1141
1142 nonzero_sign_valid = 0;
1143 label_tick = label_tick_ebb_start = 1;
1144
1145 /* Scan all SETs and see if we can deduce anything about what
1146 bits are known to be zero for some registers and how many copies
1147 of the sign bit are known to exist for those registers.
1148
1149 Also set any known values so that we can use it while searching
1150 for what bits are known to be set. */
1151
1152 setup_incoming_promotions (first);
1153 /* Allow the entry block and the first block to fall into the same EBB.
1154 Conceptually the incoming promotions are assigned to the entry block. */
1155 last_bb = ENTRY_BLOCK_PTR;
1156
1157 create_log_links ();
1158 FOR_EACH_BB (this_basic_block)
1159 {
1160 optimize_this_for_speed_p = optimize_bb_for_speed_p (this_basic_block);
1161 last_call_luid = 0;
1162 mem_last_set = -1;
1163
1164 label_tick++;
1165 if (!single_pred_p (this_basic_block)
1166 || single_pred (this_basic_block) != last_bb)
1167 label_tick_ebb_start = label_tick;
1168 last_bb = this_basic_block;
1169
1170 FOR_BB_INSNS (this_basic_block, insn)
1171 if (INSN_P (insn) && BLOCK_FOR_INSN (insn))
1172 {
1173 #ifdef AUTO_INC_DEC
1174 rtx links;
1175 #endif
1176
1177 subst_low_luid = DF_INSN_LUID (insn);
1178 subst_insn = insn;
1179
1180 note_stores (PATTERN (insn), set_nonzero_bits_and_sign_copies,
1181 insn);
1182 record_dead_and_set_regs (insn);
1183
1184 #ifdef AUTO_INC_DEC
1185 for (links = REG_NOTES (insn); links; links = XEXP (links, 1))
1186 if (REG_NOTE_KIND (links) == REG_INC)
1187 set_nonzero_bits_and_sign_copies (XEXP (links, 0), NULL_RTX,
1188 insn);
1189 #endif
1190
1191 /* Record the current insn_rtx_cost of this instruction. */
1192 if (NONJUMP_INSN_P (insn))
1193 INSN_COST (insn) = insn_rtx_cost (PATTERN (insn),
1194 optimize_this_for_speed_p);
1195 if (dump_file)
1196 fprintf(dump_file, "insn_cost %d: %d\n",
1197 INSN_UID (insn), INSN_COST (insn));
1198 }
1199 }
1200
1201 nonzero_sign_valid = 1;
1202
1203 /* Now scan all the insns in forward order. */
1204 label_tick = label_tick_ebb_start = 1;
1205 init_reg_last ();
1206 setup_incoming_promotions (first);
1207 last_bb = ENTRY_BLOCK_PTR;
1208
1209 FOR_EACH_BB (this_basic_block)
1210 {
1211 rtx last_combined_insn = NULL_RTX;
1212 optimize_this_for_speed_p = optimize_bb_for_speed_p (this_basic_block);
1213 last_call_luid = 0;
1214 mem_last_set = -1;
1215
1216 label_tick++;
1217 if (!single_pred_p (this_basic_block)
1218 || single_pred (this_basic_block) != last_bb)
1219 label_tick_ebb_start = label_tick;
1220 last_bb = this_basic_block;
1221
1222 rtl_profile_for_bb (this_basic_block);
1223 for (insn = BB_HEAD (this_basic_block);
1224 insn != NEXT_INSN (BB_END (this_basic_block));
1225 insn = next ? next : NEXT_INSN (insn))
1226 {
1227 next = 0;
1228 if (NONDEBUG_INSN_P (insn))
1229 {
1230 while (last_combined_insn
1231 && INSN_DELETED_P (last_combined_insn))
1232 last_combined_insn = PREV_INSN (last_combined_insn);
1233 if (last_combined_insn == NULL_RTX
1234 || BARRIER_P (last_combined_insn)
1235 || BLOCK_FOR_INSN (last_combined_insn) != this_basic_block
1236 || DF_INSN_LUID (last_combined_insn) <= DF_INSN_LUID (insn))
1237 last_combined_insn = insn;
1238
1239 /* See if we know about function return values before this
1240 insn based upon SUBREG flags. */
1241 check_promoted_subreg (insn, PATTERN (insn));
1242
1243 /* See if we can find hardregs and subreg of pseudos in
1244 narrower modes. This could help turning TRUNCATEs
1245 into SUBREGs. */
1246 note_uses (&PATTERN (insn), record_truncated_values, NULL);
1247
1248 /* Try this insn with each insn it links back to. */
1249
1250 FOR_EACH_LOG_LINK (links, insn)
1251 if ((next = try_combine (insn, links->insn, NULL_RTX,
1252 NULL_RTX, &new_direct_jump_p,
1253 last_combined_insn)) != 0)
1254 goto retry;
1255
1256 /* Try each sequence of three linked insns ending with this one. */
1257
1258 FOR_EACH_LOG_LINK (links, insn)
1259 {
1260 rtx link = links->insn;
1261
1262 /* If the linked insn has been replaced by a note, then there
1263 is no point in pursuing this chain any further. */
1264 if (NOTE_P (link))
1265 continue;
1266
1267 FOR_EACH_LOG_LINK (nextlinks, link)
1268 if ((next = try_combine (insn, link, nextlinks->insn,
1269 NULL_RTX, &new_direct_jump_p,
1270 last_combined_insn)) != 0)
1271 goto retry;
1272 }
1273
1274 #ifdef HAVE_cc0
1275 /* Try to combine a jump insn that uses CC0
1276 with a preceding insn that sets CC0, and maybe with its
1277 logical predecessor as well.
1278 This is how we make decrement-and-branch insns.
1279 We need this special code because data flow connections
1280 via CC0 do not get entered in LOG_LINKS. */
1281
1282 if (JUMP_P (insn)
1283 && (prev = prev_nonnote_insn (insn)) != 0
1284 && NONJUMP_INSN_P (prev)
1285 && sets_cc0_p (PATTERN (prev)))
1286 {
1287 if ((next = try_combine (insn, prev, NULL_RTX, NULL_RTX,
1288 &new_direct_jump_p,
1289 last_combined_insn)) != 0)
1290 goto retry;
1291
1292 FOR_EACH_LOG_LINK (nextlinks, prev)
1293 if ((next = try_combine (insn, prev, nextlinks->insn,
1294 NULL_RTX, &new_direct_jump_p,
1295 last_combined_insn)) != 0)
1296 goto retry;
1297 }
1298
1299 /* Do the same for an insn that explicitly references CC0. */
1300 if (NONJUMP_INSN_P (insn)
1301 && (prev = prev_nonnote_insn (insn)) != 0
1302 && NONJUMP_INSN_P (prev)
1303 && sets_cc0_p (PATTERN (prev))
1304 && GET_CODE (PATTERN (insn)) == SET
1305 && reg_mentioned_p (cc0_rtx, SET_SRC (PATTERN (insn))))
1306 {
1307 if ((next = try_combine (insn, prev, NULL_RTX, NULL_RTX,
1308 &new_direct_jump_p,
1309 last_combined_insn)) != 0)
1310 goto retry;
1311
1312 FOR_EACH_LOG_LINK (nextlinks, prev)
1313 if ((next = try_combine (insn, prev, nextlinks->insn,
1314 NULL_RTX, &new_direct_jump_p,
1315 last_combined_insn)) != 0)
1316 goto retry;
1317 }
1318
1319 /* Finally, see if any of the insns that this insn links to
1320 explicitly references CC0. If so, try this insn, that insn,
1321 and its predecessor if it sets CC0. */
1322 FOR_EACH_LOG_LINK (links, insn)
1323 if (NONJUMP_INSN_P (links->insn)
1324 && GET_CODE (PATTERN (links->insn)) == SET
1325 && reg_mentioned_p (cc0_rtx, SET_SRC (PATTERN (links->insn)))
1326 && (prev = prev_nonnote_insn (links->insn)) != 0
1327 && NONJUMP_INSN_P (prev)
1328 && sets_cc0_p (PATTERN (prev))
1329 && (next = try_combine (insn, links->insn,
1330 prev, NULL_RTX, &new_direct_jump_p,
1331 last_combined_insn)) != 0)
1332 goto retry;
1333 #endif
1334
1335 /* Try combining an insn with two different insns whose results it
1336 uses. */
1337 FOR_EACH_LOG_LINK (links, insn)
1338 for (nextlinks = links->next; nextlinks;
1339 nextlinks = nextlinks->next)
1340 if ((next = try_combine (insn, links->insn,
1341 nextlinks->insn, NULL_RTX,
1342 &new_direct_jump_p,
1343 last_combined_insn)) != 0)
1344 goto retry;
1345
1346 /* Try four-instruction combinations. */
1347 FOR_EACH_LOG_LINK (links, insn)
1348 {
1349 struct insn_link *next1;
1350 rtx link = links->insn;
1351
1352 /* If the linked insn has been replaced by a note, then there
1353 is no point in pursuing this chain any further. */
1354 if (NOTE_P (link))
1355 continue;
1356
1357 FOR_EACH_LOG_LINK (next1, link)
1358 {
1359 rtx link1 = next1->insn;
1360 if (NOTE_P (link1))
1361 continue;
1362 /* I0 -> I1 -> I2 -> I3. */
1363 FOR_EACH_LOG_LINK (nextlinks, link1)
1364 if ((next = try_combine (insn, link, link1,
1365 nextlinks->insn,
1366 &new_direct_jump_p,
1367 last_combined_insn)) != 0)
1368 goto retry;
1369 /* I0, I1 -> I2, I2 -> I3. */
1370 for (nextlinks = next1->next; nextlinks;
1371 nextlinks = nextlinks->next)
1372 if ((next = try_combine (insn, link, link1,
1373 nextlinks->insn,
1374 &new_direct_jump_p,
1375 last_combined_insn)) != 0)
1376 goto retry;
1377 }
1378
1379 for (next1 = links->next; next1; next1 = next1->next)
1380 {
1381 rtx link1 = next1->insn;
1382 if (NOTE_P (link1))
1383 continue;
1384 /* I0 -> I2; I1, I2 -> I3. */
1385 FOR_EACH_LOG_LINK (nextlinks, link)
1386 if ((next = try_combine (insn, link, link1,
1387 nextlinks->insn,
1388 &new_direct_jump_p,
1389 last_combined_insn)) != 0)
1390 goto retry;
1391 /* I0 -> I1; I1, I2 -> I3. */
1392 FOR_EACH_LOG_LINK (nextlinks, link1)
1393 if ((next = try_combine (insn, link, link1,
1394 nextlinks->insn,
1395 &new_direct_jump_p,
1396 last_combined_insn)) != 0)
1397 goto retry;
1398 }
1399 }
1400
1401 /* Try this insn with each REG_EQUAL note it links back to. */
1402 FOR_EACH_LOG_LINK (links, insn)
1403 {
1404 rtx set, note;
1405 rtx temp = links->insn;
1406 if ((set = single_set (temp)) != 0
1407 && (note = find_reg_equal_equiv_note (temp)) != 0
1408 && (note = XEXP (note, 0), GET_CODE (note)) != EXPR_LIST
1409 /* Avoid using a register that may already been marked
1410 dead by an earlier instruction. */
1411 && ! unmentioned_reg_p (note, SET_SRC (set))
1412 && (GET_MODE (note) == VOIDmode
1413 ? SCALAR_INT_MODE_P (GET_MODE (SET_DEST (set)))
1414 : GET_MODE (SET_DEST (set)) == GET_MODE (note)))
1415 {
1416 /* Temporarily replace the set's source with the
1417 contents of the REG_EQUAL note. The insn will
1418 be deleted or recognized by try_combine. */
1419 rtx orig = SET_SRC (set);
1420 SET_SRC (set) = note;
1421 i2mod = temp;
1422 i2mod_old_rhs = copy_rtx (orig);
1423 i2mod_new_rhs = copy_rtx (note);
1424 next = try_combine (insn, i2mod, NULL_RTX, NULL_RTX,
1425 &new_direct_jump_p,
1426 last_combined_insn);
1427 i2mod = NULL_RTX;
1428 if (next)
1429 goto retry;
1430 SET_SRC (set) = orig;
1431 }
1432 }
1433
1434 if (!NOTE_P (insn))
1435 record_dead_and_set_regs (insn);
1436
1437 retry:
1438 ;
1439 }
1440 }
1441 }
1442
1443 default_rtl_profile ();
1444 clear_bb_flags ();
1445 new_direct_jump_p |= purge_all_dead_edges ();
1446 delete_noop_moves ();
1447
1448 /* Clean up. */
1449 obstack_free (&insn_link_obstack, NULL);
1450 free (uid_log_links);
1451 free (uid_insn_cost);
1452 VEC_free (reg_stat_type, heap, reg_stat);
1453
1454 {
1455 struct undo *undo, *next;
1456 for (undo = undobuf.frees; undo; undo = next)
1457 {
1458 next = undo->next;
1459 free (undo);
1460 }
1461 undobuf.frees = 0;
1462 }
1463
1464 total_attempts += combine_attempts;
1465 total_merges += combine_merges;
1466 total_extras += combine_extras;
1467 total_successes += combine_successes;
1468
1469 nonzero_sign_valid = 0;
1470 rtl_hooks = general_rtl_hooks;
1471
1472 /* Make recognizer allow volatile MEMs again. */
1473 init_recog ();
1474
1475 return new_direct_jump_p;
1476 }
1477
1478 /* Wipe the last_xxx fields of reg_stat in preparation for another pass. */
1479
1480 static void
1481 init_reg_last (void)
1482 {
1483 unsigned int i;
1484 reg_stat_type *p;
1485
1486 FOR_EACH_VEC_ELT (reg_stat_type, reg_stat, i, p)
1487 memset (p, 0, offsetof (reg_stat_type, sign_bit_copies));
1488 }
1489 \f
1490 /* Set up any promoted values for incoming argument registers. */
1491
1492 static void
1493 setup_incoming_promotions (rtx first)
1494 {
1495 tree arg;
1496 bool strictly_local = false;
1497
1498 for (arg = DECL_ARGUMENTS (current_function_decl); arg;
1499 arg = DECL_CHAIN (arg))
1500 {
1501 rtx x, reg = DECL_INCOMING_RTL (arg);
1502 int uns1, uns3;
1503 enum machine_mode mode1, mode2, mode3, mode4;
1504
1505 /* Only continue if the incoming argument is in a register. */
1506 if (!REG_P (reg))
1507 continue;
1508
1509 /* Determine, if possible, whether all call sites of the current
1510 function lie within the current compilation unit. (This does
1511 take into account the exporting of a function via taking its
1512 address, and so forth.) */
1513 strictly_local = cgraph_local_info (current_function_decl)->local;
1514
1515 /* The mode and signedness of the argument before any promotions happen
1516 (equal to the mode of the pseudo holding it at that stage). */
1517 mode1 = TYPE_MODE (TREE_TYPE (arg));
1518 uns1 = TYPE_UNSIGNED (TREE_TYPE (arg));
1519
1520 /* The mode and signedness of the argument after any source language and
1521 TARGET_PROMOTE_PROTOTYPES-driven promotions. */
1522 mode2 = TYPE_MODE (DECL_ARG_TYPE (arg));
1523 uns3 = TYPE_UNSIGNED (DECL_ARG_TYPE (arg));
1524
1525 /* The mode and signedness of the argument as it is actually passed,
1526 after any TARGET_PROMOTE_FUNCTION_ARGS-driven ABI promotions. */
1527 mode3 = promote_function_mode (DECL_ARG_TYPE (arg), mode2, &uns3,
1528 TREE_TYPE (cfun->decl), 0);
1529
1530 /* The mode of the register in which the argument is being passed. */
1531 mode4 = GET_MODE (reg);
1532
1533 /* Eliminate sign extensions in the callee when:
1534 (a) A mode promotion has occurred; */
1535 if (mode1 == mode3)
1536 continue;
1537 /* (b) The mode of the register is the same as the mode of
1538 the argument as it is passed; */
1539 if (mode3 != mode4)
1540 continue;
1541 /* (c) There's no language level extension; */
1542 if (mode1 == mode2)
1543 ;
1544 /* (c.1) All callers are from the current compilation unit. If that's
1545 the case we don't have to rely on an ABI, we only have to know
1546 what we're generating right now, and we know that we will do the
1547 mode1 to mode2 promotion with the given sign. */
1548 else if (!strictly_local)
1549 continue;
1550 /* (c.2) The combination of the two promotions is useful. This is
1551 true when the signs match, or if the first promotion is unsigned.
1552 In the later case, (sign_extend (zero_extend x)) is the same as
1553 (zero_extend (zero_extend x)), so make sure to force UNS3 true. */
1554 else if (uns1)
1555 uns3 = true;
1556 else if (uns3)
1557 continue;
1558
1559 /* Record that the value was promoted from mode1 to mode3,
1560 so that any sign extension at the head of the current
1561 function may be eliminated. */
1562 x = gen_rtx_CLOBBER (mode1, const0_rtx);
1563 x = gen_rtx_fmt_e ((uns3 ? ZERO_EXTEND : SIGN_EXTEND), mode3, x);
1564 record_value_for_reg (reg, first, x);
1565 }
1566 }
1567
1568 /* Called via note_stores. If X is a pseudo that is narrower than
1569 HOST_BITS_PER_WIDE_INT and is being set, record what bits are known zero.
1570
1571 If we are setting only a portion of X and we can't figure out what
1572 portion, assume all bits will be used since we don't know what will
1573 be happening.
1574
1575 Similarly, set how many bits of X are known to be copies of the sign bit
1576 at all locations in the function. This is the smallest number implied
1577 by any set of X. */
1578
1579 static void
1580 set_nonzero_bits_and_sign_copies (rtx x, const_rtx set, void *data)
1581 {
1582 rtx insn = (rtx) data;
1583 unsigned int num;
1584
1585 if (REG_P (x)
1586 && REGNO (x) >= FIRST_PSEUDO_REGISTER
1587 /* If this register is undefined at the start of the file, we can't
1588 say what its contents were. */
1589 && ! REGNO_REG_SET_P
1590 (DF_LR_IN (ENTRY_BLOCK_PTR->next_bb), REGNO (x))
1591 && HWI_COMPUTABLE_MODE_P (GET_MODE (x)))
1592 {
1593 reg_stat_type *rsp = VEC_index (reg_stat_type, reg_stat, REGNO (x));
1594
1595 if (set == 0 || GET_CODE (set) == CLOBBER)
1596 {
1597 rsp->nonzero_bits = GET_MODE_MASK (GET_MODE (x));
1598 rsp->sign_bit_copies = 1;
1599 return;
1600 }
1601
1602 /* If this register is being initialized using itself, and the
1603 register is uninitialized in this basic block, and there are
1604 no LOG_LINKS which set the register, then part of the
1605 register is uninitialized. In that case we can't assume
1606 anything about the number of nonzero bits.
1607
1608 ??? We could do better if we checked this in
1609 reg_{nonzero_bits,num_sign_bit_copies}_for_combine. Then we
1610 could avoid making assumptions about the insn which initially
1611 sets the register, while still using the information in other
1612 insns. We would have to be careful to check every insn
1613 involved in the combination. */
1614
1615 if (insn
1616 && reg_referenced_p (x, PATTERN (insn))
1617 && !REGNO_REG_SET_P (DF_LR_IN (BLOCK_FOR_INSN (insn)),
1618 REGNO (x)))
1619 {
1620 struct insn_link *link;
1621
1622 FOR_EACH_LOG_LINK (link, insn)
1623 if (dead_or_set_p (link->insn, x))
1624 break;
1625 if (!link)
1626 {
1627 rsp->nonzero_bits = GET_MODE_MASK (GET_MODE (x));
1628 rsp->sign_bit_copies = 1;
1629 return;
1630 }
1631 }
1632
1633 /* If this is a complex assignment, see if we can convert it into a
1634 simple assignment. */
1635 set = expand_field_assignment (set);
1636
1637 /* If this is a simple assignment, or we have a paradoxical SUBREG,
1638 set what we know about X. */
1639
1640 if (SET_DEST (set) == x
1641 || (paradoxical_subreg_p (SET_DEST (set))
1642 && SUBREG_REG (SET_DEST (set)) == x))
1643 {
1644 rtx src = SET_SRC (set);
1645
1646 #ifdef SHORT_IMMEDIATES_SIGN_EXTEND
1647 /* If X is narrower than a word and SRC is a non-negative
1648 constant that would appear negative in the mode of X,
1649 sign-extend it for use in reg_stat[].nonzero_bits because some
1650 machines (maybe most) will actually do the sign-extension
1651 and this is the conservative approach.
1652
1653 ??? For 2.5, try to tighten up the MD files in this regard
1654 instead of this kludge. */
1655
1656 if (GET_MODE_PRECISION (GET_MODE (x)) < BITS_PER_WORD
1657 && CONST_INT_P (src)
1658 && INTVAL (src) > 0
1659 && val_signbit_known_set_p (GET_MODE (x), INTVAL (src)))
1660 src = GEN_INT (INTVAL (src) | ~GET_MODE_MASK (GET_MODE (x)));
1661 #endif
1662
1663 /* Don't call nonzero_bits if it cannot change anything. */
1664 if (rsp->nonzero_bits != ~(unsigned HOST_WIDE_INT) 0)
1665 rsp->nonzero_bits |= nonzero_bits (src, nonzero_bits_mode);
1666 num = num_sign_bit_copies (SET_SRC (set), GET_MODE (x));
1667 if (rsp->sign_bit_copies == 0
1668 || rsp->sign_bit_copies > num)
1669 rsp->sign_bit_copies = num;
1670 }
1671 else
1672 {
1673 rsp->nonzero_bits = GET_MODE_MASK (GET_MODE (x));
1674 rsp->sign_bit_copies = 1;
1675 }
1676 }
1677 }
1678 \f
1679 /* See if INSN can be combined into I3. PRED, PRED2, SUCC and SUCC2 are
1680 optionally insns that were previously combined into I3 or that will be
1681 combined into the merger of INSN and I3. The order is PRED, PRED2,
1682 INSN, SUCC, SUCC2, I3.
1683
1684 Return 0 if the combination is not allowed for any reason.
1685
1686 If the combination is allowed, *PDEST will be set to the single
1687 destination of INSN and *PSRC to the single source, and this function
1688 will return 1. */
1689
1690 static int
1691 can_combine_p (rtx insn, rtx i3, rtx pred ATTRIBUTE_UNUSED,
1692 rtx pred2 ATTRIBUTE_UNUSED, rtx succ, rtx succ2,
1693 rtx *pdest, rtx *psrc)
1694 {
1695 int i;
1696 const_rtx set = 0;
1697 rtx src, dest;
1698 rtx p;
1699 #ifdef AUTO_INC_DEC
1700 rtx link;
1701 #endif
1702 bool all_adjacent = true;
1703 int (*is_volatile_p) (const_rtx);
1704
1705 if (succ)
1706 {
1707 if (succ2)
1708 {
1709 if (next_active_insn (succ2) != i3)
1710 all_adjacent = false;
1711 if (next_active_insn (succ) != succ2)
1712 all_adjacent = false;
1713 }
1714 else if (next_active_insn (succ) != i3)
1715 all_adjacent = false;
1716 if (next_active_insn (insn) != succ)
1717 all_adjacent = false;
1718 }
1719 else if (next_active_insn (insn) != i3)
1720 all_adjacent = false;
1721
1722 /* Can combine only if previous insn is a SET of a REG, a SUBREG or CC0.
1723 or a PARALLEL consisting of such a SET and CLOBBERs.
1724
1725 If INSN has CLOBBER parallel parts, ignore them for our processing.
1726 By definition, these happen during the execution of the insn. When it
1727 is merged with another insn, all bets are off. If they are, in fact,
1728 needed and aren't also supplied in I3, they may be added by
1729 recog_for_combine. Otherwise, it won't match.
1730
1731 We can also ignore a SET whose SET_DEST is mentioned in a REG_UNUSED
1732 note.
1733
1734 Get the source and destination of INSN. If more than one, can't
1735 combine. */
1736
1737 if (GET_CODE (PATTERN (insn)) == SET)
1738 set = PATTERN (insn);
1739 else if (GET_CODE (PATTERN (insn)) == PARALLEL
1740 && GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == SET)
1741 {
1742 for (i = 0; i < XVECLEN (PATTERN (insn), 0); i++)
1743 {
1744 rtx elt = XVECEXP (PATTERN (insn), 0, i);
1745
1746 switch (GET_CODE (elt))
1747 {
1748 /* This is important to combine floating point insns
1749 for the SH4 port. */
1750 case USE:
1751 /* Combining an isolated USE doesn't make sense.
1752 We depend here on combinable_i3pat to reject them. */
1753 /* The code below this loop only verifies that the inputs of
1754 the SET in INSN do not change. We call reg_set_between_p
1755 to verify that the REG in the USE does not change between
1756 I3 and INSN.
1757 If the USE in INSN was for a pseudo register, the matching
1758 insn pattern will likely match any register; combining this
1759 with any other USE would only be safe if we knew that the
1760 used registers have identical values, or if there was
1761 something to tell them apart, e.g. different modes. For
1762 now, we forgo such complicated tests and simply disallow
1763 combining of USES of pseudo registers with any other USE. */
1764 if (REG_P (XEXP (elt, 0))
1765 && GET_CODE (PATTERN (i3)) == PARALLEL)
1766 {
1767 rtx i3pat = PATTERN (i3);
1768 int i = XVECLEN (i3pat, 0) - 1;
1769 unsigned int regno = REGNO (XEXP (elt, 0));
1770
1771 do
1772 {
1773 rtx i3elt = XVECEXP (i3pat, 0, i);
1774
1775 if (GET_CODE (i3elt) == USE
1776 && REG_P (XEXP (i3elt, 0))
1777 && (REGNO (XEXP (i3elt, 0)) == regno
1778 ? reg_set_between_p (XEXP (elt, 0),
1779 PREV_INSN (insn), i3)
1780 : regno >= FIRST_PSEUDO_REGISTER))
1781 return 0;
1782 }
1783 while (--i >= 0);
1784 }
1785 break;
1786
1787 /* We can ignore CLOBBERs. */
1788 case CLOBBER:
1789 break;
1790
1791 case SET:
1792 /* Ignore SETs whose result isn't used but not those that
1793 have side-effects. */
1794 if (find_reg_note (insn, REG_UNUSED, SET_DEST (elt))
1795 && insn_nothrow_p (insn)
1796 && !side_effects_p (elt))
1797 break;
1798
1799 /* If we have already found a SET, this is a second one and
1800 so we cannot combine with this insn. */
1801 if (set)
1802 return 0;
1803
1804 set = elt;
1805 break;
1806
1807 default:
1808 /* Anything else means we can't combine. */
1809 return 0;
1810 }
1811 }
1812
1813 if (set == 0
1814 /* If SET_SRC is an ASM_OPERANDS we can't throw away these CLOBBERs,
1815 so don't do anything with it. */
1816 || GET_CODE (SET_SRC (set)) == ASM_OPERANDS)
1817 return 0;
1818 }
1819 else
1820 return 0;
1821
1822 if (set == 0)
1823 return 0;
1824
1825 /* The simplification in expand_field_assignment may call back to
1826 get_last_value, so set safe guard here. */
1827 subst_low_luid = DF_INSN_LUID (insn);
1828
1829 set = expand_field_assignment (set);
1830 src = SET_SRC (set), dest = SET_DEST (set);
1831
1832 /* Don't eliminate a store in the stack pointer. */
1833 if (dest == stack_pointer_rtx
1834 /* Don't combine with an insn that sets a register to itself if it has
1835 a REG_EQUAL note. This may be part of a LIBCALL sequence. */
1836 || (rtx_equal_p (src, dest) && find_reg_note (insn, REG_EQUAL, NULL_RTX))
1837 /* Can't merge an ASM_OPERANDS. */
1838 || GET_CODE (src) == ASM_OPERANDS
1839 /* Can't merge a function call. */
1840 || GET_CODE (src) == CALL
1841 /* Don't eliminate a function call argument. */
1842 || (CALL_P (i3)
1843 && (find_reg_fusage (i3, USE, dest)
1844 || (REG_P (dest)
1845 && REGNO (dest) < FIRST_PSEUDO_REGISTER
1846 && global_regs[REGNO (dest)])))
1847 /* Don't substitute into an incremented register. */
1848 || FIND_REG_INC_NOTE (i3, dest)
1849 || (succ && FIND_REG_INC_NOTE (succ, dest))
1850 || (succ2 && FIND_REG_INC_NOTE (succ2, dest))
1851 /* Don't substitute into a non-local goto, this confuses CFG. */
1852 || (JUMP_P (i3) && find_reg_note (i3, REG_NON_LOCAL_GOTO, NULL_RTX))
1853 /* Make sure that DEST is not used after SUCC but before I3. */
1854 || (!all_adjacent
1855 && ((succ2
1856 && (reg_used_between_p (dest, succ2, i3)
1857 || reg_used_between_p (dest, succ, succ2)))
1858 || (!succ2 && succ && reg_used_between_p (dest, succ, i3))))
1859 /* Make sure that the value that is to be substituted for the register
1860 does not use any registers whose values alter in between. However,
1861 If the insns are adjacent, a use can't cross a set even though we
1862 think it might (this can happen for a sequence of insns each setting
1863 the same destination; last_set of that register might point to
1864 a NOTE). If INSN has a REG_EQUIV note, the register is always
1865 equivalent to the memory so the substitution is valid even if there
1866 are intervening stores. Also, don't move a volatile asm or
1867 UNSPEC_VOLATILE across any other insns. */
1868 || (! all_adjacent
1869 && (((!MEM_P (src)
1870 || ! find_reg_note (insn, REG_EQUIV, src))
1871 && use_crosses_set_p (src, DF_INSN_LUID (insn)))
1872 || (GET_CODE (src) == ASM_OPERANDS && MEM_VOLATILE_P (src))
1873 || GET_CODE (src) == UNSPEC_VOLATILE))
1874 /* Don't combine across a CALL_INSN, because that would possibly
1875 change whether the life span of some REGs crosses calls or not,
1876 and it is a pain to update that information.
1877 Exception: if source is a constant, moving it later can't hurt.
1878 Accept that as a special case. */
1879 || (DF_INSN_LUID (insn) < last_call_luid && ! CONSTANT_P (src)))
1880 return 0;
1881
1882 /* DEST must either be a REG or CC0. */
1883 if (REG_P (dest))
1884 {
1885 /* If register alignment is being enforced for multi-word items in all
1886 cases except for parameters, it is possible to have a register copy
1887 insn referencing a hard register that is not allowed to contain the
1888 mode being copied and which would not be valid as an operand of most
1889 insns. Eliminate this problem by not combining with such an insn.
1890
1891 Also, on some machines we don't want to extend the life of a hard
1892 register. */
1893
1894 if (REG_P (src)
1895 && ((REGNO (dest) < FIRST_PSEUDO_REGISTER
1896 && ! HARD_REGNO_MODE_OK (REGNO (dest), GET_MODE (dest)))
1897 /* Don't extend the life of a hard register unless it is
1898 user variable (if we have few registers) or it can't
1899 fit into the desired register (meaning something special
1900 is going on).
1901 Also avoid substituting a return register into I3, because
1902 reload can't handle a conflict with constraints of other
1903 inputs. */
1904 || (REGNO (src) < FIRST_PSEUDO_REGISTER
1905 && ! HARD_REGNO_MODE_OK (REGNO (src), GET_MODE (src)))))
1906 return 0;
1907 }
1908 else if (GET_CODE (dest) != CC0)
1909 return 0;
1910
1911
1912 if (GET_CODE (PATTERN (i3)) == PARALLEL)
1913 for (i = XVECLEN (PATTERN (i3), 0) - 1; i >= 0; i--)
1914 if (GET_CODE (XVECEXP (PATTERN (i3), 0, i)) == CLOBBER)
1915 {
1916 /* Don't substitute for a register intended as a clobberable
1917 operand. */
1918 rtx reg = XEXP (XVECEXP (PATTERN (i3), 0, i), 0);
1919 if (rtx_equal_p (reg, dest))
1920 return 0;
1921
1922 /* If the clobber represents an earlyclobber operand, we must not
1923 substitute an expression containing the clobbered register.
1924 As we do not analyze the constraint strings here, we have to
1925 make the conservative assumption. However, if the register is
1926 a fixed hard reg, the clobber cannot represent any operand;
1927 we leave it up to the machine description to either accept or
1928 reject use-and-clobber patterns. */
1929 if (!REG_P (reg)
1930 || REGNO (reg) >= FIRST_PSEUDO_REGISTER
1931 || !fixed_regs[REGNO (reg)])
1932 if (reg_overlap_mentioned_p (reg, src))
1933 return 0;
1934 }
1935
1936 /* If INSN contains anything volatile, or is an `asm' (whether volatile
1937 or not), reject, unless nothing volatile comes between it and I3 */
1938
1939 if (GET_CODE (src) == ASM_OPERANDS || volatile_refs_p (src))
1940 {
1941 /* Make sure neither succ nor succ2 contains a volatile reference. */
1942 if (succ2 != 0 && volatile_refs_p (PATTERN (succ2)))
1943 return 0;
1944 if (succ != 0 && volatile_refs_p (PATTERN (succ)))
1945 return 0;
1946 /* We'll check insns between INSN and I3 below. */
1947 }
1948
1949 /* If INSN is an asm, and DEST is a hard register, reject, since it has
1950 to be an explicit register variable, and was chosen for a reason. */
1951
1952 if (GET_CODE (src) == ASM_OPERANDS
1953 && REG_P (dest) && REGNO (dest) < FIRST_PSEUDO_REGISTER)
1954 return 0;
1955
1956 /* If INSN contains volatile references (specifically volatile MEMs),
1957 we cannot combine across any other volatile references.
1958 Even if INSN doesn't contain volatile references, any intervening
1959 volatile insn might affect machine state. */
1960
1961 is_volatile_p = volatile_refs_p (PATTERN (insn))
1962 ? volatile_refs_p
1963 : volatile_insn_p;
1964
1965 for (p = NEXT_INSN (insn); p != i3; p = NEXT_INSN (p))
1966 if (INSN_P (p) && p != succ && p != succ2 && is_volatile_p (PATTERN (p)))
1967 return 0;
1968
1969 /* If INSN contains an autoincrement or autodecrement, make sure that
1970 register is not used between there and I3, and not already used in
1971 I3 either. Neither must it be used in PRED or SUCC, if they exist.
1972 Also insist that I3 not be a jump; if it were one
1973 and the incremented register were spilled, we would lose. */
1974
1975 #ifdef AUTO_INC_DEC
1976 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1977 if (REG_NOTE_KIND (link) == REG_INC
1978 && (JUMP_P (i3)
1979 || reg_used_between_p (XEXP (link, 0), insn, i3)
1980 || (pred != NULL_RTX
1981 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (pred)))
1982 || (pred2 != NULL_RTX
1983 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (pred2)))
1984 || (succ != NULL_RTX
1985 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (succ)))
1986 || (succ2 != NULL_RTX
1987 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (succ2)))
1988 || reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i3))))
1989 return 0;
1990 #endif
1991
1992 #ifdef HAVE_cc0
1993 /* Don't combine an insn that follows a CC0-setting insn.
1994 An insn that uses CC0 must not be separated from the one that sets it.
1995 We do, however, allow I2 to follow a CC0-setting insn if that insn
1996 is passed as I1; in that case it will be deleted also.
1997 We also allow combining in this case if all the insns are adjacent
1998 because that would leave the two CC0 insns adjacent as well.
1999 It would be more logical to test whether CC0 occurs inside I1 or I2,
2000 but that would be much slower, and this ought to be equivalent. */
2001
2002 p = prev_nonnote_insn (insn);
2003 if (p && p != pred && NONJUMP_INSN_P (p) && sets_cc0_p (PATTERN (p))
2004 && ! all_adjacent)
2005 return 0;
2006 #endif
2007
2008 /* If we get here, we have passed all the tests and the combination is
2009 to be allowed. */
2010
2011 *pdest = dest;
2012 *psrc = src;
2013
2014 return 1;
2015 }
2016 \f
2017 /* LOC is the location within I3 that contains its pattern or the component
2018 of a PARALLEL of the pattern. We validate that it is valid for combining.
2019
2020 One problem is if I3 modifies its output, as opposed to replacing it
2021 entirely, we can't allow the output to contain I2DEST, I1DEST or I0DEST as
2022 doing so would produce an insn that is not equivalent to the original insns.
2023
2024 Consider:
2025
2026 (set (reg:DI 101) (reg:DI 100))
2027 (set (subreg:SI (reg:DI 101) 0) <foo>)
2028
2029 This is NOT equivalent to:
2030
2031 (parallel [(set (subreg:SI (reg:DI 100) 0) <foo>)
2032 (set (reg:DI 101) (reg:DI 100))])
2033
2034 Not only does this modify 100 (in which case it might still be valid
2035 if 100 were dead in I2), it sets 101 to the ORIGINAL value of 100.
2036
2037 We can also run into a problem if I2 sets a register that I1
2038 uses and I1 gets directly substituted into I3 (not via I2). In that
2039 case, we would be getting the wrong value of I2DEST into I3, so we
2040 must reject the combination. This case occurs when I2 and I1 both
2041 feed into I3, rather than when I1 feeds into I2, which feeds into I3.
2042 If I1_NOT_IN_SRC is nonzero, it means that finding I1 in the source
2043 of a SET must prevent combination from occurring. The same situation
2044 can occur for I0, in which case I0_NOT_IN_SRC is set.
2045
2046 Before doing the above check, we first try to expand a field assignment
2047 into a set of logical operations.
2048
2049 If PI3_DEST_KILLED is nonzero, it is a pointer to a location in which
2050 we place a register that is both set and used within I3. If more than one
2051 such register is detected, we fail.
2052
2053 Return 1 if the combination is valid, zero otherwise. */
2054
2055 static int
2056 combinable_i3pat (rtx i3, rtx *loc, rtx i2dest, rtx i1dest, rtx i0dest,
2057 int i1_not_in_src, int i0_not_in_src, rtx *pi3dest_killed)
2058 {
2059 rtx x = *loc;
2060
2061 if (GET_CODE (x) == SET)
2062 {
2063 rtx set = x ;
2064 rtx dest = SET_DEST (set);
2065 rtx src = SET_SRC (set);
2066 rtx inner_dest = dest;
2067 rtx subdest;
2068
2069 while (GET_CODE (inner_dest) == STRICT_LOW_PART
2070 || GET_CODE (inner_dest) == SUBREG
2071 || GET_CODE (inner_dest) == ZERO_EXTRACT)
2072 inner_dest = XEXP (inner_dest, 0);
2073
2074 /* Check for the case where I3 modifies its output, as discussed
2075 above. We don't want to prevent pseudos from being combined
2076 into the address of a MEM, so only prevent the combination if
2077 i1 or i2 set the same MEM. */
2078 if ((inner_dest != dest &&
2079 (!MEM_P (inner_dest)
2080 || rtx_equal_p (i2dest, inner_dest)
2081 || (i1dest && rtx_equal_p (i1dest, inner_dest))
2082 || (i0dest && rtx_equal_p (i0dest, inner_dest)))
2083 && (reg_overlap_mentioned_p (i2dest, inner_dest)
2084 || (i1dest && reg_overlap_mentioned_p (i1dest, inner_dest))
2085 || (i0dest && reg_overlap_mentioned_p (i0dest, inner_dest))))
2086
2087 /* This is the same test done in can_combine_p except we can't test
2088 all_adjacent; we don't have to, since this instruction will stay
2089 in place, thus we are not considering increasing the lifetime of
2090 INNER_DEST.
2091
2092 Also, if this insn sets a function argument, combining it with
2093 something that might need a spill could clobber a previous
2094 function argument; the all_adjacent test in can_combine_p also
2095 checks this; here, we do a more specific test for this case. */
2096
2097 || (REG_P (inner_dest)
2098 && REGNO (inner_dest) < FIRST_PSEUDO_REGISTER
2099 && (! HARD_REGNO_MODE_OK (REGNO (inner_dest),
2100 GET_MODE (inner_dest))))
2101 || (i1_not_in_src && reg_overlap_mentioned_p (i1dest, src))
2102 || (i0_not_in_src && reg_overlap_mentioned_p (i0dest, src)))
2103 return 0;
2104
2105 /* If DEST is used in I3, it is being killed in this insn, so
2106 record that for later. We have to consider paradoxical
2107 subregs here, since they kill the whole register, but we
2108 ignore partial subregs, STRICT_LOW_PART, etc.
2109 Never add REG_DEAD notes for the FRAME_POINTER_REGNUM or the
2110 STACK_POINTER_REGNUM, since these are always considered to be
2111 live. Similarly for ARG_POINTER_REGNUM if it is fixed. */
2112 subdest = dest;
2113 if (GET_CODE (subdest) == SUBREG
2114 && (GET_MODE_SIZE (GET_MODE (subdest))
2115 >= GET_MODE_SIZE (GET_MODE (SUBREG_REG (subdest)))))
2116 subdest = SUBREG_REG (subdest);
2117 if (pi3dest_killed
2118 && REG_P (subdest)
2119 && reg_referenced_p (subdest, PATTERN (i3))
2120 && REGNO (subdest) != FRAME_POINTER_REGNUM
2121 #if !HARD_FRAME_POINTER_IS_FRAME_POINTER
2122 && REGNO (subdest) != HARD_FRAME_POINTER_REGNUM
2123 #endif
2124 #if ARG_POINTER_REGNUM != FRAME_POINTER_REGNUM
2125 && (REGNO (subdest) != ARG_POINTER_REGNUM
2126 || ! fixed_regs [REGNO (subdest)])
2127 #endif
2128 && REGNO (subdest) != STACK_POINTER_REGNUM)
2129 {
2130 if (*pi3dest_killed)
2131 return 0;
2132
2133 *pi3dest_killed = subdest;
2134 }
2135 }
2136
2137 else if (GET_CODE (x) == PARALLEL)
2138 {
2139 int i;
2140
2141 for (i = 0; i < XVECLEN (x, 0); i++)
2142 if (! combinable_i3pat (i3, &XVECEXP (x, 0, i), i2dest, i1dest, i0dest,
2143 i1_not_in_src, i0_not_in_src, pi3dest_killed))
2144 return 0;
2145 }
2146
2147 return 1;
2148 }
2149 \f
2150 /* Return 1 if X is an arithmetic expression that contains a multiplication
2151 and division. We don't count multiplications by powers of two here. */
2152
2153 static int
2154 contains_muldiv (rtx x)
2155 {
2156 switch (GET_CODE (x))
2157 {
2158 case MOD: case DIV: case UMOD: case UDIV:
2159 return 1;
2160
2161 case MULT:
2162 return ! (CONST_INT_P (XEXP (x, 1))
2163 && exact_log2 (UINTVAL (XEXP (x, 1))) >= 0);
2164 default:
2165 if (BINARY_P (x))
2166 return contains_muldiv (XEXP (x, 0))
2167 || contains_muldiv (XEXP (x, 1));
2168
2169 if (UNARY_P (x))
2170 return contains_muldiv (XEXP (x, 0));
2171
2172 return 0;
2173 }
2174 }
2175 \f
2176 /* Determine whether INSN can be used in a combination. Return nonzero if
2177 not. This is used in try_combine to detect early some cases where we
2178 can't perform combinations. */
2179
2180 static int
2181 cant_combine_insn_p (rtx insn)
2182 {
2183 rtx set;
2184 rtx src, dest;
2185
2186 /* If this isn't really an insn, we can't do anything.
2187 This can occur when flow deletes an insn that it has merged into an
2188 auto-increment address. */
2189 if (! INSN_P (insn))
2190 return 1;
2191
2192 /* Never combine loads and stores involving hard regs that are likely
2193 to be spilled. The register allocator can usually handle such
2194 reg-reg moves by tying. If we allow the combiner to make
2195 substitutions of likely-spilled regs, reload might die.
2196 As an exception, we allow combinations involving fixed regs; these are
2197 not available to the register allocator so there's no risk involved. */
2198
2199 set = single_set (insn);
2200 if (! set)
2201 return 0;
2202 src = SET_SRC (set);
2203 dest = SET_DEST (set);
2204 if (GET_CODE (src) == SUBREG)
2205 src = SUBREG_REG (src);
2206 if (GET_CODE (dest) == SUBREG)
2207 dest = SUBREG_REG (dest);
2208 if (REG_P (src) && REG_P (dest)
2209 && ((HARD_REGISTER_P (src)
2210 && ! TEST_HARD_REG_BIT (fixed_reg_set, REGNO (src))
2211 && targetm.class_likely_spilled_p (REGNO_REG_CLASS (REGNO (src))))
2212 || (HARD_REGISTER_P (dest)
2213 && ! TEST_HARD_REG_BIT (fixed_reg_set, REGNO (dest))
2214 && targetm.class_likely_spilled_p (REGNO_REG_CLASS (REGNO (dest))))))
2215 return 1;
2216
2217 return 0;
2218 }
2219
2220 struct likely_spilled_retval_info
2221 {
2222 unsigned regno, nregs;
2223 unsigned mask;
2224 };
2225
2226 /* Called via note_stores by likely_spilled_retval_p. Remove from info->mask
2227 hard registers that are known to be written to / clobbered in full. */
2228 static void
2229 likely_spilled_retval_1 (rtx x, const_rtx set, void *data)
2230 {
2231 struct likely_spilled_retval_info *const info =
2232 (struct likely_spilled_retval_info *) data;
2233 unsigned regno, nregs;
2234 unsigned new_mask;
2235
2236 if (!REG_P (XEXP (set, 0)))
2237 return;
2238 regno = REGNO (x);
2239 if (regno >= info->regno + info->nregs)
2240 return;
2241 nregs = hard_regno_nregs[regno][GET_MODE (x)];
2242 if (regno + nregs <= info->regno)
2243 return;
2244 new_mask = (2U << (nregs - 1)) - 1;
2245 if (regno < info->regno)
2246 new_mask >>= info->regno - regno;
2247 else
2248 new_mask <<= regno - info->regno;
2249 info->mask &= ~new_mask;
2250 }
2251
2252 /* Return nonzero iff part of the return value is live during INSN, and
2253 it is likely spilled. This can happen when more than one insn is needed
2254 to copy the return value, e.g. when we consider to combine into the
2255 second copy insn for a complex value. */
2256
2257 static int
2258 likely_spilled_retval_p (rtx insn)
2259 {
2260 rtx use = BB_END (this_basic_block);
2261 rtx reg, p;
2262 unsigned regno, nregs;
2263 /* We assume here that no machine mode needs more than
2264 32 hard registers when the value overlaps with a register
2265 for which TARGET_FUNCTION_VALUE_REGNO_P is true. */
2266 unsigned mask;
2267 struct likely_spilled_retval_info info;
2268
2269 if (!NONJUMP_INSN_P (use) || GET_CODE (PATTERN (use)) != USE || insn == use)
2270 return 0;
2271 reg = XEXP (PATTERN (use), 0);
2272 if (!REG_P (reg) || !targetm.calls.function_value_regno_p (REGNO (reg)))
2273 return 0;
2274 regno = REGNO (reg);
2275 nregs = hard_regno_nregs[regno][GET_MODE (reg)];
2276 if (nregs == 1)
2277 return 0;
2278 mask = (2U << (nregs - 1)) - 1;
2279
2280 /* Disregard parts of the return value that are set later. */
2281 info.regno = regno;
2282 info.nregs = nregs;
2283 info.mask = mask;
2284 for (p = PREV_INSN (use); info.mask && p != insn; p = PREV_INSN (p))
2285 if (INSN_P (p))
2286 note_stores (PATTERN (p), likely_spilled_retval_1, &info);
2287 mask = info.mask;
2288
2289 /* Check if any of the (probably) live return value registers is
2290 likely spilled. */
2291 nregs --;
2292 do
2293 {
2294 if ((mask & 1 << nregs)
2295 && targetm.class_likely_spilled_p (REGNO_REG_CLASS (regno + nregs)))
2296 return 1;
2297 } while (nregs--);
2298 return 0;
2299 }
2300
2301 /* Adjust INSN after we made a change to its destination.
2302
2303 Changing the destination can invalidate notes that say something about
2304 the results of the insn and a LOG_LINK pointing to the insn. */
2305
2306 static void
2307 adjust_for_new_dest (rtx insn)
2308 {
2309 /* For notes, be conservative and simply remove them. */
2310 remove_reg_equal_equiv_notes (insn);
2311
2312 /* The new insn will have a destination that was previously the destination
2313 of an insn just above it. Call distribute_links to make a LOG_LINK from
2314 the next use of that destination. */
2315 distribute_links (alloc_insn_link (insn, NULL));
2316
2317 df_insn_rescan (insn);
2318 }
2319
2320 /* Return TRUE if combine can reuse reg X in mode MODE.
2321 ADDED_SETS is nonzero if the original set is still required. */
2322 static bool
2323 can_change_dest_mode (rtx x, int added_sets, enum machine_mode mode)
2324 {
2325 unsigned int regno;
2326
2327 if (!REG_P(x))
2328 return false;
2329
2330 regno = REGNO (x);
2331 /* Allow hard registers if the new mode is legal, and occupies no more
2332 registers than the old mode. */
2333 if (regno < FIRST_PSEUDO_REGISTER)
2334 return (HARD_REGNO_MODE_OK (regno, mode)
2335 && (hard_regno_nregs[regno][GET_MODE (x)]
2336 >= hard_regno_nregs[regno][mode]));
2337
2338 /* Or a pseudo that is only used once. */
2339 return (REG_N_SETS (regno) == 1 && !added_sets
2340 && !REG_USERVAR_P (x));
2341 }
2342
2343
2344 /* Check whether X, the destination of a set, refers to part of
2345 the register specified by REG. */
2346
2347 static bool
2348 reg_subword_p (rtx x, rtx reg)
2349 {
2350 /* Check that reg is an integer mode register. */
2351 if (!REG_P (reg) || GET_MODE_CLASS (GET_MODE (reg)) != MODE_INT)
2352 return false;
2353
2354 if (GET_CODE (x) == STRICT_LOW_PART
2355 || GET_CODE (x) == ZERO_EXTRACT)
2356 x = XEXP (x, 0);
2357
2358 return GET_CODE (x) == SUBREG
2359 && SUBREG_REG (x) == reg
2360 && GET_MODE_CLASS (GET_MODE (x)) == MODE_INT;
2361 }
2362
2363 #ifdef AUTO_INC_DEC
2364 /* Replace auto-increment addressing modes with explicit operations to access
2365 the same addresses without modifying the corresponding registers. */
2366
2367 static rtx
2368 cleanup_auto_inc_dec (rtx src, enum machine_mode mem_mode)
2369 {
2370 rtx x = src;
2371 const RTX_CODE code = GET_CODE (x);
2372 int i;
2373 const char *fmt;
2374
2375 switch (code)
2376 {
2377 case REG:
2378 case CONST_INT:
2379 case CONST_DOUBLE:
2380 case CONST_FIXED:
2381 case CONST_VECTOR:
2382 case SYMBOL_REF:
2383 case CODE_LABEL:
2384 case PC:
2385 case CC0:
2386 case SCRATCH:
2387 /* SCRATCH must be shared because they represent distinct values. */
2388 return x;
2389 case CLOBBER:
2390 if (REG_P (XEXP (x, 0)) && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER)
2391 return x;
2392 break;
2393
2394 case CONST:
2395 if (shared_const_p (x))
2396 return x;
2397 break;
2398
2399 case MEM:
2400 mem_mode = GET_MODE (x);
2401 break;
2402
2403 case PRE_INC:
2404 case PRE_DEC:
2405 gcc_assert (mem_mode != VOIDmode && mem_mode != BLKmode);
2406 return gen_rtx_PLUS (GET_MODE (x),
2407 cleanup_auto_inc_dec (XEXP (x, 0), mem_mode),
2408 GEN_INT (code == PRE_INC
2409 ? GET_MODE_SIZE (mem_mode)
2410 : -GET_MODE_SIZE (mem_mode)));
2411
2412 case POST_INC:
2413 case POST_DEC:
2414 case PRE_MODIFY:
2415 case POST_MODIFY:
2416 return cleanup_auto_inc_dec (code == PRE_MODIFY
2417 ? XEXP (x, 1) : XEXP (x, 0),
2418 mem_mode);
2419
2420 default:
2421 break;
2422 }
2423
2424 /* Copy the various flags, fields, and other information. We assume
2425 that all fields need copying, and then clear the fields that should
2426 not be copied. That is the sensible default behavior, and forces
2427 us to explicitly document why we are *not* copying a flag. */
2428 x = shallow_copy_rtx (x);
2429
2430 /* We do not copy the USED flag, which is used as a mark bit during
2431 walks over the RTL. */
2432 RTX_FLAG (x, used) = 0;
2433
2434 /* We do not copy FRAME_RELATED for INSNs. */
2435 if (INSN_P (x))
2436 RTX_FLAG (x, frame_related) = 0;
2437
2438 fmt = GET_RTX_FORMAT (code);
2439 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2440 if (fmt[i] == 'e')
2441 XEXP (x, i) = cleanup_auto_inc_dec (XEXP (x, i), mem_mode);
2442 else if (fmt[i] == 'E' || fmt[i] == 'V')
2443 {
2444 int j;
2445 XVEC (x, i) = rtvec_alloc (XVECLEN (x, i));
2446 for (j = 0; j < XVECLEN (x, i); j++)
2447 XVECEXP (x, i, j)
2448 = cleanup_auto_inc_dec (XVECEXP (src, i, j), mem_mode);
2449 }
2450
2451 return x;
2452 }
2453 #endif
2454
2455 /* Auxiliary data structure for propagate_for_debug_stmt. */
2456
2457 struct rtx_subst_pair
2458 {
2459 rtx to;
2460 bool adjusted;
2461 };
2462
2463 /* DATA points to an rtx_subst_pair. Return the value that should be
2464 substituted. */
2465
2466 static rtx
2467 propagate_for_debug_subst (rtx from, const_rtx old_rtx, void *data)
2468 {
2469 struct rtx_subst_pair *pair = (struct rtx_subst_pair *)data;
2470
2471 if (!rtx_equal_p (from, old_rtx))
2472 return NULL_RTX;
2473 if (!pair->adjusted)
2474 {
2475 pair->adjusted = true;
2476 #ifdef AUTO_INC_DEC
2477 pair->to = cleanup_auto_inc_dec (pair->to, VOIDmode);
2478 #else
2479 pair->to = copy_rtx (pair->to);
2480 #endif
2481 pair->to = make_compound_operation (pair->to, SET);
2482 return pair->to;
2483 }
2484 return copy_rtx (pair->to);
2485 }
2486
2487 /* Replace all the occurrences of DEST with SRC in DEBUG_INSNs between INSN
2488 and LAST, not including INSN, but including LAST. Also stop at the end
2489 of THIS_BASIC_BLOCK. */
2490
2491 static void
2492 propagate_for_debug (rtx insn, rtx last, rtx dest, rtx src)
2493 {
2494 rtx next, loc, end = NEXT_INSN (BB_END (this_basic_block));
2495
2496 struct rtx_subst_pair p;
2497 p.to = src;
2498 p.adjusted = false;
2499
2500 next = NEXT_INSN (insn);
2501 last = NEXT_INSN (last);
2502 while (next != last && next != end)
2503 {
2504 insn = next;
2505 next = NEXT_INSN (insn);
2506 if (DEBUG_INSN_P (insn))
2507 {
2508 loc = simplify_replace_fn_rtx (INSN_VAR_LOCATION_LOC (insn),
2509 dest, propagate_for_debug_subst, &p);
2510 if (loc == INSN_VAR_LOCATION_LOC (insn))
2511 continue;
2512 INSN_VAR_LOCATION_LOC (insn) = loc;
2513 df_insn_rescan (insn);
2514 }
2515 }
2516 }
2517
2518 /* Delete the unconditional jump INSN and adjust the CFG correspondingly.
2519 Note that the INSN should be deleted *after* removing dead edges, so
2520 that the kept edge is the fallthrough edge for a (set (pc) (pc))
2521 but not for a (set (pc) (label_ref FOO)). */
2522
2523 static void
2524 update_cfg_for_uncondjump (rtx insn)
2525 {
2526 basic_block bb = BLOCK_FOR_INSN (insn);
2527 gcc_assert (BB_END (bb) == insn);
2528
2529 purge_dead_edges (bb);
2530
2531 delete_insn (insn);
2532 if (EDGE_COUNT (bb->succs) == 1)
2533 {
2534 rtx insn;
2535
2536 single_succ_edge (bb)->flags |= EDGE_FALLTHRU;
2537
2538 /* Remove barriers from the footer if there are any. */
2539 for (insn = BB_FOOTER (bb); insn; insn = NEXT_INSN (insn))
2540 if (BARRIER_P (insn))
2541 {
2542 if (PREV_INSN (insn))
2543 NEXT_INSN (PREV_INSN (insn)) = NEXT_INSN (insn);
2544 else
2545 BB_FOOTER (bb) = NEXT_INSN (insn);
2546 if (NEXT_INSN (insn))
2547 PREV_INSN (NEXT_INSN (insn)) = PREV_INSN (insn);
2548 }
2549 else if (LABEL_P (insn))
2550 break;
2551 }
2552 }
2553
2554 /* Try to combine the insns I0, I1 and I2 into I3.
2555 Here I0, I1 and I2 appear earlier than I3.
2556 I0 and I1 can be zero; then we combine just I2 into I3, or I1 and I2 into
2557 I3.
2558
2559 If we are combining more than two insns and the resulting insn is not
2560 recognized, try splitting it into two insns. If that happens, I2 and I3
2561 are retained and I1/I0 are pseudo-deleted by turning them into a NOTE.
2562 Otherwise, I0, I1 and I2 are pseudo-deleted.
2563
2564 Return 0 if the combination does not work. Then nothing is changed.
2565 If we did the combination, return the insn at which combine should
2566 resume scanning.
2567
2568 Set NEW_DIRECT_JUMP_P to a nonzero value if try_combine creates a
2569 new direct jump instruction.
2570
2571 LAST_COMBINED_INSN is either I3, or some insn after I3 that has
2572 been I3 passed to an earlier try_combine within the same basic
2573 block. */
2574
2575 static rtx
2576 try_combine (rtx i3, rtx i2, rtx i1, rtx i0, int *new_direct_jump_p,
2577 rtx last_combined_insn)
2578 {
2579 /* New patterns for I3 and I2, respectively. */
2580 rtx newpat, newi2pat = 0;
2581 rtvec newpat_vec_with_clobbers = 0;
2582 int substed_i2 = 0, substed_i1 = 0, substed_i0 = 0;
2583 /* Indicates need to preserve SET in I0, I1 or I2 in I3 if it is not
2584 dead. */
2585 int added_sets_0, added_sets_1, added_sets_2;
2586 /* Total number of SETs to put into I3. */
2587 int total_sets;
2588 /* Nonzero if I2's or I1's body now appears in I3. */
2589 int i2_is_used = 0, i1_is_used = 0;
2590 /* INSN_CODEs for new I3, new I2, and user of condition code. */
2591 int insn_code_number, i2_code_number = 0, other_code_number = 0;
2592 /* Contains I3 if the destination of I3 is used in its source, which means
2593 that the old life of I3 is being killed. If that usage is placed into
2594 I2 and not in I3, a REG_DEAD note must be made. */
2595 rtx i3dest_killed = 0;
2596 /* SET_DEST and SET_SRC of I2, I1 and I0. */
2597 rtx i2dest = 0, i2src = 0, i1dest = 0, i1src = 0, i0dest = 0, i0src = 0;
2598 /* Copy of SET_SRC of I1 and I0, if needed. */
2599 rtx i1src_copy = 0, i0src_copy = 0, i0src_copy2 = 0;
2600 /* Set if I2DEST was reused as a scratch register. */
2601 bool i2scratch = false;
2602 /* The PATTERNs of I0, I1, and I2, or a copy of them in certain cases. */
2603 rtx i0pat = 0, i1pat = 0, i2pat = 0;
2604 /* Indicates if I2DEST or I1DEST is in I2SRC or I1_SRC. */
2605 int i2dest_in_i2src = 0, i1dest_in_i1src = 0, i2dest_in_i1src = 0;
2606 int i0dest_in_i0src = 0, i1dest_in_i0src = 0, i2dest_in_i0src = 0;
2607 int i2dest_killed = 0, i1dest_killed = 0, i0dest_killed = 0;
2608 int i1_feeds_i2_n = 0, i0_feeds_i2_n = 0, i0_feeds_i1_n = 0;
2609 /* Notes that must be added to REG_NOTES in I3 and I2. */
2610 rtx new_i3_notes, new_i2_notes;
2611 /* Notes that we substituted I3 into I2 instead of the normal case. */
2612 int i3_subst_into_i2 = 0;
2613 /* Notes that I1, I2 or I3 is a MULT operation. */
2614 int have_mult = 0;
2615 int swap_i2i3 = 0;
2616 int changed_i3_dest = 0;
2617
2618 int maxreg;
2619 rtx temp;
2620 struct insn_link *link;
2621 rtx other_pat = 0;
2622 rtx new_other_notes;
2623 int i;
2624
2625 /* Only try four-insn combinations when there's high likelihood of
2626 success. Look for simple insns, such as loads of constants or
2627 binary operations involving a constant. */
2628 if (i0)
2629 {
2630 int i;
2631 int ngood = 0;
2632 int nshift = 0;
2633
2634 if (!flag_expensive_optimizations)
2635 return 0;
2636
2637 for (i = 0; i < 4; i++)
2638 {
2639 rtx insn = i == 0 ? i0 : i == 1 ? i1 : i == 2 ? i2 : i3;
2640 rtx set = single_set (insn);
2641 rtx src;
2642 if (!set)
2643 continue;
2644 src = SET_SRC (set);
2645 if (CONSTANT_P (src))
2646 {
2647 ngood += 2;
2648 break;
2649 }
2650 else if (BINARY_P (src) && CONSTANT_P (XEXP (src, 1)))
2651 ngood++;
2652 else if (GET_CODE (src) == ASHIFT || GET_CODE (src) == ASHIFTRT
2653 || GET_CODE (src) == LSHIFTRT)
2654 nshift++;
2655 }
2656 if (ngood < 2 && nshift < 2)
2657 return 0;
2658 }
2659
2660 /* Exit early if one of the insns involved can't be used for
2661 combinations. */
2662 if (cant_combine_insn_p (i3)
2663 || cant_combine_insn_p (i2)
2664 || (i1 && cant_combine_insn_p (i1))
2665 || (i0 && cant_combine_insn_p (i0))
2666 || likely_spilled_retval_p (i3))
2667 return 0;
2668
2669 combine_attempts++;
2670 undobuf.other_insn = 0;
2671
2672 /* Reset the hard register usage information. */
2673 CLEAR_HARD_REG_SET (newpat_used_regs);
2674
2675 if (dump_file && (dump_flags & TDF_DETAILS))
2676 {
2677 if (i0)
2678 fprintf (dump_file, "\nTrying %d, %d, %d -> %d:\n",
2679 INSN_UID (i0), INSN_UID (i1), INSN_UID (i2), INSN_UID (i3));
2680 else if (i1)
2681 fprintf (dump_file, "\nTrying %d, %d -> %d:\n",
2682 INSN_UID (i1), INSN_UID (i2), INSN_UID (i3));
2683 else
2684 fprintf (dump_file, "\nTrying %d -> %d:\n",
2685 INSN_UID (i2), INSN_UID (i3));
2686 }
2687
2688 /* If multiple insns feed into one of I2 or I3, they can be in any
2689 order. To simplify the code below, reorder them in sequence. */
2690 if (i0 && DF_INSN_LUID (i0) > DF_INSN_LUID (i2))
2691 temp = i2, i2 = i0, i0 = temp;
2692 if (i0 && DF_INSN_LUID (i0) > DF_INSN_LUID (i1))
2693 temp = i1, i1 = i0, i0 = temp;
2694 if (i1 && DF_INSN_LUID (i1) > DF_INSN_LUID (i2))
2695 temp = i1, i1 = i2, i2 = temp;
2696
2697 added_links_insn = 0;
2698
2699 /* First check for one important special case that the code below will
2700 not handle. Namely, the case where I1 is zero, I2 is a PARALLEL
2701 and I3 is a SET whose SET_SRC is a SET_DEST in I2. In that case,
2702 we may be able to replace that destination with the destination of I3.
2703 This occurs in the common code where we compute both a quotient and
2704 remainder into a structure, in which case we want to do the computation
2705 directly into the structure to avoid register-register copies.
2706
2707 Note that this case handles both multiple sets in I2 and also cases
2708 where I2 has a number of CLOBBERs inside the PARALLEL.
2709
2710 We make very conservative checks below and only try to handle the
2711 most common cases of this. For example, we only handle the case
2712 where I2 and I3 are adjacent to avoid making difficult register
2713 usage tests. */
2714
2715 if (i1 == 0 && NONJUMP_INSN_P (i3) && GET_CODE (PATTERN (i3)) == SET
2716 && REG_P (SET_SRC (PATTERN (i3)))
2717 && REGNO (SET_SRC (PATTERN (i3))) >= FIRST_PSEUDO_REGISTER
2718 && find_reg_note (i3, REG_DEAD, SET_SRC (PATTERN (i3)))
2719 && GET_CODE (PATTERN (i2)) == PARALLEL
2720 && ! side_effects_p (SET_DEST (PATTERN (i3)))
2721 /* If the dest of I3 is a ZERO_EXTRACT or STRICT_LOW_PART, the code
2722 below would need to check what is inside (and reg_overlap_mentioned_p
2723 doesn't support those codes anyway). Don't allow those destinations;
2724 the resulting insn isn't likely to be recognized anyway. */
2725 && GET_CODE (SET_DEST (PATTERN (i3))) != ZERO_EXTRACT
2726 && GET_CODE (SET_DEST (PATTERN (i3))) != STRICT_LOW_PART
2727 && ! reg_overlap_mentioned_p (SET_SRC (PATTERN (i3)),
2728 SET_DEST (PATTERN (i3)))
2729 && next_active_insn (i2) == i3)
2730 {
2731 rtx p2 = PATTERN (i2);
2732
2733 /* Make sure that the destination of I3,
2734 which we are going to substitute into one output of I2,
2735 is not used within another output of I2. We must avoid making this:
2736 (parallel [(set (mem (reg 69)) ...)
2737 (set (reg 69) ...)])
2738 which is not well-defined as to order of actions.
2739 (Besides, reload can't handle output reloads for this.)
