decl.c (value_annotation_hasher::handle_cache_entry): Delete.
[gcc.git] / gcc / combine.c
1 /* Optimize by combining instructions for GNU compiler.
2 Copyright (C) 1987-2015 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 /* This module is essentially the "combiner" phase of the U. of Arizona
21 Portable Optimizer, but redone to work on our list-structured
22 representation for RTL instead of their string representation.
23
24 The LOG_LINKS of each insn identify the most recent assignment
25 to each REG used in the insn. It is a list of previous insns,
26 each of which contains a SET for a REG that is used in this insn
27 and not used or set in between. LOG_LINKs never cross basic blocks.
28 They were set up by the preceding pass (lifetime analysis).
29
30 We try to combine each pair of insns joined by a logical link.
31 We also try to combine triplets of insns A, B and C when C has
32 a link back to B and B has a link back to A. Likewise for a
33 small number of quadruplets of insns A, B, C and D for which
34 there's high likelihood of of success.
35
36 LOG_LINKS does not have links for use of the CC0. They don't
37 need to, because the insn that sets the CC0 is always immediately
38 before the insn that tests it. So we always regard a branch
39 insn as having a logical link to the preceding insn. The same is true
40 for an insn explicitly using CC0.
41
42 We check (with use_crosses_set_p) to avoid combining in such a way
43 as to move a computation to a place where its value would be different.
44
45 Combination is done by mathematically substituting the previous
46 insn(s) values for the regs they set into the expressions in
47 the later insns that refer to these regs. If the result is a valid insn
48 for our target machine, according to the machine description,
49 we install it, delete the earlier insns, and update the data flow
50 information (LOG_LINKS and REG_NOTES) for what we did.
51
52 There are a few exceptions where the dataflow information isn't
53 completely updated (however this is only a local issue since it is
54 regenerated before the next pass that uses it):
55
56 - reg_live_length is not updated
57 - reg_n_refs is not adjusted in the rare case when a register is
58 no longer required in a computation
59 - there are extremely rare cases (see distribute_notes) when a
60 REG_DEAD note is lost
61 - a LOG_LINKS entry that refers to an insn with multiple SETs may be
62 removed because there is no way to know which register it was
63 linking
64
65 To simplify substitution, we combine only when the earlier insn(s)
66 consist of only a single assignment. To simplify updating afterward,
67 we never combine when a subroutine call appears in the middle.
68
69 Since we do not represent assignments to CC0 explicitly except when that
70 is all an insn does, there is no LOG_LINKS entry in an insn that uses
71 the condition code for the insn that set the condition code.
72 Fortunately, these two insns must be consecutive.
73 Therefore, every JUMP_INSN is taken to have an implicit logical link
74 to the preceding insn. This is not quite right, since non-jumps can
75 also use the condition code; but in practice such insns would not
76 combine anyway. */
77
78 #include "config.h"
79 #include "system.h"
80 #include "coretypes.h"
81 #include "tm.h"
82 #include "rtl.h"
83 #include "alias.h"
84 #include "symtab.h"
85 #include "tree.h"
86 #include "stor-layout.h"
87 #include "tm_p.h"
88 #include "flags.h"
89 #include "regs.h"
90 #include "hard-reg-set.h"
91 #include "predict.h"
92 #include "function.h"
93 #include "dominance.h"
94 #include "cfg.h"
95 #include "cfgrtl.h"
96 #include "cfgcleanup.h"
97 #include "basic-block.h"
98 #include "insn-config.h"
99 /* Include expr.h after insn-config.h so we get HAVE_conditional_move. */
100 #include "expmed.h"
101 #include "dojump.h"
102 #include "explow.h"
103 #include "calls.h"
104 #include "emit-rtl.h"
105 #include "varasm.h"
106 #include "stmt.h"
107 #include "expr.h"
108 #include "insn-attr.h"
109 #include "recog.h"
110 #include "diagnostic-core.h"
111 #include "target.h"
112 #include "insn-codes.h"
113 #include "optabs.h"
114 #include "rtlhooks-def.h"
115 #include "params.h"
116 #include "tree-pass.h"
117 #include "df.h"
118 #include "valtrack.h"
119 #include "plugin-api.h"
120 #include "ipa-ref.h"
121 #include "cgraph.h"
122 #include "obstack.h"
123 #include "rtl-iter.h"
124
125 /* Number of attempts to combine instructions in this function. */
126
127 static int combine_attempts;
128
129 /* Number of attempts that got as far as substitution in this function. */
130
131 static int combine_merges;
132
133 /* Number of instructions combined with added SETs in this function. */
134
135 static int combine_extras;
136
137 /* Number of instructions combined in this function. */
138
139 static int combine_successes;
140
141 /* Totals over entire compilation. */
142
143 static int total_attempts, total_merges, total_extras, total_successes;
144
145 /* combine_instructions may try to replace the right hand side of the
146 second instruction with the value of an associated REG_EQUAL note
147 before throwing it at try_combine. That is problematic when there
148 is a REG_DEAD note for a register used in the old right hand side
149 and can cause distribute_notes to do wrong things. This is the
150 second instruction if it has been so modified, null otherwise. */
151
152 static rtx_insn *i2mod;
153
154 /* When I2MOD is nonnull, this is a copy of the old right hand side. */
155
156 static rtx i2mod_old_rhs;
157
158 /* When I2MOD is nonnull, this is a copy of the new right hand side. */
159
160 static rtx i2mod_new_rhs;
161 \f
162 typedef struct reg_stat_struct {
163 /* Record last point of death of (hard or pseudo) register n. */
164 rtx_insn *last_death;
165
166 /* Record last point of modification of (hard or pseudo) register n. */
167 rtx_insn *last_set;
168
169 /* The next group of fields allows the recording of the last value assigned
170 to (hard or pseudo) register n. We use this information to see if an
171 operation being processed is redundant given a prior operation performed
172 on the register. For example, an `and' with a constant is redundant if
173 all the zero bits are already known to be turned off.
174
175 We use an approach similar to that used by cse, but change it in the
176 following ways:
177
178 (1) We do not want to reinitialize at each label.
179 (2) It is useful, but not critical, to know the actual value assigned
180 to a register. Often just its form is helpful.
181
182 Therefore, we maintain the following fields:
183
184 last_set_value the last value assigned
185 last_set_label records the value of label_tick when the
186 register was assigned
187 last_set_table_tick records the value of label_tick when a
188 value using the register is assigned
189 last_set_invalid set to nonzero when it is not valid
190 to use the value of this register in some
191 register's value
192
193 To understand the usage of these tables, it is important to understand
194 the distinction between the value in last_set_value being valid and
195 the register being validly contained in some other expression in the
196 table.
197
198 (The next two parameters are out of date).
199
200 reg_stat[i].last_set_value is valid if it is nonzero, and either
201 reg_n_sets[i] is 1 or reg_stat[i].last_set_label == label_tick.
202
203 Register I may validly appear in any expression returned for the value
204 of another register if reg_n_sets[i] is 1. It may also appear in the
205 value for register J if reg_stat[j].last_set_invalid is zero, or
206 reg_stat[i].last_set_label < reg_stat[j].last_set_label.
207
208 If an expression is found in the table containing a register which may
209 not validly appear in an expression, the register is replaced by
210 something that won't match, (clobber (const_int 0)). */
211
212 /* Record last value assigned to (hard or pseudo) register n. */
213
214 rtx last_set_value;
215
216 /* Record the value of label_tick when an expression involving register n
217 is placed in last_set_value. */
218
219 int last_set_table_tick;
220
221 /* Record the value of label_tick when the value for register n is placed in
222 last_set_value. */
223
224 int last_set_label;
225
226 /* These fields are maintained in parallel with last_set_value and are
227 used to store the mode in which the register was last set, the bits
228 that were known to be zero when it was last set, and the number of
229 sign bits copies it was known to have when it was last set. */
230
231 unsigned HOST_WIDE_INT last_set_nonzero_bits;
232 char last_set_sign_bit_copies;
233 ENUM_BITFIELD(machine_mode) last_set_mode : 8;
234
235 /* Set nonzero if references to register n in expressions should not be
236 used. last_set_invalid is set nonzero when this register is being
237 assigned to and last_set_table_tick == label_tick. */
238
239 char last_set_invalid;
240
241 /* Some registers that are set more than once and used in more than one
242 basic block are nevertheless always set in similar ways. For example,
243 a QImode register may be loaded from memory in two places on a machine
244 where byte loads zero extend.
245
246 We record in the following fields if a register has some leading bits
247 that are always equal to the sign bit, and what we know about the
248 nonzero bits of a register, specifically which bits are known to be
249 zero.
250
251 If an entry is zero, it means that we don't know anything special. */
252
253 unsigned char sign_bit_copies;
254
255 unsigned HOST_WIDE_INT nonzero_bits;
256
257 /* Record the value of the label_tick when the last truncation
258 happened. The field truncated_to_mode is only valid if
259 truncation_label == label_tick. */
260
261 int truncation_label;
262
263 /* Record the last truncation seen for this register. If truncation
264 is not a nop to this mode we might be able to save an explicit
265 truncation if we know that value already contains a truncated
266 value. */
267
268 ENUM_BITFIELD(machine_mode) truncated_to_mode : 8;
269 } reg_stat_type;
270
271
272 static vec<reg_stat_type> reg_stat;
273
274 /* One plus the highest pseudo for which we track REG_N_SETS.
275 regstat_init_n_sets_and_refs allocates the array for REG_N_SETS just once,
276 but during combine_split_insns new pseudos can be created. As we don't have
277 updated DF information in that case, it is hard to initialize the array
278 after growing. The combiner only cares about REG_N_SETS (regno) == 1,
279 so instead of growing the arrays, just assume all newly created pseudos
280 during combine might be set multiple times. */
281
282 static unsigned int reg_n_sets_max;
283
284 /* Record the luid of the last insn that invalidated memory
285 (anything that writes memory, and subroutine calls, but not pushes). */
286
287 static int mem_last_set;
288
289 /* Record the luid of the last CALL_INSN
290 so we can tell whether a potential combination crosses any calls. */
291
292 static int last_call_luid;
293
294 /* When `subst' is called, this is the insn that is being modified
295 (by combining in a previous insn). The PATTERN of this insn
296 is still the old pattern partially modified and it should not be
297 looked at, but this may be used to examine the successors of the insn
298 to judge whether a simplification is valid. */
299
300 static rtx_insn *subst_insn;
301
302 /* This is the lowest LUID that `subst' is currently dealing with.
303 get_last_value will not return a value if the register was set at or
304 after this LUID. If not for this mechanism, we could get confused if
305 I2 or I1 in try_combine were an insn that used the old value of a register
306 to obtain a new value. In that case, we might erroneously get the
307 new value of the register when we wanted the old one. */
308
309 static int subst_low_luid;
310
311 /* This contains any hard registers that are used in newpat; reg_dead_at_p
312 must consider all these registers to be always live. */
313
314 static HARD_REG_SET newpat_used_regs;
315
316 /* This is an insn to which a LOG_LINKS entry has been added. If this
317 insn is the earlier than I2 or I3, combine should rescan starting at
318 that location. */
319
320 static rtx_insn *added_links_insn;
321
322 /* Basic block in which we are performing combines. */
323 static basic_block this_basic_block;
324 static bool optimize_this_for_speed_p;
325
326 \f
327 /* Length of the currently allocated uid_insn_cost array. */
328
329 static int max_uid_known;
330
331 /* The following array records the insn_rtx_cost for every insn
332 in the instruction stream. */
333
334 static int *uid_insn_cost;
335
336 /* The following array records the LOG_LINKS for every insn in the
337 instruction stream as struct insn_link pointers. */
338
339 struct insn_link {
340 rtx_insn *insn;
341 unsigned int regno;
342 struct insn_link *next;
343 };
344
345 static struct insn_link **uid_log_links;
346
347 #define INSN_COST(INSN) (uid_insn_cost[INSN_UID (INSN)])
348 #define LOG_LINKS(INSN) (uid_log_links[INSN_UID (INSN)])
349
350 #define FOR_EACH_LOG_LINK(L, INSN) \
351 for ((L) = LOG_LINKS (INSN); (L); (L) = (L)->next)
352
353 /* Links for LOG_LINKS are allocated from this obstack. */
354
355 static struct obstack insn_link_obstack;
356
357 /* Allocate a link. */
358
359 static inline struct insn_link *
360 alloc_insn_link (rtx_insn *insn, unsigned int regno, struct insn_link *next)
361 {
362 struct insn_link *l
363 = (struct insn_link *) obstack_alloc (&insn_link_obstack,
364 sizeof (struct insn_link));
365 l->insn = insn;
366 l->regno = regno;
367 l->next = next;
368 return l;
369 }
370
371 /* Incremented for each basic block. */
372
373 static int label_tick;
374
375 /* Reset to label_tick for each extended basic block in scanning order. */
376
377 static int label_tick_ebb_start;
378
379 /* Mode used to compute significance in reg_stat[].nonzero_bits. It is the
380 largest integer mode that can fit in HOST_BITS_PER_WIDE_INT. */
381
382 static machine_mode nonzero_bits_mode;
383
384 /* Nonzero when reg_stat[].nonzero_bits and reg_stat[].sign_bit_copies can
385 be safely used. It is zero while computing them and after combine has
386 completed. This former test prevents propagating values based on
387 previously set values, which can be incorrect if a variable is modified
388 in a loop. */
389
390 static int nonzero_sign_valid;
391
392 \f
393 /* Record one modification to rtl structure
394 to be undone by storing old_contents into *where. */
395
396 enum undo_kind { UNDO_RTX, UNDO_INT, UNDO_MODE, UNDO_LINKS };
397
398 struct undo
399 {
400 struct undo *next;
401 enum undo_kind kind;
402 union { rtx r; int i; machine_mode m; struct insn_link *l; } old_contents;
403 union { rtx *r; int *i; struct insn_link **l; } where;
404 };
405
406 /* Record a bunch of changes to be undone, up to MAX_UNDO of them.
407 num_undo says how many are currently recorded.
408
409 other_insn is nonzero if we have modified some other insn in the process
410 of working on subst_insn. It must be verified too. */
411
412 struct undobuf
413 {
414 struct undo *undos;
415 struct undo *frees;
416 rtx_insn *other_insn;
417 };
418
419 static struct undobuf undobuf;
420
421 /* Number of times the pseudo being substituted for
422 was found and replaced. */
423
424 static int n_occurrences;
425
426 static rtx reg_nonzero_bits_for_combine (const_rtx, machine_mode, const_rtx,
427 machine_mode,
428 unsigned HOST_WIDE_INT,
429 unsigned HOST_WIDE_INT *);
430 static rtx reg_num_sign_bit_copies_for_combine (const_rtx, machine_mode, const_rtx,
431 machine_mode,
432 unsigned int, unsigned int *);
433 static void do_SUBST (rtx *, rtx);
434 static void do_SUBST_INT (int *, int);
435 static void init_reg_last (void);
436 static void setup_incoming_promotions (rtx_insn *);
437 static void set_nonzero_bits_and_sign_copies (rtx, const_rtx, void *);
438 static int cant_combine_insn_p (rtx_insn *);
439 static int can_combine_p (rtx_insn *, rtx_insn *, rtx_insn *, rtx_insn *,
440 rtx_insn *, rtx_insn *, rtx *, rtx *);
441 static int combinable_i3pat (rtx_insn *, rtx *, rtx, rtx, rtx, int, int, rtx *);
442 static int contains_muldiv (rtx);
443 static rtx_insn *try_combine (rtx_insn *, rtx_insn *, rtx_insn *, rtx_insn *,
444 int *, rtx_insn *);
445 static void undo_all (void);
446 static void undo_commit (void);
447 static rtx *find_split_point (rtx *, rtx_insn *, bool);
448 static rtx subst (rtx, rtx, rtx, int, int, int);
449 static rtx combine_simplify_rtx (rtx, machine_mode, int, int);
450 static rtx simplify_if_then_else (rtx);
451 static rtx simplify_set (rtx);
452 static rtx simplify_logical (rtx);
453 static rtx expand_compound_operation (rtx);
454 static const_rtx expand_field_assignment (const_rtx);
455 static rtx make_extraction (machine_mode, rtx, HOST_WIDE_INT,
456 rtx, unsigned HOST_WIDE_INT, int, int, int);
457 static rtx extract_left_shift (rtx, int);
458 static int get_pos_from_mask (unsigned HOST_WIDE_INT,
459 unsigned HOST_WIDE_INT *);
460 static rtx canon_reg_for_combine (rtx, rtx);
461 static rtx force_to_mode (rtx, machine_mode,
462 unsigned HOST_WIDE_INT, int);
463 static rtx if_then_else_cond (rtx, rtx *, rtx *);
464 static rtx known_cond (rtx, enum rtx_code, rtx, rtx);
465 static int rtx_equal_for_field_assignment_p (rtx, rtx, bool = false);
466 static rtx make_field_assignment (rtx);
467 static rtx apply_distributive_law (rtx);
468 static rtx distribute_and_simplify_rtx (rtx, int);
469 static rtx simplify_and_const_int_1 (machine_mode, rtx,
470 unsigned HOST_WIDE_INT);
471 static rtx simplify_and_const_int (rtx, machine_mode, rtx,
472 unsigned HOST_WIDE_INT);
473 static int merge_outer_ops (enum rtx_code *, HOST_WIDE_INT *, enum rtx_code,
474 HOST_WIDE_INT, machine_mode, int *);
475 static rtx simplify_shift_const_1 (enum rtx_code, machine_mode, rtx, int);
476 static rtx simplify_shift_const (rtx, enum rtx_code, machine_mode, rtx,
477 int);
478 static int recog_for_combine (rtx *, rtx_insn *, rtx *);
479 static rtx gen_lowpart_for_combine (machine_mode, rtx);
480 static enum rtx_code simplify_compare_const (enum rtx_code, machine_mode,
481 rtx, rtx *);
482 static enum rtx_code simplify_comparison (enum rtx_code, rtx *, rtx *);
483 static void update_table_tick (rtx);
484 static void record_value_for_reg (rtx, rtx_insn *, rtx);
485 static void check_promoted_subreg (rtx_insn *, rtx);
486 static void record_dead_and_set_regs_1 (rtx, const_rtx, void *);
487 static void record_dead_and_set_regs (rtx_insn *);
488 static int get_last_value_validate (rtx *, rtx_insn *, int, int);
489 static rtx get_last_value (const_rtx);
490 static int use_crosses_set_p (const_rtx, int);
491 static void reg_dead_at_p_1 (rtx, const_rtx, void *);
492 static int reg_dead_at_p (rtx, rtx_insn *);
493 static void move_deaths (rtx, rtx, int, rtx_insn *, rtx *);
494 static int reg_bitfield_target_p (rtx, rtx);
495 static void distribute_notes (rtx, rtx_insn *, rtx_insn *, rtx_insn *, rtx, rtx, rtx);
496 static void distribute_links (struct insn_link *);
497 static void mark_used_regs_combine (rtx);
498 static void record_promoted_value (rtx_insn *, rtx);
499 static bool unmentioned_reg_p (rtx, rtx);
500 static void record_truncated_values (rtx *, void *);
501 static bool reg_truncated_to_mode (machine_mode, const_rtx);
502 static rtx gen_lowpart_or_truncate (machine_mode, rtx);
503 \f
504
505 /* It is not safe to use ordinary gen_lowpart in combine.
506 See comments in gen_lowpart_for_combine. */
507 #undef RTL_HOOKS_GEN_LOWPART
508 #define RTL_HOOKS_GEN_LOWPART gen_lowpart_for_combine
509
510 /* Our implementation of gen_lowpart never emits a new pseudo. */
511 #undef RTL_HOOKS_GEN_LOWPART_NO_EMIT
512 #define RTL_HOOKS_GEN_LOWPART_NO_EMIT gen_lowpart_for_combine
513
514 #undef RTL_HOOKS_REG_NONZERO_REG_BITS
515 #define RTL_HOOKS_REG_NONZERO_REG_BITS reg_nonzero_bits_for_combine
516
517 #undef RTL_HOOKS_REG_NUM_SIGN_BIT_COPIES
518 #define RTL_HOOKS_REG_NUM_SIGN_BIT_COPIES reg_num_sign_bit_copies_for_combine
519
520 #undef RTL_HOOKS_REG_TRUNCATED_TO_MODE
521 #define RTL_HOOKS_REG_TRUNCATED_TO_MODE reg_truncated_to_mode
522
523 static const struct rtl_hooks combine_rtl_hooks = RTL_HOOKS_INITIALIZER;
524
525 \f
526 /* Convenience wrapper for the canonicalize_comparison target hook.
527 Target hooks cannot use enum rtx_code. */
528 static inline void
529 target_canonicalize_comparison (enum rtx_code *code, rtx *op0, rtx *op1,
530 bool op0_preserve_value)
531 {
532 int code_int = (int)*code;
533 targetm.canonicalize_comparison (&code_int, op0, op1, op0_preserve_value);
534 *code = (enum rtx_code)code_int;
535 }
536
537 /* Try to split PATTERN found in INSN. This returns NULL_RTX if
538 PATTERN can not be split. Otherwise, it returns an insn sequence.
539 This is a wrapper around split_insns which ensures that the
540 reg_stat vector is made larger if the splitter creates a new
541 register. */
542
543 static rtx_insn *
544 combine_split_insns (rtx pattern, rtx_insn *insn)
545 {
546 rtx_insn *ret;
547 unsigned int nregs;
548
549 ret = split_insns (pattern, insn);
550 nregs = max_reg_num ();
551 if (nregs > reg_stat.length ())
552 reg_stat.safe_grow_cleared (nregs);
553 return ret;
554 }
555
556 /* This is used by find_single_use to locate an rtx in LOC that
557 contains exactly one use of DEST, which is typically either a REG
558 or CC0. It returns a pointer to the innermost rtx expression
559 containing DEST. Appearances of DEST that are being used to
560 totally replace it are not counted. */
561
562 static rtx *
563 find_single_use_1 (rtx dest, rtx *loc)
564 {
565 rtx x = *loc;
566 enum rtx_code code = GET_CODE (x);
567 rtx *result = NULL;
568 rtx *this_result;
569 int i;
570 const char *fmt;
571
572 switch (code)
573 {
574 case CONST:
575 case LABEL_REF:
576 case SYMBOL_REF:
577 CASE_CONST_ANY:
578 case CLOBBER:
579 return 0;
580
581 case SET:
582 /* If the destination is anything other than CC0, PC, a REG or a SUBREG
583 of a REG that occupies all of the REG, the insn uses DEST if
584 it is mentioned in the destination or the source. Otherwise, we
585 need just check the source. */
586 if (GET_CODE (SET_DEST (x)) != CC0
587 && GET_CODE (SET_DEST (x)) != PC
588 && !REG_P (SET_DEST (x))
589 && ! (GET_CODE (SET_DEST (x)) == SUBREG
590 && REG_P (SUBREG_REG (SET_DEST (x)))
591 && (((GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (x))))
592 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
593 == ((GET_MODE_SIZE (GET_MODE (SET_DEST (x)))
594 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))))
595 break;
596
597 return find_single_use_1 (dest, &SET_SRC (x));
598
599 case MEM:
600 case SUBREG:
601 return find_single_use_1 (dest, &XEXP (x, 0));
602
603 default:
604 break;
605 }
606
607 /* If it wasn't one of the common cases above, check each expression and
608 vector of this code. Look for a unique usage of DEST. */
609
610 fmt = GET_RTX_FORMAT (code);
611 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
612 {
613 if (fmt[i] == 'e')
614 {
615 if (dest == XEXP (x, i)
616 || (REG_P (dest) && REG_P (XEXP (x, i))
617 && REGNO (dest) == REGNO (XEXP (x, i))))
618 this_result = loc;
619 else
620 this_result = find_single_use_1 (dest, &XEXP (x, i));
621
622 if (result == NULL)
623 result = this_result;
624 else if (this_result)
625 /* Duplicate usage. */
626 return NULL;
627 }
628 else if (fmt[i] == 'E')
629 {
630 int j;
631
632 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
633 {
634 if (XVECEXP (x, i, j) == dest
635 || (REG_P (dest)
636 && REG_P (XVECEXP (x, i, j))
637 && REGNO (XVECEXP (x, i, j)) == REGNO (dest)))
638 this_result = loc;
639 else
640 this_result = find_single_use_1 (dest, &XVECEXP (x, i, j));
641
642 if (result == NULL)
643 result = this_result;
644 else if (this_result)
645 return NULL;
646 }
647 }
648 }
649
650 return result;
651 }
652
653
654 /* See if DEST, produced in INSN, is used only a single time in the
655 sequel. If so, return a pointer to the innermost rtx expression in which
656 it is used.
657
658 If PLOC is nonzero, *PLOC is set to the insn containing the single use.
659
660 If DEST is cc0_rtx, we look only at the next insn. In that case, we don't
661 care about REG_DEAD notes or LOG_LINKS.
662
663 Otherwise, we find the single use by finding an insn that has a
664 LOG_LINKS pointing at INSN and has a REG_DEAD note for DEST. If DEST is
665 only referenced once in that insn, we know that it must be the first
666 and last insn referencing DEST. */
667
668 static rtx *
669 find_single_use (rtx dest, rtx_insn *insn, rtx_insn **ploc)
670 {
671 basic_block bb;
672 rtx_insn *next;
673 rtx *result;
674 struct insn_link *link;
675
676 if (dest == cc0_rtx)
677 {
678 next = NEXT_INSN (insn);
679 if (next == 0
680 || (!NONJUMP_INSN_P (next) && !JUMP_P (next)))
681 return 0;
682
683 result = find_single_use_1 (dest, &PATTERN (next));
684 if (result && ploc)
685 *ploc = next;
686 return result;
687 }
688
689 if (!REG_P (dest))
690 return 0;
691
692 bb = BLOCK_FOR_INSN (insn);
693 for (next = NEXT_INSN (insn);
694 next && BLOCK_FOR_INSN (next) == bb;
695 next = NEXT_INSN (next))
696 if (INSN_P (next) && dead_or_set_p (next, dest))
697 {
698 FOR_EACH_LOG_LINK (link, next)
699 if (link->insn == insn && link->regno == REGNO (dest))
700 break;
701
702 if (link)
703 {
704 result = find_single_use_1 (dest, &PATTERN (next));
705 if (ploc)
706 *ploc = next;
707 return result;
708 }
709 }
710
711 return 0;
712 }
713 \f
714 /* Substitute NEWVAL, an rtx expression, into INTO, a place in some
715 insn. The substitution can be undone by undo_all. If INTO is already
716 set to NEWVAL, do not record this change. Because computing NEWVAL might
717 also call SUBST, we have to compute it before we put anything into
718 the undo table. */
719
720 static void
721 do_SUBST (rtx *into, rtx newval)
722 {
723 struct undo *buf;
724 rtx oldval = *into;
725
726 if (oldval == newval)
727 return;
728
729 /* We'd like to catch as many invalid transformations here as
730 possible. Unfortunately, there are way too many mode changes
731 that are perfectly valid, so we'd waste too much effort for
732 little gain doing the checks here. Focus on catching invalid
733 transformations involving integer constants. */
734 if (GET_MODE_CLASS (GET_MODE (oldval)) == MODE_INT
735 && CONST_INT_P (newval))
736 {
737 /* Sanity check that we're replacing oldval with a CONST_INT
738 that is a valid sign-extension for the original mode. */
739 gcc_assert (INTVAL (newval)
740 == trunc_int_for_mode (INTVAL (newval), GET_MODE (oldval)));
741
742 /* Replacing the operand of a SUBREG or a ZERO_EXTEND with a
743 CONST_INT is not valid, because after the replacement, the
744 original mode would be gone. Unfortunately, we can't tell
745 when do_SUBST is called to replace the operand thereof, so we
746 perform this test on oldval instead, checking whether an
747 invalid replacement took place before we got here. */
748 gcc_assert (!(GET_CODE (oldval) == SUBREG
749 && CONST_INT_P (SUBREG_REG (oldval))));
750 gcc_assert (!(GET_CODE (oldval) == ZERO_EXTEND
751 && CONST_INT_P (XEXP (oldval, 0))));
752 }
753
754 if (undobuf.frees)
755 buf = undobuf.frees, undobuf.frees = buf->next;
756 else
757 buf = XNEW (struct undo);
758
759 buf->kind = UNDO_RTX;
760 buf->where.r = into;
761 buf->old_contents.r = oldval;
762 *into = newval;
763
764 buf->next = undobuf.undos, undobuf.undos = buf;
765 }
766
767 #define SUBST(INTO, NEWVAL) do_SUBST (&(INTO), (NEWVAL))
768
769 /* Similar to SUBST, but NEWVAL is an int expression. Note that substitution
770 for the value of a HOST_WIDE_INT value (including CONST_INT) is
771 not safe. */
772
773 static void
774 do_SUBST_INT (int *into, int newval)
775 {
776 struct undo *buf;
777 int oldval = *into;
778
779 if (oldval == newval)
780 return;
781
782 if (undobuf.frees)
783 buf = undobuf.frees, undobuf.frees = buf->next;
784 else
785 buf = XNEW (struct undo);
786
787 buf->kind = UNDO_INT;
788 buf->where.i = into;
789 buf->old_contents.i = oldval;
790 *into = newval;
791
792 buf->next = undobuf.undos, undobuf.undos = buf;
793 }
794
795 #define SUBST_INT(INTO, NEWVAL) do_SUBST_INT (&(INTO), (NEWVAL))
796
797 /* Similar to SUBST, but just substitute the mode. This is used when
798 changing the mode of a pseudo-register, so that any other
799 references to the entry in the regno_reg_rtx array will change as
800 well. */
801
802 static void
803 do_SUBST_MODE (rtx *into, machine_mode newval)
804 {
805 struct undo *buf;
806 machine_mode oldval = GET_MODE (*into);
807
808 if (oldval == newval)
809 return;
810
811 if (undobuf.frees)
812 buf = undobuf.frees, undobuf.frees = buf->next;
813 else
814 buf = XNEW (struct undo);
815
816 buf->kind = UNDO_MODE;
817 buf->where.r = into;
818 buf->old_contents.m = oldval;
819 adjust_reg_mode (*into, newval);
820
821 buf->next = undobuf.undos, undobuf.undos = buf;
822 }
823
824 #define SUBST_MODE(INTO, NEWVAL) do_SUBST_MODE (&(INTO), (NEWVAL))
825
826 #if !HAVE_cc0
827 /* Similar to SUBST, but NEWVAL is a LOG_LINKS expression. */
828
829 static void
830 do_SUBST_LINK (struct insn_link **into, struct insn_link *newval)
831 {
832 struct undo *buf;
833 struct insn_link * oldval = *into;
834
835 if (oldval == newval)
836 return;
837
838 if (undobuf.frees)
839 buf = undobuf.frees, undobuf.frees = buf->next;
840 else
841 buf = XNEW (struct undo);
842
843 buf->kind = UNDO_LINKS;
844 buf->where.l = into;
845 buf->old_contents.l = oldval;
846 *into = newval;
847
848 buf->next = undobuf.undos, undobuf.undos = buf;
849 }
850
851 #define SUBST_LINK(oldval, newval) do_SUBST_LINK (&oldval, newval)
852 #endif
853 \f
854 /* Subroutine of try_combine. Determine whether the replacement patterns
855 NEWPAT, NEWI2PAT and NEWOTHERPAT are cheaper according to insn_rtx_cost
856 than the original sequence I0, I1, I2, I3 and undobuf.other_insn. Note
857 that I0, I1 and/or NEWI2PAT may be NULL_RTX. Similarly, NEWOTHERPAT and
858 undobuf.other_insn may also both be NULL_RTX. Return false if the cost
859 of all the instructions can be estimated and the replacements are more
860 expensive than the original sequence. */
861
862 static bool
863 combine_validate_cost (rtx_insn *i0, rtx_insn *i1, rtx_insn *i2, rtx_insn *i3,
864 rtx newpat, rtx newi2pat, rtx newotherpat)
865 {
866 int i0_cost, i1_cost, i2_cost, i3_cost;
867 int new_i2_cost, new_i3_cost;
868 int old_cost, new_cost;
869
870 /* Lookup the original insn_rtx_costs. */
871 i2_cost = INSN_COST (i2);
872 i3_cost = INSN_COST (i3);
873
874 if (i1)
875 {
876 i1_cost = INSN_COST (i1);
877 if (i0)
878 {
879 i0_cost = INSN_COST (i0);
880 old_cost = (i0_cost > 0 && i1_cost > 0 && i2_cost > 0 && i3_cost > 0
881 ? i0_cost + i1_cost + i2_cost + i3_cost : 0);
882 }
883 else
884 {
885 old_cost = (i1_cost > 0 && i2_cost > 0 && i3_cost > 0
886 ? i1_cost + i2_cost + i3_cost : 0);
887 i0_cost = 0;
888 }
889 }
890 else
891 {
892 old_cost = (i2_cost > 0 && i3_cost > 0) ? i2_cost + i3_cost : 0;
893 i1_cost = i0_cost = 0;
894 }
895
896 /* If we have split a PARALLEL I2 to I1,I2, we have counted its cost twice;
897 correct that. */
898 if (old_cost && i1 && INSN_UID (i1) == INSN_UID (i2))
899 old_cost -= i1_cost;
900
901
902 /* Calculate the replacement insn_rtx_costs. */
903 new_i3_cost = insn_rtx_cost (newpat, optimize_this_for_speed_p);
904 if (newi2pat)
905 {
906 new_i2_cost = insn_rtx_cost (newi2pat, optimize_this_for_speed_p);
907 new_cost = (new_i2_cost > 0 && new_i3_cost > 0)
908 ? new_i2_cost + new_i3_cost : 0;
909 }
910 else
911 {
912 new_cost = new_i3_cost;
913 new_i2_cost = 0;
914 }
915
916 if (undobuf.other_insn)
917 {
918 int old_other_cost, new_other_cost;
919
920 old_other_cost = INSN_COST (undobuf.other_insn);
921 new_other_cost = insn_rtx_cost (newotherpat, optimize_this_for_speed_p);
922 if (old_other_cost > 0 && new_other_cost > 0)
923 {
924 old_cost += old_other_cost;
925 new_cost += new_other_cost;
926 }
927 else
928 old_cost = 0;
929 }
930
931 /* Disallow this combination if both new_cost and old_cost are greater than
932 zero, and new_cost is greater than old cost. */
933 int reject = old_cost > 0 && new_cost > old_cost;
934
935 if (dump_file)
936 {
937 fprintf (dump_file, "%s combination of insns ",
938 reject ? "rejecting" : "allowing");
939 if (i0)
940 fprintf (dump_file, "%d, ", INSN_UID (i0));
941 if (i1 && INSN_UID (i1) != INSN_UID (i2))
942 fprintf (dump_file, "%d, ", INSN_UID (i1));
943 fprintf (dump_file, "%d and %d\n", INSN_UID (i2), INSN_UID (i3));
944
945 fprintf (dump_file, "original costs ");
946 if (i0)
947 fprintf (dump_file, "%d + ", i0_cost);
948 if (i1 && INSN_UID (i1) != INSN_UID (i2))
949 fprintf (dump_file, "%d + ", i1_cost);
950 fprintf (dump_file, "%d + %d = %d\n", i2_cost, i3_cost, old_cost);
951
952 if (newi2pat)
953 fprintf (dump_file, "replacement costs %d + %d = %d\n",
954 new_i2_cost, new_i3_cost, new_cost);
955 else
956 fprintf (dump_file, "replacement cost %d\n", new_cost);
957 }
958
959 if (reject)
960 return false;
961
962 /* Update the uid_insn_cost array with the replacement costs. */
963 INSN_COST (i2) = new_i2_cost;
964 INSN_COST (i3) = new_i3_cost;
965 if (i1)
966 {
967 INSN_COST (i1) = 0;
968 if (i0)
969 INSN_COST (i0) = 0;
970 }
971
972 return true;
973 }
974
975
976 /* Delete any insns that copy a register to itself. */
977
978 static void
979 delete_noop_moves (void)
980 {
981 rtx_insn *insn, *next;
982 basic_block bb;
983
984 FOR_EACH_BB_FN (bb, cfun)
985 {
986 for (insn = BB_HEAD (bb); insn != NEXT_INSN (BB_END (bb)); insn = next)
987 {
988 next = NEXT_INSN (insn);
989 if (INSN_P (insn) && noop_move_p (insn))
990 {
991 if (dump_file)
992 fprintf (dump_file, "deleting noop move %d\n", INSN_UID (insn));
993
994 delete_insn_and_edges (insn);
995 }
996 }
997 }
998 }
999
1000 \f
1001 /* Return false if we do not want to (or cannot) combine DEF. */
1002 static bool
1003 can_combine_def_p (df_ref def)
1004 {
1005 /* Do not consider if it is pre/post modification in MEM. */
1006 if (DF_REF_FLAGS (def) & DF_REF_PRE_POST_MODIFY)
1007 return false;
1008
1009 unsigned int regno = DF_REF_REGNO (def);
1010
1011 /* Do not combine frame pointer adjustments. */
1012 if ((regno == FRAME_POINTER_REGNUM
1013 && (!reload_completed || frame_pointer_needed))
1014 #if !HARD_FRAME_POINTER_IS_FRAME_POINTER
1015 || (regno == HARD_FRAME_POINTER_REGNUM
1016 && (!reload_completed || frame_pointer_needed))
1017 #endif
1018 || (FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
1019 && regno == ARG_POINTER_REGNUM && fixed_regs[regno]))
1020 return false;
1021
1022 return true;
1023 }
1024
1025 /* Return false if we do not want to (or cannot) combine USE. */
1026 static bool
1027 can_combine_use_p (df_ref use)
1028 {
1029 /* Do not consider the usage of the stack pointer by function call. */
1030 if (DF_REF_FLAGS (use) & DF_REF_CALL_STACK_USAGE)
1031 return false;
1032
1033 return true;
1034 }
1035
1036 /* Fill in log links field for all insns. */
1037
1038 static void
1039 create_log_links (void)
1040 {
1041 basic_block bb;
1042 rtx_insn **next_use;
1043 rtx_insn *insn;
1044 df_ref def, use;
1045
1046 next_use = XCNEWVEC (rtx_insn *, max_reg_num ());
1047
1048 /* Pass through each block from the end, recording the uses of each
1049 register and establishing log links when def is encountered.
1050 Note that we do not clear next_use array in order to save time,
1051 so we have to test whether the use is in the same basic block as def.
1052
1053 There are a few cases below when we do not consider the definition or
1054 usage -- these are taken from original flow.c did. Don't ask me why it is
1055 done this way; I don't know and if it works, I don't want to know. */
1056
1057 FOR_EACH_BB_FN (bb, cfun)
1058 {
1059 FOR_BB_INSNS_REVERSE (bb, insn)
1060 {
1061 if (!NONDEBUG_INSN_P (insn))
1062 continue;
1063
1064 /* Log links are created only once. */
1065 gcc_assert (!LOG_LINKS (insn));
1066
1067 FOR_EACH_INSN_DEF (def, insn)
1068 {
1069 unsigned int regno = DF_REF_REGNO (def);
1070 rtx_insn *use_insn;
1071
1072 if (!next_use[regno])
1073 continue;
1074
1075 if (!can_combine_def_p (def))
1076 continue;
1077
1078 use_insn = next_use[regno];
1079 next_use[regno] = NULL;
1080
1081 if (BLOCK_FOR_INSN (use_insn) != bb)
1082 continue;
1083
1084 /* flow.c claimed:
1085
1086 We don't build a LOG_LINK for hard registers contained
1087 in ASM_OPERANDs. If these registers get replaced,
1088 we might wind up changing the semantics of the insn,
1089 even if reload can make what appear to be valid
1090 assignments later. */
1091 if (regno < FIRST_PSEUDO_REGISTER
1092 && asm_noperands (PATTERN (use_insn)) >= 0)
1093 continue;
1094
1095 /* Don't add duplicate links between instructions. */
1096 struct insn_link *links;
1097 FOR_EACH_LOG_LINK (links, use_insn)
1098 if (insn == links->insn && regno == links->regno)
1099 break;
1100
1101 if (!links)
1102 LOG_LINKS (use_insn)
1103 = alloc_insn_link (insn, regno, LOG_LINKS (use_insn));
1104 }
1105
1106 FOR_EACH_INSN_USE (use, insn)
1107 if (can_combine_use_p (use))
1108 next_use[DF_REF_REGNO (use)] = insn;
1109 }
1110 }
1111
1112 free (next_use);
1113 }
1114
1115 /* Walk the LOG_LINKS of insn B to see if we find a reference to A. Return
1116 true if we found a LOG_LINK that proves that A feeds B. This only works
1117 if there are no instructions between A and B which could have a link
1118 depending on A, since in that case we would not record a link for B.
1119 We also check the implicit dependency created by a cc0 setter/user
1120 pair. */
1121
1122 static bool
1123 insn_a_feeds_b (rtx_insn *a, rtx_insn *b)
1124 {
1125 struct insn_link *links;
1126 FOR_EACH_LOG_LINK (links, b)
1127 if (links->insn == a)
1128 return true;
1129 if (HAVE_cc0 && sets_cc0_p (a))
1130 return true;
1131 return false;
1132 }
1133 \f
1134 /* Main entry point for combiner. F is the first insn of the function.
1135 NREGS is the first unused pseudo-reg number.
1136
1137 Return nonzero if the combiner has turned an indirect jump
1138 instruction into a direct jump. */
1139 static int
1140 combine_instructions (rtx_insn *f, unsigned int nregs)
1141 {
1142 rtx_insn *insn, *next;
1143 #if HAVE_cc0
1144 rtx_insn *prev;
1145 #endif
1146 struct insn_link *links, *nextlinks;
1147 rtx_insn *first;
1148 basic_block last_bb;
1149
1150 int new_direct_jump_p = 0;
1151
1152 for (first = f; first && !INSN_P (first); )
1153 first = NEXT_INSN (first);
1154 if (!first)
1155 return 0;
1156
1157 combine_attempts = 0;
1158 combine_merges = 0;
1159 combine_extras = 0;
1160 combine_successes = 0;
1161
1162 rtl_hooks = combine_rtl_hooks;
1163
1164 reg_stat.safe_grow_cleared (nregs);
1165
1166 init_recog_no_volatile ();
1167
1168 /* Allocate array for insn info. */
1169 max_uid_known = get_max_uid ();
1170 uid_log_links = XCNEWVEC (struct insn_link *, max_uid_known + 1);
1171 uid_insn_cost = XCNEWVEC (int, max_uid_known + 1);
1172 gcc_obstack_init (&insn_link_obstack);
1173
1174 nonzero_bits_mode = mode_for_size (HOST_BITS_PER_WIDE_INT, MODE_INT, 0);
1175
1176 /* Don't use reg_stat[].nonzero_bits when computing it. This can cause
1177 problems when, for example, we have j <<= 1 in a loop. */
1178
1179 nonzero_sign_valid = 0;
1180 label_tick = label_tick_ebb_start = 1;
1181
1182 /* Scan all SETs and see if we can deduce anything about what
1183 bits are known to be zero for some registers and how many copies
1184 of the sign bit are known to exist for those registers.
1185
1186 Also set any known values so that we can use it while searching
1187 for what bits are known to be set. */
1188
1189 setup_incoming_promotions (first);
1190 /* Allow the entry block and the first block to fall into the same EBB.
1191 Conceptually the incoming promotions are assigned to the entry block. */
1192 last_bb = ENTRY_BLOCK_PTR_FOR_FN (cfun);
1193
1194 create_log_links ();
1195 FOR_EACH_BB_FN (this_basic_block, cfun)
1196 {
1197 optimize_this_for_speed_p = optimize_bb_for_speed_p (this_basic_block);
1198 last_call_luid = 0;
1199 mem_last_set = -1;
1200
1201 label_tick++;
1202 if (!single_pred_p (this_basic_block)
1203 || single_pred (this_basic_block) != last_bb)
1204 label_tick_ebb_start = label_tick;
1205 last_bb = this_basic_block;
1206
1207 FOR_BB_INSNS (this_basic_block, insn)
1208 if (INSN_P (insn) && BLOCK_FOR_INSN (insn))
1209 {
1210 #ifdef AUTO_INC_DEC
1211 rtx links;
1212 #endif
1213
1214 subst_low_luid = DF_INSN_LUID (insn);
1215 subst_insn = insn;
1216
1217 note_stores (PATTERN (insn), set_nonzero_bits_and_sign_copies,
1218 insn);
1219 record_dead_and_set_regs (insn);
1220
1221 #ifdef AUTO_INC_DEC
1222 for (links = REG_NOTES (insn); links; links = XEXP (links, 1))
1223 if (REG_NOTE_KIND (links) == REG_INC)
1224 set_nonzero_bits_and_sign_copies (XEXP (links, 0), NULL_RTX,
1225 insn);
1226 #endif
1227
1228 /* Record the current insn_rtx_cost of this instruction. */
1229 if (NONJUMP_INSN_P (insn))
1230 INSN_COST (insn) = insn_rtx_cost (PATTERN (insn),
1231 optimize_this_for_speed_p);
1232 if (dump_file)
1233 fprintf (dump_file, "insn_cost %d: %d\n",
1234 INSN_UID (insn), INSN_COST (insn));
1235 }
1236 }
1237
1238 nonzero_sign_valid = 1;
1239
1240 /* Now scan all the insns in forward order. */
1241 label_tick = label_tick_ebb_start = 1;
1242 init_reg_last ();
1243 setup_incoming_promotions (first);
1244 last_bb = ENTRY_BLOCK_PTR_FOR_FN (cfun);
1245 int max_combine = PARAM_VALUE (PARAM_MAX_COMBINE_INSNS);
1246
1247 FOR_EACH_BB_FN (this_basic_block, cfun)
1248 {
1249 rtx_insn *last_combined_insn = NULL;
1250 optimize_this_for_speed_p = optimize_bb_for_speed_p (this_basic_block);
1251 last_call_luid = 0;
1252 mem_last_set = -1;
1253
1254 label_tick++;
1255 if (!single_pred_p (this_basic_block)
1256 || single_pred (this_basic_block) != last_bb)
1257 label_tick_ebb_start = label_tick;
1258 last_bb = this_basic_block;
1259
1260 rtl_profile_for_bb (this_basic_block);
1261 for (insn = BB_HEAD (this_basic_block);
1262 insn != NEXT_INSN (BB_END (this_basic_block));
1263 insn = next ? next : NEXT_INSN (insn))
1264 {
1265 next = 0;
1266 if (!NONDEBUG_INSN_P (insn))
1267 continue;
1268
1269 while (last_combined_insn
1270 && last_combined_insn->deleted ())
1271 last_combined_insn = PREV_INSN (last_combined_insn);
1272 if (last_combined_insn == NULL_RTX
1273 || BARRIER_P (last_combined_insn)
1274 || BLOCK_FOR_INSN (last_combined_insn) != this_basic_block
1275 || DF_INSN_LUID (last_combined_insn) <= DF_INSN_LUID (insn))
1276 last_combined_insn = insn;
1277
1278 /* See if we know about function return values before this
1279 insn based upon SUBREG flags. */
1280 check_promoted_subreg (insn, PATTERN (insn));
1281
1282 /* See if we can find hardregs and subreg of pseudos in
1283 narrower modes. This could help turning TRUNCATEs
1284 into SUBREGs. */
1285 note_uses (&PATTERN (insn), record_truncated_values, NULL);
1286
1287 /* Try this insn with each insn it links back to. */
1288
1289 FOR_EACH_LOG_LINK (links, insn)
1290 if ((next = try_combine (insn, links->insn, NULL,
1291 NULL, &new_direct_jump_p,
1292 last_combined_insn)) != 0)
1293 {
1294 statistics_counter_event (cfun, "two-insn combine", 1);
1295 goto retry;
1296 }
1297
1298 /* Try each sequence of three linked insns ending with this one. */
1299
1300 if (max_combine >= 3)
1301 FOR_EACH_LOG_LINK (links, insn)
1302 {
1303 rtx_insn *link = links->insn;
1304
1305 /* If the linked insn has been replaced by a note, then there
1306 is no point in pursuing this chain any further. */
1307 if (NOTE_P (link))
1308 continue;
1309
1310 FOR_EACH_LOG_LINK (nextlinks, link)
1311 if ((next = try_combine (insn, link, nextlinks->insn,
1312 NULL, &new_direct_jump_p,
1313 last_combined_insn)) != 0)
1314 {
1315 statistics_counter_event (cfun, "three-insn combine", 1);
1316 goto retry;
1317 }
1318 }
1319
1320 #if HAVE_cc0
1321 /* Try to combine a jump insn that uses CC0
1322 with a preceding insn that sets CC0, and maybe with its
1323 logical predecessor as well.
1324 This is how we make decrement-and-branch insns.
1325 We need this special code because data flow connections
1326 via CC0 do not get entered in LOG_LINKS. */
1327
1328 if (JUMP_P (insn)
1329 && (prev = prev_nonnote_insn (insn)) != 0
1330 && NONJUMP_INSN_P (prev)
1331 && sets_cc0_p (PATTERN (prev)))
1332 {
1333 if ((next = try_combine (insn, prev, NULL, NULL,
1334 &new_direct_jump_p,
1335 last_combined_insn)) != 0)
1336 goto retry;
1337
1338 FOR_EACH_LOG_LINK (nextlinks, prev)
1339 if ((next = try_combine (insn, prev, nextlinks->insn,
1340 NULL, &new_direct_jump_p,
1341 last_combined_insn)) != 0)
1342 goto retry;
1343 }
1344
1345 /* Do the same for an insn that explicitly references CC0. */
1346 if (NONJUMP_INSN_P (insn)
1347 && (prev = prev_nonnote_insn (insn)) != 0
1348 && NONJUMP_INSN_P (prev)
1349 && sets_cc0_p (PATTERN (prev))
1350 && GET_CODE (PATTERN (insn)) == SET
1351 && reg_mentioned_p (cc0_rtx, SET_SRC (PATTERN (insn))))
1352 {
1353 if ((next = try_combine (insn, prev, NULL, NULL,
1354 &new_direct_jump_p,
1355 last_combined_insn)) != 0)
1356 goto retry;
1357
1358 FOR_EACH_LOG_LINK (nextlinks, prev)
1359 if ((next = try_combine (insn, prev, nextlinks->insn,
1360 NULL, &new_direct_jump_p,
1361 last_combined_insn)) != 0)
1362 goto retry;
1363 }
1364
1365 /* Finally, see if any of the insns that this insn links to
1366 explicitly references CC0. If so, try this insn, that insn,
1367 and its predecessor if it sets CC0. */
1368 FOR_EACH_LOG_LINK (links, insn)
1369 if (NONJUMP_INSN_P (links->insn)
1370 && GET_CODE (PATTERN (links->insn)) == SET
1371 && reg_mentioned_p (cc0_rtx, SET_SRC (PATTERN (links->insn)))
1372 && (prev = prev_nonnote_insn (links->insn)) != 0
1373 && NONJUMP_INSN_P (prev)
1374 && sets_cc0_p (PATTERN (prev))
1375 && (next = try_combine (insn, links->insn,
1376 prev, NULL, &new_direct_jump_p,
1377 last_combined_insn)) != 0)
1378 goto retry;
1379 #endif
1380
1381 /* Try combining an insn with two different insns whose results it
1382 uses. */
1383 if (max_combine >= 3)
1384 FOR_EACH_LOG_LINK (links, insn)
1385 for (nextlinks = links->next; nextlinks;
1386 nextlinks = nextlinks->next)
1387 if ((next = try_combine (insn, links->insn,
1388 nextlinks->insn, NULL,
1389 &new_direct_jump_p,
1390 last_combined_insn)) != 0)
1391
1392 {
1393 statistics_counter_event (cfun, "three-insn combine", 1);
1394 goto retry;
1395 }
1396
1397 /* Try four-instruction combinations. */
1398 if (max_combine >= 4)
1399 FOR_EACH_LOG_LINK (links, insn)
1400 {
1401 struct insn_link *next1;
1402 rtx_insn *link = links->insn;
1403
1404 /* If the linked insn has been replaced by a note, then there
1405 is no point in pursuing this chain any further. */
1406 if (NOTE_P (link))
1407 continue;
1408
1409 FOR_EACH_LOG_LINK (next1, link)
1410 {
1411 rtx_insn *link1 = next1->insn;
1412 if (NOTE_P (link1))
1413 continue;
1414 /* I0 -> I1 -> I2 -> I3. */
1415 FOR_EACH_LOG_LINK (nextlinks, link1)
1416 if ((next = try_combine (insn, link, link1,
1417 nextlinks->insn,
1418 &new_direct_jump_p,
1419 last_combined_insn)) != 0)
1420 {
1421 statistics_counter_event (cfun, "four-insn combine", 1);
1422 goto retry;
1423 }
1424 /* I0, I1 -> I2, I2 -> I3. */
1425 for (nextlinks = next1->next; nextlinks;
1426 nextlinks = nextlinks->next)
1427 if ((next = try_combine (insn, link, link1,
1428 nextlinks->insn,
1429 &new_direct_jump_p,
1430 last_combined_insn)) != 0)
1431 {
1432 statistics_counter_event (cfun, "four-insn combine", 1);
1433 goto retry;
1434 }
1435 }
1436
1437 for (next1 = links->next; next1; next1 = next1->next)
1438 {
1439 rtx_insn *link1 = next1->insn;
1440 if (NOTE_P (link1))
1441 continue;
1442 /* I0 -> I2; I1, I2 -> I3. */
1443 FOR_EACH_LOG_LINK (nextlinks, link)
1444 if ((next = try_combine (insn, link, link1,
1445 nextlinks->insn,
1446 &new_direct_jump_p,
1447 last_combined_insn)) != 0)
1448 {
1449 statistics_counter_event (cfun, "four-insn combine", 1);
1450 goto retry;
1451 }
1452 /* I0 -> I1; I1, I2 -> I3. */
1453 FOR_EACH_LOG_LINK (nextlinks, link1)
1454 if ((next = try_combine (insn, link, link1,
1455 nextlinks->insn,
1456 &new_direct_jump_p,
1457 last_combined_insn)) != 0)
1458 {
1459 statistics_counter_event (cfun, "four-insn combine", 1);
1460 goto retry;
1461 }
1462 }
1463 }
1464
1465 /* Try this insn with each REG_EQUAL note it links back to. */
1466 FOR_EACH_LOG_LINK (links, insn)
1467 {
1468 rtx set, note;
1469 rtx_insn *temp = links->insn;
1470 if ((set = single_set (temp)) != 0
1471 && (note = find_reg_equal_equiv_note (temp)) != 0
1472 && (note = XEXP (note, 0), GET_CODE (note)) != EXPR_LIST
1473 /* Avoid using a register that may already been marked
1474 dead by an earlier instruction. */
1475 && ! unmentioned_reg_p (note, SET_SRC (set))
1476 && (GET_MODE (note) == VOIDmode
1477 ? SCALAR_INT_MODE_P (GET_MODE (SET_DEST (set)))
1478 : GET_MODE (SET_DEST (set)) == GET_MODE (note)))
1479 {
1480 /* Temporarily replace the set's source with the
1481 contents of the REG_EQUAL note. The insn will
1482 be deleted or recognized by try_combine. */
1483 rtx orig = SET_SRC (set);
1484 SET_SRC (set) = note;
1485 i2mod = temp;
1486 i2mod_old_rhs = copy_rtx (orig);
1487 i2mod_new_rhs = copy_rtx (note);
1488 next = try_combine (insn, i2mod, NULL, NULL,
1489 &new_direct_jump_p,
1490 last_combined_insn);
1491 i2mod = NULL;
1492 if (next)
1493 {
1494 statistics_counter_event (cfun, "insn-with-note combine", 1);
1495 goto retry;
1496 }
1497 SET_SRC (set) = orig;
1498 }
1499 }
1500
1501 if (!NOTE_P (insn))
1502 record_dead_and_set_regs (insn);
1503
1504 retry:
1505 ;
1506 }
1507 }
1508
1509 default_rtl_profile ();
1510 clear_bb_flags ();
1511 new_direct_jump_p |= purge_all_dead_edges ();
1512 delete_noop_moves ();
1513
1514 /* Clean up. */
1515 obstack_free (&insn_link_obstack, NULL);
1516 free (uid_log_links);
1517 free (uid_insn_cost);
1518 reg_stat.release ();
1519
1520 {
1521 struct undo *undo, *next;
1522 for (undo = undobuf.frees; undo; undo = next)
1523 {
1524 next = undo->next;
1525 free (undo);
1526 }
1527 undobuf.frees = 0;
1528 }
1529
1530 total_attempts += combine_attempts;
1531 total_merges += combine_merges;
1532 total_extras += combine_extras;
1533 total_successes += combine_successes;
1534
1535 nonzero_sign_valid = 0;
1536 rtl_hooks = general_rtl_hooks;
1537
1538 /* Make recognizer allow volatile MEMs again. */
1539 init_recog ();
1540
1541 return new_direct_jump_p;
1542 }
1543
1544 /* Wipe the last_xxx fields of reg_stat in preparation for another pass. */
1545
1546 static void
1547 init_reg_last (void)
1548 {
1549 unsigned int i;
1550 reg_stat_type *p;
1551
1552 FOR_EACH_VEC_ELT (reg_stat, i, p)
1553 memset (p, 0, offsetof (reg_stat_type, sign_bit_copies));
1554 }
1555 \f
1556 /* Set up any promoted values for incoming argument registers. */
1557
1558 static void
1559 setup_incoming_promotions (rtx_insn *first)
1560 {
1561 tree arg;
1562 bool strictly_local = false;
1563
1564 for (arg = DECL_ARGUMENTS (current_function_decl); arg;
1565 arg = DECL_CHAIN (arg))
1566 {
1567 rtx x, reg = DECL_INCOMING_RTL (arg);
1568 int uns1, uns3;
1569 machine_mode mode1, mode2, mode3, mode4;
1570
1571 /* Only continue if the incoming argument is in a register. */
1572 if (!REG_P (reg))
1573 continue;
1574
1575 /* Determine, if possible, whether all call sites of the current
1576 function lie within the current compilation unit. (This does
1577 take into account the exporting of a function via taking its
1578 address, and so forth.) */
1579 strictly_local = cgraph_node::local_info (current_function_decl)->local;
1580
1581 /* The mode and signedness of the argument before any promotions happen
1582 (equal to the mode of the pseudo holding it at that stage). */
1583 mode1 = TYPE_MODE (TREE_TYPE (arg));
1584 uns1 = TYPE_UNSIGNED (TREE_TYPE (arg));
1585
1586 /* The mode and signedness of the argument after any source language and
1587 TARGET_PROMOTE_PROTOTYPES-driven promotions. */
1588 mode2 = TYPE_MODE (DECL_ARG_TYPE (arg));
1589 uns3 = TYPE_UNSIGNED (DECL_ARG_TYPE (arg));
1590
1591 /* The mode and signedness of the argument as it is actually passed,
1592 see assign_parm_setup_reg in function.c. */
1593 mode3 = promote_function_mode (TREE_TYPE (arg), mode1, &uns3,
1594 TREE_TYPE (cfun->decl), 0);
1595
1596 /* The mode of the register in which the argument is being passed. */
1597 mode4 = GET_MODE (reg);
1598
1599 /* Eliminate sign extensions in the callee when:
1600 (a) A mode promotion has occurred; */
1601 if (mode1 == mode3)
1602 continue;
1603 /* (b) The mode of the register is the same as the mode of
1604 the argument as it is passed; */
1605 if (mode3 != mode4)
1606 continue;
1607 /* (c) There's no language level extension; */
1608 if (mode1 == mode2)
1609 ;
1610 /* (c.1) All callers are from the current compilation unit. If that's
1611 the case we don't have to rely on an ABI, we only have to know
1612 what we're generating right now, and we know that we will do the
1613 mode1 to mode2 promotion with the given sign. */
1614 else if (!strictly_local)
1615 continue;
1616 /* (c.2) The combination of the two promotions is useful. This is
1617 true when the signs match, or if the first promotion is unsigned.
1618 In the later case, (sign_extend (zero_extend x)) is the same as
1619 (zero_extend (zero_extend x)), so make sure to force UNS3 true. */
1620 else if (uns1)
1621 uns3 = true;
1622 else if (uns3)
1623 continue;
1624
1625 /* Record that the value was promoted from mode1 to mode3,
1626 so that any sign extension at the head of the current
1627 function may be eliminated. */
1628 x = gen_rtx_CLOBBER (mode1, const0_rtx);
1629 x = gen_rtx_fmt_e ((uns3 ? ZERO_EXTEND : SIGN_EXTEND), mode3, x);
1630 record_value_for_reg (reg, first, x);
1631 }
1632 }
1633
1634 #ifdef SHORT_IMMEDIATES_SIGN_EXTEND
1635 /* If MODE has a precision lower than PREC and SRC is a non-negative constant
1636 that would appear negative in MODE, sign-extend SRC for use in nonzero_bits
1637 because some machines (maybe most) will actually do the sign-extension and
1638 this is the conservative approach.
1639
1640 ??? For 2.5, try to tighten up the MD files in this regard instead of this
1641 kludge. */
1642
1643 static rtx
1644 sign_extend_short_imm (rtx src, machine_mode mode, unsigned int prec)
1645 {
1646 if (GET_MODE_PRECISION (mode) < prec
1647 && CONST_INT_P (src)
1648 && INTVAL (src) > 0
1649 && val_signbit_known_set_p (mode, INTVAL (src)))
1650 src = GEN_INT (INTVAL (src) | ~GET_MODE_MASK (mode));
1651
1652 return src;
1653 }
1654 #endif
1655
1656 /* Update RSP for pseudo-register X from INSN's REG_EQUAL note (if one exists)
1657 and SET. */
1658
1659 static void
1660 update_rsp_from_reg_equal (reg_stat_type *rsp, rtx_insn *insn, const_rtx set,
1661 rtx x)
1662 {
1663 rtx reg_equal_note = insn ? find_reg_equal_equiv_note (insn) : NULL_RTX;
1664 unsigned HOST_WIDE_INT bits = 0;
1665 rtx reg_equal = NULL, src = SET_SRC (set);
1666 unsigned int num = 0;
1667
1668 if (reg_equal_note)
1669 reg_equal = XEXP (reg_equal_note, 0);
1670
1671 #ifdef SHORT_IMMEDIATES_SIGN_EXTEND
1672 src = sign_extend_short_imm (src, GET_MODE (x), BITS_PER_WORD);
1673 if (reg_equal)
1674 reg_equal = sign_extend_short_imm (reg_equal, GET_MODE (x), BITS_PER_WORD);
1675 #endif
1676
1677 /* Don't call nonzero_bits if it cannot change anything. */
1678 if (rsp->nonzero_bits != ~(unsigned HOST_WIDE_INT) 0)
1679 {
1680 bits = nonzero_bits (src, nonzero_bits_mode);
1681 if (reg_equal && bits)
1682 bits &= nonzero_bits (reg_equal, nonzero_bits_mode);
1683 rsp->nonzero_bits |= bits;
1684 }
1685
1686 /* Don't call num_sign_bit_copies if it cannot change anything. */
1687 if (rsp->sign_bit_copies != 1)
1688 {
1689 num = num_sign_bit_copies (SET_SRC (set), GET_MODE (x));
1690 if (reg_equal && num != GET_MODE_PRECISION (GET_MODE (x)))
1691 {
1692 unsigned int numeq = num_sign_bit_copies (reg_equal, GET_MODE (x));
1693 if (num == 0 || numeq > num)
1694 num = numeq;
1695 }
1696 if (rsp->sign_bit_copies == 0 || num < rsp->sign_bit_copies)
1697 rsp->sign_bit_copies = num;
1698 }
1699 }
1700
1701 /* Called via note_stores. If X is a pseudo that is narrower than
1702 HOST_BITS_PER_WIDE_INT and is being set, record what bits are known zero.
1703
1704 If we are setting only a portion of X and we can't figure out what
1705 portion, assume all bits will be used since we don't know what will
1706 be happening.
1707
1708 Similarly, set how many bits of X are known to be copies of the sign bit
1709 at all locations in the function. This is the smallest number implied
1710 by any set of X. */
1711
1712 static void
1713 set_nonzero_bits_and_sign_copies (rtx x, const_rtx set, void *data)
1714 {
1715 rtx_insn *insn = (rtx_insn *) data;
1716
1717 if (REG_P (x)
1718 && REGNO (x) >= FIRST_PSEUDO_REGISTER
1719 /* If this register is undefined at the start of the file, we can't
1720 say what its contents were. */
1721 && ! REGNO_REG_SET_P
1722 (DF_LR_IN (ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb), REGNO (x))
1723 && HWI_COMPUTABLE_MODE_P (GET_MODE (x)))
1724 {
1725 reg_stat_type *rsp = &reg_stat[REGNO (x)];
1726
1727 if (set == 0 || GET_CODE (set) == CLOBBER)
1728 {
1729 rsp->nonzero_bits = GET_MODE_MASK (GET_MODE (x));
1730 rsp->sign_bit_copies = 1;
1731 return;
1732 }
1733
1734 /* If this register is being initialized using itself, and the
1735 register is uninitialized in this basic block, and there are
1736 no LOG_LINKS which set the register, then part of the
1737 register is uninitialized. In that case we can't assume
1738 anything about the number of nonzero bits.
1739
1740 ??? We could do better if we checked this in
1741 reg_{nonzero_bits,num_sign_bit_copies}_for_combine. Then we
1742 could avoid making assumptions about the insn which initially
1743 sets the register, while still using the information in other
1744 insns. We would have to be careful to check every insn
1745 involved in the combination. */
1746
1747 if (insn
1748 && reg_referenced_p (x, PATTERN (insn))
1749 && !REGNO_REG_SET_P (DF_LR_IN (BLOCK_FOR_INSN (insn)),
1750 REGNO (x)))
1751 {
1752 struct insn_link *link;
1753
1754 FOR_EACH_LOG_LINK (link, insn)
1755 if (dead_or_set_p (link->insn, x))
1756 break;
1757 if (!link)
1758 {
1759 rsp->nonzero_bits = GET_MODE_MASK (GET_MODE (x));
1760 rsp->sign_bit_copies = 1;
1761 return;
1762 }
1763 }
1764
1765 /* If this is a complex assignment, see if we can convert it into a
1766 simple assignment. */
1767 set = expand_field_assignment (set);
1768
1769 /* If this is a simple assignment, or we have a paradoxical SUBREG,
1770 set what we know about X. */
1771
1772 if (SET_DEST (set) == x
1773 || (paradoxical_subreg_p (SET_DEST (set))
1774 && SUBREG_REG (SET_DEST (set)) == x))
1775 update_rsp_from_reg_equal (rsp, insn, set, x);
1776 else
1777 {
1778 rsp->nonzero_bits = GET_MODE_MASK (GET_MODE (x));
1779 rsp->sign_bit_copies = 1;
1780 }
1781 }
1782 }
1783 \f
1784 /* See if INSN can be combined into I3. PRED, PRED2, SUCC and SUCC2 are
1785 optionally insns that were previously combined into I3 or that will be
1786 combined into the merger of INSN and I3. The order is PRED, PRED2,
1787 INSN, SUCC, SUCC2, I3.
1788
1789 Return 0 if the combination is not allowed for any reason.
1790
1791 If the combination is allowed, *PDEST will be set to the single
1792 destination of INSN and *PSRC to the single source, and this function
1793 will return 1. */
1794
1795 static int
1796 can_combine_p (rtx_insn *insn, rtx_insn *i3, rtx_insn *pred ATTRIBUTE_UNUSED,
1797 rtx_insn *pred2 ATTRIBUTE_UNUSED, rtx_insn *succ, rtx_insn *succ2,
1798 rtx *pdest, rtx *psrc)
1799 {
1800 int i;
1801 const_rtx set = 0;
1802 rtx src, dest;
1803 rtx_insn *p;
1804 #ifdef AUTO_INC_DEC
1805 rtx link;
1806 #endif
1807 bool all_adjacent = true;
1808 int (*is_volatile_p) (const_rtx);
1809
1810 if (succ)
1811 {
1812 if (succ2)
1813 {
1814 if (next_active_insn (succ2) != i3)
1815 all_adjacent = false;
1816 if (next_active_insn (succ) != succ2)
1817 all_adjacent = false;
1818 }
1819 else if (next_active_insn (succ) != i3)
1820 all_adjacent = false;
1821 if (next_active_insn (insn) != succ)
1822 all_adjacent = false;
1823 }
1824 else if (next_active_insn (insn) != i3)
1825 all_adjacent = false;
1826
1827 /* Can combine only if previous insn is a SET of a REG, a SUBREG or CC0.
1828 or a PARALLEL consisting of such a SET and CLOBBERs.
1829
1830 If INSN has CLOBBER parallel parts, ignore them for our processing.
1831 By definition, these happen during the execution of the insn. When it
1832 is merged with another insn, all bets are off. If they are, in fact,
1833 needed and aren't also supplied in I3, they may be added by
1834 recog_for_combine. Otherwise, it won't match.
1835
1836 We can also ignore a SET whose SET_DEST is mentioned in a REG_UNUSED
1837 note.
1838
1839 Get the source and destination of INSN. If more than one, can't
1840 combine. */
1841
1842 if (GET_CODE (PATTERN (insn)) == SET)
1843 set = PATTERN (insn);
1844 else if (GET_CODE (PATTERN (insn)) == PARALLEL
1845 && GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == SET)
1846 {
1847 for (i = 0; i < XVECLEN (PATTERN (insn), 0); i++)
1848 {
1849 rtx elt = XVECEXP (PATTERN (insn), 0, i);
1850
1851 switch (GET_CODE (elt))
1852 {
1853 /* This is important to combine floating point insns
1854 for the SH4 port. */
1855 case USE:
1856 /* Combining an isolated USE doesn't make sense.
1857 We depend here on combinable_i3pat to reject them. */
1858 /* The code below this loop only verifies that the inputs of
1859 the SET in INSN do not change. We call reg_set_between_p
1860 to verify that the REG in the USE does not change between
1861 I3 and INSN.
1862 If the USE in INSN was for a pseudo register, the matching
1863 insn pattern will likely match any register; combining this
1864 with any other USE would only be safe if we knew that the
1865 used registers have identical values, or if there was
1866 something to tell them apart, e.g. different modes. For
1867 now, we forgo such complicated tests and simply disallow
1868 combining of USES of pseudo registers with any other USE. */
1869 if (REG_P (XEXP (elt, 0))
1870 && GET_CODE (PATTERN (i3)) == PARALLEL)
1871 {
1872 rtx i3pat = PATTERN (i3);
1873 int i = XVECLEN (i3pat, 0) - 1;
1874 unsigned int regno = REGNO (XEXP (elt, 0));
1875
1876 do
1877 {
1878 rtx i3elt = XVECEXP (i3pat, 0, i);
1879
1880 if (GET_CODE (i3elt) == USE
1881 && REG_P (XEXP (i3elt, 0))
1882 && (REGNO (XEXP (i3elt, 0)) == regno
1883 ? reg_set_between_p (XEXP (elt, 0),
1884 PREV_INSN (insn), i3)
1885 : regno >= FIRST_PSEUDO_REGISTER))
1886 return 0;
1887 }
1888 while (--i >= 0);
1889 }
1890 break;
1891
1892 /* We can ignore CLOBBERs. */
1893 case CLOBBER:
1894 break;
1895
1896 case SET:
1897 /* Ignore SETs whose result isn't used but not those that
1898 have side-effects. */
1899 if (find_reg_note (insn, REG_UNUSED, SET_DEST (elt))
1900 && insn_nothrow_p (insn)
1901 && !side_effects_p (elt))
1902 break;
1903
1904 /* If we have already found a SET, this is a second one and
1905 so we cannot combine with this insn. */
1906 if (set)
1907 return 0;
1908
1909 set = elt;
1910 break;
1911
1912 default:
1913 /* Anything else means we can't combine. */
1914 return 0;
1915 }
1916 }
1917
1918 if (set == 0
1919 /* If SET_SRC is an ASM_OPERANDS we can't throw away these CLOBBERs,
1920 so don't do anything with it. */
1921 || GET_CODE (SET_SRC (set)) == ASM_OPERANDS)
1922 return 0;
1923 }
1924 else
1925 return 0;
1926
1927 if (set == 0)
1928 return 0;
1929
1930 /* The simplification in expand_field_assignment may call back to
1931 get_last_value, so set safe guard here. */
1932 subst_low_luid = DF_INSN_LUID (insn);
1933
1934 set = expand_field_assignment (set);
1935 src = SET_SRC (set), dest = SET_DEST (set);
1936
1937 /* Do not eliminate user-specified register if it is in an
1938 asm input because we may break the register asm usage defined
1939 in GCC manual if allow to do so.
1940 Be aware that this may cover more cases than we expect but this
1941 should be harmless. */
1942 if (REG_P (dest) && REG_USERVAR_P (dest) && HARD_REGISTER_P (dest)
1943 && extract_asm_operands (PATTERN (i3)))
1944 return 0;
1945
1946 /* Don't eliminate a store in the stack pointer. */
1947 if (dest == stack_pointer_rtx
1948 /* Don't combine with an insn that sets a register to itself if it has
1949 a REG_EQUAL note. This may be part of a LIBCALL sequence. */
1950 || (rtx_equal_p (src, dest) && find_reg_note (insn, REG_EQUAL, NULL_RTX))
1951 /* Can't merge an ASM_OPERANDS. */
1952 || GET_CODE (src) == ASM_OPERANDS
1953 /* Can't merge a function call. */
1954 || GET_CODE (src) == CALL
1955 /* Don't eliminate a function call argument. */
1956 || (CALL_P (i3)
1957 && (find_reg_fusage (i3, USE, dest)
1958 || (REG_P (dest)
1959 && REGNO (dest) < FIRST_PSEUDO_REGISTER
1960 && global_regs[REGNO (dest)])))
1961 /* Don't substitute into an incremented register. */
1962 || FIND_REG_INC_NOTE (i3, dest)
1963 || (succ && FIND_REG_INC_NOTE (succ, dest))
1964 || (succ2 && FIND_REG_INC_NOTE (succ2, dest))
1965 /* Don't substitute into a non-local goto, this confuses CFG. */
1966 || (JUMP_P (i3) && find_reg_note (i3, REG_NON_LOCAL_GOTO, NULL_RTX))
1967 /* Make sure that DEST is not used after SUCC but before I3. */
1968 || (!all_adjacent
1969 && ((succ2
1970 && (reg_used_between_p (dest, succ2, i3)
1971 || reg_used_between_p (dest, succ, succ2)))
1972 || (!succ2 && succ && reg_used_between_p (dest, succ, i3))))
1973 /* Make sure that the value that is to be substituted for the register
1974 does not use any registers whose values alter in between. However,
1975 If the insns are adjacent, a use can't cross a set even though we
1976 think it might (this can happen for a sequence of insns each setting
1977 the same destination; last_set of that register might point to
1978 a NOTE). If INSN has a REG_EQUIV note, the register is always
1979 equivalent to the memory so the substitution is valid even if there
1980 are intervening stores. Also, don't move a volatile asm or
1981 UNSPEC_VOLATILE across any other insns. */
1982 || (! all_adjacent
1983 && (((!MEM_P (src)
1984 || ! find_reg_note (insn, REG_EQUIV, src))
1985 && use_crosses_set_p (src, DF_INSN_LUID (insn)))
1986 || (GET_CODE (src) == ASM_OPERANDS && MEM_VOLATILE_P (src))
1987 || GET_CODE (src) == UNSPEC_VOLATILE))
1988 /* Don't combine across a CALL_INSN, because that would possibly
1989 change whether the life span of some REGs crosses calls or not,
1990 and it is a pain to update that information.
