inclhack.def (hpux_imaginary_i): Remove spaces.
[gcc.git] / gcc / combine.c
1 /* Optimize by combining instructions for GNU compiler.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009
4 Free Software Foundation, Inc.
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22 /* This module is essentially the "combiner" phase of the U. of Arizona
23 Portable Optimizer, but redone to work on our list-structured
24 representation for RTL instead of their string representation.
25
26 The LOG_LINKS of each insn identify the most recent assignment
27 to each REG used in the insn. It is a list of previous insns,
28 each of which contains a SET for a REG that is used in this insn
29 and not used or set in between. LOG_LINKs never cross basic blocks.
30 They were set up by the preceding pass (lifetime analysis).
31
32 We try to combine each pair of insns joined by a logical link.
33 We also try to combine triples of insns A, B and C when
34 C has a link back to B and B has a link back to A.
35
36 LOG_LINKS does not have links for use of the CC0. They don't
37 need to, because the insn that sets the CC0 is always immediately
38 before the insn that tests it. So we always regard a branch
39 insn as having a logical link to the preceding insn. The same is true
40 for an insn explicitly using CC0.
41
42 We check (with use_crosses_set_p) to avoid combining in such a way
43 as to move a computation to a place where its value would be different.
44
45 Combination is done by mathematically substituting the previous
46 insn(s) values for the regs they set into the expressions in
47 the later insns that refer to these regs. If the result is a valid insn
48 for our target machine, according to the machine description,
49 we install it, delete the earlier insns, and update the data flow
50 information (LOG_LINKS and REG_NOTES) for what we did.
51
52 There are a few exceptions where the dataflow information isn't
53 completely updated (however this is only a local issue since it is
54 regenerated before the next pass that uses it):
55
56 - reg_live_length is not updated
57 - reg_n_refs is not adjusted in the rare case when a register is
58 no longer required in a computation
59 - there are extremely rare cases (see distribute_notes) when a
60 REG_DEAD note is lost
61 - a LOG_LINKS entry that refers to an insn with multiple SETs may be
62 removed because there is no way to know which register it was
63 linking
64
65 To simplify substitution, we combine only when the earlier insn(s)
66 consist of only a single assignment. To simplify updating afterward,
67 we never combine when a subroutine call appears in the middle.
68
69 Since we do not represent assignments to CC0 explicitly except when that
70 is all an insn does, there is no LOG_LINKS entry in an insn that uses
71 the condition code for the insn that set the condition code.
72 Fortunately, these two insns must be consecutive.
73 Therefore, every JUMP_INSN is taken to have an implicit logical link
74 to the preceding insn. This is not quite right, since non-jumps can
75 also use the condition code; but in practice such insns would not
76 combine anyway. */
77
78 #include "config.h"
79 #include "system.h"
80 #include "coretypes.h"
81 #include "tm.h"
82 #include "rtl.h"
83 #include "tree.h"
84 #include "tm_p.h"
85 #include "flags.h"
86 #include "regs.h"
87 #include "hard-reg-set.h"
88 #include "basic-block.h"
89 #include "insn-config.h"
90 #include "function.h"
91 /* Include expr.h after insn-config.h so we get HAVE_conditional_move. */
92 #include "expr.h"
93 #include "insn-attr.h"
94 #include "recog.h"
95 #include "real.h"
96 #include "toplev.h"
97 #include "target.h"
98 #include "optabs.h"
99 #include "insn-codes.h"
100 #include "rtlhooks-def.h"
101 /* Include output.h for dump_file. */
102 #include "output.h"
103 #include "params.h"
104 #include "timevar.h"
105 #include "tree-pass.h"
106 #include "df.h"
107 #include "cgraph.h"
108
109 /* Number of attempts to combine instructions in this function. */
110
111 static int combine_attempts;
112
113 /* Number of attempts that got as far as substitution in this function. */
114
115 static int combine_merges;
116
117 /* Number of instructions combined with added SETs in this function. */
118
119 static int combine_extras;
120
121 /* Number of instructions combined in this function. */
122
123 static int combine_successes;
124
125 /* Totals over entire compilation. */
126
127 static int total_attempts, total_merges, total_extras, total_successes;
128
129 /* combine_instructions may try to replace the right hand side of the
130 second instruction with the value of an associated REG_EQUAL note
131 before throwing it at try_combine. That is problematic when there
132 is a REG_DEAD note for a register used in the old right hand side
133 and can cause distribute_notes to do wrong things. This is the
134 second instruction if it has been so modified, null otherwise. */
135
136 static rtx i2mod;
137
138 /* When I2MOD is nonnull, this is a copy of the old right hand side. */
139
140 static rtx i2mod_old_rhs;
141
142 /* When I2MOD is nonnull, this is a copy of the new right hand side. */
143
144 static rtx i2mod_new_rhs;
145 \f
146 typedef struct reg_stat_struct {
147 /* Record last point of death of (hard or pseudo) register n. */
148 rtx last_death;
149
150 /* Record last point of modification of (hard or pseudo) register n. */
151 rtx last_set;
152
153 /* The next group of fields allows the recording of the last value assigned
154 to (hard or pseudo) register n. We use this information to see if an
155 operation being processed is redundant given a prior operation performed
156 on the register. For example, an `and' with a constant is redundant if
157 all the zero bits are already known to be turned off.
158
159 We use an approach similar to that used by cse, but change it in the
160 following ways:
161
162 (1) We do not want to reinitialize at each label.
163 (2) It is useful, but not critical, to know the actual value assigned
164 to a register. Often just its form is helpful.
165
166 Therefore, we maintain the following fields:
167
168 last_set_value the last value assigned
169 last_set_label records the value of label_tick when the
170 register was assigned
171 last_set_table_tick records the value of label_tick when a
172 value using the register is assigned
173 last_set_invalid set to nonzero when it is not valid
174 to use the value of this register in some
175 register's value
176
177 To understand the usage of these tables, it is important to understand
178 the distinction between the value in last_set_value being valid and
179 the register being validly contained in some other expression in the
180 table.
181
182 (The next two parameters are out of date).
183
184 reg_stat[i].last_set_value is valid if it is nonzero, and either
185 reg_n_sets[i] is 1 or reg_stat[i].last_set_label == label_tick.
186
187 Register I may validly appear in any expression returned for the value
188 of another register if reg_n_sets[i] is 1. It may also appear in the
189 value for register J if reg_stat[j].last_set_invalid is zero, or
190 reg_stat[i].last_set_label < reg_stat[j].last_set_label.
191
192 If an expression is found in the table containing a register which may
193 not validly appear in an expression, the register is replaced by
194 something that won't match, (clobber (const_int 0)). */
195
196 /* Record last value assigned to (hard or pseudo) register n. */
197
198 rtx last_set_value;
199
200 /* Record the value of label_tick when an expression involving register n
201 is placed in last_set_value. */
202
203 int last_set_table_tick;
204
205 /* Record the value of label_tick when the value for register n is placed in
206 last_set_value. */
207
208 int last_set_label;
209
210 /* These fields are maintained in parallel with last_set_value and are
211 used to store the mode in which the register was last set, the bits
212 that were known to be zero when it was last set, and the number of
213 sign bits copies it was known to have when it was last set. */
214
215 unsigned HOST_WIDE_INT last_set_nonzero_bits;
216 char last_set_sign_bit_copies;
217 ENUM_BITFIELD(machine_mode) last_set_mode : 8;
218
219 /* Set nonzero if references to register n in expressions should not be
220 used. last_set_invalid is set nonzero when this register is being
221 assigned to and last_set_table_tick == label_tick. */
222
223 char last_set_invalid;
224
225 /* Some registers that are set more than once and used in more than one
226 basic block are nevertheless always set in similar ways. For example,
227 a QImode register may be loaded from memory in two places on a machine
228 where byte loads zero extend.
229
230 We record in the following fields if a register has some leading bits
231 that are always equal to the sign bit, and what we know about the
232 nonzero bits of a register, specifically which bits are known to be
233 zero.
234
235 If an entry is zero, it means that we don't know anything special. */
236
237 unsigned char sign_bit_copies;
238
239 unsigned HOST_WIDE_INT nonzero_bits;
240
241 /* Record the value of the label_tick when the last truncation
242 happened. The field truncated_to_mode is only valid if
243 truncation_label == label_tick. */
244
245 int truncation_label;
246
247 /* Record the last truncation seen for this register. If truncation
248 is not a nop to this mode we might be able to save an explicit
249 truncation if we know that value already contains a truncated
250 value. */
251
252 ENUM_BITFIELD(machine_mode) truncated_to_mode : 8;
253 } reg_stat_type;
254
255 DEF_VEC_O(reg_stat_type);
256 DEF_VEC_ALLOC_O(reg_stat_type,heap);
257
258 static VEC(reg_stat_type,heap) *reg_stat;
259
260 /* Record the luid of the last insn that invalidated memory
261 (anything that writes memory, and subroutine calls, but not pushes). */
262
263 static int mem_last_set;
264
265 /* Record the luid of the last CALL_INSN
266 so we can tell whether a potential combination crosses any calls. */
267
268 static int last_call_luid;
269
270 /* When `subst' is called, this is the insn that is being modified
271 (by combining in a previous insn). The PATTERN of this insn
272 is still the old pattern partially modified and it should not be
273 looked at, but this may be used to examine the successors of the insn
274 to judge whether a simplification is valid. */
275
276 static rtx subst_insn;
277
278 /* This is the lowest LUID that `subst' is currently dealing with.
279 get_last_value will not return a value if the register was set at or
280 after this LUID. If not for this mechanism, we could get confused if
281 I2 or I1 in try_combine were an insn that used the old value of a register
282 to obtain a new value. In that case, we might erroneously get the
283 new value of the register when we wanted the old one. */
284
285 static int subst_low_luid;
286
287 /* This contains any hard registers that are used in newpat; reg_dead_at_p
288 must consider all these registers to be always live. */
289
290 static HARD_REG_SET newpat_used_regs;
291
292 /* This is an insn to which a LOG_LINKS entry has been added. If this
293 insn is the earlier than I2 or I3, combine should rescan starting at
294 that location. */
295
296 static rtx added_links_insn;
297
298 /* Basic block in which we are performing combines. */
299 static basic_block this_basic_block;
300 static bool optimize_this_for_speed_p;
301
302 \f
303 /* Length of the currently allocated uid_insn_cost array. */
304
305 static int max_uid_known;
306
307 /* The following array records the insn_rtx_cost for every insn
308 in the instruction stream. */
309
310 static int *uid_insn_cost;
311
312 /* The following array records the LOG_LINKS for every insn in the
313 instruction stream as an INSN_LIST rtx. */
314
315 static rtx *uid_log_links;
316
317 #define INSN_COST(INSN) (uid_insn_cost[INSN_UID (INSN)])
318 #define LOG_LINKS(INSN) (uid_log_links[INSN_UID (INSN)])
319
320 /* Incremented for each basic block. */
321
322 static int label_tick;
323
324 /* Reset to label_tick for each label. */
325
326 static int label_tick_ebb_start;
327
328 /* Mode used to compute significance in reg_stat[].nonzero_bits. It is the
329 largest integer mode that can fit in HOST_BITS_PER_WIDE_INT. */
330
331 static enum machine_mode nonzero_bits_mode;
332
333 /* Nonzero when reg_stat[].nonzero_bits and reg_stat[].sign_bit_copies can
334 be safely used. It is zero while computing them and after combine has
335 completed. This former test prevents propagating values based on
336 previously set values, which can be incorrect if a variable is modified
337 in a loop. */
338
339 static int nonzero_sign_valid;
340
341 \f
342 /* Record one modification to rtl structure
343 to be undone by storing old_contents into *where. */
344
345 enum undo_kind { UNDO_RTX, UNDO_INT, UNDO_MODE };
346
347 struct undo
348 {
349 struct undo *next;
350 enum undo_kind kind;
351 union { rtx r; int i; enum machine_mode m; } old_contents;
352 union { rtx *r; int *i; } where;
353 };
354
355 /* Record a bunch of changes to be undone, up to MAX_UNDO of them.
356 num_undo says how many are currently recorded.
357
358 other_insn is nonzero if we have modified some other insn in the process
359 of working on subst_insn. It must be verified too. */
360
361 struct undobuf
362 {
363 struct undo *undos;
364 struct undo *frees;
365 rtx other_insn;
366 };
367
368 static struct undobuf undobuf;
369
370 /* Number of times the pseudo being substituted for
371 was found and replaced. */
372
373 static int n_occurrences;
374
375 static rtx reg_nonzero_bits_for_combine (const_rtx, enum machine_mode, const_rtx,
376 enum machine_mode,
377 unsigned HOST_WIDE_INT,
378 unsigned HOST_WIDE_INT *);
379 static rtx reg_num_sign_bit_copies_for_combine (const_rtx, enum machine_mode, const_rtx,
380 enum machine_mode,
381 unsigned int, unsigned int *);
382 static void do_SUBST (rtx *, rtx);
383 static void do_SUBST_INT (int *, int);
384 static void init_reg_last (void);
385 static void setup_incoming_promotions (rtx);
386 static void set_nonzero_bits_and_sign_copies (rtx, const_rtx, void *);
387 static int cant_combine_insn_p (rtx);
388 static int can_combine_p (rtx, rtx, rtx, rtx, rtx *, rtx *);
389 static int combinable_i3pat (rtx, rtx *, rtx, rtx, int, rtx *);
390 static int contains_muldiv (rtx);
391 static rtx try_combine (rtx, rtx, rtx, int *);
392 static void undo_all (void);
393 static void undo_commit (void);
394 static rtx *find_split_point (rtx *, rtx);
395 static rtx subst (rtx, rtx, rtx, int, int);
396 static rtx combine_simplify_rtx (rtx, enum machine_mode, int);
397 static rtx simplify_if_then_else (rtx);
398 static rtx simplify_set (rtx);
399 static rtx simplify_logical (rtx);
400 static rtx expand_compound_operation (rtx);
401 static const_rtx expand_field_assignment (const_rtx);
402 static rtx make_extraction (enum machine_mode, rtx, HOST_WIDE_INT,
403 rtx, unsigned HOST_WIDE_INT, int, int, int);
404 static rtx extract_left_shift (rtx, int);
405 static rtx make_compound_operation (rtx, enum rtx_code);
406 static int get_pos_from_mask (unsigned HOST_WIDE_INT,
407 unsigned HOST_WIDE_INT *);
408 static rtx canon_reg_for_combine (rtx, rtx);
409 static rtx force_to_mode (rtx, enum machine_mode,
410 unsigned HOST_WIDE_INT, int);
411 static rtx if_then_else_cond (rtx, rtx *, rtx *);
412 static rtx known_cond (rtx, enum rtx_code, rtx, rtx);
413 static int rtx_equal_for_field_assignment_p (rtx, rtx);
414 static rtx make_field_assignment (rtx);
415 static rtx apply_distributive_law (rtx);
416 static rtx distribute_and_simplify_rtx (rtx, int);
417 static rtx simplify_and_const_int_1 (enum machine_mode, rtx,
418 unsigned HOST_WIDE_INT);
419 static rtx simplify_and_const_int (rtx, enum machine_mode, rtx,
420 unsigned HOST_WIDE_INT);
421 static int merge_outer_ops (enum rtx_code *, HOST_WIDE_INT *, enum rtx_code,
422 HOST_WIDE_INT, enum machine_mode, int *);
423 static rtx simplify_shift_const_1 (enum rtx_code, enum machine_mode, rtx, int);
424 static rtx simplify_shift_const (rtx, enum rtx_code, enum machine_mode, rtx,
425 int);
426 static int recog_for_combine (rtx *, rtx, rtx *);
427 static rtx gen_lowpart_for_combine (enum machine_mode, rtx);
428 static enum rtx_code simplify_comparison (enum rtx_code, rtx *, rtx *);
429 static void update_table_tick (rtx);
430 static void record_value_for_reg (rtx, rtx, rtx);
431 static void check_promoted_subreg (rtx, rtx);
432 static void record_dead_and_set_regs_1 (rtx, const_rtx, void *);
433 static void record_dead_and_set_regs (rtx);
434 static int get_last_value_validate (rtx *, rtx, int, int);
435 static rtx get_last_value (const_rtx);
436 static int use_crosses_set_p (const_rtx, int);
437 static void reg_dead_at_p_1 (rtx, const_rtx, void *);
438 static int reg_dead_at_p (rtx, rtx);
439 static void move_deaths (rtx, rtx, int, rtx, rtx *);
440 static int reg_bitfield_target_p (rtx, rtx);
441 static void distribute_notes (rtx, rtx, rtx, rtx, rtx, rtx);
442 static void distribute_links (rtx);
443 static void mark_used_regs_combine (rtx);
444 static void record_promoted_value (rtx, rtx);
445 static int unmentioned_reg_p_1 (rtx *, void *);
446 static bool unmentioned_reg_p (rtx, rtx);
447 static int record_truncated_value (rtx *, void *);
448 static void record_truncated_values (rtx *, void *);
449 static bool reg_truncated_to_mode (enum machine_mode, const_rtx);
450 static rtx gen_lowpart_or_truncate (enum machine_mode, rtx);
451 \f
452
453 /* It is not safe to use ordinary gen_lowpart in combine.
454 See comments in gen_lowpart_for_combine. */
455 #undef RTL_HOOKS_GEN_LOWPART
456 #define RTL_HOOKS_GEN_LOWPART gen_lowpart_for_combine
457
458 /* Our implementation of gen_lowpart never emits a new pseudo. */
459 #undef RTL_HOOKS_GEN_LOWPART_NO_EMIT
460 #define RTL_HOOKS_GEN_LOWPART_NO_EMIT gen_lowpart_for_combine
461
462 #undef RTL_HOOKS_REG_NONZERO_REG_BITS
463 #define RTL_HOOKS_REG_NONZERO_REG_BITS reg_nonzero_bits_for_combine
464
465 #undef RTL_HOOKS_REG_NUM_SIGN_BIT_COPIES
466 #define RTL_HOOKS_REG_NUM_SIGN_BIT_COPIES reg_num_sign_bit_copies_for_combine
467
468 #undef RTL_HOOKS_REG_TRUNCATED_TO_MODE
469 #define RTL_HOOKS_REG_TRUNCATED_TO_MODE reg_truncated_to_mode
470
471 static const struct rtl_hooks combine_rtl_hooks = RTL_HOOKS_INITIALIZER;
472
473 \f
474 /* Try to split PATTERN found in INSN. This returns NULL_RTX if
475 PATTERN can not be split. Otherwise, it returns an insn sequence.
476 This is a wrapper around split_insns which ensures that the
477 reg_stat vector is made larger if the splitter creates a new
478 register. */
479
480 static rtx
481 combine_split_insns (rtx pattern, rtx insn)
482 {
483 rtx ret;
484 unsigned int nregs;
485
486 ret = split_insns (pattern, insn);
487 nregs = max_reg_num ();
488 if (nregs > VEC_length (reg_stat_type, reg_stat))
489 VEC_safe_grow_cleared (reg_stat_type, heap, reg_stat, nregs);
490 return ret;
491 }
492
493 /* This is used by find_single_use to locate an rtx in LOC that
494 contains exactly one use of DEST, which is typically either a REG
495 or CC0. It returns a pointer to the innermost rtx expression
496 containing DEST. Appearances of DEST that are being used to
497 totally replace it are not counted. */
498
499 static rtx *
500 find_single_use_1 (rtx dest, rtx *loc)
501 {
502 rtx x = *loc;
503 enum rtx_code code = GET_CODE (x);
504 rtx *result = NULL;
505 rtx *this_result;
506 int i;
507 const char *fmt;
508
509 switch (code)
510 {
511 case CONST_INT:
512 case CONST:
513 case LABEL_REF:
514 case SYMBOL_REF:
515 case CONST_DOUBLE:
516 case CONST_VECTOR:
517 case CLOBBER:
518 return 0;
519
520 case SET:
521 /* If the destination is anything other than CC0, PC, a REG or a SUBREG
522 of a REG that occupies all of the REG, the insn uses DEST if
523 it is mentioned in the destination or the source. Otherwise, we
524 need just check the source. */
525 if (GET_CODE (SET_DEST (x)) != CC0
526 && GET_CODE (SET_DEST (x)) != PC
527 && !REG_P (SET_DEST (x))
528 && ! (GET_CODE (SET_DEST (x)) == SUBREG
529 && REG_P (SUBREG_REG (SET_DEST (x)))
530 && (((GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (x))))
531 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
532 == ((GET_MODE_SIZE (GET_MODE (SET_DEST (x)))
533 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))))
534 break;
535
536 return find_single_use_1 (dest, &SET_SRC (x));
537
538 case MEM:
539 case SUBREG:
540 return find_single_use_1 (dest, &XEXP (x, 0));
541
542 default:
543 break;
544 }
545
546 /* If it wasn't one of the common cases above, check each expression and
547 vector of this code. Look for a unique usage of DEST. */
548
549 fmt = GET_RTX_FORMAT (code);
550 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
551 {
552 if (fmt[i] == 'e')
553 {
554 if (dest == XEXP (x, i)
555 || (REG_P (dest) && REG_P (XEXP (x, i))
556 && REGNO (dest) == REGNO (XEXP (x, i))))
557 this_result = loc;
558 else
559 this_result = find_single_use_1 (dest, &XEXP (x, i));
560
561 if (result == NULL)
562 result = this_result;
563 else if (this_result)
564 /* Duplicate usage. */
565 return NULL;
566 }
567 else if (fmt[i] == 'E')
568 {
569 int j;
570
571 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
572 {
573 if (XVECEXP (x, i, j) == dest
574 || (REG_P (dest)
575 && REG_P (XVECEXP (x, i, j))
576 && REGNO (XVECEXP (x, i, j)) == REGNO (dest)))
577 this_result = loc;
578 else
579 this_result = find_single_use_1 (dest, &XVECEXP (x, i, j));
580
581 if (result == NULL)
582 result = this_result;
583 else if (this_result)
584 return NULL;
585 }
586 }
587 }
588
589 return result;
590 }
591
592
593 /* See if DEST, produced in INSN, is used only a single time in the
594 sequel. If so, return a pointer to the innermost rtx expression in which
595 it is used.
596
597 If PLOC is nonzero, *PLOC is set to the insn containing the single use.
598
599 If DEST is cc0_rtx, we look only at the next insn. In that case, we don't
600 care about REG_DEAD notes or LOG_LINKS.
601
602 Otherwise, we find the single use by finding an insn that has a
603 LOG_LINKS pointing at INSN and has a REG_DEAD note for DEST. If DEST is
604 only referenced once in that insn, we know that it must be the first
605 and last insn referencing DEST. */
606
607 static rtx *
608 find_single_use (rtx dest, rtx insn, rtx *ploc)
609 {
610 basic_block bb;
611 rtx next;
612 rtx *result;
613 rtx link;
614
615 #ifdef HAVE_cc0
616 if (dest == cc0_rtx)
617 {
618 next = NEXT_INSN (insn);
619 if (next == 0
620 || (!NONJUMP_INSN_P (next) && !JUMP_P (next)))
621 return 0;
622
623 result = find_single_use_1 (dest, &PATTERN (next));
624 if (result && ploc)
625 *ploc = next;
626 return result;
627 }
628 #endif
629
630 if (!REG_P (dest))
631 return 0;
632
633 bb = BLOCK_FOR_INSN (insn);
634 for (next = NEXT_INSN (insn);
635 next && BLOCK_FOR_INSN (next) == bb;
636 next = NEXT_INSN (next))
637 if (INSN_P (next) && dead_or_set_p (next, dest))
638 {
639 for (link = LOG_LINKS (next); link; link = XEXP (link, 1))
640 if (XEXP (link, 0) == insn)
641 break;
642
643 if (link)
644 {
645 result = find_single_use_1 (dest, &PATTERN (next));
646 if (ploc)
647 *ploc = next;
648 return result;
649 }
650 }
651
652 return 0;
653 }
654 \f
655 /* Substitute NEWVAL, an rtx expression, into INTO, a place in some
656 insn. The substitution can be undone by undo_all. If INTO is already
657 set to NEWVAL, do not record this change. Because computing NEWVAL might
658 also call SUBST, we have to compute it before we put anything into
659 the undo table. */
660
661 static void
662 do_SUBST (rtx *into, rtx newval)
663 {
664 struct undo *buf;
665 rtx oldval = *into;
666
667 if (oldval == newval)
668 return;
669
670 /* We'd like to catch as many invalid transformations here as
671 possible. Unfortunately, there are way too many mode changes
672 that are perfectly valid, so we'd waste too much effort for
673 little gain doing the checks here. Focus on catching invalid
674 transformations involving integer constants. */
675 if (GET_MODE_CLASS (GET_MODE (oldval)) == MODE_INT
676 && CONST_INT_P (newval))
677 {
678 /* Sanity check that we're replacing oldval with a CONST_INT
679 that is a valid sign-extension for the original mode. */
680 gcc_assert (INTVAL (newval)
681 == trunc_int_for_mode (INTVAL (newval), GET_MODE (oldval)));
682
683 /* Replacing the operand of a SUBREG or a ZERO_EXTEND with a
684 CONST_INT is not valid, because after the replacement, the
685 original mode would be gone. Unfortunately, we can't tell
686 when do_SUBST is called to replace the operand thereof, so we
687 perform this test on oldval instead, checking whether an
688 invalid replacement took place before we got here. */
689 gcc_assert (!(GET_CODE (oldval) == SUBREG
690 && CONST_INT_P (SUBREG_REG (oldval))));
691 gcc_assert (!(GET_CODE (oldval) == ZERO_EXTEND
692 && CONST_INT_P (XEXP (oldval, 0))));
693 }
694
695 if (undobuf.frees)
696 buf = undobuf.frees, undobuf.frees = buf->next;
697 else
698 buf = XNEW (struct undo);
699
700 buf->kind = UNDO_RTX;
701 buf->where.r = into;
702 buf->old_contents.r = oldval;
703 *into = newval;
704
705 buf->next = undobuf.undos, undobuf.undos = buf;
706 }
707
708 #define SUBST(INTO, NEWVAL) do_SUBST(&(INTO), (NEWVAL))
709
710 /* Similar to SUBST, but NEWVAL is an int expression. Note that substitution
711 for the value of a HOST_WIDE_INT value (including CONST_INT) is
712 not safe. */
713
714 static void
715 do_SUBST_INT (int *into, int newval)
716 {
717 struct undo *buf;
718 int oldval = *into;
719
720 if (oldval == newval)
721 return;
722
723 if (undobuf.frees)
724 buf = undobuf.frees, undobuf.frees = buf->next;
725 else
726 buf = XNEW (struct undo);
727
728 buf->kind = UNDO_INT;
729 buf->where.i = into;
730 buf->old_contents.i = oldval;
731 *into = newval;
732
733 buf->next = undobuf.undos, undobuf.undos = buf;
734 }
735
736 #define SUBST_INT(INTO, NEWVAL) do_SUBST_INT(&(INTO), (NEWVAL))
737
738 /* Similar to SUBST, but just substitute the mode. This is used when
739 changing the mode of a pseudo-register, so that any other
740 references to the entry in the regno_reg_rtx array will change as
741 well. */
742
743 static void
744 do_SUBST_MODE (rtx *into, enum machine_mode newval)
745 {
746 struct undo *buf;
747 enum machine_mode oldval = GET_MODE (*into);
748
749 if (oldval == newval)
750 return;
751
752 if (undobuf.frees)
753 buf = undobuf.frees, undobuf.frees = buf->next;
754 else
755 buf = XNEW (struct undo);
756
757 buf->kind = UNDO_MODE;
758 buf->where.r = into;
759 buf->old_contents.m = oldval;
760 adjust_reg_mode (*into, newval);
761
762 buf->next = undobuf.undos, undobuf.undos = buf;
763 }
764
765 #define SUBST_MODE(INTO, NEWVAL) do_SUBST_MODE(&(INTO), (NEWVAL))
766 \f
767 /* Subroutine of try_combine. Determine whether the combine replacement
768 patterns NEWPAT, NEWI2PAT and NEWOTHERPAT are cheaper according to
769 insn_rtx_cost that the original instruction sequence I1, I2, I3 and
770 undobuf.other_insn. Note that I1 and/or NEWI2PAT may be NULL_RTX.
771 NEWOTHERPAT and undobuf.other_insn may also both be NULL_RTX. This
772 function returns false, if the costs of all instructions can be
773 estimated, and the replacements are more expensive than the original
774 sequence. */
775
776 static bool
777 combine_validate_cost (rtx i1, rtx i2, rtx i3, rtx newpat, rtx newi2pat,
778 rtx newotherpat)
779 {
780 int i1_cost, i2_cost, i3_cost;
781 int new_i2_cost, new_i3_cost;
782 int old_cost, new_cost;
783
784 /* Lookup the original insn_rtx_costs. */
785 i2_cost = INSN_COST (i2);
786 i3_cost = INSN_COST (i3);
787
788 if (i1)
789 {
790 i1_cost = INSN_COST (i1);
791 old_cost = (i1_cost > 0 && i2_cost > 0 && i3_cost > 0)
792 ? i1_cost + i2_cost + i3_cost : 0;
793 }
794 else
795 {
796 old_cost = (i2_cost > 0 && i3_cost > 0) ? i2_cost + i3_cost : 0;
797 i1_cost = 0;
798 }
799
800 /* Calculate the replacement insn_rtx_costs. */
801 new_i3_cost = insn_rtx_cost (newpat, optimize_this_for_speed_p);
802 if (newi2pat)
803 {
804 new_i2_cost = insn_rtx_cost (newi2pat, optimize_this_for_speed_p);
805 new_cost = (new_i2_cost > 0 && new_i3_cost > 0)
806 ? new_i2_cost + new_i3_cost : 0;
807 }
808 else
809 {
810 new_cost = new_i3_cost;
811 new_i2_cost = 0;
812 }
813
814 if (undobuf.other_insn)
815 {
816 int old_other_cost, new_other_cost;
817
818 old_other_cost = INSN_COST (undobuf.other_insn);
819 new_other_cost = insn_rtx_cost (newotherpat, optimize_this_for_speed_p);
820 if (old_other_cost > 0 && new_other_cost > 0)
821 {
822 old_cost += old_other_cost;
823 new_cost += new_other_cost;
824 }
825 else
826 old_cost = 0;
827 }
828
829 /* Disallow this recombination if both new_cost and old_cost are
830 greater than zero, and new_cost is greater than old cost. */
831 if (old_cost > 0
832 && new_cost > old_cost)
833 {
834 if (dump_file)
835 {
836 if (i1)
837 {
838 fprintf (dump_file,
839 "rejecting combination of insns %d, %d and %d\n",
840 INSN_UID (i1), INSN_UID (i2), INSN_UID (i3));
841 fprintf (dump_file, "original costs %d + %d + %d = %d\n",
842 i1_cost, i2_cost, i3_cost, old_cost);
843 }
844 else
845 {
846 fprintf (dump_file,
847 "rejecting combination of insns %d and %d\n",
848 INSN_UID (i2), INSN_UID (i3));
849 fprintf (dump_file, "original costs %d + %d = %d\n",
850 i2_cost, i3_cost, old_cost);
851 }
852
853 if (newi2pat)
854 {
855 fprintf (dump_file, "replacement costs %d + %d = %d\n",
856 new_i2_cost, new_i3_cost, new_cost);
857 }
858 else
859 fprintf (dump_file, "replacement cost %d\n", new_cost);
860 }
861
862 return false;
863 }
864
865 /* Update the uid_insn_cost array with the replacement costs. */
866 INSN_COST (i2) = new_i2_cost;
867 INSN_COST (i3) = new_i3_cost;
868 if (i1)
869 INSN_COST (i1) = 0;
870
871 return true;
872 }
873
874
875 /* Delete any insns that copy a register to itself. */
876
877 static void
878 delete_noop_moves (void)
879 {
880 rtx insn, next;
881 basic_block bb;
882
883 FOR_EACH_BB (bb)
884 {
885 for (insn = BB_HEAD (bb); insn != NEXT_INSN (BB_END (bb)); insn = next)
886 {
887 next = NEXT_INSN (insn);
888 if (INSN_P (insn) && noop_move_p (insn))
889 {
890 if (dump_file)
891 fprintf (dump_file, "deleting noop move %d\n", INSN_UID (insn));
892
893 delete_insn_and_edges (insn);
894 }
895 }
896 }
897 }
898
899 \f
900 /* Fill in log links field for all insns. */
901
902 static void
903 create_log_links (void)
904 {
905 basic_block bb;
906 rtx *next_use, insn;
907 df_ref *def_vec, *use_vec;
908
909 next_use = XCNEWVEC (rtx, max_reg_num ());
910
911 /* Pass through each block from the end, recording the uses of each
912 register and establishing log links when def is encountered.
913 Note that we do not clear next_use array in order to save time,
914 so we have to test whether the use is in the same basic block as def.
915
916 There are a few cases below when we do not consider the definition or
917 usage -- these are taken from original flow.c did. Don't ask me why it is
918 done this way; I don't know and if it works, I don't want to know. */
919
920 FOR_EACH_BB (bb)
921 {
922 FOR_BB_INSNS_REVERSE (bb, insn)
923 {
924 if (!INSN_P (insn))
925 continue;
926
927 /* Log links are created only once. */
928 gcc_assert (!LOG_LINKS (insn));
929
930 for (def_vec = DF_INSN_DEFS (insn); *def_vec; def_vec++)
931 {
932 df_ref def = *def_vec;
933 int regno = DF_REF_REGNO (def);
934 rtx use_insn;
935
936 if (!next_use[regno])
937 continue;
938
939 /* Do not consider if it is pre/post modification in MEM. */
940 if (DF_REF_FLAGS (def) & DF_REF_PRE_POST_MODIFY)
941 continue;
942
943 /* Do not make the log link for frame pointer. */
944 if ((regno == FRAME_POINTER_REGNUM
945 && (! reload_completed || frame_pointer_needed))
946 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
947 || (regno == HARD_FRAME_POINTER_REGNUM
948 && (! reload_completed || frame_pointer_needed))
949 #endif
950 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
951 || (regno == ARG_POINTER_REGNUM && fixed_regs[regno])
952 #endif
953 )
954 continue;
955
956 use_insn = next_use[regno];
957 if (BLOCK_FOR_INSN (use_insn) == bb)
958 {
959 /* flow.c claimed:
960
961 We don't build a LOG_LINK for hard registers contained
962 in ASM_OPERANDs. If these registers get replaced,
963 we might wind up changing the semantics of the insn,
964 even if reload can make what appear to be valid
965 assignments later. */
966 if (regno >= FIRST_PSEUDO_REGISTER
967 || asm_noperands (PATTERN (use_insn)) < 0)
968 {
969 /* Don't add duplicate links between instructions. */
970 rtx links;
971 for (links = LOG_LINKS (use_insn); links;
972 links = XEXP (links, 1))
973 if (insn == XEXP (links, 0))
974 break;
975
976 if (!links)
977 LOG_LINKS (use_insn) =
978 alloc_INSN_LIST (insn, LOG_LINKS (use_insn));
979 }
980 }
981 next_use[regno] = NULL_RTX;
982 }
983
984 for (use_vec = DF_INSN_USES (insn); *use_vec; use_vec++)
985 {
986 df_ref use = *use_vec;
987 int regno = DF_REF_REGNO (use);
988
989 /* Do not consider the usage of the stack pointer
990 by function call. */
991 if (DF_REF_FLAGS (use) & DF_REF_CALL_STACK_USAGE)
992 continue;
993
994 next_use[regno] = insn;
995 }
996 }
997 }
998
999 free (next_use);
1000 }
1001
1002 /* Clear LOG_LINKS fields of insns. */
1003
1004 static void
1005 clear_log_links (void)
1006 {
1007 rtx insn;
1008
1009 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
1010 if (INSN_P (insn))
1011 free_INSN_LIST_list (&LOG_LINKS (insn));
1012 }
1013
1014
1015
1016 \f
1017 /* Main entry point for combiner. F is the first insn of the function.
1018 NREGS is the first unused pseudo-reg number.
1019
1020 Return nonzero if the combiner has turned an indirect jump
1021 instruction into a direct jump. */
1022 static int
1023 combine_instructions (rtx f, unsigned int nregs)
1024 {
1025 rtx insn, next;
1026 #ifdef HAVE_cc0
1027 rtx prev;
1028 #endif
1029 rtx links, nextlinks;
1030 rtx first;
1031
1032 int new_direct_jump_p = 0;
1033
1034 for (first = f; first && !INSN_P (first); )
1035 first = NEXT_INSN (first);
1036 if (!first)
1037 return 0;
1038
1039 combine_attempts = 0;
1040 combine_merges = 0;
1041 combine_extras = 0;
1042 combine_successes = 0;
1043
1044 rtl_hooks = combine_rtl_hooks;
1045
1046 VEC_safe_grow_cleared (reg_stat_type, heap, reg_stat, nregs);
1047
1048 init_recog_no_volatile ();
1049
1050 /* Allocate array for insn info. */
1051 max_uid_known = get_max_uid ();
1052 uid_log_links = XCNEWVEC (rtx, max_uid_known + 1);
1053 uid_insn_cost = XCNEWVEC (int, max_uid_known + 1);
1054
1055 nonzero_bits_mode = mode_for_size (HOST_BITS_PER_WIDE_INT, MODE_INT, 0);
1056
1057 /* Don't use reg_stat[].nonzero_bits when computing it. This can cause
1058 problems when, for example, we have j <<= 1 in a loop. */
1059
1060 nonzero_sign_valid = 0;
1061
1062 /* Scan all SETs and see if we can deduce anything about what
1063 bits are known to be zero for some registers and how many copies
1064 of the sign bit are known to exist for those registers.
1065
1066 Also set any known values so that we can use it while searching
1067 for what bits are known to be set. */
1068
1069 setup_incoming_promotions (first);
1070
1071 create_log_links ();
1072 label_tick_ebb_start = ENTRY_BLOCK_PTR->index;
1073 FOR_EACH_BB (this_basic_block)
1074 {
1075 optimize_this_for_speed_p = optimize_bb_for_speed_p (this_basic_block);
1076 last_call_luid = 0;
1077 mem_last_set = -1;
1078 label_tick = this_basic_block->index;
1079 if (!single_pred_p (this_basic_block)
1080 || single_pred (this_basic_block)->index != label_tick - 1)
1081 label_tick_ebb_start = label_tick;
1082 FOR_BB_INSNS (this_basic_block, insn)
1083 if (INSN_P (insn) && BLOCK_FOR_INSN (insn))
1084 {
1085 subst_low_luid = DF_INSN_LUID (insn);
1086 subst_insn = insn;
1087
1088 note_stores (PATTERN (insn), set_nonzero_bits_and_sign_copies,
1089 insn);
1090 record_dead_and_set_regs (insn);
1091
1092 #ifdef AUTO_INC_DEC
1093 for (links = REG_NOTES (insn); links; links = XEXP (links, 1))
1094 if (REG_NOTE_KIND (links) == REG_INC)
1095 set_nonzero_bits_and_sign_copies (XEXP (links, 0), NULL_RTX,
1096 insn);
1097 #endif
1098
1099 /* Record the current insn_rtx_cost of this instruction. */
1100 if (NONJUMP_INSN_P (insn))
1101 INSN_COST (insn) = insn_rtx_cost (PATTERN (insn),
1102 optimize_this_for_speed_p);
1103 if (dump_file)
1104 fprintf(dump_file, "insn_cost %d: %d\n",
1105 INSN_UID (insn), INSN_COST (insn));
1106 }
1107 }
1108
1109 nonzero_sign_valid = 1;
1110
1111 /* Now scan all the insns in forward order. */
1112
1113 label_tick_ebb_start = ENTRY_BLOCK_PTR->index;
1114 init_reg_last ();
1115 setup_incoming_promotions (first);
1116
1117 FOR_EACH_BB (this_basic_block)
1118 {
1119 optimize_this_for_speed_p = optimize_bb_for_speed_p (this_basic_block);
1120 last_call_luid = 0;
1121 mem_last_set = -1;
1122 label_tick = this_basic_block->index;
1123 if (!single_pred_p (this_basic_block)
1124 || single_pred (this_basic_block)->index != label_tick - 1)
1125 label_tick_ebb_start = label_tick;
1126 rtl_profile_for_bb (this_basic_block);
1127 for (insn = BB_HEAD (this_basic_block);
1128 insn != NEXT_INSN (BB_END (this_basic_block));
1129 insn = next ? next : NEXT_INSN (insn))
1130 {
1131 next = 0;
1132 if (INSN_P (insn))
1133 {
1134 /* See if we know about function return values before this
1135 insn based upon SUBREG flags. */
1136 check_promoted_subreg (insn, PATTERN (insn));
1137
1138 /* See if we can find hardregs and subreg of pseudos in
1139 narrower modes. This could help turning TRUNCATEs
1140 into SUBREGs. */
1141 note_uses (&PATTERN (insn), record_truncated_values, NULL);
1142
1143 /* Try this insn with each insn it links back to. */
1144
1145 for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
1146 if ((next = try_combine (insn, XEXP (links, 0),
1147 NULL_RTX, &new_direct_jump_p)) != 0)
1148 goto retry;
1149
1150 /* Try each sequence of three linked insns ending with this one. */
1151
1152 for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
1153 {
1154 rtx link = XEXP (links, 0);
1155
1156 /* If the linked insn has been replaced by a note, then there
1157 is no point in pursuing this chain any further. */
1158 if (NOTE_P (link))
1159 continue;
1160
1161 for (nextlinks = LOG_LINKS (link);
1162 nextlinks;
1163 nextlinks = XEXP (nextlinks, 1))
1164 if ((next = try_combine (insn, link,
1165 XEXP (nextlinks, 0),
1166 &new_direct_jump_p)) != 0)
1167 goto retry;
1168 }
1169
1170 #ifdef HAVE_cc0
1171 /* Try to combine a jump insn that uses CC0
1172 with a preceding insn that sets CC0, and maybe with its
1173 logical predecessor as well.
1174 This is how we make decrement-and-branch insns.
1175 We need this special code because data flow connections
1176 via CC0 do not get entered in LOG_LINKS. */
1177
1178 if (JUMP_P (insn)
1179 && (prev = prev_nonnote_insn (insn)) != 0
1180 && NONJUMP_INSN_P (prev)
1181 && sets_cc0_p (PATTERN (prev)))
1182 {
1183 if ((next = try_combine (insn, prev,
1184 NULL_RTX, &new_direct_jump_p)) != 0)
1185 goto retry;
1186
1187 for (nextlinks = LOG_LINKS (prev); nextlinks;
1188 nextlinks = XEXP (nextlinks, 1))
1189 if ((next = try_combine (insn, prev,
1190 XEXP (nextlinks, 0),
1191 &new_direct_jump_p)) != 0)
1192 goto retry;
1193 }
1194
1195 /* Do the same for an insn that explicitly references CC0. */
1196 if (NONJUMP_INSN_P (insn)
1197 && (prev = prev_nonnote_insn (insn)) != 0
1198 && NONJUMP_INSN_P (prev)
1199 && sets_cc0_p (PATTERN (prev))
1200 && GET_CODE (PATTERN (insn)) == SET
1201 && reg_mentioned_p (cc0_rtx, SET_SRC (PATTERN (insn))))
1202 {
1203 if ((next = try_combine (insn, prev,
1204 NULL_RTX, &new_direct_jump_p)) != 0)
1205 goto retry;
1206
1207 for (nextlinks = LOG_LINKS (prev); nextlinks;
1208 nextlinks = XEXP (nextlinks, 1))
1209 if ((next = try_combine (insn, prev,
1210 XEXP (nextlinks, 0),
1211 &new_direct_jump_p)) != 0)
1212 goto retry;
1213 }
1214
1215 /* Finally, see if any of the insns that this insn links to
1216 explicitly references CC0. If so, try this insn, that insn,
1217 and its predecessor if it sets CC0. */
1218 for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
1219 if (NONJUMP_INSN_P (XEXP (links, 0))
1220 && GET_CODE (PATTERN (XEXP (links, 0))) == SET
1221 && reg_mentioned_p (cc0_rtx, SET_SRC (PATTERN (XEXP (links, 0))))
1222 && (prev = prev_nonnote_insn (XEXP (links, 0))) != 0
1223 && NONJUMP_INSN_P (prev)
1224 && sets_cc0_p (PATTERN (prev))
1225 && (next = try_combine (insn, XEXP (links, 0),
1226 prev, &new_direct_jump_p)) != 0)
1227 goto retry;
1228 #endif
1229
1230 /* Try combining an insn with two different insns whose results it
1231 uses. */
1232 for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
1233 for (nextlinks = XEXP (links, 1); nextlinks;
1234 nextlinks = XEXP (nextlinks, 1))
1235 if ((next = try_combine (insn, XEXP (links, 0),
1236 XEXP (nextlinks, 0),
1237 &new_direct_jump_p)) != 0)
1238 goto retry;
1239
1240 /* Try this insn with each REG_EQUAL note it links back to. */
1241 for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
1242 {
1243 rtx set, note;
1244 rtx temp = XEXP (links, 0);
1245 if ((set = single_set (temp)) != 0
1246 && (note = find_reg_equal_equiv_note (temp)) != 0
1247 && (note = XEXP (note, 0), GET_CODE (note)) != EXPR_LIST
1248 /* Avoid using a register that may already been marked
1249 dead by an earlier instruction. */
1250 && ! unmentioned_reg_p (note, SET_SRC (set))
1251 && (GET_MODE (note) == VOIDmode
1252 ? SCALAR_INT_MODE_P (GET_MODE (SET_DEST (set)))
1253 : GET_MODE (SET_DEST (set)) == GET_MODE (note)))
1254 {
1255 /* Temporarily replace the set's source with the
1256 contents of the REG_EQUAL note. The insn will
1257 be deleted or recognized by try_combine. */
1258 rtx orig = SET_SRC (set);
1259 SET_SRC (set) = note;
1260 i2mod = temp;
1261 i2mod_old_rhs = copy_rtx (orig);
1262 i2mod_new_rhs = copy_rtx (note);
1263 next = try_combine (insn, i2mod, NULL_RTX,
1264 &new_direct_jump_p);
1265 i2mod = NULL_RTX;
1266 if (next)
1267 goto retry;
1268 SET_SRC (set) = orig;
1269 }
1270 }
1271
1272 if (!NOTE_P (insn))
1273 record_dead_and_set_regs (insn);
1274
1275 retry:
1276 ;
1277 }
1278 }
1279 }
1280
1281 default_rtl_profile ();
1282 clear_log_links ();
1283 clear_bb_flags ();
1284 new_direct_jump_p |= purge_all_dead_edges ();
1285 delete_noop_moves ();
1286
1287 /* Clean up. */
1288 free (uid_log_links);
1289 free (uid_insn_cost);
1290 VEC_free (reg_stat_type, heap, reg_stat);
1291
1292 {
1293 struct undo *undo, *next;
1294 for (undo = undobuf.frees; undo; undo = next)
1295 {
1296 next = undo->next;
1297 free (undo);
1298 }
1299 undobuf.frees = 0;
1300 }
1301
1302 total_attempts += combine_attempts;
1303 total_merges += combine_merges;
1304 total_extras += combine_extras;
1305 total_successes += combine_successes;
1306
1307 nonzero_sign_valid = 0;
1308 rtl_hooks = general_rtl_hooks;
1309
1310 /* Make recognizer allow volatile MEMs again. */
1311 init_recog ();
1312
1313 return new_direct_jump_p;
1314 }
1315
1316 /* Wipe the last_xxx fields of reg_stat in preparation for another pass. */
1317
1318 static void
1319 init_reg_last (void)
1320 {
1321 unsigned int i;
1322 reg_stat_type *p;
1323
1324 for (i = 0; VEC_iterate (reg_stat_type, reg_stat, i, p); ++i)
1325 memset (p, 0, offsetof (reg_stat_type, sign_bit_copies));
1326 }
1327 \f
1328 /* Set up any promoted values for incoming argument registers. */
1329
1330 static void
1331 setup_incoming_promotions (rtx first)
1332 {
1333 tree arg;
1334 bool strictly_local = false;
1335
1336 for (arg = DECL_ARGUMENTS (current_function_decl); arg;
1337 arg = TREE_CHAIN (arg))
1338 {
1339 rtx reg = DECL_INCOMING_RTL (arg);
1340 int uns1, uns3;
1341 enum machine_mode mode1, mode2, mode3, mode4;
1342
1343 /* Only continue if the incoming argument is in a register. */
1344 if (!REG_P (reg))
1345 continue;
1346
1347 /* Determine, if possible, whether all call sites of the current
1348 function lie within the current compilation unit. (This does
1349 take into account the exporting of a function via taking its
1350 address, and so forth.) */
1351 strictly_local = cgraph_local_info (current_function_decl)->local;
1352
1353 /* The mode and signedness of the argument before any promotions happen
1354 (equal to the mode of the pseudo holding it at that stage). */
1355 mode1 = TYPE_MODE (TREE_TYPE (arg));
1356 uns1 = TYPE_UNSIGNED (TREE_TYPE (arg));
1357
1358 /* The mode and signedness of the argument after any source language and
1359 TARGET_PROMOTE_PROTOTYPES-driven promotions. */
1360 mode2 = TYPE_MODE (DECL_ARG_TYPE (arg));
1361 uns3 = TYPE_UNSIGNED (DECL_ARG_TYPE (arg));
1362
1363 /* The mode and signedness of the argument as it is actually passed,
1364 after any TARGET_PROMOTE_FUNCTION_ARGS-driven ABI promotions. */
1365 mode3 = promote_function_mode (DECL_ARG_TYPE (arg), mode2, &uns3,
1366 TREE_TYPE (cfun->decl), 0);
1367
1368 /* The mode of the register in which the argument is being passed. */
1369 mode4 = GET_MODE (reg);
1370
1371 /* Eliminate sign extensions in the callee when possible. Only
1372 do this when:
1373 (a) a mode promotion has occurred;
1374 (b) the mode of the register is the same as the mode of
1375 the argument as it is passed; and
1376 (c) the signedness does not change across any of the promotions; and
1377 (d) when no language-level promotions (which we cannot guarantee
1378 will have been done by an external caller) are necessary,
1379 unless we know that this function is only ever called from
1380 the current compilation unit -- all of whose call sites will
1381 do the mode1 --> mode2 promotion. */
1382 if (mode1 != mode3
1383 && mode3 == mode4
1384 && uns1 == uns3
1385 && (mode1 == mode2 || strictly_local))
1386 {
1387 /* Record that the value was promoted from mode1 to mode3,
1388 so that any sign extension at the head of the current
1389 function may be eliminated. */
1390 rtx x;
1391 x = gen_rtx_CLOBBER (mode1, const0_rtx);
1392 x = gen_rtx_fmt_e ((uns3 ? ZERO_EXTEND : SIGN_EXTEND), mode3, x);
1393 record_value_for_reg (reg, first, x);
1394 }
1395 }
1396 }
1397
1398 /* Called via note_stores. If X is a pseudo that is narrower than
1399 HOST_BITS_PER_WIDE_INT and is being set, record what bits are known zero.
1400
1401 If we are setting only a portion of X and we can't figure out what
1402 portion, assume all bits will be used since we don't know what will
1403 be happening.
1404
1405 Similarly, set how many bits of X are known to be copies of the sign bit
1406 at all locations in the function. This is the smallest number implied
1407 by any set of X. */
1408
1409 static void
1410 set_nonzero_bits_and_sign_copies (rtx x, const_rtx set, void *data)
1411 {
1412 rtx insn = (rtx) data;
1413 unsigned int num;
1414
1415 if (REG_P (x)
1416 && REGNO (x) >= FIRST_PSEUDO_REGISTER
1417 /* If this register is undefined at the start of the file, we can't
1418 say what its contents were. */
1419 && ! REGNO_REG_SET_P
1420 (DF_LR_IN (ENTRY_BLOCK_PTR->next_bb), REGNO (x))
1421 && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT)
1422 {
1423 reg_stat_type *rsp = VEC_index (reg_stat_type, reg_stat, REGNO (x));
1424
1425 if (set == 0 || GET_CODE (set) == CLOBBER)
1426 {
1427 rsp->nonzero_bits = GET_MODE_MASK (GET_MODE (x));
1428 rsp->sign_bit_copies = 1;
1429 return;
1430 }
1431
1432 /* If this register is being initialized using itself, and the
1433 register is uninitialized in this basic block, and there are
1434 no LOG_LINKS which set the register, then part of the
1435 register is uninitialized. In that case we can't assume
1436 anything about the number of nonzero bits.
1437
1438 ??? We could do better if we checked this in
1439 reg_{nonzero_bits,num_sign_bit_copies}_for_combine. Then we
1440 could avoid making assumptions about the insn which initially
1441 sets the register, while still using the information in other
1442 insns. We would have to be careful to check every insn
1443 involved in the combination. */
1444
1445 if (insn
1446 && reg_referenced_p (x, PATTERN (insn))
1447 && !REGNO_REG_SET_P (DF_LR_IN (BLOCK_FOR_INSN (insn)),
1448 REGNO (x)))
1449 {
1450 rtx link;
1451
1452 for (link = LOG_LINKS (insn); link; link = XEXP (link, 1))
1453 {
1454 if (dead_or_set_p (XEXP (link, 0), x))
1455 break;
1456 }
1457 if (!link)
1458 {
1459 rsp->nonzero_bits = GET_MODE_MASK (GET_MODE (x));
1460 rsp->sign_bit_copies = 1;
1461 return;
1462 }
1463 }
1464
1465 /* If this is a complex assignment, see if we can convert it into a
1466 simple assignment. */
1467 set = expand_field_assignment (set);
1468
1469 /* If this is a simple assignment, or we have a paradoxical SUBREG,
1470 set what we know about X. */
1471
1472 if (SET_DEST (set) == x
1473 || (GET_CODE (SET_DEST (set)) == SUBREG
1474 && (GET_MODE_SIZE (GET_MODE (SET_DEST (set)))
1475 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (set)))))
1476 && SUBREG_REG (SET_DEST (set)) == x))
1477 {
1478 rtx src = SET_SRC (set);
1479
1480 #ifdef SHORT_IMMEDIATES_SIGN_EXTEND
1481 /* If X is narrower than a word and SRC is a non-negative
1482 constant that would appear negative in the mode of X,
1483 sign-extend it for use in reg_stat[].nonzero_bits because some
1484 machines (maybe most) will actually do the sign-extension
1485 and this is the conservative approach.
1486
1487 ??? For 2.5, try to tighten up the MD files in this regard
1488 instead of this kludge. */
1489
1490 if (GET_MODE_BITSIZE (GET_MODE (x)) < BITS_PER_WORD
1491 && CONST_INT_P (src)
1492 && INTVAL (src) > 0
1493 && 0 != (INTVAL (src)
1494 & ((HOST_WIDE_INT) 1
1495 << (GET_MODE_BITSIZE (GET_MODE (x)) - 1))))
1496 src = GEN_INT (INTVAL (src)
1497 | ((HOST_WIDE_INT) (-1)
1498 << GET_MODE_BITSIZE (GET_MODE (x))));
1499 #endif
1500
1501 /* Don't call nonzero_bits if it cannot change anything. */
1502 if (rsp->nonzero_bits != ~(unsigned HOST_WIDE_INT) 0)
1503 rsp->nonzero_bits |= nonzero_bits (src, nonzero_bits_mode);
1504 num = num_sign_bit_copies (SET_SRC (set), GET_MODE (x));
1505 if (rsp->sign_bit_copies == 0
1506 || rsp->sign_bit_copies > num)
1507 rsp->sign_bit_copies = num;
1508 }
1509 else
1510 {
1511 rsp->nonzero_bits = GET_MODE_MASK (GET_MODE (x));
1512 rsp->sign_bit_copies = 1;
1513 }
1514 }
1515 }
1516 \f
1517 /* See if INSN can be combined into I3. PRED and SUCC are optionally
1518 insns that were previously combined into I3 or that will be combined
1519 into the merger of INSN and I3.
1520
1521 Return 0 if the combination is not allowed for any reason.
1522
1523 If the combination is allowed, *PDEST will be set to the single
1524 destination of INSN and *PSRC to the single source, and this function
1525 will return 1. */
1526
1527 static int
1528 can_combine_p (rtx insn, rtx i3, rtx pred ATTRIBUTE_UNUSED, rtx succ,
1529 rtx *pdest, rtx *psrc)
1530 {
1531 int i;
1532 const_rtx set = 0;
1533 rtx src, dest;
1534 rtx p;
1535 #ifdef AUTO_INC_DEC
1536 rtx link;
1537 #endif
1538 int all_adjacent = (succ ? (next_active_insn (insn) == succ
1539 && next_active_insn (succ) == i3)
1540 : next_active_insn (insn) == i3);
1541
1542 /* Can combine only if previous insn is a SET of a REG, a SUBREG or CC0.
1543 or a PARALLEL consisting of such a SET and CLOBBERs.
1544
1545 If INSN has CLOBBER parallel parts, ignore them for our processing.
1546 By definition, these happen during the execution of the insn. When it
1547 is merged with another insn, all bets are off. If they are, in fact,
1548 needed and aren't also supplied in I3, they may be added by
1549 recog_for_combine. Otherwise, it won't match.
1550
1551 We can also ignore a SET whose SET_DEST is mentioned in a REG_UNUSED
1552 note.
1553
1554 Get the source and destination of INSN. If more than one, can't
1555 combine. */
1556
1557 if (GET_CODE (PATTERN (insn)) == SET)
1558 set = PATTERN (insn);
1559 else if (GET_CODE (PATTERN (insn)) == PARALLEL
1560 && GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == SET)
1561 {
1562 for (i = 0; i < XVECLEN (PATTERN (insn), 0); i++)
1563 {
1564 rtx elt = XVECEXP (PATTERN (insn), 0, i);
1565 rtx note;
1566
1567 switch (GET_CODE (elt))
1568 {
1569 /* This is important to combine floating point insns
1570 for the SH4 port. */
1571 case USE:
1572 /* Combining an isolated USE doesn't make sense.
1573 We depend here on combinable_i3pat to reject them. */
1574 /* The code below this loop only verifies that the inputs of
1575 the SET in INSN do not change. We call reg_set_between_p
1576 to verify that the REG in the USE does not change between
1577 I3 and INSN.
1578 If the USE in INSN was for a pseudo register, the matching
1579 insn pattern will likely match any register; combining this
1580 with any other USE would only be safe if we knew that the
1581 used registers have identical values, or if there was
1582 something to tell them apart, e.g. different modes. For
1583 now, we forgo such complicated tests and simply disallow
1584 combining of USES of pseudo registers with any other USE. */
1585 if (REG_P (XEXP (elt, 0))
1586 && GET_CODE (PATTERN (i3)) == PARALLEL)
1587 {
1588 rtx i3pat = PATTERN (i3);
1589 int i = XVECLEN (i3pat, 0) - 1;
1590 unsigned int regno = REGNO (XEXP (elt, 0));
1591
1592 do
1593 {
1594 rtx i3elt = XVECEXP (i3pat, 0, i);
1595
1596 if (GET_CODE (i3elt) == USE
1597 && REG_P (XEXP (i3elt, 0))
1598 && (REGNO (XEXP (i3elt, 0)) == regno
1599 ? reg_set_between_p (XEXP (elt, 0),
1600 PREV_INSN (insn), i3)
1601 : regno >= FIRST_PSEUDO_REGISTER))
1602 return 0;
1603 }
1604 while (--i >= 0);
1605 }
1606 break;
1607
1608 /* We can ignore CLOBBERs. */
1609 case CLOBBER:
1610 break;
1611
1612 case SET:
1613 /* Ignore SETs whose result isn't used but not those that
1614 have side-effects. */
1615 if (find_reg_note (insn, REG_UNUSED, SET_DEST (elt))
1616 && (!(note = find_reg_note (insn, REG_EH_REGION, NULL_RTX))
1617 || INTVAL (XEXP (note, 0)) <= 0)
1618 && ! side_effects_p (elt))
1619 break;
1620
1621 /* If we have already found a SET, this is a second one and
1622 so we cannot combine with this insn. */
1623 if (set)
1624 return 0;
1625
1626 set = elt;
1627 break;
1628
1629 default:
1630 /* Anything else means we can't combine. */
1631 return 0;
1632 }
1633 }
1634
1635 if (set == 0
1636 /* If SET_SRC is an ASM_OPERANDS we can't throw away these CLOBBERs,
1637 so don't do anything with it. */
1638 || GET_CODE (SET_SRC (set)) == ASM_OPERANDS)
1639 return 0;
1640 }
1641 else
1642 return 0;
1643
1644 if (set == 0)
1645 return 0;
1646
1647 set = expand_field_assignment (set);
1648 src = SET_SRC (set), dest = SET_DEST (set);
1649
1650 /* Don't eliminate a store in the stack pointer. */
1651 if (dest == stack_pointer_rtx
1652 /* Don't combine with an insn that sets a register to itself if it has
1653 a REG_EQUAL note. This may be part of a LIBCALL sequence. */
1654 || (rtx_equal_p (src, dest) && find_reg_note (insn, REG_EQUAL, NULL_RTX))
1655 /* Can't merge an ASM_OPERANDS. */
1656 || GET_CODE (src) == ASM_OPERANDS
1657 /* Can't merge a function call. */
1658 || GET_CODE (src) == CALL
1659 /* Don't eliminate a function call argument. */
1660 || (CALL_P (i3)
1661 && (find_reg_fusage (i3, USE, dest)
1662 || (REG_P (dest)
1663 && REGNO (dest) < FIRST_PSEUDO_REGISTER
1664 && global_regs[REGNO (dest)])))
1665 /* Don't substitute into an incremented register. */
1666 || FIND_REG_INC_NOTE (i3, dest)
1667 || (succ && FIND_REG_INC_NOTE (succ, dest))
1668 /* Don't substitute into a non-local goto, this confuses CFG. */
1669 || (JUMP_P (i3) && find_reg_note (i3, REG_NON_LOCAL_GOTO, NULL_RTX))
1670 /* Make sure that DEST is not used after SUCC but before I3. */
1671 || (succ && ! all_adjacent
1672 && reg_used_between_p (dest, succ, i3))
1673 /* Make sure that the value that is to be substituted for the register
1674 does not use any registers whose values alter in between. However,
1675 If the insns are adjacent, a use can't cross a set even though we
1676 think it might (this can happen for a sequence of insns each setting
1677 the same destination; last_set of that register might point to
1678 a NOTE). If INSN has a REG_EQUIV note, the register is always
1679 equivalent to the memory so the substitution is valid even if there
1680 are intervening stores. Also, don't move a volatile asm or
1681 UNSPEC_VOLATILE across any other insns. */
1682 || (! all_adjacent
1683 && (((!MEM_P (src)
1684 || ! find_reg_note (insn, REG_EQUIV, src))
1685 && use_crosses_set_p (src, DF_INSN_LUID (insn)))
1686 || (GET_CODE (src) == ASM_OPERANDS && MEM_VOLATILE_P (src))
1687 || GET_CODE (src) == UNSPEC_VOLATILE))
1688 /* Don't combine across a CALL_INSN, because that would possibly
1689 change whether the life span of some REGs crosses calls or not,
1690 and it is a pain to update that information.
1691 Exception: if source is a constant, moving it later can't hurt.
1692 Accept that as a special case. */
1693 || (DF_INSN_LUID (insn) < last_call_luid && ! CONSTANT_P (src)))
1694 return 0;
1695
1696 /* DEST must either be a REG or CC0. */
1697 if (REG_P (dest))
1698 {
1699 /* If register alignment is being enforced for multi-word items in all
1700 cases except for parameters, it is possible to have a register copy
1701 insn referencing a hard register that is not allowed to contain the
1702 mode being copied and which would not be valid as an operand of most
1703 insns. Eliminate this problem by not combining with such an insn.
1704
1705 Also, on some machines we don't want to extend the life of a hard
1706 register. */
1707
1708 if (REG_P (src)
1709 && ((REGNO (dest) < FIRST_PSEUDO_REGISTER
1710 && ! HARD_REGNO_MODE_OK (REGNO (dest), GET_MODE (dest)))
1711 /* Don't extend the life of a hard register unless it is
1712 user variable (if we have few registers) or it can't
1713 fit into the desired register (meaning something special
1714 is going on).
1715 Also avoid substituting a return register into I3, because
1716 reload can't handle a conflict with constraints of other
1717 inputs. */
1718 || (REGNO (src) < FIRST_PSEUDO_REGISTER
1719 && ! HARD_REGNO_MODE_OK (REGNO (src), GET_MODE (src)))))
1720 return 0;
1721 }
1722 else if (GET_CODE (dest) != CC0)
1723 return 0;
1724
1725
1726 if (GET_CODE (PATTERN (i3)) == PARALLEL)
1727 for (i = XVECLEN (PATTERN (i3), 0) - 1; i >= 0; i--)
1728 if (GET_CODE (XVECEXP (PATTERN (i3), 0, i)) == CLOBBER)
1729 {
1730 /* Don't substitute for a register intended as a clobberable
1731 operand. */
1732 rtx reg = XEXP (XVECEXP (PATTERN (i3), 0, i), 0);
1733 if (rtx_equal_p (reg, dest))
1734 return 0;
1735
1736 /* If the clobber represents an earlyclobber operand, we must not
1737 substitute an expression containing the clobbered register.
1738 As we do not analyze the constraint strings here, we have to
1739 make the conservative assumption. However, if the register is
1740 a fixed hard reg, the clobber cannot represent any operand;
1741 we leave it up to the machine description to either accept or
1742 reject use-and-clobber patterns. */
1743 if (!REG_P (reg)
1744 || REGNO (reg) >= FIRST_PSEUDO_REGISTER
1745 || !fixed_regs[REGNO (reg)])
1746 if (reg_overlap_mentioned_p (reg, src))
1747 return 0;
1748 }
1749
1750 /* If INSN contains anything volatile, or is an `asm' (whether volatile
1751 or not), reject, unless nothing volatile comes between it and I3 */
1752
1753 if (GET_CODE (src) == ASM_OPERANDS || volatile_refs_p (src))
1754 {
1755 /* Make sure succ doesn't contain a volatile reference. */
1756 if (succ != 0 && volatile_refs_p (PATTERN (succ)))
1757 return 0;
1758
1759 for (p = NEXT_INSN (insn); p != i3; p = NEXT_INSN (p))
1760 if (INSN_P (p) && p != succ && volatile_refs_p (PATTERN (p)))
1761 return 0;
1762 }
1763
1764 /* If INSN is an asm, and DEST is a hard register, reject, since it has
1765 to be an explicit register variable, and was chosen for a reason. */
1766
1767 if (GET_CODE (src) == ASM_OPERANDS
1768 && REG_P (dest) && REGNO (dest) < FIRST_PSEUDO_REGISTER)
1769 return 0;
1770
1771 /* If there are any volatile insns between INSN and I3, reject, because
1772 they might affect machine state. */
1773
1774 for (p = NEXT_INSN (insn); p != i3; p = NEXT_INSN (p))
1775 if (INSN_P (p) && p != succ && volatile_insn_p (PATTERN (p)))
1776 return 0;
1777
1778 /* If INSN contains an autoincrement or autodecrement, make sure that
1779 register is not used between there and I3, and not already used in
1780 I3 either. Neither must it be used in PRED or SUCC, if they exist.
1781 Also insist that I3 not be a jump; if it were one
1782 and the incremented register were spilled, we would lose. */
1783
1784 #ifdef AUTO_INC_DEC
1785 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1786 if (REG_NOTE_KIND (link) == REG_INC
1787 && (JUMP_P (i3)
1788 || reg_used_between_p (XEXP (link, 0), insn, i3)
1789 || (pred != NULL_RTX
1790 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (pred)))
1791 || (succ != NULL_RTX
1792 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (succ)))
1793 || reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i3))))
1794 return 0;
1795 #endif
1796
1797 #ifdef HAVE_cc0
1798 /* Don't combine an insn that follows a CC0-setting insn.
1799 An insn that uses CC0 must not be separated from the one that sets it.
1800 We do, however, allow I2 to follow a CC0-setting insn if that insn
1801 is passed as I1; in that case it will be deleted also.
