rs6000.c (rs6000_expand_vector_set): Use vnand instead of vnor to exploit possible...
[gcc.git] / gcc / combine.c
1 /* Optimize by combining instructions for GNU compiler.
2 Copyright (C) 1987-2014 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 /* This module is essentially the "combiner" phase of the U. of Arizona
21 Portable Optimizer, but redone to work on our list-structured
22 representation for RTL instead of their string representation.
23
24 The LOG_LINKS of each insn identify the most recent assignment
25 to each REG used in the insn. It is a list of previous insns,
26 each of which contains a SET for a REG that is used in this insn
27 and not used or set in between. LOG_LINKs never cross basic blocks.
28 They were set up by the preceding pass (lifetime analysis).
29
30 We try to combine each pair of insns joined by a logical link.
31 We also try to combine triplets of insns A, B and C when C has
32 a link back to B and B has a link back to A. Likewise for a
33 small number of quadruplets of insns A, B, C and D for which
34 there's high likelihood of of success.
35
36 LOG_LINKS does not have links for use of the CC0. They don't
37 need to, because the insn that sets the CC0 is always immediately
38 before the insn that tests it. So we always regard a branch
39 insn as having a logical link to the preceding insn. The same is true
40 for an insn explicitly using CC0.
41
42 We check (with use_crosses_set_p) to avoid combining in such a way
43 as to move a computation to a place where its value would be different.
44
45 Combination is done by mathematically substituting the previous
46 insn(s) values for the regs they set into the expressions in
47 the later insns that refer to these regs. If the result is a valid insn
48 for our target machine, according to the machine description,
49 we install it, delete the earlier insns, and update the data flow
50 information (LOG_LINKS and REG_NOTES) for what we did.
51
52 There are a few exceptions where the dataflow information isn't
53 completely updated (however this is only a local issue since it is
54 regenerated before the next pass that uses it):
55
56 - reg_live_length is not updated
57 - reg_n_refs is not adjusted in the rare case when a register is
58 no longer required in a computation
59 - there are extremely rare cases (see distribute_notes) when a
60 REG_DEAD note is lost
61 - a LOG_LINKS entry that refers to an insn with multiple SETs may be
62 removed because there is no way to know which register it was
63 linking
64
65 To simplify substitution, we combine only when the earlier insn(s)
66 consist of only a single assignment. To simplify updating afterward,
67 we never combine when a subroutine call appears in the middle.
68
69 Since we do not represent assignments to CC0 explicitly except when that
70 is all an insn does, there is no LOG_LINKS entry in an insn that uses
71 the condition code for the insn that set the condition code.
72 Fortunately, these two insns must be consecutive.
73 Therefore, every JUMP_INSN is taken to have an implicit logical link
74 to the preceding insn. This is not quite right, since non-jumps can
75 also use the condition code; but in practice such insns would not
76 combine anyway. */
77
78 #include "config.h"
79 #include "system.h"
80 #include "coretypes.h"
81 #include "tm.h"
82 #include "rtl.h"
83 #include "tree.h"
84 #include "stor-layout.h"
85 #include "tm_p.h"
86 #include "flags.h"
87 #include "regs.h"
88 #include "hard-reg-set.h"
89 #include "basic-block.h"
90 #include "insn-config.h"
91 #include "function.h"
92 /* Include expr.h after insn-config.h so we get HAVE_conditional_move. */
93 #include "expr.h"
94 #include "insn-attr.h"
95 #include "recog.h"
96 #include "diagnostic-core.h"
97 #include "target.h"
98 #include "optabs.h"
99 #include "insn-codes.h"
100 #include "rtlhooks-def.h"
101 #include "params.h"
102 #include "tree-pass.h"
103 #include "df.h"
104 #include "valtrack.h"
105 #include "cgraph.h"
106 #include "obstack.h"
107
108 /* Number of attempts to combine instructions in this function. */
109
110 static int combine_attempts;
111
112 /* Number of attempts that got as far as substitution in this function. */
113
114 static int combine_merges;
115
116 /* Number of instructions combined with added SETs in this function. */
117
118 static int combine_extras;
119
120 /* Number of instructions combined in this function. */
121
122 static int combine_successes;
123
124 /* Totals over entire compilation. */
125
126 static int total_attempts, total_merges, total_extras, total_successes;
127
128 /* combine_instructions may try to replace the right hand side of the
129 second instruction with the value of an associated REG_EQUAL note
130 before throwing it at try_combine. That is problematic when there
131 is a REG_DEAD note for a register used in the old right hand side
132 and can cause distribute_notes to do wrong things. This is the
133 second instruction if it has been so modified, null otherwise. */
134
135 static rtx i2mod;
136
137 /* When I2MOD is nonnull, this is a copy of the old right hand side. */
138
139 static rtx i2mod_old_rhs;
140
141 /* When I2MOD is nonnull, this is a copy of the new right hand side. */
142
143 static rtx i2mod_new_rhs;
144 \f
145 typedef struct reg_stat_struct {
146 /* Record last point of death of (hard or pseudo) register n. */
147 rtx last_death;
148
149 /* Record last point of modification of (hard or pseudo) register n. */
150 rtx last_set;
151
152 /* The next group of fields allows the recording of the last value assigned
153 to (hard or pseudo) register n. We use this information to see if an
154 operation being processed is redundant given a prior operation performed
155 on the register. For example, an `and' with a constant is redundant if
156 all the zero bits are already known to be turned off.
157
158 We use an approach similar to that used by cse, but change it in the
159 following ways:
160
161 (1) We do not want to reinitialize at each label.
162 (2) It is useful, but not critical, to know the actual value assigned
163 to a register. Often just its form is helpful.
164
165 Therefore, we maintain the following fields:
166
167 last_set_value the last value assigned
168 last_set_label records the value of label_tick when the
169 register was assigned
170 last_set_table_tick records the value of label_tick when a
171 value using the register is assigned
172 last_set_invalid set to nonzero when it is not valid
173 to use the value of this register in some
174 register's value
175
176 To understand the usage of these tables, it is important to understand
177 the distinction between the value in last_set_value being valid and
178 the register being validly contained in some other expression in the
179 table.
180
181 (The next two parameters are out of date).
182
183 reg_stat[i].last_set_value is valid if it is nonzero, and either
184 reg_n_sets[i] is 1 or reg_stat[i].last_set_label == label_tick.
185
186 Register I may validly appear in any expression returned for the value
187 of another register if reg_n_sets[i] is 1. It may also appear in the
188 value for register J if reg_stat[j].last_set_invalid is zero, or
189 reg_stat[i].last_set_label < reg_stat[j].last_set_label.
190
191 If an expression is found in the table containing a register which may
192 not validly appear in an expression, the register is replaced by
193 something that won't match, (clobber (const_int 0)). */
194
195 /* Record last value assigned to (hard or pseudo) register n. */
196
197 rtx last_set_value;
198
199 /* Record the value of label_tick when an expression involving register n
200 is placed in last_set_value. */
201
202 int last_set_table_tick;
203
204 /* Record the value of label_tick when the value for register n is placed in
205 last_set_value. */
206
207 int last_set_label;
208
209 /* These fields are maintained in parallel with last_set_value and are
210 used to store the mode in which the register was last set, the bits
211 that were known to be zero when it was last set, and the number of
212 sign bits copies it was known to have when it was last set. */
213
214 unsigned HOST_WIDE_INT last_set_nonzero_bits;
215 char last_set_sign_bit_copies;
216 ENUM_BITFIELD(machine_mode) last_set_mode : 8;
217
218 /* Set nonzero if references to register n in expressions should not be
219 used. last_set_invalid is set nonzero when this register is being
220 assigned to and last_set_table_tick == label_tick. */
221
222 char last_set_invalid;
223
224 /* Some registers that are set more than once and used in more than one
225 basic block are nevertheless always set in similar ways. For example,
226 a QImode register may be loaded from memory in two places on a machine
227 where byte loads zero extend.
228
229 We record in the following fields if a register has some leading bits
230 that are always equal to the sign bit, and what we know about the
231 nonzero bits of a register, specifically which bits are known to be
232 zero.
233
234 If an entry is zero, it means that we don't know anything special. */
235
236 unsigned char sign_bit_copies;
237
238 unsigned HOST_WIDE_INT nonzero_bits;
239
240 /* Record the value of the label_tick when the last truncation
241 happened. The field truncated_to_mode is only valid if
242 truncation_label == label_tick. */
243
244 int truncation_label;
245
246 /* Record the last truncation seen for this register. If truncation
247 is not a nop to this mode we might be able to save an explicit
248 truncation if we know that value already contains a truncated
249 value. */
250
251 ENUM_BITFIELD(machine_mode) truncated_to_mode : 8;
252 } reg_stat_type;
253
254
255 static vec<reg_stat_type> reg_stat;
256
257 /* Record the luid of the last insn that invalidated memory
258 (anything that writes memory, and subroutine calls, but not pushes). */
259
260 static int mem_last_set;
261
262 /* Record the luid of the last CALL_INSN
263 so we can tell whether a potential combination crosses any calls. */
264
265 static int last_call_luid;
266
267 /* When `subst' is called, this is the insn that is being modified
268 (by combining in a previous insn). The PATTERN of this insn
269 is still the old pattern partially modified and it should not be
270 looked at, but this may be used to examine the successors of the insn
271 to judge whether a simplification is valid. */
272
273 static rtx subst_insn;
274
275 /* This is the lowest LUID that `subst' is currently dealing with.
276 get_last_value will not return a value if the register was set at or
277 after this LUID. If not for this mechanism, we could get confused if
278 I2 or I1 in try_combine were an insn that used the old value of a register
279 to obtain a new value. In that case, we might erroneously get the
280 new value of the register when we wanted the old one. */
281
282 static int subst_low_luid;
283
284 /* This contains any hard registers that are used in newpat; reg_dead_at_p
285 must consider all these registers to be always live. */
286
287 static HARD_REG_SET newpat_used_regs;
288
289 /* This is an insn to which a LOG_LINKS entry has been added. If this
290 insn is the earlier than I2 or I3, combine should rescan starting at
291 that location. */
292
293 static rtx added_links_insn;
294
295 /* Basic block in which we are performing combines. */
296 static basic_block this_basic_block;
297 static bool optimize_this_for_speed_p;
298
299 \f
300 /* Length of the currently allocated uid_insn_cost array. */
301
302 static int max_uid_known;
303
304 /* The following array records the insn_rtx_cost for every insn
305 in the instruction stream. */
306
307 static int *uid_insn_cost;
308
309 /* The following array records the LOG_LINKS for every insn in the
310 instruction stream as struct insn_link pointers. */
311
312 struct insn_link {
313 rtx insn;
314 struct insn_link *next;
315 };
316
317 static struct insn_link **uid_log_links;
318
319 #define INSN_COST(INSN) (uid_insn_cost[INSN_UID (INSN)])
320 #define LOG_LINKS(INSN) (uid_log_links[INSN_UID (INSN)])
321
322 #define FOR_EACH_LOG_LINK(L, INSN) \
323 for ((L) = LOG_LINKS (INSN); (L); (L) = (L)->next)
324
325 /* Links for LOG_LINKS are allocated from this obstack. */
326
327 static struct obstack insn_link_obstack;
328
329 /* Allocate a link. */
330
331 static inline struct insn_link *
332 alloc_insn_link (rtx insn, struct insn_link *next)
333 {
334 struct insn_link *l
335 = (struct insn_link *) obstack_alloc (&insn_link_obstack,
336 sizeof (struct insn_link));
337 l->insn = insn;
338 l->next = next;
339 return l;
340 }
341
342 /* Incremented for each basic block. */
343
344 static int label_tick;
345
346 /* Reset to label_tick for each extended basic block in scanning order. */
347
348 static int label_tick_ebb_start;
349
350 /* Mode used to compute significance in reg_stat[].nonzero_bits. It is the
351 largest integer mode that can fit in HOST_BITS_PER_WIDE_INT. */
352
353 static enum machine_mode nonzero_bits_mode;
354
355 /* Nonzero when reg_stat[].nonzero_bits and reg_stat[].sign_bit_copies can
356 be safely used. It is zero while computing them and after combine has
357 completed. This former test prevents propagating values based on
358 previously set values, which can be incorrect if a variable is modified
359 in a loop. */
360
361 static int nonzero_sign_valid;
362
363 \f
364 /* Record one modification to rtl structure
365 to be undone by storing old_contents into *where. */
366
367 enum undo_kind { UNDO_RTX, UNDO_INT, UNDO_MODE, UNDO_LINKS };
368
369 struct undo
370 {
371 struct undo *next;
372 enum undo_kind kind;
373 union { rtx r; int i; enum machine_mode m; struct insn_link *l; } old_contents;
374 union { rtx *r; int *i; struct insn_link **l; } where;
375 };
376
377 /* Record a bunch of changes to be undone, up to MAX_UNDO of them.
378 num_undo says how many are currently recorded.
379
380 other_insn is nonzero if we have modified some other insn in the process
381 of working on subst_insn. It must be verified too. */
382
383 struct undobuf
384 {
385 struct undo *undos;
386 struct undo *frees;
387 rtx other_insn;
388 };
389
390 static struct undobuf undobuf;
391
392 /* Number of times the pseudo being substituted for
393 was found and replaced. */
394
395 static int n_occurrences;
396
397 static rtx reg_nonzero_bits_for_combine (const_rtx, enum machine_mode, const_rtx,
398 enum machine_mode,
399 unsigned HOST_WIDE_INT,
400 unsigned HOST_WIDE_INT *);
401 static rtx reg_num_sign_bit_copies_for_combine (const_rtx, enum machine_mode, const_rtx,
402 enum machine_mode,
403 unsigned int, unsigned int *);
404 static void do_SUBST (rtx *, rtx);
405 static void do_SUBST_INT (int *, int);
406 static void init_reg_last (void);
407 static void setup_incoming_promotions (rtx);
408 static void set_nonzero_bits_and_sign_copies (rtx, const_rtx, void *);
409 static int cant_combine_insn_p (rtx);
410 static int can_combine_p (rtx, rtx, rtx, rtx, rtx, rtx, rtx *, rtx *);
411 static int combinable_i3pat (rtx, rtx *, rtx, rtx, rtx, int, int, rtx *);
412 static int contains_muldiv (rtx);
413 static rtx try_combine (rtx, rtx, rtx, rtx, int *, rtx);
414 static void undo_all (void);
415 static void undo_commit (void);
416 static rtx *find_split_point (rtx *, rtx, bool);
417 static rtx subst (rtx, rtx, rtx, int, int, int);
418 static rtx combine_simplify_rtx (rtx, enum machine_mode, int, int);
419 static rtx simplify_if_then_else (rtx);
420 static rtx simplify_set (rtx);
421 static rtx simplify_logical (rtx);
422 static rtx expand_compound_operation (rtx);
423 static const_rtx expand_field_assignment (const_rtx);
424 static rtx make_extraction (enum machine_mode, rtx, HOST_WIDE_INT,
425 rtx, unsigned HOST_WIDE_INT, int, int, int);
426 static rtx extract_left_shift (rtx, int);
427 static int get_pos_from_mask (unsigned HOST_WIDE_INT,
428 unsigned HOST_WIDE_INT *);
429 static rtx canon_reg_for_combine (rtx, rtx);
430 static rtx force_to_mode (rtx, enum machine_mode,
431 unsigned HOST_WIDE_INT, int);
432 static rtx if_then_else_cond (rtx, rtx *, rtx *);
433 static rtx known_cond (rtx, enum rtx_code, rtx, rtx);
434 static int rtx_equal_for_field_assignment_p (rtx, rtx);
435 static rtx make_field_assignment (rtx);
436 static rtx apply_distributive_law (rtx);
437 static rtx distribute_and_simplify_rtx (rtx, int);
438 static rtx simplify_and_const_int_1 (enum machine_mode, rtx,
439 unsigned HOST_WIDE_INT);
440 static rtx simplify_and_const_int (rtx, enum machine_mode, rtx,
441 unsigned HOST_WIDE_INT);
442 static int merge_outer_ops (enum rtx_code *, HOST_WIDE_INT *, enum rtx_code,
443 HOST_WIDE_INT, enum machine_mode, int *);
444 static rtx simplify_shift_const_1 (enum rtx_code, enum machine_mode, rtx, int);
445 static rtx simplify_shift_const (rtx, enum rtx_code, enum machine_mode, rtx,
446 int);
447 static int recog_for_combine (rtx *, rtx, rtx *);
448 static rtx gen_lowpart_for_combine (enum machine_mode, rtx);
449 static enum rtx_code simplify_compare_const (enum rtx_code, enum machine_mode,
450 rtx, rtx *);
451 static enum rtx_code simplify_comparison (enum rtx_code, rtx *, rtx *);
452 static void update_table_tick (rtx);
453 static void record_value_for_reg (rtx, rtx, rtx);
454 static void check_promoted_subreg (rtx, rtx);
455 static void record_dead_and_set_regs_1 (rtx, const_rtx, void *);
456 static void record_dead_and_set_regs (rtx);
457 static int get_last_value_validate (rtx *, rtx, int, int);
458 static rtx get_last_value (const_rtx);
459 static int use_crosses_set_p (const_rtx, int);
460 static void reg_dead_at_p_1 (rtx, const_rtx, void *);
461 static int reg_dead_at_p (rtx, rtx);
462 static void move_deaths (rtx, rtx, int, rtx, rtx *);
463 static int reg_bitfield_target_p (rtx, rtx);
464 static void distribute_notes (rtx, rtx, rtx, rtx, rtx, rtx, rtx);
465 static void distribute_links (struct insn_link *);
466 static void mark_used_regs_combine (rtx);
467 static void record_promoted_value (rtx, rtx);
468 static int unmentioned_reg_p_1 (rtx *, void *);
469 static bool unmentioned_reg_p (rtx, rtx);
470 static int record_truncated_value (rtx *, void *);
471 static void record_truncated_values (rtx *, void *);
472 static bool reg_truncated_to_mode (enum machine_mode, const_rtx);
473 static rtx gen_lowpart_or_truncate (enum machine_mode, rtx);
474 \f
475
476 /* It is not safe to use ordinary gen_lowpart in combine.
477 See comments in gen_lowpart_for_combine. */
478 #undef RTL_HOOKS_GEN_LOWPART
479 #define RTL_HOOKS_GEN_LOWPART gen_lowpart_for_combine
480
481 /* Our implementation of gen_lowpart never emits a new pseudo. */
482 #undef RTL_HOOKS_GEN_LOWPART_NO_EMIT
483 #define RTL_HOOKS_GEN_LOWPART_NO_EMIT gen_lowpart_for_combine
484
485 #undef RTL_HOOKS_REG_NONZERO_REG_BITS
486 #define RTL_HOOKS_REG_NONZERO_REG_BITS reg_nonzero_bits_for_combine
487
488 #undef RTL_HOOKS_REG_NUM_SIGN_BIT_COPIES
489 #define RTL_HOOKS_REG_NUM_SIGN_BIT_COPIES reg_num_sign_bit_copies_for_combine
490
491 #undef RTL_HOOKS_REG_TRUNCATED_TO_MODE
492 #define RTL_HOOKS_REG_TRUNCATED_TO_MODE reg_truncated_to_mode
493
494 static const struct rtl_hooks combine_rtl_hooks = RTL_HOOKS_INITIALIZER;
495
496 \f
497 /* Convenience wrapper for the canonicalize_comparison target hook.
498 Target hooks cannot use enum rtx_code. */
499 static inline void
500 target_canonicalize_comparison (enum rtx_code *code, rtx *op0, rtx *op1,
501 bool op0_preserve_value)
502 {
503 int code_int = (int)*code;
504 targetm.canonicalize_comparison (&code_int, op0, op1, op0_preserve_value);
505 *code = (enum rtx_code)code_int;
506 }
507
508 /* Try to split PATTERN found in INSN. This returns NULL_RTX if
509 PATTERN can not be split. Otherwise, it returns an insn sequence.
510 This is a wrapper around split_insns which ensures that the
511 reg_stat vector is made larger if the splitter creates a new
512 register. */
513
514 static rtx
515 combine_split_insns (rtx pattern, rtx insn)
516 {
517 rtx ret;
518 unsigned int nregs;
519
520 ret = split_insns (pattern, insn);
521 nregs = max_reg_num ();
522 if (nregs > reg_stat.length ())
523 reg_stat.safe_grow_cleared (nregs);
524 return ret;
525 }
526
527 /* This is used by find_single_use to locate an rtx in LOC that
528 contains exactly one use of DEST, which is typically either a REG
529 or CC0. It returns a pointer to the innermost rtx expression
530 containing DEST. Appearances of DEST that are being used to
531 totally replace it are not counted. */
532
533 static rtx *
534 find_single_use_1 (rtx dest, rtx *loc)
535 {
536 rtx x = *loc;
537 enum rtx_code code = GET_CODE (x);
538 rtx *result = NULL;
539 rtx *this_result;
540 int i;
541 const char *fmt;
542
543 switch (code)
544 {
545 case CONST:
546 case LABEL_REF:
547 case SYMBOL_REF:
548 CASE_CONST_ANY:
549 case CLOBBER:
550 return 0;
551
552 case SET:
553 /* If the destination is anything other than CC0, PC, a REG or a SUBREG
554 of a REG that occupies all of the REG, the insn uses DEST if
555 it is mentioned in the destination or the source. Otherwise, we
556 need just check the source. */
557 if (GET_CODE (SET_DEST (x)) != CC0
558 && GET_CODE (SET_DEST (x)) != PC
559 && !REG_P (SET_DEST (x))
560 && ! (GET_CODE (SET_DEST (x)) == SUBREG
561 && REG_P (SUBREG_REG (SET_DEST (x)))
562 && (((GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (x))))
563 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
564 == ((GET_MODE_SIZE (GET_MODE (SET_DEST (x)))
565 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))))
566 break;
567
568 return find_single_use_1 (dest, &SET_SRC (x));
569
570 case MEM:
571 case SUBREG:
572 return find_single_use_1 (dest, &XEXP (x, 0));
573
574 default:
575 break;
576 }
577
578 /* If it wasn't one of the common cases above, check each expression and
579 vector of this code. Look for a unique usage of DEST. */
580
581 fmt = GET_RTX_FORMAT (code);
582 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
583 {
584 if (fmt[i] == 'e')
585 {
586 if (dest == XEXP (x, i)
587 || (REG_P (dest) && REG_P (XEXP (x, i))
588 && REGNO (dest) == REGNO (XEXP (x, i))))
589 this_result = loc;
590 else
591 this_result = find_single_use_1 (dest, &XEXP (x, i));
592
593 if (result == NULL)
594 result = this_result;
595 else if (this_result)
596 /* Duplicate usage. */
597 return NULL;
598 }
599 else if (fmt[i] == 'E')
600 {
601 int j;
602
603 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
604 {
605 if (XVECEXP (x, i, j) == dest
606 || (REG_P (dest)
607 && REG_P (XVECEXP (x, i, j))
608 && REGNO (XVECEXP (x, i, j)) == REGNO (dest)))
609 this_result = loc;
610 else
611 this_result = find_single_use_1 (dest, &XVECEXP (x, i, j));
612
613 if (result == NULL)
614 result = this_result;
615 else if (this_result)
616 return NULL;
617 }
618 }
619 }
620
621 return result;
622 }
623
624
625 /* See if DEST, produced in INSN, is used only a single time in the
626 sequel. If so, return a pointer to the innermost rtx expression in which
627 it is used.
628
629 If PLOC is nonzero, *PLOC is set to the insn containing the single use.
630
631 If DEST is cc0_rtx, we look only at the next insn. In that case, we don't
632 care about REG_DEAD notes or LOG_LINKS.
633
634 Otherwise, we find the single use by finding an insn that has a
635 LOG_LINKS pointing at INSN and has a REG_DEAD note for DEST. If DEST is
636 only referenced once in that insn, we know that it must be the first
637 and last insn referencing DEST. */
638
639 static rtx *
640 find_single_use (rtx dest, rtx insn, rtx *ploc)
641 {
642 basic_block bb;
643 rtx next;
644 rtx *result;
645 struct insn_link *link;
646
647 #ifdef HAVE_cc0
648 if (dest == cc0_rtx)
649 {
650 next = NEXT_INSN (insn);
651 if (next == 0
652 || (!NONJUMP_INSN_P (next) && !JUMP_P (next)))
653 return 0;
654
655 result = find_single_use_1 (dest, &PATTERN (next));
656 if (result && ploc)
657 *ploc = next;
658 return result;
659 }
660 #endif
661
662 if (!REG_P (dest))
663 return 0;
664
665 bb = BLOCK_FOR_INSN (insn);
666 for (next = NEXT_INSN (insn);
667 next && BLOCK_FOR_INSN (next) == bb;
668 next = NEXT_INSN (next))
669 if (INSN_P (next) && dead_or_set_p (next, dest))
670 {
671 FOR_EACH_LOG_LINK (link, next)
672 if (link->insn == insn)
673 break;
674
675 if (link)
676 {
677 result = find_single_use_1 (dest, &PATTERN (next));
678 if (ploc)
679 *ploc = next;
680 return result;
681 }
682 }
683
684 return 0;
685 }
686 \f
687 /* Substitute NEWVAL, an rtx expression, into INTO, a place in some
688 insn. The substitution can be undone by undo_all. If INTO is already
689 set to NEWVAL, do not record this change. Because computing NEWVAL might
690 also call SUBST, we have to compute it before we put anything into
691 the undo table. */
692
693 static void
694 do_SUBST (rtx *into, rtx newval)
695 {
696 struct undo *buf;
697 rtx oldval = *into;
698
699 if (oldval == newval)
700 return;
701
702 /* We'd like to catch as many invalid transformations here as
703 possible. Unfortunately, there are way too many mode changes
704 that are perfectly valid, so we'd waste too much effort for
705 little gain doing the checks here. Focus on catching invalid
706 transformations involving integer constants. */
707 if (GET_MODE_CLASS (GET_MODE (oldval)) == MODE_INT
708 && CONST_INT_P (newval))
709 {
710 /* Sanity check that we're replacing oldval with a CONST_INT
711 that is a valid sign-extension for the original mode. */
712 gcc_assert (INTVAL (newval)
713 == trunc_int_for_mode (INTVAL (newval), GET_MODE (oldval)));
714
715 /* Replacing the operand of a SUBREG or a ZERO_EXTEND with a
716 CONST_INT is not valid, because after the replacement, the
717 original mode would be gone. Unfortunately, we can't tell
718 when do_SUBST is called to replace the operand thereof, so we
719 perform this test on oldval instead, checking whether an
720 invalid replacement took place before we got here. */
721 gcc_assert (!(GET_CODE (oldval) == SUBREG
722 && CONST_INT_P (SUBREG_REG (oldval))));
723 gcc_assert (!(GET_CODE (oldval) == ZERO_EXTEND
724 && CONST_INT_P (XEXP (oldval, 0))));
725 }
726
727 if (undobuf.frees)
728 buf = undobuf.frees, undobuf.frees = buf->next;
729 else
730 buf = XNEW (struct undo);
731
732 buf->kind = UNDO_RTX;
733 buf->where.r = into;
734 buf->old_contents.r = oldval;
735 *into = newval;
736
737 buf->next = undobuf.undos, undobuf.undos = buf;
738 }
739
740 #define SUBST(INTO, NEWVAL) do_SUBST (&(INTO), (NEWVAL))
741
742 /* Similar to SUBST, but NEWVAL is an int expression. Note that substitution
743 for the value of a HOST_WIDE_INT value (including CONST_INT) is
744 not safe. */
745
746 static void
747 do_SUBST_INT (int *into, int newval)
748 {
749 struct undo *buf;
750 int oldval = *into;
751
752 if (oldval == newval)
753 return;
754
755 if (undobuf.frees)
756 buf = undobuf.frees, undobuf.frees = buf->next;
757 else
758 buf = XNEW (struct undo);
759
760 buf->kind = UNDO_INT;
761 buf->where.i = into;
762 buf->old_contents.i = oldval;
763 *into = newval;
764
765 buf->next = undobuf.undos, undobuf.undos = buf;
766 }
767
768 #define SUBST_INT(INTO, NEWVAL) do_SUBST_INT (&(INTO), (NEWVAL))
769
770 /* Similar to SUBST, but just substitute the mode. This is used when
771 changing the mode of a pseudo-register, so that any other
772 references to the entry in the regno_reg_rtx array will change as
773 well. */
774
775 static void
776 do_SUBST_MODE (rtx *into, enum machine_mode newval)
777 {
778 struct undo *buf;
779 enum machine_mode oldval = GET_MODE (*into);
780
781 if (oldval == newval)
782 return;
783
784 if (undobuf.frees)
785 buf = undobuf.frees, undobuf.frees = buf->next;
786 else
787 buf = XNEW (struct undo);
788
789 buf->kind = UNDO_MODE;
790 buf->where.r = into;
791 buf->old_contents.m = oldval;
792 adjust_reg_mode (*into, newval);
793
794 buf->next = undobuf.undos, undobuf.undos = buf;
795 }
796
797 #define SUBST_MODE(INTO, NEWVAL) do_SUBST_MODE (&(INTO), (NEWVAL))
798
799 #ifndef HAVE_cc0
800 /* Similar to SUBST, but NEWVAL is a LOG_LINKS expression. */
801
802 static void
803 do_SUBST_LINK (struct insn_link **into, struct insn_link *newval)
804 {
805 struct undo *buf;
806 struct insn_link * oldval = *into;
807
808 if (oldval == newval)
809 return;
810
811 if (undobuf.frees)
812 buf = undobuf.frees, undobuf.frees = buf->next;
813 else
814 buf = XNEW (struct undo);
815
816 buf->kind = UNDO_LINKS;
817 buf->where.l = into;
818 buf->old_contents.l = oldval;
819 *into = newval;
820
821 buf->next = undobuf.undos, undobuf.undos = buf;
822 }
823
824 #define SUBST_LINK(oldval, newval) do_SUBST_LINK (&oldval, newval)
825 #endif
826 \f
827 /* Subroutine of try_combine. Determine whether the replacement patterns
828 NEWPAT, NEWI2PAT and NEWOTHERPAT are cheaper according to insn_rtx_cost
829 than the original sequence I0, I1, I2, I3 and undobuf.other_insn. Note
830 that I0, I1 and/or NEWI2PAT may be NULL_RTX. Similarly, NEWOTHERPAT and
831 undobuf.other_insn may also both be NULL_RTX. Return false if the cost
832 of all the instructions can be estimated and the replacements are more
833 expensive than the original sequence. */
834
835 static bool
836 combine_validate_cost (rtx i0, rtx i1, rtx i2, rtx i3, rtx newpat,
837 rtx newi2pat, rtx newotherpat)
838 {
839 int i0_cost, i1_cost, i2_cost, i3_cost;
840 int new_i2_cost, new_i3_cost;
841 int old_cost, new_cost;
842
843 /* Lookup the original insn_rtx_costs. */
844 i2_cost = INSN_COST (i2);
845 i3_cost = INSN_COST (i3);
846
847 if (i1)
848 {
849 i1_cost = INSN_COST (i1);
850 if (i0)
851 {
852 i0_cost = INSN_COST (i0);
853 old_cost = (i0_cost > 0 && i1_cost > 0 && i2_cost > 0 && i3_cost > 0
854 ? i0_cost + i1_cost + i2_cost + i3_cost : 0);
855 }
856 else
857 {
858 old_cost = (i1_cost > 0 && i2_cost > 0 && i3_cost > 0
859 ? i1_cost + i2_cost + i3_cost : 0);
860 i0_cost = 0;
861 }
862 }
863 else
864 {
865 old_cost = (i2_cost > 0 && i3_cost > 0) ? i2_cost + i3_cost : 0;
866 i1_cost = i0_cost = 0;
867 }
868
869 /* Calculate the replacement insn_rtx_costs. */
870 new_i3_cost = insn_rtx_cost (newpat, optimize_this_for_speed_p);
871 if (newi2pat)
872 {
873 new_i2_cost = insn_rtx_cost (newi2pat, optimize_this_for_speed_p);
874 new_cost = (new_i2_cost > 0 && new_i3_cost > 0)
875 ? new_i2_cost + new_i3_cost : 0;
876 }
877 else
878 {
879 new_cost = new_i3_cost;
880 new_i2_cost = 0;
881 }
882
883 if (undobuf.other_insn)
884 {
885 int old_other_cost, new_other_cost;
886
887 old_other_cost = INSN_COST (undobuf.other_insn);
888 new_other_cost = insn_rtx_cost (newotherpat, optimize_this_for_speed_p);
889 if (old_other_cost > 0 && new_other_cost > 0)
890 {
891 old_cost += old_other_cost;
892 new_cost += new_other_cost;
893 }
894 else
895 old_cost = 0;
896 }
897
898 /* Disallow this combination if both new_cost and old_cost are greater than
899 zero, and new_cost is greater than old cost. */
900 if (old_cost > 0 && new_cost > old_cost)
901 {
902 if (dump_file)
903 {
904 if (i0)
905 {
906 fprintf (dump_file,
907 "rejecting combination of insns %d, %d, %d and %d\n",
908 INSN_UID (i0), INSN_UID (i1), INSN_UID (i2),
909 INSN_UID (i3));
910 fprintf (dump_file, "original costs %d + %d + %d + %d = %d\n",
911 i0_cost, i1_cost, i2_cost, i3_cost, old_cost);
912 }
913 else if (i1)
914 {
915 fprintf (dump_file,
916 "rejecting combination of insns %d, %d and %d\n",
917 INSN_UID (i1), INSN_UID (i2), INSN_UID (i3));
918 fprintf (dump_file, "original costs %d + %d + %d = %d\n",
919 i1_cost, i2_cost, i3_cost, old_cost);
920 }
921 else
922 {
923 fprintf (dump_file,
924 "rejecting combination of insns %d and %d\n",
925 INSN_UID (i2), INSN_UID (i3));
926 fprintf (dump_file, "original costs %d + %d = %d\n",
927 i2_cost, i3_cost, old_cost);
928 }
929
930 if (newi2pat)
931 {
932 fprintf (dump_file, "replacement costs %d + %d = %d\n",
933 new_i2_cost, new_i3_cost, new_cost);
934 }
935 else
936 fprintf (dump_file, "replacement cost %d\n", new_cost);
937 }
938
939 return false;
940 }
941
942 /* Update the uid_insn_cost array with the replacement costs. */
943 INSN_COST (i2) = new_i2_cost;
944 INSN_COST (i3) = new_i3_cost;
945 if (i1)
946 {
947 INSN_COST (i1) = 0;
948 if (i0)
949 INSN_COST (i0) = 0;
950 }
951
952 return true;
953 }
954
955
956 /* Delete any insns that copy a register to itself. */
957
958 static void
959 delete_noop_moves (void)
960 {
961 rtx insn, next;
962 basic_block bb;
963
964 FOR_EACH_BB_FN (bb, cfun)
965 {
966 for (insn = BB_HEAD (bb); insn != NEXT_INSN (BB_END (bb)); insn = next)
967 {
968 next = NEXT_INSN (insn);
969 if (INSN_P (insn) && noop_move_p (insn))
970 {
971 if (dump_file)
972 fprintf (dump_file, "deleting noop move %d\n", INSN_UID (insn));
973
974 delete_insn_and_edges (insn);
975 }
976 }
977 }
978 }
979
980 \f
981 /* Fill in log links field for all insns. */
982
983 static void
984 create_log_links (void)
985 {
986 basic_block bb;
987 rtx *next_use, insn;
988 df_ref *def_vec, *use_vec;
989
990 next_use = XCNEWVEC (rtx, max_reg_num ());
991
992 /* Pass through each block from the end, recording the uses of each
993 register and establishing log links when def is encountered.
994 Note that we do not clear next_use array in order to save time,
995 so we have to test whether the use is in the same basic block as def.
996
997 There are a few cases below when we do not consider the definition or
998 usage -- these are taken from original flow.c did. Don't ask me why it is
999 done this way; I don't know and if it works, I don't want to know. */
1000
1001 FOR_EACH_BB_FN (bb, cfun)
1002 {
1003 FOR_BB_INSNS_REVERSE (bb, insn)
1004 {
1005 if (!NONDEBUG_INSN_P (insn))
1006 continue;
1007
1008 /* Log links are created only once. */
1009 gcc_assert (!LOG_LINKS (insn));
1010
1011 for (def_vec = DF_INSN_DEFS (insn); *def_vec; def_vec++)
1012 {
1013 df_ref def = *def_vec;
1014 int regno = DF_REF_REGNO (def);
1015 rtx use_insn;
1016
1017 if (!next_use[regno])
1018 continue;
1019
1020 /* Do not consider if it is pre/post modification in MEM. */
1021 if (DF_REF_FLAGS (def) & DF_REF_PRE_POST_MODIFY)
1022 continue;
1023
1024 /* Do not make the log link for frame pointer. */
1025 if ((regno == FRAME_POINTER_REGNUM
1026 && (! reload_completed || frame_pointer_needed))
1027 #if !HARD_FRAME_POINTER_IS_FRAME_POINTER
1028 || (regno == HARD_FRAME_POINTER_REGNUM
1029 && (! reload_completed || frame_pointer_needed))
1030 #endif
1031 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
1032 || (regno == ARG_POINTER_REGNUM && fixed_regs[regno])
1033 #endif
1034 )
1035 continue;
1036
1037 use_insn = next_use[regno];
1038 if (BLOCK_FOR_INSN (use_insn) == bb)
1039 {
1040 /* flow.c claimed:
1041
1042 We don't build a LOG_LINK for hard registers contained
1043 in ASM_OPERANDs. If these registers get replaced,
1044 we might wind up changing the semantics of the insn,
1045 even if reload can make what appear to be valid
1046 assignments later. */
1047 if (regno >= FIRST_PSEUDO_REGISTER
1048 || asm_noperands (PATTERN (use_insn)) < 0)
1049 {
1050 /* Don't add duplicate links between instructions. */
1051 struct insn_link *links;
1052 FOR_EACH_LOG_LINK (links, use_insn)
1053 if (insn == links->insn)
1054 break;
1055
1056 if (!links)
1057 LOG_LINKS (use_insn)
1058 = alloc_insn_link (insn, LOG_LINKS (use_insn));
1059 }
1060 }
1061 next_use[regno] = NULL_RTX;
1062 }
1063
1064 for (use_vec = DF_INSN_USES (insn); *use_vec; use_vec++)
1065 {
1066 df_ref use = *use_vec;
1067 int regno = DF_REF_REGNO (use);
1068
1069 /* Do not consider the usage of the stack pointer
1070 by function call. */
1071 if (DF_REF_FLAGS (use) & DF_REF_CALL_STACK_USAGE)
1072 continue;
1073
1074 next_use[regno] = insn;
1075 }
1076 }
1077 }
1078
1079 free (next_use);
1080 }
1081
1082 /* Walk the LOG_LINKS of insn B to see if we find a reference to A. Return
1083 true if we found a LOG_LINK that proves that A feeds B. This only works
1084 if there are no instructions between A and B which could have a link
1085 depending on A, since in that case we would not record a link for B.
1086 We also check the implicit dependency created by a cc0 setter/user
1087 pair. */
1088
1089 static bool
1090 insn_a_feeds_b (rtx a, rtx b)
1091 {
1092 struct insn_link *links;
1093 FOR_EACH_LOG_LINK (links, b)
1094 if (links->insn == a)
1095 return true;
1096 #ifdef HAVE_cc0
1097 if (sets_cc0_p (a))
1098 return true;
1099 #endif
1100 return false;
1101 }
1102 \f
1103 /* Main entry point for combiner. F is the first insn of the function.
1104 NREGS is the first unused pseudo-reg number.
1105
1106 Return nonzero if the combiner has turned an indirect jump
1107 instruction into a direct jump. */
1108 static int
1109 combine_instructions (rtx f, unsigned int nregs)
1110 {
1111 rtx insn, next;
1112 #ifdef HAVE_cc0
1113 rtx prev;
1114 #endif
1115 struct insn_link *links, *nextlinks;
1116 rtx first;
1117 basic_block last_bb;
1118
1119 int new_direct_jump_p = 0;
1120
1121 for (first = f; first && !INSN_P (first); )
1122 first = NEXT_INSN (first);
1123 if (!first)
1124 return 0;
1125
1126 combine_attempts = 0;
1127 combine_merges = 0;
1128 combine_extras = 0;
1129 combine_successes = 0;
1130
1131 rtl_hooks = combine_rtl_hooks;
1132
1133 reg_stat.safe_grow_cleared (nregs);
1134
1135 init_recog_no_volatile ();
1136
1137 /* Allocate array for insn info. */
1138 max_uid_known = get_max_uid ();
1139 uid_log_links = XCNEWVEC (struct insn_link *, max_uid_known + 1);
1140 uid_insn_cost = XCNEWVEC (int, max_uid_known + 1);
1141 gcc_obstack_init (&insn_link_obstack);
1142
1143 nonzero_bits_mode = mode_for_size (HOST_BITS_PER_WIDE_INT, MODE_INT, 0);
1144
1145 /* Don't use reg_stat[].nonzero_bits when computing it. This can cause
1146 problems when, for example, we have j <<= 1 in a loop. */
1147
1148 nonzero_sign_valid = 0;
1149 label_tick = label_tick_ebb_start = 1;
1150
1151 /* Scan all SETs and see if we can deduce anything about what
1152 bits are known to be zero for some registers and how many copies
1153 of the sign bit are known to exist for those registers.
1154
1155 Also set any known values so that we can use it while searching
1156 for what bits are known to be set. */
1157
1158 setup_incoming_promotions (first);
1159 /* Allow the entry block and the first block to fall into the same EBB.
1160 Conceptually the incoming promotions are assigned to the entry block. */
1161 last_bb = ENTRY_BLOCK_PTR_FOR_FN (cfun);
1162
1163 create_log_links ();
1164 FOR_EACH_BB_FN (this_basic_block, cfun)
1165 {
1166 optimize_this_for_speed_p = optimize_bb_for_speed_p (this_basic_block);
1167 last_call_luid = 0;
1168 mem_last_set = -1;
1169
1170 label_tick++;
1171 if (!single_pred_p (this_basic_block)
1172 || single_pred (this_basic_block) != last_bb)
1173 label_tick_ebb_start = label_tick;
1174 last_bb = this_basic_block;
1175
1176 FOR_BB_INSNS (this_basic_block, insn)
1177 if (INSN_P (insn) && BLOCK_FOR_INSN (insn))
1178 {
1179 #ifdef AUTO_INC_DEC
1180 rtx links;
1181 #endif
1182
1183 subst_low_luid = DF_INSN_LUID (insn);
1184 subst_insn = insn;
1185
1186 note_stores (PATTERN (insn), set_nonzero_bits_and_sign_copies,
1187 insn);
1188 record_dead_and_set_regs (insn);
1189
1190 #ifdef AUTO_INC_DEC
1191 for (links = REG_NOTES (insn); links; links = XEXP (links, 1))
1192 if (REG_NOTE_KIND (links) == REG_INC)
1193 set_nonzero_bits_and_sign_copies (XEXP (links, 0), NULL_RTX,
1194 insn);
1195 #endif
1196
1197 /* Record the current insn_rtx_cost of this instruction. */
1198 if (NONJUMP_INSN_P (insn))
1199 INSN_COST (insn) = insn_rtx_cost (PATTERN (insn),
1200 optimize_this_for_speed_p);
1201 if (dump_file)
1202 fprintf (dump_file, "insn_cost %d: %d\n",
1203 INSN_UID (insn), INSN_COST (insn));
1204 }
1205 }
1206
1207 nonzero_sign_valid = 1;
1208
1209 /* Now scan all the insns in forward order. */
1210 label_tick = label_tick_ebb_start = 1;
1211 init_reg_last ();
1212 setup_incoming_promotions (first);
1213 last_bb = ENTRY_BLOCK_PTR_FOR_FN (cfun);
1214
1215 FOR_EACH_BB_FN (this_basic_block, cfun)
1216 {
1217 rtx last_combined_insn = NULL_RTX;
1218 optimize_this_for_speed_p = optimize_bb_for_speed_p (this_basic_block);
1219 last_call_luid = 0;
1220 mem_last_set = -1;
1221
1222 label_tick++;
1223 if (!single_pred_p (this_basic_block)
1224 || single_pred (this_basic_block) != last_bb)
1225 label_tick_ebb_start = label_tick;
1226 last_bb = this_basic_block;
1227
1228 rtl_profile_for_bb (this_basic_block);
1229 for (insn = BB_HEAD (this_basic_block);
1230 insn != NEXT_INSN (BB_END (this_basic_block));
1231 insn = next ? next : NEXT_INSN (insn))
1232 {
1233 next = 0;
1234 if (NONDEBUG_INSN_P (insn))
1235 {
1236 while (last_combined_insn
1237 && INSN_DELETED_P (last_combined_insn))
1238 last_combined_insn = PREV_INSN (last_combined_insn);
1239 if (last_combined_insn == NULL_RTX
1240 || BARRIER_P (last_combined_insn)
1241 || BLOCK_FOR_INSN (last_combined_insn) != this_basic_block
1242 || DF_INSN_LUID (last_combined_insn) <= DF_INSN_LUID (insn))
1243 last_combined_insn = insn;
1244
1245 /* See if we know about function return values before this
1246 insn based upon SUBREG flags. */
1247 check_promoted_subreg (insn, PATTERN (insn));
1248
1249 /* See if we can find hardregs and subreg of pseudos in
1250 narrower modes. This could help turning TRUNCATEs
1251 into SUBREGs. */
1252 note_uses (&PATTERN (insn), record_truncated_values, NULL);
1253
1254 /* Try this insn with each insn it links back to. */
1255
1256 FOR_EACH_LOG_LINK (links, insn)
1257 if ((next = try_combine (insn, links->insn, NULL_RTX,
1258 NULL_RTX, &new_direct_jump_p,
1259 last_combined_insn)) != 0)
1260 goto retry;
1261
1262 /* Try each sequence of three linked insns ending with this one. */
1263
1264 FOR_EACH_LOG_LINK (links, insn)
1265 {
1266 rtx link = links->insn;
1267
1268 /* If the linked insn has been replaced by a note, then there
1269 is no point in pursuing this chain any further. */
1270 if (NOTE_P (link))
1271 continue;
1272
1273 FOR_EACH_LOG_LINK (nextlinks, link)
1274 if ((next = try_combine (insn, link, nextlinks->insn,
1275 NULL_RTX, &new_direct_jump_p,
1276 last_combined_insn)) != 0)
1277 goto retry;
1278 }
1279
1280 #ifdef HAVE_cc0
1281 /* Try to combine a jump insn that uses CC0
1282 with a preceding insn that sets CC0, and maybe with its
1283 logical predecessor as well.
1284 This is how we make decrement-and-branch insns.
1285 We need this special code because data flow connections
1286 via CC0 do not get entered in LOG_LINKS. */
1287
1288 if (JUMP_P (insn)
1289 && (prev = prev_nonnote_insn (insn)) != 0
1290 && NONJUMP_INSN_P (prev)
1291 && sets_cc0_p (PATTERN (prev)))
1292 {
1293 if ((next = try_combine (insn, prev, NULL_RTX, NULL_RTX,
1294 &new_direct_jump_p,
1295 last_combined_insn)) != 0)
1296 goto retry;
1297
1298 FOR_EACH_LOG_LINK (nextlinks, prev)
1299 if ((next = try_combine (insn, prev, nextlinks->insn,
1300 NULL_RTX, &new_direct_jump_p,
1301 last_combined_insn)) != 0)
1302 goto retry;
1303 }
1304
1305 /* Do the same for an insn that explicitly references CC0. */
1306 if (NONJUMP_INSN_P (insn)
1307 && (prev = prev_nonnote_insn (insn)) != 0
1308 && NONJUMP_INSN_P (prev)
1309 && sets_cc0_p (PATTERN (prev))
1310 && GET_CODE (PATTERN (insn)) == SET
1311 && reg_mentioned_p (cc0_rtx, SET_SRC (PATTERN (insn))))
1312 {
1313 if ((next = try_combine (insn, prev, NULL_RTX, NULL_RTX,
1314 &new_direct_jump_p,
1315 last_combined_insn)) != 0)
1316 goto retry;
1317
1318 FOR_EACH_LOG_LINK (nextlinks, prev)
1319 if ((next = try_combine (insn, prev, nextlinks->insn,
1320 NULL_RTX, &new_direct_jump_p,
1321 last_combined_insn)) != 0)
1322 goto retry;
1323 }
1324
1325 /* Finally, see if any of the insns that this insn links to
1326 explicitly references CC0. If so, try this insn, that insn,
1327 and its predecessor if it sets CC0. */
1328 FOR_EACH_LOG_LINK (links, insn)
1329 if (NONJUMP_INSN_P (links->insn)
1330 && GET_CODE (PATTERN (links->insn)) == SET
1331 && reg_mentioned_p (cc0_rtx, SET_SRC (PATTERN (links->insn)))
1332 && (prev = prev_nonnote_insn (links->insn)) != 0
1333 && NONJUMP_INSN_P (prev)
1334 && sets_cc0_p (PATTERN (prev))
1335 && (next = try_combine (insn, links->insn,
1336 prev, NULL_RTX, &new_direct_jump_p,
1337 last_combined_insn)) != 0)
1338 goto retry;
1339 #endif
1340
1341 /* Try combining an insn with two different insns whose results it
1342 uses. */
1343 FOR_EACH_LOG_LINK (links, insn)
1344 for (nextlinks = links->next; nextlinks;
1345 nextlinks = nextlinks->next)
1346 if ((next = try_combine (insn, links->insn,
1347 nextlinks->insn, NULL_RTX,
1348 &new_direct_jump_p,
1349 last_combined_insn)) != 0)
1350 goto retry;
1351
1352 /* Try four-instruction combinations. */
1353 FOR_EACH_LOG_LINK (links, insn)
1354 {
1355 struct insn_link *next1;
1356 rtx link = links->insn;
1357
1358 /* If the linked insn has been replaced by a note, then there
1359 is no point in pursuing this chain any further. */
1360 if (NOTE_P (link))
1361 continue;
1362
1363 FOR_EACH_LOG_LINK (next1, link)
1364 {
1365 rtx link1 = next1->insn;
1366 if (NOTE_P (link1))
1367 continue;
1368 /* I0 -> I1 -> I2 -> I3. */
1369 FOR_EACH_LOG_LINK (nextlinks, link1)
1370 if ((next = try_combine (insn, link, link1,
1371 nextlinks->insn,
1372 &new_direct_jump_p,
1373 last_combined_insn)) != 0)
1374 goto retry;
1375 /* I0, I1 -> I2, I2 -> I3. */
1376 for (nextlinks = next1->next; nextlinks;
1377 nextlinks = nextlinks->next)
1378 if ((next = try_combine (insn, link, link1,
1379 nextlinks->insn,
1380 &new_direct_jump_p,
1381 last_combined_insn)) != 0)
1382 goto retry;
1383 }
1384
1385 for (next1 = links->next; next1; next1 = next1->next)
1386 {
1387 rtx link1 = next1->insn;
1388 if (NOTE_P (link1))
1389 continue;
1390 /* I0 -> I2; I1, I2 -> I3. */
1391 FOR_EACH_LOG_LINK (nextlinks, link)
1392 if ((next = try_combine (insn, link, link1,
1393 nextlinks->insn,
1394 &new_direct_jump_p,
1395 last_combined_insn)) != 0)
1396 goto retry;
1397 /* I0 -> I1; I1, I2 -> I3. */
1398 FOR_EACH_LOG_LINK (nextlinks, link1)
1399 if ((next = try_combine (insn, link, link1,
1400 nextlinks->insn,
1401 &new_direct_jump_p,
1402 last_combined_insn)) != 0)
1403 goto retry;
1404 }
1405 }
1406
1407 /* Try this insn with each REG_EQUAL note it links back to. */
1408 FOR_EACH_LOG_LINK (links, insn)
1409 {
1410 rtx set, note;
1411 rtx temp = links->insn;
1412 if ((set = single_set (temp)) != 0
1413 && (note = find_reg_equal_equiv_note (temp)) != 0
1414 && (note = XEXP (note, 0), GET_CODE (note)) != EXPR_LIST
1415 /* Avoid using a register that may already been marked
1416 dead by an earlier instruction. */
1417 && ! unmentioned_reg_p (note, SET_SRC (set))
1418 && (GET_MODE (note) == VOIDmode
1419 ? SCALAR_INT_MODE_P (GET_MODE (SET_DEST (set)))
1420 : GET_MODE (SET_DEST (set)) == GET_MODE (note)))
1421 {
1422 /* Temporarily replace the set's source with the
1423 contents of the REG_EQUAL note. The insn will
1424 be deleted or recognized by try_combine. */
1425 rtx orig = SET_SRC (set);
1426 SET_SRC (set) = note;
1427 i2mod = temp;
1428 i2mod_old_rhs = copy_rtx (orig);
1429 i2mod_new_rhs = copy_rtx (note);
1430 next = try_combine (insn, i2mod, NULL_RTX, NULL_RTX,
1431 &new_direct_jump_p,
1432 last_combined_insn);
1433 i2mod = NULL_RTX;
1434 if (next)
1435 goto retry;
1436 SET_SRC (set) = orig;
1437 }
1438 }
1439
1440 if (!NOTE_P (insn))
1441 record_dead_and_set_regs (insn);
1442
1443 retry:
1444 ;
1445 }
1446 }
1447 }
1448
1449 default_rtl_profile ();
1450 clear_bb_flags ();
1451 new_direct_jump_p |= purge_all_dead_edges ();
1452 delete_noop_moves ();
1453
1454 /* Clean up. */
1455 obstack_free (&insn_link_obstack, NULL);
1456 free (uid_log_links);
1457 free (uid_insn_cost);
1458 reg_stat.release ();
1459
1460 {
1461 struct undo *undo, *next;
1462 for (undo = undobuf.frees; undo; undo = next)
1463 {
1464 next = undo->next;
1465 free (undo);
1466 }
1467 undobuf.frees = 0;
1468 }
1469
1470 total_attempts += combine_attempts;
1471 total_merges += combine_merges;
1472 total_extras += combine_extras;
1473 total_successes += combine_successes;
1474
1475 nonzero_sign_valid = 0;
1476 rtl_hooks = general_rtl_hooks;
1477
1478 /* Make recognizer allow volatile MEMs again. */
1479 init_recog ();
1480
1481 return new_direct_jump_p;
1482 }
1483
1484 /* Wipe the last_xxx fields of reg_stat in preparation for another pass. */
1485
1486 static void
1487 init_reg_last (void)
1488 {
1489 unsigned int i;
1490 reg_stat_type *p;
1491
1492 FOR_EACH_VEC_ELT (reg_stat, i, p)
1493 memset (p, 0, offsetof (reg_stat_type, sign_bit_copies));
1494 }
1495 \f
1496 /* Set up any promoted values for incoming argument registers. */
1497
1498 static void
1499 setup_incoming_promotions (rtx first)
1500 {
1501 tree arg;
1502 bool strictly_local = false;
1503
1504 for (arg = DECL_ARGUMENTS (current_function_decl); arg;
1505 arg = DECL_CHAIN (arg))
1506 {
1507 rtx x, reg = DECL_INCOMING_RTL (arg);
1508 int uns1, uns3;
1509 enum machine_mode mode1, mode2, mode3, mode4;
1510
1511 /* Only continue if the incoming argument is in a register. */
1512 if (!REG_P (reg))
1513 continue;
1514
1515 /* Determine, if possible, whether all call sites of the current
1516 function lie within the current compilation unit. (This does
1517 take into account the exporting of a function via taking its
1518 address, and so forth.) */
1519 strictly_local = cgraph_local_info (current_function_decl)->local;
1520
1521 /* The mode and signedness of the argument before any promotions happen
1522 (equal to the mode of the pseudo holding it at that stage). */
1523 mode1 = TYPE_MODE (TREE_TYPE (arg));
1524 uns1 = TYPE_UNSIGNED (TREE_TYPE (arg));
1525
1526 /* The mode and signedness of the argument after any source language and
1527 TARGET_PROMOTE_PROTOTYPES-driven promotions. */
1528 mode2 = TYPE_MODE (DECL_ARG_TYPE (arg));
1529 uns3 = TYPE_UNSIGNED (DECL_ARG_TYPE (arg));
1530
1531 /* The mode and signedness of the argument as it is actually passed,
1532 after any TARGET_PROMOTE_FUNCTION_ARGS-driven ABI promotions. */
1533 mode3 = promote_function_mode (DECL_ARG_TYPE (arg), mode2, &uns3,
1534 TREE_TYPE (cfun->decl), 0);
1535
1536 /* The mode of the register in which the argument is being passed. */
1537 mode4 = GET_MODE (reg);
1538
1539 /* Eliminate sign extensions in the callee when:
1540 (a) A mode promotion has occurred; */
1541 if (mode1 == mode3)
1542 continue;
1543 /* (b) The mode of the register is the same as the mode of
1544 the argument as it is passed; */
1545 if (mode3 != mode4)
1546 continue;
1547 /* (c) There's no language level extension; */
1548 if (mode1 == mode2)
1549 ;
1550 /* (c.1) All callers are from the current compilation unit. If that's
1551 the case we don't have to rely on an ABI, we only have to know
1552 what we're generating right now, and we know that we will do the
1553 mode1 to mode2 promotion with the given sign. */
1554 else if (!strictly_local)
1555 continue;
1556 /* (c.2) The combination of the two promotions is useful. This is
1557 true when the signs match, or if the first promotion is unsigned.
1558 In the later case, (sign_extend (zero_extend x)) is the same as
1559 (zero_extend (zero_extend x)), so make sure to force UNS3 true. */
1560 else if (uns1)
1561 uns3 = true;
1562 else if (uns3)
1563 continue;
1564
1565 /* Record that the value was promoted from mode1 to mode3,
1566 so that any sign extension at the head of the current
1567 function may be eliminated. */
1568 x = gen_rtx_CLOBBER (mode1, const0_rtx);
1569 x = gen_rtx_fmt_e ((uns3 ? ZERO_EXTEND : SIGN_EXTEND), mode3, x);
1570 record_value_for_reg (reg, first, x);
1571 }
1572 }
1573
1574 /* Called via note_stores. If X is a pseudo that is narrower than
1575 HOST_BITS_PER_WIDE_INT and is being set, record what bits are known zero.
1576
1577 If we are setting only a portion of X and we can't figure out what
1578 portion, assume all bits will be used since we don't know what will
1579 be happening.
1580
1581 Similarly, set how many bits of X are known to be copies of the sign bit
1582 at all locations in the function. This is the smallest number implied
1583 by any set of X. */
1584
1585 static void
1586 set_nonzero_bits_and_sign_copies (rtx x, const_rtx set, void *data)
1587 {
1588 rtx insn = (rtx) data;
1589 unsigned int num;
1590
1591 if (REG_P (x)
1592 && REGNO (x) >= FIRST_PSEUDO_REGISTER
1593 /* If this register is undefined at the start of the file, we can't
1594 say what its contents were. */
1595 && ! REGNO_REG_SET_P
1596 (DF_LR_IN (ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb), REGNO (x))
1597 && HWI_COMPUTABLE_MODE_P (GET_MODE (x)))
1598 {
1599 reg_stat_type *rsp = &reg_stat[REGNO (x)];
1600
1601 if (set == 0 || GET_CODE (set) == CLOBBER)
1602 {
1603 rsp->nonzero_bits = GET_MODE_MASK (GET_MODE (x));
1604 rsp->sign_bit_copies = 1;
1605 return;
1606 }
1607
1608 /* If this register is being initialized using itself, and the
1609 register is uninitialized in this basic block, and there are
1610 no LOG_LINKS which set the register, then part of the
1611 register is uninitialized. In that case we can't assume
1612 anything about the number of nonzero bits.
1613
1614 ??? We could do better if we checked this in
1615 reg_{nonzero_bits,num_sign_bit_copies}_for_combine. Then we
1616 could avoid making assumptions about the insn which initially
1617 sets the register, while still using the information in other
1618 insns. We would have to be careful to check every insn
1619 involved in the combination. */
1620
1621 if (insn
1622 && reg_referenced_p (x, PATTERN (insn))
1623 && !REGNO_REG_SET_P (DF_LR_IN (BLOCK_FOR_INSN (insn)),
1624 REGNO (x)))
1625 {
1626 struct insn_link *link;
1627
1628 FOR_EACH_LOG_LINK (link, insn)
1629 if (dead_or_set_p (link->insn, x))
1630 break;
1631 if (!link)
1632 {
1633 rsp->nonzero_bits = GET_MODE_MASK (GET_MODE (x));
1634 rsp->sign_bit_copies = 1;
1635 return;
1636 }
1637 }
1638
1639 /* If this is a complex assignment, see if we can convert it into a
1640 simple assignment. */
1641 set = expand_field_assignment (set);
1642
1643 /* If this is a simple assignment, or we have a paradoxical SUBREG,
1644 set what we know about X. */
1645
1646 if (SET_DEST (set) == x
1647 || (paradoxical_subreg_p (SET_DEST (set))
1648 && SUBREG_REG (SET_DEST (set)) == x))
1649 {
1650 rtx src = SET_SRC (set);
1651
1652 #ifdef SHORT_IMMEDIATES_SIGN_EXTEND
1653 /* If X is narrower than a word and SRC is a non-negative
1654 constant that would appear negative in the mode of X,
1655 sign-extend it for use in reg_stat[].nonzero_bits because some
1656 machines (maybe most) will actually do the sign-extension
1657 and this is the conservative approach.
1658
1659 ??? For 2.5, try to tighten up the MD files in this regard
1660 instead of this kludge. */
1661
1662 if (GET_MODE_PRECISION (GET_MODE (x)) < BITS_PER_WORD
1663 && CONST_INT_P (src)
1664 && INTVAL (src) > 0
1665 && val_signbit_known_set_p (GET_MODE (x), INTVAL (src)))
1666 src = GEN_INT (INTVAL (src) | ~GET_MODE_MASK (GET_MODE (x)));
1667 #endif
1668
1669 /* Don't call nonzero_bits if it cannot change anything. */
1670 if (rsp->nonzero_bits != ~(unsigned HOST_WIDE_INT) 0)
1671 rsp->nonzero_bits |= nonzero_bits (src, nonzero_bits_mode);
1672 num = num_sign_bit_copies (SET_SRC (set), GET_MODE (x));
1673 if (rsp->sign_bit_copies == 0
1674 || rsp->sign_bit_copies > num)
1675 rsp->sign_bit_copies = num;
1676 }
1677 else
1678 {
1679 rsp->nonzero_bits = GET_MODE_MASK (GET_MODE (x));
1680 rsp->sign_bit_copies = 1;
1681 }
1682 }
1683 }
1684 \f
1685 /* See if INSN can be combined into I3. PRED, PRED2, SUCC and SUCC2 are
1686 optionally insns that were previously combined into I3 or that will be
1687 combined into the merger of INSN and I3. The order is PRED, PRED2,
1688 INSN, SUCC, SUCC2, I3.
1689
1690 Return 0 if the combination is not allowed for any reason.
1691
1692 If the combination is allowed, *PDEST will be set to the single
1693 destination of INSN and *PSRC to the single source, and this function
1694 will return 1. */
1695
1696 static int
1697 can_combine_p (rtx insn, rtx i3, rtx pred ATTRIBUTE_UNUSED,
1698 rtx pred2 ATTRIBUTE_UNUSED, rtx succ, rtx succ2,
1699 rtx *pdest, rtx *psrc)
1700 {
1701 int i;
1702 const_rtx set = 0;
1703 rtx src, dest;
1704 rtx p;
1705 #ifdef AUTO_INC_DEC
1706 rtx link;
1707 #endif
1708 bool all_adjacent = true;
1709 int (*is_volatile_p) (const_rtx);
1710
1711 if (succ)
1712 {
1713 if (succ2)
1714 {
1715 if (next_active_insn (succ2) != i3)
1716 all_adjacent = false;
1717 if (next_active_insn (succ) != succ2)
1718 all_adjacent = false;
1719 }
1720 else if (next_active_insn (succ) != i3)
1721 all_adjacent = false;
1722 if (next_active_insn (insn) != succ)
1723 all_adjacent = false;
1724 }
1725 else if (next_active_insn (insn) != i3)
1726 all_adjacent = false;
1727
1728 /* Can combine only if previous insn is a SET of a REG, a SUBREG or CC0.
1729 or a PARALLEL consisting of such a SET and CLOBBERs.
1730
1731 If INSN has CLOBBER parallel parts, ignore them for our processing.
1732 By definition, these happen during the execution of the insn. When it
1733 is merged with another insn, all bets are off. If they are, in fact,
1734 needed and aren't also supplied in I3, they may be added by
1735 recog_for_combine. Otherwise, it won't match.
1736
1737 We can also ignore a SET whose SET_DEST is mentioned in a REG_UNUSED
1738 note.
1739
1740 Get the source and destination of INSN. If more than one, can't
1741 combine. */
1742
1743 if (GET_CODE (PATTERN (insn)) == SET)
1744 set = PATTERN (insn);
1745 else if (GET_CODE (PATTERN (insn)) == PARALLEL
1746 && GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == SET)
1747 {
1748 for (i = 0; i < XVECLEN (PATTERN (insn), 0); i++)
1749 {
1750 rtx elt = XVECEXP (PATTERN (insn), 0, i);
1751
1752 switch (GET_CODE (elt))
1753 {
1754 /* This is important to combine floating point insns
1755 for the SH4 port. */
1756 case USE:
1757 /* Combining an isolated USE doesn't make sense.
1758 We depend here on combinable_i3pat to reject them. */
1759 /* The code below this loop only verifies that the inputs of
1760 the SET in INSN do not change. We call reg_set_between_p
1761 to verify that the REG in the USE does not change between
1762 I3 and INSN.
1763 If the USE in INSN was for a pseudo register, the matching
1764 insn pattern will likely match any register; combining this
1765 with any other USE would only be safe if we knew that the
1766 used registers have identical values, or if there was
1767 something to tell them apart, e.g. different modes. For
1768 now, we forgo such complicated tests and simply disallow
1769 combining of USES of pseudo registers with any other USE. */
1770 if (REG_P (XEXP (elt, 0))
1771 && GET_CODE (PATTERN (i3)) == PARALLEL)
1772 {
1773 rtx i3pat = PATTERN (i3);
1774 int i = XVECLEN (i3pat, 0) - 1;
1775 unsigned int regno = REGNO (XEXP (elt, 0));
1776
1777 do
1778 {
1779 rtx i3elt = XVECEXP (i3pat, 0, i);
1780
1781 if (GET_CODE (i3elt) == USE
1782 && REG_P (XEXP (i3elt, 0))
1783 && (REGNO (XEXP (i3elt, 0)) == regno
1784 ? reg_set_between_p (XEXP (elt, 0),
1785 PREV_INSN (insn), i3)
1786 : regno >= FIRST_PSEUDO_REGISTER))
1787 return 0;
1788 }
1789 while (--i >= 0);
1790 }
1791 break;
1792
1793 /* We can ignore CLOBBERs. */
1794 case CLOBBER:
1795 break;
1796
1797 case SET:
1798 /* Ignore SETs whose result isn't used but not those that
1799 have side-effects. */
1800 if (find_reg_note (insn, REG_UNUSED, SET_DEST (elt))
1801 && insn_nothrow_p (insn)
1802 && !side_effects_p (elt))
1803 break;
1804
1805 /* If we have already found a SET, this is a second one and
1806 so we cannot combine with this insn. */
1807 if (set)
1808 return 0;
1809
1810 set = elt;
1811 break;
1812
1813 default:
1814 /* Anything else means we can't combine. */
1815 return 0;
1816 }
1817 }
1818
1819 if (set == 0
1820 /* If SET_SRC is an ASM_OPERANDS we can't throw away these CLOBBERs,
1821 so don't do anything with it. */
1822 || GET_CODE (SET_SRC (set)) == ASM_OPERANDS)
1823 return 0;
1824 }
1825 else
1826 return 0;
1827
1828 if (set == 0)
1829 return 0;
1830
1831 /* The simplification in expand_field_assignment may call back to
1832 get_last_value, so set safe guard here. */
1833 subst_low_luid = DF_INSN_LUID (insn);
1834
1835 set = expand_field_assignment (set);
1836 src = SET_SRC (set), dest = SET_DEST (set);
1837
1838 /* Don't eliminate a store in the stack pointer. */
1839 if (dest == stack_pointer_rtx
1840 /* Don't combine with an insn that sets a register to itself if it has
1841 a REG_EQUAL note. This may be part of a LIBCALL sequence. */
1842 || (rtx_equal_p (src, dest) && find_reg_note (insn, REG_EQUAL, NULL_RTX))
1843 /* Can't merge an ASM_OPERANDS. */
1844 || GET_CODE (src) == ASM_OPERANDS
1845 /* Can't merge a function call. */
1846 || GET_CODE (src) == CALL
1847 /* Don't eliminate a function call argument. */
1848 || (CALL_P (i3)
1849 && (find_reg_fusage (i3, USE, dest)
1850 || (REG_P (dest)
1851 && REGNO (dest) < FIRST_PSEUDO_REGISTER
1852 && global_regs[REGNO (dest)])))
1853 /* Don't substitute into an incremented register. */
1854 || FIND_REG_INC_NOTE (i3, dest)
1855 || (succ && FIND_REG_INC_NOTE (succ, dest))
1856 || (succ2 && FIND_REG_INC_NOTE (succ2, dest))
1857 /* Don't substitute into a non-local goto, this confuses CFG. */
1858 || (JUMP_P (i3) && find_reg_note (i3, REG_NON_LOCAL_GOTO, NULL_RTX))
1859 /* Make sure that DEST is not used after SUCC but before I3. */
1860 || (!all_adjacent
1861 && ((succ2
1862 && (reg_used_between_p (dest, succ2, i3)
1863 || reg_used_between_p (dest, succ, succ2)))
1864 || (!succ2 && succ && reg_used_between_p (dest, succ, i3))))
1865 /* Make sure that the value that is to be substituted for the register
1866 does not use any registers whose values alter in between. However,
1867 If the insns are adjacent, a use can't cross a set even though we
1868 think it might (this can happen for a sequence of insns each setting
1869 the same destination; last_set of that register might point to
1870 a NOTE). If INSN has a REG_EQUIV note, the register is always
1871 equivalent to the memory so the substitution is valid even if there
1872 are intervening stores. Also, don't move a volatile asm or
1873 UNSPEC_VOLATILE across any other insns. */
1874 || (! all_adjacent
1875 && (((!MEM_P (src)
1876 || ! find_reg_note (insn, REG_EQUIV, src))
1877 && use_crosses_set_p (src, DF_INSN_LUID (insn)))
1878 || (GET_CODE (src) == ASM_OPERANDS && MEM_VOLATILE_P (src))
1879 || GET_CODE (src) == UNSPEC_VOLATILE))
1880 /* Don't combine across a CALL_INSN, because that would possibly
1881 change whether the life span of some REGs crosses calls or not,
1882 and it is a pain to update that information.
1883 Exception: if source is a constant, moving it later can't hurt.
1884 Accept that as a special case. */
1885 || (DF_INSN_LUID (insn) < last_call_luid && ! CONSTANT_P (src)))
1886 return 0;
1887
1888 /* DEST must either be a REG or CC0. */
1889 if (REG_P (dest))
1890 {
1891 /* If register alignment is being enforced for multi-word items in all
1892 cases except for parameters, it is possible to have a register copy
1893 insn referencing a hard register that is not allowed to contain the
1894 mode being copied and which would not be valid as an operand of most
1895 insns. Eliminate this problem by not combining with such an insn.
1896
1897 Also, on some machines we don't want to extend the life of a hard
1898 register. */
1899
1900 if (REG_P (src)
1901 && ((REGNO (dest) < FIRST_PSEUDO_REGISTER
1902 && ! HARD_REGNO_MODE_OK (REGNO (dest), GET_MODE (dest)))
1903 /* Don't extend the life of a hard register unless it is
1904 user variable (if we have few registers) or it can't
1905 fit into the desired register (meaning something special
1906 is going on).
1907 Also avoid substituting a return register into I3, because
1908 reload can't handle a conflict with constraints of other
1909 inputs. */
1910 || (REGNO (src) < FIRST_PSEUDO_REGISTER
1911 && ! HARD_REGNO_MODE_OK (REGNO (src), GET_MODE (src)))))
1912 return 0;
1913 }
1914 else if (GET_CODE (dest) != CC0)
1915 return 0;
1916
1917
1918 if (GET_CODE (PATTERN (i3)) == PARALLEL)
1919 for (i = XVECLEN (PATTERN (i3), 0) - 1; i >= 0; i--)
1920 if (GET_CODE (XVECEXP (PATTERN (i3), 0, i)) == CLOBBER)
1921 {
1922 /* Don't substitute for a register intended as a clobberable
1923 operand. */
1924 rtx reg = XEXP (XVECEXP (PATTERN (i3), 0, i), 0);
1925 if (rtx_equal_p (reg, dest))
1926 return 0;
1927
1928 /* If the clobber represents an earlyclobber operand, we must not
1929 substitute an expression containing the clobbered register.