1991 Exception: if source is a constant, moving it later can't hurt.
1992 Accept that as a special case. */
1993 || (DF_INSN_LUID (insn) < last_call_luid && ! CONSTANT_P (src)))
1994 return 0;
1995
1996 /* DEST must either be a REG or CC0. */
1997 if (REG_P (dest))
1998 {
1999 /* If register alignment is being enforced for multi-word items in all
2000 cases except for parameters, it is possible to have a register copy
2001 insn referencing a hard register that is not allowed to contain the
2002 mode being copied and which would not be valid as an operand of most
2003 insns. Eliminate this problem by not combining with such an insn.
2004
2005 Also, on some machines we don't want to extend the life of a hard
2006 register. */
2007
2008 if (REG_P (src)
2009 && ((REGNO (dest) < FIRST_PSEUDO_REGISTER
2010 && ! HARD_REGNO_MODE_OK (REGNO (dest), GET_MODE (dest)))
2011 /* Don't extend the life of a hard register unless it is
2012 user variable (if we have few registers) or it can't
2013 fit into the desired register (meaning something special
2014 is going on).
2015 Also avoid substituting a return register into I3, because
2016 reload can't handle a conflict with constraints of other
2017 inputs. */
2018 || (REGNO (src) < FIRST_PSEUDO_REGISTER
2019 && ! HARD_REGNO_MODE_OK (REGNO (src), GET_MODE (src)))))
2020 return 0;
2021 }
2022 else if (GET_CODE (dest) != CC0)
2023 return 0;
2024
2025
2026 if (GET_CODE (PATTERN (i3)) == PARALLEL)
2027 for (i = XVECLEN (PATTERN (i3), 0) - 1; i >= 0; i--)
2028 if (GET_CODE (XVECEXP (PATTERN (i3), 0, i)) == CLOBBER)
2029 {
2030 rtx reg = XEXP (XVECEXP (PATTERN (i3), 0, i), 0);
2031
2032 /* If the clobber represents an earlyclobber operand, we must not
2033 substitute an expression containing the clobbered register.
2034 As we do not analyze the constraint strings here, we have to
2035 make the conservative assumption. However, if the register is
2036 a fixed hard reg, the clobber cannot represent any operand;
2037 we leave it up to the machine description to either accept or
2038 reject use-and-clobber patterns. */
2039 if (!REG_P (reg)
2040 || REGNO (reg) >= FIRST_PSEUDO_REGISTER
2041 || !fixed_regs[REGNO (reg)])
2042 if (reg_overlap_mentioned_p (reg, src))
2043 return 0;
2044 }
2045
2046 /* If INSN contains anything volatile, or is an `asm' (whether volatile
2047 or not), reject, unless nothing volatile comes between it and I3 */
2048
2049 if (GET_CODE (src) == ASM_OPERANDS || volatile_refs_p (src))
2050 {
2051 /* Make sure neither succ nor succ2 contains a volatile reference. */
2052 if (succ2 != 0 && volatile_refs_p (PATTERN (succ2)))
2053 return 0;
2054 if (succ != 0 && volatile_refs_p (PATTERN (succ)))
2055 return 0;
2056 /* We'll check insns between INSN and I3 below. */
2057 }
2058
2059 /* If INSN is an asm, and DEST is a hard register, reject, since it has
2060 to be an explicit register variable, and was chosen for a reason. */
2061
2062 if (GET_CODE (src) == ASM_OPERANDS
2063 && REG_P (dest) && REGNO (dest) < FIRST_PSEUDO_REGISTER)
2064 return 0;
2065
2066 /* If INSN contains volatile references (specifically volatile MEMs),
2067 we cannot combine across any other volatile references.
2068 Even if INSN doesn't contain volatile references, any intervening
2069 volatile insn might affect machine state. */
2070
2071 is_volatile_p = volatile_refs_p (PATTERN (insn))
2072 ? volatile_refs_p
2073 : volatile_insn_p;
2074
2075 for (p = NEXT_INSN (insn); p != i3; p = NEXT_INSN (p))
2076 if (INSN_P (p) && p != succ && p != succ2 && is_volatile_p (PATTERN (p)))
2077 return 0;
2078
2079 /* If INSN contains an autoincrement or autodecrement, make sure that
2080 register is not used between there and I3, and not already used in
2081 I3 either. Neither must it be used in PRED or SUCC, if they exist.
2082 Also insist that I3 not be a jump; if it were one
2083 and the incremented register were spilled, we would lose. */
2084
2085 #ifdef AUTO_INC_DEC
2086 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
2087 if (REG_NOTE_KIND (link) == REG_INC
2088 && (JUMP_P (i3)
2089 || reg_used_between_p (XEXP (link, 0), insn, i3)
2090 || (pred != NULL_RTX
2091 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (pred)))
2092 || (pred2 != NULL_RTX
2093 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (pred2)))
2094 || (succ != NULL_RTX
2095 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (succ)))
2096 || (succ2 != NULL_RTX
2097 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (succ2)))
2098 || reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i3))))
2099 return 0;
2100 #endif
2101
2102 /* Don't combine an insn that follows a CC0-setting insn.
2103 An insn that uses CC0 must not be separated from the one that sets it.
2104 We do, however, allow I2 to follow a CC0-setting insn if that insn
2105 is passed as I1; in that case it will be deleted also.
2106 We also allow combining in this case if all the insns are adjacent
2107 because that would leave the two CC0 insns adjacent as well.
2108 It would be more logical to test whether CC0 occurs inside I1 or I2,
2109 but that would be much slower, and this ought to be equivalent. */
2110
2111 if (HAVE_cc0)
2112 {
2113 p = prev_nonnote_insn (insn);
2114 if (p && p != pred && NONJUMP_INSN_P (p) && sets_cc0_p (PATTERN (p))
2115 && ! all_adjacent)
2116 return 0;
2117 }
2118
2119 /* If we get here, we have passed all the tests and the combination is
2120 to be allowed. */
2121
2122 *pdest = dest;
2123 *psrc = src;
2124
2125 return 1;
2126 }
2127 \f
2128 /* LOC is the location within I3 that contains its pattern or the component
2129 of a PARALLEL of the pattern. We validate that it is valid for combining.
2130
2131 One problem is if I3 modifies its output, as opposed to replacing it
2132 entirely, we can't allow the output to contain I2DEST, I1DEST or I0DEST as
2133 doing so would produce an insn that is not equivalent to the original insns.
2134
2135 Consider:
2136
2137 (set (reg:DI 101) (reg:DI 100))
2138 (set (subreg:SI (reg:DI 101) 0) <foo>)
2139
2140 This is NOT equivalent to:
2141
2142 (parallel [(set (subreg:SI (reg:DI 100) 0) <foo>)
2143 (set (reg:DI 101) (reg:DI 100))])
2144
2145 Not only does this modify 100 (in which case it might still be valid
2146 if 100 were dead in I2), it sets 101 to the ORIGINAL value of 100.
2147
2148 We can also run into a problem if I2 sets a register that I1
2149 uses and I1 gets directly substituted into I3 (not via I2). In that
2150 case, we would be getting the wrong value of I2DEST into I3, so we
2151 must reject the combination. This case occurs when I2 and I1 both
2152 feed into I3, rather than when I1 feeds into I2, which feeds into I3.
2153 If I1_NOT_IN_SRC is nonzero, it means that finding I1 in the source
2154 of a SET must prevent combination from occurring. The same situation
2155 can occur for I0, in which case I0_NOT_IN_SRC is set.
2156
2157 Before doing the above check, we first try to expand a field assignment
2158 into a set of logical operations.
2159
2160 If PI3_DEST_KILLED is nonzero, it is a pointer to a location in which
2161 we place a register that is both set and used within I3. If more than one
2162 such register is detected, we fail.
2163
2164 Return 1 if the combination is valid, zero otherwise. */
2165
2166 static int
2167 combinable_i3pat (rtx_insn *i3, rtx *loc, rtx i2dest, rtx i1dest, rtx i0dest,
2168 int i1_not_in_src, int i0_not_in_src, rtx *pi3dest_killed)
2169 {
2170 rtx x = *loc;
2171
2172 if (GET_CODE (x) == SET)
2173 {
2174 rtx set = x ;
2175 rtx dest = SET_DEST (set);
2176 rtx src = SET_SRC (set);
2177 rtx inner_dest = dest;
2178 rtx subdest;
2179
2180 while (GET_CODE (inner_dest) == STRICT_LOW_PART
2181 || GET_CODE (inner_dest) == SUBREG
2182 || GET_CODE (inner_dest) == ZERO_EXTRACT)
2183 inner_dest = XEXP (inner_dest, 0);
2184
2185 /* Check for the case where I3 modifies its output, as discussed
2186 above. We don't want to prevent pseudos from being combined
2187 into the address of a MEM, so only prevent the combination if
2188 i1 or i2 set the same MEM. */
2189 if ((inner_dest != dest &&
2190 (!MEM_P (inner_dest)
2191 || rtx_equal_p (i2dest, inner_dest)
2192 || (i1dest && rtx_equal_p (i1dest, inner_dest))
2193 || (i0dest && rtx_equal_p (i0dest, inner_dest)))
2194 && (reg_overlap_mentioned_p (i2dest, inner_dest)
2195 || (i1dest && reg_overlap_mentioned_p (i1dest, inner_dest))
2196 || (i0dest && reg_overlap_mentioned_p (i0dest, inner_dest))))
2197
2198 /* This is the same test done in can_combine_p except we can't test
2199 all_adjacent; we don't have to, since this instruction will stay
2200 in place, thus we are not considering increasing the lifetime of
2201 INNER_DEST.
2202
2203 Also, if this insn sets a function argument, combining it with
2204 something that might need a spill could clobber a previous
2205 function argument; the all_adjacent test in can_combine_p also
2206 checks this; here, we do a more specific test for this case. */
2207
2208 || (REG_P (inner_dest)
2209 && REGNO (inner_dest) < FIRST_PSEUDO_REGISTER
2210 && (! HARD_REGNO_MODE_OK (REGNO (inner_dest),
2211 GET_MODE (inner_dest))))
2212 || (i1_not_in_src && reg_overlap_mentioned_p (i1dest, src))
2213 || (i0_not_in_src && reg_overlap_mentioned_p (i0dest, src)))
2214 return 0;
2215
2216 /* If DEST is used in I3, it is being killed in this insn, so
2217 record that for later. We have to consider paradoxical
2218 subregs here, since they kill the whole register, but we
2219 ignore partial subregs, STRICT_LOW_PART, etc.
2220 Never add REG_DEAD notes for the FRAME_POINTER_REGNUM or the
2221 STACK_POINTER_REGNUM, since these are always considered to be
2222 live. Similarly for ARG_POINTER_REGNUM if it is fixed. */
2223 subdest = dest;
2224 if (GET_CODE (subdest) == SUBREG
2225 && (GET_MODE_SIZE (GET_MODE (subdest))
2226 >= GET_MODE_SIZE (GET_MODE (SUBREG_REG (subdest)))))
2227 subdest = SUBREG_REG (subdest);
2228 if (pi3dest_killed
2229 && REG_P (subdest)
2230 && reg_referenced_p (subdest, PATTERN (i3))
2231 && REGNO (subdest) != FRAME_POINTER_REGNUM
2232 #if !HARD_FRAME_POINTER_IS_FRAME_POINTER
2233 && REGNO (subdest) != HARD_FRAME_POINTER_REGNUM
2234 #endif
2235 && (FRAME_POINTER_REGNUM == ARG_POINTER_REGNUM
2236 || (REGNO (subdest) != ARG_POINTER_REGNUM
2237 || ! fixed_regs [REGNO (subdest)]))
2238 && REGNO (subdest) != STACK_POINTER_REGNUM)
2239 {
2240 if (*pi3dest_killed)
2241 return 0;
2242
2243 *pi3dest_killed = subdest;
2244 }
2245 }
2246
2247 else if (GET_CODE (x) == PARALLEL)
2248 {
2249 int i;
2250
2251 for (i = 0; i < XVECLEN (x, 0); i++)
2252 if (! combinable_i3pat (i3, &XVECEXP (x, 0, i), i2dest, i1dest, i0dest,
2253 i1_not_in_src, i0_not_in_src, pi3dest_killed))
2254 return 0;
2255 }
2256
2257 return 1;
2258 }
2259 \f
2260 /* Return 1 if X is an arithmetic expression that contains a multiplication
2261 and division. We don't count multiplications by powers of two here. */
2262
2263 static int
2264 contains_muldiv (rtx x)
2265 {
2266 switch (GET_CODE (x))
2267 {
2268 case MOD: case DIV: case UMOD: case UDIV:
2269 return 1;
2270
2271 case MULT:
2272 return ! (CONST_INT_P (XEXP (x, 1))
2273 && exact_log2 (UINTVAL (XEXP (x, 1))) >= 0);
2274 default:
2275 if (BINARY_P (x))
2276 return contains_muldiv (XEXP (x, 0))
2277 || contains_muldiv (XEXP (x, 1));
2278
2279 if (UNARY_P (x))
2280 return contains_muldiv (XEXP (x, 0));
2281
2282 return 0;
2283 }
2284 }
2285 \f
2286 /* Determine whether INSN can be used in a combination. Return nonzero if
2287 not. This is used in try_combine to detect early some cases where we
2288 can't perform combinations. */
2289
2290 static int
2291 cant_combine_insn_p (rtx_insn *insn)
2292 {
2293 rtx set;
2294 rtx src, dest;
2295
2296 /* If this isn't really an insn, we can't do anything.
2297 This can occur when flow deletes an insn that it has merged into an
2298 auto-increment address. */
2299 if (! INSN_P (insn))
2300 return 1;
2301
2302 /* Never combine loads and stores involving hard regs that are likely
2303 to be spilled. The register allocator can usually handle such
2304 reg-reg moves by tying. If we allow the combiner to make
2305 substitutions of likely-spilled regs, reload might die.
2306 As an exception, we allow combinations involving fixed regs; these are
2307 not available to the register allocator so there's no risk involved. */
2308
2309 set = single_set (insn);
2310 if (! set)
2311 return 0;
2312 src = SET_SRC (set);
2313 dest = SET_DEST (set);
2314 if (GET_CODE (src) == SUBREG)
2315 src = SUBREG_REG (src);
2316 if (GET_CODE (dest) == SUBREG)
2317 dest = SUBREG_REG (dest);
2318 if (REG_P (src) && REG_P (dest)
2319 && ((HARD_REGISTER_P (src)
2320 && ! TEST_HARD_REG_BIT (fixed_reg_set, REGNO (src))
2321 && targetm.class_likely_spilled_p (REGNO_REG_CLASS (REGNO (src))))
2322 || (HARD_REGISTER_P (dest)
2323 && ! TEST_HARD_REG_BIT (fixed_reg_set, REGNO (dest))
2324 && targetm.class_likely_spilled_p (REGNO_REG_CLASS (REGNO (dest))))))
2325 return 1;
2326
2327 return 0;
2328 }
2329
2330 struct likely_spilled_retval_info
2331 {
2332 unsigned regno, nregs;
2333 unsigned mask;
2334 };
2335
2336 /* Called via note_stores by likely_spilled_retval_p. Remove from info->mask
2337 hard registers that are known to be written to / clobbered in full. */
2338 static void
2339 likely_spilled_retval_1 (rtx x, const_rtx set, void *data)
2340 {
2341 struct likely_spilled_retval_info *const info =
2342 (struct likely_spilled_retval_info *) data;
2343 unsigned regno, nregs;
2344 unsigned new_mask;
2345
2346 if (!REG_P (XEXP (set, 0)))
2347 return;
2348 regno = REGNO (x);
2349 if (regno >= info->regno + info->nregs)
2350 return;
2351 nregs = REG_NREGS (x);
2352 if (regno + nregs <= info->regno)
2353 return;
2354 new_mask = (2U << (nregs - 1)) - 1;
2355 if (regno < info->regno)
2356 new_mask >>= info->regno - regno;
2357 else
2358 new_mask <<= regno - info->regno;
2359 info->mask &= ~new_mask;
2360 }
2361
2362 /* Return nonzero iff part of the return value is live during INSN, and
2363 it is likely spilled. This can happen when more than one insn is needed
2364 to copy the return value, e.g. when we consider to combine into the
2365 second copy insn for a complex value. */
2366
2367 static int
2368 likely_spilled_retval_p (rtx_insn *insn)
2369 {
2370 rtx_insn *use = BB_END (this_basic_block);
2371 rtx reg;
2372 rtx_insn *p;
2373 unsigned regno, nregs;
2374 /* We assume here that no machine mode needs more than
2375 32 hard registers when the value overlaps with a register
2376 for which TARGET_FUNCTION_VALUE_REGNO_P is true. */
2377 unsigned mask;
2378 struct likely_spilled_retval_info info;
2379
2380 if (!NONJUMP_INSN_P (use) || GET_CODE (PATTERN (use)) != USE || insn == use)
2381 return 0;
2382 reg = XEXP (PATTERN (use), 0);
2383 if (!REG_P (reg) || !targetm.calls.function_value_regno_p (REGNO (reg)))
2384 return 0;
2385 regno = REGNO (reg);
2386 nregs = REG_NREGS (reg);
2387 if (nregs == 1)
2388 return 0;
2389 mask = (2U << (nregs - 1)) - 1;
2390
2391 /* Disregard parts of the return value that are set later. */
2392 info.regno = regno;
2393 info.nregs = nregs;
2394 info.mask = mask;
2395 for (p = PREV_INSN (use); info.mask && p != insn; p = PREV_INSN (p))
2396 if (INSN_P (p))
2397 note_stores (PATTERN (p), likely_spilled_retval_1, &info);
2398 mask = info.mask;
2399
2400 /* Check if any of the (probably) live return value registers is
2401 likely spilled. */
2402 nregs --;
2403 do
2404 {
2405 if ((mask & 1 << nregs)
2406 && targetm.class_likely_spilled_p (REGNO_REG_CLASS (regno + nregs)))
2407 return 1;
2408 } while (nregs--);
2409 return 0;
2410 }
2411
2412 /* Adjust INSN after we made a change to its destination.
2413
2414 Changing the destination can invalidate notes that say something about
2415 the results of the insn and a LOG_LINK pointing to the insn. */
2416
2417 static void
2418 adjust_for_new_dest (rtx_insn *insn)
2419 {
2420 /* For notes, be conservative and simply remove them. */
2421 remove_reg_equal_equiv_notes (insn);
2422
2423 /* The new insn will have a destination that was previously the destination
2424 of an insn just above it. Call distribute_links to make a LOG_LINK from
2425 the next use of that destination. */
2426
2427 rtx set = single_set (insn);
2428 gcc_assert (set);
2429
2430 rtx reg = SET_DEST (set);
2431
2432 while (GET_CODE (reg) == ZERO_EXTRACT
2433 || GET_CODE (reg) == STRICT_LOW_PART
2434 || GET_CODE (reg) == SUBREG)
2435 reg = XEXP (reg, 0);
2436 gcc_assert (REG_P (reg));
2437
2438 distribute_links (alloc_insn_link (insn, REGNO (reg), NULL));
2439
2440 df_insn_rescan (insn);
2441 }
2442
2443 /* Return TRUE if combine can reuse reg X in mode MODE.
2444 ADDED_SETS is nonzero if the original set is still required. */
2445 static bool
2446 can_change_dest_mode (rtx x, int added_sets, machine_mode mode)
2447 {
2448 unsigned int regno;
2449
2450 if (!REG_P (x))
2451 return false;
2452
2453 regno = REGNO (x);
2454 /* Allow hard registers if the new mode is legal, and occupies no more
2455 registers than the old mode. */
2456 if (regno < FIRST_PSEUDO_REGISTER)
2457 return (HARD_REGNO_MODE_OK (regno, mode)
2458 && REG_NREGS (x) >= hard_regno_nregs[regno][mode]);
2459
2460 /* Or a pseudo that is only used once. */
2461 return (regno < reg_n_sets_max
2462 && REG_N_SETS (regno) == 1
2463 && !added_sets
2464 && !REG_USERVAR_P (x));
2465 }
2466
2467
2468 /* Check whether X, the destination of a set, refers to part of
2469 the register specified by REG. */
2470
2471 static bool
2472 reg_subword_p (rtx x, rtx reg)
2473 {
2474 /* Check that reg is an integer mode register. */
2475 if (!REG_P (reg) || GET_MODE_CLASS (GET_MODE (reg)) != MODE_INT)
2476 return false;
2477
2478 if (GET_CODE (x) == STRICT_LOW_PART
2479 || GET_CODE (x) == ZERO_EXTRACT)
2480 x = XEXP (x, 0);
2481
2482 return GET_CODE (x) == SUBREG
2483 && SUBREG_REG (x) == reg
2484 && GET_MODE_CLASS (GET_MODE (x)) == MODE_INT;
2485 }
2486
2487 /* Delete the unconditional jump INSN and adjust the CFG correspondingly.
2488 Note that the INSN should be deleted *after* removing dead edges, so
2489 that the kept edge is the fallthrough edge for a (set (pc) (pc))
2490 but not for a (set (pc) (label_ref FOO)). */
2491
2492 static void
2493 update_cfg_for_uncondjump (rtx_insn *insn)
2494 {
2495 basic_block bb = BLOCK_FOR_INSN (insn);
2496 gcc_assert (BB_END (bb) == insn);
2497
2498 purge_dead_edges (bb);
2499
2500 delete_insn (insn);
2501 if (EDGE_COUNT (bb->succs) == 1)
2502 {
2503 rtx_insn *insn;
2504
2505 single_succ_edge (bb)->flags |= EDGE_FALLTHRU;
2506
2507 /* Remove barriers from the footer if there are any. */
2508 for (insn = BB_FOOTER (bb); insn; insn = NEXT_INSN (insn))
2509 if (BARRIER_P (insn))
2510 {
2511 if (PREV_INSN (insn))
2512 SET_NEXT_INSN (PREV_INSN (insn)) = NEXT_INSN (insn);
2513 else
2514 BB_FOOTER (bb) = NEXT_INSN (insn);
2515 if (NEXT_INSN (insn))
2516 SET_PREV_INSN (NEXT_INSN (insn)) = PREV_INSN (insn);
2517 }
2518 else if (LABEL_P (insn))
2519 break;
2520 }
2521 }
2522
2523 /* Return whether PAT is a PARALLEL of exactly N register SETs followed
2524 by an arbitrary number of CLOBBERs. */
2525 static bool
2526 is_parallel_of_n_reg_sets (rtx pat, int n)
2527 {
2528 if (GET_CODE (pat) != PARALLEL)
2529 return false;
2530
2531 int len = XVECLEN (pat, 0);
2532 if (len < n)
2533 return false;
2534
2535 int i;
2536 for (i = 0; i < n; i++)
2537 if (GET_CODE (XVECEXP (pat, 0, i)) != SET
2538 || !REG_P (SET_DEST (XVECEXP (pat, 0, i))))
2539 return false;
2540 for ( ; i < len; i++)
2541 if (GET_CODE (XVECEXP (pat, 0, i)) != CLOBBER)
2542 return false;
2543
2544 return true;
2545 }
2546
2547 #if !HAVE_cc0
2548 /* Return whether INSN, a PARALLEL of N register SETs (and maybe some
2549 CLOBBERs), can be split into individual SETs in that order, without
2550 changing semantics. */
2551 static bool
2552 can_split_parallel_of_n_reg_sets (rtx_insn *insn, int n)
2553 {
2554 if (!insn_nothrow_p (insn))
2555 return false;
2556
2557 rtx pat = PATTERN (insn);
2558
2559 int i, j;
2560 for (i = 0; i < n; i++)
2561 {
2562 if (side_effects_p (SET_SRC (XVECEXP (pat, 0, i))))
2563 return false;
2564
2565 rtx reg = SET_DEST (XVECEXP (pat, 0, i));
2566
2567 for (j = i + 1; j < n; j++)
2568 if (reg_referenced_p (reg, XVECEXP (pat, 0, j)))
2569 return false;
2570 }
2571
2572 return true;
2573 }
2574 #endif
2575
2576 /* Try to combine the insns I0, I1 and I2 into I3.
2577 Here I0, I1 and I2 appear earlier than I3.
2578 I0 and I1 can be zero; then we combine just I2 into I3, or I1 and I2 into
2579 I3.
2580
2581 If we are combining more than two insns and the resulting insn is not
2582 recognized, try splitting it into two insns. If that happens, I2 and I3
2583 are retained and I1/I0 are pseudo-deleted by turning them into a NOTE.
2584 Otherwise, I0, I1 and I2 are pseudo-deleted.
2585
2586 Return 0 if the combination does not work. Then nothing is changed.
2587 If we did the combination, return the insn at which combine should
2588 resume scanning.
2589
2590 Set NEW_DIRECT_JUMP_P to a nonzero value if try_combine creates a
2591 new direct jump instruction.
2592
2593 LAST_COMBINED_INSN is either I3, or some insn after I3 that has
2594 been I3 passed to an earlier try_combine within the same basic
2595 block. */
2596
2597 static rtx_insn *
2598 try_combine (rtx_insn *i3, rtx_insn *i2, rtx_insn *i1, rtx_insn *i0,
2599 int *new_direct_jump_p, rtx_insn *last_combined_insn)
2600 {
2601 /* New patterns for I3 and I2, respectively. */
2602 rtx newpat, newi2pat = 0;
2603 rtvec newpat_vec_with_clobbers = 0;
2604 int substed_i2 = 0, substed_i1 = 0, substed_i0 = 0;
2605 /* Indicates need to preserve SET in I0, I1 or I2 in I3 if it is not
2606 dead. */
2607 int added_sets_0, added_sets_1, added_sets_2;
2608 /* Total number of SETs to put into I3. */
2609 int total_sets;
2610 /* Nonzero if I2's or I1's body now appears in I3. */
2611 int i2_is_used = 0, i1_is_used = 0;
2612 /* INSN_CODEs for new I3, new I2, and user of condition code. */
2613 int insn_code_number, i2_code_number = 0, other_code_number = 0;
2614 /* Contains I3 if the destination of I3 is used in its source, which means
2615 that the old life of I3 is being killed. If that usage is placed into
2616 I2 and not in I3, a REG_DEAD note must be made. */
2617 rtx i3dest_killed = 0;
2618 /* SET_DEST and SET_SRC of I2, I1 and I0. */
2619 rtx i2dest = 0, i2src = 0, i1dest = 0, i1src = 0, i0dest = 0, i0src = 0;
2620 /* Copy of SET_SRC of I1 and I0, if needed. */
2621 rtx i1src_copy = 0, i0src_copy = 0, i0src_copy2 = 0;
2622 /* Set if I2DEST was reused as a scratch register. */
2623 bool i2scratch = false;
2624 /* The PATTERNs of I0, I1, and I2, or a copy of them in certain cases. */
2625 rtx i0pat = 0, i1pat = 0, i2pat = 0;
2626 /* Indicates if I2DEST or I1DEST is in I2SRC or I1_SRC. */
2627 int i2dest_in_i2src = 0, i1dest_in_i1src = 0, i2dest_in_i1src = 0;
2628 int i0dest_in_i0src = 0, i1dest_in_i0src = 0, i2dest_in_i0src = 0;
2629 int i2dest_killed = 0, i1dest_killed = 0, i0dest_killed = 0;
2630 int i1_feeds_i2_n = 0, i0_feeds_i2_n = 0, i0_feeds_i1_n = 0;
2631 /* Notes that must be added to REG_NOTES in I3 and I2. */
2632 rtx new_i3_notes, new_i2_notes;
2633 /* Notes that we substituted I3 into I2 instead of the normal case. */
2634 int i3_subst_into_i2 = 0;
2635 /* Notes that I1, I2 or I3 is a MULT operation. */
2636 int have_mult = 0;
2637 int swap_i2i3 = 0;
2638 int changed_i3_dest = 0;
2639
2640 int maxreg;
2641 rtx_insn *temp_insn;
2642 rtx temp_expr;
2643 struct insn_link *link;
2644 rtx other_pat = 0;
2645 rtx new_other_notes;
2646 int i;
2647
2648 /* Immediately return if any of I0,I1,I2 are the same insn (I3 can
2649 never be). */
2650 if (i1 == i2 || i0 == i2 || (i0 && i0 == i1))
2651 return 0;
2652
2653 /* Only try four-insn combinations when there's high likelihood of
2654 success. Look for simple insns, such as loads of constants or
2655 binary operations involving a constant. */
2656 if (i0)
2657 {
2658 int i;
2659 int ngood = 0;
2660 int nshift = 0;
2661 rtx set0, set3;
2662
2663 if (!flag_expensive_optimizations)
2664 return 0;
2665
2666 for (i = 0; i < 4; i++)
2667 {
2668 rtx_insn *insn = i == 0 ? i0 : i == 1 ? i1 : i == 2 ? i2 : i3;
2669 rtx set = single_set (insn);
2670 rtx src;
2671 if (!set)
2672 continue;
2673 src = SET_SRC (set);
2674 if (CONSTANT_P (src))
2675 {
2676 ngood += 2;
2677 break;
2678 }
2679 else if (BINARY_P (src) && CONSTANT_P (XEXP (src, 1)))
2680 ngood++;
2681 else if (GET_CODE (src) == ASHIFT || GET_CODE (src) == ASHIFTRT
2682 || GET_CODE (src) == LSHIFTRT)
2683 nshift++;
2684 }
2685
2686 /* If I0 loads a memory and I3 sets the same memory, then I1 and I2
2687 are likely manipulating its value. Ideally we'll be able to combine
2688 all four insns into a bitfield insertion of some kind.
2689
2690 Note the source in I0 might be inside a sign/zero extension and the
2691 memory modes in I0 and I3 might be different. So extract the address
2692 from the destination of I3 and search for it in the source of I0.
2693
2694 In the event that there's a match but the source/dest do not actually
2695 refer to the same memory, the worst that happens is we try some
2696 combinations that we wouldn't have otherwise. */
2697 if ((set0 = single_set (i0))
2698 /* Ensure the source of SET0 is a MEM, possibly buried inside
2699 an extension. */
2700 && (GET_CODE (SET_SRC (set0)) == MEM
2701 || ((GET_CODE (SET_SRC (set0)) == ZERO_EXTEND
2702 || GET_CODE (SET_SRC (set0)) == SIGN_EXTEND)
2703 && GET_CODE (XEXP (SET_SRC (set0), 0)) == MEM))
2704 && (set3 = single_set (i3))
2705 /* Ensure the destination of SET3 is a MEM. */
2706 && GET_CODE (SET_DEST (set3)) == MEM
2707 /* Would it be better to extract the base address for the MEM
2708 in SET3 and look for that? I don't have cases where it matters
2709 but I could envision such cases. */
2710 && rtx_referenced_p (XEXP (SET_DEST (set3), 0), SET_SRC (set0)))
2711 ngood += 2;
2712
2713 if (ngood < 2 && nshift < 2)
2714 return 0;
2715 }
2716
2717 /* Exit early if one of the insns involved can't be used for
2718 combinations. */
2719 if (CALL_P (i2)
2720 || (i1 && CALL_P (i1))
2721 || (i0 && CALL_P (i0))
2722 || cant_combine_insn_p (i3)
2723 || cant_combine_insn_p (i2)
2724 || (i1 && cant_combine_insn_p (i1))
2725 || (i0 && cant_combine_insn_p (i0))
2726 || likely_spilled_retval_p (i3))
2727 return 0;
2728
2729 combine_attempts++;
2730 undobuf.other_insn = 0;
2731
2732 /* Reset the hard register usage information. */
2733 CLEAR_HARD_REG_SET (newpat_used_regs);
2734
2735 if (dump_file && (dump_flags & TDF_DETAILS))
2736 {
2737 if (i0)
2738 fprintf (dump_file, "\nTrying %d, %d, %d -> %d:\n",
2739 INSN_UID (i0), INSN_UID (i1), INSN_UID (i2), INSN_UID (i3));
2740 else if (i1)
2741 fprintf (dump_file, "\nTrying %d, %d -> %d:\n",
2742 INSN_UID (i1), INSN_UID (i2), INSN_UID (i3));
2743 else
2744 fprintf (dump_file, "\nTrying %d -> %d:\n",
2745 INSN_UID (i2), INSN_UID (i3));
2746 }
2747
2748 /* If multiple insns feed into one of I2 or I3, they can be in any
2749 order. To simplify the code below, reorder them in sequence. */
2750 if (i0 && DF_INSN_LUID (i0) > DF_INSN_LUID (i2))
2751 temp_insn = i2, i2 = i0, i0 = temp_insn;
2752 if (i0 && DF_INSN_LUID (i0) > DF_INSN_LUID (i1))
2753 temp_insn = i1, i1 = i0, i0 = temp_insn;
2754 if (i1 && DF_INSN_LUID (i1) > DF_INSN_LUID (i2))
2755 temp_insn = i1, i1 = i2, i2 = temp_insn;
2756
2757 added_links_insn = 0;
2758
2759 /* First check for one important special case that the code below will
2760 not handle. Namely, the case where I1 is zero, I2 is a PARALLEL
2761 and I3 is a SET whose SET_SRC is a SET_DEST in I2. In that case,
2762 we may be able to replace that destination with the destination of I3.
2763 This occurs in the common code where we compute both a quotient and
2764 remainder into a structure, in which case we want to do the computation
2765 directly into the structure to avoid register-register copies.
2766
2767 Note that this case handles both multiple sets in I2 and also cases
2768 where I2 has a number of CLOBBERs inside the PARALLEL.
2769
2770 We make very conservative checks below and only try to handle the
2771 most common cases of this. For example, we only handle the case
2772 where I2 and I3 are adjacent to avoid making difficult register
2773 usage tests. */
2774
2775 if (i1 == 0 && NONJUMP_INSN_P (i3) && GET_CODE (PATTERN (i3)) == SET
2776 && REG_P (SET_SRC (PATTERN (i3)))
2777 && REGNO (SET_SRC (PATTERN (i3))) >= FIRST_PSEUDO_REGISTER
2778 && find_reg_note (i3, REG_DEAD, SET_SRC (PATTERN (i3)))
2779 && GET_CODE (PATTERN (i2)) == PARALLEL
2780 && ! side_effects_p (SET_DEST (PATTERN (i3)))
2781 /* If the dest of I3 is a ZERO_EXTRACT or STRICT_LOW_PART, the code
2782 below would need to check what is inside (and reg_overlap_mentioned_p
2783 doesn't support those codes anyway). Don't allow those destinations;
2784 the resulting insn isn't likely to be recognized anyway. */
2785 && GET_CODE (SET_DEST (PATTERN (i3))) != ZERO_EXTRACT
2786 && GET_CODE (SET_DEST (PATTERN (i3))) != STRICT_LOW_PART
2787 && ! reg_overlap_mentioned_p (SET_SRC (PATTERN (i3)),
2788 SET_DEST (PATTERN (i3)))
2789 && next_active_insn (i2) == i3)
2790 {
2791 rtx p2 = PATTERN (i2);
2792
2793 /* Make sure that the destination of I3,
2794 which we are going to substitute into one output of I2,
2795 is not used within another output of I2. We must avoid making this:
2796 (parallel [(set (mem (reg 69)) ...)
2797 (set (reg 69) ...)])
2798 which is not well-defined as to order of actions.
2799 (Besides, reload can't handle output reloads for this.)
2800
2801 The problem can also happen if the dest of I3 is a memory ref,
2802 if another dest in I2 is an indirect memory ref. */
2803 for (i = 0; i < XVECLEN (p2, 0); i++)
2804 if ((GET_CODE (XVECEXP (p2, 0, i)) == SET
2805 || GET_CODE (XVECEXP (p2, 0, i)) == CLOBBER)
2806 && reg_overlap_mentioned_p (SET_DEST (PATTERN (i3)),
2807 SET_DEST (XVECEXP (p2, 0, i))))
2808 break;
2809
2810 /* Make sure this PARALLEL is not an asm. We do not allow combining
2811 that usually (see can_combine_p), so do not here either. */
2812 for (i = 0; i < XVECLEN (p2, 0); i++)
2813 if (GET_CODE (XVECEXP (p2, 0, i)) == SET
2814 && GET_CODE (SET_SRC (XVECEXP (p2, 0, i))) == ASM_OPERANDS)
2815 break;
2816
2817 if (i == XVECLEN (p2, 0))
2818 for (i = 0; i < XVECLEN (p2, 0); i++)
2819 if (GET_CODE (XVECEXP (p2, 0, i)) == SET
2820 && SET_DEST (XVECEXP (p2, 0, i)) == SET_SRC (PATTERN (i3)))
2821 {
2822 combine_merges++;
2823
2824 subst_insn = i3;
2825 subst_low_luid = DF_INSN_LUID (i2);
2826
2827 added_sets_2 = added_sets_1 = added_sets_0 = 0;
2828 i2src = SET_SRC (XVECEXP (p2, 0, i));
2829 i2dest = SET_DEST (XVECEXP (p2, 0, i));
2830 i2dest_killed = dead_or_set_p (i2, i2dest);
2831
2832 /* Replace the dest in I2 with our dest and make the resulting
2833 insn the new pattern for I3. Then skip to where we validate
2834 the pattern. Everything was set up above. */
2835 SUBST (SET_DEST (XVECEXP (p2, 0, i)), SET_DEST (PATTERN (i3)));
2836 newpat = p2;
2837 i3_subst_into_i2 = 1;
2838 goto validate_replacement;
2839 }
2840 }
2841
2842 /* If I2 is setting a pseudo to a constant and I3 is setting some
2843 sub-part of it to another constant, merge them by making a new
2844 constant. */
2845 if (i1 == 0
2846 && (temp_expr = single_set (i2)) != 0
2847 && CONST_SCALAR_INT_P (SET_SRC (temp_expr))
2848 && GET_CODE (PATTERN (i3)) == SET
2849 && CONST_SCALAR_INT_P (SET_SRC (PATTERN (i3)))
2850 && reg_subword_p (SET_DEST (PATTERN (i3)), SET_DEST (temp_expr)))
2851 {
2852 rtx dest = SET_DEST (PATTERN (i3));
2853 int offset = -1;
2854 int width = 0;
2855
2856 if (GET_CODE (dest) == ZERO_EXTRACT)
2857 {
2858 if (CONST_INT_P (XEXP (dest, 1))
2859 && CONST_INT_P (XEXP (dest, 2)))
2860 {
2861 width = INTVAL (XEXP (dest, 1));
2862 offset = INTVAL (XEXP (dest, 2));
2863 dest = XEXP (dest, 0);
2864 if (BITS_BIG_ENDIAN)
2865 offset = GET_MODE_PRECISION (GET_MODE (dest)) - width - offset;
2866 }
2867 }
2868 else
2869 {
2870 if (GET_CODE (dest) == STRICT_LOW_PART)
2871 dest = XEXP (dest, 0);
2872 width = GET_MODE_PRECISION (GET_MODE (dest));
2873 offset = 0;
2874 }
2875
2876 if (offset >= 0)
2877 {
2878 /* If this is the low part, we're done. */
2879 if (subreg_lowpart_p (dest))
2880 ;
2881 /* Handle the case where inner is twice the size of outer. */
2882 else if (GET_MODE_PRECISION (GET_MODE (SET_DEST (temp_expr)))
2883 == 2 * GET_MODE_PRECISION (GET_MODE (dest)))
2884 offset += GET_MODE_PRECISION (GET_MODE (dest));
2885 /* Otherwise give up for now. */
2886 else
2887 offset = -1;
2888 }
2889
2890 if (offset >= 0)
2891 {
2892 rtx inner = SET_SRC (PATTERN (i3));
2893 rtx outer = SET_SRC (temp_expr);
2894
2895 wide_int o
2896 = wi::insert (std::make_pair (outer, GET_MODE (SET_DEST (temp_expr))),
2897 std::make_pair (inner, GET_MODE (dest)),
2898 offset, width);
2899
2900 combine_merges++;
2901 subst_insn = i3;
2902 subst_low_luid = DF_INSN_LUID (i2);
2903 added_sets_2 = added_sets_1 = added_sets_0 = 0;
2904 i2dest = SET_DEST (temp_expr);
2905 i2dest_killed = dead_or_set_p (i2, i2dest);
2906
2907 /* Replace the source in I2 with the new constant and make the
2908 resulting insn the new pattern for I3. Then skip to where we
2909 validate the pattern. Everything was set up above. */
2910 SUBST (SET_SRC (temp_expr),
2911 immed_wide_int_const (o, GET_MODE (SET_DEST (temp_expr))));
2912
2913 newpat = PATTERN (i2);
2914
2915 /* The dest of I3 has been replaced with the dest of I2. */
2916 changed_i3_dest = 1;
2917 goto validate_replacement;
2918 }
2919 }
2920
2921 #if !HAVE_cc0
2922 /* If we have no I1 and I2 looks like:
2923 (parallel [(set (reg:CC X) (compare:CC OP (const_int 0)))
2924 (set Y OP)])
2925 make up a dummy I1 that is
2926 (set Y OP)
2927 and change I2 to be
2928 (set (reg:CC X) (compare:CC Y (const_int 0)))
2929
2930 (We can ignore any trailing CLOBBERs.)
2931
2932 This undoes a previous combination and allows us to match a branch-and-
2933 decrement insn. */
2934
2935 if (i1 == 0
2936 && is_parallel_of_n_reg_sets (PATTERN (i2), 2)
2937 && (GET_MODE_CLASS (GET_MODE (SET_DEST (XVECEXP (PATTERN (i2), 0, 0))))
2938 == MODE_CC)
2939 && GET_CODE (SET_SRC (XVECEXP (PATTERN (i2), 0, 0))) == COMPARE
2940 && XEXP (SET_SRC (XVECEXP (PATTERN (i2), 0, 0)), 1) == const0_rtx
2941 && rtx_equal_p (XEXP (SET_SRC (XVECEXP (PATTERN (i2), 0, 0)), 0),
2942 SET_SRC (XVECEXP (PATTERN (i2), 0, 1)))
2943 && !reg_used_between_p (SET_DEST (XVECEXP (PATTERN (i2), 0, 0)), i2, i3)
2944 && !reg_used_between_p (SET_DEST (XVECEXP (PATTERN (i2), 0, 1)), i2, i3))
2945 {
2946 /* We make I1 with the same INSN_UID as I2. This gives it
2947 the same DF_INSN_LUID for value tracking. Our fake I1 will
2948 never appear in the insn stream so giving it the same INSN_UID
2949 as I2 will not cause a problem. */
2950
2951 i1 = gen_rtx_INSN (VOIDmode, NULL, i2, BLOCK_FOR_INSN (i2),
2952 XVECEXP (PATTERN (i2), 0, 1), INSN_LOCATION (i2),
2953 -1, NULL_RTX);
2954 INSN_UID (i1) = INSN_UID (i2);
2955
2956 SUBST (PATTERN (i2), XVECEXP (PATTERN (i2), 0, 0));
2957 SUBST (XEXP (SET_SRC (PATTERN (i2)), 0),
2958 SET_DEST (PATTERN (i1)));
2959 unsigned int regno = REGNO (SET_DEST (PATTERN (i1)));
2960 SUBST_LINK (LOG_LINKS (i2),
2961 alloc_insn_link (i1, regno, LOG_LINKS (i2)));
2962 }
2963
2964 /* If I2 is a PARALLEL of two SETs of REGs (and perhaps some CLOBBERs),
2965 make those two SETs separate I1 and I2 insns, and make an I0 that is
2966 the original I1. */
2967 if (i0 == 0
2968 && is_parallel_of_n_reg_sets (PATTERN (i2), 2)
2969 && can_split_parallel_of_n_reg_sets (i2, 2)
2970 && !reg_used_between_p (SET_DEST (XVECEXP (PATTERN (i2), 0, 0)), i2, i3)
2971 && !reg_used_between_p (SET_DEST (XVECEXP (PATTERN (i2), 0, 1)), i2, i3))
2972 {
2973 /* If there is no I1, there is no I0 either. */
2974 i0 = i1;
2975
2976 /* We make I1 with the same INSN_UID as I2. This gives it
2977 the same DF_INSN_LUID for value tracking. Our fake I1 will
2978 never appear in the insn stream so giving it the same INSN_UID
2979 as I2 will not cause a problem. */
2980
2981 i1 = gen_rtx_INSN (VOIDmode, NULL, i2, BLOCK_FOR_INSN (i2),
2982 XVECEXP (PATTERN (i2), 0, 0), INSN_LOCATION (i2),
2983 -1, NULL_RTX);
2984 INSN_UID (i1) = INSN_UID (i2);
2985
2986 SUBST (PATTERN (i2), XVECEXP (PATTERN (i2), 0, 1));
2987 }
2988 #endif
2989
2990 /* Verify that I2 and I1 are valid for combining. */
2991 if (! can_combine_p (i2, i3, i0, i1, NULL, NULL, &i2dest, &i2src)
2992 || (i1 && ! can_combine_p (i1, i3, i0, NULL, i2, NULL,
2993 &i1dest, &i1src))
2994 || (i0 && ! can_combine_p (i0, i3, NULL, NULL, i1, i2,
2995 &i0dest, &i0src)))
2996 {
2997 undo_all ();
2998 return 0;
2999 }
3000
3001 /* Record whether I2DEST is used in I2SRC and similarly for the other
3002 cases. Knowing this will help in register status updating below. */
3003 i2dest_in_i2src = reg_overlap_mentioned_p (i2dest, i2src);
3004 i1dest_in_i1src = i1 && reg_overlap_mentioned_p (i1dest, i1src);
3005 i2dest_in_i1src = i1 && reg_overlap_mentioned_p (i2dest, i1src);
3006 i0dest_in_i0src = i0 && reg_overlap_mentioned_p (i0dest, i0src);
3007 i1dest_in_i0src = i0 && reg_overlap_mentioned_p (i1dest, i0src);
3008 i2dest_in_i0src = i0 && reg_overlap_mentioned_p (i2dest, i0src);
3009 i2dest_killed = dead_or_set_p (i2, i2dest);
3010 i1dest_killed = i1 && dead_or_set_p (i1, i1dest);
3011 i0dest_killed = i0 && dead_or_set_p (i0, i0dest);
3012
3013 /* For the earlier insns, determine which of the subsequent ones they
3014 feed. */
3015 i1_feeds_i2_n = i1 && insn_a_feeds_b (i1, i2);
3016 i0_feeds_i1_n = i0 && insn_a_feeds_b (i0, i1);
3017 i0_feeds_i2_n = (i0 && (!i0_feeds_i1_n ? insn_a_feeds_b (i0, i2)
3018 : (!reg_overlap_mentioned_p (i1dest, i0dest)
3019 && reg_overlap_mentioned_p (i0dest, i2src))));
3020
3021 /* Ensure that I3's pattern can be the destination of combines. */
3022 if (! combinable_i3pat (i3, &PATTERN (i3), i2dest, i1dest, i0dest,
3023 i1 && i2dest_in_i1src && !i1_feeds_i2_n,
3024 i0 && ((i2dest_in_i0src && !i0_feeds_i2_n)
3025 || (i1dest_in_i0src && !i0_feeds_i1_n)),
3026 &i3dest_killed))
3027 {
3028 undo_all ();
3029 return 0;
3030 }
3031
3032 /* See if any of the insns is a MULT operation. Unless one is, we will
3033 reject a combination that is, since it must be slower. Be conservative
3034 here. */
3035 if (GET_CODE (i2src) == MULT
3036 || (i1 != 0 && GET_CODE (i1src) == MULT)
3037 || (i0 != 0 && GET_CODE (i0src) == MULT)
3038 || (GET_CODE (PATTERN (i3)) == SET
3039 && GET_CODE (SET_SRC (PATTERN (i3))) == MULT))
3040 have_mult = 1;
3041
3042 /* If I3 has an inc, then give up if I1 or I2 uses the reg that is inc'd.
3043 We used to do this EXCEPT in one case: I3 has a post-inc in an
3044 output operand. However, that exception can give rise to insns like
3045 mov r3,(r3)+
3046 which is a famous insn on the PDP-11 where the value of r3 used as the
3047 source was model-dependent. Avoid this sort of thing. */
3048
3049 #if 0
3050 if (!(GET_CODE (PATTERN (i3)) == SET
3051 && REG_P (SET_SRC (PATTERN (i3)))
3052 && MEM_P (SET_DEST (PATTERN (i3)))
3053 && (GET_CODE (XEXP (SET_DEST (PATTERN (i3)), 0)) == POST_INC
3054 || GET_CODE (XEXP (SET_DEST (PATTERN (i3)), 0)) == POST_DEC)))
3055 /* It's not the exception. */
3056 #endif
3057 #ifdef AUTO_INC_DEC
3058 {
3059 rtx link;
3060 for (link = REG_NOTES (i3); link; link = XEXP (link, 1))
3061 if (REG_NOTE_KIND (link) == REG_INC
3062 && (reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i2))
3063 || (i1 != 0
3064 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i1)))))
3065 {
3066 undo_all ();
3067 return 0;
3068 }
3069 }
3070 #endif
3071
3072 /* See if the SETs in I1 or I2 need to be kept around in the merged
3073 instruction: whenever the value set there is still needed past I3.
3074 For the SET in I2, this is easy: we see if I2DEST dies or is set in I3.
3075
3076 For the SET in I1, we have two cases: if I1 and I2 independently feed
3077 into I3, the set in I1 needs to be kept around unless I1DEST dies
3078 or is set in I3. Otherwise (if I1 feeds I2 which feeds I3), the set
3079 in I1 needs to be kept around unless I1DEST dies or is set in either
3080 I2 or I3. The same considerations apply to I0. */
3081
3082 added_sets_2 = !dead_or_set_p (i3, i2dest);
3083
3084 if (i1)
3085 added_sets_1 = !(dead_or_set_p (i3, i1dest)
3086 || (i1_feeds_i2_n && dead_or_set_p (i2, i1dest)));
3087 else
3088 added_sets_1 = 0;
3089
3090 if (i0)
3091 added_sets_0 = !(dead_or_set_p (i3, i0dest)
3092 || (i0_feeds_i1_n && dead_or_set_p (i1, i0dest))
3093 || ((i0_feeds_i2_n || (i0_feeds_i1_n && i1_feeds_i2_n))
3094 && dead_or_set_p (i2, i0dest)));
3095 else
3096 added_sets_0 = 0;
3097
3098 /* We are about to copy insns for the case where they need to be kept
3099 around. Check that they can be copied in the merged instruction. */
3100
3101 if (targetm.cannot_copy_insn_p
3102 && ((added_sets_2 && targetm.cannot_copy_insn_p (i2))
3103 || (i1 && added_sets_1 && targetm.cannot_copy_insn_p (i1))
3104 || (i0 && added_sets_0 && targetm.cannot_copy_insn_p (i0))))
3105 {
3106 undo_all ();
3107 return 0;
3108 }
3109
3110 /* If the set in I2 needs to be kept around, we must make a copy of
3111 PATTERN (I2), so that when we substitute I1SRC for I1DEST in
3112 PATTERN (I2), we are only substituting for the original I1DEST, not into
3113 an already-substituted copy. This also prevents making self-referential
3114 rtx. If I2 is a PARALLEL, we just need the piece that assigns I2SRC to
3115 I2DEST. */
3116
3117 if (added_sets_2)
3118 {
3119 if (GET_CODE (PATTERN (i2)) == PARALLEL)
3120 i2pat = gen_rtx_SET (i2dest, copy_rtx (i2src));
3121 else
3122 i2pat = copy_rtx (PATTERN (i2));
3123 }
3124
3125 if (added_sets_1)
3126 {
3127 if (GET_CODE (PATTERN (i1)) == PARALLEL)
3128 i1pat = gen_rtx_SET (i1dest, copy_rtx (i1src));
3129 else
3130 i1pat = copy_rtx (PATTERN (i1));
3131 }
3132
3133 if (added_sets_0)
3134 {
3135 if (GET_CODE (PATTERN (i0)) == PARALLEL)
3136 i0pat = gen_rtx_SET (i0dest, copy_rtx (i0src));
3137 else
3138 i0pat = copy_rtx (PATTERN (i0));
3139 }
3140
3141 combine_merges++;
3142
3143 /* Substitute in the latest insn for the regs set by the earlier ones. */
3144
3145 maxreg = max_reg_num ();
3146
3147 subst_insn = i3;
3148
3149 /* Many machines that don't use CC0 have insns that can both perform an
3150 arithmetic operation and set the condition code. These operations will
3151 be represented as a PARALLEL with the first element of the vector
3152 being a COMPARE of an arithmetic operation with the constant zero.
3153 The second element of the vector will set some pseudo to the result
3154 of the same arithmetic operation. If we simplify the COMPARE, we won't
3155 match such a pattern and so will generate an extra insn. Here we test
3156 for this case, where both the comparison and the operation result are
3157 needed, and make the PARALLEL by just replacing I2DEST in I3SRC with
3158 I2SRC. Later we will make the PARALLEL that contains I2. */
3159
3160 if (!HAVE_cc0 && i1 == 0 && added_sets_2 && GET_CODE (PATTERN (i3)) == SET
3161 && GET_CODE (SET_SRC (PATTERN (i3))) == COMPARE
3162 && CONST_INT_P (XEXP (SET_SRC (PATTERN (i3)), 1))
3163 && rtx_equal_p (XEXP (SET_SRC (PATTERN (i3)), 0), i2dest))
3164 {
3165 rtx newpat_dest;
3166 rtx *cc_use_loc = NULL;
3167 rtx_insn *cc_use_insn = NULL;
3168 rtx op0 = i2src, op1 = XEXP (SET_SRC (PATTERN (i3)), 1);
3169 machine_mode compare_mode, orig_compare_mode;
3170 enum rtx_code compare_code = UNKNOWN, orig_compare_code = UNKNOWN;
3171
3172 newpat = PATTERN (i3);
3173 newpat_dest = SET_DEST (newpat);
3174 compare_mode = orig_compare_mode = GET_MODE (newpat_dest);
3175
3176 if (undobuf.other_insn == 0
3177 && (cc_use_loc = find_single_use (SET_DEST (newpat), i3,
3178 &cc_use_insn)))
3179 {
3180 compare_code = orig_compare_code = GET_CODE (*cc_use_loc);
3181 compare_code = simplify_compare_const (compare_code,
3182 GET_MODE (i2dest), op0, &op1);
3183 target_canonicalize_comparison (&compare_code, &op0, &op1, 1);
3184 }
3185
3186 /* Do the rest only if op1 is const0_rtx, which may be the
3187 result of simplification. */
3188 if (op1 == const0_rtx)
3189 {
3190 /* If a single use of the CC is found, prepare to modify it
3191 when SELECT_CC_MODE returns a new CC-class mode, or when
3192 the above simplify_compare_const() returned a new comparison
3193 operator. undobuf.other_insn is assigned the CC use insn
3194 when modifying it. */
3195 if (cc_use_loc)
3196 {
3197 #ifdef SELECT_CC_MODE
3198 machine_mode new_mode
3199 = SELECT_CC_MODE (compare_code, op0, op1);
3200 if (new_mode != orig_compare_mode
3201 && can_change_dest_mode (SET_DEST (newpat),
3202 added_sets_2, new_mode))
3203 {
3204 unsigned int regno = REGNO (newpat_dest);
3205 compare_mode = new_mode;
3206 if (regno < FIRST_PSEUDO_REGISTER)
3207 newpat_dest = gen_rtx_REG (compare_mode, regno);
3208 else
3209 {
3210 SUBST_MODE (regno_reg_rtx[regno], compare_mode);
3211 newpat_dest = regno_reg_rtx[regno];
3212 }
3213 }
3214 #endif
3215 /* Cases for modifying the CC-using comparison. */
3216 if (compare_code != orig_compare_code
3217 /* ??? Do we need to verify the zero rtx? */
3218 && XEXP (*cc_use_loc, 1) == const0_rtx)
3219 {
3220 /* Replace cc_use_loc with entire new RTX. */
3221 SUBST (*cc_use_loc,
3222 gen_rtx_fmt_ee (compare_code, compare_mode,
3223 newpat_dest, const0_rtx));
3224 undobuf.other_insn = cc_use_insn;
3225 }
3226 else if (compare_mode != orig_compare_mode)
3227 {
3228 /* Just replace the CC reg with a new mode. */
3229 SUBST (XEXP (*cc_use_loc, 0), newpat_dest);
3230 undobuf.other_insn = cc_use_insn;
3231 }
3232 }
3233
3234 /* Now we modify the current newpat:
3235 First, SET_DEST(newpat) is updated if the CC mode has been
3236 altered. For targets without SELECT_CC_MODE, this should be
3237 optimized away. */
3238 if (compare_mode != orig_compare_mode)
3239 SUBST (SET_DEST (newpat), newpat_dest);
3240 /* This is always done to propagate i2src into newpat. */
3241 SUBST (SET_SRC (newpat),
3242 gen_rtx_COMPARE (compare_mode, op0, op1));
3243 /* Create new version of i2pat if needed; the below PARALLEL
3244 creation needs this to work correctly. */
3245 if (! rtx_equal_p (i2src, op0))
3246 i2pat = gen_rtx_SET (i2dest, op0);
3247 i2_is_used = 1;
3248 }
3249 }
3250
3251 if (i2_is_used == 0)
3252 {
3253 /* It is possible that the source of I2 or I1 may be performing
3254 an unneeded operation, such as a ZERO_EXTEND of something
3255 that is known to have the high part zero. Handle that case
3256 by letting subst look at the inner insns.
3257
3258 Another way to do this would be to have a function that tries
3259 to simplify a single insn instead of merging two or more
3260 insns. We don't do this because of the potential of infinite
3261 loops and because of the potential extra memory required.
3262 However, doing it the way we are is a bit of a kludge and
3263 doesn't catch all cases.
3264
3265 But only do this if -fexpensive-optimizations since it slows
3266 things down and doesn't usually win.
3267
3268 This is not done in the COMPARE case above because the
3269 unmodified I2PAT is used in the PARALLEL and so a pattern
3270 with a modified I2SRC would not match. */
3271
3272 if (flag_expensive_optimizations)
3273 {
3274 /* Pass pc_rtx so no substitutions are done, just
3275 simplifications. */
3276 if (i1)
3277 {
3278 subst_low_luid = DF_INSN_LUID (i1);
3279 i1src = subst (i1src, pc_rtx, pc_rtx, 0, 0, 0);
3280 }
3281
3282 subst_low_luid = DF_INSN_LUID (i2);
3283 i2src = subst (i2src, pc_rtx, pc_rtx, 0, 0, 0);
3284 }
3285
3286 n_occurrences = 0; /* `subst' counts here */
3287 subst_low_luid = DF_INSN_LUID (i2);
3288
3289 /* If I1 feeds into I2 and I1DEST is in I1SRC, we need to make a unique
3290 copy of I2SRC each time we substitute it, in order to avoid creating
3291 self-referential RTL when we will be substituting I1SRC for I1DEST
3292 later. Likewise if I0 feeds into I2, either directly or indirectly
3293 through I1, and I0DEST is in I0SRC. */
3294 newpat = subst (PATTERN (i3), i2dest, i2src, 0, 0,
3295 (i1_feeds_i2_n && i1dest_in_i1src)
3296 || ((i0_feeds_i2_n || (i0_feeds_i1_n && i1_feeds_i2_n))
3297 && i0dest_in_i0src));
3298 substed_i2 = 1;
3299
3300 /* Record whether I2's body now appears within I3's body. */
3301 i2_is_used = n_occurrences;
3302 }
3303
3304 /* If we already got a failure, don't try to do more. Otherwise, try to
3305 substitute I1 if we have it. */
3306
3307 if (i1 && GET_CODE (newpat) != CLOBBER)
3308 {
3309 /* Check that an autoincrement side-effect on I1 has not been lost.
3310 This happens if I1DEST is mentioned in I2 and dies there, and
3311 has disappeared from the new pattern. */
3312 if ((FIND_REG_INC_NOTE (i1, NULL_RTX) != 0
3313 && i1_feeds_i2_n
3314 && dead_or_set_p (i2, i1dest)
3315 && !reg_overlap_mentioned_p (i1dest, newpat))
3316 /* Before we can do this substitution, we must redo the test done
3317 above (see detailed comments there) that ensures I1DEST isn't
3318 mentioned in any SETs in NEWPAT that are field assignments. */
3319 || !combinable_i3pat (NULL, &newpat, i1dest, NULL_RTX, NULL_RTX,
3320 0, 0, 0))
3321 {
3322 undo_all ();
3323 return 0;
3324 }
3325
3326 n_occurrences = 0;
3327 subst_low_luid = DF_INSN_LUID (i1);
3328
3329 /* If the following substitution will modify I1SRC, make a copy of it
3330 for the case where it is substituted for I1DEST in I2PAT later. */
3331 if (added_sets_2 && i1_feeds_i2_n)
3332 i1src_copy = copy_rtx (i1src);
3333
3334 /* If I0 feeds into I1 and I0DEST is in I0SRC, we need to make a unique
3335 copy of I1SRC each time we substitute it, in order to avoid creating
3336 self-referential RTL when we will be substituting I0SRC for I0DEST
3337 later. */
3338 newpat = subst (newpat, i1dest, i1src, 0, 0,
3339 i0_feeds_i1_n && i0dest_in_i0src);
3340 substed_i1 = 1;
3341
3342 /* Record whether I1's body now appears within I3's body. */
3343 i1_is_used = n_occurrences;
3344 }
3345
3346 /* Likewise for I0 if we have it. */
3347
3348 if (i0 && GET_CODE (newpat) != CLOBBER)
3349 {
3350 if ((FIND_REG_INC_NOTE (i0, NULL_RTX) != 0
3351 && ((i0_feeds_i2_n && dead_or_set_p (i2, i0dest))
3352 || (i0_feeds_i1_n && dead_or_set_p (i1, i0dest)))
3353 && !reg_overlap_mentioned_p (i0dest, newpat))
3354 || !combinable_i3pat (NULL, &newpat, i0dest, NULL_RTX, NULL_RTX,
3355 0, 0, 0))
3356 {
3357 undo_all ();
3358 return 0;
3359 }
3360
3361 /* If the following substitution will modify I0SRC, make a copy of it
3362 for the case where it is substituted for I0DEST in I1PAT later. */
3363 if (added_sets_1 && i0_feeds_i1_n)
3364 i0src_copy = copy_rtx (i0src);
3365 /* And a copy for I0DEST in I2PAT substitution. */
3366 if (added_sets_2 && ((i0_feeds_i1_n && i1_feeds_i2_n)
3367 || (i0_feeds_i2_n)))
3368 i0src_copy2 = copy_rtx (i0src);
3369
3370 n_occurrences = 0;
3371 subst_low_luid = DF_INSN_LUID (i0);
3372 newpat = subst (newpat, i0dest, i0src, 0, 0, 0);
3373 substed_i0 = 1;
3374 }
3375
3376 /* Fail if an autoincrement side-effect has been duplicated. Be careful
3377 to count all the ways that I2SRC and I1SRC can be used. */
3378 if ((FIND_REG_INC_NOTE (i2, NULL_RTX) != 0
3379 && i2_is_used + added_sets_2 > 1)
3380 || (i1 != 0 && FIND_REG_INC_NOTE (i1, NULL_RTX) != 0
3381 && (i1_is_used + added_sets_1 + (added_sets_2 && i1_feeds_i2_n)
3382 > 1))
3383 || (i0 != 0 && FIND_REG_INC_NOTE (i0, NULL_RTX) != 0
3384 && (n_occurrences + added_sets_0
3385 + (added_sets_1 && i0_feeds_i1_n)
3386 + (added_sets_2 && i0_feeds_i2_n)
3387 > 1))
3388 /* Fail if we tried to make a new register. */
3389 || max_reg_num () != maxreg
3390 /* Fail if we couldn't do something and have a CLOBBER. */
3391 || GET_CODE (newpat) == CLOBBER
3392 /* Fail if this new pattern is a MULT and we didn't have one before
3393 at the outer level. */
3394 || (GET_CODE (newpat) == SET && GET_CODE (SET_SRC (newpat)) == MULT
3395 && ! have_mult))
3396 {
3397 undo_all ();
3398 return 0;
3399 }
3400
3401 /* If the actions of the earlier insns must be kept
3402 in addition to substituting them into the latest one,
3403 we must make a new PARALLEL for the latest insn
3404 to hold additional the SETs. */
3405
3406 if (added_sets_0 || added_sets_1 || added_sets_2)
3407 {
3408 int extra_sets = added_sets_0 + added_sets_1 + added_sets_2;
3409 combine_extras++;
3410
3411 if (GET_CODE (newpat) == PARALLEL)
3412 {
3413 rtvec old = XVEC (newpat, 0);
3414 total_sets = XVECLEN (newpat, 0) + extra_sets;
3415 newpat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (total_sets));
3416 memcpy (XVEC (newpat, 0)->elem, &old->elem[0],
3417 sizeof (old->elem[0]) * old->num_elem);
3418 }
3419 else
3420 {
3421 rtx old = newpat;
3422 total_sets = 1 + extra_sets;
3423 newpat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (total_sets));
3424 XVECEXP (newpat, 0, 0) = old;
3425 }
3426
3427 if (added_sets_0)
3428 XVECEXP (newpat, 0, --total_sets) = i0pat;
3429
3430 if (added_sets_1)
3431 {
3432 rtx t = i1pat;
3433 if (i0_feeds_i1_n)
3434 t = subst (t, i0dest, i0src_copy ? i0src_copy : i0src, 0, 0, 0);
3435
3436 XVECEXP (newpat, 0, --total_sets) = t;
3437 }
3438 if (added_sets_2)
3439 {
3440 rtx t = i2pat;
3441 if (i1_feeds_i2_n)
3442 t = subst (t, i1dest, i1src_copy ? i1src_copy : i1src, 0, 0,
3443 i0_feeds_i1_n && i0dest_in_i0src);
3444 if ((i0_feeds_i1_n && i1_feeds_i2_n) || i0_feeds_i2_n)
3445 t = subst (t, i0dest, i0src_copy2 ? i0src_copy2 : i0src, 0, 0, 0);
3446
3447 XVECEXP (newpat, 0, --total_sets) = t;
3448 }
3449 }
3450
3451 validate_replacement:
3452
3453 /* Note which hard regs this insn has as inputs. */
3454 mark_used_regs_combine (newpat);
3455
3456 /* If recog_for_combine fails, it strips existing clobbers. If we'll
3457 consider splitting this pattern, we might need these clobbers. */
3458 if (i1 && GET_CODE (newpat) == PARALLEL
3459 && GET_CODE (XVECEXP (newpat, 0, XVECLEN (newpat, 0) - 1)) == CLOBBER)
3460 {
3461 int len = XVECLEN (newpat, 0);
3462
3463 newpat_vec_with_clobbers = rtvec_alloc (len);
3464 for (i = 0; i < len; i++)
3465 RTVEC_ELT (newpat_vec_with_clobbers, i) = XVECEXP (newpat, 0, i);
3466 }
3467
3468 /* We have recognized nothing yet. */
3469 insn_code_number = -1;
3470
3471 /* See if this is a PARALLEL of two SETs where one SET's destination is
3472 a register that is unused and this isn't marked as an instruction that
3473 might trap in an EH region. In that case, we just need the other SET.
3474 We prefer this over the PARALLEL.
3475
3476 This can occur when simplifying a divmod insn. We *must* test for this
3477 case here because the code below that splits two independent SETs doesn't
3478 handle this case correctly when it updates the register status.
3479
3480 It's pointless doing this if we originally had two sets, one from
3481 i3, and one from i2. Combining then splitting the parallel results
3482 in the original i2 again plus an invalid insn (which we delete).
3483 The net effect is only to move instructions around, which makes
3484 debug info less accurate. */
3485
3486 if (!(added_sets_2 && i1 == 0)
3487 && is_parallel_of_n_reg_sets (newpat, 2)
3488 && asm_noperands (newpat) < 0)
3489 {
3490 rtx set0 = XVECEXP (newpat, 0, 0);
3491 rtx set1 = XVECEXP (newpat, 0, 1);
3492 rtx oldpat = newpat;
3493
3494 if (((REG_P (SET_DEST (set1))
3495 && find_reg_note (i3, REG_UNUSED, SET_DEST (set1)))
3496 || (GET_CODE (SET_DEST (set1)) == SUBREG
3497 && find_reg_note (i3, REG_UNUSED, SUBREG_REG (SET_DEST (set1)))))
3498 && insn_nothrow_p (i3)
3499 && !side_effects_p (SET_SRC (set1)))
3500 {
3501 newpat = set0;
3502 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3503 }
3504
3505 else if (((REG_P (SET_DEST (set0))
3506 && find_reg_note (i3, REG_UNUSED, SET_DEST (set0)))
3507 || (GET_CODE (SET_DEST (set0)) == SUBREG
3508 && find_reg_note (i3, REG_UNUSED,
3509 SUBREG_REG (SET_DEST (set0)))))
3510 && insn_nothrow_p (i3)
3511 && !side_effects_p (SET_SRC (set0)))
3512 {
3513 newpat = set1;
3514 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3515
3516 if (insn_code_number >= 0)
3517 changed_i3_dest = 1;
3518 }
3519
3520 if (insn_code_number < 0)
3521 newpat = oldpat;
3522 }
3523
3524 /* Is the result of combination a valid instruction? */
3525 if (insn_code_number < 0)
3526 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3527
3528 /* If we were combining three insns and the result is a simple SET
3529 with no ASM_OPERANDS that wasn't recognized, try to split it into two
3530 insns. There are two ways to do this. It can be split using a
3531 machine-specific method (like when you have an addition of a large
3532 constant) or by combine in the function find_split_point. */
3533
3534 if (i1 && insn_code_number < 0 && GET_CODE (newpat) == SET
3535 && asm_noperands (newpat) < 0)
3536 {
3537 rtx parallel, *split;
3538 rtx_insn *m_split_insn;
3539
3540 /* See if the MD file can split NEWPAT. If it can't, see if letting it
3541 use I2DEST as a scratch register will help. In the latter case,
3542 convert I2DEST to the mode of the source of NEWPAT if we can. */
3543
3544 m_split_insn = combine_split_insns (newpat, i3);
3545
3546 /* We can only use I2DEST as a scratch reg if it doesn't overlap any
3547 inputs of NEWPAT. */
3548
3549 /* ??? If I2DEST is not safe, and I1DEST exists, then it would be
3550 possible to try that as a scratch reg. This would require adding
3551 more code to make it work though. */
3552
3553 if (m_split_insn == 0 && ! reg_overlap_mentioned_p (i2dest, newpat))
3554 {
3555 machine_mode new_mode = GET_MODE (SET_DEST (newpat));
3556
3557 /* First try to split using the original register as a
3558 scratch register. */
3559 parallel = gen_rtx_PARALLEL (VOIDmode,
3560 gen_rtvec (2, newpat,
3561 gen_rtx_CLOBBER (VOIDmode,
3562 i2dest)));
3563 m_split_insn = combine_split_insns (parallel, i3);
3564
3565 /* If that didn't work, try changing the mode of I2DEST if
3566 we can. */
3567 if (m_split_insn == 0
3568 && new_mode != GET_MODE (i2dest)
3569 && new_mode != VOIDmode
3570 && can_change_dest_mode (i2dest, added_sets_2, new_mode))
3571 {
3572 machine_mode old_mode = GET_MODE (i2dest);
3573 rtx ni2dest;
3574
3575 if (REGNO (i2dest) < FIRST_PSEUDO_REGISTER)
3576 ni2dest = gen_rtx_REG (new_mode, REGNO (i2dest));
3577 else
3578 {
3579 SUBST_MODE (regno_reg_rtx[REGNO (i2dest)], new_mode);
3580 ni2dest = regno_reg_rtx[REGNO (i2dest)];
3581 }
3582
3583 parallel = (gen_rtx_PARALLEL
3584 (VOIDmode,
3585 gen_rtvec (2, newpat,
3586 gen_rtx_CLOBBER (VOIDmode,
3587 ni2dest))));
3588 m_split_insn = combine_split_insns (parallel, i3);
3589
3590 if (m_split_insn == 0
3591 && REGNO (i2dest) >= FIRST_PSEUDO_REGISTER)
3592 {
3593 struct undo *buf;
3594
3595 adjust_reg_mode (regno_reg_rtx[REGNO (i2dest)], old_mode);
3596 buf = undobuf.undos;
3597 undobuf.undos = buf->next;
3598 buf->next = undobuf.frees;
3599 undobuf.frees = buf;
3600 }
3601 }
3602
3603 i2scratch = m_split_insn != 0;
3604 }
3605
3606 /* If recog_for_combine has discarded clobbers, try to use them
3607 again for the split. */
3608 if (m_split_insn == 0 && newpat_vec_with_clobbers)
3609 {
3610 parallel = gen_rtx_PARALLEL (VOIDmode, newpat_vec_with_clobbers);
3611 m_split_insn = combine_split_insns (parallel, i3);
3612 }
3613
3614 if (m_split_insn && NEXT_INSN (m_split_insn) == NULL_RTX)
3615 {
3616 rtx m_split_pat = PATTERN (m_split_insn);
3617 insn_code_number = recog_for_combine (&m_split_pat, i3, &new_i3_notes);
3618 if (insn_code_number >= 0)
3619 newpat = m_split_pat;
3620 }
3621 else if (m_split_insn && NEXT_INSN (NEXT_INSN (m_split_insn)) == NULL_RTX
3622 && (next_nonnote_nondebug_insn (i2) == i3
3623 || ! use_crosses_set_p (PATTERN (m_split_insn), DF_INSN_LUID (i2))))
3624 {
3625 rtx i2set, i3set;
3626 rtx newi3pat = PATTERN (NEXT_INSN (m_split_insn));
3627 newi2pat = PATTERN (m_split_insn);
3628
3629 i3set = single_set (NEXT_INSN (m_split_insn));
3630 i2set = single_set (m_split_insn);
3631
3632 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
3633
3634 /* If I2 or I3 has multiple SETs, we won't know how to track
3635 register status, so don't use these insns. If I2's destination
3636 is used between I2 and I3, we also can't use these insns. */
3637
3638 if (i2_code_number >= 0 && i2set && i3set
3639 && (next_nonnote_nondebug_insn (i2) == i3
3640 || ! reg_used_between_p (SET_DEST (i2set), i2, i3)))
3641 insn_code_number = recog_for_combine (&newi3pat, i3,
3642 &new_i3_notes);
3643 if (insn_code_number >= 0)
3644 newpat = newi3pat;
3645
3646 /* It is possible that both insns now set the destination of I3.