1802 We also allow combining in this case if all the insns are adjacent
1803 because that would leave the two CC0 insns adjacent as well.
1804 It would be more logical to test whether CC0 occurs inside I1 or I2,
1805 but that would be much slower, and this ought to be equivalent. */
1806
1807 p = prev_nonnote_insn (insn);
1808 if (p && p != pred && NONJUMP_INSN_P (p) && sets_cc0_p (PATTERN (p))
1809 && ! all_adjacent)
1810 return 0;
1811 #endif
1812
1813 /* If we get here, we have passed all the tests and the combination is
1814 to be allowed. */
1815
1816 *pdest = dest;
1817 *psrc = src;
1818
1819 return 1;
1820 }
1821 \f
1822 /* LOC is the location within I3 that contains its pattern or the component
1823 of a PARALLEL of the pattern. We validate that it is valid for combining.
1824
1825 One problem is if I3 modifies its output, as opposed to replacing it
1826 entirely, we can't allow the output to contain I2DEST or I1DEST as doing
1827 so would produce an insn that is not equivalent to the original insns.
1828
1829 Consider:
1830
1831 (set (reg:DI 101) (reg:DI 100))
1832 (set (subreg:SI (reg:DI 101) 0) <foo>)
1833
1834 This is NOT equivalent to:
1835
1836 (parallel [(set (subreg:SI (reg:DI 100) 0) <foo>)
1837 (set (reg:DI 101) (reg:DI 100))])
1838
1839 Not only does this modify 100 (in which case it might still be valid
1840 if 100 were dead in I2), it sets 101 to the ORIGINAL value of 100.
1841
1842 We can also run into a problem if I2 sets a register that I1
1843 uses and I1 gets directly substituted into I3 (not via I2). In that
1844 case, we would be getting the wrong value of I2DEST into I3, so we
1845 must reject the combination. This case occurs when I2 and I1 both
1846 feed into I3, rather than when I1 feeds into I2, which feeds into I3.
1847 If I1_NOT_IN_SRC is nonzero, it means that finding I1 in the source
1848 of a SET must prevent combination from occurring.
1849
1850 Before doing the above check, we first try to expand a field assignment
1851 into a set of logical operations.
1852
1853 If PI3_DEST_KILLED is nonzero, it is a pointer to a location in which
1854 we place a register that is both set and used within I3. If more than one
1855 such register is detected, we fail.
1856
1857 Return 1 if the combination is valid, zero otherwise. */
1858
1859 static int
1860 combinable_i3pat (rtx i3, rtx *loc, rtx i2dest, rtx i1dest,
1861 int i1_not_in_src, rtx *pi3dest_killed)
1862 {
1863 rtx x = *loc;
1864
1865 if (GET_CODE (x) == SET)
1866 {
1867 rtx set = x ;
1868 rtx dest = SET_DEST (set);
1869 rtx src = SET_SRC (set);
1870 rtx inner_dest = dest;
1871 rtx subdest;
1872
1873 while (GET_CODE (inner_dest) == STRICT_LOW_PART
1874 || GET_CODE (inner_dest) == SUBREG
1875 || GET_CODE (inner_dest) == ZERO_EXTRACT)
1876 inner_dest = XEXP (inner_dest, 0);
1877
1878 /* Check for the case where I3 modifies its output, as discussed
1879 above. We don't want to prevent pseudos from being combined
1880 into the address of a MEM, so only prevent the combination if
1881 i1 or i2 set the same MEM. */
1882 if ((inner_dest != dest &&
1883 (!MEM_P (inner_dest)
1884 || rtx_equal_p (i2dest, inner_dest)
1885 || (i1dest && rtx_equal_p (i1dest, inner_dest)))
1886 && (reg_overlap_mentioned_p (i2dest, inner_dest)
1887 || (i1dest && reg_overlap_mentioned_p (i1dest, inner_dest))))
1888
1889 /* This is the same test done in can_combine_p except we can't test
1890 all_adjacent; we don't have to, since this instruction will stay
1891 in place, thus we are not considering increasing the lifetime of
1892 INNER_DEST.
1893
1894 Also, if this insn sets a function argument, combining it with
1895 something that might need a spill could clobber a previous
1896 function argument; the all_adjacent test in can_combine_p also
1897 checks this; here, we do a more specific test for this case. */
1898
1899 || (REG_P (inner_dest)
1900 && REGNO (inner_dest) < FIRST_PSEUDO_REGISTER
1901 && (! HARD_REGNO_MODE_OK (REGNO (inner_dest),
1902 GET_MODE (inner_dest))))
1903 || (i1_not_in_src && reg_overlap_mentioned_p (i1dest, src)))
1904 return 0;
1905
1906 /* If DEST is used in I3, it is being killed in this insn, so
1907 record that for later. We have to consider paradoxical
1908 subregs here, since they kill the whole register, but we
1909 ignore partial subregs, STRICT_LOW_PART, etc.
1910 Never add REG_DEAD notes for the FRAME_POINTER_REGNUM or the
1911 STACK_POINTER_REGNUM, since these are always considered to be
1912 live. Similarly for ARG_POINTER_REGNUM if it is fixed. */
1913 subdest = dest;
1914 if (GET_CODE (subdest) == SUBREG
1915 && (GET_MODE_SIZE (GET_MODE (subdest))
1916 >= GET_MODE_SIZE (GET_MODE (SUBREG_REG (subdest)))))
1917 subdest = SUBREG_REG (subdest);
1918 if (pi3dest_killed
1919 && REG_P (subdest)
1920 && reg_referenced_p (subdest, PATTERN (i3))
1921 && REGNO (subdest) != FRAME_POINTER_REGNUM
1922 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
1923 && REGNO (subdest) != HARD_FRAME_POINTER_REGNUM
1924 #endif
1925 #if ARG_POINTER_REGNUM != FRAME_POINTER_REGNUM
1926 && (REGNO (subdest) != ARG_POINTER_REGNUM
1927 || ! fixed_regs [REGNO (subdest)])
1928 #endif
1929 && REGNO (subdest) != STACK_POINTER_REGNUM)
1930 {
1931 if (*pi3dest_killed)
1932 return 0;
1933
1934 *pi3dest_killed = subdest;
1935 }
1936 }
1937
1938 else if (GET_CODE (x) == PARALLEL)
1939 {
1940 int i;
1941
1942 for (i = 0; i < XVECLEN (x, 0); i++)
1943 if (! combinable_i3pat (i3, &XVECEXP (x, 0, i), i2dest, i1dest,
1944 i1_not_in_src, pi3dest_killed))
1945 return 0;
1946 }
1947
1948 return 1;
1949 }
1950 \f
1951 /* Return 1 if X is an arithmetic expression that contains a multiplication
1952 and division. We don't count multiplications by powers of two here. */
1953
1954 static int
1955 contains_muldiv (rtx x)
1956 {
1957 switch (GET_CODE (x))
1958 {
1959 case MOD: case DIV: case UMOD: case UDIV:
1960 return 1;
1961
1962 case MULT:
1963 return ! (CONST_INT_P (XEXP (x, 1))
1964 && exact_log2 (INTVAL (XEXP (x, 1))) >= 0);
1965 default:
1966 if (BINARY_P (x))
1967 return contains_muldiv (XEXP (x, 0))
1968 || contains_muldiv (XEXP (x, 1));
1969
1970 if (UNARY_P (x))
1971 return contains_muldiv (XEXP (x, 0));
1972
1973 return 0;
1974 }
1975 }
1976 \f
1977 /* Determine whether INSN can be used in a combination. Return nonzero if
1978 not. This is used in try_combine to detect early some cases where we
1979 can't perform combinations. */
1980
1981 static int
1982 cant_combine_insn_p (rtx insn)
1983 {
1984 rtx set;
1985 rtx src, dest;
1986
1987 /* If this isn't really an insn, we can't do anything.
1988 This can occur when flow deletes an insn that it has merged into an
1989 auto-increment address. */
1990 if (! INSN_P (insn))
1991 return 1;
1992
1993 /* Never combine loads and stores involving hard regs that are likely
1994 to be spilled. The register allocator can usually handle such
1995 reg-reg moves by tying. If we allow the combiner to make
1996 substitutions of likely-spilled regs, reload might die.
1997 As an exception, we allow combinations involving fixed regs; these are
1998 not available to the register allocator so there's no risk involved. */
1999
2000 set = single_set (insn);
2001 if (! set)
2002 return 0;
2003 src = SET_SRC (set);
2004 dest = SET_DEST (set);
2005 if (GET_CODE (src) == SUBREG)
2006 src = SUBREG_REG (src);
2007 if (GET_CODE (dest) == SUBREG)
2008 dest = SUBREG_REG (dest);
2009 if (REG_P (src) && REG_P (dest)
2010 && ((REGNO (src) < FIRST_PSEUDO_REGISTER
2011 && ! fixed_regs[REGNO (src)]
2012 && CLASS_LIKELY_SPILLED_P (REGNO_REG_CLASS (REGNO (src))))
2013 || (REGNO (dest) < FIRST_PSEUDO_REGISTER
2014 && ! fixed_regs[REGNO (dest)]
2015 && CLASS_LIKELY_SPILLED_P (REGNO_REG_CLASS (REGNO (dest))))))
2016 return 1;
2017
2018 return 0;
2019 }
2020
2021 struct likely_spilled_retval_info
2022 {
2023 unsigned regno, nregs;
2024 unsigned mask;
2025 };
2026
2027 /* Called via note_stores by likely_spilled_retval_p. Remove from info->mask
2028 hard registers that are known to be written to / clobbered in full. */
2029 static void
2030 likely_spilled_retval_1 (rtx x, const_rtx set, void *data)
2031 {
2032 struct likely_spilled_retval_info *const info =
2033 (struct likely_spilled_retval_info *) data;
2034 unsigned regno, nregs;
2035 unsigned new_mask;
2036
2037 if (!REG_P (XEXP (set, 0)))
2038 return;
2039 regno = REGNO (x);
2040 if (regno >= info->regno + info->nregs)
2041 return;
2042 nregs = hard_regno_nregs[regno][GET_MODE (x)];
2043 if (regno + nregs <= info->regno)
2044 return;
2045 new_mask = (2U << (nregs - 1)) - 1;
2046 if (regno < info->regno)
2047 new_mask >>= info->regno - regno;
2048 else
2049 new_mask <<= regno - info->regno;
2050 info->mask &= ~new_mask;
2051 }
2052
2053 /* Return nonzero iff part of the return value is live during INSN, and
2054 it is likely spilled. This can happen when more than one insn is needed
2055 to copy the return value, e.g. when we consider to combine into the
2056 second copy insn for a complex value. */
2057
2058 static int
2059 likely_spilled_retval_p (rtx insn)
2060 {
2061 rtx use = BB_END (this_basic_block);
2062 rtx reg, p;
2063 unsigned regno, nregs;
2064 /* We assume here that no machine mode needs more than
2065 32 hard registers when the value overlaps with a register
2066 for which FUNCTION_VALUE_REGNO_P is true. */
2067 unsigned mask;
2068 struct likely_spilled_retval_info info;
2069
2070 if (!NONJUMP_INSN_P (use) || GET_CODE (PATTERN (use)) != USE || insn == use)
2071 return 0;
2072 reg = XEXP (PATTERN (use), 0);
2073 if (!REG_P (reg) || !FUNCTION_VALUE_REGNO_P (REGNO (reg)))
2074 return 0;
2075 regno = REGNO (reg);
2076 nregs = hard_regno_nregs[regno][GET_MODE (reg)];
2077 if (nregs == 1)
2078 return 0;
2079 mask = (2U << (nregs - 1)) - 1;
2080
2081 /* Disregard parts of the return value that are set later. */
2082 info.regno = regno;
2083 info.nregs = nregs;
2084 info.mask = mask;
2085 for (p = PREV_INSN (use); info.mask && p != insn; p = PREV_INSN (p))
2086 if (INSN_P (p))
2087 note_stores (PATTERN (p), likely_spilled_retval_1, &info);
2088 mask = info.mask;
2089
2090 /* Check if any of the (probably) live return value registers is
2091 likely spilled. */
2092 nregs --;
2093 do
2094 {
2095 if ((mask & 1 << nregs)
2096 && CLASS_LIKELY_SPILLED_P (REGNO_REG_CLASS (regno + nregs)))
2097 return 1;
2098 } while (nregs--);
2099 return 0;
2100 }
2101
2102 /* Adjust INSN after we made a change to its destination.
2103
2104 Changing the destination can invalidate notes that say something about
2105 the results of the insn and a LOG_LINK pointing to the insn. */
2106
2107 static void
2108 adjust_for_new_dest (rtx insn)
2109 {
2110 /* For notes, be conservative and simply remove them. */
2111 remove_reg_equal_equiv_notes (insn);
2112
2113 /* The new insn will have a destination that was previously the destination
2114 of an insn just above it. Call distribute_links to make a LOG_LINK from
2115 the next use of that destination. */
2116 distribute_links (gen_rtx_INSN_LIST (VOIDmode, insn, NULL_RTX));
2117
2118 df_insn_rescan (insn);
2119 }
2120
2121 /* Return TRUE if combine can reuse reg X in mode MODE.
2122 ADDED_SETS is nonzero if the original set is still required. */
2123 static bool
2124 can_change_dest_mode (rtx x, int added_sets, enum machine_mode mode)
2125 {
2126 unsigned int regno;
2127
2128 if (!REG_P(x))
2129 return false;
2130
2131 regno = REGNO (x);
2132 /* Allow hard registers if the new mode is legal, and occupies no more
2133 registers than the old mode. */
2134 if (regno < FIRST_PSEUDO_REGISTER)
2135 return (HARD_REGNO_MODE_OK (regno, mode)
2136 && (hard_regno_nregs[regno][GET_MODE (x)]
2137 >= hard_regno_nregs[regno][mode]));
2138
2139 /* Or a pseudo that is only used once. */
2140 return (REG_N_SETS (regno) == 1 && !added_sets
2141 && !REG_USERVAR_P (x));
2142 }
2143
2144
2145 /* Check whether X, the destination of a set, refers to part of
2146 the register specified by REG. */
2147
2148 static bool
2149 reg_subword_p (rtx x, rtx reg)
2150 {
2151 /* Check that reg is an integer mode register. */
2152 if (!REG_P (reg) || GET_MODE_CLASS (GET_MODE (reg)) != MODE_INT)
2153 return false;
2154
2155 if (GET_CODE (x) == STRICT_LOW_PART
2156 || GET_CODE (x) == ZERO_EXTRACT)
2157 x = XEXP (x, 0);
2158
2159 return GET_CODE (x) == SUBREG
2160 && SUBREG_REG (x) == reg
2161 && GET_MODE_CLASS (GET_MODE (x)) == MODE_INT;
2162 }
2163
2164
2165 /* Delete the conditional jump INSN and adjust the CFG correspondingly.
2166 Note that the INSN should be deleted *after* removing dead edges, so
2167 that the kept edge is the fallthrough edge for a (set (pc) (pc))
2168 but not for a (set (pc) (label_ref FOO)). */
2169
2170 static void
2171 update_cfg_for_uncondjump (rtx insn)
2172 {
2173 basic_block bb = BLOCK_FOR_INSN (insn);
2174
2175 if (BB_END (bb) == insn)
2176 purge_dead_edges (bb);
2177
2178 delete_insn (insn);
2179 if (EDGE_COUNT (bb->succs) == 1)
2180 single_succ_edge (bb)->flags |= EDGE_FALLTHRU;
2181 }
2182
2183
2184 /* Try to combine the insns I1 and I2 into I3.
2185 Here I1 and I2 appear earlier than I3.
2186 I1 can be zero; then we combine just I2 into I3.
2187
2188 If we are combining three insns and the resulting insn is not recognized,
2189 try splitting it into two insns. If that happens, I2 and I3 are retained
2190 and I1 is pseudo-deleted by turning it into a NOTE. Otherwise, I1 and I2
2191 are pseudo-deleted.
2192
2193 Return 0 if the combination does not work. Then nothing is changed.
2194 If we did the combination, return the insn at which combine should
2195 resume scanning.
2196
2197 Set NEW_DIRECT_JUMP_P to a nonzero value if try_combine creates a
2198 new direct jump instruction. */
2199
2200 static rtx
2201 try_combine (rtx i3, rtx i2, rtx i1, int *new_direct_jump_p)
2202 {
2203 /* New patterns for I3 and I2, respectively. */
2204 rtx newpat, newi2pat = 0;
2205 rtvec newpat_vec_with_clobbers = 0;
2206 int substed_i2 = 0, substed_i1 = 0;
2207 /* Indicates need to preserve SET in I1 or I2 in I3 if it is not dead. */
2208 int added_sets_1, added_sets_2;
2209 /* Total number of SETs to put into I3. */
2210 int total_sets;
2211 /* Nonzero if I2's body now appears in I3. */
2212 int i2_is_used;
2213 /* INSN_CODEs for new I3, new I2, and user of condition code. */
2214 int insn_code_number, i2_code_number = 0, other_code_number = 0;
2215 /* Contains I3 if the destination of I3 is used in its source, which means
2216 that the old life of I3 is being killed. If that usage is placed into
2217 I2 and not in I3, a REG_DEAD note must be made. */
2218 rtx i3dest_killed = 0;
2219 /* SET_DEST and SET_SRC of I2 and I1. */
2220 rtx i2dest, i2src, i1dest = 0, i1src = 0;
2221 /* PATTERN (I1) and PATTERN (I2), or a copy of it in certain cases. */
2222 rtx i1pat = 0, i2pat = 0;
2223 /* Indicates if I2DEST or I1DEST is in I2SRC or I1_SRC. */
2224 int i2dest_in_i2src = 0, i1dest_in_i1src = 0, i2dest_in_i1src = 0;
2225 int i2dest_killed = 0, i1dest_killed = 0;
2226 int i1_feeds_i3 = 0;
2227 /* Notes that must be added to REG_NOTES in I3 and I2. */
2228 rtx new_i3_notes, new_i2_notes;
2229 /* Notes that we substituted I3 into I2 instead of the normal case. */
2230 int i3_subst_into_i2 = 0;
2231 /* Notes that I1, I2 or I3 is a MULT operation. */
2232 int have_mult = 0;
2233 int swap_i2i3 = 0;
2234 int changed_i3_dest = 0;
2235
2236 int maxreg;
2237 rtx temp;
2238 rtx link;
2239 rtx other_pat = 0;
2240 rtx new_other_notes;
2241 int i;
2242
2243 /* Exit early if one of the insns involved can't be used for
2244 combinations. */
2245 if (cant_combine_insn_p (i3)
2246 || cant_combine_insn_p (i2)
2247 || (i1 && cant_combine_insn_p (i1))
2248 || likely_spilled_retval_p (i3))
2249 return 0;
2250
2251 combine_attempts++;
2252 undobuf.other_insn = 0;
2253
2254 /* Reset the hard register usage information. */
2255 CLEAR_HARD_REG_SET (newpat_used_regs);
2256
2257 if (dump_file && (dump_flags & TDF_DETAILS))
2258 {
2259 if (i1)
2260 fprintf (dump_file, "\nTrying %d, %d -> %d:\n",
2261 INSN_UID (i1), INSN_UID (i2), INSN_UID (i3));
2262 else
2263 fprintf (dump_file, "\nTrying %d -> %d:\n",
2264 INSN_UID (i2), INSN_UID (i3));
2265 }
2266
2267 /* If I1 and I2 both feed I3, they can be in any order. To simplify the
2268 code below, set I1 to be the earlier of the two insns. */
2269 if (i1 && DF_INSN_LUID (i1) > DF_INSN_LUID (i2))
2270 temp = i1, i1 = i2, i2 = temp;
2271
2272 added_links_insn = 0;
2273
2274 /* First check for one important special-case that the code below will
2275 not handle. Namely, the case where I1 is zero, I2 is a PARALLEL
2276 and I3 is a SET whose SET_SRC is a SET_DEST in I2. In that case,
2277 we may be able to replace that destination with the destination of I3.
2278 This occurs in the common code where we compute both a quotient and
2279 remainder into a structure, in which case we want to do the computation
2280 directly into the structure to avoid register-register copies.
2281
2282 Note that this case handles both multiple sets in I2 and also
2283 cases where I2 has a number of CLOBBER or PARALLELs.
2284
2285 We make very conservative checks below and only try to handle the
2286 most common cases of this. For example, we only handle the case
2287 where I2 and I3 are adjacent to avoid making difficult register
2288 usage tests. */
2289
2290 if (i1 == 0 && NONJUMP_INSN_P (i3) && GET_CODE (PATTERN (i3)) == SET
2291 && REG_P (SET_SRC (PATTERN (i3)))
2292 && REGNO (SET_SRC (PATTERN (i3))) >= FIRST_PSEUDO_REGISTER
2293 && find_reg_note (i3, REG_DEAD, SET_SRC (PATTERN (i3)))
2294 && GET_CODE (PATTERN (i2)) == PARALLEL
2295 && ! side_effects_p (SET_DEST (PATTERN (i3)))
2296 /* If the dest of I3 is a ZERO_EXTRACT or STRICT_LOW_PART, the code
2297 below would need to check what is inside (and reg_overlap_mentioned_p
2298 doesn't support those codes anyway). Don't allow those destinations;
2299 the resulting insn isn't likely to be recognized anyway. */
2300 && GET_CODE (SET_DEST (PATTERN (i3))) != ZERO_EXTRACT
2301 && GET_CODE (SET_DEST (PATTERN (i3))) != STRICT_LOW_PART
2302 && ! reg_overlap_mentioned_p (SET_SRC (PATTERN (i3)),
2303 SET_DEST (PATTERN (i3)))
2304 && next_real_insn (i2) == i3)
2305 {
2306 rtx p2 = PATTERN (i2);
2307
2308 /* Make sure that the destination of I3,
2309 which we are going to substitute into one output of I2,
2310 is not used within another output of I2. We must avoid making this:
2311 (parallel [(set (mem (reg 69)) ...)
2312 (set (reg 69) ...)])
2313 which is not well-defined as to order of actions.
2314 (Besides, reload can't handle output reloads for this.)
2315
2316 The problem can also happen if the dest of I3 is a memory ref,
2317 if another dest in I2 is an indirect memory ref. */
2318 for (i = 0; i < XVECLEN (p2, 0); i++)
2319 if ((GET_CODE (XVECEXP (p2, 0, i)) == SET
2320 || GET_CODE (XVECEXP (p2, 0, i)) == CLOBBER)
2321 && reg_overlap_mentioned_p (SET_DEST (PATTERN (i3)),
2322 SET_DEST (XVECEXP (p2, 0, i))))
2323 break;
2324
2325 if (i == XVECLEN (p2, 0))
2326 for (i = 0; i < XVECLEN (p2, 0); i++)
2327 if ((GET_CODE (XVECEXP (p2, 0, i)) == SET
2328 || GET_CODE (XVECEXP (p2, 0, i)) == CLOBBER)
2329 && SET_DEST (XVECEXP (p2, 0, i)) == SET_SRC (PATTERN (i3)))
2330 {
2331 combine_merges++;
2332
2333 subst_insn = i3;
2334 subst_low_luid = DF_INSN_LUID (i2);
2335
2336 added_sets_2 = added_sets_1 = 0;
2337 i2dest = SET_SRC (PATTERN (i3));
2338 i2dest_killed = dead_or_set_p (i2, i2dest);
2339
2340 /* Replace the dest in I2 with our dest and make the resulting
2341 insn the new pattern for I3. Then skip to where we
2342 validate the pattern. Everything was set up above. */
2343 SUBST (SET_DEST (XVECEXP (p2, 0, i)),
2344 SET_DEST (PATTERN (i3)));
2345
2346 newpat = p2;
2347 i3_subst_into_i2 = 1;
2348 goto validate_replacement;
2349 }
2350 }
2351
2352 /* If I2 is setting a pseudo to a constant and I3 is setting some
2353 sub-part of it to another constant, merge them by making a new
2354 constant. */
2355 if (i1 == 0
2356 && (temp = single_set (i2)) != 0
2357 && (CONST_INT_P (SET_SRC (temp))
2358 || GET_CODE (SET_SRC (temp)) == CONST_DOUBLE)
2359 && GET_CODE (PATTERN (i3)) == SET
2360 && (CONST_INT_P (SET_SRC (PATTERN (i3)))
2361 || GET_CODE (SET_SRC (PATTERN (i3))) == CONST_DOUBLE)
2362 && reg_subword_p (SET_DEST (PATTERN (i3)), SET_DEST (temp)))
2363 {
2364 rtx dest = SET_DEST (PATTERN (i3));
2365 int offset = -1;
2366 int width = 0;
2367
2368 if (GET_CODE (dest) == ZERO_EXTRACT)
2369 {
2370 if (CONST_INT_P (XEXP (dest, 1))
2371 && CONST_INT_P (XEXP (dest, 2)))
2372 {
2373 width = INTVAL (XEXP (dest, 1));
2374 offset = INTVAL (XEXP (dest, 2));
2375 dest = XEXP (dest, 0);
2376 if (BITS_BIG_ENDIAN)
2377 offset = GET_MODE_BITSIZE (GET_MODE (dest)) - width - offset;
2378 }
2379 }
2380 else
2381 {
2382 if (GET_CODE (dest) == STRICT_LOW_PART)
2383 dest = XEXP (dest, 0);
2384 width = GET_MODE_BITSIZE (GET_MODE (dest));
2385 offset = 0;
2386 }
2387
2388 if (offset >= 0)
2389 {
2390 /* If this is the low part, we're done. */
2391 if (subreg_lowpart_p (dest))
2392 ;
2393 /* Handle the case where inner is twice the size of outer. */
2394 else if (GET_MODE_BITSIZE (GET_MODE (SET_DEST (temp)))
2395 == 2 * GET_MODE_BITSIZE (GET_MODE (dest)))
2396 offset += GET_MODE_BITSIZE (GET_MODE (dest));
2397 /* Otherwise give up for now. */
2398 else
2399 offset = -1;
2400 }
2401
2402 if (offset >= 0
2403 && (GET_MODE_BITSIZE (GET_MODE (SET_DEST (temp)))
2404 <= HOST_BITS_PER_WIDE_INT * 2))
2405 {
2406 HOST_WIDE_INT mhi, ohi, ihi;
2407 HOST_WIDE_INT mlo, olo, ilo;
2408 rtx inner = SET_SRC (PATTERN (i3));
2409 rtx outer = SET_SRC (temp);
2410
2411 if (CONST_INT_P (outer))
2412 {
2413 olo = INTVAL (outer);
2414 ohi = olo < 0 ? -1 : 0;
2415 }
2416 else
2417 {
2418 olo = CONST_DOUBLE_LOW (outer);
2419 ohi = CONST_DOUBLE_HIGH (outer);
2420 }
2421
2422 if (CONST_INT_P (inner))
2423 {
2424 ilo = INTVAL (inner);
2425 ihi = ilo < 0 ? -1 : 0;
2426 }
2427 else
2428 {
2429 ilo = CONST_DOUBLE_LOW (inner);
2430 ihi = CONST_DOUBLE_HIGH (inner);
2431 }
2432
2433 if (width < HOST_BITS_PER_WIDE_INT)
2434 {
2435 mlo = ((unsigned HOST_WIDE_INT) 1 << width) - 1;
2436 mhi = 0;
2437 }
2438 else if (width < HOST_BITS_PER_WIDE_INT * 2)
2439 {
2440 mhi = ((unsigned HOST_WIDE_INT) 1
2441 << (width - HOST_BITS_PER_WIDE_INT)) - 1;
2442 mlo = -1;
2443 }
2444 else
2445 {
2446 mlo = -1;
2447 mhi = -1;
2448 }
2449
2450 ilo &= mlo;
2451 ihi &= mhi;
2452
2453 if (offset >= HOST_BITS_PER_WIDE_INT)
2454 {
2455 mhi = mlo << (offset - HOST_BITS_PER_WIDE_INT);
2456 mlo = 0;
2457 ihi = ilo << (offset - HOST_BITS_PER_WIDE_INT);
2458 ilo = 0;
2459 }
2460 else if (offset > 0)
2461 {
2462 mhi = (mhi << offset) | ((unsigned HOST_WIDE_INT) mlo
2463 >> (HOST_BITS_PER_WIDE_INT - offset));
2464 mlo = mlo << offset;
2465 ihi = (ihi << offset) | ((unsigned HOST_WIDE_INT) ilo
2466 >> (HOST_BITS_PER_WIDE_INT - offset));
2467 ilo = ilo << offset;
2468 }
2469
2470 olo = (olo & ~mlo) | ilo;
2471 ohi = (ohi & ~mhi) | ihi;
2472
2473 combine_merges++;
2474 subst_insn = i3;
2475 subst_low_luid = DF_INSN_LUID (i2);
2476 added_sets_2 = added_sets_1 = 0;
2477 i2dest = SET_DEST (temp);
2478 i2dest_killed = dead_or_set_p (i2, i2dest);
2479
2480 SUBST (SET_SRC (temp),
2481 immed_double_const (olo, ohi, GET_MODE (SET_DEST (temp))));
2482
2483 newpat = PATTERN (i2);
2484 goto validate_replacement;
2485 }
2486 }
2487
2488 #ifndef HAVE_cc0
2489 /* If we have no I1 and I2 looks like:
2490 (parallel [(set (reg:CC X) (compare:CC OP (const_int 0)))
2491 (set Y OP)])
2492 make up a dummy I1 that is
2493 (set Y OP)
2494 and change I2 to be
2495 (set (reg:CC X) (compare:CC Y (const_int 0)))
2496
2497 (We can ignore any trailing CLOBBERs.)
2498
2499 This undoes a previous combination and allows us to match a branch-and-
2500 decrement insn. */
2501
2502 if (i1 == 0 && GET_CODE (PATTERN (i2)) == PARALLEL
2503 && XVECLEN (PATTERN (i2), 0) >= 2
2504 && GET_CODE (XVECEXP (PATTERN (i2), 0, 0)) == SET
2505 && (GET_MODE_CLASS (GET_MODE (SET_DEST (XVECEXP (PATTERN (i2), 0, 0))))
2506 == MODE_CC)
2507 && GET_CODE (SET_SRC (XVECEXP (PATTERN (i2), 0, 0))) == COMPARE
2508 && XEXP (SET_SRC (XVECEXP (PATTERN (i2), 0, 0)), 1) == const0_rtx
2509 && GET_CODE (XVECEXP (PATTERN (i2), 0, 1)) == SET
2510 && REG_P (SET_DEST (XVECEXP (PATTERN (i2), 0, 1)))
2511 && rtx_equal_p (XEXP (SET_SRC (XVECEXP (PATTERN (i2), 0, 0)), 0),
2512 SET_SRC (XVECEXP (PATTERN (i2), 0, 1))))
2513 {
2514 for (i = XVECLEN (PATTERN (i2), 0) - 1; i >= 2; i--)
2515 if (GET_CODE (XVECEXP (PATTERN (i2), 0, i)) != CLOBBER)
2516 break;
2517
2518 if (i == 1)
2519 {
2520 /* We make I1 with the same INSN_UID as I2. This gives it
2521 the same DF_INSN_LUID for value tracking. Our fake I1 will
2522 never appear in the insn stream so giving it the same INSN_UID
2523 as I2 will not cause a problem. */
2524
2525 i1 = gen_rtx_INSN (VOIDmode, INSN_UID (i2), NULL_RTX, i2,
2526 BLOCK_FOR_INSN (i2), INSN_LOCATOR (i2),
2527 XVECEXP (PATTERN (i2), 0, 1), -1, NULL_RTX);
2528
2529 SUBST (PATTERN (i2), XVECEXP (PATTERN (i2), 0, 0));
2530 SUBST (XEXP (SET_SRC (PATTERN (i2)), 0),
2531 SET_DEST (PATTERN (i1)));
2532 }
2533 }
2534 #endif
2535
2536 /* Verify that I2 and I1 are valid for combining. */
2537 if (! can_combine_p (i2, i3, i1, NULL_RTX, &i2dest, &i2src)
2538 || (i1 && ! can_combine_p (i1, i3, NULL_RTX, i2, &i1dest, &i1src)))
2539 {
2540 undo_all ();
2541 return 0;
2542 }
2543
2544 /* Record whether I2DEST is used in I2SRC and similarly for the other
2545 cases. Knowing this will help in register status updating below. */
2546 i2dest_in_i2src = reg_overlap_mentioned_p (i2dest, i2src);
2547 i1dest_in_i1src = i1 && reg_overlap_mentioned_p (i1dest, i1src);
2548 i2dest_in_i1src = i1 && reg_overlap_mentioned_p (i2dest, i1src);
2549 i2dest_killed = dead_or_set_p (i2, i2dest);
2550 i1dest_killed = i1 && dead_or_set_p (i1, i1dest);
2551
2552 /* See if I1 directly feeds into I3. It does if I1DEST is not used
2553 in I2SRC. */
2554 i1_feeds_i3 = i1 && ! reg_overlap_mentioned_p (i1dest, i2src);
2555
2556 /* Ensure that I3's pattern can be the destination of combines. */
2557 if (! combinable_i3pat (i3, &PATTERN (i3), i2dest, i1dest,
2558 i1 && i2dest_in_i1src && i1_feeds_i3,
2559 &i3dest_killed))
2560 {
2561 undo_all ();
2562 return 0;
2563 }
2564
2565 /* See if any of the insns is a MULT operation. Unless one is, we will
2566 reject a combination that is, since it must be slower. Be conservative
2567 here. */
2568 if (GET_CODE (i2src) == MULT
2569 || (i1 != 0 && GET_CODE (i1src) == MULT)
2570 || (GET_CODE (PATTERN (i3)) == SET
2571 && GET_CODE (SET_SRC (PATTERN (i3))) == MULT))
2572 have_mult = 1;
2573
2574 /* If I3 has an inc, then give up if I1 or I2 uses the reg that is inc'd.
2575 We used to do this EXCEPT in one case: I3 has a post-inc in an
2576 output operand. However, that exception can give rise to insns like
2577 mov r3,(r3)+
2578 which is a famous insn on the PDP-11 where the value of r3 used as the
2579 source was model-dependent. Avoid this sort of thing. */
2580
2581 #if 0
2582 if (!(GET_CODE (PATTERN (i3)) == SET
2583 && REG_P (SET_SRC (PATTERN (i3)))
2584 && MEM_P (SET_DEST (PATTERN (i3)))
2585 && (GET_CODE (XEXP (SET_DEST (PATTERN (i3)), 0)) == POST_INC
2586 || GET_CODE (XEXP (SET_DEST (PATTERN (i3)), 0)) == POST_DEC)))
2587 /* It's not the exception. */
2588 #endif
2589 #ifdef AUTO_INC_DEC
2590 for (link = REG_NOTES (i3); link; link = XEXP (link, 1))
2591 if (REG_NOTE_KIND (link) == REG_INC
2592 && (reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i2))
2593 || (i1 != 0
2594 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i1)))))
2595 {
2596 undo_all ();
2597 return 0;
2598 }
2599 #endif
2600
2601 /* See if the SETs in I1 or I2 need to be kept around in the merged
2602 instruction: whenever the value set there is still needed past I3.
2603 For the SETs in I2, this is easy: we see if I2DEST dies or is set in I3.
2604
2605 For the SET in I1, we have two cases: If I1 and I2 independently
2606 feed into I3, the set in I1 needs to be kept around if I1DEST dies
2607 or is set in I3. Otherwise (if I1 feeds I2 which feeds I3), the set
2608 in I1 needs to be kept around unless I1DEST dies or is set in either
2609 I2 or I3. We can distinguish these cases by seeing if I2SRC mentions
2610 I1DEST. If so, we know I1 feeds into I2. */
2611
2612 added_sets_2 = ! dead_or_set_p (i3, i2dest);
2613
2614 added_sets_1
2615 = i1 && ! (i1_feeds_i3 ? dead_or_set_p (i3, i1dest)
2616 : (dead_or_set_p (i3, i1dest) || dead_or_set_p (i2, i1dest)));
2617
2618 /* If the set in I2 needs to be kept around, we must make a copy of
2619 PATTERN (I2), so that when we substitute I1SRC for I1DEST in
2620 PATTERN (I2), we are only substituting for the original I1DEST, not into
2621 an already-substituted copy. This also prevents making self-referential
2622 rtx. If I2 is a PARALLEL, we just need the piece that assigns I2SRC to
2623 I2DEST. */
2624
2625 if (added_sets_2)
2626 {
2627 if (GET_CODE (PATTERN (i2)) == PARALLEL)
2628 i2pat = gen_rtx_SET (VOIDmode, i2dest, copy_rtx (i2src));
2629 else
2630 i2pat = copy_rtx (PATTERN (i2));
2631 }
2632
2633 if (added_sets_1)
2634 {
2635 if (GET_CODE (PATTERN (i1)) == PARALLEL)
2636 i1pat = gen_rtx_SET (VOIDmode, i1dest, copy_rtx (i1src));
2637 else
2638 i1pat = copy_rtx (PATTERN (i1));
2639 }
2640
2641 combine_merges++;
2642
2643 /* Substitute in the latest insn for the regs set by the earlier ones. */
2644
2645 maxreg = max_reg_num ();
2646
2647 subst_insn = i3;
2648
2649 #ifndef HAVE_cc0
2650 /* Many machines that don't use CC0 have insns that can both perform an
2651 arithmetic operation and set the condition code. These operations will
2652 be represented as a PARALLEL with the first element of the vector
2653 being a COMPARE of an arithmetic operation with the constant zero.
2654 The second element of the vector will set some pseudo to the result
2655 of the same arithmetic operation. If we simplify the COMPARE, we won't
2656 match such a pattern and so will generate an extra insn. Here we test
2657 for this case, where both the comparison and the operation result are
2658 needed, and make the PARALLEL by just replacing I2DEST in I3SRC with
2659 I2SRC. Later we will make the PARALLEL that contains I2. */
2660
2661 if (i1 == 0 && added_sets_2 && GET_CODE (PATTERN (i3)) == SET
2662 && GET_CODE (SET_SRC (PATTERN (i3))) == COMPARE
2663 && XEXP (SET_SRC (PATTERN (i3)), 1) == const0_rtx
2664 && rtx_equal_p (XEXP (SET_SRC (PATTERN (i3)), 0), i2dest))
2665 {
2666 #ifdef SELECT_CC_MODE
2667 rtx *cc_use;
2668 enum machine_mode compare_mode;
2669 #endif
2670
2671 newpat = PATTERN (i3);
2672 SUBST (XEXP (SET_SRC (newpat), 0), i2src);
2673
2674 i2_is_used = 1;
2675
2676 #ifdef SELECT_CC_MODE
2677 /* See if a COMPARE with the operand we substituted in should be done
2678 with the mode that is currently being used. If not, do the same
2679 processing we do in `subst' for a SET; namely, if the destination
2680 is used only once, try to replace it with a register of the proper
2681 mode and also replace the COMPARE. */
2682 if (undobuf.other_insn == 0
2683 && (cc_use = find_single_use (SET_DEST (newpat), i3,
2684 &undobuf.other_insn))
2685 && ((compare_mode = SELECT_CC_MODE (GET_CODE (*cc_use),
2686 i2src, const0_rtx))
2687 != GET_MODE (SET_DEST (newpat))))
2688 {
2689 if (can_change_dest_mode(SET_DEST (newpat), added_sets_2,
2690 compare_mode))
2691 {
2692 unsigned int regno = REGNO (SET_DEST (newpat));
2693 rtx new_dest;
2694
2695 if (regno < FIRST_PSEUDO_REGISTER)
2696 new_dest = gen_rtx_REG (compare_mode, regno);
2697 else
2698 {
2699 SUBST_MODE (regno_reg_rtx[regno], compare_mode);
2700 new_dest = regno_reg_rtx[regno];
2701 }
2702
2703 SUBST (SET_DEST (newpat), new_dest);
2704 SUBST (XEXP (*cc_use, 0), new_dest);
2705 SUBST (SET_SRC (newpat),
2706 gen_rtx_COMPARE (compare_mode, i2src, const0_rtx));
2707 }
2708 else
2709 undobuf.other_insn = 0;
2710 }
2711 #endif
2712 }
2713 else
2714 #endif
2715 {
2716 /* It is possible that the source of I2 or I1 may be performing
2717 an unneeded operation, such as a ZERO_EXTEND of something
2718 that is known to have the high part zero. Handle that case
2719 by letting subst look at the innermost one of them.
2720
2721 Another way to do this would be to have a function that tries
2722 to simplify a single insn instead of merging two or more
2723 insns. We don't do this because of the potential of infinite
2724 loops and because of the potential extra memory required.
2725 However, doing it the way we are is a bit of a kludge and
2726 doesn't catch all cases.
2727
2728 But only do this if -fexpensive-optimizations since it slows
2729 things down and doesn't usually win.
2730
2731 This is not done in the COMPARE case above because the
2732 unmodified I2PAT is used in the PARALLEL and so a pattern
2733 with a modified I2SRC would not match. */
2734
2735 if (flag_expensive_optimizations)
2736 {
2737 /* Pass pc_rtx so no substitutions are done, just
2738 simplifications. */
2739 if (i1)
2740 {
2741 subst_low_luid = DF_INSN_LUID (i1);
2742 i1src = subst (i1src, pc_rtx, pc_rtx, 0, 0);
2743 }
2744 else
2745 {
2746 subst_low_luid = DF_INSN_LUID (i2);
2747 i2src = subst (i2src, pc_rtx, pc_rtx, 0, 0);
2748 }
2749 }
2750
2751 n_occurrences = 0; /* `subst' counts here */
2752
2753 /* If I1 feeds into I2 (not into I3) and I1DEST is in I1SRC, we
2754 need to make a unique copy of I2SRC each time we substitute it
2755 to avoid self-referential rtl. */
2756
2757 subst_low_luid = DF_INSN_LUID (i2);
2758 newpat = subst (PATTERN (i3), i2dest, i2src, 0,
2759 ! i1_feeds_i3 && i1dest_in_i1src);
2760 substed_i2 = 1;
2761
2762 /* Record whether i2's body now appears within i3's body. */
2763 i2_is_used = n_occurrences;
2764 }
2765
2766 /* If we already got a failure, don't try to do more. Otherwise,
2767 try to substitute in I1 if we have it. */
2768
2769 if (i1 && GET_CODE (newpat) != CLOBBER)
2770 {
2771 /* Check that an autoincrement side-effect on I1 has not been lost.
2772 This happens if I1DEST is mentioned in I2 and dies there, and
2773 has disappeared from the new pattern. */
2774 if ((FIND_REG_INC_NOTE (i1, NULL_RTX) != 0
2775 && !i1_feeds_i3
2776 && dead_or_set_p (i2, i1dest)
2777 && !reg_overlap_mentioned_p (i1dest, newpat))
2778 /* Before we can do this substitution, we must redo the test done
2779 above (see detailed comments there) that ensures that I1DEST
2780 isn't mentioned in any SETs in NEWPAT that are field assignments. */
2781 || !combinable_i3pat (NULL_RTX, &newpat, i1dest, NULL_RTX, 0, 0))
2782 {
2783 undo_all ();
2784 return 0;
2785 }
2786
2787 n_occurrences = 0;
2788 subst_low_luid = DF_INSN_LUID (i1);
2789 newpat = subst (newpat, i1dest, i1src, 0, 0);
2790 substed_i1 = 1;
2791 }
2792
2793 /* Fail if an autoincrement side-effect has been duplicated. Be careful
2794 to count all the ways that I2SRC and I1SRC can be used. */
2795 if ((FIND_REG_INC_NOTE (i2, NULL_RTX) != 0
2796 && i2_is_used + added_sets_2 > 1)
2797 || (i1 != 0 && FIND_REG_INC_NOTE (i1, NULL_RTX) != 0
2798 && (n_occurrences + added_sets_1 + (added_sets_2 && ! i1_feeds_i3)
2799 > 1))
2800 /* Fail if we tried to make a new register. */
2801 || max_reg_num () != maxreg
2802 /* Fail if we couldn't do something and have a CLOBBER. */
2803 || GET_CODE (newpat) == CLOBBER
2804 /* Fail if this new pattern is a MULT and we didn't have one before
2805 at the outer level. */
2806 || (GET_CODE (newpat) == SET && GET_CODE (SET_SRC (newpat)) == MULT
2807 && ! have_mult))
2808 {
2809 undo_all ();
2810 return 0;
2811 }
2812
2813 /* If the actions of the earlier insns must be kept
2814 in addition to substituting them into the latest one,
2815 we must make a new PARALLEL for the latest insn
2816 to hold additional the SETs. */
2817
2818 if (added_sets_1 || added_sets_2)
2819 {
2820 combine_extras++;
2821
2822 if (GET_CODE (newpat) == PARALLEL)
2823 {
2824 rtvec old = XVEC (newpat, 0);
2825 total_sets = XVECLEN (newpat, 0) + added_sets_1 + added_sets_2;
2826 newpat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (total_sets));
2827 memcpy (XVEC (newpat, 0)->elem, &old->elem[0],
2828 sizeof (old->elem[0]) * old->num_elem);
2829 }
2830 else
2831 {
2832 rtx old = newpat;
2833 total_sets = 1 + added_sets_1 + added_sets_2;
2834 newpat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (total_sets));
2835 XVECEXP (newpat, 0, 0) = old;
2836 }
2837
2838 if (added_sets_1)
2839 XVECEXP (newpat, 0, --total_sets) = i1pat;
2840
2841 if (added_sets_2)
2842 {
2843 /* If there is no I1, use I2's body as is. We used to also not do
2844 the subst call below if I2 was substituted into I3,
2845 but that could lose a simplification. */
2846 if (i1 == 0)
2847 XVECEXP (newpat, 0, --total_sets) = i2pat;
2848 else
2849 /* See comment where i2pat is assigned. */
2850 XVECEXP (newpat, 0, --total_sets)
2851 = subst (i2pat, i1dest, i1src, 0, 0);
2852 }
2853 }
2854
2855 /* We come here when we are replacing a destination in I2 with the
2856 destination of I3. */
2857 validate_replacement:
2858
2859 /* Note which hard regs this insn has as inputs. */
2860 mark_used_regs_combine (newpat);
2861
2862 /* If recog_for_combine fails, it strips existing clobbers. If we'll
2863 consider splitting this pattern, we might need these clobbers. */
2864 if (i1 && GET_CODE (newpat) == PARALLEL
2865 && GET_CODE (XVECEXP (newpat, 0, XVECLEN (newpat, 0) - 1)) == CLOBBER)
2866 {
2867 int len = XVECLEN (newpat, 0);
2868
2869 newpat_vec_with_clobbers = rtvec_alloc (len);
2870 for (i = 0; i < len; i++)
2871 RTVEC_ELT (newpat_vec_with_clobbers, i) = XVECEXP (newpat, 0, i);
2872 }
2873
2874 /* Is the result of combination a valid instruction? */
2875 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
2876
2877 /* If the result isn't valid, see if it is a PARALLEL of two SETs where
2878 the second SET's destination is a register that is unused and isn't
2879 marked as an instruction that might trap in an EH region. In that case,
2880 we just need the first SET. This can occur when simplifying a divmod
2881 insn. We *must* test for this case here because the code below that
2882 splits two independent SETs doesn't handle this case correctly when it
2883 updates the register status.
2884
2885 It's pointless doing this if we originally had two sets, one from
2886 i3, and one from i2. Combining then splitting the parallel results
2887 in the original i2 again plus an invalid insn (which we delete).
2888 The net effect is only to move instructions around, which makes
2889 debug info less accurate.
2890
2891 Also check the case where the first SET's destination is unused.
2892 That would not cause incorrect code, but does cause an unneeded
2893 insn to remain. */
2894
2895 if (insn_code_number < 0
2896 && !(added_sets_2 && i1 == 0)
2897 && GET_CODE (newpat) == PARALLEL
2898 && XVECLEN (newpat, 0) == 2
2899 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
2900 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
2901 && asm_noperands (newpat) < 0)
2902 {
2903 rtx set0 = XVECEXP (newpat, 0, 0);
2904 rtx set1 = XVECEXP (newpat, 0, 1);
2905 rtx note;
2906
2907 if (((REG_P (SET_DEST (set1))
2908 && find_reg_note (i3, REG_UNUSED, SET_DEST (set1)))
2909 || (GET_CODE (SET_DEST (set1)) == SUBREG
2910 && find_reg_note (i3, REG_UNUSED, SUBREG_REG (SET_DEST (set1)))))
2911 && (!(note = find_reg_note (i3, REG_EH_REGION, NULL_RTX))
2912 || INTVAL (XEXP (note, 0)) <= 0)
2913 && ! side_effects_p (SET_SRC (set1)))
2914 {
2915 newpat = set0;
2916 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
2917 }
2918
2919 else if (((REG_P (SET_DEST (set0))
2920 && find_reg_note (i3, REG_UNUSED, SET_DEST (set0)))
2921 || (GET_CODE (SET_DEST (set0)) == SUBREG
2922 && find_reg_note (i3, REG_UNUSED,
2923 SUBREG_REG (SET_DEST (set0)))))
2924 && (!(note = find_reg_note (i3, REG_EH_REGION, NULL_RTX))
2925 || INTVAL (XEXP (note, 0)) <= 0)
2926 && ! side_effects_p (SET_SRC (set0)))
2927 {
2928 newpat = set1;
2929 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
2930
2931 if (insn_code_number >= 0)
2932 changed_i3_dest = 1;
2933 }
2934 }
2935
2936 /* If we were combining three insns and the result is a simple SET
2937 with no ASM_OPERANDS that wasn't recognized, try to split it into two
2938 insns. There are two ways to do this. It can be split using a
2939 machine-specific method (like when you have an addition of a large
2940 constant) or by combine in the function find_split_point. */
2941
2942 if (i1 && insn_code_number < 0 && GET_CODE (newpat) == SET
2943 && asm_noperands (newpat) < 0)
2944 {
2945 rtx parallel, m_split, *split;
2946
2947 /* See if the MD file can split NEWPAT. If it can't, see if letting it
2948 use I2DEST as a scratch register will help. In the latter case,
2949 convert I2DEST to the mode of the source of NEWPAT if we can. */
2950
2951 m_split = combine_split_insns (newpat, i3);
2952
2953 /* We can only use I2DEST as a scratch reg if it doesn't overlap any
2954 inputs of NEWPAT. */
2955
2956 /* ??? If I2DEST is not safe, and I1DEST exists, then it would be
2957 possible to try that as a scratch reg. This would require adding
2958 more code to make it work though. */
2959
2960 if (m_split == 0 && ! reg_overlap_mentioned_p (i2dest, newpat))
2961 {
2962 enum machine_mode new_mode = GET_MODE (SET_DEST (newpat));
2963
2964 /* First try to split using the original register as a
2965 scratch register. */
2966 parallel = gen_rtx_PARALLEL (VOIDmode,
2967 gen_rtvec (2, newpat,
2968 gen_rtx_CLOBBER (VOIDmode,
2969 i2dest)));
2970 m_split = combine_split_insns (parallel, i3);
2971
2972 /* If that didn't work, try changing the mode of I2DEST if
2973 we can. */
2974 if (m_split == 0
2975 && new_mode != GET_MODE (i2dest)
2976 && new_mode != VOIDmode
2977 && can_change_dest_mode (i2dest, added_sets_2, new_mode))
2978 {
2979 enum machine_mode old_mode = GET_MODE (i2dest);
2980 rtx ni2dest;
2981
2982 if (REGNO (i2dest) < FIRST_PSEUDO_REGISTER)
2983 ni2dest = gen_rtx_REG (new_mode, REGNO (i2dest));
2984 else
2985 {
2986 SUBST_MODE (regno_reg_rtx[REGNO (i2dest)], new_mode);
2987 ni2dest = regno_reg_rtx[REGNO (i2dest)];
2988 }
2989
2990 parallel = (gen_rtx_PARALLEL
2991 (VOIDmode,
2992 gen_rtvec (2, newpat,
2993 gen_rtx_CLOBBER (VOIDmode,
2994 ni2dest))));
2995 m_split = combine_split_insns (parallel, i3);
2996
2997 if (m_split == 0
2998 && REGNO (i2dest) >= FIRST_PSEUDO_REGISTER)
2999 {
3000 struct undo *buf;
3001
3002 adjust_reg_mode (regno_reg_rtx[REGNO (i2dest)], old_mode);
3003 buf = undobuf.undos;
3004 undobuf.undos = buf->next;
3005 buf->next = undobuf.frees;
3006 undobuf.frees = buf;
3007 }
3008 }
3009 }
3010
3011 /* If recog_for_combine has discarded clobbers, try to use them
3012 again for the split. */
3013 if (m_split == 0 && newpat_vec_with_clobbers)
3014 {
3015 parallel = gen_rtx_PARALLEL (VOIDmode, newpat_vec_with_clobbers);
3016 m_split = combine_split_insns (parallel, i3);
3017 }
3018
3019 if (m_split && NEXT_INSN (m_split) == NULL_RTX)
3020 {
3021 m_split = PATTERN (m_split);
3022 insn_code_number = recog_for_combine (&m_split, i3, &new_i3_notes);
3023 if (insn_code_number >= 0)
3024 newpat = m_split;
3025 }
3026 else if (m_split && NEXT_INSN (NEXT_INSN (m_split)) == NULL_RTX
3027 && (next_real_insn (i2) == i3
3028 || ! use_crosses_set_p (PATTERN (m_split), DF_INSN_LUID (i2))))
3029 {
3030 rtx i2set, i3set;
3031 rtx newi3pat = PATTERN (NEXT_INSN (m_split));
3032 newi2pat = PATTERN (m_split);
3033
3034 i3set = single_set (NEXT_INSN (m_split));
3035 i2set = single_set (m_split);
3036
3037 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
3038
3039 /* If I2 or I3 has multiple SETs, we won't know how to track
3040 register status, so don't use these insns. If I2's destination
3041 is used between I2 and I3, we also can't use these insns. */
3042
3043 if (i2_code_number >= 0 && i2set && i3set
3044 && (next_real_insn (i2) == i3
3045 || ! reg_used_between_p (SET_DEST (i2set), i2, i3)))
3046 insn_code_number = recog_for_combine (&newi3pat, i3,
3047 &new_i3_notes);
3048 if (insn_code_number >= 0)
3049 newpat = newi3pat;
3050
3051 /* It is possible that both insns now set the destination of I3.
3052 If so, we must show an extra use of it. */
3053
3054 if (insn_code_number >= 0)
3055 {
3056 rtx new_i3_dest = SET_DEST (i3set);
3057 rtx new_i2_dest = SET_DEST (i2set);
3058
3059 while (GET_CODE (new_i3_dest) == ZERO_EXTRACT
3060 || GET_CODE (new_i3_dest) == STRICT_LOW_PART
3061 || GET_CODE (new_i3_dest) == SUBREG)
3062 new_i3_dest = XEXP (new_i3_dest, 0);
3063
3064 while (GET_CODE (new_i2_dest) == ZERO_EXTRACT
3065 || GET_CODE (new_i2_dest) == STRICT_LOW_PART
3066 || GET_CODE (new_i2_dest) == SUBREG)
3067 new_i2_dest = XEXP (new_i2_dest, 0);
3068
3069 if (REG_P (new_i3_dest)
3070 && REG_P (new_i2_dest)
3071 && REGNO (new_i3_dest) == REGNO (new_i2_dest))
3072 INC_REG_N_SETS (REGNO (new_i2_dest), 1);
3073 }
3074 }
3075
3076 /* If we can split it and use I2DEST, go ahead and see if that
3077 helps things be recognized. Verify that none of the registers
3078 are set between I2 and I3. */
3079 if (insn_code_number < 0 && (split = find_split_point (&newpat, i3)) != 0
3080 #ifdef HAVE_cc0
3081 && REG_P (i2dest)
3082 #endif
3083 /* We need I2DEST in the proper mode. If it is a hard register
3084 or the only use of a pseudo, we can change its mode.
3085 Make sure we don't change a hard register to have a mode that
3086 isn't valid for it, or change the number of registers. */
3087 && (GET_MODE (*split) == GET_MODE (i2dest)
3088 || GET_MODE (*split) == VOIDmode
3089 || can_change_dest_mode (i2dest, added_sets_2,
3090 GET_MODE (*split)))
3091 && (next_real_insn (i2) == i3
3092 || ! use_crosses_set_p (*split, DF_INSN_LUID (i2)))
3093 /* We can't overwrite I2DEST if its value is still used by
3094 NEWPAT. */
3095 && ! reg_referenced_p (i2dest, newpat))
3096 {
3097 rtx newdest = i2dest;
3098 enum rtx_code split_code = GET_CODE (*split);
3099 enum machine_mode split_mode = GET_MODE (*split);
3100 bool subst_done = false;
3101 newi2pat = NULL_RTX;
3102
3103 /* Get NEWDEST as a register in the proper mode. We have already
3104 validated that we can do this. */
3105 if (GET_MODE (i2dest) != split_mode && split_mode != VOIDmode)
3106 {
3107 if (REGNO (i2dest) < FIRST_PSEUDO_REGISTER)
3108 newdest = gen_rtx_REG (split_mode, REGNO (i2dest));
3109 else
3110 {
3111 SUBST_MODE (regno_reg_rtx[REGNO (i2dest)], split_mode);
3112 newdest = regno_reg_rtx[REGNO (i2dest)];
3113 }
3114 }
3115
3116 /* If *SPLIT is a (mult FOO (const_int pow2)), convert it to
3117 an ASHIFT. This can occur if it was inside a PLUS and hence
3118 appeared to be a memory address. This is a kludge. */
3119 if (split_code == MULT
3120 && CONST_INT_P (XEXP (*split, 1))
3121 && INTVAL (XEXP (*split, 1)) > 0
3122 && (i = exact_log2 (INTVAL (XEXP (*split, 1)))) >= 0)
3123 {
3124 SUBST (*split, gen_rtx_ASHIFT (split_mode,
3125 XEXP (*split, 0), GEN_INT (i)));
3126 /* Update split_code because we may not have a multiply
3127 anymore. */
3128 split_code = GET_CODE (*split);
3129 }
3130
3131 #ifdef INSN_SCHEDULING
3132 /* If *SPLIT is a paradoxical SUBREG, when we split it, it should
3133 be written as a ZERO_EXTEND. */
3134 if (split_code == SUBREG && MEM_P (SUBREG_REG (*split)))
3135 {
3136 #ifdef LOAD_EXTEND_OP
3137 /* Or as a SIGN_EXTEND if LOAD_EXTEND_OP says that that's
3138 what it really is. */
3139 if (LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (*split)))
3140 == SIGN_EXTEND)
3141 SUBST (*split, gen_rtx_SIGN_EXTEND (split_mode,
3142 SUBREG_REG (*split)));
3143 else
3144 #endif
3145 SUBST (*split, gen_rtx_ZERO_EXTEND (split_mode,
3146 SUBREG_REG (*split)));
3147 }
3148 #endif
3149
3150 /* Attempt to split binary operators using arithmetic identities. */
3151 if (BINARY_P (SET_SRC (newpat))
3152 && split_mode == GET_MODE (SET_SRC (newpat))
3153 && ! side_effects_p (SET_SRC (newpat)))
3154 {
3155 rtx setsrc = SET_SRC (newpat);
3156 enum machine_mode mode = GET_MODE (setsrc);
3157 enum rtx_code code = GET_CODE (setsrc);
3158 rtx src_op0 = XEXP (setsrc, 0);
3159 rtx src_op1 = XEXP (setsrc, 1);
3160
3161 /* Split "X = Y op Y" as "Z = Y; X = Z op Z". */
3162 if (rtx_equal_p (src_op0, src_op1))
3163 {
3164 newi2pat = gen_rtx_SET (VOIDmode, newdest, src_op0);
3165 SUBST (XEXP (setsrc, 0), newdest);
3166 SUBST (XEXP (setsrc, 1), newdest);
3167 subst_done = true;
3168 }
3169 /* Split "((P op Q) op R) op S" where op is PLUS or MULT. */
3170 else if ((code == PLUS || code == MULT)
3171 && GET_CODE (src_op0) == code
3172 && GET_CODE (XEXP (src_op0, 0)) == code
3173 && (INTEGRAL_MODE_P (mode)
3174 || (FLOAT_MODE_P (mode)
3175 && flag_unsafe_math_optimizations)))
3176 {
3177 rtx p = XEXP (XEXP (src_op0, 0), 0);
3178 rtx q = XEXP (XEXP (src_op0, 0), 1);
3179 rtx r = XEXP (src_op0, 1);
3180 rtx s = src_op1;
3181
3182 /* Split both "((X op Y) op X) op Y" and
3183 "((X op Y) op Y) op X" as "T op T" where T is
3184 "X op Y". */
3185 if ((rtx_equal_p (p,r) && rtx_equal_p (q,s))
3186 || (rtx_equal_p (p,s) && rtx_equal_p (q,r)))
3187 {
3188 newi2pat = gen_rtx_SET (VOIDmode, newdest,
3189 XEXP (src_op0, 0));
3190 SUBST (XEXP (setsrc, 0), newdest);
3191 SUBST (XEXP (setsrc, 1), newdest);
3192 subst_done = true;
3193 }
3194 /* Split "((X op X) op Y) op Y)" as "T op T" where
3195 T is "X op Y". */
3196 else if (rtx_equal_p (p,q) && rtx_equal_p (r,s))
3197 {
3198 rtx tmp = simplify_gen_binary (code, mode, p, r);
3199 newi2pat = gen_rtx_SET (VOIDmode, newdest, tmp);
3200 SUBST (XEXP (setsrc, 0), newdest);
3201 SUBST (XEXP (setsrc, 1), newdest);
3202 subst_done = true;
3203 }
3204 }
3205 }
3206
3207 if (!subst_done)
3208 {
3209 newi2pat = gen_rtx_SET (VOIDmode, newdest, *split);
3210 SUBST (*split, newdest);
3211 }
3212
3213 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
3214
3215 /* recog_for_combine might have added CLOBBERs to newi2pat.
3216 Make sure NEWPAT does not depend on the clobbered regs. */
3217 if (GET_CODE (newi2pat) == PARALLEL)
3218 for (i = XVECLEN (newi2pat, 0) - 1; i >= 0; i--)
3219 if (GET_CODE (XVECEXP (newi2pat, 0, i)) == CLOBBER)
3220 {
3221 rtx reg = XEXP (XVECEXP (newi2pat, 0, i), 0);
3222 if (reg_overlap_mentioned_p (reg, newpat))
3223 {
3224 undo_all ();
3225 return 0;
3226 }
3227 }
3228
3229 /* If the split point was a MULT and we didn't have one before,
3230 don't use one now. */
3231 if (i2_code_number >= 0 && ! (split_code == MULT && ! have_mult))
3232 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3233 }
3234 }
3235
3236 /* Check for a case where we loaded from memory in a narrow mode and
3237 then sign extended it, but we need both registers. In that case,
3238 we have a PARALLEL with both loads from the same memory location.
3239 We can split this into a load from memory followed by a register-register
3240 copy. This saves at least one insn, more if register allocation can
3241 eliminate the copy.
3242
3243 We cannot do this if the destination of the first assignment is a
3244 condition code register or cc0. We eliminate this case by making sure
3245 the SET_DEST and SET_SRC have the same mode.
3246
3247 We cannot do this if the destination of the second assignment is
3248 a register that we have already assumed is zero-extended. Similarly
3249 for a SUBREG of such a register. */
3250
3251 else if (i1 && insn_code_number < 0 && asm_noperands (newpat) < 0
3252 && GET_CODE (newpat) == PARALLEL
3253 && XVECLEN (newpat, 0) == 2
3254 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
3255 && GET_CODE (SET_SRC (XVECEXP (newpat, 0, 0))) == SIGN_EXTEND
3256 && (GET_MODE (SET_DEST (XVECEXP (newpat, 0, 0)))
3257 == GET_MODE (SET_SRC (XVECEXP (newpat, 0, 0))))
3258 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
3259 && rtx_equal_p (SET_SRC (XVECEXP (newpat, 0, 1)),
3260 XEXP (SET_SRC (XVECEXP (newpat, 0, 0)), 0))
3261 && ! use_crosses_set_p (SET_SRC (XVECEXP (newpat, 0, 1)),
3262 DF_INSN_LUID (i2))
3263 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != ZERO_EXTRACT
3264 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != STRICT_LOW_PART
3265 && ! (temp = SET_DEST (XVECEXP (newpat, 0, 1)),
3266 (REG_P (temp)
3267 && VEC_index (reg_stat_type, reg_stat,
3268 REGNO (temp))->nonzero_bits != 0
3269 && GET_MODE_BITSIZE (GET_MODE (temp)) < BITS_PER_WORD
3270 && GET_MODE_BITSIZE (GET_MODE (temp)) < HOST_BITS_PER_INT
3271 && (VEC_index (reg_stat_type, reg_stat,
3272 REGNO (temp))->nonzero_bits
3273 != GET_MODE_MASK (word_mode))))
3274 && ! (GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) == SUBREG
3275 && (temp = SUBREG_REG (SET_DEST (XVECEXP (newpat, 0, 1))),
3276 (REG_P (temp)
3277 && VEC_index (reg_stat_type, reg_stat,
3278 REGNO (temp))->nonzero_bits != 0
3279 && GET_MODE_BITSIZE (GET_MODE (temp)) < BITS_PER_WORD
3280 && GET_MODE_BITSIZE (GET_MODE (temp)) < HOST_BITS_PER_INT
3281 && (VEC_index (reg_stat_type, reg_stat,
3282 REGNO (temp))->nonzero_bits
3283 != GET_MODE_MASK (word_mode)))))
3284 && ! reg_overlap_mentioned_p (SET_DEST (XVECEXP (newpat, 0, 1)),
3285 SET_SRC (XVECEXP (newpat, 0, 1)))
3286 && ! find_reg_note (i3, REG_UNUSED,
3287 SET_DEST (XVECEXP (newpat, 0, 0))))
3288 {
3289 rtx ni2dest;
3290
3291 newi2pat = XVECEXP (newpat, 0, 0);
3292 ni2dest = SET_DEST (XVECEXP (newpat, 0, 0));
3293 newpat = XVECEXP (newpat, 0, 1);
3294 SUBST (SET_SRC (newpat),
3295 gen_lowpart (GET_MODE (SET_SRC (newpat)), ni2dest));
3296 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
3297
3298 if (i2_code_number >= 0)
3299 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3300
3301 if (insn_code_number >= 0)
3302 swap_i2i3 = 1;
3303 }
3304
3305 /* Similarly, check for a case where we have a PARALLEL of two independent
3306 SETs but we started with three insns. In this case, we can do the sets
3307 as two separate insns. This case occurs when some SET allows two
3308 other insns to combine, but the destination of that SET is still live. */
3309
3310 else if (i1 && insn_code_number < 0 && asm_noperands (newpat) < 0
3311 && GET_CODE (newpat) == PARALLEL
3312 && XVECLEN (newpat, 0) == 2
3313 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
3314 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) != ZERO_EXTRACT
3315 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) != STRICT_LOW_PART
3316 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
3317 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != ZERO_EXTRACT
3318 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != STRICT_LOW_PART
3319 && ! use_crosses_set_p (SET_SRC (XVECEXP (newpat, 0, 1)),
3320 DF_INSN_LUID (i2))
3321 && ! reg_referenced_p (SET_DEST (XVECEXP (newpat, 0, 1)),
3322 XVECEXP (newpat, 0, 0))
3323 && ! reg_referenced_p (SET_DEST (XVECEXP (newpat, 0, 0)),
3324 XVECEXP (newpat, 0, 1))
3325 && ! (contains_muldiv (SET_SRC (XVECEXP (newpat, 0, 0)))
3326 && contains_muldiv (SET_SRC (XVECEXP (newpat, 0, 1))))
3327 #ifdef HAVE_cc0
3328 /* We cannot split the parallel into two sets if both sets
3329 reference cc0. */
3330 && ! (reg_referenced_p (cc0_rtx, XVECEXP (newpat, 0, 0))
3331 && reg_referenced_p (cc0_rtx, XVECEXP (newpat, 0, 1)))
3332 #endif
3333 )
3334 {
3335 /* Normally, it doesn't matter which of the two is done first,
3336 but it does if one references cc0. In that case, it has to
3337 be first. */
3338 #ifdef HAVE_cc0
3339 if (reg_referenced_p (cc0_rtx, XVECEXP (newpat, 0, 0)))
3340 {
3341 newi2pat = XVECEXP (newpat, 0, 0);
3342 newpat = XVECEXP (newpat, 0, 1);
3343 }
3344 else
3345 #endif
3346 {
3347 newi2pat = XVECEXP (newpat, 0, 1);
3348 newpat = XVECEXP (newpat, 0, 0);
3349 }
3350
3351 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
3352
3353 if (i2_code_number >= 0)
3354 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3355 }
3356
3357 /* If it still isn't recognized, fail and change things back the way they
3358 were. */
3359 if ((insn_code_number < 0
3360 /* Is the result a reasonable ASM_OPERANDS? */
3361 && (! check_asm_operands (newpat) || added_sets_1 || added_sets_2)))
3362 {
3363 undo_all ();
3364 return 0;
3365 }
3366
3367 /* If we had to change another insn, make sure it is valid also. */
3368 if (undobuf.other_insn)
3369 {
3370 CLEAR_HARD_REG_SET (newpat_used_regs);
3371
3372 other_pat = PATTERN (undobuf.other_insn);
3373 other_code_number = recog_for_combine (&other_pat, undobuf.other_insn,
3374 &new_other_notes);
3375
3376 if (other_code_number < 0 && ! check_asm_operands (other_pat))
3377 {
3378 undo_all ();
3379 return 0;
3380 }
3381 }
3382
3383 #ifdef HAVE_cc0
3384 /* If I2 is the CC0 setter and I3 is the CC0 user then check whether
3385 they are adjacent to each other or not. */
3386 {
3387 rtx p = prev_nonnote_insn (i3);
3388 if (p && p != i2 && NONJUMP_INSN_P (p) && newi2pat
3389 && sets_cc0_p (newi2pat))
3390 {
3391 undo_all ();
3392 return 0;
3393 }
3394 }
3395 #endif
3396
3397 /* Only allow this combination if insn_rtx_costs reports that the
3398 replacement instructions are cheaper than the originals. */
3399 if (!combine_validate_cost (i1, i2, i3, newpat, newi2pat, other_pat))
3400 {
3401 undo_all ();
3402 return 0;
3403 }
3404
3405 /* If we will be able to accept this, we have made a
3406 change to the destination of I3. This requires us to
3407 do a few adjustments. */
3408
3409 if (changed_i3_dest)
3410 {
3411 PATTERN (i3) = newpat;
3412 adjust_for_new_dest (i3);
3413 }
3414
3415 /* We now know that we can do this combination. Merge the insns and
3416 update the status of registers and LOG_LINKS. */
3417
3418 if (undobuf.other_insn)
3419 {
3420 rtx note, next;
3421
3422 PATTERN (undobuf.other_insn) = other_pat;
3423
3424 /* If any of the notes in OTHER_INSN were REG_UNUSED, ensure that they
3425 are still valid. Then add any non-duplicate notes added by
3426 recog_for_combine. */
3427 for (note = REG_NOTES (undobuf.other_insn); note; note = next)
3428 {
3429 next = XEXP (note, 1);
3430
3431 if (REG_NOTE_KIND (note) == REG_UNUSED
3432 && ! reg_set_p (XEXP (note, 0), PATTERN (undobuf.other_insn)))
3433 remove_note (undobuf.other_insn, note);
3434 }
3435
3436 distribute_notes (new_other_notes, undobuf.other_insn,
3437 undobuf.other_insn, NULL_RTX, NULL_RTX, NULL_RTX);
3438 }
3439
3440 if (swap_i2i3)
3441 {
3442 rtx insn;
3443 rtx link;
3444 rtx ni2dest;
3445
3446 /* I3 now uses what used to be its destination and which is now
3447 I2's destination. This requires us to do a few adjustments. */
3448 PATTERN (i3) = newpat;
3449 adjust_for_new_dest (i3);
3450
3451 /* We need a LOG_LINK from I3 to I2. But we used to have one,
3452 so we still will.