1930 As we do not analyze the constraint strings here, we have to
1931 make the conservative assumption. However, if the register is
1932 a fixed hard reg, the clobber cannot represent any operand;
1933 we leave it up to the machine description to either accept or
1934 reject use-and-clobber patterns. */
1935 if (!REG_P (reg)
1936 || REGNO (reg) >= FIRST_PSEUDO_REGISTER
1937 || !fixed_regs[REGNO (reg)])
1938 if (reg_overlap_mentioned_p (reg, src))
1939 return 0;
1940 }
1941
1942 /* If INSN contains anything volatile, or is an `asm' (whether volatile
1943 or not), reject, unless nothing volatile comes between it and I3 */
1944
1945 if (GET_CODE (src) == ASM_OPERANDS || volatile_refs_p (src))
1946 {
1947 /* Make sure neither succ nor succ2 contains a volatile reference. */
1948 if (succ2 != 0 && volatile_refs_p (PATTERN (succ2)))
1949 return 0;
1950 if (succ != 0 && volatile_refs_p (PATTERN (succ)))
1951 return 0;
1952 /* We'll check insns between INSN and I3 below. */
1953 }
1954
1955 /* If INSN is an asm, and DEST is a hard register, reject, since it has
1956 to be an explicit register variable, and was chosen for a reason. */
1957
1958 if (GET_CODE (src) == ASM_OPERANDS
1959 && REG_P (dest) && REGNO (dest) < FIRST_PSEUDO_REGISTER)
1960 return 0;
1961
1962 /* If INSN contains volatile references (specifically volatile MEMs),
1963 we cannot combine across any other volatile references.
1964 Even if INSN doesn't contain volatile references, any intervening
1965 volatile insn might affect machine state. */
1966
1967 is_volatile_p = volatile_refs_p (PATTERN (insn))
1968 ? volatile_refs_p
1969 : volatile_insn_p;
1970
1971 for (p = NEXT_INSN (insn); p != i3; p = NEXT_INSN (p))
1972 if (INSN_P (p) && p != succ && p != succ2 && is_volatile_p (PATTERN (p)))
1973 return 0;
1974
1975 /* If INSN contains an autoincrement or autodecrement, make sure that
1976 register is not used between there and I3, and not already used in
1977 I3 either. Neither must it be used in PRED or SUCC, if they exist.
1978 Also insist that I3 not be a jump; if it were one
1979 and the incremented register were spilled, we would lose. */
1980
1981 #ifdef AUTO_INC_DEC
1982 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1983 if (REG_NOTE_KIND (link) == REG_INC
1984 && (JUMP_P (i3)
1985 || reg_used_between_p (XEXP (link, 0), insn, i3)
1986 || (pred != NULL_RTX
1987 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (pred)))
1988 || (pred2 != NULL_RTX
1989 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (pred2)))
1990 || (succ != NULL_RTX
1991 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (succ)))
1992 || (succ2 != NULL_RTX
1993 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (succ2)))
1994 || reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i3))))
1995 return 0;
1996 #endif
1997
1998 #ifdef HAVE_cc0
1999 /* Don't combine an insn that follows a CC0-setting insn.
2000 An insn that uses CC0 must not be separated from the one that sets it.
2001 We do, however, allow I2 to follow a CC0-setting insn if that insn
2002 is passed as I1; in that case it will be deleted also.
2003 We also allow combining in this case if all the insns are adjacent
2004 because that would leave the two CC0 insns adjacent as well.
2005 It would be more logical to test whether CC0 occurs inside I1 or I2,
2006 but that would be much slower, and this ought to be equivalent. */
2007
2008 p = prev_nonnote_insn (insn);
2009 if (p && p != pred && NONJUMP_INSN_P (p) && sets_cc0_p (PATTERN (p))
2010 && ! all_adjacent)
2011 return 0;
2012 #endif
2013
2014 /* If we get here, we have passed all the tests and the combination is
2015 to be allowed. */
2016
2017 *pdest = dest;
2018 *psrc = src;
2019
2020 return 1;
2021 }
2022 \f
2023 /* LOC is the location within I3 that contains its pattern or the component
2024 of a PARALLEL of the pattern. We validate that it is valid for combining.
2025
2026 One problem is if I3 modifies its output, as opposed to replacing it
2027 entirely, we can't allow the output to contain I2DEST, I1DEST or I0DEST as
2028 doing so would produce an insn that is not equivalent to the original insns.
2029
2030 Consider:
2031
2032 (set (reg:DI 101) (reg:DI 100))
2033 (set (subreg:SI (reg:DI 101) 0) <foo>)
2034
2035 This is NOT equivalent to:
2036
2037 (parallel [(set (subreg:SI (reg:DI 100) 0) <foo>)
2038 (set (reg:DI 101) (reg:DI 100))])
2039
2040 Not only does this modify 100 (in which case it might still be valid
2041 if 100 were dead in I2), it sets 101 to the ORIGINAL value of 100.
2042
2043 We can also run into a problem if I2 sets a register that I1
2044 uses and I1 gets directly substituted into I3 (not via I2). In that
2045 case, we would be getting the wrong value of I2DEST into I3, so we
2046 must reject the combination. This case occurs when I2 and I1 both
2047 feed into I3, rather than when I1 feeds into I2, which feeds into I3.
2048 If I1_NOT_IN_SRC is nonzero, it means that finding I1 in the source
2049 of a SET must prevent combination from occurring. The same situation
2050 can occur for I0, in which case I0_NOT_IN_SRC is set.
2051
2052 Before doing the above check, we first try to expand a field assignment
2053 into a set of logical operations.
2054
2055 If PI3_DEST_KILLED is nonzero, it is a pointer to a location in which
2056 we place a register that is both set and used within I3. If more than one
2057 such register is detected, we fail.
2058
2059 Return 1 if the combination is valid, zero otherwise. */
2060
2061 static int
2062 combinable_i3pat (rtx i3, rtx *loc, rtx i2dest, rtx i1dest, rtx i0dest,
2063 int i1_not_in_src, int i0_not_in_src, rtx *pi3dest_killed)
2064 {
2065 rtx x = *loc;
2066
2067 if (GET_CODE (x) == SET)
2068 {
2069 rtx set = x ;
2070 rtx dest = SET_DEST (set);
2071 rtx src = SET_SRC (set);
2072 rtx inner_dest = dest;
2073 rtx subdest;
2074
2075 while (GET_CODE (inner_dest) == STRICT_LOW_PART
2076 || GET_CODE (inner_dest) == SUBREG
2077 || GET_CODE (inner_dest) == ZERO_EXTRACT)
2078 inner_dest = XEXP (inner_dest, 0);
2079
2080 /* Check for the case where I3 modifies its output, as discussed
2081 above. We don't want to prevent pseudos from being combined
2082 into the address of a MEM, so only prevent the combination if
2083 i1 or i2 set the same MEM. */
2084 if ((inner_dest != dest &&
2085 (!MEM_P (inner_dest)
2086 || rtx_equal_p (i2dest, inner_dest)
2087 || (i1dest && rtx_equal_p (i1dest, inner_dest))
2088 || (i0dest && rtx_equal_p (i0dest, inner_dest)))
2089 && (reg_overlap_mentioned_p (i2dest, inner_dest)
2090 || (i1dest && reg_overlap_mentioned_p (i1dest, inner_dest))
2091 || (i0dest && reg_overlap_mentioned_p (i0dest, inner_dest))))
2092
2093 /* This is the same test done in can_combine_p except we can't test
2094 all_adjacent; we don't have to, since this instruction will stay
2095 in place, thus we are not considering increasing the lifetime of
2096 INNER_DEST.
2097
2098 Also, if this insn sets a function argument, combining it with
2099 something that might need a spill could clobber a previous
2100 function argument; the all_adjacent test in can_combine_p also
2101 checks this; here, we do a more specific test for this case. */
2102
2103 || (REG_P (inner_dest)
2104 && REGNO (inner_dest) < FIRST_PSEUDO_REGISTER
2105 && (! HARD_REGNO_MODE_OK (REGNO (inner_dest),
2106 GET_MODE (inner_dest))))
2107 || (i1_not_in_src && reg_overlap_mentioned_p (i1dest, src))
2108 || (i0_not_in_src && reg_overlap_mentioned_p (i0dest, src)))
2109 return 0;
2110
2111 /* If DEST is used in I3, it is being killed in this insn, so
2112 record that for later. We have to consider paradoxical
2113 subregs here, since they kill the whole register, but we
2114 ignore partial subregs, STRICT_LOW_PART, etc.
2115 Never add REG_DEAD notes for the FRAME_POINTER_REGNUM or the
2116 STACK_POINTER_REGNUM, since these are always considered to be
2117 live. Similarly for ARG_POINTER_REGNUM if it is fixed. */
2118 subdest = dest;
2119 if (GET_CODE (subdest) == SUBREG
2120 && (GET_MODE_SIZE (GET_MODE (subdest))
2121 >= GET_MODE_SIZE (GET_MODE (SUBREG_REG (subdest)))))
2122 subdest = SUBREG_REG (subdest);
2123 if (pi3dest_killed
2124 && REG_P (subdest)
2125 && reg_referenced_p (subdest, PATTERN (i3))
2126 && REGNO (subdest) != FRAME_POINTER_REGNUM
2127 #if !HARD_FRAME_POINTER_IS_FRAME_POINTER
2128 && REGNO (subdest) != HARD_FRAME_POINTER_REGNUM
2129 #endif
2130 #if ARG_POINTER_REGNUM != FRAME_POINTER_REGNUM
2131 && (REGNO (subdest) != ARG_POINTER_REGNUM
2132 || ! fixed_regs [REGNO (subdest)])
2133 #endif
2134 && REGNO (subdest) != STACK_POINTER_REGNUM)
2135 {
2136 if (*pi3dest_killed)
2137 return 0;
2138
2139 *pi3dest_killed = subdest;
2140 }
2141 }
2142
2143 else if (GET_CODE (x) == PARALLEL)
2144 {
2145 int i;
2146
2147 for (i = 0; i < XVECLEN (x, 0); i++)
2148 if (! combinable_i3pat (i3, &XVECEXP (x, 0, i), i2dest, i1dest, i0dest,
2149 i1_not_in_src, i0_not_in_src, pi3dest_killed))
2150 return 0;
2151 }
2152
2153 return 1;
2154 }
2155 \f
2156 /* Return 1 if X is an arithmetic expression that contains a multiplication
2157 and division. We don't count multiplications by powers of two here. */
2158
2159 static int
2160 contains_muldiv (rtx x)
2161 {
2162 switch (GET_CODE (x))
2163 {
2164 case MOD: case DIV: case UMOD: case UDIV:
2165 return 1;
2166
2167 case MULT:
2168 return ! (CONST_INT_P (XEXP (x, 1))
2169 && exact_log2 (UINTVAL (XEXP (x, 1))) >= 0);
2170 default:
2171 if (BINARY_P (x))
2172 return contains_muldiv (XEXP (x, 0))
2173 || contains_muldiv (XEXP (x, 1));
2174
2175 if (UNARY_P (x))
2176 return contains_muldiv (XEXP (x, 0));
2177
2178 return 0;
2179 }
2180 }
2181 \f
2182 /* Determine whether INSN can be used in a combination. Return nonzero if
2183 not. This is used in try_combine to detect early some cases where we
2184 can't perform combinations. */
2185
2186 static int
2187 cant_combine_insn_p (rtx insn)
2188 {
2189 rtx set;
2190 rtx src, dest;
2191
2192 /* If this isn't really an insn, we can't do anything.
2193 This can occur when flow deletes an insn that it has merged into an
2194 auto-increment address. */
2195 if (! INSN_P (insn))
2196 return 1;
2197
2198 /* Never combine loads and stores involving hard regs that are likely
2199 to be spilled. The register allocator can usually handle such
2200 reg-reg moves by tying. If we allow the combiner to make
2201 substitutions of likely-spilled regs, reload might die.
2202 As an exception, we allow combinations involving fixed regs; these are
2203 not available to the register allocator so there's no risk involved. */
2204
2205 set = single_set (insn);
2206 if (! set)
2207 return 0;
2208 src = SET_SRC (set);
2209 dest = SET_DEST (set);
2210 if (GET_CODE (src) == SUBREG)
2211 src = SUBREG_REG (src);
2212 if (GET_CODE (dest) == SUBREG)
2213 dest = SUBREG_REG (dest);
2214 if (REG_P (src) && REG_P (dest)
2215 && ((HARD_REGISTER_P (src)
2216 && ! TEST_HARD_REG_BIT (fixed_reg_set, REGNO (src))
2217 && targetm.class_likely_spilled_p (REGNO_REG_CLASS (REGNO (src))))
2218 || (HARD_REGISTER_P (dest)
2219 && ! TEST_HARD_REG_BIT (fixed_reg_set, REGNO (dest))
2220 && targetm.class_likely_spilled_p (REGNO_REG_CLASS (REGNO (dest))))))
2221 return 1;
2222
2223 return 0;
2224 }
2225
2226 struct likely_spilled_retval_info
2227 {
2228 unsigned regno, nregs;
2229 unsigned mask;
2230 };
2231
2232 /* Called via note_stores by likely_spilled_retval_p. Remove from info->mask
2233 hard registers that are known to be written to / clobbered in full. */
2234 static void
2235 likely_spilled_retval_1 (rtx x, const_rtx set, void *data)
2236 {
2237 struct likely_spilled_retval_info *const info =
2238 (struct likely_spilled_retval_info *) data;
2239 unsigned regno, nregs;
2240 unsigned new_mask;
2241
2242 if (!REG_P (XEXP (set, 0)))
2243 return;
2244 regno = REGNO (x);
2245 if (regno >= info->regno + info->nregs)
2246 return;
2247 nregs = hard_regno_nregs[regno][GET_MODE (x)];
2248 if (regno + nregs <= info->regno)
2249 return;
2250 new_mask = (2U << (nregs - 1)) - 1;
2251 if (regno < info->regno)
2252 new_mask >>= info->regno - regno;
2253 else
2254 new_mask <<= regno - info->regno;
2255 info->mask &= ~new_mask;
2256 }
2257
2258 /* Return nonzero iff part of the return value is live during INSN, and
2259 it is likely spilled. This can happen when more than one insn is needed
2260 to copy the return value, e.g. when we consider to combine into the
2261 second copy insn for a complex value. */
2262
2263 static int
2264 likely_spilled_retval_p (rtx insn)
2265 {
2266 rtx use = BB_END (this_basic_block);
2267 rtx reg, p;
2268 unsigned regno, nregs;
2269 /* We assume here that no machine mode needs more than
2270 32 hard registers when the value overlaps with a register
2271 for which TARGET_FUNCTION_VALUE_REGNO_P is true. */
2272 unsigned mask;
2273 struct likely_spilled_retval_info info;
2274
2275 if (!NONJUMP_INSN_P (use) || GET_CODE (PATTERN (use)) != USE || insn == use)
2276 return 0;
2277 reg = XEXP (PATTERN (use), 0);
2278 if (!REG_P (reg) || !targetm.calls.function_value_regno_p (REGNO (reg)))
2279 return 0;
2280 regno = REGNO (reg);
2281 nregs = hard_regno_nregs[regno][GET_MODE (reg)];
2282 if (nregs == 1)
2283 return 0;
2284 mask = (2U << (nregs - 1)) - 1;
2285
2286 /* Disregard parts of the return value that are set later. */
2287 info.regno = regno;
2288 info.nregs = nregs;
2289 info.mask = mask;
2290 for (p = PREV_INSN (use); info.mask && p != insn; p = PREV_INSN (p))
2291 if (INSN_P (p))
2292 note_stores (PATTERN (p), likely_spilled_retval_1, &info);
2293 mask = info.mask;
2294
2295 /* Check if any of the (probably) live return value registers is
2296 likely spilled. */
2297 nregs --;
2298 do
2299 {
2300 if ((mask & 1 << nregs)
2301 && targetm.class_likely_spilled_p (REGNO_REG_CLASS (regno + nregs)))
2302 return 1;
2303 } while (nregs--);
2304 return 0;
2305 }
2306
2307 /* Adjust INSN after we made a change to its destination.
2308
2309 Changing the destination can invalidate notes that say something about
2310 the results of the insn and a LOG_LINK pointing to the insn. */
2311
2312 static void
2313 adjust_for_new_dest (rtx insn)
2314 {
2315 /* For notes, be conservative and simply remove them. */
2316 remove_reg_equal_equiv_notes (insn);
2317
2318 /* The new insn will have a destination that was previously the destination
2319 of an insn just above it. Call distribute_links to make a LOG_LINK from
2320 the next use of that destination. */
2321 distribute_links (alloc_insn_link (insn, NULL));
2322
2323 df_insn_rescan (insn);
2324 }
2325
2326 /* Return TRUE if combine can reuse reg X in mode MODE.
2327 ADDED_SETS is nonzero if the original set is still required. */
2328 static bool
2329 can_change_dest_mode (rtx x, int added_sets, enum machine_mode mode)
2330 {
2331 unsigned int regno;
2332
2333 if (!REG_P (x))
2334 return false;
2335
2336 regno = REGNO (x);
2337 /* Allow hard registers if the new mode is legal, and occupies no more
2338 registers than the old mode. */
2339 if (regno < FIRST_PSEUDO_REGISTER)
2340 return (HARD_REGNO_MODE_OK (regno, mode)
2341 && (hard_regno_nregs[regno][GET_MODE (x)]
2342 >= hard_regno_nregs[regno][mode]));
2343
2344 /* Or a pseudo that is only used once. */
2345 return (REG_N_SETS (regno) == 1 && !added_sets
2346 && !REG_USERVAR_P (x));
2347 }
2348
2349
2350 /* Check whether X, the destination of a set, refers to part of
2351 the register specified by REG. */
2352
2353 static bool
2354 reg_subword_p (rtx x, rtx reg)
2355 {
2356 /* Check that reg is an integer mode register. */
2357 if (!REG_P (reg) || GET_MODE_CLASS (GET_MODE (reg)) != MODE_INT)
2358 return false;
2359
2360 if (GET_CODE (x) == STRICT_LOW_PART
2361 || GET_CODE (x) == ZERO_EXTRACT)
2362 x = XEXP (x, 0);
2363
2364 return GET_CODE (x) == SUBREG
2365 && SUBREG_REG (x) == reg
2366 && GET_MODE_CLASS (GET_MODE (x)) == MODE_INT;
2367 }
2368
2369 /* Delete the unconditional jump INSN and adjust the CFG correspondingly.
2370 Note that the INSN should be deleted *after* removing dead edges, so
2371 that the kept edge is the fallthrough edge for a (set (pc) (pc))
2372 but not for a (set (pc) (label_ref FOO)). */
2373
2374 static void
2375 update_cfg_for_uncondjump (rtx insn)
2376 {
2377 basic_block bb = BLOCK_FOR_INSN (insn);
2378 gcc_assert (BB_END (bb) == insn);
2379
2380 purge_dead_edges (bb);
2381
2382 delete_insn (insn);
2383 if (EDGE_COUNT (bb->succs) == 1)
2384 {
2385 rtx insn;
2386
2387 single_succ_edge (bb)->flags |= EDGE_FALLTHRU;
2388
2389 /* Remove barriers from the footer if there are any. */
2390 for (insn = BB_FOOTER (bb); insn; insn = NEXT_INSN (insn))
2391 if (BARRIER_P (insn))
2392 {
2393 if (PREV_INSN (insn))
2394 NEXT_INSN (PREV_INSN (insn)) = NEXT_INSN (insn);
2395 else
2396 BB_FOOTER (bb) = NEXT_INSN (insn);
2397 if (NEXT_INSN (insn))
2398 PREV_INSN (NEXT_INSN (insn)) = PREV_INSN (insn);
2399 }
2400 else if (LABEL_P (insn))
2401 break;
2402 }
2403 }
2404
2405 /* Try to combine the insns I0, I1 and I2 into I3.
2406 Here I0, I1 and I2 appear earlier than I3.
2407 I0 and I1 can be zero; then we combine just I2 into I3, or I1 and I2 into
2408 I3.
2409
2410 If we are combining more than two insns and the resulting insn is not
2411 recognized, try splitting it into two insns. If that happens, I2 and I3
2412 are retained and I1/I0 are pseudo-deleted by turning them into a NOTE.
2413 Otherwise, I0, I1 and I2 are pseudo-deleted.
2414
2415 Return 0 if the combination does not work. Then nothing is changed.
2416 If we did the combination, return the insn at which combine should
2417 resume scanning.
2418
2419 Set NEW_DIRECT_JUMP_P to a nonzero value if try_combine creates a
2420 new direct jump instruction.
2421
2422 LAST_COMBINED_INSN is either I3, or some insn after I3 that has
2423 been I3 passed to an earlier try_combine within the same basic
2424 block. */
2425
2426 static rtx
2427 try_combine (rtx i3, rtx i2, rtx i1, rtx i0, int *new_direct_jump_p,
2428 rtx last_combined_insn)
2429 {
2430 /* New patterns for I3 and I2, respectively. */
2431 rtx newpat, newi2pat = 0;
2432 rtvec newpat_vec_with_clobbers = 0;
2433 int substed_i2 = 0, substed_i1 = 0, substed_i0 = 0;
2434 /* Indicates need to preserve SET in I0, I1 or I2 in I3 if it is not
2435 dead. */
2436 int added_sets_0, added_sets_1, added_sets_2;
2437 /* Total number of SETs to put into I3. */
2438 int total_sets;
2439 /* Nonzero if I2's or I1's body now appears in I3. */
2440 int i2_is_used = 0, i1_is_used = 0;
2441 /* INSN_CODEs for new I3, new I2, and user of condition code. */
2442 int insn_code_number, i2_code_number = 0, other_code_number = 0;
2443 /* Contains I3 if the destination of I3 is used in its source, which means
2444 that the old life of I3 is being killed. If that usage is placed into
2445 I2 and not in I3, a REG_DEAD note must be made. */
2446 rtx i3dest_killed = 0;
2447 /* SET_DEST and SET_SRC of I2, I1 and I0. */
2448 rtx i2dest = 0, i2src = 0, i1dest = 0, i1src = 0, i0dest = 0, i0src = 0;
2449 /* Copy of SET_SRC of I1 and I0, if needed. */
2450 rtx i1src_copy = 0, i0src_copy = 0, i0src_copy2 = 0;
2451 /* Set if I2DEST was reused as a scratch register. */
2452 bool i2scratch = false;
2453 /* The PATTERNs of I0, I1, and I2, or a copy of them in certain cases. */
2454 rtx i0pat = 0, i1pat = 0, i2pat = 0;
2455 /* Indicates if I2DEST or I1DEST is in I2SRC or I1_SRC. */
2456 int i2dest_in_i2src = 0, i1dest_in_i1src = 0, i2dest_in_i1src = 0;
2457 int i0dest_in_i0src = 0, i1dest_in_i0src = 0, i2dest_in_i0src = 0;
2458 int i2dest_killed = 0, i1dest_killed = 0, i0dest_killed = 0;
2459 int i1_feeds_i2_n = 0, i0_feeds_i2_n = 0, i0_feeds_i1_n = 0;
2460 /* Notes that must be added to REG_NOTES in I3 and I2. */
2461 rtx new_i3_notes, new_i2_notes;
2462 /* Notes that we substituted I3 into I2 instead of the normal case. */
2463 int i3_subst_into_i2 = 0;
2464 /* Notes that I1, I2 or I3 is a MULT operation. */
2465 int have_mult = 0;
2466 int swap_i2i3 = 0;
2467 int changed_i3_dest = 0;
2468
2469 int maxreg;
2470 rtx temp;
2471 struct insn_link *link;
2472 rtx other_pat = 0;
2473 rtx new_other_notes;
2474 int i;
2475
2476 /* Only try four-insn combinations when there's high likelihood of
2477 success. Look for simple insns, such as loads of constants or
2478 binary operations involving a constant. */
2479 if (i0)
2480 {
2481 int i;
2482 int ngood = 0;
2483 int nshift = 0;
2484
2485 if (!flag_expensive_optimizations)
2486 return 0;
2487
2488 for (i = 0; i < 4; i++)
2489 {
2490 rtx insn = i == 0 ? i0 : i == 1 ? i1 : i == 2 ? i2 : i3;
2491 rtx set = single_set (insn);
2492 rtx src;
2493 if (!set)
2494 continue;
2495 src = SET_SRC (set);
2496 if (CONSTANT_P (src))
2497 {
2498 ngood += 2;
2499 break;
2500 }
2501 else if (BINARY_P (src) && CONSTANT_P (XEXP (src, 1)))
2502 ngood++;
2503 else if (GET_CODE (src) == ASHIFT || GET_CODE (src) == ASHIFTRT
2504 || GET_CODE (src) == LSHIFTRT)
2505 nshift++;
2506 }
2507 if (ngood < 2 && nshift < 2)
2508 return 0;
2509 }
2510
2511 /* Exit early if one of the insns involved can't be used for
2512 combinations. */
2513 if (cant_combine_insn_p (i3)
2514 || cant_combine_insn_p (i2)
2515 || (i1 && cant_combine_insn_p (i1))
2516 || (i0 && cant_combine_insn_p (i0))
2517 || likely_spilled_retval_p (i3))
2518 return 0;
2519
2520 combine_attempts++;
2521 undobuf.other_insn = 0;
2522
2523 /* Reset the hard register usage information. */
2524 CLEAR_HARD_REG_SET (newpat_used_regs);
2525
2526 if (dump_file && (dump_flags & TDF_DETAILS))
2527 {
2528 if (i0)
2529 fprintf (dump_file, "\nTrying %d, %d, %d -> %d:\n",
2530 INSN_UID (i0), INSN_UID (i1), INSN_UID (i2), INSN_UID (i3));
2531 else if (i1)
2532 fprintf (dump_file, "\nTrying %d, %d -> %d:\n",
2533 INSN_UID (i1), INSN_UID (i2), INSN_UID (i3));
2534 else
2535 fprintf (dump_file, "\nTrying %d -> %d:\n",
2536 INSN_UID (i2), INSN_UID (i3));
2537 }
2538
2539 /* If multiple insns feed into one of I2 or I3, they can be in any
2540 order. To simplify the code below, reorder them in sequence. */
2541 if (i0 && DF_INSN_LUID (i0) > DF_INSN_LUID (i2))
2542 temp = i2, i2 = i0, i0 = temp;
2543 if (i0 && DF_INSN_LUID (i0) > DF_INSN_LUID (i1))
2544 temp = i1, i1 = i0, i0 = temp;
2545 if (i1 && DF_INSN_LUID (i1) > DF_INSN_LUID (i2))
2546 temp = i1, i1 = i2, i2 = temp;
2547
2548 added_links_insn = 0;
2549
2550 /* First check for one important special case that the code below will
2551 not handle. Namely, the case where I1 is zero, I2 is a PARALLEL
2552 and I3 is a SET whose SET_SRC is a SET_DEST in I2. In that case,
2553 we may be able to replace that destination with the destination of I3.
2554 This occurs in the common code where we compute both a quotient and
2555 remainder into a structure, in which case we want to do the computation
2556 directly into the structure to avoid register-register copies.
2557
2558 Note that this case handles both multiple sets in I2 and also cases
2559 where I2 has a number of CLOBBERs inside the PARALLEL.
2560
2561 We make very conservative checks below and only try to handle the
2562 most common cases of this. For example, we only handle the case
2563 where I2 and I3 are adjacent to avoid making difficult register
2564 usage tests. */
2565
2566 if (i1 == 0 && NONJUMP_INSN_P (i3) && GET_CODE (PATTERN (i3)) == SET
2567 && REG_P (SET_SRC (PATTERN (i3)))
2568 && REGNO (SET_SRC (PATTERN (i3))) >= FIRST_PSEUDO_REGISTER
2569 && find_reg_note (i3, REG_DEAD, SET_SRC (PATTERN (i3)))
2570 && GET_CODE (PATTERN (i2)) == PARALLEL
2571 && ! side_effects_p (SET_DEST (PATTERN (i3)))
2572 /* If the dest of I3 is a ZERO_EXTRACT or STRICT_LOW_PART, the code
2573 below would need to check what is inside (and reg_overlap_mentioned_p
2574 doesn't support those codes anyway). Don't allow those destinations;
2575 the resulting insn isn't likely to be recognized anyway. */
2576 && GET_CODE (SET_DEST (PATTERN (i3))) != ZERO_EXTRACT
2577 && GET_CODE (SET_DEST (PATTERN (i3))) != STRICT_LOW_PART
2578 && ! reg_overlap_mentioned_p (SET_SRC (PATTERN (i3)),
2579 SET_DEST (PATTERN (i3)))
2580 && next_active_insn (i2) == i3)
2581 {
2582 rtx p2 = PATTERN (i2);
2583
2584 /* Make sure that the destination of I3,
2585 which we are going to substitute into one output of I2,
2586 is not used within another output of I2. We must avoid making this:
2587 (parallel [(set (mem (reg 69)) ...)
2588 (set (reg 69) ...)])
2589 which is not well-defined as to order of actions.
2590 (Besides, reload can't handle output reloads for this.)
2591
2592 The problem can also happen if the dest of I3 is a memory ref,
2593 if another dest in I2 is an indirect memory ref. */
2594 for (i = 0; i < XVECLEN (p2, 0); i++)
2595 if ((GET_CODE (XVECEXP (p2, 0, i)) == SET
2596 || GET_CODE (XVECEXP (p2, 0, i)) == CLOBBER)
2597 && reg_overlap_mentioned_p (SET_DEST (PATTERN (i3)),
2598 SET_DEST (XVECEXP (p2, 0, i))))
2599 break;
2600
2601 if (i == XVECLEN (p2, 0))
2602 for (i = 0; i < XVECLEN (p2, 0); i++)
2603 if (GET_CODE (XVECEXP (p2, 0, i)) == SET
2604 && SET_DEST (XVECEXP (p2, 0, i)) == SET_SRC (PATTERN (i3)))
2605 {
2606 combine_merges++;
2607
2608 subst_insn = i3;
2609 subst_low_luid = DF_INSN_LUID (i2);
2610
2611 added_sets_2 = added_sets_1 = added_sets_0 = 0;
2612 i2src = SET_SRC (XVECEXP (p2, 0, i));
2613 i2dest = SET_DEST (XVECEXP (p2, 0, i));
2614 i2dest_killed = dead_or_set_p (i2, i2dest);
2615
2616 /* Replace the dest in I2 with our dest and make the resulting
2617 insn the new pattern for I3. Then skip to where we validate
2618 the pattern. Everything was set up above. */
2619 SUBST (SET_DEST (XVECEXP (p2, 0, i)), SET_DEST (PATTERN (i3)));
2620 newpat = p2;
2621 i3_subst_into_i2 = 1;
2622 goto validate_replacement;
2623 }
2624 }
2625
2626 /* If I2 is setting a pseudo to a constant and I3 is setting some
2627 sub-part of it to another constant, merge them by making a new
2628 constant. */
2629 if (i1 == 0
2630 && (temp = single_set (i2)) != 0
2631 && CONST_SCALAR_INT_P (SET_SRC (temp))
2632 && GET_CODE (PATTERN (i3)) == SET
2633 && CONST_SCALAR_INT_P (SET_SRC (PATTERN (i3)))
2634 && reg_subword_p (SET_DEST (PATTERN (i3)), SET_DEST (temp)))
2635 {
2636 rtx dest = SET_DEST (PATTERN (i3));
2637 int offset = -1;
2638 int width = 0;
2639
2640 if (GET_CODE (dest) == ZERO_EXTRACT)
2641 {
2642 if (CONST_INT_P (XEXP (dest, 1))
2643 && CONST_INT_P (XEXP (dest, 2)))
2644 {
2645 width = INTVAL (XEXP (dest, 1));
2646 offset = INTVAL (XEXP (dest, 2));
2647 dest = XEXP (dest, 0);
2648 if (BITS_BIG_ENDIAN)
2649 offset = GET_MODE_PRECISION (GET_MODE (dest)) - width - offset;
2650 }
2651 }
2652 else
2653 {
2654 if (GET_CODE (dest) == STRICT_LOW_PART)
2655 dest = XEXP (dest, 0);
2656 width = GET_MODE_PRECISION (GET_MODE (dest));
2657 offset = 0;
2658 }
2659
2660 if (offset >= 0)
2661 {
2662 /* If this is the low part, we're done. */
2663 if (subreg_lowpart_p (dest))
2664 ;
2665 /* Handle the case where inner is twice the size of outer. */
2666 else if (GET_MODE_PRECISION (GET_MODE (SET_DEST (temp)))
2667 == 2 * GET_MODE_PRECISION (GET_MODE (dest)))
2668 offset += GET_MODE_PRECISION (GET_MODE (dest));
2669 /* Otherwise give up for now. */
2670 else
2671 offset = -1;
2672 }
2673
2674 if (offset >= 0
2675 && (GET_MODE_PRECISION (GET_MODE (SET_DEST (temp)))
2676 <= HOST_BITS_PER_DOUBLE_INT))
2677 {
2678 double_int m, o, i;
2679 rtx inner = SET_SRC (PATTERN (i3));
2680 rtx outer = SET_SRC (temp);
2681
2682 o = rtx_to_double_int (outer);
2683 i = rtx_to_double_int (inner);
2684
2685 m = double_int::mask (width);
2686 i &= m;
2687 m = m.llshift (offset, HOST_BITS_PER_DOUBLE_INT);
2688 i = i.llshift (offset, HOST_BITS_PER_DOUBLE_INT);
2689 o = o.and_not (m) | i;
2690
2691 combine_merges++;
2692 subst_insn = i3;
2693 subst_low_luid = DF_INSN_LUID (i2);
2694 added_sets_2 = added_sets_1 = added_sets_0 = 0;
2695 i2dest = SET_DEST (temp);
2696 i2dest_killed = dead_or_set_p (i2, i2dest);
2697
2698 /* Replace the source in I2 with the new constant and make the
2699 resulting insn the new pattern for I3. Then skip to where we
2700 validate the pattern. Everything was set up above. */
2701 SUBST (SET_SRC (temp),
2702 immed_double_int_const (o, GET_MODE (SET_DEST (temp))));
2703
2704 newpat = PATTERN (i2);
2705
2706 /* The dest of I3 has been replaced with the dest of I2. */
2707 changed_i3_dest = 1;
2708 goto validate_replacement;
2709 }
2710 }
2711
2712 #ifndef HAVE_cc0
2713 /* If we have no I1 and I2 looks like:
2714 (parallel [(set (reg:CC X) (compare:CC OP (const_int 0)))
2715 (set Y OP)])
2716 make up a dummy I1 that is
2717 (set Y OP)
2718 and change I2 to be
2719 (set (reg:CC X) (compare:CC Y (const_int 0)))
2720
2721 (We can ignore any trailing CLOBBERs.)
2722
2723 This undoes a previous combination and allows us to match a branch-and-
2724 decrement insn. */
2725
2726 if (i1 == 0 && GET_CODE (PATTERN (i2)) == PARALLEL
2727 && XVECLEN (PATTERN (i2), 0) >= 2
2728 && GET_CODE (XVECEXP (PATTERN (i2), 0, 0)) == SET
2729 && (GET_MODE_CLASS (GET_MODE (SET_DEST (XVECEXP (PATTERN (i2), 0, 0))))
2730 == MODE_CC)
2731 && GET_CODE (SET_SRC (XVECEXP (PATTERN (i2), 0, 0))) == COMPARE
2732 && XEXP (SET_SRC (XVECEXP (PATTERN (i2), 0, 0)), 1) == const0_rtx
2733 && GET_CODE (XVECEXP (PATTERN (i2), 0, 1)) == SET
2734 && REG_P (SET_DEST (XVECEXP (PATTERN (i2), 0, 1)))
2735 && rtx_equal_p (XEXP (SET_SRC (XVECEXP (PATTERN (i2), 0, 0)), 0),
2736 SET_SRC (XVECEXP (PATTERN (i2), 0, 1))))
2737 {
2738 for (i = XVECLEN (PATTERN (i2), 0) - 1; i >= 2; i--)
2739 if (GET_CODE (XVECEXP (PATTERN (i2), 0, i)) != CLOBBER)
2740 break;
2741
2742 if (i == 1)
2743 {
2744 /* We make I1 with the same INSN_UID as I2. This gives it
2745 the same DF_INSN_LUID for value tracking. Our fake I1 will
2746 never appear in the insn stream so giving it the same INSN_UID
2747 as I2 will not cause a problem. */
2748
2749 i1 = gen_rtx_INSN (VOIDmode, INSN_UID (i2), NULL_RTX, i2,
2750 BLOCK_FOR_INSN (i2), XVECEXP (PATTERN (i2), 0, 1),
2751 INSN_LOCATION (i2), -1, NULL_RTX);
2752
2753 SUBST (PATTERN (i2), XVECEXP (PATTERN (i2), 0, 0));
2754 SUBST (XEXP (SET_SRC (PATTERN (i2)), 0),
2755 SET_DEST (PATTERN (i1)));
2756 SUBST_LINK (LOG_LINKS (i2), alloc_insn_link (i1, LOG_LINKS (i2)));
2757 }
2758 }
2759 #endif
2760
2761 /* Verify that I2 and I1 are valid for combining. */
2762 if (! can_combine_p (i2, i3, i0, i1, NULL_RTX, NULL_RTX, &i2dest, &i2src)
2763 || (i1 && ! can_combine_p (i1, i3, i0, NULL_RTX, i2, NULL_RTX,
2764 &i1dest, &i1src))
2765 || (i0 && ! can_combine_p (i0, i3, NULL_RTX, NULL_RTX, i1, i2,
2766 &i0dest, &i0src)))
2767 {
2768 undo_all ();
2769 return 0;
2770 }
2771
2772 /* Record whether I2DEST is used in I2SRC and similarly for the other
2773 cases. Knowing this will help in register status updating below. */
2774 i2dest_in_i2src = reg_overlap_mentioned_p (i2dest, i2src);
2775 i1dest_in_i1src = i1 && reg_overlap_mentioned_p (i1dest, i1src);
2776 i2dest_in_i1src = i1 && reg_overlap_mentioned_p (i2dest, i1src);
2777 i0dest_in_i0src = i0 && reg_overlap_mentioned_p (i0dest, i0src);
2778 i1dest_in_i0src = i0 && reg_overlap_mentioned_p (i1dest, i0src);
2779 i2dest_in_i0src = i0 && reg_overlap_mentioned_p (i2dest, i0src);
2780 i2dest_killed = dead_or_set_p (i2, i2dest);
2781 i1dest_killed = i1 && dead_or_set_p (i1, i1dest);
2782 i0dest_killed = i0 && dead_or_set_p (i0, i0dest);
2783
2784 /* For the earlier insns, determine which of the subsequent ones they
2785 feed. */
2786 i1_feeds_i2_n = i1 && insn_a_feeds_b (i1, i2);
2787 i0_feeds_i1_n = i0 && insn_a_feeds_b (i0, i1);
2788 i0_feeds_i2_n = (i0 && (!i0_feeds_i1_n ? insn_a_feeds_b (i0, i2)
2789 : (!reg_overlap_mentioned_p (i1dest, i0dest)
2790 && reg_overlap_mentioned_p (i0dest, i2src))));
2791
2792 /* Ensure that I3's pattern can be the destination of combines. */
2793 if (! combinable_i3pat (i3, &PATTERN (i3), i2dest, i1dest, i0dest,
2794 i1 && i2dest_in_i1src && !i1_feeds_i2_n,
2795 i0 && ((i2dest_in_i0src && !i0_feeds_i2_n)
2796 || (i1dest_in_i0src && !i0_feeds_i1_n)),
2797 &i3dest_killed))
2798 {
2799 undo_all ();
2800 return 0;
2801 }
2802
2803 /* See if any of the insns is a MULT operation. Unless one is, we will
2804 reject a combination that is, since it must be slower. Be conservative
2805 here. */
2806 if (GET_CODE (i2src) == MULT
2807 || (i1 != 0 && GET_CODE (i1src) == MULT)
2808 || (i0 != 0 && GET_CODE (i0src) == MULT)
2809 || (GET_CODE (PATTERN (i3)) == SET
2810 && GET_CODE (SET_SRC (PATTERN (i3))) == MULT))
2811 have_mult = 1;
2812
2813 /* If I3 has an inc, then give up if I1 or I2 uses the reg that is inc'd.
2814 We used to do this EXCEPT in one case: I3 has a post-inc in an
2815 output operand. However, that exception can give rise to insns like
2816 mov r3,(r3)+
2817 which is a famous insn on the PDP-11 where the value of r3 used as the
2818 source was model-dependent. Avoid this sort of thing. */
2819
2820 #if 0
2821 if (!(GET_CODE (PATTERN (i3)) == SET
2822 && REG_P (SET_SRC (PATTERN (i3)))
2823 && MEM_P (SET_DEST (PATTERN (i3)))
2824 && (GET_CODE (XEXP (SET_DEST (PATTERN (i3)), 0)) == POST_INC
2825 || GET_CODE (XEXP (SET_DEST (PATTERN (i3)), 0)) == POST_DEC)))
2826 /* It's not the exception. */
2827 #endif
2828 #ifdef AUTO_INC_DEC
2829 {
2830 rtx link;
2831 for (link = REG_NOTES (i3); link; link = XEXP (link, 1))
2832 if (REG_NOTE_KIND (link) == REG_INC
2833 && (reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i2))
2834 || (i1 != 0
2835 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i1)))))
2836 {
2837 undo_all ();
2838 return 0;
2839 }
2840 }
2841 #endif
2842
2843 /* See if the SETs in I1 or I2 need to be kept around in the merged
2844 instruction: whenever the value set there is still needed past I3.
2845 For the SET in I2, this is easy: we see if I2DEST dies or is set in I3.
2846
2847 For the SET in I1, we have two cases: if I1 and I2 independently feed
2848 into I3, the set in I1 needs to be kept around unless I1DEST dies
2849 or is set in I3. Otherwise (if I1 feeds I2 which feeds I3), the set
2850 in I1 needs to be kept around unless I1DEST dies or is set in either
2851 I2 or I3. The same considerations apply to I0. */
2852
2853 added_sets_2 = !dead_or_set_p (i3, i2dest);
2854
2855 if (i1)
2856 added_sets_1 = !(dead_or_set_p (i3, i1dest)
2857 || (i1_feeds_i2_n && dead_or_set_p (i2, i1dest)));
2858 else
2859 added_sets_1 = 0;
2860
2861 if (i0)
2862 added_sets_0 = !(dead_or_set_p (i3, i0dest)
2863 || (i0_feeds_i1_n && dead_or_set_p (i1, i0dest))
2864 || ((i0_feeds_i2_n || (i0_feeds_i1_n && i1_feeds_i2_n))
2865 && dead_or_set_p (i2, i0dest)));
2866 else
2867 added_sets_0 = 0;
2868
2869 /* We are about to copy insns for the case where they need to be kept
2870 around. Check that they can be copied in the merged instruction. */
2871
2872 if (targetm.cannot_copy_insn_p
2873 && ((added_sets_2 && targetm.cannot_copy_insn_p (i2))
2874 || (i1 && added_sets_1 && targetm.cannot_copy_insn_p (i1))
2875 || (i0 && added_sets_0 && targetm.cannot_copy_insn_p (i0))))
2876 {
2877 undo_all ();
2878 return 0;
2879 }
2880
2881 /* If the set in I2 needs to be kept around, we must make a copy of
2882 PATTERN (I2), so that when we substitute I1SRC for I1DEST in
2883 PATTERN (I2), we are only substituting for the original I1DEST, not into
2884 an already-substituted copy. This also prevents making self-referential
2885 rtx. If I2 is a PARALLEL, we just need the piece that assigns I2SRC to
2886 I2DEST. */
2887
2888 if (added_sets_2)
2889 {
2890 if (GET_CODE (PATTERN (i2)) == PARALLEL)
2891 i2pat = gen_rtx_SET (VOIDmode, i2dest, copy_rtx (i2src));
2892 else
2893 i2pat = copy_rtx (PATTERN (i2));
2894 }
2895
2896 if (added_sets_1)
2897 {
2898 if (GET_CODE (PATTERN (i1)) == PARALLEL)
2899 i1pat = gen_rtx_SET (VOIDmode, i1dest, copy_rtx (i1src));
2900 else
2901 i1pat = copy_rtx (PATTERN (i1));
2902 }
2903
2904 if (added_sets_0)
2905 {
2906 if (GET_CODE (PATTERN (i0)) == PARALLEL)
2907 i0pat = gen_rtx_SET (VOIDmode, i0dest, copy_rtx (i0src));
2908 else
2909 i0pat = copy_rtx (PATTERN (i0));
2910 }
2911
2912 combine_merges++;
2913
2914 /* Substitute in the latest insn for the regs set by the earlier ones. */
2915
2916 maxreg = max_reg_num ();
2917
2918 subst_insn = i3;
2919
2920 #ifndef HAVE_cc0
2921 /* Many machines that don't use CC0 have insns that can both perform an
2922 arithmetic operation and set the condition code. These operations will
2923 be represented as a PARALLEL with the first element of the vector
2924 being a COMPARE of an arithmetic operation with the constant zero.
2925 The second element of the vector will set some pseudo to the result
2926 of the same arithmetic operation. If we simplify the COMPARE, we won't
2927 match such a pattern and so will generate an extra insn. Here we test
2928 for this case, where both the comparison and the operation result are
2929 needed, and make the PARALLEL by just replacing I2DEST in I3SRC with
2930 I2SRC. Later we will make the PARALLEL that contains I2. */
2931
2932 if (i1 == 0 && added_sets_2 && GET_CODE (PATTERN (i3)) == SET
2933 && GET_CODE (SET_SRC (PATTERN (i3))) == COMPARE
2934 && CONST_INT_P (XEXP (SET_SRC (PATTERN (i3)), 1))
2935 && rtx_equal_p (XEXP (SET_SRC (PATTERN (i3)), 0), i2dest))
2936 {
2937 rtx newpat_dest;
2938 rtx *cc_use_loc = NULL, cc_use_insn = NULL_RTX;
2939 rtx op0 = i2src, op1 = XEXP (SET_SRC (PATTERN (i3)), 1);
2940 enum machine_mode compare_mode, orig_compare_mode;
2941 enum rtx_code compare_code = UNKNOWN, orig_compare_code = UNKNOWN;
2942
2943 newpat = PATTERN (i3);
2944 newpat_dest = SET_DEST (newpat);
2945 compare_mode = orig_compare_mode = GET_MODE (newpat_dest);
2946
2947 if (undobuf.other_insn == 0
2948 && (cc_use_loc = find_single_use (SET_DEST (newpat), i3,
2949 &cc_use_insn)))
2950 {
2951 compare_code = orig_compare_code = GET_CODE (*cc_use_loc);
2952 compare_code = simplify_compare_const (compare_code,
2953 GET_MODE (i2dest), op0, &op1);
2954 target_canonicalize_comparison (&compare_code, &op0, &op1, 1);
2955 }
2956
2957 /* Do the rest only if op1 is const0_rtx, which may be the
2958 result of simplification. */
2959 if (op1 == const0_rtx)
2960 {
2961 /* If a single use of the CC is found, prepare to modify it
2962 when SELECT_CC_MODE returns a new CC-class mode, or when
2963 the above simplify_compare_const() returned a new comparison
2964 operator. undobuf.other_insn is assigned the CC use insn
2965 when modifying it. */
2966 if (cc_use_loc)
2967 {
2968 #ifdef SELECT_CC_MODE
2969 enum machine_mode new_mode
2970 = SELECT_CC_MODE (compare_code, op0, op1);
2971 if (new_mode != orig_compare_mode
2972 && can_change_dest_mode (SET_DEST (newpat),
2973 added_sets_2, new_mode))
2974 {
2975 unsigned int regno = REGNO (newpat_dest);
2976 compare_mode = new_mode;
2977 if (regno < FIRST_PSEUDO_REGISTER)
2978 newpat_dest = gen_rtx_REG (compare_mode, regno);
2979 else
2980 {
2981 SUBST_MODE (regno_reg_rtx[regno], compare_mode);
2982 newpat_dest = regno_reg_rtx[regno];
2983 }
2984 }
2985 #endif
2986 /* Cases for modifying the CC-using comparison. */
2987 if (compare_code != orig_compare_code
2988 /* ??? Do we need to verify the zero rtx? */
2989 && XEXP (*cc_use_loc, 1) == const0_rtx)
2990 {
2991 /* Replace cc_use_loc with entire new RTX. */
2992 SUBST (*cc_use_loc,
2993 gen_rtx_fmt_ee (compare_code, compare_mode,
2994 newpat_dest, const0_rtx));
2995 undobuf.other_insn = cc_use_insn;
2996 }
2997 else if (compare_mode != orig_compare_mode)
2998 {
2999 /* Just replace the CC reg with a new mode. */
3000 SUBST (XEXP (*cc_use_loc, 0), newpat_dest);
3001 undobuf.other_insn = cc_use_insn;
3002 }
3003 }
3004
3005 /* Now we modify the current newpat:
3006 First, SET_DEST(newpat) is updated if the CC mode has been
3007 altered. For targets without SELECT_CC_MODE, this should be
3008 optimized away. */
3009 if (compare_mode != orig_compare_mode)
3010 SUBST (SET_DEST (newpat), newpat_dest);
3011 /* This is always done to propagate i2src into newpat. */
3012 SUBST (SET_SRC (newpat),
3013 gen_rtx_COMPARE (compare_mode, op0, op1));
3014 /* Create new version of i2pat if needed; the below PARALLEL
3015 creation needs this to work correctly. */
3016 if (! rtx_equal_p (i2src, op0))
3017 i2pat = gen_rtx_SET (VOIDmode, i2dest, op0);
3018 i2_is_used = 1;
3019 }
3020 }
3021 #endif
3022
3023 if (i2_is_used == 0)
3024 {
3025 /* It is possible that the source of I2 or I1 may be performing
3026 an unneeded operation, such as a ZERO_EXTEND of something
3027 that is known to have the high part zero. Handle that case
3028 by letting subst look at the inner insns.
3029
3030 Another way to do this would be to have a function that tries
3031 to simplify a single insn instead of merging two or more
3032 insns. We don't do this because of the potential of infinite
3033 loops and because of the potential extra memory required.
3034 However, doing it the way we are is a bit of a kludge and
3035 doesn't catch all cases.
3036
3037 But only do this if -fexpensive-optimizations since it slows
3038 things down and doesn't usually win.
3039
3040 This is not done in the COMPARE case above because the
3041 unmodified I2PAT is used in the PARALLEL and so a pattern
3042 with a modified I2SRC would not match. */
3043
3044 if (flag_expensive_optimizations)
3045 {
3046 /* Pass pc_rtx so no substitutions are done, just
3047 simplifications. */
3048 if (i1)
3049 {
3050 subst_low_luid = DF_INSN_LUID (i1);
3051 i1src = subst (i1src, pc_rtx, pc_rtx, 0, 0, 0);
3052 }
3053
3054 subst_low_luid = DF_INSN_LUID (i2);
3055 i2src = subst (i2src, pc_rtx, pc_rtx, 0, 0, 0);
3056 }
3057
3058 n_occurrences = 0; /* `subst' counts here */
3059 subst_low_luid = DF_INSN_LUID (i2);
3060
3061 /* If I1 feeds into I2 and I1DEST is in I1SRC, we need to make a unique
3062 copy of I2SRC each time we substitute it, in order to avoid creating
3063 self-referential RTL when we will be substituting I1SRC for I1DEST
3064 later. Likewise if I0 feeds into I2, either directly or indirectly
3065 through I1, and I0DEST is in I0SRC. */
3066 newpat = subst (PATTERN (i3), i2dest, i2src, 0, 0,
3067 (i1_feeds_i2_n && i1dest_in_i1src)
3068 || ((i0_feeds_i2_n || (i0_feeds_i1_n && i1_feeds_i2_n))
3069 && i0dest_in_i0src));
3070 substed_i2 = 1;
3071
3072 /* Record whether I2's body now appears within I3's body. */
3073 i2_is_used = n_occurrences;
3074 }
3075
3076 /* If we already got a failure, don't try to do more. Otherwise, try to
3077 substitute I1 if we have it. */
3078
3079 if (i1 && GET_CODE (newpat) != CLOBBER)
3080 {
3081 /* Check that an autoincrement side-effect on I1 has not been lost.
3082 This happens if I1DEST is mentioned in I2 and dies there, and
3083 has disappeared from the new pattern. */
3084 if ((FIND_REG_INC_NOTE (i1, NULL_RTX) != 0
3085 && i1_feeds_i2_n
3086 && dead_or_set_p (i2, i1dest)
3087 && !reg_overlap_mentioned_p (i1dest, newpat))
3088 /* Before we can do this substitution, we must redo the test done
3089 above (see detailed comments there) that ensures I1DEST isn't
3090 mentioned in any SETs in NEWPAT that are field assignments. */
3091 || !combinable_i3pat (NULL_RTX, &newpat, i1dest, NULL_RTX, NULL_RTX,
3092 0, 0, 0))
3093 {
3094 undo_all ();
3095 return 0;
3096 }
3097
3098 n_occurrences = 0;
3099 subst_low_luid = DF_INSN_LUID (i1);
3100
3101 /* If the following substitution will modify I1SRC, make a copy of it
3102 for the case where it is substituted for I1DEST in I2PAT later. */
3103 if (added_sets_2 && i1_feeds_i2_n)
3104 i1src_copy = copy_rtx (i1src);
3105
3106 /* If I0 feeds into I1 and I0DEST is in I0SRC, we need to make a unique
3107 copy of I1SRC each time we substitute it, in order to avoid creating
3108 self-referential RTL when we will be substituting I0SRC for I0DEST
3109 later. */
3110 newpat = subst (newpat, i1dest, i1src, 0, 0,
3111 i0_feeds_i1_n && i0dest_in_i0src);
3112 substed_i1 = 1;
3113
3114 /* Record whether I1's body now appears within I3's body. */
3115 i1_is_used = n_occurrences;
3116 }
3117
3118 /* Likewise for I0 if we have it. */
3119
3120 if (i0 && GET_CODE (newpat) != CLOBBER)
3121 {
3122 if ((FIND_REG_INC_NOTE (i0, NULL_RTX) != 0
3123 && ((i0_feeds_i2_n && dead_or_set_p (i2, i0dest))
3124 || (i0_feeds_i1_n && dead_or_set_p (i1, i0dest)))
3125 && !reg_overlap_mentioned_p (i0dest, newpat))
3126 || !combinable_i3pat (NULL_RTX, &newpat, i0dest, NULL_RTX, NULL_RTX,
3127 0, 0, 0))
3128 {
3129 undo_all ();
3130 return 0;
3131 }
3132
3133 /* If the following substitution will modify I0SRC, make a copy of it
3134 for the case where it is substituted for I0DEST in I1PAT later. */
3135 if (added_sets_1 && i0_feeds_i1_n)
3136 i0src_copy = copy_rtx (i0src);
3137 /* And a copy for I0DEST in I2PAT substitution. */
3138 if (added_sets_2 && ((i0_feeds_i1_n && i1_feeds_i2_n)
3139 || (i0_feeds_i2_n)))
3140 i0src_copy2 = copy_rtx (i0src);
3141
3142 n_occurrences = 0;
3143 subst_low_luid = DF_INSN_LUID (i0);
3144 newpat = subst (newpat, i0dest, i0src, 0, 0, 0);
3145 substed_i0 = 1;
3146 }
3147
3148 /* Fail if an autoincrement side-effect has been duplicated. Be careful
3149 to count all the ways that I2SRC and I1SRC can be used. */
3150 if ((FIND_REG_INC_NOTE (i2, NULL_RTX) != 0
3151 && i2_is_used + added_sets_2 > 1)
3152 || (i1 != 0 && FIND_REG_INC_NOTE (i1, NULL_RTX) != 0
3153 && (i1_is_used + added_sets_1 + (added_sets_2 && i1_feeds_i2_n)
3154 > 1))
3155 || (i0 != 0 && FIND_REG_INC_NOTE (i0, NULL_RTX) != 0
3156 && (n_occurrences + added_sets_0
3157 + (added_sets_1 && i0_feeds_i1_n)
3158 + (added_sets_2 && i0_feeds_i2_n)
3159 > 1))
3160 /* Fail if we tried to make a new register. */
3161 || max_reg_num () != maxreg
3162 /* Fail if we couldn't do something and have a CLOBBER. */
3163 || GET_CODE (newpat) == CLOBBER
3164 /* Fail if this new pattern is a MULT and we didn't have one before
3165 at the outer level. */
3166 || (GET_CODE (newpat) == SET && GET_CODE (SET_SRC (newpat)) == MULT
3167 && ! have_mult))
3168 {
3169 undo_all ();
3170 return 0;
3171 }
3172
3173 /* If the actions of the earlier insns must be kept
3174 in addition to substituting them into the latest one,
3175 we must make a new PARALLEL for the latest insn
3176 to hold additional the SETs. */
3177
3178 if (added_sets_0 || added_sets_1 || added_sets_2)
3179 {
3180 int extra_sets = added_sets_0 + added_sets_1 + added_sets_2;
3181 combine_extras++;
3182
3183 if (GET_CODE (newpat) == PARALLEL)
3184 {
3185 rtvec old = XVEC (newpat, 0);
3186 total_sets = XVECLEN (newpat, 0) + extra_sets;
3187 newpat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (total_sets));
3188 memcpy (XVEC (newpat, 0)->elem, &old->elem[0],
3189 sizeof (old->elem[0]) * old->num_elem);
3190 }
3191 else
3192 {
3193 rtx old = newpat;
3194 total_sets = 1 + extra_sets;
3195 newpat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (total_sets));
3196 XVECEXP (newpat, 0, 0) = old;
3197 }
3198
3199 if (added_sets_0)
3200 XVECEXP (newpat, 0, --total_sets) = i0pat;
3201
3202 if (added_sets_1)
3203 {
3204 rtx t = i1pat;
3205 if (i0_feeds_i1_n)
3206 t = subst (t, i0dest, i0src_copy ? i0src_copy : i0src, 0, 0, 0);
3207
3208 XVECEXP (newpat, 0, --total_sets) = t;
3209 }
3210 if (added_sets_2)
3211 {
3212 rtx t = i2pat;
3213 if (i1_feeds_i2_n)
3214 t = subst (t, i1dest, i1src_copy ? i1src_copy : i1src, 0, 0,
3215 i0_feeds_i1_n && i0dest_in_i0src);
3216 if ((i0_feeds_i1_n && i1_feeds_i2_n) || i0_feeds_i2_n)
3217 t = subst (t, i0dest, i0src_copy2 ? i0src_copy2 : i0src, 0, 0, 0);
3218
3219 XVECEXP (newpat, 0, --total_sets) = t;
3220 }
3221 }
3222
3223 validate_replacement:
3224
3225 /* Note which hard regs this insn has as inputs. */
3226 mark_used_regs_combine (newpat);
3227
3228 /* If recog_for_combine fails, it strips existing clobbers. If we'll
3229 consider splitting this pattern, we might need these clobbers. */
3230 if (i1 && GET_CODE (newpat) == PARALLEL
3231 && GET_CODE (XVECEXP (newpat, 0, XVECLEN (newpat, 0) - 1)) == CLOBBER)
3232 {
3233 int len = XVECLEN (newpat, 0);
3234
3235 newpat_vec_with_clobbers = rtvec_alloc (len);
3236 for (i = 0; i < len; i++)
3237 RTVEC_ELT (newpat_vec_with_clobbers, i) = XVECEXP (newpat, 0, i);
3238 }
3239
3240 /* Is the result of combination a valid instruction? */
3241 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3242
3243 /* If the result isn't valid, see if it is a PARALLEL of two SETs where
3244 the second SET's destination is a register that is unused and isn't
3245 marked as an instruction that might trap in an EH region. In that case,
3246 we just need the first SET. This can occur when simplifying a divmod
3247 insn. We *must* test for this case here because the code below that
3248 splits two independent SETs doesn't handle this case correctly when it
3249 updates the register status.
3250
3251 It's pointless doing this if we originally had two sets, one from
3252 i3, and one from i2. Combining then splitting the parallel results
3253 in the original i2 again plus an invalid insn (which we delete).
3254 The net effect is only to move instructions around, which makes
3255 debug info less accurate.
3256
3257 Also check the case where the first SET's destination is unused.
3258 That would not cause incorrect code, but does cause an unneeded
3259 insn to remain. */
3260
3261 if (insn_code_number < 0
3262 && !(added_sets_2 && i1 == 0)
3263 && GET_CODE (newpat) == PARALLEL
3264 && XVECLEN (newpat, 0) == 2
3265 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
3266 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
3267 && asm_noperands (newpat) < 0)
3268 {
3269 rtx set0 = XVECEXP (newpat, 0, 0);
3270 rtx set1 = XVECEXP (newpat, 0, 1);
3271
3272 if (((REG_P (SET_DEST (set1))
3273 && find_reg_note (i3, REG_UNUSED, SET_DEST (set1)))
3274 || (GET_CODE (SET_DEST (set1)) == SUBREG
3275 && find_reg_note (i3, REG_UNUSED, SUBREG_REG (SET_DEST (set1)))))
3276 && insn_nothrow_p (i3)
3277 && !side_effects_p (SET_SRC (set1)))
3278 {
3279 newpat = set0;
3280 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3281 }
3282
3283 else if (((REG_P (SET_DEST (set0))
3284 && find_reg_note (i3, REG_UNUSED, SET_DEST (set0)))
3285 || (GET_CODE (SET_DEST (set0)) == SUBREG
3286 && find_reg_note (i3, REG_UNUSED,
3287 SUBREG_REG (SET_DEST (set0)))))
3288 && insn_nothrow_p (i3)
3289 && !side_effects_p (SET_SRC (set0)))
3290 {
3291 newpat = set1;
3292 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3293
3294 if (insn_code_number >= 0)
3295 changed_i3_dest = 1;
3296 }
3297 }
3298
3299 /* If we were combining three insns and the result is a simple SET
3300 with no ASM_OPERANDS that wasn't recognized, try to split it into two
3301 insns. There are two ways to do this. It can be split using a
3302 machine-specific method (like when you have an addition of a large
3303 constant) or by combine in the function find_split_point. */
3304
3305 if (i1 && insn_code_number < 0 && GET_CODE (newpat) == SET
3306 && asm_noperands (newpat) < 0)
3307 {
3308 rtx parallel, m_split, *split;
3309
3310 /* See if the MD file can split NEWPAT. If it can't, see if letting it
3311 use I2DEST as a scratch register will help. In the latter case,
3312 convert I2DEST to the mode of the source of NEWPAT if we can. */
3313
3314 m_split = combine_split_insns (newpat, i3);
3315
3316 /* We can only use I2DEST as a scratch reg if it doesn't overlap any
3317 inputs of NEWPAT. */
3318
3319 /* ??? If I2DEST is not safe, and I1DEST exists, then it would be
3320 possible to try that as a scratch reg. This would require adding
3321 more code to make it work though. */
3322
3323 if (m_split == 0 && ! reg_overlap_mentioned_p (i2dest, newpat))
3324 {
3325 enum machine_mode new_mode = GET_MODE (SET_DEST (newpat));
3326
3327 /* First try to split using the original register as a
3328 scratch register. */
3329 parallel = gen_rtx_PARALLEL (VOIDmode,
3330 gen_rtvec (2, newpat,
3331 gen_rtx_CLOBBER (VOIDmode,
3332 i2dest)));
3333 m_split = combine_split_insns (parallel, i3);
3334
3335 /* If that didn't work, try changing the mode of I2DEST if
3336 we can. */
3337 if (m_split == 0
3338 && new_mode != GET_MODE (i2dest)
3339 && new_mode != VOIDmode
3340 && can_change_dest_mode (i2dest, added_sets_2, new_mode))
3341 {
3342 enum machine_mode old_mode = GET_MODE (i2dest);
3343 rtx ni2dest;
3344
3345 if (REGNO (i2dest) < FIRST_PSEUDO_REGISTER)
3346 ni2dest = gen_rtx_REG (new_mode, REGNO (i2dest));
3347 else
3348 {
3349 SUBST_MODE (regno_reg_rtx[REGNO (i2dest)], new_mode);
3350 ni2dest = regno_reg_rtx[REGNO (i2dest)];
3351 }
3352
3353 parallel = (gen_rtx_PARALLEL
3354 (VOIDmode,
3355 gen_rtvec (2, newpat,
3356 gen_rtx_CLOBBER (VOIDmode,
3357 ni2dest))));
3358 m_split = combine_split_insns (parallel, i3);
3359
3360 if (m_split == 0
3361 && REGNO (i2dest) >= FIRST_PSEUDO_REGISTER)
3362 {
3363 struct undo *buf;
3364
3365 adjust_reg_mode (regno_reg_rtx[REGNO (i2dest)], old_mode);
3366 buf = undobuf.undos;
3367 undobuf.undos = buf->next;
3368 buf->next = undobuf.frees;
3369 undobuf.frees = buf;
3370 }
3371 }
3372
3373 i2scratch = m_split != 0;
3374 }
3375
3376 /* If recog_for_combine has discarded clobbers, try to use them
3377 again for the split. */
3378 if (m_split == 0 && newpat_vec_with_clobbers)
3379 {
3380 parallel = gen_rtx_PARALLEL (VOIDmode, newpat_vec_with_clobbers);
3381 m_split = combine_split_insns (parallel, i3);
3382 }
3383
3384 if (m_split && NEXT_INSN (m_split) == NULL_RTX)
3385 {
3386 m_split = PATTERN (m_split);
3387 insn_code_number = recog_for_combine (&m_split, i3, &new_i3_notes);
3388 if (insn_code_number >= 0)
3389 newpat = m_split;
3390 }
3391 else if (m_split && NEXT_INSN (NEXT_INSN (m_split)) == NULL_RTX
3392 && (next_nonnote_nondebug_insn (i2) == i3
3393 || ! use_crosses_set_p (PATTERN (m_split), DF_INSN_LUID (i2))))
3394 {
3395 rtx i2set, i3set;
3396 rtx newi3pat = PATTERN (NEXT_INSN (m_split));
3397 newi2pat = PATTERN (m_split);
3398
3399 i3set = single_set (NEXT_INSN (m_split));
3400 i2set = single_set (m_split);
3401
3402 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
3403
3404 /* If I2 or I3 has multiple SETs, we won't know how to track
3405 register status, so don't use these insns. If I2's destination
3406 is used between I2 and I3, we also can't use these insns. */
3407
3408 if (i2_code_number >= 0 && i2set && i3set
3409 && (next_nonnote_nondebug_insn (i2) == i3
3410 || ! reg_used_between_p (SET_DEST (i2set), i2, i3)))
3411 insn_code_number = recog_for_combine (&newi3pat, i3,
3412 &new_i3_notes);
3413 if (insn_code_number >= 0)
3414 newpat = newi3pat;
3415
3416 /* It is possible that both insns now set the destination of I3.
3417 If so, we must show an extra use of it. */
3418
3419 if (insn_code_number >= 0)
3420 {
3421 rtx new_i3_dest = SET_DEST (i3set);
3422 rtx new_i2_dest = SET_DEST (i2set);
3423
3424 while (GET_CODE (new_i3_dest) == ZERO_EXTRACT
3425 || GET_CODE (new_i3_dest) == STRICT_LOW_PART
3426 || GET_CODE (new_i3_dest) == SUBREG)
3427 new_i3_dest = XEXP (new_i3_dest, 0);
3428
3429 while (GET_CODE (new_i2_dest) == ZERO_EXTRACT
3430 || GET_CODE (new_i2_dest) == STRICT_LOW_PART
3431 || GET_CODE (new_i2_dest) == SUBREG)
3432 new_i2_dest = XEXP (new_i2_dest, 0);
3433
3434 if (REG_P (new_i3_dest)
3435 && REG_P (new_i2_dest)
3436 && REGNO (new_i3_dest) == REGNO (new_i2_dest))
3437 INC_REG_N_SETS (REGNO (new_i2_dest), 1);
3438 }
3439 }
3440
3441 /* If we can split it and use I2DEST, go ahead and see if that
3442 helps things be recognized. Verify that none of the registers
3443 are set between I2 and I3. */
3444 if (insn_code_number < 0
3445 && (split = find_split_point (&newpat, i3, false)) != 0
3446 #ifdef HAVE_cc0
3447 && REG_P (i2dest)
3448 #endif
3449 /* We need I2DEST in the proper mode. If it is a hard register
3450 or the only use of a pseudo, we can change its mode.
3451 Make sure we don't change a hard register to have a mode that
3452 isn't valid for it, or change the number of registers. */
3453 && (GET_MODE (*split) == GET_MODE (i2dest)
3454 || GET_MODE (*split) == VOIDmode
3455 || can_change_dest_mode (i2dest, added_sets_2,
3456 GET_MODE (*split)))
3457 && (next_nonnote_nondebug_insn (i2) == i3
3458 || ! use_crosses_set_p (*split, DF_INSN_LUID (i2)))
3459 /* We can't overwrite I2DEST if its value is still used by
3460 NEWPAT. */
3461 && ! reg_referenced_p (i2dest, newpat))
3462 {
3463 rtx newdest = i2dest;
3464 enum rtx_code split_code = GET_CODE (*split);
3465 enum machine_mode split_mode = GET_MODE (*split);
3466 bool subst_done = false;
3467 newi2pat = NULL_RTX;
3468
3469 i2scratch = true;
3470
3471 /* *SPLIT may be part of I2SRC, so make sure we have the
3472 original expression around for later debug processing.
3473 We should not need I2SRC any more in other cases. */
3474 if (MAY_HAVE_DEBUG_INSNS)
3475 i2src = copy_rtx (i2src);
3476 else
3477 i2src = NULL;
3478
3479 /* Get NEWDEST as a register in the proper mode. We have already
3480 validated that we can do this. */
3481 if (GET_MODE (i2dest) != split_mode && split_mode != VOIDmode)
3482 {
3483 if (REGNO (i2dest) < FIRST_PSEUDO_REGISTER)
3484 newdest = gen_rtx_REG (split_mode, REGNO (i2dest));
3485 else
3486 {
3487 SUBST_MODE (regno_reg_rtx[REGNO (i2dest)], split_mode);
3488 newdest = regno_reg_rtx[REGNO (i2dest)];
3489 }
3490 }
3491
3492 /* If *SPLIT is a (mult FOO (const_int pow2)), convert it to
3493 an ASHIFT. This can occur if it was inside a PLUS and hence
3494 appeared to be a memory address. This is a kludge. */
3495 if (split_code == MULT
3496 && CONST_INT_P (XEXP (*split, 1))
3497 && INTVAL (XEXP (*split, 1)) > 0
3498 && (i = exact_log2 (UINTVAL (XEXP (*split, 1)))) >= 0)
3499 {
3500 SUBST (*split, gen_rtx_ASHIFT (split_mode,
3501 XEXP (*split, 0), GEN_INT (i)));
3502 /* Update split_code because we may not have a multiply
3503 anymore. */
3504 split_code = GET_CODE (*split);
3505 }
3506
3507 #ifdef INSN_SCHEDULING
3508 /* If *SPLIT is a paradoxical SUBREG, when we split it, it should
3509 be written as a ZERO_EXTEND. */
3510 if (split_code == SUBREG && MEM_P (SUBREG_REG (*split)))
3511 {
3512 #ifdef LOAD_EXTEND_OP
3513 /* Or as a SIGN_EXTEND if LOAD_EXTEND_OP says that that's
3514 what it really is. */
3515 if (LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (*split)))
3516 == SIGN_EXTEND)
3517 SUBST (*split, gen_rtx_SIGN_EXTEND (split_mode,
3518 SUBREG_REG (*split)));
3519 else
3520 #endif
3521 SUBST (*split, gen_rtx_ZERO_EXTEND (split_mode,
3522 SUBREG_REG (*split)));
3523 }
3524 #endif
3525
3526 /* Attempt to split binary operators using arithmetic identities. */
3527 if (BINARY_P (SET_SRC (newpat))
3528 && split_mode == GET_MODE (SET_SRC (newpat))
3529 && ! side_effects_p (SET_SRC (newpat)))
3530 {
3531 rtx setsrc = SET_SRC (newpat);
3532 enum machine_mode mode = GET_MODE (setsrc);
3533 enum rtx_code code = GET_CODE (setsrc);
3534 rtx src_op0 = XEXP (setsrc, 0);
3535 rtx src_op1 = XEXP (setsrc, 1);
3536
3537 /* Split "X = Y op Y" as "Z = Y; X = Z op Z". */
3538 if (rtx_equal_p (src_op0, src_op1))
3539 {
3540 newi2pat = gen_rtx_SET (VOIDmode, newdest, src_op0);
3541 SUBST (XEXP (setsrc, 0), newdest);
3542 SUBST (XEXP (setsrc, 1), newdest);
3543 subst_done = true;
3544 }
3545 /* Split "((P op Q) op R) op S" where op is PLUS or MULT. */
3546 else if ((code == PLUS || code == MULT)
3547 && GET_CODE (src_op0) == code
3548 && GET_CODE (XEXP (src_op0, 0)) == code
3549 && (INTEGRAL_MODE_P (mode)
3550 || (FLOAT_MODE_P (mode)
3551 && flag_unsafe_math_optimizations)))
3552 {
3553 rtx p = XEXP (XEXP (src_op0, 0), 0);
3554 rtx q = XEXP (XEXP (src_op0, 0), 1);
3555 rtx r = XEXP (src_op0, 1);
3556 rtx s = src_op1;
3557
3558 /* Split both "((X op Y) op X) op Y" and
3559 "((X op Y) op Y) op X" as "T op T" where T is
3560 "X op Y". */
3561 if ((rtx_equal_p (p,r) && rtx_equal_p (q,s))
3562 || (rtx_equal_p (p,s) && rtx_equal_p (q,r)))
3563 {
3564 newi2pat = gen_rtx_SET (VOIDmode, newdest,
3565 XEXP (src_op0, 0));
3566 SUBST (XEXP (setsrc, 0), newdest);
3567 SUBST (XEXP (setsrc, 1), newdest);
3568 subst_done = true;
3569 }
3570 /* Split "((X op X) op Y) op Y)" as "T op T" where
3571 T is "X op Y". */
3572 else if (rtx_equal_p (p,q) && rtx_equal_p (r,s))
3573 {
3574 rtx tmp = simplify_gen_binary (code, mode, p, r);
3575 newi2pat = gen_rtx_SET (VOIDmode, newdest, tmp);
3576 SUBST (XEXP (setsrc, 0), newdest);
3577 SUBST (XEXP (setsrc, 1), newdest);
3578 subst_done = true;
3579 }
3580 }
3581 }
3582
3583 if (!subst_done)
3584 {
3585 newi2pat = gen_rtx_SET (VOIDmode, newdest, *split);
3586 SUBST (*split, newdest);
3587 }
3588
3589 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
3590
3591 /* recog_for_combine might have added CLOBBERs to newi2pat.