3647 If so, we must show an extra use of it. */
3648
3649 if (insn_code_number >= 0)
3650 {
3651 rtx new_i3_dest = SET_DEST (i3set);
3652 rtx new_i2_dest = SET_DEST (i2set);
3653
3654 while (GET_CODE (new_i3_dest) == ZERO_EXTRACT
3655 || GET_CODE (new_i3_dest) == STRICT_LOW_PART
3656 || GET_CODE (new_i3_dest) == SUBREG)
3657 new_i3_dest = XEXP (new_i3_dest, 0);
3658
3659 while (GET_CODE (new_i2_dest) == ZERO_EXTRACT
3660 || GET_CODE (new_i2_dest) == STRICT_LOW_PART
3661 || GET_CODE (new_i2_dest) == SUBREG)
3662 new_i2_dest = XEXP (new_i2_dest, 0);
3663
3664 if (REG_P (new_i3_dest)
3665 && REG_P (new_i2_dest)
3666 && REGNO (new_i3_dest) == REGNO (new_i2_dest)
3667 && REGNO (new_i2_dest) < reg_n_sets_max)
3668 INC_REG_N_SETS (REGNO (new_i2_dest), 1);
3669 }
3670 }
3671
3672 /* If we can split it and use I2DEST, go ahead and see if that
3673 helps things be recognized. Verify that none of the registers
3674 are set between I2 and I3. */
3675 if (insn_code_number < 0
3676 && (split = find_split_point (&newpat, i3, false)) != 0
3677 && (!HAVE_cc0 || REG_P (i2dest))
3678 /* We need I2DEST in the proper mode. If it is a hard register
3679 or the only use of a pseudo, we can change its mode.
3680 Make sure we don't change a hard register to have a mode that
3681 isn't valid for it, or change the number of registers. */
3682 && (GET_MODE (*split) == GET_MODE (i2dest)
3683 || GET_MODE (*split) == VOIDmode
3684 || can_change_dest_mode (i2dest, added_sets_2,
3685 GET_MODE (*split)))
3686 && (next_nonnote_nondebug_insn (i2) == i3
3687 || ! use_crosses_set_p (*split, DF_INSN_LUID (i2)))
3688 /* We can't overwrite I2DEST if its value is still used by
3689 NEWPAT. */
3690 && ! reg_referenced_p (i2dest, newpat))
3691 {
3692 rtx newdest = i2dest;
3693 enum rtx_code split_code = GET_CODE (*split);
3694 machine_mode split_mode = GET_MODE (*split);
3695 bool subst_done = false;
3696 newi2pat = NULL_RTX;
3697
3698 i2scratch = true;
3699
3700 /* *SPLIT may be part of I2SRC, so make sure we have the
3701 original expression around for later debug processing.
3702 We should not need I2SRC any more in other cases. */
3703 if (MAY_HAVE_DEBUG_INSNS)
3704 i2src = copy_rtx (i2src);
3705 else
3706 i2src = NULL;
3707
3708 /* Get NEWDEST as a register in the proper mode. We have already
3709 validated that we can do this. */
3710 if (GET_MODE (i2dest) != split_mode && split_mode != VOIDmode)
3711 {
3712 if (REGNO (i2dest) < FIRST_PSEUDO_REGISTER)
3713 newdest = gen_rtx_REG (split_mode, REGNO (i2dest));
3714 else
3715 {
3716 SUBST_MODE (regno_reg_rtx[REGNO (i2dest)], split_mode);
3717 newdest = regno_reg_rtx[REGNO (i2dest)];
3718 }
3719 }
3720
3721 /* If *SPLIT is a (mult FOO (const_int pow2)), convert it to
3722 an ASHIFT. This can occur if it was inside a PLUS and hence
3723 appeared to be a memory address. This is a kludge. */
3724 if (split_code == MULT
3725 && CONST_INT_P (XEXP (*split, 1))
3726 && INTVAL (XEXP (*split, 1)) > 0
3727 && (i = exact_log2 (UINTVAL (XEXP (*split, 1)))) >= 0)
3728 {
3729 SUBST (*split, gen_rtx_ASHIFT (split_mode,
3730 XEXP (*split, 0), GEN_INT (i)));
3731 /* Update split_code because we may not have a multiply
3732 anymore. */
3733 split_code = GET_CODE (*split);
3734 }
3735
3736 /* Similarly for (plus (mult FOO (const_int pow2))). */
3737 if (split_code == PLUS
3738 && GET_CODE (XEXP (*split, 0)) == MULT
3739 && CONST_INT_P (XEXP (XEXP (*split, 0), 1))
3740 && INTVAL (XEXP (XEXP (*split, 0), 1)) > 0
3741 && (i = exact_log2 (UINTVAL (XEXP (XEXP (*split, 0), 1)))) >= 0)
3742 {
3743 rtx nsplit = XEXP (*split, 0);
3744 SUBST (XEXP (*split, 0), gen_rtx_ASHIFT (GET_MODE (nsplit),
3745 XEXP (nsplit, 0), GEN_INT (i)));
3746 /* Update split_code because we may not have a multiply
3747 anymore. */
3748 split_code = GET_CODE (*split);
3749 }
3750
3751 #ifdef INSN_SCHEDULING
3752 /* If *SPLIT is a paradoxical SUBREG, when we split it, it should
3753 be written as a ZERO_EXTEND. */
3754 if (split_code == SUBREG && MEM_P (SUBREG_REG (*split)))
3755 {
3756 #ifdef LOAD_EXTEND_OP
3757 /* Or as a SIGN_EXTEND if LOAD_EXTEND_OP says that that's
3758 what it really is. */
3759 if (LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (*split)))
3760 == SIGN_EXTEND)
3761 SUBST (*split, gen_rtx_SIGN_EXTEND (split_mode,
3762 SUBREG_REG (*split)));
3763 else
3764 #endif
3765 SUBST (*split, gen_rtx_ZERO_EXTEND (split_mode,
3766 SUBREG_REG (*split)));
3767 }
3768 #endif
3769
3770 /* Attempt to split binary operators using arithmetic identities. */
3771 if (BINARY_P (SET_SRC (newpat))
3772 && split_mode == GET_MODE (SET_SRC (newpat))
3773 && ! side_effects_p (SET_SRC (newpat)))
3774 {
3775 rtx setsrc = SET_SRC (newpat);
3776 machine_mode mode = GET_MODE (setsrc);
3777 enum rtx_code code = GET_CODE (setsrc);
3778 rtx src_op0 = XEXP (setsrc, 0);
3779 rtx src_op1 = XEXP (setsrc, 1);
3780
3781 /* Split "X = Y op Y" as "Z = Y; X = Z op Z". */
3782 if (rtx_equal_p (src_op0, src_op1))
3783 {
3784 newi2pat = gen_rtx_SET (newdest, src_op0);
3785 SUBST (XEXP (setsrc, 0), newdest);
3786 SUBST (XEXP (setsrc, 1), newdest);
3787 subst_done = true;
3788 }
3789 /* Split "((P op Q) op R) op S" where op is PLUS or MULT. */
3790 else if ((code == PLUS || code == MULT)
3791 && GET_CODE (src_op0) == code
3792 && GET_CODE (XEXP (src_op0, 0)) == code
3793 && (INTEGRAL_MODE_P (mode)
3794 || (FLOAT_MODE_P (mode)
3795 && flag_unsafe_math_optimizations)))
3796 {
3797 rtx p = XEXP (XEXP (src_op0, 0), 0);
3798 rtx q = XEXP (XEXP (src_op0, 0), 1);
3799 rtx r = XEXP (src_op0, 1);
3800 rtx s = src_op1;
3801
3802 /* Split both "((X op Y) op X) op Y" and
3803 "((X op Y) op Y) op X" as "T op T" where T is
3804 "X op Y". */
3805 if ((rtx_equal_p (p,r) && rtx_equal_p (q,s))
3806 || (rtx_equal_p (p,s) && rtx_equal_p (q,r)))
3807 {
3808 newi2pat = gen_rtx_SET (newdest, XEXP (src_op0, 0));
3809 SUBST (XEXP (setsrc, 0), newdest);
3810 SUBST (XEXP (setsrc, 1), newdest);
3811 subst_done = true;
3812 }
3813 /* Split "((X op X) op Y) op Y)" as "T op T" where
3814 T is "X op Y". */
3815 else if (rtx_equal_p (p,q) && rtx_equal_p (r,s))
3816 {
3817 rtx tmp = simplify_gen_binary (code, mode, p, r);
3818 newi2pat = gen_rtx_SET (newdest, tmp);
3819 SUBST (XEXP (setsrc, 0), newdest);
3820 SUBST (XEXP (setsrc, 1), newdest);
3821 subst_done = true;
3822 }
3823 }
3824 }
3825
3826 if (!subst_done)
3827 {
3828 newi2pat = gen_rtx_SET (newdest, *split);
3829 SUBST (*split, newdest);
3830 }
3831
3832 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
3833
3834 /* recog_for_combine might have added CLOBBERs to newi2pat.
3835 Make sure NEWPAT does not depend on the clobbered regs. */
3836 if (GET_CODE (newi2pat) == PARALLEL)
3837 for (i = XVECLEN (newi2pat, 0) - 1; i >= 0; i--)
3838 if (GET_CODE (XVECEXP (newi2pat, 0, i)) == CLOBBER)
3839 {
3840 rtx reg = XEXP (XVECEXP (newi2pat, 0, i), 0);
3841 if (reg_overlap_mentioned_p (reg, newpat))
3842 {
3843 undo_all ();
3844 return 0;
3845 }
3846 }
3847
3848 /* If the split point was a MULT and we didn't have one before,
3849 don't use one now. */
3850 if (i2_code_number >= 0 && ! (split_code == MULT && ! have_mult))
3851 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3852 }
3853 }
3854
3855 /* Check for a case where we loaded from memory in a narrow mode and
3856 then sign extended it, but we need both registers. In that case,
3857 we have a PARALLEL with both loads from the same memory location.
3858 We can split this into a load from memory followed by a register-register
3859 copy. This saves at least one insn, more if register allocation can
3860 eliminate the copy.
3861
3862 We cannot do this if the destination of the first assignment is a
3863 condition code register or cc0. We eliminate this case by making sure
3864 the SET_DEST and SET_SRC have the same mode.
3865
3866 We cannot do this if the destination of the second assignment is
3867 a register that we have already assumed is zero-extended. Similarly
3868 for a SUBREG of such a register. */
3869
3870 else if (i1 && insn_code_number < 0 && asm_noperands (newpat) < 0
3871 && GET_CODE (newpat) == PARALLEL
3872 && XVECLEN (newpat, 0) == 2
3873 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
3874 && GET_CODE (SET_SRC (XVECEXP (newpat, 0, 0))) == SIGN_EXTEND
3875 && (GET_MODE (SET_DEST (XVECEXP (newpat, 0, 0)))
3876 == GET_MODE (SET_SRC (XVECEXP (newpat, 0, 0))))
3877 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
3878 && rtx_equal_p (SET_SRC (XVECEXP (newpat, 0, 1)),
3879 XEXP (SET_SRC (XVECEXP (newpat, 0, 0)), 0))
3880 && ! use_crosses_set_p (SET_SRC (XVECEXP (newpat, 0, 1)),
3881 DF_INSN_LUID (i2))
3882 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != ZERO_EXTRACT
3883 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != STRICT_LOW_PART
3884 && ! (temp_expr = SET_DEST (XVECEXP (newpat, 0, 1)),
3885 (REG_P (temp_expr)
3886 && reg_stat[REGNO (temp_expr)].nonzero_bits != 0
3887 && GET_MODE_PRECISION (GET_MODE (temp_expr)) < BITS_PER_WORD
3888 && GET_MODE_PRECISION (GET_MODE (temp_expr)) < HOST_BITS_PER_INT
3889 && (reg_stat[REGNO (temp_expr)].nonzero_bits
3890 != GET_MODE_MASK (word_mode))))
3891 && ! (GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) == SUBREG
3892 && (temp_expr = SUBREG_REG (SET_DEST (XVECEXP (newpat, 0, 1))),
3893 (REG_P (temp_expr)
3894 && reg_stat[REGNO (temp_expr)].nonzero_bits != 0
3895 && GET_MODE_PRECISION (GET_MODE (temp_expr)) < BITS_PER_WORD
3896 && GET_MODE_PRECISION (GET_MODE (temp_expr)) < HOST_BITS_PER_INT
3897 && (reg_stat[REGNO (temp_expr)].nonzero_bits
3898 != GET_MODE_MASK (word_mode)))))
3899 && ! reg_overlap_mentioned_p (SET_DEST (XVECEXP (newpat, 0, 1)),
3900 SET_SRC (XVECEXP (newpat, 0, 1)))
3901 && ! find_reg_note (i3, REG_UNUSED,
3902 SET_DEST (XVECEXP (newpat, 0, 0))))
3903 {
3904 rtx ni2dest;
3905
3906 newi2pat = XVECEXP (newpat, 0, 0);
3907 ni2dest = SET_DEST (XVECEXP (newpat, 0, 0));
3908 newpat = XVECEXP (newpat, 0, 1);
3909 SUBST (SET_SRC (newpat),
3910 gen_lowpart (GET_MODE (SET_SRC (newpat)), ni2dest));
3911 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
3912
3913 if (i2_code_number >= 0)
3914 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3915
3916 if (insn_code_number >= 0)
3917 swap_i2i3 = 1;
3918 }
3919
3920 /* Similarly, check for a case where we have a PARALLEL of two independent
3921 SETs but we started with three insns. In this case, we can do the sets
3922 as two separate insns. This case occurs when some SET allows two
3923 other insns to combine, but the destination of that SET is still live.
3924
3925 Also do this if we started with two insns and (at least) one of the
3926 resulting sets is a noop; this noop will be deleted later. */
3927
3928 else if (insn_code_number < 0 && asm_noperands (newpat) < 0
3929 && GET_CODE (newpat) == PARALLEL
3930 && XVECLEN (newpat, 0) == 2
3931 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
3932 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
3933 && (i1 || set_noop_p (XVECEXP (newpat, 0, 0))
3934 || set_noop_p (XVECEXP (newpat, 0, 1)))
3935 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) != ZERO_EXTRACT
3936 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) != STRICT_LOW_PART
3937 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != ZERO_EXTRACT
3938 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != STRICT_LOW_PART
3939 && ! reg_referenced_p (SET_DEST (XVECEXP (newpat, 0, 1)),
3940 XVECEXP (newpat, 0, 0))
3941 && ! reg_referenced_p (SET_DEST (XVECEXP (newpat, 0, 0)),
3942 XVECEXP (newpat, 0, 1))
3943 && ! (contains_muldiv (SET_SRC (XVECEXP (newpat, 0, 0)))
3944 && contains_muldiv (SET_SRC (XVECEXP (newpat, 0, 1)))))
3945 {
3946 rtx set0 = XVECEXP (newpat, 0, 0);
3947 rtx set1 = XVECEXP (newpat, 0, 1);
3948
3949 /* Normally, it doesn't matter which of the two is done first,
3950 but the one that references cc0 can't be the second, and
3951 one which uses any regs/memory set in between i2 and i3 can't
3952 be first. The PARALLEL might also have been pre-existing in i3,
3953 so we need to make sure that we won't wrongly hoist a SET to i2
3954 that would conflict with a death note present in there. */
3955 if (!use_crosses_set_p (SET_SRC (set1), DF_INSN_LUID (i2))
3956 && !(REG_P (SET_DEST (set1))
3957 && find_reg_note (i2, REG_DEAD, SET_DEST (set1)))
3958 && !(GET_CODE (SET_DEST (set1)) == SUBREG
3959 && find_reg_note (i2, REG_DEAD,
3960 SUBREG_REG (SET_DEST (set1))))
3961 && (!HAVE_cc0 || !reg_referenced_p (cc0_rtx, set0))
3962 /* If I3 is a jump, ensure that set0 is a jump so that
3963 we do not create invalid RTL. */
3964 && (!JUMP_P (i3) || SET_DEST (set0) == pc_rtx)
3965 )
3966 {
3967 newi2pat = set1;
3968 newpat = set0;
3969 }
3970 else if (!use_crosses_set_p (SET_SRC (set0), DF_INSN_LUID (i2))
3971 && !(REG_P (SET_DEST (set0))
3972 && find_reg_note (i2, REG_DEAD, SET_DEST (set0)))
3973 && !(GET_CODE (SET_DEST (set0)) == SUBREG
3974 && find_reg_note (i2, REG_DEAD,
3975 SUBREG_REG (SET_DEST (set0))))
3976 && (!HAVE_cc0 || !reg_referenced_p (cc0_rtx, set1))
3977 /* If I3 is a jump, ensure that set1 is a jump so that
3978 we do not create invalid RTL. */
3979 && (!JUMP_P (i3) || SET_DEST (set1) == pc_rtx)
3980 )
3981 {
3982 newi2pat = set0;
3983 newpat = set1;
3984 }
3985 else
3986 {
3987 undo_all ();
3988 return 0;
3989 }
3990
3991 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
3992
3993 if (i2_code_number >= 0)
3994 {
3995 /* recog_for_combine might have added CLOBBERs to newi2pat.
3996 Make sure NEWPAT does not depend on the clobbered regs. */
3997 if (GET_CODE (newi2pat) == PARALLEL)
3998 {
3999 for (i = XVECLEN (newi2pat, 0) - 1; i >= 0; i--)
4000 if (GET_CODE (XVECEXP (newi2pat, 0, i)) == CLOBBER)
4001 {
4002 rtx reg = XEXP (XVECEXP (newi2pat, 0, i), 0);
4003 if (reg_overlap_mentioned_p (reg, newpat))
4004 {
4005 undo_all ();
4006 return 0;
4007 }
4008 }
4009 }
4010
4011 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
4012 }
4013 }
4014
4015 /* If it still isn't recognized, fail and change things back the way they
4016 were. */
4017 if ((insn_code_number < 0
4018 /* Is the result a reasonable ASM_OPERANDS? */
4019 && (! check_asm_operands (newpat) || added_sets_1 || added_sets_2)))
4020 {
4021 undo_all ();
4022 return 0;
4023 }
4024
4025 /* If we had to change another insn, make sure it is valid also. */
4026 if (undobuf.other_insn)
4027 {
4028 CLEAR_HARD_REG_SET (newpat_used_regs);
4029
4030 other_pat = PATTERN (undobuf.other_insn);
4031 other_code_number = recog_for_combine (&other_pat, undobuf.other_insn,
4032 &new_other_notes);
4033
4034 if (other_code_number < 0 && ! check_asm_operands (other_pat))
4035 {
4036 undo_all ();
4037 return 0;
4038 }
4039 }
4040
4041 /* If I2 is the CC0 setter and I3 is the CC0 user then check whether
4042 they are adjacent to each other or not. */
4043 if (HAVE_cc0)
4044 {
4045 rtx_insn *p = prev_nonnote_insn (i3);
4046 if (p && p != i2 && NONJUMP_INSN_P (p) && newi2pat
4047 && sets_cc0_p (newi2pat))
4048 {
4049 undo_all ();
4050 return 0;
4051 }
4052 }
4053
4054 /* Only allow this combination if insn_rtx_costs reports that the
4055 replacement instructions are cheaper than the originals. */
4056 if (!combine_validate_cost (i0, i1, i2, i3, newpat, newi2pat, other_pat))
4057 {
4058 undo_all ();
4059 return 0;
4060 }
4061
4062 if (MAY_HAVE_DEBUG_INSNS)
4063 {
4064 struct undo *undo;
4065
4066 for (undo = undobuf.undos; undo; undo = undo->next)
4067 if (undo->kind == UNDO_MODE)
4068 {
4069 rtx reg = *undo->where.r;
4070 machine_mode new_mode = GET_MODE (reg);
4071 machine_mode old_mode = undo->old_contents.m;
4072
4073 /* Temporarily revert mode back. */
4074 adjust_reg_mode (reg, old_mode);
4075
4076 if (reg == i2dest && i2scratch)
4077 {
4078 /* If we used i2dest as a scratch register with a
4079 different mode, substitute it for the original
4080 i2src while its original mode is temporarily
4081 restored, and then clear i2scratch so that we don't
4082 do it again later. */
4083 propagate_for_debug (i2, last_combined_insn, reg, i2src,
4084 this_basic_block);
4085 i2scratch = false;
4086 /* Put back the new mode. */
4087 adjust_reg_mode (reg, new_mode);
4088 }
4089 else
4090 {
4091 rtx tempreg = gen_raw_REG (old_mode, REGNO (reg));
4092 rtx_insn *first, *last;
4093
4094 if (reg == i2dest)
4095 {
4096 first = i2;
4097 last = last_combined_insn;
4098 }
4099 else
4100 {
4101 first = i3;
4102 last = undobuf.other_insn;
4103 gcc_assert (last);
4104 if (DF_INSN_LUID (last)
4105 < DF_INSN_LUID (last_combined_insn))
4106 last = last_combined_insn;
4107 }
4108
4109 /* We're dealing with a reg that changed mode but not
4110 meaning, so we want to turn it into a subreg for
4111 the new mode. However, because of REG sharing and
4112 because its mode had already changed, we have to do
4113 it in two steps. First, replace any debug uses of
4114 reg, with its original mode temporarily restored,
4115 with this copy we have created; then, replace the
4116 copy with the SUBREG of the original shared reg,
4117 once again changed to the new mode. */
4118 propagate_for_debug (first, last, reg, tempreg,
4119 this_basic_block);
4120 adjust_reg_mode (reg, new_mode);
4121 propagate_for_debug (first, last, tempreg,
4122 lowpart_subreg (old_mode, reg, new_mode),
4123 this_basic_block);
4124 }
4125 }
4126 }
4127
4128 /* If we will be able to accept this, we have made a
4129 change to the destination of I3. This requires us to
4130 do a few adjustments. */
4131
4132 if (changed_i3_dest)
4133 {
4134 PATTERN (i3) = newpat;
4135 adjust_for_new_dest (i3);
4136 }
4137
4138 /* We now know that we can do this combination. Merge the insns and
4139 update the status of registers and LOG_LINKS. */
4140
4141 if (undobuf.other_insn)
4142 {
4143 rtx note, next;
4144
4145 PATTERN (undobuf.other_insn) = other_pat;
4146
4147 /* If any of the notes in OTHER_INSN were REG_DEAD or REG_UNUSED,
4148 ensure that they are still valid. Then add any non-duplicate
4149 notes added by recog_for_combine. */
4150 for (note = REG_NOTES (undobuf.other_insn); note; note = next)
4151 {
4152 next = XEXP (note, 1);
4153
4154 if ((REG_NOTE_KIND (note) == REG_DEAD
4155 && !reg_referenced_p (XEXP (note, 0),
4156 PATTERN (undobuf.other_insn)))
4157 ||(REG_NOTE_KIND (note) == REG_UNUSED
4158 && !reg_set_p (XEXP (note, 0),
4159 PATTERN (undobuf.other_insn))))
4160 remove_note (undobuf.other_insn, note);
4161 }
4162
4163 distribute_notes (new_other_notes, undobuf.other_insn,
4164 undobuf.other_insn, NULL, NULL_RTX, NULL_RTX,
4165 NULL_RTX);
4166 }
4167
4168 if (swap_i2i3)
4169 {
4170 rtx_insn *insn;
4171 struct insn_link *link;
4172 rtx ni2dest;
4173
4174 /* I3 now uses what used to be its destination and which is now
4175 I2's destination. This requires us to do a few adjustments. */
4176 PATTERN (i3) = newpat;
4177 adjust_for_new_dest (i3);
4178
4179 /* We need a LOG_LINK from I3 to I2. But we used to have one,
4180 so we still will.
4181
4182 However, some later insn might be using I2's dest and have
4183 a LOG_LINK pointing at I3. We must remove this link.
4184 The simplest way to remove the link is to point it at I1,
4185 which we know will be a NOTE. */
4186
4187 /* newi2pat is usually a SET here; however, recog_for_combine might
4188 have added some clobbers. */
4189 if (GET_CODE (newi2pat) == PARALLEL)
4190 ni2dest = SET_DEST (XVECEXP (newi2pat, 0, 0));
4191 else
4192 ni2dest = SET_DEST (newi2pat);
4193
4194 for (insn = NEXT_INSN (i3);
4195 insn && (this_basic_block->next_bb == EXIT_BLOCK_PTR_FOR_FN (cfun)
4196 || insn != BB_HEAD (this_basic_block->next_bb));
4197 insn = NEXT_INSN (insn))
4198 {
4199 if (INSN_P (insn) && reg_referenced_p (ni2dest, PATTERN (insn)))
4200 {
4201 FOR_EACH_LOG_LINK (link, insn)
4202 if (link->insn == i3)
4203 link->insn = i1;
4204
4205 break;
4206 }
4207 }
4208 }
4209
4210 {
4211 rtx i3notes, i2notes, i1notes = 0, i0notes = 0;
4212 struct insn_link *i3links, *i2links, *i1links = 0, *i0links = 0;
4213 rtx midnotes = 0;
4214 int from_luid;
4215 /* Compute which registers we expect to eliminate. newi2pat may be setting
4216 either i3dest or i2dest, so we must check it. */
4217 rtx elim_i2 = ((newi2pat && reg_set_p (i2dest, newi2pat))
4218 || i2dest_in_i2src || i2dest_in_i1src || i2dest_in_i0src
4219 || !i2dest_killed
4220 ? 0 : i2dest);
4221 /* For i1, we need to compute both local elimination and global
4222 elimination information with respect to newi2pat because i1dest
4223 may be the same as i3dest, in which case newi2pat may be setting
4224 i1dest. Global information is used when distributing REG_DEAD
4225 note for i2 and i3, in which case it does matter if newi2pat sets
4226 i1dest or not.
4227
4228 Local information is used when distributing REG_DEAD note for i1,
4229 in which case it doesn't matter if newi2pat sets i1dest or not.
4230 See PR62151, if we have four insns combination:
4231 i0: r0 <- i0src
4232 i1: r1 <- i1src (using r0)
4233 REG_DEAD (r0)
4234 i2: r0 <- i2src (using r1)
4235 i3: r3 <- i3src (using r0)
4236 ix: using r0
4237 From i1's point of view, r0 is eliminated, no matter if it is set
4238 by newi2pat or not. In other words, REG_DEAD info for r0 in i1
4239 should be discarded.
4240
4241 Note local information only affects cases in forms like "I1->I2->I3",
4242 "I0->I1->I2->I3" or "I0&I1->I2, I2->I3". For other cases like
4243 "I0->I1, I1&I2->I3" or "I1&I2->I3", newi2pat won't set i1dest or
4244 i0dest anyway. */
4245 rtx local_elim_i1 = (i1 == 0 || i1dest_in_i1src || i1dest_in_i0src
4246 || !i1dest_killed
4247 ? 0 : i1dest);
4248 rtx elim_i1 = (local_elim_i1 == 0
4249 || (newi2pat && reg_set_p (i1dest, newi2pat))
4250 ? 0 : i1dest);
4251 /* Same case as i1. */
4252 rtx local_elim_i0 = (i0 == 0 || i0dest_in_i0src || !i0dest_killed
4253 ? 0 : i0dest);
4254 rtx elim_i0 = (local_elim_i0 == 0
4255 || (newi2pat && reg_set_p (i0dest, newi2pat))
4256 ? 0 : i0dest);
4257
4258 /* Get the old REG_NOTES and LOG_LINKS from all our insns and
4259 clear them. */
4260 i3notes = REG_NOTES (i3), i3links = LOG_LINKS (i3);
4261 i2notes = REG_NOTES (i2), i2links = LOG_LINKS (i2);
4262 if (i1)
4263 i1notes = REG_NOTES (i1), i1links = LOG_LINKS (i1);
4264 if (i0)
4265 i0notes = REG_NOTES (i0), i0links = LOG_LINKS (i0);
4266
4267 /* Ensure that we do not have something that should not be shared but
4268 occurs multiple times in the new insns. Check this by first
4269 resetting all the `used' flags and then copying anything is shared. */
4270
4271 reset_used_flags (i3notes);
4272 reset_used_flags (i2notes);
4273 reset_used_flags (i1notes);
4274 reset_used_flags (i0notes);
4275 reset_used_flags (newpat);
4276 reset_used_flags (newi2pat);
4277 if (undobuf.other_insn)
4278 reset_used_flags (PATTERN (undobuf.other_insn));
4279
4280 i3notes = copy_rtx_if_shared (i3notes);
4281 i2notes = copy_rtx_if_shared (i2notes);
4282 i1notes = copy_rtx_if_shared (i1notes);
4283 i0notes = copy_rtx_if_shared (i0notes);
4284 newpat = copy_rtx_if_shared (newpat);
4285 newi2pat = copy_rtx_if_shared (newi2pat);
4286 if (undobuf.other_insn)
4287 reset_used_flags (PATTERN (undobuf.other_insn));
4288
4289 INSN_CODE (i3) = insn_code_number;
4290 PATTERN (i3) = newpat;
4291
4292 if (CALL_P (i3) && CALL_INSN_FUNCTION_USAGE (i3))
4293 {
4294 rtx call_usage = CALL_INSN_FUNCTION_USAGE (i3);
4295
4296 reset_used_flags (call_usage);
4297 call_usage = copy_rtx (call_usage);
4298
4299 if (substed_i2)
4300 {
4301 /* I2SRC must still be meaningful at this point. Some splitting
4302 operations can invalidate I2SRC, but those operations do not
4303 apply to calls. */
4304 gcc_assert (i2src);
4305 replace_rtx (call_usage, i2dest, i2src);
4306 }
4307
4308 if (substed_i1)
4309 replace_rtx (call_usage, i1dest, i1src);
4310 if (substed_i0)
4311 replace_rtx (call_usage, i0dest, i0src);
4312
4313 CALL_INSN_FUNCTION_USAGE (i3) = call_usage;
4314 }
4315
4316 if (undobuf.other_insn)
4317 INSN_CODE (undobuf.other_insn) = other_code_number;
4318
4319 /* We had one special case above where I2 had more than one set and
4320 we replaced a destination of one of those sets with the destination
4321 of I3. In that case, we have to update LOG_LINKS of insns later
4322 in this basic block. Note that this (expensive) case is rare.
4323
4324 Also, in this case, we must pretend that all REG_NOTEs for I2
4325 actually came from I3, so that REG_UNUSED notes from I2 will be
4326 properly handled. */
4327
4328 if (i3_subst_into_i2)
4329 {
4330 for (i = 0; i < XVECLEN (PATTERN (i2), 0); i++)
4331 if ((GET_CODE (XVECEXP (PATTERN (i2), 0, i)) == SET
4332 || GET_CODE (XVECEXP (PATTERN (i2), 0, i)) == CLOBBER)
4333 && REG_P (SET_DEST (XVECEXP (PATTERN (i2), 0, i)))
4334 && SET_DEST (XVECEXP (PATTERN (i2), 0, i)) != i2dest
4335 && ! find_reg_note (i2, REG_UNUSED,
4336 SET_DEST (XVECEXP (PATTERN (i2), 0, i))))
4337 for (temp_insn = NEXT_INSN (i2);
4338 temp_insn
4339 && (this_basic_block->next_bb == EXIT_BLOCK_PTR_FOR_FN (cfun)
4340 || BB_HEAD (this_basic_block) != temp_insn);
4341 temp_insn = NEXT_INSN (temp_insn))
4342 if (temp_insn != i3 && INSN_P (temp_insn))
4343 FOR_EACH_LOG_LINK (link, temp_insn)
4344 if (link->insn == i2)
4345 link->insn = i3;
4346
4347 if (i3notes)
4348 {
4349 rtx link = i3notes;
4350 while (XEXP (link, 1))
4351 link = XEXP (link, 1);
4352 XEXP (link, 1) = i2notes;
4353 }
4354 else
4355 i3notes = i2notes;
4356 i2notes = 0;
4357 }
4358
4359 LOG_LINKS (i3) = NULL;
4360 REG_NOTES (i3) = 0;
4361 LOG_LINKS (i2) = NULL;
4362 REG_NOTES (i2) = 0;
4363
4364 if (newi2pat)
4365 {
4366 if (MAY_HAVE_DEBUG_INSNS && i2scratch)
4367 propagate_for_debug (i2, last_combined_insn, i2dest, i2src,
4368 this_basic_block);
4369 INSN_CODE (i2) = i2_code_number;
4370 PATTERN (i2) = newi2pat;
4371 }
4372 else
4373 {
4374 if (MAY_HAVE_DEBUG_INSNS && i2src)
4375 propagate_for_debug (i2, last_combined_insn, i2dest, i2src,
4376 this_basic_block);
4377 SET_INSN_DELETED (i2);
4378 }
4379
4380 if (i1)
4381 {
4382 LOG_LINKS (i1) = NULL;
4383 REG_NOTES (i1) = 0;
4384 if (MAY_HAVE_DEBUG_INSNS)
4385 propagate_for_debug (i1, last_combined_insn, i1dest, i1src,
4386 this_basic_block);
4387 SET_INSN_DELETED (i1);
4388 }
4389
4390 if (i0)
4391 {
4392 LOG_LINKS (i0) = NULL;
4393 REG_NOTES (i0) = 0;
4394 if (MAY_HAVE_DEBUG_INSNS)
4395 propagate_for_debug (i0, last_combined_insn, i0dest, i0src,
4396 this_basic_block);
4397 SET_INSN_DELETED (i0);
4398 }
4399
4400 /* Get death notes for everything that is now used in either I3 or
4401 I2 and used to die in a previous insn. If we built two new
4402 patterns, move from I1 to I2 then I2 to I3 so that we get the
4403 proper movement on registers that I2 modifies. */
4404
4405 if (i0)
4406 from_luid = DF_INSN_LUID (i0);
4407 else if (i1)
4408 from_luid = DF_INSN_LUID (i1);
4409 else
4410 from_luid = DF_INSN_LUID (i2);
4411 if (newi2pat)
4412 move_deaths (newi2pat, NULL_RTX, from_luid, i2, &midnotes);
4413 move_deaths (newpat, newi2pat, from_luid, i3, &midnotes);
4414
4415 /* Distribute all the LOG_LINKS and REG_NOTES from I1, I2, and I3. */
4416 if (i3notes)
4417 distribute_notes (i3notes, i3, i3, newi2pat ? i2 : NULL,
4418 elim_i2, elim_i1, elim_i0);
4419 if (i2notes)
4420 distribute_notes (i2notes, i2, i3, newi2pat ? i2 : NULL,
4421 elim_i2, elim_i1, elim_i0);
4422 if (i1notes)
4423 distribute_notes (i1notes, i1, i3, newi2pat ? i2 : NULL,
4424 elim_i2, local_elim_i1, local_elim_i0);
4425 if (i0notes)
4426 distribute_notes (i0notes, i0, i3, newi2pat ? i2 : NULL,
4427 elim_i2, elim_i1, local_elim_i0);
4428 if (midnotes)
4429 distribute_notes (midnotes, NULL, i3, newi2pat ? i2 : NULL,
4430 elim_i2, elim_i1, elim_i0);
4431
4432 /* Distribute any notes added to I2 or I3 by recog_for_combine. We
4433 know these are REG_UNUSED and want them to go to the desired insn,
4434 so we always pass it as i3. */
4435
4436 if (newi2pat && new_i2_notes)
4437 distribute_notes (new_i2_notes, i2, i2, NULL, NULL_RTX, NULL_RTX,
4438 NULL_RTX);
4439
4440 if (new_i3_notes)
4441 distribute_notes (new_i3_notes, i3, i3, NULL, NULL_RTX, NULL_RTX,
4442 NULL_RTX);
4443
4444 /* If I3DEST was used in I3SRC, it really died in I3. We may need to
4445 put a REG_DEAD note for it somewhere. If NEWI2PAT exists and sets
4446 I3DEST, the death must be somewhere before I2, not I3. If we passed I3
4447 in that case, it might delete I2. Similarly for I2 and I1.
4448 Show an additional death due to the REG_DEAD note we make here. If
4449 we discard it in distribute_notes, we will decrement it again. */
4450
4451 if (i3dest_killed)
4452 {
4453 rtx new_note = alloc_reg_note (REG_DEAD, i3dest_killed, NULL_RTX);
4454 if (newi2pat && reg_set_p (i3dest_killed, newi2pat))
4455 distribute_notes (new_note, NULL, i2, NULL, elim_i2,
4456 elim_i1, elim_i0);
4457 else
4458 distribute_notes (new_note, NULL, i3, newi2pat ? i2 : NULL,
4459 elim_i2, elim_i1, elim_i0);
4460 }
4461
4462 if (i2dest_in_i2src)
4463 {
4464 rtx new_note = alloc_reg_note (REG_DEAD, i2dest, NULL_RTX);
4465 if (newi2pat && reg_set_p (i2dest, newi2pat))
4466 distribute_notes (new_note, NULL, i2, NULL, NULL_RTX,
4467 NULL_RTX, NULL_RTX);
4468 else
4469 distribute_notes (new_note, NULL, i3, newi2pat ? i2 : NULL,
4470 NULL_RTX, NULL_RTX, NULL_RTX);
4471 }
4472
4473 if (i1dest_in_i1src)
4474 {
4475 rtx new_note = alloc_reg_note (REG_DEAD, i1dest, NULL_RTX);
4476 if (newi2pat && reg_set_p (i1dest, newi2pat))
4477 distribute_notes (new_note, NULL, i2, NULL, NULL_RTX,
4478 NULL_RTX, NULL_RTX);
4479 else
4480 distribute_notes (new_note, NULL, i3, newi2pat ? i2 : NULL,
4481 NULL_RTX, NULL_RTX, NULL_RTX);
4482 }
4483
4484 if (i0dest_in_i0src)
4485 {
4486 rtx new_note = alloc_reg_note (REG_DEAD, i0dest, NULL_RTX);
4487 if (newi2pat && reg_set_p (i0dest, newi2pat))
4488 distribute_notes (new_note, NULL, i2, NULL, NULL_RTX,
4489 NULL_RTX, NULL_RTX);
4490 else
4491 distribute_notes (new_note, NULL, i3, newi2pat ? i2 : NULL,
4492 NULL_RTX, NULL_RTX, NULL_RTX);
4493 }
4494
4495 distribute_links (i3links);
4496 distribute_links (i2links);
4497 distribute_links (i1links);
4498 distribute_links (i0links);
4499
4500 if (REG_P (i2dest))
4501 {
4502 struct insn_link *link;
4503 rtx_insn *i2_insn = 0;
4504 rtx i2_val = 0, set;
4505
4506 /* The insn that used to set this register doesn't exist, and
4507 this life of the register may not exist either. See if one of
4508 I3's links points to an insn that sets I2DEST. If it does,
4509 that is now the last known value for I2DEST. If we don't update
4510 this and I2 set the register to a value that depended on its old
4511 contents, we will get confused. If this insn is used, thing
4512 will be set correctly in combine_instructions. */
4513 FOR_EACH_LOG_LINK (link, i3)
4514 if ((set = single_set (link->insn)) != 0
4515 && rtx_equal_p (i2dest, SET_DEST (set)))
4516 i2_insn = link->insn, i2_val = SET_SRC (set);
4517
4518 record_value_for_reg (i2dest, i2_insn, i2_val);
4519
4520 /* If the reg formerly set in I2 died only once and that was in I3,
4521 zero its use count so it won't make `reload' do any work. */
4522 if (! added_sets_2
4523 && (newi2pat == 0 || ! reg_mentioned_p (i2dest, newi2pat))
4524 && ! i2dest_in_i2src
4525 && REGNO (i2dest) < reg_n_sets_max)
4526 INC_REG_N_SETS (REGNO (i2dest), -1);
4527 }
4528
4529 if (i1 && REG_P (i1dest))
4530 {
4531 struct insn_link *link;
4532 rtx_insn *i1_insn = 0;
4533 rtx i1_val = 0, set;
4534
4535 FOR_EACH_LOG_LINK (link, i3)
4536 if ((set = single_set (link->insn)) != 0
4537 && rtx_equal_p (i1dest, SET_DEST (set)))
4538 i1_insn = link->insn, i1_val = SET_SRC (set);
4539
4540 record_value_for_reg (i1dest, i1_insn, i1_val);
4541
4542 if (! added_sets_1
4543 && ! i1dest_in_i1src
4544 && REGNO (i1dest) < reg_n_sets_max)
4545 INC_REG_N_SETS (REGNO (i1dest), -1);
4546 }
4547
4548 if (i0 && REG_P (i0dest))
4549 {
4550 struct insn_link *link;
4551 rtx_insn *i0_insn = 0;
4552 rtx i0_val = 0, set;
4553
4554 FOR_EACH_LOG_LINK (link, i3)
4555 if ((set = single_set (link->insn)) != 0
4556 && rtx_equal_p (i0dest, SET_DEST (set)))
4557 i0_insn = link->insn, i0_val = SET_SRC (set);
4558
4559 record_value_for_reg (i0dest, i0_insn, i0_val);
4560
4561 if (! added_sets_0
4562 && ! i0dest_in_i0src
4563 && REGNO (i0dest) < reg_n_sets_max)
4564 INC_REG_N_SETS (REGNO (i0dest), -1);
4565 }
4566
4567 /* Update reg_stat[].nonzero_bits et al for any changes that may have
4568 been made to this insn. The order is important, because newi2pat
4569 can affect nonzero_bits of newpat. */
4570 if (newi2pat)
4571 note_stores (newi2pat, set_nonzero_bits_and_sign_copies, NULL);
4572 note_stores (newpat, set_nonzero_bits_and_sign_copies, NULL);
4573 }
4574
4575 if (undobuf.other_insn != NULL_RTX)
4576 {
4577 if (dump_file)
4578 {
4579 fprintf (dump_file, "modifying other_insn ");
4580 dump_insn_slim (dump_file, undobuf.other_insn);
4581 }
4582 df_insn_rescan (undobuf.other_insn);
4583 }
4584
4585 if (i0 && !(NOTE_P (i0) && (NOTE_KIND (i0) == NOTE_INSN_DELETED)))
4586 {
4587 if (dump_file)
4588 {
4589 fprintf (dump_file, "modifying insn i0 ");
4590 dump_insn_slim (dump_file, i0);
4591 }
4592 df_insn_rescan (i0);
4593 }
4594
4595 if (i1 && !(NOTE_P (i1) && (NOTE_KIND (i1) == NOTE_INSN_DELETED)))
4596 {
4597 if (dump_file)
4598 {
4599 fprintf (dump_file, "modifying insn i1 ");
4600 dump_insn_slim (dump_file, i1);
4601 }
4602 df_insn_rescan (i1);
4603 }
4604
4605 if (i2 && !(NOTE_P (i2) && (NOTE_KIND (i2) == NOTE_INSN_DELETED)))
4606 {
4607 if (dump_file)
4608 {
4609 fprintf (dump_file, "modifying insn i2 ");
4610 dump_insn_slim (dump_file, i2);
4611 }
4612 df_insn_rescan (i2);
4613 }
4614
4615 if (i3 && !(NOTE_P (i3) && (NOTE_KIND (i3) == NOTE_INSN_DELETED)))
4616 {
4617 if (dump_file)
4618 {
4619 fprintf (dump_file, "modifying insn i3 ");
4620 dump_insn_slim (dump_file, i3);
4621 }
4622 df_insn_rescan (i3);
4623 }
4624
4625 /* Set new_direct_jump_p if a new return or simple jump instruction
4626 has been created. Adjust the CFG accordingly. */
4627 if (returnjump_p (i3) || any_uncondjump_p (i3))
4628 {
4629 *new_direct_jump_p = 1;
4630 mark_jump_label (PATTERN (i3), i3, 0);
4631 update_cfg_for_uncondjump (i3);
4632 }
4633
4634 if (undobuf.other_insn != NULL_RTX
4635 && (returnjump_p (undobuf.other_insn)
4636 || any_uncondjump_p (undobuf.other_insn)))
4637 {
4638 *new_direct_jump_p = 1;
4639 update_cfg_for_uncondjump (undobuf.other_insn);
4640 }
4641
4642 /* A noop might also need cleaning up of CFG, if it comes from the
4643 simplification of a jump. */
4644 if (JUMP_P (i3)
4645 && GET_CODE (newpat) == SET
4646 && SET_SRC (newpat) == pc_rtx
4647 && SET_DEST (newpat) == pc_rtx)
4648 {
4649 *new_direct_jump_p = 1;
4650 update_cfg_for_uncondjump (i3);
4651 }
4652
4653 if (undobuf.other_insn != NULL_RTX
4654 && JUMP_P (undobuf.other_insn)
4655 && GET_CODE (PATTERN (undobuf.other_insn)) == SET
4656 && SET_SRC (PATTERN (undobuf.other_insn)) == pc_rtx
4657 && SET_DEST (PATTERN (undobuf.other_insn)) == pc_rtx)
4658 {
4659 *new_direct_jump_p = 1;
4660 update_cfg_for_uncondjump (undobuf.other_insn);
4661 }
4662
4663 combine_successes++;
4664 undo_commit ();
4665
4666 if (added_links_insn
4667 && (newi2pat == 0 || DF_INSN_LUID (added_links_insn) < DF_INSN_LUID (i2))
4668 && DF_INSN_LUID (added_links_insn) < DF_INSN_LUID (i3))
4669 return added_links_insn;
4670 else
4671 return newi2pat ? i2 : i3;
4672 }
4673 \f
4674 /* Get a marker for undoing to the current state. */
4675
4676 static void *
4677 get_undo_marker (void)
4678 {
4679 return undobuf.undos;
4680 }
4681
4682 /* Undo the modifications up to the marker. */
4683
4684 static void
4685 undo_to_marker (void *marker)
4686 {
4687 struct undo *undo, *next;
4688
4689 for (undo = undobuf.undos; undo != marker; undo = next)
4690 {
4691 gcc_assert (undo);
4692
4693 next = undo->next;
4694 switch (undo->kind)
4695 {
4696 case UNDO_RTX:
4697 *undo->where.r = undo->old_contents.r;
4698 break;
4699 case UNDO_INT:
4700 *undo->where.i = undo->old_contents.i;
4701 break;
4702 case UNDO_MODE:
4703 adjust_reg_mode (*undo->where.r, undo->old_contents.m);
4704 break;
4705 case UNDO_LINKS:
4706 *undo->where.l = undo->old_contents.l;
4707 break;
4708 default:
4709 gcc_unreachable ();
4710 }
4711
4712 undo->next = undobuf.frees;
4713 undobuf.frees = undo;
4714 }
4715
4716 undobuf.undos = (struct undo *) marker;
4717 }
4718
4719 /* Undo all the modifications recorded in undobuf. */
4720
4721 static void
4722 undo_all (void)
4723 {
4724 undo_to_marker (0);
4725 }
4726
4727 /* We've committed to accepting the changes we made. Move all
4728 of the undos to the free list. */
4729
4730 static void
4731 undo_commit (void)
4732 {
4733 struct undo *undo, *next;
4734
4735 for (undo = undobuf.undos; undo; undo = next)
4736 {
4737 next = undo->next;
4738 undo->next = undobuf.frees;
4739 undobuf.frees = undo;
4740 }
4741 undobuf.undos = 0;
4742 }
4743 \f
4744 /* Find the innermost point within the rtx at LOC, possibly LOC itself,
4745 where we have an arithmetic expression and return that point. LOC will
4746 be inside INSN.
4747
4748 try_combine will call this function to see if an insn can be split into
4749 two insns. */
4750
4751 static rtx *
4752 find_split_point (rtx *loc, rtx_insn *insn, bool set_src)
4753 {
4754 rtx x = *loc;
4755 enum rtx_code code = GET_CODE (x);
4756 rtx *split;
4757 unsigned HOST_WIDE_INT len = 0;
4758 HOST_WIDE_INT pos = 0;
4759 int unsignedp = 0;
4760 rtx inner = NULL_RTX;
4761
4762 /* First special-case some codes. */
4763 switch (code)
4764 {
4765 case SUBREG:
4766 #ifdef INSN_SCHEDULING
4767 /* If we are making a paradoxical SUBREG invalid, it becomes a split
4768 point. */
4769 if (MEM_P (SUBREG_REG (x)))
4770 return loc;
4771 #endif
4772 return find_split_point (&SUBREG_REG (x), insn, false);
4773
4774 case MEM:
4775 /* If we have (mem (const ..)) or (mem (symbol_ref ...)), split it
4776 using LO_SUM and HIGH. */
4777 if (HAVE_lo_sum && (GET_CODE (XEXP (x, 0)) == CONST
4778 || GET_CODE (XEXP (x, 0)) == SYMBOL_REF))
4779 {
4780 machine_mode address_mode = get_address_mode (x);
4781
4782 SUBST (XEXP (x, 0),
4783 gen_rtx_LO_SUM (address_mode,
4784 gen_rtx_HIGH (address_mode, XEXP (x, 0)),
4785 XEXP (x, 0)));
4786 return &XEXP (XEXP (x, 0), 0);
4787 }
4788
4789 /* If we have a PLUS whose second operand is a constant and the
4790 address is not valid, perhaps will can split it up using
4791 the machine-specific way to split large constants. We use
4792 the first pseudo-reg (one of the virtual regs) as a placeholder;
4793 it will not remain in the result. */
4794 if (GET_CODE (XEXP (x, 0)) == PLUS
4795 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
4796 && ! memory_address_addr_space_p (GET_MODE (x), XEXP (x, 0),
4797 MEM_ADDR_SPACE (x)))
4798 {
4799 rtx reg = regno_reg_rtx[FIRST_PSEUDO_REGISTER];
4800 rtx_insn *seq = combine_split_insns (gen_rtx_SET (reg, XEXP (x, 0)),
4801 subst_insn);
4802
4803 /* This should have produced two insns, each of which sets our
4804 placeholder. If the source of the second is a valid address,
4805 we can make put both sources together and make a split point
4806 in the middle. */
4807
4808 if (seq
4809 && NEXT_INSN (seq) != NULL_RTX
4810 && NEXT_INSN (NEXT_INSN (seq)) == NULL_RTX
4811 && NONJUMP_INSN_P (seq)
4812 && GET_CODE (PATTERN (seq)) == SET
4813 && SET_DEST (PATTERN (seq)) == reg
4814 && ! reg_mentioned_p (reg,
4815 SET_SRC (PATTERN (seq)))
4816 && NONJUMP_INSN_P (NEXT_INSN (seq))
4817 && GET_CODE (PATTERN (NEXT_INSN (seq))) == SET
4818 && SET_DEST (PATTERN (NEXT_INSN (seq))) == reg
4819 && memory_address_addr_space_p
4820 (GET_MODE (x), SET_SRC (PATTERN (NEXT_INSN (seq))),
4821 MEM_ADDR_SPACE (x)))
4822 {
4823 rtx src1 = SET_SRC (PATTERN (seq));
4824 rtx src2 = SET_SRC (PATTERN (NEXT_INSN (seq)));
4825
4826 /* Replace the placeholder in SRC2 with SRC1. If we can
4827 find where in SRC2 it was placed, that can become our
4828 split point and we can replace this address with SRC2.
4829 Just try two obvious places. */
4830
4831 src2 = replace_rtx (src2, reg, src1);
4832 split = 0;
4833 if (XEXP (src2, 0) == src1)
4834 split = &XEXP (src2, 0);
4835 else if (GET_RTX_FORMAT (GET_CODE (XEXP (src2, 0)))[0] == 'e'
4836 && XEXP (XEXP (src2, 0), 0) == src1)
4837 split = &XEXP (XEXP (src2, 0), 0);
4838
4839 if (split)
4840 {
4841 SUBST (XEXP (x, 0), src2);
4842 return split;
4843 }
4844 }
4845
4846 /* If that didn't work, perhaps the first operand is complex and
4847 needs to be computed separately, so make a split point there.
4848 This will occur on machines that just support REG + CONST
4849 and have a constant moved through some previous computation. */
4850
4851 else if (!OBJECT_P (XEXP (XEXP (x, 0), 0))
4852 && ! (GET_CODE (XEXP (XEXP (x, 0), 0)) == SUBREG
4853 && OBJECT_P (SUBREG_REG (XEXP (XEXP (x, 0), 0)))))
4854 return &XEXP (XEXP (x, 0), 0);
4855 }
4856
4857 /* If we have a PLUS whose first operand is complex, try computing it
4858 separately by making a split there. */
4859 if (GET_CODE (XEXP (x, 0)) == PLUS
4860 && ! memory_address_addr_space_p (GET_MODE (x), XEXP (x, 0),
4861 MEM_ADDR_SPACE (x))
4862 && ! OBJECT_P (XEXP (XEXP (x, 0), 0))
4863 && ! (GET_CODE (XEXP (XEXP (x, 0), 0)) == SUBREG
4864 && OBJECT_P (SUBREG_REG (XEXP (XEXP (x, 0), 0)))))
4865 return &XEXP (XEXP (x, 0), 0);
4866 break;
4867
4868 case SET:
4869 /* If SET_DEST is CC0 and SET_SRC is not an operand, a COMPARE, or a
4870 ZERO_EXTRACT, the most likely reason why this doesn't match is that
4871 we need to put the operand into a register. So split at that
4872 point. */
4873
4874 if (SET_DEST (x) == cc0_rtx
4875 && GET_CODE (SET_SRC (x)) != COMPARE
4876 && GET_CODE (SET_SRC (x)) != ZERO_EXTRACT
4877 && !OBJECT_P (SET_SRC (x))
4878 && ! (GET_CODE (SET_SRC (x)) == SUBREG
4879 && OBJECT_P (SUBREG_REG (SET_SRC (x)))))
4880 return &SET_SRC (x);
4881
4882 /* See if we can split SET_SRC as it stands. */
4883 split = find_split_point (&SET_SRC (x), insn, true);
4884 if (split && split != &SET_SRC (x))
4885 return split;
4886
4887 /* See if we can split SET_DEST as it stands. */
4888 split = find_split_point (&SET_DEST (x), insn, false);
4889 if (split && split != &SET_DEST (x))
4890 return split;
4891
4892 /* See if this is a bitfield assignment with everything constant. If
4893 so, this is an IOR of an AND, so split it into that. */
4894 if (GET_CODE (SET_DEST (x)) == ZERO_EXTRACT
4895 && HWI_COMPUTABLE_MODE_P (GET_MODE (XEXP (SET_DEST (x), 0)))
4896 && CONST_INT_P (XEXP (SET_DEST (x), 1))
4897 && CONST_INT_P (XEXP (SET_DEST (x), 2))
4898 && CONST_INT_P (SET_SRC (x))
4899 && ((INTVAL (XEXP (SET_DEST (x), 1))
4900 + INTVAL (XEXP (SET_DEST (x), 2)))
4901 <= GET_MODE_PRECISION (GET_MODE (XEXP (SET_DEST (x), 0))))
4902 && ! side_effects_p (XEXP (SET_DEST (x), 0)))
4903 {
4904 HOST_WIDE_INT pos = INTVAL (XEXP (SET_DEST (x), 2));
4905 unsigned HOST_WIDE_INT len = INTVAL (XEXP (SET_DEST (x), 1));
4906 unsigned HOST_WIDE_INT src = INTVAL (SET_SRC (x));
4907 rtx dest = XEXP (SET_DEST (x), 0);
4908 machine_mode mode = GET_MODE (dest);
4909 unsigned HOST_WIDE_INT mask
4910 = ((unsigned HOST_WIDE_INT) 1 << len) - 1;
4911 rtx or_mask;
4912
4913 if (BITS_BIG_ENDIAN)
4914 pos = GET_MODE_PRECISION (mode) - len - pos;
4915
4916 or_mask = gen_int_mode (src << pos, mode);
4917 if (src == mask)
4918 SUBST (SET_SRC (x),
4919 simplify_gen_binary (IOR, mode, dest, or_mask));
4920 else
4921 {
4922 rtx negmask = gen_int_mode (~(mask << pos), mode);
4923 SUBST (SET_SRC (x),
4924 simplify_gen_binary (IOR, mode,
4925 simplify_gen_binary (AND, mode,
4926 dest, negmask),
4927 or_mask));
4928 }
4929
4930 SUBST (SET_DEST (x), dest);
4931
4932 split = find_split_point (&SET_SRC (x), insn, true);
4933 if (split && split != &SET_SRC (x))
4934 return split;
4935 }
4936
4937 /* Otherwise, see if this is an operation that we can split into two.
4938 If so, try to split that. */
4939 code = GET_CODE (SET_SRC (x));
4940
4941 switch (code)
4942 {
4943 case AND:
4944 /* If we are AND'ing with a large constant that is only a single
4945 bit and the result is only being used in a context where we
4946 need to know if it is zero or nonzero, replace it with a bit
4947 extraction. This will avoid the large constant, which might
4948 have taken more than one insn to make. If the constant were
4949 not a valid argument to the AND but took only one insn to make,
4950 this is no worse, but if it took more than one insn, it will
4951 be better. */
4952
4953 if (CONST_INT_P (XEXP (SET_SRC (x), 1))
4954 && REG_P (XEXP (SET_SRC (x), 0))
4955 && (pos = exact_log2 (UINTVAL (XEXP (SET_SRC (x), 1)))) >= 7
4956 && REG_P (SET_DEST (x))
4957 && (split = find_single_use (SET_DEST (x), insn, NULL)) != 0
4958 && (GET_CODE (*split) == EQ || GET_CODE (*split) == NE)
4959 && XEXP (*split, 0) == SET_DEST (x)
4960 && XEXP (*split, 1) == const0_rtx)
4961 {
4962 rtx extraction = make_extraction (GET_MODE (SET_DEST (x)),
4963 XEXP (SET_SRC (x), 0),
4964 pos, NULL_RTX, 1, 1, 0, 0);
4965 if (extraction != 0)
4966 {
4967 SUBST (SET_SRC (x), extraction);
4968 return find_split_point (loc, insn, false);
4969 }
4970 }
4971 break;
4972
4973 case NE:
4974 /* If STORE_FLAG_VALUE is -1, this is (NE X 0) and only one bit of X
4975 is known to be on, this can be converted into a NEG of a shift. */
4976 if (STORE_FLAG_VALUE == -1 && XEXP (SET_SRC (x), 1) == const0_rtx
4977 && GET_MODE (SET_SRC (x)) == GET_MODE (XEXP (SET_SRC (x), 0))
4978 && 1 <= (pos = exact_log2
4979 (nonzero_bits (XEXP (SET_SRC (x), 0),
4980 GET_MODE (XEXP (SET_SRC (x), 0))))))
4981 {
4982 machine_mode mode = GET_MODE (XEXP (SET_SRC (x), 0));
4983
4984 SUBST (SET_SRC (x),
4985 gen_rtx_NEG (mode,
4986 gen_rtx_LSHIFTRT (mode,
4987 XEXP (SET_SRC (x), 0),
4988 GEN_INT (pos))));
4989
4990 split = find_split_point (&SET_SRC (x), insn, true);
4991 if (split && split != &SET_SRC (x))
4992 return split;
4993 }
4994 break;
4995
4996 case SIGN_EXTEND:
4997 inner = XEXP (SET_SRC (x), 0);
4998
4999 /* We can't optimize if either mode is a partial integer
5000 mode as we don't know how many bits are significant
5001 in those modes. */
5002 if (GET_MODE_CLASS (GET_MODE (inner)) == MODE_PARTIAL_INT
5003 || GET_MODE_CLASS (GET_MODE (SET_SRC (x))) == MODE_PARTIAL_INT)
5004 break;
5005
5006 pos = 0;
5007 len = GET_MODE_PRECISION (GET_MODE (inner));
5008 unsignedp = 0;
5009 break;
5010
5011 case SIGN_EXTRACT:
5012 case ZERO_EXTRACT:
5013 if (CONST_INT_P (XEXP (SET_SRC (x), 1))
5014 && CONST_INT_P (XEXP (SET_SRC (x), 2)))
5015 {
5016 inner = XEXP (SET_SRC (x), 0);
5017 len = INTVAL (XEXP (SET_SRC (x), 1));
5018 pos = INTVAL (XEXP (SET_SRC (x), 2));
5019
5020 if (BITS_BIG_ENDIAN)
5021 pos = GET_MODE_PRECISION (GET_MODE (inner)) - len - pos;
5022 unsignedp = (code == ZERO_EXTRACT);
5023 }
5024 break;
5025
5026 default:
5027 break;
5028 }
5029
5030 if (len && pos >= 0
5031 && pos + len <= GET_MODE_PRECISION (GET_MODE (inner)))
5032 {
5033 machine_mode mode = GET_MODE (SET_SRC (x));
5034
5035 /* For unsigned, we have a choice of a shift followed by an
5036 AND or two shifts. Use two shifts for field sizes where the
5037 constant might be too large. We assume here that we can
5038 always at least get 8-bit constants in an AND insn, which is
5039 true for every current RISC. */
5040
5041 if (unsignedp && len <= 8)
5042 {
5043 unsigned HOST_WIDE_INT mask
5044 = ((unsigned HOST_WIDE_INT) 1 << len) - 1;
5045 SUBST (SET_SRC (x),
5046 gen_rtx_AND (mode,
5047 gen_rtx_LSHIFTRT
5048 (mode, gen_lowpart (mode, inner),
5049 GEN_INT (pos)),
5050 gen_int_mode (mask, mode)));
5051
5052 split = find_split_point (&SET_SRC (x), insn, true);
5053 if (split && split != &SET_SRC (x))
5054 return split;
5055 }
5056 else
5057 {
5058 SUBST (SET_SRC (x),
5059 gen_rtx_fmt_ee
5060 (unsignedp ? LSHIFTRT : ASHIFTRT, mode,
5061 gen_rtx_ASHIFT (mode,
5062 gen_lowpart (mode, inner),
5063 GEN_INT (GET_MODE_PRECISION (mode)
5064 - len - pos)),
5065 GEN_INT (GET_MODE_PRECISION (mode) - len)));
5066
5067 split = find_split_point (&SET_SRC (x), insn, true);
5068 if (split && split != &SET_SRC (x))
5069 return split;
5070 }
5071 }
5072
5073 /* See if this is a simple operation with a constant as the second
5074 operand. It might be that this constant is out of range and hence
5075 could be used as a split point. */
5076 if (BINARY_P (SET_SRC (x))
5077 && CONSTANT_P (XEXP (SET_SRC (x), 1))
5078 && (OBJECT_P (XEXP (SET_SRC (x), 0))
5079 || (GET_CODE (XEXP (SET_SRC (x), 0)) == SUBREG
5080 && OBJECT_P (SUBREG_REG (XEXP (SET_SRC (x), 0))))))
5081 return &XEXP (SET_SRC (x), 1);
5082
5083 /* Finally, see if this is a simple operation with its first operand
5084 not in a register. The operation might require this operand in a
5085 register, so return it as a split point. We can always do this
5086 because if the first operand were another operation, we would have
5087 already found it as a split point. */
5088 if ((BINARY_P (SET_SRC (x)) || UNARY_P (SET_SRC (x)))
5089 && ! register_operand (XEXP (SET_SRC (x), 0), VOIDmode))
5090 return &XEXP (SET_SRC (x), 0);
5091
5092 return 0;
5093
5094 case AND:
5095 case IOR:
5096 /* We write NOR as (and (not A) (not B)), but if we don't have a NOR,
5097 it is better to write this as (not (ior A B)) so we can split it.
5098 Similarly for IOR. */
5099 if (GET_CODE (XEXP (x, 0)) == NOT && GET_CODE (XEXP (x, 1)) == NOT)
5100 {
5101 SUBST (*loc,
5102 gen_rtx_NOT (GET_MODE (x),
5103 gen_rtx_fmt_ee (code == IOR ? AND : IOR,
5104 GET_MODE (x),
5105 XEXP (XEXP (x, 0), 0),
5106 XEXP (XEXP (x, 1), 0))));
5107 return find_split_point (loc, insn, set_src);
5108 }
5109
5110 /* Many RISC machines have a large set of logical insns. If the
5111 second operand is a NOT, put it first so we will try to split the
5112 other operand first. */
5113 if (GET_CODE (XEXP (x, 1)) == NOT)
5114 {
5115 rtx tem = XEXP (x, 0);
5116 SUBST (XEXP (x, 0), XEXP (x, 1));
5117 SUBST (XEXP (x, 1), tem);
5118 }
5119 break;
5120
5121 case PLUS:
5122 case MINUS:
5123 /* Canonicalization can produce (minus A (mult B C)), where C is a
5124 constant. It may be better to try splitting (plus (mult B -C) A)
5125 instead if this isn't a multiply by a power of two. */
5126 if (set_src && code == MINUS && GET_CODE (XEXP (x, 1)) == MULT
5127 && GET_CODE (XEXP (XEXP (x, 1), 1)) == CONST_INT
5128 && exact_log2 (INTVAL (XEXP (XEXP (x, 1), 1))) < 0)
5129 {
5130 machine_mode mode = GET_MODE (x);
5131 unsigned HOST_WIDE_INT this_int = INTVAL (XEXP (XEXP (x, 1), 1));
5132 HOST_WIDE_INT other_int = trunc_int_for_mode (-this_int, mode);
5133 SUBST (*loc, gen_rtx_PLUS (mode,
5134 gen_rtx_MULT (mode,
5135 XEXP (XEXP (x, 1), 0),
5136 gen_int_mode (other_int,
5137 mode)),
5138 XEXP (x, 0)));
5139 return find_split_point (loc, insn, set_src);
5140 }
5141
5142 /* Split at a multiply-accumulate instruction. However if this is
5143 the SET_SRC, we likely do not have such an instruction and it's
5144 worthless to try this split. */
5145 if (!set_src
5146 && (GET_CODE (XEXP (x, 0)) == MULT
5147 || (GET_CODE (XEXP (x, 0)) == ASHIFT
5148 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT)))
5149 return loc;
5150
5151 default:
5152 break;
5153 }
5154
5155 /* Otherwise, select our actions depending on our rtx class. */
5156 switch (GET_RTX_CLASS (code))
5157 {
5158 case RTX_BITFIELD_OPS: /* This is ZERO_EXTRACT and SIGN_EXTRACT. */
5159 case RTX_TERNARY:
5160 split = find_split_point (&XEXP (x, 2), insn, false);
5161 if (split)
5162 return split;
5163 /* ... fall through ... */
5164 case RTX_BIN_ARITH:
5165 case RTX_COMM_ARITH:
5166 case RTX_COMPARE:
5167 case RTX_COMM_COMPARE:
5168 split = find_split_point (&XEXP (x, 1), insn, false);
5169 if (split)
5170 return split;
5171 /* ... fall through ... */
5172 case RTX_UNARY:
5173 /* Some machines have (and (shift ...) ...) insns. If X is not
5174 an AND, but XEXP (X, 0) is, use it as our split point. */
5175 if (GET_CODE (x) != AND && GET_CODE (XEXP (x, 0)) == AND)
5176 return &XEXP (x, 0);
5177
5178 split = find_split_point (&XEXP (x, 0), insn, false);
5179 if (split)
5180 return split;
5181 return loc;
5182
5183 default:
5184 /* Otherwise, we don't have a split point. */
5185 return 0;
5186 }
5187 }
5188 \f
5189 /* Throughout X, replace FROM with TO, and return the result.
5190 The result is TO if X is FROM;
5191 otherwise the result is X, but its contents may have been modified.
5192 If they were modified, a record was made in undobuf so that
5193 undo_all will (among other things) return X to its original state.
5194
5195 If the number of changes necessary is too much to record to undo,
5196 the excess changes are not made, so the result is invalid.
5197 The changes already made can still be undone.
5198 undobuf.num_undo is incremented for such changes, so by testing that
5199 the caller can tell whether the result is valid.
5200
5201 `n_occurrences' is incremented each time FROM is replaced.
5202
5203 IN_DEST is nonzero if we are processing the SET_DEST of a SET.
5204
5205 IN_COND is nonzero if we are at the top level of a condition.
5206
5207 UNIQUE_COPY is nonzero if each substitution must be unique. We do this
5208 by copying if `n_occurrences' is nonzero. */
5209
5210 static rtx
5211 subst (rtx x, rtx from, rtx to, int in_dest, int in_cond, int unique_copy)
5212 {
5213 enum rtx_code code = GET_CODE (x);
5214 machine_mode op0_mode = VOIDmode;
5215 const char *fmt;
5216 int len, i;
5217 rtx new_rtx;
5218
5219 /* Two expressions are equal if they are identical copies of a shared
5220 RTX or if they are both registers with the same register number
5221 and mode. */
5222
5223 #define COMBINE_RTX_EQUAL_P(X,Y) \
5224 ((X) == (Y) \
5225 || (REG_P (X) && REG_P (Y) \
5226 && REGNO (X) == REGNO (Y) && GET_MODE (X) == GET_MODE (Y)))
5227
5228 /* Do not substitute into clobbers of regs -- this will never result in
5229 valid RTL. */
5230 if (GET_CODE (x) == CLOBBER && REG_P (XEXP (x, 0)))
5231 return x;
5232
5233 if (! in_dest && COMBINE_RTX_EQUAL_P (x, from))
5234 {
5235 n_occurrences++;
5236 return (unique_copy && n_occurrences > 1 ? copy_rtx (to) : to);
5237 }
5238
5239 /* If X and FROM are the same register but different modes, they
5240 will not have been seen as equal above. However, the log links code
5241 will make a LOG_LINKS entry for that case. If we do nothing, we
5242 will try to rerecognize our original insn and, when it succeeds,
5243 we will delete the feeding insn, which is incorrect.
5244
5245 So force this insn not to match in this (rare) case. */
5246 if (! in_dest && code == REG && REG_P (from)
5247 && reg_overlap_mentioned_p (x, from))
5248 return gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
5249
5250 /* If this is an object, we are done unless it is a MEM or LO_SUM, both
5251 of which may contain things that can be combined. */
5252 if (code != MEM && code != LO_SUM && OBJECT_P (x))
5253 return x;
5254
5255 /* It is possible to have a subexpression appear twice in the insn.
5256 Suppose that FROM is a register that appears within TO.
5257 Then, after that subexpression has been scanned once by `subst',
5258 the second time it is scanned, TO may be found. If we were
5259 to scan TO here, we would find FROM within it and create a
5260 self-referent rtl structure which is completely wrong. */
5261 if (COMBINE_RTX_EQUAL_P (x, to))
5262 return to;
5263
5264 /* Parallel asm_operands need special attention because all of the
5265 inputs are shared across the arms. Furthermore, unsharing the
5266 rtl results in recognition failures. Failure to handle this case
5267 specially can result in circular rtl.
5268
5269 Solve this by doing a normal pass across the first entry of the
5270 parallel, and only processing the SET_DESTs of the subsequent
5271 entries. Ug. */
5272
5273 if (code == PARALLEL
5274 && GET_CODE (XVECEXP (x, 0, 0)) == SET
5275 && GET_CODE (SET_SRC (XVECEXP (x, 0, 0))) == ASM_OPERANDS)
5276 {
5277 new_rtx = subst (XVECEXP (x, 0, 0), from, to, 0, 0, unique_copy);
5278
5279 /* If this substitution failed, this whole thing fails. */
5280 if (GET_CODE (new_rtx) == CLOBBER
5281 && XEXP (new_rtx, 0) == const0_rtx)
5282 return new_rtx;
5283
5284 SUBST (XVECEXP (x, 0, 0), new_rtx);
5285
5286 for (i = XVECLEN (x, 0) - 1; i >= 1; i--)
5287 {
5288 rtx dest = SET_DEST (XVECEXP (x, 0, i));
5289
5290 if (!REG_P (dest)
5291 && GET_CODE (dest) != CC0
5292 && GET_CODE (dest) != PC)
5293 {
5294 new_rtx = subst (dest, from, to, 0, 0, unique_copy);
5295
5296 /* If this substitution failed, this whole thing fails. */
5297 if (GET_CODE (new_rtx) == CLOBBER
5298 && XEXP (new_rtx, 0) == const0_rtx)
5299 return new_rtx;
5300
5301 SUBST (SET_DEST (XVECEXP (x, 0, i)), new_rtx);
5302 }
5303 }
5304 }
5305 else
5306 {
5307 len = GET_RTX_LENGTH (code);
5308 fmt = GET_RTX_FORMAT (code);
5309
5310 /* We don't need to process a SET_DEST that is a register, CC0,
5311 or PC, so set up to skip this common case. All other cases
5312 where we want to suppress replacing something inside a
5313 SET_SRC are handled via the IN_DEST operand. */
5314 if (code == SET
5315 && (REG_P (SET_DEST (x))
5316 || GET_CODE (SET_DEST (x)) == CC0
5317 || GET_CODE (SET_DEST (x)) == PC))
5318 fmt = "ie";
5319
5320 /* Get the mode of operand 0 in case X is now a SIGN_EXTEND of a
5321 constant. */
5322 if (fmt[0] == 'e')
5323 op0_mode = GET_MODE (XEXP (x, 0));
5324
5325 for (i = 0; i < len; i++)
5326 {
5327 if (fmt[i] == 'E')
5328 {
5329 int j;
5330 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
5331 {
5332 if (COMBINE_RTX_EQUAL_P (XVECEXP (x, i, j), from))
5333 {
5334 new_rtx = (unique_copy && n_occurrences
5335 ? copy_rtx (to) : to);
5336 n_occurrences++;
5337 }
5338 else
5339 {
5340 new_rtx = subst (XVECEXP (x, i, j), from, to, 0, 0,
5341 unique_copy);
5342
5343 /* If this substitution failed, this whole thing
5344 fails. */
5345 if (GET_CODE (new_rtx) == CLOBBER
5346 && XEXP (new_rtx, 0) == const0_rtx)
5347 return new_rtx;
5348 }
5349
5350 SUBST (XVECEXP (x, i, j), new_rtx);
5351 }
5352 }
5353 else if (fmt[i] == 'e')
5354 {
5355 /* If this is a register being set, ignore it. */
5356 new_rtx = XEXP (x, i);
5357 if (in_dest
5358 && i == 0
5359 && (((code == SUBREG || code == ZERO_EXTRACT)
5360 && REG_P (new_rtx))
5361 || code == STRICT_LOW_PART))
5362 ;
5363
5364 else if (COMBINE_RTX_EQUAL_P (XEXP (x, i), from))
5365 {
5366 /* In general, don't install a subreg involving two
5367 modes not tieable. It can worsen register
5368 allocation, and can even make invalid reload
5369 insns, since the reg inside may need to be copied
5370 from in the outside mode, and that may be invalid
5371 if it is an fp reg copied in integer mode.
