Make more use of paradoxical_subreg_p
[gcc.git] / gcc / combine.c
1 /* Optimize by combining instructions for GNU compiler.
2 Copyright (C) 1987-2017 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 /* This module is essentially the "combiner" phase of the U. of Arizona
21 Portable Optimizer, but redone to work on our list-structured
22 representation for RTL instead of their string representation.
23
24 The LOG_LINKS of each insn identify the most recent assignment
25 to each REG used in the insn. It is a list of previous insns,
26 each of which contains a SET for a REG that is used in this insn
27 and not used or set in between. LOG_LINKs never cross basic blocks.
28 They were set up by the preceding pass (lifetime analysis).
29
30 We try to combine each pair of insns joined by a logical link.
31 We also try to combine triplets of insns A, B and C when C has
32 a link back to B and B has a link back to A. Likewise for a
33 small number of quadruplets of insns A, B, C and D for which
34 there's high likelihood of success.
35
36 LOG_LINKS does not have links for use of the CC0. They don't
37 need to, because the insn that sets the CC0 is always immediately
38 before the insn that tests it. So we always regard a branch
39 insn as having a logical link to the preceding insn. The same is true
40 for an insn explicitly using CC0.
41
42 We check (with use_crosses_set_p) to avoid combining in such a way
43 as to move a computation to a place where its value would be different.
44
45 Combination is done by mathematically substituting the previous
46 insn(s) values for the regs they set into the expressions in
47 the later insns that refer to these regs. If the result is a valid insn
48 for our target machine, according to the machine description,
49 we install it, delete the earlier insns, and update the data flow
50 information (LOG_LINKS and REG_NOTES) for what we did.
51
52 There are a few exceptions where the dataflow information isn't
53 completely updated (however this is only a local issue since it is
54 regenerated before the next pass that uses it):
55
56 - reg_live_length is not updated
57 - reg_n_refs is not adjusted in the rare case when a register is
58 no longer required in a computation
59 - there are extremely rare cases (see distribute_notes) when a
60 REG_DEAD note is lost
61 - a LOG_LINKS entry that refers to an insn with multiple SETs may be
62 removed because there is no way to know which register it was
63 linking
64
65 To simplify substitution, we combine only when the earlier insn(s)
66 consist of only a single assignment. To simplify updating afterward,
67 we never combine when a subroutine call appears in the middle.
68
69 Since we do not represent assignments to CC0 explicitly except when that
70 is all an insn does, there is no LOG_LINKS entry in an insn that uses
71 the condition code for the insn that set the condition code.
72 Fortunately, these two insns must be consecutive.
73 Therefore, every JUMP_INSN is taken to have an implicit logical link
74 to the preceding insn. This is not quite right, since non-jumps can
75 also use the condition code; but in practice such insns would not
76 combine anyway. */
77
78 #include "config.h"
79 #include "system.h"
80 #include "coretypes.h"
81 #include "backend.h"
82 #include "target.h"
83 #include "rtl.h"
84 #include "tree.h"
85 #include "cfghooks.h"
86 #include "predict.h"
87 #include "df.h"
88 #include "memmodel.h"
89 #include "tm_p.h"
90 #include "optabs.h"
91 #include "regs.h"
92 #include "emit-rtl.h"
93 #include "recog.h"
94 #include "cgraph.h"
95 #include "stor-layout.h"
96 #include "cfgrtl.h"
97 #include "cfgcleanup.h"
98 /* Include expr.h after insn-config.h so we get HAVE_conditional_move. */
99 #include "explow.h"
100 #include "insn-attr.h"
101 #include "rtlhooks-def.h"
102 #include "params.h"
103 #include "tree-pass.h"
104 #include "valtrack.h"
105 #include "rtl-iter.h"
106 #include "print-rtl.h"
107
108 /* Number of attempts to combine instructions in this function. */
109
110 static int combine_attempts;
111
112 /* Number of attempts that got as far as substitution in this function. */
113
114 static int combine_merges;
115
116 /* Number of instructions combined with added SETs in this function. */
117
118 static int combine_extras;
119
120 /* Number of instructions combined in this function. */
121
122 static int combine_successes;
123
124 /* Totals over entire compilation. */
125
126 static int total_attempts, total_merges, total_extras, total_successes;
127
128 /* combine_instructions may try to replace the right hand side of the
129 second instruction with the value of an associated REG_EQUAL note
130 before throwing it at try_combine. That is problematic when there
131 is a REG_DEAD note for a register used in the old right hand side
132 and can cause distribute_notes to do wrong things. This is the
133 second instruction if it has been so modified, null otherwise. */
134
135 static rtx_insn *i2mod;
136
137 /* When I2MOD is nonnull, this is a copy of the old right hand side. */
138
139 static rtx i2mod_old_rhs;
140
141 /* When I2MOD is nonnull, this is a copy of the new right hand side. */
142
143 static rtx i2mod_new_rhs;
144 \f
145 struct reg_stat_type {
146 /* Record last point of death of (hard or pseudo) register n. */
147 rtx_insn *last_death;
148
149 /* Record last point of modification of (hard or pseudo) register n. */
150 rtx_insn *last_set;
151
152 /* The next group of fields allows the recording of the last value assigned
153 to (hard or pseudo) register n. We use this information to see if an
154 operation being processed is redundant given a prior operation performed
155 on the register. For example, an `and' with a constant is redundant if
156 all the zero bits are already known to be turned off.
157
158 We use an approach similar to that used by cse, but change it in the
159 following ways:
160
161 (1) We do not want to reinitialize at each label.
162 (2) It is useful, but not critical, to know the actual value assigned
163 to a register. Often just its form is helpful.
164
165 Therefore, we maintain the following fields:
166
167 last_set_value the last value assigned
168 last_set_label records the value of label_tick when the
169 register was assigned
170 last_set_table_tick records the value of label_tick when a
171 value using the register is assigned
172 last_set_invalid set to nonzero when it is not valid
173 to use the value of this register in some
174 register's value
175
176 To understand the usage of these tables, it is important to understand
177 the distinction between the value in last_set_value being valid and
178 the register being validly contained in some other expression in the
179 table.
180
181 (The next two parameters are out of date).
182
183 reg_stat[i].last_set_value is valid if it is nonzero, and either
184 reg_n_sets[i] is 1 or reg_stat[i].last_set_label == label_tick.
185
186 Register I may validly appear in any expression returned for the value
187 of another register if reg_n_sets[i] is 1. It may also appear in the
188 value for register J if reg_stat[j].last_set_invalid is zero, or
189 reg_stat[i].last_set_label < reg_stat[j].last_set_label.
190
191 If an expression is found in the table containing a register which may
192 not validly appear in an expression, the register is replaced by
193 something that won't match, (clobber (const_int 0)). */
194
195 /* Record last value assigned to (hard or pseudo) register n. */
196
197 rtx last_set_value;
198
199 /* Record the value of label_tick when an expression involving register n
200 is placed in last_set_value. */
201
202 int last_set_table_tick;
203
204 /* Record the value of label_tick when the value for register n is placed in
205 last_set_value. */
206
207 int last_set_label;
208
209 /* These fields are maintained in parallel with last_set_value and are
210 used to store the mode in which the register was last set, the bits
211 that were known to be zero when it was last set, and the number of
212 sign bits copies it was known to have when it was last set. */
213
214 unsigned HOST_WIDE_INT last_set_nonzero_bits;
215 char last_set_sign_bit_copies;
216 ENUM_BITFIELD(machine_mode) last_set_mode : 8;
217
218 /* Set nonzero if references to register n in expressions should not be
219 used. last_set_invalid is set nonzero when this register is being
220 assigned to and last_set_table_tick == label_tick. */
221
222 char last_set_invalid;
223
224 /* Some registers that are set more than once and used in more than one
225 basic block are nevertheless always set in similar ways. For example,
226 a QImode register may be loaded from memory in two places on a machine
227 where byte loads zero extend.
228
229 We record in the following fields if a register has some leading bits
230 that are always equal to the sign bit, and what we know about the
231 nonzero bits of a register, specifically which bits are known to be
232 zero.
233
234 If an entry is zero, it means that we don't know anything special. */
235
236 unsigned char sign_bit_copies;
237
238 unsigned HOST_WIDE_INT nonzero_bits;
239
240 /* Record the value of the label_tick when the last truncation
241 happened. The field truncated_to_mode is only valid if
242 truncation_label == label_tick. */
243
244 int truncation_label;
245
246 /* Record the last truncation seen for this register. If truncation
247 is not a nop to this mode we might be able to save an explicit
248 truncation if we know that value already contains a truncated
249 value. */
250
251 ENUM_BITFIELD(machine_mode) truncated_to_mode : 8;
252 };
253
254
255 static vec<reg_stat_type> reg_stat;
256
257 /* One plus the highest pseudo for which we track REG_N_SETS.
258 regstat_init_n_sets_and_refs allocates the array for REG_N_SETS just once,
259 but during combine_split_insns new pseudos can be created. As we don't have
260 updated DF information in that case, it is hard to initialize the array
261 after growing. The combiner only cares about REG_N_SETS (regno) == 1,
262 so instead of growing the arrays, just assume all newly created pseudos
263 during combine might be set multiple times. */
264
265 static unsigned int reg_n_sets_max;
266
267 /* Record the luid of the last insn that invalidated memory
268 (anything that writes memory, and subroutine calls, but not pushes). */
269
270 static int mem_last_set;
271
272 /* Record the luid of the last CALL_INSN
273 so we can tell whether a potential combination crosses any calls. */
274
275 static int last_call_luid;
276
277 /* When `subst' is called, this is the insn that is being modified
278 (by combining in a previous insn). The PATTERN of this insn
279 is still the old pattern partially modified and it should not be
280 looked at, but this may be used to examine the successors of the insn
281 to judge whether a simplification is valid. */
282
283 static rtx_insn *subst_insn;
284
285 /* This is the lowest LUID that `subst' is currently dealing with.
286 get_last_value will not return a value if the register was set at or
287 after this LUID. If not for this mechanism, we could get confused if
288 I2 or I1 in try_combine were an insn that used the old value of a register
289 to obtain a new value. In that case, we might erroneously get the
290 new value of the register when we wanted the old one. */
291
292 static int subst_low_luid;
293
294 /* This contains any hard registers that are used in newpat; reg_dead_at_p
295 must consider all these registers to be always live. */
296
297 static HARD_REG_SET newpat_used_regs;
298
299 /* This is an insn to which a LOG_LINKS entry has been added. If this
300 insn is the earlier than I2 or I3, combine should rescan starting at
301 that location. */
302
303 static rtx_insn *added_links_insn;
304
305 /* Basic block in which we are performing combines. */
306 static basic_block this_basic_block;
307 static bool optimize_this_for_speed_p;
308
309 \f
310 /* Length of the currently allocated uid_insn_cost array. */
311
312 static int max_uid_known;
313
314 /* The following array records the insn_rtx_cost for every insn
315 in the instruction stream. */
316
317 static int *uid_insn_cost;
318
319 /* The following array records the LOG_LINKS for every insn in the
320 instruction stream as struct insn_link pointers. */
321
322 struct insn_link {
323 rtx_insn *insn;
324 unsigned int regno;
325 struct insn_link *next;
326 };
327
328 static struct insn_link **uid_log_links;
329
330 static inline int
331 insn_uid_check (const_rtx insn)
332 {
333 int uid = INSN_UID (insn);
334 gcc_checking_assert (uid <= max_uid_known);
335 return uid;
336 }
337
338 #define INSN_COST(INSN) (uid_insn_cost[insn_uid_check (INSN)])
339 #define LOG_LINKS(INSN) (uid_log_links[insn_uid_check (INSN)])
340
341 #define FOR_EACH_LOG_LINK(L, INSN) \
342 for ((L) = LOG_LINKS (INSN); (L); (L) = (L)->next)
343
344 /* Links for LOG_LINKS are allocated from this obstack. */
345
346 static struct obstack insn_link_obstack;
347
348 /* Allocate a link. */
349
350 static inline struct insn_link *
351 alloc_insn_link (rtx_insn *insn, unsigned int regno, struct insn_link *next)
352 {
353 struct insn_link *l
354 = (struct insn_link *) obstack_alloc (&insn_link_obstack,
355 sizeof (struct insn_link));
356 l->insn = insn;
357 l->regno = regno;
358 l->next = next;
359 return l;
360 }
361
362 /* Incremented for each basic block. */
363
364 static int label_tick;
365
366 /* Reset to label_tick for each extended basic block in scanning order. */
367
368 static int label_tick_ebb_start;
369
370 /* Mode used to compute significance in reg_stat[].nonzero_bits. It is the
371 largest integer mode that can fit in HOST_BITS_PER_WIDE_INT. */
372
373 static machine_mode nonzero_bits_mode;
374
375 /* Nonzero when reg_stat[].nonzero_bits and reg_stat[].sign_bit_copies can
376 be safely used. It is zero while computing them and after combine has
377 completed. This former test prevents propagating values based on
378 previously set values, which can be incorrect if a variable is modified
379 in a loop. */
380
381 static int nonzero_sign_valid;
382
383 \f
384 /* Record one modification to rtl structure
385 to be undone by storing old_contents into *where. */
386
387 enum undo_kind { UNDO_RTX, UNDO_INT, UNDO_MODE, UNDO_LINKS };
388
389 struct undo
390 {
391 struct undo *next;
392 enum undo_kind kind;
393 union { rtx r; int i; machine_mode m; struct insn_link *l; } old_contents;
394 union { rtx *r; int *i; struct insn_link **l; } where;
395 };
396
397 /* Record a bunch of changes to be undone, up to MAX_UNDO of them.
398 num_undo says how many are currently recorded.
399
400 other_insn is nonzero if we have modified some other insn in the process
401 of working on subst_insn. It must be verified too. */
402
403 struct undobuf
404 {
405 struct undo *undos;
406 struct undo *frees;
407 rtx_insn *other_insn;
408 };
409
410 static struct undobuf undobuf;
411
412 /* Number of times the pseudo being substituted for
413 was found and replaced. */
414
415 static int n_occurrences;
416
417 static rtx reg_nonzero_bits_for_combine (const_rtx, machine_mode, const_rtx,
418 machine_mode,
419 unsigned HOST_WIDE_INT,
420 unsigned HOST_WIDE_INT *);
421 static rtx reg_num_sign_bit_copies_for_combine (const_rtx, machine_mode, const_rtx,
422 machine_mode,
423 unsigned int, unsigned int *);
424 static void do_SUBST (rtx *, rtx);
425 static void do_SUBST_INT (int *, int);
426 static void init_reg_last (void);
427 static void setup_incoming_promotions (rtx_insn *);
428 static void set_nonzero_bits_and_sign_copies (rtx, const_rtx, void *);
429 static int cant_combine_insn_p (rtx_insn *);
430 static int can_combine_p (rtx_insn *, rtx_insn *, rtx_insn *, rtx_insn *,
431 rtx_insn *, rtx_insn *, rtx *, rtx *);
432 static int combinable_i3pat (rtx_insn *, rtx *, rtx, rtx, rtx, int, int, rtx *);
433 static int contains_muldiv (rtx);
434 static rtx_insn *try_combine (rtx_insn *, rtx_insn *, rtx_insn *, rtx_insn *,
435 int *, rtx_insn *);
436 static void undo_all (void);
437 static void undo_commit (void);
438 static rtx *find_split_point (rtx *, rtx_insn *, bool);
439 static rtx subst (rtx, rtx, rtx, int, int, int);
440 static rtx combine_simplify_rtx (rtx, machine_mode, int, int);
441 static rtx simplify_if_then_else (rtx);
442 static rtx simplify_set (rtx);
443 static rtx simplify_logical (rtx);
444 static rtx expand_compound_operation (rtx);
445 static const_rtx expand_field_assignment (const_rtx);
446 static rtx make_extraction (machine_mode, rtx, HOST_WIDE_INT,
447 rtx, unsigned HOST_WIDE_INT, int, int, int);
448 static rtx extract_left_shift (rtx, int);
449 static int get_pos_from_mask (unsigned HOST_WIDE_INT,
450 unsigned HOST_WIDE_INT *);
451 static rtx canon_reg_for_combine (rtx, rtx);
452 static rtx force_to_mode (rtx, machine_mode,
453 unsigned HOST_WIDE_INT, int);
454 static rtx if_then_else_cond (rtx, rtx *, rtx *);
455 static rtx known_cond (rtx, enum rtx_code, rtx, rtx);
456 static int rtx_equal_for_field_assignment_p (rtx, rtx, bool = false);
457 static rtx make_field_assignment (rtx);
458 static rtx apply_distributive_law (rtx);
459 static rtx distribute_and_simplify_rtx (rtx, int);
460 static rtx simplify_and_const_int_1 (machine_mode, rtx,
461 unsigned HOST_WIDE_INT);
462 static rtx simplify_and_const_int (rtx, machine_mode, rtx,
463 unsigned HOST_WIDE_INT);
464 static int merge_outer_ops (enum rtx_code *, HOST_WIDE_INT *, enum rtx_code,
465 HOST_WIDE_INT, machine_mode, int *);
466 static rtx simplify_shift_const_1 (enum rtx_code, machine_mode, rtx, int);
467 static rtx simplify_shift_const (rtx, enum rtx_code, machine_mode, rtx,
468 int);
469 static int recog_for_combine (rtx *, rtx_insn *, rtx *);
470 static rtx gen_lowpart_for_combine (machine_mode, rtx);
471 static enum rtx_code simplify_compare_const (enum rtx_code, machine_mode,
472 rtx, rtx *);
473 static enum rtx_code simplify_comparison (enum rtx_code, rtx *, rtx *);
474 static void update_table_tick (rtx);
475 static void record_value_for_reg (rtx, rtx_insn *, rtx);
476 static void check_promoted_subreg (rtx_insn *, rtx);
477 static void record_dead_and_set_regs_1 (rtx, const_rtx, void *);
478 static void record_dead_and_set_regs (rtx_insn *);
479 static int get_last_value_validate (rtx *, rtx_insn *, int, int);
480 static rtx get_last_value (const_rtx);
481 static int use_crosses_set_p (const_rtx, int);
482 static void reg_dead_at_p_1 (rtx, const_rtx, void *);
483 static int reg_dead_at_p (rtx, rtx_insn *);
484 static void move_deaths (rtx, rtx, int, rtx_insn *, rtx *);
485 static int reg_bitfield_target_p (rtx, rtx);
486 static void distribute_notes (rtx, rtx_insn *, rtx_insn *, rtx_insn *, rtx, rtx, rtx);
487 static void distribute_links (struct insn_link *);
488 static void mark_used_regs_combine (rtx);
489 static void record_promoted_value (rtx_insn *, rtx);
490 static bool unmentioned_reg_p (rtx, rtx);
491 static void record_truncated_values (rtx *, void *);
492 static bool reg_truncated_to_mode (machine_mode, const_rtx);
493 static rtx gen_lowpart_or_truncate (machine_mode, rtx);
494 \f
495
496 /* It is not safe to use ordinary gen_lowpart in combine.
497 See comments in gen_lowpart_for_combine. */
498 #undef RTL_HOOKS_GEN_LOWPART
499 #define RTL_HOOKS_GEN_LOWPART gen_lowpart_for_combine
500
501 /* Our implementation of gen_lowpart never emits a new pseudo. */
502 #undef RTL_HOOKS_GEN_LOWPART_NO_EMIT
503 #define RTL_HOOKS_GEN_LOWPART_NO_EMIT gen_lowpart_for_combine
504
505 #undef RTL_HOOKS_REG_NONZERO_REG_BITS
506 #define RTL_HOOKS_REG_NONZERO_REG_BITS reg_nonzero_bits_for_combine
507
508 #undef RTL_HOOKS_REG_NUM_SIGN_BIT_COPIES
509 #define RTL_HOOKS_REG_NUM_SIGN_BIT_COPIES reg_num_sign_bit_copies_for_combine
510
511 #undef RTL_HOOKS_REG_TRUNCATED_TO_MODE
512 #define RTL_HOOKS_REG_TRUNCATED_TO_MODE reg_truncated_to_mode
513
514 static const struct rtl_hooks combine_rtl_hooks = RTL_HOOKS_INITIALIZER;
515
516 \f
517 /* Convenience wrapper for the canonicalize_comparison target hook.
518 Target hooks cannot use enum rtx_code. */
519 static inline void
520 target_canonicalize_comparison (enum rtx_code *code, rtx *op0, rtx *op1,
521 bool op0_preserve_value)
522 {
523 int code_int = (int)*code;
524 targetm.canonicalize_comparison (&code_int, op0, op1, op0_preserve_value);
525 *code = (enum rtx_code)code_int;
526 }
527
528 /* Try to split PATTERN found in INSN. This returns NULL_RTX if
529 PATTERN can not be split. Otherwise, it returns an insn sequence.
530 This is a wrapper around split_insns which ensures that the
531 reg_stat vector is made larger if the splitter creates a new
532 register. */
533
534 static rtx_insn *
535 combine_split_insns (rtx pattern, rtx_insn *insn)
536 {
537 rtx_insn *ret;
538 unsigned int nregs;
539
540 ret = split_insns (pattern, insn);
541 nregs = max_reg_num ();
542 if (nregs > reg_stat.length ())
543 reg_stat.safe_grow_cleared (nregs);
544 return ret;
545 }
546
547 /* This is used by find_single_use to locate an rtx in LOC that
548 contains exactly one use of DEST, which is typically either a REG
549 or CC0. It returns a pointer to the innermost rtx expression
550 containing DEST. Appearances of DEST that are being used to
551 totally replace it are not counted. */
552
553 static rtx *
554 find_single_use_1 (rtx dest, rtx *loc)
555 {
556 rtx x = *loc;
557 enum rtx_code code = GET_CODE (x);
558 rtx *result = NULL;
559 rtx *this_result;
560 int i;
561 const char *fmt;
562
563 switch (code)
564 {
565 case CONST:
566 case LABEL_REF:
567 case SYMBOL_REF:
568 CASE_CONST_ANY:
569 case CLOBBER:
570 return 0;
571
572 case SET:
573 /* If the destination is anything other than CC0, PC, a REG or a SUBREG
574 of a REG that occupies all of the REG, the insn uses DEST if
575 it is mentioned in the destination or the source. Otherwise, we
576 need just check the source. */
577 if (GET_CODE (SET_DEST (x)) != CC0
578 && GET_CODE (SET_DEST (x)) != PC
579 && !REG_P (SET_DEST (x))
580 && ! (GET_CODE (SET_DEST (x)) == SUBREG
581 && REG_P (SUBREG_REG (SET_DEST (x)))
582 && (((GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (x))))
583 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
584 == ((GET_MODE_SIZE (GET_MODE (SET_DEST (x)))
585 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))))
586 break;
587
588 return find_single_use_1 (dest, &SET_SRC (x));
589
590 case MEM:
591 case SUBREG:
592 return find_single_use_1 (dest, &XEXP (x, 0));
593
594 default:
595 break;
596 }
597
598 /* If it wasn't one of the common cases above, check each expression and
599 vector of this code. Look for a unique usage of DEST. */
600
601 fmt = GET_RTX_FORMAT (code);
602 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
603 {
604 if (fmt[i] == 'e')
605 {
606 if (dest == XEXP (x, i)
607 || (REG_P (dest) && REG_P (XEXP (x, i))
608 && REGNO (dest) == REGNO (XEXP (x, i))))
609 this_result = loc;
610 else
611 this_result = find_single_use_1 (dest, &XEXP (x, i));
612
613 if (result == NULL)
614 result = this_result;
615 else if (this_result)
616 /* Duplicate usage. */
617 return NULL;
618 }
619 else if (fmt[i] == 'E')
620 {
621 int j;
622
623 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
624 {
625 if (XVECEXP (x, i, j) == dest
626 || (REG_P (dest)
627 && REG_P (XVECEXP (x, i, j))
628 && REGNO (XVECEXP (x, i, j)) == REGNO (dest)))
629 this_result = loc;
630 else
631 this_result = find_single_use_1 (dest, &XVECEXP (x, i, j));
632
633 if (result == NULL)
634 result = this_result;
635 else if (this_result)
636 return NULL;
637 }
638 }
639 }
640
641 return result;
642 }
643
644
645 /* See if DEST, produced in INSN, is used only a single time in the
646 sequel. If so, return a pointer to the innermost rtx expression in which
647 it is used.
648
649 If PLOC is nonzero, *PLOC is set to the insn containing the single use.
650
651 If DEST is cc0_rtx, we look only at the next insn. In that case, we don't
652 care about REG_DEAD notes or LOG_LINKS.
653
654 Otherwise, we find the single use by finding an insn that has a
655 LOG_LINKS pointing at INSN and has a REG_DEAD note for DEST. If DEST is
656 only referenced once in that insn, we know that it must be the first
657 and last insn referencing DEST. */
658
659 static rtx *
660 find_single_use (rtx dest, rtx_insn *insn, rtx_insn **ploc)
661 {
662 basic_block bb;
663 rtx_insn *next;
664 rtx *result;
665 struct insn_link *link;
666
667 if (dest == cc0_rtx)
668 {
669 next = NEXT_INSN (insn);
670 if (next == 0
671 || (!NONJUMP_INSN_P (next) && !JUMP_P (next)))
672 return 0;
673
674 result = find_single_use_1 (dest, &PATTERN (next));
675 if (result && ploc)
676 *ploc = next;
677 return result;
678 }
679
680 if (!REG_P (dest))
681 return 0;
682
683 bb = BLOCK_FOR_INSN (insn);
684 for (next = NEXT_INSN (insn);
685 next && BLOCK_FOR_INSN (next) == bb;
686 next = NEXT_INSN (next))
687 if (NONDEBUG_INSN_P (next) && dead_or_set_p (next, dest))
688 {
689 FOR_EACH_LOG_LINK (link, next)
690 if (link->insn == insn && link->regno == REGNO (dest))
691 break;
692
693 if (link)
694 {
695 result = find_single_use_1 (dest, &PATTERN (next));
696 if (ploc)
697 *ploc = next;
698 return result;
699 }
700 }
701
702 return 0;
703 }
704 \f
705 /* Substitute NEWVAL, an rtx expression, into INTO, a place in some
706 insn. The substitution can be undone by undo_all. If INTO is already
707 set to NEWVAL, do not record this change. Because computing NEWVAL might
708 also call SUBST, we have to compute it before we put anything into
709 the undo table. */
710
711 static void
712 do_SUBST (rtx *into, rtx newval)
713 {
714 struct undo *buf;
715 rtx oldval = *into;
716
717 if (oldval == newval)
718 return;
719
720 /* We'd like to catch as many invalid transformations here as
721 possible. Unfortunately, there are way too many mode changes
722 that are perfectly valid, so we'd waste too much effort for
723 little gain doing the checks here. Focus on catching invalid
724 transformations involving integer constants. */
725 if (GET_MODE_CLASS (GET_MODE (oldval)) == MODE_INT
726 && CONST_INT_P (newval))
727 {
728 /* Sanity check that we're replacing oldval with a CONST_INT
729 that is a valid sign-extension for the original mode. */
730 gcc_assert (INTVAL (newval)
731 == trunc_int_for_mode (INTVAL (newval), GET_MODE (oldval)));
732
733 /* Replacing the operand of a SUBREG or a ZERO_EXTEND with a
734 CONST_INT is not valid, because after the replacement, the
735 original mode would be gone. Unfortunately, we can't tell
736 when do_SUBST is called to replace the operand thereof, so we
737 perform this test on oldval instead, checking whether an
738 invalid replacement took place before we got here. */
739 gcc_assert (!(GET_CODE (oldval) == SUBREG
740 && CONST_INT_P (SUBREG_REG (oldval))));
741 gcc_assert (!(GET_CODE (oldval) == ZERO_EXTEND
742 && CONST_INT_P (XEXP (oldval, 0))));
743 }
744
745 if (undobuf.frees)
746 buf = undobuf.frees, undobuf.frees = buf->next;
747 else
748 buf = XNEW (struct undo);
749
750 buf->kind = UNDO_RTX;
751 buf->where.r = into;
752 buf->old_contents.r = oldval;
753 *into = newval;
754
755 buf->next = undobuf.undos, undobuf.undos = buf;
756 }
757
758 #define SUBST(INTO, NEWVAL) do_SUBST (&(INTO), (NEWVAL))
759
760 /* Similar to SUBST, but NEWVAL is an int expression. Note that substitution
761 for the value of a HOST_WIDE_INT value (including CONST_INT) is
762 not safe. */
763
764 static void
765 do_SUBST_INT (int *into, int newval)
766 {
767 struct undo *buf;
768 int oldval = *into;
769
770 if (oldval == newval)
771 return;
772
773 if (undobuf.frees)
774 buf = undobuf.frees, undobuf.frees = buf->next;
775 else
776 buf = XNEW (struct undo);
777
778 buf->kind = UNDO_INT;
779 buf->where.i = into;
780 buf->old_contents.i = oldval;
781 *into = newval;
782
783 buf->next = undobuf.undos, undobuf.undos = buf;
784 }
785
786 #define SUBST_INT(INTO, NEWVAL) do_SUBST_INT (&(INTO), (NEWVAL))
787
788 /* Similar to SUBST, but just substitute the mode. This is used when
789 changing the mode of a pseudo-register, so that any other
790 references to the entry in the regno_reg_rtx array will change as
791 well. */
792
793 static void
794 do_SUBST_MODE (rtx *into, machine_mode newval)
795 {
796 struct undo *buf;
797 machine_mode oldval = GET_MODE (*into);
798
799 if (oldval == newval)
800 return;
801
802 if (undobuf.frees)
803 buf = undobuf.frees, undobuf.frees = buf->next;
804 else
805 buf = XNEW (struct undo);
806
807 buf->kind = UNDO_MODE;
808 buf->where.r = into;
809 buf->old_contents.m = oldval;
810 adjust_reg_mode (*into, newval);
811
812 buf->next = undobuf.undos, undobuf.undos = buf;
813 }
814
815 #define SUBST_MODE(INTO, NEWVAL) do_SUBST_MODE (&(INTO), (NEWVAL))
816
817 /* Similar to SUBST, but NEWVAL is a LOG_LINKS expression. */
818
819 static void
820 do_SUBST_LINK (struct insn_link **into, struct insn_link *newval)
821 {
822 struct undo *buf;
823 struct insn_link * oldval = *into;
824
825 if (oldval == newval)
826 return;
827
828 if (undobuf.frees)
829 buf = undobuf.frees, undobuf.frees = buf->next;
830 else
831 buf = XNEW (struct undo);
832
833 buf->kind = UNDO_LINKS;
834 buf->where.l = into;
835 buf->old_contents.l = oldval;
836 *into = newval;
837
838 buf->next = undobuf.undos, undobuf.undos = buf;
839 }
840
841 #define SUBST_LINK(oldval, newval) do_SUBST_LINK (&oldval, newval)
842 \f
843 /* Subroutine of try_combine. Determine whether the replacement patterns
844 NEWPAT, NEWI2PAT and NEWOTHERPAT are cheaper according to insn_rtx_cost
845 than the original sequence I0, I1, I2, I3 and undobuf.other_insn. Note
846 that I0, I1 and/or NEWI2PAT may be NULL_RTX. Similarly, NEWOTHERPAT and
847 undobuf.other_insn may also both be NULL_RTX. Return false if the cost
848 of all the instructions can be estimated and the replacements are more
849 expensive than the original sequence. */
850
851 static bool
852 combine_validate_cost (rtx_insn *i0, rtx_insn *i1, rtx_insn *i2, rtx_insn *i3,
853 rtx newpat, rtx newi2pat, rtx newotherpat)
854 {
855 int i0_cost, i1_cost, i2_cost, i3_cost;
856 int new_i2_cost, new_i3_cost;
857 int old_cost, new_cost;
858
859 /* Lookup the original insn_rtx_costs. */
860 i2_cost = INSN_COST (i2);
861 i3_cost = INSN_COST (i3);
862
863 if (i1)
864 {
865 i1_cost = INSN_COST (i1);
866 if (i0)
867 {
868 i0_cost = INSN_COST (i0);
869 old_cost = (i0_cost > 0 && i1_cost > 0 && i2_cost > 0 && i3_cost > 0
870 ? i0_cost + i1_cost + i2_cost + i3_cost : 0);
871 }
872 else
873 {
874 old_cost = (i1_cost > 0 && i2_cost > 0 && i3_cost > 0
875 ? i1_cost + i2_cost + i3_cost : 0);
876 i0_cost = 0;
877 }
878 }
879 else
880 {
881 old_cost = (i2_cost > 0 && i3_cost > 0) ? i2_cost + i3_cost : 0;
882 i1_cost = i0_cost = 0;
883 }
884
885 /* If we have split a PARALLEL I2 to I1,I2, we have counted its cost twice;
886 correct that. */
887 if (old_cost && i1 && INSN_UID (i1) == INSN_UID (i2))
888 old_cost -= i1_cost;
889
890
891 /* Calculate the replacement insn_rtx_costs. */
892 new_i3_cost = insn_rtx_cost (newpat, optimize_this_for_speed_p);
893 if (newi2pat)
894 {
895 new_i2_cost = insn_rtx_cost (newi2pat, optimize_this_for_speed_p);
896 new_cost = (new_i2_cost > 0 && new_i3_cost > 0)
897 ? new_i2_cost + new_i3_cost : 0;
898 }
899 else
900 {
901 new_cost = new_i3_cost;
902 new_i2_cost = 0;
903 }
904
905 if (undobuf.other_insn)
906 {
907 int old_other_cost, new_other_cost;
908
909 old_other_cost = INSN_COST (undobuf.other_insn);
910 new_other_cost = insn_rtx_cost (newotherpat, optimize_this_for_speed_p);
911 if (old_other_cost > 0 && new_other_cost > 0)
912 {
913 old_cost += old_other_cost;
914 new_cost += new_other_cost;
915 }
916 else
917 old_cost = 0;
918 }
919
920 /* Disallow this combination if both new_cost and old_cost are greater than
921 zero, and new_cost is greater than old cost. */
922 int reject = old_cost > 0 && new_cost > old_cost;
923
924 if (dump_file)
925 {
926 fprintf (dump_file, "%s combination of insns ",
927 reject ? "rejecting" : "allowing");
928 if (i0)
929 fprintf (dump_file, "%d, ", INSN_UID (i0));
930 if (i1 && INSN_UID (i1) != INSN_UID (i2))
931 fprintf (dump_file, "%d, ", INSN_UID (i1));
932 fprintf (dump_file, "%d and %d\n", INSN_UID (i2), INSN_UID (i3));
933
934 fprintf (dump_file, "original costs ");
935 if (i0)
936 fprintf (dump_file, "%d + ", i0_cost);
937 if (i1 && INSN_UID (i1) != INSN_UID (i2))
938 fprintf (dump_file, "%d + ", i1_cost);
939 fprintf (dump_file, "%d + %d = %d\n", i2_cost, i3_cost, old_cost);
940
941 if (newi2pat)
942 fprintf (dump_file, "replacement costs %d + %d = %d\n",
943 new_i2_cost, new_i3_cost, new_cost);
944 else
945 fprintf (dump_file, "replacement cost %d\n", new_cost);
946 }
947
948 if (reject)
949 return false;
950
951 /* Update the uid_insn_cost array with the replacement costs. */
952 INSN_COST (i2) = new_i2_cost;
953 INSN_COST (i3) = new_i3_cost;
954 if (i1)
955 {
956 INSN_COST (i1) = 0;
957 if (i0)
958 INSN_COST (i0) = 0;
959 }
960
961 return true;
962 }
963
964
965 /* Delete any insns that copy a register to itself. */
966
967 static void
968 delete_noop_moves (void)
969 {
970 rtx_insn *insn, *next;
971 basic_block bb;
972
973 FOR_EACH_BB_FN (bb, cfun)
974 {
975 for (insn = BB_HEAD (bb); insn != NEXT_INSN (BB_END (bb)); insn = next)
976 {
977 next = NEXT_INSN (insn);
978 if (INSN_P (insn) && noop_move_p (insn))
979 {
980 if (dump_file)
981 fprintf (dump_file, "deleting noop move %d\n", INSN_UID (insn));
982
983 delete_insn_and_edges (insn);
984 }
985 }
986 }
987 }
988
989 \f
990 /* Return false if we do not want to (or cannot) combine DEF. */
991 static bool
992 can_combine_def_p (df_ref def)
993 {
994 /* Do not consider if it is pre/post modification in MEM. */
995 if (DF_REF_FLAGS (def) & DF_REF_PRE_POST_MODIFY)
996 return false;
997
998 unsigned int regno = DF_REF_REGNO (def);
999
1000 /* Do not combine frame pointer adjustments. */
1001 if ((regno == FRAME_POINTER_REGNUM
1002 && (!reload_completed || frame_pointer_needed))
1003 || (!HARD_FRAME_POINTER_IS_FRAME_POINTER
1004 && regno == HARD_FRAME_POINTER_REGNUM
1005 && (!reload_completed || frame_pointer_needed))
1006 || (FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
1007 && regno == ARG_POINTER_REGNUM && fixed_regs[regno]))
1008 return false;
1009
1010 return true;
1011 }
1012
1013 /* Return false if we do not want to (or cannot) combine USE. */
1014 static bool
1015 can_combine_use_p (df_ref use)
1016 {
1017 /* Do not consider the usage of the stack pointer by function call. */
1018 if (DF_REF_FLAGS (use) & DF_REF_CALL_STACK_USAGE)
1019 return false;
1020
1021 return true;
1022 }
1023
1024 /* Fill in log links field for all insns. */
1025
1026 static void
1027 create_log_links (void)
1028 {
1029 basic_block bb;
1030 rtx_insn **next_use;
1031 rtx_insn *insn;
1032 df_ref def, use;
1033
1034 next_use = XCNEWVEC (rtx_insn *, max_reg_num ());
1035
1036 /* Pass through each block from the end, recording the uses of each
1037 register and establishing log links when def is encountered.
1038 Note that we do not clear next_use array in order to save time,
1039 so we have to test whether the use is in the same basic block as def.
1040
1041 There are a few cases below when we do not consider the definition or
1042 usage -- these are taken from original flow.c did. Don't ask me why it is
1043 done this way; I don't know and if it works, I don't want to know. */
1044
1045 FOR_EACH_BB_FN (bb, cfun)
1046 {
1047 FOR_BB_INSNS_REVERSE (bb, insn)
1048 {
1049 if (!NONDEBUG_INSN_P (insn))
1050 continue;
1051
1052 /* Log links are created only once. */
1053 gcc_assert (!LOG_LINKS (insn));
1054
1055 FOR_EACH_INSN_DEF (def, insn)
1056 {
1057 unsigned int regno = DF_REF_REGNO (def);
1058 rtx_insn *use_insn;
1059
1060 if (!next_use[regno])
1061 continue;
1062
1063 if (!can_combine_def_p (def))
1064 continue;
1065
1066 use_insn = next_use[regno];
1067 next_use[regno] = NULL;
1068
1069 if (BLOCK_FOR_INSN (use_insn) != bb)
1070 continue;
1071
1072 /* flow.c claimed:
1073
1074 We don't build a LOG_LINK for hard registers contained
1075 in ASM_OPERANDs. If these registers get replaced,
1076 we might wind up changing the semantics of the insn,
1077 even if reload can make what appear to be valid
1078 assignments later. */
1079 if (regno < FIRST_PSEUDO_REGISTER
1080 && asm_noperands (PATTERN (use_insn)) >= 0)
1081 continue;
1082
1083 /* Don't add duplicate links between instructions. */
1084 struct insn_link *links;
1085 FOR_EACH_LOG_LINK (links, use_insn)
1086 if (insn == links->insn && regno == links->regno)
1087 break;
1088
1089 if (!links)
1090 LOG_LINKS (use_insn)
1091 = alloc_insn_link (insn, regno, LOG_LINKS (use_insn));
1092 }
1093
1094 FOR_EACH_INSN_USE (use, insn)
1095 if (can_combine_use_p (use))
1096 next_use[DF_REF_REGNO (use)] = insn;
1097 }
1098 }
1099
1100 free (next_use);
1101 }
1102
1103 /* Walk the LOG_LINKS of insn B to see if we find a reference to A. Return
1104 true if we found a LOG_LINK that proves that A feeds B. This only works
1105 if there are no instructions between A and B which could have a link
1106 depending on A, since in that case we would not record a link for B.
1107 We also check the implicit dependency created by a cc0 setter/user
1108 pair. */
1109
1110 static bool
1111 insn_a_feeds_b (rtx_insn *a, rtx_insn *b)
1112 {
1113 struct insn_link *links;
1114 FOR_EACH_LOG_LINK (links, b)
1115 if (links->insn == a)
1116 return true;
1117 if (HAVE_cc0 && sets_cc0_p (a))
1118 return true;
1119 return false;
1120 }
1121 \f
1122 /* Main entry point for combiner. F is the first insn of the function.
1123 NREGS is the first unused pseudo-reg number.
1124
1125 Return nonzero if the combiner has turned an indirect jump
1126 instruction into a direct jump. */
1127 static int
1128 combine_instructions (rtx_insn *f, unsigned int nregs)
1129 {
1130 rtx_insn *insn, *next;
1131 rtx_insn *prev;
1132 struct insn_link *links, *nextlinks;
1133 rtx_insn *first;
1134 basic_block last_bb;
1135
1136 int new_direct_jump_p = 0;
1137
1138 for (first = f; first && !NONDEBUG_INSN_P (first); )
1139 first = NEXT_INSN (first);
1140 if (!first)
1141 return 0;
1142
1143 combine_attempts = 0;
1144 combine_merges = 0;
1145 combine_extras = 0;
1146 combine_successes = 0;
1147
1148 rtl_hooks = combine_rtl_hooks;
1149
1150 reg_stat.safe_grow_cleared (nregs);
1151
1152 init_recog_no_volatile ();
1153
1154 /* Allocate array for insn info. */
1155 max_uid_known = get_max_uid ();
1156 uid_log_links = XCNEWVEC (struct insn_link *, max_uid_known + 1);
1157 uid_insn_cost = XCNEWVEC (int, max_uid_known + 1);
1158 gcc_obstack_init (&insn_link_obstack);
1159
1160 nonzero_bits_mode = mode_for_size (HOST_BITS_PER_WIDE_INT, MODE_INT, 0);
1161
1162 /* Don't use reg_stat[].nonzero_bits when computing it. This can cause
1163 problems when, for example, we have j <<= 1 in a loop. */
1164
1165 nonzero_sign_valid = 0;
1166 label_tick = label_tick_ebb_start = 1;
1167
1168 /* Scan all SETs and see if we can deduce anything about what
1169 bits are known to be zero for some registers and how many copies
1170 of the sign bit are known to exist for those registers.
1171
1172 Also set any known values so that we can use it while searching
1173 for what bits are known to be set. */
1174
1175 setup_incoming_promotions (first);
1176 /* Allow the entry block and the first block to fall into the same EBB.
1177 Conceptually the incoming promotions are assigned to the entry block. */
1178 last_bb = ENTRY_BLOCK_PTR_FOR_FN (cfun);
1179
1180 create_log_links ();
1181 FOR_EACH_BB_FN (this_basic_block, cfun)
1182 {
1183 optimize_this_for_speed_p = optimize_bb_for_speed_p (this_basic_block);
1184 last_call_luid = 0;
1185 mem_last_set = -1;
1186
1187 label_tick++;
1188 if (!single_pred_p (this_basic_block)
1189 || single_pred (this_basic_block) != last_bb)
1190 label_tick_ebb_start = label_tick;
1191 last_bb = this_basic_block;
1192
1193 FOR_BB_INSNS (this_basic_block, insn)
1194 if (INSN_P (insn) && BLOCK_FOR_INSN (insn))
1195 {
1196 rtx links;
1197
1198 subst_low_luid = DF_INSN_LUID (insn);
1199 subst_insn = insn;
1200
1201 note_stores (PATTERN (insn), set_nonzero_bits_and_sign_copies,
1202 insn);
1203 record_dead_and_set_regs (insn);
1204
1205 if (AUTO_INC_DEC)
1206 for (links = REG_NOTES (insn); links; links = XEXP (links, 1))
1207 if (REG_NOTE_KIND (links) == REG_INC)
1208 set_nonzero_bits_and_sign_copies (XEXP (links, 0), NULL_RTX,
1209 insn);
1210
1211 /* Record the current insn_rtx_cost of this instruction. */
1212 if (NONJUMP_INSN_P (insn))
1213 INSN_COST (insn) = insn_rtx_cost (PATTERN (insn),
1214 optimize_this_for_speed_p);
1215 if (dump_file)
1216 {
1217 fprintf (dump_file, "insn_cost %d for ", INSN_COST (insn));
1218 dump_insn_slim (dump_file, insn);
1219 }
1220 }
1221 }
1222
1223 nonzero_sign_valid = 1;
1224
1225 /* Now scan all the insns in forward order. */
1226 label_tick = label_tick_ebb_start = 1;
1227 init_reg_last ();
1228 setup_incoming_promotions (first);
1229 last_bb = ENTRY_BLOCK_PTR_FOR_FN (cfun);
1230 int max_combine = PARAM_VALUE (PARAM_MAX_COMBINE_INSNS);
1231
1232 FOR_EACH_BB_FN (this_basic_block, cfun)
1233 {
1234 rtx_insn *last_combined_insn = NULL;
1235 optimize_this_for_speed_p = optimize_bb_for_speed_p (this_basic_block);
1236 last_call_luid = 0;
1237 mem_last_set = -1;
1238
1239 label_tick++;
1240 if (!single_pred_p (this_basic_block)
1241 || single_pred (this_basic_block) != last_bb)
1242 label_tick_ebb_start = label_tick;
1243 last_bb = this_basic_block;
1244
1245 rtl_profile_for_bb (this_basic_block);
1246 for (insn = BB_HEAD (this_basic_block);
1247 insn != NEXT_INSN (BB_END (this_basic_block));
1248 insn = next ? next : NEXT_INSN (insn))
1249 {
1250 next = 0;
1251 if (!NONDEBUG_INSN_P (insn))
1252 continue;
1253
1254 while (last_combined_insn
1255 && (!NONDEBUG_INSN_P (last_combined_insn)
1256 || last_combined_insn->deleted ()))
1257 last_combined_insn = PREV_INSN (last_combined_insn);
1258 if (last_combined_insn == NULL_RTX
1259 || BLOCK_FOR_INSN (last_combined_insn) != this_basic_block
1260 || DF_INSN_LUID (last_combined_insn) <= DF_INSN_LUID (insn))
1261 last_combined_insn = insn;
1262
1263 /* See if we know about function return values before this
1264 insn based upon SUBREG flags. */
1265 check_promoted_subreg (insn, PATTERN (insn));
1266
1267 /* See if we can find hardregs and subreg of pseudos in
1268 narrower modes. This could help turning TRUNCATEs
1269 into SUBREGs. */
1270 note_uses (&PATTERN (insn), record_truncated_values, NULL);
1271
1272 /* Try this insn with each insn it links back to. */
1273
1274 FOR_EACH_LOG_LINK (links, insn)
1275 if ((next = try_combine (insn, links->insn, NULL,
1276 NULL, &new_direct_jump_p,
1277 last_combined_insn)) != 0)
1278 {
1279 statistics_counter_event (cfun, "two-insn combine", 1);
1280 goto retry;
1281 }
1282
1283 /* Try each sequence of three linked insns ending with this one. */
1284
1285 if (max_combine >= 3)
1286 FOR_EACH_LOG_LINK (links, insn)
1287 {
1288 rtx_insn *link = links->insn;
1289
1290 /* If the linked insn has been replaced by a note, then there
1291 is no point in pursuing this chain any further. */
1292 if (NOTE_P (link))
1293 continue;
1294
1295 FOR_EACH_LOG_LINK (nextlinks, link)
1296 if ((next = try_combine (insn, link, nextlinks->insn,
1297 NULL, &new_direct_jump_p,
1298 last_combined_insn)) != 0)
1299 {
1300 statistics_counter_event (cfun, "three-insn combine", 1);
1301 goto retry;
1302 }
1303 }
1304
1305 /* Try to combine a jump insn that uses CC0
1306 with a preceding insn that sets CC0, and maybe with its
1307 logical predecessor as well.
1308 This is how we make decrement-and-branch insns.
1309 We need this special code because data flow connections
1310 via CC0 do not get entered in LOG_LINKS. */
1311
1312 if (HAVE_cc0
1313 && JUMP_P (insn)
1314 && (prev = prev_nonnote_insn (insn)) != 0
1315 && NONJUMP_INSN_P (prev)
1316 && sets_cc0_p (PATTERN (prev)))
1317 {
1318 if ((next = try_combine (insn, prev, NULL, NULL,
1319 &new_direct_jump_p,
1320 last_combined_insn)) != 0)
1321 goto retry;
1322
1323 FOR_EACH_LOG_LINK (nextlinks, prev)
1324 if ((next = try_combine (insn, prev, nextlinks->insn,
1325 NULL, &new_direct_jump_p,
1326 last_combined_insn)) != 0)
1327 goto retry;
1328 }
1329
1330 /* Do the same for an insn that explicitly references CC0. */
1331 if (HAVE_cc0 && NONJUMP_INSN_P (insn)
1332 && (prev = prev_nonnote_insn (insn)) != 0
1333 && NONJUMP_INSN_P (prev)
1334 && sets_cc0_p (PATTERN (prev))
1335 && GET_CODE (PATTERN (insn)) == SET
1336 && reg_mentioned_p (cc0_rtx, SET_SRC (PATTERN (insn))))
1337 {
1338 if ((next = try_combine (insn, prev, NULL, NULL,
1339 &new_direct_jump_p,
1340 last_combined_insn)) != 0)
1341 goto retry;
1342
1343 FOR_EACH_LOG_LINK (nextlinks, prev)
1344 if ((next = try_combine (insn, prev, nextlinks->insn,
1345 NULL, &new_direct_jump_p,
1346 last_combined_insn)) != 0)
1347 goto retry;
1348 }
1349
1350 /* Finally, see if any of the insns that this insn links to
1351 explicitly references CC0. If so, try this insn, that insn,
1352 and its predecessor if it sets CC0. */
1353 if (HAVE_cc0)
1354 {
1355 FOR_EACH_LOG_LINK (links, insn)
1356 if (NONJUMP_INSN_P (links->insn)
1357 && GET_CODE (PATTERN (links->insn)) == SET
1358 && reg_mentioned_p (cc0_rtx, SET_SRC (PATTERN (links->insn)))
1359 && (prev = prev_nonnote_insn (links->insn)) != 0
1360 && NONJUMP_INSN_P (prev)
1361 && sets_cc0_p (PATTERN (prev))
1362 && (next = try_combine (insn, links->insn,
1363 prev, NULL, &new_direct_jump_p,
1364 last_combined_insn)) != 0)
1365 goto retry;
1366 }
1367
1368 /* Try combining an insn with two different insns whose results it
1369 uses. */
1370 if (max_combine >= 3)
1371 FOR_EACH_LOG_LINK (links, insn)
1372 for (nextlinks = links->next; nextlinks;
1373 nextlinks = nextlinks->next)
1374 if ((next = try_combine (insn, links->insn,
1375 nextlinks->insn, NULL,
1376 &new_direct_jump_p,
1377 last_combined_insn)) != 0)
1378
1379 {
1380 statistics_counter_event (cfun, "three-insn combine", 1);
1381 goto retry;
1382 }
1383
1384 /* Try four-instruction combinations. */
1385 if (max_combine >= 4)
1386 FOR_EACH_LOG_LINK (links, insn)
1387 {
1388 struct insn_link *next1;
1389 rtx_insn *link = links->insn;
1390
1391 /* If the linked insn has been replaced by a note, then there
1392 is no point in pursuing this chain any further. */
1393 if (NOTE_P (link))
1394 continue;
1395
1396 FOR_EACH_LOG_LINK (next1, link)
1397 {
1398 rtx_insn *link1 = next1->insn;
1399 if (NOTE_P (link1))
1400 continue;
1401 /* I0 -> I1 -> I2 -> I3. */
1402 FOR_EACH_LOG_LINK (nextlinks, link1)
1403 if ((next = try_combine (insn, link, link1,
1404 nextlinks->insn,
1405 &new_direct_jump_p,
1406 last_combined_insn)) != 0)
1407 {
1408 statistics_counter_event (cfun, "four-insn combine", 1);
1409 goto retry;
1410 }
1411 /* I0, I1 -> I2, I2 -> I3. */
1412 for (nextlinks = next1->next; nextlinks;
1413 nextlinks = nextlinks->next)
1414 if ((next = try_combine (insn, link, link1,
1415 nextlinks->insn,
1416 &new_direct_jump_p,
1417 last_combined_insn)) != 0)
1418 {
1419 statistics_counter_event (cfun, "four-insn combine", 1);
1420 goto retry;
1421 }
1422 }
1423
1424 for (next1 = links->next; next1; next1 = next1->next)
1425 {
1426 rtx_insn *link1 = next1->insn;
1427 if (NOTE_P (link1))
1428 continue;
1429 /* I0 -> I2; I1, I2 -> I3. */
1430 FOR_EACH_LOG_LINK (nextlinks, link)
1431 if ((next = try_combine (insn, link, link1,
1432 nextlinks->insn,
1433 &new_direct_jump_p,
1434 last_combined_insn)) != 0)
1435 {
1436 statistics_counter_event (cfun, "four-insn combine", 1);
1437 goto retry;
1438 }
1439 /* I0 -> I1; I1, I2 -> I3. */
1440 FOR_EACH_LOG_LINK (nextlinks, link1)
1441 if ((next = try_combine (insn, link, link1,
1442 nextlinks->insn,
1443 &new_direct_jump_p,
1444 last_combined_insn)) != 0)
1445 {
1446 statistics_counter_event (cfun, "four-insn combine", 1);
1447 goto retry;
1448 }
1449 }
1450 }
1451
1452 /* Try this insn with each REG_EQUAL note it links back to. */
1453 FOR_EACH_LOG_LINK (links, insn)
1454 {
1455 rtx set, note;
1456 rtx_insn *temp = links->insn;
1457 if ((set = single_set (temp)) != 0
1458 && (note = find_reg_equal_equiv_note (temp)) != 0
1459 && (note = XEXP (note, 0), GET_CODE (note)) != EXPR_LIST
1460 /* Avoid using a register that may already been marked
1461 dead by an earlier instruction. */
1462 && ! unmentioned_reg_p (note, SET_SRC (set))
1463 && (GET_MODE (note) == VOIDmode
1464 ? SCALAR_INT_MODE_P (GET_MODE (SET_DEST (set)))
1465 : (GET_MODE (SET_DEST (set)) == GET_MODE (note)
1466 && (GET_CODE (SET_DEST (set)) != ZERO_EXTRACT
1467 || (GET_MODE (XEXP (SET_DEST (set), 0))
1468 == GET_MODE (note))))))
1469 {
1470 /* Temporarily replace the set's source with the
1471 contents of the REG_EQUAL note. The insn will
1472 be deleted or recognized by try_combine. */
1473 rtx orig_src = SET_SRC (set);
1474 rtx orig_dest = SET_DEST (set);
1475 if (GET_CODE (SET_DEST (set)) == ZERO_EXTRACT)
1476 SET_DEST (set) = XEXP (SET_DEST (set), 0);
1477 SET_SRC (set) = note;
1478 i2mod = temp;
1479 i2mod_old_rhs = copy_rtx (orig_src);
1480 i2mod_new_rhs = copy_rtx (note);
1481 next = try_combine (insn, i2mod, NULL, NULL,
1482 &new_direct_jump_p,
1483 last_combined_insn);
1484 i2mod = NULL;
1485 if (next)
1486 {
1487 statistics_counter_event (cfun, "insn-with-note combine", 1);
1488 goto retry;
1489 }
1490 SET_SRC (set) = orig_src;
1491 SET_DEST (set) = orig_dest;
1492 }
1493 }
1494
1495 if (!NOTE_P (insn))
1496 record_dead_and_set_regs (insn);
1497
1498 retry:
1499 ;
1500 }
1501 }
1502
1503 default_rtl_profile ();
1504 clear_bb_flags ();
1505 new_direct_jump_p |= purge_all_dead_edges ();
1506 delete_noop_moves ();
1507
1508 /* Clean up. */
1509 obstack_free (&insn_link_obstack, NULL);
1510 free (uid_log_links);
1511 free (uid_insn_cost);
1512 reg_stat.release ();
1513
1514 {
1515 struct undo *undo, *next;
1516 for (undo = undobuf.frees; undo; undo = next)
1517 {
1518 next = undo->next;
1519 free (undo);
1520 }
1521 undobuf.frees = 0;
1522 }
1523
1524 total_attempts += combine_attempts;
1525 total_merges += combine_merges;
1526 total_extras += combine_extras;
1527 total_successes += combine_successes;
1528
1529 nonzero_sign_valid = 0;
1530 rtl_hooks = general_rtl_hooks;
1531
1532 /* Make recognizer allow volatile MEMs again. */
1533 init_recog ();
1534
1535 return new_direct_jump_p;
1536 }
1537
1538 /* Wipe the last_xxx fields of reg_stat in preparation for another pass. */
1539
1540 static void
1541 init_reg_last (void)
1542 {
1543 unsigned int i;
1544 reg_stat_type *p;
1545
1546 FOR_EACH_VEC_ELT (reg_stat, i, p)
1547 memset (p, 0, offsetof (reg_stat_type, sign_bit_copies));
1548 }
1549 \f
1550 /* Set up any promoted values for incoming argument registers. */
1551
1552 static void
1553 setup_incoming_promotions (rtx_insn *first)
1554 {
1555 tree arg;
1556 bool strictly_local = false;
1557
1558 for (arg = DECL_ARGUMENTS (current_function_decl); arg;
1559 arg = DECL_CHAIN (arg))
1560 {
1561 rtx x, reg = DECL_INCOMING_RTL (arg);
1562 int uns1, uns3;
1563 machine_mode mode1, mode2, mode3, mode4;
1564
1565 /* Only continue if the incoming argument is in a register. */
1566 if (!REG_P (reg))
1567 continue;
1568
1569 /* Determine, if possible, whether all call sites of the current
1570 function lie within the current compilation unit. (This does
1571 take into account the exporting of a function via taking its
1572 address, and so forth.) */
1573 strictly_local = cgraph_node::local_info (current_function_decl)->local;
1574
1575 /* The mode and signedness of the argument before any promotions happen
1576 (equal to the mode of the pseudo holding it at that stage). */
1577 mode1 = TYPE_MODE (TREE_TYPE (arg));
1578 uns1 = TYPE_UNSIGNED (TREE_TYPE (arg));
1579
1580 /* The mode and signedness of the argument after any source language and
1581 TARGET_PROMOTE_PROTOTYPES-driven promotions. */
1582 mode2 = TYPE_MODE (DECL_ARG_TYPE (arg));
1583 uns3 = TYPE_UNSIGNED (DECL_ARG_TYPE (arg));
1584
1585 /* The mode and signedness of the argument as it is actually passed,
1586 see assign_parm_setup_reg in function.c. */
1587 mode3 = promote_function_mode (TREE_TYPE (arg), mode1, &uns3,
1588 TREE_TYPE (cfun->decl), 0);
1589
1590 /* The mode of the register in which the argument is being passed. */
1591 mode4 = GET_MODE (reg);
1592
1593 /* Eliminate sign extensions in the callee when:
1594 (a) A mode promotion has occurred; */
1595 if (mode1 == mode3)
1596 continue;
1597 /* (b) The mode of the register is the same as the mode of
1598 the argument as it is passed; */
1599 if (mode3 != mode4)
1600 continue;
1601 /* (c) There's no language level extension; */
1602 if (mode1 == mode2)
1603 ;
1604 /* (c.1) All callers are from the current compilation unit. If that's
1605 the case we don't have to rely on an ABI, we only have to know
1606 what we're generating right now, and we know that we will do the
1607 mode1 to mode2 promotion with the given sign. */
1608 else if (!strictly_local)
1609 continue;
1610 /* (c.2) The combination of the two promotions is useful. This is
1611 true when the signs match, or if the first promotion is unsigned.
1612 In the later case, (sign_extend (zero_extend x)) is the same as
1613 (zero_extend (zero_extend x)), so make sure to force UNS3 true. */
1614 else if (uns1)
1615 uns3 = true;
1616 else if (uns3)
1617 continue;
1618
1619 /* Record that the value was promoted from mode1 to mode3,
1620 so that any sign extension at the head of the current
1621 function may be eliminated. */
1622 x = gen_rtx_CLOBBER (mode1, const0_rtx);
1623 x = gen_rtx_fmt_e ((uns3 ? ZERO_EXTEND : SIGN_EXTEND), mode3, x);
1624 record_value_for_reg (reg, first, x);
1625 }
1626 }
1627
1628 /* If MODE has a precision lower than PREC and SRC is a non-negative constant
1629 that would appear negative in MODE, sign-extend SRC for use in nonzero_bits
1630 because some machines (maybe most) will actually do the sign-extension and
1631 this is the conservative approach.
1632
1633 ??? For 2.5, try to tighten up the MD files in this regard instead of this
1634 kludge. */
1635
1636 static rtx
1637 sign_extend_short_imm (rtx src, machine_mode mode, unsigned int prec)
1638 {
1639 if (GET_MODE_PRECISION (mode) < prec
1640 && CONST_INT_P (src)
1641 && INTVAL (src) > 0
1642 && val_signbit_known_set_p (mode, INTVAL (src)))
1643 src = GEN_INT (INTVAL (src) | ~GET_MODE_MASK (mode));
1644
1645 return src;
1646 }
1647
1648 /* Update RSP for pseudo-register X from INSN's REG_EQUAL note (if one exists)
1649 and SET. */
1650
1651 static void
1652 update_rsp_from_reg_equal (reg_stat_type *rsp, rtx_insn *insn, const_rtx set,
1653 rtx x)
1654 {
1655 rtx reg_equal_note = insn ? find_reg_equal_equiv_note (insn) : NULL_RTX;
1656 unsigned HOST_WIDE_INT bits = 0;
1657 rtx reg_equal = NULL, src = SET_SRC (set);
1658 unsigned int num = 0;
1659
1660 if (reg_equal_note)
1661 reg_equal = XEXP (reg_equal_note, 0);
1662
1663 if (SHORT_IMMEDIATES_SIGN_EXTEND)
1664 {
1665 src = sign_extend_short_imm (src, GET_MODE (x), BITS_PER_WORD);
1666 if (reg_equal)
1667 reg_equal = sign_extend_short_imm (reg_equal, GET_MODE (x), BITS_PER_WORD);
1668 }
1669
1670 /* Don't call nonzero_bits if it cannot change anything. */
1671 if (rsp->nonzero_bits != HOST_WIDE_INT_M1U)
1672 {
1673 bits = nonzero_bits (src, nonzero_bits_mode);
1674 if (reg_equal && bits)
1675 bits &= nonzero_bits (reg_equal, nonzero_bits_mode);
1676 rsp->nonzero_bits |= bits;
1677 }
1678
1679 /* Don't call num_sign_bit_copies if it cannot change anything. */
1680 if (rsp->sign_bit_copies != 1)
1681 {
1682 num = num_sign_bit_copies (SET_SRC (set), GET_MODE (x));
1683 if (reg_equal && num != GET_MODE_PRECISION (GET_MODE (x)))
1684 {
1685 unsigned int numeq = num_sign_bit_copies (reg_equal, GET_MODE (x));
1686 if (num == 0 || numeq > num)
1687 num = numeq;
1688 }
1689 if (rsp->sign_bit_copies == 0 || num < rsp->sign_bit_copies)
1690 rsp->sign_bit_copies = num;
1691 }
1692 }
1693
1694 /* Called via note_stores. If X is a pseudo that is narrower than
1695 HOST_BITS_PER_WIDE_INT and is being set, record what bits are known zero.
1696
1697 If we are setting only a portion of X and we can't figure out what
1698 portion, assume all bits will be used since we don't know what will
1699 be happening.
1700
1701 Similarly, set how many bits of X are known to be copies of the sign bit
1702 at all locations in the function. This is the smallest number implied
1703 by any set of X. */
1704
1705 static void
1706 set_nonzero_bits_and_sign_copies (rtx x, const_rtx set, void *data)
1707 {
1708 rtx_insn *insn = (rtx_insn *) data;
1709
1710 if (REG_P (x)
1711 && REGNO (x) >= FIRST_PSEUDO_REGISTER
1712 /* If this register is undefined at the start of the file, we can't
1713 say what its contents were. */
1714 && ! REGNO_REG_SET_P
1715 (DF_LR_IN (ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb), REGNO (x))
1716 && HWI_COMPUTABLE_MODE_P (GET_MODE (x)))
1717 {
1718 reg_stat_type *rsp = &reg_stat[REGNO (x)];
1719
1720 if (set == 0 || GET_CODE (set) == CLOBBER)
1721 {
1722 rsp->nonzero_bits = GET_MODE_MASK (GET_MODE (x));
1723 rsp->sign_bit_copies = 1;
1724 return;
1725 }
1726
1727 /* If this register is being initialized using itself, and the
1728 register is uninitialized in this basic block, and there are
1729 no LOG_LINKS which set the register, then part of the
1730 register is uninitialized. In that case we can't assume
1731 anything about the number of nonzero bits.
1732
1733 ??? We could do better if we checked this in
1734 reg_{nonzero_bits,num_sign_bit_copies}_for_combine. Then we
1735 could avoid making assumptions about the insn which initially
1736 sets the register, while still using the information in other
1737 insns. We would have to be careful to check every insn
1738 involved in the combination. */
1739
1740 if (insn
1741 && reg_referenced_p (x, PATTERN (insn))
1742 && !REGNO_REG_SET_P (DF_LR_IN (BLOCK_FOR_INSN (insn)),
1743 REGNO (x)))
1744 {
1745 struct insn_link *link;
1746
1747 FOR_EACH_LOG_LINK (link, insn)
1748 if (dead_or_set_p (link->insn, x))
1749 break;
1750 if (!link)
1751 {
1752 rsp->nonzero_bits = GET_MODE_MASK (GET_MODE (x));
1753 rsp->sign_bit_copies = 1;
1754 return;
1755 }
1756 }
1757
1758 /* If this is a complex assignment, see if we can convert it into a
1759 simple assignment. */
1760 set = expand_field_assignment (set);
1761
1762 /* If this is a simple assignment, or we have a paradoxical SUBREG,
1763 set what we know about X. */
1764
1765 if (SET_DEST (set) == x
1766 || (paradoxical_subreg_p (SET_DEST (set))
1767 && SUBREG_REG (SET_DEST (set)) == x))
1768 update_rsp_from_reg_equal (rsp, insn, set, x);
1769 else
1770 {
1771 rsp->nonzero_bits = GET_MODE_MASK (GET_MODE (x));
1772 rsp->sign_bit_copies = 1;
1773 }
1774 }
1775 }
1776 \f
1777 /* See if INSN can be combined into I3. PRED, PRED2, SUCC and SUCC2 are
1778 optionally insns that were previously combined into I3 or that will be
1779 combined into the merger of INSN and I3. The order is PRED, PRED2,
1780 INSN, SUCC, SUCC2, I3.
1781
1782 Return 0 if the combination is not allowed for any reason.
1783
1784 If the combination is allowed, *PDEST will be set to the single
1785 destination of INSN and *PSRC to the single source, and this function
1786 will return 1. */
1787
1788 static int
1789 can_combine_p (rtx_insn *insn, rtx_insn *i3, rtx_insn *pred ATTRIBUTE_UNUSED,
1790 rtx_insn *pred2 ATTRIBUTE_UNUSED, rtx_insn *succ, rtx_insn *succ2,
1791 rtx *pdest, rtx *psrc)
1792 {
1793 int i;
1794 const_rtx set = 0;
1795 rtx src, dest;
1796 rtx_insn *p;
1797 rtx link;
1798 bool all_adjacent = true;
1799 int (*is_volatile_p) (const_rtx);
1800
1801 if (succ)
1802 {
1803 if (succ2)
1804 {
1805 if (next_active_insn (succ2) != i3)
1806 all_adjacent = false;
1807 if (next_active_insn (succ) != succ2)
1808 all_adjacent = false;
1809 }
1810 else if (next_active_insn (succ) != i3)
1811 all_adjacent = false;
1812 if (next_active_insn (insn) != succ)
1813 all_adjacent = false;
1814 }
1815 else if (next_active_insn (insn) != i3)
1816 all_adjacent = false;
1817
1818 /* Can combine only if previous insn is a SET of a REG, a SUBREG or CC0.
1819 or a PARALLEL consisting of such a SET and CLOBBERs.
1820
1821 If INSN has CLOBBER parallel parts, ignore them for our processing.
1822 By definition, these happen during the execution of the insn. When it
1823 is merged with another insn, all bets are off. If they are, in fact,
1824 needed and aren't also supplied in I3, they may be added by
1825 recog_for_combine. Otherwise, it won't match.
1826
1827 We can also ignore a SET whose SET_DEST is mentioned in a REG_UNUSED
1828 note.
1829
1830 Get the source and destination of INSN. If more than one, can't
1831 combine. */
1832
1833 if (GET_CODE (PATTERN (insn)) == SET)
1834 set = PATTERN (insn);
1835 else if (GET_CODE (PATTERN (insn)) == PARALLEL
1836 && GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == SET)
1837 {
1838 for (i = 0; i < XVECLEN (PATTERN (insn), 0); i++)
1839 {
1840 rtx elt = XVECEXP (PATTERN (insn), 0, i);
1841
1842 switch (GET_CODE (elt))
1843 {
1844 /* This is important to combine floating point insns
1845 for the SH4 port. */
1846 case USE:
1847 /* Combining an isolated USE doesn't make sense.
1848 We depend here on combinable_i3pat to reject them. */
1849 /* The code below this loop only verifies that the inputs of
1850 the SET in INSN do not change. We call reg_set_between_p
1851 to verify that the REG in the USE does not change between
1852 I3 and INSN.
1853 If the USE in INSN was for a pseudo register, the matching
1854 insn pattern will likely match any register; combining this
1855 with any other USE would only be safe if we knew that the
1856 used registers have identical values, or if there was
1857 something to tell them apart, e.g. different modes. For
1858 now, we forgo such complicated tests and simply disallow
1859 combining of USES of pseudo registers with any other USE. */
1860 if (REG_P (XEXP (elt, 0))
1861 && GET_CODE (PATTERN (i3)) == PARALLEL)
1862 {
1863 rtx i3pat = PATTERN (i3);
1864 int i = XVECLEN (i3pat, 0) - 1;
1865 unsigned int regno = REGNO (XEXP (elt, 0));
1866
1867 do
1868 {
1869 rtx i3elt = XVECEXP (i3pat, 0, i);
1870
1871 if (GET_CODE (i3elt) == USE
1872 && REG_P (XEXP (i3elt, 0))
1873 && (REGNO (XEXP (i3elt, 0)) == regno
1874 ? reg_set_between_p (XEXP (elt, 0),
1875 PREV_INSN (insn), i3)
1876 : regno >= FIRST_PSEUDO_REGISTER))
1877 return 0;
1878 }
1879 while (--i >= 0);
1880 }
1881 break;
1882
1883 /* We can ignore CLOBBERs. */
1884 case CLOBBER:
1885 break;
1886
1887 case SET:
1888 /* Ignore SETs whose result isn't used but not those that
1889 have side-effects. */
1890 if (find_reg_note (insn, REG_UNUSED, SET_DEST (elt))
1891 && insn_nothrow_p (insn)
1892 && !side_effects_p (elt))
1893 break;
1894
1895 /* If we have already found a SET, this is a second one and
1896 so we cannot combine with this insn. */
1897 if (set)
1898 return 0;
1899
1900 set = elt;
1901 break;
1902
1903 default:
1904 /* Anything else means we can't combine. */
1905 return 0;
1906 }
1907 }
1908
1909 if (set == 0
1910 /* If SET_SRC is an ASM_OPERANDS we can't throw away these CLOBBERs,
1911 so don't do anything with it. */
1912 || GET_CODE (SET_SRC (set)) == ASM_OPERANDS)
1913 return 0;
1914 }
1915 else
1916 return 0;
1917
1918 if (set == 0)
1919 return 0;
1920
1921 /* The simplification in expand_field_assignment may call back to
1922 get_last_value, so set safe guard here. */
1923 subst_low_luid = DF_INSN_LUID (insn);
1924
1925 set = expand_field_assignment (set);
1926 src = SET_SRC (set), dest = SET_DEST (set);
1927
1928 /* Do not eliminate user-specified register if it is in an
1929 asm input because we may break the register asm usage defined
1930 in GCC manual if allow to do so.
1931 Be aware that this may cover more cases than we expect but this
1932 should be harmless. */
1933 if (REG_P (dest) && REG_USERVAR_P (dest) && HARD_REGISTER_P (dest)
1934 && extract_asm_operands (PATTERN (i3)))
1935 return 0;
1936
1937 /* Don't eliminate a store in the stack pointer. */
1938 if (dest == stack_pointer_rtx
1939 /* Don't combine with an insn that sets a register to itself if it has
1940 a REG_EQUAL note. This may be part of a LIBCALL sequence. */
1941 || (rtx_equal_p (src, dest) && find_reg_note (insn, REG_EQUAL, NULL_RTX))
1942 /* Can't merge an ASM_OPERANDS. */
1943 || GET_CODE (src) == ASM_OPERANDS
1944 /* Can't merge a function call. */
1945 || GET_CODE (src) == CALL
1946 /* Don't eliminate a function call argument. */
1947 || (CALL_P (i3)
1948 && (find_reg_fusage (i3, USE, dest)
1949 || (REG_P (dest)
1950 && REGNO (dest) < FIRST_PSEUDO_REGISTER
1951 && global_regs[REGNO (dest)])))
1952 /* Don't substitute into an incremented register. */
1953 || FIND_REG_INC_NOTE (i3, dest)
1954 || (succ && FIND_REG_INC_NOTE (succ, dest))
1955 || (succ2 && FIND_REG_INC_NOTE (succ2, dest))
1956 /* Don't substitute into a non-local goto, this confuses CFG. */
1957 || (JUMP_P (i3) && find_reg_note (i3, REG_NON_LOCAL_GOTO, NULL_RTX))
1958 /* Make sure that DEST is not used after INSN but before SUCC, or
1959 after SUCC and before SUCC2, or after SUCC2 but before I3. */
1960 || (!all_adjacent
1961 && ((succ2
1962 && (reg_used_between_p (dest, succ2, i3)
1963 || reg_used_between_p (dest, succ, succ2)))
1964 || (!succ2 && succ && reg_used_between_p (dest, succ, i3))
1965 || (succ
1966 /* SUCC and SUCC2 can be split halves from a PARALLEL; in
1967 that case SUCC is not in the insn stream, so use SUCC2
1968 instead for this test. */
1969 && reg_used_between_p (dest, insn,
1970 succ2
1971 && INSN_UID (succ) == INSN_UID (succ2)
1972 ? succ2 : succ))))
1973 /* Make sure that the value that is to be substituted for the register
1974 does not use any registers whose values alter in between. However,
1975 If the insns are adjacent, a use can't cross a set even though we
1976 think it might (this can happen for a sequence of insns each setting
1977 the same destination; last_set of that register might point to
1978 a NOTE). If INSN has a REG_EQUIV note, the register is always
1979 equivalent to the memory so the substitution is valid even if there
1980 are intervening stores. Also, don't move a volatile asm or
1981 UNSPEC_VOLATILE across any other insns. */
1982 || (! all_adjacent
1983 && (((!MEM_P (src)
1984 || ! find_reg_note (insn, REG_EQUIV, src))
1985 && use_crosses_set_p (src, DF_INSN_LUID (insn)))
1986 || (GET_CODE (src) == ASM_OPERANDS && MEM_VOLATILE_P (src))
1987 || GET_CODE (src) == UNSPEC_VOLATILE))
1988 /* Don't combine across a CALL_INSN, because that would possibly
1989 change whether the life span of some REGs crosses calls or not,
1990 and it is a pain to update that information.
1991 Exception: if source is a constant, moving it later can't hurt.
1992 Accept that as a special case. */
1993 || (DF_INSN_LUID (insn) < last_call_luid && ! CONSTANT_P (src)))
1994 return 0;
1995
1996 /* DEST must either be a REG or CC0. */
1997 if (REG_P (dest))
1998 {
1999 /* If register alignment is being enforced for multi-word items in all
2000 cases except for parameters, it is possible to have a register copy
2001 insn referencing a hard register that is not allowed to contain the
2002 mode being copied and which would not be valid as an operand of most
2003 insns. Eliminate this problem by not combining with such an insn.
2004
2005 Also, on some machines we don't want to extend the life of a hard
2006 register. */
2007
2008 if (REG_P (src)
2009 && ((REGNO (dest) < FIRST_PSEUDO_REGISTER
2010 && ! HARD_REGNO_MODE_OK (REGNO (dest), GET_MODE (dest)))
2011 /* Don't extend the life of a hard register unless it is
2012 user variable (if we have few registers) or it can't
2013 fit into the desired register (meaning something special
2014 is going on).
2015 Also avoid substituting a return register into I3, because
2016 reload can't handle a conflict with constraints of other
2017 inputs. */
2018 || (REGNO (src) < FIRST_PSEUDO_REGISTER
2019 && ! HARD_REGNO_MODE_OK (REGNO (src), GET_MODE (src)))))
2020 return 0;
2021 }
2022 else if (GET_CODE (dest) != CC0)
2023 return 0;
2024
2025
2026 if (GET_CODE (PATTERN (i3)) == PARALLEL)
2027 for (i = XVECLEN (PATTERN (i3), 0) - 1; i >= 0; i--)
2028 if (GET_CODE (XVECEXP (PATTERN (i3), 0, i)) == CLOBBER)
2029 {
2030 rtx reg = XEXP (XVECEXP (PATTERN (i3), 0, i), 0);
2031
2032 /* If the clobber represents an earlyclobber operand, we must not
2033 substitute an expression containing the clobbered register.
2034 As we do not analyze the constraint strings here, we have to
2035 make the conservative assumption. However, if the register is
2036 a fixed hard reg, the clobber cannot represent any operand;
2037 we leave it up to the machine description to either accept or
2038 reject use-and-clobber patterns. */
2039 if (!REG_P (reg)
2040 || REGNO (reg) >= FIRST_PSEUDO_REGISTER
2041 || !fixed_regs[REGNO (reg)])
2042 if (reg_overlap_mentioned_p (reg, src))
2043 return 0;
2044 }
2045
2046 /* If INSN contains anything volatile, or is an `asm' (whether volatile
2047 or not), reject, unless nothing volatile comes between it and I3 */
2048
2049 if (GET_CODE (src) == ASM_OPERANDS || volatile_refs_p (src))
2050 {
2051 /* Make sure neither succ nor succ2 contains a volatile reference. */
2052 if (succ2 != 0 && volatile_refs_p (PATTERN (succ2)))
2053 return 0;
2054 if (succ != 0 && volatile_refs_p (PATTERN (succ)))
2055 return 0;
2056 /* We'll check insns between INSN and I3 below. */
2057 }
2058
2059 /* If INSN is an asm, and DEST is a hard register, reject, since it has
2060 to be an explicit register variable, and was chosen for a reason. */
2061
2062 if (GET_CODE (src) == ASM_OPERANDS
2063 && REG_P (dest) && REGNO (dest) < FIRST_PSEUDO_REGISTER)
2064 return 0;
2065
2066 /* If INSN contains volatile references (specifically volatile MEMs),
2067 we cannot combine across any other volatile references.
2068 Even if INSN doesn't contain volatile references, any intervening
2069 volatile insn might affect machine state. */
2070
2071 is_volatile_p = volatile_refs_p (PATTERN (insn))
2072 ? volatile_refs_p
2073 : volatile_insn_p;
2074
2075 for (p = NEXT_INSN (insn); p != i3; p = NEXT_INSN (p))
2076 if (INSN_P (p) && p != succ && p != succ2 && is_volatile_p (PATTERN (p)))
2077 return 0;
2078
2079 /* If INSN contains an autoincrement or autodecrement, make sure that
2080 register is not used between there and I3, and not already used in
2081 I3 either. Neither must it be used in PRED or SUCC, if they exist.
2082 Also insist that I3 not be a jump; if it were one
2083 and the incremented register were spilled, we would lose. */
2084
2085 if (AUTO_INC_DEC)
2086 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
2087 if (REG_NOTE_KIND (link) == REG_INC
2088 && (JUMP_P (i3)
2089 || reg_used_between_p (XEXP (link, 0), insn, i3)
2090 || (pred != NULL_RTX
2091 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (pred)))
2092 || (pred2 != NULL_RTX
2093 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (pred2)))
2094 || (succ != NULL_RTX
2095 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (succ)))
2096 || (succ2 != NULL_RTX
2097 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (succ2)))
2098 || reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i3))))
2099 return 0;
2100
2101 /* Don't combine an insn that follows a CC0-setting insn.
2102 An insn that uses CC0 must not be separated from the one that sets it.
2103 We do, however, allow I2 to follow a CC0-setting insn if that insn
2104 is passed as I1; in that case it will be deleted also.
2105 We also allow combining in this case if all the insns are adjacent
2106 because that would leave the two CC0 insns adjacent as well.
2107 It would be more logical to test whether CC0 occurs inside I1 or I2,
2108 but that would be much slower, and this ought to be equivalent. */
2109
2110 if (HAVE_cc0)
2111 {
2112 p = prev_nonnote_insn (insn);
2113 if (p && p != pred && NONJUMP_INSN_P (p) && sets_cc0_p (PATTERN (p))
2114 && ! all_adjacent)
2115 return 0;
2116 }
2117
2118 /* If we get here, we have passed all the tests and the combination is
2119 to be allowed. */
2120
2121 *pdest = dest;
2122 *psrc = src;
2123
2124 return 1;
2125 }
2126 \f
2127 /* LOC is the location within I3 that contains its pattern or the component
2128 of a PARALLEL of the pattern. We validate that it is valid for combining.
2129
2130 One problem is if I3 modifies its output, as opposed to replacing it
2131 entirely, we can't allow the output to contain I2DEST, I1DEST or I0DEST as
2132 doing so would produce an insn that is not equivalent to the original insns.
2133
2134 Consider:
2135
2136 (set (reg:DI 101) (reg:DI 100))
2137 (set (subreg:SI (reg:DI 101) 0) <foo>)
2138
2139 This is NOT equivalent to:
2140
2141 (parallel [(set (subreg:SI (reg:DI 100) 0) <foo>)
2142 (set (reg:DI 101) (reg:DI 100))])
2143
2144 Not only does this modify 100 (in which case it might still be valid
2145 if 100 were dead in I2), it sets 101 to the ORIGINAL value of 100.
2146
2147 We can also run into a problem if I2 sets a register that I1
2148 uses and I1 gets directly substituted into I3 (not via I2). In that
2149 case, we would be getting the wrong value of I2DEST into I3, so we
2150 must reject the combination. This case occurs when I2 and I1 both
2151 feed into I3, rather than when I1 feeds into I2, which feeds into I3.
2152 If I1_NOT_IN_SRC is nonzero, it means that finding I1 in the source
2153 of a SET must prevent combination from occurring. The same situation
2154 can occur for I0, in which case I0_NOT_IN_SRC is set.
2155
2156 Before doing the above check, we first try to expand a field assignment
2157 into a set of logical operations.
2158
2159 If PI3_DEST_KILLED is nonzero, it is a pointer to a location in which
2160 we place a register that is both set and used within I3. If more than one
2161 such register is detected, we fail.
2162
2163 Return 1 if the combination is valid, zero otherwise. */
2164
2165 static int
2166 combinable_i3pat (rtx_insn *i3, rtx *loc, rtx i2dest, rtx i1dest, rtx i0dest,
2167 int i1_not_in_src, int i0_not_in_src, rtx *pi3dest_killed)
2168 {
2169 rtx x = *loc;
2170
2171 if (GET_CODE (x) == SET)
2172 {
2173 rtx set = x ;
2174 rtx dest = SET_DEST (set);
2175 rtx src = SET_SRC (set);
2176 rtx inner_dest = dest;
2177 rtx subdest;
2178
2179 while (GET_CODE (inner_dest) == STRICT_LOW_PART
2180 || GET_CODE (inner_dest) == SUBREG
2181 || GET_CODE (inner_dest) == ZERO_EXTRACT)
2182 inner_dest = XEXP (inner_dest, 0);
2183
2184 /* Check for the case where I3 modifies its output, as discussed
2185 above. We don't want to prevent pseudos from being combined
2186 into the address of a MEM, so only prevent the combination if
2187 i1 or i2 set the same MEM. */
2188 if ((inner_dest != dest &&
2189 (!MEM_P (inner_dest)
2190 || rtx_equal_p (i2dest, inner_dest)
2191 || (i1dest && rtx_equal_p (i1dest, inner_dest))
2192 || (i0dest && rtx_equal_p (i0dest, inner_dest)))
2193 && (reg_overlap_mentioned_p (i2dest, inner_dest)
2194 || (i1dest && reg_overlap_mentioned_p (i1dest, inner_dest))
2195 || (i0dest && reg_overlap_mentioned_p (i0dest, inner_dest))))
2196
2197 /* This is the same test done in can_combine_p except we can't test
2198 all_adjacent; we don't have to, since this instruction will stay
2199 in place, thus we are not considering increasing the lifetime of
2200 INNER_DEST.
2201
2202 Also, if this insn sets a function argument, combining it with
2203 something that might need a spill could clobber a previous
2204 function argument; the all_adjacent test in can_combine_p also
2205 checks this; here, we do a more specific test for this case. */
2206
2207 || (REG_P (inner_dest)
2208 && REGNO (inner_dest) < FIRST_PSEUDO_REGISTER
2209 && (! HARD_REGNO_MODE_OK (REGNO (inner_dest),
2210 GET_MODE (inner_dest))))
2211 || (i1_not_in_src && reg_overlap_mentioned_p (i1dest, src))
2212 || (i0_not_in_src && reg_overlap_mentioned_p (i0dest, src)))
2213 return 0;
2214
2215 /* If DEST is used in I3, it is being killed in this insn, so
2216 record that for later. We have to consider paradoxical
2217 subregs here, since they kill the whole register, but we
2218 ignore partial subregs, STRICT_LOW_PART, etc.
2219 Never add REG_DEAD notes for the FRAME_POINTER_REGNUM or the
2220 STACK_POINTER_REGNUM, since these are always considered to be
2221 live. Similarly for ARG_POINTER_REGNUM if it is fixed. */
2222 subdest = dest;
2223 if (GET_CODE (subdest) == SUBREG
2224 && (GET_MODE_SIZE (GET_MODE (subdest))
2225 >= GET_MODE_SIZE (GET_MODE (SUBREG_REG (subdest)))))
2226 subdest = SUBREG_REG (subdest);
2227 if (pi3dest_killed
2228 && REG_P (subdest)
2229 && reg_referenced_p (subdest, PATTERN (i3))
2230 && REGNO (subdest) != FRAME_POINTER_REGNUM
2231 && (HARD_FRAME_POINTER_IS_FRAME_POINTER
2232 || REGNO (subdest) != HARD_FRAME_POINTER_REGNUM)
2233 && (FRAME_POINTER_REGNUM == ARG_POINTER_REGNUM
2234 || (REGNO (subdest) != ARG_POINTER_REGNUM
2235 || ! fixed_regs [REGNO (subdest)]))
2236 && REGNO (subdest) != STACK_POINTER_REGNUM)
2237 {
2238 if (*pi3dest_killed)
2239 return 0;
2240
2241 *pi3dest_killed = subdest;
2242 }
2243 }
2244
2245 else if (GET_CODE (x) == PARALLEL)
2246 {
2247 int i;
2248
2249 for (i = 0; i < XVECLEN (x, 0); i++)
2250 if (! combinable_i3pat (i3, &XVECEXP (x, 0, i), i2dest, i1dest, i0dest,
2251 i1_not_in_src, i0_not_in_src, pi3dest_killed))
2252 return 0;
2253 }
2254
2255 return 1;
2256 }
2257 \f
2258 /* Return 1 if X is an arithmetic expression that contains a multiplication
2259 and division. We don't count multiplications by powers of two here. */
2260
2261 static int
2262 contains_muldiv (rtx x)
2263 {
2264 switch (GET_CODE (x))
2265 {
2266 case MOD: case DIV: case UMOD: case UDIV:
2267 return 1;
2268
2269 case MULT:
2270 return ! (CONST_INT_P (XEXP (x, 1))
2271 && pow2p_hwi (UINTVAL (XEXP (x, 1))));
2272 default:
2273 if (BINARY_P (x))
2274 return contains_muldiv (XEXP (x, 0))
2275 || contains_muldiv (XEXP (x, 1));
2276
2277 if (UNARY_P (x))
2278 return contains_muldiv (XEXP (x, 0));
2279
2280 return 0;
2281 }
2282 }
2283 \f
2284 /* Determine whether INSN can be used in a combination. Return nonzero if
2285 not. This is used in try_combine to detect early some cases where we
2286 can't perform combinations. */
2287
2288 static int
2289 cant_combine_insn_p (rtx_insn *insn)
2290 {
2291 rtx set;
2292 rtx src, dest;
2293
2294 /* If this isn't really an insn, we can't do anything.
2295 This can occur when flow deletes an insn that it has merged into an
2296 auto-increment address. */
2297 if (!NONDEBUG_INSN_P (insn))
2298 return 1;
2299
2300 /* Never combine loads and stores involving hard regs that are likely
2301 to be spilled. The register allocator can usually handle such
2302 reg-reg moves by tying. If we allow the combiner to make
2303 substitutions of likely-spilled regs, reload might die.
2304 As an exception, we allow combinations involving fixed regs; these are
2305 not available to the register allocator so there's no risk involved. */
2306
2307 set = single_set (insn);
2308 if (! set)
2309 return 0;
2310 src = SET_SRC (set);
2311 dest = SET_DEST (set);
2312 if (GET_CODE (src) == SUBREG)
2313 src = SUBREG_REG (src);
2314 if (GET_CODE (dest) == SUBREG)
2315 dest = SUBREG_REG (dest);
2316 if (REG_P (src) && REG_P (dest)
2317 && ((HARD_REGISTER_P (src)
2318 && ! TEST_HARD_REG_BIT (fixed_reg_set, REGNO (src))
2319 && targetm.class_likely_spilled_p (REGNO_REG_CLASS (REGNO (src))))
2320 || (HARD_REGISTER_P (dest)
2321 && ! TEST_HARD_REG_BIT (fixed_reg_set, REGNO (dest))
2322 && targetm.class_likely_spilled_p (REGNO_REG_CLASS (REGNO (dest))))))
2323 return 1;
2324
2325 return 0;
2326 }
2327
2328 struct likely_spilled_retval_info
2329 {
2330 unsigned regno, nregs;
2331 unsigned mask;
2332 };
2333
2334 /* Called via note_stores by likely_spilled_retval_p. Remove from info->mask
2335 hard registers that are known to be written to / clobbered in full. */
2336 static void
2337 likely_spilled_retval_1 (rtx x, const_rtx set, void *data)
2338 {
2339 struct likely_spilled_retval_info *const info =
2340 (struct likely_spilled_retval_info *) data;
2341 unsigned regno, nregs;
2342 unsigned new_mask;
2343
2344 if (!REG_P (XEXP (set, 0)))
2345 return;
2346 regno = REGNO (x);
2347 if (regno >= info->regno + info->nregs)
2348 return;
2349 nregs = REG_NREGS (x);
2350 if (regno + nregs <= info->regno)
2351 return;
2352 new_mask = (2U << (nregs - 1)) - 1;
2353 if (regno < info->regno)
2354 new_mask >>= info->regno - regno;
2355 else
2356 new_mask <<= regno - info->regno;
2357 info->mask &= ~new_mask;
2358 }
2359
2360 /* Return nonzero iff part of the return value is live during INSN, and
2361 it is likely spilled. This can happen when more than one insn is needed
2362 to copy the return value, e.g. when we consider to combine into the
2363 second copy insn for a complex value. */
2364
2365 static int
2366 likely_spilled_retval_p (rtx_insn *insn)
2367 {
2368 rtx_insn *use = BB_END (this_basic_block);
2369 rtx reg;
2370 rtx_insn *p;
2371 unsigned regno, nregs;
2372 /* We assume here that no machine mode needs more than
2373 32 hard registers when the value overlaps with a register
2374 for which TARGET_FUNCTION_VALUE_REGNO_P is true. */
2375 unsigned mask;
2376 struct likely_spilled_retval_info info;
2377
2378 if (!NONJUMP_INSN_P (use) || GET_CODE (PATTERN (use)) != USE || insn == use)
2379 return 0;
2380 reg = XEXP (PATTERN (use), 0);
2381 if (!REG_P (reg) || !targetm.calls.function_value_regno_p (REGNO (reg)))
2382 return 0;
2383 regno = REGNO (reg);
2384 nregs = REG_NREGS (reg);
2385 if (nregs == 1)
2386 return 0;
2387 mask = (2U << (nregs - 1)) - 1;
2388
2389 /* Disregard parts of the return value that are set later. */
2390 info.regno = regno;
2391 info.nregs = nregs;
2392 info.mask = mask;
2393 for (p = PREV_INSN (use); info.mask && p != insn; p = PREV_INSN (p))
2394 if (INSN_P (p))
2395 note_stores (PATTERN (p), likely_spilled_retval_1, &info);
2396 mask = info.mask;
2397
2398 /* Check if any of the (probably) live return value registers is
2399 likely spilled. */
2400 nregs --;
2401 do
2402 {
2403 if ((mask & 1 << nregs)
2404 && targetm.class_likely_spilled_p (REGNO_REG_CLASS (regno + nregs)))
2405 return 1;
2406 } while (nregs--);
2407 return 0;
2408 }
2409
2410 /* Adjust INSN after we made a change to its destination.
2411
2412 Changing the destination can invalidate notes that say something about
2413 the results of the insn and a LOG_LINK pointing to the insn. */
2414
2415 static void
2416 adjust_for_new_dest (rtx_insn *insn)
2417 {
2418 /* For notes, be conservative and simply remove them. */
2419 remove_reg_equal_equiv_notes (insn);
2420
2421 /* The new insn will have a destination that was previously the destination
2422 of an insn just above it. Call distribute_links to make a LOG_LINK from
2423 the next use of that destination. */
2424
2425 rtx set = single_set (insn);
2426 gcc_assert (set);
2427
2428 rtx reg = SET_DEST (set);
2429
2430 while (GET_CODE (reg) == ZERO_EXTRACT
2431 || GET_CODE (reg) == STRICT_LOW_PART
2432 || GET_CODE (reg) == SUBREG)
2433 reg = XEXP (reg, 0);
2434 gcc_assert (REG_P (reg));
2435
2436 distribute_links (alloc_insn_link (insn, REGNO (reg), NULL));
2437
2438 df_insn_rescan (insn);
2439 }
2440
2441 /* Return TRUE if combine can reuse reg X in mode MODE.
2442 ADDED_SETS is nonzero if the original set is still required. */
2443 static bool
2444 can_change_dest_mode (rtx x, int added_sets, machine_mode mode)
2445 {
2446 unsigned int regno;
2447
2448 if (!REG_P (x))
2449 return false;
2450
2451 regno = REGNO (x);
2452 /* Allow hard registers if the new mode is legal, and occupies no more
2453 registers than the old mode. */
2454 if (regno < FIRST_PSEUDO_REGISTER)
2455 return (HARD_REGNO_MODE_OK (regno, mode)
2456 && REG_NREGS (x) >= hard_regno_nregs[regno][mode]);
2457
2458 /* Or a pseudo that is only used once. */
2459 return (regno < reg_n_sets_max
2460 && REG_N_SETS (regno) == 1
2461 && !added_sets
2462 && !REG_USERVAR_P (x));
2463 }
2464
2465
2466 /* Check whether X, the destination of a set, refers to part of
2467 the register specified by REG. */
2468
2469 static bool
2470 reg_subword_p (rtx x, rtx reg)
2471 {
2472 /* Check that reg is an integer mode register. */
2473 if (!REG_P (reg) || GET_MODE_CLASS (GET_MODE (reg)) != MODE_INT)
2474 return false;
2475
2476 if (GET_CODE (x) == STRICT_LOW_PART
2477 || GET_CODE (x) == ZERO_EXTRACT)
2478 x = XEXP (x, 0);
2479
2480 return GET_CODE (x) == SUBREG
2481 && SUBREG_REG (x) == reg
2482 && GET_MODE_CLASS (GET_MODE (x)) == MODE_INT;
2483 }
2484
2485 /* Delete the unconditional jump INSN and adjust the CFG correspondingly.
2486 Note that the INSN should be deleted *after* removing dead edges, so
2487 that the kept edge is the fallthrough edge for a (set (pc) (pc))
2488 but not for a (set (pc) (label_ref FOO)). */
2489
2490 static void
2491 update_cfg_for_uncondjump (rtx_insn *insn)
2492 {
2493 basic_block bb = BLOCK_FOR_INSN (insn);
2494 gcc_assert (BB_END (bb) == insn);
2495
2496 purge_dead_edges (bb);
2497
2498 delete_insn (insn);
2499 if (EDGE_COUNT (bb->succs) == 1)
2500 {
2501 rtx_insn *insn;
2502
2503 single_succ_edge (bb)->flags |= EDGE_FALLTHRU;
2504
2505 /* Remove barriers from the footer if there are any. */
2506 for (insn = BB_FOOTER (bb); insn; insn = NEXT_INSN (insn))
2507 if (BARRIER_P (insn))
2508 {
2509 if (PREV_INSN (insn))
2510 SET_NEXT_INSN (PREV_INSN (insn)) = NEXT_INSN (insn);
2511 else
2512 BB_FOOTER (bb) = NEXT_INSN (insn);
2513 if (NEXT_INSN (insn))
2514 SET_PREV_INSN (NEXT_INSN (insn)) = PREV_INSN (insn);
2515 }
2516 else if (LABEL_P (insn))
2517 break;
2518 }
2519 }
2520
2521 /* Return whether PAT is a PARALLEL of exactly N register SETs followed
2522 by an arbitrary number of CLOBBERs. */
2523 static bool
2524 is_parallel_of_n_reg_sets (rtx pat, int n)
2525 {
2526 if (GET_CODE (pat) != PARALLEL)
2527 return false;
2528
2529 int len = XVECLEN (pat, 0);
2530 if (len < n)
2531 return false;
2532
2533 int i;
2534 for (i = 0; i < n; i++)
2535 if (GET_CODE (XVECEXP (pat, 0, i)) != SET
2536 || !REG_P (SET_DEST (XVECEXP (pat, 0, i))))
2537 return false;
2538 for ( ; i < len; i++)
2539 if (GET_CODE (XVECEXP (pat, 0, i)) != CLOBBER
2540 || XEXP (XVECEXP (pat, 0, i), 0) == const0_rtx)
2541 return false;
2542
2543 return true;
2544 }
2545
2546 /* Return whether INSN, a PARALLEL of N register SETs (and maybe some
2547 CLOBBERs), can be split into individual SETs in that order, without
2548 changing semantics. */
2549 static bool
2550 can_split_parallel_of_n_reg_sets (rtx_insn *insn, int n)
2551 {
2552 if (!insn_nothrow_p (insn))
2553 return false;
2554
2555 rtx pat = PATTERN (insn);
2556
2557 int i, j;
2558 for (i = 0; i < n; i++)
2559 {
2560 if (side_effects_p (SET_SRC (XVECEXP (pat, 0, i))))
2561 return false;
2562
2563 rtx reg = SET_DEST (XVECEXP (pat, 0, i));
2564
2565 for (j = i + 1; j < n; j++)
2566 if (reg_referenced_p (reg, XVECEXP (pat, 0, j)))
2567 return false;
2568 }
2569
2570 return true;
2571 }
2572
2573 /* Try to combine the insns I0, I1 and I2 into I3.
2574 Here I0, I1 and I2 appear earlier than I3.
2575 I0 and I1 can be zero; then we combine just I2 into I3, or I1 and I2 into
2576 I3.
2577
2578 If we are combining more than two insns and the resulting insn is not
2579 recognized, try splitting it into two insns. If that happens, I2 and I3
2580 are retained and I1/I0 are pseudo-deleted by turning them into a NOTE.
2581 Otherwise, I0, I1 and I2 are pseudo-deleted.
2582
2583 Return 0 if the combination does not work. Then nothing is changed.
2584 If we did the combination, return the insn at which combine should
2585 resume scanning.
2586
2587 Set NEW_DIRECT_JUMP_P to a nonzero value if try_combine creates a
2588 new direct jump instruction.
2589
2590 LAST_COMBINED_INSN is either I3, or some insn after I3 that has
2591 been I3 passed to an earlier try_combine within the same basic
2592 block. */
2593
2594 static rtx_insn *
2595 try_combine (rtx_insn *i3, rtx_insn *i2, rtx_insn *i1, rtx_insn *i0,
2596 int *new_direct_jump_p, rtx_insn *last_combined_insn)
2597 {
2598 /* New patterns for I3 and I2, respectively. */
2599 rtx newpat, newi2pat = 0;
2600 rtvec newpat_vec_with_clobbers = 0;
2601 int substed_i2 = 0, substed_i1 = 0, substed_i0 = 0;
2602 /* Indicates need to preserve SET in I0, I1 or I2 in I3 if it is not
2603 dead. */
2604 int added_sets_0, added_sets_1, added_sets_2;
2605 /* Total number of SETs to put into I3. */
2606 int total_sets;
2607 /* Nonzero if I2's or I1's body now appears in I3. */
2608 int i2_is_used = 0, i1_is_used = 0;
2609 /* INSN_CODEs for new I3, new I2, and user of condition code. */
2610 int insn_code_number, i2_code_number = 0, other_code_number = 0;
2611 /* Contains I3 if the destination of I3 is used in its source, which means
2612 that the old life of I3 is being killed. If that usage is placed into
2613 I2 and not in I3, a REG_DEAD note must be made. */
2614 rtx i3dest_killed = 0;
2615 /* SET_DEST and SET_SRC of I2, I1 and I0. */
2616 rtx i2dest = 0, i2src = 0, i1dest = 0, i1src = 0, i0dest = 0, i0src = 0;
2617 /* Copy of SET_SRC of I1 and I0, if needed. */
2618 rtx i1src_copy = 0, i0src_copy = 0, i0src_copy2 = 0;
2619 /* Set if I2DEST was reused as a scratch register. */
2620 bool i2scratch = false;
2621 /* The PATTERNs of I0, I1, and I2, or a copy of them in certain cases. */
2622 rtx i0pat = 0, i1pat = 0, i2pat = 0;
2623 /* Indicates if I2DEST or I1DEST is in I2SRC or I1_SRC. */
2624 int i2dest_in_i2src = 0, i1dest_in_i1src = 0, i2dest_in_i1src = 0;
2625 int i0dest_in_i0src = 0, i1dest_in_i0src = 0, i2dest_in_i0src = 0;
2626 int i2dest_killed = 0, i1dest_killed = 0, i0dest_killed = 0;
2627 int i1_feeds_i2_n = 0, i0_feeds_i2_n = 0, i0_feeds_i1_n = 0;
2628 /* Notes that must be added to REG_NOTES in I3 and I2. */
2629 rtx new_i3_notes, new_i2_notes;
2630 /* Notes that we substituted I3 into I2 instead of the normal case. */
2631 int i3_subst_into_i2 = 0;
2632 /* Notes that I1, I2 or I3 is a MULT operation. */
2633 int have_mult = 0;
2634 int swap_i2i3 = 0;
2635 int changed_i3_dest = 0;
2636
2637 int maxreg;
2638 rtx_insn *temp_insn;
2639 rtx temp_expr;
2640 struct insn_link *link;
2641 rtx other_pat = 0;
2642 rtx new_other_notes;
2643 int i;
2644
2645 /* Immediately return if any of I0,I1,I2 are the same insn (I3 can
2646 never be). */
2647 if (i1 == i2 || i0 == i2 || (i0 && i0 == i1))
2648 return 0;
2649
2650 /* Only try four-insn combinations when there's high likelihood of
2651 success. Look for simple insns, such as loads of constants or
2652 binary operations involving a constant. */
2653 if (i0)
2654 {
2655 int i;
2656 int ngood = 0;
2657 int nshift = 0;
2658 rtx set0, set3;
2659
2660 if (!flag_expensive_optimizations)
2661 return 0;
2662
2663 for (i = 0; i < 4; i++)
2664 {
2665 rtx_insn *insn = i == 0 ? i0 : i == 1 ? i1 : i == 2 ? i2 : i3;
2666 rtx set = single_set (insn);
2667 rtx src;
2668 if (!set)
2669 continue;
2670 src = SET_SRC (set);
2671 if (CONSTANT_P (src))
2672 {
2673 ngood += 2;
2674 break;
2675 }
2676 else if (BINARY_P (src) && CONSTANT_P (XEXP (src, 1)))
2677 ngood++;
2678 else if (GET_CODE (src) == ASHIFT || GET_CODE (src) == ASHIFTRT
2679 || GET_CODE (src) == LSHIFTRT)
2680 nshift++;
2681 }
2682
2683 /* If I0 loads a memory and I3 sets the same memory, then I1 and I2
2684 are likely manipulating its value. Ideally we'll be able to combine
2685 all four insns into a bitfield insertion of some kind.
2686
2687 Note the source in I0 might be inside a sign/zero extension and the
2688 memory modes in I0 and I3 might be different. So extract the address
2689 from the destination of I3 and search for it in the source of I0.
2690
2691 In the event that there's a match but the source/dest do not actually
2692 refer to the same memory, the worst that happens is we try some
2693 combinations that we wouldn't have otherwise. */
2694 if ((set0 = single_set (i0))
2695 /* Ensure the source of SET0 is a MEM, possibly buried inside
2696 an extension. */
2697 && (GET_CODE (SET_SRC (set0)) == MEM
2698 || ((GET_CODE (SET_SRC (set0)) == ZERO_EXTEND
2699 || GET_CODE (SET_SRC (set0)) == SIGN_EXTEND)
2700 && GET_CODE (XEXP (SET_SRC (set0), 0)) == MEM))
2701 && (set3 = single_set (i3))
2702 /* Ensure the destination of SET3 is a MEM. */
2703 && GET_CODE (SET_DEST (set3)) == MEM
2704 /* Would it be better to extract the base address for the MEM
2705 in SET3 and look for that? I don't have cases where it matters
2706 but I could envision such cases. */
2707 && rtx_referenced_p (XEXP (SET_DEST (set3), 0), SET_SRC (set0)))
2708 ngood += 2;
2709
2710 if (ngood < 2 && nshift < 2)
2711 return 0;
2712 }
2713
2714 /* Exit early if one of the insns involved can't be used for
2715 combinations. */
2716 if (CALL_P (i2)
2717 || (i1 && CALL_P (i1))
2718 || (i0 && CALL_P (i0))
2719 || cant_combine_insn_p (i3)
2720 || cant_combine_insn_p (i2)
2721 || (i1 && cant_combine_insn_p (i1))
2722 || (i0 && cant_combine_insn_p (i0))
2723 || likely_spilled_retval_p (i3))
2724 return 0;
2725
2726 combine_attempts++;
2727 undobuf.other_insn = 0;
2728
2729 /* Reset the hard register usage information. */
2730 CLEAR_HARD_REG_SET (newpat_used_regs);
2731
2732 if (dump_file && (dump_flags & TDF_DETAILS))
2733 {
2734 if (i0)
2735 fprintf (dump_file, "\nTrying %d, %d, %d -> %d:\n",
2736 INSN_UID (i0), INSN_UID (i1), INSN_UID (i2), INSN_UID (i3));
2737 else if (i1)
2738 fprintf (dump_file, "\nTrying %d, %d -> %d:\n",
2739 INSN_UID (i1), INSN_UID (i2), INSN_UID (i3));
2740 else
2741 fprintf (dump_file, "\nTrying %d -> %d:\n",
2742 INSN_UID (i2), INSN_UID (i3));
2743 }
2744
2745 /* If multiple insns feed into one of I2 or I3, they can be in any
2746 order. To simplify the code below, reorder them in sequence. */
2747 if (i0 && DF_INSN_LUID (i0) > DF_INSN_LUID (i2))
2748 std::swap (i0, i2);
2749 if (i0 && DF_INSN_LUID (i0) > DF_INSN_LUID (i1))
2750 std::swap (i0, i1);
2751 if (i1 && DF_INSN_LUID (i1) > DF_INSN_LUID (i2))
2752 std::swap (i1, i2);
2753
2754 added_links_insn = 0;
2755
2756 /* First check for one important special case that the code below will
2757 not handle. Namely, the case where I1 is zero, I2 is a PARALLEL
2758 and I3 is a SET whose SET_SRC is a SET_DEST in I2. In that case,
2759 we may be able to replace that destination with the destination of I3.
2760 This occurs in the common code where we compute both a quotient and
2761 remainder into a structure, in which case we want to do the computation
2762 directly into the structure to avoid register-register copies.
2763
2764 Note that this case handles both multiple sets in I2 and also cases
2765 where I2 has a number of CLOBBERs inside the PARALLEL.
2766
2767 We make very conservative checks below and only try to handle the
2768 most common cases of this. For example, we only handle the case
2769 where I2 and I3 are adjacent to avoid making difficult register
2770 usage tests. */
2771
2772 if (i1 == 0 && NONJUMP_INSN_P (i3) && GET_CODE (PATTERN (i3)) == SET
2773 && REG_P (SET_SRC (PATTERN (i3)))
2774 && REGNO (SET_SRC (PATTERN (i3))) >= FIRST_PSEUDO_REGISTER
2775 && find_reg_note (i3, REG_DEAD, SET_SRC (PATTERN (i3)))
2776 && GET_CODE (PATTERN (i2)) == PARALLEL
2777 && ! side_effects_p (SET_DEST (PATTERN (i3)))
2778 /* If the dest of I3 is a ZERO_EXTRACT or STRICT_LOW_PART, the code
2779 below would need to check what is inside (and reg_overlap_mentioned_p
2780 doesn't support those codes anyway). Don't allow those destinations;
2781 the resulting insn isn't likely to be recognized anyway. */
2782 && GET_CODE (SET_DEST (PATTERN (i3))) != ZERO_EXTRACT
2783 && GET_CODE (SET_DEST (PATTERN (i3))) != STRICT_LOW_PART
2784 && ! reg_overlap_mentioned_p (SET_SRC (PATTERN (i3)),
2785 SET_DEST (PATTERN (i3)))
2786 && next_active_insn (i2) == i3)
2787 {
2788 rtx p2 = PATTERN (i2);
2789
2790 /* Make sure that the destination of I3,
2791 which we are going to substitute into one output of I2,
2792 is not used within another output of I2. We must avoid making this:
2793 (parallel [(set (mem (reg 69)) ...)
2794 (set (reg 69) ...)])
2795 which is not well-defined as to order of actions.
2796 (Besides, reload can't handle output reloads for this.)
2797
2798 The problem can also happen if the dest of I3 is a memory ref,
2799 if another dest in I2 is an indirect memory ref.
2800
2801 Neither can this PARALLEL be an asm. We do not allow combining
2802 that usually (see can_combine_p), so do not here either. */
2803 bool ok = true;
2804 for (i = 0; ok && i < XVECLEN (p2, 0); i++)
2805 {
2806 if ((GET_CODE (XVECEXP (p2, 0, i)) == SET
2807 || GET_CODE (XVECEXP (p2, 0, i)) == CLOBBER)
2808 && reg_overlap_mentioned_p (SET_DEST (PATTERN (i3)),
2809 SET_DEST (XVECEXP (p2, 0, i))))
2810 ok = false;
2811 else if (GET_CODE (XVECEXP (p2, 0, i)) == SET
2812 && GET_CODE (SET_SRC (XVECEXP (p2, 0, i))) == ASM_OPERANDS)
2813 ok = false;
2814 }
2815
2816 if (ok)
2817 for (i = 0; i < XVECLEN (p2, 0); i++)
2818 if (GET_CODE (XVECEXP (p2, 0, i)) == SET
2819 && SET_DEST (XVECEXP (p2, 0, i)) == SET_SRC (PATTERN (i3)))
2820 {
2821 combine_merges++;
2822
2823 subst_insn = i3;
2824 subst_low_luid = DF_INSN_LUID (i2);
2825
2826 added_sets_2 = added_sets_1 = added_sets_0 = 0;
2827 i2src = SET_SRC (XVECEXP (p2, 0, i));
2828 i2dest = SET_DEST (XVECEXP (p2, 0, i));
2829 i2dest_killed = dead_or_set_p (i2, i2dest);
2830
2831 /* Replace the dest in I2 with our dest and make the resulting
2832 insn the new pattern for I3. Then skip to where we validate
2833 the pattern. Everything was set up above. */
2834 SUBST (SET_DEST (XVECEXP (p2, 0, i)), SET_DEST (PATTERN (i3)));
2835 newpat = p2;
2836 i3_subst_into_i2 = 1;
2837 goto validate_replacement;
2838 }
2839 }
2840
2841 /* If I2 is setting a pseudo to a constant and I3 is setting some
2842 sub-part of it to another constant, merge them by making a new
2843 constant. */
2844 if (i1 == 0
2845 && (temp_expr = single_set (i2)) != 0
2846 && CONST_SCALAR_INT_P (SET_SRC (temp_expr))
2847 && GET_CODE (PATTERN (i3)) == SET
2848 && CONST_SCALAR_INT_P (SET_SRC (PATTERN (i3)))
2849 && reg_subword_p (SET_DEST (PATTERN (i3)), SET_DEST (temp_expr)))
2850 {
2851 rtx dest = SET_DEST (PATTERN (i3));
2852 int offset = -1;
2853 int width = 0;
2854
2855 if (GET_CODE (dest) == ZERO_EXTRACT)
2856 {
2857 if (CONST_INT_P (XEXP (dest, 1))
2858 && CONST_INT_P (XEXP (dest, 2)))
2859 {
2860 width = INTVAL (XEXP (dest, 1));
2861 offset = INTVAL (XEXP (dest, 2));
2862 dest = XEXP (dest, 0);
2863 if (BITS_BIG_ENDIAN)
2864 offset = GET_MODE_PRECISION (GET_MODE (dest)) - width - offset;
2865 }
2866 }
2867 else
2868 {
2869 if (GET_CODE (dest) == STRICT_LOW_PART)
2870 dest = XEXP (dest, 0);
2871 width = GET_MODE_PRECISION (GET_MODE (dest));
2872 offset = 0;
2873 }
2874
2875 if (offset >= 0)
2876 {
2877 /* If this is the low part, we're done. */
2878 if (subreg_lowpart_p (dest))
2879 ;
2880 /* Handle the case where inner is twice the size of outer. */
2881 else if (GET_MODE_PRECISION (GET_MODE (SET_DEST (temp_expr)))
2882 == 2 * GET_MODE_PRECISION (GET_MODE (dest)))
2883 offset += GET_MODE_PRECISION (GET_MODE (dest));
2884 /* Otherwise give up for now. */
2885 else
2886 offset = -1;
2887 }
2888
2889 if (offset >= 0)
2890 {
2891 rtx inner = SET_SRC (PATTERN (i3));
2892 rtx outer = SET_SRC (temp_expr);
2893
2894 wide_int o
2895 = wi::insert (rtx_mode_t (outer, GET_MODE (SET_DEST (temp_expr))),
2896 rtx_mode_t (inner, GET_MODE (dest)),
2897 offset, width);
2898
2899 combine_merges++;
2900 subst_insn = i3;
2901 subst_low_luid = DF_INSN_LUID (i2);
2902 added_sets_2 = added_sets_1 = added_sets_0 = 0;
2903 i2dest = SET_DEST (temp_expr);
2904 i2dest_killed = dead_or_set_p (i2, i2dest);
2905
2906 /* Replace the source in I2 with the new constant and make the
2907 resulting insn the new pattern for I3. Then skip to where we
2908 validate the pattern. Everything was set up above. */
2909 SUBST (SET_SRC (temp_expr),
2910 immed_wide_int_const (o, GET_MODE (SET_DEST (temp_expr))));
2911
2912 newpat = PATTERN (i2);
2913
2914 /* The dest of I3 has been replaced with the dest of I2. */
2915 changed_i3_dest = 1;
2916 goto validate_replacement;
2917 }
2918 }
2919
2920 /* If we have no I1 and I2 looks like:
2921 (parallel [(set (reg:CC X) (compare:CC OP (const_int 0)))
2922 (set Y OP)])
2923 make up a dummy I1 that is
2924 (set Y OP)
2925 and change I2 to be
2926 (set (reg:CC X) (compare:CC Y (const_int 0)))
2927
2928 (We can ignore any trailing CLOBBERs.)
2929
2930 This undoes a previous combination and allows us to match a branch-and-
2931 decrement insn. */
2932
2933 if (!HAVE_cc0 && i1 == 0
2934 && is_parallel_of_n_reg_sets (PATTERN (i2), 2)
2935 && (GET_MODE_CLASS (GET_MODE (SET_DEST (XVECEXP (PATTERN (i2), 0, 0))))
2936 == MODE_CC)
2937 && GET_CODE (SET_SRC (XVECEXP (PATTERN (i2), 0, 0))) == COMPARE
2938 && XEXP (SET_SRC (XVECEXP (PATTERN (i2), 0, 0)), 1) == const0_rtx
2939 && rtx_equal_p (XEXP (SET_SRC (XVECEXP (PATTERN (i2), 0, 0)), 0),
2940 SET_SRC (XVECEXP (PATTERN (i2), 0, 1)))
2941 && !reg_used_between_p (SET_DEST (XVECEXP (PATTERN (i2), 0, 0)), i2, i3)
2942 && !reg_used_between_p (SET_DEST (XVECEXP (PATTERN (i2), 0, 1)), i2, i3))
2943 {
2944 /* We make I1 with the same INSN_UID as I2. This gives it
2945 the same DF_INSN_LUID for value tracking. Our fake I1 will
2946 never appear in the insn stream so giving it the same INSN_UID
2947 as I2 will not cause a problem. */
2948
2949 i1 = gen_rtx_INSN (VOIDmode, NULL, i2, BLOCK_FOR_INSN (i2),
2950 XVECEXP (PATTERN (i2), 0, 1), INSN_LOCATION (i2),
2951 -1, NULL_RTX);
2952 INSN_UID (i1) = INSN_UID (i2);
2953
2954 SUBST (PATTERN (i2), XVECEXP (PATTERN (i2), 0, 0));
2955 SUBST (XEXP (SET_SRC (PATTERN (i2)), 0),
2956 SET_DEST (PATTERN (i1)));
2957 unsigned int regno = REGNO (SET_DEST (PATTERN (i1)));
2958 SUBST_LINK (LOG_LINKS (i2),
2959 alloc_insn_link (i1, regno, LOG_LINKS (i2)));
2960 }
2961
2962 /* If I2 is a PARALLEL of two SETs of REGs (and perhaps some CLOBBERs),
2963 make those two SETs separate I1 and I2 insns, and make an I0 that is
2964 the original I1. */
2965 if (!HAVE_cc0 && i0 == 0
2966 && is_parallel_of_n_reg_sets (PATTERN (i2), 2)
2967 && can_split_parallel_of_n_reg_sets (i2, 2)
2968 && !reg_used_between_p (SET_DEST (XVECEXP (PATTERN (i2), 0, 0)), i2, i3)
2969 && !reg_used_between_p (SET_DEST (XVECEXP (PATTERN (i2), 0, 1)), i2, i3))
2970 {
2971 /* If there is no I1, there is no I0 either. */
2972 i0 = i1;
2973
2974 /* We make I1 with the same INSN_UID as I2. This gives it
2975 the same DF_INSN_LUID for value tracking. Our fake I1 will
2976 never appear in the insn stream so giving it the same INSN_UID
2977 as I2 will not cause a problem. */
2978
2979 i1 = gen_rtx_INSN (VOIDmode, NULL, i2, BLOCK_FOR_INSN (i2),
2980 XVECEXP (PATTERN (i2), 0, 0), INSN_LOCATION (i2),
2981 -1, NULL_RTX);
2982 INSN_UID (i1) = INSN_UID (i2);
2983
2984 SUBST (PATTERN (i2), XVECEXP (PATTERN (i2), 0, 1));
2985 }
2986
2987 /* Verify that I2 and I1 are valid for combining. */
2988 if (! can_combine_p (i2, i3, i0, i1, NULL, NULL, &i2dest, &i2src)
2989 || (i1 && ! can_combine_p (i1, i3, i0, NULL, i2, NULL,
2990 &i1dest, &i1src))
2991 || (i0 && ! can_combine_p (i0, i3, NULL, NULL, i1, i2,
2992 &i0dest, &i0src)))
2993 {
2994 undo_all ();
2995 return 0;
2996 }
2997
2998 /* Record whether I2DEST is used in I2SRC and similarly for the other
2999 cases. Knowing this will help in register status updating below. */
3000 i2dest_in_i2src = reg_overlap_mentioned_p (i2dest, i2src);
3001 i1dest_in_i1src = i1 && reg_overlap_mentioned_p (i1dest, i1src);
3002 i2dest_in_i1src = i1 && reg_overlap_mentioned_p (i2dest, i1src);
3003 i0dest_in_i0src = i0 && reg_overlap_mentioned_p (i0dest, i0src);
3004 i1dest_in_i0src = i0 && reg_overlap_mentioned_p (i1dest, i0src);
3005 i2dest_in_i0src = i0 && reg_overlap_mentioned_p (i2dest, i0src);
3006 i2dest_killed = dead_or_set_p (i2, i2dest);
3007 i1dest_killed = i1 && dead_or_set_p (i1, i1dest);
3008 i0dest_killed = i0 && dead_or_set_p (i0, i0dest);
3009
3010 /* For the earlier insns, determine which of the subsequent ones they
3011 feed. */
3012 i1_feeds_i2_n = i1 && insn_a_feeds_b (i1, i2);
3013 i0_feeds_i1_n = i0 && insn_a_feeds_b (i0, i1);
3014 i0_feeds_i2_n = (i0 && (!i0_feeds_i1_n ? insn_a_feeds_b (i0, i2)
3015 : (!reg_overlap_mentioned_p (i1dest, i0dest)
3016 && reg_overlap_mentioned_p (i0dest, i2src))));
3017
3018 /* Ensure that I3's pattern can be the destination of combines. */
3019 if (! combinable_i3pat (i3, &PATTERN (i3), i2dest, i1dest, i0dest,
3020 i1 && i2dest_in_i1src && !i1_feeds_i2_n,
3021 i0 && ((i2dest_in_i0src && !i0_feeds_i2_n)
3022 || (i1dest_in_i0src && !i0_feeds_i1_n)),
3023 &i3dest_killed))
3024 {
3025 undo_all ();
3026 return 0;
3027 }
3028
3029 /* See if any of the insns is a MULT operation. Unless one is, we will
3030 reject a combination that is, since it must be slower. Be conservative
3031 here. */
3032 if (GET_CODE (i2src) == MULT
3033 || (i1 != 0 && GET_CODE (i1src) == MULT)
3034 || (i0 != 0 && GET_CODE (i0src) == MULT)
3035 || (GET_CODE (PATTERN (i3)) == SET
3036 && GET_CODE (SET_SRC (PATTERN (i3))) == MULT))
3037 have_mult = 1;
3038
3039 /* If I3 has an inc, then give up if I1 or I2 uses the reg that is inc'd.
3040 We used to do this EXCEPT in one case: I3 has a post-inc in an
3041 output operand. However, that exception can give rise to insns like
3042 mov r3,(r3)+
3043 which is a famous insn on the PDP-11 where the value of r3 used as the
3044 source was model-dependent. Avoid this sort of thing. */
3045
3046 #if 0
3047 if (!(GET_CODE (PATTERN (i3)) == SET
3048 && REG_P (SET_SRC (PATTERN (i3)))
3049 && MEM_P (SET_DEST (PATTERN (i3)))
3050 && (GET_CODE (XEXP (SET_DEST (PATTERN (i3)), 0)) == POST_INC
3051 || GET_CODE (XEXP (SET_DEST (PATTERN (i3)), 0)) == POST_DEC)))
3052 /* It's not the exception. */
3053 #endif
3054 if (AUTO_INC_DEC)
3055 {
3056 rtx link;
3057 for (link = REG_NOTES (i3); link; link = XEXP (link, 1))
3058 if (REG_NOTE_KIND (link) == REG_INC
3059 && (reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i2))
3060 || (i1 != 0
3061 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i1)))))
3062 {
3063 undo_all ();
3064 return 0;
3065 }
3066 }
3067
3068 /* See if the SETs in I1 or I2 need to be kept around in the merged
3069 instruction: whenever the value set there is still needed past I3.
3070 For the SET in I2, this is easy: we see if I2DEST dies or is set in I3.
3071
3072 For the SET in I1, we have two cases: if I1 and I2 independently feed
3073 into I3, the set in I1 needs to be kept around unless I1DEST dies
3074 or is set in I3. Otherwise (if I1 feeds I2 which feeds I3), the set
3075 in I1 needs to be kept around unless I1DEST dies or is set in either
3076 I2 or I3. The same considerations apply to I0. */
3077
3078 added_sets_2 = !dead_or_set_p (i3, i2dest);
3079
3080 if (i1)
3081 added_sets_1 = !(dead_or_set_p (i3, i1dest)
3082 || (i1_feeds_i2_n && dead_or_set_p (i2, i1dest)));
3083 else
3084 added_sets_1 = 0;
3085
3086 if (i0)
3087 added_sets_0 = !(dead_or_set_p (i3, i0dest)
3088 || (i0_feeds_i1_n && dead_or_set_p (i1, i0dest))
3089 || ((i0_feeds_i2_n || (i0_feeds_i1_n && i1_feeds_i2_n))
3090 && dead_or_set_p (i2, i0dest)));
3091 else
3092 added_sets_0 = 0;
3093
3094 /* We are about to copy insns for the case where they need to be kept
3095 around. Check that they can be copied in the merged instruction. */
3096
3097 if (targetm.cannot_copy_insn_p
3098 && ((added_sets_2 && targetm.cannot_copy_insn_p (i2))
3099 || (i1 && added_sets_1 && targetm.cannot_copy_insn_p (i1))
3100 || (i0 && added_sets_0 && targetm.cannot_copy_insn_p (i0))))
3101 {
3102 undo_all ();
3103 return 0;
3104 }
3105
3106 /* If the set in I2 needs to be kept around, we must make a copy of
3107 PATTERN (I2), so that when we substitute I1SRC for I1DEST in
3108 PATTERN (I2), we are only substituting for the original I1DEST, not into
3109 an already-substituted copy. This also prevents making self-referential
3110 rtx. If I2 is a PARALLEL, we just need the piece that assigns I2SRC to
3111 I2DEST. */
3112
3113 if (added_sets_2)
3114 {
3115 if (GET_CODE (PATTERN (i2)) == PARALLEL)
3116 i2pat = gen_rtx_SET (i2dest, copy_rtx (i2src));
3117 else
3118 i2pat = copy_rtx (PATTERN (i2));
3119 }
3120
3121 if (added_sets_1)
3122 {
3123 if (GET_CODE (PATTERN (i1)) == PARALLEL)
3124 i1pat = gen_rtx_SET (i1dest, copy_rtx (i1src));
3125 else
3126 i1pat = copy_rtx (PATTERN (i1));
3127 }
3128
3129 if (added_sets_0)
3130 {
3131 if (GET_CODE (PATTERN (i0)) == PARALLEL)
3132 i0pat = gen_rtx_SET (i0dest, copy_rtx (i0src));
3133 else
3134 i0pat = copy_rtx (PATTERN (i0));
3135 }
3136
3137 combine_merges++;
3138
3139 /* Substitute in the latest insn for the regs set by the earlier ones. */
3140
3141 maxreg = max_reg_num ();
3142
3143 subst_insn = i3;
3144
3145 /* Many machines that don't use CC0 have insns that can both perform an
3146 arithmetic operation and set the condition code. These operations will
3147 be represented as a PARALLEL with the first element of the vector
3148 being a COMPARE of an arithmetic operation with the constant zero.
3149 The second element of the vector will set some pseudo to the result
3150 of the same arithmetic operation. If we simplify the COMPARE, we won't
3151 match such a pattern and so will generate an extra insn. Here we test
3152 for this case, where both the comparison and the operation result are
3153 needed, and make the PARALLEL by just replacing I2DEST in I3SRC with
3154 I2SRC. Later we will make the PARALLEL that contains I2. */
3155
3156 if (!HAVE_cc0 && i1 == 0 && added_sets_2 && GET_CODE (PATTERN (i3)) == SET
3157 && GET_CODE (SET_SRC (PATTERN (i3))) == COMPARE
3158 && CONST_INT_P (XEXP (SET_SRC (PATTERN (i3)), 1))
3159 && rtx_equal_p (XEXP (SET_SRC (PATTERN (i3)), 0), i2dest))
3160 {
3161 rtx newpat_dest;
3162 rtx *cc_use_loc = NULL;
3163 rtx_insn *cc_use_insn = NULL;
3164 rtx op0 = i2src, op1 = XEXP (SET_SRC (PATTERN (i3)), 1);
3165 machine_mode compare_mode, orig_compare_mode;
3166 enum rtx_code compare_code = UNKNOWN, orig_compare_code = UNKNOWN;
3167
3168 newpat = PATTERN (i3);
3169 newpat_dest = SET_DEST (newpat);
3170 compare_mode = orig_compare_mode = GET_MODE (newpat_dest);
3171
3172 if (undobuf.other_insn == 0
3173 && (cc_use_loc = find_single_use (SET_DEST (newpat), i3,
3174 &cc_use_insn)))
3175 {
3176 compare_code = orig_compare_code = GET_CODE (*cc_use_loc);
3177 compare_code = simplify_compare_const (compare_code,
3178 GET_MODE (i2dest), op0, &op1);
3179 target_canonicalize_comparison (&compare_code, &op0, &op1, 1);
3180 }
3181
3182 /* Do the rest only if op1 is const0_rtx, which may be the
3183 result of simplification. */
3184 if (op1 == const0_rtx)
3185 {
3186 /* If a single use of the CC is found, prepare to modify it
3187 when SELECT_CC_MODE returns a new CC-class mode, or when
3188 the above simplify_compare_const() returned a new comparison
3189 operator. undobuf.other_insn is assigned the CC use insn
3190 when modifying it. */
3191 if (cc_use_loc)
3192 {
3193 #ifdef SELECT_CC_MODE
3194 machine_mode new_mode
3195 = SELECT_CC_MODE (compare_code, op0, op1);
3196 if (new_mode != orig_compare_mode
3197 && can_change_dest_mode (SET_DEST (newpat),
3198 added_sets_2, new_mode))
3199 {
3200 unsigned int regno = REGNO (newpat_dest);
3201 compare_mode = new_mode;
3202 if (regno < FIRST_PSEUDO_REGISTER)
3203 newpat_dest = gen_rtx_REG (compare_mode, regno);
3204 else
3205 {
3206 SUBST_MODE (regno_reg_rtx[regno], compare_mode);
3207 newpat_dest = regno_reg_rtx[regno];
3208 }
3209 }
3210 #endif
3211 /* Cases for modifying the CC-using comparison. */
3212 if (compare_code != orig_compare_code
3213 /* ??? Do we need to verify the zero rtx? */
3214 && XEXP (*cc_use_loc, 1) == const0_rtx)
3215 {
3216 /* Replace cc_use_loc with entire new RTX. */
3217 SUBST (*cc_use_loc,
3218 gen_rtx_fmt_ee (compare_code, compare_mode,
3219 newpat_dest, const0_rtx));
3220 undobuf.other_insn = cc_use_insn;
3221 }
3222 else if (compare_mode != orig_compare_mode)
3223 {
3224 /* Just replace the CC reg with a new mode. */
3225 SUBST (XEXP (*cc_use_loc, 0), newpat_dest);
3226 undobuf.other_insn = cc_use_insn;
3227 }
3228 }
3229
3230 /* Now we modify the current newpat:
3231 First, SET_DEST(newpat) is updated if the CC mode has been
3232 altered. For targets without SELECT_CC_MODE, this should be
3233 optimized away. */
3234 if (compare_mode != orig_compare_mode)
3235 SUBST (SET_DEST (newpat), newpat_dest);
3236 /* This is always done to propagate i2src into newpat. */
3237 SUBST (SET_SRC (newpat),
3238 gen_rtx_COMPARE (compare_mode, op0, op1));
3239 /* Create new version of i2pat if needed; the below PARALLEL
3240 creation needs this to work correctly. */
3241 if (! rtx_equal_p (i2src, op0))
3242 i2pat = gen_rtx_SET (i2dest, op0);
3243 i2_is_used = 1;
3244 }
3245 }
3246
3247 if (i2_is_used == 0)
3248 {
3249 /* It is possible that the source of I2 or I1 may be performing
3250 an unneeded operation, such as a ZERO_EXTEND of something
3251 that is known to have the high part zero. Handle that case
3252 by letting subst look at the inner insns.
3253
3254 Another way to do this would be to have a function that tries
3255 to simplify a single insn instead of merging two or more
3256 insns. We don't do this because of the potential of infinite
3257 loops and because of the potential extra memory required.
3258 However, doing it the way we are is a bit of a kludge and
3259 doesn't catch all cases.
3260
3261 But only do this if -fexpensive-optimizations since it slows
3262 things down and doesn't usually win.
3263
3264 This is not done in the COMPARE case above because the
3265 unmodified I2PAT is used in the PARALLEL and so a pattern
3266 with a modified I2SRC would not match. */
3267
3268 if (flag_expensive_optimizations)
3269 {
3270 /* Pass pc_rtx so no substitutions are done, just
3271 simplifications. */
3272 if (i1)
3273 {
3274 subst_low_luid = DF_INSN_LUID (i1);
3275 i1src = subst (i1src, pc_rtx, pc_rtx, 0, 0, 0);
3276 }
3277
3278 subst_low_luid = DF_INSN_LUID (i2);
3279 i2src = subst (i2src, pc_rtx, pc_rtx, 0, 0, 0);
3280 }
3281
3282 n_occurrences = 0; /* `subst' counts here */
3283 subst_low_luid = DF_INSN_LUID (i2);
3284
3285 /* If I1 feeds into I2 and I1DEST is in I1SRC, we need to make a unique
3286 copy of I2SRC each time we substitute it, in order to avoid creating
3287 self-referential RTL when we will be substituting I1SRC for I1DEST
3288 later. Likewise if I0 feeds into I2, either directly or indirectly
3289 through I1, and I0DEST is in I0SRC. */
3290 newpat = subst (PATTERN (i3), i2dest, i2src, 0, 0,
3291 (i1_feeds_i2_n && i1dest_in_i1src)
3292 || ((i0_feeds_i2_n || (i0_feeds_i1_n && i1_feeds_i2_n))
3293 && i0dest_in_i0src));
3294 substed_i2 = 1;
3295
3296 /* Record whether I2's body now appears within I3's body. */
3297 i2_is_used = n_occurrences;
3298 }
3299
3300 /* If we already got a failure, don't try to do more. Otherwise, try to
3301 substitute I1 if we have it. */
3302
3303 if (i1 && GET_CODE (newpat) != CLOBBER)
3304 {
3305 /* Check that an autoincrement side-effect on I1 has not been lost.
3306 This happens if I1DEST is mentioned in I2 and dies there, and
3307 has disappeared from the new pattern. */
3308 if ((FIND_REG_INC_NOTE (i1, NULL_RTX) != 0
3309 && i1_feeds_i2_n
3310 && dead_or_set_p (i2, i1dest)
3311 && !reg_overlap_mentioned_p (i1dest, newpat))
3312 /* Before we can do this substitution, we must redo the test done
3313 above (see detailed comments there) that ensures I1DEST isn't
3314 mentioned in any SETs in NEWPAT that are field assignments. */
3315 || !combinable_i3pat (NULL, &newpat, i1dest, NULL_RTX, NULL_RTX,
3316 0, 0, 0))
3317 {
3318 undo_all ();
3319 return 0;
3320 }
3321
3322 n_occurrences = 0;
3323 subst_low_luid = DF_INSN_LUID (i1);
3324
3325 /* If the following substitution will modify I1SRC, make a copy of it
3326 for the case where it is substituted for I1DEST in I2PAT later. */
3327 if (added_sets_2 && i1_feeds_i2_n)
3328 i1src_copy = copy_rtx (i1src);
3329
3330 /* If I0 feeds into I1 and I0DEST is in I0SRC, we need to make a unique
3331 copy of I1SRC each time we substitute it, in order to avoid creating
3332 self-referential RTL when we will be substituting I0SRC for I0DEST
3333 later. */
3334 newpat = subst (newpat, i1dest, i1src, 0, 0,
3335 i0_feeds_i1_n && i0dest_in_i0src);
3336 substed_i1 = 1;
3337
3338 /* Record whether I1's body now appears within I3's body. */
3339 i1_is_used = n_occurrences;
3340 }
3341
3342 /* Likewise for I0 if we have it. */
3343
3344 if (i0 && GET_CODE (newpat) != CLOBBER)
3345 {
3346 if ((FIND_REG_INC_NOTE (i0, NULL_RTX) != 0
3347 && ((i0_feeds_i2_n && dead_or_set_p (i2, i0dest))
3348 || (i0_feeds_i1_n && dead_or_set_p (i1, i0dest)))
3349 && !reg_overlap_mentioned_p (i0dest, newpat))
3350 || !combinable_i3pat (NULL, &newpat, i0dest, NULL_RTX, NULL_RTX,
3351 0, 0, 0))
3352 {
3353 undo_all ();
3354 return 0;
3355 }
3356
3357 /* If the following substitution will modify I0SRC, make a copy of it
3358 for the case where it is substituted for I0DEST in I1PAT later. */
3359 if (added_sets_1 && i0_feeds_i1_n)
3360 i0src_copy = copy_rtx (i0src);
3361 /* And a copy for I0DEST in I2PAT substitution. */
3362 if (added_sets_2 && ((i0_feeds_i1_n && i1_feeds_i2_n)
3363 || (i0_feeds_i2_n)))
3364 i0src_copy2 = copy_rtx (i0src);
3365
3366 n_occurrences = 0;
3367 subst_low_luid = DF_INSN_LUID (i0);
3368 newpat = subst (newpat, i0dest, i0src, 0, 0, 0);
3369 substed_i0 = 1;
3370 }
3371
3372 /* Fail if an autoincrement side-effect has been duplicated. Be careful
3373 to count all the ways that I2SRC and I1SRC can be used. */
3374 if ((FIND_REG_INC_NOTE (i2, NULL_RTX) != 0
3375 && i2_is_used + added_sets_2 > 1)
3376 || (i1 != 0 && FIND_REG_INC_NOTE (i1, NULL_RTX) != 0
3377 && (i1_is_used + added_sets_1 + (added_sets_2 && i1_feeds_i2_n)
3378 > 1))
3379 || (i0 != 0 && FIND_REG_INC_NOTE (i0, NULL_RTX) != 0
3380 && (n_occurrences + added_sets_0
3381 + (added_sets_1 && i0_feeds_i1_n)
3382 + (added_sets_2 && i0_feeds_i2_n)
3383 > 1))
3384 /* Fail if we tried to make a new register. */
3385 || max_reg_num () != maxreg
3386 /* Fail if we couldn't do something and have a CLOBBER. */
3387 || GET_CODE (newpat) == CLOBBER
3388 /* Fail if this new pattern is a MULT and we didn't have one before
3389 at the outer level. */
3390 || (GET_CODE (newpat) == SET && GET_CODE (SET_SRC (newpat)) == MULT
3391 && ! have_mult))
3392 {
3393 undo_all ();
3394 return 0;
3395 }
3396
3397 /* If the actions of the earlier insns must be kept
3398 in addition to substituting them into the latest one,
3399 we must make a new PARALLEL for the latest insn
3400 to hold additional the SETs. */
3401
3402 if (added_sets_0 || added_sets_1 || added_sets_2)
3403 {
3404 int extra_sets = added_sets_0 + added_sets_1 + added_sets_2;
3405 combine_extras++;
3406
3407 if (GET_CODE (newpat) == PARALLEL)
3408 {
3409 rtvec old = XVEC (newpat, 0);
3410 total_sets = XVECLEN (newpat, 0) + extra_sets;
3411 newpat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (total_sets));
3412 memcpy (XVEC (newpat, 0)->elem, &old->elem[0],
3413 sizeof (old->elem[0]) * old->num_elem);
3414 }
3415 else
3416 {
3417 rtx old = newpat;
3418 total_sets = 1 + extra_sets;
3419 newpat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (total_sets));
3420 XVECEXP (newpat, 0, 0) = old;
3421 }
3422
3423 if (added_sets_0)
3424 XVECEXP (newpat, 0, --total_sets) = i0pat;
3425
3426 if (added_sets_1)
3427 {
3428 rtx t = i1pat;
3429 if (i0_feeds_i1_n)
3430 t = subst (t, i0dest, i0src_copy ? i0src_copy : i0src, 0, 0, 0);
3431
3432 XVECEXP (newpat, 0, --total_sets) = t;
3433 }
3434 if (added_sets_2)
3435 {
3436 rtx t = i2pat;
3437 if (i1_feeds_i2_n)
3438 t = subst (t, i1dest, i1src_copy ? i1src_copy : i1src, 0, 0,
3439 i0_feeds_i1_n && i0dest_in_i0src);
3440 if ((i0_feeds_i1_n && i1_feeds_i2_n) || i0_feeds_i2_n)
3441 t = subst (t, i0dest, i0src_copy2 ? i0src_copy2 : i0src, 0, 0, 0);
3442
3443 XVECEXP (newpat, 0, --total_sets) = t;
3444 }
3445 }
3446
3447 validate_replacement:
3448
3449 /* Note which hard regs this insn has as inputs. */
3450 mark_used_regs_combine (newpat);
3451
3452 /* If recog_for_combine fails, it strips existing clobbers. If we'll
3453 consider splitting this pattern, we might need these clobbers. */
3454 if (i1 && GET_CODE (newpat) == PARALLEL
3455 && GET_CODE (XVECEXP (newpat, 0, XVECLEN (newpat, 0) - 1)) == CLOBBER)
3456 {
3457 int len = XVECLEN (newpat, 0);
3458
3459 newpat_vec_with_clobbers = rtvec_alloc (len);
3460 for (i = 0; i < len; i++)
3461 RTVEC_ELT (newpat_vec_with_clobbers, i) = XVECEXP (newpat, 0, i);
3462 }
3463
3464 /* We have recognized nothing yet. */
3465 insn_code_number = -1;
3466
3467 /* See if this is a PARALLEL of two SETs where one SET's destination is
3468 a register that is unused and this isn't marked as an instruction that
3469 might trap in an EH region. In that case, we just need the other SET.
3470 We prefer this over the PARALLEL.
3471
3472 This can occur when simplifying a divmod insn. We *must* test for this
3473 case here because the code below that splits two independent SETs doesn't
3474 handle this case correctly when it updates the register status.
3475
3476 It's pointless doing this if we originally had two sets, one from
3477 i3, and one from i2. Combining then splitting the parallel results
3478 in the original i2 again plus an invalid insn (which we delete).
3479 The net effect is only to move instructions around, which makes
3480 debug info less accurate. */
3481
3482 if (!(added_sets_2 && i1 == 0)
3483 && is_parallel_of_n_reg_sets (newpat, 2)
3484 && asm_noperands (newpat) < 0)
3485 {
3486 rtx set0 = XVECEXP (newpat, 0, 0);
3487 rtx set1 = XVECEXP (newpat, 0, 1);
3488 rtx oldpat = newpat;
3489
3490 if (((REG_P (SET_DEST (set1))
3491 && find_reg_note (i3, REG_UNUSED, SET_DEST (set1)))
3492 || (GET_CODE (SET_DEST (set1)) == SUBREG
3493 && find_reg_note (i3, REG_UNUSED, SUBREG_REG (SET_DEST (set1)))))
3494 && insn_nothrow_p (i3)
3495 && !side_effects_p (SET_SRC (set1)))
3496 {
3497 newpat = set0;
3498 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3499 }
3500
3501 else if (((REG_P (SET_DEST (set0))
3502 && find_reg_note (i3, REG_UNUSED, SET_DEST (set0)))
3503 || (GET_CODE (SET_DEST (set0)) == SUBREG
3504 && find_reg_note (i3, REG_UNUSED,
3505 SUBREG_REG (SET_DEST (set0)))))
3506 && insn_nothrow_p (i3)
3507 && !side_effects_p (SET_SRC (set0)))
3508 {
3509 newpat = set1;
3510 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3511
3512 if (insn_code_number >= 0)
3513 changed_i3_dest = 1;
3514 }
3515
3516 if (insn_code_number < 0)
3517 newpat = oldpat;
3518 }
3519
3520 /* Is the result of combination a valid instruction? */
3521 if (insn_code_number < 0)
3522 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3523
3524 /* If we were combining three insns and the result is a simple SET
3525 with no ASM_OPERANDS that wasn't recognized, try to split it into two
3526 insns. There are two ways to do this. It can be split using a
3527 machine-specific method (like when you have an addition of a large
3528 constant) or by combine in the function find_split_point. */
3529
3530 if (i1 && insn_code_number < 0 && GET_CODE (newpat) == SET
3531 && asm_noperands (newpat) < 0)
3532 {
3533 rtx parallel, *split;
3534 rtx_insn *m_split_insn;
3535
3536 /* See if the MD file can split NEWPAT. If it can't, see if letting it
3537 use I2DEST as a scratch register will help. In the latter case,
3538 convert I2DEST to the mode of the source of NEWPAT if we can. */
3539
3540 m_split_insn = combine_split_insns (newpat, i3);
3541
3542 /* We can only use I2DEST as a scratch reg if it doesn't overlap any
3543 inputs of NEWPAT. */
3544
3545 /* ??? If I2DEST is not safe, and I1DEST exists, then it would be
3546 possible to try that as a scratch reg. This would require adding
3547 more code to make it work though. */
3548
3549 if (m_split_insn == 0 && ! reg_overlap_mentioned_p (i2dest, newpat))
3550 {
3551 machine_mode new_mode = GET_MODE (SET_DEST (newpat));
3552
3553 /* ??? Reusing i2dest without resetting the reg_stat entry for it
3554 (temporarily, until we are committed to this instruction
3555 combination) does not work: for example, any call to nonzero_bits
3556 on the register (from a splitter in the MD file, for example)
3557 will get the old information, which is invalid.
3558
3559 Since nowadays we can create registers during combine just fine,
3560 we should just create a new one here, not reuse i2dest. */
3561
3562 /* First try to split using the original register as a
3563 scratch register. */
3564 parallel = gen_rtx_PARALLEL (VOIDmode,
3565 gen_rtvec (2, newpat,
3566 gen_rtx_CLOBBER (VOIDmode,
3567 i2dest)));
3568 m_split_insn = combine_split_insns (parallel, i3);
3569
3570 /* If that didn't work, try changing the mode of I2DEST if
3571 we can. */
3572 if (m_split_insn == 0
3573 && new_mode != GET_MODE (i2dest)
3574 && new_mode != VOIDmode
3575 && can_change_dest_mode (i2dest, added_sets_2, new_mode))
3576 {
3577 machine_mode old_mode = GET_MODE (i2dest);
3578 rtx ni2dest;
3579
3580 if (REGNO (i2dest) < FIRST_PSEUDO_REGISTER)
3581 ni2dest = gen_rtx_REG (new_mode, REGNO (i2dest));
3582 else
3583 {
3584 SUBST_MODE (regno_reg_rtx[REGNO (i2dest)], new_mode);
3585 ni2dest = regno_reg_rtx[REGNO (i2dest)];
3586 }
3587
3588 parallel = (gen_rtx_PARALLEL
3589 (VOIDmode,
3590 gen_rtvec (2, newpat,
3591 gen_rtx_CLOBBER (VOIDmode,
3592 ni2dest))));
3593 m_split_insn = combine_split_insns (parallel, i3);
3594
3595 if (m_split_insn == 0
3596 && REGNO (i2dest) >= FIRST_PSEUDO_REGISTER)
3597 {
3598 struct undo *buf;
3599
3600 adjust_reg_mode (regno_reg_rtx[REGNO (i2dest)], old_mode);
3601 buf = undobuf.undos;
3602 undobuf.undos = buf->next;
3603 buf->next = undobuf.frees;
3604 undobuf.frees = buf;
3605 }
3606 }
3607
3608 i2scratch = m_split_insn != 0;
3609 }
3610
3611 /* If recog_for_combine has discarded clobbers, try to use them
3612 again for the split. */
3613 if (m_split_insn == 0 && newpat_vec_with_clobbers)
3614 {
3615 parallel = gen_rtx_PARALLEL (VOIDmode, newpat_vec_with_clobbers);
3616 m_split_insn = combine_split_insns (parallel, i3);
3617 }
3618
3619 if (m_split_insn && NEXT_INSN (m_split_insn) == NULL_RTX)
3620 {
3621 rtx m_split_pat = PATTERN (m_split_insn);
3622 insn_code_number = recog_for_combine (&m_split_pat, i3, &new_i3_notes);
3623 if (insn_code_number >= 0)
3624 newpat = m_split_pat;
3625 }
3626 else if (m_split_insn && NEXT_INSN (NEXT_INSN (m_split_insn)) == NULL_RTX
3627 && (next_nonnote_nondebug_insn (i2) == i3
3628 || ! use_crosses_set_p (PATTERN (m_split_insn), DF_INSN_LUID (i2))))
3629 {
3630 rtx i2set, i3set;
3631 rtx newi3pat = PATTERN (NEXT_INSN (m_split_insn));
3632 newi2pat = PATTERN (m_split_insn);
3633
3634 i3set = single_set (NEXT_INSN (m_split_insn));
3635 i2set = single_set (m_split_insn);
3636
3637 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
3638
3639 /* If I2 or I3 has multiple SETs, we won't know how to track
3640 register status, so don't use these insns. If I2's destination
3641 is used between I2 and I3, we also can't use these insns. */
3642
3643 if (i2_code_number >= 0 && i2set && i3set
3644 && (next_nonnote_nondebug_insn (i2) == i3
3645 || ! reg_used_between_p (SET_DEST (i2set), i2, i3)))
3646 insn_code_number = recog_for_combine (&newi3pat, i3,
3647 &new_i3_notes);
3648 if (insn_code_number >= 0)
3649 newpat = newi3pat;
3650
3651 /* It is possible that both insns now set the destination of I3.
3652 If so, we must show an extra use of it. */
3653
3654 if (insn_code_number >= 0)
3655 {
3656 rtx new_i3_dest = SET_DEST (i3set);
3657 rtx new_i2_dest = SET_DEST (i2set);
3658
3659 while (GET_CODE (new_i3_dest) == ZERO_EXTRACT
3660 || GET_CODE (new_i3_dest) == STRICT_LOW_PART
3661 || GET_CODE (new_i3_dest) == SUBREG)
3662 new_i3_dest = XEXP (new_i3_dest, 0);
3663
3664 while (GET_CODE (new_i2_dest) == ZERO_EXTRACT
3665 || GET_CODE (new_i2_dest) == STRICT_LOW_PART
3666 || GET_CODE (new_i2_dest) == SUBREG)
3667 new_i2_dest = XEXP (new_i2_dest, 0);
3668
3669 if (REG_P (new_i3_dest)
3670 && REG_P (new_i2_dest)
3671 && REGNO (new_i3_dest) == REGNO (new_i2_dest)
3672 && REGNO (new_i2_dest) < reg_n_sets_max)
3673 INC_REG_N_SETS (REGNO (new_i2_dest), 1);
3674 }
3675 }
3676
3677 /* If we can split it and use I2DEST, go ahead and see if that
3678 helps things be recognized. Verify that none of the registers
3679 are set between I2 and I3. */
3680 if (insn_code_number < 0
3681 && (split = find_split_point (&newpat, i3, false)) != 0
3682 && (!HAVE_cc0 || REG_P (i2dest))
3683 /* We need I2DEST in the proper mode. If it is a hard register
3684 or the only use of a pseudo, we can change its mode.
3685 Make sure we don't change a hard register to have a mode that
3686 isn't valid for it, or change the number of registers. */
3687 && (GET_MODE (*split) == GET_MODE (i2dest)
3688 || GET_MODE (*split) == VOIDmode
3689 || can_change_dest_mode (i2dest, added_sets_2,
3690 GET_MODE (*split)))
3691 && (next_nonnote_nondebug_insn (i2) == i3
3692 || ! use_crosses_set_p (*split, DF_INSN_LUID (i2)))
3693 /* We can't overwrite I2DEST if its value is still used by
3694 NEWPAT. */
3695 && ! reg_referenced_p (i2dest, newpat))
3696 {
3697 rtx newdest = i2dest;
3698 enum rtx_code split_code = GET_CODE (*split);
3699 machine_mode split_mode = GET_MODE (*split);
3700 bool subst_done = false;
3701 newi2pat = NULL_RTX;
3702
3703 i2scratch = true;
3704
3705 /* *SPLIT may be part of I2SRC, so make sure we have the
3706 original expression around for later debug processing.
3707 We should not need I2SRC any more in other cases. */
3708 if (MAY_HAVE_DEBUG_INSNS)
3709 i2src = copy_rtx (i2src);
3710 else
3711 i2src = NULL;
3712
3713 /* Get NEWDEST as a register in the proper mode. We have already
3714 validated that we can do this. */
3715 if (GET_MODE (i2dest) != split_mode && split_mode != VOIDmode)
3716 {
3717 if (REGNO (i2dest) < FIRST_PSEUDO_REGISTER)
3718 newdest = gen_rtx_REG (split_mode, REGNO (i2dest));
3719 else
3720 {
3721 SUBST_MODE (regno_reg_rtx[REGNO (i2dest)], split_mode);
3722 newdest = regno_reg_rtx[REGNO (i2dest)];
3723 }
3724 }
3725
3726 /* If *SPLIT is a (mult FOO (const_int pow2)), convert it to
3727 an ASHIFT. This can occur if it was inside a PLUS and hence
3728 appeared to be a memory address. This is a kludge. */
3729 if (split_code == MULT
3730 && CONST_INT_P (XEXP (*split, 1))
3731 && INTVAL (XEXP (*split, 1)) > 0
3732 && (i = exact_log2 (UINTVAL (XEXP (*split, 1)))) >= 0)
3733 {
3734 SUBST (*split, gen_rtx_ASHIFT (split_mode,
3735 XEXP (*split, 0), GEN_INT (i)));
3736 /* Update split_code because we may not have a multiply
3737 anymore. */
3738 split_code = GET_CODE (*split);
3739 }
3740
3741 /* Similarly for (plus (mult FOO (const_int pow2))). */
3742 if (split_code == PLUS
3743 && GET_CODE (XEXP (*split, 0)) == MULT
3744 && CONST_INT_P (XEXP (XEXP (*split, 0), 1))
3745 && INTVAL (XEXP (XEXP (*split, 0), 1)) > 0
3746 && (i = exact_log2 (UINTVAL (XEXP (XEXP (*split, 0), 1)))) >= 0)
3747 {
3748 rtx nsplit = XEXP (*split, 0);
3749 SUBST (XEXP (*split, 0), gen_rtx_ASHIFT (GET_MODE (nsplit),
3750 XEXP (nsplit, 0), GEN_INT (i)));
3751 /* Update split_code because we may not have a multiply
3752 anymore. */
3753 split_code = GET_CODE (*split);
3754 }
3755
3756 #ifdef INSN_SCHEDULING
3757 /* If *SPLIT is a paradoxical SUBREG, when we split it, it should
3758 be written as a ZERO_EXTEND. */
3759 if (split_code == SUBREG && MEM_P (SUBREG_REG (*split)))
3760 {
3761 /* Or as a SIGN_EXTEND if LOAD_EXTEND_OP says that that's
3762 what it really is. */
3763 if (load_extend_op (GET_MODE (SUBREG_REG (*split)))
3764 == SIGN_EXTEND)
3765 SUBST (*split, gen_rtx_SIGN_EXTEND (split_mode,
3766 SUBREG_REG (*split)));
3767 else
3768 SUBST (*split, gen_rtx_ZERO_EXTEND (split_mode,
3769 SUBREG_REG (*split)));
3770 }
3771 #endif
3772
3773 /* Attempt to split binary operators using arithmetic identities. */
3774 if (BINARY_P (SET_SRC (newpat))
3775 && split_mode == GET_MODE (SET_SRC (newpat))
3776 && ! side_effects_p (SET_SRC (newpat)))
3777 {
3778 rtx setsrc = SET_SRC (newpat);
3779 machine_mode mode = GET_MODE (setsrc);
3780 enum rtx_code code = GET_CODE (setsrc);
3781 rtx src_op0 = XEXP (setsrc, 0);
3782 rtx src_op1 = XEXP (setsrc, 1);
3783
3784 /* Split "X = Y op Y" as "Z = Y; X = Z op Z". */
3785 if (rtx_equal_p (src_op0, src_op1))
3786 {
3787 newi2pat = gen_rtx_SET (newdest, src_op0);
3788 SUBST (XEXP (setsrc, 0), newdest);
3789 SUBST (XEXP (setsrc, 1), newdest);
3790 subst_done = true;
3791 }
3792 /* Split "((P op Q) op R) op S" where op is PLUS or MULT. */
3793 else if ((code == PLUS || code == MULT)
3794 && GET_CODE (src_op0) == code
3795 && GET_CODE (XEXP (src_op0, 0)) == code
3796 && (INTEGRAL_MODE_P (mode)
3797 || (FLOAT_MODE_P (mode)
3798 && flag_unsafe_math_optimizations)))
3799 {
3800 rtx p = XEXP (XEXP (src_op0, 0), 0);
3801 rtx q = XEXP (XEXP (src_op0, 0), 1);
3802 rtx r = XEXP (src_op0, 1);
3803 rtx s = src_op1;
3804
3805 /* Split both "((X op Y) op X) op Y" and
3806 "((X op Y) op Y) op X" as "T op T" where T is
3807 "X op Y". */
3808 if ((rtx_equal_p (p,r) && rtx_equal_p (q,s))
3809 || (rtx_equal_p (p,s) && rtx_equal_p (q,r)))
3810 {
3811 newi2pat = gen_rtx_SET (newdest, XEXP (src_op0, 0));
3812 SUBST (XEXP (setsrc, 0), newdest);
3813 SUBST (XEXP (setsrc, 1), newdest);
3814 subst_done = true;
3815 }
3816 /* Split "((X op X) op Y) op Y)" as "T op T" where
3817 T is "X op Y". */
3818 else if (rtx_equal_p (p,q) && rtx_equal_p (r,s))
3819 {
3820 rtx tmp = simplify_gen_binary (code, mode, p, r);
3821 newi2pat = gen_rtx_SET (newdest, tmp);
3822 SUBST (XEXP (setsrc, 0), newdest);
3823 SUBST (XEXP (setsrc, 1), newdest);
3824 subst_done = true;
3825 }
3826 }
3827 }
3828
3829 if (!subst_done)
3830 {
3831 newi2pat = gen_rtx_SET (newdest, *split);
3832 SUBST (*split, newdest);
3833 }
3834
3835 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
3836
3837 /* recog_for_combine might have added CLOBBERs to newi2pat.
3838 Make sure NEWPAT does not depend on the clobbered regs. */
3839 if (GET_CODE (newi2pat) == PARALLEL)
3840 for (i = XVECLEN (newi2pat, 0) - 1; i >= 0; i--)
3841 if (GET_CODE (XVECEXP (newi2pat, 0, i)) == CLOBBER)
3842 {
3843 rtx reg = XEXP (XVECEXP (newi2pat, 0, i), 0);
3844 if (reg_overlap_mentioned_p (reg, newpat))
3845 {
3846 undo_all ();
3847 return 0;
3848 }
3849 }
3850
3851 /* If the split point was a MULT and we didn't have one before,
3852 don't use one now. */
3853 if (i2_code_number >= 0 && ! (split_code == MULT && ! have_mult))
3854 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3855 }
3856 }
3857
3858 /* Check for a case where we loaded from memory in a narrow mode and
3859 then sign extended it, but we need both registers. In that case,
3860 we have a PARALLEL with both loads from the same memory location.
3861 We can split this into a load from memory followed by a register-register
3862 copy. This saves at least one insn, more if register allocation can
3863 eliminate the copy.
3864
3865 We cannot do this if the destination of the first assignment is a
3866 condition code register or cc0. We eliminate this case by making sure
3867 the SET_DEST and SET_SRC have the same mode.
3868
3869 We cannot do this if the destination of the second assignment is
3870 a register that we have already assumed is zero-extended. Similarly
3871 for a SUBREG of such a register. */
3872
3873 else if (i1 && insn_code_number < 0 && asm_noperands (newpat) < 0
3874 && GET_CODE (newpat) == PARALLEL
3875 && XVECLEN (newpat, 0) == 2
3876 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
3877 && GET_CODE (SET_SRC (XVECEXP (newpat, 0, 0))) == SIGN_EXTEND
3878 && (GET_MODE (SET_DEST (XVECEXP (newpat, 0, 0)))
3879 == GET_MODE (SET_SRC (XVECEXP (newpat, 0, 0))))
3880 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
3881 && rtx_equal_p (SET_SRC (XVECEXP (newpat, 0, 1)),
3882 XEXP (SET_SRC (XVECEXP (newpat, 0, 0)), 0))
3883 && ! use_crosses_set_p (SET_SRC (XVECEXP (newpat, 0, 1)),
3884 DF_INSN_LUID (i2))
3885 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != ZERO_EXTRACT
3886 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != STRICT_LOW_PART
3887 && ! (temp_expr = SET_DEST (XVECEXP (newpat, 0, 1)),
3888 (REG_P (temp_expr)
3889 && reg_stat[REGNO (temp_expr)].nonzero_bits != 0
3890 && GET_MODE_PRECISION (GET_MODE (temp_expr)) < BITS_PER_WORD
3891 && GET_MODE_PRECISION (GET_MODE (temp_expr)) < HOST_BITS_PER_INT
3892 && (reg_stat[REGNO (temp_expr)].nonzero_bits
3893 != GET_MODE_MASK (word_mode))))
3894 && ! (GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) == SUBREG
3895 && (temp_expr = SUBREG_REG (SET_DEST (XVECEXP (newpat, 0, 1))),
3896 (REG_P (temp_expr)
3897 && reg_stat[REGNO (temp_expr)].nonzero_bits != 0
3898 && GET_MODE_PRECISION (GET_MODE (temp_expr)) < BITS_PER_WORD
3899 && GET_MODE_PRECISION (GET_MODE (temp_expr)) < HOST_BITS_PER_INT
3900 && (reg_stat[REGNO (temp_expr)].nonzero_bits
3901 != GET_MODE_MASK (word_mode)))))
3902 && ! reg_overlap_mentioned_p (SET_DEST (XVECEXP (newpat, 0, 1)),
3903 SET_SRC (XVECEXP (newpat, 0, 1)))
3904 && ! find_reg_note (i3, REG_UNUSED,
3905 SET_DEST (XVECEXP (newpat, 0, 0))))
3906 {
3907 rtx ni2dest;
3908
3909 newi2pat = XVECEXP (newpat, 0, 0);
3910 ni2dest = SET_DEST (XVECEXP (newpat, 0, 0));
3911 newpat = XVECEXP (newpat, 0, 1);
3912 SUBST (SET_SRC (newpat),
3913 gen_lowpart (GET_MODE (SET_SRC (newpat)), ni2dest));
3914 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
3915
3916 if (i2_code_number >= 0)
3917 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3918
3919 if (insn_code_number >= 0)
3920 swap_i2i3 = 1;
3921 }
3922
3923 /* Similarly, check for a case where we have a PARALLEL of two independent
3924 SETs but we started with three insns. In this case, we can do the sets
3925 as two separate insns. This case occurs when some SET allows two
3926 other insns to combine, but the destination of that SET is still live.
3927
3928 Also do this if we started with two insns and (at least) one of the
3929 resulting sets is a noop; this noop will be deleted later. */
3930
3931 else if (insn_code_number < 0 && asm_noperands (newpat) < 0
3932 && GET_CODE (newpat) == PARALLEL
3933 && XVECLEN (newpat, 0) == 2
3934 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
3935 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
3936 && (i1 || set_noop_p (XVECEXP (newpat, 0, 0))
3937 || set_noop_p (XVECEXP (newpat, 0, 1)))
3938 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) != ZERO_EXTRACT
3939 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) != STRICT_LOW_PART
3940 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != ZERO_EXTRACT
3941 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != STRICT_LOW_PART
3942 && ! reg_referenced_p (SET_DEST (XVECEXP (newpat, 0, 1)),
3943 XVECEXP (newpat, 0, 0))
3944 && ! reg_referenced_p (SET_DEST (XVECEXP (newpat, 0, 0)),
3945 XVECEXP (newpat, 0, 1))
3946 && ! (contains_muldiv (SET_SRC (XVECEXP (newpat, 0, 0)))
3947 && contains_muldiv (SET_SRC (XVECEXP (newpat, 0, 1)))))
3948 {
3949 rtx set0 = XVECEXP (newpat, 0, 0);
3950 rtx set1 = XVECEXP (newpat, 0, 1);
3951
3952 /* Normally, it doesn't matter which of the two is done first,
3953 but the one that references cc0 can't be the second, and
3954 one which uses any regs/memory set in between i2 and i3 can't
3955 be first. The PARALLEL might also have been pre-existing in i3,
3956 so we need to make sure that we won't wrongly hoist a SET to i2
3957 that would conflict with a death note present in there. */
3958 if (!use_crosses_set_p (SET_SRC (set1), DF_INSN_LUID (i2))
3959 && !(REG_P (SET_DEST (set1))
3960 && find_reg_note (i2, REG_DEAD, SET_DEST (set1)))
3961 && !(GET_CODE (SET_DEST (set1)) == SUBREG
3962 && find_reg_note (i2, REG_DEAD,
3963 SUBREG_REG (SET_DEST (set1))))
3964 && (!HAVE_cc0 || !reg_referenced_p (cc0_rtx, set0))
3965 /* If I3 is a jump, ensure that set0 is a jump so that
3966 we do not create invalid RTL. */
3967 && (!JUMP_P (i3) || SET_DEST (set0) == pc_rtx)
3968 )
3969 {
3970 newi2pat = set1;
3971 newpat = set0;
3972 }
3973 else if (!use_crosses_set_p (SET_SRC (set0), DF_INSN_LUID (i2))
3974 && !(REG_P (SET_DEST (set0))
3975 && find_reg_note (i2, REG_DEAD, SET_DEST (set0)))
3976 && !(GET_CODE (SET_DEST (set0)) == SUBREG
3977 && find_reg_note (i2, REG_DEAD,
3978 SUBREG_REG (SET_DEST (set0))))
3979 && (!HAVE_cc0 || !reg_referenced_p (cc0_rtx, set1))
3980 /* If I3 is a jump, ensure that set1 is a jump so that
3981 we do not create invalid RTL. */
3982 && (!JUMP_P (i3) || SET_DEST (set1) == pc_rtx)
3983 )
3984 {
3985 newi2pat = set0;
3986 newpat = set1;
3987 }
3988 else
3989 {
3990 undo_all ();
3991 return 0;
3992 }
3993
3994 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
3995
3996 if (i2_code_number >= 0)
3997 {
3998 /* recog_for_combine might have added CLOBBERs to newi2pat.
3999 Make sure NEWPAT does not depend on the clobbered regs. */
4000 if (GET_CODE (newi2pat) == PARALLEL)
4001 {
4002 for (i = XVECLEN (newi2pat, 0) - 1; i >= 0; i--)
4003 if (GET_CODE (XVECEXP (newi2pat, 0, i)) == CLOBBER)
4004 {
4005 rtx reg = XEXP (XVECEXP (newi2pat, 0, i), 0);
4006 if (reg_overlap_mentioned_p (reg, newpat))
4007 {
4008 undo_all ();
4009 return 0;
4010 }
4011 }
4012 }
4013
4014 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
4015 }
4016 }
4017
4018 /* If it still isn't recognized, fail and change things back the way they
4019 were. */
4020 if ((insn_code_number < 0
4021 /* Is the result a reasonable ASM_OPERANDS? */
4022 && (! check_asm_operands (newpat) || added_sets_1 || added_sets_2)))
4023 {
4024 undo_all ();
4025 return 0;
4026 }
4027
4028 /* If we had to change another insn, make sure it is valid also. */
4029 if (undobuf.other_insn)
4030 {
4031 CLEAR_HARD_REG_SET (newpat_used_regs);
4032
4033 other_pat = PATTERN (undobuf.other_insn);
4034 other_code_number = recog_for_combine (&other_pat, undobuf.other_insn,
4035 &new_other_notes);
4036
4037 if (other_code_number < 0 && ! check_asm_operands (other_pat))
4038 {
4039 undo_all ();
4040 return 0;
4041 }
4042 }
4043
4044 /* If I2 is the CC0 setter and I3 is the CC0 user then check whether
4045 they are adjacent to each other or not. */
4046 if (HAVE_cc0)
4047 {
4048 rtx_insn *p = prev_nonnote_insn (i3);
4049 if (p && p != i2 && NONJUMP_INSN_P (p) && newi2pat
4050 && sets_cc0_p (newi2pat))
4051 {
4052 undo_all ();
4053 return 0;
4054 }
4055 }
4056
4057 /* Only allow this combination if insn_rtx_costs reports that the
4058 replacement instructions are cheaper than the originals. */
4059 if (!combine_validate_cost (i0, i1, i2, i3, newpat, newi2pat, other_pat))
4060 {
4061 undo_all ();
4062 return 0;
4063 }
4064
4065 if (MAY_HAVE_DEBUG_INSNS)
4066 {
4067 struct undo *undo;
4068
4069 for (undo = undobuf.undos; undo; undo = undo->next)
4070 if (undo->kind == UNDO_MODE)
4071 {
4072 rtx reg = *undo->where.r;
4073 machine_mode new_mode = GET_MODE (reg);
4074 machine_mode old_mode = undo->old_contents.m;
4075
4076 /* Temporarily revert mode back. */
4077 adjust_reg_mode (reg, old_mode);
4078
4079 if (reg == i2dest && i2scratch)
4080 {
4081 /* If we used i2dest as a scratch register with a
4082 different mode, substitute it for the original
4083 i2src while its original mode is temporarily
4084 restored, and then clear i2scratch so that we don't
4085 do it again later. */
4086 propagate_for_debug (i2, last_combined_insn, reg, i2src,
4087 this_basic_block);
4088 i2scratch = false;
4089 /* Put back the new mode. */
4090 adjust_reg_mode (reg, new_mode);
4091 }
4092 else
4093 {
4094 rtx tempreg = gen_raw_REG (old_mode, REGNO (reg));
4095 rtx_insn *first, *last;
4096
4097 if (reg == i2dest)
4098 {
4099 first = i2;
4100 last = last_combined_insn;
4101 }
4102 else
4103 {
4104 first = i3;
4105 last = undobuf.other_insn;
4106 gcc_assert (last);
4107 if (DF_INSN_LUID (last)
4108 < DF_INSN_LUID (last_combined_insn))
4109 last = last_combined_insn;
4110 }
4111
4112 /* We're dealing with a reg that changed mode but not
4113 meaning, so we want to turn it into a subreg for
4114 the new mode. However, because of REG sharing and
4115 because its mode had already changed, we have to do
4116 it in two steps. First, replace any debug uses of
4117 reg, with its original mode temporarily restored,
4118 with this copy we have created; then, replace the
4119 copy with the SUBREG of the original shared reg,
4120 once again changed to the new mode. */
4121 propagate_for_debug (first, last, reg, tempreg,
4122 this_basic_block);
4123 adjust_reg_mode (reg, new_mode);
4124 propagate_for_debug (first, last, tempreg,
4125 lowpart_subreg (old_mode, reg, new_mode),
4126 this_basic_block);
4127 }
4128 }
4129 }
4130
4131 /* If we will be able to accept this, we have made a
4132 change to the destination of I3. This requires us to
4133 do a few adjustments. */
4134
4135 if (changed_i3_dest)
4136 {
4137 PATTERN (i3) = newpat;
4138 adjust_for_new_dest (i3);
4139 }
4140
4141 /* We now know that we can do this combination. Merge the insns and
4142 update the status of registers and LOG_LINKS. */
4143
4144 if (undobuf.other_insn)
4145 {
4146 rtx note, next;
4147
4148 PATTERN (undobuf.other_insn) = other_pat;
4149
4150 /* If any of the notes in OTHER_INSN were REG_DEAD or REG_UNUSED,
4151 ensure that they are still valid. Then add any non-duplicate
4152 notes added by recog_for_combine. */
4153 for (note = REG_NOTES (undobuf.other_insn); note; note = next)
4154 {
4155 next = XEXP (note, 1);
4156
4157 if ((REG_NOTE_KIND (note) == REG_DEAD
4158 && !reg_referenced_p (XEXP (note, 0),
4159 PATTERN (undobuf.other_insn)))
4160 ||(REG_NOTE_KIND (note) == REG_UNUSED
4161 && !reg_set_p (XEXP (note, 0),
4162 PATTERN (undobuf.other_insn)))
4163 /* Simply drop equal note since it may be no longer valid
4164 for other_insn. It may be possible to record that CC
4165 register is changed and only discard those notes, but
4166 in practice it's unnecessary complication and doesn't
4167 give any meaningful improvement.
4168
4169 See PR78559. */
4170 || REG_NOTE_KIND (note) == REG_EQUAL
4171 || REG_NOTE_KIND (note) == REG_EQUIV)
4172 remove_note (undobuf.other_insn, note);
4173 }
4174
4175 distribute_notes (new_other_notes, undobuf.other_insn,
4176 undobuf.other_insn, NULL, NULL_RTX, NULL_RTX,
4177 NULL_RTX);
4178 }
4179
4180 if (swap_i2i3)
4181 {
4182 rtx_insn *insn;
4183 struct insn_link *link;
4184 rtx ni2dest;
4185
4186 /* I3 now uses what used to be its destination and which is now
4187 I2's destination. This requires us to do a few adjustments. */
4188 PATTERN (i3) = newpat;
4189 adjust_for_new_dest (i3);
4190
4191 /* We need a LOG_LINK from I3 to I2. But we used to have one,
4192 so we still will.
4193
4194 However, some later insn might be using I2's dest and have
4195 a LOG_LINK pointing at I3. We must remove this link.
4196 The simplest way to remove the link is to point it at I1,
4197 which we know will be a NOTE. */
4198
4199 /* newi2pat is usually a SET here; however, recog_for_combine might
4200 have added some clobbers. */
4201 if (GET_CODE (newi2pat) == PARALLEL)
4202 ni2dest = SET_DEST (XVECEXP (newi2pat, 0, 0));
4203 else
4204 ni2dest = SET_DEST (newi2pat);
4205
4206 for (insn = NEXT_INSN (i3);
4207 insn && (this_basic_block->next_bb == EXIT_BLOCK_PTR_FOR_FN (cfun)
4208 || insn != BB_HEAD (this_basic_block->next_bb));
4209 insn = NEXT_INSN (insn))
4210 {
4211 if (NONDEBUG_INSN_P (insn)
4212 && reg_referenced_p (ni2dest, PATTERN (insn)))
4213 {
4214 FOR_EACH_LOG_LINK (link, insn)
4215 if (link->insn == i3)
4216 link->insn = i1;
4217
4218 break;
4219 }
4220 }
4221 }
4222
4223 {
4224 rtx i3notes, i2notes, i1notes = 0, i0notes = 0;
4225 struct insn_link *i3links, *i2links, *i1links = 0, *i0links = 0;
4226 rtx midnotes = 0;
4227 int from_luid;
4228 /* Compute which registers we expect to eliminate. newi2pat may be setting
4229 either i3dest or i2dest, so we must check it. */
4230 rtx elim_i2 = ((newi2pat && reg_set_p (i2dest, newi2pat))
4231 || i2dest_in_i2src || i2dest_in_i1src || i2dest_in_i0src
4232 || !i2dest_killed
4233 ? 0 : i2dest);
4234 /* For i1, we need to compute both local elimination and global
4235 elimination information with respect to newi2pat because i1dest
4236 may be the same as i3dest, in which case newi2pat may be setting
4237 i1dest. Global information is used when distributing REG_DEAD
4238 note for i2 and i3, in which case it does matter if newi2pat sets
4239 i1dest or not.
4240
4241 Local information is used when distributing REG_DEAD note for i1,
4242 in which case it doesn't matter if newi2pat sets i1dest or not.
4243 See PR62151, if we have four insns combination:
4244 i0: r0 <- i0src
4245 i1: r1 <- i1src (using r0)
4246 REG_DEAD (r0)
4247 i2: r0 <- i2src (using r1)
4248 i3: r3 <- i3src (using r0)
4249 ix: using r0
4250 From i1's point of view, r0 is eliminated, no matter if it is set
4251 by newi2pat or not. In other words, REG_DEAD info for r0 in i1
4252 should be discarded.
4253
4254 Note local information only affects cases in forms like "I1->I2->I3",
4255 "I0->I1->I2->I3" or "I0&I1->I2, I2->I3". For other cases like
4256 "I0->I1, I1&I2->I3" or "I1&I2->I3", newi2pat won't set i1dest or
4257 i0dest anyway. */
4258 rtx local_elim_i1 = (i1 == 0 || i1dest_in_i1src || i1dest_in_i0src
4259 || !i1dest_killed
4260 ? 0 : i1dest);
4261 rtx elim_i1 = (local_elim_i1 == 0
4262 || (newi2pat && reg_set_p (i1dest, newi2pat))
4263 ? 0 : i1dest);
4264 /* Same case as i1. */
4265 rtx local_elim_i0 = (i0 == 0 || i0dest_in_i0src || !i0dest_killed
4266 ? 0 : i0dest);
4267 rtx elim_i0 = (local_elim_i0 == 0
4268 || (newi2pat && reg_set_p (i0dest, newi2pat))
4269 ? 0 : i0dest);
4270
4271 /* Get the old REG_NOTES and LOG_LINKS from all our insns and
4272 clear them. */
4273 i3notes = REG_NOTES (i3), i3links = LOG_LINKS (i3);
4274 i2notes = REG_NOTES (i2), i2links = LOG_LINKS (i2);
4275 if (i1)
4276 i1notes = REG_NOTES (i1), i1links = LOG_LINKS (i1);
4277 if (i0)
4278 i0notes = REG_NOTES (i0), i0links = LOG_LINKS (i0);
4279
4280 /* Ensure that we do not have something that should not be shared but
4281 occurs multiple times in the new insns. Check this by first
4282 resetting all the `used' flags and then copying anything is shared. */
4283
4284 reset_used_flags (i3notes);
4285 reset_used_flags (i2notes);
4286 reset_used_flags (i1notes);
4287 reset_used_flags (i0notes);
4288 reset_used_flags (newpat);
4289 reset_used_flags (newi2pat);
4290 if (undobuf.other_insn)
4291 reset_used_flags (PATTERN (undobuf.other_insn));
4292
4293 i3notes = copy_rtx_if_shared (i3notes);
4294 i2notes = copy_rtx_if_shared (i2notes);
4295 i1notes = copy_rtx_if_shared (i1notes);
4296 i0notes = copy_rtx_if_shared (i0notes);
4297 newpat = copy_rtx_if_shared (newpat);
4298 newi2pat = copy_rtx_if_shared (newi2pat);
4299 if (undobuf.other_insn)
4300 reset_used_flags (PATTERN (undobuf.other_insn));
4301
4302 INSN_CODE (i3) = insn_code_number;
4303 PATTERN (i3) = newpat;
4304
4305 if (CALL_P (i3) && CALL_INSN_FUNCTION_USAGE (i3))
4306 {
4307 for (rtx link = CALL_INSN_FUNCTION_USAGE (i3); link;
4308 link = XEXP (link, 1))
4309 {
4310 if (substed_i2)
4311 {
4312 /* I2SRC must still be meaningful at this point. Some
4313 splitting operations can invalidate I2SRC, but those
4314 operations do not apply to calls. */
4315 gcc_assert (i2src);
4316 XEXP (link, 0) = simplify_replace_rtx (XEXP (link, 0),
4317 i2dest, i2src);
4318 }
4319 if (substed_i1)
4320 XEXP (link, 0) = simplify_replace_rtx (XEXP (link, 0),
4321 i1dest, i1src);
4322 if (substed_i0)
4323 XEXP (link, 0) = simplify_replace_rtx (XEXP (link, 0),
4324 i0dest, i0src);
4325 }
4326 }
4327
4328 if (undobuf.other_insn)
4329 INSN_CODE (undobuf.other_insn) = other_code_number;
4330
4331 /* We had one special case above where I2 had more than one set and
4332 we replaced a destination of one of those sets with the destination
4333 of I3. In that case, we have to update LOG_LINKS of insns later
4334 in this basic block. Note that this (expensive) case is rare.
4335
4336 Also, in this case, we must pretend that all REG_NOTEs for I2
4337 actually came from I3, so that REG_UNUSED notes from I2 will be
4338 properly handled. */
4339
4340 if (i3_subst_into_i2)
4341 {
4342 for (i = 0; i < XVECLEN (PATTERN (i2), 0); i++)
4343 if ((GET_CODE (XVECEXP (PATTERN (i2), 0, i)) == SET
4344 || GET_CODE (XVECEXP (PATTERN (i2), 0, i)) == CLOBBER)
4345 && REG_P (SET_DEST (XVECEXP (PATTERN (i2), 0, i)))
4346 && SET_DEST (XVECEXP (PATTERN (i2), 0, i)) != i2dest
4347 && ! find_reg_note (i2, REG_UNUSED,
4348 SET_DEST (XVECEXP (PATTERN (i2), 0, i))))
4349 for (temp_insn = NEXT_INSN (i2);
4350 temp_insn
4351 && (this_basic_block->next_bb == EXIT_BLOCK_PTR_FOR_FN (cfun)
4352 || BB_HEAD (this_basic_block) != temp_insn);
4353 temp_insn = NEXT_INSN (temp_insn))
4354 if (temp_insn != i3 && NONDEBUG_INSN_P (temp_insn))
4355 FOR_EACH_LOG_LINK (link, temp_insn)
4356 if (link->insn == i2)
4357 link->insn = i3;
4358
4359 if (i3notes)
4360 {
4361 rtx link = i3notes;
4362 while (XEXP (link, 1))
4363 link = XEXP (link, 1);
4364 XEXP (link, 1) = i2notes;
4365 }
4366 else
4367 i3notes = i2notes;
4368 i2notes = 0;
4369 }
4370
4371 LOG_LINKS (i3) = NULL;
4372 REG_NOTES (i3) = 0;
4373 LOG_LINKS (i2) = NULL;
4374 REG_NOTES (i2) = 0;
4375
4376 if (newi2pat)
4377 {
4378 if (MAY_HAVE_DEBUG_INSNS && i2scratch)
4379 propagate_for_debug (i2, last_combined_insn, i2dest, i2src,
4380 this_basic_block);
4381 INSN_CODE (i2) = i2_code_number;
4382 PATTERN (i2) = newi2pat;
4383 }
4384 else
4385 {
4386 if (MAY_HAVE_DEBUG_INSNS && i2src)
4387 propagate_for_debug (i2, last_combined_insn, i2dest, i2src,
4388 this_basic_block);
4389 SET_INSN_DELETED (i2);
4390 }
4391
4392 if (i1)
4393 {
4394 LOG_LINKS (i1) = NULL;
4395 REG_NOTES (i1) = 0;
4396 if (MAY_HAVE_DEBUG_INSNS)
4397 propagate_for_debug (i1, last_combined_insn, i1dest, i1src,
4398 this_basic_block);
4399 SET_INSN_DELETED (i1);
4400 }
4401
4402 if (i0)
4403 {
4404 LOG_LINKS (i0) = NULL;
4405 REG_NOTES (i0) = 0;
4406 if (MAY_HAVE_DEBUG_INSNS)
4407 propagate_for_debug (i0, last_combined_insn, i0dest, i0src,
4408 this_basic_block);
4409 SET_INSN_DELETED (i0);
4410 }
4411
4412 /* Get death notes for everything that is now used in either I3 or
4413 I2 and used to die in a previous insn. If we built two new
4414 patterns, move from I1 to I2 then I2 to I3 so that we get the
4415 proper movement on registers that I2 modifies. */
4416
4417 if (i0)
4418 from_luid = DF_INSN_LUID (i0);
4419 else if (i1)
4420 from_luid = DF_INSN_LUID (i1);
4421 else
4422 from_luid = DF_INSN_LUID (i2);
4423 if (newi2pat)
4424 move_deaths (newi2pat, NULL_RTX, from_luid, i2, &midnotes);
4425 move_deaths (newpat, newi2pat, from_luid, i3, &midnotes);
4426
4427 /* Distribute all the LOG_LINKS and REG_NOTES from I1, I2, and I3. */
4428 if (i3notes)
4429 distribute_notes (i3notes, i3, i3, newi2pat ? i2 : NULL,
4430 elim_i2, elim_i1, elim_i0);
4431 if (i2notes)
4432 distribute_notes (i2notes, i2, i3, newi2pat ? i2 : NULL,
4433 elim_i2, elim_i1, elim_i0);
4434 if (i1notes)
4435 distribute_notes (i1notes, i1, i3, newi2pat ? i2 : NULL,
4436 elim_i2, local_elim_i1, local_elim_i0);
4437 if (i0notes)
4438 distribute_notes (i0notes, i0, i3, newi2pat ? i2 : NULL,
4439 elim_i2, elim_i1, local_elim_i0);
4440 if (midnotes)
4441 distribute_notes (midnotes, NULL, i3, newi2pat ? i2 : NULL,
4442 elim_i2, elim_i1, elim_i0);
4443
4444 /* Distribute any notes added to I2 or I3 by recog_for_combine. We
4445 know these are REG_UNUSED and want them to go to the desired insn,
4446 so we always pass it as i3. */
4447
4448 if (newi2pat && new_i2_notes)
4449 distribute_notes (new_i2_notes, i2, i2, NULL, NULL_RTX, NULL_RTX,
4450 NULL_RTX);
4451
4452 if (new_i3_notes)
4453 distribute_notes (new_i3_notes, i3, i3, NULL, NULL_RTX, NULL_RTX,
4454 NULL_RTX);
4455
4456 /* If I3DEST was used in I3SRC, it really died in I3. We may need to
4457 put a REG_DEAD note for it somewhere. If NEWI2PAT exists and sets
4458 I3DEST, the death must be somewhere before I2, not I3. If we passed I3
4459 in that case, it might delete I2. Similarly for I2 and I1.
4460 Show an additional death due to the REG_DEAD note we make here. If
4461 we discard it in distribute_notes, we will decrement it again. */
4462
4463 if (i3dest_killed)
4464 {
4465 rtx new_note = alloc_reg_note (REG_DEAD, i3dest_killed, NULL_RTX);
4466 if (newi2pat && reg_set_p (i3dest_killed, newi2pat))
4467 distribute_notes (new_note, NULL, i2, NULL, elim_i2,
4468 elim_i1, elim_i0);
4469 else
4470 distribute_notes (new_note, NULL, i3, newi2pat ? i2 : NULL,
4471 elim_i2, elim_i1, elim_i0);
4472 }
4473
4474 if (i2dest_in_i2src)
4475 {
4476 rtx new_note = alloc_reg_note (REG_DEAD, i2dest, NULL_RTX);
4477 if (newi2pat && reg_set_p (i2dest, newi2pat))
4478 distribute_notes (new_note, NULL, i2, NULL, NULL_RTX,
4479 NULL_RTX, NULL_RTX);
4480 else
4481 distribute_notes (new_note, NULL, i3, newi2pat ? i2 : NULL,
4482 NULL_RTX, NULL_RTX, NULL_RTX);
4483 }
4484
4485 if (i1dest_in_i1src)
4486 {
4487 rtx new_note = alloc_reg_note (REG_DEAD, i1dest, NULL_RTX);
4488 if (newi2pat && reg_set_p (i1dest, newi2pat))
4489 distribute_notes (new_note, NULL, i2, NULL, NULL_RTX,
4490 NULL_RTX, NULL_RTX);
4491 else
4492 distribute_notes (new_note, NULL, i3, newi2pat ? i2 : NULL,
4493 NULL_RTX, NULL_RTX, NULL_RTX);
4494 }
4495
4496 if (i0dest_in_i0src)
4497 {
4498 rtx new_note = alloc_reg_note (REG_DEAD, i0dest, NULL_RTX);
4499 if (newi2pat && reg_set_p (i0dest, newi2pat))
4500 distribute_notes (new_note, NULL, i2, NULL, NULL_RTX,
4501 NULL_RTX, NULL_RTX);
4502 else
4503 distribute_notes (new_note, NULL, i3, newi2pat ? i2 : NULL,
4504 NULL_RTX, NULL_RTX, NULL_RTX);
4505 }
4506
4507 distribute_links (i3links);
4508 distribute_links (i2links);
4509 distribute_links (i1links);
4510 distribute_links (i0links);
4511
4512 if (REG_P (i2dest))
4513 {
4514 struct insn_link *link;
4515 rtx_insn *i2_insn = 0;
4516 rtx i2_val = 0, set;
4517
4518 /* The insn that used to set this register doesn't exist, and
4519 this life of the register may not exist either. See if one of
4520 I3's links points to an insn that sets I2DEST. If it does,
4521 that is now the last known value for I2DEST. If we don't update
4522 this and I2 set the register to a value that depended on its old
4523 contents, we will get confused. If this insn is used, thing
4524 will be set correctly in combine_instructions. */
4525 FOR_EACH_LOG_LINK (link, i3)
4526 if ((set = single_set (link->insn)) != 0
4527 && rtx_equal_p (i2dest, SET_DEST (set)))
4528 i2_insn = link->insn, i2_val = SET_SRC (set);
4529
4530 record_value_for_reg (i2dest, i2_insn, i2_val);
4531
4532 /* If the reg formerly set in I2 died only once and that was in I3,
4533 zero its use count so it won't make `reload' do any work. */
4534 if (! added_sets_2
4535 && (newi2pat == 0 || ! reg_mentioned_p (i2dest, newi2pat))
4536 && ! i2dest_in_i2src
4537 && REGNO (i2dest) < reg_n_sets_max)
4538 INC_REG_N_SETS (REGNO (i2dest), -1);
4539 }
4540
4541 if (i1 && REG_P (i1dest))
4542 {
4543 struct insn_link *link;
4544 rtx_insn *i1_insn = 0;
4545 rtx i1_val = 0, set;
4546
4547 FOR_EACH_LOG_LINK (link, i3)
4548 if ((set = single_set (link->insn)) != 0
4549 && rtx_equal_p (i1dest, SET_DEST (set)))
4550 i1_insn = link->insn, i1_val = SET_SRC (set);
4551
4552 record_value_for_reg (i1dest, i1_insn, i1_val);
4553
4554 if (! added_sets_1
4555 && ! i1dest_in_i1src
4556 && REGNO (i1dest) < reg_n_sets_max)
4557 INC_REG_N_SETS (REGNO (i1dest), -1);
4558 }
4559
4560 if (i0 && REG_P (i0dest))
4561 {
4562 struct insn_link *link;
4563 rtx_insn *i0_insn = 0;
4564 rtx i0_val = 0, set;
4565
4566 FOR_EACH_LOG_LINK (link, i3)
4567 if ((set = single_set (link->insn)) != 0
4568 && rtx_equal_p (i0dest, SET_DEST (set)))
4569 i0_insn = link->insn, i0_val = SET_SRC (set);
4570
4571 record_value_for_reg (i0dest, i0_insn, i0_val);
4572
4573 if (! added_sets_0
4574 && ! i0dest_in_i0src
4575 && REGNO (i0dest) < reg_n_sets_max)
4576 INC_REG_N_SETS (REGNO (i0dest), -1);
4577 }
4578
4579 /* Update reg_stat[].nonzero_bits et al for any changes that may have
4580 been made to this insn. The order is important, because newi2pat
4581 can affect nonzero_bits of newpat. */
4582 if (newi2pat)
4583 note_stores (newi2pat, set_nonzero_bits_and_sign_copies, NULL);
4584 note_stores (newpat, set_nonzero_bits_and_sign_copies, NULL);
4585 }
4586
4587 if (undobuf.other_insn != NULL_RTX)
4588 {
4589 if (dump_file)
4590 {
4591 fprintf (dump_file, "modifying other_insn ");
4592 dump_insn_slim (dump_file, undobuf.other_insn);
4593 }
4594 df_insn_rescan (undobuf.other_insn);
4595 }
4596
4597 if (i0 && !(NOTE_P (i0) && (NOTE_KIND (i0) == NOTE_INSN_DELETED)))
4598 {
4599 if (dump_file)
4600 {
4601 fprintf (dump_file, "modifying insn i0 ");
4602 dump_insn_slim (dump_file, i0);
4603 }
4604 df_insn_rescan (i0);
4605 }
4606
4607 if (i1 && !(NOTE_P (i1) && (NOTE_KIND (i1) == NOTE_INSN_DELETED)))
4608 {
4609 if (dump_file)
4610 {
4611 fprintf (dump_file, "modifying insn i1 ");
4612 dump_insn_slim (dump_file, i1);
4613 }
4614 df_insn_rescan (i1);
4615 }
4616
4617 if (i2 && !(NOTE_P (i2) && (NOTE_KIND (i2) == NOTE_INSN_DELETED)))
4618 {
4619 if (dump_file)
4620 {
4621 fprintf (dump_file, "modifying insn i2 ");
4622 dump_insn_slim (dump_file, i2);
4623 }
4624 df_insn_rescan (i2);
4625 }
4626
4627 if (i3 && !(NOTE_P (i3) && (NOTE_KIND (i3) == NOTE_INSN_DELETED)))
4628 {
4629 if (dump_file)
4630 {
4631 fprintf (dump_file, "modifying insn i3 ");
4632 dump_insn_slim (dump_file, i3);
4633 }
4634 df_insn_rescan (i3);
4635 }
4636
4637 /* Set new_direct_jump_p if a new return or simple jump instruction
4638 has been created. Adjust the CFG accordingly. */
4639 if (returnjump_p (i3) || any_uncondjump_p (i3))
4640 {
4641 *new_direct_jump_p = 1;
4642 mark_jump_label (PATTERN (i3), i3, 0);
4643 update_cfg_for_uncondjump (i3);
4644 }
4645
4646 if (undobuf.other_insn != NULL_RTX
4647 && (returnjump_p (undobuf.other_insn)
4648 || any_uncondjump_p (undobuf.other_insn)))
4649 {
4650 *new_direct_jump_p = 1;
4651 update_cfg_for_uncondjump (undobuf.other_insn);
4652 }
4653
4654 if (GET_CODE (PATTERN (i3)) == TRAP_IF
4655 && XEXP (PATTERN (i3), 0) == const1_rtx)
4656 {
4657 basic_block bb = BLOCK_FOR_INSN (i3);
4658 gcc_assert (bb);
4659 remove_edge (split_block (bb, i3));
4660 emit_barrier_after_bb (bb);
4661 *new_direct_jump_p = 1;
4662 }
4663
4664 if (undobuf.other_insn
4665 && GET_CODE (PATTERN (undobuf.other_insn)) == TRAP_IF
4666 && XEXP (PATTERN (undobuf.other_insn), 0) == const1_rtx)
4667 {
4668 basic_block bb = BLOCK_FOR_INSN (undobuf.other_insn);
4669 gcc_assert (bb);
4670 remove_edge (split_block (bb, undobuf.other_insn));
4671 emit_barrier_after_bb (bb);
4672 *new_direct_jump_p = 1;
4673 }
4674
4675 /* A noop might also need cleaning up of CFG, if it comes from the
4676 simplification of a jump. */
4677 if (JUMP_P (i3)
4678 && GET_CODE (newpat) == SET
4679 && SET_SRC (newpat) == pc_rtx
4680 && SET_DEST (newpat) == pc_rtx)
4681 {
4682 *new_direct_jump_p = 1;
4683 update_cfg_for_uncondjump (i3);
4684 }
4685
4686 if (undobuf.other_insn != NULL_RTX
4687 && JUMP_P (undobuf.other_insn)
4688 && GET_CODE (PATTERN (undobuf.other_insn)) == SET
4689 && SET_SRC (PATTERN (undobuf.other_insn)) == pc_rtx
4690 && SET_DEST (PATTERN (undobuf.other_insn)) == pc_rtx)
4691 {
4692 *new_direct_jump_p = 1;
4693 update_cfg_for_uncondjump (undobuf.other_insn);
4694 }
4695
4696 combine_successes++;
4697 undo_commit ();
4698
4699 if (added_links_insn
4700 && (newi2pat == 0 || DF_INSN_LUID (added_links_insn) < DF_INSN_LUID (i2))
4701 && DF_INSN_LUID (added_links_insn) < DF_INSN_LUID (i3))
4702 return added_links_insn;
4703 else
4704 return newi2pat ? i2 : i3;
4705 }
4706 \f
4707 /* Get a marker for undoing to the current state. */
4708
4709 static void *
4710 get_undo_marker (void)
4711 {
4712 return undobuf.undos;
4713 }
4714
4715 /* Undo the modifications up to the marker. */
4716
4717 static void
4718 undo_to_marker (void *marker)
4719 {
4720 struct undo *undo, *next;
4721
4722 for (undo = undobuf.undos; undo != marker; undo = next)
4723 {
4724 gcc_assert (undo);
4725
4726 next = undo->next;
4727 switch (undo->kind)
4728 {
4729 case UNDO_RTX:
4730 *undo->where.r = undo->old_contents.r;
4731 break;
4732 case UNDO_INT:
4733 *undo->where.i = undo->old_contents.i;
4734 break;
4735 case UNDO_MODE:
4736 adjust_reg_mode (*undo->where.r, undo->old_contents.m);
4737 break;
4738 case UNDO_LINKS:
4739 *undo->where.l = undo->old_contents.l;
4740 break;
4741 default:
4742 gcc_unreachable ();
4743 }
4744
4745 undo->next = undobuf.frees;
4746 undobuf.frees = undo;
4747 }
4748
4749 undobuf.undos = (struct undo *) marker;
4750 }
4751
4752 /* Undo all the modifications recorded in undobuf. */
4753
4754 static void
4755 undo_all (void)
4756 {
4757 undo_to_marker (0);
4758 }
4759
4760 /* We've committed to accepting the changes we made. Move all
4761 of the undos to the free list. */
4762
4763 static void
4764 undo_commit (void)
4765 {
4766 struct undo *undo, *next;
4767
4768 for (undo = undobuf.undos; undo; undo = next)
4769 {
4770 next = undo->next;
4771 undo->next = undobuf.frees;
4772 undobuf.frees = undo;
4773 }
4774 undobuf.undos = 0;
4775 }
4776 \f
4777 /* Find the innermost point within the rtx at LOC, possibly LOC itself,
4778 where we have an arithmetic expression and return that point. LOC will
4779 be inside INSN.
4780
4781 try_combine will call this function to see if an insn can be split into
4782 two insns. */
4783
4784 static rtx *
4785 find_split_point (rtx *loc, rtx_insn *insn, bool set_src)
4786 {
4787 rtx x = *loc;
4788 enum rtx_code code = GET_CODE (x);
4789 rtx *split;
4790 unsigned HOST_WIDE_INT len = 0;
4791 HOST_WIDE_INT pos = 0;
4792 int unsignedp = 0;
4793 rtx inner = NULL_RTX;
4794
4795 /* First special-case some codes. */
4796 switch (code)
4797 {
4798 case SUBREG:
4799 #ifdef INSN_SCHEDULING
4800 /* If we are making a paradoxical SUBREG invalid, it becomes a split
4801 point. */
4802 if (MEM_P (SUBREG_REG (x)))
4803 return loc;
4804 #endif
4805 return find_split_point (&SUBREG_REG (x), insn, false);
4806
4807 case MEM:
4808 /* If we have (mem (const ..)) or (mem (symbol_ref ...)), split it
4809 using LO_SUM and HIGH. */
4810 if (HAVE_lo_sum && (GET_CODE (XEXP (x, 0)) == CONST
4811 || GET_CODE (XEXP (x, 0)) == SYMBOL_REF))
4812 {
4813 machine_mode address_mode = get_address_mode (x);
4814
4815 SUBST (XEXP (x, 0),
4816 gen_rtx_LO_SUM (address_mode,
4817 gen_rtx_HIGH (address_mode, XEXP (x, 0)),
4818 XEXP (x, 0)));
4819 return &XEXP (XEXP (x, 0), 0);
4820 }
4821
4822 /* If we have a PLUS whose second operand is a constant and the
4823 address is not valid, perhaps will can split it up using
4824 the machine-specific way to split large constants. We use
4825 the first pseudo-reg (one of the virtual regs) as a placeholder;
4826 it will not remain in the result. */
4827 if (GET_CODE (XEXP (x, 0)) == PLUS
4828 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
4829 && ! memory_address_addr_space_p (GET_MODE (x), XEXP (x, 0),
4830 MEM_ADDR_SPACE (x)))
4831 {
4832 rtx reg = regno_reg_rtx[FIRST_PSEUDO_REGISTER];
4833 rtx_insn *seq = combine_split_insns (gen_rtx_SET (reg, XEXP (x, 0)),
4834 subst_insn);
4835
4836 /* This should have produced two insns, each of which sets our
4837 placeholder. If the source of the second is a valid address,
4838 we can make put both sources together and make a split point
4839 in the middle. */
4840
4841 if (seq
4842 && NEXT_INSN (seq) != NULL_RTX
4843 && NEXT_INSN (NEXT_INSN (seq)) == NULL_RTX
4844 && NONJUMP_INSN_P (seq)
4845 && GET_CODE (PATTERN (seq)) == SET
4846 && SET_DEST (PATTERN (seq)) == reg
4847 && ! reg_mentioned_p (reg,
4848 SET_SRC (PATTERN (seq)))
4849 && NONJUMP_INSN_P (NEXT_INSN (seq))
4850 && GET_CODE (PATTERN (NEXT_INSN (seq))) == SET
4851 && SET_DEST (PATTERN (NEXT_INSN (seq))) == reg
4852 && memory_address_addr_space_p
4853 (GET_MODE (x), SET_SRC (PATTERN (NEXT_INSN (seq))),
4854 MEM_ADDR_SPACE (x)))
4855 {
4856 rtx src1 = SET_SRC (PATTERN (seq));
4857 rtx src2 = SET_SRC (PATTERN (NEXT_INSN (seq)));
4858
4859 /* Replace the placeholder in SRC2 with SRC1. If we can
4860 find where in SRC2 it was placed, that can become our
4861 split point and we can replace this address with SRC2.
4862 Just try two obvious places. */
4863
4864 src2 = replace_rtx (src2, reg, src1);
4865 split = 0;
4866 if (XEXP (src2, 0) == src1)
4867 split = &XEXP (src2, 0);
4868 else if (GET_RTX_FORMAT (GET_CODE (XEXP (src2, 0)))[0] == 'e'
4869 && XEXP (XEXP (src2, 0), 0) == src1)
4870 split = &XEXP (XEXP (src2, 0), 0);
4871
4872 if (split)
4873 {
4874 SUBST (XEXP (x, 0), src2);
4875 return split;
4876 }
4877 }
4878
4879 /* If that didn't work, perhaps the first operand is complex and
4880 needs to be computed separately, so make a split point there.
4881 This will occur on machines that just support REG + CONST
4882 and have a constant moved through some previous computation. */
4883
4884 else if (!OBJECT_P (XEXP (XEXP (x, 0), 0))
4885 && ! (GET_CODE (XEXP (XEXP (x, 0), 0)) == SUBREG
4886 && OBJECT_P (SUBREG_REG (XEXP (XEXP (x, 0), 0)))))
4887 return &XEXP (XEXP (x, 0), 0);
4888 }
4889
4890 /* If we have a PLUS whose first operand is complex, try computing it
4891 separately by making a split there. */
4892 if (GET_CODE (XEXP (x, 0)) == PLUS
4893 && ! memory_address_addr_space_p (GET_MODE (x), XEXP (x, 0),
4894 MEM_ADDR_SPACE (x))
4895 && ! OBJECT_P (XEXP (XEXP (x, 0), 0))
4896 && ! (GET_CODE (XEXP (XEXP (x, 0), 0)) == SUBREG
4897 && OBJECT_P (SUBREG_REG (XEXP (XEXP (x, 0), 0)))))
4898 return &XEXP (XEXP (x, 0), 0);
4899 break;
4900
4901 case SET:
4902 /* If SET_DEST is CC0 and SET_SRC is not an operand, a COMPARE, or a
4903 ZERO_EXTRACT, the most likely reason why this doesn't match is that
4904 we need to put the operand into a register. So split at that
4905 point. */
4906
4907 if (SET_DEST (x) == cc0_rtx
4908 && GET_CODE (SET_SRC (x)) != COMPARE
4909 && GET_CODE (SET_SRC (x)) != ZERO_EXTRACT
4910 && !OBJECT_P (SET_SRC (x))
4911 && ! (GET_CODE (SET_SRC (x)) == SUBREG
4912 && OBJECT_P (SUBREG_REG (SET_SRC (x)))))
4913 return &SET_SRC (x);
4914
4915 /* See if we can split SET_SRC as it stands. */
4916 split = find_split_point (&SET_SRC (x), insn, true);
4917 if (split && split != &SET_SRC (x))
4918 return split;
4919
4920 /* See if we can split SET_DEST as it stands. */
4921 split = find_split_point (&SET_DEST (x), insn, false);
4922 if (split && split != &SET_DEST (x))
4923 return split;
4924
4925 /* See if this is a bitfield assignment with everything constant. If
4926 so, this is an IOR of an AND, so split it into that. */
4927 if (GET_CODE (SET_DEST (x)) == ZERO_EXTRACT
4928 && HWI_COMPUTABLE_MODE_P (GET_MODE (XEXP (SET_DEST (x), 0)))
4929 && CONST_INT_P (XEXP (SET_DEST (x), 1))
4930 && CONST_INT_P (XEXP (SET_DEST (x), 2))
4931 && CONST_INT_P (SET_SRC (x))
4932 && ((INTVAL (XEXP (SET_DEST (x), 1))
4933 + INTVAL (XEXP (SET_DEST (x), 2)))
4934 <= GET_MODE_PRECISION (GET_MODE (XEXP (SET_DEST (x), 0))))
4935 && ! side_effects_p (XEXP (SET_DEST (x), 0)))
4936 {
4937 HOST_WIDE_INT pos = INTVAL (XEXP (SET_DEST (x), 2));
4938 unsigned HOST_WIDE_INT len = INTVAL (XEXP (SET_DEST (x), 1));
4939 unsigned HOST_WIDE_INT src = INTVAL (SET_SRC (x));
4940 rtx dest = XEXP (SET_DEST (x), 0);
4941 machine_mode mode = GET_MODE (dest);
4942 unsigned HOST_WIDE_INT mask
4943 = (HOST_WIDE_INT_1U << len) - 1;
4944 rtx or_mask;
4945
4946 if (BITS_BIG_ENDIAN)
4947 pos = GET_MODE_PRECISION (mode) - len - pos;
4948
4949 or_mask = gen_int_mode (src << pos, mode);
4950 if (src == mask)
4951 SUBST (SET_SRC (x),
4952 simplify_gen_binary (IOR, mode, dest, or_mask));
4953 else
4954 {
4955 rtx negmask = gen_int_mode (~(mask << pos), mode);
4956 SUBST (SET_SRC (x),
4957 simplify_gen_binary (IOR, mode,
4958 simplify_gen_binary (AND, mode,
4959 dest, negmask),
4960 or_mask));
4961 }
4962
4963 SUBST (SET_DEST (x), dest);
4964
4965 split = find_split_point (&SET_SRC (x), insn, true);
4966 if (split && split != &SET_SRC (x))
4967 return split;
4968 }
4969
4970 /* Otherwise, see if this is an operation that we can split into two.
4971 If so, try to split that. */
4972 code = GET_CODE (SET_SRC (x));
4973
4974 switch (code)
4975 {
4976 case AND:
4977 /* If we are AND'ing with a large constant that is only a single
4978 bit and the result is only being used in a context where we
4979 need to know if it is zero or nonzero, replace it with a bit
4980 extraction. This will avoid the large constant, which might
4981 have taken more than one insn to make. If the constant were
4982 not a valid argument to the AND but took only one insn to make,
4983 this is no worse, but if it took more than one insn, it will
4984 be better. */
4985
4986 if (CONST_INT_P (XEXP (SET_SRC (x), 1))
4987 && REG_P (XEXP (SET_SRC (x), 0))
4988 && (pos = exact_log2 (UINTVAL (XEXP (SET_SRC (x), 1)))) >= 7
4989 && REG_P (SET_DEST (x))
4990 && (split = find_single_use (SET_DEST (x), insn, NULL)) != 0
4991 && (GET_CODE (*split) == EQ || GET_CODE (*split) == NE)
4992 && XEXP (*split, 0) == SET_DEST (x)
4993 && XEXP (*split, 1) == const0_rtx)
4994 {
4995 rtx extraction = make_extraction (GET_MODE (SET_DEST (x)),
4996 XEXP (SET_SRC (x), 0),
4997 pos, NULL_RTX, 1, 1, 0, 0);
4998 if (extraction != 0)
4999 {
5000 SUBST (SET_SRC (x), extraction);
5001 return find_split_point (loc, insn, false);
5002 }
5003 }
5004 break;
5005
5006 case NE:
5007 /* If STORE_FLAG_VALUE is -1, this is (NE X 0) and only one bit of X
5008 is known to be on, this can be converted into a NEG of a shift. */
5009 if (STORE_FLAG_VALUE == -1 && XEXP (SET_SRC (x), 1) == const0_rtx
5010 && GET_MODE (SET_SRC (x)) == GET_MODE (XEXP (SET_SRC (x), 0))
5011 && 1 <= (pos = exact_log2
5012 (nonzero_bits (XEXP (SET_SRC (x), 0),
5013 GET_MODE (XEXP (SET_SRC (x), 0))))))
5014 {
5015 machine_mode mode = GET_MODE (XEXP (SET_SRC (x), 0));
5016
5017 SUBST (SET_SRC (x),
5018 gen_rtx_NEG (mode,
5019 gen_rtx_LSHIFTRT (mode,
5020 XEXP (SET_SRC (x), 0),
5021 GEN_INT (pos))));
5022
5023 split = find_split_point (&SET_SRC (x), insn, true);
5024 if (split && split != &SET_SRC (x))
5025 return split;
5026 }
5027 break;
5028
5029 case SIGN_EXTEND:
5030 inner = XEXP (SET_SRC (x), 0);
5031
5032 /* We can't optimize if either mode is a partial integer
5033 mode as we don't know how many bits are significant
5034 in those modes. */
5035 if (GET_MODE_CLASS (GET_MODE (inner)) == MODE_PARTIAL_INT
5036 || GET_MODE_CLASS (GET_MODE (SET_SRC (x))) == MODE_PARTIAL_INT)
5037 break;
5038
5039 pos = 0;
5040 len = GET_MODE_PRECISION (GET_MODE (inner));
5041 unsignedp = 0;
5042 break;
5043
5044 case SIGN_EXTRACT:
5045 case ZERO_EXTRACT:
5046 if (CONST_INT_P (XEXP (SET_SRC (x), 1))
5047 && CONST_INT_P (XEXP (SET_SRC (x), 2)))
5048 {
5049 inner = XEXP (SET_SRC (x), 0);
5050 len = INTVAL (XEXP (SET_SRC (x), 1));
5051 pos = INTVAL (XEXP (SET_SRC (x), 2));
5052
5053 if (BITS_BIG_ENDIAN)
5054 pos = GET_MODE_PRECISION (GET_MODE (inner)) - len - pos;
5055 unsignedp = (code == ZERO_EXTRACT);
5056 }
5057 break;
5058
5059 default:
5060 break;
5061 }
5062
5063 if (len && pos >= 0
5064 && pos + len <= GET_MODE_PRECISION (GET_MODE (inner)))
5065 {
5066 machine_mode mode = GET_MODE (SET_SRC (x));
5067
5068 /* For unsigned, we have a choice of a shift followed by an
5069 AND or two shifts. Use two shifts for field sizes where the
5070 constant might be too large. We assume here that we can
5071 always at least get 8-bit constants in an AND insn, which is
5072 true for every current RISC. */
5073
5074 if (unsignedp && len <= 8)
5075 {
5076 unsigned HOST_WIDE_INT mask
5077 = (HOST_WIDE_INT_1U << len) - 1;
5078 SUBST (SET_SRC (x),
5079 gen_rtx_AND (mode,
5080 gen_rtx_LSHIFTRT
5081 (mode, gen_lowpart (mode, inner),
5082 GEN_INT (pos)),
5083 gen_int_mode (mask, mode)));
5084
5085 split = find_split_point (&SET_SRC (x), insn, true);
5086 if (split && split != &SET_SRC (x))
5087 return split;
5088 }
5089 else
5090 {
5091 SUBST (SET_SRC (x),
5092 gen_rtx_fmt_ee
5093 (unsignedp ? LSHIFTRT : ASHIFTRT, mode,
5094 gen_rtx_ASHIFT (mode,
5095 gen_lowpart (mode, inner),
5096 GEN_INT (GET_MODE_PRECISION (mode)
5097 - len - pos)),
5098 GEN_INT (GET_MODE_PRECISION (mode) - len)));
5099
5100 split = find_split_point (&SET_SRC (x), insn, true);
5101 if (split && split != &SET_SRC (x))
5102 return split;
5103 }
5104 }
5105
5106 /* See if this is a simple operation with a constant as the second
5107 operand. It might be that this constant is out of range and hence
5108 could be used as a split point. */
5109 if (BINARY_P (SET_SRC (x))
5110 && CONSTANT_P (XEXP (SET_SRC (x), 1))
5111 && (OBJECT_P (XEXP (SET_SRC (x), 0))
5112 || (GET_CODE (XEXP (SET_SRC (x), 0)) == SUBREG
5113 && OBJECT_P (SUBREG_REG (XEXP (SET_SRC (x), 0))))))
5114 return &XEXP (SET_SRC (x), 1);
5115
5116 /* Finally, see if this is a simple operation with its first operand
5117 not in a register. The operation might require this operand in a
5118 register, so return it as a split point. We can always do this
5119 because if the first operand were another operation, we would have
5120 already found it as a split point. */
5121 if ((BINARY_P (SET_SRC (x)) || UNARY_P (SET_SRC (x)))
5122 && ! register_operand (XEXP (SET_SRC (x), 0), VOIDmode))
5123 return &XEXP (SET_SRC (x), 0);
5124
5125 return 0;
5126
5127 case AND:
5128 case IOR:
5129 /* We write NOR as (and (not A) (not B)), but if we don't have a NOR,
5130 it is better to write this as (not (ior A B)) so we can split it.
5131 Similarly for IOR. */
5132 if (GET_CODE (XEXP (x, 0)) == NOT && GET_CODE (XEXP (x, 1)) == NOT)
5133 {
5134 SUBST (*loc,
5135 gen_rtx_NOT (GET_MODE (x),
5136 gen_rtx_fmt_ee (code == IOR ? AND : IOR,
5137 GET_MODE (x),
5138 XEXP (XEXP (x, 0), 0),
5139 XEXP (XEXP (x, 1), 0))));
5140 return find_split_point (loc, insn, set_src);
5141 }
5142
5143 /* Many RISC machines have a large set of logical insns. If the
5144 second operand is a NOT, put it first so we will try to split the
5145 other operand first. */
5146 if (GET_CODE (XEXP (x, 1)) == NOT)
5147 {
5148 rtx tem = XEXP (x, 0);
5149 SUBST (XEXP (x, 0), XEXP (x, 1));
5150 SUBST (XEXP (x, 1), tem);
5151 }
5152 break;
5153
5154 case PLUS:
5155 case MINUS:
5156 /* Canonicalization can produce (minus A (mult B C)), where C is a
5157 constant. It may be better to try splitting (plus (mult B -C) A)
5158 instead if this isn't a multiply by a power of two. */
5159 if (set_src && code == MINUS && GET_CODE (XEXP (x, 1)) == MULT
5160 && GET_CODE (XEXP (XEXP (x, 1), 1)) == CONST_INT
5161 && !pow2p_hwi (INTVAL (XEXP (XEXP (x, 1), 1))))
5162 {
5163 machine_mode mode = GET_MODE (x);
5164 unsigned HOST_WIDE_INT this_int = INTVAL (XEXP (XEXP (x, 1), 1));
5165 HOST_WIDE_INT other_int = trunc_int_for_mode (-this_int, mode);
5166 SUBST (*loc, gen_rtx_PLUS (mode,
5167 gen_rtx_MULT (mode,
5168 XEXP (XEXP (x, 1), 0),
5169 gen_int_mode (other_int,
5170 mode)),
5171 XEXP (x, 0)));
5172 return find_split_point (loc, insn, set_src);
5173 }
5174
5175 /* Split at a multiply-accumulate instruction. However if this is
5176 the SET_SRC, we likely do not have such an instruction and it's
5177 worthless to try this split. */
5178 if (!set_src
5179 && (GET_CODE (XEXP (x, 0)) == MULT
5180 || (GET_CODE (XEXP (x, 0)) == ASHIFT
5181 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT)))
5182 return loc;
5183
5184 default:
5185 break;
5186 }
5187
5188 /* Otherwise, select our actions depending on our rtx class. */
5189 switch (GET_RTX_CLASS (code))
5190 {
5191 case RTX_BITFIELD_OPS: /* This is ZERO_EXTRACT and SIGN_EXTRACT. */
5192 case RTX_TERNARY:
5193 split = find_split_point (&XEXP (x, 2), insn, false);
5194 if (split)
5195 return split;
5196 /* fall through */
5197 case RTX_BIN_ARITH:
5198 case RTX_COMM_ARITH:
5199 case RTX_COMPARE:
5200 case RTX_COMM_COMPARE:
5201 split = find_split_point (&XEXP (x, 1), insn, false);
5202 if (split)
5203 return split;
5204 /* fall through */
5205 case RTX_UNARY:
5206 /* Some machines have (and (shift ...) ...) insns. If X is not
5207 an AND, but XEXP (X, 0) is, use it as our split point. */
5208 if (GET_CODE (x) != AND && GET_CODE (XEXP (x, 0)) == AND)
5209 return &XEXP (x, 0);
5210
5211 split = find_split_point (&XEXP (x, 0), insn, false);
5212 if (split)
5213 return split;
5214 return loc;
5215
5216 default:
5217 /* Otherwise, we don't have a split point. */
5218 return 0;
5219 }
5220 }
5221 \f
5222 /* Throughout X, replace FROM with TO, and return the result.
5223 The result is TO if X is FROM;
5224 otherwise the result is X, but its contents may have been modified.
5225 If they were modified, a record was made in undobuf so that
5226 undo_all will (among other things) return X to its original state.
5227
5228 If the number of changes necessary is too much to record to undo,
5229 the excess changes are not made, so the result is invalid.
5230 The changes already made can still be undone.
5231 undobuf.num_undo is incremented for such changes, so by testing that
5232 the caller can tell whether the result is valid.
5233
5234 `n_occurrences' is incremented each time FROM is replaced.
5235
5236 IN_DEST is nonzero if we are processing the SET_DEST of a SET.
5237
5238 IN_COND is nonzero if we are at the top level of a condition.
5239
5240 UNIQUE_COPY is nonzero if each substitution must be unique. We do this
5241 by copying if `n_occurrences' is nonzero. */
5242
5243 static rtx
5244 subst (rtx x, rtx from, rtx to, int in_dest, int in_cond, int unique_copy)
5245 {
5246 enum rtx_code code = GET_CODE (x);
5247 machine_mode op0_mode = VOIDmode;
5248 const char *fmt;
5249 int len, i;
5250 rtx new_rtx;
5251
5252 /* Two expressions are equal if they are identical copies of a shared
5253 RTX or if they are both registers with the same register number
5254 and mode. */
5255
5256 #define COMBINE_RTX_EQUAL_P(X,Y) \
5257 ((X) == (Y) \
5258 || (REG_P (X) && REG_P (Y) \
5259 && REGNO (X) == REGNO (Y) && GET_MODE (X) == GET_MODE (Y)))
5260
5261 /* Do not substitute into clobbers of regs -- this will never result in
5262 valid RTL. */
5263 if (GET_CODE (x) == CLOBBER && REG_P (XEXP (x, 0)))
5264 return x;
5265
5266 if (! in_dest && COMBINE_RTX_EQUAL_P (x, from))
5267 {
5268 n_occurrences++;
5269 return (unique_copy && n_occurrences > 1 ? copy_rtx (to) : to);
5270 }
5271
5272 /* If X and FROM are the same register but different modes, they
5273 will not have been seen as equal above. However, the log links code
5274 will make a LOG_LINKS entry for that case. If we do nothing, we
5275 will try to rerecognize our original insn and, when it succeeds,
5276 we will delete the feeding insn, which is incorrect.
5277
5278 So force this insn not to match in this (rare) case. */
5279 if (! in_dest && code == REG && REG_P (from)
5280 && reg_overlap_mentioned_p (x, from))
5281 return gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
5282
5283 /* If this is an object, we are done unless it is a MEM or LO_SUM, both
5284 of which may contain things that can be combined. */
5285 if (code != MEM && code != LO_SUM && OBJECT_P (x))
5286 return x;
5287
5288 /* It is possible to have a subexpression appear twice in the insn.
5289 Suppose that FROM is a register that appears within TO.
5290 Then, after that subexpression has been scanned once by `subst',
5291 the second time it is scanned, TO may be found. If we were
5292 to scan TO here, we would find FROM within it and create a
5293 self-referent rtl structure which is completely wrong. */
5294 if (COMBINE_RTX_EQUAL_P (x, to))
5295 return to;
5296
5297 /* Parallel asm_operands need special attention because all of the
5298 inputs are shared across the arms. Furthermore, unsharing the
5299 rtl results in recognition failures. Failure to handle this case
5300 specially can result in circular rtl.
5301
5302 Solve this by doing a normal pass across the first entry of the
5303 parallel, and only processing the SET_DESTs of the subsequent
5304 entries. Ug. */
5305
5306 if (code == PARALLEL
5307 && GET_CODE (XVECEXP (x, 0, 0)) == SET
5308 && GET_CODE (SET_SRC (XVECEXP (x, 0, 0))) == ASM_OPERANDS)
5309 {
5310 new_rtx = subst (XVECEXP (x, 0, 0), from, to, 0, 0, unique_copy);
5311
5312 /* If this substitution failed, this whole thing fails. */
5313 if (GET_CODE (new_rtx) == CLOBBER
5314 && XEXP (new_rtx, 0) == const0_rtx)
5315 return new_rtx;
5316
5317 SUBST (XVECEXP (x, 0, 0), new_rtx);
5318
5319 for (i = XVECLEN (x, 0) - 1; i >= 1; i--)
5320 {
5321 rtx dest = SET_DEST (XVECEXP (x, 0, i));
5322
5323 if (!REG_P (dest)
5324 && GET_CODE (dest) != CC0
5325 && GET_CODE (dest) != PC)
5326 {
5327 new_rtx = subst (dest, from, to, 0, 0, unique_copy);
5328
5329 /* If this substitution failed, this whole thing fails. */
5330 if (GET_CODE (new_rtx) == CLOBBER
5331 && XEXP (new_rtx, 0) == const0_rtx)
5332 return new_rtx;
5333
5334 SUBST (SET_DEST (XVECEXP (x, 0, i)), new_rtx);
5335 }
5336 }
5337 }
5338 else
5339 {
5340 len = GET_RTX_LENGTH (code);
5341 fmt = GET_RTX_FORMAT (code);
5342
5343 /* We don't need to process a SET_DEST that is a register, CC0,
5344 or PC, so set up to skip this common case. All other cases
5345 where we want to suppress replacing something inside a
5346 SET_SRC are handled via the IN_DEST operand. */
5347 if (code == SET
5348 && (REG_P (SET_DEST (x))
5349 || GET_CODE (SET_DEST (x)) == CC0
5350 || GET_CODE (SET_DEST (x)) == PC))
5351 fmt = "ie";
5352
5353 /* Trying to simplify the operands of a widening MULT is not likely
5354 to create RTL matching a machine insn. */
5355 if (code == MULT
5356 && (GET_CODE (XEXP (x, 0)) == ZERO_EXTEND
5357 || GET_CODE (XEXP (x, 0)) == SIGN_EXTEND)
5358 && (GET_CODE (XEXP (x, 1)) == ZERO_EXTEND
5359 || GET_CODE (XEXP (x, 1)) == SIGN_EXTEND)
5360 && REG_P (XEXP (XEXP (x, 0), 0))
5361 && REG_P (XEXP (XEXP (x, 1), 0))
5362 && from == to)
5363 return x;
5364
5365
5366 /* Get the mode of operand 0 in case X is now a SIGN_EXTEND of a
5367 constant. */
5368 if (fmt[0] == 'e')
5369 op0_mode = GET_MODE (XEXP (x, 0));
5370
5371 for (i = 0; i < len; i++)
5372 {
5373 if (fmt[i] == 'E')
5374 {
5375 int j;
5376 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
5377 {
5378 if (COMBINE_RTX_EQUAL_P (XVECEXP (x, i, j), from))
5379 {
5380 new_rtx = (unique_copy && n_occurrences
5381 ? copy_rtx (to) : to);
5382 n_occurrences++;
5383 }
5384 else
5385 {
5386 new_rtx = subst (XVECEXP (x, i, j), from, to, 0, 0,
5387 unique_copy);
5388
5389 /* If this substitution failed, this whole thing
5390 fails. */
5391 if (GET_CODE (new_rtx) == CLOBBER
5392 && XEXP (new_rtx, 0) == const0_rtx)
5393 return new_rtx;
5394 }
5395
5396 SUBST (XVECEXP (x, i, j), new_rtx);
5397 }
5398 }
5399 else if (fmt[i] == 'e')
5400 {
5401 /* If this is a register being set, ignore it. */
5402 new_rtx = XEXP (x, i);
5403 if (in_dest
5404 && i == 0
5405 && (((code == SUBREG || code == ZERO_EXTRACT)
5406 && REG_P (new_rtx))
5407 || code == STRICT_LOW_PART))
5408 ;
5409
5410 else if (COMBINE_RTX_EQUAL_P (XEXP (x, i), from))
5411 {
5412 /* In general, don't install a subreg involving two
5413 modes not tieable. It can worsen register
5414 allocation, and can even make invalid reload
5415 insns, since the reg inside may need to be copied
5416 from in the outside mode, and that may be invalid
5417 if it is an fp reg copied in integer mode.
5418
5419 We allow two exceptions to this: It is valid if
5420 it is inside another SUBREG and the mode of that
5421 SUBREG and the mode of the inside of TO is
5422 tieable and it is valid if X is a SET that copies
5423 FROM to CC0. */
5424
5425 if (GET_CODE (to) == SUBREG
5426 && ! MODES_TIEABLE_P (GET_MODE (to),
5427 GET_MODE (SUBREG_REG (to)))
5428 && ! (code == SUBREG
5429 && MODES_TIEABLE_P (GET_MODE (x),
5430 GET_MODE (SUBREG_REG (to))))
5431 && (!HAVE_cc0
5432 || (! (code == SET
5433 && i == 1
5434 && XEXP (x, 0) == cc0_rtx))))
5435 return gen_rtx_CLOBBER (VOIDmode, const0_rtx);
5436
5437 if (code == SUBREG
5438 && REG_P (to)
5439 && REGNO (to) < FIRST_PSEUDO_REGISTER
5440 && simplify_subreg_regno (REGNO (to), GET_MODE (to),
5441 SUBREG_BYTE (x),
5442 GET_MODE (x)) < 0)
5443 return gen_rtx_CLOBBER (VOIDmode, const0_rtx);
5444
5445 new_rtx = (unique_copy && n_occurrences ? copy_rtx (to) : to);
5446 n_occurrences++;
5447 }
5448 else
5449 /* If we are in a SET_DEST, suppress most cases unless we
5450 have gone inside a MEM, in which case we want to
5451 simplify the address. We assume here that things that
5452 are actually part of the destination have their inner
5453 parts in the first expression. This is true for SUBREG,
5454 STRICT_LOW_PART, and ZERO_EXTRACT, which are the only
5455 things aside from REG and MEM that should appear in a
5456 SET_DEST. */
5457 new_rtx = subst (XEXP (x, i), from, to,
5458 (((in_dest
5459 && (code == SUBREG || code == STRICT_LOW_PART
5460 || code == ZERO_EXTRACT))
5461 || code == SET)
5462 && i == 0),
5463 code == IF_THEN_ELSE && i == 0,
5464 unique_copy);
5465
5466 /* If we found that we will have to reject this combination,
5467 indicate that by returning the CLOBBER ourselves, rather than
5468 an expression containing it. This will speed things up as
5469 well as prevent accidents where two CLOBBERs are considered
5470 to be equal, thus producing an incorrect simplification. */
5471
5472 if (GET_CODE (new_rtx) == CLOBBER && XEXP (new_rtx, 0) == const0_rtx)
5473 return new_rtx;
5474
5475 if (GET_CODE (x) == SUBREG && CONST_SCALAR_INT_P (new_rtx))
5476 {
5477 machine_mode mode = GET_MODE (x);
5478
5479 x = simplify_subreg (GET_MODE (x), new_rtx,
5480 GET_MODE (SUBREG_REG (x)),
5481 SUBREG_BYTE (x));
5482 if (! x)
5483 x = gen_rtx_CLOBBER (mode, const0_rtx);
5484 }
5485 else if (CONST_SCALAR_INT_P (new_rtx)
5486 && GET_CODE (x) == ZERO_EXTEND)
5487 {
5488 x = simplify_unary_operation (ZERO_EXTEND, GET_MODE (x),
5489 new_rtx, GET_MODE (XEXP (x, 0)));
5490 gcc_assert (x);
5491 }
5492 else
5493 SUBST (XEXP (x, i), new_rtx);
5494 }
5495 }
5496 }
5497
5498 /* Check if we are loading something from the constant pool via float
5499 extension; in this case we would undo compress_float_constant
5500 optimization and degenerate constant load to an immediate value. */
5501 if (GET_CODE (x) == FLOAT_EXTEND
5502 && MEM_P (XEXP (x, 0))
5503 && MEM_READONLY_P (XEXP (x, 0)))
5504 {
5505 rtx tmp = avoid_constant_pool_reference (x);
5506 if (x != tmp)
5507 return x;
5508 }
5509
5510 /* Try to simplify X. If the simplification changed the code, it is likely
5511 that further simplification will help, so loop, but limit the number
5512 of repetitions that will be performed. */
5513
5514 for (i = 0; i < 4; i++)
5515 {
5516 /* If X is sufficiently simple, don't bother trying to do anything
5517 with it. */
5518 if (code != CONST_INT && code != REG && code != CLOBBER)
5519 x = combine_simplify_rtx (x, op0_mode, in_dest, in_cond);
5520
5521 if (GET_CODE (x) == code)
5522 break;
5523
5524 code = GET_CODE (x);
5525
5526 /* We no longer know the original mode of operand 0 since we
5527 have changed the form of X) */
5528 op0_mode = VOIDmode;
5529 }
5530
5531 return x;
5532 }
5533 \f
5534 /* If X is a commutative operation whose operands are not in the canonical
5535 order, use substitutions to swap them. */
5536
5537 static void
5538 maybe_swap_commutative_operands (rtx x)
5539 {
5540 if (COMMUTATIVE_ARITH_P (x)
5541 && swap_commutative_operands_p (XEXP (x, 0), XEXP (x, 1)))
5542 {
5543 rtx temp = XEXP (x, 0);
5544 SUBST (XEXP (x, 0), XEXP (x, 1));
5545 SUBST (XEXP (x, 1), temp);
5546 }
5547 }
5548
5549 /* Simplify X, a piece of RTL. We just operate on the expression at the
5550 outer level; call `subst' to simplify recursively. Return the new
5551 expression.
5552
5553 OP0_MODE is the original mode of XEXP (x, 0). IN_DEST is nonzero
5554 if we are inside a SET_DEST. IN_COND is nonzero if we are at the top level
5555 of a condition. */
5556
5557 static rtx
5558 combine_simplify_rtx (rtx x, machine_mode op0_mode, int in_dest,
5559 int in_cond)
5560 {
5561 enum rtx_code code = GET_CODE (x);
5562 machine_mode mode = GET_MODE (x);
5563 rtx temp;
5564 int i;
5565
5566 /* If this is a commutative operation, put a constant last and a complex
5567 expression first. We don't need to do this for comparisons here. */
5568 maybe_swap_commutative_operands (x);
5569
5570 /* Try to fold this expression in case we have constants that weren't
5571 present before. */
5572 temp = 0;
5573 switch (GET_RTX_CLASS (code))
5574 {
5575 case RTX_UNARY:
5576 if (op0_mode == VOIDmode)
5577 op0_mode = GET_MODE (XEXP (x, 0));
5578 temp = simplify_unary_operation (code, mode, XEXP (x, 0), op0_mode);
5579 break;
5580 case RTX_COMPARE:
5581 case RTX_COMM_COMPARE:
5582 {
5583 machine_mode cmp_mode = GET_MODE (XEXP (x, 0));
5584 if (cmp_mode == VOIDmode)
5585 {
5586 cmp_mode = GET_MODE (XEXP (x, 1));
5587 if (cmp_mode == VOIDmode)
5588 cmp_mode = op0_mode;
5589 }
5590 temp = simplify_relational_operation (code, mode, cmp_mode,
5591 XEXP (x, 0), XEXP (x, 1));
5592 }
5593 break;
5594 case RTX_COMM_ARITH:
5595 case RTX_BIN_ARITH:
5596 temp = simplify_binary_operation (code, mode, XEXP (x, 0), XEXP (x, 1));
5597 break;
5598 case RTX_BITFIELD_OPS:
5599 case RTX_TERNARY:
5600 temp = simplify_ternary_operation (code, mode, op0_mode, XEXP (x, 0),
5601 XEXP (x, 1), XEXP (x, 2));
5602 break;
5603 default:
5604 break;
5605 }
5606
5607 if (temp)
5608 {
5609 x = temp;
5610 code = GET_CODE (temp);
5611 op0_mode = VOIDmode;
5612 mode = GET_MODE (temp);
5613 }
5614
5615 /* If this is a simple operation applied to an IF_THEN_ELSE, try
5616 applying it to the arms of the IF_THEN_ELSE. This often simplifies
5617 things. Check for cases where both arms are testing the same
5618 condition.
5619
5620 Don't do anything if all operands are very simple. */
5621
5622 if ((BINARY_P (x)
5623 && ((!OBJECT_P (XEXP (x, 0))
5624 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
5625 && OBJECT_P (SUBREG_REG (XEXP (x, 0)))))
5626 || (!OBJECT_P (XEXP (x, 1))
5627 && ! (GET_CODE (XEXP (x, 1)) == SUBREG
5628 && OBJECT_P (SUBREG_REG (XEXP (x, 1)))))))
5629 || (UNARY_P (x)
5630 && (!OBJECT_P (XEXP (x, 0))
5631 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
5632 && OBJECT_P (SUBREG_REG (XEXP (x, 0)))))))
5633 {
5634 rtx cond, true_rtx, false_rtx;
5635
5636 cond = if_then_else_cond (x, &true_rtx, &false_rtx);
5637 if (cond != 0
5638 /* If everything is a comparison, what we have is highly unlikely
5639 to be simpler, so don't use it. */
5640 && ! (COMPARISON_P (x)
5641 && (COMPARISON_P (true_rtx) || COMPARISON_P (false_rtx))))
5642 {
5643 rtx cop1 = const0_rtx;
5644 enum rtx_code cond_code = simplify_comparison (NE, &cond, &cop1);
5645
5646 if (cond_code == NE && COMPARISON_P (cond))
5647 return x;
5648
5649 /* Simplify the alternative arms; this may collapse the true and
5650 false arms to store-flag values. Be careful to use copy_rtx
5651 here since true_rtx or false_rtx might share RTL with x as a
5652 result of the if_then_else_cond call above. */
5653 true_rtx = subst (copy_rtx (true_rtx), pc_rtx, pc_rtx, 0, 0, 0);
5654 false_rtx = subst (copy_rtx (false_rtx), pc_rtx, pc_rtx, 0, 0, 0);
5655
5656 /* If true_rtx and false_rtx are not general_operands, an if_then_else
5657 is unlikely to be simpler. */
5658 if (general_operand (true_rtx, VOIDmode)
5659 && general_operand (false_rtx, VOIDmode))
5660 {
5661 enum rtx_code reversed;
5662
5663 /* Restarting if we generate a store-flag expression will cause
5664 us to loop. Just drop through in this case. */
5665
5666 /* If the result values are STORE_FLAG_VALUE and zero, we can
5667 just make the comparison operation. */
5668 if (true_rtx == const_true_rtx && false_rtx == const0_rtx)
5669 x = simplify_gen_relational (cond_code, mode, VOIDmode,
5670 cond, cop1);
5671 else if (true_rtx == const0_rtx && false_rtx == const_true_rtx
5672 && ((reversed = reversed_comparison_code_parts
5673 (cond_code, cond, cop1, NULL))
5674 != UNKNOWN))
5675 x = simplify_gen_relational (reversed, mode, VOIDmode,
5676 cond, cop1);
5677
5678 /* Likewise, we can make the negate of a comparison operation
5679 if the result values are - STORE_FLAG_VALUE and zero. */
5680 else if (CONST_INT_P (true_rtx)
5681 && INTVAL (true_rtx) == - STORE_FLAG_VALUE
5682 && false_rtx == const0_rtx)
5683 x = simplify_gen_unary (NEG, mode,
5684 simplify_gen_relational (cond_code,
5685 mode, VOIDmode,
5686 cond, cop1),
5687 mode);
5688 else if (CONST_INT_P (false_rtx)
5689 && INTVAL (false_rtx) == - STORE_FLAG_VALUE
5690 && true_rtx == const0_rtx
5691 && ((reversed = reversed_comparison_code_parts
5692 (cond_code, cond, cop1, NULL))
5693 != UNKNOWN))
5694 x = simplify_gen_unary (NEG, mode,
5695 simplify_gen_relational (reversed,
5696 mode, VOIDmode,
5697 cond, cop1),
5698 mode);
5699 else
5700 return gen_rtx_IF_THEN_ELSE (mode,
5701 simplify_gen_relational (cond_code,
5702 mode,
5703 VOIDmode,
5704 cond,
5705 cop1),
5706 true_rtx, false_rtx);
5707
5708 code = GET_CODE (x);
5709 op0_mode = VOIDmode;
5710 }
5711 }
5712 }
5713
5714 /* First see if we can apply the inverse distributive law. */
5715 if (code == PLUS || code == MINUS
5716 || code == AND || code == IOR || code == XOR)
5717 {
5718 x = apply_distributive_law (x);
5719 code = GET_CODE (x);
5720 op0_mode = VOIDmode;
5721 }
5722
5723 /* If CODE is an associative operation not otherwise handled, see if we
5724 can associate some operands. This can win if they are constants or
5725 if they are logically related (i.e. (a & b) & a). */
5726 if ((code == PLUS || code == MINUS || code == MULT || code == DIV
5727 || code == AND || code == IOR || code == XOR
5728 || code == SMAX || code == SMIN || code == UMAX || code == UMIN)
5729 && ((INTEGRAL_MODE_P (mode) && code != DIV)
5730 || (flag_associative_math && FLOAT_MODE_P (mode))))
5731 {
5732 if (GET_CODE (XEXP (x, 0)) == code)
5733 {
5734 rtx other = XEXP (XEXP (x, 0), 0);
5735 rtx inner_op0 = XEXP (XEXP (x, 0), 1);
5736 rtx inner_op1 = XEXP (x, 1);
5737 rtx inner;
5738
5739 /* Make sure we pass the constant operand if any as the second
5740 one if this is a commutative operation. */
5741 if (CONSTANT_P (inner_op0) && COMMUTATIVE_ARITH_P (x))
5742 std::swap (inner_op0, inner_op1);
5743 inner = simplify_binary_operation (code == MINUS ? PLUS
5744 : code == DIV ? MULT
5745 : code,
5746 mode, inner_op0, inner_op1);
5747
5748 /* For commutative operations, try the other pair if that one
5749 didn't simplify. */
5750 if (inner == 0 && COMMUTATIVE_ARITH_P (x))
5751 {
5752 other = XEXP (XEXP (x, 0), 1);
5753 inner = simplify_binary_operation (code, mode,
5754 XEXP (XEXP (x, 0), 0),
5755 XEXP (x, 1));
5756 }
5757
5758 if (inner)
5759 return simplify_gen_binary (code, mode, other, inner);
5760 }
5761 }
5762
5763 /* A little bit of algebraic simplification here. */
5764 switch (code)
5765 {
5766 case MEM:
5767 /* Ensure that our address has any ASHIFTs converted to MULT in case
5768 address-recognizing predicates are called later. */
5769 temp = make_compound_operation (XEXP (x, 0), MEM);
5770 SUBST (XEXP (x, 0), temp);
5771 break;
5772
5773 case SUBREG:
5774 if (op0_mode == VOIDmode)
5775 op0_mode = GET_MODE (SUBREG_REG (x));
5776
5777 /* See if this can be moved to simplify_subreg. */
5778 if (CONSTANT_P (SUBREG_REG (x))
5779 && subreg_lowpart_offset (mode, op0_mode) == SUBREG_BYTE (x)
5780 /* Don't call gen_lowpart if the inner mode
5781 is VOIDmode and we cannot simplify it, as SUBREG without
5782 inner mode is invalid. */
5783 && (GET_MODE (SUBREG_REG (x)) != VOIDmode
5784 || gen_lowpart_common (mode, SUBREG_REG (x))))
5785 return gen_lowpart (mode, SUBREG_REG (x));
5786
5787 if (GET_MODE_CLASS (GET_MODE (SUBREG_REG (x))) == MODE_CC)
5788 break;
5789 {
5790 rtx temp;
5791 temp = simplify_subreg (mode, SUBREG_REG (x), op0_mode,
5792 SUBREG_BYTE (x));
5793 if (temp)
5794 return temp;
5795
5796 /* If op is known to have all lower bits zero, the result is zero. */
5797 if (!in_dest
5798 && SCALAR_INT_MODE_P (mode)
5799 && SCALAR_INT_MODE_P (op0_mode)
5800 && GET_MODE_PRECISION (mode) < GET_MODE_PRECISION (op0_mode)
5801 && subreg_lowpart_offset (mode, op0_mode) == SUBREG_BYTE (x)
5802 && HWI_COMPUTABLE_MODE_P (op0_mode)
5803 && (nonzero_bits (SUBREG_REG (x), op0_mode)
5804 & GET_MODE_MASK (mode)) == 0)
5805 return CONST0_RTX (mode);
5806 }
5807
5808 /* Don't change the mode of the MEM if that would change the meaning
5809 of the address. */
5810 if (MEM_P (SUBREG_REG (x))
5811 && (MEM_VOLATILE_P (SUBREG_REG (x))
5812 || mode_dependent_address_p (XEXP (SUBREG_REG (x), 0),
5813 MEM_ADDR_SPACE (SUBREG_REG (x)))))
5814 return gen_rtx_CLOBBER (mode, const0_rtx);
5815
5816 /* Note that we cannot do any narrowing for non-constants since
5817 we might have been counting on using the fact that some bits were
5818 zero. We now do this in the SET. */
5819
5820 break;
5821
5822 case NEG:
5823 temp = expand_compound_operation (XEXP (x, 0));
5824
5825 /* For C equal to the width of MODE minus 1, (neg (ashiftrt X C)) can be
5826 replaced by (lshiftrt X C). This will convert
5827 (neg (sign_extract X 1 Y)) to (zero_extract X 1 Y). */
5828
5829 if (GET_CODE (temp) == ASHIFTRT
5830 && CONST_INT_P (XEXP (temp, 1))
5831 && INTVAL (XEXP (temp, 1)) == GET_MODE_PRECISION (mode) - 1)
5832 return simplify_shift_const (NULL_RTX, LSHIFTRT, mode, XEXP (temp, 0),
5833 INTVAL (XEXP (temp, 1)));
5834
5835 /* If X has only a single bit that might be nonzero, say, bit I, convert
5836 (neg X) to (ashiftrt (ashift X C-I) C-I) where C is the bitsize of
5837 MODE minus 1. This will convert (neg (zero_extract X 1 Y)) to
5838 (sign_extract X 1 Y). But only do this if TEMP isn't a register
5839 or a SUBREG of one since we'd be making the expression more
5840 complex if it was just a register. */
5841
5842 if (!REG_P (temp)
5843 && ! (GET_CODE (temp) == SUBREG
5844 && REG_P (SUBREG_REG (temp)))
5845 && (i = exact_log2 (nonzero_bits (temp, mode))) >= 0)
5846 {
5847 rtx temp1 = simplify_shift_const
5848 (NULL_RTX, ASHIFTRT, mode,
5849 simplify_shift_const (NULL_RTX, ASHIFT, mode, temp,
5850 GET_MODE_PRECISION (mode) - 1 - i),
5851 GET_MODE_PRECISION (mode) - 1 - i);
5852
5853 /* If all we did was surround TEMP with the two shifts, we
5854 haven't improved anything, so don't use it. Otherwise,
5855 we are better off with TEMP1. */
5856 if (GET_CODE (temp1) != ASHIFTRT
5857 || GET_CODE (XEXP (temp1, 0)) != ASHIFT
5858 || XEXP (XEXP (temp1, 0), 0) != temp)
5859 return temp1;
5860 }
5861 break;
5862
5863 case TRUNCATE:
5864 /* We can't handle truncation to a partial integer mode here
5865 because we don't know the real bitsize of the partial
5866 integer mode. */
5867 if (GET_MODE_CLASS (mode) == MODE_PARTIAL_INT)
5868 break;
5869
5870 if (HWI_COMPUTABLE_MODE_P (mode))
5871 SUBST (XEXP (x, 0),
5872 force_to_mode (XEXP (x, 0), GET_MODE (XEXP (x, 0)),
5873 GET_MODE_MASK (mode), 0));
5874
5875 /* We can truncate a constant value and return it. */
5876 if (CONST_INT_P (XEXP (x, 0)))
5877 return gen_int_mode (INTVAL (XEXP (x, 0)), mode);
5878
5879 /* Similarly to what we do in simplify-rtx.c, a truncate of a register
5880 whose value is a comparison can be replaced with a subreg if
5881 STORE_FLAG_VALUE permits. */
5882 if (HWI_COMPUTABLE_MODE_P (mode)
5883 && (STORE_FLAG_VALUE & ~GET_MODE_MASK (mode)) == 0
5884 && (temp = get_last_value (XEXP (x, 0)))
5885 && COMPARISON_P (temp))
5886 return gen_lowpart (mode, XEXP (x, 0));
5887 break;
5888
5889 case CONST:
5890 /* (const (const X)) can become (const X). Do it this way rather than
5891 returning the inner CONST since CONST can be shared with a
5892 REG_EQUAL note. */
5893 if (GET_CODE (XEXP (x, 0)) == CONST)
5894 SUBST (XEXP (x, 0), XEXP (XEXP (x, 0), 0));
5895 break;
5896
5897 case LO_SUM:
5898 /* Convert (lo_sum (high FOO) FOO) to FOO. This is necessary so we
5899 can add in an offset. find_split_point will split this address up
5900 again if it doesn't match. */
5901 if (HAVE_lo_sum && GET_CODE (XEXP (x, 0)) == HIGH
5902 && rtx_equal_p (XEXP (XEXP (x, 0), 0), XEXP (x, 1)))
5903 return XEXP (x, 1);
5904 break;
5905
5906 case PLUS:
5907 /* (plus (xor (and <foo> (const_int pow2 - 1)) <c>) <-c>)
5908 when c is (const_int (pow2 + 1) / 2) is a sign extension of a
5909 bit-field and can be replaced by either a sign_extend or a
5910 sign_extract. The `and' may be a zero_extend and the two
5911 <c>, -<c> constants may be reversed. */
5912 if (GET_CODE (XEXP (x, 0)) == XOR
5913 && CONST_INT_P (XEXP (x, 1))
5914 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
5915 && INTVAL (XEXP (x, 1)) == -INTVAL (XEXP (XEXP (x, 0), 1))
5916 && ((i = exact_log2 (UINTVAL (XEXP (XEXP (x, 0), 1)))) >= 0
5917 || (i = exact_log2 (UINTVAL (XEXP (x, 1)))) >= 0)
5918 && HWI_COMPUTABLE_MODE_P (mode)
5919 && ((GET_CODE (XEXP (XEXP (x, 0), 0)) == AND
5920 && CONST_INT_P (XEXP (XEXP (XEXP (x, 0), 0), 1))
5921 && (UINTVAL (XEXP (XEXP (XEXP (x, 0), 0), 1))
5922 == (HOST_WIDE_INT_1U << (i + 1)) - 1))
5923 || (GET_CODE (XEXP (XEXP (x, 0), 0)) == ZERO_EXTEND
5924 && (GET_MODE_PRECISION (GET_MODE (XEXP (XEXP (XEXP (x, 0), 0), 0)))
5925 == (unsigned int) i + 1))))
5926 return simplify_shift_const
5927 (NULL_RTX, ASHIFTRT, mode,
5928 simplify_shift_const (NULL_RTX, ASHIFT, mode,
5929 XEXP (XEXP (XEXP (x, 0), 0), 0),
5930 GET_MODE_PRECISION (mode) - (i + 1)),
5931 GET_MODE_PRECISION (mode) - (i + 1));
5932
5933 /* If only the low-order bit of X is possibly nonzero, (plus x -1)
5934 can become (ashiftrt (ashift (xor x 1) C) C) where C is
5935 the bitsize of the mode - 1. This allows simplification of
5936 "a = (b & 8) == 0;" */
5937 if (XEXP (x, 1) == constm1_rtx
5938 && !REG_P (XEXP (x, 0))
5939 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
5940 && REG_P (SUBREG_REG (XEXP (x, 0))))
5941 && nonzero_bits (XEXP (x, 0), mode) == 1)
5942 return simplify_shift_const (NULL_RTX, ASHIFTRT, mode,
5943 simplify_shift_const (NULL_RTX, ASHIFT, mode,
5944 gen_rtx_XOR (mode, XEXP (x, 0), const1_rtx),
5945 GET_MODE_PRECISION (mode) - 1),
5946 GET_MODE_PRECISION (mode) - 1);
5947
5948 /* If we are adding two things that have no bits in common, convert
5949 the addition into an IOR. This will often be further simplified,
5950 for example in cases like ((a & 1) + (a & 2)), which can
5951 become a & 3. */
5952
5953 if (HWI_COMPUTABLE_MODE_P (mode)
5954 && (nonzero_bits (XEXP (x, 0), mode)
5955 & nonzero_bits (XEXP (x, 1), mode)) == 0)
5956 {
5957 /* Try to simplify the expression further. */
5958 rtx tor = simplify_gen_binary (IOR, mode, XEXP (x, 0), XEXP (x, 1));
5959 temp = combine_simplify_rtx (tor, VOIDmode, in_dest, 0);
5960
5961 /* If we could, great. If not, do not go ahead with the IOR
5962 replacement, since PLUS appears in many special purpose
5963 address arithmetic instructions. */
5964 if (GET_CODE (temp) != CLOBBER
5965 && (GET_CODE (temp) != IOR
5966 || ((XEXP (temp, 0) != XEXP (x, 0)
5967 || XEXP (temp, 1) != XEXP (x, 1))
5968 && (XEXP (temp, 0) != XEXP (x, 1)
5969 || XEXP (temp, 1) != XEXP (x, 0)))))
5970 return temp;
5971 }
5972
5973 /* Canonicalize x + x into x << 1. */
5974 if (GET_MODE_CLASS (mode) == MODE_INT
5975 && rtx_equal_p (XEXP (x, 0), XEXP (x, 1))
5976 && !side_effects_p (XEXP (x, 0)))
5977 return simplify_gen_binary (ASHIFT, mode, XEXP (x, 0), const1_rtx);
5978
5979 break;
5980
5981 case MINUS:
5982 /* (minus <foo> (and <foo> (const_int -pow2))) becomes
5983 (and <foo> (const_int pow2-1)) */
5984 if (GET_CODE (XEXP (x, 1)) == AND
5985 && CONST_INT_P (XEXP (XEXP (x, 1), 1))
5986 && pow2p_hwi (-UINTVAL (XEXP (XEXP (x, 1), 1)))
5987 && rtx_equal_p (XEXP (XEXP (x, 1), 0), XEXP (x, 0)))
5988 return simplify_and_const_int (NULL_RTX, mode, XEXP (x, 0),
5989 -INTVAL (XEXP (XEXP (x, 1), 1)) - 1);
5990 break;
5991
5992 case MULT:
5993 /* If we have (mult (plus A B) C), apply the distributive law and then
5994 the inverse distributive law to see if things simplify. This
5995 occurs mostly in addresses, often when unrolling loops. */
5996
5997 if (GET_CODE (XEXP (x, 0)) == PLUS)
5998 {
5999 rtx result = distribute_and_simplify_rtx (x, 0);
6000 if (result)
6001 return result;
6002 }
6003
6004 /* Try simplify a*(b/c) as (a*b)/c. */
6005 if (FLOAT_MODE_P (mode) && flag_associative_math
6006 && GET_CODE (XEXP (x, 0)) == DIV)
6007 {
6008 rtx tem = simplify_binary_operation (MULT, mode,
6009 XEXP (XEXP (x, 0), 0),
6010 XEXP (x, 1));
6011 if (tem)
6012 return simplify_gen_binary (DIV, mode, tem, XEXP (XEXP (x, 0), 1));
6013 }
6014 break;
6015
6016 case UDIV:
6017 /* If this is a divide by a power of two, treat it as a shift if
6018 its first operand is a shift. */
6019 if (CONST_INT_P (XEXP (x, 1))
6020 && (i = exact_log2 (UINTVAL (XEXP (x, 1)))) >= 0
6021 && (GET_CODE (XEXP (x, 0)) == ASHIFT
6022 || GET_CODE (XEXP (x, 0)) == LSHIFTRT
6023 || GET_CODE (XEXP (x, 0)) == ASHIFTRT
6024 || GET_CODE (XEXP (x, 0)) == ROTATE
6025 || GET_CODE (XEXP (x, 0)) == ROTATERT))
6026 return simplify_shift_const (NULL_RTX, LSHIFTRT, mode, XEXP (x, 0), i);
6027 break;
6028
6029 case EQ: case NE:
6030 case GT: case GTU: case GE: case GEU:
6031 case LT: case LTU: case LE: case LEU:
6032 case UNEQ: case LTGT:
6033 case UNGT: case UNGE:
6034 case UNLT: case UNLE:
6035 case UNORDERED: case ORDERED:
6036 /* If the first operand is a condition code, we can't do anything
6037 with it. */
6038 if (GET_CODE (XEXP (x, 0)) == COMPARE
6039 || (GET_MODE_CLASS (GET_MODE (XEXP (x, 0))) != MODE_CC
6040 && ! CC0_P (XEXP (x, 0))))
6041 {
6042 rtx op0 = XEXP (x, 0);
6043 rtx op1 = XEXP (x, 1);
6044 enum rtx_code new_code;
6045
6046 if (GET_CODE (op0) == COMPARE)
6047 op1 = XEXP (op0, 1), op0 = XEXP (op0, 0);
6048
6049 /* Simplify our comparison, if possible. */
6050 new_code = simplify_comparison (code, &op0, &op1);
6051
6052 /* If STORE_FLAG_VALUE is 1, we can convert (ne x 0) to simply X
6053 if only the low-order bit is possibly nonzero in X (such as when
6054 X is a ZERO_EXTRACT of one bit). Similarly, we can convert EQ to
6055 (xor X 1) or (minus 1 X); we use the former. Finally, if X is
6056 known to be either 0 or -1, NE becomes a NEG and EQ becomes
6057 (plus X 1).
6058
6059 Remove any ZERO_EXTRACT we made when thinking this was a
6060 comparison. It may now be simpler to use, e.g., an AND. If a
6061 ZERO_EXTRACT is indeed appropriate, it will be placed back by
6062 the call to make_compound_operation in the SET case.
6063
6064 Don't apply these optimizations if the caller would
6065 prefer a comparison rather than a value.
6066 E.g., for the condition in an IF_THEN_ELSE most targets need
6067 an explicit comparison. */
6068
6069 if (in_cond)
6070 ;
6071
6072 else if (STORE_FLAG_VALUE == 1
6073 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
6074 && op1 == const0_rtx
6075 && mode == GET_MODE (op0)
6076 && nonzero_bits (op0, mode) == 1)
6077 return gen_lowpart (mode,
6078 expand_compound_operation (op0));
6079
6080 else if (STORE_FLAG_VALUE == 1
6081 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
6082 && op1 == const0_rtx
6083 && mode == GET_MODE (op0)
6084 && (num_sign_bit_copies (op0, mode)
6085 == GET_MODE_PRECISION (mode)))
6086 {
6087 op0 = expand_compound_operation (op0);
6088 return simplify_gen_unary (NEG, mode,
6089 gen_lowpart (mode, op0),
6090 mode);
6091 }
6092
6093 else if (STORE_FLAG_VALUE == 1
6094 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
6095 && op1 == const0_rtx
6096 && mode == GET_MODE (op0)
6097 && nonzero_bits (op0, mode) == 1)
6098 {
6099 op0 = expand_compound_operation (op0);
6100 return simplify_gen_binary (XOR, mode,
6101 gen_lowpart (mode, op0),
6102 const1_rtx);
6103 }
6104
6105 else if (STORE_FLAG_VALUE == 1
6106 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
6107 && op1 == const0_rtx
6108 && mode == GET_MODE (op0)
6109 && (num_sign_bit_copies (op0, mode)
6110 == GET_MODE_PRECISION (mode)))
6111 {
6112 op0 = expand_compound_operation (op0);
6113 return plus_constant (mode, gen_lowpart (mode, op0), 1);
6114 }
6115
6116 /* If STORE_FLAG_VALUE is -1, we have cases similar to
6117 those above. */
6118 if (in_cond)
6119 ;
6120
6121 else if (STORE_FLAG_VALUE == -1
6122 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
6123 && op1 == const0_rtx
6124 && mode == GET_MODE (op0)
6125 && (num_sign_bit_copies (op0, mode)
6126 == GET_MODE_PRECISION (mode)))
6127 return gen_lowpart (mode,
6128 expand_compound_operation (op0));
6129
6130 else if (STORE_FLAG_VALUE == -1
6131 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
6132 && op1 == const0_rtx
6133 && mode == GET_MODE (op0)
6134 && nonzero_bits (op0, mode) == 1)
6135 {
6136 op0 = expand_compound_operation (op0);
6137 return simplify_gen_unary (NEG, mode,
6138 gen_lowpart (mode, op0),
6139 mode);
6140 }
6141
6142 else if (STORE_FLAG_VALUE == -1
6143 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
6144 && op1 == const0_rtx
6145 && mode == GET_MODE (op0)
6146 && (num_sign_bit_copies (op0, mode)
6147 == GET_MODE_PRECISION (mode)))
6148 {
6149 op0 = expand_compound_operation (op0);
6150 return simplify_gen_unary (NOT, mode,
6151 gen_lowpart (mode, op0),
6152 mode);
6153 }
6154
6155 /* If X is 0/1, (eq X 0) is X-1. */
6156 else if (STORE_FLAG_VALUE == -1
6157 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
6158 && op1 == const0_rtx
6159 && mode == GET_MODE (op0)
6160 && nonzero_bits (op0, mode) == 1)
6161 {
6162 op0 = expand_compound_operation (op0);
6163 return plus_constant (mode, gen_lowpart (mode, op0), -1);
6164 }
6165
6166 /* If STORE_FLAG_VALUE says to just test the sign bit and X has just
6167 one bit that might be nonzero, we can convert (ne x 0) to
6168 (ashift x c) where C puts the bit in the sign bit. Remove any
6169 AND with STORE_FLAG_VALUE when we are done, since we are only
6170 going to test the sign bit. */
6171 if (new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
6172 && HWI_COMPUTABLE_MODE_P (mode)
6173 && val_signbit_p (mode, STORE_FLAG_VALUE)
6174 && op1 == const0_rtx
6175 && mode == GET_MODE (op0)
6176 && (i = exact_log2 (nonzero_bits (op0, mode))) >= 0)
6177 {
6178 x = simplify_shift_const (NULL_RTX, ASHIFT, mode,
6179 expand_compound_operation (op0),
6180 GET_MODE_PRECISION (mode) - 1 - i);
6181 if (GET_CODE (x) == AND && XEXP (x, 1) == const_true_rtx)
6182 return XEXP (x, 0);
6183 else
6184 return x;
6185 }
6186
6187 /* If the code changed, return a whole new comparison.
6188 We also need to avoid using SUBST in cases where
6189 simplify_comparison has widened a comparison with a CONST_INT,
6190 since in that case the wider CONST_INT may fail the sanity
6191 checks in do_SUBST. */
6192 if (new_code != code
6193 || (CONST_INT_P (op1)
6194 && GET_MODE (op0) != GET_MODE (XEXP (x, 0))
6195 && GET_MODE (op0) != GET_MODE (XEXP (x, 1))))
6196 return gen_rtx_fmt_ee (new_code, mode, op0, op1);
6197
6198 /* Otherwise, keep this operation, but maybe change its operands.
6199 This also converts (ne (compare FOO BAR) 0) to (ne FOO BAR). */
6200 SUBST (XEXP (x, 0), op0);
6201 SUBST (XEXP (x, 1), op1);
6202 }
6203 break;
6204
6205 case IF_THEN_ELSE:
6206 return simplify_if_then_else (x);
6207
6208 case ZERO_EXTRACT:
6209 case SIGN_EXTRACT:
6210 case ZERO_EXTEND:
6211 case SIGN_EXTEND:
6212 /* If we are processing SET_DEST, we are done. */
6213 if (in_dest)
6214 return x;
6215
6216 return expand_compound_operation (x);
6217
6218 case SET:
6219 return simplify_set (x);
6220
6221 case AND:
6222 case IOR:
6223 return simplify_logical (x);
6224
6225 case ASHIFT:
6226 case LSHIFTRT:
6227 case ASHIFTRT:
6228 case ROTATE:
6229 case ROTATERT:
6230 /* If this is a shift by a constant amount, simplify it. */
6231 if (CONST_INT_P (XEXP (x, 1)))
6232 return simplify_shift_const (x, code, mode, XEXP (x, 0),
6233 INTVAL (XEXP (x, 1)));
6234
6235 else if (SHIFT_COUNT_TRUNCATED && !REG_P (XEXP (x, 1)))
6236 SUBST (XEXP (x, 1),
6237 force_to_mode (XEXP (x, 1), GET_MODE (XEXP (x, 1)),
6238 (HOST_WIDE_INT_1U
6239 << exact_log2 (GET_MODE_BITSIZE (GET_MODE (x))))
6240 - 1,
6241 0));
6242 break;
6243
6244 default:
6245 break;
6246 }
6247
6248 return x;
6249 }
6250 \f
6251 /* Simplify X, an IF_THEN_ELSE expression. Return the new expression. */
6252
6253 static rtx
6254 simplify_if_then_else (rtx x)
6255 {
6256 machine_mode mode = GET_MODE (x);
6257 rtx cond = XEXP (x, 0);
6258 rtx true_rtx = XEXP (x, 1);
6259 rtx false_rtx = XEXP (x, 2);
6260 enum rtx_code true_code = GET_CODE (cond);
6261 int comparison_p = COMPARISON_P (cond);
6262 rtx temp;
6263 int i;
6264 enum rtx_code false_code;
6265 rtx reversed;
6266
6267 /* Simplify storing of the truth value. */
6268 if (comparison_p && true_rtx == const_true_rtx && false_rtx == const0_rtx)
6269 return simplify_gen_relational (true_code, mode, VOIDmode,
6270 XEXP (cond, 0), XEXP (cond, 1));
6271
6272 /* Also when the truth value has to be reversed. */
6273 if (comparison_p
6274 && true_rtx == const0_rtx && false_rtx == const_true_rtx
6275 && (reversed = reversed_comparison (cond, mode)))
6276 return reversed;
6277
6278 /* Sometimes we can simplify the arm of an IF_THEN_ELSE if a register used
6279 in it is being compared against certain values. Get the true and false
6280 comparisons and see if that says anything about the value of each arm. */
6281
6282 if (comparison_p
6283 && ((false_code = reversed_comparison_code (cond, NULL))
6284 != UNKNOWN)
6285 && REG_P (XEXP (cond, 0)))
6286 {
6287 HOST_WIDE_INT nzb;
6288 rtx from = XEXP (cond, 0);
6289 rtx true_val = XEXP (cond, 1);
6290 rtx false_val = true_val;
6291 int swapped = 0;
6292
6293 /* If FALSE_CODE is EQ, swap the codes and arms. */
6294
6295 if (false_code == EQ)
6296 {
6297 swapped = 1, true_code = EQ, false_code = NE;
6298 std::swap (true_rtx, false_rtx);
6299 }
6300
6301 /* If we are comparing against zero and the expression being tested has
6302 only a single bit that might be nonzero, that is its value when it is
6303 not equal to zero. Similarly if it is known to be -1 or 0. */
6304
6305 if (true_code == EQ && true_val == const0_rtx
6306 && pow2p_hwi (nzb = nonzero_bits (from, GET_MODE (from))))
6307 {
6308 false_code = EQ;
6309 false_val = gen_int_mode (nzb, GET_MODE (from));
6310 }
6311 else if (true_code == EQ && true_val == const0_rtx
6312 && (num_sign_bit_copies (from, GET_MODE (from))
6313 == GET_MODE_PRECISION (GET_MODE (from))))
6314 {
6315 false_code = EQ;
6316 false_val = constm1_rtx;
6317 }
6318
6319 /* Now simplify an arm if we know the value of the register in the
6320 branch and it is used in the arm. Be careful due to the potential
6321 of locally-shared RTL. */
6322
6323 if (reg_mentioned_p (from, true_rtx))
6324 true_rtx = subst (known_cond (copy_rtx (true_rtx), true_code,
6325 from, true_val),
6326 pc_rtx, pc_rtx, 0, 0, 0);
6327 if (reg_mentioned_p (from, false_rtx))
6328 false_rtx = subst (known_cond (copy_rtx (false_rtx), false_code,
6329 from, false_val),
6330 pc_rtx, pc_rtx, 0, 0, 0);
6331
6332 SUBST (XEXP (x, 1), swapped ? false_rtx : true_rtx);
6333 SUBST (XEXP (x, 2), swapped ? true_rtx : false_rtx);
6334
6335 true_rtx = XEXP (x, 1);
6336 false_rtx = XEXP (x, 2);
6337 true_code = GET_CODE (cond);
6338 }
6339
6340 /* If we have (if_then_else FOO (pc) (label_ref BAR)) and FOO can be
6341 reversed, do so to avoid needing two sets of patterns for
6342 subtract-and-branch insns. Similarly if we have a constant in the true
6343 arm, the false arm is the same as the first operand of the comparison, or
6344 the false arm is more complicated than the true arm. */
6345
6346 if (comparison_p
6347 && reversed_comparison_code (cond, NULL) != UNKNOWN
6348 && (true_rtx == pc_rtx
6349 || (CONSTANT_P (true_rtx)
6350 && !CONST_INT_P (false_rtx) && false_rtx != pc_rtx)
6351 || true_rtx == const0_rtx
6352 || (OBJECT_P (true_rtx) && !OBJECT_P (false_rtx))
6353 || (GET_CODE (true_rtx) == SUBREG && OBJECT_P (SUBREG_REG (true_rtx))
6354 && !OBJECT_P (false_rtx))
6355 || reg_mentioned_p (true_rtx, false_rtx)
6356 || rtx_equal_p (false_rtx, XEXP (cond, 0))))
6357 {
6358 true_code = reversed_comparison_code (cond, NULL);
6359 SUBST (XEXP (x, 0), reversed_comparison (cond, GET_MODE (cond)));
6360 SUBST (XEXP (x, 1), false_rtx);
6361 SUBST (XEXP (x, 2), true_rtx);
6362
6363 std::swap (true_rtx, false_rtx);
6364 cond = XEXP (x, 0);
6365
6366 /* It is possible that the conditional has been simplified out. */
6367 true_code = GET_CODE (cond);
6368 comparison_p = COMPARISON_P (cond);
6369 }
6370
6371 /* If the two arms are identical, we don't need the comparison. */
6372
6373 if (rtx_equal_p (true_rtx, false_rtx) && ! side_effects_p (cond))
6374 return true_rtx;
6375
6376 /* Convert a == b ? b : a to "a". */
6377 if (true_code == EQ && ! side_effects_p (cond)
6378 && !HONOR_NANS (mode)
6379 && rtx_equal_p (XEXP (cond, 0), false_rtx)
6380 && rtx_equal_p (XEXP (cond, 1), true_rtx))
6381 return false_rtx;
6382 else if (true_code == NE && ! side_effects_p (cond)
6383 && !HONOR_NANS (mode)
6384 && rtx_equal_p (XEXP (cond, 0), true_rtx)
6385 && rtx_equal_p (XEXP (cond, 1), false_rtx))
6386 return true_rtx;
6387
6388 /* Look for cases where we have (abs x) or (neg (abs X)). */
6389
6390 if (GET_MODE_CLASS (mode) == MODE_INT
6391 && comparison_p
6392 && XEXP (cond, 1) == const0_rtx
6393 && GET_CODE (false_rtx) == NEG
6394 && rtx_equal_p (true_rtx, XEXP (false_rtx, 0))
6395 && rtx_equal_p (true_rtx, XEXP (cond, 0))
6396 && ! side_effects_p (true_rtx))
6397 switch (true_code)
6398 {
6399 case GT:
6400 case GE:
6401 return simplify_gen_unary (ABS, mode, true_rtx, mode);
6402 case LT:
6403 case LE:
6404 return
6405 simplify_gen_unary (NEG, mode,
6406 simplify_gen_unary (ABS, mode, true_rtx, mode),
6407 mode);
6408 default:
6409 break;
6410 }
6411
6412 /* Look for MIN or MAX. */
6413
6414 if ((! FLOAT_MODE_P (mode) || flag_unsafe_math_optimizations)
6415 && comparison_p
6416 && rtx_equal_p (XEXP (cond, 0), true_rtx)
6417 && rtx_equal_p (XEXP (cond, 1), false_rtx)
6418 && ! side_effects_p (cond))
6419 switch (true_code)
6420 {
6421 case GE:
6422 case GT:
6423 return simplify_gen_binary (SMAX, mode, true_rtx, false_rtx);
6424 case LE:
6425 case LT:
6426 return simplify_gen_binary (SMIN, mode, true_rtx, false_rtx);
6427 case GEU:
6428 case GTU:
6429 return simplify_gen_binary (UMAX, mode, true_rtx, false_rtx);
6430 case LEU:
6431 case LTU:
6432 return simplify_gen_binary (UMIN, mode, true_rtx, false_rtx);
6433 default:
6434 break;
6435 }
6436
6437 /* If we have (if_then_else COND (OP Z C1) Z) and OP is an identity when its
6438 second operand is zero, this can be done as (OP Z (mult COND C2)) where
6439 C2 = C1 * STORE_FLAG_VALUE. Similarly if OP has an outer ZERO_EXTEND or
6440 SIGN_EXTEND as long as Z is already extended (so we don't destroy it).
6441 We can do this kind of thing in some cases when STORE_FLAG_VALUE is
6442 neither 1 or -1, but it isn't worth checking for. */
6443
6444 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
6445 && comparison_p
6446 && GET_MODE_CLASS (mode) == MODE_INT
6447 && ! side_effects_p (x))
6448 {
6449 rtx t = make_compound_operation (true_rtx, SET);
6450 rtx f = make_compound_operation (false_rtx, SET);
6451 rtx cond_op0 = XEXP (cond, 0);
6452 rtx cond_op1 = XEXP (cond, 1);
6453 enum rtx_code op = UNKNOWN, extend_op = UNKNOWN;
6454 machine_mode m = mode;
6455 rtx z = 0, c1 = NULL_RTX;
6456
6457 if ((GET_CODE (t) == PLUS || GET_CODE (t) == MINUS
6458 || GET_CODE (t) == IOR || GET_CODE (t) == XOR
6459 || GET_CODE (t) == ASHIFT
6460 || GET_CODE (t) == LSHIFTRT || GET_CODE (t) == ASHIFTRT)
6461 && rtx_equal_p (XEXP (t, 0), f))
6462 c1 = XEXP (t, 1), op = GET_CODE (t), z = f;
6463
6464 /* If an identity-zero op is commutative, check whether there
6465 would be a match if we swapped the operands. */
6466 else if ((GET_CODE (t) == PLUS || GET_CODE (t) == IOR
6467 || GET_CODE (t) == XOR)
6468 && rtx_equal_p (XEXP (t, 1), f))
6469 c1 = XEXP (t, 0), op = GET_CODE (t), z = f;
6470 else if (GET_CODE (t) == SIGN_EXTEND
6471 && (GET_CODE (XEXP (t, 0)) == PLUS
6472 || GET_CODE (XEXP (t, 0)) == MINUS
6473 || GET_CODE (XEXP (t, 0)) == IOR
6474 || GET_CODE (XEXP (t, 0)) == XOR
6475 || GET_CODE (XEXP (t, 0)) == ASHIFT
6476 || GET_CODE (XEXP (t, 0)) == LSHIFTRT
6477 || GET_CODE (XEXP (t, 0)) == ASHIFTRT)
6478 && GET_CODE (XEXP (XEXP (t, 0), 0)) == SUBREG
6479 && subreg_lowpart_p (XEXP (XEXP (t, 0), 0))
6480 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 0)), f)
6481 && (num_sign_bit_copies (f, GET_MODE (f))
6482 > (unsigned int)
6483 (GET_MODE_PRECISION (mode)
6484 - GET_MODE_PRECISION (GET_MODE (XEXP (XEXP (t, 0), 0))))))
6485 {
6486 c1 = XEXP (XEXP (t, 0), 1); z = f; op = GET_CODE (XEXP (t, 0));
6487 extend_op = SIGN_EXTEND;
6488 m = GET_MODE (XEXP (t, 0));
6489 }
6490 else if (GET_CODE (t) == SIGN_EXTEND
6491 && (GET_CODE (XEXP (t, 0)) == PLUS
6492 || GET_CODE (XEXP (t, 0)) == IOR
6493 || GET_CODE (XEXP (t, 0)) == XOR)
6494 && GET_CODE (XEXP (XEXP (t, 0), 1)) == SUBREG
6495 && subreg_lowpart_p (XEXP (XEXP (t, 0), 1))
6496 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 1)), f)
6497 && (num_sign_bit_copies (f, GET_MODE (f))
6498 > (unsigned int)
6499 (GET_MODE_PRECISION (mode)
6500 - GET_MODE_PRECISION (GET_MODE (XEXP (XEXP (t, 0), 1))))))
6501 {
6502 c1 = XEXP (XEXP (t, 0), 0); z = f; op = GET_CODE (XEXP (t, 0));
6503 extend_op = SIGN_EXTEND;
6504 m = GET_MODE (XEXP (t, 0));
6505 }
6506 else if (GET_CODE (t) == ZERO_EXTEND
6507 && (GET_CODE (XEXP (t, 0)) == PLUS
6508 || GET_CODE (XEXP (t, 0)) == MINUS
6509 || GET_CODE (XEXP (t, 0)) == IOR
6510 || GET_CODE (XEXP (t, 0)) == XOR
6511 || GET_CODE (XEXP (t, 0)) == ASHIFT
6512 || GET_CODE (XEXP (t, 0)) == LSHIFTRT
6513 || GET_CODE (XEXP (t, 0)) == ASHIFTRT)
6514 && GET_CODE (XEXP (XEXP (t, 0), 0)) == SUBREG
6515 && HWI_COMPUTABLE_MODE_P (mode)
6516 && subreg_lowpart_p (XEXP (XEXP (t, 0), 0))
6517 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 0)), f)
6518 && ((nonzero_bits (f, GET_MODE (f))
6519 & ~GET_MODE_MASK (GET_MODE (XEXP (XEXP (t, 0), 0))))
6520 == 0))
6521 {
6522 c1 = XEXP (XEXP (t, 0), 1); z = f; op = GET_CODE (XEXP (t, 0));
6523 extend_op = ZERO_EXTEND;
6524 m = GET_MODE (XEXP (t, 0));
6525 }
6526 else if (GET_CODE (t) == ZERO_EXTEND
6527 && (GET_CODE (XEXP (t, 0)) == PLUS
6528 || GET_CODE (XEXP (t, 0)) == IOR
6529 || GET_CODE (XEXP (t, 0)) == XOR)
6530 && GET_CODE (XEXP (XEXP (t, 0), 1)) == SUBREG
6531 && HWI_COMPUTABLE_MODE_P (mode)
6532 && subreg_lowpart_p (XEXP (XEXP (t, 0), 1))
6533 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 1)), f)
6534 && ((nonzero_bits (f, GET_MODE (f))
6535 & ~GET_MODE_MASK (GET_MODE (XEXP (XEXP (t, 0), 1))))
6536 == 0))
6537 {
6538 c1 = XEXP (XEXP (t, 0), 0); z = f; op = GET_CODE (XEXP (t, 0));
6539 extend_op = ZERO_EXTEND;
6540 m = GET_MODE (XEXP (t, 0));
6541 }
6542
6543 if (z)
6544 {
6545 temp = subst (simplify_gen_relational (true_code, m, VOIDmode,
6546 cond_op0, cond_op1),
6547 pc_rtx, pc_rtx, 0, 0, 0);
6548 temp = simplify_gen_binary (MULT, m, temp,
6549 simplify_gen_binary (MULT, m, c1,
6550 const_true_rtx));
6551 temp = subst (temp, pc_rtx, pc_rtx, 0, 0, 0);
6552 temp = simplify_gen_binary (op, m, gen_lowpart (m, z), temp);
6553
6554 if (extend_op != UNKNOWN)
6555 temp = simplify_gen_unary (extend_op, mode, temp, m);
6556
6557 return temp;
6558 }
6559 }
6560
6561 /* If we have (if_then_else (ne A 0) C1 0) and either A is known to be 0 or
6562 1 and C1 is a single bit or A is known to be 0 or -1 and C1 is the
6563 negation of a single bit, we can convert this operation to a shift. We
6564 can actually do this more generally, but it doesn't seem worth it. */
6565
6566 if (true_code == NE && XEXP (cond, 1) == const0_rtx
6567 && false_rtx == const0_rtx && CONST_INT_P (true_rtx)
6568 && ((1 == nonzero_bits (XEXP (cond, 0), mode)
6569 && (i = exact_log2 (UINTVAL (true_rtx))) >= 0)
6570 || ((num_sign_bit_copies (XEXP (cond, 0), mode)
6571 == GET_MODE_PRECISION (mode))
6572 && (i = exact_log2 (-UINTVAL (true_rtx))) >= 0)))
6573 return
6574 simplify_shift_const (NULL_RTX, ASHIFT, mode,
6575 gen_lowpart (mode, XEXP (cond, 0)), i);
6576
6577 /* (IF_THEN_ELSE (NE A 0) C1 0) is A or a zero-extend of A if the only
6578 non-zero bit in A is C1. */
6579 if (true_code == NE && XEXP (cond, 1) == const0_rtx
6580 && false_rtx == const0_rtx && CONST_INT_P (true_rtx)
6581 && INTEGRAL_MODE_P (GET_MODE (XEXP (cond, 0)))
6582 && (UINTVAL (true_rtx) & GET_MODE_MASK (mode))
6583 == nonzero_bits (XEXP (cond, 0), GET_MODE (XEXP (cond, 0)))
6584 && (i = exact_log2 (UINTVAL (true_rtx) & GET_MODE_MASK (mode))) >= 0)
6585 {
6586 rtx val = XEXP (cond, 0);
6587 machine_mode val_mode = GET_MODE (val);
6588 if (val_mode == mode)
6589 return val;
6590 else if (GET_MODE_PRECISION (val_mode) < GET_MODE_PRECISION (mode))
6591 return simplify_gen_unary (ZERO_EXTEND, mode, val, val_mode);
6592 }
6593
6594 return x;
6595 }
6596 \f
6597 /* Simplify X, a SET expression. Return the new expression. */
6598
6599 static rtx
6600 simplify_set (rtx x)
6601 {
6602 rtx src = SET_SRC (x);
6603 rtx dest = SET_DEST (x);
6604 machine_mode mode
6605 = GET_MODE (src) != VOIDmode ? GET_MODE (src) : GET_MODE (dest);
6606 rtx_insn *other_insn;
6607 rtx *cc_use;
6608
6609 /* (set (pc) (return)) gets written as (return). */
6610 if (GET_CODE (dest) == PC && ANY_RETURN_P (src))
6611 return src;
6612
6613 /* Now that we know for sure which bits of SRC we are using, see if we can
6614 simplify the expression for the object knowing that we only need the
6615 low-order bits. */
6616
6617 if (GET_MODE_CLASS (mode) == MODE_INT && HWI_COMPUTABLE_MODE_P (mode))
6618 {
6619 src = force_to_mode (src, mode, HOST_WIDE_INT_M1U, 0);
6620 SUBST (SET_SRC (x), src);
6621 }
6622
6623 /* If we are setting CC0 or if the source is a COMPARE, look for the use of
6624 the comparison result and try to simplify it unless we already have used
6625 undobuf.other_insn. */
6626 if ((GET_MODE_CLASS (mode) == MODE_CC
6627 || GET_CODE (src) == COMPARE
6628 || CC0_P (dest))
6629 && (cc_use = find_single_use (dest, subst_insn, &other_insn)) != 0
6630 && (undobuf.other_insn == 0 || other_insn == undobuf.other_insn)
6631 && COMPARISON_P (*cc_use)
6632 && rtx_equal_p (XEXP (*cc_use, 0), dest))
6633 {
6634 enum rtx_code old_code = GET_CODE (*cc_use);
6635 enum rtx_code new_code;
6636 rtx op0, op1, tmp;
6637 int other_changed = 0;
6638 rtx inner_compare = NULL_RTX;
6639 machine_mode compare_mode = GET_MODE (dest);
6640
6641 if (GET_CODE (src) == COMPARE)
6642 {
6643 op0 = XEXP (src, 0), op1 = XEXP (src, 1);
6644 if (GET_CODE (op0) == COMPARE && op1 == const0_rtx)
6645 {
6646 inner_compare = op0;
6647 op0 = XEXP (inner_compare, 0), op1 = XEXP (inner_compare, 1);
6648 }
6649 }
6650 else
6651 op0 = src, op1 = CONST0_RTX (GET_MODE (src));
6652
6653 tmp = simplify_relational_operation (old_code, compare_mode, VOIDmode,
6654 op0, op1);
6655 if (!tmp)
6656 new_code = old_code;
6657 else if (!CONSTANT_P (tmp))
6658 {
6659 new_code = GET_CODE (tmp);
6660 op0 = XEXP (tmp, 0);
6661 op1 = XEXP (tmp, 1);
6662 }
6663 else
6664 {
6665 rtx pat = PATTERN (other_insn);
6666 undobuf.other_insn = other_insn;
6667 SUBST (*cc_use, tmp);
6668
6669 /* Attempt to simplify CC user. */
6670 if (GET_CODE (pat) == SET)
6671 {
6672 rtx new_rtx = simplify_rtx (SET_SRC (pat));
6673 if (new_rtx != NULL_RTX)
6674 SUBST (SET_SRC (pat), new_rtx);
6675 }
6676
6677 /* Convert X into a no-op move. */
6678 SUBST (SET_DEST (x), pc_rtx);
6679 SUBST (SET_SRC (x), pc_rtx);
6680 return x;
6681 }
6682
6683 /* Simplify our comparison, if possible. */
6684 new_code = simplify_comparison (new_code, &op0, &op1);
6685
6686 #ifdef SELECT_CC_MODE
6687 /* If this machine has CC modes other than CCmode, check to see if we
6688 need to use a different CC mode here. */
6689 if (GET_MODE_CLASS (GET_MODE (op0)) == MODE_CC)
6690 compare_mode = GET_MODE (op0);
6691 else if (inner_compare
6692 && GET_MODE_CLASS (GET_MODE (inner_compare)) == MODE_CC
6693 && new_code == old_code
6694 && op0 == XEXP (inner_compare, 0)
6695 && op1 == XEXP (inner_compare, 1))
6696 compare_mode = GET_MODE (inner_compare);
6697 else
6698 compare_mode = SELECT_CC_MODE (new_code, op0, op1);
6699
6700 /* If the mode changed, we have to change SET_DEST, the mode in the
6701 compare, and the mode in the place SET_DEST is used. If SET_DEST is
6702 a hard register, just build new versions with the proper mode. If it
6703 is a pseudo, we lose unless it is only time we set the pseudo, in
6704 which case we can safely change its mode. */
6705 if (!HAVE_cc0 && compare_mode != GET_MODE (dest))
6706 {
6707 if (can_change_dest_mode (dest, 0, compare_mode))
6708 {
6709 unsigned int regno = REGNO (dest);
6710 rtx new_dest;
6711
6712 if (regno < FIRST_PSEUDO_REGISTER)
6713 new_dest = gen_rtx_REG (compare_mode, regno);
6714 else
6715 {
6716 SUBST_MODE (regno_reg_rtx[regno], compare_mode);
6717 new_dest = regno_reg_rtx[regno];
6718 }
6719
6720 SUBST (SET_DEST (x), new_dest);
6721 SUBST (XEXP (*cc_use, 0), new_dest);
6722 other_changed = 1;
6723
6724 dest = new_dest;
6725 }
6726 }
6727 #endif /* SELECT_CC_MODE */
6728
6729 /* If the code changed, we have to build a new comparison in
6730 undobuf.other_insn. */
6731 if (new_code != old_code)
6732 {
6733 int other_changed_previously = other_changed;
6734 unsigned HOST_WIDE_INT mask;
6735 rtx old_cc_use = *cc_use;
6736
6737 SUBST (*cc_use, gen_rtx_fmt_ee (new_code, GET_MODE (*cc_use),
6738 dest, const0_rtx));
6739 other_changed = 1;
6740
6741 /* If the only change we made was to change an EQ into an NE or
6742 vice versa, OP0 has only one bit that might be nonzero, and OP1
6743 is zero, check if changing the user of the condition code will
6744 produce a valid insn. If it won't, we can keep the original code
6745 in that insn by surrounding our operation with an XOR. */
6746
6747 if (((old_code == NE && new_code == EQ)
6748 || (old_code == EQ && new_code == NE))
6749 && ! other_changed_previously && op1 == const0_rtx
6750 && HWI_COMPUTABLE_MODE_P (GET_MODE (op0))
6751 && pow2p_hwi (mask = nonzero_bits (op0, GET_MODE (op0))))
6752 {
6753 rtx pat = PATTERN (other_insn), note = 0;
6754
6755 if ((recog_for_combine (&pat, other_insn, &note) < 0
6756 && ! check_asm_operands (pat)))
6757 {
6758 *cc_use = old_cc_use;
6759 other_changed = 0;
6760
6761 op0 = simplify_gen_binary (XOR, GET_MODE (op0), op0,
6762 gen_int_mode (mask,
6763 GET_MODE (op0)));
6764 }
6765 }
6766 }
6767
6768 if (other_changed)
6769 undobuf.other_insn = other_insn;
6770
6771 /* Don't generate a compare of a CC with 0, just use that CC. */
6772 if (GET_MODE (op0) == compare_mode && op1 == const0_rtx)
6773 {
6774 SUBST (SET_SRC (x), op0);
6775 src = SET_SRC (x);
6776 }
6777 /* Otherwise, if we didn't previously have the same COMPARE we
6778 want, create it from scratch. */
6779 else if (GET_CODE (src) != COMPARE || GET_MODE (src) != compare_mode
6780 || XEXP (src, 0) != op0 || XEXP (src, 1) != op1)
6781 {
6782 SUBST (SET_SRC (x), gen_rtx_COMPARE (compare_mode, op0, op1));
6783 src = SET_SRC (x);
6784 }
6785 }
6786 else
6787 {
6788 /* Get SET_SRC in a form where we have placed back any
6789 compound expressions. Then do the checks below. */
6790 src = make_compound_operation (src, SET);
6791 SUBST (SET_SRC (x), src);
6792 }
6793
6794 /* If we have (set x (subreg:m1 (op:m2 ...) 0)) with OP being some operation,
6795 and X being a REG or (subreg (reg)), we may be able to convert this to
6796 (set (subreg:m2 x) (op)).
6797
6798 We can always do this if M1 is narrower than M2 because that means that
6799 we only care about the low bits of the result.
6800
6801 However, on machines without WORD_REGISTER_OPERATIONS defined, we cannot
6802 perform a narrower operation than requested since the high-order bits will
6803 be undefined. On machine where it is defined, this transformation is safe
6804 as long as M1 and M2 have the same number of words. */
6805
6806 if (GET_CODE (src) == SUBREG && subreg_lowpart_p (src)
6807 && !OBJECT_P (SUBREG_REG (src))
6808 && (((GET_MODE_SIZE (GET_MODE (src)) + (UNITS_PER_WORD - 1))
6809 / UNITS_PER_WORD)
6810 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (src)))
6811 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))
6812 && (WORD_REGISTER_OPERATIONS || !paradoxical_subreg_p (src))
6813 #ifdef CANNOT_CHANGE_MODE_CLASS
6814 && ! (REG_P (dest) && REGNO (dest) < FIRST_PSEUDO_REGISTER
6815 && REG_CANNOT_CHANGE_MODE_P (REGNO (dest),
6816 GET_MODE (SUBREG_REG (src)),
6817 GET_MODE (src)))
6818 #endif
6819 && (REG_P (dest)
6820 || (GET_CODE (dest) == SUBREG
6821 && REG_P (SUBREG_REG (dest)))))
6822 {
6823 SUBST (SET_DEST (x),
6824 gen_lowpart (GET_MODE (SUBREG_REG (src)),
6825 dest));
6826 SUBST (SET_SRC (x), SUBREG_REG (src));
6827
6828 src = SET_SRC (x), dest = SET_DEST (x);
6829 }
6830
6831 /* If we have (set (cc0) (subreg ...)), we try to remove the subreg
6832 in SRC. */
6833 if (dest == cc0_rtx
6834 && GET_CODE (src) == SUBREG
6835 && subreg_lowpart_p (src)
6836 && (GET_MODE_PRECISION (GET_MODE (src))
6837 < GET_MODE_PRECISION (GET_MODE (SUBREG_REG (src)))))
6838 {
6839 rtx inner = SUBREG_REG (src);
6840 machine_mode inner_mode = GET_MODE (inner);
6841
6842 /* Here we make sure that we don't have a sign bit on. */
6843 if (val_signbit_known_clear_p (GET_MODE (src),
6844 nonzero_bits (inner, inner_mode)))
6845 {
6846 SUBST (SET_SRC (x), inner);
6847 src = SET_SRC (x);
6848 }
6849 }
6850
6851 /* If we have (set FOO (subreg:M (mem:N BAR) 0)) with M wider than N, this
6852 would require a paradoxical subreg. Replace the subreg with a
6853 zero_extend to avoid the reload that would otherwise be required. */
6854
6855 enum rtx_code extend_op;
6856 if (paradoxical_subreg_p (src)
6857 && MEM_P (SUBREG_REG (src))
6858 && (extend_op = load_extend_op (GET_MODE (SUBREG_REG (src)))) != UNKNOWN)
6859 {
6860 SUBST (SET_SRC (x),
6861 gen_rtx_fmt_e (extend_op, GET_MODE (src), SUBREG_REG (src)));
6862
6863 src = SET_SRC (x);
6864 }
6865
6866 /* If we don't have a conditional move, SET_SRC is an IF_THEN_ELSE, and we
6867 are comparing an item known to be 0 or -1 against 0, use a logical
6868 operation instead. Check for one of the arms being an IOR of the other
6869 arm with some value. We compute three terms to be IOR'ed together. In
6870 practice, at most two will be nonzero. Then we do the IOR's. */
6871
6872 if (GET_CODE (dest) != PC
6873 && GET_CODE (src) == IF_THEN_ELSE
6874 && GET_MODE_CLASS (GET_MODE (src)) == MODE_INT
6875 && (GET_CODE (XEXP (src, 0)) == EQ || GET_CODE (XEXP (src, 0)) == NE)
6876 && XEXP (XEXP (src, 0), 1) == const0_rtx
6877 && GET_MODE (src) == GET_MODE (XEXP (XEXP (src, 0), 0))
6878 && (!HAVE_conditional_move
6879 || ! can_conditionally_move_p (GET_MODE (src)))
6880 && (num_sign_bit_copies (XEXP (XEXP (src, 0), 0),
6881 GET_MODE (XEXP (XEXP (src, 0), 0)))
6882 == GET_MODE_PRECISION (GET_MODE (XEXP (XEXP (src, 0), 0))))
6883 && ! side_effects_p (src))
6884 {
6885 rtx true_rtx = (GET_CODE (XEXP (src, 0)) == NE
6886 ? XEXP (src, 1) : XEXP (src, 2));
6887 rtx false_rtx = (GET_CODE (XEXP (src, 0)) == NE
6888 ? XEXP (src, 2) : XEXP (src, 1));
6889 rtx term1 = const0_rtx, term2, term3;
6890
6891 if (GET_CODE (true_rtx) == IOR
6892 && rtx_equal_p (XEXP (true_rtx, 0), false_rtx))
6893 term1 = false_rtx, true_rtx = XEXP (true_rtx, 1), false_rtx = const0_rtx;
6894 else if (GET_CODE (true_rtx) == IOR
6895 && rtx_equal_p (XEXP (true_rtx, 1), false_rtx))
6896 term1 = false_rtx, true_rtx = XEXP (true_rtx, 0), false_rtx = const0_rtx;
6897 else if (GET_CODE (false_rtx) == IOR
6898 && rtx_equal_p (XEXP (false_rtx, 0), true_rtx))
6899 term1 = true_rtx, false_rtx = XEXP (false_rtx, 1), true_rtx = const0_rtx;
6900 else if (GET_CODE (false_rtx) == IOR
6901 && rtx_equal_p (XEXP (false_rtx, 1), true_rtx))
6902 term1 = true_rtx, false_rtx = XEXP (false_rtx, 0), true_rtx = const0_rtx;
6903
6904 term2 = simplify_gen_binary (AND, GET_MODE (src),
6905 XEXP (XEXP (src, 0), 0), true_rtx);
6906 term3 = simplify_gen_binary (AND, GET_MODE (src),
6907 simplify_gen_unary (NOT, GET_MODE (src),
6908 XEXP (XEXP (src, 0), 0),
6909 GET_MODE (src)),
6910 false_rtx);
6911
6912 SUBST (SET_SRC (x),
6913 simplify_gen_binary (IOR, GET_MODE (src),
6914 simplify_gen_binary (IOR, GET_MODE (src),
6915 term1, term2),
6916 term3));
6917
6918 src = SET_SRC (x);
6919 }
6920
6921 /* If either SRC or DEST is a CLOBBER of (const_int 0), make this
6922 whole thing fail. */
6923 if (GET_CODE (src) == CLOBBER && XEXP (src, 0) == const0_rtx)
6924 return src;
6925 else if (GET_CODE (dest) == CLOBBER && XEXP (dest, 0) == const0_rtx)
6926 return dest;
6927 else
6928 /* Convert this into a field assignment operation, if possible. */
6929 return make_field_assignment (x);
6930 }
6931 \f
6932 /* Simplify, X, and AND, IOR, or XOR operation, and return the simplified
6933 result. */
6934
6935 static rtx
6936 simplify_logical (rtx x)
6937 {
6938 machine_mode mode = GET_MODE (x);
6939 rtx op0 = XEXP (x, 0);
6940 rtx op1 = XEXP (x, 1);
6941
6942 switch (GET_CODE (x))
6943 {
6944 case AND:
6945 /* We can call simplify_and_const_int only if we don't lose
6946 any (sign) bits when converting INTVAL (op1) to
6947 "unsigned HOST_WIDE_INT". */
6948 if (CONST_INT_P (op1)
6949 && (HWI_COMPUTABLE_MODE_P (mode)
6950 || INTVAL (op1) > 0))
6951 {
6952 x = simplify_and_const_int (x, mode, op0, INTVAL (op1));
6953 if (GET_CODE (x) != AND)
6954 return x;
6955
6956 op0 = XEXP (x, 0);
6957 op1 = XEXP (x, 1);
6958 }
6959
6960 /* If we have any of (and (ior A B) C) or (and (xor A B) C),
6961 apply the distributive law and then the inverse distributive
6962 law to see if things simplify. */
6963 if (GET_CODE (op0) == IOR || GET_CODE (op0) == XOR)
6964 {
6965 rtx result = distribute_and_simplify_rtx (x, 0);
6966 if (result)
6967 return result;
6968 }
6969 if (GET_CODE (op1) == IOR || GET_CODE (op1) == XOR)
6970 {
6971 rtx result = distribute_and_simplify_rtx (x, 1);
6972 if (result)
6973 return result;
6974 }
6975 break;
6976
6977 case IOR:
6978 /* If we have (ior (and A B) C), apply the distributive law and then
6979 the inverse distributive law to see if things simplify. */
6980
6981 if (GET_CODE (op0) == AND)
6982 {
6983 rtx result = distribute_and_simplify_rtx (x, 0);
6984 if (result)
6985 return result;
6986 }
6987
6988 if (GET_CODE (op1) == AND)
6989 {
6990 rtx result = distribute_and_simplify_rtx (x, 1);
6991 if (result)
6992 return result;
6993 }
6994 break;
6995
6996 default:
6997 gcc_unreachable ();
6998 }
6999
7000 return x;
7001 }
7002 \f
7003 /* We consider ZERO_EXTRACT, SIGN_EXTRACT, and SIGN_EXTEND as "compound
7004 operations" because they can be replaced with two more basic operations.
7005 ZERO_EXTEND is also considered "compound" because it can be replaced with
7006 an AND operation, which is simpler, though only one operation.
7007
7008 The function expand_compound_operation is called with an rtx expression
7009 and will convert it to the appropriate shifts and AND operations,
7010 simplifying at each stage.
7011
7012 The function make_compound_operation is called to convert an expression
7013 consisting of shifts and ANDs into the equivalent compound expression.
7014 It is the inverse of this function, loosely speaking. */
7015
7016 static rtx
7017 expand_compound_operation (rtx x)
7018 {
7019 unsigned HOST_WIDE_INT pos = 0, len;
7020 int unsignedp = 0;
7021 unsigned int modewidth;
7022 rtx tem;
7023
7024 switch (GET_CODE (x))
7025 {
7026 case ZERO_EXTEND:
7027 unsignedp = 1;
7028 /* FALLTHRU */
7029 case SIGN_EXTEND:
7030 /* We can't necessarily use a const_int for a multiword mode;
7031 it depends on implicitly extending the value.
7032 Since we don't know the right way to extend it,
7033 we can't tell whether the implicit way is right.
7034
7035 Even for a mode that is no wider than a const_int,
7036 we can't win, because we need to sign extend one of its bits through
7037 the rest of it, and we don't know which bit. */
7038 if (CONST_INT_P (XEXP (x, 0)))
7039 return x;
7040
7041 /* Return if (subreg:MODE FROM 0) is not a safe replacement for
7042 (zero_extend:MODE FROM) or (sign_extend:MODE FROM). It is for any MEM
7043 because (SUBREG (MEM...)) is guaranteed to cause the MEM to be
7044 reloaded. If not for that, MEM's would very rarely be safe.
7045
7046 Reject MODEs bigger than a word, because we might not be able
7047 to reference a two-register group starting with an arbitrary register
7048 (and currently gen_lowpart might crash for a SUBREG). */
7049
7050 if (GET_MODE_SIZE (GET_MODE (XEXP (x, 0))) > UNITS_PER_WORD)
7051 return x;
7052
7053 /* Reject MODEs that aren't scalar integers because turning vector
7054 or complex modes into shifts causes problems. */
7055
7056 if (! SCALAR_INT_MODE_P (GET_MODE (XEXP (x, 0))))
7057 return x;
7058
7059 len = GET_MODE_PRECISION (GET_MODE (XEXP (x, 0)));
7060 /* If the inner object has VOIDmode (the only way this can happen
7061 is if it is an ASM_OPERANDS), we can't do anything since we don't
7062 know how much masking to do. */
7063 if (len == 0)
7064 return x;
7065
7066 break;
7067
7068 case ZERO_EXTRACT:
7069 unsignedp = 1;
7070
7071 /* fall through */
7072
7073 case SIGN_EXTRACT:
7074 /* If the operand is a CLOBBER, just return it. */
7075 if (GET_CODE (XEXP (x, 0)) == CLOBBER)
7076 return XEXP (x, 0);
7077
7078 if (!CONST_INT_P (XEXP (x, 1))
7079 || !CONST_INT_P (XEXP (x, 2))
7080 || GET_MODE (XEXP (x, 0)) == VOIDmode)
7081 return x;
7082
7083 /* Reject MODEs that aren't scalar integers because turning vector
7084 or complex modes into shifts causes problems. */
7085
7086 if (! SCALAR_INT_MODE_P (GET_MODE (XEXP (x, 0))))
7087 return x;
7088
7089 len = INTVAL (XEXP (x, 1));
7090 pos = INTVAL (XEXP (x, 2));
7091
7092 /* This should stay within the object being extracted, fail otherwise. */
7093 if (len + pos > GET_MODE_PRECISION (GET_MODE (XEXP (x, 0))))
7094 return x;
7095
7096 if (BITS_BIG_ENDIAN)
7097 pos = GET_MODE_PRECISION (GET_MODE (XEXP (x, 0))) - len - pos;
7098
7099 break;
7100
7101 default:
7102 return x;
7103 }
7104 /* Convert sign extension to zero extension, if we know that the high
7105 bit is not set, as this is easier to optimize. It will be converted
7106 back to cheaper alternative in make_extraction. */
7107 if (GET_CODE (x) == SIGN_EXTEND
7108 && (HWI_COMPUTABLE_MODE_P (GET_MODE (x))
7109 && ((nonzero_bits (XEXP (x, 0), GET_MODE (XEXP (x, 0)))
7110 & ~(((unsigned HOST_WIDE_INT)
7111 GET_MODE_MASK (GET_MODE (XEXP (x, 0))))
7112 >> 1))
7113 == 0)))
7114 {
7115 machine_mode mode = GET_MODE (x);
7116 rtx temp = gen_rtx_ZERO_EXTEND (mode, XEXP (x, 0));
7117 rtx temp2 = expand_compound_operation (temp);
7118
7119 /* Make sure this is a profitable operation. */
7120 if (set_src_cost (x, mode, optimize_this_for_speed_p)
7121 > set_src_cost (temp2, mode, optimize_this_for_speed_p))
7122 return temp2;
7123 else if (set_src_cost (x, mode, optimize_this_for_speed_p)
7124 > set_src_cost (temp, mode, optimize_this_for_speed_p))
7125 return temp;
7126 else
7127 return x;
7128 }
7129
7130 /* We can optimize some special cases of ZERO_EXTEND. */
7131 if (GET_CODE (x) == ZERO_EXTEND)
7132 {
7133 /* (zero_extend:DI (truncate:SI foo:DI)) is just foo:DI if we
7134 know that the last value didn't have any inappropriate bits
7135 set. */
7136 if (GET_CODE (XEXP (x, 0)) == TRUNCATE
7137 && GET_MODE (XEXP (XEXP (x, 0), 0)) == GET_MODE (x)
7138 && HWI_COMPUTABLE_MODE_P (GET_MODE (x))
7139 && (nonzero_bits (XEXP (XEXP (x, 0), 0), GET_MODE (x))
7140 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
7141 return XEXP (XEXP (x, 0), 0);
7142
7143 /* Likewise for (zero_extend:DI (subreg:SI foo:DI 0)). */
7144 if (GET_CODE (XEXP (x, 0)) == SUBREG
7145 && GET_MODE (SUBREG_REG (XEXP (x, 0))) == GET_MODE (x)
7146 && subreg_lowpart_p (XEXP (x, 0))
7147 && HWI_COMPUTABLE_MODE_P (GET_MODE (x))
7148 && (nonzero_bits (SUBREG_REG (XEXP (x, 0)), GET_MODE (x))
7149 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
7150 return SUBREG_REG (XEXP (x, 0));
7151
7152 /* (zero_extend:DI (truncate:SI foo:DI)) is just foo:DI when foo
7153 is a comparison and STORE_FLAG_VALUE permits. This is like
7154 the first case, but it works even when GET_MODE (x) is larger
7155 than HOST_WIDE_INT. */
7156 if (GET_CODE (XEXP (x, 0)) == TRUNCATE
7157 && GET_MODE (XEXP (XEXP (x, 0), 0)) == GET_MODE (x)
7158 && COMPARISON_P (XEXP (XEXP (x, 0), 0))
7159 && (GET_MODE_PRECISION (GET_MODE (XEXP (x, 0)))
7160 <= HOST_BITS_PER_WIDE_INT)
7161 && (STORE_FLAG_VALUE & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
7162 return XEXP (XEXP (x, 0), 0);
7163
7164 /* Likewise for (zero_extend:DI (subreg:SI foo:DI 0)). */
7165 if (GET_CODE (XEXP (x, 0)) == SUBREG
7166 && GET_MODE (SUBREG_REG (XEXP (x, 0))) == GET_MODE (x)
7167 && subreg_lowpart_p (XEXP (x, 0))
7168 && COMPARISON_P (SUBREG_REG (XEXP (x, 0)))
7169 && (GET_MODE_PRECISION (GET_MODE (XEXP (x, 0)))
7170 <= HOST_BITS_PER_WIDE_INT)
7171 && (STORE_FLAG_VALUE & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
7172 return SUBREG_REG (XEXP (x, 0));
7173
7174 }
7175
7176 /* If we reach here, we want to return a pair of shifts. The inner
7177 shift is a left shift of BITSIZE - POS - LEN bits. The outer
7178 shift is a right shift of BITSIZE - LEN bits. It is arithmetic or
7179 logical depending on the value of UNSIGNEDP.
7180
7181 If this was a ZERO_EXTEND or ZERO_EXTRACT, this pair of shifts will be
7182 converted into an AND of a shift.
7183
7184 We must check for the case where the left shift would have a negative
7185 count. This can happen in a case like (x >> 31) & 255 on machines
7186 that can't shift by a constant. On those machines, we would first
7187 combine the shift with the AND to produce a variable-position
7188 extraction. Then the constant of 31 would be substituted in
7189 to produce such a position. */
7190
7191 modewidth = GET_MODE_PRECISION (GET_MODE (x));
7192 if (modewidth >= pos + len)
7193 {
7194 machine_mode mode = GET_MODE (x);
7195 tem = gen_lowpart (mode, XEXP (x, 0));
7196 if (!tem || GET_CODE (tem) == CLOBBER)
7197 return x;
7198 tem = simplify_shift_const (NULL_RTX, ASHIFT, mode,
7199 tem, modewidth - pos - len);
7200 tem = simplify_shift_const (NULL_RTX, unsignedp ? LSHIFTRT : ASHIFTRT,
7201 mode, tem, modewidth - len);
7202 }
7203 else if (unsignedp && len < HOST_BITS_PER_WIDE_INT)
7204 tem = simplify_and_const_int (NULL_RTX, GET_MODE (x),
7205 simplify_shift_const (NULL_RTX, LSHIFTRT,
7206 GET_MODE (x),
7207 XEXP (x, 0), pos),
7208 (HOST_WIDE_INT_1U << len) - 1);
7209 else
7210 /* Any other cases we can't handle. */
7211 return x;
7212
7213 /* If we couldn't do this for some reason, return the original
7214 expression. */
7215 if (GET_CODE (tem) == CLOBBER)
7216 return x;
7217
7218 return tem;
7219 }
7220 \f
7221 /* X is a SET which contains an assignment of one object into
7222 a part of another (such as a bit-field assignment, STRICT_LOW_PART,
7223 or certain SUBREGS). If possible, convert it into a series of
7224 logical operations.
7225
7226 We half-heartedly support variable positions, but do not at all
7227 support variable lengths. */
7228
7229 static const_rtx
7230 expand_field_assignment (const_rtx x)
7231 {
7232 rtx inner;
7233 rtx pos; /* Always counts from low bit. */
7234 int len;
7235 rtx mask, cleared, masked;
7236 machine_mode compute_mode;
7237
7238 /* Loop until we find something we can't simplify. */
7239 while (1)
7240 {
7241 if (GET_CODE (SET_DEST (x)) == STRICT_LOW_PART
7242 && GET_CODE (XEXP (SET_DEST (x), 0)) == SUBREG)
7243 {
7244 inner = SUBREG_REG (XEXP (SET_DEST (x), 0));
7245 len = GET_MODE_PRECISION (GET_MODE (XEXP (SET_DEST (x), 0)));
7246 pos = GEN_INT (subreg_lsb (XEXP (SET_DEST (x), 0)));
7247 }
7248 else if (GET_CODE (SET_DEST (x)) == ZERO_EXTRACT
7249 && CONST_INT_P (XEXP (SET_DEST (x), 1)))
7250 {
7251 inner = XEXP (SET_DEST (x), 0);
7252 len = INTVAL (XEXP (SET_DEST (x), 1));
7253 pos = XEXP (SET_DEST (x), 2);
7254
7255 /* A constant position should stay within the width of INNER. */
7256 if (CONST_INT_P (pos)
7257 && INTVAL (pos) + len > GET_MODE_PRECISION (GET_MODE (inner)))
7258 break;
7259
7260 if (BITS_BIG_ENDIAN)
7261 {
7262 if (CONST_INT_P (pos))
7263 pos = GEN_INT (GET_MODE_PRECISION (GET_MODE (inner)) - len
7264 - INTVAL (pos));
7265 else if (GET_CODE (pos) == MINUS
7266 && CONST_INT_P (XEXP (pos, 1))
7267 && (INTVAL (XEXP (pos, 1))
7268 == GET_MODE_PRECISION (GET_MODE (inner)) - len))
7269 /* If position is ADJUST - X, new position is X. */
7270 pos = XEXP (pos, 0);
7271 else
7272 {
7273 HOST_WIDE_INT prec = GET_MODE_PRECISION (GET_MODE (inner));
7274 pos = simplify_gen_binary (MINUS, GET_MODE (pos),
7275 gen_int_mode (prec - len,
7276 GET_MODE (pos)),
7277 pos);
7278 }
7279 }
7280 }
7281
7282 /* A SUBREG between two modes that occupy the same numbers of words
7283 can be done by moving the SUBREG to the source. */
7284 else if (GET_CODE (SET_DEST (x)) == SUBREG
7285 /* We need SUBREGs to compute nonzero_bits properly. */
7286 && nonzero_sign_valid
7287 && (((GET_MODE_SIZE (GET_MODE (SET_DEST (x)))
7288 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
7289 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (x))))
7290 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)))
7291 {
7292 x = gen_rtx_SET (SUBREG_REG (SET_DEST (x)),
7293 gen_lowpart
7294 (GET_MODE (SUBREG_REG (SET_DEST (x))),
7295 SET_SRC (x)));
7296 continue;
7297 }
7298 else
7299 break;
7300
7301 while (GET_CODE (inner) == SUBREG && subreg_lowpart_p (inner))
7302 inner = SUBREG_REG (inner);
7303
7304 compute_mode = GET_MODE (inner);
7305
7306 /* Don't attempt bitwise arithmetic on non scalar integer modes. */
7307 if (! SCALAR_INT_MODE_P (compute_mode))
7308 {
7309 machine_mode imode;
7310
7311 /* Don't do anything for vector or complex integral types. */
7312 if (! FLOAT_MODE_P (compute_mode))
7313 break;
7314
7315 /* Try to find an integral mode to pun with. */
7316 imode = mode_for_size (GET_MODE_BITSIZE (compute_mode), MODE_INT, 0);
7317 if (imode == BLKmode)
7318 break;
7319
7320 compute_mode = imode;
7321 inner = gen_lowpart (imode, inner);
7322 }
7323
7324 /* Compute a mask of LEN bits, if we can do this on the host machine. */
7325 if (len >= HOST_BITS_PER_WIDE_INT)
7326 break;
7327
7328 /* Don't try to compute in too wide unsupported modes. */
7329 if (!targetm.scalar_mode_supported_p (compute_mode))
7330 break;
7331
7332 /* