Don't crash declaring a function named "_".
[gcc.git] / gcc / combine.c
1 /* Optimize by combining instructions for GNU compiler.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010,
4 2011 Free Software Foundation, Inc.
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22 /* This module is essentially the "combiner" phase of the U. of Arizona
23 Portable Optimizer, but redone to work on our list-structured
24 representation for RTL instead of their string representation.
25
26 The LOG_LINKS of each insn identify the most recent assignment
27 to each REG used in the insn. It is a list of previous insns,
28 each of which contains a SET for a REG that is used in this insn
29 and not used or set in between. LOG_LINKs never cross basic blocks.
30 They were set up by the preceding pass (lifetime analysis).
31
32 We try to combine each pair of insns joined by a logical link.
33 We also try to combine triples of insns A, B and C when
34 C has a link back to B and B has a link back to A.
35
36 LOG_LINKS does not have links for use of the CC0. They don't
37 need to, because the insn that sets the CC0 is always immediately
38 before the insn that tests it. So we always regard a branch
39 insn as having a logical link to the preceding insn. The same is true
40 for an insn explicitly using CC0.
41
42 We check (with use_crosses_set_p) to avoid combining in such a way
43 as to move a computation to a place where its value would be different.
44
45 Combination is done by mathematically substituting the previous
46 insn(s) values for the regs they set into the expressions in
47 the later insns that refer to these regs. If the result is a valid insn
48 for our target machine, according to the machine description,
49 we install it, delete the earlier insns, and update the data flow
50 information (LOG_LINKS and REG_NOTES) for what we did.
51
52 There are a few exceptions where the dataflow information isn't
53 completely updated (however this is only a local issue since it is
54 regenerated before the next pass that uses it):
55
56 - reg_live_length is not updated
57 - reg_n_refs is not adjusted in the rare case when a register is
58 no longer required in a computation
59 - there are extremely rare cases (see distribute_notes) when a
60 REG_DEAD note is lost
61 - a LOG_LINKS entry that refers to an insn with multiple SETs may be
62 removed because there is no way to know which register it was
63 linking
64
65 To simplify substitution, we combine only when the earlier insn(s)
66 consist of only a single assignment. To simplify updating afterward,
67 we never combine when a subroutine call appears in the middle.
68
69 Since we do not represent assignments to CC0 explicitly except when that
70 is all an insn does, there is no LOG_LINKS entry in an insn that uses
71 the condition code for the insn that set the condition code.
72 Fortunately, these two insns must be consecutive.
73 Therefore, every JUMP_INSN is taken to have an implicit logical link
74 to the preceding insn. This is not quite right, since non-jumps can
75 also use the condition code; but in practice such insns would not
76 combine anyway. */
77
78 #include "config.h"
79 #include "system.h"
80 #include "coretypes.h"
81 #include "tm.h"
82 #include "rtl.h"
83 #include "tree.h"
84 #include "tm_p.h"
85 #include "flags.h"
86 #include "regs.h"
87 #include "hard-reg-set.h"
88 #include "basic-block.h"
89 #include "insn-config.h"
90 #include "function.h"
91 /* Include expr.h after insn-config.h so we get HAVE_conditional_move. */
92 #include "expr.h"
93 #include "insn-attr.h"
94 #include "recog.h"
95 #include "diagnostic-core.h"
96 #include "target.h"
97 #include "optabs.h"
98 #include "insn-codes.h"
99 #include "rtlhooks-def.h"
100 /* Include output.h for dump_file. */
101 #include "output.h"
102 #include "params.h"
103 #include "timevar.h"
104 #include "tree-pass.h"
105 #include "df.h"
106 #include "cgraph.h"
107
108 /* Number of attempts to combine instructions in this function. */
109
110 static int combine_attempts;
111
112 /* Number of attempts that got as far as substitution in this function. */
113
114 static int combine_merges;
115
116 /* Number of instructions combined with added SETs in this function. */
117
118 static int combine_extras;
119
120 /* Number of instructions combined in this function. */
121
122 static int combine_successes;
123
124 /* Totals over entire compilation. */
125
126 static int total_attempts, total_merges, total_extras, total_successes;
127
128 /* combine_instructions may try to replace the right hand side of the
129 second instruction with the value of an associated REG_EQUAL note
130 before throwing it at try_combine. That is problematic when there
131 is a REG_DEAD note for a register used in the old right hand side
132 and can cause distribute_notes to do wrong things. This is the
133 second instruction if it has been so modified, null otherwise. */
134
135 static rtx i2mod;
136
137 /* When I2MOD is nonnull, this is a copy of the old right hand side. */
138
139 static rtx i2mod_old_rhs;
140
141 /* When I2MOD is nonnull, this is a copy of the new right hand side. */
142
143 static rtx i2mod_new_rhs;
144 \f
145 typedef struct reg_stat_struct {
146 /* Record last point of death of (hard or pseudo) register n. */
147 rtx last_death;
148
149 /* Record last point of modification of (hard or pseudo) register n. */
150 rtx last_set;
151
152 /* The next group of fields allows the recording of the last value assigned
153 to (hard or pseudo) register n. We use this information to see if an
154 operation being processed is redundant given a prior operation performed
155 on the register. For example, an `and' with a constant is redundant if
156 all the zero bits are already known to be turned off.
157
158 We use an approach similar to that used by cse, but change it in the
159 following ways:
160
161 (1) We do not want to reinitialize at each label.
162 (2) It is useful, but not critical, to know the actual value assigned
163 to a register. Often just its form is helpful.
164
165 Therefore, we maintain the following fields:
166
167 last_set_value the last value assigned
168 last_set_label records the value of label_tick when the
169 register was assigned
170 last_set_table_tick records the value of label_tick when a
171 value using the register is assigned
172 last_set_invalid set to nonzero when it is not valid
173 to use the value of this register in some
174 register's value
175
176 To understand the usage of these tables, it is important to understand
177 the distinction between the value in last_set_value being valid and
178 the register being validly contained in some other expression in the
179 table.
180
181 (The next two parameters are out of date).
182
183 reg_stat[i].last_set_value is valid if it is nonzero, and either
184 reg_n_sets[i] is 1 or reg_stat[i].last_set_label == label_tick.
185
186 Register I may validly appear in any expression returned for the value
187 of another register if reg_n_sets[i] is 1. It may also appear in the
188 value for register J if reg_stat[j].last_set_invalid is zero, or
189 reg_stat[i].last_set_label < reg_stat[j].last_set_label.
190
191 If an expression is found in the table containing a register which may
192 not validly appear in an expression, the register is replaced by
193 something that won't match, (clobber (const_int 0)). */
194
195 /* Record last value assigned to (hard or pseudo) register n. */
196
197 rtx last_set_value;
198
199 /* Record the value of label_tick when an expression involving register n
200 is placed in last_set_value. */
201
202 int last_set_table_tick;
203
204 /* Record the value of label_tick when the value for register n is placed in
205 last_set_value. */
206
207 int last_set_label;
208
209 /* These fields are maintained in parallel with last_set_value and are
210 used to store the mode in which the register was last set, the bits
211 that were known to be zero when it was last set, and the number of
212 sign bits copies it was known to have when it was last set. */
213
214 unsigned HOST_WIDE_INT last_set_nonzero_bits;
215 char last_set_sign_bit_copies;
216 ENUM_BITFIELD(machine_mode) last_set_mode : 8;
217
218 /* Set nonzero if references to register n in expressions should not be
219 used. last_set_invalid is set nonzero when this register is being
220 assigned to and last_set_table_tick == label_tick. */
221
222 char last_set_invalid;
223
224 /* Some registers that are set more than once and used in more than one
225 basic block are nevertheless always set in similar ways. For example,
226 a QImode register may be loaded from memory in two places on a machine
227 where byte loads zero extend.
228
229 We record in the following fields if a register has some leading bits
230 that are always equal to the sign bit, and what we know about the
231 nonzero bits of a register, specifically which bits are known to be
232 zero.
233
234 If an entry is zero, it means that we don't know anything special. */
235
236 unsigned char sign_bit_copies;
237
238 unsigned HOST_WIDE_INT nonzero_bits;
239
240 /* Record the value of the label_tick when the last truncation
241 happened. The field truncated_to_mode is only valid if
242 truncation_label == label_tick. */
243
244 int truncation_label;
245
246 /* Record the last truncation seen for this register. If truncation
247 is not a nop to this mode we might be able to save an explicit
248 truncation if we know that value already contains a truncated
249 value. */
250
251 ENUM_BITFIELD(machine_mode) truncated_to_mode : 8;
252 } reg_stat_type;
253
254 DEF_VEC_O(reg_stat_type);
255 DEF_VEC_ALLOC_O(reg_stat_type,heap);
256
257 static VEC(reg_stat_type,heap) *reg_stat;
258
259 /* Record the luid of the last insn that invalidated memory
260 (anything that writes memory, and subroutine calls, but not pushes). */
261
262 static int mem_last_set;
263
264 /* Record the luid of the last CALL_INSN
265 so we can tell whether a potential combination crosses any calls. */
266
267 static int last_call_luid;
268
269 /* When `subst' is called, this is the insn that is being modified
270 (by combining in a previous insn). The PATTERN of this insn
271 is still the old pattern partially modified and it should not be
272 looked at, but this may be used to examine the successors of the insn
273 to judge whether a simplification is valid. */
274
275 static rtx subst_insn;
276
277 /* This is the lowest LUID that `subst' is currently dealing with.
278 get_last_value will not return a value if the register was set at or
279 after this LUID. If not for this mechanism, we could get confused if
280 I2 or I1 in try_combine were an insn that used the old value of a register
281 to obtain a new value. In that case, we might erroneously get the
282 new value of the register when we wanted the old one. */
283
284 static int subst_low_luid;
285
286 /* This contains any hard registers that are used in newpat; reg_dead_at_p
287 must consider all these registers to be always live. */
288
289 static HARD_REG_SET newpat_used_regs;
290
291 /* This is an insn to which a LOG_LINKS entry has been added. If this
292 insn is the earlier than I2 or I3, combine should rescan starting at
293 that location. */
294
295 static rtx added_links_insn;
296
297 /* Basic block in which we are performing combines. */
298 static basic_block this_basic_block;
299 static bool optimize_this_for_speed_p;
300
301 \f
302 /* Length of the currently allocated uid_insn_cost array. */
303
304 static int max_uid_known;
305
306 /* The following array records the insn_rtx_cost for every insn
307 in the instruction stream. */
308
309 static int *uid_insn_cost;
310
311 /* The following array records the LOG_LINKS for every insn in the
312 instruction stream as an INSN_LIST rtx. */
313
314 static rtx *uid_log_links;
315
316 #define INSN_COST(INSN) (uid_insn_cost[INSN_UID (INSN)])
317 #define LOG_LINKS(INSN) (uid_log_links[INSN_UID (INSN)])
318
319 /* Incremented for each basic block. */
320
321 static int label_tick;
322
323 /* Reset to label_tick for each extended basic block in scanning order. */
324
325 static int label_tick_ebb_start;
326
327 /* Mode used to compute significance in reg_stat[].nonzero_bits. It is the
328 largest integer mode that can fit in HOST_BITS_PER_WIDE_INT. */
329
330 static enum machine_mode nonzero_bits_mode;
331
332 /* Nonzero when reg_stat[].nonzero_bits and reg_stat[].sign_bit_copies can
333 be safely used. It is zero while computing them and after combine has
334 completed. This former test prevents propagating values based on
335 previously set values, which can be incorrect if a variable is modified
336 in a loop. */
337
338 static int nonzero_sign_valid;
339
340 \f
341 /* Record one modification to rtl structure
342 to be undone by storing old_contents into *where. */
343
344 enum undo_kind { UNDO_RTX, UNDO_INT, UNDO_MODE };
345
346 struct undo
347 {
348 struct undo *next;
349 enum undo_kind kind;
350 union { rtx r; int i; enum machine_mode m; } old_contents;
351 union { rtx *r; int *i; } where;
352 };
353
354 /* Record a bunch of changes to be undone, up to MAX_UNDO of them.
355 num_undo says how many are currently recorded.
356
357 other_insn is nonzero if we have modified some other insn in the process
358 of working on subst_insn. It must be verified too. */
359
360 struct undobuf
361 {
362 struct undo *undos;
363 struct undo *frees;
364 rtx other_insn;
365 };
366
367 static struct undobuf undobuf;
368
369 /* Number of times the pseudo being substituted for
370 was found and replaced. */
371
372 static int n_occurrences;
373
374 static rtx reg_nonzero_bits_for_combine (const_rtx, enum machine_mode, const_rtx,
375 enum machine_mode,
376 unsigned HOST_WIDE_INT,
377 unsigned HOST_WIDE_INT *);
378 static rtx reg_num_sign_bit_copies_for_combine (const_rtx, enum machine_mode, const_rtx,
379 enum machine_mode,
380 unsigned int, unsigned int *);
381 static void do_SUBST (rtx *, rtx);
382 static void do_SUBST_INT (int *, int);
383 static void init_reg_last (void);
384 static void setup_incoming_promotions (rtx);
385 static void set_nonzero_bits_and_sign_copies (rtx, const_rtx, void *);
386 static int cant_combine_insn_p (rtx);
387 static int can_combine_p (rtx, rtx, rtx, rtx, rtx, rtx, rtx *, rtx *);
388 static int combinable_i3pat (rtx, rtx *, rtx, rtx, rtx, int, int, rtx *);
389 static int contains_muldiv (rtx);
390 static rtx try_combine (rtx, rtx, rtx, rtx, int *);
391 static void undo_all (void);
392 static void undo_commit (void);
393 static rtx *find_split_point (rtx *, rtx, bool);
394 static rtx subst (rtx, rtx, rtx, int, int);
395 static rtx combine_simplify_rtx (rtx, enum machine_mode, int);
396 static rtx simplify_if_then_else (rtx);
397 static rtx simplify_set (rtx);
398 static rtx simplify_logical (rtx);
399 static rtx expand_compound_operation (rtx);
400 static const_rtx expand_field_assignment (const_rtx);
401 static rtx make_extraction (enum machine_mode, rtx, HOST_WIDE_INT,
402 rtx, unsigned HOST_WIDE_INT, int, int, int);
403 static rtx extract_left_shift (rtx, int);
404 static rtx make_compound_operation (rtx, enum rtx_code);
405 static int get_pos_from_mask (unsigned HOST_WIDE_INT,
406 unsigned HOST_WIDE_INT *);
407 static rtx canon_reg_for_combine (rtx, rtx);
408 static rtx force_to_mode (rtx, enum machine_mode,
409 unsigned HOST_WIDE_INT, int);
410 static rtx if_then_else_cond (rtx, rtx *, rtx *);
411 static rtx known_cond (rtx, enum rtx_code, rtx, rtx);
412 static int rtx_equal_for_field_assignment_p (rtx, rtx);
413 static rtx make_field_assignment (rtx);
414 static rtx apply_distributive_law (rtx);
415 static rtx distribute_and_simplify_rtx (rtx, int);
416 static rtx simplify_and_const_int_1 (enum machine_mode, rtx,
417 unsigned HOST_WIDE_INT);
418 static rtx simplify_and_const_int (rtx, enum machine_mode, rtx,
419 unsigned HOST_WIDE_INT);
420 static int merge_outer_ops (enum rtx_code *, HOST_WIDE_INT *, enum rtx_code,
421 HOST_WIDE_INT, enum machine_mode, int *);
422 static rtx simplify_shift_const_1 (enum rtx_code, enum machine_mode, rtx, int);
423 static rtx simplify_shift_const (rtx, enum rtx_code, enum machine_mode, rtx,
424 int);
425 static int recog_for_combine (rtx *, rtx, rtx *);
426 static rtx gen_lowpart_for_combine (enum machine_mode, rtx);
427 static enum rtx_code simplify_comparison (enum rtx_code, rtx *, rtx *);
428 static void update_table_tick (rtx);
429 static void record_value_for_reg (rtx, rtx, rtx);
430 static void check_promoted_subreg (rtx, rtx);
431 static void record_dead_and_set_regs_1 (rtx, const_rtx, void *);
432 static void record_dead_and_set_regs (rtx);
433 static int get_last_value_validate (rtx *, rtx, int, int);
434 static rtx get_last_value (const_rtx);
435 static int use_crosses_set_p (const_rtx, int);
436 static void reg_dead_at_p_1 (rtx, const_rtx, void *);
437 static int reg_dead_at_p (rtx, rtx);
438 static void move_deaths (rtx, rtx, int, rtx, rtx *);
439 static int reg_bitfield_target_p (rtx, rtx);
440 static void distribute_notes (rtx, rtx, rtx, rtx, rtx, rtx, rtx);
441 static void distribute_links (rtx);
442 static void mark_used_regs_combine (rtx);
443 static void record_promoted_value (rtx, rtx);
444 static int unmentioned_reg_p_1 (rtx *, void *);
445 static bool unmentioned_reg_p (rtx, rtx);
446 static int record_truncated_value (rtx *, void *);
447 static void record_truncated_values (rtx *, void *);
448 static bool reg_truncated_to_mode (enum machine_mode, const_rtx);
449 static rtx gen_lowpart_or_truncate (enum machine_mode, rtx);
450 \f
451
452 /* It is not safe to use ordinary gen_lowpart in combine.
453 See comments in gen_lowpart_for_combine. */
454 #undef RTL_HOOKS_GEN_LOWPART
455 #define RTL_HOOKS_GEN_LOWPART gen_lowpart_for_combine
456
457 /* Our implementation of gen_lowpart never emits a new pseudo. */
458 #undef RTL_HOOKS_GEN_LOWPART_NO_EMIT
459 #define RTL_HOOKS_GEN_LOWPART_NO_EMIT gen_lowpart_for_combine
460
461 #undef RTL_HOOKS_REG_NONZERO_REG_BITS
462 #define RTL_HOOKS_REG_NONZERO_REG_BITS reg_nonzero_bits_for_combine
463
464 #undef RTL_HOOKS_REG_NUM_SIGN_BIT_COPIES
465 #define RTL_HOOKS_REG_NUM_SIGN_BIT_COPIES reg_num_sign_bit_copies_for_combine
466
467 #undef RTL_HOOKS_REG_TRUNCATED_TO_MODE
468 #define RTL_HOOKS_REG_TRUNCATED_TO_MODE reg_truncated_to_mode
469
470 static const struct rtl_hooks combine_rtl_hooks = RTL_HOOKS_INITIALIZER;
471
472 \f
473 /* Try to split PATTERN found in INSN. This returns NULL_RTX if
474 PATTERN can not be split. Otherwise, it returns an insn sequence.
475 This is a wrapper around split_insns which ensures that the
476 reg_stat vector is made larger if the splitter creates a new
477 register. */
478
479 static rtx
480 combine_split_insns (rtx pattern, rtx insn)
481 {
482 rtx ret;
483 unsigned int nregs;
484
485 ret = split_insns (pattern, insn);
486 nregs = max_reg_num ();
487 if (nregs > VEC_length (reg_stat_type, reg_stat))
488 VEC_safe_grow_cleared (reg_stat_type, heap, reg_stat, nregs);
489 return ret;
490 }
491
492 /* This is used by find_single_use to locate an rtx in LOC that
493 contains exactly one use of DEST, which is typically either a REG
494 or CC0. It returns a pointer to the innermost rtx expression
495 containing DEST. Appearances of DEST that are being used to
496 totally replace it are not counted. */
497
498 static rtx *
499 find_single_use_1 (rtx dest, rtx *loc)
500 {
501 rtx x = *loc;
502 enum rtx_code code = GET_CODE (x);
503 rtx *result = NULL;
504 rtx *this_result;
505 int i;
506 const char *fmt;
507
508 switch (code)
509 {
510 case CONST_INT:
511 case CONST:
512 case LABEL_REF:
513 case SYMBOL_REF:
514 case CONST_DOUBLE:
515 case CONST_VECTOR:
516 case CLOBBER:
517 return 0;
518
519 case SET:
520 /* If the destination is anything other than CC0, PC, a REG or a SUBREG
521 of a REG that occupies all of the REG, the insn uses DEST if
522 it is mentioned in the destination or the source. Otherwise, we
523 need just check the source. */
524 if (GET_CODE (SET_DEST (x)) != CC0
525 && GET_CODE (SET_DEST (x)) != PC
526 && !REG_P (SET_DEST (x))
527 && ! (GET_CODE (SET_DEST (x)) == SUBREG
528 && REG_P (SUBREG_REG (SET_DEST (x)))
529 && (((GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (x))))
530 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
531 == ((GET_MODE_SIZE (GET_MODE (SET_DEST (x)))
532 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))))
533 break;
534
535 return find_single_use_1 (dest, &SET_SRC (x));
536
537 case MEM:
538 case SUBREG:
539 return find_single_use_1 (dest, &XEXP (x, 0));
540
541 default:
542 break;
543 }
544
545 /* If it wasn't one of the common cases above, check each expression and
546 vector of this code. Look for a unique usage of DEST. */
547
548 fmt = GET_RTX_FORMAT (code);
549 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
550 {
551 if (fmt[i] == 'e')
552 {
553 if (dest == XEXP (x, i)
554 || (REG_P (dest) && REG_P (XEXP (x, i))
555 && REGNO (dest) == REGNO (XEXP (x, i))))
556 this_result = loc;
557 else
558 this_result = find_single_use_1 (dest, &XEXP (x, i));
559
560 if (result == NULL)
561 result = this_result;
562 else if (this_result)
563 /* Duplicate usage. */
564 return NULL;
565 }
566 else if (fmt[i] == 'E')
567 {
568 int j;
569
570 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
571 {
572 if (XVECEXP (x, i, j) == dest
573 || (REG_P (dest)
574 && REG_P (XVECEXP (x, i, j))
575 && REGNO (XVECEXP (x, i, j)) == REGNO (dest)))
576 this_result = loc;
577 else
578 this_result = find_single_use_1 (dest, &XVECEXP (x, i, j));
579
580 if (result == NULL)
581 result = this_result;
582 else if (this_result)
583 return NULL;
584 }
585 }
586 }
587
588 return result;
589 }
590
591
592 /* See if DEST, produced in INSN, is used only a single time in the
593 sequel. If so, return a pointer to the innermost rtx expression in which
594 it is used.
595
596 If PLOC is nonzero, *PLOC is set to the insn containing the single use.
597
598 If DEST is cc0_rtx, we look only at the next insn. In that case, we don't
599 care about REG_DEAD notes or LOG_LINKS.
600
601 Otherwise, we find the single use by finding an insn that has a
602 LOG_LINKS pointing at INSN and has a REG_DEAD note for DEST. If DEST is
603 only referenced once in that insn, we know that it must be the first
604 and last insn referencing DEST. */
605
606 static rtx *
607 find_single_use (rtx dest, rtx insn, rtx *ploc)
608 {
609 basic_block bb;
610 rtx next;
611 rtx *result;
612 rtx link;
613
614 #ifdef HAVE_cc0
615 if (dest == cc0_rtx)
616 {
617 next = NEXT_INSN (insn);
618 if (next == 0
619 || (!NONJUMP_INSN_P (next) && !JUMP_P (next)))
620 return 0;
621
622 result = find_single_use_1 (dest, &PATTERN (next));
623 if (result && ploc)
624 *ploc = next;
625 return result;
626 }
627 #endif
628
629 if (!REG_P (dest))
630 return 0;
631
632 bb = BLOCK_FOR_INSN (insn);
633 for (next = NEXT_INSN (insn);
634 next && BLOCK_FOR_INSN (next) == bb;
635 next = NEXT_INSN (next))
636 if (INSN_P (next) && dead_or_set_p (next, dest))
637 {
638 for (link = LOG_LINKS (next); link; link = XEXP (link, 1))
639 if (XEXP (link, 0) == insn)
640 break;
641
642 if (link)
643 {
644 result = find_single_use_1 (dest, &PATTERN (next));
645 if (ploc)
646 *ploc = next;
647 return result;
648 }
649 }
650
651 return 0;
652 }
653 \f
654 /* Substitute NEWVAL, an rtx expression, into INTO, a place in some
655 insn. The substitution can be undone by undo_all. If INTO is already
656 set to NEWVAL, do not record this change. Because computing NEWVAL might
657 also call SUBST, we have to compute it before we put anything into
658 the undo table. */
659
660 static void
661 do_SUBST (rtx *into, rtx newval)
662 {
663 struct undo *buf;
664 rtx oldval = *into;
665
666 if (oldval == newval)
667 return;
668
669 /* We'd like to catch as many invalid transformations here as
670 possible. Unfortunately, there are way too many mode changes
671 that are perfectly valid, so we'd waste too much effort for
672 little gain doing the checks here. Focus on catching invalid
673 transformations involving integer constants. */
674 if (GET_MODE_CLASS (GET_MODE (oldval)) == MODE_INT
675 && CONST_INT_P (newval))
676 {
677 /* Sanity check that we're replacing oldval with a CONST_INT
678 that is a valid sign-extension for the original mode. */
679 gcc_assert (INTVAL (newval)
680 == trunc_int_for_mode (INTVAL (newval), GET_MODE (oldval)));
681
682 /* Replacing the operand of a SUBREG or a ZERO_EXTEND with a
683 CONST_INT is not valid, because after the replacement, the
684 original mode would be gone. Unfortunately, we can't tell
685 when do_SUBST is called to replace the operand thereof, so we
686 perform this test on oldval instead, checking whether an
687 invalid replacement took place before we got here. */
688 gcc_assert (!(GET_CODE (oldval) == SUBREG
689 && CONST_INT_P (SUBREG_REG (oldval))));
690 gcc_assert (!(GET_CODE (oldval) == ZERO_EXTEND
691 && CONST_INT_P (XEXP (oldval, 0))));
692 }
693
694 if (undobuf.frees)
695 buf = undobuf.frees, undobuf.frees = buf->next;
696 else
697 buf = XNEW (struct undo);
698
699 buf->kind = UNDO_RTX;
700 buf->where.r = into;
701 buf->old_contents.r = oldval;
702 *into = newval;
703
704 buf->next = undobuf.undos, undobuf.undos = buf;
705 }
706
707 #define SUBST(INTO, NEWVAL) do_SUBST(&(INTO), (NEWVAL))
708
709 /* Similar to SUBST, but NEWVAL is an int expression. Note that substitution
710 for the value of a HOST_WIDE_INT value (including CONST_INT) is
711 not safe. */
712
713 static void
714 do_SUBST_INT (int *into, int newval)
715 {
716 struct undo *buf;
717 int oldval = *into;
718
719 if (oldval == newval)
720 return;
721
722 if (undobuf.frees)
723 buf = undobuf.frees, undobuf.frees = buf->next;
724 else
725 buf = XNEW (struct undo);
726
727 buf->kind = UNDO_INT;
728 buf->where.i = into;
729 buf->old_contents.i = oldval;
730 *into = newval;
731
732 buf->next = undobuf.undos, undobuf.undos = buf;
733 }
734
735 #define SUBST_INT(INTO, NEWVAL) do_SUBST_INT(&(INTO), (NEWVAL))
736
737 /* Similar to SUBST, but just substitute the mode. This is used when
738 changing the mode of a pseudo-register, so that any other
739 references to the entry in the regno_reg_rtx array will change as
740 well. */
741
742 static void
743 do_SUBST_MODE (rtx *into, enum machine_mode newval)
744 {
745 struct undo *buf;
746 enum machine_mode oldval = GET_MODE (*into);
747
748 if (oldval == newval)
749 return;
750
751 if (undobuf.frees)
752 buf = undobuf.frees, undobuf.frees = buf->next;
753 else
754 buf = XNEW (struct undo);
755
756 buf->kind = UNDO_MODE;
757 buf->where.r = into;
758 buf->old_contents.m = oldval;
759 adjust_reg_mode (*into, newval);
760
761 buf->next = undobuf.undos, undobuf.undos = buf;
762 }
763
764 #define SUBST_MODE(INTO, NEWVAL) do_SUBST_MODE(&(INTO), (NEWVAL))
765 \f
766 /* Subroutine of try_combine. Determine whether the combine replacement
767 patterns NEWPAT, NEWI2PAT and NEWOTHERPAT are cheaper according to
768 insn_rtx_cost that the original instruction sequence I0, I1, I2, I3 and
769 undobuf.other_insn. Note that I1 and/or NEWI2PAT may be NULL_RTX.
770 NEWOTHERPAT and undobuf.other_insn may also both be NULL_RTX. This
771 function returns false, if the costs of all instructions can be
772 estimated, and the replacements are more expensive than the original
773 sequence. */
774
775 static bool
776 combine_validate_cost (rtx i0, rtx i1, rtx i2, rtx i3, rtx newpat,
777 rtx newi2pat, rtx newotherpat)
778 {
779 int i0_cost, i1_cost, i2_cost, i3_cost;
780 int new_i2_cost, new_i3_cost;
781 int old_cost, new_cost;
782
783 /* Lookup the original insn_rtx_costs. */
784 i2_cost = INSN_COST (i2);
785 i3_cost = INSN_COST (i3);
786
787 if (i1)
788 {
789 i1_cost = INSN_COST (i1);
790 if (i0)
791 {
792 i0_cost = INSN_COST (i0);
793 old_cost = (i0_cost > 0 && i1_cost > 0 && i2_cost > 0 && i3_cost > 0
794 ? i0_cost + i1_cost + i2_cost + i3_cost : 0);
795 }
796 else
797 {
798 old_cost = (i1_cost > 0 && i2_cost > 0 && i3_cost > 0
799 ? i1_cost + i2_cost + i3_cost : 0);
800 i0_cost = 0;
801 }
802 }
803 else
804 {
805 old_cost = (i2_cost > 0 && i3_cost > 0) ? i2_cost + i3_cost : 0;
806 i1_cost = i0_cost = 0;
807 }
808
809 /* Calculate the replacement insn_rtx_costs. */
810 new_i3_cost = insn_rtx_cost (newpat, optimize_this_for_speed_p);
811 if (newi2pat)
812 {
813 new_i2_cost = insn_rtx_cost (newi2pat, optimize_this_for_speed_p);
814 new_cost = (new_i2_cost > 0 && new_i3_cost > 0)
815 ? new_i2_cost + new_i3_cost : 0;
816 }
817 else
818 {
819 new_cost = new_i3_cost;
820 new_i2_cost = 0;
821 }
822
823 if (undobuf.other_insn)
824 {
825 int old_other_cost, new_other_cost;
826
827 old_other_cost = INSN_COST (undobuf.other_insn);
828 new_other_cost = insn_rtx_cost (newotherpat, optimize_this_for_speed_p);
829 if (old_other_cost > 0 && new_other_cost > 0)
830 {
831 old_cost += old_other_cost;
832 new_cost += new_other_cost;
833 }
834 else
835 old_cost = 0;
836 }
837
838 /* Disallow this recombination if both new_cost and old_cost are
839 greater than zero, and new_cost is greater than old cost. */
840 if (old_cost > 0
841 && new_cost > old_cost)
842 {
843 if (dump_file)
844 {
845 if (i0)
846 {
847 fprintf (dump_file,
848 "rejecting combination of insns %d, %d, %d and %d\n",
849 INSN_UID (i0), INSN_UID (i1), INSN_UID (i2),
850 INSN_UID (i3));
851 fprintf (dump_file, "original costs %d + %d + %d + %d = %d\n",
852 i0_cost, i1_cost, i2_cost, i3_cost, old_cost);
853 }
854 else if (i1)
855 {
856 fprintf (dump_file,
857 "rejecting combination of insns %d, %d and %d\n",
858 INSN_UID (i1), INSN_UID (i2), INSN_UID (i3));
859 fprintf (dump_file, "original costs %d + %d + %d = %d\n",
860 i1_cost, i2_cost, i3_cost, old_cost);
861 }
862 else
863 {
864 fprintf (dump_file,
865 "rejecting combination of insns %d and %d\n",
866 INSN_UID (i2), INSN_UID (i3));
867 fprintf (dump_file, "original costs %d + %d = %d\n",
868 i2_cost, i3_cost, old_cost);
869 }
870
871 if (newi2pat)
872 {
873 fprintf (dump_file, "replacement costs %d + %d = %d\n",
874 new_i2_cost, new_i3_cost, new_cost);
875 }
876 else
877 fprintf (dump_file, "replacement cost %d\n", new_cost);
878 }
879
880 return false;
881 }
882
883 /* Update the uid_insn_cost array with the replacement costs. */
884 INSN_COST (i2) = new_i2_cost;
885 INSN_COST (i3) = new_i3_cost;
886 if (i1)
887 INSN_COST (i1) = 0;
888
889 return true;
890 }
891
892
893 /* Delete any insns that copy a register to itself. */
894
895 static void
896 delete_noop_moves (void)
897 {
898 rtx insn, next;
899 basic_block bb;
900
901 FOR_EACH_BB (bb)
902 {
903 for (insn = BB_HEAD (bb); insn != NEXT_INSN (BB_END (bb)); insn = next)
904 {
905 next = NEXT_INSN (insn);
906 if (INSN_P (insn) && noop_move_p (insn))
907 {
908 if (dump_file)
909 fprintf (dump_file, "deleting noop move %d\n", INSN_UID (insn));
910
911 delete_insn_and_edges (insn);
912 }
913 }
914 }
915 }
916
917 \f
918 /* Fill in log links field for all insns. */
919
920 static void
921 create_log_links (void)
922 {
923 basic_block bb;
924 rtx *next_use, insn;
925 df_ref *def_vec, *use_vec;
926
927 next_use = XCNEWVEC (rtx, max_reg_num ());
928
929 /* Pass through each block from the end, recording the uses of each
930 register and establishing log links when def is encountered.
931 Note that we do not clear next_use array in order to save time,
932 so we have to test whether the use is in the same basic block as def.
933
934 There are a few cases below when we do not consider the definition or
935 usage -- these are taken from original flow.c did. Don't ask me why it is
936 done this way; I don't know and if it works, I don't want to know. */
937
938 FOR_EACH_BB (bb)
939 {
940 FOR_BB_INSNS_REVERSE (bb, insn)
941 {
942 if (!NONDEBUG_INSN_P (insn))
943 continue;
944
945 /* Log links are created only once. */
946 gcc_assert (!LOG_LINKS (insn));
947
948 for (def_vec = DF_INSN_DEFS (insn); *def_vec; def_vec++)
949 {
950 df_ref def = *def_vec;
951 int regno = DF_REF_REGNO (def);
952 rtx use_insn;
953
954 if (!next_use[regno])
955 continue;
956
957 /* Do not consider if it is pre/post modification in MEM. */
958 if (DF_REF_FLAGS (def) & DF_REF_PRE_POST_MODIFY)
959 continue;
960
961 /* Do not make the log link for frame pointer. */
962 if ((regno == FRAME_POINTER_REGNUM
963 && (! reload_completed || frame_pointer_needed))
964 #if !HARD_FRAME_POINTER_IS_FRAME_POINTER
965 || (regno == HARD_FRAME_POINTER_REGNUM
966 && (! reload_completed || frame_pointer_needed))
967 #endif
968 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
969 || (regno == ARG_POINTER_REGNUM && fixed_regs[regno])
970 #endif
971 )
972 continue;
973
974 use_insn = next_use[regno];
975 if (BLOCK_FOR_INSN (use_insn) == bb)
976 {
977 /* flow.c claimed:
978
979 We don't build a LOG_LINK for hard registers contained
980 in ASM_OPERANDs. If these registers get replaced,
981 we might wind up changing the semantics of the insn,
982 even if reload can make what appear to be valid
983 assignments later. */
984 if (regno >= FIRST_PSEUDO_REGISTER
985 || asm_noperands (PATTERN (use_insn)) < 0)
986 {
987 /* Don't add duplicate links between instructions. */
988 rtx links;
989 for (links = LOG_LINKS (use_insn); links;
990 links = XEXP (links, 1))
991 if (insn == XEXP (links, 0))
992 break;
993
994 if (!links)
995 LOG_LINKS (use_insn) =
996 alloc_INSN_LIST (insn, LOG_LINKS (use_insn));
997 }
998 }
999 next_use[regno] = NULL_RTX;
1000 }
1001
1002 for (use_vec = DF_INSN_USES (insn); *use_vec; use_vec++)
1003 {
1004 df_ref use = *use_vec;
1005 int regno = DF_REF_REGNO (use);
1006
1007 /* Do not consider the usage of the stack pointer
1008 by function call. */
1009 if (DF_REF_FLAGS (use) & DF_REF_CALL_STACK_USAGE)
1010 continue;
1011
1012 next_use[regno] = insn;
1013 }
1014 }
1015 }
1016
1017 free (next_use);
1018 }
1019
1020 /* Clear LOG_LINKS fields of insns. */
1021
1022 static void
1023 clear_log_links (void)
1024 {
1025 rtx insn;
1026
1027 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
1028 if (INSN_P (insn))
1029 free_INSN_LIST_list (&LOG_LINKS (insn));
1030 }
1031
1032 /* Walk the LOG_LINKS of insn B to see if we find a reference to A. Return
1033 true if we found a LOG_LINK that proves that A feeds B. This only works
1034 if there are no instructions between A and B which could have a link
1035 depending on A, since in that case we would not record a link for B.
1036 We also check the implicit dependency created by a cc0 setter/user
1037 pair. */
1038
1039 static bool
1040 insn_a_feeds_b (rtx a, rtx b)
1041 {
1042 rtx links;
1043 for (links = LOG_LINKS (b); links; links = XEXP (links, 1))
1044 if (XEXP (links, 0) == a)
1045 return true;
1046 #ifdef HAVE_cc0
1047 if (sets_cc0_p (a))
1048 return true;
1049 #endif
1050 return false;
1051 }
1052 \f
1053 /* Main entry point for combiner. F is the first insn of the function.
1054 NREGS is the first unused pseudo-reg number.
1055
1056 Return nonzero if the combiner has turned an indirect jump
1057 instruction into a direct jump. */
1058 static int
1059 combine_instructions (rtx f, unsigned int nregs)
1060 {
1061 rtx insn, next;
1062 #ifdef HAVE_cc0
1063 rtx prev;
1064 #endif
1065 rtx links, nextlinks;
1066 rtx first;
1067 basic_block last_bb;
1068
1069 int new_direct_jump_p = 0;
1070
1071 for (first = f; first && !INSN_P (first); )
1072 first = NEXT_INSN (first);
1073 if (!first)
1074 return 0;
1075
1076 combine_attempts = 0;
1077 combine_merges = 0;
1078 combine_extras = 0;
1079 combine_successes = 0;
1080
1081 rtl_hooks = combine_rtl_hooks;
1082
1083 VEC_safe_grow_cleared (reg_stat_type, heap, reg_stat, nregs);
1084
1085 init_recog_no_volatile ();
1086
1087 /* Allocate array for insn info. */
1088 max_uid_known = get_max_uid ();
1089 uid_log_links = XCNEWVEC (rtx, max_uid_known + 1);
1090 uid_insn_cost = XCNEWVEC (int, max_uid_known + 1);
1091
1092 nonzero_bits_mode = mode_for_size (HOST_BITS_PER_WIDE_INT, MODE_INT, 0);
1093
1094 /* Don't use reg_stat[].nonzero_bits when computing it. This can cause
1095 problems when, for example, we have j <<= 1 in a loop. */
1096
1097 nonzero_sign_valid = 0;
1098 label_tick = label_tick_ebb_start = 1;
1099
1100 /* Scan all SETs and see if we can deduce anything about what
1101 bits are known to be zero for some registers and how many copies
1102 of the sign bit are known to exist for those registers.
1103
1104 Also set any known values so that we can use it while searching
1105 for what bits are known to be set. */
1106
1107 setup_incoming_promotions (first);
1108 /* Allow the entry block and the first block to fall into the same EBB.
1109 Conceptually the incoming promotions are assigned to the entry block. */
1110 last_bb = ENTRY_BLOCK_PTR;
1111
1112 create_log_links ();
1113 FOR_EACH_BB (this_basic_block)
1114 {
1115 optimize_this_for_speed_p = optimize_bb_for_speed_p (this_basic_block);
1116 last_call_luid = 0;
1117 mem_last_set = -1;
1118
1119 label_tick++;
1120 if (!single_pred_p (this_basic_block)
1121 || single_pred (this_basic_block) != last_bb)
1122 label_tick_ebb_start = label_tick;
1123 last_bb = this_basic_block;
1124
1125 FOR_BB_INSNS (this_basic_block, insn)
1126 if (INSN_P (insn) && BLOCK_FOR_INSN (insn))
1127 {
1128 subst_low_luid = DF_INSN_LUID (insn);
1129 subst_insn = insn;
1130
1131 note_stores (PATTERN (insn), set_nonzero_bits_and_sign_copies,
1132 insn);
1133 record_dead_and_set_regs (insn);
1134
1135 #ifdef AUTO_INC_DEC
1136 for (links = REG_NOTES (insn); links; links = XEXP (links, 1))
1137 if (REG_NOTE_KIND (links) == REG_INC)
1138 set_nonzero_bits_and_sign_copies (XEXP (links, 0), NULL_RTX,
1139 insn);
1140 #endif
1141
1142 /* Record the current insn_rtx_cost of this instruction. */
1143 if (NONJUMP_INSN_P (insn))
1144 INSN_COST (insn) = insn_rtx_cost (PATTERN (insn),
1145 optimize_this_for_speed_p);
1146 if (dump_file)
1147 fprintf(dump_file, "insn_cost %d: %d\n",
1148 INSN_UID (insn), INSN_COST (insn));
1149 }
1150 }
1151
1152 nonzero_sign_valid = 1;
1153
1154 /* Now scan all the insns in forward order. */
1155 label_tick = label_tick_ebb_start = 1;
1156 init_reg_last ();
1157 setup_incoming_promotions (first);
1158 last_bb = ENTRY_BLOCK_PTR;
1159
1160 FOR_EACH_BB (this_basic_block)
1161 {
1162 optimize_this_for_speed_p = optimize_bb_for_speed_p (this_basic_block);
1163 last_call_luid = 0;
1164 mem_last_set = -1;
1165
1166 label_tick++;
1167 if (!single_pred_p (this_basic_block)
1168 || single_pred (this_basic_block) != last_bb)
1169 label_tick_ebb_start = label_tick;
1170 last_bb = this_basic_block;
1171
1172 rtl_profile_for_bb (this_basic_block);
1173 for (insn = BB_HEAD (this_basic_block);
1174 insn != NEXT_INSN (BB_END (this_basic_block));
1175 insn = next ? next : NEXT_INSN (insn))
1176 {
1177 next = 0;
1178 if (NONDEBUG_INSN_P (insn))
1179 {
1180 /* See if we know about function return values before this
1181 insn based upon SUBREG flags. */
1182 check_promoted_subreg (insn, PATTERN (insn));
1183
1184 /* See if we can find hardregs and subreg of pseudos in
1185 narrower modes. This could help turning TRUNCATEs
1186 into SUBREGs. */
1187 note_uses (&PATTERN (insn), record_truncated_values, NULL);
1188
1189 /* Try this insn with each insn it links back to. */
1190
1191 for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
1192 if ((next = try_combine (insn, XEXP (links, 0), NULL_RTX,
1193 NULL_RTX, &new_direct_jump_p)) != 0)
1194 goto retry;
1195
1196 /* Try each sequence of three linked insns ending with this one. */
1197
1198 for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
1199 {
1200 rtx link = XEXP (links, 0);
1201
1202 /* If the linked insn has been replaced by a note, then there
1203 is no point in pursuing this chain any further. */
1204 if (NOTE_P (link))
1205 continue;
1206
1207 for (nextlinks = LOG_LINKS (link);
1208 nextlinks;
1209 nextlinks = XEXP (nextlinks, 1))
1210 if ((next = try_combine (insn, link, XEXP (nextlinks, 0),
1211 NULL_RTX,
1212 &new_direct_jump_p)) != 0)
1213 goto retry;
1214 }
1215
1216 #ifdef HAVE_cc0
1217 /* Try to combine a jump insn that uses CC0
1218 with a preceding insn that sets CC0, and maybe with its
1219 logical predecessor as well.
1220 This is how we make decrement-and-branch insns.
1221 We need this special code because data flow connections
1222 via CC0 do not get entered in LOG_LINKS. */
1223
1224 if (JUMP_P (insn)
1225 && (prev = prev_nonnote_insn (insn)) != 0
1226 && NONJUMP_INSN_P (prev)
1227 && sets_cc0_p (PATTERN (prev)))
1228 {
1229 if ((next = try_combine (insn, prev, NULL_RTX, NULL_RTX,
1230 &new_direct_jump_p)) != 0)
1231 goto retry;
1232
1233 for (nextlinks = LOG_LINKS (prev); nextlinks;
1234 nextlinks = XEXP (nextlinks, 1))
1235 if ((next = try_combine (insn, prev, XEXP (nextlinks, 0),
1236 NULL_RTX,
1237 &new_direct_jump_p)) != 0)
1238 goto retry;
1239 }
1240
1241 /* Do the same for an insn that explicitly references CC0. */
1242 if (NONJUMP_INSN_P (insn)
1243 && (prev = prev_nonnote_insn (insn)) != 0
1244 && NONJUMP_INSN_P (prev)
1245 && sets_cc0_p (PATTERN (prev))
1246 && GET_CODE (PATTERN (insn)) == SET
1247 && reg_mentioned_p (cc0_rtx, SET_SRC (PATTERN (insn))))
1248 {
1249 if ((next = try_combine (insn, prev, NULL_RTX, NULL_RTX,
1250 &new_direct_jump_p)) != 0)
1251 goto retry;
1252
1253 for (nextlinks = LOG_LINKS (prev); nextlinks;
1254 nextlinks = XEXP (nextlinks, 1))
1255 if ((next = try_combine (insn, prev, XEXP (nextlinks, 0),
1256 NULL_RTX,
1257 &new_direct_jump_p)) != 0)
1258 goto retry;
1259 }
1260
1261 /* Finally, see if any of the insns that this insn links to
1262 explicitly references CC0. If so, try this insn, that insn,
1263 and its predecessor if it sets CC0. */
1264 for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
1265 if (NONJUMP_INSN_P (XEXP (links, 0))
1266 && GET_CODE (PATTERN (XEXP (links, 0))) == SET
1267 && reg_mentioned_p (cc0_rtx, SET_SRC (PATTERN (XEXP (links, 0))))
1268 && (prev = prev_nonnote_insn (XEXP (links, 0))) != 0
1269 && NONJUMP_INSN_P (prev)
1270 && sets_cc0_p (PATTERN (prev))
1271 && (next = try_combine (insn, XEXP (links, 0),
1272 prev, NULL_RTX,
1273 &new_direct_jump_p)) != 0)
1274 goto retry;
1275 #endif
1276
1277 /* Try combining an insn with two different insns whose results it
1278 uses. */
1279 for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
1280 for (nextlinks = XEXP (links, 1); nextlinks;
1281 nextlinks = XEXP (nextlinks, 1))
1282 if ((next = try_combine (insn, XEXP (links, 0),
1283 XEXP (nextlinks, 0), NULL_RTX,
1284 &new_direct_jump_p)) != 0)
1285 goto retry;
1286
1287 /* Try four-instruction combinations. */
1288 for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
1289 {
1290 rtx next1;
1291 rtx link = XEXP (links, 0);
1292
1293 /* If the linked insn has been replaced by a note, then there
1294 is no point in pursuing this chain any further. */
1295 if (NOTE_P (link))
1296 continue;
1297
1298 for (next1 = LOG_LINKS (link); next1; next1 = XEXP (next1, 1))
1299 {
1300 rtx link1 = XEXP (next1, 0);
1301 if (NOTE_P (link1))
1302 continue;
1303 /* I0 -> I1 -> I2 -> I3. */
1304 for (nextlinks = LOG_LINKS (link1); nextlinks;
1305 nextlinks = XEXP (nextlinks, 1))
1306 if ((next = try_combine (insn, link, link1,
1307 XEXP (nextlinks, 0),
1308 &new_direct_jump_p)) != 0)
1309 goto retry;
1310 /* I0, I1 -> I2, I2 -> I3. */
1311 for (nextlinks = XEXP (next1, 1); nextlinks;
1312 nextlinks = XEXP (nextlinks, 1))
1313 if ((next = try_combine (insn, link, link1,
1314 XEXP (nextlinks, 0),
1315 &new_direct_jump_p)) != 0)
1316 goto retry;
1317 }
1318
1319 for (next1 = XEXP (links, 1); next1; next1 = XEXP (next1, 1))
1320 {
1321 rtx link1 = XEXP (next1, 0);
1322 if (NOTE_P (link1))
1323 continue;
1324 /* I0 -> I2; I1, I2 -> I3. */
1325 for (nextlinks = LOG_LINKS (link); nextlinks;
1326 nextlinks = XEXP (nextlinks, 1))
1327 if ((next = try_combine (insn, link, link1,
1328 XEXP (nextlinks, 0),
1329 &new_direct_jump_p)) != 0)
1330 goto retry;
1331 /* I0 -> I1; I1, I2 -> I3. */
1332 for (nextlinks = LOG_LINKS (link1); nextlinks;
1333 nextlinks = XEXP (nextlinks, 1))
1334 if ((next = try_combine (insn, link, link1,
1335 XEXP (nextlinks, 0),
1336 &new_direct_jump_p)) != 0)
1337 goto retry;
1338 }
1339 }
1340
1341 /* Try this insn with each REG_EQUAL note it links back to. */
1342 for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
1343 {
1344 rtx set, note;
1345 rtx temp = XEXP (links, 0);
1346 if ((set = single_set (temp)) != 0
1347 && (note = find_reg_equal_equiv_note (temp)) != 0
1348 && (note = XEXP (note, 0), GET_CODE (note)) != EXPR_LIST
1349 /* Avoid using a register that may already been marked
1350 dead by an earlier instruction. */
1351 && ! unmentioned_reg_p (note, SET_SRC (set))
1352 && (GET_MODE (note) == VOIDmode
1353 ? SCALAR_INT_MODE_P (GET_MODE (SET_DEST (set)))
1354 : GET_MODE (SET_DEST (set)) == GET_MODE (note)))
1355 {
1356 /* Temporarily replace the set's source with the
1357 contents of the REG_EQUAL note. The insn will
1358 be deleted or recognized by try_combine. */
1359 rtx orig = SET_SRC (set);
1360 SET_SRC (set) = note;
1361 i2mod = temp;
1362 i2mod_old_rhs = copy_rtx (orig);
1363 i2mod_new_rhs = copy_rtx (note);
1364 next = try_combine (insn, i2mod, NULL_RTX, NULL_RTX,
1365 &new_direct_jump_p);
1366 i2mod = NULL_RTX;
1367 if (next)
1368 goto retry;
1369 SET_SRC (set) = orig;
1370 }
1371 }
1372
1373 if (!NOTE_P (insn))
1374 record_dead_and_set_regs (insn);
1375
1376 retry:
1377 ;
1378 }
1379 }
1380 }
1381
1382 default_rtl_profile ();
1383 clear_log_links ();
1384 clear_bb_flags ();
1385 new_direct_jump_p |= purge_all_dead_edges ();
1386 delete_noop_moves ();
1387
1388 /* Clean up. */
1389 free (uid_log_links);
1390 free (uid_insn_cost);
1391 VEC_free (reg_stat_type, heap, reg_stat);
1392
1393 {
1394 struct undo *undo, *next;
1395 for (undo = undobuf.frees; undo; undo = next)
1396 {
1397 next = undo->next;
1398 free (undo);
1399 }
1400 undobuf.frees = 0;
1401 }
1402
1403 total_attempts += combine_attempts;
1404 total_merges += combine_merges;
1405 total_extras += combine_extras;
1406 total_successes += combine_successes;
1407
1408 nonzero_sign_valid = 0;
1409 rtl_hooks = general_rtl_hooks;
1410
1411 /* Make recognizer allow volatile MEMs again. */
1412 init_recog ();
1413
1414 return new_direct_jump_p;
1415 }
1416
1417 /* Wipe the last_xxx fields of reg_stat in preparation for another pass. */
1418
1419 static void
1420 init_reg_last (void)
1421 {
1422 unsigned int i;
1423 reg_stat_type *p;
1424
1425 FOR_EACH_VEC_ELT (reg_stat_type, reg_stat, i, p)
1426 memset (p, 0, offsetof (reg_stat_type, sign_bit_copies));
1427 }
1428 \f
1429 /* Set up any promoted values for incoming argument registers. */
1430
1431 static void
1432 setup_incoming_promotions (rtx first)
1433 {
1434 tree arg;
1435 bool strictly_local = false;
1436
1437 for (arg = DECL_ARGUMENTS (current_function_decl); arg;
1438 arg = DECL_CHAIN (arg))
1439 {
1440 rtx x, reg = DECL_INCOMING_RTL (arg);
1441 int uns1, uns3;
1442 enum machine_mode mode1, mode2, mode3, mode4;
1443
1444 /* Only continue if the incoming argument is in a register. */
1445 if (!REG_P (reg))
1446 continue;
1447
1448 /* Determine, if possible, whether all call sites of the current
1449 function lie within the current compilation unit. (This does
1450 take into account the exporting of a function via taking its
1451 address, and so forth.) */
1452 strictly_local = cgraph_local_info (current_function_decl)->local;
1453
1454 /* The mode and signedness of the argument before any promotions happen
1455 (equal to the mode of the pseudo holding it at that stage). */
1456 mode1 = TYPE_MODE (TREE_TYPE (arg));
1457 uns1 = TYPE_UNSIGNED (TREE_TYPE (arg));
1458
1459 /* The mode and signedness of the argument after any source language and
1460 TARGET_PROMOTE_PROTOTYPES-driven promotions. */
1461 mode2 = TYPE_MODE (DECL_ARG_TYPE (arg));
1462 uns3 = TYPE_UNSIGNED (DECL_ARG_TYPE (arg));
1463
1464 /* The mode and signedness of the argument as it is actually passed,
1465 after any TARGET_PROMOTE_FUNCTION_ARGS-driven ABI promotions. */
1466 mode3 = promote_function_mode (DECL_ARG_TYPE (arg), mode2, &uns3,
1467 TREE_TYPE (cfun->decl), 0);
1468
1469 /* The mode of the register in which the argument is being passed. */
1470 mode4 = GET_MODE (reg);
1471
1472 /* Eliminate sign extensions in the callee when:
1473 (a) A mode promotion has occurred; */
1474 if (mode1 == mode3)
1475 continue;
1476 /* (b) The mode of the register is the same as the mode of
1477 the argument as it is passed; */
1478 if (mode3 != mode4)
1479 continue;
1480 /* (c) There's no language level extension; */
1481 if (mode1 == mode2)
1482 ;
1483 /* (c.1) All callers are from the current compilation unit. If that's
1484 the case we don't have to rely on an ABI, we only have to know
1485 what we're generating right now, and we know that we will do the
1486 mode1 to mode2 promotion with the given sign. */
1487 else if (!strictly_local)
1488 continue;
1489 /* (c.2) The combination of the two promotions is useful. This is
1490 true when the signs match, or if the first promotion is unsigned.
1491 In the later case, (sign_extend (zero_extend x)) is the same as
1492 (zero_extend (zero_extend x)), so make sure to force UNS3 true. */
1493 else if (uns1)
1494 uns3 = true;
1495 else if (uns3)
1496 continue;
1497
1498 /* Record that the value was promoted from mode1 to mode3,
1499 so that any sign extension at the head of the current
1500 function may be eliminated. */
1501 x = gen_rtx_CLOBBER (mode1, const0_rtx);
1502 x = gen_rtx_fmt_e ((uns3 ? ZERO_EXTEND : SIGN_EXTEND), mode3, x);
1503 record_value_for_reg (reg, first, x);
1504 }
1505 }
1506
1507 /* Called via note_stores. If X is a pseudo that is narrower than
1508 HOST_BITS_PER_WIDE_INT and is being set, record what bits are known zero.
1509
1510 If we are setting only a portion of X and we can't figure out what
1511 portion, assume all bits will be used since we don't know what will
1512 be happening.
1513
1514 Similarly, set how many bits of X are known to be copies of the sign bit
1515 at all locations in the function. This is the smallest number implied
1516 by any set of X. */
1517
1518 static void
1519 set_nonzero_bits_and_sign_copies (rtx x, const_rtx set, void *data)
1520 {
1521 rtx insn = (rtx) data;
1522 unsigned int num;
1523
1524 if (REG_P (x)
1525 && REGNO (x) >= FIRST_PSEUDO_REGISTER
1526 /* If this register is undefined at the start of the file, we can't
1527 say what its contents were. */
1528 && ! REGNO_REG_SET_P
1529 (DF_LR_IN (ENTRY_BLOCK_PTR->next_bb), REGNO (x))
1530 && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT)
1531 {
1532 reg_stat_type *rsp = VEC_index (reg_stat_type, reg_stat, REGNO (x));
1533
1534 if (set == 0 || GET_CODE (set) == CLOBBER)
1535 {
1536 rsp->nonzero_bits = GET_MODE_MASK (GET_MODE (x));
1537 rsp->sign_bit_copies = 1;
1538 return;
1539 }
1540
1541 /* If this register is being initialized using itself, and the
1542 register is uninitialized in this basic block, and there are
1543 no LOG_LINKS which set the register, then part of the
1544 register is uninitialized. In that case we can't assume
1545 anything about the number of nonzero bits.
1546
1547 ??? We could do better if we checked this in
1548 reg_{nonzero_bits,num_sign_bit_copies}_for_combine. Then we
1549 could avoid making assumptions about the insn which initially
1550 sets the register, while still using the information in other
1551 insns. We would have to be careful to check every insn
1552 involved in the combination. */
1553
1554 if (insn
1555 && reg_referenced_p (x, PATTERN (insn))
1556 && !REGNO_REG_SET_P (DF_LR_IN (BLOCK_FOR_INSN (insn)),
1557 REGNO (x)))
1558 {
1559 rtx link;
1560
1561 for (link = LOG_LINKS (insn); link; link = XEXP (link, 1))
1562 {
1563 if (dead_or_set_p (XEXP (link, 0), x))
1564 break;
1565 }
1566 if (!link)
1567 {
1568 rsp->nonzero_bits = GET_MODE_MASK (GET_MODE (x));
1569 rsp->sign_bit_copies = 1;
1570 return;
1571 }
1572 }
1573
1574 /* If this is a complex assignment, see if we can convert it into a
1575 simple assignment. */
1576 set = expand_field_assignment (set);
1577
1578 /* If this is a simple assignment, or we have a paradoxical SUBREG,
1579 set what we know about X. */
1580
1581 if (SET_DEST (set) == x
1582 || (GET_CODE (SET_DEST (set)) == SUBREG
1583 && (GET_MODE_SIZE (GET_MODE (SET_DEST (set)))
1584 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (set)))))
1585 && SUBREG_REG (SET_DEST (set)) == x))
1586 {
1587 rtx src = SET_SRC (set);
1588
1589 #ifdef SHORT_IMMEDIATES_SIGN_EXTEND
1590 /* If X is narrower than a word and SRC is a non-negative
1591 constant that would appear negative in the mode of X,
1592 sign-extend it for use in reg_stat[].nonzero_bits because some
1593 machines (maybe most) will actually do the sign-extension
1594 and this is the conservative approach.
1595
1596 ??? For 2.5, try to tighten up the MD files in this regard
1597 instead of this kludge. */
1598
1599 if (GET_MODE_BITSIZE (GET_MODE (x)) < BITS_PER_WORD
1600 && CONST_INT_P (src)
1601 && INTVAL (src) > 0
1602 && 0 != (UINTVAL (src)
1603 & ((unsigned HOST_WIDE_INT) 1
1604 << (GET_MODE_BITSIZE (GET_MODE (x)) - 1))))
1605 src = GEN_INT (UINTVAL (src)
1606 | ((unsigned HOST_WIDE_INT) (-1)
1607 << GET_MODE_BITSIZE (GET_MODE (x))));
1608 #endif
1609
1610 /* Don't call nonzero_bits if it cannot change anything. */
1611 if (rsp->nonzero_bits != ~(unsigned HOST_WIDE_INT) 0)
1612 rsp->nonzero_bits |= nonzero_bits (src, nonzero_bits_mode);
1613 num = num_sign_bit_copies (SET_SRC (set), GET_MODE (x));
1614 if (rsp->sign_bit_copies == 0
1615 || rsp->sign_bit_copies > num)
1616 rsp->sign_bit_copies = num;
1617 }
1618 else
1619 {
1620 rsp->nonzero_bits = GET_MODE_MASK (GET_MODE (x));
1621 rsp->sign_bit_copies = 1;
1622 }
1623 }
1624 }
1625 \f
1626 /* See if INSN can be combined into I3. PRED, PRED2, SUCC and SUCC2 are
1627 optionally insns that were previously combined into I3 or that will be
1628 combined into the merger of INSN and I3. The order is PRED, PRED2,
1629 INSN, SUCC, SUCC2, I3.
1630
1631 Return 0 if the combination is not allowed for any reason.
1632
1633 If the combination is allowed, *PDEST will be set to the single
1634 destination of INSN and *PSRC to the single source, and this function
1635 will return 1. */
1636
1637 static int
1638 can_combine_p (rtx insn, rtx i3, rtx pred ATTRIBUTE_UNUSED,
1639 rtx pred2 ATTRIBUTE_UNUSED, rtx succ, rtx succ2,
1640 rtx *pdest, rtx *psrc)
1641 {
1642 int i;
1643 const_rtx set = 0;
1644 rtx src, dest;
1645 rtx p;
1646 #ifdef AUTO_INC_DEC
1647 rtx link;
1648 #endif
1649 bool all_adjacent = true;
1650
1651 if (succ)
1652 {
1653 if (succ2)
1654 {
1655 if (next_active_insn (succ2) != i3)
1656 all_adjacent = false;
1657 if (next_active_insn (succ) != succ2)
1658 all_adjacent = false;
1659 }
1660 else if (next_active_insn (succ) != i3)
1661 all_adjacent = false;
1662 if (next_active_insn (insn) != succ)
1663 all_adjacent = false;
1664 }
1665 else if (next_active_insn (insn) != i3)
1666 all_adjacent = false;
1667
1668 /* Can combine only if previous insn is a SET of a REG, a SUBREG or CC0.
1669 or a PARALLEL consisting of such a SET and CLOBBERs.
1670
1671 If INSN has CLOBBER parallel parts, ignore them for our processing.
1672 By definition, these happen during the execution of the insn. When it
1673 is merged with another insn, all bets are off. If they are, in fact,
1674 needed and aren't also supplied in I3, they may be added by
1675 recog_for_combine. Otherwise, it won't match.
1676
1677 We can also ignore a SET whose SET_DEST is mentioned in a REG_UNUSED
1678 note.
1679
1680 Get the source and destination of INSN. If more than one, can't
1681 combine. */
1682
1683 if (GET_CODE (PATTERN (insn)) == SET)
1684 set = PATTERN (insn);
1685 else if (GET_CODE (PATTERN (insn)) == PARALLEL
1686 && GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == SET)
1687 {
1688 for (i = 0; i < XVECLEN (PATTERN (insn), 0); i++)
1689 {
1690 rtx elt = XVECEXP (PATTERN (insn), 0, i);
1691
1692 switch (GET_CODE (elt))
1693 {
1694 /* This is important to combine floating point insns
1695 for the SH4 port. */
1696 case USE:
1697 /* Combining an isolated USE doesn't make sense.
1698 We depend here on combinable_i3pat to reject them. */
1699 /* The code below this loop only verifies that the inputs of
1700 the SET in INSN do not change. We call reg_set_between_p
1701 to verify that the REG in the USE does not change between
1702 I3 and INSN.
1703 If the USE in INSN was for a pseudo register, the matching
1704 insn pattern will likely match any register; combining this
1705 with any other USE would only be safe if we knew that the
1706 used registers have identical values, or if there was
1707 something to tell them apart, e.g. different modes. For
1708 now, we forgo such complicated tests and simply disallow
1709 combining of USES of pseudo registers with any other USE. */
1710 if (REG_P (XEXP (elt, 0))
1711 && GET_CODE (PATTERN (i3)) == PARALLEL)
1712 {
1713 rtx i3pat = PATTERN (i3);
1714 int i = XVECLEN (i3pat, 0) - 1;
1715 unsigned int regno = REGNO (XEXP (elt, 0));
1716
1717 do
1718 {
1719 rtx i3elt = XVECEXP (i3pat, 0, i);
1720
1721 if (GET_CODE (i3elt) == USE
1722 && REG_P (XEXP (i3elt, 0))
1723 && (REGNO (XEXP (i3elt, 0)) == regno
1724 ? reg_set_between_p (XEXP (elt, 0),
1725 PREV_INSN (insn), i3)
1726 : regno >= FIRST_PSEUDO_REGISTER))
1727 return 0;
1728 }
1729 while (--i >= 0);
1730 }
1731 break;
1732
1733 /* We can ignore CLOBBERs. */
1734 case CLOBBER:
1735 break;
1736
1737 case SET:
1738 /* Ignore SETs whose result isn't used but not those that
1739 have side-effects. */
1740 if (find_reg_note (insn, REG_UNUSED, SET_DEST (elt))
1741 && insn_nothrow_p (insn)
1742 && !side_effects_p (elt))
1743 break;
1744
1745 /* If we have already found a SET, this is a second one and
1746 so we cannot combine with this insn. */
1747 if (set)
1748 return 0;
1749
1750 set = elt;
1751 break;
1752
1753 default:
1754 /* Anything else means we can't combine. */
1755 return 0;
1756 }
1757 }
1758
1759 if (set == 0
1760 /* If SET_SRC is an ASM_OPERANDS we can't throw away these CLOBBERs,
1761 so don't do anything with it. */
1762 || GET_CODE (SET_SRC (set)) == ASM_OPERANDS)
1763 return 0;
1764 }
1765 else
1766 return 0;
1767
1768 if (set == 0)
1769 return 0;
1770
1771 set = expand_field_assignment (set);
1772 src = SET_SRC (set), dest = SET_DEST (set);
1773
1774 /* Don't eliminate a store in the stack pointer. */
1775 if (dest == stack_pointer_rtx
1776 /* Don't combine with an insn that sets a register to itself if it has
1777 a REG_EQUAL note. This may be part of a LIBCALL sequence. */
1778 || (rtx_equal_p (src, dest) && find_reg_note (insn, REG_EQUAL, NULL_RTX))
1779 /* Can't merge an ASM_OPERANDS. */
1780 || GET_CODE (src) == ASM_OPERANDS
1781 /* Can't merge a function call. */
1782 || GET_CODE (src) == CALL
1783 /* Don't eliminate a function call argument. */
1784 || (CALL_P (i3)
1785 && (find_reg_fusage (i3, USE, dest)
1786 || (REG_P (dest)
1787 && REGNO (dest) < FIRST_PSEUDO_REGISTER
1788 && global_regs[REGNO (dest)])))
1789 /* Don't substitute into an incremented register. */
1790 || FIND_REG_INC_NOTE (i3, dest)
1791 || (succ && FIND_REG_INC_NOTE (succ, dest))
1792 || (succ2 && FIND_REG_INC_NOTE (succ2, dest))
1793 /* Don't substitute into a non-local goto, this confuses CFG. */
1794 || (JUMP_P (i3) && find_reg_note (i3, REG_NON_LOCAL_GOTO, NULL_RTX))
1795 /* Make sure that DEST is not used after SUCC but before I3. */
1796 || (!all_adjacent
1797 && ((succ2
1798 && (reg_used_between_p (dest, succ2, i3)
1799 || reg_used_between_p (dest, succ, succ2)))
1800 || (!succ2 && succ && reg_used_between_p (dest, succ, i3))))
1801 /* Make sure that the value that is to be substituted for the register
1802 does not use any registers whose values alter in between. However,
1803 If the insns are adjacent, a use can't cross a set even though we
1804 think it might (this can happen for a sequence of insns each setting
1805 the same destination; last_set of that register might point to
1806 a NOTE). If INSN has a REG_EQUIV note, the register is always
1807 equivalent to the memory so the substitution is valid even if there
1808 are intervening stores. Also, don't move a volatile asm or
1809 UNSPEC_VOLATILE across any other insns. */
1810 || (! all_adjacent
1811 && (((!MEM_P (src)
1812 || ! find_reg_note (insn, REG_EQUIV, src))
1813 && use_crosses_set_p (src, DF_INSN_LUID (insn)))
1814 || (GET_CODE (src) == ASM_OPERANDS && MEM_VOLATILE_P (src))
1815 || GET_CODE (src) == UNSPEC_VOLATILE))
1816 /* Don't combine across a CALL_INSN, because that would possibly
1817 change whether the life span of some REGs crosses calls or not,
1818 and it is a pain to update that information.
1819 Exception: if source is a constant, moving it later can't hurt.
1820 Accept that as a special case. */
1821 || (DF_INSN_LUID (insn) < last_call_luid && ! CONSTANT_P (src)))
1822 return 0;
1823
1824 /* DEST must either be a REG or CC0. */
1825 if (REG_P (dest))
1826 {
1827 /* If register alignment is being enforced for multi-word items in all
1828 cases except for parameters, it is possible to have a register copy
1829 insn referencing a hard register that is not allowed to contain the
1830 mode being copied and which would not be valid as an operand of most
1831 insns. Eliminate this problem by not combining with such an insn.
1832
1833 Also, on some machines we don't want to extend the life of a hard
1834 register. */
1835
1836 if (REG_P (src)
1837 && ((REGNO (dest) < FIRST_PSEUDO_REGISTER
1838 && ! HARD_REGNO_MODE_OK (REGNO (dest), GET_MODE (dest)))
1839 /* Don't extend the life of a hard register unless it is
1840 user variable (if we have few registers) or it can't
1841 fit into the desired register (meaning something special
1842 is going on).
1843 Also avoid substituting a return register into I3, because
1844 reload can't handle a conflict with constraints of other
1845 inputs. */
1846 || (REGNO (src) < FIRST_PSEUDO_REGISTER
1847 && ! HARD_REGNO_MODE_OK (REGNO (src), GET_MODE (src)))))
1848 return 0;
1849 }
1850 else if (GET_CODE (dest) != CC0)
1851 return 0;
1852
1853
1854 if (GET_CODE (PATTERN (i3)) == PARALLEL)
1855 for (i = XVECLEN (PATTERN (i3), 0) - 1; i >= 0; i--)
1856 if (GET_CODE (XVECEXP (PATTERN (i3), 0, i)) == CLOBBER)
1857 {
1858 /* Don't substitute for a register intended as a clobberable
1859 operand. */
1860 rtx reg = XEXP (XVECEXP (PATTERN (i3), 0, i), 0);
1861 if (rtx_equal_p (reg, dest))
1862 return 0;
1863
1864 /* If the clobber represents an earlyclobber operand, we must not
1865 substitute an expression containing the clobbered register.
1866 As we do not analyze the constraint strings here, we have to
1867 make the conservative assumption. However, if the register is
1868 a fixed hard reg, the clobber cannot represent any operand;
1869 we leave it up to the machine description to either accept or
1870 reject use-and-clobber patterns. */
1871 if (!REG_P (reg)
1872 || REGNO (reg) >= FIRST_PSEUDO_REGISTER
1873 || !fixed_regs[REGNO (reg)])
1874 if (reg_overlap_mentioned_p (reg, src))
1875 return 0;
1876 }
1877
1878 /* If INSN contains anything volatile, or is an `asm' (whether volatile
1879 or not), reject, unless nothing volatile comes between it and I3 */
1880
1881 if (GET_CODE (src) == ASM_OPERANDS || volatile_refs_p (src))
1882 {
1883 /* Make sure neither succ nor succ2 contains a volatile reference. */
1884 if (succ2 != 0 && volatile_refs_p (PATTERN (succ2)))
1885 return 0;
1886 if (succ != 0 && volatile_refs_p (PATTERN (succ)))
1887 return 0;
1888 /* We'll check insns between INSN and I3 below. */
1889 }
1890
1891 /* If INSN is an asm, and DEST is a hard register, reject, since it has
1892 to be an explicit register variable, and was chosen for a reason. */
1893
1894 if (GET_CODE (src) == ASM_OPERANDS
1895 && REG_P (dest) && REGNO (dest) < FIRST_PSEUDO_REGISTER)
1896 return 0;
1897
1898 /* If there are any volatile insns between INSN and I3, reject, because
1899 they might affect machine state. */
1900
1901 for (p = NEXT_INSN (insn); p != i3; p = NEXT_INSN (p))
1902 if (INSN_P (p) && p != succ && p != succ2 && volatile_insn_p (PATTERN (p)))
1903 return 0;
1904
1905 /* If INSN contains an autoincrement or autodecrement, make sure that
1906 register is not used between there and I3, and not already used in
1907 I3 either. Neither must it be used in PRED or SUCC, if they exist.
1908 Also insist that I3 not be a jump; if it were one
1909 and the incremented register were spilled, we would lose. */
1910
1911 #ifdef AUTO_INC_DEC
1912 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1913 if (REG_NOTE_KIND (link) == REG_INC
1914 && (JUMP_P (i3)
1915 || reg_used_between_p (XEXP (link, 0), insn, i3)
1916 || (pred != NULL_RTX
1917 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (pred)))
1918 || (pred2 != NULL_RTX
1919 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (pred2)))
1920 || (succ != NULL_RTX
1921 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (succ)))
1922 || (succ2 != NULL_RTX
1923 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (succ2)))
1924 || reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i3))))
1925 return 0;
1926 #endif
1927
1928 #ifdef HAVE_cc0
1929 /* Don't combine an insn that follows a CC0-setting insn.
1930 An insn that uses CC0 must not be separated from the one that sets it.
1931 We do, however, allow I2 to follow a CC0-setting insn if that insn
1932 is passed as I1; in that case it will be deleted also.
1933 We also allow combining in this case if all the insns are adjacent
1934 because that would leave the two CC0 insns adjacent as well.
1935 It would be more logical to test whether CC0 occurs inside I1 or I2,
1936 but that would be much slower, and this ought to be equivalent. */
1937
1938 p = prev_nonnote_insn (insn);
1939 if (p && p != pred && NONJUMP_INSN_P (p) && sets_cc0_p (PATTERN (p))
1940 && ! all_adjacent)
1941 return 0;
1942 #endif
1943
1944 /* If we get here, we have passed all the tests and the combination is
1945 to be allowed. */
1946
1947 *pdest = dest;
1948 *psrc = src;
1949
1950 return 1;
1951 }
1952 \f
1953 /* LOC is the location within I3 that contains its pattern or the component
1954 of a PARALLEL of the pattern. We validate that it is valid for combining.
1955
1956 One problem is if I3 modifies its output, as opposed to replacing it
1957 entirely, we can't allow the output to contain I2DEST, I1DEST or I0DEST as
1958 doing so would produce an insn that is not equivalent to the original insns.
1959
1960 Consider:
1961
1962 (set (reg:DI 101) (reg:DI 100))
1963 (set (subreg:SI (reg:DI 101) 0) <foo>)
1964
1965 This is NOT equivalent to:
1966
1967 (parallel [(set (subreg:SI (reg:DI 100) 0) <foo>)
1968 (set (reg:DI 101) (reg:DI 100))])
1969
1970 Not only does this modify 100 (in which case it might still be valid
1971 if 100 were dead in I2), it sets 101 to the ORIGINAL value of 100.
1972
1973 We can also run into a problem if I2 sets a register that I1
1974 uses and I1 gets directly substituted into I3 (not via I2). In that
1975 case, we would be getting the wrong value of I2DEST into I3, so we
1976 must reject the combination. This case occurs when I2 and I1 both
1977 feed into I3, rather than when I1 feeds into I2, which feeds into I3.
1978 If I1_NOT_IN_SRC is nonzero, it means that finding I1 in the source
1979 of a SET must prevent combination from occurring. The same situation
1980 can occur for I0, in which case I0_NOT_IN_SRC is set.
1981
1982 Before doing the above check, we first try to expand a field assignment
1983 into a set of logical operations.
1984
1985 If PI3_DEST_KILLED is nonzero, it is a pointer to a location in which
1986 we place a register that is both set and used within I3. If more than one
1987 such register is detected, we fail.
1988
1989 Return 1 if the combination is valid, zero otherwise. */
1990
1991 static int
1992 combinable_i3pat (rtx i3, rtx *loc, rtx i2dest, rtx i1dest, rtx i0dest,
1993 int i1_not_in_src, int i0_not_in_src, rtx *pi3dest_killed)
1994 {
1995 rtx x = *loc;
1996
1997 if (GET_CODE (x) == SET)
1998 {
1999 rtx set = x ;
2000 rtx dest = SET_DEST (set);
2001 rtx src = SET_SRC (set);
2002 rtx inner_dest = dest;
2003 rtx subdest;
2004
2005 while (GET_CODE (inner_dest) == STRICT_LOW_PART
2006 || GET_CODE (inner_dest) == SUBREG
2007 || GET_CODE (inner_dest) == ZERO_EXTRACT)
2008 inner_dest = XEXP (inner_dest, 0);
2009
2010 /* Check for the case where I3 modifies its output, as discussed
2011 above. We don't want to prevent pseudos from being combined
2012 into the address of a MEM, so only prevent the combination if
2013 i1 or i2 set the same MEM. */
2014 if ((inner_dest != dest &&
2015 (!MEM_P (inner_dest)
2016 || rtx_equal_p (i2dest, inner_dest)
2017 || (i1dest && rtx_equal_p (i1dest, inner_dest))
2018 || (i0dest && rtx_equal_p (i0dest, inner_dest)))
2019 && (reg_overlap_mentioned_p (i2dest, inner_dest)
2020 || (i1dest && reg_overlap_mentioned_p (i1dest, inner_dest))
2021 || (i0dest && reg_overlap_mentioned_p (i0dest, inner_dest))))
2022
2023 /* This is the same test done in can_combine_p except we can't test
2024 all_adjacent; we don't have to, since this instruction will stay
2025 in place, thus we are not considering increasing the lifetime of
2026 INNER_DEST.
2027
2028 Also, if this insn sets a function argument, combining it with
2029 something that might need a spill could clobber a previous
2030 function argument; the all_adjacent test in can_combine_p also
2031 checks this; here, we do a more specific test for this case. */
2032
2033 || (REG_P (inner_dest)
2034 && REGNO (inner_dest) < FIRST_PSEUDO_REGISTER
2035 && (! HARD_REGNO_MODE_OK (REGNO (inner_dest),
2036 GET_MODE (inner_dest))))
2037 || (i1_not_in_src && reg_overlap_mentioned_p (i1dest, src))
2038 || (i0_not_in_src && reg_overlap_mentioned_p (i0dest, src)))
2039 return 0;
2040
2041 /* If DEST is used in I3, it is being killed in this insn, so
2042 record that for later. We have to consider paradoxical
2043 subregs here, since they kill the whole register, but we
2044 ignore partial subregs, STRICT_LOW_PART, etc.
2045 Never add REG_DEAD notes for the FRAME_POINTER_REGNUM or the
2046 STACK_POINTER_REGNUM, since these are always considered to be
2047 live. Similarly for ARG_POINTER_REGNUM if it is fixed. */
2048 subdest = dest;
2049 if (GET_CODE (subdest) == SUBREG
2050 && (GET_MODE_SIZE (GET_MODE (subdest))
2051 >= GET_MODE_SIZE (GET_MODE (SUBREG_REG (subdest)))))
2052 subdest = SUBREG_REG (subdest);
2053 if (pi3dest_killed
2054 && REG_P (subdest)
2055 && reg_referenced_p (subdest, PATTERN (i3))
2056 && REGNO (subdest) != FRAME_POINTER_REGNUM
2057 #if !HARD_FRAME_POINTER_IS_FRAME_POINTER
2058 && REGNO (subdest) != HARD_FRAME_POINTER_REGNUM
2059 #endif
2060 #if ARG_POINTER_REGNUM != FRAME_POINTER_REGNUM
2061 && (REGNO (subdest) != ARG_POINTER_REGNUM
2062 || ! fixed_regs [REGNO (subdest)])
2063 #endif
2064 && REGNO (subdest) != STACK_POINTER_REGNUM)
2065 {
2066 if (*pi3dest_killed)
2067 return 0;
2068
2069 *pi3dest_killed = subdest;
2070 }
2071 }
2072
2073 else if (GET_CODE (x) == PARALLEL)
2074 {
2075 int i;
2076
2077 for (i = 0; i < XVECLEN (x, 0); i++)
2078 if (! combinable_i3pat (i3, &XVECEXP (x, 0, i), i2dest, i1dest, i0dest,
2079 i1_not_in_src, i0_not_in_src, pi3dest_killed))
2080 return 0;
2081 }
2082
2083 return 1;
2084 }
2085 \f
2086 /* Return 1 if X is an arithmetic expression that contains a multiplication
2087 and division. We don't count multiplications by powers of two here. */
2088
2089 static int
2090 contains_muldiv (rtx x)
2091 {
2092 switch (GET_CODE (x))
2093 {
2094 case MOD: case DIV: case UMOD: case UDIV:
2095 return 1;
2096
2097 case MULT:
2098 return ! (CONST_INT_P (XEXP (x, 1))
2099 && exact_log2 (UINTVAL (XEXP (x, 1))) >= 0);
2100 default:
2101 if (BINARY_P (x))
2102 return contains_muldiv (XEXP (x, 0))
2103 || contains_muldiv (XEXP (x, 1));
2104
2105 if (UNARY_P (x))
2106 return contains_muldiv (XEXP (x, 0));
2107
2108 return 0;
2109 }
2110 }
2111 \f
2112 /* Determine whether INSN can be used in a combination. Return nonzero if
2113 not. This is used in try_combine to detect early some cases where we
2114 can't perform combinations. */
2115
2116 static int
2117 cant_combine_insn_p (rtx insn)
2118 {
2119 rtx set;
2120 rtx src, dest;
2121
2122 /* If this isn't really an insn, we can't do anything.
2123 This can occur when flow deletes an insn that it has merged into an
2124 auto-increment address. */
2125 if (! INSN_P (insn))
2126 return 1;
2127
2128 /* Never combine loads and stores involving hard regs that are likely
2129 to be spilled. The register allocator can usually handle such
2130 reg-reg moves by tying. If we allow the combiner to make
2131 substitutions of likely-spilled regs, reload might die.
2132 As an exception, we allow combinations involving fixed regs; these are
2133 not available to the register allocator so there's no risk involved. */
2134
2135 set = single_set (insn);
2136 if (! set)
2137 return 0;
2138 src = SET_SRC (set);
2139 dest = SET_DEST (set);
2140 if (GET_CODE (src) == SUBREG)
2141 src = SUBREG_REG (src);
2142 if (GET_CODE (dest) == SUBREG)
2143 dest = SUBREG_REG (dest);
2144 if (REG_P (src) && REG_P (dest)
2145 && ((HARD_REGISTER_P (src)
2146 && ! TEST_HARD_REG_BIT (fixed_reg_set, REGNO (src))
2147 && targetm.class_likely_spilled_p (REGNO_REG_CLASS (REGNO (src))))
2148 || (HARD_REGISTER_P (dest)
2149 && ! TEST_HARD_REG_BIT (fixed_reg_set, REGNO (dest))
2150 && targetm.class_likely_spilled_p (REGNO_REG_CLASS (REGNO (dest))))))
2151 return 1;
2152
2153 return 0;
2154 }
2155
2156 struct likely_spilled_retval_info
2157 {
2158 unsigned regno, nregs;
2159 unsigned mask;
2160 };
2161
2162 /* Called via note_stores by likely_spilled_retval_p. Remove from info->mask
2163 hard registers that are known to be written to / clobbered in full. */
2164 static void
2165 likely_spilled_retval_1 (rtx x, const_rtx set, void *data)
2166 {
2167 struct likely_spilled_retval_info *const info =
2168 (struct likely_spilled_retval_info *) data;
2169 unsigned regno, nregs;
2170 unsigned new_mask;
2171
2172 if (!REG_P (XEXP (set, 0)))
2173 return;
2174 regno = REGNO (x);
2175 if (regno >= info->regno + info->nregs)
2176 return;
2177 nregs = hard_regno_nregs[regno][GET_MODE (x)];
2178 if (regno + nregs <= info->regno)
2179 return;
2180 new_mask = (2U << (nregs - 1)) - 1;
2181 if (regno < info->regno)
2182 new_mask >>= info->regno - regno;
2183 else
2184 new_mask <<= regno - info->regno;
2185 info->mask &= ~new_mask;
2186 }
2187
2188 /* Return nonzero iff part of the return value is live during INSN, and
2189 it is likely spilled. This can happen when more than one insn is needed
2190 to copy the return value, e.g. when we consider to combine into the
2191 second copy insn for a complex value. */
2192
2193 static int
2194 likely_spilled_retval_p (rtx insn)
2195 {
2196 rtx use = BB_END (this_basic_block);
2197 rtx reg, p;
2198 unsigned regno, nregs;
2199 /* We assume here that no machine mode needs more than
2200 32 hard registers when the value overlaps with a register
2201 for which TARGET_FUNCTION_VALUE_REGNO_P is true. */
2202 unsigned mask;
2203 struct likely_spilled_retval_info info;
2204
2205 if (!NONJUMP_INSN_P (use) || GET_CODE (PATTERN (use)) != USE || insn == use)
2206 return 0;
2207 reg = XEXP (PATTERN (use), 0);
2208 if (!REG_P (reg) || !targetm.calls.function_value_regno_p (REGNO (reg)))
2209 return 0;
2210 regno = REGNO (reg);
2211 nregs = hard_regno_nregs[regno][GET_MODE (reg)];
2212 if (nregs == 1)
2213 return 0;
2214 mask = (2U << (nregs - 1)) - 1;
2215
2216 /* Disregard parts of the return value that are set later. */
2217 info.regno = regno;
2218 info.nregs = nregs;
2219 info.mask = mask;
2220 for (p = PREV_INSN (use); info.mask && p != insn; p = PREV_INSN (p))
2221 if (INSN_P (p))
2222 note_stores (PATTERN (p), likely_spilled_retval_1, &info);
2223 mask = info.mask;
2224
2225 /* Check if any of the (probably) live return value registers is
2226 likely spilled. */
2227 nregs --;
2228 do
2229 {
2230 if ((mask & 1 << nregs)
2231 && targetm.class_likely_spilled_p (REGNO_REG_CLASS (regno + nregs)))
2232 return 1;
2233 } while (nregs--);
2234 return 0;
2235 }
2236
2237 /* Adjust INSN after we made a change to its destination.
2238
2239 Changing the destination can invalidate notes that say something about
2240 the results of the insn and a LOG_LINK pointing to the insn. */
2241
2242 static void
2243 adjust_for_new_dest (rtx insn)
2244 {
2245 /* For notes, be conservative and simply remove them. */
2246 remove_reg_equal_equiv_notes (insn);
2247
2248 /* The new insn will have a destination that was previously the destination
2249 of an insn just above it. Call distribute_links to make a LOG_LINK from
2250 the next use of that destination. */
2251 distribute_links (gen_rtx_INSN_LIST (VOIDmode, insn, NULL_RTX));
2252
2253 df_insn_rescan (insn);
2254 }
2255
2256 /* Return TRUE if combine can reuse reg X in mode MODE.
2257 ADDED_SETS is nonzero if the original set is still required. */
2258 static bool
2259 can_change_dest_mode (rtx x, int added_sets, enum machine_mode mode)
2260 {
2261 unsigned int regno;
2262
2263 if (!REG_P(x))
2264 return false;
2265
2266 regno = REGNO (x);
2267 /* Allow hard registers if the new mode is legal, and occupies no more
2268 registers than the old mode. */
2269 if (regno < FIRST_PSEUDO_REGISTER)
2270 return (HARD_REGNO_MODE_OK (regno, mode)
2271 && (hard_regno_nregs[regno][GET_MODE (x)]
2272 >= hard_regno_nregs[regno][mode]));
2273
2274 /* Or a pseudo that is only used once. */
2275 return (REG_N_SETS (regno) == 1 && !added_sets
2276 && !REG_USERVAR_P (x));
2277 }
2278
2279
2280 /* Check whether X, the destination of a set, refers to part of
2281 the register specified by REG. */
2282
2283 static bool
2284 reg_subword_p (rtx x, rtx reg)
2285 {
2286 /* Check that reg is an integer mode register. */
2287 if (!REG_P (reg) || GET_MODE_CLASS (GET_MODE (reg)) != MODE_INT)
2288 return false;
2289
2290 if (GET_CODE (x) == STRICT_LOW_PART
2291 || GET_CODE (x) == ZERO_EXTRACT)
2292 x = XEXP (x, 0);
2293
2294 return GET_CODE (x) == SUBREG
2295 && SUBREG_REG (x) == reg
2296 && GET_MODE_CLASS (GET_MODE (x)) == MODE_INT;
2297 }
2298
2299 #ifdef AUTO_INC_DEC
2300 /* Replace auto-increment addressing modes with explicit operations to access
2301 the same addresses without modifying the corresponding registers. */
2302
2303 static rtx
2304 cleanup_auto_inc_dec (rtx src, enum machine_mode mem_mode)
2305 {
2306 rtx x = src;
2307 const RTX_CODE code = GET_CODE (x);
2308 int i;
2309 const char *fmt;
2310
2311 switch (code)
2312 {
2313 case REG:
2314 case CONST_INT:
2315 case CONST_DOUBLE:
2316 case CONST_FIXED:
2317 case CONST_VECTOR:
2318 case SYMBOL_REF:
2319 case CODE_LABEL:
2320 case PC:
2321 case CC0:
2322 case SCRATCH:
2323 /* SCRATCH must be shared because they represent distinct values. */
2324 return x;
2325 case CLOBBER:
2326 if (REG_P (XEXP (x, 0)) && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER)
2327 return x;
2328 break;
2329
2330 case CONST:
2331 if (shared_const_p (x))
2332 return x;
2333 break;
2334
2335 case MEM:
2336 mem_mode = GET_MODE (x);
2337 break;
2338
2339 case PRE_INC:
2340 case PRE_DEC:
2341 gcc_assert (mem_mode != VOIDmode && mem_mode != BLKmode);
2342 return gen_rtx_PLUS (GET_MODE (x),
2343 cleanup_auto_inc_dec (XEXP (x, 0), mem_mode),
2344 GEN_INT (code == PRE_INC
2345 ? GET_MODE_SIZE (mem_mode)
2346 : -GET_MODE_SIZE (mem_mode)));
2347
2348 case POST_INC:
2349 case POST_DEC:
2350 case PRE_MODIFY:
2351 case POST_MODIFY:
2352 return cleanup_auto_inc_dec (code == PRE_MODIFY
2353 ? XEXP (x, 1) : XEXP (x, 0),
2354 mem_mode);
2355
2356 default:
2357 break;
2358 }
2359
2360 /* Copy the various flags, fields, and other information. We assume
2361 that all fields need copying, and then clear the fields that should
2362 not be copied. That is the sensible default behavior, and forces
2363 us to explicitly document why we are *not* copying a flag. */
2364 x = shallow_copy_rtx (x);
2365
2366 /* We do not copy the USED flag, which is used as a mark bit during
2367 walks over the RTL. */
2368 RTX_FLAG (x, used) = 0;
2369
2370 /* We do not copy FRAME_RELATED for INSNs. */
2371 if (INSN_P (x))
2372 RTX_FLAG (x, frame_related) = 0;
2373
2374 fmt = GET_RTX_FORMAT (code);
2375 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2376 if (fmt[i] == 'e')
2377 XEXP (x, i) = cleanup_auto_inc_dec (XEXP (x, i), mem_mode);
2378 else if (fmt[i] == 'E' || fmt[i] == 'V')
2379 {
2380 int j;
2381 XVEC (x, i) = rtvec_alloc (XVECLEN (x, i));
2382 for (j = 0; j < XVECLEN (x, i); j++)
2383 XVECEXP (x, i, j)
2384 = cleanup_auto_inc_dec (XVECEXP (src, i, j), mem_mode);
2385 }
2386
2387 return x;
2388 }
2389 #endif
2390
2391 /* Auxiliary data structure for propagate_for_debug_stmt. */
2392
2393 struct rtx_subst_pair
2394 {
2395 rtx to;
2396 bool adjusted;
2397 };
2398
2399 /* DATA points to an rtx_subst_pair. Return the value that should be
2400 substituted. */
2401
2402 static rtx
2403 propagate_for_debug_subst (rtx from, const_rtx old_rtx, void *data)
2404 {
2405 struct rtx_subst_pair *pair = (struct rtx_subst_pair *)data;
2406
2407 if (!rtx_equal_p (from, old_rtx))
2408 return NULL_RTX;
2409 if (!pair->adjusted)
2410 {
2411 pair->adjusted = true;
2412 #ifdef AUTO_INC_DEC
2413 pair->to = cleanup_auto_inc_dec (pair->to, VOIDmode);
2414 #else
2415 pair->to = copy_rtx (pair->to);
2416 #endif
2417 pair->to = make_compound_operation (pair->to, SET);
2418 return pair->to;
2419 }
2420 return copy_rtx (pair->to);
2421 }
2422
2423 /* Replace all the occurrences of DEST with SRC in DEBUG_INSNs between INSN
2424 and LAST. */
2425
2426 static void
2427 propagate_for_debug (rtx insn, rtx last, rtx dest, rtx src)
2428 {
2429 rtx next, loc;
2430
2431 struct rtx_subst_pair p;
2432 p.to = src;
2433 p.adjusted = false;
2434
2435 next = NEXT_INSN (insn);
2436 while (next != last)
2437 {
2438 insn = next;
2439 next = NEXT_INSN (insn);
2440 if (DEBUG_INSN_P (insn))
2441 {
2442 loc = simplify_replace_fn_rtx (INSN_VAR_LOCATION_LOC (insn),
2443 dest, propagate_for_debug_subst, &p);
2444 if (loc == INSN_VAR_LOCATION_LOC (insn))
2445 continue;
2446 INSN_VAR_LOCATION_LOC (insn) = loc;
2447 df_insn_rescan (insn);
2448 }
2449 }
2450 }
2451
2452 /* Delete the unconditional jump INSN and adjust the CFG correspondingly.
2453 Note that the INSN should be deleted *after* removing dead edges, so
2454 that the kept edge is the fallthrough edge for a (set (pc) (pc))
2455 but not for a (set (pc) (label_ref FOO)). */
2456
2457 static void
2458 update_cfg_for_uncondjump (rtx insn)
2459 {
2460 basic_block bb = BLOCK_FOR_INSN (insn);
2461 bool at_end = (BB_END (bb) == insn);
2462
2463 if (at_end)
2464 purge_dead_edges (bb);
2465
2466 delete_insn (insn);
2467 if (at_end && EDGE_COUNT (bb->succs) == 1)
2468 {
2469 rtx insn;
2470
2471 single_succ_edge (bb)->flags |= EDGE_FALLTHRU;
2472
2473 /* Remove barriers from the footer if there are any. */
2474 for (insn = bb->il.rtl->footer; insn; insn = NEXT_INSN (insn))
2475 if (BARRIER_P (insn))
2476 {
2477 if (PREV_INSN (insn))
2478 NEXT_INSN (PREV_INSN (insn)) = NEXT_INSN (insn);
2479 else
2480 bb->il.rtl->footer = NEXT_INSN (insn);
2481 if (NEXT_INSN (insn))
2482 PREV_INSN (NEXT_INSN (insn)) = PREV_INSN (insn);
2483 }
2484 else if (LABEL_P (insn))
2485 break;
2486 }
2487 }
2488
2489 /* Try to combine the insns I0, I1 and I2 into I3.
2490 Here I0, I1 and I2 appear earlier than I3.
2491 I0 and I1 can be zero; then we combine just I2 into I3, or I1 and I2 into
2492 I3.
2493
2494 If we are combining more than two insns and the resulting insn is not
2495 recognized, try splitting it into two insns. If that happens, I2 and I3
2496 are retained and I1/I0 are pseudo-deleted by turning them into a NOTE.
2497 Otherwise, I0, I1 and I2 are pseudo-deleted.
2498
2499 Return 0 if the combination does not work. Then nothing is changed.
2500 If we did the combination, return the insn at which combine should
2501 resume scanning.
2502
2503 Set NEW_DIRECT_JUMP_P to a nonzero value if try_combine creates a
2504 new direct jump instruction. */
2505
2506 static rtx
2507 try_combine (rtx i3, rtx i2, rtx i1, rtx i0, int *new_direct_jump_p)
2508 {
2509 /* New patterns for I3 and I2, respectively. */
2510 rtx newpat, newi2pat = 0;
2511 rtvec newpat_vec_with_clobbers = 0;
2512 int substed_i2 = 0, substed_i1 = 0, substed_i0 = 0;
2513 /* Indicates need to preserve SET in I0, I1 or I2 in I3 if it is not
2514 dead. */
2515 int added_sets_0, added_sets_1, added_sets_2;
2516 /* Total number of SETs to put into I3. */
2517 int total_sets;
2518 /* Nonzero if I2's or I1's body now appears in I3. */
2519 int i2_is_used = 0, i1_is_used = 0;
2520 /* INSN_CODEs for new I3, new I2, and user of condition code. */
2521 int insn_code_number, i2_code_number = 0, other_code_number = 0;
2522 /* Contains I3 if the destination of I3 is used in its source, which means
2523 that the old life of I3 is being killed. If that usage is placed into
2524 I2 and not in I3, a REG_DEAD note must be made. */
2525 rtx i3dest_killed = 0;
2526 /* SET_DEST and SET_SRC of I2, I1 and I0. */
2527 rtx i2dest = 0, i2src = 0, i1dest = 0, i1src = 0, i0dest = 0, i0src = 0;
2528 /* Copy of SET_SRC of I1, if needed. */
2529 rtx i1src_copy = 0;
2530 /* Set if I2DEST was reused as a scratch register. */
2531 bool i2scratch = false;
2532 /* The PATTERNs of I0, I1, and I2, or a copy of them in certain cases. */
2533 rtx i0pat = 0, i1pat = 0, i2pat = 0;
2534 /* Indicates if I2DEST or I1DEST is in I2SRC or I1_SRC. */
2535 int i2dest_in_i2src = 0, i1dest_in_i1src = 0, i2dest_in_i1src = 0;
2536 int i0dest_in_i0src = 0, i1dest_in_i0src = 0, i2dest_in_i0src = 0;
2537 int i2dest_killed = 0, i1dest_killed = 0, i0dest_killed = 0;
2538 int i1_feeds_i2_n = 0, i0_feeds_i2_n = 0, i0_feeds_i1_n = 0;
2539 /* Notes that must be added to REG_NOTES in I3 and I2. */
2540 rtx new_i3_notes, new_i2_notes;
2541 /* Notes that we substituted I3 into I2 instead of the normal case. */
2542 int i3_subst_into_i2 = 0;
2543 /* Notes that I1, I2 or I3 is a MULT operation. */
2544 int have_mult = 0;
2545 int swap_i2i3 = 0;
2546 int changed_i3_dest = 0;
2547
2548 int maxreg;
2549 rtx temp;
2550 rtx link;
2551 rtx other_pat = 0;
2552 rtx new_other_notes;
2553 int i;
2554
2555 /* Only try four-insn combinations when there's high likelihood of
2556 success. Look for simple insns, such as loads of constants or
2557 binary operations involving a constant. */
2558 if (i0)
2559 {
2560 int i;
2561 int ngood = 0;
2562 int nshift = 0;
2563
2564 if (!flag_expensive_optimizations)
2565 return 0;
2566
2567 for (i = 0; i < 4; i++)
2568 {
2569 rtx insn = i == 0 ? i0 : i == 1 ? i1 : i == 2 ? i2 : i3;
2570 rtx set = single_set (insn);
2571 rtx src;
2572 if (!set)
2573 continue;
2574 src = SET_SRC (set);
2575 if (CONSTANT_P (src))
2576 {
2577 ngood += 2;
2578 break;
2579 }
2580 else if (BINARY_P (src) && CONSTANT_P (XEXP (src, 1)))
2581 ngood++;
2582 else if (GET_CODE (src) == ASHIFT || GET_CODE (src) == ASHIFTRT
2583 || GET_CODE (src) == LSHIFTRT)
2584 nshift++;
2585 }
2586 if (ngood < 2 && nshift < 2)
2587 return 0;
2588 }
2589
2590 /* Exit early if one of the insns involved can't be used for
2591 combinations. */
2592 if (cant_combine_insn_p (i3)
2593 || cant_combine_insn_p (i2)
2594 || (i1 && cant_combine_insn_p (i1))
2595 || (i0 && cant_combine_insn_p (i0))
2596 || likely_spilled_retval_p (i3))
2597 return 0;
2598
2599 combine_attempts++;
2600 undobuf.other_insn = 0;
2601
2602 /* Reset the hard register usage information. */
2603 CLEAR_HARD_REG_SET (newpat_used_regs);
2604
2605 if (dump_file && (dump_flags & TDF_DETAILS))
2606 {
2607 if (i0)
2608 fprintf (dump_file, "\nTrying %d, %d, %d -> %d:\n",
2609 INSN_UID (i0), INSN_UID (i1), INSN_UID (i2), INSN_UID (i3));
2610 else if (i1)
2611 fprintf (dump_file, "\nTrying %d, %d -> %d:\n",
2612 INSN_UID (i1), INSN_UID (i2), INSN_UID (i3));
2613 else
2614 fprintf (dump_file, "\nTrying %d -> %d:\n",
2615 INSN_UID (i2), INSN_UID (i3));
2616 }
2617
2618 /* If multiple insns feed into one of I2 or I3, they can be in any
2619 order. To simplify the code below, reorder them in sequence. */
2620 if (i0 && DF_INSN_LUID (i0) > DF_INSN_LUID (i2))
2621 temp = i2, i2 = i0, i0 = temp;
2622 if (i0 && DF_INSN_LUID (i0) > DF_INSN_LUID (i1))
2623 temp = i1, i1 = i0, i0 = temp;
2624 if (i1 && DF_INSN_LUID (i1) > DF_INSN_LUID (i2))
2625 temp = i1, i1 = i2, i2 = temp;
2626
2627 added_links_insn = 0;
2628
2629 /* First check for one important special case that the code below will
2630 not handle. Namely, the case where I1 is zero, I2 is a PARALLEL
2631 and I3 is a SET whose SET_SRC is a SET_DEST in I2. In that case,
2632 we may be able to replace that destination with the destination of I3.
2633 This occurs in the common code where we compute both a quotient and
2634 remainder into a structure, in which case we want to do the computation
2635 directly into the structure to avoid register-register copies.
2636
2637 Note that this case handles both multiple sets in I2 and also cases
2638 where I2 has a number of CLOBBERs inside the PARALLEL.
2639
2640 We make very conservative checks below and only try to handle the
2641 most common cases of this. For example, we only handle the case
2642 where I2 and I3 are adjacent to avoid making difficult register
2643 usage tests. */
2644
2645 if (i1 == 0 && NONJUMP_INSN_P (i3) && GET_CODE (PATTERN (i3)) == SET
2646 && REG_P (SET_SRC (PATTERN (i3)))
2647 && REGNO (SET_SRC (PATTERN (i3))) >= FIRST_PSEUDO_REGISTER
2648 && find_reg_note (i3, REG_DEAD, SET_SRC (PATTERN (i3)))
2649 && GET_CODE (PATTERN (i2)) == PARALLEL
2650 && ! side_effects_p (SET_DEST (PATTERN (i3)))
2651 /* If the dest of I3 is a ZERO_EXTRACT or STRICT_LOW_PART, the code
2652 below would need to check what is inside (and reg_overlap_mentioned_p
2653 doesn't support those codes anyway). Don't allow those destinations;
2654 the resulting insn isn't likely to be recognized anyway. */
2655 && GET_CODE (SET_DEST (PATTERN (i3))) != ZERO_EXTRACT
2656 && GET_CODE (SET_DEST (PATTERN (i3))) != STRICT_LOW_PART
2657 && ! reg_overlap_mentioned_p (SET_SRC (PATTERN (i3)),
2658 SET_DEST (PATTERN (i3)))
2659 && next_active_insn (i2) == i3)
2660 {
2661 rtx p2 = PATTERN (i2);
2662
2663 /* Make sure that the destination of I3,
2664 which we are going to substitute into one output of I2,
2665 is not used within another output of I2. We must avoid making this:
2666 (parallel [(set (mem (reg 69)) ...)
2667 (set (reg 69) ...)])
2668 which is not well-defined as to order of actions.
2669 (Besides, reload can't handle output reloads for this.)
2670
2671 The problem can also happen if the dest of I3 is a memory ref,
2672 if another dest in I2 is an indirect memory ref. */
2673 for (i = 0; i < XVECLEN (p2, 0); i++)
2674 if ((GET_CODE (XVECEXP (p2, 0, i)) == SET
2675 || GET_CODE (XVECEXP (p2, 0, i)) == CLOBBER)
2676 && reg_overlap_mentioned_p (SET_DEST (PATTERN (i3)),
2677 SET_DEST (XVECEXP (p2, 0, i))))
2678 break;
2679
2680 if (i == XVECLEN (p2, 0))
2681 for (i = 0; i < XVECLEN (p2, 0); i++)
2682 if (GET_CODE (XVECEXP (p2, 0, i)) == SET
2683 && SET_DEST (XVECEXP (p2, 0, i)) == SET_SRC (PATTERN (i3)))
2684 {
2685 combine_merges++;
2686
2687 subst_insn = i3;
2688 subst_low_luid = DF_INSN_LUID (i2);
2689
2690 added_sets_2 = added_sets_1 = added_sets_0 = 0;
2691 i2src = SET_SRC (XVECEXP (p2, 0, i));
2692 i2dest = SET_DEST (XVECEXP (p2, 0, i));
2693 i2dest_killed = dead_or_set_p (i2, i2dest);
2694
2695 /* Replace the dest in I2 with our dest and make the resulting
2696 insn the new pattern for I3. Then skip to where we validate
2697 the pattern. Everything was set up above. */
2698 SUBST (SET_DEST (XVECEXP (p2, 0, i)), SET_DEST (PATTERN (i3)));
2699 newpat = p2;
2700 i3_subst_into_i2 = 1;
2701 goto validate_replacement;
2702 }
2703 }
2704
2705 /* If I2 is setting a pseudo to a constant and I3 is setting some
2706 sub-part of it to another constant, merge them by making a new
2707 constant. */
2708 if (i1 == 0
2709 && (temp = single_set (i2)) != 0
2710 && (CONST_INT_P (SET_SRC (temp))
2711 || GET_CODE (SET_SRC (temp)) == CONST_DOUBLE)
2712 && GET_CODE (PATTERN (i3)) == SET
2713 && (CONST_INT_P (SET_SRC (PATTERN (i3)))
2714 || GET_CODE (SET_SRC (PATTERN (i3))) == CONST_DOUBLE)
2715 && reg_subword_p (SET_DEST (PATTERN (i3)), SET_DEST (temp)))
2716 {
2717 rtx dest = SET_DEST (PATTERN (i3));
2718 int offset = -1;
2719 int width = 0;
2720
2721 if (GET_CODE (dest) == ZERO_EXTRACT)
2722 {
2723 if (CONST_INT_P (XEXP (dest, 1))
2724 && CONST_INT_P (XEXP (dest, 2)))
2725 {
2726 width = INTVAL (XEXP (dest, 1));
2727 offset = INTVAL (XEXP (dest, 2));
2728 dest = XEXP (dest, 0);
2729 if (BITS_BIG_ENDIAN)
2730 offset = GET_MODE_BITSIZE (GET_MODE (dest)) - width - offset;
2731 }
2732 }
2733 else
2734 {
2735 if (GET_CODE (dest) == STRICT_LOW_PART)
2736 dest = XEXP (dest, 0);
2737 width = GET_MODE_BITSIZE (GET_MODE (dest));
2738 offset = 0;
2739 }
2740
2741 if (offset >= 0)
2742 {
2743 /* If this is the low part, we're done. */
2744 if (subreg_lowpart_p (dest))
2745 ;
2746 /* Handle the case where inner is twice the size of outer. */
2747 else if (GET_MODE_BITSIZE (GET_MODE (SET_DEST (temp)))
2748 == 2 * GET_MODE_BITSIZE (GET_MODE (dest)))
2749 offset += GET_MODE_BITSIZE (GET_MODE (dest));
2750 /* Otherwise give up for now. */
2751 else
2752 offset = -1;
2753 }
2754
2755 if (offset >= 0
2756 && (GET_MODE_BITSIZE (GET_MODE (SET_DEST (temp)))
2757 <= HOST_BITS_PER_DOUBLE_INT))
2758 {
2759 double_int m, o, i;
2760 rtx inner = SET_SRC (PATTERN (i3));
2761 rtx outer = SET_SRC (temp);
2762
2763 o = rtx_to_double_int (outer);
2764 i = rtx_to_double_int (inner);
2765
2766 m = double_int_mask (width);
2767 i = double_int_and (i, m);
2768 m = double_int_lshift (m, offset, HOST_BITS_PER_DOUBLE_INT, false);
2769 i = double_int_lshift (i, offset, HOST_BITS_PER_DOUBLE_INT, false);
2770 o = double_int_ior (double_int_and_not (o, m), i);
2771
2772 combine_merges++;
2773 subst_insn = i3;
2774 subst_low_luid = DF_INSN_LUID (i2);
2775 added_sets_2 = added_sets_1 = added_sets_0 = 0;
2776 i2dest = SET_DEST (temp);
2777 i2dest_killed = dead_or_set_p (i2, i2dest);
2778
2779 /* Replace the source in I2 with the new constant and make the
2780 resulting insn the new pattern for I3. Then skip to where we
2781 validate the pattern. Everything was set up above. */
2782 SUBST (SET_SRC (temp),
2783 immed_double_int_const (o, GET_MODE (SET_DEST (temp))));
2784
2785 newpat = PATTERN (i2);
2786
2787 /* The dest of I3 has been replaced with the dest of I2. */
2788 changed_i3_dest = 1;
2789 goto validate_replacement;
2790 }
2791 }
2792
2793 #ifndef HAVE_cc0
2794 /* If we have no I1 and I2 looks like:
2795 (parallel [(set (reg:CC X) (compare:CC OP (const_int 0)))
2796 (set Y OP)])
2797 make up a dummy I1 that is
2798 (set Y OP)
2799 and change I2 to be
2800 (set (reg:CC X) (compare:CC Y (const_int 0)))
2801
2802 (We can ignore any trailing CLOBBERs.)
2803
2804 This undoes a previous combination and allows us to match a branch-and-
2805 decrement insn. */
2806
2807 if (i1 == 0 && GET_CODE (PATTERN (i2)) == PARALLEL
2808 && XVECLEN (PATTERN (i2), 0) >= 2
2809 && GET_CODE (XVECEXP (PATTERN (i2), 0, 0)) == SET
2810 && (GET_MODE_CLASS (GET_MODE (SET_DEST (XVECEXP (PATTERN (i2), 0, 0))))
2811 == MODE_CC)
2812 && GET_CODE (SET_SRC (XVECEXP (PATTERN (i2), 0, 0))) == COMPARE
2813 && XEXP (SET_SRC (XVECEXP (PATTERN (i2), 0, 0)), 1) == const0_rtx
2814 && GET_CODE (XVECEXP (PATTERN (i2), 0, 1)) == SET
2815 && REG_P (SET_DEST (XVECEXP (PATTERN (i2), 0, 1)))
2816 && rtx_equal_p (XEXP (SET_SRC (XVECEXP (PATTERN (i2), 0, 0)), 0),
2817 SET_SRC (XVECEXP (PATTERN (i2), 0, 1))))
2818 {
2819 for (i = XVECLEN (PATTERN (i2), 0) - 1; i >= 2; i--)
2820 if (GET_CODE (XVECEXP (PATTERN (i2), 0, i)) != CLOBBER)
2821 break;
2822
2823 if (i == 1)
2824 {
2825 /* We make I1 with the same INSN_UID as I2. This gives it
2826 the same DF_INSN_LUID for value tracking. Our fake I1 will
2827 never appear in the insn stream so giving it the same INSN_UID
2828 as I2 will not cause a problem. */
2829
2830 i1 = gen_rtx_INSN (VOIDmode, INSN_UID (i2), NULL_RTX, i2,
2831 BLOCK_FOR_INSN (i2), XVECEXP (PATTERN (i2), 0, 1),
2832 INSN_LOCATOR (i2), -1, NULL_RTX);
2833
2834 SUBST (PATTERN (i2), XVECEXP (PATTERN (i2), 0, 0));
2835 SUBST (XEXP (SET_SRC (PATTERN (i2)), 0),
2836 SET_DEST (PATTERN (i1)));
2837 }
2838 }
2839 #endif
2840
2841 /* Verify that I2 and I1 are valid for combining. */
2842 if (! can_combine_p (i2, i3, i0, i1, NULL_RTX, NULL_RTX, &i2dest, &i2src)
2843 || (i1 && ! can_combine_p (i1, i3, i0, NULL_RTX, i2, NULL_RTX,
2844 &i1dest, &i1src))
2845 || (i0 && ! can_combine_p (i0, i3, NULL_RTX, NULL_RTX, i1, i2,
2846 &i0dest, &i0src)))
2847 {
2848 undo_all ();
2849 return 0;
2850 }
2851
2852 /* Record whether I2DEST is used in I2SRC and similarly for the other
2853 cases. Knowing this will help in register status updating below. */
2854 i2dest_in_i2src = reg_overlap_mentioned_p (i2dest, i2src);
2855 i1dest_in_i1src = i1 && reg_overlap_mentioned_p (i1dest, i1src);
2856 i2dest_in_i1src = i1 && reg_overlap_mentioned_p (i2dest, i1src);
2857 i0dest_in_i0src = i0 && reg_overlap_mentioned_p (i0dest, i0src);
2858 i1dest_in_i0src = i0 && reg_overlap_mentioned_p (i1dest, i0src);
2859 i2dest_in_i0src = i0 && reg_overlap_mentioned_p (i2dest, i0src);
2860 i2dest_killed = dead_or_set_p (i2, i2dest);
2861 i1dest_killed = i1 && dead_or_set_p (i1, i1dest);
2862 i0dest_killed = i0 && dead_or_set_p (i0, i0dest);
2863
2864 /* For the earlier insns, determine which of the subsequent ones they
2865 feed. */
2866 i1_feeds_i2_n = i1 && insn_a_feeds_b (i1, i2);
2867 i0_feeds_i1_n = i0 && insn_a_feeds_b (i0, i1);
2868 i0_feeds_i2_n = (i0 && (!i0_feeds_i1_n ? insn_a_feeds_b (i0, i2)
2869 : (!reg_overlap_mentioned_p (i1dest, i0dest)
2870 && reg_overlap_mentioned_p (i0dest, i2src))));
2871
2872 /* Ensure that I3's pattern can be the destination of combines. */
2873 if (! combinable_i3pat (i3, &PATTERN (i3), i2dest, i1dest, i0dest,
2874 i1 && i2dest_in_i1src && !i1_feeds_i2_n,
2875 i0 && ((i2dest_in_i0src && !i0_feeds_i2_n)
2876 || (i1dest_in_i0src && !i0_feeds_i1_n)),
2877 &i3dest_killed))
2878 {
2879 undo_all ();
2880 return 0;
2881 }
2882
2883 /* See if any of the insns is a MULT operation. Unless one is, we will
2884 reject a combination that is, since it must be slower. Be conservative
2885 here. */
2886 if (GET_CODE (i2src) == MULT
2887 || (i1 != 0 && GET_CODE (i1src) == MULT)
2888 || (i0 != 0 && GET_CODE (i0src) == MULT)
2889 || (GET_CODE (PATTERN (i3)) == SET
2890 && GET_CODE (SET_SRC (PATTERN (i3))) == MULT))
2891 have_mult = 1;
2892
2893 /* If I3 has an inc, then give up if I1 or I2 uses the reg that is inc'd.
2894 We used to do this EXCEPT in one case: I3 has a post-inc in an
2895 output operand. However, that exception can give rise to insns like
2896 mov r3,(r3)+
2897 which is a famous insn on the PDP-11 where the value of r3 used as the
2898 source was model-dependent. Avoid this sort of thing. */
2899
2900 #if 0
2901 if (!(GET_CODE (PATTERN (i3)) == SET
2902 && REG_P (SET_SRC (PATTERN (i3)))
2903 && MEM_P (SET_DEST (PATTERN (i3)))
2904 && (GET_CODE (XEXP (SET_DEST (PATTERN (i3)), 0)) == POST_INC
2905 || GET_CODE (XEXP (SET_DEST (PATTERN (i3)), 0)) == POST_DEC)))
2906 /* It's not the exception. */
2907 #endif
2908 #ifdef AUTO_INC_DEC
2909 for (link = REG_NOTES (i3); link; link = XEXP (link, 1))
2910 if (REG_NOTE_KIND (link) == REG_INC
2911 && (reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i2))
2912 || (i1 != 0
2913 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i1)))))
2914 {
2915 undo_all ();
2916 return 0;
2917 }
2918 #endif
2919
2920 /* See if the SETs in I1 or I2 need to be kept around in the merged
2921 instruction: whenever the value set there is still needed past I3.
2922 For the SETs in I2, this is easy: we see if I2DEST dies or is set in I3.
2923
2924 For the SET in I1, we have two cases: If I1 and I2 independently
2925 feed into I3, the set in I1 needs to be kept around if I1DEST dies
2926 or is set in I3. Otherwise (if I1 feeds I2 which feeds I3), the set
2927 in I1 needs to be kept around unless I1DEST dies or is set in either
2928 I2 or I3. The same consideration applies to I0. */
2929
2930 added_sets_2 = !dead_or_set_p (i3, i2dest);
2931
2932 if (i1)
2933 added_sets_1 = !(dead_or_set_p (i3, i1dest)
2934 || (i1_feeds_i2_n && dead_or_set_p (i2, i1dest)));
2935 else
2936 added_sets_1 = 0;
2937
2938 if (i0)
2939 added_sets_0 = !(dead_or_set_p (i3, i0dest)
2940 || (i0_feeds_i2_n && dead_or_set_p (i2, i0dest))
2941 || (i0_feeds_i1_n && dead_or_set_p (i1, i0dest)));
2942 else
2943 added_sets_0 = 0;
2944
2945 /* We are about to copy insns for the case where they need to be kept
2946 around. Check that they can be copied in the merged instruction. */
2947
2948 if (targetm.cannot_copy_insn_p
2949 && ((added_sets_2 && targetm.cannot_copy_insn_p (i2))
2950 || (i1 && added_sets_1 && targetm.cannot_copy_insn_p (i1))
2951 || (i0 && added_sets_0 && targetm.cannot_copy_insn_p (i0))))
2952 {
2953 undo_all ();
2954 return 0;
2955 }
2956
2957 /* If the set in I2 needs to be kept around, we must make a copy of
2958 PATTERN (I2), so that when we substitute I1SRC for I1DEST in
2959 PATTERN (I2), we are only substituting for the original I1DEST, not into
2960 an already-substituted copy. This also prevents making self-referential
2961 rtx. If I2 is a PARALLEL, we just need the piece that assigns I2SRC to
2962 I2DEST. */
2963
2964 if (added_sets_2)
2965 {
2966 if (GET_CODE (PATTERN (i2)) == PARALLEL)
2967 i2pat = gen_rtx_SET (VOIDmode, i2dest, copy_rtx (i2src));
2968 else
2969 i2pat = copy_rtx (PATTERN (i2));
2970 }
2971
2972 if (added_sets_1)
2973 {
2974 if (GET_CODE (PATTERN (i1)) == PARALLEL)
2975 i1pat = gen_rtx_SET (VOIDmode, i1dest, copy_rtx (i1src));
2976 else
2977 i1pat = copy_rtx (PATTERN (i1));
2978 }
2979
2980 if (added_sets_0)
2981 {
2982 if (GET_CODE (PATTERN (i0)) == PARALLEL)
2983 i0pat = gen_rtx_SET (VOIDmode, i0dest, copy_rtx (i0src));
2984 else
2985 i0pat = copy_rtx (PATTERN (i0));
2986 }
2987
2988 combine_merges++;
2989
2990 /* Substitute in the latest insn for the regs set by the earlier ones. */
2991
2992 maxreg = max_reg_num ();
2993
2994 subst_insn = i3;
2995
2996 #ifndef HAVE_cc0
2997 /* Many machines that don't use CC0 have insns that can both perform an
2998 arithmetic operation and set the condition code. These operations will
2999 be represented as a PARALLEL with the first element of the vector
3000 being a COMPARE of an arithmetic operation with the constant zero.
3001 The second element of the vector will set some pseudo to the result
3002 of the same arithmetic operation. If we simplify the COMPARE, we won't
3003 match such a pattern and so will generate an extra insn. Here we test
3004 for this case, where both the comparison and the operation result are
3005 needed, and make the PARALLEL by just replacing I2DEST in I3SRC with
3006 I2SRC. Later we will make the PARALLEL that contains I2. */
3007
3008 if (i1 == 0 && added_sets_2 && GET_CODE (PATTERN (i3)) == SET
3009 && GET_CODE (SET_SRC (PATTERN (i3))) == COMPARE
3010 && XEXP (SET_SRC (PATTERN (i3)), 1) == const0_rtx
3011 && rtx_equal_p (XEXP (SET_SRC (PATTERN (i3)), 0), i2dest))
3012 {
3013 #ifdef SELECT_CC_MODE
3014 rtx *cc_use;
3015 enum machine_mode compare_mode;
3016 #endif
3017
3018 newpat = PATTERN (i3);
3019 SUBST (XEXP (SET_SRC (newpat), 0), i2src);
3020
3021 i2_is_used = 1;
3022
3023 #ifdef SELECT_CC_MODE
3024 /* See if a COMPARE with the operand we substituted in should be done
3025 with the mode that is currently being used. If not, do the same
3026 processing we do in `subst' for a SET; namely, if the destination
3027 is used only once, try to replace it with a register of the proper
3028 mode and also replace the COMPARE. */
3029 if (undobuf.other_insn == 0
3030 && (cc_use = find_single_use (SET_DEST (newpat), i3,
3031 &undobuf.other_insn))
3032 && ((compare_mode = SELECT_CC_MODE (GET_CODE (*cc_use),
3033 i2src, const0_rtx))
3034 != GET_MODE (SET_DEST (newpat))))
3035 {
3036 if (can_change_dest_mode (SET_DEST (newpat), added_sets_2,
3037 compare_mode))
3038 {
3039 unsigned int regno = REGNO (SET_DEST (newpat));
3040 rtx new_dest;
3041
3042 if (regno < FIRST_PSEUDO_REGISTER)
3043 new_dest = gen_rtx_REG (compare_mode, regno);
3044 else
3045 {
3046 SUBST_MODE (regno_reg_rtx[regno], compare_mode);
3047 new_dest = regno_reg_rtx[regno];
3048 }
3049
3050 SUBST (SET_DEST (newpat), new_dest);
3051 SUBST (XEXP (*cc_use, 0), new_dest);
3052 SUBST (SET_SRC (newpat),
3053 gen_rtx_COMPARE (compare_mode, i2src, const0_rtx));
3054 }
3055 else
3056 undobuf.other_insn = 0;
3057 }
3058 #endif
3059 }
3060 else
3061 #endif
3062 {
3063 /* It is possible that the source of I2 or I1 may be performing
3064 an unneeded operation, such as a ZERO_EXTEND of something
3065 that is known to have the high part zero. Handle that case
3066 by letting subst look at the innermost one of them.
3067
3068 Another way to do this would be to have a function that tries
3069 to simplify a single insn instead of merging two or more
3070 insns. We don't do this because of the potential of infinite
3071 loops and because of the potential extra memory required.
3072 However, doing it the way we are is a bit of a kludge and
3073 doesn't catch all cases.
3074
3075 But only do this if -fexpensive-optimizations since it slows
3076 things down and doesn't usually win.
3077
3078 This is not done in the COMPARE case above because the
3079 unmodified I2PAT is used in the PARALLEL and so a pattern
3080 with a modified I2SRC would not match. */
3081
3082 if (flag_expensive_optimizations)
3083 {
3084 /* Pass pc_rtx so no substitutions are done, just
3085 simplifications. */
3086 if (i1)
3087 {
3088 subst_low_luid = DF_INSN_LUID (i1);
3089 i1src = subst (i1src, pc_rtx, pc_rtx, 0, 0);
3090 }
3091 else
3092 {
3093 subst_low_luid = DF_INSN_LUID (i2);
3094 i2src = subst (i2src, pc_rtx, pc_rtx, 0, 0);
3095 }
3096 }
3097
3098 n_occurrences = 0; /* `subst' counts here */
3099 subst_low_luid = DF_INSN_LUID (i2);
3100
3101 /* If I1 feeds into I2 and I1DEST is in I1SRC, we need to make a unique
3102 copy of I2SRC each time we substitute it, in order to avoid creating
3103 self-referential RTL when we will be substituting I1SRC for I1DEST
3104 later. Likewise if I0 feeds into I2, either directly or indirectly
3105 through I1, and I0DEST is in I0SRC. */
3106 newpat = subst (PATTERN (i3), i2dest, i2src, 0,
3107 (i1_feeds_i2_n && i1dest_in_i1src)
3108 || ((i0_feeds_i2_n || (i0_feeds_i1_n && i1_feeds_i2_n))
3109 && i0dest_in_i0src));
3110 substed_i2 = 1;
3111
3112 /* Record whether I2's body now appears within I3's body. */
3113 i2_is_used = n_occurrences;
3114 }
3115
3116 /* If we already got a failure, don't try to do more. Otherwise, try to
3117 substitute I1 if we have it. */
3118
3119 if (i1 && GET_CODE (newpat) != CLOBBER)
3120 {
3121 /* Check that an autoincrement side-effect on I1 has not been lost.
3122 This happens if I1DEST is mentioned in I2 and dies there, and
3123 has disappeared from the new pattern. */
3124 if ((FIND_REG_INC_NOTE (i1, NULL_RTX) != 0
3125 && i1_feeds_i2_n
3126 && dead_or_set_p (i2, i1dest)
3127 && !reg_overlap_mentioned_p (i1dest, newpat))
3128 /* Before we can do this substitution, we must redo the test done
3129 above (see detailed comments there) that ensures I1DEST isn't
3130 mentioned in any SETs in NEWPAT that are field assignments. */
3131 || !combinable_i3pat (NULL_RTX, &newpat, i1dest, NULL_RTX, NULL_RTX,
3132 0, 0, 0))
3133 {
3134 undo_all ();
3135 return 0;
3136 }
3137
3138 n_occurrences = 0;
3139 subst_low_luid = DF_INSN_LUID (i1);
3140
3141 /* If I0 feeds into I1 and I0DEST is in I0SRC, we need to make a unique
3142 copy of I1SRC each time we substitute it, in order to avoid creating
3143 self-referential RTL when we will be substituting I0SRC for I0DEST
3144 later. */
3145 newpat = subst (newpat, i1dest, i1src, 0,
3146 i0_feeds_i1_n && i0dest_in_i0src);
3147 substed_i1 = 1;
3148
3149 /* Record whether I1's body now appears within I3's body. */
3150 i1_is_used = n_occurrences;
3151 }
3152
3153 /* Likewise for I0 if we have it. */
3154
3155 if (i0 && GET_CODE (newpat) != CLOBBER)
3156 {
3157 if ((FIND_REG_INC_NOTE (i0, NULL_RTX) != 0
3158 && ((i0_feeds_i2_n && dead_or_set_p (i2, i0dest))
3159 || (i0_feeds_i1_n && dead_or_set_p (i1, i0dest)))
3160 && !reg_overlap_mentioned_p (i0dest, newpat))
3161 || !combinable_i3pat (NULL_RTX, &newpat, i0dest, NULL_RTX, NULL_RTX,
3162 0, 0, 0))
3163 {
3164 undo_all ();
3165 return 0;
3166 }
3167
3168 /* If the following substitution will modify I1SRC, make a copy of it
3169 for the case where it is substituted for I1DEST in I2PAT later. */
3170 if (i0_feeds_i1_n && added_sets_2 && i1_feeds_i2_n)
3171 i1src_copy = copy_rtx (i1src);
3172
3173 n_occurrences = 0;
3174 subst_low_luid = DF_INSN_LUID (i0);
3175 newpat = subst (newpat, i0dest, i0src, 0, 0);
3176 substed_i0 = 1;
3177 }
3178
3179 /* Fail if an autoincrement side-effect has been duplicated. Be careful
3180 to count all the ways that I2SRC and I1SRC can be used. */
3181 if ((FIND_REG_INC_NOTE (i2, NULL_RTX) != 0
3182 && i2_is_used + added_sets_2 > 1)
3183 || (i1 != 0 && FIND_REG_INC_NOTE (i1, NULL_RTX) != 0
3184 && (i1_is_used + added_sets_1 + (added_sets_2 && i1_feeds_i2_n)
3185 > 1))
3186 || (i0 != 0 && FIND_REG_INC_NOTE (i0, NULL_RTX) != 0
3187 && (n_occurrences + added_sets_0
3188 + (added_sets_1 && i0_feeds_i1_n)
3189 + (added_sets_2 && i0_feeds_i2_n)
3190 > 1))
3191 /* Fail if we tried to make a new register. */
3192 || max_reg_num () != maxreg
3193 /* Fail if we couldn't do something and have a CLOBBER. */
3194 || GET_CODE (newpat) == CLOBBER
3195 /* Fail if this new pattern is a MULT and we didn't have one before
3196 at the outer level. */
3197 || (GET_CODE (newpat) == SET && GET_CODE (SET_SRC (newpat)) == MULT
3198 && ! have_mult))
3199 {
3200 undo_all ();
3201 return 0;
3202 }
3203
3204 /* If the actions of the earlier insns must be kept
3205 in addition to substituting them into the latest one,
3206 we must make a new PARALLEL for the latest insn
3207 to hold additional the SETs. */
3208
3209 if (added_sets_0 || added_sets_1 || added_sets_2)
3210 {
3211 int extra_sets = added_sets_0 + added_sets_1 + added_sets_2;
3212 combine_extras++;
3213
3214 if (GET_CODE (newpat) == PARALLEL)
3215 {
3216 rtvec old = XVEC (newpat, 0);
3217 total_sets = XVECLEN (newpat, 0) + extra_sets;
3218 newpat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (total_sets));
3219 memcpy (XVEC (newpat, 0)->elem, &old->elem[0],
3220 sizeof (old->elem[0]) * old->num_elem);
3221 }
3222 else
3223 {
3224 rtx old = newpat;
3225 total_sets = 1 + extra_sets;
3226 newpat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (total_sets));
3227 XVECEXP (newpat, 0, 0) = old;
3228 }
3229
3230 if (added_sets_0)
3231 XVECEXP (newpat, 0, --total_sets) = i0pat;
3232
3233 if (added_sets_1)
3234 {
3235 rtx t = i1pat;
3236 if (i0_feeds_i1_n)
3237 t = subst (t, i0dest, i0src, 0, 0);
3238
3239 XVECEXP (newpat, 0, --total_sets) = t;
3240 }
3241 if (added_sets_2)
3242 {
3243 rtx t = i2pat;
3244 if (i1_feeds_i2_n)
3245 t = subst (t, i1dest, i1src_copy ? i1src_copy : i1src, 0,
3246 i0_feeds_i1_n && i0dest_in_i0src);
3247 if ((i0_feeds_i1_n && i1_feeds_i2_n) || i0_feeds_i2_n)
3248 t = subst (t, i0dest, i0src, 0, 0);
3249
3250 XVECEXP (newpat, 0, --total_sets) = t;
3251 }
3252 }
3253
3254 validate_replacement:
3255
3256 /* Note which hard regs this insn has as inputs. */
3257 mark_used_regs_combine (newpat);
3258
3259 /* If recog_for_combine fails, it strips existing clobbers. If we'll
3260 consider splitting this pattern, we might need these clobbers. */
3261 if (i1 && GET_CODE (newpat) == PARALLEL
3262 && GET_CODE (XVECEXP (newpat, 0, XVECLEN (newpat, 0) - 1)) == CLOBBER)
3263 {
3264 int len = XVECLEN (newpat, 0);
3265
3266 newpat_vec_with_clobbers = rtvec_alloc (len);
3267 for (i = 0; i < len; i++)
3268 RTVEC_ELT (newpat_vec_with_clobbers, i) = XVECEXP (newpat, 0, i);
3269 }
3270
3271 /* Is the result of combination a valid instruction? */
3272 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3273
3274 /* If the result isn't valid, see if it is a PARALLEL of two SETs where
3275 the second SET's destination is a register that is unused and isn't
3276 marked as an instruction that might trap in an EH region. In that case,
3277 we just need the first SET. This can occur when simplifying a divmod
3278 insn. We *must* test for this case here because the code below that
3279 splits two independent SETs doesn't handle this case correctly when it
3280 updates the register status.
3281
3282 It's pointless doing this if we originally had two sets, one from
3283 i3, and one from i2. Combining then splitting the parallel results
3284 in the original i2 again plus an invalid insn (which we delete).
3285 The net effect is only to move instructions around, which makes
3286 debug info less accurate.
3287
3288 Also check the case where the first SET's destination is unused.
3289 That would not cause incorrect code, but does cause an unneeded
3290 insn to remain. */
3291
3292 if (insn_code_number < 0
3293 && !(added_sets_2 && i1 == 0)
3294 && GET_CODE (newpat) == PARALLEL
3295 && XVECLEN (newpat, 0) == 2
3296 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
3297 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
3298 && asm_noperands (newpat) < 0)
3299 {
3300 rtx set0 = XVECEXP (newpat, 0, 0);
3301 rtx set1 = XVECEXP (newpat, 0, 1);
3302
3303 if (((REG_P (SET_DEST (set1))
3304 && find_reg_note (i3, REG_UNUSED, SET_DEST (set1)))
3305 || (GET_CODE (SET_DEST (set1)) == SUBREG
3306 && find_reg_note (i3, REG_UNUSED, SUBREG_REG (SET_DEST (set1)))))
3307 && insn_nothrow_p (i3)
3308 && !side_effects_p (SET_SRC (set1)))
3309 {
3310 newpat = set0;
3311 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3312 }
3313
3314 else if (((REG_P (SET_DEST (set0))
3315 && find_reg_note (i3, REG_UNUSED, SET_DEST (set0)))
3316 || (GET_CODE (SET_DEST (set0)) == SUBREG
3317 && find_reg_note (i3, REG_UNUSED,
3318 SUBREG_REG (SET_DEST (set0)))))
3319 && insn_nothrow_p (i3)
3320 && !side_effects_p (SET_SRC (set0)))
3321 {
3322 newpat = set1;
3323 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3324
3325 if (insn_code_number >= 0)
3326 changed_i3_dest = 1;
3327 }
3328 }
3329
3330 /* If we were combining three insns and the result is a simple SET
3331 with no ASM_OPERANDS that wasn't recognized, try to split it into two
3332 insns. There are two ways to do this. It can be split using a
3333 machine-specific method (like when you have an addition of a large
3334 constant) or by combine in the function find_split_point. */
3335
3336 if (i1 && insn_code_number < 0 && GET_CODE (newpat) == SET
3337 && asm_noperands (newpat) < 0)
3338 {
3339 rtx parallel, m_split, *split;
3340
3341 /* See if the MD file can split NEWPAT. If it can't, see if letting it
3342 use I2DEST as a scratch register will help. In the latter case,
3343 convert I2DEST to the mode of the source of NEWPAT if we can. */
3344
3345 m_split = combine_split_insns (newpat, i3);
3346
3347 /* We can only use I2DEST as a scratch reg if it doesn't overlap any
3348 inputs of NEWPAT. */
3349
3350 /* ??? If I2DEST is not safe, and I1DEST exists, then it would be
3351 possible to try that as a scratch reg. This would require adding
3352 more code to make it work though. */
3353
3354 if (m_split == 0 && ! reg_overlap_mentioned_p (i2dest, newpat))
3355 {
3356 enum machine_mode new_mode = GET_MODE (SET_DEST (newpat));
3357
3358 /* First try to split using the original register as a
3359 scratch register. */
3360 parallel = gen_rtx_PARALLEL (VOIDmode,
3361 gen_rtvec (2, newpat,
3362 gen_rtx_CLOBBER (VOIDmode,
3363 i2dest)));
3364 m_split = combine_split_insns (parallel, i3);
3365
3366 /* If that didn't work, try changing the mode of I2DEST if
3367 we can. */
3368 if (m_split == 0
3369 && new_mode != GET_MODE (i2dest)
3370 && new_mode != VOIDmode
3371 && can_change_dest_mode (i2dest, added_sets_2, new_mode))
3372 {
3373 enum machine_mode old_mode = GET_MODE (i2dest);
3374 rtx ni2dest;
3375
3376 if (REGNO (i2dest) < FIRST_PSEUDO_REGISTER)
3377 ni2dest = gen_rtx_REG (new_mode, REGNO (i2dest));
3378 else
3379 {
3380 SUBST_MODE (regno_reg_rtx[REGNO (i2dest)], new_mode);
3381 ni2dest = regno_reg_rtx[REGNO (i2dest)];
3382 }
3383
3384 parallel = (gen_rtx_PARALLEL
3385 (VOIDmode,
3386 gen_rtvec (2, newpat,
3387 gen_rtx_CLOBBER (VOIDmode,
3388 ni2dest))));
3389 m_split = combine_split_insns (parallel, i3);
3390
3391 if (m_split == 0
3392 && REGNO (i2dest) >= FIRST_PSEUDO_REGISTER)
3393 {
3394 struct undo *buf;
3395
3396 adjust_reg_mode (regno_reg_rtx[REGNO (i2dest)], old_mode);
3397 buf = undobuf.undos;
3398 undobuf.undos = buf->next;
3399 buf->next = undobuf.frees;
3400 undobuf.frees = buf;
3401 }
3402 }
3403
3404 i2scratch = m_split != 0;
3405 }
3406
3407 /* If recog_for_combine has discarded clobbers, try to use them
3408 again for the split. */
3409 if (m_split == 0 && newpat_vec_with_clobbers)
3410 {
3411 parallel = gen_rtx_PARALLEL (VOIDmode, newpat_vec_with_clobbers);
3412 m_split = combine_split_insns (parallel, i3);
3413 }
3414
3415 if (m_split && NEXT_INSN (m_split) == NULL_RTX)
3416 {
3417 m_split = PATTERN (m_split);
3418 insn_code_number = recog_for_combine (&m_split, i3, &new_i3_notes);
3419 if (insn_code_number >= 0)
3420 newpat = m_split;
3421 }
3422 else if (m_split && NEXT_INSN (NEXT_INSN (m_split)) == NULL_RTX
3423 && (next_real_insn (i2) == i3
3424 || ! use_crosses_set_p (PATTERN (m_split), DF_INSN_LUID (i2))))
3425 {
3426 rtx i2set, i3set;
3427 rtx newi3pat = PATTERN (NEXT_INSN (m_split));
3428 newi2pat = PATTERN (m_split);
3429
3430 i3set = single_set (NEXT_INSN (m_split));
3431 i2set = single_set (m_split);
3432
3433 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
3434
3435 /* If I2 or I3 has multiple SETs, we won't know how to track
3436 register status, so don't use these insns. If I2's destination
3437 is used between I2 and I3, we also can't use these insns. */
3438
3439 if (i2_code_number >= 0 && i2set && i3set
3440 && (next_real_insn (i2) == i3
3441 || ! reg_used_between_p (SET_DEST (i2set), i2, i3)))
3442 insn_code_number = recog_for_combine (&newi3pat, i3,
3443 &new_i3_notes);
3444 if (insn_code_number >= 0)
3445 newpat = newi3pat;
3446
3447 /* It is possible that both insns now set the destination of I3.
3448 If so, we must show an extra use of it. */
3449
3450 if (insn_code_number >= 0)
3451 {
3452 rtx new_i3_dest = SET_DEST (i3set);
3453 rtx new_i2_dest = SET_DEST (i2set);
3454
3455 while (GET_CODE (new_i3_dest) == ZERO_EXTRACT
3456 || GET_CODE (new_i3_dest) == STRICT_LOW_PART
3457 || GET_CODE (new_i3_dest) == SUBREG)
3458 new_i3_dest = XEXP (new_i3_dest, 0);
3459
3460 while (GET_CODE (new_i2_dest) == ZERO_EXTRACT
3461 || GET_CODE (new_i2_dest) == STRICT_LOW_PART
3462 || GET_CODE (new_i2_dest) == SUBREG)
3463 new_i2_dest = XEXP (new_i2_dest, 0);
3464
3465 if (REG_P (new_i3_dest)
3466 && REG_P (new_i2_dest)
3467 && REGNO (new_i3_dest) == REGNO (new_i2_dest))
3468 INC_REG_N_SETS (REGNO (new_i2_dest), 1);
3469 }
3470 }
3471
3472 /* If we can split it and use I2DEST, go ahead and see if that
3473 helps things be recognized. Verify that none of the registers
3474 are set between I2 and I3. */
3475 if (insn_code_number < 0
3476 && (split = find_split_point (&newpat, i3, false)) != 0
3477 #ifdef HAVE_cc0
3478 && REG_P (i2dest)
3479 #endif
3480 /* We need I2DEST in the proper mode. If it is a hard register
3481 or the only use of a pseudo, we can change its mode.
3482 Make sure we don't change a hard register to have a mode that
3483 isn't valid for it, or change the number of registers. */
3484 && (GET_MODE (*split) == GET_MODE (i2dest)
3485 || GET_MODE (*split) == VOIDmode
3486 || can_change_dest_mode (i2dest, added_sets_2,
3487 GET_MODE (*split)))
3488 && (next_real_insn (i2) == i3
3489 || ! use_crosses_set_p (*split, DF_INSN_LUID (i2)))
3490 /* We can't overwrite I2DEST if its value is still used by
3491 NEWPAT. */
3492 && ! reg_referenced_p (i2dest, newpat))
3493 {
3494 rtx newdest = i2dest;
3495 enum rtx_code split_code = GET_CODE (*split);
3496 enum machine_mode split_mode = GET_MODE (*split);
3497 bool subst_done = false;
3498 newi2pat = NULL_RTX;
3499
3500 i2scratch = true;
3501
3502 /* *SPLIT may be part of I2SRC, so make sure we have the
3503 original expression around for later debug processing.