5372
5373 We allow two exceptions to this: It is valid if
5374 it is inside another SUBREG and the mode of that
5375 SUBREG and the mode of the inside of TO is
5376 tieable and it is valid if X is a SET that copies
5377 FROM to CC0. */
5378
5379 if (GET_CODE (to) == SUBREG
5380 && ! MODES_TIEABLE_P (GET_MODE (to),
5381 GET_MODE (SUBREG_REG (to)))
5382 && ! (code == SUBREG
5383 && MODES_TIEABLE_P (GET_MODE (x),
5384 GET_MODE (SUBREG_REG (to))))
5385 #if HAVE_cc0
5386 && ! (code == SET && i == 1 && XEXP (x, 0) == cc0_rtx)
5387 #endif
5388 )
5389 return gen_rtx_CLOBBER (VOIDmode, const0_rtx);
5390
5391 if (code == SUBREG
5392 && REG_P (to)
5393 && REGNO (to) < FIRST_PSEUDO_REGISTER
5394 && simplify_subreg_regno (REGNO (to), GET_MODE (to),
5395 SUBREG_BYTE (x),
5396 GET_MODE (x)) < 0)
5397 return gen_rtx_CLOBBER (VOIDmode, const0_rtx);
5398
5399 new_rtx = (unique_copy && n_occurrences ? copy_rtx (to) : to);
5400 n_occurrences++;
5401 }
5402 else
5403 /* If we are in a SET_DEST, suppress most cases unless we
5404 have gone inside a MEM, in which case we want to
5405 simplify the address. We assume here that things that
5406 are actually part of the destination have their inner
5407 parts in the first expression. This is true for SUBREG,
5408 STRICT_LOW_PART, and ZERO_EXTRACT, which are the only
5409 things aside from REG and MEM that should appear in a
5410 SET_DEST. */
5411 new_rtx = subst (XEXP (x, i), from, to,
5412 (((in_dest
5413 && (code == SUBREG || code == STRICT_LOW_PART
5414 || code == ZERO_EXTRACT))
5415 || code == SET)
5416 && i == 0),
5417 code == IF_THEN_ELSE && i == 0,
5418 unique_copy);
5419
5420 /* If we found that we will have to reject this combination,
5421 indicate that by returning the CLOBBER ourselves, rather than
5422 an expression containing it. This will speed things up as
5423 well as prevent accidents where two CLOBBERs are considered
5424 to be equal, thus producing an incorrect simplification. */
5425
5426 if (GET_CODE (new_rtx) == CLOBBER && XEXP (new_rtx, 0) == const0_rtx)
5427 return new_rtx;
5428
5429 if (GET_CODE (x) == SUBREG && CONST_SCALAR_INT_P (new_rtx))
5430 {
5431 machine_mode mode = GET_MODE (x);
5432
5433 x = simplify_subreg (GET_MODE (x), new_rtx,
5434 GET_MODE (SUBREG_REG (x)),
5435 SUBREG_BYTE (x));
5436 if (! x)
5437 x = gen_rtx_CLOBBER (mode, const0_rtx);
5438 }
5439 else if (CONST_SCALAR_INT_P (new_rtx)
5440 && GET_CODE (x) == ZERO_EXTEND)
5441 {
5442 x = simplify_unary_operation (ZERO_EXTEND, GET_MODE (x),
5443 new_rtx, GET_MODE (XEXP (x, 0)));
5444 gcc_assert (x);
5445 }
5446 else
5447 SUBST (XEXP (x, i), new_rtx);
5448 }
5449 }
5450 }
5451
5452 /* Check if we are loading something from the constant pool via float
5453 extension; in this case we would undo compress_float_constant
5454 optimization and degenerate constant load to an immediate value. */
5455 if (GET_CODE (x) == FLOAT_EXTEND
5456 && MEM_P (XEXP (x, 0))
5457 && MEM_READONLY_P (XEXP (x, 0)))
5458 {
5459 rtx tmp = avoid_constant_pool_reference (x);
5460 if (x != tmp)
5461 return x;
5462 }
5463
5464 /* Try to simplify X. If the simplification changed the code, it is likely
5465 that further simplification will help, so loop, but limit the number
5466 of repetitions that will be performed. */
5467
5468 for (i = 0; i < 4; i++)
5469 {
5470 /* If X is sufficiently simple, don't bother trying to do anything
5471 with it. */
5472 if (code != CONST_INT && code != REG && code != CLOBBER)
5473 x = combine_simplify_rtx (x, op0_mode, in_dest, in_cond);
5474
5475 if (GET_CODE (x) == code)
5476 break;
5477
5478 code = GET_CODE (x);
5479
5480 /* We no longer know the original mode of operand 0 since we
5481 have changed the form of X) */
5482 op0_mode = VOIDmode;
5483 }
5484
5485 return x;
5486 }
5487 \f
5488 /* Simplify X, a piece of RTL. We just operate on the expression at the
5489 outer level; call `subst' to simplify recursively. Return the new
5490 expression.
5491
5492 OP0_MODE is the original mode of XEXP (x, 0). IN_DEST is nonzero
5493 if we are inside a SET_DEST. IN_COND is nonzero if we are at the top level
5494 of a condition. */
5495
5496 static rtx
5497 combine_simplify_rtx (rtx x, machine_mode op0_mode, int in_dest,
5498 int in_cond)
5499 {
5500 enum rtx_code code = GET_CODE (x);
5501 machine_mode mode = GET_MODE (x);
5502 rtx temp;
5503 int i;
5504
5505 /* If this is a commutative operation, put a constant last and a complex
5506 expression first. We don't need to do this for comparisons here. */
5507 if (COMMUTATIVE_ARITH_P (x)
5508 && swap_commutative_operands_p (XEXP (x, 0), XEXP (x, 1)))
5509 {
5510 temp = XEXP (x, 0);
5511 SUBST (XEXP (x, 0), XEXP (x, 1));
5512 SUBST (XEXP (x, 1), temp);
5513 }
5514
5515 /* If this is a simple operation applied to an IF_THEN_ELSE, try
5516 applying it to the arms of the IF_THEN_ELSE. This often simplifies
5517 things. Check for cases where both arms are testing the same
5518 condition.
5519
5520 Don't do anything if all operands are very simple. */
5521
5522 if ((BINARY_P (x)
5523 && ((!OBJECT_P (XEXP (x, 0))
5524 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
5525 && OBJECT_P (SUBREG_REG (XEXP (x, 0)))))
5526 || (!OBJECT_P (XEXP (x, 1))
5527 && ! (GET_CODE (XEXP (x, 1)) == SUBREG
5528 && OBJECT_P (SUBREG_REG (XEXP (x, 1)))))))
5529 || (UNARY_P (x)
5530 && (!OBJECT_P (XEXP (x, 0))
5531 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
5532 && OBJECT_P (SUBREG_REG (XEXP (x, 0)))))))
5533 {
5534 rtx cond, true_rtx, false_rtx;
5535
5536 cond = if_then_else_cond (x, &true_rtx, &false_rtx);
5537 if (cond != 0
5538 /* If everything is a comparison, what we have is highly unlikely
5539 to be simpler, so don't use it. */
5540 && ! (COMPARISON_P (x)
5541 && (COMPARISON_P (true_rtx) || COMPARISON_P (false_rtx))))
5542 {
5543 rtx cop1 = const0_rtx;
5544 enum rtx_code cond_code = simplify_comparison (NE, &cond, &cop1);
5545
5546 if (cond_code == NE && COMPARISON_P (cond))
5547 return x;
5548
5549 /* Simplify the alternative arms; this may collapse the true and
5550 false arms to store-flag values. Be careful to use copy_rtx
5551 here since true_rtx or false_rtx might share RTL with x as a
5552 result of the if_then_else_cond call above. */
5553 true_rtx = subst (copy_rtx (true_rtx), pc_rtx, pc_rtx, 0, 0, 0);
5554 false_rtx = subst (copy_rtx (false_rtx), pc_rtx, pc_rtx, 0, 0, 0);
5555
5556 /* If true_rtx and false_rtx are not general_operands, an if_then_else
5557 is unlikely to be simpler. */
5558 if (general_operand (true_rtx, VOIDmode)
5559 && general_operand (false_rtx, VOIDmode))
5560 {
5561 enum rtx_code reversed;
5562
5563 /* Restarting if we generate a store-flag expression will cause
5564 us to loop. Just drop through in this case. */
5565
5566 /* If the result values are STORE_FLAG_VALUE and zero, we can
5567 just make the comparison operation. */
5568 if (true_rtx == const_true_rtx && false_rtx == const0_rtx)
5569 x = simplify_gen_relational (cond_code, mode, VOIDmode,
5570 cond, cop1);
5571 else if (true_rtx == const0_rtx && false_rtx == const_true_rtx
5572 && ((reversed = reversed_comparison_code_parts
5573 (cond_code, cond, cop1, NULL))
5574 != UNKNOWN))
5575 x = simplify_gen_relational (reversed, mode, VOIDmode,
5576 cond, cop1);
5577
5578 /* Likewise, we can make the negate of a comparison operation
5579 if the result values are - STORE_FLAG_VALUE and zero. */
5580 else if (CONST_INT_P (true_rtx)
5581 && INTVAL (true_rtx) == - STORE_FLAG_VALUE
5582 && false_rtx == const0_rtx)
5583 x = simplify_gen_unary (NEG, mode,
5584 simplify_gen_relational (cond_code,
5585 mode, VOIDmode,
5586 cond, cop1),
5587 mode);
5588 else if (CONST_INT_P (false_rtx)
5589 && INTVAL (false_rtx) == - STORE_FLAG_VALUE
5590 && true_rtx == const0_rtx
5591 && ((reversed = reversed_comparison_code_parts
5592 (cond_code, cond, cop1, NULL))
5593 != UNKNOWN))
5594 x = simplify_gen_unary (NEG, mode,
5595 simplify_gen_relational (reversed,
5596 mode, VOIDmode,
5597 cond, cop1),
5598 mode);
5599 else
5600 return gen_rtx_IF_THEN_ELSE (mode,
5601 simplify_gen_relational (cond_code,
5602 mode,
5603 VOIDmode,
5604 cond,
5605 cop1),
5606 true_rtx, false_rtx);
5607
5608 code = GET_CODE (x);
5609 op0_mode = VOIDmode;
5610 }
5611 }
5612 }
5613
5614 /* Try to fold this expression in case we have constants that weren't
5615 present before. */
5616 temp = 0;
5617 switch (GET_RTX_CLASS (code))
5618 {
5619 case RTX_UNARY:
5620 if (op0_mode == VOIDmode)
5621 op0_mode = GET_MODE (XEXP (x, 0));
5622 temp = simplify_unary_operation (code, mode, XEXP (x, 0), op0_mode);
5623 break;
5624 case RTX_COMPARE:
5625 case RTX_COMM_COMPARE:
5626 {
5627 machine_mode cmp_mode = GET_MODE (XEXP (x, 0));
5628 if (cmp_mode == VOIDmode)
5629 {
5630 cmp_mode = GET_MODE (XEXP (x, 1));
5631 if (cmp_mode == VOIDmode)
5632 cmp_mode = op0_mode;
5633 }
5634 temp = simplify_relational_operation (code, mode, cmp_mode,
5635 XEXP (x, 0), XEXP (x, 1));
5636 }
5637 break;
5638 case RTX_COMM_ARITH:
5639 case RTX_BIN_ARITH:
5640 temp = simplify_binary_operation (code, mode, XEXP (x, 0), XEXP (x, 1));
5641 break;
5642 case RTX_BITFIELD_OPS:
5643 case RTX_TERNARY:
5644 temp = simplify_ternary_operation (code, mode, op0_mode, XEXP (x, 0),
5645 XEXP (x, 1), XEXP (x, 2));
5646 break;
5647 default:
5648 break;
5649 }
5650
5651 if (temp)
5652 {
5653 x = temp;
5654 code = GET_CODE (temp);
5655 op0_mode = VOIDmode;
5656 mode = GET_MODE (temp);
5657 }
5658
5659 /* First see if we can apply the inverse distributive law. */
5660 if (code == PLUS || code == MINUS
5661 || code == AND || code == IOR || code == XOR)
5662 {
5663 x = apply_distributive_law (x);
5664 code = GET_CODE (x);
5665 op0_mode = VOIDmode;
5666 }
5667
5668 /* If CODE is an associative operation not otherwise handled, see if we
5669 can associate some operands. This can win if they are constants or
5670 if they are logically related (i.e. (a & b) & a). */
5671 if ((code == PLUS || code == MINUS || code == MULT || code == DIV
5672 || code == AND || code == IOR || code == XOR
5673 || code == SMAX || code == SMIN || code == UMAX || code == UMIN)
5674 && ((INTEGRAL_MODE_P (mode) && code != DIV)
5675 || (flag_associative_math && FLOAT_MODE_P (mode))))
5676 {
5677 if (GET_CODE (XEXP (x, 0)) == code)
5678 {
5679 rtx other = XEXP (XEXP (x, 0), 0);
5680 rtx inner_op0 = XEXP (XEXP (x, 0), 1);
5681 rtx inner_op1 = XEXP (x, 1);
5682 rtx inner;
5683
5684 /* Make sure we pass the constant operand if any as the second
5685 one if this is a commutative operation. */
5686 if (CONSTANT_P (inner_op0) && COMMUTATIVE_ARITH_P (x))
5687 std::swap (inner_op0, inner_op1);
5688 inner = simplify_binary_operation (code == MINUS ? PLUS
5689 : code == DIV ? MULT
5690 : code,
5691 mode, inner_op0, inner_op1);
5692
5693 /* For commutative operations, try the other pair if that one
5694 didn't simplify. */
5695 if (inner == 0 && COMMUTATIVE_ARITH_P (x))
5696 {
5697 other = XEXP (XEXP (x, 0), 1);
5698 inner = simplify_binary_operation (code, mode,
5699 XEXP (XEXP (x, 0), 0),
5700 XEXP (x, 1));
5701 }
5702
5703 if (inner)
5704 return simplify_gen_binary (code, mode, other, inner);
5705 }
5706 }
5707
5708 /* A little bit of algebraic simplification here. */
5709 switch (code)
5710 {
5711 case MEM:
5712 /* Ensure that our address has any ASHIFTs converted to MULT in case
5713 address-recognizing predicates are called later. */
5714 temp = make_compound_operation (XEXP (x, 0), MEM);
5715 SUBST (XEXP (x, 0), temp);
5716 break;
5717
5718 case SUBREG:
5719 if (op0_mode == VOIDmode)
5720 op0_mode = GET_MODE (SUBREG_REG (x));
5721
5722 /* See if this can be moved to simplify_subreg. */
5723 if (CONSTANT_P (SUBREG_REG (x))
5724 && subreg_lowpart_offset (mode, op0_mode) == SUBREG_BYTE (x)
5725 /* Don't call gen_lowpart if the inner mode
5726 is VOIDmode and we cannot simplify it, as SUBREG without
5727 inner mode is invalid. */
5728 && (GET_MODE (SUBREG_REG (x)) != VOIDmode
5729 || gen_lowpart_common (mode, SUBREG_REG (x))))
5730 return gen_lowpart (mode, SUBREG_REG (x));
5731
5732 if (GET_MODE_CLASS (GET_MODE (SUBREG_REG (x))) == MODE_CC)
5733 break;
5734 {
5735 rtx temp;
5736 temp = simplify_subreg (mode, SUBREG_REG (x), op0_mode,
5737 SUBREG_BYTE (x));
5738 if (temp)
5739 return temp;
5740
5741 /* If op is known to have all lower bits zero, the result is zero. */
5742 if (!in_dest
5743 && SCALAR_INT_MODE_P (mode)
5744 && SCALAR_INT_MODE_P (op0_mode)
5745 && GET_MODE_PRECISION (mode) < GET_MODE_PRECISION (op0_mode)
5746 && subreg_lowpart_offset (mode, op0_mode) == SUBREG_BYTE (x)
5747 && HWI_COMPUTABLE_MODE_P (op0_mode)
5748 && (nonzero_bits (SUBREG_REG (x), op0_mode)
5749 & GET_MODE_MASK (mode)) == 0)
5750 return CONST0_RTX (mode);
5751 }
5752
5753 /* Don't change the mode of the MEM if that would change the meaning
5754 of the address. */
5755 if (MEM_P (SUBREG_REG (x))
5756 && (MEM_VOLATILE_P (SUBREG_REG (x))
5757 || mode_dependent_address_p (XEXP (SUBREG_REG (x), 0),
5758 MEM_ADDR_SPACE (SUBREG_REG (x)))))
5759 return gen_rtx_CLOBBER (mode, const0_rtx);
5760
5761 /* Note that we cannot do any narrowing for non-constants since
5762 we might have been counting on using the fact that some bits were
5763 zero. We now do this in the SET. */
5764
5765 break;
5766
5767 case NEG:
5768 temp = expand_compound_operation (XEXP (x, 0));
5769
5770 /* For C equal to the width of MODE minus 1, (neg (ashiftrt X C)) can be
5771 replaced by (lshiftrt X C). This will convert
5772 (neg (sign_extract X 1 Y)) to (zero_extract X 1 Y). */
5773
5774 if (GET_CODE (temp) == ASHIFTRT
5775 && CONST_INT_P (XEXP (temp, 1))
5776 && INTVAL (XEXP (temp, 1)) == GET_MODE_PRECISION (mode) - 1)
5777 return simplify_shift_const (NULL_RTX, LSHIFTRT, mode, XEXP (temp, 0),
5778 INTVAL (XEXP (temp, 1)));
5779
5780 /* If X has only a single bit that might be nonzero, say, bit I, convert
5781 (neg X) to (ashiftrt (ashift X C-I) C-I) where C is the bitsize of
5782 MODE minus 1. This will convert (neg (zero_extract X 1 Y)) to
5783 (sign_extract X 1 Y). But only do this if TEMP isn't a register
5784 or a SUBREG of one since we'd be making the expression more
5785 complex if it was just a register. */
5786
5787 if (!REG_P (temp)
5788 && ! (GET_CODE (temp) == SUBREG
5789 && REG_P (SUBREG_REG (temp)))
5790 && (i = exact_log2 (nonzero_bits (temp, mode))) >= 0)
5791 {
5792 rtx temp1 = simplify_shift_const
5793 (NULL_RTX, ASHIFTRT, mode,
5794 simplify_shift_const (NULL_RTX, ASHIFT, mode, temp,
5795 GET_MODE_PRECISION (mode) - 1 - i),
5796 GET_MODE_PRECISION (mode) - 1 - i);
5797
5798 /* If all we did was surround TEMP with the two shifts, we
5799 haven't improved anything, so don't use it. Otherwise,
5800 we are better off with TEMP1. */
5801 if (GET_CODE (temp1) != ASHIFTRT
5802 || GET_CODE (XEXP (temp1, 0)) != ASHIFT
5803 || XEXP (XEXP (temp1, 0), 0) != temp)
5804 return temp1;
5805 }
5806 break;
5807
5808 case TRUNCATE:
5809 /* We can't handle truncation to a partial integer mode here
5810 because we don't know the real bitsize of the partial
5811 integer mode. */
5812 if (GET_MODE_CLASS (mode) == MODE_PARTIAL_INT)
5813 break;
5814
5815 if (HWI_COMPUTABLE_MODE_P (mode))
5816 SUBST (XEXP (x, 0),
5817 force_to_mode (XEXP (x, 0), GET_MODE (XEXP (x, 0)),
5818 GET_MODE_MASK (mode), 0));
5819
5820 /* We can truncate a constant value and return it. */
5821 if (CONST_INT_P (XEXP (x, 0)))
5822 return gen_int_mode (INTVAL (XEXP (x, 0)), mode);
5823
5824 /* Similarly to what we do in simplify-rtx.c, a truncate of a register
5825 whose value is a comparison can be replaced with a subreg if
5826 STORE_FLAG_VALUE permits. */
5827 if (HWI_COMPUTABLE_MODE_P (mode)
5828 && (STORE_FLAG_VALUE & ~GET_MODE_MASK (mode)) == 0
5829 && (temp = get_last_value (XEXP (x, 0)))
5830 && COMPARISON_P (temp))
5831 return gen_lowpart (mode, XEXP (x, 0));
5832 break;
5833
5834 case CONST:
5835 /* (const (const X)) can become (const X). Do it this way rather than
5836 returning the inner CONST since CONST can be shared with a
5837 REG_EQUAL note. */
5838 if (GET_CODE (XEXP (x, 0)) == CONST)
5839 SUBST (XEXP (x, 0), XEXP (XEXP (x, 0), 0));
5840 break;
5841
5842 case LO_SUM:
5843 /* Convert (lo_sum (high FOO) FOO) to FOO. This is necessary so we
5844 can add in an offset. find_split_point will split this address up
5845 again if it doesn't match. */
5846 if (HAVE_lo_sum && GET_CODE (XEXP (x, 0)) == HIGH
5847 && rtx_equal_p (XEXP (XEXP (x, 0), 0), XEXP (x, 1)))
5848 return XEXP (x, 1);
5849 break;
5850
5851 case PLUS:
5852 /* (plus (xor (and <foo> (const_int pow2 - 1)) <c>) <-c>)
5853 when c is (const_int (pow2 + 1) / 2) is a sign extension of a
5854 bit-field and can be replaced by either a sign_extend or a
5855 sign_extract. The `and' may be a zero_extend and the two
5856 <c>, -<c> constants may be reversed. */
5857 if (GET_CODE (XEXP (x, 0)) == XOR
5858 && CONST_INT_P (XEXP (x, 1))
5859 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
5860 && INTVAL (XEXP (x, 1)) == -INTVAL (XEXP (XEXP (x, 0), 1))
5861 && ((i = exact_log2 (UINTVAL (XEXP (XEXP (x, 0), 1)))) >= 0
5862 || (i = exact_log2 (UINTVAL (XEXP (x, 1)))) >= 0)
5863 && HWI_COMPUTABLE_MODE_P (mode)
5864 && ((GET_CODE (XEXP (XEXP (x, 0), 0)) == AND
5865 && CONST_INT_P (XEXP (XEXP (XEXP (x, 0), 0), 1))
5866 && (UINTVAL (XEXP (XEXP (XEXP (x, 0), 0), 1))
5867 == ((unsigned HOST_WIDE_INT) 1 << (i + 1)) - 1))
5868 || (GET_CODE (XEXP (XEXP (x, 0), 0)) == ZERO_EXTEND
5869 && (GET_MODE_PRECISION (GET_MODE (XEXP (XEXP (XEXP (x, 0), 0), 0)))
5870 == (unsigned int) i + 1))))
5871 return simplify_shift_const
5872 (NULL_RTX, ASHIFTRT, mode,
5873 simplify_shift_const (NULL_RTX, ASHIFT, mode,
5874 XEXP (XEXP (XEXP (x, 0), 0), 0),
5875 GET_MODE_PRECISION (mode) - (i + 1)),
5876 GET_MODE_PRECISION (mode) - (i + 1));
5877
5878 /* If only the low-order bit of X is possibly nonzero, (plus x -1)
5879 can become (ashiftrt (ashift (xor x 1) C) C) where C is
5880 the bitsize of the mode - 1. This allows simplification of
5881 "a = (b & 8) == 0;" */
5882 if (XEXP (x, 1) == constm1_rtx
5883 && !REG_P (XEXP (x, 0))
5884 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
5885 && REG_P (SUBREG_REG (XEXP (x, 0))))
5886 && nonzero_bits (XEXP (x, 0), mode) == 1)
5887 return simplify_shift_const (NULL_RTX, ASHIFTRT, mode,
5888 simplify_shift_const (NULL_RTX, ASHIFT, mode,
5889 gen_rtx_XOR (mode, XEXP (x, 0), const1_rtx),
5890 GET_MODE_PRECISION (mode) - 1),
5891 GET_MODE_PRECISION (mode) - 1);
5892
5893 /* If we are adding two things that have no bits in common, convert
5894 the addition into an IOR. This will often be further simplified,
5895 for example in cases like ((a & 1) + (a & 2)), which can
5896 become a & 3. */
5897
5898 if (HWI_COMPUTABLE_MODE_P (mode)
5899 && (nonzero_bits (XEXP (x, 0), mode)
5900 & nonzero_bits (XEXP (x, 1), mode)) == 0)
5901 {
5902 /* Try to simplify the expression further. */
5903 rtx tor = simplify_gen_binary (IOR, mode, XEXP (x, 0), XEXP (x, 1));
5904 temp = combine_simplify_rtx (tor, VOIDmode, in_dest, 0);
5905
5906 /* If we could, great. If not, do not go ahead with the IOR
5907 replacement, since PLUS appears in many special purpose
5908 address arithmetic instructions. */
5909 if (GET_CODE (temp) != CLOBBER
5910 && (GET_CODE (temp) != IOR
5911 || ((XEXP (temp, 0) != XEXP (x, 0)
5912 || XEXP (temp, 1) != XEXP (x, 1))
5913 && (XEXP (temp, 0) != XEXP (x, 1)
5914 || XEXP (temp, 1) != XEXP (x, 0)))))
5915 return temp;
5916 }
5917 break;
5918
5919 case MINUS:
5920 /* (minus <foo> (and <foo> (const_int -pow2))) becomes
5921 (and <foo> (const_int pow2-1)) */
5922 if (GET_CODE (XEXP (x, 1)) == AND
5923 && CONST_INT_P (XEXP (XEXP (x, 1), 1))
5924 && exact_log2 (-UINTVAL (XEXP (XEXP (x, 1), 1))) >= 0
5925 && rtx_equal_p (XEXP (XEXP (x, 1), 0), XEXP (x, 0)))
5926 return simplify_and_const_int (NULL_RTX, mode, XEXP (x, 0),
5927 -INTVAL (XEXP (XEXP (x, 1), 1)) - 1);
5928 break;
5929
5930 case MULT:
5931 /* If we have (mult (plus A B) C), apply the distributive law and then
5932 the inverse distributive law to see if things simplify. This
5933 occurs mostly in addresses, often when unrolling loops. */
5934
5935 if (GET_CODE (XEXP (x, 0)) == PLUS)
5936 {
5937 rtx result = distribute_and_simplify_rtx (x, 0);
5938 if (result)
5939 return result;
5940 }
5941
5942 /* Try simplify a*(b/c) as (a*b)/c. */
5943 if (FLOAT_MODE_P (mode) && flag_associative_math
5944 && GET_CODE (XEXP (x, 0)) == DIV)
5945 {
5946 rtx tem = simplify_binary_operation (MULT, mode,
5947 XEXP (XEXP (x, 0), 0),
5948 XEXP (x, 1));
5949 if (tem)
5950 return simplify_gen_binary (DIV, mode, tem, XEXP (XEXP (x, 0), 1));
5951 }
5952 break;
5953
5954 case UDIV:
5955 /* If this is a divide by a power of two, treat it as a shift if
5956 its first operand is a shift. */
5957 if (CONST_INT_P (XEXP (x, 1))
5958 && (i = exact_log2 (UINTVAL (XEXP (x, 1)))) >= 0
5959 && (GET_CODE (XEXP (x, 0)) == ASHIFT
5960 || GET_CODE (XEXP (x, 0)) == LSHIFTRT
5961 || GET_CODE (XEXP (x, 0)) == ASHIFTRT
5962 || GET_CODE (XEXP (x, 0)) == ROTATE
5963 || GET_CODE (XEXP (x, 0)) == ROTATERT))
5964 return simplify_shift_const (NULL_RTX, LSHIFTRT, mode, XEXP (x, 0), i);
5965 break;
5966
5967 case EQ: case NE:
5968 case GT: case GTU: case GE: case GEU:
5969 case LT: case LTU: case LE: case LEU:
5970 case UNEQ: case LTGT:
5971 case UNGT: case UNGE:
5972 case UNLT: case UNLE:
5973 case UNORDERED: case ORDERED:
5974 /* If the first operand is a condition code, we can't do anything
5975 with it. */
5976 if (GET_CODE (XEXP (x, 0)) == COMPARE
5977 || (GET_MODE_CLASS (GET_MODE (XEXP (x, 0))) != MODE_CC
5978 && ! CC0_P (XEXP (x, 0))))
5979 {
5980 rtx op0 = XEXP (x, 0);
5981 rtx op1 = XEXP (x, 1);
5982 enum rtx_code new_code;
5983
5984 if (GET_CODE (op0) == COMPARE)
5985 op1 = XEXP (op0, 1), op0 = XEXP (op0, 0);
5986
5987 /* Simplify our comparison, if possible. */
5988 new_code = simplify_comparison (code, &op0, &op1);
5989
5990 /* If STORE_FLAG_VALUE is 1, we can convert (ne x 0) to simply X
5991 if only the low-order bit is possibly nonzero in X (such as when
5992 X is a ZERO_EXTRACT of one bit). Similarly, we can convert EQ to
5993 (xor X 1) or (minus 1 X); we use the former. Finally, if X is
5994 known to be either 0 or -1, NE becomes a NEG and EQ becomes
5995 (plus X 1).
5996
5997 Remove any ZERO_EXTRACT we made when thinking this was a
5998 comparison. It may now be simpler to use, e.g., an AND. If a
5999 ZERO_EXTRACT is indeed appropriate, it will be placed back by
6000 the call to make_compound_operation in the SET case.
6001
6002 Don't apply these optimizations if the caller would
6003 prefer a comparison rather than a value.
6004 E.g., for the condition in an IF_THEN_ELSE most targets need
6005 an explicit comparison. */
6006
6007 if (in_cond)
6008 ;
6009
6010 else if (STORE_FLAG_VALUE == 1
6011 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
6012 && op1 == const0_rtx
6013 && mode == GET_MODE (op0)
6014 && nonzero_bits (op0, mode) == 1)
6015 return gen_lowpart (mode,
6016 expand_compound_operation (op0));
6017
6018 else if (STORE_FLAG_VALUE == 1
6019 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
6020 && op1 == const0_rtx
6021 && mode == GET_MODE (op0)
6022 && (num_sign_bit_copies (op0, mode)
6023 == GET_MODE_PRECISION (mode)))
6024 {
6025 op0 = expand_compound_operation (op0);
6026 return simplify_gen_unary (NEG, mode,
6027 gen_lowpart (mode, op0),
6028 mode);
6029 }
6030
6031 else if (STORE_FLAG_VALUE == 1
6032 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
6033 && op1 == const0_rtx
6034 && mode == GET_MODE (op0)
6035 && nonzero_bits (op0, mode) == 1)
6036 {
6037 op0 = expand_compound_operation (op0);
6038 return simplify_gen_binary (XOR, mode,
6039 gen_lowpart (mode, op0),
6040 const1_rtx);
6041 }
6042
6043 else if (STORE_FLAG_VALUE == 1
6044 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
6045 && op1 == const0_rtx
6046 && mode == GET_MODE (op0)
6047 && (num_sign_bit_copies (op0, mode)
6048 == GET_MODE_PRECISION (mode)))
6049 {
6050 op0 = expand_compound_operation (op0);
6051 return plus_constant (mode, gen_lowpart (mode, op0), 1);
6052 }
6053
6054 /* If STORE_FLAG_VALUE is -1, we have cases similar to
6055 those above. */
6056 if (in_cond)
6057 ;
6058
6059 else if (STORE_FLAG_VALUE == -1
6060 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
6061 && op1 == const0_rtx
6062 && mode == GET_MODE (op0)
6063 && (num_sign_bit_copies (op0, mode)
6064 == GET_MODE_PRECISION (mode)))
6065 return gen_lowpart (mode,
6066 expand_compound_operation (op0));
6067
6068 else if (STORE_FLAG_VALUE == -1
6069 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
6070 && op1 == const0_rtx
6071 && mode == GET_MODE (op0)
6072 && nonzero_bits (op0, mode) == 1)
6073 {
6074 op0 = expand_compound_operation (op0);
6075 return simplify_gen_unary (NEG, mode,
6076 gen_lowpart (mode, op0),
6077 mode);
6078 }
6079
6080 else if (STORE_FLAG_VALUE == -1
6081 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
6082 && op1 == const0_rtx
6083 && mode == GET_MODE (op0)
6084 && (num_sign_bit_copies (op0, mode)
6085 == GET_MODE_PRECISION (mode)))
6086 {
6087 op0 = expand_compound_operation (op0);
6088 return simplify_gen_unary (NOT, mode,
6089 gen_lowpart (mode, op0),
6090 mode);
6091 }
6092
6093 /* If X is 0/1, (eq X 0) is X-1. */
6094 else if (STORE_FLAG_VALUE == -1
6095 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
6096 && op1 == const0_rtx
6097 && mode == GET_MODE (op0)
6098 && nonzero_bits (op0, mode) == 1)
6099 {
6100 op0 = expand_compound_operation (op0);
6101 return plus_constant (mode, gen_lowpart (mode, op0), -1);
6102 }
6103
6104 /* If STORE_FLAG_VALUE says to just test the sign bit and X has just
6105 one bit that might be nonzero, we can convert (ne x 0) to
6106 (ashift x c) where C puts the bit in the sign bit. Remove any
6107 AND with STORE_FLAG_VALUE when we are done, since we are only
6108 going to test the sign bit. */
6109 if (new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
6110 && HWI_COMPUTABLE_MODE_P (mode)
6111 && val_signbit_p (mode, STORE_FLAG_VALUE)
6112 && op1 == const0_rtx
6113 && mode == GET_MODE (op0)
6114 && (i = exact_log2 (nonzero_bits (op0, mode))) >= 0)
6115 {
6116 x = simplify_shift_const (NULL_RTX, ASHIFT, mode,
6117 expand_compound_operation (op0),
6118 GET_MODE_PRECISION (mode) - 1 - i);
6119 if (GET_CODE (x) == AND && XEXP (x, 1) == const_true_rtx)
6120 return XEXP (x, 0);
6121 else
6122 return x;
6123 }
6124
6125 /* If the code changed, return a whole new comparison.
6126 We also need to avoid using SUBST in cases where
6127 simplify_comparison has widened a comparison with a CONST_INT,
6128 since in that case the wider CONST_INT may fail the sanity
6129 checks in do_SUBST. */
6130 if (new_code != code
6131 || (CONST_INT_P (op1)
6132 && GET_MODE (op0) != GET_MODE (XEXP (x, 0))
6133 && GET_MODE (op0) != GET_MODE (XEXP (x, 1))))
6134 return gen_rtx_fmt_ee (new_code, mode, op0, op1);
6135
6136 /* Otherwise, keep this operation, but maybe change its operands.
6137 This also converts (ne (compare FOO BAR) 0) to (ne FOO BAR). */
6138 SUBST (XEXP (x, 0), op0);
6139 SUBST (XEXP (x, 1), op1);
6140 }
6141 break;
6142
6143 case IF_THEN_ELSE:
6144 return simplify_if_then_else (x);
6145
6146 case ZERO_EXTRACT:
6147 case SIGN_EXTRACT:
6148 case ZERO_EXTEND:
6149 case SIGN_EXTEND:
6150 /* If we are processing SET_DEST, we are done. */
6151 if (in_dest)
6152 return x;
6153
6154 return expand_compound_operation (x);
6155
6156 case SET:
6157 return simplify_set (x);
6158
6159 case AND:
6160 case IOR:
6161 return simplify_logical (x);
6162
6163 case ASHIFT:
6164 case LSHIFTRT:
6165 case ASHIFTRT:
6166 case ROTATE:
6167 case ROTATERT:
6168 /* If this is a shift by a constant amount, simplify it. */
6169 if (CONST_INT_P (XEXP (x, 1)))
6170 return simplify_shift_const (x, code, mode, XEXP (x, 0),
6171 INTVAL (XEXP (x, 1)));
6172
6173 else if (SHIFT_COUNT_TRUNCATED && !REG_P (XEXP (x, 1)))
6174 SUBST (XEXP (x, 1),
6175 force_to_mode (XEXP (x, 1), GET_MODE (XEXP (x, 1)),
6176 ((unsigned HOST_WIDE_INT) 1
6177 << exact_log2 (GET_MODE_BITSIZE (GET_MODE (x))))
6178 - 1,
6179 0));
6180 break;
6181
6182 default:
6183 break;
6184 }
6185
6186 return x;
6187 }
6188 \f
6189 /* Simplify X, an IF_THEN_ELSE expression. Return the new expression. */
6190
6191 static rtx
6192 simplify_if_then_else (rtx x)
6193 {
6194 machine_mode mode = GET_MODE (x);
6195 rtx cond = XEXP (x, 0);
6196 rtx true_rtx = XEXP (x, 1);
6197 rtx false_rtx = XEXP (x, 2);
6198 enum rtx_code true_code = GET_CODE (cond);
6199 int comparison_p = COMPARISON_P (cond);
6200 rtx temp;
6201 int i;
6202 enum rtx_code false_code;
6203 rtx reversed;
6204
6205 /* Simplify storing of the truth value. */
6206 if (comparison_p && true_rtx == const_true_rtx && false_rtx == const0_rtx)
6207 return simplify_gen_relational (true_code, mode, VOIDmode,
6208 XEXP (cond, 0), XEXP (cond, 1));
6209
6210 /* Also when the truth value has to be reversed. */
6211 if (comparison_p
6212 && true_rtx == const0_rtx && false_rtx == const_true_rtx
6213 && (reversed = reversed_comparison (cond, mode)))
6214 return reversed;
6215
6216 /* Sometimes we can simplify the arm of an IF_THEN_ELSE if a register used
6217 in it is being compared against certain values. Get the true and false
6218 comparisons and see if that says anything about the value of each arm. */
6219
6220 if (comparison_p
6221 && ((false_code = reversed_comparison_code (cond, NULL))
6222 != UNKNOWN)
6223 && REG_P (XEXP (cond, 0)))
6224 {
6225 HOST_WIDE_INT nzb;
6226 rtx from = XEXP (cond, 0);
6227 rtx true_val = XEXP (cond, 1);
6228 rtx false_val = true_val;
6229 int swapped = 0;
6230
6231 /* If FALSE_CODE is EQ, swap the codes and arms. */
6232
6233 if (false_code == EQ)
6234 {
6235 swapped = 1, true_code = EQ, false_code = NE;
6236 std::swap (true_rtx, false_rtx);
6237 }
6238
6239 /* If we are comparing against zero and the expression being tested has
6240 only a single bit that might be nonzero, that is its value when it is
6241 not equal to zero. Similarly if it is known to be -1 or 0. */
6242
6243 if (true_code == EQ && true_val == const0_rtx
6244 && exact_log2 (nzb = nonzero_bits (from, GET_MODE (from))) >= 0)
6245 {
6246 false_code = EQ;
6247 false_val = gen_int_mode (nzb, GET_MODE (from));
6248 }
6249 else if (true_code == EQ && true_val == const0_rtx
6250 && (num_sign_bit_copies (from, GET_MODE (from))
6251 == GET_MODE_PRECISION (GET_MODE (from))))
6252 {
6253 false_code = EQ;
6254 false_val = constm1_rtx;
6255 }
6256
6257 /* Now simplify an arm if we know the value of the register in the
6258 branch and it is used in the arm. Be careful due to the potential
6259 of locally-shared RTL. */
6260
6261 if (reg_mentioned_p (from, true_rtx))
6262 true_rtx = subst (known_cond (copy_rtx (true_rtx), true_code,
6263 from, true_val),
6264 pc_rtx, pc_rtx, 0, 0, 0);
6265 if (reg_mentioned_p (from, false_rtx))
6266 false_rtx = subst (known_cond (copy_rtx (false_rtx), false_code,
6267 from, false_val),
6268 pc_rtx, pc_rtx, 0, 0, 0);
6269
6270 SUBST (XEXP (x, 1), swapped ? false_rtx : true_rtx);
6271 SUBST (XEXP (x, 2), swapped ? true_rtx : false_rtx);
6272
6273 true_rtx = XEXP (x, 1);
6274 false_rtx = XEXP (x, 2);
6275 true_code = GET_CODE (cond);
6276 }
6277
6278 /* If we have (if_then_else FOO (pc) (label_ref BAR)) and FOO can be
6279 reversed, do so to avoid needing two sets of patterns for
6280 subtract-and-branch insns. Similarly if we have a constant in the true
6281 arm, the false arm is the same as the first operand of the comparison, or
6282 the false arm is more complicated than the true arm. */
6283
6284 if (comparison_p
6285 && reversed_comparison_code (cond, NULL) != UNKNOWN
6286 && (true_rtx == pc_rtx
6287 || (CONSTANT_P (true_rtx)
6288 && !CONST_INT_P (false_rtx) && false_rtx != pc_rtx)
6289 || true_rtx == const0_rtx
6290 || (OBJECT_P (true_rtx) && !OBJECT_P (false_rtx))
6291 || (GET_CODE (true_rtx) == SUBREG && OBJECT_P (SUBREG_REG (true_rtx))
6292 && !OBJECT_P (false_rtx))
6293 || reg_mentioned_p (true_rtx, false_rtx)
6294 || rtx_equal_p (false_rtx, XEXP (cond, 0))))
6295 {
6296 true_code = reversed_comparison_code (cond, NULL);
6297 SUBST (XEXP (x, 0), reversed_comparison (cond, GET_MODE (cond)));
6298 SUBST (XEXP (x, 1), false_rtx);
6299 SUBST (XEXP (x, 2), true_rtx);
6300
6301 std::swap (true_rtx, false_rtx);
6302 cond = XEXP (x, 0);
6303
6304 /* It is possible that the conditional has been simplified out. */
6305 true_code = GET_CODE (cond);
6306 comparison_p = COMPARISON_P (cond);
6307 }
6308
6309 /* If the two arms are identical, we don't need the comparison. */
6310
6311 if (rtx_equal_p (true_rtx, false_rtx) && ! side_effects_p (cond))
6312 return true_rtx;
6313
6314 /* Convert a == b ? b : a to "a". */
6315 if (true_code == EQ && ! side_effects_p (cond)
6316 && !HONOR_NANS (mode)
6317 && rtx_equal_p (XEXP (cond, 0), false_rtx)
6318 && rtx_equal_p (XEXP (cond, 1), true_rtx))
6319 return false_rtx;
6320 else if (true_code == NE && ! side_effects_p (cond)
6321 && !HONOR_NANS (mode)
6322 && rtx_equal_p (XEXP (cond, 0), true_rtx)
6323 && rtx_equal_p (XEXP (cond, 1), false_rtx))
6324 return true_rtx;
6325
6326 /* Look for cases where we have (abs x) or (neg (abs X)). */
6327
6328 if (GET_MODE_CLASS (mode) == MODE_INT
6329 && comparison_p
6330 && XEXP (cond, 1) == const0_rtx
6331 && GET_CODE (false_rtx) == NEG
6332 && rtx_equal_p (true_rtx, XEXP (false_rtx, 0))
6333 && rtx_equal_p (true_rtx, XEXP (cond, 0))
6334 && ! side_effects_p (true_rtx))
6335 switch (true_code)
6336 {
6337 case GT:
6338 case GE:
6339 return simplify_gen_unary (ABS, mode, true_rtx, mode);
6340 case LT:
6341 case LE:
6342 return
6343 simplify_gen_unary (NEG, mode,
6344 simplify_gen_unary (ABS, mode, true_rtx, mode),
6345 mode);
6346 default:
6347 break;
6348 }
6349
6350 /* Look for MIN or MAX. */
6351
6352 if ((! FLOAT_MODE_P (mode) || flag_unsafe_math_optimizations)
6353 && comparison_p
6354 && rtx_equal_p (XEXP (cond, 0), true_rtx)
6355 && rtx_equal_p (XEXP (cond, 1), false_rtx)
6356 && ! side_effects_p (cond))
6357 switch (true_code)
6358 {
6359 case GE:
6360 case GT:
6361 return simplify_gen_binary (SMAX, mode, true_rtx, false_rtx);
6362 case LE:
6363 case LT:
6364 return simplify_gen_binary (SMIN, mode, true_rtx, false_rtx);
6365 case GEU:
6366 case GTU:
6367 return simplify_gen_binary (UMAX, mode, true_rtx, false_rtx);
6368 case LEU:
6369 case LTU:
6370 return simplify_gen_binary (UMIN, mode, true_rtx, false_rtx);
6371 default:
6372 break;
6373 }
6374
6375 /* If we have (if_then_else COND (OP Z C1) Z) and OP is an identity when its
6376 second operand is zero, this can be done as (OP Z (mult COND C2)) where
6377 C2 = C1 * STORE_FLAG_VALUE. Similarly if OP has an outer ZERO_EXTEND or
6378 SIGN_EXTEND as long as Z is already extended (so we don't destroy it).
6379 We can do this kind of thing in some cases when STORE_FLAG_VALUE is
6380 neither 1 or -1, but it isn't worth checking for. */
6381
6382 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
6383 && comparison_p
6384 && GET_MODE_CLASS (mode) == MODE_INT
6385 && ! side_effects_p (x))
6386 {
6387 rtx t = make_compound_operation (true_rtx, SET);
6388 rtx f = make_compound_operation (false_rtx, SET);
6389 rtx cond_op0 = XEXP (cond, 0);
6390 rtx cond_op1 = XEXP (cond, 1);
6391 enum rtx_code op = UNKNOWN, extend_op = UNKNOWN;
6392 machine_mode m = mode;
6393 rtx z = 0, c1 = NULL_RTX;
6394
6395 if ((GET_CODE (t) == PLUS || GET_CODE (t) == MINUS
6396 || GET_CODE (t) == IOR || GET_CODE (t) == XOR
6397 || GET_CODE (t) == ASHIFT
6398 || GET_CODE (t) == LSHIFTRT || GET_CODE (t) == ASHIFTRT)
6399 && rtx_equal_p (XEXP (t, 0), f))
6400 c1 = XEXP (t, 1), op = GET_CODE (t), z = f;
6401
6402 /* If an identity-zero op is commutative, check whether there
6403 would be a match if we swapped the operands. */
6404 else if ((GET_CODE (t) == PLUS || GET_CODE (t) == IOR
6405 || GET_CODE (t) == XOR)
6406 && rtx_equal_p (XEXP (t, 1), f))
6407 c1 = XEXP (t, 0), op = GET_CODE (t), z = f;
6408 else if (GET_CODE (t) == SIGN_EXTEND
6409 && (GET_CODE (XEXP (t, 0)) == PLUS
6410 || GET_CODE (XEXP (t, 0)) == MINUS
6411 || GET_CODE (XEXP (t, 0)) == IOR
6412 || GET_CODE (XEXP (t, 0)) == XOR
6413 || GET_CODE (XEXP (t, 0)) == ASHIFT
6414 || GET_CODE (XEXP (t, 0)) == LSHIFTRT
6415 || GET_CODE (XEXP (t, 0)) == ASHIFTRT)
6416 && GET_CODE (XEXP (XEXP (t, 0), 0)) == SUBREG
6417 && subreg_lowpart_p (XEXP (XEXP (t, 0), 0))
6418 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 0)), f)
6419 && (num_sign_bit_copies (f, GET_MODE (f))
6420 > (unsigned int)
6421 (GET_MODE_PRECISION (mode)
6422 - GET_MODE_PRECISION (GET_MODE (XEXP (XEXP (t, 0), 0))))))
6423 {
6424 c1 = XEXP (XEXP (t, 0), 1); z = f; op = GET_CODE (XEXP (t, 0));
6425 extend_op = SIGN_EXTEND;
6426 m = GET_MODE (XEXP (t, 0));
6427 }
6428 else if (GET_CODE (t) == SIGN_EXTEND
6429 && (GET_CODE (XEXP (t, 0)) == PLUS
6430 || GET_CODE (XEXP (t, 0)) == IOR
6431 || GET_CODE (XEXP (t, 0)) == XOR)
6432 && GET_CODE (XEXP (XEXP (t, 0), 1)) == SUBREG
6433 && subreg_lowpart_p (XEXP (XEXP (t, 0), 1))
6434 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 1)), f)
6435 && (num_sign_bit_copies (f, GET_MODE (f))
6436 > (unsigned int)
6437 (GET_MODE_PRECISION (mode)
6438 - GET_MODE_PRECISION (GET_MODE (XEXP (XEXP (t, 0), 1))))))
6439 {
6440 c1 = XEXP (XEXP (t, 0), 0); z = f; op = GET_CODE (XEXP (t, 0));
6441 extend_op = SIGN_EXTEND;
6442 m = GET_MODE (XEXP (t, 0));
6443 }
6444 else if (GET_CODE (t) == ZERO_EXTEND
6445 && (GET_CODE (XEXP (t, 0)) == PLUS
6446 || GET_CODE (XEXP (t, 0)) == MINUS
6447 || GET_CODE (XEXP (t, 0)) == IOR
6448 || GET_CODE (XEXP (t, 0)) == XOR
6449 || GET_CODE (XEXP (t, 0)) == ASHIFT
6450 || GET_CODE (XEXP (t, 0)) == LSHIFTRT
6451 || GET_CODE (XEXP (t, 0)) == ASHIFTRT)
6452 && GET_CODE (XEXP (XEXP (t, 0), 0)) == SUBREG
6453 && HWI_COMPUTABLE_MODE_P (mode)
6454 && subreg_lowpart_p (XEXP (XEXP (t, 0), 0))
6455 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 0)), f)
6456 && ((nonzero_bits (f, GET_MODE (f))
6457 & ~GET_MODE_MASK (GET_MODE (XEXP (XEXP (t, 0), 0))))
6458 == 0))
6459 {
6460 c1 = XEXP (XEXP (t, 0), 1); z = f; op = GET_CODE (XEXP (t, 0));
6461 extend_op = ZERO_EXTEND;
6462 m = GET_MODE (XEXP (t, 0));
6463 }
6464 else if (GET_CODE (t) == ZERO_EXTEND
6465 && (GET_CODE (XEXP (t, 0)) == PLUS
6466 || GET_CODE (XEXP (t, 0)) == IOR
6467 || GET_CODE (XEXP (t, 0)) == XOR)
6468 && GET_CODE (XEXP (XEXP (t, 0), 1)) == SUBREG
6469 && HWI_COMPUTABLE_MODE_P (mode)
6470 && subreg_lowpart_p (XEXP (XEXP (t, 0), 1))
6471 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 1)), f)
6472 && ((nonzero_bits (f, GET_MODE (f))
6473 & ~GET_MODE_MASK (GET_MODE (XEXP (XEXP (t, 0), 1))))
6474 == 0))
6475 {
6476 c1 = XEXP (XEXP (t, 0), 0); z = f; op = GET_CODE (XEXP (t, 0));
6477 extend_op = ZERO_EXTEND;
6478 m = GET_MODE (XEXP (t, 0));
6479 }
6480
6481 if (z)
6482 {
6483 temp = subst (simplify_gen_relational (true_code, m, VOIDmode,
6484 cond_op0, cond_op1),
6485 pc_rtx, pc_rtx, 0, 0, 0);
6486 temp = simplify_gen_binary (MULT, m, temp,
6487 simplify_gen_binary (MULT, m, c1,
6488 const_true_rtx));
6489 temp = subst (temp, pc_rtx, pc_rtx, 0, 0, 0);
6490 temp = simplify_gen_binary (op, m, gen_lowpart (m, z), temp);
6491
6492 if (extend_op != UNKNOWN)
6493 temp = simplify_gen_unary (extend_op, mode, temp, m);
6494
6495 return temp;
6496 }
6497 }
6498
6499 /* If we have (if_then_else (ne A 0) C1 0) and either A is known to be 0 or
6500 1 and C1 is a single bit or A is known to be 0 or -1 and C1 is the
6501 negation of a single bit, we can convert this operation to a shift. We
6502 can actually do this more generally, but it doesn't seem worth it. */
6503
6504 if (true_code == NE && XEXP (cond, 1) == const0_rtx
6505 && false_rtx == const0_rtx && CONST_INT_P (true_rtx)
6506 && ((1 == nonzero_bits (XEXP (cond, 0), mode)
6507 && (i = exact_log2 (UINTVAL (true_rtx))) >= 0)
6508 || ((num_sign_bit_copies (XEXP (cond, 0), mode)
6509 == GET_MODE_PRECISION (mode))
6510 && (i = exact_log2 (-UINTVAL (true_rtx))) >= 0)))
6511 return
6512 simplify_shift_const (NULL_RTX, ASHIFT, mode,
6513 gen_lowpart (mode, XEXP (cond, 0)), i);
6514
6515 /* (IF_THEN_ELSE (NE REG 0) (0) (8)) is REG for nonzero_bits (REG) == 8. */
6516 if (true_code == NE && XEXP (cond, 1) == const0_rtx
6517 && false_rtx == const0_rtx && CONST_INT_P (true_rtx)
6518 && GET_MODE (XEXP (cond, 0)) == mode
6519 && (UINTVAL (true_rtx) & GET_MODE_MASK (mode))
6520 == nonzero_bits (XEXP (cond, 0), mode)
6521 && (i = exact_log2 (UINTVAL (true_rtx) & GET_MODE_MASK (mode))) >= 0)
6522 return XEXP (cond, 0);
6523
6524 return x;
6525 }
6526 \f
6527 /* Simplify X, a SET expression. Return the new expression. */
6528
6529 static rtx
6530 simplify_set (rtx x)
6531 {
6532 rtx src = SET_SRC (x);
6533 rtx dest = SET_DEST (x);
6534 machine_mode mode
6535 = GET_MODE (src) != VOIDmode ? GET_MODE (src) : GET_MODE (dest);
6536 rtx_insn *other_insn;
6537 rtx *cc_use;
6538
6539 /* (set (pc) (return)) gets written as (return). */
6540 if (GET_CODE (dest) == PC && ANY_RETURN_P (src))
6541 return src;
6542
6543 /* Now that we know for sure which bits of SRC we are using, see if we can
6544 simplify the expression for the object knowing that we only need the
6545 low-order bits. */
6546
6547 if (GET_MODE_CLASS (mode) == MODE_INT && HWI_COMPUTABLE_MODE_P (mode))
6548 {
6549 src = force_to_mode (src, mode, ~(unsigned HOST_WIDE_INT) 0, 0);
6550 SUBST (SET_SRC (x), src);
6551 }
6552
6553 /* If we are setting CC0 or if the source is a COMPARE, look for the use of
6554 the comparison result and try to simplify it unless we already have used
6555 undobuf.other_insn. */
6556 if ((GET_MODE_CLASS (mode) == MODE_CC
6557 || GET_CODE (src) == COMPARE
6558 || CC0_P (dest))
6559 && (cc_use = find_single_use (dest, subst_insn, &other_insn)) != 0
6560 && (undobuf.other_insn == 0 || other_insn == undobuf.other_insn)
6561 && COMPARISON_P (*cc_use)
6562 && rtx_equal_p (XEXP (*cc_use, 0), dest))
6563 {
6564 enum rtx_code old_code = GET_CODE (*cc_use);
6565 enum rtx_code new_code;
6566 rtx op0, op1, tmp;
6567 int other_changed = 0;
6568 rtx inner_compare = NULL_RTX;
6569 machine_mode compare_mode = GET_MODE (dest);
6570
6571 if (GET_CODE (src) == COMPARE)
6572 {
6573 op0 = XEXP (src, 0), op1 = XEXP (src, 1);
6574 if (GET_CODE (op0) == COMPARE && op1 == const0_rtx)
6575 {
6576 inner_compare = op0;
6577 op0 = XEXP (inner_compare, 0), op1 = XEXP (inner_compare, 1);
6578 }
6579 }
6580 else
6581 op0 = src, op1 = CONST0_RTX (GET_MODE (src));
6582
6583 tmp = simplify_relational_operation (old_code, compare_mode, VOIDmode,
6584 op0, op1);
6585 if (!tmp)
6586 new_code = old_code;
6587 else if (!CONSTANT_P (tmp))
6588 {
6589 new_code = GET_CODE (tmp);
6590 op0 = XEXP (tmp, 0);
6591 op1 = XEXP (tmp, 1);
6592 }
6593 else
6594 {
6595 rtx pat = PATTERN (other_insn);
6596 undobuf.other_insn = other_insn;
6597 SUBST (*cc_use, tmp);
6598
6599 /* Attempt to simplify CC user. */
6600 if (GET_CODE (pat) == SET)
6601 {
6602 rtx new_rtx = simplify_rtx (SET_SRC (pat));
6603 if (new_rtx != NULL_RTX)
6604 SUBST (SET_SRC (pat), new_rtx);
6605 }
6606
6607 /* Convert X into a no-op move. */
6608 SUBST (SET_DEST (x), pc_rtx);
6609 SUBST (SET_SRC (x), pc_rtx);
6610 return x;
6611 }
6612
6613 /* Simplify our comparison, if possible. */
6614 new_code = simplify_comparison (new_code, &op0, &op1);
6615
6616 #ifdef SELECT_CC_MODE
6617 /* If this machine has CC modes other than CCmode, check to see if we
6618 need to use a different CC mode here. */
6619 if (GET_MODE_CLASS (GET_MODE (op0)) == MODE_CC)
6620 compare_mode = GET_MODE (op0);
6621 else if (inner_compare
6622 && GET_MODE_CLASS (GET_MODE (inner_compare)) == MODE_CC
6623 && new_code == old_code
6624 && op0 == XEXP (inner_compare, 0)
6625 && op1 == XEXP (inner_compare, 1))
6626 compare_mode = GET_MODE (inner_compare);
6627 else
6628 compare_mode = SELECT_CC_MODE (new_code, op0, op1);
6629
6630 /* If the mode changed, we have to change SET_DEST, the mode in the
6631 compare, and the mode in the place SET_DEST is used. If SET_DEST is
6632 a hard register, just build new versions with the proper mode. If it
6633 is a pseudo, we lose unless it is only time we set the pseudo, in
6634 which case we can safely change its mode. */
6635 if (!HAVE_cc0 && compare_mode != GET_MODE (dest))
6636 {
6637 if (can_change_dest_mode (dest, 0, compare_mode))
6638 {
6639 unsigned int regno = REGNO (dest);
6640 rtx new_dest;
6641
6642 if (regno < FIRST_PSEUDO_REGISTER)
6643 new_dest = gen_rtx_REG (compare_mode, regno);
6644 else
6645 {
6646 SUBST_MODE (regno_reg_rtx[regno], compare_mode);
6647 new_dest = regno_reg_rtx[regno];
6648 }
6649
6650 SUBST (SET_DEST (x), new_dest);
6651 SUBST (XEXP (*cc_use, 0), new_dest);
6652 other_changed = 1;
6653
6654 dest = new_dest;
6655 }
6656 }
6657 #endif /* SELECT_CC_MODE */
6658
6659 /* If the code changed, we have to build a new comparison in
6660 undobuf.other_insn. */
6661 if (new_code != old_code)
6662 {
6663 int other_changed_previously = other_changed;
6664 unsigned HOST_WIDE_INT mask;
6665 rtx old_cc_use = *cc_use;
6666
6667 SUBST (*cc_use, gen_rtx_fmt_ee (new_code, GET_MODE (*cc_use),
6668 dest, const0_rtx));
6669 other_changed = 1;
6670
6671 /* If the only change we made was to change an EQ into an NE or
6672 vice versa, OP0 has only one bit that might be nonzero, and OP1
6673 is zero, check if changing the user of the condition code will
6674 produce a valid insn. If it won't, we can keep the original code
6675 in that insn by surrounding our operation with an XOR. */
6676
6677 if (((old_code == NE && new_code == EQ)
6678 || (old_code == EQ && new_code == NE))
6679 && ! other_changed_previously && op1 == const0_rtx
6680 && HWI_COMPUTABLE_MODE_P (GET_MODE (op0))
6681 && exact_log2 (mask = nonzero_bits (op0, GET_MODE (op0))) >= 0)
6682 {
6683 rtx pat = PATTERN (other_insn), note = 0;
6684
6685 if ((recog_for_combine (&pat, other_insn, &note) < 0
6686 && ! check_asm_operands (pat)))
6687 {
6688 *cc_use = old_cc_use;
6689 other_changed = 0;
6690
6691 op0 = simplify_gen_binary (XOR, GET_MODE (op0), op0,
6692 gen_int_mode (mask,
6693 GET_MODE (op0)));
6694 }
6695 }
6696 }
6697
6698 if (other_changed)
6699 undobuf.other_insn = other_insn;
6700
6701 /* Don't generate a compare of a CC with 0, just use that CC. */
6702 if (GET_MODE (op0) == compare_mode && op1 == const0_rtx)
6703 {
6704 SUBST (SET_SRC (x), op0);
6705 src = SET_SRC (x);
6706 }
6707 /* Otherwise, if we didn't previously have the same COMPARE we
6708 want, create it from scratch. */
6709 else if (GET_CODE (src) != COMPARE || GET_MODE (src) != compare_mode
6710 || XEXP (src, 0) != op0 || XEXP (src, 1) != op1)
6711 {
6712 SUBST (SET_SRC (x), gen_rtx_COMPARE (compare_mode, op0, op1));
6713 src = SET_SRC (x);
6714 }
6715 }
6716 else
6717 {
6718 /* Get SET_SRC in a form where we have placed back any
6719 compound expressions. Then do the checks below. */
6720 src = make_compound_operation (src, SET);
6721 SUBST (SET_SRC (x), src);
6722 }
6723
6724 /* If we have (set x (subreg:m1 (op:m2 ...) 0)) with OP being some operation,
6725 and X being a REG or (subreg (reg)), we may be able to convert this to
6726 (set (subreg:m2 x) (op)).
6727
6728 We can always do this if M1 is narrower than M2 because that means that
6729 we only care about the low bits of the result.
6730
6731 However, on machines without WORD_REGISTER_OPERATIONS defined, we cannot
6732 perform a narrower operation than requested since the high-order bits will
6733 be undefined. On machine where it is defined, this transformation is safe
6734 as long as M1 and M2 have the same number of words. */
6735
6736 if (GET_CODE (src) == SUBREG && subreg_lowpart_p (src)
6737 && !OBJECT_P (SUBREG_REG (src))
6738 && (((GET_MODE_SIZE (GET_MODE (src)) + (UNITS_PER_WORD - 1))
6739 / UNITS_PER_WORD)
6740 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (src)))
6741 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))
6742 #ifndef WORD_REGISTER_OPERATIONS
6743 && (GET_MODE_SIZE (GET_MODE (src))
6744 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (src))))
6745 #endif
6746 #ifdef CANNOT_CHANGE_MODE_CLASS
6747 && ! (REG_P (dest) && REGNO (dest) < FIRST_PSEUDO_REGISTER
6748 && REG_CANNOT_CHANGE_MODE_P (REGNO (dest),
6749 GET_MODE (SUBREG_REG (src)),
6750 GET_MODE (src)))
6751 #endif
6752 && (REG_P (dest)
6753 || (GET_CODE (dest) == SUBREG
6754 && REG_P (SUBREG_REG (dest)))))
6755 {
6756 SUBST (SET_DEST (x),
6757 gen_lowpart (GET_MODE (SUBREG_REG (src)),
6758 dest));
6759 SUBST (SET_SRC (x), SUBREG_REG (src));
6760
6761 src = SET_SRC (x), dest = SET_DEST (x);
6762 }
6763
6764 /* If we have (set (cc0) (subreg ...)), we try to remove the subreg
6765 in SRC. */
6766 if (dest == cc0_rtx
6767 && GET_CODE (src) == SUBREG
6768 && subreg_lowpart_p (src)
6769 && (GET_MODE_PRECISION (GET_MODE (src))
6770 < GET_MODE_PRECISION (GET_MODE (SUBREG_REG (src)))))
6771 {
6772 rtx inner = SUBREG_REG (src);
6773 machine_mode inner_mode = GET_MODE (inner);
6774
6775 /* Here we make sure that we don't have a sign bit on. */
6776 if (val_signbit_known_clear_p (GET_MODE (src),
6777 nonzero_bits (inner, inner_mode)))
6778 {
6779 SUBST (SET_SRC (x), inner);
6780 src = SET_SRC (x);
6781 }
6782 }
6783
6784 #ifdef LOAD_EXTEND_OP
6785 /* If we have (set FOO (subreg:M (mem:N BAR) 0)) with M wider than N, this
6786 would require a paradoxical subreg. Replace the subreg with a
6787 zero_extend to avoid the reload that would otherwise be required. */
6788
6789 if (GET_CODE (src) == SUBREG && subreg_lowpart_p (src)
6790 && INTEGRAL_MODE_P (GET_MODE (SUBREG_REG (src)))
6791 && LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (src))) != UNKNOWN
6792 && SUBREG_BYTE (src) == 0
6793 && paradoxical_subreg_p (src)
6794 && MEM_P (SUBREG_REG (src)))
6795 {
6796 SUBST (SET_SRC (x),
6797 gen_rtx_fmt_e (LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (src))),
6798 GET_MODE (src), SUBREG_REG (src)));
6799
6800 src = SET_SRC (x);
6801 }
6802 #endif
6803
6804 /* If we don't have a conditional move, SET_SRC is an IF_THEN_ELSE, and we
6805 are comparing an item known to be 0 or -1 against 0, use a logical
6806 operation instead. Check for one of the arms being an IOR of the other
6807 arm with some value. We compute three terms to be IOR'ed together. In
6808 practice, at most two will be nonzero. Then we do the IOR's. */
6809
6810 if (GET_CODE (dest) != PC
6811 && GET_CODE (src) == IF_THEN_ELSE
6812 && GET_MODE_CLASS (GET_MODE (src)) == MODE_INT
6813 && (GET_CODE (XEXP (src, 0)) == EQ || GET_CODE (XEXP (src, 0)) == NE)
6814 && XEXP (XEXP (src, 0), 1) == const0_rtx
6815 && GET_MODE (src) == GET_MODE (XEXP (XEXP (src, 0), 0))
6816 && (!HAVE_conditional_move
6817 || ! can_conditionally_move_p (GET_MODE (src)))
6818 && (num_sign_bit_copies (XEXP (XEXP (src, 0), 0),
6819 GET_MODE (XEXP (XEXP (src, 0), 0)))
6820 == GET_MODE_PRECISION (GET_MODE (XEXP (XEXP (src, 0), 0))))
6821 && ! side_effects_p (src))
6822 {
6823 rtx true_rtx = (GET_CODE (XEXP (src, 0)) == NE
6824 ? XEXP (src, 1) : XEXP (src, 2));
6825 rtx false_rtx = (GET_CODE (XEXP (src, 0)) == NE
6826 ? XEXP (src, 2) : XEXP (src, 1));
6827 rtx term1 = const0_rtx, term2, term3;
6828
6829 if (GET_CODE (true_rtx) == IOR
6830 && rtx_equal_p (XEXP (true_rtx, 0), false_rtx))
6831 term1 = false_rtx, true_rtx = XEXP (true_rtx, 1), false_rtx = const0_rtx;
6832 else if (GET_CODE (true_rtx) == IOR
6833 && rtx_equal_p (XEXP (true_rtx, 1), false_rtx))
6834 term1 = false_rtx, true_rtx = XEXP (true_rtx, 0), false_rtx = const0_rtx;
6835 else if (GET_CODE (false_rtx) == IOR
6836 && rtx_equal_p (XEXP (false_rtx, 0), true_rtx))
6837 term1 = true_rtx, false_rtx = XEXP (false_rtx, 1), true_rtx = const0_rtx;
6838 else if (GET_CODE (false_rtx) == IOR
6839 && rtx_equal_p (XEXP (false_rtx, 1), true_rtx))
6840 term1 = true_rtx, false_rtx = XEXP (false_rtx, 0), true_rtx = const0_rtx;
6841
6842 term2 = simplify_gen_binary (AND, GET_MODE (src),
6843 XEXP (XEXP (src, 0), 0), true_rtx);
6844 term3 = simplify_gen_binary (AND, GET_MODE (src),
6845 simplify_gen_unary (NOT, GET_MODE (src),
6846 XEXP (XEXP (src, 0), 0),
6847 GET_MODE (src)),
6848 false_rtx);
6849
6850 SUBST (SET_SRC (x),
6851 simplify_gen_binary (IOR, GET_MODE (src),
6852 simplify_gen_binary (IOR, GET_MODE (src),
6853 term1, term2),
6854 term3));
6855
6856 src = SET_SRC (x);
6857 }
6858
6859 /* If either SRC or DEST is a CLOBBER of (const_int 0), make this
6860 whole thing fail. */
6861 if (GET_CODE (src) == CLOBBER && XEXP (src, 0) == const0_rtx)
6862 return src;
6863 else if (GET_CODE (dest) == CLOBBER && XEXP (dest, 0) == const0_rtx)
6864 return dest;
6865 else
6866 /* Convert this into a field assignment operation, if possible. */
6867 return make_field_assignment (x);
6868 }
6869 \f
6870 /* Simplify, X, and AND, IOR, or XOR operation, and return the simplified
6871 result. */
6872
6873 static rtx
6874 simplify_logical (rtx x)
6875 {
6876 machine_mode mode = GET_MODE (x);
6877 rtx op0 = XEXP (x, 0);
6878 rtx op1 = XEXP (x, 1);
6879
6880 switch (GET_CODE (x))
6881 {
6882 case AND:
6883 /* We can call simplify_and_const_int only if we don't lose
6884 any (sign) bits when converting INTVAL (op1) to
6885 "unsigned HOST_WIDE_INT". */
6886 if (CONST_INT_P (op1)
6887 && (HWI_COMPUTABLE_MODE_P (mode)
6888 || INTVAL (op1) > 0))
6889 {
6890 x = simplify_and_const_int (x, mode, op0, INTVAL (op1));
6891 if (GET_CODE (x) != AND)
6892 return x;
6893
6894 op0 = XEXP (x, 0);
6895 op1 = XEXP (x, 1);
6896 }
6897
6898 /* If we have any of (and (ior A B) C) or (and (xor A B) C),
6899 apply the distributive law and then the inverse distributive
6900 law to see if things simplify. */
6901 if (GET_CODE (op0) == IOR || GET_CODE (op0) == XOR)
6902 {
6903 rtx result = distribute_and_simplify_rtx (x, 0);
6904 if (result)
6905 return result;
6906 }
6907 if (GET_CODE (op1) == IOR || GET_CODE (op1) == XOR)
6908 {
6909 rtx result = distribute_and_simplify_rtx (x, 1);
6910 if (result)
6911 return result;
6912 }
6913 break;
6914
6915 case IOR:
6916 /* If we have (ior (and A B) C), apply the distributive law and then
6917 the inverse distributive law to see if things simplify. */
6918
6919 if (GET_CODE (op0) == AND)
6920 {
6921 rtx result = distribute_and_simplify_rtx (x, 0);
6922 if (result)
6923 return result;
6924 }
6925
6926 if (GET_CODE (op1) == AND)
6927 {
6928 rtx result = distribute_and_simplify_rtx (x, 1);
6929 if (result)
6930 return result;
6931 }
6932 break;
6933
6934 default:
6935 gcc_unreachable ();
6936 }
6937
6938 return x;
6939 }
6940 \f
6941 /* We consider ZERO_EXTRACT, SIGN_EXTRACT, and SIGN_EXTEND as "compound
6942 operations" because they can be replaced with two more basic operations.
6943 ZERO_EXTEND is also considered "compound" because it can be replaced with
6944 an AND operation, which is simpler, though only one operation.
6945
6946 The function expand_compound_operation is called with an rtx expression
6947 and will convert it to the appropriate shifts and AND operations,
6948 simplifying at each stage.
6949
6950 The function make_compound_operation is called to convert an expression
6951 consisting of shifts and ANDs into the equivalent compound expression.
6952 It is the inverse of this function, loosely speaking. */
6953
6954 static rtx
6955 expand_compound_operation (rtx x)
6956 {
6957 unsigned HOST_WIDE_INT pos = 0, len;
6958 int unsignedp = 0;
6959 unsigned int modewidth;
6960 rtx tem;
6961
6962 switch (GET_CODE (x))
6963 {
6964 case ZERO_EXTEND:
6965 unsignedp = 1;
6966 case SIGN_EXTEND:
6967 /* We can't necessarily use a const_int for a multiword mode;
6968 it depends on implicitly extending the value.
6969 Since we don't know the right way to extend it,
6970 we can't tell whether the implicit way is right.
6971
6972 Even for a mode that is no wider than a const_int,
6973 we can't win, because we need to sign extend one of its bits through
6974 the rest of it, and we don't know which bit. */
6975 if (CONST_INT_P (XEXP (x, 0)))
6976 return x;
6977
6978 /* Return if (subreg:MODE FROM 0) is not a safe replacement for
6979 (zero_extend:MODE FROM) or (sign_extend:MODE FROM). It is for any MEM
6980 because (SUBREG (MEM...)) is guaranteed to cause the MEM to be
6981 reloaded. If not for that, MEM's would very rarely be safe.
6982
6983 Reject MODEs bigger than a word, because we might not be able
6984 to reference a two-register group starting with an arbitrary register
6985 (and currently gen_lowpart might crash for a SUBREG). */
6986
6987 if (GET_MODE_SIZE (GET_MODE (XEXP (x, 0))) > UNITS_PER_WORD)
6988 return x;
6989
6990 /* Reject MODEs that aren't scalar integers because turning vector
6991 or complex modes into shifts causes problems. */
6992
6993 if (! SCALAR_INT_MODE_P (GET_MODE (XEXP (x, 0))))
6994 return x;
6995
6996 len = GET_MODE_PRECISION (GET_MODE (XEXP (x, 0)));
6997 /* If the inner object has VOIDmode (the only way this can happen
6998 is if it is an ASM_OPERANDS), we can't do anything since we don't
6999 know how much masking to do. */
7000 if (len == 0)
7001 return x;
7002
7003 break;
7004
7005 case ZERO_EXTRACT:
7006 unsignedp = 1;
7007
7008 /* ... fall through ... */
7009
7010 case SIGN_EXTRACT:
7011 /* If the operand is a CLOBBER, just return it. */
7012 if (GET_CODE (XEXP (x, 0)) == CLOBBER)
7013 return XEXP (x, 0);
7014
7015 if (!CONST_INT_P (XEXP (x, 1))
7016 || !CONST_INT_P (XEXP (x, 2))
7017 || GET_MODE (XEXP (x, 0)) == VOIDmode)
7018 return x;
7019
7020 /* Reject MODEs that aren't scalar integers because turning vector
7021 or complex modes into shifts causes problems. */
7022
7023 if (! SCALAR_INT_MODE_P (GET_MODE (XEXP (x, 0))))
7024 return x;
7025
7026 len = INTVAL (XEXP (x, 1));
7027 pos = INTVAL (XEXP (x, 2));
7028
7029 /* This should stay within the object being extracted, fail otherwise. */
7030 if (len + pos > GET_MODE_PRECISION (GET_MODE (XEXP (x, 0))))
7031 return x;
7032
7033 if (BITS_BIG_ENDIAN)
7034 pos = GET_MODE_PRECISION (GET_MODE (XEXP (x, 0))) - len - pos;
7035
7036 break;
7037
7038 default:
7039 return x;
7040 }
7041 /* Convert sign extension to zero extension, if we know that the high
7042 bit is not set, as this is easier to optimize. It will be converted
7043 back to cheaper alternative in make_extraction. */
7044 if (GET_CODE (x) == SIGN_EXTEND
7045 && (HWI_COMPUTABLE_MODE_P (GET_MODE (x))
7046 && ((nonzero_bits (XEXP (x, 0), GET_MODE (XEXP (x, 0)))
7047 & ~(((unsigned HOST_WIDE_INT)
7048 GET_MODE_MASK (GET_MODE (XEXP (x, 0))))
7049 >> 1))
7050 == 0)))
7051 {
7052 rtx temp = gen_rtx_ZERO_EXTEND (GET_MODE (x), XEXP (x, 0));
7053 rtx temp2 = expand_compound_operation (temp);
7054
7055 /* Make sure this is a profitable operation. */
7056 if (set_src_cost (x, optimize_this_for_speed_p)
7057 > set_src_cost (temp2, optimize_this_for_speed_p))
7058 return temp2;
7059 else if (set_src_cost (x, optimize_this_for_speed_p)
7060 > set_src_cost (temp, optimize_this_for_speed_p))
7061 return temp;
7062 else
7063 return x;
7064 }
7065
7066 /* We can optimize some special cases of ZERO_EXTEND. */
7067 if (GET_CODE (x) == ZERO_EXTEND)
7068 {
7069 /* (zero_extend:DI (truncate:SI foo:DI)) is just foo:DI if we
7070 know that the last value didn't have any inappropriate bits
7071 set. */
7072 if (GET_CODE (XEXP (x, 0)) == TRUNCATE
7073 && GET_MODE (XEXP (XEXP (x, 0), 0)) == GET_MODE (x)
7074 && HWI_COMPUTABLE_MODE_P (GET_MODE (x))
7075 && (nonzero_bits (XEXP (XEXP (x, 0), 0), GET_MODE (x))
7076 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
7077 return XEXP (XEXP (x, 0), 0);
7078
7079 /* Likewise for (zero_extend:DI (subreg:SI foo:DI 0)). */
7080 if (GET_CODE (XEXP (x, 0)) == SUBREG
7081 && GET_MODE (SUBREG_REG (XEXP (x, 0))) == GET_MODE (x)
7082 && subreg_lowpart_p (XEXP (x, 0))
7083 && HWI_COMPUTABLE_MODE_P (GET_MODE (x))
7084 && (nonzero_bits (SUBREG_REG (XEXP (x, 0)), GET_MODE (x))
7085 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
7086 return SUBREG_REG (XEXP (x, 0));
7087
7088 /* (zero_extend:DI (truncate:SI foo:DI)) is just foo:DI when foo
7089 is a comparison and STORE_FLAG_VALUE permits. This is like
7090 the first case, but it works even when GET_MODE (x) is larger
7091 than HOST_WIDE_INT. */
7092 if (GET_CODE (XEXP (x, 0)) == TRUNCATE
7093 && GET_MODE (XEXP (XEXP (x, 0), 0)) == GET_MODE (x)
7094 && COMPARISON_P (XEXP (XEXP (x, 0), 0))
7095 && (GET_MODE_PRECISION (GET_MODE (XEXP (x, 0)))
7096 <= HOST_BITS_PER_WIDE_INT)
7097 && (STORE_FLAG_VALUE & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
7098 return XEXP (XEXP (x, 0), 0);
7099
7100 /* Likewise for (zero_extend:DI (subreg:SI foo:DI 0)). */
7101 if (GET_CODE (XEXP (x, 0)) == SUBREG
7102 && GET_MODE (SUBREG_REG (XEXP (x, 0))) == GET_MODE (x)
7103 && subreg_lowpart_p (XEXP (x, 0))
7104 && COMPARISON_P (SUBREG_REG (XEXP (x, 0)))
7105 && (GET_MODE_PRECISION (GET_MODE (XEXP (x, 0)))
7106 <= HOST_BITS_PER_WIDE_INT)
7107 && (STORE_FLAG_VALUE & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
7108 return SUBREG_REG (XEXP (x, 0));
7109
7110 }
7111
7112 /* If we reach here, we want to return a pair of shifts. The inner
7113 shift is a left shift of BITSIZE - POS - LEN bits. The outer
7114 shift is a right shift of BITSIZE - LEN bits. It is arithmetic or
7115 logical depending on the value of UNSIGNEDP.