3453
3454 However, some later insn might be using I2's dest and have
3455 a LOG_LINK pointing at I3. We must remove this link.
3456 The simplest way to remove the link is to point it at I1,
3457 which we know will be a NOTE. */
3458
3459 /* newi2pat is usually a SET here; however, recog_for_combine might
3460 have added some clobbers. */
3461 if (GET_CODE (newi2pat) == PARALLEL)
3462 ni2dest = SET_DEST (XVECEXP (newi2pat, 0, 0));
3463 else
3464 ni2dest = SET_DEST (newi2pat);
3465
3466 for (insn = NEXT_INSN (i3);
3467 insn && (this_basic_block->next_bb == EXIT_BLOCK_PTR
3468 || insn != BB_HEAD (this_basic_block->next_bb));
3469 insn = NEXT_INSN (insn))
3470 {
3471 if (INSN_P (insn) && reg_referenced_p (ni2dest, PATTERN (insn)))
3472 {
3473 for (link = LOG_LINKS (insn); link;
3474 link = XEXP (link, 1))
3475 if (XEXP (link, 0) == i3)
3476 XEXP (link, 0) = i1;
3477
3478 break;
3479 }
3480 }
3481 }
3482
3483 {
3484 rtx i3notes, i2notes, i1notes = 0;
3485 rtx i3links, i2links, i1links = 0;
3486 rtx midnotes = 0;
3487 unsigned int regno;
3488 /* Compute which registers we expect to eliminate. newi2pat may be setting
3489 either i3dest or i2dest, so we must check it. Also, i1dest may be the
3490 same as i3dest, in which case newi2pat may be setting i1dest. */
3491 rtx elim_i2 = ((newi2pat && reg_set_p (i2dest, newi2pat))
3492 || i2dest_in_i2src || i2dest_in_i1src
3493 || !i2dest_killed
3494 ? 0 : i2dest);
3495 rtx elim_i1 = (i1 == 0 || i1dest_in_i1src
3496 || (newi2pat && reg_set_p (i1dest, newi2pat))
3497 || !i1dest_killed
3498 ? 0 : i1dest);
3499
3500 /* Get the old REG_NOTES and LOG_LINKS from all our insns and
3501 clear them. */
3502 i3notes = REG_NOTES (i3), i3links = LOG_LINKS (i3);
3503 i2notes = REG_NOTES (i2), i2links = LOG_LINKS (i2);
3504 if (i1)
3505 i1notes = REG_NOTES (i1), i1links = LOG_LINKS (i1);
3506
3507 /* Ensure that we do not have something that should not be shared but
3508 occurs multiple times in the new insns. Check this by first
3509 resetting all the `used' flags and then copying anything is shared. */
3510
3511 reset_used_flags (i3notes);
3512 reset_used_flags (i2notes);
3513 reset_used_flags (i1notes);
3514 reset_used_flags (newpat);
3515 reset_used_flags (newi2pat);
3516 if (undobuf.other_insn)
3517 reset_used_flags (PATTERN (undobuf.other_insn));
3518
3519 i3notes = copy_rtx_if_shared (i3notes);
3520 i2notes = copy_rtx_if_shared (i2notes);
3521 i1notes = copy_rtx_if_shared (i1notes);
3522 newpat = copy_rtx_if_shared (newpat);
3523 newi2pat = copy_rtx_if_shared (newi2pat);
3524 if (undobuf.other_insn)
3525 reset_used_flags (PATTERN (undobuf.other_insn));
3526
3527 INSN_CODE (i3) = insn_code_number;
3528 PATTERN (i3) = newpat;
3529
3530 if (CALL_P (i3) && CALL_INSN_FUNCTION_USAGE (i3))
3531 {
3532 rtx call_usage = CALL_INSN_FUNCTION_USAGE (i3);
3533
3534 reset_used_flags (call_usage);
3535 call_usage = copy_rtx (call_usage);
3536
3537 if (substed_i2)
3538 replace_rtx (call_usage, i2dest, i2src);
3539
3540 if (substed_i1)
3541 replace_rtx (call_usage, i1dest, i1src);
3542
3543 CALL_INSN_FUNCTION_USAGE (i3) = call_usage;
3544 }
3545
3546 if (undobuf.other_insn)
3547 INSN_CODE (undobuf.other_insn) = other_code_number;
3548
3549 /* We had one special case above where I2 had more than one set and
3550 we replaced a destination of one of those sets with the destination
3551 of I3. In that case, we have to update LOG_LINKS of insns later
3552 in this basic block. Note that this (expensive) case is rare.
3553
3554 Also, in this case, we must pretend that all REG_NOTEs for I2
3555 actually came from I3, so that REG_UNUSED notes from I2 will be
3556 properly handled. */
3557
3558 if (i3_subst_into_i2)
3559 {
3560 for (i = 0; i < XVECLEN (PATTERN (i2), 0); i++)
3561 if ((GET_CODE (XVECEXP (PATTERN (i2), 0, i)) == SET
3562 || GET_CODE (XVECEXP (PATTERN (i2), 0, i)) == CLOBBER)
3563 && REG_P (SET_DEST (XVECEXP (PATTERN (i2), 0, i)))
3564 && SET_DEST (XVECEXP (PATTERN (i2), 0, i)) != i2dest
3565 && ! find_reg_note (i2, REG_UNUSED,
3566 SET_DEST (XVECEXP (PATTERN (i2), 0, i))))
3567 for (temp = NEXT_INSN (i2);
3568 temp && (this_basic_block->next_bb == EXIT_BLOCK_PTR
3569 || BB_HEAD (this_basic_block) != temp);
3570 temp = NEXT_INSN (temp))
3571 if (temp != i3 && INSN_P (temp))
3572 for (link = LOG_LINKS (temp); link; link = XEXP (link, 1))
3573 if (XEXP (link, 0) == i2)
3574 XEXP (link, 0) = i3;
3575
3576 if (i3notes)
3577 {
3578 rtx link = i3notes;
3579 while (XEXP (link, 1))
3580 link = XEXP (link, 1);
3581 XEXP (link, 1) = i2notes;
3582 }
3583 else
3584 i3notes = i2notes;
3585 i2notes = 0;
3586 }
3587
3588 LOG_LINKS (i3) = 0;
3589 REG_NOTES (i3) = 0;
3590 LOG_LINKS (i2) = 0;
3591 REG_NOTES (i2) = 0;
3592
3593 if (newi2pat)
3594 {
3595 INSN_CODE (i2) = i2_code_number;
3596 PATTERN (i2) = newi2pat;
3597 }
3598 else
3599 SET_INSN_DELETED (i2);
3600
3601 if (i1)
3602 {
3603 LOG_LINKS (i1) = 0;
3604 REG_NOTES (i1) = 0;
3605 SET_INSN_DELETED (i1);
3606 }
3607
3608 /* Get death notes for everything that is now used in either I3 or
3609 I2 and used to die in a previous insn. If we built two new
3610 patterns, move from I1 to I2 then I2 to I3 so that we get the
3611 proper movement on registers that I2 modifies. */
3612
3613 if (newi2pat)
3614 {
3615 move_deaths (newi2pat, NULL_RTX, DF_INSN_LUID (i1), i2, &midnotes);
3616 move_deaths (newpat, newi2pat, DF_INSN_LUID (i1), i3, &midnotes);
3617 }
3618 else
3619 move_deaths (newpat, NULL_RTX, i1 ? DF_INSN_LUID (i1) : DF_INSN_LUID (i2),
3620 i3, &midnotes);
3621
3622 /* Distribute all the LOG_LINKS and REG_NOTES from I1, I2, and I3. */
3623 if (i3notes)
3624 distribute_notes (i3notes, i3, i3, newi2pat ? i2 : NULL_RTX,
3625 elim_i2, elim_i1);
3626 if (i2notes)
3627 distribute_notes (i2notes, i2, i3, newi2pat ? i2 : NULL_RTX,
3628 elim_i2, elim_i1);
3629 if (i1notes)
3630 distribute_notes (i1notes, i1, i3, newi2pat ? i2 : NULL_RTX,
3631 elim_i2, elim_i1);
3632 if (midnotes)
3633 distribute_notes (midnotes, NULL_RTX, i3, newi2pat ? i2 : NULL_RTX,
3634 elim_i2, elim_i1);
3635
3636 /* Distribute any notes added to I2 or I3 by recog_for_combine. We
3637 know these are REG_UNUSED and want them to go to the desired insn,
3638 so we always pass it as i3. */
3639
3640 if (newi2pat && new_i2_notes)
3641 distribute_notes (new_i2_notes, i2, i2, NULL_RTX, NULL_RTX, NULL_RTX);
3642
3643 if (new_i3_notes)
3644 distribute_notes (new_i3_notes, i3, i3, NULL_RTX, NULL_RTX, NULL_RTX);
3645
3646 /* If I3DEST was used in I3SRC, it really died in I3. We may need to
3647 put a REG_DEAD note for it somewhere. If NEWI2PAT exists and sets
3648 I3DEST, the death must be somewhere before I2, not I3. If we passed I3
3649 in that case, it might delete I2. Similarly for I2 and I1.
3650 Show an additional death due to the REG_DEAD note we make here. If
3651 we discard it in distribute_notes, we will decrement it again. */
3652
3653 if (i3dest_killed)
3654 {
3655 if (newi2pat && reg_set_p (i3dest_killed, newi2pat))
3656 distribute_notes (alloc_reg_note (REG_DEAD, i3dest_killed,
3657 NULL_RTX),
3658 NULL_RTX, i2, NULL_RTX, elim_i2, elim_i1);
3659 else
3660 distribute_notes (alloc_reg_note (REG_DEAD, i3dest_killed,
3661 NULL_RTX),
3662 NULL_RTX, i3, newi2pat ? i2 : NULL_RTX,
3663 elim_i2, elim_i1);
3664 }
3665
3666 if (i2dest_in_i2src)
3667 {
3668 if (newi2pat && reg_set_p (i2dest, newi2pat))
3669 distribute_notes (alloc_reg_note (REG_DEAD, i2dest, NULL_RTX),
3670 NULL_RTX, i2, NULL_RTX, NULL_RTX, NULL_RTX);
3671 else
3672 distribute_notes (alloc_reg_note (REG_DEAD, i2dest, NULL_RTX),
3673 NULL_RTX, i3, newi2pat ? i2 : NULL_RTX,
3674 NULL_RTX, NULL_RTX);
3675 }
3676
3677 if (i1dest_in_i1src)
3678 {
3679 if (newi2pat && reg_set_p (i1dest, newi2pat))
3680 distribute_notes (alloc_reg_note (REG_DEAD, i1dest, NULL_RTX),
3681 NULL_RTX, i2, NULL_RTX, NULL_RTX, NULL_RTX);
3682 else
3683 distribute_notes (alloc_reg_note (REG_DEAD, i1dest, NULL_RTX),
3684 NULL_RTX, i3, newi2pat ? i2 : NULL_RTX,
3685 NULL_RTX, NULL_RTX);
3686 }
3687
3688 distribute_links (i3links);
3689 distribute_links (i2links);
3690 distribute_links (i1links);
3691
3692 if (REG_P (i2dest))
3693 {
3694 rtx link;
3695 rtx i2_insn = 0, i2_val = 0, set;
3696
3697 /* The insn that used to set this register doesn't exist, and
3698 this life of the register may not exist either. See if one of
3699 I3's links points to an insn that sets I2DEST. If it does,
3700 that is now the last known value for I2DEST. If we don't update
3701 this and I2 set the register to a value that depended on its old
3702 contents, we will get confused. If this insn is used, thing
3703 will be set correctly in combine_instructions. */
3704
3705 for (link = LOG_LINKS (i3); link; link = XEXP (link, 1))
3706 if ((set = single_set (XEXP (link, 0))) != 0
3707 && rtx_equal_p (i2dest, SET_DEST (set)))
3708 i2_insn = XEXP (link, 0), i2_val = SET_SRC (set);
3709
3710 record_value_for_reg (i2dest, i2_insn, i2_val);
3711
3712 /* If the reg formerly set in I2 died only once and that was in I3,
3713 zero its use count so it won't make `reload' do any work. */
3714 if (! added_sets_2
3715 && (newi2pat == 0 || ! reg_mentioned_p (i2dest, newi2pat))
3716 && ! i2dest_in_i2src)
3717 {
3718 regno = REGNO (i2dest);
3719 INC_REG_N_SETS (regno, -1);
3720 }
3721 }
3722
3723 if (i1 && REG_P (i1dest))
3724 {
3725 rtx link;
3726 rtx i1_insn = 0, i1_val = 0, set;
3727
3728 for (link = LOG_LINKS (i3); link; link = XEXP (link, 1))
3729 if ((set = single_set (XEXP (link, 0))) != 0
3730 && rtx_equal_p (i1dest, SET_DEST (set)))
3731 i1_insn = XEXP (link, 0), i1_val = SET_SRC (set);
3732
3733 record_value_for_reg (i1dest, i1_insn, i1_val);
3734
3735 regno = REGNO (i1dest);
3736 if (! added_sets_1 && ! i1dest_in_i1src)
3737 INC_REG_N_SETS (regno, -1);
3738 }
3739
3740 /* Update reg_stat[].nonzero_bits et al for any changes that may have
3741 been made to this insn. The order of
3742 set_nonzero_bits_and_sign_copies() is important. Because newi2pat
3743 can affect nonzero_bits of newpat */
3744 if (newi2pat)
3745 note_stores (newi2pat, set_nonzero_bits_and_sign_copies, NULL);
3746 note_stores (newpat, set_nonzero_bits_and_sign_copies, NULL);
3747 }
3748
3749 if (undobuf.other_insn != NULL_RTX)
3750 {
3751 if (dump_file)
3752 {
3753 fprintf (dump_file, "modifying other_insn ");
3754 dump_insn_slim (dump_file, undobuf.other_insn);
3755 }
3756 df_insn_rescan (undobuf.other_insn);
3757 }
3758
3759 if (i1 && !(NOTE_P(i1) && (NOTE_KIND (i1) == NOTE_INSN_DELETED)))
3760 {
3761 if (dump_file)
3762 {
3763 fprintf (dump_file, "modifying insn i1 ");
3764 dump_insn_slim (dump_file, i1);
3765 }
3766 df_insn_rescan (i1);
3767 }
3768
3769 if (i2 && !(NOTE_P(i2) && (NOTE_KIND (i2) == NOTE_INSN_DELETED)))
3770 {
3771 if (dump_file)
3772 {
3773 fprintf (dump_file, "modifying insn i2 ");
3774 dump_insn_slim (dump_file, i2);
3775 }
3776 df_insn_rescan (i2);
3777 }
3778
3779 if (i3 && !(NOTE_P(i3) && (NOTE_KIND (i3) == NOTE_INSN_DELETED)))
3780 {
3781 if (dump_file)
3782 {
3783 fprintf (dump_file, "modifying insn i3 ");
3784 dump_insn_slim (dump_file, i3);
3785 }
3786 df_insn_rescan (i3);
3787 }
3788
3789 /* Set new_direct_jump_p if a new return or simple jump instruction
3790 has been created. Adjust the CFG accordingly. */
3791
3792 if (returnjump_p (i3) || any_uncondjump_p (i3))
3793 {
3794 *new_direct_jump_p = 1;
3795 mark_jump_label (PATTERN (i3), i3, 0);
3796 update_cfg_for_uncondjump (i3);
3797 }
3798
3799 if (undobuf.other_insn != NULL_RTX
3800 && (returnjump_p (undobuf.other_insn)
3801 || any_uncondjump_p (undobuf.other_insn)))
3802 {
3803 *new_direct_jump_p = 1;
3804 update_cfg_for_uncondjump (undobuf.other_insn);
3805 }
3806
3807 /* A noop might also need cleaning up of CFG, if it comes from the
3808 simplification of a jump. */
3809 if (GET_CODE (newpat) == SET
3810 && SET_SRC (newpat) == pc_rtx
3811 && SET_DEST (newpat) == pc_rtx)
3812 {
3813 *new_direct_jump_p = 1;
3814 update_cfg_for_uncondjump (i3);
3815 }
3816
3817 combine_successes++;
3818 undo_commit ();
3819
3820 if (added_links_insn
3821 && (newi2pat == 0 || DF_INSN_LUID (added_links_insn) < DF_INSN_LUID (i2))
3822 && DF_INSN_LUID (added_links_insn) < DF_INSN_LUID (i3))
3823 return added_links_insn;
3824 else
3825 return newi2pat ? i2 : i3;
3826 }
3827 \f
3828 /* Undo all the modifications recorded in undobuf. */
3829
3830 static void
3831 undo_all (void)
3832 {
3833 struct undo *undo, *next;
3834
3835 for (undo = undobuf.undos; undo; undo = next)
3836 {
3837 next = undo->next;
3838 switch (undo->kind)
3839 {
3840 case UNDO_RTX:
3841 *undo->where.r = undo->old_contents.r;
3842 break;
3843 case UNDO_INT:
3844 *undo->where.i = undo->old_contents.i;
3845 break;
3846 case UNDO_MODE:
3847 adjust_reg_mode (*undo->where.r, undo->old_contents.m);
3848 break;
3849 default:
3850 gcc_unreachable ();
3851 }
3852
3853 undo->next = undobuf.frees;
3854 undobuf.frees = undo;
3855 }
3856
3857 undobuf.undos = 0;
3858 }
3859
3860 /* We've committed to accepting the changes we made. Move all
3861 of the undos to the free list. */
3862
3863 static void
3864 undo_commit (void)
3865 {
3866 struct undo *undo, *next;
3867
3868 for (undo = undobuf.undos; undo; undo = next)
3869 {
3870 next = undo->next;
3871 undo->next = undobuf.frees;
3872 undobuf.frees = undo;
3873 }
3874 undobuf.undos = 0;
3875 }
3876 \f
3877 /* Find the innermost point within the rtx at LOC, possibly LOC itself,
3878 where we have an arithmetic expression and return that point. LOC will
3879 be inside INSN.
3880
3881 try_combine will call this function to see if an insn can be split into
3882 two insns. */
3883
3884 static rtx *
3885 find_split_point (rtx *loc, rtx insn)
3886 {
3887 rtx x = *loc;
3888 enum rtx_code code = GET_CODE (x);
3889 rtx *split;
3890 unsigned HOST_WIDE_INT len = 0;
3891 HOST_WIDE_INT pos = 0;
3892 int unsignedp = 0;
3893 rtx inner = NULL_RTX;
3894
3895 /* First special-case some codes. */
3896 switch (code)
3897 {
3898 case SUBREG:
3899 #ifdef INSN_SCHEDULING
3900 /* If we are making a paradoxical SUBREG invalid, it becomes a split
3901 point. */
3902 if (MEM_P (SUBREG_REG (x)))
3903 return loc;
3904 #endif
3905 return find_split_point (&SUBREG_REG (x), insn);
3906
3907 case MEM:
3908 #ifdef HAVE_lo_sum
3909 /* If we have (mem (const ..)) or (mem (symbol_ref ...)), split it
3910 using LO_SUM and HIGH. */
3911 if (GET_CODE (XEXP (x, 0)) == CONST
3912 || GET_CODE (XEXP (x, 0)) == SYMBOL_REF)
3913 {
3914 SUBST (XEXP (x, 0),
3915 gen_rtx_LO_SUM (Pmode,
3916 gen_rtx_HIGH (Pmode, XEXP (x, 0)),
3917 XEXP (x, 0)));
3918 return &XEXP (XEXP (x, 0), 0);
3919 }
3920 #endif
3921
3922 /* If we have a PLUS whose second operand is a constant and the
3923 address is not valid, perhaps will can split it up using
3924 the machine-specific way to split large constants. We use
3925 the first pseudo-reg (one of the virtual regs) as a placeholder;
3926 it will not remain in the result. */
3927 if (GET_CODE (XEXP (x, 0)) == PLUS
3928 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
3929 && ! memory_address_p (GET_MODE (x), XEXP (x, 0)))
3930 {
3931 rtx reg = regno_reg_rtx[FIRST_PSEUDO_REGISTER];
3932 rtx seq = combine_split_insns (gen_rtx_SET (VOIDmode, reg,
3933 XEXP (x, 0)),
3934 subst_insn);
3935
3936 /* This should have produced two insns, each of which sets our
3937 placeholder. If the source of the second is a valid address,
3938 we can make put both sources together and make a split point
3939 in the middle. */
3940
3941 if (seq
3942 && NEXT_INSN (seq) != NULL_RTX
3943 && NEXT_INSN (NEXT_INSN (seq)) == NULL_RTX
3944 && NONJUMP_INSN_P (seq)
3945 && GET_CODE (PATTERN (seq)) == SET
3946 && SET_DEST (PATTERN (seq)) == reg
3947 && ! reg_mentioned_p (reg,
3948 SET_SRC (PATTERN (seq)))
3949 && NONJUMP_INSN_P (NEXT_INSN (seq))
3950 && GET_CODE (PATTERN (NEXT_INSN (seq))) == SET
3951 && SET_DEST (PATTERN (NEXT_INSN (seq))) == reg
3952 && memory_address_p (GET_MODE (x),
3953 SET_SRC (PATTERN (NEXT_INSN (seq)))))
3954 {
3955 rtx src1 = SET_SRC (PATTERN (seq));
3956 rtx src2 = SET_SRC (PATTERN (NEXT_INSN (seq)));
3957
3958 /* Replace the placeholder in SRC2 with SRC1. If we can
3959 find where in SRC2 it was placed, that can become our
3960 split point and we can replace this address with SRC2.
3961 Just try two obvious places. */
3962
3963 src2 = replace_rtx (src2, reg, src1);
3964 split = 0;
3965 if (XEXP (src2, 0) == src1)
3966 split = &XEXP (src2, 0);
3967 else if (GET_RTX_FORMAT (GET_CODE (XEXP (src2, 0)))[0] == 'e'
3968 && XEXP (XEXP (src2, 0), 0) == src1)
3969 split = &XEXP (XEXP (src2, 0), 0);
3970
3971 if (split)
3972 {
3973 SUBST (XEXP (x, 0), src2);
3974 return split;
3975 }
3976 }
3977
3978 /* If that didn't work, perhaps the first operand is complex and
3979 needs to be computed separately, so make a split point there.
3980 This will occur on machines that just support REG + CONST
3981 and have a constant moved through some previous computation. */
3982
3983 else if (!OBJECT_P (XEXP (XEXP (x, 0), 0))
3984 && ! (GET_CODE (XEXP (XEXP (x, 0), 0)) == SUBREG
3985 && OBJECT_P (SUBREG_REG (XEXP (XEXP (x, 0), 0)))))
3986 return &XEXP (XEXP (x, 0), 0);
3987 }
3988
3989 /* If we have a PLUS whose first operand is complex, try computing it
3990 separately by making a split there. */
3991 if (GET_CODE (XEXP (x, 0)) == PLUS
3992 && ! memory_address_p (GET_MODE (x), XEXP (x, 0))
3993 && ! OBJECT_P (XEXP (XEXP (x, 0), 0))
3994 && ! (GET_CODE (XEXP (XEXP (x, 0), 0)) == SUBREG
3995 && OBJECT_P (SUBREG_REG (XEXP (XEXP (x, 0), 0)))))
3996 return &XEXP (XEXP (x, 0), 0);
3997 break;
3998
3999 case SET:
4000 #ifdef HAVE_cc0
4001 /* If SET_DEST is CC0 and SET_SRC is not an operand, a COMPARE, or a
4002 ZERO_EXTRACT, the most likely reason why this doesn't match is that
4003 we need to put the operand into a register. So split at that
4004 point. */
4005
4006 if (SET_DEST (x) == cc0_rtx
4007 && GET_CODE (SET_SRC (x)) != COMPARE
4008 && GET_CODE (SET_SRC (x)) != ZERO_EXTRACT
4009 && !OBJECT_P (SET_SRC (x))
4010 && ! (GET_CODE (SET_SRC (x)) == SUBREG
4011 && OBJECT_P (SUBREG_REG (SET_SRC (x)))))
4012 return &SET_SRC (x);
4013 #endif
4014
4015 /* See if we can split SET_SRC as it stands. */
4016 split = find_split_point (&SET_SRC (x), insn);
4017 if (split && split != &SET_SRC (x))
4018 return split;
4019
4020 /* See if we can split SET_DEST as it stands. */
4021 split = find_split_point (&SET_DEST (x), insn);
4022 if (split && split != &SET_DEST (x))
4023 return split;
4024
4025 /* See if this is a bitfield assignment with everything constant. If
4026 so, this is an IOR of an AND, so split it into that. */
4027 if (GET_CODE (SET_DEST (x)) == ZERO_EXTRACT
4028 && (GET_MODE_BITSIZE (GET_MODE (XEXP (SET_DEST (x), 0)))
4029 <= HOST_BITS_PER_WIDE_INT)
4030 && CONST_INT_P (XEXP (SET_DEST (x), 1))
4031 && CONST_INT_P (XEXP (SET_DEST (x), 2))
4032 && CONST_INT_P (SET_SRC (x))
4033 && ((INTVAL (XEXP (SET_DEST (x), 1))
4034 + INTVAL (XEXP (SET_DEST (x), 2)))
4035 <= GET_MODE_BITSIZE (GET_MODE (XEXP (SET_DEST (x), 0))))
4036 && ! side_effects_p (XEXP (SET_DEST (x), 0)))
4037 {
4038 HOST_WIDE_INT pos = INTVAL (XEXP (SET_DEST (x), 2));
4039 unsigned HOST_WIDE_INT len = INTVAL (XEXP (SET_DEST (x), 1));
4040 unsigned HOST_WIDE_INT src = INTVAL (SET_SRC (x));
4041 rtx dest = XEXP (SET_DEST (x), 0);
4042 enum machine_mode mode = GET_MODE (dest);
4043 unsigned HOST_WIDE_INT mask = ((HOST_WIDE_INT) 1 << len) - 1;
4044 rtx or_mask;
4045
4046 if (BITS_BIG_ENDIAN)
4047 pos = GET_MODE_BITSIZE (mode) - len - pos;
4048
4049 or_mask = gen_int_mode (src << pos, mode);
4050 if (src == mask)
4051 SUBST (SET_SRC (x),
4052 simplify_gen_binary (IOR, mode, dest, or_mask));
4053 else
4054 {
4055 rtx negmask = gen_int_mode (~(mask << pos), mode);
4056 SUBST (SET_SRC (x),
4057 simplify_gen_binary (IOR, mode,
4058 simplify_gen_binary (AND, mode,
4059 dest, negmask),
4060 or_mask));
4061 }
4062
4063 SUBST (SET_DEST (x), dest);
4064
4065 split = find_split_point (&SET_SRC (x), insn);
4066 if (split && split != &SET_SRC (x))
4067 return split;
4068 }
4069
4070 /* Otherwise, see if this is an operation that we can split into two.
4071 If so, try to split that. */
4072 code = GET_CODE (SET_SRC (x));
4073
4074 switch (code)
4075 {
4076 case AND:
4077 /* If we are AND'ing with a large constant that is only a single
4078 bit and the result is only being used in a context where we
4079 need to know if it is zero or nonzero, replace it with a bit
4080 extraction. This will avoid the large constant, which might
4081 have taken more than one insn to make. If the constant were
4082 not a valid argument to the AND but took only one insn to make,
4083 this is no worse, but if it took more than one insn, it will
4084 be better. */
4085
4086 if (CONST_INT_P (XEXP (SET_SRC (x), 1))
4087 && REG_P (XEXP (SET_SRC (x), 0))
4088 && (pos = exact_log2 (INTVAL (XEXP (SET_SRC (x), 1)))) >= 7
4089 && REG_P (SET_DEST (x))
4090 && (split = find_single_use (SET_DEST (x), insn, (rtx*) 0)) != 0
4091 && (GET_CODE (*split) == EQ || GET_CODE (*split) == NE)
4092 && XEXP (*split, 0) == SET_DEST (x)
4093 && XEXP (*split, 1) == const0_rtx)
4094 {
4095 rtx extraction = make_extraction (GET_MODE (SET_DEST (x)),
4096 XEXP (SET_SRC (x), 0),
4097 pos, NULL_RTX, 1, 1, 0, 0);
4098 if (extraction != 0)
4099 {
4100 SUBST (SET_SRC (x), extraction);
4101 return find_split_point (loc, insn);
4102 }
4103 }
4104 break;
4105
4106 case NE:
4107 /* If STORE_FLAG_VALUE is -1, this is (NE X 0) and only one bit of X
4108 is known to be on, this can be converted into a NEG of a shift. */
4109 if (STORE_FLAG_VALUE == -1 && XEXP (SET_SRC (x), 1) == const0_rtx
4110 && GET_MODE (SET_SRC (x)) == GET_MODE (XEXP (SET_SRC (x), 0))
4111 && 1 <= (pos = exact_log2
4112 (nonzero_bits (XEXP (SET_SRC (x), 0),
4113 GET_MODE (XEXP (SET_SRC (x), 0))))))
4114 {
4115 enum machine_mode mode = GET_MODE (XEXP (SET_SRC (x), 0));
4116
4117 SUBST (SET_SRC (x),
4118 gen_rtx_NEG (mode,
4119 gen_rtx_LSHIFTRT (mode,
4120 XEXP (SET_SRC (x), 0),
4121 GEN_INT (pos))));
4122
4123 split = find_split_point (&SET_SRC (x), insn);
4124 if (split && split != &SET_SRC (x))
4125 return split;
4126 }
4127 break;
4128
4129 case SIGN_EXTEND:
4130 inner = XEXP (SET_SRC (x), 0);
4131
4132 /* We can't optimize if either mode is a partial integer
4133 mode as we don't know how many bits are significant
4134 in those modes. */
4135 if (GET_MODE_CLASS (GET_MODE (inner)) == MODE_PARTIAL_INT
4136 || GET_MODE_CLASS (GET_MODE (SET_SRC (x))) == MODE_PARTIAL_INT)
4137 break;
4138
4139 pos = 0;
4140 len = GET_MODE_BITSIZE (GET_MODE (inner));
4141 unsignedp = 0;
4142 break;
4143
4144 case SIGN_EXTRACT:
4145 case ZERO_EXTRACT:
4146 if (CONST_INT_P (XEXP (SET_SRC (x), 1))
4147 && CONST_INT_P (XEXP (SET_SRC (x), 2)))
4148 {
4149 inner = XEXP (SET_SRC (x), 0);
4150 len = INTVAL (XEXP (SET_SRC (x), 1));
4151 pos = INTVAL (XEXP (SET_SRC (x), 2));
4152
4153 if (BITS_BIG_ENDIAN)
4154 pos = GET_MODE_BITSIZE (GET_MODE (inner)) - len - pos;
4155 unsignedp = (code == ZERO_EXTRACT);
4156 }
4157 break;
4158
4159 default:
4160 break;
4161 }
4162
4163 if (len && pos >= 0 && pos + len <= GET_MODE_BITSIZE (GET_MODE (inner)))
4164 {
4165 enum machine_mode mode = GET_MODE (SET_SRC (x));
4166
4167 /* For unsigned, we have a choice of a shift followed by an
4168 AND or two shifts. Use two shifts for field sizes where the
4169 constant might be too large. We assume here that we can
4170 always at least get 8-bit constants in an AND insn, which is
4171 true for every current RISC. */
4172
4173 if (unsignedp && len <= 8)
4174 {
4175 SUBST (SET_SRC (x),
4176 gen_rtx_AND (mode,
4177 gen_rtx_LSHIFTRT
4178 (mode, gen_lowpart (mode, inner),
4179 GEN_INT (pos)),
4180 GEN_INT (((HOST_WIDE_INT) 1 << len) - 1)));
4181
4182 split = find_split_point (&SET_SRC (x), insn);
4183 if (split && split != &SET_SRC (x))
4184 return split;
4185 }
4186 else
4187 {
4188 SUBST (SET_SRC (x),
4189 gen_rtx_fmt_ee
4190 (unsignedp ? LSHIFTRT : ASHIFTRT, mode,
4191 gen_rtx_ASHIFT (mode,
4192 gen_lowpart (mode, inner),
4193 GEN_INT (GET_MODE_BITSIZE (mode)
4194 - len - pos)),
4195 GEN_INT (GET_MODE_BITSIZE (mode) - len)));
4196
4197 split = find_split_point (&SET_SRC (x), insn);
4198 if (split && split != &SET_SRC (x))
4199 return split;
4200 }
4201 }
4202
4203 /* See if this is a simple operation with a constant as the second
4204 operand. It might be that this constant is out of range and hence
4205 could be used as a split point. */
4206 if (BINARY_P (SET_SRC (x))
4207 && CONSTANT_P (XEXP (SET_SRC (x), 1))
4208 && (OBJECT_P (XEXP (SET_SRC (x), 0))
4209 || (GET_CODE (XEXP (SET_SRC (x), 0)) == SUBREG
4210 && OBJECT_P (SUBREG_REG (XEXP (SET_SRC (x), 0))))))
4211 return &XEXP (SET_SRC (x), 1);
4212
4213 /* Finally, see if this is a simple operation with its first operand
4214 not in a register. The operation might require this operand in a
4215 register, so return it as a split point. We can always do this
4216 because if the first operand were another operation, we would have
4217 already found it as a split point. */
4218 if ((BINARY_P (SET_SRC (x)) || UNARY_P (SET_SRC (x)))
4219 && ! register_operand (XEXP (SET_SRC (x), 0), VOIDmode))
4220 return &XEXP (SET_SRC (x), 0);
4221
4222 return 0;
4223
4224 case AND:
4225 case IOR:
4226 /* We write NOR as (and (not A) (not B)), but if we don't have a NOR,
4227 it is better to write this as (not (ior A B)) so we can split it.
4228 Similarly for IOR. */
4229 if (GET_CODE (XEXP (x, 0)) == NOT && GET_CODE (XEXP (x, 1)) == NOT)
4230 {
4231 SUBST (*loc,
4232 gen_rtx_NOT (GET_MODE (x),
4233 gen_rtx_fmt_ee (code == IOR ? AND : IOR,
4234 GET_MODE (x),
4235 XEXP (XEXP (x, 0), 0),
4236 XEXP (XEXP (x, 1), 0))));
4237 return find_split_point (loc, insn);
4238 }
4239
4240 /* Many RISC machines have a large set of logical insns. If the
4241 second operand is a NOT, put it first so we will try to split the
4242 other operand first. */
4243 if (GET_CODE (XEXP (x, 1)) == NOT)
4244 {
4245 rtx tem = XEXP (x, 0);
4246 SUBST (XEXP (x, 0), XEXP (x, 1));
4247 SUBST (XEXP (x, 1), tem);
4248 }
4249 break;
4250
4251 default:
4252 break;
4253 }
4254
4255 /* Otherwise, select our actions depending on our rtx class. */
4256 switch (GET_RTX_CLASS (code))
4257 {
4258 case RTX_BITFIELD_OPS: /* This is ZERO_EXTRACT and SIGN_EXTRACT. */
4259 case RTX_TERNARY:
4260 split = find_split_point (&XEXP (x, 2), insn);
4261 if (split)
4262 return split;
4263 /* ... fall through ... */
4264 case RTX_BIN_ARITH:
4265 case RTX_COMM_ARITH:
4266 case RTX_COMPARE:
4267 case RTX_COMM_COMPARE:
4268 split = find_split_point (&XEXP (x, 1), insn);
4269 if (split)
4270 return split;
4271 /* ... fall through ... */
4272 case RTX_UNARY:
4273 /* Some machines have (and (shift ...) ...) insns. If X is not
4274 an AND, but XEXP (X, 0) is, use it as our split point. */
4275 if (GET_CODE (x) != AND && GET_CODE (XEXP (x, 0)) == AND)
4276 return &XEXP (x, 0);
4277
4278 split = find_split_point (&XEXP (x, 0), insn);
4279 if (split)
4280 return split;
4281 return loc;
4282
4283 default:
4284 /* Otherwise, we don't have a split point. */
4285 return 0;
4286 }
4287 }
4288 \f
4289 /* Throughout X, replace FROM with TO, and return the result.
4290 The result is TO if X is FROM;
4291 otherwise the result is X, but its contents may have been modified.
4292 If they were modified, a record was made in undobuf so that
4293 undo_all will (among other things) return X to its original state.
4294
4295 If the number of changes necessary is too much to record to undo,
4296 the excess changes are not made, so the result is invalid.
4297 The changes already made can still be undone.
4298 undobuf.num_undo is incremented for such changes, so by testing that
4299 the caller can tell whether the result is valid.
4300
4301 `n_occurrences' is incremented each time FROM is replaced.
4302
4303 IN_DEST is nonzero if we are processing the SET_DEST of a SET.
4304
4305 UNIQUE_COPY is nonzero if each substitution must be unique. We do this
4306 by copying if `n_occurrences' is nonzero. */
4307
4308 static rtx
4309 subst (rtx x, rtx from, rtx to, int in_dest, int unique_copy)
4310 {
4311 enum rtx_code code = GET_CODE (x);
4312 enum machine_mode op0_mode = VOIDmode;
4313 const char *fmt;
4314 int len, i;
4315 rtx new_rtx;
4316
4317 /* Two expressions are equal if they are identical copies of a shared
4318 RTX or if they are both registers with the same register number
4319 and mode. */
4320
4321 #define COMBINE_RTX_EQUAL_P(X,Y) \
4322 ((X) == (Y) \
4323 || (REG_P (X) && REG_P (Y) \
4324 && REGNO (X) == REGNO (Y) && GET_MODE (X) == GET_MODE (Y)))
4325
4326 if (! in_dest && COMBINE_RTX_EQUAL_P (x, from))
4327 {
4328 n_occurrences++;
4329 return (unique_copy && n_occurrences > 1 ? copy_rtx (to) : to);
4330 }
4331
4332 /* If X and FROM are the same register but different modes, they
4333 will not have been seen as equal above. However, the log links code
4334 will make a LOG_LINKS entry for that case. If we do nothing, we
4335 will try to rerecognize our original insn and, when it succeeds,
4336 we will delete the feeding insn, which is incorrect.
4337
4338 So force this insn not to match in this (rare) case. */
4339 if (! in_dest && code == REG && REG_P (from)
4340 && reg_overlap_mentioned_p (x, from))
4341 return gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
4342
4343 /* If this is an object, we are done unless it is a MEM or LO_SUM, both
4344 of which may contain things that can be combined. */
4345 if (code != MEM && code != LO_SUM && OBJECT_P (x))
4346 return x;
4347
4348 /* It is possible to have a subexpression appear twice in the insn.
4349 Suppose that FROM is a register that appears within TO.
4350 Then, after that subexpression has been scanned once by `subst',
4351 the second time it is scanned, TO may be found. If we were
4352 to scan TO here, we would find FROM within it and create a
4353 self-referent rtl structure which is completely wrong. */
4354 if (COMBINE_RTX_EQUAL_P (x, to))
4355 return to;
4356
4357 /* Parallel asm_operands need special attention because all of the
4358 inputs are shared across the arms. Furthermore, unsharing the
4359 rtl results in recognition failures. Failure to handle this case
4360 specially can result in circular rtl.
4361
4362 Solve this by doing a normal pass across the first entry of the
4363 parallel, and only processing the SET_DESTs of the subsequent
4364 entries. Ug. */
4365
4366 if (code == PARALLEL
4367 && GET_CODE (XVECEXP (x, 0, 0)) == SET
4368 && GET_CODE (SET_SRC (XVECEXP (x, 0, 0))) == ASM_OPERANDS)
4369 {
4370 new_rtx = subst (XVECEXP (x, 0, 0), from, to, 0, unique_copy);
4371
4372 /* If this substitution failed, this whole thing fails. */
4373 if (GET_CODE (new_rtx) == CLOBBER
4374 && XEXP (new_rtx, 0) == const0_rtx)
4375 return new_rtx;
4376
4377 SUBST (XVECEXP (x, 0, 0), new_rtx);
4378
4379 for (i = XVECLEN (x, 0) - 1; i >= 1; i--)
4380 {
4381 rtx dest = SET_DEST (XVECEXP (x, 0, i));
4382
4383 if (!REG_P (dest)
4384 && GET_CODE (dest) != CC0
4385 && GET_CODE (dest) != PC)
4386 {
4387 new_rtx = subst (dest, from, to, 0, unique_copy);
4388
4389 /* If this substitution failed, this whole thing fails. */
4390 if (GET_CODE (new_rtx) == CLOBBER
4391 && XEXP (new_rtx, 0) == const0_rtx)
4392 return new_rtx;
4393
4394 SUBST (SET_DEST (XVECEXP (x, 0, i)), new_rtx);
4395 }
4396 }
4397 }
4398 else
4399 {
4400 len = GET_RTX_LENGTH (code);
4401 fmt = GET_RTX_FORMAT (code);
4402
4403 /* We don't need to process a SET_DEST that is a register, CC0,
4404 or PC, so set up to skip this common case. All other cases
4405 where we want to suppress replacing something inside a
4406 SET_SRC are handled via the IN_DEST operand. */
4407 if (code == SET
4408 && (REG_P (SET_DEST (x))
4409 || GET_CODE (SET_DEST (x)) == CC0
4410 || GET_CODE (SET_DEST (x)) == PC))
4411 fmt = "ie";
4412
4413 /* Get the mode of operand 0 in case X is now a SIGN_EXTEND of a
4414 constant. */
4415 if (fmt[0] == 'e')
4416 op0_mode = GET_MODE (XEXP (x, 0));
4417
4418 for (i = 0; i < len; i++)
4419 {
4420 if (fmt[i] == 'E')
4421 {
4422 int j;
4423 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
4424 {
4425 if (COMBINE_RTX_EQUAL_P (XVECEXP (x, i, j), from))
4426 {
4427 new_rtx = (unique_copy && n_occurrences
4428 ? copy_rtx (to) : to);
4429 n_occurrences++;
4430 }
4431 else
4432 {
4433 new_rtx = subst (XVECEXP (x, i, j), from, to, 0,
4434 unique_copy);
4435
4436 /* If this substitution failed, this whole thing
4437 fails. */
4438 if (GET_CODE (new_rtx) == CLOBBER
4439 && XEXP (new_rtx, 0) == const0_rtx)
4440 return new_rtx;
4441 }
4442
4443 SUBST (XVECEXP (x, i, j), new_rtx);
4444 }
4445 }
4446 else if (fmt[i] == 'e')
4447 {
4448 /* If this is a register being set, ignore it. */
4449 new_rtx = XEXP (x, i);
4450 if (in_dest
4451 && i == 0
4452 && (((code == SUBREG || code == ZERO_EXTRACT)
4453 && REG_P (new_rtx))
4454 || code == STRICT_LOW_PART))
4455 ;
4456
4457 else if (COMBINE_RTX_EQUAL_P (XEXP (x, i), from))
4458 {
4459 /* In general, don't install a subreg involving two
4460 modes not tieable. It can worsen register
4461 allocation, and can even make invalid reload
4462 insns, since the reg inside may need to be copied
4463 from in the outside mode, and that may be invalid
4464 if it is an fp reg copied in integer mode.
4465
4466 We allow two exceptions to this: It is valid if
4467 it is inside another SUBREG and the mode of that
4468 SUBREG and the mode of the inside of TO is
4469 tieable and it is valid if X is a SET that copies
4470 FROM to CC0. */
4471
4472 if (GET_CODE (to) == SUBREG
4473 && ! MODES_TIEABLE_P (GET_MODE (to),
4474 GET_MODE (SUBREG_REG (to)))
4475 && ! (code == SUBREG
4476 && MODES_TIEABLE_P (GET_MODE (x),
4477 GET_MODE (SUBREG_REG (to))))
4478 #ifdef HAVE_cc0
4479 && ! (code == SET && i == 1 && XEXP (x, 0) == cc0_rtx)
4480 #endif
4481 )
4482 return gen_rtx_CLOBBER (VOIDmode, const0_rtx);
4483
4484 #ifdef CANNOT_CHANGE_MODE_CLASS
4485 if (code == SUBREG
4486 && REG_P (to)
4487 && REGNO (to) < FIRST_PSEUDO_REGISTER
4488 && REG_CANNOT_CHANGE_MODE_P (REGNO (to),
4489 GET_MODE (to),
4490 GET_MODE (x)))
4491 return gen_rtx_CLOBBER (VOIDmode, const0_rtx);
4492 #endif
4493
4494 new_rtx = (unique_copy && n_occurrences ? copy_rtx (to) : to);
4495 n_occurrences++;
4496 }
4497 else
4498 /* If we are in a SET_DEST, suppress most cases unless we
4499 have gone inside a MEM, in which case we want to
4500 simplify the address. We assume here that things that
4501 are actually part of the destination have their inner
4502 parts in the first expression. This is true for SUBREG,
4503 STRICT_LOW_PART, and ZERO_EXTRACT, which are the only
4504 things aside from REG and MEM that should appear in a
4505 SET_DEST. */
4506 new_rtx = subst (XEXP (x, i), from, to,
4507 (((in_dest
4508 && (code == SUBREG || code == STRICT_LOW_PART
4509 || code == ZERO_EXTRACT))
4510 || code == SET)
4511 && i == 0), unique_copy);
4512
4513 /* If we found that we will have to reject this combination,
4514 indicate that by returning the CLOBBER ourselves, rather than
4515 an expression containing it. This will speed things up as
4516 well as prevent accidents where two CLOBBERs are considered
4517 to be equal, thus producing an incorrect simplification. */
4518
4519 if (GET_CODE (new_rtx) == CLOBBER && XEXP (new_rtx, 0) == const0_rtx)
4520 return new_rtx;
4521
4522 if (GET_CODE (x) == SUBREG
4523 && (CONST_INT_P (new_rtx)
4524 || GET_CODE (new_rtx) == CONST_DOUBLE))
4525 {
4526 enum machine_mode mode = GET_MODE (x);
4527
4528 x = simplify_subreg (GET_MODE (x), new_rtx,
4529 GET_MODE (SUBREG_REG (x)),
4530 SUBREG_BYTE (x));
4531 if (! x)
4532 x = gen_rtx_CLOBBER (mode, const0_rtx);
4533 }
4534 else if (CONST_INT_P (new_rtx)
4535 && GET_CODE (x) == ZERO_EXTEND)
4536 {
4537 x = simplify_unary_operation (ZERO_EXTEND, GET_MODE (x),
4538 new_rtx, GET_MODE (XEXP (x, 0)));
4539 gcc_assert (x);
4540 }
4541 else
4542 SUBST (XEXP (x, i), new_rtx);
4543 }
4544 }
4545 }
4546
4547 /* Check if we are loading something from the constant pool via float
4548 extension; in this case we would undo compress_float_constant
4549 optimization and degenerate constant load to an immediate value. */
4550 if (GET_CODE (x) == FLOAT_EXTEND
4551 && MEM_P (XEXP (x, 0))
4552 && MEM_READONLY_P (XEXP (x, 0)))
4553 {
4554 rtx tmp = avoid_constant_pool_reference (x);
4555 if (x != tmp)
4556 return x;
4557 }
4558
4559 /* Try to simplify X. If the simplification changed the code, it is likely
4560 that further simplification will help, so loop, but limit the number
4561 of repetitions that will be performed. */
4562
4563 for (i = 0; i < 4; i++)
4564 {
4565 /* If X is sufficiently simple, don't bother trying to do anything
4566 with it. */
4567 if (code != CONST_INT && code != REG && code != CLOBBER)
4568 x = combine_simplify_rtx (x, op0_mode, in_dest);
4569
4570 if (GET_CODE (x) == code)
4571 break;
4572
4573 code = GET_CODE (x);
4574
4575 /* We no longer know the original mode of operand 0 since we
4576 have changed the form of X) */
4577 op0_mode = VOIDmode;
4578 }
4579
4580 return x;
4581 }
4582 \f
4583 /* Simplify X, a piece of RTL. We just operate on the expression at the
4584 outer level; call `subst' to simplify recursively. Return the new
4585 expression.
4586
4587 OP0_MODE is the original mode of XEXP (x, 0). IN_DEST is nonzero
4588 if we are inside a SET_DEST. */
4589
4590 static rtx
4591 combine_simplify_rtx (rtx x, enum machine_mode op0_mode, int in_dest)
4592 {
4593 enum rtx_code code = GET_CODE (x);
4594 enum machine_mode mode = GET_MODE (x);
4595 rtx temp;
4596 int i;
4597
4598 /* If this is a commutative operation, put a constant last and a complex
4599 expression first. We don't need to do this for comparisons here. */
4600 if (COMMUTATIVE_ARITH_P (x)
4601 && swap_commutative_operands_p (XEXP (x, 0), XEXP (x, 1)))
4602 {
4603 temp = XEXP (x, 0);
4604 SUBST (XEXP (x, 0), XEXP (x, 1));
4605 SUBST (XEXP (x, 1), temp);
4606 }
4607
4608 /* If this is a simple operation applied to an IF_THEN_ELSE, try
4609 applying it to the arms of the IF_THEN_ELSE. This often simplifies
4610 things. Check for cases where both arms are testing the same
4611 condition.
4612
4613 Don't do anything if all operands are very simple. */
4614
4615 if ((BINARY_P (x)
4616 && ((!OBJECT_P (XEXP (x, 0))
4617 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
4618 && OBJECT_P (SUBREG_REG (XEXP (x, 0)))))
4619 || (!OBJECT_P (XEXP (x, 1))
4620 && ! (GET_CODE (XEXP (x, 1)) == SUBREG
4621 && OBJECT_P (SUBREG_REG (XEXP (x, 1)))))))
4622 || (UNARY_P (x)
4623 && (!OBJECT_P (XEXP (x, 0))
4624 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
4625 && OBJECT_P (SUBREG_REG (XEXP (x, 0)))))))
4626 {
4627 rtx cond, true_rtx, false_rtx;
4628
4629 cond = if_then_else_cond (x, &true_rtx, &false_rtx);
4630 if (cond != 0
4631 /* If everything is a comparison, what we have is highly unlikely
4632 to be simpler, so don't use it. */
4633 && ! (COMPARISON_P (x)
4634 && (COMPARISON_P (true_rtx) || COMPARISON_P (false_rtx))))
4635 {
4636 rtx cop1 = const0_rtx;
4637 enum rtx_code cond_code = simplify_comparison (NE, &cond, &cop1);
4638
4639 if (cond_code == NE && COMPARISON_P (cond))
4640 return x;
4641
4642 /* Simplify the alternative arms; this may collapse the true and
4643 false arms to store-flag values. Be careful to use copy_rtx
4644 here since true_rtx or false_rtx might share RTL with x as a
4645 result of the if_then_else_cond call above. */
4646 true_rtx = subst (copy_rtx (true_rtx), pc_rtx, pc_rtx, 0, 0);
4647 false_rtx = subst (copy_rtx (false_rtx), pc_rtx, pc_rtx, 0, 0);
4648
4649 /* If true_rtx and false_rtx are not general_operands, an if_then_else
4650 is unlikely to be simpler. */
4651 if (general_operand (true_rtx, VOIDmode)
4652 && general_operand (false_rtx, VOIDmode))
4653 {
4654 enum rtx_code reversed;
4655
4656 /* Restarting if we generate a store-flag expression will cause
4657 us to loop. Just drop through in this case. */
4658
4659 /* If the result values are STORE_FLAG_VALUE and zero, we can
4660 just make the comparison operation. */
4661 if (true_rtx == const_true_rtx && false_rtx == const0_rtx)
4662 x = simplify_gen_relational (cond_code, mode, VOIDmode,
4663 cond, cop1);
4664 else if (true_rtx == const0_rtx && false_rtx == const_true_rtx
4665 && ((reversed = reversed_comparison_code_parts
4666 (cond_code, cond, cop1, NULL))
4667 != UNKNOWN))
4668 x = simplify_gen_relational (reversed, mode, VOIDmode,
4669 cond, cop1);
4670
4671 /* Likewise, we can make the negate of a comparison operation
4672 if the result values are - STORE_FLAG_VALUE and zero. */
4673 else if (CONST_INT_P (true_rtx)
4674 && INTVAL (true_rtx) == - STORE_FLAG_VALUE
4675 && false_rtx == const0_rtx)
4676 x = simplify_gen_unary (NEG, mode,
4677 simplify_gen_relational (cond_code,
4678 mode, VOIDmode,
4679 cond, cop1),
4680 mode);
4681 else if (CONST_INT_P (false_rtx)
4682 && INTVAL (false_rtx) == - STORE_FLAG_VALUE
4683 && true_rtx == const0_rtx
4684 && ((reversed = reversed_comparison_code_parts
4685 (cond_code, cond, cop1, NULL))
4686 != UNKNOWN))
4687 x = simplify_gen_unary (NEG, mode,
4688 simplify_gen_relational (reversed,
4689 mode, VOIDmode,
4690 cond, cop1),
4691 mode);
4692 else
4693 return gen_rtx_IF_THEN_ELSE (mode,
4694 simplify_gen_relational (cond_code,
4695 mode,
4696 VOIDmode,
4697 cond,
4698 cop1),
4699 true_rtx, false_rtx);
4700
4701 code = GET_CODE (x);
4702 op0_mode = VOIDmode;
4703 }
4704 }
4705 }
4706
4707 /* Try to fold this expression in case we have constants that weren't
4708 present before. */
4709 temp = 0;
4710 switch (GET_RTX_CLASS (code))
4711 {
4712 case RTX_UNARY:
4713 if (op0_mode == VOIDmode)
4714 op0_mode = GET_MODE (XEXP (x, 0));
4715 temp = simplify_unary_operation (code, mode, XEXP (x, 0), op0_mode);
4716 break;
4717 case RTX_COMPARE:
4718 case RTX_COMM_COMPARE:
4719 {
4720 enum machine_mode cmp_mode = GET_MODE (XEXP (x, 0));
4721 if (cmp_mode == VOIDmode)
4722 {
4723 cmp_mode = GET_MODE (XEXP (x, 1));
4724 if (cmp_mode == VOIDmode)
4725 cmp_mode = op0_mode;
4726 }
4727 temp = simplify_relational_operation (code, mode, cmp_mode,
4728 XEXP (x, 0), XEXP (x, 1));
4729 }
4730 break;
4731 case RTX_COMM_ARITH:
4732 case RTX_BIN_ARITH:
4733 temp = simplify_binary_operation (code, mode, XEXP (x, 0), XEXP (x, 1));
4734 break;
4735 case RTX_BITFIELD_OPS:
4736 case RTX_TERNARY:
4737 temp = simplify_ternary_operation (code, mode, op0_mode, XEXP (x, 0),
4738 XEXP (x, 1), XEXP (x, 2));
4739 break;
4740 default:
4741 break;
4742 }
4743
4744 if (temp)
4745 {
4746 x = temp;
4747 code = GET_CODE (temp);
4748 op0_mode = VOIDmode;
4749 mode = GET_MODE (temp);
4750 }
4751
4752 /* First see if we can apply the inverse distributive law. */
4753 if (code == PLUS || code == MINUS
4754 || code == AND || code == IOR || code == XOR)
4755 {
4756 x = apply_distributive_law (x);
4757 code = GET_CODE (x);
4758 op0_mode = VOIDmode;
4759 }
4760
4761 /* If CODE is an associative operation not otherwise handled, see if we
4762 can associate some operands. This can win if they are constants or
4763 if they are logically related (i.e. (a & b) & a). */
4764 if ((code == PLUS || code == MINUS || code == MULT || code == DIV
4765 || code == AND || code == IOR || code == XOR
4766 || code == SMAX || code == SMIN || code == UMAX || code == UMIN)
4767 && ((INTEGRAL_MODE_P (mode) && code != DIV)
4768 || (flag_associative_math && FLOAT_MODE_P (mode))))
4769 {
4770 if (GET_CODE (XEXP (x, 0)) == code)
4771 {
4772 rtx other = XEXP (XEXP (x, 0), 0);
4773 rtx inner_op0 = XEXP (XEXP (x, 0), 1);
4774 rtx inner_op1 = XEXP (x, 1);
4775 rtx inner;
4776
4777 /* Make sure we pass the constant operand if any as the second
4778 one if this is a commutative operation. */
4779 if (CONSTANT_P (inner_op0) && COMMUTATIVE_ARITH_P (x))
4780 {
4781 rtx tem = inner_op0;
4782 inner_op0 = inner_op1;
4783 inner_op1 = tem;
4784 }
4785 inner = simplify_binary_operation (code == MINUS ? PLUS
4786 : code == DIV ? MULT
4787 : code,
4788 mode, inner_op0, inner_op1);
4789
4790 /* For commutative operations, try the other pair if that one
4791 didn't simplify. */
4792 if (inner == 0 && COMMUTATIVE_ARITH_P (x))
4793 {
4794 other = XEXP (XEXP (x, 0), 1);
4795 inner = simplify_binary_operation (code, mode,
4796 XEXP (XEXP (x, 0), 0),
4797 XEXP (x, 1));
4798 }
4799
4800 if (inner)
4801 return simplify_gen_binary (code, mode, other, inner);
4802 }
4803 }
4804
4805 /* A little bit of algebraic simplification here. */
4806 switch (code)
4807 {
4808 case MEM:
4809 /* Ensure that our address has any ASHIFTs converted to MULT in case
4810 address-recognizing predicates are called later. */
4811 temp = make_compound_operation (XEXP (x, 0), MEM);
4812 SUBST (XEXP (x, 0), temp);
4813 break;
4814
4815 case SUBREG:
4816 if (op0_mode == VOIDmode)
4817 op0_mode = GET_MODE (SUBREG_REG (x));
4818
4819 /* See if this can be moved to simplify_subreg. */
4820 if (CONSTANT_P (SUBREG_REG (x))
4821 && subreg_lowpart_offset (mode, op0_mode) == SUBREG_BYTE (x)
4822 /* Don't call gen_lowpart if the inner mode
4823 is VOIDmode and we cannot simplify it, as SUBREG without
4824 inner mode is invalid. */
4825 && (GET_MODE (SUBREG_REG (x)) != VOIDmode
4826 || gen_lowpart_common (mode, SUBREG_REG (x))))
4827 return gen_lowpart (mode, SUBREG_REG (x));
4828
4829 if (GET_MODE_CLASS (GET_MODE (SUBREG_REG (x))) == MODE_CC)
4830 break;
4831 {
4832 rtx temp;
4833 temp = simplify_subreg (mode, SUBREG_REG (x), op0_mode,
4834 SUBREG_BYTE (x));
4835 if (temp)
4836 return temp;
4837 }
4838
4839 /* Don't change the mode of the MEM if that would change the meaning
4840 of the address. */
4841 if (MEM_P (SUBREG_REG (x))
4842 && (MEM_VOLATILE_P (SUBREG_REG (x))
4843 || mode_dependent_address_p (XEXP (SUBREG_REG (x), 0))))
4844 return gen_rtx_CLOBBER (mode, const0_rtx);
4845
4846 /* Note that we cannot do any narrowing for non-constants since
4847 we might have been counting on using the fact that some bits were
4848 zero. We now do this in the SET. */
4849
4850 break;
4851
4852 case NEG:
4853 temp = expand_compound_operation (XEXP (x, 0));
4854
4855 /* For C equal to the width of MODE minus 1, (neg (ashiftrt X C)) can be
4856 replaced by (lshiftrt X C). This will convert
4857 (neg (sign_extract X 1 Y)) to (zero_extract X 1 Y). */
4858
4859 if (GET_CODE (temp) == ASHIFTRT
4860 && CONST_INT_P (XEXP (temp, 1))
4861 && INTVAL (XEXP (temp, 1)) == GET_MODE_BITSIZE (mode) - 1)
4862 return simplify_shift_const (NULL_RTX, LSHIFTRT, mode, XEXP (temp, 0),
4863 INTVAL (XEXP (temp, 1)));
4864
4865 /* If X has only a single bit that might be nonzero, say, bit I, convert
4866 (neg X) to (ashiftrt (ashift X C-I) C-I) where C is the bitsize of
4867 MODE minus 1. This will convert (neg (zero_extract X 1 Y)) to
4868 (sign_extract X 1 Y). But only do this if TEMP isn't a register
4869 or a SUBREG of one since we'd be making the expression more
4870 complex if it was just a register. */
4871
4872 if (!REG_P (temp)
4873 && ! (GET_CODE (temp) == SUBREG
4874 && REG_P (SUBREG_REG (temp)))
4875 && (i = exact_log2 (nonzero_bits (temp, mode))) >= 0)
4876 {
4877 rtx temp1 = simplify_shift_const
4878 (NULL_RTX, ASHIFTRT, mode,
4879 simplify_shift_const (NULL_RTX, ASHIFT, mode, temp,
4880 GET_MODE_BITSIZE (mode) - 1 - i),
4881 GET_MODE_BITSIZE (mode) - 1 - i);
4882
4883 /* If all we did was surround TEMP with the two shifts, we
4884 haven't improved anything, so don't use it. Otherwise,
4885 we are better off with TEMP1. */
4886 if (GET_CODE (temp1) != ASHIFTRT
4887 || GET_CODE (XEXP (temp1, 0)) != ASHIFT
4888 || XEXP (XEXP (temp1, 0), 0) != temp)
4889 return temp1;
4890 }
4891 break;
4892
4893 case TRUNCATE:
4894 /* We can't handle truncation to a partial integer mode here
4895 because we don't know the real bitsize of the partial
4896 integer mode. */
4897 if (GET_MODE_CLASS (mode) == MODE_PARTIAL_INT)
4898 break;
4899
4900 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
4901 SUBST (XEXP (x, 0),
4902 force_to_mode (XEXP (x, 0), GET_MODE (XEXP (x, 0)),
4903 GET_MODE_MASK (mode), 0));
4904
4905 /* Similarly to what we do in simplify-rtx.c, a truncate of a register
4906 whose value is a comparison can be replaced with a subreg if
4907 STORE_FLAG_VALUE permits. */
4908 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4909 && ((HOST_WIDE_INT) STORE_FLAG_VALUE & ~GET_MODE_MASK (mode)) == 0
4910 && (temp = get_last_value (XEXP (x, 0)))
4911 && COMPARISON_P (temp))
4912 return gen_lowpart (mode, XEXP (x, 0));
4913 break;
4914
4915 case CONST:
4916 /* (const (const X)) can become (const X). Do it this way rather than
4917 returning the inner CONST since CONST can be shared with a
4918 REG_EQUAL note. */
4919 if (GET_CODE (XEXP (x, 0)) == CONST)
4920 SUBST (XEXP (x, 0), XEXP (XEXP (x, 0), 0));
4921 break;
4922
4923 #ifdef HAVE_lo_sum
4924 case LO_SUM:
4925 /* Convert (lo_sum (high FOO) FOO) to FOO. This is necessary so we
4926 can add in an offset. find_split_point will split this address up
4927 again if it doesn't match. */
4928 if (GET_CODE (XEXP (x, 0)) == HIGH
4929 && rtx_equal_p (XEXP (XEXP (x, 0), 0), XEXP (x, 1)))
4930 return XEXP (x, 1);
4931 break;
4932 #endif
4933
4934 case PLUS:
4935 /* (plus (xor (and <foo> (const_int pow2 - 1)) <c>) <-c>)
4936 when c is (const_int (pow2 + 1) / 2) is a sign extension of a
4937 bit-field and can be replaced by either a sign_extend or a
4938 sign_extract. The `and' may be a zero_extend and the two
4939 <c>, -<c> constants may be reversed. */
4940 if (GET_CODE (XEXP (x, 0)) == XOR
4941 && CONST_INT_P (XEXP (x, 1))
4942 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
4943 && INTVAL (XEXP (x, 1)) == -INTVAL (XEXP (XEXP (x, 0), 1))
4944 && ((i = exact_log2 (INTVAL (XEXP (XEXP (x, 0), 1)))) >= 0
4945 || (i = exact_log2 (INTVAL (XEXP (x, 1)))) >= 0)
4946 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4947 && ((GET_CODE (XEXP (XEXP (x, 0), 0)) == AND
4948 && CONST_INT_P (XEXP (XEXP (XEXP (x, 0), 0), 1))
4949 && (INTVAL (XEXP (XEXP (XEXP (x, 0), 0), 1))
4950 == ((HOST_WIDE_INT) 1 << (i + 1)) - 1))
4951 || (GET_CODE (XEXP (XEXP (x, 0), 0)) == ZERO_EXTEND
4952 && (GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (XEXP (x, 0), 0), 0)))
4953 == (unsigned int) i + 1))))
4954 return simplify_shift_const
4955 (NULL_RTX, ASHIFTRT, mode,
4956 simplify_shift_const (NULL_RTX, ASHIFT, mode,
4957 XEXP (XEXP (XEXP (x, 0), 0), 0),
4958 GET_MODE_BITSIZE (mode) - (i + 1)),
4959 GET_MODE_BITSIZE (mode) - (i + 1));
4960
4961 /* If only the low-order bit of X is possibly nonzero, (plus x -1)
4962 can become (ashiftrt (ashift (xor x 1) C) C) where C is
4963 the bitsize of the mode - 1. This allows simplification of
4964 "a = (b & 8) == 0;" */
4965 if (XEXP (x, 1) == constm1_rtx
4966 && !REG_P (XEXP (x, 0))
4967 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
4968 && REG_P (SUBREG_REG (XEXP (x, 0))))
4969 && nonzero_bits (XEXP (x, 0), mode) == 1)
4970 return simplify_shift_const (NULL_RTX, ASHIFTRT, mode,
4971 simplify_shift_const (NULL_RTX, ASHIFT, mode,
4972 gen_rtx_XOR (mode, XEXP (x, 0), const1_rtx),
4973 GET_MODE_BITSIZE (mode) - 1),
4974 GET_MODE_BITSIZE (mode) - 1);
4975
4976 /* If we are adding two things that have no bits in common, convert
4977 the addition into an IOR. This will often be further simplified,
4978 for example in cases like ((a & 1) + (a & 2)), which can
4979 become a & 3. */
4980
4981 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4982 && (nonzero_bits (XEXP (x, 0), mode)
4983 & nonzero_bits (XEXP (x, 1), mode)) == 0)
4984 {
4985 /* Try to simplify the expression further. */
4986 rtx tor = simplify_gen_binary (IOR, mode, XEXP (x, 0), XEXP (x, 1));
4987 temp = combine_simplify_rtx (tor, mode, in_dest);
4988
4989 /* If we could, great. If not, do not go ahead with the IOR
4990 replacement, since PLUS appears in many special purpose
4991 address arithmetic instructions. */
4992 if (GET_CODE (temp) != CLOBBER && temp != tor)
4993 return temp;
4994 }
4995 break;
4996
4997 case MINUS:
4998 /* (minus <foo> (and <foo> (const_int -pow2))) becomes
4999 (and <foo> (const_int pow2-1)) */
5000 if (GET_CODE (XEXP (x, 1)) == AND
5001 && CONST_INT_P (XEXP (XEXP (x, 1), 1))
5002 && exact_log2 (-INTVAL (XEXP (XEXP (x, 1), 1))) >= 0
5003 && rtx_equal_p (XEXP (XEXP (x, 1), 0), XEXP (x, 0)))
5004 return simplify_and_const_int (NULL_RTX, mode, XEXP (x, 0),
5005 -INTVAL (XEXP (XEXP (x, 1), 1)) - 1);
5006 break;
5007
5008 case MULT:
5009 /* If we have (mult (plus A B) C), apply the distributive law and then
5010 the inverse distributive law to see if things simplify. This
5011 occurs mostly in addresses, often when unrolling loops. */
5012
5013 if (GET_CODE (XEXP (x, 0)) == PLUS)
5014 {
5015 rtx result = distribute_and_simplify_rtx (x, 0);
5016 if (result)
5017 return result;
5018 }
5019
5020 /* Try simplify a*(b/c) as (a*b)/c. */
5021 if (FLOAT_MODE_P (mode) && flag_associative_math
5022 && GET_CODE (XEXP (x, 0)) == DIV)
5023 {
5024 rtx tem = simplify_binary_operation (MULT, mode,
5025 XEXP (XEXP (x, 0), 0),
5026 XEXP (x, 1));
5027 if (tem)
5028 return simplify_gen_binary (DIV, mode, tem, XEXP (XEXP (x, 0), 1));
5029 }
5030 break;
5031
5032 case UDIV:
5033 /* If this is a divide by a power of two, treat it as a shift if
5034 its first operand is a shift. */
5035 if (CONST_INT_P (XEXP (x, 1))
5036 && (i = exact_log2 (INTVAL (XEXP (x, 1)))) >= 0
5037 && (GET_CODE (XEXP (x, 0)) == ASHIFT
5038 || GET_CODE (XEXP (x, 0)) == LSHIFTRT
5039 || GET_CODE (XEXP (x, 0)) == ASHIFTRT
5040 || GET_CODE (XEXP (x, 0)) == ROTATE
5041 || GET_CODE (XEXP (x, 0)) == ROTATERT))
5042 return simplify_shift_const (NULL_RTX, LSHIFTRT, mode, XEXP (x, 0), i);
5043 break;
5044
5045 case EQ: case NE:
5046 case GT: case GTU: case GE: case GEU:
5047 case LT: case LTU: case LE: case LEU:
5048 case UNEQ: case LTGT:
5049 case UNGT: case UNGE:
5050 case UNLT: case UNLE:
5051 case UNORDERED: case ORDERED:
5052 /* If the first operand is a condition code, we can't do anything
5053 with it. */
5054 if (GET_CODE (XEXP (x, 0)) == COMPARE
5055 || (GET_MODE_CLASS (GET_MODE (XEXP (x, 0))) != MODE_CC
5056 && ! CC0_P (XEXP (x, 0))))
5057 {
5058 rtx op0 = XEXP (x, 0);
5059 rtx op1 = XEXP (x, 1);
5060 enum rtx_code new_code;
5061
5062 if (GET_CODE (op0) == COMPARE)
5063 op1 = XEXP (op0, 1), op0 = XEXP (op0, 0);
5064
5065 /* Simplify our comparison, if possible. */
5066 new_code = simplify_comparison (code, &op0, &op1);
5067
5068 /* If STORE_FLAG_VALUE is 1, we can convert (ne x 0) to simply X
5069 if only the low-order bit is possibly nonzero in X (such as when
5070 X is a ZERO_EXTRACT of one bit). Similarly, we can convert EQ to
5071 (xor X 1) or (minus 1 X); we use the former. Finally, if X is
5072 known to be either 0 or -1, NE becomes a NEG and EQ becomes
5073 (plus X 1).