3592 Make sure NEWPAT does not depend on the clobbered regs. */
3593 if (GET_CODE (newi2pat) == PARALLEL)
3594 for (i = XVECLEN (newi2pat, 0) - 1; i >= 0; i--)
3595 if (GET_CODE (XVECEXP (newi2pat, 0, i)) == CLOBBER)
3596 {
3597 rtx reg = XEXP (XVECEXP (newi2pat, 0, i), 0);
3598 if (reg_overlap_mentioned_p (reg, newpat))
3599 {
3600 undo_all ();
3601 return 0;
3602 }
3603 }
3604
3605 /* If the split point was a MULT and we didn't have one before,
3606 don't use one now. */
3607 if (i2_code_number >= 0 && ! (split_code == MULT && ! have_mult))
3608 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3609 }
3610 }
3611
3612 /* Check for a case where we loaded from memory in a narrow mode and
3613 then sign extended it, but we need both registers. In that case,
3614 we have a PARALLEL with both loads from the same memory location.
3615 We can split this into a load from memory followed by a register-register
3616 copy. This saves at least one insn, more if register allocation can
3617 eliminate the copy.
3618
3619 We cannot do this if the destination of the first assignment is a
3620 condition code register or cc0. We eliminate this case by making sure
3621 the SET_DEST and SET_SRC have the same mode.
3622
3623 We cannot do this if the destination of the second assignment is
3624 a register that we have already assumed is zero-extended. Similarly
3625 for a SUBREG of such a register. */
3626
3627 else if (i1 && insn_code_number < 0 && asm_noperands (newpat) < 0
3628 && GET_CODE (newpat) == PARALLEL
3629 && XVECLEN (newpat, 0) == 2
3630 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
3631 && GET_CODE (SET_SRC (XVECEXP (newpat, 0, 0))) == SIGN_EXTEND
3632 && (GET_MODE (SET_DEST (XVECEXP (newpat, 0, 0)))
3633 == GET_MODE (SET_SRC (XVECEXP (newpat, 0, 0))))
3634 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
3635 && rtx_equal_p (SET_SRC (XVECEXP (newpat, 0, 1)),
3636 XEXP (SET_SRC (XVECEXP (newpat, 0, 0)), 0))
3637 && ! use_crosses_set_p (SET_SRC (XVECEXP (newpat, 0, 1)),
3638 DF_INSN_LUID (i2))
3639 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != ZERO_EXTRACT
3640 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != STRICT_LOW_PART
3641 && ! (temp = SET_DEST (XVECEXP (newpat, 0, 1)),
3642 (REG_P (temp)
3643 && reg_stat[REGNO (temp)].nonzero_bits != 0
3644 && GET_MODE_PRECISION (GET_MODE (temp)) < BITS_PER_WORD
3645 && GET_MODE_PRECISION (GET_MODE (temp)) < HOST_BITS_PER_INT
3646 && (reg_stat[REGNO (temp)].nonzero_bits
3647 != GET_MODE_MASK (word_mode))))
3648 && ! (GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) == SUBREG
3649 && (temp = SUBREG_REG (SET_DEST (XVECEXP (newpat, 0, 1))),
3650 (REG_P (temp)
3651 && reg_stat[REGNO (temp)].nonzero_bits != 0
3652 && GET_MODE_PRECISION (GET_MODE (temp)) < BITS_PER_WORD
3653 && GET_MODE_PRECISION (GET_MODE (temp)) < HOST_BITS_PER_INT
3654 && (reg_stat[REGNO (temp)].nonzero_bits
3655 != GET_MODE_MASK (word_mode)))))
3656 && ! reg_overlap_mentioned_p (SET_DEST (XVECEXP (newpat, 0, 1)),
3657 SET_SRC (XVECEXP (newpat, 0, 1)))
3658 && ! find_reg_note (i3, REG_UNUSED,
3659 SET_DEST (XVECEXP (newpat, 0, 0))))
3660 {
3661 rtx ni2dest;
3662
3663 newi2pat = XVECEXP (newpat, 0, 0);
3664 ni2dest = SET_DEST (XVECEXP (newpat, 0, 0));
3665 newpat = XVECEXP (newpat, 0, 1);
3666 SUBST (SET_SRC (newpat),
3667 gen_lowpart (GET_MODE (SET_SRC (newpat)), ni2dest));
3668 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
3669
3670 if (i2_code_number >= 0)
3671 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3672
3673 if (insn_code_number >= 0)
3674 swap_i2i3 = 1;
3675 }
3676
3677 /* Similarly, check for a case where we have a PARALLEL of two independent
3678 SETs but we started with three insns. In this case, we can do the sets
3679 as two separate insns. This case occurs when some SET allows two
3680 other insns to combine, but the destination of that SET is still live. */
3681
3682 else if (i1 && insn_code_number < 0 && asm_noperands (newpat) < 0
3683 && GET_CODE (newpat) == PARALLEL
3684 && XVECLEN (newpat, 0) == 2
3685 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
3686 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) != ZERO_EXTRACT
3687 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) != STRICT_LOW_PART
3688 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
3689 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != ZERO_EXTRACT
3690 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != STRICT_LOW_PART
3691 && ! reg_referenced_p (SET_DEST (XVECEXP (newpat, 0, 1)),
3692 XVECEXP (newpat, 0, 0))
3693 && ! reg_referenced_p (SET_DEST (XVECEXP (newpat, 0, 0)),
3694 XVECEXP (newpat, 0, 1))
3695 && ! (contains_muldiv (SET_SRC (XVECEXP (newpat, 0, 0)))
3696 && contains_muldiv (SET_SRC (XVECEXP (newpat, 0, 1)))))
3697 {
3698 rtx set0 = XVECEXP (newpat, 0, 0);
3699 rtx set1 = XVECEXP (newpat, 0, 1);
3700
3701 /* Normally, it doesn't matter which of the two is done first,
3702 but the one that references cc0 can't be the second, and
3703 one which uses any regs/memory set in between i2 and i3 can't
3704 be first. The PARALLEL might also have been pre-existing in i3,
3705 so we need to make sure that we won't wrongly hoist a SET to i2
3706 that would conflict with a death note present in there. */
3707 if (!use_crosses_set_p (SET_SRC (set1), DF_INSN_LUID (i2))
3708 && !(REG_P (SET_DEST (set1))
3709 && find_reg_note (i2, REG_DEAD, SET_DEST (set1)))
3710 && !(GET_CODE (SET_DEST (set1)) == SUBREG
3711 && find_reg_note (i2, REG_DEAD,
3712 SUBREG_REG (SET_DEST (set1))))
3713 #ifdef HAVE_cc0
3714 && !reg_referenced_p (cc0_rtx, set0)
3715 #endif
3716 /* If I3 is a jump, ensure that set0 is a jump so that
3717 we do not create invalid RTL. */
3718 && (!JUMP_P (i3) || SET_DEST (set0) == pc_rtx)
3719 )
3720 {
3721 newi2pat = set1;
3722 newpat = set0;
3723 }
3724 else if (!use_crosses_set_p (SET_SRC (set0), DF_INSN_LUID (i2))
3725 && !(REG_P (SET_DEST (set0))
3726 && find_reg_note (i2, REG_DEAD, SET_DEST (set0)))
3727 && !(GET_CODE (SET_DEST (set0)) == SUBREG
3728 && find_reg_note (i2, REG_DEAD,
3729 SUBREG_REG (SET_DEST (set0))))
3730 #ifdef HAVE_cc0
3731 && !reg_referenced_p (cc0_rtx, set1)
3732 #endif
3733 /* If I3 is a jump, ensure that set1 is a jump so that
3734 we do not create invalid RTL. */
3735 && (!JUMP_P (i3) || SET_DEST (set1) == pc_rtx)
3736 )
3737 {
3738 newi2pat = set0;
3739 newpat = set1;
3740 }
3741 else
3742 {
3743 undo_all ();
3744 return 0;
3745 }
3746
3747 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
3748
3749 if (i2_code_number >= 0)
3750 {
3751 /* recog_for_combine might have added CLOBBERs to newi2pat.
3752 Make sure NEWPAT does not depend on the clobbered regs. */
3753 if (GET_CODE (newi2pat) == PARALLEL)
3754 {
3755 for (i = XVECLEN (newi2pat, 0) - 1; i >= 0; i--)
3756 if (GET_CODE (XVECEXP (newi2pat, 0, i)) == CLOBBER)
3757 {
3758 rtx reg = XEXP (XVECEXP (newi2pat, 0, i), 0);
3759 if (reg_overlap_mentioned_p (reg, newpat))
3760 {
3761 undo_all ();
3762 return 0;
3763 }
3764 }
3765 }
3766
3767 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3768 }
3769 }
3770
3771 /* If it still isn't recognized, fail and change things back the way they
3772 were. */
3773 if ((insn_code_number < 0
3774 /* Is the result a reasonable ASM_OPERANDS? */
3775 && (! check_asm_operands (newpat) || added_sets_1 || added_sets_2)))
3776 {
3777 undo_all ();
3778 return 0;
3779 }
3780
3781 /* If we had to change another insn, make sure it is valid also. */
3782 if (undobuf.other_insn)
3783 {
3784 CLEAR_HARD_REG_SET (newpat_used_regs);
3785
3786 other_pat = PATTERN (undobuf.other_insn);
3787 other_code_number = recog_for_combine (&other_pat, undobuf.other_insn,
3788 &new_other_notes);
3789
3790 if (other_code_number < 0 && ! check_asm_operands (other_pat))
3791 {
3792 undo_all ();
3793 return 0;
3794 }
3795 }
3796
3797 #ifdef HAVE_cc0
3798 /* If I2 is the CC0 setter and I3 is the CC0 user then check whether
3799 they are adjacent to each other or not. */
3800 {
3801 rtx p = prev_nonnote_insn (i3);
3802 if (p && p != i2 && NONJUMP_INSN_P (p) && newi2pat
3803 && sets_cc0_p (newi2pat))
3804 {
3805 undo_all ();
3806 return 0;
3807 }
3808 }
3809 #endif
3810
3811 /* Only allow this combination if insn_rtx_costs reports that the
3812 replacement instructions are cheaper than the originals. */
3813 if (!combine_validate_cost (i0, i1, i2, i3, newpat, newi2pat, other_pat))
3814 {
3815 undo_all ();
3816 return 0;
3817 }
3818
3819 if (MAY_HAVE_DEBUG_INSNS)
3820 {
3821 struct undo *undo;
3822
3823 for (undo = undobuf.undos; undo; undo = undo->next)
3824 if (undo->kind == UNDO_MODE)
3825 {
3826 rtx reg = *undo->where.r;
3827 enum machine_mode new_mode = GET_MODE (reg);
3828 enum machine_mode old_mode = undo->old_contents.m;
3829
3830 /* Temporarily revert mode back. */
3831 adjust_reg_mode (reg, old_mode);
3832
3833 if (reg == i2dest && i2scratch)
3834 {
3835 /* If we used i2dest as a scratch register with a
3836 different mode, substitute it for the original
3837 i2src while its original mode is temporarily
3838 restored, and then clear i2scratch so that we don't
3839 do it again later. */
3840 propagate_for_debug (i2, last_combined_insn, reg, i2src,
3841 this_basic_block);
3842 i2scratch = false;
3843 /* Put back the new mode. */
3844 adjust_reg_mode (reg, new_mode);
3845 }
3846 else
3847 {
3848 rtx tempreg = gen_raw_REG (old_mode, REGNO (reg));
3849 rtx first, last;
3850
3851 if (reg == i2dest)
3852 {
3853 first = i2;
3854 last = last_combined_insn;
3855 }
3856 else
3857 {
3858 first = i3;
3859 last = undobuf.other_insn;
3860 gcc_assert (last);
3861 if (DF_INSN_LUID (last)
3862 < DF_INSN_LUID (last_combined_insn))
3863 last = last_combined_insn;
3864 }
3865
3866 /* We're dealing with a reg that changed mode but not
3867 meaning, so we want to turn it into a subreg for
3868 the new mode. However, because of REG sharing and
3869 because its mode had already changed, we have to do
3870 it in two steps. First, replace any debug uses of
3871 reg, with its original mode temporarily restored,
3872 with this copy we have created; then, replace the
3873 copy with the SUBREG of the original shared reg,
3874 once again changed to the new mode. */
3875 propagate_for_debug (first, last, reg, tempreg,
3876 this_basic_block);
3877 adjust_reg_mode (reg, new_mode);
3878 propagate_for_debug (first, last, tempreg,
3879 lowpart_subreg (old_mode, reg, new_mode),
3880 this_basic_block);
3881 }
3882 }
3883 }
3884
3885 /* If we will be able to accept this, we have made a
3886 change to the destination of I3. This requires us to
3887 do a few adjustments. */
3888
3889 if (changed_i3_dest)
3890 {
3891 PATTERN (i3) = newpat;
3892 adjust_for_new_dest (i3);
3893 }
3894
3895 /* We now know that we can do this combination. Merge the insns and
3896 update the status of registers and LOG_LINKS. */
3897
3898 if (undobuf.other_insn)
3899 {
3900 rtx note, next;
3901
3902 PATTERN (undobuf.other_insn) = other_pat;
3903
3904 /* If any of the notes in OTHER_INSN were REG_DEAD or REG_UNUSED,
3905 ensure that they are still valid. Then add any non-duplicate
3906 notes added by recog_for_combine. */
3907 for (note = REG_NOTES (undobuf.other_insn); note; note = next)
3908 {
3909 next = XEXP (note, 1);
3910
3911 if ((REG_NOTE_KIND (note) == REG_DEAD
3912 && !reg_referenced_p (XEXP (note, 0),
3913 PATTERN (undobuf.other_insn)))
3914 ||(REG_NOTE_KIND (note) == REG_UNUSED
3915 && !reg_set_p (XEXP (note, 0),
3916 PATTERN (undobuf.other_insn))))
3917 remove_note (undobuf.other_insn, note);
3918 }
3919
3920 distribute_notes (new_other_notes, undobuf.other_insn,
3921 undobuf.other_insn, NULL_RTX, NULL_RTX, NULL_RTX,
3922 NULL_RTX);
3923 }
3924
3925 if (swap_i2i3)
3926 {
3927 rtx insn;
3928 struct insn_link *link;
3929 rtx ni2dest;
3930
3931 /* I3 now uses what used to be its destination and which is now
3932 I2's destination. This requires us to do a few adjustments. */
3933 PATTERN (i3) = newpat;
3934 adjust_for_new_dest (i3);
3935
3936 /* We need a LOG_LINK from I3 to I2. But we used to have one,
3937 so we still will.
3938
3939 However, some later insn might be using I2's dest and have
3940 a LOG_LINK pointing at I3. We must remove this link.
3941 The simplest way to remove the link is to point it at I1,
3942 which we know will be a NOTE. */
3943
3944 /* newi2pat is usually a SET here; however, recog_for_combine might
3945 have added some clobbers. */
3946 if (GET_CODE (newi2pat) == PARALLEL)
3947 ni2dest = SET_DEST (XVECEXP (newi2pat, 0, 0));
3948 else
3949 ni2dest = SET_DEST (newi2pat);
3950
3951 for (insn = NEXT_INSN (i3);
3952 insn && (this_basic_block->next_bb == EXIT_BLOCK_PTR_FOR_FN (cfun)
3953 || insn != BB_HEAD (this_basic_block->next_bb));
3954 insn = NEXT_INSN (insn))
3955 {
3956 if (INSN_P (insn) && reg_referenced_p (ni2dest, PATTERN (insn)))
3957 {
3958 FOR_EACH_LOG_LINK (link, insn)
3959 if (link->insn == i3)
3960 link->insn = i1;
3961
3962 break;
3963 }
3964 }
3965 }
3966
3967 {
3968 rtx i3notes, i2notes, i1notes = 0, i0notes = 0;
3969 struct insn_link *i3links, *i2links, *i1links = 0, *i0links = 0;
3970 rtx midnotes = 0;
3971 int from_luid;
3972 /* Compute which registers we expect to eliminate. newi2pat may be setting
3973 either i3dest or i2dest, so we must check it. Also, i1dest may be the
3974 same as i3dest, in which case newi2pat may be setting i1dest. */
3975 rtx elim_i2 = ((newi2pat && reg_set_p (i2dest, newi2pat))
3976 || i2dest_in_i2src || i2dest_in_i1src || i2dest_in_i0src
3977 || !i2dest_killed
3978 ? 0 : i2dest);
3979 rtx elim_i1 = (i1 == 0 || i1dest_in_i1src || i1dest_in_i0src
3980 || (newi2pat && reg_set_p (i1dest, newi2pat))
3981 || !i1dest_killed
3982 ? 0 : i1dest);
3983 rtx elim_i0 = (i0 == 0 || i0dest_in_i0src
3984 || (newi2pat && reg_set_p (i0dest, newi2pat))
3985 || !i0dest_killed
3986 ? 0 : i0dest);
3987
3988 /* Get the old REG_NOTES and LOG_LINKS from all our insns and
3989 clear them. */
3990 i3notes = REG_NOTES (i3), i3links = LOG_LINKS (i3);
3991 i2notes = REG_NOTES (i2), i2links = LOG_LINKS (i2);
3992 if (i1)
3993 i1notes = REG_NOTES (i1), i1links = LOG_LINKS (i1);
3994 if (i0)
3995 i0notes = REG_NOTES (i0), i0links = LOG_LINKS (i0);
3996
3997 /* Ensure that we do not have something that should not be shared but
3998 occurs multiple times in the new insns. Check this by first
3999 resetting all the `used' flags and then copying anything is shared. */
4000
4001 reset_used_flags (i3notes);
4002 reset_used_flags (i2notes);
4003 reset_used_flags (i1notes);
4004 reset_used_flags (i0notes);
4005 reset_used_flags (newpat);
4006 reset_used_flags (newi2pat);
4007 if (undobuf.other_insn)
4008 reset_used_flags (PATTERN (undobuf.other_insn));
4009
4010 i3notes = copy_rtx_if_shared (i3notes);
4011 i2notes = copy_rtx_if_shared (i2notes);
4012 i1notes = copy_rtx_if_shared (i1notes);
4013 i0notes = copy_rtx_if_shared (i0notes);
4014 newpat = copy_rtx_if_shared (newpat);
4015 newi2pat = copy_rtx_if_shared (newi2pat);
4016 if (undobuf.other_insn)
4017 reset_used_flags (PATTERN (undobuf.other_insn));
4018
4019 INSN_CODE (i3) = insn_code_number;
4020 PATTERN (i3) = newpat;
4021
4022 if (CALL_P (i3) && CALL_INSN_FUNCTION_USAGE (i3))
4023 {
4024 rtx call_usage = CALL_INSN_FUNCTION_USAGE (i3);
4025
4026 reset_used_flags (call_usage);
4027 call_usage = copy_rtx (call_usage);
4028
4029 if (substed_i2)
4030 {
4031 /* I2SRC must still be meaningful at this point. Some splitting
4032 operations can invalidate I2SRC, but those operations do not
4033 apply to calls. */
4034 gcc_assert (i2src);
4035 replace_rtx (call_usage, i2dest, i2src);
4036 }
4037
4038 if (substed_i1)
4039 replace_rtx (call_usage, i1dest, i1src);
4040 if (substed_i0)
4041 replace_rtx (call_usage, i0dest, i0src);
4042
4043 CALL_INSN_FUNCTION_USAGE (i3) = call_usage;
4044 }
4045
4046 if (undobuf.other_insn)
4047 INSN_CODE (undobuf.other_insn) = other_code_number;
4048
4049 /* We had one special case above where I2 had more than one set and
4050 we replaced a destination of one of those sets with the destination
4051 of I3. In that case, we have to update LOG_LINKS of insns later
4052 in this basic block. Note that this (expensive) case is rare.
4053
4054 Also, in this case, we must pretend that all REG_NOTEs for I2
4055 actually came from I3, so that REG_UNUSED notes from I2 will be
4056 properly handled. */
4057
4058 if (i3_subst_into_i2)
4059 {
4060 for (i = 0; i < XVECLEN (PATTERN (i2), 0); i++)
4061 if ((GET_CODE (XVECEXP (PATTERN (i2), 0, i)) == SET
4062 || GET_CODE (XVECEXP (PATTERN (i2), 0, i)) == CLOBBER)
4063 && REG_P (SET_DEST (XVECEXP (PATTERN (i2), 0, i)))
4064 && SET_DEST (XVECEXP (PATTERN (i2), 0, i)) != i2dest
4065 && ! find_reg_note (i2, REG_UNUSED,
4066 SET_DEST (XVECEXP (PATTERN (i2), 0, i))))
4067 for (temp = NEXT_INSN (i2);
4068 temp
4069 && (this_basic_block->next_bb == EXIT_BLOCK_PTR_FOR_FN (cfun)
4070 || BB_HEAD (this_basic_block) != temp);
4071 temp = NEXT_INSN (temp))
4072 if (temp != i3 && INSN_P (temp))
4073 FOR_EACH_LOG_LINK (link, temp)
4074 if (link->insn == i2)
4075 link->insn = i3;
4076
4077 if (i3notes)
4078 {
4079 rtx link = i3notes;
4080 while (XEXP (link, 1))
4081 link = XEXP (link, 1);
4082 XEXP (link, 1) = i2notes;
4083 }
4084 else
4085 i3notes = i2notes;
4086 i2notes = 0;
4087 }
4088
4089 LOG_LINKS (i3) = NULL;
4090 REG_NOTES (i3) = 0;
4091 LOG_LINKS (i2) = NULL;
4092 REG_NOTES (i2) = 0;
4093
4094 if (newi2pat)
4095 {
4096 if (MAY_HAVE_DEBUG_INSNS && i2scratch)
4097 propagate_for_debug (i2, last_combined_insn, i2dest, i2src,
4098 this_basic_block);
4099 INSN_CODE (i2) = i2_code_number;
4100 PATTERN (i2) = newi2pat;
4101 }
4102 else
4103 {
4104 if (MAY_HAVE_DEBUG_INSNS && i2src)
4105 propagate_for_debug (i2, last_combined_insn, i2dest, i2src,
4106 this_basic_block);
4107 SET_INSN_DELETED (i2);
4108 }
4109
4110 if (i1)
4111 {
4112 LOG_LINKS (i1) = NULL;
4113 REG_NOTES (i1) = 0;
4114 if (MAY_HAVE_DEBUG_INSNS)
4115 propagate_for_debug (i1, last_combined_insn, i1dest, i1src,
4116 this_basic_block);
4117 SET_INSN_DELETED (i1);
4118 }
4119
4120 if (i0)
4121 {
4122 LOG_LINKS (i0) = NULL;
4123 REG_NOTES (i0) = 0;
4124 if (MAY_HAVE_DEBUG_INSNS)
4125 propagate_for_debug (i0, last_combined_insn, i0dest, i0src,
4126 this_basic_block);
4127 SET_INSN_DELETED (i0);
4128 }
4129
4130 /* Get death notes for everything that is now used in either I3 or
4131 I2 and used to die in a previous insn. If we built two new
4132 patterns, move from I1 to I2 then I2 to I3 so that we get the
4133 proper movement on registers that I2 modifies. */
4134
4135 if (i0)
4136 from_luid = DF_INSN_LUID (i0);
4137 else if (i1)
4138 from_luid = DF_INSN_LUID (i1);
4139 else
4140 from_luid = DF_INSN_LUID (i2);
4141 if (newi2pat)
4142 move_deaths (newi2pat, NULL_RTX, from_luid, i2, &midnotes);
4143 move_deaths (newpat, newi2pat, from_luid, i3, &midnotes);
4144
4145 /* Distribute all the LOG_LINKS and REG_NOTES from I1, I2, and I3. */
4146 if (i3notes)
4147 distribute_notes (i3notes, i3, i3, newi2pat ? i2 : NULL_RTX,
4148 elim_i2, elim_i1, elim_i0);
4149 if (i2notes)
4150 distribute_notes (i2notes, i2, i3, newi2pat ? i2 : NULL_RTX,
4151 elim_i2, elim_i1, elim_i0);
4152 if (i1notes)
4153 distribute_notes (i1notes, i1, i3, newi2pat ? i2 : NULL_RTX,
4154 elim_i2, elim_i1, elim_i0);
4155 if (i0notes)
4156 distribute_notes (i0notes, i0, i3, newi2pat ? i2 : NULL_RTX,
4157 elim_i2, elim_i1, elim_i0);
4158 if (midnotes)
4159 distribute_notes (midnotes, NULL_RTX, i3, newi2pat ? i2 : NULL_RTX,
4160 elim_i2, elim_i1, elim_i0);
4161
4162 /* Distribute any notes added to I2 or I3 by recog_for_combine. We
4163 know these are REG_UNUSED and want them to go to the desired insn,
4164 so we always pass it as i3. */
4165
4166 if (newi2pat && new_i2_notes)
4167 distribute_notes (new_i2_notes, i2, i2, NULL_RTX, NULL_RTX, NULL_RTX,
4168 NULL_RTX);
4169
4170 if (new_i3_notes)
4171 distribute_notes (new_i3_notes, i3, i3, NULL_RTX, NULL_RTX, NULL_RTX,
4172 NULL_RTX);
4173
4174 /* If I3DEST was used in I3SRC, it really died in I3. We may need to
4175 put a REG_DEAD note for it somewhere. If NEWI2PAT exists and sets
4176 I3DEST, the death must be somewhere before I2, not I3. If we passed I3
4177 in that case, it might delete I2. Similarly for I2 and I1.
4178 Show an additional death due to the REG_DEAD note we make here. If
4179 we discard it in distribute_notes, we will decrement it again. */
4180
4181 if (i3dest_killed)
4182 {
4183 rtx new_note = alloc_reg_note (REG_DEAD, i3dest_killed, NULL_RTX);
4184 if (newi2pat && reg_set_p (i3dest_killed, newi2pat))
4185 distribute_notes (new_note, NULL_RTX, i2, NULL_RTX, elim_i2,
4186 elim_i1, elim_i0);
4187 else
4188 distribute_notes (new_note, NULL_RTX, i3, newi2pat ? i2 : NULL_RTX,
4189 elim_i2, elim_i1, elim_i0);
4190 }
4191
4192 if (i2dest_in_i2src)
4193 {
4194 rtx new_note = alloc_reg_note (REG_DEAD, i2dest, NULL_RTX);
4195 if (newi2pat && reg_set_p (i2dest, newi2pat))
4196 distribute_notes (new_note, NULL_RTX, i2, NULL_RTX, NULL_RTX,
4197 NULL_RTX, NULL_RTX);
4198 else
4199 distribute_notes (new_note, NULL_RTX, i3, newi2pat ? i2 : NULL_RTX,
4200 NULL_RTX, NULL_RTX, NULL_RTX);
4201 }
4202
4203 if (i1dest_in_i1src)
4204 {
4205 rtx new_note = alloc_reg_note (REG_DEAD, i1dest, NULL_RTX);
4206 if (newi2pat && reg_set_p (i1dest, newi2pat))
4207 distribute_notes (new_note, NULL_RTX, i2, NULL_RTX, NULL_RTX,
4208 NULL_RTX, NULL_RTX);
4209 else
4210 distribute_notes (new_note, NULL_RTX, i3, newi2pat ? i2 : NULL_RTX,
4211 NULL_RTX, NULL_RTX, NULL_RTX);
4212 }
4213
4214 if (i0dest_in_i0src)
4215 {
4216 rtx new_note = alloc_reg_note (REG_DEAD, i0dest, NULL_RTX);
4217 if (newi2pat && reg_set_p (i0dest, newi2pat))
4218 distribute_notes (new_note, NULL_RTX, i2, NULL_RTX, NULL_RTX,
4219 NULL_RTX, NULL_RTX);
4220 else
4221 distribute_notes (new_note, NULL_RTX, i3, newi2pat ? i2 : NULL_RTX,
4222 NULL_RTX, NULL_RTX, NULL_RTX);
4223 }
4224
4225 distribute_links (i3links);
4226 distribute_links (i2links);
4227 distribute_links (i1links);
4228 distribute_links (i0links);
4229
4230 if (REG_P (i2dest))
4231 {
4232 struct insn_link *link;
4233 rtx i2_insn = 0, i2_val = 0, set;
4234
4235 /* The insn that used to set this register doesn't exist, and
4236 this life of the register may not exist either. See if one of
4237 I3's links points to an insn that sets I2DEST. If it does,
4238 that is now the last known value for I2DEST. If we don't update
4239 this and I2 set the register to a value that depended on its old
4240 contents, we will get confused. If this insn is used, thing
4241 will be set correctly in combine_instructions. */
4242 FOR_EACH_LOG_LINK (link, i3)
4243 if ((set = single_set (link->insn)) != 0
4244 && rtx_equal_p (i2dest, SET_DEST (set)))
4245 i2_insn = link->insn, i2_val = SET_SRC (set);
4246
4247 record_value_for_reg (i2dest, i2_insn, i2_val);
4248
4249 /* If the reg formerly set in I2 died only once and that was in I3,
4250 zero its use count so it won't make `reload' do any work. */
4251 if (! added_sets_2
4252 && (newi2pat == 0 || ! reg_mentioned_p (i2dest, newi2pat))
4253 && ! i2dest_in_i2src)
4254 INC_REG_N_SETS (REGNO (i2dest), -1);
4255 }
4256
4257 if (i1 && REG_P (i1dest))
4258 {
4259 struct insn_link *link;
4260 rtx i1_insn = 0, i1_val = 0, set;
4261
4262 FOR_EACH_LOG_LINK (link, i3)
4263 if ((set = single_set (link->insn)) != 0
4264 && rtx_equal_p (i1dest, SET_DEST (set)))
4265 i1_insn = link->insn, i1_val = SET_SRC (set);
4266
4267 record_value_for_reg (i1dest, i1_insn, i1_val);
4268
4269 if (! added_sets_1 && ! i1dest_in_i1src)
4270 INC_REG_N_SETS (REGNO (i1dest), -1);
4271 }
4272
4273 if (i0 && REG_P (i0dest))
4274 {
4275 struct insn_link *link;
4276 rtx i0_insn = 0, i0_val = 0, set;
4277
4278 FOR_EACH_LOG_LINK (link, i3)
4279 if ((set = single_set (link->insn)) != 0
4280 && rtx_equal_p (i0dest, SET_DEST (set)))
4281 i0_insn = link->insn, i0_val = SET_SRC (set);
4282
4283 record_value_for_reg (i0dest, i0_insn, i0_val);
4284
4285 if (! added_sets_0 && ! i0dest_in_i0src)
4286 INC_REG_N_SETS (REGNO (i0dest), -1);
4287 }
4288
4289 /* Update reg_stat[].nonzero_bits et al for any changes that may have
4290 been made to this insn. The order is important, because newi2pat
4291 can affect nonzero_bits of newpat. */
4292 if (newi2pat)
4293 note_stores (newi2pat, set_nonzero_bits_and_sign_copies, NULL);
4294 note_stores (newpat, set_nonzero_bits_and_sign_copies, NULL);
4295 }
4296
4297 if (undobuf.other_insn != NULL_RTX)
4298 {
4299 if (dump_file)
4300 {
4301 fprintf (dump_file, "modifying other_insn ");
4302 dump_insn_slim (dump_file, undobuf.other_insn);
4303 }
4304 df_insn_rescan (undobuf.other_insn);
4305 }
4306
4307 if (i0 && !(NOTE_P (i0) && (NOTE_KIND (i0) == NOTE_INSN_DELETED)))
4308 {
4309 if (dump_file)
4310 {
4311 fprintf (dump_file, "modifying insn i0 ");
4312 dump_insn_slim (dump_file, i0);
4313 }
4314 df_insn_rescan (i0);
4315 }
4316
4317 if (i1 && !(NOTE_P (i1) && (NOTE_KIND (i1) == NOTE_INSN_DELETED)))
4318 {
4319 if (dump_file)
4320 {
4321 fprintf (dump_file, "modifying insn i1 ");
4322 dump_insn_slim (dump_file, i1);
4323 }
4324 df_insn_rescan (i1);
4325 }
4326
4327 if (i2 && !(NOTE_P (i2) && (NOTE_KIND (i2) == NOTE_INSN_DELETED)))
4328 {
4329 if (dump_file)
4330 {
4331 fprintf (dump_file, "modifying insn i2 ");
4332 dump_insn_slim (dump_file, i2);
4333 }
4334 df_insn_rescan (i2);
4335 }
4336
4337 if (i3 && !(NOTE_P (i3) && (NOTE_KIND (i3) == NOTE_INSN_DELETED)))
4338 {
4339 if (dump_file)
4340 {
4341 fprintf (dump_file, "modifying insn i3 ");
4342 dump_insn_slim (dump_file, i3);
4343 }
4344 df_insn_rescan (i3);
4345 }
4346
4347 /* Set new_direct_jump_p if a new return or simple jump instruction
4348 has been created. Adjust the CFG accordingly. */
4349 if (returnjump_p (i3) || any_uncondjump_p (i3))
4350 {
4351 *new_direct_jump_p = 1;
4352 mark_jump_label (PATTERN (i3), i3, 0);
4353 update_cfg_for_uncondjump (i3);
4354 }
4355
4356 if (undobuf.other_insn != NULL_RTX
4357 && (returnjump_p (undobuf.other_insn)
4358 || any_uncondjump_p (undobuf.other_insn)))
4359 {
4360 *new_direct_jump_p = 1;
4361 update_cfg_for_uncondjump (undobuf.other_insn);
4362 }
4363
4364 /* A noop might also need cleaning up of CFG, if it comes from the
4365 simplification of a jump. */
4366 if (JUMP_P (i3)
4367 && GET_CODE (newpat) == SET
4368 && SET_SRC (newpat) == pc_rtx
4369 && SET_DEST (newpat) == pc_rtx)
4370 {
4371 *new_direct_jump_p = 1;
4372 update_cfg_for_uncondjump (i3);
4373 }
4374
4375 if (undobuf.other_insn != NULL_RTX
4376 && JUMP_P (undobuf.other_insn)
4377 && GET_CODE (PATTERN (undobuf.other_insn)) == SET
4378 && SET_SRC (PATTERN (undobuf.other_insn)) == pc_rtx
4379 && SET_DEST (PATTERN (undobuf.other_insn)) == pc_rtx)
4380 {
4381 *new_direct_jump_p = 1;
4382 update_cfg_for_uncondjump (undobuf.other_insn);
4383 }
4384
4385 combine_successes++;
4386 undo_commit ();
4387
4388 if (added_links_insn
4389 && (newi2pat == 0 || DF_INSN_LUID (added_links_insn) < DF_INSN_LUID (i2))
4390 && DF_INSN_LUID (added_links_insn) < DF_INSN_LUID (i3))
4391 return added_links_insn;
4392 else
4393 return newi2pat ? i2 : i3;
4394 }
4395 \f
4396 /* Undo all the modifications recorded in undobuf. */
4397
4398 static void
4399 undo_all (void)
4400 {
4401 struct undo *undo, *next;
4402
4403 for (undo = undobuf.undos; undo; undo = next)
4404 {
4405 next = undo->next;
4406 switch (undo->kind)
4407 {
4408 case UNDO_RTX:
4409 *undo->where.r = undo->old_contents.r;
4410 break;
4411 case UNDO_INT:
4412 *undo->where.i = undo->old_contents.i;
4413 break;
4414 case UNDO_MODE:
4415 adjust_reg_mode (*undo->where.r, undo->old_contents.m);
4416 break;
4417 case UNDO_LINKS:
4418 *undo->where.l = undo->old_contents.l;
4419 break;
4420 default:
4421 gcc_unreachable ();
4422 }
4423
4424 undo->next = undobuf.frees;
4425 undobuf.frees = undo;
4426 }
4427
4428 undobuf.undos = 0;
4429 }
4430
4431 /* We've committed to accepting the changes we made. Move all
4432 of the undos to the free list. */
4433
4434 static void
4435 undo_commit (void)
4436 {
4437 struct undo *undo, *next;
4438
4439 for (undo = undobuf.undos; undo; undo = next)
4440 {
4441 next = undo->next;
4442 undo->next = undobuf.frees;
4443 undobuf.frees = undo;
4444 }
4445 undobuf.undos = 0;
4446 }
4447 \f
4448 /* Find the innermost point within the rtx at LOC, possibly LOC itself,
4449 where we have an arithmetic expression and return that point. LOC will
4450 be inside INSN.
4451
4452 try_combine will call this function to see if an insn can be split into
4453 two insns. */
4454
4455 static rtx *
4456 find_split_point (rtx *loc, rtx insn, bool set_src)
4457 {
4458 rtx x = *loc;
4459 enum rtx_code code = GET_CODE (x);
4460 rtx *split;
4461 unsigned HOST_WIDE_INT len = 0;
4462 HOST_WIDE_INT pos = 0;
4463 int unsignedp = 0;
4464 rtx inner = NULL_RTX;
4465
4466 /* First special-case some codes. */
4467 switch (code)
4468 {
4469 case SUBREG:
4470 #ifdef INSN_SCHEDULING
4471 /* If we are making a paradoxical SUBREG invalid, it becomes a split
4472 point. */
4473 if (MEM_P (SUBREG_REG (x)))
4474 return loc;
4475 #endif
4476 return find_split_point (&SUBREG_REG (x), insn, false);
4477
4478 case MEM:
4479 #ifdef HAVE_lo_sum
4480 /* If we have (mem (const ..)) or (mem (symbol_ref ...)), split it
4481 using LO_SUM and HIGH. */
4482 if (GET_CODE (XEXP (x, 0)) == CONST
4483 || GET_CODE (XEXP (x, 0)) == SYMBOL_REF)
4484 {
4485 enum machine_mode address_mode = get_address_mode (x);
4486
4487 SUBST (XEXP (x, 0),
4488 gen_rtx_LO_SUM (address_mode,
4489 gen_rtx_HIGH (address_mode, XEXP (x, 0)),
4490 XEXP (x, 0)));
4491 return &XEXP (XEXP (x, 0), 0);
4492 }
4493 #endif
4494
4495 /* If we have a PLUS whose second operand is a constant and the
4496 address is not valid, perhaps will can split it up using
4497 the machine-specific way to split large constants. We use
4498 the first pseudo-reg (one of the virtual regs) as a placeholder;
4499 it will not remain in the result. */
4500 if (GET_CODE (XEXP (x, 0)) == PLUS
4501 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
4502 && ! memory_address_addr_space_p (GET_MODE (x), XEXP (x, 0),
4503 MEM_ADDR_SPACE (x)))
4504 {
4505 rtx reg = regno_reg_rtx[FIRST_PSEUDO_REGISTER];
4506 rtx seq = combine_split_insns (gen_rtx_SET (VOIDmode, reg,
4507 XEXP (x, 0)),
4508 subst_insn);
4509
4510 /* This should have produced two insns, each of which sets our
4511 placeholder. If the source of the second is a valid address,
4512 we can make put both sources together and make a split point
4513 in the middle. */
4514
4515 if (seq
4516 && NEXT_INSN (seq) != NULL_RTX
4517 && NEXT_INSN (NEXT_INSN (seq)) == NULL_RTX
4518 && NONJUMP_INSN_P (seq)
4519 && GET_CODE (PATTERN (seq)) == SET
4520 && SET_DEST (PATTERN (seq)) == reg
4521 && ! reg_mentioned_p (reg,
4522 SET_SRC (PATTERN (seq)))
4523 && NONJUMP_INSN_P (NEXT_INSN (seq))
4524 && GET_CODE (PATTERN (NEXT_INSN (seq))) == SET
4525 && SET_DEST (PATTERN (NEXT_INSN (seq))) == reg
4526 && memory_address_addr_space_p
4527 (GET_MODE (x), SET_SRC (PATTERN (NEXT_INSN (seq))),
4528 MEM_ADDR_SPACE (x)))
4529 {
4530 rtx src1 = SET_SRC (PATTERN (seq));
4531 rtx src2 = SET_SRC (PATTERN (NEXT_INSN (seq)));
4532
4533 /* Replace the placeholder in SRC2 with SRC1. If we can
4534 find where in SRC2 it was placed, that can become our
4535 split point and we can replace this address with SRC2.
4536 Just try two obvious places. */
4537
4538 src2 = replace_rtx (src2, reg, src1);
4539 split = 0;
4540 if (XEXP (src2, 0) == src1)
4541 split = &XEXP (src2, 0);
4542 else if (GET_RTX_FORMAT (GET_CODE (XEXP (src2, 0)))[0] == 'e'
4543 && XEXP (XEXP (src2, 0), 0) == src1)
4544 split = &XEXP (XEXP (src2, 0), 0);
4545
4546 if (split)
4547 {
4548 SUBST (XEXP (x, 0), src2);
4549 return split;
4550 }
4551 }
4552
4553 /* If that didn't work, perhaps the first operand is complex and
4554 needs to be computed separately, so make a split point there.
4555 This will occur on machines that just support REG + CONST
4556 and have a constant moved through some previous computation. */
4557
4558 else if (!OBJECT_P (XEXP (XEXP (x, 0), 0))
4559 && ! (GET_CODE (XEXP (XEXP (x, 0), 0)) == SUBREG
4560 && OBJECT_P (SUBREG_REG (XEXP (XEXP (x, 0), 0)))))
4561 return &XEXP (XEXP (x, 0), 0);
4562 }
4563
4564 /* If we have a PLUS whose first operand is complex, try computing it
4565 separately by making a split there. */
4566 if (GET_CODE (XEXP (x, 0)) == PLUS
4567 && ! memory_address_addr_space_p (GET_MODE (x), XEXP (x, 0),
4568 MEM_ADDR_SPACE (x))
4569 && ! OBJECT_P (XEXP (XEXP (x, 0), 0))
4570 && ! (GET_CODE (XEXP (XEXP (x, 0), 0)) == SUBREG
4571 && OBJECT_P (SUBREG_REG (XEXP (XEXP (x, 0), 0)))))
4572 return &XEXP (XEXP (x, 0), 0);
4573 break;
4574
4575 case SET:
4576 #ifdef HAVE_cc0
4577 /* If SET_DEST is CC0 and SET_SRC is not an operand, a COMPARE, or a
4578 ZERO_EXTRACT, the most likely reason why this doesn't match is that
4579 we need to put the operand into a register. So split at that
4580 point. */
4581
4582 if (SET_DEST (x) == cc0_rtx
4583 && GET_CODE (SET_SRC (x)) != COMPARE
4584 && GET_CODE (SET_SRC (x)) != ZERO_EXTRACT
4585 && !OBJECT_P (SET_SRC (x))
4586 && ! (GET_CODE (SET_SRC (x)) == SUBREG
4587 && OBJECT_P (SUBREG_REG (SET_SRC (x)))))
4588 return &SET_SRC (x);
4589 #endif
4590
4591 /* See if we can split SET_SRC as it stands. */
4592 split = find_split_point (&SET_SRC (x), insn, true);
4593 if (split && split != &SET_SRC (x))
4594 return split;
4595
4596 /* See if we can split SET_DEST as it stands. */
4597 split = find_split_point (&SET_DEST (x), insn, false);
4598 if (split && split != &SET_DEST (x))
4599 return split;
4600
4601 /* See if this is a bitfield assignment with everything constant. If
4602 so, this is an IOR of an AND, so split it into that. */
4603 if (GET_CODE (SET_DEST (x)) == ZERO_EXTRACT
4604 && HWI_COMPUTABLE_MODE_P (GET_MODE (XEXP (SET_DEST (x), 0)))
4605 && CONST_INT_P (XEXP (SET_DEST (x), 1))
4606 && CONST_INT_P (XEXP (SET_DEST (x), 2))
4607 && CONST_INT_P (SET_SRC (x))
4608 && ((INTVAL (XEXP (SET_DEST (x), 1))
4609 + INTVAL (XEXP (SET_DEST (x), 2)))
4610 <= GET_MODE_PRECISION (GET_MODE (XEXP (SET_DEST (x), 0))))
4611 && ! side_effects_p (XEXP (SET_DEST (x), 0)))
4612 {
4613 HOST_WIDE_INT pos = INTVAL (XEXP (SET_DEST (x), 2));
4614 unsigned HOST_WIDE_INT len = INTVAL (XEXP (SET_DEST (x), 1));
4615 unsigned HOST_WIDE_INT src = INTVAL (SET_SRC (x));
4616 rtx dest = XEXP (SET_DEST (x), 0);
4617 enum machine_mode mode = GET_MODE (dest);
4618 unsigned HOST_WIDE_INT mask
4619 = ((unsigned HOST_WIDE_INT) 1 << len) - 1;
4620 rtx or_mask;
4621
4622 if (BITS_BIG_ENDIAN)
4623 pos = GET_MODE_PRECISION (mode) - len - pos;
4624
4625 or_mask = gen_int_mode (src << pos, mode);
4626 if (src == mask)
4627 SUBST (SET_SRC (x),
4628 simplify_gen_binary (IOR, mode, dest, or_mask));
4629 else
4630 {
4631 rtx negmask = gen_int_mode (~(mask << pos), mode);
4632 SUBST (SET_SRC (x),
4633 simplify_gen_binary (IOR, mode,
4634 simplify_gen_binary (AND, mode,
4635 dest, negmask),
4636 or_mask));
4637 }
4638
4639 SUBST (SET_DEST (x), dest);
4640
4641 split = find_split_point (&SET_SRC (x), insn, true);
4642 if (split && split != &SET_SRC (x))
4643 return split;
4644 }
4645
4646 /* Otherwise, see if this is an operation that we can split into two.
4647 If so, try to split that. */
4648 code = GET_CODE (SET_SRC (x));
4649
4650 switch (code)
4651 {
4652 case AND:
4653 /* If we are AND'ing with a large constant that is only a single
4654 bit and the result is only being used in a context where we
4655 need to know if it is zero or nonzero, replace it with a bit
4656 extraction. This will avoid the large constant, which might
4657 have taken more than one insn to make. If the constant were
4658 not a valid argument to the AND but took only one insn to make,
4659 this is no worse, but if it took more than one insn, it will
4660 be better. */
4661
4662 if (CONST_INT_P (XEXP (SET_SRC (x), 1))
4663 && REG_P (XEXP (SET_SRC (x), 0))
4664 && (pos = exact_log2 (UINTVAL (XEXP (SET_SRC (x), 1)))) >= 7
4665 && REG_P (SET_DEST (x))
4666 && (split = find_single_use (SET_DEST (x), insn, (rtx*) 0)) != 0
4667 && (GET_CODE (*split) == EQ || GET_CODE (*split) == NE)
4668 && XEXP (*split, 0) == SET_DEST (x)
4669 && XEXP (*split, 1) == const0_rtx)
4670 {
4671 rtx extraction = make_extraction (GET_MODE (SET_DEST (x)),
4672 XEXP (SET_SRC (x), 0),
4673 pos, NULL_RTX, 1, 1, 0, 0);
4674 if (extraction != 0)
4675 {
4676 SUBST (SET_SRC (x), extraction);
4677 return find_split_point (loc, insn, false);
4678 }
4679 }
4680 break;
4681
4682 case NE:
4683 /* If STORE_FLAG_VALUE is -1, this is (NE X 0) and only one bit of X
4684 is known to be on, this can be converted into a NEG of a shift. */
4685 if (STORE_FLAG_VALUE == -1 && XEXP (SET_SRC (x), 1) == const0_rtx
4686 && GET_MODE (SET_SRC (x)) == GET_MODE (XEXP (SET_SRC (x), 0))
4687 && 1 <= (pos = exact_log2
4688 (nonzero_bits (XEXP (SET_SRC (x), 0),
4689 GET_MODE (XEXP (SET_SRC (x), 0))))))
4690 {
4691 enum machine_mode mode = GET_MODE (XEXP (SET_SRC (x), 0));
4692
4693 SUBST (SET_SRC (x),
4694 gen_rtx_NEG (mode,
4695 gen_rtx_LSHIFTRT (mode,
4696 XEXP (SET_SRC (x), 0),
4697 GEN_INT (pos))));
4698
4699 split = find_split_point (&SET_SRC (x), insn, true);
4700 if (split && split != &SET_SRC (x))
4701 return split;
4702 }
4703 break;
4704
4705 case SIGN_EXTEND:
4706 inner = XEXP (SET_SRC (x), 0);
4707
4708 /* We can't optimize if either mode is a partial integer
4709 mode as we don't know how many bits are significant
4710 in those modes. */
4711 if (GET_MODE_CLASS (GET_MODE (inner)) == MODE_PARTIAL_INT
4712 || GET_MODE_CLASS (GET_MODE (SET_SRC (x))) == MODE_PARTIAL_INT)
4713 break;
4714
4715 pos = 0;
4716 len = GET_MODE_PRECISION (GET_MODE (inner));
4717 unsignedp = 0;
4718 break;
4719
4720 case SIGN_EXTRACT:
4721 case ZERO_EXTRACT:
4722 if (CONST_INT_P (XEXP (SET_SRC (x), 1))
4723 && CONST_INT_P (XEXP (SET_SRC (x), 2)))
4724 {
4725 inner = XEXP (SET_SRC (x), 0);
4726 len = INTVAL (XEXP (SET_SRC (x), 1));
4727 pos = INTVAL (XEXP (SET_SRC (x), 2));
4728
4729 if (BITS_BIG_ENDIAN)
4730 pos = GET_MODE_PRECISION (GET_MODE (inner)) - len - pos;
4731 unsignedp = (code == ZERO_EXTRACT);
4732 }
4733 break;
4734
4735 default:
4736 break;
4737 }
4738
4739 if (len && pos >= 0
4740 && pos + len <= GET_MODE_PRECISION (GET_MODE (inner)))
4741 {
4742 enum machine_mode mode = GET_MODE (SET_SRC (x));
4743
4744 /* For unsigned, we have a choice of a shift followed by an
4745 AND or two shifts. Use two shifts for field sizes where the
4746 constant might be too large. We assume here that we can
4747 always at least get 8-bit constants in an AND insn, which is
4748 true for every current RISC. */
4749
4750 if (unsignedp && len <= 8)
4751 {
4752 unsigned HOST_WIDE_INT mask
4753 = ((unsigned HOST_WIDE_INT) 1 << len) - 1;
4754 SUBST (SET_SRC (x),
4755 gen_rtx_AND (mode,
4756 gen_rtx_LSHIFTRT
4757 (mode, gen_lowpart (mode, inner),
4758 GEN_INT (pos)),
4759 gen_int_mode (mask, mode)));
4760
4761 split = find_split_point (&SET_SRC (x), insn, true);
4762 if (split && split != &SET_SRC (x))
4763 return split;
4764 }
4765 else
4766 {
4767 SUBST (SET_SRC (x),
4768 gen_rtx_fmt_ee
4769 (unsignedp ? LSHIFTRT : ASHIFTRT, mode,
4770 gen_rtx_ASHIFT (mode,
4771 gen_lowpart (mode, inner),
4772 GEN_INT (GET_MODE_PRECISION (mode)
4773 - len - pos)),
4774 GEN_INT (GET_MODE_PRECISION (mode) - len)));
4775
4776 split = find_split_point (&SET_SRC (x), insn, true);
4777 if (split && split != &SET_SRC (x))
4778 return split;
4779 }
4780 }
4781
4782 /* See if this is a simple operation with a constant as the second
4783 operand. It might be that this constant is out of range and hence
4784 could be used as a split point. */
4785 if (BINARY_P (SET_SRC (x))
4786 && CONSTANT_P (XEXP (SET_SRC (x), 1))
4787 && (OBJECT_P (XEXP (SET_SRC (x), 0))
4788 || (GET_CODE (XEXP (SET_SRC (x), 0)) == SUBREG
4789 && OBJECT_P (SUBREG_REG (XEXP (SET_SRC (x), 0))))))
4790 return &XEXP (SET_SRC (x), 1);
4791
4792 /* Finally, see if this is a simple operation with its first operand
4793 not in a register. The operation might require this operand in a
4794 register, so return it as a split point. We can always do this
4795 because if the first operand were another operation, we would have
4796 already found it as a split point. */
4797 if ((BINARY_P (SET_SRC (x)) || UNARY_P (SET_SRC (x)))
4798 && ! register_operand (XEXP (SET_SRC (x), 0), VOIDmode))
4799 return &XEXP (SET_SRC (x), 0);
4800
4801 return 0;
4802
4803 case AND:
4804 case IOR:
4805 /* We write NOR as (and (not A) (not B)), but if we don't have a NOR,
4806 it is better to write this as (not (ior A B)) so we can split it.
4807 Similarly for IOR. */
4808 if (GET_CODE (XEXP (x, 0)) == NOT && GET_CODE (XEXP (x, 1)) == NOT)
4809 {
4810 SUBST (*loc,
4811 gen_rtx_NOT (GET_MODE (x),
4812 gen_rtx_fmt_ee (code == IOR ? AND : IOR,
4813 GET_MODE (x),
4814 XEXP (XEXP (x, 0), 0),
4815 XEXP (XEXP (x, 1), 0))));
4816 return find_split_point (loc, insn, set_src);
4817 }
4818
4819 /* Many RISC machines have a large set of logical insns. If the
4820 second operand is a NOT, put it first so we will try to split the
4821 other operand first. */
4822 if (GET_CODE (XEXP (x, 1)) == NOT)
4823 {
4824 rtx tem = XEXP (x, 0);
4825 SUBST (XEXP (x, 0), XEXP (x, 1));
4826 SUBST (XEXP (x, 1), tem);
4827 }
4828 break;
4829
4830 case PLUS:
4831 case MINUS:
4832 /* Canonicalization can produce (minus A (mult B C)), where C is a
4833 constant. It may be better to try splitting (plus (mult B -C) A)
4834 instead if this isn't a multiply by a power of two. */
4835 if (set_src && code == MINUS && GET_CODE (XEXP (x, 1)) == MULT
4836 && GET_CODE (XEXP (XEXP (x, 1), 1)) == CONST_INT
4837 && exact_log2 (INTVAL (XEXP (XEXP (x, 1), 1))) < 0)
4838 {
4839 enum machine_mode mode = GET_MODE (x);
4840 unsigned HOST_WIDE_INT this_int = INTVAL (XEXP (XEXP (x, 1), 1));
4841 HOST_WIDE_INT other_int = trunc_int_for_mode (-this_int, mode);
4842 SUBST (*loc, gen_rtx_PLUS (mode,
4843 gen_rtx_MULT (mode,
4844 XEXP (XEXP (x, 1), 0),
4845 gen_int_mode (other_int,
4846 mode)),
4847 XEXP (x, 0)));
4848 return find_split_point (loc, insn, set_src);
4849 }
4850
4851 /* Split at a multiply-accumulate instruction. However if this is
4852 the SET_SRC, we likely do not have such an instruction and it's
4853 worthless to try this split. */
4854 if (!set_src && GET_CODE (XEXP (x, 0)) == MULT)
4855 return loc;
4856
4857 default:
4858 break;
4859 }
4860
4861 /* Otherwise, select our actions depending on our rtx class. */
4862 switch (GET_RTX_CLASS (code))
4863 {
4864 case RTX_BITFIELD_OPS: /* This is ZERO_EXTRACT and SIGN_EXTRACT. */
4865 case RTX_TERNARY:
4866 split = find_split_point (&XEXP (x, 2), insn, false);
4867 if (split)
4868 return split;
4869 /* ... fall through ... */
4870 case RTX_BIN_ARITH:
4871 case RTX_COMM_ARITH:
4872 case RTX_COMPARE:
4873 case RTX_COMM_COMPARE:
4874 split = find_split_point (&XEXP (x, 1), insn, false);
4875 if (split)
4876 return split;
4877 /* ... fall through ... */
4878 case RTX_UNARY:
4879 /* Some machines have (and (shift ...) ...) insns. If X is not
4880 an AND, but XEXP (X, 0) is, use it as our split point. */
4881 if (GET_CODE (x) != AND && GET_CODE (XEXP (x, 0)) == AND)
4882 return &XEXP (x, 0);
4883
4884 split = find_split_point (&XEXP (x, 0), insn, false);
4885 if (split)
4886 return split;
4887 return loc;
4888
4889 default:
4890 /* Otherwise, we don't have a split point. */
4891 return 0;
4892 }
4893 }
4894 \f
4895 /* Throughout X, replace FROM with TO, and return the result.
4896 The result is TO if X is FROM;
4897 otherwise the result is X, but its contents may have been modified.
4898 If they were modified, a record was made in undobuf so that
4899 undo_all will (among other things) return X to its original state.
4900
4901 If the number of changes necessary is too much to record to undo,
4902 the excess changes are not made, so the result is invalid.
4903 The changes already made can still be undone.
4904 undobuf.num_undo is incremented for such changes, so by testing that
4905 the caller can tell whether the result is valid.
4906
4907 `n_occurrences' is incremented each time FROM is replaced.
4908
4909 IN_DEST is nonzero if we are processing the SET_DEST of a SET.
4910
4911 IN_COND is nonzero if we are at the top level of a condition.
4912
4913 UNIQUE_COPY is nonzero if each substitution must be unique. We do this
4914 by copying if `n_occurrences' is nonzero. */
4915
4916 static rtx
4917 subst (rtx x, rtx from, rtx to, int in_dest, int in_cond, int unique_copy)
4918 {
4919 enum rtx_code code = GET_CODE (x);
4920 enum machine_mode op0_mode = VOIDmode;
4921 const char *fmt;
4922 int len, i;
4923 rtx new_rtx;
4924
4925 /* Two expressions are equal if they are identical copies of a shared
4926 RTX or if they are both registers with the same register number
4927 and mode. */
4928
4929 #define COMBINE_RTX_EQUAL_P(X,Y) \
4930 ((X) == (Y) \
4931 || (REG_P (X) && REG_P (Y) \
4932 && REGNO (X) == REGNO (Y) && GET_MODE (X) == GET_MODE (Y)))
4933
4934 if (! in_dest && COMBINE_RTX_EQUAL_P (x, from))
4935 {
4936 n_occurrences++;
4937 return (unique_copy && n_occurrences > 1 ? copy_rtx (to) : to);
4938 }
4939
4940 /* If X and FROM are the same register but different modes, they
4941 will not have been seen as equal above. However, the log links code
4942 will make a LOG_LINKS entry for that case. If we do nothing, we
4943 will try to rerecognize our original insn and, when it succeeds,
4944 we will delete the feeding insn, which is incorrect.
4945
4946 So force this insn not to match in this (rare) case. */
4947 if (! in_dest && code == REG && REG_P (from)
4948 && reg_overlap_mentioned_p (x, from))
4949 return gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
4950
4951 /* If this is an object, we are done unless it is a MEM or LO_SUM, both
4952 of which may contain things that can be combined. */
4953 if (code != MEM && code != LO_SUM && OBJECT_P (x))
4954 return x;
4955
4956 /* It is possible to have a subexpression appear twice in the insn.
4957 Suppose that FROM is a register that appears within TO.
4958 Then, after that subexpression has been scanned once by `subst',
4959 the second time it is scanned, TO may be found. If we were
4960 to scan TO here, we would find FROM within it and create a
4961 self-referent rtl structure which is completely wrong. */
4962 if (COMBINE_RTX_EQUAL_P (x, to))
4963 return to;
4964
4965 /* Parallel asm_operands need special attention because all of the
4966 inputs are shared across the arms. Furthermore, unsharing the
4967 rtl results in recognition failures. Failure to handle this case
4968 specially can result in circular rtl.
4969
4970 Solve this by doing a normal pass across the first entry of the
4971 parallel, and only processing the SET_DESTs of the subsequent
4972 entries. Ug. */
4973
4974 if (code == PARALLEL
4975 && GET_CODE (XVECEXP (x, 0, 0)) == SET
4976 && GET_CODE (SET_SRC (XVECEXP (x, 0, 0))) == ASM_OPERANDS)
4977 {
4978 new_rtx = subst (XVECEXP (x, 0, 0), from, to, 0, 0, unique_copy);
4979
4980 /* If this substitution failed, this whole thing fails. */
4981 if (GET_CODE (new_rtx) == CLOBBER
4982 && XEXP (new_rtx, 0) == const0_rtx)
4983 return new_rtx;
4984
4985 SUBST (XVECEXP (x, 0, 0), new_rtx);
4986
4987 for (i = XVECLEN (x, 0) - 1; i >= 1; i--)
4988 {
4989 rtx dest = SET_DEST (XVECEXP (x, 0, i));
4990
4991 if (!REG_P (dest)
4992 && GET_CODE (dest) != CC0
4993 && GET_CODE (dest) != PC)
4994 {
4995 new_rtx = subst (dest, from, to, 0, 0, unique_copy);
4996
4997 /* If this substitution failed, this whole thing fails. */
4998 if (GET_CODE (new_rtx) == CLOBBER
4999 && XEXP (new_rtx, 0) == const0_rtx)
5000 return new_rtx;
5001
5002 SUBST (SET_DEST (XVECEXP (x, 0, i)), new_rtx);
5003 }
5004 }
5005 }
5006 else
5007 {
5008 len = GET_RTX_LENGTH (code);
5009 fmt = GET_RTX_FORMAT (code);
5010
5011 /* We don't need to process a SET_DEST that is a register, CC0,
5012 or PC, so set up to skip this common case. All other cases
5013 where we want to suppress replacing something inside a
5014 SET_SRC are handled via the IN_DEST operand. */
5015 if (code == SET
5016 && (REG_P (SET_DEST (x))
5017 || GET_CODE (SET_DEST (x)) == CC0
5018 || GET_CODE (SET_DEST (x)) == PC))
5019 fmt = "ie";
5020
5021 /* Get the mode of operand 0 in case X is now a SIGN_EXTEND of a
5022 constant. */
5023 if (fmt[0] == 'e')
5024 op0_mode = GET_MODE (XEXP (x, 0));
5025
5026 for (i = 0; i < len; i++)
5027 {
5028 if (fmt[i] == 'E')
5029 {
5030 int j;
5031 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
5032 {
5033 if (COMBINE_RTX_EQUAL_P (XVECEXP (x, i, j), from))
5034 {
5035 new_rtx = (unique_copy && n_occurrences
5036 ? copy_rtx (to) : to);
5037 n_occurrences++;
5038 }
5039 else
5040 {
5041 new_rtx = subst (XVECEXP (x, i, j), from, to, 0, 0,
5042 unique_copy);
5043
5044 /* If this substitution failed, this whole thing
5045 fails. */
5046 if (GET_CODE (new_rtx) == CLOBBER
5047 && XEXP (new_rtx, 0) == const0_rtx)
5048 return new_rtx;
5049 }
5050
5051 SUBST (XVECEXP (x, i, j), new_rtx);
5052 }
5053 }
5054 else if (fmt[i] == 'e')
5055 {
5056 /* If this is a register being set, ignore it. */
5057 new_rtx = XEXP (x, i);
5058 if (in_dest
5059 && i == 0
5060 && (((code == SUBREG || code == ZERO_EXTRACT)
5061 && REG_P (new_rtx))
5062 || code == STRICT_LOW_PART))
5063 ;
5064
5065 else if (COMBINE_RTX_EQUAL_P (XEXP (x, i), from))
5066 {
5067 /* In general, don't install a subreg involving two
5068 modes not tieable. It can worsen register
5069 allocation, and can even make invalid reload
5070 insns, since the reg inside may need to be copied
5071 from in the outside mode, and that may be invalid
5072 if it is an fp reg copied in integer mode.
5073
5074 We allow two exceptions to this: It is valid if
5075 it is inside another SUBREG and the mode of that
5076 SUBREG and the mode of the inside of TO is
5077 tieable and it is valid if X is a SET that copies
5078 FROM to CC0. */
5079
5080 if (GET_CODE (to) == SUBREG
5081 && ! MODES_TIEABLE_P (GET_MODE (to),
5082 GET_MODE (SUBREG_REG (to)))
5083 && ! (code == SUBREG
5084 && MODES_TIEABLE_P (GET_MODE (x),
5085 GET_MODE (SUBREG_REG (to))))
5086 #ifdef HAVE_cc0
5087 && ! (code == SET && i == 1 && XEXP (x, 0) == cc0_rtx)
5088 #endif
5089 )
5090 return gen_rtx_CLOBBER (VOIDmode, const0_rtx);
5091
5092 #ifdef CANNOT_CHANGE_MODE_CLASS
5093 if (code == SUBREG
5094 && REG_P (to)
5095 && REGNO (to) < FIRST_PSEUDO_REGISTER
5096 && REG_CANNOT_CHANGE_MODE_P (REGNO (to),
5097 GET_MODE (to),
5098 GET_MODE (x)))
5099 return gen_rtx_CLOBBER (VOIDmode, const0_rtx);
5100 #endif
5101
5102 new_rtx = (unique_copy && n_occurrences ? copy_rtx (to) : to);
5103 n_occurrences++;
5104 }
5105 else
5106 /* If we are in a SET_DEST, suppress most cases unless we
5107 have gone inside a MEM, in which case we want to
5108 simplify the address. We assume here that things that
5109 are actually part of the destination have their inner
5110 parts in the first expression. This is true for SUBREG,
5111 STRICT_LOW_PART, and ZERO_EXTRACT, which are the only
5112 things aside from REG and MEM that should appear in a
5113 SET_DEST. */
5114 new_rtx = subst (XEXP (x, i), from, to,
5115 (((in_dest
5116 && (code == SUBREG || code == STRICT_LOW_PART
5117 || code == ZERO_EXTRACT))
5118 || code == SET)
5119 && i == 0),
5120 code == IF_THEN_ELSE && i == 0,
5121 unique_copy);
5122
5123 /* If we found that we will have to reject this combination,
5124 indicate that by returning the CLOBBER ourselves, rather than
5125 an expression containing it. This will speed things up as
5126 well as prevent accidents where two CLOBBERs are considered
5127 to be equal, thus producing an incorrect simplification. */
5128
5129 if (GET_CODE (new_rtx) == CLOBBER && XEXP (new_rtx, 0) == const0_rtx)
5130 return new_rtx;
5131
5132 if (GET_CODE (x) == SUBREG && CONST_SCALAR_INT_P (new_rtx))
5133 {
5134 enum machine_mode mode = GET_MODE (x);
5135
5136 x = simplify_subreg (GET_MODE (x), new_rtx,
5137 GET_MODE (SUBREG_REG (x)),
5138 SUBREG_BYTE (x));
5139 if (! x)
5140 x = gen_rtx_CLOBBER (mode, const0_rtx);
5141 }
5142 else if (CONST_INT_P (new_rtx)
5143 && GET_CODE (x) == ZERO_EXTEND)
5144 {
5145 x = simplify_unary_operation (ZERO_EXTEND, GET_MODE (x),
5146 new_rtx, GET_MODE (XEXP (x, 0)));
5147 gcc_assert (x);
5148 }
5149 else
5150 SUBST (XEXP (x, i), new_rtx);
5151 }
5152 }
5153 }
5154
5155 /* Check if we are loading something from the constant pool via float
5156 extension; in this case we would undo compress_float_constant
5157 optimization and degenerate constant load to an immediate value. */
5158 if (GET_CODE (x) == FLOAT_EXTEND
5159 && MEM_P (XEXP (x, 0))
5160 && MEM_READONLY_P (XEXP (x, 0)))
5161 {
5162 rtx tmp = avoid_constant_pool_reference (x);
5163 if (x != tmp)
5164 return x;
5165 }
5166
5167 /* Try to simplify X. If the simplification changed the code, it is likely
5168 that further simplification will help, so loop, but limit the number
5169 of repetitions that will be performed. */
5170
5171 for (i = 0; i < 4; i++)
5172 {
5173 /* If X is sufficiently simple, don't bother trying to do anything
5174 with it. */
5175 if (code != CONST_INT && code != REG && code != CLOBBER)
5176 x = combine_simplify_rtx (x, op0_mode, in_dest, in_cond);
5177
5178 if (GET_CODE (x) == code)
5179 break;
5180
5181 code = GET_CODE (x);
5182
5183 /* We no longer know the original mode of operand 0 since we
5184 have changed the form of X) */
5185 op0_mode = VOIDmode;
5186 }
5187
5188 return x;
5189 }
5190 \f
5191 /* Simplify X, a piece of RTL. We just operate on the expression at the
5192 outer level; call `subst' to simplify recursively. Return the new
5193 expression.
5194
5195 OP0_MODE is the original mode of XEXP (x, 0). IN_DEST is nonzero
5196 if we are inside a SET_DEST. IN_COND is nonzero if we are at the top level
5197 of a condition. */
5198
5199 static rtx
5200 combine_simplify_rtx (rtx x, enum machine_mode op0_mode, int in_dest,
5201 int in_cond)
5202 {
5203 enum rtx_code code = GET_CODE (x);
5204 enum machine_mode mode = GET_MODE (x);
5205 rtx temp;
5206 int i;
5207
5208 /* If this is a commutative operation, put a constant last and a complex
5209 expression first. We don't need to do this for comparisons here. */
5210 if (COMMUTATIVE_ARITH_P (x)
5211 && swap_commutative_operands_p (XEXP (x, 0), XEXP (x, 1)))
5212 {
5213 temp = XEXP (x, 0);
5214 SUBST (XEXP (x, 0), XEXP (x, 1));
5215 SUBST (XEXP (x, 1), temp);
5216 }
5217
5218 /* If this is a simple operation applied to an IF_THEN_ELSE, try
5219 applying it to the arms of the IF_THEN_ELSE. This often simplifies
5220 things. Check for cases where both arms are testing the same
5221 condition.
5222
5223 Don't do anything if all operands are very simple. */
5224
5225 if ((BINARY_P (x)
5226 && ((!OBJECT_P (XEXP (x, 0))
5227 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
5228 && OBJECT_P (SUBREG_REG (XEXP (x, 0)))))
5229 || (!OBJECT_P (XEXP (x, 1))
5230 && ! (GET_CODE (XEXP (x, 1)) == SUBREG
5231 && OBJECT_P (SUBREG_REG (XEXP (x, 1)))))))
5232 || (UNARY_P (x)
5233 && (!OBJECT_P (XEXP (x, 0))
5234 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
5235 && OBJECT_P (SUBREG_REG (XEXP (x, 0)))))))
5236 {
5237 rtx cond, true_rtx, false_rtx;
5238
5239 cond = if_then_else_cond (x, &true_rtx, &false_rtx);
5240 if (cond != 0
5241 /* If everything is a comparison, what we have is highly unlikely
5242 to be simpler, so don't use it. */
5243 && ! (COMPARISON_P (x)
5244 && (COMPARISON_P (true_rtx) || COMPARISON_P (false_rtx))))
5245 {
5246 rtx cop1 = const0_rtx;
5247 enum rtx_code cond_code = simplify_comparison (NE, &cond, &cop1);
5248
5249 if (cond_code == NE && COMPARISON_P (cond))
5250 return x;
5251
5252 /* Simplify the alternative arms; this may collapse the true and
5253 false arms to store-flag values. Be careful to use copy_rtx
5254 here since true_rtx or false_rtx might share RTL with x as a
5255 result of the if_then_else_cond call above. */
5256 true_rtx = subst (copy_rtx (true_rtx), pc_rtx, pc_rtx, 0, 0, 0);
5257 false_rtx = subst (copy_rtx (false_rtx), pc_rtx, pc_rtx, 0, 0, 0);
5258
5259 /* If true_rtx and false_rtx are not general_operands, an if_then_else
5260 is unlikely to be simpler. */
5261 if (general_operand (true_rtx, VOIDmode)
5262 && general_operand (false_rtx, VOIDmode))
5263 {
5264 enum rtx_code reversed;
5265
5266 /* Restarting if we generate a store-flag expression will cause
5267 us to loop. Just drop through in this case. */
5268
5269 /* If the result values are STORE_FLAG_VALUE and zero, we can
5270 just make the comparison operation. */
5271 if (true_rtx == const_true_rtx && false_rtx == const0_rtx)
5272 x = simplify_gen_relational (cond_code, mode, VOIDmode,
5273 cond, cop1);
5274 else if (true_rtx == const0_rtx && false_rtx == const_true_rtx
5275 && ((reversed = reversed_comparison_code_parts
5276 (cond_code, cond, cop1, NULL))
5277 != UNKNOWN))
5278 x = simplify_gen_relational (reversed, mode, VOIDmode,
5279 cond, cop1);
5280
5281 /* Likewise, we can make the negate of a comparison operation
5282 if the result values are - STORE_FLAG_VALUE and zero. */
5283 else if (CONST_INT_P (true_rtx)
5284 && INTVAL (true_rtx) == - STORE_FLAG_VALUE
5285 && false_rtx == const0_rtx)
5286 x = simplify_gen_unary (NEG, mode,
5287 simplify_gen_relational (cond_code,
5288 mode, VOIDmode,
5289 cond, cop1),
5290 mode);
5291 else if (CONST_INT_P (false_rtx)
5292 && INTVAL (false_rtx) == - STORE_FLAG_VALUE
5293 && true_rtx == const0_rtx
5294 && ((reversed = reversed_comparison_code_parts
5295 (cond_code, cond, cop1, NULL))
5296 != UNKNOWN))
5297 x = simplify_gen_unary (NEG, mode,
5298 simplify_gen_relational (reversed,
5299 mode, VOIDmode,
5300 cond, cop1),
5301 mode);
5302 else
5303 return gen_rtx_IF_THEN_ELSE (mode,
5304 simplify_gen_relational (cond_code,
5305 mode,
5306 VOIDmode,
5307 cond,
5308 cop1),
5309 true_rtx, false_rtx);
5310
5311 code = GET_CODE (x);
5312 op0_mode = VOIDmode;
5313 }
5314 }
5315 }
5316
5317 /* Try to fold this expression in case we have constants that weren't
5318 present before. */
5319 temp = 0;
5320 switch (GET_RTX_CLASS (code))
5321 {
5322 case RTX_UNARY:
5323 if (op0_mode == VOIDmode)
5324 op0_mode = GET_MODE (XEXP (x, 0));
5325 temp = simplify_unary_operation (code, mode, XEXP (x, 0), op0_mode);
5326 break;
5327 case RTX_COMPARE:
5328 case RTX_COMM_COMPARE:
5329 {
5330 enum machine_mode cmp_mode = GET_MODE (XEXP (x, 0));
5331 if (cmp_mode == VOIDmode)
5332 {
5333 cmp_mode = GET_MODE (XEXP (x, 1));
5334 if (cmp_mode == VOIDmode)
5335 cmp_mode = op0_mode;
5336 }
5337 temp = simplify_relational_operation (code, mode, cmp_mode,
5338 XEXP (x, 0), XEXP (x, 1));
5339 }
5340 break;
5341 case RTX_COMM_ARITH:
5342 case RTX_BIN_ARITH:
5343 temp = simplify_binary_operation (code, mode, XEXP (x, 0), XEXP (x, 1));
5344 break;
5345 case RTX_BITFIELD_OPS:
5346 case RTX_TERNARY:
5347 temp = simplify_ternary_operation (code, mode, op0_mode, XEXP (x, 0),
5348 XEXP (x, 1), XEXP (x, 2));
5349 break;
5350 default:
5351 break;
5352 }
5353
5354 if (temp)
5355 {
5356 x = temp;
5357 code = GET_CODE (temp);
5358 op0_mode = VOIDmode;
5359 mode = GET_MODE (temp);
5360 }
5361
5362 /* First see if we can apply the inverse distributive law. */
5363 if (code == PLUS || code == MINUS
5364 || code == AND || code == IOR || code == XOR)
5365 {
5366 x = apply_distributive_law (x);
5367 code = GET_CODE (x);
5368 op0_mode = VOIDmode;
5369 }
5370
5371 /* If CODE is an associative operation not otherwise handled, see if we
5372 can associate some operands. This can win if they are constants or
5373 if they are logically related (i.e. (a & b) & a). */
5374 if ((code == PLUS || code == MINUS || code == MULT || code == DIV
5375 || code == AND || code == IOR || code == XOR
5376 || code == SMAX || code == SMIN || code == UMAX || code == UMIN)
5377 && ((INTEGRAL_MODE_P (mode) && code != DIV)
5378 || (flag_associative_math && FLOAT_MODE_P (mode))))
5379 {
5380 if (GET_CODE (XEXP (x, 0)) == code)
5381 {
5382 rtx other = XEXP (XEXP (x, 0), 0);
5383 rtx inner_op0 = XEXP (XEXP (x, 0), 1);
5384 rtx inner_op1 = XEXP (x, 1);
5385 rtx inner;
5386
5387 /* Make sure we pass the constant operand if any as the second
5388 one if this is a commutative operation. */
5389 if (CONSTANT_P (inner_op0) && COMMUTATIVE_ARITH_P (x))
5390 {
5391 rtx tem = inner_op0;
5392 inner_op0 = inner_op1;
5393 inner_op1 = tem;
5394 }
5395 inner = simplify_binary_operation (code == MINUS ? PLUS
5396 : code == DIV ? MULT
5397 : code,
5398 mode, inner_op0, inner_op1);
5399
5400 /* For commutative operations, try the other pair if that one
5401 didn't simplify. */
5402 if (inner == 0 && COMMUTATIVE_ARITH_P (x))
5403 {
5404 other = XEXP (XEXP (x, 0), 1);
5405 inner = simplify_binary_operation (code, mode,
5406 XEXP (XEXP (x, 0), 0),
5407 XEXP (x, 1));
5408 }
5409
5410 if (inner)
5411 return simplify_gen_binary (code, mode, other, inner);
5412 }
5413 }
5414
5415 /* A little bit of algebraic simplification here. */
5416 switch (code)
5417 {
5418 case MEM:
5419 /* Ensure that our address has any ASHIFTs converted to MULT in case
5420 address-recognizing predicates are called later. */
5421 temp = make_compound_operation (XEXP (x, 0), MEM);
5422 SUBST (XEXP (x, 0), temp);
5423 break;
5424
5425 case SUBREG:
5426 if (op0_mode == VOIDmode)
5427 op0_mode = GET_MODE (SUBREG_REG (x));
5428
5429 /* See if this can be moved to simplify_subreg. */
5430 if (CONSTANT_P (SUBREG_REG (x))
5431 && subreg_lowpart_offset (mode, op0_mode) == SUBREG_BYTE (x)
5432 /* Don't call gen_lowpart if the inner mode
5433 is VOIDmode and we cannot simplify it, as SUBREG without
5434 inner mode is invalid. */
5435 && (GET_MODE (SUBREG_REG (x)) != VOIDmode
5436 || gen_lowpart_common (mode, SUBREG_REG (x))))
5437 return gen_lowpart (mode, SUBREG_REG (x));
5438
5439 if (GET_MODE_CLASS (GET_MODE (SUBREG_REG (x))) == MODE_CC)
5440 break;
5441 {
5442 rtx temp;
5443 temp = simplify_subreg (mode, SUBREG_REG (x), op0_mode,
5444 SUBREG_BYTE (x));
5445 if (temp)
5446 return temp;
5447
5448 /* If op is known to have all lower bits zero, the result is zero. */
5449 if (!in_dest
5450 && SCALAR_INT_MODE_P (mode)
5451 && SCALAR_INT_MODE_P (op0_mode)
5452 && GET_MODE_PRECISION (mode) < GET_MODE_PRECISION (op0_mode)
5453 && subreg_lowpart_offset (mode, op0_mode) == SUBREG_BYTE (x)
5454 && HWI_COMPUTABLE_MODE_P (op0_mode)
5455 && (nonzero_bits (SUBREG_REG (x), op0_mode)
5456 & GET_MODE_MASK (mode)) == 0)
5457 return CONST0_RTX (mode);
5458 }
5459
5460 /* Don't change the mode of the MEM if that would change the meaning
5461 of the address. */
5462 if (MEM_P (SUBREG_REG (x))
5463 && (MEM_VOLATILE_P (SUBREG_REG (x))
5464 || mode_dependent_address_p (XEXP (SUBREG_REG (x), 0),
5465 MEM_ADDR_SPACE (SUBREG_REG (x)))))
5466 return gen_rtx_CLOBBER (mode, const0_rtx);
5467
5468 /* Note that we cannot do any narrowing for non-constants since
5469 we might have been counting on using the fact that some bits were
5470 zero. We now do this in the SET. */
5471
5472 break;
5473
5474 case NEG:
5475 temp = expand_compound_operation (XEXP (x, 0));
5476
5477 /* For C equal to the width of MODE minus 1, (neg (ashiftrt X C)) can be
5478 replaced by (lshiftrt X C). This will convert
5479 (neg (sign_extract X 1 Y)) to (zero_extract X 1 Y). */
5480
5481 if (GET_CODE (temp) == ASHIFTRT
5482 && CONST_INT_P (XEXP (temp, 1))
5483 && INTVAL (XEXP (temp, 1)) == GET_MODE_PRECISION (mode) - 1)
5484 return simplify_shift_const (NULL_RTX, LSHIFTRT, mode, XEXP (temp, 0),
5485 INTVAL (XEXP (temp, 1)));
5486
5487 /* If X has only a single bit that might be nonzero, say, bit I, convert
5488 (neg X) to (ashiftrt (ashift X C-I) C-I) where C is the bitsize of
5489 MODE minus 1. This will convert (neg (zero_extract X 1 Y)) to
5490 (sign_extract X 1 Y). But only do this if TEMP isn't a register
5491 or a SUBREG of one since we'd be making the expression more
5492 complex if it was just a register. */
5493
5494 if (!REG_P (temp)
5495 && ! (GET_CODE (temp) == SUBREG
5496 && REG_P (SUBREG_REG (temp)))
5497 && (i = exact_log2 (nonzero_bits (temp, mode))) >= 0)
5498 {
5499 rtx temp1 = simplify_shift_const
5500 (NULL_RTX, ASHIFTRT, mode,
5501 simplify_shift_const (NULL_RTX, ASHIFT, mode, temp,
5502 GET_MODE_PRECISION (mode) - 1 - i),
5503 GET_MODE_PRECISION (mode) - 1 - i);
5504
5505 /* If all we did was surround TEMP with the two shifts, we
5506 haven't improved anything, so don't use it. Otherwise,
5507 we are better off with TEMP1. */
5508 if (GET_CODE (temp1) != ASHIFTRT
5509 || GET_CODE (XEXP (temp1, 0)) != ASHIFT
5510 || XEXP (XEXP (temp1, 0), 0) != temp)
5511 return temp1;
5512 }
5513 break;
5514
5515 case TRUNCATE:
5516 /* We can't handle truncation to a partial integer mode here
5517 because we don't know the real bitsize of the partial
5518 integer mode. */
5519 if (GET_MODE_CLASS (mode) == MODE_PARTIAL_INT)
5520 break;
5521
5522 if (HWI_COMPUTABLE_MODE_P (mode))
5523 SUBST (XEXP (x, 0),
5524 force_to_mode (XEXP (x, 0), GET_MODE (XEXP (x, 0)),
5525 GET_MODE_MASK (mode), 0));
5526
5527 /* We can truncate a constant value and return it. */
5528 if (CONST_INT_P (XEXP (x, 0)))
5529 return gen_int_mode (INTVAL (XEXP (x, 0)), mode);
5530
5531 /* Similarly to what we do in simplify-rtx.c, a truncate of a register
5532 whose value is a comparison can be replaced with a subreg if
5533 STORE_FLAG_VALUE permits. */
5534 if (HWI_COMPUTABLE_MODE_P (mode)
5535 && (STORE_FLAG_VALUE & ~GET_MODE_MASK (mode)) == 0
5536 && (temp = get_last_value (XEXP (x, 0)))
5537 && COMPARISON_P (temp))
5538 return gen_lowpart (mode, XEXP (x, 0));
5539 break;
5540
5541 case CONST:
5542 /* (const (const X)) can become (const X). Do it this way rather than
5543 returning the inner CONST since CONST can be shared with a
5544 REG_EQUAL note. */
5545 if (GET_CODE (XEXP (x, 0)) == CONST)
5546 SUBST (XEXP (x, 0), XEXP (XEXP (x, 0), 0));
5547 break;
5548
5549 #ifdef HAVE_lo_sum
5550 case LO_SUM:
5551 /* Convert (lo_sum (high FOO) FOO) to FOO. This is necessary so we
5552 can add in an offset. find_split_point will split this address up
5553 again if it doesn't match. */
5554 if (GET_CODE (XEXP (x, 0)) == HIGH
5555 && rtx_equal_p (XEXP (XEXP (x, 0), 0), XEXP (x, 1)))
5556 return XEXP (x, 1);
5557 break;
5558 #endif
5559
5560 case PLUS:
5561 /* (plus (xor (and <foo> (const_int pow2 - 1)) <c>) <-c>)
5562 when c is (const_int (pow2 + 1) / 2) is a sign extension of a
5563 bit-field and can be replaced by either a sign_extend or a
5564 sign_extract. The `and' may be a zero_extend and the two
5565 <c>, -<c> constants may be reversed. */
5566 if (GET_CODE (XEXP (x, 0)) == XOR
5567 && CONST_INT_P (XEXP (x, 1))
5568 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
5569 && INTVAL (XEXP (x, 1)) == -INTVAL (XEXP (XEXP (x, 0), 1))
5570 && ((i = exact_log2 (UINTVAL (XEXP (XEXP (x, 0), 1)))) >= 0
5571 || (i = exact_log2 (UINTVAL (XEXP (x, 1)))) >= 0)
5572 && HWI_COMPUTABLE_MODE_P (mode)
5573 && ((GET_CODE (XEXP (XEXP (x, 0), 0)) == AND
5574 && CONST_INT_P (XEXP (XEXP (XEXP (x, 0), 0), 1))
5575 && (UINTVAL (XEXP (XEXP (XEXP (x, 0), 0), 1))
5576 == ((unsigned HOST_WIDE_INT) 1 << (i + 1)) - 1))
5577 || (GET_CODE (XEXP (XEXP (x, 0), 0)) == ZERO_EXTEND
5578 && (GET_MODE_PRECISION (GET_MODE (XEXP (XEXP (XEXP (x, 0), 0), 0)))
5579 == (unsigned int) i + 1))))
5580 return simplify_shift_const
5581 (NULL_RTX, ASHIFTRT, mode,
5582 simplify_shift_const (NULL_RTX, ASHIFT, mode,
5583 XEXP (XEXP (XEXP (x, 0), 0), 0),
5584 GET_MODE_PRECISION (mode) - (i + 1)),
5585 GET_MODE_PRECISION (mode) - (i + 1));
5586
5587 /* If only the low-order bit of X is possibly nonzero, (plus x -1)
5588 can become (ashiftrt (ashift (xor x 1) C) C) where C is
5589 the bitsize of the mode - 1. This allows simplification of
5590 "a = (b & 8) == 0;" */
5591 if (XEXP (x, 1) == constm1_rtx
5592 && !REG_P (XEXP (x, 0))
5593 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
5594 && REG_P (SUBREG_REG (XEXP (x, 0))))
5595 && nonzero_bits (XEXP (x, 0), mode) == 1)
5596 return simplify_shift_const (NULL_RTX, ASHIFTRT, mode,
5597 simplify_shift_const (NULL_RTX, ASHIFT, mode,
5598 gen_rtx_XOR (mode, XEXP (x, 0), const1_rtx),
5599 GET_MODE_PRECISION (mode) - 1),
5600 GET_MODE_PRECISION (mode) - 1);
5601
5602 /* If we are adding two things that have no bits in common, convert
5603 the addition into an IOR. This will often be further simplified,
5604 for example in cases like ((a & 1) + (a & 2)), which can
5605 become a & 3. */
5606
5607 if (HWI_COMPUTABLE_MODE_P (mode)
5608 && (nonzero_bits (XEXP (x, 0), mode)
5609 & nonzero_bits (XEXP (x, 1), mode)) == 0)
5610 {
5611 /* Try to simplify the expression further. */
5612 rtx tor = simplify_gen_binary (IOR, mode, XEXP (x, 0), XEXP (x, 1));
5613 temp = combine_simplify_rtx (tor, VOIDmode, in_dest, 0);
5614
5615 /* If we could, great. If not, do not go ahead with the IOR
5616 replacement, since PLUS appears in many special purpose
5617 address arithmetic instructions. */
5618 if (GET_CODE (temp) != CLOBBER
5619 && (GET_CODE (temp) != IOR
5620 || ((XEXP (temp, 0) != XEXP (x, 0)
5621 || XEXP (temp, 1) != XEXP (x, 1))
5622 && (XEXP (temp, 0) != XEXP (x, 1)
5623 || XEXP (temp, 1) != XEXP (x, 0)))))
5624 return temp;
5625 }
5626 break;
5627
5628 case MINUS:
5629 /* (minus <foo> (and <foo> (const_int -pow2))) becomes
5630 (and <foo> (const_int pow2-1)) */
5631 if (GET_CODE (XEXP (x, 1)) == AND
5632 && CONST_INT_P (XEXP (XEXP (x, 1), 1))
5633 && exact_log2 (-UINTVAL (XEXP (XEXP (x, 1), 1))) >= 0
5634 && rtx_equal_p (XEXP (XEXP (x, 1), 0), XEXP (x, 0)))
5635 return simplify_and_const_int (NULL_RTX, mode, XEXP (x, 0),
5636 -INTVAL (XEXP (XEXP (x, 1), 1)) - 1);
5637 break;
5638
5639 case MULT:
5640 /* If we have (mult (plus A B) C), apply the distributive law and then
5641 the inverse distributive law to see if things simplify. This
5642 occurs mostly in addresses, often when unrolling loops. */
5643
5644 if (GET_CODE (XEXP (x, 0)) == PLUS)
5645 {
5646 rtx result = distribute_and_simplify_rtx (x, 0);
5647 if (result)
5648 return result;
5649 }
5650
5651 /* Try simplify a*(b/c) as (a*b)/c. */
5652 if (FLOAT_MODE_P (mode) && flag_associative_math
5653 && GET_CODE (XEXP (x, 0)) == DIV)
5654 {
5655 rtx tem = simplify_binary_operation (MULT, mode,
5656 XEXP (XEXP (x, 0), 0),
5657 XEXP (x, 1));
5658 if (tem)
5659 return simplify_gen_binary (DIV, mode, tem, XEXP (XEXP (x, 0), 1));
5660 }
5661 break;
5662
5663 case UDIV:
5664 /* If this is a divide by a power of two, treat it as a shift if
5665 its first operand is a shift. */
5666 if (CONST_INT_P (XEXP (x, 1))
5667 && (i = exact_log2 (UINTVAL (XEXP (x, 1)))) >= 0
5668 && (GET_CODE (XEXP (x, 0)) == ASHIFT
5669 || GET_CODE (XEXP (x, 0)) == LSHIFTRT
5670 || GET_CODE (XEXP (x, 0)) == ASHIFTRT
5671 || GET_CODE (XEXP (x, 0)) == ROTATE
5672 || GET_CODE (XEXP (x, 0)) == ROTATERT))
5673 return simplify_shift_const (NULL_RTX, LSHIFTRT, mode, XEXP (x, 0), i);
5674 break;
5675
5676 case EQ: case NE:
5677 case GT: case GTU: case GE: case GEU:
5678 case LT: case LTU: case LE: case LEU:
5679 case UNEQ: case LTGT:
5680 case UNGT: case UNGE:
5681 case UNLT: case UNLE:
5682 case UNORDERED: case ORDERED:
5683 /* If the first operand is a condition code, we can't do anything
5684 with it. */
5685 if (GET_CODE (XEXP (x, 0)) == COMPARE
5686 || (GET_MODE_CLASS (GET_MODE (XEXP (x, 0))) != MODE_CC
5687 && ! CC0_P (XEXP (x, 0))))
5688 {
5689 rtx op0 = XEXP (x, 0);
5690 rtx op1 = XEXP (x, 1);
5691 enum rtx_code new_code;
5692
5693 if (GET_CODE (op0) == COMPARE)
5694 op1 = XEXP (op0, 1), op0 = XEXP (op0, 0);
5695
5696 /* Simplify our comparison, if possible. */
5697 new_code = simplify_comparison (code, &op0, &op1);
5698
5699 /* If STORE_FLAG_VALUE is 1, we can convert (ne x 0) to simply X
5700 if only the low-order bit is possibly nonzero in X (such as when
5701 X is a ZERO_EXTRACT of one bit). Similarly, we can convert EQ to
5702 (xor X 1) or (minus 1 X); we use the former. Finally, if X is
5703 known to be either 0 or -1, NE becomes a NEG and EQ becomes
5704 (plus X 1).
5705
5706 Remove any ZERO_EXTRACT we made when thinking this was a
5707 comparison. It may now be simpler to use, e.g., an AND. If a
5708 ZERO_EXTRACT is indeed appropriate, it will be placed back by
5709 the call to make_compound_operation in the SET case.
5710
5711 Don't apply these optimizations if the caller would
5712 prefer a comparison rather than a value.
5713 E.g., for the condition in an IF_THEN_ELSE most targets need
5714 an explicit comparison. */
5715
5716 if (in_cond)
5717 ;
5718
5719 else if (STORE_FLAG_VALUE == 1
5720 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
5721 && op1 == const0_rtx
5722 && mode == GET_MODE (op0)
5723 && nonzero_bits (op0, mode) == 1)
5724 return gen_lowpart (mode,
5725 expand_compound_operation (op0));
5726
5727 else if (STORE_FLAG_VALUE == 1
5728 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
5729 && op1 == const0_rtx
5730 && mode == GET_MODE (op0)
5731 && (num_sign_bit_copies (op0, mode)
5732 == GET_MODE_PRECISION (mode)))
5733 {
5734 op0 = expand_compound_operation (op0);
5735 return simplify_gen_unary (NEG, mode,
5736 gen_lowpart (mode, op0),
5737 mode);
5738 }
5739
5740 else if (STORE_FLAG_VALUE == 1
5741 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
5742 && op1 == const0_rtx
5743 && mode == GET_MODE (op0)
5744 && nonzero_bits (op0, mode) == 1)
5745 {
5746 op0 = expand_compound_operation (op0);
5747 return simplify_gen_binary (XOR, mode,
5748 gen_lowpart (mode, op0),
5749 const1_rtx);
5750 }
5751
5752 else if (STORE_FLAG_VALUE == 1
5753 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
5754 && op1 == const0_rtx
5755 && mode == GET_MODE (op0)
5756 && (num_sign_bit_copies (op0, mode)
5757 == GET_MODE_PRECISION (mode)))
5758 {
5759 op0 = expand_compound_operation (op0);
5760 return plus_constant (mode, gen_lowpart (mode, op0), 1);
5761 }
5762
5763 /* If STORE_FLAG_VALUE is -1, we have cases similar to
5764 those above. */
5765 if (in_cond)
5766 ;
5767
5768 else if (STORE_FLAG_VALUE == -1
5769 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
5770 && op1 == const0_rtx
5771 && (num_sign_bit_copies (op0, mode)
5772 == GET_MODE_PRECISION (mode)))
5773 return gen_lowpart (mode,
5774 expand_compound_operation (op0));
5775
5776 else if (STORE_FLAG_VALUE == -1
5777 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
5778 && op1 == const0_rtx
5779 && mode == GET_MODE (op0)
5780 && nonzero_bits (op0, mode) == 1)
5781 {
5782 op0 = expand_compound_operation (op0);
5783 return simplify_gen_unary (NEG, mode,
5784 gen_lowpart (mode, op0),
5785 mode);
5786 }
5787
5788 else if (STORE_FLAG_VALUE == -1
5789 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
5790 && op1 == const0_rtx
5791 && mode == GET_MODE (op0)
5792 && (num_sign_bit_copies (op0, mode)
5793 == GET_MODE_PRECISION (mode)))
5794 {
5795 op0 = expand_compound_operation (op0);
5796 return simplify_gen_unary (NOT, mode,
5797 gen_lowpart (mode, op0),
5798 mode);
5799 }
5800
5801 /* If X is 0/1, (eq X 0) is X-1. */
5802 else if (STORE_FLAG_VALUE == -1
5803 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
5804 && op1 == const0_rtx
5805 && mode == GET_MODE (op0)
5806 && nonzero_bits (op0, mode) == 1)
5807 {
5808 op0 = expand_compound_operation (op0);
5809 return plus_constant (mode, gen_lowpart (mode, op0), -1);
5810 }
5811
5812 /* If STORE_FLAG_VALUE says to just test the sign bit and X has just
5813 one bit that might be nonzero, we can convert (ne x 0) to
5814 (ashift x c) where C puts the bit in the sign bit. Remove any
5815 AND with STORE_FLAG_VALUE when we are done, since we are only
5816 going to test the sign bit. */
5817 if (new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
5818 && HWI_COMPUTABLE_MODE_P (mode)
5819 && val_signbit_p (mode, STORE_FLAG_VALUE)
5820 && op1 == const0_rtx
5821 && mode == GET_MODE (op0)
5822 && (i = exact_log2 (nonzero_bits (op0, mode))) >= 0)
5823 {
5824 x = simplify_shift_const (NULL_RTX, ASHIFT, mode,
5825 expand_compound_operation (op0),
5826 GET_MODE_PRECISION (mode) - 1 - i);
5827 if (GET_CODE (x) == AND && XEXP (x, 1) == const_true_rtx)
5828 return XEXP (x, 0);
5829 else
5830 return x;
5831 }
5832
5833 /* If the code changed, return a whole new comparison.
5834 We also need to avoid using SUBST in cases where
5835 simplify_comparison has widened a comparison with a CONST_INT,
5836 since in that case the wider CONST_INT may fail the sanity
5837 checks in do_SUBST. */
5838 if (new_code != code
5839 || (CONST_INT_P (op1)
5840 && GET_MODE (op0) != GET_MODE (XEXP (x, 0))
5841 && GET_MODE (op0) != GET_MODE (XEXP (x, 1))))
5842 return gen_rtx_fmt_ee (new_code, mode, op0, op1);
5843
5844 /* Otherwise, keep this operation, but maybe change its operands.
5845 This also converts (ne (compare FOO BAR) 0) to (ne FOO BAR). */
5846 SUBST (XEXP (x, 0), op0);
5847 SUBST (XEXP (x, 1), op1);
5848 }
5849 break;
5850
5851 case IF_THEN_ELSE:
5852 return simplify_if_then_else (x);
5853
5854 case ZERO_EXTRACT:
5855 case SIGN_EXTRACT:
5856 case ZERO_EXTEND:
5857 case SIGN_EXTEND:
5858 /* If we are processing SET_DEST, we are done. */
5859 if (in_dest)
5860 return x;
5861
5862 return expand_compound_operation (x);
5863
5864 case SET:
5865 return simplify_set (x);
5866
5867 case AND:
5868 case IOR:
5869 return simplify_logical (x);
5870
5871 case ASHIFT:
5872 case LSHIFTRT:
5873 case ASHIFTRT:
5874 case ROTATE:
5875 case ROTATERT:
5876 /* If this is a shift by a constant amount, simplify it. */
5877 if (CONST_INT_P (XEXP (x, 1)))
5878 return simplify_shift_const (x, code, mode, XEXP (x, 0),
5879 INTVAL (XEXP (x, 1)));
5880
5881 else if (SHIFT_COUNT_TRUNCATED && !REG_P (XEXP (x, 1)))
5882 SUBST (XEXP (x, 1),
5883 force_to_mode (XEXP (x, 1), GET_MODE (XEXP (x, 1)),
5884 ((unsigned HOST_WIDE_INT) 1
5885 << exact_log2 (GET_MODE_BITSIZE (GET_MODE (x))))
5886 - 1,
5887 0));
5888 break;
5889
5890 default:
5891 break;
5892 }
5893
5894 return x;
5895 }
5896 \f
5897 /* Simplify X, an IF_THEN_ELSE expression. Return the new expression. */
5898
5899 static rtx
5900 simplify_if_then_else (rtx x)
5901 {
5902 enum machine_mode mode = GET_MODE (x);
5903 rtx cond = XEXP (x, 0);
5904 rtx true_rtx = XEXP (x, 1);
5905 rtx false_rtx = XEXP (x, 2);
5906 enum rtx_code true_code = GET_CODE (cond);
5907 int comparison_p = COMPARISON_P (cond);
5908 rtx temp;
5909 int i;
5910 enum rtx_code false_code;
5911 rtx reversed;
5912
5913 /* Simplify storing of the truth value. */
5914 if (comparison_p && true_rtx == const_true_rtx && false_rtx == const0_rtx)
5915 return simplify_gen_relational (true_code, mode, VOIDmode,
5916 XEXP (cond, 0), XEXP (cond, 1));
5917
5918 /* Also when the truth value has to be reversed. */
5919 if (comparison_p
5920 && true_rtx == const0_rtx && false_rtx == const_true_rtx
5921 && (reversed = reversed_comparison (cond, mode)))
5922 return reversed;
5923
5924 /* Sometimes we can simplify the arm of an IF_THEN_ELSE if a register used
5925 in it is being compared against certain values. Get the true and false
5926 comparisons and see if that says anything about the value of each arm. */
5927
5928 if (comparison_p
5929 && ((false_code = reversed_comparison_code (cond, NULL))
5930 != UNKNOWN)
5931 && REG_P (XEXP (cond, 0)))
5932 {
5933 HOST_WIDE_INT nzb;
5934 rtx from = XEXP (cond, 0);
5935 rtx true_val = XEXP (cond, 1);
5936 rtx false_val = true_val;
5937 int swapped = 0;
5938
5939 /* If FALSE_CODE is EQ, swap the codes and arms. */
5940
5941 if (false_code == EQ)
5942 {
5943 swapped = 1, true_code = EQ, false_code = NE;
5944 temp = true_rtx, true_rtx = false_rtx, false_rtx = temp;
5945 }
5946
5947 /* If we are comparing against zero and the expression being tested has
5948 only a single bit that might be nonzero, that is its value when it is
5949 not equal to zero. Similarly if it is known to be -1 or 0. */
5950
5951 if (true_code == EQ && true_val == const0_rtx
5952 && exact_log2 (nzb = nonzero_bits (from, GET_MODE (from))) >= 0)
5953 {
5954 false_code = EQ;
5955 false_val = gen_int_mode (nzb, GET_MODE (from));
5956 }
5957 else if (true_code == EQ && true_val == const0_rtx
5958 && (num_sign_bit_copies (from, GET_MODE (from))
5959 == GET_MODE_PRECISION (GET_MODE (from))))
5960 {
5961 false_code = EQ;
5962 false_val = constm1_rtx;
5963 }
5964
5965 /* Now simplify an arm if we know the value of the register in the
5966 branch and it is used in the arm. Be careful due to the potential
5967 of locally-shared RTL. */
5968
5969 if (reg_mentioned_p (from, true_rtx))
5970 true_rtx = subst (known_cond (copy_rtx (true_rtx), true_code,
5971 from, true_val),
5972 pc_rtx, pc_rtx, 0, 0, 0);
5973 if (reg_mentioned_p (from, false_rtx))
5974 false_rtx = subst (known_cond (copy_rtx (false_rtx), false_code,
5975 from, false_val),
5976 pc_rtx, pc_rtx, 0, 0, 0);
5977
5978 SUBST (XEXP (x, 1), swapped ? false_rtx : true_rtx);
5979 SUBST (XEXP (x, 2), swapped ? true_rtx : false_rtx);
5980
5981 true_rtx = XEXP (x, 1);
5982 false_rtx = XEXP (x, 2);
5983 true_code = GET_CODE (cond);
5984 }
5985
5986 /* If we have (if_then_else FOO (pc) (label_ref BAR)) and FOO can be
5987 reversed, do so to avoid needing two sets of patterns for
5988 subtract-and-branch insns. Similarly if we have a constant in the true
5989 arm, the false arm is the same as the first operand of the comparison, or
5990 the false arm is more complicated than the true arm. */
5991
5992 if (comparison_p
5993 && reversed_comparison_code (cond, NULL) != UNKNOWN
5994 && (true_rtx == pc_rtx
5995 || (CONSTANT_P (true_rtx)
5996 && !CONST_INT_P (false_rtx) && false_rtx != pc_rtx)
5997 || true_rtx == const0_rtx
5998 || (OBJECT_P (true_rtx) && !OBJECT_P (false_rtx))
5999 || (GET_CODE (true_rtx) == SUBREG && OBJECT_P (SUBREG_REG (true_rtx))
6000 && !OBJECT_P (false_rtx))
6001 || reg_mentioned_p (true_rtx, false_rtx)
6002 || rtx_equal_p (false_rtx, XEXP (cond, 0))))
6003 {
6004 true_code = reversed_comparison_code (cond, NULL);
6005 SUBST (XEXP (x, 0), reversed_comparison (cond, GET_MODE (cond)));
6006 SUBST (XEXP (x, 1), false_rtx);
6007 SUBST (XEXP (x, 2), true_rtx);
6008
6009 temp = true_rtx, true_rtx = false_rtx, false_rtx = temp;
6010 cond = XEXP (x, 0);
6011
6012 /* It is possible that the conditional has been simplified out. */
6013 true_code = GET_CODE (cond);
6014 comparison_p = COMPARISON_P (cond);
6015 }
6016
6017 /* If the two arms are identical, we don't need the comparison. */
6018
6019 if (rtx_equal_p (true_rtx, false_rtx) && ! side_effects_p (cond))
6020 return true_rtx;
6021
6022 /* Convert a == b ? b : a to "a". */
6023 if (true_code == EQ && ! side_effects_p (cond)
6024 && !HONOR_NANS (mode)
6025 && rtx_equal_p (XEXP (cond, 0), false_rtx)
6026 && rtx_equal_p (XEXP (cond, 1), true_rtx))
6027 return false_rtx;
6028 else if (true_code == NE && ! side_effects_p (cond)
6029 && !HONOR_NANS (mode)
6030 && rtx_equal_p (XEXP (cond, 0), true_rtx)
6031 && rtx_equal_p (XEXP (cond, 1), false_rtx))
6032 return true_rtx;
6033
6034 /* Look for cases where we have (abs x) or (neg (abs X)). */
6035
6036 if (GET_MODE_CLASS (mode) == MODE_INT
6037 && comparison_p
6038 && XEXP (cond, 1) == const0_rtx
6039 && GET_CODE (false_rtx) == NEG
6040 && rtx_equal_p (true_rtx, XEXP (false_rtx, 0))
6041 && rtx_equal_p (true_rtx, XEXP (cond, 0))
6042 && ! side_effects_p (true_rtx))
6043 switch (true_code)
6044 {
6045 case GT:
6046 case GE:
6047 return simplify_gen_unary (ABS, mode, true_rtx, mode);
6048 case LT:
6049 case LE:
6050 return
6051 simplify_gen_unary (NEG, mode,
6052 simplify_gen_unary (ABS, mode, true_rtx, mode),
6053 mode);
6054 default:
6055 break;
6056 }
6057
6058 /* Look for MIN or MAX. */
6059
6060 if ((! FLOAT_MODE_P (mode) || flag_unsafe_math_optimizations)
6061 && comparison_p
6062 && rtx_equal_p (XEXP (cond, 0), true_rtx)
6063 && rtx_equal_p (XEXP (cond, 1), false_rtx)
6064 && ! side_effects_p (cond))
6065 switch (true_code)
6066 {
6067 case GE:
6068 case GT:
6069 return simplify_gen_binary (SMAX, mode, true_rtx, false_rtx);
6070 case LE:
6071 case LT:
6072 return simplify_gen_binary (SMIN, mode, true_rtx, false_rtx);
6073 case GEU:
6074 case GTU:
6075 return simplify_gen_binary (UMAX, mode, true_rtx, false_rtx);
6076 case LEU:
6077 case LTU:
6078 return simplify_gen_binary (UMIN, mode, true_rtx, false_rtx);
6079 default:
6080 break;
6081 }
6082
6083 /* If we have (if_then_else COND (OP Z C1) Z) and OP is an identity when its
6084 second operand is zero, this can be done as (OP Z (mult COND C2)) where
6085 C2 = C1 * STORE_FLAG_VALUE. Similarly if OP has an outer ZERO_EXTEND or
6086 SIGN_EXTEND as long as Z is already extended (so we don't destroy it).
6087 We can do this kind of thing in some cases when STORE_FLAG_VALUE is
6088 neither 1 or -1, but it isn't worth checking for. */
6089
6090 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
6091 && comparison_p
6092 && GET_MODE_CLASS (mode) == MODE_INT
6093 && ! side_effects_p (x))
6094 {
6095 rtx t = make_compound_operation (true_rtx, SET);
6096 rtx f = make_compound_operation (false_rtx, SET);
6097 rtx cond_op0 = XEXP (cond, 0);
6098 rtx cond_op1 = XEXP (cond, 1);
6099 enum rtx_code op = UNKNOWN, extend_op = UNKNOWN;
6100 enum machine_mode m = mode;
6101 rtx z = 0, c1 = NULL_RTX;
6102
6103 if ((GET_CODE (t) == PLUS || GET_CODE (t) == MINUS
6104 || GET_CODE (t) == IOR || GET_CODE (t) == XOR
6105 || GET_CODE (t) == ASHIFT
6106 || GET_CODE (t) == LSHIFTRT || GET_CODE (t) == ASHIFTRT)
6107 && rtx_equal_p (XEXP (t, 0), f))
6108 c1 = XEXP (t, 1), op = GET_CODE (t), z = f;
6109
6110 /* If an identity-zero op is commutative, check whether there
6111 would be a match if we swapped the operands. */
6112 else if ((GET_CODE (t) == PLUS || GET_CODE (t) == IOR
6113 || GET_CODE (t) == XOR)
6114 && rtx_equal_p (XEXP (t, 1), f))
6115 c1 = XEXP (t, 0), op = GET_CODE (t), z = f;
6116 else if (GET_CODE (t) == SIGN_EXTEND
6117 && (GET_CODE (XEXP (t, 0)) == PLUS
6118 || GET_CODE (XEXP (t, 0)) == MINUS
6119 || GET_CODE (XEXP (t, 0)) == IOR
6120 || GET_CODE (XEXP (t, 0)) == XOR
6121 || GET_CODE (XEXP (t, 0)) == ASHIFT
6122 || GET_CODE (XEXP (t, 0)) == LSHIFTRT
6123 || GET_CODE (XEXP (t, 0)) == ASHIFTRT)
6124 && GET_CODE (XEXP (XEXP (t, 0), 0)) == SUBREG
6125 && subreg_lowpart_p (XEXP (XEXP (t, 0), 0))
6126 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 0)), f)
6127 && (num_sign_bit_copies (f, GET_MODE (f))
6128 > (unsigned int)
6129 (GET_MODE_PRECISION (mode)
6130 - GET_MODE_PRECISION (GET_MODE (XEXP (XEXP (t, 0), 0))))))
6131 {
6132 c1 = XEXP (XEXP (t, 0), 1); z = f; op = GET_CODE (XEXP (t, 0));
6133 extend_op = SIGN_EXTEND;
6134 m = GET_MODE (XEXP (t, 0));
6135 }
6136 else if (GET_CODE (t) == SIGN_EXTEND
6137 && (GET_CODE (XEXP (t, 0)) == PLUS
6138 || GET_CODE (XEXP (t, 0)) == IOR
6139 || GET_CODE (XEXP (t, 0)) == XOR)
6140 && GET_CODE (XEXP (XEXP (t, 0), 1)) == SUBREG
6141 && subreg_lowpart_p (XEXP (XEXP (t, 0), 1))
6142 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 1)), f)
6143 && (num_sign_bit_copies (f, GET_MODE (f))
6144 > (unsigned int)
6145 (GET_MODE_PRECISION (mode)
6146 - GET_MODE_PRECISION (GET_MODE (XEXP (XEXP (t, 0), 1))))))
6147 {
6148 c1 = XEXP (XEXP (t, 0), 0); z = f; op = GET_CODE (XEXP (t, 0));
6149 extend_op = SIGN_EXTEND;
6150 m = GET_MODE (XEXP (t, 0));
6151 }
6152 else if (GET_CODE (t) == ZERO_EXTEND
6153 && (GET_CODE (XEXP (t, 0)) == PLUS
6154 || GET_CODE (XEXP (t, 0)) == MINUS
6155 || GET_CODE (XEXP (t, 0)) == IOR
6156 || GET_CODE (XEXP (t, 0)) == XOR
6157 || GET_CODE (XEXP (t, 0)) == ASHIFT
6158 || GET_CODE (XEXP (t, 0)) == LSHIFTRT
6159 || GET_CODE (XEXP (t, 0)) == ASHIFTRT)
6160 && GET_CODE (XEXP (XEXP (t, 0), 0)) == SUBREG
6161 && HWI_COMPUTABLE_MODE_P (mode)
6162 && subreg_lowpart_p (XEXP (XEXP (t, 0), 0))
6163 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 0)), f)
6164 && ((nonzero_bits (f, GET_MODE (f))
6165 & ~GET_MODE_MASK (GET_MODE (XEXP (XEXP (t, 0), 0))))
6166 == 0))
6167 {
6168 c1 = XEXP (XEXP (t, 0), 1); z = f; op = GET_CODE (XEXP (t, 0));
6169 extend_op = ZERO_EXTEND;
6170 m = GET_MODE (XEXP (t, 0));
6171 }
6172 else if (GET_CODE (t) == ZERO_EXTEND
6173 && (GET_CODE (XEXP (t, 0)) == PLUS
6174 || GET_CODE (XEXP (t, 0)) == IOR
6175 || GET_CODE (XEXP (t, 0)) == XOR)
6176 && GET_CODE (XEXP (XEXP (t, 0), 1)) == SUBREG
6177 && HWI_COMPUTABLE_MODE_P (mode)
6178 && subreg_lowpart_p (XEXP (XEXP (t, 0), 1))
6179 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 1)), f)
6180 && ((nonzero_bits (f, GET_MODE (f))
6181 & ~GET_MODE_MASK (GET_MODE (XEXP (XEXP (t, 0), 1))))
6182 == 0))
6183 {
6184 c1 = XEXP (XEXP (t, 0), 0); z = f; op = GET_CODE (XEXP (t, 0));
6185 extend_op = ZERO_EXTEND;
6186 m = GET_MODE (XEXP (t, 0));
6187 }
6188
6189 if (z)
6190 {
6191 temp = subst (simplify_gen_relational (true_code, m, VOIDmode,
6192 cond_op0, cond_op1),
6193 pc_rtx, pc_rtx, 0, 0, 0);
6194 temp = simplify_gen_binary (MULT, m, temp,
6195 simplify_gen_binary (MULT, m, c1,
6196 const_true_rtx));
6197 temp = subst (temp, pc_rtx, pc_rtx, 0, 0, 0);
6198 temp = simplify_gen_binary (op, m, gen_lowpart (m, z), temp);
6199
6200 if (extend_op != UNKNOWN)
6201 temp = simplify_gen_unary (extend_op, mode, temp, m);
6202
6203 return temp;
6204 }
6205 }
6206
6207 /* If we have (if_then_else (ne A 0) C1 0) and either A is known to be 0 or
6208 1 and C1 is a single bit or A is known to be 0 or -1 and C1 is the
6209 negation of a single bit, we can convert this operation to a shift. We
6210 can actually do this more generally, but it doesn't seem worth it. */
6211
6212 if (true_code == NE && XEXP (cond, 1) == const0_rtx
6213 && false_rtx == const0_rtx && CONST_INT_P (true_rtx)
6214 && ((1 == nonzero_bits (XEXP (cond, 0), mode)
6215 && (i = exact_log2 (UINTVAL (true_rtx))) >= 0)
6216 || ((num_sign_bit_copies (XEXP (cond, 0), mode)
6217 == GET_MODE_PRECISION (mode))
6218 && (i = exact_log2 (-UINTVAL (true_rtx))) >= 0)))
6219 return
6220 simplify_shift_const (NULL_RTX, ASHIFT, mode,
6221 gen_lowpart (mode, XEXP (cond, 0)), i);
6222
6223 /* (IF_THEN_ELSE (NE REG 0) (0) (8)) is REG for nonzero_bits (REG) == 8. */
6224 if (true_code == NE && XEXP (cond, 1) == const0_rtx
6225 && false_rtx == const0_rtx && CONST_INT_P (true_rtx)
6226 && GET_MODE (XEXP (cond, 0)) == mode
6227 && (UINTVAL (true_rtx) & GET_MODE_MASK (mode))
6228 == nonzero_bits (XEXP (cond, 0), mode)
6229 && (i = exact_log2 (UINTVAL (true_rtx) & GET_MODE_MASK (mode))) >= 0)
6230 return XEXP (cond, 0);
6231
6232 return x;
6233 }
6234 \f
6235 /* Simplify X, a SET expression. Return the new expression. */
6236
6237 static rtx
6238 simplify_set (rtx x)
6239 {
6240 rtx src = SET_SRC (x);
6241 rtx dest = SET_DEST (x);
6242 enum machine_mode mode
6243 = GET_MODE (src) != VOIDmode ? GET_MODE (src) : GET_MODE (dest);
6244 rtx other_insn;
6245 rtx *cc_use;
6246
6247 /* (set (pc) (return)) gets written as (return). */
6248 if (GET_CODE (dest) == PC && ANY_RETURN_P (src))
6249 return src;
6250
6251 /* Now that we know for sure which bits of SRC we are using, see if we can
6252 simplify the expression for the object knowing that we only need the
6253 low-order bits. */
6254
6255 if (GET_MODE_CLASS (mode) == MODE_INT && HWI_COMPUTABLE_MODE_P (mode))
6256 {
6257 src = force_to_mode (src, mode, ~(unsigned HOST_WIDE_INT) 0, 0);
6258 SUBST (SET_SRC (x), src);
6259 }
6260
6261 /* If we are setting CC0 or if the source is a COMPARE, look for the use of
6262 the comparison result and try to simplify it unless we already have used
6263 undobuf.other_insn. */
6264 if ((GET_MODE_CLASS (mode) == MODE_CC
6265 || GET_CODE (src) == COMPARE
6266 || CC0_P (dest))
6267 && (cc_use = find_single_use (dest, subst_insn, &other_insn)) != 0
6268 && (undobuf.other_insn == 0 || other_insn == undobuf.other_insn)
6269 && COMPARISON_P (*cc_use)
6270 && rtx_equal_p (XEXP (*cc_use, 0), dest))
6271 {
6272 enum rtx_code old_code = GET_CODE (*cc_use);
6273 enum rtx_code new_code;
6274 rtx op0, op1, tmp;
6275 int other_changed = 0;
6276 rtx inner_compare = NULL_RTX;
6277 enum machine_mode compare_mode = GET_MODE (dest);
6278
6279 if (GET_CODE (src) == COMPARE)
6280 {
6281 op0 = XEXP (src, 0), op1 = XEXP (src, 1);
6282 if (GET_CODE (op0) == COMPARE && op1 == const0_rtx)
6283 {
6284 inner_compare = op0;
6285 op0 = XEXP (inner_compare, 0), op1 = XEXP (inner_compare, 1);
6286 }
6287 }
6288 else
6289 op0 = src, op1 = CONST0_RTX (GET_MODE (src));
6290
6291 tmp = simplify_relational_operation (old_code, compare_mode, VOIDmode,
6292 op0, op1);
6293 if (!tmp)
6294 new_code = old_code;
6295 else if (!CONSTANT_P (tmp))
6296 {
6297 new_code = GET_CODE (tmp);
6298 op0 = XEXP (tmp, 0);
6299 op1 = XEXP (tmp, 1);
6300 }
6301 else
6302 {
6303 rtx pat = PATTERN (other_insn);
6304 undobuf.other_insn = other_insn;
6305 SUBST (*cc_use, tmp);
6306
6307 /* Attempt to simplify CC user. */
6308 if (GET_CODE (pat) == SET)
6309 {
6310 rtx new_rtx = simplify_rtx (SET_SRC (pat));
6311 if (new_rtx != NULL_RTX)
6312 SUBST (SET_SRC (pat), new_rtx);
6313 }
6314
6315 /* Convert X into a no-op move. */
6316 SUBST (SET_DEST (x), pc_rtx);
6317 SUBST (SET_SRC (x), pc_rtx);
6318 return x;
6319 }
6320
6321 /* Simplify our comparison, if possible. */
6322 new_code = simplify_comparison (new_code, &op0, &op1);
6323
6324 #ifdef SELECT_CC_MODE
6325 /* If this machine has CC modes other than CCmode, check to see if we
6326 need to use a different CC mode here. */
6327 if (GET_MODE_CLASS (GET_MODE (op0)) == MODE_CC)
6328 compare_mode = GET_MODE (op0);
6329 else if (inner_compare
6330 && GET_MODE_CLASS (GET_MODE (inner_compare)) == MODE_CC
6331 && new_code == old_code
6332 && op0 == XEXP (inner_compare, 0)
6333 && op1 == XEXP (inner_compare, 1))
6334 compare_mode = GET_MODE (inner_compare);
6335 else
6336 compare_mode = SELECT_CC_MODE (new_code, op0, op1);
6337
6338 #ifndef HAVE_cc0
6339 /* If the mode changed, we have to change SET_DEST, the mode in the
6340 compare, and the mode in the place SET_DEST is used. If SET_DEST is
6341 a hard register, just build new versions with the proper mode. If it
6342 is a pseudo, we lose unless it is only time we set the pseudo, in
6343 which case we can safely change its mode. */
6344 if (compare_mode != GET_MODE (dest))
6345 {
6346 if (can_change_dest_mode (dest, 0, compare_mode))
6347 {
6348 unsigned int regno = REGNO (dest);
6349 rtx new_dest;
6350
6351 if (regno < FIRST_PSEUDO_REGISTER)
6352 new_dest = gen_rtx_REG (compare_mode, regno);
6353 else
6354 {
6355 SUBST_MODE (regno_reg_rtx[regno], compare_mode);
6356 new_dest = regno_reg_rtx[regno];
6357 }
6358
6359 SUBST (SET_DEST (x), new_dest);
6360 SUBST (XEXP (*cc_use, 0), new_dest);
6361 other_changed = 1;
6362
6363 dest = new_dest;
6364 }
6365 }
6366 #endif /* cc0 */
6367 #endif /* SELECT_CC_MODE */
6368
6369 /* If the code changed, we have to build a new comparison in
6370 undobuf.other_insn. */
6371 if (new_code != old_code)
6372 {
6373 int other_changed_previously = other_changed;
6374 unsigned HOST_WIDE_INT mask;
6375 rtx old_cc_use = *cc_use;
6376
6377 SUBST (*cc_use, gen_rtx_fmt_ee (new_code, GET_MODE (*cc_use),
6378 dest, const0_rtx));
6379 other_changed = 1;
6380
6381 /* If the only change we made was to change an EQ into an NE or
6382 vice versa, OP0 has only one bit that might be nonzero, and OP1
6383 is zero, check if changing the user of the condition code will
6384 produce a valid insn. If it won't, we can keep the original code
6385 in that insn by surrounding our operation with an XOR. */
6386
6387 if (((old_code == NE && new_code == EQ)
6388 || (old_code == EQ && new_code == NE))
6389 && ! other_changed_previously && op1 == const0_rtx
6390 && HWI_COMPUTABLE_MODE_P (GET_MODE (op0))
6391 && exact_log2 (mask = nonzero_bits (op0, GET_MODE (op0))) >= 0)
6392 {
6393 rtx pat = PATTERN (other_insn), note = 0;
6394
6395 if ((recog_for_combine (&pat, other_insn, &note) < 0
6396 && ! check_asm_operands (pat)))
6397 {
6398 *cc_use = old_cc_use;
6399 other_changed = 0;
6400
6401 op0 = simplify_gen_binary (XOR, GET_MODE (op0), op0,
6402 gen_int_mode (mask,
6403 GET_MODE (op0)));
6404 }
6405 }
6406 }
6407
6408 if (other_changed)
6409 undobuf.other_insn = other_insn;
6410
6411 /* Otherwise, if we didn't previously have a COMPARE in the
6412 correct mode, we need one. */
6413 if (GET_CODE (src) != COMPARE || GET_MODE (src) != compare_mode)
6414 {
6415 SUBST (SET_SRC (x), gen_rtx_COMPARE (compare_mode, op0, op1));
6416 src = SET_SRC (x);
6417 }
6418 else if (GET_MODE (op0) == compare_mode && op1 == const0_rtx)
6419 {
6420 SUBST (SET_SRC (x), op0);
6421 src = SET_SRC (x);
6422 }
6423 /* Otherwise, update the COMPARE if needed. */
6424 else if (XEXP (src, 0) != op0 || XEXP (src, 1) != op1)
6425 {
6426 SUBST (SET_SRC (x), gen_rtx_COMPARE (compare_mode, op0, op1));
6427 src = SET_SRC (x);
6428 }
6429 }
6430 else
6431 {
6432 /* Get SET_SRC in a form where we have placed back any
6433 compound expressions. Then do the checks below. */
6434 src = make_compound_operation (src, SET);
6435 SUBST (SET_SRC (x), src);
6436 }
6437
6438 /* If we have (set x (subreg:m1 (op:m2 ...) 0)) with OP being some operation,
6439 and X being a REG or (subreg (reg)), we may be able to convert this to
6440 (set (subreg:m2 x) (op)).
6441
6442 We can always do this if M1 is narrower than M2 because that means that
6443 we only care about the low bits of the result.
6444
6445 However, on machines without WORD_REGISTER_OPERATIONS defined, we cannot
6446 perform a narrower operation than requested since the high-order bits will
6447 be undefined. On machine where it is defined, this transformation is safe
6448 as long as M1 and M2 have the same number of words. */
6449
6450 if (GET_CODE (src) == SUBREG && subreg_lowpart_p (src)
6451 && !OBJECT_P (SUBREG_REG (src))
6452 && (((GET_MODE_SIZE (GET_MODE (src)) + (UNITS_PER_WORD - 1))
6453 / UNITS_PER_WORD)
6454 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (src)))
6455 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))
6456 #ifndef WORD_REGISTER_OPERATIONS
6457 && (GET_MODE_SIZE (GET_MODE (src))
6458 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (src))))
6459 #endif
6460 #ifdef CANNOT_CHANGE_MODE_CLASS
6461 && ! (REG_P (dest) && REGNO (dest) < FIRST_PSEUDO_REGISTER
6462 && REG_CANNOT_CHANGE_MODE_P (REGNO (dest),
6463 GET_MODE (SUBREG_REG (src)),
6464 GET_MODE (src)))
6465 #endif
6466 && (REG_P (dest)
6467 || (GET_CODE (dest) == SUBREG
6468 && REG_P (SUBREG_REG (dest)))))
6469 {
6470 SUBST (SET_DEST (x),
6471 gen_lowpart (GET_MODE (SUBREG_REG (src)),
6472 dest));
6473 SUBST (SET_SRC (x), SUBREG_REG (src));
6474
6475 src = SET_SRC (x), dest = SET_DEST (x);
6476 }
6477
6478 #ifdef HAVE_cc0
6479 /* If we have (set (cc0) (subreg ...)), we try to remove the subreg
6480 in SRC. */
6481 if (dest == cc0_rtx
6482 && GET_CODE (src) == SUBREG
6483 && subreg_lowpart_p (src)
6484 && (GET_MODE_PRECISION (GET_MODE (src))
6485 < GET_MODE_PRECISION (GET_MODE (SUBREG_REG (src)))))
6486 {
6487 rtx inner = SUBREG_REG (src);
6488 enum machine_mode inner_mode = GET_MODE (inner);
6489
6490 /* Here we make sure that we don't have a sign bit on. */
6491 if (val_signbit_known_clear_p (GET_MODE (src),
6492 nonzero_bits (inner, inner_mode)))
6493 {
6494 SUBST (SET_SRC (x), inner);
6495 src = SET_SRC (x);
6496 }
6497 }
6498 #endif
6499
6500 #ifdef LOAD_EXTEND_OP
6501 /* If we have (set FOO (subreg:M (mem:N BAR) 0)) with M wider than N, this
6502 would require a paradoxical subreg. Replace the subreg with a
6503 zero_extend to avoid the reload that would otherwise be required. */
6504
6505 if (GET_CODE (src) == SUBREG && subreg_lowpart_p (src)
6506 && INTEGRAL_MODE_P (GET_MODE (SUBREG_REG (src)))
6507 && LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (src))) != UNKNOWN
6508 && SUBREG_BYTE (src) == 0
6509 && paradoxical_subreg_p (src)
6510 && MEM_P (SUBREG_REG (src)))
6511 {
6512 SUBST (SET_SRC (x),
6513 gen_rtx_fmt_e (LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (src))),
6514 GET_MODE (src), SUBREG_REG (src)));
6515
6516 src = SET_SRC (x);
6517 }
6518 #endif
6519
6520 /* If we don't have a conditional move, SET_SRC is an IF_THEN_ELSE, and we
6521 are comparing an item known to be 0 or -1 against 0, use a logical
6522 operation instead. Check for one of the arms being an IOR of the other
6523 arm with some value. We compute three terms to be IOR'ed together. In
6524 practice, at most two will be nonzero. Then we do the IOR's. */
6525
6526 if (GET_CODE (dest) != PC
6527 && GET_CODE (src) == IF_THEN_ELSE
6528 && GET_MODE_CLASS (GET_MODE (src)) == MODE_INT
6529 && (GET_CODE (XEXP (src, 0)) == EQ || GET_CODE (XEXP (src, 0)) == NE)
6530 && XEXP (XEXP (src, 0), 1) == const0_rtx
6531 && GET_MODE (src) == GET_MODE (XEXP (XEXP (src, 0), 0))
6532 #ifdef HAVE_conditional_move
6533 && ! can_conditionally_move_p (GET_MODE (src))
6534 #endif
6535 && (num_sign_bit_copies (XEXP (XEXP (src, 0), 0),
6536 GET_MODE (XEXP (XEXP (src, 0), 0)))
6537 == GET_MODE_PRECISION (GET_MODE (XEXP (XEXP (src, 0), 0))))
6538 && ! side_effects_p (src))
6539 {
6540 rtx true_rtx = (GET_CODE (XEXP (src, 0)) == NE
6541 ? XEXP (src, 1) : XEXP (src, 2));
6542 rtx false_rtx = (GET_CODE (XEXP (src, 0)) == NE
6543 ? XEXP (src, 2) : XEXP (src, 1));
6544 rtx term1 = const0_rtx, term2, term3;
6545
6546 if (GET_CODE (true_rtx) == IOR
6547 && rtx_equal_p (XEXP (true_rtx, 0), false_rtx))
6548 term1 = false_rtx, true_rtx = XEXP (true_rtx, 1), false_rtx = const0_rtx;
6549 else if (GET_CODE (true_rtx) == IOR
6550 && rtx_equal_p (XEXP (true_rtx, 1), false_rtx))
6551 term1 = false_rtx, true_rtx = XEXP (true_rtx, 0), false_rtx = const0_rtx;
6552 else if (GET_CODE (false_rtx) == IOR
6553 && rtx_equal_p (XEXP (false_rtx, 0), true_rtx))
6554 term1 = true_rtx, false_rtx = XEXP (false_rtx, 1), true_rtx = const0_rtx;
6555 else if (GET_CODE (false_rtx) == IOR
6556 && rtx_equal_p (XEXP (false_rtx, 1), true_rtx))
6557 term1 = true_rtx, false_rtx = XEXP (false_rtx, 0), true_rtx = const0_rtx;
6558
6559 term2 = simplify_gen_binary (AND, GET_MODE (src),
6560 XEXP (XEXP (src, 0), 0), true_rtx);
6561 term3 = simplify_gen_binary (AND, GET_MODE (src),
6562 simplify_gen_unary (NOT, GET_MODE (src),
6563 XEXP (XEXP (src, 0), 0),
6564 GET_MODE (src)),
6565 false_rtx);
6566
6567 SUBST (SET_SRC (x),
6568 simplify_gen_binary (IOR, GET_MODE (src),
6569 simplify_gen_binary (IOR, GET_MODE (src),
6570 term1, term2),
6571 term3));
6572
6573 src = SET_SRC (x);
6574 }
6575
6576 /* If either SRC or DEST is a CLOBBER of (const_int 0), make this
6577 whole thing fail. */
6578 if (GET_CODE (src) == CLOBBER && XEXP (src, 0) == const0_rtx)
6579 return src;
6580 else if (GET_CODE (dest) == CLOBBER && XEXP (dest, 0) == const0_rtx)
6581 return dest;
6582 else
6583 /* Convert this into a field assignment operation, if possible. */
6584 return make_field_assignment (x);
6585 }
6586 \f
6587 /* Simplify, X, and AND, IOR, or XOR operation, and return the simplified
6588 result. */
6589
6590 static rtx
6591 simplify_logical (rtx x)
6592 {
6593 enum machine_mode mode = GET_MODE (x);
6594 rtx op0 = XEXP (x, 0);
6595 rtx op1 = XEXP (x, 1);
6596
6597 switch (GET_CODE (x))
6598 {
6599 case AND:
6600 /* We can call simplify_and_const_int only if we don't lose
6601 any (sign) bits when converting INTVAL (op1) to
6602 "unsigned HOST_WIDE_INT". */
6603 if (CONST_INT_P (op1)
6604 && (HWI_COMPUTABLE_MODE_P (mode)
6605 || INTVAL (op1) > 0))
6606 {
6607 x = simplify_and_const_int (x, mode, op0, INTVAL (op1));
6608 if (GET_CODE (x) != AND)
6609 return x;
6610
6611 op0 = XEXP (x, 0);
6612 op1 = XEXP (x, 1);
6613 }
6614
6615 /* If we have any of (and (ior A B) C) or (and (xor A B) C),
6616 apply the distributive law and then the inverse distributive
6617 law to see if things simplify. */
6618 if (GET_CODE (op0) == IOR || GET_CODE (op0) == XOR)
6619 {
6620 rtx result = distribute_and_simplify_rtx (x, 0);
6621 if (result)
6622 return result;
6623 }
6624 if (GET_CODE (op1) == IOR || GET_CODE (op1) == XOR)
6625 {
6626 rtx result = distribute_and_simplify_rtx (x, 1);
6627 if (result)
6628 return result;
6629 }
6630 break;
6631
6632 case IOR:
6633 /* If we have (ior (and A B) C), apply the distributive law and then
6634 the inverse distributive law to see if things simplify. */
6635
6636 if (GET_CODE (op0) == AND)
6637 {
6638 rtx result = distribute_and_simplify_rtx (x, 0);
6639 if (result)
6640 return result;
6641 }
6642
6643 if (GET_CODE (op1) == AND)
6644 {
6645 rtx result = distribute_and_simplify_rtx (x, 1);
6646 if (result)
6647 return result;
6648 }
6649 break;
6650
6651 default:
6652 gcc_unreachable ();
6653 }
6654
6655 return x;
6656 }
6657 \f
6658 /* We consider ZERO_EXTRACT, SIGN_EXTRACT, and SIGN_EXTEND as "compound
6659 operations" because they can be replaced with two more basic operations.
6660 ZERO_EXTEND is also considered "compound" because it can be replaced with
6661 an AND operation, which is simpler, though only one operation.
6662
6663 The function expand_compound_operation is called with an rtx expression
6664 and will convert it to the appropriate shifts and AND operations,
6665 simplifying at each stage.
6666
6667 The function make_compound_operation is called to convert an expression
6668 consisting of shifts and ANDs into the equivalent compound expression.
6669 It is the inverse of this function, loosely speaking. */
6670
6671 static rtx
6672 expand_compound_operation (rtx x)
6673 {
6674 unsigned HOST_WIDE_INT pos = 0, len;
6675 int unsignedp = 0;
6676 unsigned int modewidth;
6677 rtx tem;
6678
6679 switch (GET_CODE (x))
6680 {
6681 case ZERO_EXTEND:
6682 unsignedp = 1;
6683 case SIGN_EXTEND:
6684 /* We can't necessarily use a const_int for a multiword mode;
6685 it depends on implicitly extending the value.
6686 Since we don't know the right way to extend it,
6687 we can't tell whether the implicit way is right.
6688
6689 Even for a mode that is no wider than a const_int,
6690 we can't win, because we need to sign extend one of its bits through
6691 the rest of it, and we don't know which bit. */
6692 if (CONST_INT_P (XEXP (x, 0)))
6693 return x;
6694
6695 /* Return if (subreg:MODE FROM 0) is not a safe replacement for
6696 (zero_extend:MODE FROM) or (sign_extend:MODE FROM). It is for any MEM
6697 because (SUBREG (MEM...)) is guaranteed to cause the MEM to be
6698 reloaded. If not for that, MEM's would very rarely be safe.
6699
6700 Reject MODEs bigger than a word, because we might not be able
6701 to reference a two-register group starting with an arbitrary register
6702 (and currently gen_lowpart might crash for a SUBREG). */
6703
6704 if (GET_MODE_SIZE (GET_MODE (XEXP (x, 0))) > UNITS_PER_WORD)
6705 return x;
6706
6707 /* Reject MODEs that aren't scalar integers because turning vector
6708 or complex modes into shifts causes problems. */
6709
6710 if (! SCALAR_INT_MODE_P (GET_MODE (XEXP (x, 0))))
6711 return x;
6712
6713 len = GET_MODE_PRECISION (GET_MODE (XEXP (x, 0)));
6714 /* If the inner object has VOIDmode (the only way this can happen
6715 is if it is an ASM_OPERANDS), we can't do anything since we don't
6716 know how much masking to do. */
6717 if (len == 0)
6718 return x;
6719
6720 break;
6721
6722 case ZERO_EXTRACT:
6723 unsignedp = 1;
6724
6725 /* ... fall through ... */
6726
6727 case SIGN_EXTRACT:
6728 /* If the operand is a CLOBBER, just return it. */
6729 if (GET_CODE (XEXP (x, 0)) == CLOBBER)
6730 return XEXP (x, 0);
6731
6732 if (!CONST_INT_P (XEXP (x, 1))
6733 || !CONST_INT_P (XEXP (x, 2))
6734 || GET_MODE (XEXP (x, 0)) == VOIDmode)
6735 return x;
6736
6737 /* Reject MODEs that aren't scalar integers because turning vector
6738 or complex modes into shifts causes problems. */
6739
6740 if (! SCALAR_INT_MODE_P (GET_MODE (XEXP (x, 0))))
6741 return x;
6742
6743 len = INTVAL (XEXP (x, 1));
6744 pos = INTVAL (XEXP (x, 2));
6745
6746 /* This should stay within the object being extracted, fail otherwise. */
6747 if (len + pos > GET_MODE_PRECISION (GET_MODE (XEXP (x, 0))))
6748 return x;
6749
6750 if (BITS_BIG_ENDIAN)
6751 pos = GET_MODE_PRECISION (GET_MODE (XEXP (x, 0))) - len - pos;
6752
6753 break;
6754
6755 default:
6756 return x;
6757 }
6758 /* Convert sign extension to zero extension, if we know that the high
6759 bit is not set, as this is easier to optimize. It will be converted
6760 back to cheaper alternative in make_extraction. */
6761 if (GET_CODE (x) == SIGN_EXTEND
6762 && (HWI_COMPUTABLE_MODE_P (GET_MODE (x))
6763 && ((nonzero_bits (XEXP (x, 0), GET_MODE (XEXP (x, 0)))
6764 & ~(((unsigned HOST_WIDE_INT)
6765 GET_MODE_MASK (GET_MODE (XEXP (x, 0))))
6766 >> 1))
6767 == 0)))
6768 {
6769 rtx temp = gen_rtx_ZERO_EXTEND (GET_MODE (x), XEXP (x, 0));
6770 rtx temp2 = expand_compound_operation (temp);
6771
6772 /* Make sure this is a profitable operation. */
6773 if (set_src_cost (x, optimize_this_for_speed_p)
6774 > set_src_cost (temp2, optimize_this_for_speed_p))
6775 return temp2;
6776 else if (set_src_cost (x, optimize_this_for_speed_p)
6777 > set_src_cost (temp, optimize_this_for_speed_p))
6778 return temp;
6779 else
6780 return x;
6781 }
6782
6783 /* We can optimize some special cases of ZERO_EXTEND. */
6784 if (GET_CODE (x) == ZERO_EXTEND)
6785 {
6786 /* (zero_extend:DI (truncate:SI foo:DI)) is just foo:DI if we
6787 know that the last value didn't have any inappropriate bits
6788 set. */
6789 if (GET_CODE (XEXP (x, 0)) == TRUNCATE
6790 && GET_MODE (XEXP (XEXP (x, 0), 0)) == GET_MODE (x)
6791 && HWI_COMPUTABLE_MODE_P (GET_MODE (x))
6792 && (nonzero_bits (XEXP (XEXP (x, 0), 0), GET_MODE (x))
6793 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
6794 return XEXP (XEXP (x, 0), 0);
6795
6796 /* Likewise for (zero_extend:DI (subreg:SI foo:DI 0)). */
6797 if (GET_CODE (XEXP (x, 0)) == SUBREG
6798 && GET_MODE (SUBREG_REG (XEXP (x, 0))) == GET_MODE (x)
6799 && subreg_lowpart_p (XEXP (x, 0))
6800 && HWI_COMPUTABLE_MODE_P (GET_MODE (x))
6801 && (nonzero_bits (SUBREG_REG (XEXP (x, 0)), GET_MODE (x))
6802 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
6803 return SUBREG_REG (XEXP (x, 0));
6804
6805 /* (zero_extend:DI (truncate:SI foo:DI)) is just foo:DI when foo
6806 is a comparison and STORE_FLAG_VALUE permits. This is like
6807 the first case, but it works even when GET_MODE (x) is larger
6808 than HOST_WIDE_INT. */
6809 if (GET_CODE (XEXP (x, 0)) == TRUNCATE
6810 && GET_MODE (XEXP (XEXP (x, 0), 0)) == GET_MODE (x)
6811 && COMPARISON_P (XEXP (XEXP (x, 0), 0))
6812 && (GET_MODE_PRECISION (GET_MODE (XEXP (x, 0)))
6813 <= HOST_BITS_PER_WIDE_INT)
6814 && (STORE_FLAG_VALUE & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
6815 return XEXP (XEXP (x, 0), 0);
6816
6817 /* Likewise for (zero_extend:DI (subreg:SI foo:DI 0)). */
6818 if (GET_CODE (XEXP (x, 0)) == SUBREG
6819 && GET_MODE (SUBREG_REG (XEXP (x, 0))) == GET_MODE (x)
6820 && subreg_lowpart_p (XEXP (x, 0))
6821 && COMPARISON_P (SUBREG_REG (XEXP (x, 0)))
6822 && (GET_MODE_PRECISION (GET_MODE (XEXP (x, 0)))
6823 <= HOST_BITS_PER_WIDE_INT)
6824 && (STORE_FLAG_VALUE & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
6825 return SUBREG_REG (XEXP (x, 0));
6826
6827 }
6828
6829 /* If we reach here, we want to return a pair of shifts. The inner
6830 shift is a left shift of BITSIZE - POS - LEN bits. The outer
6831 shift is a right shift of BITSIZE - LEN bits. It is arithmetic or
6832 logical depending on the value of UNSIGNEDP.
6833
6834 If this was a ZERO_EXTEND or ZERO_EXTRACT, this pair of shifts will be
6835 converted into an AND of a shift.
6836
6837 We must check for the case where the left shift would have a negative
6838 count. This can happen in a case like (x >> 31) & 255 on machines
6839 that can't shift by a constant. On those machines, we would first
6840 combine the shift with the AND to produce a variable-position
6841 extraction. Then the constant of 31 would be substituted in
6842 to produce such a position. */
6843
6844 modewidth = GET_MODE_PRECISION (GET_MODE (x));
6845 if (modewidth >= pos + len)
6846 {
6847 enum machine_mode mode = GET_MODE (x);
6848 tem = gen_lowpart (mode, XEXP (x, 0));
6849 if (!tem || GET_CODE (tem) == CLOBBER)
6850 return x;
6851 tem = simplify_shift_const (NULL_RTX, ASHIFT, mode,
6852 tem, modewidth - pos - len);
6853 tem = simplify_shift_const (NULL_RTX, unsignedp ? LSHIFTRT : ASHIFTRT,
6854 mode, tem, modewidth - len);
6855 }
6856 else if (unsignedp && len < HOST_BITS_PER_WIDE_INT)
6857 tem = simplify_and_const_int (NULL_RTX, GET_MODE (x),
6858 simplify_shift_const (NULL_RTX, LSHIFTRT,
6859 GET_MODE (x),
6860 XEXP (x, 0), pos),
6861 ((unsigned HOST_WIDE_INT) 1 << len) - 1);
6862 else
6863 /* Any other cases we can't handle. */
6864 return x;
6865
6866 /* If we couldn't do this for some reason, return the original
6867 expression. */
6868 if (GET_CODE (tem) == CLOBBER)
6869 return x;
6870
6871 return tem;
6872 }
6873 \f
6874 /* X is a SET which contains an assignment of one object into
6875 a part of another (such as a bit-field assignment, STRICT_LOW_PART,
6876 or certain SUBREGS). If possible, convert it into a series of
6877 logical operations.
6878
6879 We half-heartedly support variable positions, but do not at all
6880 support variable lengths. */
6881
6882 static const_rtx
6883 expand_field_assignment (const_rtx x)
6884 {
6885 rtx inner;
6886 rtx pos; /* Always counts from low bit. */
6887 int len;
6888 rtx mask, cleared, masked;
6889 enum machine_mode compute_mode;
6890
6891 /* Loop until we find something we can't simplify. */
6892 while (1)
6893 {
6894 if (GET_CODE (SET_DEST (x)) == STRICT_LOW_PART
6895 && GET_CODE (XEXP (SET_DEST (x), 0)) == SUBREG)
6896 {
6897 inner = SUBREG_REG (XEXP (SET_DEST (x), 0));
6898 len = GET_MODE_PRECISION (GET_MODE (XEXP (SET_DEST (x), 0)));
6899 pos = GEN_INT (subreg_lsb (XEXP (SET_DEST (x), 0)));
6900 }
6901 else if (GET_CODE (SET_DEST (x)) == ZERO_EXTRACT
6902 && CONST_INT_P (XEXP (SET_DEST (x), 1)))
6903 {
6904 inner = XEXP (SET_DEST (x), 0);
6905 len = INTVAL (XEXP (SET_DEST (x), 1));
6906 pos = XEXP (SET_DEST (x), 2);
6907
6908 /* A constant position should stay within the width of INNER. */
6909 if (CONST_INT_P (pos)
6910 && INTVAL (pos) + len > GET_MODE_PRECISION (GET_MODE (inner)))
6911 break;
6912
6913 if (BITS_BIG_ENDIAN)
6914 {
6915 if (CONST_INT_P (pos))
6916 pos = GEN_INT (GET_MODE_PRECISION (GET_MODE (inner)) - len
6917 - INTVAL (pos));
6918 else if (GET_CODE (pos) == MINUS
6919 && CONST_INT_P (XEXP (pos, 1))
6920 && (INTVAL (XEXP (pos, 1))
6921 == GET_MODE_PRECISION (GET_MODE (inner)) - len))
6922 /* If position is ADJUST - X, new position is X. */
6923 pos = XEXP (pos, 0);
6924 else
6925 {
6926 HOST_WIDE_INT prec = GET_MODE_PRECISION (GET_MODE (inner));
6927 pos = simplify_gen_binary (MINUS, GET_MODE (pos),
6928 gen_int_mode (prec - len,
6929 GET_MODE (pos)),
6930 pos);
6931 }
6932 }
6933 }
6934
6935 /* A SUBREG between two modes that occupy the same numbers of words
6936 can be done by moving the SUBREG to the source. */
6937 else if (GET_CODE (SET_DEST (x)) == SUBREG
6938 /* We need SUBREGs to compute nonzero_bits properly. */
6939 && nonzero_sign_valid
6940 && (((GET_MODE_SIZE (GET_MODE (SET_DEST (x)))
6941 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
6942 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (x))))
6943 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)))
6944 {
6945 x = gen_rtx_SET (VOIDmode, SUBREG_REG (SET_DEST (x)),
6946 gen_lowpart
6947 (GET_MODE (SUBREG_REG (SET_DEST (x))),
6948 SET_SRC (x)));
6949 continue;
6950 }
6951 else
6952 break;
6953
6954 while (GET_CODE (inner) == SUBREG && subreg_lowpart_p (inner))
6955 inner = SUBREG_REG (inner);
6956
6957 compute_mode = GET_MODE (inner);
6958
6959 /* Don't attempt bitwise arithmetic on non scalar integer modes. */
6960 if (! SCALAR_INT_MODE_P (compute_mode))
6961 {
6962 enum machine_mode imode;
6963
6964 /* Don't do anything for vector or complex integral types. */
6965 if (! FLOAT_MODE_P (compute_mode))
6966 break;
6967
6968 /* Try to find an integral mode to pun with. */
6969 imode = mode_for_size (GET_MODE_BITSIZE (compute_mode), MODE_INT, 0);
6970 if (imode == BLKmode)
6971 break;
6972
6973 compute_mode = imode;
6974 inner = gen_lowpart (imode, inner);
6975 }
6976
6977 /* Compute a mask of LEN bits, if we can do this on the host machine. */
6978 if (len >= HOST_BITS_PER_WIDE_INT)
6979 break;
6980
6981 /* Now compute the equivalent expression. Make a copy of INNER
6982 for the SET_DEST in case it is a MEM into which we will substitute;
6983 we don't want shared RTL in that case. */
6984 mask = gen_int_mode (((unsigned HOST_WIDE_INT) 1 << len) - 1,
6985 compute_mode);
6986 cleared = simplify_gen_binary (AND, compute_mode,
6987 simplify_gen_unary (NOT, compute_mode,
6988 simplify_gen_binary (ASHIFT,
6989 compute_mode,
6990 mask, pos),
6991 compute_mode),
6992 inner);
6993 masked = simplify_gen_binary (ASHIFT, compute_mode,
6994 simplify_gen_binary (
6995 AND, compute_mode,
6996 gen_lowpart (compute_mode, SET_SRC (x)),
6997 mask),
6998 pos);
6999
7000 x = gen_rtx_SET (VOIDmode, copy_rtx (inner),
7001 simplify_gen_binary (IOR, compute_mode,
7002 cleared, masked));
7003 }
7004
7005 return x;
7006 }
7007 \f
7008 /* Return an RTX for a reference to LEN bits of INNER. If POS_RTX is nonzero,
7009 it is an RTX that represents the (variable) starting position; otherwise,
7010 POS is the (constant) starting bit position. Both are counted from the LSB.
7011
7012 UNSIGNEDP is nonzero for an unsigned reference and zero for a signed one.
7013
7014 IN_DEST is nonzero if this is a reference in the destination of a SET.
7015 This is used when a ZERO_ or SIGN_EXTRACT isn't needed. If nonzero,
7016 a STRICT_LOW_PART will be used, if zero, ZERO_EXTEND or SIGN_EXTEND will
7017 be used.
7018
7019 IN_COMPARE is nonzero if we are in a COMPARE. This means that a
7020 ZERO_EXTRACT should be built even for bits starting at bit 0.
7021
7022 MODE is the desired mode of the result (if IN_DEST == 0).
7023
7024 The result is an RTX for the extraction or NULL_RTX if the target
7025 can't handle it. */
7026
7027 static rtx
7028 make_extraction (enum machine_mode mode, rtx inner, HOST_WIDE_INT pos,
7029 rtx pos_rtx, unsigned HOST_WIDE_INT len, int unsignedp,
7030 int in_dest, int in_compare)
7031 {
7032 /* This mode describes the size of the storage area
7033 to fetch the overall value from. Within that, we
7034 ignore the POS lowest bits, etc. */
7035 enum machine_mode is_mode = GET_MODE (inner);
7036 enum machine_mode inner_mode;
7037 enum machine_mode wanted_inner_mode;
7038 enum machine_mode wanted_inner_reg_mode = word_mode;
7039 enum machine_mode pos_mode = word_mode;
7040 enum machine_mode extraction_mode = word_mode;
7041 enum machine_mode tmode = mode_for_size (len, MODE_INT, 1);
7042 rtx new_rtx = 0;
7043 rtx orig_pos_rtx = pos_rtx;
7044 HOST_WIDE_INT orig_pos;
7045
7046 if (pos_rtx && CONST_INT_P (pos_rtx))
7047 pos = INTVAL (pos_rtx), pos_rtx = 0;
7048
7049 if (GET_CODE (inner) == SUBREG && subreg_lowpart_p (inner))
7050 {
7051 /* If going from (subreg:SI (mem:QI ...)) to (mem:QI ...),
7052 consider just the QI as the memory to extract from.
7053 The subreg adds or removes high bits; its mode is
7054 irrelevant to the meaning of this extraction,
7055 since POS and LEN count from the lsb. */
7056 if (MEM_P (SUBREG_REG (inner)))
7057 is_mode = GET_MODE (SUBREG_REG (inner));
7058 inner = SUBREG_REG (inner);
7059 }
7060 else if (GET_CODE (inner) == ASHIFT
7061 && CONST_INT_P (XEXP (inner, 1))
7062 && pos_rtx == 0 && pos == 0
7063 && len > UINTVAL (XEXP (inner, 1)))
7064 {
7065 /* We're extracting the least significant bits of an rtx
7066 (ashift X (const_int C)), where LEN > C. Extract the
7067 least significant (LEN - C) bits of X, giving an rtx
7068 whose mode is MODE, then shift it left C times. */
7069 new_rtx = make_extraction (mode, XEXP (inner, 0),
7070 0, 0, len - INTVAL (XEXP (inner, 1)),
7071 unsignedp, in_dest, in_compare);
7072 if (new_rtx != 0)
7073 return gen_rtx_ASHIFT (mode, new_rtx, XEXP (inner, 1));
7074 }
7075 else if (GET_CODE (inner) == TRUNCATE)
7076 inner = XEXP (inner, 0);
7077
7078 inner_mode = GET_MODE (inner);
7079
7080 /* See if this can be done without an extraction. We never can if the
7081 width of the field is not the same as that of some integer mode. For
7082 registers, we can only avoid the extraction if the position is at the
7083 low-order bit and this is either not in the destination or we have the
7084 appropriate STRICT_LOW_PART operation available.
7085
7086 For MEM, we can avoid an extract if the field starts on an appropriate
7087 boundary and we can change the mode of the memory reference. */
7088
7089 if (tmode != BLKmode
7090 && ((pos_rtx == 0 && (pos % BITS_PER_WORD) == 0
7091 && !MEM_P (inner)
7092 && (inner_mode == tmode
7093 || !REG_P (inner)
7094 || TRULY_NOOP_TRUNCATION_MODES_P (tmode, inner_mode)
7095 || reg_truncated_to_mode (tmode, inner))
7096 && (! in_dest
7097 || (REG_P (inner)
7098 && have_insn_for (STRICT_LOW_PART, tmode))))
7099 || (MEM_P (inner) && pos_rtx == 0
7100 && (pos
7101 % (STRICT_ALIGNMENT ? GET_MODE_ALIGNMENT (tmode)
7102 : BITS_PER_UNIT)) == 0
7103 /* We can't do this if we are widening INNER_MODE (it
7104 may not be aligned, for one thing). */
7105 && GET_MODE_PRECISION (inner_mode) >= GET_MODE_PRECISION (tmode)
7106 && (inner_mode == tmode
7107 || (! mode_dependent_address_p (XEXP (inner, 0),
7108 MEM_ADDR_SPACE (inner))
7109 && ! MEM_VOLATILE_P (inner))))))
7110 {
7111 /* If INNER is a MEM, make a new MEM that encompasses just the desired
7112 field. If the original and current mode are the same, we need not
7113 adjust the offset. Otherwise, we do if bytes big endian.
7114
7115 If INNER is not a MEM, get a piece consisting of just the field
7116 of interest (in this case POS % BITS_PER_WORD must be 0). */
7117
7118 if (MEM_P (inner))
7119 {
7120 HOST_WIDE_INT offset;
7121
7122 /* POS counts from lsb, but make OFFSET count in memory order. */
7123 if (BYTES_BIG_ENDIAN)
7124 offset = (GET_MODE_PRECISION (is_mode) - len - pos) / BITS_PER_UNIT;
7125 else
7126 offset = pos / BITS_PER_UNIT;
7127
7128 new_rtx = adjust_address_nv (inner, tmode, offset);
7129 }
7130 else if (REG_P (inner))
7131 {
7132 if (tmode != inner_mode)
7133 {
7134 /* We can't call gen_lowpart in a DEST since we
7135 always want a SUBREG (see below) and it would sometimes
7136 return a new hard register. */
7137 if (pos || in_dest)
7138 {
7139 HOST_WIDE_INT final_word = pos / BITS_PER_WORD;
7140
7141 if (WORDS_BIG_ENDIAN
7142 && GET_MODE_SIZE (inner_mode) > UNITS_PER_WORD)
7143 final_word = ((GET_MODE_SIZE (inner_mode)
7144 - GET_MODE_SIZE (tmode))
7145 / UNITS_PER_WORD) - final_word;
7146
7147 final_word *= UNITS_PER_WORD;
7148 if (BYTES_BIG_ENDIAN &&
7149 GET_MODE_SIZE (inner_mode) > GET_MODE_SIZE (tmode))
7150 final_word += (GET_MODE_SIZE (inner_mode)
7151 - GET_MODE_SIZE (tmode)) % UNITS_PER_WORD;
7152
7153 /* Avoid creating invalid subregs, for example when
7154 simplifying (x>>32)&255. */
7155 if (!validate_subreg (tmode, inner_mode, inner, final_word))
7156 return NULL_RTX;
7157
7158 new_rtx = gen_rtx_SUBREG (tmode, inner, final_word);
7159 }
7160 else
7161 new_rtx = gen_lowpart (tmode, inner);
7162 }
7163 else
7164 new_rtx = inner;
7165 }
7166 else
7167 new_rtx = force_to_mode (inner, tmode,
7168 len >= HOST_BITS_PER_WIDE_INT
7169 ? ~(unsigned HOST_WIDE_INT) 0
7170 : ((unsigned HOST_WIDE_INT) 1 << len) - 1,
7171 0);
7172
7173 /* If this extraction is going into the destination of a SET,
7174 make a STRICT_LOW_PART unless we made a MEM. */
7175
7176 if (in_dest)
7177 return (MEM_P (new_rtx) ? new_rtx
7178 : (GET_CODE (new_rtx) != SUBREG
7179 ? gen_rtx_CLOBBER (tmode, const0_rtx)
7180 : gen_rtx_STRICT_LOW_PART (VOIDmode, new_rtx)));
7181
7182 if (mode == tmode)
7183 return new_rtx;
7184
7185 if (CONST_SCALAR_INT_P (new_rtx))
7186 return simplify_unary_operation (unsignedp ? ZERO_EXTEND : SIGN_EXTEND,
7187 mode, new_rtx, tmode);
7188
7189 /* If we know that no extraneous bits are set, and that the high
7190 bit is not set, convert the extraction to the cheaper of
7191 sign and zero extension, that are equivalent in these cases. */
7192 if (flag_expensive_optimizations
7193 && (HWI_COMPUTABLE_MODE_P (tmode)
7194 && ((nonzero_bits (new_rtx, tmode)
7195 & ~(((unsigned HOST_WIDE_INT)GET_MODE_MASK (tmode)) >> 1))
7196 == 0)))
7197 {
7198 rtx temp = gen_rtx_ZERO_EXTEND (mode, new_rtx);
7199 rtx temp1 = gen_rtx_SIGN_EXTEND (mode, new_rtx);
7200
7201 /* Prefer ZERO_EXTENSION, since it gives more information to
7202 backends. */
7203 if (set_src_cost (temp, optimize_this_for_speed_p)
7204 <= set_src_cost (temp1, optimize_this_for_speed_p))
7205 return temp;
7206 return temp1;
7207 }
7208
7209 /* Otherwise, sign- or zero-extend unless we already are in the
7210 proper mode. */
7211
7212 return (gen_rtx_fmt_e (unsignedp ? ZERO_EXTEND : SIGN_EXTEND,
7213 mode, new_rtx));
7214 }
7215
7216 /* Unless this is a COMPARE or we have a funny memory reference,
7217 don't do anything with zero-extending field extracts starting at
7218 the low-order bit since they are simple AND operations. */
7219 if (pos_rtx == 0 && pos == 0 && ! in_dest
7220 && ! in_compare && unsignedp)
7221 return 0;
7222
7223 /* Unless INNER is not MEM, reject this if we would be spanning bytes or
7224 if the position is not a constant and the length is not 1. In all
7225 other cases, we would only be going outside our object in cases when
7226 an original shift would have been undefined. */
7227 if (MEM_P (inner)
7228 && ((pos_rtx == 0 && pos + len > GET_MODE_PRECISION (is_mode))
7229 || (pos_rtx != 0 && len != 1)))
7230 return 0;
7231
7232 enum extraction_pattern pattern = (in_dest ? EP_insv
7233 : unsignedp ? EP_extzv : EP_extv);
7234
7235 /* If INNER is not from memory, we want it to have the mode of a register
7236 extraction pattern's structure operand, or word_mode if there is no
7237 such pattern. The same applies to extraction_mode and pos_mode
7238 and their respective operands.
7239
7240 For memory, assume that the desired extraction_mode and pos_mode
7241 are the same as for a register operation, since at present we don't
7242 have named patterns for aligned memory structures. */
7243 struct extraction_insn insn;
7244 if (get_best_reg_extraction_insn (&insn, pattern,
7245 GET_MODE_BITSIZE (inner_mode), mode))
7246 {
7247 wanted_inner_reg_mode = insn.struct_mode;
7248 pos_mode = insn.pos_mode;
7249 extraction_mode = insn.field_mode;
7250 }
7251
7252 /* Never narrow an object, since that might not be safe. */
7253
7254 if (mode != VOIDmode
7255 && GET_MODE_SIZE (extraction_mode) < GET_MODE_SIZE (mode))
7256 extraction_mode = mode;
7257
7258 if (!MEM_P (inner))
7259 wanted_inner_mode = wanted_inner_reg_mode;
7260 else
7261 {
7262 /* Be careful not to go beyond the extracted object and maintain the
7263 natural alignment of the memory. */
7264 wanted_inner_mode = smallest_mode_for_size (len, MODE_INT);
7265 while (pos % GET_MODE_BITSIZE (wanted_inner_mode) + len
7266 > GET_MODE_BITSIZE (wanted_inner_mode))
7267 {
7268 wanted_inner_mode = GET_MODE_WIDER_MODE (wanted_inner_mode);
7269 gcc_assert (wanted_inner_mode != VOIDmode);
7270 }
7271 }
7272
7273 orig_pos = pos;
7274
7275 if (BITS_BIG_ENDIAN)
7276 {
7277 /* POS is passed as if BITS_BIG_ENDIAN == 0, so we need to convert it to
7278 BITS_BIG_ENDIAN style. If position is constant, compute new
7279 position. Otherwise, build subtraction.
7280 Note that POS is relative to the mode of the original argument.
7281 If it's a MEM we need to recompute POS relative to that.
7282 However, if we're extracting from (or inserting into) a register,
7283 we want to recompute POS relative to wanted_inner_mode. */
7284 int width = (MEM_P (inner)
7285 ? GET_MODE_BITSIZE (is_mode)
7286 : GET_MODE_BITSIZE (wanted_inner_mode));
7287
7288 if (pos_rtx == 0)
7289 pos = width - len - pos;
7290 else
7291 pos_rtx
7292 = gen_rtx_MINUS (GET_MODE (pos_rtx),
7293 gen_int_mode (width - len, GET_MODE (pos_rtx)),
7294 pos_rtx);
7295 /* POS may be less than 0 now, but we check for that below.
7296 Note that it can only be less than 0 if !MEM_P (inner). */
7297 }
7298
7299 /* If INNER has a wider mode, and this is a constant extraction, try to
7300 make it smaller and adjust the byte to point to the byte containing
7301 the value. */
7302 if (wanted_inner_mode != VOIDmode
7303 && inner_mode != wanted_inner_mode
7304 && ! pos_rtx
7305 && GET_MODE_SIZE (wanted_inner_mode) < GET_MODE_SIZE (is_mode)
7306 && MEM_P (inner)
7307 && ! mode_dependent_address_p (XEXP (inner, 0), MEM_ADDR_SPACE (inner))
7308 && ! MEM_VOLATILE_P (inner))
7309 {
7310 int offset = 0;
7311
7312 /* The computations below will be correct if the machine is big
7313 endian in both bits and bytes or little endian in bits and bytes.
7314 If it is mixed, we must adjust. */
7315
7316 /* If bytes are big endian and we had a paradoxical SUBREG, we must
7317 adjust OFFSET to compensate. */
7318 if (BYTES_BIG_ENDIAN
7319 && GET_MODE_SIZE (inner_mode) < GET_MODE_SIZE (is_mode))
7320 offset -= GET_MODE_SIZE (is_mode) - GET_MODE_SIZE (inner_mode);
7321
7322 /* We can now move to the desired byte. */
7323 offset += (pos / GET_MODE_BITSIZE (wanted_inner_mode))
7324 * GET_MODE_SIZE (wanted_inner_mode);
7325 pos %= GET_MODE_BITSIZE (wanted_inner_mode);
7326
7327 if (BYTES_BIG_ENDIAN != BITS_BIG_ENDIAN
7328 && is_mode != wanted_inner_mode)
7329 offset = (GET_MODE_SIZE (is_mode)
7330 - GET_MODE_SIZE (wanted_inner_mode) - offset);
7331
7332 inner = adjust_address_nv (inner, wanted_inner_mode, offset);
7333 }
7334
7335 /* If INNER is not memory, get it into the proper mode. If we are changing
7336 its mode, POS must be a constant and smaller than the size of the new
7337 mode. */
7338 else if (!MEM_P (inner))
7339 {
7340 /* On the LHS, don't create paradoxical subregs implicitely truncating
7341 the register unless TRULY_NOOP_TRUNCATION. */
7342 if (in_dest
7343 && !TRULY_NOOP_TRUNCATION_MODES_P (GET_MODE (inner),
7344 wanted_inner_mode))
7345 return NULL_RTX;
7346
7347 if (GET_MODE (inner) != wanted_inner_mode
7348 && (pos_rtx != 0
7349 || orig_pos + len > GET_MODE_BITSIZE (wanted_inner_mode)))
7350 return NULL_RTX;
7351
7352 if (orig_pos < 0)
7353 return NULL_RTX;
7354
7355 inner = force_to_mode (inner, wanted_inner_mode,
7356 pos_rtx
7357 || len + orig_pos >= HOST_BITS_PER_WIDE_INT
7358 ? ~(unsigned HOST_WIDE_INT) 0
7359 : ((((unsigned HOST_WIDE_INT) 1 << len) - 1)
7360 << orig_pos),
7361 0);
7362 }
7363
7364 /* Adjust mode of POS_RTX, if needed. If we want a wider mode, we
7365 have to zero extend. Otherwise, we can just use a SUBREG. */
7366 if (pos_rtx != 0
7367 && GET_MODE_SIZE (pos_mode) > GET_MODE_SIZE (GET_MODE (pos_rtx)))
7368 {
7369 rtx temp = simplify_gen_unary (ZERO_EXTEND, pos_mode, pos_rtx,
7370 GET_MODE (pos_rtx));
7371
7372 /* If we know that no extraneous bits are set, and that the high
7373 bit is not set, convert extraction to cheaper one - either
7374 SIGN_EXTENSION or ZERO_EXTENSION, that are equivalent in these
7375 cases. */
7376 if (flag_expensive_optimizations
7377 && (HWI_COMPUTABLE_MODE_P (GET_MODE (pos_rtx))
7378 && ((nonzero_bits (pos_rtx, GET_MODE (pos_rtx))
7379 & ~(((unsigned HOST_WIDE_INT)
7380 GET_MODE_MASK (GET_MODE (pos_rtx)))
7381 >> 1))
7382 == 0)))
7383 {
7384 rtx temp1 = simplify_gen_unary (SIGN_EXTEND, pos_mode, pos_rtx,
7385 GET_MODE (pos_rtx));
7386
7387 /* Prefer ZERO_EXTENSION, since it gives more information to
7388 backends. */
7389 if (set_src_cost (temp1, optimize_this_for_speed_p)
7390 < set_src_cost (temp, optimize_this_for_speed_p))
7391 temp = temp1;
7392 }
7393 pos_rtx = temp;
7394 }
7395
7396 /* Make POS_RTX unless we already have it and it is correct. If we don't
7397 have a POS_RTX but we do have an ORIG_POS_RTX, the latter must
7398 be a CONST_INT. */
7399 if (pos_rtx == 0 && orig_pos_rtx != 0 && INTVAL (orig_pos_rtx) == pos)
7400 pos_rtx = orig_pos_rtx;
7401
7402 else if (pos_rtx == 0)
7403 pos_rtx = GEN_INT (pos);
7404
7405 /* Make the required operation. See if we can use existing rtx. */
7406 new_rtx = gen_rtx_fmt_eee (unsignedp ? ZERO_EXTRACT : SIGN_EXTRACT,
7407 extraction_mode, inner, GEN_INT (len), pos_rtx);
7408 if (! in_dest)
7409 new_rtx = gen_lowpart (mode, new_rtx);
7410
7411 return new_rtx;
7412 }
7413 \f
7414 /* See if X contains an ASHIFT of COUNT or more bits that can be commuted
7415 with any other operations in X. Return X without that shift if so. */
7416
7417 static rtx
7418 extract_left_shift (rtx x, int count)
7419 {
7420 enum rtx_code code = GET_CODE (x);
7421 enum machine_mode mode = GET_MODE (x);
7422 rtx tem;
7423
7424 switch (code)
7425 {
7426 case ASHIFT:
7427 /* This is the shift itself. If it is wide enough, we will return
7428 either the value being shifted if the shift count is equal to
7429 COUNT or a shift for the difference. */
7430 if (CONST_INT_P (XEXP (x, 1))
7431 && INTVAL (XEXP (x, 1)) >= count)
7432 return simplify_shift_const (NULL_RTX, ASHIFT, mode, XEXP (x, 0),
7433 INTVAL (XEXP (x, 1)) - count);
7434 break;
7435
7436 case NEG: case NOT:
7437 if ((tem = extract_left_shift (XEXP (x, 0), count)) != 0)
7438 return simplify_gen_unary (code, mode, tem, mode);
7439
7440 break;
7441
7442 case PLUS: case IOR: case XOR: case AND:
7443 /* If we can safely shift this constant and we find the inner shift,
7444 make a new operation. */
7445 if (CONST_INT_P (XEXP (x, 1))
7446 && (UINTVAL (XEXP (x, 1))
7447 & ((((unsigned HOST_WIDE_INT) 1 << count)) - 1)) == 0
7448 && (tem = extract_left_shift (XEXP (x, 0), count)) != 0)
7449 {
7450 HOST_WIDE_INT val = INTVAL (XEXP (x, 1)) >> count;
7451 return simplify_gen_binary (code, mode, tem,
7452 gen_int_mode (val, mode));
7453 }
7454 break;
7455
7456 default:
7457 break;
7458 }
7459
7460 return 0;
7461 }
7462 \f
7463 /* Look at the expression rooted at X. Look for expressions
7464 equivalent to ZERO_EXTRACT, SIGN_EXTRACT, ZERO_EXTEND, SIGN_EXTEND.
7465 Form these expressions.
7466
7467 Return the new rtx, usually just X.
7468
7469 Also, for machines like the VAX that don't have logical shift insns,
7470 try to convert logical to arithmetic shift operations in cases where
7471 they are equivalent. This undoes the canonicalizations to logical
7472 shifts done elsewhere.
7473
7474 We try, as much as possible, to re-use rtl expressions to save memory.
7475
7476 IN_CODE says what kind of expression we are processing. Normally, it is
7477 SET. In a memory address (inside a MEM, PLUS or minus, the latter two
7478 being kludges), it is MEM. When processing the arguments of a comparison
7479 or a COMPARE against zero, it is COMPARE. */
7480
7481 rtx
7482 make_compound_operation (rtx x, enum rtx_code in_code)
7483 {
7484 enum rtx_code code = GET_CODE (x);
7485 enum machine_mode mode = GET_MODE (x);
7486 int mode_width = GET_MODE_PRECISION (mode);
7487 rtx rhs, lhs;
7488 enum rtx_code next_code;
7489 int i, j;
7490 rtx new_rtx = 0;
7491 rtx tem;
7492 const char *fmt;
7493
7494 /* Select the code to be used in recursive calls. Once we are inside an
7495 address, we stay there. If we have a comparison, set to COMPARE,
7496 but once inside, go back to our default of SET. */
7497
7498 next_code = (code == MEM ? MEM
7499 : ((code == PLUS || code == MINUS)
7500 && SCALAR_INT_MODE_P (mode)) ? MEM
7501 : ((code == COMPARE || COMPARISON_P (x))
7502 && XEXP (x, 1) == const0_rtx) ? COMPARE
7503 : in_code == COMPARE ? SET : in_code);
7504
7505 /* Process depending on the code of this operation. If NEW is set
7506 nonzero, it will be returned. */
7507
7508 switch (code)
7509 {
7510 case ASHIFT:
7511 /* Convert shifts by constants into multiplications if inside
7512 an address. */
7513 if (in_code == MEM && CONST_INT_P (XEXP (x, 1))
7514 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT
7515 && INTVAL (XEXP (x, 1)) >= 0
7516 && SCALAR_INT_MODE_P (mode))
7517 {
7518 HOST_WIDE_INT count = INTVAL (XEXP (x, 1));
7519 HOST_WIDE_INT multval = (HOST_WIDE_INT) 1 << count;
7520
7521 new_rtx = make_compound_operation (XEXP (x, 0), next_code);
7522 if (GET_CODE (new_rtx) == NEG)
7523 {
7524 new_rtx = XEXP (new_rtx, 0);
7525 multval = -multval;
7526 }
7527 multval = trunc_int_for_mode (multval, mode);
7528 new_rtx = gen_rtx_MULT (mode, new_rtx, gen_int_mode (multval, mode));
7529 }
7530 break;
7531
7532 case PLUS:
7533 lhs = XEXP (x, 0);
7534 rhs = XEXP (x, 1);
7535 lhs = make_compound_operation (lhs, next_code);
7536 rhs = make_compound_operation (rhs, next_code);
7537 if (GET_CODE (lhs) == MULT && GET_CODE (XEXP (lhs, 0)) == NEG
7538 && SCALAR_INT_MODE_P (mode))
7539 {
7540 tem = simplify_gen_binary (MULT, mode, XEXP (XEXP (lhs, 0), 0),
7541 XEXP (lhs, 1));
7542 new_rtx = simplify_gen_binary (MINUS, mode, rhs, tem);
7543 }
7544 else if (GET_CODE (lhs) == MULT
7545 && (CONST_INT_P (XEXP (lhs, 1)) && INTVAL (XEXP (lhs, 1)) < 0))
7546 {
7547 tem = simplify_gen_binary (MULT, mode, XEXP (lhs, 0),
7548 simplify_gen_unary (NEG, mode,
7549 XEXP (lhs, 1),
7550 mode));
7551 new_rtx = simplify_gen_binary (MINUS, mode, rhs, tem);
7552 }
7553 else
7554 {
7555 SUBST (XEXP (x, 0), lhs);
7556 SUBST (XEXP (x, 1), rhs);
7557 goto maybe_swap;
7558 }
7559 x = gen_lowpart (mode, new_rtx);
7560 goto maybe_swap;
7561
7562 case MINUS:
7563 lhs = XEXP (x, 0);
7564 rhs = XEXP (x, 1);
7565 lhs = make_compound_operation (lhs, next_code);
7566 rhs = make_compound_operation (rhs, next_code);
7567 if (GET_CODE (rhs) == MULT && GET_CODE (XEXP (rhs, 0)) == NEG
7568 && SCALAR_INT_MODE_P (mode))
7569 {
7570 tem = simplify_gen_binary (MULT, mode, XEXP (XEXP (rhs, 0), 0),
7571 XEXP (rhs, 1));
7572 new_rtx = simplify_gen_binary (PLUS, mode, tem, lhs);
7573 }
7574 else if (GET_CODE (rhs) == MULT
7575 && (CONST_INT_P (XEXP (rhs, 1)) && INTVAL (XEXP (rhs, 1)) < 0))
7576 {
7577 tem = simplify_gen_binary (MULT, mode, XEXP (rhs, 0),
7578 simplify_gen_unary (NEG, mode,
7579 XEXP (rhs, 1),
7580 mode));
7581 new_rtx = simplify_gen_binary (PLUS, mode, tem, lhs);
7582 }
7583 else
7584 {
7585 SUBST (XEXP (x, 0), lhs);
7586 SUBST (XEXP (x, 1), rhs);
7587 return x;
7588 }
7589 return gen_lowpart (mode, new_rtx);
7590
7591 case AND:
7592 /* If the second operand is not a constant, we can't do anything
7593 with it. */
7594 if (!CONST_INT_P (XEXP (x, 1)))
7595 break;
7596
7597 /* If the constant is a power of two minus one and the first operand
7598 is a logical right shift, make an extraction. */
7599 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
7600 && (i = exact_log2 (UINTVAL (XEXP (x, 1)) + 1)) >= 0)
7601 {
7602 new_rtx = make_compound_operation (XEXP (XEXP (x, 0), 0), next_code);
7603 new_rtx = make_extraction (mode, new_rtx, 0, XEXP (XEXP (x, 0), 1), i, 1,
7604 0, in_code == COMPARE);
7605 }
7606
7607 /* Same as previous, but for (subreg (lshiftrt ...)) in first op. */
7608 else if (GET_CODE (XEXP (x, 0)) == SUBREG
7609 && subreg_lowpart_p (XEXP (x, 0))
7610 && GET_CODE (SUBREG_REG (XEXP (x, 0))) == LSHIFTRT
7611 && (i = exact_log2 (UINTVAL (XEXP (x, 1)) + 1)) >= 0)
7612 {
7613 new_rtx = make_compound_operation (XEXP (SUBREG_REG (XEXP (x, 0)), 0),
7614 next_code);
7615 new_rtx = make_extraction (GET_MODE (SUBREG_REG (XEXP (x, 0))), new_rtx, 0,
7616 XEXP (SUBREG_REG (XEXP (x, 0)), 1), i, 1,
7617 0, in_code == COMPARE);
7618 }
7619 /* Same as previous, but for (xor/ior (lshiftrt...) (lshiftrt...)). */
7620 else if ((GET_CODE (XEXP (x, 0)) == XOR
7621 || GET_CODE (XEXP (x, 0)) == IOR)
7622 && GET_CODE (XEXP (XEXP (x, 0), 0)) == LSHIFTRT
7623 && GET_CODE (XEXP (XEXP (x, 0), 1)) == LSHIFTRT
7624 && (i = exact_log2 (UINTVAL (XEXP (x, 1)) + 1)) >= 0)
7625 {
7626 /* Apply the distributive law, and then try to make extractions. */
7627 new_rtx = gen_rtx_fmt_ee (GET_CODE (XEXP (x, 0)), mode,
7628 gen_rtx_AND (mode, XEXP (XEXP (x, 0), 0),
7629 XEXP (x, 1)),
7630 gen_rtx_AND (mode, XEXP (XEXP (x, 0), 1),
7631 XEXP (x, 1)));
7632 new_rtx = make_compound_operation (new_rtx, in_code);
7633 }
7634
7635 /* If we are have (and (rotate X C) M) and C is larger than the number
7636 of bits in M, this is an extraction. */
7637
7638 else if (GET_CODE (XEXP (x, 0)) == ROTATE
7639 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
7640 && (i = exact_log2 (UINTVAL (XEXP (x, 1)) + 1)) >= 0
7641 && i <= INTVAL (XEXP (XEXP (x, 0), 1)))
7642 {
7643 new_rtx = make_compound_operation (XEXP (XEXP (x, 0), 0), next_code);
7644 new_rtx = make_extraction (mode, new_rtx,
7645 (GET_MODE_PRECISION (mode)
7646 - INTVAL (XEXP (XEXP (x, 0), 1))),
7647 NULL_RTX, i, 1, 0, in_code == COMPARE);
7648 }
7649
7650 /* On machines without logical shifts, if the operand of the AND is
7651 a logical shift and our mask turns off all the propagated sign
7652 bits, we can replace the logical shift with an arithmetic shift. */
7653 else if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
7654 && !have_insn_for (LSHIFTRT, mode)
7655 && have_insn_for (ASHIFTRT, mode)
7656 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
7657 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
7658 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT
7659 && mode_width <= HOST_BITS_PER_WIDE_INT)
7660 {
7661 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
7662
7663 mask >>= INTVAL (XEXP (XEXP (x, 0), 1));
7664 if ((INTVAL (XEXP (x, 1)) & ~mask) == 0)
7665 SUBST (XEXP (x, 0),
7666 gen_rtx_ASHIFTRT (mode,
7667 make_compound_operation
7668 (XEXP (XEXP (x, 0), 0), next_code),
7669 XEXP (XEXP (x, 0), 1)));
7670 }
7671
7672 /* If the constant is one less than a power of two, this might be
7673 representable by an extraction even if no shift is present.
7674 If it doesn't end up being a ZERO_EXTEND, we will ignore it unless
7675 we are in a COMPARE. */
7676 else if ((i = exact_log2 (UINTVAL (XEXP (x, 1)) + 1)) >= 0)
7677 new_rtx = make_extraction (mode,
7678 make_compound_operation (XEXP (x, 0),
7679 next_code),
7680 0, NULL_RTX, i, 1, 0, in_code == COMPARE);
7681
7682 /* If we are in a comparison and this is an AND with a power of two,
7683 convert this into the appropriate bit extract. */
7684 else if (in_code == COMPARE
7685 && (i = exact_log2 (UINTVAL (XEXP (x, 1)))) >= 0)
7686 new_rtx = make_extraction (mode,
7687 make_compound_operation (XEXP (x, 0),
7688 next_code),
7689 i, NULL_RTX, 1, 1, 0, 1);
7690
7691 break;
7692
7693 case LSHIFTRT:
7694 /* If the sign bit is known to be zero, replace this with an
7695 arithmetic shift. */
7696 if (have_insn_for (ASHIFTRT, mode)
7697 && ! have_insn_for (LSHIFTRT, mode)
7698 && mode_width <= HOST_BITS_PER_WIDE_INT
7699 && (nonzero_bits (XEXP (x, 0), mode) & (1 << (mode_width - 1))) == 0)
7700 {
7701 new_rtx = gen_rtx_ASHIFTRT (mode,
7702 make_compound_operation (XEXP (x, 0),
7703 next_code),
7704 XEXP (x, 1));
7705 break;
7706 }
7707
7708 /* ... fall through ... */
7709
7710 case ASHIFTRT:
7711 lhs = XEXP (x, 0);
7712 rhs = XEXP (x, 1);
7713
7714 /* If we have (ashiftrt (ashift foo C1) C2) with C2 >= C1,
7715 this is a SIGN_EXTRACT. */
7716 if (CONST_INT_P (rhs)
7717 && GET_CODE (lhs) == ASHIFT
7718 && CONST_INT_P (XEXP (lhs, 1))
7719 && INTVAL (rhs) >= INTVAL (XEXP (lhs, 1))
7720 && INTVAL (XEXP (lhs, 1)) >= 0
7721 && INTVAL (rhs) < mode_width)
7722 {
7723 new_rtx = make_compound_operation (XEXP (lhs, 0), next_code);
7724 new_rtx = make_extraction (mode, new_rtx,
7725 INTVAL (rhs) - INTVAL (XEXP (lhs, 1)),
7726 NULL_RTX, mode_width - INTVAL (rhs),
7727 code == LSHIFTRT, 0, in_code == COMPARE);
7728 break;
7729 }
7730
7731 /* See if we have operations between an ASHIFTRT and an ASHIFT.
7732 If so, try to merge the shifts into a SIGN_EXTEND. We could
7733 also do this for some cases of SIGN_EXTRACT, but it doesn't
7734 seem worth the effort; the case checked for occurs on Alpha. */
7735
7736 if (!OBJECT_P (lhs)
7737 && ! (GET_CODE (lhs) == SUBREG
7738 && (OBJECT_P (SUBREG_REG (lhs))))
7739 && CONST_INT_P (rhs)
7740 && INTVAL (rhs) < HOST_BITS_PER_WIDE_INT
7741 && INTVAL (rhs) < mode_width
7742 && (new_rtx = extract_left_shift (lhs, INTVAL (rhs))) != 0)
7743 new_rtx = make_extraction (mode, make_compound_operation (new_rtx, next_code),
7744 0, NULL_RTX, mode_width - INTVAL (rhs),
7745 code == LSHIFTRT, 0, in_code == COMPARE);
7746
7747 break;
7748
7749 case SUBREG:
7750 /* Call ourselves recursively on the inner expression. If we are
7751 narrowing the object and it has a different RTL code from
7752 what it originally did, do this SUBREG as a force_to_mode. */
7753 {
7754 rtx inner = SUBREG_REG (x), simplified;
7755 enum rtx_code subreg_code = in_code;
7756
7757 /* If in_code is COMPARE, it isn't always safe to pass it through
7758 to the recursive make_compound_operation call. */
7759 if (subreg_code == COMPARE
7760 && (!subreg_lowpart_p (x)
7761 || GET_CODE (inner) == SUBREG
7762 /* (subreg:SI (and:DI (reg:DI) (const_int 0x800000000)) 0)
7763 is (const_int 0), rather than
7764 (subreg:SI (lshiftrt:DI (reg:DI) (const_int 35)) 0). */
7765 || (GET_CODE (inner) == AND
7766 && CONST_INT_P (XEXP (inner, 1))
7767 && GET_MODE_SIZE (mode) < GET_MODE_SIZE (GET_MODE (inner))
7768 && exact_log2 (UINTVAL (XEXP (inner, 1)))
7769 >= GET_MODE_BITSIZE (mode))))
7770 subreg_code = SET;
7771
7772 tem = make_compound_operation (inner, subreg_code);
7773
7774 simplified
7775 = simplify_subreg (mode, tem, GET_MODE (inner), SUBREG_BYTE (x));
7776 if (simplified)
7777 tem = simplified;
7778
7779 if (GET_CODE (tem) != GET_CODE (inner)
7780 && GET_MODE_SIZE (mode) < GET_MODE_SIZE (GET_MODE (inner))
7781 && subreg_lowpart_p (x))
7782 {
7783 rtx newer
7784 = force_to_mode (tem, mode, ~(unsigned HOST_WIDE_INT) 0, 0);
7785
7786 /* If we have something other than a SUBREG, we might have
7787 done an expansion, so rerun ourselves. */
7788 if (GET_CODE (newer) != SUBREG)
7789 newer = make_compound_operation (newer, in_code);
7790
7791 /* force_to_mode can expand compounds. If it just re-expanded the
7792 compound, use gen_lowpart to convert to the desired mode. */
7793 if (rtx_equal_p (newer, x)
7794 /* Likewise if it re-expanded the compound only partially.
7795 This happens for SUBREG of ZERO_EXTRACT if they extract
7796 the same number of bits. */
7797 || (GET_CODE (newer) == SUBREG
7798 && (GET_CODE (SUBREG_REG (newer)) == LSHIFTRT
7799 || GET_CODE (SUBREG_REG (newer)) == ASHIFTRT)
7800 && GET_CODE (inner) == AND
7801 && rtx_equal_p (SUBREG_REG (newer), XEXP (inner, 0))))
7802 return gen_lowpart (GET_MODE (x), tem);
7803
7804 return newer;
7805 }
7806
7807 if (simplified)
7808 return tem;
7809 }
7810 break;
7811
7812 default:
7813 break;
7814 }
7815
7816 if (new_rtx)
7817 {
7818 x = gen_lowpart (mode, new_rtx);
7819 code = GET_CODE (x);
7820 }
7821
7822 /* Now recursively process each operand of this operation. We need to
7823 handle ZERO_EXTEND specially so that we don't lose track of the
7824 inner mode. */
7825 if (GET_CODE (x) == ZERO_EXTEND)
7826 {
7827 new_rtx = make_compound_operation (XEXP (x, 0), next_code);
7828 tem = simplify_const_unary_operation (ZERO_EXTEND, GET_MODE (x),
7829 new_rtx, GET_MODE (XEXP (x, 0)));
7830 if (tem)
7831 return tem;
7832 SUBST (XEXP (x, 0), new_rtx);
7833 return x;
7834 }
7835
7836 fmt = GET_RTX_FORMAT (code);
7837 for (i = 0; i < GET_RTX_LENGTH (code); i++)
7838 if (fmt[i] == 'e')
7839 {
7840 new_rtx = make_compound_operation (XEXP (x, i), next_code);
7841 SUBST (XEXP (x, i), new_rtx);
7842 }
7843 else if (fmt[i] == 'E')
7844 for (j = 0; j < XVECLEN (x, i); j++)
7845 {
7846 new_rtx = make_compound_operation (XVECEXP (x, i, j), next_code);
7847 SUBST (XVECEXP (x, i, j), new_rtx);
7848 }
7849
7850 maybe_swap:
7851 /* If this is a commutative operation, the changes to the operands
7852 may have made it noncanonical. */
7853 if (COMMUTATIVE_ARITH_P (x)
7854 && swap_commutative_operands_p (XEXP (x, 0), XEXP (x, 1)))
7855 {
7856 tem = XEXP (x, 0);
7857 SUBST (XEXP (x, 0), XEXP (x, 1));
7858 SUBST (XEXP (x, 1), tem);
7859 }
7860
7861 return x;
7862 }
7863 \f
7864 /* Given M see if it is a value that would select a field of bits
7865 within an item, but not the entire word. Return -1 if not.
7866 Otherwise, return the starting position of the field, where 0 is the
7867 low-order bit.
7868
7869 *PLEN is set to the length of the field. */
7870
7871 static int
7872 get_pos_from_mask (unsigned HOST_WIDE_INT m, unsigned HOST_WIDE_INT *plen)
7873 {
7874 /* Get the bit number of the first 1 bit from the right, -1 if none. */
7875 int pos = m ? ctz_hwi (m) : -1;
7876 int len = 0;
7877
7878 if (pos >= 0)
7879 /* Now shift off the low-order zero bits and see if we have a
7880 power of two minus 1. */
7881 len = exact_log2 ((m >> pos) + 1);
7882
7883 if (len <= 0)
7884 pos = -1;
7885
7886 *plen = len;
7887 return pos;
7888 }
7889 \f
7890 /* If X refers to a register that equals REG in value, replace these
7891 references with REG. */
7892 static rtx
7893 canon_reg_for_combine (rtx x, rtx reg)
7894 {
7895 rtx op0, op1, op2;
7896 const char *fmt;
7897 int i;
7898 bool copied;
7899
7900 enum rtx_code code = GET_CODE (x);
7901 switch (GET_RTX_CLASS (code))
7902 {
7903 case RTX_UNARY:
7904 op0 = canon_reg_for_combine (XEXP (x, 0), reg);
7905 if (op0 != XEXP (x, 0))
7906 return simplify_gen_unary (GET_CODE (x), GET_MODE (x), op0,
7907 GET_MODE (reg));
7908 break;
7909
7910 case RTX_BIN_ARITH:
7911 case RTX_COMM_ARITH:
7912 op0 = canon_reg_for_combine (XEXP (x, 0), reg);
7913 op1 = canon_reg_for_combine (XEXP (x, 1), reg);
7914 if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
7915 return simplify_gen_binary (GET_CODE (x), GET_MODE (x), op0, op1);
7916 break;
7917
7918 case RTX_COMPARE:
7919 case RTX_COMM_COMPARE:
7920 op0 = canon_reg_for_combine (XEXP (x, 0), reg);
7921 op1 = canon_reg_for_combine (XEXP (x, 1), reg);
7922 if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
7923 return simplify_gen_relational (GET_CODE (x), GET_MODE (x),
7924 GET_MODE (op0), op0, op1);
7925 break;
7926
7927 case RTX_TERNARY:
7928 case RTX_BITFIELD_OPS:
7929 op0 = canon_reg_for_combine (XEXP (x, 0), reg);
7930 op1 = canon_reg_for_combine (XEXP (x, 1), reg);
7931 op2 = canon_reg_for_combine (XEXP (x, 2), reg);
7932 if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1) || op2 != XEXP (x, 2))
7933 return simplify_gen_ternary (GET_CODE (x), GET_MODE (x),
7934 GET_MODE (op0), op0, op1, op2);
7935
7936 case RTX_OBJ:
7937 if (REG_P (x))
7938 {
7939 if (rtx_equal_p (get_last_value (reg), x)
7940 || rtx_equal_p (reg, get_last_value (x)))
7941 return reg;
7942 else
7943 break;
7944 }
7945
7946 /* fall through */
7947
7948 default:
7949 fmt = GET_RTX_FORMAT (code);
7950 copied = false;
7951 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
7952 if (fmt[i] == 'e')
7953 {
7954 rtx op = canon_reg_for_combine (XEXP (x, i), reg);
7955 if (op != XEXP (x, i))
7956 {
7957 if (!copied)
7958 {
7959 copied = true;
7960 x = copy_rtx (x);
7961 }
7962 XEXP (x, i) = op;
7963 }
7964 }
7965 else if (fmt[i] == 'E')
7966 {
7967 int j;
7968 for (j = 0; j < XVECLEN (x, i); j++)
7969 {
7970 rtx op = canon_reg_for_combine (XVECEXP (x, i, j), reg);
7971 if (op != XVECEXP (x, i, j))
7972 {
7973 if (!copied)
7974 {
7975 copied = true;
7976 x = copy_rtx (x);
7977 }
7978 XVECEXP (x, i, j) = op;
7979 }
7980 }
7981 }
7982
7983 break;
7984 }
7985
7986 return x;
7987 }
7988
7989 /* Return X converted to MODE. If the value is already truncated to
7990 MODE we can just return a subreg even though in the general case we
7991 would need an explicit truncation. */
7992
7993 static rtx
7994 gen_lowpart_or_truncate (enum machine_mode mode, rtx x)
7995 {
7996 if (!CONST_INT_P (x)
7997 && GET_MODE_SIZE (mode) < GET_MODE_SIZE (GET_MODE (x))
7998 && !TRULY_NOOP_TRUNCATION_MODES_P (mode, GET_MODE (x))
7999 && !(REG_P (x) && reg_truncated_to_mode (mode, x)))
8000 {
8001 /* Bit-cast X into an integer mode. */
8002 if (!SCALAR_INT_MODE_P (GET_MODE (x)))
8003 x = gen_lowpart (int_mode_for_mode (GET_MODE (x)), x);
8004 x = simplify_gen_unary (TRUNCATE, int_mode_for_mode (mode),
8005 x, GET_MODE (x));
8006 }
8007
8008 return gen_lowpart (mode, x);
8009 }
8010
8011 /* See if X can be simplified knowing that we will only refer to it in
8012 MODE and will only refer to those bits that are nonzero in MASK.
8013 If other bits are being computed or if masking operations are done
8014 that select a superset of the bits in MASK, they can sometimes be
8015 ignored.
8016
8017 Return a possibly simplified expression, but always convert X to
8018 MODE. If X is a CONST_INT, AND the CONST_INT with MASK.
8019
8020 If JUST_SELECT is nonzero, don't optimize by noticing that bits in MASK
8021 are all off in X. This is used when X will be complemented, by either
8022 NOT, NEG, or XOR. */
8023
8024 static rtx
8025 force_to_mode (rtx x, enum machine_mode mode, unsigned HOST_WIDE_INT mask,
8026 int just_select)
8027 {
8028 enum rtx_code code = GET_CODE (x);
8029 int next_select = just_select || code == XOR || code == NOT || code == NEG;
8030 enum machine_mode op_mode;
8031 unsigned HOST_WIDE_INT fuller_mask, nonzero;
8032 rtx op0, op1, temp;
8033
8034 /* If this is a CALL or ASM_OPERANDS, don't do anything. Some of the
8035 code below will do the wrong thing since the mode of such an
8036 expression is VOIDmode.
8037
8038 Also do nothing if X is a CLOBBER; this can happen if X was
8039 the return value from a call to gen_lowpart. */
8040 if (code == CALL || code == ASM_OPERANDS || code == CLOBBER)
8041 return x;
8042
8043 /* We want to perform the operation in its present mode unless we know
8044 that the operation is valid in MODE, in which case we do the operation
8045 in MODE. */
8046 op_mode = ((GET_MODE_CLASS (mode) == GET_MODE_CLASS (GET_MODE (x))
8047 && have_insn_for (code, mode))
8048 ? mode : GET_MODE (x));
8049
8050 /* It is not valid to do a right-shift in a narrower mode
8051 than the one it came in with. */
8052 if ((code == LSHIFTRT || code == ASHIFTRT)
8053 && GET_MODE_PRECISION (mode) < GET_MODE_PRECISION (GET_MODE (x)))
8054 op_mode = GET_MODE (x);
8055
8056 /* Truncate MASK to fit OP_MODE. */
8057 if (op_mode)
8058 mask &= GET_MODE_MASK (op_mode);
8059
8060 /* When we have an arithmetic operation, or a shift whose count we
8061 do not know, we need to assume that all bits up to the highest-order
8062 bit in MASK will be needed. This is how we form such a mask. */
8063 if (mask & ((unsigned HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT - 1)))
8064 fuller_mask = ~(unsigned HOST_WIDE_INT) 0;
8065 else
8066 fuller_mask = (((unsigned HOST_WIDE_INT) 1 << (floor_log2 (mask) + 1))
8067 - 1);
8068
8069 /* Determine what bits of X are guaranteed to be (non)zero. */
8070 nonzero = nonzero_bits (x, mode);
8071
8072 /* If none of the bits in X are needed, return a zero. */
8073 if (!just_select && (nonzero & mask) == 0 && !side_effects_p (x))
8074 x = const0_rtx;
8075
8076 /* If X is a CONST_INT, return a new one. Do this here since the
8077 test below will fail. */
8078 if (CONST_INT_P (x))
8079 {
8080 if (SCALAR_INT_MODE_P (mode))
8081 return gen_int_mode (INTVAL (x) & mask, mode);
8082 else
8083 {
8084 x = GEN_INT (INTVAL (x) & mask);
8085 return gen_lowpart_common (mode, x);
8086 }
8087 }
8088
8089 /* If X is narrower than MODE and we want all the bits in X's mode, just
8090 get X in the proper mode. */
8091 if (GET_MODE_SIZE (GET_MODE (x)) < GET_MODE_SIZE (mode)
8092 && (GET_MODE_MASK (GET_MODE (x)) & ~mask) == 0)
8093 return gen_lowpart (mode, x);
8094
8095 /* We can ignore the effect of a SUBREG if it narrows the mode or
8096 if the constant masks to zero all the bits the mode doesn't have. */
8097 if (GET_CODE (x) == SUBREG
8098 && subreg_lowpart_p (x)
8099 && ((GET_MODE_SIZE (GET_MODE (x))
8100 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
8101 || (0 == (mask
8102 & GET_MODE_MASK (GET_MODE (x))
8103 & ~GET_MODE_MASK (GET_MODE (SUBREG_REG (x)))))))
8104 return force_to_mode (SUBREG_REG (x), mode, mask, next_select);
8105
8106 /* The arithmetic simplifications here only work for scalar integer modes. */
8107 if (!SCALAR_INT_MODE_P (mode) || !SCALAR_INT_MODE_P (GET_MODE (x)))
8108 return gen_lowpart_or_truncate (mode, x);
8109
8110 switch (code)
8111 {
8112 case CLOBBER:
8113 /* If X is a (clobber (const_int)), return it since we know we are
8114 generating something that won't match. */
8115 return x;
8116
8117 case SIGN_EXTEND:
8118 case ZERO_EXTEND:
8119 case ZERO_EXTRACT:
8120 case SIGN_EXTRACT:
8121 x = expand_compound_operation (x);
8122 if (GET_CODE (x) != code)
8123 return force_to_mode (x, mode, mask, next_select);
8124 break;
8125
8126 case TRUNCATE:
8127 /* Similarly for a truncate. */
8128 return force_to_mode (XEXP (x, 0), mode, mask, next_select);
8129
8130 case AND:
8131 /* If this is an AND with a constant, convert it into an AND
8132 whose constant is the AND of that constant with MASK. If it
8133 remains an AND of MASK, delete it since it is redundant. */
8134
8135 if (CONST_INT_P (XEXP (x, 1)))
8136 {
8137 x = simplify_and_const_int (x, op_mode, XEXP (x, 0),
8138 mask & INTVAL (XEXP (x, 1)));
8139
8140 /* If X is still an AND, see if it is an AND with a mask that
8141 is just some low-order bits. If so, and it is MASK, we don't
8142 need it. */
8143
8144 if (GET_CODE (x) == AND && CONST_INT_P (XEXP (x, 1))
8145 && ((INTVAL (XEXP (x, 1)) & GET_MODE_MASK (GET_MODE (x)))
8146 == mask))
8147 x = XEXP (x, 0);
8148
8149 /* If it remains an AND, try making another AND with the bits
8150 in the mode mask that aren't in MASK turned on. If the
8151 constant in the AND is wide enough, this might make a
8152 cheaper constant. */
8153
8154 if (GET_CODE (x) == AND && CONST_INT_P (XEXP (x, 1))
8155 && GET_MODE_MASK (GET_MODE (x)) != mask
8156 && HWI_COMPUTABLE_MODE_P (GET_MODE (x)))
8157 {
8158 unsigned HOST_WIDE_INT cval
8159 = UINTVAL (XEXP (x, 1))
8160 | (GET_MODE_MASK (GET_MODE (x)) & ~mask);
8161 rtx y;
8162
8163 y = simplify_gen_binary (AND, GET_MODE (x), XEXP (x, 0),
8164 gen_int_mode (cval, GET_MODE (x)));
8165 if (set_src_cost (y, optimize_this_for_speed_p)
8166 < set_src_cost (x, optimize_this_for_speed_p))
8167 x = y;
8168 }
8169
8170 break;
8171 }
8172
8173 goto binop;
8174
8175 case PLUS:
8176 /* In (and (plus FOO C1) M), if M is a mask that just turns off
8177 low-order bits (as in an alignment operation) and FOO is already
8178 aligned to that boundary, mask C1 to that boundary as well.
8179 This may eliminate that PLUS and, later, the AND. */
8180
8181 {
8182 unsigned int width = GET_MODE_PRECISION (mode);
8183 unsigned HOST_WIDE_INT smask = mask;
8184
8185 /* If MODE is narrower than HOST_WIDE_INT and mask is a negative
8186 number, sign extend it. */
8187
8188 if (width < HOST_BITS_PER_WIDE_INT
8189 && (smask & (HOST_WIDE_INT_1U << (width - 1))) != 0)
8190 smask |= HOST_WIDE_INT_M1U << width;
8191
8192 if (CONST_INT_P (XEXP (x, 1))
8193 && exact_log2 (- smask) >= 0
8194 && (nonzero_bits (XEXP (x, 0), mode) & ~smask) == 0
8195 && (INTVAL (XEXP (x, 1)) & ~smask) != 0)
8196 return force_to_mode (plus_constant (GET_MODE (x), XEXP (x, 0),
8197 (INTVAL (XEXP (x, 1)) & smask)),
8198 mode, smask, next_select);
8199 }
8200
8201 /* ... fall through ... */
8202
8203 case MULT:
8204 /* For PLUS, MINUS and MULT, we need any bits less significant than the
8205 most significant bit in MASK since carries from those bits will
8206 affect the bits we are interested in. */
8207 mask = fuller_mask;
8208 goto binop;
8209
8210 case MINUS:
8211 /* If X is (minus C Y) where C's least set bit is larger than any bit
8212 in the mask, then we may replace with (neg Y). */
8213 if (CONST_INT_P (XEXP (x, 0))
8214 && ((UINTVAL (XEXP (x, 0)) & -UINTVAL (XEXP (x, 0))) > mask))
8215 {
8216 x = simplify_gen_unary (NEG, GET_MODE (x), XEXP (x, 1),
8217 GET_MODE (x));
8218 return force_to_mode (x, mode, mask, next_select);
8219 }
8220
8221 /* Similarly, if C contains every bit in the fuller_mask, then we may
8222 replace with (not Y). */
8223 if (CONST_INT_P (XEXP (x, 0))
8224 && ((UINTVAL (XEXP (x, 0)) | fuller_mask) == UINTVAL (XEXP (x, 0))))
8225 {
8226 x = simplify_gen_unary (NOT, GET_MODE (x),
8227 XEXP (x, 1), GET_MODE (x));
8228 return force_to_mode (x, mode, mask, next_select);
8229 }
8230
8231 mask = fuller_mask;
8232 goto binop;
8233
8234 case IOR:
8235 case XOR:
8236 /* If X is (ior (lshiftrt FOO C1) C2), try to commute the IOR and
8237 LSHIFTRT so we end up with an (and (lshiftrt (ior ...) ...) ...)
8238 operation which may be a bitfield extraction. Ensure that the
8239 constant we form is not wider than the mode of X. */
8240
8241 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
8242 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
8243 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
8244 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT
8245 && CONST_INT_P (XEXP (x, 1))
8246 && ((INTVAL (XEXP (XEXP (x, 0), 1))
8247 + floor_log2 (INTVAL (XEXP (x, 1))))
8248 < GET_MODE_PRECISION (GET_MODE (x)))
8249 && (UINTVAL (XEXP (x, 1))
8250 & ~nonzero_bits (XEXP (x, 0), GET_MODE (x))) == 0)
8251 {
8252 temp = gen_int_mode ((INTVAL (XEXP (x, 1)) & mask)
8253 << INTVAL (XEXP (XEXP (x, 0), 1)),
8254 GET_MODE (x));
8255 temp = simplify_gen_binary (GET_CODE (x), GET_MODE (x),
8256 XEXP (XEXP (x, 0), 0), temp);
8257 x = simplify_gen_binary (LSHIFTRT, GET_MODE (x), temp,
8258 XEXP (XEXP (x, 0), 1));
8259 return force_to_mode (x, mode, mask, next_select);
8260 }
8261
8262 binop:
8263 /* For most binary operations, just propagate into the operation and
8264 change the mode if we have an operation of that mode. */
8265
8266 op0 = force_to_mode (XEXP (x, 0), mode, mask, next_select);
8267 op1 = force_to_mode (XEXP (x, 1), mode, mask, next_select);
8268
8269 /* If we ended up truncating both operands, truncate the result of the
8270 operation instead. */
8271 if (GET_CODE (op0) == TRUNCATE
8272 && GET_CODE (op1) == TRUNCATE)
8273 {
8274 op0 = XEXP (op0, 0);
8275 op1 = XEXP (op1, 0);
8276 }
8277
8278 op0 = gen_lowpart_or_truncate (op_mode, op0);
8279 op1 = gen_lowpart_or_truncate (op_mode, op1);
8280
8281 if (op_mode != GET_MODE (x) || op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
8282 x = simplify_gen_binary (code, op_mode, op0, op1);
8283 break;
8284
8285 case ASHIFT:
8286 /* For left shifts, do the same, but just for the first operand.
8287 However, we cannot do anything with shifts where we cannot
8288 guarantee that the counts are smaller than the size of the mode
8289 because such a count will have a different meaning in a
8290 wider mode. */
8291
8292 if (! (CONST_INT_P (XEXP (x, 1))
8293 && INTVAL (XEXP (x, 1)) >= 0
8294 && INTVAL (XEXP (x, 1)) < GET_MODE_PRECISION (mode))
8295 && ! (GET_MODE (XEXP (x, 1)) != VOIDmode
8296 && (nonzero_bits (XEXP (x, 1), GET_MODE (XEXP (x, 1)))
8297 < (unsigned HOST_WIDE_INT) GET_MODE_PRECISION (mode))))
8298 break;
8299
8300 /* If the shift count is a constant and we can do arithmetic in
8301 the mode of the shift, refine which bits we need. Otherwise, use the
8302 conservative form of the mask. */
8303 if (CONST_INT_P (XEXP (x, 1))
8304 && INTVAL (XEXP (x, 1)) >= 0
8305 && INTVAL (XEXP (x, 1)) < GET_MODE_PRECISION (op_mode)
8306 && HWI_COMPUTABLE_MODE_P (op_mode))
8307 mask >>= INTVAL (XEXP (x, 1));
8308 else
8309 mask = fuller_mask;
8310
8311 op0 = gen_lowpart_or_truncate (op_mode,
8312 force_to_mode (XEXP (x, 0), op_mode,
8313 mask, next_select));
8314
8315 if (op_mode != GET_MODE (x) || op0 != XEXP (x, 0))
8316 x = simplify_gen_binary (code, op_mode, op0, XEXP (x, 1));
8317 break;
8318
8319 case LSHIFTRT:
8320 /* Here we can only do something if the shift count is a constant,
8321 this shift constant is valid for the host, and we can do arithmetic
8322 in OP_MODE. */
8323
8324 if (CONST_INT_P (XEXP (x, 1))
8325 && INTVAL (XEXP (x, 1)) >= 0
8326 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT
8327 && HWI_COMPUTABLE_MODE_P (op_mode))
8328 {
8329 rtx inner = XEXP (x, 0);
8330 unsigned HOST_WIDE_INT inner_mask;
8331
8332 /* Select the mask of the bits we need for the shift operand. */
8333 inner_mask = mask << INTVAL (XEXP (x, 1));
8334
8335 /* We can only change the mode of the shift if we can do arithmetic
8336 in the mode of the shift and INNER_MASK is no wider than the
8337 width of X's mode. */
8338 if ((inner_mask & ~GET_MODE_MASK (GET_MODE (x))) != 0)
8339 op_mode = GET_MODE (x);
8340
8341 inner = force_to_mode (inner, op_mode, inner_mask, next_select);
8342
8343 if (GET_MODE (x) != op_mode || inner != XEXP (x, 0))
8344 x = simplify_gen_binary (LSHIFTRT, op_mode, inner, XEXP (x, 1));
8345 }
8346
8347 /* If we have (and (lshiftrt FOO C1) C2) where the combination of the
8348 shift and AND produces only copies of the sign bit (C2 is one less
8349 than a power of two), we can do this with just a shift. */
8350
8351 if (GET_CODE (x) == LSHIFTRT
8352 && CONST_INT_P (XEXP (x, 1))
8353 /* The shift puts one of the sign bit copies in the least significant
8354 bit. */
8355 && ((INTVAL (XEXP (x, 1))
8356 + num_sign_bit_copies (XEXP (x, 0), GET_MODE (XEXP (x, 0))))
8357 >= GET_MODE_PRECISION (GET_MODE (x)))
8358 && exact_log2 (mask + 1) >= 0
8359 /* Number of bits left after the shift must be more than the mask
8360 needs. */
8361 && ((INTVAL (XEXP (x, 1)) + exact_log2 (mask + 1))
8362 <= GET_MODE_PRECISION (GET_MODE (x)))
8363 /* Must be more sign bit copies than the mask needs. */
8364 && ((int) num_sign_bit_copies (XEXP (x, 0), GET_MODE (XEXP (x, 0)))
8365 >= exact_log2 (mask + 1)))
8366 x = simplify_gen_binary (LSHIFTRT, GET_MODE (x), XEXP (x, 0),
8367 GEN_INT (GET_MODE_PRECISION (GET_MODE (x))
8368 - exact_log2 (mask + 1)));
8369
8370 goto shiftrt;
8371
8372 case ASHIFTRT:
8373 /* If we are just looking for the sign bit, we don't need this shift at
8374 all, even if it has a variable count. */
8375 if (val_signbit_p (GET_MODE (x), mask))
8376 return force_to_mode (XEXP (x, 0), mode, mask, next_select);
8377
8378 /* If this is a shift by a constant, get a mask that contains those bits
8379 that are not copies of the sign bit. We then have two cases: If
8380 MASK only includes those bits, this can be a logical shift, which may
8381 allow simplifications. If MASK is a single-bit field not within
8382 those bits, we are requesting a copy of the sign bit and hence can
8383 shift the sign bit to the appropriate location. */
8384
8385 if (CONST_INT_P (XEXP (x, 1)) && INTVAL (XEXP (x, 1)) >= 0
8386 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT)
8387 {
8388 int i;
8389
8390 /* If the considered data is wider than HOST_WIDE_INT, we can't
8391 represent a mask for all its bits in a single scalar.
8392 But we only care about the lower bits, so calculate these. */
8393
8394 if (GET_MODE_PRECISION (GET_MODE (x)) > HOST_BITS_PER_WIDE_INT)
8395 {
8396 nonzero = ~(unsigned HOST_WIDE_INT) 0;
8397
8398 /* GET_MODE_PRECISION (GET_MODE (x)) - INTVAL (XEXP (x, 1))
8399 is the number of bits a full-width mask would have set.
8400 We need only shift if these are fewer than nonzero can
8401 hold. If not, we must keep all bits set in nonzero. */
8402
8403 if (GET_MODE_PRECISION (GET_MODE (x)) - INTVAL (XEXP (x, 1))
8404 < HOST_BITS_PER_WIDE_INT)
8405 nonzero >>= INTVAL (XEXP (x, 1))
8406 + HOST_BITS_PER_WIDE_INT
8407 - GET_MODE_PRECISION (GET_MODE (x)) ;
8408 }
8409 else
8410 {
8411 nonzero = GET_MODE_MASK (GET_MODE (x));
8412 nonzero >>= INTVAL (XEXP (x, 1));
8413 }
8414
8415 if ((mask & ~nonzero) == 0)
8416 {
8417 x = simplify_shift_const (NULL_RTX, LSHIFTRT, GET_MODE (x),
8418 XEXP (x, 0), INTVAL (XEXP (x, 1)));
8419 if (GET_CODE (x) != ASHIFTRT)
8420 return force_to_mode (x, mode, mask, next_select);
8421 }
8422
8423 else if ((i = exact_log2 (mask)) >= 0)
8424 {
8425 x = simplify_shift_const
8426 (NULL_RTX, LSHIFTRT, GET_MODE (x), XEXP (x, 0),
8427 GET_MODE_PRECISION (GET_MODE (x)) - 1 - i);
8428
8429 if (GET_CODE (x) != ASHIFTRT)
8430 return force_to_mode (x, mode, mask, next_select);
8431 }
8432 }
8433
8434 /* If MASK is 1, convert this to an LSHIFTRT. This can be done
8435 even if the shift count isn't a constant. */
8436 if (mask == 1)
8437 x = simplify_gen_binary (LSHIFTRT, GET_MODE (x),
8438 XEXP (x, 0), XEXP (x, 1));
8439
8440 shiftrt:
8441
8442 /* If this is a zero- or sign-extension operation that just affects bits
8443 we don't care about, remove it. Be sure the call above returned
8444 something that is still a shift. */
8445
8446 if ((GET_CODE (x) == LSHIFTRT || GET_CODE (x) == ASHIFTRT)
8447 && CONST_INT_P (XEXP (x, 1))
8448 && INTVAL (XEXP (x, 1)) >= 0
8449 && (INTVAL (XEXP (x, 1))
8450 <= GET_MODE_PRECISION (GET_MODE (x)) - (floor_log2 (mask) + 1))
8451 && GET_CODE (XEXP (x, 0)) == ASHIFT
8452 && XEXP (XEXP (x, 0), 1) == XEXP (x, 1))
8453 return force_to_mode (XEXP (XEXP (x, 0), 0), mode, mask,
8454 next_select);
8455
8456 break;
8457
8458 case ROTATE:
8459 case ROTATERT:
8460 /* If the shift count is constant and we can do computations
8461 in the mode of X, compute where the bits we care about are.
8462 Otherwise, we can't do anything. Don't change the mode of
8463 the shift or propagate MODE into the shift, though. */
8464 if (CONST_INT_P (XEXP (x, 1))
8465 && INTVAL (XEXP (x, 1)) >= 0)
8466 {
8467 temp = simplify_binary_operation (code == ROTATE ? ROTATERT : ROTATE,
8468 GET_MODE (x),
8469 gen_int_mode (mask, GET_MODE (x)),
8470 XEXP (x, 1));
8471 if (temp && CONST_INT_P (temp))
8472 x = simplify_gen_binary (code, GET_MODE (x),
8473 force_to_mode (XEXP (x, 0), GET_MODE (x),
8474 INTVAL (temp), next_select),
8475 XEXP (x, 1));
8476 }
8477 break;
8478
8479 case NEG:
8480 /* If we just want the low-order bit, the NEG isn't needed since it
8481 won't change the low-order bit. */
8482 if (mask == 1)
8483 return force_to_mode (XEXP (x, 0), mode, mask, just_select);
8484
8485 /* We need any bits less significant than the most significant bit in
8486 MASK since carries from those bits will affect the bits we are
8487 interested in. */
8488 mask = fuller_mask;
8489 goto unop;
8490
8491 case NOT:
8492 /* (not FOO) is (xor FOO CONST), so if FOO is an LSHIFTRT, we can do the
8493 same as the XOR case above. Ensure that the constant we form is not
8494 wider than the mode of X. */
8495
8496 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
8497 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
8498 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
8499 && (INTVAL (XEXP (XEXP (x, 0), 1)) + floor_log2 (mask)
8500 < GET_MODE_PRECISION (GET_MODE (x)))
8501 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT)
8502 {
8503 temp = gen_int_mode (mask << INTVAL (XEXP (XEXP (x, 0), 1)),
8504 GET_MODE (x));
8505 temp = simplify_gen_binary (XOR, GET_MODE (x),
8506 XEXP (XEXP (x, 0), 0), temp);
8507 x = simplify_gen_binary (LSHIFTRT, GET_MODE (x),
8508 temp, XEXP (XEXP (x, 0), 1));
8509
8510 return force_to_mode (x, mode, mask, next_select);
8511 }
8512
8513 /* (and (not FOO) CONST) is (not (or FOO (not CONST))), so we must
8514 use the full mask inside the NOT. */
8515 mask = fuller_mask;
8516
8517 unop:
8518 op0 = gen_lowpart_or_truncate (op_mode,
8519 force_to_mode (XEXP (x, 0), mode, mask,
8520 next_select));
8521 if (op_mode != GET_MODE (x) || op0 != XEXP (x, 0))
8522 x = simplify_gen_unary (code, op_mode, op0, op_mode);
8523 break;
8524
8525 case NE:
8526 /* (and (ne FOO 0) CONST) can be (and FOO CONST) if CONST is included
8527 in STORE_FLAG_VALUE and FOO has a single bit that might be nonzero,
8528 which is equal to STORE_FLAG_VALUE. */
8529 if ((mask & ~STORE_FLAG_VALUE) == 0
8530 && XEXP (x, 1) == const0_rtx
8531 && GET_MODE (XEXP (x, 0)) == mode
8532 && exact_log2 (nonzero_bits (XEXP (x, 0), mode)) >= 0
8533 && (nonzero_bits (XEXP (x, 0), mode)
8534 == (unsigned HOST_WIDE_INT) STORE_FLAG_VALUE))
8535 return force_to_mode (XEXP (x, 0), mode, mask, next_select);
8536
8537 break;
8538
8539 case IF_THEN_ELSE:
8540 /* We have no way of knowing if the IF_THEN_ELSE can itself be
8541 written in a narrower mode. We play it safe and do not do so. */
8542
8543 op0 = gen_lowpart_or_truncate (GET_MODE (x),
8544 force_to_mode (XEXP (x, 1), mode,
8545 mask, next_select));
8546 op1 = gen_lowpart_or_truncate (GET_MODE (x),
8547 force_to_mode (XEXP (x, 2), mode,
8548 mask, next_select));
8549 if (op0 != XEXP (x, 1) || op1 != XEXP (x, 2))
8550 x = simplify_gen_ternary (IF_THEN_ELSE, GET_MODE (x),
8551 GET_MODE (XEXP (x, 0)), XEXP (x, 0),
8552 op0, op1);
8553 break;
8554
8555 default:
8556 break;
8557 }
8558
8559 /* Ensure we return a value of the proper mode. */
8560 return gen_lowpart_or_truncate (mode, x);
8561 }
8562 \f
8563 /* Return nonzero if X is an expression that has one of two values depending on
8564 whether some other value is zero or nonzero. In that case, we return the
8565 value that is being tested, *PTRUE is set to the value if the rtx being
8566 returned has a nonzero value, and *PFALSE is set to the other alternative.
8567
8568 If we return zero, we set *PTRUE and *PFALSE to X. */
8569
8570 static rtx
8571 if_then_else_cond (rtx x, rtx *ptrue, rtx *pfalse)
8572 {
8573 enum machine_mode mode = GET_MODE (x);
8574 enum rtx_code code = GET_CODE (x);
8575 rtx cond0, cond1, true0, true1, false0, false1;
8576 unsigned HOST_WIDE_INT nz;
8577
8578 /* If we are comparing a value against zero, we are done. */
8579 if ((code == NE || code == EQ)
8580 && XEXP (x, 1) == const0_rtx)
8581 {
8582 *ptrue = (code == NE) ? const_true_rtx : const0_rtx;
8583 *pfalse = (code == NE) ? const0_rtx : const_true_rtx;
8584 return XEXP (x, 0);
8585 }
8586
8587 /* If this is a unary operation whose operand has one of two values, apply
8588 our opcode to compute those values. */
8589 else if (UNARY_P (x)
8590 && (cond0 = if_then_else_cond (XEXP (x, 0), &true0, &false0)) != 0)
8591 {
8592 *ptrue = simplify_gen_unary (code, mode, true0, GET_MODE (XEXP (x, 0)));
8593 *pfalse = simplify_gen_unary (code, mode, false0,
8594 GET_MODE (XEXP (x, 0)));
8595 return cond0;
8596 }
8597
8598 /* If this is a COMPARE, do nothing, since the IF_THEN_ELSE we would
8599 make can't possibly match and would suppress other optimizations. */
8600 else if (code == COMPARE)
8601 ;
8602
8603 /* If this is a binary operation, see if either side has only one of two
8604 values. If either one does or if both do and they are conditional on
8605 the same value, compute the new true and false values. */
8606 else if (BINARY_P (x))
8607 {
8608 cond0 = if_then_else_cond (XEXP (x, 0), &true0, &false0);
8609 cond1 = if_then_else_cond (XEXP (x, 1), &true1, &false1);
8610
8611 if ((cond0 != 0 || cond1 != 0)
8612 && ! (cond0 != 0 && cond1 != 0 && ! rtx_equal_p (cond0, cond1)))
8613 {
8614 /* If if_then_else_cond returned zero, then true/false are the
8615 same rtl. We must copy one of them to prevent invalid rtl
8616 sharing. */
8617 if (cond0 == 0)
8618 true0 = copy_rtx (true0);
8619 else if (cond1 == 0)
8620 true1 = copy_rtx (true1);
8621
8622 if (COMPARISON_P (x))
8623 {
8624 *ptrue = simplify_gen_relational (code, mode, VOIDmode,
8625 true0, true1);
8626 *pfalse = simplify_gen_relational (code, mode, VOIDmode,
8627 false0, false1);
8628 }
8629 else
8630 {
8631 *ptrue = simplify_gen_binary (code, mode, true0, true1);
8632 *pfalse = simplify_gen_binary (code, mode, false0, false1);
8633 }
8634
8635 return cond0 ? cond0 : cond1;
8636 }
8637
8638 /* See if we have PLUS, IOR, XOR, MINUS or UMAX, where one of the
8639 operands is zero when the other is nonzero, and vice-versa,
8640 and STORE_FLAG_VALUE is 1 or -1. */
8641
8642 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
8643 && (code == PLUS || code == IOR || code == XOR || code == MINUS
8644 || code == UMAX)
8645 && GET_CODE (XEXP (x, 0)) == MULT && GET_CODE (XEXP (x, 1)) == MULT)
8646 {
8647 rtx op0 = XEXP (XEXP (x, 0), 1);
8648 rtx op1 = XEXP (XEXP (x, 1), 1);
8649
8650 cond0 = XEXP (XEXP (x, 0), 0);
8651 cond1 = XEXP (XEXP (x, 1), 0);
8652
8653 if (COMPARISON_P (cond0)
8654 && COMPARISON_P (cond1)
8655 && ((GET_CODE (cond0) == reversed_comparison_code (cond1, NULL)
8656 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 0))
8657 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 1)))
8658 || ((swap_condition (GET_CODE (cond0))
8659 == reversed_comparison_code (cond1, NULL))
8660 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 1))
8661 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 0))))
8662 && ! side_effects_p (x))
8663 {
8664 *ptrue = simplify_gen_binary (MULT, mode, op0, const_true_rtx);
8665 *pfalse = simplify_gen_binary (MULT, mode,
8666 (code == MINUS
8667 ? simplify_gen_unary (NEG, mode,
8668 op1, mode)
8669 : op1),
8670 const_true_rtx);
8671 return cond0;
8672 }
8673 }
8674
8675 /* Similarly for MULT, AND and UMIN, except that for these the result
8676 is always zero. */
8677 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
8678 && (code == MULT || code == AND || code == UMIN)
8679 && GET_CODE (XEXP (x, 0)) == MULT && GET_CODE (XEXP (x, 1)) == MULT)
8680 {
8681 cond0 = XEXP (XEXP (x, 0), 0);
8682 cond1 = XEXP (XEXP (x, 1), 0);
8683
8684 if (COMPARISON_P (cond0)
8685 && COMPARISON_P (cond1)
8686 && ((GET_CODE (cond0) == reversed_comparison_code (cond1, NULL)
8687 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 0))
8688 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 1)))
8689 || ((swap_condition (GET_CODE (cond0))
8690 == reversed_comparison_code (cond1, NULL))
8691 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 1))
8692 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 0))))
8693 && ! side_effects_p (x))
8694 {
8695 *ptrue = *pfalse = const0_rtx;
8696 return cond0;
8697 }
8698 }
8699 }
8700
8701 else if (code == IF_THEN_ELSE)
8702 {
8703 /* If we have IF_THEN_ELSE already, extract the condition and
8704 canonicalize it if it is NE or EQ. */
8705 cond0 = XEXP (x, 0);
8706 *ptrue = XEXP (x, 1), *pfalse = XEXP (x, 2);
8707 if (GET_CODE (cond0) == NE && XEXP (cond0, 1) == const0_rtx)
8708 return XEXP (cond0, 0);
8709 else if (GET_CODE (cond0) == EQ && XEXP (cond0, 1) == const0_rtx)
8710 {
8711 *ptrue = XEXP (x, 2), *pfalse = XEXP (x, 1);
8712 return XEXP (cond0, 0);
8713 }
8714 else
8715 return cond0;
8716 }
8717
8718 /* If X is a SUBREG, we can narrow both the true and false values
8719 if the inner expression, if there is a condition. */
8720 else if (code == SUBREG
8721 && 0 != (cond0 = if_then_else_cond (SUBREG_REG (x),
8722 &true0, &false0)))
8723 {
8724 true0 = simplify_gen_subreg (mode, true0,
8725 GET_MODE (SUBREG_REG (x)), SUBREG_BYTE (x));
8726 false0 = simplify_gen_subreg (mode, false0,
8727 GET_MODE (SUBREG_REG (x)), SUBREG_BYTE (x));
8728 if (true0 && false0)
8729 {
8730 *ptrue = true0;
8731 *pfalse = false0;
8732 return cond0;
8733 }
8734 }
8735
8736 /* If X is a constant, this isn't special and will cause confusions
8737 if we treat it as such. Likewise if it is equivalent to a constant. */
8738 else if (CONSTANT_P (x)
8739 || ((cond0 = get_last_value (x)) != 0 && CONSTANT_P (cond0)))
8740 ;
8741
8742 /* If we're in BImode, canonicalize on 0 and STORE_FLAG_VALUE, as that
8743 will be least confusing to the rest of the compiler. */
8744 else if (mode == BImode)
8745 {
8746 *ptrue = GEN_INT (STORE_FLAG_VALUE), *pfalse = const0_rtx;
8747 return x;
8748 }
8749
8750 /* If X is known to be either 0 or -1, those are the true and
8751 false values when testing X. */
8752 else if (x == constm1_rtx || x == const0_rtx
8753 || (mode != VOIDmode
8754 && num_sign_bit_copies (x, mode) == GET_MODE_PRECISION (mode)))
8755 {
8756 *ptrue = constm1_rtx, *pfalse = const0_rtx;
8757 return x;
8758 }
8759
8760 /* Likewise for 0 or a single bit. */
8761 else if (HWI_COMPUTABLE_MODE_P (mode)
8762 && exact_log2 (nz = nonzero_bits (x, mode)) >= 0)
8763 {
8764 *ptrue = gen_int_mode (nz, mode), *pfalse = const0_rtx;
8765 return x;
8766 }
8767
8768 /* Otherwise fail; show no condition with true and false values the same. */
8769 *ptrue = *pfalse = x;
8770 return 0;
8771 }
8772 \f
8773 /* Return the value of expression X given the fact that condition COND
8774 is known to be true when applied to REG as its first operand and VAL
8775 as its second. X is known to not be shared and so can be modified in
8776 place.
8777
8778 We only handle the simplest cases, and specifically those cases that
8779 arise with IF_THEN_ELSE expressions. */
8780
8781 static rtx
8782 known_cond (rtx x, enum rtx_code cond, rtx reg, rtx val)
8783 {
8784 enum rtx_code code = GET_CODE (x);
8785 rtx temp;
8786 const char *fmt;
8787 int i, j;
8788
8789 if (side_effects_p (x))
8790 return x;
8791
8792 /* If either operand of the condition is a floating point value,
8793 then we have to avoid collapsing an EQ comparison. */
8794 if (cond == EQ
8795 && rtx_equal_p (x, reg)
8796 && ! FLOAT_MODE_P (GET_MODE (x))
8797 && ! FLOAT_MODE_P (GET_MODE (val)))
8798 return val;
8799
8800 if (cond == UNEQ && rtx_equal_p (x, reg))
8801 return val;
8802
8803 /* If X is (abs REG) and we know something about REG's relationship
8804 with zero, we may be able to simplify this. */
8805
8806 if (code == ABS && rtx_equal_p (XEXP (x, 0), reg) && val == const0_rtx)
8807 switch (cond)
8808 {
8809 case GE: case GT: case EQ:
8810 return XEXP (x, 0);
8811 case LT: case LE:
8812 return simplify_gen_unary (NEG, GET_MODE (XEXP (x, 0)),
8813 XEXP (x, 0),
8814 GET_MODE (XEXP (x, 0)));
8815 default:
8816 break;
8817 }
8818
8819 /* The only other cases we handle are MIN, MAX, and comparisons if the
8820 operands are the same as REG and VAL. */
8821
8822 else if (COMPARISON_P (x) || COMMUTATIVE_ARITH_P (x))
8823 {
8824 if (rtx_equal_p (XEXP (x, 0), val))
8825 cond = swap_condition (cond), temp = val, val = reg, reg = temp;
8826
8827 if (rtx_equal_p (XEXP (x, 0), reg) && rtx_equal_p (XEXP (x, 1), val))
8828 {
8829 if (COMPARISON_P (x))
8830 {
8831 if (comparison_dominates_p (cond, code))
8832 return const_true_rtx;
8833
8834 code = reversed_comparison_code (x, NULL);
8835 if (code != UNKNOWN
8836 && comparison_dominates_p (cond, code))
8837 return const0_rtx;
8838 else
8839 return x;
8840 }
8841 else if (code == SMAX || code == SMIN
8842 || code == UMIN || code == UMAX)
8843 {
8844 int unsignedp = (code == UMIN || code == UMAX);
8845
8846 /* Do not reverse the condition when it is NE or EQ.
8847 This is because we cannot conclude anything about
8848 the value of 'SMAX (x, y)' when x is not equal to y,
8849 but we can when x equals y. */
8850 if ((code == SMAX || code == UMAX)
8851 && ! (cond == EQ || cond == NE))
8852 cond = reverse_condition (cond);
8853
8854 switch (cond)
8855 {
8856 case GE: case GT:
8857 return unsignedp ? x : XEXP (x, 1);
8858 case LE: case LT:
8859 return unsignedp ? x : XEXP (x, 0);
8860 case GEU: case GTU:
8861 return unsignedp ? XEXP (x, 1) : x;
8862 case LEU: case LTU:
8863 return unsignedp ? XEXP (x, 0) : x;
8864 default:
8865 break;
8866 }
8867 }
8868 }
8869 }
8870 else if (code == SUBREG)
8871 {
8872 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (x));
8873 rtx new_rtx, r = known_cond (SUBREG_REG (x), cond, reg, val);
8874
8875 if (SUBREG_REG (x) != r)
8876 {
8877 /* We must simplify subreg here, before we lose track of the
8878 original inner_mode. */
8879 new_rtx = simplify_subreg (GET_MODE (x), r,
8880 inner_mode, SUBREG_BYTE (x));
8881 if (new_rtx)
8882 return new_rtx;
8883 else
8884 SUBST (SUBREG_REG (x), r);
8885 }
8886
8887 return x;
8888 }
8889 /* We don't have to handle SIGN_EXTEND here, because even in the
8890 case of replacing something with a modeless CONST_INT, a
8891 CONST_INT is already (supposed to be) a valid sign extension for
8892 its narrower mode, which implies it's already properly
8893 sign-extended for the wider mode. Now, for ZERO_EXTEND, the
8894 story is different. */
8895 else if (code == ZERO_EXTEND)
8896 {
8897 enum machine_mode inner_mode = GET_MODE (XEXP (x, 0));
8898 rtx new_rtx, r = known_cond (XEXP (x, 0), cond, reg, val);
8899
8900 if (XEXP (x, 0) != r)
8901 {
8902 /* We must simplify the zero_extend here, before we lose
8903 track of the original inner_mode. */
8904 new_rtx = simplify_unary_operation (ZERO_EXTEND, GET_MODE (x),
8905 r, inner_mode);
8906 if (new_rtx)
8907 return new_rtx;
8908 else
8909 SUBST (XEXP (x, 0), r);
8910 }
8911
8912 return x;
8913 }
8914
8915 fmt = GET_RTX_FORMAT (code);
8916 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
8917 {
8918 if (fmt[i] == 'e')
8919 SUBST (XEXP (x, i), known_cond (XEXP (x, i), cond, reg, val));
8920 else if (fmt[i] == 'E')
8921 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
8922 SUBST (XVECEXP (x, i, j), known_cond (XVECEXP (x, i, j),
8923 cond, reg, val));
8924 }
8925
8926 return x;
8927 }
8928 \f
8929 /* See if X and Y are equal for the purposes of seeing if we can rewrite an
8930 assignment as a field assignment. */
8931
8932 static int
8933 rtx_equal_for_field_assignment_p (rtx x, rtx y)
8934 {
8935 if (x == y || rtx_equal_p (x, y))
8936 return 1;
8937
8938 if (x == 0 || y == 0 || GET_MODE (x) != GET_MODE (y))
8939 return 0;
8940
8941 /* Check for a paradoxical SUBREG of a MEM compared with the MEM.
8942 Note that all SUBREGs of MEM are paradoxical; otherwise they
8943 would have been rewritten. */
8944 if (MEM_P (x) && GET_CODE (y) == SUBREG
8945 && MEM_P (SUBREG_REG (y))
8946 && rtx_equal_p (SUBREG_REG (y),
8947 gen_lowpart (GET_MODE (SUBREG_REG (y)), x)))
8948 return 1;
8949
8950 if (MEM_P (y) && GET_CODE (x) == SUBREG
8951 && MEM_P (SUBREG_REG (x))
8952 && rtx_equal_p (SUBREG_REG (x),
8953 gen_lowpart (GET_MODE (SUBREG_REG (x)), y)))
8954 return 1;
8955
8956 /* We used to see if get_last_value of X and Y were the same but that's
8957 not correct. In one direction, we'll cause the assignment to have
8958 the wrong destination and in the case, we'll import a register into this
8959 insn that might have already have been dead. So fail if none of the
8960 above cases are true. */
8961 return 0;
8962 }
8963 \f
8964 /* See if X, a SET operation, can be rewritten as a bit-field assignment.
8965 Return that assignment if so.
8966
8967 We only handle the most common cases. */
8968
8969 static rtx
8970 make_field_assignment (rtx x)
8971 {
8972 rtx dest = SET_DEST (x);
8973 rtx src = SET_SRC (x);
8974 rtx assign;
8975 rtx rhs, lhs;
8976 HOST_WIDE_INT c1;
8977 HOST_WIDE_INT pos;
8978 unsigned HOST_WIDE_INT len;
8979 rtx other;
8980 enum machine_mode mode;
8981
8982 /* If SRC was (and (not (ashift (const_int 1) POS)) DEST), this is
8983 a clear of a one-bit field. We will have changed it to
8984 (and (rotate (const_int -2) POS) DEST), so check for that. Also check
8985 for a SUBREG. */
8986
8987 if (GET_CODE (src) == AND && GET_CODE (XEXP (src, 0)) == ROTATE
8988 && CONST_INT_P (XEXP (XEXP (src, 0), 0))
8989 && INTVAL (XEXP (XEXP (src, 0), 0)) == -2
8990 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
8991 {
8992 assign = make_extraction (VOIDmode, dest, 0, XEXP (XEXP (src, 0), 1),
8993 1, 1, 1, 0);
8994 if (assign != 0)
8995 return gen_rtx_SET (VOIDmode, assign, const0_rtx);
8996 return x;
8997 }
8998
8999 if (GET_CODE (src) == AND && GET_CODE (XEXP (src, 0)) == SUBREG
9000 && subreg_lowpart_p (XEXP (src, 0))
9001 && (GET_MODE_SIZE (GET_MODE (XEXP (src, 0)))
9002 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (XEXP (src, 0)))))
9003 && GET_CODE (SUBREG_REG (XEXP (src, 0))) == ROTATE
9004 && CONST_INT_P (XEXP (SUBREG_REG (XEXP (src, 0)), 0))
9005 && INTVAL (XEXP (SUBREG_REG (XEXP (src, 0)), 0)) == -2
9006 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
9007 {
9008 assign = make_extraction (VOIDmode, dest, 0,
9009 XEXP (SUBREG_REG (XEXP (src, 0)), 1),
9010 1, 1, 1, 0);
9011 if (assign != 0)
9012 return gen_rtx_SET (VOIDmode, assign, const0_rtx);
9013 return x;
9014 }
9015
9016 /* If SRC is (ior (ashift (const_int 1) POS) DEST), this is a set of a
9017 one-bit field. */
9018 if (GET_CODE (src) == IOR && GET_CODE (XEXP (src, 0)) == ASHIFT
9019 && XEXP (XEXP (src, 0), 0) == const1_rtx
9020 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
9021 {
9022 assign = make_extraction (VOIDmode, dest, 0, XEXP (XEXP (src, 0), 1),
9023 1, 1, 1, 0);
9024 if (assign != 0)
9025 return gen_rtx_SET (VOIDmode, assign, const1_rtx);
9026 return x;
9027 }
9028
9029 /* If DEST is already a field assignment, i.e. ZERO_EXTRACT, and the
9030 SRC is an AND with all bits of that field set, then we can discard
9031 the AND. */
9032 if (GET_CODE (dest) == ZERO_EXTRACT
9033 && CONST_INT_P (XEXP (dest, 1))
9034 && GET_CODE (src) == AND
9035 && CONST_INT_P (XEXP (src, 1)))
9036 {
9037 HOST_WIDE_INT width = INTVAL (XEXP (dest, 1));
9038 unsigned HOST_WIDE_INT and_mask = INTVAL (XEXP (src, 1));
9039 unsigned HOST_WIDE_INT ze_mask;
9040
9041 if (width >= HOST_BITS_PER_WIDE_INT)
9042 ze_mask = -1;
9043 else
9044 ze_mask = ((unsigned HOST_WIDE_INT)1 << width) - 1;
9045
9046 /* Complete overlap. We can remove the source AND. */
9047 if ((and_mask & ze_mask) == ze_mask)
9048 return gen_rtx_SET (VOIDmode, dest, XEXP (src, 0));
9049
9050 /* Partial overlap. We can reduce the source AND. */
9051 if ((and_mask & ze_mask) != and_mask)
9052 {
9053 mode = GET_MODE (src);
9054 src = gen_rtx_AND (mode, XEXP (src, 0),
9055 gen_int_mode (and_mask & ze_mask, mode));
9056 return gen_rtx_SET (VOIDmode, dest, src);
9057 }
9058 }
9059
9060 /* The other case we handle is assignments into a constant-position
9061 field. They look like (ior/xor (and DEST C1) OTHER). If C1 represents
9062 a mask that has all one bits except for a group of zero bits and
9063 OTHER is known to have zeros where C1 has ones, this is such an
9064 assignment. Compute the position and length from C1. Shift OTHER
9065 to the appropriate position, force it to the required mode, and
9066 make the extraction. Check for the AND in both operands. */
9067
9068 if (GET_CODE (src) != IOR && GET_CODE (src) != XOR)
9069 return x;
9070
9071 rhs = expand_compound_operation (XEXP (src, 0));
9072 lhs = expand_compound_operation (XEXP (src, 1));
9073
9074 if (GET_CODE (rhs) == AND
9075 && CONST_INT_P (XEXP (rhs, 1))
9076 && rtx_equal_for_field_assignment_p (XEXP (rhs, 0), dest))
9077 c1 = INTVAL (XEXP (rhs, 1)), other = lhs;
9078 else if (GET_CODE (lhs) == AND
9079 && CONST_INT_P (XEXP (lhs, 1))
9080 && rtx_equal_for_field_assignment_p (XEXP (lhs, 0), dest))
9081 c1 = INTVAL (XEXP (lhs, 1)), other = rhs;
9082 else
9083 return x;
9084
9085 pos = get_pos_from_mask ((~c1) & GET_MODE_MASK (GET_MODE (dest)), &len);
9086 if (pos < 0 || pos + len > GET_MODE_PRECISION (GET_MODE (dest))
9087 || GET_MODE_PRECISION (GET_MODE (dest)) > HOST_BITS_PER_WIDE_INT
9088 || (c1 & nonzero_bits (other, GET_MODE (dest))) != 0)
9089 return x;
9090
9091 assign = make_extraction (VOIDmode, dest, pos, NULL_RTX, len, 1, 1, 0);
9092 if (assign == 0)
9093 return x;
9094
9095 /* The mode to use for the source is the mode of the assignment, or of
9096 what is inside a possible STRICT_LOW_PART. */
9097 mode = (GET_CODE (assign) == STRICT_LOW_PART
9098 ? GET_MODE (XEXP (assign, 0)) : GET_MODE (assign));
9099
9100 /* Shift OTHER right POS places and make it the source, restricting it
9101 to the proper length and mode. */
9102
9103 src = canon_reg_for_combine (simplify_shift_const (NULL_RTX, LSHIFTRT,
9104 GET_MODE (src),
9105 other, pos),
9106 dest);
9107 src = force_to_mode (src, mode,
9108 GET_MODE_PRECISION (mode) >= HOST_BITS_PER_WIDE_INT
9109 ? ~(unsigned HOST_WIDE_INT) 0
9110 : ((unsigned HOST_WIDE_INT) 1 << len) - 1,
9111 0);
9112
9113 /* If SRC is masked by an AND that does not make a difference in
9114 the value being stored, strip it. */
9115 if (GET_CODE (assign) == ZERO_EXTRACT
9116 && CONST_INT_P (XEXP (assign, 1))
9117 && INTVAL (XEXP (assign, 1)) < HOST_BITS_PER_WIDE_INT
9118 && GET_CODE (src) == AND
9119 && CONST_INT_P (XEXP (src, 1))
9120 && UINTVAL (XEXP (src, 1))
9121 == ((unsigned HOST_WIDE_INT) 1 << INTVAL (XEXP (assign, 1))) - 1)
9122 src = XEXP (src, 0);
9123
9124 return gen_rtx_SET (VOIDmode, assign, src);
9125 }
9126 \f
9127 /* See if X is of the form (+ (* a c) (* b c)) and convert to (* (+ a b) c)
9128 if so. */
9129
9130 static rtx
9131 apply_distributive_law (rtx x)
9132 {
9133 enum rtx_code code = GET_CODE (x);
9134 enum rtx_code inner_code;
9135 rtx lhs, rhs, other;
9136 rtx tem;
9137
9138 /* Distributivity is not true for floating point as it can change the
9139 value. So we don't do it unless -funsafe-math-optimizations. */
9140 if (FLOAT_MODE_P (GET_MODE (x))
9141 && ! flag_unsafe_math_optimizations)
9142 return x;
9143
9144 /* The outer operation can only be one of the following: */
9145 if (code != IOR && code != AND && code != XOR
9146 && code != PLUS && code != MINUS)
9147 return x;
9148
9149 lhs = XEXP (x, 0);
9150 rhs = XEXP (x, 1);
9151
9152 /* If either operand is a primitive we can't do anything, so get out
9153 fast. */
9154 if (OBJECT_P (lhs) || OBJECT_P (rhs))
9155 return x;
9156
9157 lhs = expand_compound_operation (lhs);
9158 rhs = expand_compound_operation (rhs);
9159 inner_code = GET_CODE (lhs);
9160 if (inner_code != GET_CODE (rhs))
9161 return x;
9162
9163 /* See if the inner and outer operations distribute. */
9164 switch (inner_code)
9165 {
9166 case LSHIFTRT:
9167 case ASHIFTRT:
9168 case AND:
9169 case IOR:
9170 /* These all distribute except over PLUS. */
9171 if (code == PLUS || code == MINUS)
9172 return x;
9173 break;
9174
9175 case MULT:
9176 if (code != PLUS && code != MINUS)
9177 return x;
9178 break;
9179
9180 case ASHIFT:
9181 /* This is also a multiply, so it distributes over everything. */
9182 break;
9183
9184 /* This used to handle SUBREG, but this turned out to be counter-
9185 productive, since (subreg (op ...)) usually is not handled by
9186 insn patterns, and this "optimization" therefore transformed
9187 recognizable patterns into unrecognizable ones. Therefore the
9188 SUBREG case was removed from here.
9189
9190 It is possible that distributing SUBREG over arithmetic operations
9191 leads to an intermediate result than can then be optimized further,
9192 e.g. by moving the outer SUBREG to the other side of a SET as done
9193 in simplify_set. This seems to have been the original intent of
9194 handling SUBREGs here.
9195
9196 However, with current GCC this does not appear to actually happen,
9197 at least on major platforms. If some case is found where removing
9198 the SUBREG case here prevents follow-on optimizations, distributing
9199 SUBREGs ought to be re-added at that place, e.g. in simplify_set. */
9200
9201 default:
9202 return x;
9203 }
9204
9205 /* Set LHS and RHS to the inner operands (A and B in the example
9206 above) and set OTHER to the common operand (C in the example).
9207 There is only one way to do this unless the inner operation is
9208 commutative. */
9209 if (COMMUTATIVE_ARITH_P (lhs)
9210 && rtx_equal_p (XEXP (lhs, 0), XEXP (rhs, 0)))
9211 other = XEXP (lhs, 0), lhs = XEXP (lhs, 1), rhs = XEXP (rhs, 1);
9212 else if (COMMUTATIVE_ARITH_P (lhs)
9213 && rtx_equal_p (XEXP (lhs, 0), XEXP (rhs, 1)))
9214 other = XEXP (lhs, 0), lhs = XEXP (lhs, 1), rhs = XEXP (rhs, 0);
9215 else if (COMMUTATIVE_ARITH_P (lhs)
9216 && rtx_equal_p (XEXP (lhs, 1), XEXP (rhs, 0)))
9217 other = XEXP (lhs, 1), lhs = XEXP (lhs, 0), rhs = XEXP (rhs, 1);
9218 else if (rtx_equal_p (XEXP (lhs, 1), XEXP (rhs, 1)))
9219 other = XEXP (lhs, 1), lhs = XEXP (lhs, 0), rhs = XEXP (rhs, 0);
9220 else
9221 return x;
9222
9223 /* Form the new inner operation, seeing if it simplifies first. */
9224 tem = simplify_gen_binary (code, GET_MODE (x), lhs, rhs);
9225
9226 /* There is one exception to the general way of distributing:
9227 (a | c) ^ (b | c) -> (a ^ b) & ~c */
9228 if (code == XOR && inner_code == IOR)
9229 {
9230 inner_code = AND;
9231 other = simplify_gen_unary (NOT, GET_MODE (x), other, GET_MODE (x));
9232 }
9233
9234 /* We may be able to continuing distributing the result, so call
9235 ourselves recursively on the inner operation before forming the
9236 outer operation, which we return. */
9237 return simplify_gen_binary (inner_code, GET_MODE (x),
9238 apply_distributive_law (tem), other);
9239 }
9240
9241 /* See if X is of the form (* (+ A B) C), and if so convert to
9242 (+ (* A C) (* B C)) and try to simplify.
9243
9244 Most of the time, this results in no change. However, if some of
9245 the operands are the same or inverses of each other, simplifications
9246 will result.
9247
9248 For example, (and (ior A B) (not B)) can occur as the result of
9249 expanding a bit field assignment. When we apply the distributive
9250 law to this, we get (ior (and (A (not B))) (and (B (not B)))),
9251 which then simplifies to (and (A (not B))).
9252
9253 Note that no checks happen on the validity of applying the inverse
9254 distributive law. This is pointless since we can do it in the
9255 few places where this routine is called.
9256
9257 N is the index of the term that is decomposed (the arithmetic operation,
9258 i.e. (+ A B) in the first example above). !N is the index of the term that
9259 is distributed, i.e. of C in the first example above. */
9260 static rtx
9261 distribute_and_simplify_rtx (rtx x, int n)
9262 {
9263 enum machine_mode mode;
9264 enum rtx_code outer_code, inner_code;
9265 rtx decomposed, distributed, inner_op0, inner_op1, new_op0, new_op1, tmp;
9266
9267 /* Distributivity is not true for floating point as it can change the
9268 value. So we don't do it unless -funsafe-math-optimizations. */
9269 if (FLOAT_MODE_P (GET_MODE (x))
9270 && ! flag_unsafe_math_optimizations)
9271 return NULL_RTX;
9272
9273 decomposed = XEXP (x, n);
9274 if (!ARITHMETIC_P (decomposed))
9275 return NULL_RTX;
9276
9277 mode = GET_MODE (x);
9278 outer_code = GET_CODE (x);
9279 distributed = XEXP (x, !n);
9280
9281 inner_code = GET_CODE (decomposed);
9282 inner_op0 = XEXP (decomposed, 0);
9283 inner_op1 = XEXP (decomposed, 1);
9284
9285 /* Special case (and (xor B C) (not A)), which is equivalent to
9286 (xor (ior A B) (ior A C)) */
9287 if (outer_code == AND && inner_code == XOR && GET_CODE (distributed) == NOT)
9288 {
9289 distributed = XEXP (distributed, 0);
9290 outer_code = IOR;
9291 }
9292
9293 if (n == 0)
9294 {
9295 /* Distribute the second term. */
9296 new_op0 = simplify_gen_binary (outer_code, mode, inner_op0, distributed);
9297 new_op1 = simplify_gen_binary (outer_code, mode, inner_op1, distributed);
9298 }
9299 else
9300 {
9301 /* Distribute the first term. */
9302 new_op0 = simplify_gen_binary (outer_code, mode, distributed, inner_op0);
9303 new_op1 = simplify_gen_binary (outer_code, mode, distributed, inner_op1);
9304 }
9305
9306 tmp = apply_distributive_law (simplify_gen_binary (inner_code, mode,
9307 new_op0, new_op1));
9308 if (GET_CODE (tmp) != outer_code
9309 && (set_src_cost (tmp, optimize_this_for_speed_p)
9310 < set_src_cost (x, optimize_this_for_speed_p)))
9311 return tmp;
9312
9313 return NULL_RTX;
9314 }
9315 \f
9316 /* Simplify a logical `and' of VAROP with the constant CONSTOP, to be done
9317 in MODE. Return an equivalent form, if different from (and VAROP
9318 (const_int CONSTOP)). Otherwise, return NULL_RTX. */
9319
9320 static rtx
9321 simplify_and_const_int_1 (enum machine_mode mode, rtx varop,
9322 unsigned HOST_WIDE_INT constop)
9323 {
9324 unsigned HOST_WIDE_INT nonzero;
9325 unsigned HOST_WIDE_INT orig_constop;
9326 rtx orig_varop;
9327 int i;
9328
9329 orig_varop = varop;
9330 orig_constop = constop;
9331 if (GET_CODE (varop) == CLOBBER)
9332 return NULL_RTX;
9333
9334 /* Simplify VAROP knowing that we will be only looking at some of the
9335 bits in it.
9336
9337 Note by passing in CONSTOP, we guarantee that the bits not set in
9338 CONSTOP are not significant and will never be examined. We must
9339 ensure that is the case by explicitly masking out those bits
9340 before returning. */
9341 varop = force_to_mode (varop, mode, constop, 0);
9342
9343 /* If VAROP is a CLOBBER, we will fail so return it. */
9344 if (GET_CODE (varop) == CLOBBER)
9345 return varop;
9346
9347 /* If VAROP is a CONST_INT, then we need to apply the mask in CONSTOP
9348 to VAROP and return the new constant. */
9349 if (CONST_INT_P (varop))
9350 return gen_int_mode (INTVAL (varop) & constop, mode);
9351
9352 /* See what bits may be nonzero in VAROP. Unlike the general case of
9353 a call to nonzero_bits, here we don't care about bits outside
9354 MODE. */
9355
9356 nonzero = nonzero_bits (varop, mode) & GET_MODE_MASK (mode);
9357
9358 /* Turn off all bits in the constant that are known to already be zero.
9359 Thus, if the AND isn't needed at all, we will have CONSTOP == NONZERO_BITS
9360 which is tested below. */
9361
9362 constop &= nonzero;
9363
9364 /* If we don't have any bits left, return zero. */
9365 if (constop == 0)
9366 return const0_rtx;
9367
9368 /* If VAROP is a NEG of something known to be zero or 1 and CONSTOP is
9369 a power of two, we can replace this with an ASHIFT. */
9370 if (GET_CODE (varop) == NEG && nonzero_bits (XEXP (varop, 0), mode) == 1
9371 && (i = exact_log2 (constop)) >= 0)
9372 return simplify_shift_const (NULL_RTX, ASHIFT, mode, XEXP (varop, 0), i);
9373
9374 /* If VAROP is an IOR or XOR, apply the AND to both branches of the IOR
9375 or XOR, then try to apply the distributive law. This may eliminate
9376 operations if either branch can be simplified because of the AND.
9377 It may also make some cases more complex, but those cases probably
9378 won't match a pattern either with or without this. */
9379
9380 if (GET_CODE (varop) == IOR || GET_CODE (varop) == XOR)
9381 return
9382 gen_lowpart
9383 (mode,
9384 apply_distributive_law
9385 (simplify_gen_binary (GET_CODE (varop), GET_MODE (varop),
9386 simplify_and_const_int (NULL_RTX,
9387 GET_MODE (varop),
9388 XEXP (varop, 0),
9389 constop),
9390 simplify_and_const_int (NULL_RTX,
9391 GET_MODE (varop),
9392 XEXP (varop, 1),
9393 constop))));
9394
9395 /* If VAROP is PLUS, and the constant is a mask of low bits, distribute
9396 the AND and see if one of the operands simplifies to zero. If so, we
9397 may eliminate it. */
9398
9399 if (GET_CODE (varop) == PLUS
9400 && exact_log2 (constop + 1) >= 0)
9401 {
9402 rtx o0, o1;
9403
9404 o0 = simplify_and_const_int (NULL_RTX, mode, XEXP (varop, 0), constop);
9405 o1 = simplify_and_const_int (NULL_RTX, mode, XEXP (varop, 1), constop);
9406 if (o0 == const0_rtx)
9407 return o1;
9408 if (o1 == const0_rtx)
9409 return o0;
9410 }
9411
9412 /* Make a SUBREG if necessary. If we can't make it, fail. */
9413 varop = gen_lowpart (mode, varop);
9414 if (varop == NULL_RTX || GET_CODE (varop) == CLOBBER)
9415 return NULL_RTX;
9416
9417 /* If we are only masking insignificant bits, return VAROP. */
9418 if (constop == nonzero)
9419 return varop;
9420
9421 if (varop == orig_varop && constop == orig_constop)
9422 return NULL_RTX;
9423
9424 /* Otherwise, return an AND. */
9425 return simplify_gen_binary (AND, mode, varop, gen_int_mode (constop, mode));
9426 }
9427
9428
9429 /* We have X, a logical `and' of VAROP with the constant CONSTOP, to be done
9430 in MODE.
9431
9432 Return an equivalent form, if different from X. Otherwise, return X. If
9433 X is zero, we are to always construct the equivalent form. */
9434
9435 static rtx
9436 simplify_and_const_int (rtx x, enum machine_mode mode, rtx varop,
9437 unsigned HOST_WIDE_INT constop)
9438 {
9439 rtx tem = simplify_and_const_int_1 (mode, varop, constop);
9440 if (tem)
9441 return tem;
9442
9443 if (!x)
9444 x = simplify_gen_binary (AND, GET_MODE (varop), varop,
9445 gen_int_mode (constop, mode));
9446 if (GET_MODE (x) != mode)
9447 x = gen_lowpart (mode, x);
9448 return x;
9449 }
9450 \f
9451 /* Given a REG, X, compute which bits in X can be nonzero.
9452 We don't care about bits outside of those defined in MODE.
9453
9454 For most X this is simply GET_MODE_MASK (GET_MODE (MODE)), but if X is
9455 a shift, AND, or zero_extract, we can do better. */
9456
9457 static rtx
9458 reg_nonzero_bits_for_combine (const_rtx x, enum machine_mode mode,
9459 const_rtx known_x ATTRIBUTE_UNUSED,
9460 enum machine_mode known_mode ATTRIBUTE_UNUSED,
9461 unsigned HOST_WIDE_INT known_ret ATTRIBUTE_UNUSED,
9462 unsigned HOST_WIDE_INT *nonzero)
9463 {
9464 rtx tem;
9465 reg_stat_type *rsp;
9466
9467 /* If X is a register whose nonzero bits value is current, use it.
9468 Otherwise, if X is a register whose value we can find, use that
9469 value. Otherwise, use the previously-computed global nonzero bits
9470 for this register. */
9471
9472 rsp = &reg_stat[REGNO (x)];
9473 if (rsp->last_set_value != 0
9474 && (rsp->last_set_mode == mode
9475 || (GET_MODE_CLASS (rsp->last_set_mode) == MODE_INT
9476 && GET_MODE_CLASS (mode) == MODE_INT))
9477 && ((rsp->last_set_label >= label_tick_ebb_start
9478 && rsp->last_set_label < label_tick)
9479 || (rsp->last_set_label == label_tick
9480 && DF_INSN_LUID (rsp->last_set) < subst_low_luid)
9481 || (REGNO (x) >= FIRST_PSEUDO_REGISTER
9482 && REG_N_SETS (REGNO (x)) == 1
9483 && !REGNO_REG_SET_P
9484 (DF_LR_IN (ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb),
9485 REGNO (x)))))
9486 {
9487 unsigned HOST_WIDE_INT mask = rsp->last_set_nonzero_bits;
9488
9489 if (GET_MODE_PRECISION (rsp->last_set_mode) < GET_MODE_PRECISION (mode))
9490 /* We don't know anything about the upper bits. */
9491 mask |= GET_MODE_MASK (mode) ^ GET_MODE_MASK (rsp->last_set_mode);
9492
9493 *nonzero &= mask;
9494 return NULL;
9495 }
9496
9497 tem = get_last_value (x);
9498
9499 if (tem)
9500 {
9501 #ifdef SHORT_IMMEDIATES_SIGN_EXTEND
9502 /* If X is narrower than MODE and TEM is a non-negative
9503 constant that would appear negative in the mode of X,
9504 sign-extend it for use in reg_nonzero_bits because some
9505 machines (maybe most) will actually do the sign-extension
9506 and this is the conservative approach.
9507
9508 ??? For 2.5, try to tighten up the MD files in this regard
9509 instead of this kludge. */
9510
9511 if (GET_MODE_PRECISION (GET_MODE (x)) < GET_MODE_PRECISION (mode)
9512 && CONST_INT_P (tem)
9513 && INTVAL (tem) > 0
9514 && val_signbit_known_set_p (GET_MODE (x), INTVAL (tem)))
9515 tem = GEN_INT (INTVAL (tem) | ~GET_MODE_MASK (GET_MODE (x)));
9516 #endif
9517 return tem;
9518 }
9519 else if (nonzero_sign_valid && rsp->nonzero_bits)
9520 {
9521 unsigned HOST_WIDE_INT mask = rsp->nonzero_bits;
9522
9523 if (GET_MODE_PRECISION (GET_MODE (x)) < GET_MODE_PRECISION (mode))
9524 /* We don't know anything about the upper bits. */
9525 mask |= GET_MODE_MASK (mode) ^ GET_MODE_MASK (GET_MODE (x));
9526
9527 *nonzero &= mask;
9528 }
9529
9530 return NULL;
9531 }
9532
9533 /* Return the number of bits at the high-order end of X that are known to
9534 be equal to the sign bit. X will be used in mode MODE; if MODE is
9535 VOIDmode, X will be used in its own mode. The returned value will always
9536 be between 1 and the number of bits in MODE. */
9537
9538 static rtx
9539 reg_num_sign_bit_copies_for_combine (const_rtx x, enum machine_mode mode,
9540 const_rtx known_x ATTRIBUTE_UNUSED,
9541 enum machine_mode known_mode
9542 ATTRIBUTE_UNUSED,
9543 unsigned int known_ret ATTRIBUTE_UNUSED,
9544 unsigned int *result)
9545 {
9546 rtx tem;
9547 reg_stat_type *rsp;
9548
9549 rsp = &reg_stat[REGNO (x)];
9550 if (rsp->last_set_value != 0
9551 && rsp->last_set_mode == mode
9552 && ((rsp->last_set_label >= label_tick_ebb_start
9553 && rsp->last_set_label < label_tick)
9554 || (rsp->last_set_label == label_tick
9555 && DF_INSN_LUID (rsp->last_set) < subst_low_luid)
9556 || (REGNO (x) >= FIRST_PSEUDO_REGISTER
9557 && REG_N_SETS (REGNO (x)) == 1
9558 && !REGNO_REG_SET_P
9559 (DF_LR_IN (ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb),
9560 REGNO (x)))))
9561 {
9562 *result = rsp->last_set_sign_bit_copies;
9563 return NULL;
9564 }
9565
9566 tem = get_last_value (x);
9567 if (tem != 0)
9568 return tem;
9569
9570 if (nonzero_sign_valid && rsp->sign_bit_copies != 0
9571 && GET_MODE_PRECISION (GET_MODE (x)) == GET_MODE_PRECISION (mode))
9572 *result = rsp->sign_bit_copies;
9573
9574 return NULL;
9575 }
9576 \f
9577 /* Return the number of "extended" bits there are in X, when interpreted
9578 as a quantity in MODE whose signedness is indicated by UNSIGNEDP. For
9579 unsigned quantities, this is the number of high-order zero bits.
9580 For signed quantities, this is the number of copies of the sign bit
9581 minus 1. In both case, this function returns the number of "spare"
9582 bits. For example, if two quantities for which this function returns
9583 at least 1 are added, the addition is known not to overflow.
9584
9585 This function will always return 0 unless called during combine, which
9586 implies that it must be called from a define_split. */
9587
9588 unsigned int
9589 extended_count (const_rtx x, enum machine_mode mode, int unsignedp)
9590 {
9591 if (nonzero_sign_valid == 0)
9592 return 0;
9593
9594 return (unsignedp
9595 ? (HWI_COMPUTABLE_MODE_P (mode)
9596 ? (unsigned int) (GET_MODE_PRECISION (mode) - 1
9597 - floor_log2 (nonzero_bits (x, mode)))
9598 : 0)
9599 : num_sign_bit_copies (x, mode) - 1);
9600 }
9601
9602 /* This function is called from `simplify_shift_const' to merge two
9603 outer operations. Specifically, we have already found that we need
9604 to perform operation *POP0 with constant *PCONST0 at the outermost
9605 position. We would now like to also perform OP1 with constant CONST1
9606 (with *POP0 being done last).
9607
9608 Return 1 if we can do the operation and update *POP0 and *PCONST0 with
9609 the resulting operation. *PCOMP_P is set to 1 if we would need to
9610 complement the innermost operand, otherwise it is unchanged.
9611
9612 MODE is the mode in which the operation will be done. No bits outside
9613 the width of this mode matter. It is assumed that the width of this mode
9614 is smaller than or equal to HOST_BITS_PER_WIDE_INT.
9615
9616 If *POP0 or OP1 are UNKNOWN, it means no operation is required. Only NEG, PLUS,
9617 IOR, XOR, and AND are supported. We may set *POP0 to SET if the proper
9618 result is simply *PCONST0.
9619
9620 If the resulting operation cannot be expressed as one operation, we
9621 return 0 and do not change *POP0, *PCONST0, and *PCOMP_P. */
9622
9623 static int
9624 merge_outer_ops (enum rtx_code *pop0, HOST_WIDE_INT *pconst0, enum rtx_code op1, HOST_WIDE_INT const1, enum machine_mode mode, int *pcomp_p)
9625 {
9626 enum rtx_code op0 = *pop0;
9627 HOST_WIDE_INT const0 = *pconst0;
9628
9629 const0 &= GET_MODE_MASK (mode);
9630 const1 &= GET_MODE_MASK (mode);
9631
9632 /* If OP0 is an AND, clear unimportant bits in CONST1. */
9633 if (op0 == AND)
9634 const1 &= const0;
9635
9636 /* If OP0 or OP1 is UNKNOWN, this is easy. Similarly if they are the same or
9637 if OP0 is SET. */
9638
9639 if (op1 == UNKNOWN || op0 == SET)
9640 return 1;
9641
9642 else if (op0 == UNKNOWN)
9643 op0 = op1, const0 = const1;
9644
9645 else if (op0 == op1)
9646 {
9647 switch (op0)
9648 {
9649 case AND:
9650 const0 &= const1;
9651 break;
9652 case IOR:
9653 const0 |= const1;
9654 break;
9655 case XOR:
9656 const0 ^= const1;
9657 break;
9658 case PLUS:
9659 const0 += const1;
9660 break;
9661 case NEG:
9662 op0 = UNKNOWN;
9663 break;
9664 default:
9665 break;
9666 }
9667 }
9668
9669 /* Otherwise, if either is a PLUS or NEG, we can't do anything. */
9670 else if (op0 == PLUS || op1 == PLUS || op0 == NEG || op1 == NEG)
9671 return 0;
9672
9673 /* If the two constants aren't the same, we can't do anything. The
9674 remaining six cases can all be done. */
9675 else if (const0 != const1)
9676 return 0;
9677
9678 else
9679 switch (op0)
9680 {
9681 case IOR:
9682 if (op1 == AND)
9683 /* (a & b) | b == b */
9684 op0 = SET;
9685 else /* op1 == XOR */
9686 /* (a ^ b) | b == a | b */
9687 {;}
9688 break;
9689
9690 case XOR:
9691 if (op1 == AND)
9692 /* (a & b) ^ b == (~a) & b */
9693 op0 = AND, *pcomp_p = 1;
9694 else /* op1 == IOR */
9695 /* (a | b) ^ b == a & ~b */
9696 op0 = AND, const0 = ~const0;
9697 break;
9698
9699 case AND:
9700 if (op1 == IOR)
9701 /* (a | b) & b == b */
9702 op0 = SET;
9703 else /* op1 == XOR */
9704 /* (a ^ b) & b) == (~a) & b */
9705 *pcomp_p = 1;
9706 break;
9707 default:
9708 break;
9709 }
9710
9711 /* Check for NO-OP cases. */
9712 const0 &= GET_MODE_MASK (mode);
9713 if (const0 == 0
9714 && (op0 == IOR || op0 == XOR || op0 == PLUS))
9715 op0 = UNKNOWN;
9716 else if (const0 == 0 && op0 == AND)
9717 op0 = SET;
9718 else if ((unsigned HOST_WIDE_INT) const0 == GET_MODE_MASK (mode)
9719 && op0 == AND)
9720 op0 = UNKNOWN;
9721
9722 *pop0 = op0;
9723
9724 /* ??? Slightly redundant with the above mask, but not entirely.
9725 Moving this above means we'd have to sign-extend the mode mask
9726 for the final test. */
9727 if (op0 != UNKNOWN && op0 != NEG)
9728 *pconst0 = trunc_int_for_mode (const0, mode);
9729
9730 return 1;
9731 }
9732 \f
9733 /* A helper to simplify_shift_const_1 to determine the mode we can perform
9734 the shift in. The original shift operation CODE is performed on OP in
9735 ORIG_MODE. Return the wider mode MODE if we can perform the operation
9736 in that mode. Return ORIG_MODE otherwise. We can also assume that the
9737 result of the shift is subject to operation OUTER_CODE with operand
9738 OUTER_CONST. */
9739
9740 static enum machine_mode
9741 try_widen_shift_mode (enum rtx_code code, rtx op, int count,
9742 enum machine_mode orig_mode, enum machine_mode mode,
9743 enum rtx_code outer_code, HOST_WIDE_INT outer_const)
9744 {
9745 if (orig_mode == mode)
9746 return mode;
9747 gcc_assert (GET_MODE_PRECISION (mode) > GET_MODE_PRECISION (orig_mode));
9748
9749 /* In general we can't perform in wider mode for right shift and rotate. */
9750 switch (code)
9751 {
9752 case ASHIFTRT:
9753 /* We can still widen if the bits brought in from the left are identical
9754 to the sign bit of ORIG_MODE. */
9755 if (num_sign_bit_copies (op, mode)
9756 > (unsigned) (GET_MODE_PRECISION (mode)
9757 - GET_MODE_PRECISION (orig_mode)))
9758 return mode;
9759 return orig_mode;
9760
9761 case LSHIFTRT:
9762 /* Similarly here but with zero bits. */
9763 if (HWI_COMPUTABLE_MODE_P (mode)
9764 && (nonzero_bits (op, mode) & ~GET_MODE_MASK (orig_mode)) == 0)
9765 return mode;
9766
9767 /* We can also widen if the bits brought in will be masked off. This
9768 operation is performed in ORIG_MODE. */
9769 if (outer_code == AND)
9770 {
9771 int care_bits = low_bitmask_len (orig_mode, outer_const);
9772
9773 if (care_bits >= 0
9774 && GET_MODE_PRECISION (orig_mode) - care_bits >= count)
9775 return mode;
9776 }
9777 /* fall through */
9778
9779 case ROTATE:
9780 return orig_mode;
9781
9782 case ROTATERT:
9783 gcc_unreachable ();
9784
9785 default:
9786 return mode;
9787 }
9788 }
9789
9790 /* Simplify a shift of VAROP by ORIG_COUNT bits. CODE says what kind
9791 of shift. The result of the shift is RESULT_MODE. Return NULL_RTX
9792 if we cannot simplify it. Otherwise, return a simplified value.
9793
9794 The shift is normally computed in the widest mode we find in VAROP, as
9795 long as it isn't a different number of words than RESULT_MODE. Exceptions
9796 are ASHIFTRT and ROTATE, which are always done in their original mode. */
9797
9798 static rtx
9799 simplify_shift_const_1 (enum rtx_code code, enum machine_mode result_mode,
9800 rtx varop, int orig_count)
9801 {
9802 enum rtx_code orig_code = code;
9803 rtx orig_varop = varop;
9804 int count;
9805 enum machine_mode mode = result_mode;
9806 enum machine_mode shift_mode, tmode;
9807 unsigned int mode_words
9808 = (GET_MODE_SIZE (mode) + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD;
9809 /* We form (outer_op (code varop count) (outer_const)). */
9810 enum rtx_code outer_op = UNKNOWN;
9811 HOST_WIDE_INT outer_const = 0;
9812 int complement_p = 0;
9813 rtx new_rtx, x;
9814
9815 /* Make sure and truncate the "natural" shift on the way in. We don't
9816 want to do this inside the loop as it makes it more difficult to
9817 combine shifts. */
9818 if (SHIFT_COUNT_TRUNCATED)
9819 orig_count &= GET_MODE_BITSIZE (mode) - 1;
9820
9821 /* If we were given an invalid count, don't do anything except exactly
9822 what was requested. */
9823
9824 if (orig_count < 0 || orig_count >= (int) GET_MODE_PRECISION (mode))
9825 return NULL_RTX;
9826
9827 count = orig_count;
9828
9829 /* Unless one of the branches of the `if' in this loop does a `continue',
9830 we will `break' the loop after the `if'. */
9831
9832 while (count != 0)
9833 {
9834 /* If we have an operand of (clobber (const_int 0)), fail. */
9835 if (GET_CODE (varop) == CLOBBER)
9836 return NULL_RTX;
9837
9838 /* Convert ROTATERT to ROTATE. */
9839 if (code == ROTATERT)
9840 {
9841 unsigned int bitsize = GET_MODE_PRECISION (result_mode);
9842 code = ROTATE;
9843 if (VECTOR_MODE_P (result_mode))
9844 count = bitsize / GET_MODE_NUNITS (result_mode) - count;
9845 else
9846 count = bitsize - count;
9847 }
9848
9849 shift_mode = try_widen_shift_mode (code, varop, count, result_mode,
9850 mode, outer_op, outer_const);
9851
9852 /* Handle cases where the count is greater than the size of the mode
9853 minus 1. For ASHIFT, use the size minus one as the count (this can
9854 occur when simplifying (lshiftrt (ashiftrt ..))). For rotates,
9855 take the count modulo the size. For other shifts, the result is
9856 zero.
9857
9858 Since these shifts are being produced by the compiler by combining
9859 multiple operations, each of which are defined, we know what the
9860 result is supposed to be. */
9861
9862 if (count > (GET_MODE_PRECISION (shift_mode) - 1))
9863 {
9864 if (code == ASHIFTRT)
9865 count = GET_MODE_PRECISION (shift_mode) - 1;
9866 else if (code == ROTATE || code == ROTATERT)
9867 count %= GET_MODE_PRECISION (shift_mode);
9868 else
9869 {
9870 /* We can't simply return zero because there may be an
9871 outer op. */
9872 varop = const0_rtx;
9873 count = 0;
9874 break;
9875 }
9876 }
9877
9878 /* If we discovered we had to complement VAROP, leave. Making a NOT
9879 here would cause an infinite loop. */
9880 if (complement_p)
9881 break;
9882
9883 /* An arithmetic right shift of a quantity known to be -1 or 0
9884 is a no-op. */
9885 if (code == ASHIFTRT
9886 && (num_sign_bit_copies (varop, shift_mode)
9887 == GET_MODE_PRECISION (shift_mode)))
9888 {
9889 count = 0;
9890 break;
9891 }
9892
9893 /* If we are doing an arithmetic right shift and discarding all but
9894 the sign bit copies, this is equivalent to doing a shift by the
9895 bitsize minus one. Convert it into that shift because it will often
9896 allow other simplifications. */
9897
9898 if (code == ASHIFTRT
9899 && (count + num_sign_bit_copies (varop, shift_mode)
9900 >= GET_MODE_PRECISION (shift_mode)))
9901 count = GET_MODE_PRECISION (shift_mode) - 1;
9902
9903 /* We simplify the tests below and elsewhere by converting
9904 ASHIFTRT to LSHIFTRT if we know the sign bit is clear.
9905 `make_compound_operation' will convert it to an ASHIFTRT for
9906 those machines (such as VAX) that don't have an LSHIFTRT. */
9907 if (code == ASHIFTRT
9908 && val_signbit_known_clear_p (shift_mode,
9909 nonzero_bits (varop, shift_mode)))
9910 code = LSHIFTRT;
9911
9912 if (((code == LSHIFTRT
9913 && HWI_COMPUTABLE_MODE_P (shift_mode)
9914 && !(nonzero_bits (varop, shift_mode) >> count))
9915 || (code == ASHIFT
9916 && HWI_COMPUTABLE_MODE_P (shift_mode)
9917 && !((nonzero_bits (varop, shift_mode) << count)
9918 & GET_MODE_MASK (shift_mode))))
9919 && !side_effects_p (varop))
9920 varop = const0_rtx;
9921
9922 switch (GET_CODE (varop))
9923 {
9924 case SIGN_EXTEND:
9925 case ZERO_EXTEND:
9926 case SIGN_EXTRACT:
9927 case ZERO_EXTRACT:
9928 new_rtx = expand_compound_operation (varop);
9929 if (new_rtx != varop)
9930 {
9931 varop = new_rtx;
9932 continue;
9933 }
9934 break;
9935
9936 case MEM:
9937 /* If we have (xshiftrt (mem ...) C) and C is MODE_WIDTH
9938 minus the width of a smaller mode, we can do this with a
9939 SIGN_EXTEND or ZERO_EXTEND from the narrower memory location. */
9940 if ((code == ASHIFTRT || code == LSHIFTRT)
9941 && ! mode_dependent_address_p (XEXP (varop, 0),
9942 MEM_ADDR_SPACE (varop))
9943 && ! MEM_VOLATILE_P (varop)
9944 && (tmode = mode_for_size (GET_MODE_BITSIZE (mode) - count,
9945 MODE_INT, 1)) != BLKmode)
9946 {
9947 new_rtx = adjust_address_nv (varop, tmode,
9948 BYTES_BIG_ENDIAN ? 0
9949 : count / BITS_PER_UNIT);
9950
9951 varop = gen_rtx_fmt_e (code == ASHIFTRT ? SIGN_EXTEND
9952 : ZERO_EXTEND, mode, new_rtx);
9953 count = 0;
9954 continue;
9955 }
9956 break;
9957
9958 case SUBREG:
9959 /* If VAROP is a SUBREG, strip it as long as the inner operand has
9960 the same number of words as what we've seen so far. Then store
9961 the widest mode in MODE. */
9962 if (subreg_lowpart_p (varop)
9963 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (varop)))
9964 > GET_MODE_SIZE (GET_MODE (varop)))
9965 && (unsigned int) ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (varop)))
9966 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
9967 == mode_words
9968 && GET_MODE_CLASS (GET_MODE (varop)) == MODE_INT
9969 && GET_MODE_CLASS (GET_MODE (SUBREG_REG (varop))) == MODE_INT)
9970 {
9971 varop = SUBREG_REG (varop);
9972 if (GET_MODE_SIZE (GET_MODE (varop)) > GET_MODE_SIZE (mode))
9973 mode = GET_MODE (varop);
9974 continue;
9975 }
9976 break;
9977
9978 case MULT:
9979 /* Some machines use MULT instead of ASHIFT because MULT
9980 is cheaper. But it is still better on those machines to
9981 merge two shifts into one. */
9982 if (CONST_INT_P (XEXP (varop, 1))
9983 && exact_log2 (UINTVAL (XEXP (varop, 1))) >= 0)
9984 {
9985 varop
9986 = simplify_gen_binary (ASHIFT, GET_MODE (varop),
9987 XEXP (varop, 0),
9988 GEN_INT (exact_log2 (
9989 UINTVAL (XEXP (varop, 1)))));
9990 continue;
9991 }
9992 break;
9993
9994 case UDIV:
9995 /* Similar, for when divides are cheaper. */
9996 if (CONST_INT_P (XEXP (varop, 1))
9997 && exact_log2 (UINTVAL (XEXP (varop, 1))) >= 0)
9998 {
9999 varop
10000 = simplify_gen_binary (LSHIFTRT, GET_MODE (varop),
10001 XEXP (varop, 0),
10002 GEN_INT (exact_log2 (
10003 UINTVAL (XEXP (varop, 1)))));
10004 continue;
10005 }
10006 break;
10007
10008 case ASHIFTRT:
10009 /* If we are extracting just the sign bit of an arithmetic
10010 right shift, that shift is not needed. However, the sign
10011 bit of a wider mode may be different from what would be
10012 interpreted as the sign bit in a narrower mode, so, if
10013 the result is narrower, don't discard the shift. */
10014 if (code == LSHIFTRT
10015 && count == (GET_MODE_BITSIZE (result_mode) - 1)
10016 && (GET_MODE_BITSIZE (result_mode)
10017 >= GET_MODE_BITSIZE (GET_MODE (varop))))
10018 {
10019 varop = XEXP (varop, 0);
10020 continue;
10021 }
10022
10023 /* ... fall through ... */
10024
10025 case LSHIFTRT:
10026 case ASHIFT:
10027 case ROTATE:
10028 /* Here we have two nested shifts. The result is usually the
10029 AND of a new shift with a mask. We compute the result below. */
10030 if (CONST_INT_P (XEXP (varop, 1))
10031 && INTVAL (XEXP (varop, 1)) >= 0
10032 && INTVAL (XEXP (varop, 1)) < GET_MODE_PRECISION (GET_MODE (varop))
10033 && HWI_COMPUTABLE_MODE_P (result_mode)
10034 && HWI_COMPUTABLE_MODE_P (mode)
10035 && !VECTOR_MODE_P (result_mode))
10036 {
10037 enum rtx_code first_code = GET_CODE (varop);
10038 unsigned int first_count = INTVAL (XEXP (varop, 1));
10039 unsigned HOST_WIDE_INT mask;
10040 rtx mask_rtx;
10041
10042 /* We have one common special case. We can't do any merging if
10043 the inner code is an ASHIFTRT of a smaller mode. However, if
10044 we have (ashift:M1 (subreg:M1 (ashiftrt:M2 FOO C1) 0) C2)
10045 with C2 == GET_MODE_BITSIZE (M1) - GET_MODE_BITSIZE (M2),
10046 we can convert it to
10047 (ashiftrt:M1 (ashift:M1 (and:M1 (subreg:M1 FOO 0) C3) C2) C1).
10048 This simplifies certain SIGN_EXTEND operations. */
10049 if (code == ASHIFT && first_code == ASHIFTRT
10050 && count == (GET_MODE_PRECISION (result_mode)
10051 - GET_MODE_PRECISION (GET_MODE (varop))))
10052 {
10053 /* C3 has the low-order C1 bits zero. */
10054
10055 mask = GET_MODE_MASK (mode)
10056 & ~(((unsigned HOST_WIDE_INT) 1 << first_count) - 1);
10057
10058 varop = simplify_and_const_int (NULL_RTX, result_mode,
10059 XEXP (varop, 0), mask);
10060 varop = simplify_shift_const (NULL_RTX, ASHIFT, result_mode,
10061 varop, count);
10062 count = first_count;
10063 code = ASHIFTRT;
10064 continue;
10065 }
10066
10067 /* If this was (ashiftrt (ashift foo C1) C2) and FOO has more
10068 than C1 high-order bits equal to the sign bit, we can convert
10069 this to either an ASHIFT or an ASHIFTRT depending on the
10070 two counts.
10071
10072 We cannot do this if VAROP's mode is not SHIFT_MODE. */
10073
10074 if (code == ASHIFTRT && first_code == ASHIFT
10075 && GET_MODE (varop) == shift_mode
10076 && (num_sign_bit_copies (XEXP (varop, 0), shift_mode)
10077 > first_count))
10078 {
10079 varop = XEXP (varop, 0);
10080 count -= first_count;
10081 if (count < 0)
10082 {
10083 count = -count;
10084 code = ASHIFT;
10085 }
10086
10087 continue;
10088 }
10089
10090 /* There are some cases we can't do. If CODE is ASHIFTRT,
10091 we can only do this if FIRST_CODE is also ASHIFTRT.
10092
10093 We can't do the case when CODE is ROTATE and FIRST_CODE is
10094 ASHIFTRT.
10095
10096 If the mode of this shift is not the mode of the outer shift,
10097 we can't do this if either shift is a right shift or ROTATE.
10098
10099 Finally, we can't do any of these if the mode is too wide
10100 unless the codes are the same.
10101
10102 Handle the case where the shift codes are the same
10103 first. */
10104
10105 if (code == first_code)
10106 {
10107 if (GET_MODE (varop) != result_mode
10108 && (code == ASHIFTRT || code == LSHIFTRT
10109 || code == ROTATE))
10110 break;
10111
10112 count += first_count;
10113 varop = XEXP (varop, 0);
10114 continue;
10115 }
10116
10117 if (code == ASHIFTRT
10118 || (code == ROTATE && first_code == ASHIFTRT)
10119 || GET_MODE_PRECISION (mode) > HOST_BITS_PER_WIDE_INT
10120 || (GET_MODE (varop) != result_mode
10121 && (first_code == ASHIFTRT || first_code == LSHIFTRT
10122 || first_code == ROTATE
10123 || code == ROTATE)))
10124 break;
10125
10126 /* To compute the mask to apply after the shift, shift the
10127 nonzero bits of the inner shift the same way the
10128 outer shift will. */
10129
10130 mask_rtx = gen_int_mode (nonzero_bits (varop, GET_MODE (varop)),
10131 result_mode);
10132
10133 mask_rtx
10134 = simplify_const_binary_operation (code, result_mode, mask_rtx,
10135 GEN_INT (count));
10136
10137 /* Give up if we can't compute an outer operation to use. */
10138 if (mask_rtx == 0
10139 || !CONST_INT_P (mask_rtx)
10140 || ! merge_outer_ops (&outer_op, &outer_const, AND,
10141 INTVAL (mask_rtx),
10142 result_mode, &complement_p))
10143 break;
10144
10145 /* If the shifts are in the same direction, we add the
10146 counts. Otherwise, we subtract them. */
10147 if ((code == ASHIFTRT || code == LSHIFTRT)
10148 == (first_code == ASHIFTRT || first_code == LSHIFTRT))
10149 count += first_count;
10150 else
10151 count -= first_count;
10152
10153 /* If COUNT is positive, the new shift is usually CODE,
10154 except for the two exceptions below, in which case it is
10155 FIRST_CODE. If the count is negative, FIRST_CODE should
10156 always be used */
10157 if (count > 0
10158 && ((first_code == ROTATE && code == ASHIFT)
10159 || (first_code == ASHIFTRT && code == LSHIFTRT)))
10160 code = first_code;
10161 else if (count < 0)
10162 code = first_code, count = -count;
10163
10164 varop = XEXP (varop, 0);
10165 continue;
10166 }
10167
10168 /* If we have (A << B << C) for any shift, we can convert this to
10169 (A << C << B). This wins if A is a constant. Only try this if
10170 B is not a constant. */
10171
10172 else if (GET_CODE (varop) == code
10173 && CONST_INT_P (XEXP (varop, 0))
10174 && !CONST_INT_P (XEXP (varop, 1)))
10175 {
10176 rtx new_rtx = simplify_const_binary_operation (code, mode,
10177 XEXP (varop, 0),
10178 GEN_INT (count));
10179 varop = gen_rtx_fmt_ee (code, mode, new_rtx, XEXP (varop, 1));
10180 count = 0;
10181 continue;
10182 }
10183 break;
10184
10185 case NOT:
10186 if (VECTOR_MODE_P (mode))
10187 break;
10188
10189 /* Make this fit the case below. */
10190 varop = gen_rtx_XOR (mode, XEXP (varop, 0), constm1_rtx);
10191 continue;
10192
10193 case IOR:
10194 case AND:
10195 case XOR:
10196 /* If we have (xshiftrt (ior (plus X (const_int -1)) X) C)
10197 with C the size of VAROP - 1 and the shift is logical if
10198 STORE_FLAG_VALUE is 1 and arithmetic if STORE_FLAG_VALUE is -1,
10199 we have an (le X 0) operation. If we have an arithmetic shift
10200 and STORE_FLAG_VALUE is 1 or we have a logical shift with
10201 STORE_FLAG_VALUE of -1, we have a (neg (le X 0)) operation. */
10202
10203 if (GET_CODE (varop) == IOR && GET_CODE (XEXP (varop, 0)) == PLUS
10204 && XEXP (XEXP (varop, 0), 1) == constm1_rtx
10205 && (STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
10206 && (code == LSHIFTRT || code == ASHIFTRT)
10207 && count == (GET_MODE_PRECISION (GET_MODE (varop)) - 1)
10208 && rtx_equal_p (XEXP (XEXP (varop, 0), 0), XEXP (varop, 1)))
10209 {
10210 count = 0;
10211 varop = gen_rtx_LE (GET_MODE (varop), XEXP (varop, 1),
10212 const0_rtx);
10213
10214 if (STORE_FLAG_VALUE == 1 ? code == ASHIFTRT : code == LSHIFTRT)
10215 varop = gen_rtx_NEG (GET_MODE (varop), varop);
10216
10217 continue;
10218 }
10219
10220 /* If we have (shift (logical)), move the logical to the outside
10221 to allow it to possibly combine with another logical and the
10222 shift to combine with another shift. This also canonicalizes to
10223 what a ZERO_EXTRACT looks like. Also, some machines have
10224 (and (shift)) insns. */
10225
10226 if (CONST_INT_P (XEXP (varop, 1))
10227 /* We can't do this if we have (ashiftrt (xor)) and the
10228 constant has its sign bit set in shift_mode. */
10229 && !(code == ASHIFTRT && GET_CODE (varop) == XOR
10230 && 0 > trunc_int_for_mode (INTVAL (XEXP (varop, 1)),
10231 shift_mode))
10232 && (new_rtx = simplify_const_binary_operation
10233 (code, result_mode,
10234 gen_int_mode (INTVAL (XEXP (varop, 1)), result_mode),
10235 GEN_INT (count))) != 0
10236 && CONST_INT_P (new_rtx)
10237 && merge_outer_ops (&outer_op, &outer_const, GET_CODE (varop),
10238 INTVAL (new_rtx), result_mode, &complement_p))
10239 {
10240 varop = XEXP (varop, 0);
10241 continue;
10242 }
10243
10244 /* If we can't do that, try to simplify the shift in each arm of the
10245 logical expression, make a new logical expression, and apply
10246 the inverse distributive law. This also can't be done
10247 for some (ashiftrt (xor)). */
10248 if (CONST_INT_P (XEXP (varop, 1))
10249 && !(code == ASHIFTRT && GET_CODE (varop) == XOR
10250 && 0 > trunc_int_for_mode (INTVAL (XEXP (varop, 1)),
10251 shift_mode)))
10252 {
10253 rtx lhs = simplify_shift_const (NULL_RTX, code, shift_mode,
10254 XEXP (varop, 0), count);
10255 rtx rhs = simplify_shift_const (NULL_RTX, code, shift_mode,
10256 XEXP (varop, 1), count);
10257
10258 varop = simplify_gen_binary (GET_CODE (varop), shift_mode,
10259 lhs, rhs);
10260 varop = apply_distributive_law (varop);
10261
10262 count = 0;
10263 continue;
10264 }
10265 break;
10266
10267 case EQ:
10268 /* Convert (lshiftrt (eq FOO 0) C) to (xor FOO 1) if STORE_FLAG_VALUE
10269 says that the sign bit can be tested, FOO has mode MODE, C is
10270 GET_MODE_PRECISION (MODE) - 1, and FOO has only its low-order bit
10271 that may be nonzero. */
10272 if (code == LSHIFTRT
10273 && XEXP (varop, 1) == const0_rtx
10274 && GET_MODE (XEXP (varop, 0)) == result_mode
10275 && count == (GET_MODE_PRECISION (result_mode) - 1)
10276 && HWI_COMPUTABLE_MODE_P (result_mode)
10277 && STORE_FLAG_VALUE == -1
10278 && nonzero_bits (XEXP (varop, 0), result_mode) == 1
10279 && merge_outer_ops (&outer_op, &outer_const, XOR, 1, result_mode,
10280 &complement_p))
10281 {
10282 varop = XEXP (varop, 0);
10283 count = 0;
10284 continue;
10285 }
10286 break;
10287
10288 case NEG:
10289 /* (lshiftrt (neg A) C) where A is either 0 or 1 and C is one less
10290 than the number of bits in the mode is equivalent to A. */
10291 if (code == LSHIFTRT
10292 && count == (GET_MODE_PRECISION (result_mode) - 1)
10293 && nonzero_bits (XEXP (varop, 0), result_mode) == 1)
10294 {
10295 varop = XEXP (varop, 0);
10296 count = 0;
10297 continue;
10298 }
10299
10300 /* NEG commutes with ASHIFT since it is multiplication. Move the
10301 NEG outside to allow shifts to combine. */
10302 if (code == ASHIFT
10303 && merge_outer_ops (&outer_op, &outer_const, NEG, 0, result_mode,
10304 &complement_p))
10305 {
10306 varop = XEXP (varop, 0);
10307 continue;
10308 }
10309 break;
10310
10311 case PLUS:
10312 /* (lshiftrt (plus A -1) C) where A is either 0 or 1 and C
10313 is one less than the number of bits in the mode is
10314 equivalent to (xor A 1). */
10315 if (code == LSHIFTRT
10316 && count == (GET_MODE_PRECISION (result_mode) - 1)
10317 && XEXP (varop, 1) == constm1_rtx
10318 && nonzero_bits (XEXP (varop, 0), result_mode) == 1
10319 && merge_outer_ops (&outer_op, &outer_const, XOR, 1, result_mode,
10320 &complement_p))
10321 {
10322 count = 0;
10323 varop = XEXP (varop, 0);
10324 continue;
10325 }
10326
10327 /* If we have (xshiftrt (plus FOO BAR) C), and the only bits
10328 that might be nonzero in BAR are those being shifted out and those
10329 bits are known zero in FOO, we can replace the PLUS with FOO.
10330 Similarly in the other operand order. This code occurs when
10331 we are computing the size of a variable-size array. */
10332
10333 if ((code == ASHIFTRT || code == LSHIFTRT)
10334 && count < HOST_BITS_PER_WIDE_INT
10335 && nonzero_bits (XEXP (varop, 1), result_mode) >> count == 0
10336 && (nonzero_bits (XEXP (varop, 1), result_mode)
10337 & nonzero_bits (XEXP (varop, 0), result_mode)) == 0)
10338 {
10339 varop = XEXP (varop, 0);
10340 continue;
10341 }
10342 else if ((code == ASHIFTRT || code == LSHIFTRT)
10343 && count < HOST_BITS_PER_WIDE_INT
10344 && HWI_COMPUTABLE_MODE_P (result_mode)
10345 && 0 == (nonzero_bits (XEXP (varop, 0), result_mode)
10346 >> count)
10347 && 0 == (nonzero_bits (XEXP (varop, 0), result_mode)
10348 & nonzero_bits (XEXP (varop, 1),
10349 result_mode)))
10350 {
10351 varop = XEXP (varop, 1);
10352 continue;
10353 }
10354
10355 /* (ashift (plus foo C) N) is (plus (ashift foo N) C'). */
10356 if (code == ASHIFT
10357 && CONST_INT_P (XEXP (varop, 1))
10358 && (new_rtx = simplify_const_binary_operation (ASHIFT, result_mode,
10359 XEXP (varop, 1),
10360 GEN_INT (count))) != 0
10361 && CONST_INT_P (new_rtx)
10362 && merge_outer_ops (&outer_op, &outer_const, PLUS,
10363 INTVAL (new_rtx), result_mode, &complement_p))
10364 {
10365 varop = XEXP (varop, 0);
10366 continue;
10367 }
10368
10369 /* Check for 'PLUS signbit', which is the canonical form of 'XOR
10370 signbit', and attempt to change the PLUS to an XOR and move it to
10371 the outer operation as is done above in the AND/IOR/XOR case
10372 leg for shift(logical). See details in logical handling above
10373 for reasoning in doing so. */
10374 if (code == LSHIFTRT
10375 && CONST_INT_P (XEXP (varop, 1))
10376 && mode_signbit_p (result_mode, XEXP (varop, 1))
10377 && (new_rtx = simplify_const_binary_operation (code, result_mode,
10378 XEXP (varop, 1),
10379 GEN_INT (count))) != 0
10380 && CONST_INT_P (new_rtx)
10381 && merge_outer_ops (&outer_op, &outer_const, XOR,
10382 INTVAL (new_rtx), result_mode, &complement_p))
10383 {
10384 varop = XEXP (varop, 0);
10385 continue;
10386 }
10387
10388 break;
10389
10390 case MINUS:
10391 /* If we have (xshiftrt (minus (ashiftrt X C)) X) C)
10392 with C the size of VAROP - 1 and the shift is logical if
10393 STORE_FLAG_VALUE is 1 and arithmetic if STORE_FLAG_VALUE is -1,
10394 we have a (gt X 0) operation. If the shift is arithmetic with
10395 STORE_FLAG_VALUE of 1 or logical with STORE_FLAG_VALUE == -1,
10396 we have a (neg (gt X 0)) operation. */
10397
10398 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
10399 && GET_CODE (XEXP (varop, 0)) == ASHIFTRT
10400 && count == (GET_MODE_PRECISION (GET_MODE (varop)) - 1)
10401 && (code == LSHIFTRT || code == ASHIFTRT)
10402 && CONST_INT_P (XEXP (XEXP (varop, 0), 1))
10403 && INTVAL (XEXP (XEXP (varop, 0), 1)) == count
10404 && rtx_equal_p (XEXP (XEXP (varop, 0), 0), XEXP (varop, 1)))
10405 {
10406 count = 0;
10407 varop = gen_rtx_GT (GET_MODE (varop), XEXP (varop, 1),
10408 const0_rtx);
10409
10410 if (STORE_FLAG_VALUE == 1 ? code == ASHIFTRT : code == LSHIFTRT)
10411 varop = gen_rtx_NEG (GET_MODE (varop), varop);
10412
10413 continue;
10414 }
10415 break;
10416
10417 case TRUNCATE:
10418 /* Change (lshiftrt (truncate (lshiftrt))) to (truncate (lshiftrt))
10419 if the truncate does not affect the value. */
10420 if (code == LSHIFTRT
10421 && GET_CODE (XEXP (varop, 0)) == LSHIFTRT
10422 && CONST_INT_P (XEXP (XEXP (varop, 0), 1))
10423 && (INTVAL (XEXP (XEXP (varop, 0), 1))
10424 >= (GET_MODE_PRECISION (GET_MODE (XEXP (varop, 0)))
10425 - GET_MODE_PRECISION (GET_MODE (varop)))))
10426 {
10427 rtx varop_inner = XEXP (varop, 0);
10428
10429 varop_inner
10430 = gen_rtx_LSHIFTRT (GET_MODE (varop_inner),
10431 XEXP (varop_inner, 0),
10432 GEN_INT
10433 (count + INTVAL (XEXP (varop_inner, 1))));
10434 varop = gen_rtx_TRUNCATE (GET_MODE (varop), varop_inner);
10435 count = 0;
10436 continue;
10437 }
10438 break;
10439
10440 default:
10441 break;
10442 }
10443
10444 break;
10445 }
10446
10447 shift_mode = try_widen_shift_mode (code, varop, count, result_mode, mode,
10448 outer_op, outer_const);
10449
10450 /* We have now finished analyzing the shift. The result should be
10451 a shift of type CODE with SHIFT_MODE shifting VAROP COUNT places. If
10452 OUTER_OP is non-UNKNOWN, it is an operation that needs to be applied
10453 to the result of the shift. OUTER_CONST is the relevant constant,
10454 but we must turn off all bits turned off in the shift. */
10455
10456 if (outer_op == UNKNOWN
10457 && orig_code == code && orig_count == count
10458 && varop == orig_varop
10459 && shift_mode == GET_MODE (varop))
10460 return NULL_RTX;
10461
10462 /* Make a SUBREG if necessary. If we can't make it, fail. */
10463 varop = gen_lowpart (shift_mode, varop);
10464 if (varop == NULL_RTX || GET_CODE (varop) == CLOBBER)
10465 return NULL_RTX;
10466
10467 /* If we have an outer operation and we just made a shift, it is
10468 possible that we could have simplified the shift were it not
10469 for the outer operation. So try to do the simplification
10470 recursively. */
10471
10472 if (outer_op != UNKNOWN)
10473 x = simplify_shift_const_1 (code, shift_mode, varop, count);
10474 else
10475 x = NULL_RTX;
10476
10477 if (x == NULL_RTX)
10478 x = simplify_gen_binary (code, shift_mode, varop, GEN_INT (count));
10479
10480 /* If we were doing an LSHIFTRT in a wider mode than it was originally,
10481 turn off all the bits that the shift would have turned off. */
10482 if (orig_code == LSHIFTRT && result_mode != shift_mode)
10483 x = simplify_and_const_int (NULL_RTX, shift_mode, x,
10484 GET_MODE_MASK (result_mode) >> orig_count);
10485
10486 /* Do the remainder of the processing in RESULT_MODE. */
10487 x = gen_lowpart_or_truncate (result_mode, x);
10488
10489 /* If COMPLEMENT_P is set, we have to complement X before doing the outer
10490 operation. */
10491 if (complement_p)
10492 x = simplify_gen_unary (NOT, result_mode, x, result_mode);
10493
10494 if (outer_op != UNKNOWN)
10495 {
10496 if (GET_RTX_CLASS (outer_op) != RTX_UNARY
10497 && GET_MODE_PRECISION (result_mode) < HOST_BITS_PER_WIDE_INT)
10498 outer_const = trunc_int_for_mode (outer_const, result_mode);
10499
10500 if (outer_op == AND)
10501 x = simplify_and_const_int (NULL_RTX, result_mode, x, outer_const);
10502 else if (outer_op == SET)
10503 {
10504 /* This means that we have determined that the result is
10505 equivalent to a constant. This should be rare. */
10506 if (!side_effects_p (x))
10507 x = GEN_INT (outer_const);
10508 }
10509 else if (GET_RTX_CLASS (outer_op) == RTX_UNARY)
10510 x = simplify_gen_unary (outer_op, result_mode, x, result_mode);
10511 else
10512 x = simplify_gen_binary (outer_op, result_mode, x,
10513 GEN_INT (outer_const));
10514 }
10515
10516 return x;
10517 }
10518
10519 /* Simplify a shift of VAROP by COUNT bits. CODE says what kind of shift.
10520 The result of the shift is RESULT_MODE. If we cannot simplify it,
10521 return X or, if it is NULL, synthesize the expression with
10522 simplify_gen_binary. Otherwise, return a simplified value.
10523
10524 The shift is normally computed in the widest mode we find in VAROP, as
10525 long as it isn't a different number of words than RESULT_MODE. Exceptions
10526 are ASHIFTRT and ROTATE, which are always done in their original mode. */
10527
10528 static rtx
10529 simplify_shift_const (rtx x, enum rtx_code code, enum machine_mode result_mode,
10530 rtx varop, int count)
10531 {
10532 rtx tem = simplify_shift_const_1 (code, result_mode, varop, count);
10533 if (tem)
10534 return tem;
10535
10536 if (!x)
10537 x = simplify_gen_binary (code, GET_MODE (varop), varop, GEN_INT (count));
10538 if (GET_MODE (x) != result_mode)
10539 x = gen_lowpart (result_mode, x);
10540 return x;
10541 }
10542
10543 \f
10544 /* Like recog, but we receive the address of a pointer to a new pattern.
10545 We try to match the rtx that the pointer points to.
10546 If that fails, we may try to modify or replace the pattern,
10547 storing the replacement into the same pointer object.
10548
10549 Modifications include deletion or addition of CLOBBERs.
10550
10551 PNOTES is a pointer to a location where any REG_UNUSED notes added for
10552 the CLOBBERs are placed.
10553
10554 The value is the final insn code from the pattern ultimately matched,
10555 or -1. */
10556
10557 static int
10558 recog_for_combine (rtx *pnewpat, rtx insn, rtx *pnotes)
10559 {
10560 rtx pat = *pnewpat;
10561 rtx pat_without_clobbers;
10562 int insn_code_number;
10563 int num_clobbers_to_add = 0;
10564 int i;
10565 rtx notes = NULL_RTX;
10566 rtx old_notes, old_pat;
10567 int old_icode;
10568
10569 /* If PAT is a PARALLEL, check to see if it contains the CLOBBER
10570 we use to indicate that something didn't match. If we find such a
10571 thing, force rejection. */
10572 if (GET_CODE (pat) == PARALLEL)
10573 for (i = XVECLEN (pat, 0) - 1; i >= 0; i--)
10574 if (GET_CODE (XVECEXP (pat, 0, i)) == CLOBBER
10575 && XEXP (XVECEXP (pat, 0, i), 0) == const0_rtx)
10576 return -1;
10577
10578 old_pat = PATTERN (insn);
10579 old_notes = REG_NOTES (insn);
10580 PATTERN (insn) = pat;
10581 REG_NOTES (insn) = NULL_RTX;
10582
10583 insn_code_number = recog (pat, insn, &num_clobbers_to_add);
10584 if (dump_file && (dump_flags & TDF_DETAILS))
10585 {
10586 if (insn_code_number < 0)
10587 fputs ("Failed to match this instruction:\n", dump_file);
10588 else
10589 fputs ("Successfully matched this instruction:\n", dump_file);
10590 print_rtl_single (dump_file, pat);
10591 }
10592
10593 /* If it isn't, there is the possibility that we previously had an insn
10594 that clobbered some register as a side effect, but the combined
10595 insn doesn't need to do that. So try once more without the clobbers
10596 unless this represents an ASM insn. */
10597
10598 if (insn_code_number < 0 && ! check_asm_operands (pat)
10599 && GET_CODE (pat) == PARALLEL)
10600 {
10601 int pos;
10602
10603 for (pos = 0, i = 0; i < XVECLEN (pat, 0); i++)
10604 if (GET_CODE (XVECEXP (pat, 0, i)) != CLOBBER)
10605 {
10606 if (i != pos)
10607 SUBST (XVECEXP (pat, 0, pos), XVECEXP (pat, 0, i));
10608 pos++;
10609 }
10610
10611 SUBST_INT (XVECLEN (pat, 0), pos);
10612
10613 if (pos == 1)
10614 pat = XVECEXP (pat, 0, 0);
10615
10616 PATTERN (insn) = pat;
10617 insn_code_number = recog (pat, insn, &num_clobbers_to_add);
10618 if (dump_file && (dump_flags & TDF_DETAILS))
10619 {
10620 if (insn_code_number < 0)
10621 fputs ("Failed to match this instruction:\n", dump_file);
10622 else
10623 fputs ("Successfully matched this instruction:\n", dump_file);
10624 print_rtl_single (dump_file, pat);
10625 }
10626 }
10627
10628 pat_without_clobbers = pat;
10629
10630 PATTERN (insn) = old_pat;
10631 REG_NOTES (insn) = old_notes;
10632
10633 /* Recognize all noop sets, these will be killed by followup pass. */
10634 if (insn_code_number < 0 && GET_CODE (pat) == SET && set_noop_p (pat))
10635 insn_code_number = NOOP_MOVE_INSN_CODE, num_clobbers_to_add = 0;
10636
10637 /* If we had any clobbers to add, make a new pattern than contains
10638 them. Then check to make sure that all of them are dead. */
10639 if (num_clobbers_to_add)
10640 {
10641 rtx newpat = gen_rtx_PARALLEL (VOIDmode,
10642 rtvec_alloc (GET_CODE (pat) == PARALLEL
10643 ? (XVECLEN (pat, 0)
10644 + num_clobbers_to_add)
10645 : num_clobbers_to_add + 1));
10646
10647 if (GET_CODE (pat) == PARALLEL)
10648 for (i = 0; i < XVECLEN (pat, 0); i++)
10649 XVECEXP (newpat, 0, i) = XVECEXP (pat, 0, i);
10650 else
10651 XVECEXP (newpat, 0, 0) = pat;
10652
10653 add_clobbers (newpat, insn_code_number);
10654
10655 for (i = XVECLEN (newpat, 0) - num_clobbers_to_add;
10656 i < XVECLEN (newpat, 0); i++)
10657 {
10658 if (REG_P (XEXP (XVECEXP (newpat, 0, i), 0))
10659 && ! reg_dead_at_p (XEXP (XVECEXP (newpat, 0, i), 0), insn))
10660 return -1;
10661 if (GET_CODE (XEXP (XVECEXP (newpat, 0, i), 0)) != SCRATCH)
10662 {
10663 gcc_assert (REG_P (XEXP (XVECEXP (newpat, 0, i), 0)));
10664 notes = alloc_reg_note (REG_UNUSED,
10665 XEXP (XVECEXP (newpat, 0, i), 0), notes);
10666 }
10667 }
10668 pat = newpat;
10669 }
10670
10671 if (insn_code_number >= 0
10672 && insn_code_number != NOOP_MOVE_INSN_CODE)
10673 {
10674 old_pat = PATTERN (insn);
10675 old_notes = REG_NOTES (insn);
10676 old_icode = INSN_CODE (insn);
10677 PATTERN (insn) = pat;
10678 REG_NOTES (insn) = notes;
10679
10680 /* Allow targets to reject combined insn. */
10681 if (!targetm.legitimate_combined_insn (insn))
10682 {
10683 if (dump_file && (dump_flags & TDF_DETAILS))
10684 fputs ("Instruction not appropriate for target.",
10685 dump_file);
10686
10687 /* Callers expect recog_for_combine to strip
10688 clobbers from the pattern on failure. */
10689 pat = pat_without_clobbers;
10690 notes = NULL_RTX;
10691
10692 insn_code_number = -1;
10693 }
10694
10695 PATTERN (insn) = old_pat;
10696 REG_NOTES (insn) = old_notes;
10697 INSN_CODE (insn) = old_icode;
10698 }
10699
10700 *pnewpat = pat;
10701 *pnotes = notes;
10702
10703 return insn_code_number;
10704 }
10705 \f
10706 /* Like gen_lowpart_general but for use by combine. In combine it
10707 is not possible to create any new pseudoregs. However, it is
10708 safe to create invalid memory addresses, because combine will
10709 try to recognize them and all they will do is make the combine
10710 attempt fail.
10711
10712 If for some reason this cannot do its job, an rtx
10713 (clobber (const_int 0)) is returned.
10714 An insn containing that will not be recognized. */
10715
10716 static rtx
10717 gen_lowpart_for_combine (enum machine_mode omode, rtx x)
10718 {
10719 enum machine_mode imode = GET_MODE (x);
10720 unsigned int osize = GET_MODE_SIZE (omode);
10721 unsigned int isize = GET_MODE_SIZE (imode);
10722 rtx result;
10723
10724 if (omode == imode)
10725 return x;
10726
10727 /* We can only support MODE being wider than a word if X is a
10728 constant integer or has a mode the same size. */
10729 if (GET_MODE_SIZE (omode) > UNITS_PER_WORD
10730 && ! (CONST_SCALAR_INT_P (x) || isize == osize))
10731 goto fail;
10732
10733 /* X might be a paradoxical (subreg (mem)). In that case, gen_lowpart
10734 won't know what to do. So we will strip off the SUBREG here and
10735 process normally. */
10736 if (GET_CODE (x) == SUBREG && MEM_P (SUBREG_REG (x)))
10737 {
10738 x = SUBREG_REG (x);
10739
10740 /* For use in case we fall down into the address adjustments
10741 further below, we need to adjust the known mode and size of
10742 x; imode and isize, since we just adjusted x. */
10743 imode = GET_MODE (x);
10744
10745 if (imode == omode)
10746 return x;
10747
10748 isize = GET_MODE_SIZE (imode);
10749 }
10750
10751 result = gen_lowpart_common (omode, x);
10752
10753 if (result)
10754 return result;
10755
10756 if (MEM_P (x))
10757 {
10758 int offset = 0;
10759
10760 /* Refuse to work on a volatile memory ref or one with a mode-dependent
10761 address. */
10762 if (MEM_VOLATILE_P (x)
10763 || mode_dependent_address_p (XEXP (x, 0), MEM_ADDR_SPACE (x)))
10764 goto fail;
10765
10766 /* If we want to refer to something bigger than the original memref,
10767 generate a paradoxical subreg instead. That will force a reload
10768 of the original memref X. */
10769 if (isize < osize)
10770 return gen_rtx_SUBREG (omode, x, 0);
10771
10772 if (WORDS_BIG_ENDIAN)
10773 offset = MAX (isize, UNITS_PER_WORD) - MAX (osize, UNITS_PER_WORD);
10774
10775 /* Adjust the address so that the address-after-the-data is
10776 unchanged. */
10777 if (BYTES_BIG_ENDIAN)
10778 offset -= MIN (UNITS_PER_WORD, osize) - MIN (UNITS_PER_WORD, isize);
10779
10780 return adjust_address_nv (x, omode, offset);
10781 }
10782
10783 /* If X is a comparison operator, rewrite it in a new mode. This
10784 probably won't match, but may allow further simplifications. */
10785 else if (COMPARISON_P (x))
10786 return gen_rtx_fmt_ee (GET_CODE (x), omode, XEXP (x, 0), XEXP (x, 1));
10787
10788 /* If we couldn't simplify X any other way, just enclose it in a
10789 SUBREG. Normally, this SUBREG won't match, but some patterns may
10790 include an explicit SUBREG or we may simplify it further in combine. */
10791 else
10792 {
10793 int offset = 0;
10794 rtx res;
10795
10796 offset = subreg_lowpart_offset (omode, imode);
10797 if (imode == VOIDmode)
10798 {
10799 imode = int_mode_for_mode (omode);
10800 x = gen_lowpart_common (imode, x);
10801 if (x == NULL)
10802 goto fail;
10803 }
10804 res = simplify_gen_subreg (omode, x, imode, offset);
10805 if (res)
10806 return res;
10807 }
10808
10809 fail:
10810 return gen_rtx_CLOBBER (omode, const0_rtx);
10811 }
10812 \f
10813 /* Try to simplify a comparison between OP0 and a constant OP1,
10814 where CODE is the comparison code that will be tested, into a
10815 (CODE OP0 const0_rtx) form.
10816
10817 The result is a possibly different comparison code to use.
10818 *POP1 may be updated. */
10819
10820 static enum rtx_code
10821 simplify_compare_const (enum rtx_code code, enum machine_mode mode,
10822 rtx op0, rtx *pop1)
10823 {
10824 unsigned int mode_width = GET_MODE_PRECISION (mode);
10825 HOST_WIDE_INT const_op = INTVAL (*pop1);
10826
10827 /* Get the constant we are comparing against and turn off all bits
10828 not on in our mode. */
10829 if (mode != VOIDmode)
10830 const_op = trunc_int_for_mode (const_op, mode);
10831
10832 /* If we are comparing against a constant power of two and the value
10833 being compared can only have that single bit nonzero (e.g., it was
10834 `and'ed with that bit), we can replace this with a comparison
10835 with zero. */
10836 if (const_op
10837 && (code == EQ || code == NE || code == GE || code == GEU
10838 || code == LT || code == LTU)
10839 && mode_width - 1 < HOST_BITS_PER_WIDE_INT
10840 && exact_log2 (const_op & GET_MODE_MASK (mode)) >= 0
10841 && (nonzero_bits (op0, mode)
10842 == (unsigned HOST_WIDE_INT) (const_op & GET_MODE_MASK (mode))))
10843 {
10844 code = (code == EQ || code == GE || code == GEU ? NE : EQ);
10845 const_op = 0;
10846 }
10847
10848 /* Similarly, if we are comparing a value known to be either -1 or
10849 0 with -1, change it to the opposite comparison against zero. */
10850 if (const_op == -1
10851 && (code == EQ || code == NE || code == GT || code == LE
10852 || code == GEU || code == LTU)
10853 && num_sign_bit_copies (op0, mode) == mode_width)
10854 {
10855 code = (code == EQ || code == LE || code == GEU ? NE : EQ);
10856 const_op = 0;
10857 }
10858
10859 /* Do some canonicalizations based on the comparison code. We prefer
10860 comparisons against zero and then prefer equality comparisons.
10861 If we can reduce the size of a constant, we will do that too. */
10862 switch (code)
10863 {
10864 case LT:
10865 /* < C is equivalent to <= (C - 1) */
10866 if (const_op > 0)
10867 {
10868 const_op -= 1;
10869 code = LE;
10870 /* ... fall through to LE case below. */
10871 }
10872 else
10873 break;
10874
10875 case LE:
10876 /* <= C is equivalent to < (C + 1); we do this for C < 0 */
10877 if (const_op < 0)
10878 {
10879 const_op += 1;
10880 code = LT;
10881 }
10882
10883 /* If we are doing a <= 0 comparison on a value known to have
10884 a zero sign bit, we can replace this with == 0. */
10885 else if (const_op == 0
10886 && mode_width - 1 < HOST_BITS_PER_WIDE_INT
10887 && (nonzero_bits (op0, mode)
10888 & ((unsigned HOST_WIDE_INT) 1 << (mode_width - 1)))
10889 == 0)
10890 code = EQ;
10891 break;
10892
10893 case GE:
10894 /* >= C is equivalent to > (C - 1). */
10895 if (const_op > 0)
10896 {
10897 const_op -= 1;
10898 code = GT;
10899 /* ... fall through to GT below. */
10900 }
10901 else
10902 break;
10903
10904 case GT:
10905 /* > C is equivalent to >= (C + 1); we do this for C < 0. */
10906 if (const_op < 0)
10907 {
10908 const_op += 1;
10909 code = GE;
10910 }
10911
10912 /* If we are doing a > 0 comparison on a value known to have
10913 a zero sign bit, we can replace this with != 0. */
10914 else if (const_op == 0
10915 && mode_width - 1 < HOST_BITS_PER_WIDE_INT
10916 && (nonzero_bits (op0, mode)
10917 & ((unsigned HOST_WIDE_INT) 1 << (mode_width - 1)))
10918 == 0)
10919 code = NE;
10920 break;
10921
10922 case LTU:
10923 /* < C is equivalent to <= (C - 1). */
10924 if (const_op > 0)
10925 {
10926 const_op -= 1;
10927 code = LEU;
10928 /* ... fall through ... */
10929 }
10930 /* (unsigned) < 0x80000000 is equivalent to >= 0. */
10931 else if (mode_width - 1 < HOST_BITS_PER_WIDE_INT
10932 && (unsigned HOST_WIDE_INT) const_op
10933 == (unsigned HOST_WIDE_INT) 1 << (mode_width - 1))
10934 {
10935 const_op = 0;
10936 code = GE;
10937 break;
10938 }
10939 else
10940 break;
10941
10942 case LEU:
10943 /* unsigned <= 0 is equivalent to == 0 */
10944 if (const_op == 0)
10945 code = EQ;
10946 /* (unsigned) <= 0x7fffffff is equivalent to >= 0. */
10947 else if (mode_width - 1 < HOST_BITS_PER_WIDE_INT
10948 && (unsigned HOST_WIDE_INT) const_op
10949 == ((unsigned HOST_WIDE_INT) 1 << (mode_width - 1)) - 1)
10950 {
10951 const_op = 0;
10952 code = GE;
10953 }
10954 break;
10955
10956 case GEU:
10957 /* >= C is equivalent to > (C - 1). */
10958 if (const_op > 1)
10959 {
10960 const_op -= 1;
10961 code = GTU;
10962 /* ... fall through ... */
10963 }
10964
10965 /* (unsigned) >= 0x80000000 is equivalent to < 0. */
10966 else if (mode_width - 1 < HOST_BITS_PER_WIDE_INT
10967 && (unsigned HOST_WIDE_INT) const_op
10968 == (unsigned HOST_WIDE_INT) 1 << (mode_width - 1))
10969 {
10970 const_op = 0;
10971 code = LT;
10972 break;
10973 }
10974 else
10975 break;
10976
10977 case GTU:
10978 /* unsigned > 0 is equivalent to != 0 */
10979 if (const_op == 0)
10980 code = NE;
10981 /* (unsigned) > 0x7fffffff is equivalent to < 0. */
10982 else if (mode_width - 1 < HOST_BITS_PER_WIDE_INT
10983 && (unsigned HOST_WIDE_INT) const_op
10984 == ((unsigned HOST_WIDE_INT) 1 << (mode_width - 1)) - 1)
10985 {
10986 const_op = 0;
10987 code = LT;
10988 }
10989 break;
10990
10991 default:
10992 break;
10993 }
10994
10995 *pop1 = GEN_INT (const_op);
10996 return code;
10997 }
10998 \f
10999 /* Simplify a comparison between *POP0 and *POP1 where CODE is the
11000 comparison code that will be tested.
11001
11002 The result is a possibly different comparison code to use. *POP0 and
11003 *POP1 may be updated.
11004
11005 It is possible that we might detect that a comparison is either always
11006 true or always false. However, we do not perform general constant
11007 folding in combine, so this knowledge isn't useful. Such tautologies
11008 should have been detected earlier. Hence we ignore all such cases. */
11009
11010 static enum rtx_code
11011 simplify_comparison (enum rtx_code code, rtx *pop0, rtx *pop1)
11012 {
11013 rtx op0 = *pop0;
11014 rtx op1 = *pop1;
11015 rtx tem, tem1;
11016 int i;
11017 enum machine_mode mode, tmode;
11018
11019 /* Try a few ways of applying the same transformation to both operands. */
11020 while (1)
11021 {
11022 #ifndef WORD_REGISTER_OPERATIONS
11023 /* The test below this one won't handle SIGN_EXTENDs on these machines,
11024 so check specially. */
11025 if (code != GTU && code != GEU && code != LTU && code != LEU
11026 && GET_CODE (op0) == ASHIFTRT && GET_CODE (op1) == ASHIFTRT
11027 && GET_CODE (XEXP (op0, 0)) == ASHIFT
11028 && GET_CODE (XEXP (op1, 0)) == ASHIFT
11029 && GET_CODE (XEXP (XEXP (op0, 0), 0)) == SUBREG
11030 && GET_CODE (XEXP (XEXP (op1, 0), 0)) == SUBREG
11031 && (GET_MODE (SUBREG_REG (XEXP (XEXP (op0, 0), 0)))
11032 == GET_MODE (SUBREG_REG (XEXP (XEXP (op1, 0), 0))))
11033 && CONST_INT_P (XEXP (op0, 1))
11034 && XEXP (op0, 1) == XEXP (op1, 1)
11035 && XEXP (op0, 1) == XEXP (XEXP (op0, 0), 1)
11036 && XEXP (op0, 1) == XEXP (XEXP (op1, 0), 1)
11037 && (INTVAL (XEXP (op0, 1))
11038 == (GET_MODE_PRECISION (GET_MODE (op0))
11039 - (GET_MODE_PRECISION
11040 (GET_MODE (SUBREG_REG (XEXP (XEXP (op0, 0), 0))))))))
11041 {
11042 op0 = SUBREG_REG (XEXP (XEXP (op0, 0), 0));
11043 op1 = SUBREG_REG (XEXP (XEXP (op1, 0), 0));
11044 }
11045 #endif
11046
11047 /* If both operands are the same constant shift, see if we can ignore the
11048 shift. We can if the shift is a rotate or if the bits shifted out of
11049 this shift are known to be zero for both inputs and if the type of
11050 comparison is compatible with the shift. */
11051 if (GET_CODE (op0) == GET_CODE (op1)
11052 && HWI_COMPUTABLE_MODE_P (GET_MODE (op0))
11053 && ((GET_CODE (op0) == ROTATE && (code == NE || code == EQ))
11054 || ((GET_CODE (op0) == LSHIFTRT || GET_CODE (op0) == ASHIFT)
11055 && (code != GT && code != LT && code != GE && code != LE))
11056 || (GET_CODE (op0) == ASHIFTRT
11057 && (code != GTU && code != LTU
11058 && code != GEU && code != LEU)))
11059 && CONST_INT_P (XEXP (op0, 1))
11060 && INTVAL (XEXP (op0, 1)) >= 0
11061 && INTVAL (XEXP (op0, 1)) < HOST_BITS_PER_WIDE_INT
11062 && XEXP (op0, 1) == XEXP (op1, 1))
11063 {
11064 enum machine_mode mode = GET_MODE (op0);
11065 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
11066 int shift_count = INTVAL (XEXP (op0, 1));
11067
11068 if (GET_CODE (op0) == LSHIFTRT || GET_CODE (op0) == ASHIFTRT)
11069 mask &= (mask >> shift_count) << shift_count;
11070 else if (GET_CODE (op0) == ASHIFT)
11071 mask = (mask & (mask << shift_count)) >> shift_count;
11072
11073 if ((nonzero_bits (XEXP (op0, 0), mode) & ~mask) == 0
11074 && (nonzero_bits (XEXP (op1, 0), mode) & ~mask) == 0)
11075 op0 = XEXP (op0, 0), op1 = XEXP (op1, 0);
11076 else
11077 break;
11078 }
11079
11080 /* If both operands are AND's of a paradoxical SUBREG by constant, the
11081 SUBREGs are of the same mode, and, in both cases, the AND would
11082 be redundant if the comparison was done in the narrower mode,
11083 do the comparison in the narrower mode (e.g., we are AND'ing with 1
11084 and the operand's possibly nonzero bits are 0xffffff01; in that case
11085 if we only care about QImode, we don't need the AND). This case
11086 occurs if the output mode of an scc insn is not SImode and
11087 STORE_FLAG_VALUE == 1 (e.g., the 386).
11088
11089 Similarly, check for a case where the AND's are ZERO_EXTEND
11090 operations from some narrower mode even though a SUBREG is not
11091 present. */
11092
11093 else if (GET_CODE (op0) == AND && GET_CODE (op1) == AND
11094 && CONST_INT_P (XEXP (op0, 1))
11095 && CONST_INT_P (XEXP (op1, 1)))
11096 {
11097 rtx inner_op0 = XEXP (op0, 0);
11098 rtx inner_op1 = XEXP (op1, 0);
11099 HOST_WIDE_INT c0 = INTVAL (XEXP (op0, 1));
11100 HOST_WIDE_INT c1 = INTVAL (XEXP (op1, 1));
11101 int changed = 0;
11102
11103 if (paradoxical_subreg_p (inner_op0)
11104 && GET_CODE (inner_op1) == SUBREG
11105 && (GET_MODE (SUBREG_REG (inner_op0))
11106 == GET_MODE (SUBREG_REG (inner_op1)))
11107 && (GET_MODE_PRECISION (GET_MODE (SUBREG_REG (inner_op0)))
11108 <= HOST_BITS_PER_WIDE_INT)
11109 && (0 == ((~c0) & nonzero_bits (SUBREG_REG (inner_op0),
11110 GET_MODE (SUBREG_REG (inner_op0)))))
11111 && (0 == ((~c1) & nonzero_bits (SUBREG_REG (inner_op1),
11112 GET_MODE (SUBREG_REG (inner_op1))))))
11113 {
11114 op0 = SUBREG_REG (inner_op0);
11115 op1 = SUBREG_REG (inner_op1);
11116
11117 /* The resulting comparison is always unsigned since we masked
11118 off the original sign bit. */
11119 code = unsigned_condition (code);
11120
11121 changed = 1;
11122 }
11123
11124 else if (c0 == c1)
11125 for (tmode = GET_CLASS_NARROWEST_MODE
11126 (GET_MODE_CLASS (GET_MODE (op0)));
11127 tmode != GET_MODE (op0); tmode = GET_MODE_WIDER_MODE (tmode))
11128 if ((unsigned HOST_WIDE_INT) c0 == GET_MODE_MASK (tmode))
11129 {
11130 op0 = gen_lowpart (tmode, inner_op0);
11131 op1 = gen_lowpart (tmode, inner_op1);
11132 code = unsigned_condition (code);
11133 changed = 1;
11134 break;
11135 }
11136
11137 if (! changed)
11138 break;
11139 }
11140
11141 /* If both operands are NOT, we can strip off the outer operation
11142 and adjust the comparison code for swapped operands; similarly for
11143 NEG, except that this must be an equality comparison. */
11144 else if ((GET_CODE (op0) == NOT && GET_CODE (op1) == NOT)
11145 || (GET_CODE (op0) == NEG && GET_CODE (op1) == NEG
11146 && (code == EQ || code == NE)))
11147 op0 = XEXP (op0, 0), op1 = XEXP (op1, 0), code = swap_condition (code);
11148
11149 else
11150 break;
11151 }
11152
11153 /* If the first operand is a constant, swap the operands and adjust the
11154 comparison code appropriately, but don't do this if the second operand
11155 is already a constant integer. */
11156 if (swap_commutative_operands_p (op0, op1))
11157 {
11158 tem = op0, op0 = op1, op1 = tem;
11159 code = swap_condition (code);
11160 }
11161
11162 /* We now enter a loop during which we will try to simplify the comparison.
11163 For the most part, we only are concerned with comparisons with zero,
11164 but some things may really be comparisons with zero but not start
11165 out looking that way. */
11166
11167 while (CONST_INT_P (op1))
11168 {
11169 enum machine_mode mode = GET_MODE (op0);
11170 unsigned int mode_width = GET_MODE_PRECISION (mode);
11171 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
11172 int equality_comparison_p;
11173 int sign_bit_comparison_p;
11174 int unsigned_comparison_p;
11175 HOST_WIDE_INT const_op;
11176
11177 /* We only want to handle integral modes. This catches VOIDmode,
11178 CCmode, and the floating-point modes. An exception is that we
11179 can handle VOIDmode if OP0 is a COMPARE or a comparison
11180 operation. */
11181
11182 if (GET_MODE_CLASS (mode) != MODE_INT
11183 && ! (mode == VOIDmode
11184 && (GET_CODE (op0) == COMPARE || COMPARISON_P (op0))))
11185 break;
11186
11187 /* Try to simplify the compare to constant, possibly changing the
11188 comparison op, and/or changing op1 to zero. */
11189 code = simplify_compare_const (code, mode, op0, &op1);
11190 const_op = INTVAL (op1);
11191
11192 /* Compute some predicates to simplify code below. */
11193
11194 equality_comparison_p = (code == EQ || code == NE);
11195 sign_bit_comparison_p = ((code == LT || code == GE) && const_op == 0);
11196 unsigned_comparison_p = (code == LTU || code == LEU || code == GTU
11197 || code == GEU);
11198
11199 /* If this is a sign bit comparison and we can do arithmetic in
11200 MODE, say that we will only be needing the sign bit of OP0. */
11201 if (sign_bit_comparison_p && HWI_COMPUTABLE_MODE_P (mode))
11202 op0 = force_to_mode (op0, mode,
11203 (unsigned HOST_WIDE_INT) 1
11204 << (GET_MODE_PRECISION (mode) - 1),
11205 0);
11206
11207 /* Now try cases based on the opcode of OP0. If none of the cases
11208 does a "continue", we exit this loop immediately after the
11209 switch. */
11210
11211 switch (GET_CODE (op0))
11212 {
11213 case ZERO_EXTRACT:
11214 /* If we are extracting a single bit from a variable position in
11215 a constant that has only a single bit set and are comparing it
11216 with zero, we can convert this into an equality comparison
11217 between the position and the location of the single bit. */
11218 /* Except we can't if SHIFT_COUNT_TRUNCATED is set, since we might
11219 have already reduced the shift count modulo the word size. */
11220 if (!SHIFT_COUNT_TRUNCATED
11221 && CONST_INT_P (XEXP (op0, 0))
11222 && XEXP (op0, 1) == const1_rtx
11223 && equality_comparison_p && const_op == 0
11224 && (i = exact_log2 (UINTVAL (XEXP (op0, 0)))) >= 0)
11225 {
11226 if (BITS_BIG_ENDIAN)
11227 i = BITS_PER_WORD - 1 - i;
11228
11229 op0 = XEXP (op0, 2);
11230 op1 = GEN_INT (i);
11231 const_op = i;
11232
11233 /* Result is nonzero iff shift count is equal to I. */
11234 code = reverse_condition (code);
11235 continue;
11236 }
11237
11238 /* ... fall through ... */
11239
11240 case SIGN_EXTRACT:
11241 tem = expand_compound_operation (op0);
11242 if (tem != op0)
11243 {
11244 op0 = tem;
11245 continue;
11246 }
11247 break;
11248
11249 case NOT:
11250 /* If testing for equality, we can take the NOT of the constant. */
11251 if (equality_comparison_p
11252 && (tem = simplify_unary_operation (NOT, mode, op1, mode)) != 0)
11253 {
11254 op0 = XEXP (op0, 0);
11255 op1 = tem;
11256 continue;
11257 }
11258
11259 /* If just looking at the sign bit, reverse the sense of the
11260 comparison. */
11261 if (sign_bit_comparison_p)
11262 {
11263 op0 = XEXP (op0, 0);
11264 code = (code == GE ? LT : GE);
11265 continue;
11266 }
11267 break;
11268
11269 case NEG:
11270 /* If testing for equality, we can take the NEG of the constant. */
11271 if (equality_comparison_p
11272 && (tem = simplify_unary_operation (NEG, mode, op1, mode)) != 0)
11273 {
11274 op0 = XEXP (op0, 0);
11275 op1 = tem;
11276 continue;
11277 }
11278
11279 /* The remaining cases only apply to comparisons with zero. */
11280 if (const_op != 0)
11281 break;
11282
11283 /* When X is ABS or is known positive,
11284 (neg X) is < 0 if and only if X != 0. */
11285
11286 if (sign_bit_comparison_p
11287 && (GET_CODE (XEXP (op0, 0)) == ABS
11288 || (mode_width <= HOST_BITS_PER_WIDE_INT
11289 && (nonzero_bits (XEXP (op0, 0), mode)
11290 & ((unsigned HOST_WIDE_INT) 1 << (mode_width - 1)))
11291 == 0)))
11292 {
11293 op0 = XEXP (op0, 0);
11294 code = (code == LT ? NE : EQ);
11295 continue;
11296 }
11297
11298 /* If we have NEG of something whose two high-order bits are the
11299 same, we know that "(-a) < 0" is equivalent to "a > 0". */
11300 if (num_sign_bit_copies (op0, mode) >= 2)
11301 {
11302 op0 = XEXP (op0, 0);
11303 code = swap_condition (code);
11304 continue;
11305 }
11306 break;
11307
11308 case ROTATE:
11309 /* If we are testing equality and our count is a constant, we
11310 can perform the inverse operation on our RHS. */
11311 if (equality_comparison_p && CONST_INT_P (XEXP (op0, 1))
11312 && (tem = simplify_binary_operation (ROTATERT, mode,
11313 op1, XEXP (op0, 1))) != 0)
11314 {
11315 op0 = XEXP (op0, 0);
11316 op1 = tem;
11317 continue;
11318 }
11319
11320 /* If we are doing a < 0 or >= 0 comparison, it means we are testing
11321 a particular bit. Convert it to an AND of a constant of that
11322 bit. This will be converted into a ZERO_EXTRACT. */
11323 if (const_op == 0 && sign_bit_comparison_p
11324 && CONST_INT_P (XEXP (op0, 1))
11325 && mode_width <= HOST_BITS_PER_WIDE_INT)
11326 {
11327 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
11328 ((unsigned HOST_WIDE_INT) 1
11329 << (mode_width - 1
11330 - INTVAL (XEXP (op0, 1)))));
11331 code = (code == LT ? NE : EQ);
11332 continue;
11333 }
11334
11335 /* Fall through. */
11336
11337 case ABS:
11338 /* ABS is ignorable inside an equality comparison with zero. */
11339 if (const_op == 0 && equality_comparison_p)
11340 {
11341 op0 = XEXP (op0, 0);
11342 continue;
11343 }
11344 break;
11345
11346 case SIGN_EXTEND:
11347 /* Can simplify (compare (zero/sign_extend FOO) CONST) to
11348 (compare FOO CONST) if CONST fits in FOO's mode and we
11349 are either testing inequality or have an unsigned
11350 comparison with ZERO_EXTEND or a signed comparison with
11351 SIGN_EXTEND. But don't do it if we don't have a compare
11352 insn of the given mode, since we'd have to revert it
11353 later on, and then we wouldn't know whether to sign- or
11354 zero-extend. */
11355 mode = GET_MODE (XEXP (op0, 0));
11356 if (GET_MODE_CLASS (mode) == MODE_INT
11357 && ! unsigned_comparison_p
11358 && HWI_COMPUTABLE_MODE_P (mode)
11359 && trunc_int_for_mode (const_op, mode) == const_op
11360 && have_insn_for (COMPARE, mode))
11361 {
11362 op0 = XEXP (op0, 0);
11363 continue;
11364 }
11365 break;
11366
11367 case SUBREG:
11368 /* Check for the case where we are comparing A - C1 with C2, that is
11369
11370 (subreg:MODE (plus (A) (-C1))) op (C2)
11371
11372 with C1 a constant, and try to lift the SUBREG, i.e. to do the
11373 comparison in the wider mode. One of the following two conditions
11374 must be true in order for this to be valid:
11375
11376 1. The mode extension results in the same bit pattern being added
11377 on both sides and the comparison is equality or unsigned. As
11378 C2 has been truncated to fit in MODE, the pattern can only be
11379 all 0s or all 1s.
11380
11381 2. The mode extension results in the sign bit being copied on
11382 each side.
11383
11384 The difficulty here is that we have predicates for A but not for
11385 (A - C1) so we need to check that C1 is within proper bounds so
11386 as to perturbate A as little as possible. */
11387
11388 if (mode_width <= HOST_BITS_PER_WIDE_INT
11389 && subreg_lowpart_p (op0)
11390 && GET_MODE_PRECISION (GET_MODE (SUBREG_REG (op0))) > mode_width
11391 && GET_CODE (SUBREG_REG (op0)) == PLUS
11392 && CONST_INT_P (XEXP (SUBREG_REG (op0), 1)))
11393 {
11394 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (op0));
11395 rtx a = XEXP (SUBREG_REG (op0), 0);
11396 HOST_WIDE_INT c1 = -INTVAL (XEXP (SUBREG_REG (op0), 1));
11397
11398 if ((c1 > 0
11399 && (unsigned HOST_WIDE_INT) c1
11400 < (unsigned HOST_WIDE_INT) 1 << (mode_width - 1)
11401 && (equality_comparison_p || unsigned_comparison_p)
11402 /* (A - C1) zero-extends if it is positive and sign-extends
11403 if it is negative, C2 both zero- and sign-extends. */
11404 && ((0 == (nonzero_bits (a, inner_mode)
11405 & ~GET_MODE_MASK (mode))
11406 && const_op >= 0)
11407 /* (A - C1) sign-extends if it is positive and 1-extends
11408 if it is negative, C2 both sign- and 1-extends. */
11409 || (num_sign_bit_copies (a, inner_mode)
11410 > (unsigned int) (GET_MODE_PRECISION (inner_mode)
11411 - mode_width)
11412 && const_op < 0)))
11413 || ((unsigned HOST_WIDE_INT) c1
11414 < (unsigned HOST_WIDE_INT) 1 << (mode_width - 2)
11415 /* (A - C1) always sign-extends, like C2. */
11416 && num_sign_bit_copies (a, inner_mode)
11417 > (unsigned int) (GET_MODE_PRECISION (inner_mode)
11418 - (mode_width - 1))))
11419 {
11420 op0 = SUBREG_REG (op0);
11421 continue;
11422 }
11423 }
11424
11425 /* If the inner mode is narrower and we are extracting the low part,
11426 we can treat the SUBREG as if it were a ZERO_EXTEND. */
11427 if (subreg_lowpart_p (op0)
11428 && GET_MODE_PRECISION (GET_MODE (SUBREG_REG (op0))) < mode_width)
11429 /* Fall through */ ;
11430 else
11431 break;
11432
11433 /* ... fall through ... */
11434
11435 case ZERO_EXTEND:
11436 mode = GET_MODE (XEXP (op0, 0));
11437 if (GET_MODE_CLASS (mode) == MODE_INT
11438 && (unsigned_comparison_p || equality_comparison_p)
11439 && HWI_COMPUTABLE_MODE_P (mode)
11440 && (unsigned HOST_WIDE_INT) const_op <= GET_MODE_MASK (mode)
11441 && const_op >= 0
11442 && have_insn_for (COMPARE, mode))
11443 {
11444 op0 = XEXP (op0, 0);
11445 continue;
11446 }
11447 break;
11448
11449 case PLUS:
11450 /* (eq (plus X A) B) -> (eq X (minus B A)). We can only do
11451 this for equality comparisons due to pathological cases involving
11452 overflows. */
11453 if (equality_comparison_p
11454 && 0 != (tem = simplify_binary_operation (MINUS, mode,
11455 op1, XEXP (op0, 1))))
11456 {
11457 op0 = XEXP (op0, 0);
11458 op1 = tem;
11459 continue;
11460 }
11461
11462 /* (plus (abs X) (const_int -1)) is < 0 if and only if X == 0. */
11463 if (const_op == 0 && XEXP (op0, 1) == constm1_rtx
11464 && GET_CODE (XEXP (op0, 0)) == ABS && sign_bit_comparison_p)
11465 {
11466 op0 = XEXP (XEXP (op0, 0), 0);
11467 code = (code == LT ? EQ : NE);
11468 continue;
11469 }
11470 break;
11471
11472 case MINUS:
11473 /* We used to optimize signed comparisons against zero, but that
11474 was incorrect. Unsigned comparisons against zero (GTU, LEU)
11475 arrive here as equality comparisons, or (GEU, LTU) are
11476 optimized away. No need to special-case them. */
11477
11478 /* (eq (minus A B) C) -> (eq A (plus B C)) or
11479 (eq B (minus A C)), whichever simplifies. We can only do
11480 this for equality comparisons due to pathological cases involving
11481 overflows. */
11482 if (equality_comparison_p
11483 && 0 != (tem = simplify_binary_operation (PLUS, mode,
11484 XEXP (op0, 1), op1)))
11485 {
11486 op0 = XEXP (op0, 0);
11487 op1 = tem;
11488 continue;
11489 }
11490
11491 if (equality_comparison_p
11492 && 0 != (tem = simplify_binary_operation (MINUS, mode,
11493 XEXP (op0, 0), op1)))
11494 {
11495 op0 = XEXP (op0, 1);
11496 op1 = tem;
11497 continue;
11498 }
11499
11500 /* The sign bit of (minus (ashiftrt X C) X), where C is the number
11501 of bits in X minus 1, is one iff X > 0. */
11502 if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 0)) == ASHIFTRT
11503 && CONST_INT_P (XEXP (XEXP (op0, 0), 1))
11504 && UINTVAL (XEXP (XEXP (op0, 0), 1)) == mode_width - 1
11505 && rtx_equal_p (XEXP (XEXP (op0, 0), 0), XEXP (op0, 1)))
11506 {
11507 op0 = XEXP (op0, 1);
11508 code = (code == GE ? LE : GT);
11509 continue;
11510 }
11511 break;
11512
11513 case XOR:
11514 /* (eq (xor A B) C) -> (eq A (xor B C)). This is a simplification
11515 if C is zero or B is a constant. */
11516 if (equality_comparison_p
11517 && 0 != (tem = simplify_binary_operation (XOR, mode,
11518 XEXP (op0, 1), op1)))
11519 {
11520 op0 = XEXP (op0, 0);
11521 op1 = tem;
11522 continue;
11523 }
11524 break;
11525
11526 case EQ: case NE:
11527 case UNEQ: case LTGT:
11528 case LT: case LTU: case UNLT: case LE: case LEU: case UNLE:
11529 case GT: case GTU: case UNGT: case GE: case GEU: case UNGE:
11530 case UNORDERED: case ORDERED:
11531 /* We can't do anything if OP0 is a condition code value, rather
11532 than an actual data value. */
11533 if (const_op != 0
11534 || CC0_P (XEXP (op0, 0))
11535 || GET_MODE_CLASS (GET_MODE (XEXP (op0, 0))) == MODE_CC)
11536 break;
11537
11538 /* Get the two operands being compared. */
11539 if (GET_CODE (XEXP (op0, 0)) == COMPARE)
11540 tem = XEXP (XEXP (op0, 0), 0), tem1 = XEXP (XEXP (op0, 0), 1);
11541 else
11542 tem = XEXP (op0, 0), tem1 = XEXP (op0, 1);
11543
11544 /* Check for the cases where we simply want the result of the
11545 earlier test or the opposite of that result. */
11546 if (code == NE || code == EQ
11547 || (val_signbit_known_set_p (GET_MODE (op0), STORE_FLAG_VALUE)
11548 && (code == LT || code == GE)))
11549 {
11550 enum rtx_code new_code;
11551 if (code == LT || code == NE)
11552 new_code = GET_CODE (op0);
11553 else
11554 new_code = reversed_comparison_code (op0, NULL);
11555
11556 if (new_code != UNKNOWN)
11557 {
11558 code = new_code;
11559 op0 = tem;
11560 op1 = tem1;
11561 continue;
11562 }
11563 }
11564 break;
11565
11566 case IOR:
11567 /* The sign bit of (ior (plus X (const_int -1)) X) is nonzero
11568 iff X <= 0. */
11569 if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 0)) == PLUS
11570 && XEXP (XEXP (op0, 0), 1) == constm1_rtx
11571 && rtx_equal_p (XEXP (XEXP (op0, 0), 0), XEXP (op0, 1)))
11572 {
11573 op0 = XEXP (op0, 1);
11574 code = (code == GE ? GT : LE);
11575 continue;
11576 }
11577 break;
11578
11579 case AND:
11580 /* Convert (and (xshift 1 X) Y) to (and (lshiftrt Y X) 1). This
11581 will be converted to a ZERO_EXTRACT later. */
11582 if (const_op == 0 && equality_comparison_p
11583 && GET_CODE (XEXP (op0, 0)) == ASHIFT
11584 && XEXP (XEXP (op0, 0), 0) == const1_rtx)
11585 {
11586 op0 = gen_rtx_LSHIFTRT (mode, XEXP (op0, 1),
11587 XEXP (XEXP (op0, 0), 1));
11588 op0 = simplify_and_const_int (NULL_RTX, mode, op0, 1);
11589 continue;
11590 }
11591
11592 /* If we are comparing (and (lshiftrt X C1) C2) for equality with
11593 zero and X is a comparison and C1 and C2 describe only bits set
11594 in STORE_FLAG_VALUE, we can compare with X. */
11595 if (const_op == 0 && equality_comparison_p
11596 && mode_width <= HOST_BITS_PER_WIDE_INT
11597 && CONST_INT_P (XEXP (op0, 1))
11598 && GET_CODE (XEXP (op0, 0)) == LSHIFTRT
11599 && CONST_INT_P (XEXP (XEXP (op0, 0), 1))
11600 && INTVAL (XEXP (XEXP (op0, 0), 1)) >= 0
11601 && INTVAL (XEXP (XEXP (op0, 0), 1)) < HOST_BITS_PER_WIDE_INT)
11602 {
11603 mask = ((INTVAL (XEXP (op0, 1)) & GET_MODE_MASK (mode))
11604 << INTVAL (XEXP (XEXP (op0, 0), 1)));
11605 if ((~STORE_FLAG_VALUE & mask) == 0
11606 && (COMPARISON_P (XEXP (XEXP (op0, 0), 0))
11607 || ((tem = get_last_value (XEXP (XEXP (op0, 0), 0))) != 0
11608 && COMPARISON_P (tem))))
11609 {
11610 op0 = XEXP (XEXP (op0, 0), 0);
11611 continue;
11612 }
11613 }
11614
11615 /* If we are doing an equality comparison of an AND of a bit equal
11616 to the sign bit, replace this with a LT or GE comparison of
11617 the underlying value. */
11618 if (equality_comparison_p
11619 && const_op == 0
11620 && CONST_INT_P (XEXP (op0, 1))
11621 && mode_width <= HOST_BITS_PER_WIDE_INT
11622 && ((INTVAL (XEXP (op0, 1)) & GET_MODE_MASK (mode))
11623 == (unsigned HOST_WIDE_INT) 1 << (mode_width - 1)))
11624 {
11625 op0 = XEXP (op0, 0);
11626 code = (code == EQ ? GE : LT);
11627 continue;
11628 }
11629
11630 /* If this AND operation is really a ZERO_EXTEND from a narrower
11631 mode, the constant fits within that mode, and this is either an
11632 equality or unsigned comparison, try to do this comparison in
11633 the narrower mode.
11634
11635 Note that in:
11636
11637 (ne:DI (and:DI (reg:DI 4) (const_int 0xffffffff)) (const_int 0))
11638 -> (ne:DI (reg:SI 4) (const_int 0))
11639
11640 unless TRULY_NOOP_TRUNCATION allows it or the register is
11641 known to hold a value of the required mode the
11642 transformation is invalid. */
11643 if ((equality_comparison_p || unsigned_comparison_p)
11644 && CONST_INT_P (XEXP (op0, 1))
11645 && (i = exact_log2 ((UINTVAL (XEXP (op0, 1))
11646 & GET_MODE_MASK (mode))
11647 + 1)) >= 0
11648 && const_op >> i == 0
11649 && (tmode = mode_for_size (i, MODE_INT, 1)) != BLKmode
11650 && (TRULY_NOOP_TRUNCATION_MODES_P (tmode, GET_MODE (op0))
11651 || (REG_P (XEXP (op0, 0))
11652 && reg_truncated_to_mode (tmode, XEXP (op0, 0)))))
11653 {
11654 op0 = gen_lowpart (tmode, XEXP (op0, 0));
11655 continue;
11656 }
11657
11658 /* If this is (and:M1 (subreg:M2 X 0) (const_int C1)) where C1
11659 fits in both M1 and M2 and the SUBREG is either paradoxical
11660 or represents the low part, permute the SUBREG and the AND
11661 and try again. */
11662 if (GET_CODE (XEXP (op0, 0)) == SUBREG)
11663 {
11664 unsigned HOST_WIDE_INT c1;
11665 tmode = GET_MODE (SUBREG_REG (XEXP (op0, 0)));
11666 /* Require an integral mode, to avoid creating something like
11667 (AND:SF ...). */
11668 if (SCALAR_INT_MODE_P (tmode)
11669 /* It is unsafe to commute the AND into the SUBREG if the
11670 SUBREG is paradoxical and WORD_REGISTER_OPERATIONS is
11671 not defined. As originally written the upper bits
11672 have a defined value due to the AND operation.
11673 However, if we commute the AND inside the SUBREG then
11674 they no longer have defined values and the meaning of
11675 the code has been changed. */
11676 && (0
11677 #ifdef WORD_REGISTER_OPERATIONS
11678 || (mode_width > GET_MODE_PRECISION (tmode)
11679 && mode_width <= BITS_PER_WORD)
11680 #endif
11681 || (mode_width <= GET_MODE_PRECISION (tmode)
11682 && subreg_lowpart_p (XEXP (op0, 0))))
11683 && CONST_INT_P (XEXP (op0, 1))
11684 && mode_width <= HOST_BITS_PER_WIDE_INT
11685 && HWI_COMPUTABLE_MODE_P (tmode)
11686 && ((c1 = INTVAL (XEXP (op0, 1))) & ~mask) == 0
11687 && (c1 & ~GET_MODE_MASK (tmode)) == 0
11688 && c1 != mask
11689 && c1 != GET_MODE_MASK (tmode))
11690 {
11691 op0 = simplify_gen_binary (AND, tmode,
11692 SUBREG_REG (XEXP (op0, 0)),
11693 gen_int_mode (c1, tmode));
11694 op0 = gen_lowpart (mode, op0);
11695 continue;
11696 }
11697 }
11698
11699 /* Convert (ne (and (not X) 1) 0) to (eq (and X 1) 0). */
11700 if (const_op == 0 && equality_comparison_p
11701 && XEXP (op0, 1) == const1_rtx
11702 && GET_CODE (XEXP (op0, 0)) == NOT)
11703 {
11704 op0 = simplify_and_const_int (NULL_RTX, mode,
11705 XEXP (XEXP (op0, 0), 0), 1);
11706 code = (code == NE ? EQ : NE);
11707 continue;
11708 }
11709
11710 /* Convert (ne (and (lshiftrt (not X)) 1) 0) to
11711 (eq (and (lshiftrt X) 1) 0).
11712 Also handle the case where (not X) is expressed using xor. */
11713 if (const_op == 0 && equality_comparison_p
11714 && XEXP (op0, 1) == const1_rtx
11715 && GET_CODE (XEXP (op0, 0)) == LSHIFTRT)
11716 {
11717 rtx shift_op = XEXP (XEXP (op0, 0), 0);
11718 rtx shift_count = XEXP (XEXP (op0, 0), 1);
11719
11720 if (GET_CODE (shift_op) == NOT
11721 || (GET_CODE (shift_op) == XOR
11722 && CONST_INT_P (XEXP (shift_op, 1))
11723 && CONST_INT_P (shift_count)
11724 && HWI_COMPUTABLE_MODE_P (mode)
11725 && (UINTVAL (XEXP (shift_op, 1))
11726 == (unsigned HOST_WIDE_INT) 1
11727 << INTVAL (shift_count))))
11728 {
11729 op0
11730 = gen_rtx_LSHIFTRT (mode, XEXP (shift_op, 0), shift_count);
11731 op0 = simplify_and_const_int (NULL_RTX, mode, op0, 1);
11732 code = (code == NE ? EQ : NE);
11733 continue;
11734 }
11735 }
11736 break;
11737
11738 case ASHIFT:
11739 /* If we have (compare (ashift FOO N) (const_int C)) and
11740 the high order N bits of FOO (N+1 if an inequality comparison)
11741 are known to be zero, we can do this by comparing FOO with C
11742 shifted right N bits so long as the low-order N bits of C are
11743 zero. */
11744 if (CONST_INT_P (XEXP (op0, 1))
11745 && INTVAL (XEXP (op0, 1)) >= 0
11746 && ((INTVAL (XEXP (op0, 1)) + ! equality_comparison_p)
11747 < HOST_BITS_PER_WIDE_INT)
11748 && (((unsigned HOST_WIDE_INT) const_op
11749 & (((unsigned HOST_WIDE_INT) 1 << INTVAL (XEXP (op0, 1)))
11750 - 1)) == 0)
11751 && mode_width <= HOST_BITS_PER_WIDE_INT
11752 && (nonzero_bits (XEXP (op0, 0), mode)
11753 & ~(mask >> (INTVAL (XEXP (op0, 1))
11754 + ! equality_comparison_p))) == 0)
11755 {
11756 /* We must perform a logical shift, not an arithmetic one,
11757 as we want the top N bits of C to be zero. */
11758 unsigned HOST_WIDE_INT temp = const_op & GET_MODE_MASK (mode);
11759
11760 temp >>= INTVAL (XEXP (op0, 1));
11761 op1 = gen_int_mode (temp, mode);
11762 op0 = XEXP (op0, 0);
11763 continue;
11764 }
11765
11766 /* If we are doing a sign bit comparison, it means we are testing
11767 a particular bit. Convert it to the appropriate AND. */
11768 if (sign_bit_comparison_p && CONST_INT_P (XEXP (op0, 1))
11769 && mode_width <= HOST_BITS_PER_WIDE_INT)
11770 {
11771 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
11772 ((unsigned HOST_WIDE_INT) 1
11773 << (mode_width - 1
11774 - INTVAL (XEXP (op0, 1)))));
11775 code = (code == LT ? NE : EQ);
11776 continue;
11777 }
11778
11779 /* If this an equality comparison with zero and we are shifting
11780 the low bit to the sign bit, we can convert this to an AND of the
11781 low-order bit. */
11782 if (const_op == 0 && equality_comparison_p
11783 && CONST_INT_P (XEXP (op0, 1))
11784 && UINTVAL (XEXP (op0, 1)) == mode_width - 1)
11785 {
11786 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0), 1);
11787 continue;
11788 }
11789 break;
11790
11791 case ASHIFTRT:
11792 /* If this is an equality comparison with zero, we can do this
11793 as a logical shift, which might be much simpler. */
11794 if (equality_comparison_p && const_op == 0
11795 && CONST_INT_P (XEXP (op0, 1)))
11796 {
11797 op0 = simplify_shift_const (NULL_RTX, LSHIFTRT, mode,
11798 XEXP (op0, 0),
11799 INTVAL (XEXP (op0, 1)));
11800 continue;
11801 }
11802
11803 /* If OP0 is a sign extension and CODE is not an unsigned comparison,
11804 do the comparison in a narrower mode. */
11805 if (! unsigned_comparison_p
11806 && CONST_INT_P (XEXP (op0, 1))
11807 && GET_CODE (XEXP (op0, 0)) == ASHIFT
11808 && XEXP (op0, 1) == XEXP (XEXP (op0, 0), 1)
11809 && (tmode = mode_for_size (mode_width - INTVAL (XEXP (op0, 1)),
11810 MODE_INT, 1)) != BLKmode
11811 && (((unsigned HOST_WIDE_INT) const_op
11812 + (GET_MODE_MASK (tmode) >> 1) + 1)
11813 <= GET_MODE_MASK (tmode)))
11814 {
11815 op0 = gen_lowpart (tmode, XEXP (XEXP (op0, 0), 0));
11816 continue;
11817 }
11818
11819 /* Likewise if OP0 is a PLUS of a sign extension with a
11820 constant, which is usually represented with the PLUS
11821 between the shifts. */
11822 if (! unsigned_comparison_p
11823 && CONST_INT_P (XEXP (op0, 1))
11824 && GET_CODE (XEXP (op0, 0)) == PLUS
11825 && CONST_INT_P (XEXP (XEXP (op0, 0), 1))
11826 && GET_CODE (XEXP (XEXP (op0, 0), 0)) == ASHIFT
11827 && XEXP (op0, 1) == XEXP (XEXP (XEXP (op0, 0), 0), 1)
11828 && (tmode = mode_for_size (mode_width - INTVAL (XEXP (op0, 1)),
11829 MODE_INT, 1)) != BLKmode
11830 && (((unsigned HOST_WIDE_INT) const_op
11831 + (GET_MODE_MASK (tmode) >> 1) + 1)
11832 <= GET_MODE_MASK (tmode)))
11833 {
11834 rtx inner = XEXP (XEXP (XEXP (op0, 0), 0), 0);
11835 rtx add_const = XEXP (XEXP (op0, 0), 1);
11836 rtx new_const = simplify_gen_binary (ASHIFTRT, GET_MODE (op0),
11837 add_const, XEXP (op0, 1));
11838
11839 op0 = simplify_gen_binary (PLUS, tmode,
11840 gen_lowpart (tmode, inner),
11841 new_const);
11842 continue;
11843 }
11844
11845 /* ... fall through ... */
11846 case LSHIFTRT:
11847 /* If we have (compare (xshiftrt FOO N) (const_int C)) and
11848 the low order N bits of FOO are known to be zero, we can do this
11849 by comparing FOO with C shifted left N bits so long as no
11850 overflow occurs. Even if the low order N bits of FOO aren't known
11851 to be zero, if the comparison is >= or < we can use the same
11852 optimization and for > or <= by setting all the low
11853 order N bits in the comparison constant. */
11854 if (CONST_INT_P (XEXP (op0, 1))
11855 && INTVAL (XEXP (op0, 1)) > 0
11856 && INTVAL (XEXP (op0, 1)) < HOST_BITS_PER_WIDE_INT
11857 && mode_width <= HOST_BITS_PER_WIDE_INT
11858 && (((unsigned HOST_WIDE_INT) const_op
11859 + (GET_CODE (op0) != LSHIFTRT
11860 ? ((GET_MODE_MASK (mode) >> INTVAL (XEXP (op0, 1)) >> 1)
11861 + 1)
11862 : 0))
11863 <= GET_MODE_MASK (mode) >> INTVAL (XEXP (op0, 1))))
11864 {
11865 unsigned HOST_WIDE_INT low_bits
11866 = (nonzero_bits (XEXP (op0, 0), mode)
11867 & (((unsigned HOST_WIDE_INT) 1
11868 << INTVAL (XEXP (op0, 1))) - 1));
11869 if (low_bits == 0 || !equality_comparison_p)
11870 {
11871 /* If the shift was logical, then we must make the condition
11872 unsigned. */
11873 if (GET_CODE (op0) == LSHIFTRT)
11874 code = unsigned_condition (code);
11875
11876 const_op <<= INTVAL (XEXP (op0, 1));
11877 if (low_bits != 0
11878 && (code == GT || code == GTU
11879 || code == LE || code == LEU))
11880 const_op
11881 |= (((HOST_WIDE_INT) 1 << INTVAL (XEXP (op0, 1))) - 1);
11882 op1 = GEN_INT (const_op);
11883 op0 = XEXP (op0, 0);
11884 continue;
11885 }
11886 }
11887
11888 /* If we are using this shift to extract just the sign bit, we
11889 can replace this with an LT or GE comparison. */
11890 if (const_op == 0
11891 && (equality_comparison_p || sign_bit_comparison_p)
11892 && CONST_INT_P (XEXP (op0, 1))
11893 && UINTVAL (XEXP (op0, 1)) == mode_width - 1)
11894 {
11895 op0 = XEXP (op0, 0);
11896 code = (code == NE || code == GT ? LT : GE);
11897 continue;
11898 }
11899 break;
11900
11901 default:
11902 break;
11903 }
11904
11905 break;
11906 }
11907
11908 /* Now make any compound operations involved in this comparison. Then,
11909 check for an outmost SUBREG on OP0 that is not doing anything or is
11910 paradoxical. The latter transformation must only be performed when
11911 it is known that the "extra" bits will be the same in op0 and op1 or
11912 that they don't matter. There are three cases to consider:
11913
11914 1. SUBREG_REG (op0) is a register. In this case the bits are don't
11915 care bits and we can assume they have any convenient value. So
11916 making the transformation is safe.
11917
11918 2. SUBREG_REG (op0) is a memory and LOAD_EXTEND_OP is not defined.
11919 In this case the upper bits of op0 are undefined. We should not make
11920 the simplification in that case as we do not know the contents of
11921 those bits.
11922
11923 3. SUBREG_REG (op0) is a memory and LOAD_EXTEND_OP is defined and not
11924 UNKNOWN. In that case we know those bits are zeros or ones. We must
11925 also be sure that they are the same as the upper bits of op1.
11926
11927 We can never remove a SUBREG for a non-equality comparison because
11928 the sign bit is in a different place in the underlying object. */
11929
11930 op0 = make_compound_operation (op0, op1 == const0_rtx ? COMPARE : SET);
11931 op1 = make_compound_operation (op1, SET);
11932
11933 if (GET_CODE (op0) == SUBREG && subreg_lowpart_p (op0)
11934 && GET_MODE_CLASS (GET_MODE (op0)) == MODE_INT
11935 && GET_MODE_CLASS (GET_MODE (SUBREG_REG (op0))) == MODE_INT
11936 && (code == NE || code == EQ))
11937 {
11938 if (paradoxical_subreg_p (op0))
11939 {
11940 /* For paradoxical subregs, allow case 1 as above. Case 3 isn't
11941 implemented. */
11942 if (REG_P (SUBREG_REG (op0)))
11943 {
11944 op0 = SUBREG_REG (op0);
11945 op1 = gen_lowpart (GET_MODE (op0), op1);
11946 }
11947 }
11948 else if ((GET_MODE_PRECISION (GET_MODE (SUBREG_REG (op0)))
11949 <= HOST_BITS_PER_WIDE_INT)
11950 && (nonzero_bits (SUBREG_REG (op0),
11951 GET_MODE (SUBREG_REG (op0)))
11952 & ~GET_MODE_MASK (GET_MODE (op0))) == 0)
11953 {
11954 tem = gen_lowpart (GET_MODE (SUBREG_REG (op0)), op1);
11955
11956 if ((nonzero_bits (tem, GET_MODE (SUBREG_REG (op0)))
11957 & ~GET_MODE_MASK (GET_MODE (op0))) == 0)
11958 op0 = SUBREG_REG (op0), op1 = tem;
11959 }
11960 }
11961
11962 /* We now do the opposite procedure: Some machines don't have compare
11963 insns in all modes. If OP0's mode is an integer mode smaller than a
11964 word and we can't do a compare in that mode, see if there is a larger
11965 mode for which we can do the compare. There are a number of cases in
11966 which we can use the wider mode. */
11967
11968 mode = GET_MODE (op0);
11969 if (mode != VOIDmode && GET_MODE_CLASS (mode) == MODE_INT
11970 && GET_MODE_SIZE (mode) < UNITS_PER_WORD
11971 && ! have_insn_for (COMPARE, mode))
11972 for (tmode = GET_MODE_WIDER_MODE (mode);
11973 (tmode != VOIDmode && HWI_COMPUTABLE_MODE_P (tmode));
11974 tmode = GET_MODE_WIDER_MODE (tmode))
11975 if (have_insn_for (COMPARE, tmode))
11976 {
11977 int zero_extended;
11978
11979 /* If this is a test for negative, we can make an explicit
11980 test of the sign bit. Test this first so we can use
11981 a paradoxical subreg to extend OP0. */
11982
11983 if (op1 == const0_rtx && (code == LT || code == GE)
11984 && HWI_COMPUTABLE_MODE_P (mode))
11985 {
11986 unsigned HOST_WIDE_INT sign
11987 = (unsigned HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (mode) - 1);
11988 op0 = simplify_gen_binary (AND, tmode,
11989 gen_lowpart (tmode, op0),
11990 gen_int_mode (sign, mode));
11991 code = (code == LT) ? NE : EQ;
11992 break;
11993 }
11994
11995 /* If the only nonzero bits in OP0 and OP1 are those in the
11996 narrower mode and this is an equality or unsigned comparison,
11997 we can use the wider mode. Similarly for sign-extended
11998 values, in which case it is true for all comparisons. */
11999 zero_extended = ((code == EQ || code == NE
12000 || code == GEU || code == GTU
12001 || code == LEU || code == LTU)
12002 && (nonzero_bits (op0, tmode)
12003 & ~GET_MODE_MASK (mode)) == 0
12004 && ((CONST_INT_P (op1)
12005 || (nonzero_bits (op1, tmode)
12006 & ~GET_MODE_MASK (mode)) == 0)));
12007
12008 if (zero_extended
12009 || ((num_sign_bit_copies (op0, tmode)
12010 > (unsigned int) (GET_MODE_PRECISION (tmode)
12011 - GET_MODE_PRECISION (mode)))
12012 && (num_sign_bit_copies (op1, tmode)
12013 > (unsigned int) (GET_MODE_PRECISION (tmode)
12014 - GET_MODE_PRECISION (mode)))))
12015 {
12016 /* If OP0 is an AND and we don't have an AND in MODE either,
12017 make a new AND in the proper mode. */
12018 if (GET_CODE (op0) == AND
12019 && !have_insn_for (AND, mode))
12020 op0 = simplify_gen_binary (AND, tmode,
12021 gen_lowpart (tmode,
12022 XEXP (op0, 0)),
12023 gen_lowpart (tmode,
12024 XEXP (op0, 1)));
12025 else
12026 {
12027 if (zero_extended)
12028 {
12029 op0 = simplify_gen_unary (ZERO_EXTEND, tmode, op0, mode);
12030 op1 = simplify_gen_unary (ZERO_EXTEND, tmode, op1, mode);
12031 }
12032 else
12033 {
12034 op0 = simplify_gen_unary (SIGN_EXTEND, tmode, op0, mode);
12035 op1 = simplify_gen_unary (SIGN_EXTEND, tmode, op1, mode);
12036 }
12037 break;
12038 }
12039 }
12040 }
12041
12042 /* We may have changed the comparison operands. Re-canonicalize. */
12043 if (swap_commutative_operands_p (op0, op1))
12044 {
12045 tem = op0, op0 = op1, op1 = tem;
12046 code = swap_condition (code);
12047 }
12048
12049 /* If this machine only supports a subset of valid comparisons, see if we
12050 can convert an unsupported one into a supported one. */
12051 target_canonicalize_comparison (&code, &op0, &op1, 0);
12052
12053 *pop0 = op0;
12054 *pop1 = op1;
12055
12056 return code;
12057 }
12058 \f
12059 /* Utility function for record_value_for_reg. Count number of
12060 rtxs in X. */
12061 static int
12062 count_rtxs (rtx x)
12063 {
12064 enum rtx_code code = GET_CODE (x);
12065 const char *fmt;
12066 int i, j, ret = 1;
12067
12068 if (GET_RTX_CLASS (code) == RTX_BIN_ARITH
12069 || GET_RTX_CLASS (code) == RTX_COMM_ARITH)
12070 {
12071 rtx x0 = XEXP (x, 0);
12072 rtx x1 = XEXP (x, 1);
12073
12074 if (x0 == x1)
12075 return 1 + 2 * count_rtxs (x0);
12076
12077 if ((GET_RTX_CLASS (GET_CODE (x1)) == RTX_BIN_ARITH
12078 || GET_RTX_CLASS (GET_CODE (x1)) == RTX_COMM_ARITH)
12079 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
12080 return 2 + 2 * count_rtxs (x0)
12081 + count_rtxs (x == XEXP (x1, 0)
12082 ? XEXP (x1, 1) : XEXP (x1, 0));
12083
12084 if ((GET_RTX_CLASS (GET_CODE (x0)) == RTX_BIN_ARITH
12085 || GET_RTX_CLASS (GET_CODE (x0)) == RTX_COMM_ARITH)
12086 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
12087 return 2 + 2 * count_rtxs (x1)
12088 + count_rtxs (x == XEXP (x0, 0)
12089 ? XEXP (x0, 1) : XEXP (x0, 0));
12090 }
12091
12092 fmt = GET_RTX_FORMAT (code);
12093 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
12094 if (fmt[i] == 'e')
12095 ret += count_rtxs (XEXP (x, i));
12096 else if (fmt[i] == 'E')
12097 for (j = 0; j < XVECLEN (x, i); j++)
12098 ret += count_rtxs (XVECEXP (x, i, j));
12099
12100 return ret;
12101 }
12102 \f
12103 /* Utility function for following routine. Called when X is part of a value
12104 being stored into last_set_value. Sets last_set_table_tick
12105 for each register mentioned. Similar to mention_regs in cse.c */
12106
12107 static void
12108 update_table_tick (rtx x)
12109 {
12110 enum rtx_code code = GET_CODE (x);
12111 const char *fmt = GET_RTX_FORMAT (code);
12112 int i, j;
12113
12114 if (code == REG)
12115 {
12116 unsigned int regno = REGNO (x);
12117 unsigned int endregno = END_REGNO (x);
12118 unsigned int r;
12119
12120 for (r = regno; r < endregno; r++)
12121 {
12122 reg_stat_type *rsp = &reg_stat[r];
12123 rsp->last_set_table_tick = label_tick;
12124 }
12125
12126 return;
12127 }
12128
12129 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
12130 if (fmt[i] == 'e')
12131 {
12132 /* Check for identical subexpressions. If x contains
12133 identical subexpression we only have to traverse one of
12134 them. */
12135 if (i == 0 && ARITHMETIC_P (x))
12136 {
12137 /* Note that at this point x1 has already been
12138 processed. */
12139 rtx x0 = XEXP (x, 0);
12140 rtx x1 = XEXP (x, 1);
12141
12142 /* If x0 and x1 are identical then there is no need to
12143 process x0. */
12144 if (x0 == x1)
12145 break;
12146
12147 /* If x0 is identical to a subexpression of x1 then while
12148 processing x1, x0 has already been processed. Thus we
12149 are done with x. */
12150 if (ARITHMETIC_P (x1)
12151 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
12152 break;
12153
12154 /* If x1 is identical to a subexpression of x0 then we
12155 still have to process the rest of x0. */
12156 if (ARITHMETIC_P (x0)
12157 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
12158 {
12159 update_table_tick (XEXP (x0, x1 == XEXP (x0, 0) ? 1 : 0));
12160 break;
12161 }
12162 }
12163
12164 update_table_tick (XEXP (x, i));
12165 }
12166 else if (fmt[i] == 'E')
12167 for (j = 0; j < XVECLEN (x, i); j++)
12168 update_table_tick (XVECEXP (x, i, j));
12169 }
12170
12171 /* Record that REG is set to VALUE in insn INSN. If VALUE is zero, we
12172 are saying that the register is clobbered and we no longer know its
12173 value. If INSN is zero, don't update reg_stat[].last_set; this is
12174 only permitted with VALUE also zero and is used to invalidate the
12175 register. */
12176
12177 static void
12178 record_value_for_reg (rtx reg, rtx insn, rtx value)
12179 {
12180 unsigned int regno = REGNO (reg);
12181 unsigned int endregno = END_REGNO (reg);
12182 unsigned int i;
12183 reg_stat_type *rsp;
12184
12185 /* If VALUE contains REG and we have a previous value for REG, substitute
12186 the previous value. */
12187 if (value && insn && reg_overlap_mentioned_p (reg, value))
12188 {
12189 rtx tem;
12190
12191 /* Set things up so get_last_value is allowed to see anything set up to
12192 our insn. */
12193 subst_low_luid = DF_INSN_LUID (insn);
12194 tem = get_last_value (reg);
12195
12196 /* If TEM is simply a binary operation with two CLOBBERs as operands,
12197 it isn't going to be useful and will take a lot of time to process,
12198 so just use the CLOBBER. */
12199
12200 if (tem)
12201 {
12202 if (ARITHMETIC_P (tem)
12203 && GET_CODE (XEXP (tem, 0)) == CLOBBER
12204 && GET_CODE (XEXP (tem, 1)) == CLOBBER)
12205 tem = XEXP (tem, 0);
12206 else if (count_occurrences (value, reg, 1) >= 2)
12207 {
12208 /* If there are two or more occurrences of REG in VALUE,
12209 prevent the value from growing too much. */
12210 if (count_rtxs (tem) > MAX_LAST_VALUE_RTL)
12211 tem = gen_rtx_CLOBBER (GET_MODE (tem), const0_rtx);
12212 }
12213
12214 value = replace_rtx (copy_rtx (value), reg, tem);
12215 }
12216 }
12217
12218 /* For each register modified, show we don't know its value, that
12219 we don't know about its bitwise content, that its value has been
12220 updated, and that we don't know the location of the death of the
12221 register. */
12222 for (i = regno; i < endregno; i++)
12223 {
12224 rsp = &reg_stat[i];
12225
12226 if (insn)
12227 rsp->last_set = insn;
12228
12229 rsp->last_set_value = 0;
12230 rsp->last_set_mode = VOIDmode;
12231 rsp->last_set_nonzero_bits = 0;
12232 rsp->last_set_sign_bit_copies = 0;
12233 rsp->last_death = 0;
12234 rsp->truncated_to_mode = VOIDmode;
12235 }
12236
12237 /* Mark registers that are being referenced in this value. */
12238 if (value)
12239 update_table_tick (value);
12240
12241 /* Now update the status of each register being set.
12242 If someone is using this register in this block, set this register
12243 to invalid since we will get confused between the two lives in this
12244 basic block. This makes using this register always invalid. In cse, we
12245 scan the table to invalidate all entries using this register, but this
12246 is too much work for us. */
12247
12248 for (i = regno; i < endregno; i++)
12249 {
12250 rsp = &reg_stat[i];
12251 rsp->last_set_label = label_tick;
12252 if (!insn
12253 || (value && rsp->last_set_table_tick >= label_tick_ebb_start))
12254 rsp->last_set_invalid = 1;
12255 else
12256 rsp->last_set_invalid = 0;
12257 }
12258
12259 /* The value being assigned might refer to X (like in "x++;"). In that
12260 case, we must replace it with (clobber (const_int 0)) to prevent
12261 infinite loops. */
12262 rsp = &reg_stat[regno];
12263 if (value && !get_last_value_validate (&value, insn, label_tick, 0))
12264 {
12265 value = copy_rtx (value);
12266 if (!get_last_value_validate (&value, insn, label_tick, 1))
12267 value = 0;
12268 }
12269
12270 /* For the main register being modified, update the value, the mode, the
12271 nonzero bits, and the number of sign bit copies. */
12272
12273 rsp->last_set_value = value;
12274
12275 if (value)
12276 {
12277 enum machine_mode mode = GET_MODE (reg);
12278 subst_low_luid = DF_INSN_LUID (insn);
12279 rsp->last_set_mode = mode;
12280 if (GET_MODE_CLASS (mode) == MODE_INT
12281 && HWI_COMPUTABLE_MODE_P (mode))
12282 mode = nonzero_bits_mode;
12283 rsp->last_set_nonzero_bits = nonzero_bits (value, mode);
12284 rsp->last_set_sign_bit_copies
12285 = num_sign_bit_copies (value, GET_MODE (reg));
12286 }
12287 }
12288
12289 /* Called via note_stores from record_dead_and_set_regs to handle one
12290 SET or CLOBBER in an insn. DATA is the instruction in which the
12291 set is occurring. */
12292
12293 static void
12294 record_dead_and_set_regs_1 (rtx dest, const_rtx setter, void *data)
12295 {
12296 rtx record_dead_insn = (rtx) data;
12297
12298 if (GET_CODE (dest) == SUBREG)
12299 dest = SUBREG_REG (dest);
12300
12301 if (!record_dead_insn)
12302 {
12303 if (REG_P (dest))
12304 record_value_for_reg (dest, NULL_RTX, NULL_RTX);
12305 return;
12306 }
12307
12308 if (REG_P (dest))
12309 {
12310 /* If we are setting the whole register, we know its value. Otherwise
12311 show that we don't know the value. We can handle SUBREG in
12312 some cases. */
12313 if (GET_CODE (setter) == SET && dest == SET_DEST (setter))
12314 record_value_for_reg (dest, record_dead_insn, SET_SRC (setter));
12315 else if (GET_CODE (setter) == SET
12316 && GET_CODE (SET_DEST (setter)) == SUBREG
12317 && SUBREG_REG (SET_DEST (setter)) == dest
12318 && GET_MODE_PRECISION (GET_MODE (dest)) <= BITS_PER_WORD
12319 && subreg_lowpart_p (SET_DEST (setter)))
12320 record_value_for_reg (dest, record_dead_insn,
12321 gen_lowpart (GET_MODE (dest),
12322 SET_SRC (setter)));
12323 else
12324 record_value_for_reg (dest, record_dead_insn, NULL_RTX);
12325 }
12326 else if (MEM_P (dest)
12327 /* Ignore pushes, they clobber nothing. */
12328 && ! push_operand (dest, GET_MODE (dest)))
12329 mem_last_set = DF_INSN_LUID (record_dead_insn);
12330 }
12331
12332 /* Update the records of when each REG was most recently set or killed
12333 for the things done by INSN. This is the last thing done in processing
12334 INSN in the combiner loop.
12335
12336 We update reg_stat[], in particular fields last_set, last_set_value,
12337 last_set_mode, last_set_nonzero_bits, last_set_sign_bit_copies,
12338 last_death, and also the similar information mem_last_set (which insn
12339 most recently modified memory) and last_call_luid (which insn was the
12340 most recent subroutine call). */
12341
12342 static void
12343 record_dead_and_set_regs (rtx insn)
12344 {
12345 rtx link;
12346 unsigned int i;
12347
12348 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
12349 {
12350 if (REG_NOTE_KIND (link) == REG_DEAD
12351 && REG_P (XEXP (link, 0)))
12352 {
12353 unsigned int regno = REGNO (XEXP (link, 0));
12354 unsigned int endregno = END_REGNO (XEXP (link, 0));
12355
12356 for (i = regno; i < endregno; i++)
12357 {
12358 reg_stat_type *rsp;
12359
12360 rsp = &reg_stat[i];
12361 rsp->last_death = insn;
12362 }
12363 }
12364 else if (REG_NOTE_KIND (link) == REG_INC)
12365 record_value_for_reg (XEXP (link, 0), insn, NULL_RTX);
12366 }
12367
12368 if (CALL_P (insn))
12369 {
12370 hard_reg_set_iterator hrsi;
12371 EXECUTE_IF_SET_IN_HARD_REG_SET (regs_invalidated_by_call, 0, i, hrsi)
12372 {
12373 reg_stat_type *rsp;
12374
12375 rsp = &reg_stat[i];
12376 rsp->last_set_invalid = 1;
12377 rsp->last_set = insn;
12378 rsp->last_set_value = 0;
12379 rsp->last_set_mode = VOIDmode;
12380 rsp->last_set_nonzero_bits = 0;
12381 rsp->last_set_sign_bit_copies = 0;
12382 rsp->last_death = 0;
12383 rsp->truncated_to_mode = VOIDmode;
12384 }
12385
12386 last_call_luid = mem_last_set = DF_INSN_LUID (insn);
12387
12388 /* We can't combine into a call pattern. Remember, though, that
12389 the return value register is set at this LUID. We could
12390 still replace a register with the return value from the
12391 wrong subroutine call! */
12392 note_stores (PATTERN (insn), record_dead_and_set_regs_1, NULL_RTX);
12393 }
12394 else
12395 note_stores (PATTERN (insn), record_dead_and_set_regs_1, insn);
12396 }
12397
12398 /* If a SUBREG has the promoted bit set, it is in fact a property of the
12399 register present in the SUBREG, so for each such SUBREG go back and
12400 adjust nonzero and sign bit information of the registers that are
12401 known to have some zero/sign bits set.
12402
12403 This is needed because when combine blows the SUBREGs away, the
12404 information on zero/sign bits is lost and further combines can be
12405 missed because of that. */
12406
12407 static void
12408 record_promoted_value (rtx insn, rtx subreg)
12409 {
12410 struct insn_link *links;
12411 rtx set;
12412 unsigned int regno = REGNO (SUBREG_REG (subreg));
12413 enum machine_mode mode = GET_MODE (subreg);
12414
12415 if (GET_MODE_PRECISION (mode) > HOST_BITS_PER_WIDE_INT)
12416 return;
12417
12418 for (links = LOG_LINKS (insn); links;)
12419 {
12420 reg_stat_type *rsp;
12421
12422 insn = links->insn;
12423 set = single_set (insn);
12424
12425 if (! set || !REG_P (SET_DEST (set))
12426 || REGNO (SET_DEST (set)) != regno
12427 || GET_MODE (SET_DEST (set)) != GET_MODE (SUBREG_REG (subreg)))
12428 {
12429 links = links->next;
12430 continue;
12431 }
12432
12433 rsp = &reg_stat[regno];
12434 if (rsp->last_set == insn)
12435 {
12436 if (SUBREG_PROMOTED_UNSIGNED_P (subreg) > 0)
12437 rsp->last_set_nonzero_bits &= GET_MODE_MASK (mode);
12438 }
12439
12440 if (REG_P (SET_SRC (set)))
12441 {
12442 regno = REGNO (SET_SRC (set));
12443 links = LOG_LINKS (insn);
12444 }
12445 else
12446 break;
12447 }
12448 }
12449
12450 /* Check if X, a register, is known to contain a value already
12451 truncated to MODE. In this case we can use a subreg to refer to
12452 the truncated value even though in the generic case we would need
12453 an explicit truncation. */
12454
12455 static bool
12456 reg_truncated_to_mode (enum machine_mode mode, const_rtx x)
12457 {
12458 reg_stat_type *rsp = &reg_stat[REGNO (x)];
12459 enum machine_mode truncated = rsp->truncated_to_mode;
12460
12461 if (truncated == 0
12462 || rsp->truncation_label < label_tick_ebb_start)
12463 return false;
12464 if (GET_MODE_SIZE (truncated) <= GET_MODE_SIZE (mode))
12465 return true;
12466 if (TRULY_NOOP_TRUNCATION_MODES_P (mode, truncated))
12467 return true;
12468 return false;
12469 }
12470
12471 /* Callback for for_each_rtx. If *P is a hard reg or a subreg record the mode
12472 that the register is accessed in. For non-TRULY_NOOP_TRUNCATION targets we
12473 might be able to turn a truncate into a subreg using this information.
12474 Return -1 if traversing *P is complete or 0 otherwise. */
12475
12476 static int
12477 record_truncated_value (rtx *p, void *data ATTRIBUTE_UNUSED)
12478 {
12479 rtx x = *p;
12480 enum machine_mode truncated_mode;
12481 reg_stat_type *rsp;
12482
12483 if (GET_CODE (x) == SUBREG && REG_P (SUBREG_REG (x)))
12484 {
12485 enum machine_mode original_mode = GET_MODE (SUBREG_REG (x));
12486 truncated_mode = GET_MODE (x);
12487
12488 if (GET_MODE_SIZE (original_mode) <= GET_MODE_SIZE (truncated_mode))
12489 return -1;
12490
12491 if (TRULY_NOOP_TRUNCATION_MODES_P (truncated_mode, original_mode))
12492 return -1;
12493
12494 x = SUBREG_REG (x);
12495 }
12496 /* ??? For hard-regs we now record everything. We might be able to
12497 optimize this using last_set_mode. */
12498 else if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
12499 truncated_mode = GET_MODE (x);
12500 else
12501 return 0;
12502
12503 rsp = &reg_stat[REGNO (x)];
12504 if (rsp->truncated_to_mode == 0
12505 || rsp->truncation_label < label_tick_ebb_start
12506 || (GET_MODE_SIZE (truncated_mode)
12507 < GET_MODE_SIZE (rsp->truncated_to_mode)))
12508 {
12509 rsp->truncated_to_mode = truncated_mode;
12510 rsp->truncation_label = label_tick;
12511 }
12512
12513 return -1;
12514 }
12515
12516 /* Callback for note_uses. Find hardregs and subregs of pseudos and
12517 the modes they are used in. This can help truning TRUNCATEs into
12518 SUBREGs. */
12519
12520 static void
12521 record_truncated_values (rtx *x, void *data ATTRIBUTE_UNUSED)
12522 {
12523 for_each_rtx (x, record_truncated_value, NULL);
12524 }
12525
12526 /* Scan X for promoted SUBREGs. For each one found,
12527 note what it implies to the registers used in it. */
12528
12529 static void
12530 check_promoted_subreg (rtx insn, rtx x)
12531 {
12532 if (GET_CODE (x) == SUBREG
12533 && SUBREG_PROMOTED_VAR_P (x)
12534 && REG_P (SUBREG_REG (x)))
12535 record_promoted_value (insn, x);
12536 else
12537 {
12538 const char *format = GET_RTX_FORMAT (GET_CODE (x));
12539 int i, j;
12540
12541 for (i = 0; i < GET_RTX_LENGTH (GET_CODE (x)); i++)
12542 switch (format[i])
12543 {
12544 case 'e':
12545 check_promoted_subreg (insn, XEXP (x, i));
12546 break;
12547 case 'V':
12548 case 'E':
12549 if (XVEC (x, i) != 0)
12550 for (j = 0; j < XVECLEN (x, i); j++)
12551 check_promoted_subreg (insn, XVECEXP (x, i, j));
12552 break;
12553 }
12554 }
12555 }
12556 \f
12557 /* Verify that all the registers and memory references mentioned in *LOC are
12558 still valid. *LOC was part of a value set in INSN when label_tick was
12559 equal to TICK. Return 0 if some are not. If REPLACE is nonzero, replace
12560 the invalid references with (clobber (const_int 0)) and return 1. This
12561 replacement is useful because we often can get useful information about
12562 the form of a value (e.g., if it was produced by a shift that always
12563 produces -1 or 0) even though we don't know exactly what registers it
12564 was produced from. */
12565
12566 static int
12567 get_last_value_validate (rtx *loc, rtx insn, int tick, int replace)
12568 {
12569 rtx x = *loc;
12570 const char *fmt = GET_RTX_FORMAT (GET_CODE (x));
12571 int len = GET_RTX_LENGTH (GET_CODE (x));
12572 int i, j;
12573
12574 if (REG_P (x))
12575 {
12576 unsigned int regno = REGNO (x);
12577 unsigned int endregno = END_REGNO (x);
12578 unsigned int j;
12579
12580 for (j = regno; j < endregno; j++)
12581 {
12582 reg_stat_type *rsp = &reg_stat[j];
12583 if (rsp->last_set_invalid
12584 /* If this is a pseudo-register that was only set once and not
12585 live at the beginning of the function, it is always valid. */
12586 || (! (regno >= FIRST_PSEUDO_REGISTER
12587 && REG_N_SETS (regno) == 1
12588 && (!REGNO_REG_SET_P
12589 (DF_LR_IN (ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb),
12590 regno)))
12591 && rsp->last_set_label > tick))
12592 {
12593 if (replace)
12594 *loc = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
12595 return replace;
12596 }
12597 }
12598
12599 return 1;
12600 }
12601 /* If this is a memory reference, make sure that there were no stores after
12602 it that might have clobbered the value. We don't have alias info, so we
12603 assume any store invalidates it. Moreover, we only have local UIDs, so
12604 we also assume that there were stores in the intervening basic blocks. */
12605 else if (MEM_P (x) && !MEM_READONLY_P (x)
12606 && (tick != label_tick || DF_INSN_LUID (insn) <= mem_last_set))
12607 {
12608 if (replace)
12609 *loc = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
12610 return replace;
12611 }
12612
12613 for (i = 0; i < len; i++)
12614 {
12615 if (fmt[i] == 'e')
12616 {
12617 /* Check for identical subexpressions. If x contains
12618 identical subexpression we only have to traverse one of
12619 them. */
12620 if (i == 1 && ARITHMETIC_P (x))
12621 {
12622 /* Note that at this point x0 has already been checked
12623 and found valid. */
12624 rtx x0 = XEXP (x, 0);
12625 rtx x1 = XEXP (x, 1);
12626
12627 /* If x0 and x1 are identical then x is also valid. */
12628 if (x0 == x1)
12629 return 1;
12630
12631 /* If x1 is identical to a subexpression of x0 then
12632 while checking x0, x1 has already been checked. Thus
12633 it is valid and so as x. */
12634 if (ARITHMETIC_P (x0)
12635 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
12636 return 1;
12637
12638 /* If x0 is identical to a subexpression of x1 then x is
12639 valid iff the rest of x1 is valid. */
12640 if (ARITHMETIC_P (x1)
12641 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
12642 return
12643 get_last_value_validate (&XEXP (x1,
12644 x0 == XEXP (x1, 0) ? 1 : 0),
12645 insn, tick, replace);
12646 }
12647
12648 if (get_last_value_validate (&XEXP (x, i), insn, tick,
12649 replace) == 0)
12650 return 0;
12651 }
12652 else if (fmt[i] == 'E')
12653 for (j = 0; j < XVECLEN (x, i); j++)
12654 if (get_last_value_validate (&XVECEXP (x, i, j),
12655 insn, tick, replace) == 0)
12656 return 0;
12657 }
12658
12659 /* If we haven't found a reason for it to be invalid, it is valid. */
12660 return 1;
12661 }
12662
12663 /* Get the last value assigned to X, if known. Some registers
12664 in the value may be replaced with (clobber (const_int 0)) if their value
12665 is known longer known reliably. */
12666
12667 static rtx
12668 get_last_value (const_rtx x)
12669 {
12670 unsigned int regno;
12671 rtx value;
12672 reg_stat_type *rsp;
12673
12674 /* If this is a non-paradoxical SUBREG, get the value of its operand and
12675 then convert it to the desired mode. If this is a paradoxical SUBREG,
12676 we cannot predict what values the "extra" bits might have. */
12677 if (GET_CODE (x) == SUBREG
12678 && subreg_lowpart_p (x)
12679 && !paradoxical_subreg_p (x)
12680 && (value = get_last_value (SUBREG_REG (x))) != 0)
12681 return gen_lowpart (GET_MODE (x), value);
12682
12683 if (!REG_P (x))
12684 return 0;
12685
12686 regno = REGNO (x);
12687 rsp = &reg_stat[regno];
12688 value = rsp->last_set_value;
12689
12690 /* If we don't have a value, or if it isn't for this basic block and
12691 it's either a hard register, set more than once, or it's a live
12692 at the beginning of the function, return 0.
12693
12694 Because if it's not live at the beginning of the function then the reg
12695 is always set before being used (is never used without being set).
12696 And, if it's set only once, and it's always set before use, then all
12697 uses must have the same last value, even if it's not from this basic
12698 block. */
12699
12700 if (value == 0
12701 || (rsp->last_set_label < label_tick_ebb_start
12702 && (regno < FIRST_PSEUDO_REGISTER
12703 || REG_N_SETS (regno) != 1
12704 || REGNO_REG_SET_P
12705 (DF_LR_IN (ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb), regno))))
12706 return 0;
12707
12708 /* If the value was set in a later insn than the ones we are processing,
12709 we can't use it even if the register was only set once. */
12710 if (rsp->last_set_label == label_tick
12711 && DF_INSN_LUID (rsp->last_set) >= subst_low_luid)
12712 return 0;
12713
12714 /* If the value has all its registers valid, return it. */
12715 if (get_last_value_validate (&value, rsp->last_set, rsp->last_set_label, 0))
12716 return value;
12717
12718 /* Otherwise, make a copy and replace any invalid register with
12719 (clobber (const_int 0)). If that fails for some reason, return 0. */
12720
12721 value = copy_rtx (value);
12722 if (get_last_value_validate (&value, rsp->last_set, rsp->last_set_label, 1))
12723 return value;
12724
12725 return 0;
12726 }
12727 \f
12728 /* Return nonzero if expression X refers to a REG or to memory
12729 that is set in an instruction more recent than FROM_LUID. */
12730
12731 static int
12732 use_crosses_set_p (const_rtx x, int from_luid)
12733 {
12734 const char *fmt;
12735 int i;
12736 enum rtx_code code = GET_CODE (x);
12737
12738 if (code == REG)
12739 {
12740 unsigned int regno = REGNO (x);
12741 unsigned endreg = END_REGNO (x);
12742
12743 #ifdef PUSH_ROUNDING
12744 /* Don't allow uses of the stack pointer to be moved,
12745 because we don't know whether the move crosses a push insn. */
12746 if (regno == STACK_POINTER_REGNUM && PUSH_ARGS)
12747 return 1;
12748 #endif
12749 for (; regno < endreg; regno++)
12750 {
12751 reg_stat_type *rsp = &reg_stat[regno];
12752 if (rsp->last_set
12753 && rsp->last_set_label == label_tick
12754 && DF_INSN_LUID (rsp->last_set) > from_luid)
12755 return 1;
12756 }
12757 return 0;
12758 }
12759
12760 if (code == MEM && mem_last_set > from_luid)
12761 return 1;
12762
12763 fmt = GET_RTX_FORMAT (code);
12764
12765 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
12766 {
12767 if (fmt[i] == 'E')
12768 {
12769 int j;
12770 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
12771 if (use_crosses_set_p (XVECEXP (x, i, j), from_luid))
12772 return 1;
12773 }
12774 else if (fmt[i] == 'e'
12775 && use_crosses_set_p (XEXP (x, i), from_luid))
12776 return 1;
12777 }
12778 return 0;
12779 }
12780 \f
12781 /* Define three variables used for communication between the following
12782 routines. */
12783
12784 static unsigned int reg_dead_regno, reg_dead_endregno;
12785 static int reg_dead_flag;
12786
12787 /* Function called via note_stores from reg_dead_at_p.
12788
12789 If DEST is within [reg_dead_regno, reg_dead_endregno), set
12790 reg_dead_flag to 1 if X is a CLOBBER and to -1 it is a SET. */
12791
12792 static void
12793 reg_dead_at_p_1 (rtx dest, const_rtx x, void *data ATTRIBUTE_UNUSED)
12794 {
12795 unsigned int regno, endregno;
12796
12797 if (!REG_P (dest))
12798 return;
12799
12800 regno = REGNO (dest);
12801 endregno = END_REGNO (dest);
12802 if (reg_dead_endregno > regno && reg_dead_regno < endregno)
12803 reg_dead_flag = (GET_CODE (x) == CLOBBER) ? 1 : -1;
12804 }
12805
12806 /* Return nonzero if REG is known to be dead at INSN.
12807
12808 We scan backwards from INSN. If we hit a REG_DEAD note or a CLOBBER
12809 referencing REG, it is dead. If we hit a SET referencing REG, it is
12810 live. Otherwise, see if it is live or dead at the start of the basic
12811 block we are in. Hard regs marked as being live in NEWPAT_USED_REGS
12812 must be assumed to be always live. */
12813
12814 static int
12815 reg_dead_at_p (rtx reg, rtx insn)
12816 {
12817 basic_block block;
12818 unsigned int i;
12819
12820 /* Set variables for reg_dead_at_p_1. */
12821 reg_dead_regno = REGNO (reg);
12822 reg_dead_endregno = END_REGNO (reg);
12823
12824 reg_dead_flag = 0;
12825
12826 /* Check that reg isn't mentioned in NEWPAT_USED_REGS. For fixed registers
12827 we allow the machine description to decide whether use-and-clobber
12828 patterns are OK. */
12829 if (reg_dead_regno < FIRST_PSEUDO_REGISTER)
12830 {
12831 for (i = reg_dead_regno; i < reg_dead_endregno; i++)
12832 if (!fixed_regs[i] && TEST_HARD_REG_BIT (newpat_used_regs, i))
12833 return 0;
12834 }
12835
12836 /* Scan backwards until we find a REG_DEAD note, SET, CLOBBER, or
12837 beginning of basic block. */
12838 block = BLOCK_FOR_INSN (insn);
12839 for (;;)
12840 {
12841 if (INSN_P (insn))
12842 {
12843 note_stores (PATTERN (insn), reg_dead_at_p_1, NULL);
12844 if (reg_dead_flag)
12845 return reg_dead_flag == 1 ? 1 : 0;
12846
12847 if (find_regno_note (insn, REG_DEAD, reg_dead_regno))
12848 return 1;
12849 }
12850
12851 if (insn == BB_HEAD (block))
12852 break;
12853
12854 insn = PREV_INSN (insn);
12855 }
12856
12857 /* Look at live-in sets for the basic block that we were in. */
12858 for (i = reg_dead_regno; i < reg_dead_endregno; i++)
12859 if (REGNO_REG_SET_P (df_get_live_in (block), i))
12860 return 0;
12861
12862 return 1;
12863 }
12864 \f
12865 /* Note hard registers in X that are used. */
12866
12867 static void
12868 mark_used_regs_combine (rtx x)
12869 {
12870 RTX_CODE code = GET_CODE (x);
12871 unsigned int regno;
12872 int i;
12873
12874 switch (code)
12875 {
12876 case LABEL_REF:
12877 case SYMBOL_REF:
12878 case CONST:
12879 CASE_CONST_ANY:
12880 case PC:
12881 case ADDR_VEC:
12882 case ADDR_DIFF_VEC:
12883 case ASM_INPUT:
12884 #ifdef HAVE_cc0
12885 /* CC0 must die in the insn after it is set, so we don't need to take
12886 special note of it here. */
12887 case CC0:
12888 #endif
12889 return;
12890
12891 case CLOBBER:
12892 /* If we are clobbering a MEM, mark any hard registers inside the
12893 address as used. */
12894 if (MEM_P (XEXP (x, 0)))
12895 mark_used_regs_combine (XEXP (XEXP (x, 0), 0));
12896 return;
12897
12898 case REG:
12899 regno = REGNO (x);
12900 /* A hard reg in a wide mode may really be multiple registers.
12901 If so, mark all of them just like the first. */
12902 if (regno < FIRST_PSEUDO_REGISTER)
12903 {
12904 /* None of this applies to the stack, frame or arg pointers. */
12905 if (regno == STACK_POINTER_REGNUM
12906 #if !HARD_FRAME_POINTER_IS_FRAME_POINTER
12907 || regno == HARD_FRAME_POINTER_REGNUM
12908 #endif
12909 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
12910 || (regno == ARG_POINTER_REGNUM && fixed_regs[regno])
12911 #endif
12912 || regno == FRAME_POINTER_REGNUM)
12913 return;
12914
12915 add_to_hard_reg_set (&newpat_used_regs, GET_MODE (x), regno);
12916 }
12917 return;
12918
12919 case SET:
12920 {
12921 /* If setting a MEM, or a SUBREG of a MEM, then note any hard regs in
12922 the address. */
12923 rtx testreg = SET_DEST (x);
12924
12925 while (GET_CODE (testreg) == SUBREG
12926 || GET_CODE (testreg) == ZERO_EXTRACT
12927 || GET_CODE (testreg) == STRICT_LOW_PART)
12928 testreg = XEXP (testreg, 0);
12929
12930 if (MEM_P (testreg))
12931 mark_used_regs_combine (XEXP (testreg, 0));
12932
12933 mark_used_regs_combine (SET_SRC (x));
12934 }
12935 return;
12936
12937 default:
12938 break;
12939 }
12940
12941 /* Recursively scan the operands of this expression. */
12942
12943 {
12944 const char *fmt = GET_RTX_FORMAT (code);
12945
12946 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
12947 {
12948 if (fmt[i] == 'e')
12949 mark_used_regs_combine (XEXP (x, i));
12950 else if (fmt[i] == 'E')
12951 {
12952 int j;
12953
12954 for (j = 0; j < XVECLEN (x, i); j++)
12955 mark_used_regs_combine (XVECEXP (x, i, j));
12956 }
12957 }
12958 }
12959 }
12960 \f
12961 /* Remove register number REGNO from the dead registers list of INSN.
12962
12963 Return the note used to record the death, if there was one. */
12964
12965 rtx
12966 remove_death (unsigned int regno, rtx insn)
12967 {
12968 rtx note = find_regno_note (insn, REG_DEAD, regno);
12969
12970 if (note)
12971 remove_note (insn, note);
12972
12973 return note;
12974 }
12975
12976 /* For each register (hardware or pseudo) used within expression X, if its
12977 death is in an instruction with luid between FROM_LUID (inclusive) and
12978 TO_INSN (exclusive), put a REG_DEAD note for that register in the
12979 list headed by PNOTES.
12980
12981 That said, don't move registers killed by maybe_kill_insn.
12982
12983 This is done when X is being merged by combination into TO_INSN. These
12984 notes will then be distributed as needed. */
12985
12986 static void
12987 move_deaths (rtx x, rtx maybe_kill_insn, int from_luid, rtx to_insn,
12988 rtx *pnotes)
12989 {
12990 const char *fmt;
12991 int len, i;
12992 enum rtx_code code = GET_CODE (x);
12993
12994 if (code == REG)
12995 {
12996 unsigned int regno = REGNO (x);
12997 rtx where_dead = reg_stat[regno].last_death;
12998
12999 /* Don't move the register if it gets killed in between from and to. */
13000 if (maybe_kill_insn && reg_set_p (x, maybe_kill_insn)
13001 && ! reg_referenced_p (x, maybe_kill_insn))
13002 return;
13003
13004 if (where_dead
13005 && BLOCK_FOR_INSN (where_dead) == BLOCK_FOR_INSN (to_insn)
13006 && DF_INSN_LUID (where_dead) >= from_luid
13007 && DF_INSN_LUID (where_dead) < DF_INSN_LUID (to_insn))
13008 {
13009 rtx note = remove_death (regno, where_dead);
13010
13011 /* It is possible for the call above to return 0. This can occur
13012 when last_death points to I2 or I1 that we combined with.
13013 In that case make a new note.
13014
13015 We must also check for the case where X is a hard register
13016 and NOTE is a death note for a range of hard registers
13017 including X. In that case, we must put REG_DEAD notes for
13018 the remaining registers in place of NOTE. */
13019
13020 if (note != 0 && regno < FIRST_PSEUDO_REGISTER
13021 && (GET_MODE_SIZE (GET_MODE (XEXP (note, 0)))
13022 > GET_MODE_SIZE (GET_MODE (x))))
13023 {
13024 unsigned int deadregno = REGNO (XEXP (note, 0));
13025 unsigned int deadend = END_HARD_REGNO (XEXP (note, 0));
13026 unsigned int ourend = END_HARD_REGNO (x);
13027 unsigned int i;
13028
13029 for (i = deadregno; i < deadend; i++)
13030 if (i < regno || i >= ourend)
13031 add_reg_note (where_dead, REG_DEAD, regno_reg_rtx[i]);
13032 }
13033
13034 /* If we didn't find any note, or if we found a REG_DEAD note that
13035 covers only part of the given reg, and we have a multi-reg hard
13036 register, then to be safe we must check for REG_DEAD notes
13037 for each register other than the first. They could have
13038 their own REG_DEAD notes lying around. */
13039 else if ((note == 0
13040 || (note != 0
13041 && (GET_MODE_SIZE (GET_MODE (XEXP (note, 0)))
13042 < GET_MODE_SIZE (GET_MODE (x)))))
13043 && regno < FIRST_PSEUDO_REGISTER
13044 && hard_regno_nregs[regno][GET_MODE (x)] > 1)
13045 {
13046 unsigned int ourend = END_HARD_REGNO (x);
13047 unsigned int i, offset;
13048 rtx oldnotes = 0;
13049
13050 if (note)
13051 offset = hard_regno_nregs[regno][GET_MODE (XEXP (note, 0))];
13052 else
13053 offset = 1;
13054
13055 for (i = regno + offset; i < ourend; i++)
13056 move_deaths (regno_reg_rtx[i],
13057 maybe_kill_insn, from_luid, to_insn, &oldnotes);
13058 }
13059
13060 if (note != 0 && GET_MODE (XEXP (note, 0)) == GET_MODE (x))
13061 {
13062 XEXP (note, 1) = *pnotes;
13063 *pnotes = note;
13064 }
13065 else
13066 *pnotes = alloc_reg_note (REG_DEAD, x, *pnotes);
13067 }
13068
13069 return;
13070 }
13071
13072 else if (GET_CODE (x) == SET)
13073 {
13074 rtx dest = SET_DEST (x);
13075
13076 move_deaths (SET_SRC (x), maybe_kill_insn, from_luid, to_insn, pnotes);
13077
13078 /* In the case of a ZERO_EXTRACT, a STRICT_LOW_PART, or a SUBREG
13079 that accesses one word of a multi-word item, some
13080 piece of everything register in the expression is used by
13081 this insn, so remove any old death. */
13082 /* ??? So why do we test for equality of the sizes? */
13083
13084 if (GET_CODE (dest) == ZERO_EXTRACT
13085 || GET_CODE (dest) == STRICT_LOW_PART
13086 || (GET_CODE (dest) == SUBREG
13087 && (((GET_MODE_SIZE (GET_MODE (dest))
13088 + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
13089 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest)))
13090 + UNITS_PER_WORD - 1) / UNITS_PER_WORD))))
13091 {
13092 move_deaths (dest, maybe_kill_insn, from_luid, to_insn, pnotes);
13093 return;
13094 }
13095
13096 /* If this is some other SUBREG, we know it replaces the entire
13097 value, so use that as the destination. */
13098 if (GET_CODE (dest) == SUBREG)
13099 dest = SUBREG_REG (dest);
13100
13101 /* If this is a MEM, adjust deaths of anything used in the address.
13102 For a REG (the only other possibility), the entire value is
13103 being replaced so the old value is not used in this insn. */
13104
13105 if (MEM_P (dest))
13106 move_deaths (XEXP (dest, 0), maybe_kill_insn, from_luid,
13107 to_insn, pnotes);
13108 return;
13109 }
13110
13111 else if (GET_CODE (x) == CLOBBER)
13112 return;
13113
13114 len = GET_RTX_LENGTH (code);
13115 fmt = GET_RTX_FORMAT (code);
13116
13117 for (i = 0; i < len; i++)
13118 {
13119 if (fmt[i] == 'E')
13120 {
13121 int j;
13122 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
13123 move_deaths (XVECEXP (x, i, j), maybe_kill_insn, from_luid,
13124 to_insn, pnotes);
13125 }
13126 else if (fmt[i] == 'e')
13127 move_deaths (XEXP (x, i), maybe_kill_insn, from_luid, to_insn, pnotes);
13128 }
13129 }
13130 \f
13131 /* Return 1 if X is the target of a bit-field assignment in BODY, the
13132 pattern of an insn. X must be a REG. */
13133
13134 static int
13135 reg_bitfield_target_p (rtx x, rtx body)
13136 {
13137 int i;
13138
13139 if (GET_CODE (body) == SET)
13140 {
13141 rtx dest = SET_DEST (body);
13142 rtx target;
13143 unsigned int regno, tregno, endregno, endtregno;
13144
13145 if (GET_CODE (dest) == ZERO_EXTRACT)
13146 target = XEXP (dest, 0);
13147 else if (GET_CODE (dest) == STRICT_LOW_PART)
13148 target = SUBREG_REG (XEXP (dest, 0));
13149 else
13150 return 0;
13151
13152 if (GET_CODE (target) == SUBREG)
13153 target = SUBREG_REG (target);
13154
13155 if (!REG_P (target))
13156 return 0;
13157
13158 tregno = REGNO (target), regno = REGNO (x);
13159 if (tregno >= FIRST_PSEUDO_REGISTER || regno >= FIRST_PSEUDO_REGISTER)
13160 return target == x;
13161
13162 endtregno = end_hard_regno (GET_MODE (target), tregno);
13163 endregno = end_hard_regno (GET_MODE (x), regno);
13164
13165 return endregno > tregno && regno < endtregno;
13166 }
13167
13168 else if (GET_CODE (body) == PARALLEL)
13169 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
13170 if (reg_bitfield_target_p (x, XVECEXP (body, 0, i)))
13171 return 1;
13172
13173 return 0;
13174 }
13175 \f
13176 /* Given a chain of REG_NOTES originally from FROM_INSN, try to place them
13177 as appropriate. I3 and I2 are the insns resulting from the combination
13178 insns including FROM (I2 may be zero).
13179
13180 ELIM_I2 and ELIM_I1 are either zero or registers that we know will
13181 not need REG_DEAD notes because they are being substituted for. This
13182 saves searching in the most common cases.
13183
13184 Each note in the list is either ignored or placed on some insns, depending
13185 on the type of note. */
13186
13187 static void
13188 distribute_notes (rtx notes, rtx from_insn, rtx i3, rtx i2, rtx elim_i2,
13189 rtx elim_i1, rtx elim_i0)
13190 {
13191 rtx note, next_note;
13192 rtx tem;
13193
13194 for (note = notes; note; note = next_note)
13195 {
13196 rtx place = 0, place2 = 0;
13197
13198 next_note = XEXP (note, 1);
13199 switch (REG_NOTE_KIND (note))
13200 {
13201 case REG_BR_PROB:
13202 case REG_BR_PRED:
13203 /* Doesn't matter much where we put this, as long as it's somewhere.
13204 It is preferable to keep these notes on branches, which is most
13205 likely to be i3. */
13206 place = i3;
13207 break;
13208
13209 case REG_NON_LOCAL_GOTO:
13210 if (JUMP_P (i3))
13211 place = i3;
13212 else
13213 {
13214 gcc_assert (i2 && JUMP_P (i2));
13215 place = i2;
13216 }
13217 break;
13218
13219 case REG_EH_REGION:
13220 /* These notes must remain with the call or trapping instruction. */
13221 if (CALL_P (i3))
13222 place = i3;
13223 else if (i2 && CALL_P (i2))
13224 place = i2;
13225 else
13226 {
13227 gcc_assert (cfun->can_throw_non_call_exceptions);
13228 if (may_trap_p (i3))
13229 place = i3;
13230 else if (i2 && may_trap_p (i2))
13231 place = i2;
13232 /* ??? Otherwise assume we've combined things such that we
13233 can now prove that the instructions can't trap. Drop the
13234 note in this case. */
13235 }
13236 break;
13237
13238 case REG_ARGS_SIZE:
13239 /* ??? How to distribute between i3-i1. Assume i3 contains the
13240 entire adjustment. Assert i3 contains at least some adjust. */
13241 if (!noop_move_p (i3))
13242 {
13243 int old_size, args_size = INTVAL (XEXP (note, 0));
13244 /* fixup_args_size_notes looks at REG_NORETURN note,
13245 so ensure the note is placed there first. */
13246 if (CALL_P (i3))
13247 {
13248 rtx *np;
13249 for (np = &next_note; *np; np = &XEXP (*np, 1))
13250 if (REG_NOTE_KIND (*np) == REG_NORETURN)
13251 {
13252 rtx n = *np;
13253 *np = XEXP (n, 1);
13254 XEXP (n, 1) = REG_NOTES (i3);
13255 REG_NOTES (i3) = n;
13256 break;
13257 }
13258 }
13259 old_size = fixup_args_size_notes (PREV_INSN (i3), i3, args_size);
13260 /* emit_call_1 adds for !ACCUMULATE_OUTGOING_ARGS
13261 REG_ARGS_SIZE note to all noreturn calls, allow that here. */
13262 gcc_assert (old_size != args_size
13263 || (CALL_P (i3)
13264 && !ACCUMULATE_OUTGOING_ARGS
13265 && find_reg_note (i3, REG_NORETURN, NULL_RTX)));
13266 }
13267 break;
13268
13269 case REG_NORETURN:
13270 case REG_SETJMP:
13271 case REG_TM:
13272 /* These notes must remain with the call. It should not be
13273 possible for both I2 and I3 to be a call. */
13274 if (CALL_P (i3))
13275 place = i3;
13276 else
13277 {
13278 gcc_assert (i2 && CALL_P (i2));
13279 place = i2;
13280 }
13281 break;
13282
13283 case REG_UNUSED:
13284 /* Any clobbers for i3 may still exist, and so we must process
13285 REG_UNUSED notes from that insn.
13286
13287 Any clobbers from i2 or i1 can only exist if they were added by
13288 recog_for_combine. In that case, recog_for_combine created the
13289 necessary REG_UNUSED notes. Trying to keep any original
13290 REG_UNUSED notes from these insns can cause incorrect output
13291 if it is for the same register as the original i3 dest.
13292 In that case, we will notice that the register is set in i3,
13293 and then add a REG_UNUSED note for the destination of i3, which
13294 is wrong. However, it is possible to have REG_UNUSED notes from
13295 i2 or i1 for register which were both used and clobbered, so
13296 we keep notes from i2 or i1 if they will turn into REG_DEAD
13297 notes. */
13298
13299 /* If this register is set or clobbered in I3, put the note there
13300 unless there is one already. */
13301 if (reg_set_p (XEXP (note, 0), PATTERN (i3)))
13302 {
13303 if (from_insn != i3)
13304 break;
13305
13306 if (! (REG_P (XEXP (note, 0))
13307 ? find_regno_note (i3, REG_UNUSED, REGNO (XEXP (note, 0)))
13308 : find_reg_note (i3, REG_UNUSED, XEXP (note, 0))))
13309 place = i3;
13310 }
13311 /* Otherwise, if this register is used by I3, then this register
13312 now dies here, so we must put a REG_DEAD note here unless there
13313 is one already. */
13314 else if (reg_referenced_p (XEXP (note, 0), PATTERN (i3))
13315 && ! (REG_P (XEXP (note, 0))
13316 ? find_regno_note (i3, REG_DEAD,
13317 REGNO (XEXP (note, 0)))
13318 : find_reg_note (i3, REG_DEAD, XEXP (note, 0))))
13319 {
13320 PUT_REG_NOTE_KIND (note, REG_DEAD);
13321 place = i3;
13322 }
13323 break;
13324
13325 case REG_EQUAL:
13326 case REG_EQUIV:
13327 case REG_NOALIAS:
13328 /* These notes say something about results of an insn. We can
13329 only support them if they used to be on I3 in which case they
13330 remain on I3. Otherwise they are ignored.
13331
13332 If the note refers to an expression that is not a constant, we
13333 must also ignore the note since we cannot tell whether the
13334 equivalence is still true. It might be possible to do
13335 slightly better than this (we only have a problem if I2DEST
13336 or I1DEST is present in the expression), but it doesn't
13337 seem worth the trouble. */
13338
13339 if (from_insn == i3
13340 && (XEXP (note, 0) == 0 || CONSTANT_P (XEXP (note, 0))))
13341 place = i3;
13342 break;
13343
13344 case REG_INC:
13345 /* These notes say something about how a register is used. They must
13346 be present on any use of the register in I2 or I3. */
13347 if (reg_mentioned_p (XEXP (note, 0), PATTERN (i3)))
13348 place = i3;
13349
13350 if (i2 && reg_mentioned_p (XEXP (note, 0), PATTERN (i2)))
13351 {
13352 if (place)
13353 place2 = i2;
13354 else
13355 place = i2;
13356 }
13357 break;
13358
13359 case REG_LABEL_TARGET:
13360 case REG_LABEL_OPERAND:
13361 /* This can show up in several ways -- either directly in the
13362 pattern, or hidden off in the constant pool with (or without?)
13363 a REG_EQUAL note. */
13364 /* ??? Ignore the without-reg_equal-note problem for now. */
13365 if (reg_mentioned_p (XEXP (note, 0), PATTERN (i3))
13366 || ((tem = find_reg_note (i3, REG_EQUAL, NULL_RTX))
13367 && GET_CODE (XEXP (tem, 0)) == LABEL_REF
13368 && XEXP (XEXP (tem, 0), 0) == XEXP (note, 0)))
13369 place = i3;
13370
13371 if (i2
13372 && (reg_mentioned_p (XEXP (note, 0), PATTERN (i2))
13373 || ((tem = find_reg_note (i2, REG_EQUAL, NULL_RTX))
13374 && GET_CODE (XEXP (tem, 0)) == LABEL_REF
13375 && XEXP (XEXP (tem, 0), 0) == XEXP (note, 0))))
13376 {
13377 if (place)
13378 place2 = i2;
13379 else
13380 place = i2;
13381 }
13382
13383 /* For REG_LABEL_TARGET on a JUMP_P, we prefer to put the note
13384 as a JUMP_LABEL or decrement LABEL_NUSES if it's already
13385 there. */
13386 if (place && JUMP_P (place)
13387 && REG_NOTE_KIND (note) == REG_LABEL_TARGET
13388 && (JUMP_LABEL (place) == NULL
13389 || JUMP_LABEL (place) == XEXP (note, 0)))
13390 {
13391 rtx label = JUMP_LABEL (place);
13392
13393 if (!label)
13394 JUMP_LABEL (place) = XEXP (note, 0);
13395 else if (LABEL_P (label))
13396 LABEL_NUSES (label)--;
13397 }
13398
13399 if (place2 && JUMP_P (place2)
13400 && REG_NOTE_KIND (note) == REG_LABEL_TARGET
13401 && (JUMP_LABEL (place2) == NULL
13402 || JUMP_LABEL (place2) == XEXP (note, 0)))
13403 {
13404 rtx label = JUMP_LABEL (place2);
13405
13406 if (!label)
13407 JUMP_LABEL (place2) = XEXP (note, 0);
13408 else if (LABEL_P (label))
13409 LABEL_NUSES (label)--;
13410 place2 = 0;
13411 }
13412 break;
13413
13414 case REG_NONNEG:
13415 /* This note says something about the value of a register prior
13416 to the execution of an insn. It is too much trouble to see
13417 if the note is still correct in all situations. It is better
13418 to simply delete it. */
13419 break;
13420
13421 case REG_DEAD:
13422 /* If we replaced the right hand side of FROM_INSN with a
13423 REG_EQUAL note, the original use of the dying register
13424 will not have been combined into I3 and I2. In such cases,
13425 FROM_INSN is guaranteed to be the first of the combined
13426 instructions, so we simply need to search back before
13427 FROM_INSN for the previous use or set of this register,
13428 then alter the notes there appropriately.
13429
13430 If the register is used as an input in I3, it dies there.
13431 Similarly for I2, if it is nonzero and adjacent to I3.
13432
13433 If the register is not used as an input in either I3 or I2
13434 and it is not one of the registers we were supposed to eliminate,
13435 there are two possibilities. We might have a non-adjacent I2
13436 or we might have somehow eliminated an additional register
13437 from a computation. For example, we might have had A & B where
13438 we discover that B will always be zero. In this case we will
13439 eliminate the reference to A.
13440
13441 In both cases, we must search to see if we can find a previous
13442 use of A and put the death note there. */
13443
13444 if (from_insn
13445 && from_insn == i2mod
13446 && !reg_overlap_mentioned_p (XEXP (note, 0), i2mod_new_rhs))
13447 tem = from_insn;
13448 else
13449 {
13450 if (from_insn
13451 && CALL_P (from_insn)
13452 && find_reg_fusage (from_insn, USE, XEXP (note, 0)))
13453 place = from_insn;
13454 else if (reg_referenced_p (XEXP (note, 0), PATTERN (i3)))
13455 place = i3;
13456 else if (i2 != 0 && next_nonnote_nondebug_insn (i2) == i3
13457 && reg_referenced_p (XEXP (note, 0), PATTERN (i2)))
13458 place = i2;
13459 else if ((rtx_equal_p (XEXP (note, 0), elim_i2)
13460 && !(i2mod
13461 && reg_overlap_mentioned_p (XEXP (note, 0),
13462 i2mod_old_rhs)))
13463 || rtx_equal_p (XEXP (note, 0), elim_i1)
13464 || rtx_equal_p (XEXP (note, 0), elim_i0))
13465 break;
13466 tem = i3;
13467 }
13468
13469 if (place == 0)
13470 {
13471 basic_block bb = this_basic_block;
13472
13473 for (tem = PREV_INSN (tem); place == 0; tem = PREV_INSN (tem))
13474 {
13475 if (!NONDEBUG_INSN_P (tem))
13476 {
13477 if (tem == BB_HEAD (bb))
13478 break;
13479 continue;
13480 }
13481
13482 /* If the register is being set at TEM, see if that is all
13483 TEM is doing. If so, delete TEM. Otherwise, make this
13484 into a REG_UNUSED note instead. Don't delete sets to
13485 global register vars. */
13486 if ((REGNO (XEXP (note, 0)) >= FIRST_PSEUDO_REGISTER
13487 || !global_regs[REGNO (XEXP (note, 0))])
13488 && reg_set_p (XEXP (note, 0), PATTERN (tem)))
13489 {
13490 rtx set = single_set (tem);
13491 rtx inner_dest = 0;
13492 #ifdef HAVE_cc0
13493 rtx cc0_setter = NULL_RTX;
13494 #endif
13495
13496 if (set != 0)
13497 for (inner_dest = SET_DEST (set);
13498 (GET_CODE (inner_dest) == STRICT_LOW_PART
13499 || GET_CODE (inner_dest) == SUBREG
13500 || GET_CODE (inner_dest) == ZERO_EXTRACT);
13501 inner_dest = XEXP (inner_dest, 0))
13502 ;
13503
13504 /* Verify that it was the set, and not a clobber that
13505 modified the register.
13506
13507 CC0 targets must be careful to maintain setter/user
13508 pairs. If we cannot delete the setter due to side
13509 effects, mark the user with an UNUSED note instead
13510 of deleting it. */
13511
13512 if (set != 0 && ! side_effects_p (SET_SRC (set))
13513 && rtx_equal_p (XEXP (note, 0), inner_dest)
13514 #ifdef HAVE_cc0
13515 && (! reg_mentioned_p (cc0_rtx, SET_SRC (set))
13516 || ((cc0_setter = prev_cc0_setter (tem)) != NULL
13517 && sets_cc0_p (PATTERN (cc0_setter)) > 0))
13518 #endif
13519 )
13520 {
13521 /* Move the notes and links of TEM elsewhere.
13522 This might delete other dead insns recursively.
13523 First set the pattern to something that won't use
13524 any register. */
13525 rtx old_notes = REG_NOTES (tem);
13526
13527 PATTERN (tem) = pc_rtx;
13528 REG_NOTES (tem) = NULL;
13529
13530 distribute_notes (old_notes, tem, tem, NULL_RTX,
13531 NULL_RTX, NULL_RTX, NULL_RTX);
13532 distribute_links (LOG_LINKS (tem));
13533
13534 SET_INSN_DELETED (tem);
13535 if (tem == i2)
13536 i2 = NULL_RTX;
13537
13538 #ifdef HAVE_cc0
13539 /* Delete the setter too. */
13540 if (cc0_setter)
13541 {
13542 PATTERN (cc0_setter) = pc_rtx;
13543 old_notes = REG_NOTES (cc0_setter);
13544 REG_NOTES (cc0_setter) = NULL;
13545
13546 distribute_notes (old_notes, cc0_setter,
13547 cc0_setter, NULL_RTX,
13548 NULL_RTX, NULL_RTX, NULL_RTX);
13549 distribute_links (LOG_LINKS (cc0_setter));
13550
13551 SET_INSN_DELETED (cc0_setter);
13552 if (cc0_setter == i2)
13553 i2 = NULL_RTX;
13554 }
13555 #endif
13556 }
13557 else
13558 {
13559 PUT_REG_NOTE_KIND (note, REG_UNUSED);
13560
13561 /* If there isn't already a REG_UNUSED note, put one
13562 here. Do not place a REG_DEAD note, even if
13563 the register is also used here; that would not
13564 match the algorithm used in lifetime analysis
13565 and can cause the consistency check in the
13566 scheduler to fail. */
13567 if (! find_regno_note (tem, REG_UNUSED,
13568 REGNO (XEXP (note, 0))))
13569 place = tem;
13570 break;
13571 }
13572 }
13573 else if (reg_referenced_p (XEXP (note, 0), PATTERN (tem))
13574 || (CALL_P (tem)
13575 && find_reg_fusage (tem, USE, XEXP (note, 0))))
13576 {
13577 place = tem;
13578
13579 /* If we are doing a 3->2 combination, and we have a
13580 register which formerly died in i3 and was not used
13581 by i2, which now no longer dies in i3 and is used in
13582 i2 but does not die in i2, and place is between i2
13583 and i3, then we may need to move a link from place to
13584 i2. */
13585 if (i2 && DF_INSN_LUID (place) > DF_INSN_LUID (i2)
13586 && from_insn
13587 && DF_INSN_LUID (from_insn) > DF_INSN_LUID (i2)
13588 && reg_referenced_p (XEXP (note, 0), PATTERN (i2)))
13589 {
13590 struct insn_link *links = LOG_LINKS (place);
13591 LOG_LINKS (place) = NULL;
13592 distribute_links (links);
13593 }
13594 break;
13595 }
13596
13597 if (tem == BB_HEAD (bb))
13598 break;
13599 }
13600
13601 }
13602
13603 /* If the register is set or already dead at PLACE, we needn't do
13604 anything with this note if it is still a REG_DEAD note.
13605 We check here if it is set at all, not if is it totally replaced,
13606 which is what `dead_or_set_p' checks, so also check for it being
13607 set partially. */
13608
13609 if (place && REG_NOTE_KIND (note) == REG_DEAD)
13610 {
13611 unsigned int regno = REGNO (XEXP (note, 0));
13612 reg_stat_type *rsp = &reg_stat[regno];
13613
13614 if (dead_or_set_p (place, XEXP (note, 0))
13615 || reg_bitfield_target_p (XEXP (note, 0), PATTERN (place)))
13616 {
13617 /* Unless the register previously died in PLACE, clear
13618 last_death. [I no longer understand why this is
13619 being done.] */
13620 if (rsp->last_death != place)
13621 rsp->last_death = 0;
13622 place = 0;
13623 }
13624 else
13625 rsp->last_death = place;
13626
13627 /* If this is a death note for a hard reg that is occupying
13628 multiple registers, ensure that we are still using all
13629 parts of the object. If we find a piece of the object
13630 that is unused, we must arrange for an appropriate REG_DEAD
13631 note to be added for it. However, we can't just emit a USE
13632 and tag the note to it, since the register might actually
13633 be dead; so we recourse, and the recursive call then finds
13634 the previous insn that used this register. */
13635
13636 if (place && regno < FIRST_PSEUDO_REGISTER
13637 && hard_regno_nregs[regno][GET_MODE (XEXP (note, 0))] > 1)
13638 {
13639 unsigned int endregno = END_HARD_REGNO (XEXP (note, 0));
13640 bool all_used = true;
13641 unsigned int i;
13642
13643 for (i = regno; i < endregno; i++)
13644 if ((! refers_to_regno_p (i, i + 1, PATTERN (place), 0)
13645 && ! find_regno_fusage (place, USE, i))
13646 || dead_or_set_regno_p (place, i))
13647 {
13648 all_used = false;
13649 break;
13650 }
13651
13652 if (! all_used)
13653 {
13654 /* Put only REG_DEAD notes for pieces that are
13655 not already dead or set. */
13656
13657 for (i = regno; i < endregno;
13658 i += hard_regno_nregs[i][reg_raw_mode[i]])
13659 {
13660 rtx piece = regno_reg_rtx[i];
13661 basic_block bb = this_basic_block;
13662
13663 if (! dead_or_set_p (place, piece)
13664 && ! reg_bitfield_target_p (piece,
13665 PATTERN (place)))
13666 {
13667 rtx new_note = alloc_reg_note (REG_DEAD, piece,
13668 NULL_RTX);
13669
13670 distribute_notes (new_note, place, place,
13671 NULL_RTX, NULL_RTX, NULL_RTX,
13672 NULL_RTX);
13673 }
13674 else if (! refers_to_regno_p (i, i + 1,
13675 PATTERN (place), 0)
13676 && ! find_regno_fusage (place, USE, i))
13677 for (tem = PREV_INSN (place); ;
13678 tem = PREV_INSN (tem))
13679 {
13680 if (!NONDEBUG_INSN_P (tem))
13681 {
13682 if (tem == BB_HEAD (bb))
13683 break;
13684 continue;
13685 }
13686 if (dead_or_set_p (tem, piece)
13687 || reg_bitfield_target_p (piece,
13688 PATTERN (tem)))
13689 {
13690 add_reg_note (tem, REG_UNUSED, piece);
13691 break;
13692 }
13693 }
13694 }
13695
13696 place = 0;
13697 }
13698 }
13699 }
13700 break;
13701
13702 default:
13703 /* Any other notes should not be present at this point in the
13704 compilation. */
13705 gcc_unreachable ();
13706 }
13707
13708 if (place)
13709 {
13710 XEXP (note, 1) = REG_NOTES (place);
13711 REG_NOTES (place) = note;
13712 }
13713
13714 if (place2)
13715 add_shallow_copy_of_reg_note (place2, note);
13716 }
13717 }
13718 \f
13719 /* Similarly to above, distribute the LOG_LINKS that used to be present on
13720 I3, I2, and I1 to new locations. This is also called to add a link
13721 pointing at I3 when I3's destination is changed. */
13722
13723 static void
13724 distribute_links (struct insn_link *links)
13725 {
13726 struct insn_link *link, *next_link;
13727
13728 for (link = links; link; link = next_link)
13729 {
13730 rtx place = 0;
13731 rtx insn;
13732 rtx set, reg;
13733
13734 next_link = link->next;
13735
13736 /* If the insn that this link points to is a NOTE or isn't a single
13737 set, ignore it. In the latter case, it isn't clear what we
13738 can do other than ignore the link, since we can't tell which
13739 register it was for. Such links wouldn't be used by combine
13740 anyway.
13741
13742 It is not possible for the destination of the target of the link to
13743 have been changed by combine. The only potential of this is if we
13744 replace I3, I2, and I1 by I3 and I2. But in that case the
13745 destination of I2 also remains unchanged. */
13746
13747 if (NOTE_P (link->insn)
13748 || (set = single_set (link->insn)) == 0)
13749 continue;
13750
13751 reg = SET_DEST (set);
13752 while (GET_CODE (reg) == SUBREG || GET_CODE (reg) == ZERO_EXTRACT
13753 || GET_CODE (reg) == STRICT_LOW_PART)
13754 reg = XEXP (reg, 0);
13755
13756 /* A LOG_LINK is defined as being placed on the first insn that uses
13757 a register and points to the insn that sets the register. Start
13758 searching at the next insn after the target of the link and stop
13759 when we reach a set of the register or the end of the basic block.
13760
13761 Note that this correctly handles the link that used to point from
13762 I3 to I2. Also note that not much searching is typically done here
13763 since most links don't point very far away. */
13764
13765 for (insn = NEXT_INSN (link->insn);
13766 (insn && (this_basic_block->next_bb == EXIT_BLOCK_PTR_FOR_FN (cfun)
13767 || BB_HEAD (this_basic_block->next_bb) != insn));
13768 insn = NEXT_INSN (insn))
13769 if (DEBUG_INSN_P (insn))
13770 continue;
13771 else if (INSN_P (insn) && reg_overlap_mentioned_p (reg, PATTERN (insn)))
13772 {
13773 if (reg_referenced_p (reg, PATTERN (insn)))
13774 place = insn;
13775 break;
13776 }
13777 else if (CALL_P (insn)
13778 && find_reg_fusage (insn, USE, reg))
13779 {
13780 place = insn;
13781 break;
13782 }
13783 else if (INSN_P (insn) && reg_set_p (reg, insn))
13784 break;
13785
13786 /* If we found a place to put the link, place it there unless there
13787 is already a link to the same insn as LINK at that point. */
13788
13789 if (place)
13790 {
13791 struct insn_link *link2;
13792
13793 FOR_EACH_LOG_LINK (link2, place)
13794 if (link2->insn == link->insn)
13795 break;
13796
13797 if (link2 == NULL)
13798 {
13799 link->next = LOG_LINKS (place);
13800 LOG_LINKS (place) = link;
13801
13802 /* Set added_links_insn to the earliest insn we added a
13803 link to. */
13804 if (added_links_insn == 0
13805 || DF_INSN_LUID (added_links_insn) > DF_INSN_LUID (place))
13806 added_links_insn = place;
13807 }
13808 }
13809 }
13810 }
13811 \f
13812 /* Subroutine of unmentioned_reg_p and callback from for_each_rtx.
13813 Check whether the expression pointer to by LOC is a register or
13814 memory, and if so return 1 if it isn't mentioned in the rtx EXPR.
13815 Otherwise return zero. */
13816
13817 static int
13818 unmentioned_reg_p_1 (rtx *loc, void *expr)
13819 {
13820 rtx x = *loc;
13821
13822 if (x != NULL_RTX
13823 && (REG_P (x) || MEM_P (x))
13824 && ! reg_mentioned_p (x, (rtx) expr))
13825 return 1;
13826 return 0;
13827 }
13828
13829 /* Check for any register or memory mentioned in EQUIV that is not
13830 mentioned in EXPR. This is used to restrict EQUIV to "specializations"
13831 of EXPR where some registers may have been replaced by constants. */
13832
13833 static bool
13834 unmentioned_reg_p (rtx equiv, rtx expr)
13835 {
13836 return for_each_rtx (&equiv, unmentioned_reg_p_1, expr);
13837 }
13838 \f
13839 DEBUG_FUNCTION void
13840 dump_combine_stats (FILE *file)
13841 {
13842 fprintf
13843 (file,
13844 ";; Combiner statistics: %d attempts, %d substitutions (%d requiring new space),\n;; %d successes.\n\n",
13845 combine_attempts, combine_merges, combine_extras, combine_successes);
13846 }
13847
13848 void
13849 dump_combine_total_stats (FILE *file)
13850 {
13851 fprintf
13852 (file,
13853 "\n;; Combiner totals: %d attempts, %d substitutions (%d requiring new space),\n;; %d successes.\n",
13854 total_attempts, total_merges, total_extras, total_successes);
13855 }
13856 \f
13857 static bool
13858 gate_handle_combine (void)
13859 {
13860 return (optimize > 0);
13861 }
13862
13863 /* Try combining insns through substitution. */
13864 static unsigned int
13865 rest_of_handle_combine (void)
13866 {
13867 int rebuild_jump_labels_after_combine;
13868
13869 df_set_flags (DF_LR_RUN_DCE + DF_DEFER_INSN_RESCAN);
13870 df_note_add_problem ();
13871 df_analyze ();
13872
13873 regstat_init_n_sets_and_refs ();
13874
13875 rebuild_jump_labels_after_combine
13876 = combine_instructions (get_insns (), max_reg_num ());
13877
13878 /* Combining insns may have turned an indirect jump into a
13879 direct jump. Rebuild the JUMP_LABEL fields of jumping
13880 instructions. */
13881 if (rebuild_jump_labels_after_combine)
13882 {
13883 timevar_push (TV_JUMP);
13884 rebuild_jump_labels (get_insns ());
13885 cleanup_cfg (0);
13886 timevar_pop (TV_JUMP);
13887 }
13888
13889 regstat_free_n_sets_and_refs ();
13890 return 0;
13891 }
13892
13893 namespace {
13894
13895 const pass_data pass_data_combine =
13896 {
13897 RTL_PASS, /* type */
13898 "combine", /* name */
13899 OPTGROUP_NONE, /* optinfo_flags */
13900 true, /* has_gate */
13901 true, /* has_execute */
13902 TV_COMBINE, /* tv_id */
13903 PROP_cfglayout, /* properties_required */
13904 0, /* properties_provided */
13905 0, /* properties_destroyed */
13906 0, /* todo_flags_start */
13907 ( TODO_df_finish | TODO_verify_rtl_sharing ), /* todo_flags_finish */
13908 };
13909
13910 class pass_combine : public rtl_opt_pass
13911 {
13912 public:
13913 pass_combine (gcc::context *ctxt)
13914 : rtl_opt_pass (pass_data_combine, ctxt)
13915 {}
13916
13917 /* opt_pass methods: */
13918 bool gate () { return gate_handle_combine (); }
13919 unsigned int execute () { return rest_of_handle_combine (); }
13920
13921 }; // class pass_combine
13922
13923 } // anon namespace
13924
13925 rtl_opt_pass *
13926 make_pass_combine (gcc::context *ctxt)
13927 {
13928 return new pass_combine (ctxt);
13929 }