7116
7117 If this was a ZERO_EXTEND or ZERO_EXTRACT, this pair of shifts will be
7118 converted into an AND of a shift.
7119
7120 We must check for the case where the left shift would have a negative
7121 count. This can happen in a case like (x >> 31) & 255 on machines
7122 that can't shift by a constant. On those machines, we would first
7123 combine the shift with the AND to produce a variable-position
7124 extraction. Then the constant of 31 would be substituted in
7125 to produce such a position. */
7126
7127 modewidth = GET_MODE_PRECISION (GET_MODE (x));
7128 if (modewidth >= pos + len)
7129 {
7130 machine_mode mode = GET_MODE (x);
7131 tem = gen_lowpart (mode, XEXP (x, 0));
7132 if (!tem || GET_CODE (tem) == CLOBBER)
7133 return x;
7134 tem = simplify_shift_const (NULL_RTX, ASHIFT, mode,
7135 tem, modewidth - pos - len);
7136 tem = simplify_shift_const (NULL_RTX, unsignedp ? LSHIFTRT : ASHIFTRT,
7137 mode, tem, modewidth - len);
7138 }
7139 else if (unsignedp && len < HOST_BITS_PER_WIDE_INT)
7140 tem = simplify_and_const_int (NULL_RTX, GET_MODE (x),
7141 simplify_shift_const (NULL_RTX, LSHIFTRT,
7142 GET_MODE (x),
7143 XEXP (x, 0), pos),
7144 ((unsigned HOST_WIDE_INT) 1 << len) - 1);
7145 else
7146 /* Any other cases we can't handle. */
7147 return x;
7148
7149 /* If we couldn't do this for some reason, return the original
7150 expression. */
7151 if (GET_CODE (tem) == CLOBBER)
7152 return x;
7153
7154 return tem;
7155 }
7156 \f
7157 /* X is a SET which contains an assignment of one object into
7158 a part of another (such as a bit-field assignment, STRICT_LOW_PART,
7159 or certain SUBREGS). If possible, convert it into a series of
7160 logical operations.
7161
7162 We half-heartedly support variable positions, but do not at all
7163 support variable lengths. */
7164
7165 static const_rtx
7166 expand_field_assignment (const_rtx x)
7167 {
7168 rtx inner;
7169 rtx pos; /* Always counts from low bit. */
7170 int len;
7171 rtx mask, cleared, masked;
7172 machine_mode compute_mode;
7173
7174 /* Loop until we find something we can't simplify. */
7175 while (1)
7176 {
7177 if (GET_CODE (SET_DEST (x)) == STRICT_LOW_PART
7178 && GET_CODE (XEXP (SET_DEST (x), 0)) == SUBREG)
7179 {
7180 inner = SUBREG_REG (XEXP (SET_DEST (x), 0));
7181 len = GET_MODE_PRECISION (GET_MODE (XEXP (SET_DEST (x), 0)));
7182 pos = GEN_INT (subreg_lsb (XEXP (SET_DEST (x), 0)));
7183 }
7184 else if (GET_CODE (SET_DEST (x)) == ZERO_EXTRACT
7185 && CONST_INT_P (XEXP (SET_DEST (x), 1)))
7186 {
7187 inner = XEXP (SET_DEST (x), 0);
7188 len = INTVAL (XEXP (SET_DEST (x), 1));
7189 pos = XEXP (SET_DEST (x), 2);
7190
7191 /* A constant position should stay within the width of INNER. */
7192 if (CONST_INT_P (pos)
7193 && INTVAL (pos) + len > GET_MODE_PRECISION (GET_MODE (inner)))
7194 break;
7195
7196 if (BITS_BIG_ENDIAN)
7197 {
7198 if (CONST_INT_P (pos))
7199 pos = GEN_INT (GET_MODE_PRECISION (GET_MODE (inner)) - len
7200 - INTVAL (pos));
7201 else if (GET_CODE (pos) == MINUS
7202 && CONST_INT_P (XEXP (pos, 1))
7203 && (INTVAL (XEXP (pos, 1))
7204 == GET_MODE_PRECISION (GET_MODE (inner)) - len))
7205 /* If position is ADJUST - X, new position is X. */
7206 pos = XEXP (pos, 0);
7207 else
7208 {
7209 HOST_WIDE_INT prec = GET_MODE_PRECISION (GET_MODE (inner));
7210 pos = simplify_gen_binary (MINUS, GET_MODE (pos),
7211 gen_int_mode (prec - len,
7212 GET_MODE (pos)),
7213 pos);
7214 }
7215 }
7216 }
7217
7218 /* A SUBREG between two modes that occupy the same numbers of words
7219 can be done by moving the SUBREG to the source. */
7220 else if (GET_CODE (SET_DEST (x)) == SUBREG
7221 /* We need SUBREGs to compute nonzero_bits properly. */
7222 && nonzero_sign_valid
7223 && (((GET_MODE_SIZE (GET_MODE (SET_DEST (x)))
7224 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
7225 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (x))))
7226 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)))
7227 {
7228 x = gen_rtx_SET (SUBREG_REG (SET_DEST (x)),
7229 gen_lowpart
7230 (GET_MODE (SUBREG_REG (SET_DEST (x))),
7231 SET_SRC (x)));
7232 continue;
7233 }
7234 else
7235 break;
7236
7237 while (GET_CODE (inner) == SUBREG && subreg_lowpart_p (inner))
7238 inner = SUBREG_REG (inner);
7239
7240 compute_mode = GET_MODE (inner);
7241
7242 /* Don't attempt bitwise arithmetic on non scalar integer modes. */
7243 if (! SCALAR_INT_MODE_P (compute_mode))
7244 {
7245 machine_mode imode;
7246
7247 /* Don't do anything for vector or complex integral types. */
7248 if (! FLOAT_MODE_P (compute_mode))
7249 break;
7250
7251 /* Try to find an integral mode to pun with. */
7252 imode = mode_for_size (GET_MODE_BITSIZE (compute_mode), MODE_INT, 0);
7253 if (imode == BLKmode)
7254 break;
7255
7256 compute_mode = imode;
7257 inner = gen_lowpart (imode, inner);
7258 }
7259
7260 /* Compute a mask of LEN bits, if we can do this on the host machine. */
7261 if (len >= HOST_BITS_PER_WIDE_INT)
7262 break;
7263
7264 /* Now compute the equivalent expression. Make a copy of INNER
7265 for the SET_DEST in case it is a MEM into which we will substitute;
7266 we don't want shared RTL in that case. */
7267 mask = gen_int_mode (((unsigned HOST_WIDE_INT) 1 << len) - 1,
7268 compute_mode);
7269 cleared = simplify_gen_binary (AND, compute_mode,
7270 simplify_gen_unary (NOT, compute_mode,
7271 simplify_gen_binary (ASHIFT,
7272 compute_mode,
7273 mask, pos),
7274 compute_mode),
7275 inner);
7276 masked = simplify_gen_binary (ASHIFT, compute_mode,
7277 simplify_gen_binary (
7278 AND, compute_mode,
7279 gen_lowpart (compute_mode, SET_SRC (x)),
7280 mask),
7281 pos);
7282
7283 x = gen_rtx_SET (copy_rtx (inner),
7284 simplify_gen_binary (IOR, compute_mode,
7285 cleared, masked));
7286 }
7287
7288 return x;
7289 }
7290 \f
7291 /* Return an RTX for a reference to LEN bits of INNER. If POS_RTX is nonzero,
7292 it is an RTX that represents the (variable) starting position; otherwise,
7293 POS is the (constant) starting bit position. Both are counted from the LSB.
7294
7295 UNSIGNEDP is nonzero for an unsigned reference and zero for a signed one.
7296
7297 IN_DEST is nonzero if this is a reference in the destination of a SET.
7298 This is used when a ZERO_ or SIGN_EXTRACT isn't needed. If nonzero,
7299 a STRICT_LOW_PART will be used, if zero, ZERO_EXTEND or SIGN_EXTEND will
7300 be used.
7301
7302 IN_COMPARE is nonzero if we are in a COMPARE. This means that a
7303 ZERO_EXTRACT should be built even for bits starting at bit 0.
7304
7305 MODE is the desired mode of the result (if IN_DEST == 0).
7306
7307 The result is an RTX for the extraction or NULL_RTX if the target
7308 can't handle it. */
7309
7310 static rtx
7311 make_extraction (machine_mode mode, rtx inner, HOST_WIDE_INT pos,
7312 rtx pos_rtx, unsigned HOST_WIDE_INT len, int unsignedp,
7313 int in_dest, int in_compare)
7314 {
7315 /* This mode describes the size of the storage area
7316 to fetch the overall value from. Within that, we
7317 ignore the POS lowest bits, etc. */
7318 machine_mode is_mode = GET_MODE (inner);
7319 machine_mode inner_mode;
7320 machine_mode wanted_inner_mode;
7321 machine_mode wanted_inner_reg_mode = word_mode;
7322 machine_mode pos_mode = word_mode;
7323 machine_mode extraction_mode = word_mode;
7324 machine_mode tmode = mode_for_size (len, MODE_INT, 1);
7325 rtx new_rtx = 0;
7326 rtx orig_pos_rtx = pos_rtx;
7327 HOST_WIDE_INT orig_pos;
7328
7329 if (pos_rtx && CONST_INT_P (pos_rtx))
7330 pos = INTVAL (pos_rtx), pos_rtx = 0;
7331
7332 if (GET_CODE (inner) == SUBREG && subreg_lowpart_p (inner))
7333 {
7334 /* If going from (subreg:SI (mem:QI ...)) to (mem:QI ...),
7335 consider just the QI as the memory to extract from.
7336 The subreg adds or removes high bits; its mode is
7337 irrelevant to the meaning of this extraction,
7338 since POS and LEN count from the lsb. */
7339 if (MEM_P (SUBREG_REG (inner)))
7340 is_mode = GET_MODE (SUBREG_REG (inner));
7341 inner = SUBREG_REG (inner);
7342 }
7343 else if (GET_CODE (inner) == ASHIFT
7344 && CONST_INT_P (XEXP (inner, 1))
7345 && pos_rtx == 0 && pos == 0
7346 && len > UINTVAL (XEXP (inner, 1)))
7347 {
7348 /* We're extracting the least significant bits of an rtx
7349 (ashift X (const_int C)), where LEN > C. Extract the
7350 least significant (LEN - C) bits of X, giving an rtx
7351 whose mode is MODE, then shift it left C times. */
7352 new_rtx = make_extraction (mode, XEXP (inner, 0),
7353 0, 0, len - INTVAL (XEXP (inner, 1)),
7354 unsignedp, in_dest, in_compare);
7355 if (new_rtx != 0)
7356 return gen_rtx_ASHIFT (mode, new_rtx, XEXP (inner, 1));
7357 }
7358 else if (GET_CODE (inner) == TRUNCATE)
7359 inner = XEXP (inner, 0);
7360
7361 inner_mode = GET_MODE (inner);
7362
7363 /* See if this can be done without an extraction. We never can if the
7364 width of the field is not the same as that of some integer mode. For
7365 registers, we can only avoid the extraction if the position is at the
7366 low-order bit and this is either not in the destination or we have the
7367 appropriate STRICT_LOW_PART operation available.
7368
7369 For MEM, we can avoid an extract if the field starts on an appropriate
7370 boundary and we can change the mode of the memory reference. */
7371
7372 if (tmode != BLKmode
7373 && ((pos_rtx == 0 && (pos % BITS_PER_WORD) == 0
7374 && !MEM_P (inner)
7375 && (inner_mode == tmode
7376 || !REG_P (inner)
7377 || TRULY_NOOP_TRUNCATION_MODES_P (tmode, inner_mode)
7378 || reg_truncated_to_mode (tmode, inner))
7379 && (! in_dest
7380 || (REG_P (inner)
7381 && have_insn_for (STRICT_LOW_PART, tmode))))
7382 || (MEM_P (inner) && pos_rtx == 0
7383 && (pos
7384 % (STRICT_ALIGNMENT ? GET_MODE_ALIGNMENT (tmode)
7385 : BITS_PER_UNIT)) == 0
7386 /* We can't do this if we are widening INNER_MODE (it
7387 may not be aligned, for one thing). */
7388 && GET_MODE_PRECISION (inner_mode) >= GET_MODE_PRECISION (tmode)
7389 && (inner_mode == tmode
7390 || (! mode_dependent_address_p (XEXP (inner, 0),
7391 MEM_ADDR_SPACE (inner))
7392 && ! MEM_VOLATILE_P (inner))))))
7393 {
7394 /* If INNER is a MEM, make a new MEM that encompasses just the desired
7395 field. If the original and current mode are the same, we need not
7396 adjust the offset. Otherwise, we do if bytes big endian.
7397
7398 If INNER is not a MEM, get a piece consisting of just the field
7399 of interest (in this case POS % BITS_PER_WORD must be 0). */
7400
7401 if (MEM_P (inner))
7402 {
7403 HOST_WIDE_INT offset;
7404
7405 /* POS counts from lsb, but make OFFSET count in memory order. */
7406 if (BYTES_BIG_ENDIAN)
7407 offset = (GET_MODE_PRECISION (is_mode) - len - pos) / BITS_PER_UNIT;
7408 else
7409 offset = pos / BITS_PER_UNIT;
7410
7411 new_rtx = adjust_address_nv (inner, tmode, offset);
7412 }
7413 else if (REG_P (inner))
7414 {
7415 if (tmode != inner_mode)
7416 {
7417 /* We can't call gen_lowpart in a DEST since we
7418 always want a SUBREG (see below) and it would sometimes
7419 return a new hard register. */
7420 if (pos || in_dest)
7421 {
7422 HOST_WIDE_INT final_word = pos / BITS_PER_WORD;
7423
7424 if (WORDS_BIG_ENDIAN
7425 && GET_MODE_SIZE (inner_mode) > UNITS_PER_WORD)
7426 final_word = ((GET_MODE_SIZE (inner_mode)
7427 - GET_MODE_SIZE (tmode))
7428 / UNITS_PER_WORD) - final_word;
7429
7430 final_word *= UNITS_PER_WORD;
7431 if (BYTES_BIG_ENDIAN &&
7432 GET_MODE_SIZE (inner_mode) > GET_MODE_SIZE (tmode))
7433 final_word += (GET_MODE_SIZE (inner_mode)
7434 - GET_MODE_SIZE (tmode)) % UNITS_PER_WORD;
7435
7436 /* Avoid creating invalid subregs, for example when
7437 simplifying (x>>32)&255. */
7438 if (!validate_subreg (tmode, inner_mode, inner, final_word))
7439 return NULL_RTX;
7440
7441 new_rtx = gen_rtx_SUBREG (tmode, inner, final_word);
7442 }
7443 else
7444 new_rtx = gen_lowpart (tmode, inner);
7445 }
7446 else
7447 new_rtx = inner;
7448 }
7449 else
7450 new_rtx = force_to_mode (inner, tmode,
7451 len >= HOST_BITS_PER_WIDE_INT
7452 ? ~(unsigned HOST_WIDE_INT) 0
7453 : ((unsigned HOST_WIDE_INT) 1 << len) - 1,
7454 0);
7455
7456 /* If this extraction is going into the destination of a SET,
7457 make a STRICT_LOW_PART unless we made a MEM. */
7458
7459 if (in_dest)
7460 return (MEM_P (new_rtx) ? new_rtx
7461 : (GET_CODE (new_rtx) != SUBREG
7462 ? gen_rtx_CLOBBER (tmode, const0_rtx)
7463 : gen_rtx_STRICT_LOW_PART (VOIDmode, new_rtx)));
7464
7465 if (mode == tmode)
7466 return new_rtx;
7467
7468 if (CONST_SCALAR_INT_P (new_rtx))
7469 return simplify_unary_operation (unsignedp ? ZERO_EXTEND : SIGN_EXTEND,
7470 mode, new_rtx, tmode);
7471
7472 /* If we know that no extraneous bits are set, and that the high
7473 bit is not set, convert the extraction to the cheaper of
7474 sign and zero extension, that are equivalent in these cases. */
7475 if (flag_expensive_optimizations
7476 && (HWI_COMPUTABLE_MODE_P (tmode)
7477 && ((nonzero_bits (new_rtx, tmode)
7478 & ~(((unsigned HOST_WIDE_INT)GET_MODE_MASK (tmode)) >> 1))
7479 == 0)))
7480 {
7481 rtx temp = gen_rtx_ZERO_EXTEND (mode, new_rtx);
7482 rtx temp1 = gen_rtx_SIGN_EXTEND (mode, new_rtx);
7483
7484 /* Prefer ZERO_EXTENSION, since it gives more information to
7485 backends. */
7486 if (set_src_cost (temp, optimize_this_for_speed_p)
7487 <= set_src_cost (temp1, optimize_this_for_speed_p))
7488 return temp;
7489 return temp1;
7490 }
7491
7492 /* Otherwise, sign- or zero-extend unless we already are in the
7493 proper mode. */
7494
7495 return (gen_rtx_fmt_e (unsignedp ? ZERO_EXTEND : SIGN_EXTEND,
7496 mode, new_rtx));
7497 }
7498
7499 /* Unless this is a COMPARE or we have a funny memory reference,
7500 don't do anything with zero-extending field extracts starting at
7501 the low-order bit since they are simple AND operations. */
7502 if (pos_rtx == 0 && pos == 0 && ! in_dest
7503 && ! in_compare && unsignedp)
7504 return 0;
7505
7506 /* Unless INNER is not MEM, reject this if we would be spanning bytes or
7507 if the position is not a constant and the length is not 1. In all
7508 other cases, we would only be going outside our object in cases when
7509 an original shift would have been undefined. */
7510 if (MEM_P (inner)
7511 && ((pos_rtx == 0 && pos + len > GET_MODE_PRECISION (is_mode))
7512 || (pos_rtx != 0 && len != 1)))
7513 return 0;
7514
7515 enum extraction_pattern pattern = (in_dest ? EP_insv
7516 : unsignedp ? EP_extzv : EP_extv);
7517
7518 /* If INNER is not from memory, we want it to have the mode of a register
7519 extraction pattern's structure operand, or word_mode if there is no
7520 such pattern. The same applies to extraction_mode and pos_mode
7521 and their respective operands.
7522
7523 For memory, assume that the desired extraction_mode and pos_mode
7524 are the same as for a register operation, since at present we don't
7525 have named patterns for aligned memory structures. */
7526 struct extraction_insn insn;
7527 if (get_best_reg_extraction_insn (&insn, pattern,
7528 GET_MODE_BITSIZE (inner_mode), mode))
7529 {
7530 wanted_inner_reg_mode = insn.struct_mode;
7531 pos_mode = insn.pos_mode;
7532 extraction_mode = insn.field_mode;
7533 }
7534
7535 /* Never narrow an object, since that might not be safe. */
7536
7537 if (mode != VOIDmode
7538 && GET_MODE_SIZE (extraction_mode) < GET_MODE_SIZE (mode))
7539 extraction_mode = mode;
7540
7541 if (!MEM_P (inner))
7542 wanted_inner_mode = wanted_inner_reg_mode;
7543 else
7544 {
7545 /* Be careful not to go beyond the extracted object and maintain the
7546 natural alignment of the memory. */
7547 wanted_inner_mode = smallest_mode_for_size (len, MODE_INT);
7548 while (pos % GET_MODE_BITSIZE (wanted_inner_mode) + len
7549 > GET_MODE_BITSIZE (wanted_inner_mode))
7550 {
7551 wanted_inner_mode = GET_MODE_WIDER_MODE (wanted_inner_mode);
7552 gcc_assert (wanted_inner_mode != VOIDmode);
7553 }
7554 }
7555
7556 orig_pos = pos;
7557
7558 if (BITS_BIG_ENDIAN)
7559 {
7560 /* POS is passed as if BITS_BIG_ENDIAN == 0, so we need to convert it to
7561 BITS_BIG_ENDIAN style. If position is constant, compute new
7562 position. Otherwise, build subtraction.
7563 Note that POS is relative to the mode of the original argument.
7564 If it's a MEM we need to recompute POS relative to that.
7565 However, if we're extracting from (or inserting into) a register,
7566 we want to recompute POS relative to wanted_inner_mode. */
7567 int width = (MEM_P (inner)
7568 ? GET_MODE_BITSIZE (is_mode)
7569 : GET_MODE_BITSIZE (wanted_inner_mode));
7570
7571 if (pos_rtx == 0)
7572 pos = width - len - pos;
7573 else
7574 pos_rtx
7575 = gen_rtx_MINUS (GET_MODE (pos_rtx),
7576 gen_int_mode (width - len, GET_MODE (pos_rtx)),
7577 pos_rtx);
7578 /* POS may be less than 0 now, but we check for that below.
7579 Note that it can only be less than 0 if !MEM_P (inner). */
7580 }
7581
7582 /* If INNER has a wider mode, and this is a constant extraction, try to
7583 make it smaller and adjust the byte to point to the byte containing
7584 the value. */
7585 if (wanted_inner_mode != VOIDmode
7586 && inner_mode != wanted_inner_mode
7587 && ! pos_rtx
7588 && GET_MODE_SIZE (wanted_inner_mode) < GET_MODE_SIZE (is_mode)
7589 && MEM_P (inner)
7590 && ! mode_dependent_address_p (XEXP (inner, 0), MEM_ADDR_SPACE (inner))
7591 && ! MEM_VOLATILE_P (inner))
7592 {
7593 int offset = 0;
7594
7595 /* The computations below will be correct if the machine is big
7596 endian in both bits and bytes or little endian in bits and bytes.
7597 If it is mixed, we must adjust. */
7598
7599 /* If bytes are big endian and we had a paradoxical SUBREG, we must
7600 adjust OFFSET to compensate. */
7601 if (BYTES_BIG_ENDIAN
7602 && GET_MODE_SIZE (inner_mode) < GET_MODE_SIZE (is_mode))
7603 offset -= GET_MODE_SIZE (is_mode) - GET_MODE_SIZE (inner_mode);
7604
7605 /* We can now move to the desired byte. */
7606 offset += (pos / GET_MODE_BITSIZE (wanted_inner_mode))
7607 * GET_MODE_SIZE (wanted_inner_mode);
7608 pos %= GET_MODE_BITSIZE (wanted_inner_mode);
7609
7610 if (BYTES_BIG_ENDIAN != BITS_BIG_ENDIAN
7611 && is_mode != wanted_inner_mode)
7612 offset = (GET_MODE_SIZE (is_mode)
7613 - GET_MODE_SIZE (wanted_inner_mode) - offset);
7614
7615 inner = adjust_address_nv (inner, wanted_inner_mode, offset);
7616 }
7617
7618 /* If INNER is not memory, get it into the proper mode. If we are changing
7619 its mode, POS must be a constant and smaller than the size of the new
7620 mode. */
7621 else if (!MEM_P (inner))
7622 {
7623 /* On the LHS, don't create paradoxical subregs implicitely truncating
7624 the register unless TRULY_NOOP_TRUNCATION. */
7625 if (in_dest
7626 && !TRULY_NOOP_TRUNCATION_MODES_P (GET_MODE (inner),
7627 wanted_inner_mode))
7628 return NULL_RTX;
7629
7630 if (GET_MODE (inner) != wanted_inner_mode
7631 && (pos_rtx != 0
7632 || orig_pos + len > GET_MODE_BITSIZE (wanted_inner_mode)))
7633 return NULL_RTX;
7634
7635 if (orig_pos < 0)
7636 return NULL_RTX;
7637
7638 inner = force_to_mode (inner, wanted_inner_mode,
7639 pos_rtx
7640 || len + orig_pos >= HOST_BITS_PER_WIDE_INT
7641 ? ~(unsigned HOST_WIDE_INT) 0
7642 : ((((unsigned HOST_WIDE_INT) 1 << len) - 1)
7643 << orig_pos),
7644 0);
7645 }
7646
7647 /* Adjust mode of POS_RTX, if needed. If we want a wider mode, we
7648 have to zero extend. Otherwise, we can just use a SUBREG. */
7649 if (pos_rtx != 0
7650 && GET_MODE_SIZE (pos_mode) > GET_MODE_SIZE (GET_MODE (pos_rtx)))
7651 {
7652 rtx temp = simplify_gen_unary (ZERO_EXTEND, pos_mode, pos_rtx,
7653 GET_MODE (pos_rtx));
7654
7655 /* If we know that no extraneous bits are set, and that the high
7656 bit is not set, convert extraction to cheaper one - either
7657 SIGN_EXTENSION or ZERO_EXTENSION, that are equivalent in these
7658 cases. */
7659 if (flag_expensive_optimizations
7660 && (HWI_COMPUTABLE_MODE_P (GET_MODE (pos_rtx))
7661 && ((nonzero_bits (pos_rtx, GET_MODE (pos_rtx))
7662 & ~(((unsigned HOST_WIDE_INT)
7663 GET_MODE_MASK (GET_MODE (pos_rtx)))
7664 >> 1))
7665 == 0)))
7666 {
7667 rtx temp1 = simplify_gen_unary (SIGN_EXTEND, pos_mode, pos_rtx,
7668 GET_MODE (pos_rtx));
7669
7670 /* Prefer ZERO_EXTENSION, since it gives more information to
7671 backends. */
7672 if (set_src_cost (temp1, optimize_this_for_speed_p)
7673 < set_src_cost (temp, optimize_this_for_speed_p))
7674 temp = temp1;
7675 }
7676 pos_rtx = temp;
7677 }
7678
7679 /* Make POS_RTX unless we already have it and it is correct. If we don't
7680 have a POS_RTX but we do have an ORIG_POS_RTX, the latter must
7681 be a CONST_INT. */
7682 if (pos_rtx == 0 && orig_pos_rtx != 0 && INTVAL (orig_pos_rtx) == pos)
7683 pos_rtx = orig_pos_rtx;
7684
7685 else if (pos_rtx == 0)
7686 pos_rtx = GEN_INT (pos);
7687
7688 /* Make the required operation. See if we can use existing rtx. */
7689 new_rtx = gen_rtx_fmt_eee (unsignedp ? ZERO_EXTRACT : SIGN_EXTRACT,
7690 extraction_mode, inner, GEN_INT (len), pos_rtx);
7691 if (! in_dest)
7692 new_rtx = gen_lowpart (mode, new_rtx);
7693
7694 return new_rtx;
7695 }
7696 \f
7697 /* See if X contains an ASHIFT of COUNT or more bits that can be commuted
7698 with any other operations in X. Return X without that shift if so. */
7699
7700 static rtx
7701 extract_left_shift (rtx x, int count)
7702 {
7703 enum rtx_code code = GET_CODE (x);
7704 machine_mode mode = GET_MODE (x);
7705 rtx tem;
7706
7707 switch (code)
7708 {
7709 case ASHIFT:
7710 /* This is the shift itself. If it is wide enough, we will return
7711 either the value being shifted if the shift count is equal to
7712 COUNT or a shift for the difference. */
7713 if (CONST_INT_P (XEXP (x, 1))
7714 && INTVAL (XEXP (x, 1)) >= count)
7715 return simplify_shift_const (NULL_RTX, ASHIFT, mode, XEXP (x, 0),
7716 INTVAL (XEXP (x, 1)) - count);
7717 break;
7718
7719 case NEG: case NOT:
7720 if ((tem = extract_left_shift (XEXP (x, 0), count)) != 0)
7721 return simplify_gen_unary (code, mode, tem, mode);
7722
7723 break;
7724
7725 case PLUS: case IOR: case XOR: case AND:
7726 /* If we can safely shift this constant and we find the inner shift,
7727 make a new operation. */
7728 if (CONST_INT_P (XEXP (x, 1))
7729 && (UINTVAL (XEXP (x, 1))
7730 & ((((unsigned HOST_WIDE_INT) 1 << count)) - 1)) == 0
7731 && (tem = extract_left_shift (XEXP (x, 0), count)) != 0)
7732 {
7733 HOST_WIDE_INT val = INTVAL (XEXP (x, 1)) >> count;
7734 return simplify_gen_binary (code, mode, tem,
7735 gen_int_mode (val, mode));
7736 }
7737 break;
7738
7739 default:
7740 break;
7741 }
7742
7743 return 0;
7744 }
7745 \f
7746 /* Look at the expression rooted at X. Look for expressions
7747 equivalent to ZERO_EXTRACT, SIGN_EXTRACT, ZERO_EXTEND, SIGN_EXTEND.
7748 Form these expressions.
7749
7750 Return the new rtx, usually just X.
7751
7752 Also, for machines like the VAX that don't have logical shift insns,
7753 try to convert logical to arithmetic shift operations in cases where
7754 they are equivalent. This undoes the canonicalizations to logical
7755 shifts done elsewhere.
7756
7757 We try, as much as possible, to re-use rtl expressions to save memory.
7758
7759 IN_CODE says what kind of expression we are processing. Normally, it is
7760 SET. In a memory address it is MEM. When processing the arguments of
7761 a comparison or a COMPARE against zero, it is COMPARE. */
7762
7763 rtx
7764 make_compound_operation (rtx x, enum rtx_code in_code)
7765 {
7766 enum rtx_code code = GET_CODE (x);
7767 machine_mode mode = GET_MODE (x);
7768 int mode_width = GET_MODE_PRECISION (mode);
7769 rtx rhs, lhs;
7770 enum rtx_code next_code;
7771 int i, j;
7772 rtx new_rtx = 0;
7773 rtx tem;
7774 const char *fmt;
7775
7776 /* Select the code to be used in recursive calls. Once we are inside an
7777 address, we stay there. If we have a comparison, set to COMPARE,
7778 but once inside, go back to our default of SET. */
7779
7780 next_code = (code == MEM ? MEM
7781 : ((code == COMPARE || COMPARISON_P (x))
7782 && XEXP (x, 1) == const0_rtx) ? COMPARE
7783 : in_code == COMPARE ? SET : in_code);
7784
7785 /* Process depending on the code of this operation. If NEW is set
7786 nonzero, it will be returned. */
7787
7788 switch (code)
7789 {
7790 case ASHIFT:
7791 /* Convert shifts by constants into multiplications if inside
7792 an address. */
7793 if (in_code == MEM && CONST_INT_P (XEXP (x, 1))
7794 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT
7795 && INTVAL (XEXP (x, 1)) >= 0
7796 && SCALAR_INT_MODE_P (mode))
7797 {
7798 HOST_WIDE_INT count = INTVAL (XEXP (x, 1));
7799 HOST_WIDE_INT multval = (HOST_WIDE_INT) 1 << count;
7800
7801 new_rtx = make_compound_operation (XEXP (x, 0), next_code);
7802 if (GET_CODE (new_rtx) == NEG)
7803 {
7804 new_rtx = XEXP (new_rtx, 0);
7805 multval = -multval;
7806 }
7807 multval = trunc_int_for_mode (multval, mode);
7808 new_rtx = gen_rtx_MULT (mode, new_rtx, gen_int_mode (multval, mode));
7809 }
7810 break;
7811
7812 case PLUS:
7813 lhs = XEXP (x, 0);
7814 rhs = XEXP (x, 1);
7815 lhs = make_compound_operation (lhs, next_code);
7816 rhs = make_compound_operation (rhs, next_code);
7817 if (GET_CODE (lhs) == MULT && GET_CODE (XEXP (lhs, 0)) == NEG
7818 && SCALAR_INT_MODE_P (mode))
7819 {
7820 tem = simplify_gen_binary (MULT, mode, XEXP (XEXP (lhs, 0), 0),
7821 XEXP (lhs, 1));
7822 new_rtx = simplify_gen_binary (MINUS, mode, rhs, tem);
7823 }
7824 else if (GET_CODE (lhs) == MULT
7825 && (CONST_INT_P (XEXP (lhs, 1)) && INTVAL (XEXP (lhs, 1)) < 0))
7826 {
7827 tem = simplify_gen_binary (MULT, mode, XEXP (lhs, 0),
7828 simplify_gen_unary (NEG, mode,
7829 XEXP (lhs, 1),
7830 mode));
7831 new_rtx = simplify_gen_binary (MINUS, mode, rhs, tem);
7832 }
7833 else
7834 {
7835 SUBST (XEXP (x, 0), lhs);
7836 SUBST (XEXP (x, 1), rhs);
7837 goto maybe_swap;
7838 }
7839 x = gen_lowpart (mode, new_rtx);
7840 goto maybe_swap;
7841
7842 case MINUS:
7843 lhs = XEXP (x, 0);
7844 rhs = XEXP (x, 1);
7845 lhs = make_compound_operation (lhs, next_code);
7846 rhs = make_compound_operation (rhs, next_code);
7847 if (GET_CODE (rhs) == MULT && GET_CODE (XEXP (rhs, 0)) == NEG
7848 && SCALAR_INT_MODE_P (mode))
7849 {
7850 tem = simplify_gen_binary (MULT, mode, XEXP (XEXP (rhs, 0), 0),
7851 XEXP (rhs, 1));
7852 new_rtx = simplify_gen_binary (PLUS, mode, tem, lhs);
7853 }
7854 else if (GET_CODE (rhs) == MULT
7855 && (CONST_INT_P (XEXP (rhs, 1)) && INTVAL (XEXP (rhs, 1)) < 0))
7856 {
7857 tem = simplify_gen_binary (MULT, mode, XEXP (rhs, 0),
7858 simplify_gen_unary (NEG, mode,
7859 XEXP (rhs, 1),
7860 mode));
7861 new_rtx = simplify_gen_binary (PLUS, mode, tem, lhs);
7862 }
7863 else
7864 {
7865 SUBST (XEXP (x, 0), lhs);
7866 SUBST (XEXP (x, 1), rhs);
7867 return x;
7868 }
7869 return gen_lowpart (mode, new_rtx);
7870
7871 case AND:
7872 /* If the second operand is not a constant, we can't do anything
7873 with it. */
7874 if (!CONST_INT_P (XEXP (x, 1)))
7875 break;
7876
7877 /* If the constant is a power of two minus one and the first operand
7878 is a logical right shift, make an extraction. */
7879 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
7880 && (i = exact_log2 (UINTVAL (XEXP (x, 1)) + 1)) >= 0)
7881 {
7882 new_rtx = make_compound_operation (XEXP (XEXP (x, 0), 0), next_code);
7883 new_rtx = make_extraction (mode, new_rtx, 0, XEXP (XEXP (x, 0), 1), i, 1,
7884 0, in_code == COMPARE);
7885 }
7886
7887 /* Same as previous, but for (subreg (lshiftrt ...)) in first op. */
7888 else if (GET_CODE (XEXP (x, 0)) == SUBREG
7889 && subreg_lowpart_p (XEXP (x, 0))
7890 && GET_CODE (SUBREG_REG (XEXP (x, 0))) == LSHIFTRT
7891 && (i = exact_log2 (UINTVAL (XEXP (x, 1)) + 1)) >= 0)
7892 {
7893 new_rtx = make_compound_operation (XEXP (SUBREG_REG (XEXP (x, 0)), 0),
7894 next_code);
7895 new_rtx = make_extraction (GET_MODE (SUBREG_REG (XEXP (x, 0))), new_rtx, 0,
7896 XEXP (SUBREG_REG (XEXP (x, 0)), 1), i, 1,
7897 0, in_code == COMPARE);
7898 }
7899 /* Same as previous, but for (xor/ior (lshiftrt...) (lshiftrt...)). */
7900 else if ((GET_CODE (XEXP (x, 0)) == XOR
7901 || GET_CODE (XEXP (x, 0)) == IOR)
7902 && GET_CODE (XEXP (XEXP (x, 0), 0)) == LSHIFTRT
7903 && GET_CODE (XEXP (XEXP (x, 0), 1)) == LSHIFTRT
7904 && (i = exact_log2 (UINTVAL (XEXP (x, 1)) + 1)) >= 0)
7905 {
7906 /* Apply the distributive law, and then try to make extractions. */
7907 new_rtx = gen_rtx_fmt_ee (GET_CODE (XEXP (x, 0)), mode,
7908 gen_rtx_AND (mode, XEXP (XEXP (x, 0), 0),
7909 XEXP (x, 1)),
7910 gen_rtx_AND (mode, XEXP (XEXP (x, 0), 1),
7911 XEXP (x, 1)));
7912 new_rtx = make_compound_operation (new_rtx, in_code);
7913 }
7914
7915 /* If we are have (and (rotate X C) M) and C is larger than the number
7916 of bits in M, this is an extraction. */
7917
7918 else if (GET_CODE (XEXP (x, 0)) == ROTATE
7919 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
7920 && (i = exact_log2 (UINTVAL (XEXP (x, 1)) + 1)) >= 0
7921 && i <= INTVAL (XEXP (XEXP (x, 0), 1)))
7922 {
7923 new_rtx = make_compound_operation (XEXP (XEXP (x, 0), 0), next_code);
7924 new_rtx = make_extraction (mode, new_rtx,
7925 (GET_MODE_PRECISION (mode)
7926 - INTVAL (XEXP (XEXP (x, 0), 1))),
7927 NULL_RTX, i, 1, 0, in_code == COMPARE);
7928 }
7929
7930 /* On machines without logical shifts, if the operand of the AND is
7931 a logical shift and our mask turns off all the propagated sign
7932 bits, we can replace the logical shift with an arithmetic shift. */
7933 else if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
7934 && !have_insn_for (LSHIFTRT, mode)
7935 && have_insn_for (ASHIFTRT, mode)
7936 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
7937 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
7938 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT
7939 && mode_width <= HOST_BITS_PER_WIDE_INT)
7940 {
7941 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
7942
7943 mask >>= INTVAL (XEXP (XEXP (x, 0), 1));
7944 if ((INTVAL (XEXP (x, 1)) & ~mask) == 0)
7945 SUBST (XEXP (x, 0),
7946 gen_rtx_ASHIFTRT (mode,
7947 make_compound_operation
7948 (XEXP (XEXP (x, 0), 0), next_code),
7949 XEXP (XEXP (x, 0), 1)));
7950 }
7951
7952 /* If the constant is one less than a power of two, this might be
7953 representable by an extraction even if no shift is present.
7954 If it doesn't end up being a ZERO_EXTEND, we will ignore it unless
7955 we are in a COMPARE. */
7956 else if ((i = exact_log2 (UINTVAL (XEXP (x, 1)) + 1)) >= 0)
7957 new_rtx = make_extraction (mode,
7958 make_compound_operation (XEXP (x, 0),
7959 next_code),
7960 0, NULL_RTX, i, 1, 0, in_code == COMPARE);
7961
7962 /* If we are in a comparison and this is an AND with a power of two,
7963 convert this into the appropriate bit extract. */
7964 else if (in_code == COMPARE
7965 && (i = exact_log2 (UINTVAL (XEXP (x, 1)))) >= 0)
7966 new_rtx = make_extraction (mode,
7967 make_compound_operation (XEXP (x, 0),
7968 next_code),
7969 i, NULL_RTX, 1, 1, 0, 1);
7970
7971 break;
7972
7973 case LSHIFTRT:
7974 /* If the sign bit is known to be zero, replace this with an
7975 arithmetic shift. */
7976 if (have_insn_for (ASHIFTRT, mode)
7977 && ! have_insn_for (LSHIFTRT, mode)
7978 && mode_width <= HOST_BITS_PER_WIDE_INT
7979 && (nonzero_bits (XEXP (x, 0), mode) & (1 << (mode_width - 1))) == 0)
7980 {
7981 new_rtx = gen_rtx_ASHIFTRT (mode,
7982 make_compound_operation (XEXP (x, 0),
7983 next_code),
7984 XEXP (x, 1));
7985 break;
7986 }
7987
7988 /* ... fall through ... */
7989
7990 case ASHIFTRT:
7991 lhs = XEXP (x, 0);
7992 rhs = XEXP (x, 1);
7993
7994 /* If we have (ashiftrt (ashift foo C1) C2) with C2 >= C1,
7995 this is a SIGN_EXTRACT. */
7996 if (CONST_INT_P (rhs)
7997 && GET_CODE (lhs) == ASHIFT
7998 && CONST_INT_P (XEXP (lhs, 1))
7999 && INTVAL (rhs) >= INTVAL (XEXP (lhs, 1))
8000 && INTVAL (XEXP (lhs, 1)) >= 0
8001 && INTVAL (rhs) < mode_width)
8002 {
8003 new_rtx = make_compound_operation (XEXP (lhs, 0), next_code);
8004 new_rtx = make_extraction (mode, new_rtx,
8005 INTVAL (rhs) - INTVAL (XEXP (lhs, 1)),
8006 NULL_RTX, mode_width - INTVAL (rhs),
8007 code == LSHIFTRT, 0, in_code == COMPARE);
8008 break;
8009 }
8010
8011 /* See if we have operations between an ASHIFTRT and an ASHIFT.
8012 If so, try to merge the shifts into a SIGN_EXTEND. We could
8013 also do this for some cases of SIGN_EXTRACT, but it doesn't
8014 seem worth the effort; the case checked for occurs on Alpha. */
8015
8016 if (!OBJECT_P (lhs)
8017 && ! (GET_CODE (lhs) == SUBREG
8018 && (OBJECT_P (SUBREG_REG (lhs))))
8019 && CONST_INT_P (rhs)
8020 && INTVAL (rhs) < HOST_BITS_PER_WIDE_INT
8021 && INTVAL (rhs) < mode_width
8022 && (new_rtx = extract_left_shift (lhs, INTVAL (rhs))) != 0)
8023 new_rtx = make_extraction (mode, make_compound_operation (new_rtx, next_code),
8024 0, NULL_RTX, mode_width - INTVAL (rhs),
8025 code == LSHIFTRT, 0, in_code == COMPARE);
8026
8027 break;
8028
8029 case SUBREG:
8030 /* Call ourselves recursively on the inner expression. If we are
8031 narrowing the object and it has a different RTL code from
8032 what it originally did, do this SUBREG as a force_to_mode. */
8033 {
8034 rtx inner = SUBREG_REG (x), simplified;
8035 enum rtx_code subreg_code = in_code;
8036
8037 /* If in_code is COMPARE, it isn't always safe to pass it through
8038 to the recursive make_compound_operation call. */
8039 if (subreg_code == COMPARE
8040 && (!subreg_lowpart_p (x)
8041 || GET_CODE (inner) == SUBREG
8042 /* (subreg:SI (and:DI (reg:DI) (const_int 0x800000000)) 0)
8043 is (const_int 0), rather than
8044 (subreg:SI (lshiftrt:DI (reg:DI) (const_int 35)) 0). */
8045 || (GET_CODE (inner) == AND
8046 && CONST_INT_P (XEXP (inner, 1))
8047 && GET_MODE_SIZE (mode) < GET_MODE_SIZE (GET_MODE (inner))
8048 && exact_log2 (UINTVAL (XEXP (inner, 1)))
8049 >= GET_MODE_BITSIZE (mode))))
8050 subreg_code = SET;
8051
8052 tem = make_compound_operation (inner, subreg_code);
8053
8054 simplified
8055 = simplify_subreg (mode, tem, GET_MODE (inner), SUBREG_BYTE (x));
8056 if (simplified)
8057 tem = simplified;
8058
8059 if (GET_CODE (tem) != GET_CODE (inner)
8060 && GET_MODE_SIZE (mode) < GET_MODE_SIZE (GET_MODE (inner))
8061 && subreg_lowpart_p (x))
8062 {
8063 rtx newer
8064 = force_to_mode (tem, mode, ~(unsigned HOST_WIDE_INT) 0, 0);
8065
8066 /* If we have something other than a SUBREG, we might have
8067 done an expansion, so rerun ourselves. */
8068 if (GET_CODE (newer) != SUBREG)
8069 newer = make_compound_operation (newer, in_code);
8070
8071 /* force_to_mode can expand compounds. If it just re-expanded the
8072 compound, use gen_lowpart to convert to the desired mode. */
8073 if (rtx_equal_p (newer, x)
8074 /* Likewise if it re-expanded the compound only partially.
8075 This happens for SUBREG of ZERO_EXTRACT if they extract
8076 the same number of bits. */
8077 || (GET_CODE (newer) == SUBREG
8078 && (GET_CODE (SUBREG_REG (newer)) == LSHIFTRT
8079 || GET_CODE (SUBREG_REG (newer)) == ASHIFTRT)
8080 && GET_CODE (inner) == AND
8081 && rtx_equal_p (SUBREG_REG (newer), XEXP (inner, 0))))
8082 return gen_lowpart (GET_MODE (x), tem);
8083
8084 return newer;
8085 }
8086
8087 if (simplified)
8088 return tem;
8089 }
8090 break;
8091
8092 default:
8093 break;
8094 }
8095
8096 if (new_rtx)
8097 {
8098 x = gen_lowpart (mode, new_rtx);
8099 code = GET_CODE (x);
8100 }
8101
8102 /* Now recursively process each operand of this operation. We need to
8103 handle ZERO_EXTEND specially so that we don't lose track of the
8104 inner mode. */
8105 if (GET_CODE (x) == ZERO_EXTEND)
8106 {
8107 new_rtx = make_compound_operation (XEXP (x, 0), next_code);
8108 tem = simplify_const_unary_operation (ZERO_EXTEND, GET_MODE (x),
8109 new_rtx, GET_MODE (XEXP (x, 0)));
8110 if (tem)
8111 return tem;
8112 SUBST (XEXP (x, 0), new_rtx);
8113 return x;
8114 }
8115
8116 fmt = GET_RTX_FORMAT (code);
8117 for (i = 0; i < GET_RTX_LENGTH (code); i++)
8118 if (fmt[i] == 'e')
8119 {
8120 new_rtx = make_compound_operation (XEXP (x, i), next_code);
8121 SUBST (XEXP (x, i), new_rtx);
8122 }
8123 else if (fmt[i] == 'E')
8124 for (j = 0; j < XVECLEN (x, i); j++)
8125 {
8126 new_rtx = make_compound_operation (XVECEXP (x, i, j), next_code);
8127 SUBST (XVECEXP (x, i, j), new_rtx);
8128 }
8129
8130 maybe_swap:
8131 /* If this is a commutative operation, the changes to the operands
8132 may have made it noncanonical. */
8133 if (COMMUTATIVE_ARITH_P (x)
8134 && swap_commutative_operands_p (XEXP (x, 0), XEXP (x, 1)))
8135 {
8136 tem = XEXP (x, 0);
8137 SUBST (XEXP (x, 0), XEXP (x, 1));
8138 SUBST (XEXP (x, 1), tem);
8139 }
8140
8141 return x;
8142 }
8143 \f
8144 /* Given M see if it is a value that would select a field of bits
8145 within an item, but not the entire word. Return -1 if not.
8146 Otherwise, return the starting position of the field, where 0 is the
8147 low-order bit.
8148
8149 *PLEN is set to the length of the field. */
8150
8151 static int
8152 get_pos_from_mask (unsigned HOST_WIDE_INT m, unsigned HOST_WIDE_INT *plen)
8153 {
8154 /* Get the bit number of the first 1 bit from the right, -1 if none. */
8155 int pos = m ? ctz_hwi (m) : -1;
8156 int len = 0;
8157
8158 if (pos >= 0)
8159 /* Now shift off the low-order zero bits and see if we have a
8160 power of two minus 1. */
8161 len = exact_log2 ((m >> pos) + 1);
8162
8163 if (len <= 0)
8164 pos = -1;
8165
8166 *plen = len;
8167 return pos;
8168 }
8169 \f
8170 /* If X refers to a register that equals REG in value, replace these
8171 references with REG. */
8172 static rtx
8173 canon_reg_for_combine (rtx x, rtx reg)
8174 {
8175 rtx op0, op1, op2;
8176 const char *fmt;
8177 int i;
8178 bool copied;
8179
8180 enum rtx_code code = GET_CODE (x);
8181 switch (GET_RTX_CLASS (code))
8182 {
8183 case RTX_UNARY:
8184 op0 = canon_reg_for_combine (XEXP (x, 0), reg);
8185 if (op0 != XEXP (x, 0))
8186 return simplify_gen_unary (GET_CODE (x), GET_MODE (x), op0,
8187 GET_MODE (reg));
8188 break;
8189
8190 case RTX_BIN_ARITH:
8191 case RTX_COMM_ARITH:
8192 op0 = canon_reg_for_combine (XEXP (x, 0), reg);
8193 op1 = canon_reg_for_combine (XEXP (x, 1), reg);
8194 if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
8195 return simplify_gen_binary (GET_CODE (x), GET_MODE (x), op0, op1);
8196 break;
8197
8198 case RTX_COMPARE:
8199 case RTX_COMM_COMPARE:
8200 op0 = canon_reg_for_combine (XEXP (x, 0), reg);
8201 op1 = canon_reg_for_combine (XEXP (x, 1), reg);
8202 if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
8203 return simplify_gen_relational (GET_CODE (x), GET_MODE (x),
8204 GET_MODE (op0), op0, op1);
8205 break;
8206
8207 case RTX_TERNARY:
8208 case RTX_BITFIELD_OPS:
8209 op0 = canon_reg_for_combine (XEXP (x, 0), reg);
8210 op1 = canon_reg_for_combine (XEXP (x, 1), reg);
8211 op2 = canon_reg_for_combine (XEXP (x, 2), reg);
8212 if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1) || op2 != XEXP (x, 2))
8213 return simplify_gen_ternary (GET_CODE (x), GET_MODE (x),
8214 GET_MODE (op0), op0, op1, op2);
8215
8216 case RTX_OBJ:
8217 if (REG_P (x))
8218 {
8219 if (rtx_equal_p (get_last_value (reg), x)
8220 || rtx_equal_p (reg, get_last_value (x)))
8221 return reg;
8222 else
8223 break;
8224 }
8225
8226 /* fall through */
8227
8228 default:
8229 fmt = GET_RTX_FORMAT (code);
8230 copied = false;
8231 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
8232 if (fmt[i] == 'e')
8233 {
8234 rtx op = canon_reg_for_combine (XEXP (x, i), reg);
8235 if (op != XEXP (x, i))
8236 {
8237 if (!copied)
8238 {
8239 copied = true;
8240 x = copy_rtx (x);
8241 }
8242 XEXP (x, i) = op;
8243 }
8244 }
8245 else if (fmt[i] == 'E')
8246 {
8247 int j;
8248 for (j = 0; j < XVECLEN (x, i); j++)
8249 {
8250 rtx op = canon_reg_for_combine (XVECEXP (x, i, j), reg);
8251 if (op != XVECEXP (x, i, j))
8252 {
8253 if (!copied)
8254 {
8255 copied = true;
8256 x = copy_rtx (x);
8257 }
8258 XVECEXP (x, i, j) = op;
8259 }
8260 }
8261 }
8262
8263 break;
8264 }
8265
8266 return x;
8267 }
8268
8269 /* Return X converted to MODE. If the value is already truncated to
8270 MODE we can just return a subreg even though in the general case we
8271 would need an explicit truncation. */
8272
8273 static rtx
8274 gen_lowpart_or_truncate (machine_mode mode, rtx x)
8275 {
8276 if (!CONST_INT_P (x)
8277 && GET_MODE_SIZE (mode) < GET_MODE_SIZE (GET_MODE (x))
8278 && !TRULY_NOOP_TRUNCATION_MODES_P (mode, GET_MODE (x))
8279 && !(REG_P (x) && reg_truncated_to_mode (mode, x)))
8280 {
8281 /* Bit-cast X into an integer mode. */
8282 if (!SCALAR_INT_MODE_P (GET_MODE (x)))
8283 x = gen_lowpart (int_mode_for_mode (GET_MODE (x)), x);
8284 x = simplify_gen_unary (TRUNCATE, int_mode_for_mode (mode),
8285 x, GET_MODE (x));
8286 }
8287
8288 return gen_lowpart (mode, x);
8289 }
8290
8291 /* See if X can be simplified knowing that we will only refer to it in
8292 MODE and will only refer to those bits that are nonzero in MASK.
8293 If other bits are being computed or if masking operations are done
8294 that select a superset of the bits in MASK, they can sometimes be
8295 ignored.
8296
8297 Return a possibly simplified expression, but always convert X to
8298 MODE. If X is a CONST_INT, AND the CONST_INT with MASK.
8299
8300 If JUST_SELECT is nonzero, don't optimize by noticing that bits in MASK
8301 are all off in X. This is used when X will be complemented, by either
8302 NOT, NEG, or XOR. */
8303
8304 static rtx
8305 force_to_mode (rtx x, machine_mode mode, unsigned HOST_WIDE_INT mask,
8306 int just_select)
8307 {
8308 enum rtx_code code = GET_CODE (x);
8309 int next_select = just_select || code == XOR || code == NOT || code == NEG;
8310 machine_mode op_mode;
8311 unsigned HOST_WIDE_INT fuller_mask, nonzero;
8312 rtx op0, op1, temp;
8313
8314 /* If this is a CALL or ASM_OPERANDS, don't do anything. Some of the
8315 code below will do the wrong thing since the mode of such an
8316 expression is VOIDmode.
8317
8318 Also do nothing if X is a CLOBBER; this can happen if X was
8319 the return value from a call to gen_lowpart. */
8320 if (code == CALL || code == ASM_OPERANDS || code == CLOBBER)
8321 return x;
8322
8323 /* We want to perform the operation in its present mode unless we know
8324 that the operation is valid in MODE, in which case we do the operation
8325 in MODE. */
8326 op_mode = ((GET_MODE_CLASS (mode) == GET_MODE_CLASS (GET_MODE (x))
8327 && have_insn_for (code, mode))
8328 ? mode : GET_MODE (x));
8329
8330 /* It is not valid to do a right-shift in a narrower mode
8331 than the one it came in with. */
8332 if ((code == LSHIFTRT || code == ASHIFTRT)
8333 && GET_MODE_PRECISION (mode) < GET_MODE_PRECISION (GET_MODE (x)))
8334 op_mode = GET_MODE (x);
8335
8336 /* Truncate MASK to fit OP_MODE. */
8337 if (op_mode)
8338 mask &= GET_MODE_MASK (op_mode);
8339
8340 /* When we have an arithmetic operation, or a shift whose count we
8341 do not know, we need to assume that all bits up to the highest-order
8342 bit in MASK will be needed. This is how we form such a mask. */
8343 if (mask & ((unsigned HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT - 1)))
8344 fuller_mask = ~(unsigned HOST_WIDE_INT) 0;
8345 else
8346 fuller_mask = (((unsigned HOST_WIDE_INT) 1 << (floor_log2 (mask) + 1))
8347 - 1);
8348
8349 /* Determine what bits of X are guaranteed to be (non)zero. */
8350 nonzero = nonzero_bits (x, mode);
8351
8352 /* If none of the bits in X are needed, return a zero. */
8353 if (!just_select && (nonzero & mask) == 0 && !side_effects_p (x))
8354 x = const0_rtx;
8355
8356 /* If X is a CONST_INT, return a new one. Do this here since the
8357 test below will fail. */
8358 if (CONST_INT_P (x))
8359 {
8360 if (SCALAR_INT_MODE_P (mode))
8361 return gen_int_mode (INTVAL (x) & mask, mode);
8362 else
8363 {
8364 x = GEN_INT (INTVAL (x) & mask);
8365 return gen_lowpart_common (mode, x);
8366 }
8367 }
8368
8369 /* If X is narrower than MODE and we want all the bits in X's mode, just
8370 get X in the proper mode. */
8371 if (GET_MODE_SIZE (GET_MODE (x)) < GET_MODE_SIZE (mode)
8372 && (GET_MODE_MASK (GET_MODE (x)) & ~mask) == 0)
8373 return gen_lowpart (mode, x);
8374
8375 /* We can ignore the effect of a SUBREG if it narrows the mode or
8376 if the constant masks to zero all the bits the mode doesn't have. */
8377 if (GET_CODE (x) == SUBREG
8378 && subreg_lowpart_p (x)
8379 && ((GET_MODE_SIZE (GET_MODE (x))
8380 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
8381 || (0 == (mask
8382 & GET_MODE_MASK (GET_MODE (x))
8383 & ~GET_MODE_MASK (GET_MODE (SUBREG_REG (x)))))))
8384 return force_to_mode (SUBREG_REG (x), mode, mask, next_select);
8385
8386 /* The arithmetic simplifications here only work for scalar integer modes. */
8387 if (!SCALAR_INT_MODE_P (mode) || !SCALAR_INT_MODE_P (GET_MODE (x)))
8388 return gen_lowpart_or_truncate (mode, x);
8389
8390 switch (code)
8391 {
8392 case CLOBBER:
8393 /* If X is a (clobber (const_int)), return it since we know we are
8394 generating something that won't match. */
8395 return x;
8396
8397 case SIGN_EXTEND:
8398 case ZERO_EXTEND:
8399 case ZERO_EXTRACT:
8400 case SIGN_EXTRACT:
8401 x = expand_compound_operation (x);
8402 if (GET_CODE (x) != code)
8403 return force_to_mode (x, mode, mask, next_select);
8404 break;
8405
8406 case TRUNCATE:
8407 /* Similarly for a truncate. */
8408 return force_to_mode (XEXP (x, 0), mode, mask, next_select);
8409
8410 case AND:
8411 /* If this is an AND with a constant, convert it into an AND
8412 whose constant is the AND of that constant with MASK. If it
8413 remains an AND of MASK, delete it since it is redundant. */
8414
8415 if (CONST_INT_P (XEXP (x, 1)))
8416 {
8417 x = simplify_and_const_int (x, op_mode, XEXP (x, 0),
8418 mask & INTVAL (XEXP (x, 1)));
8419
8420 /* If X is still an AND, see if it is an AND with a mask that
8421 is just some low-order bits. If so, and it is MASK, we don't
8422 need it. */
8423
8424 if (GET_CODE (x) == AND && CONST_INT_P (XEXP (x, 1))
8425 && ((INTVAL (XEXP (x, 1)) & GET_MODE_MASK (GET_MODE (x)))
8426 == mask))
8427 x = XEXP (x, 0);
8428
8429 /* If it remains an AND, try making another AND with the bits
8430 in the mode mask that aren't in MASK turned on. If the
8431 constant in the AND is wide enough, this might make a
8432 cheaper constant. */
8433
8434 if (GET_CODE (x) == AND && CONST_INT_P (XEXP (x, 1))
8435 && GET_MODE_MASK (GET_MODE (x)) != mask
8436 && HWI_COMPUTABLE_MODE_P (GET_MODE (x)))
8437 {
8438 unsigned HOST_WIDE_INT cval
8439 = UINTVAL (XEXP (x, 1))
8440 | (GET_MODE_MASK (GET_MODE (x)) & ~mask);
8441 rtx y;
8442
8443 y = simplify_gen_binary (AND, GET_MODE (x), XEXP (x, 0),
8444 gen_int_mode (cval, GET_MODE (x)));
8445 if (set_src_cost (y, optimize_this_for_speed_p)
8446 < set_src_cost (x, optimize_this_for_speed_p))
8447 x = y;
8448 }
8449
8450 break;
8451 }
8452
8453 goto binop;
8454
8455 case PLUS:
8456 /* In (and (plus FOO C1) M), if M is a mask that just turns off
8457 low-order bits (as in an alignment operation) and FOO is already
8458 aligned to that boundary, mask C1 to that boundary as well.
8459 This may eliminate that PLUS and, later, the AND. */
8460
8461 {
8462 unsigned int width = GET_MODE_PRECISION (mode);
8463 unsigned HOST_WIDE_INT smask = mask;
8464
8465 /* If MODE is narrower than HOST_WIDE_INT and mask is a negative
8466 number, sign extend it. */
8467
8468 if (width < HOST_BITS_PER_WIDE_INT
8469 && (smask & (HOST_WIDE_INT_1U << (width - 1))) != 0)
8470 smask |= HOST_WIDE_INT_M1U << width;
8471
8472 if (CONST_INT_P (XEXP (x, 1))
8473 && exact_log2 (- smask) >= 0
8474 && (nonzero_bits (XEXP (x, 0), mode) & ~smask) == 0
8475 && (INTVAL (XEXP (x, 1)) & ~smask) != 0)
8476 return force_to_mode (plus_constant (GET_MODE (x), XEXP (x, 0),
8477 (INTVAL (XEXP (x, 1)) & smask)),
8478 mode, smask, next_select);
8479 }
8480
8481 /* ... fall through ... */
8482
8483 case MULT:
8484 /* For PLUS, MINUS and MULT, we need any bits less significant than the
8485 most significant bit in MASK since carries from those bits will
8486 affect the bits we are interested in. */
8487 mask = fuller_mask;
8488 goto binop;
8489
8490 case MINUS:
8491 /* If X is (minus C Y) where C's least set bit is larger than any bit
8492 in the mask, then we may replace with (neg Y). */
8493 if (CONST_INT_P (XEXP (x, 0))
8494 && ((UINTVAL (XEXP (x, 0)) & -UINTVAL (XEXP (x, 0))) > mask))
8495 {
8496 x = simplify_gen_unary (NEG, GET_MODE (x), XEXP (x, 1),
8497 GET_MODE (x));
8498 return force_to_mode (x, mode, mask, next_select);
8499 }
8500
8501 /* Similarly, if C contains every bit in the fuller_mask, then we may
8502 replace with (not Y). */
8503 if (CONST_INT_P (XEXP (x, 0))
8504 && ((UINTVAL (XEXP (x, 0)) | fuller_mask) == UINTVAL (XEXP (x, 0))))
8505 {
8506 x = simplify_gen_unary (NOT, GET_MODE (x),
8507 XEXP (x, 1), GET_MODE (x));
8508 return force_to_mode (x, mode, mask, next_select);
8509 }
8510
8511 mask = fuller_mask;
8512 goto binop;
8513
8514 case IOR:
8515 case XOR:
8516 /* If X is (ior (lshiftrt FOO C1) C2), try to commute the IOR and
8517 LSHIFTRT so we end up with an (and (lshiftrt (ior ...) ...) ...)
8518 operation which may be a bitfield extraction. Ensure that the
8519 constant we form is not wider than the mode of X. */
8520
8521 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
8522 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
8523 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
8524 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT
8525 && CONST_INT_P (XEXP (x, 1))
8526 && ((INTVAL (XEXP (XEXP (x, 0), 1))
8527 + floor_log2 (INTVAL (XEXP (x, 1))))
8528 < GET_MODE_PRECISION (GET_MODE (x)))
8529 && (UINTVAL (XEXP (x, 1))
8530 & ~nonzero_bits (XEXP (x, 0), GET_MODE (x))) == 0)
8531 {
8532 temp = gen_int_mode ((INTVAL (XEXP (x, 1)) & mask)
8533 << INTVAL (XEXP (XEXP (x, 0), 1)),
8534 GET_MODE (x));
8535 temp = simplify_gen_binary (GET_CODE (x), GET_MODE (x),
8536 XEXP (XEXP (x, 0), 0), temp);
8537 x = simplify_gen_binary (LSHIFTRT, GET_MODE (x), temp,
8538 XEXP (XEXP (x, 0), 1));
8539 return force_to_mode (x, mode, mask, next_select);
8540 }
8541
8542 binop:
8543 /* For most binary operations, just propagate into the operation and
8544 change the mode if we have an operation of that mode. */
8545
8546 op0 = force_to_mode (XEXP (x, 0), mode, mask, next_select);
8547 op1 = force_to_mode (XEXP (x, 1), mode, mask, next_select);
8548
8549 /* If we ended up truncating both operands, truncate the result of the
8550 operation instead. */
8551 if (GET_CODE (op0) == TRUNCATE
8552 && GET_CODE (op1) == TRUNCATE)
8553 {
8554 op0 = XEXP (op0, 0);
8555 op1 = XEXP (op1, 0);
8556 }
8557
8558 op0 = gen_lowpart_or_truncate (op_mode, op0);
8559 op1 = gen_lowpart_or_truncate (op_mode, op1);
8560
8561 if (op_mode != GET_MODE (x) || op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
8562 x = simplify_gen_binary (code, op_mode, op0, op1);
8563 break;
8564
8565 case ASHIFT:
8566 /* For left shifts, do the same, but just for the first operand.
8567 However, we cannot do anything with shifts where we cannot
8568 guarantee that the counts are smaller than the size of the mode
8569 because such a count will have a different meaning in a
8570 wider mode. */
8571
8572 if (! (CONST_INT_P (XEXP (x, 1))
8573 && INTVAL (XEXP (x, 1)) >= 0
8574 && INTVAL (XEXP (x, 1)) < GET_MODE_PRECISION (mode))
8575 && ! (GET_MODE (XEXP (x, 1)) != VOIDmode
8576 && (nonzero_bits (XEXP (x, 1), GET_MODE (XEXP (x, 1)))
8577 < (unsigned HOST_WIDE_INT) GET_MODE_PRECISION (mode))))
8578 break;
8579
8580 /* If the shift count is a constant and we can do arithmetic in
8581 the mode of the shift, refine which bits we need. Otherwise, use the
8582 conservative form of the mask. */
8583 if (CONST_INT_P (XEXP (x, 1))
8584 && INTVAL (XEXP (x, 1)) >= 0
8585 && INTVAL (XEXP (x, 1)) < GET_MODE_PRECISION (op_mode)
8586 && HWI_COMPUTABLE_MODE_P (op_mode))
8587 mask >>= INTVAL (XEXP (x, 1));
8588 else
8589 mask = fuller_mask;
8590
8591 op0 = gen_lowpart_or_truncate (op_mode,
8592 force_to_mode (XEXP (x, 0), op_mode,
8593 mask, next_select));
8594
8595 if (op_mode != GET_MODE (x) || op0 != XEXP (x, 0))
8596 x = simplify_gen_binary (code, op_mode, op0, XEXP (x, 1));
8597 break;
8598
8599 case LSHIFTRT:
8600 /* Here we can only do something if the shift count is a constant,
8601 this shift constant is valid for the host, and we can do arithmetic
8602 in OP_MODE. */
8603
8604 if (CONST_INT_P (XEXP (x, 1))
8605 && INTVAL (XEXP (x, 1)) >= 0
8606 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT
8607 && HWI_COMPUTABLE_MODE_P (op_mode))
8608 {
8609 rtx inner = XEXP (x, 0);
8610 unsigned HOST_WIDE_INT inner_mask;
8611
8612 /* Select the mask of the bits we need for the shift operand. */
8613 inner_mask = mask << INTVAL (XEXP (x, 1));
8614
8615 /* We can only change the mode of the shift if we can do arithmetic
8616 in the mode of the shift and INNER_MASK is no wider than the
8617 width of X's mode. */
8618 if ((inner_mask & ~GET_MODE_MASK (GET_MODE (x))) != 0)
8619 op_mode = GET_MODE (x);
8620
8621 inner = force_to_mode (inner, op_mode, inner_mask, next_select);
8622
8623 if (GET_MODE (x) != op_mode || inner != XEXP (x, 0))
8624 x = simplify_gen_binary (LSHIFTRT, op_mode, inner, XEXP (x, 1));
8625 }
8626
8627 /* If we have (and (lshiftrt FOO C1) C2) where the combination of the
8628 shift and AND produces only copies of the sign bit (C2 is one less
8629 than a power of two), we can do this with just a shift. */
8630
8631 if (GET_CODE (x) == LSHIFTRT
8632 && CONST_INT_P (XEXP (x, 1))
8633 /* The shift puts one of the sign bit copies in the least significant
8634 bit. */
8635 && ((INTVAL (XEXP (x, 1))
8636 + num_sign_bit_copies (XEXP (x, 0), GET_MODE (XEXP (x, 0))))
8637 >= GET_MODE_PRECISION (GET_MODE (x)))
8638 && exact_log2 (mask + 1) >= 0
8639 /* Number of bits left after the shift must be more than the mask
8640 needs. */
8641 && ((INTVAL (XEXP (x, 1)) + exact_log2 (mask + 1))
8642 <= GET_MODE_PRECISION (GET_MODE (x)))
8643 /* Must be more sign bit copies than the mask needs. */
8644 && ((int) num_sign_bit_copies (XEXP (x, 0), GET_MODE (XEXP (x, 0)))
8645 >= exact_log2 (mask + 1)))
8646 x = simplify_gen_binary (LSHIFTRT, GET_MODE (x), XEXP (x, 0),
8647 GEN_INT (GET_MODE_PRECISION (GET_MODE (x))
8648 - exact_log2 (mask + 1)));
8649
8650 goto shiftrt;
8651
8652 case ASHIFTRT:
8653 /* If we are just looking for the sign bit, we don't need this shift at
8654 all, even if it has a variable count. */
8655 if (val_signbit_p (GET_MODE (x), mask))
8656 return force_to_mode (XEXP (x, 0), mode, mask, next_select);
8657
8658 /* If this is a shift by a constant, get a mask that contains those bits
8659 that are not copies of the sign bit. We then have two cases: If
8660 MASK only includes those bits, this can be a logical shift, which may
8661 allow simplifications. If MASK is a single-bit field not within
8662 those bits, we are requesting a copy of the sign bit and hence can
8663 shift the sign bit to the appropriate location. */
8664
8665 if (CONST_INT_P (XEXP (x, 1)) && INTVAL (XEXP (x, 1)) >= 0
8666 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT)
8667 {
8668 int i;
8669
8670 /* If the considered data is wider than HOST_WIDE_INT, we can't
8671 represent a mask for all its bits in a single scalar.
8672 But we only care about the lower bits, so calculate these. */
8673
8674 if (GET_MODE_PRECISION (GET_MODE (x)) > HOST_BITS_PER_WIDE_INT)
8675 {
8676 nonzero = ~(unsigned HOST_WIDE_INT) 0;
8677
8678 /* GET_MODE_PRECISION (GET_MODE (x)) - INTVAL (XEXP (x, 1))
8679 is the number of bits a full-width mask would have set.
8680 We need only shift if these are fewer than nonzero can
8681 hold. If not, we must keep all bits set in nonzero. */
8682
8683 if (GET_MODE_PRECISION (GET_MODE (x)) - INTVAL (XEXP (x, 1))
8684 < HOST_BITS_PER_WIDE_INT)
8685 nonzero >>= INTVAL (XEXP (x, 1))
8686 + HOST_BITS_PER_WIDE_INT
8687 - GET_MODE_PRECISION (GET_MODE (x)) ;
8688 }
8689 else
8690 {
8691 nonzero = GET_MODE_MASK (GET_MODE (x));
8692 nonzero >>= INTVAL (XEXP (x, 1));
8693 }
8694
8695 if ((mask & ~nonzero) == 0)
8696 {
8697 x = simplify_shift_const (NULL_RTX, LSHIFTRT, GET_MODE (x),
8698 XEXP (x, 0), INTVAL (XEXP (x, 1)));
8699 if (GET_CODE (x) != ASHIFTRT)
8700 return force_to_mode (x, mode, mask, next_select);
8701 }
8702
8703 else if ((i = exact_log2 (mask)) >= 0)
8704 {
8705 x = simplify_shift_const
8706 (NULL_RTX, LSHIFTRT, GET_MODE (x), XEXP (x, 0),
8707 GET_MODE_PRECISION (GET_MODE (x)) - 1 - i);
8708
8709 if (GET_CODE (x) != ASHIFTRT)
8710 return force_to_mode (x, mode, mask, next_select);
8711 }
8712 }
8713
8714 /* If MASK is 1, convert this to an LSHIFTRT. This can be done
8715 even if the shift count isn't a constant. */
8716 if (mask == 1)
8717 x = simplify_gen_binary (LSHIFTRT, GET_MODE (x),
8718 XEXP (x, 0), XEXP (x, 1));
8719
8720 shiftrt:
8721
8722 /* If this is a zero- or sign-extension operation that just affects bits
8723 we don't care about, remove it. Be sure the call above returned
8724 something that is still a shift. */
8725
8726 if ((GET_CODE (x) == LSHIFTRT || GET_CODE (x) == ASHIFTRT)
8727 && CONST_INT_P (XEXP (x, 1))
8728 && INTVAL (XEXP (x, 1)) >= 0
8729 && (INTVAL (XEXP (x, 1))
8730 <= GET_MODE_PRECISION (GET_MODE (x)) - (floor_log2 (mask) + 1))
8731 && GET_CODE (XEXP (x, 0)) == ASHIFT
8732 && XEXP (XEXP (x, 0), 1) == XEXP (x, 1))
8733 return force_to_mode (XEXP (XEXP (x, 0), 0), mode, mask,
8734 next_select);
8735
8736 break;
8737
8738 case ROTATE:
8739 case ROTATERT:
8740 /* If the shift count is constant and we can do computations
8741 in the mode of X, compute where the bits we care about are.