2740
2741 The problem can also happen if the dest of I3 is a memory ref,
2742 if another dest in I2 is an indirect memory ref. */
2743 for (i = 0; i < XVECLEN (p2, 0); i++)
2744 if ((GET_CODE (XVECEXP (p2, 0, i)) == SET
2745 || GET_CODE (XVECEXP (p2, 0, i)) == CLOBBER)
2746 && reg_overlap_mentioned_p (SET_DEST (PATTERN (i3)),
2747 SET_DEST (XVECEXP (p2, 0, i))))
2748 break;
2749
2750 if (i == XVECLEN (p2, 0))
2751 for (i = 0; i < XVECLEN (p2, 0); i++)
2752 if (GET_CODE (XVECEXP (p2, 0, i)) == SET
2753 && SET_DEST (XVECEXP (p2, 0, i)) == SET_SRC (PATTERN (i3)))
2754 {
2755 combine_merges++;
2756
2757 subst_insn = i3;
2758 subst_low_luid = DF_INSN_LUID (i2);
2759
2760 added_sets_2 = added_sets_1 = added_sets_0 = 0;
2761 i2src = SET_SRC (XVECEXP (p2, 0, i));
2762 i2dest = SET_DEST (XVECEXP (p2, 0, i));
2763 i2dest_killed = dead_or_set_p (i2, i2dest);
2764
2765 /* Replace the dest in I2 with our dest and make the resulting
2766 insn the new pattern for I3. Then skip to where we validate
2767 the pattern. Everything was set up above. */
2768 SUBST (SET_DEST (XVECEXP (p2, 0, i)), SET_DEST (PATTERN (i3)));
2769 newpat = p2;
2770 i3_subst_into_i2 = 1;
2771 goto validate_replacement;
2772 }
2773 }
2774
2775 /* If I2 is setting a pseudo to a constant and I3 is setting some
2776 sub-part of it to another constant, merge them by making a new
2777 constant. */
2778 if (i1 == 0
2779 && (temp = single_set (i2)) != 0
2780 && (CONST_INT_P (SET_SRC (temp))
2781 || GET_CODE (SET_SRC (temp)) == CONST_DOUBLE)
2782 && GET_CODE (PATTERN (i3)) == SET
2783 && (CONST_INT_P (SET_SRC (PATTERN (i3)))
2784 || GET_CODE (SET_SRC (PATTERN (i3))) == CONST_DOUBLE)
2785 && reg_subword_p (SET_DEST (PATTERN (i3)), SET_DEST (temp)))
2786 {
2787 rtx dest = SET_DEST (PATTERN (i3));
2788 int offset = -1;
2789 int width = 0;
2790
2791 if (GET_CODE (dest) == ZERO_EXTRACT)
2792 {
2793 if (CONST_INT_P (XEXP (dest, 1))
2794 && CONST_INT_P (XEXP (dest, 2)))
2795 {
2796 width = INTVAL (XEXP (dest, 1));
2797 offset = INTVAL (XEXP (dest, 2));
2798 dest = XEXP (dest, 0);
2799 if (BITS_BIG_ENDIAN)
2800 offset = GET_MODE_PRECISION (GET_MODE (dest)) - width - offset;
2801 }
2802 }
2803 else
2804 {
2805 if (GET_CODE (dest) == STRICT_LOW_PART)
2806 dest = XEXP (dest, 0);
2807 width = GET_MODE_PRECISION (GET_MODE (dest));
2808 offset = 0;
2809 }
2810
2811 if (offset >= 0)
2812 {
2813 /* If this is the low part, we're done. */
2814 if (subreg_lowpart_p (dest))
2815 ;
2816 /* Handle the case where inner is twice the size of outer. */
2817 else if (GET_MODE_PRECISION (GET_MODE (SET_DEST (temp)))
2818 == 2 * GET_MODE_PRECISION (GET_MODE (dest)))
2819 offset += GET_MODE_PRECISION (GET_MODE (dest));
2820 /* Otherwise give up for now. */
2821 else
2822 offset = -1;
2823 }
2824
2825 if (offset >= 0
2826 && (GET_MODE_PRECISION (GET_MODE (SET_DEST (temp)))
2827 <= HOST_BITS_PER_DOUBLE_INT))
2828 {
2829 double_int m, o, i;
2830 rtx inner = SET_SRC (PATTERN (i3));
2831 rtx outer = SET_SRC (temp);
2832
2833 o = rtx_to_double_int (outer);
2834 i = rtx_to_double_int (inner);
2835
2836 m = double_int_mask (width);
2837 i = double_int_and (i, m);
2838 m = double_int_lshift (m, offset, HOST_BITS_PER_DOUBLE_INT, false);
2839 i = double_int_lshift (i, offset, HOST_BITS_PER_DOUBLE_INT, false);
2840 o = double_int_ior (double_int_and_not (o, m), i);
2841
2842 combine_merges++;
2843 subst_insn = i3;
2844 subst_low_luid = DF_INSN_LUID (i2);
2845 added_sets_2 = added_sets_1 = added_sets_0 = 0;
2846 i2dest = SET_DEST (temp);
2847 i2dest_killed = dead_or_set_p (i2, i2dest);
2848
2849 /* Replace the source in I2 with the new constant and make the
2850 resulting insn the new pattern for I3. Then skip to where we
2851 validate the pattern. Everything was set up above. */
2852 SUBST (SET_SRC (temp),
2853 immed_double_int_const (o, GET_MODE (SET_DEST (temp))));
2854
2855 newpat = PATTERN (i2);
2856
2857 /* The dest of I3 has been replaced with the dest of I2. */
2858 changed_i3_dest = 1;
2859 goto validate_replacement;
2860 }
2861 }
2862
2863 #ifndef HAVE_cc0
2864 /* If we have no I1 and I2 looks like:
2865 (parallel [(set (reg:CC X) (compare:CC OP (const_int 0)))
2866 (set Y OP)])
2867 make up a dummy I1 that is
2868 (set Y OP)
2869 and change I2 to be
2870 (set (reg:CC X) (compare:CC Y (const_int 0)))
2871
2872 (We can ignore any trailing CLOBBERs.)
2873
2874 This undoes a previous combination and allows us to match a branch-and-
2875 decrement insn. */
2876
2877 if (i1 == 0 && GET_CODE (PATTERN (i2)) == PARALLEL
2878 && XVECLEN (PATTERN (i2), 0) >= 2
2879 && GET_CODE (XVECEXP (PATTERN (i2), 0, 0)) == SET
2880 && (GET_MODE_CLASS (GET_MODE (SET_DEST (XVECEXP (PATTERN (i2), 0, 0))))
2881 == MODE_CC)
2882 && GET_CODE (SET_SRC (XVECEXP (PATTERN (i2), 0, 0))) == COMPARE
2883 && XEXP (SET_SRC (XVECEXP (PATTERN (i2), 0, 0)), 1) == const0_rtx
2884 && GET_CODE (XVECEXP (PATTERN (i2), 0, 1)) == SET
2885 && REG_P (SET_DEST (XVECEXP (PATTERN (i2), 0, 1)))
2886 && rtx_equal_p (XEXP (SET_SRC (XVECEXP (PATTERN (i2), 0, 0)), 0),
2887 SET_SRC (XVECEXP (PATTERN (i2), 0, 1))))
2888 {
2889 for (i = XVECLEN (PATTERN (i2), 0) - 1; i >= 2; i--)
2890 if (GET_CODE (XVECEXP (PATTERN (i2), 0, i)) != CLOBBER)
2891 break;
2892
2893 if (i == 1)
2894 {
2895 /* We make I1 with the same INSN_UID as I2. This gives it
2896 the same DF_INSN_LUID for value tracking. Our fake I1 will
2897 never appear in the insn stream so giving it the same INSN_UID
2898 as I2 will not cause a problem. */
2899
2900 i1 = gen_rtx_INSN (VOIDmode, INSN_UID (i2), NULL_RTX, i2,
2901 BLOCK_FOR_INSN (i2), XVECEXP (PATTERN (i2), 0, 1),
2902 INSN_LOCATOR (i2), -1, NULL_RTX);
2903
2904 SUBST (PATTERN (i2), XVECEXP (PATTERN (i2), 0, 0));
2905 SUBST (XEXP (SET_SRC (PATTERN (i2)), 0),
2906 SET_DEST (PATTERN (i1)));
2907 SUBST_LINK (LOG_LINKS (i2), alloc_insn_link (i1, LOG_LINKS (i2)));
2908 }
2909 }
2910 #endif
2911
2912 /* Verify that I2 and I1 are valid for combining. */
2913 if (! can_combine_p (i2, i3, i0, i1, NULL_RTX, NULL_RTX, &i2dest, &i2src)
2914 || (i1 && ! can_combine_p (i1, i3, i0, NULL_RTX, i2, NULL_RTX,
2915 &i1dest, &i1src))
2916 || (i0 && ! can_combine_p (i0, i3, NULL_RTX, NULL_RTX, i1, i2,
2917 &i0dest, &i0src)))
2918 {
2919 undo_all ();
2920 return 0;
2921 }
2922
2923 /* Record whether I2DEST is used in I2SRC and similarly for the other
2924 cases. Knowing this will help in register status updating below. */
2925 i2dest_in_i2src = reg_overlap_mentioned_p (i2dest, i2src);
2926 i1dest_in_i1src = i1 && reg_overlap_mentioned_p (i1dest, i1src);
2927 i2dest_in_i1src = i1 && reg_overlap_mentioned_p (i2dest, i1src);
2928 i0dest_in_i0src = i0 && reg_overlap_mentioned_p (i0dest, i0src);
2929 i1dest_in_i0src = i0 && reg_overlap_mentioned_p (i1dest, i0src);
2930 i2dest_in_i0src = i0 && reg_overlap_mentioned_p (i2dest, i0src);
2931 i2dest_killed = dead_or_set_p (i2, i2dest);
2932 i1dest_killed = i1 && dead_or_set_p (i1, i1dest);
2933 i0dest_killed = i0 && dead_or_set_p (i0, i0dest);
2934
2935 /* For the earlier insns, determine which of the subsequent ones they
2936 feed. */
2937 i1_feeds_i2_n = i1 && insn_a_feeds_b (i1, i2);
2938 i0_feeds_i1_n = i0 && insn_a_feeds_b (i0, i1);
2939 i0_feeds_i2_n = (i0 && (!i0_feeds_i1_n ? insn_a_feeds_b (i0, i2)
2940 : (!reg_overlap_mentioned_p (i1dest, i0dest)
2941 && reg_overlap_mentioned_p (i0dest, i2src))));
2942
2943 /* Ensure that I3's pattern can be the destination of combines. */
2944 if (! combinable_i3pat (i3, &PATTERN (i3), i2dest, i1dest, i0dest,
2945 i1 && i2dest_in_i1src && !i1_feeds_i2_n,
2946 i0 && ((i2dest_in_i0src && !i0_feeds_i2_n)
2947 || (i1dest_in_i0src && !i0_feeds_i1_n)),
2948 &i3dest_killed))
2949 {
2950 undo_all ();
2951 return 0;
2952 }
2953
2954 /* See if any of the insns is a MULT operation. Unless one is, we will
2955 reject a combination that is, since it must be slower. Be conservative
2956 here. */
2957 if (GET_CODE (i2src) == MULT
2958 || (i1 != 0 && GET_CODE (i1src) == MULT)
2959 || (i0 != 0 && GET_CODE (i0src) == MULT)
2960 || (GET_CODE (PATTERN (i3)) == SET
2961 && GET_CODE (SET_SRC (PATTERN (i3))) == MULT))
2962 have_mult = 1;
2963
2964 /* If I3 has an inc, then give up if I1 or I2 uses the reg that is inc'd.
2965 We used to do this EXCEPT in one case: I3 has a post-inc in an
2966 output operand. However, that exception can give rise to insns like
2967 mov r3,(r3)+
2968 which is a famous insn on the PDP-11 where the value of r3 used as the
2969 source was model-dependent. Avoid this sort of thing. */
2970
2971 #if 0
2972 if (!(GET_CODE (PATTERN (i3)) == SET
2973 && REG_P (SET_SRC (PATTERN (i3)))
2974 && MEM_P (SET_DEST (PATTERN (i3)))
2975 && (GET_CODE (XEXP (SET_DEST (PATTERN (i3)), 0)) == POST_INC
2976 || GET_CODE (XEXP (SET_DEST (PATTERN (i3)), 0)) == POST_DEC)))
2977 /* It's not the exception. */
2978 #endif
2979 #ifdef AUTO_INC_DEC
2980 {
2981 rtx link;
2982 for (link = REG_NOTES (i3); link; link = XEXP (link, 1))
2983 if (REG_NOTE_KIND (link) == REG_INC
2984 && (reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i2))
2985 || (i1 != 0
2986 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i1)))))
2987 {
2988 undo_all ();
2989 return 0;
2990 }
2991 }
2992 #endif
2993
2994 /* See if the SETs in I1 or I2 need to be kept around in the merged
2995 instruction: whenever the value set there is still needed past I3.
2996 For the SETs in I2, this is easy: we see if I2DEST dies or is set in I3.
2997
2998 For the SET in I1, we have two cases: If I1 and I2 independently
2999 feed into I3, the set in I1 needs to be kept around if I1DEST dies
3000 or is set in I3. Otherwise (if I1 feeds I2 which feeds I3), the set
3001 in I1 needs to be kept around unless I1DEST dies or is set in either
3002 I2 or I3. The same consideration applies to I0. */
3003
3004 added_sets_2 = !dead_or_set_p (i3, i2dest);
3005
3006 if (i1)
3007 added_sets_1 = !(dead_or_set_p (i3, i1dest)
3008 || (i1_feeds_i2_n && dead_or_set_p (i2, i1dest)));
3009 else
3010 added_sets_1 = 0;
3011
3012 if (i0)
3013 added_sets_0 = !(dead_or_set_p (i3, i0dest)
3014 || (i0_feeds_i2_n && dead_or_set_p (i2, i0dest))
3015 || (i0_feeds_i1_n && dead_or_set_p (i1, i0dest)));
3016 else
3017 added_sets_0 = 0;
3018
3019 /* We are about to copy insns for the case where they need to be kept
3020 around. Check that they can be copied in the merged instruction. */
3021
3022 if (targetm.cannot_copy_insn_p
3023 && ((added_sets_2 && targetm.cannot_copy_insn_p (i2))
3024 || (i1 && added_sets_1 && targetm.cannot_copy_insn_p (i1))
3025 || (i0 && added_sets_0 && targetm.cannot_copy_insn_p (i0))))
3026 {
3027 undo_all ();
3028 return 0;
3029 }
3030
3031 /* If the set in I2 needs to be kept around, we must make a copy of
3032 PATTERN (I2), so that when we substitute I1SRC for I1DEST in
3033 PATTERN (I2), we are only substituting for the original I1DEST, not into
3034 an already-substituted copy. This also prevents making self-referential
3035 rtx. If I2 is a PARALLEL, we just need the piece that assigns I2SRC to
3036 I2DEST. */
3037
3038 if (added_sets_2)
3039 {
3040 if (GET_CODE (PATTERN (i2)) == PARALLEL)
3041 i2pat = gen_rtx_SET (VOIDmode, i2dest, copy_rtx (i2src));
3042 else
3043 i2pat = copy_rtx (PATTERN (i2));
3044 }
3045
3046 if (added_sets_1)
3047 {
3048 if (GET_CODE (PATTERN (i1)) == PARALLEL)
3049 i1pat = gen_rtx_SET (VOIDmode, i1dest, copy_rtx (i1src));
3050 else
3051 i1pat = copy_rtx (PATTERN (i1));
3052 }
3053
3054 if (added_sets_0)
3055 {
3056 if (GET_CODE (PATTERN (i0)) == PARALLEL)
3057 i0pat = gen_rtx_SET (VOIDmode, i0dest, copy_rtx (i0src));
3058 else
3059 i0pat = copy_rtx (PATTERN (i0));
3060 }
3061
3062 combine_merges++;
3063
3064 /* Substitute in the latest insn for the regs set by the earlier ones. */
3065
3066 maxreg = max_reg_num ();
3067
3068 subst_insn = i3;
3069
3070 #ifndef HAVE_cc0
3071 /* Many machines that don't use CC0 have insns that can both perform an
3072 arithmetic operation and set the condition code. These operations will
3073 be represented as a PARALLEL with the first element of the vector
3074 being a COMPARE of an arithmetic operation with the constant zero.
3075 The second element of the vector will set some pseudo to the result
3076 of the same arithmetic operation. If we simplify the COMPARE, we won't
3077 match such a pattern and so will generate an extra insn. Here we test
3078 for this case, where both the comparison and the operation result are
3079 needed, and make the PARALLEL by just replacing I2DEST in I3SRC with
3080 I2SRC. Later we will make the PARALLEL that contains I2. */
3081
3082 if (i1 == 0 && added_sets_2 && GET_CODE (PATTERN (i3)) == SET
3083 && GET_CODE (SET_SRC (PATTERN (i3))) == COMPARE
3084 && CONST_INT_P (XEXP (SET_SRC (PATTERN (i3)), 1))
3085 && rtx_equal_p (XEXP (SET_SRC (PATTERN (i3)), 0), i2dest))
3086 {
3087 rtx newpat_dest;
3088 rtx *cc_use_loc = NULL, cc_use_insn = NULL_RTX;
3089 rtx op0 = i2src, op1 = XEXP (SET_SRC (PATTERN (i3)), 1);
3090 enum machine_mode compare_mode, orig_compare_mode;
3091 enum rtx_code compare_code = UNKNOWN, orig_compare_code = UNKNOWN;
3092
3093 newpat = PATTERN (i3);
3094 newpat_dest = SET_DEST (newpat);
3095 compare_mode = orig_compare_mode = GET_MODE (newpat_dest);
3096
3097 if (undobuf.other_insn == 0
3098 && (cc_use_loc = find_single_use (SET_DEST (newpat), i3,
3099 &cc_use_insn)))
3100 {
3101 compare_code = orig_compare_code = GET_CODE (*cc_use_loc);
3102 compare_code = simplify_compare_const (compare_code,
3103 op0, &op1);
3104 #ifdef CANONICALIZE_COMPARISON
3105 CANONICALIZE_COMPARISON (compare_code, op0, op1);
3106 #endif
3107 }
3108
3109 /* Do the rest only if op1 is const0_rtx, which may be the
3110 result of simplification. */
3111 if (op1 == const0_rtx)
3112 {
3113 /* If a single use of the CC is found, prepare to modify it
3114 when SELECT_CC_MODE returns a new CC-class mode, or when
3115 the above simplify_compare_const() returned a new comparison
3116 operator. undobuf.other_insn is assigned the CC use insn
3117 when modifying it. */
3118 if (cc_use_loc)
3119 {
3120 #ifdef SELECT_CC_MODE
3121 enum machine_mode new_mode
3122 = SELECT_CC_MODE (compare_code, op0, op1);
3123 if (new_mode != orig_compare_mode
3124 && can_change_dest_mode (SET_DEST (newpat),
3125 added_sets_2, new_mode))
3126 {
3127 unsigned int regno = REGNO (newpat_dest);
3128 compare_mode = new_mode;
3129 if (regno < FIRST_PSEUDO_REGISTER)
3130 newpat_dest = gen_rtx_REG (compare_mode, regno);
3131 else
3132 {
3133 SUBST_MODE (regno_reg_rtx[regno], compare_mode);
3134 newpat_dest = regno_reg_rtx[regno];
3135 }
3136 }
3137 #endif
3138 /* Cases for modifying the CC-using comparison. */
3139 if (compare_code != orig_compare_code
3140 /* ??? Do we need to verify the zero rtx? */
3141 && XEXP (*cc_use_loc, 1) == const0_rtx)
3142 {
3143 /* Replace cc_use_loc with entire new RTX. */
3144 SUBST (*cc_use_loc,
3145 gen_rtx_fmt_ee (compare_code, compare_mode,
3146 newpat_dest, const0_rtx));
3147 undobuf.other_insn = cc_use_insn;
3148 }
3149 else if (compare_mode != orig_compare_mode)
3150 {
3151 /* Just replace the CC reg with a new mode. */
3152 SUBST (XEXP (*cc_use_loc, 0), newpat_dest);
3153 undobuf.other_insn = cc_use_insn;
3154 }
3155 }
3156
3157 /* Now we modify the current newpat:
3158 First, SET_DEST(newpat) is updated if the CC mode has been
3159 altered. For targets without SELECT_CC_MODE, this should be
3160 optimized away. */
3161 if (compare_mode != orig_compare_mode)
3162 SUBST (SET_DEST (newpat), newpat_dest);
3163 /* This is always done to propagate i2src into newpat. */
3164 SUBST (SET_SRC (newpat),
3165 gen_rtx_COMPARE (compare_mode, op0, op1));
3166 /* Create new version of i2pat if needed; the below PARALLEL
3167 creation needs this to work correctly. */
3168 if (! rtx_equal_p (i2src, op0))
3169 i2pat = gen_rtx_SET (VOIDmode, i2dest, op0);
3170 i2_is_used = 1;
3171 }
3172 }
3173 #endif
3174
3175 if (i2_is_used == 0)
3176 {
3177 /* It is possible that the source of I2 or I1 may be performing
3178 an unneeded operation, such as a ZERO_EXTEND of something
3179 that is known to have the high part zero. Handle that case
3180 by letting subst look at the inner insns.
3181
3182 Another way to do this would be to have a function that tries
3183 to simplify a single insn instead of merging two or more
3184 insns. We don't do this because of the potential of infinite
3185 loops and because of the potential extra memory required.
3186 However, doing it the way we are is a bit of a kludge and
3187 doesn't catch all cases.
3188
3189 But only do this if -fexpensive-optimizations since it slows
3190 things down and doesn't usually win.
3191
3192 This is not done in the COMPARE case above because the
3193 unmodified I2PAT is used in the PARALLEL and so a pattern
3194 with a modified I2SRC would not match. */
3195
3196 if (flag_expensive_optimizations)
3197 {
3198 /* Pass pc_rtx so no substitutions are done, just
3199 simplifications. */
3200 if (i1)
3201 {
3202 subst_low_luid = DF_INSN_LUID (i1);
3203 i1src = subst (i1src, pc_rtx, pc_rtx, 0, 0, 0);
3204 }
3205
3206 subst_low_luid = DF_INSN_LUID (i2);
3207 i2src = subst (i2src, pc_rtx, pc_rtx, 0, 0, 0);
3208 }
3209
3210 n_occurrences = 0; /* `subst' counts here */
3211 subst_low_luid = DF_INSN_LUID (i2);
3212
3213 /* If I1 feeds into I2 and I1DEST is in I1SRC, we need to make a unique
3214 copy of I2SRC each time we substitute it, in order to avoid creating
3215 self-referential RTL when we will be substituting I1SRC for I1DEST
3216 later. Likewise if I0 feeds into I2, either directly or indirectly
3217 through I1, and I0DEST is in I0SRC. */
3218 newpat = subst (PATTERN (i3), i2dest, i2src, 0, 0,
3219 (i1_feeds_i2_n && i1dest_in_i1src)
3220 || ((i0_feeds_i2_n || (i0_feeds_i1_n && i1_feeds_i2_n))
3221 && i0dest_in_i0src));
3222 substed_i2 = 1;
3223
3224 /* Record whether I2's body now appears within I3's body. */
3225 i2_is_used = n_occurrences;
3226 }
3227
3228 /* If we already got a failure, don't try to do more. Otherwise, try to
3229 substitute I1 if we have it. */
3230
3231 if (i1 && GET_CODE (newpat) != CLOBBER)
3232 {
3233 /* Check that an autoincrement side-effect on I1 has not been lost.
3234 This happens if I1DEST is mentioned in I2 and dies there, and
3235 has disappeared from the new pattern. */
3236 if ((FIND_REG_INC_NOTE (i1, NULL_RTX) != 0
3237 && i1_feeds_i2_n
3238 && dead_or_set_p (i2, i1dest)
3239 && !reg_overlap_mentioned_p (i1dest, newpat))
3240 /* Before we can do this substitution, we must redo the test done
3241 above (see detailed comments there) that ensures I1DEST isn't
3242 mentioned in any SETs in NEWPAT that are field assignments. */
3243 || !combinable_i3pat (NULL_RTX, &newpat, i1dest, NULL_RTX, NULL_RTX,
3244 0, 0, 0))
3245 {
3246 undo_all ();
3247 return 0;
3248 }
3249
3250 n_occurrences = 0;
3251 subst_low_luid = DF_INSN_LUID (i1);
3252
3253 /* If the following substitution will modify I1SRC, make a copy of it
3254 for the case where it is substituted for I1DEST in I2PAT later. */
3255 if (added_sets_2 && i1_feeds_i2_n)
3256 i1src_copy = copy_rtx (i1src);
3257
3258 /* If I0 feeds into I1 and I0DEST is in I0SRC, we need to make a unique
3259 copy of I1SRC each time we substitute it, in order to avoid creating
3260 self-referential RTL when we will be substituting I0SRC for I0DEST
3261 later. */
3262 newpat = subst (newpat, i1dest, i1src, 0, 0,
3263 i0_feeds_i1_n && i0dest_in_i0src);
3264 substed_i1 = 1;
3265
3266 /* Record whether I1's body now appears within I3's body. */
3267 i1_is_used = n_occurrences;
3268 }
3269
3270 /* Likewise for I0 if we have it. */
3271
3272 if (i0 && GET_CODE (newpat) != CLOBBER)
3273 {
3274 if ((FIND_REG_INC_NOTE (i0, NULL_RTX) != 0
3275 && ((i0_feeds_i2_n && dead_or_set_p (i2, i0dest))
3276 || (i0_feeds_i1_n && dead_or_set_p (i1, i0dest)))
3277 && !reg_overlap_mentioned_p (i0dest, newpat))
3278 || !combinable_i3pat (NULL_RTX, &newpat, i0dest, NULL_RTX, NULL_RTX,
3279 0, 0, 0))
3280 {
3281 undo_all ();
3282 return 0;
3283 }
3284
3285 /* If the following substitution will modify I0SRC, make a copy of it
3286 for the case where it is substituted for I0DEST in I1PAT later. */
3287 if (added_sets_1 && i0_feeds_i1_n)
3288 i0src_copy = copy_rtx (i0src);
3289 /* And a copy for I0DEST in I2PAT substitution. */
3290 if (added_sets_2 && ((i0_feeds_i1_n && i1_feeds_i2_n)
3291 || (i0_feeds_i2_n)))
3292 i0src_copy2 = copy_rtx (i0src);
3293
3294 n_occurrences = 0;
3295 subst_low_luid = DF_INSN_LUID (i0);
3296 newpat = subst (newpat, i0dest, i0src, 0, 0, 0);
3297 substed_i0 = 1;
3298 }
3299
3300 /* Fail if an autoincrement side-effect has been duplicated. Be careful
3301 to count all the ways that I2SRC and I1SRC can be used. */
3302 if ((FIND_REG_INC_NOTE (i2, NULL_RTX) != 0
3303 && i2_is_used + added_sets_2 > 1)
3304 || (i1 != 0 && FIND_REG_INC_NOTE (i1, NULL_RTX) != 0
3305 && (i1_is_used + added_sets_1 + (added_sets_2 && i1_feeds_i2_n)
3306 > 1))
3307 || (i0 != 0 && FIND_REG_INC_NOTE (i0, NULL_RTX) != 0
3308 && (n_occurrences + added_sets_0
3309 + (added_sets_1 && i0_feeds_i1_n)
3310 + (added_sets_2 && i0_feeds_i2_n)
3311 > 1))
3312 /* Fail if we tried to make a new register. */
3313 || max_reg_num () != maxreg
3314 /* Fail if we couldn't do something and have a CLOBBER. */
3315 || GET_CODE (newpat) == CLOBBER
3316 /* Fail if this new pattern is a MULT and we didn't have one before
3317 at the outer level. */
3318 || (GET_CODE (newpat) == SET && GET_CODE (SET_SRC (newpat)) == MULT
3319 && ! have_mult))
3320 {
3321 undo_all ();
3322 return 0;
3323 }
3324
3325 /* If the actions of the earlier insns must be kept
3326 in addition to substituting them into the latest one,
3327 we must make a new PARALLEL for the latest insn
3328 to hold additional the SETs. */
3329
3330 if (added_sets_0 || added_sets_1 || added_sets_2)
3331 {
3332 int extra_sets = added_sets_0 + added_sets_1 + added_sets_2;
3333 combine_extras++;
3334
3335 if (GET_CODE (newpat) == PARALLEL)
3336 {
3337 rtvec old = XVEC (newpat, 0);
3338 total_sets = XVECLEN (newpat, 0) + extra_sets;
3339 newpat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (total_sets));
3340 memcpy (XVEC (newpat, 0)->elem, &old->elem[0],
3341 sizeof (old->elem[0]) * old->num_elem);
3342 }
3343 else
3344 {
3345 rtx old = newpat;
3346 total_sets = 1 + extra_sets;
3347 newpat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (total_sets));
3348 XVECEXP (newpat, 0, 0) = old;
3349 }
3350
3351 if (added_sets_0)
3352 XVECEXP (newpat, 0, --total_sets) = i0pat;
3353
3354 if (added_sets_1)
3355 {
3356 rtx t = i1pat;
3357 if (i0_feeds_i1_n)
3358 t = subst (t, i0dest, i0src_copy ? i0src_copy : i0src, 0, 0, 0);
3359
3360 XVECEXP (newpat, 0, --total_sets) = t;
3361 }
3362 if (added_sets_2)
3363 {
3364 rtx t = i2pat;
3365 if (i1_feeds_i2_n)
3366 t = subst (t, i1dest, i1src_copy ? i1src_copy : i1src, 0, 0,
3367 i0_feeds_i1_n && i0dest_in_i0src);
3368 if ((i0_feeds_i1_n && i1_feeds_i2_n) || i0_feeds_i2_n)
3369 t = subst (t, i0dest, i0src_copy2 ? i0src_copy2 : i0src, 0, 0, 0);
3370
3371 XVECEXP (newpat, 0, --total_sets) = t;
3372 }
3373 }
3374
3375 validate_replacement:
3376
3377 /* Note which hard regs this insn has as inputs. */
3378 mark_used_regs_combine (newpat);
3379
3380 /* If recog_for_combine fails, it strips existing clobbers. If we'll
3381 consider splitting this pattern, we might need these clobbers. */
3382 if (i1 && GET_CODE (newpat) == PARALLEL
3383 && GET_CODE (XVECEXP (newpat, 0, XVECLEN (newpat, 0) - 1)) == CLOBBER)
3384 {
3385 int len = XVECLEN (newpat, 0);
3386
3387 newpat_vec_with_clobbers = rtvec_alloc (len);
3388 for (i = 0; i < len; i++)
3389 RTVEC_ELT (newpat_vec_with_clobbers, i) = XVECEXP (newpat, 0, i);
3390 }
3391
3392 /* Is the result of combination a valid instruction? */
3393 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3394
3395 /* If the result isn't valid, see if it is a PARALLEL of two SETs where
3396 the second SET's destination is a register that is unused and isn't
3397 marked as an instruction that might trap in an EH region. In that case,
3398 we just need the first SET. This can occur when simplifying a divmod
3399 insn. We *must* test for this case here because the code below that
3400 splits two independent SETs doesn't handle this case correctly when it
3401 updates the register status.
3402
3403 It's pointless doing this if we originally had two sets, one from
3404 i3, and one from i2. Combining then splitting the parallel results
3405 in the original i2 again plus an invalid insn (which we delete).
3406 The net effect is only to move instructions around, which makes
3407 debug info less accurate.
3408
3409 Also check the case where the first SET's destination is unused.
3410 That would not cause incorrect code, but does cause an unneeded
3411 insn to remain. */
3412
3413 if (insn_code_number < 0
3414 && !(added_sets_2 && i1 == 0)
3415 && GET_CODE (newpat) == PARALLEL
3416 && XVECLEN (newpat, 0) == 2
3417 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
3418 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
3419 && asm_noperands (newpat) < 0)
3420 {
3421 rtx set0 = XVECEXP (newpat, 0, 0);
3422 rtx set1 = XVECEXP (newpat, 0, 1);
3423
3424 if (((REG_P (SET_DEST (set1))
3425 && find_reg_note (i3, REG_UNUSED, SET_DEST (set1)))
3426 || (GET_CODE (SET_DEST (set1)) == SUBREG
3427 && find_reg_note (i3, REG_UNUSED, SUBREG_REG (SET_DEST (set1)))))
3428 && insn_nothrow_p (i3)
3429 && !side_effects_p (SET_SRC (set1)))
3430 {
3431 newpat = set0;
3432 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3433 }
3434
3435 else if (((REG_P (SET_DEST (set0))
3436 && find_reg_note (i3, REG_UNUSED, SET_DEST (set0)))
3437 || (GET_CODE (SET_DEST (set0)) == SUBREG
3438 && find_reg_note (i3, REG_UNUSED,
3439 SUBREG_REG (SET_DEST (set0)))))
3440 && insn_nothrow_p (i3)
3441 && !side_effects_p (SET_SRC (set0)))
3442 {
3443 newpat = set1;
3444 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3445
3446 if (insn_code_number >= 0)
3447 changed_i3_dest = 1;
3448 }
3449 }
3450
3451 /* If we were combining three insns and the result is a simple SET
3452 with no ASM_OPERANDS that wasn't recognized, try to split it into two
3453 insns. There are two ways to do this. It can be split using a
3454 machine-specific method (like when you have an addition of a large
3455 constant) or by combine in the function find_split_point. */
3456
3457 if (i1 && insn_code_number < 0 && GET_CODE (newpat) == SET
3458 && asm_noperands (newpat) < 0)
3459 {
3460 rtx parallel, m_split, *split;
3461
3462 /* See if the MD file can split NEWPAT. If it can't, see if letting it
3463 use I2DEST as a scratch register will help. In the latter case,
3464 convert I2DEST to the mode of the source of NEWPAT if we can. */
3465
3466 m_split = combine_split_insns (newpat, i3);
3467
3468 /* We can only use I2DEST as a scratch reg if it doesn't overlap any
3469 inputs of NEWPAT. */
3470
3471 /* ??? If I2DEST is not safe, and I1DEST exists, then it would be
3472 possible to try that as a scratch reg. This would require adding
3473 more code to make it work though. */
3474
3475 if (m_split == 0 && ! reg_overlap_mentioned_p (i2dest, newpat))
3476 {
3477 enum machine_mode new_mode = GET_MODE (SET_DEST (newpat));
3478
3479 /* First try to split using the original register as a
3480 scratch register. */
3481 parallel = gen_rtx_PARALLEL (VOIDmode,
3482 gen_rtvec (2, newpat,
3483 gen_rtx_CLOBBER (VOIDmode,
3484 i2dest)));
3485 m_split = combine_split_insns (parallel, i3);
3486
3487 /* If that didn't work, try changing the mode of I2DEST if
3488 we can. */
3489 if (m_split == 0
3490 && new_mode != GET_MODE (i2dest)
3491 && new_mode != VOIDmode
3492 && can_change_dest_mode (i2dest, added_sets_2, new_mode))
3493 {
3494 enum machine_mode old_mode = GET_MODE (i2dest);
3495 rtx ni2dest;
3496
3497 if (REGNO (i2dest) < FIRST_PSEUDO_REGISTER)
3498 ni2dest = gen_rtx_REG (new_mode, REGNO (i2dest));
3499 else
3500 {
3501 SUBST_MODE (regno_reg_rtx[REGNO (i2dest)], new_mode);
3502 ni2dest = regno_reg_rtx[REGNO (i2dest)];
3503 }
3504
3505 parallel = (gen_rtx_PARALLEL
3506 (VOIDmode,
3507 gen_rtvec (2, newpat,
3508 gen_rtx_CLOBBER (VOIDmode,
3509 ni2dest))));
3510 m_split = combine_split_insns (parallel, i3);
3511
3512 if (m_split == 0
3513 && REGNO (i2dest) >= FIRST_PSEUDO_REGISTER)
3514 {
3515 struct undo *buf;
3516
3517 adjust_reg_mode (regno_reg_rtx[REGNO (i2dest)], old_mode);
3518 buf = undobuf.undos;
3519 undobuf.undos = buf->next;
3520 buf->next = undobuf.frees;
3521 undobuf.frees = buf;
3522 }
3523 }
3524
3525 i2scratch = m_split != 0;
3526 }
3527
3528 /* If recog_for_combine has discarded clobbers, try to use them
3529 again for the split. */
3530 if (m_split == 0 && newpat_vec_with_clobbers)
3531 {
3532 parallel = gen_rtx_PARALLEL (VOIDmode, newpat_vec_with_clobbers);
3533 m_split = combine_split_insns (parallel, i3);
3534 }
3535
3536 if (m_split && NEXT_INSN (m_split) == NULL_RTX)
3537 {
3538 m_split = PATTERN (m_split);
3539 insn_code_number = recog_for_combine (&m_split, i3, &new_i3_notes);
3540 if (insn_code_number >= 0)
3541 newpat = m_split;
3542 }
3543 else if (m_split && NEXT_INSN (NEXT_INSN (m_split)) == NULL_RTX
3544 && (next_nonnote_nondebug_insn (i2) == i3
3545 || ! use_crosses_set_p (PATTERN (m_split), DF_INSN_LUID (i2))))
3546 {
3547 rtx i2set, i3set;
3548 rtx newi3pat = PATTERN (NEXT_INSN (m_split));
3549 newi2pat = PATTERN (m_split);
3550
3551 i3set = single_set (NEXT_INSN (m_split));
3552 i2set = single_set (m_split);
3553
3554 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
3555
3556 /* If I2 or I3 has multiple SETs, we won't know how to track
3557 register status, so don't use these insns. If I2's destination
3558 is used between I2 and I3, we also can't use these insns. */
3559
3560 if (i2_code_number >= 0 && i2set && i3set
3561 && (next_nonnote_nondebug_insn (i2) == i3
3562 || ! reg_used_between_p (SET_DEST (i2set), i2, i3)))
3563 insn_code_number = recog_for_combine (&newi3pat, i3,
3564 &new_i3_notes);
3565 if (insn_code_number >= 0)
3566 newpat = newi3pat;
3567
3568 /* It is possible that both insns now set the destination of I3.
3569 If so, we must show an extra use of it. */
3570
3571 if (insn_code_number >= 0)
3572 {
3573 rtx new_i3_dest = SET_DEST (i3set);
3574 rtx new_i2_dest = SET_DEST (i2set);
3575
3576 while (GET_CODE (new_i3_dest) == ZERO_EXTRACT
3577 || GET_CODE (new_i3_dest) == STRICT_LOW_PART
3578 || GET_CODE (new_i3_dest) == SUBREG)
3579 new_i3_dest = XEXP (new_i3_dest, 0);
3580
3581 while (GET_CODE (new_i2_dest) == ZERO_EXTRACT
3582 || GET_CODE (new_i2_dest) == STRICT_LOW_PART
3583 || GET_CODE (new_i2_dest) == SUBREG)
3584 new_i2_dest = XEXP (new_i2_dest, 0);
3585
3586 if (REG_P (new_i3_dest)
3587 && REG_P (new_i2_dest)
3588 && REGNO (new_i3_dest) == REGNO (new_i2_dest))
3589 INC_REG_N_SETS (REGNO (new_i2_dest), 1);
3590 }
3591 }
3592
3593 /* If we can split it and use I2DEST, go ahead and see if that
3594 helps things be recognized. Verify that none of the registers
3595 are set between I2 and I3. */
3596 if (insn_code_number < 0
3597 && (split = find_split_point (&newpat, i3, false)) != 0
3598 #ifdef HAVE_cc0
3599 && REG_P (i2dest)
3600 #endif
3601 /* We need I2DEST in the proper mode. If it is a hard register
3602 or the only use of a pseudo, we can change its mode.
3603 Make sure we don't change a hard register to have a mode that
3604 isn't valid for it, or change the number of registers. */
3605 && (GET_MODE (*split) == GET_MODE (i2dest)
3606 || GET_MODE (*split) == VOIDmode
3607 || can_change_dest_mode (i2dest, added_sets_2,
3608 GET_MODE (*split)))
3609 && (next_nonnote_nondebug_insn (i2) == i3
3610 || ! use_crosses_set_p (*split, DF_INSN_LUID (i2)))
3611 /* We can't overwrite I2DEST if its value is still used by
3612 NEWPAT. */
3613 && ! reg_referenced_p (i2dest, newpat))
3614 {
3615 rtx newdest = i2dest;
3616 enum rtx_code split_code = GET_CODE (*split);
3617 enum machine_mode split_mode = GET_MODE (*split);
3618 bool subst_done = false;
3619 newi2pat = NULL_RTX;
3620
3621 i2scratch = true;
3622
3623 /* *SPLIT may be part of I2SRC, so make sure we have the
3624 original expression around for later debug processing.
3625 We should not need I2SRC any more in other cases. */
3626 if (MAY_HAVE_DEBUG_INSNS)
3627 i2src = copy_rtx (i2src);
3628 else
3629 i2src = NULL;
3630
3631 /* Get NEWDEST as a register in the proper mode. We have already
3632 validated that we can do this. */
3633 if (GET_MODE (i2dest) != split_mode && split_mode != VOIDmode)
3634 {
3635 if (REGNO (i2dest) < FIRST_PSEUDO_REGISTER)
3636 newdest = gen_rtx_REG (split_mode, REGNO (i2dest));
3637 else
3638 {
3639 SUBST_MODE (regno_reg_rtx[REGNO (i2dest)], split_mode);
3640 newdest = regno_reg_rtx[REGNO (i2dest)];
3641 }
3642 }
3643
3644 /* If *SPLIT is a (mult FOO (const_int pow2)), convert it to
3645 an ASHIFT. This can occur if it was inside a PLUS and hence
3646 appeared to be a memory address. This is a kludge. */
3647 if (split_code == MULT
3648 && CONST_INT_P (XEXP (*split, 1))
3649 && INTVAL (XEXP (*split, 1)) > 0
3650 && (i = exact_log2 (UINTVAL (XEXP (*split, 1)))) >= 0)
3651 {
3652 SUBST (*split, gen_rtx_ASHIFT (split_mode,
3653 XEXP (*split, 0), GEN_INT (i)));
3654 /* Update split_code because we may not have a multiply
3655 anymore. */
3656 split_code = GET_CODE (*split);
3657 }
3658
3659 #ifdef INSN_SCHEDULING
3660 /* If *SPLIT is a paradoxical SUBREG, when we split it, it should
3661 be written as a ZERO_EXTEND. */
3662 if (split_code == SUBREG && MEM_P (SUBREG_REG (*split)))
3663 {
3664 #ifdef LOAD_EXTEND_OP
3665 /* Or as a SIGN_EXTEND if LOAD_EXTEND_OP says that that's
3666 what it really is. */
3667 if (LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (*split)))
3668 == SIGN_EXTEND)
3669 SUBST (*split, gen_rtx_SIGN_EXTEND (split_mode,
3670 SUBREG_REG (*split)));
3671 else
3672 #endif
3673 SUBST (*split, gen_rtx_ZERO_EXTEND (split_mode,
3674 SUBREG_REG (*split)));
3675 }
3676 #endif
3677
3678 /* Attempt to split binary operators using arithmetic identities. */
3679 if (BINARY_P (SET_SRC (newpat))
3680 && split_mode == GET_MODE (SET_SRC (newpat))
3681 && ! side_effects_p (SET_SRC (newpat)))
3682 {
3683 rtx setsrc = SET_SRC (newpat);
3684 enum machine_mode mode = GET_MODE (setsrc);
3685 enum rtx_code code = GET_CODE (setsrc);
3686 rtx src_op0 = XEXP (setsrc, 0);
3687 rtx src_op1 = XEXP (setsrc, 1);
3688
3689 /* Split "X = Y op Y" as "Z = Y; X = Z op Z". */
3690 if (rtx_equal_p (src_op0, src_op1))
3691 {
3692 newi2pat = gen_rtx_SET (VOIDmode, newdest, src_op0);
3693 SUBST (XEXP (setsrc, 0), newdest);
3694 SUBST (XEXP (setsrc, 1), newdest);
3695 subst_done = true;
3696 }
3697 /* Split "((P op Q) op R) op S" where op is PLUS or MULT. */
3698 else if ((code == PLUS || code == MULT)
3699 && GET_CODE (src_op0) == code
3700 && GET_CODE (XEXP (src_op0, 0)) == code
3701 && (INTEGRAL_MODE_P (mode)
3702 || (FLOAT_MODE_P (mode)
3703 && flag_unsafe_math_optimizations)))
3704 {
3705 rtx p = XEXP (XEXP (src_op0, 0), 0);
3706 rtx q = XEXP (XEXP (src_op0, 0), 1);
3707 rtx r = XEXP (src_op0, 1);
3708 rtx s = src_op1;
3709
3710 /* Split both "((X op Y) op X) op Y" and
3711 "((X op Y) op Y) op X" as "T op T" where T is
3712 "X op Y". */
3713 if ((rtx_equal_p (p,r) && rtx_equal_p (q,s))
3714 || (rtx_equal_p (p,s) && rtx_equal_p (q,r)))
3715 {
3716 newi2pat = gen_rtx_SET (VOIDmode, newdest,
3717 XEXP (src_op0, 0));
3718 SUBST (XEXP (setsrc, 0), newdest);
3719 SUBST (XEXP (setsrc, 1), newdest);
3720 subst_done = true;
3721 }
3722 /* Split "((X op X) op Y) op Y)" as "T op T" where
3723 T is "X op Y". */
3724 else if (rtx_equal_p (p,q) && rtx_equal_p (r,s))
3725 {
3726 rtx tmp = simplify_gen_binary (code, mode, p, r);
3727 newi2pat = gen_rtx_SET (VOIDmode, newdest, tmp);
3728 SUBST (XEXP (setsrc, 0), newdest);
3729 SUBST (XEXP (setsrc, 1), newdest);
3730 subst_done = true;
3731 }
3732 }
3733 }
3734
3735 if (!subst_done)
3736 {
3737 newi2pat = gen_rtx_SET (VOIDmode, newdest, *split);
3738 SUBST (*split, newdest);
3739 }
3740
3741 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
3742
3743 /* recog_for_combine might have added CLOBBERs to newi2pat.
3744 Make sure NEWPAT does not depend on the clobbered regs. */
3745 if (GET_CODE (newi2pat) == PARALLEL)
3746 for (i = XVECLEN (newi2pat, 0) - 1; i >= 0; i--)
3747 if (GET_CODE (XVECEXP (newi2pat, 0, i)) == CLOBBER)
3748 {
3749 rtx reg = XEXP (XVECEXP (newi2pat, 0, i), 0);
3750 if (reg_overlap_mentioned_p (reg, newpat))
3751 {
3752 undo_all ();
3753 return 0;
3754 }
3755 }
3756
3757 /* If the split point was a MULT and we didn't have one before,
3758 don't use one now. */
3759 if (i2_code_number >= 0 && ! (split_code == MULT && ! have_mult))
3760 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3761 }
3762 }
3763
3764 /* Check for a case where we loaded from memory in a narrow mode and
3765 then sign extended it, but we need both registers. In that case,
3766 we have a PARALLEL with both loads from the same memory location.
3767 We can split this into a load from memory followed by a register-register
3768 copy. This saves at least one insn, more if register allocation can
3769 eliminate the copy.
3770
3771 We cannot do this if the destination of the first assignment is a
3772 condition code register or cc0. We eliminate this case by making sure
3773 the SET_DEST and SET_SRC have the same mode.
3774
3775 We cannot do this if the destination of the second assignment is
3776 a register that we have already assumed is zero-extended. Similarly
3777 for a SUBREG of such a register. */
3778
3779 else if (i1 && insn_code_number < 0 && asm_noperands (newpat) < 0
3780 && GET_CODE (newpat) == PARALLEL
3781 && XVECLEN (newpat, 0) == 2
3782 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
3783 && GET_CODE (SET_SRC (XVECEXP (newpat, 0, 0))) == SIGN_EXTEND
3784 && (GET_MODE (SET_DEST (XVECEXP (newpat, 0, 0)))
3785 == GET_MODE (SET_SRC (XVECEXP (newpat, 0, 0))))
3786 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
3787 && rtx_equal_p (SET_SRC (XVECEXP (newpat, 0, 1)),
3788 XEXP (SET_SRC (XVECEXP (newpat, 0, 0)), 0))
3789 && ! use_crosses_set_p (SET_SRC (XVECEXP (newpat, 0, 1)),
3790 DF_INSN_LUID (i2))
3791 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != ZERO_EXTRACT
3792 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != STRICT_LOW_PART
3793 && ! (temp = SET_DEST (XVECEXP (newpat, 0, 1)),
3794 (REG_P (temp)
3795 && VEC_index (reg_stat_type, reg_stat,
3796 REGNO (temp))->nonzero_bits != 0
3797 && GET_MODE_PRECISION (GET_MODE (temp)) < BITS_PER_WORD
3798 && GET_MODE_PRECISION (GET_MODE (temp)) < HOST_BITS_PER_INT
3799 && (VEC_index (reg_stat_type, reg_stat,
3800 REGNO (temp))->nonzero_bits
3801 != GET_MODE_MASK (word_mode))))
3802 && ! (GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) == SUBREG
3803 && (temp = SUBREG_REG (SET_DEST (XVECEXP (newpat, 0, 1))),
3804 (REG_P (temp)
3805 && VEC_index (reg_stat_type, reg_stat,
3806 REGNO (temp))->nonzero_bits != 0
3807 && GET_MODE_PRECISION (GET_MODE (temp)) < BITS_PER_WORD
3808 && GET_MODE_PRECISION (GET_MODE (temp)) < HOST_BITS_PER_INT
3809 && (VEC_index (reg_stat_type, reg_stat,
3810 REGNO (temp))->nonzero_bits
3811 != GET_MODE_MASK (word_mode)))))
3812 && ! reg_overlap_mentioned_p (SET_DEST (XVECEXP (newpat, 0, 1)),
3813 SET_SRC (XVECEXP (newpat, 0, 1)))
3814 && ! find_reg_note (i3, REG_UNUSED,
3815 SET_DEST (XVECEXP (newpat, 0, 0))))
3816 {
3817 rtx ni2dest;
3818
3819 newi2pat = XVECEXP (newpat, 0, 0);
3820 ni2dest = SET_DEST (XVECEXP (newpat, 0, 0));
3821 newpat = XVECEXP (newpat, 0, 1);
3822 SUBST (SET_SRC (newpat),
3823 gen_lowpart (GET_MODE (SET_SRC (newpat)), ni2dest));
3824 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
3825
3826 if (i2_code_number >= 0)
3827 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3828
3829 if (insn_code_number >= 0)
3830 swap_i2i3 = 1;
3831 }
3832
3833 /* Similarly, check for a case where we have a PARALLEL of two independent
3834 SETs but we started with three insns. In this case, we can do the sets
3835 as two separate insns. This case occurs when some SET allows two
3836 other insns to combine, but the destination of that SET is still live. */
3837
3838 else if (i1 && insn_code_number < 0 && asm_noperands (newpat) < 0
3839 && GET_CODE (newpat) == PARALLEL
3840 && XVECLEN (newpat, 0) == 2
3841 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
3842 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) != ZERO_EXTRACT
3843 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) != STRICT_LOW_PART
3844 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
3845 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != ZERO_EXTRACT
3846 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != STRICT_LOW_PART
3847 && ! reg_referenced_p (SET_DEST (XVECEXP (newpat, 0, 1)),
3848 XVECEXP (newpat, 0, 0))
3849 && ! reg_referenced_p (SET_DEST (XVECEXP (newpat, 0, 0)),
3850 XVECEXP (newpat, 0, 1))
3851 && ! (contains_muldiv (SET_SRC (XVECEXP (newpat, 0, 0)))
3852 && contains_muldiv (SET_SRC (XVECEXP (newpat, 0, 1)))))
3853 {
3854 /* Normally, it doesn't matter which of the two is done first,
3855 but the one that references cc0 can't be the second, and
3856 one which uses any regs/memory set in between i2 and i3 can't
3857 be first. */
3858 if (!use_crosses_set_p (SET_SRC (XVECEXP (newpat, 0, 1)),
3859 DF_INSN_LUID (i2))
3860 #ifdef HAVE_cc0
3861 && !reg_referenced_p (cc0_rtx, XVECEXP (newpat, 0, 0))
3862 #endif
3863 )
3864 {
3865 newi2pat = XVECEXP (newpat, 0, 1);
3866 newpat = XVECEXP (newpat, 0, 0);
3867 }
3868 else if (!use_crosses_set_p (SET_SRC (XVECEXP (newpat, 0, 0)),
3869 DF_INSN_LUID (i2))
3870 #ifdef HAVE_cc0
3871 && !reg_referenced_p (cc0_rtx, XVECEXP (newpat, 0, 1))
3872 #endif
3873 )
3874 {
3875 newi2pat = XVECEXP (newpat, 0, 0);
3876 newpat = XVECEXP (newpat, 0, 1);
3877 }
3878 else
3879 {
3880 undo_all ();
3881 return 0;
3882 }
3883
3884 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
3885
3886 if (i2_code_number >= 0)
3887 {
3888 /* recog_for_combine might have added CLOBBERs to newi2pat.
3889 Make sure NEWPAT does not depend on the clobbered regs. */
3890 if (GET_CODE (newi2pat) == PARALLEL)
3891 {
3892 for (i = XVECLEN (newi2pat, 0) - 1; i >= 0; i--)
3893 if (GET_CODE (XVECEXP (newi2pat, 0, i)) == CLOBBER)
3894 {
3895 rtx reg = XEXP (XVECEXP (newi2pat, 0, i), 0);
3896 if (reg_overlap_mentioned_p (reg, newpat))
3897 {
3898 undo_all ();
3899 return 0;
3900 }
3901 }
3902 }
3903
3904 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3905 }
3906 }
3907
3908 /* If it still isn't recognized, fail and change things back the way they
3909 were. */
3910 if ((insn_code_number < 0
3911 /* Is the result a reasonable ASM_OPERANDS? */
3912 && (! check_asm_operands (newpat) || added_sets_1 || added_sets_2)))
3913 {
3914 undo_all ();
3915 return 0;
3916 }
3917
3918 /* If we had to change another insn, make sure it is valid also. */
3919 if (undobuf.other_insn)
3920 {
3921 CLEAR_HARD_REG_SET (newpat_used_regs);
3922
3923 other_pat = PATTERN (undobuf.other_insn);
3924 other_code_number = recog_for_combine (&other_pat, undobuf.other_insn,
3925 &new_other_notes);
3926
3927 if (other_code_number < 0 && ! check_asm_operands (other_pat))
3928 {
3929 undo_all ();
3930 return 0;
3931 }
3932 }
3933
3934 #ifdef HAVE_cc0
3935 /* If I2 is the CC0 setter and I3 is the CC0 user then check whether
3936 they are adjacent to each other or not. */
3937 {
3938 rtx p = prev_nonnote_insn (i3);
3939 if (p && p != i2 && NONJUMP_INSN_P (p) && newi2pat
3940 && sets_cc0_p (newi2pat))
3941 {
3942 undo_all ();
3943 return 0;
3944 }
3945 }
3946 #endif
3947
3948 /* Only allow this combination if insn_rtx_costs reports that the
3949 replacement instructions are cheaper than the originals. */
3950 if (!combine_validate_cost (i0, i1, i2, i3, newpat, newi2pat, other_pat))
3951 {
3952 undo_all ();
3953 return 0;
3954 }
3955
3956 if (MAY_HAVE_DEBUG_INSNS)
3957 {
3958 struct undo *undo;
3959
3960 for (undo = undobuf.undos; undo; undo = undo->next)
3961 if (undo->kind == UNDO_MODE)
3962 {
3963 rtx reg = *undo->where.r;
3964 enum machine_mode new_mode = GET_MODE (reg);
3965 enum machine_mode old_mode = undo->old_contents.m;
3966
3967 /* Temporarily revert mode back. */
3968 adjust_reg_mode (reg, old_mode);
3969
3970 if (reg == i2dest && i2scratch)
3971 {
3972 /* If we used i2dest as a scratch register with a
3973 different mode, substitute it for the original
3974 i2src while its original mode is temporarily
3975 restored, and then clear i2scratch so that we don't
3976 do it again later. */
3977 propagate_for_debug (i2, last_combined_insn, reg, i2src);
3978 i2scratch = false;
3979 /* Put back the new mode. */
3980 adjust_reg_mode (reg, new_mode);
3981 }
3982 else
3983 {
3984 rtx tempreg = gen_raw_REG (old_mode, REGNO (reg));
3985 rtx first, last;
3986
3987 if (reg == i2dest)
3988 {
3989 first = i2;
3990 last = last_combined_insn;
3991 }
3992 else
3993 {
3994 first = i3;
3995 last = undobuf.other_insn;
3996 gcc_assert (last);
3997 if (DF_INSN_LUID (last)
3998 < DF_INSN_LUID (last_combined_insn))
3999 last = last_combined_insn;
4000 }
4001
4002 /* We're dealing with a reg that changed mode but not
4003 meaning, so we want to turn it into a subreg for
4004 the new mode. However, because of REG sharing and
4005 because its mode had already changed, we have to do
4006 it in two steps. First, replace any debug uses of
4007 reg, with its original mode temporarily restored,
4008 with this copy we have created; then, replace the
4009 copy with the SUBREG of the original shared reg,
4010 once again changed to the new mode. */
4011 propagate_for_debug (first, last, reg, tempreg);
4012 adjust_reg_mode (reg, new_mode);
4013 propagate_for_debug (first, last, tempreg,
4014 lowpart_subreg (old_mode, reg, new_mode));
4015 }
4016 }
4017 }
4018
4019 /* If we will be able to accept this, we have made a
4020 change to the destination of I3. This requires us to
4021 do a few adjustments. */
4022
4023 if (changed_i3_dest)
4024 {
4025 PATTERN (i3) = newpat;
4026 adjust_for_new_dest (i3);
4027 }
4028
4029 /* We now know that we can do this combination. Merge the insns and
4030 update the status of registers and LOG_LINKS. */
4031
4032 if (undobuf.other_insn)
4033 {
4034 rtx note, next;
4035
4036 PATTERN (undobuf.other_insn) = other_pat;
4037
4038 /* If any of the notes in OTHER_INSN were REG_UNUSED, ensure that they
4039 are still valid. Then add any non-duplicate notes added by
4040 recog_for_combine. */
4041 for (note = REG_NOTES (undobuf.other_insn); note; note = next)
4042 {
4043 next = XEXP (note, 1);
4044
4045 if (REG_NOTE_KIND (note) == REG_UNUSED
4046 && ! reg_set_p (XEXP (note, 0), PATTERN (undobuf.other_insn)))
4047 remove_note (undobuf.other_insn, note);
4048 }
4049
4050 distribute_notes (new_other_notes, undobuf.other_insn,
4051 undobuf.other_insn, NULL_RTX, NULL_RTX, NULL_RTX,
4052 NULL_RTX);
4053 }
4054
4055 if (swap_i2i3)
4056 {
4057 rtx insn;
4058 struct insn_link *link;
4059 rtx ni2dest;
4060
4061 /* I3 now uses what used to be its destination and which is now
4062 I2's destination. This requires us to do a few adjustments. */
4063 PATTERN (i3) = newpat;
4064 adjust_for_new_dest (i3);
4065
4066 /* We need a LOG_LINK from I3 to I2. But we used to have one,
4067 so we still will.
4068
4069 However, some later insn might be using I2's dest and have
4070 a LOG_LINK pointing at I3. We must remove this link.
4071 The simplest way to remove the link is to point it at I1,
4072 which we know will be a NOTE. */
4073
4074 /* newi2pat is usually a SET here; however, recog_for_combine might
4075 have added some clobbers. */
4076 if (GET_CODE (newi2pat) == PARALLEL)
4077 ni2dest = SET_DEST (XVECEXP (newi2pat, 0, 0));
4078 else
4079 ni2dest = SET_DEST (newi2pat);
4080
4081 for (insn = NEXT_INSN (i3);
4082 insn && (this_basic_block->next_bb == EXIT_BLOCK_PTR
4083 || insn != BB_HEAD (this_basic_block->next_bb));
4084 insn = NEXT_INSN (insn))
4085 {
4086 if (INSN_P (insn) && reg_referenced_p (ni2dest, PATTERN (insn)))
4087 {
4088 FOR_EACH_LOG_LINK (link, insn)
4089 if (link->insn == i3)
4090 link->insn = i1;
4091
4092 break;
4093 }
4094 }
4095 }
4096
4097 {
4098 rtx i3notes, i2notes, i1notes = 0, i0notes = 0;
4099 struct insn_link *i3links, *i2links, *i1links = 0, *i0links = 0;
4100 rtx midnotes = 0;
4101 int from_luid;
4102 /* Compute which registers we expect to eliminate. newi2pat may be setting
4103 either i3dest or i2dest, so we must check it. Also, i1dest may be the
4104 same as i3dest, in which case newi2pat may be setting i1dest. */
4105 rtx elim_i2 = ((newi2pat && reg_set_p (i2dest, newi2pat))
4106 || i2dest_in_i2src || i2dest_in_i1src || i2dest_in_i0src
4107 || !i2dest_killed
4108 ? 0 : i2dest);
4109 rtx elim_i1 = (i1 == 0 || i1dest_in_i1src || i1dest_in_i0src
4110 || (newi2pat && reg_set_p (i1dest, newi2pat))
4111 || !i1dest_killed
4112 ? 0 : i1dest);
4113 rtx elim_i0 = (i0 == 0 || i0dest_in_i0src
4114 || (newi2pat && reg_set_p (i0dest, newi2pat))
4115 || !i0dest_killed
4116 ? 0 : i0dest);
4117
4118 /* Get the old REG_NOTES and LOG_LINKS from all our insns and
4119 clear them. */
4120 i3notes = REG_NOTES (i3), i3links = LOG_LINKS (i3);
4121 i2notes = REG_NOTES (i2), i2links = LOG_LINKS (i2);
4122 if (i1)
4123 i1notes = REG_NOTES (i1), i1links = LOG_LINKS (i1);
4124 if (i0)
4125 i0notes = REG_NOTES (i0), i0links = LOG_LINKS (i0);
4126
4127 /* Ensure that we do not have something that should not be shared but
4128 occurs multiple times in the new insns. Check this by first
4129 resetting all the `used' flags and then copying anything is shared. */
4130
4131 reset_used_flags (i3notes);
4132 reset_used_flags (i2notes);
4133 reset_used_flags (i1notes);
4134 reset_used_flags (i0notes);
4135 reset_used_flags (newpat);
4136 reset_used_flags (newi2pat);
4137 if (undobuf.other_insn)
4138 reset_used_flags (PATTERN (undobuf.other_insn));
4139
4140 i3notes = copy_rtx_if_shared (i3notes);
4141 i2notes = copy_rtx_if_shared (i2notes);
4142 i1notes = copy_rtx_if_shared (i1notes);
4143 i0notes = copy_rtx_if_shared (i0notes);
4144 newpat = copy_rtx_if_shared (newpat);
4145 newi2pat = copy_rtx_if_shared (newi2pat);
4146 if (undobuf.other_insn)
4147 reset_used_flags (PATTERN (undobuf.other_insn));
4148
4149 INSN_CODE (i3) = insn_code_number;
4150 PATTERN (i3) = newpat;
4151
4152 if (CALL_P (i3) && CALL_INSN_FUNCTION_USAGE (i3))
4153 {
4154 rtx call_usage = CALL_INSN_FUNCTION_USAGE (i3);
4155
4156 reset_used_flags (call_usage);
4157 call_usage = copy_rtx (call_usage);
4158
4159 if (substed_i2)
4160 {
4161 /* I2SRC must still be meaningful at this point. Some splitting
4162 operations can invalidate I2SRC, but those operations do not
4163 apply to calls. */
4164 gcc_assert (i2src);
4165 replace_rtx (call_usage, i2dest, i2src);
4166 }
4167
4168 if (substed_i1)
4169 replace_rtx (call_usage, i1dest, i1src);
4170 if (substed_i0)
4171 replace_rtx (call_usage, i0dest, i0src);
4172
4173 CALL_INSN_FUNCTION_USAGE (i3) = call_usage;
4174 }
4175
4176 if (undobuf.other_insn)
4177 INSN_CODE (undobuf.other_insn) = other_code_number;
4178
4179 /* We had one special case above where I2 had more than one set and
4180 we replaced a destination of one of those sets with the destination
4181 of I3. In that case, we have to update LOG_LINKS of insns later
4182 in this basic block. Note that this (expensive) case is rare.
4183
4184 Also, in this case, we must pretend that all REG_NOTEs for I2
4185 actually came from I3, so that REG_UNUSED notes from I2 will be
4186 properly handled. */
4187
4188 if (i3_subst_into_i2)
4189 {
4190 for (i = 0; i < XVECLEN (PATTERN (i2), 0); i++)
4191 if ((GET_CODE (XVECEXP (PATTERN (i2), 0, i)) == SET
4192 || GET_CODE (XVECEXP (PATTERN (i2), 0, i)) == CLOBBER)
4193 && REG_P (SET_DEST (XVECEXP (PATTERN (i2), 0, i)))
4194 && SET_DEST (XVECEXP (PATTERN (i2), 0, i)) != i2dest
4195 && ! find_reg_note (i2, REG_UNUSED,
4196 SET_DEST (XVECEXP (PATTERN (i2), 0, i))))
4197 for (temp = NEXT_INSN (i2);
4198 temp && (this_basic_block->next_bb == EXIT_BLOCK_PTR
4199 || BB_HEAD (this_basic_block) != temp);
4200 temp = NEXT_INSN (temp))
4201 if (temp != i3 && INSN_P (temp))
4202 FOR_EACH_LOG_LINK (link, temp)
4203 if (link->insn == i2)
4204 link->insn = i3;
4205
4206 if (i3notes)
4207 {
4208 rtx link = i3notes;
4209 while (XEXP (link, 1))
4210 link = XEXP (link, 1);
4211 XEXP (link, 1) = i2notes;
4212 }
4213 else
4214 i3notes = i2notes;
4215 i2notes = 0;
4216 }
4217
4218 LOG_LINKS (i3) = NULL;
4219 REG_NOTES (i3) = 0;
4220 LOG_LINKS (i2) = NULL;
4221 REG_NOTES (i2) = 0;
4222
4223 if (newi2pat)
4224 {
4225 if (MAY_HAVE_DEBUG_INSNS && i2scratch)
4226 propagate_for_debug (i2, last_combined_insn, i2dest, i2src);
4227 INSN_CODE (i2) = i2_code_number;
4228 PATTERN (i2) = newi2pat;
4229 }
4230 else
4231 {
4232 if (MAY_HAVE_DEBUG_INSNS && i2src)
4233 propagate_for_debug (i2, last_combined_insn, i2dest, i2src);
4234 SET_INSN_DELETED (i2);
4235 }
4236
4237 if (i1)
4238 {
4239 LOG_LINKS (i1) = NULL;
4240 REG_NOTES (i1) = 0;
4241 if (MAY_HAVE_DEBUG_INSNS)
4242 propagate_for_debug (i1, last_combined_insn, i1dest, i1src);
4243 SET_INSN_DELETED (i1);
4244 }
4245
4246 if (i0)
4247 {
4248 LOG_LINKS (i0) = NULL;
4249 REG_NOTES (i0) = 0;
4250 if (MAY_HAVE_DEBUG_INSNS)
4251 propagate_for_debug (i0, last_combined_insn, i0dest, i0src);
4252 SET_INSN_DELETED (i0);
4253 }
4254
4255 /* Get death notes for everything that is now used in either I3 or
4256 I2 and used to die in a previous insn. If we built two new
4257 patterns, move from I1 to I2 then I2 to I3 so that we get the
4258 proper movement on registers that I2 modifies. */
4259
4260 if (i0)
4261 from_luid = DF_INSN_LUID (i0);
4262 else if (i1)
4263 from_luid = DF_INSN_LUID (i1);
4264 else
4265 from_luid = DF_INSN_LUID (i2);
4266 if (newi2pat)
4267 move_deaths (newi2pat, NULL_RTX, from_luid, i2, &midnotes);
4268 move_deaths (newpat, newi2pat, from_luid, i3, &midnotes);
4269
4270 /* Distribute all the LOG_LINKS and REG_NOTES from I1, I2, and I3. */
4271 if (i3notes)
4272 distribute_notes (i3notes, i3, i3, newi2pat ? i2 : NULL_RTX,
4273 elim_i2, elim_i1, elim_i0);
4274 if (i2notes)
4275 distribute_notes (i2notes, i2, i3, newi2pat ? i2 : NULL_RTX,
4276 elim_i2, elim_i1, elim_i0);
4277 if (i1notes)
4278 distribute_notes (i1notes, i1, i3, newi2pat ? i2 : NULL_RTX,
4279 elim_i2, elim_i1, elim_i0);
4280 if (i0notes)
4281 distribute_notes (i0notes, i0, i3, newi2pat ? i2 : NULL_RTX,
4282 elim_i2, elim_i1, elim_i0);
4283 if (midnotes)
4284 distribute_notes (midnotes, NULL_RTX, i3, newi2pat ? i2 : NULL_RTX,
4285 elim_i2, elim_i1, elim_i0);
4286
4287 /* Distribute any notes added to I2 or I3 by recog_for_combine. We
4288 know these are REG_UNUSED and want them to go to the desired insn,
4289 so we always pass it as i3. */
4290
4291 if (newi2pat && new_i2_notes)
4292 distribute_notes (new_i2_notes, i2, i2, NULL_RTX, NULL_RTX, NULL_RTX,
4293 NULL_RTX);
4294
4295 if (new_i3_notes)
4296 distribute_notes (new_i3_notes, i3, i3, NULL_RTX, NULL_RTX, NULL_RTX,
4297 NULL_RTX);
4298
4299 /* If I3DEST was used in I3SRC, it really died in I3. We may need to
4300 put a REG_DEAD note for it somewhere. If NEWI2PAT exists and sets
4301 I3DEST, the death must be somewhere before I2, not I3. If we passed I3
4302 in that case, it might delete I2. Similarly for I2 and I1.
4303 Show an additional death due to the REG_DEAD note we make here. If
4304 we discard it in distribute_notes, we will decrement it again. */
4305
4306 if (i3dest_killed)
4307 {
4308 if (newi2pat && reg_set_p (i3dest_killed, newi2pat))
4309 distribute_notes (alloc_reg_note (REG_DEAD, i3dest_killed,
4310 NULL_RTX),
4311 NULL_RTX, i2, NULL_RTX, elim_i2, elim_i1, elim_i0);
4312 else
4313 distribute_notes (alloc_reg_note (REG_DEAD, i3dest_killed,
4314 NULL_RTX),
4315 NULL_RTX, i3, newi2pat ? i2 : NULL_RTX,
4316 elim_i2, elim_i1, elim_i0);
4317 }
4318
4319 if (i2dest_in_i2src)
4320 {
4321 rtx new_note = alloc_reg_note (REG_DEAD, i2dest, NULL_RTX);
4322 if (newi2pat && reg_set_p (i2dest, newi2pat))
4323 distribute_notes (new_note, NULL_RTX, i2, NULL_RTX, NULL_RTX,
4324 NULL_RTX, NULL_RTX);
4325 else
4326 distribute_notes (new_note, NULL_RTX, i3, newi2pat ? i2 : NULL_RTX,
4327 NULL_RTX, NULL_RTX, NULL_RTX);
4328 }
4329
4330 if (i1dest_in_i1src)
4331 {
4332 rtx new_note = alloc_reg_note (REG_DEAD, i1dest, NULL_RTX);
4333 if (newi2pat && reg_set_p (i1dest, newi2pat))
4334 distribute_notes (new_note, NULL_RTX, i2, NULL_RTX, NULL_RTX,
4335 NULL_RTX, NULL_RTX);
4336 else
4337 distribute_notes (new_note, NULL_RTX, i3, newi2pat ? i2 : NULL_RTX,
4338 NULL_RTX, NULL_RTX, NULL_RTX);
4339 }
4340
4341 if (i0dest_in_i0src)
4342 {
4343 rtx new_note = alloc_reg_note (REG_DEAD, i0dest, NULL_RTX);
4344 if (newi2pat && reg_set_p (i0dest, newi2pat))
4345 distribute_notes (new_note, NULL_RTX, i2, NULL_RTX, NULL_RTX,
4346 NULL_RTX, NULL_RTX);
4347 else
4348 distribute_notes (new_note, NULL_RTX, i3, newi2pat ? i2 : NULL_RTX,
4349 NULL_RTX, NULL_RTX, NULL_RTX);
4350 }
4351
4352 distribute_links (i3links);
4353 distribute_links (i2links);
4354 distribute_links (i1links);
4355 distribute_links (i0links);
4356
4357 if (REG_P (i2dest))
4358 {
4359 struct insn_link *link;
4360 rtx i2_insn = 0, i2_val = 0, set;
4361
4362 /* The insn that used to set this register doesn't exist, and
4363 this life of the register may not exist either. See if one of
4364 I3's links points to an insn that sets I2DEST. If it does,
4365 that is now the last known value for I2DEST. If we don't update
4366 this and I2 set the register to a value that depended on its old
4367 contents, we will get confused. If this insn is used, thing
4368 will be set correctly in combine_instructions. */
4369 FOR_EACH_LOG_LINK (link, i3)
4370 if ((set = single_set (link->insn)) != 0
4371 && rtx_equal_p (i2dest, SET_DEST (set)))
4372 i2_insn = link->insn, i2_val = SET_SRC (set);
4373
4374 record_value_for_reg (i2dest, i2_insn, i2_val);
4375
4376 /* If the reg formerly set in I2 died only once and that was in I3,
4377 zero its use count so it won't make `reload' do any work. */
4378 if (! added_sets_2
4379 && (newi2pat == 0 || ! reg_mentioned_p (i2dest, newi2pat))
4380 && ! i2dest_in_i2src)
4381 INC_REG_N_SETS (REGNO (i2dest), -1);
4382 }
4383
4384 if (i1 && REG_P (i1dest))
4385 {
4386 struct insn_link *link;
4387 rtx i1_insn = 0, i1_val = 0, set;
4388
4389 FOR_EACH_LOG_LINK (link, i3)
4390 if ((set = single_set (link->insn)) != 0
4391 && rtx_equal_p (i1dest, SET_DEST (set)))
4392 i1_insn = link->insn, i1_val = SET_SRC (set);
4393
4394 record_value_for_reg (i1dest, i1_insn, i1_val);
4395
4396 if (! added_sets_1 && ! i1dest_in_i1src)
4397 INC_REG_N_SETS (REGNO (i1dest), -1);
4398 }
4399
4400 if (i0 && REG_P (i0dest))
4401 {
4402 struct insn_link *link;
4403 rtx i0_insn = 0, i0_val = 0, set;
4404
4405 FOR_EACH_LOG_LINK (link, i3)
4406 if ((set = single_set (link->insn)) != 0
4407 && rtx_equal_p (i0dest, SET_DEST (set)))
4408 i0_insn = link->insn, i0_val = SET_SRC (set);
4409
4410 record_value_for_reg (i0dest, i0_insn, i0_val);
4411
4412 if (! added_sets_0 && ! i0dest_in_i0src)
4413 INC_REG_N_SETS (REGNO (i0dest), -1);
4414 }
4415
4416 /* Update reg_stat[].nonzero_bits et al for any changes that may have
4417 been made to this insn. The order of
4418 set_nonzero_bits_and_sign_copies() is important. Because newi2pat
4419 can affect nonzero_bits of newpat */
4420 if (newi2pat)
4421 note_stores (newi2pat, set_nonzero_bits_and_sign_copies, NULL);
4422 note_stores (newpat, set_nonzero_bits_and_sign_copies, NULL);
4423 }
4424
4425 if (undobuf.other_insn != NULL_RTX)
4426 {
4427 if (dump_file)
4428 {
4429 fprintf (dump_file, "modifying other_insn ");
4430 dump_insn_slim (dump_file, undobuf.other_insn);
4431 }
4432 df_insn_rescan (undobuf.other_insn);
4433 }
4434
4435 if (i0 && !(NOTE_P(i0) && (NOTE_KIND (i0) == NOTE_INSN_DELETED)))
4436 {
4437 if (dump_file)
4438 {
4439 fprintf (dump_file, "modifying insn i1 ");
4440 dump_insn_slim (dump_file, i0);
4441 }
4442 df_insn_rescan (i0);
4443 }
4444
4445 if (i1 && !(NOTE_P(i1) && (NOTE_KIND (i1) == NOTE_INSN_DELETED)))
4446 {
4447 if (dump_file)
4448 {
4449 fprintf (dump_file, "modifying insn i1 ");
4450 dump_insn_slim (dump_file, i1);
4451 }
4452 df_insn_rescan (i1);
4453 }
4454
4455 if (i2 && !(NOTE_P(i2) && (NOTE_KIND (i2) == NOTE_INSN_DELETED)))
4456 {
4457 if (dump_file)
4458 {
4459 fprintf (dump_file, "modifying insn i2 ");
4460 dump_insn_slim (dump_file, i2);
4461 }
4462 df_insn_rescan (i2);
4463 }
4464
4465 if (i3 && !(NOTE_P(i3) && (NOTE_KIND (i3) == NOTE_INSN_DELETED)))
4466 {
4467 if (dump_file)
4468 {
4469 fprintf (dump_file, "modifying insn i3 ");
4470 dump_insn_slim (dump_file, i3);
4471 }
4472 df_insn_rescan (i3);
4473 }
4474
4475 /* Set new_direct_jump_p if a new return or simple jump instruction
4476 has been created. Adjust the CFG accordingly. */
4477
4478 if (returnjump_p (i3) || any_uncondjump_p (i3))
4479 {
4480 *new_direct_jump_p = 1;
4481 mark_jump_label (PATTERN (i3), i3, 0);
4482 update_cfg_for_uncondjump (i3);
4483 }
4484
4485 if (undobuf.other_insn != NULL_RTX
4486 && (returnjump_p (undobuf.other_insn)
4487 || any_uncondjump_p (undobuf.other_insn)))
4488 {
4489 *new_direct_jump_p = 1;
4490 update_cfg_for_uncondjump (undobuf.other_insn);
4491 }
4492
4493 /* A noop might also need cleaning up of CFG, if it comes from the
4494 simplification of a jump. */
4495 if (JUMP_P (i3)
4496 && GET_CODE (newpat) == SET
4497 && SET_SRC (newpat) == pc_rtx
4498 && SET_DEST (newpat) == pc_rtx)
4499 {
4500 *new_direct_jump_p = 1;
4501 update_cfg_for_uncondjump (i3);
4502 }
4503
4504 if (undobuf.other_insn != NULL_RTX
4505 && JUMP_P (undobuf.other_insn)
4506 && GET_CODE (PATTERN (undobuf.other_insn)) == SET
4507 && SET_SRC (PATTERN (undobuf.other_insn)) == pc_rtx
4508 && SET_DEST (PATTERN (undobuf.other_insn)) == pc_rtx)
4509 {
4510 *new_direct_jump_p = 1;
4511 update_cfg_for_uncondjump (undobuf.other_insn);
4512 }
4513
4514 combine_successes++;
4515 undo_commit ();
4516
4517 if (added_links_insn
4518 && (newi2pat == 0 || DF_INSN_LUID (added_links_insn) < DF_INSN_LUID (i2))
4519 && DF_INSN_LUID (added_links_insn) < DF_INSN_LUID (i3))
4520 return added_links_insn;
4521 else
4522 return newi2pat ? i2 : i3;
4523 }
4524 \f
4525 /* Undo all the modifications recorded in undobuf. */
4526
4527 static void
4528 undo_all (void)
4529 {
4530 struct undo *undo, *next;
4531
4532 for (undo = undobuf.undos; undo; undo = next)
4533 {
4534 next = undo->next;
4535 switch (undo->kind)
4536 {
4537 case UNDO_RTX:
4538 *undo->where.r = undo->old_contents.r;
4539 break;
4540 case UNDO_INT:
4541 *undo->where.i = undo->old_contents.i;
4542 break;
4543 case UNDO_MODE:
4544 adjust_reg_mode (*undo->where.r, undo->old_contents.m);
4545 break;
4546 case UNDO_LINKS:
4547 *undo->where.l = undo->old_contents.l;
4548 break;
4549 default:
4550 gcc_unreachable ();
4551 }
4552
4553 undo->next = undobuf.frees;
4554 undobuf.frees = undo;
4555 }
4556
4557 undobuf.undos = 0;
4558 }
4559
4560 /* We've committed to accepting the changes we made. Move all
4561 of the undos to the free list. */
4562
4563 static void
4564 undo_commit (void)
4565 {
4566 struct undo *undo, *next;
4567
4568 for (undo = undobuf.undos; undo; undo = next)
4569 {
4570 next = undo->next;
4571 undo->next = undobuf.frees;
4572 undobuf.frees = undo;
4573 }
4574 undobuf.undos = 0;
4575 }
4576 \f
4577 /* Find the innermost point within the rtx at LOC, possibly LOC itself,
4578 where we have an arithmetic expression and return that point. LOC will
4579 be inside INSN.
4580
4581 try_combine will call this function to see if an insn can be split into
4582 two insns. */
4583
4584 static rtx *
4585 find_split_point (rtx *loc, rtx insn, bool set_src)
4586 {
4587 rtx x = *loc;
4588 enum rtx_code code = GET_CODE (x);
4589 rtx *split;
4590 unsigned HOST_WIDE_INT len = 0;
4591 HOST_WIDE_INT pos = 0;
4592 int unsignedp = 0;
4593 rtx inner = NULL_RTX;
4594
4595 /* First special-case some codes. */
4596 switch (code)
4597 {
4598 case SUBREG:
4599 #ifdef INSN_SCHEDULING
4600 /* If we are making a paradoxical SUBREG invalid, it becomes a split
4601 point. */
4602 if (MEM_P (SUBREG_REG (x)))
4603 return loc;
4604 #endif
4605 return find_split_point (&SUBREG_REG (x), insn, false);
4606
4607 case MEM:
4608 #ifdef HAVE_lo_sum
4609 /* If we have (mem (const ..)) or (mem (symbol_ref ...)), split it
4610 using LO_SUM and HIGH. */
4611 if (GET_CODE (XEXP (x, 0)) == CONST
4612 || GET_CODE (XEXP (x, 0)) == SYMBOL_REF)
4613 {
4614 enum machine_mode address_mode = get_address_mode (x);
4615
4616 SUBST (XEXP (x, 0),
4617 gen_rtx_LO_SUM (address_mode,
4618 gen_rtx_HIGH (address_mode, XEXP (x, 0)),
4619 XEXP (x, 0)));
4620 return &XEXP (XEXP (x, 0), 0);
4621 }
4622 #endif
4623
4624 /* If we have a PLUS whose second operand is a constant and the
4625 address is not valid, perhaps will can split it up using
4626 the machine-specific way to split large constants. We use
4627 the first pseudo-reg (one of the virtual regs) as a placeholder;
4628 it will not remain in the result. */
4629 if (GET_CODE (XEXP (x, 0)) == PLUS
4630 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
4631 && ! memory_address_addr_space_p (GET_MODE (x), XEXP (x, 0),
4632 MEM_ADDR_SPACE (x)))
4633 {
4634 rtx reg = regno_reg_rtx[FIRST_PSEUDO_REGISTER];
4635 rtx seq = combine_split_insns (gen_rtx_SET (VOIDmode, reg,
4636 XEXP (x, 0)),
4637 subst_insn);
4638
4639 /* This should have produced two insns, each of which sets our
4640 placeholder. If the source of the second is a valid address,
4641 we can make put both sources together and make a split point
4642 in the middle. */
4643
4644 if (seq
4645 && NEXT_INSN (seq) != NULL_RTX
4646 && NEXT_INSN (NEXT_INSN (seq)) == NULL_RTX
4647 && NONJUMP_INSN_P (seq)
4648 && GET_CODE (PATTERN (seq)) == SET
4649 && SET_DEST (PATTERN (seq)) == reg
4650 && ! reg_mentioned_p (reg,
4651 SET_SRC (PATTERN (seq)))
4652 && NONJUMP_INSN_P (NEXT_INSN (seq))
4653 && GET_CODE (PATTERN (NEXT_INSN (seq))) == SET
4654 && SET_DEST (PATTERN (NEXT_INSN (seq))) == reg
4655 && memory_address_addr_space_p
4656 (GET_MODE (x), SET_SRC (PATTERN (NEXT_INSN (seq))),
4657 MEM_ADDR_SPACE (x)))
4658 {
4659 rtx src1 = SET_SRC (PATTERN (seq));
4660 rtx src2 = SET_SRC (PATTERN (NEXT_INSN (seq)));
4661
4662 /* Replace the placeholder in SRC2 with SRC1. If we can
4663 find where in SRC2 it was placed, that can become our
4664 split point and we can replace this address with SRC2.
4665 Just try two obvious places. */
4666
4667 src2 = replace_rtx (src2, reg, src1);
4668 split = 0;
4669 if (XEXP (src2, 0) == src1)
4670 split = &XEXP (src2, 0);
4671 else if (GET_RTX_FORMAT (GET_CODE (XEXP (src2, 0)))[0] == 'e'
4672 && XEXP (XEXP (src2, 0), 0) == src1)
4673 split = &XEXP (XEXP (src2, 0), 0);
4674
4675 if (split)
4676 {
4677 SUBST (XEXP (x, 0), src2);
4678 return split;
4679 }
4680 }
4681
4682 /* If that didn't work, perhaps the first operand is complex and
4683 needs to be computed separately, so make a split point there.
4684 This will occur on machines that just support REG + CONST
4685 and have a constant moved through some previous computation. */
4686
4687 else if (!OBJECT_P (XEXP (XEXP (x, 0), 0))
4688 && ! (GET_CODE (XEXP (XEXP (x, 0), 0)) == SUBREG
4689 && OBJECT_P (SUBREG_REG (XEXP (XEXP (x, 0), 0)))))
4690 return &XEXP (XEXP (x, 0), 0);
4691 }
4692
4693 /* If we have a PLUS whose first operand is complex, try computing it
4694 separately by making a split there. */
4695 if (GET_CODE (XEXP (x, 0)) == PLUS
4696 && ! memory_address_addr_space_p (GET_MODE (x), XEXP (x, 0),
4697 MEM_ADDR_SPACE (x))
4698 && ! OBJECT_P (XEXP (XEXP (x, 0), 0))
4699 && ! (GET_CODE (XEXP (XEXP (x, 0), 0)) == SUBREG
4700 && OBJECT_P (SUBREG_REG (XEXP (XEXP (x, 0), 0)))))
4701 return &XEXP (XEXP (x, 0), 0);
4702 break;
4703
4704 case SET:
4705 #ifdef HAVE_cc0
4706 /* If SET_DEST is CC0 and SET_SRC is not an operand, a COMPARE, or a
4707 ZERO_EXTRACT, the most likely reason why this doesn't match is that
4708 we need to put the operand into a register. So split at that
4709 point. */
4710
4711 if (SET_DEST (x) == cc0_rtx
4712 && GET_CODE (SET_SRC (x)) != COMPARE
4713 && GET_CODE (SET_SRC (x)) != ZERO_EXTRACT
4714 && !OBJECT_P (SET_SRC (x))
4715 && ! (GET_CODE (SET_SRC (x)) == SUBREG
4716 && OBJECT_P (SUBREG_REG (SET_SRC (x)))))
4717 return &SET_SRC (x);
4718 #endif
4719
4720 /* See if we can split SET_SRC as it stands. */
4721 split = find_split_point (&SET_SRC (x), insn, true);
4722 if (split && split != &SET_SRC (x))
4723 return split;
4724
4725 /* See if we can split SET_DEST as it stands. */
4726 split = find_split_point (&SET_DEST (x), insn, false);
4727 if (split && split != &SET_DEST (x))
4728 return split;
4729
4730 /* See if this is a bitfield assignment with everything constant. If
4731 so, this is an IOR of an AND, so split it into that. */
4732 if (GET_CODE (SET_DEST (x)) == ZERO_EXTRACT
4733 && HWI_COMPUTABLE_MODE_P (GET_MODE (XEXP (SET_DEST (x), 0)))
4734 && CONST_INT_P (XEXP (SET_DEST (x), 1))
4735 && CONST_INT_P (XEXP (SET_DEST (x), 2))
4736 && CONST_INT_P (SET_SRC (x))
4737 && ((INTVAL (XEXP (SET_DEST (x), 1))
4738 + INTVAL (XEXP (SET_DEST (x), 2)))
4739 <= GET_MODE_PRECISION (GET_MODE (XEXP (SET_DEST (x), 0))))
4740 && ! side_effects_p (XEXP (SET_DEST (x), 0)))
4741 {
4742 HOST_WIDE_INT pos = INTVAL (XEXP (SET_DEST (x), 2));
4743 unsigned HOST_WIDE_INT len = INTVAL (XEXP (SET_DEST (x), 1));
4744 unsigned HOST_WIDE_INT src = INTVAL (SET_SRC (x));
4745 rtx dest = XEXP (SET_DEST (x), 0);
4746 enum machine_mode mode = GET_MODE (dest);
4747 unsigned HOST_WIDE_INT mask
4748 = ((unsigned HOST_WIDE_INT) 1 << len) - 1;
4749 rtx or_mask;
4750
4751 if (BITS_BIG_ENDIAN)
4752 pos = GET_MODE_PRECISION (mode) - len - pos;
4753
4754 or_mask = gen_int_mode (src << pos, mode);
4755 if (src == mask)
4756 SUBST (SET_SRC (x),
4757 simplify_gen_binary (IOR, mode, dest, or_mask));
4758 else
4759 {
4760 rtx negmask = gen_int_mode (~(mask << pos), mode);
4761 SUBST (SET_SRC (x),
4762 simplify_gen_binary (IOR, mode,
4763 simplify_gen_binary (AND, mode,
4764 dest, negmask),
4765 or_mask));
4766 }
4767
4768 SUBST (SET_DEST (x), dest);
4769
4770 split = find_split_point (&SET_SRC (x), insn, true);
4771 if (split && split != &SET_SRC (x))
4772 return split;
4773 }
4774
4775 /* Otherwise, see if this is an operation that we can split into two.
4776 If so, try to split that. */
4777 code = GET_CODE (SET_SRC (x));
4778
4779 switch (code)
4780 {
4781 case AND:
4782 /* If we are AND'ing with a large constant that is only a single
4783 bit and the result is only being used in a context where we
4784 need to know if it is zero or nonzero, replace it with a bit
4785 extraction. This will avoid the large constant, which might
4786 have taken more than one insn to make. If the constant were
4787 not a valid argument to the AND but took only one insn to make,
4788 this is no worse, but if it took more than one insn, it will
4789 be better. */
4790
4791 if (CONST_INT_P (XEXP (SET_SRC (x), 1))
4792 && REG_P (XEXP (SET_SRC (x), 0))
4793 && (pos = exact_log2 (UINTVAL (XEXP (SET_SRC (x), 1)))) >= 7
4794 && REG_P (SET_DEST (x))
4795 && (split = find_single_use (SET_DEST (x), insn, (rtx*) 0)) != 0
4796 && (GET_CODE (*split) == EQ || GET_CODE (*split) == NE)
4797 && XEXP (*split, 0) == SET_DEST (x)
4798 && XEXP (*split, 1) == const0_rtx)
4799 {
4800 rtx extraction = make_extraction (GET_MODE (SET_DEST (x)),
4801 XEXP (SET_SRC (x), 0),
4802 pos, NULL_RTX, 1, 1, 0, 0);
4803 if (extraction != 0)
4804 {
4805 SUBST (SET_SRC (x), extraction);
4806 return find_split_point (loc, insn, false);
4807 }
4808 }
4809 break;
4810
4811 case NE:
4812 /* If STORE_FLAG_VALUE is -1, this is (NE X 0) and only one bit of X
4813 is known to be on, this can be converted into a NEG of a shift. */
4814 if (STORE_FLAG_VALUE == -1 && XEXP (SET_SRC (x), 1) == const0_rtx
4815 && GET_MODE (SET_SRC (x)) == GET_MODE (XEXP (SET_SRC (x), 0))
4816 && 1 <= (pos = exact_log2
4817 (nonzero_bits (XEXP (SET_SRC (x), 0),
4818 GET_MODE (XEXP (SET_SRC (x), 0))))))
4819 {
4820 enum machine_mode mode = GET_MODE (XEXP (SET_SRC (x), 0));
4821
4822 SUBST (SET_SRC (x),
4823 gen_rtx_NEG (mode,
4824 gen_rtx_LSHIFTRT (mode,
4825 XEXP (SET_SRC (x), 0),
4826 GEN_INT (pos))));
4827
4828 split = find_split_point (&SET_SRC (x), insn, true);
4829 if (split && split != &SET_SRC (x))
4830 return split;
4831 }
4832 break;
4833
4834 case SIGN_EXTEND:
4835 inner = XEXP (SET_SRC (x), 0);
4836
4837 /* We can't optimize if either mode is a partial integer
4838 mode as we don't know how many bits are significant
4839 in those modes. */
4840 if (GET_MODE_CLASS (GET_MODE (inner)) == MODE_PARTIAL_INT
4841 || GET_MODE_CLASS (GET_MODE (SET_SRC (x))) == MODE_PARTIAL_INT)
4842 break;
4843
4844 pos = 0;
4845 len = GET_MODE_PRECISION (GET_MODE (inner));
4846 unsignedp = 0;
4847 break;
4848
4849 case SIGN_EXTRACT:
4850 case ZERO_EXTRACT:
4851 if (CONST_INT_P (XEXP (SET_SRC (x), 1))
4852 && CONST_INT_P (XEXP (SET_SRC (x), 2)))
4853 {
4854 inner = XEXP (SET_SRC (x), 0);
4855 len = INTVAL (XEXP (SET_SRC (x), 1));
4856 pos = INTVAL (XEXP (SET_SRC (x), 2));
4857
4858 if (BITS_BIG_ENDIAN)
4859 pos = GET_MODE_PRECISION (GET_MODE (inner)) - len - pos;
4860 unsignedp = (code == ZERO_EXTRACT);
4861 }
4862 break;
4863
4864 default:
4865 break;
4866 }
4867
4868 if (len && pos >= 0
4869 && pos + len <= GET_MODE_PRECISION (GET_MODE (inner)))
4870 {
4871 enum machine_mode mode = GET_MODE (SET_SRC (x));
4872
4873 /* For unsigned, we have a choice of a shift followed by an
4874 AND or two shifts. Use two shifts for field sizes where the
4875 constant might be too large. We assume here that we can
4876 always at least get 8-bit constants in an AND insn, which is
4877 true for every current RISC. */
4878
4879 if (unsignedp && len <= 8)
4880 {
4881 SUBST (SET_SRC (x),
4882 gen_rtx_AND (mode,
4883 gen_rtx_LSHIFTRT
4884 (mode, gen_lowpart (mode, inner),
4885 GEN_INT (pos)),
4886 GEN_INT (((unsigned HOST_WIDE_INT) 1 << len)
4887 - 1)));
4888
4889 split = find_split_point (&SET_SRC (x), insn, true);
4890 if (split && split != &SET_SRC (x))
4891 return split;
4892 }
4893 else
4894 {
4895 SUBST (SET_SRC (x),
4896 gen_rtx_fmt_ee
4897 (unsignedp ? LSHIFTRT : ASHIFTRT, mode,
4898 gen_rtx_ASHIFT (mode,
4899 gen_lowpart (mode, inner),
4900 GEN_INT (GET_MODE_PRECISION (mode)
4901 - len - pos)),
4902 GEN_INT (GET_MODE_PRECISION (mode) - len)));
4903
4904 split = find_split_point (&SET_SRC (x), insn, true);
4905 if (split && split != &SET_SRC (x))
4906 return split;
4907 }
4908 }
4909
4910 /* See if this is a simple operation with a constant as the second
4911 operand. It might be that this constant is out of range and hence
4912 could be used as a split point. */
4913 if (BINARY_P (SET_SRC (x))
4914 && CONSTANT_P (XEXP (SET_SRC (x), 1))
4915 && (OBJECT_P (XEXP (SET_SRC (x), 0))
4916 || (GET_CODE (XEXP (SET_SRC (x), 0)) == SUBREG
4917 && OBJECT_P (SUBREG_REG (XEXP (SET_SRC (x), 0))))))
4918 return &XEXP (SET_SRC (x), 1);
4919
4920 /* Finally, see if this is a simple operation with its first operand
4921 not in a register. The operation might require this operand in a
4922 register, so return it as a split point. We can always do this
4923 because if the first operand were another operation, we would have
4924 already found it as a split point. */
4925 if ((BINARY_P (SET_SRC (x)) || UNARY_P (SET_SRC (x)))
4926 && ! register_operand (XEXP (SET_SRC (x), 0), VOIDmode))
4927 return &XEXP (SET_SRC (x), 0);
4928
4929 return 0;
4930
4931 case AND:
4932 case IOR:
4933 /* We write NOR as (and (not A) (not B)), but if we don't have a NOR,
4934 it is better to write this as (not (ior A B)) so we can split it.
4935 Similarly for IOR. */
4936 if (GET_CODE (XEXP (x, 0)) == NOT && GET_CODE (XEXP (x, 1)) == NOT)
4937 {
4938 SUBST (*loc,
4939 gen_rtx_NOT (GET_MODE (x),
4940 gen_rtx_fmt_ee (code == IOR ? AND : IOR,
4941 GET_MODE (x),
4942 XEXP (XEXP (x, 0), 0),
4943 XEXP (XEXP (x, 1), 0))));
4944 return find_split_point (loc, insn, set_src);
4945 }
4946
4947 /* Many RISC machines have a large set of logical insns. If the
4948 second operand is a NOT, put it first so we will try to split the
4949 other operand first. */
4950 if (GET_CODE (XEXP (x, 1)) == NOT)
4951 {
4952 rtx tem = XEXP (x, 0);
4953 SUBST (XEXP (x, 0), XEXP (x, 1));
4954 SUBST (XEXP (x, 1), tem);
4955 }
4956 break;
4957
4958 case PLUS:
4959 case MINUS:
4960 /* Canonicalization can produce (minus A (mult B C)), where C is a
4961 constant. It may be better to try splitting (plus (mult B -C) A)
4962 instead if this isn't a multiply by a power of two. */
4963 if (set_src && code == MINUS && GET_CODE (XEXP (x, 1)) == MULT
4964 && GET_CODE (XEXP (XEXP (x, 1), 1)) == CONST_INT
4965 && exact_log2 (INTVAL (XEXP (XEXP (x, 1), 1))) < 0)
4966 {
4967 enum machine_mode mode = GET_MODE (x);
4968 unsigned HOST_WIDE_INT this_int = INTVAL (XEXP (XEXP (x, 1), 1));
4969 HOST_WIDE_INT other_int = trunc_int_for_mode (-this_int, mode);
4970 SUBST (*loc, gen_rtx_PLUS (mode, gen_rtx_MULT (mode,
4971 XEXP (XEXP (x, 1), 0),
4972 GEN_INT (other_int)),
4973 XEXP (x, 0)));
4974 return find_split_point (loc, insn, set_src);
4975 }
4976
4977 /* Split at a multiply-accumulate instruction. However if this is
4978 the SET_SRC, we likely do not have such an instruction and it's
4979 worthless to try this split. */
4980 if (!set_src && GET_CODE (XEXP (x, 0)) == MULT)
4981 return loc;
4982
4983 default:
4984 break;
4985 }
4986
4987 /* Otherwise, select our actions depending on our rtx class. */
4988 switch (GET_RTX_CLASS (code))
4989 {
4990 case RTX_BITFIELD_OPS: /* This is ZERO_EXTRACT and SIGN_EXTRACT. */
4991 case RTX_TERNARY:
4992 split = find_split_point (&XEXP (x, 2), insn, false);
4993 if (split)
4994 return split;
4995 /* ... fall through ... */
4996 case RTX_BIN_ARITH:
4997 case RTX_COMM_ARITH:
4998 case RTX_COMPARE:
4999 case RTX_COMM_COMPARE:
5000 split = find_split_point (&XEXP (x, 1), insn, false);
5001 if (split)
5002 return split;
5003 /* ... fall through ... */
5004 case RTX_UNARY:
5005 /* Some machines have (and (shift ...) ...) insns. If X is not
5006 an AND, but XEXP (X, 0) is, use it as our split point. */
5007 if (GET_CODE (x) != AND && GET_CODE (XEXP (x, 0)) == AND)
5008 return &XEXP (x, 0);
5009
5010 split = find_split_point (&XEXP (x, 0), insn, false);
5011 if (split)
5012 return split;
5013 return loc;
5014
5015 default:
5016 /* Otherwise, we don't have a split point. */
5017 return 0;
5018 }
5019 }
5020 \f
5021 /* Throughout X, replace FROM with TO, and return the result.
5022 The result is TO if X is FROM;
5023 otherwise the result is X, but its contents may have been modified.
5024 If they were modified, a record was made in undobuf so that
5025 undo_all will (among other things) return X to its original state.
5026
5027 If the number of changes necessary is too much to record to undo,
5028 the excess changes are not made, so the result is invalid.
5029 The changes already made can still be undone.
5030 undobuf.num_undo is incremented for such changes, so by testing that
5031 the caller can tell whether the result is valid.
5032
5033 `n_occurrences' is incremented each time FROM is replaced.
5034
5035 IN_DEST is nonzero if we are processing the SET_DEST of a SET.
5036
5037 IN_COND is nonzero if we are at the top level of a condition.
5038
5039 UNIQUE_COPY is nonzero if each substitution must be unique. We do this
5040 by copying if `n_occurrences' is nonzero. */
5041
5042 static rtx
5043 subst (rtx x, rtx from, rtx to, int in_dest, int in_cond, int unique_copy)
5044 {
5045 enum rtx_code code = GET_CODE (x);
5046 enum machine_mode op0_mode = VOIDmode;
5047 const char *fmt;
5048 int len, i;
5049 rtx new_rtx;
5050
5051 /* Two expressions are equal if they are identical copies of a shared
5052 RTX or if they are both registers with the same register number
5053 and mode. */
5054
5055 #define COMBINE_RTX_EQUAL_P(X,Y) \
5056 ((X) == (Y) \
5057 || (REG_P (X) && REG_P (Y) \
5058 && REGNO (X) == REGNO (Y) && GET_MODE (X) == GET_MODE (Y)))
5059
5060 if (! in_dest && COMBINE_RTX_EQUAL_P (x, from))
5061 {
5062 n_occurrences++;
5063 return (unique_copy && n_occurrences > 1 ? copy_rtx (to) : to);
5064 }
5065
5066 /* If X and FROM are the same register but different modes, they
5067 will not have been seen as equal above. However, the log links code
5068 will make a LOG_LINKS entry for that case. If we do nothing, we
5069 will try to rerecognize our original insn and, when it succeeds,
5070 we will delete the feeding insn, which is incorrect.
5071
5072 So force this insn not to match in this (rare) case. */
5073 if (! in_dest && code == REG && REG_P (from)
5074 && reg_overlap_mentioned_p (x, from))
5075 return gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
5076
5077 /* If this is an object, we are done unless it is a MEM or LO_SUM, both
5078 of which may contain things that can be combined. */
5079 if (code != MEM && code != LO_SUM && OBJECT_P (x))
5080 return x;
5081
5082 /* It is possible to have a subexpression appear twice in the insn.
5083 Suppose that FROM is a register that appears within TO.
5084 Then, after that subexpression has been scanned once by `subst',
5085 the second time it is scanned, TO may be found. If we were
5086 to scan TO here, we would find FROM within it and create a
5087 self-referent rtl structure which is completely wrong. */
5088 if (COMBINE_RTX_EQUAL_P (x, to))
5089 return to;
5090
5091 /* Parallel asm_operands need special attention because all of the
5092 inputs are shared across the arms. Furthermore, unsharing the
5093 rtl results in recognition failures. Failure to handle this case
5094 specially can result in circular rtl.
5095
5096 Solve this by doing a normal pass across the first entry of the
5097 parallel, and only processing the SET_DESTs of the subsequent
5098 entries. Ug. */
5099
5100 if (code == PARALLEL
5101 && GET_CODE (XVECEXP (x, 0, 0)) == SET
5102 && GET_CODE (SET_SRC (XVECEXP (x, 0, 0))) == ASM_OPERANDS)
5103 {
5104 new_rtx = subst (XVECEXP (x, 0, 0), from, to, 0, 0, unique_copy);
5105
5106 /* If this substitution failed, this whole thing fails. */
5107 if (GET_CODE (new_rtx) == CLOBBER
5108 && XEXP (new_rtx, 0) == const0_rtx)
5109 return new_rtx;
5110
5111 SUBST (XVECEXP (x, 0, 0), new_rtx);
5112
5113 for (i = XVECLEN (x, 0) - 1; i >= 1; i--)
5114 {
5115 rtx dest = SET_DEST (XVECEXP (x, 0, i));
5116
5117 if (!REG_P (dest)
5118 && GET_CODE (dest) != CC0
5119 && GET_CODE (dest) != PC)
5120 {
5121 new_rtx = subst (dest, from, to, 0, 0, unique_copy);
5122
5123 /* If this substitution failed, this whole thing fails. */
5124 if (GET_CODE (new_rtx) == CLOBBER
5125 && XEXP (new_rtx, 0) == const0_rtx)
5126 return new_rtx;
5127
5128 SUBST (SET_DEST (XVECEXP (x, 0, i)), new_rtx);
5129 }
5130 }
5131 }
5132 else
5133 {
5134 len = GET_RTX_LENGTH (code);
5135 fmt = GET_RTX_FORMAT (code);
5136
5137 /* We don't need to process a SET_DEST that is a register, CC0,
5138 or PC, so set up to skip this common case. All other cases
5139 where we want to suppress replacing something inside a
5140 SET_SRC are handled via the IN_DEST operand. */
5141 if (code == SET
5142 && (REG_P (SET_DEST (x))
5143 || GET_CODE (SET_DEST (x)) == CC0
5144 || GET_CODE (SET_DEST (x)) == PC))
5145 fmt = "ie";
5146
5147 /* Get the mode of operand 0 in case X is now a SIGN_EXTEND of a
5148 constant. */
5149 if (fmt[0] == 'e')
5150 op0_mode = GET_MODE (XEXP (x, 0));
5151
5152 for (i = 0; i < len; i++)
5153 {
5154 if (fmt[i] == 'E')
5155 {
5156 int j;
5157 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
5158 {
5159 if (COMBINE_RTX_EQUAL_P (XVECEXP (x, i, j), from))
5160 {
5161 new_rtx = (unique_copy && n_occurrences
5162 ? copy_rtx (to) : to);
5163 n_occurrences++;
5164 }
5165 else
5166 {
5167 new_rtx = subst (XVECEXP (x, i, j), from, to, 0, 0,
5168 unique_copy);
5169
5170 /* If this substitution failed, this whole thing
5171 fails. */
5172 if (GET_CODE (new_rtx) == CLOBBER
5173 && XEXP (new_rtx, 0) == const0_rtx)
5174 return new_rtx;
5175 }
5176
5177 SUBST (XVECEXP (x, i, j), new_rtx);
5178 }
5179 }
5180 else if (fmt[i] == 'e')
5181 {
5182 /* If this is a register being set, ignore it. */
5183 new_rtx = XEXP (x, i);
5184 if (in_dest
5185 && i == 0
5186 && (((code == SUBREG || code == ZERO_EXTRACT)
5187 && REG_P (new_rtx))
5188 || code == STRICT_LOW_PART))
5189 ;
5190
5191 else if (COMBINE_RTX_EQUAL_P (XEXP (x, i), from))
5192 {
5193 /* In general, don't install a subreg involving two
5194 modes not tieable. It can worsen register
5195 allocation, and can even make invalid reload
5196 insns, since the reg inside may need to be copied
5197 from in the outside mode, and that may be invalid
5198 if it is an fp reg copied in integer mode.
5199
5200 We allow two exceptions to this: It is valid if
5201 it is inside another SUBREG and the mode of that
5202 SUBREG and the mode of the inside of TO is
5203 tieable and it is valid if X is a SET that copies
5204 FROM to CC0. */
5205
5206 if (GET_CODE (to) == SUBREG
5207 && ! MODES_TIEABLE_P (GET_MODE (to),
5208 GET_MODE (SUBREG_REG (to)))
5209 && ! (code == SUBREG
5210 && MODES_TIEABLE_P (GET_MODE (x),
5211 GET_MODE (SUBREG_REG (to))))
5212 #ifdef HAVE_cc0
5213 && ! (code == SET && i == 1 && XEXP (x, 0) == cc0_rtx)
5214 #endif
5215 )
5216 return gen_rtx_CLOBBER (VOIDmode, const0_rtx);
5217
5218 #ifdef CANNOT_CHANGE_MODE_CLASS
5219 if (code == SUBREG
5220 && REG_P (to)
5221 && REGNO (to) < FIRST_PSEUDO_REGISTER
5222 && REG_CANNOT_CHANGE_MODE_P (REGNO (to),
5223 GET_MODE (to),
5224 GET_MODE (x)))
5225 return gen_rtx_CLOBBER (VOIDmode, const0_rtx);
5226 #endif
5227
5228 new_rtx = (unique_copy && n_occurrences ? copy_rtx (to) : to);
5229 n_occurrences++;
5230 }
5231 else
5232 /* If we are in a SET_DEST, suppress most cases unless we
5233 have gone inside a MEM, in which case we want to
5234 simplify the address. We assume here that things that
5235 are actually part of the destination have their inner
5236 parts in the first expression. This is true for SUBREG,
5237 STRICT_LOW_PART, and ZERO_EXTRACT, which are the only
5238 things aside from REG and MEM that should appear in a
5239 SET_DEST. */
5240 new_rtx = subst (XEXP (x, i), from, to,
5241 (((in_dest
5242 && (code == SUBREG || code == STRICT_LOW_PART
5243 || code == ZERO_EXTRACT))
5244 || code == SET)
5245 && i == 0),
5246 code == IF_THEN_ELSE && i == 0,
5247 unique_copy);
5248
5249 /* If we found that we will have to reject this combination,
5250 indicate that by returning the CLOBBER ourselves, rather than
5251 an expression containing it. This will speed things up as
5252 well as prevent accidents where two CLOBBERs are considered
5253 to be equal, thus producing an incorrect simplification. */
5254
5255 if (GET_CODE (new_rtx) == CLOBBER && XEXP (new_rtx, 0) == const0_rtx)
5256 return new_rtx;
5257
5258 if (GET_CODE (x) == SUBREG
5259 && (CONST_INT_P (new_rtx)
5260 || GET_CODE (new_rtx) == CONST_DOUBLE))
5261 {
5262 enum machine_mode mode = GET_MODE (x);
5263
5264 x = simplify_subreg (GET_MODE (x), new_rtx,
5265 GET_MODE (SUBREG_REG (x)),
5266 SUBREG_BYTE (x));
5267 if (! x)
5268 x = gen_rtx_CLOBBER (mode, const0_rtx);
5269 }
5270 else if (CONST_INT_P (new_rtx)
5271 && GET_CODE (x) == ZERO_EXTEND)
5272 {
5273 x = simplify_unary_operation (ZERO_EXTEND, GET_MODE (x),
5274 new_rtx, GET_MODE (XEXP (x, 0)));
5275 gcc_assert (x);
5276 }
5277 else
5278 SUBST (XEXP (x, i), new_rtx);
5279 }
5280 }
5281 }
5282
5283 /* Check if we are loading something from the constant pool via float
5284 extension; in this case we would undo compress_float_constant
5285 optimization and degenerate constant load to an immediate value. */
5286 if (GET_CODE (x) == FLOAT_EXTEND
5287 && MEM_P (XEXP (x, 0))
5288 && MEM_READONLY_P (XEXP (x, 0)))
5289 {
5290 rtx tmp = avoid_constant_pool_reference (x);
5291 if (x != tmp)
5292 return x;
5293 }
5294
5295 /* Try to simplify X. If the simplification changed the code, it is likely
5296 that further simplification will help, so loop, but limit the number
5297 of repetitions that will be performed. */
5298
5299 for (i = 0; i < 4; i++)
5300 {
5301 /* If X is sufficiently simple, don't bother trying to do anything
5302 with it. */
5303 if (code != CONST_INT && code != REG && code != CLOBBER)
5304 x = combine_simplify_rtx (x, op0_mode, in_dest, in_cond);
5305
5306 if (GET_CODE (x) == code)
5307 break;
5308
5309 code = GET_CODE (x);
5310
5311 /* We no longer know the original mode of operand 0 since we
5312 have changed the form of X) */
5313 op0_mode = VOIDmode;
5314 }
5315
5316 return x;
5317 }
5318 \f
5319 /* Simplify X, a piece of RTL. We just operate on the expression at the
5320 outer level; call `subst' to simplify recursively. Return the new
5321 expression.
5322
5323 OP0_MODE is the original mode of XEXP (x, 0). IN_DEST is nonzero
5324 if we are inside a SET_DEST. IN_COND is nonzero if we are at the top level
5325 of a condition. */
5326
5327 static rtx
5328 combine_simplify_rtx (rtx x, enum machine_mode op0_mode, int in_dest,
5329 int in_cond)
5330 {
5331 enum rtx_code code = GET_CODE (x);
5332 enum machine_mode mode = GET_MODE (x);
5333 rtx temp;
5334 int i;
5335
5336 /* If this is a commutative operation, put a constant last and a complex
5337 expression first. We don't need to do this for comparisons here. */
5338 if (COMMUTATIVE_ARITH_P (x)
5339 && swap_commutative_operands_p (XEXP (x, 0), XEXP (x, 1)))
5340 {
5341 temp = XEXP (x, 0);
5342 SUBST (XEXP (x, 0), XEXP (x, 1));
5343 SUBST (XEXP (x, 1), temp);
5344 }
5345
5346 /* If this is a simple operation applied to an IF_THEN_ELSE, try
5347 applying it to the arms of the IF_THEN_ELSE. This often simplifies
5348 things. Check for cases where both arms are testing the same
5349 condition.
5350
5351 Don't do anything if all operands are very simple. */
5352
5353 if ((BINARY_P (x)
5354 && ((!OBJECT_P (XEXP (x, 0))
5355 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
5356 && OBJECT_P (SUBREG_REG (XEXP (x, 0)))))
5357 || (!OBJECT_P (XEXP (x, 1))
5358 && ! (GET_CODE (XEXP (x, 1)) == SUBREG
5359 && OBJECT_P (SUBREG_REG (XEXP (x, 1)))))))
5360 || (UNARY_P (x)
5361 && (!OBJECT_P (XEXP (x, 0))
5362 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
5363 && OBJECT_P (SUBREG_REG (XEXP (x, 0)))))))
5364 {
5365 rtx cond, true_rtx, false_rtx;
5366
5367 cond = if_then_else_cond (x, &true_rtx, &false_rtx);
5368 if (cond != 0
5369 /* If everything is a comparison, what we have is highly unlikely
5370 to be simpler, so don't use it. */
5371 && ! (COMPARISON_P (x)
5372 && (COMPARISON_P (true_rtx) || COMPARISON_P (false_rtx))))
5373 {
5374 rtx cop1 = const0_rtx;
5375 enum rtx_code cond_code = simplify_comparison (NE, &cond, &cop1);
5376
5377 if (cond_code == NE && COMPARISON_P (cond))
5378 return x;
5379
5380 /* Simplify the alternative arms; this may collapse the true and
5381 false arms to store-flag values. Be careful to use copy_rtx
5382 here since true_rtx or false_rtx might share RTL with x as a
5383 result of the if_then_else_cond call above. */
5384 true_rtx = subst (copy_rtx (true_rtx), pc_rtx, pc_rtx, 0, 0, 0);
5385 false_rtx = subst (copy_rtx (false_rtx), pc_rtx, pc_rtx, 0, 0, 0);
5386
5387 /* If true_rtx and false_rtx are not general_operands, an if_then_else
5388 is unlikely to be simpler. */
5389 if (general_operand (true_rtx, VOIDmode)
5390 && general_operand (false_rtx, VOIDmode))
5391 {
5392 enum rtx_code reversed;
5393
5394 /* Restarting if we generate a store-flag expression will cause
5395 us to loop. Just drop through in this case. */
5396
5397 /* If the result values are STORE_FLAG_VALUE and zero, we can
5398 just make the comparison operation. */
5399 if (true_rtx == const_true_rtx && false_rtx == const0_rtx)
5400 x = simplify_gen_relational (cond_code, mode, VOIDmode,
5401 cond, cop1);
5402 else if (true_rtx == const0_rtx && false_rtx == const_true_rtx
5403 && ((reversed = reversed_comparison_code_parts
5404 (cond_code, cond, cop1, NULL))
5405 != UNKNOWN))
5406 x = simplify_gen_relational (reversed, mode, VOIDmode,
5407 cond, cop1);
5408
5409 /* Likewise, we can make the negate of a comparison operation
5410 if the result values are - STORE_FLAG_VALUE and zero. */
5411 else if (CONST_INT_P (true_rtx)
5412 && INTVAL (true_rtx) == - STORE_FLAG_VALUE
5413 && false_rtx == const0_rtx)
5414 x = simplify_gen_unary (NEG, mode,
5415 simplify_gen_relational (cond_code,
5416 mode, VOIDmode,
5417 cond, cop1),
5418 mode);
5419 else if (CONST_INT_P (false_rtx)
5420 && INTVAL (false_rtx) == - STORE_FLAG_VALUE
5421 && true_rtx == const0_rtx
5422 && ((reversed = reversed_comparison_code_parts
5423 (cond_code, cond, cop1, NULL))
5424 != UNKNOWN))
5425 x = simplify_gen_unary (NEG, mode,
5426 simplify_gen_relational (reversed,
5427 mode, VOIDmode,
5428 cond, cop1),
5429 mode);
5430 else
5431 return gen_rtx_IF_THEN_ELSE (mode,
5432 simplify_gen_relational (cond_code,
5433 mode,
5434 VOIDmode,
5435 cond,
5436 cop1),
5437 true_rtx, false_rtx);
5438
5439 code = GET_CODE (x);
5440 op0_mode = VOIDmode;
5441 }
5442 }
5443 }
5444
5445 /* Try to fold this expression in case we have constants that weren't
5446 present before. */
5447 temp = 0;
5448 switch (GET_RTX_CLASS (code))
5449 {
5450 case RTX_UNARY:
5451 if (op0_mode == VOIDmode)
5452 op0_mode = GET_MODE (XEXP (x, 0));
5453 temp = simplify_unary_operation (code, mode, XEXP (x, 0), op0_mode);
5454 break;
5455 case RTX_COMPARE:
5456 case RTX_COMM_COMPARE:
5457 {
5458 enum machine_mode cmp_mode = GET_MODE (XEXP (x, 0));
5459 if (cmp_mode == VOIDmode)
5460 {
5461 cmp_mode = GET_MODE (XEXP (x, 1));
5462 if (cmp_mode == VOIDmode)
5463 cmp_mode = op0_mode;
5464 }
5465 temp = simplify_relational_operation (code, mode, cmp_mode,
5466 XEXP (x, 0), XEXP (x, 1));
5467 }
5468 break;
5469 case RTX_COMM_ARITH:
5470 case RTX_BIN_ARITH:
5471 temp = simplify_binary_operation (code, mode, XEXP (x, 0), XEXP (x, 1));
5472 break;
5473 case RTX_BITFIELD_OPS:
5474 case RTX_TERNARY:
5475 temp = simplify_ternary_operation (code, mode, op0_mode, XEXP (x, 0),
5476 XEXP (x, 1), XEXP (x, 2));
5477 break;
5478 default:
5479 break;
5480 }
5481
5482 if (temp)
5483 {
5484 x = temp;
5485 code = GET_CODE (temp);
5486 op0_mode = VOIDmode;
5487 mode = GET_MODE (temp);
5488 }
5489
5490 /* First see if we can apply the inverse distributive law. */
5491 if (code == PLUS || code == MINUS
5492 || code == AND || code == IOR || code == XOR)
5493 {
5494 x = apply_distributive_law (x);
5495 code = GET_CODE (x);
5496 op0_mode = VOIDmode;
5497 }
5498
5499 /* If CODE is an associative operation not otherwise handled, see if we
5500 can associate some operands. This can win if they are constants or
5501 if they are logically related (i.e. (a & b) & a). */
5502 if ((code == PLUS || code == MINUS || code == MULT || code == DIV
5503 || code == AND || code == IOR || code == XOR
5504 || code == SMAX || code == SMIN || code == UMAX || code == UMIN)
5505 && ((INTEGRAL_MODE_P (mode) && code != DIV)
5506 || (flag_associative_math && FLOAT_MODE_P (mode))))
5507 {
5508 if (GET_CODE (XEXP (x, 0)) == code)
5509 {
5510 rtx other = XEXP (XEXP (x, 0), 0);
5511 rtx inner_op0 = XEXP (XEXP (x, 0), 1);
5512 rtx inner_op1 = XEXP (x, 1);
5513 rtx inner;
5514
5515 /* Make sure we pass the constant operand if any as the second
5516 one if this is a commutative operation. */
5517 if (CONSTANT_P (inner_op0) && COMMUTATIVE_ARITH_P (x))
5518 {
5519 rtx tem = inner_op0;
5520 inner_op0 = inner_op1;
5521 inner_op1 = tem;
5522 }
5523 inner = simplify_binary_operation (code == MINUS ? PLUS
5524 : code == DIV ? MULT
5525 : code,
5526 mode, inner_op0, inner_op1);
5527
5528 /* For commutative operations, try the other pair if that one
5529 didn't simplify. */
5530 if (inner == 0 && COMMUTATIVE_ARITH_P (x))
5531 {
5532 other = XEXP (XEXP (x, 0), 1);
5533 inner = simplify_binary_operation (code, mode,
5534 XEXP (XEXP (x, 0), 0),
5535 XEXP (x, 1));
5536 }
5537
5538 if (inner)
5539 return simplify_gen_binary (code, mode, other, inner);
5540 }
5541 }
5542
5543 /* A little bit of algebraic simplification here. */
5544 switch (code)
5545 {
5546 case MEM:
5547 /* Ensure that our address has any ASHIFTs converted to MULT in case
5548 address-recognizing predicates are called later. */
5549 temp = make_compound_operation (XEXP (x, 0), MEM);
5550 SUBST (XEXP (x, 0), temp);
5551 break;
5552
5553 case SUBREG:
5554 if (op0_mode == VOIDmode)
5555 op0_mode = GET_MODE (SUBREG_REG (x));
5556
5557 /* See if this can be moved to simplify_subreg. */
5558 if (CONSTANT_P (SUBREG_REG (x))
5559 && subreg_lowpart_offset (mode, op0_mode) == SUBREG_BYTE (x)
5560 /* Don't call gen_lowpart if the inner mode
5561 is VOIDmode and we cannot simplify it, as SUBREG without
5562 inner mode is invalid. */
5563 && (GET_MODE (SUBREG_REG (x)) != VOIDmode
5564 || gen_lowpart_common (mode, SUBREG_REG (x))))
5565 return gen_lowpart (mode, SUBREG_REG (x));
5566
5567 if (GET_MODE_CLASS (GET_MODE (SUBREG_REG (x))) == MODE_CC)
5568 break;
5569 {
5570 rtx temp;
5571 temp = simplify_subreg (mode, SUBREG_REG (x), op0_mode,
5572 SUBREG_BYTE (x));
5573 if (temp)
5574 return temp;
5575 }
5576
5577 /* Don't change the mode of the MEM if that would change the meaning
5578 of the address. */
5579 if (MEM_P (SUBREG_REG (x))
5580 && (MEM_VOLATILE_P (SUBREG_REG (x))
5581 || mode_dependent_address_p (XEXP (SUBREG_REG (x), 0))))
5582 return gen_rtx_CLOBBER (mode, const0_rtx);
5583
5584 /* Note that we cannot do any narrowing for non-constants since
5585 we might have been counting on using the fact that some bits were
5586 zero. We now do this in the SET. */
5587
5588 break;
5589
5590 case NEG:
5591 temp = expand_compound_operation (XEXP (x, 0));
5592
5593 /* For C equal to the width of MODE minus 1, (neg (ashiftrt X C)) can be
5594 replaced by (lshiftrt X C). This will convert
5595 (neg (sign_extract X 1 Y)) to (zero_extract X 1 Y). */
5596
5597 if (GET_CODE (temp) == ASHIFTRT
5598 && CONST_INT_P (XEXP (temp, 1))
5599 && INTVAL (XEXP (temp, 1)) == GET_MODE_PRECISION (mode) - 1)
5600 return simplify_shift_const (NULL_RTX, LSHIFTRT, mode, XEXP (temp, 0),
5601 INTVAL (XEXP (temp, 1)));
5602
5603 /* If X has only a single bit that might be nonzero, say, bit I, convert
5604 (neg X) to (ashiftrt (ashift X C-I) C-I) where C is the bitsize of
5605 MODE minus 1. This will convert (neg (zero_extract X 1 Y)) to
5606 (sign_extract X 1 Y). But only do this if TEMP isn't a register
5607 or a SUBREG of one since we'd be making the expression more
5608 complex if it was just a register. */
5609
5610 if (!REG_P (temp)
5611 && ! (GET_CODE (temp) == SUBREG
5612 && REG_P (SUBREG_REG (temp)))
5613 && (i = exact_log2 (nonzero_bits (temp, mode))) >= 0)
5614 {
5615 rtx temp1 = simplify_shift_const
5616 (NULL_RTX, ASHIFTRT, mode,
5617 simplify_shift_const (NULL_RTX, ASHIFT, mode, temp,
5618 GET_MODE_PRECISION (mode) - 1 - i),
5619 GET_MODE_PRECISION (mode) - 1 - i);
5620
5621 /* If all we did was surround TEMP with the two shifts, we
5622 haven't improved anything, so don't use it. Otherwise,
5623 we are better off with TEMP1. */
5624 if (GET_CODE (temp1) != ASHIFTRT
5625 || GET_CODE (XEXP (temp1, 0)) != ASHIFT
5626 || XEXP (XEXP (temp1, 0), 0) != temp)
5627 return temp1;
5628 }
5629 break;
5630
5631 case TRUNCATE:
5632 /* We can't handle truncation to a partial integer mode here
5633 because we don't know the real bitsize of the partial
5634 integer mode. */
5635 if (GET_MODE_CLASS (mode) == MODE_PARTIAL_INT)
5636 break;
5637
5638 if (HWI_COMPUTABLE_MODE_P (mode))
5639 SUBST (XEXP (x, 0),
5640 force_to_mode (XEXP (x, 0), GET_MODE (XEXP (x, 0)),
5641 GET_MODE_MASK (mode), 0));
5642
5643 /* We can truncate a constant value and return it. */
5644 if (CONST_INT_P (XEXP (x, 0)))
5645 return gen_int_mode (INTVAL (XEXP (x, 0)), mode);
5646
5647 /* Similarly to what we do in simplify-rtx.c, a truncate of a register
5648 whose value is a comparison can be replaced with a subreg if
5649 STORE_FLAG_VALUE permits. */
5650 if (HWI_COMPUTABLE_MODE_P (mode)
5651 && (STORE_FLAG_VALUE & ~GET_MODE_MASK (mode)) == 0
5652 && (temp = get_last_value (XEXP (x, 0)))
5653 && COMPARISON_P (temp))
5654 return gen_lowpart (mode, XEXP (x, 0));
5655 break;
5656
5657 case CONST:
5658 /* (const (const X)) can become (const X). Do it this way rather than
5659 returning the inner CONST since CONST can be shared with a
5660 REG_EQUAL note. */
5661 if (GET_CODE (XEXP (x, 0)) == CONST)
5662 SUBST (XEXP (x, 0), XEXP (XEXP (x, 0), 0));
5663 break;
5664
5665 #ifdef HAVE_lo_sum
5666 case LO_SUM:
5667 /* Convert (lo_sum (high FOO) FOO) to FOO. This is necessary so we
5668 can add in an offset. find_split_point will split this address up
5669 again if it doesn't match. */
5670 if (GET_CODE (XEXP (x, 0)) == HIGH
5671 && rtx_equal_p (XEXP (XEXP (x, 0), 0), XEXP (x, 1)))
5672 return XEXP (x, 1);
5673 break;
5674 #endif
5675
5676 case PLUS:
5677 /* (plus (xor (and <foo> (const_int pow2 - 1)) <c>) <-c>)
5678 when c is (const_int (pow2 + 1) / 2) is a sign extension of a
5679 bit-field and can be replaced by either a sign_extend or a
5680 sign_extract. The `and' may be a zero_extend and the two
5681 <c>, -<c> constants may be reversed. */
5682 if (GET_CODE (XEXP (x, 0)) == XOR
5683 && CONST_INT_P (XEXP (x, 1))
5684 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
5685 && INTVAL (XEXP (x, 1)) == -INTVAL (XEXP (XEXP (x, 0), 1))
5686 && ((i = exact_log2 (UINTVAL (XEXP (XEXP (x, 0), 1)))) >= 0
5687 || (i = exact_log2 (UINTVAL (XEXP (x, 1)))) >= 0)
5688 && HWI_COMPUTABLE_MODE_P (mode)
5689 && ((GET_CODE (XEXP (XEXP (x, 0), 0)) == AND
5690 && CONST_INT_P (XEXP (XEXP (XEXP (x, 0), 0), 1))
5691 && (UINTVAL (XEXP (XEXP (XEXP (x, 0), 0), 1))
5692 == ((unsigned HOST_WIDE_INT) 1 << (i + 1)) - 1))
5693 || (GET_CODE (XEXP (XEXP (x, 0), 0)) == ZERO_EXTEND
5694 && (GET_MODE_PRECISION (GET_MODE (XEXP (XEXP (XEXP (x, 0), 0), 0)))
5695 == (unsigned int) i + 1))))
5696 return simplify_shift_const
5697 (NULL_RTX, ASHIFTRT, mode,
5698 simplify_shift_const (NULL_RTX, ASHIFT, mode,
5699 XEXP (XEXP (XEXP (x, 0), 0), 0),
5700 GET_MODE_PRECISION (mode) - (i + 1)),
5701 GET_MODE_PRECISION (mode) - (i + 1));
5702
5703 /* If only the low-order bit of X is possibly nonzero, (plus x -1)
5704 can become (ashiftrt (ashift (xor x 1) C) C) where C is
5705 the bitsize of the mode - 1. This allows simplification of
5706 "a = (b & 8) == 0;" */
5707 if (XEXP (x, 1) == constm1_rtx
5708 && !REG_P (XEXP (x, 0))
5709 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
5710 && REG_P (SUBREG_REG (XEXP (x, 0))))
5711 && nonzero_bits (XEXP (x, 0), mode) == 1)
5712 return simplify_shift_const (NULL_RTX, ASHIFTRT, mode,
5713 simplify_shift_const (NULL_RTX, ASHIFT, mode,
5714 gen_rtx_XOR (mode, XEXP (x, 0), const1_rtx),
5715 GET_MODE_PRECISION (mode) - 1),
5716 GET_MODE_PRECISION (mode) - 1);
5717
5718 /* If we are adding two things that have no bits in common, convert
5719 the addition into an IOR. This will often be further simplified,
5720 for example in cases like ((a & 1) + (a & 2)), which can
5721 become a & 3. */
5722
5723 if (HWI_COMPUTABLE_MODE_P (mode)
5724 && (nonzero_bits (XEXP (x, 0), mode)
5725 & nonzero_bits (XEXP (x, 1), mode)) == 0)
5726 {
5727 /* Try to simplify the expression further. */
5728 rtx tor = simplify_gen_binary (IOR, mode, XEXP (x, 0), XEXP (x, 1));
5729 temp = combine_simplify_rtx (tor, VOIDmode, in_dest, 0);
5730
5731 /* If we could, great. If not, do not go ahead with the IOR
5732 replacement, since PLUS appears in many special purpose
5733 address arithmetic instructions. */
5734 if (GET_CODE (temp) != CLOBBER
5735 && (GET_CODE (temp) != IOR
5736 || ((XEXP (temp, 0) != XEXP (x, 0)
5737 || XEXP (temp, 1) != XEXP (x, 1))
5738 && (XEXP (temp, 0) != XEXP (x, 1)
5739 || XEXP (temp, 1) != XEXP (x, 0)))))
5740 return temp;
5741 }
5742 break;
5743
5744 case MINUS:
5745 /* (minus <foo> (and <foo> (const_int -pow2))) becomes
5746 (and <foo> (const_int pow2-1)) */
5747 if (GET_CODE (XEXP (x, 1)) == AND
5748 && CONST_INT_P (XEXP (XEXP (x, 1), 1))
5749 && exact_log2 (-UINTVAL (XEXP (XEXP (x, 1), 1))) >= 0
5750 && rtx_equal_p (XEXP (XEXP (x, 1), 0), XEXP (x, 0)))
5751 return simplify_and_const_int (NULL_RTX, mode, XEXP (x, 0),
5752 -INTVAL (XEXP (XEXP (x, 1), 1)) - 1);
5753 break;
5754
5755 case MULT:
5756 /* If we have (mult (plus A B) C), apply the distributive law and then
5757 the inverse distributive law to see if things simplify. This
5758 occurs mostly in addresses, often when unrolling loops. */
5759
5760 if (GET_CODE (XEXP (x, 0)) == PLUS)
5761 {
5762 rtx result = distribute_and_simplify_rtx (x, 0);
5763 if (result)
5764 return result;
5765 }
5766
5767 /* Try simplify a*(b/c) as (a*b)/c. */
5768 if (FLOAT_MODE_P (mode) && flag_associative_math
5769 && GET_CODE (XEXP (x, 0)) == DIV)
5770 {
5771 rtx tem = simplify_binary_operation (MULT, mode,
5772 XEXP (XEXP (x, 0), 0),
5773 XEXP (x, 1));
5774 if (tem)
5775 return simplify_gen_binary (DIV, mode, tem, XEXP (XEXP (x, 0), 1));
5776 }
5777 break;
5778
5779 case UDIV:
5780 /* If this is a divide by a power of two, treat it as a shift if
5781 its first operand is a shift. */
5782 if (CONST_INT_P (XEXP (x, 1))
5783 && (i = exact_log2 (UINTVAL (XEXP (x, 1)))) >= 0
5784 && (GET_CODE (XEXP (x, 0)) == ASHIFT
5785 || GET_CODE (XEXP (x, 0)) == LSHIFTRT
5786 || GET_CODE (XEXP (x, 0)) == ASHIFTRT
5787 || GET_CODE (XEXP (x, 0)) == ROTATE
5788 || GET_CODE (XEXP (x, 0)) == ROTATERT))
5789 return simplify_shift_const (NULL_RTX, LSHIFTRT, mode, XEXP (x, 0), i);
5790 break;
5791
5792 case EQ: case NE:
5793 case GT: case GTU: case GE: case GEU:
5794 case LT: case LTU: case LE: case LEU:
5795 case UNEQ: case LTGT:
5796 case UNGT: case UNGE:
5797 case UNLT: case UNLE:
5798 case UNORDERED: case ORDERED:
5799 /* If the first operand is a condition code, we can't do anything
5800 with it. */
5801 if (GET_CODE (XEXP (x, 0)) == COMPARE
5802 || (GET_MODE_CLASS (GET_MODE (XEXP (x, 0))) != MODE_CC
5803 && ! CC0_P (XEXP (x, 0))))
5804 {
5805 rtx op0 = XEXP (x, 0);
5806 rtx op1 = XEXP (x, 1);
5807 enum rtx_code new_code;
5808
5809 if (GET_CODE (op0) == COMPARE)
5810 op1 = XEXP (op0, 1), op0 = XEXP (op0, 0);
5811
5812 /* Simplify our comparison, if possible. */
5813 new_code = simplify_comparison (code, &op0, &op1);
5814
5815 /* If STORE_FLAG_VALUE is 1, we can convert (ne x 0) to simply X
5816 if only the low-order bit is possibly nonzero in X (such as when
5817 X is a ZERO_EXTRACT of one bit). Similarly, we can convert EQ to
5818 (xor X 1) or (minus 1 X); we use the former. Finally, if X is
5819 known to be either 0 or -1, NE becomes a NEG and EQ becomes
5820 (plus X 1).
5821
5822 Remove any ZERO_EXTRACT we made when thinking this was a
5823 comparison. It may now be simpler to use, e.g., an AND. If a
5824 ZERO_EXTRACT is indeed appropriate, it will be placed back by
5825 the call to make_compound_operation in the SET case.
5826
5827 Don't apply these optimizations if the caller would
5828 prefer a comparison rather than a value.