5074
5075 Remove any ZERO_EXTRACT we made when thinking this was a
5076 comparison. It may now be simpler to use, e.g., an AND. If a
5077 ZERO_EXTRACT is indeed appropriate, it will be placed back by
5078 the call to make_compound_operation in the SET case. */
5079
5080 if (STORE_FLAG_VALUE == 1
5081 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
5082 && op1 == const0_rtx
5083 && mode == GET_MODE (op0)
5084 && nonzero_bits (op0, mode) == 1)
5085 return gen_lowpart (mode,
5086 expand_compound_operation (op0));
5087
5088 else if (STORE_FLAG_VALUE == 1
5089 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
5090 && op1 == const0_rtx
5091 && mode == GET_MODE (op0)
5092 && (num_sign_bit_copies (op0, mode)
5093 == GET_MODE_BITSIZE (mode)))
5094 {
5095 op0 = expand_compound_operation (op0);
5096 return simplify_gen_unary (NEG, mode,
5097 gen_lowpart (mode, op0),
5098 mode);
5099 }
5100
5101 else if (STORE_FLAG_VALUE == 1
5102 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
5103 && op1 == const0_rtx
5104 && mode == GET_MODE (op0)
5105 && nonzero_bits (op0, mode) == 1)
5106 {
5107 op0 = expand_compound_operation (op0);
5108 return simplify_gen_binary (XOR, mode,
5109 gen_lowpart (mode, op0),
5110 const1_rtx);
5111 }
5112
5113 else if (STORE_FLAG_VALUE == 1
5114 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
5115 && op1 == const0_rtx
5116 && mode == GET_MODE (op0)
5117 && (num_sign_bit_copies (op0, mode)
5118 == GET_MODE_BITSIZE (mode)))
5119 {
5120 op0 = expand_compound_operation (op0);
5121 return plus_constant (gen_lowpart (mode, op0), 1);
5122 }
5123
5124 /* If STORE_FLAG_VALUE is -1, we have cases similar to
5125 those above. */
5126 if (STORE_FLAG_VALUE == -1
5127 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
5128 && op1 == const0_rtx
5129 && (num_sign_bit_copies (op0, mode)
5130 == GET_MODE_BITSIZE (mode)))
5131 return gen_lowpart (mode,
5132 expand_compound_operation (op0));
5133
5134 else if (STORE_FLAG_VALUE == -1
5135 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
5136 && op1 == const0_rtx
5137 && mode == GET_MODE (op0)
5138 && nonzero_bits (op0, mode) == 1)
5139 {
5140 op0 = expand_compound_operation (op0);
5141 return simplify_gen_unary (NEG, mode,
5142 gen_lowpart (mode, op0),
5143 mode);
5144 }
5145
5146 else if (STORE_FLAG_VALUE == -1
5147 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
5148 && op1 == const0_rtx
5149 && mode == GET_MODE (op0)
5150 && (num_sign_bit_copies (op0, mode)
5151 == GET_MODE_BITSIZE (mode)))
5152 {
5153 op0 = expand_compound_operation (op0);
5154 return simplify_gen_unary (NOT, mode,
5155 gen_lowpart (mode, op0),
5156 mode);
5157 }
5158
5159 /* If X is 0/1, (eq X 0) is X-1. */
5160 else if (STORE_FLAG_VALUE == -1
5161 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
5162 && op1 == const0_rtx
5163 && mode == GET_MODE (op0)
5164 && nonzero_bits (op0, mode) == 1)
5165 {
5166 op0 = expand_compound_operation (op0);
5167 return plus_constant (gen_lowpart (mode, op0), -1);
5168 }
5169
5170 /* If STORE_FLAG_VALUE says to just test the sign bit and X has just
5171 one bit that might be nonzero, we can convert (ne x 0) to
5172 (ashift x c) where C puts the bit in the sign bit. Remove any
5173 AND with STORE_FLAG_VALUE when we are done, since we are only
5174 going to test the sign bit. */
5175 if (new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
5176 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5177 && ((STORE_FLAG_VALUE & GET_MODE_MASK (mode))
5178 == (unsigned HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (mode) - 1))
5179 && op1 == const0_rtx
5180 && mode == GET_MODE (op0)
5181 && (i = exact_log2 (nonzero_bits (op0, mode))) >= 0)
5182 {
5183 x = simplify_shift_const (NULL_RTX, ASHIFT, mode,
5184 expand_compound_operation (op0),
5185 GET_MODE_BITSIZE (mode) - 1 - i);
5186 if (GET_CODE (x) == AND && XEXP (x, 1) == const_true_rtx)
5187 return XEXP (x, 0);
5188 else
5189 return x;
5190 }
5191
5192 /* If the code changed, return a whole new comparison. */
5193 if (new_code != code)
5194 return gen_rtx_fmt_ee (new_code, mode, op0, op1);
5195
5196 /* Otherwise, keep this operation, but maybe change its operands.
5197 This also converts (ne (compare FOO BAR) 0) to (ne FOO BAR). */
5198 SUBST (XEXP (x, 0), op0);
5199 SUBST (XEXP (x, 1), op1);
5200 }
5201 break;
5202
5203 case IF_THEN_ELSE:
5204 return simplify_if_then_else (x);
5205
5206 case ZERO_EXTRACT:
5207 case SIGN_EXTRACT:
5208 case ZERO_EXTEND:
5209 case SIGN_EXTEND:
5210 /* If we are processing SET_DEST, we are done. */
5211 if (in_dest)
5212 return x;
5213
5214 return expand_compound_operation (x);
5215
5216 case SET:
5217 return simplify_set (x);
5218
5219 case AND:
5220 case IOR:
5221 return simplify_logical (x);
5222
5223 case ASHIFT:
5224 case LSHIFTRT:
5225 case ASHIFTRT:
5226 case ROTATE:
5227 case ROTATERT:
5228 /* If this is a shift by a constant amount, simplify it. */
5229 if (CONST_INT_P (XEXP (x, 1)))
5230 return simplify_shift_const (x, code, mode, XEXP (x, 0),
5231 INTVAL (XEXP (x, 1)));
5232
5233 else if (SHIFT_COUNT_TRUNCATED && !REG_P (XEXP (x, 1)))
5234 SUBST (XEXP (x, 1),
5235 force_to_mode (XEXP (x, 1), GET_MODE (XEXP (x, 1)),
5236 ((HOST_WIDE_INT) 1
5237 << exact_log2 (GET_MODE_BITSIZE (GET_MODE (x))))
5238 - 1,
5239 0));
5240 break;
5241
5242 default:
5243 break;
5244 }
5245
5246 return x;
5247 }
5248 \f
5249 /* Simplify X, an IF_THEN_ELSE expression. Return the new expression. */
5250
5251 static rtx
5252 simplify_if_then_else (rtx x)
5253 {
5254 enum machine_mode mode = GET_MODE (x);
5255 rtx cond = XEXP (x, 0);
5256 rtx true_rtx = XEXP (x, 1);
5257 rtx false_rtx = XEXP (x, 2);
5258 enum rtx_code true_code = GET_CODE (cond);
5259 int comparison_p = COMPARISON_P (cond);
5260 rtx temp;
5261 int i;
5262 enum rtx_code false_code;
5263 rtx reversed;
5264
5265 /* Simplify storing of the truth value. */
5266 if (comparison_p && true_rtx == const_true_rtx && false_rtx == const0_rtx)
5267 return simplify_gen_relational (true_code, mode, VOIDmode,
5268 XEXP (cond, 0), XEXP (cond, 1));
5269
5270 /* Also when the truth value has to be reversed. */
5271 if (comparison_p
5272 && true_rtx == const0_rtx && false_rtx == const_true_rtx
5273 && (reversed = reversed_comparison (cond, mode)))
5274 return reversed;
5275
5276 /* Sometimes we can simplify the arm of an IF_THEN_ELSE if a register used
5277 in it is being compared against certain values. Get the true and false
5278 comparisons and see if that says anything about the value of each arm. */
5279
5280 if (comparison_p
5281 && ((false_code = reversed_comparison_code (cond, NULL))
5282 != UNKNOWN)
5283 && REG_P (XEXP (cond, 0)))
5284 {
5285 HOST_WIDE_INT nzb;
5286 rtx from = XEXP (cond, 0);
5287 rtx true_val = XEXP (cond, 1);
5288 rtx false_val = true_val;
5289 int swapped = 0;
5290
5291 /* If FALSE_CODE is EQ, swap the codes and arms. */
5292
5293 if (false_code == EQ)
5294 {
5295 swapped = 1, true_code = EQ, false_code = NE;
5296 temp = true_rtx, true_rtx = false_rtx, false_rtx = temp;
5297 }
5298
5299 /* If we are comparing against zero and the expression being tested has
5300 only a single bit that might be nonzero, that is its value when it is
5301 not equal to zero. Similarly if it is known to be -1 or 0. */
5302
5303 if (true_code == EQ && true_val == const0_rtx
5304 && exact_log2 (nzb = nonzero_bits (from, GET_MODE (from))) >= 0)
5305 {
5306 false_code = EQ;
5307 false_val = GEN_INT (trunc_int_for_mode (nzb, GET_MODE (from)));
5308 }
5309 else if (true_code == EQ && true_val == const0_rtx
5310 && (num_sign_bit_copies (from, GET_MODE (from))
5311 == GET_MODE_BITSIZE (GET_MODE (from))))
5312 {
5313 false_code = EQ;
5314 false_val = constm1_rtx;
5315 }
5316
5317 /* Now simplify an arm if we know the value of the register in the
5318 branch and it is used in the arm. Be careful due to the potential
5319 of locally-shared RTL. */
5320
5321 if (reg_mentioned_p (from, true_rtx))
5322 true_rtx = subst (known_cond (copy_rtx (true_rtx), true_code,
5323 from, true_val),
5324 pc_rtx, pc_rtx, 0, 0);
5325 if (reg_mentioned_p (from, false_rtx))
5326 false_rtx = subst (known_cond (copy_rtx (false_rtx), false_code,
5327 from, false_val),
5328 pc_rtx, pc_rtx, 0, 0);
5329
5330 SUBST (XEXP (x, 1), swapped ? false_rtx : true_rtx);
5331 SUBST (XEXP (x, 2), swapped ? true_rtx : false_rtx);
5332
5333 true_rtx = XEXP (x, 1);
5334 false_rtx = XEXP (x, 2);
5335 true_code = GET_CODE (cond);
5336 }
5337
5338 /* If we have (if_then_else FOO (pc) (label_ref BAR)) and FOO can be
5339 reversed, do so to avoid needing two sets of patterns for
5340 subtract-and-branch insns. Similarly if we have a constant in the true
5341 arm, the false arm is the same as the first operand of the comparison, or
5342 the false arm is more complicated than the true arm. */
5343
5344 if (comparison_p
5345 && reversed_comparison_code (cond, NULL) != UNKNOWN
5346 && (true_rtx == pc_rtx
5347 || (CONSTANT_P (true_rtx)
5348 && !CONST_INT_P (false_rtx) && false_rtx != pc_rtx)
5349 || true_rtx == const0_rtx
5350 || (OBJECT_P (true_rtx) && !OBJECT_P (false_rtx))
5351 || (GET_CODE (true_rtx) == SUBREG && OBJECT_P (SUBREG_REG (true_rtx))
5352 && !OBJECT_P (false_rtx))
5353 || reg_mentioned_p (true_rtx, false_rtx)
5354 || rtx_equal_p (false_rtx, XEXP (cond, 0))))
5355 {
5356 true_code = reversed_comparison_code (cond, NULL);
5357 SUBST (XEXP (x, 0), reversed_comparison (cond, GET_MODE (cond)));
5358 SUBST (XEXP (x, 1), false_rtx);
5359 SUBST (XEXP (x, 2), true_rtx);
5360
5361 temp = true_rtx, true_rtx = false_rtx, false_rtx = temp;
5362 cond = XEXP (x, 0);
5363
5364 /* It is possible that the conditional has been simplified out. */
5365 true_code = GET_CODE (cond);
5366 comparison_p = COMPARISON_P (cond);
5367 }
5368
5369 /* If the two arms are identical, we don't need the comparison. */
5370
5371 if (rtx_equal_p (true_rtx, false_rtx) && ! side_effects_p (cond))
5372 return true_rtx;
5373
5374 /* Convert a == b ? b : a to "a". */
5375 if (true_code == EQ && ! side_effects_p (cond)
5376 && !HONOR_NANS (mode)
5377 && rtx_equal_p (XEXP (cond, 0), false_rtx)
5378 && rtx_equal_p (XEXP (cond, 1), true_rtx))
5379 return false_rtx;
5380 else if (true_code == NE && ! side_effects_p (cond)
5381 && !HONOR_NANS (mode)
5382 && rtx_equal_p (XEXP (cond, 0), true_rtx)
5383 && rtx_equal_p (XEXP (cond, 1), false_rtx))
5384 return true_rtx;
5385
5386 /* Look for cases where we have (abs x) or (neg (abs X)). */
5387
5388 if (GET_MODE_CLASS (mode) == MODE_INT
5389 && comparison_p
5390 && XEXP (cond, 1) == const0_rtx
5391 && GET_CODE (false_rtx) == NEG
5392 && rtx_equal_p (true_rtx, XEXP (false_rtx, 0))
5393 && rtx_equal_p (true_rtx, XEXP (cond, 0))
5394 && ! side_effects_p (true_rtx))
5395 switch (true_code)
5396 {
5397 case GT:
5398 case GE:
5399 return simplify_gen_unary (ABS, mode, true_rtx, mode);
5400 case LT:
5401 case LE:
5402 return
5403 simplify_gen_unary (NEG, mode,
5404 simplify_gen_unary (ABS, mode, true_rtx, mode),
5405 mode);
5406 default:
5407 break;
5408 }
5409
5410 /* Look for MIN or MAX. */
5411
5412 if ((! FLOAT_MODE_P (mode) || flag_unsafe_math_optimizations)
5413 && comparison_p
5414 && rtx_equal_p (XEXP (cond, 0), true_rtx)
5415 && rtx_equal_p (XEXP (cond, 1), false_rtx)
5416 && ! side_effects_p (cond))
5417 switch (true_code)
5418 {
5419 case GE:
5420 case GT:
5421 return simplify_gen_binary (SMAX, mode, true_rtx, false_rtx);
5422 case LE:
5423 case LT:
5424 return simplify_gen_binary (SMIN, mode, true_rtx, false_rtx);
5425 case GEU:
5426 case GTU:
5427 return simplify_gen_binary (UMAX, mode, true_rtx, false_rtx);
5428 case LEU:
5429 case LTU:
5430 return simplify_gen_binary (UMIN, mode, true_rtx, false_rtx);
5431 default:
5432 break;
5433 }
5434
5435 /* If we have (if_then_else COND (OP Z C1) Z) and OP is an identity when its
5436 second operand is zero, this can be done as (OP Z (mult COND C2)) where
5437 C2 = C1 * STORE_FLAG_VALUE. Similarly if OP has an outer ZERO_EXTEND or
5438 SIGN_EXTEND as long as Z is already extended (so we don't destroy it).
5439 We can do this kind of thing in some cases when STORE_FLAG_VALUE is
5440 neither 1 or -1, but it isn't worth checking for. */
5441
5442 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
5443 && comparison_p
5444 && GET_MODE_CLASS (mode) == MODE_INT
5445 && ! side_effects_p (x))
5446 {
5447 rtx t = make_compound_operation (true_rtx, SET);
5448 rtx f = make_compound_operation (false_rtx, SET);
5449 rtx cond_op0 = XEXP (cond, 0);
5450 rtx cond_op1 = XEXP (cond, 1);
5451 enum rtx_code op = UNKNOWN, extend_op = UNKNOWN;
5452 enum machine_mode m = mode;
5453 rtx z = 0, c1 = NULL_RTX;
5454
5455 if ((GET_CODE (t) == PLUS || GET_CODE (t) == MINUS
5456 || GET_CODE (t) == IOR || GET_CODE (t) == XOR
5457 || GET_CODE (t) == ASHIFT
5458 || GET_CODE (t) == LSHIFTRT || GET_CODE (t) == ASHIFTRT)
5459 && rtx_equal_p (XEXP (t, 0), f))
5460 c1 = XEXP (t, 1), op = GET_CODE (t), z = f;
5461
5462 /* If an identity-zero op is commutative, check whether there
5463 would be a match if we swapped the operands. */
5464 else if ((GET_CODE (t) == PLUS || GET_CODE (t) == IOR
5465 || GET_CODE (t) == XOR)
5466 && rtx_equal_p (XEXP (t, 1), f))
5467 c1 = XEXP (t, 0), op = GET_CODE (t), z = f;
5468 else if (GET_CODE (t) == SIGN_EXTEND
5469 && (GET_CODE (XEXP (t, 0)) == PLUS
5470 || GET_CODE (XEXP (t, 0)) == MINUS
5471 || GET_CODE (XEXP (t, 0)) == IOR
5472 || GET_CODE (XEXP (t, 0)) == XOR
5473 || GET_CODE (XEXP (t, 0)) == ASHIFT
5474 || GET_CODE (XEXP (t, 0)) == LSHIFTRT
5475 || GET_CODE (XEXP (t, 0)) == ASHIFTRT)
5476 && GET_CODE (XEXP (XEXP (t, 0), 0)) == SUBREG
5477 && subreg_lowpart_p (XEXP (XEXP (t, 0), 0))
5478 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 0)), f)
5479 && (num_sign_bit_copies (f, GET_MODE (f))
5480 > (unsigned int)
5481 (GET_MODE_BITSIZE (mode)
5482 - GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (t, 0), 0))))))
5483 {
5484 c1 = XEXP (XEXP (t, 0), 1); z = f; op = GET_CODE (XEXP (t, 0));
5485 extend_op = SIGN_EXTEND;
5486 m = GET_MODE (XEXP (t, 0));
5487 }
5488 else if (GET_CODE (t) == SIGN_EXTEND
5489 && (GET_CODE (XEXP (t, 0)) == PLUS
5490 || GET_CODE (XEXP (t, 0)) == IOR
5491 || GET_CODE (XEXP (t, 0)) == XOR)
5492 && GET_CODE (XEXP (XEXP (t, 0), 1)) == SUBREG
5493 && subreg_lowpart_p (XEXP (XEXP (t, 0), 1))
5494 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 1)), f)
5495 && (num_sign_bit_copies (f, GET_MODE (f))
5496 > (unsigned int)
5497 (GET_MODE_BITSIZE (mode)
5498 - GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (t, 0), 1))))))
5499 {
5500 c1 = XEXP (XEXP (t, 0), 0); z = f; op = GET_CODE (XEXP (t, 0));
5501 extend_op = SIGN_EXTEND;
5502 m = GET_MODE (XEXP (t, 0));
5503 }
5504 else if (GET_CODE (t) == ZERO_EXTEND
5505 && (GET_CODE (XEXP (t, 0)) == PLUS
5506 || GET_CODE (XEXP (t, 0)) == MINUS
5507 || GET_CODE (XEXP (t, 0)) == IOR
5508 || GET_CODE (XEXP (t, 0)) == XOR
5509 || GET_CODE (XEXP (t, 0)) == ASHIFT
5510 || GET_CODE (XEXP (t, 0)) == LSHIFTRT
5511 || GET_CODE (XEXP (t, 0)) == ASHIFTRT)
5512 && GET_CODE (XEXP (XEXP (t, 0), 0)) == SUBREG
5513 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5514 && subreg_lowpart_p (XEXP (XEXP (t, 0), 0))
5515 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 0)), f)
5516 && ((nonzero_bits (f, GET_MODE (f))
5517 & ~GET_MODE_MASK (GET_MODE (XEXP (XEXP (t, 0), 0))))
5518 == 0))
5519 {
5520 c1 = XEXP (XEXP (t, 0), 1); z = f; op = GET_CODE (XEXP (t, 0));
5521 extend_op = ZERO_EXTEND;
5522 m = GET_MODE (XEXP (t, 0));
5523 }
5524 else if (GET_CODE (t) == ZERO_EXTEND
5525 && (GET_CODE (XEXP (t, 0)) == PLUS
5526 || GET_CODE (XEXP (t, 0)) == IOR
5527 || GET_CODE (XEXP (t, 0)) == XOR)
5528 && GET_CODE (XEXP (XEXP (t, 0), 1)) == SUBREG
5529 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5530 && subreg_lowpart_p (XEXP (XEXP (t, 0), 1))
5531 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 1)), f)
5532 && ((nonzero_bits (f, GET_MODE (f))
5533 & ~GET_MODE_MASK (GET_MODE (XEXP (XEXP (t, 0), 1))))
5534 == 0))
5535 {
5536 c1 = XEXP (XEXP (t, 0), 0); z = f; op = GET_CODE (XEXP (t, 0));
5537 extend_op = ZERO_EXTEND;
5538 m = GET_MODE (XEXP (t, 0));
5539 }
5540
5541 if (z)
5542 {
5543 temp = subst (simplify_gen_relational (true_code, m, VOIDmode,
5544 cond_op0, cond_op1),
5545 pc_rtx, pc_rtx, 0, 0);
5546 temp = simplify_gen_binary (MULT, m, temp,
5547 simplify_gen_binary (MULT, m, c1,
5548 const_true_rtx));
5549 temp = subst (temp, pc_rtx, pc_rtx, 0, 0);
5550 temp = simplify_gen_binary (op, m, gen_lowpart (m, z), temp);
5551
5552 if (extend_op != UNKNOWN)
5553 temp = simplify_gen_unary (extend_op, mode, temp, m);
5554
5555 return temp;
5556 }
5557 }
5558
5559 /* If we have (if_then_else (ne A 0) C1 0) and either A is known to be 0 or
5560 1 and C1 is a single bit or A is known to be 0 or -1 and C1 is the
5561 negation of a single bit, we can convert this operation to a shift. We
5562 can actually do this more generally, but it doesn't seem worth it. */
5563
5564 if (true_code == NE && XEXP (cond, 1) == const0_rtx
5565 && false_rtx == const0_rtx && CONST_INT_P (true_rtx)
5566 && ((1 == nonzero_bits (XEXP (cond, 0), mode)
5567 && (i = exact_log2 (INTVAL (true_rtx))) >= 0)
5568 || ((num_sign_bit_copies (XEXP (cond, 0), mode)
5569 == GET_MODE_BITSIZE (mode))
5570 && (i = exact_log2 (-INTVAL (true_rtx))) >= 0)))
5571 return
5572 simplify_shift_const (NULL_RTX, ASHIFT, mode,
5573 gen_lowpart (mode, XEXP (cond, 0)), i);
5574
5575 /* (IF_THEN_ELSE (NE REG 0) (0) (8)) is REG for nonzero_bits (REG) == 8. */
5576 if (true_code == NE && XEXP (cond, 1) == const0_rtx
5577 && false_rtx == const0_rtx && CONST_INT_P (true_rtx)
5578 && GET_MODE (XEXP (cond, 0)) == mode
5579 && (INTVAL (true_rtx) & GET_MODE_MASK (mode))
5580 == nonzero_bits (XEXP (cond, 0), mode)
5581 && (i = exact_log2 (INTVAL (true_rtx) & GET_MODE_MASK (mode))) >= 0)
5582 return XEXP (cond, 0);
5583
5584 return x;
5585 }
5586 \f
5587 /* Simplify X, a SET expression. Return the new expression. */
5588
5589 static rtx
5590 simplify_set (rtx x)
5591 {
5592 rtx src = SET_SRC (x);
5593 rtx dest = SET_DEST (x);
5594 enum machine_mode mode
5595 = GET_MODE (src) != VOIDmode ? GET_MODE (src) : GET_MODE (dest);
5596 rtx other_insn;
5597 rtx *cc_use;
5598
5599 /* (set (pc) (return)) gets written as (return). */
5600 if (GET_CODE (dest) == PC && GET_CODE (src) == RETURN)
5601 return src;
5602
5603 /* Now that we know for sure which bits of SRC we are using, see if we can
5604 simplify the expression for the object knowing that we only need the
5605 low-order bits. */
5606
5607 if (GET_MODE_CLASS (mode) == MODE_INT
5608 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
5609 {
5610 src = force_to_mode (src, mode, ~(HOST_WIDE_INT) 0, 0);
5611 SUBST (SET_SRC (x), src);
5612 }
5613
5614 /* If we are setting CC0 or if the source is a COMPARE, look for the use of
5615 the comparison result and try to simplify it unless we already have used
5616 undobuf.other_insn. */
5617 if ((GET_MODE_CLASS (mode) == MODE_CC
5618 || GET_CODE (src) == COMPARE
5619 || CC0_P (dest))
5620 && (cc_use = find_single_use (dest, subst_insn, &other_insn)) != 0
5621 && (undobuf.other_insn == 0 || other_insn == undobuf.other_insn)
5622 && COMPARISON_P (*cc_use)
5623 && rtx_equal_p (XEXP (*cc_use, 0), dest))
5624 {
5625 enum rtx_code old_code = GET_CODE (*cc_use);
5626 enum rtx_code new_code;
5627 rtx op0, op1, tmp;
5628 int other_changed = 0;
5629 enum machine_mode compare_mode = GET_MODE (dest);
5630
5631 if (GET_CODE (src) == COMPARE)
5632 op0 = XEXP (src, 0), op1 = XEXP (src, 1);
5633 else
5634 op0 = src, op1 = CONST0_RTX (GET_MODE (src));
5635
5636 tmp = simplify_relational_operation (old_code, compare_mode, VOIDmode,
5637 op0, op1);
5638 if (!tmp)
5639 new_code = old_code;
5640 else if (!CONSTANT_P (tmp))
5641 {
5642 new_code = GET_CODE (tmp);
5643 op0 = XEXP (tmp, 0);
5644 op1 = XEXP (tmp, 1);
5645 }
5646 else
5647 {
5648 rtx pat = PATTERN (other_insn);
5649 undobuf.other_insn = other_insn;
5650 SUBST (*cc_use, tmp);
5651
5652 /* Attempt to simplify CC user. */
5653 if (GET_CODE (pat) == SET)
5654 {
5655 rtx new_rtx = simplify_rtx (SET_SRC (pat));
5656 if (new_rtx != NULL_RTX)
5657 SUBST (SET_SRC (pat), new_rtx);
5658 }
5659
5660 /* Convert X into a no-op move. */
5661 SUBST (SET_DEST (x), pc_rtx);
5662 SUBST (SET_SRC (x), pc_rtx);
5663 return x;
5664 }
5665
5666 /* Simplify our comparison, if possible. */
5667 new_code = simplify_comparison (new_code, &op0, &op1);
5668
5669 #ifdef SELECT_CC_MODE
5670 /* If this machine has CC modes other than CCmode, check to see if we
5671 need to use a different CC mode here. */
5672 if (GET_MODE_CLASS (GET_MODE (op0)) == MODE_CC)
5673 compare_mode = GET_MODE (op0);
5674 else
5675 compare_mode = SELECT_CC_MODE (new_code, op0, op1);
5676
5677 #ifndef HAVE_cc0
5678 /* If the mode changed, we have to change SET_DEST, the mode in the
5679 compare, and the mode in the place SET_DEST is used. If SET_DEST is
5680 a hard register, just build new versions with the proper mode. If it
5681 is a pseudo, we lose unless it is only time we set the pseudo, in
5682 which case we can safely change its mode. */
5683 if (compare_mode != GET_MODE (dest))
5684 {
5685 if (can_change_dest_mode (dest, 0, compare_mode))
5686 {
5687 unsigned int regno = REGNO (dest);
5688 rtx new_dest;
5689
5690 if (regno < FIRST_PSEUDO_REGISTER)
5691 new_dest = gen_rtx_REG (compare_mode, regno);
5692 else
5693 {
5694 SUBST_MODE (regno_reg_rtx[regno], compare_mode);
5695 new_dest = regno_reg_rtx[regno];
5696 }
5697
5698 SUBST (SET_DEST (x), new_dest);
5699 SUBST (XEXP (*cc_use, 0), new_dest);
5700 other_changed = 1;
5701
5702 dest = new_dest;
5703 }
5704 }
5705 #endif /* cc0 */
5706 #endif /* SELECT_CC_MODE */
5707
5708 /* If the code changed, we have to build a new comparison in
5709 undobuf.other_insn. */
5710 if (new_code != old_code)
5711 {
5712 int other_changed_previously = other_changed;
5713 unsigned HOST_WIDE_INT mask;
5714 rtx old_cc_use = *cc_use;
5715
5716 SUBST (*cc_use, gen_rtx_fmt_ee (new_code, GET_MODE (*cc_use),
5717 dest, const0_rtx));
5718 other_changed = 1;
5719
5720 /* If the only change we made was to change an EQ into an NE or
5721 vice versa, OP0 has only one bit that might be nonzero, and OP1
5722 is zero, check if changing the user of the condition code will
5723 produce a valid insn. If it won't, we can keep the original code
5724 in that insn by surrounding our operation with an XOR. */
5725
5726 if (((old_code == NE && new_code == EQ)
5727 || (old_code == EQ && new_code == NE))
5728 && ! other_changed_previously && op1 == const0_rtx
5729 && GET_MODE_BITSIZE (GET_MODE (op0)) <= HOST_BITS_PER_WIDE_INT
5730 && exact_log2 (mask = nonzero_bits (op0, GET_MODE (op0))) >= 0)
5731 {
5732 rtx pat = PATTERN (other_insn), note = 0;
5733
5734 if ((recog_for_combine (&pat, other_insn, &note) < 0
5735 && ! check_asm_operands (pat)))
5736 {
5737 *cc_use = old_cc_use;
5738 other_changed = 0;
5739
5740 op0 = simplify_gen_binary (XOR, GET_MODE (op0),
5741 op0, GEN_INT (mask));
5742 }
5743 }
5744 }
5745
5746 if (other_changed)
5747 undobuf.other_insn = other_insn;
5748
5749 /* Otherwise, if we didn't previously have a COMPARE in the
5750 correct mode, we need one. */
5751 if (GET_CODE (src) != COMPARE || GET_MODE (src) != compare_mode)
5752 {
5753 SUBST (SET_SRC (x), gen_rtx_COMPARE (compare_mode, op0, op1));
5754 src = SET_SRC (x);
5755 }
5756 else if (GET_MODE (op0) == compare_mode && op1 == const0_rtx)
5757 {
5758 SUBST (SET_SRC (x), op0);
5759 src = SET_SRC (x);
5760 }
5761 /* Otherwise, update the COMPARE if needed. */
5762 else if (XEXP (src, 0) != op0 || XEXP (src, 1) != op1)
5763 {
5764 SUBST (SET_SRC (x), gen_rtx_COMPARE (compare_mode, op0, op1));
5765 src = SET_SRC (x);
5766 }
5767 }
5768 else
5769 {
5770 /* Get SET_SRC in a form where we have placed back any
5771 compound expressions. Then do the checks below. */
5772 src = make_compound_operation (src, SET);
5773 SUBST (SET_SRC (x), src);
5774 }
5775
5776 /* If we have (set x (subreg:m1 (op:m2 ...) 0)) with OP being some operation,
5777 and X being a REG or (subreg (reg)), we may be able to convert this to
5778 (set (subreg:m2 x) (op)).
5779
5780 We can always do this if M1 is narrower than M2 because that means that
5781 we only care about the low bits of the result.
5782
5783 However, on machines without WORD_REGISTER_OPERATIONS defined, we cannot
5784 perform a narrower operation than requested since the high-order bits will
5785 be undefined. On machine where it is defined, this transformation is safe
5786 as long as M1 and M2 have the same number of words. */
5787
5788 if (GET_CODE (src) == SUBREG && subreg_lowpart_p (src)
5789 && !OBJECT_P (SUBREG_REG (src))
5790 && (((GET_MODE_SIZE (GET_MODE (src)) + (UNITS_PER_WORD - 1))
5791 / UNITS_PER_WORD)
5792 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (src)))
5793 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))
5794 #ifndef WORD_REGISTER_OPERATIONS
5795 && (GET_MODE_SIZE (GET_MODE (src))
5796 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (src))))
5797 #endif
5798 #ifdef CANNOT_CHANGE_MODE_CLASS
5799 && ! (REG_P (dest) && REGNO (dest) < FIRST_PSEUDO_REGISTER
5800 && REG_CANNOT_CHANGE_MODE_P (REGNO (dest),
5801 GET_MODE (SUBREG_REG (src)),
5802 GET_MODE (src)))
5803 #endif
5804 && (REG_P (dest)
5805 || (GET_CODE (dest) == SUBREG
5806 && REG_P (SUBREG_REG (dest)))))
5807 {
5808 SUBST (SET_DEST (x),
5809 gen_lowpart (GET_MODE (SUBREG_REG (src)),
5810 dest));
5811 SUBST (SET_SRC (x), SUBREG_REG (src));
5812
5813 src = SET_SRC (x), dest = SET_DEST (x);
5814 }
5815
5816 #ifdef HAVE_cc0
5817 /* If we have (set (cc0) (subreg ...)), we try to remove the subreg
5818 in SRC. */
5819 if (dest == cc0_rtx
5820 && GET_CODE (src) == SUBREG
5821 && subreg_lowpart_p (src)
5822 && (GET_MODE_BITSIZE (GET_MODE (src))
5823 < GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (src)))))
5824 {
5825 rtx inner = SUBREG_REG (src);
5826 enum machine_mode inner_mode = GET_MODE (inner);
5827
5828 /* Here we make sure that we don't have a sign bit on. */
5829 if (GET_MODE_BITSIZE (inner_mode) <= HOST_BITS_PER_WIDE_INT
5830 && (nonzero_bits (inner, inner_mode)
5831 < ((unsigned HOST_WIDE_INT) 1
5832 << (GET_MODE_BITSIZE (GET_MODE (src)) - 1))))
5833 {
5834 SUBST (SET_SRC (x), inner);
5835 src = SET_SRC (x);
5836 }
5837 }
5838 #endif
5839
5840 #ifdef LOAD_EXTEND_OP
5841 /* If we have (set FOO (subreg:M (mem:N BAR) 0)) with M wider than N, this
5842 would require a paradoxical subreg. Replace the subreg with a
5843 zero_extend to avoid the reload that would otherwise be required. */
5844
5845 if (GET_CODE (src) == SUBREG && subreg_lowpart_p (src)
5846 && INTEGRAL_MODE_P (GET_MODE (SUBREG_REG (src)))
5847 && LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (src))) != UNKNOWN
5848 && SUBREG_BYTE (src) == 0
5849 && (GET_MODE_SIZE (GET_MODE (src))
5850 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (src))))
5851 && MEM_P (SUBREG_REG (src)))
5852 {
5853 SUBST (SET_SRC (x),
5854 gen_rtx_fmt_e (LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (src))),
5855 GET_MODE (src), SUBREG_REG (src)));
5856
5857 src = SET_SRC (x);
5858 }
5859 #endif
5860
5861 /* If we don't have a conditional move, SET_SRC is an IF_THEN_ELSE, and we
5862 are comparing an item known to be 0 or -1 against 0, use a logical
5863 operation instead. Check for one of the arms being an IOR of the other
5864 arm with some value. We compute three terms to be IOR'ed together. In
5865 practice, at most two will be nonzero. Then we do the IOR's. */
5866
5867 if (GET_CODE (dest) != PC
5868 && GET_CODE (src) == IF_THEN_ELSE
5869 && GET_MODE_CLASS (GET_MODE (src)) == MODE_INT
5870 && (GET_CODE (XEXP (src, 0)) == EQ || GET_CODE (XEXP (src, 0)) == NE)
5871 && XEXP (XEXP (src, 0), 1) == const0_rtx
5872 && GET_MODE (src) == GET_MODE (XEXP (XEXP (src, 0), 0))
5873 #ifdef HAVE_conditional_move
5874 && ! can_conditionally_move_p (GET_MODE (src))
5875 #endif
5876 && (num_sign_bit_copies (XEXP (XEXP (src, 0), 0),
5877 GET_MODE (XEXP (XEXP (src, 0), 0)))
5878 == GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (src, 0), 0))))
5879 && ! side_effects_p (src))
5880 {
5881 rtx true_rtx = (GET_CODE (XEXP (src, 0)) == NE
5882 ? XEXP (src, 1) : XEXP (src, 2));
5883 rtx false_rtx = (GET_CODE (XEXP (src, 0)) == NE
5884 ? XEXP (src, 2) : XEXP (src, 1));
5885 rtx term1 = const0_rtx, term2, term3;
5886
5887 if (GET_CODE (true_rtx) == IOR
5888 && rtx_equal_p (XEXP (true_rtx, 0), false_rtx))
5889 term1 = false_rtx, true_rtx = XEXP (true_rtx, 1), false_rtx = const0_rtx;
5890 else if (GET_CODE (true_rtx) == IOR
5891 && rtx_equal_p (XEXP (true_rtx, 1), false_rtx))
5892 term1 = false_rtx, true_rtx = XEXP (true_rtx, 0), false_rtx = const0_rtx;
5893 else if (GET_CODE (false_rtx) == IOR
5894 && rtx_equal_p (XEXP (false_rtx, 0), true_rtx))
5895 term1 = true_rtx, false_rtx = XEXP (false_rtx, 1), true_rtx = const0_rtx;
5896 else if (GET_CODE (false_rtx) == IOR
5897 && rtx_equal_p (XEXP (false_rtx, 1), true_rtx))
5898 term1 = true_rtx, false_rtx = XEXP (false_rtx, 0), true_rtx = const0_rtx;
5899
5900 term2 = simplify_gen_binary (AND, GET_MODE (src),
5901 XEXP (XEXP (src, 0), 0), true_rtx);
5902 term3 = simplify_gen_binary (AND, GET_MODE (src),
5903 simplify_gen_unary (NOT, GET_MODE (src),
5904 XEXP (XEXP (src, 0), 0),
5905 GET_MODE (src)),
5906 false_rtx);
5907
5908 SUBST (SET_SRC (x),
5909 simplify_gen_binary (IOR, GET_MODE (src),
5910 simplify_gen_binary (IOR, GET_MODE (src),
5911 term1, term2),
5912 term3));
5913
5914 src = SET_SRC (x);
5915 }
5916
5917 /* If either SRC or DEST is a CLOBBER of (const_int 0), make this
5918 whole thing fail. */
5919 if (GET_CODE (src) == CLOBBER && XEXP (src, 0) == const0_rtx)
5920 return src;
5921 else if (GET_CODE (dest) == CLOBBER && XEXP (dest, 0) == const0_rtx)
5922 return dest;
5923 else
5924 /* Convert this into a field assignment operation, if possible. */
5925 return make_field_assignment (x);
5926 }
5927 \f
5928 /* Simplify, X, and AND, IOR, or XOR operation, and return the simplified
5929 result. */
5930
5931 static rtx
5932 simplify_logical (rtx x)
5933 {
5934 enum machine_mode mode = GET_MODE (x);
5935 rtx op0 = XEXP (x, 0);
5936 rtx op1 = XEXP (x, 1);
5937
5938 switch (GET_CODE (x))
5939 {
5940 case AND:
5941 /* We can call simplify_and_const_int only if we don't lose
5942 any (sign) bits when converting INTVAL (op1) to
5943 "unsigned HOST_WIDE_INT". */
5944 if (CONST_INT_P (op1)
5945 && (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5946 || INTVAL (op1) > 0))
5947 {
5948 x = simplify_and_const_int (x, mode, op0, INTVAL (op1));
5949 if (GET_CODE (x) != AND)
5950 return x;
5951
5952 op0 = XEXP (x, 0);
5953 op1 = XEXP (x, 1);
5954 }
5955
5956 /* If we have any of (and (ior A B) C) or (and (xor A B) C),
5957 apply the distributive law and then the inverse distributive
5958 law to see if things simplify. */
5959 if (GET_CODE (op0) == IOR || GET_CODE (op0) == XOR)
5960 {
5961 rtx result = distribute_and_simplify_rtx (x, 0);
5962 if (result)
5963 return result;
5964 }
5965 if (GET_CODE (op1) == IOR || GET_CODE (op1) == XOR)
5966 {
5967 rtx result = distribute_and_simplify_rtx (x, 1);
5968 if (result)
5969 return result;
5970 }
5971 break;
5972
5973 case IOR:
5974 /* If we have (ior (and A B) C), apply the distributive law and then
5975 the inverse distributive law to see if things simplify. */
5976
5977 if (GET_CODE (op0) == AND)
5978 {
5979 rtx result = distribute_and_simplify_rtx (x, 0);
5980 if (result)
5981 return result;
5982 }
5983
5984 if (GET_CODE (op1) == AND)
5985 {
5986 rtx result = distribute_and_simplify_rtx (x, 1);
5987 if (result)
5988 return result;
5989 }
5990 break;
5991
5992 default:
5993 gcc_unreachable ();
5994 }
5995
5996 return x;
5997 }
5998 \f
5999 /* We consider ZERO_EXTRACT, SIGN_EXTRACT, and SIGN_EXTEND as "compound
6000 operations" because they can be replaced with two more basic operations.
6001 ZERO_EXTEND is also considered "compound" because it can be replaced with
6002 an AND operation, which is simpler, though only one operation.
6003
6004 The function expand_compound_operation is called with an rtx expression
6005 and will convert it to the appropriate shifts and AND operations,
6006 simplifying at each stage.
6007
6008 The function make_compound_operation is called to convert an expression
6009 consisting of shifts and ANDs into the equivalent compound expression.
6010 It is the inverse of this function, loosely speaking. */
6011
6012 static rtx
6013 expand_compound_operation (rtx x)
6014 {
6015 unsigned HOST_WIDE_INT pos = 0, len;
6016 int unsignedp = 0;
6017 unsigned int modewidth;
6018 rtx tem;
6019
6020 switch (GET_CODE (x))
6021 {
6022 case ZERO_EXTEND:
6023 unsignedp = 1;
6024 case SIGN_EXTEND:
6025 /* We can't necessarily use a const_int for a multiword mode;
6026 it depends on implicitly extending the value.
6027 Since we don't know the right way to extend it,
6028 we can't tell whether the implicit way is right.
6029
6030 Even for a mode that is no wider than a const_int,
6031 we can't win, because we need to sign extend one of its bits through
6032 the rest of it, and we don't know which bit. */
6033 if (CONST_INT_P (XEXP (x, 0)))
6034 return x;
6035
6036 /* Return if (subreg:MODE FROM 0) is not a safe replacement for
6037 (zero_extend:MODE FROM) or (sign_extend:MODE FROM). It is for any MEM
6038 because (SUBREG (MEM...)) is guaranteed to cause the MEM to be
6039 reloaded. If not for that, MEM's would very rarely be safe.
6040
6041 Reject MODEs bigger than a word, because we might not be able
6042 to reference a two-register group starting with an arbitrary register
6043 (and currently gen_lowpart might crash for a SUBREG). */
6044
6045 if (GET_MODE_SIZE (GET_MODE (XEXP (x, 0))) > UNITS_PER_WORD)
6046 return x;
6047
6048 /* Reject MODEs that aren't scalar integers because turning vector
6049 or complex modes into shifts causes problems. */
6050
6051 if (! SCALAR_INT_MODE_P (GET_MODE (XEXP (x, 0))))
6052 return x;
6053
6054 len = GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)));
6055 /* If the inner object has VOIDmode (the only way this can happen
6056 is if it is an ASM_OPERANDS), we can't do anything since we don't
6057 know how much masking to do. */
6058 if (len == 0)
6059 return x;
6060
6061 break;
6062
6063 case ZERO_EXTRACT:
6064 unsignedp = 1;
6065
6066 /* ... fall through ... */
6067
6068 case SIGN_EXTRACT:
6069 /* If the operand is a CLOBBER, just return it. */
6070 if (GET_CODE (XEXP (x, 0)) == CLOBBER)
6071 return XEXP (x, 0);
6072
6073 if (!CONST_INT_P (XEXP (x, 1))
6074 || !CONST_INT_P (XEXP (x, 2))
6075 || GET_MODE (XEXP (x, 0)) == VOIDmode)
6076 return x;
6077
6078 /* Reject MODEs that aren't scalar integers because turning vector
6079 or complex modes into shifts causes problems. */
6080
6081 if (! SCALAR_INT_MODE_P (GET_MODE (XEXP (x, 0))))
6082 return x;
6083
6084 len = INTVAL (XEXP (x, 1));
6085 pos = INTVAL (XEXP (x, 2));
6086
6087 /* This should stay within the object being extracted, fail otherwise. */
6088 if (len + pos > GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0))))
6089 return x;
6090
6091 if (BITS_BIG_ENDIAN)
6092 pos = GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0))) - len - pos;
6093
6094 break;
6095
6096 default:
6097 return x;
6098 }
6099 /* Convert sign extension to zero extension, if we know that the high
6100 bit is not set, as this is easier to optimize. It will be converted
6101 back to cheaper alternative in make_extraction. */
6102 if (GET_CODE (x) == SIGN_EXTEND
6103 && (GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
6104 && ((nonzero_bits (XEXP (x, 0), GET_MODE (XEXP (x, 0)))
6105 & ~(((unsigned HOST_WIDE_INT)
6106 GET_MODE_MASK (GET_MODE (XEXP (x, 0))))
6107 >> 1))
6108 == 0)))
6109 {
6110 rtx temp = gen_rtx_ZERO_EXTEND (GET_MODE (x), XEXP (x, 0));
6111 rtx temp2 = expand_compound_operation (temp);
6112
6113 /* Make sure this is a profitable operation. */
6114 if (rtx_cost (x, SET, optimize_this_for_speed_p)
6115 > rtx_cost (temp2, SET, optimize_this_for_speed_p))
6116 return temp2;
6117 else if (rtx_cost (x, SET, optimize_this_for_speed_p)
6118 > rtx_cost (temp, SET, optimize_this_for_speed_p))
6119 return temp;
6120 else
6121 return x;
6122 }
6123
6124 /* We can optimize some special cases of ZERO_EXTEND. */
6125 if (GET_CODE (x) == ZERO_EXTEND)
6126 {
6127 /* (zero_extend:DI (truncate:SI foo:DI)) is just foo:DI if we
6128 know that the last value didn't have any inappropriate bits
6129 set. */
6130 if (GET_CODE (XEXP (x, 0)) == TRUNCATE
6131 && GET_MODE (XEXP (XEXP (x, 0), 0)) == GET_MODE (x)
6132 && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
6133 && (nonzero_bits (XEXP (XEXP (x, 0), 0), GET_MODE (x))
6134 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
6135 return XEXP (XEXP (x, 0), 0);
6136
6137 /* Likewise for (zero_extend:DI (subreg:SI foo:DI 0)). */
6138 if (GET_CODE (XEXP (x, 0)) == SUBREG
6139 && GET_MODE (SUBREG_REG (XEXP (x, 0))) == GET_MODE (x)
6140 && subreg_lowpart_p (XEXP (x, 0))
6141 && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
6142 && (nonzero_bits (SUBREG_REG (XEXP (x, 0)), GET_MODE (x))
6143 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
6144 return SUBREG_REG (XEXP (x, 0));
6145
6146 /* (zero_extend:DI (truncate:SI foo:DI)) is just foo:DI when foo
6147 is a comparison and STORE_FLAG_VALUE permits. This is like
6148 the first case, but it works even when GET_MODE (x) is larger
6149 than HOST_WIDE_INT. */
6150 if (GET_CODE (XEXP (x, 0)) == TRUNCATE
6151 && GET_MODE (XEXP (XEXP (x, 0), 0)) == GET_MODE (x)
6152 && COMPARISON_P (XEXP (XEXP (x, 0), 0))
6153 && (GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))
6154 <= HOST_BITS_PER_WIDE_INT)
6155 && ((HOST_WIDE_INT) STORE_FLAG_VALUE
6156 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
6157 return XEXP (XEXP (x, 0), 0);
6158
6159 /* Likewise for (zero_extend:DI (subreg:SI foo:DI 0)). */
6160 if (GET_CODE (XEXP (x, 0)) == SUBREG
6161 && GET_MODE (SUBREG_REG (XEXP (x, 0))) == GET_MODE (x)
6162 && subreg_lowpart_p (XEXP (x, 0))
6163 && COMPARISON_P (SUBREG_REG (XEXP (x, 0)))
6164 && (GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))
6165 <= HOST_BITS_PER_WIDE_INT)
6166 && ((HOST_WIDE_INT) STORE_FLAG_VALUE
6167 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
6168 return SUBREG_REG (XEXP (x, 0));
6169
6170 }
6171
6172 /* If we reach here, we want to return a pair of shifts. The inner
6173 shift is a left shift of BITSIZE - POS - LEN bits. The outer
6174 shift is a right shift of BITSIZE - LEN bits. It is arithmetic or
6175 logical depending on the value of UNSIGNEDP.
6176
6177 If this was a ZERO_EXTEND or ZERO_EXTRACT, this pair of shifts will be
6178 converted into an AND of a shift.
6179
6180 We must check for the case where the left shift would have a negative
6181 count. This can happen in a case like (x >> 31) & 255 on machines
6182 that can't shift by a constant. On those machines, we would first
6183 combine the shift with the AND to produce a variable-position
6184 extraction. Then the constant of 31 would be substituted in to produce
6185 a such a position. */
6186
6187 modewidth = GET_MODE_BITSIZE (GET_MODE (x));
6188 if (modewidth + len >= pos)
6189 {
6190 enum machine_mode mode = GET_MODE (x);
6191 tem = gen_lowpart (mode, XEXP (x, 0));
6192 if (!tem || GET_CODE (tem) == CLOBBER)
6193 return x;
6194 tem = simplify_shift_const (NULL_RTX, ASHIFT, mode,
6195 tem, modewidth - pos - len);
6196 tem = simplify_shift_const (NULL_RTX, unsignedp ? LSHIFTRT : ASHIFTRT,
6197 mode, tem, modewidth - len);
6198 }
6199 else if (unsignedp && len < HOST_BITS_PER_WIDE_INT)
6200 tem = simplify_and_const_int (NULL_RTX, GET_MODE (x),
6201 simplify_shift_const (NULL_RTX, LSHIFTRT,
6202 GET_MODE (x),
6203 XEXP (x, 0), pos),
6204 ((HOST_WIDE_INT) 1 << len) - 1);
6205 else
6206 /* Any other cases we can't handle. */
6207 return x;
6208
6209 /* If we couldn't do this for some reason, return the original
6210 expression. */
6211 if (GET_CODE (tem) == CLOBBER)
6212 return x;
6213
6214 return tem;
6215 }
6216 \f
6217 /* X is a SET which contains an assignment of one object into
6218 a part of another (such as a bit-field assignment, STRICT_LOW_PART,
6219 or certain SUBREGS). If possible, convert it into a series of
6220 logical operations.
6221
6222 We half-heartedly support variable positions, but do not at all
6223 support variable lengths. */
6224
6225 static const_rtx
6226 expand_field_assignment (const_rtx x)
6227 {
6228 rtx inner;
6229 rtx pos; /* Always counts from low bit. */
6230 int len;
6231 rtx mask, cleared, masked;
6232 enum machine_mode compute_mode;
6233
6234 /* Loop until we find something we can't simplify. */
6235 while (1)
6236 {
6237 if (GET_CODE (SET_DEST (x)) == STRICT_LOW_PART
6238 && GET_CODE (XEXP (SET_DEST (x), 0)) == SUBREG)
6239 {
6240 inner = SUBREG_REG (XEXP (SET_DEST (x), 0));
6241 len = GET_MODE_BITSIZE (GET_MODE (XEXP (SET_DEST (x), 0)));
6242 pos = GEN_INT (subreg_lsb (XEXP (SET_DEST (x), 0)));
6243 }
6244 else if (GET_CODE (SET_DEST (x)) == ZERO_EXTRACT
6245 && CONST_INT_P (XEXP (SET_DEST (x), 1)))
6246 {
6247 inner = XEXP (SET_DEST (x), 0);
6248 len = INTVAL (XEXP (SET_DEST (x), 1));
6249 pos = XEXP (SET_DEST (x), 2);
6250
6251 /* A constant position should stay within the width of INNER. */
6252 if (CONST_INT_P (pos)
6253 && INTVAL (pos) + len > GET_MODE_BITSIZE (GET_MODE (inner)))
6254 break;
6255
6256 if (BITS_BIG_ENDIAN)
6257 {
6258 if (CONST_INT_P (pos))
6259 pos = GEN_INT (GET_MODE_BITSIZE (GET_MODE (inner)) - len
6260 - INTVAL (pos));
6261 else if (GET_CODE (pos) == MINUS
6262 && CONST_INT_P (XEXP (pos, 1))
6263 && (INTVAL (XEXP (pos, 1))
6264 == GET_MODE_BITSIZE (GET_MODE (inner)) - len))
6265 /* If position is ADJUST - X, new position is X. */
6266 pos = XEXP (pos, 0);
6267 else
6268 pos = simplify_gen_binary (MINUS, GET_MODE (pos),
6269 GEN_INT (GET_MODE_BITSIZE (
6270 GET_MODE (inner))
6271 - len),
6272 pos);
6273 }
6274 }
6275
6276 /* A SUBREG between two modes that occupy the same numbers of words
6277 can be done by moving the SUBREG to the source. */
6278 else if (GET_CODE (SET_DEST (x)) == SUBREG
6279 /* We need SUBREGs to compute nonzero_bits properly. */
6280 && nonzero_sign_valid
6281 && (((GET_MODE_SIZE (GET_MODE (SET_DEST (x)))
6282 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
6283 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (x))))
6284 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)))
6285 {
6286 x = gen_rtx_SET (VOIDmode, SUBREG_REG (SET_DEST (x)),
6287 gen_lowpart
6288 (GET_MODE (SUBREG_REG (SET_DEST (x))),
6289 SET_SRC (x)));
6290 continue;
6291 }
6292 else
6293 break;
6294
6295 while (GET_CODE (inner) == SUBREG && subreg_lowpart_p (inner))
6296 inner = SUBREG_REG (inner);
6297
6298 compute_mode = GET_MODE (inner);
6299
6300 /* Don't attempt bitwise arithmetic on non scalar integer modes. */
6301 if (! SCALAR_INT_MODE_P (compute_mode))
6302 {
6303 enum machine_mode imode;
6304
6305 /* Don't do anything for vector or complex integral types. */
6306 if (! FLOAT_MODE_P (compute_mode))
6307 break;
6308
6309 /* Try to find an integral mode to pun with. */
6310 imode = mode_for_size (GET_MODE_BITSIZE (compute_mode), MODE_INT, 0);
6311 if (imode == BLKmode)
6312 break;
6313
6314 compute_mode = imode;
6315 inner = gen_lowpart (imode, inner);
6316 }
6317
6318 /* Compute a mask of LEN bits, if we can do this on the host machine. */
6319 if (len >= HOST_BITS_PER_WIDE_INT)
6320 break;
6321
6322 /* Now compute the equivalent expression. Make a copy of INNER
6323 for the SET_DEST in case it is a MEM into which we will substitute;
6324 we don't want shared RTL in that case. */
6325 mask = GEN_INT (((HOST_WIDE_INT) 1 << len) - 1);
6326 cleared = simplify_gen_binary (AND, compute_mode,
6327 simplify_gen_unary (NOT, compute_mode,
6328 simplify_gen_binary (ASHIFT,
6329 compute_mode,
6330 mask, pos),
6331 compute_mode),
6332 inner);
6333 masked = simplify_gen_binary (ASHIFT, compute_mode,
6334 simplify_gen_binary (
6335 AND, compute_mode,
6336 gen_lowpart (compute_mode, SET_SRC (x)),
6337 mask),
6338 pos);
6339
6340 x = gen_rtx_SET (VOIDmode, copy_rtx (inner),
6341 simplify_gen_binary (IOR, compute_mode,
6342 cleared, masked));
6343 }
6344
6345 return x;
6346 }
6347 \f
6348 /* Return an RTX for a reference to LEN bits of INNER. If POS_RTX is nonzero,
6349 it is an RTX that represents a variable starting position; otherwise,
6350 POS is the (constant) starting bit position (counted from the LSB).
6351
6352 UNSIGNEDP is nonzero for an unsigned reference and zero for a
6353 signed reference.
6354
6355 IN_DEST is nonzero if this is a reference in the destination of a
6356 SET. This is used when a ZERO_ or SIGN_EXTRACT isn't needed. If nonzero,
6357 a STRICT_LOW_PART will be used, if zero, ZERO_EXTEND or SIGN_EXTEND will
6358 be used.
6359
6360 IN_COMPARE is nonzero if we are in a COMPARE. This means that a
6361 ZERO_EXTRACT should be built even for bits starting at bit 0.
6362
6363 MODE is the desired mode of the result (if IN_DEST == 0).
6364
6365 The result is an RTX for the extraction or NULL_RTX if the target
6366 can't handle it. */
6367
6368 static rtx
6369 make_extraction (enum machine_mode mode, rtx inner, HOST_WIDE_INT pos,
6370 rtx pos_rtx, unsigned HOST_WIDE_INT len, int unsignedp,
6371 int in_dest, int in_compare)
6372 {
6373 /* This mode describes the size of the storage area
6374 to fetch the overall value from. Within that, we
6375 ignore the POS lowest bits, etc. */
6376 enum machine_mode is_mode = GET_MODE (inner);
6377 enum machine_mode inner_mode;
6378 enum machine_mode wanted_inner_mode;
6379 enum machine_mode wanted_inner_reg_mode = word_mode;
6380 enum machine_mode pos_mode = word_mode;
6381 enum machine_mode extraction_mode = word_mode;
6382 enum machine_mode tmode = mode_for_size (len, MODE_INT, 1);
6383 rtx new_rtx = 0;
6384 rtx orig_pos_rtx = pos_rtx;
6385 HOST_WIDE_INT orig_pos;
6386
6387 if (GET_CODE (inner) == SUBREG && subreg_lowpart_p (inner))
6388 {
6389 /* If going from (subreg:SI (mem:QI ...)) to (mem:QI ...),
6390 consider just the QI as the memory to extract from.
6391 The subreg adds or removes high bits; its mode is
6392 irrelevant to the meaning of this extraction,
6393 since POS and LEN count from the lsb. */
6394 if (MEM_P (SUBREG_REG (inner)))
6395 is_mode = GET_MODE (SUBREG_REG (inner));
6396 inner = SUBREG_REG (inner);
6397 }
6398 else if (GET_CODE (inner) == ASHIFT
6399 && CONST_INT_P (XEXP (inner, 1))
6400 && pos_rtx == 0 && pos == 0
6401 && len > (unsigned HOST_WIDE_INT) INTVAL (XEXP (inner, 1)))
6402 {
6403 /* We're extracting the least significant bits of an rtx
6404 (ashift X (const_int C)), where LEN > C. Extract the
6405 least significant (LEN - C) bits of X, giving an rtx
6406 whose mode is MODE, then shift it left C times. */
6407 new_rtx = make_extraction (mode, XEXP (inner, 0),
6408 0, 0, len - INTVAL (XEXP (inner, 1)),
6409 unsignedp, in_dest, in_compare);
6410 if (new_rtx != 0)
6411 return gen_rtx_ASHIFT (mode, new_rtx, XEXP (inner, 1));
6412 }
6413
6414 inner_mode = GET_MODE (inner);
6415
6416 if (pos_rtx && CONST_INT_P (pos_rtx))
6417 pos = INTVAL (pos_rtx), pos_rtx = 0;
6418
6419 /* See if this can be done without an extraction. We never can if the
6420 width of the field is not the same as that of some integer mode. For
6421 registers, we can only avoid the extraction if the position is at the
6422 low-order bit and this is either not in the destination or we have the
6423 appropriate STRICT_LOW_PART operation available.
6424
6425 For MEM, we can avoid an extract if the field starts on an appropriate
6426 boundary and we can change the mode of the memory reference. */
6427
6428 if (tmode != BLKmode
6429 && ((pos_rtx == 0 && (pos % BITS_PER_WORD) == 0
6430 && !MEM_P (inner)
6431 && (inner_mode == tmode
6432 || !REG_P (inner)
6433 || TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (tmode),
6434 GET_MODE_BITSIZE (inner_mode))
6435 || reg_truncated_to_mode (tmode, inner))
6436 && (! in_dest
6437 || (REG_P (inner)
6438 && have_insn_for (STRICT_LOW_PART, tmode))))
6439 || (MEM_P (inner) && pos_rtx == 0
6440 && (pos
6441 % (STRICT_ALIGNMENT ? GET_MODE_ALIGNMENT (tmode)
6442 : BITS_PER_UNIT)) == 0
6443 /* We can't do this if we are widening INNER_MODE (it
6444 may not be aligned, for one thing). */
6445 && GET_MODE_BITSIZE (inner_mode) >= GET_MODE_BITSIZE (tmode)
6446 && (inner_mode == tmode
6447 || (! mode_dependent_address_p (XEXP (inner, 0))
6448 && ! MEM_VOLATILE_P (inner))))))
6449 {
6450 /* If INNER is a MEM, make a new MEM that encompasses just the desired
6451 field. If the original and current mode are the same, we need not
6452 adjust the offset. Otherwise, we do if bytes big endian.
6453
6454 If INNER is not a MEM, get a piece consisting of just the field
6455 of interest (in this case POS % BITS_PER_WORD must be 0). */
6456
6457 if (MEM_P (inner))
6458 {
6459 HOST_WIDE_INT offset;
6460
6461 /* POS counts from lsb, but make OFFSET count in memory order. */
6462 if (BYTES_BIG_ENDIAN)
6463 offset = (GET_MODE_BITSIZE (is_mode) - len - pos) / BITS_PER_UNIT;
6464 else
6465 offset = pos / BITS_PER_UNIT;
6466
6467 new_rtx = adjust_address_nv (inner, tmode, offset);
6468 }
6469 else if (REG_P (inner))
6470 {
6471 if (tmode != inner_mode)
6472 {
6473 /* We can't call gen_lowpart in a DEST since we
6474 always want a SUBREG (see below) and it would sometimes
6475 return a new hard register. */
6476 if (pos || in_dest)
6477 {
6478 HOST_WIDE_INT final_word = pos / BITS_PER_WORD;
6479
6480 if (WORDS_BIG_ENDIAN
6481 && GET_MODE_SIZE (inner_mode) > UNITS_PER_WORD)
6482 final_word = ((GET_MODE_SIZE (inner_mode)
6483 - GET_MODE_SIZE (tmode))
6484 / UNITS_PER_WORD) - final_word;
6485
6486 final_word *= UNITS_PER_WORD;
6487 if (BYTES_BIG_ENDIAN &&
6488 GET_MODE_SIZE (inner_mode) > GET_MODE_SIZE (tmode))
6489 final_word += (GET_MODE_SIZE (inner_mode)
6490 - GET_MODE_SIZE (tmode)) % UNITS_PER_WORD;
6491
6492 /* Avoid creating invalid subregs, for example when
6493 simplifying (x>>32)&255. */
6494 if (!validate_subreg (tmode, inner_mode, inner, final_word))
6495 return NULL_RTX;
6496
6497 new_rtx = gen_rtx_SUBREG (tmode, inner, final_word);
6498 }
6499 else
6500 new_rtx = gen_lowpart (tmode, inner);
6501 }
6502 else
6503 new_rtx = inner;
6504 }
6505 else
6506 new_rtx = force_to_mode (inner, tmode,
6507 len >= HOST_BITS_PER_WIDE_INT
6508 ? ~(unsigned HOST_WIDE_INT) 0
6509 : ((unsigned HOST_WIDE_INT) 1 << len) - 1,
6510 0);
6511
6512 /* If this extraction is going into the destination of a SET,
6513 make a STRICT_LOW_PART unless we made a MEM. */
6514
6515 if (in_dest)
6516 return (MEM_P (new_rtx) ? new_rtx
6517 : (GET_CODE (new_rtx) != SUBREG
6518 ? gen_rtx_CLOBBER (tmode, const0_rtx)
6519 : gen_rtx_STRICT_LOW_PART (VOIDmode, new_rtx)));
6520
6521 if (mode == tmode)
6522 return new_rtx;
6523
6524 if (CONST_INT_P (new_rtx))
6525 return gen_int_mode (INTVAL (new_rtx), mode);
6526
6527 /* If we know that no extraneous bits are set, and that the high
6528 bit is not set, convert the extraction to the cheaper of
6529 sign and zero extension, that are equivalent in these cases. */
6530 if (flag_expensive_optimizations
6531 && (GET_MODE_BITSIZE (tmode) <= HOST_BITS_PER_WIDE_INT
6532 && ((nonzero_bits (new_rtx, tmode)
6533 & ~(((unsigned HOST_WIDE_INT)
6534 GET_MODE_MASK (tmode))
6535 >> 1))
6536 == 0)))
6537 {
6538 rtx temp = gen_rtx_ZERO_EXTEND (mode, new_rtx);
6539 rtx temp1 = gen_rtx_SIGN_EXTEND (mode, new_rtx);
6540
6541 /* Prefer ZERO_EXTENSION, since it gives more information to
6542 backends. */
6543 if (rtx_cost (temp, SET, optimize_this_for_speed_p)
6544 <= rtx_cost (temp1, SET, optimize_this_for_speed_p))
6545 return temp;
6546 return temp1;
6547 }
6548
6549 /* Otherwise, sign- or zero-extend unless we already are in the
6550 proper mode. */
6551
6552 return (gen_rtx_fmt_e (unsignedp ? ZERO_EXTEND : SIGN_EXTEND,
6553 mode, new_rtx));
6554 }
6555
6556 /* Unless this is a COMPARE or we have a funny memory reference,
6557 don't do anything with zero-extending field extracts starting at
6558 the low-order bit since they are simple AND operations. */
6559 if (pos_rtx == 0 && pos == 0 && ! in_dest
6560 && ! in_compare && unsignedp)
6561 return 0;
6562
6563 /* Unless INNER is not MEM, reject this if we would be spanning bytes or
6564 if the position is not a constant and the length is not 1. In all
6565 other cases, we would only be going outside our object in cases when
6566 an original shift would have been undefined. */
6567 if (MEM_P (inner)
6568 && ((pos_rtx == 0 && pos + len > GET_MODE_BITSIZE (is_mode))
6569 || (pos_rtx != 0 && len != 1)))
6570 return 0;
6571
6572 /* Get the mode to use should INNER not be a MEM, the mode for the position,
6573 and the mode for the result. */
6574 if (in_dest && mode_for_extraction (EP_insv, -1) != MAX_MACHINE_MODE)
6575 {
6576 wanted_inner_reg_mode = mode_for_extraction (EP_insv, 0);
6577 pos_mode = mode_for_extraction (EP_insv, 2);
6578 extraction_mode = mode_for_extraction (EP_insv, 3);
6579 }
6580
6581 if (! in_dest && unsignedp
6582 && mode_for_extraction (EP_extzv, -1) != MAX_MACHINE_MODE)
6583 {
6584 wanted_inner_reg_mode = mode_for_extraction (EP_extzv, 1);
6585 pos_mode = mode_for_extraction (EP_extzv, 3);
6586 extraction_mode = mode_for_extraction (EP_extzv, 0);
6587 }
6588
6589 if (! in_dest && ! unsignedp
6590 && mode_for_extraction (EP_extv, -1) != MAX_MACHINE_MODE)
6591 {
6592 wanted_inner_reg_mode = mode_for_extraction (EP_extv, 1);
6593 pos_mode = mode_for_extraction (EP_extv, 3);
6594 extraction_mode = mode_for_extraction (EP_extv, 0);
6595 }
6596
6597 /* Never narrow an object, since that might not be safe. */
6598
6599 if (mode != VOIDmode
6600 && GET_MODE_SIZE (extraction_mode) < GET_MODE_SIZE (mode))
6601 extraction_mode = mode;
6602
6603 if (pos_rtx && GET_MODE (pos_rtx) != VOIDmode
6604 && GET_MODE_SIZE (pos_mode) < GET_MODE_SIZE (GET_MODE (pos_rtx)))
6605 pos_mode = GET_MODE (pos_rtx);
6606
6607 /* If this is not from memory, the desired mode is the preferred mode
6608 for an extraction pattern's first input operand, or word_mode if there
6609 is none. */
6610 if (!MEM_P (inner))
6611 wanted_inner_mode = wanted_inner_reg_mode;
6612 else
6613 {
6614 /* Be careful not to go beyond the extracted object and maintain the
6615 natural alignment of the memory. */
6616 wanted_inner_mode = smallest_mode_for_size (len, MODE_INT);
6617 while (pos % GET_MODE_BITSIZE (wanted_inner_mode) + len
6618 > GET_MODE_BITSIZE (wanted_inner_mode))
6619 {
6620 wanted_inner_mode = GET_MODE_WIDER_MODE (wanted_inner_mode);
6621 gcc_assert (wanted_inner_mode != VOIDmode);
6622 }
6623
6624 /* If we have to change the mode of memory and cannot, the desired mode
6625 is EXTRACTION_MODE. */
6626 if (inner_mode != wanted_inner_mode
6627 && (mode_dependent_address_p (XEXP (inner, 0))
6628 || MEM_VOLATILE_P (inner)
6629 || pos_rtx))
6630 wanted_inner_mode = extraction_mode;
6631 }
6632
6633 orig_pos = pos;
6634
6635 if (BITS_BIG_ENDIAN)
6636 {
6637 /* POS is passed as if BITS_BIG_ENDIAN == 0, so we need to convert it to
6638 BITS_BIG_ENDIAN style. If position is constant, compute new
6639 position. Otherwise, build subtraction.
6640 Note that POS is relative to the mode of the original argument.
6641 If it's a MEM we need to recompute POS relative to that.
6642 However, if we're extracting from (or inserting into) a register,
6643 we want to recompute POS relative to wanted_inner_mode. */
6644 int width = (MEM_P (inner)
6645 ? GET_MODE_BITSIZE (is_mode)
6646 : GET_MODE_BITSIZE (wanted_inner_mode));
6647
6648 if (pos_rtx == 0)
6649 pos = width - len - pos;
6650 else
6651 pos_rtx
6652 = gen_rtx_MINUS (GET_MODE (pos_rtx), GEN_INT (width - len), pos_rtx);
6653 /* POS may be less than 0 now, but we check for that below.
6654 Note that it can only be less than 0 if !MEM_P (inner). */
6655 }
6656
6657 /* If INNER has a wider mode, and this is a constant extraction, try to
6658 make it smaller and adjust the byte to point to the byte containing
6659 the value. */
6660 if (wanted_inner_mode != VOIDmode
6661 && inner_mode != wanted_inner_mode
6662 && ! pos_rtx
6663 && GET_MODE_SIZE (wanted_inner_mode) < GET_MODE_SIZE (is_mode)
6664 && MEM_P (inner)
6665 && ! mode_dependent_address_p (XEXP (inner, 0))
6666 && ! MEM_VOLATILE_P (inner))
6667 {
6668 int offset = 0;
6669
6670 /* The computations below will be correct if the machine is big
6671 endian in both bits and bytes or little endian in bits and bytes.
6672 If it is mixed, we must adjust. */
6673
6674 /* If bytes are big endian and we had a paradoxical SUBREG, we must
6675 adjust OFFSET to compensate. */
6676 if (BYTES_BIG_ENDIAN
6677 && GET_MODE_SIZE (inner_mode) < GET_MODE_SIZE (is_mode))
6678 offset -= GET_MODE_SIZE (is_mode) - GET_MODE_SIZE (inner_mode);
6679
6680 /* We can now move to the desired byte. */
6681 offset += (pos / GET_MODE_BITSIZE (wanted_inner_mode))
6682 * GET_MODE_SIZE (wanted_inner_mode);
6683 pos %= GET_MODE_BITSIZE (wanted_inner_mode);
6684
6685 if (BYTES_BIG_ENDIAN != BITS_BIG_ENDIAN
6686 && is_mode != wanted_inner_mode)
6687 offset = (GET_MODE_SIZE (is_mode)
6688 - GET_MODE_SIZE (wanted_inner_mode) - offset);
6689
6690 inner = adjust_address_nv (inner, wanted_inner_mode, offset);
6691 }
6692
6693 /* If INNER is not memory, get it into the proper mode. If we are changing
6694 its mode, POS must be a constant and smaller than the size of the new
6695 mode. */
6696 else if (!MEM_P (inner))
6697 {
6698 /* On the LHS, don't create paradoxical subregs implicitely truncating
6699 the register unless TRULY_NOOP_TRUNCATION. */
6700 if (in_dest
6701 && !TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (GET_MODE (inner)),
6702 GET_MODE_BITSIZE (wanted_inner_mode)))
6703 return NULL_RTX;
6704
6705 if (GET_MODE (inner) != wanted_inner_mode
6706 && (pos_rtx != 0
6707 || orig_pos + len > GET_MODE_BITSIZE (wanted_inner_mode)))
6708 return NULL_RTX;
6709
6710 if (orig_pos < 0)
6711 return NULL_RTX;
6712
6713 inner = force_to_mode (inner, wanted_inner_mode,
6714 pos_rtx
6715 || len + orig_pos >= HOST_BITS_PER_WIDE_INT
6716 ? ~(unsigned HOST_WIDE_INT) 0
6717 : ((((unsigned HOST_WIDE_INT) 1 << len) - 1)
6718 << orig_pos),
6719 0);
6720 }
6721
6722 /* Adjust mode of POS_RTX, if needed. If we want a wider mode, we
6723 have to zero extend. Otherwise, we can just use a SUBREG. */
6724 if (pos_rtx != 0
6725 && GET_MODE_SIZE (pos_mode) > GET_MODE_SIZE (GET_MODE (pos_rtx)))
6726 {
6727 rtx temp = gen_rtx_ZERO_EXTEND (pos_mode, pos_rtx);
6728
6729 /* If we know that no extraneous bits are set, and that the high
6730 bit is not set, convert extraction to cheaper one - either
6731 SIGN_EXTENSION or ZERO_EXTENSION, that are equivalent in these
6732 cases. */
6733 if (flag_expensive_optimizations
6734 && (GET_MODE_BITSIZE (GET_MODE (pos_rtx)) <= HOST_BITS_PER_WIDE_INT
6735 && ((nonzero_bits (pos_rtx, GET_MODE (pos_rtx))
6736 & ~(((unsigned HOST_WIDE_INT)
6737 GET_MODE_MASK (GET_MODE (pos_rtx)))
6738 >> 1))
6739 == 0)))
6740 {
6741 rtx temp1 = gen_rtx_SIGN_EXTEND (pos_mode, pos_rtx);
6742
6743 /* Prefer ZERO_EXTENSION, since it gives more information to
6744 backends. */
6745 if (rtx_cost (temp1, SET, optimize_this_for_speed_p)
6746 < rtx_cost (temp, SET, optimize_this_for_speed_p))
6747 temp = temp1;
6748 }
6749 pos_rtx = temp;
6750 }
6751 else if (pos_rtx != 0
6752 && GET_MODE_SIZE (pos_mode) < GET_MODE_SIZE (GET_MODE (pos_rtx)))
6753 pos_rtx = gen_lowpart (pos_mode, pos_rtx);
6754
6755 /* Make POS_RTX unless we already have it and it is correct. If we don't
6756 have a POS_RTX but we do have an ORIG_POS_RTX, the latter must
6757 be a CONST_INT. */
6758 if (pos_rtx == 0 && orig_pos_rtx != 0 && INTVAL (orig_pos_rtx) == pos)
6759 pos_rtx = orig_pos_rtx;
6760
6761 else if (pos_rtx == 0)
6762 pos_rtx = GEN_INT (pos);
6763
6764 /* Make the required operation. See if we can use existing rtx. */
6765 new_rtx = gen_rtx_fmt_eee (unsignedp ? ZERO_EXTRACT : SIGN_EXTRACT,
6766 extraction_mode, inner, GEN_INT (len), pos_rtx);
6767 if (! in_dest)
6768 new_rtx = gen_lowpart (mode, new_rtx);
6769
6770 return new_rtx;
6771 }
6772 \f
6773 /* See if X contains an ASHIFT of COUNT or more bits that can be commuted
6774 with any other operations in X. Return X without that shift if so. */
6775
6776 static rtx
6777 extract_left_shift (rtx x, int count)
6778 {
6779 enum rtx_code code = GET_CODE (x);
6780 enum machine_mode mode = GET_MODE (x);
6781 rtx tem;
6782
6783 switch (code)
6784 {
6785 case ASHIFT:
6786 /* This is the shift itself. If it is wide enough, we will return
6787 either the value being shifted if the shift count is equal to
6788 COUNT or a shift for the difference. */
6789 if (CONST_INT_P (XEXP (x, 1))
6790 && INTVAL (XEXP (x, 1)) >= count)
6791 return simplify_shift_const (NULL_RTX, ASHIFT, mode, XEXP (x, 0),
6792 INTVAL (XEXP (x, 1)) - count);
6793 break;
6794
6795 case NEG: case NOT:
6796 if ((tem = extract_left_shift (XEXP (x, 0), count)) != 0)
6797 return simplify_gen_unary (code, mode, tem, mode);
6798
6799 break;
6800
6801 case PLUS: case IOR: case XOR: case AND:
6802 /* If we can safely shift this constant and we find the inner shift,
6803 make a new operation. */
6804 if (CONST_INT_P (XEXP (x, 1))
6805 && (INTVAL (XEXP (x, 1)) & ((((HOST_WIDE_INT) 1 << count)) - 1)) == 0
6806 && (tem = extract_left_shift (XEXP (x, 0), count)) != 0)
6807 return simplify_gen_binary (code, mode, tem,
6808 GEN_INT (INTVAL (XEXP (x, 1)) >> count));
6809
6810 break;
6811
6812 default:
6813 break;
6814 }
6815
6816 return 0;
6817 }
6818 \f
6819 /* Look at the expression rooted at X. Look for expressions
6820 equivalent to ZERO_EXTRACT, SIGN_EXTRACT, ZERO_EXTEND, SIGN_EXTEND.
6821 Form these expressions.
6822
6823 Return the new rtx, usually just X.
6824
6825 Also, for machines like the VAX that don't have logical shift insns,
6826 try to convert logical to arithmetic shift operations in cases where
6827 they are equivalent. This undoes the canonicalizations to logical
6828 shifts done elsewhere.
6829
6830 We try, as much as possible, to re-use rtl expressions to save memory.
6831
6832 IN_CODE says what kind of expression we are processing. Normally, it is
6833 SET. In a memory address (inside a MEM, PLUS or minus, the latter two
6834 being kludges), it is MEM. When processing the arguments of a comparison
6835 or a COMPARE against zero, it is COMPARE. */
6836
6837 static rtx
6838 make_compound_operation (rtx x, enum rtx_code in_code)
6839 {
6840 enum rtx_code code = GET_CODE (x);
6841 enum machine_mode mode = GET_MODE (x);
6842 int mode_width = GET_MODE_BITSIZE (mode);
6843 rtx rhs, lhs;
6844 enum rtx_code next_code;
6845 int i, j;
6846 rtx new_rtx = 0;
6847 rtx tem;
6848 const char *fmt;
6849
6850 /* Select the code to be used in recursive calls. Once we are inside an
6851 address, we stay there. If we have a comparison, set to COMPARE,
6852 but once inside, go back to our default of SET. */
6853
6854 next_code = (code == MEM || code == PLUS || code == MINUS ? MEM
6855 : ((code == COMPARE || COMPARISON_P (x))
6856 && XEXP (x, 1) == const0_rtx) ? COMPARE
6857 : in_code == COMPARE ? SET : in_code);
6858
6859 /* Process depending on the code of this operation. If NEW is set
6860 nonzero, it will be returned. */
6861
6862 switch (code)
6863 {
6864 case ASHIFT:
6865 /* Convert shifts by constants into multiplications if inside
6866 an address. */
6867 if (in_code == MEM && CONST_INT_P (XEXP (x, 1))
6868 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT
6869 && INTVAL (XEXP (x, 1)) >= 0)
6870 {
6871 new_rtx = make_compound_operation (XEXP (x, 0), next_code);
6872 new_rtx = gen_rtx_MULT (mode, new_rtx,
6873 GEN_INT ((HOST_WIDE_INT) 1
6874 << INTVAL (XEXP (x, 1))));
6875 }
6876 break;
6877
6878 case AND:
6879 /* If the second operand is not a constant, we can't do anything
6880 with it. */
6881 if (!CONST_INT_P (XEXP (x, 1)))
6882 break;
6883
6884 /* If the constant is a power of two minus one and the first operand
6885 is a logical right shift, make an extraction. */
6886 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
6887 && (i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0)
6888 {
6889 new_rtx = make_compound_operation (XEXP (XEXP (x, 0), 0), next_code);
6890 new_rtx = make_extraction (mode, new_rtx, 0, XEXP (XEXP (x, 0), 1), i, 1,
6891 0, in_code == COMPARE);
6892 }
6893
6894 /* Same as previous, but for (subreg (lshiftrt ...)) in first op. */
6895 else if (GET_CODE (XEXP (x, 0)) == SUBREG
6896 && subreg_lowpart_p (XEXP (x, 0))
6897 && GET_CODE (SUBREG_REG (XEXP (x, 0))) == LSHIFTRT
6898 && (i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0)
6899 {
6900 new_rtx = make_compound_operation (XEXP (SUBREG_REG (XEXP (x, 0)), 0),
6901 next_code);
6902 new_rtx = make_extraction (GET_MODE (SUBREG_REG (XEXP (x, 0))), new_rtx, 0,
6903 XEXP (SUBREG_REG (XEXP (x, 0)), 1), i, 1,
6904 0, in_code == COMPARE);
6905 }
6906 /* Same as previous, but for (xor/ior (lshiftrt...) (lshiftrt...)). */
6907 else if ((GET_CODE (XEXP (x, 0)) == XOR
6908 || GET_CODE (XEXP (x, 0)) == IOR)
6909 && GET_CODE (XEXP (XEXP (x, 0), 0)) == LSHIFTRT
6910 && GET_CODE (XEXP (XEXP (x, 0), 1)) == LSHIFTRT
6911 && (i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0)
6912 {
6913 /* Apply the distributive law, and then try to make extractions. */
6914 new_rtx = gen_rtx_fmt_ee (GET_CODE (XEXP (x, 0)), mode,
6915 gen_rtx_AND (mode, XEXP (XEXP (x, 0), 0),
6916 XEXP (x, 1)),
6917 gen_rtx_AND (mode, XEXP (XEXP (x, 0), 1),
6918 XEXP (x, 1)));
6919 new_rtx = make_compound_operation (new_rtx, in_code);
6920 }
6921
6922 /* If we are have (and (rotate X C) M) and C is larger than the number
6923 of bits in M, this is an extraction. */
6924
6925 else if (GET_CODE (XEXP (x, 0)) == ROTATE
6926 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
6927 && (i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0
6928 && i <= INTVAL (XEXP (XEXP (x, 0), 1)))
6929 {
6930 new_rtx = make_compound_operation (XEXP (XEXP (x, 0), 0), next_code);
6931 new_rtx = make_extraction (mode, new_rtx,
6932 (GET_MODE_BITSIZE (mode)
6933 - INTVAL (XEXP (XEXP (x, 0), 1))),
6934 NULL_RTX, i, 1, 0, in_code == COMPARE);
6935 }
6936
6937 /* On machines without logical shifts, if the operand of the AND is
6938 a logical shift and our mask turns off all the propagated sign
6939 bits, we can replace the logical shift with an arithmetic shift. */
6940 else if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
6941 && !have_insn_for (LSHIFTRT, mode)
6942 && have_insn_for (ASHIFTRT, mode)
6943 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
6944 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
6945 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT
6946 && mode_width <= HOST_BITS_PER_WIDE_INT)
6947 {
6948 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
6949
6950 mask >>= INTVAL (XEXP (XEXP (x, 0), 1));
6951 if ((INTVAL (XEXP (x, 1)) & ~mask) == 0)
6952 SUBST (XEXP (x, 0),
6953 gen_rtx_ASHIFTRT (mode,
6954 make_compound_operation
6955 (XEXP (XEXP (x, 0), 0), next_code),
6956 XEXP (XEXP (x, 0), 1)));
6957 }
6958
6959 /* If the constant is one less than a power of two, this might be
6960 representable by an extraction even if no shift is present.
6961 If it doesn't end up being a ZERO_EXTEND, we will ignore it unless
6962 we are in a COMPARE. */
6963 else if ((i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0)
6964 new_rtx = make_extraction (mode,
6965 make_compound_operation (XEXP (x, 0),
6966 next_code),
6967 0, NULL_RTX, i, 1, 0, in_code == COMPARE);
6968
6969 /* If we are in a comparison and this is an AND with a power of two,
6970 convert this into the appropriate bit extract. */
6971 else if (in_code == COMPARE
6972 && (i = exact_log2 (INTVAL (XEXP (x, 1)))) >= 0)
6973 new_rtx = make_extraction (mode,
6974 make_compound_operation (XEXP (x, 0),
6975 next_code),
6976 i, NULL_RTX, 1, 1, 0, 1);
6977
6978 break;
6979
6980 case LSHIFTRT:
6981 /* If the sign bit is known to be zero, replace this with an
6982 arithmetic shift. */
6983 if (have_insn_for (ASHIFTRT, mode)
6984 && ! have_insn_for (LSHIFTRT, mode)
6985 && mode_width <= HOST_BITS_PER_WIDE_INT
6986 && (nonzero_bits (XEXP (x, 0), mode) & (1 << (mode_width - 1))) == 0)
6987 {
6988 new_rtx = gen_rtx_ASHIFTRT (mode,
6989 make_compound_operation (XEXP (x, 0),
6990 next_code),
6991 XEXP (x, 1));
6992 break;
6993 }
6994
6995 /* ... fall through ... */
6996
6997 case ASHIFTRT:
6998 lhs = XEXP (x, 0);
6999 rhs = XEXP (x, 1);
7000
7001 /* If we have (ashiftrt (ashift foo C1) C2) with C2 >= C1,
7002 this is a SIGN_EXTRACT. */
7003 if (CONST_INT_P (rhs)
7004 && GET_CODE (lhs) == ASHIFT
7005 && CONST_INT_P (XEXP (lhs, 1))
7006 && INTVAL (rhs) >= INTVAL (XEXP (lhs, 1))
7007 && INTVAL (rhs) < mode_width)
7008 {
7009 new_rtx = make_compound_operation (XEXP (lhs, 0), next_code);
7010 new_rtx = make_extraction (mode, new_rtx,
7011 INTVAL (rhs) - INTVAL (XEXP (lhs, 1)),
7012 NULL_RTX, mode_width - INTVAL (rhs),
7013 code == LSHIFTRT, 0, in_code == COMPARE);
7014 break;
7015 }
7016
7017 /* See if we have operations between an ASHIFTRT and an ASHIFT.
7018 If so, try to merge the shifts into a SIGN_EXTEND. We could
7019 also do this for some cases of SIGN_EXTRACT, but it doesn't
7020 seem worth the effort; the case checked for occurs on Alpha. */
7021
7022 if (!OBJECT_P (lhs)
7023 && ! (GET_CODE (lhs) == SUBREG
7024 && (OBJECT_P (SUBREG_REG (lhs))))
7025 && CONST_INT_P (rhs)
7026 && INTVAL (rhs) < HOST_BITS_PER_WIDE_INT
7027 && INTVAL (rhs) < mode_width
7028 && (new_rtx = extract_left_shift (lhs, INTVAL (rhs))) != 0)
7029 new_rtx = make_extraction (mode, make_compound_operation (new_rtx, next_code),
7030 0, NULL_RTX, mode_width - INTVAL (rhs),
7031 code == LSHIFTRT, 0, in_code == COMPARE);
7032
7033 break;
7034
7035 case SUBREG:
7036 /* Call ourselves recursively on the inner expression. If we are
7037 narrowing the object and it has a different RTL code from
7038 what it originally did, do this SUBREG as a force_to_mode. */
7039
7040 tem = make_compound_operation (SUBREG_REG (x), in_code);
7041
7042 {
7043 rtx simplified;
7044 simplified = simplify_subreg (GET_MODE (x), tem, GET_MODE (tem),
7045 SUBREG_BYTE (x));
7046
7047 if (simplified)
7048 tem = simplified;
7049
7050 if (GET_CODE (tem) != GET_CODE (SUBREG_REG (x))
7051 && GET_MODE_SIZE (mode) < GET_MODE_SIZE (GET_MODE (tem))
7052 && subreg_lowpart_p (x))
7053 {
7054 rtx newer = force_to_mode (tem, mode, ~(HOST_WIDE_INT) 0,
7055 0);
7056
7057 /* If we have something other than a SUBREG, we might have
7058 done an expansion, so rerun ourselves. */
7059 if (GET_CODE (newer) != SUBREG)
7060 newer = make_compound_operation (newer, in_code);
7061
7062 /* force_to_mode can expand compounds. If it just re-expanded the
7063 compound use gen_lowpart instead to convert to the desired
7064 mode. */
7065 if (rtx_equal_p (newer, x))
7066 return gen_lowpart (GET_MODE (x), tem);
7067
7068 return newer;
7069 }
7070
7071 if (simplified)
7072 return tem;
7073 }
7074 break;
7075
7076 default:
7077 break;
7078 }
7079
7080 if (new_rtx)
7081 {
7082 x = gen_lowpart (mode, new_rtx);
7083 code = GET_CODE (x);
7084 }
7085
7086 /* Now recursively process each operand of this operation. */
7087 fmt = GET_RTX_FORMAT (code);
7088 for (i = 0; i < GET_RTX_LENGTH (code); i++)
7089 if (fmt[i] == 'e')
7090 {
7091 new_rtx = make_compound_operation (XEXP (x, i), next_code);
7092 SUBST (XEXP (x, i), new_rtx);
7093 }
7094 else if (fmt[i] == 'E')
7095 for (j = 0; j < XVECLEN (x, i); j++)
7096 {
7097 new_rtx = make_compound_operation (XVECEXP (x, i, j), next_code);
7098 SUBST (XVECEXP (x, i, j), new_rtx);
7099 }
7100
7101 /* If this is a commutative operation, the changes to the operands
7102 may have made it noncanonical. */
7103 if (COMMUTATIVE_ARITH_P (x)
7104 && swap_commutative_operands_p (XEXP (x, 0), XEXP (x, 1)))
7105 {
7106 tem = XEXP (x, 0);
7107 SUBST (XEXP (x, 0), XEXP (x, 1));
7108 SUBST (XEXP (x, 1), tem);
7109 }
7110
7111 return x;
7112 }
7113 \f
7114 /* Given M see if it is a value that would select a field of bits
7115 within an item, but not the entire word. Return -1 if not.
7116 Otherwise, return the starting position of the field, where 0 is the
7117 low-order bit.
7118
7119 *PLEN is set to the length of the field. */
7120
7121 static int
7122 get_pos_from_mask (unsigned HOST_WIDE_INT m, unsigned HOST_WIDE_INT *plen)
7123 {
7124 /* Get the bit number of the first 1 bit from the right, -1 if none. */
7125 int pos = exact_log2 (m & -m);
7126 int len = 0;
7127
7128 if (pos >= 0)
7129 /* Now shift off the low-order zero bits and see if we have a
7130 power of two minus 1. */
7131 len = exact_log2 ((m >> pos) + 1);
7132
7133 if (len <= 0)
7134 pos = -1;
7135
7136 *plen = len;
7137 return pos;
7138 }
7139 \f
7140 /* If X refers to a register that equals REG in value, replace these
7141 references with REG. */
7142 static rtx
7143 canon_reg_for_combine (rtx x, rtx reg)
7144 {
7145 rtx op0, op1, op2;
7146 const char *fmt;
7147 int i;
7148 bool copied;
7149
7150 enum rtx_code code = GET_CODE (x);
7151 switch (GET_RTX_CLASS (code))
7152 {
7153 case RTX_UNARY:
7154 op0 = canon_reg_for_combine (XEXP (x, 0), reg);
7155 if (op0 != XEXP (x, 0))
7156 return simplify_gen_unary (GET_CODE (x), GET_MODE (x), op0,
7157 GET_MODE (reg));
7158 break;
7159
7160 case RTX_BIN_ARITH:
7161 case RTX_COMM_ARITH:
7162 op0 = canon_reg_for_combine (XEXP (x, 0), reg);
7163 op1 = canon_reg_for_combine (XEXP (x, 1), reg);
7164 if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
7165 return simplify_gen_binary (GET_CODE (x), GET_MODE (x), op0, op1);
7166 break;
7167
7168 case RTX_COMPARE:
7169 case RTX_COMM_COMPARE:
7170 op0 = canon_reg_for_combine (XEXP (x, 0), reg);
7171 op1 = canon_reg_for_combine (XEXP (x, 1), reg);
7172 if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
7173 return simplify_gen_relational (GET_CODE (x), GET_MODE (x),
7174 GET_MODE (op0), op0, op1);
7175 break;
7176
7177 case RTX_TERNARY:
7178 case RTX_BITFIELD_OPS:
7179 op0 = canon_reg_for_combine (XEXP (x, 0), reg);
7180 op1 = canon_reg_for_combine (XEXP (x, 1), reg);
7181 op2 = canon_reg_for_combine (XEXP (x, 2), reg);
7182 if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1) || op2 != XEXP (x, 2))
7183 return simplify_gen_ternary (GET_CODE (x), GET_MODE (x),
7184 GET_MODE (op0), op0, op1, op2);
7185
7186 case RTX_OBJ:
7187 if (REG_P (x))
7188 {
7189 if (rtx_equal_p (get_last_value (reg), x)
7190 || rtx_equal_p (reg, get_last_value (x)))
7191 return reg;
7192 else
7193 break;
7194 }
7195
7196 /* fall through */
7197
7198 default:
7199 fmt = GET_RTX_FORMAT (code);
7200 copied = false;
7201 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
7202 if (fmt[i] == 'e')
7203 {
7204 rtx op = canon_reg_for_combine (XEXP (x, i), reg);
7205 if (op != XEXP (x, i))
7206 {
7207 if (!copied)
7208 {
7209 copied = true;
7210 x = copy_rtx (x);
7211 }
7212 XEXP (x, i) = op;
7213 }
7214 }
7215 else if (fmt[i] == 'E')
7216 {
7217 int j;
7218 for (j = 0; j < XVECLEN (x, i); j++)
7219 {
7220 rtx op = canon_reg_for_combine (XVECEXP (x, i, j), reg);
7221 if (op != XVECEXP (x, i, j))
7222 {
7223 if (!copied)
7224 {
7225 copied = true;
7226 x = copy_rtx (x);
7227 }
7228 XVECEXP (x, i, j) = op;
7229 }
7230 }
7231 }
7232
7233 break;
7234 }
7235
7236 return x;
7237 }
7238
7239 /* Return X converted to MODE. If the value is already truncated to
7240 MODE we can just return a subreg even though in the general case we
7241 would need an explicit truncation. */
7242
7243 static rtx
7244 gen_lowpart_or_truncate (enum machine_mode mode, rtx x)
7245 {
7246 if (!CONST_INT_P (x)
7247 && GET_MODE_SIZE (mode) < GET_MODE_SIZE (GET_MODE (x))
7248 && !TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (mode),
7249 GET_MODE_BITSIZE (GET_MODE (x)))
7250 && !(REG_P (x) && reg_truncated_to_mode (mode, x)))
7251 {
7252 /* Bit-cast X into an integer mode. */
7253 if (!SCALAR_INT_MODE_P (GET_MODE (x)))
7254 x = gen_lowpart (int_mode_for_mode (GET_MODE (x)), x);
7255 x = simplify_gen_unary (TRUNCATE, int_mode_for_mode (mode),
7256 x, GET_MODE (x));
7257 }
7258
7259 return gen_lowpart (mode, x);
7260 }
7261
7262 /* See if X can be simplified knowing that we will only refer to it in
7263 MODE and will only refer to those bits that are nonzero in MASK.
7264 If other bits are being computed or if masking operations are done
7265 that select a superset of the bits in MASK, they can sometimes be
7266 ignored.
7267
7268 Return a possibly simplified expression, but always convert X to
7269 MODE. If X is a CONST_INT, AND the CONST_INT with MASK.
7270
7271 If JUST_SELECT is nonzero, don't optimize by noticing that bits in MASK
7272 are all off in X. This is used when X will be complemented, by either
7273 NOT, NEG, or XOR. */
7274
7275 static rtx
7276 force_to_mode (rtx x, enum machine_mode mode, unsigned HOST_WIDE_INT mask,
7277 int just_select)
7278 {
7279 enum rtx_code code = GET_CODE (x);
7280 int next_select = just_select || code == XOR || code == NOT || code == NEG;
7281 enum machine_mode op_mode;
7282 unsigned HOST_WIDE_INT fuller_mask, nonzero;
7283 rtx op0, op1, temp;
7284
7285 /* If this is a CALL or ASM_OPERANDS, don't do anything. Some of the
7286 code below will do the wrong thing since the mode of such an
7287 expression is VOIDmode.
7288
7289 Also do nothing if X is a CLOBBER; this can happen if X was
7290 the return value from a call to gen_lowpart. */
7291 if (code == CALL || code == ASM_OPERANDS || code == CLOBBER)
7292 return x;
7293
7294 /* We want to perform the operation is its present mode unless we know
7295 that the operation is valid in MODE, in which case we do the operation
7296 in MODE. */
7297 op_mode = ((GET_MODE_CLASS (mode) == GET_MODE_CLASS (GET_MODE (x))
7298 && have_insn_for (code, mode))
7299 ? mode : GET_MODE (x));
7300
7301 /* It is not valid to do a right-shift in a narrower mode
7302 than the one it came in with. */
7303 if ((code == LSHIFTRT || code == ASHIFTRT)
7304 && GET_MODE_BITSIZE (mode) < GET_MODE_BITSIZE (GET_MODE (x)))
7305 op_mode = GET_MODE (x);
7306
7307 /* Truncate MASK to fit OP_MODE. */
7308 if (op_mode)
7309 mask &= GET_MODE_MASK (op_mode);
7310
7311 /* When we have an arithmetic operation, or a shift whose count we
7312 do not know, we need to assume that all bits up to the highest-order
7313 bit in MASK will be needed. This is how we form such a mask. */
7314 if (mask & ((unsigned HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT - 1)))
7315 fuller_mask = ~(unsigned HOST_WIDE_INT) 0;
7316 else
7317 fuller_mask = (((unsigned HOST_WIDE_INT) 1 << (floor_log2 (mask) + 1))
7318 - 1);
7319
7320 /* Determine what bits of X are guaranteed to be (non)zero. */
7321 nonzero = nonzero_bits (x, mode);
7322
7323 /* If none of the bits in X are needed, return a zero. */
7324 if (!just_select && (nonzero & mask) == 0 && !side_effects_p (x))
7325 x = const0_rtx;
7326
7327 /* If X is a CONST_INT, return a new one. Do this here since the
7328 test below will fail. */
7329 if (CONST_INT_P (x))
7330 {
7331 if (SCALAR_INT_MODE_P (mode))
7332 return gen_int_mode (INTVAL (x) & mask, mode);
7333 else
7334 {
7335 x = GEN_INT (INTVAL (x) & mask);
7336 return gen_lowpart_common (mode, x);
7337 }
7338 }
7339
7340 /* If X is narrower than MODE and we want all the bits in X's mode, just
7341 get X in the proper mode. */
7342 if (GET_MODE_SIZE (GET_MODE (x)) < GET_MODE_SIZE (mode)
7343 && (GET_MODE_MASK (GET_MODE (x)) & ~mask) == 0)
7344 return gen_lowpart (mode, x);
7345
7346 /* We can ignore the effect of a SUBREG if it narrows the mode or
7347 if the constant masks to zero all the bits the mode doesn't have. */
7348 if (GET_CODE (x) == SUBREG
7349 && subreg_lowpart_p (x)
7350 && ((GET_MODE_SIZE (GET_MODE (x))
7351 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
7352 || (0 == (mask
7353 & GET_MODE_MASK (GET_MODE (x))
7354 & ~GET_MODE_MASK (GET_MODE (SUBREG_REG (x)))))))
7355 return force_to_mode (SUBREG_REG (x), mode, mask, next_select);
7356
7357 /* The arithmetic simplifications here only work for scalar integer modes. */
7358 if (!SCALAR_INT_MODE_P (mode) || !SCALAR_INT_MODE_P (GET_MODE (x)))
7359 return gen_lowpart_or_truncate (mode, x);
7360
7361 switch (code)
7362 {
7363 case CLOBBER:
7364 /* If X is a (clobber (const_int)), return it since we know we are
7365 generating something that won't match. */
7366 return x;
7367
7368 case SIGN_EXTEND:
7369 case ZERO_EXTEND:
7370 case ZERO_EXTRACT:
7371 case SIGN_EXTRACT:
7372 x = expand_compound_operation (x);
7373 if (GET_CODE (x) != code)
7374 return force_to_mode (x, mode, mask, next_select);
7375 break;
7376
7377 case TRUNCATE:
7378 /* Similarly for a truncate. */
7379 return force_to_mode (XEXP (x, 0), mode, mask, next_select);
7380
7381 case AND:
7382 /* If this is an AND with a constant, convert it into an AND
7383 whose constant is the AND of that constant with MASK. If it
7384 remains an AND of MASK, delete it since it is redundant. */
7385
7386 if (CONST_INT_P (XEXP (x, 1)))
7387 {
7388 x = simplify_and_const_int (x, op_mode, XEXP (x, 0),
7389 mask & INTVAL (XEXP (x, 1)));
7390
7391 /* If X is still an AND, see if it is an AND with a mask that
7392 is just some low-order bits. If so, and it is MASK, we don't
7393 need it. */
7394
7395 if (GET_CODE (x) == AND && CONST_INT_P (XEXP (x, 1))
7396 && ((INTVAL (XEXP (x, 1)) & GET_MODE_MASK (GET_MODE (x)))
7397 == mask))
7398 x = XEXP (x, 0);
7399
7400 /* If it remains an AND, try making another AND with the bits
7401 in the mode mask that aren't in MASK turned on. If the
7402 constant in the AND is wide enough, this might make a
7403 cheaper constant. */
7404
7405 if (GET_CODE (x) == AND && CONST_INT_P (XEXP (x, 1))
7406 && GET_MODE_MASK (GET_MODE (x)) != mask
7407 && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT)
7408 {
7409 HOST_WIDE_INT cval = (INTVAL (XEXP (x, 1))
7410 | (GET_MODE_MASK (GET_MODE (x)) & ~mask));
7411 int width = GET_MODE_BITSIZE (GET_MODE (x));
7412 rtx y;
7413
7414 /* If MODE is narrower than HOST_WIDE_INT and CVAL is a negative
7415 number, sign extend it. */
7416 if (width > 0 && width < HOST_BITS_PER_WIDE_INT
7417 && (cval & ((HOST_WIDE_INT) 1 << (width - 1))) != 0)
7418 cval |= (HOST_WIDE_INT) -1 << width;
7419
7420 y = simplify_gen_binary (AND, GET_MODE (x),
7421 XEXP (x, 0), GEN_INT (cval));
7422 if (rtx_cost (y, SET, optimize_this_for_speed_p)
7423 < rtx_cost (x, SET, optimize_this_for_speed_p))
7424 x = y;
7425 }
7426
7427 break;
7428 }
7429
7430 goto binop;
7431
7432 case PLUS:
7433 /* In (and (plus FOO C1) M), if M is a mask that just turns off
7434 low-order bits (as in an alignment operation) and FOO is already
7435 aligned to that boundary, mask C1 to that boundary as well.
7436 This may eliminate that PLUS and, later, the AND. */
7437
7438 {
7439 unsigned int width = GET_MODE_BITSIZE (mode);
7440 unsigned HOST_WIDE_INT smask = mask;
7441
7442 /* If MODE is narrower than HOST_WIDE_INT and mask is a negative
7443 number, sign extend it. */
7444
7445 if (width < HOST_BITS_PER_WIDE_INT
7446 && (smask & ((HOST_WIDE_INT) 1 << (width - 1))) != 0)
7447 smask |= (HOST_WIDE_INT) -1 << width;
7448
7449 if (CONST_INT_P (XEXP (x, 1))
7450 && exact_log2 (- smask) >= 0
7451 && (nonzero_bits (XEXP (x, 0), mode) & ~smask) == 0
7452 && (INTVAL (XEXP (x, 1)) & ~smask) != 0)
7453 return force_to_mode (plus_constant (XEXP (x, 0),
7454 (INTVAL (XEXP (x, 1)) & smask)),
7455 mode, smask, next_select);
7456 }
7457
7458 /* ... fall through ... */
7459
7460 case MULT:
7461 /* For PLUS, MINUS and MULT, we need any bits less significant than the
7462 most significant bit in MASK since carries from those bits will
7463 affect the bits we are interested in. */
7464 mask = fuller_mask;
7465 goto binop;
7466
7467 case MINUS:
7468 /* If X is (minus C Y) where C's least set bit is larger than any bit
7469 in the mask, then we may replace with (neg Y). */
7470 if (CONST_INT_P (XEXP (x, 0))
7471 && (((unsigned HOST_WIDE_INT) (INTVAL (XEXP (x, 0))
7472 & -INTVAL (XEXP (x, 0))))
7473 > mask))
7474 {
7475 x = simplify_gen_unary (NEG, GET_MODE (x), XEXP (x, 1),
7476 GET_MODE (x));
7477 return force_to_mode (x, mode, mask, next_select);
7478 }
7479
7480 /* Similarly, if C contains every bit in the fuller_mask, then we may
7481 replace with (not Y). */
7482 if (CONST_INT_P (XEXP (x, 0))
7483 && ((INTVAL (XEXP (x, 0)) | (HOST_WIDE_INT) fuller_mask)
7484 == INTVAL (XEXP (x, 0))))
7485 {
7486 x = simplify_gen_unary (NOT, GET_MODE (x),
7487 XEXP (x, 1), GET_MODE (x));
7488 return force_to_mode (x, mode, mask, next_select);
7489 }
7490
7491 mask = fuller_mask;
7492 goto binop;
7493
7494 case IOR:
7495 case XOR:
7496 /* If X is (ior (lshiftrt FOO C1) C2), try to commute the IOR and
7497 LSHIFTRT so we end up with an (and (lshiftrt (ior ...) ...) ...)
7498 operation which may be a bitfield extraction. Ensure that the
7499 constant we form is not wider than the mode of X. */
7500
7501 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
7502 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
7503 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
7504 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT
7505 && CONST_INT_P (XEXP (x, 1))
7506 && ((INTVAL (XEXP (XEXP (x, 0), 1))
7507 + floor_log2 (INTVAL (XEXP (x, 1))))
7508 < GET_MODE_BITSIZE (GET_MODE (x)))
7509 && (INTVAL (XEXP (x, 1))
7510 & ~nonzero_bits (XEXP (x, 0), GET_MODE (x))) == 0)
7511 {
7512 temp = GEN_INT ((INTVAL (XEXP (x, 1)) & mask)
7513 << INTVAL (XEXP (XEXP (x, 0), 1)));
7514 temp = simplify_gen_binary (GET_CODE (x), GET_MODE (x),
7515 XEXP (XEXP (x, 0), 0), temp);
7516 x = simplify_gen_binary (LSHIFTRT, GET_MODE (x), temp,
7517 XEXP (XEXP (x, 0), 1));
7518 return force_to_mode (x, mode, mask, next_select);
7519 }
7520
7521 binop:
7522 /* For most binary operations, just propagate into the operation and
7523 change the mode if we have an operation of that mode. */
7524
7525 op0 = force_to_mode (XEXP (x, 0), mode, mask, next_select);
7526 op1 = force_to_mode (XEXP (x, 1), mode, mask, next_select);
7527
7528 /* If we ended up truncating both operands, truncate the result of the
7529 operation instead. */
7530 if (GET_CODE (op0) == TRUNCATE
7531 && GET_CODE (op1) == TRUNCATE)
7532 {
7533 op0 = XEXP (op0, 0);
7534 op1 = XEXP (op1, 0);
7535 }
7536
7537 op0 = gen_lowpart_or_truncate (op_mode, op0);
7538 op1 = gen_lowpart_or_truncate (op_mode, op1);
7539
7540 if (op_mode != GET_MODE (x) || op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
7541 x = simplify_gen_binary (code, op_mode, op0, op1);
7542 break;
7543
7544 case ASHIFT:
7545 /* For left shifts, do the same, but just for the first operand.
7546 However, we cannot do anything with shifts where we cannot
7547 guarantee that the counts are smaller than the size of the mode
7548 because such a count will have a different meaning in a
7549 wider mode. */
7550
7551 if (! (CONST_INT_P (XEXP (x, 1))
7552 && INTVAL (XEXP (x, 1)) >= 0
7553 && INTVAL (XEXP (x, 1)) < GET_MODE_BITSIZE (mode))
7554 && ! (GET_MODE (XEXP (x, 1)) != VOIDmode
7555 && (nonzero_bits (XEXP (x, 1), GET_MODE (XEXP (x, 1)))
7556 < (unsigned HOST_WIDE_INT) GET_MODE_BITSIZE (mode))))
7557 break;
7558
7559 /* If the shift count is a constant and we can do arithmetic in
7560 the mode of the shift, refine which bits we need. Otherwise, use the
7561 conservative form of the mask. */
7562 if (CONST_INT_P (XEXP (x, 1))
7563 && INTVAL (XEXP (x, 1)) >= 0
7564 && INTVAL (XEXP (x, 1)) < GET_MODE_BITSIZE (op_mode)
7565 && GET_MODE_BITSIZE (op_mode) <= HOST_BITS_PER_WIDE_INT)
7566 mask >>= INTVAL (XEXP (x, 1));
7567 else
7568 mask = fuller_mask;
7569
7570 op0 = gen_lowpart_or_truncate (op_mode,
7571 force_to_mode (XEXP (x, 0), op_mode,
7572 mask, next_select));
7573
7574 if (op_mode != GET_MODE (x) || op0 != XEXP (x, 0))
7575 x = simplify_gen_binary (code, op_mode, op0, XEXP (x, 1));
7576 break;
7577
7578 case LSHIFTRT:
7579 /* Here we can only do something if the shift count is a constant,
7580 this shift constant is valid for the host, and we can do arithmetic
7581 in OP_MODE. */
7582
7583 if (CONST_INT_P (XEXP (x, 1))
7584 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT
7585 && GET_MODE_BITSIZE (op_mode) <= HOST_BITS_PER_WIDE_INT)
7586 {
7587 rtx inner = XEXP (x, 0);
7588 unsigned HOST_WIDE_INT inner_mask;
7589
7590 /* Select the mask of the bits we need for the shift operand. */
7591 inner_mask = mask << INTVAL (XEXP (x, 1));
7592
7593 /* We can only change the mode of the shift if we can do arithmetic
7594 in the mode of the shift and INNER_MASK is no wider than the
7595 width of X's mode. */
7596 if ((inner_mask & ~GET_MODE_MASK (GET_MODE (x))) != 0)
7597 op_mode = GET_MODE (x);
7598
7599 inner = force_to_mode (inner, op_mode, inner_mask, next_select);
7600
7601 if (GET_MODE (x) != op_mode || inner != XEXP (x, 0))
7602 x = simplify_gen_binary (LSHIFTRT, op_mode, inner, XEXP (x, 1));
7603 }
7604
7605 /* If we have (and (lshiftrt FOO C1) C2) where the combination of the
7606 shift and AND produces only copies of the sign bit (C2 is one less
7607 than a power of two), we can do this with just a shift. */
7608
7609 if (GET_CODE (x) == LSHIFTRT
7610 && CONST_INT_P (XEXP (x, 1))
7611 /* The shift puts one of the sign bit copies in the least significant
7612 bit. */
7613 && ((INTVAL (XEXP (x, 1))
7614 + num_sign_bit_copies (XEXP (x, 0), GET_MODE (XEXP (x, 0))))
7615 >= GET_MODE_BITSIZE (GET_MODE (x)))
7616 && exact_log2 (mask + 1) >= 0
7617 /* Number of bits left after the shift must be more than the mask
7618 needs. */
7619 && ((INTVAL (XEXP (x, 1)) + exact_log2 (mask + 1))
7620 <= GET_MODE_BITSIZE (GET_MODE (x)))
7621 /* Must be more sign bit copies than the mask needs. */
7622 && ((int) num_sign_bit_copies (XEXP (x, 0), GET_MODE (XEXP (x, 0)))
7623 >= exact_log2 (mask + 1)))
7624 x = simplify_gen_binary (LSHIFTRT, GET_MODE (x), XEXP (x, 0),
7625 GEN_INT (GET_MODE_BITSIZE (GET_MODE (x))
7626 - exact_log2 (mask + 1)));
7627
7628 goto shiftrt;
7629
7630 case ASHIFTRT:
7631 /* If we are just looking for the sign bit, we don't need this shift at
7632 all, even if it has a variable count. */
7633 if (GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
7634 && (mask == ((unsigned HOST_WIDE_INT) 1
7635 << (GET_MODE_BITSIZE (GET_MODE (x)) - 1))))
7636 return force_to_mode (XEXP (x, 0), mode, mask, next_select);
7637
7638 /* If this is a shift by a constant, get a mask that contains those bits
7639 that are not copies of the sign bit. We then have two cases: If
7640 MASK only includes those bits, this can be a logical shift, which may
7641 allow simplifications. If MASK is a single-bit field not within
7642 those bits, we are requesting a copy of the sign bit and hence can
7643 shift the sign bit to the appropriate location. */
7644
7645 if (CONST_INT_P (XEXP (x, 1)) && INTVAL (XEXP (x, 1)) >= 0
7646 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT)
7647 {
7648 int i;
7649
7650 /* If the considered data is wider than HOST_WIDE_INT, we can't
7651 represent a mask for all its bits in a single scalar.
7652 But we only care about the lower bits, so calculate these. */
7653
7654 if (GET_MODE_BITSIZE (GET_MODE (x)) > HOST_BITS_PER_WIDE_INT)
7655 {
7656 nonzero = ~(HOST_WIDE_INT) 0;
7657
7658 /* GET_MODE_BITSIZE (GET_MODE (x)) - INTVAL (XEXP (x, 1))
7659 is the number of bits a full-width mask would have set.
7660 We need only shift if these are fewer than nonzero can
7661 hold. If not, we must keep all bits set in nonzero. */
7662
7663 if (GET_MODE_BITSIZE (GET_MODE (x)) - INTVAL (XEXP (x, 1))
7664 < HOST_BITS_PER_WIDE_INT)
7665 nonzero >>= INTVAL (XEXP (x, 1))
7666 + HOST_BITS_PER_WIDE_INT
7667 - GET_MODE_BITSIZE (GET_MODE (x)) ;
7668 }
7669 else
7670 {
7671 nonzero = GET_MODE_MASK (GET_MODE (x));
7672 nonzero >>= INTVAL (XEXP (x, 1));
7673 }
7674
7675 if ((mask & ~nonzero) == 0)
7676 {
7677 x = simplify_shift_const (NULL_RTX, LSHIFTRT, GET_MODE (x),
7678 XEXP (x, 0), INTVAL (XEXP (x, 1)));
7679 if (GET_CODE (x) != ASHIFTRT)
7680 return force_to_mode (x, mode, mask, next_select);
7681 }
7682
7683 else if ((i = exact_log2 (mask)) >= 0)
7684 {
7685 x = simplify_shift_const
7686 (NULL_RTX, LSHIFTRT, GET_MODE (x), XEXP (x, 0),
7687 GET_MODE_BITSIZE (GET_MODE (x)) - 1 - i);
7688
7689 if (GET_CODE (x) != ASHIFTRT)
7690 return force_to_mode (x, mode, mask, next_select);
7691 }
7692 }
7693
7694 /* If MASK is 1, convert this to an LSHIFTRT. This can be done
7695 even if the shift count isn't a constant. */
7696 if (mask == 1)
7697 x = simplify_gen_binary (LSHIFTRT, GET_MODE (x),
7698 XEXP (x, 0), XEXP (x, 1));
7699
7700 shiftrt:
7701
7702 /* If this is a zero- or sign-extension operation that just affects bits
7703 we don't care about, remove it. Be sure the call above returned
7704 something that is still a shift. */
7705
7706 if ((GET_CODE (x) == LSHIFTRT || GET_CODE (x) == ASHIFTRT)
7707 && CONST_INT_P (XEXP (x, 1))
7708 && INTVAL (XEXP (x, 1)) >= 0
7709 && (INTVAL (XEXP (x, 1))
7710 <= GET_MODE_BITSIZE (GET_MODE (x)) - (floor_log2 (mask) + 1))
7711 && GET_CODE (XEXP (x, 0)) == ASHIFT
7712 && XEXP (XEXP (x, 0), 1) == XEXP (x, 1))
7713 return force_to_mode (XEXP (XEXP (x, 0), 0), mode, mask,
7714 next_select);
7715
7716 break;
7717
7718 case ROTATE:
7719 case ROTATERT:
7720 /* If the shift count is constant and we can do computations
7721 in the mode of X, compute where the bits we care about are.
7722 Otherwise, we can't do anything. Don't change the mode of
7723 the shift or propagate MODE into the shift, though. */
7724 if (CONST_INT_P (XEXP (x, 1))
7725 && INTVAL (XEXP (x, 1)) >= 0)
7726 {
7727 temp = simplify_binary_operation (code == ROTATE ? ROTATERT : ROTATE,
7728 GET_MODE (x), GEN_INT (mask),
7729 XEXP (x, 1));
7730 if (temp && CONST_INT_P (temp))
7731 SUBST (XEXP (x, 0),
7732 force_to_mode (XEXP (x, 0), GET_MODE (x),
7733 INTVAL (temp), next_select));
7734 }
7735 break;
7736
7737 case NEG:
7738 /* If we just want the low-order bit, the NEG isn't needed since it
7739 won't change the low-order bit. */
7740 if (mask == 1)
7741 return force_to_mode (XEXP (x, 0), mode, mask, just_select);
7742
7743 /* We need any bits less significant than the most significant bit in
7744 MASK since carries from those bits will affect the bits we are
7745 interested in. */
7746 mask = fuller_mask;
7747 goto unop;
7748
7749 case NOT:
7750 /* (not FOO) is (xor FOO CONST), so if FOO is an LSHIFTRT, we can do the
7751 same as the XOR case above. Ensure that the constant we form is not
7752 wider than the mode of X. */
7753
7754 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
7755 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
7756 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
7757 && (INTVAL (XEXP (XEXP (x, 0), 1)) + floor_log2 (mask)
7758 < GET_MODE_BITSIZE (GET_MODE (x)))
7759 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT)
7760 {
7761 temp = gen_int_mode (mask << INTVAL (XEXP (XEXP (x, 0), 1)),
7762 GET_MODE (x));
7763 temp = simplify_gen_binary (XOR, GET_MODE (x),
7764 XEXP (XEXP (x, 0), 0), temp);
7765 x = simplify_gen_binary (LSHIFTRT, GET_MODE (x),
7766 temp, XEXP (XEXP (x, 0), 1));
7767
7768 return force_to_mode (x, mode, mask, next_select);
7769 }
7770
7771 /* (and (not FOO) CONST) is (not (or FOO (not CONST))), so we must
7772 use the full mask inside the NOT. */
7773 mask = fuller_mask;
7774
7775 unop:
7776 op0 = gen_lowpart_or_truncate (op_mode,
7777 force_to_mode (XEXP (x, 0), mode, mask,
7778 next_select));
7779 if (op_mode != GET_MODE (x) || op0 != XEXP (x, 0))
7780 x = simplify_gen_unary (code, op_mode, op0, op_mode);
7781 break;
7782
7783 case NE:
7784 /* (and (ne FOO 0) CONST) can be (and FOO CONST) if CONST is included
7785 in STORE_FLAG_VALUE and FOO has a single bit that might be nonzero,
7786 which is equal to STORE_FLAG_VALUE. */
7787 if ((mask & ~STORE_FLAG_VALUE) == 0 && XEXP (x, 1) == const0_rtx
7788 && GET_MODE (XEXP (x, 0)) == mode
7789 && exact_log2 (nonzero_bits (XEXP (x, 0), mode)) >= 0
7790 && (nonzero_bits (XEXP (x, 0), mode)
7791 == (unsigned HOST_WIDE_INT) STORE_FLAG_VALUE))
7792 return force_to_mode (XEXP (x, 0), mode, mask, next_select);
7793
7794 break;
7795
7796 case IF_THEN_ELSE:
7797 /* We have no way of knowing if the IF_THEN_ELSE can itself be
7798 written in a narrower mode. We play it safe and do not do so. */
7799
7800 SUBST (XEXP (x, 1),
7801 gen_lowpart_or_truncate (GET_MODE (x),
7802 force_to_mode (XEXP (x, 1), mode,
7803 mask, next_select)));
7804 SUBST (XEXP (x, 2),
7805 gen_lowpart_or_truncate (GET_MODE (x),
7806 force_to_mode (XEXP (x, 2), mode,
7807 mask, next_select)));
7808 break;
7809
7810 default:
7811 break;
7812 }
7813
7814 /* Ensure we return a value of the proper mode. */
7815 return gen_lowpart_or_truncate (mode, x);
7816 }
7817 \f
7818 /* Return nonzero if X is an expression that has one of two values depending on
7819 whether some other value is zero or nonzero. In that case, we return the
7820 value that is being tested, *PTRUE is set to the value if the rtx being
7821 returned has a nonzero value, and *PFALSE is set to the other alternative.
7822
7823 If we return zero, we set *PTRUE and *PFALSE to X. */
7824
7825 static rtx
7826 if_then_else_cond (rtx x, rtx *ptrue, rtx *pfalse)
7827 {
7828 enum machine_mode mode = GET_MODE (x);
7829 enum rtx_code code = GET_CODE (x);
7830 rtx cond0, cond1, true0, true1, false0, false1;
7831 unsigned HOST_WIDE_INT nz;
7832
7833 /* If we are comparing a value against zero, we are done. */
7834 if ((code == NE || code == EQ)
7835 && XEXP (x, 1) == const0_rtx)
7836 {
7837 *ptrue = (code == NE) ? const_true_rtx : const0_rtx;
7838 *pfalse = (code == NE) ? const0_rtx : const_true_rtx;
7839 return XEXP (x, 0);
7840 }
7841
7842 /* If this is a unary operation whose operand has one of two values, apply
7843 our opcode to compute those values. */
7844 else if (UNARY_P (x)
7845 && (cond0 = if_then_else_cond (XEXP (x, 0), &true0, &false0)) != 0)
7846 {
7847 *ptrue = simplify_gen_unary (code, mode, true0, GET_MODE (XEXP (x, 0)));
7848 *pfalse = simplify_gen_unary (code, mode, false0,
7849 GET_MODE (XEXP (x, 0)));
7850 return cond0;
7851 }
7852
7853 /* If this is a COMPARE, do nothing, since the IF_THEN_ELSE we would
7854 make can't possibly match and would suppress other optimizations. */
7855 else if (code == COMPARE)
7856 ;
7857
7858 /* If this is a binary operation, see if either side has only one of two
7859 values. If either one does or if both do and they are conditional on
7860 the same value, compute the new true and false values. */
7861 else if (BINARY_P (x))
7862 {
7863 cond0 = if_then_else_cond (XEXP (x, 0), &true0, &false0);
7864 cond1 = if_then_else_cond (XEXP (x, 1), &true1, &false1);
7865
7866 if ((cond0 != 0 || cond1 != 0)
7867 && ! (cond0 != 0 && cond1 != 0 && ! rtx_equal_p (cond0, cond1)))
7868 {
7869 /* If if_then_else_cond returned zero, then true/false are the
7870 same rtl. We must copy one of them to prevent invalid rtl
7871 sharing. */
7872 if (cond0 == 0)
7873 true0 = copy_rtx (true0);
7874 else if (cond1 == 0)
7875 true1 = copy_rtx (true1);
7876
7877 if (COMPARISON_P (x))
7878 {
7879 *ptrue = simplify_gen_relational (code, mode, VOIDmode,
7880 true0, true1);
7881 *pfalse = simplify_gen_relational (code, mode, VOIDmode,
7882 false0, false1);
7883 }
7884 else
7885 {
7886 *ptrue = simplify_gen_binary (code, mode, true0, true1);
7887 *pfalse = simplify_gen_binary (code, mode, false0, false1);
7888 }
7889
7890 return cond0 ? cond0 : cond1;
7891 }
7892
7893 /* See if we have PLUS, IOR, XOR, MINUS or UMAX, where one of the
7894 operands is zero when the other is nonzero, and vice-versa,
7895 and STORE_FLAG_VALUE is 1 or -1. */
7896
7897 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
7898 && (code == PLUS || code == IOR || code == XOR || code == MINUS
7899 || code == UMAX)
7900 && GET_CODE (XEXP (x, 0)) == MULT && GET_CODE (XEXP (x, 1)) == MULT)
7901 {
7902 rtx op0 = XEXP (XEXP (x, 0), 1);
7903 rtx op1 = XEXP (XEXP (x, 1), 1);
7904
7905 cond0 = XEXP (XEXP (x, 0), 0);
7906 cond1 = XEXP (XEXP (x, 1), 0);
7907
7908 if (COMPARISON_P (cond0)
7909 && COMPARISON_P (cond1)
7910 && ((GET_CODE (cond0) == reversed_comparison_code (cond1, NULL)
7911 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 0))
7912 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 1)))
7913 || ((swap_condition (GET_CODE (cond0))
7914 == reversed_comparison_code (cond1, NULL))
7915 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 1))
7916 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 0))))
7917 && ! side_effects_p (x))
7918 {
7919 *ptrue = simplify_gen_binary (MULT, mode, op0, const_true_rtx);
7920 *pfalse = simplify_gen_binary (MULT, mode,
7921 (code == MINUS
7922 ? simplify_gen_unary (NEG, mode,
7923 op1, mode)
7924 : op1),
7925 const_true_rtx);
7926 return cond0;
7927 }
7928 }
7929
7930 /* Similarly for MULT, AND and UMIN, except that for these the result
7931 is always zero. */
7932 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
7933 && (code == MULT || code == AND || code == UMIN)
7934 && GET_CODE (XEXP (x, 0)) == MULT && GET_CODE (XEXP (x, 1)) == MULT)
7935 {
7936 cond0 = XEXP (XEXP (x, 0), 0);
7937 cond1 = XEXP (XEXP (x, 1), 0);
7938
7939 if (COMPARISON_P (cond0)
7940 && COMPARISON_P (cond1)
7941 && ((GET_CODE (cond0) == reversed_comparison_code (cond1, NULL)
7942 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 0))
7943 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 1)))
7944 || ((swap_condition (GET_CODE (cond0))
7945 == reversed_comparison_code (cond1, NULL))
7946 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 1))
7947 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 0))))
7948 && ! side_effects_p (x))
7949 {
7950 *ptrue = *pfalse = const0_rtx;
7951 return cond0;
7952 }
7953 }
7954 }
7955
7956 else if (code == IF_THEN_ELSE)
7957 {
7958 /* If we have IF_THEN_ELSE already, extract the condition and
7959 canonicalize it if it is NE or EQ. */
7960 cond0 = XEXP (x, 0);
7961 *ptrue = XEXP (x, 1), *pfalse = XEXP (x, 2);
7962 if (GET_CODE (cond0) == NE && XEXP (cond0, 1) == const0_rtx)
7963 return XEXP (cond0, 0);
7964 else if (GET_CODE (cond0) == EQ && XEXP (cond0, 1) == const0_rtx)
7965 {
7966 *ptrue = XEXP (x, 2), *pfalse = XEXP (x, 1);
7967 return XEXP (cond0, 0);
7968 }
7969 else
7970 return cond0;
7971 }
7972
7973 /* If X is a SUBREG, we can narrow both the true and false values
7974 if the inner expression, if there is a condition. */
7975 else if (code == SUBREG
7976 && 0 != (cond0 = if_then_else_cond (SUBREG_REG (x),
7977 &true0, &false0)))
7978 {
7979 true0 = simplify_gen_subreg (mode, true0,
7980 GET_MODE (SUBREG_REG (x)), SUBREG_BYTE (x));
7981 false0 = simplify_gen_subreg (mode, false0,
7982 GET_MODE (SUBREG_REG (x)), SUBREG_BYTE (x));
7983 if (true0 && false0)
7984 {
7985 *ptrue = true0;
7986 *pfalse = false0;
7987 return cond0;
7988 }
7989 }
7990
7991 /* If X is a constant, this isn't special and will cause confusions
7992 if we treat it as such. Likewise if it is equivalent to a constant. */
7993 else if (CONSTANT_P (x)
7994 || ((cond0 = get_last_value (x)) != 0 && CONSTANT_P (cond0)))
7995 ;
7996
7997 /* If we're in BImode, canonicalize on 0 and STORE_FLAG_VALUE, as that
7998 will be least confusing to the rest of the compiler. */
7999 else if (mode == BImode)
8000 {
8001 *ptrue = GEN_INT (STORE_FLAG_VALUE), *pfalse = const0_rtx;
8002 return x;
8003 }
8004
8005 /* If X is known to be either 0 or -1, those are the true and
8006 false values when testing X. */
8007 else if (x == constm1_rtx || x == const0_rtx
8008 || (mode != VOIDmode
8009 && num_sign_bit_copies (x, mode) == GET_MODE_BITSIZE (mode)))
8010 {
8011 *ptrue = constm1_rtx, *pfalse = const0_rtx;
8012 return x;
8013 }
8014
8015 /* Likewise for 0 or a single bit. */
8016 else if (SCALAR_INT_MODE_P (mode)
8017 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
8018 && exact_log2 (nz = nonzero_bits (x, mode)) >= 0)
8019 {
8020 *ptrue = gen_int_mode (nz, mode), *pfalse = const0_rtx;
8021 return x;
8022 }
8023
8024 /* Otherwise fail; show no condition with true and false values the same. */
8025 *ptrue = *pfalse = x;
8026 return 0;
8027 }
8028 \f
8029 /* Return the value of expression X given the fact that condition COND
8030 is known to be true when applied to REG as its first operand and VAL
8031 as its second. X is known to not be shared and so can be modified in
8032 place.
8033
8034 We only handle the simplest cases, and specifically those cases that
8035 arise with IF_THEN_ELSE expressions. */
8036
8037 static rtx
8038 known_cond (rtx x, enum rtx_code cond, rtx reg, rtx val)
8039 {
8040 enum rtx_code code = GET_CODE (x);
8041 rtx temp;
8042 const char *fmt;
8043 int i, j;
8044
8045 if (side_effects_p (x))
8046 return x;
8047
8048 /* If either operand of the condition is a floating point value,
8049 then we have to avoid collapsing an EQ comparison. */
8050 if (cond == EQ
8051 && rtx_equal_p (x, reg)
8052 && ! FLOAT_MODE_P (GET_MODE (x))
8053 && ! FLOAT_MODE_P (GET_MODE (val)))
8054 return val;
8055
8056 if (cond == UNEQ && rtx_equal_p (x, reg))
8057 return val;
8058
8059 /* If X is (abs REG) and we know something about REG's relationship
8060 with zero, we may be able to simplify this. */
8061
8062 if (code == ABS && rtx_equal_p (XEXP (x, 0), reg) && val == const0_rtx)
8063 switch (cond)
8064 {
8065 case GE: case GT: case EQ:
8066 return XEXP (x, 0);
8067 case LT: case LE:
8068 return simplify_gen_unary (NEG, GET_MODE (XEXP (x, 0)),
8069 XEXP (x, 0),
8070 GET_MODE (XEXP (x, 0)));
8071 default:
8072 break;
8073 }
8074
8075 /* The only other cases we handle are MIN, MAX, and comparisons if the
8076 operands are the same as REG and VAL. */
8077
8078 else if (COMPARISON_P (x) || COMMUTATIVE_ARITH_P (x))
8079 {
8080 if (rtx_equal_p (XEXP (x, 0), val))
8081 cond = swap_condition (cond), temp = val, val = reg, reg = temp;
8082
8083 if (rtx_equal_p (XEXP (x, 0), reg) && rtx_equal_p (XEXP (x, 1), val))
8084 {
8085 if (COMPARISON_P (x))
8086 {
8087 if (comparison_dominates_p (cond, code))
8088 return const_true_rtx;
8089
8090 code = reversed_comparison_code (x, NULL);
8091 if (code != UNKNOWN
8092 && comparison_dominates_p (cond, code))
8093 return const0_rtx;
8094 else
8095 return x;
8096 }
8097 else if (code == SMAX || code == SMIN
8098 || code == UMIN || code == UMAX)
8099 {
8100 int unsignedp = (code == UMIN || code == UMAX);
8101
8102 /* Do not reverse the condition when it is NE or EQ.
8103 This is because we cannot conclude anything about
8104 the value of 'SMAX (x, y)' when x is not equal to y,
8105 but we can when x equals y. */
8106 if ((code == SMAX || code == UMAX)
8107 && ! (cond == EQ || cond == NE))
8108 cond = reverse_condition (cond);
8109
8110 switch (cond)
8111 {
8112 case GE: case GT:
8113 return unsignedp ? x : XEXP (x, 1);
8114 case LE: case LT:
8115 return unsignedp ? x : XEXP (x, 0);
8116 case GEU: case GTU:
8117 return unsignedp ? XEXP (x, 1) : x;
8118 case LEU: case LTU:
8119 return unsignedp ? XEXP (x, 0) : x;
8120 default:
8121 break;
8122 }
8123 }
8124 }
8125 }
8126 else if (code == SUBREG)
8127 {
8128 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (x));
8129 rtx new_rtx, r = known_cond (SUBREG_REG (x), cond, reg, val);
8130
8131 if (SUBREG_REG (x) != r)
8132 {
8133 /* We must simplify subreg here, before we lose track of the
8134 original inner_mode. */
8135 new_rtx = simplify_subreg (GET_MODE (x), r,
8136 inner_mode, SUBREG_BYTE (x));
8137 if (new_rtx)
8138 return new_rtx;
8139 else
8140 SUBST (SUBREG_REG (x), r);
8141 }
8142
8143 return x;
8144 }
8145 /* We don't have to handle SIGN_EXTEND here, because even in the
8146 case of replacing something with a modeless CONST_INT, a
8147 CONST_INT is already (supposed to be) a valid sign extension for
8148 its narrower mode, which implies it's already properly
8149 sign-extended for the wider mode. Now, for ZERO_EXTEND, the
8150 story is different. */
8151 else if (code == ZERO_EXTEND)
8152 {
8153 enum machine_mode inner_mode = GET_MODE (XEXP (x, 0));
8154 rtx new_rtx, r = known_cond (XEXP (x, 0), cond, reg, val);
8155
8156 if (XEXP (x, 0) != r)
8157 {
8158 /* We must simplify the zero_extend here, before we lose
8159 track of the original inner_mode. */
8160 new_rtx = simplify_unary_operation (ZERO_EXTEND, GET_MODE (x),
8161 r, inner_mode);
8162 if (new_rtx)
8163 return new_rtx;
8164 else
8165 SUBST (XEXP (x, 0), r);
8166 }
8167
8168 return x;
8169 }
8170
8171 fmt = GET_RTX_FORMAT (code);
8172 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
8173 {
8174 if (fmt[i] == 'e')
8175 SUBST (XEXP (x, i), known_cond (XEXP (x, i), cond, reg, val));
8176 else if (fmt[i] == 'E')
8177 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
8178 SUBST (XVECEXP (x, i, j), known_cond (XVECEXP (x, i, j),
8179 cond, reg, val));
8180 }
8181
8182 return x;
8183 }
8184 \f
8185 /* See if X and Y are equal for the purposes of seeing if we can rewrite an
8186 assignment as a field assignment. */
8187
8188 static int
8189 rtx_equal_for_field_assignment_p (rtx x, rtx y)
8190 {
8191 if (x == y || rtx_equal_p (x, y))
8192 return 1;
8193
8194 if (x == 0 || y == 0 || GET_MODE (x) != GET_MODE (y))
8195 return 0;
8196
8197 /* Check for a paradoxical SUBREG of a MEM compared with the MEM.
8198 Note that all SUBREGs of MEM are paradoxical; otherwise they
8199 would have been rewritten. */
8200 if (MEM_P (x) && GET_CODE (y) == SUBREG
8201 && MEM_P (SUBREG_REG (y))
8202 && rtx_equal_p (SUBREG_REG (y),
8203 gen_lowpart (GET_MODE (SUBREG_REG (y)), x)))
8204 return 1;
8205
8206 if (MEM_P (y) && GET_CODE (x) == SUBREG
8207 && MEM_P (SUBREG_REG (x))
8208 && rtx_equal_p (SUBREG_REG (x),
8209 gen_lowpart (GET_MODE (SUBREG_REG (x)), y)))
8210 return 1;
8211
8212 /* We used to see if get_last_value of X and Y were the same but that's
8213 not correct. In one direction, we'll cause the assignment to have
8214 the wrong destination and in the case, we'll import a register into this
8215 insn that might have already have been dead. So fail if none of the
8216 above cases are true. */
8217 return 0;
8218 }
8219 \f
8220 /* See if X, a SET operation, can be rewritten as a bit-field assignment.
8221 Return that assignment if so.
8222
8223 We only handle the most common cases. */
8224
8225 static rtx
8226 make_field_assignment (rtx x)
8227 {
8228 rtx dest = SET_DEST (x);
8229 rtx src = SET_SRC (x);
8230 rtx assign;
8231 rtx rhs, lhs;
8232 HOST_WIDE_INT c1;
8233 HOST_WIDE_INT pos;
8234 unsigned HOST_WIDE_INT len;
8235 rtx other;
8236 enum machine_mode mode;
8237
8238 /* If SRC was (and (not (ashift (const_int 1) POS)) DEST), this is
8239 a clear of a one-bit field. We will have changed it to
8240 (and (rotate (const_int -2) POS) DEST), so check for that. Also check
8241 for a SUBREG. */
8242
8243 if (GET_CODE (src) == AND && GET_CODE (XEXP (src, 0)) == ROTATE
8244 && CONST_INT_P (XEXP (XEXP (src, 0), 0))
8245 && INTVAL (XEXP (XEXP (src, 0), 0)) == -2
8246 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
8247 {
8248 assign = make_extraction (VOIDmode, dest, 0, XEXP (XEXP (src, 0), 1),
8249 1, 1, 1, 0);
8250 if (assign != 0)
8251 return gen_rtx_SET (VOIDmode, assign, const0_rtx);
8252 return x;
8253 }
8254
8255 if (GET_CODE (src) == AND && GET_CODE (XEXP (src, 0)) == SUBREG
8256 && subreg_lowpart_p (XEXP (src, 0))
8257 && (GET_MODE_SIZE (GET_MODE (XEXP (src, 0)))
8258 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (XEXP (src, 0)))))
8259 && GET_CODE (SUBREG_REG (XEXP (src, 0))) == ROTATE
8260 && CONST_INT_P (XEXP (SUBREG_REG (XEXP (src, 0)), 0))
8261 && INTVAL (XEXP (SUBREG_REG (XEXP (src, 0)), 0)) == -2
8262 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
8263 {
8264 assign = make_extraction (VOIDmode, dest, 0,
8265 XEXP (SUBREG_REG (XEXP (src, 0)), 1),
8266 1, 1, 1, 0);
8267 if (assign != 0)
8268 return gen_rtx_SET (VOIDmode, assign, const0_rtx);
8269 return x;
8270 }
8271
8272 /* If SRC is (ior (ashift (const_int 1) POS) DEST), this is a set of a
8273 one-bit field. */
8274 if (GET_CODE (src) == IOR && GET_CODE (XEXP (src, 0)) == ASHIFT
8275 && XEXP (XEXP (src, 0), 0) == const1_rtx
8276 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
8277 {
8278 assign = make_extraction (VOIDmode, dest, 0, XEXP (XEXP (src, 0), 1),
8279 1, 1, 1, 0);
8280 if (assign != 0)
8281 return gen_rtx_SET (VOIDmode, assign, const1_rtx);
8282 return x;
8283 }
8284
8285 /* If DEST is already a field assignment, i.e. ZERO_EXTRACT, and the
8286 SRC is an AND with all bits of that field set, then we can discard
8287 the AND. */
8288 if (GET_CODE (dest) == ZERO_EXTRACT
8289 && CONST_INT_P (XEXP (dest, 1))
8290 && GET_CODE (src) == AND
8291 && CONST_INT_P (XEXP (src, 1)))
8292 {
8293 HOST_WIDE_INT width = INTVAL (XEXP (dest, 1));
8294 unsigned HOST_WIDE_INT and_mask = INTVAL (XEXP (src, 1));
8295 unsigned HOST_WIDE_INT ze_mask;
8296
8297 if (width >= HOST_BITS_PER_WIDE_INT)
8298 ze_mask = -1;
8299 else
8300 ze_mask = ((unsigned HOST_WIDE_INT)1 << width) - 1;
8301
8302 /* Complete overlap. We can remove the source AND. */
8303 if ((and_mask & ze_mask) == ze_mask)
8304 return gen_rtx_SET (VOIDmode, dest, XEXP (src, 0));
8305
8306 /* Partial overlap. We can reduce the source AND. */
8307 if ((and_mask & ze_mask) != and_mask)
8308 {
8309 mode = GET_MODE (src);
8310 src = gen_rtx_AND (mode, XEXP (src, 0),
8311 gen_int_mode (and_mask & ze_mask, mode));
8312 return gen_rtx_SET (VOIDmode, dest, src);
8313 }
8314 }
8315
8316 /* The other case we handle is assignments into a constant-position
8317 field. They look like (ior/xor (and DEST C1) OTHER). If C1 represents
8318 a mask that has all one bits except for a group of zero bits and
8319 OTHER is known to have zeros where C1 has ones, this is such an
8320 assignment. Compute the position and length from C1. Shift OTHER
8321 to the appropriate position, force it to the required mode, and
8322 make the extraction. Check for the AND in both operands. */
8323
8324 if (GET_CODE (src) != IOR && GET_CODE (src) != XOR)
8325 return x;
8326
8327 rhs = expand_compound_operation (XEXP (src, 0));
8328 lhs = expand_compound_operation (XEXP (src, 1));
8329
8330 if (GET_CODE (rhs) == AND
8331 && CONST_INT_P (XEXP (rhs, 1))
8332 && rtx_equal_for_field_assignment_p (XEXP (rhs, 0), dest))
8333 c1 = INTVAL (XEXP (rhs, 1)), other = lhs;
8334 else if (GET_CODE (lhs) == AND
8335 && CONST_INT_P (XEXP (lhs, 1))
8336 && rtx_equal_for_field_assignment_p (XEXP (lhs, 0), dest))
8337 c1 = INTVAL (XEXP (lhs, 1)), other = rhs;
8338 else
8339 return x;
8340
8341 pos = get_pos_from_mask ((~c1) & GET_MODE_MASK (GET_MODE (dest)), &len);
8342 if (pos < 0 || pos + len > GET_MODE_BITSIZE (GET_MODE (dest))
8343 || GET_MODE_BITSIZE (GET_MODE (dest)) > HOST_BITS_PER_WIDE_INT
8344 || (c1 & nonzero_bits (other, GET_MODE (dest))) != 0)
8345 return x;
8346
8347 assign = make_extraction (VOIDmode, dest, pos, NULL_RTX, len, 1, 1, 0);
8348 if (assign == 0)
8349 return x;
8350
8351 /* The mode to use for the source is the mode of the assignment, or of
8352 what is inside a possible STRICT_LOW_PART. */
8353 mode = (GET_CODE (assign) == STRICT_LOW_PART
8354 ? GET_MODE (XEXP (assign, 0)) : GET_MODE (assign));
8355
8356 /* Shift OTHER right POS places and make it the source, restricting it
8357 to the proper length and mode. */
8358
8359 src = canon_reg_for_combine (simplify_shift_const (NULL_RTX, LSHIFTRT,
8360 GET_MODE (src),
8361 other, pos),
8362 dest);
8363 src = force_to_mode (src, mode,
8364 GET_MODE_BITSIZE (mode) >= HOST_BITS_PER_WIDE_INT
8365 ? ~(unsigned HOST_WIDE_INT) 0
8366 : ((unsigned HOST_WIDE_INT) 1 << len) - 1,
8367 0);
8368
8369 /* If SRC is masked by an AND that does not make a difference in
8370 the value being stored, strip it. */
8371 if (GET_CODE (assign) == ZERO_EXTRACT
8372 && CONST_INT_P (XEXP (assign, 1))
8373 && INTVAL (XEXP (assign, 1)) < HOST_BITS_PER_WIDE_INT
8374 && GET_CODE (src) == AND
8375 && CONST_INT_P (XEXP (src, 1))
8376 && ((unsigned HOST_WIDE_INT) INTVAL (XEXP (src, 1))
8377 == ((unsigned HOST_WIDE_INT) 1 << INTVAL (XEXP (assign, 1))) - 1))
8378 src = XEXP (src, 0);
8379
8380 return gen_rtx_SET (VOIDmode, assign, src);
8381 }
8382 \f
8383 /* See if X is of the form (+ (* a c) (* b c)) and convert to (* (+ a b) c)
8384 if so. */
8385
8386 static rtx
8387 apply_distributive_law (rtx x)
8388 {
8389 enum rtx_code code = GET_CODE (x);
8390 enum rtx_code inner_code;
8391 rtx lhs, rhs, other;
8392 rtx tem;
8393
8394 /* Distributivity is not true for floating point as it can change the
8395 value. So we don't do it unless -funsafe-math-optimizations. */
8396 if (FLOAT_MODE_P (GET_MODE (x))
8397 && ! flag_unsafe_math_optimizations)
8398 return x;
8399
8400 /* The outer operation can only be one of the following: */
8401 if (code != IOR && code != AND && code != XOR
8402 && code != PLUS && code != MINUS)
8403 return x;
8404
8405 lhs = XEXP (x, 0);
8406 rhs = XEXP (x, 1);
8407
8408 /* If either operand is a primitive we can't do anything, so get out
8409 fast. */
8410 if (OBJECT_P (lhs) || OBJECT_P (rhs))
8411 return x;
8412
8413 lhs = expand_compound_operation (lhs);
8414 rhs = expand_compound_operation (rhs);
8415 inner_code = GET_CODE (lhs);
8416 if (inner_code != GET_CODE (rhs))
8417 return x;
8418
8419 /* See if the inner and outer operations distribute. */
8420 switch (inner_code)
8421 {
8422 case LSHIFTRT:
8423 case ASHIFTRT:
8424 case AND:
8425 case IOR:
8426 /* These all distribute except over PLUS. */
8427 if (code == PLUS || code == MINUS)
8428 return x;
8429 break;
8430
8431 case MULT:
8432 if (code != PLUS && code != MINUS)
8433 return x;
8434 break;
8435
8436 case ASHIFT:
8437 /* This is also a multiply, so it distributes over everything. */
8438 break;
8439
8440 case SUBREG:
8441 /* Non-paradoxical SUBREGs distributes over all operations,
8442 provided the inner modes and byte offsets are the same, this
8443 is an extraction of a low-order part, we don't convert an fp
8444 operation to int or vice versa, this is not a vector mode,
8445 and we would not be converting a single-word operation into a
8446 multi-word operation. The latter test is not required, but
8447 it prevents generating unneeded multi-word operations. Some
8448 of the previous tests are redundant given the latter test,
8449 but are retained because they are required for correctness.
8450
8451 We produce the result slightly differently in this case. */
8452
8453 if (GET_MODE (SUBREG_REG (lhs)) != GET_MODE (SUBREG_REG (rhs))
8454 || SUBREG_BYTE (lhs) != SUBREG_BYTE (rhs)
8455 || ! subreg_lowpart_p (lhs)
8456 || (GET_MODE_CLASS (GET_MODE (lhs))
8457 != GET_MODE_CLASS (GET_MODE (SUBREG_REG (lhs))))
8458 || (GET_MODE_SIZE (GET_MODE (lhs))
8459 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (lhs))))
8460 || VECTOR_MODE_P (GET_MODE (lhs))
8461 || GET_MODE_SIZE (GET_MODE (SUBREG_REG (lhs))) > UNITS_PER_WORD
8462 /* Result might need to be truncated. Don't change mode if
8463 explicit truncation is needed. */
8464 || !TRULY_NOOP_TRUNCATION
8465 (GET_MODE_BITSIZE (GET_MODE (x)),
8466 GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (lhs)))))
8467 return x;
8468
8469 tem = simplify_gen_binary (code, GET_MODE (SUBREG_REG (lhs)),
8470 SUBREG_REG (lhs), SUBREG_REG (rhs));
8471 return gen_lowpart (GET_MODE (x), tem);
8472
8473 default:
8474 return x;
8475 }
8476
8477 /* Set LHS and RHS to the inner operands (A and B in the example
8478 above) and set OTHER to the common operand (C in the example).
8479 There is only one way to do this unless the inner operation is
8480 commutative. */
8481 if (COMMUTATIVE_ARITH_P (lhs)
8482 && rtx_equal_p (XEXP (lhs, 0), XEXP (rhs, 0)))
8483 other = XEXP (lhs, 0), lhs = XEXP (lhs, 1), rhs = XEXP (rhs, 1);
8484 else if (COMMUTATIVE_ARITH_P (lhs)
8485 && rtx_equal_p (XEXP (lhs, 0), XEXP (rhs, 1)))
8486 other = XEXP (lhs, 0), lhs = XEXP (lhs, 1), rhs = XEXP (rhs, 0);
8487 else if (COMMUTATIVE_ARITH_P (lhs)
8488 && rtx_equal_p (XEXP (lhs, 1), XEXP (rhs, 0)))
8489 other = XEXP (lhs, 1), lhs = XEXP (lhs, 0), rhs = XEXP (rhs, 1);
8490 else if (rtx_equal_p (XEXP (lhs, 1), XEXP (rhs, 1)))
8491 other = XEXP (lhs, 1), lhs = XEXP (lhs, 0), rhs = XEXP (rhs, 0);
8492 else
8493 return x;
8494
8495 /* Form the new inner operation, seeing if it simplifies first. */
8496 tem = simplify_gen_binary (code, GET_MODE (x), lhs, rhs);
8497
8498 /* There is one exception to the general way of distributing:
8499 (a | c) ^ (b | c) -> (a ^ b) & ~c */
8500 if (code == XOR && inner_code == IOR)
8501 {
8502 inner_code = AND;
8503 other = simplify_gen_unary (NOT, GET_MODE (x), other, GET_MODE (x));
8504 }
8505
8506 /* We may be able to continuing distributing the result, so call
8507 ourselves recursively on the inner operation before forming the
8508 outer operation, which we return. */
8509 return simplify_gen_binary (inner_code, GET_MODE (x),
8510 apply_distributive_law (tem), other);
8511 }
8512
8513 /* See if X is of the form (* (+ A B) C), and if so convert to
8514 (+ (* A C) (* B C)) and try to simplify.
8515
8516 Most of the time, this results in no change. However, if some of
8517 the operands are the same or inverses of each other, simplifications
8518 will result.
8519
8520 For example, (and (ior A B) (not B)) can occur as the result of
8521 expanding a bit field assignment. When we apply the distributive
8522 law to this, we get (ior (and (A (not B))) (and (B (not B)))),
8523 which then simplifies to (and (A (not B))).
8524
8525 Note that no checks happen on the validity of applying the inverse
8526 distributive law. This is pointless since we can do it in the
8527 few places where this routine is called.
8528
8529 N is the index of the term that is decomposed (the arithmetic operation,
8530 i.e. (+ A B) in the first example above). !N is the index of the term that
8531 is distributed, i.e. of C in the first example above. */
8532 static rtx
8533 distribute_and_simplify_rtx (rtx x, int n)
8534 {
8535 enum machine_mode mode;
8536 enum rtx_code outer_code, inner_code;
8537 rtx decomposed, distributed, inner_op0, inner_op1, new_op0, new_op1, tmp;
8538
8539 decomposed = XEXP (x, n);
8540 if (!ARITHMETIC_P (decomposed))
8541 return NULL_RTX;
8542
8543 mode = GET_MODE (x);
8544 outer_code = GET_CODE (x);
8545 distributed = XEXP (x, !n);
8546
8547 inner_code = GET_CODE (decomposed);
8548 inner_op0 = XEXP (decomposed, 0);
8549 inner_op1 = XEXP (decomposed, 1);
8550
8551 /* Special case (and (xor B C) (not A)), which is equivalent to
8552 (xor (ior A B) (ior A C)) */
8553 if (outer_code == AND && inner_code == XOR && GET_CODE (distributed) == NOT)
8554 {
8555 distributed = XEXP (distributed, 0);
8556 outer_code = IOR;
8557 }
8558
8559 if (n == 0)
8560 {
8561 /* Distribute the second term. */
8562 new_op0 = simplify_gen_binary (outer_code, mode, inner_op0, distributed);
8563 new_op1 = simplify_gen_binary (outer_code, mode, inner_op1, distributed);
8564 }
8565 else
8566 {
8567 /* Distribute the first term. */
8568 new_op0 = simplify_gen_binary (outer_code, mode, distributed, inner_op0);
8569 new_op1 = simplify_gen_binary (outer_code, mode, distributed, inner_op1);
8570 }
8571
8572 tmp = apply_distributive_law (simplify_gen_binary (inner_code, mode,
8573 new_op0, new_op1));
8574 if (GET_CODE (tmp) != outer_code
8575 && rtx_cost (tmp, SET, optimize_this_for_speed_p)
8576 < rtx_cost (x, SET, optimize_this_for_speed_p))
8577 return tmp;
8578
8579 return NULL_RTX;
8580 }
8581 \f
8582 /* Simplify a logical `and' of VAROP with the constant CONSTOP, to be done
8583 in MODE. Return an equivalent form, if different from (and VAROP
8584 (const_int CONSTOP)). Otherwise, return NULL_RTX. */
8585
8586 static rtx
8587 simplify_and_const_int_1 (enum machine_mode mode, rtx varop,
8588 unsigned HOST_WIDE_INT constop)
8589 {
8590 unsigned HOST_WIDE_INT nonzero;
8591 unsigned HOST_WIDE_INT orig_constop;
8592 rtx orig_varop;
8593 int i;
8594
8595 orig_varop = varop;
8596 orig_constop = constop;
8597 if (GET_CODE (varop) == CLOBBER)
8598 return NULL_RTX;
8599
8600 /* Simplify VAROP knowing that we will be only looking at some of the
8601 bits in it.
8602
8603 Note by passing in CONSTOP, we guarantee that the bits not set in
8604 CONSTOP are not significant and will never be examined. We must
8605 ensure that is the case by explicitly masking out those bits
8606 before returning. */
8607 varop = force_to_mode (varop, mode, constop, 0);
8608
8609 /* If VAROP is a CLOBBER, we will fail so return it. */
8610 if (GET_CODE (varop) == CLOBBER)
8611 return varop;
8612
8613 /* If VAROP is a CONST_INT, then we need to apply the mask in CONSTOP
8614 to VAROP and return the new constant. */
8615 if (CONST_INT_P (varop))
8616 return gen_int_mode (INTVAL (varop) & constop, mode);
8617
8618 /* See what bits may be nonzero in VAROP. Unlike the general case of
8619 a call to nonzero_bits, here we don't care about bits outside
8620 MODE. */
8621
8622 nonzero = nonzero_bits (varop, mode) & GET_MODE_MASK (mode);
8623
8624 /* Turn off all bits in the constant that are known to already be zero.
8625 Thus, if the AND isn't needed at all, we will have CONSTOP == NONZERO_BITS
8626 which is tested below. */
8627
8628 constop &= nonzero;
8629
8630 /* If we don't have any bits left, return zero. */
8631 if (constop == 0)
8632 return const0_rtx;
8633
8634 /* If VAROP is a NEG of something known to be zero or 1 and CONSTOP is
8635 a power of two, we can replace this with an ASHIFT. */
8636 if (GET_CODE (varop) == NEG && nonzero_bits (XEXP (varop, 0), mode) == 1
8637 && (i = exact_log2 (constop)) >= 0)
8638 return simplify_shift_const (NULL_RTX, ASHIFT, mode, XEXP (varop, 0), i);
8639
8640 /* If VAROP is an IOR or XOR, apply the AND to both branches of the IOR
8641 or XOR, then try to apply the distributive law. This may eliminate
8642 operations if either branch can be simplified because of the AND.
8643 It may also make some cases more complex, but those cases probably
8644 won't match a pattern either with or without this. */
8645
8646 if (GET_CODE (varop) == IOR || GET_CODE (varop) == XOR)
8647 return
8648 gen_lowpart
8649 (mode,
8650 apply_distributive_law
8651 (simplify_gen_binary (GET_CODE (varop), GET_MODE (varop),
8652 simplify_and_const_int (NULL_RTX,
8653 GET_MODE (varop),
8654 XEXP (varop, 0),
8655 constop),
8656 simplify_and_const_int (NULL_RTX,
8657 GET_MODE (varop),
8658 XEXP (varop, 1),
8659 constop))));
8660
8661 /* If VAROP is PLUS, and the constant is a mask of low bits, distribute
8662 the AND and see if one of the operands simplifies to zero. If so, we
8663 may eliminate it. */
8664
8665 if (GET_CODE (varop) == PLUS
8666 && exact_log2 (constop + 1) >= 0)
8667 {
8668 rtx o0, o1;
8669
8670 o0 = simplify_and_const_int (NULL_RTX, mode, XEXP (varop, 0), constop);
8671 o1 = simplify_and_const_int (NULL_RTX, mode, XEXP (varop, 1), constop);
8672 if (o0 == const0_rtx)
8673 return o1;
8674 if (o1 == const0_rtx)
8675 return o0;
8676 }
8677
8678 /* Make a SUBREG if necessary. If we can't make it, fail. */
8679 varop = gen_lowpart (mode, varop);
8680 if (varop == NULL_RTX || GET_CODE (varop) == CLOBBER)
8681 return NULL_RTX;
8682
8683 /* If we are only masking insignificant bits, return VAROP. */
8684 if (constop == nonzero)
8685 return varop;
8686
8687 if (varop == orig_varop && constop == orig_constop)
8688 return NULL_RTX;
8689
8690 /* Otherwise, return an AND. */
8691 return simplify_gen_binary (AND, mode, varop, gen_int_mode (constop, mode));
8692 }
8693
8694
8695 /* We have X, a logical `and' of VAROP with the constant CONSTOP, to be done
8696 in MODE.
8697
8698 Return an equivalent form, if different from X. Otherwise, return X. If
8699 X is zero, we are to always construct the equivalent form. */
8700
8701 static rtx
8702 simplify_and_const_int (rtx x, enum machine_mode mode, rtx varop,
8703 unsigned HOST_WIDE_INT constop)
8704 {
8705 rtx tem = simplify_and_const_int_1 (mode, varop, constop);
8706 if (tem)
8707 return tem;
8708
8709 if (!x)
8710 x = simplify_gen_binary (AND, GET_MODE (varop), varop,
8711 gen_int_mode (constop, mode));
8712 if (GET_MODE (x) != mode)
8713 x = gen_lowpart (mode, x);
8714 return x;
8715 }
8716 \f
8717 /* Given a REG, X, compute which bits in X can be nonzero.
8718 We don't care about bits outside of those defined in MODE.
8719
8720 For most X this is simply GET_MODE_MASK (GET_MODE (MODE)), but if X is
8721 a shift, AND, or zero_extract, we can do better. */
8722
8723 static rtx
8724 reg_nonzero_bits_for_combine (const_rtx x, enum machine_mode mode,
8725 const_rtx known_x ATTRIBUTE_UNUSED,
8726 enum machine_mode known_mode ATTRIBUTE_UNUSED,
8727 unsigned HOST_WIDE_INT known_ret ATTRIBUTE_UNUSED,
8728 unsigned HOST_WIDE_INT *nonzero)
8729 {
8730 rtx tem;
8731 reg_stat_type *rsp;
8732
8733 /* If X is a register whose nonzero bits value is current, use it.
8734 Otherwise, if X is a register whose value we can find, use that
8735 value. Otherwise, use the previously-computed global nonzero bits
8736 for this register. */
8737
8738 rsp = VEC_index (reg_stat_type, reg_stat, REGNO (x));
8739 if (rsp->last_set_value != 0
8740 && (rsp->last_set_mode == mode
8741 || (GET_MODE_CLASS (rsp->last_set_mode) == MODE_INT
8742 && GET_MODE_CLASS (mode) == MODE_INT))
8743 && ((rsp->last_set_label >= label_tick_ebb_start
8744 && rsp->last_set_label < label_tick)
8745 || (rsp->last_set_label == label_tick
8746 && DF_INSN_LUID (rsp->last_set) < subst_low_luid)
8747 || (REGNO (x) >= FIRST_PSEUDO_REGISTER
8748 && REG_N_SETS (REGNO (x)) == 1
8749 && !REGNO_REG_SET_P
8750 (DF_LR_IN (ENTRY_BLOCK_PTR->next_bb), REGNO (x)))))
8751 {
8752 *nonzero &= rsp->last_set_nonzero_bits;
8753 return NULL;
8754 }
8755
8756 tem = get_last_value (x);
8757
8758 if (tem)
8759 {
8760 #ifdef SHORT_IMMEDIATES_SIGN_EXTEND
8761 /* If X is narrower than MODE and TEM is a non-negative
8762 constant that would appear negative in the mode of X,
8763 sign-extend it for use in reg_nonzero_bits because some
8764 machines (maybe most) will actually do the sign-extension
8765 and this is the conservative approach.
8766
8767 ??? For 2.5, try to tighten up the MD files in this regard
8768 instead of this kludge. */
8769
8770 if (GET_MODE_BITSIZE (GET_MODE (x)) < GET_MODE_BITSIZE (mode)
8771 && CONST_INT_P (tem)
8772 && INTVAL (tem) > 0
8773 && 0 != (INTVAL (tem)
8774 & ((HOST_WIDE_INT) 1
8775 << (GET_MODE_BITSIZE (GET_MODE (x)) - 1))))
8776 tem = GEN_INT (INTVAL (tem)
8777 | ((HOST_WIDE_INT) (-1)
8778 << GET_MODE_BITSIZE (GET_MODE (x))));
8779 #endif
8780 return tem;
8781 }
8782 else if (nonzero_sign_valid && rsp->nonzero_bits)
8783 {
8784 unsigned HOST_WIDE_INT mask = rsp->nonzero_bits;
8785
8786 if (GET_MODE_BITSIZE (GET_MODE (x)) < GET_MODE_BITSIZE (mode))
8787 /* We don't know anything about the upper bits. */
8788 mask |= GET_MODE_MASK (mode) ^ GET_MODE_MASK (GET_MODE (x));
8789 *nonzero &= mask;
8790 }
8791
8792 return NULL;
8793 }
8794
8795 /* Return the number of bits at the high-order end of X that are known to
8796 be equal to the sign bit. X will be used in mode MODE; if MODE is
8797 VOIDmode, X will be used in its own mode. The returned value will always
8798 be between 1 and the number of bits in MODE. */
8799
8800 static rtx
8801 reg_num_sign_bit_copies_for_combine (const_rtx x, enum machine_mode mode,
8802 const_rtx known_x ATTRIBUTE_UNUSED,
8803 enum machine_mode known_mode
8804 ATTRIBUTE_UNUSED,
8805 unsigned int known_ret ATTRIBUTE_UNUSED,
8806 unsigned int *result)
8807 {
8808 rtx tem;
8809 reg_stat_type *rsp;
8810
8811 rsp = VEC_index (reg_stat_type, reg_stat, REGNO (x));
8812 if (rsp->last_set_value != 0
8813 && rsp->last_set_mode == mode
8814 && ((rsp->last_set_label >= label_tick_ebb_start
8815 && rsp->last_set_label < label_tick)
8816 || (rsp->last_set_label == label_tick
8817 && DF_INSN_LUID (rsp->last_set) < subst_low_luid)
8818 || (REGNO (x) >= FIRST_PSEUDO_REGISTER
8819 && REG_N_SETS (REGNO (x)) == 1
8820 && !REGNO_REG_SET_P
8821 (DF_LR_IN (ENTRY_BLOCK_PTR->next_bb), REGNO (x)))))
8822 {
8823 *result = rsp->last_set_sign_bit_copies;
8824 return NULL;
8825 }
8826
8827 tem = get_last_value (x);
8828 if (tem != 0)
8829 return tem;
8830
8831 if (nonzero_sign_valid && rsp->sign_bit_copies != 0
8832 && GET_MODE_BITSIZE (GET_MODE (x)) == GET_MODE_BITSIZE (mode))
8833 *result = rsp->sign_bit_copies;
8834
8835 return NULL;
8836 }
8837 \f
8838 /* Return the number of "extended" bits there are in X, when interpreted
8839 as a quantity in MODE whose signedness is indicated by UNSIGNEDP. For
8840 unsigned quantities, this is the number of high-order zero bits.
8841 For signed quantities, this is the number of copies of the sign bit
8842 minus 1. In both case, this function returns the number of "spare"
8843 bits. For example, if two quantities for which this function returns
8844 at least 1 are added, the addition is known not to overflow.
8845
8846 This function will always return 0 unless called during combine, which
8847 implies that it must be called from a define_split. */
8848
8849 unsigned int
8850 extended_count (const_rtx x, enum machine_mode mode, int unsignedp)
8851 {
8852 if (nonzero_sign_valid == 0)
8853 return 0;
8854
8855 return (unsignedp
8856 ? (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
8857 ? (unsigned int) (GET_MODE_BITSIZE (mode) - 1
8858 - floor_log2 (nonzero_bits (x, mode)))
8859 : 0)
8860 : num_sign_bit_copies (x, mode) - 1);
8861 }
8862 \f
8863 /* This function is called from `simplify_shift_const' to merge two
8864 outer operations. Specifically, we have already found that we need
8865 to perform operation *POP0 with constant *PCONST0 at the outermost
8866 position. We would now like to also perform OP1 with constant CONST1
8867 (with *POP0 being done last).
8868
8869 Return 1 if we can do the operation and update *POP0 and *PCONST0 with
8870 the resulting operation. *PCOMP_P is set to 1 if we would need to
8871 complement the innermost operand, otherwise it is unchanged.
8872
8873 MODE is the mode in which the operation will be done. No bits outside
8874 the width of this mode matter. It is assumed that the width of this mode
8875 is smaller than or equal to HOST_BITS_PER_WIDE_INT.
8876
8877 If *POP0 or OP1 are UNKNOWN, it means no operation is required. Only NEG, PLUS,
8878 IOR, XOR, and AND are supported. We may set *POP0 to SET if the proper
8879 result is simply *PCONST0.
8880
8881 If the resulting operation cannot be expressed as one operation, we
8882 return 0 and do not change *POP0, *PCONST0, and *PCOMP_P. */
8883
8884 static int
8885 merge_outer_ops (enum rtx_code *pop0, HOST_WIDE_INT *pconst0, enum rtx_code op1, HOST_WIDE_INT const1, enum machine_mode mode, int *pcomp_p)
8886 {
8887 enum rtx_code op0 = *pop0;
8888 HOST_WIDE_INT const0 = *pconst0;
8889
8890 const0 &= GET_MODE_MASK (mode);
8891 const1 &= GET_MODE_MASK (mode);
8892
8893 /* If OP0 is an AND, clear unimportant bits in CONST1. */
8894 if (op0 == AND)
8895 const1 &= const0;
8896
8897 /* If OP0 or OP1 is UNKNOWN, this is easy. Similarly if they are the same or
8898 if OP0 is SET. */
8899
8900 if (op1 == UNKNOWN || op0 == SET)
8901 return 1;
8902
8903 else if (op0 == UNKNOWN)
8904 op0 = op1, const0 = const1;
8905
8906 else if (op0 == op1)
8907 {
8908 switch (op0)
8909 {
8910 case AND:
8911 const0 &= const1;
8912 break;
8913 case IOR:
8914 const0 |= const1;
8915 break;
8916 case XOR:
8917 const0 ^= const1;
8918 break;
8919 case PLUS:
8920 const0 += const1;
8921 break;
8922 case NEG:
8923 op0 = UNKNOWN;
8924 break;
8925 default:
8926 break;
8927 }
8928 }
8929
8930 /* Otherwise, if either is a PLUS or NEG, we can't do anything. */
8931 else if (op0 == PLUS || op1 == PLUS || op0 == NEG || op1 == NEG)
8932 return 0;
8933
8934 /* If the two constants aren't the same, we can't do anything. The
8935 remaining six cases can all be done. */
8936 else if (const0 != const1)
8937 return 0;
8938
8939 else
8940 switch (op0)
8941 {
8942 case IOR:
8943 if (op1 == AND)
8944 /* (a & b) | b == b */
8945 op0 = SET;
8946 else /* op1 == XOR */
8947 /* (a ^ b) | b == a | b */
8948 {;}
8949 break;
8950
8951 case XOR:
8952 if (op1 == AND)
8953 /* (a & b) ^ b == (~a) & b */
8954 op0 = AND, *pcomp_p = 1;
8955 else /* op1 == IOR */
8956 /* (a | b) ^ b == a & ~b */
8957 op0 = AND, const0 = ~const0;
8958 break;
8959
8960 case AND:
8961 if (op1 == IOR)
8962 /* (a | b) & b == b */
8963 op0 = SET;
8964 else /* op1 == XOR */
8965 /* (a ^ b) & b) == (~a) & b */
8966 *pcomp_p = 1;
8967 break;
8968 default:
8969 break;
8970 }
8971
8972 /* Check for NO-OP cases. */
8973 const0 &= GET_MODE_MASK (mode);
8974 if (const0 == 0
8975 && (op0 == IOR || op0 == XOR || op0 == PLUS))
8976 op0 = UNKNOWN;
8977 else if (const0 == 0 && op0 == AND)
8978 op0 = SET;
8979 else if ((unsigned HOST_WIDE_INT) const0 == GET_MODE_MASK (mode)
8980 && op0 == AND)
8981 op0 = UNKNOWN;
8982
8983 *pop0 = op0;
8984
8985 /* ??? Slightly redundant with the above mask, but not entirely.
8986 Moving this above means we'd have to sign-extend the mode mask
8987 for the final test. */
8988 if (op0 != UNKNOWN && op0 != NEG)
8989 *pconst0 = trunc_int_for_mode (const0, mode);
8990
8991 return 1;
8992 }
8993 \f
8994 /* A helper to simplify_shift_const_1 to determine the mode we can perform
8995 the shift in. The original shift operation CODE is performed on OP in
8996 ORIG_MODE. Return the wider mode MODE if we can perform the operation
8997 in that mode. Return ORIG_MODE otherwise. We can also assume that the
8998 result of the shift is subject to operation OUTER_CODE with operand
8999 OUTER_CONST. */
9000
9001 static enum machine_mode
9002 try_widen_shift_mode (enum rtx_code code, rtx op, int count,
9003 enum machine_mode orig_mode, enum machine_mode mode,
9004 enum rtx_code outer_code, HOST_WIDE_INT outer_const)
9005 {
9006 if (orig_mode == mode)
9007 return mode;
9008 gcc_assert (GET_MODE_BITSIZE (mode) > GET_MODE_BITSIZE (orig_mode));
9009
9010 /* In general we can't perform in wider mode for right shift and rotate. */
9011 switch (code)
9012 {
9013 case ASHIFTRT:
9014 /* We can still widen if the bits brought in from the left are identical
9015 to the sign bit of ORIG_MODE. */
9016 if (num_sign_bit_copies (op, mode)
9017 > (unsigned) (GET_MODE_BITSIZE (mode)
9018 - GET_MODE_BITSIZE (orig_mode)))
9019 return mode;
9020 return orig_mode;
9021
9022 case LSHIFTRT:
9023 /* Similarly here but with zero bits. */
9024 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
9025 && (nonzero_bits (op, mode) & ~GET_MODE_MASK (orig_mode)) == 0)
9026 return mode;
9027
9028 /* We can also widen if the bits brought in will be masked off. This
9029 operation is performed in ORIG_MODE. */
9030 if (outer_code == AND)
9031 {
9032 int care_bits = low_bitmask_len (orig_mode, outer_const);
9033
9034 if (care_bits >= 0
9035 && GET_MODE_BITSIZE (orig_mode) - care_bits >= count)
9036 return mode;
9037 }
9038 /* fall through */
9039
9040 case ROTATE:
9041 return orig_mode;
9042
9043 case ROTATERT:
9044 gcc_unreachable ();
9045
9046 default:
9047 return mode;
9048 }
9049 }
9050
9051 /* Simplify a shift of VAROP by COUNT bits. CODE says what kind of shift.
9052 The result of the shift is RESULT_MODE. Return NULL_RTX if we cannot
9053 simplify it. Otherwise, return a simplified value.
9054
9055 The shift is normally computed in the widest mode we find in VAROP, as
9056 long as it isn't a different number of words than RESULT_MODE. Exceptions
9057 are ASHIFTRT and ROTATE, which are always done in their original mode. */
9058
9059 static rtx
9060 simplify_shift_const_1 (enum rtx_code code, enum machine_mode result_mode,
9061 rtx varop, int orig_count)
9062 {
9063 enum rtx_code orig_code = code;
9064 rtx orig_varop = varop;
9065 int count;
9066 enum machine_mode mode = result_mode;
9067 enum machine_mode shift_mode, tmode;
9068 unsigned int mode_words
9069 = (GET_MODE_SIZE (mode) + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD;
9070 /* We form (outer_op (code varop count) (outer_const)). */
9071 enum rtx_code outer_op = UNKNOWN;
9072 HOST_WIDE_INT outer_const = 0;
9073 int complement_p = 0;
9074 rtx new_rtx, x;
9075
9076 /* Make sure and truncate the "natural" shift on the way in. We don't
9077 want to do this inside the loop as it makes it more difficult to
9078 combine shifts. */
9079 if (SHIFT_COUNT_TRUNCATED)
9080 orig_count &= GET_MODE_BITSIZE (mode) - 1;
9081
9082 /* If we were given an invalid count, don't do anything except exactly
9083 what was requested. */
9084
9085 if (orig_count < 0 || orig_count >= (int) GET_MODE_BITSIZE (mode))
9086 return NULL_RTX;
9087
9088 count = orig_count;
9089
9090 /* Unless one of the branches of the `if' in this loop does a `continue',
9091 we will `break' the loop after the `if'. */
9092
9093 while (count != 0)
9094 {
9095 /* If we have an operand of (clobber (const_int 0)), fail. */
9096 if (GET_CODE (varop) == CLOBBER)
9097 return NULL_RTX;
9098
9099 /* Convert ROTATERT to ROTATE. */
9100 if (code == ROTATERT)
9101 {
9102 unsigned int bitsize = GET_MODE_BITSIZE (result_mode);;
9103 code = ROTATE;
9104 if (VECTOR_MODE_P (result_mode))
9105 count = bitsize / GET_MODE_NUNITS (result_mode) - count;
9106 else
9107 count = bitsize - count;
9108 }
9109
9110 shift_mode = try_widen_shift_mode (code, varop, count, result_mode,
9111 mode, outer_op, outer_const);
9112
9113 /* Handle cases where the count is greater than the size of the mode
9114 minus 1. For ASHIFT, use the size minus one as the count (this can
9115 occur when simplifying (lshiftrt (ashiftrt ..))). For rotates,
9116 take the count modulo the size. For other shifts, the result is
9117 zero.
9118
9119 Since these shifts are being produced by the compiler by combining
9120 multiple operations, each of which are defined, we know what the
9121 result is supposed to be. */
9122
9123 if (count > (GET_MODE_BITSIZE (shift_mode) - 1))
9124 {
9125 if (code == ASHIFTRT)
9126 count = GET_MODE_BITSIZE (shift_mode) - 1;
9127 else if (code == ROTATE || code == ROTATERT)
9128 count %= GET_MODE_BITSIZE (shift_mode);
9129 else
9130 {
9131 /* We can't simply return zero because there may be an
9132 outer op. */
9133 varop = const0_rtx;
9134 count = 0;
9135 break;
9136 }
9137 }
9138
9139 /* If we discovered we had to complement VAROP, leave. Making a NOT
9140 here would cause an infinite loop. */
9141 if (complement_p)
9142 break;
9143
9144 /* An arithmetic right shift of a quantity known to be -1 or 0
9145 is a no-op. */
9146 if (code == ASHIFTRT
9147 && (num_sign_bit_copies (varop, shift_mode)
9148 == GET_MODE_BITSIZE (shift_mode)))
9149 {
9150 count = 0;
9151 break;
9152 }
9153
9154 /* If we are doing an arithmetic right shift and discarding all but
9155 the sign bit copies, this is equivalent to doing a shift by the
9156 bitsize minus one. Convert it into that shift because it will often
9157 allow other simplifications. */
9158
9159 if (code == ASHIFTRT
9160 && (count + num_sign_bit_copies (varop, shift_mode)
9161 >= GET_MODE_BITSIZE (shift_mode)))
9162 count = GET_MODE_BITSIZE (shift_mode) - 1;
9163
9164 /* We simplify the tests below and elsewhere by converting
9165 ASHIFTRT to LSHIFTRT if we know the sign bit is clear.
9166 `make_compound_operation' will convert it to an ASHIFTRT for
9167 those machines (such as VAX) that don't have an LSHIFTRT. */
9168 if (GET_MODE_BITSIZE (shift_mode) <= HOST_BITS_PER_WIDE_INT
9169 && code == ASHIFTRT
9170 && ((nonzero_bits (varop, shift_mode)
9171 & ((HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (shift_mode) - 1)))
9172 == 0))
9173 code = LSHIFTRT;
9174
9175 if (((code == LSHIFTRT
9176 && GET_MODE_BITSIZE (shift_mode) <= HOST_BITS_PER_WIDE_INT
9177 && !(nonzero_bits (varop, shift_mode) >> count))
9178 || (code == ASHIFT
9179 && GET_MODE_BITSIZE (shift_mode) <= HOST_BITS_PER_WIDE_INT
9180 && !((nonzero_bits (varop, shift_mode) << count)
9181 & GET_MODE_MASK (shift_mode))))
9182 && !side_effects_p (varop))
9183 varop = const0_rtx;
9184
9185 switch (GET_CODE (varop))
9186 {
9187 case SIGN_EXTEND:
9188 case ZERO_EXTEND:
9189 case SIGN_EXTRACT:
9190 case ZERO_EXTRACT:
9191 new_rtx = expand_compound_operation (varop);
9192 if (new_rtx != varop)
9193 {
9194 varop = new_rtx;
9195 continue;
9196 }
9197 break;
9198
9199 case MEM:
9200 /* If we have (xshiftrt (mem ...) C) and C is MODE_WIDTH
9201 minus the width of a smaller mode, we can do this with a
9202 SIGN_EXTEND or ZERO_EXTEND from the narrower memory location. */
9203 if ((code == ASHIFTRT || code == LSHIFTRT)
9204 && ! mode_dependent_address_p (XEXP (varop, 0))
9205 && ! MEM_VOLATILE_P (varop)
9206 && (tmode = mode_for_size (GET_MODE_BITSIZE (mode) - count,
9207 MODE_INT, 1)) != BLKmode)
9208 {
9209 new_rtx = adjust_address_nv (varop, tmode,
9210 BYTES_BIG_ENDIAN ? 0
9211 : count / BITS_PER_UNIT);
9212
9213 varop = gen_rtx_fmt_e (code == ASHIFTRT ? SIGN_EXTEND
9214 : ZERO_EXTEND, mode, new_rtx);
9215 count = 0;
9216 continue;
9217 }
9218 break;
9219
9220 case SUBREG:
9221 /* If VAROP is a SUBREG, strip it as long as the inner operand has
9222 the same number of words as what we've seen so far. Then store
9223 the widest mode in MODE. */
9224 if (subreg_lowpart_p (varop)
9225 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (varop)))
9226 > GET_MODE_SIZE (GET_MODE (varop)))
9227 && (unsigned int) ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (varop)))
9228 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
9229 == mode_words)
9230 {
9231 varop = SUBREG_REG (varop);
9232 if (GET_MODE_SIZE (GET_MODE (varop)) > GET_MODE_SIZE (mode))
9233 mode = GET_MODE (varop);
9234 continue;
9235 }
9236 break;
9237
9238 case MULT:
9239 /* Some machines use MULT instead of ASHIFT because MULT
9240 is cheaper. But it is still better on those machines to
9241 merge two shifts into one. */
9242 if (CONST_INT_P (XEXP (varop, 1))
9243 && exact_log2 (INTVAL (XEXP (varop, 1))) >= 0)
9244 {
9245 varop
9246 = simplify_gen_binary (ASHIFT, GET_MODE (varop),
9247 XEXP (varop, 0),
9248 GEN_INT (exact_log2 (
9249 INTVAL (XEXP (varop, 1)))));
9250 continue;
9251 }
9252 break;
9253
9254 case UDIV:
9255 /* Similar, for when divides are cheaper. */
9256 if (CONST_INT_P (XEXP (varop, 1))
9257 && exact_log2 (INTVAL (XEXP (varop, 1))) >= 0)
9258 {
9259 varop
9260 = simplify_gen_binary (LSHIFTRT, GET_MODE (varop),
9261 XEXP (varop, 0),
9262 GEN_INT (exact_log2 (
9263 INTVAL (XEXP (varop, 1)))));
9264 continue;
9265 }
9266 break;
9267
9268 case ASHIFTRT:
9269 /* If we are extracting just the sign bit of an arithmetic
9270 right shift, that shift is not needed. However, the sign
9271 bit of a wider mode may be different from what would be
9272 interpreted as the sign bit in a narrower mode, so, if
9273 the result is narrower, don't discard the shift. */
9274 if (code == LSHIFTRT
9275 && count == (GET_MODE_BITSIZE (result_mode) - 1)
9276 && (GET_MODE_BITSIZE (result_mode)
9277 >= GET_MODE_BITSIZE (GET_MODE (varop))))
9278 {
9279 varop = XEXP (varop, 0);
9280 continue;
9281 }
9282
9283 /* ... fall through ... */
9284
9285 case LSHIFTRT:
9286 case ASHIFT:
9287 case ROTATE:
9288 /* Here we have two nested shifts. The result is usually the
9289 AND of a new shift with a mask. We compute the result below. */
9290 if (CONST_INT_P (XEXP (varop, 1))
9291 && INTVAL (XEXP (varop, 1)) >= 0
9292 && INTVAL (XEXP (varop, 1)) < GET_MODE_BITSIZE (GET_MODE (varop))
9293 && GET_MODE_BITSIZE (result_mode) <= HOST_BITS_PER_WIDE_INT
9294 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
9295 && !VECTOR_MODE_P (result_mode))
9296 {
9297 enum rtx_code first_code = GET_CODE (varop);
9298 unsigned int first_count = INTVAL (XEXP (varop, 1));
9299 unsigned HOST_WIDE_INT mask;
9300 rtx mask_rtx;
9301
9302 /* We have one common special case. We can't do any merging if
9303 the inner code is an ASHIFTRT of a smaller mode. However, if
9304 we have (ashift:M1 (subreg:M1 (ashiftrt:M2 FOO C1) 0) C2)
9305 with C2 == GET_MODE_BITSIZE (M1) - GET_MODE_BITSIZE (M2),
9306 we can convert it to
9307 (ashiftrt:M1 (ashift:M1 (and:M1 (subreg:M1 FOO 0 C2) C3) C1).
9308 This simplifies certain SIGN_EXTEND operations. */
9309 if (code == ASHIFT && first_code == ASHIFTRT
9310 && count == (GET_MODE_BITSIZE (result_mode)
9311 - GET_MODE_BITSIZE (GET_MODE (varop))))
9312 {
9313 /* C3 has the low-order C1 bits zero. */
9314
9315 mask = (GET_MODE_MASK (mode)
9316 & ~(((HOST_WIDE_INT) 1 << first_count) - 1));
9317
9318 varop = simplify_and_const_int (NULL_RTX, result_mode,
9319 XEXP (varop, 0), mask);
9320 varop = simplify_shift_const (NULL_RTX, ASHIFT, result_mode,
9321 varop, count);
9322 count = first_count;
9323 code = ASHIFTRT;
9324 continue;
9325 }
9326
9327 /* If this was (ashiftrt (ashift foo C1) C2) and FOO has more
9328 than C1 high-order bits equal to the sign bit, we can convert
9329 this to either an ASHIFT or an ASHIFTRT depending on the
9330 two counts.
9331
9332 We cannot do this if VAROP's mode is not SHIFT_MODE. */
9333
9334 if (code == ASHIFTRT && first_code == ASHIFT
9335 && GET_MODE (varop) == shift_mode
9336 && (num_sign_bit_copies (XEXP (varop, 0), shift_mode)
9337 > first_count))
9338 {
9339 varop = XEXP (varop, 0);
9340 count -= first_count;
9341 if (count < 0)
9342 {
9343 count = -count;
9344 code = ASHIFT;
9345 }
9346
9347 continue;
9348 }
9349
9350 /* There are some cases we can't do. If CODE is ASHIFTRT,
9351 we can only do this if FIRST_CODE is also ASHIFTRT.
9352
9353 We can't do the case when CODE is ROTATE and FIRST_CODE is
9354 ASHIFTRT.
9355
9356 If the mode of this shift is not the mode of the outer shift,
9357 we can't do this if either shift is a right shift or ROTATE.
9358
9359 Finally, we can't do any of these if the mode is too wide
9360 unless the codes are the same.
9361
9362 Handle the case where the shift codes are the same
9363 first. */
9364
9365 if (code == first_code)
9366 {
9367 if (GET_MODE (varop) != result_mode
9368 && (code == ASHIFTRT || code == LSHIFTRT
9369 || code == ROTATE))
9370 break;
9371
9372 count += first_count;
9373 varop = XEXP (varop, 0);
9374 continue;
9375 }
9376
9377 if (code == ASHIFTRT
9378 || (code == ROTATE && first_code == ASHIFTRT)
9379 || GET_MODE_BITSIZE (mode) > HOST_BITS_PER_WIDE_INT
9380 || (GET_MODE (varop) != result_mode
9381 && (first_code == ASHIFTRT || first_code == LSHIFTRT
9382 || first_code == ROTATE
9383 || code == ROTATE)))
9384 break;
9385
9386 /* To compute the mask to apply after the shift, shift the
9387 nonzero bits of the inner shift the same way the
9388 outer shift will. */
9389
9390 mask_rtx = GEN_INT (nonzero_bits (varop, GET_MODE (varop)));
9391
9392 mask_rtx
9393 = simplify_const_binary_operation (code, result_mode, mask_rtx,
9394 GEN_INT (count));
9395
9396 /* Give up if we can't compute an outer operation to use. */
9397 if (mask_rtx == 0
9398 || !CONST_INT_P (mask_rtx)
9399 || ! merge_outer_ops (&outer_op, &outer_const, AND,
9400 INTVAL (mask_rtx),
9401 result_mode, &complement_p))
9402 break;
9403
9404 /* If the shifts are in the same direction, we add the
9405 counts. Otherwise, we subtract them. */
9406 if ((code == ASHIFTRT || code == LSHIFTRT)
9407 == (first_code == ASHIFTRT || first_code == LSHIFTRT))
9408 count += first_count;
9409 else
9410 count -= first_count;
9411
9412 /* If COUNT is positive, the new shift is usually CODE,
9413 except for the two exceptions below, in which case it is
9414 FIRST_CODE. If the count is negative, FIRST_CODE should
9415 always be used */
9416 if (count > 0
9417 && ((first_code == ROTATE && code == ASHIFT)
9418 || (first_code == ASHIFTRT && code == LSHIFTRT)))
9419 code = first_code;
9420 else if (count < 0)
9421 code = first_code, count = -count;
9422
9423 varop = XEXP (varop, 0);
9424 continue;
9425 }
9426
9427 /* If we have (A << B << C) for any shift, we can convert this to
9428 (A << C << B). This wins if A is a constant. Only try this if
9429 B is not a constant. */
9430
9431 else if (GET_CODE (varop) == code
9432 && CONST_INT_P (XEXP (varop, 0))
9433 && !CONST_INT_P (XEXP (varop, 1)))
9434 {
9435 rtx new_rtx = simplify_const_binary_operation (code, mode,
9436 XEXP (varop, 0),
9437 GEN_INT (count));
9438 varop = gen_rtx_fmt_ee (code, mode, new_rtx, XEXP (varop, 1));
9439 count = 0;
9440 continue;
9441 }
9442 break;
9443
9444 case NOT:
9445 if (VECTOR_MODE_P (mode))
9446 break;
9447
9448 /* Make this fit the case below. */
9449 varop = gen_rtx_XOR (mode, XEXP (varop, 0),
9450 GEN_INT (GET_MODE_MASK (mode)));
9451 continue;
9452
9453 case IOR:
9454 case AND:
9455 case XOR:
9456 /* If we have (xshiftrt (ior (plus X (const_int -1)) X) C)
9457 with C the size of VAROP - 1 and the shift is logical if
9458 STORE_FLAG_VALUE is 1 and arithmetic if STORE_FLAG_VALUE is -1,
9459 we have an (le X 0) operation. If we have an arithmetic shift
9460 and STORE_FLAG_VALUE is 1 or we have a logical shift with
9461 STORE_FLAG_VALUE of -1, we have a (neg (le X 0)) operation. */
9462
9463 if (GET_CODE (varop) == IOR && GET_CODE (XEXP (varop, 0)) == PLUS
9464 && XEXP (XEXP (varop, 0), 1) == constm1_rtx
9465 && (STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
9466 && (code == LSHIFTRT || code == ASHIFTRT)
9467 && count == (GET_MODE_BITSIZE (GET_MODE (varop)) - 1)
9468 && rtx_equal_p (XEXP (XEXP (varop, 0), 0), XEXP (varop, 1)))
9469 {
9470 count = 0;
9471 varop = gen_rtx_LE (GET_MODE (varop), XEXP (varop, 1),
9472 const0_rtx);
9473
9474 if (STORE_FLAG_VALUE == 1 ? code == ASHIFTRT : code == LSHIFTRT)
9475 varop = gen_rtx_NEG (GET_MODE (varop), varop);
9476
9477 continue;
9478 }
9479
9480 /* If we have (shift (logical)), move the logical to the outside
9481 to allow it to possibly combine with another logical and the
9482 shift to combine with another shift. This also canonicalizes to
9483 what a ZERO_EXTRACT looks like. Also, some machines have
9484 (and (shift)) insns. */
9485
9486 if (CONST_INT_P (XEXP (varop, 1))
9487 /* We can't do this if we have (ashiftrt (xor)) and the
9488 constant has its sign bit set in shift_mode. */
9489 && !(code == ASHIFTRT && GET_CODE (varop) == XOR
9490 && 0 > trunc_int_for_mode (INTVAL (XEXP (varop, 1)),
9491 shift_mode))
9492 && (new_rtx = simplify_const_binary_operation (code, result_mode,
9493 XEXP (varop, 1),
9494 GEN_INT (count))) != 0
9495 && CONST_INT_P (new_rtx)
9496 && merge_outer_ops (&outer_op, &outer_const, GET_CODE (varop),
9497 INTVAL (new_rtx), result_mode, &complement_p))
9498 {
9499 varop = XEXP (varop, 0);
9500 continue;
9501 }
9502
9503 /* If we can't do that, try to simplify the shift in each arm of the
9504 logical expression, make a new logical expression, and apply
9505 the inverse distributive law. This also can't be done
9506 for some (ashiftrt (xor)). */
9507 if (CONST_INT_P (XEXP (varop, 1))
9508 && !(code == ASHIFTRT && GET_CODE (varop) == XOR
9509 && 0 > trunc_int_for_mode (INTVAL (XEXP (varop, 1)),
9510 shift_mode)))
9511 {
9512 rtx lhs = simplify_shift_const (NULL_RTX, code, shift_mode,
9513 XEXP (varop, 0), count);
9514 rtx rhs = simplify_shift_const (NULL_RTX, code, shift_mode,
9515 XEXP (varop, 1), count);
9516
9517 varop = simplify_gen_binary (GET_CODE (varop), shift_mode,
9518 lhs, rhs);
9519 varop = apply_distributive_law (varop);
9520
9521 count = 0;
9522 continue;
9523 }
9524 break;
9525
9526 case EQ:
9527 /* Convert (lshiftrt (eq FOO 0) C) to (xor FOO 1) if STORE_FLAG_VALUE
9528 says that the sign bit can be tested, FOO has mode MODE, C is
9529 GET_MODE_BITSIZE (MODE) - 1, and FOO has only its low-order bit
9530 that may be nonzero. */
9531 if (code == LSHIFTRT
9532 && XEXP (varop, 1) == const0_rtx
9533 && GET_MODE (XEXP (varop, 0)) == result_mode
9534 && count == (GET_MODE_BITSIZE (result_mode) - 1)
9535 && GET_MODE_BITSIZE (result_mode) <= HOST_BITS_PER_WIDE_INT
9536 && STORE_FLAG_VALUE == -1
9537 && nonzero_bits (XEXP (varop, 0), result_mode) == 1
9538 && merge_outer_ops (&outer_op, &outer_const, XOR,
9539 (HOST_WIDE_INT) 1, result_mode,
9540 &complement_p))
9541 {
9542 varop = XEXP (varop, 0);
9543 count = 0;
9544 continue;
9545 }
9546 break;
9547
9548 case NEG:
9549 /* (lshiftrt (neg A) C) where A is either 0 or 1 and C is one less
9550 than the number of bits in the mode is equivalent to A. */
9551 if (code == LSHIFTRT
9552 && count == (GET_MODE_BITSIZE (result_mode) - 1)
9553 && nonzero_bits (XEXP (varop, 0), result_mode) == 1)
9554 {
9555 varop = XEXP (varop, 0);
9556 count = 0;
9557 continue;
9558 }
9559
9560 /* NEG commutes with ASHIFT since it is multiplication. Move the
9561 NEG outside to allow shifts to combine. */
9562 if (code == ASHIFT
9563 && merge_outer_ops (&outer_op, &outer_const, NEG,
9564 (HOST_WIDE_INT) 0, result_mode,
9565 &complement_p))
9566 {
9567 varop = XEXP (varop, 0);
9568 continue;
9569 }
9570 break;
9571
9572 case PLUS:
9573 /* (lshiftrt (plus A -1) C) where A is either 0 or 1 and C
9574 is one less than the number of bits in the mode is
9575 equivalent to (xor A 1). */
9576 if (code == LSHIFTRT
9577 && count == (GET_MODE_BITSIZE (result_mode) - 1)
9578 && XEXP (varop, 1) == constm1_rtx
9579 && nonzero_bits (XEXP (varop, 0), result_mode) == 1
9580 && merge_outer_ops (&outer_op, &outer_const, XOR,
9581 (HOST_WIDE_INT) 1, result_mode,
9582 &complement_p))
9583 {
9584 count = 0;
9585 varop = XEXP (varop, 0);
9586 continue;
9587 }
9588
9589 /* If we have (xshiftrt (plus FOO BAR) C), and the only bits
9590 that might be nonzero in BAR are those being shifted out and those
9591 bits are known zero in FOO, we can replace the PLUS with FOO.
9592 Similarly in the other operand order. This code occurs when
9593 we are computing the size of a variable-size array. */
9594
9595 if ((code == ASHIFTRT || code == LSHIFTRT)
9596 && count < HOST_BITS_PER_WIDE_INT
9597 && nonzero_bits (XEXP (varop, 1), result_mode) >> count == 0
9598 && (nonzero_bits (XEXP (varop, 1), result_mode)
9599 & nonzero_bits (XEXP (varop, 0), result_mode)) == 0)
9600 {
9601 varop = XEXP (varop, 0);
9602 continue;
9603 }
9604 else if ((code == ASHIFTRT || code == LSHIFTRT)
9605 && count < HOST_BITS_PER_WIDE_INT
9606 && GET_MODE_BITSIZE (result_mode) <= HOST_BITS_PER_WIDE_INT
9607 && 0 == (nonzero_bits (XEXP (varop, 0), result_mode)
9608 >> count)
9609 && 0 == (nonzero_bits (XEXP (varop, 0), result_mode)
9610 & nonzero_bits (XEXP (varop, 1),
9611 result_mode)))
9612 {
9613 varop = XEXP (varop, 1);
9614 continue;
9615 }
9616
9617 /* (ashift (plus foo C) N) is (plus (ashift foo N) C'). */
9618 if (code == ASHIFT
9619 && CONST_INT_P (XEXP (varop, 1))
9620 && (new_rtx = simplify_const_binary_operation (ASHIFT, result_mode,
9621 XEXP (varop, 1),
9622 GEN_INT (count))) != 0
9623 && CONST_INT_P (new_rtx)
9624 && merge_outer_ops (&outer_op, &outer_const, PLUS,
9625 INTVAL (new_rtx), result_mode, &complement_p))
9626 {
9627 varop = XEXP (varop, 0);
9628 continue;
9629 }
9630
9631 /* Check for 'PLUS signbit', which is the canonical form of 'XOR
9632 signbit', and attempt to change the PLUS to an XOR and move it to
9633 the outer operation as is done above in the AND/IOR/XOR case
9634 leg for shift(logical). See details in logical handling above
9635 for reasoning in doing so. */
9636 if (code == LSHIFTRT
9637 && CONST_INT_P (XEXP (varop, 1))
9638 && mode_signbit_p (result_mode, XEXP (varop, 1))
9639 && (new_rtx = simplify_const_binary_operation (code, result_mode,
9640 XEXP (varop, 1),
9641 GEN_INT (count))) != 0
9642 && CONST_INT_P (new_rtx)
9643 && merge_outer_ops (&outer_op, &outer_const, XOR,
9644 INTVAL (new_rtx), result_mode, &complement_p))
9645 {
9646 varop = XEXP (varop, 0);
9647 continue;
9648 }
9649
9650 break;
9651
9652 case MINUS:
9653 /* If we have (xshiftrt (minus (ashiftrt X C)) X) C)
9654 with C the size of VAROP - 1 and the shift is logical if
9655 STORE_FLAG_VALUE is 1 and arithmetic if STORE_FLAG_VALUE is -1,
9656 we have a (gt X 0) operation. If the shift is arithmetic with
9657 STORE_FLAG_VALUE of 1 or logical with STORE_FLAG_VALUE == -1,
9658 we have a (neg (gt X 0)) operation. */
9659
9660 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
9661 && GET_CODE (XEXP (varop, 0)) == ASHIFTRT
9662 && count == (GET_MODE_BITSIZE (GET_MODE (varop)) - 1)
9663 && (code == LSHIFTRT || code == ASHIFTRT)
9664 && CONST_INT_P (XEXP (XEXP (varop, 0), 1))
9665 && INTVAL (XEXP (XEXP (varop, 0), 1)) == count
9666 && rtx_equal_p (XEXP (XEXP (varop, 0), 0), XEXP (varop, 1)))
9667 {
9668 count = 0;
9669 varop = gen_rtx_GT (GET_MODE (varop), XEXP (varop, 1),
9670 const0_rtx);
9671
9672 if (STORE_FLAG_VALUE == 1 ? code == ASHIFTRT : code == LSHIFTRT)
9673 varop = gen_rtx_NEG (GET_MODE (varop), varop);
9674
9675 continue;
9676 }
9677 break;
9678
9679 case TRUNCATE:
9680 /* Change (lshiftrt (truncate (lshiftrt))) to (truncate (lshiftrt))
9681 if the truncate does not affect the value. */
9682 if (code == LSHIFTRT
9683 && GET_CODE (XEXP (varop, 0)) == LSHIFTRT
9684 && CONST_INT_P (XEXP (XEXP (varop, 0), 1))
9685 && (INTVAL (XEXP (XEXP (varop, 0), 1))
9686 >= (GET_MODE_BITSIZE (GET_MODE (XEXP (varop, 0)))
9687 - GET_MODE_BITSIZE (GET_MODE (varop)))))
9688 {
9689 rtx varop_inner = XEXP (varop, 0);
9690
9691 varop_inner
9692 = gen_rtx_LSHIFTRT (GET_MODE (varop_inner),
9693 XEXP (varop_inner, 0),
9694 GEN_INT
9695 (count + INTVAL (XEXP (varop_inner, 1))));
9696 varop = gen_rtx_TRUNCATE (GET_MODE (varop), varop_inner);
9697 count = 0;
9698 continue;
9699 }
9700 break;
9701
9702 default:
9703 break;
9704 }
9705
9706 break;
9707 }
9708
9709 shift_mode = try_widen_shift_mode (code, varop, count, result_mode, mode,
9710 outer_op, outer_const);
9711
9712 /* We have now finished analyzing the shift. The result should be
9713 a shift of type CODE with SHIFT_MODE shifting VAROP COUNT places. If
9714 OUTER_OP is non-UNKNOWN, it is an operation that needs to be applied
9715 to the result of the shift. OUTER_CONST is the relevant constant,
9716 but we must turn off all bits turned off in the shift. */
9717
9718 if (outer_op == UNKNOWN
9719 && orig_code == code && orig_count == count
9720 && varop == orig_varop
9721 && shift_mode == GET_MODE (varop))
9722 return NULL_RTX;
9723
9724 /* Make a SUBREG if necessary. If we can't make it, fail. */
9725 varop = gen_lowpart (shift_mode, varop);
9726 if (varop == NULL_RTX || GET_CODE (varop) == CLOBBER)
9727 return NULL_RTX;
9728
9729 /* If we have an outer operation and we just made a shift, it is
9730 possible that we could have simplified the shift were it not
9731 for the outer operation. So try to do the simplification
9732 recursively. */
9733
9734 if (outer_op != UNKNOWN)
9735 x = simplify_shift_const_1 (code, shift_mode, varop, count);
9736 else
9737 x = NULL_RTX;
9738
9739 if (x == NULL_RTX)
9740 x = simplify_gen_binary (code, shift_mode, varop, GEN_INT (count));
9741
9742 /* If we were doing an LSHIFTRT in a wider mode than it was originally,
9743 turn off all the bits that the shift would have turned off. */
9744 if (orig_code == LSHIFTRT && result_mode != shift_mode)
9745 x = simplify_and_const_int (NULL_RTX, shift_mode, x,
9746 GET_MODE_MASK (result_mode) >> orig_count);
9747
9748 /* Do the remainder of the processing in RESULT_MODE. */
9749 x = gen_lowpart_or_truncate (result_mode, x);
9750
9751 /* If COMPLEMENT_P is set, we have to complement X before doing the outer
9752 operation. */
9753 if (complement_p)
9754 x = simplify_gen_unary (NOT, result_mode, x, result_mode);
9755
9756 if (outer_op != UNKNOWN)
9757 {
9758 if (GET_RTX_CLASS (outer_op) != RTX_UNARY
9759 && GET_MODE_BITSIZE (result_mode) < HOST_BITS_PER_WIDE_INT)
9760 outer_const = trunc_int_for_mode (outer_const, result_mode);
9761
9762 if (outer_op == AND)
9763 x = simplify_and_const_int (NULL_RTX, result_mode, x, outer_const);
9764 else if (outer_op == SET)
9765 {
9766 /* This means that we have determined that the result is
9767 equivalent to a constant. This should be rare. */
9768 if (!side_effects_p (x))
9769 x = GEN_INT (outer_const);
9770 }
9771 else if (GET_RTX_CLASS (outer_op) == RTX_UNARY)
9772 x = simplify_gen_unary (outer_op, result_mode, x, result_mode);
9773 else
9774 x = simplify_gen_binary (outer_op, result_mode, x,
9775 GEN_INT (outer_const));
9776 }
9777
9778 return x;
9779 }
9780
9781 /* Simplify a shift of VAROP by COUNT bits. CODE says what kind of shift.
9782 The result of the shift is RESULT_MODE. If we cannot simplify it,
9783 return X or, if it is NULL, synthesize the expression with
9784 simplify_gen_binary. Otherwise, return a simplified value.
9785
9786 The shift is normally computed in the widest mode we find in VAROP, as
9787 long as it isn't a different number of words than RESULT_MODE. Exceptions
9788 are ASHIFTRT and ROTATE, which are always done in their original mode. */
9789
9790 static rtx
9791 simplify_shift_const (rtx x, enum rtx_code code, enum machine_mode result_mode,
9792 rtx varop, int count)
9793 {
9794 rtx tem = simplify_shift_const_1 (code, result_mode, varop, count);
9795 if (tem)
9796 return tem;
9797
9798 if (!x)
9799 x = simplify_gen_binary (code, GET_MODE (varop), varop, GEN_INT (count));
9800 if (GET_MODE (x) != result_mode)
9801 x = gen_lowpart (result_mode, x);
9802 return x;
9803 }
9804
9805 \f
9806 /* Like recog, but we receive the address of a pointer to a new pattern.
9807 We try to match the rtx that the pointer points to.
9808 If that fails, we may try to modify or replace the pattern,
9809 storing the replacement into the same pointer object.
9810
9811 Modifications include deletion or addition of CLOBBERs.
9812
9813 PNOTES is a pointer to a location where any REG_UNUSED notes added for
9814 the CLOBBERs are placed.
9815
9816 The value is the final insn code from the pattern ultimately matched,
9817 or -1. */
9818
9819 static int
9820 recog_for_combine (rtx *pnewpat, rtx insn, rtx *pnotes)
9821 {
9822 rtx pat = *pnewpat;
9823 int insn_code_number;
9824 int num_clobbers_to_add = 0;
9825 int i;
9826 rtx notes = 0;
9827 rtx old_notes, old_pat;
9828
9829 /* If PAT is a PARALLEL, check to see if it contains the CLOBBER
9830 we use to indicate that something didn't match. If we find such a
9831 thing, force rejection. */
9832 if (GET_CODE (pat) == PARALLEL)
9833 for (i = XVECLEN (pat, 0) - 1; i >= 0; i--)
9834 if (GET_CODE (XVECEXP (pat, 0, i)) == CLOBBER
9835 && XEXP (XVECEXP (pat, 0, i), 0) == const0_rtx)
9836 return -1;
9837
9838 old_pat = PATTERN (insn);
9839 old_notes = REG_NOTES (insn);
9840 PATTERN (insn) = pat;
9841 REG_NOTES (insn) = 0;
9842
9843 insn_code_number = recog (pat, insn, &num_clobbers_to_add);
9844 if (dump_file && (dump_flags & TDF_DETAILS))
9845 {
9846 if (insn_code_number < 0)
9847 fputs ("Failed to match this instruction:\n", dump_file);
9848 else
9849 fputs ("Successfully matched this instruction:\n", dump_file);
9850 print_rtl_single (dump_file, pat);
9851 }
9852
9853 /* If it isn't, there is the possibility that we previously had an insn
9854 that clobbered some register as a side effect, but the combined
9855 insn doesn't need to do that. So try once more without the clobbers
9856 unless this represents an ASM insn. */
9857
9858 if (insn_code_number < 0 && ! check_asm_operands (pat)
9859 && GET_CODE (pat) == PARALLEL)
9860 {
9861 int pos;
9862
9863 for (pos = 0, i = 0; i < XVECLEN (pat, 0); i++)
9864 if (GET_CODE (XVECEXP (pat, 0, i)) != CLOBBER)
9865 {
9866 if (i != pos)
9867 SUBST (XVECEXP (pat, 0, pos), XVECEXP (pat, 0, i));
9868 pos++;
9869 }
9870
9871 SUBST_INT (XVECLEN (pat, 0), pos);
9872
9873 if (pos == 1)
9874 pat = XVECEXP (pat, 0, 0);
9875
9876 PATTERN (insn) = pat;
9877 insn_code_number = recog (pat, insn, &num_clobbers_to_add);
9878 if (dump_file && (dump_flags & TDF_DETAILS))
9879 {
9880 if (insn_code_number < 0)
9881 fputs ("Failed to match this instruction:\n", dump_file);
9882 else
9883 fputs ("Successfully matched this instruction:\n", dump_file);
9884 print_rtl_single (dump_file, pat);
9885 }
9886 }
9887 PATTERN (insn) = old_pat;
9888 REG_NOTES (insn) = old_notes;
9889
9890 /* Recognize all noop sets, these will be killed by followup pass. */
9891 if (insn_code_number < 0 && GET_CODE (pat) == SET && set_noop_p (pat))
9892 insn_code_number = NOOP_MOVE_INSN_CODE, num_clobbers_to_add = 0;
9893
9894 /* If we had any clobbers to add, make a new pattern than contains
9895 them. Then check to make sure that all of them are dead. */
9896 if (num_clobbers_to_add)
9897 {
9898 rtx newpat = gen_rtx_PARALLEL (VOIDmode,
9899 rtvec_alloc (GET_CODE (pat) == PARALLEL
9900 ? (XVECLEN (pat, 0)
9901 + num_clobbers_to_add)
9902 : num_clobbers_to_add + 1));
9903
9904 if (GET_CODE (pat) == PARALLEL)
9905 for (i = 0; i < XVECLEN (pat, 0); i++)
9906 XVECEXP (newpat, 0, i) = XVECEXP (pat, 0, i);
9907 else
9908 XVECEXP (newpat, 0, 0) = pat;
9909
9910 add_clobbers (newpat, insn_code_number);
9911
9912 for (i = XVECLEN (newpat, 0) - num_clobbers_to_add;
9913 i < XVECLEN (newpat, 0); i++)
9914 {
9915 if (REG_P (XEXP (XVECEXP (newpat, 0, i), 0))
9916 && ! reg_dead_at_p (XEXP (XVECEXP (newpat, 0, i), 0), insn))
9917 return -1;
9918 if (GET_CODE (XEXP (XVECEXP (newpat, 0, i), 0)) != SCRATCH)
9919 {
9920 gcc_assert (REG_P (XEXP (XVECEXP (newpat, 0, i), 0)));
9921 notes = alloc_reg_note (REG_UNUSED,
9922 XEXP (XVECEXP (newpat, 0, i), 0), notes);
9923 }
9924 }
9925 pat = newpat;
9926 }
9927
9928 *pnewpat = pat;
9929 *pnotes = notes;
9930
9931 return insn_code_number;
9932 }
9933 \f
9934 /* Like gen_lowpart_general but for use by combine. In combine it
9935 is not possible to create any new pseudoregs. However, it is
9936 safe to create invalid memory addresses, because combine will
9937 try to recognize them and all they will do is make the combine
9938 attempt fail.
9939
9940 If for some reason this cannot do its job, an rtx
9941 (clobber (const_int 0)) is returned.
9942 An insn containing that will not be recognized. */
9943
9944 static rtx
9945 gen_lowpart_for_combine (enum machine_mode omode, rtx x)
9946 {
9947 enum machine_mode imode = GET_MODE (x);
9948 unsigned int osize = GET_MODE_SIZE (omode);
9949 unsigned int isize = GET_MODE_SIZE (imode);
9950 rtx result;
9951
9952 if (omode == imode)
9953 return x;
9954
9955 /* Return identity if this is a CONST or symbolic reference. */
9956 if (omode == Pmode
9957 && (GET_CODE (x) == CONST
9958 || GET_CODE (x) == SYMBOL_REF
9959 || GET_CODE (x) == LABEL_REF))
9960 return x;
9961
9962 /* We can only support MODE being wider than a word if X is a
9963 constant integer or has a mode the same size. */
9964 if (GET_MODE_SIZE (omode) > UNITS_PER_WORD
9965 && ! ((imode == VOIDmode
9966 && (CONST_INT_P (x)
9967 || GET_CODE (x) == CONST_DOUBLE))
9968 || isize == osize))
9969 goto fail;
9970
9971 /* X might be a paradoxical (subreg (mem)). In that case, gen_lowpart
9972 won't know what to do. So we will strip off the SUBREG here and
9973 process normally. */
9974 if (GET_CODE (x) == SUBREG && MEM_P (SUBREG_REG (x)))
9975 {
9976 x = SUBREG_REG (x);
9977
9978 /* For use in case we fall down into the address adjustments
9979 further below, we need to adjust the known mode and size of
9980 x; imode and isize, since we just adjusted x. */
9981 imode = GET_MODE (x);
9982
9983 if (imode == omode)
9984 return x;
9985
9986 isize = GET_MODE_SIZE (imode);
9987 }
9988
9989 result = gen_lowpart_common (omode, x);
9990
9991 if (result)
9992 return result;
9993
9994 if (MEM_P (x))
9995 {
9996 int offset = 0;
9997
9998 /* Refuse to work on a volatile memory ref or one with a mode-dependent
9999 address. */
10000 if (MEM_VOLATILE_P (x) || mode_dependent_address_p (XEXP (x, 0)))
10001 goto fail;
10002
10003 /* If we want to refer to something bigger than the original memref,
10004 generate a paradoxical subreg instead. That will force a reload
10005 of the original memref X. */
10006 if (isize < osize)
10007 return gen_rtx_SUBREG (omode, x, 0);
10008
10009 if (WORDS_BIG_ENDIAN)
10010 offset = MAX (isize, UNITS_PER_WORD) - MAX (osize, UNITS_PER_WORD);
10011
10012 /* Adjust the address so that the address-after-the-data is
10013 unchanged. */
10014 if (BYTES_BIG_ENDIAN)
10015 offset -= MIN (UNITS_PER_WORD, osize) - MIN (UNITS_PER_WORD, isize);
10016
10017 return adjust_address_nv (x, omode, offset);
10018 }
10019
10020 /* If X is a comparison operator, rewrite it in a new mode. This
10021 probably won't match, but may allow further simplifications. */
10022 else if (COMPARISON_P (x))
10023 return gen_rtx_fmt_ee (GET_CODE (x), omode, XEXP (x, 0), XEXP (x, 1));
10024
10025 /* If we couldn't simplify X any other way, just enclose it in a
10026 SUBREG. Normally, this SUBREG won't match, but some patterns may
10027 include an explicit SUBREG or we may simplify it further in combine. */
10028 else
10029 {
10030 int offset = 0;
10031 rtx res;
10032
10033 offset = subreg_lowpart_offset (omode, imode);
10034 if (imode == VOIDmode)
10035 {
10036 imode = int_mode_for_mode (omode);
10037 x = gen_lowpart_common (imode, x);
10038 if (x == NULL)
10039 goto fail;
10040 }
10041 res = simplify_gen_subreg (omode, x, imode, offset);
10042 if (res)
10043 return res;
10044 }
10045
10046 fail:
10047 return gen_rtx_CLOBBER (omode, const0_rtx);
10048 }
10049 \f
10050 /* Simplify a comparison between *POP0 and *POP1 where CODE is the
10051 comparison code that will be tested.
10052
10053 The result is a possibly different comparison code to use. *POP0 and
10054 *POP1 may be updated.
10055
10056 It is possible that we might detect that a comparison is either always
10057 true or always false. However, we do not perform general constant
10058 folding in combine, so this knowledge isn't useful. Such tautologies
10059 should have been detected earlier. Hence we ignore all such cases. */
10060
10061 static enum rtx_code
10062 simplify_comparison (enum rtx_code code, rtx *pop0, rtx *pop1)
10063 {
10064 rtx op0 = *pop0;
10065 rtx op1 = *pop1;
10066 rtx tem, tem1;
10067 int i;
10068 enum machine_mode mode, tmode;
10069
10070 /* Try a few ways of applying the same transformation to both operands. */
10071 while (1)
10072 {
10073 #ifndef WORD_REGISTER_OPERATIONS
10074 /* The test below this one won't handle SIGN_EXTENDs on these machines,
10075 so check specially. */
10076 if (code != GTU && code != GEU && code != LTU && code != LEU
10077 && GET_CODE (op0) == ASHIFTRT && GET_CODE (op1) == ASHIFTRT
10078 && GET_CODE (XEXP (op0, 0)) == ASHIFT
10079 && GET_CODE (XEXP (op1, 0)) == ASHIFT
10080 && GET_CODE (XEXP (XEXP (op0, 0), 0)) == SUBREG
10081 && GET_CODE (XEXP (XEXP (op1, 0), 0)) == SUBREG
10082 && (GET_MODE (SUBREG_REG (XEXP (XEXP (op0, 0), 0)))
10083 == GET_MODE (SUBREG_REG (XEXP (XEXP (op1, 0), 0))))
10084 && CONST_INT_P (XEXP (op0, 1))
10085 && XEXP (op0, 1) == XEXP (op1, 1)
10086 && XEXP (op0, 1) == XEXP (XEXP (op0, 0), 1)
10087 && XEXP (op0, 1) == XEXP (XEXP (op1, 0), 1)
10088 && (INTVAL (XEXP (op0, 1))
10089 == (GET_MODE_BITSIZE (GET_MODE (op0))
10090 - (GET_MODE_BITSIZE
10091 (GET_MODE (SUBREG_REG (XEXP (XEXP (op0, 0), 0))))))))
10092 {
10093 op0 = SUBREG_REG (XEXP (XEXP (op0, 0), 0));
10094 op1 = SUBREG_REG (XEXP (XEXP (op1, 0), 0));
10095 }
10096 #endif
10097
10098 /* If both operands are the same constant shift, see if we can ignore the
10099 shift. We can if the shift is a rotate or if the bits shifted out of
10100 this shift are known to be zero for both inputs and if the type of
10101 comparison is compatible with the shift. */
10102 if (GET_CODE (op0) == GET_CODE (op1)
10103 && GET_MODE_BITSIZE (GET_MODE (op0)) <= HOST_BITS_PER_WIDE_INT
10104 && ((GET_CODE (op0) == ROTATE && (code == NE || code == EQ))
10105 || ((GET_CODE (op0) == LSHIFTRT || GET_CODE (op0) == ASHIFT)
10106 && (code != GT && code != LT && code != GE && code != LE))
10107 || (GET_CODE (op0) == ASHIFTRT
10108 && (code != GTU && code != LTU
10109 && code != GEU && code != LEU)))
10110 && CONST_INT_P (XEXP (op0, 1))
10111 && INTVAL (XEXP (op0, 1)) >= 0
10112 && INTVAL (XEXP (op0, 1)) < HOST_BITS_PER_WIDE_INT
10113 && XEXP (op0, 1) == XEXP (op1, 1))
10114 {
10115 enum machine_mode mode = GET_MODE (op0);
10116 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
10117 int shift_count = INTVAL (XEXP (op0, 1));
10118
10119 if (GET_CODE (op0) == LSHIFTRT || GET_CODE (op0) == ASHIFTRT)
10120 mask &= (mask >> shift_count) << shift_count;
10121 else if (GET_CODE (op0) == ASHIFT)
10122 mask = (mask & (mask << shift_count)) >> shift_count;
10123
10124 if ((nonzero_bits (XEXP (op0, 0), mode) & ~mask) == 0
10125 && (nonzero_bits (XEXP (op1, 0), mode) & ~mask) == 0)
10126 op0 = XEXP (op0, 0), op1 = XEXP (op1, 0);
10127 else
10128 break;
10129 }
10130
10131 /* If both operands are AND's of a paradoxical SUBREG by constant, the
10132 SUBREGs are of the same mode, and, in both cases, the AND would
10133 be redundant if the comparison was done in the narrower mode,
10134 do the comparison in the narrower mode (e.g., we are AND'ing with 1
10135 and the operand's possibly nonzero bits are 0xffffff01; in that case
10136 if we only care about QImode, we don't need the AND). This case
10137 occurs if the output mode of an scc insn is not SImode and
10138 STORE_FLAG_VALUE == 1 (e.g., the 386).
10139
10140 Similarly, check for a case where the AND's are ZERO_EXTEND
10141 operations from some narrower mode even though a SUBREG is not
10142 present. */
10143
10144 else if (GET_CODE (op0) == AND && GET_CODE (op1) == AND
10145 && CONST_INT_P (XEXP (op0, 1))
10146 && CONST_INT_P (XEXP (op1, 1)))
10147 {
10148 rtx inner_op0 = XEXP (op0, 0);
10149 rtx inner_op1 = XEXP (op1, 0);
10150 HOST_WIDE_INT c0 = INTVAL (XEXP (op0, 1));
10151 HOST_WIDE_INT c1 = INTVAL (XEXP (op1, 1));
10152 int changed = 0;
10153
10154 if (GET_CODE (inner_op0) == SUBREG && GET_CODE (inner_op1) == SUBREG
10155 && (GET_MODE_SIZE (GET_MODE (inner_op0))
10156 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (inner_op0))))
10157 && (GET_MODE (SUBREG_REG (inner_op0))
10158 == GET_MODE (SUBREG_REG (inner_op1)))
10159 && (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (inner_op0)))
10160 <= HOST_BITS_PER_WIDE_INT)
10161 && (0 == ((~c0) & nonzero_bits (SUBREG_REG (inner_op0),
10162 GET_MODE (SUBREG_REG (inner_op0)))))
10163 && (0 == ((~c1) & nonzero_bits (SUBREG_REG (inner_op1),
10164 GET_MODE (SUBREG_REG (inner_op1))))))
10165 {
10166 op0 = SUBREG_REG (inner_op0);
10167 op1 = SUBREG_REG (inner_op1);
10168
10169 /* The resulting comparison is always unsigned since we masked
10170 off the original sign bit. */
10171 code = unsigned_condition (code);
10172
10173 changed = 1;
10174 }
10175
10176 else if (c0 == c1)
10177 for (tmode = GET_CLASS_NARROWEST_MODE
10178 (GET_MODE_CLASS (GET_MODE (op0)));
10179 tmode != GET_MODE (op0); tmode = GET_MODE_WIDER_MODE (tmode))
10180 if ((unsigned HOST_WIDE_INT) c0 == GET_MODE_MASK (tmode))
10181 {
10182 op0 = gen_lowpart (tmode, inner_op0);
10183 op1 = gen_lowpart (tmode, inner_op1);
10184 code = unsigned_condition (code);
10185 changed = 1;
10186 break;
10187 }
10188
10189 if (! changed)
10190 break;
10191 }
10192
10193 /* If both operands are NOT, we can strip off the outer operation
10194 and adjust the comparison code for swapped operands; similarly for
10195 NEG, except that this must be an equality comparison. */
10196 else if ((GET_CODE (op0) == NOT && GET_CODE (op1) == NOT)
10197 || (GET_CODE (op0) == NEG && GET_CODE (op1) == NEG
10198 && (code == EQ || code == NE)))
10199 op0 = XEXP (op0, 0), op1 = XEXP (op1, 0), code = swap_condition (code);
10200
10201 else
10202 break;
10203 }
10204
10205 /* If the first operand is a constant, swap the operands and adjust the
10206 comparison code appropriately, but don't do this if the second operand
10207 is already a constant integer. */
10208 if (swap_commutative_operands_p (op0, op1))
10209 {
10210 tem = op0, op0 = op1, op1 = tem;
10211 code = swap_condition (code);
10212 }
10213
10214 /* We now enter a loop during which we will try to simplify the comparison.
10215 For the most part, we only are concerned with comparisons with zero,
10216 but some things may really be comparisons with zero but not start
10217 out looking that way. */
10218
10219 while (CONST_INT_P (op1))
10220 {
10221 enum machine_mode mode = GET_MODE (op0);
10222 unsigned int mode_width = GET_MODE_BITSIZE (mode);
10223 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
10224 int equality_comparison_p;
10225 int sign_bit_comparison_p;
10226 int unsigned_comparison_p;
10227 HOST_WIDE_INT const_op;
10228
10229 /* We only want to handle integral modes. This catches VOIDmode,
10230 CCmode, and the floating-point modes. An exception is that we
10231 can handle VOIDmode if OP0 is a COMPARE or a comparison
10232 operation. */
10233
10234 if (GET_MODE_CLASS (mode) != MODE_INT
10235 && ! (mode == VOIDmode
10236 && (GET_CODE (op0) == COMPARE || COMPARISON_P (op0))))
10237 break;
10238
10239 /* Get the constant we are comparing against and turn off all bits
10240 not on in our mode. */
10241 const_op = INTVAL (op1);
10242 if (mode != VOIDmode)
10243 const_op = trunc_int_for_mode (const_op, mode);
10244 op1 = GEN_INT (const_op);
10245
10246 /* If we are comparing against a constant power of two and the value
10247 being compared can only have that single bit nonzero (e.g., it was
10248 `and'ed with that bit), we can replace this with a comparison
10249 with zero. */
10250 if (const_op
10251 && (code == EQ || code == NE || code == GE || code == GEU
10252 || code == LT || code == LTU)
10253 && mode_width <= HOST_BITS_PER_WIDE_INT
10254 && exact_log2 (const_op) >= 0
10255 && nonzero_bits (op0, mode) == (unsigned HOST_WIDE_INT) const_op)
10256 {
10257 code = (code == EQ || code == GE || code == GEU ? NE : EQ);
10258 op1 = const0_rtx, const_op = 0;
10259 }
10260
10261 /* Similarly, if we are comparing a value known to be either -1 or
10262 0 with -1, change it to the opposite comparison against zero. */
10263
10264 if (const_op == -1
10265 && (code == EQ || code == NE || code == GT || code == LE
10266 || code == GEU || code == LTU)
10267 && num_sign_bit_copies (op0, mode) == mode_width)
10268 {
10269 code = (code == EQ || code == LE || code == GEU ? NE : EQ);
10270 op1 = const0_rtx, const_op = 0;
10271 }
10272
10273 /* Do some canonicalizations based on the comparison code. We prefer
10274 comparisons against zero and then prefer equality comparisons.
10275 If we can reduce the size of a constant, we will do that too. */
10276
10277 switch (code)
10278 {
10279 case LT:
10280 /* < C is equivalent to <= (C - 1) */
10281 if (const_op > 0)
10282 {
10283 const_op -= 1;
10284 op1 = GEN_INT (const_op);
10285 code = LE;
10286 /* ... fall through to LE case below. */
10287 }
10288 else
10289 break;
10290
10291 case LE:
10292 /* <= C is equivalent to < (C + 1); we do this for C < 0 */
10293 if (const_op < 0)
10294 {
10295 const_op += 1;
10296 op1 = GEN_INT (const_op);
10297 code = LT;
10298 }
10299
10300 /* If we are doing a <= 0 comparison on a value known to have
10301 a zero sign bit, we can replace this with == 0. */
10302 else if (const_op == 0
10303 && mode_width <= HOST_BITS_PER_WIDE_INT
10304 && (nonzero_bits (op0, mode)
10305 & ((HOST_WIDE_INT) 1 << (mode_width - 1))) == 0)
10306 code = EQ;
10307 break;
10308
10309 case GE:
10310 /* >= C is equivalent to > (C - 1). */
10311 if (const_op > 0)
10312 {
10313 const_op -= 1;
10314 op1 = GEN_INT (const_op);
10315 code = GT;
10316 /* ... fall through to GT below. */
10317 }
10318 else
10319 break;
10320
10321 case GT:
10322 /* > C is equivalent to >= (C + 1); we do this for C < 0. */
10323 if (const_op < 0)
10324 {
10325 const_op += 1;
10326 op1 = GEN_INT (const_op);
10327 code = GE;
10328 }
10329
10330 /* If we are doing a > 0 comparison on a value known to have
10331 a zero sign bit, we can replace this with != 0. */
10332 else if (const_op == 0
10333 && mode_width <= HOST_BITS_PER_WIDE_INT
10334 && (nonzero_bits (op0, mode)
10335 & ((HOST_WIDE_INT) 1 << (mode_width - 1))) == 0)
10336 code = NE;
10337 break;
10338
10339 case LTU:
10340 /* < C is equivalent to <= (C - 1). */
10341 if (const_op > 0)
10342 {
10343 const_op -= 1;
10344 op1 = GEN_INT (const_op);
10345 code = LEU;
10346 /* ... fall through ... */
10347 }
10348
10349 /* (unsigned) < 0x80000000 is equivalent to >= 0. */
10350 else if ((mode_width <= HOST_BITS_PER_WIDE_INT)
10351 && (const_op == (HOST_WIDE_INT) 1 << (mode_width - 1)))
10352 {
10353 const_op = 0, op1 = const0_rtx;
10354 code = GE;
10355 break;
10356 }
10357 else
10358 break;
10359
10360 case LEU:
10361 /* unsigned <= 0 is equivalent to == 0 */
10362 if (const_op == 0)
10363 code = EQ;
10364
10365 /* (unsigned) <= 0x7fffffff is equivalent to >= 0. */
10366 else if ((mode_width <= HOST_BITS_PER_WIDE_INT)
10367 && (const_op == ((HOST_WIDE_INT) 1 << (mode_width - 1)) - 1))
10368 {
10369 const_op = 0, op1 = const0_rtx;
10370 code = GE;
10371 }
10372 break;
10373
10374 case GEU:
10375 /* >= C is equivalent to > (C - 1). */
10376 if (const_op > 1)
10377 {
10378 const_op -= 1;
10379 op1 = GEN_INT (const_op);
10380 code = GTU;
10381 /* ... fall through ... */
10382 }
10383
10384 /* (unsigned) >= 0x80000000 is equivalent to < 0. */
10385 else if ((mode_width <= HOST_BITS_PER_WIDE_INT)
10386 && (const_op == (HOST_WIDE_INT) 1 << (mode_width - 1)))
10387 {
10388 const_op = 0, op1 = const0_rtx;
10389 code = LT;
10390 break;
10391 }
10392 else
10393 break;
10394
10395 case GTU:
10396 /* unsigned > 0 is equivalent to != 0 */
10397 if (const_op == 0)
10398 code = NE;
10399
10400 /* (unsigned) > 0x7fffffff is equivalent to < 0. */
10401 else if ((mode_width <= HOST_BITS_PER_WIDE_INT)
10402 && (const_op == ((HOST_WIDE_INT) 1 << (mode_width - 1)) - 1))
10403 {
10404 const_op = 0, op1 = const0_rtx;
10405 code = LT;
10406 }
10407 break;
10408
10409 default:
10410 break;
10411 }
10412
10413 /* Compute some predicates to simplify code below. */
10414
10415 equality_comparison_p = (code == EQ || code == NE);
10416 sign_bit_comparison_p = ((code == LT || code == GE) && const_op == 0);
10417 unsigned_comparison_p = (code == LTU || code == LEU || code == GTU
10418 || code == GEU);
10419
10420 /* If this is a sign bit comparison and we can do arithmetic in
10421 MODE, say that we will only be needing the sign bit of OP0. */
10422 if (sign_bit_comparison_p
10423 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
10424 op0 = force_to_mode (op0, mode,
10425 ((HOST_WIDE_INT) 1
10426 << (GET_MODE_BITSIZE (mode) - 1)),
10427 0);
10428
10429 /* Now try cases based on the opcode of OP0. If none of the cases
10430 does a "continue", we exit this loop immediately after the
10431 switch. */
10432
10433 switch (GET_CODE (op0))
10434 {
10435 case ZERO_EXTRACT:
10436 /* If we are extracting a single bit from a variable position in
10437 a constant that has only a single bit set and are comparing it
10438 with zero, we can convert this into an equality comparison
10439 between the position and the location of the single bit. */
10440 /* Except we can't if SHIFT_COUNT_TRUNCATED is set, since we might
10441 have already reduced the shift count modulo the word size. */
10442 if (!SHIFT_COUNT_TRUNCATED
10443 && CONST_INT_P (XEXP (op0, 0))
10444 && XEXP (op0, 1) == const1_rtx
10445 && equality_comparison_p && const_op == 0
10446 && (i = exact_log2 (INTVAL (XEXP (op0, 0)))) >= 0)
10447 {
10448 if (BITS_BIG_ENDIAN)
10449 {
10450 enum machine_mode new_mode
10451 = mode_for_extraction (EP_extzv, 1);
10452 if (new_mode == MAX_MACHINE_MODE)
10453 i = BITS_PER_WORD - 1 - i;
10454 else
10455 {
10456 mode = new_mode;
10457 i = (GET_MODE_BITSIZE (mode) - 1 - i);
10458 }
10459 }
10460
10461 op0 = XEXP (op0, 2);
10462 op1 = GEN_INT (i);
10463 const_op = i;
10464
10465 /* Result is nonzero iff shift count is equal to I. */
10466 code = reverse_condition (code);
10467 continue;
10468 }
10469
10470 /* ... fall through ... */
10471
10472 case SIGN_EXTRACT:
10473 tem = expand_compound_operation (op0);
10474 if (tem != op0)
10475 {
10476 op0 = tem;
10477 continue;
10478 }
10479 break;
10480
10481 case NOT:
10482 /* If testing for equality, we can take the NOT of the constant. */
10483 if (equality_comparison_p
10484 && (tem = simplify_unary_operation (NOT, mode, op1, mode)) != 0)
10485 {
10486 op0 = XEXP (op0, 0);
10487 op1 = tem;
10488 continue;
10489 }
10490
10491 /* If just looking at the sign bit, reverse the sense of the
10492 comparison. */
10493 if (sign_bit_comparison_p)
10494 {
10495 op0 = XEXP (op0, 0);
10496 code = (code == GE ? LT : GE);
10497 continue;
10498 }
10499 break;
10500
10501 case NEG:
10502 /* If testing for equality, we can take the NEG of the constant. */
10503 if (equality_comparison_p
10504 && (tem = simplify_unary_operation (NEG, mode, op1, mode)) != 0)
10505 {
10506 op0 = XEXP (op0, 0);
10507 op1 = tem;
10508 continue;
10509 }
10510
10511 /* The remaining cases only apply to comparisons with zero. */
10512 if (const_op != 0)
10513 break;
10514
10515 /* When X is ABS or is known positive,
10516 (neg X) is < 0 if and only if X != 0. */
10517
10518 if (sign_bit_comparison_p
10519 && (GET_CODE (XEXP (op0, 0)) == ABS
10520 || (mode_width <= HOST_BITS_PER_WIDE_INT
10521 && (nonzero_bits (XEXP (op0, 0), mode)
10522 & ((HOST_WIDE_INT) 1 << (mode_width - 1))) == 0)))
10523 {
10524 op0 = XEXP (op0, 0);
10525 code = (code == LT ? NE : EQ);
10526 continue;
10527 }
10528
10529 /* If we have NEG of something whose two high-order bits are the
10530 same, we know that "(-a) < 0" is equivalent to "a > 0". */
10531 if (num_sign_bit_copies (op0, mode) >= 2)
10532 {
10533 op0 = XEXP (op0, 0);
10534 code = swap_condition (code);
10535 continue;
10536 }
10537 break;
10538
10539 case ROTATE:
10540 /* If we are testing equality and our count is a constant, we
10541 can perform the inverse operation on our RHS. */
10542 if (equality_comparison_p && CONST_INT_P (XEXP (op0, 1))
10543 && (tem = simplify_binary_operation (ROTATERT, mode,
10544 op1, XEXP (op0, 1))) != 0)
10545 {
10546 op0 = XEXP (op0, 0);
10547 op1 = tem;
10548 continue;
10549 }
10550
10551 /* If we are doing a < 0 or >= 0 comparison, it means we are testing
10552 a particular bit. Convert it to an AND of a constant of that
10553 bit. This will be converted into a ZERO_EXTRACT. */
10554 if (const_op == 0 && sign_bit_comparison_p
10555 && CONST_INT_P (XEXP (op0, 1))
10556 && mode_width <= HOST_BITS_PER_WIDE_INT)
10557 {
10558 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
10559 ((HOST_WIDE_INT) 1
10560 << (mode_width - 1
10561 - INTVAL (XEXP (op0, 1)))));
10562 code = (code == LT ? NE : EQ);
10563 continue;
10564 }
10565
10566 /* Fall through. */
10567
10568 case ABS:
10569 /* ABS is ignorable inside an equality comparison with zero. */
10570 if (const_op == 0 && equality_comparison_p)
10571 {
10572 op0 = XEXP (op0, 0);
10573 continue;
10574 }
10575 break;
10576
10577 case SIGN_EXTEND:
10578 /* Can simplify (compare (zero/sign_extend FOO) CONST) to
10579 (compare FOO CONST) if CONST fits in FOO's mode and we
10580 are either testing inequality or have an unsigned
10581 comparison with ZERO_EXTEND or a signed comparison with
10582 SIGN_EXTEND. But don't do it if we don't have a compare
10583 insn of the given mode, since we'd have to revert it
10584 later on, and then we wouldn't know whether to sign- or
10585 zero-extend. */
10586 mode = GET_MODE (XEXP (op0, 0));
10587 if (mode != VOIDmode && GET_MODE_CLASS (mode) == MODE_INT
10588 && ! unsigned_comparison_p
10589 && (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
10590 && ((unsigned HOST_WIDE_INT) const_op
10591 < (((unsigned HOST_WIDE_INT) 1
10592 << (GET_MODE_BITSIZE (mode) - 1))))
10593 && have_insn_for (COMPARE, mode))
10594 {
10595 op0 = XEXP (op0, 0);
10596 continue;
10597 }
10598 break;
10599
10600 case SUBREG:
10601 /* Check for the case where we are comparing A - C1 with C2, that is
10602
10603 (subreg:MODE (plus (A) (-C1))) op (C2)
10604
10605 with C1 a constant, and try to lift the SUBREG, i.e. to do the
10606 comparison in the wider mode. One of the following two conditions
10607 must be true in order for this to be valid:
10608
10609 1. The mode extension results in the same bit pattern being added
10610 on both sides and the comparison is equality or unsigned. As
10611 C2 has been truncated to fit in MODE, the pattern can only be
10612 all 0s or all 1s.
10613
10614 2. The mode extension results in the sign bit being copied on
10615 each side.
10616
10617 The difficulty here is that we have predicates for A but not for
10618 (A - C1) so we need to check that C1 is within proper bounds so
10619 as to perturbate A as little as possible. */
10620
10621 if (mode_width <= HOST_BITS_PER_WIDE_INT
10622 && subreg_lowpart_p (op0)
10623 && GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (op0))) > mode_width
10624 && GET_CODE (SUBREG_REG (op0)) == PLUS
10625 && CONST_INT_P (XEXP (SUBREG_REG (op0), 1)))
10626 {
10627 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (op0));
10628 rtx a = XEXP (SUBREG_REG (op0), 0);
10629 HOST_WIDE_INT c1 = -INTVAL (XEXP (SUBREG_REG (op0), 1));
10630
10631 if ((c1 > 0
10632 && (unsigned HOST_WIDE_INT) c1
10633 < (unsigned HOST_WIDE_INT) 1 << (mode_width - 1)
10634 && (equality_comparison_p || unsigned_comparison_p)
10635 /* (A - C1) zero-extends if it is positive and sign-extends
10636 if it is negative, C2 both zero- and sign-extends. */
10637 && ((0 == (nonzero_bits (a, inner_mode)
10638 & ~GET_MODE_MASK (mode))
10639 && const_op >= 0)
10640 /* (A - C1) sign-extends if it is positive and 1-extends
10641 if it is negative, C2 both sign- and 1-extends. */
10642 || (num_sign_bit_copies (a, inner_mode)
10643 > (unsigned int) (GET_MODE_BITSIZE (inner_mode)
10644 - mode_width)
10645 && const_op < 0)))
10646 || ((unsigned HOST_WIDE_INT) c1
10647 < (unsigned HOST_WIDE_INT) 1 << (mode_width - 2)
10648 /* (A - C1) always sign-extends, like C2. */
10649 && num_sign_bit_copies (a, inner_mode)
10650 > (unsigned int) (GET_MODE_BITSIZE (inner_mode)
10651 - (mode_width - 1))))
10652 {
10653 op0 = SUBREG_REG (op0);
10654 continue;
10655 }
10656 }
10657
10658 /* If the inner mode is narrower and we are extracting the low part,
10659 we can treat the SUBREG as if it were a ZERO_EXTEND. */
10660 if (subreg_lowpart_p (op0)
10661 && GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (op0))) < mode_width)
10662 /* Fall through */ ;
10663 else
10664 break;
10665
10666 /* ... fall through ... */
10667
10668 case ZERO_EXTEND:
10669 mode = GET_MODE (XEXP (op0, 0));
10670 if (mode != VOIDmode && GET_MODE_CLASS (mode) == MODE_INT
10671 && (unsigned_comparison_p || equality_comparison_p)
10672 && (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
10673 && ((unsigned HOST_WIDE_INT) const_op < GET_MODE_MASK (mode))
10674 && have_insn_for (COMPARE, mode))
10675 {
10676 op0 = XEXP (op0, 0);
10677 continue;
10678 }
10679 break;
10680
10681 case PLUS:
10682 /* (eq (plus X A) B) -> (eq X (minus B A)). We can only do
10683 this for equality comparisons due to pathological cases involving
10684 overflows. */
10685 if (equality_comparison_p
10686 && 0 != (tem = simplify_binary_operation (MINUS, mode,
10687 op1, XEXP (op0, 1))))
10688 {
10689 op0 = XEXP (op0, 0);
10690 op1 = tem;
10691 continue;
10692 }
10693
10694 /* (plus (abs X) (const_int -1)) is < 0 if and only if X == 0. */
10695 if (const_op == 0 && XEXP (op0, 1) == constm1_rtx
10696 && GET_CODE (XEXP (op0, 0)) == ABS && sign_bit_comparison_p)
10697 {
10698 op0 = XEXP (XEXP (op0, 0), 0);
10699 code = (code == LT ? EQ : NE);
10700 continue;
10701 }
10702 break;
10703
10704 case MINUS:
10705 /* We used to optimize signed comparisons against zero, but that
10706 was incorrect. Unsigned comparisons against zero (GTU, LEU)
10707 arrive here as equality comparisons, or (GEU, LTU) are
10708 optimized away. No need to special-case them. */
10709
10710 /* (eq (minus A B) C) -> (eq A (plus B C)) or
10711 (eq B (minus A C)), whichever simplifies. We can only do
10712 this for equality comparisons due to pathological cases involving
10713 overflows. */
10714 if (equality_comparison_p
10715 && 0 != (tem = simplify_binary_operation (PLUS, mode,
10716 XEXP (op0, 1), op1)))
10717 {
10718 op0 = XEXP (op0, 0);
10719 op1 = tem;
10720 continue;
10721 }
10722
10723 if (equality_comparison_p
10724 && 0 != (tem = simplify_binary_operation (MINUS, mode,
10725 XEXP (op0, 0), op1)))
10726 {
10727 op0 = XEXP (op0, 1);
10728 op1 = tem;
10729 continue;
10730 }
10731
10732 /* The sign bit of (minus (ashiftrt X C) X), where C is the number
10733 of bits in X minus 1, is one iff X > 0. */
10734 if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 0)) == ASHIFTRT
10735 && CONST_INT_P (XEXP (XEXP (op0, 0), 1))
10736 && (unsigned HOST_WIDE_INT) INTVAL (XEXP (XEXP (op0, 0), 1))
10737 == mode_width - 1
10738 && rtx_equal_p (XEXP (XEXP (op0, 0), 0), XEXP (op0, 1)))
10739 {
10740 op0 = XEXP (op0, 1);
10741 code = (code == GE ? LE : GT);
10742 continue;
10743 }
10744 break;
10745
10746 case XOR:
10747 /* (eq (xor A B) C) -> (eq A (xor B C)). This is a simplification
10748 if C is zero or B is a constant. */
10749 if (equality_comparison_p
10750 && 0 != (tem = simplify_binary_operation (XOR, mode,
10751 XEXP (op0, 1), op1)))
10752 {
10753 op0 = XEXP (op0, 0);
10754 op1 = tem;
10755 continue;
10756 }
10757 break;
10758
10759 case EQ: case NE:
10760 case UNEQ: case LTGT:
10761 case LT: case LTU: case UNLT: case LE: case LEU: case UNLE:
10762 case GT: case GTU: case UNGT: case GE: case GEU: case UNGE:
10763 case UNORDERED: case ORDERED:
10764 /* We can't do anything if OP0 is a condition code value, rather
10765 than an actual data value. */
10766 if (const_op != 0
10767 || CC0_P (XEXP (op0, 0))
10768 || GET_MODE_CLASS (GET_MODE (XEXP (op0, 0))) == MODE_CC)
10769 break;
10770
10771 /* Get the two operands being compared. */
10772 if (GET_CODE (XEXP (op0, 0)) == COMPARE)
10773 tem = XEXP (XEXP (op0, 0), 0), tem1 = XEXP (XEXP (op0, 0), 1);
10774 else
10775 tem = XEXP (op0, 0), tem1 = XEXP (op0, 1);
10776
10777 /* Check for the cases where we simply want the result of the
10778 earlier test or the opposite of that result. */
10779 if (code == NE || code == EQ
10780 || (GET_MODE_BITSIZE (GET_MODE (op0)) <= HOST_BITS_PER_WIDE_INT
10781 && GET_MODE_CLASS (GET_MODE (op0)) == MODE_INT
10782 && (STORE_FLAG_VALUE
10783 & (((HOST_WIDE_INT) 1
10784 << (GET_MODE_BITSIZE (GET_MODE (op0)) - 1))))
10785 && (code == LT || code == GE)))
10786 {
10787 enum rtx_code new_code;
10788 if (code == LT || code == NE)
10789 new_code = GET_CODE (op0);
10790 else
10791 new_code = reversed_comparison_code (op0, NULL);
10792
10793 if (new_code != UNKNOWN)
10794 {
10795 code = new_code;
10796 op0 = tem;
10797 op1 = tem1;
10798 continue;
10799 }
10800 }
10801 break;
10802
10803 case IOR:
10804 /* The sign bit of (ior (plus X (const_int -1)) X) is nonzero
10805 iff X <= 0. */
10806 if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 0)) == PLUS
10807 && XEXP (XEXP (op0, 0), 1) == constm1_rtx
10808 && rtx_equal_p (XEXP (XEXP (op0, 0), 0), XEXP (op0, 1)))
10809 {
10810 op0 = XEXP (op0, 1);
10811 code = (code == GE ? GT : LE);
10812 continue;
10813 }
10814 break;
10815
10816 case AND:
10817 /* Convert (and (xshift 1 X) Y) to (and (lshiftrt Y X) 1). This
10818 will be converted to a ZERO_EXTRACT later. */
10819 if (const_op == 0 && equality_comparison_p
10820 && GET_CODE (XEXP (op0, 0)) == ASHIFT
10821 && XEXP (XEXP (op0, 0), 0) == const1_rtx)
10822 {
10823 op0 = simplify_and_const_int
10824 (NULL_RTX, mode, gen_rtx_LSHIFTRT (mode,
10825 XEXP (op0, 1),
10826 XEXP (XEXP (op0, 0), 1)),
10827 (HOST_WIDE_INT) 1);
10828 continue;
10829 }
10830
10831 /* If we are comparing (and (lshiftrt X C1) C2) for equality with
10832 zero and X is a comparison and C1 and C2 describe only bits set
10833 in STORE_FLAG_VALUE, we can compare with X. */
10834 if (const_op == 0 && equality_comparison_p
10835 && mode_width <= HOST_BITS_PER_WIDE_INT
10836 && CONST_INT_P (XEXP (op0, 1))
10837 && GET_CODE (XEXP (op0, 0)) == LSHIFTRT
10838 && CONST_INT_P (XEXP (XEXP (op0, 0), 1))
10839 && INTVAL (XEXP (XEXP (op0, 0), 1)) >= 0
10840 && INTVAL (XEXP (XEXP (op0, 0), 1)) < HOST_BITS_PER_WIDE_INT)
10841 {
10842 mask = ((INTVAL (XEXP (op0, 1)) & GET_MODE_MASK (mode))
10843 << INTVAL (XEXP (XEXP (op0, 0), 1)));
10844 if ((~STORE_FLAG_VALUE & mask) == 0
10845 && (COMPARISON_P (XEXP (XEXP (op0, 0), 0))
10846 || ((tem = get_last_value (XEXP (XEXP (op0, 0), 0))) != 0
10847 && COMPARISON_P (tem))))
10848 {
10849 op0 = XEXP (XEXP (op0, 0), 0);
10850 continue;
10851 }
10852 }
10853
10854 /* If we are doing an equality comparison of an AND of a bit equal
10855 to the sign bit, replace this with a LT or GE comparison of
10856 the underlying value. */
10857 if (equality_comparison_p
10858 && const_op == 0
10859 && CONST_INT_P (XEXP (op0, 1))
10860 && mode_width <= HOST_BITS_PER_WIDE_INT
10861 && ((INTVAL (XEXP (op0, 1)) & GET_MODE_MASK (mode))
10862 == (unsigned HOST_WIDE_INT) 1 << (mode_width - 1)))
10863 {
10864 op0 = XEXP (op0, 0);
10865 code = (code == EQ ? GE : LT);
10866 continue;
10867 }
10868
10869 /* If this AND operation is really a ZERO_EXTEND from a narrower
10870 mode, the constant fits within that mode, and this is either an
10871 equality or unsigned comparison, try to do this comparison in
10872 the narrower mode.
10873
10874 Note that in:
10875
10876 (ne:DI (and:DI (reg:DI 4) (const_int 0xffffffff)) (const_int 0))
10877 -> (ne:DI (reg:SI 4) (const_int 0))
10878
10879 unless TRULY_NOOP_TRUNCATION allows it or the register is
10880 known to hold a value of the required mode the
10881 transformation is invalid. */
10882 if ((equality_comparison_p || unsigned_comparison_p)
10883 && CONST_INT_P (XEXP (op0, 1))
10884 && (i = exact_log2 ((INTVAL (XEXP (op0, 1))
10885 & GET_MODE_MASK (mode))
10886 + 1)) >= 0
10887 && const_op >> i == 0
10888 && (tmode = mode_for_size (i, MODE_INT, 1)) != BLKmode
10889 && (TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (tmode),
10890 GET_MODE_BITSIZE (GET_MODE (op0)))
10891 || (REG_P (XEXP (op0, 0))
10892 && reg_truncated_to_mode (tmode, XEXP (op0, 0)))))
10893 {
10894 op0 = gen_lowpart (tmode, XEXP (op0, 0));
10895 continue;
10896 }
10897
10898 /* If this is (and:M1 (subreg:M2 X 0) (const_int C1)) where C1
10899 fits in both M1 and M2 and the SUBREG is either paradoxical
10900 or represents the low part, permute the SUBREG and the AND
10901 and try again. */
10902 if (GET_CODE (XEXP (op0, 0)) == SUBREG)
10903 {
10904 unsigned HOST_WIDE_INT c1;
10905 tmode = GET_MODE (SUBREG_REG (XEXP (op0, 0)));
10906 /* Require an integral mode, to avoid creating something like
10907 (AND:SF ...). */
10908 if (SCALAR_INT_MODE_P (tmode)
10909 /* It is unsafe to commute the AND into the SUBREG if the
10910 SUBREG is paradoxical and WORD_REGISTER_OPERATIONS is
10911 not defined. As originally written the upper bits
10912 have a defined value due to the AND operation.
10913 However, if we commute the AND inside the SUBREG then
10914 they no longer have defined values and the meaning of
10915 the code has been changed. */
10916 && (0
10917 #ifdef WORD_REGISTER_OPERATIONS
10918 || (mode_width > GET_MODE_BITSIZE (tmode)
10919 && mode_width <= BITS_PER_WORD)
10920 #endif
10921 || (mode_width <= GET_MODE_BITSIZE (tmode)
10922 && subreg_lowpart_p (XEXP (op0, 0))))
10923 && CONST_INT_P (XEXP (op0, 1))
10924 && mode_width <= HOST_BITS_PER_WIDE_INT
10925 && GET_MODE_BITSIZE (tmode) <= HOST_BITS_PER_WIDE_INT
10926 && ((c1 = INTVAL (XEXP (op0, 1))) & ~mask) == 0
10927 && (c1 & ~GET_MODE_MASK (tmode)) == 0
10928 && c1 != mask
10929 && c1 != GET_MODE_MASK (tmode))
10930 {
10931 op0 = simplify_gen_binary (AND, tmode,
10932 SUBREG_REG (XEXP (op0, 0)),
10933 gen_int_mode (c1, tmode));
10934 op0 = gen_lowpart (mode, op0);
10935 continue;
10936 }
10937 }
10938
10939 /* Convert (ne (and (not X) 1) 0) to (eq (and X 1) 0). */
10940 if (const_op == 0 && equality_comparison_p
10941 && XEXP (op0, 1) == const1_rtx
10942 && GET_CODE (XEXP (op0, 0)) == NOT)
10943 {
10944 op0 = simplify_and_const_int
10945 (NULL_RTX, mode, XEXP (XEXP (op0, 0), 0), (HOST_WIDE_INT) 1);
10946 code = (code == NE ? EQ : NE);
10947 continue;
10948 }
10949
10950 /* Convert (ne (and (lshiftrt (not X)) 1) 0) to
10951 (eq (and (lshiftrt X) 1) 0).
10952 Also handle the case where (not X) is expressed using xor. */
10953 if (const_op == 0 && equality_comparison_p
10954 && XEXP (op0, 1) == const1_rtx
10955 && GET_CODE (XEXP (op0, 0)) == LSHIFTRT)
10956 {
10957 rtx shift_op = XEXP (XEXP (op0, 0), 0);
10958 rtx shift_count = XEXP (XEXP (op0, 0), 1);
10959
10960 if (GET_CODE (shift_op) == NOT
10961 || (GET_CODE (shift_op) == XOR
10962 && CONST_INT_P (XEXP (shift_op, 1))
10963 && CONST_INT_P (shift_count)
10964 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
10965 && (INTVAL (XEXP (shift_op, 1))
10966 == (HOST_WIDE_INT) 1 << INTVAL (shift_count))))
10967 {
10968 op0 = simplify_and_const_int
10969 (NULL_RTX, mode,
10970 gen_rtx_LSHIFTRT (mode, XEXP (shift_op, 0), shift_count),
10971 (HOST_WIDE_INT) 1);
10972 code = (code == NE ? EQ : NE);
10973 continue;
10974 }
10975 }
10976 break;
10977
10978 case ASHIFT:
10979 /* If we have (compare (ashift FOO N) (const_int C)) and
10980 the high order N bits of FOO (N+1 if an inequality comparison)
10981 are known to be zero, we can do this by comparing FOO with C
10982 shifted right N bits so long as the low-order N bits of C are
10983 zero. */
10984 if (CONST_INT_P (XEXP (op0, 1))
10985 && INTVAL (XEXP (op0, 1)) >= 0
10986 && ((INTVAL (XEXP (op0, 1)) + ! equality_comparison_p)
10987 < HOST_BITS_PER_WIDE_INT)
10988 && ((const_op
10989 & (((HOST_WIDE_INT) 1 << INTVAL (XEXP (op0, 1))) - 1)) == 0)
10990 && mode_width <= HOST_BITS_PER_WIDE_INT
10991 && (nonzero_bits (XEXP (op0, 0), mode)
10992 & ~(mask >> (INTVAL (XEXP (op0, 1))
10993 + ! equality_comparison_p))) == 0)
10994 {
10995 /* We must perform a logical shift, not an arithmetic one,
10996 as we want the top N bits of C to be zero. */
10997 unsigned HOST_WIDE_INT temp = const_op & GET_MODE_MASK (mode);
10998
10999 temp >>= INTVAL (XEXP (op0, 1));
11000 op1 = gen_int_mode (temp, mode);
11001 op0 = XEXP (op0, 0);
11002 continue;
11003 }
11004
11005 /* If we are doing a sign bit comparison, it means we are testing
11006 a particular bit. Convert it to the appropriate AND. */
11007 if (sign_bit_comparison_p && CONST_INT_P (XEXP (op0, 1))
11008 && mode_width <= HOST_BITS_PER_WIDE_INT)
11009 {
11010 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
11011 ((HOST_WIDE_INT) 1
11012 << (mode_width - 1
11013 - INTVAL (XEXP (op0, 1)))));
11014 code = (code == LT ? NE : EQ);
11015 continue;
11016 }
11017
11018 /* If this an equality comparison with zero and we are shifting
11019 the low bit to the sign bit, we can convert this to an AND of the
11020 low-order bit. */
11021 if (const_op == 0 && equality_comparison_p
11022 && CONST_INT_P (XEXP (op0, 1))
11023 && (unsigned HOST_WIDE_INT) INTVAL (XEXP (op0, 1))
11024 == mode_width - 1)
11025 {
11026 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
11027 (HOST_WIDE_INT) 1);
11028 continue;
11029 }
11030 break;
11031
11032 case ASHIFTRT:
11033 /* If this is an equality comparison with zero, we can do this
11034 as a logical shift, which might be much simpler. */
11035 if (equality_comparison_p && const_op == 0
11036 && CONST_INT_P (XEXP (op0, 1)))
11037 {
11038 op0 = simplify_shift_const (NULL_RTX, LSHIFTRT, mode,
11039 XEXP (op0, 0),
11040 INTVAL (XEXP (op0, 1)));
11041 continue;
11042 }
11043
11044 /* If OP0 is a sign extension and CODE is not an unsigned comparison,
11045 do the comparison in a narrower mode. */
11046 if (! unsigned_comparison_p
11047 && CONST_INT_P (XEXP (op0, 1))
11048 && GET_CODE (XEXP (op0, 0)) == ASHIFT
11049 && XEXP (op0, 1) == XEXP (XEXP (op0, 0), 1)
11050 && (tmode = mode_for_size (mode_width - INTVAL (XEXP (op0, 1)),
11051 MODE_INT, 1)) != BLKmode
11052 && (((unsigned HOST_WIDE_INT) const_op
11053 + (GET_MODE_MASK (tmode) >> 1) + 1)
11054 <= GET_MODE_MASK (tmode)))
11055 {
11056 op0 = gen_lowpart (tmode, XEXP (XEXP (op0, 0), 0));
11057 continue;
11058 }
11059
11060 /* Likewise if OP0 is a PLUS of a sign extension with a
11061 constant, which is usually represented with the PLUS
11062 between the shifts. */
11063 if (! unsigned_comparison_p
11064 && CONST_INT_P (XEXP (op0, 1))
11065 && GET_CODE (XEXP (op0, 0)) == PLUS
11066 && CONST_INT_P (XEXP (XEXP (op0, 0), 1))
11067 && GET_CODE (XEXP (XEXP (op0, 0), 0)) == ASHIFT
11068 && XEXP (op0, 1) == XEXP (XEXP (XEXP (op0, 0), 0), 1)
11069 && (tmode = mode_for_size (mode_width - INTVAL (XEXP (op0, 1)),
11070 MODE_INT, 1)) != BLKmode
11071 && (((unsigned HOST_WIDE_INT) const_op
11072 + (GET_MODE_MASK (tmode) >> 1) + 1)
11073 <= GET_MODE_MASK (tmode)))
11074 {
11075 rtx inner = XEXP (XEXP (XEXP (op0, 0), 0), 0);
11076 rtx add_const = XEXP (XEXP (op0, 0), 1);
11077 rtx new_const = simplify_gen_binary (ASHIFTRT, GET_MODE (op0),
11078 add_const, XEXP (op0, 1));
11079
11080 op0 = simplify_gen_binary (PLUS, tmode,
11081 gen_lowpart (tmode, inner),
11082 new_const);
11083 continue;
11084 }
11085
11086 /* ... fall through ... */
11087 case LSHIFTRT:
11088 /* If we have (compare (xshiftrt FOO N) (const_int C)) and
11089 the low order N bits of FOO are known to be zero, we can do this
11090 by comparing FOO with C shifted left N bits so long as no
11091 overflow occurs. */
11092 if (CONST_INT_P (XEXP (op0, 1))
11093 && INTVAL (XEXP (op0, 1)) >= 0
11094 && INTVAL (XEXP (op0, 1)) < HOST_BITS_PER_WIDE_INT
11095 && mode_width <= HOST_BITS_PER_WIDE_INT
11096 && (nonzero_bits (XEXP (op0, 0), mode)
11097 & (((HOST_WIDE_INT) 1 << INTVAL (XEXP (op0, 1))) - 1)) == 0
11098 && (((unsigned HOST_WIDE_INT) const_op
11099 + (GET_CODE (op0) != LSHIFTRT
11100 ? ((GET_MODE_MASK (mode) >> INTVAL (XEXP (op0, 1)) >> 1)
11101 + 1)
11102 : 0))
11103 <= GET_MODE_MASK (mode) >> INTVAL (XEXP (op0, 1))))
11104 {
11105 /* If the shift was logical, then we must make the condition
11106 unsigned. */
11107 if (GET_CODE (op0) == LSHIFTRT)
11108 code = unsigned_condition (code);
11109
11110 const_op <<= INTVAL (XEXP (op0, 1));
11111 op1 = GEN_INT (const_op);
11112 op0 = XEXP (op0, 0);
11113 continue;
11114 }
11115
11116 /* If we are using this shift to extract just the sign bit, we
11117 can replace this with an LT or GE comparison. */
11118 if (const_op == 0
11119 && (equality_comparison_p || sign_bit_comparison_p)
11120 && CONST_INT_P (XEXP (op0, 1))
11121 && (unsigned HOST_WIDE_INT) INTVAL (XEXP (op0, 1))
11122 == mode_width - 1)
11123 {
11124 op0 = XEXP (op0, 0);
11125 code = (code == NE || code == GT ? LT : GE);
11126 continue;
11127 }
11128 break;
11129
11130 default:
11131 break;
11132 }
11133
11134 break;
11135 }
11136
11137 /* Now make any compound operations involved in this comparison. Then,
11138 check for an outmost SUBREG on OP0 that is not doing anything or is
11139 paradoxical. The latter transformation must only be performed when
11140 it is known that the "extra" bits will be the same in op0 and op1 or
11141 that they don't matter. There are three cases to consider:
11142
11143 1. SUBREG_REG (op0) is a register. In this case the bits are don't
11144 care bits and we can assume they have any convenient value. So
11145 making the transformation is safe.
11146
11147 2. SUBREG_REG (op0) is a memory and LOAD_EXTEND_OP is not defined.
11148 In this case the upper bits of op0 are undefined. We should not make
11149 the simplification in that case as we do not know the contents of
11150 those bits.
11151
11152 3. SUBREG_REG (op0) is a memory and LOAD_EXTEND_OP is defined and not
11153 UNKNOWN. In that case we know those bits are zeros or ones. We must
11154 also be sure that they are the same as the upper bits of op1.
11155
11156 We can never remove a SUBREG for a non-equality comparison because
11157 the sign bit is in a different place in the underlying object. */
11158
11159 op0 = make_compound_operation (op0, op1 == const0_rtx ? COMPARE : SET);
11160 op1 = make_compound_operation (op1, SET);
11161
11162 if (GET_CODE (op0) == SUBREG && subreg_lowpart_p (op0)
11163 && GET_MODE_CLASS (GET_MODE (op0)) == MODE_INT
11164 && GET_MODE_CLASS (GET_MODE (SUBREG_REG (op0))) == MODE_INT
11165 && (code == NE || code == EQ))
11166 {
11167 if (GET_MODE_SIZE (GET_MODE (op0))
11168 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (op0))))
11169 {
11170 /* For paradoxical subregs, allow case 1 as above. Case 3 isn't
11171 implemented. */
11172 if (REG_P (SUBREG_REG (op0)))
11173 {
11174 op0 = SUBREG_REG (op0);
11175 op1 = gen_lowpart (GET_MODE (op0), op1);
11176 }
11177 }
11178 else if ((GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (op0)))
11179 <= HOST_BITS_PER_WIDE_INT)
11180 && (nonzero_bits (SUBREG_REG (op0),
11181 GET_MODE (SUBREG_REG (op0)))
11182 & ~GET_MODE_MASK (GET_MODE (op0))) == 0)
11183 {
11184 tem = gen_lowpart (GET_MODE (SUBREG_REG (op0)), op1);
11185
11186 if ((nonzero_bits (tem, GET_MODE (SUBREG_REG (op0)))
11187 & ~GET_MODE_MASK (GET_MODE (op0))) == 0)
11188 op0 = SUBREG_REG (op0), op1 = tem;
11189 }
11190 }
11191
11192 /* We now do the opposite procedure: Some machines don't have compare
11193 insns in all modes. If OP0's mode is an integer mode smaller than a
11194 word and we can't do a compare in that mode, see if there is a larger
11195 mode for which we can do the compare. There are a number of cases in
11196 which we can use the wider mode. */
11197
11198 mode = GET_MODE (op0);
11199 if (mode != VOIDmode && GET_MODE_CLASS (mode) == MODE_INT
11200 && GET_MODE_SIZE (mode) < UNITS_PER_WORD
11201 && ! have_insn_for (COMPARE, mode))
11202 for (tmode = GET_MODE_WIDER_MODE (mode);
11203 (tmode != VOIDmode
11204 && GET_MODE_BITSIZE (tmode) <= HOST_BITS_PER_WIDE_INT);
11205 tmode = GET_MODE_WIDER_MODE (tmode))
11206 if (have_insn_for (COMPARE, tmode))
11207 {
11208 int zero_extended;
11209
11210 /* If the only nonzero bits in OP0 and OP1 are those in the
11211 narrower mode and this is an equality or unsigned comparison,
11212 we can use the wider mode. Similarly for sign-extended
11213 values, in which case it is true for all comparisons. */
11214 zero_extended = ((code == EQ || code == NE
11215 || code == GEU || code == GTU
11216 || code == LEU || code == LTU)
11217 && (nonzero_bits (op0, tmode)
11218 & ~GET_MODE_MASK (mode)) == 0
11219 && ((CONST_INT_P (op1)
11220 || (nonzero_bits (op1, tmode)
11221 & ~GET_MODE_MASK (mode)) == 0)));
11222
11223 if (zero_extended
11224 || ((num_sign_bit_copies (op0, tmode)
11225 > (unsigned int) (GET_MODE_BITSIZE (tmode)
11226 - GET_MODE_BITSIZE (mode)))
11227 && (num_sign_bit_copies (op1, tmode)
11228 > (unsigned int) (GET_MODE_BITSIZE (tmode)
11229 - GET_MODE_BITSIZE (mode)))))
11230 {
11231 /* If OP0 is an AND and we don't have an AND in MODE either,
11232 make a new AND in the proper mode. */
11233 if (GET_CODE (op0) == AND
11234 && !have_insn_for (AND, mode))
11235 op0 = simplify_gen_binary (AND, tmode,
11236 gen_lowpart (tmode,
11237 XEXP (op0, 0)),
11238 gen_lowpart (tmode,
11239 XEXP (op0, 1)));
11240
11241 op0 = gen_lowpart (tmode, op0);
11242 if (zero_extended && CONST_INT_P (op1))
11243 op1 = GEN_INT (INTVAL (op1) & GET_MODE_MASK (mode));
11244 op1 = gen_lowpart (tmode, op1);
11245 break;
11246 }
11247
11248 /* If this is a test for negative, we can make an explicit
11249 test of the sign bit. */
11250
11251 if (op1 == const0_rtx && (code == LT || code == GE)
11252 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
11253 {
11254 op0 = simplify_gen_binary (AND, tmode,
11255 gen_lowpart (tmode, op0),
11256 GEN_INT ((HOST_WIDE_INT) 1
11257 << (GET_MODE_BITSIZE (mode)
11258 - 1)));
11259 code = (code == LT) ? NE : EQ;
11260 break;
11261 }
11262 }
11263
11264 #ifdef CANONICALIZE_COMPARISON
11265 /* If this machine only supports a subset of valid comparisons, see if we
11266 can convert an unsupported one into a supported one. */
11267 CANONICALIZE_COMPARISON (code, op0, op1);
11268 #endif
11269
11270 *pop0 = op0;
11271 *pop1 = op1;
11272
11273 return code;
11274 }
11275 \f
11276 /* Utility function for record_value_for_reg. Count number of
11277 rtxs in X. */
11278 static int
11279 count_rtxs (rtx x)
11280 {
11281 enum rtx_code code = GET_CODE (x);
11282 const char *fmt;
11283 int i, j, ret = 1;
11284
11285 if (GET_RTX_CLASS (code) == '2'
11286 || GET_RTX_CLASS (code) == 'c')
11287 {
11288 rtx x0 = XEXP (x, 0);
11289 rtx x1 = XEXP (x, 1);
11290
11291 if (x0 == x1)
11292 return 1 + 2 * count_rtxs (x0);
11293
11294 if ((GET_RTX_CLASS (GET_CODE (x1)) == '2'
11295 || GET_RTX_CLASS (GET_CODE (x1)) == 'c')
11296 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
11297 return 2 + 2 * count_rtxs (x0)
11298 + count_rtxs (x == XEXP (x1, 0)
11299 ? XEXP (x1, 1) : XEXP (x1, 0));
11300
11301 if ((GET_RTX_CLASS (GET_CODE (x0)) == '2'
11302 || GET_RTX_CLASS (GET_CODE (x0)) == 'c')
11303 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
11304 return 2 + 2 * count_rtxs (x1)
11305 + count_rtxs (x == XEXP (x0, 0)
11306 ? XEXP (x0, 1) : XEXP (x0, 0));
11307 }
11308
11309 fmt = GET_RTX_FORMAT (code);
11310 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
11311 if (fmt[i] == 'e')
11312 ret += count_rtxs (XEXP (x, i));
11313 else if (fmt[i] == 'E')
11314 for (j = 0; j < XVECLEN (x, i); j++)
11315 ret += count_rtxs (XVECEXP (x, i, j));
11316
11317 return ret;
11318 }
11319 \f
11320 /* Utility function for following routine. Called when X is part of a value
11321 being stored into last_set_value. Sets last_set_table_tick
11322 for each register mentioned. Similar to mention_regs in cse.c */
11323
11324 static void
11325 update_table_tick (rtx x)
11326 {
11327 enum rtx_code code = GET_CODE (x);
11328 const char *fmt = GET_RTX_FORMAT (code);
11329 int i, j;
11330
11331 if (code == REG)
11332 {
11333 unsigned int regno = REGNO (x);
11334 unsigned int endregno = END_REGNO (x);
11335 unsigned int r;
11336
11337 for (r = regno; r < endregno; r++)
11338 {
11339 reg_stat_type *rsp = VEC_index (reg_stat_type, reg_stat, r);
11340 rsp->last_set_table_tick = label_tick;
11341 }
11342
11343 return;
11344 }
11345
11346 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
11347 if (fmt[i] == 'e')
11348 {
11349 /* Check for identical subexpressions. If x contains
11350 identical subexpression we only have to traverse one of
11351 them. */
11352 if (i == 0 && ARITHMETIC_P (x))
11353 {
11354 /* Note that at this point x1 has already been
11355 processed. */
11356 rtx x0 = XEXP (x, 0);
11357 rtx x1 = XEXP (x, 1);
11358
11359 /* If x0 and x1 are identical then there is no need to
11360 process x0. */
11361 if (x0 == x1)
11362 break;
11363
11364 /* If x0 is identical to a subexpression of x1 then while
11365 processing x1, x0 has already been processed. Thus we
11366 are done with x. */
11367 if (ARITHMETIC_P (x1)
11368 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
11369 break;
11370
11371 /* If x1 is identical to a subexpression of x0 then we
11372 still have to process the rest of x0. */
11373 if (ARITHMETIC_P (x0)
11374 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
11375 {
11376 update_table_tick (XEXP (x0, x1 == XEXP (x0, 0) ? 1 : 0));
11377 break;
11378 }
11379 }
11380
11381 update_table_tick (XEXP (x, i));
11382 }
11383 else if (fmt[i] == 'E')
11384 for (j = 0; j < XVECLEN (x, i); j++)
11385 update_table_tick (XVECEXP (x, i, j));
11386 }
11387
11388 /* Record that REG is set to VALUE in insn INSN. If VALUE is zero, we
11389 are saying that the register is clobbered and we no longer know its
11390 value. If INSN is zero, don't update reg_stat[].last_set; this is
11391 only permitted with VALUE also zero and is used to invalidate the
11392 register. */
11393
11394 static void
11395 record_value_for_reg (rtx reg, rtx insn, rtx value)
11396 {
11397 unsigned int regno = REGNO (reg);
11398 unsigned int endregno = END_REGNO (reg);
11399 unsigned int i;
11400 reg_stat_type *rsp;
11401
11402 /* If VALUE contains REG and we have a previous value for REG, substitute
11403 the previous value. */
11404 if (value && insn && reg_overlap_mentioned_p (reg, value))
11405 {
11406 rtx tem;
11407
11408 /* Set things up so get_last_value is allowed to see anything set up to
11409 our insn. */
11410 subst_low_luid = DF_INSN_LUID (insn);
11411 tem = get_last_value (reg);
11412
11413 /* If TEM is simply a binary operation with two CLOBBERs as operands,
11414 it isn't going to be useful and will take a lot of time to process,
11415 so just use the CLOBBER. */
11416
11417 if (tem)
11418 {
11419 if (ARITHMETIC_P (tem)
11420 && GET_CODE (XEXP (tem, 0)) == CLOBBER
11421 && GET_CODE (XEXP (tem, 1)) == CLOBBER)
11422 tem = XEXP (tem, 0);
11423 else if (count_occurrences (value, reg, 1) >= 2)
11424 {
11425 /* If there are two or more occurrences of REG in VALUE,
11426 prevent the value from growing too much. */
11427 if (count_rtxs (tem) > MAX_LAST_VALUE_RTL)
11428 tem = gen_rtx_CLOBBER (GET_MODE (tem), const0_rtx);
11429 }
11430
11431 value = replace_rtx (copy_rtx (value), reg, tem);
11432 }
11433 }
11434
11435 /* For each register modified, show we don't know its value, that
11436 we don't know about its bitwise content, that its value has been
11437 updated, and that we don't know the location of the death of the
11438 register. */
11439 for (i = regno; i < endregno; i++)
11440 {
11441 rsp = VEC_index (reg_stat_type, reg_stat, i);
11442
11443 if (insn)
11444 rsp->last_set = insn;
11445
11446 rsp->last_set_value = 0;
11447 rsp->last_set_mode = VOIDmode;
11448 rsp->last_set_nonzero_bits = 0;
11449 rsp->last_set_sign_bit_copies = 0;
11450 rsp->last_death = 0;
11451 rsp->truncated_to_mode = VOIDmode;
11452 }
11453
11454 /* Mark registers that are being referenced in this value. */
11455 if (value)
11456 update_table_tick (value);
11457
11458 /* Now update the status of each register being set.
11459 If someone is using this register in this block, set this register
11460 to invalid since we will get confused between the two lives in this
11461 basic block. This makes using this register always invalid. In cse, we
11462 scan the table to invalidate all entries using this register, but this
11463 is too much work for us. */
11464
11465 for (i = regno; i < endregno; i++)
11466 {
11467 rsp = VEC_index (reg_stat_type, reg_stat, i);
11468 rsp->last_set_label = label_tick;
11469 if (!insn
11470 || (value && rsp->last_set_table_tick >= label_tick_ebb_start))
11471 rsp->last_set_invalid = 1;
11472 else
11473 rsp->last_set_invalid = 0;
11474 }
11475
11476 /* The value being assigned might refer to X (like in "x++;"). In that
11477 case, we must replace it with (clobber (const_int 0)) to prevent
11478 infinite loops. */
11479 rsp = VEC_index (reg_stat_type, reg_stat, regno);
11480 if (value && ! get_last_value_validate (&value, insn,
11481 rsp->last_set_label, 0))
11482 {
11483 value = copy_rtx (value);
11484 if (! get_last_value_validate (&value, insn,
11485 rsp->last_set_label, 1))
11486 value = 0;
11487 }
11488
11489 /* For the main register being modified, update the value, the mode, the
11490 nonzero bits, and the number of sign bit copies. */
11491
11492 rsp->last_set_value = value;
11493
11494 if (value)
11495 {
11496 enum machine_mode mode = GET_MODE (reg);
11497 subst_low_luid = DF_INSN_LUID (insn);
11498 rsp->last_set_mode = mode;
11499 if (GET_MODE_CLASS (mode) == MODE_INT
11500 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
11501 mode = nonzero_bits_mode;
11502 rsp->last_set_nonzero_bits = nonzero_bits (value, mode);
11503 rsp->last_set_sign_bit_copies
11504 = num_sign_bit_copies (value, GET_MODE (reg));
11505 }
11506 }
11507
11508 /* Called via note_stores from record_dead_and_set_regs to handle one
11509 SET or CLOBBER in an insn. DATA is the instruction in which the
11510 set is occurring. */
11511
11512 static void
11513 record_dead_and_set_regs_1 (rtx dest, const_rtx setter, void *data)
11514 {
11515 rtx record_dead_insn = (rtx) data;
11516
11517 if (GET_CODE (dest) == SUBREG)
11518 dest = SUBREG_REG (dest);
11519
11520 if (!record_dead_insn)
11521 {
11522 if (REG_P (dest))
11523 record_value_for_reg (dest, NULL_RTX, NULL_RTX);
11524 return;
11525 }
11526
11527 if (REG_P (dest))
11528 {
11529 /* If we are setting the whole register, we know its value. Otherwise
11530 show that we don't know the value. We can handle SUBREG in
11531 some cases. */
11532 if (GET_CODE (setter) == SET && dest == SET_DEST (setter))
11533 record_value_for_reg (dest, record_dead_insn, SET_SRC (setter));
11534 else if (GET_CODE (setter) == SET
11535 && GET_CODE (SET_DEST (setter)) == SUBREG
11536 && SUBREG_REG (SET_DEST (setter)) == dest
11537 && GET_MODE_BITSIZE (GET_MODE (dest)) <= BITS_PER_WORD
11538 && subreg_lowpart_p (SET_DEST (setter)))
11539 record_value_for_reg (dest, record_dead_insn,
11540 gen_lowpart (GET_MODE (dest),
11541 SET_SRC (setter)));
11542 else
11543 record_value_for_reg (dest, record_dead_insn, NULL_RTX);
11544 }
11545 else if (MEM_P (dest)
11546 /* Ignore pushes, they clobber nothing. */
11547 && ! push_operand (dest, GET_MODE (dest)))
11548 mem_last_set = DF_INSN_LUID (record_dead_insn);
11549 }
11550
11551 /* Update the records of when each REG was most recently set or killed
11552 for the things done by INSN. This is the last thing done in processing
11553 INSN in the combiner loop.
11554
11555 We update reg_stat[], in particular fields last_set, last_set_value,
11556 last_set_mode, last_set_nonzero_bits, last_set_sign_bit_copies,
11557 last_death, and also the similar information mem_last_set (which insn
11558 most recently modified memory) and last_call_luid (which insn was the
11559 most recent subroutine call). */
11560
11561 static void
11562 record_dead_and_set_regs (rtx insn)
11563 {
11564 rtx link;
11565 unsigned int i;
11566
11567 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
11568 {
11569 if (REG_NOTE_KIND (link) == REG_DEAD
11570 && REG_P (XEXP (link, 0)))
11571 {
11572 unsigned int regno = REGNO (XEXP (link, 0));
11573 unsigned int endregno = END_REGNO (XEXP (link, 0));
11574
11575 for (i = regno; i < endregno; i++)
11576 {
11577 reg_stat_type *rsp;
11578
11579 rsp = VEC_index (reg_stat_type, reg_stat, i);
11580 rsp->last_death = insn;
11581 }
11582 }
11583 else if (REG_NOTE_KIND (link) == REG_INC)
11584 record_value_for_reg (XEXP (link, 0), insn, NULL_RTX);
11585 }
11586
11587 if (CALL_P (insn))
11588 {
11589 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
11590 if (TEST_HARD_REG_BIT (regs_invalidated_by_call, i))
11591 {
11592 reg_stat_type *rsp;
11593
11594 rsp = VEC_index (reg_stat_type, reg_stat, i);
11595 rsp->last_set_invalid = 1;
11596 rsp->last_set = insn;
11597 rsp->last_set_value = 0;
11598 rsp->last_set_mode = VOIDmode;
11599 rsp->last_set_nonzero_bits = 0;
11600 rsp->last_set_sign_bit_copies = 0;
11601 rsp->last_death = 0;
11602 rsp->truncated_to_mode = VOIDmode;
11603 }
11604
11605 last_call_luid = mem_last_set = DF_INSN_LUID (insn);
11606
11607 /* We can't combine into a call pattern. Remember, though, that
11608 the return value register is set at this LUID. We could
11609 still replace a register with the return value from the
11610 wrong subroutine call! */
11611 note_stores (PATTERN (insn), record_dead_and_set_regs_1, NULL_RTX);
11612 }
11613 else
11614 note_stores (PATTERN (insn), record_dead_and_set_regs_1, insn);
11615 }
11616
11617 /* If a SUBREG has the promoted bit set, it is in fact a property of the
11618 register present in the SUBREG, so for each such SUBREG go back and
11619 adjust nonzero and sign bit information of the registers that are
11620 known to have some zero/sign bits set.
11621
11622 This is needed because when combine blows the SUBREGs away, the
11623 information on zero/sign bits is lost and further combines can be
11624 missed because of that. */
11625
11626 static void
11627 record_promoted_value (rtx insn, rtx subreg)
11628 {
11629 rtx links, set;
11630 unsigned int regno = REGNO (SUBREG_REG (subreg));
11631 enum machine_mode mode = GET_MODE (subreg);
11632
11633 if (GET_MODE_BITSIZE (mode) > HOST_BITS_PER_WIDE_INT)
11634 return;
11635
11636 for (links = LOG_LINKS (insn); links;)
11637 {
11638 reg_stat_type *rsp;
11639
11640 insn = XEXP (links, 0);
11641 set = single_set (insn);
11642
11643 if (! set || !REG_P (SET_DEST (set))
11644 || REGNO (SET_DEST (set)) != regno
11645 || GET_MODE (SET_DEST (set)) != GET_MODE (SUBREG_REG (subreg)))
11646 {
11647 links = XEXP (links, 1);
11648 continue;
11649 }
11650
11651 rsp = VEC_index (reg_stat_type, reg_stat, regno);
11652 if (rsp->last_set == insn)
11653 {
11654 if (SUBREG_PROMOTED_UNSIGNED_P (subreg) > 0)
11655 rsp->last_set_nonzero_bits &= GET_MODE_MASK (mode);
11656 }
11657
11658 if (REG_P (SET_SRC (set)))
11659 {
11660 regno = REGNO (SET_SRC (set));
11661 links = LOG_LINKS (insn);
11662 }
11663 else
11664 break;
11665 }
11666 }
11667
11668 /* Check if X, a register, is known to contain a value already
11669 truncated to MODE. In this case we can use a subreg to refer to
11670 the truncated value even though in the generic case we would need
11671 an explicit truncation. */
11672
11673 static bool
11674 reg_truncated_to_mode (enum machine_mode mode, const_rtx x)
11675 {
11676 reg_stat_type *rsp = VEC_index (reg_stat_type, reg_stat, REGNO (x));
11677 enum machine_mode truncated = rsp->truncated_to_mode;
11678
11679 if (truncated == 0
11680 || rsp->truncation_label < label_tick_ebb_start)
11681 return false;
11682 if (GET_MODE_SIZE (truncated) <= GET_MODE_SIZE (mode))
11683 return true;
11684 if (TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (mode),
11685 GET_MODE_BITSIZE (truncated)))
11686 return true;
11687 return false;
11688 }
11689
11690 /* Callback for for_each_rtx. If *P is a hard reg or a subreg record the mode
11691 that the register is accessed in. For non-TRULY_NOOP_TRUNCATION targets we
11692 might be able to turn a truncate into a subreg using this information.
11693 Return -1 if traversing *P is complete or 0 otherwise. */
11694
11695 static int
11696 record_truncated_value (rtx *p, void *data ATTRIBUTE_UNUSED)
11697 {
11698 rtx x = *p;
11699 enum machine_mode truncated_mode;
11700 reg_stat_type *rsp;
11701
11702 if (GET_CODE (x) == SUBREG && REG_P (SUBREG_REG (x)))
11703 {
11704 enum machine_mode original_mode = GET_MODE (SUBREG_REG (x));
11705 truncated_mode = GET_MODE (x);
11706
11707 if (GET_MODE_SIZE (original_mode) <= GET_MODE_SIZE (truncated_mode))
11708 return -1;
11709
11710 if (TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (truncated_mode),
11711 GET_MODE_BITSIZE (original_mode)))
11712 return -1;
11713
11714 x = SUBREG_REG (x);
11715 }
11716 /* ??? For hard-regs we now record everything. We might be able to
11717 optimize this using last_set_mode. */
11718 else if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
11719 truncated_mode = GET_MODE (x);
11720 else
11721 return 0;
11722
11723 rsp = VEC_index (reg_stat_type, reg_stat, REGNO (x));
11724 if (rsp->truncated_to_mode == 0
11725 || rsp->truncation_label < label_tick_ebb_start
11726 || (GET_MODE_SIZE (truncated_mode)
11727 < GET_MODE_SIZE (rsp->truncated_to_mode)))
11728 {
11729 rsp->truncated_to_mode = truncated_mode;
11730 rsp->truncation_label = label_tick;
11731 }
11732
11733 return -1;
11734 }
11735
11736 /* Callback for note_uses. Find hardregs and subregs of pseudos and
11737 the modes they are used in. This can help truning TRUNCATEs into
11738 SUBREGs. */
11739
11740 static void
11741 record_truncated_values (rtx *x, void *data ATTRIBUTE_UNUSED)
11742 {
11743 for_each_rtx (x, record_truncated_value, NULL);
11744 }
11745
11746 /* Scan X for promoted SUBREGs. For each one found,
11747 note what it implies to the registers used in it. */
11748
11749 static void
11750 check_promoted_subreg (rtx insn, rtx x)
11751 {
11752 if (GET_CODE (x) == SUBREG
11753 && SUBREG_PROMOTED_VAR_P (x)
11754 && REG_P (SUBREG_REG (x)))
11755 record_promoted_value (insn, x);
11756 else
11757 {
11758 const char *format = GET_RTX_FORMAT (GET_CODE (x));
11759 int i, j;
11760
11761 for (i = 0; i < GET_RTX_LENGTH (GET_CODE (x)); i++)
11762 switch (format[i])
11763 {
11764 case 'e':
11765 check_promoted_subreg (insn, XEXP (x, i));
11766 break;
11767 case 'V':
11768 case 'E':
11769 if (XVEC (x, i) != 0)
11770 for (j = 0; j < XVECLEN (x, i); j++)
11771 check_promoted_subreg (insn, XVECEXP (x, i, j));
11772 break;
11773 }
11774 }
11775 }
11776 \f
11777 /* Utility routine for the following function. Verify that all the registers
11778 mentioned in *LOC are valid when *LOC was part of a value set when
11779 label_tick == TICK. Return 0 if some are not.
11780
11781 If REPLACE is nonzero, replace the invalid reference with
11782 (clobber (const_int 0)) and return 1. This replacement is useful because
11783 we often can get useful information about the form of a value (e.g., if
11784 it was produced by a shift that always produces -1 or 0) even though
11785 we don't know exactly what registers it was produced from. */
11786
11787 static int
11788 get_last_value_validate (rtx *loc, rtx insn, int tick, int replace)
11789 {
11790 rtx x = *loc;
11791 const char *fmt = GET_RTX_FORMAT (GET_CODE (x));
11792 int len = GET_RTX_LENGTH (GET_CODE (x));
11793 int i, j;
11794
11795 if (REG_P (x))
11796 {
11797 unsigned int regno = REGNO (x);
11798 unsigned int endregno = END_REGNO (x);
11799 unsigned int j;
11800
11801 for (j = regno; j < endregno; j++)
11802 {
11803 reg_stat_type *rsp = VEC_index (reg_stat_type, reg_stat, j);
11804 if (rsp->last_set_invalid
11805 /* If this is a pseudo-register that was only set once and not
11806 live at the beginning of the function, it is always valid. */
11807 || (! (regno >= FIRST_PSEUDO_REGISTER
11808 && REG_N_SETS (regno) == 1
11809 && (!REGNO_REG_SET_P
11810 (DF_LR_IN (ENTRY_BLOCK_PTR->next_bb), regno)))
11811 && rsp->last_set_label > tick))
11812 {
11813 if (replace)
11814 *loc = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
11815 return replace;
11816 }
11817 }
11818
11819 return 1;
11820 }
11821 /* If this is a memory reference, make sure that there were
11822 no stores after it that might have clobbered the value. We don't
11823 have alias info, so we assume any store invalidates it. */
11824 else if (MEM_P (x) && !MEM_READONLY_P (x)
11825 && DF_INSN_LUID (insn) <= mem_last_set)
11826 {
11827 if (replace)
11828 *loc = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
11829 return replace;
11830 }
11831
11832 for (i = 0; i < len; i++)
11833 {
11834 if (fmt[i] == 'e')
11835 {
11836 /* Check for identical subexpressions. If x contains
11837 identical subexpression we only have to traverse one of
11838 them. */
11839 if (i == 1 && ARITHMETIC_P (x))
11840 {
11841 /* Note that at this point x0 has already been checked
11842 and found valid. */
11843 rtx x0 = XEXP (x, 0);
11844 rtx x1 = XEXP (x, 1);
11845
11846 /* If x0 and x1 are identical then x is also valid. */
11847 if (x0 == x1)
11848 return 1;
11849
11850 /* If x1 is identical to a subexpression of x0 then
11851 while checking x0, x1 has already been checked. Thus
11852 it is valid and so as x. */
11853 if (ARITHMETIC_P (x0)
11854 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
11855 return 1;
11856
11857 /* If x0 is identical to a subexpression of x1 then x is
11858 valid iff the rest of x1 is valid. */
11859 if (ARITHMETIC_P (x1)
11860 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
11861 return
11862 get_last_value_validate (&XEXP (x1,
11863 x0 == XEXP (x1, 0) ? 1 : 0),
11864 insn, tick, replace);
11865 }
11866
11867 if (get_last_value_validate (&XEXP (x, i), insn, tick,
11868 replace) == 0)
11869 return 0;
11870 }
11871 else if (fmt[i] == 'E')
11872 for (j = 0; j < XVECLEN (x, i); j++)
11873 if (get_last_value_validate (&XVECEXP (x, i, j),
11874 insn, tick, replace) == 0)
11875 return 0;
11876 }
11877
11878 /* If we haven't found a reason for it to be invalid, it is valid. */
11879 return 1;
11880 }
11881
11882 /* Get the last value assigned to X, if known. Some registers
11883 in the value may be replaced with (clobber (const_int 0)) if their value
11884 is known longer known reliably. */
11885
11886 static rtx
11887 get_last_value (const_rtx x)
11888 {
11889 unsigned int regno;
11890 rtx value;
11891 reg_stat_type *rsp;
11892
11893 /* If this is a non-paradoxical SUBREG, get the value of its operand and
11894 then convert it to the desired mode. If this is a paradoxical SUBREG,
11895 we cannot predict what values the "extra" bits might have. */
11896 if (GET_CODE (x) == SUBREG
11897 && subreg_lowpart_p (x)
11898 && (GET_MODE_SIZE (GET_MODE (x))
11899 <= GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
11900 && (value = get_last_value (SUBREG_REG (x))) != 0)
11901 return gen_lowpart (GET_MODE (x), value);
11902
11903 if (!REG_P (x))
11904 return 0;
11905
11906 regno = REGNO (x);
11907 rsp = VEC_index (reg_stat_type, reg_stat, regno);
11908 value = rsp->last_set_value;
11909
11910 /* If we don't have a value, or if it isn't for this basic block and
11911 it's either a hard register, set more than once, or it's a live
11912 at the beginning of the function, return 0.
11913
11914 Because if it's not live at the beginning of the function then the reg
11915 is always set before being used (is never used without being set).
11916 And, if it's set only once, and it's always set before use, then all
11917 uses must have the same last value, even if it's not from this basic
11918 block. */
11919
11920 if (value == 0
11921 || (rsp->last_set_label < label_tick_ebb_start
11922 && (regno < FIRST_PSEUDO_REGISTER
11923 || REG_N_SETS (regno) != 1
11924 || REGNO_REG_SET_P
11925 (DF_LR_IN (ENTRY_BLOCK_PTR->next_bb), regno))))
11926 return 0;
11927
11928 /* If the value was set in a later insn than the ones we are processing,
11929 we can't use it even if the register was only set once. */
11930 if (rsp->last_set_label == label_tick
11931 && DF_INSN_LUID (rsp->last_set) >= subst_low_luid)
11932 return 0;
11933
11934 /* If the value has all its registers valid, return it. */
11935 if (get_last_value_validate (&value, rsp->last_set,
11936 rsp->last_set_label, 0))
11937 return value;
11938
11939 /* Otherwise, make a copy and replace any invalid register with
11940 (clobber (const_int 0)). If that fails for some reason, return 0. */
11941
11942 value = copy_rtx (value);
11943 if (get_last_value_validate (&value, rsp->last_set,
11944 rsp->last_set_label, 1))
11945 return value;
11946
11947 return 0;
11948 }
11949 \f
11950 /* Return nonzero if expression X refers to a REG or to memory
11951 that is set in an instruction more recent than FROM_LUID. */
11952
11953 static int
11954 use_crosses_set_p (const_rtx x, int from_luid)
11955 {
11956 const char *fmt;
11957 int i;
11958 enum rtx_code code = GET_CODE (x);
11959
11960 if (code == REG)
11961 {
11962 unsigned int regno = REGNO (x);
11963 unsigned endreg = END_REGNO (x);
11964
11965 #ifdef PUSH_ROUNDING
11966 /* Don't allow uses of the stack pointer to be moved,
11967 because we don't know whether the move crosses a push insn. */
11968 if (regno == STACK_POINTER_REGNUM && PUSH_ARGS)
11969 return 1;
11970 #endif
11971 for (; regno < endreg; regno++)
11972 {
11973 reg_stat_type *rsp = VEC_index (reg_stat_type, reg_stat, regno);
11974 if (rsp->last_set
11975 && rsp->last_set_label == label_tick
11976 && DF_INSN_LUID (rsp->last_set) > from_luid)
11977 return 1;
11978 }
11979 return 0;
11980 }
11981
11982 if (code == MEM && mem_last_set > from_luid)
11983 return 1;
11984
11985 fmt = GET_RTX_FORMAT (code);
11986
11987 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
11988 {
11989 if (fmt[i] == 'E')
11990 {
11991 int j;
11992 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
11993 if (use_crosses_set_p (XVECEXP (x, i, j), from_luid))
11994 return 1;
11995 }
11996 else if (fmt[i] == 'e'
11997 && use_crosses_set_p (XEXP (x, i), from_luid))
11998 return 1;
11999 }
12000 return 0;
12001 }
12002 \f
12003 /* Define three variables used for communication between the following
12004 routines. */
12005
12006 static unsigned int reg_dead_regno, reg_dead_endregno;
12007 static int reg_dead_flag;
12008
12009 /* Function called via note_stores from reg_dead_at_p.
12010
12011 If DEST is within [reg_dead_regno, reg_dead_endregno), set
12012 reg_dead_flag to 1 if X is a CLOBBER and to -1 it is a SET. */
12013
12014 static void
12015 reg_dead_at_p_1 (rtx dest, const_rtx x, void *data ATTRIBUTE_UNUSED)
12016 {
12017 unsigned int regno, endregno;
12018
12019 if (!REG_P (dest))
12020 return;
12021
12022 regno = REGNO (dest);
12023 endregno = END_REGNO (dest);
12024 if (reg_dead_endregno > regno && reg_dead_regno < endregno)
12025 reg_dead_flag = (GET_CODE (x) == CLOBBER) ? 1 : -1;
12026 }
12027
12028 /* Return nonzero if REG is known to be dead at INSN.
12029
12030 We scan backwards from INSN. If we hit a REG_DEAD note or a CLOBBER
12031 referencing REG, it is dead. If we hit a SET referencing REG, it is
12032 live. Otherwise, see if it is live or dead at the start of the basic
12033 block we are in. Hard regs marked as being live in NEWPAT_USED_REGS
12034 must be assumed to be always live. */
12035
12036 static int
12037 reg_dead_at_p (rtx reg, rtx insn)
12038 {
12039 basic_block block;
12040 unsigned int i;
12041
12042 /* Set variables for reg_dead_at_p_1. */
12043 reg_dead_regno = REGNO (reg);
12044 reg_dead_endregno = END_REGNO (reg);
12045
12046 reg_dead_flag = 0;
12047
12048 /* Check that reg isn't mentioned in NEWPAT_USED_REGS. For fixed registers
12049 we allow the machine description to decide whether use-and-clobber
12050 patterns are OK. */
12051 if (reg_dead_regno < FIRST_PSEUDO_REGISTER)
12052 {
12053 for (i = reg_dead_regno; i < reg_dead_endregno; i++)
12054 if (!fixed_regs[i] && TEST_HARD_REG_BIT (newpat_used_regs, i))
12055 return 0;
12056 }
12057
12058 /* Scan backwards until we find a REG_DEAD note, SET, CLOBBER, or
12059 beginning of basic block. */
12060 block = BLOCK_FOR_INSN (insn);
12061 for (;;)
12062 {
12063 if (INSN_P (insn))
12064 {
12065 note_stores (PATTERN (insn), reg_dead_at_p_1, NULL);
12066 if (reg_dead_flag)
12067 return reg_dead_flag == 1 ? 1 : 0;
12068
12069 if (find_regno_note (insn, REG_DEAD, reg_dead_regno))
12070 return 1;
12071 }
12072
12073 if (insn == BB_HEAD (block))
12074 break;
12075
12076 insn = PREV_INSN (insn);
12077 }
12078
12079 /* Look at live-in sets for the basic block that we were in. */
12080 for (i = reg_dead_regno; i < reg_dead_endregno; i++)
12081 if (REGNO_REG_SET_P (df_get_live_in (block), i))
12082 return 0;
12083
12084 return 1;
12085 }
12086 \f
12087 /* Note hard registers in X that are used. */
12088
12089 static void
12090 mark_used_regs_combine (rtx x)
12091 {
12092 RTX_CODE code = GET_CODE (x);
12093 unsigned int regno;
12094 int i;
12095
12096 switch (code)
12097 {
12098 case LABEL_REF:
12099 case SYMBOL_REF:
12100 case CONST_INT:
12101 case CONST:
12102 case CONST_DOUBLE:
12103 case CONST_VECTOR:
12104 case PC:
12105 case ADDR_VEC:
12106 case ADDR_DIFF_VEC:
12107 case ASM_INPUT:
12108 #ifdef HAVE_cc0
12109 /* CC0 must die in the insn after it is set, so we don't need to take
12110 special note of it here. */
12111 case CC0:
12112 #endif
12113 return;
12114
12115 case CLOBBER:
12116 /* If we are clobbering a MEM, mark any hard registers inside the
12117 address as used. */
12118 if (MEM_P (XEXP (x, 0)))
12119 mark_used_regs_combine (XEXP (XEXP (x, 0), 0));
12120 return;
12121
12122 case REG:
12123 regno = REGNO (x);
12124 /* A hard reg in a wide mode may really be multiple registers.
12125 If so, mark all of them just like the first. */
12126 if (regno < FIRST_PSEUDO_REGISTER)
12127 {
12128 /* None of this applies to the stack, frame or arg pointers. */
12129 if (regno == STACK_POINTER_REGNUM
12130 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
12131 || regno == HARD_FRAME_POINTER_REGNUM
12132 #endif
12133 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
12134 || (regno == ARG_POINTER_REGNUM && fixed_regs[regno])
12135 #endif
12136 || regno == FRAME_POINTER_REGNUM)
12137 return;
12138
12139 add_to_hard_reg_set (&newpat_used_regs, GET_MODE (x), regno);
12140 }
12141 return;
12142
12143 case SET:
12144 {
12145 /* If setting a MEM, or a SUBREG of a MEM, then note any hard regs in
12146 the address. */
12147 rtx testreg = SET_DEST (x);
12148
12149 while (GET_CODE (testreg) == SUBREG
12150 || GET_CODE (testreg) == ZERO_EXTRACT
12151 || GET_CODE (testreg) == STRICT_LOW_PART)
12152 testreg = XEXP (testreg, 0);
12153
12154 if (MEM_P (testreg))
12155 mark_used_regs_combine (XEXP (testreg, 0));
12156
12157 mark_used_regs_combine (SET_SRC (x));
12158 }
12159 return;
12160
12161 default:
12162 break;
12163 }
12164
12165 /* Recursively scan the operands of this expression. */
12166
12167 {
12168 const char *fmt = GET_RTX_FORMAT (code);
12169
12170 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
12171 {
12172 if (fmt[i] == 'e')
12173 mark_used_regs_combine (XEXP (x, i));
12174 else if (fmt[i] == 'E')
12175 {
12176 int j;
12177
12178 for (j = 0; j < XVECLEN (x, i); j++)
12179 mark_used_regs_combine (XVECEXP (x, i, j));
12180 }
12181 }
12182 }
12183 }
12184 \f
12185 /* Remove register number REGNO from the dead registers list of INSN.
12186
12187 Return the note used to record the death, if there was one. */
12188
12189 rtx
12190 remove_death (unsigned int regno, rtx insn)
12191 {
12192 rtx note = find_regno_note (insn, REG_DEAD, regno);
12193
12194 if (note)
12195 remove_note (insn, note);
12196
12197 return note;
12198 }
12199
12200 /* For each register (hardware or pseudo) used within expression X, if its
12201 death is in an instruction with luid between FROM_LUID (inclusive) and
12202 TO_INSN (exclusive), put a REG_DEAD note for that register in the
12203 list headed by PNOTES.
12204
12205 That said, don't move registers killed by maybe_kill_insn.
12206
12207 This is done when X is being merged by combination into TO_INSN. These
12208 notes will then be distributed as needed. */
12209
12210 static void
12211 move_deaths (rtx x, rtx maybe_kill_insn, int from_luid, rtx to_insn,
12212 rtx *pnotes)
12213 {
12214 const char *fmt;
12215 int len, i;
12216 enum rtx_code code = GET_CODE (x);
12217
12218 if (code == REG)
12219 {
12220 unsigned int regno = REGNO (x);
12221 rtx where_dead = VEC_index (reg_stat_type, reg_stat, regno)->last_death;
12222
12223 /* Don't move the register if it gets killed in between from and to. */
12224 if (maybe_kill_insn && reg_set_p (x, maybe_kill_insn)
12225 && ! reg_referenced_p (x, maybe_kill_insn))
12226 return;
12227
12228 if (where_dead
12229 && BLOCK_FOR_INSN (where_dead) == BLOCK_FOR_INSN (to_insn)
12230 && DF_INSN_LUID (where_dead) >= from_luid
12231 && DF_INSN_LUID (where_dead) < DF_INSN_LUID (to_insn))
12232 {
12233 rtx note = remove_death (regno, where_dead);
12234
12235 /* It is possible for the call above to return 0. This can occur
12236 when last_death points to I2 or I1 that we combined with.
12237 In that case make a new note.
12238
12239 We must also check for the case where X is a hard register
12240 and NOTE is a death note for a range of hard registers
12241 including X. In that case, we must put REG_DEAD notes for
12242 the remaining registers in place of NOTE. */
12243
12244 if (note != 0 && regno < FIRST_PSEUDO_REGISTER
12245 && (GET_MODE_SIZE (GET_MODE (XEXP (note, 0)))
12246 > GET_MODE_SIZE (GET_MODE (x))))
12247 {
12248 unsigned int deadregno = REGNO (XEXP (note, 0));
12249 unsigned int deadend = END_HARD_REGNO (XEXP (note, 0));
12250 unsigned int ourend = END_HARD_REGNO (x);
12251 unsigned int i;
12252
12253 for (i = deadregno; i < deadend; i++)
12254 if (i < regno || i >= ourend)
12255 add_reg_note (where_dead, REG_DEAD, regno_reg_rtx[i]);
12256 }
12257
12258 /* If we didn't find any note, or if we found a REG_DEAD note that
12259 covers only part of the given reg, and we have a multi-reg hard
12260 register, then to be safe we must check for REG_DEAD notes
12261 for each register other than the first. They could have
12262 their own REG_DEAD notes lying around. */
12263 else if ((note == 0
12264 || (note != 0
12265 && (GET_MODE_SIZE (GET_MODE (XEXP (note, 0)))
12266 < GET_MODE_SIZE (GET_MODE (x)))))
12267 && regno < FIRST_PSEUDO_REGISTER
12268 && hard_regno_nregs[regno][GET_MODE (x)] > 1)
12269 {
12270 unsigned int ourend = END_HARD_REGNO (x);
12271 unsigned int i, offset;
12272 rtx oldnotes = 0;
12273
12274 if (note)
12275 offset = hard_regno_nregs[regno][GET_MODE (XEXP (note, 0))];
12276 else
12277 offset = 1;
12278
12279 for (i = regno + offset; i < ourend; i++)
12280 move_deaths (regno_reg_rtx[i],
12281 maybe_kill_insn, from_luid, to_insn, &oldnotes);
12282 }
12283
12284 if (note != 0 && GET_MODE (XEXP (note, 0)) == GET_MODE (x))
12285 {
12286 XEXP (note, 1) = *pnotes;
12287 *pnotes = note;
12288 }
12289 else
12290 *pnotes = alloc_reg_note (REG_DEAD, x, *pnotes);
12291 }
12292
12293 return;
12294 }
12295
12296 else if (GET_CODE (x) == SET)
12297 {
12298 rtx dest = SET_DEST (x);
12299
12300 move_deaths (SET_SRC (x), maybe_kill_insn, from_luid, to_insn, pnotes);
12301
12302 /* In the case of a ZERO_EXTRACT, a STRICT_LOW_PART, or a SUBREG
12303 that accesses one word of a multi-word item, some
12304 piece of everything register in the expression is used by
12305 this insn, so remove any old death. */
12306 /* ??? So why do we test for equality of the sizes? */
12307
12308 if (GET_CODE (dest) == ZERO_EXTRACT
12309 || GET_CODE (dest) == STRICT_LOW_PART
12310 || (GET_CODE (dest) == SUBREG
12311 && (((GET_MODE_SIZE (GET_MODE (dest))
12312 + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
12313 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest)))
12314 + UNITS_PER_WORD - 1) / UNITS_PER_WORD))))
12315 {
12316 move_deaths (dest, maybe_kill_insn, from_luid, to_insn, pnotes);
12317 return;
12318 }
12319
12320 /* If this is some other SUBREG, we know it replaces the entire
12321 value, so use that as the destination. */
12322 if (GET_CODE (dest) == SUBREG)
12323 dest = SUBREG_REG (dest);
12324
12325 /* If this is a MEM, adjust deaths of anything used in the address.
12326 For a REG (the only other possibility), the entire value is
12327 being replaced so the old value is not used in this insn. */
12328
12329 if (MEM_P (dest))
12330 move_deaths (XEXP (dest, 0), maybe_kill_insn, from_luid,
12331 to_insn, pnotes);
12332 return;
12333 }
12334
12335 else if (GET_CODE (x) == CLOBBER)
12336 return;
12337
12338 len = GET_RTX_LENGTH (code);
12339 fmt = GET_RTX_FORMAT (code);
12340
12341 for (i = 0; i < len; i++)
12342 {
12343 if (fmt[i] == 'E')
12344 {
12345 int j;
12346 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
12347 move_deaths (XVECEXP (x, i, j), maybe_kill_insn, from_luid,
12348 to_insn, pnotes);
12349 }
12350 else if (fmt[i] == 'e')
12351 move_deaths (XEXP (x, i), maybe_kill_insn, from_luid, to_insn, pnotes);
12352 }
12353 }
12354 \f
12355 /* Return 1 if X is the target of a bit-field assignment in BODY, the
12356 pattern of an insn. X must be a REG. */
12357
12358 static int
12359 reg_bitfield_target_p (rtx x, rtx body)
12360 {
12361 int i;
12362
12363 if (GET_CODE (body) == SET)
12364 {
12365 rtx dest = SET_DEST (body);
12366 rtx target;
12367 unsigned int regno, tregno, endregno, endtregno;
12368
12369 if (GET_CODE (dest) == ZERO_EXTRACT)
12370 target = XEXP (dest, 0);
12371 else if (GET_CODE (dest) == STRICT_LOW_PART)
12372 target = SUBREG_REG (XEXP (dest, 0));
12373 else
12374 return 0;
12375
12376 if (GET_CODE (target) == SUBREG)
12377 target = SUBREG_REG (target);
12378
12379 if (!REG_P (target))
12380 return 0;
12381
12382 tregno = REGNO (target), regno = REGNO (x);
12383 if (tregno >= FIRST_PSEUDO_REGISTER || regno >= FIRST_PSEUDO_REGISTER)
12384 return target == x;
12385
12386 endtregno = end_hard_regno (GET_MODE (target), tregno);
12387 endregno = end_hard_regno (GET_MODE (x), regno);
12388
12389 return endregno > tregno && regno < endtregno;
12390 }
12391
12392 else if (GET_CODE (body) == PARALLEL)
12393 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
12394 if (reg_bitfield_target_p (x, XVECEXP (body, 0, i)))
12395 return 1;
12396
12397 return 0;
12398 }
12399 \f
12400 /* Given a chain of REG_NOTES originally from FROM_INSN, try to place them
12401 as appropriate. I3 and I2 are the insns resulting from the combination
12402 insns including FROM (I2 may be zero).
12403
12404 ELIM_I2 and ELIM_I1 are either zero or registers that we know will
12405 not need REG_DEAD notes because they are being substituted for. This
12406 saves searching in the most common cases.
12407
12408 Each note in the list is either ignored or placed on some insns, depending
12409 on the type of note. */
12410
12411 static void
12412 distribute_notes (rtx notes, rtx from_insn, rtx i3, rtx i2, rtx elim_i2,
12413 rtx elim_i1)
12414 {
12415 rtx note, next_note;
12416 rtx tem;
12417
12418 for (note = notes; note; note = next_note)
12419 {
12420 rtx place = 0, place2 = 0;
12421
12422 next_note = XEXP (note, 1);
12423 switch (REG_NOTE_KIND (note))
12424 {
12425 case REG_BR_PROB:
12426 case REG_BR_PRED:
12427 /* Doesn't matter much where we put this, as long as it's somewhere.
12428 It is preferable to keep these notes on branches, which is most
12429 likely to be i3. */
12430 place = i3;
12431 break;
12432
12433 case REG_VALUE_PROFILE:
12434 /* Just get rid of this note, as it is unused later anyway. */
12435 break;
12436
12437 case REG_NON_LOCAL_GOTO:
12438 if (JUMP_P (i3))
12439 place = i3;
12440 else
12441 {
12442 gcc_assert (i2 && JUMP_P (i2));
12443 place = i2;
12444 }
12445 break;
12446
12447 case REG_EH_REGION:
12448 /* These notes must remain with the call or trapping instruction. */
12449 if (CALL_P (i3))
12450 place = i3;
12451 else if (i2 && CALL_P (i2))
12452 place = i2;
12453 else
12454 {
12455 gcc_assert (flag_non_call_exceptions);
12456 if (may_trap_p (i3))
12457 place = i3;
12458 else if (i2 && may_trap_p (i2))
12459 place = i2;
12460 /* ??? Otherwise assume we've combined things such that we
12461 can now prove that the instructions can't trap. Drop the
12462 note in this case. */
12463 }
12464 break;
12465
12466 case REG_NORETURN:
12467 case REG_SETJMP:
12468 /* These notes must remain with the call. It should not be
12469 possible for both I2 and I3 to be a call. */
12470 if (CALL_P (i3))
12471 place = i3;
12472 else
12473 {
12474 gcc_assert (i2 && CALL_P (i2));
12475 place = i2;
12476 }
12477 break;
12478
12479 case REG_UNUSED:
12480 /* Any clobbers for i3 may still exist, and so we must process
12481 REG_UNUSED notes from that insn.
12482
12483 Any clobbers from i2 or i1 can only exist if they were added by
12484 recog_for_combine. In that case, recog_for_combine created the
12485 necessary REG_UNUSED notes. Trying to keep any original
12486 REG_UNUSED notes from these insns can cause incorrect output
12487 if it is for the same register as the original i3 dest.
12488 In that case, we will notice that the register is set in i3,
12489 and then add a REG_UNUSED note for the destination of i3, which
12490 is wrong. However, it is possible to have REG_UNUSED notes from
12491 i2 or i1 for register which were both used and clobbered, so
12492 we keep notes from i2 or i1 if they will turn into REG_DEAD
12493 notes. */
12494
12495 /* If this register is set or clobbered in I3, put the note there
12496 unless there is one already. */
12497 if (reg_set_p (XEXP (note, 0), PATTERN (i3)))
12498 {
12499 if (from_insn != i3)
12500 break;
12501
12502 if (! (REG_P (XEXP (note, 0))
12503 ? find_regno_note (i3, REG_UNUSED, REGNO (XEXP (note, 0)))
12504 : find_reg_note (i3, REG_UNUSED, XEXP (note, 0))))
12505 place = i3;
12506 }
12507 /* Otherwise, if this register is used by I3, then this register
12508 now dies here, so we must put a REG_DEAD note here unless there
12509 is one already. */
12510 else if (reg_referenced_p (XEXP (note, 0), PATTERN (i3))
12511 && ! (REG_P (XEXP (note, 0))
12512 ? find_regno_note (i3, REG_DEAD,
12513 REGNO (XEXP (note, 0)))
12514 : find_reg_note (i3, REG_DEAD, XEXP (note, 0))))
12515 {
12516 PUT_REG_NOTE_KIND (note, REG_DEAD);
12517 place = i3;
12518 }
12519 break;
12520
12521 case REG_EQUAL:
12522 case REG_EQUIV:
12523 case REG_NOALIAS:
12524 /* These notes say something about results of an insn. We can
12525 only support them if they used to be on I3 in which case they
12526 remain on I3. Otherwise they are ignored.
12527
12528 If the note refers to an expression that is not a constant, we
12529 must also ignore the note since we cannot tell whether the
12530 equivalence is still true. It might be possible to do
12531 slightly better than this (we only have a problem if I2DEST
12532 or I1DEST is present in the expression), but it doesn't
12533 seem worth the trouble. */
12534
12535 if (from_insn == i3
12536 && (XEXP (note, 0) == 0 || CONSTANT_P (XEXP (note, 0))))
12537 place = i3;
12538 break;
12539
12540 case REG_INC:
12541 /* These notes say something about how a register is used. They must
12542 be present on any use of the register in I2 or I3. */
12543 if (reg_mentioned_p (XEXP (note, 0), PATTERN (i3)))
12544 place = i3;
12545
12546 if (i2 && reg_mentioned_p (XEXP (note, 0), PATTERN (i2)))
12547 {
12548 if (place)
12549 place2 = i2;
12550 else
12551 place = i2;
12552 }
12553 break;
12554
12555 case REG_LABEL_TARGET:
12556 case REG_LABEL_OPERAND:
12557 /* This can show up in several ways -- either directly in the
12558 pattern, or hidden off in the constant pool with (or without?)
12559 a REG_EQUAL note. */
12560 /* ??? Ignore the without-reg_equal-note problem for now. */
12561 if (reg_mentioned_p (XEXP (note, 0), PATTERN (i3))
12562 || ((tem = find_reg_note (i3, REG_EQUAL, NULL_RTX))
12563 && GET_CODE (XEXP (tem, 0)) == LABEL_REF
12564 && XEXP (XEXP (tem, 0), 0) == XEXP (note, 0)))
12565 place = i3;
12566
12567 if (i2
12568 && (reg_mentioned_p (XEXP (note, 0), PATTERN (i2))
12569 || ((tem = find_reg_note (i2, REG_EQUAL, NULL_RTX))
12570 && GET_CODE (XEXP (tem, 0)) == LABEL_REF
12571 && XEXP (XEXP (tem, 0), 0) == XEXP (note, 0))))
12572 {
12573 if (place)
12574 place2 = i2;
12575 else
12576 place = i2;
12577 }
12578
12579 /* For REG_LABEL_TARGET on a JUMP_P, we prefer to put the note
12580 as a JUMP_LABEL or decrement LABEL_NUSES if it's already
12581 there. */
12582 if (place && JUMP_P (place)
12583 && REG_NOTE_KIND (note) == REG_LABEL_TARGET
12584 && (JUMP_LABEL (place) == NULL
12585 || JUMP_LABEL (place) == XEXP (note, 0)))
12586 {
12587 rtx label = JUMP_LABEL (place);
12588
12589 if (!label)
12590 JUMP_LABEL (place) = XEXP (note, 0);
12591 else if (LABEL_P (label))
12592 LABEL_NUSES (label)--;
12593 }
12594
12595 if (place2 && JUMP_P (place2)
12596 && REG_NOTE_KIND (note) == REG_LABEL_TARGET
12597 && (JUMP_LABEL (place2) == NULL
12598 || JUMP_LABEL (place2) == XEXP (note, 0)))
12599 {
12600 rtx label = JUMP_LABEL (place2);
12601
12602 if (!label)
12603 JUMP_LABEL (place2) = XEXP (note, 0);
12604 else if (LABEL_P (label))
12605 LABEL_NUSES (label)--;
12606 place2 = 0;
12607 }
12608 break;
12609
12610 case REG_NONNEG:
12611 /* This note says something about the value of a register prior
12612 to the execution of an insn. It is too much trouble to see
12613 if the note is still correct in all situations. It is better
12614 to simply delete it. */
12615 break;
12616
12617 case REG_DEAD:
12618 /* If we replaced the right hand side of FROM_INSN with a
12619 REG_EQUAL note, the original use of the dying register
12620 will not have been combined into I3 and I2. In such cases,
12621 FROM_INSN is guaranteed to be the first of the combined
12622 instructions, so we simply need to search back before
12623 FROM_INSN for the previous use or set of this register,
12624 then alter the notes there appropriately.
12625
12626 If the register is used as an input in I3, it dies there.
12627 Similarly for I2, if it is nonzero and adjacent to I3.
12628
12629 If the register is not used as an input in either I3 or I2
12630 and it is not one of the registers we were supposed to eliminate,
12631 there are two possibilities. We might have a non-adjacent I2
12632 or we might have somehow eliminated an additional register
12633 from a computation. For example, we might have had A & B where
12634 we discover that B will always be zero. In this case we will
12635 eliminate the reference to A.
12636
12637 In both cases, we must search to see if we can find a previous
12638 use of A and put the death note there. */
12639
12640 if (from_insn
12641 && from_insn == i2mod
12642 && !reg_overlap_mentioned_p (XEXP (note, 0), i2mod_new_rhs))
12643 tem = from_insn;
12644 else
12645 {
12646 if (from_insn
12647 && CALL_P (from_insn)
12648 && find_reg_fusage (from_insn, USE, XEXP (note, 0)))
12649 place = from_insn;
12650 else if (reg_referenced_p (XEXP (note, 0), PATTERN (i3)))
12651 place = i3;
12652 else if (i2 != 0 && next_nonnote_insn (i2) == i3
12653 && reg_referenced_p (XEXP (note, 0), PATTERN (i2)))
12654 place = i2;
12655 else if ((rtx_equal_p (XEXP (note, 0), elim_i2)
12656 && !(i2mod
12657 && reg_overlap_mentioned_p (XEXP (note, 0),
12658 i2mod_old_rhs)))
12659 || rtx_equal_p (XEXP (note, 0), elim_i1))
12660 break;
12661 tem = i3;
12662 }
12663
12664 if (place == 0)
12665 {
12666 basic_block bb = this_basic_block;
12667
12668 for (tem = PREV_INSN (tem); place == 0; tem = PREV_INSN (tem))
12669 {
12670 if (! INSN_P (tem))
12671 {
12672 if (tem == BB_HEAD (bb))
12673 break;
12674 continue;
12675 }
12676
12677 /* If the register is being set at TEM, see if that is all
12678 TEM is doing. If so, delete TEM. Otherwise, make this
12679 into a REG_UNUSED note instead. Don't delete sets to
12680 global register vars. */
12681 if ((REGNO (XEXP (note, 0)) >= FIRST_PSEUDO_REGISTER
12682 || !global_regs[REGNO (XEXP (note, 0))])
12683 && reg_set_p (XEXP (note, 0), PATTERN (tem)))
12684 {
12685 rtx set = single_set (tem);
12686 rtx inner_dest = 0;
12687 #ifdef HAVE_cc0
12688 rtx cc0_setter = NULL_RTX;
12689 #endif
12690
12691 if (set != 0)
12692 for (inner_dest = SET_DEST (set);
12693 (GET_CODE (inner_dest) == STRICT_LOW_PART
12694 || GET_CODE (inner_dest) == SUBREG
12695 || GET_CODE (inner_dest) == ZERO_EXTRACT);
12696 inner_dest = XEXP (inner_dest, 0))
12697 ;
12698
12699 /* Verify that it was the set, and not a clobber that
12700 modified the register.
12701
12702 CC0 targets must be careful to maintain setter/user
12703 pairs. If we cannot delete the setter due to side
12704 effects, mark the user with an UNUSED note instead
12705 of deleting it. */
12706
12707 if (set != 0 && ! side_effects_p (SET_SRC (set))
12708 && rtx_equal_p (XEXP (note, 0), inner_dest)
12709 #ifdef HAVE_cc0
12710 && (! reg_mentioned_p (cc0_rtx, SET_SRC (set))
12711 || ((cc0_setter = prev_cc0_setter (tem)) != NULL
12712 && sets_cc0_p (PATTERN (cc0_setter)) > 0))
12713 #endif
12714 )
12715 {
12716 /* Move the notes and links of TEM elsewhere.
12717 This might delete other dead insns recursively.
12718 First set the pattern to something that won't use
12719 any register. */
12720 rtx old_notes = REG_NOTES (tem);
12721
12722 PATTERN (tem) = pc_rtx;
12723 REG_NOTES (tem) = NULL;
12724
12725 distribute_notes (old_notes, tem, tem, NULL_RTX,
12726 NULL_RTX, NULL_RTX);
12727 distribute_links (LOG_LINKS (tem));
12728
12729 SET_INSN_DELETED (tem);
12730 if (tem == i2)
12731 i2 = NULL_RTX;
12732
12733 #ifdef HAVE_cc0
12734 /* Delete the setter too. */
12735 if (cc0_setter)
12736 {
12737 PATTERN (cc0_setter) = pc_rtx;
12738 old_notes = REG_NOTES (cc0_setter);
12739 REG_NOTES (cc0_setter) = NULL;
12740
12741 distribute_notes (old_notes, cc0_setter,
12742 cc0_setter, NULL_RTX,
12743 NULL_RTX, NULL_RTX);
12744 distribute_links (LOG_LINKS (cc0_setter));
12745
12746 SET_INSN_DELETED (cc0_setter);
12747 if (cc0_setter == i2)
12748 i2 = NULL_RTX;
12749 }
12750 #endif
12751 }
12752 else
12753 {
12754 PUT_REG_NOTE_KIND (note, REG_UNUSED);
12755
12756 /* If there isn't already a REG_UNUSED note, put one
12757 here. Do not place a REG_DEAD note, even if
12758 the register is also used here; that would not
12759 match the algorithm used in lifetime analysis
12760 and can cause the consistency check in the
12761 scheduler to fail. */
12762 if (! find_regno_note (tem, REG_UNUSED,
12763 REGNO (XEXP (note, 0))))
12764 place = tem;
12765 break;
12766 }
12767 }
12768 else if (reg_referenced_p (XEXP (note, 0), PATTERN (tem))
12769 || (CALL_P (tem)
12770 && find_reg_fusage (tem, USE, XEXP (note, 0))))
12771 {
12772 place = tem;
12773
12774 /* If we are doing a 3->2 combination, and we have a
12775 register which formerly died in i3 and was not used
12776 by i2, which now no longer dies in i3 and is used in
12777 i2 but does not die in i2, and place is between i2
12778 and i3, then we may need to move a link from place to
12779 i2. */
12780 if (i2 && DF_INSN_LUID (place) > DF_INSN_LUID (i2)
12781 && from_insn
12782 && DF_INSN_LUID (from_insn) > DF_INSN_LUID (i2)
12783 && reg_referenced_p (XEXP (note, 0), PATTERN (i2)))
12784 {
12785 rtx links = LOG_LINKS (place);
12786 LOG_LINKS (place) = 0;
12787 distribute_links (links);
12788 }
12789 break;
12790 }
12791
12792 if (tem == BB_HEAD (bb))
12793 break;
12794 }
12795
12796 }
12797
12798 /* If the register is set or already dead at PLACE, we needn't do
12799 anything with this note if it is still a REG_DEAD note.
12800 We check here if it is set at all, not if is it totally replaced,
12801 which is what `dead_or_set_p' checks, so also check for it being
12802 set partially. */
12803
12804 if (place && REG_NOTE_KIND (note) == REG_DEAD)
12805 {
12806 unsigned int regno = REGNO (XEXP (note, 0));
12807 reg_stat_type *rsp = VEC_index (reg_stat_type, reg_stat, regno);
12808
12809 if (dead_or_set_p (place, XEXP (note, 0))
12810 || reg_bitfield_target_p (XEXP (note, 0), PATTERN (place)))
12811 {
12812 /* Unless the register previously died in PLACE, clear
12813 last_death. [I no longer understand why this is
12814 being done.] */
12815 if (rsp->last_death != place)
12816 rsp->last_death = 0;
12817 place = 0;
12818 }
12819 else
12820 rsp->last_death = place;
12821
12822 /* If this is a death note for a hard reg that is occupying
12823 multiple registers, ensure that we are still using all
12824 parts of the object. If we find a piece of the object
12825 that is unused, we must arrange for an appropriate REG_DEAD
12826 note to be added for it. However, we can't just emit a USE
12827 and tag the note to it, since the register might actually
12828 be dead; so we recourse, and the recursive call then finds
12829 the previous insn that used this register. */
12830
12831 if (place && regno < FIRST_PSEUDO_REGISTER
12832 && hard_regno_nregs[regno][GET_MODE (XEXP (note, 0))] > 1)
12833 {
12834 unsigned int endregno = END_HARD_REGNO (XEXP (note, 0));
12835 int all_used = 1;
12836 unsigned int i;
12837
12838 for (i = regno; i < endregno; i++)
12839 if ((! refers_to_regno_p (i, i + 1, PATTERN (place), 0)
12840 && ! find_regno_fusage (place, USE, i))
12841 || dead_or_set_regno_p (place, i))
12842 all_used = 0;
12843
12844 if (! all_used)
12845 {
12846 /* Put only REG_DEAD notes for pieces that are
12847 not already dead or set. */
12848
12849 for (i = regno; i < endregno;
12850 i += hard_regno_nregs[i][reg_raw_mode[i]])
12851 {
12852 rtx piece = regno_reg_rtx[i];
12853 basic_block bb = this_basic_block;
12854
12855 if (! dead_or_set_p (place, piece)
12856 && ! reg_bitfield_target_p (piece,
12857 PATTERN (place)))
12858 {
12859 rtx new_note = alloc_reg_note (REG_DEAD, piece,
12860 NULL_RTX);
12861
12862 distribute_notes (new_note, place, place,
12863 NULL_RTX, NULL_RTX, NULL_RTX);
12864 }
12865 else if (! refers_to_regno_p (i, i + 1,
12866 PATTERN (place), 0)
12867 && ! find_regno_fusage (place, USE, i))
12868 for (tem = PREV_INSN (place); ;
12869 tem = PREV_INSN (tem))
12870 {
12871 if (! INSN_P (tem))
12872 {
12873 if (tem == BB_HEAD (bb))
12874 break;
12875 continue;
12876 }
12877 if (dead_or_set_p (tem, piece)
12878 || reg_bitfield_target_p (piece,
12879 PATTERN (tem)))
12880 {
12881 add_reg_note (tem, REG_UNUSED, piece);
12882 break;
12883 }
12884 }
12885
12886 }
12887
12888 place = 0;
12889 }
12890 }
12891 }
12892 break;
12893
12894 default:
12895 /* Any other notes should not be present at this point in the
12896 compilation. */
12897 gcc_unreachable ();
12898 }
12899
12900 if (place)
12901 {
12902 XEXP (note, 1) = REG_NOTES (place);
12903 REG_NOTES (place) = note;
12904 }
12905
12906 if (place2)
12907 add_reg_note (place2, REG_NOTE_KIND (note), XEXP (note, 0));
12908 }
12909 }
12910 \f
12911 /* Similarly to above, distribute the LOG_LINKS that used to be present on
12912 I3, I2, and I1 to new locations. This is also called to add a link
12913 pointing at I3 when I3's destination is changed. */
12914
12915 static void
12916 distribute_links (rtx links)
12917 {
12918 rtx link, next_link;
12919
12920 for (link = links; link; link = next_link)
12921 {
12922 rtx place = 0;
12923 rtx insn;
12924 rtx set, reg;
12925
12926 next_link = XEXP (link, 1);
12927
12928 /* If the insn that this link points to is a NOTE or isn't a single
12929 set, ignore it. In the latter case, it isn't clear what we
12930 can do other than ignore the link, since we can't tell which
12931 register it was for. Such links wouldn't be used by combine
12932 anyway.
12933
12934 It is not possible for the destination of the target of the link to
12935 have been changed by combine. The only potential of this is if we
12936 replace I3, I2, and I1 by I3 and I2. But in that case the
12937 destination of I2 also remains unchanged. */
12938
12939 if (NOTE_P (XEXP (link, 0))
12940 || (set = single_set (XEXP (link, 0))) == 0)
12941 continue;
12942
12943 reg = SET_DEST (set);
12944 while (GET_CODE (reg) == SUBREG || GET_CODE (reg) == ZERO_EXTRACT
12945 || GET_CODE (reg) == STRICT_LOW_PART)
12946 reg = XEXP (reg, 0);
12947
12948 /* A LOG_LINK is defined as being placed on the first insn that uses
12949 a register and points to the insn that sets the register. Start
12950 searching at the next insn after the target of the link and stop
12951 when we reach a set of the register or the end of the basic block.
12952
12953 Note that this correctly handles the link that used to point from
12954 I3 to I2. Also note that not much searching is typically done here
12955 since most links don't point very far away. */
12956
12957 for (insn = NEXT_INSN (XEXP (link, 0));
12958 (insn && (this_basic_block->next_bb == EXIT_BLOCK_PTR
12959 || BB_HEAD (this_basic_block->next_bb) != insn));
12960 insn = NEXT_INSN (insn))
12961 if (INSN_P (insn) && reg_overlap_mentioned_p (reg, PATTERN (insn)))
12962 {
12963 if (reg_referenced_p (reg, PATTERN (insn)))
12964 place = insn;
12965 break;
12966 }
12967 else if (CALL_P (insn)
12968 && find_reg_fusage (insn, USE, reg))
12969 {
12970 place = insn;
12971 break;
12972 }
12973 else if (INSN_P (insn) && reg_set_p (reg, insn))
12974 break;
12975
12976 /* If we found a place to put the link, place it there unless there
12977 is already a link to the same insn as LINK at that point. */
12978
12979 if (place)
12980 {
12981 rtx link2;
12982
12983 for (link2 = LOG_LINKS (place); link2; link2 = XEXP (link2, 1))
12984 if (XEXP (link2, 0) == XEXP (link, 0))
12985 break;
12986
12987 if (link2 == 0)
12988 {
12989 XEXP (link, 1) = LOG_LINKS (place);
12990 LOG_LINKS (place) = link;
12991
12992 /* Set added_links_insn to the earliest insn we added a
12993 link to. */
12994 if (added_links_insn == 0
12995 || DF_INSN_LUID (added_links_insn) > DF_INSN_LUID (place))
12996 added_links_insn = place;
12997 }
12998 }
12999 }
13000 }
13001 \f
13002 /* Subroutine of unmentioned_reg_p and callback from for_each_rtx.
13003 Check whether the expression pointer to by LOC is a register or
13004 memory, and if so return 1 if it isn't mentioned in the rtx EXPR.
13005 Otherwise return zero. */
13006
13007 static int
13008 unmentioned_reg_p_1 (rtx *loc, void *expr)
13009 {
13010 rtx x = *loc;
13011
13012 if (x != NULL_RTX
13013 && (REG_P (x) || MEM_P (x))
13014 && ! reg_mentioned_p (x, (rtx) expr))
13015 return 1;
13016 return 0;
13017 }
13018
13019 /* Check for any register or memory mentioned in EQUIV that is not
13020 mentioned in EXPR. This is used to restrict EQUIV to "specializations"
13021 of EXPR where some registers may have been replaced by constants. */
13022
13023 static bool
13024 unmentioned_reg_p (rtx equiv, rtx expr)
13025 {
13026 return for_each_rtx (&equiv, unmentioned_reg_p_1, expr);
13027 }
13028 \f
13029 void
13030 dump_combine_stats (FILE *file)
13031 {
13032 fprintf
13033 (file,
13034 ";; Combiner statistics: %d attempts, %d substitutions (%d requiring new space),\n;; %d successes.\n\n",
13035 combine_attempts, combine_merges, combine_extras, combine_successes);
13036 }
13037
13038 void
13039 dump_combine_total_stats (FILE *file)
13040 {
13041 fprintf
13042 (file,
13043 "\n;; Combiner totals: %d attempts, %d substitutions (%d requiring new space),\n;; %d successes.\n",
13044 total_attempts, total_merges, total_extras, total_successes);
13045 }
13046 \f
13047 static bool
13048 gate_handle_combine (void)
13049 {
13050 return (optimize > 0);
13051 }
13052
13053 /* Try combining insns through substitution. */
13054 static unsigned int
13055 rest_of_handle_combine (void)
13056 {
13057 int rebuild_jump_labels_after_combine;
13058
13059 df_set_flags (DF_LR_RUN_DCE + DF_DEFER_INSN_RESCAN);
13060 df_note_add_problem ();
13061 df_analyze ();
13062
13063 regstat_init_n_sets_and_refs ();
13064
13065 rebuild_jump_labels_after_combine
13066 = combine_instructions (get_insns (), max_reg_num ());
13067
13068 /* Combining insns may have turned an indirect jump into a
13069 direct jump. Rebuild the JUMP_LABEL fields of jumping
13070 instructions. */
13071 if (rebuild_jump_labels_after_combine)
13072 {
13073 timevar_push (TV_JUMP);
13074 rebuild_jump_labels (get_insns ());
13075 cleanup_cfg (0);
13076 timevar_pop (TV_JUMP);
13077 }
13078
13079 regstat_free_n_sets_and_refs ();
13080 return 0;
13081 }
13082
13083 struct rtl_opt_pass pass_combine =
13084 {
13085 {
13086 RTL_PASS,
13087 "combine", /* name */
13088 gate_handle_combine, /* gate */
13089 rest_of_handle_combine, /* execute */
13090 NULL, /* sub */
13091 NULL, /* next */
13092 0, /* static_pass_number */
13093 TV_COMBINE, /* tv_id */
13094 PROP_cfglayout, /* properties_required */
13095 0, /* properties_provided */
13096 0, /* properties_destroyed */
13097 0, /* todo_flags_start */
13098 TODO_dump_func |
13099 TODO_df_finish | TODO_verify_rtl_sharing |
13100 TODO_ggc_collect, /* todo_flags_finish */
13101 }
13102 };