8742 Otherwise, we can't do anything. Don't change the mode of
8743 the shift or propagate MODE into the shift, though. */
8744 if (CONST_INT_P (XEXP (x, 1))
8745 && INTVAL (XEXP (x, 1)) >= 0)
8746 {
8747 temp = simplify_binary_operation (code == ROTATE ? ROTATERT : ROTATE,
8748 GET_MODE (x),
8749 gen_int_mode (mask, GET_MODE (x)),
8750 XEXP (x, 1));
8751 if (temp && CONST_INT_P (temp))
8752 x = simplify_gen_binary (code, GET_MODE (x),
8753 force_to_mode (XEXP (x, 0), GET_MODE (x),
8754 INTVAL (temp), next_select),
8755 XEXP (x, 1));
8756 }
8757 break;
8758
8759 case NEG:
8760 /* If we just want the low-order bit, the NEG isn't needed since it
8761 won't change the low-order bit. */
8762 if (mask == 1)
8763 return force_to_mode (XEXP (x, 0), mode, mask, just_select);
8764
8765 /* We need any bits less significant than the most significant bit in
8766 MASK since carries from those bits will affect the bits we are
8767 interested in. */
8768 mask = fuller_mask;
8769 goto unop;
8770
8771 case NOT:
8772 /* (not FOO) is (xor FOO CONST), so if FOO is an LSHIFTRT, we can do the
8773 same as the XOR case above. Ensure that the constant we form is not
8774 wider than the mode of X. */
8775
8776 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
8777 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
8778 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
8779 && (INTVAL (XEXP (XEXP (x, 0), 1)) + floor_log2 (mask)
8780 < GET_MODE_PRECISION (GET_MODE (x)))
8781 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT)
8782 {
8783 temp = gen_int_mode (mask << INTVAL (XEXP (XEXP (x, 0), 1)),
8784 GET_MODE (x));
8785 temp = simplify_gen_binary (XOR, GET_MODE (x),
8786 XEXP (XEXP (x, 0), 0), temp);
8787 x = simplify_gen_binary (LSHIFTRT, GET_MODE (x),
8788 temp, XEXP (XEXP (x, 0), 1));
8789
8790 return force_to_mode (x, mode, mask, next_select);
8791 }
8792
8793 /* (and (not FOO) CONST) is (not (or FOO (not CONST))), so we must
8794 use the full mask inside the NOT. */
8795 mask = fuller_mask;
8796
8797 unop:
8798 op0 = gen_lowpart_or_truncate (op_mode,
8799 force_to_mode (XEXP (x, 0), mode, mask,
8800 next_select));
8801 if (op_mode != GET_MODE (x) || op0 != XEXP (x, 0))
8802 x = simplify_gen_unary (code, op_mode, op0, op_mode);
8803 break;
8804
8805 case NE:
8806 /* (and (ne FOO 0) CONST) can be (and FOO CONST) if CONST is included
8807 in STORE_FLAG_VALUE and FOO has a single bit that might be nonzero,
8808 which is equal to STORE_FLAG_VALUE. */
8809 if ((mask & ~STORE_FLAG_VALUE) == 0
8810 && XEXP (x, 1) == const0_rtx
8811 && GET_MODE (XEXP (x, 0)) == mode
8812 && exact_log2 (nonzero_bits (XEXP (x, 0), mode)) >= 0
8813 && (nonzero_bits (XEXP (x, 0), mode)
8814 == (unsigned HOST_WIDE_INT) STORE_FLAG_VALUE))
8815 return force_to_mode (XEXP (x, 0), mode, mask, next_select);
8816
8817 break;
8818
8819 case IF_THEN_ELSE:
8820 /* We have no way of knowing if the IF_THEN_ELSE can itself be
8821 written in a narrower mode. We play it safe and do not do so. */
8822
8823 op0 = gen_lowpart_or_truncate (GET_MODE (x),
8824 force_to_mode (XEXP (x, 1), mode,
8825 mask, next_select));
8826 op1 = gen_lowpart_or_truncate (GET_MODE (x),
8827 force_to_mode (XEXP (x, 2), mode,
8828 mask, next_select));
8829 if (op0 != XEXP (x, 1) || op1 != XEXP (x, 2))
8830 x = simplify_gen_ternary (IF_THEN_ELSE, GET_MODE (x),
8831 GET_MODE (XEXP (x, 0)), XEXP (x, 0),
8832 op0, op1);
8833 break;
8834
8835 default:
8836 break;
8837 }
8838
8839 /* Ensure we return a value of the proper mode. */
8840 return gen_lowpart_or_truncate (mode, x);
8841 }
8842 \f
8843 /* Return nonzero if X is an expression that has one of two values depending on
8844 whether some other value is zero or nonzero. In that case, we return the
8845 value that is being tested, *PTRUE is set to the value if the rtx being
8846 returned has a nonzero value, and *PFALSE is set to the other alternative.
8847
8848 If we return zero, we set *PTRUE and *PFALSE to X. */
8849
8850 static rtx
8851 if_then_else_cond (rtx x, rtx *ptrue, rtx *pfalse)
8852 {
8853 machine_mode mode = GET_MODE (x);
8854 enum rtx_code code = GET_CODE (x);
8855 rtx cond0, cond1, true0, true1, false0, false1;
8856 unsigned HOST_WIDE_INT nz;
8857
8858 /* If we are comparing a value against zero, we are done. */
8859 if ((code == NE || code == EQ)
8860 && XEXP (x, 1) == const0_rtx)
8861 {
8862 *ptrue = (code == NE) ? const_true_rtx : const0_rtx;
8863 *pfalse = (code == NE) ? const0_rtx : const_true_rtx;
8864 return XEXP (x, 0);
8865 }
8866
8867 /* If this is a unary operation whose operand has one of two values, apply
8868 our opcode to compute those values. */
8869 else if (UNARY_P (x)
8870 && (cond0 = if_then_else_cond (XEXP (x, 0), &true0, &false0)) != 0)
8871 {
8872 *ptrue = simplify_gen_unary (code, mode, true0, GET_MODE (XEXP (x, 0)));
8873 *pfalse = simplify_gen_unary (code, mode, false0,
8874 GET_MODE (XEXP (x, 0)));
8875 return cond0;
8876 }
8877
8878 /* If this is a COMPARE, do nothing, since the IF_THEN_ELSE we would
8879 make can't possibly match and would suppress other optimizations. */
8880 else if (code == COMPARE)
8881 ;
8882
8883 /* If this is a binary operation, see if either side has only one of two
8884 values. If either one does or if both do and they are conditional on
8885 the same value, compute the new true and false values. */
8886 else if (BINARY_P (x))
8887 {
8888 cond0 = if_then_else_cond (XEXP (x, 0), &true0, &false0);
8889 cond1 = if_then_else_cond (XEXP (x, 1), &true1, &false1);
8890
8891 if ((cond0 != 0 || cond1 != 0)
8892 && ! (cond0 != 0 && cond1 != 0 && ! rtx_equal_p (cond0, cond1)))
8893 {
8894 /* If if_then_else_cond returned zero, then true/false are the
8895 same rtl. We must copy one of them to prevent invalid rtl
8896 sharing. */
8897 if (cond0 == 0)
8898 true0 = copy_rtx (true0);
8899 else if (cond1 == 0)
8900 true1 = copy_rtx (true1);
8901
8902 if (COMPARISON_P (x))
8903 {
8904 *ptrue = simplify_gen_relational (code, mode, VOIDmode,
8905 true0, true1);
8906 *pfalse = simplify_gen_relational (code, mode, VOIDmode,
8907 false0, false1);
8908 }
8909 else
8910 {
8911 *ptrue = simplify_gen_binary (code, mode, true0, true1);
8912 *pfalse = simplify_gen_binary (code, mode, false0, false1);
8913 }
8914
8915 return cond0 ? cond0 : cond1;
8916 }
8917
8918 /* See if we have PLUS, IOR, XOR, MINUS or UMAX, where one of the
8919 operands is zero when the other is nonzero, and vice-versa,
8920 and STORE_FLAG_VALUE is 1 or -1. */
8921
8922 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
8923 && (code == PLUS || code == IOR || code == XOR || code == MINUS
8924 || code == UMAX)
8925 && GET_CODE (XEXP (x, 0)) == MULT && GET_CODE (XEXP (x, 1)) == MULT)
8926 {
8927 rtx op0 = XEXP (XEXP (x, 0), 1);
8928 rtx op1 = XEXP (XEXP (x, 1), 1);
8929
8930 cond0 = XEXP (XEXP (x, 0), 0);
8931 cond1 = XEXP (XEXP (x, 1), 0);
8932
8933 if (COMPARISON_P (cond0)
8934 && COMPARISON_P (cond1)
8935 && ((GET_CODE (cond0) == reversed_comparison_code (cond1, NULL)
8936 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 0))
8937 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 1)))
8938 || ((swap_condition (GET_CODE (cond0))
8939 == reversed_comparison_code (cond1, NULL))
8940 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 1))
8941 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 0))))
8942 && ! side_effects_p (x))
8943 {
8944 *ptrue = simplify_gen_binary (MULT, mode, op0, const_true_rtx);
8945 *pfalse = simplify_gen_binary (MULT, mode,
8946 (code == MINUS
8947 ? simplify_gen_unary (NEG, mode,
8948 op1, mode)
8949 : op1),
8950 const_true_rtx);
8951 return cond0;
8952 }
8953 }
8954
8955 /* Similarly for MULT, AND and UMIN, except that for these the result
8956 is always zero. */
8957 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
8958 && (code == MULT || code == AND || code == UMIN)
8959 && GET_CODE (XEXP (x, 0)) == MULT && GET_CODE (XEXP (x, 1)) == MULT)
8960 {
8961 cond0 = XEXP (XEXP (x, 0), 0);
8962 cond1 = XEXP (XEXP (x, 1), 0);
8963
8964 if (COMPARISON_P (cond0)
8965 && COMPARISON_P (cond1)
8966 && ((GET_CODE (cond0) == reversed_comparison_code (cond1, NULL)
8967 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 0))
8968 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 1)))
8969 || ((swap_condition (GET_CODE (cond0))
8970 == reversed_comparison_code (cond1, NULL))
8971 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 1))
8972 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 0))))
8973 && ! side_effects_p (x))
8974 {
8975 *ptrue = *pfalse = const0_rtx;
8976 return cond0;
8977 }
8978 }
8979 }
8980
8981 else if (code == IF_THEN_ELSE)
8982 {
8983 /* If we have IF_THEN_ELSE already, extract the condition and
8984 canonicalize it if it is NE or EQ. */
8985 cond0 = XEXP (x, 0);
8986 *ptrue = XEXP (x, 1), *pfalse = XEXP (x, 2);
8987 if (GET_CODE (cond0) == NE && XEXP (cond0, 1) == const0_rtx)
8988 return XEXP (cond0, 0);
8989 else if (GET_CODE (cond0) == EQ && XEXP (cond0, 1) == const0_rtx)
8990 {
8991 *ptrue = XEXP (x, 2), *pfalse = XEXP (x, 1);
8992 return XEXP (cond0, 0);
8993 }
8994 else
8995 return cond0;
8996 }
8997
8998 /* If X is a SUBREG, we can narrow both the true and false values
8999 if the inner expression, if there is a condition. */
9000 else if (code == SUBREG
9001 && 0 != (cond0 = if_then_else_cond (SUBREG_REG (x),
9002 &true0, &false0)))
9003 {
9004 true0 = simplify_gen_subreg (mode, true0,
9005 GET_MODE (SUBREG_REG (x)), SUBREG_BYTE (x));
9006 false0 = simplify_gen_subreg (mode, false0,
9007 GET_MODE (SUBREG_REG (x)), SUBREG_BYTE (x));
9008 if (true0 && false0)
9009 {
9010 *ptrue = true0;
9011 *pfalse = false0;
9012 return cond0;
9013 }
9014 }
9015
9016 /* If X is a constant, this isn't special and will cause confusions
9017 if we treat it as such. Likewise if it is equivalent to a constant. */
9018 else if (CONSTANT_P (x)
9019 || ((cond0 = get_last_value (x)) != 0 && CONSTANT_P (cond0)))
9020 ;
9021
9022 /* If we're in BImode, canonicalize on 0 and STORE_FLAG_VALUE, as that
9023 will be least confusing to the rest of the compiler. */
9024 else if (mode == BImode)
9025 {
9026 *ptrue = GEN_INT (STORE_FLAG_VALUE), *pfalse = const0_rtx;
9027 return x;
9028 }
9029
9030 /* If X is known to be either 0 or -1, those are the true and
9031 false values when testing X. */
9032 else if (x == constm1_rtx || x == const0_rtx
9033 || (mode != VOIDmode
9034 && num_sign_bit_copies (x, mode) == GET_MODE_PRECISION (mode)))
9035 {
9036 *ptrue = constm1_rtx, *pfalse = const0_rtx;
9037 return x;
9038 }
9039
9040 /* Likewise for 0 or a single bit. */
9041 else if (HWI_COMPUTABLE_MODE_P (mode)
9042 && exact_log2 (nz = nonzero_bits (x, mode)) >= 0)
9043 {
9044 *ptrue = gen_int_mode (nz, mode), *pfalse = const0_rtx;
9045 return x;
9046 }
9047
9048 /* Otherwise fail; show no condition with true and false values the same. */
9049 *ptrue = *pfalse = x;
9050 return 0;
9051 }
9052 \f
9053 /* Return the value of expression X given the fact that condition COND
9054 is known to be true when applied to REG as its first operand and VAL
9055 as its second. X is known to not be shared and so can be modified in
9056 place.
9057
9058 We only handle the simplest cases, and specifically those cases that
9059 arise with IF_THEN_ELSE expressions. */
9060
9061 static rtx
9062 known_cond (rtx x, enum rtx_code cond, rtx reg, rtx val)
9063 {
9064 enum rtx_code code = GET_CODE (x);
9065 const char *fmt;
9066 int i, j;
9067
9068 if (side_effects_p (x))
9069 return x;
9070
9071 /* If either operand of the condition is a floating point value,
9072 then we have to avoid collapsing an EQ comparison. */
9073 if (cond == EQ
9074 && rtx_equal_p (x, reg)
9075 && ! FLOAT_MODE_P (GET_MODE (x))
9076 && ! FLOAT_MODE_P (GET_MODE (val)))
9077 return val;
9078
9079 if (cond == UNEQ && rtx_equal_p (x, reg))
9080 return val;
9081
9082 /* If X is (abs REG) and we know something about REG's relationship
9083 with zero, we may be able to simplify this. */
9084
9085 if (code == ABS && rtx_equal_p (XEXP (x, 0), reg) && val == const0_rtx)
9086 switch (cond)
9087 {
9088 case GE: case GT: case EQ:
9089 return XEXP (x, 0);
9090 case LT: case LE:
9091 return simplify_gen_unary (NEG, GET_MODE (XEXP (x, 0)),
9092 XEXP (x, 0),
9093 GET_MODE (XEXP (x, 0)));
9094 default:
9095 break;
9096 }
9097
9098 /* The only other cases we handle are MIN, MAX, and comparisons if the
9099 operands are the same as REG and VAL. */
9100
9101 else if (COMPARISON_P (x) || COMMUTATIVE_ARITH_P (x))
9102 {
9103 if (rtx_equal_p (XEXP (x, 0), val))
9104 {
9105 std::swap (val, reg);
9106 cond = swap_condition (cond);
9107 }
9108
9109 if (rtx_equal_p (XEXP (x, 0), reg) && rtx_equal_p (XEXP (x, 1), val))
9110 {
9111 if (COMPARISON_P (x))
9112 {
9113 if (comparison_dominates_p (cond, code))
9114 return const_true_rtx;
9115
9116 code = reversed_comparison_code (x, NULL);
9117 if (code != UNKNOWN
9118 && comparison_dominates_p (cond, code))
9119 return const0_rtx;
9120 else
9121 return x;
9122 }
9123 else if (code == SMAX || code == SMIN
9124 || code == UMIN || code == UMAX)
9125 {
9126 int unsignedp = (code == UMIN || code == UMAX);
9127
9128 /* Do not reverse the condition when it is NE or EQ.
9129 This is because we cannot conclude anything about
9130 the value of 'SMAX (x, y)' when x is not equal to y,
9131 but we can when x equals y. */
9132 if ((code == SMAX || code == UMAX)
9133 && ! (cond == EQ || cond == NE))
9134 cond = reverse_condition (cond);
9135
9136 switch (cond)
9137 {
9138 case GE: case GT:
9139 return unsignedp ? x : XEXP (x, 1);
9140 case LE: case LT:
9141 return unsignedp ? x : XEXP (x, 0);
9142 case GEU: case GTU:
9143 return unsignedp ? XEXP (x, 1) : x;
9144 case LEU: case LTU:
9145 return unsignedp ? XEXP (x, 0) : x;
9146 default:
9147 break;
9148 }
9149 }
9150 }
9151 }
9152 else if (code == SUBREG)
9153 {
9154 machine_mode inner_mode = GET_MODE (SUBREG_REG (x));
9155 rtx new_rtx, r = known_cond (SUBREG_REG (x), cond, reg, val);
9156
9157 if (SUBREG_REG (x) != r)
9158 {
9159 /* We must simplify subreg here, before we lose track of the
9160 original inner_mode. */
9161 new_rtx = simplify_subreg (GET_MODE (x), r,
9162 inner_mode, SUBREG_BYTE (x));
9163 if (new_rtx)
9164 return new_rtx;
9165 else
9166 SUBST (SUBREG_REG (x), r);
9167 }
9168
9169 return x;
9170 }
9171 /* We don't have to handle SIGN_EXTEND here, because even in the
9172 case of replacing something with a modeless CONST_INT, a
9173 CONST_INT is already (supposed to be) a valid sign extension for
9174 its narrower mode, which implies it's already properly
9175 sign-extended for the wider mode. Now, for ZERO_EXTEND, the
9176 story is different. */
9177 else if (code == ZERO_EXTEND)
9178 {
9179 machine_mode inner_mode = GET_MODE (XEXP (x, 0));
9180 rtx new_rtx, r = known_cond (XEXP (x, 0), cond, reg, val);
9181
9182 if (XEXP (x, 0) != r)
9183 {
9184 /* We must simplify the zero_extend here, before we lose
9185 track of the original inner_mode. */
9186 new_rtx = simplify_unary_operation (ZERO_EXTEND, GET_MODE (x),
9187 r, inner_mode);
9188 if (new_rtx)
9189 return new_rtx;
9190 else
9191 SUBST (XEXP (x, 0), r);
9192 }
9193
9194 return x;
9195 }
9196
9197 fmt = GET_RTX_FORMAT (code);
9198 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
9199 {
9200 if (fmt[i] == 'e')
9201 SUBST (XEXP (x, i), known_cond (XEXP (x, i), cond, reg, val));
9202 else if (fmt[i] == 'E')
9203 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
9204 SUBST (XVECEXP (x, i, j), known_cond (XVECEXP (x, i, j),
9205 cond, reg, val));
9206 }
9207
9208 return x;
9209 }
9210 \f
9211 /* See if X and Y are equal for the purposes of seeing if we can rewrite an
9212 assignment as a field assignment. */
9213
9214 static int
9215 rtx_equal_for_field_assignment_p (rtx x, rtx y, bool widen_x)
9216 {
9217 if (widen_x && GET_MODE (x) != GET_MODE (y))
9218 {
9219 if (GET_MODE_SIZE (GET_MODE (x)) > GET_MODE_SIZE (GET_MODE (y)))
9220 return 0;
9221 if (BYTES_BIG_ENDIAN != WORDS_BIG_ENDIAN)
9222 return 0;
9223 /* For big endian, adjust the memory offset. */
9224 if (BYTES_BIG_ENDIAN)
9225 x = adjust_address_nv (x, GET_MODE (y),
9226 -subreg_lowpart_offset (GET_MODE (x),
9227 GET_MODE (y)));
9228 else
9229 x = adjust_address_nv (x, GET_MODE (y), 0);
9230 }
9231
9232 if (x == y || rtx_equal_p (x, y))
9233 return 1;
9234
9235 if (x == 0 || y == 0 || GET_MODE (x) != GET_MODE (y))
9236 return 0;
9237
9238 /* Check for a paradoxical SUBREG of a MEM compared with the MEM.
9239 Note that all SUBREGs of MEM are paradoxical; otherwise they
9240 would have been rewritten. */
9241 if (MEM_P (x) && GET_CODE (y) == SUBREG
9242 && MEM_P (SUBREG_REG (y))
9243 && rtx_equal_p (SUBREG_REG (y),
9244 gen_lowpart (GET_MODE (SUBREG_REG (y)), x)))
9245 return 1;
9246
9247 if (MEM_P (y) && GET_CODE (x) == SUBREG
9248 && MEM_P (SUBREG_REG (x))
9249 && rtx_equal_p (SUBREG_REG (x),
9250 gen_lowpart (GET_MODE (SUBREG_REG (x)), y)))
9251 return 1;
9252
9253 /* We used to see if get_last_value of X and Y were the same but that's
9254 not correct. In one direction, we'll cause the assignment to have
9255 the wrong destination and in the case, we'll import a register into this
9256 insn that might have already have been dead. So fail if none of the
9257 above cases are true. */
9258 return 0;
9259 }
9260 \f
9261 /* See if X, a SET operation, can be rewritten as a bit-field assignment.
9262 Return that assignment if so.
9263
9264 We only handle the most common cases. */
9265
9266 static rtx
9267 make_field_assignment (rtx x)
9268 {
9269 rtx dest = SET_DEST (x);
9270 rtx src = SET_SRC (x);
9271 rtx assign;
9272 rtx rhs, lhs;
9273 HOST_WIDE_INT c1;
9274 HOST_WIDE_INT pos;
9275 unsigned HOST_WIDE_INT len;
9276 rtx other;
9277 machine_mode mode;
9278
9279 /* If SRC was (and (not (ashift (const_int 1) POS)) DEST), this is
9280 a clear of a one-bit field. We will have changed it to
9281 (and (rotate (const_int -2) POS) DEST), so check for that. Also check
9282 for a SUBREG. */
9283
9284 if (GET_CODE (src) == AND && GET_CODE (XEXP (src, 0)) == ROTATE
9285 && CONST_INT_P (XEXP (XEXP (src, 0), 0))
9286 && INTVAL (XEXP (XEXP (src, 0), 0)) == -2
9287 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
9288 {
9289 assign = make_extraction (VOIDmode, dest, 0, XEXP (XEXP (src, 0), 1),
9290 1, 1, 1, 0);
9291 if (assign != 0)
9292 return gen_rtx_SET (assign, const0_rtx);
9293 return x;
9294 }
9295
9296 if (GET_CODE (src) == AND && GET_CODE (XEXP (src, 0)) == SUBREG
9297 && subreg_lowpart_p (XEXP (src, 0))
9298 && (GET_MODE_SIZE (GET_MODE (XEXP (src, 0)))
9299 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (XEXP (src, 0)))))
9300 && GET_CODE (SUBREG_REG (XEXP (src, 0))) == ROTATE
9301 && CONST_INT_P (XEXP (SUBREG_REG (XEXP (src, 0)), 0))
9302 && INTVAL (XEXP (SUBREG_REG (XEXP (src, 0)), 0)) == -2
9303 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
9304 {
9305 assign = make_extraction (VOIDmode, dest, 0,
9306 XEXP (SUBREG_REG (XEXP (src, 0)), 1),
9307 1, 1, 1, 0);
9308 if (assign != 0)
9309 return gen_rtx_SET (assign, const0_rtx);
9310 return x;
9311 }
9312
9313 /* If SRC is (ior (ashift (const_int 1) POS) DEST), this is a set of a
9314 one-bit field. */
9315 if (GET_CODE (src) == IOR && GET_CODE (XEXP (src, 0)) == ASHIFT
9316 && XEXP (XEXP (src, 0), 0) == const1_rtx
9317 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
9318 {
9319 assign = make_extraction (VOIDmode, dest, 0, XEXP (XEXP (src, 0), 1),
9320 1, 1, 1, 0);
9321 if (assign != 0)
9322 return gen_rtx_SET (assign, const1_rtx);
9323 return x;
9324 }
9325
9326 /* If DEST is already a field assignment, i.e. ZERO_EXTRACT, and the
9327 SRC is an AND with all bits of that field set, then we can discard
9328 the AND. */
9329 if (GET_CODE (dest) == ZERO_EXTRACT
9330 && CONST_INT_P (XEXP (dest, 1))
9331 && GET_CODE (src) == AND
9332 && CONST_INT_P (XEXP (src, 1)))
9333 {
9334 HOST_WIDE_INT width = INTVAL (XEXP (dest, 1));
9335 unsigned HOST_WIDE_INT and_mask = INTVAL (XEXP (src, 1));
9336 unsigned HOST_WIDE_INT ze_mask;
9337
9338 if (width >= HOST_BITS_PER_WIDE_INT)
9339 ze_mask = -1;
9340 else
9341 ze_mask = ((unsigned HOST_WIDE_INT)1 << width) - 1;
9342
9343 /* Complete overlap. We can remove the source AND. */
9344 if ((and_mask & ze_mask) == ze_mask)
9345 return gen_rtx_SET (dest, XEXP (src, 0));
9346
9347 /* Partial overlap. We can reduce the source AND. */
9348 if ((and_mask & ze_mask) != and_mask)
9349 {
9350 mode = GET_MODE (src);
9351 src = gen_rtx_AND (mode, XEXP (src, 0),
9352 gen_int_mode (and_mask & ze_mask, mode));
9353 return gen_rtx_SET (dest, src);
9354 }
9355 }
9356
9357 /* The other case we handle is assignments into a constant-position
9358 field. They look like (ior/xor (and DEST C1) OTHER). If C1 represents
9359 a mask that has all one bits except for a group of zero bits and
9360 OTHER is known to have zeros where C1 has ones, this is such an
9361 assignment. Compute the position and length from C1. Shift OTHER
9362 to the appropriate position, force it to the required mode, and
9363 make the extraction. Check for the AND in both operands. */
9364
9365 /* One or more SUBREGs might obscure the constant-position field
9366 assignment. The first one we are likely to encounter is an outer
9367 narrowing SUBREG, which we can just strip for the purposes of
9368 identifying the constant-field assignment. */
9369 if (GET_CODE (src) == SUBREG && subreg_lowpart_p (src))
9370 src = SUBREG_REG (src);
9371
9372 if (GET_CODE (src) != IOR && GET_CODE (src) != XOR)
9373 return x;
9374
9375 rhs = expand_compound_operation (XEXP (src, 0));
9376 lhs = expand_compound_operation (XEXP (src, 1));
9377
9378 if (GET_CODE (rhs) == AND
9379 && CONST_INT_P (XEXP (rhs, 1))
9380 && rtx_equal_for_field_assignment_p (XEXP (rhs, 0), dest))
9381 c1 = INTVAL (XEXP (rhs, 1)), other = lhs;
9382 /* The second SUBREG that might get in the way is a paradoxical
9383 SUBREG around the first operand of the AND. We want to
9384 pretend the operand is as wide as the destination here. We
9385 do this by adjusting the MEM to wider mode for the sole
9386 purpose of the call to rtx_equal_for_field_assignment_p. Also
9387 note this trick only works for MEMs. */
9388 else if (GET_CODE (rhs) == AND
9389 && paradoxical_subreg_p (XEXP (rhs, 0))
9390 && MEM_P (SUBREG_REG (XEXP (rhs, 0)))
9391 && CONST_INT_P (XEXP (rhs, 1))
9392 && rtx_equal_for_field_assignment_p (SUBREG_REG (XEXP (rhs, 0)),
9393 dest, true))
9394 c1 = INTVAL (XEXP (rhs, 1)), other = lhs;
9395 else if (GET_CODE (lhs) == AND
9396 && CONST_INT_P (XEXP (lhs, 1))
9397 && rtx_equal_for_field_assignment_p (XEXP (lhs, 0), dest))
9398 c1 = INTVAL (XEXP (lhs, 1)), other = rhs;
9399 /* The second SUBREG that might get in the way is a paradoxical
9400 SUBREG around the first operand of the AND. We want to
9401 pretend the operand is as wide as the destination here. We
9402 do this by adjusting the MEM to wider mode for the sole
9403 purpose of the call to rtx_equal_for_field_assignment_p. Also
9404 note this trick only works for MEMs. */
9405 else if (GET_CODE (lhs) == AND
9406 && paradoxical_subreg_p (XEXP (lhs, 0))
9407 && MEM_P (SUBREG_REG (XEXP (lhs, 0)))
9408 && CONST_INT_P (XEXP (lhs, 1))
9409 && rtx_equal_for_field_assignment_p (SUBREG_REG (XEXP (lhs, 0)),
9410 dest, true))
9411 c1 = INTVAL (XEXP (lhs, 1)), other = rhs;
9412 else
9413 return x;
9414
9415 pos = get_pos_from_mask ((~c1) & GET_MODE_MASK (GET_MODE (dest)), &len);
9416 if (pos < 0 || pos + len > GET_MODE_PRECISION (GET_MODE (dest))
9417 || GET_MODE_PRECISION (GET_MODE (dest)) > HOST_BITS_PER_WIDE_INT
9418 || (c1 & nonzero_bits (other, GET_MODE (dest))) != 0)
9419 return x;
9420
9421 assign = make_extraction (VOIDmode, dest, pos, NULL_RTX, len, 1, 1, 0);
9422 if (assign == 0)
9423 return x;
9424
9425 /* The mode to use for the source is the mode of the assignment, or of
9426 what is inside a possible STRICT_LOW_PART. */
9427 mode = (GET_CODE (assign) == STRICT_LOW_PART
9428 ? GET_MODE (XEXP (assign, 0)) : GET_MODE (assign));
9429
9430 /* Shift OTHER right POS places and make it the source, restricting it
9431 to the proper length and mode. */
9432
9433 src = canon_reg_for_combine (simplify_shift_const (NULL_RTX, LSHIFTRT,
9434 GET_MODE (src),
9435 other, pos),
9436 dest);
9437 src = force_to_mode (src, mode,
9438 GET_MODE_PRECISION (mode) >= HOST_BITS_PER_WIDE_INT
9439 ? ~(unsigned HOST_WIDE_INT) 0
9440 : ((unsigned HOST_WIDE_INT) 1 << len) - 1,
9441 0);
9442
9443 /* If SRC is masked by an AND that does not make a difference in
9444 the value being stored, strip it. */
9445 if (GET_CODE (assign) == ZERO_EXTRACT
9446 && CONST_INT_P (XEXP (assign, 1))
9447 && INTVAL (XEXP (assign, 1)) < HOST_BITS_PER_WIDE_INT
9448 && GET_CODE (src) == AND
9449 && CONST_INT_P (XEXP (src, 1))
9450 && UINTVAL (XEXP (src, 1))
9451 == ((unsigned HOST_WIDE_INT) 1 << INTVAL (XEXP (assign, 1))) - 1)
9452 src = XEXP (src, 0);
9453
9454 return gen_rtx_SET (assign, src);
9455 }
9456 \f
9457 /* See if X is of the form (+ (* a c) (* b c)) and convert to (* (+ a b) c)
9458 if so. */
9459
9460 static rtx
9461 apply_distributive_law (rtx x)
9462 {
9463 enum rtx_code code = GET_CODE (x);
9464 enum rtx_code inner_code;
9465 rtx lhs, rhs, other;
9466 rtx tem;
9467
9468 /* Distributivity is not true for floating point as it can change the
9469 value. So we don't do it unless -funsafe-math-optimizations. */
9470 if (FLOAT_MODE_P (GET_MODE (x))
9471 && ! flag_unsafe_math_optimizations)
9472 return x;
9473
9474 /* The outer operation can only be one of the following: */
9475 if (code != IOR && code != AND && code != XOR
9476 && code != PLUS && code != MINUS)
9477 return x;
9478
9479 lhs = XEXP (x, 0);
9480 rhs = XEXP (x, 1);
9481
9482 /* If either operand is a primitive we can't do anything, so get out
9483 fast. */
9484 if (OBJECT_P (lhs) || OBJECT_P (rhs))
9485 return x;
9486
9487 lhs = expand_compound_operation (lhs);
9488 rhs = expand_compound_operation (rhs);
9489 inner_code = GET_CODE (lhs);
9490 if (inner_code != GET_CODE (rhs))
9491 return x;
9492
9493 /* See if the inner and outer operations distribute. */
9494 switch (inner_code)
9495 {
9496 case LSHIFTRT:
9497 case ASHIFTRT:
9498 case AND:
9499 case IOR:
9500 /* These all distribute except over PLUS. */
9501 if (code == PLUS || code == MINUS)
9502 return x;
9503 break;
9504
9505 case MULT:
9506 if (code != PLUS && code != MINUS)
9507 return x;
9508 break;
9509
9510 case ASHIFT:
9511 /* This is also a multiply, so it distributes over everything. */
9512 break;
9513
9514 /* This used to handle SUBREG, but this turned out to be counter-
9515 productive, since (subreg (op ...)) usually is not handled by
9516 insn patterns, and this "optimization" therefore transformed
9517 recognizable patterns into unrecognizable ones. Therefore the
9518 SUBREG case was removed from here.
9519
9520 It is possible that distributing SUBREG over arithmetic operations
9521 leads to an intermediate result than can then be optimized further,
9522 e.g. by moving the outer SUBREG to the other side of a SET as done
9523 in simplify_set. This seems to have been the original intent of
9524 handling SUBREGs here.
9525
9526 However, with current GCC this does not appear to actually happen,
9527 at least on major platforms. If some case is found where removing
9528 the SUBREG case here prevents follow-on optimizations, distributing
9529 SUBREGs ought to be re-added at that place, e.g. in simplify_set. */
9530
9531 default:
9532 return x;
9533 }
9534
9535 /* Set LHS and RHS to the inner operands (A and B in the example
9536 above) and set OTHER to the common operand (C in the example).
9537 There is only one way to do this unless the inner operation is
9538 commutative. */
9539 if (COMMUTATIVE_ARITH_P (lhs)
9540 && rtx_equal_p (XEXP (lhs, 0), XEXP (rhs, 0)))
9541 other = XEXP (lhs, 0), lhs = XEXP (lhs, 1), rhs = XEXP (rhs, 1);
9542 else if (COMMUTATIVE_ARITH_P (lhs)
9543 && rtx_equal_p (XEXP (lhs, 0), XEXP (rhs, 1)))
9544 other = XEXP (lhs, 0), lhs = XEXP (lhs, 1), rhs = XEXP (rhs, 0);
9545 else if (COMMUTATIVE_ARITH_P (lhs)
9546 && rtx_equal_p (XEXP (lhs, 1), XEXP (rhs, 0)))
9547 other = XEXP (lhs, 1), lhs = XEXP (lhs, 0), rhs = XEXP (rhs, 1);
9548 else if (rtx_equal_p (XEXP (lhs, 1), XEXP (rhs, 1)))
9549 other = XEXP (lhs, 1), lhs = XEXP (lhs, 0), rhs = XEXP (rhs, 0);
9550 else
9551 return x;
9552
9553 /* Form the new inner operation, seeing if it simplifies first. */
9554 tem = simplify_gen_binary (code, GET_MODE (x), lhs, rhs);
9555
9556 /* There is one exception to the general way of distributing:
9557 (a | c) ^ (b | c) -> (a ^ b) & ~c */
9558 if (code == XOR && inner_code == IOR)
9559 {
9560 inner_code = AND;
9561 other = simplify_gen_unary (NOT, GET_MODE (x), other, GET_MODE (x));
9562 }
9563
9564 /* We may be able to continuing distributing the result, so call
9565 ourselves recursively on the inner operation before forming the
9566 outer operation, which we return. */
9567 return simplify_gen_binary (inner_code, GET_MODE (x),
9568 apply_distributive_law (tem), other);
9569 }
9570
9571 /* See if X is of the form (* (+ A B) C), and if so convert to
9572 (+ (* A C) (* B C)) and try to simplify.
9573
9574 Most of the time, this results in no change. However, if some of
9575 the operands are the same or inverses of each other, simplifications
9576 will result.
9577
9578 For example, (and (ior A B) (not B)) can occur as the result of
9579 expanding a bit field assignment. When we apply the distributive
9580 law to this, we get (ior (and (A (not B))) (and (B (not B)))),
9581 which then simplifies to (and (A (not B))).
9582
9583 Note that no checks happen on the validity of applying the inverse
9584 distributive law. This is pointless since we can do it in the
9585 few places where this routine is called.
9586
9587 N is the index of the term that is decomposed (the arithmetic operation,
9588 i.e. (+ A B) in the first example above). !N is the index of the term that
9589 is distributed, i.e. of C in the first example above. */
9590 static rtx
9591 distribute_and_simplify_rtx (rtx x, int n)
9592 {
9593 machine_mode mode;
9594 enum rtx_code outer_code, inner_code;
9595 rtx decomposed, distributed, inner_op0, inner_op1, new_op0, new_op1, tmp;
9596
9597 /* Distributivity is not true for floating point as it can change the
9598 value. So we don't do it unless -funsafe-math-optimizations. */
9599 if (FLOAT_MODE_P (GET_MODE (x))
9600 && ! flag_unsafe_math_optimizations)
9601 return NULL_RTX;
9602
9603 decomposed = XEXP (x, n);
9604 if (!ARITHMETIC_P (decomposed))
9605 return NULL_RTX;
9606
9607 mode = GET_MODE (x);
9608 outer_code = GET_CODE (x);
9609 distributed = XEXP (x, !n);
9610
9611 inner_code = GET_CODE (decomposed);
9612 inner_op0 = XEXP (decomposed, 0);
9613 inner_op1 = XEXP (decomposed, 1);
9614
9615 /* Special case (and (xor B C) (not A)), which is equivalent to
9616 (xor (ior A B) (ior A C)) */
9617 if (outer_code == AND && inner_code == XOR && GET_CODE (distributed) == NOT)
9618 {
9619 distributed = XEXP (distributed, 0);
9620 outer_code = IOR;
9621 }
9622
9623 if (n == 0)
9624 {
9625 /* Distribute the second term. */
9626 new_op0 = simplify_gen_binary (outer_code, mode, inner_op0, distributed);
9627 new_op1 = simplify_gen_binary (outer_code, mode, inner_op1, distributed);
9628 }
9629 else
9630 {
9631 /* Distribute the first term. */
9632 new_op0 = simplify_gen_binary (outer_code, mode, distributed, inner_op0);
9633 new_op1 = simplify_gen_binary (outer_code, mode, distributed, inner_op1);
9634 }
9635
9636 tmp = apply_distributive_law (simplify_gen_binary (inner_code, mode,
9637 new_op0, new_op1));
9638 if (GET_CODE (tmp) != outer_code
9639 && (set_src_cost (tmp, optimize_this_for_speed_p)
9640 < set_src_cost (x, optimize_this_for_speed_p)))
9641 return tmp;
9642
9643 return NULL_RTX;
9644 }
9645 \f
9646 /* Simplify a logical `and' of VAROP with the constant CONSTOP, to be done
9647 in MODE. Return an equivalent form, if different from (and VAROP
9648 (const_int CONSTOP)). Otherwise, return NULL_RTX. */
9649
9650 static rtx
9651 simplify_and_const_int_1 (machine_mode mode, rtx varop,
9652 unsigned HOST_WIDE_INT constop)
9653 {
9654 unsigned HOST_WIDE_INT nonzero;
9655 unsigned HOST_WIDE_INT orig_constop;
9656 rtx orig_varop;
9657 int i;
9658
9659 orig_varop = varop;
9660 orig_constop = constop;
9661 if (GET_CODE (varop) == CLOBBER)
9662 return NULL_RTX;
9663
9664 /* Simplify VAROP knowing that we will be only looking at some of the
9665 bits in it.
9666
9667 Note by passing in CONSTOP, we guarantee that the bits not set in
9668 CONSTOP are not significant and will never be examined. We must
9669 ensure that is the case by explicitly masking out those bits
9670 before returning. */
9671 varop = force_to_mode (varop, mode, constop, 0);
9672
9673 /* If VAROP is a CLOBBER, we will fail so return it. */
9674 if (GET_CODE (varop) == CLOBBER)
9675 return varop;
9676
9677 /* If VAROP is a CONST_INT, then we need to apply the mask in CONSTOP
9678 to VAROP and return the new constant. */
9679 if (CONST_INT_P (varop))
9680 return gen_int_mode (INTVAL (varop) & constop, mode);
9681
9682 /* See what bits may be nonzero in VAROP. Unlike the general case of
9683 a call to nonzero_bits, here we don't care about bits outside
9684 MODE. */
9685
9686 nonzero = nonzero_bits (varop, mode) & GET_MODE_MASK (mode);
9687
9688 /* Turn off all bits in the constant that are known to already be zero.
9689 Thus, if the AND isn't needed at all, we will have CONSTOP == NONZERO_BITS
9690 which is tested below. */
9691
9692 constop &= nonzero;
9693
9694 /* If we don't have any bits left, return zero. */
9695 if (constop == 0)
9696 return const0_rtx;
9697
9698 /* If VAROP is a NEG of something known to be zero or 1 and CONSTOP is
9699 a power of two, we can replace this with an ASHIFT. */
9700 if (GET_CODE (varop) == NEG && nonzero_bits (XEXP (varop, 0), mode) == 1
9701 && (i = exact_log2 (constop)) >= 0)
9702 return simplify_shift_const (NULL_RTX, ASHIFT, mode, XEXP (varop, 0), i);
9703
9704 /* If VAROP is an IOR or XOR, apply the AND to both branches of the IOR
9705 or XOR, then try to apply the distributive law. This may eliminate
9706 operations if either branch can be simplified because of the AND.
9707 It may also make some cases more complex, but those cases probably
9708 won't match a pattern either with or without this. */
9709
9710 if (GET_CODE (varop) == IOR || GET_CODE (varop) == XOR)
9711 return
9712 gen_lowpart
9713 (mode,
9714 apply_distributive_law
9715 (simplify_gen_binary (GET_CODE (varop), GET_MODE (varop),
9716 simplify_and_const_int (NULL_RTX,
9717 GET_MODE (varop),
9718 XEXP (varop, 0),
9719 constop),
9720 simplify_and_const_int (NULL_RTX,
9721 GET_MODE (varop),
9722 XEXP (varop, 1),
9723 constop))));
9724
9725 /* If VAROP is PLUS, and the constant is a mask of low bits, distribute
9726 the AND and see if one of the operands simplifies to zero. If so, we
9727 may eliminate it. */
9728
9729 if (GET_CODE (varop) == PLUS
9730 && exact_log2 (constop + 1) >= 0)
9731 {
9732 rtx o0, o1;
9733
9734 o0 = simplify_and_const_int (NULL_RTX, mode, XEXP (varop, 0), constop);
9735 o1 = simplify_and_const_int (NULL_RTX, mode, XEXP (varop, 1), constop);
9736 if (o0 == const0_rtx)
9737 return o1;
9738 if (o1 == const0_rtx)
9739 return o0;
9740 }
9741
9742 /* Make a SUBREG if necessary. If we can't make it, fail. */
9743 varop = gen_lowpart (mode, varop);
9744 if (varop == NULL_RTX || GET_CODE (varop) == CLOBBER)
9745 return NULL_RTX;
9746
9747 /* If we are only masking insignificant bits, return VAROP. */
9748 if (constop == nonzero)
9749 return varop;
9750
9751 if (varop == orig_varop && constop == orig_constop)
9752 return NULL_RTX;
9753
9754 /* Otherwise, return an AND. */
9755 return simplify_gen_binary (AND, mode, varop, gen_int_mode (constop, mode));
9756 }
9757
9758
9759 /* We have X, a logical `and' of VAROP with the constant CONSTOP, to be done
9760 in MODE.
9761
9762 Return an equivalent form, if different from X. Otherwise, return X. If
9763 X is zero, we are to always construct the equivalent form. */
9764
9765 static rtx
9766 simplify_and_const_int (rtx x, machine_mode mode, rtx varop,
9767 unsigned HOST_WIDE_INT constop)
9768 {
9769 rtx tem = simplify_and_const_int_1 (mode, varop, constop);
9770 if (tem)
9771 return tem;
9772
9773 if (!x)
9774 x = simplify_gen_binary (AND, GET_MODE (varop), varop,
9775 gen_int_mode (constop, mode));
9776 if (GET_MODE (x) != mode)
9777 x = gen_lowpart (mode, x);
9778 return x;
9779 }
9780 \f
9781 /* Given a REG, X, compute which bits in X can be nonzero.
9782 We don't care about bits outside of those defined in MODE.
9783
9784 For most X this is simply GET_MODE_MASK (GET_MODE (MODE)), but if X is
9785 a shift, AND, or zero_extract, we can do better. */
9786
9787 static rtx
9788 reg_nonzero_bits_for_combine (const_rtx x, machine_mode mode,
9789 const_rtx known_x ATTRIBUTE_UNUSED,
9790 machine_mode known_mode ATTRIBUTE_UNUSED,
9791 unsigned HOST_WIDE_INT known_ret ATTRIBUTE_UNUSED,
9792 unsigned HOST_WIDE_INT *nonzero)
9793 {
9794 rtx tem;
9795 reg_stat_type *rsp;
9796
9797 /* If X is a register whose nonzero bits value is current, use it.
9798 Otherwise, if X is a register whose value we can find, use that
9799 value. Otherwise, use the previously-computed global nonzero bits
9800 for this register. */
9801
9802 rsp = &reg_stat[REGNO (x)];
9803 if (rsp->last_set_value != 0
9804 && (rsp->last_set_mode == mode
9805 || (GET_MODE_CLASS (rsp->last_set_mode) == MODE_INT
9806 && GET_MODE_CLASS (mode) == MODE_INT))
9807 && ((rsp->last_set_label >= label_tick_ebb_start
9808 && rsp->last_set_label < label_tick)
9809 || (rsp->last_set_label == label_tick
9810 && DF_INSN_LUID (rsp->last_set) < subst_low_luid)
9811 || (REGNO (x) >= FIRST_PSEUDO_REGISTER
9812 && REGNO (x) < reg_n_sets_max
9813 && REG_N_SETS (REGNO (x)) == 1
9814 && !REGNO_REG_SET_P
9815 (DF_LR_IN (ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb),
9816 REGNO (x)))))
9817 {
9818 unsigned HOST_WIDE_INT mask = rsp->last_set_nonzero_bits;
9819
9820 if (GET_MODE_PRECISION (rsp->last_set_mode) < GET_MODE_PRECISION (mode))
9821 /* We don't know anything about the upper bits. */
9822 mask |= GET_MODE_MASK (mode) ^ GET_MODE_MASK (rsp->last_set_mode);
9823
9824 *nonzero &= mask;
9825 return NULL;
9826 }
9827
9828 tem = get_last_value (x);
9829
9830 if (tem)
9831 {
9832 #ifdef SHORT_IMMEDIATES_SIGN_EXTEND
9833 tem = sign_extend_short_imm (tem, GET_MODE (x),
9834 GET_MODE_PRECISION (mode));
9835 #endif
9836 return tem;
9837 }
9838 else if (nonzero_sign_valid && rsp->nonzero_bits)
9839 {
9840 unsigned HOST_WIDE_INT mask = rsp->nonzero_bits;
9841
9842 if (GET_MODE_PRECISION (GET_MODE (x)) < GET_MODE_PRECISION (mode))
9843 /* We don't know anything about the upper bits. */
9844 mask |= GET_MODE_MASK (mode) ^ GET_MODE_MASK (GET_MODE (x));
9845
9846 *nonzero &= mask;
9847 }
9848
9849 return NULL;
9850 }
9851
9852 /* Return the number of bits at the high-order end of X that are known to
9853 be equal to the sign bit. X will be used in mode MODE; if MODE is
9854 VOIDmode, X will be used in its own mode. The returned value will always
9855 be between 1 and the number of bits in MODE. */
9856
9857 static rtx
9858 reg_num_sign_bit_copies_for_combine (const_rtx x, machine_mode mode,
9859 const_rtx known_x ATTRIBUTE_UNUSED,
9860 machine_mode known_mode
9861 ATTRIBUTE_UNUSED,
9862 unsigned int known_ret ATTRIBUTE_UNUSED,
9863 unsigned int *result)
9864 {
9865 rtx tem;
9866 reg_stat_type *rsp;
9867
9868 rsp = &reg_stat[REGNO (x)];
9869 if (rsp->last_set_value != 0
9870 && rsp->last_set_mode == mode
9871 && ((rsp->last_set_label >= label_tick_ebb_start
9872 && rsp->last_set_label < label_tick)
9873 || (rsp->last_set_label == label_tick
9874 && DF_INSN_LUID (rsp->last_set) < subst_low_luid)
9875 || (REGNO (x) >= FIRST_PSEUDO_REGISTER
9876 && REGNO (x) < reg_n_sets_max
9877 && REG_N_SETS (REGNO (x)) == 1
9878 && !REGNO_REG_SET_P
9879 (DF_LR_IN (ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb),
9880 REGNO (x)))))
9881 {
9882 *result = rsp->last_set_sign_bit_copies;
9883 return NULL;
9884 }
9885
9886 tem = get_last_value (x);
9887 if (tem != 0)
9888 return tem;
9889
9890 if (nonzero_sign_valid && rsp->sign_bit_copies != 0
9891 && GET_MODE_PRECISION (GET_MODE (x)) == GET_MODE_PRECISION (mode))
9892 *result = rsp->sign_bit_copies;
9893
9894 return NULL;
9895 }
9896 \f
9897 /* Return the number of "extended" bits there are in X, when interpreted
9898 as a quantity in MODE whose signedness is indicated by UNSIGNEDP. For
9899 unsigned quantities, this is the number of high-order zero bits.
9900 For signed quantities, this is the number of copies of the sign bit
9901 minus 1. In both case, this function returns the number of "spare"
9902 bits. For example, if two quantities for which this function returns
9903 at least 1 are added, the addition is known not to overflow.
9904
9905 This function will always return 0 unless called during combine, which
9906 implies that it must be called from a define_split. */
9907
9908 unsigned int
9909 extended_count (const_rtx x, machine_mode mode, int unsignedp)
9910 {
9911 if (nonzero_sign_valid == 0)
9912 return 0;
9913
9914 return (unsignedp
9915 ? (HWI_COMPUTABLE_MODE_P (mode)
9916 ? (unsigned int) (GET_MODE_PRECISION (mode) - 1
9917 - floor_log2 (nonzero_bits (x, mode)))
9918 : 0)
9919 : num_sign_bit_copies (x, mode) - 1);
9920 }
9921
9922 /* This function is called from `simplify_shift_const' to merge two
9923 outer operations. Specifically, we have already found that we need
9924 to perform operation *POP0 with constant *PCONST0 at the outermost
9925 position. We would now like to also perform OP1 with constant CONST1
9926 (with *POP0 being done last).
9927
9928 Return 1 if we can do the operation and update *POP0 and *PCONST0 with
9929 the resulting operation. *PCOMP_P is set to 1 if we would need to
9930 complement the innermost operand, otherwise it is unchanged.
9931
9932 MODE is the mode in which the operation will be done. No bits outside
9933 the width of this mode matter. It is assumed that the width of this mode
9934 is smaller than or equal to HOST_BITS_PER_WIDE_INT.
9935
9936 If *POP0 or OP1 are UNKNOWN, it means no operation is required. Only NEG, PLUS,
9937 IOR, XOR, and AND are supported. We may set *POP0 to SET if the proper
9938 result is simply *PCONST0.
9939
9940 If the resulting operation cannot be expressed as one operation, we
9941 return 0 and do not change *POP0, *PCONST0, and *PCOMP_P. */
9942
9943 static int
9944 merge_outer_ops (enum rtx_code *pop0, HOST_WIDE_INT *pconst0, enum rtx_code op1, HOST_WIDE_INT const1, machine_mode mode, int *pcomp_p)
9945 {
9946 enum rtx_code op0 = *pop0;
9947 HOST_WIDE_INT const0 = *pconst0;
9948
9949 const0 &= GET_MODE_MASK (mode);
9950 const1 &= GET_MODE_MASK (mode);
9951
9952 /* If OP0 is an AND, clear unimportant bits in CONST1. */
9953 if (op0 == AND)
9954 const1 &= const0;
9955
9956 /* If OP0 or OP1 is UNKNOWN, this is easy. Similarly if they are the same or
9957 if OP0 is SET. */
9958
9959 if (op1 == UNKNOWN || op0 == SET)
9960 return 1;
9961
9962 else if (op0 == UNKNOWN)
9963 op0 = op1, const0 = const1;
9964
9965 else if (op0 == op1)
9966 {
9967 switch (op0)
9968 {
9969 case AND:
9970 const0 &= const1;
9971 break;
9972 case IOR:
9973 const0 |= const1;
9974 break;
9975 case XOR:
9976 const0 ^= const1;
9977 break;
9978 case PLUS:
9979 const0 += const1;
9980 break;
9981 case NEG:
9982 op0 = UNKNOWN;
9983 break;
9984 default:
9985 break;
9986 }
9987 }
9988
9989 /* Otherwise, if either is a PLUS or NEG, we can't do anything. */
9990 else if (op0 == PLUS || op1 == PLUS || op0 == NEG || op1 == NEG)
9991 return 0;
9992
9993 /* If the two constants aren't the same, we can't do anything. The
9994 remaining six cases can all be done. */
9995 else if (const0 != const1)
9996 return 0;
9997
9998 else
9999 switch (op0)
10000 {
10001 case IOR:
10002 if (op1 == AND)
10003 /* (a & b) | b == b */
10004 op0 = SET;
10005 else /* op1 == XOR */
10006 /* (a ^ b) | b == a | b */
10007 {;}
10008 break;
10009
10010 case XOR:
10011 if (op1 == AND)
10012 /* (a & b) ^ b == (~a) & b */
10013 op0 = AND, *pcomp_p = 1;
10014 else /* op1 == IOR */
10015 /* (a | b) ^ b == a & ~b */
10016 op0 = AND, const0 = ~const0;
10017 break;
10018
10019 case AND:
10020 if (op1 == IOR)
10021 /* (a | b) & b == b */
10022 op0 = SET;
10023 else /* op1 == XOR */
10024 /* (a ^ b) & b) == (~a) & b */
10025 *pcomp_p = 1;
10026 break;
10027 default:
10028 break;
10029 }
10030
10031 /* Check for NO-OP cases. */
10032 const0 &= GET_MODE_MASK (mode);
10033 if (const0 == 0
10034 && (op0 == IOR || op0 == XOR || op0 == PLUS))
10035 op0 = UNKNOWN;
10036 else if (const0 == 0 && op0 == AND)
10037 op0 = SET;
10038 else if ((unsigned HOST_WIDE_INT) const0 == GET_MODE_MASK (mode)
10039 && op0 == AND)
10040 op0 = UNKNOWN;
10041
10042 *pop0 = op0;
10043
10044 /* ??? Slightly redundant with the above mask, but not entirely.
10045 Moving this above means we'd have to sign-extend the mode mask
10046 for the final test. */
10047 if (op0 != UNKNOWN && op0 != NEG)
10048 *pconst0 = trunc_int_for_mode (const0, mode);
10049
10050 return 1;
10051 }
10052 \f
10053 /* A helper to simplify_shift_const_1 to determine the mode we can perform
10054 the shift in. The original shift operation CODE is performed on OP in
10055 ORIG_MODE. Return the wider mode MODE if we can perform the operation
10056 in that mode. Return ORIG_MODE otherwise. We can also assume that the
10057 result of the shift is subject to operation OUTER_CODE with operand
10058 OUTER_CONST. */
10059
10060 static machine_mode
10061 try_widen_shift_mode (enum rtx_code code, rtx op, int count,
10062 machine_mode orig_mode, machine_mode mode,
10063 enum rtx_code outer_code, HOST_WIDE_INT outer_const)
10064 {
10065 if (orig_mode == mode)
10066 return mode;
10067 gcc_assert (GET_MODE_PRECISION (mode) > GET_MODE_PRECISION (orig_mode));
10068
10069 /* In general we can't perform in wider mode for right shift and rotate. */
10070 switch (code)
10071 {
10072 case ASHIFTRT:
10073 /* We can still widen if the bits brought in from the left are identical
10074 to the sign bit of ORIG_MODE. */
10075 if (num_sign_bit_copies (op, mode)
10076 > (unsigned) (GET_MODE_PRECISION (mode)
10077 - GET_MODE_PRECISION (orig_mode)))
10078 return mode;
10079 return orig_mode;
10080
10081 case LSHIFTRT:
10082 /* Similarly here but with zero bits. */
10083 if (HWI_COMPUTABLE_MODE_P (mode)
10084 && (nonzero_bits (op, mode) & ~GET_MODE_MASK (orig_mode)) == 0)
10085 return mode;
10086
10087 /* We can also widen if the bits brought in will be masked off. This
10088 operation is performed in ORIG_MODE. */
10089 if (outer_code == AND)
10090 {
10091 int care_bits = low_bitmask_len (orig_mode, outer_const);
10092
10093 if (care_bits >= 0
10094 && GET_MODE_PRECISION (orig_mode) - care_bits >= count)
10095 return mode;
10096 }
10097 /* fall through */
10098
10099 case ROTATE:
10100 return orig_mode;
10101
10102 case ROTATERT:
10103 gcc_unreachable ();
10104
10105 default:
10106 return mode;
10107 }
10108 }
10109
10110 /* Simplify a shift of VAROP by ORIG_COUNT bits. CODE says what kind
10111 of shift. The result of the shift is RESULT_MODE. Return NULL_RTX
10112 if we cannot simplify it. Otherwise, return a simplified value.
10113
10114 The shift is normally computed in the widest mode we find in VAROP, as
10115 long as it isn't a different number of words than RESULT_MODE. Exceptions
10116 are ASHIFTRT and ROTATE, which are always done in their original mode. */
10117
10118 static rtx
10119 simplify_shift_const_1 (enum rtx_code code, machine_mode result_mode,
10120 rtx varop, int orig_count)
10121 {
10122 enum rtx_code orig_code = code;
10123 rtx orig_varop = varop;
10124 int count;
10125 machine_mode mode = result_mode;
10126 machine_mode shift_mode, tmode;
10127 unsigned int mode_words
10128 = (GET_MODE_SIZE (mode) + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD;
10129 /* We form (outer_op (code varop count) (outer_const)). */
10130 enum rtx_code outer_op = UNKNOWN;
10131 HOST_WIDE_INT outer_const = 0;
10132 int complement_p = 0;
10133 rtx new_rtx, x;
10134
10135 /* Make sure and truncate the "natural" shift on the way in. We don't
10136 want to do this inside the loop as it makes it more difficult to
10137 combine shifts. */
10138 if (SHIFT_COUNT_TRUNCATED)
10139 orig_count &= GET_MODE_BITSIZE (mode) - 1;
10140
10141 /* If we were given an invalid count, don't do anything except exactly
10142 what was requested. */
10143
10144 if (orig_count < 0 || orig_count >= (int) GET_MODE_PRECISION (mode))
10145 return NULL_RTX;
10146
10147 count = orig_count;
10148
10149 /* Unless one of the branches of the `if' in this loop does a `continue',
10150 we will `break' the loop after the `if'. */
10151
10152 while (count != 0)
10153 {
10154 /* If we have an operand of (clobber (const_int 0)), fail. */
10155 if (GET_CODE (varop) == CLOBBER)
10156 return NULL_RTX;
10157
10158 /* Convert ROTATERT to ROTATE. */
10159 if (code == ROTATERT)
10160 {
10161 unsigned int bitsize = GET_MODE_PRECISION (result_mode);
10162 code = ROTATE;
10163 if (VECTOR_MODE_P (result_mode))
10164 count = bitsize / GET_MODE_NUNITS (result_mode) - count;
10165 else
10166 count = bitsize - count;
10167 }
10168
10169 shift_mode = try_widen_shift_mode (code, varop, count, result_mode,
10170 mode, outer_op, outer_const);
10171
10172 /* Handle cases where the count is greater than the size of the mode
10173 minus 1. For ASHIFT, use the size minus one as the count (this can
10174 occur when simplifying (lshiftrt (ashiftrt ..))). For rotates,
10175 take the count modulo the size. For other shifts, the result is
10176 zero.
10177
10178 Since these shifts are being produced by the compiler by combining
10179 multiple operations, each of which are defined, we know what the
10180 result is supposed to be. */
10181
10182 if (count > (GET_MODE_PRECISION (shift_mode) - 1))
10183 {
10184 if (code == ASHIFTRT)
10185 count = GET_MODE_PRECISION (shift_mode) - 1;
10186 else if (code == ROTATE || code == ROTATERT)
10187 count %= GET_MODE_PRECISION (shift_mode);
10188 else
10189 {
10190 /* We can't simply return zero because there may be an
10191 outer op. */
10192 varop = const0_rtx;
10193 count = 0;
10194 break;
10195 }
10196 }
10197
10198 /* If we discovered we had to complement VAROP, leave. Making a NOT
10199 here would cause an infinite loop. */
10200 if (complement_p)
10201 break;
10202
10203 /* An arithmetic right shift of a quantity known to be -1 or 0
10204 is a no-op. */
10205 if (code == ASHIFTRT
10206 && (num_sign_bit_copies (varop, shift_mode)
10207 == GET_MODE_PRECISION (shift_mode)))
10208 {
10209 count = 0;
10210 break;
10211 }
10212
10213 /* If we are doing an arithmetic right shift and discarding all but
10214 the sign bit copies, this is equivalent to doing a shift by the
10215 bitsize minus one. Convert it into that shift because it will often
10216 allow other simplifications. */
10217
10218 if (code == ASHIFTRT
10219 && (count + num_sign_bit_copies (varop, shift_mode)
10220 >= GET_MODE_PRECISION (shift_mode)))
10221 count = GET_MODE_PRECISION (shift_mode) - 1;
10222
10223 /* We simplify the tests below and elsewhere by converting
10224 ASHIFTRT to LSHIFTRT if we know the sign bit is clear.
10225 `make_compound_operation' will convert it to an ASHIFTRT for
10226 those machines (such as VAX) that don't have an LSHIFTRT. */
10227 if (code == ASHIFTRT
10228 && val_signbit_known_clear_p (shift_mode,
10229 nonzero_bits (varop, shift_mode)))
10230 code = LSHIFTRT;
10231
10232 if (((code == LSHIFTRT
10233 && HWI_COMPUTABLE_MODE_P (shift_mode)
10234 && !(nonzero_bits (varop, shift_mode) >> count))
10235 || (code == ASHIFT
10236 && HWI_COMPUTABLE_MODE_P (shift_mode)
10237 && !((nonzero_bits (varop, shift_mode) << count)
10238 & GET_MODE_MASK (shift_mode))))
10239 && !side_effects_p (varop))
10240 varop = const0_rtx;
10241
10242 switch (GET_CODE (varop))
10243 {
10244 case SIGN_EXTEND:
10245 case ZERO_EXTEND:
10246 case SIGN_EXTRACT:
10247 case ZERO_EXTRACT:
10248 new_rtx = expand_compound_operation (varop);
10249 if (new_rtx != varop)
10250 {
10251 varop = new_rtx;
10252 continue;
10253 }
10254 break;
10255
10256 case MEM:
10257 /* If we have (xshiftrt (mem ...) C) and C is MODE_WIDTH
10258 minus the width of a smaller mode, we can do this with a
10259 SIGN_EXTEND or ZERO_EXTEND from the narrower memory location. */
10260 if ((code == ASHIFTRT || code == LSHIFTRT)
10261 && ! mode_dependent_address_p (XEXP (varop, 0),
10262 MEM_ADDR_SPACE (varop))
10263 && ! MEM_VOLATILE_P (varop)
10264 && (tmode = mode_for_size (GET_MODE_BITSIZE (mode) - count,
10265 MODE_INT, 1)) != BLKmode)
10266 {
10267 new_rtx = adjust_address_nv (varop, tmode,
10268 BYTES_BIG_ENDIAN ? 0
10269 : count / BITS_PER_UNIT);
10270
10271 varop = gen_rtx_fmt_e (code == ASHIFTRT ? SIGN_EXTEND
10272 : ZERO_EXTEND, mode, new_rtx);
10273 count = 0;
10274 continue;
10275 }
10276 break;
10277
10278 case SUBREG:
10279 /* If VAROP is a SUBREG, strip it as long as the inner operand has
10280 the same number of words as what we've seen so far. Then store
10281 the widest mode in MODE. */
10282 if (subreg_lowpart_p (varop)
10283 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (varop)))
10284 > GET_MODE_SIZE (GET_MODE (varop)))
10285 && (unsigned int) ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (varop)))
10286 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
10287 == mode_words
10288 && GET_MODE_CLASS (GET_MODE (varop)) == MODE_INT
10289 && GET_MODE_CLASS (GET_MODE (SUBREG_REG (varop))) == MODE_INT)
10290 {
10291 varop = SUBREG_REG (varop);
10292 if (GET_MODE_SIZE (GET_MODE (varop)) > GET_MODE_SIZE (mode))
10293 mode = GET_MODE (varop);
10294 continue;
10295 }
10296 break;
10297
10298 case MULT:
10299 /* Some machines use MULT instead of ASHIFT because MULT
10300 is cheaper. But it is still better on those machines to
10301 merge two shifts into one. */
10302 if (CONST_INT_P (XEXP (varop, 1))
10303 && exact_log2 (UINTVAL (XEXP (varop, 1))) >= 0)
10304 {
10305 varop
10306 = simplify_gen_binary (ASHIFT, GET_MODE (varop),
10307 XEXP (varop, 0),
10308 GEN_INT (exact_log2 (
10309 UINTVAL (XEXP (varop, 1)))));
10310 continue;
10311 }
10312 break;
10313
10314 case UDIV:
10315 /* Similar, for when divides are cheaper. */
10316 if (CONST_INT_P (XEXP (varop, 1))
10317 && exact_log2 (UINTVAL (XEXP (varop, 1))) >= 0)
10318 {
10319 varop
10320 = simplify_gen_binary (LSHIFTRT, GET_MODE (varop),
10321 XEXP (varop, 0),
10322 GEN_INT (exact_log2 (
10323 UINTVAL (XEXP (varop, 1)))));
10324 continue;
10325 }
10326 break;
10327
10328 case ASHIFTRT:
10329 /* If we are extracting just the sign bit of an arithmetic
10330 right shift, that shift is not needed. However, the sign
10331 bit of a wider mode may be different from what would be
10332 interpreted as the sign bit in a narrower mode, so, if
10333 the result is narrower, don't discard the shift. */
10334 if (code == LSHIFTRT
10335 && count == (GET_MODE_BITSIZE (result_mode) - 1)
10336 && (GET_MODE_BITSIZE (result_mode)
10337 >= GET_MODE_BITSIZE (GET_MODE (varop))))
10338 {
10339 varop = XEXP (varop, 0);
10340 continue;
10341 }
10342
10343 /* ... fall through ... */
10344
10345 case LSHIFTRT:
10346 case ASHIFT:
10347 case ROTATE:
10348 /* Here we have two nested shifts. The result is usually the
10349 AND of a new shift with a mask. We compute the result below. */
10350 if (CONST_INT_P (XEXP (varop, 1))
10351 && INTVAL (XEXP (varop, 1)) >= 0
10352 && INTVAL (XEXP (varop, 1)) < GET_MODE_PRECISION (GET_MODE (varop))
10353 && HWI_COMPUTABLE_MODE_P (result_mode)
10354 && HWI_COMPUTABLE_MODE_P (mode)
10355 && !VECTOR_MODE_P (result_mode))
10356 {
10357 enum rtx_code first_code = GET_CODE (varop);
10358 unsigned int first_count = INTVAL (XEXP (varop, 1));
10359 unsigned HOST_WIDE_INT mask;
10360 rtx mask_rtx;
10361
10362 /* We have one common special case. We can't do any merging if
10363 the inner code is an ASHIFTRT of a smaller mode. However, if
10364 we have (ashift:M1 (subreg:M1 (ashiftrt:M2 FOO C1) 0) C2)
10365 with C2 == GET_MODE_BITSIZE (M1) - GET_MODE_BITSIZE (M2),
10366 we can convert it to
10367 (ashiftrt:M1 (ashift:M1 (and:M1 (subreg:M1 FOO 0) C3) C2) C1).
10368 This simplifies certain SIGN_EXTEND operations. */
10369 if (code == ASHIFT && first_code == ASHIFTRT
10370 && count == (GET_MODE_PRECISION (result_mode)
10371 - GET_MODE_PRECISION (GET_MODE (varop))))
10372 {
10373 /* C3 has the low-order C1 bits zero. */
10374
10375 mask = GET_MODE_MASK (mode)
10376 & ~(((unsigned HOST_WIDE_INT) 1 << first_count) - 1);
10377
10378 varop = simplify_and_const_int (NULL_RTX, result_mode,
10379 XEXP (varop, 0), mask);
10380 varop = simplify_shift_const (NULL_RTX, ASHIFT, result_mode,
10381 varop, count);
10382 count = first_count;
10383 code = ASHIFTRT;
10384 continue;
10385 }
10386
10387 /* If this was (ashiftrt (ashift foo C1) C2) and FOO has more
10388 than C1 high-order bits equal to the sign bit, we can convert
10389 this to either an ASHIFT or an ASHIFTRT depending on the
10390 two counts.
10391
10392 We cannot do this if VAROP's mode is not SHIFT_MODE. */
10393
10394 if (code == ASHIFTRT && first_code == ASHIFT
10395 && GET_MODE (varop) == shift_mode
10396 && (num_sign_bit_copies (XEXP (varop, 0), shift_mode)
10397 > first_count))
10398 {
10399 varop = XEXP (varop, 0);
10400 count -= first_count;
10401 if (count < 0)
10402 {
10403 count = -count;
10404 code = ASHIFT;
10405 }
10406
10407 continue;
10408 }
10409
10410 /* There are some cases we can't do. If CODE is ASHIFTRT,
10411 we can only do this if FIRST_CODE is also ASHIFTRT.
10412
10413 We can't do the case when CODE is ROTATE and FIRST_CODE is
10414 ASHIFTRT.
10415
10416 If the mode of this shift is not the mode of the outer shift,
10417 we can't do this if either shift is a right shift or ROTATE.
10418
10419 Finally, we can't do any of these if the mode is too wide
10420 unless the codes are the same.
10421
10422 Handle the case where the shift codes are the same
10423 first. */
10424
10425 if (code == first_code)
10426 {
10427 if (GET_MODE (varop) != result_mode
10428 && (code == ASHIFTRT || code == LSHIFTRT
10429 || code == ROTATE))
10430 break;
10431
10432 count += first_count;
10433 varop = XEXP (varop, 0);
10434 continue;
10435 }
10436
10437 if (code == ASHIFTRT
10438 || (code == ROTATE && first_code == ASHIFTRT)
10439 || GET_MODE_PRECISION (mode) > HOST_BITS_PER_WIDE_INT
10440 || (GET_MODE (varop) != result_mode
10441 && (first_code == ASHIFTRT || first_code == LSHIFTRT
10442 || first_code == ROTATE
10443 || code == ROTATE)))
10444 break;
10445
10446 /* To compute the mask to apply after the shift, shift the
10447 nonzero bits of the inner shift the same way the
10448 outer shift will. */
10449
10450 mask_rtx = gen_int_mode (nonzero_bits (varop, GET_MODE (varop)),
10451 result_mode);
10452
10453 mask_rtx
10454 = simplify_const_binary_operation (code, result_mode, mask_rtx,
10455 GEN_INT (count));
10456
10457 /* Give up if we can't compute an outer operation to use. */
10458 if (mask_rtx == 0
10459 || !CONST_INT_P (mask_rtx)
10460 || ! merge_outer_ops (&outer_op, &outer_const, AND,
10461 INTVAL (mask_rtx),
10462 result_mode, &complement_p))
10463 break;
10464
10465 /* If the shifts are in the same direction, we add the
10466 counts. Otherwise, we subtract them. */
10467 if ((code == ASHIFTRT || code == LSHIFTRT)
10468 == (first_code == ASHIFTRT || first_code == LSHIFTRT))
10469 count += first_count;
10470 else
10471 count -= first_count;
10472
10473 /* If COUNT is positive, the new shift is usually CODE,
10474 except for the two exceptions below, in which case it is
10475 FIRST_CODE. If the count is negative, FIRST_CODE should
10476 always be used */
10477 if (count > 0
10478 && ((first_code == ROTATE && code == ASHIFT)
10479 || (first_code == ASHIFTRT && code == LSHIFTRT)))
10480 code = first_code;
10481 else if (count < 0)
10482 code = first_code, count = -count;
10483
10484 varop = XEXP (varop, 0);
10485 continue;
10486 }
10487
10488 /* If we have (A << B << C) for any shift, we can convert this to
10489 (A << C << B). This wins if A is a constant. Only try this if
10490 B is not a constant. */
10491
10492 else if (GET_CODE (varop) == code
10493 && CONST_INT_P (XEXP (varop, 0))
10494 && !CONST_INT_P (XEXP (varop, 1)))
10495 {
10496 rtx new_rtx = simplify_const_binary_operation (code, mode,
10497 XEXP (varop, 0),
10498 GEN_INT (count));
10499 varop = gen_rtx_fmt_ee (code, mode, new_rtx, XEXP (varop, 1));
10500 count = 0;
10501 continue;
10502 }
10503 break;
10504
10505 case NOT:
10506 if (VECTOR_MODE_P (mode))
10507 break;
10508
10509 /* Make this fit the case below. */
10510 varop = gen_rtx_XOR (mode, XEXP (varop, 0), constm1_rtx);
10511 continue;
10512
10513 case IOR:
10514 case AND:
10515 case XOR:
10516 /* If we have (xshiftrt (ior (plus X (const_int -1)) X) C)
10517 with C the size of VAROP - 1 and the shift is logical if
10518 STORE_FLAG_VALUE is 1 and arithmetic if STORE_FLAG_VALUE is -1,
10519 we have an (le X 0) operation. If we have an arithmetic shift
10520 and STORE_FLAG_VALUE is 1 or we have a logical shift with
10521 STORE_FLAG_VALUE of -1, we have a (neg (le X 0)) operation. */
10522
10523 if (GET_CODE (varop) == IOR && GET_CODE (XEXP (varop, 0)) == PLUS
10524 && XEXP (XEXP (varop, 0), 1) == constm1_rtx
10525 && (STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
10526 && (code == LSHIFTRT || code == ASHIFTRT)
10527 && count == (GET_MODE_PRECISION (GET_MODE (varop)) - 1)
10528 && rtx_equal_p (XEXP (XEXP (varop, 0), 0), XEXP (varop, 1)))
10529 {
10530 count = 0;
10531 varop = gen_rtx_LE (GET_MODE (varop), XEXP (varop, 1),
10532 const0_rtx);
10533
10534 if (STORE_FLAG_VALUE == 1 ? code == ASHIFTRT : code == LSHIFTRT)
10535 varop = gen_rtx_NEG (GET_MODE (varop), varop);
10536
10537 continue;
10538 }
10539
10540 /* If we have (shift (logical)), move the logical to the outside
10541 to allow it to possibly combine with another logical and the
10542 shift to combine with another shift. This also canonicalizes to
10543 what a ZERO_EXTRACT looks like. Also, some machines have
10544 (and (shift)) insns. */
10545
10546 if (CONST_INT_P (XEXP (varop, 1))
10547 /* We can't do this if we have (ashiftrt (xor)) and the
10548 constant has its sign bit set in shift_mode with shift_mode
10549 wider than result_mode. */
10550 && !(code == ASHIFTRT && GET_CODE (varop) == XOR
10551 && result_mode != shift_mode
10552 && 0 > trunc_int_for_mode (INTVAL (XEXP (varop, 1)),
10553 shift_mode))
10554 && (new_rtx = simplify_const_binary_operation
10555 (code, result_mode,
10556 gen_int_mode (INTVAL (XEXP (varop, 1)), result_mode),
10557 GEN_INT (count))) != 0
10558 && CONST_INT_P (new_rtx)
10559 && merge_outer_ops (&outer_op, &outer_const, GET_CODE (varop),
10560 INTVAL (new_rtx), result_mode, &complement_p))
10561 {
10562 varop = XEXP (varop, 0);
10563 continue;
10564 }
10565
10566 /* If we can't do that, try to simplify the shift in each arm of the
10567 logical expression, make a new logical expression, and apply
10568 the inverse distributive law. This also can't be done for
10569 (ashiftrt (xor)) where we've widened the shift and the constant
10570 changes the sign bit. */
10571 if (CONST_INT_P (XEXP (varop, 1))
10572 && !(code == ASHIFTRT && GET_CODE (varop) == XOR
10573 && result_mode != shift_mode
10574 && 0 > trunc_int_for_mode (INTVAL (XEXP (varop, 1)),
10575 shift_mode)))
10576 {
10577 rtx lhs = simplify_shift_const (NULL_RTX, code, shift_mode,
10578 XEXP (varop, 0), count);
10579 rtx rhs = simplify_shift_const (NULL_RTX, code, shift_mode,
10580 XEXP (varop, 1), count);
10581
10582 varop = simplify_gen_binary (GET_CODE (varop), shift_mode,
10583 lhs, rhs);
10584 varop = apply_distributive_law (varop);
10585
10586 count = 0;
10587 continue;
10588 }
10589 break;
10590
10591 case EQ:
10592 /* Convert (lshiftrt (eq FOO 0) C) to (xor FOO 1) if STORE_FLAG_VALUE
10593 says that the sign bit can be tested, FOO has mode MODE, C is
10594 GET_MODE_PRECISION (MODE) - 1, and FOO has only its low-order bit
10595 that may be nonzero. */
10596 if (code == LSHIFTRT
10597 && XEXP (varop, 1) == const0_rtx
10598 && GET_MODE (XEXP (varop, 0)) == result_mode
10599 && count == (GET_MODE_PRECISION (result_mode) - 1)
10600 && HWI_COMPUTABLE_MODE_P (result_mode)
10601 && STORE_FLAG_VALUE == -1
10602 && nonzero_bits (XEXP (varop, 0), result_mode) == 1
10603 && merge_outer_ops (&outer_op, &outer_const, XOR, 1, result_mode,
10604 &complement_p))
10605 {
10606 varop = XEXP (varop, 0);
10607 count = 0;
10608 continue;
10609 }
10610 break;
10611
10612 case NEG:
10613 /* (lshiftrt (neg A) C) where A is either 0 or 1 and C is one less
10614 than the number of bits in the mode is equivalent to A. */
10615 if (code == LSHIFTRT
10616 && count == (GET_MODE_PRECISION (result_mode) - 1)
10617 && nonzero_bits (XEXP (varop, 0), result_mode) == 1)
10618 {
10619 varop = XEXP (varop, 0);
10620 count = 0;
10621 continue;
10622 }
10623
10624 /* NEG commutes with ASHIFT since it is multiplication. Move the
10625 NEG outside to allow shifts to combine. */
10626 if (code == ASHIFT
10627 && merge_outer_ops (&outer_op, &outer_const, NEG, 0, result_mode,
10628 &complement_p))
10629 {
10630 varop = XEXP (varop, 0);
10631 continue;
10632 }
10633 break;
10634
10635 case PLUS:
10636 /* (lshiftrt (plus A -1) C) where A is either 0 or 1 and C
10637 is one less than the number of bits in the mode is
10638 equivalent to (xor A 1). */
10639 if (code == LSHIFTRT
10640 && count == (GET_MODE_PRECISION (result_mode) - 1)
10641 && XEXP (varop, 1) == constm1_rtx
10642 && nonzero_bits (XEXP (varop, 0), result_mode) == 1
10643 && merge_outer_ops (&outer_op, &outer_const, XOR, 1, result_mode,
10644 &complement_p))
10645 {
10646 count = 0;
10647 varop = XEXP (varop, 0);
10648 continue;
10649 }
10650
10651 /* If we have (xshiftrt (plus FOO BAR) C), and the only bits
10652 that might be nonzero in BAR are those being shifted out and those
10653 bits are known zero in FOO, we can replace the PLUS with FOO.