5829 E.g., for the condition in an IF_THEN_ELSE most targets need
5830 an explicit comparison. */
5831
5832 if (in_cond)
5833 ;
5834
5835 else if (STORE_FLAG_VALUE == 1
5836 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
5837 && op1 == const0_rtx
5838 && mode == GET_MODE (op0)
5839 && nonzero_bits (op0, mode) == 1)
5840 return gen_lowpart (mode,
5841 expand_compound_operation (op0));
5842
5843 else if (STORE_FLAG_VALUE == 1
5844 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
5845 && op1 == const0_rtx
5846 && mode == GET_MODE (op0)
5847 && (num_sign_bit_copies (op0, mode)
5848 == GET_MODE_PRECISION (mode)))
5849 {
5850 op0 = expand_compound_operation (op0);
5851 return simplify_gen_unary (NEG, mode,
5852 gen_lowpart (mode, op0),
5853 mode);
5854 }
5855
5856 else if (STORE_FLAG_VALUE == 1
5857 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
5858 && op1 == const0_rtx
5859 && mode == GET_MODE (op0)
5860 && nonzero_bits (op0, mode) == 1)
5861 {
5862 op0 = expand_compound_operation (op0);
5863 return simplify_gen_binary (XOR, mode,
5864 gen_lowpart (mode, op0),
5865 const1_rtx);
5866 }
5867
5868 else if (STORE_FLAG_VALUE == 1
5869 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
5870 && op1 == const0_rtx
5871 && mode == GET_MODE (op0)
5872 && (num_sign_bit_copies (op0, mode)
5873 == GET_MODE_PRECISION (mode)))
5874 {
5875 op0 = expand_compound_operation (op0);
5876 return plus_constant (mode, gen_lowpart (mode, op0), 1);
5877 }
5878
5879 /* If STORE_FLAG_VALUE is -1, we have cases similar to
5880 those above. */
5881 if (in_cond)
5882 ;
5883
5884 else if (STORE_FLAG_VALUE == -1
5885 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
5886 && op1 == const0_rtx
5887 && (num_sign_bit_copies (op0, mode)
5888 == GET_MODE_PRECISION (mode)))
5889 return gen_lowpart (mode,
5890 expand_compound_operation (op0));
5891
5892 else if (STORE_FLAG_VALUE == -1
5893 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
5894 && op1 == const0_rtx
5895 && mode == GET_MODE (op0)
5896 && nonzero_bits (op0, mode) == 1)
5897 {
5898 op0 = expand_compound_operation (op0);
5899 return simplify_gen_unary (NEG, mode,
5900 gen_lowpart (mode, op0),
5901 mode);
5902 }
5903
5904 else if (STORE_FLAG_VALUE == -1
5905 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
5906 && op1 == const0_rtx
5907 && mode == GET_MODE (op0)
5908 && (num_sign_bit_copies (op0, mode)
5909 == GET_MODE_PRECISION (mode)))
5910 {
5911 op0 = expand_compound_operation (op0);
5912 return simplify_gen_unary (NOT, mode,
5913 gen_lowpart (mode, op0),
5914 mode);
5915 }
5916
5917 /* If X is 0/1, (eq X 0) is X-1. */
5918 else if (STORE_FLAG_VALUE == -1
5919 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
5920 && op1 == const0_rtx
5921 && mode == GET_MODE (op0)
5922 && nonzero_bits (op0, mode) == 1)
5923 {
5924 op0 = expand_compound_operation (op0);
5925 return plus_constant (mode, gen_lowpart (mode, op0), -1);
5926 }
5927
5928 /* If STORE_FLAG_VALUE says to just test the sign bit and X has just
5929 one bit that might be nonzero, we can convert (ne x 0) to
5930 (ashift x c) where C puts the bit in the sign bit. Remove any
5931 AND with STORE_FLAG_VALUE when we are done, since we are only
5932 going to test the sign bit. */
5933 if (new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
5934 && HWI_COMPUTABLE_MODE_P (mode)
5935 && val_signbit_p (mode, STORE_FLAG_VALUE)
5936 && op1 == const0_rtx
5937 && mode == GET_MODE (op0)
5938 && (i = exact_log2 (nonzero_bits (op0, mode))) >= 0)
5939 {
5940 x = simplify_shift_const (NULL_RTX, ASHIFT, mode,
5941 expand_compound_operation (op0),
5942 GET_MODE_PRECISION (mode) - 1 - i);
5943 if (GET_CODE (x) == AND && XEXP (x, 1) == const_true_rtx)
5944 return XEXP (x, 0);
5945 else
5946 return x;
5947 }
5948
5949 /* If the code changed, return a whole new comparison. */
5950 if (new_code != code)
5951 return gen_rtx_fmt_ee (new_code, mode, op0, op1);
5952
5953 /* Otherwise, keep this operation, but maybe change its operands.
5954 This also converts (ne (compare FOO BAR) 0) to (ne FOO BAR). */
5955 SUBST (XEXP (x, 0), op0);
5956 SUBST (XEXP (x, 1), op1);
5957 }
5958 break;
5959
5960 case IF_THEN_ELSE:
5961 return simplify_if_then_else (x);
5962
5963 case ZERO_EXTRACT:
5964 case SIGN_EXTRACT:
5965 case ZERO_EXTEND:
5966 case SIGN_EXTEND:
5967 /* If we are processing SET_DEST, we are done. */
5968 if (in_dest)
5969 return x;
5970
5971 return expand_compound_operation (x);
5972
5973 case SET:
5974 return simplify_set (x);
5975
5976 case AND:
5977 case IOR:
5978 return simplify_logical (x);
5979
5980 case ASHIFT:
5981 case LSHIFTRT:
5982 case ASHIFTRT:
5983 case ROTATE:
5984 case ROTATERT:
5985 /* If this is a shift by a constant amount, simplify it. */
5986 if (CONST_INT_P (XEXP (x, 1)))
5987 return simplify_shift_const (x, code, mode, XEXP (x, 0),
5988 INTVAL (XEXP (x, 1)));
5989
5990 else if (SHIFT_COUNT_TRUNCATED && !REG_P (XEXP (x, 1)))
5991 SUBST (XEXP (x, 1),
5992 force_to_mode (XEXP (x, 1), GET_MODE (XEXP (x, 1)),
5993 ((unsigned HOST_WIDE_INT) 1
5994 << exact_log2 (GET_MODE_BITSIZE (GET_MODE (x))))
5995 - 1,
5996 0));
5997 break;
5998
5999 default:
6000 break;
6001 }
6002
6003 return x;
6004 }
6005 \f
6006 /* Simplify X, an IF_THEN_ELSE expression. Return the new expression. */
6007
6008 static rtx
6009 simplify_if_then_else (rtx x)
6010 {
6011 enum machine_mode mode = GET_MODE (x);
6012 rtx cond = XEXP (x, 0);
6013 rtx true_rtx = XEXP (x, 1);
6014 rtx false_rtx = XEXP (x, 2);
6015 enum rtx_code true_code = GET_CODE (cond);
6016 int comparison_p = COMPARISON_P (cond);
6017 rtx temp;
6018 int i;
6019 enum rtx_code false_code;
6020 rtx reversed;
6021
6022 /* Simplify storing of the truth value. */
6023 if (comparison_p && true_rtx == const_true_rtx && false_rtx == const0_rtx)
6024 return simplify_gen_relational (true_code, mode, VOIDmode,
6025 XEXP (cond, 0), XEXP (cond, 1));
6026
6027 /* Also when the truth value has to be reversed. */
6028 if (comparison_p
6029 && true_rtx == const0_rtx && false_rtx == const_true_rtx
6030 && (reversed = reversed_comparison (cond, mode)))
6031 return reversed;
6032
6033 /* Sometimes we can simplify the arm of an IF_THEN_ELSE if a register used
6034 in it is being compared against certain values. Get the true and false
6035 comparisons and see if that says anything about the value of each arm. */
6036
6037 if (comparison_p
6038 && ((false_code = reversed_comparison_code (cond, NULL))
6039 != UNKNOWN)
6040 && REG_P (XEXP (cond, 0)))
6041 {
6042 HOST_WIDE_INT nzb;
6043 rtx from = XEXP (cond, 0);
6044 rtx true_val = XEXP (cond, 1);
6045 rtx false_val = true_val;
6046 int swapped = 0;
6047
6048 /* If FALSE_CODE is EQ, swap the codes and arms. */
6049
6050 if (false_code == EQ)
6051 {
6052 swapped = 1, true_code = EQ, false_code = NE;
6053 temp = true_rtx, true_rtx = false_rtx, false_rtx = temp;
6054 }
6055
6056 /* If we are comparing against zero and the expression being tested has
6057 only a single bit that might be nonzero, that is its value when it is
6058 not equal to zero. Similarly if it is known to be -1 or 0. */
6059
6060 if (true_code == EQ && true_val == const0_rtx
6061 && exact_log2 (nzb = nonzero_bits (from, GET_MODE (from))) >= 0)
6062 {
6063 false_code = EQ;
6064 false_val = gen_int_mode (nzb, GET_MODE (from));
6065 }
6066 else if (true_code == EQ && true_val == const0_rtx
6067 && (num_sign_bit_copies (from, GET_MODE (from))
6068 == GET_MODE_PRECISION (GET_MODE (from))))
6069 {
6070 false_code = EQ;
6071 false_val = constm1_rtx;
6072 }
6073
6074 /* Now simplify an arm if we know the value of the register in the
6075 branch and it is used in the arm. Be careful due to the potential
6076 of locally-shared RTL. */
6077
6078 if (reg_mentioned_p (from, true_rtx))
6079 true_rtx = subst (known_cond (copy_rtx (true_rtx), true_code,
6080 from, true_val),
6081 pc_rtx, pc_rtx, 0, 0, 0);
6082 if (reg_mentioned_p (from, false_rtx))
6083 false_rtx = subst (known_cond (copy_rtx (false_rtx), false_code,
6084 from, false_val),
6085 pc_rtx, pc_rtx, 0, 0, 0);
6086
6087 SUBST (XEXP (x, 1), swapped ? false_rtx : true_rtx);
6088 SUBST (XEXP (x, 2), swapped ? true_rtx : false_rtx);
6089
6090 true_rtx = XEXP (x, 1);
6091 false_rtx = XEXP (x, 2);
6092 true_code = GET_CODE (cond);
6093 }
6094
6095 /* If we have (if_then_else FOO (pc) (label_ref BAR)) and FOO can be
6096 reversed, do so to avoid needing two sets of patterns for
6097 subtract-and-branch insns. Similarly if we have a constant in the true
6098 arm, the false arm is the same as the first operand of the comparison, or
6099 the false arm is more complicated than the true arm. */
6100
6101 if (comparison_p
6102 && reversed_comparison_code (cond, NULL) != UNKNOWN
6103 && (true_rtx == pc_rtx
6104 || (CONSTANT_P (true_rtx)
6105 && !CONST_INT_P (false_rtx) && false_rtx != pc_rtx)
6106 || true_rtx == const0_rtx
6107 || (OBJECT_P (true_rtx) && !OBJECT_P (false_rtx))
6108 || (GET_CODE (true_rtx) == SUBREG && OBJECT_P (SUBREG_REG (true_rtx))
6109 && !OBJECT_P (false_rtx))
6110 || reg_mentioned_p (true_rtx, false_rtx)
6111 || rtx_equal_p (false_rtx, XEXP (cond, 0))))
6112 {
6113 true_code = reversed_comparison_code (cond, NULL);
6114 SUBST (XEXP (x, 0), reversed_comparison (cond, GET_MODE (cond)));
6115 SUBST (XEXP (x, 1), false_rtx);
6116 SUBST (XEXP (x, 2), true_rtx);
6117
6118 temp = true_rtx, true_rtx = false_rtx, false_rtx = temp;
6119 cond = XEXP (x, 0);
6120
6121 /* It is possible that the conditional has been simplified out. */
6122 true_code = GET_CODE (cond);
6123 comparison_p = COMPARISON_P (cond);
6124 }
6125
6126 /* If the two arms are identical, we don't need the comparison. */
6127
6128 if (rtx_equal_p (true_rtx, false_rtx) && ! side_effects_p (cond))
6129 return true_rtx;
6130
6131 /* Convert a == b ? b : a to "a". */
6132 if (true_code == EQ && ! side_effects_p (cond)
6133 && !HONOR_NANS (mode)
6134 && rtx_equal_p (XEXP (cond, 0), false_rtx)
6135 && rtx_equal_p (XEXP (cond, 1), true_rtx))
6136 return false_rtx;
6137 else if (true_code == NE && ! side_effects_p (cond)
6138 && !HONOR_NANS (mode)
6139 && rtx_equal_p (XEXP (cond, 0), true_rtx)
6140 && rtx_equal_p (XEXP (cond, 1), false_rtx))
6141 return true_rtx;
6142
6143 /* Look for cases where we have (abs x) or (neg (abs X)). */
6144
6145 if (GET_MODE_CLASS (mode) == MODE_INT
6146 && comparison_p
6147 && XEXP (cond, 1) == const0_rtx
6148 && GET_CODE (false_rtx) == NEG
6149 && rtx_equal_p (true_rtx, XEXP (false_rtx, 0))
6150 && rtx_equal_p (true_rtx, XEXP (cond, 0))
6151 && ! side_effects_p (true_rtx))
6152 switch (true_code)
6153 {
6154 case GT:
6155 case GE:
6156 return simplify_gen_unary (ABS, mode, true_rtx, mode);
6157 case LT:
6158 case LE:
6159 return
6160 simplify_gen_unary (NEG, mode,
6161 simplify_gen_unary (ABS, mode, true_rtx, mode),
6162 mode);
6163 default:
6164 break;
6165 }
6166
6167 /* Look for MIN or MAX. */
6168
6169 if ((! FLOAT_MODE_P (mode) || flag_unsafe_math_optimizations)
6170 && comparison_p
6171 && rtx_equal_p (XEXP (cond, 0), true_rtx)
6172 && rtx_equal_p (XEXP (cond, 1), false_rtx)
6173 && ! side_effects_p (cond))
6174 switch (true_code)
6175 {
6176 case GE:
6177 case GT:
6178 return simplify_gen_binary (SMAX, mode, true_rtx, false_rtx);
6179 case LE:
6180 case LT:
6181 return simplify_gen_binary (SMIN, mode, true_rtx, false_rtx);
6182 case GEU:
6183 case GTU:
6184 return simplify_gen_binary (UMAX, mode, true_rtx, false_rtx);
6185 case LEU:
6186 case LTU:
6187 return simplify_gen_binary (UMIN, mode, true_rtx, false_rtx);
6188 default:
6189 break;
6190 }
6191
6192 /* If we have (if_then_else COND (OP Z C1) Z) and OP is an identity when its
6193 second operand is zero, this can be done as (OP Z (mult COND C2)) where
6194 C2 = C1 * STORE_FLAG_VALUE. Similarly if OP has an outer ZERO_EXTEND or
6195 SIGN_EXTEND as long as Z is already extended (so we don't destroy it).
6196 We can do this kind of thing in some cases when STORE_FLAG_VALUE is
6197 neither 1 or -1, but it isn't worth checking for. */
6198
6199 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
6200 && comparison_p
6201 && GET_MODE_CLASS (mode) == MODE_INT
6202 && ! side_effects_p (x))
6203 {
6204 rtx t = make_compound_operation (true_rtx, SET);
6205 rtx f = make_compound_operation (false_rtx, SET);
6206 rtx cond_op0 = XEXP (cond, 0);
6207 rtx cond_op1 = XEXP (cond, 1);
6208 enum rtx_code op = UNKNOWN, extend_op = UNKNOWN;
6209 enum machine_mode m = mode;
6210 rtx z = 0, c1 = NULL_RTX;
6211
6212 if ((GET_CODE (t) == PLUS || GET_CODE (t) == MINUS
6213 || GET_CODE (t) == IOR || GET_CODE (t) == XOR
6214 || GET_CODE (t) == ASHIFT
6215 || GET_CODE (t) == LSHIFTRT || GET_CODE (t) == ASHIFTRT)
6216 && rtx_equal_p (XEXP (t, 0), f))
6217 c1 = XEXP (t, 1), op = GET_CODE (t), z = f;
6218
6219 /* If an identity-zero op is commutative, check whether there
6220 would be a match if we swapped the operands. */
6221 else if ((GET_CODE (t) == PLUS || GET_CODE (t) == IOR
6222 || GET_CODE (t) == XOR)
6223 && rtx_equal_p (XEXP (t, 1), f))
6224 c1 = XEXP (t, 0), op = GET_CODE (t), z = f;
6225 else if (GET_CODE (t) == SIGN_EXTEND
6226 && (GET_CODE (XEXP (t, 0)) == PLUS
6227 || GET_CODE (XEXP (t, 0)) == MINUS
6228 || GET_CODE (XEXP (t, 0)) == IOR
6229 || GET_CODE (XEXP (t, 0)) == XOR
6230 || GET_CODE (XEXP (t, 0)) == ASHIFT
6231 || GET_CODE (XEXP (t, 0)) == LSHIFTRT
6232 || GET_CODE (XEXP (t, 0)) == ASHIFTRT)
6233 && GET_CODE (XEXP (XEXP (t, 0), 0)) == SUBREG
6234 && subreg_lowpart_p (XEXP (XEXP (t, 0), 0))
6235 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 0)), f)
6236 && (num_sign_bit_copies (f, GET_MODE (f))
6237 > (unsigned int)
6238 (GET_MODE_PRECISION (mode)
6239 - GET_MODE_PRECISION (GET_MODE (XEXP (XEXP (t, 0), 0))))))
6240 {
6241 c1 = XEXP (XEXP (t, 0), 1); z = f; op = GET_CODE (XEXP (t, 0));
6242 extend_op = SIGN_EXTEND;
6243 m = GET_MODE (XEXP (t, 0));
6244 }
6245 else if (GET_CODE (t) == SIGN_EXTEND
6246 && (GET_CODE (XEXP (t, 0)) == PLUS
6247 || GET_CODE (XEXP (t, 0)) == IOR
6248 || GET_CODE (XEXP (t, 0)) == XOR)
6249 && GET_CODE (XEXP (XEXP (t, 0), 1)) == SUBREG
6250 && subreg_lowpart_p (XEXP (XEXP (t, 0), 1))
6251 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 1)), f)
6252 && (num_sign_bit_copies (f, GET_MODE (f))
6253 > (unsigned int)
6254 (GET_MODE_PRECISION (mode)
6255 - GET_MODE_PRECISION (GET_MODE (XEXP (XEXP (t, 0), 1))))))
6256 {
6257 c1 = XEXP (XEXP (t, 0), 0); z = f; op = GET_CODE (XEXP (t, 0));
6258 extend_op = SIGN_EXTEND;
6259 m = GET_MODE (XEXP (t, 0));
6260 }
6261 else if (GET_CODE (t) == ZERO_EXTEND
6262 && (GET_CODE (XEXP (t, 0)) == PLUS
6263 || GET_CODE (XEXP (t, 0)) == MINUS
6264 || GET_CODE (XEXP (t, 0)) == IOR
6265 || GET_CODE (XEXP (t, 0)) == XOR
6266 || GET_CODE (XEXP (t, 0)) == ASHIFT
6267 || GET_CODE (XEXP (t, 0)) == LSHIFTRT
6268 || GET_CODE (XEXP (t, 0)) == ASHIFTRT)
6269 && GET_CODE (XEXP (XEXP (t, 0), 0)) == SUBREG
6270 && HWI_COMPUTABLE_MODE_P (mode)
6271 && subreg_lowpart_p (XEXP (XEXP (t, 0), 0))
6272 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 0)), f)
6273 && ((nonzero_bits (f, GET_MODE (f))
6274 & ~GET_MODE_MASK (GET_MODE (XEXP (XEXP (t, 0), 0))))
6275 == 0))
6276 {
6277 c1 = XEXP (XEXP (t, 0), 1); z = f; op = GET_CODE (XEXP (t, 0));
6278 extend_op = ZERO_EXTEND;
6279 m = GET_MODE (XEXP (t, 0));
6280 }
6281 else if (GET_CODE (t) == ZERO_EXTEND
6282 && (GET_CODE (XEXP (t, 0)) == PLUS
6283 || GET_CODE (XEXP (t, 0)) == IOR
6284 || GET_CODE (XEXP (t, 0)) == XOR)
6285 && GET_CODE (XEXP (XEXP (t, 0), 1)) == SUBREG
6286 && HWI_COMPUTABLE_MODE_P (mode)
6287 && subreg_lowpart_p (XEXP (XEXP (t, 0), 1))
6288 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 1)), f)
6289 && ((nonzero_bits (f, GET_MODE (f))
6290 & ~GET_MODE_MASK (GET_MODE (XEXP (XEXP (t, 0), 1))))
6291 == 0))
6292 {
6293 c1 = XEXP (XEXP (t, 0), 0); z = f; op = GET_CODE (XEXP (t, 0));
6294 extend_op = ZERO_EXTEND;
6295 m = GET_MODE (XEXP (t, 0));
6296 }
6297
6298 if (z)
6299 {
6300 temp = subst (simplify_gen_relational (true_code, m, VOIDmode,
6301 cond_op0, cond_op1),
6302 pc_rtx, pc_rtx, 0, 0, 0);
6303 temp = simplify_gen_binary (MULT, m, temp,
6304 simplify_gen_binary (MULT, m, c1,
6305 const_true_rtx));
6306 temp = subst (temp, pc_rtx, pc_rtx, 0, 0, 0);
6307 temp = simplify_gen_binary (op, m, gen_lowpart (m, z), temp);
6308
6309 if (extend_op != UNKNOWN)
6310 temp = simplify_gen_unary (extend_op, mode, temp, m);
6311
6312 return temp;
6313 }
6314 }
6315
6316 /* If we have (if_then_else (ne A 0) C1 0) and either A is known to be 0 or
6317 1 and C1 is a single bit or A is known to be 0 or -1 and C1 is the
6318 negation of a single bit, we can convert this operation to a shift. We
6319 can actually do this more generally, but it doesn't seem worth it. */
6320
6321 if (true_code == NE && XEXP (cond, 1) == const0_rtx
6322 && false_rtx == const0_rtx && CONST_INT_P (true_rtx)
6323 && ((1 == nonzero_bits (XEXP (cond, 0), mode)
6324 && (i = exact_log2 (UINTVAL (true_rtx))) >= 0)
6325 || ((num_sign_bit_copies (XEXP (cond, 0), mode)
6326 == GET_MODE_PRECISION (mode))
6327 && (i = exact_log2 (-UINTVAL (true_rtx))) >= 0)))
6328 return
6329 simplify_shift_const (NULL_RTX, ASHIFT, mode,
6330 gen_lowpart (mode, XEXP (cond, 0)), i);
6331
6332 /* (IF_THEN_ELSE (NE REG 0) (0) (8)) is REG for nonzero_bits (REG) == 8. */
6333 if (true_code == NE && XEXP (cond, 1) == const0_rtx
6334 && false_rtx == const0_rtx && CONST_INT_P (true_rtx)
6335 && GET_MODE (XEXP (cond, 0)) == mode
6336 && (UINTVAL (true_rtx) & GET_MODE_MASK (mode))
6337 == nonzero_bits (XEXP (cond, 0), mode)
6338 && (i = exact_log2 (UINTVAL (true_rtx) & GET_MODE_MASK (mode))) >= 0)
6339 return XEXP (cond, 0);
6340
6341 return x;
6342 }
6343 \f
6344 /* Simplify X, a SET expression. Return the new expression. */
6345
6346 static rtx
6347 simplify_set (rtx x)
6348 {
6349 rtx src = SET_SRC (x);
6350 rtx dest = SET_DEST (x);
6351 enum machine_mode mode
6352 = GET_MODE (src) != VOIDmode ? GET_MODE (src) : GET_MODE (dest);
6353 rtx other_insn;
6354 rtx *cc_use;
6355
6356 /* (set (pc) (return)) gets written as (return). */
6357 if (GET_CODE (dest) == PC && ANY_RETURN_P (src))
6358 return src;
6359
6360 /* Now that we know for sure which bits of SRC we are using, see if we can
6361 simplify the expression for the object knowing that we only need the
6362 low-order bits. */
6363
6364 if (GET_MODE_CLASS (mode) == MODE_INT && HWI_COMPUTABLE_MODE_P (mode))
6365 {
6366 src = force_to_mode (src, mode, ~(unsigned HOST_WIDE_INT) 0, 0);
6367 SUBST (SET_SRC (x), src);
6368 }
6369
6370 /* If we are setting CC0 or if the source is a COMPARE, look for the use of
6371 the comparison result and try to simplify it unless we already have used
6372 undobuf.other_insn. */
6373 if ((GET_MODE_CLASS (mode) == MODE_CC
6374 || GET_CODE (src) == COMPARE
6375 || CC0_P (dest))
6376 && (cc_use = find_single_use (dest, subst_insn, &other_insn)) != 0
6377 && (undobuf.other_insn == 0 || other_insn == undobuf.other_insn)
6378 && COMPARISON_P (*cc_use)
6379 && rtx_equal_p (XEXP (*cc_use, 0), dest))
6380 {
6381 enum rtx_code old_code = GET_CODE (*cc_use);
6382 enum rtx_code new_code;
6383 rtx op0, op1, tmp;
6384 int other_changed = 0;
6385 rtx inner_compare = NULL_RTX;
6386 enum machine_mode compare_mode = GET_MODE (dest);
6387
6388 if (GET_CODE (src) == COMPARE)
6389 {
6390 op0 = XEXP (src, 0), op1 = XEXP (src, 1);
6391 if (GET_CODE (op0) == COMPARE && op1 == const0_rtx)
6392 {
6393 inner_compare = op0;
6394 op0 = XEXP (inner_compare, 0), op1 = XEXP (inner_compare, 1);
6395 }
6396 }
6397 else
6398 op0 = src, op1 = CONST0_RTX (GET_MODE (src));
6399
6400 tmp = simplify_relational_operation (old_code, compare_mode, VOIDmode,
6401 op0, op1);
6402 if (!tmp)
6403 new_code = old_code;
6404 else if (!CONSTANT_P (tmp))
6405 {
6406 new_code = GET_CODE (tmp);
6407 op0 = XEXP (tmp, 0);
6408 op1 = XEXP (tmp, 1);
6409 }
6410 else
6411 {
6412 rtx pat = PATTERN (other_insn);
6413 undobuf.other_insn = other_insn;
6414 SUBST (*cc_use, tmp);
6415
6416 /* Attempt to simplify CC user. */
6417 if (GET_CODE (pat) == SET)
6418 {
6419 rtx new_rtx = simplify_rtx (SET_SRC (pat));
6420 if (new_rtx != NULL_RTX)
6421 SUBST (SET_SRC (pat), new_rtx);
6422 }
6423
6424 /* Convert X into a no-op move. */
6425 SUBST (SET_DEST (x), pc_rtx);
6426 SUBST (SET_SRC (x), pc_rtx);
6427 return x;
6428 }
6429
6430 /* Simplify our comparison, if possible. */
6431 new_code = simplify_comparison (new_code, &op0, &op1);
6432
6433 #ifdef SELECT_CC_MODE
6434 /* If this machine has CC modes other than CCmode, check to see if we
6435 need to use a different CC mode here. */
6436 if (GET_MODE_CLASS (GET_MODE (op0)) == MODE_CC)
6437 compare_mode = GET_MODE (op0);
6438 else if (inner_compare
6439 && GET_MODE_CLASS (GET_MODE (inner_compare)) == MODE_CC
6440 && new_code == old_code
6441 && op0 == XEXP (inner_compare, 0)
6442 && op1 == XEXP (inner_compare, 1))
6443 compare_mode = GET_MODE (inner_compare);
6444 else
6445 compare_mode = SELECT_CC_MODE (new_code, op0, op1);
6446
6447 #ifndef HAVE_cc0
6448 /* If the mode changed, we have to change SET_DEST, the mode in the
6449 compare, and the mode in the place SET_DEST is used. If SET_DEST is
6450 a hard register, just build new versions with the proper mode. If it
6451 is a pseudo, we lose unless it is only time we set the pseudo, in
6452 which case we can safely change its mode. */
6453 if (compare_mode != GET_MODE (dest))
6454 {
6455 if (can_change_dest_mode (dest, 0, compare_mode))
6456 {
6457 unsigned int regno = REGNO (dest);
6458 rtx new_dest;
6459
6460 if (regno < FIRST_PSEUDO_REGISTER)
6461 new_dest = gen_rtx_REG (compare_mode, regno);
6462 else
6463 {
6464 SUBST_MODE (regno_reg_rtx[regno], compare_mode);
6465 new_dest = regno_reg_rtx[regno];
6466 }
6467
6468 SUBST (SET_DEST (x), new_dest);
6469 SUBST (XEXP (*cc_use, 0), new_dest);
6470 other_changed = 1;
6471
6472 dest = new_dest;
6473 }
6474 }
6475 #endif /* cc0 */
6476 #endif /* SELECT_CC_MODE */
6477
6478 /* If the code changed, we have to build a new comparison in
6479 undobuf.other_insn. */
6480 if (new_code != old_code)
6481 {
6482 int other_changed_previously = other_changed;
6483 unsigned HOST_WIDE_INT mask;
6484 rtx old_cc_use = *cc_use;
6485
6486 SUBST (*cc_use, gen_rtx_fmt_ee (new_code, GET_MODE (*cc_use),
6487 dest, const0_rtx));
6488 other_changed = 1;
6489
6490 /* If the only change we made was to change an EQ into an NE or
6491 vice versa, OP0 has only one bit that might be nonzero, and OP1
6492 is zero, check if changing the user of the condition code will
6493 produce a valid insn. If it won't, we can keep the original code
6494 in that insn by surrounding our operation with an XOR. */
6495
6496 if (((old_code == NE && new_code == EQ)
6497 || (old_code == EQ && new_code == NE))
6498 && ! other_changed_previously && op1 == const0_rtx
6499 && HWI_COMPUTABLE_MODE_P (GET_MODE (op0))
6500 && exact_log2 (mask = nonzero_bits (op0, GET_MODE (op0))) >= 0)
6501 {
6502 rtx pat = PATTERN (other_insn), note = 0;
6503
6504 if ((recog_for_combine (&pat, other_insn, &note) < 0
6505 && ! check_asm_operands (pat)))
6506 {
6507 *cc_use = old_cc_use;
6508 other_changed = 0;
6509
6510 op0 = simplify_gen_binary (XOR, GET_MODE (op0),
6511 op0, GEN_INT (mask));
6512 }
6513 }
6514 }
6515
6516 if (other_changed)
6517 undobuf.other_insn = other_insn;
6518
6519 /* Otherwise, if we didn't previously have a COMPARE in the
6520 correct mode, we need one. */
6521 if (GET_CODE (src) != COMPARE || GET_MODE (src) != compare_mode)
6522 {
6523 SUBST (SET_SRC (x), gen_rtx_COMPARE (compare_mode, op0, op1));
6524 src = SET_SRC (x);
6525 }
6526 else if (GET_MODE (op0) == compare_mode && op1 == const0_rtx)
6527 {
6528 SUBST (SET_SRC (x), op0);
6529 src = SET_SRC (x);
6530 }
6531 /* Otherwise, update the COMPARE if needed. */
6532 else if (XEXP (src, 0) != op0 || XEXP (src, 1) != op1)
6533 {
6534 SUBST (SET_SRC (x), gen_rtx_COMPARE (compare_mode, op0, op1));
6535 src = SET_SRC (x);
6536 }
6537 }
6538 else
6539 {
6540 /* Get SET_SRC in a form where we have placed back any
6541 compound expressions. Then do the checks below. */
6542 src = make_compound_operation (src, SET);
6543 SUBST (SET_SRC (x), src);
6544 }
6545
6546 /* If we have (set x (subreg:m1 (op:m2 ...) 0)) with OP being some operation,
6547 and X being a REG or (subreg (reg)), we may be able to convert this to
6548 (set (subreg:m2 x) (op)).
6549
6550 We can always do this if M1 is narrower than M2 because that means that
6551 we only care about the low bits of the result.
6552
6553 However, on machines without WORD_REGISTER_OPERATIONS defined, we cannot
6554 perform a narrower operation than requested since the high-order bits will
6555 be undefined. On machine where it is defined, this transformation is safe
6556 as long as M1 and M2 have the same number of words. */
6557
6558 if (GET_CODE (src) == SUBREG && subreg_lowpart_p (src)
6559 && !OBJECT_P (SUBREG_REG (src))
6560 && (((GET_MODE_SIZE (GET_MODE (src)) + (UNITS_PER_WORD - 1))
6561 / UNITS_PER_WORD)
6562 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (src)))
6563 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))
6564 #ifndef WORD_REGISTER_OPERATIONS
6565 && (GET_MODE_SIZE (GET_MODE (src))
6566 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (src))))
6567 #endif
6568 #ifdef CANNOT_CHANGE_MODE_CLASS
6569 && ! (REG_P (dest) && REGNO (dest) < FIRST_PSEUDO_REGISTER
6570 && REG_CANNOT_CHANGE_MODE_P (REGNO (dest),
6571 GET_MODE (SUBREG_REG (src)),
6572 GET_MODE (src)))
6573 #endif
6574 && (REG_P (dest)
6575 || (GET_CODE (dest) == SUBREG
6576 && REG_P (SUBREG_REG (dest)))))
6577 {
6578 SUBST (SET_DEST (x),
6579 gen_lowpart (GET_MODE (SUBREG_REG (src)),
6580 dest));
6581 SUBST (SET_SRC (x), SUBREG_REG (src));
6582
6583 src = SET_SRC (x), dest = SET_DEST (x);
6584 }
6585
6586 #ifdef HAVE_cc0
6587 /* If we have (set (cc0) (subreg ...)), we try to remove the subreg
6588 in SRC. */
6589 if (dest == cc0_rtx
6590 && GET_CODE (src) == SUBREG
6591 && subreg_lowpart_p (src)
6592 && (GET_MODE_PRECISION (GET_MODE (src))
6593 < GET_MODE_PRECISION (GET_MODE (SUBREG_REG (src)))))
6594 {
6595 rtx inner = SUBREG_REG (src);
6596 enum machine_mode inner_mode = GET_MODE (inner);
6597
6598 /* Here we make sure that we don't have a sign bit on. */
6599 if (val_signbit_known_clear_p (GET_MODE (src),
6600 nonzero_bits (inner, inner_mode)))
6601 {
6602 SUBST (SET_SRC (x), inner);
6603 src = SET_SRC (x);
6604 }
6605 }
6606 #endif
6607
6608 #ifdef LOAD_EXTEND_OP
6609 /* If we have (set FOO (subreg:M (mem:N BAR) 0)) with M wider than N, this
6610 would require a paradoxical subreg. Replace the subreg with a
6611 zero_extend to avoid the reload that would otherwise be required. */
6612
6613 if (GET_CODE (src) == SUBREG && subreg_lowpart_p (src)
6614 && INTEGRAL_MODE_P (GET_MODE (SUBREG_REG (src)))
6615 && LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (src))) != UNKNOWN
6616 && SUBREG_BYTE (src) == 0
6617 && paradoxical_subreg_p (src)
6618 && MEM_P (SUBREG_REG (src)))
6619 {
6620 SUBST (SET_SRC (x),
6621 gen_rtx_fmt_e (LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (src))),
6622 GET_MODE (src), SUBREG_REG (src)));
6623
6624 src = SET_SRC (x);
6625 }
6626 #endif
6627
6628 /* If we don't have a conditional move, SET_SRC is an IF_THEN_ELSE, and we
6629 are comparing an item known to be 0 or -1 against 0, use a logical
6630 operation instead. Check for one of the arms being an IOR of the other
6631 arm with some value. We compute three terms to be IOR'ed together. In
6632 practice, at most two will be nonzero. Then we do the IOR's. */
6633
6634 if (GET_CODE (dest) != PC
6635 && GET_CODE (src) == IF_THEN_ELSE
6636 && GET_MODE_CLASS (GET_MODE (src)) == MODE_INT
6637 && (GET_CODE (XEXP (src, 0)) == EQ || GET_CODE (XEXP (src, 0)) == NE)
6638 && XEXP (XEXP (src, 0), 1) == const0_rtx
6639 && GET_MODE (src) == GET_MODE (XEXP (XEXP (src, 0), 0))
6640 #ifdef HAVE_conditional_move
6641 && ! can_conditionally_move_p (GET_MODE (src))
6642 #endif
6643 && (num_sign_bit_copies (XEXP (XEXP (src, 0), 0),
6644 GET_MODE (XEXP (XEXP (src, 0), 0)))
6645 == GET_MODE_PRECISION (GET_MODE (XEXP (XEXP (src, 0), 0))))
6646 && ! side_effects_p (src))
6647 {
6648 rtx true_rtx = (GET_CODE (XEXP (src, 0)) == NE
6649 ? XEXP (src, 1) : XEXP (src, 2));
6650 rtx false_rtx = (GET_CODE (XEXP (src, 0)) == NE
6651 ? XEXP (src, 2) : XEXP (src, 1));
6652 rtx term1 = const0_rtx, term2, term3;
6653
6654 if (GET_CODE (true_rtx) == IOR
6655 && rtx_equal_p (XEXP (true_rtx, 0), false_rtx))
6656 term1 = false_rtx, true_rtx = XEXP (true_rtx, 1), false_rtx = const0_rtx;
6657 else if (GET_CODE (true_rtx) == IOR
6658 && rtx_equal_p (XEXP (true_rtx, 1), false_rtx))
6659 term1 = false_rtx, true_rtx = XEXP (true_rtx, 0), false_rtx = const0_rtx;
6660 else if (GET_CODE (false_rtx) == IOR
6661 && rtx_equal_p (XEXP (false_rtx, 0), true_rtx))
6662 term1 = true_rtx, false_rtx = XEXP (false_rtx, 1), true_rtx = const0_rtx;
6663 else if (GET_CODE (false_rtx) == IOR
6664 && rtx_equal_p (XEXP (false_rtx, 1), true_rtx))
6665 term1 = true_rtx, false_rtx = XEXP (false_rtx, 0), true_rtx = const0_rtx;
6666
6667 term2 = simplify_gen_binary (AND, GET_MODE (src),
6668 XEXP (XEXP (src, 0), 0), true_rtx);
6669 term3 = simplify_gen_binary (AND, GET_MODE (src),
6670 simplify_gen_unary (NOT, GET_MODE (src),
6671 XEXP (XEXP (src, 0), 0),
6672 GET_MODE (src)),
6673 false_rtx);
6674
6675 SUBST (SET_SRC (x),
6676 simplify_gen_binary (IOR, GET_MODE (src),
6677 simplify_gen_binary (IOR, GET_MODE (src),
6678 term1, term2),
6679 term3));
6680
6681 src = SET_SRC (x);
6682 }
6683
6684 /* If either SRC or DEST is a CLOBBER of (const_int 0), make this
6685 whole thing fail. */
6686 if (GET_CODE (src) == CLOBBER && XEXP (src, 0) == const0_rtx)
6687 return src;
6688 else if (GET_CODE (dest) == CLOBBER && XEXP (dest, 0) == const0_rtx)
6689 return dest;
6690 else
6691 /* Convert this into a field assignment operation, if possible. */
6692 return make_field_assignment (x);
6693 }
6694 \f
6695 /* Simplify, X, and AND, IOR, or XOR operation, and return the simplified
6696 result. */
6697
6698 static rtx
6699 simplify_logical (rtx x)
6700 {
6701 enum machine_mode mode = GET_MODE (x);
6702 rtx op0 = XEXP (x, 0);
6703 rtx op1 = XEXP (x, 1);
6704
6705 switch (GET_CODE (x))
6706 {
6707 case AND:
6708 /* We can call simplify_and_const_int only if we don't lose
6709 any (sign) bits when converting INTVAL (op1) to
6710 "unsigned HOST_WIDE_INT". */
6711 if (CONST_INT_P (op1)
6712 && (HWI_COMPUTABLE_MODE_P (mode)
6713 || INTVAL (op1) > 0))
6714 {
6715 x = simplify_and_const_int (x, mode, op0, INTVAL (op1));
6716 if (GET_CODE (x) != AND)
6717 return x;
6718
6719 op0 = XEXP (x, 0);
6720 op1 = XEXP (x, 1);
6721 }
6722
6723 /* If we have any of (and (ior A B) C) or (and (xor A B) C),
6724 apply the distributive law and then the inverse distributive
6725 law to see if things simplify. */
6726 if (GET_CODE (op0) == IOR || GET_CODE (op0) == XOR)
6727 {
6728 rtx result = distribute_and_simplify_rtx (x, 0);
6729 if (result)
6730 return result;
6731 }
6732 if (GET_CODE (op1) == IOR || GET_CODE (op1) == XOR)
6733 {
6734 rtx result = distribute_and_simplify_rtx (x, 1);
6735 if (result)
6736 return result;
6737 }
6738 break;
6739
6740 case IOR:
6741 /* If we have (ior (and A B) C), apply the distributive law and then
6742 the inverse distributive law to see if things simplify. */
6743
6744 if (GET_CODE (op0) == AND)
6745 {
6746 rtx result = distribute_and_simplify_rtx (x, 0);
6747 if (result)
6748 return result;
6749 }
6750
6751 if (GET_CODE (op1) == AND)
6752 {
6753 rtx result = distribute_and_simplify_rtx (x, 1);
6754 if (result)
6755 return result;
6756 }
6757 break;
6758
6759 default:
6760 gcc_unreachable ();
6761 }
6762
6763 return x;
6764 }
6765 \f
6766 /* We consider ZERO_EXTRACT, SIGN_EXTRACT, and SIGN_EXTEND as "compound
6767 operations" because they can be replaced with two more basic operations.
6768 ZERO_EXTEND is also considered "compound" because it can be replaced with
6769 an AND operation, which is simpler, though only one operation.
6770
6771 The function expand_compound_operation is called with an rtx expression
6772 and will convert it to the appropriate shifts and AND operations,
6773 simplifying at each stage.
6774
6775 The function make_compound_operation is called to convert an expression
6776 consisting of shifts and ANDs into the equivalent compound expression.
6777 It is the inverse of this function, loosely speaking. */
6778
6779 static rtx
6780 expand_compound_operation (rtx x)
6781 {
6782 unsigned HOST_WIDE_INT pos = 0, len;
6783 int unsignedp = 0;
6784 unsigned int modewidth;
6785 rtx tem;
6786
6787 switch (GET_CODE (x))
6788 {
6789 case ZERO_EXTEND:
6790 unsignedp = 1;
6791 case SIGN_EXTEND:
6792 /* We can't necessarily use a const_int for a multiword mode;
6793 it depends on implicitly extending the value.
6794 Since we don't know the right way to extend it,
6795 we can't tell whether the implicit way is right.
6796
6797 Even for a mode that is no wider than a const_int,
6798 we can't win, because we need to sign extend one of its bits through
6799 the rest of it, and we don't know which bit. */
6800 if (CONST_INT_P (XEXP (x, 0)))
6801 return x;
6802
6803 /* Return if (subreg:MODE FROM 0) is not a safe replacement for
6804 (zero_extend:MODE FROM) or (sign_extend:MODE FROM). It is for any MEM
6805 because (SUBREG (MEM...)) is guaranteed to cause the MEM to be
6806 reloaded. If not for that, MEM's would very rarely be safe.
6807
6808 Reject MODEs bigger than a word, because we might not be able
6809 to reference a two-register group starting with an arbitrary register
6810 (and currently gen_lowpart might crash for a SUBREG). */
6811
6812 if (GET_MODE_SIZE (GET_MODE (XEXP (x, 0))) > UNITS_PER_WORD)
6813 return x;
6814
6815 /* Reject MODEs that aren't scalar integers because turning vector
6816 or complex modes into shifts causes problems. */
6817
6818 if (! SCALAR_INT_MODE_P (GET_MODE (XEXP (x, 0))))
6819 return x;
6820
6821 len = GET_MODE_PRECISION (GET_MODE (XEXP (x, 0)));
6822 /* If the inner object has VOIDmode (the only way this can happen
6823 is if it is an ASM_OPERANDS), we can't do anything since we don't
6824 know how much masking to do. */
6825 if (len == 0)
6826 return x;
6827
6828 break;
6829
6830 case ZERO_EXTRACT:
6831 unsignedp = 1;
6832
6833 /* ... fall through ... */
6834
6835 case SIGN_EXTRACT:
6836 /* If the operand is a CLOBBER, just return it. */
6837 if (GET_CODE (XEXP (x, 0)) == CLOBBER)
6838 return XEXP (x, 0);
6839
6840 if (!CONST_INT_P (XEXP (x, 1))
6841 || !CONST_INT_P (XEXP (x, 2))
6842 || GET_MODE (XEXP (x, 0)) == VOIDmode)
6843 return x;
6844
6845 /* Reject MODEs that aren't scalar integers because turning vector
6846 or complex modes into shifts causes problems. */
6847
6848 if (! SCALAR_INT_MODE_P (GET_MODE (XEXP (x, 0))))
6849 return x;
6850
6851 len = INTVAL (XEXP (x, 1));
6852 pos = INTVAL (XEXP (x, 2));
6853
6854 /* This should stay within the object being extracted, fail otherwise. */
6855 if (len + pos > GET_MODE_PRECISION (GET_MODE (XEXP (x, 0))))
6856 return x;
6857
6858 if (BITS_BIG_ENDIAN)
6859 pos = GET_MODE_PRECISION (GET_MODE (XEXP (x, 0))) - len - pos;
6860
6861 break;
6862
6863 default:
6864 return x;
6865 }
6866 /* Convert sign extension to zero extension, if we know that the high
6867 bit is not set, as this is easier to optimize. It will be converted
6868 back to cheaper alternative in make_extraction. */
6869 if (GET_CODE (x) == SIGN_EXTEND
6870 && (HWI_COMPUTABLE_MODE_P (GET_MODE (x))
6871 && ((nonzero_bits (XEXP (x, 0), GET_MODE (XEXP (x, 0)))
6872 & ~(((unsigned HOST_WIDE_INT)
6873 GET_MODE_MASK (GET_MODE (XEXP (x, 0))))
6874 >> 1))
6875 == 0)))
6876 {
6877 rtx temp = gen_rtx_ZERO_EXTEND (GET_MODE (x), XEXP (x, 0));
6878 rtx temp2 = expand_compound_operation (temp);
6879
6880 /* Make sure this is a profitable operation. */
6881 if (set_src_cost (x, optimize_this_for_speed_p)
6882 > set_src_cost (temp2, optimize_this_for_speed_p))
6883 return temp2;
6884 else if (set_src_cost (x, optimize_this_for_speed_p)
6885 > set_src_cost (temp, optimize_this_for_speed_p))
6886 return temp;
6887 else
6888 return x;
6889 }
6890
6891 /* We can optimize some special cases of ZERO_EXTEND. */
6892 if (GET_CODE (x) == ZERO_EXTEND)
6893 {
6894 /* (zero_extend:DI (truncate:SI foo:DI)) is just foo:DI if we
6895 know that the last value didn't have any inappropriate bits
6896 set. */
6897 if (GET_CODE (XEXP (x, 0)) == TRUNCATE
6898 && GET_MODE (XEXP (XEXP (x, 0), 0)) == GET_MODE (x)
6899 && HWI_COMPUTABLE_MODE_P (GET_MODE (x))
6900 && (nonzero_bits (XEXP (XEXP (x, 0), 0), GET_MODE (x))
6901 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
6902 return XEXP (XEXP (x, 0), 0);
6903
6904 /* Likewise for (zero_extend:DI (subreg:SI foo:DI 0)). */
6905 if (GET_CODE (XEXP (x, 0)) == SUBREG
6906 && GET_MODE (SUBREG_REG (XEXP (x, 0))) == GET_MODE (x)
6907 && subreg_lowpart_p (XEXP (x, 0))
6908 && HWI_COMPUTABLE_MODE_P (GET_MODE (x))
6909 && (nonzero_bits (SUBREG_REG (XEXP (x, 0)), GET_MODE (x))
6910 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
6911 return SUBREG_REG (XEXP (x, 0));
6912
6913 /* (zero_extend:DI (truncate:SI foo:DI)) is just foo:DI when foo
6914 is a comparison and STORE_FLAG_VALUE permits. This is like
6915 the first case, but it works even when GET_MODE (x) is larger
6916 than HOST_WIDE_INT. */
6917 if (GET_CODE (XEXP (x, 0)) == TRUNCATE
6918 && GET_MODE (XEXP (XEXP (x, 0), 0)) == GET_MODE (x)
6919 && COMPARISON_P (XEXP (XEXP (x, 0), 0))
6920 && (GET_MODE_PRECISION (GET_MODE (XEXP (x, 0)))
6921 <= HOST_BITS_PER_WIDE_INT)
6922 && (STORE_FLAG_VALUE & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
6923 return XEXP (XEXP (x, 0), 0);
6924
6925 /* Likewise for (zero_extend:DI (subreg:SI foo:DI 0)). */
6926 if (GET_CODE (XEXP (x, 0)) == SUBREG
6927 && GET_MODE (SUBREG_REG (XEXP (x, 0))) == GET_MODE (x)
6928 && subreg_lowpart_p (XEXP (x, 0))
6929 && COMPARISON_P (SUBREG_REG (XEXP (x, 0)))
6930 && (GET_MODE_PRECISION (GET_MODE (XEXP (x, 0)))
6931 <= HOST_BITS_PER_WIDE_INT)
6932 && (STORE_FLAG_VALUE & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
6933 return SUBREG_REG (XEXP (x, 0));
6934
6935 }
6936
6937 /* If we reach here, we want to return a pair of shifts. The inner
6938 shift is a left shift of BITSIZE - POS - LEN bits. The outer
6939 shift is a right shift of BITSIZE - LEN bits. It is arithmetic or
6940 logical depending on the value of UNSIGNEDP.
6941
6942 If this was a ZERO_EXTEND or ZERO_EXTRACT, this pair of shifts will be
6943 converted into an AND of a shift.
6944
6945 We must check for the case where the left shift would have a negative
6946 count. This can happen in a case like (x >> 31) & 255 on machines
6947 that can't shift by a constant. On those machines, we would first
6948 combine the shift with the AND to produce a variable-position
6949 extraction. Then the constant of 31 would be substituted in
6950 to produce such a position. */
6951
6952 modewidth = GET_MODE_PRECISION (GET_MODE (x));
6953 if (modewidth >= pos + len)
6954 {
6955 enum machine_mode mode = GET_MODE (x);
6956 tem = gen_lowpart (mode, XEXP (x, 0));
6957 if (!tem || GET_CODE (tem) == CLOBBER)
6958 return x;
6959 tem = simplify_shift_const (NULL_RTX, ASHIFT, mode,
6960 tem, modewidth - pos - len);
6961 tem = simplify_shift_const (NULL_RTX, unsignedp ? LSHIFTRT : ASHIFTRT,
6962 mode, tem, modewidth - len);
6963 }
6964 else if (unsignedp && len < HOST_BITS_PER_WIDE_INT)
6965 tem = simplify_and_const_int (NULL_RTX, GET_MODE (x),
6966 simplify_shift_const (NULL_RTX, LSHIFTRT,
6967 GET_MODE (x),
6968 XEXP (x, 0), pos),
6969 ((unsigned HOST_WIDE_INT) 1 << len) - 1);
6970 else
6971 /* Any other cases we can't handle. */
6972 return x;
6973
6974 /* If we couldn't do this for some reason, return the original
6975 expression. */
6976 if (GET_CODE (tem) == CLOBBER)
6977 return x;
6978
6979 return tem;
6980 }
6981 \f
6982 /* X is a SET which contains an assignment of one object into
6983 a part of another (such as a bit-field assignment, STRICT_LOW_PART,
6984 or certain SUBREGS). If possible, convert it into a series of
6985 logical operations.
6986
6987 We half-heartedly support variable positions, but do not at all
6988 support variable lengths. */
6989
6990 static const_rtx
6991 expand_field_assignment (const_rtx x)
6992 {
6993 rtx inner;
6994 rtx pos; /* Always counts from low bit. */
6995 int len;
6996 rtx mask, cleared, masked;
6997 enum machine_mode compute_mode;
6998
6999 /* Loop until we find something we can't simplify. */
7000 while (1)
7001 {
7002 if (GET_CODE (SET_DEST (x)) == STRICT_LOW_PART
7003 && GET_CODE (XEXP (SET_DEST (x), 0)) == SUBREG)
7004 {
7005 inner = SUBREG_REG (XEXP (SET_DEST (x), 0));
7006 len = GET_MODE_PRECISION (GET_MODE (XEXP (SET_DEST (x), 0)));
7007 pos = GEN_INT (subreg_lsb (XEXP (SET_DEST (x), 0)));
7008 }
7009 else if (GET_CODE (SET_DEST (x)) == ZERO_EXTRACT
7010 && CONST_INT_P (XEXP (SET_DEST (x), 1)))
7011 {
7012 inner = XEXP (SET_DEST (x), 0);
7013 len = INTVAL (XEXP (SET_DEST (x), 1));
7014 pos = XEXP (SET_DEST (x), 2);
7015
7016 /* A constant position should stay within the width of INNER. */
7017 if (CONST_INT_P (pos)
7018 && INTVAL (pos) + len > GET_MODE_PRECISION (GET_MODE (inner)))
7019 break;
7020
7021 if (BITS_BIG_ENDIAN)
7022 {
7023 if (CONST_INT_P (pos))
7024 pos = GEN_INT (GET_MODE_PRECISION (GET_MODE (inner)) - len
7025 - INTVAL (pos));
7026 else if (GET_CODE (pos) == MINUS
7027 && CONST_INT_P (XEXP (pos, 1))
7028 && (INTVAL (XEXP (pos, 1))
7029 == GET_MODE_PRECISION (GET_MODE (inner)) - len))
7030 /* If position is ADJUST - X, new position is X. */
7031 pos = XEXP (pos, 0);
7032 else
7033 pos = simplify_gen_binary (MINUS, GET_MODE (pos),
7034 GEN_INT (GET_MODE_PRECISION (
7035 GET_MODE (inner))
7036 - len),
7037 pos);
7038 }
7039 }
7040
7041 /* A SUBREG between two modes that occupy the same numbers of words
7042 can be done by moving the SUBREG to the source. */
7043 else if (GET_CODE (SET_DEST (x)) == SUBREG
7044 /* We need SUBREGs to compute nonzero_bits properly. */
7045 && nonzero_sign_valid
7046 && (((GET_MODE_SIZE (GET_MODE (SET_DEST (x)))
7047 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
7048 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (x))))
7049 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)))
7050 {
7051 x = gen_rtx_SET (VOIDmode, SUBREG_REG (SET_DEST (x)),
7052 gen_lowpart
7053 (GET_MODE (SUBREG_REG (SET_DEST (x))),
7054 SET_SRC (x)));
7055 continue;
7056 }
7057 else
7058 break;
7059
7060 while (GET_CODE (inner) == SUBREG && subreg_lowpart_p (inner))
7061 inner = SUBREG_REG (inner);
7062
7063 compute_mode = GET_MODE (inner);
7064
7065 /* Don't attempt bitwise arithmetic on non scalar integer modes. */
7066 if (! SCALAR_INT_MODE_P (compute_mode))
7067 {
7068 enum machine_mode imode;
7069
7070 /* Don't do anything for vector or complex integral types. */
7071 if (! FLOAT_MODE_P (compute_mode))
7072 break;
7073
7074 /* Try to find an integral mode to pun with. */
7075 imode = mode_for_size (GET_MODE_BITSIZE (compute_mode), MODE_INT, 0);
7076 if (imode == BLKmode)
7077 break;
7078
7079 compute_mode = imode;
7080 inner = gen_lowpart (imode, inner);
7081 }
7082
7083 /* Compute a mask of LEN bits, if we can do this on the host machine. */
7084 if (len >= HOST_BITS_PER_WIDE_INT)
7085 break;
7086
7087 /* Now compute the equivalent expression. Make a copy of INNER
7088 for the SET_DEST in case it is a MEM into which we will substitute;
7089 we don't want shared RTL in that case. */
7090 mask = GEN_INT (((unsigned HOST_WIDE_INT) 1 << len) - 1);
7091 cleared = simplify_gen_binary (AND, compute_mode,
7092 simplify_gen_unary (NOT, compute_mode,
7093 simplify_gen_binary (ASHIFT,
7094 compute_mode,
7095 mask, pos),
7096 compute_mode),
7097 inner);
7098 masked = simplify_gen_binary (ASHIFT, compute_mode,
7099 simplify_gen_binary (
7100 AND, compute_mode,
7101 gen_lowpart (compute_mode, SET_SRC (x)),
7102 mask),
7103 pos);
7104
7105 x = gen_rtx_SET (VOIDmode, copy_rtx (inner),
7106 simplify_gen_binary (IOR, compute_mode,
7107 cleared, masked));
7108 }
7109
7110 return x;
7111 }
7112 \f
7113 /* Return an RTX for a reference to LEN bits of INNER. If POS_RTX is nonzero,
7114 it is an RTX that represents a variable starting position; otherwise,
7115 POS is the (constant) starting bit position (counted from the LSB).
7116
7117 UNSIGNEDP is nonzero for an unsigned reference and zero for a
7118 signed reference.
7119
7120 IN_DEST is nonzero if this is a reference in the destination of a
7121 SET. This is used when a ZERO_ or SIGN_EXTRACT isn't needed. If nonzero,
7122 a STRICT_LOW_PART will be used, if zero, ZERO_EXTEND or SIGN_EXTEND will
7123 be used.
7124
7125 IN_COMPARE is nonzero if we are in a COMPARE. This means that a
7126 ZERO_EXTRACT should be built even for bits starting at bit 0.
7127
7128 MODE is the desired mode of the result (if IN_DEST == 0).
7129
7130 The result is an RTX for the extraction or NULL_RTX if the target
7131 can't handle it. */
7132
7133 static rtx
7134 make_extraction (enum machine_mode mode, rtx inner, HOST_WIDE_INT pos,
7135 rtx pos_rtx, unsigned HOST_WIDE_INT len, int unsignedp,
7136 int in_dest, int in_compare)
7137 {
7138 /* This mode describes the size of the storage area
7139 to fetch the overall value from. Within that, we
7140 ignore the POS lowest bits, etc. */
7141 enum machine_mode is_mode = GET_MODE (inner);
7142 enum machine_mode inner_mode;
7143 enum machine_mode wanted_inner_mode;
7144 enum machine_mode wanted_inner_reg_mode = word_mode;
7145 enum machine_mode pos_mode = word_mode;
7146 enum machine_mode extraction_mode = word_mode;
7147 enum machine_mode tmode = mode_for_size (len, MODE_INT, 1);
7148 rtx new_rtx = 0;
7149 rtx orig_pos_rtx = pos_rtx;
7150 HOST_WIDE_INT orig_pos;
7151
7152 if (GET_CODE (inner) == SUBREG && subreg_lowpart_p (inner))
7153 {
7154 /* If going from (subreg:SI (mem:QI ...)) to (mem:QI ...),
7155 consider just the QI as the memory to extract from.
7156 The subreg adds or removes high bits; its mode is
7157 irrelevant to the meaning of this extraction,
7158 since POS and LEN count from the lsb. */
7159 if (MEM_P (SUBREG_REG (inner)))
7160 is_mode = GET_MODE (SUBREG_REG (inner));
7161 inner = SUBREG_REG (inner);
7162 }
7163 else if (GET_CODE (inner) == ASHIFT
7164 && CONST_INT_P (XEXP (inner, 1))
7165 && pos_rtx == 0 && pos == 0
7166 && len > UINTVAL (XEXP (inner, 1)))
7167 {
7168 /* We're extracting the least significant bits of an rtx
7169 (ashift X (const_int C)), where LEN > C. Extract the
7170 least significant (LEN - C) bits of X, giving an rtx
7171 whose mode is MODE, then shift it left C times. */
7172 new_rtx = make_extraction (mode, XEXP (inner, 0),
7173 0, 0, len - INTVAL (XEXP (inner, 1)),
7174 unsignedp, in_dest, in_compare);
7175 if (new_rtx != 0)
7176 return gen_rtx_ASHIFT (mode, new_rtx, XEXP (inner, 1));
7177 }
7178
7179 inner_mode = GET_MODE (inner);
7180
7181 if (pos_rtx && CONST_INT_P (pos_rtx))
7182 pos = INTVAL (pos_rtx), pos_rtx = 0;
7183
7184 /* See if this can be done without an extraction. We never can if the
7185 width of the field is not the same as that of some integer mode. For
7186 registers, we can only avoid the extraction if the position is at the
7187 low-order bit and this is either not in the destination or we have the
7188 appropriate STRICT_LOW_PART operation available.
7189
7190 For MEM, we can avoid an extract if the field starts on an appropriate
7191 boundary and we can change the mode of the memory reference. */
7192
7193 if (tmode != BLKmode
7194 && ((pos_rtx == 0 && (pos % BITS_PER_WORD) == 0
7195 && !MEM_P (inner)
7196 && (inner_mode == tmode
7197 || !REG_P (inner)
7198 || TRULY_NOOP_TRUNCATION_MODES_P (tmode, inner_mode)
7199 || reg_truncated_to_mode (tmode, inner))
7200 && (! in_dest
7201 || (REG_P (inner)
7202 && have_insn_for (STRICT_LOW_PART, tmode))))
7203 || (MEM_P (inner) && pos_rtx == 0
7204 && (pos
7205 % (STRICT_ALIGNMENT ? GET_MODE_ALIGNMENT (tmode)
7206 : BITS_PER_UNIT)) == 0
7207 /* We can't do this if we are widening INNER_MODE (it
7208 may not be aligned, for one thing). */
7209 && GET_MODE_PRECISION (inner_mode) >= GET_MODE_PRECISION (tmode)
7210 && (inner_mode == tmode
7211 || (! mode_dependent_address_p (XEXP (inner, 0))
7212 && ! MEM_VOLATILE_P (inner))))))
7213 {
7214 /* If INNER is a MEM, make a new MEM that encompasses just the desired
7215 field. If the original and current mode are the same, we need not
7216 adjust the offset. Otherwise, we do if bytes big endian.
7217
7218 If INNER is not a MEM, get a piece consisting of just the field
7219 of interest (in this case POS % BITS_PER_WORD must be 0). */
7220
7221 if (MEM_P (inner))
7222 {
7223 HOST_WIDE_INT offset;
7224
7225 /* POS counts from lsb, but make OFFSET count in memory order. */
7226 if (BYTES_BIG_ENDIAN)
7227 offset = (GET_MODE_PRECISION (is_mode) - len - pos) / BITS_PER_UNIT;
7228 else
7229 offset = pos / BITS_PER_UNIT;
7230
7231 new_rtx = adjust_address_nv (inner, tmode, offset);
7232 }
7233 else if (REG_P (inner))
7234 {
7235 if (tmode != inner_mode)
7236 {
7237 /* We can't call gen_lowpart in a DEST since we
7238 always want a SUBREG (see below) and it would sometimes
7239 return a new hard register. */
7240 if (pos || in_dest)
7241 {
7242 HOST_WIDE_INT final_word = pos / BITS_PER_WORD;
7243
7244 if (WORDS_BIG_ENDIAN
7245 && GET_MODE_SIZE (inner_mode) > UNITS_PER_WORD)
7246 final_word = ((GET_MODE_SIZE (inner_mode)
7247 - GET_MODE_SIZE (tmode))
7248 / UNITS_PER_WORD) - final_word;
7249
7250 final_word *= UNITS_PER_WORD;
7251 if (BYTES_BIG_ENDIAN &&
7252 GET_MODE_SIZE (inner_mode) > GET_MODE_SIZE (tmode))
7253 final_word += (GET_MODE_SIZE (inner_mode)
7254 - GET_MODE_SIZE (tmode)) % UNITS_PER_WORD;
7255
7256 /* Avoid creating invalid subregs, for example when
7257 simplifying (x>>32)&255. */
7258 if (!validate_subreg (tmode, inner_mode, inner, final_word))
7259 return NULL_RTX;
7260
7261 new_rtx = gen_rtx_SUBREG (tmode, inner, final_word);
7262 }
7263 else
7264 new_rtx = gen_lowpart (tmode, inner);
7265 }
7266 else
7267 new_rtx = inner;
7268 }
7269 else
7270 new_rtx = force_to_mode (inner, tmode,
7271 len >= HOST_BITS_PER_WIDE_INT
7272 ? ~(unsigned HOST_WIDE_INT) 0
7273 : ((unsigned HOST_WIDE_INT) 1 << len) - 1,
7274 0);
7275
7276 /* If this extraction is going into the destination of a SET,
7277 make a STRICT_LOW_PART unless we made a MEM. */
7278
7279 if (in_dest)
7280 return (MEM_P (new_rtx) ? new_rtx
7281 : (GET_CODE (new_rtx) != SUBREG
7282 ? gen_rtx_CLOBBER (tmode, const0_rtx)
7283 : gen_rtx_STRICT_LOW_PART (VOIDmode, new_rtx)));
7284
7285 if (mode == tmode)
7286 return new_rtx;
7287
7288 if (CONST_INT_P (new_rtx)
7289 || GET_CODE (new_rtx) == CONST_DOUBLE)
7290 return simplify_unary_operation (unsignedp ? ZERO_EXTEND : SIGN_EXTEND,
7291 mode, new_rtx, tmode);
7292
7293 /* If we know that no extraneous bits are set, and that the high
7294 bit is not set, convert the extraction to the cheaper of
7295 sign and zero extension, that are equivalent in these cases. */
7296 if (flag_expensive_optimizations
7297 && (HWI_COMPUTABLE_MODE_P (tmode)
7298 && ((nonzero_bits (new_rtx, tmode)
7299 & ~(((unsigned HOST_WIDE_INT)GET_MODE_MASK (tmode)) >> 1))
7300 == 0)))
7301 {
7302 rtx temp = gen_rtx_ZERO_EXTEND (mode, new_rtx);
7303 rtx temp1 = gen_rtx_SIGN_EXTEND (mode, new_rtx);
7304
7305 /* Prefer ZERO_EXTENSION, since it gives more information to
7306 backends. */
7307 if (set_src_cost (temp, optimize_this_for_speed_p)
7308 <= set_src_cost (temp1, optimize_this_for_speed_p))
7309 return temp;
7310 return temp1;
7311 }
7312
7313 /* Otherwise, sign- or zero-extend unless we already are in the
7314 proper mode. */
7315
7316 return (gen_rtx_fmt_e (unsignedp ? ZERO_EXTEND : SIGN_EXTEND,
7317 mode, new_rtx));
7318 }
7319
7320 /* Unless this is a COMPARE or we have a funny memory reference,
7321 don't do anything with zero-extending field extracts starting at
7322 the low-order bit since they are simple AND operations. */
7323 if (pos_rtx == 0 && pos == 0 && ! in_dest
7324 && ! in_compare && unsignedp)
7325 return 0;
7326
7327 /* Unless INNER is not MEM, reject this if we would be spanning bytes or
7328 if the position is not a constant and the length is not 1. In all
7329 other cases, we would only be going outside our object in cases when
7330 an original shift would have been undefined. */
7331 if (MEM_P (inner)
7332 && ((pos_rtx == 0 && pos + len > GET_MODE_PRECISION (is_mode))
7333 || (pos_rtx != 0 && len != 1)))
7334 return 0;
7335
7336 /* Get the mode to use should INNER not be a MEM, the mode for the position,
7337 and the mode for the result. */
7338 if (in_dest && mode_for_extraction (EP_insv, -1) != MAX_MACHINE_MODE)
7339 {
7340 wanted_inner_reg_mode = mode_for_extraction (EP_insv, 0);
7341 pos_mode = mode_for_extraction (EP_insv, 2);
7342 extraction_mode = mode_for_extraction (EP_insv, 3);
7343 }
7344
7345 if (! in_dest && unsignedp
7346 && mode_for_extraction (EP_extzv, -1) != MAX_MACHINE_MODE)
7347 {
7348 wanted_inner_reg_mode = mode_for_extraction (EP_extzv, 1);
7349 pos_mode = mode_for_extraction (EP_extzv, 3);
7350 extraction_mode = mode_for_extraction (EP_extzv, 0);
7351 }
7352
7353 if (! in_dest && ! unsignedp
7354 && mode_for_extraction (EP_extv, -1) != MAX_MACHINE_MODE)
7355 {
7356 wanted_inner_reg_mode = mode_for_extraction (EP_extv, 1);
7357 pos_mode = mode_for_extraction (EP_extv, 3);
7358 extraction_mode = mode_for_extraction (EP_extv, 0);
7359 }
7360
7361 /* Never narrow an object, since that might not be safe. */
7362
7363 if (mode != VOIDmode
7364 && GET_MODE_SIZE (extraction_mode) < GET_MODE_SIZE (mode))
7365 extraction_mode = mode;
7366
7367 if (pos_rtx && GET_MODE (pos_rtx) != VOIDmode
7368 && GET_MODE_SIZE (pos_mode) < GET_MODE_SIZE (GET_MODE (pos_rtx)))
7369 pos_mode = GET_MODE (pos_rtx);
7370
7371 /* If this is not from memory, the desired mode is the preferred mode
7372 for an extraction pattern's first input operand, or word_mode if there
7373 is none. */
7374 if (!MEM_P (inner))
7375 wanted_inner_mode = wanted_inner_reg_mode;
7376 else
7377 {
7378 /* Be careful not to go beyond the extracted object and maintain the
7379 natural alignment of the memory. */
7380 wanted_inner_mode = smallest_mode_for_size (len, MODE_INT);
7381 while (pos % GET_MODE_BITSIZE (wanted_inner_mode) + len
7382 > GET_MODE_BITSIZE (wanted_inner_mode))
7383 {
7384 wanted_inner_mode = GET_MODE_WIDER_MODE (wanted_inner_mode);
7385 gcc_assert (wanted_inner_mode != VOIDmode);
7386 }
7387
7388 /* If we have to change the mode of memory and cannot, the desired mode
7389 is EXTRACTION_MODE. */
7390 if (inner_mode != wanted_inner_mode
7391 && (mode_dependent_address_p (XEXP (inner, 0))
7392 || MEM_VOLATILE_P (inner)
7393 || pos_rtx))
7394 wanted_inner_mode = extraction_mode;
7395 }
7396
7397 orig_pos = pos;
7398
7399 if (BITS_BIG_ENDIAN)
7400 {
7401 /* POS is passed as if BITS_BIG_ENDIAN == 0, so we need to convert it to
7402 BITS_BIG_ENDIAN style. If position is constant, compute new
7403 position. Otherwise, build subtraction.