3504 We should not need I2SRC any more in other cases. */
3505 if (MAY_HAVE_DEBUG_INSNS)
3506 i2src = copy_rtx (i2src);
3507 else
3508 i2src = NULL;
3509
3510 /* Get NEWDEST as a register in the proper mode. We have already
3511 validated that we can do this. */
3512 if (GET_MODE (i2dest) != split_mode && split_mode != VOIDmode)
3513 {
3514 if (REGNO (i2dest) < FIRST_PSEUDO_REGISTER)
3515 newdest = gen_rtx_REG (split_mode, REGNO (i2dest));
3516 else
3517 {
3518 SUBST_MODE (regno_reg_rtx[REGNO (i2dest)], split_mode);
3519 newdest = regno_reg_rtx[REGNO (i2dest)];
3520 }
3521 }
3522
3523 /* If *SPLIT is a (mult FOO (const_int pow2)), convert it to
3524 an ASHIFT. This can occur if it was inside a PLUS and hence
3525 appeared to be a memory address. This is a kludge. */
3526 if (split_code == MULT
3527 && CONST_INT_P (XEXP (*split, 1))
3528 && INTVAL (XEXP (*split, 1)) > 0
3529 && (i = exact_log2 (UINTVAL (XEXP (*split, 1)))) >= 0)
3530 {
3531 SUBST (*split, gen_rtx_ASHIFT (split_mode,
3532 XEXP (*split, 0), GEN_INT (i)));
3533 /* Update split_code because we may not have a multiply
3534 anymore. */
3535 split_code = GET_CODE (*split);
3536 }
3537
3538 #ifdef INSN_SCHEDULING
3539 /* If *SPLIT is a paradoxical SUBREG, when we split it, it should
3540 be written as a ZERO_EXTEND. */
3541 if (split_code == SUBREG && MEM_P (SUBREG_REG (*split)))
3542 {
3543 #ifdef LOAD_EXTEND_OP
3544 /* Or as a SIGN_EXTEND if LOAD_EXTEND_OP says that that's
3545 what it really is. */
3546 if (LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (*split)))
3547 == SIGN_EXTEND)
3548 SUBST (*split, gen_rtx_SIGN_EXTEND (split_mode,
3549 SUBREG_REG (*split)));
3550 else
3551 #endif
3552 SUBST (*split, gen_rtx_ZERO_EXTEND (split_mode,
3553 SUBREG_REG (*split)));
3554 }
3555 #endif
3556
3557 /* Attempt to split binary operators using arithmetic identities. */
3558 if (BINARY_P (SET_SRC (newpat))
3559 && split_mode == GET_MODE (SET_SRC (newpat))
3560 && ! side_effects_p (SET_SRC (newpat)))
3561 {
3562 rtx setsrc = SET_SRC (newpat);
3563 enum machine_mode mode = GET_MODE (setsrc);
3564 enum rtx_code code = GET_CODE (setsrc);
3565 rtx src_op0 = XEXP (setsrc, 0);
3566 rtx src_op1 = XEXP (setsrc, 1);
3567
3568 /* Split "X = Y op Y" as "Z = Y; X = Z op Z". */
3569 if (rtx_equal_p (src_op0, src_op1))
3570 {
3571 newi2pat = gen_rtx_SET (VOIDmode, newdest, src_op0);
3572 SUBST (XEXP (setsrc, 0), newdest);
3573 SUBST (XEXP (setsrc, 1), newdest);
3574 subst_done = true;
3575 }
3576 /* Split "((P op Q) op R) op S" where op is PLUS or MULT. */
3577 else if ((code == PLUS || code == MULT)
3578 && GET_CODE (src_op0) == code
3579 && GET_CODE (XEXP (src_op0, 0)) == code
3580 && (INTEGRAL_MODE_P (mode)
3581 || (FLOAT_MODE_P (mode)
3582 && flag_unsafe_math_optimizations)))
3583 {
3584 rtx p = XEXP (XEXP (src_op0, 0), 0);
3585 rtx q = XEXP (XEXP (src_op0, 0), 1);
3586 rtx r = XEXP (src_op0, 1);
3587 rtx s = src_op1;
3588
3589 /* Split both "((X op Y) op X) op Y" and
3590 "((X op Y) op Y) op X" as "T op T" where T is
3591 "X op Y". */
3592 if ((rtx_equal_p (p,r) && rtx_equal_p (q,s))
3593 || (rtx_equal_p (p,s) && rtx_equal_p (q,r)))
3594 {
3595 newi2pat = gen_rtx_SET (VOIDmode, newdest,
3596 XEXP (src_op0, 0));
3597 SUBST (XEXP (setsrc, 0), newdest);
3598 SUBST (XEXP (setsrc, 1), newdest);
3599 subst_done = true;
3600 }
3601 /* Split "((X op X) op Y) op Y)" as "T op T" where
3602 T is "X op Y". */
3603 else if (rtx_equal_p (p,q) && rtx_equal_p (r,s))
3604 {
3605 rtx tmp = simplify_gen_binary (code, mode, p, r);
3606 newi2pat = gen_rtx_SET (VOIDmode, newdest, tmp);
3607 SUBST (XEXP (setsrc, 0), newdest);
3608 SUBST (XEXP (setsrc, 1), newdest);
3609 subst_done = true;
3610 }
3611 }
3612 }
3613
3614 if (!subst_done)
3615 {
3616 newi2pat = gen_rtx_SET (VOIDmode, newdest, *split);
3617 SUBST (*split, newdest);
3618 }
3619
3620 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
3621
3622 /* recog_for_combine might have added CLOBBERs to newi2pat.
3623 Make sure NEWPAT does not depend on the clobbered regs. */
3624 if (GET_CODE (newi2pat) == PARALLEL)
3625 for (i = XVECLEN (newi2pat, 0) - 1; i >= 0; i--)
3626 if (GET_CODE (XVECEXP (newi2pat, 0, i)) == CLOBBER)
3627 {
3628 rtx reg = XEXP (XVECEXP (newi2pat, 0, i), 0);
3629 if (reg_overlap_mentioned_p (reg, newpat))
3630 {
3631 undo_all ();
3632 return 0;
3633 }
3634 }
3635
3636 /* If the split point was a MULT and we didn't have one before,
3637 don't use one now. */
3638 if (i2_code_number >= 0 && ! (split_code == MULT && ! have_mult))
3639 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3640 }
3641 }
3642
3643 /* Check for a case where we loaded from memory in a narrow mode and
3644 then sign extended it, but we need both registers. In that case,
3645 we have a PARALLEL with both loads from the same memory location.
3646 We can split this into a load from memory followed by a register-register
3647 copy. This saves at least one insn, more if register allocation can
3648 eliminate the copy.
3649
3650 We cannot do this if the destination of the first assignment is a
3651 condition code register or cc0. We eliminate this case by making sure
3652 the SET_DEST and SET_SRC have the same mode.
3653
3654 We cannot do this if the destination of the second assignment is
3655 a register that we have already assumed is zero-extended. Similarly
3656 for a SUBREG of such a register. */
3657
3658 else if (i1 && insn_code_number < 0 && asm_noperands (newpat) < 0
3659 && GET_CODE (newpat) == PARALLEL
3660 && XVECLEN (newpat, 0) == 2
3661 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
3662 && GET_CODE (SET_SRC (XVECEXP (newpat, 0, 0))) == SIGN_EXTEND
3663 && (GET_MODE (SET_DEST (XVECEXP (newpat, 0, 0)))
3664 == GET_MODE (SET_SRC (XVECEXP (newpat, 0, 0))))
3665 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
3666 && rtx_equal_p (SET_SRC (XVECEXP (newpat, 0, 1)),
3667 XEXP (SET_SRC (XVECEXP (newpat, 0, 0)), 0))
3668 && ! use_crosses_set_p (SET_SRC (XVECEXP (newpat, 0, 1)),
3669 DF_INSN_LUID (i2))
3670 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != ZERO_EXTRACT
3671 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != STRICT_LOW_PART
3672 && ! (temp = SET_DEST (XVECEXP (newpat, 0, 1)),
3673 (REG_P (temp)
3674 && VEC_index (reg_stat_type, reg_stat,
3675 REGNO (temp))->nonzero_bits != 0
3676 && GET_MODE_BITSIZE (GET_MODE (temp)) < BITS_PER_WORD
3677 && GET_MODE_BITSIZE (GET_MODE (temp)) < HOST_BITS_PER_INT
3678 && (VEC_index (reg_stat_type, reg_stat,
3679 REGNO (temp))->nonzero_bits
3680 != GET_MODE_MASK (word_mode))))
3681 && ! (GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) == SUBREG
3682 && (temp = SUBREG_REG (SET_DEST (XVECEXP (newpat, 0, 1))),
3683 (REG_P (temp)
3684 && VEC_index (reg_stat_type, reg_stat,
3685 REGNO (temp))->nonzero_bits != 0
3686 && GET_MODE_BITSIZE (GET_MODE (temp)) < BITS_PER_WORD
3687 && GET_MODE_BITSIZE (GET_MODE (temp)) < HOST_BITS_PER_INT
3688 && (VEC_index (reg_stat_type, reg_stat,
3689 REGNO (temp))->nonzero_bits
3690 != GET_MODE_MASK (word_mode)))))
3691 && ! reg_overlap_mentioned_p (SET_DEST (XVECEXP (newpat, 0, 1)),
3692 SET_SRC (XVECEXP (newpat, 0, 1)))
3693 && ! find_reg_note (i3, REG_UNUSED,
3694 SET_DEST (XVECEXP (newpat, 0, 0))))
3695 {
3696 rtx ni2dest;
3697
3698 newi2pat = XVECEXP (newpat, 0, 0);
3699 ni2dest = SET_DEST (XVECEXP (newpat, 0, 0));
3700 newpat = XVECEXP (newpat, 0, 1);
3701 SUBST (SET_SRC (newpat),
3702 gen_lowpart (GET_MODE (SET_SRC (newpat)), ni2dest));
3703 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
3704
3705 if (i2_code_number >= 0)
3706 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3707
3708 if (insn_code_number >= 0)
3709 swap_i2i3 = 1;
3710 }
3711
3712 /* Similarly, check for a case where we have a PARALLEL of two independent
3713 SETs but we started with three insns. In this case, we can do the sets
3714 as two separate insns. This case occurs when some SET allows two
3715 other insns to combine, but the destination of that SET is still live. */
3716
3717 else if (i1 && insn_code_number < 0 && asm_noperands (newpat) < 0
3718 && GET_CODE (newpat) == PARALLEL
3719 && XVECLEN (newpat, 0) == 2
3720 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
3721 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) != ZERO_EXTRACT
3722 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) != STRICT_LOW_PART
3723 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
3724 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != ZERO_EXTRACT
3725 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != STRICT_LOW_PART
3726 && ! reg_referenced_p (SET_DEST (XVECEXP (newpat, 0, 1)),
3727 XVECEXP (newpat, 0, 0))
3728 && ! reg_referenced_p (SET_DEST (XVECEXP (newpat, 0, 0)),
3729 XVECEXP (newpat, 0, 1))
3730 && ! (contains_muldiv (SET_SRC (XVECEXP (newpat, 0, 0)))
3731 && contains_muldiv (SET_SRC (XVECEXP (newpat, 0, 1)))))
3732 {
3733 /* Normally, it doesn't matter which of the two is done first,
3734 but the one that references cc0 can't be the second, and
3735 one which uses any regs/memory set in between i2 and i3 can't
3736 be first. */
3737 if (!use_crosses_set_p (SET_SRC (XVECEXP (newpat, 0, 1)),
3738 DF_INSN_LUID (i2))
3739 #ifdef HAVE_cc0
3740 && !reg_referenced_p (cc0_rtx, XVECEXP (newpat, 0, 0))
3741 #endif
3742 )
3743 {
3744 newi2pat = XVECEXP (newpat, 0, 1);
3745 newpat = XVECEXP (newpat, 0, 0);
3746 }
3747 else if (!use_crosses_set_p (SET_SRC (XVECEXP (newpat, 0, 0)),
3748 DF_INSN_LUID (i2))
3749 #ifdef HAVE_cc0
3750 && !reg_referenced_p (cc0_rtx, XVECEXP (newpat, 0, 1))
3751 #endif
3752 )
3753 {
3754 newi2pat = XVECEXP (newpat, 0, 0);
3755 newpat = XVECEXP (newpat, 0, 1);
3756 }
3757 else
3758 {
3759 undo_all ();
3760 return 0;
3761 }
3762
3763 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
3764
3765 if (i2_code_number >= 0)
3766 {
3767 /* recog_for_combine might have added CLOBBERs to newi2pat.
3768 Make sure NEWPAT does not depend on the clobbered regs. */
3769 if (GET_CODE (newi2pat) == PARALLEL)
3770 {
3771 for (i = XVECLEN (newi2pat, 0) - 1; i >= 0; i--)
3772 if (GET_CODE (XVECEXP (newi2pat, 0, i)) == CLOBBER)
3773 {
3774 rtx reg = XEXP (XVECEXP (newi2pat, 0, i), 0);
3775 if (reg_overlap_mentioned_p (reg, newpat))
3776 {
3777 undo_all ();
3778 return 0;
3779 }
3780 }
3781 }
3782
3783 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3784 }
3785 }
3786
3787 /* If it still isn't recognized, fail and change things back the way they
3788 were. */
3789 if ((insn_code_number < 0
3790 /* Is the result a reasonable ASM_OPERANDS? */
3791 && (! check_asm_operands (newpat) || added_sets_1 || added_sets_2)))
3792 {
3793 undo_all ();
3794 return 0;
3795 }
3796
3797 /* If we had to change another insn, make sure it is valid also. */
3798 if (undobuf.other_insn)
3799 {
3800 CLEAR_HARD_REG_SET (newpat_used_regs);
3801
3802 other_pat = PATTERN (undobuf.other_insn);
3803 other_code_number = recog_for_combine (&other_pat, undobuf.other_insn,
3804 &new_other_notes);
3805
3806 if (other_code_number < 0 && ! check_asm_operands (other_pat))
3807 {
3808 undo_all ();
3809 return 0;
3810 }
3811 }
3812
3813 #ifdef HAVE_cc0
3814 /* If I2 is the CC0 setter and I3 is the CC0 user then check whether
3815 they are adjacent to each other or not. */
3816 {
3817 rtx p = prev_nonnote_insn (i3);
3818 if (p && p != i2 && NONJUMP_INSN_P (p) && newi2pat
3819 && sets_cc0_p (newi2pat))
3820 {
3821 undo_all ();
3822 return 0;
3823 }
3824 }
3825 #endif
3826
3827 /* Only allow this combination if insn_rtx_costs reports that the
3828 replacement instructions are cheaper than the originals. */
3829 if (!combine_validate_cost (i0, i1, i2, i3, newpat, newi2pat, other_pat))
3830 {
3831 undo_all ();
3832 return 0;
3833 }
3834
3835 if (MAY_HAVE_DEBUG_INSNS)
3836 {
3837 struct undo *undo;
3838
3839 for (undo = undobuf.undos; undo; undo = undo->next)
3840 if (undo->kind == UNDO_MODE)
3841 {
3842 rtx reg = *undo->where.r;
3843 enum machine_mode new_mode = GET_MODE (reg);
3844 enum machine_mode old_mode = undo->old_contents.m;
3845
3846 /* Temporarily revert mode back. */
3847 adjust_reg_mode (reg, old_mode);
3848
3849 if (reg == i2dest && i2scratch)
3850 {
3851 /* If we used i2dest as a scratch register with a
3852 different mode, substitute it for the original
3853 i2src while its original mode is temporarily
3854 restored, and then clear i2scratch so that we don't
3855 do it again later. */
3856 propagate_for_debug (i2, i3, reg, i2src);
3857 i2scratch = false;
3858 /* Put back the new mode. */
3859 adjust_reg_mode (reg, new_mode);
3860 }
3861 else
3862 {
3863 rtx tempreg = gen_raw_REG (old_mode, REGNO (reg));
3864 rtx first, last;
3865
3866 if (reg == i2dest)
3867 {
3868 first = i2;
3869 last = i3;
3870 }
3871 else
3872 {
3873 first = i3;
3874 last = undobuf.other_insn;
3875 gcc_assert (last);
3876 }
3877
3878 /* We're dealing with a reg that changed mode but not
3879 meaning, so we want to turn it into a subreg for
3880 the new mode. However, because of REG sharing and
3881 because its mode had already changed, we have to do
3882 it in two steps. First, replace any debug uses of
3883 reg, with its original mode temporarily restored,
3884 with this copy we have created; then, replace the
3885 copy with the SUBREG of the original shared reg,
3886 once again changed to the new mode. */
3887 propagate_for_debug (first, last, reg, tempreg);
3888 adjust_reg_mode (reg, new_mode);
3889 propagate_for_debug (first, last, tempreg,
3890 lowpart_subreg (old_mode, reg, new_mode));
3891 }
3892 }
3893 }
3894
3895 /* If we will be able to accept this, we have made a
3896 change to the destination of I3. This requires us to
3897 do a few adjustments. */
3898
3899 if (changed_i3_dest)
3900 {
3901 PATTERN (i3) = newpat;
3902 adjust_for_new_dest (i3);
3903 }
3904
3905 /* We now know that we can do this combination. Merge the insns and
3906 update the status of registers and LOG_LINKS. */
3907
3908 if (undobuf.other_insn)
3909 {
3910 rtx note, next;
3911
3912 PATTERN (undobuf.other_insn) = other_pat;
3913
3914 /* If any of the notes in OTHER_INSN were REG_UNUSED, ensure that they
3915 are still valid. Then add any non-duplicate notes added by
3916 recog_for_combine. */
3917 for (note = REG_NOTES (undobuf.other_insn); note; note = next)
3918 {
3919 next = XEXP (note, 1);
3920
3921 if (REG_NOTE_KIND (note) == REG_UNUSED
3922 && ! reg_set_p (XEXP (note, 0), PATTERN (undobuf.other_insn)))
3923 remove_note (undobuf.other_insn, note);
3924 }
3925
3926 distribute_notes (new_other_notes, undobuf.other_insn,
3927 undobuf.other_insn, NULL_RTX, NULL_RTX, NULL_RTX,
3928 NULL_RTX);
3929 }
3930
3931 if (swap_i2i3)
3932 {
3933 rtx insn;
3934 rtx link;
3935 rtx ni2dest;
3936
3937 /* I3 now uses what used to be its destination and which is now
3938 I2's destination. This requires us to do a few adjustments. */
3939 PATTERN (i3) = newpat;
3940 adjust_for_new_dest (i3);
3941
3942 /* We need a LOG_LINK from I3 to I2. But we used to have one,
3943 so we still will.
3944
3945 However, some later insn might be using I2's dest and have
3946 a LOG_LINK pointing at I3. We must remove this link.
3947 The simplest way to remove the link is to point it at I1,
3948 which we know will be a NOTE. */
3949
3950 /* newi2pat is usually a SET here; however, recog_for_combine might
3951 have added some clobbers. */
3952 if (GET_CODE (newi2pat) == PARALLEL)
3953 ni2dest = SET_DEST (XVECEXP (newi2pat, 0, 0));
3954 else
3955 ni2dest = SET_DEST (newi2pat);
3956
3957 for (insn = NEXT_INSN (i3);
3958 insn && (this_basic_block->next_bb == EXIT_BLOCK_PTR
3959 || insn != BB_HEAD (this_basic_block->next_bb));
3960 insn = NEXT_INSN (insn))
3961 {
3962 if (INSN_P (insn) && reg_referenced_p (ni2dest, PATTERN (insn)))
3963 {
3964 for (link = LOG_LINKS (insn); link;
3965 link = XEXP (link, 1))
3966 if (XEXP (link, 0) == i3)
3967 XEXP (link, 0) = i1;
3968
3969 break;
3970 }
3971 }
3972 }
3973
3974 {
3975 rtx i3notes, i2notes, i1notes = 0, i0notes = 0;
3976 rtx i3links, i2links, i1links = 0, i0links = 0;
3977 rtx midnotes = 0;
3978 int from_luid;
3979 unsigned int regno;
3980 /* Compute which registers we expect to eliminate. newi2pat may be setting
3981 either i3dest or i2dest, so we must check it. Also, i1dest may be the
3982 same as i3dest, in which case newi2pat may be setting i1dest. */
3983 rtx elim_i2 = ((newi2pat && reg_set_p (i2dest, newi2pat))
3984 || i2dest_in_i2src || i2dest_in_i1src || i2dest_in_i0src
3985 || !i2dest_killed
3986 ? 0 : i2dest);
3987 rtx elim_i1 = (i1 == 0 || i1dest_in_i1src || i1dest_in_i0src
3988 || (newi2pat && reg_set_p (i1dest, newi2pat))
3989 || !i1dest_killed
3990 ? 0 : i1dest);
3991 rtx elim_i0 = (i0 == 0 || i0dest_in_i0src
3992 || (newi2pat && reg_set_p (i0dest, newi2pat))
3993 || !i0dest_killed
3994 ? 0 : i0dest);
3995
3996 /* Get the old REG_NOTES and LOG_LINKS from all our insns and
3997 clear them. */
3998 i3notes = REG_NOTES (i3), i3links = LOG_LINKS (i3);
3999 i2notes = REG_NOTES (i2), i2links = LOG_LINKS (i2);
4000 if (i1)
4001 i1notes = REG_NOTES (i1), i1links = LOG_LINKS (i1);
4002 if (i0)
4003 i0notes = REG_NOTES (i0), i0links = LOG_LINKS (i0);
4004
4005 /* Ensure that we do not have something that should not be shared but
4006 occurs multiple times in the new insns. Check this by first
4007 resetting all the `used' flags and then copying anything is shared. */
4008
4009 reset_used_flags (i3notes);
4010 reset_used_flags (i2notes);
4011 reset_used_flags (i1notes);
4012 reset_used_flags (i0notes);
4013 reset_used_flags (newpat);
4014 reset_used_flags (newi2pat);
4015 if (undobuf.other_insn)
4016 reset_used_flags (PATTERN (undobuf.other_insn));
4017
4018 i3notes = copy_rtx_if_shared (i3notes);
4019 i2notes = copy_rtx_if_shared (i2notes);
4020 i1notes = copy_rtx_if_shared (i1notes);
4021 i0notes = copy_rtx_if_shared (i0notes);
4022 newpat = copy_rtx_if_shared (newpat);
4023 newi2pat = copy_rtx_if_shared (newi2pat);
4024 if (undobuf.other_insn)
4025 reset_used_flags (PATTERN (undobuf.other_insn));
4026
4027 INSN_CODE (i3) = insn_code_number;
4028 PATTERN (i3) = newpat;
4029
4030 if (CALL_P (i3) && CALL_INSN_FUNCTION_USAGE (i3))
4031 {
4032 rtx call_usage = CALL_INSN_FUNCTION_USAGE (i3);
4033
4034 reset_used_flags (call_usage);
4035 call_usage = copy_rtx (call_usage);
4036
4037 if (substed_i2)
4038 {
4039 /* I2SRC must still be meaningful at this point. Some splitting
4040 operations can invalidate I2SRC, but those operations do not
4041 apply to calls. */
4042 gcc_assert (i2src);
4043 replace_rtx (call_usage, i2dest, i2src);
4044 }
4045
4046 if (substed_i1)
4047 replace_rtx (call_usage, i1dest, i1src);
4048 if (substed_i0)
4049 replace_rtx (call_usage, i0dest, i0src);
4050
4051 CALL_INSN_FUNCTION_USAGE (i3) = call_usage;
4052 }
4053
4054 if (undobuf.other_insn)
4055 INSN_CODE (undobuf.other_insn) = other_code_number;
4056
4057 /* We had one special case above where I2 had more than one set and
4058 we replaced a destination of one of those sets with the destination
4059 of I3. In that case, we have to update LOG_LINKS of insns later
4060 in this basic block. Note that this (expensive) case is rare.
4061
4062 Also, in this case, we must pretend that all REG_NOTEs for I2
4063 actually came from I3, so that REG_UNUSED notes from I2 will be
4064 properly handled. */
4065
4066 if (i3_subst_into_i2)
4067 {
4068 for (i = 0; i < XVECLEN (PATTERN (i2), 0); i++)
4069 if ((GET_CODE (XVECEXP (PATTERN (i2), 0, i)) == SET
4070 || GET_CODE (XVECEXP (PATTERN (i2), 0, i)) == CLOBBER)
4071 && REG_P (SET_DEST (XVECEXP (PATTERN (i2), 0, i)))
4072 && SET_DEST (XVECEXP (PATTERN (i2), 0, i)) != i2dest
4073 && ! find_reg_note (i2, REG_UNUSED,
4074 SET_DEST (XVECEXP (PATTERN (i2), 0, i))))
4075 for (temp = NEXT_INSN (i2);
4076 temp && (this_basic_block->next_bb == EXIT_BLOCK_PTR
4077 || BB_HEAD (this_basic_block) != temp);
4078 temp = NEXT_INSN (temp))
4079 if (temp != i3 && INSN_P (temp))
4080 for (link = LOG_LINKS (temp); link; link = XEXP (link, 1))
4081 if (XEXP (link, 0) == i2)
4082 XEXP (link, 0) = i3;
4083
4084 if (i3notes)
4085 {
4086 rtx link = i3notes;
4087 while (XEXP (link, 1))
4088 link = XEXP (link, 1);
4089 XEXP (link, 1) = i2notes;
4090 }
4091 else
4092 i3notes = i2notes;
4093 i2notes = 0;
4094 }
4095
4096 LOG_LINKS (i3) = 0;
4097 REG_NOTES (i3) = 0;
4098 LOG_LINKS (i2) = 0;
4099 REG_NOTES (i2) = 0;
4100
4101 if (newi2pat)
4102 {
4103 if (MAY_HAVE_DEBUG_INSNS && i2scratch)
4104 propagate_for_debug (i2, i3, i2dest, i2src);
4105 INSN_CODE (i2) = i2_code_number;
4106 PATTERN (i2) = newi2pat;
4107 }
4108 else
4109 {
4110 if (MAY_HAVE_DEBUG_INSNS && i2src)
4111 propagate_for_debug (i2, i3, i2dest, i2src);
4112 SET_INSN_DELETED (i2);
4113 }
4114
4115 if (i1)
4116 {
4117 LOG_LINKS (i1) = 0;
4118 REG_NOTES (i1) = 0;
4119 if (MAY_HAVE_DEBUG_INSNS)
4120 propagate_for_debug (i1, i3, i1dest, i1src);
4121 SET_INSN_DELETED (i1);
4122 }
4123
4124 if (i0)
4125 {
4126 LOG_LINKS (i0) = 0;
4127 REG_NOTES (i0) = 0;
4128 if (MAY_HAVE_DEBUG_INSNS)
4129 propagate_for_debug (i0, i3, i0dest, i0src);
4130 SET_INSN_DELETED (i0);
4131 }
4132
4133 /* Get death notes for everything that is now used in either I3 or
4134 I2 and used to die in a previous insn. If we built two new
4135 patterns, move from I1 to I2 then I2 to I3 so that we get the
4136 proper movement on registers that I2 modifies. */
4137
4138 if (i0)
4139 from_luid = DF_INSN_LUID (i0);
4140 else if (i1)
4141 from_luid = DF_INSN_LUID (i1);
4142 else
4143 from_luid = DF_INSN_LUID (i2);
4144 if (newi2pat)
4145 move_deaths (newi2pat, NULL_RTX, from_luid, i2, &midnotes);
4146 move_deaths (newpat, newi2pat, from_luid, i3, &midnotes);
4147
4148 /* Distribute all the LOG_LINKS and REG_NOTES from I1, I2, and I3. */
4149 if (i3notes)
4150 distribute_notes (i3notes, i3, i3, newi2pat ? i2 : NULL_RTX,
4151 elim_i2, elim_i1, elim_i0);
4152 if (i2notes)
4153 distribute_notes (i2notes, i2, i3, newi2pat ? i2 : NULL_RTX,
4154 elim_i2, elim_i1, elim_i0);
4155 if (i1notes)
4156 distribute_notes (i1notes, i1, i3, newi2pat ? i2 : NULL_RTX,
4157 elim_i2, elim_i1, elim_i0);
4158 if (i0notes)
4159 distribute_notes (i0notes, i0, i3, newi2pat ? i2 : NULL_RTX,
4160 elim_i2, elim_i1, elim_i0);
4161 if (midnotes)
4162 distribute_notes (midnotes, NULL_RTX, i3, newi2pat ? i2 : NULL_RTX,
4163 elim_i2, elim_i1, elim_i0);
4164
4165 /* Distribute any notes added to I2 or I3 by recog_for_combine. We
4166 know these are REG_UNUSED and want them to go to the desired insn,
4167 so we always pass it as i3. */
4168
4169 if (newi2pat && new_i2_notes)
4170 distribute_notes (new_i2_notes, i2, i2, NULL_RTX, NULL_RTX, NULL_RTX,
4171 NULL_RTX);
4172
4173 if (new_i3_notes)
4174 distribute_notes (new_i3_notes, i3, i3, NULL_RTX, NULL_RTX, NULL_RTX,
4175 NULL_RTX);
4176
4177 /* If I3DEST was used in I3SRC, it really died in I3. We may need to
4178 put a REG_DEAD note for it somewhere. If NEWI2PAT exists and sets
4179 I3DEST, the death must be somewhere before I2, not I3. If we passed I3
4180 in that case, it might delete I2. Similarly for I2 and I1.
4181 Show an additional death due to the REG_DEAD note we make here. If
4182 we discard it in distribute_notes, we will decrement it again. */
4183
4184 if (i3dest_killed)
4185 {
4186 if (newi2pat && reg_set_p (i3dest_killed, newi2pat))
4187 distribute_notes (alloc_reg_note (REG_DEAD, i3dest_killed,
4188 NULL_RTX),
4189 NULL_RTX, i2, NULL_RTX, elim_i2, elim_i1, elim_i0);
4190 else
4191 distribute_notes (alloc_reg_note (REG_DEAD, i3dest_killed,
4192 NULL_RTX),
4193 NULL_RTX, i3, newi2pat ? i2 : NULL_RTX,
4194 elim_i2, elim_i1, elim_i0);
4195 }
4196
4197 if (i2dest_in_i2src)
4198 {
4199 rtx new_note = alloc_reg_note (REG_DEAD, i2dest, NULL_RTX);
4200 if (newi2pat && reg_set_p (i2dest, newi2pat))
4201 distribute_notes (new_note, NULL_RTX, i2, NULL_RTX, NULL_RTX,
4202 NULL_RTX, NULL_RTX);
4203 else
4204 distribute_notes (new_note, NULL_RTX, i3, newi2pat ? i2 : NULL_RTX,
4205 NULL_RTX, NULL_RTX, NULL_RTX);
4206 }
4207
4208 if (i1dest_in_i1src)
4209 {
4210 rtx new_note = alloc_reg_note (REG_DEAD, i1dest, NULL_RTX);
4211 if (newi2pat && reg_set_p (i1dest, newi2pat))
4212 distribute_notes (new_note, NULL_RTX, i2, NULL_RTX, NULL_RTX,
4213 NULL_RTX, NULL_RTX);
4214 else
4215 distribute_notes (new_note, NULL_RTX, i3, newi2pat ? i2 : NULL_RTX,
4216 NULL_RTX, NULL_RTX, NULL_RTX);
4217 }
4218
4219 if (i0dest_in_i0src)
4220 {
4221 rtx new_note = alloc_reg_note (REG_DEAD, i0dest, NULL_RTX);
4222 if (newi2pat && reg_set_p (i0dest, newi2pat))
4223 distribute_notes (new_note, NULL_RTX, i2, NULL_RTX, NULL_RTX,
4224 NULL_RTX, NULL_RTX);
4225 else
4226 distribute_notes (new_note, NULL_RTX, i3, newi2pat ? i2 : NULL_RTX,
4227 NULL_RTX, NULL_RTX, NULL_RTX);
4228 }
4229
4230 distribute_links (i3links);
4231 distribute_links (i2links);
4232 distribute_links (i1links);
4233 distribute_links (i0links);
4234
4235 if (REG_P (i2dest))
4236 {
4237 rtx link;
4238 rtx i2_insn = 0, i2_val = 0, set;
4239
4240 /* The insn that used to set this register doesn't exist, and
4241 this life of the register may not exist either. See if one of
4242 I3's links points to an insn that sets I2DEST. If it does,
4243 that is now the last known value for I2DEST. If we don't update
4244 this and I2 set the register to a value that depended on its old
4245 contents, we will get confused. If this insn is used, thing
4246 will be set correctly in combine_instructions. */
4247
4248 for (link = LOG_LINKS (i3); link; link = XEXP (link, 1))
4249 if ((set = single_set (XEXP (link, 0))) != 0
4250 && rtx_equal_p (i2dest, SET_DEST (set)))
4251 i2_insn = XEXP (link, 0), i2_val = SET_SRC (set);
4252
4253 record_value_for_reg (i2dest, i2_insn, i2_val);
4254
4255 /* If the reg formerly set in I2 died only once and that was in I3,
4256 zero its use count so it won't make `reload' do any work. */
4257 if (! added_sets_2
4258 && (newi2pat == 0 || ! reg_mentioned_p (i2dest, newi2pat))
4259 && ! i2dest_in_i2src)
4260 {
4261 regno = REGNO (i2dest);
4262 INC_REG_N_SETS (regno, -1);
4263 }
4264 }
4265
4266 if (i1 && REG_P (i1dest))
4267 {
4268 rtx link;
4269 rtx i1_insn = 0, i1_val = 0, set;
4270
4271 for (link = LOG_LINKS (i3); link; link = XEXP (link, 1))
4272 if ((set = single_set (XEXP (link, 0))) != 0
4273 && rtx_equal_p (i1dest, SET_DEST (set)))
4274 i1_insn = XEXP (link, 0), i1_val = SET_SRC (set);
4275
4276 record_value_for_reg (i1dest, i1_insn, i1_val);
4277
4278 regno = REGNO (i1dest);
4279 if (! added_sets_1 && ! i1dest_in_i1src)
4280 INC_REG_N_SETS (regno, -1);
4281 }
4282
4283 if (i0 && REG_P (i0dest))
4284 {
4285 rtx link;
4286 rtx i0_insn = 0, i0_val = 0, set;
4287
4288 for (link = LOG_LINKS (i3); link; link = XEXP (link, 1))
4289 if ((set = single_set (XEXP (link, 0))) != 0
4290 && rtx_equal_p (i0dest, SET_DEST (set)))
4291 i0_insn = XEXP (link, 0), i0_val = SET_SRC (set);
4292
4293 record_value_for_reg (i0dest, i0_insn, i0_val);
4294
4295 regno = REGNO (i0dest);
4296 if (! added_sets_0 && ! i0dest_in_i0src)
4297 INC_REG_N_SETS (regno, -1);
4298 }
4299
4300 /* Update reg_stat[].nonzero_bits et al for any changes that may have
4301 been made to this insn. The order of
4302 set_nonzero_bits_and_sign_copies() is important. Because newi2pat
4303 can affect nonzero_bits of newpat */
4304 if (newi2pat)
4305 note_stores (newi2pat, set_nonzero_bits_and_sign_copies, NULL);
4306 note_stores (newpat, set_nonzero_bits_and_sign_copies, NULL);
4307 }
4308
4309 if (undobuf.other_insn != NULL_RTX)
4310 {
4311 if (dump_file)
4312 {
4313 fprintf (dump_file, "modifying other_insn ");
4314 dump_insn_slim (dump_file, undobuf.other_insn);
4315 }
4316 df_insn_rescan (undobuf.other_insn);
4317 }
4318
4319 if (i0 && !(NOTE_P(i0) && (NOTE_KIND (i0) == NOTE_INSN_DELETED)))
4320 {
4321 if (dump_file)
4322 {
4323 fprintf (dump_file, "modifying insn i1 ");
4324 dump_insn_slim (dump_file, i0);
4325 }
4326 df_insn_rescan (i0);
4327 }
4328
4329 if (i1 && !(NOTE_P(i1) && (NOTE_KIND (i1) == NOTE_INSN_DELETED)))
4330 {
4331 if (dump_file)
4332 {
4333 fprintf (dump_file, "modifying insn i1 ");
4334 dump_insn_slim (dump_file, i1);
4335 }
4336 df_insn_rescan (i1);
4337 }
4338
4339 if (i2 && !(NOTE_P(i2) && (NOTE_KIND (i2) == NOTE_INSN_DELETED)))
4340 {
4341 if (dump_file)
4342 {
4343 fprintf (dump_file, "modifying insn i2 ");
4344 dump_insn_slim (dump_file, i2);
4345 }
4346 df_insn_rescan (i2);
4347 }
4348
4349 if (i3 && !(NOTE_P(i3) && (NOTE_KIND (i3) == NOTE_INSN_DELETED)))
4350 {
4351 if (dump_file)
4352 {
4353 fprintf (dump_file, "modifying insn i3 ");
4354 dump_insn_slim (dump_file, i3);
4355 }
4356 df_insn_rescan (i3);
4357 }
4358
4359 /* Set new_direct_jump_p if a new return or simple jump instruction
4360 has been created. Adjust the CFG accordingly. */
4361
4362 if (returnjump_p (i3) || any_uncondjump_p (i3))
4363 {
4364 *new_direct_jump_p = 1;
4365 mark_jump_label (PATTERN (i3), i3, 0);
4366 update_cfg_for_uncondjump (i3);
4367 }
4368
4369 if (undobuf.other_insn != NULL_RTX
4370 && (returnjump_p (undobuf.other_insn)
4371 || any_uncondjump_p (undobuf.other_insn)))
4372 {
4373 *new_direct_jump_p = 1;
4374 update_cfg_for_uncondjump (undobuf.other_insn);
4375 }
4376
4377 /* A noop might also need cleaning up of CFG, if it comes from the
4378 simplification of a jump. */
4379 if (GET_CODE (newpat) == SET
4380 && SET_SRC (newpat) == pc_rtx
4381 && SET_DEST (newpat) == pc_rtx)
4382 {
4383 *new_direct_jump_p = 1;
4384 update_cfg_for_uncondjump (i3);
4385 }
4386
4387 if (undobuf.other_insn != NULL_RTX
4388 && GET_CODE (PATTERN (undobuf.other_insn)) == SET
4389 && SET_SRC (PATTERN (undobuf.other_insn)) == pc_rtx
4390 && SET_DEST (PATTERN (undobuf.other_insn)) == pc_rtx)
4391 {
4392 *new_direct_jump_p = 1;
4393 update_cfg_for_uncondjump (undobuf.other_insn);
4394 }
4395
4396 combine_successes++;
4397 undo_commit ();
4398
4399 if (added_links_insn
4400 && (newi2pat == 0 || DF_INSN_LUID (added_links_insn) < DF_INSN_LUID (i2))
4401 && DF_INSN_LUID (added_links_insn) < DF_INSN_LUID (i3))
4402 return added_links_insn;
4403 else
4404 return newi2pat ? i2 : i3;
4405 }
4406 \f
4407 /* Undo all the modifications recorded in undobuf. */
4408
4409 static void
4410 undo_all (void)
4411 {
4412 struct undo *undo, *next;
4413
4414 for (undo = undobuf.undos; undo; undo = next)
4415 {
4416 next = undo->next;
4417 switch (undo->kind)
4418 {
4419 case UNDO_RTX:
4420 *undo->where.r = undo->old_contents.r;
4421 break;
4422 case UNDO_INT:
4423 *undo->where.i = undo->old_contents.i;
4424 break;
4425 case UNDO_MODE:
4426 adjust_reg_mode (*undo->where.r, undo->old_contents.m);
4427 break;
4428 default:
4429 gcc_unreachable ();
4430 }
4431
4432 undo->next = undobuf.frees;
4433 undobuf.frees = undo;
4434 }
4435
4436 undobuf.undos = 0;
4437 }
4438
4439 /* We've committed to accepting the changes we made. Move all
4440 of the undos to the free list. */
4441
4442 static void
4443 undo_commit (void)
4444 {
4445 struct undo *undo, *next;
4446
4447 for (undo = undobuf.undos; undo; undo = next)
4448 {
4449 next = undo->next;
4450 undo->next = undobuf.frees;
4451 undobuf.frees = undo;
4452 }
4453 undobuf.undos = 0;
4454 }
4455 \f
4456 /* Find the innermost point within the rtx at LOC, possibly LOC itself,
4457 where we have an arithmetic expression and return that point. LOC will
4458 be inside INSN.
4459
4460 try_combine will call this function to see if an insn can be split into
4461 two insns. */
4462
4463 static rtx *
4464 find_split_point (rtx *loc, rtx insn, bool set_src)
4465 {
4466 rtx x = *loc;
4467 enum rtx_code code = GET_CODE (x);
4468 rtx *split;
4469 unsigned HOST_WIDE_INT len = 0;
4470 HOST_WIDE_INT pos = 0;
4471 int unsignedp = 0;
4472 rtx inner = NULL_RTX;
4473
4474 /* First special-case some codes. */
4475 switch (code)
4476 {
4477 case SUBREG:
4478 #ifdef INSN_SCHEDULING
4479 /* If we are making a paradoxical SUBREG invalid, it becomes a split
4480 point. */
4481 if (MEM_P (SUBREG_REG (x)))
4482 return loc;
4483 #endif
4484 return find_split_point (&SUBREG_REG (x), insn, false);
4485
4486 case MEM:
4487 #ifdef HAVE_lo_sum
4488 /* If we have (mem (const ..)) or (mem (symbol_ref ...)), split it
4489 using LO_SUM and HIGH. */
4490 if (GET_CODE (XEXP (x, 0)) == CONST
4491 || GET_CODE (XEXP (x, 0)) == SYMBOL_REF)
4492 {
4493 enum machine_mode address_mode
4494 = targetm.addr_space.address_mode (MEM_ADDR_SPACE (x));
4495
4496 SUBST (XEXP (x, 0),
4497 gen_rtx_LO_SUM (address_mode,
4498 gen_rtx_HIGH (address_mode, XEXP (x, 0)),
4499 XEXP (x, 0)));
4500 return &XEXP (XEXP (x, 0), 0);
4501 }
4502 #endif
4503
4504 /* If we have a PLUS whose second operand is a constant and the
4505 address is not valid, perhaps will can split it up using
4506 the machine-specific way to split large constants. We use
4507 the first pseudo-reg (one of the virtual regs) as a placeholder;
4508 it will not remain in the result. */
4509 if (GET_CODE (XEXP (x, 0)) == PLUS
4510 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
4511 && ! memory_address_addr_space_p (GET_MODE (x), XEXP (x, 0),
4512 MEM_ADDR_SPACE (x)))
4513 {
4514 rtx reg = regno_reg_rtx[FIRST_PSEUDO_REGISTER];
4515 rtx seq = combine_split_insns (gen_rtx_SET (VOIDmode, reg,
4516 XEXP (x, 0)),
4517 subst_insn);
4518
4519 /* This should have produced two insns, each of which sets our
4520 placeholder. If the source of the second is a valid address,
4521 we can make put both sources together and make a split point
4522 in the middle. */
4523
4524 if (seq
4525 && NEXT_INSN (seq) != NULL_RTX
4526 && NEXT_INSN (NEXT_INSN (seq)) == NULL_RTX
4527 && NONJUMP_INSN_P (seq)
4528 && GET_CODE (PATTERN (seq)) == SET
4529 && SET_DEST (PATTERN (seq)) == reg
4530 && ! reg_mentioned_p (reg,
4531 SET_SRC (PATTERN (seq)))
4532 && NONJUMP_INSN_P (NEXT_INSN (seq))
4533 && GET_CODE (PATTERN (NEXT_INSN (seq))) == SET
4534 && SET_DEST (PATTERN (NEXT_INSN (seq))) == reg
4535 && memory_address_addr_space_p
4536 (GET_MODE (x), SET_SRC (PATTERN (NEXT_INSN (seq))),
4537 MEM_ADDR_SPACE (x)))
4538 {
4539 rtx src1 = SET_SRC (PATTERN (seq));
4540 rtx src2 = SET_SRC (PATTERN (NEXT_INSN (seq)));
4541
4542 /* Replace the placeholder in SRC2 with SRC1. If we can
4543 find where in SRC2 it was placed, that can become our
4544 split point and we can replace this address with SRC2.
4545 Just try two obvious places. */
4546
4547 src2 = replace_rtx (src2, reg, src1);
4548 split = 0;
4549 if (XEXP (src2, 0) == src1)
4550 split = &XEXP (src2, 0);
4551 else if (GET_RTX_FORMAT (GET_CODE (XEXP (src2, 0)))[0] == 'e'
4552 && XEXP (XEXP (src2, 0), 0) == src1)
4553 split = &XEXP (XEXP (src2, 0), 0);
4554
4555 if (split)
4556 {
4557 SUBST (XEXP (x, 0), src2);
4558 return split;
4559 }
4560 }
4561
4562 /* If that didn't work, perhaps the first operand is complex and
4563 needs to be computed separately, so make a split point there.
4564 This will occur on machines that just support REG + CONST
4565 and have a constant moved through some previous computation. */
4566
4567 else if (!OBJECT_P (XEXP (XEXP (x, 0), 0))
4568 && ! (GET_CODE (XEXP (XEXP (x, 0), 0)) == SUBREG
4569 && OBJECT_P (SUBREG_REG (XEXP (XEXP (x, 0), 0)))))
4570 return &XEXP (XEXP (x, 0), 0);
4571 }
4572
4573 /* If we have a PLUS whose first operand is complex, try computing it
4574 separately by making a split there. */
4575 if (GET_CODE (XEXP (x, 0)) == PLUS
4576 && ! memory_address_addr_space_p (GET_MODE (x), XEXP (x, 0),
4577 MEM_ADDR_SPACE (x))
4578 && ! OBJECT_P (XEXP (XEXP (x, 0), 0))
4579 && ! (GET_CODE (XEXP (XEXP (x, 0), 0)) == SUBREG
4580 && OBJECT_P (SUBREG_REG (XEXP (XEXP (x, 0), 0)))))
4581 return &XEXP (XEXP (x, 0), 0);
4582 break;
4583
4584 case SET:
4585 #ifdef HAVE_cc0
4586 /* If SET_DEST is CC0 and SET_SRC is not an operand, a COMPARE, or a
4587 ZERO_EXTRACT, the most likely reason why this doesn't match is that
4588 we need to put the operand into a register. So split at that
4589 point. */
4590
4591 if (SET_DEST (x) == cc0_rtx
4592 && GET_CODE (SET_SRC (x)) != COMPARE
4593 && GET_CODE (SET_SRC (x)) != ZERO_EXTRACT
4594 && !OBJECT_P (SET_SRC (x))
4595 && ! (GET_CODE (SET_SRC (x)) == SUBREG
4596 && OBJECT_P (SUBREG_REG (SET_SRC (x)))))
4597 return &SET_SRC (x);
4598 #endif
4599
4600 /* See if we can split SET_SRC as it stands. */
4601 split = find_split_point (&SET_SRC (x), insn, true);
4602 if (split && split != &SET_SRC (x))
4603 return split;
4604
4605 /* See if we can split SET_DEST as it stands. */
4606 split = find_split_point (&SET_DEST (x), insn, false);
4607 if (split && split != &SET_DEST (x))
4608 return split;
4609
4610 /* See if this is a bitfield assignment with everything constant. If
4611 so, this is an IOR of an AND, so split it into that. */
4612 if (GET_CODE (SET_DEST (x)) == ZERO_EXTRACT
4613 && (GET_MODE_BITSIZE (GET_MODE (XEXP (SET_DEST (x), 0)))
4614 <= HOST_BITS_PER_WIDE_INT)
4615 && CONST_INT_P (XEXP (SET_DEST (x), 1))
4616 && CONST_INT_P (XEXP (SET_DEST (x), 2))
4617 && CONST_INT_P (SET_SRC (x))
4618 && ((INTVAL (XEXP (SET_DEST (x), 1))
4619 + INTVAL (XEXP (SET_DEST (x), 2)))
4620 <= GET_MODE_BITSIZE (GET_MODE (XEXP (SET_DEST (x), 0))))
4621 && ! side_effects_p (XEXP (SET_DEST (x), 0)))
4622 {
4623 HOST_WIDE_INT pos = INTVAL (XEXP (SET_DEST (x), 2));
4624 unsigned HOST_WIDE_INT len = INTVAL (XEXP (SET_DEST (x), 1));
4625 unsigned HOST_WIDE_INT src = INTVAL (SET_SRC (x));
4626 rtx dest = XEXP (SET_DEST (x), 0);
4627 enum machine_mode mode = GET_MODE (dest);
4628 unsigned HOST_WIDE_INT mask
4629 = ((unsigned HOST_WIDE_INT) 1 << len) - 1;
4630 rtx or_mask;
4631
4632 if (BITS_BIG_ENDIAN)
4633 pos = GET_MODE_BITSIZE (mode) - len - pos;
4634
4635 or_mask = gen_int_mode (src << pos, mode);
4636 if (src == mask)
4637 SUBST (SET_SRC (x),
4638 simplify_gen_binary (IOR, mode, dest, or_mask));
4639 else
4640 {
4641 rtx negmask = gen_int_mode (~(mask << pos), mode);
4642 SUBST (SET_SRC (x),
4643 simplify_gen_binary (IOR, mode,
4644 simplify_gen_binary (AND, mode,
4645 dest, negmask),
4646 or_mask));
4647 }
4648
4649 SUBST (SET_DEST (x), dest);
4650
4651 split = find_split_point (&SET_SRC (x), insn, true);
4652 if (split && split != &SET_SRC (x))
4653 return split;
4654 }
4655
4656 /* Otherwise, see if this is an operation that we can split into two.
4657 If so, try to split that. */
4658 code = GET_CODE (SET_SRC (x));
4659
4660 switch (code)
4661 {
4662 case AND:
4663 /* If we are AND'ing with a large constant that is only a single
4664 bit and the result is only being used in a context where we
4665 need to know if it is zero or nonzero, replace it with a bit
4666 extraction. This will avoid the large constant, which might
4667 have taken more than one insn to make. If the constant were
4668 not a valid argument to the AND but took only one insn to make,
4669 this is no worse, but if it took more than one insn, it will
4670 be better. */
4671
4672 if (CONST_INT_P (XEXP (SET_SRC (x), 1))
4673 && REG_P (XEXP (SET_SRC (x), 0))
4674 && (pos = exact_log2 (UINTVAL (XEXP (SET_SRC (x), 1)))) >= 7
4675 && REG_P (SET_DEST (x))
4676 && (split = find_single_use (SET_DEST (x), insn, (rtx*) 0)) != 0
4677 && (GET_CODE (*split) == EQ || GET_CODE (*split) == NE)
4678 && XEXP (*split, 0) == SET_DEST (x)
4679 && XEXP (*split, 1) == const0_rtx)
4680 {
4681 rtx extraction = make_extraction (GET_MODE (SET_DEST (x)),
4682 XEXP (SET_SRC (x), 0),
4683 pos, NULL_RTX, 1, 1, 0, 0);
4684 if (extraction != 0)
4685 {
4686 SUBST (SET_SRC (x), extraction);
4687 return find_split_point (loc, insn, false);
4688 }
4689 }
4690 break;
4691
4692 case NE:
4693 /* If STORE_FLAG_VALUE is -1, this is (NE X 0) and only one bit of X
4694 is known to be on, this can be converted into a NEG of a shift. */
4695 if (STORE_FLAG_VALUE == -1 && XEXP (SET_SRC (x), 1) == const0_rtx
4696 && GET_MODE (SET_SRC (x)) == GET_MODE (XEXP (SET_SRC (x), 0))
4697 && 1 <= (pos = exact_log2
4698 (nonzero_bits (XEXP (SET_SRC (x), 0),
4699 GET_MODE (XEXP (SET_SRC (x), 0))))))
4700 {
4701 enum machine_mode mode = GET_MODE (XEXP (SET_SRC (x), 0));
4702
4703 SUBST (SET_SRC (x),
4704 gen_rtx_NEG (mode,
4705 gen_rtx_LSHIFTRT (mode,
4706 XEXP (SET_SRC (x), 0),
4707 GEN_INT (pos))));
4708
4709 split = find_split_point (&SET_SRC (x), insn, true);
4710 if (split && split != &SET_SRC (x))
4711 return split;
4712 }
4713 break;
4714
4715 case SIGN_EXTEND:
4716 inner = XEXP (SET_SRC (x), 0);
4717
4718 /* We can't optimize if either mode is a partial integer
4719 mode as we don't know how many bits are significant
4720 in those modes. */
4721 if (GET_MODE_CLASS (GET_MODE (inner)) == MODE_PARTIAL_INT
4722 || GET_MODE_CLASS (GET_MODE (SET_SRC (x))) == MODE_PARTIAL_INT)
4723 break;
4724
4725 pos = 0;
4726 len = GET_MODE_BITSIZE (GET_MODE (inner));
4727 unsignedp = 0;
4728 break;
4729
4730 case SIGN_EXTRACT:
4731 case ZERO_EXTRACT:
4732 if (CONST_INT_P (XEXP (SET_SRC (x), 1))
4733 && CONST_INT_P (XEXP (SET_SRC (x), 2)))
4734 {
4735 inner = XEXP (SET_SRC (x), 0);
4736 len = INTVAL (XEXP (SET_SRC (x), 1));
4737 pos = INTVAL (XEXP (SET_SRC (x), 2));
4738
4739 if (BITS_BIG_ENDIAN)
4740 pos = GET_MODE_BITSIZE (GET_MODE (inner)) - len - pos;
4741 unsignedp = (code == ZERO_EXTRACT);
4742 }
4743 break;
4744
4745 default:
4746 break;
4747 }
4748
4749 if (len && pos >= 0 && pos + len <= GET_MODE_BITSIZE (GET_MODE (inner)))
4750 {
4751 enum machine_mode mode = GET_MODE (SET_SRC (x));
4752
4753 /* For unsigned, we have a choice of a shift followed by an
4754 AND or two shifts. Use two shifts for field sizes where the
4755 constant might be too large. We assume here that we can
4756 always at least get 8-bit constants in an AND insn, which is
4757 true for every current RISC. */
4758
4759 if (unsignedp && len <= 8)
4760 {
4761 SUBST (SET_SRC (x),
4762 gen_rtx_AND (mode,
4763 gen_rtx_LSHIFTRT
4764 (mode, gen_lowpart (mode, inner),
4765 GEN_INT (pos)),
4766 GEN_INT (((unsigned HOST_WIDE_INT) 1 << len)
4767 - 1)));
4768
4769 split = find_split_point (&SET_SRC (x), insn, true);
4770 if (split && split != &SET_SRC (x))
4771 return split;
4772 }
4773 else
4774 {
4775 SUBST (SET_SRC (x),
4776 gen_rtx_fmt_ee
4777 (unsignedp ? LSHIFTRT : ASHIFTRT, mode,
4778 gen_rtx_ASHIFT (mode,
4779 gen_lowpart (mode, inner),
4780 GEN_INT (GET_MODE_BITSIZE (mode)
4781 - len - pos)),
4782 GEN_INT (GET_MODE_BITSIZE (mode) - len)));
4783
4784 split = find_split_point (&SET_SRC (x), insn, true);
4785 if (split && split != &SET_SRC (x))
4786 return split;
4787 }
4788 }
4789
4790 /* See if this is a simple operation with a constant as the second
4791 operand. It might be that this constant is out of range and hence
4792 could be used as a split point. */
4793 if (BINARY_P (SET_SRC (x))
4794 && CONSTANT_P (XEXP (SET_SRC (x), 1))
4795 && (OBJECT_P (XEXP (SET_SRC (x), 0))
4796 || (GET_CODE (XEXP (SET_SRC (x), 0)) == SUBREG
4797 && OBJECT_P (SUBREG_REG (XEXP (SET_SRC (x), 0))))))
4798 return &XEXP (SET_SRC (x), 1);
4799
4800 /* Finally, see if this is a simple operation with its first operand
4801 not in a register. The operation might require this operand in a
4802 register, so return it as a split point. We can always do this
4803 because if the first operand were another operation, we would have
4804 already found it as a split point. */
4805 if ((BINARY_P (SET_SRC (x)) || UNARY_P (SET_SRC (x)))
4806 && ! register_operand (XEXP (SET_SRC (x), 0), VOIDmode))
4807 return &XEXP (SET_SRC (x), 0);
4808
4809 return 0;
4810
4811 case AND:
4812 case IOR:
4813 /* We write NOR as (and (not A) (not B)), but if we don't have a NOR,
4814 it is better to write this as (not (ior A B)) so we can split it.
4815 Similarly for IOR. */
4816 if (GET_CODE (XEXP (x, 0)) == NOT && GET_CODE (XEXP (x, 1)) == NOT)
4817 {
4818 SUBST (*loc,
4819 gen_rtx_NOT (GET_MODE (x),
4820 gen_rtx_fmt_ee (code == IOR ? AND : IOR,
4821 GET_MODE (x),
4822 XEXP (XEXP (x, 0), 0),
4823 XEXP (XEXP (x, 1), 0))));
4824 return find_split_point (loc, insn, set_src);
4825 }
4826
4827 /* Many RISC machines have a large set of logical insns. If the
4828 second operand is a NOT, put it first so we will try to split the
4829 other operand first. */
4830 if (GET_CODE (XEXP (x, 1)) == NOT)
4831 {
4832 rtx tem = XEXP (x, 0);
4833 SUBST (XEXP (x, 0), XEXP (x, 1));
4834 SUBST (XEXP (x, 1), tem);
4835 }
4836 break;
4837
4838 case PLUS:
4839 case MINUS:
4840 /* Canonicalization can produce (minus A (mult B C)), where C is a
4841 constant. It may be better to try splitting (plus (mult B -C) A)
4842 instead if this isn't a multiply by a power of two. */
4843 if (set_src && code == MINUS && GET_CODE (XEXP (x, 1)) == MULT
4844 && GET_CODE (XEXP (XEXP (x, 1), 1)) == CONST_INT
4845 && exact_log2 (INTVAL (XEXP (XEXP (x, 1), 1))) < 0)
4846 {
4847 enum machine_mode mode = GET_MODE (x);
4848 unsigned HOST_WIDE_INT this_int = INTVAL (XEXP (XEXP (x, 1), 1));
4849 HOST_WIDE_INT other_int = trunc_int_for_mode (-this_int, mode);
4850 SUBST (*loc, gen_rtx_PLUS (mode, gen_rtx_MULT (mode,
4851 XEXP (XEXP (x, 1), 0),
4852 GEN_INT (other_int)),
4853 XEXP (x, 0)));
4854 return find_split_point (loc, insn, set_src);
4855 }
4856
4857 /* Split at a multiply-accumulate instruction. However if this is
4858 the SET_SRC, we likely do not have such an instruction and it's
4859 worthless to try this split. */
4860 if (!set_src && GET_CODE (XEXP (x, 0)) == MULT)
4861 return loc;
4862
4863 default:
4864 break;
4865 }
4866
4867 /* Otherwise, select our actions depending on our rtx class. */
4868 switch (GET_RTX_CLASS (code))
4869 {
4870 case RTX_BITFIELD_OPS: /* This is ZERO_EXTRACT and SIGN_EXTRACT. */
4871 case RTX_TERNARY:
4872 split = find_split_point (&XEXP (x, 2), insn, false);
4873 if (split)
4874 return split;
4875 /* ... fall through ... */
4876 case RTX_BIN_ARITH:
4877 case RTX_COMM_ARITH:
4878 case RTX_COMPARE:
4879 case RTX_COMM_COMPARE:
4880 split = find_split_point (&XEXP (x, 1), insn, false);
4881 if (split)
4882 return split;
4883 /* ... fall through ... */
4884 case RTX_UNARY:
4885 /* Some machines have (and (shift ...) ...) insns. If X is not
4886 an AND, but XEXP (X, 0) is, use it as our split point. */
4887 if (GET_CODE (x) != AND && GET_CODE (XEXP (x, 0)) == AND)
4888 return &XEXP (x, 0);
4889
4890 split = find_split_point (&XEXP (x, 0), insn, false);
4891 if (split)
4892 return split;
4893 return loc;
4894
4895 default:
4896 /* Otherwise, we don't have a split point. */
4897 return 0;
4898 }
4899 }
4900 \f
4901 /* Throughout X, replace FROM with TO, and return the result.
4902 The result is TO if X is FROM;
4903 otherwise the result is X, but its contents may have been modified.
4904 If they were modified, a record was made in undobuf so that
4905 undo_all will (among other things) return X to its original state.
4906
4907 If the number of changes necessary is too much to record to undo,
4908 the excess changes are not made, so the result is invalid.
4909 The changes already made can still be undone.
4910 undobuf.num_undo is incremented for such changes, so by testing that
4911 the caller can tell whether the result is valid.
4912
4913 `n_occurrences' is incremented each time FROM is replaced.
4914
4915 IN_DEST is nonzero if we are processing the SET_DEST of a SET.
4916
4917 UNIQUE_COPY is nonzero if each substitution must be unique. We do this
4918 by copying if `n_occurrences' is nonzero. */
4919
4920 static rtx
4921 subst (rtx x, rtx from, rtx to, int in_dest, int unique_copy)
4922 {
4923 enum rtx_code code = GET_CODE (x);
4924 enum machine_mode op0_mode = VOIDmode;
4925 const char *fmt;
4926 int len, i;
4927 rtx new_rtx;
4928
4929 /* Two expressions are equal if they are identical copies of a shared
4930 RTX or if they are both registers with the same register number
4931 and mode. */
4932
4933 #define COMBINE_RTX_EQUAL_P(X,Y) \
4934 ((X) == (Y) \
4935 || (REG_P (X) && REG_P (Y) \
4936 && REGNO (X) == REGNO (Y) && GET_MODE (X) == GET_MODE (Y)))
4937
4938 if (! in_dest && COMBINE_RTX_EQUAL_P (x, from))
4939 {
4940 n_occurrences++;
4941 return (unique_copy && n_occurrences > 1 ? copy_rtx (to) : to);
4942 }
4943
4944 /* If X and FROM are the same register but different modes, they
4945 will not have been seen as equal above. However, the log links code
4946 will make a LOG_LINKS entry for that case. If we do nothing, we
4947 will try to rerecognize our original insn and, when it succeeds,
4948 we will delete the feeding insn, which is incorrect.
4949
4950 So force this insn not to match in this (rare) case. */
4951 if (! in_dest && code == REG && REG_P (from)
4952 && reg_overlap_mentioned_p (x, from))
4953 return gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
4954
4955 /* If this is an object, we are done unless it is a MEM or LO_SUM, both
4956 of which may contain things that can be combined. */
4957 if (code != MEM && code != LO_SUM && OBJECT_P (x))
4958 return x;
4959
4960 /* It is possible to have a subexpression appear twice in the insn.
4961 Suppose that FROM is a register that appears within TO.
4962 Then, after that subexpression has been scanned once by `subst',
4963 the second time it is scanned, TO may be found. If we were
4964 to scan TO here, we would find FROM within it and create a
4965 self-referent rtl structure which is completely wrong. */
4966 if (COMBINE_RTX_EQUAL_P (x, to))
4967 return to;
4968
4969 /* Parallel asm_operands need special attention because all of the
4970 inputs are shared across the arms. Furthermore, unsharing the
4971 rtl results in recognition failures. Failure to handle this case
4972 specially can result in circular rtl.
4973
4974 Solve this by doing a normal pass across the first entry of the
4975 parallel, and only processing the SET_DESTs of the subsequent
4976 entries. Ug. */
4977
4978 if (code == PARALLEL
4979 && GET_CODE (XVECEXP (x, 0, 0)) == SET
4980 && GET_CODE (SET_SRC (XVECEXP (x, 0, 0))) == ASM_OPERANDS)
4981 {
4982 new_rtx = subst (XVECEXP (x, 0, 0), from, to, 0, unique_copy);
4983
4984 /* If this substitution failed, this whole thing fails. */
4985 if (GET_CODE (new_rtx) == CLOBBER
4986 && XEXP (new_rtx, 0) == const0_rtx)
4987 return new_rtx;
4988
4989 SUBST (XVECEXP (x, 0, 0), new_rtx);
4990
4991 for (i = XVECLEN (x, 0) - 1; i >= 1; i--)
4992 {
4993 rtx dest = SET_DEST (XVECEXP (x, 0, i));
4994
4995 if (!REG_P (dest)
4996 && GET_CODE (dest) != CC0
4997 && GET_CODE (dest) != PC)
4998 {
4999 new_rtx = subst (dest, from, to, 0, unique_copy);
5000
5001 /* If this substitution failed, this whole thing fails. */
5002 if (GET_CODE (new_rtx) == CLOBBER
5003 && XEXP (new_rtx, 0) == const0_rtx)
5004 return new_rtx;
5005
5006 SUBST (SET_DEST (XVECEXP (x, 0, i)), new_rtx);
5007 }
5008 }
5009 }
5010 else
5011 {
5012 len = GET_RTX_LENGTH (code);
5013 fmt = GET_RTX_FORMAT (code);
5014
5015 /* We don't need to process a SET_DEST that is a register, CC0,
5016 or PC, so set up to skip this common case. All other cases
5017 where we want to suppress replacing something inside a
5018 SET_SRC are handled via the IN_DEST operand. */
5019 if (code == SET
5020 && (REG_P (SET_DEST (x))
5021 || GET_CODE (SET_DEST (x)) == CC0
5022 || GET_CODE (SET_DEST (x)) == PC))
5023 fmt = "ie";
5024
5025 /* Get the mode of operand 0 in case X is now a SIGN_EXTEND of a
5026 constant. */
5027 if (fmt[0] == 'e')
5028 op0_mode = GET_MODE (XEXP (x, 0));
5029
5030 for (i = 0; i < len; i++)
5031 {
5032 if (fmt[i] == 'E')
5033 {
5034 int j;
5035 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
5036 {
5037 if (COMBINE_RTX_EQUAL_P (XVECEXP (x, i, j), from))
5038 {
5039 new_rtx = (unique_copy && n_occurrences
5040 ? copy_rtx (to) : to);
5041 n_occurrences++;
5042 }
5043 else
5044 {
5045 new_rtx = subst (XVECEXP (x, i, j), from, to, 0,
5046 unique_copy);
5047
5048 /* If this substitution failed, this whole thing
5049 fails. */
5050 if (GET_CODE (new_rtx) == CLOBBER
5051 && XEXP (new_rtx, 0) == const0_rtx)
5052 return new_rtx;
5053 }
5054
5055 SUBST (XVECEXP (x, i, j), new_rtx);
5056 }
5057 }
5058 else if (fmt[i] == 'e')
5059 {
5060 /* If this is a register being set, ignore it. */
5061 new_rtx = XEXP (x, i);
5062 if (in_dest
5063 && i == 0
5064 && (((code == SUBREG || code == ZERO_EXTRACT)
5065 && REG_P (new_rtx))
5066 || code == STRICT_LOW_PART))
5067 ;
5068
5069 else if (COMBINE_RTX_EQUAL_P (XEXP (x, i), from))
5070 {
5071 /* In general, don't install a subreg involving two
5072 modes not tieable. It can worsen register
5073 allocation, and can even make invalid reload
5074 insns, since the reg inside may need to be copied
5075 from in the outside mode, and that may be invalid
5076 if it is an fp reg copied in integer mode.
5077
5078 We allow two exceptions to this: It is valid if
5079 it is inside another SUBREG and the mode of that
5080 SUBREG and the mode of the inside of TO is
5081 tieable and it is valid if X is a SET that copies
5082 FROM to CC0. */
5083
5084 if (GET_CODE (to) == SUBREG
5085 && ! MODES_TIEABLE_P (GET_MODE (to),
5086 GET_MODE (SUBREG_REG (to)))
5087 && ! (code == SUBREG
5088 && MODES_TIEABLE_P (GET_MODE (x),
5089 GET_MODE (SUBREG_REG (to))))
5090 #ifdef HAVE_cc0
5091 && ! (code == SET && i == 1 && XEXP (x, 0) == cc0_rtx)
5092 #endif
5093 )
5094 return gen_rtx_CLOBBER (VOIDmode, const0_rtx);
5095
5096 #ifdef CANNOT_CHANGE_MODE_CLASS
5097 if (code == SUBREG
5098 && REG_P (to)
5099 && REGNO (to) < FIRST_PSEUDO_REGISTER
5100 && REG_CANNOT_CHANGE_MODE_P (REGNO (to),
5101 GET_MODE (to),
5102 GET_MODE (x)))
5103 return gen_rtx_CLOBBER (VOIDmode, const0_rtx);
5104 #endif
5105
5106 new_rtx = (unique_copy && n_occurrences ? copy_rtx (to) : to);
5107 n_occurrences++;
5108 }
5109 else
5110 /* If we are in a SET_DEST, suppress most cases unless we
5111 have gone inside a MEM, in which case we want to
5112 simplify the address. We assume here that things that
5113 are actually part of the destination have their inner
5114 parts in the first expression. This is true for SUBREG,
5115 STRICT_LOW_PART, and ZERO_EXTRACT, which are the only
5116 things aside from REG and MEM that should appear in a
5117 SET_DEST. */
5118 new_rtx = subst (XEXP (x, i), from, to,
5119 (((in_dest
5120 && (code == SUBREG || code == STRICT_LOW_PART
5121 || code == ZERO_EXTRACT))
5122 || code == SET)
5123 && i == 0), unique_copy);
5124
5125 /* If we found that we will have to reject this combination,
5126 indicate that by returning the CLOBBER ourselves, rather than
5127 an expression containing it. This will speed things up as
5128 well as prevent accidents where two CLOBBERs are considered
5129 to be equal, thus producing an incorrect simplification. */
5130
5131 if (GET_CODE (new_rtx) == CLOBBER && XEXP (new_rtx, 0) == const0_rtx)
5132 return new_rtx;
5133
5134 if (GET_CODE (x) == SUBREG
5135 && (CONST_INT_P (new_rtx)
5136 || GET_CODE (new_rtx) == CONST_DOUBLE))
5137 {
5138 enum machine_mode mode = GET_MODE (x);
5139
5140 x = simplify_subreg (GET_MODE (x), new_rtx,
5141 GET_MODE (SUBREG_REG (x)),
5142 SUBREG_BYTE (x));
5143 if (! x)
5144 x = gen_rtx_CLOBBER (mode, const0_rtx);
5145 }
5146 else if (CONST_INT_P (new_rtx)
5147 && GET_CODE (x) == ZERO_EXTEND)
5148 {
5149 x = simplify_unary_operation (ZERO_EXTEND, GET_MODE (x),
5150 new_rtx, GET_MODE (XEXP (x, 0)));
5151 gcc_assert (x);
5152 }
5153 else
5154 SUBST (XEXP (x, i), new_rtx);
5155 }
5156 }
5157 }
5158
5159 /* Check if we are loading something from the constant pool via float
5160 extension; in this case we would undo compress_float_constant
5161 optimization and degenerate constant load to an immediate value. */
5162 if (GET_CODE (x) == FLOAT_EXTEND
5163 && MEM_P (XEXP (x, 0))
5164 && MEM_READONLY_P (XEXP (x, 0)))
5165 {
5166 rtx tmp = avoid_constant_pool_reference (x);
5167 if (x != tmp)
5168 return x;
5169 }
5170
5171 /* Try to simplify X. If the simplification changed the code, it is likely
5172 that further simplification will help, so loop, but limit the number
5173 of repetitions that will be performed. */
5174
5175 for (i = 0; i < 4; i++)
5176 {
5177 /* If X is sufficiently simple, don't bother trying to do anything
5178 with it. */
5179 if (code != CONST_INT && code != REG && code != CLOBBER)
5180 x = combine_simplify_rtx (x, op0_mode, in_dest);
5181
5182 if (GET_CODE (x) == code)
5183 break;
5184
5185 code = GET_CODE (x);
5186
5187 /* We no longer know the original mode of operand 0 since we
5188 have changed the form of X) */
5189 op0_mode = VOIDmode;
5190 }
5191
5192 return x;
5193 }
5194 \f
5195 /* Simplify X, a piece of RTL. We just operate on the expression at the
5196 outer level; call `subst' to simplify recursively. Return the new
5197 expression.
5198
5199 OP0_MODE is the original mode of XEXP (x, 0). IN_DEST is nonzero
5200 if we are inside a SET_DEST. */
5201
5202 static rtx
5203 combine_simplify_rtx (rtx x, enum machine_mode op0_mode, int in_dest)
5204 {
5205 enum rtx_code code = GET_CODE (x);
5206 enum machine_mode mode = GET_MODE (x);
5207 rtx temp;
5208 int i;
5209
5210 /* If this is a commutative operation, put a constant last and a complex
5211 expression first. We don't need to do this for comparisons here. */
5212 if (COMMUTATIVE_ARITH_P (x)
5213 && swap_commutative_operands_p (XEXP (x, 0), XEXP (x, 1)))
5214 {
5215 temp = XEXP (x, 0);
5216 SUBST (XEXP (x, 0), XEXP (x, 1));
5217 SUBST (XEXP (x, 1), temp);
5218 }
5219
5220 /* If this is a simple operation applied to an IF_THEN_ELSE, try
5221 applying it to the arms of the IF_THEN_ELSE. This often simplifies
5222 things. Check for cases where both arms are testing the same
5223 condition.