10654 Similarly in the other operand order. This code occurs when
10655 we are computing the size of a variable-size array. */
10656
10657 if ((code == ASHIFTRT || code == LSHIFTRT)
10658 && count < HOST_BITS_PER_WIDE_INT
10659 && nonzero_bits (XEXP (varop, 1), result_mode) >> count == 0
10660 && (nonzero_bits (XEXP (varop, 1), result_mode)
10661 & nonzero_bits (XEXP (varop, 0), result_mode)) == 0)
10662 {
10663 varop = XEXP (varop, 0);
10664 continue;
10665 }
10666 else if ((code == ASHIFTRT || code == LSHIFTRT)
10667 && count < HOST_BITS_PER_WIDE_INT
10668 && HWI_COMPUTABLE_MODE_P (result_mode)
10669 && 0 == (nonzero_bits (XEXP (varop, 0), result_mode)
10670 >> count)
10671 && 0 == (nonzero_bits (XEXP (varop, 0), result_mode)
10672 & nonzero_bits (XEXP (varop, 1),
10673 result_mode)))
10674 {
10675 varop = XEXP (varop, 1);
10676 continue;
10677 }
10678
10679 /* (ashift (plus foo C) N) is (plus (ashift foo N) C'). */
10680 if (code == ASHIFT
10681 && CONST_INT_P (XEXP (varop, 1))
10682 && (new_rtx = simplify_const_binary_operation
10683 (ASHIFT, result_mode,
10684 gen_int_mode (INTVAL (XEXP (varop, 1)), result_mode),
10685 GEN_INT (count))) != 0
10686 && CONST_INT_P (new_rtx)
10687 && merge_outer_ops (&outer_op, &outer_const, PLUS,
10688 INTVAL (new_rtx), result_mode, &complement_p))
10689 {
10690 varop = XEXP (varop, 0);
10691 continue;
10692 }
10693
10694 /* Check for 'PLUS signbit', which is the canonical form of 'XOR
10695 signbit', and attempt to change the PLUS to an XOR and move it to
10696 the outer operation as is done above in the AND/IOR/XOR case
10697 leg for shift(logical). See details in logical handling above
10698 for reasoning in doing so. */
10699 if (code == LSHIFTRT
10700 && CONST_INT_P (XEXP (varop, 1))
10701 && mode_signbit_p (result_mode, XEXP (varop, 1))
10702 && (new_rtx = simplify_const_binary_operation
10703 (code, result_mode,
10704 gen_int_mode (INTVAL (XEXP (varop, 1)), result_mode),
10705 GEN_INT (count))) != 0
10706 && CONST_INT_P (new_rtx)
10707 && merge_outer_ops (&outer_op, &outer_const, XOR,
10708 INTVAL (new_rtx), result_mode, &complement_p))
10709 {
10710 varop = XEXP (varop, 0);
10711 continue;
10712 }
10713
10714 break;
10715
10716 case MINUS:
10717 /* If we have (xshiftrt (minus (ashiftrt X C)) X) C)
10718 with C the size of VAROP - 1 and the shift is logical if
10719 STORE_FLAG_VALUE is 1 and arithmetic if STORE_FLAG_VALUE is -1,
10720 we have a (gt X 0) operation. If the shift is arithmetic with
10721 STORE_FLAG_VALUE of 1 or logical with STORE_FLAG_VALUE == -1,
10722 we have a (neg (gt X 0)) operation. */
10723
10724 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
10725 && GET_CODE (XEXP (varop, 0)) == ASHIFTRT
10726 && count == (GET_MODE_PRECISION (GET_MODE (varop)) - 1)
10727 && (code == LSHIFTRT || code == ASHIFTRT)
10728 && CONST_INT_P (XEXP (XEXP (varop, 0), 1))
10729 && INTVAL (XEXP (XEXP (varop, 0), 1)) == count
10730 && rtx_equal_p (XEXP (XEXP (varop, 0), 0), XEXP (varop, 1)))
10731 {
10732 count = 0;
10733 varop = gen_rtx_GT (GET_MODE (varop), XEXP (varop, 1),
10734 const0_rtx);
10735
10736 if (STORE_FLAG_VALUE == 1 ? code == ASHIFTRT : code == LSHIFTRT)
10737 varop = gen_rtx_NEG (GET_MODE (varop), varop);
10738
10739 continue;
10740 }
10741 break;
10742
10743 case TRUNCATE:
10744 /* Change (lshiftrt (truncate (lshiftrt))) to (truncate (lshiftrt))
10745 if the truncate does not affect the value. */
10746 if (code == LSHIFTRT
10747 && GET_CODE (XEXP (varop, 0)) == LSHIFTRT
10748 && CONST_INT_P (XEXP (XEXP (varop, 0), 1))
10749 && (INTVAL (XEXP (XEXP (varop, 0), 1))
10750 >= (GET_MODE_PRECISION (GET_MODE (XEXP (varop, 0)))
10751 - GET_MODE_PRECISION (GET_MODE (varop)))))
10752 {
10753 rtx varop_inner = XEXP (varop, 0);
10754
10755 varop_inner
10756 = gen_rtx_LSHIFTRT (GET_MODE (varop_inner),
10757 XEXP (varop_inner, 0),
10758 GEN_INT
10759 (count + INTVAL (XEXP (varop_inner, 1))));
10760 varop = gen_rtx_TRUNCATE (GET_MODE (varop), varop_inner);
10761 count = 0;
10762 continue;
10763 }
10764 break;
10765
10766 default:
10767 break;
10768 }
10769
10770 break;
10771 }
10772
10773 shift_mode = try_widen_shift_mode (code, varop, count, result_mode, mode,
10774 outer_op, outer_const);
10775
10776 /* We have now finished analyzing the shift. The result should be
10777 a shift of type CODE with SHIFT_MODE shifting VAROP COUNT places. If
10778 OUTER_OP is non-UNKNOWN, it is an operation that needs to be applied
10779 to the result of the shift. OUTER_CONST is the relevant constant,
10780 but we must turn off all bits turned off in the shift. */
10781
10782 if (outer_op == UNKNOWN
10783 && orig_code == code && orig_count == count
10784 && varop == orig_varop
10785 && shift_mode == GET_MODE (varop))
10786 return NULL_RTX;
10787
10788 /* Make a SUBREG if necessary. If we can't make it, fail. */
10789 varop = gen_lowpart (shift_mode, varop);
10790 if (varop == NULL_RTX || GET_CODE (varop) == CLOBBER)
10791 return NULL_RTX;
10792
10793 /* If we have an outer operation and we just made a shift, it is
10794 possible that we could have simplified the shift were it not
10795 for the outer operation. So try to do the simplification
10796 recursively. */
10797
10798 if (outer_op != UNKNOWN)
10799 x = simplify_shift_const_1 (code, shift_mode, varop, count);
10800 else
10801 x = NULL_RTX;
10802
10803 if (x == NULL_RTX)
10804 x = simplify_gen_binary (code, shift_mode, varop, GEN_INT (count));
10805
10806 /* If we were doing an LSHIFTRT in a wider mode than it was originally,
10807 turn off all the bits that the shift would have turned off. */
10808 if (orig_code == LSHIFTRT && result_mode != shift_mode)
10809 x = simplify_and_const_int (NULL_RTX, shift_mode, x,
10810 GET_MODE_MASK (result_mode) >> orig_count);
10811
10812 /* Do the remainder of the processing in RESULT_MODE. */
10813 x = gen_lowpart_or_truncate (result_mode, x);
10814
10815 /* If COMPLEMENT_P is set, we have to complement X before doing the outer
10816 operation. */
10817 if (complement_p)
10818 x = simplify_gen_unary (NOT, result_mode, x, result_mode);
10819
10820 if (outer_op != UNKNOWN)
10821 {
10822 if (GET_RTX_CLASS (outer_op) != RTX_UNARY
10823 && GET_MODE_PRECISION (result_mode) < HOST_BITS_PER_WIDE_INT)
10824 outer_const = trunc_int_for_mode (outer_const, result_mode);
10825
10826 if (outer_op == AND)
10827 x = simplify_and_const_int (NULL_RTX, result_mode, x, outer_const);
10828 else if (outer_op == SET)
10829 {
10830 /* This means that we have determined that the result is
10831 equivalent to a constant. This should be rare. */
10832 if (!side_effects_p (x))
10833 x = GEN_INT (outer_const);
10834 }
10835 else if (GET_RTX_CLASS (outer_op) == RTX_UNARY)
10836 x = simplify_gen_unary (outer_op, result_mode, x, result_mode);
10837 else
10838 x = simplify_gen_binary (outer_op, result_mode, x,
10839 GEN_INT (outer_const));
10840 }
10841
10842 return x;
10843 }
10844
10845 /* Simplify a shift of VAROP by COUNT bits. CODE says what kind of shift.
10846 The result of the shift is RESULT_MODE. If we cannot simplify it,
10847 return X or, if it is NULL, synthesize the expression with
10848 simplify_gen_binary. Otherwise, return a simplified value.
10849
10850 The shift is normally computed in the widest mode we find in VAROP, as
10851 long as it isn't a different number of words than RESULT_MODE. Exceptions
10852 are ASHIFTRT and ROTATE, which are always done in their original mode. */
10853
10854 static rtx
10855 simplify_shift_const (rtx x, enum rtx_code code, machine_mode result_mode,
10856 rtx varop, int count)
10857 {
10858 rtx tem = simplify_shift_const_1 (code, result_mode, varop, count);
10859 if (tem)
10860 return tem;
10861
10862 if (!x)
10863 x = simplify_gen_binary (code, GET_MODE (varop), varop, GEN_INT (count));
10864 if (GET_MODE (x) != result_mode)
10865 x = gen_lowpart (result_mode, x);
10866 return x;
10867 }
10868
10869 \f
10870 /* A subroutine of recog_for_combine. See there for arguments and
10871 return value. */
10872
10873 static int
10874 recog_for_combine_1 (rtx *pnewpat, rtx_insn *insn, rtx *pnotes)
10875 {
10876 rtx pat = *pnewpat;
10877 rtx pat_without_clobbers;
10878 int insn_code_number;
10879 int num_clobbers_to_add = 0;
10880 int i;
10881 rtx notes = NULL_RTX;
10882 rtx old_notes, old_pat;
10883 int old_icode;
10884
10885 /* If PAT is a PARALLEL, check to see if it contains the CLOBBER
10886 we use to indicate that something didn't match. If we find such a
10887 thing, force rejection. */
10888 if (GET_CODE (pat) == PARALLEL)
10889 for (i = XVECLEN (pat, 0) - 1; i >= 0; i--)
10890 if (GET_CODE (XVECEXP (pat, 0, i)) == CLOBBER
10891 && XEXP (XVECEXP (pat, 0, i), 0) == const0_rtx)
10892 return -1;
10893
10894 old_pat = PATTERN (insn);
10895 old_notes = REG_NOTES (insn);
10896 PATTERN (insn) = pat;
10897 REG_NOTES (insn) = NULL_RTX;
10898
10899 insn_code_number = recog (pat, insn, &num_clobbers_to_add);
10900 if (dump_file && (dump_flags & TDF_DETAILS))
10901 {
10902 if (insn_code_number < 0)
10903 fputs ("Failed to match this instruction:\n", dump_file);
10904 else
10905 fputs ("Successfully matched this instruction:\n", dump_file);
10906 print_rtl_single (dump_file, pat);
10907 }
10908
10909 /* If it isn't, there is the possibility that we previously had an insn
10910 that clobbered some register as a side effect, but the combined
10911 insn doesn't need to do that. So try once more without the clobbers
10912 unless this represents an ASM insn. */
10913
10914 if (insn_code_number < 0 && ! check_asm_operands (pat)
10915 && GET_CODE (pat) == PARALLEL)
10916 {
10917 int pos;
10918
10919 for (pos = 0, i = 0; i < XVECLEN (pat, 0); i++)
10920 if (GET_CODE (XVECEXP (pat, 0, i)) != CLOBBER)
10921 {
10922 if (i != pos)
10923 SUBST (XVECEXP (pat, 0, pos), XVECEXP (pat, 0, i));
10924 pos++;
10925 }
10926
10927 SUBST_INT (XVECLEN (pat, 0), pos);
10928
10929 if (pos == 1)
10930 pat = XVECEXP (pat, 0, 0);
10931
10932 PATTERN (insn) = pat;
10933 insn_code_number = recog (pat, insn, &num_clobbers_to_add);
10934 if (dump_file && (dump_flags & TDF_DETAILS))
10935 {
10936 if (insn_code_number < 0)
10937 fputs ("Failed to match this instruction:\n", dump_file);
10938 else
10939 fputs ("Successfully matched this instruction:\n", dump_file);
10940 print_rtl_single (dump_file, pat);
10941 }
10942 }
10943
10944 pat_without_clobbers = pat;
10945
10946 PATTERN (insn) = old_pat;
10947 REG_NOTES (insn) = old_notes;
10948
10949 /* Recognize all noop sets, these will be killed by followup pass. */
10950 if (insn_code_number < 0 && GET_CODE (pat) == SET && set_noop_p (pat))
10951 insn_code_number = NOOP_MOVE_INSN_CODE, num_clobbers_to_add = 0;
10952
10953 /* If we had any clobbers to add, make a new pattern than contains
10954 them. Then check to make sure that all of them are dead. */
10955 if (num_clobbers_to_add)
10956 {
10957 rtx newpat = gen_rtx_PARALLEL (VOIDmode,
10958 rtvec_alloc (GET_CODE (pat) == PARALLEL
10959 ? (XVECLEN (pat, 0)
10960 + num_clobbers_to_add)
10961 : num_clobbers_to_add + 1));
10962
10963 if (GET_CODE (pat) == PARALLEL)
10964 for (i = 0; i < XVECLEN (pat, 0); i++)
10965 XVECEXP (newpat, 0, i) = XVECEXP (pat, 0, i);
10966 else
10967 XVECEXP (newpat, 0, 0) = pat;
10968
10969 add_clobbers (newpat, insn_code_number);
10970
10971 for (i = XVECLEN (newpat, 0) - num_clobbers_to_add;
10972 i < XVECLEN (newpat, 0); i++)
10973 {
10974 if (REG_P (XEXP (XVECEXP (newpat, 0, i), 0))
10975 && ! reg_dead_at_p (XEXP (XVECEXP (newpat, 0, i), 0), insn))
10976 return -1;
10977 if (GET_CODE (XEXP (XVECEXP (newpat, 0, i), 0)) != SCRATCH)
10978 {
10979 gcc_assert (REG_P (XEXP (XVECEXP (newpat, 0, i), 0)));
10980 notes = alloc_reg_note (REG_UNUSED,
10981 XEXP (XVECEXP (newpat, 0, i), 0), notes);
10982 }
10983 }
10984 pat = newpat;
10985 }
10986
10987 if (insn_code_number >= 0
10988 && insn_code_number != NOOP_MOVE_INSN_CODE)
10989 {
10990 old_pat = PATTERN (insn);
10991 old_notes = REG_NOTES (insn);
10992 old_icode = INSN_CODE (insn);
10993 PATTERN (insn) = pat;
10994 REG_NOTES (insn) = notes;
10995
10996 /* Allow targets to reject combined insn. */
10997 if (!targetm.legitimate_combined_insn (insn))
10998 {
10999 if (dump_file && (dump_flags & TDF_DETAILS))
11000 fputs ("Instruction not appropriate for target.",
11001 dump_file);
11002
11003 /* Callers expect recog_for_combine to strip
11004 clobbers from the pattern on failure. */
11005 pat = pat_without_clobbers;
11006 notes = NULL_RTX;
11007
11008 insn_code_number = -1;
11009 }
11010
11011 PATTERN (insn) = old_pat;
11012 REG_NOTES (insn) = old_notes;
11013 INSN_CODE (insn) = old_icode;
11014 }
11015
11016 *pnewpat = pat;
11017 *pnotes = notes;
11018
11019 return insn_code_number;
11020 }
11021
11022 /* Change every ZERO_EXTRACT and ZERO_EXTEND of a SUBREG that can be
11023 expressed as an AND and maybe an LSHIFTRT, to that formulation.
11024 Return whether anything was so changed. */
11025
11026 static bool
11027 change_zero_ext (rtx *src)
11028 {
11029 bool changed = false;
11030
11031 subrtx_ptr_iterator::array_type array;
11032 FOR_EACH_SUBRTX_PTR (iter, array, src, NONCONST)
11033 {
11034 rtx x = **iter;
11035 machine_mode mode = GET_MODE (x);
11036 int size;
11037
11038 if (GET_CODE (x) == ZERO_EXTRACT
11039 && CONST_INT_P (XEXP (x, 1))
11040 && CONST_INT_P (XEXP (x, 2))
11041 && GET_MODE (XEXP (x, 0)) == mode)
11042 {
11043 size = INTVAL (XEXP (x, 1));
11044
11045 int start = INTVAL (XEXP (x, 2));
11046 if (BITS_BIG_ENDIAN)
11047 start = GET_MODE_PRECISION (mode) - size - start;
11048
11049 x = gen_rtx_LSHIFTRT (mode, XEXP (x, 0), GEN_INT (start));
11050 }
11051 else if (GET_CODE (x) == ZERO_EXTEND
11052 && GET_CODE (XEXP (x, 0)) == SUBREG
11053 && GET_MODE (SUBREG_REG (XEXP (x, 0))) == mode
11054 && subreg_lowpart_p (XEXP (x, 0)))
11055 {
11056 size = GET_MODE_PRECISION (GET_MODE (XEXP (x, 0)));
11057 x = SUBREG_REG (XEXP (x, 0));
11058 }
11059 else
11060 continue;
11061
11062 unsigned HOST_WIDE_INT mask = 1;
11063 mask <<= size;
11064 mask--;
11065
11066 x = gen_rtx_AND (mode, x, GEN_INT (mask));
11067
11068 SUBST (**iter, x);
11069 changed = true;
11070 }
11071
11072 return changed;
11073 }
11074
11075 /* Like recog, but we receive the address of a pointer to a new pattern.
11076 We try to match the rtx that the pointer points to.
11077 If that fails, we may try to modify or replace the pattern,
11078 storing the replacement into the same pointer object.
11079
11080 Modifications include deletion or addition of CLOBBERs. If the
11081 instruction will still not match, we change ZERO_EXTEND and ZERO_EXTRACT
11082 to the equivalent AND and perhaps LSHIFTRT patterns, and try with that
11083 (and undo if that fails).
11084
11085 PNOTES is a pointer to a location where any REG_UNUSED notes added for
11086 the CLOBBERs are placed.
11087
11088 The value is the final insn code from the pattern ultimately matched,
11089 or -1. */
11090
11091 static int
11092 recog_for_combine (rtx *pnewpat, rtx_insn *insn, rtx *pnotes)
11093 {
11094 rtx pat = PATTERN (insn);
11095 int insn_code_number = recog_for_combine_1 (pnewpat, insn, pnotes);
11096 if (insn_code_number >= 0 || check_asm_operands (pat))
11097 return insn_code_number;
11098
11099 void *marker = get_undo_marker ();
11100 bool changed = false;
11101
11102 if (GET_CODE (pat) == SET)
11103 changed = change_zero_ext (&SET_SRC (pat));
11104 else if (GET_CODE (pat) == PARALLEL)
11105 {
11106 int i;
11107 for (i = 0; i < XVECLEN (pat, 0); i++)
11108 {
11109 rtx set = XVECEXP (pat, 0, i);
11110 if (GET_CODE (set) == SET)
11111 changed |= change_zero_ext (&SET_SRC (set));
11112 }
11113 }
11114
11115 if (changed)
11116 {
11117 insn_code_number = recog_for_combine_1 (pnewpat, insn, pnotes);
11118
11119 if (insn_code_number < 0)
11120 undo_to_marker (marker);
11121 }
11122
11123 return insn_code_number;
11124 }
11125 \f
11126 /* Like gen_lowpart_general but for use by combine. In combine it
11127 is not possible to create any new pseudoregs. However, it is
11128 safe to create invalid memory addresses, because combine will
11129 try to recognize them and all they will do is make the combine
11130 attempt fail.
11131
11132 If for some reason this cannot do its job, an rtx
11133 (clobber (const_int 0)) is returned.
11134 An insn containing that will not be recognized. */
11135
11136 static rtx
11137 gen_lowpart_for_combine (machine_mode omode, rtx x)
11138 {
11139 machine_mode imode = GET_MODE (x);
11140 unsigned int osize = GET_MODE_SIZE (omode);
11141 unsigned int isize = GET_MODE_SIZE (imode);
11142 rtx result;
11143
11144 if (omode == imode)
11145 return x;
11146
11147 /* We can only support MODE being wider than a word if X is a
11148 constant integer or has a mode the same size. */
11149 if (GET_MODE_SIZE (omode) > UNITS_PER_WORD
11150 && ! (CONST_SCALAR_INT_P (x) || isize == osize))
11151 goto fail;
11152
11153 /* X might be a paradoxical (subreg (mem)). In that case, gen_lowpart
11154 won't know what to do. So we will strip off the SUBREG here and
11155 process normally. */
11156 if (GET_CODE (x) == SUBREG && MEM_P (SUBREG_REG (x)))
11157 {
11158 x = SUBREG_REG (x);
11159
11160 /* For use in case we fall down into the address adjustments
11161 further below, we need to adjust the known mode and size of
11162 x; imode and isize, since we just adjusted x. */
11163 imode = GET_MODE (x);
11164
11165 if (imode == omode)
11166 return x;
11167
11168 isize = GET_MODE_SIZE (imode);
11169 }
11170
11171 result = gen_lowpart_common (omode, x);
11172
11173 if (result)
11174 return result;
11175
11176 if (MEM_P (x))
11177 {
11178 int offset = 0;
11179
11180 /* Refuse to work on a volatile memory ref or one with a mode-dependent
11181 address. */
11182 if (MEM_VOLATILE_P (x)
11183 || mode_dependent_address_p (XEXP (x, 0), MEM_ADDR_SPACE (x)))
11184 goto fail;
11185
11186 /* If we want to refer to something bigger than the original memref,
11187 generate a paradoxical subreg instead. That will force a reload
11188 of the original memref X. */
11189 if (isize < osize)
11190 return gen_rtx_SUBREG (omode, x, 0);
11191
11192 if (WORDS_BIG_ENDIAN)
11193 offset = MAX (isize, UNITS_PER_WORD) - MAX (osize, UNITS_PER_WORD);
11194
11195 /* Adjust the address so that the address-after-the-data is
11196 unchanged. */
11197 if (BYTES_BIG_ENDIAN)
11198 offset -= MIN (UNITS_PER_WORD, osize) - MIN (UNITS_PER_WORD, isize);
11199
11200 return adjust_address_nv (x, omode, offset);
11201 }
11202
11203 /* If X is a comparison operator, rewrite it in a new mode. This
11204 probably won't match, but may allow further simplifications. */
11205 else if (COMPARISON_P (x))
11206 return gen_rtx_fmt_ee (GET_CODE (x), omode, XEXP (x, 0), XEXP (x, 1));
11207
11208 /* If we couldn't simplify X any other way, just enclose it in a
11209 SUBREG. Normally, this SUBREG won't match, but some patterns may
11210 include an explicit SUBREG or we may simplify it further in combine. */
11211 else
11212 {
11213 int offset = 0;
11214 rtx res;
11215
11216 offset = subreg_lowpart_offset (omode, imode);
11217 if (imode == VOIDmode)
11218 {
11219 imode = int_mode_for_mode (omode);
11220 x = gen_lowpart_common (imode, x);
11221 if (x == NULL)
11222 goto fail;
11223 }
11224 res = simplify_gen_subreg (omode, x, imode, offset);
11225 if (res)
11226 return res;
11227 }
11228
11229 fail:
11230 return gen_rtx_CLOBBER (omode, const0_rtx);
11231 }
11232 \f
11233 /* Try to simplify a comparison between OP0 and a constant OP1,
11234 where CODE is the comparison code that will be tested, into a
11235 (CODE OP0 const0_rtx) form.
11236
11237 The result is a possibly different comparison code to use.
11238 *POP1 may be updated. */
11239
11240 static enum rtx_code
11241 simplify_compare_const (enum rtx_code code, machine_mode mode,
11242 rtx op0, rtx *pop1)
11243 {
11244 unsigned int mode_width = GET_MODE_PRECISION (mode);
11245 HOST_WIDE_INT const_op = INTVAL (*pop1);
11246
11247 /* Get the constant we are comparing against and turn off all bits
11248 not on in our mode. */
11249 if (mode != VOIDmode)
11250 const_op = trunc_int_for_mode (const_op, mode);
11251
11252 /* If we are comparing against a constant power of two and the value
11253 being compared can only have that single bit nonzero (e.g., it was
11254 `and'ed with that bit), we can replace this with a comparison
11255 with zero. */
11256 if (const_op
11257 && (code == EQ || code == NE || code == GE || code == GEU
11258 || code == LT || code == LTU)
11259 && mode_width - 1 < HOST_BITS_PER_WIDE_INT
11260 && exact_log2 (const_op & GET_MODE_MASK (mode)) >= 0
11261 && (nonzero_bits (op0, mode)
11262 == (unsigned HOST_WIDE_INT) (const_op & GET_MODE_MASK (mode))))
11263 {
11264 code = (code == EQ || code == GE || code == GEU ? NE : EQ);
11265 const_op = 0;
11266 }
11267
11268 /* Similarly, if we are comparing a value known to be either -1 or
11269 0 with -1, change it to the opposite comparison against zero. */
11270 if (const_op == -1
11271 && (code == EQ || code == NE || code == GT || code == LE
11272 || code == GEU || code == LTU)
11273 && num_sign_bit_copies (op0, mode) == mode_width)
11274 {
11275 code = (code == EQ || code == LE || code == GEU ? NE : EQ);
11276 const_op = 0;
11277 }
11278
11279 /* Do some canonicalizations based on the comparison code. We prefer
11280 comparisons against zero and then prefer equality comparisons.
11281 If we can reduce the size of a constant, we will do that too. */
11282 switch (code)
11283 {
11284 case LT:
11285 /* < C is equivalent to <= (C - 1) */
11286 if (const_op > 0)
11287 {
11288 const_op -= 1;
11289 code = LE;
11290 /* ... fall through to LE case below. */
11291 }
11292 else
11293 break;
11294
11295 case LE:
11296 /* <= C is equivalent to < (C + 1); we do this for C < 0 */
11297 if (const_op < 0)
11298 {
11299 const_op += 1;
11300 code = LT;
11301 }
11302
11303 /* If we are doing a <= 0 comparison on a value known to have
11304 a zero sign bit, we can replace this with == 0. */
11305 else if (const_op == 0
11306 && mode_width - 1 < HOST_BITS_PER_WIDE_INT
11307 && (nonzero_bits (op0, mode)
11308 & ((unsigned HOST_WIDE_INT) 1 << (mode_width - 1)))
11309 == 0)
11310 code = EQ;
11311 break;
11312
11313 case GE:
11314 /* >= C is equivalent to > (C - 1). */
11315 if (const_op > 0)
11316 {
11317 const_op -= 1;
11318 code = GT;
11319 /* ... fall through to GT below. */
11320 }
11321 else
11322 break;
11323
11324 case GT:
11325 /* > C is equivalent to >= (C + 1); we do this for C < 0. */
11326 if (const_op < 0)
11327 {
11328 const_op += 1;
11329 code = GE;
11330 }
11331
11332 /* If we are doing a > 0 comparison on a value known to have
11333 a zero sign bit, we can replace this with != 0. */
11334 else if (const_op == 0
11335 && mode_width - 1 < HOST_BITS_PER_WIDE_INT
11336 && (nonzero_bits (op0, mode)
11337 & ((unsigned HOST_WIDE_INT) 1 << (mode_width - 1)))
11338 == 0)
11339 code = NE;
11340 break;
11341
11342 case LTU:
11343 /* < C is equivalent to <= (C - 1). */
11344 if (const_op > 0)
11345 {
11346 const_op -= 1;
11347 code = LEU;
11348 /* ... fall through ... */
11349 }
11350 /* (unsigned) < 0x80000000 is equivalent to >= 0. */
11351 else if (mode_width - 1 < HOST_BITS_PER_WIDE_INT
11352 && (unsigned HOST_WIDE_INT) const_op
11353 == (unsigned HOST_WIDE_INT) 1 << (mode_width - 1))
11354 {
11355 const_op = 0;
11356 code = GE;
11357 break;
11358 }
11359 else
11360 break;
11361
11362 case LEU:
11363 /* unsigned <= 0 is equivalent to == 0 */
11364 if (const_op == 0)
11365 code = EQ;
11366 /* (unsigned) <= 0x7fffffff is equivalent to >= 0. */
11367 else if (mode_width - 1 < HOST_BITS_PER_WIDE_INT
11368 && (unsigned HOST_WIDE_INT) const_op
11369 == ((unsigned HOST_WIDE_INT) 1 << (mode_width - 1)) - 1)
11370 {
11371 const_op = 0;
11372 code = GE;
11373 }
11374 break;
11375
11376 case GEU:
11377 /* >= C is equivalent to > (C - 1). */
11378 if (const_op > 1)
11379 {
11380 const_op -= 1;
11381 code = GTU;
11382 /* ... fall through ... */
11383 }
11384
11385 /* (unsigned) >= 0x80000000 is equivalent to < 0. */
11386 else if (mode_width - 1 < HOST_BITS_PER_WIDE_INT
11387 && (unsigned HOST_WIDE_INT) const_op
11388 == (unsigned HOST_WIDE_INT) 1 << (mode_width - 1))
11389 {
11390 const_op = 0;
11391 code = LT;
11392 break;
11393 }
11394 else
11395 break;
11396
11397 case GTU:
11398 /* unsigned > 0 is equivalent to != 0 */
11399 if (const_op == 0)
11400 code = NE;
11401 /* (unsigned) > 0x7fffffff is equivalent to < 0. */
11402 else if (mode_width - 1 < HOST_BITS_PER_WIDE_INT
11403 && (unsigned HOST_WIDE_INT) const_op
11404 == ((unsigned HOST_WIDE_INT) 1 << (mode_width - 1)) - 1)
11405 {
11406 const_op = 0;
11407 code = LT;
11408 }
11409 break;
11410
11411 default:
11412 break;
11413 }
11414
11415 *pop1 = GEN_INT (const_op);
11416 return code;
11417 }
11418 \f
11419 /* Simplify a comparison between *POP0 and *POP1 where CODE is the
11420 comparison code that will be tested.
11421
11422 The result is a possibly different comparison code to use. *POP0 and
11423 *POP1 may be updated.
11424
11425 It is possible that we might detect that a comparison is either always
11426 true or always false. However, we do not perform general constant
11427 folding in combine, so this knowledge isn't useful. Such tautologies
11428 should have been detected earlier. Hence we ignore all such cases. */
11429
11430 static enum rtx_code
11431 simplify_comparison (enum rtx_code code, rtx *pop0, rtx *pop1)
11432 {
11433 rtx op0 = *pop0;
11434 rtx op1 = *pop1;
11435 rtx tem, tem1;
11436 int i;
11437 machine_mode mode, tmode;
11438
11439 /* Try a few ways of applying the same transformation to both operands. */
11440 while (1)
11441 {
11442 #ifndef WORD_REGISTER_OPERATIONS
11443 /* The test below this one won't handle SIGN_EXTENDs on these machines,
11444 so check specially. */
11445 if (code != GTU && code != GEU && code != LTU && code != LEU
11446 && GET_CODE (op0) == ASHIFTRT && GET_CODE (op1) == ASHIFTRT
11447 && GET_CODE (XEXP (op0, 0)) == ASHIFT
11448 && GET_CODE (XEXP (op1, 0)) == ASHIFT
11449 && GET_CODE (XEXP (XEXP (op0, 0), 0)) == SUBREG
11450 && GET_CODE (XEXP (XEXP (op1, 0), 0)) == SUBREG
11451 && (GET_MODE (SUBREG_REG (XEXP (XEXP (op0, 0), 0)))
11452 == GET_MODE (SUBREG_REG (XEXP (XEXP (op1, 0), 0))))
11453 && CONST_INT_P (XEXP (op0, 1))
11454 && XEXP (op0, 1) == XEXP (op1, 1)
11455 && XEXP (op0, 1) == XEXP (XEXP (op0, 0), 1)
11456 && XEXP (op0, 1) == XEXP (XEXP (op1, 0), 1)
11457 && (INTVAL (XEXP (op0, 1))
11458 == (GET_MODE_PRECISION (GET_MODE (op0))
11459 - (GET_MODE_PRECISION
11460 (GET_MODE (SUBREG_REG (XEXP (XEXP (op0, 0), 0))))))))
11461 {
11462 op0 = SUBREG_REG (XEXP (XEXP (op0, 0), 0));
11463 op1 = SUBREG_REG (XEXP (XEXP (op1, 0), 0));
11464 }
11465 #endif
11466
11467 /* If both operands are the same constant shift, see if we can ignore the
11468 shift. We can if the shift is a rotate or if the bits shifted out of
11469 this shift are known to be zero for both inputs and if the type of
11470 comparison is compatible with the shift. */
11471 if (GET_CODE (op0) == GET_CODE (op1)
11472 && HWI_COMPUTABLE_MODE_P (GET_MODE (op0))
11473 && ((GET_CODE (op0) == ROTATE && (code == NE || code == EQ))
11474 || ((GET_CODE (op0) == LSHIFTRT || GET_CODE (op0) == ASHIFT)
11475 && (code != GT && code != LT && code != GE && code != LE))
11476 || (GET_CODE (op0) == ASHIFTRT
11477 && (code != GTU && code != LTU
11478 && code != GEU && code != LEU)))
11479 && CONST_INT_P (XEXP (op0, 1))
11480 && INTVAL (XEXP (op0, 1)) >= 0
11481 && INTVAL (XEXP (op0, 1)) < HOST_BITS_PER_WIDE_INT
11482 && XEXP (op0, 1) == XEXP (op1, 1))
11483 {
11484 machine_mode mode = GET_MODE (op0);
11485 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
11486 int shift_count = INTVAL (XEXP (op0, 1));
11487
11488 if (GET_CODE (op0) == LSHIFTRT || GET_CODE (op0) == ASHIFTRT)
11489 mask &= (mask >> shift_count) << shift_count;
11490 else if (GET_CODE (op0) == ASHIFT)
11491 mask = (mask & (mask << shift_count)) >> shift_count;
11492
11493 if ((nonzero_bits (XEXP (op0, 0), mode) & ~mask) == 0
11494 && (nonzero_bits (XEXP (op1, 0), mode) & ~mask) == 0)
11495 op0 = XEXP (op0, 0), op1 = XEXP (op1, 0);
11496 else
11497 break;
11498 }
11499
11500 /* If both operands are AND's of a paradoxical SUBREG by constant, the
11501 SUBREGs are of the same mode, and, in both cases, the AND would
11502 be redundant if the comparison was done in the narrower mode,
11503 do the comparison in the narrower mode (e.g., we are AND'ing with 1
11504 and the operand's possibly nonzero bits are 0xffffff01; in that case
11505 if we only care about QImode, we don't need the AND). This case
11506 occurs if the output mode of an scc insn is not SImode and
11507 STORE_FLAG_VALUE == 1 (e.g., the 386).
11508
11509 Similarly, check for a case where the AND's are ZERO_EXTEND
11510 operations from some narrower mode even though a SUBREG is not
11511 present. */
11512
11513 else if (GET_CODE (op0) == AND && GET_CODE (op1) == AND
11514 && CONST_INT_P (XEXP (op0, 1))
11515 && CONST_INT_P (XEXP (op1, 1)))
11516 {
11517 rtx inner_op0 = XEXP (op0, 0);
11518 rtx inner_op1 = XEXP (op1, 0);
11519 HOST_WIDE_INT c0 = INTVAL (XEXP (op0, 1));
11520 HOST_WIDE_INT c1 = INTVAL (XEXP (op1, 1));
11521 int changed = 0;
11522
11523 if (paradoxical_subreg_p (inner_op0)
11524 && GET_CODE (inner_op1) == SUBREG
11525 && (GET_MODE (SUBREG_REG (inner_op0))
11526 == GET_MODE (SUBREG_REG (inner_op1)))
11527 && (GET_MODE_PRECISION (GET_MODE (SUBREG_REG (inner_op0)))
11528 <= HOST_BITS_PER_WIDE_INT)
11529 && (0 == ((~c0) & nonzero_bits (SUBREG_REG (inner_op0),
11530 GET_MODE (SUBREG_REG (inner_op0)))))
11531 && (0 == ((~c1) & nonzero_bits (SUBREG_REG (inner_op1),
11532 GET_MODE (SUBREG_REG (inner_op1))))))
11533 {
11534 op0 = SUBREG_REG (inner_op0);
11535 op1 = SUBREG_REG (inner_op1);
11536
11537 /* The resulting comparison is always unsigned since we masked
11538 off the original sign bit. */
11539 code = unsigned_condition (code);
11540
11541 changed = 1;
11542 }
11543
11544 else if (c0 == c1)
11545 for (tmode = GET_CLASS_NARROWEST_MODE
11546 (GET_MODE_CLASS (GET_MODE (op0)));
11547 tmode != GET_MODE (op0); tmode = GET_MODE_WIDER_MODE (tmode))
11548 if ((unsigned HOST_WIDE_INT) c0 == GET_MODE_MASK (tmode))
11549 {
11550 op0 = gen_lowpart (tmode, inner_op0);
11551 op1 = gen_lowpart (tmode, inner_op1);
11552 code = unsigned_condition (code);
11553 changed = 1;
11554 break;
11555 }
11556
11557 if (! changed)
11558 break;
11559 }
11560
11561 /* If both operands are NOT, we can strip off the outer operation
11562 and adjust the comparison code for swapped operands; similarly for
11563 NEG, except that this must be an equality comparison. */
11564 else if ((GET_CODE (op0) == NOT && GET_CODE (op1) == NOT)
11565 || (GET_CODE (op0) == NEG && GET_CODE (op1) == NEG
11566 && (code == EQ || code == NE)))
11567 op0 = XEXP (op0, 0), op1 = XEXP (op1, 0), code = swap_condition (code);
11568
11569 else
11570 break;
11571 }
11572
11573 /* If the first operand is a constant, swap the operands and adjust the
11574 comparison code appropriately, but don't do this if the second operand
11575 is already a constant integer. */
11576 if (swap_commutative_operands_p (op0, op1))
11577 {
11578 std::swap (op0, op1);
11579 code = swap_condition (code);
11580 }
11581
11582 /* We now enter a loop during which we will try to simplify the comparison.
11583 For the most part, we only are concerned with comparisons with zero,
11584 but some things may really be comparisons with zero but not start
11585 out looking that way. */
11586
11587 while (CONST_INT_P (op1))
11588 {
11589 machine_mode mode = GET_MODE (op0);
11590 unsigned int mode_width = GET_MODE_PRECISION (mode);
11591 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
11592 int equality_comparison_p;
11593 int sign_bit_comparison_p;
11594 int unsigned_comparison_p;
11595 HOST_WIDE_INT const_op;
11596
11597 /* We only want to handle integral modes. This catches VOIDmode,
11598 CCmode, and the floating-point modes. An exception is that we
11599 can handle VOIDmode if OP0 is a COMPARE or a comparison
11600 operation. */
11601
11602 if (GET_MODE_CLASS (mode) != MODE_INT
11603 && ! (mode == VOIDmode
11604 && (GET_CODE (op0) == COMPARE || COMPARISON_P (op0))))
11605 break;
11606
11607 /* Try to simplify the compare to constant, possibly changing the
11608 comparison op, and/or changing op1 to zero. */
11609 code = simplify_compare_const (code, mode, op0, &op1);
11610 const_op = INTVAL (op1);
11611
11612 /* Compute some predicates to simplify code below. */
11613
11614 equality_comparison_p = (code == EQ || code == NE);
11615 sign_bit_comparison_p = ((code == LT || code == GE) && const_op == 0);
11616 unsigned_comparison_p = (code == LTU || code == LEU || code == GTU
11617 || code == GEU);
11618
11619 /* If this is a sign bit comparison and we can do arithmetic in
11620 MODE, say that we will only be needing the sign bit of OP0. */
11621 if (sign_bit_comparison_p && HWI_COMPUTABLE_MODE_P (mode))
11622 op0 = force_to_mode (op0, mode,
11623 (unsigned HOST_WIDE_INT) 1
11624 << (GET_MODE_PRECISION (mode) - 1),
11625 0);
11626
11627 /* Now try cases based on the opcode of OP0. If none of the cases
11628 does a "continue", we exit this loop immediately after the
11629 switch. */
11630
11631 switch (GET_CODE (op0))
11632 {
11633 case ZERO_EXTRACT:
11634 /* If we are extracting a single bit from a variable position in
11635 a constant that has only a single bit set and are comparing it
11636 with zero, we can convert this into an equality comparison
11637 between the position and the location of the single bit. */
11638 /* Except we can't if SHIFT_COUNT_TRUNCATED is set, since we might
11639 have already reduced the shift count modulo the word size. */
11640 if (!SHIFT_COUNT_TRUNCATED
11641 && CONST_INT_P (XEXP (op0, 0))
11642 && XEXP (op0, 1) == const1_rtx
11643 && equality_comparison_p && const_op == 0
11644 && (i = exact_log2 (UINTVAL (XEXP (op0, 0)))) >= 0)
11645 {
11646 if (BITS_BIG_ENDIAN)
11647 i = BITS_PER_WORD - 1 - i;
11648
11649 op0 = XEXP (op0, 2);
11650 op1 = GEN_INT (i);
11651 const_op = i;
11652
11653 /* Result is nonzero iff shift count is equal to I. */
11654 code = reverse_condition (code);
11655 continue;
11656 }
11657
11658 /* ... fall through ... */
11659
11660 case SIGN_EXTRACT:
11661 tem = expand_compound_operation (op0);
11662 if (tem != op0)
11663 {
11664 op0 = tem;
11665 continue;
11666 }
11667 break;
11668
11669 case NOT:
11670 /* If testing for equality, we can take the NOT of the constant. */
11671 if (equality_comparison_p
11672 && (tem = simplify_unary_operation (NOT, mode, op1, mode)) != 0)
11673 {
11674 op0 = XEXP (op0, 0);
11675 op1 = tem;
11676 continue;
11677 }
11678
11679 /* If just looking at the sign bit, reverse the sense of the
11680 comparison. */
11681 if (sign_bit_comparison_p)
11682 {
11683 op0 = XEXP (op0, 0);
11684 code = (code == GE ? LT : GE);
11685 continue;
11686 }
11687 break;
11688
11689 case NEG:
11690 /* If testing for equality, we can take the NEG of the constant. */
11691 if (equality_comparison_p
11692 && (tem = simplify_unary_operation (NEG, mode, op1, mode)) != 0)
11693 {
11694 op0 = XEXP (op0, 0);
11695 op1 = tem;
11696 continue;
11697 }
11698
11699 /* The remaining cases only apply to comparisons with zero. */
11700 if (const_op != 0)
11701 break;
11702
11703 /* When X is ABS or is known positive,
11704 (neg X) is < 0 if and only if X != 0. */
11705
11706 if (sign_bit_comparison_p
11707 && (GET_CODE (XEXP (op0, 0)) == ABS
11708 || (mode_width <= HOST_BITS_PER_WIDE_INT
11709 && (nonzero_bits (XEXP (op0, 0), mode)
11710 & ((unsigned HOST_WIDE_INT) 1 << (mode_width - 1)))
11711 == 0)))
11712 {
11713 op0 = XEXP (op0, 0);
11714 code = (code == LT ? NE : EQ);
11715 continue;
11716 }
11717
11718 /* If we have NEG of something whose two high-order bits are the
11719 same, we know that "(-a) < 0" is equivalent to "a > 0". */
11720 if (num_sign_bit_copies (op0, mode) >= 2)
11721 {
11722 op0 = XEXP (op0, 0);
11723 code = swap_condition (code);
11724 continue;
11725 }
11726 break;
11727
11728 case ROTATE:
11729 /* If we are testing equality and our count is a constant, we
11730 can perform the inverse operation on our RHS. */
11731 if (equality_comparison_p && CONST_INT_P (XEXP (op0, 1))
11732 && (tem = simplify_binary_operation (ROTATERT, mode,
11733 op1, XEXP (op0, 1))) != 0)
11734 {
11735 op0 = XEXP (op0, 0);
11736 op1 = tem;
11737 continue;
11738 }
11739
11740 /* If we are doing a < 0 or >= 0 comparison, it means we are testing
11741 a particular bit. Convert it to an AND of a constant of that
11742 bit. This will be converted into a ZERO_EXTRACT. */
11743 if (const_op == 0 && sign_bit_comparison_p
11744 && CONST_INT_P (XEXP (op0, 1))
11745 && mode_width <= HOST_BITS_PER_WIDE_INT)
11746 {
11747 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
11748 ((unsigned HOST_WIDE_INT) 1
11749 << (mode_width - 1
11750 - INTVAL (XEXP (op0, 1)))));
11751 code = (code == LT ? NE : EQ);
11752 continue;
11753 }
11754
11755 /* Fall through. */
11756
11757 case ABS:
11758 /* ABS is ignorable inside an equality comparison with zero. */
11759 if (const_op == 0 && equality_comparison_p)
11760 {
11761 op0 = XEXP (op0, 0);
11762 continue;
11763 }
11764 break;
11765
11766 case SIGN_EXTEND:
11767 /* Can simplify (compare (zero/sign_extend FOO) CONST) to
11768 (compare FOO CONST) if CONST fits in FOO's mode and we
11769 are either testing inequality or have an unsigned
11770 comparison with ZERO_EXTEND or a signed comparison with
11771 SIGN_EXTEND. But don't do it if we don't have a compare
11772 insn of the given mode, since we'd have to revert it
11773 later on, and then we wouldn't know whether to sign- or
11774 zero-extend. */
11775 mode = GET_MODE (XEXP (op0, 0));
11776 if (GET_MODE_CLASS (mode) == MODE_INT
11777 && ! unsigned_comparison_p
11778 && HWI_COMPUTABLE_MODE_P (mode)
11779 && trunc_int_for_mode (const_op, mode) == const_op
11780 && have_insn_for (COMPARE, mode))
11781 {
11782 op0 = XEXP (op0, 0);
11783 continue;
11784 }
11785 break;
11786
11787 case SUBREG:
11788 /* Check for the case where we are comparing A - C1 with C2, that is
11789
11790 (subreg:MODE (plus (A) (-C1))) op (C2)
11791
11792 with C1 a constant, and try to lift the SUBREG, i.e. to do the
11793 comparison in the wider mode. One of the following two conditions
11794 must be true in order for this to be valid:
11795
11796 1. The mode extension results in the same bit pattern being added
11797 on both sides and the comparison is equality or unsigned. As
11798 C2 has been truncated to fit in MODE, the pattern can only be
11799 all 0s or all 1s.
11800
11801 2. The mode extension results in the sign bit being copied on
11802 each side.
11803
11804 The difficulty here is that we have predicates for A but not for
11805 (A - C1) so we need to check that C1 is within proper bounds so
11806 as to perturbate A as little as possible. */
11807
11808 if (mode_width <= HOST_BITS_PER_WIDE_INT
11809 && subreg_lowpart_p (op0)
11810 && GET_MODE_PRECISION (GET_MODE (SUBREG_REG (op0))) > mode_width
11811 && GET_CODE (SUBREG_REG (op0)) == PLUS
11812 && CONST_INT_P (XEXP (SUBREG_REG (op0), 1)))
11813 {
11814 machine_mode inner_mode = GET_MODE (SUBREG_REG (op0));
11815 rtx a = XEXP (SUBREG_REG (op0), 0);
11816 HOST_WIDE_INT c1 = -INTVAL (XEXP (SUBREG_REG (op0), 1));
11817
11818 if ((c1 > 0
11819 && (unsigned HOST_WIDE_INT) c1
11820 < (unsigned HOST_WIDE_INT) 1 << (mode_width - 1)
11821 && (equality_comparison_p || unsigned_comparison_p)
11822 /* (A - C1) zero-extends if it is positive and sign-extends
11823 if it is negative, C2 both zero- and sign-extends. */
11824 && ((0 == (nonzero_bits (a, inner_mode)
11825 & ~GET_MODE_MASK (mode))
11826 && const_op >= 0)
11827 /* (A - C1) sign-extends if it is positive and 1-extends
11828 if it is negative, C2 both sign- and 1-extends. */
11829 || (num_sign_bit_copies (a, inner_mode)
11830 > (unsigned int) (GET_MODE_PRECISION (inner_mode)
11831 - mode_width)
11832 && const_op < 0)))
11833 || ((unsigned HOST_WIDE_INT) c1
11834 < (unsigned HOST_WIDE_INT) 1 << (mode_width - 2)
11835 /* (A - C1) always sign-extends, like C2. */
11836 && num_sign_bit_copies (a, inner_mode)
11837 > (unsigned int) (GET_MODE_PRECISION (inner_mode)
11838 - (mode_width - 1))))
11839 {
11840 op0 = SUBREG_REG (op0);
11841 continue;
11842 }
11843 }
11844
11845 /* If the inner mode is narrower and we are extracting the low part,
11846 we can treat the SUBREG as if it were a ZERO_EXTEND. */
11847 if (subreg_lowpart_p (op0)
11848 && GET_MODE_PRECISION (GET_MODE (SUBREG_REG (op0))) < mode_width)
11849 /* Fall through */ ;
11850 else
11851 break;
11852
11853 /* ... fall through ... */
11854
11855 case ZERO_EXTEND:
11856 mode = GET_MODE (XEXP (op0, 0));
11857 if (GET_MODE_CLASS (mode) == MODE_INT
11858 && (unsigned_comparison_p || equality_comparison_p)
11859 && HWI_COMPUTABLE_MODE_P (mode)
11860 && (unsigned HOST_WIDE_INT) const_op <= GET_MODE_MASK (mode)
11861 && const_op >= 0
11862 && have_insn_for (COMPARE, mode))
11863 {
11864 op0 = XEXP (op0, 0);
11865 continue;
11866 }
11867 break;
11868
11869 case PLUS:
11870 /* (eq (plus X A) B) -> (eq X (minus B A)). We can only do
11871 this for equality comparisons due to pathological cases involving
11872 overflows. */
11873 if (equality_comparison_p
11874 && 0 != (tem = simplify_binary_operation (MINUS, mode,
11875 op1, XEXP (op0, 1))))
11876 {
11877 op0 = XEXP (op0, 0);
11878 op1 = tem;
11879 continue;
11880 }
11881
11882 /* (plus (abs X) (const_int -1)) is < 0 if and only if X == 0. */
11883 if (const_op == 0 && XEXP (op0, 1) == constm1_rtx
11884 && GET_CODE (XEXP (op0, 0)) == ABS && sign_bit_comparison_p)
11885 {
11886 op0 = XEXP (XEXP (op0, 0), 0);
11887 code = (code == LT ? EQ : NE);
11888 continue;
11889 }
11890 break;
11891
11892 case MINUS:
11893 /* We used to optimize signed comparisons against zero, but that
11894 was incorrect. Unsigned comparisons against zero (GTU, LEU)
11895 arrive here as equality comparisons, or (GEU, LTU) are
11896 optimized away. No need to special-case them. */
11897
11898 /* (eq (minus A B) C) -> (eq A (plus B C)) or
11899 (eq B (minus A C)), whichever simplifies. We can only do
11900 this for equality comparisons due to pathological cases involving
11901 overflows. */
11902 if (equality_comparison_p
11903 && 0 != (tem = simplify_binary_operation (PLUS, mode,
11904 XEXP (op0, 1), op1)))
11905 {
11906 op0 = XEXP (op0, 0);
11907 op1 = tem;
11908 continue;
11909 }
11910
11911 if (equality_comparison_p
11912 && 0 != (tem = simplify_binary_operation (MINUS, mode,
11913 XEXP (op0, 0), op1)))
11914 {
11915 op0 = XEXP (op0, 1);
11916 op1 = tem;
11917 continue;
11918 }
11919
11920 /* The sign bit of (minus (ashiftrt X C) X), where C is the number
11921 of bits in X minus 1, is one iff X > 0. */
11922 if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 0)) == ASHIFTRT
11923 && CONST_INT_P (XEXP (XEXP (op0, 0), 1))
11924 && UINTVAL (XEXP (XEXP (op0, 0), 1)) == mode_width - 1
11925 && rtx_equal_p (XEXP (XEXP (op0, 0), 0), XEXP (op0, 1)))
11926 {
11927 op0 = XEXP (op0, 1);
11928 code = (code == GE ? LE : GT);
11929 continue;
11930 }
11931 break;
11932
11933 case XOR:
11934 /* (eq (xor A B) C) -> (eq A (xor B C)). This is a simplification
11935 if C is zero or B is a constant. */
11936 if (equality_comparison_p
11937 && 0 != (tem = simplify_binary_operation (XOR, mode,
11938 XEXP (op0, 1), op1)))
11939 {
11940 op0 = XEXP (op0, 0);
11941 op1 = tem;
11942 continue;
11943 }
11944 break;
11945
11946 case EQ: case NE:
11947 case UNEQ: case LTGT:
11948 case LT: case LTU: case UNLT: case LE: case LEU: case UNLE:
11949 case GT: case GTU: case UNGT: case GE: case GEU: case UNGE:
11950 case UNORDERED: case ORDERED:
11951 /* We can't do anything if OP0 is a condition code value, rather
11952 than an actual data value. */
11953 if (const_op != 0
11954 || CC0_P (XEXP (op0, 0))
11955 || GET_MODE_CLASS (GET_MODE (XEXP (op0, 0))) == MODE_CC)
11956 break;
11957
11958 /* Get the two operands being compared. */
11959 if (GET_CODE (XEXP (op0, 0)) == COMPARE)
11960 tem = XEXP (XEXP (op0, 0), 0), tem1 = XEXP (XEXP (op0, 0), 1);
11961 else
11962 tem = XEXP (op0, 0), tem1 = XEXP (op0, 1);
11963
11964 /* Check for the cases where we simply want the result of the
11965 earlier test or the opposite of that result. */
11966 if (code == NE || code == EQ
11967 || (val_signbit_known_set_p (GET_MODE (op0), STORE_FLAG_VALUE)
11968 && (code == LT || code == GE)))
11969 {
11970 enum rtx_code new_code;
11971 if (code == LT || code == NE)
11972 new_code = GET_CODE (op0);
11973 else
11974 new_code = reversed_comparison_code (op0, NULL);
11975
11976 if (new_code != UNKNOWN)
11977 {
11978 code = new_code;
11979 op0 = tem;
11980 op1 = tem1;
11981 continue;
11982 }
11983 }
11984 break;
11985
11986 case IOR:
11987 /* The sign bit of (ior (plus X (const_int -1)) X) is nonzero
11988 iff X <= 0. */
11989 if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 0)) == PLUS
11990 && XEXP (XEXP (op0, 0), 1) == constm1_rtx
11991 && rtx_equal_p (XEXP (XEXP (op0, 0), 0), XEXP (op0, 1)))
11992 {
11993 op0 = XEXP (op0, 1);
11994 code = (code == GE ? GT : LE);
11995 continue;
11996 }
11997 break;
11998
11999 case AND:
12000 /* Convert (and (xshift 1 X) Y) to (and (lshiftrt Y X) 1). This
12001 will be converted to a ZERO_EXTRACT later. */
12002 if (const_op == 0 && equality_comparison_p
12003 && GET_CODE (XEXP (op0, 0)) == ASHIFT
12004 && XEXP (XEXP (op0, 0), 0) == const1_rtx)
12005 {
12006 op0 = gen_rtx_LSHIFTRT (mode, XEXP (op0, 1),
12007 XEXP (XEXP (op0, 0), 1));
12008 op0 = simplify_and_const_int (NULL_RTX, mode, op0, 1);
12009 continue;
12010 }
12011
12012 /* If we are comparing (and (lshiftrt X C1) C2) for equality with
12013 zero and X is a comparison and C1 and C2 describe only bits set
12014 in STORE_FLAG_VALUE, we can compare with X. */
12015 if (const_op == 0 && equality_comparison_p
12016 && mode_width <= HOST_BITS_PER_WIDE_INT
12017 && CONST_INT_P (XEXP (op0, 1))
12018 && GET_CODE (XEXP (op0, 0)) == LSHIFTRT
12019 && CONST_INT_P (XEXP (XEXP (op0, 0), 1))
12020 && INTVAL (XEXP (XEXP (op0, 0), 1)) >= 0
12021 && INTVAL (XEXP (XEXP (op0, 0), 1)) < HOST_BITS_PER_WIDE_INT)
12022 {
12023 mask = ((INTVAL (XEXP (op0, 1)) & GET_MODE_MASK (mode))
12024 << INTVAL (XEXP (XEXP (op0, 0), 1)));
12025 if ((~STORE_FLAG_VALUE & mask) == 0
12026 && (COMPARISON_P (XEXP (XEXP (op0, 0), 0))
12027 || ((tem = get_last_value (XEXP (XEXP (op0, 0), 0))) != 0
12028 && COMPARISON_P (tem))))
12029 {
12030 op0 = XEXP (XEXP (op0, 0), 0);
12031 continue;
12032 }
12033 }
12034
12035 /* If we are doing an equality comparison of an AND of a bit equal
12036 to the sign bit, replace this with a LT or GE comparison of
12037 the underlying value. */
12038 if (equality_comparison_p
12039 && const_op == 0
12040 && CONST_INT_P (XEXP (op0, 1))
12041 && mode_width <= HOST_BITS_PER_WIDE_INT
12042 && ((INTVAL (XEXP (op0, 1)) & GET_MODE_MASK (mode))
12043 == (unsigned HOST_WIDE_INT) 1 << (mode_width - 1)))
12044 {
12045 op0 = XEXP (op0, 0);
12046 code = (code == EQ ? GE : LT);
12047 continue;
12048 }
12049
12050 /* If this AND operation is really a ZERO_EXTEND from a narrower
12051 mode, the constant fits within that mode, and this is either an
12052 equality or unsigned comparison, try to do this comparison in
12053 the narrower mode.
12054
12055 Note that in:
12056
12057 (ne:DI (and:DI (reg:DI 4) (const_int 0xffffffff)) (const_int 0))
12058 -> (ne:DI (reg:SI 4) (const_int 0))
12059
12060 unless TRULY_NOOP_TRUNCATION allows it or the register is
12061 known to hold a value of the required mode the
12062 transformation is invalid. */
12063 if ((equality_comparison_p || unsigned_comparison_p)
12064 && CONST_INT_P (XEXP (op0, 1))
12065 && (i = exact_log2 ((UINTVAL (XEXP (op0, 1))
12066 & GET_MODE_MASK (mode))
12067 + 1)) >= 0
12068 && const_op >> i == 0
12069 && (tmode = mode_for_size (i, MODE_INT, 1)) != BLKmode
12070 && (TRULY_NOOP_TRUNCATION_MODES_P (tmode, GET_MODE (op0))
12071 || (REG_P (XEXP (op0, 0))
12072 && reg_truncated_to_mode (tmode, XEXP (op0, 0)))))
12073 {
12074 op0 = gen_lowpart (tmode, XEXP (op0, 0));
12075 continue;
12076 }
12077
12078 /* If this is (and:M1 (subreg:M2 X 0) (const_int C1)) where C1
12079 fits in both M1 and M2 and the SUBREG is either paradoxical
12080 or represents the low part, permute the SUBREG and the AND
12081 and try again. */
12082 if (GET_CODE (XEXP (op0, 0)) == SUBREG)
12083 {
12084 unsigned HOST_WIDE_INT c1;
12085 tmode = GET_MODE (SUBREG_REG (XEXP (op0, 0)));
12086 /* Require an integral mode, to avoid creating something like
12087 (AND:SF ...). */
12088 if (SCALAR_INT_MODE_P (tmode)
12089 /* It is unsafe to commute the AND into the SUBREG if the
12090 SUBREG is paradoxical and WORD_REGISTER_OPERATIONS is
12091 not defined. As originally written the upper bits
12092 have a defined value due to the AND operation.
12093 However, if we commute the AND inside the SUBREG then
12094 they no longer have defined values and the meaning of
12095 the code has been changed. */
12096 && (0
12097 #ifdef WORD_REGISTER_OPERATIONS
12098 || (mode_width > GET_MODE_PRECISION (tmode)
12099 && mode_width <= BITS_PER_WORD)
12100 #endif
12101 || (mode_width <= GET_MODE_PRECISION (tmode)
12102 && subreg_lowpart_p (XEXP (op0, 0))))
12103 && CONST_INT_P (XEXP (op0, 1))
12104 && mode_width <= HOST_BITS_PER_WIDE_INT
12105 && HWI_COMPUTABLE_MODE_P (tmode)
12106 && ((c1 = INTVAL (XEXP (op0, 1))) & ~mask) == 0
12107 && (c1 & ~GET_MODE_MASK (tmode)) == 0
12108 && c1 != mask
12109 && c1 != GET_MODE_MASK (tmode))
12110 {
12111 op0 = simplify_gen_binary (AND, tmode,
12112 SUBREG_REG (XEXP (op0, 0)),
12113 gen_int_mode (c1, tmode));
12114 op0 = gen_lowpart (mode, op0);
12115 continue;
12116 }
12117 }
12118
12119 /* Convert (ne (and (not X) 1) 0) to (eq (and X 1) 0). */
12120 if (const_op == 0 && equality_comparison_p
12121 && XEXP (op0, 1) == const1_rtx
12122 && GET_CODE (XEXP (op0, 0)) == NOT)
12123 {
12124 op0 = simplify_and_const_int (NULL_RTX, mode,
12125 XEXP (XEXP (op0, 0), 0), 1);
12126 code = (code == NE ? EQ : NE);
12127 continue;
12128 }
12129
12130 /* Convert (ne (and (lshiftrt (not X)) 1) 0) to
12131 (eq (and (lshiftrt X) 1) 0).
12132 Also handle the case where (not X) is expressed using xor. */
12133 if (const_op == 0 && equality_comparison_p
12134 && XEXP (op0, 1) == const1_rtx
12135 && GET_CODE (XEXP (op0, 0)) == LSHIFTRT)
12136 {
12137 rtx shift_op = XEXP (XEXP (op0, 0), 0);
12138 rtx shift_count = XEXP (XEXP (op0, 0), 1);
12139
12140 if (GET_CODE (shift_op) == NOT
12141 || (GET_CODE (shift_op) == XOR
12142 && CONST_INT_P (XEXP (shift_op, 1))
12143 && CONST_INT_P (shift_count)
12144 && HWI_COMPUTABLE_MODE_P (mode)
12145 && (UINTVAL (XEXP (shift_op, 1))
12146 == (unsigned HOST_WIDE_INT) 1
12147 << INTVAL (shift_count))))
12148 {
12149 op0
12150 = gen_rtx_LSHIFTRT (mode, XEXP (shift_op, 0), shift_count);
12151 op0 = simplify_and_const_int (NULL_RTX, mode, op0, 1);
12152 code = (code == NE ? EQ : NE);
12153 continue;
12154 }
12155 }
12156 break;
12157
12158 case ASHIFT:
12159 /* If we have (compare (ashift FOO N) (const_int C)) and
12160 the high order N bits of FOO (N+1 if an inequality comparison)
12161 are known to be zero, we can do this by comparing FOO with C
12162 shifted right N bits so long as the low-order N bits of C are
12163 zero. */
12164 if (CONST_INT_P (XEXP (op0, 1))
12165 && INTVAL (XEXP (op0, 1)) >= 0
12166 && ((INTVAL (XEXP (op0, 1)) + ! equality_comparison_p)
12167 < HOST_BITS_PER_WIDE_INT)
12168 && (((unsigned HOST_WIDE_INT) const_op
12169 & (((unsigned HOST_WIDE_INT) 1 << INTVAL (XEXP (op0, 1)))
12170 - 1)) == 0)
12171 && mode_width <= HOST_BITS_PER_WIDE_INT
12172 && (nonzero_bits (XEXP (op0, 0), mode)
12173 & ~(mask >> (INTVAL (XEXP (op0, 1))
12174 + ! equality_comparison_p))) == 0)
12175 {
12176 /* We must perform a logical shift, not an arithmetic one,
12177 as we want the top N bits of C to be zero. */
12178 unsigned HOST_WIDE_INT temp = const_op & GET_MODE_MASK (mode);
12179
12180 temp >>= INTVAL (XEXP (op0, 1));
12181 op1 = gen_int_mode (temp, mode);
12182 op0 = XEXP (op0, 0);
12183 continue;
12184 }
12185
12186 /* If we are doing a sign bit comparison, it means we are testing
12187 a particular bit. Convert it to the appropriate AND. */
12188 if (sign_bit_comparison_p && CONST_INT_P (XEXP (op0, 1))
12189 && mode_width <= HOST_BITS_PER_WIDE_INT)
12190 {
12191 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
12192 ((unsigned HOST_WIDE_INT) 1
12193 << (mode_width - 1
12194 - INTVAL (XEXP (op0, 1)))));
12195 code = (code == LT ? NE : EQ);
12196 continue;
12197 }
12198
12199 /* If this an equality comparison with zero and we are shifting
12200 the low bit to the sign bit, we can convert this to an AND of the
12201 low-order bit. */
12202 if (const_op == 0 && equality_comparison_p
12203 && CONST_INT_P (XEXP (op0, 1))
12204 && UINTVAL (XEXP (op0, 1)) == mode_width - 1)
12205 {
12206 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0), 1);
12207 continue;
12208 }
12209 break;
12210
12211 case ASHIFTRT:
12212 /* If this is an equality comparison with zero, we can do this
12213 as a logical shift, which might be much simpler. */
12214 if (equality_comparison_p && const_op == 0
12215 && CONST_INT_P (XEXP (op0, 1)))
12216 {
12217 op0 = simplify_shift_const (NULL_RTX, LSHIFTRT, mode,
12218 XEXP (op0, 0),
12219 INTVAL (XEXP (op0, 1)));
12220 continue;
12221 }
12222
12223 /* If OP0 is a sign extension and CODE is not an unsigned comparison,
12224 do the comparison in a narrower mode. */
12225 if (! unsigned_comparison_p
12226 && CONST_INT_P (XEXP (op0, 1))
12227 && GET_CODE (XEXP (op0, 0)) == ASHIFT
12228 && XEXP (op0, 1) == XEXP (XEXP (op0, 0), 1)
12229 && (tmode = mode_for_size (mode_width - INTVAL (XEXP (op0, 1)),
12230 MODE_INT, 1)) != BLKmode
12231 && (((unsigned HOST_WIDE_INT) const_op
12232 + (GET_MODE_MASK (tmode) >> 1) + 1)
12233 <= GET_MODE_MASK (tmode)))
12234 {
12235 op0 = gen_lowpart (tmode, XEXP (XEXP (op0, 0), 0));
12236 continue;
12237 }
12238
12239 /* Likewise if OP0 is a PLUS of a sign extension with a
12240 constant, which is usually represented with the PLUS
12241 between the shifts. */
12242 if (! unsigned_comparison_p
12243 && CONST_INT_P (XEXP (op0, 1))
12244 && GET_CODE (XEXP (op0, 0)) == PLUS
12245 && CONST_INT_P (XEXP (XEXP (op0, 0), 1))
12246 && GET_CODE (XEXP (XEXP (op0, 0), 0)) == ASHIFT
12247 && XEXP (op0, 1) == XEXP (XEXP (XEXP (op0, 0), 0), 1)
12248 && (tmode = mode_for_size (mode_width - INTVAL (XEXP (op0, 1)),
12249 MODE_INT, 1)) != BLKmode
12250 && (((unsigned HOST_WIDE_INT) const_op
12251 + (GET_MODE_MASK (tmode) >> 1) + 1)
12252 <= GET_MODE_MASK (tmode)))
12253 {
12254 rtx inner = XEXP (XEXP (XEXP (op0, 0), 0), 0);
12255 rtx add_const = XEXP (XEXP (op0, 0), 1);
12256 rtx new_const = simplify_gen_binary (ASHIFTRT, GET_MODE (op0),
12257 add_const, XEXP (op0, 1));
12258
12259 op0 = simplify_gen_binary (PLUS, tmode,
12260 gen_lowpart (tmode, inner),
12261 new_const);
12262 continue;
12263 }
12264
12265 /* ... fall through ... */
12266 case LSHIFTRT:
12267 /* If we have (compare (xshiftrt FOO N) (const_int C)) and
12268 the low order N bits of FOO are known to be zero, we can do this
12269 by comparing FOO with C shifted left N bits so long as no
12270 overflow occurs. Even if the low order N bits of FOO aren't known
12271 to be zero, if the comparison is >= or < we can use the same
12272 optimization and for > or <= by setting all the low
12273 order N bits in the comparison constant. */
12274 if (CONST_INT_P (XEXP (op0, 1))
12275 && INTVAL (XEXP (op0, 1)) > 0
12276 && INTVAL (XEXP (op0, 1)) < HOST_BITS_PER_WIDE_INT
12277 && mode_width <= HOST_BITS_PER_WIDE_INT
12278 && (((unsigned HOST_WIDE_INT) const_op
12279 + (GET_CODE (op0) != LSHIFTRT
12280 ? ((GET_MODE_MASK (mode) >> INTVAL (XEXP (op0, 1)) >> 1)
12281 + 1)
12282 : 0))
12283 <= GET_MODE_MASK (mode) >> INTVAL (XEXP (op0, 1))))
12284 {
12285 unsigned HOST_WIDE_INT low_bits
12286 = (nonzero_bits (XEXP (op0, 0), mode)
12287 & (((unsigned HOST_WIDE_INT) 1
12288 << INTVAL (XEXP (op0, 1))) - 1));
12289 if (low_bits == 0 || !equality_comparison_p)
12290 {
12291 /* If the shift was logical, then we must make the condition
12292 unsigned. */
12293 if (GET_CODE (op0) == LSHIFTRT)
12294 code = unsigned_condition (code);
12295
12296 const_op <<= INTVAL (XEXP (op0, 1));
12297 if (low_bits != 0
12298 && (code == GT || code == GTU
12299 || code == LE || code == LEU))
12300 const_op
12301 |= (((HOST_WIDE_INT) 1 << INTVAL (XEXP (op0, 1))) - 1);
12302 op1 = GEN_INT (const_op);
12303 op0 = XEXP (op0, 0);
12304 continue;
12305 }
12306 }
12307
12308 /* If we are using this shift to extract just the sign bit, we
12309 can replace this with an LT or GE comparison. */
12310 if (const_op == 0
12311 && (equality_comparison_p || sign_bit_comparison_p)
12312 && CONST_INT_P (XEXP (op0, 1))
12313 && UINTVAL (XEXP (op0, 1)) == mode_width - 1)
12314 {
12315 op0 = XEXP (op0, 0);
12316 code = (code == NE || code == GT ? LT : GE);
12317 continue;
12318 }
12319 break;
12320
12321 default:
12322 break;
12323 }
12324
12325 break;
12326 }
12327
12328 /* Now make any compound operations involved in this comparison. Then,
12329 check for an outmost SUBREG on OP0 that is not doing anything or is
12330 paradoxical. The latter transformation must only be performed when
12331 it is known that the "extra" bits will be the same in op0 and op1 or
12332 that they don't matter. There are three cases to consider:
12333
12334 1. SUBREG_REG (op0) is a register. In this case the bits are don't
12335 care bits and we can assume they have any convenient value. So
12336 making the transformation is safe.
12337
12338 2. SUBREG_REG (op0) is a memory and LOAD_EXTEND_OP is not defined.
12339 In this case the upper bits of op0 are undefined. We should not make
12340 the simplification in that case as we do not know the contents of
12341 those bits.
12342
12343 3. SUBREG_REG (op0) is a memory and LOAD_EXTEND_OP is defined and not
12344 UNKNOWN. In that case we know those bits are zeros or ones. We must
12345 also be sure that they are the same as the upper bits of op1.