7404 Note that POS is relative to the mode of the original argument.
7405 If it's a MEM we need to recompute POS relative to that.
7406 However, if we're extracting from (or inserting into) a register,
7407 we want to recompute POS relative to wanted_inner_mode. */
7408 int width = (MEM_P (inner)
7409 ? GET_MODE_BITSIZE (is_mode)
7410 : GET_MODE_BITSIZE (wanted_inner_mode));
7411
7412 if (pos_rtx == 0)
7413 pos = width - len - pos;
7414 else
7415 pos_rtx
7416 = gen_rtx_MINUS (GET_MODE (pos_rtx), GEN_INT (width - len), pos_rtx);
7417 /* POS may be less than 0 now, but we check for that below.
7418 Note that it can only be less than 0 if !MEM_P (inner). */
7419 }
7420
7421 /* If INNER has a wider mode, and this is a constant extraction, try to
7422 make it smaller and adjust the byte to point to the byte containing
7423 the value. */
7424 if (wanted_inner_mode != VOIDmode
7425 && inner_mode != wanted_inner_mode
7426 && ! pos_rtx
7427 && GET_MODE_SIZE (wanted_inner_mode) < GET_MODE_SIZE (is_mode)
7428 && MEM_P (inner)
7429 && ! mode_dependent_address_p (XEXP (inner, 0))
7430 && ! MEM_VOLATILE_P (inner))
7431 {
7432 int offset = 0;
7433
7434 /* The computations below will be correct if the machine is big
7435 endian in both bits and bytes or little endian in bits and bytes.
7436 If it is mixed, we must adjust. */
7437
7438 /* If bytes are big endian and we had a paradoxical SUBREG, we must
7439 adjust OFFSET to compensate. */
7440 if (BYTES_BIG_ENDIAN
7441 && GET_MODE_SIZE (inner_mode) < GET_MODE_SIZE (is_mode))
7442 offset -= GET_MODE_SIZE (is_mode) - GET_MODE_SIZE (inner_mode);
7443
7444 /* We can now move to the desired byte. */
7445 offset += (pos / GET_MODE_BITSIZE (wanted_inner_mode))
7446 * GET_MODE_SIZE (wanted_inner_mode);
7447 pos %= GET_MODE_BITSIZE (wanted_inner_mode);
7448
7449 if (BYTES_BIG_ENDIAN != BITS_BIG_ENDIAN
7450 && is_mode != wanted_inner_mode)
7451 offset = (GET_MODE_SIZE (is_mode)
7452 - GET_MODE_SIZE (wanted_inner_mode) - offset);
7453
7454 inner = adjust_address_nv (inner, wanted_inner_mode, offset);
7455 }
7456
7457 /* If INNER is not memory, get it into the proper mode. If we are changing
7458 its mode, POS must be a constant and smaller than the size of the new
7459 mode. */
7460 else if (!MEM_P (inner))
7461 {
7462 /* On the LHS, don't create paradoxical subregs implicitely truncating
7463 the register unless TRULY_NOOP_TRUNCATION. */
7464 if (in_dest
7465 && !TRULY_NOOP_TRUNCATION_MODES_P (GET_MODE (inner),
7466 wanted_inner_mode))
7467 return NULL_RTX;
7468
7469 if (GET_MODE (inner) != wanted_inner_mode
7470 && (pos_rtx != 0
7471 || orig_pos + len > GET_MODE_BITSIZE (wanted_inner_mode)))
7472 return NULL_RTX;
7473
7474 if (orig_pos < 0)
7475 return NULL_RTX;
7476
7477 inner = force_to_mode (inner, wanted_inner_mode,
7478 pos_rtx
7479 || len + orig_pos >= HOST_BITS_PER_WIDE_INT
7480 ? ~(unsigned HOST_WIDE_INT) 0
7481 : ((((unsigned HOST_WIDE_INT) 1 << len) - 1)
7482 << orig_pos),
7483 0);
7484 }
7485
7486 /* Adjust mode of POS_RTX, if needed. If we want a wider mode, we
7487 have to zero extend. Otherwise, we can just use a SUBREG. */
7488 if (pos_rtx != 0
7489 && GET_MODE_SIZE (pos_mode) > GET_MODE_SIZE (GET_MODE (pos_rtx)))
7490 {
7491 rtx temp = gen_rtx_ZERO_EXTEND (pos_mode, pos_rtx);
7492
7493 /* If we know that no extraneous bits are set, and that the high
7494 bit is not set, convert extraction to cheaper one - either
7495 SIGN_EXTENSION or ZERO_EXTENSION, that are equivalent in these
7496 cases. */
7497 if (flag_expensive_optimizations
7498 && (HWI_COMPUTABLE_MODE_P (GET_MODE (pos_rtx))
7499 && ((nonzero_bits (pos_rtx, GET_MODE (pos_rtx))
7500 & ~(((unsigned HOST_WIDE_INT)
7501 GET_MODE_MASK (GET_MODE (pos_rtx)))
7502 >> 1))
7503 == 0)))
7504 {
7505 rtx temp1 = gen_rtx_SIGN_EXTEND (pos_mode, pos_rtx);
7506
7507 /* Prefer ZERO_EXTENSION, since it gives more information to
7508 backends. */
7509 if (set_src_cost (temp1, optimize_this_for_speed_p)
7510 < set_src_cost (temp, optimize_this_for_speed_p))
7511 temp = temp1;
7512 }
7513 pos_rtx = temp;
7514 }
7515 else if (pos_rtx != 0
7516 && GET_MODE_SIZE (pos_mode) < GET_MODE_SIZE (GET_MODE (pos_rtx)))
7517 pos_rtx = gen_lowpart (pos_mode, pos_rtx);
7518
7519 /* Make POS_RTX unless we already have it and it is correct. If we don't
7520 have a POS_RTX but we do have an ORIG_POS_RTX, the latter must
7521 be a CONST_INT. */
7522 if (pos_rtx == 0 && orig_pos_rtx != 0 && INTVAL (orig_pos_rtx) == pos)
7523 pos_rtx = orig_pos_rtx;
7524
7525 else if (pos_rtx == 0)
7526 pos_rtx = GEN_INT (pos);
7527
7528 /* Make the required operation. See if we can use existing rtx. */
7529 new_rtx = gen_rtx_fmt_eee (unsignedp ? ZERO_EXTRACT : SIGN_EXTRACT,
7530 extraction_mode, inner, GEN_INT (len), pos_rtx);
7531 if (! in_dest)
7532 new_rtx = gen_lowpart (mode, new_rtx);
7533
7534 return new_rtx;
7535 }
7536 \f
7537 /* See if X contains an ASHIFT of COUNT or more bits that can be commuted
7538 with any other operations in X. Return X without that shift if so. */
7539
7540 static rtx
7541 extract_left_shift (rtx x, int count)
7542 {
7543 enum rtx_code code = GET_CODE (x);
7544 enum machine_mode mode = GET_MODE (x);
7545 rtx tem;
7546
7547 switch (code)
7548 {
7549 case ASHIFT:
7550 /* This is the shift itself. If it is wide enough, we will return
7551 either the value being shifted if the shift count is equal to
7552 COUNT or a shift for the difference. */
7553 if (CONST_INT_P (XEXP (x, 1))
7554 && INTVAL (XEXP (x, 1)) >= count)
7555 return simplify_shift_const (NULL_RTX, ASHIFT, mode, XEXP (x, 0),
7556 INTVAL (XEXP (x, 1)) - count);
7557 break;
7558
7559 case NEG: case NOT:
7560 if ((tem = extract_left_shift (XEXP (x, 0), count)) != 0)
7561 return simplify_gen_unary (code, mode, tem, mode);
7562
7563 break;
7564
7565 case PLUS: case IOR: case XOR: case AND:
7566 /* If we can safely shift this constant and we find the inner shift,
7567 make a new operation. */
7568 if (CONST_INT_P (XEXP (x, 1))
7569 && (UINTVAL (XEXP (x, 1))
7570 & ((((unsigned HOST_WIDE_INT) 1 << count)) - 1)) == 0
7571 && (tem = extract_left_shift (XEXP (x, 0), count)) != 0)
7572 return simplify_gen_binary (code, mode, tem,
7573 GEN_INT (INTVAL (XEXP (x, 1)) >> count));
7574
7575 break;
7576
7577 default:
7578 break;
7579 }
7580
7581 return 0;
7582 }
7583 \f
7584 /* Look at the expression rooted at X. Look for expressions
7585 equivalent to ZERO_EXTRACT, SIGN_EXTRACT, ZERO_EXTEND, SIGN_EXTEND.
7586 Form these expressions.
7587
7588 Return the new rtx, usually just X.
7589
7590 Also, for machines like the VAX that don't have logical shift insns,
7591 try to convert logical to arithmetic shift operations in cases where
7592 they are equivalent. This undoes the canonicalizations to logical
7593 shifts done elsewhere.
7594
7595 We try, as much as possible, to re-use rtl expressions to save memory.
7596
7597 IN_CODE says what kind of expression we are processing. Normally, it is
7598 SET. In a memory address (inside a MEM, PLUS or minus, the latter two
7599 being kludges), it is MEM. When processing the arguments of a comparison
7600 or a COMPARE against zero, it is COMPARE. */
7601
7602 static rtx
7603 make_compound_operation (rtx x, enum rtx_code in_code)
7604 {
7605 enum rtx_code code = GET_CODE (x);
7606 enum machine_mode mode = GET_MODE (x);
7607 int mode_width = GET_MODE_PRECISION (mode);
7608 rtx rhs, lhs;
7609 enum rtx_code next_code;
7610 int i, j;
7611 rtx new_rtx = 0;
7612 rtx tem;
7613 const char *fmt;
7614
7615 /* Select the code to be used in recursive calls. Once we are inside an
7616 address, we stay there. If we have a comparison, set to COMPARE,
7617 but once inside, go back to our default of SET. */
7618
7619 next_code = (code == MEM ? MEM
7620 : ((code == PLUS || code == MINUS)
7621 && SCALAR_INT_MODE_P (mode)) ? MEM
7622 : ((code == COMPARE || COMPARISON_P (x))
7623 && XEXP (x, 1) == const0_rtx) ? COMPARE
7624 : in_code == COMPARE ? SET : in_code);
7625
7626 /* Process depending on the code of this operation. If NEW is set
7627 nonzero, it will be returned. */
7628
7629 switch (code)
7630 {
7631 case ASHIFT:
7632 /* Convert shifts by constants into multiplications if inside
7633 an address. */
7634 if (in_code == MEM && CONST_INT_P (XEXP (x, 1))
7635 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT
7636 && INTVAL (XEXP (x, 1)) >= 0
7637 && SCALAR_INT_MODE_P (mode))
7638 {
7639 HOST_WIDE_INT count = INTVAL (XEXP (x, 1));
7640 HOST_WIDE_INT multval = (HOST_WIDE_INT) 1 << count;
7641
7642 new_rtx = make_compound_operation (XEXP (x, 0), next_code);
7643 if (GET_CODE (new_rtx) == NEG)
7644 {
7645 new_rtx = XEXP (new_rtx, 0);
7646 multval = -multval;
7647 }
7648 multval = trunc_int_for_mode (multval, mode);
7649 new_rtx = gen_rtx_MULT (mode, new_rtx, GEN_INT (multval));
7650 }
7651 break;
7652
7653 case PLUS:
7654 lhs = XEXP (x, 0);
7655 rhs = XEXP (x, 1);
7656 lhs = make_compound_operation (lhs, next_code);
7657 rhs = make_compound_operation (rhs, next_code);
7658 if (GET_CODE (lhs) == MULT && GET_CODE (XEXP (lhs, 0)) == NEG
7659 && SCALAR_INT_MODE_P (mode))
7660 {
7661 tem = simplify_gen_binary (MULT, mode, XEXP (XEXP (lhs, 0), 0),
7662 XEXP (lhs, 1));
7663 new_rtx = simplify_gen_binary (MINUS, mode, rhs, tem);
7664 }
7665 else if (GET_CODE (lhs) == MULT
7666 && (CONST_INT_P (XEXP (lhs, 1)) && INTVAL (XEXP (lhs, 1)) < 0))
7667 {
7668 tem = simplify_gen_binary (MULT, mode, XEXP (lhs, 0),
7669 simplify_gen_unary (NEG, mode,
7670 XEXP (lhs, 1),
7671 mode));
7672 new_rtx = simplify_gen_binary (MINUS, mode, rhs, tem);
7673 }
7674 else
7675 {
7676 SUBST (XEXP (x, 0), lhs);
7677 SUBST (XEXP (x, 1), rhs);
7678 goto maybe_swap;
7679 }
7680 x = gen_lowpart (mode, new_rtx);
7681 goto maybe_swap;
7682
7683 case MINUS:
7684 lhs = XEXP (x, 0);
7685 rhs = XEXP (x, 1);
7686 lhs = make_compound_operation (lhs, next_code);
7687 rhs = make_compound_operation (rhs, next_code);
7688 if (GET_CODE (rhs) == MULT && GET_CODE (XEXP (rhs, 0)) == NEG
7689 && SCALAR_INT_MODE_P (mode))
7690 {
7691 tem = simplify_gen_binary (MULT, mode, XEXP (XEXP (rhs, 0), 0),
7692 XEXP (rhs, 1));
7693 new_rtx = simplify_gen_binary (PLUS, mode, tem, lhs);
7694 }
7695 else if (GET_CODE (rhs) == MULT
7696 && (CONST_INT_P (XEXP (rhs, 1)) && INTVAL (XEXP (rhs, 1)) < 0))
7697 {
7698 tem = simplify_gen_binary (MULT, mode, XEXP (rhs, 0),
7699 simplify_gen_unary (NEG, mode,
7700 XEXP (rhs, 1),
7701 mode));
7702 new_rtx = simplify_gen_binary (PLUS, mode, tem, lhs);
7703 }
7704 else
7705 {
7706 SUBST (XEXP (x, 0), lhs);
7707 SUBST (XEXP (x, 1), rhs);
7708 return x;
7709 }
7710 return gen_lowpart (mode, new_rtx);
7711
7712 case AND:
7713 /* If the second operand is not a constant, we can't do anything
7714 with it. */
7715 if (!CONST_INT_P (XEXP (x, 1)))
7716 break;
7717
7718 /* If the constant is a power of two minus one and the first operand
7719 is a logical right shift, make an extraction. */
7720 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
7721 && (i = exact_log2 (UINTVAL (XEXP (x, 1)) + 1)) >= 0)
7722 {
7723 new_rtx = make_compound_operation (XEXP (XEXP (x, 0), 0), next_code);
7724 new_rtx = make_extraction (mode, new_rtx, 0, XEXP (XEXP (x, 0), 1), i, 1,
7725 0, in_code == COMPARE);
7726 }
7727
7728 /* Same as previous, but for (subreg (lshiftrt ...)) in first op. */
7729 else if (GET_CODE (XEXP (x, 0)) == SUBREG
7730 && subreg_lowpart_p (XEXP (x, 0))
7731 && GET_CODE (SUBREG_REG (XEXP (x, 0))) == LSHIFTRT
7732 && (i = exact_log2 (UINTVAL (XEXP (x, 1)) + 1)) >= 0)
7733 {
7734 new_rtx = make_compound_operation (XEXP (SUBREG_REG (XEXP (x, 0)), 0),
7735 next_code);
7736 new_rtx = make_extraction (GET_MODE (SUBREG_REG (XEXP (x, 0))), new_rtx, 0,
7737 XEXP (SUBREG_REG (XEXP (x, 0)), 1), i, 1,
7738 0, in_code == COMPARE);
7739 }
7740 /* Same as previous, but for (xor/ior (lshiftrt...) (lshiftrt...)). */
7741 else if ((GET_CODE (XEXP (x, 0)) == XOR
7742 || GET_CODE (XEXP (x, 0)) == IOR)
7743 && GET_CODE (XEXP (XEXP (x, 0), 0)) == LSHIFTRT
7744 && GET_CODE (XEXP (XEXP (x, 0), 1)) == LSHIFTRT
7745 && (i = exact_log2 (UINTVAL (XEXP (x, 1)) + 1)) >= 0)
7746 {
7747 /* Apply the distributive law, and then try to make extractions. */
7748 new_rtx = gen_rtx_fmt_ee (GET_CODE (XEXP (x, 0)), mode,
7749 gen_rtx_AND (mode, XEXP (XEXP (x, 0), 0),
7750 XEXP (x, 1)),
7751 gen_rtx_AND (mode, XEXP (XEXP (x, 0), 1),
7752 XEXP (x, 1)));
7753 new_rtx = make_compound_operation (new_rtx, in_code);
7754 }
7755
7756 /* If we are have (and (rotate X C) M) and C is larger than the number
7757 of bits in M, this is an extraction. */
7758
7759 else if (GET_CODE (XEXP (x, 0)) == ROTATE
7760 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
7761 && (i = exact_log2 (UINTVAL (XEXP (x, 1)) + 1)) >= 0
7762 && i <= INTVAL (XEXP (XEXP (x, 0), 1)))
7763 {
7764 new_rtx = make_compound_operation (XEXP (XEXP (x, 0), 0), next_code);
7765 new_rtx = make_extraction (mode, new_rtx,
7766 (GET_MODE_PRECISION (mode)
7767 - INTVAL (XEXP (XEXP (x, 0), 1))),
7768 NULL_RTX, i, 1, 0, in_code == COMPARE);
7769 }
7770
7771 /* On machines without logical shifts, if the operand of the AND is
7772 a logical shift and our mask turns off all the propagated sign
7773 bits, we can replace the logical shift with an arithmetic shift. */
7774 else if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
7775 && !have_insn_for (LSHIFTRT, mode)
7776 && have_insn_for (ASHIFTRT, mode)
7777 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
7778 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
7779 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT
7780 && mode_width <= HOST_BITS_PER_WIDE_INT)
7781 {
7782 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
7783
7784 mask >>= INTVAL (XEXP (XEXP (x, 0), 1));
7785 if ((INTVAL (XEXP (x, 1)) & ~mask) == 0)
7786 SUBST (XEXP (x, 0),
7787 gen_rtx_ASHIFTRT (mode,
7788 make_compound_operation
7789 (XEXP (XEXP (x, 0), 0), next_code),
7790 XEXP (XEXP (x, 0), 1)));
7791 }
7792
7793 /* If the constant is one less than a power of two, this might be
7794 representable by an extraction even if no shift is present.
7795 If it doesn't end up being a ZERO_EXTEND, we will ignore it unless
7796 we are in a COMPARE. */
7797 else if ((i = exact_log2 (UINTVAL (XEXP (x, 1)) + 1)) >= 0)
7798 new_rtx = make_extraction (mode,
7799 make_compound_operation (XEXP (x, 0),
7800 next_code),
7801 0, NULL_RTX, i, 1, 0, in_code == COMPARE);
7802
7803 /* If we are in a comparison and this is an AND with a power of two,
7804 convert this into the appropriate bit extract. */
7805 else if (in_code == COMPARE
7806 && (i = exact_log2 (UINTVAL (XEXP (x, 1)))) >= 0)
7807 new_rtx = make_extraction (mode,
7808 make_compound_operation (XEXP (x, 0),
7809 next_code),
7810 i, NULL_RTX, 1, 1, 0, 1);
7811
7812 break;
7813
7814 case LSHIFTRT:
7815 /* If the sign bit is known to be zero, replace this with an
7816 arithmetic shift. */
7817 if (have_insn_for (ASHIFTRT, mode)
7818 && ! have_insn_for (LSHIFTRT, mode)
7819 && mode_width <= HOST_BITS_PER_WIDE_INT
7820 && (nonzero_bits (XEXP (x, 0), mode) & (1 << (mode_width - 1))) == 0)
7821 {
7822 new_rtx = gen_rtx_ASHIFTRT (mode,
7823 make_compound_operation (XEXP (x, 0),
7824 next_code),
7825 XEXP (x, 1));
7826 break;
7827 }
7828
7829 /* ... fall through ... */
7830
7831 case ASHIFTRT:
7832 lhs = XEXP (x, 0);
7833 rhs = XEXP (x, 1);
7834
7835 /* If we have (ashiftrt (ashift foo C1) C2) with C2 >= C1,
7836 this is a SIGN_EXTRACT. */
7837 if (CONST_INT_P (rhs)
7838 && GET_CODE (lhs) == ASHIFT
7839 && CONST_INT_P (XEXP (lhs, 1))
7840 && INTVAL (rhs) >= INTVAL (XEXP (lhs, 1))
7841 && INTVAL (XEXP (lhs, 1)) >= 0
7842 && INTVAL (rhs) < mode_width)
7843 {
7844 new_rtx = make_compound_operation (XEXP (lhs, 0), next_code);
7845 new_rtx = make_extraction (mode, new_rtx,
7846 INTVAL (rhs) - INTVAL (XEXP (lhs, 1)),
7847 NULL_RTX, mode_width - INTVAL (rhs),
7848 code == LSHIFTRT, 0, in_code == COMPARE);
7849 break;
7850 }
7851
7852 /* See if we have operations between an ASHIFTRT and an ASHIFT.
7853 If so, try to merge the shifts into a SIGN_EXTEND. We could
7854 also do this for some cases of SIGN_EXTRACT, but it doesn't
7855 seem worth the effort; the case checked for occurs on Alpha. */
7856
7857 if (!OBJECT_P (lhs)
7858 && ! (GET_CODE (lhs) == SUBREG
7859 && (OBJECT_P (SUBREG_REG (lhs))))
7860 && CONST_INT_P (rhs)
7861 && INTVAL (rhs) < HOST_BITS_PER_WIDE_INT
7862 && INTVAL (rhs) < mode_width
7863 && (new_rtx = extract_left_shift (lhs, INTVAL (rhs))) != 0)
7864 new_rtx = make_extraction (mode, make_compound_operation (new_rtx, next_code),
7865 0, NULL_RTX, mode_width - INTVAL (rhs),
7866 code == LSHIFTRT, 0, in_code == COMPARE);
7867
7868 break;
7869
7870 case SUBREG:
7871 /* Call ourselves recursively on the inner expression. If we are
7872 narrowing the object and it has a different RTL code from
7873 what it originally did, do this SUBREG as a force_to_mode. */
7874 {
7875 rtx inner = SUBREG_REG (x), simplified;
7876
7877 tem = make_compound_operation (inner, in_code);
7878
7879 simplified
7880 = simplify_subreg (mode, tem, GET_MODE (inner), SUBREG_BYTE (x));
7881 if (simplified)
7882 tem = simplified;
7883
7884 if (GET_CODE (tem) != GET_CODE (inner)
7885 && GET_MODE_SIZE (mode) < GET_MODE_SIZE (GET_MODE (inner))
7886 && subreg_lowpart_p (x))
7887 {
7888 rtx newer
7889 = force_to_mode (tem, mode, ~(unsigned HOST_WIDE_INT) 0, 0);
7890
7891 /* If we have something other than a SUBREG, we might have
7892 done an expansion, so rerun ourselves. */
7893 if (GET_CODE (newer) != SUBREG)
7894 newer = make_compound_operation (newer, in_code);
7895
7896 /* force_to_mode can expand compounds. If it just re-expanded the
7897 compound, use gen_lowpart to convert to the desired mode. */
7898 if (rtx_equal_p (newer, x)
7899 /* Likewise if it re-expanded the compound only partially.
7900 This happens for SUBREG of ZERO_EXTRACT if they extract
7901 the same number of bits. */
7902 || (GET_CODE (newer) == SUBREG
7903 && (GET_CODE (SUBREG_REG (newer)) == LSHIFTRT
7904 || GET_CODE (SUBREG_REG (newer)) == ASHIFTRT)
7905 && GET_CODE (inner) == AND
7906 && rtx_equal_p (SUBREG_REG (newer), XEXP (inner, 0))))
7907 return gen_lowpart (GET_MODE (x), tem);
7908
7909 return newer;
7910 }
7911
7912 if (simplified)
7913 return tem;
7914 }
7915 break;
7916
7917 default:
7918 break;
7919 }
7920
7921 if (new_rtx)
7922 {
7923 x = gen_lowpart (mode, new_rtx);
7924 code = GET_CODE (x);
7925 }
7926
7927 /* Now recursively process each operand of this operation. We need to
7928 handle ZERO_EXTEND specially so that we don't lose track of the
7929 inner mode. */
7930 if (GET_CODE (x) == ZERO_EXTEND)
7931 {
7932 new_rtx = make_compound_operation (XEXP (x, 0), next_code);
7933 tem = simplify_const_unary_operation (ZERO_EXTEND, GET_MODE (x),
7934 new_rtx, GET_MODE (XEXP (x, 0)));
7935 if (tem)
7936 return tem;
7937 SUBST (XEXP (x, 0), new_rtx);
7938 return x;
7939 }
7940
7941 fmt = GET_RTX_FORMAT (code);
7942 for (i = 0; i < GET_RTX_LENGTH (code); i++)
7943 if (fmt[i] == 'e')
7944 {
7945 new_rtx = make_compound_operation (XEXP (x, i), next_code);
7946 SUBST (XEXP (x, i), new_rtx);
7947 }
7948 else if (fmt[i] == 'E')
7949 for (j = 0; j < XVECLEN (x, i); j++)
7950 {
7951 new_rtx = make_compound_operation (XVECEXP (x, i, j), next_code);
7952 SUBST (XVECEXP (x, i, j), new_rtx);
7953 }
7954
7955 maybe_swap:
7956 /* If this is a commutative operation, the changes to the operands
7957 may have made it noncanonical. */
7958 if (COMMUTATIVE_ARITH_P (x)
7959 && swap_commutative_operands_p (XEXP (x, 0), XEXP (x, 1)))
7960 {
7961 tem = XEXP (x, 0);
7962 SUBST (XEXP (x, 0), XEXP (x, 1));
7963 SUBST (XEXP (x, 1), tem);
7964 }
7965
7966 return x;
7967 }
7968 \f
7969 /* Given M see if it is a value that would select a field of bits
7970 within an item, but not the entire word. Return -1 if not.
7971 Otherwise, return the starting position of the field, where 0 is the
7972 low-order bit.
7973
7974 *PLEN is set to the length of the field. */
7975
7976 static int
7977 get_pos_from_mask (unsigned HOST_WIDE_INT m, unsigned HOST_WIDE_INT *plen)
7978 {
7979 /* Get the bit number of the first 1 bit from the right, -1 if none. */
7980 int pos = m ? ctz_hwi (m) : -1;
7981 int len = 0;
7982
7983 if (pos >= 0)
7984 /* Now shift off the low-order zero bits and see if we have a
7985 power of two minus 1. */
7986 len = exact_log2 ((m >> pos) + 1);
7987
7988 if (len <= 0)
7989 pos = -1;
7990
7991 *plen = len;
7992 return pos;
7993 }
7994 \f
7995 /* If X refers to a register that equals REG in value, replace these
7996 references with REG. */
7997 static rtx
7998 canon_reg_for_combine (rtx x, rtx reg)
7999 {
8000 rtx op0, op1, op2;
8001 const char *fmt;
8002 int i;
8003 bool copied;
8004
8005 enum rtx_code code = GET_CODE (x);
8006 switch (GET_RTX_CLASS (code))
8007 {
8008 case RTX_UNARY:
8009 op0 = canon_reg_for_combine (XEXP (x, 0), reg);
8010 if (op0 != XEXP (x, 0))
8011 return simplify_gen_unary (GET_CODE (x), GET_MODE (x), op0,
8012 GET_MODE (reg));
8013 break;
8014
8015 case RTX_BIN_ARITH:
8016 case RTX_COMM_ARITH:
8017 op0 = canon_reg_for_combine (XEXP (x, 0), reg);
8018 op1 = canon_reg_for_combine (XEXP (x, 1), reg);
8019 if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
8020 return simplify_gen_binary (GET_CODE (x), GET_MODE (x), op0, op1);
8021 break;
8022
8023 case RTX_COMPARE:
8024 case RTX_COMM_COMPARE:
8025 op0 = canon_reg_for_combine (XEXP (x, 0), reg);
8026 op1 = canon_reg_for_combine (XEXP (x, 1), reg);
8027 if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
8028 return simplify_gen_relational (GET_CODE (x), GET_MODE (x),
8029 GET_MODE (op0), op0, op1);
8030 break;
8031
8032 case RTX_TERNARY:
8033 case RTX_BITFIELD_OPS:
8034 op0 = canon_reg_for_combine (XEXP (x, 0), reg);
8035 op1 = canon_reg_for_combine (XEXP (x, 1), reg);
8036 op2 = canon_reg_for_combine (XEXP (x, 2), reg);
8037 if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1) || op2 != XEXP (x, 2))
8038 return simplify_gen_ternary (GET_CODE (x), GET_MODE (x),
8039 GET_MODE (op0), op0, op1, op2);
8040
8041 case RTX_OBJ:
8042 if (REG_P (x))
8043 {
8044 if (rtx_equal_p (get_last_value (reg), x)
8045 || rtx_equal_p (reg, get_last_value (x)))
8046 return reg;
8047 else
8048 break;
8049 }
8050
8051 /* fall through */
8052
8053 default:
8054 fmt = GET_RTX_FORMAT (code);
8055 copied = false;
8056 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
8057 if (fmt[i] == 'e')
8058 {
8059 rtx op = canon_reg_for_combine (XEXP (x, i), reg);
8060 if (op != XEXP (x, i))
8061 {
8062 if (!copied)
8063 {
8064 copied = true;
8065 x = copy_rtx (x);
8066 }
8067 XEXP (x, i) = op;
8068 }
8069 }
8070 else if (fmt[i] == 'E')
8071 {
8072 int j;
8073 for (j = 0; j < XVECLEN (x, i); j++)
8074 {
8075 rtx op = canon_reg_for_combine (XVECEXP (x, i, j), reg);
8076 if (op != XVECEXP (x, i, j))
8077 {
8078 if (!copied)
8079 {
8080 copied = true;
8081 x = copy_rtx (x);
8082 }
8083 XVECEXP (x, i, j) = op;
8084 }
8085 }
8086 }
8087
8088 break;
8089 }
8090
8091 return x;
8092 }
8093
8094 /* Return X converted to MODE. If the value is already truncated to
8095 MODE we can just return a subreg even though in the general case we
8096 would need an explicit truncation. */
8097
8098 static rtx
8099 gen_lowpart_or_truncate (enum machine_mode mode, rtx x)
8100 {
8101 if (!CONST_INT_P (x)
8102 && GET_MODE_SIZE (mode) < GET_MODE_SIZE (GET_MODE (x))
8103 && !TRULY_NOOP_TRUNCATION_MODES_P (mode, GET_MODE (x))
8104 && !(REG_P (x) && reg_truncated_to_mode (mode, x)))
8105 {
8106 /* Bit-cast X into an integer mode. */
8107 if (!SCALAR_INT_MODE_P (GET_MODE (x)))
8108 x = gen_lowpart (int_mode_for_mode (GET_MODE (x)), x);
8109 x = simplify_gen_unary (TRUNCATE, int_mode_for_mode (mode),
8110 x, GET_MODE (x));
8111 }
8112
8113 return gen_lowpart (mode, x);
8114 }
8115
8116 /* See if X can be simplified knowing that we will only refer to it in
8117 MODE and will only refer to those bits that are nonzero in MASK.
8118 If other bits are being computed or if masking operations are done
8119 that select a superset of the bits in MASK, they can sometimes be
8120 ignored.
8121
8122 Return a possibly simplified expression, but always convert X to
8123 MODE. If X is a CONST_INT, AND the CONST_INT with MASK.
8124
8125 If JUST_SELECT is nonzero, don't optimize by noticing that bits in MASK
8126 are all off in X. This is used when X will be complemented, by either
8127 NOT, NEG, or XOR. */
8128
8129 static rtx
8130 force_to_mode (rtx x, enum machine_mode mode, unsigned HOST_WIDE_INT mask,
8131 int just_select)
8132 {
8133 enum rtx_code code = GET_CODE (x);
8134 int next_select = just_select || code == XOR || code == NOT || code == NEG;
8135 enum machine_mode op_mode;
8136 unsigned HOST_WIDE_INT fuller_mask, nonzero;
8137 rtx op0, op1, temp;
8138
8139 /* If this is a CALL or ASM_OPERANDS, don't do anything. Some of the
8140 code below will do the wrong thing since the mode of such an
8141 expression is VOIDmode.
8142
8143 Also do nothing if X is a CLOBBER; this can happen if X was
8144 the return value from a call to gen_lowpart. */
8145 if (code == CALL || code == ASM_OPERANDS || code == CLOBBER)
8146 return x;
8147
8148 /* We want to perform the operation is its present mode unless we know
8149 that the operation is valid in MODE, in which case we do the operation
8150 in MODE. */
8151 op_mode = ((GET_MODE_CLASS (mode) == GET_MODE_CLASS (GET_MODE (x))
8152 && have_insn_for (code, mode))
8153 ? mode : GET_MODE (x));
8154
8155 /* It is not valid to do a right-shift in a narrower mode
8156 than the one it came in with. */
8157 if ((code == LSHIFTRT || code == ASHIFTRT)
8158 && GET_MODE_PRECISION (mode) < GET_MODE_PRECISION (GET_MODE (x)))
8159 op_mode = GET_MODE (x);
8160
8161 /* Truncate MASK to fit OP_MODE. */
8162 if (op_mode)
8163 mask &= GET_MODE_MASK (op_mode);
8164
8165 /* When we have an arithmetic operation, or a shift whose count we
8166 do not know, we need to assume that all bits up to the highest-order
8167 bit in MASK will be needed. This is how we form such a mask. */
8168 if (mask & ((unsigned HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT - 1)))
8169 fuller_mask = ~(unsigned HOST_WIDE_INT) 0;
8170 else
8171 fuller_mask = (((unsigned HOST_WIDE_INT) 1 << (floor_log2 (mask) + 1))
8172 - 1);
8173
8174 /* Determine what bits of X are guaranteed to be (non)zero. */
8175 nonzero = nonzero_bits (x, mode);
8176
8177 /* If none of the bits in X are needed, return a zero. */
8178 if (!just_select && (nonzero & mask) == 0 && !side_effects_p (x))
8179 x = const0_rtx;
8180
8181 /* If X is a CONST_INT, return a new one. Do this here since the
8182 test below will fail. */
8183 if (CONST_INT_P (x))
8184 {
8185 if (SCALAR_INT_MODE_P (mode))
8186 return gen_int_mode (INTVAL (x) & mask, mode);
8187 else
8188 {
8189 x = GEN_INT (INTVAL (x) & mask);
8190 return gen_lowpart_common (mode, x);
8191 }
8192 }
8193
8194 /* If X is narrower than MODE and we want all the bits in X's mode, just
8195 get X in the proper mode. */
8196 if (GET_MODE_SIZE (GET_MODE (x)) < GET_MODE_SIZE (mode)
8197 && (GET_MODE_MASK (GET_MODE (x)) & ~mask) == 0)
8198 return gen_lowpart (mode, x);
8199
8200 /* We can ignore the effect of a SUBREG if it narrows the mode or
8201 if the constant masks to zero all the bits the mode doesn't have. */
8202 if (GET_CODE (x) == SUBREG
8203 && subreg_lowpart_p (x)
8204 && ((GET_MODE_SIZE (GET_MODE (x))
8205 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
8206 || (0 == (mask
8207 & GET_MODE_MASK (GET_MODE (x))
8208 & ~GET_MODE_MASK (GET_MODE (SUBREG_REG (x)))))))
8209 return force_to_mode (SUBREG_REG (x), mode, mask, next_select);
8210
8211 /* The arithmetic simplifications here only work for scalar integer modes. */
8212 if (!SCALAR_INT_MODE_P (mode) || !SCALAR_INT_MODE_P (GET_MODE (x)))
8213 return gen_lowpart_or_truncate (mode, x);
8214
8215 switch (code)
8216 {
8217 case CLOBBER:
8218 /* If X is a (clobber (const_int)), return it since we know we are
8219 generating something that won't match. */
8220 return x;
8221
8222 case SIGN_EXTEND:
8223 case ZERO_EXTEND:
8224 case ZERO_EXTRACT:
8225 case SIGN_EXTRACT:
8226 x = expand_compound_operation (x);
8227 if (GET_CODE (x) != code)
8228 return force_to_mode (x, mode, mask, next_select);
8229 break;
8230
8231 case TRUNCATE:
8232 /* Similarly for a truncate. */
8233 return force_to_mode (XEXP (x, 0), mode, mask, next_select);
8234
8235 case AND:
8236 /* If this is an AND with a constant, convert it into an AND
8237 whose constant is the AND of that constant with MASK. If it
8238 remains an AND of MASK, delete it since it is redundant. */
8239
8240 if (CONST_INT_P (XEXP (x, 1)))
8241 {
8242 x = simplify_and_const_int (x, op_mode, XEXP (x, 0),
8243 mask & INTVAL (XEXP (x, 1)));
8244
8245 /* If X is still an AND, see if it is an AND with a mask that
8246 is just some low-order bits. If so, and it is MASK, we don't
8247 need it. */
8248
8249 if (GET_CODE (x) == AND && CONST_INT_P (XEXP (x, 1))
8250 && ((INTVAL (XEXP (x, 1)) & GET_MODE_MASK (GET_MODE (x)))
8251 == mask))
8252 x = XEXP (x, 0);
8253
8254 /* If it remains an AND, try making another AND with the bits
8255 in the mode mask that aren't in MASK turned on. If the
8256 constant in the AND is wide enough, this might make a
8257 cheaper constant. */
8258
8259 if (GET_CODE (x) == AND && CONST_INT_P (XEXP (x, 1))
8260 && GET_MODE_MASK (GET_MODE (x)) != mask
8261 && HWI_COMPUTABLE_MODE_P (GET_MODE (x)))
8262 {
8263 unsigned HOST_WIDE_INT cval
8264 = UINTVAL (XEXP (x, 1))
8265 | (GET_MODE_MASK (GET_MODE (x)) & ~mask);
8266 int width = GET_MODE_PRECISION (GET_MODE (x));
8267 rtx y;
8268
8269 /* If MODE is narrower than HOST_WIDE_INT and CVAL is a negative
8270 number, sign extend it. */
8271 if (width > 0 && width < HOST_BITS_PER_WIDE_INT
8272 && (cval & ((unsigned HOST_WIDE_INT) 1 << (width - 1))) != 0)
8273 cval |= (unsigned HOST_WIDE_INT) -1 << width;
8274
8275 y = simplify_gen_binary (AND, GET_MODE (x),
8276 XEXP (x, 0), GEN_INT (cval));
8277 if (set_src_cost (y, optimize_this_for_speed_p)
8278 < set_src_cost (x, optimize_this_for_speed_p))
8279 x = y;
8280 }
8281
8282 break;
8283 }
8284
8285 goto binop;
8286
8287 case PLUS:
8288 /* In (and (plus FOO C1) M), if M is a mask that just turns off
8289 low-order bits (as in an alignment operation) and FOO is already
8290 aligned to that boundary, mask C1 to that boundary as well.
8291 This may eliminate that PLUS and, later, the AND. */
8292
8293 {
8294 unsigned int width = GET_MODE_PRECISION (mode);
8295 unsigned HOST_WIDE_INT smask = mask;
8296
8297 /* If MODE is narrower than HOST_WIDE_INT and mask is a negative
8298 number, sign extend it. */
8299
8300 if (width < HOST_BITS_PER_WIDE_INT
8301 && (smask & ((unsigned HOST_WIDE_INT) 1 << (width - 1))) != 0)
8302 smask |= (unsigned HOST_WIDE_INT) (-1) << width;
8303
8304 if (CONST_INT_P (XEXP (x, 1))
8305 && exact_log2 (- smask) >= 0
8306 && (nonzero_bits (XEXP (x, 0), mode) & ~smask) == 0
8307 && (INTVAL (XEXP (x, 1)) & ~smask) != 0)
8308 return force_to_mode (plus_constant (GET_MODE (x), XEXP (x, 0),
8309 (INTVAL (XEXP (x, 1)) & smask)),
8310 mode, smask, next_select);
8311 }
8312
8313 /* ... fall through ... */
8314
8315 case MULT:
8316 /* For PLUS, MINUS and MULT, we need any bits less significant than the
8317 most significant bit in MASK since carries from those bits will
8318 affect the bits we are interested in. */
8319 mask = fuller_mask;
8320 goto binop;
8321
8322 case MINUS:
8323 /* If X is (minus C Y) where C's least set bit is larger than any bit
8324 in the mask, then we may replace with (neg Y). */
8325 if (CONST_INT_P (XEXP (x, 0))
8326 && (((unsigned HOST_WIDE_INT) (INTVAL (XEXP (x, 0))
8327 & -INTVAL (XEXP (x, 0))))
8328 > mask))
8329 {
8330 x = simplify_gen_unary (NEG, GET_MODE (x), XEXP (x, 1),
8331 GET_MODE (x));
8332 return force_to_mode (x, mode, mask, next_select);
8333 }
8334
8335 /* Similarly, if C contains every bit in the fuller_mask, then we may
8336 replace with (not Y). */
8337 if (CONST_INT_P (XEXP (x, 0))
8338 && ((UINTVAL (XEXP (x, 0)) | fuller_mask) == UINTVAL (XEXP (x, 0))))
8339 {
8340 x = simplify_gen_unary (NOT, GET_MODE (x),
8341 XEXP (x, 1), GET_MODE (x));
8342 return force_to_mode (x, mode, mask, next_select);
8343 }
8344
8345 mask = fuller_mask;
8346 goto binop;
8347
8348 case IOR:
8349 case XOR:
8350 /* If X is (ior (lshiftrt FOO C1) C2), try to commute the IOR and
8351 LSHIFTRT so we end up with an (and (lshiftrt (ior ...) ...) ...)
8352 operation which may be a bitfield extraction. Ensure that the
8353 constant we form is not wider than the mode of X. */
8354
8355 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
8356 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
8357 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
8358 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT
8359 && CONST_INT_P (XEXP (x, 1))
8360 && ((INTVAL (XEXP (XEXP (x, 0), 1))
8361 + floor_log2 (INTVAL (XEXP (x, 1))))
8362 < GET_MODE_PRECISION (GET_MODE (x)))
8363 && (UINTVAL (XEXP (x, 1))
8364 & ~nonzero_bits (XEXP (x, 0), GET_MODE (x))) == 0)
8365 {
8366 temp = GEN_INT ((INTVAL (XEXP (x, 1)) & mask)
8367 << INTVAL (XEXP (XEXP (x, 0), 1)));
8368 temp = simplify_gen_binary (GET_CODE (x), GET_MODE (x),
8369 XEXP (XEXP (x, 0), 0), temp);
8370 x = simplify_gen_binary (LSHIFTRT, GET_MODE (x), temp,
8371 XEXP (XEXP (x, 0), 1));
8372 return force_to_mode (x, mode, mask, next_select);
8373 }
8374
8375 binop:
8376 /* For most binary operations, just propagate into the operation and
8377 change the mode if we have an operation of that mode. */
8378
8379 op0 = force_to_mode (XEXP (x, 0), mode, mask, next_select);
8380 op1 = force_to_mode (XEXP (x, 1), mode, mask, next_select);
8381
8382 /* If we ended up truncating both operands, truncate the result of the
8383 operation instead. */
8384 if (GET_CODE (op0) == TRUNCATE
8385 && GET_CODE (op1) == TRUNCATE)
8386 {
8387 op0 = XEXP (op0, 0);
8388 op1 = XEXP (op1, 0);
8389 }
8390
8391 op0 = gen_lowpart_or_truncate (op_mode, op0);
8392 op1 = gen_lowpart_or_truncate (op_mode, op1);
8393
8394 if (op_mode != GET_MODE (x) || op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
8395 x = simplify_gen_binary (code, op_mode, op0, op1);
8396 break;
8397
8398 case ASHIFT:
8399 /* For left shifts, do the same, but just for the first operand.
8400 However, we cannot do anything with shifts where we cannot
8401 guarantee that the counts are smaller than the size of the mode
8402 because such a count will have a different meaning in a
8403 wider mode. */
8404
8405 if (! (CONST_INT_P (XEXP (x, 1))
8406 && INTVAL (XEXP (x, 1)) >= 0
8407 && INTVAL (XEXP (x, 1)) < GET_MODE_PRECISION (mode))
8408 && ! (GET_MODE (XEXP (x, 1)) != VOIDmode
8409 && (nonzero_bits (XEXP (x, 1), GET_MODE (XEXP (x, 1)))
8410 < (unsigned HOST_WIDE_INT) GET_MODE_PRECISION (mode))))
8411 break;
8412
8413 /* If the shift count is a constant and we can do arithmetic in
8414 the mode of the shift, refine which bits we need. Otherwise, use the
8415 conservative form of the mask. */
8416 if (CONST_INT_P (XEXP (x, 1))
8417 && INTVAL (XEXP (x, 1)) >= 0
8418 && INTVAL (XEXP (x, 1)) < GET_MODE_PRECISION (op_mode)
8419 && HWI_COMPUTABLE_MODE_P (op_mode))
8420 mask >>= INTVAL (XEXP (x, 1));
8421 else
8422 mask = fuller_mask;
8423
8424 op0 = gen_lowpart_or_truncate (op_mode,
8425 force_to_mode (XEXP (x, 0), op_mode,
8426 mask, next_select));
8427
8428 if (op_mode != GET_MODE (x) || op0 != XEXP (x, 0))
8429 x = simplify_gen_binary (code, op_mode, op0, XEXP (x, 1));
8430 break;
8431
8432 case LSHIFTRT:
8433 /* Here we can only do something if the shift count is a constant,
8434 this shift constant is valid for the host, and we can do arithmetic
8435 in OP_MODE. */
8436
8437 if (CONST_INT_P (XEXP (x, 1))
8438 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT
8439 && HWI_COMPUTABLE_MODE_P (op_mode))
8440 {
8441 rtx inner = XEXP (x, 0);
8442 unsigned HOST_WIDE_INT inner_mask;
8443
8444 /* Select the mask of the bits we need for the shift operand. */
8445 inner_mask = mask << INTVAL (XEXP (x, 1));
8446
8447 /* We can only change the mode of the shift if we can do arithmetic
8448 in the mode of the shift and INNER_MASK is no wider than the
8449 width of X's mode. */
8450 if ((inner_mask & ~GET_MODE_MASK (GET_MODE (x))) != 0)
8451 op_mode = GET_MODE (x);
8452
8453 inner = force_to_mode (inner, op_mode, inner_mask, next_select);
8454
8455 if (GET_MODE (x) != op_mode || inner != XEXP (x, 0))
8456 x = simplify_gen_binary (LSHIFTRT, op_mode, inner, XEXP (x, 1));
8457 }
8458
8459 /* If we have (and (lshiftrt FOO C1) C2) where the combination of the
8460 shift and AND produces only copies of the sign bit (C2 is one less
8461 than a power of two), we can do this with just a shift. */
8462
8463 if (GET_CODE (x) == LSHIFTRT
8464 && CONST_INT_P (XEXP (x, 1))
8465 /* The shift puts one of the sign bit copies in the least significant
8466 bit. */
8467 && ((INTVAL (XEXP (x, 1))
8468 + num_sign_bit_copies (XEXP (x, 0), GET_MODE (XEXP (x, 0))))
8469 >= GET_MODE_PRECISION (GET_MODE (x)))
8470 && exact_log2 (mask + 1) >= 0
8471 /* Number of bits left after the shift must be more than the mask
8472 needs. */
8473 && ((INTVAL (XEXP (x, 1)) + exact_log2 (mask + 1))
8474 <= GET_MODE_PRECISION (GET_MODE (x)))
8475 /* Must be more sign bit copies than the mask needs. */
8476 && ((int) num_sign_bit_copies (XEXP (x, 0), GET_MODE (XEXP (x, 0)))
8477 >= exact_log2 (mask + 1)))
8478 x = simplify_gen_binary (LSHIFTRT, GET_MODE (x), XEXP (x, 0),
8479 GEN_INT (GET_MODE_PRECISION (GET_MODE (x))
8480 - exact_log2 (mask + 1)));
8481
8482 goto shiftrt;
8483
8484 case ASHIFTRT:
8485 /* If we are just looking for the sign bit, we don't need this shift at
8486 all, even if it has a variable count. */
8487 if (val_signbit_p (GET_MODE (x), mask))
8488 return force_to_mode (XEXP (x, 0), mode, mask, next_select);
8489
8490 /* If this is a shift by a constant, get a mask that contains those bits
8491 that are not copies of the sign bit. We then have two cases: If
8492 MASK only includes those bits, this can be a logical shift, which may
8493 allow simplifications. If MASK is a single-bit field not within
8494 those bits, we are requesting a copy of the sign bit and hence can
8495 shift the sign bit to the appropriate location. */
8496
8497 if (CONST_INT_P (XEXP (x, 1)) && INTVAL (XEXP (x, 1)) >= 0
8498 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT)
8499 {
8500 int i;
8501
8502 /* If the considered data is wider than HOST_WIDE_INT, we can't
8503 represent a mask for all its bits in a single scalar.
8504 But we only care about the lower bits, so calculate these. */
8505
8506 if (GET_MODE_PRECISION (GET_MODE (x)) > HOST_BITS_PER_WIDE_INT)
8507 {
8508 nonzero = ~(unsigned HOST_WIDE_INT) 0;
8509
8510 /* GET_MODE_PRECISION (GET_MODE (x)) - INTVAL (XEXP (x, 1))
8511 is the number of bits a full-width mask would have set.
8512 We need only shift if these are fewer than nonzero can
8513 hold. If not, we must keep all bits set in nonzero. */
8514
8515 if (GET_MODE_PRECISION (GET_MODE (x)) - INTVAL (XEXP (x, 1))
8516 < HOST_BITS_PER_WIDE_INT)
8517 nonzero >>= INTVAL (XEXP (x, 1))
8518 + HOST_BITS_PER_WIDE_INT
8519 - GET_MODE_PRECISION (GET_MODE (x)) ;
8520 }
8521 else
8522 {
8523 nonzero = GET_MODE_MASK (GET_MODE (x));
8524 nonzero >>= INTVAL (XEXP (x, 1));
8525 }
8526
8527 if ((mask & ~nonzero) == 0)
8528 {
8529 x = simplify_shift_const (NULL_RTX, LSHIFTRT, GET_MODE (x),
8530 XEXP (x, 0), INTVAL (XEXP (x, 1)));
8531 if (GET_CODE (x) != ASHIFTRT)
8532 return force_to_mode (x, mode, mask, next_select);
8533 }
8534
8535 else if ((i = exact_log2 (mask)) >= 0)
8536 {
8537 x = simplify_shift_const
8538 (NULL_RTX, LSHIFTRT, GET_MODE (x), XEXP (x, 0),
8539 GET_MODE_PRECISION (GET_MODE (x)) - 1 - i);
8540
8541 if (GET_CODE (x) != ASHIFTRT)
8542 return force_to_mode (x, mode, mask, next_select);
8543 }
8544 }
8545
8546 /* If MASK is 1, convert this to an LSHIFTRT. This can be done
8547 even if the shift count isn't a constant. */
8548 if (mask == 1)
8549 x = simplify_gen_binary (LSHIFTRT, GET_MODE (x),
8550 XEXP (x, 0), XEXP (x, 1));
8551
8552 shiftrt:
8553
8554 /* If this is a zero- or sign-extension operation that just affects bits
8555 we don't care about, remove it. Be sure the call above returned
8556 something that is still a shift. */
8557
8558 if ((GET_CODE (x) == LSHIFTRT || GET_CODE (x) == ASHIFTRT)
8559 && CONST_INT_P (XEXP (x, 1))
8560 && INTVAL (XEXP (x, 1)) >= 0
8561 && (INTVAL (XEXP (x, 1))
8562 <= GET_MODE_PRECISION (GET_MODE (x)) - (floor_log2 (mask) + 1))
8563 && GET_CODE (XEXP (x, 0)) == ASHIFT
8564 && XEXP (XEXP (x, 0), 1) == XEXP (x, 1))
8565 return force_to_mode (XEXP (XEXP (x, 0), 0), mode, mask,
8566 next_select);
8567
8568 break;
8569
8570 case ROTATE:
8571 case ROTATERT:
8572 /* If the shift count is constant and we can do computations
8573 in the mode of X, compute where the bits we care about are.
8574 Otherwise, we can't do anything. Don't change the mode of
8575 the shift or propagate MODE into the shift, though. */
8576 if (CONST_INT_P (XEXP (x, 1))
8577 && INTVAL (XEXP (x, 1)) >= 0)
8578 {
8579 temp = simplify_binary_operation (code == ROTATE ? ROTATERT : ROTATE,
8580 GET_MODE (x), GEN_INT (mask),
8581 XEXP (x, 1));
8582 if (temp && CONST_INT_P (temp))
8583 SUBST (XEXP (x, 0),
8584 force_to_mode (XEXP (x, 0), GET_MODE (x),
8585 INTVAL (temp), next_select));
8586 }
8587 break;
8588
8589 case NEG:
8590 /* If we just want the low-order bit, the NEG isn't needed since it
8591 won't change the low-order bit. */
8592 if (mask == 1)
8593 return force_to_mode (XEXP (x, 0), mode, mask, just_select);
8594
8595 /* We need any bits less significant than the most significant bit in
8596 MASK since carries from those bits will affect the bits we are
8597 interested in. */
8598 mask = fuller_mask;
8599 goto unop;
8600
8601 case NOT:
8602 /* (not FOO) is (xor FOO CONST), so if FOO is an LSHIFTRT, we can do the
8603 same as the XOR case above. Ensure that the constant we form is not
8604 wider than the mode of X. */
8605
8606 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
8607 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
8608 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
8609 && (INTVAL (XEXP (XEXP (x, 0), 1)) + floor_log2 (mask)
8610 < GET_MODE_PRECISION (GET_MODE (x)))
8611 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT)
8612 {
8613 temp = gen_int_mode (mask << INTVAL (XEXP (XEXP (x, 0), 1)),
8614 GET_MODE (x));
8615 temp = simplify_gen_binary (XOR, GET_MODE (x),
8616 XEXP (XEXP (x, 0), 0), temp);
8617 x = simplify_gen_binary (LSHIFTRT, GET_MODE (x),
8618 temp, XEXP (XEXP (x, 0), 1));
8619
8620 return force_to_mode (x, mode, mask, next_select);
8621 }
8622
8623 /* (and (not FOO) CONST) is (not (or FOO (not CONST))), so we must
8624 use the full mask inside the NOT. */
8625 mask = fuller_mask;
8626
8627 unop:
8628 op0 = gen_lowpart_or_truncate (op_mode,
8629 force_to_mode (XEXP (x, 0), mode, mask,
8630 next_select));
8631 if (op_mode != GET_MODE (x) || op0 != XEXP (x, 0))
8632 x = simplify_gen_unary (code, op_mode, op0, op_mode);
8633 break;
8634
8635 case NE:
8636 /* (and (ne FOO 0) CONST) can be (and FOO CONST) if CONST is included
8637 in STORE_FLAG_VALUE and FOO has a single bit that might be nonzero,
8638 which is equal to STORE_FLAG_VALUE. */
8639 if ((mask & ~STORE_FLAG_VALUE) == 0
8640 && XEXP (x, 1) == const0_rtx
8641 && GET_MODE (XEXP (x, 0)) == mode
8642 && exact_log2 (nonzero_bits (XEXP (x, 0), mode)) >= 0
8643 && (nonzero_bits (XEXP (x, 0), mode)
8644 == (unsigned HOST_WIDE_INT) STORE_FLAG_VALUE))
8645 return force_to_mode (XEXP (x, 0), mode, mask, next_select);
8646
8647 break;
8648
8649 case IF_THEN_ELSE:
8650 /* We have no way of knowing if the IF_THEN_ELSE can itself be
8651 written in a narrower mode. We play it safe and do not do so. */
8652
8653 SUBST (XEXP (x, 1),
8654 gen_lowpart_or_truncate (GET_MODE (x),
8655 force_to_mode (XEXP (x, 1), mode,
8656 mask, next_select)));
8657 SUBST (XEXP (x, 2),
8658 gen_lowpart_or_truncate (GET_MODE (x),
8659 force_to_mode (XEXP (x, 2), mode,
8660 mask, next_select)));
8661 break;
8662
8663 default:
8664 break;
8665 }
8666
8667 /* Ensure we return a value of the proper mode. */
8668 return gen_lowpart_or_truncate (mode, x);
8669 }
8670 \f
8671 /* Return nonzero if X is an expression that has one of two values depending on
8672 whether some other value is zero or nonzero. In that case, we return the
8673 value that is being tested, *PTRUE is set to the value if the rtx being
8674 returned has a nonzero value, and *PFALSE is set to the other alternative.
8675
8676 If we return zero, we set *PTRUE and *PFALSE to X. */
8677
8678 static rtx
8679 if_then_else_cond (rtx x, rtx *ptrue, rtx *pfalse)
8680 {
8681 enum machine_mode mode = GET_MODE (x);
8682 enum rtx_code code = GET_CODE (x);
8683 rtx cond0, cond1, true0, true1, false0, false1;
8684 unsigned HOST_WIDE_INT nz;
8685
8686 /* If we are comparing a value against zero, we are done. */
8687 if ((code == NE || code == EQ)
8688 && XEXP (x, 1) == const0_rtx)
8689 {
8690 *ptrue = (code == NE) ? const_true_rtx : const0_rtx;
8691 *pfalse = (code == NE) ? const0_rtx : const_true_rtx;
8692 return XEXP (x, 0);
8693 }
8694
8695 /* If this is a unary operation whose operand has one of two values, apply
8696 our opcode to compute those values. */
8697 else if (UNARY_P (x)
8698 && (cond0 = if_then_else_cond (XEXP (x, 0), &true0, &false0)) != 0)
8699 {
8700 *ptrue = simplify_gen_unary (code, mode, true0, GET_MODE (XEXP (x, 0)));
8701 *pfalse = simplify_gen_unary (code, mode, false0,
8702 GET_MODE (XEXP (x, 0)));
8703 return cond0;
8704 }
8705
8706 /* If this is a COMPARE, do nothing, since the IF_THEN_ELSE we would
8707 make can't possibly match and would suppress other optimizations. */
8708 else if (code == COMPARE)
8709 ;
8710
8711 /* If this is a binary operation, see if either side has only one of two
8712 values. If either one does or if both do and they are conditional on
8713 the same value, compute the new true and false values. */
8714 else if (BINARY_P (x))
8715 {
8716 cond0 = if_then_else_cond (XEXP (x, 0), &true0, &false0);
8717 cond1 = if_then_else_cond (XEXP (x, 1), &true1, &false1);
8718
8719 if ((cond0 != 0 || cond1 != 0)
8720 && ! (cond0 != 0 && cond1 != 0 && ! rtx_equal_p (cond0, cond1)))
8721 {
8722 /* If if_then_else_cond returned zero, then true/false are the
8723 same rtl. We must copy one of them to prevent invalid rtl
8724 sharing. */
8725 if (cond0 == 0)
8726 true0 = copy_rtx (true0);
8727 else if (cond1 == 0)
8728 true1 = copy_rtx (true1);
8729
8730 if (COMPARISON_P (x))
8731 {
8732 *ptrue = simplify_gen_relational (code, mode, VOIDmode,
8733 true0, true1);
8734 *pfalse = simplify_gen_relational (code, mode, VOIDmode,
8735 false0, false1);
8736 }
8737 else
8738 {
8739 *ptrue = simplify_gen_binary (code, mode, true0, true1);
8740 *pfalse = simplify_gen_binary (code, mode, false0, false1);
8741 }
8742
8743 return cond0 ? cond0 : cond1;
8744 }
8745
8746 /* See if we have PLUS, IOR, XOR, MINUS or UMAX, where one of the
8747 operands is zero when the other is nonzero, and vice-versa,
8748 and STORE_FLAG_VALUE is 1 or -1. */
8749
8750 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
8751 && (code == PLUS || code == IOR || code == XOR || code == MINUS
8752 || code == UMAX)
8753 && GET_CODE (XEXP (x, 0)) == MULT && GET_CODE (XEXP (x, 1)) == MULT)
8754 {
8755 rtx op0 = XEXP (XEXP (x, 0), 1);
8756 rtx op1 = XEXP (XEXP (x, 1), 1);
8757
8758 cond0 = XEXP (XEXP (x, 0), 0);
8759 cond1 = XEXP (XEXP (x, 1), 0);
8760
8761 if (COMPARISON_P (cond0)
8762 && COMPARISON_P (cond1)
8763 && ((GET_CODE (cond0) == reversed_comparison_code (cond1, NULL)
8764 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 0))
8765 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 1)))
8766 || ((swap_condition (GET_CODE (cond0))
8767 == reversed_comparison_code (cond1, NULL))
8768 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 1))
8769 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 0))))
8770 && ! side_effects_p (x))
8771 {
8772 *ptrue = simplify_gen_binary (MULT, mode, op0, const_true_rtx);
8773 *pfalse = simplify_gen_binary (MULT, mode,
8774 (code == MINUS
8775 ? simplify_gen_unary (NEG, mode,
8776 op1, mode)
8777 : op1),
8778 const_true_rtx);
8779 return cond0;
8780 }
8781 }
8782
8783 /* Similarly for MULT, AND and UMIN, except that for these the result
8784 is always zero. */
8785 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
8786 && (code == MULT || code == AND || code == UMIN)
8787 && GET_CODE (XEXP (x, 0)) == MULT && GET_CODE (XEXP (x, 1)) == MULT)
8788 {
8789 cond0 = XEXP (XEXP (x, 0), 0);
8790 cond1 = XEXP (XEXP (x, 1), 0);
8791
8792 if (COMPARISON_P (cond0)
8793 && COMPARISON_P (cond1)
8794 && ((GET_CODE (cond0) == reversed_comparison_code (cond1, NULL)
8795 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 0))
8796 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 1)))
8797 || ((swap_condition (GET_CODE (cond0))
8798 == reversed_comparison_code (cond1, NULL))
8799 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 1))
8800 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 0))))
8801 && ! side_effects_p (x))
8802 {
8803 *ptrue = *pfalse = const0_rtx;
8804 return cond0;
8805 }
8806 }
8807 }
8808
8809 else if (code == IF_THEN_ELSE)
8810 {
8811 /* If we have IF_THEN_ELSE already, extract the condition and
8812 canonicalize it if it is NE or EQ. */
8813 cond0 = XEXP (x, 0);
8814 *ptrue = XEXP (x, 1), *pfalse = XEXP (x, 2);
8815 if (GET_CODE (cond0) == NE && XEXP (cond0, 1) == const0_rtx)
8816 return XEXP (cond0, 0);
8817 else if (GET_CODE (cond0) == EQ && XEXP (cond0, 1) == const0_rtx)
8818 {
8819 *ptrue = XEXP (x, 2), *pfalse = XEXP (x, 1);
8820 return XEXP (cond0, 0);
8821 }
8822 else
8823 return cond0;
8824 }
8825
8826 /* If X is a SUBREG, we can narrow both the true and false values
8827 if the inner expression, if there is a condition. */
8828 else if (code == SUBREG
8829 && 0 != (cond0 = if_then_else_cond (SUBREG_REG (x),
8830 &true0, &false0)))
8831 {
8832 true0 = simplify_gen_subreg (mode, true0,
8833 GET_MODE (SUBREG_REG (x)), SUBREG_BYTE (x));
8834 false0 = simplify_gen_subreg (mode, false0,
8835 GET_MODE (SUBREG_REG (x)), SUBREG_BYTE (x));
8836 if (true0 && false0)
8837 {
8838 *ptrue = true0;
8839 *pfalse = false0;
8840 return cond0;
8841 }
8842 }
8843
8844 /* If X is a constant, this isn't special and will cause confusions
8845 if we treat it as such. Likewise if it is equivalent to a constant. */
8846 else if (CONSTANT_P (x)
8847 || ((cond0 = get_last_value (x)) != 0 && CONSTANT_P (cond0)))
8848 ;
8849
8850 /* If we're in BImode, canonicalize on 0 and STORE_FLAG_VALUE, as that
8851 will be least confusing to the rest of the compiler. */
8852 else if (mode == BImode)
8853 {
8854 *ptrue = GEN_INT (STORE_FLAG_VALUE), *pfalse = const0_rtx;
8855 return x;
8856 }
8857
8858 /* If X is known to be either 0 or -1, those are the true and
8859 false values when testing X. */
8860 else if (x == constm1_rtx || x == const0_rtx
8861 || (mode != VOIDmode
8862 && num_sign_bit_copies (x, mode) == GET_MODE_PRECISION (mode)))
8863 {
8864 *ptrue = constm1_rtx, *pfalse = const0_rtx;
8865 return x;
8866 }
8867
8868 /* Likewise for 0 or a single bit. */
8869 else if (HWI_COMPUTABLE_MODE_P (mode)
8870 && exact_log2 (nz = nonzero_bits (x, mode)) >= 0)
8871 {
8872 *ptrue = gen_int_mode (nz, mode), *pfalse = const0_rtx;
8873 return x;
8874 }
8875
8876 /* Otherwise fail; show no condition with true and false values the same. */
8877 *ptrue = *pfalse = x;
8878 return 0;
8879 }
8880 \f
8881 /* Return the value of expression X given the fact that condition COND
8882 is known to be true when applied to REG as its first operand and VAL
8883 as its second. X is known to not be shared and so can be modified in
8884 place.
8885
8886 We only handle the simplest cases, and specifically those cases that
8887 arise with IF_THEN_ELSE expressions. */
8888
8889 static rtx
8890 known_cond (rtx x, enum rtx_code cond, rtx reg, rtx val)
8891 {
8892 enum rtx_code code = GET_CODE (x);
8893 rtx temp;
8894 const char *fmt;
8895 int i, j;
8896
8897 if (side_effects_p (x))
8898 return x;
8899
8900 /* If either operand of the condition is a floating point value,
8901 then we have to avoid collapsing an EQ comparison. */
8902 if (cond == EQ
8903 && rtx_equal_p (x, reg)
8904 && ! FLOAT_MODE_P (GET_MODE (x))
8905 && ! FLOAT_MODE_P (GET_MODE (val)))
8906 return val;
8907
8908 if (cond == UNEQ && rtx_equal_p (x, reg))
8909 return val;
8910
8911 /* If X is (abs REG) and we know something about REG's relationship
8912 with zero, we may be able to simplify this. */
8913
8914 if (code == ABS && rtx_equal_p (XEXP (x, 0), reg) && val == const0_rtx)
8915 switch (cond)
8916 {
8917 case GE: case GT: case EQ:
8918 return XEXP (x, 0);
8919 case LT: case LE:
8920 return simplify_gen_unary (NEG, GET_MODE (XEXP (x, 0)),
8921 XEXP (x, 0),
8922 GET_MODE (XEXP (x, 0)));
8923 default:
8924 break;
8925 }
8926
8927 /* The only other cases we handle are MIN, MAX, and comparisons if the
8928 operands are the same as REG and VAL. */
8929
8930 else if (COMPARISON_P (x) || COMMUTATIVE_ARITH_P (x))
8931 {
8932 if (rtx_equal_p (XEXP (x, 0), val))
8933 cond = swap_condition (cond), temp = val, val = reg, reg = temp;
8934
8935 if (rtx_equal_p (XEXP (x, 0), reg) && rtx_equal_p (XEXP (x, 1), val))
8936 {
8937 if (COMPARISON_P (x))
8938 {
8939 if (comparison_dominates_p (cond, code))
8940 return const_true_rtx;
8941
8942 code = reversed_comparison_code (x, NULL);
8943 if (code != UNKNOWN
8944 && comparison_dominates_p (cond, code))
8945 return const0_rtx;
8946 else
8947 return x;
8948 }
8949 else if (code == SMAX || code == SMIN
8950 || code == UMIN || code == UMAX)
8951 {
8952 int unsignedp = (code == UMIN || code == UMAX);
8953
8954 /* Do not reverse the condition when it is NE or EQ.
8955 This is because we cannot conclude anything about
8956 the value of 'SMAX (x, y)' when x is not equal to y,
8957 but we can when x equals y. */
8958 if ((code == SMAX || code == UMAX)
8959 && ! (cond == EQ || cond == NE))
8960 cond = reverse_condition (cond);
8961
8962 switch (cond)
8963 {
8964 case GE: case GT:
8965 return unsignedp ? x : XEXP (x, 1);
8966 case LE: case LT:
8967 return unsignedp ? x : XEXP (x, 0);
8968 case GEU: case GTU:
8969 return unsignedp ? XEXP (x, 1) : x;
8970 case LEU: case LTU:
8971 return unsignedp ? XEXP (x, 0) : x;
8972 default:
8973 break;
8974 }
8975 }
8976 }
8977 }
8978 else if (code == SUBREG)
8979 {
8980 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (x));
8981 rtx new_rtx, r = known_cond (SUBREG_REG (x), cond, reg, val);
8982
8983 if (SUBREG_REG (x) != r)
8984 {
8985 /* We must simplify subreg here, before we lose track of the
8986 original inner_mode. */
8987 new_rtx = simplify_subreg (GET_MODE (x), r,
8988 inner_mode, SUBREG_BYTE (x));
8989 if (new_rtx)
8990 return new_rtx;
8991 else
8992 SUBST (SUBREG_REG (x), r);
8993 }
8994
8995 return x;
8996 }
8997 /* We don't have to handle SIGN_EXTEND here, because even in the
8998 case of replacing something with a modeless CONST_INT, a
8999 CONST_INT is already (supposed to be) a valid sign extension for
9000 its narrower mode, which implies it's already properly
9001 sign-extended for the wider mode. Now, for ZERO_EXTEND, the
9002 story is different. */
9003 else if (code == ZERO_EXTEND)
9004 {
9005 enum machine_mode inner_mode = GET_MODE (XEXP (x, 0));
9006 rtx new_rtx, r = known_cond (XEXP (x, 0), cond, reg, val);
9007
9008 if (XEXP (x, 0) != r)
9009 {
9010 /* We must simplify the zero_extend here, before we lose
9011 track of the original inner_mode. */
9012 new_rtx = simplify_unary_operation (ZERO_EXTEND, GET_MODE (x),
9013 r, inner_mode);
9014 if (new_rtx)
9015 return new_rtx;
9016 else
9017 SUBST (XEXP (x, 0), r);
9018 }
9019
9020 return x;
9021 }
9022
9023 fmt = GET_RTX_FORMAT (code);
9024 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
9025 {
9026 if (fmt[i] == 'e')
9027 SUBST (XEXP (x, i), known_cond (XEXP (x, i), cond, reg, val));
9028 else if (fmt[i] == 'E')
9029 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
9030 SUBST (XVECEXP (x, i, j), known_cond (XVECEXP (x, i, j),
9031 cond, reg, val));
9032 }
9033
9034 return x;
9035 }
9036 \f
9037 /* See if X and Y are equal for the purposes of seeing if we can rewrite an
9038 assignment as a field assignment. */
9039
9040 static int
9041 rtx_equal_for_field_assignment_p (rtx x, rtx y)
9042 {
9043 if (x == y || rtx_equal_p (x, y))
9044 return 1;
9045
9046 if (x == 0 || y == 0 || GET_MODE (x) != GET_MODE (y))
9047 return 0;
9048
9049 /* Check for a paradoxical SUBREG of a MEM compared with the MEM.
9050 Note that all SUBREGs of MEM are paradoxical; otherwise they
9051 would have been rewritten. */
9052 if (MEM_P (x) && GET_CODE (y) == SUBREG
9053 && MEM_P (SUBREG_REG (y))
9054 && rtx_equal_p (SUBREG_REG (y),
9055 gen_lowpart (GET_MODE (SUBREG_REG (y)), x)))
9056 return 1;
9057
9058 if (MEM_P (y) && GET_CODE (x) == SUBREG
9059 && MEM_P (SUBREG_REG (x))
9060 && rtx_equal_p (SUBREG_REG (x),
9061 gen_lowpart (GET_MODE (SUBREG_REG (x)), y)))
9062 return 1;
9063
9064 /* We used to see if get_last_value of X and Y were the same but that's
9065 not correct. In one direction, we'll cause the assignment to have
9066 the wrong destination and in the case, we'll import a register into this
9067 insn that might have already have been dead. So fail if none of the
9068 above cases are true. */
9069 return 0;
9070 }
9071 \f
9072 /* See if X, a SET operation, can be rewritten as a bit-field assignment.
9073 Return that assignment if so.
9074
9075 We only handle the most common cases. */
9076
9077 static rtx
9078 make_field_assignment (rtx x)
9079 {
9080 rtx dest = SET_DEST (x);
9081 rtx src = SET_SRC (x);
9082 rtx assign;
9083 rtx rhs, lhs;
9084 HOST_WIDE_INT c1;
9085 HOST_WIDE_INT pos;
9086 unsigned HOST_WIDE_INT len;
9087 rtx other;
9088 enum machine_mode mode;
9089
9090 /* If SRC was (and (not (ashift (const_int 1) POS)) DEST), this is
9091 a clear of a one-bit field. We will have changed it to
9092 (and (rotate (const_int -2) POS) DEST), so check for that. Also check
9093 for a SUBREG. */
9094
9095 if (GET_CODE (src) == AND && GET_CODE (XEXP (src, 0)) == ROTATE
9096 && CONST_INT_P (XEXP (XEXP (src, 0), 0))
9097 && INTVAL (XEXP (XEXP (src, 0), 0)) == -2
9098 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
9099 {
9100 assign = make_extraction (VOIDmode, dest, 0, XEXP (XEXP (src, 0), 1),
9101 1, 1, 1, 0);
9102 if (assign != 0)
9103 return gen_rtx_SET (VOIDmode, assign, const0_rtx);
9104 return x;
9105 }
9106
9107 if (GET_CODE (src) == AND && GET_CODE (XEXP (src, 0)) == SUBREG
9108 && subreg_lowpart_p (XEXP (src, 0))
9109 && (GET_MODE_SIZE (GET_MODE (XEXP (src, 0)))
9110 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (XEXP (src, 0)))))
9111 && GET_CODE (SUBREG_REG (XEXP (src, 0))) == ROTATE
9112 && CONST_INT_P (XEXP (SUBREG_REG (XEXP (src, 0)), 0))
9113 && INTVAL (XEXP (SUBREG_REG (XEXP (src, 0)), 0)) == -2
9114 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
9115 {
9116 assign = make_extraction (VOIDmode, dest, 0,
9117 XEXP (SUBREG_REG (XEXP (src, 0)), 1),
9118 1, 1, 1, 0);
9119 if (assign != 0)
9120 return gen_rtx_SET (VOIDmode, assign, const0_rtx);
9121 return x;
9122 }
9123
9124 /* If SRC is (ior (ashift (const_int 1) POS) DEST), this is a set of a
9125 one-bit field. */
9126 if (GET_CODE (src) == IOR && GET_CODE (XEXP (src, 0)) == ASHIFT
9127 && XEXP (XEXP (src, 0), 0) == const1_rtx
9128 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
9129 {
9130 assign = make_extraction (VOIDmode, dest, 0, XEXP (XEXP (src, 0), 1),
9131 1, 1, 1, 0);
9132 if (assign != 0)
9133 return gen_rtx_SET (VOIDmode, assign, const1_rtx);
9134 return x;
9135 }
9136
9137 /* If DEST is already a field assignment, i.e. ZERO_EXTRACT, and the
9138 SRC is an AND with all bits of that field set, then we can discard
9139 the AND. */
9140 if (GET_CODE (dest) == ZERO_EXTRACT
9141 && CONST_INT_P (XEXP (dest, 1))
9142 && GET_CODE (src) == AND
9143 && CONST_INT_P (XEXP (src, 1)))
9144 {
9145 HOST_WIDE_INT width = INTVAL (XEXP (dest, 1));
9146 unsigned HOST_WIDE_INT and_mask = INTVAL (XEXP (src, 1));
9147 unsigned HOST_WIDE_INT ze_mask;
9148
9149 if (width >= HOST_BITS_PER_WIDE_INT)
9150 ze_mask = -1;
9151 else
9152 ze_mask = ((unsigned HOST_WIDE_INT)1 << width) - 1;
9153
9154 /* Complete overlap. We can remove the source AND. */
9155 if ((and_mask & ze_mask) == ze_mask)
9156 return gen_rtx_SET (VOIDmode, dest, XEXP (src, 0));
9157
9158 /* Partial overlap. We can reduce the source AND. */
9159 if ((and_mask & ze_mask) != and_mask)
9160 {
9161 mode = GET_MODE (src);
9162 src = gen_rtx_AND (mode, XEXP (src, 0),
9163 gen_int_mode (and_mask & ze_mask, mode));
9164 return gen_rtx_SET (VOIDmode, dest, src);
9165 }
9166 }
9167
9168 /* The other case we handle is assignments into a constant-position
9169 field. They look like (ior/xor (and DEST C1) OTHER). If C1 represents
9170 a mask that has all one bits except for a group of zero bits and
9171 OTHER is known to have zeros where C1 has ones, this is such an
9172 assignment. Compute the position and length from C1. Shift OTHER
9173 to the appropriate position, force it to the required mode, and
9174 make the extraction. Check for the AND in both operands. */
9175
9176 if (GET_CODE (src) != IOR && GET_CODE (src) != XOR)
9177 return x;
9178
9179 rhs = expand_compound_operation (XEXP (src, 0));
9180 lhs = expand_compound_operation (XEXP (src, 1));
9181
9182 if (GET_CODE (rhs) == AND
9183 && CONST_INT_P (XEXP (rhs, 1))
9184 && rtx_equal_for_field_assignment_p (XEXP (rhs, 0), dest))
9185 c1 = INTVAL (XEXP (rhs, 1)), other = lhs;
9186 else if (GET_CODE (lhs) == AND
9187 && CONST_INT_P (XEXP (lhs, 1))
9188 && rtx_equal_for_field_assignment_p (XEXP (lhs, 0), dest))
9189 c1 = INTVAL (XEXP (lhs, 1)), other = rhs;
9190 else
9191 return x;
9192
9193 pos = get_pos_from_mask ((~c1) & GET_MODE_MASK (GET_MODE (dest)), &len);
9194 if (pos < 0 || pos + len > GET_MODE_PRECISION (GET_MODE (dest))
9195 || GET_MODE_PRECISION (GET_MODE (dest)) > HOST_BITS_PER_WIDE_INT
9196 || (c1 & nonzero_bits (other, GET_MODE (dest))) != 0)
9197 return x;
9198
9199 assign = make_extraction (VOIDmode, dest, pos, NULL_RTX, len, 1, 1, 0);
9200 if (assign == 0)
9201 return x;
9202
9203 /* The mode to use for the source is the mode of the assignment, or of
9204 what is inside a possible STRICT_LOW_PART. */
9205 mode = (GET_CODE (assign) == STRICT_LOW_PART
9206 ? GET_MODE (XEXP (assign, 0)) : GET_MODE (assign));
9207
9208 /* Shift OTHER right POS places and make it the source, restricting it
9209 to the proper length and mode. */
9210
9211 src = canon_reg_for_combine (simplify_shift_const (NULL_RTX, LSHIFTRT,
9212 GET_MODE (src),
9213 other, pos),
9214 dest);
9215 src = force_to_mode (src, mode,
9216 GET_MODE_PRECISION (mode) >= HOST_BITS_PER_WIDE_INT
9217 ? ~(unsigned HOST_WIDE_INT) 0
9218 : ((unsigned HOST_WIDE_INT) 1 << len) - 1,
9219 0);
9220
9221 /* If SRC is masked by an AND that does not make a difference in
9222 the value being stored, strip it. */
9223 if (GET_CODE (assign) == ZERO_EXTRACT
9224 && CONST_INT_P (XEXP (assign, 1))
9225 && INTVAL (XEXP (assign, 1)) < HOST_BITS_PER_WIDE_INT
9226 && GET_CODE (src) == AND
9227 && CONST_INT_P (XEXP (src, 1))
9228 && UINTVAL (XEXP (src, 1))
9229 == ((unsigned HOST_WIDE_INT) 1 << INTVAL (XEXP (assign, 1))) - 1)
9230 src = XEXP (src, 0);
9231
9232 return gen_rtx_SET (VOIDmode, assign, src);
9233 }
9234 \f
9235 /* See if X is of the form (+ (* a c) (* b c)) and convert to (* (+ a b) c)
9236 if so. */
9237
9238 static rtx
9239 apply_distributive_law (rtx x)
9240 {
9241 enum rtx_code code = GET_CODE (x);
9242 enum rtx_code inner_code;
9243 rtx lhs, rhs, other;
9244 rtx tem;
9245
9246 /* Distributivity is not true for floating point as it can change the
9247 value. So we don't do it unless -funsafe-math-optimizations. */
9248 if (FLOAT_MODE_P (GET_MODE (x))
9249 && ! flag_unsafe_math_optimizations)
9250 return x;
9251
9252 /* The outer operation can only be one of the following: */
9253 if (code != IOR && code != AND && code != XOR
9254 && code != PLUS && code != MINUS)
9255 return x;
9256
9257 lhs = XEXP (x, 0);
9258 rhs = XEXP (x, 1);
9259
9260 /* If either operand is a primitive we can't do anything, so get out
9261 fast. */
9262 if (OBJECT_P (lhs) || OBJECT_P (rhs))
9263 return x;
9264
9265 lhs = expand_compound_operation (lhs);
9266 rhs = expand_compound_operation (rhs);
9267 inner_code = GET_CODE (lhs);
9268 if (inner_code != GET_CODE (rhs))
9269 return x;
9270
9271 /* See if the inner and outer operations distribute. */
9272 switch (inner_code)
9273 {
9274 case LSHIFTRT:
9275 case ASHIFTRT:
9276 case AND:
9277 case IOR:
9278 /* These all distribute except over PLUS. */
9279 if (code == PLUS || code == MINUS)
9280 return x;
9281 break;
9282
9283 case MULT:
9284 if (code != PLUS && code != MINUS)
9285 return x;
9286 break;
9287
9288 case ASHIFT:
9289 /* This is also a multiply, so it distributes over everything. */
9290 break;
9291
9292 /* This used to handle SUBREG, but this turned out to be counter-
9293 productive, since (subreg (op ...)) usually is not handled by
9294 insn patterns, and this "optimization" therefore transformed
9295 recognizable patterns into unrecognizable ones. Therefore the
9296 SUBREG case was removed from here.
9297
9298 It is possible that distributing SUBREG over arithmetic operations
9299 leads to an intermediate result than can then be optimized further,
9300 e.g. by moving the outer SUBREG to the other side of a SET as done
9301 in simplify_set. This seems to have been the original intent of
9302 handling SUBREGs here.
9303
9304 However, with current GCC this does not appear to actually happen,
9305 at least on major platforms. If some case is found where removing
9306 the SUBREG case here prevents follow-on optimizations, distributing
9307 SUBREGs ought to be re-added at that place, e.g. in simplify_set. */
9308
9309 default:
9310 return x;
9311 }
9312
9313 /* Set LHS and RHS to the inner operands (A and B in the example
9314 above) and set OTHER to the common operand (C in the example).
9315 There is only one way to do this unless the inner operation is
9316 commutative. */
9317 if (COMMUTATIVE_ARITH_P (lhs)
9318 && rtx_equal_p (XEXP (lhs, 0), XEXP (rhs, 0)))
9319 other = XEXP (lhs, 0), lhs = XEXP (lhs, 1), rhs = XEXP (rhs, 1);
9320 else if (COMMUTATIVE_ARITH_P (lhs)
9321 && rtx_equal_p (XEXP (lhs, 0), XEXP (rhs, 1)))
9322 other = XEXP (lhs, 0), lhs = XEXP (lhs, 1), rhs = XEXP (rhs, 0);
9323 else if (COMMUTATIVE_ARITH_P (lhs)
9324 && rtx_equal_p (XEXP (lhs, 1), XEXP (rhs, 0)))
9325 other = XEXP (lhs, 1), lhs = XEXP (lhs, 0), rhs = XEXP (rhs, 1);
9326 else if (rtx_equal_p (XEXP (lhs, 1), XEXP (rhs, 1)))
9327 other = XEXP (lhs, 1), lhs = XEXP (lhs, 0), rhs = XEXP (rhs, 0);
9328 else
9329 return x;
9330
9331 /* Form the new inner operation, seeing if it simplifies first. */
9332 tem = simplify_gen_binary (code, GET_MODE (x), lhs, rhs);
9333
9334 /* There is one exception to the general way of distributing:
9335 (a | c) ^ (b | c) -> (a ^ b) & ~c */
9336 if (code == XOR && inner_code == IOR)
9337 {
9338 inner_code = AND;
9339 other = simplify_gen_unary (NOT, GET_MODE (x), other, GET_MODE (x));
9340 }
9341
9342 /* We may be able to continuing distributing the result, so call
9343 ourselves recursively on the inner operation before forming the
9344 outer operation, which we return. */
9345 return simplify_gen_binary (inner_code, GET_MODE (x),
9346 apply_distributive_law (tem), other);
9347 }
9348
9349 /* See if X is of the form (* (+ A B) C), and if so convert to
9350 (+ (* A C) (* B C)) and try to simplify.
9351
9352 Most of the time, this results in no change. However, if some of
9353 the operands are the same or inverses of each other, simplifications
9354 will result.
9355
9356 For example, (and (ior A B) (not B)) can occur as the result of
9357 expanding a bit field assignment. When we apply the distributive
9358 law to this, we get (ior (and (A (not B))) (and (B (not B)))),
9359 which then simplifies to (and (A (not B))).
9360
9361 Note that no checks happen on the validity of applying the inverse
9362 distributive law. This is pointless since we can do it in the
9363 few places where this routine is called.
9364
9365 N is the index of the term that is decomposed (the arithmetic operation,
9366 i.e. (+ A B) in the first example above). !N is the index of the term that
9367 is distributed, i.e. of C in the first example above. */
9368 static rtx
9369 distribute_and_simplify_rtx (rtx x, int n)
9370 {
9371 enum machine_mode mode;
9372 enum rtx_code outer_code, inner_code;
9373 rtx decomposed, distributed, inner_op0, inner_op1, new_op0, new_op1, tmp;
9374
9375 /* Distributivity is not true for floating point as it can change the
9376 value. So we don't do it unless -funsafe-math-optimizations. */
9377 if (FLOAT_MODE_P (GET_MODE (x))
9378 && ! flag_unsafe_math_optimizations)
9379 return NULL_RTX;
9380
9381 decomposed = XEXP (x, n);
9382 if (!ARITHMETIC_P (decomposed))
9383 return NULL_RTX;
9384
9385 mode = GET_MODE (x);
9386 outer_code = GET_CODE (x);
9387 distributed = XEXP (x, !n);
9388
9389 inner_code = GET_CODE (decomposed);
9390 inner_op0 = XEXP (decomposed, 0);
9391 inner_op1 = XEXP (decomposed, 1);
9392
9393 /* Special case (and (xor B C) (not A)), which is equivalent to
9394 (xor (ior A B) (ior A C)) */
9395 if (outer_code == AND && inner_code == XOR && GET_CODE (distributed) == NOT)
9396 {
9397 distributed = XEXP (distributed, 0);
9398 outer_code = IOR;
9399 }
9400
9401 if (n == 0)
9402 {
9403 /* Distribute the second term. */
9404 new_op0 = simplify_gen_binary (outer_code, mode, inner_op0, distributed);
9405 new_op1 = simplify_gen_binary (outer_code, mode, inner_op1, distributed);
9406 }
9407 else
9408 {
9409 /* Distribute the first term. */
9410 new_op0 = simplify_gen_binary (outer_code, mode, distributed, inner_op0);
9411 new_op1 = simplify_gen_binary (outer_code, mode, distributed, inner_op1);
9412 }
9413
9414 tmp = apply_distributive_law (simplify_gen_binary (inner_code, mode,
9415 new_op0, new_op1));
9416 if (GET_CODE (tmp) != outer_code
9417 && (set_src_cost (tmp, optimize_this_for_speed_p)
9418 < set_src_cost (x, optimize_this_for_speed_p)))
9419 return tmp;
9420
9421 return NULL_RTX;
9422 }
9423 \f
9424 /* Simplify a logical `and' of VAROP with the constant CONSTOP, to be done
9425 in MODE. Return an equivalent form, if different from (and VAROP
9426 (const_int CONSTOP)). Otherwise, return NULL_RTX. */
9427
9428 static rtx
9429 simplify_and_const_int_1 (enum machine_mode mode, rtx varop,
9430 unsigned HOST_WIDE_INT constop)
9431 {
9432 unsigned HOST_WIDE_INT nonzero;
9433 unsigned HOST_WIDE_INT orig_constop;
9434 rtx orig_varop;
9435 int i;
9436
9437 orig_varop = varop;
9438 orig_constop = constop;
9439 if (GET_CODE (varop) == CLOBBER)
9440 return NULL_RTX;
9441
9442 /* Simplify VAROP knowing that we will be only looking at some of the
9443 bits in it.
9444
9445 Note by passing in CONSTOP, we guarantee that the bits not set in
9446 CONSTOP are not significant and will never be examined. We must
9447 ensure that is the case by explicitly masking out those bits
9448 before returning. */
9449 varop = force_to_mode (varop, mode, constop, 0);
9450
9451 /* If VAROP is a CLOBBER, we will fail so return it. */
9452 if (GET_CODE (varop) == CLOBBER)
9453 return varop;
9454
9455 /* If VAROP is a CONST_INT, then we need to apply the mask in CONSTOP
9456 to VAROP and return the new constant. */
9457 if (CONST_INT_P (varop))
9458 return gen_int_mode (INTVAL (varop) & constop, mode);
9459
9460 /* See what bits may be nonzero in VAROP. Unlike the general case of
9461 a call to nonzero_bits, here we don't care about bits outside
9462 MODE. */
9463
9464 nonzero = nonzero_bits (varop, mode) & GET_MODE_MASK (mode);
9465
9466 /* Turn off all bits in the constant that are known to already be zero.
9467 Thus, if the AND isn't needed at all, we will have CONSTOP == NONZERO_BITS
9468 which is tested below. */
9469
9470 constop &= nonzero;
9471
9472 /* If we don't have any bits left, return zero. */
9473 if (constop == 0)
9474 return const0_rtx;
9475
9476 /* If VAROP is a NEG of something known to be zero or 1 and CONSTOP is
9477 a power of two, we can replace this with an ASHIFT. */
9478 if (GET_CODE (varop) == NEG && nonzero_bits (XEXP (varop, 0), mode) == 1
9479 && (i = exact_log2 (constop)) >= 0)
9480 return simplify_shift_const (NULL_RTX, ASHIFT, mode, XEXP (varop, 0), i);
9481
9482 /* If VAROP is an IOR or XOR, apply the AND to both branches of the IOR
9483 or XOR, then try to apply the distributive law. This may eliminate
9484 operations if either branch can be simplified because of the AND.
9485 It may also make some cases more complex, but those cases probably
9486 won't match a pattern either with or without this. */
9487
9488 if (GET_CODE (varop) == IOR || GET_CODE (varop) == XOR)
9489 return
9490 gen_lowpart
9491 (mode,
9492 apply_distributive_law
9493 (simplify_gen_binary (GET_CODE (varop), GET_MODE (varop),
9494 simplify_and_const_int (NULL_RTX,
9495 GET_MODE (varop),
9496 XEXP (varop, 0),
9497 constop),
9498 simplify_and_const_int (NULL_RTX,
9499 GET_MODE (varop),
9500 XEXP (varop, 1),
9501 constop))));
9502
9503 /* If VAROP is PLUS, and the constant is a mask of low bits, distribute
9504 the AND and see if one of the operands simplifies to zero. If so, we
9505 may eliminate it. */
9506
9507 if (GET_CODE (varop) == PLUS
9508 && exact_log2 (constop + 1) >= 0)
9509 {
9510 rtx o0, o1;
9511
9512 o0 = simplify_and_const_int (NULL_RTX, mode, XEXP (varop, 0), constop);
9513 o1 = simplify_and_const_int (NULL_RTX, mode, XEXP (varop, 1), constop);
9514 if (o0 == const0_rtx)
9515 return o1;
9516 if (o1 == const0_rtx)
9517 return o0;
9518 }
9519
9520 /* Make a SUBREG if necessary. If we can't make it, fail. */
9521 varop = gen_lowpart (mode, varop);
9522 if (varop == NULL_RTX || GET_CODE (varop) == CLOBBER)
9523 return NULL_RTX;
9524
9525 /* If we are only masking insignificant bits, return VAROP. */
9526 if (constop == nonzero)
9527 return varop;
9528
9529 if (varop == orig_varop && constop == orig_constop)
9530 return NULL_RTX;
9531
9532 /* Otherwise, return an AND. */
9533 return simplify_gen_binary (AND, mode, varop, gen_int_mode (constop, mode));
9534 }
9535
9536
9537 /* We have X, a logical `and' of VAROP with the constant CONSTOP, to be done
9538 in MODE.
9539
9540 Return an equivalent form, if different from X. Otherwise, return X. If
9541 X is zero, we are to always construct the equivalent form. */
9542
9543 static rtx
9544 simplify_and_const_int (rtx x, enum machine_mode mode, rtx varop,
9545 unsigned HOST_WIDE_INT constop)
9546 {
9547 rtx tem = simplify_and_const_int_1 (mode, varop, constop);
9548 if (tem)
9549 return tem;
9550
9551 if (!x)
9552 x = simplify_gen_binary (AND, GET_MODE (varop), varop,
9553 gen_int_mode (constop, mode));
9554 if (GET_MODE (x) != mode)
9555 x = gen_lowpart (mode, x);
9556 return x;
9557 }
9558 \f
9559 /* Given a REG, X, compute which bits in X can be nonzero.
9560 We don't care about bits outside of those defined in MODE.
9561
9562 For most X this is simply GET_MODE_MASK (GET_MODE (MODE)), but if X is
9563 a shift, AND, or zero_extract, we can do better. */
9564
9565 static rtx
9566 reg_nonzero_bits_for_combine (const_rtx x, enum machine_mode mode,
9567 const_rtx known_x ATTRIBUTE_UNUSED,
9568 enum machine_mode known_mode ATTRIBUTE_UNUSED,
9569 unsigned HOST_WIDE_INT known_ret ATTRIBUTE_UNUSED,
9570 unsigned HOST_WIDE_INT *nonzero)
9571 {
9572 rtx tem;
9573 reg_stat_type *rsp;
9574
9575 /* If X is a register whose nonzero bits value is current, use it.
9576 Otherwise, if X is a register whose value we can find, use that
9577 value. Otherwise, use the previously-computed global nonzero bits
9578 for this register. */
9579
9580 rsp = VEC_index (reg_stat_type, reg_stat, REGNO (x));
9581 if (rsp->last_set_value != 0
9582 && (rsp->last_set_mode == mode
9583 || (GET_MODE_CLASS (rsp->last_set_mode) == MODE_INT
9584 && GET_MODE_CLASS (mode) == MODE_INT))
9585 && ((rsp->last_set_label >= label_tick_ebb_start
9586 && rsp->last_set_label < label_tick)
9587 || (rsp->last_set_label == label_tick
9588 && DF_INSN_LUID (rsp->last_set) < subst_low_luid)
9589 || (REGNO (x) >= FIRST_PSEUDO_REGISTER
9590 && REG_N_SETS (REGNO (x)) == 1
9591 && !REGNO_REG_SET_P
9592 (DF_LR_IN (ENTRY_BLOCK_PTR->next_bb), REGNO (x)))))
9593 {
9594 *nonzero &= rsp->last_set_nonzero_bits;
9595 return NULL;
9596 }
9597
9598 tem = get_last_value (x);
9599
9600 if (tem)
9601 {
9602 #ifdef SHORT_IMMEDIATES_SIGN_EXTEND
9603 /* If X is narrower than MODE and TEM is a non-negative
9604 constant that would appear negative in the mode of X,
9605 sign-extend it for use in reg_nonzero_bits because some
9606 machines (maybe most) will actually do the sign-extension
9607 and this is the conservative approach.
9608
9609 ??? For 2.5, try to tighten up the MD files in this regard
9610 instead of this kludge. */
9611
9612 if (GET_MODE_PRECISION (GET_MODE (x)) < GET_MODE_PRECISION (mode)
9613 && CONST_INT_P (tem)
9614 && INTVAL (tem) > 0
9615 && val_signbit_known_set_p (GET_MODE (x), INTVAL (tem)))
9616 tem = GEN_INT (INTVAL (tem) | ~GET_MODE_MASK (GET_MODE (x)));
9617 #endif
9618 return tem;
9619 }
9620 else if (nonzero_sign_valid && rsp->nonzero_bits)
9621 {
9622 unsigned HOST_WIDE_INT mask = rsp->nonzero_bits;
9623
9624 if (GET_MODE_PRECISION (GET_MODE (x)) < GET_MODE_PRECISION (mode))
9625 /* We don't know anything about the upper bits. */
9626 mask |= GET_MODE_MASK (mode) ^ GET_MODE_MASK (GET_MODE (x));
9627 *nonzero &= mask;
9628 }
9629
9630 return NULL;
9631 }
9632
9633 /* Return the number of bits at the high-order end of X that are known to
9634 be equal to the sign bit. X will be used in mode MODE; if MODE is
9635 VOIDmode, X will be used in its own mode. The returned value will always
9636 be between 1 and the number of bits in MODE. */
9637
9638 static rtx
9639 reg_num_sign_bit_copies_for_combine (const_rtx x, enum machine_mode mode,
9640 const_rtx known_x ATTRIBUTE_UNUSED,
9641 enum machine_mode known_mode
9642 ATTRIBUTE_UNUSED,
9643 unsigned int known_ret ATTRIBUTE_UNUSED,
9644 unsigned int *result)
9645 {
9646 rtx tem;
9647 reg_stat_type *rsp;
9648
9649 rsp = VEC_index (reg_stat_type, reg_stat, REGNO (x));
9650 if (rsp->last_set_value != 0
9651 && rsp->last_set_mode == mode
9652 && ((rsp->last_set_label >= label_tick_ebb_start
9653 && rsp->last_set_label < label_tick)
9654 || (rsp->last_set_label == label_tick
9655 && DF_INSN_LUID (rsp->last_set) < subst_low_luid)
9656 || (REGNO (x) >= FIRST_PSEUDO_REGISTER
9657 && REG_N_SETS (REGNO (x)) == 1
9658 && !REGNO_REG_SET_P
9659 (DF_LR_IN (ENTRY_BLOCK_PTR->next_bb), REGNO (x)))))
9660 {
9661 *result = rsp->last_set_sign_bit_copies;
9662 return NULL;
9663 }
9664
9665 tem = get_last_value (x);
9666 if (tem != 0)
9667 return tem;
9668
9669 if (nonzero_sign_valid && rsp->sign_bit_copies != 0
9670 && GET_MODE_PRECISION (GET_MODE (x)) == GET_MODE_PRECISION (mode))
9671 *result = rsp->sign_bit_copies;
9672
9673 return NULL;
9674 }
9675 \f
9676 /* Return the number of "extended" bits there are in X, when interpreted
9677 as a quantity in MODE whose signedness is indicated by UNSIGNEDP. For
9678 unsigned quantities, this is the number of high-order zero bits.
9679 For signed quantities, this is the number of copies of the sign bit
9680 minus 1. In both case, this function returns the number of "spare"
9681 bits. For example, if two quantities for which this function returns
9682 at least 1 are added, the addition is known not to overflow.
9683
9684 This function will always return 0 unless called during combine, which
9685 implies that it must be called from a define_split. */
9686
9687 unsigned int
9688 extended_count (const_rtx x, enum machine_mode mode, int unsignedp)
9689 {
9690 if (nonzero_sign_valid == 0)
9691 return 0;
9692
9693 return (unsignedp
9694 ? (HWI_COMPUTABLE_MODE_P (mode)
9695 ? (unsigned int) (GET_MODE_PRECISION (mode) - 1
9696 - floor_log2 (nonzero_bits (x, mode)))
9697 : 0)
9698 : num_sign_bit_copies (x, mode) - 1);
9699 }
9700
9701 /* This function is called from `simplify_shift_const' to merge two
9702 outer operations. Specifically, we have already found that we need
9703 to perform operation *POP0 with constant *PCONST0 at the outermost
9704 position. We would now like to also perform OP1 with constant CONST1
9705 (with *POP0 being done last).
9706
9707 Return 1 if we can do the operation and update *POP0 and *PCONST0 with
9708 the resulting operation. *PCOMP_P is set to 1 if we would need to
9709 complement the innermost operand, otherwise it is unchanged.
9710
9711 MODE is the mode in which the operation will be done. No bits outside
9712 the width of this mode matter. It is assumed that the width of this mode
9713 is smaller than or equal to HOST_BITS_PER_WIDE_INT.
9714
9715 If *POP0 or OP1 are UNKNOWN, it means no operation is required. Only NEG, PLUS,
9716 IOR, XOR, and AND are supported. We may set *POP0 to SET if the proper
9717 result is simply *PCONST0.
9718
9719 If the resulting operation cannot be expressed as one operation, we
9720 return 0 and do not change *POP0, *PCONST0, and *PCOMP_P. */
9721
9722 static int
9723 merge_outer_ops (enum rtx_code *pop0, HOST_WIDE_INT *pconst0, enum rtx_code op1, HOST_WIDE_INT const1, enum machine_mode mode, int *pcomp_p)
9724 {
9725 enum rtx_code op0 = *pop0;
9726 HOST_WIDE_INT const0 = *pconst0;
9727
9728 const0 &= GET_MODE_MASK (mode);
9729 const1 &= GET_MODE_MASK (mode);
9730
9731 /* If OP0 is an AND, clear unimportant bits in CONST1. */
9732 if (op0 == AND)
9733 const1 &= const0;
9734
9735 /* If OP0 or OP1 is UNKNOWN, this is easy. Similarly if they are the same or
9736 if OP0 is SET. */
9737
9738 if (op1 == UNKNOWN || op0 == SET)
9739 return 1;
9740
9741 else if (op0 == UNKNOWN)
9742 op0 = op1, const0 = const1;
9743
9744 else if (op0 == op1)
9745 {
9746 switch (op0)
9747 {
9748 case AND:
9749 const0 &= const1;
9750 break;
9751 case IOR:
9752 const0 |= const1;
9753 break;
9754 case XOR:
9755 const0 ^= const1;
9756 break;
9757 case PLUS:
9758 const0 += const1;
9759 break;
9760 case NEG:
9761 op0 = UNKNOWN;
9762 break;
9763 default:
9764 break;
9765 }
9766 }
9767
9768 /* Otherwise, if either is a PLUS or NEG, we can't do anything. */
9769 else if (op0 == PLUS || op1 == PLUS || op0 == NEG || op1 == NEG)
9770 return 0;
9771
9772 /* If the two constants aren't the same, we can't do anything. The
9773 remaining six cases can all be done. */
9774 else if (const0 != const1)
9775 return 0;
9776
9777 else
9778 switch (op0)
9779 {
9780 case IOR:
9781 if (op1 == AND)
9782 /* (a & b) | b == b */
9783 op0 = SET;
9784 else /* op1 == XOR */
9785 /* (a ^ b) | b == a | b */
9786 {;}
9787 break;
9788
9789 case XOR:
9790 if (op1 == AND)
9791 /* (a & b) ^ b == (~a) & b */
9792 op0 = AND, *pcomp_p = 1;
9793 else /* op1 == IOR */
9794 /* (a | b) ^ b == a & ~b */
9795 op0 = AND, const0 = ~const0;
9796 break;
9797
9798 case AND:
9799 if (op1 == IOR)
9800 /* (a | b) & b == b */
9801 op0 = SET;
9802 else /* op1 == XOR */
9803 /* (a ^ b) & b) == (~a) & b */
9804 *pcomp_p = 1;
9805 break;
9806 default:
9807 break;
9808 }
9809
9810 /* Check for NO-OP cases. */
9811 const0 &= GET_MODE_MASK (mode);
9812 if (const0 == 0
9813 && (op0 == IOR || op0 == XOR || op0 == PLUS))
9814 op0 = UNKNOWN;
9815 else if (const0 == 0 && op0 == AND)
9816 op0 = SET;
9817 else if ((unsigned HOST_WIDE_INT) const0 == GET_MODE_MASK (mode)
9818 && op0 == AND)
9819 op0 = UNKNOWN;
9820
9821 *pop0 = op0;
9822
9823 /* ??? Slightly redundant with the above mask, but not entirely.
9824 Moving this above means we'd have to sign-extend the mode mask
9825 for the final test. */
9826 if (op0 != UNKNOWN && op0 != NEG)
9827 *pconst0 = trunc_int_for_mode (const0, mode);
9828
9829 return 1;
9830 }
9831 \f
9832 /* A helper to simplify_shift_const_1 to determine the mode we can perform
9833 the shift in. The original shift operation CODE is performed on OP in
9834 ORIG_MODE. Return the wider mode MODE if we can perform the operation
9835 in that mode. Return ORIG_MODE otherwise. We can also assume that the
9836 result of the shift is subject to operation OUTER_CODE with operand
9837 OUTER_CONST. */
9838
9839 static enum machine_mode
9840 try_widen_shift_mode (enum rtx_code code, rtx op, int count,
9841 enum machine_mode orig_mode, enum machine_mode mode,
9842 enum rtx_code outer_code, HOST_WIDE_INT outer_const)
9843 {
9844 if (orig_mode == mode)
9845 return mode;
9846 gcc_assert (GET_MODE_PRECISION (mode) > GET_MODE_PRECISION (orig_mode));
9847
9848 /* In general we can't perform in wider mode for right shift and rotate. */
9849 switch (code)
9850 {
9851 case ASHIFTRT:
9852 /* We can still widen if the bits brought in from the left are identical
9853 to the sign bit of ORIG_MODE. */
9854 if (num_sign_bit_copies (op, mode)
9855 > (unsigned) (GET_MODE_PRECISION (mode)
9856 - GET_MODE_PRECISION (orig_mode)))
9857 return mode;
9858 return orig_mode;
9859
9860 case LSHIFTRT:
9861 /* Similarly here but with zero bits. */
9862 if (HWI_COMPUTABLE_MODE_P (mode)
9863 && (nonzero_bits (op, mode) & ~GET_MODE_MASK (orig_mode)) == 0)
9864 return mode;
9865
9866 /* We can also widen if the bits brought in will be masked off. This
9867 operation is performed in ORIG_MODE. */
9868 if (outer_code == AND)
9869 {
9870 int care_bits = low_bitmask_len (orig_mode, outer_const);
9871
9872 if (care_bits >= 0
9873 && GET_MODE_PRECISION (orig_mode) - care_bits >= count)
9874 return mode;
9875 }
9876 /* fall through */
9877
9878 case ROTATE:
9879 return orig_mode;
9880
9881 case ROTATERT:
9882 gcc_unreachable ();
9883
9884 default:
9885 return mode;
9886 }
9887 }
9888
9889 /* Simplify a shift of VAROP by ORIG_COUNT bits. CODE says what kind
9890 of shift. The result of the shift is RESULT_MODE. Return NULL_RTX
9891 if we cannot simplify it. Otherwise, return a simplified value.
9892
9893 The shift is normally computed in the widest mode we find in VAROP, as
9894 long as it isn't a different number of words than RESULT_MODE. Exceptions
9895 are ASHIFTRT and ROTATE, which are always done in their original mode. */
9896
9897 static rtx
9898 simplify_shift_const_1 (enum rtx_code code, enum machine_mode result_mode,
9899 rtx varop, int orig_count)
9900 {
9901 enum rtx_code orig_code = code;
9902 rtx orig_varop = varop;
9903 int count;
9904 enum machine_mode mode = result_mode;
9905 enum machine_mode shift_mode, tmode;
9906 unsigned int mode_words
9907 = (GET_MODE_SIZE (mode) + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD;
9908 /* We form (outer_op (code varop count) (outer_const)). */
9909 enum rtx_code outer_op = UNKNOWN;
9910 HOST_WIDE_INT outer_const = 0;
9911 int complement_p = 0;
9912 rtx new_rtx, x;
9913
9914 /* Make sure and truncate the "natural" shift on the way in. We don't
9915 want to do this inside the loop as it makes it more difficult to
9916 combine shifts. */
9917 if (SHIFT_COUNT_TRUNCATED)
9918 orig_count &= GET_MODE_BITSIZE (mode) - 1;
9919
9920 /* If we were given an invalid count, don't do anything except exactly
9921 what was requested. */
9922
9923 if (orig_count < 0 || orig_count >= (int) GET_MODE_PRECISION (mode))
9924 return NULL_RTX;
9925
9926 count = orig_count;
9927
9928 /* Unless one of the branches of the `if' in this loop does a `continue',
9929 we will `break' the loop after the `if'. */
9930
9931 while (count != 0)
9932 {
9933 /* If we have an operand of (clobber (const_int 0)), fail. */
9934 if (GET_CODE (varop) == CLOBBER)
9935 return NULL_RTX;
9936
9937 /* Convert ROTATERT to ROTATE. */
9938 if (code == ROTATERT)
9939 {
9940 unsigned int bitsize = GET_MODE_PRECISION (result_mode);
9941 code = ROTATE;
9942 if (VECTOR_MODE_P (result_mode))
9943 count = bitsize / GET_MODE_NUNITS (result_mode) - count;
9944 else
9945 count = bitsize - count;
9946 }
9947
9948 shift_mode = try_widen_shift_mode (code, varop, count, result_mode,
9949 mode, outer_op, outer_const);
9950
9951 /* Handle cases where the count is greater than the size of the mode
9952 minus 1. For ASHIFT, use the size minus one as the count (this can
9953 occur when simplifying (lshiftrt (ashiftrt ..))). For rotates,
9954 take the count modulo the size. For other shifts, the result is
9955 zero.
9956
9957 Since these shifts are being produced by the compiler by combining
9958 multiple operations, each of which are defined, we know what the
9959 result is supposed to be. */
9960
9961 if (count > (GET_MODE_PRECISION (shift_mode) - 1))
9962 {
9963 if (code == ASHIFTRT)
9964 count = GET_MODE_PRECISION (shift_mode) - 1;
9965 else if (code == ROTATE || code == ROTATERT)
9966 count %= GET_MODE_PRECISION (shift_mode);
9967 else
9968 {
9969 /* We can't simply return zero because there may be an
9970 outer op. */
9971 varop = const0_rtx;
9972 count = 0;
9973 break;
9974 }
9975 }
9976
9977 /* If we discovered we had to complement VAROP, leave. Making a NOT
9978 here would cause an infinite loop. */
9979 if (complement_p)
9980 break;
9981
9982 /* An arithmetic right shift of a quantity known to be -1 or 0
9983 is a no-op. */
9984 if (code == ASHIFTRT
9985 && (num_sign_bit_copies (varop, shift_mode)
9986 == GET_MODE_PRECISION (shift_mode)))
9987 {
9988 count = 0;
9989 break;
9990 }
9991
9992 /* If we are doing an arithmetic right shift and discarding all but
9993 the sign bit copies, this is equivalent to doing a shift by the
9994 bitsize minus one. Convert it into that shift because it will often
9995 allow other simplifications. */
9996
9997 if (code == ASHIFTRT
9998 && (count + num_sign_bit_copies (varop, shift_mode)
9999 >= GET_MODE_PRECISION (shift_mode)))
10000 count = GET_MODE_PRECISION (shift_mode) - 1;
10001
10002 /* We simplify the tests below and elsewhere by converting
10003 ASHIFTRT to LSHIFTRT if we know the sign bit is clear.
10004 `make_compound_operation' will convert it to an ASHIFTRT for
10005 those machines (such as VAX) that don't have an LSHIFTRT. */
10006 if (code == ASHIFTRT
10007 && val_signbit_known_clear_p (shift_mode,
10008 nonzero_bits (varop, shift_mode)))
10009 code = LSHIFTRT;
10010
10011 if (((code == LSHIFTRT
10012 && HWI_COMPUTABLE_MODE_P (shift_mode)
10013 && !(nonzero_bits (varop, shift_mode) >> count))
10014 || (code == ASHIFT
10015 && HWI_COMPUTABLE_MODE_P (shift_mode)
10016 && !((nonzero_bits (varop, shift_mode) << count)
10017 & GET_MODE_MASK (shift_mode))))
10018 && !side_effects_p (varop))
10019 varop = const0_rtx;
10020
10021 switch (GET_CODE (varop))
10022 {
10023 case SIGN_EXTEND:
10024 case ZERO_EXTEND:
10025 case SIGN_EXTRACT:
10026 case ZERO_EXTRACT:
10027 new_rtx = expand_compound_operation (varop);
10028 if (new_rtx != varop)
10029 {
10030 varop = new_rtx;
10031 continue;
10032 }
10033 break;
10034
10035 case MEM:
10036 /* If we have (xshiftrt (mem ...) C) and C is MODE_WIDTH
10037 minus the width of a smaller mode, we can do this with a
10038 SIGN_EXTEND or ZERO_EXTEND from the narrower memory location. */
10039 if ((code == ASHIFTRT || code == LSHIFTRT)
10040 && ! mode_dependent_address_p (XEXP (varop, 0))
10041 && ! MEM_VOLATILE_P (varop)
10042 && (tmode = mode_for_size (GET_MODE_BITSIZE (mode) - count,
10043 MODE_INT, 1)) != BLKmode)
10044 {
10045 new_rtx = adjust_address_nv (varop, tmode,
10046 BYTES_BIG_ENDIAN ? 0
10047 : count / BITS_PER_UNIT);
10048
10049 varop = gen_rtx_fmt_e (code == ASHIFTRT ? SIGN_EXTEND
10050 : ZERO_EXTEND, mode, new_rtx);
10051 count = 0;
10052 continue;
10053 }
10054 break;
10055
10056 case SUBREG:
10057 /* If VAROP is a SUBREG, strip it as long as the inner operand has
10058 the same number of words as what we've seen so far. Then store
10059 the widest mode in MODE. */
10060 if (subreg_lowpart_p (varop)
10061 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (varop)))
10062 > GET_MODE_SIZE (GET_MODE (varop)))
10063 && (unsigned int) ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (varop)))
10064 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
10065 == mode_words
10066 && GET_MODE_CLASS (GET_MODE (varop)) == MODE_INT
10067 && GET_MODE_CLASS (GET_MODE (SUBREG_REG (varop))) == MODE_INT)
10068 {
10069 varop = SUBREG_REG (varop);
10070 if (GET_MODE_SIZE (GET_MODE (varop)) > GET_MODE_SIZE (mode))
10071 mode = GET_MODE (varop);
10072 continue;
10073 }
10074 break;
10075
10076 case MULT:
10077 /* Some machines use MULT instead of ASHIFT because MULT
10078 is cheaper. But it is still better on those machines to
10079 merge two shifts into one. */
10080 if (CONST_INT_P (XEXP (varop, 1))
10081 && exact_log2 (UINTVAL (XEXP (varop, 1))) >= 0)
10082 {
10083 varop
10084 = simplify_gen_binary (ASHIFT, GET_MODE (varop),
10085 XEXP (varop, 0),
10086 GEN_INT (exact_log2 (
10087 UINTVAL (XEXP (varop, 1)))));
10088 continue;
10089 }
10090 break;
10091
10092 case UDIV:
10093 /* Similar, for when divides are cheaper. */
10094 if (CONST_INT_P (XEXP (varop, 1))
10095 && exact_log2 (UINTVAL (XEXP (varop, 1))) >= 0)
10096 {
10097 varop
10098 = simplify_gen_binary (LSHIFTRT, GET_MODE (varop),
10099 XEXP (varop, 0),
10100 GEN_INT (exact_log2 (
10101 UINTVAL (XEXP (varop, 1)))));
10102 continue;
10103 }
10104 break;
10105
10106 case ASHIFTRT:
10107 /* If we are extracting just the sign bit of an arithmetic
10108 right shift, that shift is not needed. However, the sign
10109 bit of a wider mode may be different from what would be
10110 interpreted as the sign bit in a narrower mode, so, if
10111 the result is narrower, don't discard the shift. */
10112 if (code == LSHIFTRT
10113 && count == (GET_MODE_BITSIZE (result_mode) - 1)
10114 && (GET_MODE_BITSIZE (result_mode)
10115 >= GET_MODE_BITSIZE (GET_MODE (varop))))
10116 {
10117 varop = XEXP (varop, 0);
10118 continue;
10119 }
10120
10121 /* ... fall through ... */
10122
10123 case LSHIFTRT:
10124 case ASHIFT:
10125 case ROTATE:
10126 /* Here we have two nested shifts. The result is usually the
10127 AND of a new shift with a mask. We compute the result below. */
10128 if (CONST_INT_P (XEXP (varop, 1))
10129 && INTVAL (XEXP (varop, 1)) >= 0
10130 && INTVAL (XEXP (varop, 1)) < GET_MODE_PRECISION (GET_MODE (varop))
10131 && HWI_COMPUTABLE_MODE_P (result_mode)
10132 && HWI_COMPUTABLE_MODE_P (mode)
10133 && !VECTOR_MODE_P (result_mode))
10134 {
10135 enum rtx_code first_code = GET_CODE (varop);
10136 unsigned int first_count = INTVAL (XEXP (varop, 1));
10137 unsigned HOST_WIDE_INT mask;
10138 rtx mask_rtx;
10139
10140 /* We have one common special case. We can't do any merging if
10141 the inner code is an ASHIFTRT of a smaller mode. However, if
10142 we have (ashift:M1 (subreg:M1 (ashiftrt:M2 FOO C1) 0) C2)
10143 with C2 == GET_MODE_BITSIZE (M1) - GET_MODE_BITSIZE (M2),
10144 we can convert it to
10145 (ashiftrt:M1 (ashift:M1 (and:M1 (subreg:M1 FOO 0) C3) C2) C1).
10146 This simplifies certain SIGN_EXTEND operations. */
10147 if (code == ASHIFT && first_code == ASHIFTRT
10148 && count == (GET_MODE_PRECISION (result_mode)
10149 - GET_MODE_PRECISION (GET_MODE (varop))))
10150 {
10151 /* C3 has the low-order C1 bits zero. */
10152
10153 mask = GET_MODE_MASK (mode)
10154 & ~(((unsigned HOST_WIDE_INT) 1 << first_count) - 1);
10155
10156 varop = simplify_and_const_int (NULL_RTX, result_mode,
10157 XEXP (varop, 0), mask);
10158 varop = simplify_shift_const (NULL_RTX, ASHIFT, result_mode,
10159 varop, count);
10160 count = first_count;
10161 code = ASHIFTRT;
10162 continue;
10163 }
10164
10165 /* If this was (ashiftrt (ashift foo C1) C2) and FOO has more
10166 than C1 high-order bits equal to the sign bit, we can convert
10167 this to either an ASHIFT or an ASHIFTRT depending on the
10168 two counts.
10169
10170 We cannot do this if VAROP's mode is not SHIFT_MODE. */
10171
10172 if (code == ASHIFTRT && first_code == ASHIFT
10173 && GET_MODE (varop) == shift_mode
10174 && (num_sign_bit_copies (XEXP (varop, 0), shift_mode)
10175 > first_count))
10176 {
10177 varop = XEXP (varop, 0);
10178 count -= first_count;
10179 if (count < 0)
10180 {
10181 count = -count;
10182 code = ASHIFT;
10183 }
10184
10185 continue;
10186 }
10187
10188 /* There are some cases we can't do. If CODE is ASHIFTRT,
10189 we can only do this if FIRST_CODE is also ASHIFTRT.
10190
10191 We can't do the case when CODE is ROTATE and FIRST_CODE is
10192 ASHIFTRT.
10193
10194 If the mode of this shift is not the mode of the outer shift,
10195 we can't do this if either shift is a right shift or ROTATE.
10196
10197 Finally, we can't do any of these if the mode is too wide
10198 unless the codes are the same.
10199
10200 Handle the case where the shift codes are the same
10201 first. */
10202
10203 if (code == first_code)
10204 {
10205 if (GET_MODE (varop) != result_mode
10206 && (code == ASHIFTRT || code == LSHIFTRT
10207 || code == ROTATE))
10208 break;
10209
10210 count += first_count;
10211 varop = XEXP (varop, 0);
10212 continue;
10213 }
10214
10215 if (code == ASHIFTRT
10216 || (code == ROTATE && first_code == ASHIFTRT)
10217 || GET_MODE_PRECISION (mode) > HOST_BITS_PER_WIDE_INT
10218 || (GET_MODE (varop) != result_mode
10219 && (first_code == ASHIFTRT || first_code == LSHIFTRT
10220 || first_code == ROTATE
10221 || code == ROTATE)))
10222 break;
10223
10224 /* To compute the mask to apply after the shift, shift the
10225 nonzero bits of the inner shift the same way the
10226 outer shift will. */
10227
10228 mask_rtx = GEN_INT (nonzero_bits (varop, GET_MODE (varop)));
10229
10230 mask_rtx
10231 = simplify_const_binary_operation (code, result_mode, mask_rtx,
10232 GEN_INT (count));
10233
10234 /* Give up if we can't compute an outer operation to use. */
10235 if (mask_rtx == 0
10236 || !CONST_INT_P (mask_rtx)
10237 || ! merge_outer_ops (&outer_op, &outer_const, AND,
10238 INTVAL (mask_rtx),
10239 result_mode, &complement_p))
10240 break;
10241
10242 /* If the shifts are in the same direction, we add the
10243 counts. Otherwise, we subtract them. */
10244 if ((code == ASHIFTRT || code == LSHIFTRT)
10245 == (first_code == ASHIFTRT || first_code == LSHIFTRT))
10246 count += first_count;
10247 else
10248 count -= first_count;
10249
10250 /* If COUNT is positive, the new shift is usually CODE,
10251 except for the two exceptions below, in which case it is
10252 FIRST_CODE. If the count is negative, FIRST_CODE should
10253 always be used */
10254 if (count > 0
10255 && ((first_code == ROTATE && code == ASHIFT)
10256 || (first_code == ASHIFTRT && code == LSHIFTRT)))
10257 code = first_code;
10258 else if (count < 0)
10259 code = first_code, count = -count;
10260
10261 varop = XEXP (varop, 0);
10262 continue;
10263 }
10264
10265 /* If we have (A << B << C) for any shift, we can convert this to
10266 (A << C << B). This wins if A is a constant. Only try this if
10267 B is not a constant. */
10268
10269 else if (GET_CODE (varop) == code
10270 && CONST_INT_P (XEXP (varop, 0))
10271 && !CONST_INT_P (XEXP (varop, 1)))
10272 {
10273 rtx new_rtx = simplify_const_binary_operation (code, mode,
10274 XEXP (varop, 0),
10275 GEN_INT (count));
10276 varop = gen_rtx_fmt_ee (code, mode, new_rtx, XEXP (varop, 1));
10277 count = 0;
10278 continue;
10279 }
10280 break;
10281
10282 case NOT:
10283 if (VECTOR_MODE_P (mode))
10284 break;
10285
10286 /* Make this fit the case below. */
10287 varop = gen_rtx_XOR (mode, XEXP (varop, 0), constm1_rtx);
10288 continue;
10289
10290 case IOR:
10291 case AND:
10292 case XOR:
10293 /* If we have (xshiftrt (ior (plus X (const_int -1)) X) C)
10294 with C the size of VAROP - 1 and the shift is logical if
10295 STORE_FLAG_VALUE is 1 and arithmetic if STORE_FLAG_VALUE is -1,
10296 we have an (le X 0) operation. If we have an arithmetic shift
10297 and STORE_FLAG_VALUE is 1 or we have a logical shift with
10298 STORE_FLAG_VALUE of -1, we have a (neg (le X 0)) operation. */
10299
10300 if (GET_CODE (varop) == IOR && GET_CODE (XEXP (varop, 0)) == PLUS
10301 && XEXP (XEXP (varop, 0), 1) == constm1_rtx
10302 && (STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
10303 && (code == LSHIFTRT || code == ASHIFTRT)
10304 && count == (GET_MODE_PRECISION (GET_MODE (varop)) - 1)
10305 && rtx_equal_p (XEXP (XEXP (varop, 0), 0), XEXP (varop, 1)))
10306 {
10307 count = 0;
10308 varop = gen_rtx_LE (GET_MODE (varop), XEXP (varop, 1),
10309 const0_rtx);
10310
10311 if (STORE_FLAG_VALUE == 1 ? code == ASHIFTRT : code == LSHIFTRT)
10312 varop = gen_rtx_NEG (GET_MODE (varop), varop);
10313
10314 continue;
10315 }
10316
10317 /* If we have (shift (logical)), move the logical to the outside
10318 to allow it to possibly combine with another logical and the
10319 shift to combine with another shift. This also canonicalizes to
10320 what a ZERO_EXTRACT looks like. Also, some machines have
10321 (and (shift)) insns. */
10322
10323 if (CONST_INT_P (XEXP (varop, 1))
10324 /* We can't do this if we have (ashiftrt (xor)) and the
10325 constant has its sign bit set in shift_mode. */
10326 && !(code == ASHIFTRT && GET_CODE (varop) == XOR
10327 && 0 > trunc_int_for_mode (INTVAL (XEXP (varop, 1)),
10328 shift_mode))
10329 && (new_rtx = simplify_const_binary_operation (code, result_mode,
10330 XEXP (varop, 1),
10331 GEN_INT (count))) != 0
10332 && CONST_INT_P (new_rtx)
10333 && merge_outer_ops (&outer_op, &outer_const, GET_CODE (varop),
10334 INTVAL (new_rtx), result_mode, &complement_p))
10335 {
10336 varop = XEXP (varop, 0);
10337 continue;
10338 }
10339
10340 /* If we can't do that, try to simplify the shift in each arm of the
10341 logical expression, make a new logical expression, and apply
10342 the inverse distributive law. This also can't be done
10343 for some (ashiftrt (xor)). */
10344 if (CONST_INT_P (XEXP (varop, 1))
10345 && !(code == ASHIFTRT && GET_CODE (varop) == XOR
10346 && 0 > trunc_int_for_mode (INTVAL (XEXP (varop, 1)),
10347 shift_mode)))
10348 {
10349 rtx lhs = simplify_shift_const (NULL_RTX, code, shift_mode,
10350 XEXP (varop, 0), count);
10351 rtx rhs = simplify_shift_const (NULL_RTX, code, shift_mode,
10352 XEXP (varop, 1), count);
10353
10354 varop = simplify_gen_binary (GET_CODE (varop), shift_mode,
10355 lhs, rhs);
10356 varop = apply_distributive_law (varop);
10357
10358 count = 0;
10359 continue;
10360 }
10361 break;
10362
10363 case EQ:
10364 /* Convert (lshiftrt (eq FOO 0) C) to (xor FOO 1) if STORE_FLAG_VALUE
10365 says that the sign bit can be tested, FOO has mode MODE, C is
10366 GET_MODE_PRECISION (MODE) - 1, and FOO has only its low-order bit
10367 that may be nonzero. */
10368 if (code == LSHIFTRT
10369 && XEXP (varop, 1) == const0_rtx
10370 && GET_MODE (XEXP (varop, 0)) == result_mode
10371 && count == (GET_MODE_PRECISION (result_mode) - 1)
10372 && HWI_COMPUTABLE_MODE_P (result_mode)
10373 && STORE_FLAG_VALUE == -1
10374 && nonzero_bits (XEXP (varop, 0), result_mode) == 1
10375 && merge_outer_ops (&outer_op, &outer_const, XOR, 1, result_mode,
10376 &complement_p))
10377 {
10378 varop = XEXP (varop, 0);
10379 count = 0;
10380 continue;
10381 }
10382 break;
10383
10384 case NEG:
10385 /* (lshiftrt (neg A) C) where A is either 0 or 1 and C is one less
10386 than the number of bits in the mode is equivalent to A. */
10387 if (code == LSHIFTRT
10388 && count == (GET_MODE_PRECISION (result_mode) - 1)
10389 && nonzero_bits (XEXP (varop, 0), result_mode) == 1)
10390 {
10391 varop = XEXP (varop, 0);
10392 count = 0;
10393 continue;
10394 }
10395
10396 /* NEG commutes with ASHIFT since it is multiplication. Move the
10397 NEG outside to allow shifts to combine. */
10398 if (code == ASHIFT
10399 && merge_outer_ops (&outer_op, &outer_const, NEG, 0, result_mode,
10400 &complement_p))
10401 {
10402 varop = XEXP (varop, 0);
10403 continue;
10404 }
10405 break;
10406
10407 case PLUS:
10408 /* (lshiftrt (plus A -1) C) where A is either 0 or 1 and C
10409 is one less than the number of bits in the mode is
10410 equivalent to (xor A 1). */
10411 if (code == LSHIFTRT
10412 && count == (GET_MODE_PRECISION (result_mode) - 1)
10413 && XEXP (varop, 1) == constm1_rtx
10414 && nonzero_bits (XEXP (varop, 0), result_mode) == 1
10415 && merge_outer_ops (&outer_op, &outer_const, XOR, 1, result_mode,
10416 &complement_p))
10417 {
10418 count = 0;
10419 varop = XEXP (varop, 0);
10420 continue;
10421 }
10422
10423 /* If we have (xshiftrt (plus FOO BAR) C), and the only bits
10424 that might be nonzero in BAR are those being shifted out and those
10425 bits are known zero in FOO, we can replace the PLUS with FOO.
10426 Similarly in the other operand order. This code occurs when
10427 we are computing the size of a variable-size array. */
10428
10429 if ((code == ASHIFTRT || code == LSHIFTRT)
10430 && count < HOST_BITS_PER_WIDE_INT
10431 && nonzero_bits (XEXP (varop, 1), result_mode) >> count == 0
10432 && (nonzero_bits (XEXP (varop, 1), result_mode)
10433 & nonzero_bits (XEXP (varop, 0), result_mode)) == 0)
10434 {
10435 varop = XEXP (varop, 0);
10436 continue;
10437 }
10438 else if ((code == ASHIFTRT || code == LSHIFTRT)
10439 && count < HOST_BITS_PER_WIDE_INT
10440 && HWI_COMPUTABLE_MODE_P (result_mode)
10441 && 0 == (nonzero_bits (XEXP (varop, 0), result_mode)
10442 >> count)
10443 && 0 == (nonzero_bits (XEXP (varop, 0), result_mode)
10444 & nonzero_bits (XEXP (varop, 1),
10445 result_mode)))
10446 {
10447 varop = XEXP (varop, 1);
10448 continue;
10449 }
10450
10451 /* (ashift (plus foo C) N) is (plus (ashift foo N) C'). */
10452 if (code == ASHIFT
10453 && CONST_INT_P (XEXP (varop, 1))
10454 && (new_rtx = simplify_const_binary_operation (ASHIFT, result_mode,
10455 XEXP (varop, 1),
10456 GEN_INT (count))) != 0
10457 && CONST_INT_P (new_rtx)
10458 && merge_outer_ops (&outer_op, &outer_const, PLUS,
10459 INTVAL (new_rtx), result_mode, &complement_p))
10460 {
10461 varop = XEXP (varop, 0);
10462 continue;
10463 }
10464
10465 /* Check for 'PLUS signbit', which is the canonical form of 'XOR
10466 signbit', and attempt to change the PLUS to an XOR and move it to
10467 the outer operation as is done above in the AND/IOR/XOR case
10468 leg for shift(logical). See details in logical handling above
10469 for reasoning in doing so. */
10470 if (code == LSHIFTRT
10471 && CONST_INT_P (XEXP (varop, 1))
10472 && mode_signbit_p (result_mode, XEXP (varop, 1))
10473 && (new_rtx = simplify_const_binary_operation (code, result_mode,
10474 XEXP (varop, 1),
10475 GEN_INT (count))) != 0
10476 && CONST_INT_P (new_rtx)
10477 && merge_outer_ops (&outer_op, &outer_const, XOR,
10478 INTVAL (new_rtx), result_mode, &complement_p))
10479 {
10480 varop = XEXP (varop, 0);
10481 continue;
10482 }
10483
10484 break;
10485
10486 case MINUS:
10487 /* If we have (xshiftrt (minus (ashiftrt X C)) X) C)
10488 with C the size of VAROP - 1 and the shift is logical if
10489 STORE_FLAG_VALUE is 1 and arithmetic if STORE_FLAG_VALUE is -1,
10490 we have a (gt X 0) operation. If the shift is arithmetic with
10491 STORE_FLAG_VALUE of 1 or logical with STORE_FLAG_VALUE == -1,
10492 we have a (neg (gt X 0)) operation. */
10493
10494 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
10495 && GET_CODE (XEXP (varop, 0)) == ASHIFTRT
10496 && count == (GET_MODE_PRECISION (GET_MODE (varop)) - 1)
10497 && (code == LSHIFTRT || code == ASHIFTRT)
10498 && CONST_INT_P (XEXP (XEXP (varop, 0), 1))
10499 && INTVAL (XEXP (XEXP (varop, 0), 1)) == count
10500 && rtx_equal_p (XEXP (XEXP (varop, 0), 0), XEXP (varop, 1)))
10501 {
10502 count = 0;
10503 varop = gen_rtx_GT (GET_MODE (varop), XEXP (varop, 1),
10504 const0_rtx);
10505
10506 if (STORE_FLAG_VALUE == 1 ? code == ASHIFTRT : code == LSHIFTRT)
10507 varop = gen_rtx_NEG (GET_MODE (varop), varop);
10508
10509 continue;
10510 }
10511 break;
10512
10513 case TRUNCATE:
10514 /* Change (lshiftrt (truncate (lshiftrt))) to (truncate (lshiftrt))
10515 if the truncate does not affect the value. */
10516 if (code == LSHIFTRT
10517 && GET_CODE (XEXP (varop, 0)) == LSHIFTRT
10518 && CONST_INT_P (XEXP (XEXP (varop, 0), 1))
10519 && (INTVAL (XEXP (XEXP (varop, 0), 1))
10520 >= (GET_MODE_PRECISION (GET_MODE (XEXP (varop, 0)))
10521 - GET_MODE_PRECISION (GET_MODE (varop)))))
10522 {
10523 rtx varop_inner = XEXP (varop, 0);
10524
10525 varop_inner
10526 = gen_rtx_LSHIFTRT (GET_MODE (varop_inner),
10527 XEXP (varop_inner, 0),
10528 GEN_INT
10529 (count + INTVAL (XEXP (varop_inner, 1))));
10530 varop = gen_rtx_TRUNCATE (GET_MODE (varop), varop_inner);
10531 count = 0;
10532 continue;
10533 }
10534 break;
10535
10536 default:
10537 break;
10538 }
10539
10540 break;
10541 }
10542
10543 shift_mode = try_widen_shift_mode (code, varop, count, result_mode, mode,
10544 outer_op, outer_const);
10545
10546 /* We have now finished analyzing the shift. The result should be
10547 a shift of type CODE with SHIFT_MODE shifting VAROP COUNT places. If
10548 OUTER_OP is non-UNKNOWN, it is an operation that needs to be applied
10549 to the result of the shift. OUTER_CONST is the relevant constant,
10550 but we must turn off all bits turned off in the shift. */
10551
10552 if (outer_op == UNKNOWN
10553 && orig_code == code && orig_count == count
10554 && varop == orig_varop
10555 && shift_mode == GET_MODE (varop))
10556 return NULL_RTX;
10557
10558 /* Make a SUBREG if necessary. If we can't make it, fail. */
10559 varop = gen_lowpart (shift_mode, varop);
10560 if (varop == NULL_RTX || GET_CODE (varop) == CLOBBER)
10561 return NULL_RTX;
10562
10563 /* If we have an outer operation and we just made a shift, it is
10564 possible that we could have simplified the shift were it not
10565 for the outer operation. So try to do the simplification
10566 recursively. */
10567
10568 if (outer_op != UNKNOWN)
10569 x = simplify_shift_const_1 (code, shift_mode, varop, count);
10570 else
10571 x = NULL_RTX;
10572
10573 if (x == NULL_RTX)
10574 x = simplify_gen_binary (code, shift_mode, varop, GEN_INT (count));
10575
10576 /* If we were doing an LSHIFTRT in a wider mode than it was originally,
10577 turn off all the bits that the shift would have turned off. */
10578 if (orig_code == LSHIFTRT && result_mode != shift_mode)
10579 x = simplify_and_const_int (NULL_RTX, shift_mode, x,
10580 GET_MODE_MASK (result_mode) >> orig_count);
10581
10582 /* Do the remainder of the processing in RESULT_MODE. */
10583 x = gen_lowpart_or_truncate (result_mode, x);
10584
10585 /* If COMPLEMENT_P is set, we have to complement X before doing the outer
10586 operation. */
10587 if (complement_p)
10588 x = simplify_gen_unary (NOT, result_mode, x, result_mode);
10589
10590 if (outer_op != UNKNOWN)
10591 {
10592 if (GET_RTX_CLASS (outer_op) != RTX_UNARY
10593 && GET_MODE_PRECISION (result_mode) < HOST_BITS_PER_WIDE_INT)
10594 outer_const = trunc_int_for_mode (outer_const, result_mode);
10595
10596 if (outer_op == AND)
10597 x = simplify_and_const_int (NULL_RTX, result_mode, x, outer_const);
10598 else if (outer_op == SET)
10599 {
10600 /* This means that we have determined that the result is
10601 equivalent to a constant. This should be rare. */
10602 if (!side_effects_p (x))
10603 x = GEN_INT (outer_const);
10604 }
10605 else if (GET_RTX_CLASS (outer_op) == RTX_UNARY)
10606 x = simplify_gen_unary (outer_op, result_mode, x, result_mode);
10607 else
10608 x = simplify_gen_binary (outer_op, result_mode, x,
10609 GEN_INT (outer_const));
10610 }
10611
10612 return x;
10613 }
10614
10615 /* Simplify a shift of VAROP by COUNT bits. CODE says what kind of shift.
10616 The result of the shift is RESULT_MODE. If we cannot simplify it,
10617 return X or, if it is NULL, synthesize the expression with
10618 simplify_gen_binary. Otherwise, return a simplified value.
10619
10620 The shift is normally computed in the widest mode we find in VAROP, as
10621 long as it isn't a different number of words than RESULT_MODE. Exceptions
10622 are ASHIFTRT and ROTATE, which are always done in their original mode. */
10623
10624 static rtx
10625 simplify_shift_const (rtx x, enum rtx_code code, enum machine_mode result_mode,
10626 rtx varop, int count)
10627 {
10628 rtx tem = simplify_shift_const_1 (code, result_mode, varop, count);
10629 if (tem)
10630 return tem;
10631
10632 if (!x)
10633 x = simplify_gen_binary (code, GET_MODE (varop), varop, GEN_INT (count));
10634 if (GET_MODE (x) != result_mode)
10635 x = gen_lowpart (result_mode, x);
10636 return x;
10637 }
10638
10639 \f
10640 /* Like recog, but we receive the address of a pointer to a new pattern.
10641 We try to match the rtx that the pointer points to.
10642 If that fails, we may try to modify or replace the pattern,
10643 storing the replacement into the same pointer object.
10644
10645 Modifications include deletion or addition of CLOBBERs.
10646
10647 PNOTES is a pointer to a location where any REG_UNUSED notes added for
10648 the CLOBBERs are placed.
10649
10650 The value is the final insn code from the pattern ultimately matched,
10651 or -1. */
10652
10653 static int
10654 recog_for_combine (rtx *pnewpat, rtx insn, rtx *pnotes)
10655 {
10656 rtx pat = *pnewpat;
10657 int insn_code_number;
10658 int num_clobbers_to_add = 0;
10659 int i;
10660 rtx notes = 0;
10661 rtx old_notes, old_pat;
10662
10663 /* If PAT is a PARALLEL, check to see if it contains the CLOBBER
10664 we use to indicate that something didn't match. If we find such a
10665 thing, force rejection. */
10666 if (GET_CODE (pat) == PARALLEL)
10667 for (i = XVECLEN (pat, 0) - 1; i >= 0; i--)
10668 if (GET_CODE (XVECEXP (pat, 0, i)) == CLOBBER
10669 && XEXP (XVECEXP (pat, 0, i), 0) == const0_rtx)
10670 return -1;
10671
10672 old_pat = PATTERN (insn);
10673 old_notes = REG_NOTES (insn);
10674 PATTERN (insn) = pat;
10675 REG_NOTES (insn) = 0;
10676
10677 insn_code_number = recog (pat, insn, &num_clobbers_to_add);
10678 if (dump_file && (dump_flags & TDF_DETAILS))
10679 {
10680 if (insn_code_number < 0)
10681 fputs ("Failed to match this instruction:\n", dump_file);
10682 else
10683 fputs ("Successfully matched this instruction:\n", dump_file);
10684 print_rtl_single (dump_file, pat);
10685 }
10686
10687 /* If it isn't, there is the possibility that we previously had an insn
10688 that clobbered some register as a side effect, but the combined
10689 insn doesn't need to do that. So try once more without the clobbers
10690 unless this represents an ASM insn. */
10691
10692 if (insn_code_number < 0 && ! check_asm_operands (pat)
10693 && GET_CODE (pat) == PARALLEL)
10694 {
10695 int pos;
10696
10697 for (pos = 0, i = 0; i < XVECLEN (pat, 0); i++)
10698 if (GET_CODE (XVECEXP (pat, 0, i)) != CLOBBER)
10699 {
10700 if (i != pos)
10701 SUBST (XVECEXP (pat, 0, pos), XVECEXP (pat, 0, i));
10702 pos++;
10703 }
10704
10705 SUBST_INT (XVECLEN (pat, 0), pos);
10706
10707 if (pos == 1)
10708 pat = XVECEXP (pat, 0, 0);
10709
10710 PATTERN (insn) = pat;
10711 insn_code_number = recog (pat, insn, &num_clobbers_to_add);
10712 if (dump_file && (dump_flags & TDF_DETAILS))
10713 {
10714 if (insn_code_number < 0)
10715 fputs ("Failed to match this instruction:\n", dump_file);
10716 else
10717 fputs ("Successfully matched this instruction:\n", dump_file);
10718 print_rtl_single (dump_file, pat);
10719 }
10720 }
10721 PATTERN (insn) = old_pat;
10722 REG_NOTES (insn) = old_notes;
10723
10724 /* Recognize all noop sets, these will be killed by followup pass. */
10725 if (insn_code_number < 0 && GET_CODE (pat) == SET && set_noop_p (pat))
10726 insn_code_number = NOOP_MOVE_INSN_CODE, num_clobbers_to_add = 0;
10727
10728 /* If we had any clobbers to add, make a new pattern than contains
10729 them. Then check to make sure that all of them are dead. */
10730 if (num_clobbers_to_add)
10731 {
10732 rtx newpat = gen_rtx_PARALLEL (VOIDmode,
10733 rtvec_alloc (GET_CODE (pat) == PARALLEL
10734 ? (XVECLEN (pat, 0)
10735 + num_clobbers_to_add)
10736 : num_clobbers_to_add + 1));
10737
10738 if (GET_CODE (pat) == PARALLEL)
10739 for (i = 0; i < XVECLEN (pat, 0); i++)
10740 XVECEXP (newpat, 0, i) = XVECEXP (pat, 0, i);
10741 else
10742 XVECEXP (newpat, 0, 0) = pat;
10743
10744 add_clobbers (newpat, insn_code_number);
10745
10746 for (i = XVECLEN (newpat, 0) - num_clobbers_to_add;
10747 i < XVECLEN (newpat, 0); i++)
10748 {
10749 if (REG_P (XEXP (XVECEXP (newpat, 0, i), 0))
10750 && ! reg_dead_at_p (XEXP (XVECEXP (newpat, 0, i), 0), insn))
10751 return -1;
10752 if (GET_CODE (XEXP (XVECEXP (newpat, 0, i), 0)) != SCRATCH)
10753 {
10754 gcc_assert (REG_P (XEXP (XVECEXP (newpat, 0, i), 0)));
10755 notes = alloc_reg_note (REG_UNUSED,
10756 XEXP (XVECEXP (newpat, 0, i), 0), notes);
10757 }
10758 }
10759 pat = newpat;
10760 }
10761
10762 *pnewpat = pat;
10763 *pnotes = notes;
10764
10765 return insn_code_number;
10766 }
10767 \f
10768 /* Like gen_lowpart_general but for use by combine. In combine it
10769 is not possible to create any new pseudoregs. However, it is
10770 safe to create invalid memory addresses, because combine will
10771 try to recognize them and all they will do is make the combine
10772 attempt fail.
10773
10774 If for some reason this cannot do its job, an rtx
10775 (clobber (const_int 0)) is returned.
10776 An insn containing that will not be recognized. */
10777
10778 static rtx
10779 gen_lowpart_for_combine (enum machine_mode omode, rtx x)
10780 {
10781 enum machine_mode imode = GET_MODE (x);
10782 unsigned int osize = GET_MODE_SIZE (omode);
10783 unsigned int isize = GET_MODE_SIZE (imode);
10784 rtx result;
10785
10786 if (omode == imode)
10787 return x;
10788
10789 /* Return identity if this is a CONST or symbolic reference. */
10790 if (omode == Pmode
10791 && (GET_CODE (x) == CONST
10792 || GET_CODE (x) == SYMBOL_REF
10793 || GET_CODE (x) == LABEL_REF))
10794 return x;
10795
10796 /* We can only support MODE being wider than a word if X is a
10797 constant integer or has a mode the same size. */
10798 if (GET_MODE_SIZE (omode) > UNITS_PER_WORD
10799 && ! ((imode == VOIDmode
10800 && (CONST_INT_P (x)
10801 || GET_CODE (x) == CONST_DOUBLE))
10802 || isize == osize))
10803 goto fail;
10804
10805 /* X might be a paradoxical (subreg (mem)). In that case, gen_lowpart
10806 won't know what to do. So we will strip off the SUBREG here and
10807 process normally. */
10808 if (GET_CODE (x) == SUBREG && MEM_P (SUBREG_REG (x)))
10809 {
10810 x = SUBREG_REG (x);
10811
10812 /* For use in case we fall down into the address adjustments
10813 further below, we need to adjust the known mode and size of
10814 x; imode and isize, since we just adjusted x. */
10815 imode = GET_MODE (x);
10816
10817 if (imode == omode)
10818 return x;
10819
10820 isize = GET_MODE_SIZE (imode);
10821 }
10822
10823 result = gen_lowpart_common (omode, x);
10824
10825 if (result)
10826 return result;
10827
10828 if (MEM_P (x))
10829 {
10830 int offset = 0;
10831
10832 /* Refuse to work on a volatile memory ref or one with a mode-dependent
10833 address. */
10834 if (MEM_VOLATILE_P (x) || mode_dependent_address_p (XEXP (x, 0)))
10835 goto fail;
10836
10837 /* If we want to refer to something bigger than the original memref,
10838 generate a paradoxical subreg instead. That will force a reload
10839 of the original memref X. */
10840 if (isize < osize)
10841 return gen_rtx_SUBREG (omode, x, 0);
10842
10843 if (WORDS_BIG_ENDIAN)
10844 offset = MAX (isize, UNITS_PER_WORD) - MAX (osize, UNITS_PER_WORD);
10845
10846 /* Adjust the address so that the address-after-the-data is
10847 unchanged. */
10848 if (BYTES_BIG_ENDIAN)
10849 offset -= MIN (UNITS_PER_WORD, osize) - MIN (UNITS_PER_WORD, isize);
10850
10851 return adjust_address_nv (x, omode, offset);
10852 }
10853
10854 /* If X is a comparison operator, rewrite it in a new mode. This
10855 probably won't match, but may allow further simplifications. */
10856 else if (COMPARISON_P (x))
10857 return gen_rtx_fmt_ee (GET_CODE (x), omode, XEXP (x, 0), XEXP (x, 1));
10858
10859 /* If we couldn't simplify X any other way, just enclose it in a
10860 SUBREG. Normally, this SUBREG won't match, but some patterns may
10861 include an explicit SUBREG or we may simplify it further in combine. */
10862 else
10863 {
10864 int offset = 0;
10865 rtx res;
10866
10867 offset = subreg_lowpart_offset (omode, imode);
10868 if (imode == VOIDmode)
10869 {
10870 imode = int_mode_for_mode (omode);
10871 x = gen_lowpart_common (imode, x);
10872 if (x == NULL)
10873 goto fail;
10874 }
10875 res = simplify_gen_subreg (omode, x, imode, offset);
10876 if (res)
10877 return res;
10878 }
10879
10880 fail:
10881 return gen_rtx_CLOBBER (omode, const0_rtx);
10882 }
10883 \f
10884 /* Try to simplify a comparison between OP0 and a constant OP1,
10885 where CODE is the comparison code that will be tested, into a
10886 (CODE OP0 const0_rtx) form.
10887
10888 The result is a possibly different comparison code to use.
10889 *POP1 may be updated. */
10890
10891 static enum rtx_code
10892 simplify_compare_const (enum rtx_code code, rtx op0, rtx *pop1)
10893 {
10894 enum machine_mode mode = GET_MODE (op0);
10895 unsigned int mode_width = GET_MODE_PRECISION (mode);
10896 HOST_WIDE_INT const_op = INTVAL (*pop1);
10897
10898 /* Get the constant we are comparing against and turn off all bits
10899 not on in our mode. */
10900 if (mode != VOIDmode)
10901 const_op = trunc_int_for_mode (const_op, mode);
10902
10903 /* If we are comparing against a constant power of two and the value
10904 being compared can only have that single bit nonzero (e.g., it was
10905 `and'ed with that bit), we can replace this with a comparison
10906 with zero. */
10907 if (const_op
10908 && (code == EQ || code == NE || code == GE || code == GEU
10909 || code == LT || code == LTU)
10910 && mode_width <= HOST_BITS_PER_WIDE_INT
10911 && exact_log2 (const_op) >= 0
10912 && nonzero_bits (op0, mode) == (unsigned HOST_WIDE_INT) const_op)
10913 {
10914 code = (code == EQ || code == GE || code == GEU ? NE : EQ);
10915 const_op = 0;
10916 }
10917
10918 /* Similarly, if we are comparing a value known to be either -1 or
10919 0 with -1, change it to the opposite comparison against zero. */
10920 if (const_op == -1
10921 && (code == EQ || code == NE || code == GT || code == LE
10922 || code == GEU || code == LTU)
10923 && num_sign_bit_copies (op0, mode) == mode_width)
10924 {
10925 code = (code == EQ || code == LE || code == GEU ? NE : EQ);
10926 const_op = 0;
10927 }
10928
10929 /* Do some canonicalizations based on the comparison code. We prefer
10930 comparisons against zero and then prefer equality comparisons.
10931 If we can reduce the size of a constant, we will do that too. */
10932 switch (code)
10933 {
10934 case LT:
10935 /* < C is equivalent to <= (C - 1) */
10936 if (const_op > 0)
10937 {
10938 const_op -= 1;
10939 code = LE;
10940 /* ... fall through to LE case below. */
10941 }
10942 else
10943 break;
10944
10945 case LE:
10946 /* <= C is equivalent to < (C + 1); we do this for C < 0 */
10947 if (const_op < 0)
10948 {
10949 const_op += 1;
10950 code = LT;
10951 }
10952
10953 /* If we are doing a <= 0 comparison on a value known to have
10954 a zero sign bit, we can replace this with == 0. */
10955 else if (const_op == 0
10956 && mode_width <= HOST_BITS_PER_WIDE_INT
10957 && (nonzero_bits (op0, mode)
10958 & ((unsigned HOST_WIDE_INT) 1 << (mode_width - 1)))
10959 == 0)
10960 code = EQ;
10961 break;
10962
10963 case GE:
10964 /* >= C is equivalent to > (C - 1). */
10965 if (const_op > 0)
10966 {
10967 const_op -= 1;
10968 code = GT;
10969 /* ... fall through to GT below. */
10970 }
10971 else
10972 break;
10973
10974 case GT:
10975 /* > C is equivalent to >= (C + 1); we do this for C < 0. */
10976 if (const_op < 0)
10977 {
10978 const_op += 1;
10979 code = GE;
10980 }
10981
10982 /* If we are doing a > 0 comparison on a value known to have
10983 a zero sign bit, we can replace this with != 0. */
10984 else if (const_op == 0
10985 && mode_width <= HOST_BITS_PER_WIDE_INT
10986 && (nonzero_bits (op0, mode)
10987 & ((unsigned HOST_WIDE_INT) 1 << (mode_width - 1)))
10988 == 0)
10989 code = NE;
10990 break;
10991
10992 case LTU:
10993 /* < C is equivalent to <= (C - 1). */
10994 if (const_op > 0)
10995 {
10996 const_op -= 1;
10997 code = LEU;
10998 /* ... fall through ... */
10999 }
11000 /* (unsigned) < 0x80000000 is equivalent to >= 0. */
11001 else if (mode_width <= HOST_BITS_PER_WIDE_INT
11002 && (unsigned HOST_WIDE_INT) const_op
11003 == (unsigned HOST_WIDE_INT) 1 << (mode_width - 1))
11004 {
11005 const_op = 0;
11006 code = GE;
11007 break;
11008 }
11009 else
11010 break;
11011
11012 case LEU:
11013 /* unsigned <= 0 is equivalent to == 0 */
11014 if (const_op == 0)
11015 code = EQ;
11016 /* (unsigned) <= 0x7fffffff is equivalent to >= 0. */
11017 else if (mode_width <= HOST_BITS_PER_WIDE_INT
11018 && (unsigned HOST_WIDE_INT) const_op
11019 == ((unsigned HOST_WIDE_INT) 1 << (mode_width - 1)) - 1)
11020 {
11021 const_op = 0;
11022 code = GE;
11023 }
11024 break;
11025
11026 case GEU:
11027 /* >= C is equivalent to > (C - 1). */
11028 if (const_op > 1)
11029 {
11030 const_op -= 1;
11031 code = GTU;
11032 /* ... fall through ... */
11033 }
11034
11035 /* (unsigned) >= 0x80000000 is equivalent to < 0. */
11036 else if (mode_width <= HOST_BITS_PER_WIDE_INT
11037 && (unsigned HOST_WIDE_INT) const_op
11038 == (unsigned HOST_WIDE_INT) 1 << (mode_width - 1))
11039 {
11040 const_op = 0;
11041 code = LT;
11042 break;
11043 }
11044 else
11045 break;
11046
11047 case GTU:
11048 /* unsigned > 0 is equivalent to != 0 */
11049 if (const_op == 0)
11050 code = NE;
11051 /* (unsigned) > 0x7fffffff is equivalent to < 0. */
11052 else if (mode_width <= HOST_BITS_PER_WIDE_INT
11053 && (unsigned HOST_WIDE_INT) const_op
11054 == ((unsigned HOST_WIDE_INT) 1 << (mode_width - 1)) - 1)
11055 {
11056 const_op = 0;
11057 code = LT;
11058 }
11059 break;
11060
11061 default:
11062 break;
11063 }
11064
11065 *pop1 = GEN_INT (const_op);
11066 return code;
11067 }
11068 \f
11069 /* Simplify a comparison between *POP0 and *POP1 where CODE is the
11070 comparison code that will be tested.
11071
11072 The result is a possibly different comparison code to use. *POP0 and
11073 *POP1 may be updated.
11074
11075 It is possible that we might detect that a comparison is either always
11076 true or always false. However, we do not perform general constant
11077 folding in combine, so this knowledge isn't useful. Such tautologies
11078 should have been detected earlier. Hence we ignore all such cases. */
11079
11080 static enum rtx_code
11081 simplify_comparison (enum rtx_code code, rtx *pop0, rtx *pop1)
11082 {
11083 rtx op0 = *pop0;
11084 rtx op1 = *pop1;
11085 rtx tem, tem1;
11086 int i;
11087 enum machine_mode mode, tmode;
11088
11089 /* Try a few ways of applying the same transformation to both operands. */
11090 while (1)
11091 {
11092 #ifndef WORD_REGISTER_OPERATIONS
11093 /* The test below this one won't handle SIGN_EXTENDs on these machines,
11094 so check specially. */
11095 if (code != GTU && code != GEU && code != LTU && code != LEU
11096 && GET_CODE (op0) == ASHIFTRT && GET_CODE (op1) == ASHIFTRT
11097 && GET_CODE (XEXP (op0, 0)) == ASHIFT
11098 && GET_CODE (XEXP (op1, 0)) == ASHIFT
11099 && GET_CODE (XEXP (XEXP (op0, 0), 0)) == SUBREG
11100 && GET_CODE (XEXP (XEXP (op1, 0), 0)) == SUBREG
11101 && (GET_MODE (SUBREG_REG (XEXP (XEXP (op0, 0), 0)))
11102 == GET_MODE (SUBREG_REG (XEXP (XEXP (op1, 0), 0))))
11103 && CONST_INT_P (XEXP (op0, 1))
11104 && XEXP (op0, 1) == XEXP (op1, 1)
11105 && XEXP (op0, 1) == XEXP (XEXP (op0, 0), 1)
11106 && XEXP (op0, 1) == XEXP (XEXP (op1, 0), 1)
11107 && (INTVAL (XEXP (op0, 1))
11108 == (GET_MODE_PRECISION (GET_MODE (op0))
11109 - (GET_MODE_PRECISION
11110 (GET_MODE (SUBREG_REG (XEXP (XEXP (op0, 0), 0))))))))
11111 {
11112 op0 = SUBREG_REG (XEXP (XEXP (op0, 0), 0));
11113 op1 = SUBREG_REG (XEXP (XEXP (op1, 0), 0));
11114 }
11115 #endif
11116
11117 /* If both operands are the same constant shift, see if we can ignore the
11118 shift. We can if the shift is a rotate or if the bits shifted out of
11119 this shift are known to be zero for both inputs and if the type of
11120 comparison is compatible with the shift. */
11121 if (GET_CODE (op0) == GET_CODE (op1)
11122 && HWI_COMPUTABLE_MODE_P (GET_MODE(op0))
11123 && ((GET_CODE (op0) == ROTATE && (code == NE || code == EQ))
11124 || ((GET_CODE (op0) == LSHIFTRT || GET_CODE (op0) == ASHIFT)
11125 && (code != GT && code != LT && code != GE && code != LE))
11126 || (GET_CODE (op0) == ASHIFTRT
11127 && (code != GTU && code != LTU
11128 && code != GEU && code != LEU)))
11129 && CONST_INT_P (XEXP (op0, 1))
11130 && INTVAL (XEXP (op0, 1)) >= 0
11131 && INTVAL (XEXP (op0, 1)) < HOST_BITS_PER_WIDE_INT
11132 && XEXP (op0, 1) == XEXP (op1, 1))
11133 {
11134 enum machine_mode mode = GET_MODE (op0);
11135 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
11136 int shift_count = INTVAL (XEXP (op0, 1));
11137
11138 if (GET_CODE (op0) == LSHIFTRT || GET_CODE (op0) == ASHIFTRT)
11139 mask &= (mask >> shift_count) << shift_count;
11140 else if (GET_CODE (op0) == ASHIFT)
11141 mask = (mask & (mask << shift_count)) >> shift_count;
11142
11143 if ((nonzero_bits (XEXP (op0, 0), mode) & ~mask) == 0
11144 && (nonzero_bits (XEXP (op1, 0), mode) & ~mask) == 0)
11145 op0 = XEXP (op0, 0), op1 = XEXP (op1, 0);
11146 else
11147 break;
11148 }
11149
11150 /* If both operands are AND's of a paradoxical SUBREG by constant, the
11151 SUBREGs are of the same mode, and, in both cases, the AND would
11152 be redundant if the comparison was done in the narrower mode,
11153 do the comparison in the narrower mode (e.g., we are AND'ing with 1
11154 and the operand's possibly nonzero bits are 0xffffff01; in that case
11155 if we only care about QImode, we don't need the AND). This case
11156 occurs if the output mode of an scc insn is not SImode and
11157 STORE_FLAG_VALUE == 1 (e.g., the 386).
11158
11159 Similarly, check for a case where the AND's are ZERO_EXTEND
11160 operations from some narrower mode even though a SUBREG is not
11161 present. */
11162
11163 else if (GET_CODE (op0) == AND && GET_CODE (op1) == AND
11164 && CONST_INT_P (XEXP (op0, 1))
11165 && CONST_INT_P (XEXP (op1, 1)))
11166 {
11167 rtx inner_op0 = XEXP (op0, 0);
11168 rtx inner_op1 = XEXP (op1, 0);
11169 HOST_WIDE_INT c0 = INTVAL (XEXP (op0, 1));
11170 HOST_WIDE_INT c1 = INTVAL (XEXP (op1, 1));
11171 int changed = 0;
11172
11173 if (paradoxical_subreg_p (inner_op0)
11174 && GET_CODE (inner_op1) == SUBREG
11175 && (GET_MODE (SUBREG_REG (inner_op0))
11176 == GET_MODE (SUBREG_REG (inner_op1)))
11177 && (GET_MODE_PRECISION (GET_MODE (SUBREG_REG (inner_op0)))
11178 <= HOST_BITS_PER_WIDE_INT)
11179 && (0 == ((~c0) & nonzero_bits (SUBREG_REG (inner_op0),
11180 GET_MODE (SUBREG_REG (inner_op0)))))
11181 && (0 == ((~c1) & nonzero_bits (SUBREG_REG (inner_op1),
11182 GET_MODE (SUBREG_REG (inner_op1))))))
11183 {
11184 op0 = SUBREG_REG (inner_op0);
11185 op1 = SUBREG_REG (inner_op1);
11186
11187 /* The resulting comparison is always unsigned since we masked
11188 off the original sign bit. */
11189 code = unsigned_condition (code);
11190
11191 changed = 1;
11192 }
11193
11194 else if (c0 == c1)
11195 for (tmode = GET_CLASS_NARROWEST_MODE
11196 (GET_MODE_CLASS (GET_MODE (op0)));
11197 tmode != GET_MODE (op0); tmode = GET_MODE_WIDER_MODE (tmode))
11198 if ((unsigned HOST_WIDE_INT) c0 == GET_MODE_MASK (tmode))
11199 {
11200 op0 = gen_lowpart (tmode, inner_op0);
11201 op1 = gen_lowpart (tmode, inner_op1);
11202 code = unsigned_condition (code);
11203 changed = 1;
11204 break;
11205 }
11206
11207 if (! changed)
11208 break;
11209 }
11210
11211 /* If both operands are NOT, we can strip off the outer operation
11212 and adjust the comparison code for swapped operands; similarly for
11213 NEG, except that this must be an equality comparison. */
11214 else if ((GET_CODE (op0) == NOT && GET_CODE (op1) == NOT)
11215 || (GET_CODE (op0) == NEG && GET_CODE (op1) == NEG
11216 && (code == EQ || code == NE)))
11217 op0 = XEXP (op0, 0), op1 = XEXP (op1, 0), code = swap_condition (code);
11218
11219 else
11220 break;
11221 }
11222
11223 /* If the first operand is a constant, swap the operands and adjust the
11224 comparison code appropriately, but don't do this if the second operand
11225 is already a constant integer. */
11226 if (swap_commutative_operands_p (op0, op1))
11227 {
11228 tem = op0, op0 = op1, op1 = tem;
11229 code = swap_condition (code);
11230 }
11231
11232 /* We now enter a loop during which we will try to simplify the comparison.
11233 For the most part, we only are concerned with comparisons with zero,
11234 but some things may really be comparisons with zero but not start
11235 out looking that way. */
11236
11237 while (CONST_INT_P (op1))
11238 {
11239 enum machine_mode mode = GET_MODE (op0);
11240 unsigned int mode_width = GET_MODE_PRECISION (mode);
11241 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
11242 int equality_comparison_p;
11243 int sign_bit_comparison_p;
11244 int unsigned_comparison_p;
11245 HOST_WIDE_INT const_op;
11246
11247 /* We only want to handle integral modes. This catches VOIDmode,
11248 CCmode, and the floating-point modes. An exception is that we
11249 can handle VOIDmode if OP0 is a COMPARE or a comparison
11250 operation. */
11251
11252 if (GET_MODE_CLASS (mode) != MODE_INT
11253 && ! (mode == VOIDmode
11254 && (GET_CODE (op0) == COMPARE || COMPARISON_P (op0))))
11255 break;
11256
11257 /* Try to simplify the compare to constant, possibly changing the
11258 comparison op, and/or changing op1 to zero. */
11259 code = simplify_compare_const (code, op0, &op1);
11260 const_op = INTVAL (op1);
11261
11262 /* Compute some predicates to simplify code below. */
11263
11264 equality_comparison_p = (code == EQ || code == NE);
11265 sign_bit_comparison_p = ((code == LT || code == GE) && const_op == 0);
11266 unsigned_comparison_p = (code == LTU || code == LEU || code == GTU
11267 || code == GEU);
11268
11269 /* If this is a sign bit comparison and we can do arithmetic in
11270 MODE, say that we will only be needing the sign bit of OP0. */
11271 if (sign_bit_comparison_p && HWI_COMPUTABLE_MODE_P (mode))
11272 op0 = force_to_mode (op0, mode,
11273 (unsigned HOST_WIDE_INT) 1
11274 << (GET_MODE_PRECISION (mode) - 1),
11275 0);
11276
11277 /* Now try cases based on the opcode of OP0. If none of the cases
11278 does a "continue", we exit this loop immediately after the
11279 switch. */
11280
11281 switch (GET_CODE (op0))
11282 {
11283 case ZERO_EXTRACT:
11284 /* If we are extracting a single bit from a variable position in
11285 a constant that has only a single bit set and are comparing it
11286 with zero, we can convert this into an equality comparison
11287 between the position and the location of the single bit. */
11288 /* Except we can't if SHIFT_COUNT_TRUNCATED is set, since we might
11289 have already reduced the shift count modulo the word size. */
11290 if (!SHIFT_COUNT_TRUNCATED
11291 && CONST_INT_P (XEXP (op0, 0))
11292 && XEXP (op0, 1) == const1_rtx
11293 && equality_comparison_p && const_op == 0
11294 && (i = exact_log2 (UINTVAL (XEXP (op0, 0)))) >= 0)
11295 {
11296 if (BITS_BIG_ENDIAN)
11297 {
11298 enum machine_mode new_mode
11299 = mode_for_extraction (EP_extzv, 1);
11300 if (new_mode == MAX_MACHINE_MODE)
11301 i = BITS_PER_WORD - 1 - i;
11302 else
11303 {
11304 mode = new_mode;
11305 i = (GET_MODE_PRECISION (mode) - 1 - i);
11306 }
11307 }
11308
11309 op0 = XEXP (op0, 2);
11310 op1 = GEN_INT (i);
11311 const_op = i;
11312
11313 /* Result is nonzero iff shift count is equal to I. */
11314 code = reverse_condition (code);
11315 continue;
11316 }
11317
11318 /* ... fall through ... */
11319
11320 case SIGN_EXTRACT:
11321 tem = expand_compound_operation (op0);
11322 if (tem != op0)
11323 {
11324 op0 = tem;
11325 continue;
11326 }
11327 break;
11328
11329 case NOT:
11330 /* If testing for equality, we can take the NOT of the constant. */
11331 if (equality_comparison_p
11332 && (tem = simplify_unary_operation (NOT, mode, op1, mode)) != 0)
11333 {
11334 op0 = XEXP (op0, 0);
11335 op1 = tem;
11336 continue;
11337 }
11338
11339 /* If just looking at the sign bit, reverse the sense of the
11340 comparison. */
11341 if (sign_bit_comparison_p)
11342 {
11343 op0 = XEXP (op0, 0);
11344 code = (code == GE ? LT : GE);
11345 continue;
11346 }
11347 break;
11348
11349 case NEG:
11350 /* If testing for equality, we can take the NEG of the constant. */
11351 if (equality_comparison_p
11352 && (tem = simplify_unary_operation (NEG, mode, op1, mode)) != 0)
11353 {
11354 op0 = XEXP (op0, 0);
11355 op1 = tem;
11356 continue;
11357 }
11358
11359 /* The remaining cases only apply to comparisons with zero. */
11360 if (const_op != 0)
11361 break;
11362
11363 /* When X is ABS or is known positive,
11364 (neg X) is < 0 if and only if X != 0. */
11365
11366 if (sign_bit_comparison_p
11367 && (GET_CODE (XEXP (op0, 0)) == ABS
11368 || (mode_width <= HOST_BITS_PER_WIDE_INT
11369 && (nonzero_bits (XEXP (op0, 0), mode)
11370 & ((unsigned HOST_WIDE_INT) 1 << (mode_width - 1)))
11371 == 0)))
11372 {
11373 op0 = XEXP (op0, 0);
11374 code = (code == LT ? NE : EQ);
11375 continue;
11376 }
11377
11378 /* If we have NEG of something whose two high-order bits are the
11379 same, we know that "(-a) < 0" is equivalent to "a > 0". */
11380 if (num_sign_bit_copies (op0, mode) >= 2)
11381 {
11382 op0 = XEXP (op0, 0);
11383 code = swap_condition (code);
11384 continue;
11385 }
11386 break;
11387
11388 case ROTATE:
11389 /* If we are testing equality and our count is a constant, we
11390 can perform the inverse operation on our RHS. */
11391 if (equality_comparison_p && CONST_INT_P (XEXP (op0, 1))
11392 && (tem = simplify_binary_operation (ROTATERT, mode,
11393 op1, XEXP (op0, 1))) != 0)
11394 {
11395 op0 = XEXP (op0, 0);
11396 op1 = tem;
11397 continue;
11398 }
11399
11400 /* If we are doing a < 0 or >= 0 comparison, it means we are testing
11401 a particular bit. Convert it to an AND of a constant of that
11402 bit. This will be converted into a ZERO_EXTRACT. */
11403 if (const_op == 0 && sign_bit_comparison_p
11404 && CONST_INT_P (XEXP (op0, 1))
11405 && mode_width <= HOST_BITS_PER_WIDE_INT)
11406 {
11407 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
11408 ((unsigned HOST_WIDE_INT) 1
11409 << (mode_width - 1
11410 - INTVAL (XEXP (op0, 1)))));
11411 code = (code == LT ? NE : EQ);
11412 continue;
11413 }
11414
11415 /* Fall through. */
11416
11417 case ABS:
11418 /* ABS is ignorable inside an equality comparison with zero. */
11419 if (const_op == 0 && equality_comparison_p)
11420 {
11421 op0 = XEXP (op0, 0);
11422 continue;
11423 }
11424 break;
11425
11426 case SIGN_EXTEND:
11427 /* Can simplify (compare (zero/sign_extend FOO) CONST) to
11428 (compare FOO CONST) if CONST fits in FOO's mode and we
11429 are either testing inequality or have an unsigned
11430 comparison with ZERO_EXTEND or a signed comparison with
11431 SIGN_EXTEND. But don't do it if we don't have a compare
11432 insn of the given mode, since we'd have to revert it
11433 later on, and then we wouldn't know whether to sign- or
11434 zero-extend. */
11435 mode = GET_MODE (XEXP (op0, 0));
11436 if (GET_MODE_CLASS (mode) == MODE_INT
11437 && ! unsigned_comparison_p
11438 && HWI_COMPUTABLE_MODE_P (mode)
11439 && trunc_int_for_mode (const_op, mode) == const_op
11440 && have_insn_for (COMPARE, mode))
11441 {
11442 op0 = XEXP (op0, 0);
11443 continue;
11444 }
11445 break;
11446
11447 case SUBREG:
11448 /* Check for the case where we are comparing A - C1 with C2, that is
11449
11450 (subreg:MODE (plus (A) (-C1))) op (C2)
11451
11452 with C1 a constant, and try to lift the SUBREG, i.e. to do the
11453 comparison in the wider mode. One of the following two conditions
11454 must be true in order for this to be valid:
11455
11456 1. The mode extension results in the same bit pattern being added
11457 on both sides and the comparison is equality or unsigned. As
11458 C2 has been truncated to fit in MODE, the pattern can only be
11459 all 0s or all 1s.
11460
11461 2. The mode extension results in the sign bit being copied on
11462 each side.
11463
11464 The difficulty here is that we have predicates for A but not for
11465 (A - C1) so we need to check that C1 is within proper bounds so
11466 as to perturbate A as little as possible. */
11467
11468 if (mode_width <= HOST_BITS_PER_WIDE_INT
11469 && subreg_lowpart_p (op0)
11470 && GET_MODE_PRECISION (GET_MODE (SUBREG_REG (op0))) > mode_width
11471 && GET_CODE (SUBREG_REG (op0)) == PLUS
11472 && CONST_INT_P (XEXP (SUBREG_REG (op0), 1)))
11473 {
11474 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (op0));
11475 rtx a = XEXP (SUBREG_REG (op0), 0);
11476 HOST_WIDE_INT c1 = -INTVAL (XEXP (SUBREG_REG (op0), 1));
11477
11478 if ((c1 > 0
11479 && (unsigned HOST_WIDE_INT) c1
11480 < (unsigned HOST_WIDE_INT) 1 << (mode_width - 1)
11481 && (equality_comparison_p || unsigned_comparison_p)
11482 /* (A - C1) zero-extends if it is positive and sign-extends
11483 if it is negative, C2 both zero- and sign-extends. */
11484 && ((0 == (nonzero_bits (a, inner_mode)
11485 & ~GET_MODE_MASK (mode))
11486 && const_op >= 0)
11487 /* (A - C1) sign-extends if it is positive and 1-extends
11488 if it is negative, C2 both sign- and 1-extends. */
11489 || (num_sign_bit_copies (a, inner_mode)
11490 > (unsigned int) (GET_MODE_PRECISION (inner_mode)
11491 - mode_width)
11492 && const_op < 0)))
11493 || ((unsigned HOST_WIDE_INT) c1
11494 < (unsigned HOST_WIDE_INT) 1 << (mode_width - 2)
11495 /* (A - C1) always sign-extends, like C2. */
11496 && num_sign_bit_copies (a, inner_mode)
11497 > (unsigned int) (GET_MODE_PRECISION (inner_mode)
11498 - (mode_width - 1))))
11499 {
11500 op0 = SUBREG_REG (op0);
11501 continue;
11502 }
11503 }
11504
11505 /* If the inner mode is narrower and we are extracting the low part,
11506 we can treat the SUBREG as if it were a ZERO_EXTEND. */
11507 if (subreg_lowpart_p (op0)
11508 && GET_MODE_PRECISION (GET_MODE (SUBREG_REG (op0))) < mode_width)
11509 /* Fall through */ ;
11510 else
11511 break;
11512
11513 /* ... fall through ... */
11514
11515 case ZERO_EXTEND:
11516 mode = GET_MODE (XEXP (op0, 0));
11517 if (GET_MODE_CLASS (mode) == MODE_INT
11518 && (unsigned_comparison_p || equality_comparison_p)
11519 && HWI_COMPUTABLE_MODE_P (mode)
11520 && (unsigned HOST_WIDE_INT) const_op <= GET_MODE_MASK (mode)
11521 && const_op >= 0
11522 && have_insn_for (COMPARE, mode))
11523 {
11524 op0 = XEXP (op0, 0);
11525 continue;
11526 }
11527 break;
11528
11529 case PLUS:
11530 /* (eq (plus X A) B) -> (eq X (minus B A)). We can only do
11531 this for equality comparisons due to pathological cases involving
11532 overflows. */
11533 if (equality_comparison_p
11534 && 0 != (tem = simplify_binary_operation (MINUS, mode,
11535 op1, XEXP (op0, 1))))
11536 {
11537 op0 = XEXP (op0, 0);
11538 op1 = tem;
11539 continue;
11540 }
11541
11542 /* (plus (abs X) (const_int -1)) is < 0 if and only if X == 0. */
11543 if (const_op == 0 && XEXP (op0, 1) == constm1_rtx
11544 && GET_CODE (XEXP (op0, 0)) == ABS && sign_bit_comparison_p)
11545 {
11546 op0 = XEXP (XEXP (op0, 0), 0);
11547 code = (code == LT ? EQ : NE);
11548 continue;
11549 }
11550 break;
11551
11552 case MINUS:
11553 /* We used to optimize signed comparisons against zero, but that
11554 was incorrect. Unsigned comparisons against zero (GTU, LEU)
11555 arrive here as equality comparisons, or (GEU, LTU) are
11556 optimized away. No need to special-case them. */
11557
11558 /* (eq (minus A B) C) -> (eq A (plus B C)) or
11559 (eq B (minus A C)), whichever simplifies. We can only do
11560 this for equality comparisons due to pathological cases involving
11561 overflows. */
11562 if (equality_comparison_p
11563 && 0 != (tem = simplify_binary_operation (PLUS, mode,
11564 XEXP (op0, 1), op1)))
11565 {
11566 op0 = XEXP (op0, 0);
11567 op1 = tem;
11568 continue;
11569 }
11570
11571 if (equality_comparison_p
11572 && 0 != (tem = simplify_binary_operation (MINUS, mode,
11573 XEXP (op0, 0), op1)))
11574 {
11575 op0 = XEXP (op0, 1);
11576 op1 = tem;
11577 continue;
11578 }
11579
11580 /* The sign bit of (minus (ashiftrt X C) X), where C is the number
11581 of bits in X minus 1, is one iff X > 0. */
11582 if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 0)) == ASHIFTRT
11583 && CONST_INT_P (XEXP (XEXP (op0, 0), 1))
11584 && UINTVAL (XEXP (XEXP (op0, 0), 1)) == mode_width - 1
11585 && rtx_equal_p (XEXP (XEXP (op0, 0), 0), XEXP (op0, 1)))
11586 {
11587 op0 = XEXP (op0, 1);
11588 code = (code == GE ? LE : GT);
11589 continue;
11590 }
11591 break;
11592
11593 case XOR:
11594 /* (eq (xor A B) C) -> (eq A (xor B C)). This is a simplification
11595 if C is zero or B is a constant. */
11596 if (equality_comparison_p
11597 && 0 != (tem = simplify_binary_operation (XOR, mode,
11598 XEXP (op0, 1), op1)))
11599 {
11600 op0 = XEXP (op0, 0);
11601 op1 = tem;
11602 continue;
11603 }
11604 break;
11605
11606 case EQ: case NE:
11607 case UNEQ: case LTGT:
11608 case LT: case LTU: case UNLT: case LE: case LEU: case UNLE:
11609 case GT: case GTU: case UNGT: case GE: case GEU: case UNGE:
11610 case UNORDERED: case ORDERED:
11611 /* We can't do anything if OP0 is a condition code value, rather
11612 than an actual data value. */
11613 if (const_op != 0
11614 || CC0_P (XEXP (op0, 0))
11615 || GET_MODE_CLASS (GET_MODE (XEXP (op0, 0))) == MODE_CC)
11616 break;
11617
11618 /* Get the two operands being compared. */
11619 if (GET_CODE (XEXP (op0, 0)) == COMPARE)
11620 tem = XEXP (XEXP (op0, 0), 0), tem1 = XEXP (XEXP (op0, 0), 1);
11621 else
11622 tem = XEXP (op0, 0), tem1 = XEXP (op0, 1);
11623
11624 /* Check for the cases where we simply want the result of the
11625 earlier test or the opposite of that result. */
11626 if (code == NE || code == EQ
11627 || (val_signbit_known_set_p (GET_MODE (op0), STORE_FLAG_VALUE)
11628 && (code == LT || code == GE)))
11629 {
11630 enum rtx_code new_code;
11631 if (code == LT || code == NE)
11632 new_code = GET_CODE (op0);
11633 else
11634 new_code = reversed_comparison_code (op0, NULL);
11635
11636 if (new_code != UNKNOWN)
11637 {
11638 code = new_code;
11639 op0 = tem;
11640 op1 = tem1;
11641 continue;
11642 }
11643 }
11644 break;
11645
11646 case IOR:
11647 /* The sign bit of (ior (plus X (const_int -1)) X) is nonzero
11648 iff X <= 0. */
11649 if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 0)) == PLUS
11650 && XEXP (XEXP (op0, 0), 1) == constm1_rtx
11651 && rtx_equal_p (XEXP (XEXP (op0, 0), 0), XEXP (op0, 1)))
11652 {
11653 op0 = XEXP (op0, 1);
11654 code = (code == GE ? GT : LE);
11655 continue;
11656 }
11657 break;
11658
11659 case AND:
11660 /* Convert (and (xshift 1 X) Y) to (and (lshiftrt Y X) 1). This
11661 will be converted to a ZERO_EXTRACT later. */
11662 if (const_op == 0 && equality_comparison_p
11663 && GET_CODE (XEXP (op0, 0)) == ASHIFT
11664 && XEXP (XEXP (op0, 0), 0) == const1_rtx)
11665 {
11666 op0 = gen_rtx_LSHIFTRT (mode, XEXP (op0, 1),
11667 XEXP (XEXP (op0, 0), 1));
11668 op0 = simplify_and_const_int (NULL_RTX, mode, op0, 1);
11669 continue;
11670 }
11671
11672 /* If we are comparing (and (lshiftrt X C1) C2) for equality with
11673 zero and X is a comparison and C1 and C2 describe only bits set
11674 in STORE_FLAG_VALUE, we can compare with X. */
11675 if (const_op == 0 && equality_comparison_p
11676 && mode_width <= HOST_BITS_PER_WIDE_INT
11677 && CONST_INT_P (XEXP (op0, 1))
11678 && GET_CODE (XEXP (op0, 0)) == LSHIFTRT
11679 && CONST_INT_P (XEXP (XEXP (op0, 0), 1))
11680 && INTVAL (XEXP (XEXP (op0, 0), 1)) >= 0
11681 && INTVAL (XEXP (XEXP (op0, 0), 1)) < HOST_BITS_PER_WIDE_INT)
11682 {
11683 mask = ((INTVAL (XEXP (op0, 1)) & GET_MODE_MASK (mode))
11684 << INTVAL (XEXP (XEXP (op0, 0), 1)));
11685 if ((~STORE_FLAG_VALUE & mask) == 0
11686 && (COMPARISON_P (XEXP (XEXP (op0, 0), 0))
11687 || ((tem = get_last_value (XEXP (XEXP (op0, 0), 0))) != 0
11688 && COMPARISON_P (tem))))
11689 {
11690 op0 = XEXP (XEXP (op0, 0), 0);
11691 continue;
11692 }
11693 }
11694
11695 /* If we are doing an equality comparison of an AND of a bit equal
11696 to the sign bit, replace this with a LT or GE comparison of
11697 the underlying value. */
11698 if (equality_comparison_p
11699 && const_op == 0
11700 && CONST_INT_P (XEXP (op0, 1))
11701 && mode_width <= HOST_BITS_PER_WIDE_INT
11702 && ((INTVAL (XEXP (op0, 1)) & GET_MODE_MASK (mode))
11703 == (unsigned HOST_WIDE_INT) 1 << (mode_width - 1)))
11704 {
11705 op0 = XEXP (op0, 0);
11706 code = (code == EQ ? GE : LT);
11707 continue;
11708 }
11709
11710 /* If this AND operation is really a ZERO_EXTEND from a narrower
11711 mode, the constant fits within that mode, and this is either an
11712 equality or unsigned comparison, try to do this comparison in
11713 the narrower mode.
11714
11715 Note that in:
11716
11717 (ne:DI (and:DI (reg:DI 4) (const_int 0xffffffff)) (const_int 0))
11718 -> (ne:DI (reg:SI 4) (const_int 0))
11719
11720 unless TRULY_NOOP_TRUNCATION allows it or the register is
11721 known to hold a value of the required mode the
11722 transformation is invalid. */
11723 if ((equality_comparison_p || unsigned_comparison_p)
11724 && CONST_INT_P (XEXP (op0, 1))
11725 && (i = exact_log2 ((UINTVAL (XEXP (op0, 1))
11726 & GET_MODE_MASK (mode))
11727 + 1)) >= 0
11728 && const_op >> i == 0
11729 && (tmode = mode_for_size (i, MODE_INT, 1)) != BLKmode
11730 && (TRULY_NOOP_TRUNCATION_MODES_P (tmode, GET_MODE (op0))
11731 || (REG_P (XEXP (op0, 0))
11732 && reg_truncated_to_mode (tmode, XEXP (op0, 0)))))
11733 {
11734 op0 = gen_lowpart (tmode, XEXP (op0, 0));
11735 continue;
11736 }
11737
11738 /* If this is (and:M1 (subreg:M2 X 0) (const_int C1)) where C1
11739 fits in both M1 and M2 and the SUBREG is either paradoxical
11740 or represents the low part, permute the SUBREG and the AND
11741 and try again. */
11742 if (GET_CODE (XEXP (op0, 0)) == SUBREG)
11743 {
11744 unsigned HOST_WIDE_INT c1;
11745 tmode = GET_MODE (SUBREG_REG (XEXP (op0, 0)));
11746 /* Require an integral mode, to avoid creating something like
11747 (AND:SF ...). */
11748 if (SCALAR_INT_MODE_P (tmode)
11749 /* It is unsafe to commute the AND into the SUBREG if the
11750 SUBREG is paradoxical and WORD_REGISTER_OPERATIONS is
11751 not defined. As originally written the upper bits
11752 have a defined value due to the AND operation.
11753 However, if we commute the AND inside the SUBREG then
11754 they no longer have defined values and the meaning of
11755 the code has been changed. */
11756 && (0
11757 #ifdef WORD_REGISTER_OPERATIONS
11758 || (mode_width > GET_MODE_PRECISION (tmode)
11759 && mode_width <= BITS_PER_WORD)
11760 #endif
11761 || (mode_width <= GET_MODE_PRECISION (tmode)
11762 && subreg_lowpart_p (XEXP (op0, 0))))
11763 && CONST_INT_P (XEXP (op0, 1))
11764 && mode_width <= HOST_BITS_PER_WIDE_INT
11765 && HWI_COMPUTABLE_MODE_P (tmode)
11766 && ((c1 = INTVAL (XEXP (op0, 1))) & ~mask) == 0
11767 && (c1 & ~GET_MODE_MASK (tmode)) == 0
11768 && c1 != mask
11769 && c1 != GET_MODE_MASK (tmode))
11770 {
11771 op0 = simplify_gen_binary (AND, tmode,
11772 SUBREG_REG (XEXP (op0, 0)),
11773 gen_int_mode (c1, tmode));
11774 op0 = gen_lowpart (mode, op0);
11775 continue;
11776 }
11777 }
11778
11779 /* Convert (ne (and (not X) 1) 0) to (eq (and X 1) 0). */
11780 if (const_op == 0 && equality_comparison_p
11781 && XEXP (op0, 1) == const1_rtx
11782 && GET_CODE (XEXP (op0, 0)) == NOT)
11783 {
11784 op0 = simplify_and_const_int (NULL_RTX, mode,
11785 XEXP (XEXP (op0, 0), 0), 1);
11786 code = (code == NE ? EQ : NE);
11787 continue;
11788 }
11789
11790 /* Convert (ne (and (lshiftrt (not X)) 1) 0) to
11791 (eq (and (lshiftrt X) 1) 0).
11792 Also handle the case where (not X) is expressed using xor. */
11793 if (const_op == 0 && equality_comparison_p
11794 && XEXP (op0, 1) == const1_rtx
11795 && GET_CODE (XEXP (op0, 0)) == LSHIFTRT)
11796 {
11797 rtx shift_op = XEXP (XEXP (op0, 0), 0);
11798 rtx shift_count = XEXP (XEXP (op0, 0), 1);
11799
11800 if (GET_CODE (shift_op) == NOT
11801 || (GET_CODE (shift_op) == XOR
11802 && CONST_INT_P (XEXP (shift_op, 1))
11803 && CONST_INT_P (shift_count)
11804 && HWI_COMPUTABLE_MODE_P (mode)
11805 && (UINTVAL (XEXP (shift_op, 1))
11806 == (unsigned HOST_WIDE_INT) 1
11807 << INTVAL (shift_count))))
11808 {
11809 op0
11810 = gen_rtx_LSHIFTRT (mode, XEXP (shift_op, 0), shift_count);
11811 op0 = simplify_and_const_int (NULL_RTX, mode, op0, 1);
11812 code = (code == NE ? EQ : NE);
11813 continue;
11814 }
11815 }
11816 break;
11817
11818 case ASHIFT:
11819 /* If we have (compare (ashift FOO N) (const_int C)) and
11820 the high order N bits of FOO (N+1 if an inequality comparison)
11821 are known to be zero, we can do this by comparing FOO with C
11822 shifted right N bits so long as the low-order N bits of C are
11823 zero. */
11824 if (CONST_INT_P (XEXP (op0, 1))
11825 && INTVAL (XEXP (op0, 1)) >= 0
11826 && ((INTVAL (XEXP (op0, 1)) + ! equality_comparison_p)
11827 < HOST_BITS_PER_WIDE_INT)
11828 && (((unsigned HOST_WIDE_INT) const_op
11829 & (((unsigned HOST_WIDE_INT) 1 << INTVAL (XEXP (op0, 1)))
11830 - 1)) == 0)
11831 && mode_width <= HOST_BITS_PER_WIDE_INT
11832 && (nonzero_bits (XEXP (op0, 0), mode)
11833 & ~(mask >> (INTVAL (XEXP (op0, 1))
11834 + ! equality_comparison_p))) == 0)
11835 {
11836 /* We must perform a logical shift, not an arithmetic one,
11837 as we want the top N bits of C to be zero. */
11838 unsigned HOST_WIDE_INT temp = const_op & GET_MODE_MASK (mode);
11839
11840 temp >>= INTVAL (XEXP (op0, 1));
11841 op1 = gen_int_mode (temp, mode);
11842 op0 = XEXP (op0, 0);
11843 continue;
11844 }
11845
11846 /* If we are doing a sign bit comparison, it means we are testing
11847 a particular bit. Convert it to the appropriate AND. */
11848 if (sign_bit_comparison_p && CONST_INT_P (XEXP (op0, 1))
11849 && mode_width <= HOST_BITS_PER_WIDE_INT)
11850 {
11851 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
11852 ((unsigned HOST_WIDE_INT) 1
11853 << (mode_width - 1
11854 - INTVAL (XEXP (op0, 1)))));
11855 code = (code == LT ? NE : EQ);
11856 continue;
11857 }
11858
11859 /* If this an equality comparison with zero and we are shifting
11860 the low bit to the sign bit, we can convert this to an AND of the
11861 low-order bit. */
11862 if (const_op == 0 && equality_comparison_p
11863 && CONST_INT_P (XEXP (op0, 1))
11864 && UINTVAL (XEXP (op0, 1)) == mode_width - 1)
11865 {
11866 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0), 1);
11867 continue;
11868 }
11869 break;
11870
11871 case ASHIFTRT:
11872 /* If this is an equality comparison with zero, we can do this
11873 as a logical shift, which might be much simpler. */
11874 if (equality_comparison_p && const_op == 0
11875 && CONST_INT_P (XEXP (op0, 1)))
11876 {
11877 op0 = simplify_shift_const (NULL_RTX, LSHIFTRT, mode,
11878 XEXP (op0, 0),
11879 INTVAL (XEXP (op0, 1)));
11880 continue;
11881 }
11882
11883 /* If OP0 is a sign extension and CODE is not an unsigned comparison,
11884 do the comparison in a narrower mode. */
11885 if (! unsigned_comparison_p
11886 && CONST_INT_P (XEXP (op0, 1))
11887 && GET_CODE (XEXP (op0, 0)) == ASHIFT
11888 && XEXP (op0, 1) == XEXP (XEXP (op0, 0), 1)
11889 && (tmode = mode_for_size (mode_width - INTVAL (XEXP (op0, 1)),
11890 MODE_INT, 1)) != BLKmode
11891 && (((unsigned HOST_WIDE_INT) const_op
11892 + (GET_MODE_MASK (tmode) >> 1) + 1)
11893 <= GET_MODE_MASK (tmode)))
11894 {
11895 op0 = gen_lowpart (tmode, XEXP (XEXP (op0, 0), 0));
11896 continue;
11897 }
11898
11899 /* Likewise if OP0 is a PLUS of a sign extension with a
11900 constant, which is usually represented with the PLUS
11901 between the shifts. */
11902 if (! unsigned_comparison_p
11903 && CONST_INT_P (XEXP (op0, 1))
11904 && GET_CODE (XEXP (op0, 0)) == PLUS
11905 && CONST_INT_P (XEXP (XEXP (op0, 0), 1))
11906 && GET_CODE (XEXP (XEXP (op0, 0), 0)) == ASHIFT
11907 && XEXP (op0, 1) == XEXP (XEXP (XEXP (op0, 0), 0), 1)
11908 && (tmode = mode_for_size (mode_width - INTVAL (XEXP (op0, 1)),
11909 MODE_INT, 1)) != BLKmode
11910 && (((unsigned HOST_WIDE_INT) const_op
11911 + (GET_MODE_MASK (tmode) >> 1) + 1)
11912 <= GET_MODE_MASK (tmode)))
11913 {
11914 rtx inner = XEXP (XEXP (XEXP (op0, 0), 0), 0);
11915 rtx add_const = XEXP (XEXP (op0, 0), 1);
11916 rtx new_const = simplify_gen_binary (ASHIFTRT, GET_MODE (op0),
11917 add_const, XEXP (op0, 1));
11918
11919 op0 = simplify_gen_binary (PLUS, tmode,
11920 gen_lowpart (tmode, inner),
11921 new_const);
11922 continue;
11923 }
11924
11925 /* ... fall through ... */
11926 case LSHIFTRT:
11927 /* If we have (compare (xshiftrt FOO N) (const_int C)) and
11928 the low order N bits of FOO are known to be zero, we can do this
11929 by comparing FOO with C shifted left N bits so long as no
11930 overflow occurs. Even if the low order N bits of FOO aren't known
11931 to be zero, if the comparison is >= or < we can use the same
11932 optimization and for > or <= by setting all the low
11933 order N bits in the comparison constant. */
11934 if (CONST_INT_P (XEXP (op0, 1))
11935 && INTVAL (XEXP (op0, 1)) > 0
11936 && INTVAL (XEXP (op0, 1)) < HOST_BITS_PER_WIDE_INT
11937 && mode_width <= HOST_BITS_PER_WIDE_INT
11938 && (((unsigned HOST_WIDE_INT) const_op
11939 + (GET_CODE (op0) != LSHIFTRT
11940 ? ((GET_MODE_MASK (mode) >> INTVAL (XEXP (op0, 1)) >> 1)
11941 + 1)
11942 : 0))
11943 <= GET_MODE_MASK (mode) >> INTVAL (XEXP (op0, 1))))
11944 {
11945 unsigned HOST_WIDE_INT low_bits
11946 = (nonzero_bits (XEXP (op0, 0), mode)
11947 & (((unsigned HOST_WIDE_INT) 1
11948 << INTVAL (XEXP (op0, 1))) - 1));
11949 if (low_bits == 0 || !equality_comparison_p)
11950 {
11951 /* If the shift was logical, then we must make the condition
11952 unsigned. */
11953 if (GET_CODE (op0) == LSHIFTRT)
11954 code = unsigned_condition (code);
11955
11956 const_op <<= INTVAL (XEXP (op0, 1));
11957 if (low_bits != 0
11958 && (code == GT || code == GTU
11959 || code == LE || code == LEU))
11960 const_op
11961 |= (((HOST_WIDE_INT) 1 << INTVAL (XEXP (op0, 1))) - 1);
11962 op1 = GEN_INT (const_op);
11963 op0 = XEXP (op0, 0);
11964 continue;
11965 }
11966 }
11967
11968 /* If we are using this shift to extract just the sign bit, we
11969 can replace this with an LT or GE comparison. */
11970 if (const_op == 0
11971 && (equality_comparison_p || sign_bit_comparison_p)
11972 && CONST_INT_P (XEXP (op0, 1))
11973 && UINTVAL (XEXP (op0, 1)) == mode_width - 1)
11974 {
11975 op0 = XEXP (op0, 0);
11976 code = (code == NE || code == GT ? LT : GE);
11977 continue;
11978 }
11979 break;
11980
11981 default:
11982 break;
11983 }
11984
11985 break;
11986 }
11987
11988 /* Now make any compound operations involved in this comparison. Then,
11989 check for an outmost SUBREG on OP0 that is not doing anything or is
11990 paradoxical. The latter transformation must only be performed when
11991 it is known that the "extra" bits will be the same in op0 and op1 or
11992 that they don't matter. There are three cases to consider:
11993
11994 1. SUBREG_REG (op0) is a register. In this case the bits are don't
11995 care bits and we can assume they have any convenient value. So
11996 making the transformation is safe.
11997
11998 2. SUBREG_REG (op0) is a memory and LOAD_EXTEND_OP is not defined.
11999 In this case the upper bits of op0 are undefined. We should not make
12000 the simplification in that case as we do not know the contents of
12001 those bits.
12002
12003 3. SUBREG_REG (op0) is a memory and LOAD_EXTEND_OP is defined and not
12004 UNKNOWN. In that case we know those bits are zeros or ones. We must
12005 also be sure that they are the same as the upper bits of op1.
12006
12007 We can never remove a SUBREG for a non-equality comparison because
12008 the sign bit is in a different place in the underlying object. */
12009
12010 op0 = make_compound_operation (op0, op1 == const0_rtx ? COMPARE : SET);
12011 op1 = make_compound_operation (op1, SET);
12012
12013 if (GET_CODE (op0) == SUBREG && subreg_lowpart_p (op0)
12014 && GET_MODE_CLASS (GET_MODE (op0)) == MODE_INT
12015 && GET_MODE_CLASS (GET_MODE (SUBREG_REG (op0))) == MODE_INT
12016 && (code == NE || code == EQ))
12017 {
12018 if (paradoxical_subreg_p (op0))
12019 {
12020 /* For paradoxical subregs, allow case 1 as above. Case 3 isn't
12021 implemented. */
12022 if (REG_P (SUBREG_REG (op0)))
12023 {
12024 op0 = SUBREG_REG (op0);
12025 op1 = gen_lowpart (GET_MODE (op0), op1);
12026 }
12027 }
12028 else if ((GET_MODE_PRECISION (GET_MODE (SUBREG_REG (op0)))
12029 <= HOST_BITS_PER_WIDE_INT)
12030 && (nonzero_bits (SUBREG_REG (op0),
12031 GET_MODE (SUBREG_REG (op0)))
12032 & ~GET_MODE_MASK (GET_MODE (op0))) == 0)
12033 {
12034 tem = gen_lowpart (GET_MODE (SUBREG_REG (op0)), op1);
12035
12036 if ((nonzero_bits (tem, GET_MODE (SUBREG_REG (op0)))
12037 & ~GET_MODE_MASK (GET_MODE (op0))) == 0)
12038 op0 = SUBREG_REG (op0), op1 = tem;
12039 }
12040 }
12041
12042 /* We now do the opposite procedure: Some machines don't have compare
12043 insns in all modes. If OP0's mode is an integer mode smaller than a
12044 word and we can't do a compare in that mode, see if there is a larger
12045 mode for which we can do the compare. There are a number of cases in
12046 which we can use the wider mode. */
12047
12048 mode = GET_MODE (op0);
12049 if (mode != VOIDmode && GET_MODE_CLASS (mode) == MODE_INT
12050 && GET_MODE_SIZE (mode) < UNITS_PER_WORD
12051 && ! have_insn_for (COMPARE, mode))
12052 for (tmode = GET_MODE_WIDER_MODE (mode);
12053 (tmode != VOIDmode && HWI_COMPUTABLE_MODE_P (tmode));
12054 tmode = GET_MODE_WIDER_MODE (tmode))
12055 if (have_insn_for (COMPARE, tmode))
12056 {
12057 int zero_extended;
12058
12059 /* If this is a test for negative, we can make an explicit
12060 test of the sign bit. Test this first so we can use
12061 a paradoxical subreg to extend OP0. */
12062
12063 if (op1 == const0_rtx && (code == LT || code == GE)
12064 && HWI_COMPUTABLE_MODE_P (mode))
12065 {
12066 op0 = simplify_gen_binary (AND, tmode,
12067 gen_lowpart (tmode, op0),
12068 GEN_INT ((unsigned HOST_WIDE_INT) 1
12069 << (GET_MODE_BITSIZE (mode)
12070 - 1)));
12071 code = (code == LT) ? NE : EQ;
12072 break;
12073 }
12074
12075 /* If the only nonzero bits in OP0 and OP1 are those in the
12076 narrower mode and this is an equality or unsigned comparison,
12077 we can use the wider mode. Similarly for sign-extended
12078 values, in which case it is true for all comparisons. */
12079 zero_extended = ((code == EQ || code == NE
12080 || code == GEU || code == GTU
12081 || code == LEU || code == LTU)
12082 && (nonzero_bits (op0, tmode)
12083 & ~GET_MODE_MASK (mode)) == 0
12084 && ((CONST_INT_P (op1)
12085 || (nonzero_bits (op1, tmode)
12086 & ~GET_MODE_MASK (mode)) == 0)));
12087
12088 if (zero_extended
12089 || ((num_sign_bit_copies (op0, tmode)
12090 > (unsigned int) (GET_MODE_PRECISION (tmode)
12091 - GET_MODE_PRECISION (mode)))
12092 && (num_sign_bit_copies (op1, tmode)
12093 > (unsigned int) (GET_MODE_PRECISION (tmode)
12094 - GET_MODE_PRECISION (mode)))))
12095 {
12096 /* If OP0 is an AND and we don't have an AND in MODE either,
12097 make a new AND in the proper mode. */
12098 if (GET_CODE (op0) == AND
12099 && !have_insn_for (AND, mode))
12100 op0 = simplify_gen_binary (AND, tmode,
12101 gen_lowpart (tmode,
12102 XEXP (op0, 0)),
12103 gen_lowpart (tmode,
12104 XEXP (op0, 1)));
12105 else
12106 {
12107 if (zero_extended)
12108 {
12109 op0 = simplify_gen_unary (ZERO_EXTEND, tmode, op0, mode);
12110 op1 = simplify_gen_unary (ZERO_EXTEND, tmode, op1, mode);
12111 }
12112 else
12113 {
12114 op0 = simplify_gen_unary (SIGN_EXTEND, tmode, op0, mode);
12115 op1 = simplify_gen_unary (SIGN_EXTEND, tmode, op1, mode);
12116 }
12117 break;
12118 }
12119 }
12120 }
12121
12122 #ifdef CANONICALIZE_COMPARISON
12123 /* If this machine only supports a subset of valid comparisons, see if we
12124 can convert an unsupported one into a supported one. */
12125 CANONICALIZE_COMPARISON (code, op0, op1);
12126 #endif
12127
12128 *pop0 = op0;
12129 *pop1 = op1;
12130
12131 return code;
12132 }
12133 \f
12134 /* Utility function for record_value_for_reg. Count number of
12135 rtxs in X. */
12136 static int
12137 count_rtxs (rtx x)
12138 {
12139 enum rtx_code code = GET_CODE (x);
12140 const char *fmt;
12141 int i, j, ret = 1;
12142
12143 if (GET_RTX_CLASS (code) == '2'
12144 || GET_RTX_CLASS (code) == 'c')
12145 {
12146 rtx x0 = XEXP (x, 0);
12147 rtx x1 = XEXP (x, 1);
12148
12149 if (x0 == x1)
12150 return 1 + 2 * count_rtxs (x0);
12151
12152 if ((GET_RTX_CLASS (GET_CODE (x1)) == '2'
12153 || GET_RTX_CLASS (GET_CODE (x1)) == 'c')
12154 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
12155 return 2 + 2 * count_rtxs (x0)
12156 + count_rtxs (x == XEXP (x1, 0)
12157 ? XEXP (x1, 1) : XEXP (x1, 0));
12158
12159 if ((GET_RTX_CLASS (GET_CODE (x0)) == '2'
12160 || GET_RTX_CLASS (GET_CODE (x0)) == 'c')
12161 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
12162 return 2 + 2 * count_rtxs (x1)
12163 + count_rtxs (x == XEXP (x0, 0)
12164 ? XEXP (x0, 1) : XEXP (x0, 0));
12165 }
12166
12167 fmt = GET_RTX_FORMAT (code);
12168 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
12169 if (fmt[i] == 'e')
12170 ret += count_rtxs (XEXP (x, i));
12171 else if (fmt[i] == 'E')
12172 for (j = 0; j < XVECLEN (x, i); j++)
12173 ret += count_rtxs (XVECEXP (x, i, j));
12174
12175 return ret;
12176 }
12177 \f
12178 /* Utility function for following routine. Called when X is part of a value
12179 being stored into last_set_value. Sets last_set_table_tick
12180 for each register mentioned. Similar to mention_regs in cse.c */
12181
12182 static void
12183 update_table_tick (rtx x)
12184 {
12185 enum rtx_code code = GET_CODE (x);
12186 const char *fmt = GET_RTX_FORMAT (code);
12187 int i, j;
12188
12189 if (code == REG)
12190 {
12191 unsigned int regno = REGNO (x);
12192 unsigned int endregno = END_REGNO (x);
12193 unsigned int r;
12194
12195 for (r = regno; r < endregno; r++)
12196 {
12197 reg_stat_type *rsp = VEC_index (reg_stat_type, reg_stat, r);
12198 rsp->last_set_table_tick = label_tick;
12199 }
12200
12201 return;
12202 }
12203
12204 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
12205 if (fmt[i] == 'e')
12206 {
12207 /* Check for identical subexpressions. If x contains
12208 identical subexpression we only have to traverse one of
12209 them. */
12210 if (i == 0 && ARITHMETIC_P (x))
12211 {
12212 /* Note that at this point x1 has already been
12213 processed. */
12214 rtx x0 = XEXP (x, 0);
12215 rtx x1 = XEXP (x, 1);
12216
12217 /* If x0 and x1 are identical then there is no need to
12218 process x0. */
12219 if (x0 == x1)
12220 break;
12221
12222 /* If x0 is identical to a subexpression of x1 then while
12223 processing x1, x0 has already been processed. Thus we
12224 are done with x. */
12225 if (ARITHMETIC_P (x1)
12226 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
12227 break;
12228
12229 /* If x1 is identical to a subexpression of x0 then we
12230 still have to process the rest of x0. */
12231 if (ARITHMETIC_P (x0)
12232 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
12233 {
12234 update_table_tick (XEXP (x0, x1 == XEXP (x0, 0) ? 1 : 0));
12235 break;
12236 }
12237 }
12238
12239 update_table_tick (XEXP (x, i));
12240 }
12241 else if (fmt[i] == 'E')
12242 for (j = 0; j < XVECLEN (x, i); j++)
12243 update_table_tick (XVECEXP (x, i, j));
12244 }
12245
12246 /* Record that REG is set to VALUE in insn INSN. If VALUE is zero, we
12247 are saying that the register is clobbered and we no longer know its
12248 value. If INSN is zero, don't update reg_stat[].last_set; this is
12249 only permitted with VALUE also zero and is used to invalidate the
12250 register. */
12251
12252 static void
12253 record_value_for_reg (rtx reg, rtx insn, rtx value)
12254 {
12255 unsigned int regno = REGNO (reg);
12256 unsigned int endregno = END_REGNO (reg);
12257 unsigned int i;
12258 reg_stat_type *rsp;
12259
12260 /* If VALUE contains REG and we have a previous value for REG, substitute
12261 the previous value. */
12262 if (value && insn && reg_overlap_mentioned_p (reg, value))
12263 {
12264 rtx tem;
12265
12266 /* Set things up so get_last_value is allowed to see anything set up to
12267 our insn. */
12268 subst_low_luid = DF_INSN_LUID (insn);
12269 tem = get_last_value (reg);
12270
12271 /* If TEM is simply a binary operation with two CLOBBERs as operands,
12272 it isn't going to be useful and will take a lot of time to process,
12273 so just use the CLOBBER. */
12274
12275 if (tem)
12276 {
12277 if (ARITHMETIC_P (tem)
12278 && GET_CODE (XEXP (tem, 0)) == CLOBBER
12279 && GET_CODE (XEXP (tem, 1)) == CLOBBER)
12280 tem = XEXP (tem, 0);
12281 else if (count_occurrences (value, reg, 1) >= 2)
12282 {
12283 /* If there are two or more occurrences of REG in VALUE,
12284 prevent the value from growing too much. */
12285 if (count_rtxs (tem) > MAX_LAST_VALUE_RTL)
12286 tem = gen_rtx_CLOBBER (GET_MODE (tem), const0_rtx);
12287 }
12288
12289 value = replace_rtx (copy_rtx (value), reg, tem);
12290 }
12291 }
12292
12293 /* For each register modified, show we don't know its value, that
12294 we don't know about its bitwise content, that its value has been
12295 updated, and that we don't know the location of the death of the
12296 register. */
12297 for (i = regno; i < endregno; i++)
12298 {
12299 rsp = VEC_index (reg_stat_type, reg_stat, i);
12300
12301 if (insn)
12302 rsp->last_set = insn;
12303
12304 rsp->last_set_value = 0;
12305 rsp->last_set_mode = VOIDmode;
12306 rsp->last_set_nonzero_bits = 0;
12307 rsp->last_set_sign_bit_copies = 0;
12308 rsp->last_death = 0;
12309 rsp->truncated_to_mode = VOIDmode;
12310 }
12311
12312 /* Mark registers that are being referenced in this value. */
12313 if (value)
12314 update_table_tick (value);
12315
12316 /* Now update the status of each register being set.
12317 If someone is using this register in this block, set this register
12318 to invalid since we will get confused between the two lives in this
12319 basic block. This makes using this register always invalid. In cse, we
12320 scan the table to invalidate all entries using this register, but this
12321 is too much work for us. */
12322
12323 for (i = regno; i < endregno; i++)
12324 {
12325 rsp = VEC_index (reg_stat_type, reg_stat, i);
12326 rsp->last_set_label = label_tick;
12327 if (!insn
12328 || (value && rsp->last_set_table_tick >= label_tick_ebb_start))
12329 rsp->last_set_invalid = 1;
12330 else
12331 rsp->last_set_invalid = 0;
12332 }
12333
12334 /* The value being assigned might refer to X (like in "x++;"). In that
12335 case, we must replace it with (clobber (const_int 0)) to prevent
12336 infinite loops. */
12337 rsp = VEC_index (reg_stat_type, reg_stat, regno);
12338 if (value && !get_last_value_validate (&value, insn, label_tick, 0))
12339 {
12340 value = copy_rtx (value);
12341 if (!get_last_value_validate (&value, insn, label_tick, 1))
12342 value = 0;
12343 }
12344
12345 /* For the main register being modified, update the value, the mode, the
12346 nonzero bits, and the number of sign bit copies. */
12347
12348 rsp->last_set_value = value;
12349
12350 if (value)
12351 {
12352 enum machine_mode mode = GET_MODE (reg);
12353 subst_low_luid = DF_INSN_LUID (insn);
12354 rsp->last_set_mode = mode;
12355 if (GET_MODE_CLASS (mode) == MODE_INT
12356 && HWI_COMPUTABLE_MODE_P (mode))
12357 mode = nonzero_bits_mode;
12358 rsp->last_set_nonzero_bits = nonzero_bits (value, mode);
12359 rsp->last_set_sign_bit_copies
12360 = num_sign_bit_copies (value, GET_MODE (reg));
12361 }
12362 }
12363
12364 /* Called via note_stores from record_dead_and_set_regs to handle one
12365 SET or CLOBBER in an insn. DATA is the instruction in which the
12366 set is occurring. */
12367
12368 static void
12369 record_dead_and_set_regs_1 (rtx dest, const_rtx setter, void *data)
12370 {
12371 rtx record_dead_insn = (rtx) data;
12372
12373 if (GET_CODE (dest) == SUBREG)
12374 dest = SUBREG_REG (dest);
12375
12376 if (!record_dead_insn)
12377 {
12378 if (REG_P (dest))
12379 record_value_for_reg (dest, NULL_RTX, NULL_RTX);
12380 return;
12381 }
12382
12383 if (REG_P (dest))
12384 {
12385 /* If we are setting the whole register, we know its value. Otherwise
12386 show that we don't know the value. We can handle SUBREG in
12387 some cases. */
12388 if (GET_CODE (setter) == SET && dest == SET_DEST (setter))
12389 record_value_for_reg (dest, record_dead_insn, SET_SRC (setter));
12390 else if (GET_CODE (setter) == SET
12391 && GET_CODE (SET_DEST (setter)) == SUBREG
12392 && SUBREG_REG (SET_DEST (setter)) == dest
12393 && GET_MODE_PRECISION (GET_MODE (dest)) <= BITS_PER_WORD
12394 && subreg_lowpart_p (SET_DEST (setter)))
12395 record_value_for_reg (dest, record_dead_insn,
12396 gen_lowpart (GET_MODE (dest),
12397 SET_SRC (setter)));
12398 else
12399 record_value_for_reg (dest, record_dead_insn, NULL_RTX);
12400 }
12401 else if (MEM_P (dest)
12402 /* Ignore pushes, they clobber nothing. */
12403 && ! push_operand (dest, GET_MODE (dest)))
12404 mem_last_set = DF_INSN_LUID (record_dead_insn);
12405 }
12406
12407 /* Update the records of when each REG was most recently set or killed
12408 for the things done by INSN. This is the last thing done in processing
12409 INSN in the combiner loop.
12410
12411 We update reg_stat[], in particular fields last_set, last_set_value,
12412 last_set_mode, last_set_nonzero_bits, last_set_sign_bit_copies,
12413 last_death, and also the similar information mem_last_set (which insn
12414 most recently modified memory) and last_call_luid (which insn was the
12415 most recent subroutine call). */
12416
12417 static void
12418 record_dead_and_set_regs (rtx insn)
12419 {
12420 rtx link;
12421 unsigned int i;
12422
12423 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
12424 {
12425 if (REG_NOTE_KIND (link) == REG_DEAD
12426 && REG_P (XEXP (link, 0)))
12427 {
12428 unsigned int regno = REGNO (XEXP (link, 0));
12429 unsigned int endregno = END_REGNO (XEXP (link, 0));
12430
12431 for (i = regno; i < endregno; i++)
12432 {
12433 reg_stat_type *rsp;
12434
12435 rsp = VEC_index (reg_stat_type, reg_stat, i);
12436 rsp->last_death = insn;
12437 }
12438 }
12439 else if (REG_NOTE_KIND (link) == REG_INC)
12440 record_value_for_reg (XEXP (link, 0), insn, NULL_RTX);
12441 }
12442
12443 if (CALL_P (insn))
12444 {
12445 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
12446 if (TEST_HARD_REG_BIT (regs_invalidated_by_call, i))
12447 {
12448 reg_stat_type *rsp;
12449
12450 rsp = VEC_index (reg_stat_type, reg_stat, i);
12451 rsp->last_set_invalid = 1;
12452 rsp->last_set = insn;
12453 rsp->last_set_value = 0;
12454 rsp->last_set_mode = VOIDmode;
12455 rsp->last_set_nonzero_bits = 0;
12456 rsp->last_set_sign_bit_copies = 0;
12457 rsp->last_death = 0;
12458 rsp->truncated_to_mode = VOIDmode;
12459 }
12460
12461 last_call_luid = mem_last_set = DF_INSN_LUID (insn);
12462
12463 /* We can't combine into a call pattern. Remember, though, that
12464 the return value register is set at this LUID. We could
12465 still replace a register with the return value from the
12466 wrong subroutine call! */
12467 note_stores (PATTERN (insn), record_dead_and_set_regs_1, NULL_RTX);
12468 }
12469 else
12470 note_stores (PATTERN (insn), record_dead_and_set_regs_1, insn);
12471 }
12472
12473 /* If a SUBREG has the promoted bit set, it is in fact a property of the
12474 register present in the SUBREG, so for each such SUBREG go back and
12475 adjust nonzero and sign bit information of the registers that are
12476 known to have some zero/sign bits set.
12477
12478 This is needed because when combine blows the SUBREGs away, the
12479 information on zero/sign bits is lost and further combines can be
12480 missed because of that. */
12481
12482 static void
12483 record_promoted_value (rtx insn, rtx subreg)
12484 {
12485 struct insn_link *links;
12486 rtx set;
12487 unsigned int regno = REGNO (SUBREG_REG (subreg));
12488 enum machine_mode mode = GET_MODE (subreg);
12489
12490 if (GET_MODE_PRECISION (mode) > HOST_BITS_PER_WIDE_INT)
12491 return;
12492
12493 for (links = LOG_LINKS (insn); links;)
12494 {
12495 reg_stat_type *rsp;
12496
12497 insn = links->insn;
12498 set = single_set (insn);
12499
12500 if (! set || !REG_P (SET_DEST (set))
12501 || REGNO (SET_DEST (set)) != regno
12502 || GET_MODE (SET_DEST (set)) != GET_MODE (SUBREG_REG (subreg)))
12503 {
12504 links = links->next;
12505 continue;
12506 }
12507
12508 rsp = VEC_index (reg_stat_type, reg_stat, regno);
12509 if (rsp->last_set == insn)
12510 {
12511 if (SUBREG_PROMOTED_UNSIGNED_P (subreg) > 0)
12512 rsp->last_set_nonzero_bits &= GET_MODE_MASK (mode);
12513 }
12514
12515 if (REG_P (SET_SRC (set)))
12516 {
12517 regno = REGNO (SET_SRC (set));
12518 links = LOG_LINKS (insn);
12519 }
12520 else
12521 break;
12522 }
12523 }
12524
12525 /* Check if X, a register, is known to contain a value already
12526 truncated to MODE. In this case we can use a subreg to refer to
12527 the truncated value even though in the generic case we would need
12528 an explicit truncation. */
12529
12530 static bool
12531 reg_truncated_to_mode (enum machine_mode mode, const_rtx x)
12532 {
12533 reg_stat_type *rsp = VEC_index (reg_stat_type, reg_stat, REGNO (x));
12534 enum machine_mode truncated = rsp->truncated_to_mode;
12535
12536 if (truncated == 0
12537 || rsp->truncation_label < label_tick_ebb_start)
12538 return false;
12539 if (GET_MODE_SIZE (truncated) <= GET_MODE_SIZE (mode))
12540 return true;
12541 if (TRULY_NOOP_TRUNCATION_MODES_P (mode, truncated))
12542 return true;
12543 return false;
12544 }
12545
12546 /* Callback for for_each_rtx. If *P is a hard reg or a subreg record the mode
12547 that the register is accessed in. For non-TRULY_NOOP_TRUNCATION targets we
12548 might be able to turn a truncate into a subreg using this information.
12549 Return -1 if traversing *P is complete or 0 otherwise. */
12550
12551 static int
12552 record_truncated_value (rtx *p, void *data ATTRIBUTE_UNUSED)
12553 {
12554 rtx x = *p;
12555 enum machine_mode truncated_mode;
12556 reg_stat_type *rsp;
12557
12558 if (GET_CODE (x) == SUBREG && REG_P (SUBREG_REG (x)))
12559 {
12560 enum machine_mode original_mode = GET_MODE (SUBREG_REG (x));
12561 truncated_mode = GET_MODE (x);
12562
12563 if (GET_MODE_SIZE (original_mode) <= GET_MODE_SIZE (truncated_mode))
12564 return -1;
12565
12566 if (TRULY_NOOP_TRUNCATION_MODES_P (truncated_mode, original_mode))
12567 return -1;
12568
12569 x = SUBREG_REG (x);
12570 }
12571 /* ??? For hard-regs we now record everything. We might be able to
12572 optimize this using last_set_mode. */
12573 else if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
12574 truncated_mode = GET_MODE (x);
12575 else
12576 return 0;
12577
12578 rsp = VEC_index (reg_stat_type, reg_stat, REGNO (x));
12579 if (rsp->truncated_to_mode == 0
12580 || rsp->truncation_label < label_tick_ebb_start
12581 || (GET_MODE_SIZE (truncated_mode)
12582 < GET_MODE_SIZE (rsp->truncated_to_mode)))
12583 {
12584 rsp->truncated_to_mode = truncated_mode;
12585 rsp->truncation_label = label_tick;
12586 }
12587
12588 return -1;
12589 }
12590
12591 /* Callback for note_uses. Find hardregs and subregs of pseudos and
12592 the modes they are used in. This can help truning TRUNCATEs into
12593 SUBREGs. */
12594
12595 static void
12596 record_truncated_values (rtx *x, void *data ATTRIBUTE_UNUSED)
12597 {
12598 for_each_rtx (x, record_truncated_value, NULL);
12599 }
12600
12601 /* Scan X for promoted SUBREGs. For each one found,
12602 note what it implies to the registers used in it. */
12603
12604 static void
12605 check_promoted_subreg (rtx insn, rtx x)
12606 {
12607 if (GET_CODE (x) == SUBREG
12608 && SUBREG_PROMOTED_VAR_P (x)
12609 && REG_P (SUBREG_REG (x)))
12610 record_promoted_value (insn, x);
12611 else
12612 {
12613 const char *format = GET_RTX_FORMAT (GET_CODE (x));
12614 int i, j;
12615
12616 for (i = 0; i < GET_RTX_LENGTH (GET_CODE (x)); i++)
12617 switch (format[i])
12618 {
12619 case 'e':
12620 check_promoted_subreg (insn, XEXP (x, i));
12621 break;
12622 case 'V':
12623 case 'E':
12624 if (XVEC (x, i) != 0)
12625 for (j = 0; j < XVECLEN (x, i); j++)
12626 check_promoted_subreg (insn, XVECEXP (x, i, j));
12627 break;
12628 }
12629 }
12630 }
12631 \f
12632 /* Verify that all the registers and memory references mentioned in *LOC are
12633 still valid. *LOC was part of a value set in INSN when label_tick was
12634 equal to TICK. Return 0 if some are not. If REPLACE is nonzero, replace
12635 the invalid references with (clobber (const_int 0)) and return 1. This
12636 replacement is useful because we often can get useful information about
12637 the form of a value (e.g., if it was produced by a shift that always
12638 produces -1 or 0) even though we don't know exactly what registers it
12639 was produced from. */
12640
12641 static int
12642 get_last_value_validate (rtx *loc, rtx insn, int tick, int replace)
12643 {
12644 rtx x = *loc;
12645 const char *fmt = GET_RTX_FORMAT (GET_CODE (x));
12646 int len = GET_RTX_LENGTH (GET_CODE (x));
12647 int i, j;
12648
12649 if (REG_P (x))
12650 {
12651 unsigned int regno = REGNO (x);
12652 unsigned int endregno = END_REGNO (x);
12653 unsigned int j;
12654
12655 for (j = regno; j < endregno; j++)
12656 {
12657 reg_stat_type *rsp = VEC_index (reg_stat_type, reg_stat, j);
12658 if (rsp->last_set_invalid
12659 /* If this is a pseudo-register that was only set once and not
12660 live at the beginning of the function, it is always valid. */
12661 || (! (regno >= FIRST_PSEUDO_REGISTER
12662 && REG_N_SETS (regno) == 1
12663 && (!REGNO_REG_SET_P
12664 (DF_LR_IN (ENTRY_BLOCK_PTR->next_bb), regno)))
12665 && rsp->last_set_label > tick))
12666 {
12667 if (replace)
12668 *loc = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
12669 return replace;
12670 }
12671 }
12672
12673 return 1;
12674 }
12675 /* If this is a memory reference, make sure that there were no stores after
12676 it that might have clobbered the value. We don't have alias info, so we
12677 assume any store invalidates it. Moreover, we only have local UIDs, so
12678 we also assume that there were stores in the intervening basic blocks. */
12679 else if (MEM_P (x) && !MEM_READONLY_P (x)
12680 && (tick != label_tick || DF_INSN_LUID (insn) <= mem_last_set))
12681 {
12682 if (replace)
12683 *loc = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
12684 return replace;
12685 }
12686
12687 for (i = 0; i < len; i++)
12688 {
12689 if (fmt[i] == 'e')
12690 {
12691 /* Check for identical subexpressions. If x contains
12692 identical subexpression we only have to traverse one of
12693 them. */
12694 if (i == 1 && ARITHMETIC_P (x))
12695 {
12696 /* Note that at this point x0 has already been checked
12697 and found valid. */
12698 rtx x0 = XEXP (x, 0);
12699 rtx x1 = XEXP (x, 1);
12700
12701 /* If x0 and x1 are identical then x is also valid. */
12702 if (x0 == x1)
12703 return 1;
12704
12705 /* If x1 is identical to a subexpression of x0 then
12706 while checking x0, x1 has already been checked. Thus
12707 it is valid and so as x. */
12708 if (ARITHMETIC_P (x0)
12709 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
12710 return 1;
12711
12712 /* If x0 is identical to a subexpression of x1 then x is
12713 valid iff the rest of x1 is valid. */
12714 if (ARITHMETIC_P (x1)
12715 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
12716 return
12717 get_last_value_validate (&XEXP (x1,
12718 x0 == XEXP (x1, 0) ? 1 : 0),
12719 insn, tick, replace);
12720 }
12721
12722 if (get_last_value_validate (&XEXP (x, i), insn, tick,
12723 replace) == 0)
12724 return 0;
12725 }
12726 else if (fmt[i] == 'E')
12727 for (j = 0; j < XVECLEN (x, i); j++)
12728 if (get_last_value_validate (&XVECEXP (x, i, j),
12729 insn, tick, replace) == 0)
12730 return 0;
12731 }
12732
12733 /* If we haven't found a reason for it to be invalid, it is valid. */
12734 return 1;
12735 }
12736
12737 /* Get the last value assigned to X, if known. Some registers
12738 in the value may be replaced with (clobber (const_int 0)) if their value
12739 is known longer known reliably. */
12740
12741 static rtx
12742 get_last_value (const_rtx x)
12743 {
12744 unsigned int regno;
12745 rtx value;
12746 reg_stat_type *rsp;
12747
12748 /* If this is a non-paradoxical SUBREG, get the value of its operand and
12749 then convert it to the desired mode. If this is a paradoxical SUBREG,
12750 we cannot predict what values the "extra" bits might have. */
12751 if (GET_CODE (x) == SUBREG
12752 && subreg_lowpart_p (x)
12753 && !paradoxical_subreg_p (x)
12754 && (value = get_last_value (SUBREG_REG (x))) != 0)
12755 return gen_lowpart (GET_MODE (x), value);
12756
12757 if (!REG_P (x))
12758 return 0;
12759
12760 regno = REGNO (x);
12761 rsp = VEC_index (reg_stat_type, reg_stat, regno);
12762 value = rsp->last_set_value;
12763
12764 /* If we don't have a value, or if it isn't for this basic block and
12765 it's either a hard register, set more than once, or it's a live
12766 at the beginning of the function, return 0.
12767
12768 Because if it's not live at the beginning of the function then the reg
12769 is always set before being used (is never used without being set).
12770 And, if it's set only once, and it's always set before use, then all
12771 uses must have the same last value, even if it's not from this basic
12772 block. */
12773
12774 if (value == 0
12775 || (rsp->last_set_label < label_tick_ebb_start
12776 && (regno < FIRST_PSEUDO_REGISTER
12777 || REG_N_SETS (regno) != 1
12778 || REGNO_REG_SET_P
12779 (DF_LR_IN (ENTRY_BLOCK_PTR->next_bb), regno))))
12780 return 0;
12781
12782 /* If the value was set in a later insn than the ones we are processing,
12783 we can't use it even if the register was only set once. */
12784 if (rsp->last_set_label == label_tick
12785 && DF_INSN_LUID (rsp->last_set) >= subst_low_luid)
12786 return 0;
12787
12788 /* If the value has all its registers valid, return it. */
12789 if (get_last_value_validate (&value, rsp->last_set, rsp->last_set_label, 0))
12790 return value;
12791
12792 /* Otherwise, make a copy and replace any invalid register with
12793 (clobber (const_int 0)). If that fails for some reason, return 0. */
12794
12795 value = copy_rtx (value);
12796 if (get_last_value_validate (&value, rsp->last_set, rsp->last_set_label, 1))
12797 return value;
12798
12799 return 0;
12800 }
12801 \f
12802 /* Return nonzero if expression X refers to a REG or to memory
12803 that is set in an instruction more recent than FROM_LUID. */
12804
12805 static int
12806 use_crosses_set_p (const_rtx x, int from_luid)
12807 {
12808 const char *fmt;
12809 int i;
12810 enum rtx_code code = GET_CODE (x);
12811
12812 if (code == REG)
12813 {
12814 unsigned int regno = REGNO (x);
12815 unsigned endreg = END_REGNO (x);
12816
12817 #ifdef PUSH_ROUNDING
12818 /* Don't allow uses of the stack pointer to be moved,
12819 because we don't know whether the move crosses a push insn. */
12820 if (regno == STACK_POINTER_REGNUM && PUSH_ARGS)
12821 return 1;
12822 #endif
12823 for (; regno < endreg; regno++)
12824 {
12825 reg_stat_type *rsp = VEC_index (reg_stat_type, reg_stat, regno);
12826 if (rsp->last_set
12827 && rsp->last_set_label == label_tick
12828 && DF_INSN_LUID (rsp->last_set) > from_luid)
12829 return 1;
12830 }
12831 return 0;
12832 }
12833
12834 if (code == MEM && mem_last_set > from_luid)
12835 return 1;
12836
12837 fmt = GET_RTX_FORMAT (code);
12838
12839 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
12840 {
12841 if (fmt[i] == 'E')
12842 {
12843 int j;
12844 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
12845 if (use_crosses_set_p (XVECEXP (x, i, j), from_luid))
12846 return 1;
12847 }
12848 else if (fmt[i] == 'e'
12849 && use_crosses_set_p (XEXP (x, i), from_luid))
12850 return 1;
12851 }
12852 return 0;
12853 }
12854 \f
12855 /* Define three variables used for communication between the following
12856 routines. */
12857
12858 static unsigned int reg_dead_regno, reg_dead_endregno;
12859 static int reg_dead_flag;
12860
12861 /* Function called via note_stores from reg_dead_at_p.
12862
12863 If DEST is within [reg_dead_regno, reg_dead_endregno), set
12864 reg_dead_flag to 1 if X is a CLOBBER and to -1 it is a SET. */
12865
12866 static void
12867 reg_dead_at_p_1 (rtx dest, const_rtx x, void *data ATTRIBUTE_UNUSED)
12868 {
12869 unsigned int regno, endregno;
12870
12871 if (!REG_P (dest))
12872 return;
12873
12874 regno = REGNO (dest);
12875 endregno = END_REGNO (dest);
12876 if (reg_dead_endregno > regno && reg_dead_regno < endregno)
12877 reg_dead_flag = (GET_CODE (x) == CLOBBER) ? 1 : -1;
12878 }
12879
12880 /* Return nonzero if REG is known to be dead at INSN.
12881
12882 We scan backwards from INSN. If we hit a REG_DEAD note or a CLOBBER
12883 referencing REG, it is dead. If we hit a SET referencing REG, it is
12884 live. Otherwise, see if it is live or dead at the start of the basic
12885 block we are in. Hard regs marked as being live in NEWPAT_USED_REGS
12886 must be assumed to be always live. */
12887
12888 static int
12889 reg_dead_at_p (rtx reg, rtx insn)
12890 {
12891 basic_block block;
12892 unsigned int i;
12893
12894 /* Set variables for reg_dead_at_p_1. */
12895 reg_dead_regno = REGNO (reg);
12896 reg_dead_endregno = END_REGNO (reg);
12897
12898 reg_dead_flag = 0;
12899
12900 /* Check that reg isn't mentioned in NEWPAT_USED_REGS. For fixed registers
12901 we allow the machine description to decide whether use-and-clobber
12902 patterns are OK. */
12903 if (reg_dead_regno < FIRST_PSEUDO_REGISTER)
12904 {
12905 for (i = reg_dead_regno; i < reg_dead_endregno; i++)
12906 if (!fixed_regs[i] && TEST_HARD_REG_BIT (newpat_used_regs, i))
12907 return 0;
12908 }
12909
12910 /* Scan backwards until we find a REG_DEAD note, SET, CLOBBER, or
12911 beginning of basic block. */
12912 block = BLOCK_FOR_INSN (insn);
12913 for (;;)
12914 {
12915 if (INSN_P (insn))
12916 {
12917 note_stores (PATTERN (insn), reg_dead_at_p_1, NULL);
12918 if (reg_dead_flag)
12919 return reg_dead_flag == 1 ? 1 : 0;
12920
12921 if (find_regno_note (insn, REG_DEAD, reg_dead_regno))
12922 return 1;
12923 }
12924
12925 if (insn == BB_HEAD (block))
12926 break;
12927
12928 insn = PREV_INSN (insn);
12929 }
12930
12931 /* Look at live-in sets for the basic block that we were in. */
12932 for (i = reg_dead_regno; i < reg_dead_endregno; i++)
12933 if (REGNO_REG_SET_P (df_get_live_in (block), i))
12934 return 0;
12935
12936 return 1;
12937 }
12938 \f
12939 /* Note hard registers in X that are used. */
12940
12941 static void
12942 mark_used_regs_combine (rtx x)
12943 {
12944 RTX_CODE code = GET_CODE (x);
12945 unsigned int regno;
12946 int i;
12947
12948 switch (code)
12949 {
12950 case LABEL_REF:
12951 case SYMBOL_REF:
12952 case CONST_INT:
12953 case CONST:
12954 case CONST_DOUBLE:
12955 case CONST_VECTOR:
12956 case PC:
12957 case ADDR_VEC:
12958 case ADDR_DIFF_VEC:
12959 case ASM_INPUT:
12960 #ifdef HAVE_cc0
12961 /* CC0 must die in the insn after it is set, so we don't need to take
12962 special note of it here. */
12963 case CC0:
12964 #endif
12965 return;
12966
12967 case CLOBBER:
12968 /* If we are clobbering a MEM, mark any hard registers inside the
12969 address as used. */
12970 if (MEM_P (XEXP (x, 0)))
12971 mark_used_regs_combine (XEXP (XEXP (x, 0), 0));
12972 return;
12973
12974 case REG:
12975 regno = REGNO (x);
12976 /* A hard reg in a wide mode may really be multiple registers.
12977 If so, mark all of them just like the first. */
12978 if (regno < FIRST_PSEUDO_REGISTER)
12979 {
12980 /* None of this applies to the stack, frame or arg pointers. */
12981 if (regno == STACK_POINTER_REGNUM
12982 #if !HARD_FRAME_POINTER_IS_FRAME_POINTER
12983 || regno == HARD_FRAME_POINTER_REGNUM
12984 #endif
12985 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
12986 || (regno == ARG_POINTER_REGNUM && fixed_regs[regno])
12987 #endif
12988 || regno == FRAME_POINTER_REGNUM)
12989 return;
12990
12991 add_to_hard_reg_set (&newpat_used_regs, GET_MODE (x), regno);
12992 }
12993 return;
12994
12995 case SET:
12996 {
12997 /* If setting a MEM, or a SUBREG of a MEM, then note any hard regs in
12998 the address. */
12999 rtx testreg = SET_DEST (x);
13000
13001 while (GET_CODE (testreg) == SUBREG
13002 || GET_CODE (testreg) == ZERO_EXTRACT
13003 || GET_CODE (testreg) == STRICT_LOW_PART)
13004 testreg = XEXP (testreg, 0);
13005
13006 if (MEM_P (testreg))
13007 mark_used_regs_combine (XEXP (testreg, 0));
13008
13009 mark_used_regs_combine (SET_SRC (x));
13010 }
13011 return;
13012
13013 default:
13014 break;
13015 }
13016
13017 /* Recursively scan the operands of this expression. */
13018
13019 {
13020 const char *fmt = GET_RTX_FORMAT (code);
13021
13022 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
13023 {
13024 if (fmt[i] == 'e')
13025 mark_used_regs_combine (XEXP (x, i));
13026 else if (fmt[i] == 'E')
13027 {
13028 int j;
13029
13030 for (j = 0; j < XVECLEN (x, i); j++)
13031 mark_used_regs_combine (XVECEXP (x, i, j));
13032 }
13033 }
13034 }
13035 }
13036 \f
13037 /* Remove register number REGNO from the dead registers list of INSN.
13038
13039 Return the note used to record the death, if there was one. */
13040
13041 rtx
13042 remove_death (unsigned int regno, rtx insn)
13043 {
13044 rtx note = find_regno_note (insn, REG_DEAD, regno);
13045
13046 if (note)
13047 remove_note (insn, note);
13048
13049 return note;
13050 }
13051
13052 /* For each register (hardware or pseudo) used within expression X, if its
13053 death is in an instruction with luid between FROM_LUID (inclusive) and
13054 TO_INSN (exclusive), put a REG_DEAD note for that register in the
13055 list headed by PNOTES.
13056
13057 That said, don't move registers killed by maybe_kill_insn.
13058
13059 This is done when X is being merged by combination into TO_INSN. These
13060 notes will then be distributed as needed. */
13061
13062 static void
13063 move_deaths (rtx x, rtx maybe_kill_insn, int from_luid, rtx to_insn,
13064 rtx *pnotes)
13065 {
13066 const char *fmt;
13067 int len, i;
13068 enum rtx_code code = GET_CODE (x);
13069
13070 if (code == REG)
13071 {
13072 unsigned int regno = REGNO (x);
13073 rtx where_dead = VEC_index (reg_stat_type, reg_stat, regno)->last_death;
13074
13075 /* Don't move the register if it gets killed in between from and to. */
13076 if (maybe_kill_insn && reg_set_p (x, maybe_kill_insn)
13077 && ! reg_referenced_p (x, maybe_kill_insn))
13078 return;
13079
13080 if (where_dead
13081 && BLOCK_FOR_INSN (where_dead) == BLOCK_FOR_INSN (to_insn)
13082 && DF_INSN_LUID (where_dead) >= from_luid
13083 && DF_INSN_LUID (where_dead) < DF_INSN_LUID (to_insn))
13084 {
13085 rtx note = remove_death (regno, where_dead);
13086
13087 /* It is possible for the call above to return 0. This can occur
13088 when last_death points to I2 or I1 that we combined with.
13089 In that case make a new note.
13090
13091 We must also check for the case where X is a hard register
13092 and NOTE is a death note for a range of hard registers
13093 including X. In that case, we must put REG_DEAD notes for
13094 the remaining registers in place of NOTE. */
13095
13096 if (note != 0 && regno < FIRST_PSEUDO_REGISTER
13097 && (GET_MODE_SIZE (GET_MODE (XEXP (note, 0)))
13098 > GET_MODE_SIZE (GET_MODE (x))))
13099 {
13100 unsigned int deadregno = REGNO (XEXP (note, 0));
13101 unsigned int deadend = END_HARD_REGNO (XEXP (note, 0));
13102 unsigned int ourend = END_HARD_REGNO (x);
13103 unsigned int i;
13104
13105 for (i = deadregno; i < deadend; i++)
13106 if (i < regno || i >= ourend)
13107 add_reg_note (where_dead, REG_DEAD, regno_reg_rtx[i]);
13108 }
13109
13110 /* If we didn't find any note, or if we found a REG_DEAD note that
13111 covers only part of the given reg, and we have a multi-reg hard
13112 register, then to be safe we must check for REG_DEAD notes
13113 for each register other than the first. They could have
13114 their own REG_DEAD notes lying around. */
13115 else if ((note == 0
13116 || (note != 0
13117 && (GET_MODE_SIZE (GET_MODE (XEXP (note, 0)))
13118 < GET_MODE_SIZE (GET_MODE (x)))))
13119 && regno < FIRST_PSEUDO_REGISTER
13120 && hard_regno_nregs[regno][GET_MODE (x)] > 1)
13121 {
13122 unsigned int ourend = END_HARD_REGNO (x);
13123 unsigned int i, offset;
13124 rtx oldnotes = 0;
13125
13126 if (note)
13127 offset = hard_regno_nregs[regno][GET_MODE (XEXP (note, 0))];
13128 else
13129 offset = 1;
13130
13131 for (i = regno + offset; i < ourend; i++)
13132 move_deaths (regno_reg_rtx[i],
13133 maybe_kill_insn, from_luid, to_insn, &oldnotes);
13134 }
13135
13136 if (note != 0 && GET_MODE (XEXP (note, 0)) == GET_MODE (x))
13137 {
13138 XEXP (note, 1) = *pnotes;
13139 *pnotes = note;
13140 }
13141 else
13142 *pnotes = alloc_reg_note (REG_DEAD, x, *pnotes);
13143 }
13144
13145 return;
13146 }
13147
13148 else if (GET_CODE (x) == SET)
13149 {
13150 rtx dest = SET_DEST (x);
13151
13152 move_deaths (SET_SRC (x), maybe_kill_insn, from_luid, to_insn, pnotes);
13153
13154 /* In the case of a ZERO_EXTRACT, a STRICT_LOW_PART, or a SUBREG
13155 that accesses one word of a multi-word item, some
13156 piece of everything register in the expression is used by
13157 this insn, so remove any old death. */
13158 /* ??? So why do we test for equality of the sizes? */
13159
13160 if (GET_CODE (dest) == ZERO_EXTRACT
13161 || GET_CODE (dest) == STRICT_LOW_PART
13162 || (GET_CODE (dest) == SUBREG
13163 && (((GET_MODE_SIZE (GET_MODE (dest))
13164 + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
13165 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest)))
13166 + UNITS_PER_WORD - 1) / UNITS_PER_WORD))))
13167 {
13168 move_deaths (dest, maybe_kill_insn, from_luid, to_insn, pnotes);
13169 return;
13170 }
13171
13172 /* If this is some other SUBREG, we know it replaces the entire
13173 value, so use that as the destination. */
13174 if (GET_CODE (dest) == SUBREG)
13175 dest = SUBREG_REG (dest);
13176
13177 /* If this is a MEM, adjust deaths of anything used in the address.
13178 For a REG (the only other possibility), the entire value is
13179 being replaced so the old value is not used in this insn. */
13180
13181 if (MEM_P (dest))
13182 move_deaths (XEXP (dest, 0), maybe_kill_insn, from_luid,
13183 to_insn, pnotes);
13184 return;
13185 }
13186
13187 else if (GET_CODE (x) == CLOBBER)
13188 return;
13189
13190 len = GET_RTX_LENGTH (code);
13191 fmt = GET_RTX_FORMAT (code);
13192
13193 for (i = 0; i < len; i++)
13194 {
13195 if (fmt[i] == 'E')
13196 {
13197 int j;
13198 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
13199 move_deaths (XVECEXP (x, i, j), maybe_kill_insn, from_luid,
13200 to_insn, pnotes);
13201 }
13202 else if (fmt[i] == 'e')
13203 move_deaths (XEXP (x, i), maybe_kill_insn, from_luid, to_insn, pnotes);
13204 }
13205 }
13206 \f
13207 /* Return 1 if X is the target of a bit-field assignment in BODY, the
13208 pattern of an insn. X must be a REG. */
13209
13210 static int
13211 reg_bitfield_target_p (rtx x, rtx body)
13212 {
13213 int i;
13214
13215 if (GET_CODE (body) == SET)
13216 {
13217 rtx dest = SET_DEST (body);
13218 rtx target;
13219 unsigned int regno, tregno, endregno, endtregno;
13220
13221 if (GET_CODE (dest) == ZERO_EXTRACT)
13222 target = XEXP (dest, 0);
13223 else if (GET_CODE (dest) == STRICT_LOW_PART)
13224 target = SUBREG_REG (XEXP (dest, 0));
13225 else
13226 return 0;
13227
13228 if (GET_CODE (target) == SUBREG)
13229 target = SUBREG_REG (target);
13230
13231 if (!REG_P (target))
13232 return 0;
13233
13234 tregno = REGNO (target), regno = REGNO (x);
13235 if (tregno >= FIRST_PSEUDO_REGISTER || regno >= FIRST_PSEUDO_REGISTER)
13236 return target == x;
13237
13238 endtregno = end_hard_regno (GET_MODE (target), tregno);
13239 endregno = end_hard_regno (GET_MODE (x), regno);
13240
13241 return endregno > tregno && regno < endtregno;
13242 }
13243
13244 else if (GET_CODE (body) == PARALLEL)
13245 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
13246 if (reg_bitfield_target_p (x, XVECEXP (body, 0, i)))
13247 return 1;
13248
13249 return 0;
13250 }
13251 \f
13252 /* Given a chain of REG_NOTES originally from FROM_INSN, try to place them
13253 as appropriate. I3 and I2 are the insns resulting from the combination
13254 insns including FROM (I2 may be zero).
13255
13256 ELIM_I2 and ELIM_I1 are either zero or registers that we know will
13257 not need REG_DEAD notes because they are being substituted for. This
13258 saves searching in the most common cases.
13259
13260 Each note in the list is either ignored or placed on some insns, depending
13261 on the type of note. */
13262
13263 static void
13264 distribute_notes (rtx notes, rtx from_insn, rtx i3, rtx i2, rtx elim_i2,
13265 rtx elim_i1, rtx elim_i0)
13266 {
13267 rtx note, next_note;
13268 rtx tem;
13269
13270 for (note = notes; note; note = next_note)
13271 {
13272 rtx place = 0, place2 = 0;
13273
13274 next_note = XEXP (note, 1);
13275 switch (REG_NOTE_KIND (note))
13276 {
13277 case REG_BR_PROB:
13278 case REG_BR_PRED:
13279 /* Doesn't matter much where we put this, as long as it's somewhere.
13280 It is preferable to keep these notes on branches, which is most
13281 likely to be i3. */
13282 place = i3;
13283 break;
13284
13285 case REG_NON_LOCAL_GOTO:
13286 if (JUMP_P (i3))
13287 place = i3;
13288 else
13289 {
13290 gcc_assert (i2 && JUMP_P (i2));
13291 place = i2;
13292 }
13293 break;
13294
13295 case REG_EH_REGION:
13296 /* These notes must remain with the call or trapping instruction. */
13297 if (CALL_P (i3))
13298 place = i3;
13299 else if (i2 && CALL_P (i2))
13300 place = i2;
13301 else
13302 {
13303 gcc_assert (cfun->can_throw_non_call_exceptions);
13304 if (may_trap_p (i3))
13305 place = i3;
13306 else if (i2 && may_trap_p (i2))
13307 place = i2;
13308 /* ??? Otherwise assume we've combined things such that we
13309 can now prove that the instructions can't trap. Drop the
13310 note in this case. */
13311 }
13312 break;
13313
13314 case REG_ARGS_SIZE:
13315 /* ??? How to distribute between i3-i1. Assume i3 contains the
13316 entire adjustment. Assert i3 contains at least some adjust. */
13317 if (!noop_move_p (i3))
13318 {
13319 int old_size, args_size = INTVAL (XEXP (note, 0));
13320 /* fixup_args_size_notes looks at REG_NORETURN note,
13321 so ensure the note is placed there first. */
13322 if (CALL_P (i3))
13323 {
13324 rtx *np;
13325 for (np = &next_note; *np; np = &XEXP (*np, 1))
13326 if (REG_NOTE_KIND (*np) == REG_NORETURN)
13327 {
13328 rtx n = *np;
13329 *np = XEXP (n, 1);
13330 XEXP (n, 1) = REG_NOTES (i3);
13331 REG_NOTES (i3) = n;
13332 break;
13333 }
13334 }
13335 old_size = fixup_args_size_notes (PREV_INSN (i3), i3, args_size);
13336 /* emit_call_1 adds for !ACCUMULATE_OUTGOING_ARGS
13337 REG_ARGS_SIZE note to all noreturn calls, allow that here. */
13338 gcc_assert (old_size != args_size
13339 || (CALL_P (i3)
13340 && !ACCUMULATE_OUTGOING_ARGS
13341 && find_reg_note (i3, REG_NORETURN, NULL_RTX)));
13342 }
13343 break;
13344
13345 case REG_NORETURN:
13346 case REG_SETJMP:
13347 case REG_TM:
13348 /* These notes must remain with the call. It should not be
13349 possible for both I2 and I3 to be a call. */
13350 if (CALL_P (i3))
13351 place = i3;
13352 else
13353 {
13354 gcc_assert (i2 && CALL_P (i2));
13355 place = i2;
13356 }
13357 break;
13358
13359 case REG_UNUSED:
13360 /* Any clobbers for i3 may still exist, and so we must process
13361 REG_UNUSED notes from that insn.
13362
13363 Any clobbers from i2 or i1 can only exist if they were added by
13364 recog_for_combine. In that case, recog_for_combine created the
13365 necessary REG_UNUSED notes. Trying to keep any original
13366 REG_UNUSED notes from these insns can cause incorrect output
13367 if it is for the same register as the original i3 dest.
13368 In that case, we will notice that the register is set in i3,
13369 and then add a REG_UNUSED note for the destination of i3, which
13370 is wrong. However, it is possible to have REG_UNUSED notes from
13371 i2 or i1 for register which were both used and clobbered, so
13372 we keep notes from i2 or i1 if they will turn into REG_DEAD
13373 notes. */
13374
13375 /* If this register is set or clobbered in I3, put the note there
13376 unless there is one already. */
13377 if (reg_set_p (XEXP (note, 0), PATTERN (i3)))
13378 {
13379 if (from_insn != i3)
13380 break;
13381
13382 if (! (REG_P (XEXP (note, 0))
13383 ? find_regno_note (i3, REG_UNUSED, REGNO (XEXP (note, 0)))
13384 : find_reg_note (i3, REG_UNUSED, XEXP (note, 0))))
13385 place = i3;
13386 }
13387 /* Otherwise, if this register is used by I3, then this register
13388 now dies here, so we must put a REG_DEAD note here unless there
13389 is one already. */
13390 else if (reg_referenced_p (XEXP (note, 0), PATTERN (i3))
13391 && ! (REG_P (XEXP (note, 0))
13392 ? find_regno_note (i3, REG_DEAD,
13393 REGNO (XEXP (note, 0)))
13394 : find_reg_note (i3, REG_DEAD, XEXP (note, 0))))
13395 {
13396 PUT_REG_NOTE_KIND (note, REG_DEAD);
13397 place = i3;
13398 }
13399 break;
13400
13401 case REG_EQUAL:
13402 case REG_EQUIV:
13403 case REG_NOALIAS:
13404 /* These notes say something about results of an insn. We can
13405 only support them if they used to be on I3 in which case they
13406 remain on I3. Otherwise they are ignored.
13407
13408 If the note refers to an expression that is not a constant, we
13409 must also ignore the note since we cannot tell whether the
13410 equivalence is still true. It might be possible to do
13411 slightly better than this (we only have a problem if I2DEST
13412 or I1DEST is present in the expression), but it doesn't
13413 seem worth the trouble. */
13414
13415 if (from_insn == i3
13416 && (XEXP (note, 0) == 0 || CONSTANT_P (XEXP (note, 0))))
13417 place = i3;
13418 break;
13419
13420 case REG_INC:
13421 /* These notes say something about how a register is used. They must
13422 be present on any use of the register in I2 or I3. */
13423 if (reg_mentioned_p (XEXP (note, 0), PATTERN (i3)))
13424 place = i3;
13425
13426 if (i2 && reg_mentioned_p (XEXP (note, 0), PATTERN (i2)))
13427 {
13428 if (place)
13429 place2 = i2;
13430 else
13431 place = i2;
13432 }
13433 break;
13434
13435 case REG_LABEL_TARGET:
13436 case REG_LABEL_OPERAND:
13437 /* This can show up in several ways -- either directly in the
13438 pattern, or hidden off in the constant pool with (or without?)
13439 a REG_EQUAL note. */
13440 /* ??? Ignore the without-reg_equal-note problem for now. */
13441 if (reg_mentioned_p (XEXP (note, 0), PATTERN (i3))
13442 || ((tem = find_reg_note (i3, REG_EQUAL, NULL_RTX))
13443 && GET_CODE (XEXP (tem, 0)) == LABEL_REF
13444 && XEXP (XEXP (tem, 0), 0) == XEXP (note, 0)))
13445 place = i3;
13446
13447 if (i2
13448 && (reg_mentioned_p (XEXP (note, 0), PATTERN (i2))
13449 || ((tem = find_reg_note (i2, REG_EQUAL, NULL_RTX))
13450 && GET_CODE (XEXP (tem, 0)) == LABEL_REF
13451 && XEXP (XEXP (tem, 0), 0) == XEXP (note, 0))))
13452 {
13453 if (place)
13454 place2 = i2;
13455 else
13456 place = i2;
13457 }
13458
13459 /* For REG_LABEL_TARGET on a JUMP_P, we prefer to put the note
13460 as a JUMP_LABEL or decrement LABEL_NUSES if it's already
13461 there. */
13462 if (place && JUMP_P (place)
13463 && REG_NOTE_KIND (note) == REG_LABEL_TARGET
13464 && (JUMP_LABEL (place) == NULL
13465 || JUMP_LABEL (place) == XEXP (note, 0)))
13466 {
13467 rtx label = JUMP_LABEL (place);
13468
13469 if (!label)
13470 JUMP_LABEL (place) = XEXP (note, 0);
13471 else if (LABEL_P (label))
13472 LABEL_NUSES (label)--;
13473 }
13474
13475 if (place2 && JUMP_P (place2)
13476 && REG_NOTE_KIND (note) == REG_LABEL_TARGET
13477 && (JUMP_LABEL (place2) == NULL
13478 || JUMP_LABEL (place2) == XEXP (note, 0)))
13479 {
13480 rtx label = JUMP_LABEL (place2);
13481
13482 if (!label)
13483 JUMP_LABEL (place2) = XEXP (note, 0);
13484 else if (LABEL_P (label))
13485 LABEL_NUSES (label)--;
13486 place2 = 0;
13487 }
13488 break;
13489
13490 case REG_NONNEG:
13491 /* This note says something about the value of a register prior
13492 to the execution of an insn. It is too much trouble to see
13493 if the note is still correct in all situations. It is better
13494 to simply delete it. */
13495 break;
13496
13497 case REG_DEAD:
13498 /* If we replaced the right hand side of FROM_INSN with a
13499 REG_EQUAL note, the original use of the dying register
13500 will not have been combined into I3 and I2. In such cases,
13501 FROM_INSN is guaranteed to be the first of the combined
13502 instructions, so we simply need to search back before
13503 FROM_INSN for the previous use or set of this register,
13504 then alter the notes there appropriately.
13505
13506 If the register is used as an input in I3, it dies there.
13507 Similarly for I2, if it is nonzero and adjacent to I3.
13508
13509 If the register is not used as an input in either I3 or I2
13510 and it is not one of the registers we were supposed to eliminate,
13511 there are two possibilities. We might have a non-adjacent I2
13512 or we might have somehow eliminated an additional register
13513 from a computation. For example, we might have had A & B where
13514 we discover that B will always be zero. In this case we will
13515 eliminate the reference to A.
13516
13517 In both cases, we must search to see if we can find a previous
13518 use of A and put the death note there. */
13519
13520 if (from_insn
13521 && from_insn == i2mod
13522 && !reg_overlap_mentioned_p (XEXP (note, 0), i2mod_new_rhs))
13523 tem = from_insn;
13524 else
13525 {
13526 if (from_insn
13527 && CALL_P (from_insn)
13528 && find_reg_fusage (from_insn, USE, XEXP (note, 0)))
13529 place = from_insn;
13530 else if (reg_referenced_p (XEXP (note, 0), PATTERN (i3)))
13531 place = i3;
13532 else if (i2 != 0 && next_nonnote_nondebug_insn (i2) == i3
13533 && reg_referenced_p (XEXP (note, 0), PATTERN (i2)))
13534 place = i2;
13535 else if ((rtx_equal_p (XEXP (note, 0), elim_i2)
13536 && !(i2mod
13537 && reg_overlap_mentioned_p (XEXP (note, 0),
13538 i2mod_old_rhs)))
13539 || rtx_equal_p (XEXP (note, 0), elim_i1)
13540 || rtx_equal_p (XEXP (note, 0), elim_i0))
13541 break;
13542 tem = i3;
13543 }
13544
13545 if (place == 0)
13546 {
13547 basic_block bb = this_basic_block;
13548
13549 for (tem = PREV_INSN (tem); place == 0; tem = PREV_INSN (tem))
13550 {
13551 if (!NONDEBUG_INSN_P (tem))
13552 {
13553 if (tem == BB_HEAD (bb))
13554 break;
13555 continue;
13556 }
13557
13558 /* If the register is being set at TEM, see if that is all
13559 TEM is doing. If so, delete TEM. Otherwise, make this
13560 into a REG_UNUSED note instead. Don't delete sets to
13561 global register vars. */
13562 if ((REGNO (XEXP (note, 0)) >= FIRST_PSEUDO_REGISTER
13563 || !global_regs[REGNO (XEXP (note, 0))])
13564 && reg_set_p (XEXP (note, 0), PATTERN (tem)))
13565 {
13566 rtx set = single_set (tem);
13567 rtx inner_dest = 0;
13568 #ifdef HAVE_cc0
13569 rtx cc0_setter = NULL_RTX;
13570 #endif
13571
13572 if (set != 0)
13573 for (inner_dest = SET_DEST (set);
13574 (GET_CODE (inner_dest) == STRICT_LOW_PART
13575 || GET_CODE (inner_dest) == SUBREG
13576 || GET_CODE (inner_dest) == ZERO_EXTRACT);
13577 inner_dest = XEXP (inner_dest, 0))
13578 ;
13579
13580 /* Verify that it was the set, and not a clobber that
13581 modified the register.
13582
13583 CC0 targets must be careful to maintain setter/user
13584 pairs. If we cannot delete the setter due to side
13585 effects, mark the user with an UNUSED note instead
13586 of deleting it. */
13587
13588 if (set != 0 && ! side_effects_p (SET_SRC (set))
13589 && rtx_equal_p (XEXP (note, 0), inner_dest)
13590 #ifdef HAVE_cc0
13591 && (! reg_mentioned_p (cc0_rtx, SET_SRC (set))
13592 || ((cc0_setter = prev_cc0_setter (tem)) != NULL
13593 && sets_cc0_p (PATTERN (cc0_setter)) > 0))
13594 #endif
13595 )
13596 {
13597 /* Move the notes and links of TEM elsewhere.
13598 This might delete other dead insns recursively.
13599 First set the pattern to something that won't use
13600 any register. */
13601 rtx old_notes = REG_NOTES (tem);
13602
13603 PATTERN (tem) = pc_rtx;
13604 REG_NOTES (tem) = NULL;
13605
13606 distribute_notes (old_notes, tem, tem, NULL_RTX,
13607 NULL_RTX, NULL_RTX, NULL_RTX);
13608 distribute_links (LOG_LINKS (tem));
13609
13610 SET_INSN_DELETED (tem);
13611 if (tem == i2)
13612 i2 = NULL_RTX;
13613
13614 #ifdef HAVE_cc0
13615 /* Delete the setter too. */
13616 if (cc0_setter)
13617 {
13618 PATTERN (cc0_setter) = pc_rtx;
13619 old_notes = REG_NOTES (cc0_setter);
13620 REG_NOTES (cc0_setter) = NULL;
13621
13622 distribute_notes (old_notes, cc0_setter,
13623 cc0_setter, NULL_RTX,
13624 NULL_RTX, NULL_RTX, NULL_RTX);
13625 distribute_links (LOG_LINKS (cc0_setter));
13626
13627 SET_INSN_DELETED (cc0_setter);
13628 if (cc0_setter == i2)
13629 i2 = NULL_RTX;
13630 }
13631 #endif
13632 }
13633 else
13634 {
13635 PUT_REG_NOTE_KIND (note, REG_UNUSED);
13636
13637 /* If there isn't already a REG_UNUSED note, put one
13638 here. Do not place a REG_DEAD note, even if
13639 the register is also used here; that would not
13640 match the algorithm used in lifetime analysis
13641 and can cause the consistency check in the
13642 scheduler to fail. */
13643 if (! find_regno_note (tem, REG_UNUSED,
13644 REGNO (XEXP (note, 0))))
13645 place = tem;
13646 break;
13647 }
13648 }
13649 else if (reg_referenced_p (XEXP (note, 0), PATTERN (tem))
13650 || (CALL_P (tem)
13651 && find_reg_fusage (tem, USE, XEXP (note, 0))))
13652 {
13653 place = tem;
13654
13655 /* If we are doing a 3->2 combination, and we have a
13656 register which formerly died in i3 and was not used
13657 by i2, which now no longer dies in i3 and is used in
13658 i2 but does not die in i2, and place is between i2
13659 and i3, then we may need to move a link from place to
13660 i2. */
13661 if (i2 && DF_INSN_LUID (place) > DF_INSN_LUID (i2)
13662 && from_insn
13663 && DF_INSN_LUID (from_insn) > DF_INSN_LUID (i2)
13664 && reg_referenced_p (XEXP (note, 0), PATTERN (i2)))
13665 {
13666 struct insn_link *links = LOG_LINKS (place);
13667 LOG_LINKS (place) = NULL;
13668 distribute_links (links);
13669 }
13670 break;
13671 }
13672
13673 if (tem == BB_HEAD (bb))
13674 break;
13675 }
13676
13677 }
13678
13679 /* If the register is set or already dead at PLACE, we needn't do
13680 anything with this note if it is still a REG_DEAD note.
13681 We check here if it is set at all, not if is it totally replaced,
13682 which is what `dead_or_set_p' checks, so also check for it being
13683 set partially. */
13684
13685 if (place && REG_NOTE_KIND (note) == REG_DEAD)
13686 {
13687 unsigned int regno = REGNO (XEXP (note, 0));
13688 reg_stat_type *rsp = VEC_index (reg_stat_type, reg_stat, regno);
13689
13690 if (dead_or_set_p (place, XEXP (note, 0))
13691 || reg_bitfield_target_p (XEXP (note, 0), PATTERN (place)))
13692 {
13693 /* Unless the register previously died in PLACE, clear
13694 last_death. [I no longer understand why this is
13695 being done.] */
13696 if (rsp->last_death != place)
13697 rsp->last_death = 0;
13698 place = 0;
13699 }
13700 else
13701 rsp->last_death = place;
13702
13703 /* If this is a death note for a hard reg that is occupying
13704 multiple registers, ensure that we are still using all
13705 parts of the object. If we find a piece of the object
13706 that is unused, we must arrange for an appropriate REG_DEAD
13707 note to be added for it. However, we can't just emit a USE
13708 and tag the note to it, since the register might actually
13709 be dead; so we recourse, and the recursive call then finds
13710 the previous insn that used this register. */
13711
13712 if (place && regno < FIRST_PSEUDO_REGISTER
13713 && hard_regno_nregs[regno][GET_MODE (XEXP (note, 0))] > 1)
13714 {
13715 unsigned int endregno = END_HARD_REGNO (XEXP (note, 0));
13716 int all_used = 1;
13717 unsigned int i;
13718
13719 for (i = regno; i < endregno; i++)
13720 if ((! refers_to_regno_p (i, i + 1, PATTERN (place), 0)
13721 && ! find_regno_fusage (place, USE, i))
13722 || dead_or_set_regno_p (place, i))
13723 all_used = 0;
13724
13725 if (! all_used)
13726 {
13727 /* Put only REG_DEAD notes for pieces that are
13728 not already dead or set. */
13729
13730 for (i = regno; i < endregno;
13731 i += hard_regno_nregs[i][reg_raw_mode[i]])
13732 {
13733 rtx piece = regno_reg_rtx[i];
13734 basic_block bb = this_basic_block;
13735
13736 if (! dead_or_set_p (place, piece)
13737 && ! reg_bitfield_target_p (piece,
13738 PATTERN (place)))
13739 {
13740 rtx new_note = alloc_reg_note (REG_DEAD, piece,
13741 NULL_RTX);
13742
13743 distribute_notes (new_note, place, place,
13744 NULL_RTX, NULL_RTX, NULL_RTX,
13745 NULL_RTX);
13746 }
13747 else if (! refers_to_regno_p (i, i + 1,
13748 PATTERN (place), 0)
13749 && ! find_regno_fusage (place, USE, i))
13750 for (tem = PREV_INSN (place); ;
13751 tem = PREV_INSN (tem))
13752 {
13753 if (!NONDEBUG_INSN_P (tem))
13754 {
13755 if (tem == BB_HEAD (bb))
13756 break;
13757 continue;
13758 }
13759 if (dead_or_set_p (tem, piece)
13760 || reg_bitfield_target_p (piece,
13761 PATTERN (tem)))
13762 {
13763 add_reg_note (tem, REG_UNUSED, piece);
13764 break;
13765 }
13766 }
13767
13768 }
13769
13770 place = 0;
13771 }
13772 }
13773 }
13774 break;
13775
13776 default:
13777 /* Any other notes should not be present at this point in the
13778 compilation. */
13779 gcc_unreachable ();
13780 }
13781
13782 if (place)
13783 {
13784 XEXP (note, 1) = REG_NOTES (place);
13785 REG_NOTES (place) = note;
13786 }
13787
13788 if (place2)
13789 add_reg_note (place2, REG_NOTE_KIND (note), XEXP (note, 0));
13790 }
13791 }
13792 \f
13793 /* Similarly to above, distribute the LOG_LINKS that used to be present on
13794 I3, I2, and I1 to new locations. This is also called to add a link
13795 pointing at I3 when I3's destination is changed. */
13796
13797 static void
13798 distribute_links (struct insn_link *links)
13799 {
13800 struct insn_link *link, *next_link;
13801
13802 for (link = links; link; link = next_link)
13803 {
13804 rtx place = 0;
13805 rtx insn;
13806 rtx set, reg;
13807
13808 next_link = link->next;
13809
13810 /* If the insn that this link points to is a NOTE or isn't a single
13811 set, ignore it. In the latter case, it isn't clear what we
13812 can do other than ignore the link, since we can't tell which
13813 register it was for. Such links wouldn't be used by combine
13814 anyway.
13815
13816 It is not possible for the destination of the target of the link to
13817 have been changed by combine. The only potential of this is if we
13818 replace I3, I2, and I1 by I3 and I2. But in that case the
13819 destination of I2 also remains unchanged. */
13820
13821 if (NOTE_P (link->insn)
13822 || (set = single_set (link->insn)) == 0)
13823 continue;
13824
13825 reg = SET_DEST (set);
13826 while (GET_CODE (reg) == SUBREG || GET_CODE (reg) == ZERO_EXTRACT
13827 || GET_CODE (reg) == STRICT_LOW_PART)
13828 reg = XEXP (reg, 0);
13829
13830 /* A LOG_LINK is defined as being placed on the first insn that uses
13831 a register and points to the insn that sets the register. Start
13832 searching at the next insn after the target of the link and stop
13833 when we reach a set of the register or the end of the basic block.
13834
13835 Note that this correctly handles the link that used to point from
13836 I3 to I2. Also note that not much searching is typically done here
13837 since most links don't point very far away. */
13838
13839 for (insn = NEXT_INSN (link->insn);
13840 (insn && (this_basic_block->next_bb == EXIT_BLOCK_PTR
13841 || BB_HEAD (this_basic_block->next_bb) != insn));
13842 insn = NEXT_INSN (insn))
13843 if (DEBUG_INSN_P (insn))
13844 continue;
13845 else if (INSN_P (insn) && reg_overlap_mentioned_p (reg, PATTERN (insn)))
13846 {
13847 if (reg_referenced_p (reg, PATTERN (insn)))
13848 place = insn;
13849 break;
13850 }
13851 else if (CALL_P (insn)
13852 && find_reg_fusage (insn, USE, reg))
13853 {
13854 place = insn;
13855 break;
13856 }
13857 else if (INSN_P (insn) && reg_set_p (reg, insn))
13858 break;
13859
13860 /* If we found a place to put the link, place it there unless there
13861 is already a link to the same insn as LINK at that point. */
13862
13863 if (place)
13864 {
13865 struct insn_link *link2;
13866
13867 FOR_EACH_LOG_LINK (link2, place)
13868 if (link2->insn == link->insn)
13869 break;
13870
13871 if (link2 == NULL)
13872 {
13873 link->next = LOG_LINKS (place);
13874 LOG_LINKS (place) = link;
13875
13876 /* Set added_links_insn to the earliest insn we added a
13877 link to. */
13878 if (added_links_insn == 0
13879 || DF_INSN_LUID (added_links_insn) > DF_INSN_LUID (place))
13880 added_links_insn = place;
13881 }
13882 }
13883 }
13884 }
13885 \f
13886 /* Subroutine of unmentioned_reg_p and callback from for_each_rtx.
13887 Check whether the expression pointer to by LOC is a register or
13888 memory, and if so return 1 if it isn't mentioned in the rtx EXPR.
13889 Otherwise return zero. */
13890
13891 static int
13892 unmentioned_reg_p_1 (rtx *loc, void *expr)
13893 {
13894 rtx x = *loc;
13895
13896 if (x != NULL_RTX
13897 && (REG_P (x) || MEM_P (x))
13898 && ! reg_mentioned_p (x, (rtx) expr))
13899 return 1;
13900 return 0;
13901 }
13902
13903 /* Check for any register or memory mentioned in EQUIV that is not
13904 mentioned in EXPR. This is used to restrict EQUIV to "specializations"
13905 of EXPR where some registers may have been replaced by constants. */
13906
13907 static bool
13908 unmentioned_reg_p (rtx equiv, rtx expr)
13909 {
13910 return for_each_rtx (&equiv, unmentioned_reg_p_1, expr);
13911 }
13912 \f
13913 DEBUG_FUNCTION void
13914 dump_combine_stats (FILE *file)
13915 {
13916 fprintf
13917 (file,
13918 ";; Combiner statistics: %d attempts, %d substitutions (%d requiring new space),\n;; %d successes.\n\n",
13919 combine_attempts, combine_merges, combine_extras, combine_successes);
13920 }
13921
13922 void
13923 dump_combine_total_stats (FILE *file)
13924 {
13925 fprintf
13926 (file,
13927 "\n;; Combiner totals: %d attempts, %d substitutions (%d requiring new space),\n;; %d successes.\n",
13928 total_attempts, total_merges, total_extras, total_successes);
13929 }
13930 \f
13931 static bool
13932 gate_handle_combine (void)
13933 {
13934 return (optimize > 0);
13935 }
13936
13937 /* Try combining insns through substitution. */
13938 static unsigned int
13939 rest_of_handle_combine (void)
13940 {
13941 int rebuild_jump_labels_after_combine;
13942
13943 df_set_flags (DF_LR_RUN_DCE + DF_DEFER_INSN_RESCAN);
13944 df_note_add_problem ();
13945 df_analyze ();
13946
13947 regstat_init_n_sets_and_refs ();
13948
13949 rebuild_jump_labels_after_combine
13950 = combine_instructions (get_insns (), max_reg_num ());
13951
13952 /* Combining insns may have turned an indirect jump into a
13953 direct jump. Rebuild the JUMP_LABEL fields of jumping
13954 instructions. */
13955 if (rebuild_jump_labels_after_combine)
13956 {
13957 timevar_push (TV_JUMP);
13958 rebuild_jump_labels (get_insns ());
13959 cleanup_cfg (0);
13960 timevar_pop (TV_JUMP);
13961 }
13962
13963 regstat_free_n_sets_and_refs ();
13964 return 0;
13965 }
13966
13967 struct rtl_opt_pass pass_combine =
13968 {
13969 {
13970 RTL_PASS,
13971 "combine", /* name */
13972 gate_handle_combine, /* gate */
13973 rest_of_handle_combine, /* execute */
13974 NULL, /* sub */
13975 NULL, /* next */
13976 0, /* static_pass_number */
13977 TV_COMBINE, /* tv_id */
13978 PROP_cfglayout, /* properties_required */
13979 0, /* properties_provided */
13980 0, /* properties_destroyed */
13981 0, /* todo_flags_start */
13982 TODO_df_finish | TODO_verify_rtl_sharing |
13983 TODO_ggc_collect, /* todo_flags_finish */
13984 }
13985 };