5224
5225 Don't do anything if all operands are very simple. */
5226
5227 if ((BINARY_P (x)
5228 && ((!OBJECT_P (XEXP (x, 0))
5229 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
5230 && OBJECT_P (SUBREG_REG (XEXP (x, 0)))))
5231 || (!OBJECT_P (XEXP (x, 1))
5232 && ! (GET_CODE (XEXP (x, 1)) == SUBREG
5233 && OBJECT_P (SUBREG_REG (XEXP (x, 1)))))))
5234 || (UNARY_P (x)
5235 && (!OBJECT_P (XEXP (x, 0))
5236 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
5237 && OBJECT_P (SUBREG_REG (XEXP (x, 0)))))))
5238 {
5239 rtx cond, true_rtx, false_rtx;
5240
5241 cond = if_then_else_cond (x, &true_rtx, &false_rtx);
5242 if (cond != 0
5243 /* If everything is a comparison, what we have is highly unlikely
5244 to be simpler, so don't use it. */
5245 && ! (COMPARISON_P (x)
5246 && (COMPARISON_P (true_rtx) || COMPARISON_P (false_rtx))))
5247 {
5248 rtx cop1 = const0_rtx;
5249 enum rtx_code cond_code = simplify_comparison (NE, &cond, &cop1);
5250
5251 if (cond_code == NE && COMPARISON_P (cond))
5252 return x;
5253
5254 /* Simplify the alternative arms; this may collapse the true and
5255 false arms to store-flag values. Be careful to use copy_rtx
5256 here since true_rtx or false_rtx might share RTL with x as a
5257 result of the if_then_else_cond call above. */
5258 true_rtx = subst (copy_rtx (true_rtx), pc_rtx, pc_rtx, 0, 0);
5259 false_rtx = subst (copy_rtx (false_rtx), pc_rtx, pc_rtx, 0, 0);
5260
5261 /* If true_rtx and false_rtx are not general_operands, an if_then_else
5262 is unlikely to be simpler. */
5263 if (general_operand (true_rtx, VOIDmode)
5264 && general_operand (false_rtx, VOIDmode))
5265 {
5266 enum rtx_code reversed;
5267
5268 /* Restarting if we generate a store-flag expression will cause
5269 us to loop. Just drop through in this case. */
5270
5271 /* If the result values are STORE_FLAG_VALUE and zero, we can
5272 just make the comparison operation. */
5273 if (true_rtx == const_true_rtx && false_rtx == const0_rtx)
5274 x = simplify_gen_relational (cond_code, mode, VOIDmode,
5275 cond, cop1);
5276 else if (true_rtx == const0_rtx && false_rtx == const_true_rtx
5277 && ((reversed = reversed_comparison_code_parts
5278 (cond_code, cond, cop1, NULL))
5279 != UNKNOWN))
5280 x = simplify_gen_relational (reversed, mode, VOIDmode,
5281 cond, cop1);
5282
5283 /* Likewise, we can make the negate of a comparison operation
5284 if the result values are - STORE_FLAG_VALUE and zero. */
5285 else if (CONST_INT_P (true_rtx)
5286 && INTVAL (true_rtx) == - STORE_FLAG_VALUE
5287 && false_rtx == const0_rtx)
5288 x = simplify_gen_unary (NEG, mode,
5289 simplify_gen_relational (cond_code,
5290 mode, VOIDmode,
5291 cond, cop1),
5292 mode);
5293 else if (CONST_INT_P (false_rtx)
5294 && INTVAL (false_rtx) == - STORE_FLAG_VALUE
5295 && true_rtx == const0_rtx
5296 && ((reversed = reversed_comparison_code_parts
5297 (cond_code, cond, cop1, NULL))
5298 != UNKNOWN))
5299 x = simplify_gen_unary (NEG, mode,
5300 simplify_gen_relational (reversed,
5301 mode, VOIDmode,
5302 cond, cop1),
5303 mode);
5304 else
5305 return gen_rtx_IF_THEN_ELSE (mode,
5306 simplify_gen_relational (cond_code,
5307 mode,
5308 VOIDmode,
5309 cond,
5310 cop1),
5311 true_rtx, false_rtx);
5312
5313 code = GET_CODE (x);
5314 op0_mode = VOIDmode;
5315 }
5316 }
5317 }
5318
5319 /* Try to fold this expression in case we have constants that weren't
5320 present before. */
5321 temp = 0;
5322 switch (GET_RTX_CLASS (code))
5323 {
5324 case RTX_UNARY:
5325 if (op0_mode == VOIDmode)
5326 op0_mode = GET_MODE (XEXP (x, 0));
5327 temp = simplify_unary_operation (code, mode, XEXP (x, 0), op0_mode);
5328 break;
5329 case RTX_COMPARE:
5330 case RTX_COMM_COMPARE:
5331 {
5332 enum machine_mode cmp_mode = GET_MODE (XEXP (x, 0));
5333 if (cmp_mode == VOIDmode)
5334 {
5335 cmp_mode = GET_MODE (XEXP (x, 1));
5336 if (cmp_mode == VOIDmode)
5337 cmp_mode = op0_mode;
5338 }
5339 temp = simplify_relational_operation (code, mode, cmp_mode,
5340 XEXP (x, 0), XEXP (x, 1));
5341 }
5342 break;
5343 case RTX_COMM_ARITH:
5344 case RTX_BIN_ARITH:
5345 temp = simplify_binary_operation (code, mode, XEXP (x, 0), XEXP (x, 1));
5346 break;
5347 case RTX_BITFIELD_OPS:
5348 case RTX_TERNARY:
5349 temp = simplify_ternary_operation (code, mode, op0_mode, XEXP (x, 0),
5350 XEXP (x, 1), XEXP (x, 2));
5351 break;
5352 default:
5353 break;
5354 }
5355
5356 if (temp)
5357 {
5358 x = temp;
5359 code = GET_CODE (temp);
5360 op0_mode = VOIDmode;
5361 mode = GET_MODE (temp);
5362 }
5363
5364 /* First see if we can apply the inverse distributive law. */
5365 if (code == PLUS || code == MINUS
5366 || code == AND || code == IOR || code == XOR)
5367 {
5368 x = apply_distributive_law (x);
5369 code = GET_CODE (x);
5370 op0_mode = VOIDmode;
5371 }
5372
5373 /* If CODE is an associative operation not otherwise handled, see if we
5374 can associate some operands. This can win if they are constants or
5375 if they are logically related (i.e. (a & b) & a). */
5376 if ((code == PLUS || code == MINUS || code == MULT || code == DIV
5377 || code == AND || code == IOR || code == XOR
5378 || code == SMAX || code == SMIN || code == UMAX || code == UMIN)
5379 && ((INTEGRAL_MODE_P (mode) && code != DIV)
5380 || (flag_associative_math && FLOAT_MODE_P (mode))))
5381 {
5382 if (GET_CODE (XEXP (x, 0)) == code)
5383 {
5384 rtx other = XEXP (XEXP (x, 0), 0);
5385 rtx inner_op0 = XEXP (XEXP (x, 0), 1);
5386 rtx inner_op1 = XEXP (x, 1);
5387 rtx inner;
5388
5389 /* Make sure we pass the constant operand if any as the second
5390 one if this is a commutative operation. */
5391 if (CONSTANT_P (inner_op0) && COMMUTATIVE_ARITH_P (x))
5392 {
5393 rtx tem = inner_op0;
5394 inner_op0 = inner_op1;
5395 inner_op1 = tem;
5396 }
5397 inner = simplify_binary_operation (code == MINUS ? PLUS
5398 : code == DIV ? MULT
5399 : code,
5400 mode, inner_op0, inner_op1);
5401
5402 /* For commutative operations, try the other pair if that one
5403 didn't simplify. */
5404 if (inner == 0 && COMMUTATIVE_ARITH_P (x))
5405 {
5406 other = XEXP (XEXP (x, 0), 1);
5407 inner = simplify_binary_operation (code, mode,
5408 XEXP (XEXP (x, 0), 0),
5409 XEXP (x, 1));
5410 }
5411
5412 if (inner)
5413 return simplify_gen_binary (code, mode, other, inner);
5414 }
5415 }
5416
5417 /* A little bit of algebraic simplification here. */
5418 switch (code)
5419 {
5420 case MEM:
5421 /* Ensure that our address has any ASHIFTs converted to MULT in case
5422 address-recognizing predicates are called later. */
5423 temp = make_compound_operation (XEXP (x, 0), MEM);
5424 SUBST (XEXP (x, 0), temp);
5425 break;
5426
5427 case SUBREG:
5428 if (op0_mode == VOIDmode)
5429 op0_mode = GET_MODE (SUBREG_REG (x));
5430
5431 /* See if this can be moved to simplify_subreg. */
5432 if (CONSTANT_P (SUBREG_REG (x))
5433 && subreg_lowpart_offset (mode, op0_mode) == SUBREG_BYTE (x)
5434 /* Don't call gen_lowpart if the inner mode
5435 is VOIDmode and we cannot simplify it, as SUBREG without
5436 inner mode is invalid. */
5437 && (GET_MODE (SUBREG_REG (x)) != VOIDmode
5438 || gen_lowpart_common (mode, SUBREG_REG (x))))
5439 return gen_lowpart (mode, SUBREG_REG (x));
5440
5441 if (GET_MODE_CLASS (GET_MODE (SUBREG_REG (x))) == MODE_CC)
5442 break;
5443 {
5444 rtx temp;
5445 temp = simplify_subreg (mode, SUBREG_REG (x), op0_mode,
5446 SUBREG_BYTE (x));
5447 if (temp)
5448 return temp;
5449 }
5450
5451 /* Don't change the mode of the MEM if that would change the meaning
5452 of the address. */
5453 if (MEM_P (SUBREG_REG (x))
5454 && (MEM_VOLATILE_P (SUBREG_REG (x))
5455 || mode_dependent_address_p (XEXP (SUBREG_REG (x), 0))))
5456 return gen_rtx_CLOBBER (mode, const0_rtx);
5457
5458 /* Note that we cannot do any narrowing for non-constants since
5459 we might have been counting on using the fact that some bits were
5460 zero. We now do this in the SET. */
5461
5462 break;
5463
5464 case NEG:
5465 temp = expand_compound_operation (XEXP (x, 0));
5466
5467 /* For C equal to the width of MODE minus 1, (neg (ashiftrt X C)) can be
5468 replaced by (lshiftrt X C). This will convert
5469 (neg (sign_extract X 1 Y)) to (zero_extract X 1 Y). */
5470
5471 if (GET_CODE (temp) == ASHIFTRT
5472 && CONST_INT_P (XEXP (temp, 1))
5473 && INTVAL (XEXP (temp, 1)) == GET_MODE_BITSIZE (mode) - 1)
5474 return simplify_shift_const (NULL_RTX, LSHIFTRT, mode, XEXP (temp, 0),
5475 INTVAL (XEXP (temp, 1)));
5476
5477 /* If X has only a single bit that might be nonzero, say, bit I, convert
5478 (neg X) to (ashiftrt (ashift X C-I) C-I) where C is the bitsize of
5479 MODE minus 1. This will convert (neg (zero_extract X 1 Y)) to
5480 (sign_extract X 1 Y). But only do this if TEMP isn't a register
5481 or a SUBREG of one since we'd be making the expression more
5482 complex if it was just a register. */
5483
5484 if (!REG_P (temp)
5485 && ! (GET_CODE (temp) == SUBREG
5486 && REG_P (SUBREG_REG (temp)))
5487 && (i = exact_log2 (nonzero_bits (temp, mode))) >= 0)
5488 {
5489 rtx temp1 = simplify_shift_const
5490 (NULL_RTX, ASHIFTRT, mode,
5491 simplify_shift_const (NULL_RTX, ASHIFT, mode, temp,
5492 GET_MODE_BITSIZE (mode) - 1 - i),
5493 GET_MODE_BITSIZE (mode) - 1 - i);
5494
5495 /* If all we did was surround TEMP with the two shifts, we
5496 haven't improved anything, so don't use it. Otherwise,
5497 we are better off with TEMP1. */
5498 if (GET_CODE (temp1) != ASHIFTRT
5499 || GET_CODE (XEXP (temp1, 0)) != ASHIFT
5500 || XEXP (XEXP (temp1, 0), 0) != temp)
5501 return temp1;
5502 }
5503 break;
5504
5505 case TRUNCATE:
5506 /* We can't handle truncation to a partial integer mode here
5507 because we don't know the real bitsize of the partial
5508 integer mode. */
5509 if (GET_MODE_CLASS (mode) == MODE_PARTIAL_INT)
5510 break;
5511
5512 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
5513 SUBST (XEXP (x, 0),
5514 force_to_mode (XEXP (x, 0), GET_MODE (XEXP (x, 0)),
5515 GET_MODE_MASK (mode), 0));
5516
5517 /* We can truncate a constant value and return it. */
5518 if (CONST_INT_P (XEXP (x, 0)))
5519 return gen_int_mode (INTVAL (XEXP (x, 0)), mode);
5520
5521 /* Similarly to what we do in simplify-rtx.c, a truncate of a register
5522 whose value is a comparison can be replaced with a subreg if
5523 STORE_FLAG_VALUE permits. */
5524 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5525 && (STORE_FLAG_VALUE & ~GET_MODE_MASK (mode)) == 0
5526 && (temp = get_last_value (XEXP (x, 0)))
5527 && COMPARISON_P (temp))
5528 return gen_lowpart (mode, XEXP (x, 0));
5529 break;
5530
5531 case CONST:
5532 /* (const (const X)) can become (const X). Do it this way rather than
5533 returning the inner CONST since CONST can be shared with a
5534 REG_EQUAL note. */
5535 if (GET_CODE (XEXP (x, 0)) == CONST)
5536 SUBST (XEXP (x, 0), XEXP (XEXP (x, 0), 0));
5537 break;
5538
5539 #ifdef HAVE_lo_sum
5540 case LO_SUM:
5541 /* Convert (lo_sum (high FOO) FOO) to FOO. This is necessary so we
5542 can add in an offset. find_split_point will split this address up
5543 again if it doesn't match. */
5544 if (GET_CODE (XEXP (x, 0)) == HIGH
5545 && rtx_equal_p (XEXP (XEXP (x, 0), 0), XEXP (x, 1)))
5546 return XEXP (x, 1);
5547 break;
5548 #endif
5549
5550 case PLUS:
5551 /* (plus (xor (and <foo> (const_int pow2 - 1)) <c>) <-c>)
5552 when c is (const_int (pow2 + 1) / 2) is a sign extension of a
5553 bit-field and can be replaced by either a sign_extend or a
5554 sign_extract. The `and' may be a zero_extend and the two
5555 <c>, -<c> constants may be reversed. */
5556 if (GET_CODE (XEXP (x, 0)) == XOR
5557 && CONST_INT_P (XEXP (x, 1))
5558 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
5559 && INTVAL (XEXP (x, 1)) == -INTVAL (XEXP (XEXP (x, 0), 1))
5560 && ((i = exact_log2 (UINTVAL (XEXP (XEXP (x, 0), 1)))) >= 0
5561 || (i = exact_log2 (UINTVAL (XEXP (x, 1)))) >= 0)
5562 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5563 && ((GET_CODE (XEXP (XEXP (x, 0), 0)) == AND
5564 && CONST_INT_P (XEXP (XEXP (XEXP (x, 0), 0), 1))
5565 && (UINTVAL (XEXP (XEXP (XEXP (x, 0), 0), 1))
5566 == ((unsigned HOST_WIDE_INT) 1 << (i + 1)) - 1))
5567 || (GET_CODE (XEXP (XEXP (x, 0), 0)) == ZERO_EXTEND
5568 && (GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (XEXP (x, 0), 0), 0)))
5569 == (unsigned int) i + 1))))
5570 return simplify_shift_const
5571 (NULL_RTX, ASHIFTRT, mode,
5572 simplify_shift_const (NULL_RTX, ASHIFT, mode,
5573 XEXP (XEXP (XEXP (x, 0), 0), 0),
5574 GET_MODE_BITSIZE (mode) - (i + 1)),
5575 GET_MODE_BITSIZE (mode) - (i + 1));
5576
5577 /* If only the low-order bit of X is possibly nonzero, (plus x -1)
5578 can become (ashiftrt (ashift (xor x 1) C) C) where C is
5579 the bitsize of the mode - 1. This allows simplification of
5580 "a = (b & 8) == 0;" */
5581 if (XEXP (x, 1) == constm1_rtx
5582 && !REG_P (XEXP (x, 0))
5583 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
5584 && REG_P (SUBREG_REG (XEXP (x, 0))))
5585 && nonzero_bits (XEXP (x, 0), mode) == 1)
5586 return simplify_shift_const (NULL_RTX, ASHIFTRT, mode,
5587 simplify_shift_const (NULL_RTX, ASHIFT, mode,
5588 gen_rtx_XOR (mode, XEXP (x, 0), const1_rtx),
5589 GET_MODE_BITSIZE (mode) - 1),
5590 GET_MODE_BITSIZE (mode) - 1);
5591
5592 /* If we are adding two things that have no bits in common, convert
5593 the addition into an IOR. This will often be further simplified,
5594 for example in cases like ((a & 1) + (a & 2)), which can
5595 become a & 3. */
5596
5597 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5598 && (nonzero_bits (XEXP (x, 0), mode)
5599 & nonzero_bits (XEXP (x, 1), mode)) == 0)
5600 {
5601 /* Try to simplify the expression further. */
5602 rtx tor = simplify_gen_binary (IOR, mode, XEXP (x, 0), XEXP (x, 1));
5603 temp = combine_simplify_rtx (tor, mode, in_dest);
5604
5605 /* If we could, great. If not, do not go ahead with the IOR
5606 replacement, since PLUS appears in many special purpose
5607 address arithmetic instructions. */
5608 if (GET_CODE (temp) != CLOBBER && temp != tor)
5609 return temp;
5610 }
5611 break;
5612
5613 case MINUS:
5614 /* (minus <foo> (and <foo> (const_int -pow2))) becomes
5615 (and <foo> (const_int pow2-1)) */
5616 if (GET_CODE (XEXP (x, 1)) == AND
5617 && CONST_INT_P (XEXP (XEXP (x, 1), 1))
5618 && exact_log2 (-UINTVAL (XEXP (XEXP (x, 1), 1))) >= 0
5619 && rtx_equal_p (XEXP (XEXP (x, 1), 0), XEXP (x, 0)))
5620 return simplify_and_const_int (NULL_RTX, mode, XEXP (x, 0),
5621 -INTVAL (XEXP (XEXP (x, 1), 1)) - 1);
5622 break;
5623
5624 case MULT:
5625 /* If we have (mult (plus A B) C), apply the distributive law and then
5626 the inverse distributive law to see if things simplify. This
5627 occurs mostly in addresses, often when unrolling loops. */
5628
5629 if (GET_CODE (XEXP (x, 0)) == PLUS)
5630 {
5631 rtx result = distribute_and_simplify_rtx (x, 0);
5632 if (result)
5633 return result;
5634 }
5635
5636 /* Try simplify a*(b/c) as (a*b)/c. */
5637 if (FLOAT_MODE_P (mode) && flag_associative_math
5638 && GET_CODE (XEXP (x, 0)) == DIV)
5639 {
5640 rtx tem = simplify_binary_operation (MULT, mode,
5641 XEXP (XEXP (x, 0), 0),
5642 XEXP (x, 1));
5643 if (tem)
5644 return simplify_gen_binary (DIV, mode, tem, XEXP (XEXP (x, 0), 1));
5645 }
5646 break;
5647
5648 case UDIV:
5649 /* If this is a divide by a power of two, treat it as a shift if
5650 its first operand is a shift. */
5651 if (CONST_INT_P (XEXP (x, 1))
5652 && (i = exact_log2 (UINTVAL (XEXP (x, 1)))) >= 0
5653 && (GET_CODE (XEXP (x, 0)) == ASHIFT
5654 || GET_CODE (XEXP (x, 0)) == LSHIFTRT
5655 || GET_CODE (XEXP (x, 0)) == ASHIFTRT
5656 || GET_CODE (XEXP (x, 0)) == ROTATE
5657 || GET_CODE (XEXP (x, 0)) == ROTATERT))
5658 return simplify_shift_const (NULL_RTX, LSHIFTRT, mode, XEXP (x, 0), i);
5659 break;
5660
5661 case EQ: case NE:
5662 case GT: case GTU: case GE: case GEU:
5663 case LT: case LTU: case LE: case LEU:
5664 case UNEQ: case LTGT:
5665 case UNGT: case UNGE:
5666 case UNLT: case UNLE:
5667 case UNORDERED: case ORDERED:
5668 /* If the first operand is a condition code, we can't do anything
5669 with it. */
5670 if (GET_CODE (XEXP (x, 0)) == COMPARE
5671 || (GET_MODE_CLASS (GET_MODE (XEXP (x, 0))) != MODE_CC
5672 && ! CC0_P (XEXP (x, 0))))
5673 {
5674 rtx op0 = XEXP (x, 0);
5675 rtx op1 = XEXP (x, 1);
5676 enum rtx_code new_code;
5677
5678 if (GET_CODE (op0) == COMPARE)
5679 op1 = XEXP (op0, 1), op0 = XEXP (op0, 0);
5680
5681 /* Simplify our comparison, if possible. */
5682 new_code = simplify_comparison (code, &op0, &op1);
5683
5684 /* If STORE_FLAG_VALUE is 1, we can convert (ne x 0) to simply X
5685 if only the low-order bit is possibly nonzero in X (such as when
5686 X is a ZERO_EXTRACT of one bit). Similarly, we can convert EQ to
5687 (xor X 1) or (minus 1 X); we use the former. Finally, if X is
5688 known to be either 0 or -1, NE becomes a NEG and EQ becomes
5689 (plus X 1).
5690
5691 Remove any ZERO_EXTRACT we made when thinking this was a
5692 comparison. It may now be simpler to use, e.g., an AND. If a
5693 ZERO_EXTRACT is indeed appropriate, it will be placed back by
5694 the call to make_compound_operation in the SET case. */
5695
5696 if (STORE_FLAG_VALUE == 1
5697 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
5698 && op1 == const0_rtx
5699 && mode == GET_MODE (op0)
5700 && nonzero_bits (op0, mode) == 1)
5701 return gen_lowpart (mode,
5702 expand_compound_operation (op0));
5703
5704 else if (STORE_FLAG_VALUE == 1
5705 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
5706 && op1 == const0_rtx
5707 && mode == GET_MODE (op0)
5708 && (num_sign_bit_copies (op0, mode)
5709 == GET_MODE_BITSIZE (mode)))
5710 {
5711 op0 = expand_compound_operation (op0);
5712 return simplify_gen_unary (NEG, mode,
5713 gen_lowpart (mode, op0),
5714 mode);
5715 }
5716
5717 else if (STORE_FLAG_VALUE == 1
5718 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
5719 && op1 == const0_rtx
5720 && mode == GET_MODE (op0)
5721 && nonzero_bits (op0, mode) == 1)
5722 {
5723 op0 = expand_compound_operation (op0);
5724 return simplify_gen_binary (XOR, mode,
5725 gen_lowpart (mode, op0),
5726 const1_rtx);
5727 }
5728
5729 else if (STORE_FLAG_VALUE == 1
5730 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
5731 && op1 == const0_rtx
5732 && mode == GET_MODE (op0)
5733 && (num_sign_bit_copies (op0, mode)
5734 == GET_MODE_BITSIZE (mode)))
5735 {
5736 op0 = expand_compound_operation (op0);
5737 return plus_constant (gen_lowpart (mode, op0), 1);
5738 }
5739
5740 /* If STORE_FLAG_VALUE is -1, we have cases similar to
5741 those above. */
5742 if (STORE_FLAG_VALUE == -1
5743 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
5744 && op1 == const0_rtx
5745 && (num_sign_bit_copies (op0, mode)
5746 == GET_MODE_BITSIZE (mode)))
5747 return gen_lowpart (mode,
5748 expand_compound_operation (op0));
5749
5750 else if (STORE_FLAG_VALUE == -1
5751 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
5752 && op1 == const0_rtx
5753 && mode == GET_MODE (op0)
5754 && nonzero_bits (op0, mode) == 1)
5755 {
5756 op0 = expand_compound_operation (op0);
5757 return simplify_gen_unary (NEG, mode,
5758 gen_lowpart (mode, op0),
5759 mode);
5760 }
5761
5762 else if (STORE_FLAG_VALUE == -1
5763 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
5764 && op1 == const0_rtx
5765 && mode == GET_MODE (op0)
5766 && (num_sign_bit_copies (op0, mode)
5767 == GET_MODE_BITSIZE (mode)))
5768 {
5769 op0 = expand_compound_operation (op0);
5770 return simplify_gen_unary (NOT, mode,
5771 gen_lowpart (mode, op0),
5772 mode);
5773 }
5774
5775 /* If X is 0/1, (eq X 0) is X-1. */
5776 else if (STORE_FLAG_VALUE == -1
5777 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
5778 && op1 == const0_rtx
5779 && mode == GET_MODE (op0)
5780 && nonzero_bits (op0, mode) == 1)
5781 {
5782 op0 = expand_compound_operation (op0);
5783 return plus_constant (gen_lowpart (mode, op0), -1);
5784 }
5785
5786 /* If STORE_FLAG_VALUE says to just test the sign bit and X has just
5787 one bit that might be nonzero, we can convert (ne x 0) to
5788 (ashift x c) where C puts the bit in the sign bit. Remove any
5789 AND with STORE_FLAG_VALUE when we are done, since we are only
5790 going to test the sign bit. */
5791 if (new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
5792 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5793 && ((STORE_FLAG_VALUE & GET_MODE_MASK (mode))
5794 == (unsigned HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (mode) - 1))
5795 && op1 == const0_rtx
5796 && mode == GET_MODE (op0)
5797 && (i = exact_log2 (nonzero_bits (op0, mode))) >= 0)
5798 {
5799 x = simplify_shift_const (NULL_RTX, ASHIFT, mode,
5800 expand_compound_operation (op0),
5801 GET_MODE_BITSIZE (mode) - 1 - i);
5802 if (GET_CODE (x) == AND && XEXP (x, 1) == const_true_rtx)
5803 return XEXP (x, 0);
5804 else
5805 return x;
5806 }
5807
5808 /* If the code changed, return a whole new comparison. */
5809 if (new_code != code)
5810 return gen_rtx_fmt_ee (new_code, mode, op0, op1);
5811
5812 /* Otherwise, keep this operation, but maybe change its operands.
5813 This also converts (ne (compare FOO BAR) 0) to (ne FOO BAR). */
5814 SUBST (XEXP (x, 0), op0);
5815 SUBST (XEXP (x, 1), op1);
5816 }
5817 break;
5818
5819 case IF_THEN_ELSE:
5820 return simplify_if_then_else (x);
5821
5822 case ZERO_EXTRACT:
5823 case SIGN_EXTRACT:
5824 case ZERO_EXTEND:
5825 case SIGN_EXTEND:
5826 /* If we are processing SET_DEST, we are done. */
5827 if (in_dest)
5828 return x;
5829
5830 return expand_compound_operation (x);
5831
5832 case SET:
5833 return simplify_set (x);
5834
5835 case AND:
5836 case IOR:
5837 return simplify_logical (x);
5838
5839 case ASHIFT:
5840 case LSHIFTRT:
5841 case ASHIFTRT:
5842 case ROTATE:
5843 case ROTATERT:
5844 /* If this is a shift by a constant amount, simplify it. */
5845 if (CONST_INT_P (XEXP (x, 1)))
5846 return simplify_shift_const (x, code, mode, XEXP (x, 0),
5847 INTVAL (XEXP (x, 1)));
5848
5849 else if (SHIFT_COUNT_TRUNCATED && !REG_P (XEXP (x, 1)))
5850 SUBST (XEXP (x, 1),
5851 force_to_mode (XEXP (x, 1), GET_MODE (XEXP (x, 1)),
5852 ((unsigned HOST_WIDE_INT) 1
5853 << exact_log2 (GET_MODE_BITSIZE (GET_MODE (x))))
5854 - 1,
5855 0));
5856 break;
5857
5858 default:
5859 break;
5860 }
5861
5862 return x;
5863 }
5864 \f
5865 /* Simplify X, an IF_THEN_ELSE expression. Return the new expression. */
5866
5867 static rtx
5868 simplify_if_then_else (rtx x)
5869 {
5870 enum machine_mode mode = GET_MODE (x);
5871 rtx cond = XEXP (x, 0);
5872 rtx true_rtx = XEXP (x, 1);
5873 rtx false_rtx = XEXP (x, 2);
5874 enum rtx_code true_code = GET_CODE (cond);
5875 int comparison_p = COMPARISON_P (cond);
5876 rtx temp;
5877 int i;
5878 enum rtx_code false_code;
5879 rtx reversed;
5880
5881 /* Simplify storing of the truth value. */
5882 if (comparison_p && true_rtx == const_true_rtx && false_rtx == const0_rtx)
5883 return simplify_gen_relational (true_code, mode, VOIDmode,
5884 XEXP (cond, 0), XEXP (cond, 1));
5885
5886 /* Also when the truth value has to be reversed. */
5887 if (comparison_p
5888 && true_rtx == const0_rtx && false_rtx == const_true_rtx
5889 && (reversed = reversed_comparison (cond, mode)))
5890 return reversed;
5891
5892 /* Sometimes we can simplify the arm of an IF_THEN_ELSE if a register used
5893 in it is being compared against certain values. Get the true and false
5894 comparisons and see if that says anything about the value of each arm. */
5895
5896 if (comparison_p
5897 && ((false_code = reversed_comparison_code (cond, NULL))
5898 != UNKNOWN)
5899 && REG_P (XEXP (cond, 0)))
5900 {
5901 HOST_WIDE_INT nzb;
5902 rtx from = XEXP (cond, 0);
5903 rtx true_val = XEXP (cond, 1);
5904 rtx false_val = true_val;
5905 int swapped = 0;
5906
5907 /* If FALSE_CODE is EQ, swap the codes and arms. */
5908
5909 if (false_code == EQ)
5910 {
5911 swapped = 1, true_code = EQ, false_code = NE;
5912 temp = true_rtx, true_rtx = false_rtx, false_rtx = temp;
5913 }
5914
5915 /* If we are comparing against zero and the expression being tested has
5916 only a single bit that might be nonzero, that is its value when it is
5917 not equal to zero. Similarly if it is known to be -1 or 0. */
5918
5919 if (true_code == EQ && true_val == const0_rtx
5920 && exact_log2 (nzb = nonzero_bits (from, GET_MODE (from))) >= 0)
5921 {
5922 false_code = EQ;
5923 false_val = GEN_INT (trunc_int_for_mode (nzb, GET_MODE (from)));
5924 }
5925 else if (true_code == EQ && true_val == const0_rtx
5926 && (num_sign_bit_copies (from, GET_MODE (from))
5927 == GET_MODE_BITSIZE (GET_MODE (from))))
5928 {
5929 false_code = EQ;
5930 false_val = constm1_rtx;
5931 }
5932
5933 /* Now simplify an arm if we know the value of the register in the
5934 branch and it is used in the arm. Be careful due to the potential
5935 of locally-shared RTL. */
5936
5937 if (reg_mentioned_p (from, true_rtx))
5938 true_rtx = subst (known_cond (copy_rtx (true_rtx), true_code,
5939 from, true_val),
5940 pc_rtx, pc_rtx, 0, 0);
5941 if (reg_mentioned_p (from, false_rtx))
5942 false_rtx = subst (known_cond (copy_rtx (false_rtx), false_code,
5943 from, false_val),
5944 pc_rtx, pc_rtx, 0, 0);
5945
5946 SUBST (XEXP (x, 1), swapped ? false_rtx : true_rtx);
5947 SUBST (XEXP (x, 2), swapped ? true_rtx : false_rtx);
5948
5949 true_rtx = XEXP (x, 1);
5950 false_rtx = XEXP (x, 2);
5951 true_code = GET_CODE (cond);
5952 }
5953
5954 /* If we have (if_then_else FOO (pc) (label_ref BAR)) and FOO can be
5955 reversed, do so to avoid needing two sets of patterns for
5956 subtract-and-branch insns. Similarly if we have a constant in the true
5957 arm, the false arm is the same as the first operand of the comparison, or
5958 the false arm is more complicated than the true arm. */
5959
5960 if (comparison_p
5961 && reversed_comparison_code (cond, NULL) != UNKNOWN
5962 && (true_rtx == pc_rtx
5963 || (CONSTANT_P (true_rtx)
5964 && !CONST_INT_P (false_rtx) && false_rtx != pc_rtx)
5965 || true_rtx == const0_rtx
5966 || (OBJECT_P (true_rtx) && !OBJECT_P (false_rtx))
5967 || (GET_CODE (true_rtx) == SUBREG && OBJECT_P (SUBREG_REG (true_rtx))
5968 && !OBJECT_P (false_rtx))
5969 || reg_mentioned_p (true_rtx, false_rtx)
5970 || rtx_equal_p (false_rtx, XEXP (cond, 0))))
5971 {
5972 true_code = reversed_comparison_code (cond, NULL);
5973 SUBST (XEXP (x, 0), reversed_comparison (cond, GET_MODE (cond)));
5974 SUBST (XEXP (x, 1), false_rtx);
5975 SUBST (XEXP (x, 2), true_rtx);
5976
5977 temp = true_rtx, true_rtx = false_rtx, false_rtx = temp;
5978 cond = XEXP (x, 0);
5979
5980 /* It is possible that the conditional has been simplified out. */
5981 true_code = GET_CODE (cond);
5982 comparison_p = COMPARISON_P (cond);
5983 }
5984
5985 /* If the two arms are identical, we don't need the comparison. */
5986
5987 if (rtx_equal_p (true_rtx, false_rtx) && ! side_effects_p (cond))
5988 return true_rtx;
5989
5990 /* Convert a == b ? b : a to "a". */
5991 if (true_code == EQ && ! side_effects_p (cond)
5992 && !HONOR_NANS (mode)
5993 && rtx_equal_p (XEXP (cond, 0), false_rtx)
5994 && rtx_equal_p (XEXP (cond, 1), true_rtx))
5995 return false_rtx;
5996 else if (true_code == NE && ! side_effects_p (cond)
5997 && !HONOR_NANS (mode)
5998 && rtx_equal_p (XEXP (cond, 0), true_rtx)
5999 && rtx_equal_p (XEXP (cond, 1), false_rtx))
6000 return true_rtx;
6001
6002 /* Look for cases where we have (abs x) or (neg (abs X)). */
6003
6004 if (GET_MODE_CLASS (mode) == MODE_INT
6005 && comparison_p
6006 && XEXP (cond, 1) == const0_rtx
6007 && GET_CODE (false_rtx) == NEG
6008 && rtx_equal_p (true_rtx, XEXP (false_rtx, 0))
6009 && rtx_equal_p (true_rtx, XEXP (cond, 0))
6010 && ! side_effects_p (true_rtx))
6011 switch (true_code)
6012 {
6013 case GT:
6014 case GE:
6015 return simplify_gen_unary (ABS, mode, true_rtx, mode);
6016 case LT:
6017 case LE:
6018 return
6019 simplify_gen_unary (NEG, mode,
6020 simplify_gen_unary (ABS, mode, true_rtx, mode),
6021 mode);
6022 default:
6023 break;
6024 }
6025
6026 /* Look for MIN or MAX. */
6027
6028 if ((! FLOAT_MODE_P (mode) || flag_unsafe_math_optimizations)
6029 && comparison_p
6030 && rtx_equal_p (XEXP (cond, 0), true_rtx)
6031 && rtx_equal_p (XEXP (cond, 1), false_rtx)
6032 && ! side_effects_p (cond))
6033 switch (true_code)
6034 {
6035 case GE:
6036 case GT:
6037 return simplify_gen_binary (SMAX, mode, true_rtx, false_rtx);
6038 case LE:
6039 case LT:
6040 return simplify_gen_binary (SMIN, mode, true_rtx, false_rtx);
6041 case GEU:
6042 case GTU:
6043 return simplify_gen_binary (UMAX, mode, true_rtx, false_rtx);
6044 case LEU:
6045 case LTU:
6046 return simplify_gen_binary (UMIN, mode, true_rtx, false_rtx);
6047 default:
6048 break;
6049 }
6050
6051 /* If we have (if_then_else COND (OP Z C1) Z) and OP is an identity when its
6052 second operand is zero, this can be done as (OP Z (mult COND C2)) where
6053 C2 = C1 * STORE_FLAG_VALUE. Similarly if OP has an outer ZERO_EXTEND or
6054 SIGN_EXTEND as long as Z is already extended (so we don't destroy it).
6055 We can do this kind of thing in some cases when STORE_FLAG_VALUE is
6056 neither 1 or -1, but it isn't worth checking for. */
6057
6058 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
6059 && comparison_p
6060 && GET_MODE_CLASS (mode) == MODE_INT
6061 && ! side_effects_p (x))
6062 {
6063 rtx t = make_compound_operation (true_rtx, SET);
6064 rtx f = make_compound_operation (false_rtx, SET);
6065 rtx cond_op0 = XEXP (cond, 0);
6066 rtx cond_op1 = XEXP (cond, 1);
6067 enum rtx_code op = UNKNOWN, extend_op = UNKNOWN;
6068 enum machine_mode m = mode;
6069 rtx z = 0, c1 = NULL_RTX;
6070
6071 if ((GET_CODE (t) == PLUS || GET_CODE (t) == MINUS
6072 || GET_CODE (t) == IOR || GET_CODE (t) == XOR
6073 || GET_CODE (t) == ASHIFT
6074 || GET_CODE (t) == LSHIFTRT || GET_CODE (t) == ASHIFTRT)
6075 && rtx_equal_p (XEXP (t, 0), f))
6076 c1 = XEXP (t, 1), op = GET_CODE (t), z = f;
6077
6078 /* If an identity-zero op is commutative, check whether there
6079 would be a match if we swapped the operands. */
6080 else if ((GET_CODE (t) == PLUS || GET_CODE (t) == IOR
6081 || GET_CODE (t) == XOR)
6082 && rtx_equal_p (XEXP (t, 1), f))
6083 c1 = XEXP (t, 0), op = GET_CODE (t), z = f;
6084 else if (GET_CODE (t) == SIGN_EXTEND
6085 && (GET_CODE (XEXP (t, 0)) == PLUS
6086 || GET_CODE (XEXP (t, 0)) == MINUS
6087 || GET_CODE (XEXP (t, 0)) == IOR
6088 || GET_CODE (XEXP (t, 0)) == XOR
6089 || GET_CODE (XEXP (t, 0)) == ASHIFT
6090 || GET_CODE (XEXP (t, 0)) == LSHIFTRT
6091 || GET_CODE (XEXP (t, 0)) == ASHIFTRT)
6092 && GET_CODE (XEXP (XEXP (t, 0), 0)) == SUBREG
6093 && subreg_lowpart_p (XEXP (XEXP (t, 0), 0))
6094 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 0)), f)
6095 && (num_sign_bit_copies (f, GET_MODE (f))
6096 > (unsigned int)
6097 (GET_MODE_BITSIZE (mode)
6098 - GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (t, 0), 0))))))
6099 {
6100 c1 = XEXP (XEXP (t, 0), 1); z = f; op = GET_CODE (XEXP (t, 0));
6101 extend_op = SIGN_EXTEND;
6102 m = GET_MODE (XEXP (t, 0));
6103 }
6104 else if (GET_CODE (t) == SIGN_EXTEND
6105 && (GET_CODE (XEXP (t, 0)) == PLUS
6106 || GET_CODE (XEXP (t, 0)) == IOR
6107 || GET_CODE (XEXP (t, 0)) == XOR)
6108 && GET_CODE (XEXP (XEXP (t, 0), 1)) == SUBREG
6109 && subreg_lowpart_p (XEXP (XEXP (t, 0), 1))
6110 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 1)), f)
6111 && (num_sign_bit_copies (f, GET_MODE (f))
6112 > (unsigned int)
6113 (GET_MODE_BITSIZE (mode)
6114 - GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (t, 0), 1))))))
6115 {
6116 c1 = XEXP (XEXP (t, 0), 0); z = f; op = GET_CODE (XEXP (t, 0));
6117 extend_op = SIGN_EXTEND;
6118 m = GET_MODE (XEXP (t, 0));
6119 }
6120 else if (GET_CODE (t) == ZERO_EXTEND
6121 && (GET_CODE (XEXP (t, 0)) == PLUS
6122 || GET_CODE (XEXP (t, 0)) == MINUS
6123 || GET_CODE (XEXP (t, 0)) == IOR
6124 || GET_CODE (XEXP (t, 0)) == XOR
6125 || GET_CODE (XEXP (t, 0)) == ASHIFT
6126 || GET_CODE (XEXP (t, 0)) == LSHIFTRT
6127 || GET_CODE (XEXP (t, 0)) == ASHIFTRT)
6128 && GET_CODE (XEXP (XEXP (t, 0), 0)) == SUBREG
6129 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
6130 && subreg_lowpart_p (XEXP (XEXP (t, 0), 0))
6131 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 0)), f)
6132 && ((nonzero_bits (f, GET_MODE (f))
6133 & ~GET_MODE_MASK (GET_MODE (XEXP (XEXP (t, 0), 0))))
6134 == 0))
6135 {
6136 c1 = XEXP (XEXP (t, 0), 1); z = f; op = GET_CODE (XEXP (t, 0));
6137 extend_op = ZERO_EXTEND;
6138 m = GET_MODE (XEXP (t, 0));
6139 }
6140 else if (GET_CODE (t) == ZERO_EXTEND
6141 && (GET_CODE (XEXP (t, 0)) == PLUS
6142 || GET_CODE (XEXP (t, 0)) == IOR
6143 || GET_CODE (XEXP (t, 0)) == XOR)
6144 && GET_CODE (XEXP (XEXP (t, 0), 1)) == SUBREG
6145 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
6146 && subreg_lowpart_p (XEXP (XEXP (t, 0), 1))
6147 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 1)), f)
6148 && ((nonzero_bits (f, GET_MODE (f))
6149 & ~GET_MODE_MASK (GET_MODE (XEXP (XEXP (t, 0), 1))))
6150 == 0))
6151 {
6152 c1 = XEXP (XEXP (t, 0), 0); z = f; op = GET_CODE (XEXP (t, 0));
6153 extend_op = ZERO_EXTEND;
6154 m = GET_MODE (XEXP (t, 0));
6155 }
6156
6157 if (z)
6158 {
6159 temp = subst (simplify_gen_relational (true_code, m, VOIDmode,
6160 cond_op0, cond_op1),
6161 pc_rtx, pc_rtx, 0, 0);
6162 temp = simplify_gen_binary (MULT, m, temp,
6163 simplify_gen_binary (MULT, m, c1,
6164 const_true_rtx));
6165 temp = subst (temp, pc_rtx, pc_rtx, 0, 0);
6166 temp = simplify_gen_binary (op, m, gen_lowpart (m, z), temp);
6167
6168 if (extend_op != UNKNOWN)
6169 temp = simplify_gen_unary (extend_op, mode, temp, m);
6170
6171 return temp;
6172 }
6173 }
6174
6175 /* If we have (if_then_else (ne A 0) C1 0) and either A is known to be 0 or
6176 1 and C1 is a single bit or A is known to be 0 or -1 and C1 is the
6177 negation of a single bit, we can convert this operation to a shift. We
6178 can actually do this more generally, but it doesn't seem worth it. */
6179
6180 if (true_code == NE && XEXP (cond, 1) == const0_rtx
6181 && false_rtx == const0_rtx && CONST_INT_P (true_rtx)
6182 && ((1 == nonzero_bits (XEXP (cond, 0), mode)
6183 && (i = exact_log2 (UINTVAL (true_rtx))) >= 0)
6184 || ((num_sign_bit_copies (XEXP (cond, 0), mode)
6185 == GET_MODE_BITSIZE (mode))
6186 && (i = exact_log2 (-UINTVAL (true_rtx))) >= 0)))
6187 return
6188 simplify_shift_const (NULL_RTX, ASHIFT, mode,
6189 gen_lowpart (mode, XEXP (cond, 0)), i);
6190
6191 /* (IF_THEN_ELSE (NE REG 0) (0) (8)) is REG for nonzero_bits (REG) == 8. */
6192 if (true_code == NE && XEXP (cond, 1) == const0_rtx
6193 && false_rtx == const0_rtx && CONST_INT_P (true_rtx)
6194 && GET_MODE (XEXP (cond, 0)) == mode
6195 && (UINTVAL (true_rtx) & GET_MODE_MASK (mode))
6196 == nonzero_bits (XEXP (cond, 0), mode)
6197 && (i = exact_log2 (UINTVAL (true_rtx) & GET_MODE_MASK (mode))) >= 0)
6198 return XEXP (cond, 0);
6199
6200 return x;
6201 }
6202 \f
6203 /* Simplify X, a SET expression. Return the new expression. */
6204
6205 static rtx
6206 simplify_set (rtx x)
6207 {
6208 rtx src = SET_SRC (x);
6209 rtx dest = SET_DEST (x);
6210 enum machine_mode mode
6211 = GET_MODE (src) != VOIDmode ? GET_MODE (src) : GET_MODE (dest);
6212 rtx other_insn;
6213 rtx *cc_use;
6214
6215 /* (set (pc) (return)) gets written as (return). */
6216 if (GET_CODE (dest) == PC && GET_CODE (src) == RETURN)
6217 return src;
6218
6219 /* Now that we know for sure which bits of SRC we are using, see if we can
6220 simplify the expression for the object knowing that we only need the
6221 low-order bits. */
6222
6223 if (GET_MODE_CLASS (mode) == MODE_INT
6224 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
6225 {
6226 src = force_to_mode (src, mode, ~(unsigned HOST_WIDE_INT) 0, 0);
6227 SUBST (SET_SRC (x), src);
6228 }
6229
6230 /* If we are setting CC0 or if the source is a COMPARE, look for the use of
6231 the comparison result and try to simplify it unless we already have used
6232 undobuf.other_insn. */
6233 if ((GET_MODE_CLASS (mode) == MODE_CC
6234 || GET_CODE (src) == COMPARE
6235 || CC0_P (dest))
6236 && (cc_use = find_single_use (dest, subst_insn, &other_insn)) != 0
6237 && (undobuf.other_insn == 0 || other_insn == undobuf.other_insn)
6238 && COMPARISON_P (*cc_use)
6239 && rtx_equal_p (XEXP (*cc_use, 0), dest))
6240 {
6241 enum rtx_code old_code = GET_CODE (*cc_use);
6242 enum rtx_code new_code;
6243 rtx op0, op1, tmp;
6244 int other_changed = 0;
6245 enum machine_mode compare_mode = GET_MODE (dest);
6246
6247 if (GET_CODE (src) == COMPARE)
6248 op0 = XEXP (src, 0), op1 = XEXP (src, 1);
6249 else
6250 op0 = src, op1 = CONST0_RTX (GET_MODE (src));
6251
6252 tmp = simplify_relational_operation (old_code, compare_mode, VOIDmode,
6253 op0, op1);
6254 if (!tmp)
6255 new_code = old_code;
6256 else if (!CONSTANT_P (tmp))
6257 {
6258 new_code = GET_CODE (tmp);
6259 op0 = XEXP (tmp, 0);
6260 op1 = XEXP (tmp, 1);
6261 }
6262 else
6263 {
6264 rtx pat = PATTERN (other_insn);
6265 undobuf.other_insn = other_insn;
6266 SUBST (*cc_use, tmp);
6267
6268 /* Attempt to simplify CC user. */
6269 if (GET_CODE (pat) == SET)
6270 {
6271 rtx new_rtx = simplify_rtx (SET_SRC (pat));
6272 if (new_rtx != NULL_RTX)
6273 SUBST (SET_SRC (pat), new_rtx);
6274 }
6275
6276 /* Convert X into a no-op move. */
6277 SUBST (SET_DEST (x), pc_rtx);
6278 SUBST (SET_SRC (x), pc_rtx);
6279 return x;
6280 }
6281
6282 /* Simplify our comparison, if possible. */
6283 new_code = simplify_comparison (new_code, &op0, &op1);
6284
6285 #ifdef SELECT_CC_MODE
6286 /* If this machine has CC modes other than CCmode, check to see if we
6287 need to use a different CC mode here. */
6288 if (GET_MODE_CLASS (GET_MODE (op0)) == MODE_CC)
6289 compare_mode = GET_MODE (op0);
6290 else
6291 compare_mode = SELECT_CC_MODE (new_code, op0, op1);
6292
6293 #ifndef HAVE_cc0
6294 /* If the mode changed, we have to change SET_DEST, the mode in the
6295 compare, and the mode in the place SET_DEST is used. If SET_DEST is
6296 a hard register, just build new versions with the proper mode. If it
6297 is a pseudo, we lose unless it is only time we set the pseudo, in
6298 which case we can safely change its mode. */
6299 if (compare_mode != GET_MODE (dest))
6300 {
6301 if (can_change_dest_mode (dest, 0, compare_mode))
6302 {
6303 unsigned int regno = REGNO (dest);
6304 rtx new_dest;
6305
6306 if (regno < FIRST_PSEUDO_REGISTER)
6307 new_dest = gen_rtx_REG (compare_mode, regno);
6308 else
6309 {
6310 SUBST_MODE (regno_reg_rtx[regno], compare_mode);
6311 new_dest = regno_reg_rtx[regno];
6312 }
6313
6314 SUBST (SET_DEST (x), new_dest);
6315 SUBST (XEXP (*cc_use, 0), new_dest);
6316 other_changed = 1;
6317
6318 dest = new_dest;
6319 }
6320 }
6321 #endif /* cc0 */
6322 #endif /* SELECT_CC_MODE */
6323
6324 /* If the code changed, we have to build a new comparison in
6325 undobuf.other_insn. */
6326 if (new_code != old_code)
6327 {
6328 int other_changed_previously = other_changed;
6329 unsigned HOST_WIDE_INT mask;
6330 rtx old_cc_use = *cc_use;
6331
6332 SUBST (*cc_use, gen_rtx_fmt_ee (new_code, GET_MODE (*cc_use),
6333 dest, const0_rtx));
6334 other_changed = 1;
6335
6336 /* If the only change we made was to change an EQ into an NE or
6337 vice versa, OP0 has only one bit that might be nonzero, and OP1
6338 is zero, check if changing the user of the condition code will
6339 produce a valid insn. If it won't, we can keep the original code
6340 in that insn by surrounding our operation with an XOR. */
6341
6342 if (((old_code == NE && new_code == EQ)
6343 || (old_code == EQ && new_code == NE))
6344 && ! other_changed_previously && op1 == const0_rtx
6345 && GET_MODE_BITSIZE (GET_MODE (op0)) <= HOST_BITS_PER_WIDE_INT
6346 && exact_log2 (mask = nonzero_bits (op0, GET_MODE (op0))) >= 0)
6347 {
6348 rtx pat = PATTERN (other_insn), note = 0;
6349
6350 if ((recog_for_combine (&pat, other_insn, &note) < 0
6351 && ! check_asm_operands (pat)))
6352 {
6353 *cc_use = old_cc_use;
6354 other_changed = 0;
6355
6356 op0 = simplify_gen_binary (XOR, GET_MODE (op0),
6357 op0, GEN_INT (mask));
6358 }
6359 }
6360 }
6361
6362 if (other_changed)
6363 undobuf.other_insn = other_insn;
6364
6365 /* Otherwise, if we didn't previously have a COMPARE in the
6366 correct mode, we need one. */
6367 if (GET_CODE (src) != COMPARE || GET_MODE (src) != compare_mode)
6368 {
6369 SUBST (SET_SRC (x), gen_rtx_COMPARE (compare_mode, op0, op1));
6370 src = SET_SRC (x);
6371 }
6372 else if (GET_MODE (op0) == compare_mode && op1 == const0_rtx)
6373 {
6374 SUBST (SET_SRC (x), op0);
6375 src = SET_SRC (x);
6376 }
6377 /* Otherwise, update the COMPARE if needed. */
6378 else if (XEXP (src, 0) != op0 || XEXP (src, 1) != op1)
6379 {
6380 SUBST (SET_SRC (x), gen_rtx_COMPARE (compare_mode, op0, op1));
6381 src = SET_SRC (x);
6382 }
6383 }
6384 else
6385 {
6386 /* Get SET_SRC in a form where we have placed back any
6387 compound expressions. Then do the checks below. */
6388 src = make_compound_operation (src, SET);
6389 SUBST (SET_SRC (x), src);
6390 }
6391
6392 /* If we have (set x (subreg:m1 (op:m2 ...) 0)) with OP being some operation,
6393 and X being a REG or (subreg (reg)), we may be able to convert this to
6394 (set (subreg:m2 x) (op)).
6395
6396 We can always do this if M1 is narrower than M2 because that means that
6397 we only care about the low bits of the result.
6398
6399 However, on machines without WORD_REGISTER_OPERATIONS defined, we cannot
6400 perform a narrower operation than requested since the high-order bits will
6401 be undefined. On machine where it is defined, this transformation is safe
6402 as long as M1 and M2 have the same number of words. */
6403
6404 if (GET_CODE (src) == SUBREG && subreg_lowpart_p (src)
6405 && !OBJECT_P (SUBREG_REG (src))
6406 && (((GET_MODE_SIZE (GET_MODE (src)) + (UNITS_PER_WORD - 1))
6407 / UNITS_PER_WORD)
6408 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (src)))
6409 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))
6410 #ifndef WORD_REGISTER_OPERATIONS
6411 && (GET_MODE_SIZE (GET_MODE (src))
6412 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (src))))
6413 #endif
6414 #ifdef CANNOT_CHANGE_MODE_CLASS
6415 && ! (REG_P (dest) && REGNO (dest) < FIRST_PSEUDO_REGISTER
6416 && REG_CANNOT_CHANGE_MODE_P (REGNO (dest),
6417 GET_MODE (SUBREG_REG (src)),
6418 GET_MODE (src)))
6419 #endif
6420 && (REG_P (dest)
6421 || (GET_CODE (dest) == SUBREG
6422 && REG_P (SUBREG_REG (dest)))))
6423 {
6424 SUBST (SET_DEST (x),
6425 gen_lowpart (GET_MODE (SUBREG_REG (src)),
6426 dest));
6427 SUBST (SET_SRC (x), SUBREG_REG (src));
6428
6429 src = SET_SRC (x), dest = SET_DEST (x);
6430 }
6431
6432 #ifdef HAVE_cc0
6433 /* If we have (set (cc0) (subreg ...)), we try to remove the subreg
6434 in SRC. */
6435 if (dest == cc0_rtx
6436 && GET_CODE (src) == SUBREG
6437 && subreg_lowpart_p (src)
6438 && (GET_MODE_BITSIZE (GET_MODE (src))
6439 < GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (src)))))
6440 {
6441 rtx inner = SUBREG_REG (src);
6442 enum machine_mode inner_mode = GET_MODE (inner);
6443
6444 /* Here we make sure that we don't have a sign bit on. */
6445 if (GET_MODE_BITSIZE (inner_mode) <= HOST_BITS_PER_WIDE_INT
6446 && (nonzero_bits (inner, inner_mode)
6447 < ((unsigned HOST_WIDE_INT) 1
6448 << (GET_MODE_BITSIZE (GET_MODE (src)) - 1))))
6449 {
6450 SUBST (SET_SRC (x), inner);
6451 src = SET_SRC (x);
6452 }
6453 }
6454 #endif
6455
6456 #ifdef LOAD_EXTEND_OP
6457 /* If we have (set FOO (subreg:M (mem:N BAR) 0)) with M wider than N, this
6458 would require a paradoxical subreg. Replace the subreg with a
6459 zero_extend to avoid the reload that would otherwise be required. */
6460
6461 if (GET_CODE (src) == SUBREG && subreg_lowpart_p (src)
6462 && INTEGRAL_MODE_P (GET_MODE (SUBREG_REG (src)))
6463 && LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (src))) != UNKNOWN
6464 && SUBREG_BYTE (src) == 0
6465 && (GET_MODE_SIZE (GET_MODE (src))
6466 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (src))))
6467 && MEM_P (SUBREG_REG (src)))
6468 {
6469 SUBST (SET_SRC (x),
6470 gen_rtx_fmt_e (LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (src))),
6471 GET_MODE (src), SUBREG_REG (src)));
6472
6473 src = SET_SRC (x);
6474 }
6475 #endif
6476
6477 /* If we don't have a conditional move, SET_SRC is an IF_THEN_ELSE, and we
6478 are comparing an item known to be 0 or -1 against 0, use a logical
6479 operation instead. Check for one of the arms being an IOR of the other
6480 arm with some value. We compute three terms to be IOR'ed together. In
6481 practice, at most two will be nonzero. Then we do the IOR's. */
6482
6483 if (GET_CODE (dest) != PC
6484 && GET_CODE (src) == IF_THEN_ELSE
6485 && GET_MODE_CLASS (GET_MODE (src)) == MODE_INT
6486 && (GET_CODE (XEXP (src, 0)) == EQ || GET_CODE (XEXP (src, 0)) == NE)
6487 && XEXP (XEXP (src, 0), 1) == const0_rtx
6488 && GET_MODE (src) == GET_MODE (XEXP (XEXP (src, 0), 0))
6489 #ifdef HAVE_conditional_move
6490 && ! can_conditionally_move_p (GET_MODE (src))
6491 #endif
6492 && (num_sign_bit_copies (XEXP (XEXP (src, 0), 0),
6493 GET_MODE (XEXP (XEXP (src, 0), 0)))
6494 == GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (src, 0), 0))))
6495 && ! side_effects_p (src))
6496 {
6497 rtx true_rtx = (GET_CODE (XEXP (src, 0)) == NE
6498 ? XEXP (src, 1) : XEXP (src, 2));
6499 rtx false_rtx = (GET_CODE (XEXP (src, 0)) == NE
6500 ? XEXP (src, 2) : XEXP (src, 1));
6501 rtx term1 = const0_rtx, term2, term3;
6502
6503 if (GET_CODE (true_rtx) == IOR
6504 && rtx_equal_p (XEXP (true_rtx, 0), false_rtx))
6505 term1 = false_rtx, true_rtx = XEXP (true_rtx, 1), false_rtx = const0_rtx;
6506 else if (GET_CODE (true_rtx) == IOR
6507 && rtx_equal_p (XEXP (true_rtx, 1), false_rtx))
6508 term1 = false_rtx, true_rtx = XEXP (true_rtx, 0), false_rtx = const0_rtx;
6509 else if (GET_CODE (false_rtx) == IOR
6510 && rtx_equal_p (XEXP (false_rtx, 0), true_rtx))
6511 term1 = true_rtx, false_rtx = XEXP (false_rtx, 1), true_rtx = const0_rtx;
6512 else if (GET_CODE (false_rtx) == IOR
6513 && rtx_equal_p (XEXP (false_rtx, 1), true_rtx))
6514 term1 = true_rtx, false_rtx = XEXP (false_rtx, 0), true_rtx = const0_rtx;
6515
6516 term2 = simplify_gen_binary (AND, GET_MODE (src),
6517 XEXP (XEXP (src, 0), 0), true_rtx);
6518 term3 = simplify_gen_binary (AND, GET_MODE (src),
6519 simplify_gen_unary (NOT, GET_MODE (src),
6520 XEXP (XEXP (src, 0), 0),
6521 GET_MODE (src)),
6522 false_rtx);
6523
6524 SUBST (SET_SRC (x),
6525 simplify_gen_binary (IOR, GET_MODE (src),
6526 simplify_gen_binary (IOR, GET_MODE (src),
6527 term1, term2),
6528 term3));
6529
6530 src = SET_SRC (x);
6531 }
6532
6533 /* If either SRC or DEST is a CLOBBER of (const_int 0), make this
6534 whole thing fail. */
6535 if (GET_CODE (src) == CLOBBER && XEXP (src, 0) == const0_rtx)
6536 return src;
6537 else if (GET_CODE (dest) == CLOBBER && XEXP (dest, 0) == const0_rtx)
6538 return dest;
6539 else
6540 /* Convert this into a field assignment operation, if possible. */
6541 return make_field_assignment (x);
6542 }
6543 \f
6544 /* Simplify, X, and AND, IOR, or XOR operation, and return the simplified
6545 result. */
6546
6547 static rtx
6548 simplify_logical (rtx x)
6549 {
6550 enum machine_mode mode = GET_MODE (x);
6551 rtx op0 = XEXP (x, 0);
6552 rtx op1 = XEXP (x, 1);
6553
6554 switch (GET_CODE (x))
6555 {
6556 case AND:
6557 /* We can call simplify_and_const_int only if we don't lose
6558 any (sign) bits when converting INTVAL (op1) to
6559 "unsigned HOST_WIDE_INT". */
6560 if (CONST_INT_P (op1)
6561 && (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
6562 || INTVAL (op1) > 0))
6563 {
6564 x = simplify_and_const_int (x, mode, op0, INTVAL (op1));
6565 if (GET_CODE (x) != AND)
6566 return x;
6567
6568 op0 = XEXP (x, 0);
6569 op1 = XEXP (x, 1);
6570 }
6571
6572 /* If we have any of (and (ior A B) C) or (and (xor A B) C),
6573 apply the distributive law and then the inverse distributive
6574 law to see if things simplify. */
6575 if (GET_CODE (op0) == IOR || GET_CODE (op0) == XOR)
6576 {
6577 rtx result = distribute_and_simplify_rtx (x, 0);
6578 if (result)
6579 return result;
6580 }
6581 if (GET_CODE (op1) == IOR || GET_CODE (op1) == XOR)
6582 {
6583 rtx result = distribute_and_simplify_rtx (x, 1);
6584 if (result)
6585 return result;
6586 }
6587 break;
6588
6589 case IOR:
6590 /* If we have (ior (and A B) C), apply the distributive law and then
6591 the inverse distributive law to see if things simplify. */
6592
6593 if (GET_CODE (op0) == AND)
6594 {
6595 rtx result = distribute_and_simplify_rtx (x, 0);
6596 if (result)
6597 return result;
6598 }
6599
6600 if (GET_CODE (op1) == AND)
6601 {
6602 rtx result = distribute_and_simplify_rtx (x, 1);
6603 if (result)
6604 return result;
6605 }
6606 break;
6607
6608 default:
6609 gcc_unreachable ();
6610 }
6611
6612 return x;
6613 }
6614 \f
6615 /* We consider ZERO_EXTRACT, SIGN_EXTRACT, and SIGN_EXTEND as "compound
6616 operations" because they can be replaced with two more basic operations.
6617 ZERO_EXTEND is also considered "compound" because it can be replaced with
6618 an AND operation, which is simpler, though only one operation.
6619
6620 The function expand_compound_operation is called with an rtx expression
6621 and will convert it to the appropriate shifts and AND operations,
6622 simplifying at each stage.
6623
6624 The function make_compound_operation is called to convert an expression
6625 consisting of shifts and ANDs into the equivalent compound expression.
6626 It is the inverse of this function, loosely speaking. */
6627
6628 static rtx
6629 expand_compound_operation (rtx x)
6630 {
6631 unsigned HOST_WIDE_INT pos = 0, len;
6632 int unsignedp = 0;
6633 unsigned int modewidth;
6634 rtx tem;
6635
6636 switch (GET_CODE (x))
6637 {
6638 case ZERO_EXTEND:
6639 unsignedp = 1;
6640 case SIGN_EXTEND:
6641 /* We can't necessarily use a const_int for a multiword mode;
6642 it depends on implicitly extending the value.
6643 Since we don't know the right way to extend it,
6644 we can't tell whether the implicit way is right.
6645
6646 Even for a mode that is no wider than a const_int,
6647 we can't win, because we need to sign extend one of its bits through
6648 the rest of it, and we don't know which bit. */
6649 if (CONST_INT_P (XEXP (x, 0)))
6650 return x;
6651
6652 /* Return if (subreg:MODE FROM 0) is not a safe replacement for
6653 (zero_extend:MODE FROM) or (sign_extend:MODE FROM). It is for any MEM
6654 because (SUBREG (MEM...)) is guaranteed to cause the MEM to be
6655 reloaded. If not for that, MEM's would very rarely be safe.
6656
6657 Reject MODEs bigger than a word, because we might not be able
6658 to reference a two-register group starting with an arbitrary register
6659 (and currently gen_lowpart might crash for a SUBREG). */
6660
6661 if (GET_MODE_SIZE (GET_MODE (XEXP (x, 0))) > UNITS_PER_WORD)
6662 return x;
6663
6664 /* Reject MODEs that aren't scalar integers because turning vector
6665 or complex modes into shifts causes problems. */
6666
6667 if (! SCALAR_INT_MODE_P (GET_MODE (XEXP (x, 0))))
6668 return x;
6669
6670 len = GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)));
6671 /* If the inner object has VOIDmode (the only way this can happen
6672 is if it is an ASM_OPERANDS), we can't do anything since we don't
6673 know how much masking to do. */
6674 if (len == 0)
6675 return x;
6676
6677 break;
6678
6679 case ZERO_EXTRACT:
6680 unsignedp = 1;
6681
6682 /* ... fall through ... */
6683
6684 case SIGN_EXTRACT:
6685 /* If the operand is a CLOBBER, just return it. */
6686 if (GET_CODE (XEXP (x, 0)) == CLOBBER)
6687 return XEXP (x, 0);
6688
6689 if (!CONST_INT_P (XEXP (x, 1))
6690 || !CONST_INT_P (XEXP (x, 2))
6691 || GET_MODE (XEXP (x, 0)) == VOIDmode)
6692 return x;
6693
6694 /* Reject MODEs that aren't scalar integers because turning vector
6695 or complex modes into shifts causes problems. */
6696
6697 if (! SCALAR_INT_MODE_P (GET_MODE (XEXP (x, 0))))
6698 return x;
6699
6700 len = INTVAL (XEXP (x, 1));
6701 pos = INTVAL (XEXP (x, 2));
6702
6703 /* This should stay within the object being extracted, fail otherwise. */
6704 if (len + pos > GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0))))
6705 return x;
6706
6707 if (BITS_BIG_ENDIAN)
6708 pos = GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0))) - len - pos;
6709
6710 break;
6711
6712 default:
6713 return x;
6714 }
6715 /* Convert sign extension to zero extension, if we know that the high
6716 bit is not set, as this is easier to optimize. It will be converted
6717 back to cheaper alternative in make_extraction. */
6718 if (GET_CODE (x) == SIGN_EXTEND
6719 && (GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
6720 && ((nonzero_bits (XEXP (x, 0), GET_MODE (XEXP (x, 0)))
6721 & ~(((unsigned HOST_WIDE_INT)
6722 GET_MODE_MASK (GET_MODE (XEXP (x, 0))))
6723 >> 1))
6724 == 0)))
6725 {
6726 rtx temp = gen_rtx_ZERO_EXTEND (GET_MODE (x), XEXP (x, 0));
6727 rtx temp2 = expand_compound_operation (temp);
6728
6729 /* Make sure this is a profitable operation. */
6730 if (rtx_cost (x, SET, optimize_this_for_speed_p)
6731 > rtx_cost (temp2, SET, optimize_this_for_speed_p))
6732 return temp2;
6733 else if (rtx_cost (x, SET, optimize_this_for_speed_p)
6734 > rtx_cost (temp, SET, optimize_this_for_speed_p))
6735 return temp;
6736 else
6737 return x;
6738 }
6739
6740 /* We can optimize some special cases of ZERO_EXTEND. */
6741 if (GET_CODE (x) == ZERO_EXTEND)
6742 {
6743 /* (zero_extend:DI (truncate:SI foo:DI)) is just foo:DI if we
6744 know that the last value didn't have any inappropriate bits
6745 set. */
6746 if (GET_CODE (XEXP (x, 0)) == TRUNCATE
6747 && GET_MODE (XEXP (XEXP (x, 0), 0)) == GET_MODE (x)
6748 && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
6749 && (nonzero_bits (XEXP (XEXP (x, 0), 0), GET_MODE (x))
6750 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
6751 return XEXP (XEXP (x, 0), 0);
6752
6753 /* Likewise for (zero_extend:DI (subreg:SI foo:DI 0)). */
6754 if (GET_CODE (XEXP (x, 0)) == SUBREG
6755 && GET_MODE (SUBREG_REG (XEXP (x, 0))) == GET_MODE (x)
6756 && subreg_lowpart_p (XEXP (x, 0))
6757 && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
6758 && (nonzero_bits (SUBREG_REG (XEXP (x, 0)), GET_MODE (x))
6759 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
6760 return SUBREG_REG (XEXP (x, 0));
6761
6762 /* (zero_extend:DI (truncate:SI foo:DI)) is just foo:DI when foo
6763 is a comparison and STORE_FLAG_VALUE permits. This is like
6764 the first case, but it works even when GET_MODE (x) is larger
6765 than HOST_WIDE_INT. */
6766 if (GET_CODE (XEXP (x, 0)) == TRUNCATE
6767 && GET_MODE (XEXP (XEXP (x, 0), 0)) == GET_MODE (x)
6768 && COMPARISON_P (XEXP (XEXP (x, 0), 0))
6769 && (GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))
6770 <= HOST_BITS_PER_WIDE_INT)
6771 && (STORE_FLAG_VALUE & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
6772 return XEXP (XEXP (x, 0), 0);
6773
6774 /* Likewise for (zero_extend:DI (subreg:SI foo:DI 0)). */
6775 if (GET_CODE (XEXP (x, 0)) == SUBREG
6776 && GET_MODE (SUBREG_REG (XEXP (x, 0))) == GET_MODE (x)
6777 && subreg_lowpart_p (XEXP (x, 0))
6778 && COMPARISON_P (SUBREG_REG (XEXP (x, 0)))
6779 && (GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))
6780 <= HOST_BITS_PER_WIDE_INT)
6781 && (STORE_FLAG_VALUE & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
6782 return SUBREG_REG (XEXP (x, 0));
6783
6784 }
6785
6786 /* If we reach here, we want to return a pair of shifts. The inner
6787 shift is a left shift of BITSIZE - POS - LEN bits. The outer
6788 shift is a right shift of BITSIZE - LEN bits. It is arithmetic or
6789 logical depending on the value of UNSIGNEDP.
6790
6791 If this was a ZERO_EXTEND or ZERO_EXTRACT, this pair of shifts will be
6792 converted into an AND of a shift.
6793
6794 We must check for the case where the left shift would have a negative
6795 count. This can happen in a case like (x >> 31) & 255 on machines
6796 that can't shift by a constant. On those machines, we would first
6797 combine the shift with the AND to produce a variable-position
6798 extraction. Then the constant of 31 would be substituted in
6799 to produce such a position. */
6800
6801 modewidth = GET_MODE_BITSIZE (GET_MODE (x));
6802 if (modewidth >= pos + len)
6803 {
6804 enum machine_mode mode = GET_MODE (x);
6805 tem = gen_lowpart (mode, XEXP (x, 0));
6806 if (!tem || GET_CODE (tem) == CLOBBER)
6807 return x;
6808 tem = simplify_shift_const (NULL_RTX, ASHIFT, mode,
6809 tem, modewidth - pos - len);
6810 tem = simplify_shift_const (NULL_RTX, unsignedp ? LSHIFTRT : ASHIFTRT,
6811 mode, tem, modewidth - len);
6812 }
6813 else if (unsignedp && len < HOST_BITS_PER_WIDE_INT)
6814 tem = simplify_and_const_int (NULL_RTX, GET_MODE (x),
6815 simplify_shift_const (NULL_RTX, LSHIFTRT,
6816 GET_MODE (x),
6817 XEXP (x, 0), pos),
6818 ((unsigned HOST_WIDE_INT) 1 << len) - 1);
6819 else
6820 /* Any other cases we can't handle. */
6821 return x;
6822
6823 /* If we couldn't do this for some reason, return the original
6824 expression. */
6825 if (GET_CODE (tem) == CLOBBER)
6826 return x;
6827
6828 return tem;
6829 }
6830 \f
6831 /* X is a SET which contains an assignment of one object into
6832 a part of another (such as a bit-field assignment, STRICT_LOW_PART,
6833 or certain SUBREGS). If possible, convert it into a series of
6834 logical operations.
6835
6836 We half-heartedly support variable positions, but do not at all
6837 support variable lengths. */
6838
6839 static const_rtx
6840 expand_field_assignment (const_rtx x)
6841 {
6842 rtx inner;
6843 rtx pos; /* Always counts from low bit. */
6844 int len;
6845 rtx mask, cleared, masked;
6846 enum machine_mode compute_mode;
6847
6848 /* Loop until we find something we can't simplify. */
6849 while (1)
6850 {
6851 if (GET_CODE (SET_DEST (x)) == STRICT_LOW_PART
6852 && GET_CODE (XEXP (SET_DEST (x), 0)) == SUBREG)
6853 {
6854 inner = SUBREG_REG (XEXP (SET_DEST (x), 0));
6855 len = GET_MODE_BITSIZE (GET_MODE (XEXP (SET_DEST (x), 0)));
6856 pos = GEN_INT (subreg_lsb (XEXP (SET_DEST (x), 0)));
6857 }
6858 else if (GET_CODE (SET_DEST (x)) == ZERO_EXTRACT
6859 && CONST_INT_P (XEXP (SET_DEST (x), 1)))
6860 {
6861 inner = XEXP (SET_DEST (x), 0);
6862 len = INTVAL (XEXP (SET_DEST (x), 1));
6863 pos = XEXP (SET_DEST (x), 2);
6864
6865 /* A constant position should stay within the width of INNER. */
6866 if (CONST_INT_P (pos)
6867 && INTVAL (pos) + len > GET_MODE_BITSIZE (GET_MODE (inner)))
6868 break;
6869
6870 if (BITS_BIG_ENDIAN)
6871 {
6872 if (CONST_INT_P (pos))
6873 pos = GEN_INT (GET_MODE_BITSIZE (GET_MODE (inner)) - len
6874 - INTVAL (pos));
6875 else if (GET_CODE (pos) == MINUS
6876 && CONST_INT_P (XEXP (pos, 1))
6877 && (INTVAL (XEXP (pos, 1))
6878 == GET_MODE_BITSIZE (GET_MODE (inner)) - len))
6879 /* If position is ADJUST - X, new position is X. */
6880 pos = XEXP (pos, 0);
6881 else
6882 pos = simplify_gen_binary (MINUS, GET_MODE (pos),
6883 GEN_INT (GET_MODE_BITSIZE (
6884 GET_MODE (inner))
6885 - len),
6886 pos);
6887 }
6888 }
6889
6890 /* A SUBREG between two modes that occupy the same numbers of words
6891 can be done by moving the SUBREG to the source. */
6892 else if (GET_CODE (SET_DEST (x)) == SUBREG
6893 /* We need SUBREGs to compute nonzero_bits properly. */
6894 && nonzero_sign_valid
6895 && (((GET_MODE_SIZE (GET_MODE (SET_DEST (x)))
6896 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
6897 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (x))))
6898 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)))
6899 {
6900 x = gen_rtx_SET (VOIDmode, SUBREG_REG (SET_DEST (x)),
6901 gen_lowpart
6902 (GET_MODE (SUBREG_REG (SET_DEST (x))),
6903 SET_SRC (x)));
6904 continue;
6905 }
6906 else
6907 break;
6908
6909 while (GET_CODE (inner) == SUBREG && subreg_lowpart_p (inner))
6910 inner = SUBREG_REG (inner);
6911
6912 compute_mode = GET_MODE (inner);
6913
6914 /* Don't attempt bitwise arithmetic on non scalar integer modes. */
6915 if (! SCALAR_INT_MODE_P (compute_mode))
6916 {
6917 enum machine_mode imode;
6918
6919 /* Don't do anything for vector or complex integral types. */
6920 if (! FLOAT_MODE_P (compute_mode))
6921 break;
6922
6923 /* Try to find an integral mode to pun with. */
6924 imode = mode_for_size (GET_MODE_BITSIZE (compute_mode), MODE_INT, 0);
6925 if (imode == BLKmode)
6926 break;
6927
6928 compute_mode = imode;
6929 inner = gen_lowpart (imode, inner);
6930 }
6931
6932 /* Compute a mask of LEN bits, if we can do this on the host machine. */
6933 if (len >= HOST_BITS_PER_WIDE_INT)
6934 break;
6935
6936 /* Now compute the equivalent expression. Make a copy of INNER
6937 for the SET_DEST in case it is a MEM into which we will substitute;
6938 we don't want shared RTL in that case. */
6939 mask = GEN_INT (((unsigned HOST_WIDE_INT) 1 << len) - 1);
6940 cleared = simplify_gen_binary (AND, compute_mode,
6941 simplify_gen_unary (NOT, compute_mode,
6942 simplify_gen_binary (ASHIFT,
6943 compute_mode,
6944 mask, pos),
6945 compute_mode),
6946 inner);
6947 masked = simplify_gen_binary (ASHIFT, compute_mode,
6948 simplify_gen_binary (
6949 AND, compute_mode,
6950 gen_lowpart (compute_mode, SET_SRC (x)),
6951 mask),
6952 pos);
6953
6954 x = gen_rtx_SET (VOIDmode, copy_rtx (inner),
6955 simplify_gen_binary (IOR, compute_mode,
6956 cleared, masked));
6957 }
6958
6959 return x;
6960 }
6961 \f
6962 /* Return an RTX for a reference to LEN bits of INNER. If POS_RTX is nonzero,
6963 it is an RTX that represents a variable starting position; otherwise,
6964 POS is the (constant) starting bit position (counted from the LSB).
6965
6966 UNSIGNEDP is nonzero for an unsigned reference and zero for a
6967 signed reference.
6968
6969 IN_DEST is nonzero if this is a reference in the destination of a
6970 SET. This is used when a ZERO_ or SIGN_EXTRACT isn't needed. If nonzero,
6971 a STRICT_LOW_PART will be used, if zero, ZERO_EXTEND or SIGN_EXTEND will
6972 be used.
6973
6974 IN_COMPARE is nonzero if we are in a COMPARE. This means that a
6975 ZERO_EXTRACT should be built even for bits starting at bit 0.
6976
6977 MODE is the desired mode of the result (if IN_DEST == 0).
6978
6979 The result is an RTX for the extraction or NULL_RTX if the target
6980 can't handle it. */
6981
6982 static rtx
6983 make_extraction (enum machine_mode mode, rtx inner, HOST_WIDE_INT pos,
6984 rtx pos_rtx, unsigned HOST_WIDE_INT len, int unsignedp,
6985 int in_dest, int in_compare)
6986 {
6987 /* This mode describes the size of the storage area
6988 to fetch the overall value from. Within that, we
6989 ignore the POS lowest bits, etc. */
6990 enum machine_mode is_mode = GET_MODE (inner);
6991 enum machine_mode inner_mode;
6992 enum machine_mode wanted_inner_mode;
6993 enum machine_mode wanted_inner_reg_mode = word_mode;
6994 enum machine_mode pos_mode = word_mode;
6995 enum machine_mode extraction_mode = word_mode;
6996 enum machine_mode tmode = mode_for_size (len, MODE_INT, 1);
6997 rtx new_rtx = 0;
6998 rtx orig_pos_rtx = pos_rtx;
6999 HOST_WIDE_INT orig_pos;
7000
7001 if (GET_CODE (inner) == SUBREG && subreg_lowpart_p (inner))
7002 {
7003 /* If going from (subreg:SI (mem:QI ...)) to (mem:QI ...),
7004 consider just the QI as the memory to extract from.
7005 The subreg adds or removes high bits; its mode is
7006 irrelevant to the meaning of this extraction,
7007 since POS and LEN count from the lsb. */
7008 if (MEM_P (SUBREG_REG (inner)))
7009 is_mode = GET_MODE (SUBREG_REG (inner));
7010 inner = SUBREG_REG (inner);
7011 }
7012 else if (GET_CODE (inner) == ASHIFT
7013 && CONST_INT_P (XEXP (inner, 1))
7014 && pos_rtx == 0 && pos == 0
7015 && len > UINTVAL (XEXP (inner, 1)))
7016 {
7017 /* We're extracting the least significant bits of an rtx
7018 (ashift X (const_int C)), where LEN > C. Extract the
7019 least significant (LEN - C) bits of X, giving an rtx
7020 whose mode is MODE, then shift it left C times. */
7021 new_rtx = make_extraction (mode, XEXP (inner, 0),
7022 0, 0, len - INTVAL (XEXP (inner, 1)),
7023 unsignedp, in_dest, in_compare);
7024 if (new_rtx != 0)
7025 return gen_rtx_ASHIFT (mode, new_rtx, XEXP (inner, 1));
7026 }
7027
7028 inner_mode = GET_MODE (inner);
7029
7030 if (pos_rtx && CONST_INT_P (pos_rtx))
7031 pos = INTVAL (pos_rtx), pos_rtx = 0;
7032
7033 /* See if this can be done without an extraction. We never can if the
7034 width of the field is not the same as that of some integer mode. For
7035 registers, we can only avoid the extraction if the position is at the
7036 low-order bit and this is either not in the destination or we have the
7037 appropriate STRICT_LOW_PART operation available.
7038
7039 For MEM, we can avoid an extract if the field starts on an appropriate
7040 boundary and we can change the mode of the memory reference. */
7041
7042 if (tmode != BLKmode
7043 && ((pos_rtx == 0 && (pos % BITS_PER_WORD) == 0
7044 && !MEM_P (inner)
7045 && (inner_mode == tmode
7046 || !REG_P (inner)
7047 || TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (tmode),
7048 GET_MODE_BITSIZE (inner_mode))
7049 || reg_truncated_to_mode (tmode, inner))
7050 && (! in_dest
7051 || (REG_P (inner)
7052 && have_insn_for (STRICT_LOW_PART, tmode))))
7053 || (MEM_P (inner) && pos_rtx == 0
7054 && (pos
7055 % (STRICT_ALIGNMENT ? GET_MODE_ALIGNMENT (tmode)
7056 : BITS_PER_UNIT)) == 0
7057 /* We can't do this if we are widening INNER_MODE (it
7058 may not be aligned, for one thing). */
7059 && GET_MODE_BITSIZE (inner_mode) >= GET_MODE_BITSIZE (tmode)
7060 && (inner_mode == tmode
7061 || (! mode_dependent_address_p (XEXP (inner, 0))
7062 && ! MEM_VOLATILE_P (inner))))))
7063 {
7064 /* If INNER is a MEM, make a new MEM that encompasses just the desired
7065 field. If the original and current mode are the same, we need not
7066 adjust the offset. Otherwise, we do if bytes big endian.
7067
7068 If INNER is not a MEM, get a piece consisting of just the field
7069 of interest (in this case POS % BITS_PER_WORD must be 0). */
7070
7071 if (MEM_P (inner))
7072 {
7073 HOST_WIDE_INT offset;
7074
7075 /* POS counts from lsb, but make OFFSET count in memory order. */
7076 if (BYTES_BIG_ENDIAN)
7077 offset = (GET_MODE_BITSIZE (is_mode) - len - pos) / BITS_PER_UNIT;
7078 else
7079 offset = pos / BITS_PER_UNIT;
7080
7081 new_rtx = adjust_address_nv (inner, tmode, offset);
7082 }
7083 else if (REG_P (inner))
7084 {
7085 if (tmode != inner_mode)
7086 {
7087 /* We can't call gen_lowpart in a DEST since we
7088 always want a SUBREG (see below) and it would sometimes
7089 return a new hard register. */
7090 if (pos || in_dest)
7091 {
7092 HOST_WIDE_INT final_word = pos / BITS_PER_WORD;
7093
7094 if (WORDS_BIG_ENDIAN
7095 && GET_MODE_SIZE (inner_mode) > UNITS_PER_WORD)
7096 final_word = ((GET_MODE_SIZE (inner_mode)
7097 - GET_MODE_SIZE (tmode))
7098 / UNITS_PER_WORD) - final_word;
7099
7100 final_word *= UNITS_PER_WORD;
7101 if (BYTES_BIG_ENDIAN &&
7102 GET_MODE_SIZE (inner_mode) > GET_MODE_SIZE (tmode))
7103 final_word += (GET_MODE_SIZE (inner_mode)
7104 - GET_MODE_SIZE (tmode)) % UNITS_PER_WORD;
7105
7106 /* Avoid creating invalid subregs, for example when
7107 simplifying (x>>32)&255. */
7108 if (!validate_subreg (tmode, inner_mode, inner, final_word))
7109 return NULL_RTX;
7110
7111 new_rtx = gen_rtx_SUBREG (tmode, inner, final_word);
7112 }
7113 else
7114 new_rtx = gen_lowpart (tmode, inner);
7115 }
7116 else
7117 new_rtx = inner;
7118 }
7119 else
7120 new_rtx = force_to_mode (inner, tmode,
7121 len >= HOST_BITS_PER_WIDE_INT
7122 ? ~(unsigned HOST_WIDE_INT) 0
7123 : ((unsigned HOST_WIDE_INT) 1 << len) - 1,
7124 0);
7125
7126 /* If this extraction is going into the destination of a SET,
7127 make a STRICT_LOW_PART unless we made a MEM. */
7128
7129 if (in_dest)
7130 return (MEM_P (new_rtx) ? new_rtx
7131 : (GET_CODE (new_rtx) != SUBREG
7132 ? gen_rtx_CLOBBER (tmode, const0_rtx)
7133 : gen_rtx_STRICT_LOW_PART (VOIDmode, new_rtx)));
7134
7135 if (mode == tmode)
7136 return new_rtx;
7137
7138 if (CONST_INT_P (new_rtx)
7139 || GET_CODE (new_rtx) == CONST_DOUBLE)
7140 return simplify_unary_operation (unsignedp ? ZERO_EXTEND : SIGN_EXTEND,
7141 mode, new_rtx, tmode);
7142
7143 /* If we know that no extraneous bits are set, and that the high
7144 bit is not set, convert the extraction to the cheaper of
7145 sign and zero extension, that are equivalent in these cases. */
7146 if (flag_expensive_optimizations
7147 && (GET_MODE_BITSIZE (tmode) <= HOST_BITS_PER_WIDE_INT
7148 && ((nonzero_bits (new_rtx, tmode)
7149 & ~(((unsigned HOST_WIDE_INT)
7150 GET_MODE_MASK (tmode))
7151 >> 1))
7152 == 0)))
7153 {
7154 rtx temp = gen_rtx_ZERO_EXTEND (mode, new_rtx);
7155 rtx temp1 = gen_rtx_SIGN_EXTEND (mode, new_rtx);
7156
7157 /* Prefer ZERO_EXTENSION, since it gives more information to
7158 backends. */
7159 if (rtx_cost (temp, SET, optimize_this_for_speed_p)
7160 <= rtx_cost (temp1, SET, optimize_this_for_speed_p))
7161 return temp;
7162 return temp1;
7163 }
7164
7165 /* Otherwise, sign- or zero-extend unless we already are in the
7166 proper mode. */
7167
7168 return (gen_rtx_fmt_e (unsignedp ? ZERO_EXTEND : SIGN_EXTEND,
7169 mode, new_rtx));
7170 }
7171
7172 /* Unless this is a COMPARE or we have a funny memory reference,
7173 don't do anything with zero-extending field extracts starting at
7174 the low-order bit since they are simple AND operations. */
7175 if (pos_rtx == 0 && pos == 0 && ! in_dest
7176 && ! in_compare && unsignedp)
7177 return 0;
7178
7179 /* Unless INNER is not MEM, reject this if we would be spanning bytes or
7180 if the position is not a constant and the length is not 1. In all
7181 other cases, we would only be going outside our object in cases when
7182 an original shift would have been undefined. */
7183 if (MEM_P (inner)
7184 && ((pos_rtx == 0 && pos + len > GET_MODE_BITSIZE (is_mode))
7185 || (pos_rtx != 0 && len != 1)))
7186 return 0;
7187
7188 /* Get the mode to use should INNER not be a MEM, the mode for the position,
7189 and the mode for the result. */
7190 if (in_dest && mode_for_extraction (EP_insv, -1) != MAX_MACHINE_MODE)
7191 {
7192 wanted_inner_reg_mode = mode_for_extraction (EP_insv, 0);
7193 pos_mode = mode_for_extraction (EP_insv, 2);
7194 extraction_mode = mode_for_extraction (EP_insv, 3);
7195 }
7196
7197 if (! in_dest && unsignedp
7198 && mode_for_extraction (EP_extzv, -1) != MAX_MACHINE_MODE)
7199 {
7200 wanted_inner_reg_mode = mode_for_extraction (EP_extzv, 1);
7201 pos_mode = mode_for_extraction (EP_extzv, 3);
7202 extraction_mode = mode_for_extraction (EP_extzv, 0);
7203 }
7204
7205 if (! in_dest && ! unsignedp
7206 && mode_for_extraction (EP_extv, -1) != MAX_MACHINE_MODE)
7207 {
7208 wanted_inner_reg_mode = mode_for_extraction (EP_extv, 1);
7209 pos_mode = mode_for_extraction (EP_extv, 3);
7210 extraction_mode = mode_for_extraction (EP_extv, 0);
7211 }
7212
7213 /* Never narrow an object, since that might not be safe. */
7214
7215 if (mode != VOIDmode
7216 && GET_MODE_SIZE (extraction_mode) < GET_MODE_SIZE (mode))
7217 extraction_mode = mode;
7218
7219 if (pos_rtx && GET_MODE (pos_rtx) != VOIDmode
7220 && GET_MODE_SIZE (pos_mode) < GET_MODE_SIZE (GET_MODE (pos_rtx)))
7221 pos_mode = GET_MODE (pos_rtx);
7222
7223 /* If this is not from memory, the desired mode is the preferred mode
7224 for an extraction pattern's first input operand, or word_mode if there
7225 is none. */
7226 if (!MEM_P (inner))
7227 wanted_inner_mode = wanted_inner_reg_mode;
7228 else
7229 {
7230 /* Be careful not to go beyond the extracted object and maintain the
7231 natural alignment of the memory. */
7232 wanted_inner_mode = smallest_mode_for_size (len, MODE_INT);
7233 while (pos % GET_MODE_BITSIZE (wanted_inner_mode) + len
7234 > GET_MODE_BITSIZE (wanted_inner_mode))
7235 {
7236 wanted_inner_mode = GET_MODE_WIDER_MODE (wanted_inner_mode);
7237 gcc_assert (wanted_inner_mode != VOIDmode);
7238 }
7239
7240 /* If we have to change the mode of memory and cannot, the desired mode
7241 is EXTRACTION_MODE. */
7242 if (inner_mode != wanted_inner_mode
7243 && (mode_dependent_address_p (XEXP (inner, 0))
7244 || MEM_VOLATILE_P (inner)
7245 || pos_rtx))
7246 wanted_inner_mode = extraction_mode;
7247 }
7248
7249 orig_pos = pos;
7250
7251 if (BITS_BIG_ENDIAN)
7252 {
7253 /* POS is passed as if BITS_BIG_ENDIAN == 0, so we need to convert it to
7254 BITS_BIG_ENDIAN style. If position is constant, compute new
7255 position. Otherwise, build subtraction.
7256 Note that POS is relative to the mode of the original argument.
7257 If it's a MEM we need to recompute POS relative to that.
7258 However, if we're extracting from (or inserting into) a register,
7259 we want to recompute POS relative to wanted_inner_mode. */
7260 int width = (MEM_P (inner)
7261 ? GET_MODE_BITSIZE (is_mode)
7262 : GET_MODE_BITSIZE (wanted_inner_mode));
7263
7264 if (pos_rtx == 0)
7265 pos = width - len - pos;
7266 else
7267 pos_rtx
7268 = gen_rtx_MINUS (GET_MODE (pos_rtx), GEN_INT (width - len), pos_rtx);
7269 /* POS may be less than 0 now, but we check for that below.
7270 Note that it can only be less than 0 if !MEM_P (inner). */
7271 }
7272
7273 /* If INNER has a wider mode, and this is a constant extraction, try to
7274 make it smaller and adjust the byte to point to the byte containing
7275 the value. */
7276 if (wanted_inner_mode != VOIDmode
7277 && inner_mode != wanted_inner_mode
7278 && ! pos_rtx
7279 && GET_MODE_SIZE (wanted_inner_mode) < GET_MODE_SIZE (is_mode)
7280 && MEM_P (inner)
7281 && ! mode_dependent_address_p (XEXP (inner, 0))
7282 && ! MEM_VOLATILE_P (inner))
7283 {
7284 int offset = 0;
7285
7286 /* The computations below will be correct if the machine is big
7287 endian in both bits and bytes or little endian in bits and bytes.
7288 If it is mixed, we must adjust. */
7289
7290 /* If bytes are big endian and we had a paradoxical SUBREG, we must
7291 adjust OFFSET to compensate. */
7292 if (BYTES_BIG_ENDIAN
7293 && GET_MODE_SIZE (inner_mode) < GET_MODE_SIZE (is_mode))
7294 offset -= GET_MODE_SIZE (is_mode) - GET_MODE_SIZE (inner_mode);
7295
7296 /* We can now move to the desired byte. */
7297 offset += (pos / GET_MODE_BITSIZE (wanted_inner_mode))
7298 * GET_MODE_SIZE (wanted_inner_mode);
7299 pos %= GET_MODE_BITSIZE (wanted_inner_mode);
7300
7301 if (BYTES_BIG_ENDIAN != BITS_BIG_ENDIAN
7302 && is_mode != wanted_inner_mode)
7303 offset = (GET_MODE_SIZE (is_mode)
7304 - GET_MODE_SIZE (wanted_inner_mode) - offset);
7305
7306 inner = adjust_address_nv (inner, wanted_inner_mode, offset);
7307 }
7308
7309 /* If INNER is not memory, get it into the proper mode. If we are changing
7310 its mode, POS must be a constant and smaller than the size of the new
7311 mode. */
7312 else if (!MEM_P (inner))
7313 {
7314 /* On the LHS, don't create paradoxical subregs implicitely truncating
7315 the register unless TRULY_NOOP_TRUNCATION. */
7316 if (in_dest
7317 && !TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (GET_MODE (inner)),
7318 GET_MODE_BITSIZE (wanted_inner_mode)))
7319 return NULL_RTX;
7320
7321 if (GET_MODE (inner) != wanted_inner_mode
7322 && (pos_rtx != 0
7323 || orig_pos + len > GET_MODE_BITSIZE (wanted_inner_mode)))
7324 return NULL_RTX;
7325
7326 if (orig_pos < 0)
7327 return NULL_RTX;
7328
7329 inner = force_to_mode (inner, wanted_inner_mode,
7330 pos_rtx
7331 || len + orig_pos >= HOST_BITS_PER_WIDE_INT
7332 ? ~(unsigned HOST_WIDE_INT) 0
7333 : ((((unsigned HOST_WIDE_INT) 1 << len) - 1)
7334 << orig_pos),
7335 0);
7336 }
7337
7338 /* Adjust mode of POS_RTX, if needed. If we want a wider mode, we
7339 have to zero extend. Otherwise, we can just use a SUBREG. */
7340 if (pos_rtx != 0
7341 && GET_MODE_SIZE (pos_mode) > GET_MODE_SIZE (GET_MODE (pos_rtx)))
7342 {
7343 rtx temp = gen_rtx_ZERO_EXTEND (pos_mode, pos_rtx);
7344
7345 /* If we know that no extraneous bits are set, and that the high
7346 bit is not set, convert extraction to cheaper one - either
7347 SIGN_EXTENSION or ZERO_EXTENSION, that are equivalent in these
7348 cases. */
7349 if (flag_expensive_optimizations
7350 && (GET_MODE_BITSIZE (GET_MODE (pos_rtx)) <= HOST_BITS_PER_WIDE_INT
7351 && ((nonzero_bits (pos_rtx, GET_MODE (pos_rtx))
7352 & ~(((unsigned HOST_WIDE_INT)
7353 GET_MODE_MASK (GET_MODE (pos_rtx)))
7354 >> 1))
7355 == 0)))
7356 {
7357 rtx temp1 = gen_rtx_SIGN_EXTEND (pos_mode, pos_rtx);
7358
7359 /* Prefer ZERO_EXTENSION, since it gives more information to
7360 backends. */
7361 if (rtx_cost (temp1, SET, optimize_this_for_speed_p)
7362 < rtx_cost (temp, SET, optimize_this_for_speed_p))
7363 temp = temp1;
7364 }
7365 pos_rtx = temp;
7366 }
7367 else if (pos_rtx != 0
7368 && GET_MODE_SIZE (pos_mode) < GET_MODE_SIZE (GET_MODE (pos_rtx)))
7369 pos_rtx = gen_lowpart (pos_mode, pos_rtx);
7370
7371 /* Make POS_RTX unless we already have it and it is correct. If we don't
7372 have a POS_RTX but we do have an ORIG_POS_RTX, the latter must
7373 be a CONST_INT. */
7374 if (pos_rtx == 0 && orig_pos_rtx != 0 && INTVAL (orig_pos_rtx) == pos)
7375 pos_rtx = orig_pos_rtx;
7376
7377 else if (pos_rtx == 0)
7378 pos_rtx = GEN_INT (pos);
7379
7380 /* Make the required operation. See if we can use existing rtx. */
7381 new_rtx = gen_rtx_fmt_eee (unsignedp ? ZERO_EXTRACT : SIGN_EXTRACT,
7382 extraction_mode, inner, GEN_INT (len), pos_rtx);
7383 if (! in_dest)
7384 new_rtx = gen_lowpart (mode, new_rtx);
7385
7386 return new_rtx;
7387 }
7388 \f
7389 /* See if X contains an ASHIFT of COUNT or more bits that can be commuted
7390 with any other operations in X. Return X without that shift if so. */
7391
7392 static rtx
7393 extract_left_shift (rtx x, int count)
7394 {
7395 enum rtx_code code = GET_CODE (x);
7396 enum machine_mode mode = GET_MODE (x);
7397 rtx tem;
7398
7399 switch (code)
7400 {
7401 case ASHIFT:
7402 /* This is the shift itself. If it is wide enough, we will return
7403 either the value being shifted if the shift count is equal to
7404 COUNT or a shift for the difference. */
7405 if (CONST_INT_P (XEXP (x, 1))
7406 && INTVAL (XEXP (x, 1)) >= count)
7407 return simplify_shift_const (NULL_RTX, ASHIFT, mode, XEXP (x, 0),
7408 INTVAL (XEXP (x, 1)) - count);
7409 break;
7410
7411 case NEG: case NOT:
7412 if ((tem = extract_left_shift (XEXP (x, 0), count)) != 0)
7413 return simplify_gen_unary (code, mode, tem, mode);
7414
7415 break;
7416
7417 case PLUS: case IOR: case XOR: case AND:
7418 /* If we can safely shift this constant and we find the inner shift,
7419 make a new operation. */
7420 if (CONST_INT_P (XEXP (x, 1))
7421 && (UINTVAL (XEXP (x, 1))
7422 & ((((unsigned HOST_WIDE_INT) 1 << count)) - 1)) == 0
7423 && (tem = extract_left_shift (XEXP (x, 0), count)) != 0)
7424 return simplify_gen_binary (code, mode, tem,
7425 GEN_INT (INTVAL (XEXP (x, 1)) >> count));
7426
7427 break;
7428
7429 default:
7430 break;
7431 }
7432
7433 return 0;
7434 }
7435 \f
7436 /* Look at the expression rooted at X. Look for expressions
7437 equivalent to ZERO_EXTRACT, SIGN_EXTRACT, ZERO_EXTEND, SIGN_EXTEND.
7438 Form these expressions.
7439
7440 Return the new rtx, usually just X.
7441
7442 Also, for machines like the VAX that don't have logical shift insns,
7443 try to convert logical to arithmetic shift operations in cases where
7444 they are equivalent. This undoes the canonicalizations to logical
7445 shifts done elsewhere.
7446
7447 We try, as much as possible, to re-use rtl expressions to save memory.
7448
7449 IN_CODE says what kind of expression we are processing. Normally, it is
7450 SET. In a memory address (inside a MEM, PLUS or minus, the latter two
7451 being kludges), it is MEM. When processing the arguments of a comparison
7452 or a COMPARE against zero, it is COMPARE. */
7453
7454 static rtx
7455 make_compound_operation (rtx x, enum rtx_code in_code)
7456 {
7457 enum rtx_code code = GET_CODE (x);
7458 enum machine_mode mode = GET_MODE (x);
7459 int mode_width = GET_MODE_BITSIZE (mode);
7460 rtx rhs, lhs;
7461 enum rtx_code next_code;
7462 int i, j;
7463 rtx new_rtx = 0;
7464 rtx tem;
7465 const char *fmt;
7466
7467 /* Select the code to be used in recursive calls. Once we are inside an
7468 address, we stay there. If we have a comparison, set to COMPARE,
7469 but once inside, go back to our default of SET. */
7470
7471 next_code = (code == MEM ? MEM
7472 : ((code == PLUS || code == MINUS)
7473 && SCALAR_INT_MODE_P (mode)) ? MEM
7474 : ((code == COMPARE || COMPARISON_P (x))
7475 && XEXP (x, 1) == const0_rtx) ? COMPARE
7476 : in_code == COMPARE ? SET : in_code);
7477
7478 /* Process depending on the code of this operation. If NEW is set
7479 nonzero, it will be returned. */
7480
7481 switch (code)
7482 {
7483 case ASHIFT:
7484 /* Convert shifts by constants into multiplications if inside
7485 an address. */
7486 if (in_code == MEM && CONST_INT_P (XEXP (x, 1))
7487 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT
7488 && INTVAL (XEXP (x, 1)) >= 0
7489 && SCALAR_INT_MODE_P (mode))
7490 {
7491 HOST_WIDE_INT count = INTVAL (XEXP (x, 1));
7492 HOST_WIDE_INT multval = (HOST_WIDE_INT) 1 << count;
7493
7494 new_rtx = make_compound_operation (XEXP (x, 0), next_code);
7495 if (GET_CODE (new_rtx) == NEG)
7496 {
7497 new_rtx = XEXP (new_rtx, 0);
7498 multval = -multval;
7499 }
7500 multval = trunc_int_for_mode (multval, mode);
7501 new_rtx = gen_rtx_MULT (mode, new_rtx, GEN_INT (multval));
7502 }
7503 break;
7504
7505 case PLUS:
7506 lhs = XEXP (x, 0);
7507 rhs = XEXP (x, 1);
7508 lhs = make_compound_operation (lhs, next_code);
7509 rhs = make_compound_operation (rhs, next_code);
7510 if (GET_CODE (lhs) == MULT && GET_CODE (XEXP (lhs, 0)) == NEG
7511 && SCALAR_INT_MODE_P (mode))
7512 {
7513 tem = simplify_gen_binary (MULT, mode, XEXP (XEXP (lhs, 0), 0),
7514 XEXP (lhs, 1));
7515 new_rtx = simplify_gen_binary (MINUS, mode, rhs, tem);
7516 }
7517 else if (GET_CODE (lhs) == MULT
7518 && (CONST_INT_P (XEXP (lhs, 1)) && INTVAL (XEXP (lhs, 1)) < 0))
7519 {
7520 tem = simplify_gen_binary (MULT, mode, XEXP (lhs, 0),
7521 simplify_gen_unary (NEG, mode,
7522 XEXP (lhs, 1),
7523 mode));
7524 new_rtx = simplify_gen_binary (MINUS, mode, rhs, tem);
7525 }
7526 else
7527 {
7528 SUBST (XEXP (x, 0), lhs);
7529 SUBST (XEXP (x, 1), rhs);
7530 goto maybe_swap;
7531 }
7532 x = gen_lowpart (mode, new_rtx);
7533 goto maybe_swap;
7534
7535 case MINUS:
7536 lhs = XEXP (x, 0);
7537 rhs = XEXP (x, 1);
7538 lhs = make_compound_operation (lhs, next_code);
7539 rhs = make_compound_operation (rhs, next_code);
7540 if (GET_CODE (rhs) == MULT && GET_CODE (XEXP (rhs, 0)) == NEG
7541 && SCALAR_INT_MODE_P (mode))
7542 {
7543 tem = simplify_gen_binary (MULT, mode, XEXP (XEXP (rhs, 0), 0),
7544 XEXP (rhs, 1));
7545 new_rtx = simplify_gen_binary (PLUS, mode, tem, lhs);
7546 }
7547 else if (GET_CODE (rhs) == MULT
7548 && (CONST_INT_P (XEXP (rhs, 1)) && INTVAL (XEXP (rhs, 1)) < 0))
7549 {
7550 tem = simplify_gen_binary (MULT, mode, XEXP (rhs, 0),
7551 simplify_gen_unary (NEG, mode,
7552 XEXP (rhs, 1),
7553 mode));
7554 new_rtx = simplify_gen_binary (PLUS, mode, tem, lhs);
7555 }
7556 else
7557 {
7558 SUBST (XEXP (x, 0), lhs);
7559 SUBST (XEXP (x, 1), rhs);
7560 return x;
7561 }
7562 return gen_lowpart (mode, new_rtx);
7563
7564 case AND:
7565 /* If the second operand is not a constant, we can't do anything
7566 with it. */
7567 if (!CONST_INT_P (XEXP (x, 1)))
7568 break;
7569
7570 /* If the constant is a power of two minus one and the first operand
7571 is a logical right shift, make an extraction. */
7572 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
7573 && (i = exact_log2 (UINTVAL (XEXP (x, 1)) + 1)) >= 0)
7574 {
7575 new_rtx = make_compound_operation (XEXP (XEXP (x, 0), 0), next_code);
7576 new_rtx = make_extraction (mode, new_rtx, 0, XEXP (XEXP (x, 0), 1), i, 1,
7577 0, in_code == COMPARE);
7578 }
7579
7580 /* Same as previous, but for (subreg (lshiftrt ...)) in first op. */
7581 else if (GET_CODE (XEXP (x, 0)) == SUBREG
7582 && subreg_lowpart_p (XEXP (x, 0))
7583 && GET_CODE (SUBREG_REG (XEXP (x, 0))) == LSHIFTRT
7584 && (i = exact_log2 (UINTVAL (XEXP (x, 1)) + 1)) >= 0)
7585 {
7586 new_rtx = make_compound_operation (XEXP (SUBREG_REG (XEXP (x, 0)), 0),
7587 next_code);
7588 new_rtx = make_extraction (GET_MODE (SUBREG_REG (XEXP (x, 0))), new_rtx, 0,
7589 XEXP (SUBREG_REG (XEXP (x, 0)), 1), i, 1,
7590 0, in_code == COMPARE);
7591 }
7592 /* Same as previous, but for (xor/ior (lshiftrt...) (lshiftrt...)). */
7593 else if ((GET_CODE (XEXP (x, 0)) == XOR
7594 || GET_CODE (XEXP (x, 0)) == IOR)
7595 && GET_CODE (XEXP (XEXP (x, 0), 0)) == LSHIFTRT
7596 && GET_CODE (XEXP (XEXP (x, 0), 1)) == LSHIFTRT
7597 && (i = exact_log2 (UINTVAL (XEXP (x, 1)) + 1)) >= 0)
7598 {
7599 /* Apply the distributive law, and then try to make extractions. */
7600 new_rtx = gen_rtx_fmt_ee (GET_CODE (XEXP (x, 0)), mode,
7601 gen_rtx_AND (mode, XEXP (XEXP (x, 0), 0),
7602 XEXP (x, 1)),
7603 gen_rtx_AND (mode, XEXP (XEXP (x, 0), 1),
7604 XEXP (x, 1)));
7605 new_rtx = make_compound_operation (new_rtx, in_code);
7606 }
7607
7608 /* If we are have (and (rotate X C) M) and C is larger than the number
7609 of bits in M, this is an extraction. */
7610
7611 else if (GET_CODE (XEXP (x, 0)) == ROTATE
7612 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
7613 && (i = exact_log2 (UINTVAL (XEXP (x, 1)) + 1)) >= 0
7614 && i <= INTVAL (XEXP (XEXP (x, 0), 1)))
7615 {
7616 new_rtx = make_compound_operation (XEXP (XEXP (x, 0), 0), next_code);
7617 new_rtx = make_extraction (mode, new_rtx,
7618 (GET_MODE_BITSIZE (mode)
7619 - INTVAL (XEXP (XEXP (x, 0), 1))),
7620 NULL_RTX, i, 1, 0, in_code == COMPARE);
7621 }
7622
7623 /* On machines without logical shifts, if the operand of the AND is
7624 a logical shift and our mask turns off all the propagated sign
7625 bits, we can replace the logical shift with an arithmetic shift. */
7626 else if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
7627 && !have_insn_for (LSHIFTRT, mode)
7628 && have_insn_for (ASHIFTRT, mode)
7629 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
7630 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
7631 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT
7632 && mode_width <= HOST_BITS_PER_WIDE_INT)
7633 {
7634 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
7635
7636 mask >>= INTVAL (XEXP (XEXP (x, 0), 1));
7637 if ((INTVAL (XEXP (x, 1)) & ~mask) == 0)
7638 SUBST (XEXP (x, 0),
7639 gen_rtx_ASHIFTRT (mode,
7640 make_compound_operation
7641 (XEXP (XEXP (x, 0), 0), next_code),
7642 XEXP (XEXP (x, 0), 1)));
7643 }
7644
7645 /* If the constant is one less than a power of two, this might be
7646 representable by an extraction even if no shift is present.
7647 If it doesn't end up being a ZERO_EXTEND, we will ignore it unless
7648 we are in a COMPARE. */
7649 else if ((i = exact_log2 (UINTVAL (XEXP (x, 1)) + 1)) >= 0)
7650 new_rtx = make_extraction (mode,
7651 make_compound_operation (XEXP (x, 0),
7652 next_code),
7653 0, NULL_RTX, i, 1, 0, in_code == COMPARE);
7654
7655 /* If we are in a comparison and this is an AND with a power of two,
7656 convert this into the appropriate bit extract. */
7657 else if (in_code == COMPARE
7658 && (i = exact_log2 (UINTVAL (XEXP (x, 1)))) >= 0)
7659 new_rtx = make_extraction (mode,
7660 make_compound_operation (XEXP (x, 0),
7661 next_code),
7662 i, NULL_RTX, 1, 1, 0, 1);
7663
7664 break;
7665
7666 case LSHIFTRT:
7667 /* If the sign bit is known to be zero, replace this with an
7668 arithmetic shift. */
7669 if (have_insn_for (ASHIFTRT, mode)
7670 && ! have_insn_for (LSHIFTRT, mode)
7671 && mode_width <= HOST_BITS_PER_WIDE_INT
7672 && (nonzero_bits (XEXP (x, 0), mode) & (1 << (mode_width - 1))) == 0)
7673 {
7674 new_rtx = gen_rtx_ASHIFTRT (mode,
7675 make_compound_operation (XEXP (x, 0),
7676 next_code),
7677 XEXP (x, 1));
7678 break;
7679 }
7680
7681 /* ... fall through ... */
7682
7683 case ASHIFTRT:
7684 lhs = XEXP (x, 0);
7685 rhs = XEXP (x, 1);
7686
7687 /* If we have (ashiftrt (ashift foo C1) C2) with C2 >= C1,
7688 this is a SIGN_EXTRACT. */
7689 if (CONST_INT_P (rhs)
7690 && GET_CODE (lhs) == ASHIFT
7691 && CONST_INT_P (XEXP (lhs, 1))
7692 && INTVAL (rhs) >= INTVAL (XEXP (lhs, 1))
7693 && INTVAL (rhs) < mode_width)
7694 {
7695 new_rtx = make_compound_operation (XEXP (lhs, 0), next_code);
7696 new_rtx = make_extraction (mode, new_rtx,
7697 INTVAL (rhs) - INTVAL (XEXP (lhs, 1)),
7698 NULL_RTX, mode_width - INTVAL (rhs),
7699 code == LSHIFTRT, 0, in_code == COMPARE);
7700 break;
7701 }
7702
7703 /* See if we have operations between an ASHIFTRT and an ASHIFT.
7704 If so, try to merge the shifts into a SIGN_EXTEND. We could
7705 also do this for some cases of SIGN_EXTRACT, but it doesn't
7706 seem worth the effort; the case checked for occurs on Alpha. */
7707
7708 if (!OBJECT_P (lhs)
7709 && ! (GET_CODE (lhs) == SUBREG
7710 && (OBJECT_P (SUBREG_REG (lhs))))
7711 && CONST_INT_P (rhs)
7712 && INTVAL (rhs) < HOST_BITS_PER_WIDE_INT
7713 && INTVAL (rhs) < mode_width
7714 && (new_rtx = extract_left_shift (lhs, INTVAL (rhs))) != 0)
7715 new_rtx = make_extraction (mode, make_compound_operation (new_rtx, next_code),
7716 0, NULL_RTX, mode_width - INTVAL (rhs),
7717 code == LSHIFTRT, 0, in_code == COMPARE);
7718
7719 break;
7720
7721 case SUBREG:
7722 /* Call ourselves recursively on the inner expression. If we are
7723 narrowing the object and it has a different RTL code from
7724 what it originally did, do this SUBREG as a force_to_mode. */
7725 {
7726 rtx inner = SUBREG_REG (x), simplified;
7727
7728 tem = make_compound_operation (inner, in_code);
7729
7730 simplified
7731 = simplify_subreg (mode, tem, GET_MODE (inner), SUBREG_BYTE (x));
7732 if (simplified)
7733 tem = simplified;
7734
7735 if (GET_CODE (tem) != GET_CODE (inner)
7736 && GET_MODE_SIZE (mode) < GET_MODE_SIZE (GET_MODE (inner))
7737 && subreg_lowpart_p (x))
7738 {
7739 rtx newer
7740 = force_to_mode (tem, mode, ~(unsigned HOST_WIDE_INT) 0, 0);
7741
7742 /* If we have something other than a SUBREG, we might have
7743 done an expansion, so rerun ourselves. */
7744 if (GET_CODE (newer) != SUBREG)
7745 newer = make_compound_operation (newer, in_code);
7746
7747 /* force_to_mode can expand compounds. If it just re-expanded the
7748 compound, use gen_lowpart to convert to the desired mode. */
7749 if (rtx_equal_p (newer, x)
7750 /* Likewise if it re-expanded the compound only partially.
7751 This happens for SUBREG of ZERO_EXTRACT if they extract
7752 the same number of bits. */
7753 || (GET_CODE (newer) == SUBREG
7754 && (GET_CODE (SUBREG_REG (newer)) == LSHIFTRT
7755 || GET_CODE (SUBREG_REG (newer)) == ASHIFTRT)
7756 && GET_CODE (inner) == AND
7757 && rtx_equal_p (SUBREG_REG (newer), XEXP (inner, 0))))
7758 return gen_lowpart (GET_MODE (x), tem);
7759
7760 return newer;
7761 }
7762
7763 if (simplified)
7764 return tem;
7765 }
7766 break;
7767
7768 default:
7769 break;
7770 }
7771
7772 if (new_rtx)
7773 {
7774 x = gen_lowpart (mode, new_rtx);
7775 code = GET_CODE (x);
7776 }
7777
7778 /* Now recursively process each operand of this operation. */
7779 fmt = GET_RTX_FORMAT (code);
7780 for (i = 0; i < GET_RTX_LENGTH (code); i++)
7781 if (fmt[i] == 'e')
7782 {
7783 new_rtx = make_compound_operation (XEXP (x, i), next_code);
7784 SUBST (XEXP (x, i), new_rtx);
7785 }
7786 else if (fmt[i] == 'E')
7787 for (j = 0; j < XVECLEN (x, i); j++)
7788 {
7789 new_rtx = make_compound_operation (XVECEXP (x, i, j), next_code);
7790 SUBST (XVECEXP (x, i, j), new_rtx);
7791 }
7792
7793 maybe_swap:
7794 /* If this is a commutative operation, the changes to the operands
7795 may have made it noncanonical. */
7796 if (COMMUTATIVE_ARITH_P (x)
7797 && swap_commutative_operands_p (XEXP (x, 0), XEXP (x, 1)))
7798 {
7799 tem = XEXP (x, 0);
7800 SUBST (XEXP (x, 0), XEXP (x, 1));
7801 SUBST (XEXP (x, 1), tem);
7802 }
7803
7804 return x;
7805 }
7806 \f
7807 /* Given M see if it is a value that would select a field of bits
7808 within an item, but not the entire word. Return -1 if not.
7809 Otherwise, return the starting position of the field, where 0 is the
7810 low-order bit.
7811
7812 *PLEN is set to the length of the field. */
7813
7814 static int
7815 get_pos_from_mask (unsigned HOST_WIDE_INT m, unsigned HOST_WIDE_INT *plen)
7816 {
7817 /* Get the bit number of the first 1 bit from the right, -1 if none. */
7818 int pos = m ? ctz_hwi (m) : -1;
7819 int len = 0;
7820
7821 if (pos >= 0)
7822 /* Now shift off the low-order zero bits and see if we have a
7823 power of two minus 1. */
7824 len = exact_log2 ((m >> pos) + 1);
7825
7826 if (len <= 0)
7827 pos = -1;
7828
7829 *plen = len;
7830 return pos;
7831 }
7832 \f
7833 /* If X refers to a register that equals REG in value, replace these
7834 references with REG. */
7835 static rtx
7836 canon_reg_for_combine (rtx x, rtx reg)
7837 {
7838 rtx op0, op1, op2;
7839 const char *fmt;
7840 int i;
7841 bool copied;
7842
7843 enum rtx_code code = GET_CODE (x);
7844 switch (GET_RTX_CLASS (code))
7845 {
7846 case RTX_UNARY:
7847 op0 = canon_reg_for_combine (XEXP (x, 0), reg);
7848 if (op0 != XEXP (x, 0))
7849 return simplify_gen_unary (GET_CODE (x), GET_MODE (x), op0,
7850 GET_MODE (reg));
7851 break;
7852
7853 case RTX_BIN_ARITH:
7854 case RTX_COMM_ARITH:
7855 op0 = canon_reg_for_combine (XEXP (x, 0), reg);
7856 op1 = canon_reg_for_combine (XEXP (x, 1), reg);
7857 if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
7858 return simplify_gen_binary (GET_CODE (x), GET_MODE (x), op0, op1);
7859 break;
7860
7861 case RTX_COMPARE:
7862 case RTX_COMM_COMPARE:
7863 op0 = canon_reg_for_combine (XEXP (x, 0), reg);
7864 op1 = canon_reg_for_combine (XEXP (x, 1), reg);
7865 if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
7866 return simplify_gen_relational (GET_CODE (x), GET_MODE (x),
7867 GET_MODE (op0), op0, op1);
7868 break;
7869
7870 case RTX_TERNARY:
7871 case RTX_BITFIELD_OPS:
7872 op0 = canon_reg_for_combine (XEXP (x, 0), reg);
7873 op1 = canon_reg_for_combine (XEXP (x, 1), reg);
7874 op2 = canon_reg_for_combine (XEXP (x, 2), reg);
7875 if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1) || op2 != XEXP (x, 2))
7876 return simplify_gen_ternary (GET_CODE (x), GET_MODE (x),
7877 GET_MODE (op0), op0, op1, op2);
7878
7879 case RTX_OBJ:
7880 if (REG_P (x))
7881 {
7882 if (rtx_equal_p (get_last_value (reg), x)
7883 || rtx_equal_p (reg, get_last_value (x)))
7884 return reg;
7885 else
7886 break;
7887 }
7888
7889 /* fall through */
7890
7891 default:
7892 fmt = GET_RTX_FORMAT (code);
7893 copied = false;
7894 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
7895 if (fmt[i] == 'e')
7896 {
7897 rtx op = canon_reg_for_combine (XEXP (x, i), reg);
7898 if (op != XEXP (x, i))
7899 {
7900 if (!copied)
7901 {
7902 copied = true;
7903 x = copy_rtx (x);
7904 }
7905 XEXP (x, i) = op;
7906 }
7907 }
7908 else if (fmt[i] == 'E')
7909 {
7910 int j;
7911 for (j = 0; j < XVECLEN (x, i); j++)
7912 {
7913 rtx op = canon_reg_for_combine (XVECEXP (x, i, j), reg);
7914 if (op != XVECEXP (x, i, j))
7915 {
7916 if (!copied)
7917 {
7918 copied = true;
7919 x = copy_rtx (x);
7920 }
7921 XVECEXP (x, i, j) = op;
7922 }
7923 }
7924 }
7925
7926 break;
7927 }
7928
7929 return x;
7930 }
7931
7932 /* Return X converted to MODE. If the value is already truncated to
7933 MODE we can just return a subreg even though in the general case we
7934 would need an explicit truncation. */
7935
7936 static rtx
7937 gen_lowpart_or_truncate (enum machine_mode mode, rtx x)
7938 {
7939 if (!CONST_INT_P (x)
7940 && GET_MODE_SIZE (mode) < GET_MODE_SIZE (GET_MODE (x))
7941 && !TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (mode),
7942 GET_MODE_BITSIZE (GET_MODE (x)))
7943 && !(REG_P (x) && reg_truncated_to_mode (mode, x)))
7944 {
7945 /* Bit-cast X into an integer mode. */
7946 if (!SCALAR_INT_MODE_P (GET_MODE (x)))
7947 x = gen_lowpart (int_mode_for_mode (GET_MODE (x)), x);
7948 x = simplify_gen_unary (TRUNCATE, int_mode_for_mode (mode),
7949 x, GET_MODE (x));
7950 }
7951
7952 return gen_lowpart (mode, x);
7953 }
7954
7955 /* See if X can be simplified knowing that we will only refer to it in
7956 MODE and will only refer to those bits that are nonzero in MASK.
7957 If other bits are being computed or if masking operations are done
7958 that select a superset of the bits in MASK, they can sometimes be
7959 ignored.
7960
7961 Return a possibly simplified expression, but always convert X to
7962 MODE. If X is a CONST_INT, AND the CONST_INT with MASK.
7963
7964 If JUST_SELECT is nonzero, don't optimize by noticing that bits in MASK
7965 are all off in X. This is used when X will be complemented, by either
7966 NOT, NEG, or XOR. */
7967
7968 static rtx
7969 force_to_mode (rtx x, enum machine_mode mode, unsigned HOST_WIDE_INT mask,
7970 int just_select)
7971 {
7972 enum rtx_code code = GET_CODE (x);
7973 int next_select = just_select || code == XOR || code == NOT || code == NEG;
7974 enum machine_mode op_mode;
7975 unsigned HOST_WIDE_INT fuller_mask, nonzero;
7976 rtx op0, op1, temp;
7977
7978 /* If this is a CALL or ASM_OPERANDS, don't do anything. Some of the
7979 code below will do the wrong thing since the mode of such an
7980 expression is VOIDmode.
7981
7982 Also do nothing if X is a CLOBBER; this can happen if X was
7983 the return value from a call to gen_lowpart. */
7984 if (code == CALL || code == ASM_OPERANDS || code == CLOBBER)
7985 return x;
7986
7987 /* We want to perform the operation is its present mode unless we know
7988 that the operation is valid in MODE, in which case we do the operation
7989 in MODE. */
7990 op_mode = ((GET_MODE_CLASS (mode) == GET_MODE_CLASS (GET_MODE (x))
7991 && have_insn_for (code, mode))
7992 ? mode : GET_MODE (x));
7993
7994 /* It is not valid to do a right-shift in a narrower mode
7995 than the one it came in with. */
7996 if ((code == LSHIFTRT || code == ASHIFTRT)
7997 && GET_MODE_BITSIZE (mode) < GET_MODE_BITSIZE (GET_MODE (x)))
7998 op_mode = GET_MODE (x);
7999
8000 /* Truncate MASK to fit OP_MODE. */
8001 if (op_mode)
8002 mask &= GET_MODE_MASK (op_mode);
8003
8004 /* When we have an arithmetic operation, or a shift whose count we
8005 do not know, we need to assume that all bits up to the highest-order
8006 bit in MASK will be needed. This is how we form such a mask. */
8007 if (mask & ((unsigned HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT - 1)))
8008 fuller_mask = ~(unsigned HOST_WIDE_INT) 0;
8009 else
8010 fuller_mask = (((unsigned HOST_WIDE_INT) 1 << (floor_log2 (mask) + 1))
8011 - 1);
8012
8013 /* Determine what bits of X are guaranteed to be (non)zero. */
8014 nonzero = nonzero_bits (x, mode);
8015
8016 /* If none of the bits in X are needed, return a zero. */
8017 if (!just_select && (nonzero & mask) == 0 && !side_effects_p (x))
8018 x = const0_rtx;
8019
8020 /* If X is a CONST_INT, return a new one. Do this here since the
8021 test below will fail. */
8022 if (CONST_INT_P (x))
8023 {
8024 if (SCALAR_INT_MODE_P (mode))
8025 return gen_int_mode (INTVAL (x) & mask, mode);
8026 else
8027 {
8028 x = GEN_INT (INTVAL (x) & mask);
8029 return gen_lowpart_common (mode, x);
8030 }
8031 }
8032
8033 /* If X is narrower than MODE and we want all the bits in X's mode, just
8034 get X in the proper mode. */
8035 if (GET_MODE_SIZE (GET_MODE (x)) < GET_MODE_SIZE (mode)
8036 && (GET_MODE_MASK (GET_MODE (x)) & ~mask) == 0)
8037 return gen_lowpart (mode, x);
8038
8039 /* We can ignore the effect of a SUBREG if it narrows the mode or
8040 if the constant masks to zero all the bits the mode doesn't have. */
8041 if (GET_CODE (x) == SUBREG
8042 && subreg_lowpart_p (x)
8043 && ((GET_MODE_SIZE (GET_MODE (x))
8044 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
8045 || (0 == (mask
8046 & GET_MODE_MASK (GET_MODE (x))
8047 & ~GET_MODE_MASK (GET_MODE (SUBREG_REG (x)))))))
8048 return force_to_mode (SUBREG_REG (x), mode, mask, next_select);
8049
8050 /* The arithmetic simplifications here only work for scalar integer modes. */
8051 if (!SCALAR_INT_MODE_P (mode) || !SCALAR_INT_MODE_P (GET_MODE (x)))
8052 return gen_lowpart_or_truncate (mode, x);
8053
8054 switch (code)
8055 {
8056 case CLOBBER:
8057 /* If X is a (clobber (const_int)), return it since we know we are
8058 generating something that won't match. */
8059 return x;
8060
8061 case SIGN_EXTEND:
8062 case ZERO_EXTEND:
8063 case ZERO_EXTRACT:
8064 case SIGN_EXTRACT:
8065 x = expand_compound_operation (x);
8066 if (GET_CODE (x) != code)
8067 return force_to_mode (x, mode, mask, next_select);
8068 break;
8069
8070 case TRUNCATE:
8071 /* Similarly for a truncate. */
8072 return force_to_mode (XEXP (x, 0), mode, mask, next_select);
8073
8074 case AND:
8075 /* If this is an AND with a constant, convert it into an AND
8076 whose constant is the AND of that constant with MASK. If it
8077 remains an AND of MASK, delete it since it is redundant. */
8078
8079 if (CONST_INT_P (XEXP (x, 1)))
8080 {
8081 x = simplify_and_const_int (x, op_mode, XEXP (x, 0),
8082 mask & INTVAL (XEXP (x, 1)));
8083
8084 /* If X is still an AND, see if it is an AND with a mask that
8085 is just some low-order bits. If so, and it is MASK, we don't
8086 need it. */
8087
8088 if (GET_CODE (x) == AND && CONST_INT_P (XEXP (x, 1))
8089 && ((INTVAL (XEXP (x, 1)) & GET_MODE_MASK (GET_MODE (x)))
8090 == mask))
8091 x = XEXP (x, 0);
8092
8093 /* If it remains an AND, try making another AND with the bits
8094 in the mode mask that aren't in MASK turned on. If the
8095 constant in the AND is wide enough, this might make a
8096 cheaper constant. */
8097
8098 if (GET_CODE (x) == AND && CONST_INT_P (XEXP (x, 1))
8099 && GET_MODE_MASK (GET_MODE (x)) != mask
8100 && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT)
8101 {
8102 unsigned HOST_WIDE_INT cval
8103 = UINTVAL (XEXP (x, 1))
8104 | (GET_MODE_MASK (GET_MODE (x)) & ~mask);
8105 int width = GET_MODE_BITSIZE (GET_MODE (x));
8106 rtx y;
8107
8108 /* If MODE is narrower than HOST_WIDE_INT and CVAL is a negative
8109 number, sign extend it. */
8110 if (width > 0 && width < HOST_BITS_PER_WIDE_INT
8111 && (cval & ((unsigned HOST_WIDE_INT) 1 << (width - 1))) != 0)
8112 cval |= (unsigned HOST_WIDE_INT) -1 << width;
8113
8114 y = simplify_gen_binary (AND, GET_MODE (x),
8115 XEXP (x, 0), GEN_INT (cval));
8116 if (rtx_cost (y, SET, optimize_this_for_speed_p)
8117 < rtx_cost (x, SET, optimize_this_for_speed_p))
8118 x = y;
8119 }
8120
8121 break;
8122 }
8123
8124 goto binop;
8125
8126 case PLUS:
8127 /* In (and (plus FOO C1) M), if M is a mask that just turns off
8128 low-order bits (as in an alignment operation) and FOO is already
8129 aligned to that boundary, mask C1 to that boundary as well.
8130 This may eliminate that PLUS and, later, the AND. */
8131
8132 {
8133 unsigned int width = GET_MODE_BITSIZE (mode);
8134 unsigned HOST_WIDE_INT smask = mask;
8135
8136 /* If MODE is narrower than HOST_WIDE_INT and mask is a negative
8137 number, sign extend it. */
8138
8139 if (width < HOST_BITS_PER_WIDE_INT
8140 && (smask & ((unsigned HOST_WIDE_INT) 1 << (width - 1))) != 0)
8141 smask |= (unsigned HOST_WIDE_INT) (-1) << width;
8142
8143 if (CONST_INT_P (XEXP (x, 1))
8144 && exact_log2 (- smask) >= 0
8145 && (nonzero_bits (XEXP (x, 0), mode) & ~smask) == 0
8146 && (INTVAL (XEXP (x, 1)) & ~smask) != 0)
8147 return force_to_mode (plus_constant (XEXP (x, 0),
8148 (INTVAL (XEXP (x, 1)) & smask)),
8149 mode, smask, next_select);
8150 }
8151
8152 /* ... fall through ... */
8153
8154 case MULT:
8155 /* For PLUS, MINUS and MULT, we need any bits less significant than the
8156 most significant bit in MASK since carries from those bits will
8157 affect the bits we are interested in. */
8158 mask = fuller_mask;
8159 goto binop;
8160
8161 case MINUS:
8162 /* If X is (minus C Y) where C's least set bit is larger than any bit
8163 in the mask, then we may replace with (neg Y). */
8164 if (CONST_INT_P (XEXP (x, 0))
8165 && (((unsigned HOST_WIDE_INT) (INTVAL (XEXP (x, 0))
8166 & -INTVAL (XEXP (x, 0))))
8167 > mask))
8168 {
8169 x = simplify_gen_unary (NEG, GET_MODE (x), XEXP (x, 1),
8170 GET_MODE (x));
8171 return force_to_mode (x, mode, mask, next_select);
8172 }
8173
8174 /* Similarly, if C contains every bit in the fuller_mask, then we may
8175 replace with (not Y). */
8176 if (CONST_INT_P (XEXP (x, 0))
8177 && ((UINTVAL (XEXP (x, 0)) | fuller_mask) == UINTVAL (XEXP (x, 0))))
8178 {
8179 x = simplify_gen_unary (NOT, GET_MODE (x),
8180 XEXP (x, 1), GET_MODE (x));
8181 return force_to_mode (x, mode, mask, next_select);
8182 }
8183
8184 mask = fuller_mask;
8185 goto binop;
8186
8187 case IOR:
8188 case XOR:
8189 /* If X is (ior (lshiftrt FOO C1) C2), try to commute the IOR and
8190 LSHIFTRT so we end up with an (and (lshiftrt (ior ...) ...) ...)
8191 operation which may be a bitfield extraction. Ensure that the
8192 constant we form is not wider than the mode of X. */
8193
8194 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
8195 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
8196 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
8197 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT
8198 && CONST_INT_P (XEXP (x, 1))
8199 && ((INTVAL (XEXP (XEXP (x, 0), 1))
8200 + floor_log2 (INTVAL (XEXP (x, 1))))
8201 < GET_MODE_BITSIZE (GET_MODE (x)))
8202 && (UINTVAL (XEXP (x, 1))
8203 & ~nonzero_bits (XEXP (x, 0), GET_MODE (x))) == 0)
8204 {
8205 temp = GEN_INT ((INTVAL (XEXP (x, 1)) & mask)
8206 << INTVAL (XEXP (XEXP (x, 0), 1)));
8207 temp = simplify_gen_binary (GET_CODE (x), GET_MODE (x),
8208 XEXP (XEXP (x, 0), 0), temp);
8209 x = simplify_gen_binary (LSHIFTRT, GET_MODE (x), temp,
8210 XEXP (XEXP (x, 0), 1));
8211 return force_to_mode (x, mode, mask, next_select);
8212 }
8213
8214 binop:
8215 /* For most binary operations, just propagate into the operation and
8216 change the mode if we have an operation of that mode. */
8217
8218 op0 = force_to_mode (XEXP (x, 0), mode, mask, next_select);
8219 op1 = force_to_mode (XEXP (x, 1), mode, mask, next_select);
8220
8221 /* If we ended up truncating both operands, truncate the result of the
8222 operation instead. */
8223 if (GET_CODE (op0) == TRUNCATE
8224 && GET_CODE (op1) == TRUNCATE)
8225 {
8226 op0 = XEXP (op0, 0);
8227 op1 = XEXP (op1, 0);
8228 }
8229
8230 op0 = gen_lowpart_or_truncate (op_mode, op0);
8231 op1 = gen_lowpart_or_truncate (op_mode, op1);
8232
8233 if (op_mode != GET_MODE (x) || op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
8234 x = simplify_gen_binary (code, op_mode, op0, op1);
8235 break;
8236
8237 case ASHIFT:
8238 /* For left shifts, do the same, but just for the first operand.
8239 However, we cannot do anything with shifts where we cannot
8240 guarantee that the counts are smaller than the size of the mode
8241 because such a count will have a different meaning in a
8242 wider mode. */
8243
8244 if (! (CONST_INT_P (XEXP (x, 1))
8245 && INTVAL (XEXP (x, 1)) >= 0
8246 && INTVAL (XEXP (x, 1)) < GET_MODE_BITSIZE (mode))
8247 && ! (GET_MODE (XEXP (x, 1)) != VOIDmode
8248 && (nonzero_bits (XEXP (x, 1), GET_MODE (XEXP (x, 1)))
8249 < (unsigned HOST_WIDE_INT) GET_MODE_BITSIZE (mode))))
8250 break;
8251
8252 /* If the shift count is a constant and we can do arithmetic in
8253 the mode of the shift, refine which bits we need. Otherwise, use the
8254 conservative form of the mask. */
8255 if (CONST_INT_P (XEXP (x, 1))
8256 && INTVAL (XEXP (x, 1)) >= 0
8257 && INTVAL (XEXP (x, 1)) < GET_MODE_BITSIZE (op_mode)
8258 && GET_MODE_BITSIZE (op_mode) <= HOST_BITS_PER_WIDE_INT)
8259 mask >>= INTVAL (XEXP (x, 1));
8260 else
8261 mask = fuller_mask;
8262
8263 op0 = gen_lowpart_or_truncate (op_mode,
8264 force_to_mode (XEXP (x, 0), op_mode,
8265 mask, next_select));
8266
8267 if (op_mode != GET_MODE (x) || op0 != XEXP (x, 0))
8268 x = simplify_gen_binary (code, op_mode, op0, XEXP (x, 1));
8269 break;
8270
8271 case LSHIFTRT:
8272 /* Here we can only do something if the shift count is a constant,
8273 this shift constant is valid for the host, and we can do arithmetic
8274 in OP_MODE. */
8275
8276 if (CONST_INT_P (XEXP (x, 1))
8277 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT
8278 && GET_MODE_BITSIZE (op_mode) <= HOST_BITS_PER_WIDE_INT)
8279 {
8280 rtx inner = XEXP (x, 0);
8281 unsigned HOST_WIDE_INT inner_mask;
8282
8283 /* Select the mask of the bits we need for the shift operand. */
8284 inner_mask = mask << INTVAL (XEXP (x, 1));
8285
8286 /* We can only change the mode of the shift if we can do arithmetic
8287 in the mode of the shift and INNER_MASK is no wider than the
8288 width of X's mode. */
8289 if ((inner_mask & ~GET_MODE_MASK (GET_MODE (x))) != 0)
8290 op_mode = GET_MODE (x);
8291
8292 inner = force_to_mode (inner, op_mode, inner_mask, next_select);
8293
8294 if (GET_MODE (x) != op_mode || inner != XEXP (x, 0))
8295 x = simplify_gen_binary (LSHIFTRT, op_mode, inner, XEXP (x, 1));
8296 }
8297
8298 /* If we have (and (lshiftrt FOO C1) C2) where the combination of the
8299 shift and AND produces only copies of the sign bit (C2 is one less
8300 than a power of two), we can do this with just a shift. */
8301
8302 if (GET_CODE (x) == LSHIFTRT
8303 && CONST_INT_P (XEXP (x, 1))
8304 /* The shift puts one of the sign bit copies in the least significant
8305 bit. */
8306 && ((INTVAL (XEXP (x, 1))
8307 + num_sign_bit_copies (XEXP (x, 0), GET_MODE (XEXP (x, 0))))
8308 >= GET_MODE_BITSIZE (GET_MODE (x)))
8309 && exact_log2 (mask + 1) >= 0
8310 /* Number of bits left after the shift must be more than the mask
8311 needs. */
8312 && ((INTVAL (XEXP (x, 1)) + exact_log2 (mask + 1))
8313 <= GET_MODE_BITSIZE (GET_MODE (x)))
8314 /* Must be more sign bit copies than the mask needs. */
8315 && ((int) num_sign_bit_copies (XEXP (x, 0), GET_MODE (XEXP (x, 0)))
8316 >= exact_log2 (mask + 1)))
8317 x = simplify_gen_binary (LSHIFTRT, GET_MODE (x), XEXP (x, 0),
8318 GEN_INT (GET_MODE_BITSIZE (GET_MODE (x))
8319 - exact_log2 (mask + 1)));
8320
8321 goto shiftrt;
8322
8323 case ASHIFTRT:
8324 /* If we are just looking for the sign bit, we don't need this shift at
8325 all, even if it has a variable count. */
8326 if (GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
8327 && (mask == ((unsigned HOST_WIDE_INT) 1
8328 << (GET_MODE_BITSIZE (GET_MODE (x)) - 1))))
8329 return force_to_mode (XEXP (x, 0), mode, mask, next_select);
8330
8331 /* If this is a shift by a constant, get a mask that contains those bits
8332 that are not copies of the sign bit. We then have two cases: If
8333 MASK only includes those bits, this can be a logical shift, which may
8334 allow simplifications. If MASK is a single-bit field not within
8335 those bits, we are requesting a copy of the sign bit and hence can
8336 shift the sign bit to the appropriate location. */
8337
8338 if (CONST_INT_P (XEXP (x, 1)) && INTVAL (XEXP (x, 1)) >= 0
8339 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT)
8340 {
8341 int i;
8342
8343 /* If the considered data is wider than HOST_WIDE_INT, we can't
8344 represent a mask for all its bits in a single scalar.
8345 But we only care about the lower bits, so calculate these. */
8346
8347 if (GET_MODE_BITSIZE (GET_MODE (x)) > HOST_BITS_PER_WIDE_INT)
8348 {
8349 nonzero = ~(unsigned HOST_WIDE_INT) 0;
8350
8351 /* GET_MODE_BITSIZE (GET_MODE (x)) - INTVAL (XEXP (x, 1))
8352 is the number of bits a full-width mask would have set.
8353 We need only shift if these are fewer than nonzero can
8354 hold. If not, we must keep all bits set in nonzero. */
8355
8356 if (GET_MODE_BITSIZE (GET_MODE (x)) - INTVAL (XEXP (x, 1))
8357 < HOST_BITS_PER_WIDE_INT)
8358 nonzero >>= INTVAL (XEXP (x, 1))
8359 + HOST_BITS_PER_WIDE_INT
8360 - GET_MODE_BITSIZE (GET_MODE (x)) ;
8361 }
8362 else
8363 {
8364 nonzero = GET_MODE_MASK (GET_MODE (x));
8365 nonzero >>= INTVAL (XEXP (x, 1));
8366 }
8367
8368 if ((mask & ~nonzero) == 0)
8369 {
8370 x = simplify_shift_const (NULL_RTX, LSHIFTRT, GET_MODE (x),
8371 XEXP (x, 0), INTVAL (XEXP (x, 1)));
8372 if (GET_CODE (x) != ASHIFTRT)
8373 return force_to_mode (x, mode, mask, next_select);
8374 }
8375
8376 else if ((i = exact_log2 (mask)) >= 0)
8377 {
8378 x = simplify_shift_const
8379 (NULL_RTX, LSHIFTRT, GET_MODE (x), XEXP (x, 0),
8380 GET_MODE_BITSIZE (GET_MODE (x)) - 1 - i);
8381
8382 if (GET_CODE (x) != ASHIFTRT)
8383 return force_to_mode (x, mode, mask, next_select);
8384 }
8385 }
8386
8387 /* If MASK is 1, convert this to an LSHIFTRT. This can be done
8388 even if the shift count isn't a constant. */
8389 if (mask == 1)
8390 x = simplify_gen_binary (LSHIFTRT, GET_MODE (x),
8391 XEXP (x, 0), XEXP (x, 1));
8392
8393 shiftrt:
8394
8395 /* If this is a zero- or sign-extension operation that just affects bits
8396 we don't care about, remove it. Be sure the call above returned
8397 something that is still a shift. */
8398
8399 if ((GET_CODE (x) == LSHIFTRT || GET_CODE (x) == ASHIFTRT)
8400 && CONST_INT_P (XEXP (x, 1))
8401 && INTVAL (XEXP (x, 1)) >= 0
8402 && (INTVAL (XEXP (x, 1))
8403 <= GET_MODE_BITSIZE (GET_MODE (x)) - (floor_log2 (mask) + 1))
8404 && GET_CODE (XEXP (x, 0)) == ASHIFT
8405 && XEXP (XEXP (x, 0), 1) == XEXP (x, 1))
8406 return force_to_mode (XEXP (XEXP (x, 0), 0), mode, mask,
8407 next_select);
8408
8409 break;
8410
8411 case ROTATE:
8412 case ROTATERT:
8413 /* If the shift count is constant and we can do computations
8414 in the mode of X, compute where the bits we care about are.
8415 Otherwise, we can't do anything. Don't change the mode of
8416 the shift or propagate MODE into the shift, though. */
8417 if (CONST_INT_P (XEXP (x, 1))
8418 && INTVAL (XEXP (x, 1)) >= 0)
8419 {
8420 temp = simplify_binary_operation (code == ROTATE ? ROTATERT : ROTATE,
8421 GET_MODE (x), GEN_INT (mask),
8422 XEXP (x, 1));
8423 if (temp && CONST_INT_P (temp))
8424 SUBST (XEXP (x, 0),
8425 force_to_mode (XEXP (x, 0), GET_MODE (x),
8426 INTVAL (temp), next_select));
8427 }
8428 break;
8429
8430 case NEG:
8431 /* If we just want the low-order bit, the NEG isn't needed since it
8432 won't change the low-order bit. */
8433 if (mask == 1)
8434 return force_to_mode (XEXP (x, 0), mode, mask, just_select);
8435
8436 /* We need any bits less significant than the most significant bit in
8437 MASK since carries from those bits will affect the bits we are
8438 interested in. */
8439 mask = fuller_mask;
8440 goto unop;
8441
8442 case NOT:
8443 /* (not FOO) is (xor FOO CONST), so if FOO is an LSHIFTRT, we can do the
8444 same as the XOR case above. Ensure that the constant we form is not
8445 wider than the mode of X. */
8446
8447 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
8448 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
8449 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
8450 && (INTVAL (XEXP (XEXP (x, 0), 1)) + floor_log2 (mask)
8451 < GET_MODE_BITSIZE (GET_MODE (x)))
8452 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT)
8453 {
8454 temp = gen_int_mode (mask << INTVAL (XEXP (XEXP (x, 0), 1)),
8455 GET_MODE (x));
8456 temp = simplify_gen_binary (XOR, GET_MODE (x),
8457 XEXP (XEXP (x, 0), 0), temp);
8458 x = simplify_gen_binary (LSHIFTRT, GET_MODE (x),
8459 temp, XEXP (XEXP (x, 0), 1));
8460
8461 return force_to_mode (x, mode, mask, next_select);
8462 }
8463
8464 /* (and (not FOO) CONST) is (not (or FOO (not CONST))), so we must
8465 use the full mask inside the NOT. */
8466 mask = fuller_mask;
8467
8468 unop:
8469 op0 = gen_lowpart_or_truncate (op_mode,
8470 force_to_mode (XEXP (x, 0), mode, mask,
8471 next_select));
8472 if (op_mode != GET_MODE (x) || op0 != XEXP (x, 0))
8473 x = simplify_gen_unary (code, op_mode, op0, op_mode);
8474 break;
8475
8476 case NE:
8477 /* (and (ne FOO 0) CONST) can be (and FOO CONST) if CONST is included
8478 in STORE_FLAG_VALUE and FOO has a single bit that might be nonzero,
8479 which is equal to STORE_FLAG_VALUE. */
8480 if ((mask & ~STORE_FLAG_VALUE) == 0
8481 && XEXP (x, 1) == const0_rtx
8482 && GET_MODE (XEXP (x, 0)) == mode
8483 && exact_log2 (nonzero_bits (XEXP (x, 0), mode)) >= 0
8484 && (nonzero_bits (XEXP (x, 0), mode)
8485 == (unsigned HOST_WIDE_INT) STORE_FLAG_VALUE))
8486 return force_to_mode (XEXP (x, 0), mode, mask, next_select);
8487
8488 break;
8489
8490 case IF_THEN_ELSE:
8491 /* We have no way of knowing if the IF_THEN_ELSE can itself be
8492 written in a narrower mode. We play it safe and do not do so. */
8493
8494 SUBST (XEXP (x, 1),
8495 gen_lowpart_or_truncate (GET_MODE (x),
8496 force_to_mode (XEXP (x, 1), mode,
8497 mask, next_select)));
8498 SUBST (XEXP (x, 2),
8499 gen_lowpart_or_truncate (GET_MODE (x),
8500 force_to_mode (XEXP (x, 2), mode,
8501 mask, next_select)));
8502 break;
8503
8504 default:
8505 break;
8506 }
8507
8508 /* Ensure we return a value of the proper mode. */
8509 return gen_lowpart_or_truncate (mode, x);
8510 }
8511 \f
8512 /* Return nonzero if X is an expression that has one of two values depending on
8513 whether some other value is zero or nonzero. In that case, we return the
8514 value that is being tested, *PTRUE is set to the value if the rtx being
8515 returned has a nonzero value, and *PFALSE is set to the other alternative.
8516
8517 If we return zero, we set *PTRUE and *PFALSE to X. */
8518
8519 static rtx
8520 if_then_else_cond (rtx x, rtx *ptrue, rtx *pfalse)
8521 {
8522 enum machine_mode mode = GET_MODE (x);
8523 enum rtx_code code = GET_CODE (x);
8524 rtx cond0, cond1, true0, true1, false0, false1;
8525 unsigned HOST_WIDE_INT nz;
8526
8527 /* If we are comparing a value against zero, we are done. */
8528 if ((code == NE || code == EQ)
8529 && XEXP (x, 1) == const0_rtx)
8530 {
8531 *ptrue = (code == NE) ? const_true_rtx : const0_rtx;
8532 *pfalse = (code == NE) ? const0_rtx : const_true_rtx;
8533 return XEXP (x, 0);
8534 }
8535
8536 /* If this is a unary operation whose operand has one of two values, apply
8537 our opcode to compute those values. */
8538 else if (UNARY_P (x)
8539 && (cond0 = if_then_else_cond (XEXP (x, 0), &true0, &false0)) != 0)
8540 {
8541 *ptrue = simplify_gen_unary (code, mode, true0, GET_MODE (XEXP (x, 0)));
8542 *pfalse = simplify_gen_unary (code, mode, false0,
8543 GET_MODE (XEXP (x, 0)));
8544 return cond0;
8545 }
8546
8547 /* If this is a COMPARE, do nothing, since the IF_THEN_ELSE we would
8548 make can't possibly match and would suppress other optimizations. */
8549 else if (code == COMPARE)
8550 ;
8551
8552 /* If this is a binary operation, see if either side has only one of two
8553 values. If either one does or if both do and they are conditional on
8554 the same value, compute the new true and false values. */
8555 else if (BINARY_P (x))
8556 {
8557 cond0 = if_then_else_cond (XEXP (x, 0), &true0, &false0);
8558 cond1 = if_then_else_cond (XEXP (x, 1), &true1, &false1);
8559
8560 if ((cond0 != 0 || cond1 != 0)
8561 && ! (cond0 != 0 && cond1 != 0 && ! rtx_equal_p (cond0, cond1)))
8562 {
8563 /* If if_then_else_cond returned zero, then true/false are the
8564 same rtl. We must copy one of them to prevent invalid rtl
8565 sharing. */
8566 if (cond0 == 0)
8567 true0 = copy_rtx (true0);
8568 else if (cond1 == 0)
8569 true1 = copy_rtx (true1);
8570
8571 if (COMPARISON_P (x))
8572 {
8573 *ptrue = simplify_gen_relational (code, mode, VOIDmode,
8574 true0, true1);
8575 *pfalse = simplify_gen_relational (code, mode, VOIDmode,
8576 false0, false1);
8577 }
8578 else
8579 {
8580 *ptrue = simplify_gen_binary (code, mode, true0, true1);
8581 *pfalse = simplify_gen_binary (code, mode, false0, false1);
8582 }
8583
8584 return cond0 ? cond0 : cond1;
8585 }
8586
8587 /* See if we have PLUS, IOR, XOR, MINUS or UMAX, where one of the
8588 operands is zero when the other is nonzero, and vice-versa,
8589 and STORE_FLAG_VALUE is 1 or -1. */
8590
8591 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
8592 && (code == PLUS || code == IOR || code == XOR || code == MINUS
8593 || code == UMAX)
8594 && GET_CODE (XEXP (x, 0)) == MULT && GET_CODE (XEXP (x, 1)) == MULT)
8595 {
8596 rtx op0 = XEXP (XEXP (x, 0), 1);
8597 rtx op1 = XEXP (XEXP (x, 1), 1);
8598
8599 cond0 = XEXP (XEXP (x, 0), 0);
8600 cond1 = XEXP (XEXP (x, 1), 0);
8601
8602 if (COMPARISON_P (cond0)
8603 && COMPARISON_P (cond1)
8604 && ((GET_CODE (cond0) == reversed_comparison_code (cond1, NULL)
8605 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 0))
8606 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 1)))
8607 || ((swap_condition (GET_CODE (cond0))
8608 == reversed_comparison_code (cond1, NULL))
8609 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 1))
8610 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 0))))
8611 && ! side_effects_p (x))
8612 {
8613 *ptrue = simplify_gen_binary (MULT, mode, op0, const_true_rtx);
8614 *pfalse = simplify_gen_binary (MULT, mode,
8615 (code == MINUS
8616 ? simplify_gen_unary (NEG, mode,
8617 op1, mode)
8618 : op1),
8619 const_true_rtx);
8620 return cond0;
8621 }
8622 }
8623
8624 /* Similarly for MULT, AND and UMIN, except that for these the result
8625 is always zero. */
8626 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
8627 && (code == MULT || code == AND || code == UMIN)
8628 && GET_CODE (XEXP (x, 0)) == MULT && GET_CODE (XEXP (x, 1)) == MULT)
8629 {
8630 cond0 = XEXP (XEXP (x, 0), 0);
8631 cond1 = XEXP (XEXP (x, 1), 0);
8632
8633 if (COMPARISON_P (cond0)
8634 && COMPARISON_P (cond1)
8635 && ((GET_CODE (cond0) == reversed_comparison_code (cond1, NULL)
8636 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 0))
8637 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 1)))
8638 || ((swap_condition (GET_CODE (cond0))
8639 == reversed_comparison_code (cond1, NULL))
8640 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 1))
8641 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 0))))
8642 && ! side_effects_p (x))
8643 {
8644 *ptrue = *pfalse = const0_rtx;
8645 return cond0;
8646 }
8647 }
8648 }
8649
8650 else if (code == IF_THEN_ELSE)
8651 {
8652 /* If we have IF_THEN_ELSE already, extract the condition and
8653 canonicalize it if it is NE or EQ. */
8654 cond0 = XEXP (x, 0);
8655 *ptrue = XEXP (x, 1), *pfalse = XEXP (x, 2);
8656 if (GET_CODE (cond0) == NE && XEXP (cond0, 1) == const0_rtx)
8657 return XEXP (cond0, 0);
8658 else if (GET_CODE (cond0) == EQ && XEXP (cond0, 1) == const0_rtx)
8659 {
8660 *ptrue = XEXP (x, 2), *pfalse = XEXP (x, 1);
8661 return XEXP (cond0, 0);
8662 }
8663 else
8664 return cond0;
8665 }
8666
8667 /* If X is a SUBREG, we can narrow both the true and false values
8668 if the inner expression, if there is a condition. */
8669 else if (code == SUBREG
8670 && 0 != (cond0 = if_then_else_cond (SUBREG_REG (x),
8671 &true0, &false0)))
8672 {
8673 true0 = simplify_gen_subreg (mode, true0,
8674 GET_MODE (SUBREG_REG (x)), SUBREG_BYTE (x));
8675 false0 = simplify_gen_subreg (mode, false0,
8676 GET_MODE (SUBREG_REG (x)), SUBREG_BYTE (x));
8677 if (true0 && false0)
8678 {
8679 *ptrue = true0;
8680 *pfalse = false0;
8681 return cond0;
8682 }
8683 }
8684
8685 /* If X is a constant, this isn't special and will cause confusions
8686 if we treat it as such. Likewise if it is equivalent to a constant. */
8687 else if (CONSTANT_P (x)
8688 || ((cond0 = get_last_value (x)) != 0 && CONSTANT_P (cond0)))
8689 ;
8690
8691 /* If we're in BImode, canonicalize on 0 and STORE_FLAG_VALUE, as that
8692 will be least confusing to the rest of the compiler. */
8693 else if (mode == BImode)
8694 {
8695 *ptrue = GEN_INT (STORE_FLAG_VALUE), *pfalse = const0_rtx;
8696 return x;
8697 }
8698
8699 /* If X is known to be either 0 or -1, those are the true and
8700 false values when testing X. */
8701 else if (x == constm1_rtx || x == const0_rtx
8702 || (mode != VOIDmode
8703 && num_sign_bit_copies (x, mode) == GET_MODE_BITSIZE (mode)))
8704 {
8705 *ptrue = constm1_rtx, *pfalse = const0_rtx;
8706 return x;
8707 }
8708
8709 /* Likewise for 0 or a single bit. */
8710 else if (SCALAR_INT_MODE_P (mode)
8711 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
8712 && exact_log2 (nz = nonzero_bits (x, mode)) >= 0)
8713 {
8714 *ptrue = gen_int_mode (nz, mode), *pfalse = const0_rtx;
8715 return x;
8716 }
8717
8718 /* Otherwise fail; show no condition with true and false values the same. */
8719 *ptrue = *pfalse = x;
8720 return 0;
8721 }
8722 \f
8723 /* Return the value of expression X given the fact that condition COND
8724 is known to be true when applied to REG as its first operand and VAL
8725 as its second. X is known to not be shared and so can be modified in
8726 place.
8727
8728 We only handle the simplest cases, and specifically those cases that
8729 arise with IF_THEN_ELSE expressions. */
8730
8731 static rtx
8732 known_cond (rtx x, enum rtx_code cond, rtx reg, rtx val)
8733 {
8734 enum rtx_code code = GET_CODE (x);
8735 rtx temp;
8736 const char *fmt;
8737 int i, j;
8738
8739 if (side_effects_p (x))
8740 return x;
8741
8742 /* If either operand of the condition is a floating point value,
8743 then we have to avoid collapsing an EQ comparison. */
8744 if (cond == EQ
8745 && rtx_equal_p (x, reg)
8746 && ! FLOAT_MODE_P (GET_MODE (x))
8747 && ! FLOAT_MODE_P (GET_MODE (val)))
8748 return val;
8749
8750 if (cond == UNEQ && rtx_equal_p (x, reg))
8751 return val;
8752
8753 /* If X is (abs REG) and we know something about REG's relationship
8754 with zero, we may be able to simplify this. */
8755
8756 if (code == ABS && rtx_equal_p (XEXP (x, 0), reg) && val == const0_rtx)
8757 switch (cond)
8758 {
8759 case GE: case GT: case EQ:
8760 return XEXP (x, 0);
8761 case LT: case LE:
8762 return simplify_gen_unary (NEG, GET_MODE (XEXP (x, 0)),
8763 XEXP (x, 0),
8764 GET_MODE (XEXP (x, 0)));
8765 default:
8766 break;
8767 }
8768
8769 /* The only other cases we handle are MIN, MAX, and comparisons if the
8770 operands are the same as REG and VAL. */
8771
8772 else if (COMPARISON_P (x) || COMMUTATIVE_ARITH_P (x))
8773 {
8774 if (rtx_equal_p (XEXP (x, 0), val))
8775 cond = swap_condition (cond), temp = val, val = reg, reg = temp;
8776
8777 if (rtx_equal_p (XEXP (x, 0), reg) && rtx_equal_p (XEXP (x, 1), val))
8778 {
8779 if (COMPARISON_P (x))
8780 {
8781 if (comparison_dominates_p (cond, code))
8782 return const_true_rtx;
8783
8784 code = reversed_comparison_code (x, NULL);
8785 if (code != UNKNOWN
8786 && comparison_dominates_p (cond, code))
8787 return const0_rtx;
8788 else
8789 return x;
8790 }
8791 else if (code == SMAX || code == SMIN
8792 || code == UMIN || code == UMAX)
8793 {
8794 int unsignedp = (code == UMIN || code == UMAX);
8795
8796 /* Do not reverse the condition when it is NE or EQ.
8797 This is because we cannot conclude anything about
8798 the value of 'SMAX (x, y)' when x is not equal to y,
8799 but we can when x equals y. */
8800 if ((code == SMAX || code == UMAX)
8801 && ! (cond == EQ || cond == NE))
8802 cond = reverse_condition (cond);
8803
8804 switch (cond)
8805 {
8806 case GE: case GT:
8807 return unsignedp ? x : XEXP (x, 1);
8808 case LE: case LT:
8809 return unsignedp ? x : XEXP (x, 0);
8810 case GEU: case GTU:
8811 return unsignedp ? XEXP (x, 1) : x;
8812 case LEU: case LTU:
8813 return unsignedp ? XEXP (x, 0) : x;
8814 default:
8815 break;
8816 }
8817 }
8818 }
8819 }
8820 else if (code == SUBREG)
8821 {
8822 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (x));
8823 rtx new_rtx, r = known_cond (SUBREG_REG (x), cond, reg, val);
8824
8825 if (SUBREG_REG (x) != r)
8826 {
8827 /* We must simplify subreg here, before we lose track of the
8828 original inner_mode. */
8829 new_rtx = simplify_subreg (GET_MODE (x), r,
8830 inner_mode, SUBREG_BYTE (x));
8831 if (new_rtx)
8832 return new_rtx;
8833 else
8834 SUBST (SUBREG_REG (x), r);
8835 }
8836
8837 return x;
8838 }
8839 /* We don't have to handle SIGN_EXTEND here, because even in the
8840 case of replacing something with a modeless CONST_INT, a
8841 CONST_INT is already (supposed to be) a valid sign extension for
8842 its narrower mode, which implies it's already properly
8843 sign-extended for the wider mode. Now, for ZERO_EXTEND, the
8844 story is different. */
8845 else if (code == ZERO_EXTEND)
8846 {
8847 enum machine_mode inner_mode = GET_MODE (XEXP (x, 0));
8848 rtx new_rtx, r = known_cond (XEXP (x, 0), cond, reg, val);
8849
8850 if (XEXP (x, 0) != r)
8851 {
8852 /* We must simplify the zero_extend here, before we lose
8853 track of the original inner_mode. */
8854 new_rtx = simplify_unary_operation (ZERO_EXTEND, GET_MODE (x),
8855 r, inner_mode);
8856 if (new_rtx)
8857 return new_rtx;
8858 else
8859 SUBST (XEXP (x, 0), r);
8860 }
8861
8862 return x;
8863 }
8864
8865 fmt = GET_RTX_FORMAT (code);
8866 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
8867 {
8868 if (fmt[i] == 'e')
8869 SUBST (XEXP (x, i), known_cond (XEXP (x, i), cond, reg, val));
8870 else if (fmt[i] == 'E')
8871 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
8872 SUBST (XVECEXP (x, i, j), known_cond (XVECEXP (x, i, j),
8873 cond, reg, val));
8874 }
8875
8876 return x;
8877 }
8878 \f
8879 /* See if X and Y are equal for the purposes of seeing if we can rewrite an
8880 assignment as a field assignment. */
8881
8882 static int
8883 rtx_equal_for_field_assignment_p (rtx x, rtx y)
8884 {
8885 if (x == y || rtx_equal_p (x, y))
8886 return 1;
8887
8888 if (x == 0 || y == 0 || GET_MODE (x) != GET_MODE (y))
8889 return 0;
8890
8891 /* Check for a paradoxical SUBREG of a MEM compared with the MEM.
8892 Note that all SUBREGs of MEM are paradoxical; otherwise they
8893 would have been rewritten. */
8894 if (MEM_P (x) && GET_CODE (y) == SUBREG
8895 && MEM_P (SUBREG_REG (y))
8896 && rtx_equal_p (SUBREG_REG (y),
8897 gen_lowpart (GET_MODE (SUBREG_REG (y)), x)))
8898 return 1;
8899
8900 if (MEM_P (y) && GET_CODE (x) == SUBREG
8901 && MEM_P (SUBREG_REG (x))
8902 && rtx_equal_p (SUBREG_REG (x),
8903 gen_lowpart (GET_MODE (SUBREG_REG (x)), y)))
8904 return 1;
8905
8906 /* We used to see if get_last_value of X and Y were the same but that's
8907 not correct. In one direction, we'll cause the assignment to have
8908 the wrong destination and in the case, we'll import a register into this
8909 insn that might have already have been dead. So fail if none of the
8910 above cases are true. */
8911 return 0;
8912 }
8913 \f
8914 /* See if X, a SET operation, can be rewritten as a bit-field assignment.
8915 Return that assignment if so.
8916
8917 We only handle the most common cases. */
8918
8919 static rtx
8920 make_field_assignment (rtx x)
8921 {
8922 rtx dest = SET_DEST (x);
8923 rtx src = SET_SRC (x);
8924 rtx assign;
8925 rtx rhs, lhs;
8926 HOST_WIDE_INT c1;
8927 HOST_WIDE_INT pos;
8928 unsigned HOST_WIDE_INT len;
8929 rtx other;
8930 enum machine_mode mode;
8931
8932 /* If SRC was (and (not (ashift (const_int 1) POS)) DEST), this is
8933 a clear of a one-bit field. We will have changed it to
8934 (and (rotate (const_int -2) POS) DEST), so check for that. Also check
8935 for a SUBREG. */
8936
8937 if (GET_CODE (src) == AND && GET_CODE (XEXP (src, 0)) == ROTATE
8938 && CONST_INT_P (XEXP (XEXP (src, 0), 0))
8939 && INTVAL (XEXP (XEXP (src, 0), 0)) == -2
8940 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
8941 {
8942 assign = make_extraction (VOIDmode, dest, 0, XEXP (XEXP (src, 0), 1),
8943 1, 1, 1, 0);
8944 if (assign != 0)
8945 return gen_rtx_SET (VOIDmode, assign, const0_rtx);
8946 return x;
8947 }
8948
8949 if (GET_CODE (src) == AND && GET_CODE (XEXP (src, 0)) == SUBREG
8950 && subreg_lowpart_p (XEXP (src, 0))
8951 && (GET_MODE_SIZE (GET_MODE (XEXP (src, 0)))
8952 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (XEXP (src, 0)))))
8953 && GET_CODE (SUBREG_REG (XEXP (src, 0))) == ROTATE
8954 && CONST_INT_P (XEXP (SUBREG_REG (XEXP (src, 0)), 0))
8955 && INTVAL (XEXP (SUBREG_REG (XEXP (src, 0)), 0)) == -2
8956 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
8957 {
8958 assign = make_extraction (VOIDmode, dest, 0,
8959 XEXP (SUBREG_REG (XEXP (src, 0)), 1),
8960 1, 1, 1, 0);
8961 if (assign != 0)
8962 return gen_rtx_SET (VOIDmode, assign, const0_rtx);
8963 return x;
8964 }
8965
8966 /* If SRC is (ior (ashift (const_int 1) POS) DEST), this is a set of a
8967 one-bit field. */
8968 if (GET_CODE (src) == IOR && GET_CODE (XEXP (src, 0)) == ASHIFT
8969 && XEXP (XEXP (src, 0), 0) == const1_rtx
8970 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
8971 {
8972 assign = make_extraction (VOIDmode, dest, 0, XEXP (XEXP (src, 0), 1),
8973 1, 1, 1, 0);
8974 if (assign != 0)
8975 return gen_rtx_SET (VOIDmode, assign, const1_rtx);
8976 return x;
8977 }
8978
8979 /* If DEST is already a field assignment, i.e. ZERO_EXTRACT, and the
8980 SRC is an AND with all bits of that field set, then we can discard
8981 the AND. */
8982 if (GET_CODE (dest) == ZERO_EXTRACT
8983 && CONST_INT_P (XEXP (dest, 1))
8984 && GET_CODE (src) == AND
8985 && CONST_INT_P (XEXP (src, 1)))
8986 {
8987 HOST_WIDE_INT width = INTVAL (XEXP (dest, 1));
8988 unsigned HOST_WIDE_INT and_mask = INTVAL (XEXP (src, 1));
8989 unsigned HOST_WIDE_INT ze_mask;
8990
8991 if (width >= HOST_BITS_PER_WIDE_INT)
8992 ze_mask = -1;
8993 else
8994 ze_mask = ((unsigned HOST_WIDE_INT)1 << width) - 1;
8995
8996 /* Complete overlap. We can remove the source AND. */
8997 if ((and_mask & ze_mask) == ze_mask)
8998 return gen_rtx_SET (VOIDmode, dest, XEXP (src, 0));
8999
9000 /* Partial overlap. We can reduce the source AND. */
9001 if ((and_mask & ze_mask) != and_mask)
9002 {
9003 mode = GET_MODE (src);
9004 src = gen_rtx_AND (mode, XEXP (src, 0),
9005 gen_int_mode (and_mask & ze_mask, mode));
9006 return gen_rtx_SET (VOIDmode, dest, src);
9007 }
9008 }
9009
9010 /* The other case we handle is assignments into a constant-position
9011 field. They look like (ior/xor (and DEST C1) OTHER). If C1 represents
9012 a mask that has all one bits except for a group of zero bits and
9013 OTHER is known to have zeros where C1 has ones, this is such an
9014 assignment. Compute the position and length from C1. Shift OTHER
9015 to the appropriate position, force it to the required mode, and
9016 make the extraction. Check for the AND in both operands. */
9017
9018 if (GET_CODE (src) != IOR && GET_CODE (src) != XOR)
9019 return x;
9020
9021 rhs = expand_compound_operation (XEXP (src, 0));
9022 lhs = expand_compound_operation (XEXP (src, 1));
9023
9024 if (GET_CODE (rhs) == AND
9025 && CONST_INT_P (XEXP (rhs, 1))
9026 && rtx_equal_for_field_assignment_p (XEXP (rhs, 0), dest))
9027 c1 = INTVAL (XEXP (rhs, 1)), other = lhs;
9028 else if (GET_CODE (lhs) == AND
9029 && CONST_INT_P (XEXP (lhs, 1))
9030 && rtx_equal_for_field_assignment_p (XEXP (lhs, 0), dest))
9031 c1 = INTVAL (XEXP (lhs, 1)), other = rhs;
9032 else
9033 return x;
9034
9035 pos = get_pos_from_mask ((~c1) & GET_MODE_MASK (GET_MODE (dest)), &len);
9036 if (pos < 0 || pos + len > GET_MODE_BITSIZE (GET_MODE (dest))
9037 || GET_MODE_BITSIZE (GET_MODE (dest)) > HOST_BITS_PER_WIDE_INT
9038 || (c1 & nonzero_bits (other, GET_MODE (dest))) != 0)
9039 return x;
9040
9041 assign = make_extraction (VOIDmode, dest, pos, NULL_RTX, len, 1, 1, 0);
9042 if (assign == 0)
9043 return x;
9044
9045 /* The mode to use for the source is the mode of the assignment, or of
9046 what is inside a possible STRICT_LOW_PART. */
9047 mode = (GET_CODE (assign) == STRICT_LOW_PART
9048 ? GET_MODE (XEXP (assign, 0)) : GET_MODE (assign));
9049
9050 /* Shift OTHER right POS places and make it the source, restricting it
9051 to the proper length and mode. */
9052
9053 src = canon_reg_for_combine (simplify_shift_const (NULL_RTX, LSHIFTRT,
9054 GET_MODE (src),
9055 other, pos),
9056 dest);
9057 src = force_to_mode (src, mode,
9058 GET_MODE_BITSIZE (mode) >= HOST_BITS_PER_WIDE_INT
9059 ? ~(unsigned HOST_WIDE_INT) 0
9060 : ((unsigned HOST_WIDE_INT) 1 << len) - 1,
9061 0);
9062
9063 /* If SRC is masked by an AND that does not make a difference in
9064 the value being stored, strip it. */
9065 if (GET_CODE (assign) == ZERO_EXTRACT
9066 && CONST_INT_P (XEXP (assign, 1))
9067 && INTVAL (XEXP (assign, 1)) < HOST_BITS_PER_WIDE_INT
9068 && GET_CODE (src) == AND
9069 && CONST_INT_P (XEXP (src, 1))
9070 && UINTVAL (XEXP (src, 1))
9071 == ((unsigned HOST_WIDE_INT) 1 << INTVAL (XEXP (assign, 1))) - 1)
9072 src = XEXP (src, 0);
9073
9074 return gen_rtx_SET (VOIDmode, assign, src);
9075 }
9076 \f
9077 /* See if X is of the form (+ (* a c) (* b c)) and convert to (* (+ a b) c)
9078 if so. */
9079
9080 static rtx
9081 apply_distributive_law (rtx x)
9082 {
9083 enum rtx_code code = GET_CODE (x);
9084 enum rtx_code inner_code;
9085 rtx lhs, rhs, other;
9086 rtx tem;
9087
9088 /* Distributivity is not true for floating point as it can change the
9089 value. So we don't do it unless -funsafe-math-optimizations. */
9090 if (FLOAT_MODE_P (GET_MODE (x))
9091 && ! flag_unsafe_math_optimizations)
9092 return x;
9093
9094 /* The outer operation can only be one of the following: */
9095 if (code != IOR && code != AND && code != XOR
9096 && code != PLUS && code != MINUS)
9097 return x;
9098
9099 lhs = XEXP (x, 0);
9100 rhs = XEXP (x, 1);
9101
9102 /* If either operand is a primitive we can't do anything, so get out
9103 fast. */
9104 if (OBJECT_P (lhs) || OBJECT_P (rhs))
9105 return x;
9106
9107 lhs = expand_compound_operation (lhs);
9108 rhs = expand_compound_operation (rhs);
9109 inner_code = GET_CODE (lhs);
9110 if (inner_code != GET_CODE (rhs))
9111 return x;
9112
9113 /* See if the inner and outer operations distribute. */
9114 switch (inner_code)
9115 {
9116 case LSHIFTRT:
9117 case ASHIFTRT:
9118 case AND:
9119 case IOR:
9120 /* These all distribute except over PLUS. */
9121 if (code == PLUS || code == MINUS)
9122 return x;
9123 break;
9124
9125 case MULT:
9126 if (code != PLUS && code != MINUS)
9127 return x;
9128 break;
9129
9130 case ASHIFT:
9131 /* This is also a multiply, so it distributes over everything. */
9132 break;
9133
9134 case SUBREG:
9135 /* Non-paradoxical SUBREGs distributes over all operations,
9136 provided the inner modes and byte offsets are the same, this
9137 is an extraction of a low-order part, we don't convert an fp
9138 operation to int or vice versa, this is not a vector mode,
9139 and we would not be converting a single-word operation into a
9140 multi-word operation. The latter test is not required, but
9141 it prevents generating unneeded multi-word operations. Some
9142 of the previous tests are redundant given the latter test,
9143 but are retained because they are required for correctness.
9144
9145 We produce the result slightly differently in this case. */
9146
9147 if (GET_MODE (SUBREG_REG (lhs)) != GET_MODE (SUBREG_REG (rhs))
9148 || SUBREG_BYTE (lhs) != SUBREG_BYTE (rhs)
9149 || ! subreg_lowpart_p (lhs)
9150 || (GET_MODE_CLASS (GET_MODE (lhs))
9151 != GET_MODE_CLASS (GET_MODE (SUBREG_REG (lhs))))
9152 || (GET_MODE_SIZE (GET_MODE (lhs))
9153 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (lhs))))
9154 || VECTOR_MODE_P (GET_MODE (lhs))
9155 || GET_MODE_SIZE (GET_MODE (SUBREG_REG (lhs))) > UNITS_PER_WORD
9156 /* Result might need to be truncated. Don't change mode if
9157 explicit truncation is needed. */
9158 || !TRULY_NOOP_TRUNCATION
9159 (GET_MODE_BITSIZE (GET_MODE (x)),
9160 GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (lhs)))))
9161 return x;
9162
9163 tem = simplify_gen_binary (code, GET_MODE (SUBREG_REG (lhs)),
9164 SUBREG_REG (lhs), SUBREG_REG (rhs));
9165 return gen_lowpart (GET_MODE (x), tem);
9166
9167 default:
9168 return x;
9169 }
9170
9171 /* Set LHS and RHS to the inner operands (A and B in the example
9172 above) and set OTHER to the common operand (C in the example).
9173 There is only one way to do this unless the inner operation is
9174 commutative. */
9175 if (COMMUTATIVE_ARITH_P (lhs)
9176 && rtx_equal_p (XEXP (lhs, 0), XEXP (rhs, 0)))
9177 other = XEXP (lhs, 0), lhs = XEXP (lhs, 1), rhs = XEXP (rhs, 1);
9178 else if (COMMUTATIVE_ARITH_P (lhs)
9179 && rtx_equal_p (XEXP (lhs, 0), XEXP (rhs, 1)))
9180 other = XEXP (lhs, 0), lhs = XEXP (lhs, 1), rhs = XEXP (rhs, 0);
9181 else if (COMMUTATIVE_ARITH_P (lhs)
9182 && rtx_equal_p (XEXP (lhs, 1), XEXP (rhs, 0)))
9183 other = XEXP (lhs, 1), lhs = XEXP (lhs, 0), rhs = XEXP (rhs, 1);
9184 else if (rtx_equal_p (XEXP (lhs, 1), XEXP (rhs, 1)))
9185 other = XEXP (lhs, 1), lhs = XEXP (lhs, 0), rhs = XEXP (rhs, 0);
9186 else
9187 return x;
9188
9189 /* Form the new inner operation, seeing if it simplifies first. */
9190 tem = simplify_gen_binary (code, GET_MODE (x), lhs, rhs);
9191
9192 /* There is one exception to the general way of distributing:
9193 (a | c) ^ (b | c) -> (a ^ b) & ~c */
9194 if (code == XOR && inner_code == IOR)
9195 {
9196 inner_code = AND;
9197 other = simplify_gen_unary (NOT, GET_MODE (x), other, GET_MODE (x));
9198 }
9199
9200 /* We may be able to continuing distributing the result, so call
9201 ourselves recursively on the inner operation before forming the
9202 outer operation, which we return. */
9203 return simplify_gen_binary (inner_code, GET_MODE (x),
9204 apply_distributive_law (tem), other);
9205 }
9206
9207 /* See if X is of the form (* (+ A B) C), and if so convert to
9208 (+ (* A C) (* B C)) and try to simplify.
9209
9210 Most of the time, this results in no change. However, if some of
9211 the operands are the same or inverses of each other, simplifications
9212 will result.
9213
9214 For example, (and (ior A B) (not B)) can occur as the result of
9215 expanding a bit field assignment. When we apply the distributive
9216 law to this, we get (ior (and (A (not B))) (and (B (not B)))),
9217 which then simplifies to (and (A (not B))).
9218
9219 Note that no checks happen on the validity of applying the inverse
9220 distributive law. This is pointless since we can do it in the
9221 few places where this routine is called.
9222
9223 N is the index of the term that is decomposed (the arithmetic operation,
9224 i.e. (+ A B) in the first example above). !N is the index of the term that
9225 is distributed, i.e. of C in the first example above. */
9226 static rtx
9227 distribute_and_simplify_rtx (rtx x, int n)
9228 {
9229 enum machine_mode mode;
9230 enum rtx_code outer_code, inner_code;
9231 rtx decomposed, distributed, inner_op0, inner_op1, new_op0, new_op1, tmp;
9232
9233 /* Distributivity is not true for floating point as it can change the
9234 value. So we don't do it unless -funsafe-math-optimizations. */
9235 if (FLOAT_MODE_P (GET_MODE (x))
9236 && ! flag_unsafe_math_optimizations)
9237 return NULL_RTX;
9238
9239 decomposed = XEXP (x, n);
9240 if (!ARITHMETIC_P (decomposed))
9241 return NULL_RTX;
9242
9243 mode = GET_MODE (x);
9244 outer_code = GET_CODE (x);
9245 distributed = XEXP (x, !n);
9246
9247 inner_code = GET_CODE (decomposed);
9248 inner_op0 = XEXP (decomposed, 0);
9249 inner_op1 = XEXP (decomposed, 1);
9250
9251 /* Special case (and (xor B C) (not A)), which is equivalent to
9252 (xor (ior A B) (ior A C)) */
9253 if (outer_code == AND && inner_code == XOR && GET_CODE (distributed) == NOT)
9254 {
9255 distributed = XEXP (distributed, 0);
9256 outer_code = IOR;
9257 }
9258
9259 if (n == 0)
9260 {
9261 /* Distribute the second term. */
9262 new_op0 = simplify_gen_binary (outer_code, mode, inner_op0, distributed);
9263 new_op1 = simplify_gen_binary (outer_code, mode, inner_op1, distributed);
9264 }
9265 else
9266 {
9267 /* Distribute the first term. */
9268 new_op0 = simplify_gen_binary (outer_code, mode, distributed, inner_op0);
9269 new_op1 = simplify_gen_binary (outer_code, mode, distributed, inner_op1);
9270 }
9271
9272 tmp = apply_distributive_law (simplify_gen_binary (inner_code, mode,
9273 new_op0, new_op1));
9274 if (GET_CODE (tmp) != outer_code
9275 && rtx_cost (tmp, SET, optimize_this_for_speed_p)
9276 < rtx_cost (x, SET, optimize_this_for_speed_p))
9277 return tmp;
9278
9279 return NULL_RTX;
9280 }
9281 \f
9282 /* Simplify a logical `and' of VAROP with the constant CONSTOP, to be done
9283 in MODE. Return an equivalent form, if different from (and VAROP
9284 (const_int CONSTOP)). Otherwise, return NULL_RTX. */
9285
9286 static rtx
9287 simplify_and_const_int_1 (enum machine_mode mode, rtx varop,
9288 unsigned HOST_WIDE_INT constop)
9289 {
9290 unsigned HOST_WIDE_INT nonzero;
9291 unsigned HOST_WIDE_INT orig_constop;
9292 rtx orig_varop;
9293 int i;
9294
9295 orig_varop = varop;
9296 orig_constop = constop;
9297 if (GET_CODE (varop) == CLOBBER)
9298 return NULL_RTX;
9299
9300 /* Simplify VAROP knowing that we will be only looking at some of the
9301 bits in it.
9302
9303 Note by passing in CONSTOP, we guarantee that the bits not set in
9304 CONSTOP are not significant and will never be examined. We must
9305 ensure that is the case by explicitly masking out those bits
9306 before returning. */
9307 varop = force_to_mode (varop, mode, constop, 0);
9308
9309 /* If VAROP is a CLOBBER, we will fail so return it. */
9310 if (GET_CODE (varop) == CLOBBER)
9311 return varop;
9312
9313 /* If VAROP is a CONST_INT, then we need to apply the mask in CONSTOP
9314 to VAROP and return the new constant. */
9315 if (CONST_INT_P (varop))
9316 return gen_int_mode (INTVAL (varop) & constop, mode);
9317
9318 /* See what bits may be nonzero in VAROP. Unlike the general case of
9319 a call to nonzero_bits, here we don't care about bits outside
9320 MODE. */
9321
9322 nonzero = nonzero_bits (varop, mode) & GET_MODE_MASK (mode);
9323
9324 /* Turn off all bits in the constant that are known to already be zero.
9325 Thus, if the AND isn't needed at all, we will have CONSTOP == NONZERO_BITS
9326 which is tested below. */
9327
9328 constop &= nonzero;
9329
9330 /* If we don't have any bits left, return zero. */
9331 if (constop == 0)
9332 return const0_rtx;
9333
9334 /* If VAROP is a NEG of something known to be zero or 1 and CONSTOP is
9335 a power of two, we can replace this with an ASHIFT. */
9336 if (GET_CODE (varop) == NEG && nonzero_bits (XEXP (varop, 0), mode) == 1
9337 && (i = exact_log2 (constop)) >= 0)
9338 return simplify_shift_const (NULL_RTX, ASHIFT, mode, XEXP (varop, 0), i);
9339
9340 /* If VAROP is an IOR or XOR, apply the AND to both branches of the IOR
9341 or XOR, then try to apply the distributive law. This may eliminate
9342 operations if either branch can be simplified because of the AND.
9343 It may also make some cases more complex, but those cases probably
9344 won't match a pattern either with or without this. */
9345
9346 if (GET_CODE (varop) == IOR || GET_CODE (varop) == XOR)
9347 return
9348 gen_lowpart
9349 (mode,
9350 apply_distributive_law
9351 (simplify_gen_binary (GET_CODE (varop), GET_MODE (varop),
9352 simplify_and_const_int (NULL_RTX,
9353 GET_MODE (varop),
9354 XEXP (varop, 0),
9355 constop),
9356 simplify_and_const_int (NULL_RTX,
9357 GET_MODE (varop),
9358 XEXP (varop, 1),
9359 constop))));
9360
9361 /* If VAROP is PLUS, and the constant is a mask of low bits, distribute
9362 the AND and see if one of the operands simplifies to zero. If so, we
9363 may eliminate it. */
9364
9365 if (GET_CODE (varop) == PLUS
9366 && exact_log2 (constop + 1) >= 0)
9367 {
9368 rtx o0, o1;
9369
9370 o0 = simplify_and_const_int (NULL_RTX, mode, XEXP (varop, 0), constop);
9371 o1 = simplify_and_const_int (NULL_RTX, mode, XEXP (varop, 1), constop);
9372 if (o0 == const0_rtx)
9373 return o1;
9374 if (o1 == const0_rtx)
9375 return o0;
9376 }
9377
9378 /* Make a SUBREG if necessary. If we can't make it, fail. */
9379 varop = gen_lowpart (mode, varop);
9380 if (varop == NULL_RTX || GET_CODE (varop) == CLOBBER)
9381 return NULL_RTX;
9382
9383 /* If we are only masking insignificant bits, return VAROP. */
9384 if (constop == nonzero)
9385 return varop;
9386
9387 if (varop == orig_varop && constop == orig_constop)
9388 return NULL_RTX;
9389
9390 /* Otherwise, return an AND. */
9391 return simplify_gen_binary (AND, mode, varop, gen_int_mode (constop, mode));
9392 }
9393
9394
9395 /* We have X, a logical `and' of VAROP with the constant CONSTOP, to be done
9396 in MODE.
9397
9398 Return an equivalent form, if different from X. Otherwise, return X. If
9399 X is zero, we are to always construct the equivalent form. */
9400
9401 static rtx
9402 simplify_and_const_int (rtx x, enum machine_mode mode, rtx varop,
9403 unsigned HOST_WIDE_INT constop)
9404 {
9405 rtx tem = simplify_and_const_int_1 (mode, varop, constop);
9406 if (tem)
9407 return tem;
9408
9409 if (!x)
9410 x = simplify_gen_binary (AND, GET_MODE (varop), varop,
9411 gen_int_mode (constop, mode));
9412 if (GET_MODE (x) != mode)
9413 x = gen_lowpart (mode, x);
9414 return x;
9415 }
9416 \f
9417 /* Given a REG, X, compute which bits in X can be nonzero.
9418 We don't care about bits outside of those defined in MODE.
9419
9420 For most X this is simply GET_MODE_MASK (GET_MODE (MODE)), but if X is
9421 a shift, AND, or zero_extract, we can do better. */
9422
9423 static rtx
9424 reg_nonzero_bits_for_combine (const_rtx x, enum machine_mode mode,
9425 const_rtx known_x ATTRIBUTE_UNUSED,
9426 enum machine_mode known_mode ATTRIBUTE_UNUSED,
9427 unsigned HOST_WIDE_INT known_ret ATTRIBUTE_UNUSED,
9428 unsigned HOST_WIDE_INT *nonzero)
9429 {
9430 rtx tem;
9431 reg_stat_type *rsp;
9432
9433 /* If X is a register whose nonzero bits value is current, use it.
9434 Otherwise, if X is a register whose value we can find, use that
9435 value. Otherwise, use the previously-computed global nonzero bits
9436 for this register. */
9437
9438 rsp = VEC_index (reg_stat_type, reg_stat, REGNO (x));
9439 if (rsp->last_set_value != 0
9440 && (rsp->last_set_mode == mode
9441 || (GET_MODE_CLASS (rsp->last_set_mode) == MODE_INT
9442 && GET_MODE_CLASS (mode) == MODE_INT))
9443 && ((rsp->last_set_label >= label_tick_ebb_start
9444 && rsp->last_set_label < label_tick)
9445 || (rsp->last_set_label == label_tick
9446 && DF_INSN_LUID (rsp->last_set) < subst_low_luid)
9447 || (REGNO (x) >= FIRST_PSEUDO_REGISTER
9448 && REG_N_SETS (REGNO (x)) == 1
9449 && !REGNO_REG_SET_P
9450 (DF_LR_IN (ENTRY_BLOCK_PTR->next_bb), REGNO (x)))))
9451 {
9452 *nonzero &= rsp->last_set_nonzero_bits;
9453 return NULL;
9454 }
9455
9456 tem = get_last_value (x);
9457
9458 if (tem)
9459 {
9460 #ifdef SHORT_IMMEDIATES_SIGN_EXTEND
9461 /* If X is narrower than MODE and TEM is a non-negative
9462 constant that would appear negative in the mode of X,
9463 sign-extend it for use in reg_nonzero_bits because some
9464 machines (maybe most) will actually do the sign-extension
9465 and this is the conservative approach.
9466
9467 ??? For 2.5, try to tighten up the MD files in this regard
9468 instead of this kludge. */
9469
9470 if (GET_MODE_BITSIZE (GET_MODE (x)) < GET_MODE_BITSIZE (mode)
9471 && CONST_INT_P (tem)
9472 && INTVAL (tem) > 0
9473 && 0 != (UINTVAL (tem)
9474 & ((unsigned HOST_WIDE_INT) 1
9475 << (GET_MODE_BITSIZE (GET_MODE (x)) - 1))))
9476 tem = GEN_INT (UINTVAL (tem)
9477 | ((unsigned HOST_WIDE_INT) (-1)
9478 << GET_MODE_BITSIZE (GET_MODE (x))));
9479 #endif
9480 return tem;
9481 }
9482 else if (nonzero_sign_valid && rsp->nonzero_bits)
9483 {
9484 unsigned HOST_WIDE_INT mask = rsp->nonzero_bits;
9485
9486 if (GET_MODE_BITSIZE (GET_MODE (x)) < GET_MODE_BITSIZE (mode))
9487 /* We don't know anything about the upper bits. */
9488 mask |= GET_MODE_MASK (mode) ^ GET_MODE_MASK (GET_MODE (x));
9489 *nonzero &= mask;
9490 }
9491
9492 return NULL;
9493 }
9494
9495 /* Return the number of bits at the high-order end of X that are known to
9496 be equal to the sign bit. X will be used in mode MODE; if MODE is
9497 VOIDmode, X will be used in its own mode. The returned value will always
9498 be between 1 and the number of bits in MODE. */
9499
9500 static rtx
9501 reg_num_sign_bit_copies_for_combine (const_rtx x, enum machine_mode mode,
9502 const_rtx known_x ATTRIBUTE_UNUSED,
9503 enum machine_mode known_mode
9504 ATTRIBUTE_UNUSED,
9505 unsigned int known_ret ATTRIBUTE_UNUSED,
9506 unsigned int *result)
9507 {
9508 rtx tem;
9509 reg_stat_type *rsp;
9510
9511 rsp = VEC_index (reg_stat_type, reg_stat, REGNO (x));
9512 if (rsp->last_set_value != 0
9513 && rsp->last_set_mode == mode
9514 && ((rsp->last_set_label >= label_tick_ebb_start
9515 && rsp->last_set_label < label_tick)
9516 || (rsp->last_set_label == label_tick
9517 && DF_INSN_LUID (rsp->last_set) < subst_low_luid)
9518 || (REGNO (x) >= FIRST_PSEUDO_REGISTER
9519 && REG_N_SETS (REGNO (x)) == 1
9520 && !REGNO_REG_SET_P
9521 (DF_LR_IN (ENTRY_BLOCK_PTR->next_bb), REGNO (x)))))
9522 {
9523 *result = rsp->last_set_sign_bit_copies;
9524 return NULL;
9525 }
9526
9527 tem = get_last_value (x);
9528 if (tem != 0)
9529 return tem;
9530
9531 if (nonzero_sign_valid && rsp->sign_bit_copies != 0
9532 && GET_MODE_BITSIZE (GET_MODE (x)) == GET_MODE_BITSIZE (mode))
9533 *result = rsp->sign_bit_copies;
9534
9535 return NULL;
9536 }
9537 \f
9538 /* Return the number of "extended" bits there are in X, when interpreted
9539 as a quantity in MODE whose signedness is indicated by UNSIGNEDP. For
9540 unsigned quantities, this is the number of high-order zero bits.
9541 For signed quantities, this is the number of copies of the sign bit
9542 minus 1. In both case, this function returns the number of "spare"
9543 bits. For example, if two quantities for which this function returns
9544 at least 1 are added, the addition is known not to overflow.
9545
9546 This function will always return 0 unless called during combine, which
9547 implies that it must be called from a define_split. */
9548
9549 unsigned int
9550 extended_count (const_rtx x, enum machine_mode mode, int unsignedp)
9551 {
9552 if (nonzero_sign_valid == 0)
9553 return 0;
9554
9555 return (unsignedp
9556 ? (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
9557 ? (unsigned int) (GET_MODE_BITSIZE (mode) - 1
9558 - floor_log2 (nonzero_bits (x, mode)))
9559 : 0)
9560 : num_sign_bit_copies (x, mode) - 1);
9561 }
9562 \f
9563 /* This function is called from `simplify_shift_const' to merge two
9564 outer operations. Specifically, we have already found that we need
9565 to perform operation *POP0 with constant *PCONST0 at the outermost
9566 position. We would now like to also perform OP1 with constant CONST1
9567 (with *POP0 being done last).
9568
9569 Return 1 if we can do the operation and update *POP0 and *PCONST0 with
9570 the resulting operation. *PCOMP_P is set to 1 if we would need to
9571 complement the innermost operand, otherwise it is unchanged.
9572
9573 MODE is the mode in which the operation will be done. No bits outside
9574 the width of this mode matter. It is assumed that the width of this mode
9575 is smaller than or equal to HOST_BITS_PER_WIDE_INT.
9576
9577 If *POP0 or OP1 are UNKNOWN, it means no operation is required. Only NEG, PLUS,
9578 IOR, XOR, and AND are supported. We may set *POP0 to SET if the proper
9579 result is simply *PCONST0.
9580
9581 If the resulting operation cannot be expressed as one operation, we
9582 return 0 and do not change *POP0, *PCONST0, and *PCOMP_P. */
9583
9584 static int
9585 merge_outer_ops (enum rtx_code *pop0, HOST_WIDE_INT *pconst0, enum rtx_code op1, HOST_WIDE_INT const1, enum machine_mode mode, int *pcomp_p)
9586 {
9587 enum rtx_code op0 = *pop0;
9588 HOST_WIDE_INT const0 = *pconst0;
9589
9590 const0 &= GET_MODE_MASK (mode);
9591 const1 &= GET_MODE_MASK (mode);
9592
9593 /* If OP0 is an AND, clear unimportant bits in CONST1. */
9594 if (op0 == AND)
9595 const1 &= const0;
9596
9597 /* If OP0 or OP1 is UNKNOWN, this is easy. Similarly if they are the same or
9598 if OP0 is SET. */
9599
9600 if (op1 == UNKNOWN || op0 == SET)
9601 return 1;
9602
9603 else if (op0 == UNKNOWN)
9604 op0 = op1, const0 = const1;
9605
9606 else if (op0 == op1)
9607 {
9608 switch (op0)
9609 {
9610 case AND:
9611 const0 &= const1;
9612 break;
9613 case IOR:
9614 const0 |= const1;
9615 break;
9616 case XOR:
9617 const0 ^= const1;
9618 break;
9619 case PLUS:
9620 const0 += const1;
9621 break;
9622 case NEG:
9623 op0 = UNKNOWN;
9624 break;
9625 default:
9626 break;
9627 }
9628 }
9629
9630 /* Otherwise, if either is a PLUS or NEG, we can't do anything. */
9631 else if (op0 == PLUS || op1 == PLUS || op0 == NEG || op1 == NEG)
9632 return 0;
9633
9634 /* If the two constants aren't the same, we can't do anything. The
9635 remaining six cases can all be done. */
9636 else if (const0 != const1)
9637 return 0;
9638
9639 else
9640 switch (op0)
9641 {
9642 case IOR:
9643 if (op1 == AND)
9644 /* (a & b) | b == b */
9645 op0 = SET;
9646 else /* op1 == XOR */
9647 /* (a ^ b) | b == a | b */
9648 {;}
9649 break;
9650
9651 case XOR:
9652 if (op1 == AND)
9653 /* (a & b) ^ b == (~a) & b */
9654 op0 = AND, *pcomp_p = 1;
9655 else /* op1 == IOR */
9656 /* (a | b) ^ b == a & ~b */
9657 op0 = AND, const0 = ~const0;
9658 break;
9659
9660 case AND:
9661 if (op1 == IOR)
9662 /* (a | b) & b == b */
9663 op0 = SET;
9664 else /* op1 == XOR */
9665 /* (a ^ b) & b) == (~a) & b */
9666 *pcomp_p = 1;
9667 break;
9668 default:
9669 break;
9670 }
9671
9672 /* Check for NO-OP cases. */
9673 const0 &= GET_MODE_MASK (mode);
9674 if (const0 == 0
9675 && (op0 == IOR || op0 == XOR || op0 == PLUS))
9676 op0 = UNKNOWN;
9677 else if (const0 == 0 && op0 == AND)
9678 op0 = SET;
9679 else if ((unsigned HOST_WIDE_INT) const0 == GET_MODE_MASK (mode)
9680 && op0 == AND)
9681 op0 = UNKNOWN;
9682
9683 *pop0 = op0;
9684
9685 /* ??? Slightly redundant with the above mask, but not entirely.
9686 Moving this above means we'd have to sign-extend the mode mask
9687 for the final test. */
9688 if (op0 != UNKNOWN && op0 != NEG)
9689 *pconst0 = trunc_int_for_mode (const0, mode);
9690
9691 return 1;
9692 }
9693 \f
9694 /* A helper to simplify_shift_const_1 to determine the mode we can perform
9695 the shift in. The original shift operation CODE is performed on OP in
9696 ORIG_MODE. Return the wider mode MODE if we can perform the operation
9697 in that mode. Return ORIG_MODE otherwise. We can also assume that the
9698 result of the shift is subject to operation OUTER_CODE with operand
9699 OUTER_CONST. */
9700
9701 static enum machine_mode
9702 try_widen_shift_mode (enum rtx_code code, rtx op, int count,
9703 enum machine_mode orig_mode, enum machine_mode mode,
9704 enum rtx_code outer_code, HOST_WIDE_INT outer_const)
9705 {
9706 if (orig_mode == mode)
9707 return mode;
9708 gcc_assert (GET_MODE_BITSIZE (mode) > GET_MODE_BITSIZE (orig_mode));
9709
9710 /* In general we can't perform in wider mode for right shift and rotate. */
9711 switch (code)
9712 {
9713 case ASHIFTRT:
9714 /* We can still widen if the bits brought in from the left are identical
9715 to the sign bit of ORIG_MODE. */
9716 if (num_sign_bit_copies (op, mode)
9717 > (unsigned) (GET_MODE_BITSIZE (mode)
9718 - GET_MODE_BITSIZE (orig_mode)))
9719 return mode;
9720 return orig_mode;
9721
9722 case LSHIFTRT:
9723 /* Similarly here but with zero bits. */
9724 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
9725 && (nonzero_bits (op, mode) & ~GET_MODE_MASK (orig_mode)) == 0)
9726 return mode;
9727
9728 /* We can also widen if the bits brought in will be masked off. This
9729 operation is performed in ORIG_MODE. */
9730 if (outer_code == AND)
9731 {
9732 int care_bits = low_bitmask_len (orig_mode, outer_const);
9733
9734 if (care_bits >= 0
9735 && GET_MODE_BITSIZE (orig_mode) - care_bits >= count)
9736 return mode;
9737 }
9738 /* fall through */
9739
9740 case ROTATE:
9741 return orig_mode;
9742
9743 case ROTATERT:
9744 gcc_unreachable ();
9745
9746 default:
9747 return mode;
9748 }
9749 }
9750
9751 /* Simplify a shift of VAROP by COUNT bits. CODE says what kind of shift.
9752 The result of the shift is RESULT_MODE. Return NULL_RTX if we cannot
9753 simplify it. Otherwise, return a simplified value.
9754
9755 The shift is normally computed in the widest mode we find in VAROP, as
9756 long as it isn't a different number of words than RESULT_MODE. Exceptions
9757 are ASHIFTRT and ROTATE, which are always done in their original mode. */
9758
9759 static rtx
9760 simplify_shift_const_1 (enum rtx_code code, enum machine_mode result_mode,
9761 rtx varop, int orig_count)
9762 {
9763 enum rtx_code orig_code = code;
9764 rtx orig_varop = varop;
9765 int count;
9766 enum machine_mode mode = result_mode;
9767 enum machine_mode shift_mode, tmode;
9768 unsigned int mode_words
9769 = (GET_MODE_SIZE (mode) + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD;
9770 /* We form (outer_op (code varop count) (outer_const)). */
9771 enum rtx_code outer_op = UNKNOWN;
9772 HOST_WIDE_INT outer_const = 0;
9773 int complement_p = 0;
9774 rtx new_rtx, x;
9775
9776 /* Make sure and truncate the "natural" shift on the way in. We don't
9777 want to do this inside the loop as it makes it more difficult to
9778 combine shifts. */
9779 if (SHIFT_COUNT_TRUNCATED)
9780 orig_count &= GET_MODE_BITSIZE (mode) - 1;
9781
9782 /* If we were given an invalid count, don't do anything except exactly
9783 what was requested. */
9784
9785 if (orig_count < 0 || orig_count >= (int) GET_MODE_BITSIZE (mode))
9786 return NULL_RTX;
9787
9788 count = orig_count;
9789
9790 /* Unless one of the branches of the `if' in this loop does a `continue',
9791 we will `break' the loop after the `if'. */
9792
9793 while (count != 0)
9794 {
9795 /* If we have an operand of (clobber (const_int 0)), fail. */
9796 if (GET_CODE (varop) == CLOBBER)
9797 return NULL_RTX;
9798
9799 /* Convert ROTATERT to ROTATE. */
9800 if (code == ROTATERT)
9801 {
9802 unsigned int bitsize = GET_MODE_BITSIZE (result_mode);;
9803 code = ROTATE;
9804 if (VECTOR_MODE_P (result_mode))
9805 count = bitsize / GET_MODE_NUNITS (result_mode) - count;
9806 else
9807 count = bitsize - count;
9808 }
9809
9810 shift_mode = try_widen_shift_mode (code, varop, count, result_mode,
9811 mode, outer_op, outer_const);
9812
9813 /* Handle cases where the count is greater than the size of the mode
9814 minus 1. For ASHIFT, use the size minus one as the count (this can
9815 occur when simplifying (lshiftrt (ashiftrt ..))). For rotates,
9816 take the count modulo the size. For other shifts, the result is
9817 zero.
9818
9819 Since these shifts are being produced by the compiler by combining
9820 multiple operations, each of which are defined, we know what the
9821 result is supposed to be. */
9822
9823 if (count > (GET_MODE_BITSIZE (shift_mode) - 1))
9824 {
9825 if (code == ASHIFTRT)
9826 count = GET_MODE_BITSIZE (shift_mode) - 1;
9827 else if (code == ROTATE || code == ROTATERT)
9828 count %= GET_MODE_BITSIZE (shift_mode);
9829 else
9830 {
9831 /* We can't simply return zero because there may be an
9832 outer op. */
9833 varop = const0_rtx;
9834 count = 0;
9835 break;
9836 }
9837 }
9838
9839 /* If we discovered we had to complement VAROP, leave. Making a NOT
9840 here would cause an infinite loop. */
9841 if (complement_p)
9842 break;
9843
9844 /* An arithmetic right shift of a quantity known to be -1 or 0
9845 is a no-op. */
9846 if (code == ASHIFTRT
9847 && (num_sign_bit_copies (varop, shift_mode)
9848 == GET_MODE_BITSIZE (shift_mode)))
9849 {
9850 count = 0;
9851 break;
9852 }
9853
9854 /* If we are doing an arithmetic right shift and discarding all but
9855 the sign bit copies, this is equivalent to doing a shift by the
9856 bitsize minus one. Convert it into that shift because it will often
9857 allow other simplifications. */
9858
9859 if (code == ASHIFTRT
9860 && (count + num_sign_bit_copies (varop, shift_mode)
9861 >= GET_MODE_BITSIZE (shift_mode)))
9862 count = GET_MODE_BITSIZE (shift_mode) - 1;
9863
9864 /* We simplify the tests below and elsewhere by converting
9865 ASHIFTRT to LSHIFTRT if we know the sign bit is clear.
9866 `make_compound_operation' will convert it to an ASHIFTRT for
9867 those machines (such as VAX) that don't have an LSHIFTRT. */
9868 if (GET_MODE_BITSIZE (shift_mode) <= HOST_BITS_PER_WIDE_INT
9869 && code == ASHIFTRT
9870 && ((nonzero_bits (varop, shift_mode)
9871 & ((unsigned HOST_WIDE_INT) 1
9872 << (GET_MODE_BITSIZE (shift_mode) - 1))) == 0))
9873 code = LSHIFTRT;
9874
9875 if (((code == LSHIFTRT
9876 && GET_MODE_BITSIZE (shift_mode) <= HOST_BITS_PER_WIDE_INT
9877 && !(nonzero_bits (varop, shift_mode) >> count))
9878 || (code == ASHIFT
9879 && GET_MODE_BITSIZE (shift_mode) <= HOST_BITS_PER_WIDE_INT
9880 && !((nonzero_bits (varop, shift_mode) << count)
9881 & GET_MODE_MASK (shift_mode))))
9882 && !side_effects_p (varop))
9883 varop = const0_rtx;
9884
9885 switch (GET_CODE (varop))
9886 {
9887 case SIGN_EXTEND:
9888 case ZERO_EXTEND:
9889 case SIGN_EXTRACT:
9890 case ZERO_EXTRACT:
9891 new_rtx = expand_compound_operation (varop);
9892 if (new_rtx != varop)
9893 {
9894 varop = new_rtx;
9895 continue;
9896 }
9897 break;
9898
9899 case MEM:
9900 /* If we have (xshiftrt (mem ...) C) and C is MODE_WIDTH
9901 minus the width of a smaller mode, we can do this with a
9902 SIGN_EXTEND or ZERO_EXTEND from the narrower memory location. */
9903 if ((code == ASHIFTRT || code == LSHIFTRT)
9904 && ! mode_dependent_address_p (XEXP (varop, 0))
9905 && ! MEM_VOLATILE_P (varop)
9906 && (tmode = mode_for_size (GET_MODE_BITSIZE (mode) - count,
9907 MODE_INT, 1)) != BLKmode)
9908 {
9909 new_rtx = adjust_address_nv (varop, tmode,
9910 BYTES_BIG_ENDIAN ? 0
9911 : count / BITS_PER_UNIT);
9912
9913 varop = gen_rtx_fmt_e (code == ASHIFTRT ? SIGN_EXTEND
9914 : ZERO_EXTEND, mode, new_rtx);
9915 count = 0;
9916 continue;
9917 }
9918 break;
9919
9920 case SUBREG:
9921 /* If VAROP is a SUBREG, strip it as long as the inner operand has
9922 the same number of words as what we've seen so far. Then store
9923 the widest mode in MODE. */
9924 if (subreg_lowpart_p (varop)
9925 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (varop)))
9926 > GET_MODE_SIZE (GET_MODE (varop)))
9927 && (unsigned int) ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (varop)))
9928 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
9929 == mode_words
9930 && GET_MODE_CLASS (GET_MODE (varop)) == MODE_INT
9931 && GET_MODE_CLASS (GET_MODE (SUBREG_REG (varop))) == MODE_INT)
9932 {
9933 varop = SUBREG_REG (varop);
9934 if (GET_MODE_SIZE (GET_MODE (varop)) > GET_MODE_SIZE (mode))
9935 mode = GET_MODE (varop);
9936 continue;
9937 }
9938 break;
9939
9940 case MULT:
9941 /* Some machines use MULT instead of ASHIFT because MULT
9942 is cheaper. But it is still better on those machines to
9943 merge two shifts into one. */
9944 if (CONST_INT_P (XEXP (varop, 1))
9945 && exact_log2 (UINTVAL (XEXP (varop, 1))) >= 0)
9946 {
9947 varop
9948 = simplify_gen_binary (ASHIFT, GET_MODE (varop),
9949 XEXP (varop, 0),
9950 GEN_INT (exact_log2 (
9951 UINTVAL (XEXP (varop, 1)))));
9952 continue;
9953 }
9954 break;
9955
9956 case UDIV:
9957 /* Similar, for when divides are cheaper. */
9958 if (CONST_INT_P (XEXP (varop, 1))
9959 && exact_log2 (UINTVAL (XEXP (varop, 1))) >= 0)
9960 {
9961 varop
9962 = simplify_gen_binary (LSHIFTRT, GET_MODE (varop),
9963 XEXP (varop, 0),
9964 GEN_INT (exact_log2 (
9965 UINTVAL (XEXP (varop, 1)))));
9966 continue;
9967 }
9968 break;
9969
9970 case ASHIFTRT:
9971 /* If we are extracting just the sign bit of an arithmetic
9972 right shift, that shift is not needed. However, the sign
9973 bit of a wider mode may be different from what would be
9974 interpreted as the sign bit in a narrower mode, so, if
9975 the result is narrower, don't discard the shift. */
9976 if (code == LSHIFTRT
9977 && count == (GET_MODE_BITSIZE (result_mode) - 1)
9978 && (GET_MODE_BITSIZE (result_mode)
9979 >= GET_MODE_BITSIZE (GET_MODE (varop))))
9980 {
9981 varop = XEXP (varop, 0);
9982 continue;
9983 }
9984
9985 /* ... fall through ... */
9986
9987 case LSHIFTRT:
9988 case ASHIFT:
9989 case ROTATE:
9990 /* Here we have two nested shifts. The result is usually the
9991 AND of a new shift with a mask. We compute the result below. */
9992 if (CONST_INT_P (XEXP (varop, 1))
9993 && INTVAL (XEXP (varop, 1)) >= 0
9994 && INTVAL (XEXP (varop, 1)) < GET_MODE_BITSIZE (GET_MODE (varop))
9995 && GET_MODE_BITSIZE (result_mode) <= HOST_BITS_PER_WIDE_INT
9996 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
9997 && !VECTOR_MODE_P (result_mode))
9998 {
9999 enum rtx_code first_code = GET_CODE (varop);
10000 unsigned int first_count = INTVAL (XEXP (varop, 1));
10001 unsigned HOST_WIDE_INT mask;
10002 rtx mask_rtx;
10003
10004 /* We have one common special case. We can't do any merging if
10005 the inner code is an ASHIFTRT of a smaller mode. However, if
10006 we have (ashift:M1 (subreg:M1 (ashiftrt:M2 FOO C1) 0) C2)
10007 with C2 == GET_MODE_BITSIZE (M1) - GET_MODE_BITSIZE (M2),
10008 we can convert it to
10009 (ashiftrt:M1 (ashift:M1 (and:M1 (subreg:M1 FOO 0 C2) C3) C1).
10010 This simplifies certain SIGN_EXTEND operations. */
10011 if (code == ASHIFT && first_code == ASHIFTRT
10012 && count == (GET_MODE_BITSIZE (result_mode)
10013 - GET_MODE_BITSIZE (GET_MODE (varop))))
10014 {
10015 /* C3 has the low-order C1 bits zero. */
10016
10017 mask = GET_MODE_MASK (mode)
10018 & ~(((unsigned HOST_WIDE_INT) 1 << first_count) - 1);
10019
10020 varop = simplify_and_const_int (NULL_RTX, result_mode,
10021 XEXP (varop, 0), mask);
10022 varop = simplify_shift_const (NULL_RTX, ASHIFT, result_mode,
10023 varop, count);
10024 count = first_count;
10025 code = ASHIFTRT;
10026 continue;
10027 }
10028
10029 /* If this was (ashiftrt (ashift foo C1) C2) and FOO has more
10030 than C1 high-order bits equal to the sign bit, we can convert
10031 this to either an ASHIFT or an ASHIFTRT depending on the
10032 two counts.
10033
10034 We cannot do this if VAROP's mode is not SHIFT_MODE. */
10035
10036 if (code == ASHIFTRT && first_code == ASHIFT
10037 && GET_MODE (varop) == shift_mode
10038 && (num_sign_bit_copies (XEXP (varop, 0), shift_mode)
10039 > first_count))
10040 {
10041 varop = XEXP (varop, 0);
10042 count -= first_count;
10043 if (count < 0)
10044 {
10045 count = -count;
10046 code = ASHIFT;
10047 }
10048
10049 continue;
10050 }
10051
10052 /* There are some cases we can't do. If CODE is ASHIFTRT,
10053 we can only do this if FIRST_CODE is also ASHIFTRT.
10054
10055 We can't do the case when CODE is ROTATE and FIRST_CODE is
10056 ASHIFTRT.
10057
10058 If the mode of this shift is not the mode of the outer shift,
10059 we can't do this if either shift is a right shift or ROTATE.
10060
10061 Finally, we can't do any of these if the mode is too wide
10062 unless the codes are the same.
10063
10064 Handle the case where the shift codes are the same
10065 first. */
10066
10067 if (code == first_code)
10068 {
10069 if (GET_MODE (varop) != result_mode
10070 && (code == ASHIFTRT || code == LSHIFTRT
10071 || code == ROTATE))
10072 break;
10073
10074 count += first_count;
10075 varop = XEXP (varop, 0);
10076 continue;
10077 }
10078
10079 if (code == ASHIFTRT
10080 || (code == ROTATE && first_code == ASHIFTRT)
10081 || GET_MODE_BITSIZE (mode) > HOST_BITS_PER_WIDE_INT
10082 || (GET_MODE (varop) != result_mode
10083 && (first_code == ASHIFTRT || first_code == LSHIFTRT
10084 || first_code == ROTATE
10085 || code == ROTATE)))
10086 break;
10087
10088 /* To compute the mask to apply after the shift, shift the
10089 nonzero bits of the inner shift the same way the
10090 outer shift will. */
10091
10092 mask_rtx = GEN_INT (nonzero_bits (varop, GET_MODE (varop)));
10093
10094 mask_rtx
10095 = simplify_const_binary_operation (code, result_mode, mask_rtx,
10096 GEN_INT (count));
10097
10098 /* Give up if we can't compute an outer operation to use. */
10099 if (mask_rtx == 0
10100 || !CONST_INT_P (mask_rtx)
10101 || ! merge_outer_ops (&outer_op, &outer_const, AND,
10102 INTVAL (mask_rtx),
10103 result_mode, &complement_p))
10104 break;
10105
10106 /* If the shifts are in the same direction, we add the
10107 counts. Otherwise, we subtract them. */
10108 if ((code == ASHIFTRT || code == LSHIFTRT)
10109 == (first_code == ASHIFTRT || first_code == LSHIFTRT))
10110 count += first_count;
10111 else
10112 count -= first_count;
10113
10114 /* If COUNT is positive, the new shift is usually CODE,
10115 except for the two exceptions below, in which case it is
10116 FIRST_CODE. If the count is negative, FIRST_CODE should
10117 always be used */
10118 if (count > 0
10119 && ((first_code == ROTATE && code == ASHIFT)
10120 || (first_code == ASHIFTRT && code == LSHIFTRT)))
10121 code = first_code;
10122 else if (count < 0)
10123 code = first_code, count = -count;
10124
10125 varop = XEXP (varop, 0);
10126 continue;
10127 }
10128
10129 /* If we have (A << B << C) for any shift, we can convert this to
10130 (A << C << B). This wins if A is a constant. Only try this if
10131 B is not a constant. */
10132
10133 else if (GET_CODE (varop) == code
10134 && CONST_INT_P (XEXP (varop, 0))
10135 && !CONST_INT_P (XEXP (varop, 1)))
10136 {
10137 rtx new_rtx = simplify_const_binary_operation (code, mode,
10138 XEXP (varop, 0),
10139 GEN_INT (count));
10140 varop = gen_rtx_fmt_ee (code, mode, new_rtx, XEXP (varop, 1));
10141 count = 0;
10142 continue;
10143 }
10144 break;
10145
10146 case NOT:
10147 if (VECTOR_MODE_P (mode))
10148 break;
10149
10150 /* Make this fit the case below. */
10151 varop = gen_rtx_XOR (mode, XEXP (varop, 0),
10152 GEN_INT (GET_MODE_MASK (mode)));
10153 continue;
10154
10155 case IOR:
10156 case AND:
10157 case XOR:
10158 /* If we have (xshiftrt (ior (plus X (const_int -1)) X) C)
10159 with C the size of VAROP - 1 and the shift is logical if
10160 STORE_FLAG_VALUE is 1 and arithmetic if STORE_FLAG_VALUE is -1,
10161 we have an (le X 0) operation. If we have an arithmetic shift
10162 and STORE_FLAG_VALUE is 1 or we have a logical shift with
10163 STORE_FLAG_VALUE of -1, we have a (neg (le X 0)) operation. */
10164
10165 if (GET_CODE (varop) == IOR && GET_CODE (XEXP (varop, 0)) == PLUS
10166 && XEXP (XEXP (varop, 0), 1) == constm1_rtx
10167 && (STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
10168 && (code == LSHIFTRT || code == ASHIFTRT)
10169 && count == (GET_MODE_BITSIZE (GET_MODE (varop)) - 1)
10170 && rtx_equal_p (XEXP (XEXP (varop, 0), 0), XEXP (varop, 1)))
10171 {
10172 count = 0;
10173 varop = gen_rtx_LE (GET_MODE (varop), XEXP (varop, 1),
10174 const0_rtx);
10175
10176 if (STORE_FLAG_VALUE == 1 ? code == ASHIFTRT : code == LSHIFTRT)
10177 varop = gen_rtx_NEG (GET_MODE (varop), varop);
10178
10179 continue;
10180 }
10181
10182 /* If we have (shift (logical)), move the logical to the outside
10183 to allow it to possibly combine with another logical and the
10184 shift to combine with another shift. This also canonicalizes to
10185 what a ZERO_EXTRACT looks like. Also, some machines have
10186 (and (shift)) insns. */
10187
10188 if (CONST_INT_P (XEXP (varop, 1))
10189 /* We can't do this if we have (ashiftrt (xor)) and the
10190 constant has its sign bit set in shift_mode. */
10191 && !(code == ASHIFTRT && GET_CODE (varop) == XOR
10192 && 0 > trunc_int_for_mode (INTVAL (XEXP (varop, 1)),
10193 shift_mode))
10194 && (new_rtx = simplify_const_binary_operation (code, result_mode,
10195 XEXP (varop, 1),
10196 GEN_INT (count))) != 0
10197 && CONST_INT_P (new_rtx)
10198 && merge_outer_ops (&outer_op, &outer_const, GET_CODE (varop),
10199 INTVAL (new_rtx), result_mode, &complement_p))
10200 {
10201 varop = XEXP (varop, 0);
10202 continue;
10203 }
10204
10205 /* If we can't do that, try to simplify the shift in each arm of the
10206 logical expression, make a new logical expression, and apply
10207 the inverse distributive law. This also can't be done
10208 for some (ashiftrt (xor)). */
10209 if (CONST_INT_P (XEXP (varop, 1))
10210 && !(code == ASHIFTRT && GET_CODE (varop) == XOR
10211 && 0 > trunc_int_for_mode (INTVAL (XEXP (varop, 1)),
10212 shift_mode)))
10213 {
10214 rtx lhs = simplify_shift_const (NULL_RTX, code, shift_mode,
10215 XEXP (varop, 0), count);
10216 rtx rhs = simplify_shift_const (NULL_RTX, code, shift_mode,
10217 XEXP (varop, 1), count);
10218
10219 varop = simplify_gen_binary (GET_CODE (varop), shift_mode,
10220 lhs, rhs);
10221 varop = apply_distributive_law (varop);
10222
10223 count = 0;
10224 continue;
10225 }
10226 break;
10227
10228 case EQ:
10229 /* Convert (lshiftrt (eq FOO 0) C) to (xor FOO 1) if STORE_FLAG_VALUE
10230 says that the sign bit can be tested, FOO has mode MODE, C is
10231 GET_MODE_BITSIZE (MODE) - 1, and FOO has only its low-order bit
10232 that may be nonzero. */
10233 if (code == LSHIFTRT
10234 && XEXP (varop, 1) == const0_rtx
10235 && GET_MODE (XEXP (varop, 0)) == result_mode
10236 && count == (GET_MODE_BITSIZE (result_mode) - 1)
10237 && GET_MODE_BITSIZE (result_mode) <= HOST_BITS_PER_WIDE_INT
10238 && STORE_FLAG_VALUE == -1
10239 && nonzero_bits (XEXP (varop, 0), result_mode) == 1
10240 && merge_outer_ops (&outer_op, &outer_const, XOR, 1, result_mode,
10241 &complement_p))
10242 {
10243 varop = XEXP (varop, 0);
10244 count = 0;
10245 continue;
10246 }
10247 break;
10248
10249 case NEG:
10250 /* (lshiftrt (neg A) C) where A is either 0 or 1 and C is one less
10251 than the number of bits in the mode is equivalent to A. */
10252 if (code == LSHIFTRT
10253 && count == (GET_MODE_BITSIZE (result_mode) - 1)
10254 && nonzero_bits (XEXP (varop, 0), result_mode) == 1)
10255 {
10256 varop = XEXP (varop, 0);
10257 count = 0;
10258 continue;
10259 }
10260
10261 /* NEG commutes with ASHIFT since it is multiplication. Move the
10262 NEG outside to allow shifts to combine. */
10263 if (code == ASHIFT
10264 && merge_outer_ops (&outer_op, &outer_const, NEG, 0, result_mode,
10265 &complement_p))
10266 {
10267 varop = XEXP (varop, 0);
10268 continue;
10269 }
10270 break;
10271
10272 case PLUS:
10273 /* (lshiftrt (plus A -1) C) where A is either 0 or 1 and C
10274 is one less than the number of bits in the mode is
10275 equivalent to (xor A 1). */
10276 if (code == LSHIFTRT
10277 && count == (GET_MODE_BITSIZE (result_mode) - 1)
10278 && XEXP (varop, 1) == constm1_rtx
10279 && nonzero_bits (XEXP (varop, 0), result_mode) == 1
10280 && merge_outer_ops (&outer_op, &outer_const, XOR, 1, result_mode,
10281 &complement_p))
10282 {
10283 count = 0;
10284 varop = XEXP (varop, 0);
10285 continue;
10286 }
10287
10288 /* If we have (xshiftrt (plus FOO BAR) C), and the only bits
10289 that might be nonzero in BAR are those being shifted out and those
10290 bits are known zero in FOO, we can replace the PLUS with FOO.
10291 Similarly in the other operand order. This code occurs when
10292 we are computing the size of a variable-size array. */
10293
10294 if ((code == ASHIFTRT || code == LSHIFTRT)
10295 && count < HOST_BITS_PER_WIDE_INT
10296 && nonzero_bits (XEXP (varop, 1), result_mode) >> count == 0
10297 && (nonzero_bits (XEXP (varop, 1), result_mode)
10298 & nonzero_bits (XEXP (varop, 0), result_mode)) == 0)
10299 {
10300 varop = XEXP (varop, 0);
10301 continue;
10302 }
10303 else if ((code == ASHIFTRT || code == LSHIFTRT)
10304 && count < HOST_BITS_PER_WIDE_INT
10305 && GET_MODE_BITSIZE (result_mode) <= HOST_BITS_PER_WIDE_INT
10306 && 0 == (nonzero_bits (XEXP (varop, 0), result_mode)
10307 >> count)
10308 && 0 == (nonzero_bits (XEXP (varop, 0), result_mode)
10309 & nonzero_bits (XEXP (varop, 1),
10310 result_mode)))
10311 {
10312 varop = XEXP (varop, 1);
10313 continue;
10314 }
10315
10316 /* (ashift (plus foo C) N) is (plus (ashift foo N) C'). */
10317 if (code == ASHIFT
10318 && CONST_INT_P (XEXP (varop, 1))
10319 && (new_rtx = simplify_const_binary_operation (ASHIFT, result_mode,
10320 XEXP (varop, 1),
10321 GEN_INT (count))) != 0
10322 && CONST_INT_P (new_rtx)
10323 && merge_outer_ops (&outer_op, &outer_const, PLUS,
10324 INTVAL (new_rtx), result_mode, &complement_p))
10325 {
10326 varop = XEXP (varop, 0);
10327 continue;
10328 }
10329
10330 /* Check for 'PLUS signbit', which is the canonical form of 'XOR
10331 signbit', and attempt to change the PLUS to an XOR and move it to
10332 the outer operation as is done above in the AND/IOR/XOR case
10333 leg for shift(logical). See details in logical handling above
10334 for reasoning in doing so. */
10335 if (code == LSHIFTRT
10336 && CONST_INT_P (XEXP (varop, 1))
10337 && mode_signbit_p (result_mode, XEXP (varop, 1))
10338 && (new_rtx = simplify_const_binary_operation (code, result_mode,
10339 XEXP (varop, 1),
10340 GEN_INT (count))) != 0
10341 && CONST_INT_P (new_rtx)
10342 && merge_outer_ops (&outer_op, &outer_const, XOR,
10343 INTVAL (new_rtx), result_mode, &complement_p))
10344 {
10345 varop = XEXP (varop, 0);
10346 continue;
10347 }
10348
10349 break;
10350
10351 case MINUS:
10352 /* If we have (xshiftrt (minus (ashiftrt X C)) X) C)
10353 with C the size of VAROP - 1 and the shift is logical if
10354 STORE_FLAG_VALUE is 1 and arithmetic if STORE_FLAG_VALUE is -1,
10355 we have a (gt X 0) operation. If the shift is arithmetic with
10356 STORE_FLAG_VALUE of 1 or logical with STORE_FLAG_VALUE == -1,
10357 we have a (neg (gt X 0)) operation. */
10358
10359 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
10360 && GET_CODE (XEXP (varop, 0)) == ASHIFTRT
10361 && count == (GET_MODE_BITSIZE (GET_MODE (varop)) - 1)
10362 && (code == LSHIFTRT || code == ASHIFTRT)
10363 && CONST_INT_P (XEXP (XEXP (varop, 0), 1))
10364 && INTVAL (XEXP (XEXP (varop, 0), 1)) == count
10365 && rtx_equal_p (XEXP (XEXP (varop, 0), 0), XEXP (varop, 1)))
10366 {
10367 count = 0;
10368 varop = gen_rtx_GT (GET_MODE (varop), XEXP (varop, 1),
10369 const0_rtx);
10370
10371 if (STORE_FLAG_VALUE == 1 ? code == ASHIFTRT : code == LSHIFTRT)
10372 varop = gen_rtx_NEG (GET_MODE (varop), varop);
10373
10374 continue;
10375 }
10376 break;
10377
10378 case TRUNCATE:
10379 /* Change (lshiftrt (truncate (lshiftrt))) to (truncate (lshiftrt))
10380 if the truncate does not affect the value. */
10381 if (code == LSHIFTRT
10382 && GET_CODE (XEXP (varop, 0)) == LSHIFTRT
10383 && CONST_INT_P (XEXP (XEXP (varop, 0), 1))
10384 && (INTVAL (XEXP (XEXP (varop, 0), 1))
10385 >= (GET_MODE_BITSIZE (GET_MODE (XEXP (varop, 0)))
10386 - GET_MODE_BITSIZE (GET_MODE (varop)))))
10387 {
10388 rtx varop_inner = XEXP (varop, 0);
10389
10390 varop_inner
10391 = gen_rtx_LSHIFTRT (GET_MODE (varop_inner),
10392 XEXP (varop_inner, 0),
10393 GEN_INT
10394 (count + INTVAL (XEXP (varop_inner, 1))));
10395 varop = gen_rtx_TRUNCATE (GET_MODE (varop), varop_inner);
10396 count = 0;
10397 continue;
10398 }
10399 break;
10400
10401 default:
10402 break;
10403 }
10404
10405 break;
10406 }
10407
10408 shift_mode = try_widen_shift_mode (code, varop, count, result_mode, mode,
10409 outer_op, outer_const);
10410
10411 /* We have now finished analyzing the shift. The result should be
10412 a shift of type CODE with SHIFT_MODE shifting VAROP COUNT places. If
10413 OUTER_OP is non-UNKNOWN, it is an operation that needs to be applied
10414 to the result of the shift. OUTER_CONST is the relevant constant,
10415 but we must turn off all bits turned off in the shift. */
10416
10417 if (outer_op == UNKNOWN
10418 && orig_code == code && orig_count == count
10419 && varop == orig_varop
10420 && shift_mode == GET_MODE (varop))
10421 return NULL_RTX;
10422
10423 /* Make a SUBREG if necessary. If we can't make it, fail. */
10424 varop = gen_lowpart (shift_mode, varop);
10425 if (varop == NULL_RTX || GET_CODE (varop) == CLOBBER)
10426 return NULL_RTX;
10427
10428 /* If we have an outer operation and we just made a shift, it is
10429 possible that we could have simplified the shift were it not
10430 for the outer operation. So try to do the simplification
10431 recursively. */
10432
10433 if (outer_op != UNKNOWN)
10434 x = simplify_shift_const_1 (code, shift_mode, varop, count);
10435 else
10436 x = NULL_RTX;
10437
10438 if (x == NULL_RTX)
10439 x = simplify_gen_binary (code, shift_mode, varop, GEN_INT (count));
10440
10441 /* If we were doing an LSHIFTRT in a wider mode than it was originally,
10442 turn off all the bits that the shift would have turned off. */
10443 if (orig_code == LSHIFTRT && result_mode != shift_mode)
10444 x = simplify_and_const_int (NULL_RTX, shift_mode, x,
10445 GET_MODE_MASK (result_mode) >> orig_count);
10446
10447 /* Do the remainder of the processing in RESULT_MODE. */
10448 x = gen_lowpart_or_truncate (result_mode, x);
10449
10450 /* If COMPLEMENT_P is set, we have to complement X before doing the outer
10451 operation. */
10452 if (complement_p)
10453 x = simplify_gen_unary (NOT, result_mode, x, result_mode);
10454
10455 if (outer_op != UNKNOWN)
10456 {
10457 if (GET_RTX_CLASS (outer_op) != RTX_UNARY
10458 && GET_MODE_BITSIZE (result_mode) < HOST_BITS_PER_WIDE_INT)
10459 outer_const = trunc_int_for_mode (outer_const, result_mode);
10460
10461 if (outer_op == AND)
10462 x = simplify_and_const_int (NULL_RTX, result_mode, x, outer_const);
10463 else if (outer_op == SET)
10464 {
10465 /* This means that we have determined that the result is
10466 equivalent to a constant. This should be rare. */
10467 if (!side_effects_p (x))
10468 x = GEN_INT (outer_const);
10469 }
10470 else if (GET_RTX_CLASS (outer_op) == RTX_UNARY)
10471 x = simplify_gen_unary (outer_op, result_mode, x, result_mode);
10472 else
10473 x = simplify_gen_binary (outer_op, result_mode, x,
10474 GEN_INT (outer_const));
10475 }
10476
10477 return x;
10478 }
10479
10480 /* Simplify a shift of VAROP by COUNT bits. CODE says what kind of shift.
10481 The result of the shift is RESULT_MODE. If we cannot simplify it,
10482 return X or, if it is NULL, synthesize the expression with
10483 simplify_gen_binary. Otherwise, return a simplified value.
10484
10485 The shift is normally computed in the widest mode we find in VAROP, as
10486 long as it isn't a different number of words than RESULT_MODE. Exceptions
10487 are ASHIFTRT and ROTATE, which are always done in their original mode. */
10488
10489 static rtx
10490 simplify_shift_const (rtx x, enum rtx_code code, enum machine_mode result_mode,
10491 rtx varop, int count)
10492 {
10493 rtx tem = simplify_shift_const_1 (code, result_mode, varop, count);
10494 if (tem)
10495 return tem;
10496
10497 if (!x)
10498 x = simplify_gen_binary (code, GET_MODE (varop), varop, GEN_INT (count));
10499 if (GET_MODE (x) != result_mode)
10500 x = gen_lowpart (result_mode, x);
10501 return x;
10502 }
10503
10504 \f
10505 /* Like recog, but we receive the address of a pointer to a new pattern.
10506 We try to match the rtx that the pointer points to.
10507 If that fails, we may try to modify or replace the pattern,
10508 storing the replacement into the same pointer object.
10509
10510 Modifications include deletion or addition of CLOBBERs.
10511
10512 PNOTES is a pointer to a location where any REG_UNUSED notes added for
10513 the CLOBBERs are placed.
10514
10515 The value is the final insn code from the pattern ultimately matched,
10516 or -1. */
10517
10518 static int
10519 recog_for_combine (rtx *pnewpat, rtx insn, rtx *pnotes)
10520 {
10521 rtx pat = *pnewpat;
10522 int insn_code_number;
10523 int num_clobbers_to_add = 0;
10524 int i;
10525 rtx notes = 0;
10526 rtx old_notes, old_pat;
10527
10528 /* If PAT is a PARALLEL, check to see if it contains the CLOBBER
10529 we use to indicate that something didn't match. If we find such a
10530 thing, force rejection. */
10531 if (GET_CODE (pat) == PARALLEL)
10532 for (i = XVECLEN (pat, 0) - 1; i >= 0; i--)
10533 if (GET_CODE (XVECEXP (pat, 0, i)) == CLOBBER
10534 && XEXP (XVECEXP (pat, 0, i), 0) == const0_rtx)
10535 return -1;
10536
10537 old_pat = PATTERN (insn);
10538 old_notes = REG_NOTES (insn);
10539 PATTERN (insn) = pat;
10540 REG_NOTES (insn) = 0;
10541
10542 insn_code_number = recog (pat, insn, &num_clobbers_to_add);
10543 if (dump_file && (dump_flags & TDF_DETAILS))
10544 {
10545 if (insn_code_number < 0)
10546 fputs ("Failed to match this instruction:\n", dump_file);
10547 else
10548 fputs ("Successfully matched this instruction:\n", dump_file);
10549 print_rtl_single (dump_file, pat);
10550 }
10551
10552 /* If it isn't, there is the possibility that we previously had an insn
10553 that clobbered some register as a side effect, but the combined
10554 insn doesn't need to do that. So try once more without the clobbers
10555 unless this represents an ASM insn. */
10556
10557 if (insn_code_number < 0 && ! check_asm_operands (pat)
10558 && GET_CODE (pat) == PARALLEL)
10559 {
10560 int pos;
10561
10562 for (pos = 0, i = 0; i < XVECLEN (pat, 0); i++)
10563 if (GET_CODE (XVECEXP (pat, 0, i)) != CLOBBER)
10564 {
10565 if (i != pos)
10566 SUBST (XVECEXP (pat, 0, pos), XVECEXP (pat, 0, i));
10567 pos++;
10568 }
10569
10570 SUBST_INT (XVECLEN (pat, 0), pos);
10571
10572 if (pos == 1)
10573 pat = XVECEXP (pat, 0, 0);
10574
10575 PATTERN (insn) = pat;
10576 insn_code_number = recog (pat, insn, &num_clobbers_to_add);
10577 if (dump_file && (dump_flags & TDF_DETAILS))
10578 {
10579 if (insn_code_number < 0)
10580 fputs ("Failed to match this instruction:\n", dump_file);
10581 else
10582 fputs ("Successfully matched this instruction:\n", dump_file);
10583 print_rtl_single (dump_file, pat);
10584 }
10585 }
10586 PATTERN (insn) = old_pat;
10587 REG_NOTES (insn) = old_notes;
10588
10589 /* Recognize all noop sets, these will be killed by followup pass. */
10590 if (insn_code_number < 0 && GET_CODE (pat) == SET && set_noop_p (pat))
10591 insn_code_number = NOOP_MOVE_INSN_CODE, num_clobbers_to_add = 0;
10592
10593 /* If we had any clobbers to add, make a new pattern than contains
10594 them. Then check to make sure that all of them are dead. */
10595 if (num_clobbers_to_add)
10596 {
10597 rtx newpat = gen_rtx_PARALLEL (VOIDmode,
10598 rtvec_alloc (GET_CODE (pat) == PARALLEL
10599 ? (XVECLEN (pat, 0)
10600 + num_clobbers_to_add)
10601 : num_clobbers_to_add + 1));
10602
10603 if (GET_CODE (pat) == PARALLEL)
10604 for (i = 0; i < XVECLEN (pat, 0); i++)
10605 XVECEXP (newpat, 0, i) = XVECEXP (pat, 0, i);
10606 else
10607 XVECEXP (newpat, 0, 0) = pat;
10608
10609 add_clobbers (newpat, insn_code_number);
10610
10611 for (i = XVECLEN (newpat, 0) - num_clobbers_to_add;
10612 i < XVECLEN (newpat, 0); i++)
10613 {
10614 if (REG_P (XEXP (XVECEXP (newpat, 0, i), 0))
10615 && ! reg_dead_at_p (XEXP (XVECEXP (newpat, 0, i), 0), insn))
10616 return -1;
10617 if (GET_CODE (XEXP (XVECEXP (newpat, 0, i), 0)) != SCRATCH)
10618 {
10619 gcc_assert (REG_P (XEXP (XVECEXP (newpat, 0, i), 0)));
10620 notes = alloc_reg_note (REG_UNUSED,
10621 XEXP (XVECEXP (newpat, 0, i), 0), notes);
10622 }
10623 }
10624 pat = newpat;
10625 }
10626
10627 *pnewpat = pat;
10628 *pnotes = notes;
10629
10630 return insn_code_number;
10631 }
10632 \f
10633 /* Like gen_lowpart_general but for use by combine. In combine it
10634 is not possible to create any new pseudoregs. However, it is
10635 safe to create invalid memory addresses, because combine will
10636 try to recognize them and all they will do is make the combine
10637 attempt fail.
10638
10639 If for some reason this cannot do its job, an rtx
10640 (clobber (const_int 0)) is returned.
10641 An insn containing that will not be recognized. */
10642
10643 static rtx
10644 gen_lowpart_for_combine (enum machine_mode omode, rtx x)
10645 {
10646 enum machine_mode imode = GET_MODE (x);
10647 unsigned int osize = GET_MODE_SIZE (omode);
10648 unsigned int isize = GET_MODE_SIZE (imode);
10649 rtx result;
10650
10651 if (omode == imode)
10652 return x;
10653
10654 /* Return identity if this is a CONST or symbolic reference. */
10655 if (omode == Pmode
10656 && (GET_CODE (x) == CONST
10657 || GET_CODE (x) == SYMBOL_REF
10658 || GET_CODE (x) == LABEL_REF))
10659 return x;
10660
10661 /* We can only support MODE being wider than a word if X is a
10662 constant integer or has a mode the same size. */
10663 if (GET_MODE_SIZE (omode) > UNITS_PER_WORD
10664 && ! ((imode == VOIDmode
10665 && (CONST_INT_P (x)
10666 || GET_CODE (x) == CONST_DOUBLE))
10667 || isize == osize))
10668 goto fail;
10669
10670 /* X might be a paradoxical (subreg (mem)). In that case, gen_lowpart
10671 won't know what to do. So we will strip off the SUBREG here and
10672 process normally. */
10673 if (GET_CODE (x) == SUBREG && MEM_P (SUBREG_REG (x)))
10674 {
10675 x = SUBREG_REG (x);
10676
10677 /* For use in case we fall down into the address adjustments
10678 further below, we need to adjust the known mode and size of
10679 x; imode and isize, since we just adjusted x. */
10680 imode = GET_MODE (x);
10681
10682 if (imode == omode)
10683 return x;
10684
10685 isize = GET_MODE_SIZE (imode);
10686 }
10687
10688 result = gen_lowpart_common (omode, x);
10689
10690 if (result)
10691 return result;
10692
10693 if (MEM_P (x))
10694 {
10695 int offset = 0;
10696
10697 /* Refuse to work on a volatile memory ref or one with a mode-dependent
10698 address. */
10699 if (MEM_VOLATILE_P (x) || mode_dependent_address_p (XEXP (x, 0)))
10700 goto fail;
10701
10702 /* If we want to refer to something bigger than the original memref,
10703 generate a paradoxical subreg instead. That will force a reload
10704 of the original memref X. */
10705 if (isize < osize)
10706 return gen_rtx_SUBREG (omode, x, 0);
10707
10708 if (WORDS_BIG_ENDIAN)
10709 offset = MAX (isize, UNITS_PER_WORD) - MAX (osize, UNITS_PER_WORD);
10710
10711 /* Adjust the address so that the address-after-the-data is
10712 unchanged. */
10713 if (BYTES_BIG_ENDIAN)
10714 offset -= MIN (UNITS_PER_WORD, osize) - MIN (UNITS_PER_WORD, isize);
10715
10716 return adjust_address_nv (x, omode, offset);
10717 }
10718
10719 /* If X is a comparison operator, rewrite it in a new mode. This
10720 probably won't match, but may allow further simplifications. */
10721 else if (COMPARISON_P (x))
10722 return gen_rtx_fmt_ee (GET_CODE (x), omode, XEXP (x, 0), XEXP (x, 1));
10723
10724 /* If we couldn't simplify X any other way, just enclose it in a
10725 SUBREG. Normally, this SUBREG won't match, but some patterns may
10726 include an explicit SUBREG or we may simplify it further in combine. */
10727 else
10728 {
10729 int offset = 0;
10730 rtx res;
10731
10732 offset = subreg_lowpart_offset (omode, imode);
10733 if (imode == VOIDmode)
10734 {
10735 imode = int_mode_for_mode (omode);
10736 x = gen_lowpart_common (imode, x);
10737 if (x == NULL)
10738 goto fail;
10739 }
10740 res = simplify_gen_subreg (omode, x, imode, offset);
10741 if (res)
10742 return res;
10743 }
10744
10745 fail:
10746 return gen_rtx_CLOBBER (omode, const0_rtx);
10747 }
10748 \f
10749 /* Simplify a comparison between *POP0 and *POP1 where CODE is the
10750 comparison code that will be tested.
10751
10752 The result is a possibly different comparison code to use. *POP0 and
10753 *POP1 may be updated.
10754
10755 It is possible that we might detect that a comparison is either always
10756 true or always false. However, we do not perform general constant
10757 folding in combine, so this knowledge isn't useful. Such tautologies
10758 should have been detected earlier. Hence we ignore all such cases. */
10759
10760 static enum rtx_code
10761 simplify_comparison (enum rtx_code code, rtx *pop0, rtx *pop1)
10762 {
10763 rtx op0 = *pop0;
10764 rtx op1 = *pop1;
10765 rtx tem, tem1;
10766 int i;
10767 enum machine_mode mode, tmode;
10768
10769 /* Try a few ways of applying the same transformation to both operands. */
10770 while (1)
10771 {
10772 #ifndef WORD_REGISTER_OPERATIONS
10773 /* The test below this one won't handle SIGN_EXTENDs on these machines,
10774 so check specially. */
10775 if (code != GTU && code != GEU && code != LTU && code != LEU
10776 && GET_CODE (op0) == ASHIFTRT && GET_CODE (op1) == ASHIFTRT
10777 && GET_CODE (XEXP (op0, 0)) == ASHIFT
10778 && GET_CODE (XEXP (op1, 0)) == ASHIFT
10779 && GET_CODE (XEXP (XEXP (op0, 0), 0)) == SUBREG
10780 && GET_CODE (XEXP (XEXP (op1, 0), 0)) == SUBREG
10781 && (GET_MODE (SUBREG_REG (XEXP (XEXP (op0, 0), 0)))
10782 == GET_MODE (SUBREG_REG (XEXP (XEXP (op1, 0), 0))))
10783 && CONST_INT_P (XEXP (op0, 1))
10784 && XEXP (op0, 1) == XEXP (op1, 1)
10785 && XEXP (op0, 1) == XEXP (XEXP (op0, 0), 1)
10786 && XEXP (op0, 1) == XEXP (XEXP (op1, 0), 1)
10787 && (INTVAL (XEXP (op0, 1))
10788 == (GET_MODE_BITSIZE (GET_MODE (op0))
10789 - (GET_MODE_BITSIZE
10790 (GET_MODE (SUBREG_REG (XEXP (XEXP (op0, 0), 0))))))))
10791 {
10792 op0 = SUBREG_REG (XEXP (XEXP (op0, 0), 0));
10793 op1 = SUBREG_REG (XEXP (XEXP (op1, 0), 0));
10794 }
10795 #endif
10796
10797 /* If both operands are the same constant shift, see if we can ignore the
10798 shift. We can if the shift is a rotate or if the bits shifted out of
10799 this shift are known to be zero for both inputs and if the type of
10800 comparison is compatible with the shift. */
10801 if (GET_CODE (op0) == GET_CODE (op1)
10802 && GET_MODE_BITSIZE (GET_MODE (op0)) <= HOST_BITS_PER_WIDE_INT
10803 && ((GET_CODE (op0) == ROTATE && (code == NE || code == EQ))
10804 || ((GET_CODE (op0) == LSHIFTRT || GET_CODE (op0) == ASHIFT)
10805 && (code != GT && code != LT && code != GE && code != LE))
10806 || (GET_CODE (op0) == ASHIFTRT
10807 && (code != GTU && code != LTU
10808 && code != GEU && code != LEU)))
10809 && CONST_INT_P (XEXP (op0, 1))
10810 && INTVAL (XEXP (op0, 1)) >= 0
10811 && INTVAL (XEXP (op0, 1)) < HOST_BITS_PER_WIDE_INT
10812 && XEXP (op0, 1) == XEXP (op1, 1))
10813 {
10814 enum machine_mode mode = GET_MODE (op0);
10815 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
10816 int shift_count = INTVAL (XEXP (op0, 1));
10817
10818 if (GET_CODE (op0) == LSHIFTRT || GET_CODE (op0) == ASHIFTRT)
10819 mask &= (mask >> shift_count) << shift_count;
10820 else if (GET_CODE (op0) == ASHIFT)
10821 mask = (mask & (mask << shift_count)) >> shift_count;
10822
10823 if ((nonzero_bits (XEXP (op0, 0), mode) & ~mask) == 0
10824 && (nonzero_bits (XEXP (op1, 0), mode) & ~mask) == 0)
10825 op0 = XEXP (op0, 0), op1 = XEXP (op1, 0);
10826 else
10827 break;
10828 }
10829
10830 /* If both operands are AND's of a paradoxical SUBREG by constant, the
10831 SUBREGs are of the same mode, and, in both cases, the AND would
10832 be redundant if the comparison was done in the narrower mode,
10833 do the comparison in the narrower mode (e.g., we are AND'ing with 1
10834 and the operand's possibly nonzero bits are 0xffffff01; in that case
10835 if we only care about QImode, we don't need the AND). This case
10836 occurs if the output mode of an scc insn is not SImode and
10837 STORE_FLAG_VALUE == 1 (e.g., the 386).
10838
10839 Similarly, check for a case where the AND's are ZERO_EXTEND
10840 operations from some narrower mode even though a SUBREG is not
10841 present. */
10842
10843 else if (GET_CODE (op0) == AND && GET_CODE (op1) == AND
10844 && CONST_INT_P (XEXP (op0, 1))
10845 && CONST_INT_P (XEXP (op1, 1)))
10846 {
10847 rtx inner_op0 = XEXP (op0, 0);
10848 rtx inner_op1 = XEXP (op1, 0);
10849 HOST_WIDE_INT c0 = INTVAL (XEXP (op0, 1));
10850 HOST_WIDE_INT c1 = INTVAL (XEXP (op1, 1));
10851 int changed = 0;
10852
10853 if (GET_CODE (inner_op0) == SUBREG && GET_CODE (inner_op1) == SUBREG
10854 && (GET_MODE_SIZE (GET_MODE (inner_op0))
10855 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (inner_op0))))
10856 && (GET_MODE (SUBREG_REG (inner_op0))
10857 == GET_MODE (SUBREG_REG (inner_op1)))
10858 && (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (inner_op0)))
10859 <= HOST_BITS_PER_WIDE_INT)
10860 && (0 == ((~c0) & nonzero_bits (SUBREG_REG (inner_op0),
10861 GET_MODE (SUBREG_REG (inner_op0)))))
10862 && (0 == ((~c1) & nonzero_bits (SUBREG_REG (inner_op1),
10863 GET_MODE (SUBREG_REG (inner_op1))))))
10864 {
10865 op0 = SUBREG_REG (inner_op0);
10866 op1 = SUBREG_REG (inner_op1);
10867
10868 /* The resulting comparison is always unsigned since we masked
10869 off the original sign bit. */
10870 code = unsigned_condition (code);
10871
10872 changed = 1;
10873 }
10874
10875 else if (c0 == c1)
10876 for (tmode = GET_CLASS_NARROWEST_MODE
10877 (GET_MODE_CLASS (GET_MODE (op0)));
10878 tmode != GET_MODE (op0); tmode = GET_MODE_WIDER_MODE (tmode))
10879 if ((unsigned HOST_WIDE_INT) c0 == GET_MODE_MASK (tmode))
10880 {
10881 op0 = gen_lowpart (tmode, inner_op0);
10882 op1 = gen_lowpart (tmode, inner_op1);
10883 code = unsigned_condition (code);
10884 changed = 1;
10885 break;
10886 }
10887
10888 if (! changed)
10889 break;
10890 }
10891
10892 /* If both operands are NOT, we can strip off the outer operation
10893 and adjust the comparison code for swapped operands; similarly for
10894 NEG, except that this must be an equality comparison. */
10895 else if ((GET_CODE (op0) == NOT && GET_CODE (op1) == NOT)
10896 || (GET_CODE (op0) == NEG && GET_CODE (op1) == NEG
10897 && (code == EQ || code == NE)))
10898 op0 = XEXP (op0, 0), op1 = XEXP (op1, 0), code = swap_condition (code);
10899
10900 else
10901 break;
10902 }
10903
10904 /* If the first operand is a constant, swap the operands and adjust the
10905 comparison code appropriately, but don't do this if the second operand
10906 is already a constant integer. */
10907 if (swap_commutative_operands_p (op0, op1))
10908 {
10909 tem = op0, op0 = op1, op1 = tem;
10910 code = swap_condition (code);
10911 }
10912
10913 /* We now enter a loop during which we will try to simplify the comparison.
10914 For the most part, we only are concerned with comparisons with zero,
10915 but some things may really be comparisons with zero but not start
10916 out looking that way. */
10917
10918 while (CONST_INT_P (op1))
10919 {
10920 enum machine_mode mode = GET_MODE (op0);
10921 unsigned int mode_width = GET_MODE_BITSIZE (mode);
10922 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
10923 int equality_comparison_p;
10924 int sign_bit_comparison_p;
10925 int unsigned_comparison_p;
10926 HOST_WIDE_INT const_op;
10927
10928 /* We only want to handle integral modes. This catches VOIDmode,
10929 CCmode, and the floating-point modes. An exception is that we
10930 can handle VOIDmode if OP0 is a COMPARE or a comparison
10931 operation. */
10932
10933 if (GET_MODE_CLASS (mode) != MODE_INT
10934 && ! (mode == VOIDmode
10935 && (GET_CODE (op0) == COMPARE || COMPARISON_P (op0))))
10936 break;
10937
10938 /* Get the constant we are comparing against and turn off all bits
10939 not on in our mode. */
10940 const_op = INTVAL (op1);
10941 if (mode != VOIDmode)
10942 const_op = trunc_int_for_mode (const_op, mode);
10943 op1 = GEN_INT (const_op);
10944
10945 /* If we are comparing against a constant power of two and the value
10946 being compared can only have that single bit nonzero (e.g., it was
10947 `and'ed with that bit), we can replace this with a comparison
10948 with zero. */
10949 if (const_op
10950 && (code == EQ || code == NE || code == GE || code == GEU
10951 || code == LT || code == LTU)
10952 && mode_width <= HOST_BITS_PER_WIDE_INT
10953 && exact_log2 (const_op) >= 0
10954 && nonzero_bits (op0, mode) == (unsigned HOST_WIDE_INT) const_op)
10955 {
10956 code = (code == EQ || code == GE || code == GEU ? NE : EQ);
10957 op1 = const0_rtx, const_op = 0;
10958 }
10959
10960 /* Similarly, if we are comparing a value known to be either -1 or
10961 0 with -1, change it to the opposite comparison against zero. */
10962
10963 if (const_op == -1
10964 && (code == EQ || code == NE || code == GT || code == LE
10965 || code == GEU || code == LTU)
10966 && num_sign_bit_copies (op0, mode) == mode_width)
10967 {
10968 code = (code == EQ || code == LE || code == GEU ? NE : EQ);
10969 op1 = const0_rtx, const_op = 0;
10970 }
10971
10972 /* Do some canonicalizations based on the comparison code. We prefer
10973 comparisons against zero and then prefer equality comparisons.
10974 If we can reduce the size of a constant, we will do that too. */
10975
10976 switch (code)
10977 {
10978 case LT:
10979 /* < C is equivalent to <= (C - 1) */
10980 if (const_op > 0)
10981 {
10982 const_op -= 1;
10983 op1 = GEN_INT (const_op);
10984 code = LE;
10985 /* ... fall through to LE case below. */
10986 }
10987 else
10988 break;
10989
10990 case LE:
10991 /* <= C is equivalent to < (C + 1); we do this for C < 0 */
10992 if (const_op < 0)
10993 {
10994 const_op += 1;
10995 op1 = GEN_INT (const_op);
10996 code = LT;
10997 }
10998
10999 /* If we are doing a <= 0 comparison on a value known to have
11000 a zero sign bit, we can replace this with == 0. */
11001 else if (const_op == 0
11002 && mode_width <= HOST_BITS_PER_WIDE_INT
11003 && (nonzero_bits (op0, mode)
11004 & ((unsigned HOST_WIDE_INT) 1 << (mode_width - 1)))
11005 == 0)
11006 code = EQ;
11007 break;
11008
11009 case GE:
11010 /* >= C is equivalent to > (C - 1). */
11011 if (const_op > 0)
11012 {
11013 const_op -= 1;
11014 op1 = GEN_INT (const_op);
11015 code = GT;
11016 /* ... fall through to GT below. */
11017 }
11018 else
11019 break;
11020
11021 case GT:
11022 /* > C is equivalent to >= (C + 1); we do this for C < 0. */
11023 if (const_op < 0)
11024 {
11025 const_op += 1;
11026 op1 = GEN_INT (const_op);
11027 code = GE;
11028 }
11029
11030 /* If we are doing a > 0 comparison on a value known to have
11031 a zero sign bit, we can replace this with != 0. */
11032 else if (const_op == 0
11033 && mode_width <= HOST_BITS_PER_WIDE_INT
11034 && (nonzero_bits (op0, mode)
11035 & ((unsigned HOST_WIDE_INT) 1 << (mode_width - 1)))
11036 == 0)
11037 code = NE;
11038 break;
11039
11040 case LTU:
11041 /* < C is equivalent to <= (C - 1). */
11042 if (const_op > 0)
11043 {
11044 const_op -= 1;
11045 op1 = GEN_INT (const_op);
11046 code = LEU;
11047 /* ... fall through ... */
11048 }
11049
11050 /* (unsigned) < 0x80000000 is equivalent to >= 0. */
11051 else if (mode_width <= HOST_BITS_PER_WIDE_INT
11052 && (unsigned HOST_WIDE_INT) const_op
11053 == (unsigned HOST_WIDE_INT) 1 << (mode_width - 1))
11054 {
11055 const_op = 0, op1 = const0_rtx;
11056 code = GE;
11057 break;
11058 }
11059 else
11060 break;
11061
11062 case LEU:
11063 /* unsigned <= 0 is equivalent to == 0 */
11064 if (const_op == 0)
11065 code = EQ;
11066
11067 /* (unsigned) <= 0x7fffffff is equivalent to >= 0. */
11068 else if (mode_width <= HOST_BITS_PER_WIDE_INT
11069 && (unsigned HOST_WIDE_INT) const_op
11070 == ((unsigned HOST_WIDE_INT) 1 << (mode_width - 1)) - 1)
11071 {
11072 const_op = 0, op1 = const0_rtx;
11073 code = GE;
11074 }
11075 break;
11076
11077 case GEU:
11078 /* >= C is equivalent to > (C - 1). */
11079 if (const_op > 1)
11080 {
11081 const_op -= 1;
11082 op1 = GEN_INT (const_op);
11083 code = GTU;
11084 /* ... fall through ... */
11085 }
11086
11087 /* (unsigned) >= 0x80000000 is equivalent to < 0. */
11088 else if (mode_width <= HOST_BITS_PER_WIDE_INT
11089 && (unsigned HOST_WIDE_INT) const_op
11090 == (unsigned HOST_WIDE_INT) 1 << (mode_width - 1))
11091 {
11092 const_op = 0, op1 = const0_rtx;
11093 code = LT;
11094 break;
11095 }
11096 else
11097 break;
11098
11099 case GTU:
11100 /* unsigned > 0 is equivalent to != 0 */
11101 if (const_op == 0)
11102 code = NE;
11103
11104 /* (unsigned) > 0x7fffffff is equivalent to < 0. */
11105 else if (mode_width <= HOST_BITS_PER_WIDE_INT
11106 && (unsigned HOST_WIDE_INT) const_op
11107 == ((unsigned HOST_WIDE_INT) 1 << (mode_width - 1)) - 1)
11108 {
11109 const_op = 0, op1 = const0_rtx;
11110 code = LT;
11111 }
11112 break;
11113
11114 default:
11115 break;
11116 }
11117
11118 /* Compute some predicates to simplify code below. */
11119
11120 equality_comparison_p = (code == EQ || code == NE);
11121 sign_bit_comparison_p = ((code == LT || code == GE) && const_op == 0);
11122 unsigned_comparison_p = (code == LTU || code == LEU || code == GTU
11123 || code == GEU);
11124
11125 /* If this is a sign bit comparison and we can do arithmetic in
11126 MODE, say that we will only be needing the sign bit of OP0. */
11127 if (sign_bit_comparison_p
11128 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
11129 op0 = force_to_mode (op0, mode,
11130 (unsigned HOST_WIDE_INT) 1
11131 << (GET_MODE_BITSIZE (mode) - 1),
11132 0);
11133
11134 /* Now try cases based on the opcode of OP0. If none of the cases
11135 does a "continue", we exit this loop immediately after the
11136 switch. */
11137
11138 switch (GET_CODE (op0))
11139 {
11140 case ZERO_EXTRACT:
11141 /* If we are extracting a single bit from a variable position in
11142 a constant that has only a single bit set and are comparing it
11143 with zero, we can convert this into an equality comparison
11144 between the position and the location of the single bit. */
11145 /* Except we can't if SHIFT_COUNT_TRUNCATED is set, since we might
11146 have already reduced the shift count modulo the word size. */
11147 if (!SHIFT_COUNT_TRUNCATED
11148 && CONST_INT_P (XEXP (op0, 0))
11149 && XEXP (op0, 1) == const1_rtx
11150 && equality_comparison_p && const_op == 0
11151 && (i = exact_log2 (UINTVAL (XEXP (op0, 0)))) >= 0)
11152 {
11153 if (BITS_BIG_ENDIAN)
11154 {
11155 enum machine_mode new_mode
11156 = mode_for_extraction (EP_extzv, 1);
11157 if (new_mode == MAX_MACHINE_MODE)
11158 i = BITS_PER_WORD - 1 - i;
11159 else
11160 {
11161 mode = new_mode;
11162 i = (GET_MODE_BITSIZE (mode) - 1 - i);
11163 }
11164 }
11165
11166 op0 = XEXP (op0, 2);
11167 op1 = GEN_INT (i);
11168 const_op = i;
11169
11170 /* Result is nonzero iff shift count is equal to I. */
11171 code = reverse_condition (code);
11172 continue;
11173 }
11174
11175 /* ... fall through ... */
11176
11177 case SIGN_EXTRACT:
11178 tem = expand_compound_operation (op0);
11179 if (tem != op0)
11180 {
11181 op0 = tem;
11182 continue;
11183 }
11184 break;
11185
11186 case NOT:
11187 /* If testing for equality, we can take the NOT of the constant. */
11188 if (equality_comparison_p
11189 && (tem = simplify_unary_operation (NOT, mode, op1, mode)) != 0)
11190 {
11191 op0 = XEXP (op0, 0);
11192 op1 = tem;
11193 continue;
11194 }
11195
11196 /* If just looking at the sign bit, reverse the sense of the
11197 comparison. */
11198 if (sign_bit_comparison_p)
11199 {
11200 op0 = XEXP (op0, 0);
11201 code = (code == GE ? LT : GE);
11202 continue;
11203 }
11204 break;
11205
11206 case NEG:
11207 /* If testing for equality, we can take the NEG of the constant. */
11208 if (equality_comparison_p
11209 && (tem = simplify_unary_operation (NEG, mode, op1, mode)) != 0)
11210 {
11211 op0 = XEXP (op0, 0);
11212 op1 = tem;
11213 continue;
11214 }
11215
11216 /* The remaining cases only apply to comparisons with zero. */
11217 if (const_op != 0)
11218 break;
11219
11220 /* When X is ABS or is known positive,
11221 (neg X) is < 0 if and only if X != 0. */
11222
11223 if (sign_bit_comparison_p
11224 && (GET_CODE (XEXP (op0, 0)) == ABS
11225 || (mode_width <= HOST_BITS_PER_WIDE_INT
11226 && (nonzero_bits (XEXP (op0, 0), mode)
11227 & ((unsigned HOST_WIDE_INT) 1 << (mode_width - 1)))
11228 == 0)))
11229 {
11230 op0 = XEXP (op0, 0);
11231 code = (code == LT ? NE : EQ);
11232 continue;
11233 }
11234
11235 /* If we have NEG of something whose two high-order bits are the
11236 same, we know that "(-a) < 0" is equivalent to "a > 0". */
11237 if (num_sign_bit_copies (op0, mode) >= 2)
11238 {
11239 op0 = XEXP (op0, 0);
11240 code = swap_condition (code);
11241 continue;
11242 }
11243 break;
11244
11245 case ROTATE:
11246 /* If we are testing equality and our count is a constant, we
11247 can perform the inverse operation on our RHS. */
11248 if (equality_comparison_p && CONST_INT_P (XEXP (op0, 1))
11249 && (tem = simplify_binary_operation (ROTATERT, mode,
11250 op1, XEXP (op0, 1))) != 0)
11251 {
11252 op0 = XEXP (op0, 0);
11253 op1 = tem;
11254 continue;
11255 }
11256
11257 /* If we are doing a < 0 or >= 0 comparison, it means we are testing
11258 a particular bit. Convert it to an AND of a constant of that
11259 bit. This will be converted into a ZERO_EXTRACT. */
11260 if (const_op == 0 && sign_bit_comparison_p
11261 && CONST_INT_P (XEXP (op0, 1))
11262 && mode_width <= HOST_BITS_PER_WIDE_INT)
11263 {
11264 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
11265 ((unsigned HOST_WIDE_INT) 1
11266 << (mode_width - 1
11267 - INTVAL (XEXP (op0, 1)))));
11268 code = (code == LT ? NE : EQ);
11269 continue;
11270 }
11271
11272 /* Fall through. */
11273
11274 case ABS:
11275 /* ABS is ignorable inside an equality comparison with zero. */
11276 if (const_op == 0 && equality_comparison_p)
11277 {
11278 op0 = XEXP (op0, 0);
11279 continue;
11280 }
11281 break;
11282
11283 case SIGN_EXTEND:
11284 /* Can simplify (compare (zero/sign_extend FOO) CONST) to
11285 (compare FOO CONST) if CONST fits in FOO's mode and we
11286 are either testing inequality or have an unsigned
11287 comparison with ZERO_EXTEND or a signed comparison with
11288 SIGN_EXTEND. But don't do it if we don't have a compare
11289 insn of the given mode, since we'd have to revert it
11290 later on, and then we wouldn't know whether to sign- or
11291 zero-extend. */
11292 mode = GET_MODE (XEXP (op0, 0));
11293 if (mode != VOIDmode && GET_MODE_CLASS (mode) == MODE_INT
11294 && ! unsigned_comparison_p
11295 && (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
11296 && ((unsigned HOST_WIDE_INT) const_op
11297 < (((unsigned HOST_WIDE_INT) 1
11298 << (GET_MODE_BITSIZE (mode) - 1))))
11299 && have_insn_for (COMPARE, mode))
11300 {
11301 op0 = XEXP (op0, 0);
11302 continue;
11303 }
11304 break;
11305
11306 case SUBREG:
11307 /* Check for the case where we are comparing A - C1 with C2, that is
11308
11309 (subreg:MODE (plus (A) (-C1))) op (C2)
11310
11311 with C1 a constant, and try to lift the SUBREG, i.e. to do the
11312 comparison in the wider mode. One of the following two conditions
11313 must be true in order for this to be valid:
11314
11315 1. The mode extension results in the same bit pattern being added
11316 on both sides and the comparison is equality or unsigned. As
11317 C2 has been truncated to fit in MODE, the pattern can only be
11318 all 0s or all 1s.
11319
11320 2. The mode extension results in the sign bit being copied on
11321 each side.
11322
11323 The difficulty here is that we have predicates for A but not for
11324 (A - C1) so we need to check that C1 is within proper bounds so
11325 as to perturbate A as little as possible. */
11326
11327 if (mode_width <= HOST_BITS_PER_WIDE_INT
11328 && subreg_lowpart_p (op0)
11329 && GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (op0))) > mode_width
11330 && GET_CODE (SUBREG_REG (op0)) == PLUS
11331 && CONST_INT_P (XEXP (SUBREG_REG (op0), 1)))
11332 {
11333 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (op0));
11334 rtx a = XEXP (SUBREG_REG (op0), 0);
11335 HOST_WIDE_INT c1 = -INTVAL (XEXP (SUBREG_REG (op0), 1));
11336
11337 if ((c1 > 0
11338 && (unsigned HOST_WIDE_INT) c1
11339 < (unsigned HOST_WIDE_INT) 1 << (mode_width - 1)
11340 && (equality_comparison_p || unsigned_comparison_p)
11341 /* (A - C1) zero-extends if it is positive and sign-extends
11342 if it is negative, C2 both zero- and sign-extends. */
11343 && ((0 == (nonzero_bits (a, inner_mode)
11344 & ~GET_MODE_MASK (mode))
11345 && const_op >= 0)
11346 /* (A - C1) sign-extends if it is positive and 1-extends
11347 if it is negative, C2 both sign- and 1-extends. */
11348 || (num_sign_bit_copies (a, inner_mode)
11349 > (unsigned int) (GET_MODE_BITSIZE (inner_mode)
11350 - mode_width)
11351 && const_op < 0)))
11352 || ((unsigned HOST_WIDE_INT) c1
11353 < (unsigned HOST_WIDE_INT) 1 << (mode_width - 2)
11354 /* (A - C1) always sign-extends, like C2. */
11355 && num_sign_bit_copies (a, inner_mode)
11356 > (unsigned int) (GET_MODE_BITSIZE (inner_mode)
11357 - (mode_width - 1))))
11358 {
11359 op0 = SUBREG_REG (op0);
11360 continue;
11361 }
11362 }
11363
11364 /* If the inner mode is narrower and we are extracting the low part,
11365 we can treat the SUBREG as if it were a ZERO_EXTEND. */
11366 if (subreg_lowpart_p (op0)
11367 && GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (op0))) < mode_width)
11368 /* Fall through */ ;
11369 else
11370 break;
11371
11372 /* ... fall through ... */
11373
11374 case ZERO_EXTEND:
11375 mode = GET_MODE (XEXP (op0, 0));
11376 if (mode != VOIDmode && GET_MODE_CLASS (mode) == MODE_INT
11377 && (unsigned_comparison_p || equality_comparison_p)
11378 && (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
11379 && ((unsigned HOST_WIDE_INT) const_op < GET_MODE_MASK (mode))
11380 && have_insn_for (COMPARE, mode))
11381 {
11382 op0 = XEXP (op0, 0);
11383 continue;
11384 }
11385 break;
11386
11387 case PLUS:
11388 /* (eq (plus X A) B) -> (eq X (minus B A)). We can only do
11389 this for equality comparisons due to pathological cases involving
11390 overflows. */
11391 if (equality_comparison_p
11392 && 0 != (tem = simplify_binary_operation (MINUS, mode,
11393 op1, XEXP (op0, 1))))
11394 {
11395 op0 = XEXP (op0, 0);
11396 op1 = tem;
11397 continue;
11398 }
11399
11400 /* (plus (abs X) (const_int -1)) is < 0 if and only if X == 0. */
11401 if (const_op == 0 && XEXP (op0, 1) == constm1_rtx
11402 && GET_CODE (XEXP (op0, 0)) == ABS && sign_bit_comparison_p)
11403 {
11404 op0 = XEXP (XEXP (op0, 0), 0);
11405 code = (code == LT ? EQ : NE);
11406 continue;
11407 }
11408 break;
11409
11410 case MINUS:
11411 /* We used to optimize signed comparisons against zero, but that
11412 was incorrect. Unsigned comparisons against zero (GTU, LEU)
11413 arrive here as equality comparisons, or (GEU, LTU) are
11414 optimized away. No need to special-case them. */
11415
11416 /* (eq (minus A B) C) -> (eq A (plus B C)) or
11417 (eq B (minus A C)), whichever simplifies. We can only do
11418 this for equality comparisons due to pathological cases involving
11419 overflows. */
11420 if (equality_comparison_p
11421 && 0 != (tem = simplify_binary_operation (PLUS, mode,
11422 XEXP (op0, 1), op1)))
11423 {
11424 op0 = XEXP (op0, 0);
11425 op1 = tem;
11426 continue;
11427 }
11428
11429 if (equality_comparison_p
11430 && 0 != (tem = simplify_binary_operation (MINUS, mode,
11431 XEXP (op0, 0), op1)))
11432 {
11433 op0 = XEXP (op0, 1);
11434 op1 = tem;
11435 continue;
11436 }
11437
11438 /* The sign bit of (minus (ashiftrt X C) X), where C is the number
11439 of bits in X minus 1, is one iff X > 0. */
11440 if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 0)) == ASHIFTRT
11441 && CONST_INT_P (XEXP (XEXP (op0, 0), 1))
11442 && UINTVAL (XEXP (XEXP (op0, 0), 1)) == mode_width - 1
11443 && rtx_equal_p (XEXP (XEXP (op0, 0), 0), XEXP (op0, 1)))
11444 {
11445 op0 = XEXP (op0, 1);
11446 code = (code == GE ? LE : GT);
11447 continue;
11448 }
11449 break;
11450
11451 case XOR:
11452 /* (eq (xor A B) C) -> (eq A (xor B C)). This is a simplification
11453 if C is zero or B is a constant. */
11454 if (equality_comparison_p
11455 && 0 != (tem = simplify_binary_operation (XOR, mode,
11456 XEXP (op0, 1), op1)))
11457 {
11458 op0 = XEXP (op0, 0);
11459 op1 = tem;
11460 continue;
11461 }
11462 break;
11463
11464 case EQ: case NE:
11465 case UNEQ: case LTGT:
11466 case LT: case LTU: case UNLT: case LE: case LEU: case UNLE:
11467 case GT: case GTU: case UNGT: case GE: case GEU: case UNGE:
11468 case UNORDERED: case ORDERED:
11469 /* We can't do anything if OP0 is a condition code value, rather
11470 than an actual data value. */
11471 if (const_op != 0
11472 || CC0_P (XEXP (op0, 0))
11473 || GET_MODE_CLASS (GET_MODE (XEXP (op0, 0))) == MODE_CC)
11474 break;
11475
11476 /* Get the two operands being compared. */
11477 if (GET_CODE (XEXP (op0, 0)) == COMPARE)
11478 tem = XEXP (XEXP (op0, 0), 0), tem1 = XEXP (XEXP (op0, 0), 1);
11479 else
11480 tem = XEXP (op0, 0), tem1 = XEXP (op0, 1);
11481
11482 /* Check for the cases where we simply want the result of the
11483 earlier test or the opposite of that result. */
11484 if (code == NE || code == EQ
11485 || (GET_MODE_BITSIZE (GET_MODE (op0)) <= HOST_BITS_PER_WIDE_INT
11486 && GET_MODE_CLASS (GET_MODE (op0)) == MODE_INT
11487 && (STORE_FLAG_VALUE
11488 & (((unsigned HOST_WIDE_INT) 1
11489 << (GET_MODE_BITSIZE (GET_MODE (op0)) - 1))))
11490 && (code == LT || code == GE)))
11491 {
11492 enum rtx_code new_code;
11493 if (code == LT || code == NE)
11494 new_code = GET_CODE (op0);
11495 else
11496 new_code = reversed_comparison_code (op0, NULL);
11497
11498 if (new_code != UNKNOWN)
11499 {
11500 code = new_code;
11501 op0 = tem;
11502 op1 = tem1;
11503 continue;
11504 }
11505 }
11506 break;
11507
11508 case IOR:
11509 /* The sign bit of (ior (plus X (const_int -1)) X) is nonzero
11510 iff X <= 0. */
11511 if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 0)) == PLUS
11512 && XEXP (XEXP (op0, 0), 1) == constm1_rtx
11513 && rtx_equal_p (XEXP (XEXP (op0, 0), 0), XEXP (op0, 1)))
11514 {
11515 op0 = XEXP (op0, 1);
11516 code = (code == GE ? GT : LE);
11517 continue;
11518 }
11519 break;
11520
11521 case AND:
11522 /* Convert (and (xshift 1 X) Y) to (and (lshiftrt Y X) 1). This
11523 will be converted to a ZERO_EXTRACT later. */
11524 if (const_op == 0 && equality_comparison_p
11525 && GET_CODE (XEXP (op0, 0)) == ASHIFT
11526 && XEXP (XEXP (op0, 0), 0) == const1_rtx)
11527 {
11528 op0 = gen_rtx_LSHIFTRT (mode, XEXP (op0, 1),
11529 XEXP (XEXP (op0, 0), 1));
11530 op0 = simplify_and_const_int (NULL_RTX, mode, op0, 1);
11531 continue;
11532 }
11533
11534 /* If we are comparing (and (lshiftrt X C1) C2) for equality with
11535 zero and X is a comparison and C1 and C2 describe only bits set
11536 in STORE_FLAG_VALUE, we can compare with X. */
11537 if (const_op == 0 && equality_comparison_p
11538 && mode_width <= HOST_BITS_PER_WIDE_INT
11539 && CONST_INT_P (XEXP (op0, 1))
11540 && GET_CODE (XEXP (op0, 0)) == LSHIFTRT
11541 && CONST_INT_P (XEXP (XEXP (op0, 0), 1))
11542 && INTVAL (XEXP (XEXP (op0, 0), 1)) >= 0
11543 && INTVAL (XEXP (XEXP (op0, 0), 1)) < HOST_BITS_PER_WIDE_INT)
11544 {
11545 mask = ((INTVAL (XEXP (op0, 1)) & GET_MODE_MASK (mode))
11546 << INTVAL (XEXP (XEXP (op0, 0), 1)));
11547 if ((~STORE_FLAG_VALUE & mask) == 0
11548 && (COMPARISON_P (XEXP (XEXP (op0, 0), 0))
11549 || ((tem = get_last_value (XEXP (XEXP (op0, 0), 0))) != 0
11550 && COMPARISON_P (tem))))
11551 {
11552 op0 = XEXP (XEXP (op0, 0), 0);
11553 continue;
11554 }
11555 }
11556
11557 /* If we are doing an equality comparison of an AND of a bit equal
11558 to the sign bit, replace this with a LT or GE comparison of
11559 the underlying value. */
11560 if (equality_comparison_p
11561 && const_op == 0
11562 && CONST_INT_P (XEXP (op0, 1))
11563 && mode_width <= HOST_BITS_PER_WIDE_INT
11564 && ((INTVAL (XEXP (op0, 1)) & GET_MODE_MASK (mode))
11565 == (unsigned HOST_WIDE_INT) 1 << (mode_width - 1)))
11566 {
11567 op0 = XEXP (op0, 0);
11568 code = (code == EQ ? GE : LT);
11569 continue;
11570 }
11571
11572 /* If this AND operation is really a ZERO_EXTEND from a narrower
11573 mode, the constant fits within that mode, and this is either an
11574 equality or unsigned comparison, try to do this comparison in
11575 the narrower mode.
11576
11577 Note that in:
11578
11579 (ne:DI (and:DI (reg:DI 4) (const_int 0xffffffff)) (const_int 0))
11580 -> (ne:DI (reg:SI 4) (const_int 0))
11581
11582 unless TRULY_NOOP_TRUNCATION allows it or the register is
11583 known to hold a value of the required mode the
11584 transformation is invalid. */
11585 if ((equality_comparison_p || unsigned_comparison_p)
11586 && CONST_INT_P (XEXP (op0, 1))
11587 && (i = exact_log2 ((UINTVAL (XEXP (op0, 1))
11588 & GET_MODE_MASK (mode))
11589 + 1)) >= 0
11590 && const_op >> i == 0
11591 && (tmode = mode_for_size (i, MODE_INT, 1)) != BLKmode
11592 && (TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (tmode),
11593 GET_MODE_BITSIZE (GET_MODE (op0)))
11594 || (REG_P (XEXP (op0, 0))
11595 && reg_truncated_to_mode (tmode, XEXP (op0, 0)))))
11596 {
11597 op0 = gen_lowpart (tmode, XEXP (op0, 0));
11598 continue;
11599 }
11600
11601 /* If this is (and:M1 (subreg:M2 X 0) (const_int C1)) where C1
11602 fits in both M1 and M2 and the SUBREG is either paradoxical
11603 or represents the low part, permute the SUBREG and the AND
11604 and try again. */
11605 if (GET_CODE (XEXP (op0, 0)) == SUBREG)
11606 {
11607 unsigned HOST_WIDE_INT c1;
11608 tmode = GET_MODE (SUBREG_REG (XEXP (op0, 0)));
11609 /* Require an integral mode, to avoid creating something like
11610 (AND:SF ...). */
11611 if (SCALAR_INT_MODE_P (tmode)
11612 /* It is unsafe to commute the AND into the SUBREG if the
11613 SUBREG is paradoxical and WORD_REGISTER_OPERATIONS is
11614 not defined. As originally written the upper bits
11615 have a defined value due to the AND operation.
11616 However, if we commute the AND inside the SUBREG then
11617 they no longer have defined values and the meaning of
11618 the code has been changed. */
11619 && (0
11620 #ifdef WORD_REGISTER_OPERATIONS
11621 || (mode_width > GET_MODE_BITSIZE (tmode)
11622 && mode_width <= BITS_PER_WORD)
11623 #endif
11624 || (mode_width <= GET_MODE_BITSIZE (tmode)
11625 && subreg_lowpart_p (XEXP (op0, 0))))
11626 && CONST_INT_P (XEXP (op0, 1))
11627 && mode_width <= HOST_BITS_PER_WIDE_INT
11628 && GET_MODE_BITSIZE (tmode) <= HOST_BITS_PER_WIDE_INT
11629 && ((c1 = INTVAL (XEXP (op0, 1))) & ~mask) == 0
11630 && (c1 & ~GET_MODE_MASK (tmode)) == 0
11631 && c1 != mask
11632 && c1 != GET_MODE_MASK (tmode))
11633 {
11634 op0 = simplify_gen_binary (AND, tmode,
11635 SUBREG_REG (XEXP (op0, 0)),
11636 gen_int_mode (c1, tmode));
11637 op0 = gen_lowpart (mode, op0);
11638 continue;
11639 }
11640 }
11641
11642 /* Convert (ne (and (not X) 1) 0) to (eq (and X 1) 0). */
11643 if (const_op == 0 && equality_comparison_p
11644 && XEXP (op0, 1) == const1_rtx
11645 && GET_CODE (XEXP (op0, 0)) == NOT)
11646 {
11647 op0 = simplify_and_const_int (NULL_RTX, mode,
11648 XEXP (XEXP (op0, 0), 0), 1);
11649 code = (code == NE ? EQ : NE);
11650 continue;
11651 }
11652
11653 /* Convert (ne (and (lshiftrt (not X)) 1) 0) to
11654 (eq (and (lshiftrt X) 1) 0).
11655 Also handle the case where (not X) is expressed using xor. */
11656 if (const_op == 0 && equality_comparison_p
11657 && XEXP (op0, 1) == const1_rtx
11658 && GET_CODE (XEXP (op0, 0)) == LSHIFTRT)
11659 {
11660 rtx shift_op = XEXP (XEXP (op0, 0), 0);
11661 rtx shift_count = XEXP (XEXP (op0, 0), 1);
11662
11663 if (GET_CODE (shift_op) == NOT
11664 || (GET_CODE (shift_op) == XOR
11665 && CONST_INT_P (XEXP (shift_op, 1))
11666 && CONST_INT_P (shift_count)
11667 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
11668 && (UINTVAL (XEXP (shift_op, 1))
11669 == (unsigned HOST_WIDE_INT) 1
11670 << INTVAL (shift_count))))
11671 {
11672 op0
11673 = gen_rtx_LSHIFTRT (mode, XEXP (shift_op, 0), shift_count);
11674 op0 = simplify_and_const_int (NULL_RTX, mode, op0, 1);
11675 code = (code == NE ? EQ : NE);
11676 continue;
11677 }
11678 }
11679 break;
11680
11681 case ASHIFT:
11682 /* If we have (compare (ashift FOO N) (const_int C)) and
11683 the high order N bits of FOO (N+1 if an inequality comparison)
11684 are known to be zero, we can do this by comparing FOO with C
11685 shifted right N bits so long as the low-order N bits of C are
11686 zero. */
11687 if (CONST_INT_P (XEXP (op0, 1))
11688 && INTVAL (XEXP (op0, 1)) >= 0
11689 && ((INTVAL (XEXP (op0, 1)) + ! equality_comparison_p)
11690 < HOST_BITS_PER_WIDE_INT)
11691 && (((unsigned HOST_WIDE_INT) const_op
11692 & (((unsigned HOST_WIDE_INT) 1 << INTVAL (XEXP (op0, 1)))
11693 - 1)) == 0)
11694 && mode_width <= HOST_BITS_PER_WIDE_INT
11695 && (nonzero_bits (XEXP (op0, 0), mode)
11696 & ~(mask >> (INTVAL (XEXP (op0, 1))
11697 + ! equality_comparison_p))) == 0)
11698 {
11699 /* We must perform a logical shift, not an arithmetic one,
11700 as we want the top N bits of C to be zero. */
11701 unsigned HOST_WIDE_INT temp = const_op & GET_MODE_MASK (mode);
11702
11703 temp >>= INTVAL (XEXP (op0, 1));
11704 op1 = gen_int_mode (temp, mode);
11705 op0 = XEXP (op0, 0);
11706 continue;
11707 }
11708
11709 /* If we are doing a sign bit comparison, it means we are testing
11710 a particular bit. Convert it to the appropriate AND. */
11711 if (sign_bit_comparison_p && CONST_INT_P (XEXP (op0, 1))
11712 && mode_width <= HOST_BITS_PER_WIDE_INT)
11713 {
11714 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
11715 ((unsigned HOST_WIDE_INT) 1
11716 << (mode_width - 1
11717 - INTVAL (XEXP (op0, 1)))));
11718 code = (code == LT ? NE : EQ);
11719 continue;
11720 }
11721
11722 /* If this an equality comparison with zero and we are shifting
11723 the low bit to the sign bit, we can convert this to an AND of the
11724 low-order bit. */
11725 if (const_op == 0 && equality_comparison_p
11726 && CONST_INT_P (XEXP (op0, 1))
11727 && UINTVAL (XEXP (op0, 1)) == mode_width - 1)
11728 {
11729 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0), 1);
11730 continue;
11731 }
11732 break;
11733
11734 case ASHIFTRT:
11735 /* If this is an equality comparison with zero, we can do this
11736 as a logical shift, which might be much simpler. */
11737 if (equality_comparison_p && const_op == 0
11738 && CONST_INT_P (XEXP (op0, 1)))
11739 {
11740 op0 = simplify_shift_const (NULL_RTX, LSHIFTRT, mode,
11741 XEXP (op0, 0),
11742 INTVAL (XEXP (op0, 1)));
11743 continue;
11744 }
11745
11746 /* If OP0 is a sign extension and CODE is not an unsigned comparison,
11747 do the comparison in a narrower mode. */
11748 if (! unsigned_comparison_p
11749 && CONST_INT_P (XEXP (op0, 1))
11750 && GET_CODE (XEXP (op0, 0)) == ASHIFT
11751 && XEXP (op0, 1) == XEXP (XEXP (op0, 0), 1)
11752 && (tmode = mode_for_size (mode_width - INTVAL (XEXP (op0, 1)),
11753 MODE_INT, 1)) != BLKmode
11754 && (((unsigned HOST_WIDE_INT) const_op
11755 + (GET_MODE_MASK (tmode) >> 1) + 1)
11756 <= GET_MODE_MASK (tmode)))
11757 {
11758 op0 = gen_lowpart (tmode, XEXP (XEXP (op0, 0), 0));
11759 continue;
11760 }
11761
11762 /* Likewise if OP0 is a PLUS of a sign extension with a
11763 constant, which is usually represented with the PLUS
11764 between the shifts. */
11765 if (! unsigned_comparison_p
11766 && CONST_INT_P (XEXP (op0, 1))
11767 && GET_CODE (XEXP (op0, 0)) == PLUS
11768 && CONST_INT_P (XEXP (XEXP (op0, 0), 1))
11769 && GET_CODE (XEXP (XEXP (op0, 0), 0)) == ASHIFT
11770 && XEXP (op0, 1) == XEXP (XEXP (XEXP (op0, 0), 0), 1)
11771 && (tmode = mode_for_size (mode_width - INTVAL (XEXP (op0, 1)),
11772 MODE_INT, 1)) != BLKmode
11773 && (((unsigned HOST_WIDE_INT) const_op
11774 + (GET_MODE_MASK (tmode) >> 1) + 1)
11775 <= GET_MODE_MASK (tmode)))
11776 {
11777 rtx inner = XEXP (XEXP (XEXP (op0, 0), 0), 0);
11778 rtx add_const = XEXP (XEXP (op0, 0), 1);
11779 rtx new_const = simplify_gen_binary (ASHIFTRT, GET_MODE (op0),
11780 add_const, XEXP (op0, 1));
11781
11782 op0 = simplify_gen_binary (PLUS, tmode,
11783 gen_lowpart (tmode, inner),
11784 new_const);
11785 continue;
11786 }
11787
11788 /* ... fall through ... */
11789 case LSHIFTRT:
11790 /* If we have (compare (xshiftrt FOO N) (const_int C)) and
11791 the low order N bits of FOO are known to be zero, we can do this
11792 by comparing FOO with C shifted left N bits so long as no
11793 overflow occurs. Even if the low order N bits of FOO aren't known
11794 to be zero, if the comparison is >= or < we can use the same
11795 optimization and for > or <= by setting all the low
11796 order N bits in the comparison constant. */
11797 if (CONST_INT_P (XEXP (op0, 1))
11798 && INTVAL (XEXP (op0, 1)) > 0
11799 && INTVAL (XEXP (op0, 1)) < HOST_BITS_PER_WIDE_INT
11800 && mode_width <= HOST_BITS_PER_WIDE_INT
11801 && (((unsigned HOST_WIDE_INT) const_op
11802 + (GET_CODE (op0) != LSHIFTRT
11803 ? ((GET_MODE_MASK (mode) >> INTVAL (XEXP (op0, 1)) >> 1)
11804 + 1)
11805 : 0))
11806 <= GET_MODE_MASK (mode) >> INTVAL (XEXP (op0, 1))))
11807 {
11808 unsigned HOST_WIDE_INT low_bits
11809 = (nonzero_bits (XEXP (op0, 0), mode)
11810 & (((unsigned HOST_WIDE_INT) 1
11811 << INTVAL (XEXP (op0, 1))) - 1));
11812 if (low_bits == 0 || !equality_comparison_p)
11813 {
11814 /* If the shift was logical, then we must make the condition
11815 unsigned. */
11816 if (GET_CODE (op0) == LSHIFTRT)
11817 code = unsigned_condition (code);
11818
11819 const_op <<= INTVAL (XEXP (op0, 1));
11820 if (low_bits != 0
11821 && (code == GT || code == GTU
11822 || code == LE || code == LEU))
11823 const_op
11824 |= (((HOST_WIDE_INT) 1 << INTVAL (XEXP (op0, 1))) - 1);
11825 op1 = GEN_INT (const_op);
11826 op0 = XEXP (op0, 0);
11827 continue;
11828 }
11829 }
11830
11831 /* If we are using this shift to extract just the sign bit, we
11832 can replace this with an LT or GE comparison. */
11833 if (const_op == 0
11834 && (equality_comparison_p || sign_bit_comparison_p)
11835 && CONST_INT_P (XEXP (op0, 1))
11836 && UINTVAL (XEXP (op0, 1)) == mode_width - 1)
11837 {
11838 op0 = XEXP (op0, 0);
11839 code = (code == NE || code == GT ? LT : GE);
11840 continue;
11841 }
11842 break;
11843
11844 default:
11845 break;
11846 }
11847
11848 break;
11849 }
11850
11851 /* Now make any compound operations involved in this comparison. Then,
11852 check for an outmost SUBREG on OP0 that is not doing anything or is
11853 paradoxical. The latter transformation must only be performed when
11854 it is known that the "extra" bits will be the same in op0 and op1 or
11855 that they don't matter. There are three cases to consider:
11856
11857 1. SUBREG_REG (op0) is a register. In this case the bits are don't
11858 care bits and we can assume they have any convenient value. So
11859 making the transformation is safe.
11860
11861 2. SUBREG_REG (op0) is a memory and LOAD_EXTEND_OP is not defined.
11862 In this case the upper bits of op0 are undefined. We should not make
11863 the simplification in that case as we do not know the contents of
11864 those bits.
11865
11866 3. SUBREG_REG (op0) is a memory and LOAD_EXTEND_OP is defined and not
11867 UNKNOWN. In that case we know those bits are zeros or ones. We must
11868 also be sure that they are the same as the upper bits of op1.
11869
11870 We can never remove a SUBREG for a non-equality comparison because
11871 the sign bit is in a different place in the underlying object. */
11872
11873 op0 = make_compound_operation (op0, op1 == const0_rtx ? COMPARE : SET);
11874 op1 = make_compound_operation (op1, SET);
11875
11876 if (GET_CODE (op0) == SUBREG && subreg_lowpart_p (op0)
11877 && GET_MODE_CLASS (GET_MODE (op0)) == MODE_INT
11878 && GET_MODE_CLASS (GET_MODE (SUBREG_REG (op0))) == MODE_INT
11879 && (code == NE || code == EQ))
11880 {
11881 if (GET_MODE_SIZE (GET_MODE (op0))
11882 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (op0))))
11883 {
11884 /* For paradoxical subregs, allow case 1 as above. Case 3 isn't
11885 implemented. */
11886 if (REG_P (SUBREG_REG (op0)))
11887 {
11888 op0 = SUBREG_REG (op0);
11889 op1 = gen_lowpart (GET_MODE (op0), op1);
11890 }
11891 }
11892 else if ((GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (op0)))
11893 <= HOST_BITS_PER_WIDE_INT)
11894 && (nonzero_bits (SUBREG_REG (op0),
11895 GET_MODE (SUBREG_REG (op0)))
11896 & ~GET_MODE_MASK (GET_MODE (op0))) == 0)
11897 {
11898 tem = gen_lowpart (GET_MODE (SUBREG_REG (op0)), op1);
11899
11900 if ((nonzero_bits (tem, GET_MODE (SUBREG_REG (op0)))
11901 & ~GET_MODE_MASK (GET_MODE (op0))) == 0)
11902 op0 = SUBREG_REG (op0), op1 = tem;
11903 }
11904 }
11905
11906 /* We now do the opposite procedure: Some machines don't have compare
11907 insns in all modes. If OP0's mode is an integer mode smaller than a
11908 word and we can't do a compare in that mode, see if there is a larger
11909 mode for which we can do the compare. There are a number of cases in
11910 which we can use the wider mode. */
11911
11912 mode = GET_MODE (op0);
11913 if (mode != VOIDmode && GET_MODE_CLASS (mode) == MODE_INT
11914 && GET_MODE_SIZE (mode) < UNITS_PER_WORD
11915 && ! have_insn_for (COMPARE, mode))
11916 for (tmode = GET_MODE_WIDER_MODE (mode);
11917 (tmode != VOIDmode
11918 && GET_MODE_BITSIZE (tmode) <= HOST_BITS_PER_WIDE_INT);
11919 tmode = GET_MODE_WIDER_MODE (tmode))
11920 if (have_insn_for (COMPARE, tmode))
11921 {
11922 int zero_extended;
11923
11924 /* If this is a test for negative, we can make an explicit
11925 test of the sign bit. Test this first so we can use
11926 a paradoxical subreg to extend OP0. */
11927
11928 if (op1 == const0_rtx && (code == LT || code == GE)
11929 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
11930 {
11931 op0 = simplify_gen_binary (AND, tmode,
11932 gen_lowpart (tmode, op0),
11933 GEN_INT ((unsigned HOST_WIDE_INT) 1
11934 << (GET_MODE_BITSIZE (mode)
11935 - 1)));
11936 code = (code == LT) ? NE : EQ;
11937 break;
11938 }
11939
11940 /* If the only nonzero bits in OP0 and OP1 are those in the
11941 narrower mode and this is an equality or unsigned comparison,
11942 we can use the wider mode. Similarly for sign-extended
11943 values, in which case it is true for all comparisons. */
11944 zero_extended = ((code == EQ || code == NE
11945 || code == GEU || code == GTU
11946 || code == LEU || code == LTU)
11947 && (nonzero_bits (op0, tmode)
11948 & ~GET_MODE_MASK (mode)) == 0
11949 && ((CONST_INT_P (op1)
11950 || (nonzero_bits (op1, tmode)
11951 & ~GET_MODE_MASK (mode)) == 0)));
11952
11953 if (zero_extended
11954 || ((num_sign_bit_copies (op0, tmode)
11955 > (unsigned int) (GET_MODE_BITSIZE (tmode)
11956 - GET_MODE_BITSIZE (mode)))
11957 && (num_sign_bit_copies (op1, tmode)
11958 > (unsigned int) (GET_MODE_BITSIZE (tmode)
11959 - GET_MODE_BITSIZE (mode)))))
11960 {
11961 /* If OP0 is an AND and we don't have an AND in MODE either,
11962 make a new AND in the proper mode. */
11963 if (GET_CODE (op0) == AND
11964 && !have_insn_for (AND, mode))
11965 op0 = simplify_gen_binary (AND, tmode,
11966 gen_lowpart (tmode,
11967 XEXP (op0, 0)),
11968 gen_lowpart (tmode,
11969 XEXP (op0, 1)));
11970 else
11971 {
11972 if (zero_extended)
11973 {
11974 op0 = simplify_gen_unary (ZERO_EXTEND, tmode, op0, mode);
11975 op1 = simplify_gen_unary (ZERO_EXTEND, tmode, op1, mode);
11976 }
11977 else
11978 {
11979 op0 = simplify_gen_unary (SIGN_EXTEND, tmode, op0, mode);
11980 op1 = simplify_gen_unary (SIGN_EXTEND, tmode, op1, mode);
11981 }
11982 break;
11983 }
11984 }
11985 }
11986
11987 #ifdef CANONICALIZE_COMPARISON
11988 /* If this machine only supports a subset of valid comparisons, see if we
11989 can convert an unsupported one into a supported one. */
11990 CANONICALIZE_COMPARISON (code, op0, op1);
11991 #endif
11992
11993 *pop0 = op0;
11994 *pop1 = op1;
11995
11996 return code;
11997 }
11998 \f
11999 /* Utility function for record_value_for_reg. Count number of
12000 rtxs in X. */
12001 static int
12002 count_rtxs (rtx x)
12003 {
12004 enum rtx_code code = GET_CODE (x);
12005 const char *fmt;
12006 int i, j, ret = 1;
12007
12008 if (GET_RTX_CLASS (code) == '2'
12009 || GET_RTX_CLASS (code) == 'c')
12010 {
12011 rtx x0 = XEXP (x, 0);
12012 rtx x1 = XEXP (x, 1);
12013
12014 if (x0 == x1)
12015 return 1 + 2 * count_rtxs (x0);
12016
12017 if ((GET_RTX_CLASS (GET_CODE (x1)) == '2'
12018 || GET_RTX_CLASS (GET_CODE (x1)) == 'c')
12019 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
12020 return 2 + 2 * count_rtxs (x0)
12021 + count_rtxs (x == XEXP (x1, 0)
12022 ? XEXP (x1, 1) : XEXP (x1, 0));
12023
12024 if ((GET_RTX_CLASS (GET_CODE (x0)) == '2'
12025 || GET_RTX_CLASS (GET_CODE (x0)) == 'c')
12026 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
12027 return 2 + 2 * count_rtxs (x1)
12028 + count_rtxs (x == XEXP (x0, 0)
12029 ? XEXP (x0, 1) : XEXP (x0, 0));
12030 }
12031
12032 fmt = GET_RTX_FORMAT (code);
12033 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
12034 if (fmt[i] == 'e')
12035 ret += count_rtxs (XEXP (x, i));
12036 else if (fmt[i] == 'E')
12037 for (j = 0; j < XVECLEN (x, i); j++)
12038 ret += count_rtxs (XVECEXP (x, i, j));
12039
12040 return ret;
12041 }
12042 \f
12043 /* Utility function for following routine. Called when X is part of a value
12044 being stored into last_set_value. Sets last_set_table_tick
12045 for each register mentioned. Similar to mention_regs in cse.c */
12046
12047 static void
12048 update_table_tick (rtx x)
12049 {
12050 enum rtx_code code = GET_CODE (x);
12051 const char *fmt = GET_RTX_FORMAT (code);
12052 int i, j;
12053
12054 if (code == REG)
12055 {
12056 unsigned int regno = REGNO (x);
12057 unsigned int endregno = END_REGNO (x);
12058 unsigned int r;
12059
12060 for (r = regno; r < endregno; r++)
12061 {
12062 reg_stat_type *rsp = VEC_index (reg_stat_type, reg_stat, r);
12063 rsp->last_set_table_tick = label_tick;
12064 }
12065
12066 return;
12067 }
12068
12069 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
12070 if (fmt[i] == 'e')
12071 {
12072 /* Check for identical subexpressions. If x contains
12073 identical subexpression we only have to traverse one of
12074 them. */
12075 if (i == 0 && ARITHMETIC_P (x))
12076 {
12077 /* Note that at this point x1 has already been
12078 processed. */
12079 rtx x0 = XEXP (x, 0);
12080 rtx x1 = XEXP (x, 1);
12081
12082 /* If x0 and x1 are identical then there is no need to
12083 process x0. */
12084 if (x0 == x1)
12085 break;
12086
12087 /* If x0 is identical to a subexpression of x1 then while
12088 processing x1, x0 has already been processed. Thus we
12089 are done with x. */
12090 if (ARITHMETIC_P (x1)
12091 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
12092 break;
12093
12094 /* If x1 is identical to a subexpression of x0 then we
12095 still have to process the rest of x0. */
12096 if (ARITHMETIC_P (x0)
12097 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
12098 {
12099 update_table_tick (XEXP (x0, x1 == XEXP (x0, 0) ? 1 : 0));
12100 break;
12101 }
12102 }
12103
12104 update_table_tick (XEXP (x, i));
12105 }
12106 else if (fmt[i] == 'E')
12107 for (j = 0; j < XVECLEN (x, i); j++)
12108 update_table_tick (XVECEXP (x, i, j));
12109 }
12110
12111 /* Record that REG is set to VALUE in insn INSN. If VALUE is zero, we
12112 are saying that the register is clobbered and we no longer know its
12113 value. If INSN is zero, don't update reg_stat[].last_set; this is
12114 only permitted with VALUE also zero and is used to invalidate the
12115 register. */
12116
12117 static void
12118 record_value_for_reg (rtx reg, rtx insn, rtx value)
12119 {
12120 unsigned int regno = REGNO (reg);
12121 unsigned int endregno = END_REGNO (reg);
12122 unsigned int i;
12123 reg_stat_type *rsp;
12124
12125 /* If VALUE contains REG and we have a previous value for REG, substitute
12126 the previous value. */
12127 if (value && insn && reg_overlap_mentioned_p (reg, value))
12128 {
12129 rtx tem;
12130
12131 /* Set things up so get_last_value is allowed to see anything set up to
12132 our insn. */
12133 subst_low_luid = DF_INSN_LUID (insn);
12134 tem = get_last_value (reg);
12135
12136 /* If TEM is simply a binary operation with two CLOBBERs as operands,
12137 it isn't going to be useful and will take a lot of time to process,
12138 so just use the CLOBBER. */
12139
12140 if (tem)
12141 {
12142 if (ARITHMETIC_P (tem)
12143 && GET_CODE (XEXP (tem, 0)) == CLOBBER
12144 && GET_CODE (XEXP (tem, 1)) == CLOBBER)
12145 tem = XEXP (tem, 0);
12146 else if (count_occurrences (value, reg, 1) >= 2)
12147 {
12148 /* If there are two or more occurrences of REG in VALUE,
12149 prevent the value from growing too much. */
12150 if (count_rtxs (tem) > MAX_LAST_VALUE_RTL)
12151 tem = gen_rtx_CLOBBER (GET_MODE (tem), const0_rtx);
12152 }
12153
12154 value = replace_rtx (copy_rtx (value), reg, tem);
12155 }
12156 }
12157
12158 /* For each register modified, show we don't know its value, that
12159 we don't know about its bitwise content, that its value has been
12160 updated, and that we don't know the location of the death of the
12161 register. */
12162 for (i = regno; i < endregno; i++)
12163 {
12164 rsp = VEC_index (reg_stat_type, reg_stat, i);
12165
12166 if (insn)
12167 rsp->last_set = insn;
12168
12169 rsp->last_set_value = 0;
12170 rsp->last_set_mode = VOIDmode;
12171 rsp->last_set_nonzero_bits = 0;
12172 rsp->last_set_sign_bit_copies = 0;
12173 rsp->last_death = 0;
12174 rsp->truncated_to_mode = VOIDmode;
12175 }
12176
12177 /* Mark registers that are being referenced in this value. */
12178 if (value)
12179 update_table_tick (value);
12180
12181 /* Now update the status of each register being set.
12182 If someone is using this register in this block, set this register
12183 to invalid since we will get confused between the two lives in this
12184 basic block. This makes using this register always invalid. In cse, we
12185 scan the table to invalidate all entries using this register, but this
12186 is too much work for us. */
12187
12188 for (i = regno; i < endregno; i++)
12189 {
12190 rsp = VEC_index (reg_stat_type, reg_stat, i);
12191 rsp->last_set_label = label_tick;
12192 if (!insn
12193 || (value && rsp->last_set_table_tick >= label_tick_ebb_start))
12194 rsp->last_set_invalid = 1;
12195 else
12196 rsp->last_set_invalid = 0;
12197 }
12198
12199 /* The value being assigned might refer to X (like in "x++;"). In that
12200 case, we must replace it with (clobber (const_int 0)) to prevent
12201 infinite loops. */
12202 rsp = VEC_index (reg_stat_type, reg_stat, regno);
12203 if (value && !get_last_value_validate (&value, insn, label_tick, 0))
12204 {
12205 value = copy_rtx (value);
12206 if (!get_last_value_validate (&value, insn, label_tick, 1))
12207 value = 0;
12208 }
12209
12210 /* For the main register being modified, update the value, the mode, the
12211 nonzero bits, and the number of sign bit copies. */
12212
12213 rsp->last_set_value = value;
12214
12215 if (value)
12216 {
12217 enum machine_mode mode = GET_MODE (reg);
12218 subst_low_luid = DF_INSN_LUID (insn);
12219 rsp->last_set_mode = mode;
12220 if (GET_MODE_CLASS (mode) == MODE_INT
12221 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
12222 mode = nonzero_bits_mode;
12223 rsp->last_set_nonzero_bits = nonzero_bits (value, mode);
12224 rsp->last_set_sign_bit_copies
12225 = num_sign_bit_copies (value, GET_MODE (reg));
12226 }
12227 }
12228
12229 /* Called via note_stores from record_dead_and_set_regs to handle one
12230 SET or CLOBBER in an insn. DATA is the instruction in which the
12231 set is occurring. */
12232
12233 static void
12234 record_dead_and_set_regs_1 (rtx dest, const_rtx setter, void *data)
12235 {
12236 rtx record_dead_insn = (rtx) data;
12237
12238 if (GET_CODE (dest) == SUBREG)
12239 dest = SUBREG_REG (dest);
12240
12241 if (!record_dead_insn)
12242 {
12243 if (REG_P (dest))
12244 record_value_for_reg (dest, NULL_RTX, NULL_RTX);
12245 return;
12246 }
12247
12248 if (REG_P (dest))
12249 {
12250 /* If we are setting the whole register, we know its value. Otherwise
12251 show that we don't know the value. We can handle SUBREG in
12252 some cases. */
12253 if (GET_CODE (setter) == SET && dest == SET_DEST (setter))
12254 record_value_for_reg (dest, record_dead_insn, SET_SRC (setter));
12255 else if (GET_CODE (setter) == SET
12256 && GET_CODE (SET_DEST (setter)) == SUBREG
12257 && SUBREG_REG (SET_DEST (setter)) == dest
12258 && GET_MODE_BITSIZE (GET_MODE (dest)) <= BITS_PER_WORD
12259 && subreg_lowpart_p (SET_DEST (setter)))
12260 record_value_for_reg (dest, record_dead_insn,
12261 gen_lowpart (GET_MODE (dest),
12262 SET_SRC (setter)));
12263 else
12264 record_value_for_reg (dest, record_dead_insn, NULL_RTX);
12265 }
12266 else if (MEM_P (dest)
12267 /* Ignore pushes, they clobber nothing. */
12268 && ! push_operand (dest, GET_MODE (dest)))
12269 mem_last_set = DF_INSN_LUID (record_dead_insn);
12270 }
12271
12272 /* Update the records of when each REG was most recently set or killed
12273 for the things done by INSN. This is the last thing done in processing
12274 INSN in the combiner loop.
12275
12276 We update reg_stat[], in particular fields last_set, last_set_value,
12277 last_set_mode, last_set_nonzero_bits, last_set_sign_bit_copies,
12278 last_death, and also the similar information mem_last_set (which insn
12279 most recently modified memory) and last_call_luid (which insn was the
12280 most recent subroutine call). */
12281
12282 static void
12283 record_dead_and_set_regs (rtx insn)
12284 {
12285 rtx link;
12286 unsigned int i;
12287
12288 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
12289 {
12290 if (REG_NOTE_KIND (link) == REG_DEAD
12291 && REG_P (XEXP (link, 0)))
12292 {
12293 unsigned int regno = REGNO (XEXP (link, 0));
12294 unsigned int endregno = END_REGNO (XEXP (link, 0));
12295
12296 for (i = regno; i < endregno; i++)
12297 {
12298 reg_stat_type *rsp;
12299
12300 rsp = VEC_index (reg_stat_type, reg_stat, i);
12301 rsp->last_death = insn;
12302 }
12303 }
12304 else if (REG_NOTE_KIND (link) == REG_INC)
12305 record_value_for_reg (XEXP (link, 0), insn, NULL_RTX);
12306 }
12307
12308 if (CALL_P (insn))
12309 {
12310 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
12311 if (TEST_HARD_REG_BIT (regs_invalidated_by_call, i))
12312 {
12313 reg_stat_type *rsp;
12314
12315 rsp = VEC_index (reg_stat_type, reg_stat, i);
12316 rsp->last_set_invalid = 1;
12317 rsp->last_set = insn;
12318 rsp->last_set_value = 0;
12319 rsp->last_set_mode = VOIDmode;
12320 rsp->last_set_nonzero_bits = 0;
12321 rsp->last_set_sign_bit_copies = 0;
12322 rsp->last_death = 0;
12323 rsp->truncated_to_mode = VOIDmode;
12324 }
12325
12326 last_call_luid = mem_last_set = DF_INSN_LUID (insn);
12327
12328 /* We can't combine into a call pattern. Remember, though, that
12329 the return value register is set at this LUID. We could
12330 still replace a register with the return value from the
12331 wrong subroutine call! */
12332 note_stores (PATTERN (insn), record_dead_and_set_regs_1, NULL_RTX);
12333 }
12334 else
12335 note_stores (PATTERN (insn), record_dead_and_set_regs_1, insn);
12336 }
12337
12338 /* If a SUBREG has the promoted bit set, it is in fact a property of the
12339 register present in the SUBREG, so for each such SUBREG go back and
12340 adjust nonzero and sign bit information of the registers that are
12341 known to have some zero/sign bits set.
12342
12343 This is needed because when combine blows the SUBREGs away, the
12344 information on zero/sign bits is lost and further combines can be
12345 missed because of that. */
12346
12347 static void
12348 record_promoted_value (rtx insn, rtx subreg)
12349 {
12350 rtx links, set;
12351 unsigned int regno = REGNO (SUBREG_REG (subreg));
12352 enum machine_mode mode = GET_MODE (subreg);
12353
12354 if (GET_MODE_BITSIZE (mode) > HOST_BITS_PER_WIDE_INT)
12355 return;
12356
12357 for (links = LOG_LINKS (insn); links;)
12358 {
12359 reg_stat_type *rsp;
12360
12361 insn = XEXP (links, 0);
12362 set = single_set (insn);
12363
12364 if (! set || !REG_P (SET_DEST (set))
12365 || REGNO (SET_DEST (set)) != regno
12366 || GET_MODE (SET_DEST (set)) != GET_MODE (SUBREG_REG (subreg)))
12367 {
12368 links = XEXP (links, 1);
12369 continue;
12370 }
12371
12372 rsp = VEC_index (reg_stat_type, reg_stat, regno);
12373 if (rsp->last_set == insn)
12374 {
12375 if (SUBREG_PROMOTED_UNSIGNED_P (subreg) > 0)
12376 rsp->last_set_nonzero_bits &= GET_MODE_MASK (mode);
12377 }
12378
12379 if (REG_P (SET_SRC (set)))
12380 {
12381 regno = REGNO (SET_SRC (set));
12382 links = LOG_LINKS (insn);
12383 }
12384 else
12385 break;
12386 }
12387 }
12388
12389 /* Check if X, a register, is known to contain a value already
12390 truncated to MODE. In this case we can use a subreg to refer to
12391 the truncated value even though in the generic case we would need
12392 an explicit truncation. */
12393
12394 static bool
12395 reg_truncated_to_mode (enum machine_mode mode, const_rtx x)
12396 {
12397 reg_stat_type *rsp = VEC_index (reg_stat_type, reg_stat, REGNO (x));
12398 enum machine_mode truncated = rsp->truncated_to_mode;
12399
12400 if (truncated == 0
12401 || rsp->truncation_label < label_tick_ebb_start)
12402 return false;
12403 if (GET_MODE_SIZE (truncated) <= GET_MODE_SIZE (mode))
12404 return true;
12405 if (TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (mode),
12406 GET_MODE_BITSIZE (truncated)))
12407 return true;
12408 return false;
12409 }
12410
12411 /* Callback for for_each_rtx. If *P is a hard reg or a subreg record the mode
12412 that the register is accessed in. For non-TRULY_NOOP_TRUNCATION targets we
12413 might be able to turn a truncate into a subreg using this information.
12414 Return -1 if traversing *P is complete or 0 otherwise. */
12415
12416 static int
12417 record_truncated_value (rtx *p, void *data ATTRIBUTE_UNUSED)
12418 {
12419 rtx x = *p;
12420 enum machine_mode truncated_mode;
12421 reg_stat_type *rsp;
12422
12423 if (GET_CODE (x) == SUBREG && REG_P (SUBREG_REG (x)))
12424 {
12425 enum machine_mode original_mode = GET_MODE (SUBREG_REG (x));
12426 truncated_mode = GET_MODE (x);
12427
12428 if (GET_MODE_SIZE (original_mode) <= GET_MODE_SIZE (truncated_mode))
12429 return -1;
12430
12431 if (TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (truncated_mode),
12432 GET_MODE_BITSIZE (original_mode)))
12433 return -1;
12434
12435 x = SUBREG_REG (x);
12436 }
12437 /* ??? For hard-regs we now record everything. We might be able to
12438 optimize this using last_set_mode. */
12439 else if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
12440 truncated_mode = GET_MODE (x);
12441 else
12442 return 0;
12443
12444 rsp = VEC_index (reg_stat_type, reg_stat, REGNO (x));
12445 if (rsp->truncated_to_mode == 0
12446 || rsp->truncation_label < label_tick_ebb_start
12447 || (GET_MODE_SIZE (truncated_mode)
12448 < GET_MODE_SIZE (rsp->truncated_to_mode)))
12449 {
12450 rsp->truncated_to_mode = truncated_mode;
12451 rsp->truncation_label = label_tick;
12452 }
12453
12454 return -1;
12455 }
12456
12457 /* Callback for note_uses. Find hardregs and subregs of pseudos and
12458 the modes they are used in. This can help truning TRUNCATEs into
12459 SUBREGs. */
12460
12461 static void
12462 record_truncated_values (rtx *x, void *data ATTRIBUTE_UNUSED)
12463 {
12464 for_each_rtx (x, record_truncated_value, NULL);
12465 }
12466
12467 /* Scan X for promoted SUBREGs. For each one found,
12468 note what it implies to the registers used in it. */
12469
12470 static void
12471 check_promoted_subreg (rtx insn, rtx x)
12472 {
12473 if (GET_CODE (x) == SUBREG
12474 && SUBREG_PROMOTED_VAR_P (x)
12475 && REG_P (SUBREG_REG (x)))
12476 record_promoted_value (insn, x);
12477 else
12478 {
12479 const char *format = GET_RTX_FORMAT (GET_CODE (x));
12480 int i, j;
12481
12482 for (i = 0; i < GET_RTX_LENGTH (GET_CODE (x)); i++)
12483 switch (format[i])
12484 {
12485 case 'e':
12486 check_promoted_subreg (insn, XEXP (x, i));
12487 break;
12488 case 'V':
12489 case 'E':
12490 if (XVEC (x, i) != 0)
12491 for (j = 0; j < XVECLEN (x, i); j++)
12492 check_promoted_subreg (insn, XVECEXP (x, i, j));
12493 break;
12494 }
12495 }
12496 }
12497 \f
12498 /* Verify that all the registers and memory references mentioned in *LOC are
12499 still valid. *LOC was part of a value set in INSN when label_tick was
12500 equal to TICK. Return 0 if some are not. If REPLACE is nonzero, replace
12501 the invalid references with (clobber (const_int 0)) and return 1. This
12502 replacement is useful because we often can get useful information about
12503 the form of a value (e.g., if it was produced by a shift that always
12504 produces -1 or 0) even though we don't know exactly what registers it
12505 was produced from. */
12506
12507 static int
12508 get_last_value_validate (rtx *loc, rtx insn, int tick, int replace)
12509 {
12510 rtx x = *loc;
12511 const char *fmt = GET_RTX_FORMAT (GET_CODE (x));
12512 int len = GET_RTX_LENGTH (GET_CODE (x));
12513 int i, j;
12514
12515 if (REG_P (x))
12516 {
12517 unsigned int regno = REGNO (x);
12518 unsigned int endregno = END_REGNO (x);
12519 unsigned int j;
12520
12521 for (j = regno; j < endregno; j++)
12522 {
12523 reg_stat_type *rsp = VEC_index (reg_stat_type, reg_stat, j);
12524 if (rsp->last_set_invalid
12525 /* If this is a pseudo-register that was only set once and not
12526 live at the beginning of the function, it is always valid. */
12527 || (! (regno >= FIRST_PSEUDO_REGISTER
12528 && REG_N_SETS (regno) == 1
12529 && (!REGNO_REG_SET_P
12530 (DF_LR_IN (ENTRY_BLOCK_PTR->next_bb), regno)))
12531 && rsp->last_set_label > tick))
12532 {
12533 if (replace)
12534 *loc = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
12535 return replace;
12536 }
12537 }
12538
12539 return 1;
12540 }
12541 /* If this is a memory reference, make sure that there were no stores after
12542 it that might have clobbered the value. We don't have alias info, so we
12543 assume any store invalidates it. Moreover, we only have local UIDs, so
12544 we also assume that there were stores in the intervening basic blocks. */
12545 else if (MEM_P (x) && !MEM_READONLY_P (x)
12546 && (tick != label_tick || DF_INSN_LUID (insn) <= mem_last_set))
12547 {
12548 if (replace)
12549 *loc = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
12550 return replace;
12551 }
12552
12553 for (i = 0; i < len; i++)
12554 {
12555 if (fmt[i] == 'e')
12556 {
12557 /* Check for identical subexpressions. If x contains
12558 identical subexpression we only have to traverse one of
12559 them. */
12560 if (i == 1 && ARITHMETIC_P (x))
12561 {
12562 /* Note that at this point x0 has already been checked
12563 and found valid. */
12564 rtx x0 = XEXP (x, 0);
12565 rtx x1 = XEXP (x, 1);
12566
12567 /* If x0 and x1 are identical then x is also valid. */
12568 if (x0 == x1)
12569 return 1;
12570
12571 /* If x1 is identical to a subexpression of x0 then
12572 while checking x0, x1 has already been checked. Thus
12573 it is valid and so as x. */
12574 if (ARITHMETIC_P (x0)
12575 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
12576 return 1;
12577
12578 /* If x0 is identical to a subexpression of x1 then x is
12579 valid iff the rest of x1 is valid. */
12580 if (ARITHMETIC_P (x1)
12581 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
12582 return
12583 get_last_value_validate (&XEXP (x1,
12584 x0 == XEXP (x1, 0) ? 1 : 0),
12585 insn, tick, replace);
12586 }
12587
12588 if (get_last_value_validate (&XEXP (x, i), insn, tick,
12589 replace) == 0)
12590 return 0;
12591 }
12592 else if (fmt[i] == 'E')
12593 for (j = 0; j < XVECLEN (x, i); j++)
12594 if (get_last_value_validate (&XVECEXP (x, i, j),
12595 insn, tick, replace) == 0)
12596 return 0;
12597 }
12598
12599 /* If we haven't found a reason for it to be invalid, it is valid. */
12600 return 1;
12601 }
12602
12603 /* Get the last value assigned to X, if known. Some registers
12604 in the value may be replaced with (clobber (const_int 0)) if their value
12605 is known longer known reliably. */
12606
12607 static rtx
12608 get_last_value (const_rtx x)
12609 {
12610 unsigned int regno;
12611 rtx value;
12612 reg_stat_type *rsp;
12613
12614 /* If this is a non-paradoxical SUBREG, get the value of its operand and
12615 then convert it to the desired mode. If this is a paradoxical SUBREG,
12616 we cannot predict what values the "extra" bits might have. */
12617 if (GET_CODE (x) == SUBREG
12618 && subreg_lowpart_p (x)
12619 && (GET_MODE_SIZE (GET_MODE (x))
12620 <= GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
12621 && (value = get_last_value (SUBREG_REG (x))) != 0)
12622 return gen_lowpart (GET_MODE (x), value);
12623
12624 if (!REG_P (x))
12625 return 0;
12626
12627 regno = REGNO (x);
12628 rsp = VEC_index (reg_stat_type, reg_stat, regno);
12629 value = rsp->last_set_value;
12630
12631 /* If we don't have a value, or if it isn't for this basic block and
12632 it's either a hard register, set more than once, or it's a live
12633 at the beginning of the function, return 0.
12634
12635 Because if it's not live at the beginning of the function then the reg
12636 is always set before being used (is never used without being set).
12637 And, if it's set only once, and it's always set before use, then all
12638 uses must have the same last value, even if it's not from this basic
12639 block. */
12640
12641 if (value == 0
12642 || (rsp->last_set_label < label_tick_ebb_start
12643 && (regno < FIRST_PSEUDO_REGISTER
12644 || REG_N_SETS (regno) != 1
12645 || REGNO_REG_SET_P
12646 (DF_LR_IN (ENTRY_BLOCK_PTR->next_bb), regno))))
12647 return 0;
12648
12649 /* If the value was set in a later insn than the ones we are processing,
12650 we can't use it even if the register was only set once. */
12651 if (rsp->last_set_label == label_tick
12652 && DF_INSN_LUID (rsp->last_set) >= subst_low_luid)
12653 return 0;
12654
12655 /* If the value has all its registers valid, return it. */
12656 if (get_last_value_validate (&value, rsp->last_set, rsp->last_set_label, 0))
12657 return value;
12658
12659 /* Otherwise, make a copy and replace any invalid register with
12660 (clobber (const_int 0)). If that fails for some reason, return 0. */
12661
12662 value = copy_rtx (value);
12663 if (get_last_value_validate (&value, rsp->last_set, rsp->last_set_label, 1))
12664 return value;
12665
12666 return 0;
12667 }
12668 \f
12669 /* Return nonzero if expression X refers to a REG or to memory
12670 that is set in an instruction more recent than FROM_LUID. */
12671
12672 static int
12673 use_crosses_set_p (const_rtx x, int from_luid)
12674 {
12675 const char *fmt;
12676 int i;
12677 enum rtx_code code = GET_CODE (x);
12678
12679 if (code == REG)
12680 {
12681 unsigned int regno = REGNO (x);
12682 unsigned endreg = END_REGNO (x);
12683
12684 #ifdef PUSH_ROUNDING
12685 /* Don't allow uses of the stack pointer to be moved,
12686 because we don't know whether the move crosses a push insn. */
12687 if (regno == STACK_POINTER_REGNUM && PUSH_ARGS)
12688 return 1;
12689 #endif
12690 for (; regno < endreg; regno++)
12691 {
12692 reg_stat_type *rsp = VEC_index (reg_stat_type, reg_stat, regno);
12693 if (rsp->last_set
12694 && rsp->last_set_label == label_tick
12695 && DF_INSN_LUID (rsp->last_set) > from_luid)
12696 return 1;
12697 }
12698 return 0;
12699 }
12700
12701 if (code == MEM && mem_last_set > from_luid)
12702 return 1;
12703
12704 fmt = GET_RTX_FORMAT (code);
12705
12706 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
12707 {
12708 if (fmt[i] == 'E')
12709 {
12710 int j;
12711 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
12712 if (use_crosses_set_p (XVECEXP (x, i, j), from_luid))
12713 return 1;
12714 }
12715 else if (fmt[i] == 'e'
12716 && use_crosses_set_p (XEXP (x, i), from_luid))
12717 return 1;
12718 }
12719 return 0;
12720 }
12721 \f
12722 /* Define three variables used for communication between the following
12723 routines. */
12724
12725 static unsigned int reg_dead_regno, reg_dead_endregno;
12726 static int reg_dead_flag;
12727
12728 /* Function called via note_stores from reg_dead_at_p.
12729
12730 If DEST is within [reg_dead_regno, reg_dead_endregno), set
12731 reg_dead_flag to 1 if X is a CLOBBER and to -1 it is a SET. */
12732
12733 static void
12734 reg_dead_at_p_1 (rtx dest, const_rtx x, void *data ATTRIBUTE_UNUSED)
12735 {
12736 unsigned int regno, endregno;
12737
12738 if (!REG_P (dest))
12739 return;
12740
12741 regno = REGNO (dest);
12742 endregno = END_REGNO (dest);
12743 if (reg_dead_endregno > regno && reg_dead_regno < endregno)
12744 reg_dead_flag = (GET_CODE (x) == CLOBBER) ? 1 : -1;
12745 }
12746
12747 /* Return nonzero if REG is known to be dead at INSN.
12748
12749 We scan backwards from INSN. If we hit a REG_DEAD note or a CLOBBER
12750 referencing REG, it is dead. If we hit a SET referencing REG, it is
12751 live. Otherwise, see if it is live or dead at the start of the basic
12752 block we are in. Hard regs marked as being live in NEWPAT_USED_REGS
12753 must be assumed to be always live. */
12754
12755 static int
12756 reg_dead_at_p (rtx reg, rtx insn)
12757 {
12758 basic_block block;
12759 unsigned int i;
12760
12761 /* Set variables for reg_dead_at_p_1. */
12762 reg_dead_regno = REGNO (reg);
12763 reg_dead_endregno = END_REGNO (reg);
12764
12765 reg_dead_flag = 0;
12766
12767 /* Check that reg isn't mentioned in NEWPAT_USED_REGS. For fixed registers
12768 we allow the machine description to decide whether use-and-clobber
12769 patterns are OK. */
12770 if (reg_dead_regno < FIRST_PSEUDO_REGISTER)
12771 {
12772 for (i = reg_dead_regno; i < reg_dead_endregno; i++)
12773 if (!fixed_regs[i] && TEST_HARD_REG_BIT (newpat_used_regs, i))
12774 return 0;
12775 }
12776
12777 /* Scan backwards until we find a REG_DEAD note, SET, CLOBBER, or
12778 beginning of basic block. */
12779 block = BLOCK_FOR_INSN (insn);
12780 for (;;)
12781 {
12782 if (INSN_P (insn))
12783 {
12784 note_stores (PATTERN (insn), reg_dead_at_p_1, NULL);
12785 if (reg_dead_flag)
12786 return reg_dead_flag == 1 ? 1 : 0;
12787
12788 if (find_regno_note (insn, REG_DEAD, reg_dead_regno))
12789 return 1;
12790 }
12791
12792 if (insn == BB_HEAD (block))
12793 break;
12794
12795 insn = PREV_INSN (insn);
12796 }
12797
12798 /* Look at live-in sets for the basic block that we were in. */
12799 for (i = reg_dead_regno; i < reg_dead_endregno; i++)
12800 if (REGNO_REG_SET_P (df_get_live_in (block), i))
12801 return 0;
12802
12803 return 1;
12804 }
12805 \f
12806 /* Note hard registers in X that are used. */
12807
12808 static void
12809 mark_used_regs_combine (rtx x)
12810 {
12811 RTX_CODE code = GET_CODE (x);
12812 unsigned int regno;
12813 int i;
12814
12815 switch (code)
12816 {
12817 case LABEL_REF:
12818 case SYMBOL_REF:
12819 case CONST_INT:
12820 case CONST:
12821 case CONST_DOUBLE:
12822 case CONST_VECTOR:
12823 case PC:
12824 case ADDR_VEC:
12825 case ADDR_DIFF_VEC:
12826 case ASM_INPUT:
12827 #ifdef HAVE_cc0
12828 /* CC0 must die in the insn after it is set, so we don't need to take
12829 special note of it here. */
12830 case CC0:
12831 #endif
12832 return;
12833
12834 case CLOBBER:
12835 /* If we are clobbering a MEM, mark any hard registers inside the
12836 address as used. */
12837 if (MEM_P (XEXP (x, 0)))
12838 mark_used_regs_combine (XEXP (XEXP (x, 0), 0));
12839 return;
12840
12841 case REG:
12842 regno = REGNO (x);
12843 /* A hard reg in a wide mode may really be multiple registers.
12844 If so, mark all of them just like the first. */
12845 if (regno < FIRST_PSEUDO_REGISTER)
12846 {
12847 /* None of this applies to the stack, frame or arg pointers. */
12848 if (regno == STACK_POINTER_REGNUM
12849 #if !HARD_FRAME_POINTER_IS_FRAME_POINTER
12850 || regno == HARD_FRAME_POINTER_REGNUM
12851 #endif
12852 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
12853 || (regno == ARG_POINTER_REGNUM && fixed_regs[regno])
12854 #endif
12855 || regno == FRAME_POINTER_REGNUM)
12856 return;
12857
12858 add_to_hard_reg_set (&newpat_used_regs, GET_MODE (x), regno);
12859 }
12860 return;
12861
12862 case SET:
12863 {
12864 /* If setting a MEM, or a SUBREG of a MEM, then note any hard regs in
12865 the address. */
12866 rtx testreg = SET_DEST (x);
12867
12868 while (GET_CODE (testreg) == SUBREG
12869 || GET_CODE (testreg) == ZERO_EXTRACT
12870 || GET_CODE (testreg) == STRICT_LOW_PART)
12871 testreg = XEXP (testreg, 0);
12872
12873 if (MEM_P (testreg))
12874 mark_used_regs_combine (XEXP (testreg, 0));
12875
12876 mark_used_regs_combine (SET_SRC (x));
12877 }
12878 return;
12879
12880 default:
12881 break;
12882 }
12883
12884 /* Recursively scan the operands of this expression. */
12885
12886 {
12887 const char *fmt = GET_RTX_FORMAT (code);
12888
12889 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
12890 {
12891 if (fmt[i] == 'e')
12892 mark_used_regs_combine (XEXP (x, i));
12893 else if (fmt[i] == 'E')
12894 {
12895 int j;
12896
12897 for (j = 0; j < XVECLEN (x, i); j++)
12898 mark_used_regs_combine (XVECEXP (x, i, j));
12899 }
12900 }
12901 }
12902 }
12903 \f
12904 /* Remove register number REGNO from the dead registers list of INSN.
12905
12906 Return the note used to record the death, if there was one. */
12907
12908 rtx
12909 remove_death (unsigned int regno, rtx insn)
12910 {
12911 rtx note = find_regno_note (insn, REG_DEAD, regno);
12912
12913 if (note)
12914 remove_note (insn, note);
12915
12916 return note;
12917 }
12918
12919 /* For each register (hardware or pseudo) used within expression X, if its
12920 death is in an instruction with luid between FROM_LUID (inclusive) and
12921 TO_INSN (exclusive), put a REG_DEAD note for that register in the
12922 list headed by PNOTES.
12923
12924 That said, don't move registers killed by maybe_kill_insn.
12925
12926 This is done when X is being merged by combination into TO_INSN. These
12927 notes will then be distributed as needed. */
12928
12929 static void
12930 move_deaths (rtx x, rtx maybe_kill_insn, int from_luid, rtx to_insn,
12931 rtx *pnotes)
12932 {
12933 const char *fmt;
12934 int len, i;
12935 enum rtx_code code = GET_CODE (x);
12936
12937 if (code == REG)
12938 {
12939 unsigned int regno = REGNO (x);
12940 rtx where_dead = VEC_index (reg_stat_type, reg_stat, regno)->last_death;
12941
12942 /* Don't move the register if it gets killed in between from and to. */
12943 if (maybe_kill_insn && reg_set_p (x, maybe_kill_insn)
12944 && ! reg_referenced_p (x, maybe_kill_insn))
12945 return;
12946
12947 if (where_dead
12948 && BLOCK_FOR_INSN (where_dead) == BLOCK_FOR_INSN (to_insn)
12949 && DF_INSN_LUID (where_dead) >= from_luid
12950 && DF_INSN_LUID (where_dead) < DF_INSN_LUID (to_insn))
12951 {
12952 rtx note = remove_death (regno, where_dead);
12953
12954 /* It is possible for the call above to return 0. This can occur
12955 when last_death points to I2 or I1 that we combined with.
12956 In that case make a new note.
12957
12958 We must also check for the case where X is a hard register
12959 and NOTE is a death note for a range of hard registers
12960 including X. In that case, we must put REG_DEAD notes for
12961 the remaining registers in place of NOTE. */
12962
12963 if (note != 0 && regno < FIRST_PSEUDO_REGISTER
12964 && (GET_MODE_SIZE (GET_MODE (XEXP (note, 0)))
12965 > GET_MODE_SIZE (GET_MODE (x))))
12966 {
12967 unsigned int deadregno = REGNO (XEXP (note, 0));
12968 unsigned int deadend = END_HARD_REGNO (XEXP (note, 0));
12969 unsigned int ourend = END_HARD_REGNO (x);
12970 unsigned int i;
12971
12972 for (i = deadregno; i < deadend; i++)
12973 if (i < regno || i >= ourend)
12974 add_reg_note (where_dead, REG_DEAD, regno_reg_rtx[i]);
12975 }
12976
12977 /* If we didn't find any note, or if we found a REG_DEAD note that
12978 covers only part of the given reg, and we have a multi-reg hard
12979 register, then to be safe we must check for REG_DEAD notes
12980 for each register other than the first. They could have
12981 their own REG_DEAD notes lying around. */
12982 else if ((note == 0
12983 || (note != 0
12984 && (GET_MODE_SIZE (GET_MODE (XEXP (note, 0)))
12985 < GET_MODE_SIZE (GET_MODE (x)))))
12986 && regno < FIRST_PSEUDO_REGISTER
12987 && hard_regno_nregs[regno][GET_MODE (x)] > 1)
12988 {
12989 unsigned int ourend = END_HARD_REGNO (x);
12990 unsigned int i, offset;
12991 rtx oldnotes = 0;
12992
12993 if (note)
12994 offset = hard_regno_nregs[regno][GET_MODE (XEXP (note, 0))];
12995 else
12996 offset = 1;
12997
12998 for (i = regno + offset; i < ourend; i++)
12999 move_deaths (regno_reg_rtx[i],
13000 maybe_kill_insn, from_luid, to_insn, &oldnotes);
13001 }
13002
13003 if (note != 0 && GET_MODE (XEXP (note, 0)) == GET_MODE (x))
13004 {
13005 XEXP (note, 1) = *pnotes;
13006 *pnotes = note;
13007 }
13008 else
13009 *pnotes = alloc_reg_note (REG_DEAD, x, *pnotes);
13010 }
13011
13012 return;
13013 }
13014
13015 else if (GET_CODE (x) == SET)
13016 {
13017 rtx dest = SET_DEST (x);
13018
13019 move_deaths (SET_SRC (x), maybe_kill_insn, from_luid, to_insn, pnotes);
13020
13021 /* In the case of a ZERO_EXTRACT, a STRICT_LOW_PART, or a SUBREG
13022 that accesses one word of a multi-word item, some
13023 piece of everything register in the expression is used by
13024 this insn, so remove any old death. */
13025 /* ??? So why do we test for equality of the sizes? */
13026
13027 if (GET_CODE (dest) == ZERO_EXTRACT
13028 || GET_CODE (dest) == STRICT_LOW_PART
13029 || (GET_CODE (dest) == SUBREG
13030 && (((GET_MODE_SIZE (GET_MODE (dest))
13031 + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
13032 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest)))
13033 + UNITS_PER_WORD - 1) / UNITS_PER_WORD))))
13034 {
13035 move_deaths (dest, maybe_kill_insn, from_luid, to_insn, pnotes);
13036 return;
13037 }
13038
13039 /* If this is some other SUBREG, we know it replaces the entire
13040 value, so use that as the destination. */
13041 if (GET_CODE (dest) == SUBREG)
13042 dest = SUBREG_REG (dest);
13043
13044 /* If this is a MEM, adjust deaths of anything used in the address.
13045 For a REG (the only other possibility), the entire value is
13046 being replaced so the old value is not used in this insn. */
13047
13048 if (MEM_P (dest))
13049 move_deaths (XEXP (dest, 0), maybe_kill_insn, from_luid,
13050 to_insn, pnotes);
13051 return;
13052 }
13053
13054 else if (GET_CODE (x) == CLOBBER)
13055 return;
13056
13057 len = GET_RTX_LENGTH (code);
13058 fmt = GET_RTX_FORMAT (code);
13059
13060 for (i = 0; i < len; i++)
13061 {
13062 if (fmt[i] == 'E')
13063 {
13064 int j;
13065 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
13066 move_deaths (XVECEXP (x, i, j), maybe_kill_insn, from_luid,
13067 to_insn, pnotes);
13068 }
13069 else if (fmt[i] == 'e')
13070 move_deaths (XEXP (x, i), maybe_kill_insn, from_luid, to_insn, pnotes);
13071 }
13072 }
13073 \f
13074 /* Return 1 if X is the target of a bit-field assignment in BODY, the
13075 pattern of an insn. X must be a REG. */
13076
13077 static int
13078 reg_bitfield_target_p (rtx x, rtx body)
13079 {
13080 int i;
13081
13082 if (GET_CODE (body) == SET)
13083 {
13084 rtx dest = SET_DEST (body);
13085 rtx target;
13086 unsigned int regno, tregno, endregno, endtregno;
13087
13088 if (GET_CODE (dest) == ZERO_EXTRACT)
13089 target = XEXP (dest, 0);
13090 else if (GET_CODE (dest) == STRICT_LOW_PART)
13091 target = SUBREG_REG (XEXP (dest, 0));
13092 else
13093 return 0;
13094
13095 if (GET_CODE (target) == SUBREG)
13096 target = SUBREG_REG (target);
13097
13098 if (!REG_P (target))
13099 return 0;
13100
13101 tregno = REGNO (target), regno = REGNO (x);
13102 if (tregno >= FIRST_PSEUDO_REGISTER || regno >= FIRST_PSEUDO_REGISTER)
13103 return target == x;
13104
13105 endtregno = end_hard_regno (GET_MODE (target), tregno);
13106 endregno = end_hard_regno (GET_MODE (x), regno);
13107
13108 return endregno > tregno && regno < endtregno;
13109 }
13110
13111 else if (GET_CODE (body) == PARALLEL)
13112 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
13113 if (reg_bitfield_target_p (x, XVECEXP (body, 0, i)))
13114 return 1;
13115
13116 return 0;
13117 }
13118 \f
13119 /* Given a chain of REG_NOTES originally from FROM_INSN, try to place them
13120 as appropriate. I3 and I2 are the insns resulting from the combination
13121 insns including FROM (I2 may be zero).
13122
13123 ELIM_I2 and ELIM_I1 are either zero or registers that we know will
13124 not need REG_DEAD notes because they are being substituted for. This
13125 saves searching in the most common cases.
13126
13127 Each note in the list is either ignored or placed on some insns, depending
13128 on the type of note. */
13129
13130 static void
13131 distribute_notes (rtx notes, rtx from_insn, rtx i3, rtx i2, rtx elim_i2,
13132 rtx elim_i1, rtx elim_i0)
13133 {
13134 rtx note, next_note;
13135 rtx tem;
13136
13137 for (note = notes; note; note = next_note)
13138 {
13139 rtx place = 0, place2 = 0;
13140
13141 next_note = XEXP (note, 1);
13142 switch (REG_NOTE_KIND (note))
13143 {
13144 case REG_BR_PROB:
13145 case REG_BR_PRED:
13146 /* Doesn't matter much where we put this, as long as it's somewhere.
13147 It is preferable to keep these notes on branches, which is most
13148 likely to be i3. */
13149 place = i3;
13150 break;
13151
13152 case REG_NON_LOCAL_GOTO:
13153 if (JUMP_P (i3))
13154 place = i3;
13155 else
13156 {
13157 gcc_assert (i2 && JUMP_P (i2));
13158 place = i2;
13159 }
13160 break;
13161
13162 case REG_EH_REGION:
13163 /* These notes must remain with the call or trapping instruction. */
13164 if (CALL_P (i3))
13165 place = i3;
13166 else if (i2 && CALL_P (i2))
13167 place = i2;
13168 else
13169 {
13170 gcc_assert (cfun->can_throw_non_call_exceptions);
13171 if (may_trap_p (i3))
13172 place = i3;
13173 else if (i2 && may_trap_p (i2))
13174 place = i2;
13175 /* ??? Otherwise assume we've combined things such that we
13176 can now prove that the instructions can't trap. Drop the
13177 note in this case. */
13178 }
13179 break;
13180
13181 case REG_NORETURN:
13182 case REG_SETJMP:
13183 /* These notes must remain with the call. It should not be
13184 possible for both I2 and I3 to be a call. */
13185 if (CALL_P (i3))
13186 place = i3;
13187 else
13188 {
13189 gcc_assert (i2 && CALL_P (i2));
13190 place = i2;
13191 }
13192 break;
13193
13194 case REG_UNUSED:
13195 /* Any clobbers for i3 may still exist, and so we must process
13196 REG_UNUSED notes from that insn.
13197
13198 Any clobbers from i2 or i1 can only exist if they were added by
13199 recog_for_combine. In that case, recog_for_combine created the
13200 necessary REG_UNUSED notes. Trying to keep any original
13201 REG_UNUSED notes from these insns can cause incorrect output
13202 if it is for the same register as the original i3 dest.
13203 In that case, we will notice that the register is set in i3,
13204 and then add a REG_UNUSED note for the destination of i3, which
13205 is wrong. However, it is possible to have REG_UNUSED notes from
13206 i2 or i1 for register which were both used and clobbered, so
13207 we keep notes from i2 or i1 if they will turn into REG_DEAD
13208 notes. */
13209
13210 /* If this register is set or clobbered in I3, put the note there
13211 unless there is one already. */
13212 if (reg_set_p (XEXP (note, 0), PATTERN (i3)))
13213 {
13214 if (from_insn != i3)
13215 break;
13216
13217 if (! (REG_P (XEXP (note, 0))
13218 ? find_regno_note (i3, REG_UNUSED, REGNO (XEXP (note, 0)))
13219 : find_reg_note (i3, REG_UNUSED, XEXP (note, 0))))
13220 place = i3;
13221 }
13222 /* Otherwise, if this register is used by I3, then this register
13223 now dies here, so we must put a REG_DEAD note here unless there
13224 is one already. */
13225 else if (reg_referenced_p (XEXP (note, 0), PATTERN (i3))
13226 && ! (REG_P (XEXP (note, 0))
13227 ? find_regno_note (i3, REG_DEAD,
13228 REGNO (XEXP (note, 0)))
13229 : find_reg_note (i3, REG_DEAD, XEXP (note, 0))))
13230 {
13231 PUT_REG_NOTE_KIND (note, REG_DEAD);
13232 place = i3;
13233 }
13234 break;
13235
13236 case REG_EQUAL:
13237 case REG_EQUIV:
13238 case REG_NOALIAS:
13239 /* These notes say something about results of an insn. We can
13240 only support them if they used to be on I3 in which case they
13241 remain on I3. Otherwise they are ignored.
13242
13243 If the note refers to an expression that is not a constant, we
13244 must also ignore the note since we cannot tell whether the
13245 equivalence is still true. It might be possible to do
13246 slightly better than this (we only have a problem if I2DEST
13247 or I1DEST is present in the expression), but it doesn't
13248 seem worth the trouble. */
13249
13250 if (from_insn == i3
13251 && (XEXP (note, 0) == 0 || CONSTANT_P (XEXP (note, 0))))
13252 place = i3;
13253 break;
13254
13255 case REG_INC:
13256 /* These notes say something about how a register is used. They must
13257 be present on any use of the register in I2 or I3. */
13258 if (reg_mentioned_p (XEXP (note, 0), PATTERN (i3)))
13259 place = i3;
13260
13261 if (i2 && reg_mentioned_p (XEXP (note, 0), PATTERN (i2)))
13262 {
13263 if (place)
13264 place2 = i2;
13265 else
13266 place = i2;
13267 }
13268 break;
13269
13270 case REG_LABEL_TARGET:
13271 case REG_LABEL_OPERAND:
13272 /* This can show up in several ways -- either directly in the
13273 pattern, or hidden off in the constant pool with (or without?)
13274 a REG_EQUAL note. */
13275 /* ??? Ignore the without-reg_equal-note problem for now. */
13276 if (reg_mentioned_p (XEXP (note, 0), PATTERN (i3))
13277 || ((tem = find_reg_note (i3, REG_EQUAL, NULL_RTX))
13278 && GET_CODE (XEXP (tem, 0)) == LABEL_REF
13279 && XEXP (XEXP (tem, 0), 0) == XEXP (note, 0)))
13280 place = i3;
13281
13282 if (i2
13283 && (reg_mentioned_p (XEXP (note, 0), PATTERN (i2))
13284 || ((tem = find_reg_note (i2, REG_EQUAL, NULL_RTX))
13285 && GET_CODE (XEXP (tem, 0)) == LABEL_REF
13286 && XEXP (XEXP (tem, 0), 0) == XEXP (note, 0))))
13287 {
13288 if (place)
13289 place2 = i2;
13290 else
13291 place = i2;
13292 }
13293
13294 /* For REG_LABEL_TARGET on a JUMP_P, we prefer to put the note
13295 as a JUMP_LABEL or decrement LABEL_NUSES if it's already
13296 there. */
13297 if (place && JUMP_P (place)
13298 && REG_NOTE_KIND (note) == REG_LABEL_TARGET
13299 && (JUMP_LABEL (place) == NULL
13300 || JUMP_LABEL (place) == XEXP (note, 0)))
13301 {
13302 rtx label = JUMP_LABEL (place);
13303
13304 if (!label)
13305 JUMP_LABEL (place) = XEXP (note, 0);
13306 else if (LABEL_P (label))
13307 LABEL_NUSES (label)--;
13308 }
13309
13310 if (place2 && JUMP_P (place2)
13311 && REG_NOTE_KIND (note) == REG_LABEL_TARGET
13312 && (JUMP_LABEL (place2) == NULL
13313 || JUMP_LABEL (place2) == XEXP (note, 0)))
13314 {
13315 rtx label = JUMP_LABEL (place2);
13316
13317 if (!label)
13318 JUMP_LABEL (place2) = XEXP (note, 0);
13319 else if (LABEL_P (label))
13320 LABEL_NUSES (label)--;
13321 place2 = 0;
13322 }
13323 break;
13324
13325 case REG_NONNEG:
13326 /* This note says something about the value of a register prior
13327 to the execution of an insn. It is too much trouble to see
13328 if the note is still correct in all situations. It is better
13329 to simply delete it. */
13330 break;
13331
13332 case REG_DEAD:
13333 /* If we replaced the right hand side of FROM_INSN with a
13334 REG_EQUAL note, the original use of the dying register
13335 will not have been combined into I3 and I2. In such cases,
13336 FROM_INSN is guaranteed to be the first of the combined
13337 instructions, so we simply need to search back before
13338 FROM_INSN for the previous use or set of this register,
13339 then alter the notes there appropriately.
13340
13341 If the register is used as an input in I3, it dies there.
13342 Similarly for I2, if it is nonzero and adjacent to I3.
13343
13344 If the register is not used as an input in either I3 or I2
13345 and it is not one of the registers we were supposed to eliminate,
13346 there are two possibilities. We might have a non-adjacent I2
13347 or we might have somehow eliminated an additional register
13348 from a computation. For example, we might have had A & B where
13349 we discover that B will always be zero. In this case we will
13350 eliminate the reference to A.
13351
13352 In both cases, we must search to see if we can find a previous
13353 use of A and put the death note there. */
13354
13355 if (from_insn
13356 && from_insn == i2mod
13357 && !reg_overlap_mentioned_p (XEXP (note, 0), i2mod_new_rhs))
13358 tem = from_insn;
13359 else
13360 {
13361 if (from_insn
13362 && CALL_P (from_insn)
13363 && find_reg_fusage (from_insn, USE, XEXP (note, 0)))
13364 place = from_insn;
13365 else if (reg_referenced_p (XEXP (note, 0), PATTERN (i3)))
13366 place = i3;
13367 else if (i2 != 0 && next_nonnote_nondebug_insn (i2) == i3
13368 && reg_referenced_p (XEXP (note, 0), PATTERN (i2)))
13369 place = i2;
13370 else if ((rtx_equal_p (XEXP (note, 0), elim_i2)
13371 && !(i2mod
13372 && reg_overlap_mentioned_p (XEXP (note, 0),
13373 i2mod_old_rhs)))
13374 || rtx_equal_p (XEXP (note, 0), elim_i1)
13375 || rtx_equal_p (XEXP (note, 0), elim_i0))
13376 break;
13377 tem = i3;
13378 }
13379
13380 if (place == 0)
13381 {
13382 basic_block bb = this_basic_block;
13383
13384 for (tem = PREV_INSN (tem); place == 0; tem = PREV_INSN (tem))
13385 {
13386 if (!NONDEBUG_INSN_P (tem))
13387 {
13388 if (tem == BB_HEAD (bb))
13389 break;
13390 continue;
13391 }
13392
13393 /* If the register is being set at TEM, see if that is all
13394 TEM is doing. If so, delete TEM. Otherwise, make this
13395 into a REG_UNUSED note instead. Don't delete sets to
13396 global register vars. */
13397 if ((REGNO (XEXP (note, 0)) >= FIRST_PSEUDO_REGISTER
13398 || !global_regs[REGNO (XEXP (note, 0))])
13399 && reg_set_p (XEXP (note, 0), PATTERN (tem)))
13400 {
13401 rtx set = single_set (tem);
13402 rtx inner_dest = 0;
13403 #ifdef HAVE_cc0
13404 rtx cc0_setter = NULL_RTX;
13405 #endif
13406
13407 if (set != 0)
13408 for (inner_dest = SET_DEST (set);
13409 (GET_CODE (inner_dest) == STRICT_LOW_PART
13410 || GET_CODE (inner_dest) == SUBREG
13411 || GET_CODE (inner_dest) == ZERO_EXTRACT);
13412 inner_dest = XEXP (inner_dest, 0))
13413 ;
13414
13415 /* Verify that it was the set, and not a clobber that
13416 modified the register.
13417
13418 CC0 targets must be careful to maintain setter/user
13419 pairs. If we cannot delete the setter due to side
13420 effects, mark the user with an UNUSED note instead
13421 of deleting it. */
13422
13423 if (set != 0 && ! side_effects_p (SET_SRC (set))
13424 && rtx_equal_p (XEXP (note, 0), inner_dest)
13425 #ifdef HAVE_cc0
13426 && (! reg_mentioned_p (cc0_rtx, SET_SRC (set))
13427 || ((cc0_setter = prev_cc0_setter (tem)) != NULL
13428 && sets_cc0_p (PATTERN (cc0_setter)) > 0))
13429 #endif
13430 )
13431 {
13432 /* Move the notes and links of TEM elsewhere.
13433 This might delete other dead insns recursively.
13434 First set the pattern to something that won't use
13435 any register. */
13436 rtx old_notes = REG_NOTES (tem);
13437
13438 PATTERN (tem) = pc_rtx;
13439 REG_NOTES (tem) = NULL;
13440
13441 distribute_notes (old_notes, tem, tem, NULL_RTX,
13442 NULL_RTX, NULL_RTX, NULL_RTX);
13443 distribute_links (LOG_LINKS (tem));
13444
13445 SET_INSN_DELETED (tem);
13446 if (tem == i2)
13447 i2 = NULL_RTX;
13448
13449 #ifdef HAVE_cc0
13450 /* Delete the setter too. */
13451 if (cc0_setter)
13452 {
13453 PATTERN (cc0_setter) = pc_rtx;
13454 old_notes = REG_NOTES (cc0_setter);
13455 REG_NOTES (cc0_setter) = NULL;
13456
13457 distribute_notes (old_notes, cc0_setter,
13458 cc0_setter, NULL_RTX,
13459 NULL_RTX, NULL_RTX, NULL_RTX);
13460 distribute_links (LOG_LINKS (cc0_setter));
13461
13462 SET_INSN_DELETED (cc0_setter);
13463 if (cc0_setter == i2)
13464 i2 = NULL_RTX;
13465 }
13466 #endif
13467 }
13468 else
13469 {
13470 PUT_REG_NOTE_KIND (note, REG_UNUSED);
13471
13472 /* If there isn't already a REG_UNUSED note, put one
13473 here. Do not place a REG_DEAD note, even if
13474 the register is also used here; that would not
13475 match the algorithm used in lifetime analysis
13476 and can cause the consistency check in the
13477 scheduler to fail. */
13478 if (! find_regno_note (tem, REG_UNUSED,
13479 REGNO (XEXP (note, 0))))
13480 place = tem;
13481 break;
13482 }
13483 }
13484 else if (reg_referenced_p (XEXP (note, 0), PATTERN (tem))
13485 || (CALL_P (tem)
13486 && find_reg_fusage (tem, USE, XEXP (note, 0))))
13487 {
13488 place = tem;
13489
13490 /* If we are doing a 3->2 combination, and we have a
13491 register which formerly died in i3 and was not used
13492 by i2, which now no longer dies in i3 and is used in
13493 i2 but does not die in i2, and place is between i2
13494 and i3, then we may need to move a link from place to
13495 i2. */
13496 if (i2 && DF_INSN_LUID (place) > DF_INSN_LUID (i2)
13497 && from_insn
13498 && DF_INSN_LUID (from_insn) > DF_INSN_LUID (i2)
13499 && reg_referenced_p (XEXP (note, 0), PATTERN (i2)))
13500 {
13501 rtx links = LOG_LINKS (place);
13502 LOG_LINKS (place) = 0;
13503 distribute_links (links);
13504 }
13505 break;
13506 }
13507
13508 if (tem == BB_HEAD (bb))
13509 break;
13510 }
13511
13512 }
13513
13514 /* If the register is set or already dead at PLACE, we needn't do
13515 anything with this note if it is still a REG_DEAD note.
13516 We check here if it is set at all, not if is it totally replaced,
13517 which is what `dead_or_set_p' checks, so also check for it being
13518 set partially. */
13519
13520 if (place && REG_NOTE_KIND (note) == REG_DEAD)
13521 {
13522 unsigned int regno = REGNO (XEXP (note, 0));
13523 reg_stat_type *rsp = VEC_index (reg_stat_type, reg_stat, regno);
13524
13525 if (dead_or_set_p (place, XEXP (note, 0))
13526 || reg_bitfield_target_p (XEXP (note, 0), PATTERN (place)))
13527 {
13528 /* Unless the register previously died in PLACE, clear
13529 last_death. [I no longer understand why this is
13530 being done.] */
13531 if (rsp->last_death != place)
13532 rsp->last_death = 0;
13533 place = 0;
13534 }
13535 else
13536 rsp->last_death = place;
13537
13538 /* If this is a death note for a hard reg that is occupying
13539 multiple registers, ensure that we are still using all
13540 parts of the object. If we find a piece of the object
13541 that is unused, we must arrange for an appropriate REG_DEAD
13542 note to be added for it. However, we can't just emit a USE
13543 and tag the note to it, since the register might actually
13544 be dead; so we recourse, and the recursive call then finds
13545 the previous insn that used this register. */
13546
13547 if (place && regno < FIRST_PSEUDO_REGISTER
13548 && hard_regno_nregs[regno][GET_MODE (XEXP (note, 0))] > 1)
13549 {
13550 unsigned int endregno = END_HARD_REGNO (XEXP (note, 0));
13551 int all_used = 1;
13552 unsigned int i;
13553
13554 for (i = regno; i < endregno; i++)
13555 if ((! refers_to_regno_p (i, i + 1, PATTERN (place), 0)
13556 && ! find_regno_fusage (place, USE, i))
13557 || dead_or_set_regno_p (place, i))
13558 all_used = 0;
13559
13560 if (! all_used)
13561 {
13562 /* Put only REG_DEAD notes for pieces that are
13563 not already dead or set. */
13564
13565 for (i = regno; i < endregno;
13566 i += hard_regno_nregs[i][reg_raw_mode[i]])
13567 {
13568 rtx piece = regno_reg_rtx[i];
13569 basic_block bb = this_basic_block;
13570
13571 if (! dead_or_set_p (place, piece)
13572 && ! reg_bitfield_target_p (piece,
13573 PATTERN (place)))
13574 {
13575 rtx new_note = alloc_reg_note (REG_DEAD, piece,
13576 NULL_RTX);
13577
13578 distribute_notes (new_note, place, place,
13579 NULL_RTX, NULL_RTX, NULL_RTX,
13580 NULL_RTX);
13581 }
13582 else if (! refers_to_regno_p (i, i + 1,
13583 PATTERN (place), 0)
13584 && ! find_regno_fusage (place, USE, i))
13585 for (tem = PREV_INSN (place); ;
13586 tem = PREV_INSN (tem))
13587 {
13588 if (!NONDEBUG_INSN_P (tem))
13589 {
13590 if (tem == BB_HEAD (bb))
13591 break;
13592 continue;
13593 }
13594 if (dead_or_set_p (tem, piece)
13595 || reg_bitfield_target_p (piece,
13596 PATTERN (tem)))
13597 {
13598 add_reg_note (tem, REG_UNUSED, piece);
13599 break;
13600 }
13601 }
13602
13603 }
13604
13605 place = 0;
13606 }
13607 }
13608 }
13609 break;
13610
13611 default:
13612 /* Any other notes should not be present at this point in the
13613 compilation. */
13614 gcc_unreachable ();
13615 }
13616
13617 if (place)
13618 {
13619 XEXP (note, 1) = REG_NOTES (place);
13620 REG_NOTES (place) = note;
13621 }
13622
13623 if (place2)
13624 add_reg_note (place2, REG_NOTE_KIND (note), XEXP (note, 0));
13625 }
13626 }
13627 \f
13628 /* Similarly to above, distribute the LOG_LINKS that used to be present on
13629 I3, I2, and I1 to new locations. This is also called to add a link
13630 pointing at I3 when I3's destination is changed. */
13631
13632 static void
13633 distribute_links (rtx links)
13634 {
13635 rtx link, next_link;
13636
13637 for (link = links; link; link = next_link)
13638 {
13639 rtx place = 0;
13640 rtx insn;
13641 rtx set, reg;
13642
13643 next_link = XEXP (link, 1);
13644
13645 /* If the insn that this link points to is a NOTE or isn't a single
13646 set, ignore it. In the latter case, it isn't clear what we
13647 can do other than ignore the link, since we can't tell which
13648 register it was for. Such links wouldn't be used by combine
13649 anyway.
13650
13651 It is not possible for the destination of the target of the link to
13652 have been changed by combine. The only potential of this is if we
13653 replace I3, I2, and I1 by I3 and I2. But in that case the
13654 destination of I2 also remains unchanged. */
13655
13656 if (NOTE_P (XEXP (link, 0))
13657 || (set = single_set (XEXP (link, 0))) == 0)
13658 continue;
13659
13660 reg = SET_DEST (set);
13661 while (GET_CODE (reg) == SUBREG || GET_CODE (reg) == ZERO_EXTRACT
13662 || GET_CODE (reg) == STRICT_LOW_PART)
13663 reg = XEXP (reg, 0);
13664
13665 /* A LOG_LINK is defined as being placed on the first insn that uses
13666 a register and points to the insn that sets the register. Start
13667 searching at the next insn after the target of the link and stop
13668 when we reach a set of the register or the end of the basic block.
13669
13670 Note that this correctly handles the link that used to point from
13671 I3 to I2. Also note that not much searching is typically done here
13672 since most links don't point very far away. */
13673
13674 for (insn = NEXT_INSN (XEXP (link, 0));
13675 (insn && (this_basic_block->next_bb == EXIT_BLOCK_PTR
13676 || BB_HEAD (this_basic_block->next_bb) != insn));
13677 insn = NEXT_INSN (insn))
13678 if (DEBUG_INSN_P (insn))
13679 continue;
13680 else if (INSN_P (insn) && reg_overlap_mentioned_p (reg, PATTERN (insn)))
13681 {
13682 if (reg_referenced_p (reg, PATTERN (insn)))
13683 place = insn;
13684 break;
13685 }
13686 else if (CALL_P (insn)
13687 && find_reg_fusage (insn, USE, reg))
13688 {
13689 place = insn;
13690 break;
13691 }
13692 else if (INSN_P (insn) && reg_set_p (reg, insn))
13693 break;
13694
13695 /* If we found a place to put the link, place it there unless there
13696 is already a link to the same insn as LINK at that point. */
13697
13698 if (place)
13699 {
13700 rtx link2;
13701
13702 for (link2 = LOG_LINKS (place); link2; link2 = XEXP (link2, 1))
13703 if (XEXP (link2, 0) == XEXP (link, 0))
13704 break;
13705
13706 if (link2 == 0)
13707 {
13708 XEXP (link, 1) = LOG_LINKS (place);
13709 LOG_LINKS (place) = link;
13710
13711 /* Set added_links_insn to the earliest insn we added a
13712 link to. */
13713 if (added_links_insn == 0
13714 || DF_INSN_LUID (added_links_insn) > DF_INSN_LUID (place))
13715 added_links_insn = place;
13716 }
13717 }
13718 }
13719 }
13720 \f
13721 /* Subroutine of unmentioned_reg_p and callback from for_each_rtx.
13722 Check whether the expression pointer to by LOC is a register or
13723 memory, and if so return 1 if it isn't mentioned in the rtx EXPR.
13724 Otherwise return zero. */
13725
13726 static int
13727 unmentioned_reg_p_1 (rtx *loc, void *expr)
13728 {
13729 rtx x = *loc;
13730
13731 if (x != NULL_RTX
13732 && (REG_P (x) || MEM_P (x))
13733 && ! reg_mentioned_p (x, (rtx) expr))
13734 return 1;
13735 return 0;
13736 }
13737
13738 /* Check for any register or memory mentioned in EQUIV that is not
13739 mentioned in EXPR. This is used to restrict EQUIV to "specializations"
13740 of EXPR where some registers may have been replaced by constants. */
13741
13742 static bool
13743 unmentioned_reg_p (rtx equiv, rtx expr)
13744 {
13745 return for_each_rtx (&equiv, unmentioned_reg_p_1, expr);
13746 }
13747 \f
13748 void
13749 dump_combine_stats (FILE *file)
13750 {
13751 fprintf
13752 (file,
13753 ";; Combiner statistics: %d attempts, %d substitutions (%d requiring new space),\n;; %d successes.\n\n",
13754 combine_attempts, combine_merges, combine_extras, combine_successes);
13755 }
13756
13757 void
13758 dump_combine_total_stats (FILE *file)
13759 {
13760 fprintf
13761 (file,
13762 "\n;; Combiner totals: %d attempts, %d substitutions (%d requiring new space),\n;; %d successes.\n",
13763 total_attempts, total_merges, total_extras, total_successes);
13764 }
13765 \f
13766 static bool
13767 gate_handle_combine (void)
13768 {
13769 return (optimize > 0);
13770 }
13771
13772 /* Try combining insns through substitution. */
13773 static unsigned int
13774 rest_of_handle_combine (void)
13775 {
13776 int rebuild_jump_labels_after_combine;
13777
13778 df_set_flags (DF_LR_RUN_DCE + DF_DEFER_INSN_RESCAN);
13779 df_note_add_problem ();
13780 df_analyze ();
13781
13782 regstat_init_n_sets_and_refs ();
13783
13784 rebuild_jump_labels_after_combine
13785 = combine_instructions (get_insns (), max_reg_num ());
13786
13787 /* Combining insns may have turned an indirect jump into a
13788 direct jump. Rebuild the JUMP_LABEL fields of jumping
13789 instructions. */
13790 if (rebuild_jump_labels_after_combine)
13791 {
13792 timevar_push (TV_JUMP);
13793 rebuild_jump_labels (get_insns ());
13794 cleanup_cfg (0);
13795 timevar_pop (TV_JUMP);
13796 }
13797
13798 regstat_free_n_sets_and_refs ();
13799 return 0;
13800 }
13801
13802 struct rtl_opt_pass pass_combine =
13803 {
13804 {
13805 RTL_PASS,
13806 "combine", /* name */
13807 gate_handle_combine, /* gate */
13808 rest_of_handle_combine, /* execute */
13809 NULL, /* sub */
13810 NULL, /* next */
13811 0, /* static_pass_number */
13812 TV_COMBINE, /* tv_id */
13813 PROP_cfglayout, /* properties_required */
13814 0, /* properties_provided */
13815 0, /* properties_destroyed */
13816 0, /* todo_flags_start */
13817 TODO_dump_func |
13818 TODO_df_finish | TODO_verify_rtl_sharing |
13819 TODO_ggc_collect, /* todo_flags_finish */
13820 }
13821 };