12346
12347 We can never remove a SUBREG for a non-equality comparison because
12348 the sign bit is in a different place in the underlying object. */
12349
12350 op0 = make_compound_operation (op0, op1 == const0_rtx ? COMPARE : SET);
12351 op1 = make_compound_operation (op1, SET);
12352
12353 if (GET_CODE (op0) == SUBREG && subreg_lowpart_p (op0)
12354 && GET_MODE_CLASS (GET_MODE (op0)) == MODE_INT
12355 && GET_MODE_CLASS (GET_MODE (SUBREG_REG (op0))) == MODE_INT
12356 && (code == NE || code == EQ))
12357 {
12358 if (paradoxical_subreg_p (op0))
12359 {
12360 /* For paradoxical subregs, allow case 1 as above. Case 3 isn't
12361 implemented. */
12362 if (REG_P (SUBREG_REG (op0)))
12363 {
12364 op0 = SUBREG_REG (op0);
12365 op1 = gen_lowpart (GET_MODE (op0), op1);
12366 }
12367 }
12368 else if ((GET_MODE_PRECISION (GET_MODE (SUBREG_REG (op0)))
12369 <= HOST_BITS_PER_WIDE_INT)
12370 && (nonzero_bits (SUBREG_REG (op0),
12371 GET_MODE (SUBREG_REG (op0)))
12372 & ~GET_MODE_MASK (GET_MODE (op0))) == 0)
12373 {
12374 tem = gen_lowpart (GET_MODE (SUBREG_REG (op0)), op1);
12375
12376 if ((nonzero_bits (tem, GET_MODE (SUBREG_REG (op0)))
12377 & ~GET_MODE_MASK (GET_MODE (op0))) == 0)
12378 op0 = SUBREG_REG (op0), op1 = tem;
12379 }
12380 }
12381
12382 /* We now do the opposite procedure: Some machines don't have compare
12383 insns in all modes. If OP0's mode is an integer mode smaller than a
12384 word and we can't do a compare in that mode, see if there is a larger
12385 mode for which we can do the compare. There are a number of cases in
12386 which we can use the wider mode. */
12387
12388 mode = GET_MODE (op0);
12389 if (mode != VOIDmode && GET_MODE_CLASS (mode) == MODE_INT
12390 && GET_MODE_SIZE (mode) < UNITS_PER_WORD
12391 && ! have_insn_for (COMPARE, mode))
12392 for (tmode = GET_MODE_WIDER_MODE (mode);
12393 (tmode != VOIDmode && HWI_COMPUTABLE_MODE_P (tmode));
12394 tmode = GET_MODE_WIDER_MODE (tmode))
12395 if (have_insn_for (COMPARE, tmode))
12396 {
12397 int zero_extended;
12398
12399 /* If this is a test for negative, we can make an explicit
12400 test of the sign bit. Test this first so we can use
12401 a paradoxical subreg to extend OP0. */
12402
12403 if (op1 == const0_rtx && (code == LT || code == GE)
12404 && HWI_COMPUTABLE_MODE_P (mode))
12405 {
12406 unsigned HOST_WIDE_INT sign
12407 = (unsigned HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (mode) - 1);
12408 op0 = simplify_gen_binary (AND, tmode,
12409 gen_lowpart (tmode, op0),
12410 gen_int_mode (sign, tmode));
12411 code = (code == LT) ? NE : EQ;
12412 break;
12413 }
12414
12415 /* If the only nonzero bits in OP0 and OP1 are those in the
12416 narrower mode and this is an equality or unsigned comparison,
12417 we can use the wider mode. Similarly for sign-extended
12418 values, in which case it is true for all comparisons. */
12419 zero_extended = ((code == EQ || code == NE
12420 || code == GEU || code == GTU
12421 || code == LEU || code == LTU)
12422 && (nonzero_bits (op0, tmode)
12423 & ~GET_MODE_MASK (mode)) == 0
12424 && ((CONST_INT_P (op1)
12425 || (nonzero_bits (op1, tmode)
12426 & ~GET_MODE_MASK (mode)) == 0)));
12427
12428 if (zero_extended
12429 || ((num_sign_bit_copies (op0, tmode)
12430 > (unsigned int) (GET_MODE_PRECISION (tmode)
12431 - GET_MODE_PRECISION (mode)))
12432 && (num_sign_bit_copies (op1, tmode)
12433 > (unsigned int) (GET_MODE_PRECISION (tmode)
12434 - GET_MODE_PRECISION (mode)))))
12435 {
12436 /* If OP0 is an AND and we don't have an AND in MODE either,
12437 make a new AND in the proper mode. */
12438 if (GET_CODE (op0) == AND
12439 && !have_insn_for (AND, mode))
12440 op0 = simplify_gen_binary (AND, tmode,
12441 gen_lowpart (tmode,
12442 XEXP (op0, 0)),
12443 gen_lowpart (tmode,
12444 XEXP (op0, 1)));
12445 else
12446 {
12447 if (zero_extended)
12448 {
12449 op0 = simplify_gen_unary (ZERO_EXTEND, tmode, op0, mode);
12450 op1 = simplify_gen_unary (ZERO_EXTEND, tmode, op1, mode);
12451 }
12452 else
12453 {
12454 op0 = simplify_gen_unary (SIGN_EXTEND, tmode, op0, mode);
12455 op1 = simplify_gen_unary (SIGN_EXTEND, tmode, op1, mode);
12456 }
12457 break;
12458 }
12459 }
12460 }
12461
12462 /* We may have changed the comparison operands. Re-canonicalize. */
12463 if (swap_commutative_operands_p (op0, op1))
12464 {
12465 std::swap (op0, op1);
12466 code = swap_condition (code);
12467 }
12468
12469 /* If this machine only supports a subset of valid comparisons, see if we
12470 can convert an unsupported one into a supported one. */
12471 target_canonicalize_comparison (&code, &op0, &op1, 0);
12472
12473 *pop0 = op0;
12474 *pop1 = op1;
12475
12476 return code;
12477 }
12478 \f
12479 /* Utility function for record_value_for_reg. Count number of
12480 rtxs in X. */
12481 static int
12482 count_rtxs (rtx x)
12483 {
12484 enum rtx_code code = GET_CODE (x);
12485 const char *fmt;
12486 int i, j, ret = 1;
12487
12488 if (GET_RTX_CLASS (code) == RTX_BIN_ARITH
12489 || GET_RTX_CLASS (code) == RTX_COMM_ARITH)
12490 {
12491 rtx x0 = XEXP (x, 0);
12492 rtx x1 = XEXP (x, 1);
12493
12494 if (x0 == x1)
12495 return 1 + 2 * count_rtxs (x0);
12496
12497 if ((GET_RTX_CLASS (GET_CODE (x1)) == RTX_BIN_ARITH
12498 || GET_RTX_CLASS (GET_CODE (x1)) == RTX_COMM_ARITH)
12499 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
12500 return 2 + 2 * count_rtxs (x0)
12501 + count_rtxs (x == XEXP (x1, 0)
12502 ? XEXP (x1, 1) : XEXP (x1, 0));
12503
12504 if ((GET_RTX_CLASS (GET_CODE (x0)) == RTX_BIN_ARITH
12505 || GET_RTX_CLASS (GET_CODE (x0)) == RTX_COMM_ARITH)
12506 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
12507 return 2 + 2 * count_rtxs (x1)
12508 + count_rtxs (x == XEXP (x0, 0)
12509 ? XEXP (x0, 1) : XEXP (x0, 0));
12510 }
12511
12512 fmt = GET_RTX_FORMAT (code);
12513 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
12514 if (fmt[i] == 'e')
12515 ret += count_rtxs (XEXP (x, i));
12516 else if (fmt[i] == 'E')
12517 for (j = 0; j < XVECLEN (x, i); j++)
12518 ret += count_rtxs (XVECEXP (x, i, j));
12519
12520 return ret;
12521 }
12522 \f
12523 /* Utility function for following routine. Called when X is part of a value
12524 being stored into last_set_value. Sets last_set_table_tick
12525 for each register mentioned. Similar to mention_regs in cse.c */
12526
12527 static void
12528 update_table_tick (rtx x)
12529 {
12530 enum rtx_code code = GET_CODE (x);
12531 const char *fmt = GET_RTX_FORMAT (code);
12532 int i, j;
12533
12534 if (code == REG)
12535 {
12536 unsigned int regno = REGNO (x);
12537 unsigned int endregno = END_REGNO (x);
12538 unsigned int r;
12539
12540 for (r = regno; r < endregno; r++)
12541 {
12542 reg_stat_type *rsp = &reg_stat[r];
12543 rsp->last_set_table_tick = label_tick;
12544 }
12545
12546 return;
12547 }
12548
12549 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
12550 if (fmt[i] == 'e')
12551 {
12552 /* Check for identical subexpressions. If x contains
12553 identical subexpression we only have to traverse one of
12554 them. */
12555 if (i == 0 && ARITHMETIC_P (x))
12556 {
12557 /* Note that at this point x1 has already been
12558 processed. */
12559 rtx x0 = XEXP (x, 0);
12560 rtx x1 = XEXP (x, 1);
12561
12562 /* If x0 and x1 are identical then there is no need to
12563 process x0. */
12564 if (x0 == x1)
12565 break;
12566
12567 /* If x0 is identical to a subexpression of x1 then while
12568 processing x1, x0 has already been processed. Thus we
12569 are done with x. */
12570 if (ARITHMETIC_P (x1)
12571 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
12572 break;
12573
12574 /* If x1 is identical to a subexpression of x0 then we
12575 still have to process the rest of x0. */
12576 if (ARITHMETIC_P (x0)
12577 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
12578 {
12579 update_table_tick (XEXP (x0, x1 == XEXP (x0, 0) ? 1 : 0));
12580 break;
12581 }
12582 }
12583
12584 update_table_tick (XEXP (x, i));
12585 }
12586 else if (fmt[i] == 'E')
12587 for (j = 0; j < XVECLEN (x, i); j++)
12588 update_table_tick (XVECEXP (x, i, j));
12589 }
12590
12591 /* Record that REG is set to VALUE in insn INSN. If VALUE is zero, we
12592 are saying that the register is clobbered and we no longer know its
12593 value. If INSN is zero, don't update reg_stat[].last_set; this is
12594 only permitted with VALUE also zero and is used to invalidate the
12595 register. */
12596
12597 static void
12598 record_value_for_reg (rtx reg, rtx_insn *insn, rtx value)
12599 {
12600 unsigned int regno = REGNO (reg);
12601 unsigned int endregno = END_REGNO (reg);
12602 unsigned int i;
12603 reg_stat_type *rsp;
12604
12605 /* If VALUE contains REG and we have a previous value for REG, substitute
12606 the previous value. */
12607 if (value && insn && reg_overlap_mentioned_p (reg, value))
12608 {
12609 rtx tem;
12610
12611 /* Set things up so get_last_value is allowed to see anything set up to
12612 our insn. */
12613 subst_low_luid = DF_INSN_LUID (insn);
12614 tem = get_last_value (reg);
12615
12616 /* If TEM is simply a binary operation with two CLOBBERs as operands,
12617 it isn't going to be useful and will take a lot of time to process,
12618 so just use the CLOBBER. */
12619
12620 if (tem)
12621 {
12622 if (ARITHMETIC_P (tem)
12623 && GET_CODE (XEXP (tem, 0)) == CLOBBER
12624 && GET_CODE (XEXP (tem, 1)) == CLOBBER)
12625 tem = XEXP (tem, 0);
12626 else if (count_occurrences (value, reg, 1) >= 2)
12627 {
12628 /* If there are two or more occurrences of REG in VALUE,
12629 prevent the value from growing too much. */
12630 if (count_rtxs (tem) > MAX_LAST_VALUE_RTL)
12631 tem = gen_rtx_CLOBBER (GET_MODE (tem), const0_rtx);
12632 }
12633
12634 value = replace_rtx (copy_rtx (value), reg, tem);
12635 }
12636 }
12637
12638 /* For each register modified, show we don't know its value, that
12639 we don't know about its bitwise content, that its value has been
12640 updated, and that we don't know the location of the death of the
12641 register. */
12642 for (i = regno; i < endregno; i++)
12643 {
12644 rsp = &reg_stat[i];
12645
12646 if (insn)
12647 rsp->last_set = insn;
12648
12649 rsp->last_set_value = 0;
12650 rsp->last_set_mode = VOIDmode;
12651 rsp->last_set_nonzero_bits = 0;
12652 rsp->last_set_sign_bit_copies = 0;
12653 rsp->last_death = 0;
12654 rsp->truncated_to_mode = VOIDmode;
12655 }
12656
12657 /* Mark registers that are being referenced in this value. */
12658 if (value)
12659 update_table_tick (value);
12660
12661 /* Now update the status of each register being set.
12662 If someone is using this register in this block, set this register
12663 to invalid since we will get confused between the two lives in this
12664 basic block. This makes using this register always invalid. In cse, we
12665 scan the table to invalidate all entries using this register, but this
12666 is too much work for us. */
12667
12668 for (i = regno; i < endregno; i++)
12669 {
12670 rsp = &reg_stat[i];
12671 rsp->last_set_label = label_tick;
12672 if (!insn
12673 || (value && rsp->last_set_table_tick >= label_tick_ebb_start))
12674 rsp->last_set_invalid = 1;
12675 else
12676 rsp->last_set_invalid = 0;
12677 }
12678
12679 /* The value being assigned might refer to X (like in "x++;"). In that
12680 case, we must replace it with (clobber (const_int 0)) to prevent
12681 infinite loops. */
12682 rsp = &reg_stat[regno];
12683 if (value && !get_last_value_validate (&value, insn, label_tick, 0))
12684 {
12685 value = copy_rtx (value);
12686 if (!get_last_value_validate (&value, insn, label_tick, 1))
12687 value = 0;
12688 }
12689
12690 /* For the main register being modified, update the value, the mode, the
12691 nonzero bits, and the number of sign bit copies. */
12692
12693 rsp->last_set_value = value;
12694
12695 if (value)
12696 {
12697 machine_mode mode = GET_MODE (reg);
12698 subst_low_luid = DF_INSN_LUID (insn);
12699 rsp->last_set_mode = mode;
12700 if (GET_MODE_CLASS (mode) == MODE_INT
12701 && HWI_COMPUTABLE_MODE_P (mode))
12702 mode = nonzero_bits_mode;
12703 rsp->last_set_nonzero_bits = nonzero_bits (value, mode);
12704 rsp->last_set_sign_bit_copies
12705 = num_sign_bit_copies (value, GET_MODE (reg));
12706 }
12707 }
12708
12709 /* Called via note_stores from record_dead_and_set_regs to handle one
12710 SET or CLOBBER in an insn. DATA is the instruction in which the
12711 set is occurring. */
12712
12713 static void
12714 record_dead_and_set_regs_1 (rtx dest, const_rtx setter, void *data)
12715 {
12716 rtx_insn *record_dead_insn = (rtx_insn *) data;
12717
12718 if (GET_CODE (dest) == SUBREG)
12719 dest = SUBREG_REG (dest);
12720
12721 if (!record_dead_insn)
12722 {
12723 if (REG_P (dest))
12724 record_value_for_reg (dest, NULL, NULL_RTX);
12725 return;
12726 }
12727
12728 if (REG_P (dest))
12729 {
12730 /* If we are setting the whole register, we know its value. Otherwise
12731 show that we don't know the value. We can handle SUBREG in
12732 some cases. */
12733 if (GET_CODE (setter) == SET && dest == SET_DEST (setter))
12734 record_value_for_reg (dest, record_dead_insn, SET_SRC (setter));
12735 else if (GET_CODE (setter) == SET
12736 && GET_CODE (SET_DEST (setter)) == SUBREG
12737 && SUBREG_REG (SET_DEST (setter)) == dest
12738 && GET_MODE_PRECISION (GET_MODE (dest)) <= BITS_PER_WORD
12739 && subreg_lowpart_p (SET_DEST (setter)))
12740 record_value_for_reg (dest, record_dead_insn,
12741 gen_lowpart (GET_MODE (dest),
12742 SET_SRC (setter)));
12743 else
12744 record_value_for_reg (dest, record_dead_insn, NULL_RTX);
12745 }
12746 else if (MEM_P (dest)
12747 /* Ignore pushes, they clobber nothing. */
12748 && ! push_operand (dest, GET_MODE (dest)))
12749 mem_last_set = DF_INSN_LUID (record_dead_insn);
12750 }
12751
12752 /* Update the records of when each REG was most recently set or killed
12753 for the things done by INSN. This is the last thing done in processing
12754 INSN in the combiner loop.
12755
12756 We update reg_stat[], in particular fields last_set, last_set_value,
12757 last_set_mode, last_set_nonzero_bits, last_set_sign_bit_copies,
12758 last_death, and also the similar information mem_last_set (which insn
12759 most recently modified memory) and last_call_luid (which insn was the
12760 most recent subroutine call). */
12761
12762 static void
12763 record_dead_and_set_regs (rtx_insn *insn)
12764 {
12765 rtx link;
12766 unsigned int i;
12767
12768 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
12769 {
12770 if (REG_NOTE_KIND (link) == REG_DEAD
12771 && REG_P (XEXP (link, 0)))
12772 {
12773 unsigned int regno = REGNO (XEXP (link, 0));
12774 unsigned int endregno = END_REGNO (XEXP (link, 0));
12775
12776 for (i = regno; i < endregno; i++)
12777 {
12778 reg_stat_type *rsp;
12779
12780 rsp = &reg_stat[i];
12781 rsp->last_death = insn;
12782 }
12783 }
12784 else if (REG_NOTE_KIND (link) == REG_INC)
12785 record_value_for_reg (XEXP (link, 0), insn, NULL_RTX);
12786 }
12787
12788 if (CALL_P (insn))
12789 {
12790 hard_reg_set_iterator hrsi;
12791 EXECUTE_IF_SET_IN_HARD_REG_SET (regs_invalidated_by_call, 0, i, hrsi)
12792 {
12793 reg_stat_type *rsp;
12794
12795 rsp = &reg_stat[i];
12796 rsp->last_set_invalid = 1;
12797 rsp->last_set = insn;
12798 rsp->last_set_value = 0;
12799 rsp->last_set_mode = VOIDmode;
12800 rsp->last_set_nonzero_bits = 0;
12801 rsp->last_set_sign_bit_copies = 0;
12802 rsp->last_death = 0;
12803 rsp->truncated_to_mode = VOIDmode;
12804 }
12805
12806 last_call_luid = mem_last_set = DF_INSN_LUID (insn);
12807
12808 /* We can't combine into a call pattern. Remember, though, that
12809 the return value register is set at this LUID. We could
12810 still replace a register with the return value from the
12811 wrong subroutine call! */
12812 note_stores (PATTERN (insn), record_dead_and_set_regs_1, NULL_RTX);
12813 }
12814 else
12815 note_stores (PATTERN (insn), record_dead_and_set_regs_1, insn);
12816 }
12817
12818 /* If a SUBREG has the promoted bit set, it is in fact a property of the
12819 register present in the SUBREG, so for each such SUBREG go back and
12820 adjust nonzero and sign bit information of the registers that are
12821 known to have some zero/sign bits set.
12822
12823 This is needed because when combine blows the SUBREGs away, the
12824 information on zero/sign bits is lost and further combines can be
12825 missed because of that. */
12826
12827 static void
12828 record_promoted_value (rtx_insn *insn, rtx subreg)
12829 {
12830 struct insn_link *links;
12831 rtx set;
12832 unsigned int regno = REGNO (SUBREG_REG (subreg));
12833 machine_mode mode = GET_MODE (subreg);
12834
12835 if (GET_MODE_PRECISION (mode) > HOST_BITS_PER_WIDE_INT)
12836 return;
12837
12838 for (links = LOG_LINKS (insn); links;)
12839 {
12840 reg_stat_type *rsp;
12841
12842 insn = links->insn;
12843 set = single_set (insn);
12844
12845 if (! set || !REG_P (SET_DEST (set))
12846 || REGNO (SET_DEST (set)) != regno
12847 || GET_MODE (SET_DEST (set)) != GET_MODE (SUBREG_REG (subreg)))
12848 {
12849 links = links->next;
12850 continue;
12851 }
12852
12853 rsp = &reg_stat[regno];
12854 if (rsp->last_set == insn)
12855 {
12856 if (SUBREG_PROMOTED_UNSIGNED_P (subreg))
12857 rsp->last_set_nonzero_bits &= GET_MODE_MASK (mode);
12858 }
12859
12860 if (REG_P (SET_SRC (set)))
12861 {
12862 regno = REGNO (SET_SRC (set));
12863 links = LOG_LINKS (insn);
12864 }
12865 else
12866 break;
12867 }
12868 }
12869
12870 /* Check if X, a register, is known to contain a value already
12871 truncated to MODE. In this case we can use a subreg to refer to
12872 the truncated value even though in the generic case we would need
12873 an explicit truncation. */
12874
12875 static bool
12876 reg_truncated_to_mode (machine_mode mode, const_rtx x)
12877 {
12878 reg_stat_type *rsp = &reg_stat[REGNO (x)];
12879 machine_mode truncated = rsp->truncated_to_mode;
12880
12881 if (truncated == 0
12882 || rsp->truncation_label < label_tick_ebb_start)
12883 return false;
12884 if (GET_MODE_SIZE (truncated) <= GET_MODE_SIZE (mode))
12885 return true;
12886 if (TRULY_NOOP_TRUNCATION_MODES_P (mode, truncated))
12887 return true;
12888 return false;
12889 }
12890
12891 /* If X is a hard reg or a subreg record the mode that the register is
12892 accessed in. For non-TRULY_NOOP_TRUNCATION targets we might be able
12893 to turn a truncate into a subreg using this information. Return true
12894 if traversing X is complete. */
12895
12896 static bool
12897 record_truncated_value (rtx x)
12898 {
12899 machine_mode truncated_mode;
12900 reg_stat_type *rsp;
12901
12902 if (GET_CODE (x) == SUBREG && REG_P (SUBREG_REG (x)))
12903 {
12904 machine_mode original_mode = GET_MODE (SUBREG_REG (x));
12905 truncated_mode = GET_MODE (x);
12906
12907 if (GET_MODE_SIZE (original_mode) <= GET_MODE_SIZE (truncated_mode))
12908 return true;
12909
12910 if (TRULY_NOOP_TRUNCATION_MODES_P (truncated_mode, original_mode))
12911 return true;
12912
12913 x = SUBREG_REG (x);
12914 }
12915 /* ??? For hard-regs we now record everything. We might be able to
12916 optimize this using last_set_mode. */
12917 else if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
12918 truncated_mode = GET_MODE (x);
12919 else
12920 return false;
12921
12922 rsp = &reg_stat[REGNO (x)];
12923 if (rsp->truncated_to_mode == 0
12924 || rsp->truncation_label < label_tick_ebb_start
12925 || (GET_MODE_SIZE (truncated_mode)
12926 < GET_MODE_SIZE (rsp->truncated_to_mode)))
12927 {
12928 rsp->truncated_to_mode = truncated_mode;
12929 rsp->truncation_label = label_tick;
12930 }
12931
12932 return true;
12933 }
12934
12935 /* Callback for note_uses. Find hardregs and subregs of pseudos and
12936 the modes they are used in. This can help truning TRUNCATEs into
12937 SUBREGs. */
12938
12939 static void
12940 record_truncated_values (rtx *loc, void *data ATTRIBUTE_UNUSED)
12941 {
12942 subrtx_var_iterator::array_type array;
12943 FOR_EACH_SUBRTX_VAR (iter, array, *loc, NONCONST)
12944 if (record_truncated_value (*iter))
12945 iter.skip_subrtxes ();
12946 }
12947
12948 /* Scan X for promoted SUBREGs. For each one found,
12949 note what it implies to the registers used in it. */
12950
12951 static void
12952 check_promoted_subreg (rtx_insn *insn, rtx x)
12953 {
12954 if (GET_CODE (x) == SUBREG
12955 && SUBREG_PROMOTED_VAR_P (x)
12956 && REG_P (SUBREG_REG (x)))
12957 record_promoted_value (insn, x);
12958 else
12959 {
12960 const char *format = GET_RTX_FORMAT (GET_CODE (x));
12961 int i, j;
12962
12963 for (i = 0; i < GET_RTX_LENGTH (GET_CODE (x)); i++)
12964 switch (format[i])
12965 {
12966 case 'e':
12967 check_promoted_subreg (insn, XEXP (x, i));
12968 break;
12969 case 'V':
12970 case 'E':
12971 if (XVEC (x, i) != 0)
12972 for (j = 0; j < XVECLEN (x, i); j++)
12973 check_promoted_subreg (insn, XVECEXP (x, i, j));
12974 break;
12975 }
12976 }
12977 }
12978 \f
12979 /* Verify that all the registers and memory references mentioned in *LOC are
12980 still valid. *LOC was part of a value set in INSN when label_tick was
12981 equal to TICK. Return 0 if some are not. If REPLACE is nonzero, replace
12982 the invalid references with (clobber (const_int 0)) and return 1. This
12983 replacement is useful because we often can get useful information about
12984 the form of a value (e.g., if it was produced by a shift that always
12985 produces -1 or 0) even though we don't know exactly what registers it
12986 was produced from. */
12987
12988 static int
12989 get_last_value_validate (rtx *loc, rtx_insn *insn, int tick, int replace)
12990 {
12991 rtx x = *loc;
12992 const char *fmt = GET_RTX_FORMAT (GET_CODE (x));
12993 int len = GET_RTX_LENGTH (GET_CODE (x));
12994 int i, j;
12995
12996 if (REG_P (x))
12997 {
12998 unsigned int regno = REGNO (x);
12999 unsigned int endregno = END_REGNO (x);
13000 unsigned int j;
13001
13002 for (j = regno; j < endregno; j++)
13003 {
13004 reg_stat_type *rsp = &reg_stat[j];
13005 if (rsp->last_set_invalid
13006 /* If this is a pseudo-register that was only set once and not
13007 live at the beginning of the function, it is always valid. */
13008 || (! (regno >= FIRST_PSEUDO_REGISTER
13009 && regno < reg_n_sets_max
13010 && REG_N_SETS (regno) == 1
13011 && (!REGNO_REG_SET_P
13012 (DF_LR_IN (ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb),
13013 regno)))
13014 && rsp->last_set_label > tick))
13015 {
13016 if (replace)
13017 *loc = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
13018 return replace;
13019 }
13020 }
13021
13022 return 1;
13023 }
13024 /* If this is a memory reference, make sure that there were no stores after
13025 it that might have clobbered the value. We don't have alias info, so we
13026 assume any store invalidates it. Moreover, we only have local UIDs, so
13027 we also assume that there were stores in the intervening basic blocks. */
13028 else if (MEM_P (x) && !MEM_READONLY_P (x)
13029 && (tick != label_tick || DF_INSN_LUID (insn) <= mem_last_set))
13030 {
13031 if (replace)
13032 *loc = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
13033 return replace;
13034 }
13035
13036 for (i = 0; i < len; i++)
13037 {
13038 if (fmt[i] == 'e')
13039 {
13040 /* Check for identical subexpressions. If x contains
13041 identical subexpression we only have to traverse one of
13042 them. */
13043 if (i == 1 && ARITHMETIC_P (x))
13044 {
13045 /* Note that at this point x0 has already been checked
13046 and found valid. */
13047 rtx x0 = XEXP (x, 0);
13048 rtx x1 = XEXP (x, 1);
13049
13050 /* If x0 and x1 are identical then x is also valid. */
13051 if (x0 == x1)
13052 return 1;
13053
13054 /* If x1 is identical to a subexpression of x0 then
13055 while checking x0, x1 has already been checked. Thus
13056 it is valid and so as x. */
13057 if (ARITHMETIC_P (x0)
13058 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
13059 return 1;
13060
13061 /* If x0 is identical to a subexpression of x1 then x is
13062 valid iff the rest of x1 is valid. */
13063 if (ARITHMETIC_P (x1)
13064 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
13065 return
13066 get_last_value_validate (&XEXP (x1,
13067 x0 == XEXP (x1, 0) ? 1 : 0),
13068 insn, tick, replace);
13069 }
13070
13071 if (get_last_value_validate (&XEXP (x, i), insn, tick,
13072 replace) == 0)
13073 return 0;
13074 }
13075 else if (fmt[i] == 'E')
13076 for (j = 0; j < XVECLEN (x, i); j++)
13077 if (get_last_value_validate (&XVECEXP (x, i, j),
13078 insn, tick, replace) == 0)
13079 return 0;
13080 }
13081
13082 /* If we haven't found a reason for it to be invalid, it is valid. */
13083 return 1;
13084 }
13085
13086 /* Get the last value assigned to X, if known. Some registers
13087 in the value may be replaced with (clobber (const_int 0)) if their value
13088 is known longer known reliably. */
13089
13090 static rtx
13091 get_last_value (const_rtx x)
13092 {
13093 unsigned int regno;
13094 rtx value;
13095 reg_stat_type *rsp;
13096
13097 /* If this is a non-paradoxical SUBREG, get the value of its operand and
13098 then convert it to the desired mode. If this is a paradoxical SUBREG,
13099 we cannot predict what values the "extra" bits might have. */
13100 if (GET_CODE (x) == SUBREG
13101 && subreg_lowpart_p (x)
13102 && !paradoxical_subreg_p (x)
13103 && (value = get_last_value (SUBREG_REG (x))) != 0)
13104 return gen_lowpart (GET_MODE (x), value);
13105
13106 if (!REG_P (x))
13107 return 0;
13108
13109 regno = REGNO (x);
13110 rsp = &reg_stat[regno];
13111 value = rsp->last_set_value;
13112
13113 /* If we don't have a value, or if it isn't for this basic block and
13114 it's either a hard register, set more than once, or it's a live
13115 at the beginning of the function, return 0.
13116
13117 Because if it's not live at the beginning of the function then the reg
13118 is always set before being used (is never used without being set).
13119 And, if it's set only once, and it's always set before use, then all
13120 uses must have the same last value, even if it's not from this basic
13121 block. */
13122
13123 if (value == 0
13124 || (rsp->last_set_label < label_tick_ebb_start
13125 && (regno < FIRST_PSEUDO_REGISTER
13126 || regno >= reg_n_sets_max
13127 || REG_N_SETS (regno) != 1
13128 || REGNO_REG_SET_P
13129 (DF_LR_IN (ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb), regno))))
13130 return 0;
13131
13132 /* If the value was set in a later insn than the ones we are processing,
13133 we can't use it even if the register was only set once. */
13134 if (rsp->last_set_label == label_tick
13135 && DF_INSN_LUID (rsp->last_set) >= subst_low_luid)
13136 return 0;
13137
13138 /* If the value has all its registers valid, return it. */
13139 if (get_last_value_validate (&value, rsp->last_set, rsp->last_set_label, 0))
13140 return value;
13141
13142 /* Otherwise, make a copy and replace any invalid register with
13143 (clobber (const_int 0)). If that fails for some reason, return 0. */
13144
13145 value = copy_rtx (value);
13146 if (get_last_value_validate (&value, rsp->last_set, rsp->last_set_label, 1))
13147 return value;
13148
13149 return 0;
13150 }
13151 \f
13152 /* Return nonzero if expression X refers to a REG or to memory
13153 that is set in an instruction more recent than FROM_LUID. */
13154
13155 static int
13156 use_crosses_set_p (const_rtx x, int from_luid)
13157 {
13158 const char *fmt;
13159 int i;
13160 enum rtx_code code = GET_CODE (x);
13161
13162 if (code == REG)
13163 {
13164 unsigned int regno = REGNO (x);
13165 unsigned endreg = END_REGNO (x);
13166
13167 #ifdef PUSH_ROUNDING
13168 /* Don't allow uses of the stack pointer to be moved,
13169 because we don't know whether the move crosses a push insn. */
13170 if (regno == STACK_POINTER_REGNUM && PUSH_ARGS)
13171 return 1;
13172 #endif
13173 for (; regno < endreg; regno++)
13174 {
13175 reg_stat_type *rsp = &reg_stat[regno];
13176 if (rsp->last_set
13177 && rsp->last_set_label == label_tick
13178 && DF_INSN_LUID (rsp->last_set) > from_luid)
13179 return 1;
13180 }
13181 return 0;
13182 }
13183
13184 if (code == MEM && mem_last_set > from_luid)
13185 return 1;
13186
13187 fmt = GET_RTX_FORMAT (code);
13188
13189 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
13190 {
13191 if (fmt[i] == 'E')
13192 {
13193 int j;
13194 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
13195 if (use_crosses_set_p (XVECEXP (x, i, j), from_luid))
13196 return 1;
13197 }
13198 else if (fmt[i] == 'e'
13199 && use_crosses_set_p (XEXP (x, i), from_luid))
13200 return 1;
13201 }
13202 return 0;
13203 }
13204 \f
13205 /* Define three variables used for communication between the following
13206 routines. */
13207
13208 static unsigned int reg_dead_regno, reg_dead_endregno;
13209 static int reg_dead_flag;
13210
13211 /* Function called via note_stores from reg_dead_at_p.
13212
13213 If DEST is within [reg_dead_regno, reg_dead_endregno), set
13214 reg_dead_flag to 1 if X is a CLOBBER and to -1 it is a SET. */
13215
13216 static void
13217 reg_dead_at_p_1 (rtx dest, const_rtx x, void *data ATTRIBUTE_UNUSED)
13218 {
13219 unsigned int regno, endregno;
13220
13221 if (!REG_P (dest))
13222 return;
13223
13224 regno = REGNO (dest);
13225 endregno = END_REGNO (dest);
13226 if (reg_dead_endregno > regno && reg_dead_regno < endregno)
13227 reg_dead_flag = (GET_CODE (x) == CLOBBER) ? 1 : -1;
13228 }
13229
13230 /* Return nonzero if REG is known to be dead at INSN.
13231
13232 We scan backwards from INSN. If we hit a REG_DEAD note or a CLOBBER
13233 referencing REG, it is dead. If we hit a SET referencing REG, it is
13234 live. Otherwise, see if it is live or dead at the start of the basic
13235 block we are in. Hard regs marked as being live in NEWPAT_USED_REGS
13236 must be assumed to be always live. */
13237
13238 static int
13239 reg_dead_at_p (rtx reg, rtx_insn *insn)
13240 {
13241 basic_block block;
13242 unsigned int i;
13243
13244 /* Set variables for reg_dead_at_p_1. */
13245 reg_dead_regno = REGNO (reg);
13246 reg_dead_endregno = END_REGNO (reg);
13247
13248 reg_dead_flag = 0;
13249
13250 /* Check that reg isn't mentioned in NEWPAT_USED_REGS. For fixed registers
13251 we allow the machine description to decide whether use-and-clobber
13252 patterns are OK. */
13253 if (reg_dead_regno < FIRST_PSEUDO_REGISTER)
13254 {
13255 for (i = reg_dead_regno; i < reg_dead_endregno; i++)
13256 if (!fixed_regs[i] && TEST_HARD_REG_BIT (newpat_used_regs, i))
13257 return 0;
13258 }
13259
13260 /* Scan backwards until we find a REG_DEAD note, SET, CLOBBER, or
13261 beginning of basic block. */
13262 block = BLOCK_FOR_INSN (insn);
13263 for (;;)
13264 {
13265 if (INSN_P (insn))
13266 {
13267 if (find_regno_note (insn, REG_UNUSED, reg_dead_regno))
13268 return 1;
13269
13270 note_stores (PATTERN (insn), reg_dead_at_p_1, NULL);
13271 if (reg_dead_flag)
13272 return reg_dead_flag == 1 ? 1 : 0;
13273
13274 if (find_regno_note (insn, REG_DEAD, reg_dead_regno))
13275 return 1;
13276 }
13277
13278 if (insn == BB_HEAD (block))
13279 break;
13280
13281 insn = PREV_INSN (insn);
13282 }
13283
13284 /* Look at live-in sets for the basic block that we were in. */
13285 for (i = reg_dead_regno; i < reg_dead_endregno; i++)
13286 if (REGNO_REG_SET_P (df_get_live_in (block), i))
13287 return 0;
13288
13289 return 1;
13290 }
13291 \f
13292 /* Note hard registers in X that are used. */
13293
13294 static void
13295 mark_used_regs_combine (rtx x)
13296 {
13297 RTX_CODE code = GET_CODE (x);
13298 unsigned int regno;
13299 int i;
13300
13301 switch (code)
13302 {
13303 case LABEL_REF:
13304 case SYMBOL_REF:
13305 case CONST:
13306 CASE_CONST_ANY:
13307 case PC:
13308 case ADDR_VEC:
13309 case ADDR_DIFF_VEC:
13310 case ASM_INPUT:
13311 /* CC0 must die in the insn after it is set, so we don't need to take
13312 special note of it here. */
13313 case CC0:
13314 return;
13315
13316 case CLOBBER:
13317 /* If we are clobbering a MEM, mark any hard registers inside the
13318 address as used. */
13319 if (MEM_P (XEXP (x, 0)))
13320 mark_used_regs_combine (XEXP (XEXP (x, 0), 0));
13321 return;
13322
13323 case REG:
13324 regno = REGNO (x);
13325 /* A hard reg in a wide mode may really be multiple registers.
13326 If so, mark all of them just like the first. */
13327 if (regno < FIRST_PSEUDO_REGISTER)
13328 {
13329 /* None of this applies to the stack, frame or arg pointers. */
13330 if (regno == STACK_POINTER_REGNUM
13331 #if !HARD_FRAME_POINTER_IS_FRAME_POINTER
13332 || regno == HARD_FRAME_POINTER_REGNUM
13333 #endif
13334 || (FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
13335 && regno == ARG_POINTER_REGNUM && fixed_regs[regno])
13336 || regno == FRAME_POINTER_REGNUM)
13337 return;
13338
13339 add_to_hard_reg_set (&newpat_used_regs, GET_MODE (x), regno);
13340 }
13341 return;
13342
13343 case SET:
13344 {
13345 /* If setting a MEM, or a SUBREG of a MEM, then note any hard regs in
13346 the address. */
13347 rtx testreg = SET_DEST (x);
13348
13349 while (GET_CODE (testreg) == SUBREG
13350 || GET_CODE (testreg) == ZERO_EXTRACT
13351 || GET_CODE (testreg) == STRICT_LOW_PART)
13352 testreg = XEXP (testreg, 0);
13353
13354 if (MEM_P (testreg))
13355 mark_used_regs_combine (XEXP (testreg, 0));
13356
13357 mark_used_regs_combine (SET_SRC (x));
13358 }
13359 return;
13360
13361 default:
13362 break;
13363 }
13364
13365 /* Recursively scan the operands of this expression. */
13366
13367 {
13368 const char *fmt = GET_RTX_FORMAT (code);
13369
13370 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
13371 {
13372 if (fmt[i] == 'e')
13373 mark_used_regs_combine (XEXP (x, i));
13374 else if (fmt[i] == 'E')
13375 {
13376 int j;
13377
13378 for (j = 0; j < XVECLEN (x, i); j++)
13379 mark_used_regs_combine (XVECEXP (x, i, j));
13380 }
13381 }
13382 }
13383 }
13384 \f
13385 /* Remove register number REGNO from the dead registers list of INSN.
13386
13387 Return the note used to record the death, if there was one. */
13388
13389 rtx
13390 remove_death (unsigned int regno, rtx_insn *insn)
13391 {
13392 rtx note = find_regno_note (insn, REG_DEAD, regno);
13393
13394 if (note)
13395 remove_note (insn, note);
13396
13397 return note;
13398 }
13399
13400 /* For each register (hardware or pseudo) used within expression X, if its
13401 death is in an instruction with luid between FROM_LUID (inclusive) and
13402 TO_INSN (exclusive), put a REG_DEAD note for that register in the
13403 list headed by PNOTES.
13404
13405 That said, don't move registers killed by maybe_kill_insn.
13406
13407 This is done when X is being merged by combination into TO_INSN. These
13408 notes will then be distributed as needed. */
13409
13410 static void
13411 move_deaths (rtx x, rtx maybe_kill_insn, int from_luid, rtx_insn *to_insn,
13412 rtx *pnotes)
13413 {
13414 const char *fmt;
13415 int len, i;
13416 enum rtx_code code = GET_CODE (x);
13417
13418 if (code == REG)
13419 {
13420 unsigned int regno = REGNO (x);
13421 rtx_insn *where_dead = reg_stat[regno].last_death;
13422
13423 /* Don't move the register if it gets killed in between from and to. */
13424 if (maybe_kill_insn && reg_set_p (x, maybe_kill_insn)
13425 && ! reg_referenced_p (x, maybe_kill_insn))
13426 return;
13427
13428 if (where_dead
13429 && BLOCK_FOR_INSN (where_dead) == BLOCK_FOR_INSN (to_insn)
13430 && DF_INSN_LUID (where_dead) >= from_luid
13431 && DF_INSN_LUID (where_dead) < DF_INSN_LUID (to_insn))
13432 {
13433 rtx note = remove_death (regno, where_dead);
13434
13435 /* It is possible for the call above to return 0. This can occur
13436 when last_death points to I2 or I1 that we combined with.
13437 In that case make a new note.
13438
13439 We must also check for the case where X is a hard register
13440 and NOTE is a death note for a range of hard registers
13441 including X. In that case, we must put REG_DEAD notes for
13442 the remaining registers in place of NOTE. */
13443
13444 if (note != 0 && regno < FIRST_PSEUDO_REGISTER
13445 && (GET_MODE_SIZE (GET_MODE (XEXP (note, 0)))
13446 > GET_MODE_SIZE (GET_MODE (x))))
13447 {
13448 unsigned int deadregno = REGNO (XEXP (note, 0));
13449 unsigned int deadend = END_REGNO (XEXP (note, 0));
13450 unsigned int ourend = END_REGNO (x);
13451 unsigned int i;
13452
13453 for (i = deadregno; i < deadend; i++)
13454 if (i < regno || i >= ourend)
13455 add_reg_note (where_dead, REG_DEAD, regno_reg_rtx[i]);
13456 }
13457
13458 /* If we didn't find any note, or if we found a REG_DEAD note that
13459 covers only part of the given reg, and we have a multi-reg hard
13460 register, then to be safe we must check for REG_DEAD notes
13461 for each register other than the first. They could have
13462 their own REG_DEAD notes lying around. */
13463 else if ((note == 0
13464 || (note != 0
13465 && (GET_MODE_SIZE (GET_MODE (XEXP (note, 0)))
13466 < GET_MODE_SIZE (GET_MODE (x)))))
13467 && regno < FIRST_PSEUDO_REGISTER
13468 && REG_NREGS (x) > 1)
13469 {
13470 unsigned int ourend = END_REGNO (x);
13471 unsigned int i, offset;
13472 rtx oldnotes = 0;
13473
13474 if (note)
13475 offset = hard_regno_nregs[regno][GET_MODE (XEXP (note, 0))];
13476 else
13477 offset = 1;
13478
13479 for (i = regno + offset; i < ourend; i++)
13480 move_deaths (regno_reg_rtx[i],
13481 maybe_kill_insn, from_luid, to_insn, &oldnotes);
13482 }
13483
13484 if (note != 0 && GET_MODE (XEXP (note, 0)) == GET_MODE (x))
13485 {
13486 XEXP (note, 1) = *pnotes;
13487 *pnotes = note;
13488 }
13489 else
13490 *pnotes = alloc_reg_note (REG_DEAD, x, *pnotes);
13491 }
13492
13493 return;
13494 }
13495
13496 else if (GET_CODE (x) == SET)
13497 {
13498 rtx dest = SET_DEST (x);
13499
13500 move_deaths (SET_SRC (x), maybe_kill_insn, from_luid, to_insn, pnotes);
13501
13502 /* In the case of a ZERO_EXTRACT, a STRICT_LOW_PART, or a SUBREG
13503 that accesses one word of a multi-word item, some
13504 piece of everything register in the expression is used by
13505 this insn, so remove any old death. */
13506 /* ??? So why do we test for equality of the sizes? */
13507
13508 if (GET_CODE (dest) == ZERO_EXTRACT
13509 || GET_CODE (dest) == STRICT_LOW_PART
13510 || (GET_CODE (dest) == SUBREG
13511 && (((GET_MODE_SIZE (GET_MODE (dest))
13512 + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
13513 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest)))
13514 + UNITS_PER_WORD - 1) / UNITS_PER_WORD))))
13515 {
13516 move_deaths (dest, maybe_kill_insn, from_luid, to_insn, pnotes);
13517 return;
13518 }
13519
13520 /* If this is some other SUBREG, we know it replaces the entire
13521 value, so use that as the destination. */
13522 if (GET_CODE (dest) == SUBREG)
13523 dest = SUBREG_REG (dest);
13524
13525 /* If this is a MEM, adjust deaths of anything used in the address.
13526 For a REG (the only other possibility), the entire value is
13527 being replaced so the old value is not used in this insn. */
13528
13529 if (MEM_P (dest))
13530 move_deaths (XEXP (dest, 0), maybe_kill_insn, from_luid,
13531 to_insn, pnotes);
13532 return;
13533 }
13534
13535 else if (GET_CODE (x) == CLOBBER)
13536 return;
13537
13538 len = GET_RTX_LENGTH (code);
13539 fmt = GET_RTX_FORMAT (code);
13540
13541 for (i = 0; i < len; i++)
13542 {
13543 if (fmt[i] == 'E')
13544 {
13545 int j;
13546 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
13547 move_deaths (XVECEXP (x, i, j), maybe_kill_insn, from_luid,
13548 to_insn, pnotes);
13549 }
13550 else if (fmt[i] == 'e')
13551 move_deaths (XEXP (x, i), maybe_kill_insn, from_luid, to_insn, pnotes);
13552 }
13553 }
13554 \f
13555 /* Return 1 if X is the target of a bit-field assignment in BODY, the
13556 pattern of an insn. X must be a REG. */
13557
13558 static int
13559 reg_bitfield_target_p (rtx x, rtx body)
13560 {
13561 int i;
13562
13563 if (GET_CODE (body) == SET)
13564 {
13565 rtx dest = SET_DEST (body);
13566 rtx target;
13567 unsigned int regno, tregno, endregno, endtregno;
13568
13569 if (GET_CODE (dest) == ZERO_EXTRACT)
13570 target = XEXP (dest, 0);
13571 else if (GET_CODE (dest) == STRICT_LOW_PART)
13572 target = SUBREG_REG (XEXP (dest, 0));
13573 else
13574 return 0;
13575
13576 if (GET_CODE (target) == SUBREG)
13577 target = SUBREG_REG (target);
13578
13579 if (!REG_P (target))
13580 return 0;
13581
13582 tregno = REGNO (target), regno = REGNO (x);
13583 if (tregno >= FIRST_PSEUDO_REGISTER || regno >= FIRST_PSEUDO_REGISTER)
13584 return target == x;
13585
13586 endtregno = end_hard_regno (GET_MODE (target), tregno);
13587 endregno = end_hard_regno (GET_MODE (x), regno);
13588
13589 return endregno > tregno && regno < endtregno;
13590 }
13591
13592 else if (GET_CODE (body) == PARALLEL)
13593 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
13594 if (reg_bitfield_target_p (x, XVECEXP (body, 0, i)))
13595 return 1;
13596
13597 return 0;
13598 }
13599 \f
13600 /* Given a chain of REG_NOTES originally from FROM_INSN, try to place them
13601 as appropriate. I3 and I2 are the insns resulting from the combination
13602 insns including FROM (I2 may be zero).
13603
13604 ELIM_I2 and ELIM_I1 are either zero or registers that we know will
13605 not need REG_DEAD notes because they are being substituted for. This
13606 saves searching in the most common cases.
13607
13608 Each note in the list is either ignored or placed on some insns, depending
13609 on the type of note. */
13610
13611 static void
13612 distribute_notes (rtx notes, rtx_insn *from_insn, rtx_insn *i3, rtx_insn *i2,
13613 rtx elim_i2, rtx elim_i1, rtx elim_i0)
13614 {
13615 rtx note, next_note;
13616 rtx tem_note;
13617 rtx_insn *tem_insn;
13618
13619 for (note = notes; note; note = next_note)
13620 {
13621 rtx_insn *place = 0, *place2 = 0;
13622
13623 next_note = XEXP (note, 1);
13624 switch (REG_NOTE_KIND (note))
13625 {
13626 case REG_BR_PROB:
13627 case REG_BR_PRED:
13628 /* Doesn't matter much where we put this, as long as it's somewhere.
13629 It is preferable to keep these notes on branches, which is most
13630 likely to be i3. */
13631 place = i3;
13632 break;
13633
13634 case REG_NON_LOCAL_GOTO:
13635 if (JUMP_P (i3))
13636 place = i3;
13637 else
13638 {
13639 gcc_assert (i2 && JUMP_P (i2));
13640 place = i2;
13641 }
13642 break;
13643
13644 case REG_EH_REGION:
13645 /* These notes must remain with the call or trapping instruction. */
13646 if (CALL_P (i3))
13647 place = i3;
13648 else if (i2 && CALL_P (i2))
13649 place = i2;
13650 else
13651 {
13652 gcc_assert (cfun->can_throw_non_call_exceptions);
13653 if (may_trap_p (i3))
13654 place = i3;
13655 else if (i2 && may_trap_p (i2))
13656 place = i2;
13657 /* ??? Otherwise assume we've combined things such that we
13658 can now prove that the instructions can't trap. Drop the
13659 note in this case. */
13660 }
13661 break;
13662
13663 case REG_ARGS_SIZE:
13664 /* ??? How to distribute between i3-i1. Assume i3 contains the
13665 entire adjustment. Assert i3 contains at least some adjust. */
13666 if (!noop_move_p (i3))
13667 {
13668 int old_size, args_size = INTVAL (XEXP (note, 0));
13669 /* fixup_args_size_notes looks at REG_NORETURN note,
13670 so ensure the note is placed there first. */
13671 if (CALL_P (i3))
13672 {
13673 rtx *np;
13674 for (np = &next_note; *np; np = &XEXP (*np, 1))
13675 if (REG_NOTE_KIND (*np) == REG_NORETURN)
13676 {
13677 rtx n = *np;
13678 *np = XEXP (n, 1);
13679 XEXP (n, 1) = REG_NOTES (i3);
13680 REG_NOTES (i3) = n;
13681 break;
13682 }
13683 }
13684 old_size = fixup_args_size_notes (PREV_INSN (i3), i3, args_size);
13685 /* emit_call_1 adds for !ACCUMULATE_OUTGOING_ARGS
13686 REG_ARGS_SIZE note to all noreturn calls, allow that here. */
13687 gcc_assert (old_size != args_size
13688 || (CALL_P (i3)
13689 && !ACCUMULATE_OUTGOING_ARGS
13690 && find_reg_note (i3, REG_NORETURN, NULL_RTX)));
13691 }
13692 break;
13693
13694 case REG_NORETURN:
13695 case REG_SETJMP:
13696 case REG_TM:
13697 case REG_CALL_DECL:
13698 /* These notes must remain with the call. It should not be
13699 possible for both I2 and I3 to be a call. */
13700 if (CALL_P (i3))
13701 place = i3;
13702 else
13703 {
13704 gcc_assert (i2 && CALL_P (i2));
13705 place = i2;
13706 }
13707 break;
13708
13709 case REG_UNUSED:
13710 /* Any clobbers for i3 may still exist, and so we must process
13711 REG_UNUSED notes from that insn.
13712
13713 Any clobbers from i2 or i1 can only exist if they were added by
13714 recog_for_combine. In that case, recog_for_combine created the
13715 necessary REG_UNUSED notes. Trying to keep any original
13716 REG_UNUSED notes from these insns can cause incorrect output
13717 if it is for the same register as the original i3 dest.
13718 In that case, we will notice that the register is set in i3,
13719 and then add a REG_UNUSED note for the destination of i3, which
13720 is wrong. However, it is possible to have REG_UNUSED notes from
13721 i2 or i1 for register which were both used and clobbered, so
13722 we keep notes from i2 or i1 if they will turn into REG_DEAD
13723 notes. */
13724
13725 /* If this register is set or clobbered in I3, put the note there
13726 unless there is one already. */
13727 if (reg_set_p (XEXP (note, 0), PATTERN (i3)))
13728 {
13729 if (from_insn != i3)
13730 break;
13731
13732 if (! (REG_P (XEXP (note, 0))
13733 ? find_regno_note (i3, REG_UNUSED, REGNO (XEXP (note, 0)))
13734 : find_reg_note (i3, REG_UNUSED, XEXP (note, 0))))
13735 place = i3;
13736 }
13737 /* Otherwise, if this register is used by I3, then this register
13738 now dies here, so we must put a REG_DEAD note here unless there
13739 is one already. */
13740 else if (reg_referenced_p (XEXP (note, 0), PATTERN (i3))
13741 && ! (REG_P (XEXP (note, 0))
13742 ? find_regno_note (i3, REG_DEAD,
13743 REGNO (XEXP (note, 0)))
13744 : find_reg_note (i3, REG_DEAD, XEXP (note, 0))))
13745 {
13746 PUT_REG_NOTE_KIND (note, REG_DEAD);
13747 place = i3;
13748 }
13749 break;
13750
13751 case REG_EQUAL:
13752 case REG_EQUIV:
13753 case REG_NOALIAS:
13754 /* These notes say something about results of an insn. We can
13755 only support them if they used to be on I3 in which case they
13756 remain on I3. Otherwise they are ignored.
13757
13758 If the note refers to an expression that is not a constant, we
13759 must also ignore the note since we cannot tell whether the
13760 equivalence is still true. It might be possible to do
13761 slightly better than this (we only have a problem if I2DEST
13762 or I1DEST is present in the expression), but it doesn't
13763 seem worth the trouble. */
13764
13765 if (from_insn == i3
13766 && (XEXP (note, 0) == 0 || CONSTANT_P (XEXP (note, 0))))
13767 place = i3;
13768 break;
13769
13770 case REG_INC:
13771 /* These notes say something about how a register is used. They must
13772 be present on any use of the register in I2 or I3. */
13773 if (reg_mentioned_p (XEXP (note, 0), PATTERN (i3)))
13774 place = i3;
13775
13776 if (i2 && reg_mentioned_p (XEXP (note, 0), PATTERN (i2)))
13777 {
13778 if (place)
13779 place2 = i2;
13780 else
13781 place = i2;
13782 }
13783 break;
13784
13785 case REG_LABEL_TARGET:
13786 case REG_LABEL_OPERAND:
13787 /* This can show up in several ways -- either directly in the
13788 pattern, or hidden off in the constant pool with (or without?)
13789 a REG_EQUAL note. */
13790 /* ??? Ignore the without-reg_equal-note problem for now. */
13791 if (reg_mentioned_p (XEXP (note, 0), PATTERN (i3))
13792 || ((tem_note = find_reg_note (i3, REG_EQUAL, NULL_RTX))
13793 && GET_CODE (XEXP (tem_note, 0)) == LABEL_REF
13794 && LABEL_REF_LABEL (XEXP (tem_note, 0)) == XEXP (note, 0)))
13795 place = i3;
13796
13797 if (i2
13798 && (reg_mentioned_p (XEXP (note, 0), PATTERN (i2))
13799 || ((tem_note = find_reg_note (i2, REG_EQUAL, NULL_RTX))
13800 && GET_CODE (XEXP (tem_note, 0)) == LABEL_REF
13801 && LABEL_REF_LABEL (XEXP (tem_note, 0)) == XEXP (note, 0))))
13802 {
13803 if (place)
13804 place2 = i2;
13805 else
13806 place = i2;
13807 }
13808
13809 /* For REG_LABEL_TARGET on a JUMP_P, we prefer to put the note
13810 as a JUMP_LABEL or decrement LABEL_NUSES if it's already
13811 there. */
13812 if (place && JUMP_P (place)
13813 && REG_NOTE_KIND (note) == REG_LABEL_TARGET
13814 && (JUMP_LABEL (place) == NULL
13815 || JUMP_LABEL (place) == XEXP (note, 0)))
13816 {
13817 rtx label = JUMP_LABEL (place);
13818
13819 if (!label)
13820 JUMP_LABEL (place) = XEXP (note, 0);
13821 else if (LABEL_P (label))
13822 LABEL_NUSES (label)--;
13823 }
13824
13825 if (place2 && JUMP_P (place2)
13826 && REG_NOTE_KIND (note) == REG_LABEL_TARGET
13827 && (JUMP_LABEL (place2) == NULL
13828 || JUMP_LABEL (place2) == XEXP (note, 0)))
13829 {
13830 rtx label = JUMP_LABEL (place2);
13831
13832 if (!label)
13833 JUMP_LABEL (place2) = XEXP (note, 0);
13834 else if (LABEL_P (label))
13835 LABEL_NUSES (label)--;
13836 place2 = 0;
13837 }
13838 break;
13839
13840 case REG_NONNEG:
13841 /* This note says something about the value of a register prior
13842 to the execution of an insn. It is too much trouble to see
13843 if the note is still correct in all situations. It is better
13844 to simply delete it. */
13845 break;
13846
13847 case REG_DEAD:
13848 /* If we replaced the right hand side of FROM_INSN with a
13849 REG_EQUAL note, the original use of the dying register
13850 will not have been combined into I3 and I2. In such cases,
13851 FROM_INSN is guaranteed to be the first of the combined
13852 instructions, so we simply need to search back before
13853 FROM_INSN for the previous use or set of this register,
13854 then alter the notes there appropriately.
13855
13856 If the register is used as an input in I3, it dies there.
13857 Similarly for I2, if it is nonzero and adjacent to I3.
13858
13859 If the register is not used as an input in either I3 or I2
13860 and it is not one of the registers we were supposed to eliminate,
13861 there are two possibilities. We might have a non-adjacent I2
13862 or we might have somehow eliminated an additional register
13863 from a computation. For example, we might have had A & B where
13864 we discover that B will always be zero. In this case we will
13865 eliminate the reference to A.
13866
13867 In both cases, we must search to see if we can find a previous
13868 use of A and put the death note there. */
13869
13870 if (from_insn
13871 && from_insn == i2mod
13872 && !reg_overlap_mentioned_p (XEXP (note, 0), i2mod_new_rhs))
13873 tem_insn = from_insn;
13874 else
13875 {
13876 if (from_insn
13877 && CALL_P (from_insn)
13878 && find_reg_fusage (from_insn, USE, XEXP (note, 0)))
13879 place = from_insn;
13880 else if (reg_referenced_p (XEXP (note, 0), PATTERN (i3)))
13881 place = i3;
13882 else if (i2 != 0 && next_nonnote_nondebug_insn (i2) == i3
13883 && reg_referenced_p (XEXP (note, 0), PATTERN (i2)))
13884 place = i2;
13885 else if ((rtx_equal_p (XEXP (note, 0), elim_i2)
13886 && !(i2mod
13887 && reg_overlap_mentioned_p (XEXP (note, 0),
13888 i2mod_old_rhs)))
13889 || rtx_equal_p (XEXP (note, 0), elim_i1)
13890 || rtx_equal_p (XEXP (note, 0), elim_i0))
13891 break;
13892 tem_insn = i3;
13893 /* If the new I2 sets the same register that is marked dead
13894 in the note, the note now should not be put on I2, as the
13895 note refers to a previous incarnation of the reg. */
13896 if (i2 != 0 && reg_set_p (XEXP (note, 0), PATTERN (i2)))
13897 tem_insn = i2;
13898 }
13899
13900 if (place == 0)
13901 {
13902 basic_block bb = this_basic_block;
13903
13904 for (tem_insn = PREV_INSN (tem_insn); place == 0; tem_insn = PREV_INSN (tem_insn))
13905 {
13906 if (!NONDEBUG_INSN_P (tem_insn))
13907 {
13908 if (tem_insn == BB_HEAD (bb))
13909 break;
13910 continue;
13911 }
13912
13913 /* If the register is being set at TEM_INSN, see if that is all
13914 TEM_INSN is doing. If so, delete TEM_INSN. Otherwise, make this
13915 into a REG_UNUSED note instead. Don't delete sets to
13916 global register vars. */
13917 if ((REGNO (XEXP (note, 0)) >= FIRST_PSEUDO_REGISTER
13918 || !global_regs[REGNO (XEXP (note, 0))])
13919 && reg_set_p (XEXP (note, 0), PATTERN (tem_insn)))
13920 {
13921 rtx set = single_set (tem_insn);
13922 rtx inner_dest = 0;
13923 rtx_insn *cc0_setter = NULL;
13924
13925 if (set != 0)
13926 for (inner_dest = SET_DEST (set);
13927 (GET_CODE (inner_dest) == STRICT_LOW_PART
13928 || GET_CODE (inner_dest) == SUBREG
13929 || GET_CODE (inner_dest) == ZERO_EXTRACT);
13930 inner_dest = XEXP (inner_dest, 0))
13931 ;
13932
13933 /* Verify that it was the set, and not a clobber that
13934 modified the register.
13935
13936 CC0 targets must be careful to maintain setter/user
13937 pairs. If we cannot delete the setter due to side
13938 effects, mark the user with an UNUSED note instead
13939 of deleting it. */
13940
13941 if (set != 0 && ! side_effects_p (SET_SRC (set))
13942 && rtx_equal_p (XEXP (note, 0), inner_dest)
13943 #if HAVE_cc0
13944 && (! reg_mentioned_p (cc0_rtx, SET_SRC (set))
13945 || ((cc0_setter = prev_cc0_setter (tem_insn)) != NULL
13946 && sets_cc0_p (PATTERN (cc0_setter)) > 0))
13947 #endif
13948 )
13949 {
13950 /* Move the notes and links of TEM_INSN elsewhere.
13951 This might delete other dead insns recursively.
13952 First set the pattern to something that won't use
13953 any register. */
13954 rtx old_notes = REG_NOTES (tem_insn);
13955
13956 PATTERN (tem_insn) = pc_rtx;
13957 REG_NOTES (tem_insn) = NULL;
13958
13959 distribute_notes (old_notes, tem_insn, tem_insn, NULL,
13960 NULL_RTX, NULL_RTX, NULL_RTX);
13961 distribute_links (LOG_LINKS (tem_insn));
13962
13963 SET_INSN_DELETED (tem_insn);
13964 if (tem_insn == i2)
13965 i2 = NULL;
13966
13967 /* Delete the setter too. */
13968 if (cc0_setter)
13969 {
13970 PATTERN (cc0_setter) = pc_rtx;
13971 old_notes = REG_NOTES (cc0_setter);
13972 REG_NOTES (cc0_setter) = NULL;
13973
13974 distribute_notes (old_notes, cc0_setter,
13975 cc0_setter, NULL,
13976 NULL_RTX, NULL_RTX, NULL_RTX);
13977 distribute_links (LOG_LINKS (cc0_setter));
13978
13979 SET_INSN_DELETED (cc0_setter);
13980 if (cc0_setter == i2)
13981 i2 = NULL;
13982 }
13983 }
13984 else
13985 {
13986 PUT_REG_NOTE_KIND (note, REG_UNUSED);
13987
13988 /* If there isn't already a REG_UNUSED note, put one
13989 here. Do not place a REG_DEAD note, even if
13990 the register is also used here; that would not
13991 match the algorithm used in lifetime analysis
13992 and can cause the consistency check in the
13993 scheduler to fail. */
13994 if (! find_regno_note (tem_insn, REG_UNUSED,
13995 REGNO (XEXP (note, 0))))
13996 place = tem_insn;
13997 break;
13998 }
13999 }
14000 else if (reg_referenced_p (XEXP (note, 0), PATTERN (tem_insn))
14001 || (CALL_P (tem_insn)
14002 && find_reg_fusage (tem_insn, USE, XEXP (note, 0))))
14003 {
14004 place = tem_insn;
14005
14006 /* If we are doing a 3->2 combination, and we have a
14007 register which formerly died in i3 and was not used
14008 by i2, which now no longer dies in i3 and is used in
14009 i2 but does not die in i2, and place is between i2
14010 and i3, then we may need to move a link from place to
14011 i2. */
14012 if (i2 && DF_INSN_LUID (place) > DF_INSN_LUID (i2)
14013 && from_insn
14014 && DF_INSN_LUID (from_insn) > DF_INSN_LUID (i2)
14015 && reg_referenced_p (XEXP (note, 0), PATTERN (i2)))
14016 {
14017 struct insn_link *links = LOG_LINKS (place);
14018 LOG_LINKS (place) = NULL;
14019 distribute_links (links);
14020 }
14021 break;
14022 }
14023
14024 if (tem_insn == BB_HEAD (bb))
14025 break;
14026 }
14027
14028 }
14029
14030 /* If the register is set or already dead at PLACE, we needn't do
14031 anything with this note if it is still a REG_DEAD note.
14032 We check here if it is set at all, not if is it totally replaced,
14033 which is what `dead_or_set_p' checks, so also check for it being
14034 set partially. */
14035
14036 if (place && REG_NOTE_KIND (note) == REG_DEAD)
14037 {
14038 unsigned int regno = REGNO (XEXP (note, 0));
14039 reg_stat_type *rsp = &reg_stat[regno];
14040
14041 if (dead_or_set_p (place, XEXP (note, 0))
14042 || reg_bitfield_target_p (XEXP (note, 0), PATTERN (place)))
14043 {
14044 /* Unless the register previously died in PLACE, clear
14045 last_death. [I no longer understand why this is
14046 being done.] */
14047 if (rsp->last_death != place)
14048 rsp->last_death = 0;
14049 place = 0;
14050 }
14051 else
14052 rsp->last_death = place;
14053
14054 /* If this is a death note for a hard reg that is occupying
14055 multiple registers, ensure that we are still using all
14056 parts of the object. If we find a piece of the object
14057 that is unused, we must arrange for an appropriate REG_DEAD
14058 note to be added for it. However, we can't just emit a USE
14059 and tag the note to it, since the register might actually
14060 be dead; so we recourse, and the recursive call then finds
14061 the previous insn that used this register. */
14062
14063 if (place && REG_NREGS (XEXP (note, 0)) > 1)
14064 {
14065 unsigned int endregno = END_REGNO (XEXP (note, 0));
14066 bool all_used = true;
14067 unsigned int i;
14068
14069 for (i = regno; i < endregno; i++)
14070 if ((! refers_to_regno_p (i, PATTERN (place))
14071 && ! find_regno_fusage (place, USE, i))
14072 || dead_or_set_regno_p (place, i))
14073 {
14074 all_used = false;
14075 break;
14076 }
14077
14078 if (! all_used)
14079 {
14080 /* Put only REG_DEAD notes for pieces that are
14081 not already dead or set. */
14082
14083 for (i = regno; i < endregno;
14084 i += hard_regno_nregs[i][reg_raw_mode[i]])
14085 {
14086 rtx piece = regno_reg_rtx[i];
14087 basic_block bb = this_basic_block;
14088
14089 if (! dead_or_set_p (place, piece)
14090 && ! reg_bitfield_target_p (piece,
14091 PATTERN (place)))
14092 {
14093 rtx new_note = alloc_reg_note (REG_DEAD, piece,
14094 NULL_RTX);
14095
14096 distribute_notes (new_note, place, place,
14097 NULL, NULL_RTX, NULL_RTX,
14098 NULL_RTX);
14099 }
14100 else if (! refers_to_regno_p (i, PATTERN (place))
14101 && ! find_regno_fusage (place, USE, i))
14102 for (tem_insn = PREV_INSN (place); ;
14103 tem_insn = PREV_INSN (tem_insn))
14104 {
14105 if (!NONDEBUG_INSN_P (tem_insn))
14106 {
14107 if (tem_insn == BB_HEAD (bb))
14108 break;
14109 continue;
14110 }
14111 if (dead_or_set_p (tem_insn, piece)
14112 || reg_bitfield_target_p (piece,
14113 PATTERN (tem_insn)))
14114 {
14115 add_reg_note (tem_insn, REG_UNUSED, piece);
14116 break;
14117 }
14118 }
14119 }
14120
14121 place = 0;
14122 }
14123 }
14124 }
14125 break;
14126
14127 default:
14128 /* Any other notes should not be present at this point in the
14129 compilation. */
14130 gcc_unreachable ();
14131 }
14132
14133 if (place)
14134 {
14135 XEXP (note, 1) = REG_NOTES (place);
14136 REG_NOTES (place) = note;
14137 }
14138
14139 if (place2)
14140 add_shallow_copy_of_reg_note (place2, note);
14141 }
14142 }
14143 \f
14144 /* Similarly to above, distribute the LOG_LINKS that used to be present on
14145 I3, I2, and I1 to new locations. This is also called to add a link
14146 pointing at I3 when I3's destination is changed. */
14147
14148 static void
14149 distribute_links (struct insn_link *links)
14150 {
14151 struct insn_link *link, *next_link;
14152
14153 for (link = links; link; link = next_link)
14154 {
14155 rtx_insn *place = 0;
14156 rtx_insn *insn;
14157 rtx set, reg;
14158
14159 next_link = link->next;
14160
14161 /* If the insn that this link points to is a NOTE, ignore it. */
14162 if (NOTE_P (link->insn))
14163 continue;
14164
14165 set = 0;
14166 rtx pat = PATTERN (link->insn);
14167 if (GET_CODE (pat) == SET)
14168 set = pat;
14169 else if (GET_CODE (pat) == PARALLEL)
14170 {
14171 int i;
14172 for (i = 0; i < XVECLEN (pat, 0); i++)
14173 {
14174 set = XVECEXP (pat, 0, i);
14175 if (GET_CODE (set) != SET)
14176 continue;
14177
14178 reg = SET_DEST (set);
14179 while (GET_CODE (reg) == ZERO_EXTRACT
14180 || GET_CODE (reg) == STRICT_LOW_PART
14181 || GET_CODE (reg) == SUBREG)
14182 reg = XEXP (reg, 0);
14183
14184 if (!REG_P (reg))
14185 continue;
14186
14187 if (REGNO (reg) == link->regno)
14188 break;
14189 }
14190 if (i == XVECLEN (pat, 0))
14191 continue;
14192 }
14193 else
14194 continue;
14195
14196 reg = SET_DEST (set);
14197
14198 while (GET_CODE (reg) == ZERO_EXTRACT
14199 || GET_CODE (reg) == STRICT_LOW_PART
14200 || GET_CODE (reg) == SUBREG)
14201 reg = XEXP (reg, 0);
14202
14203 /* A LOG_LINK is defined as being placed on the first insn that uses
14204 a register and points to the insn that sets the register. Start
14205 searching at the next insn after the target of the link and stop
14206 when we reach a set of the register or the end of the basic block.
14207
14208 Note that this correctly handles the link that used to point from
14209 I3 to I2. Also note that not much searching is typically done here
14210 since most links don't point very far away. */
14211
14212 for (insn = NEXT_INSN (link->insn);
14213 (insn && (this_basic_block->next_bb == EXIT_BLOCK_PTR_FOR_FN (cfun)
14214 || BB_HEAD (this_basic_block->next_bb) != insn));
14215 insn = NEXT_INSN (insn))
14216 if (DEBUG_INSN_P (insn))
14217 continue;
14218 else if (INSN_P (insn) && reg_overlap_mentioned_p (reg, PATTERN (insn)))
14219 {
14220 if (reg_referenced_p (reg, PATTERN (insn)))
14221 place = insn;
14222 break;
14223 }
14224 else if (CALL_P (insn)
14225 && find_reg_fusage (insn, USE, reg))
14226 {
14227 place = insn;
14228 break;
14229 }
14230 else if (INSN_P (insn) && reg_set_p (reg, insn))
14231 break;
14232
14233 /* If we found a place to put the link, place it there unless there
14234 is already a link to the same insn as LINK at that point. */
14235
14236 if (place)
14237 {
14238 struct insn_link *link2;
14239
14240 FOR_EACH_LOG_LINK (link2, place)
14241 if (link2->insn == link->insn && link2->regno == link->regno)
14242 break;
14243
14244 if (link2 == NULL)
14245 {
14246 link->next = LOG_LINKS (place);
14247 LOG_LINKS (place) = link;
14248
14249 /* Set added_links_insn to the earliest insn we added a
14250 link to. */
14251 if (added_links_insn == 0
14252 || DF_INSN_LUID (added_links_insn) > DF_INSN_LUID (place))
14253 added_links_insn = place;
14254 }
14255 }
14256 }
14257 }
14258 \f
14259 /* Check for any register or memory mentioned in EQUIV that is not
14260 mentioned in EXPR. This is used to restrict EQUIV to "specializations"
14261 of EXPR where some registers may have been replaced by constants. */
14262
14263 static bool
14264 unmentioned_reg_p (rtx equiv, rtx expr)
14265 {
14266 subrtx_iterator::array_type array;
14267 FOR_EACH_SUBRTX (iter, array, equiv, NONCONST)
14268 {
14269 const_rtx x = *iter;
14270 if ((REG_P (x) || MEM_P (x))
14271 && !reg_mentioned_p (x, expr))
14272 return true;
14273 }
14274 return false;
14275 }
14276 \f
14277 DEBUG_FUNCTION void
14278 dump_combine_stats (FILE *file)
14279 {
14280 fprintf
14281 (file,
14282 ";; Combiner statistics: %d attempts, %d substitutions (%d requiring new space),\n;; %d successes.\n\n",
14283 combine_attempts, combine_merges, combine_extras, combine_successes);
14284 }
14285
14286 void
14287 dump_combine_total_stats (FILE *file)
14288 {
14289 fprintf
14290 (file,
14291 "\n;; Combiner totals: %d attempts, %d substitutions (%d requiring new space),\n;; %d successes.\n",
14292 total_attempts, total_merges, total_extras, total_successes);
14293 }
14294 \f
14295 /* Try combining insns through substitution. */
14296 static unsigned int
14297 rest_of_handle_combine (void)
14298 {
14299 int rebuild_jump_labels_after_combine;
14300
14301 df_set_flags (DF_LR_RUN_DCE + DF_DEFER_INSN_RESCAN);
14302 df_note_add_problem ();
14303 df_analyze ();
14304
14305 regstat_init_n_sets_and_refs ();
14306 reg_n_sets_max = max_reg_num ();
14307
14308 rebuild_jump_labels_after_combine
14309 = combine_instructions (get_insns (), max_reg_num ());
14310
14311 /* Combining insns may have turned an indirect jump into a
14312 direct jump. Rebuild the JUMP_LABEL fields of jumping
14313 instructions. */
14314 if (rebuild_jump_labels_after_combine)
14315 {
14316 timevar_push (TV_JUMP);
14317 rebuild_jump_labels (get_insns ());
14318 cleanup_cfg (0);
14319 timevar_pop (TV_JUMP);
14320 }
14321
14322 regstat_free_n_sets_and_refs ();
14323 return 0;
14324 }
14325
14326 namespace {
14327
14328 const pass_data pass_data_combine =
14329 {
14330 RTL_PASS, /* type */
14331 "combine", /* name */
14332 OPTGROUP_NONE, /* optinfo_flags */
14333 TV_COMBINE, /* tv_id */
14334 PROP_cfglayout, /* properties_required */
14335 0, /* properties_provided */
14336 0, /* properties_destroyed */
14337 0, /* todo_flags_start */
14338 TODO_df_finish, /* todo_flags_finish */
14339 };
14340
14341 class pass_combine : public rtl_opt_pass
14342 {
14343 public:
14344 pass_combine (gcc::context *ctxt)
14345 : rtl_opt_pass (pass_data_combine, ctxt)
14346 {}
14347
14348 /* opt_pass methods: */
14349 virtual bool gate (function *) { return (optimize > 0); }
14350 virtual unsigned int execute (function *)
14351 {
14352 return rest_of_handle_combine ();
14353 }
14354
14355 }; // class pass_combine
14356
14357 } // anon namespace
14358
14359 rtl_opt_pass *
14360 make_pass_combine (gcc::context *ctxt)
14361 {
14362 return new pass_combine (ctxt);
14363 }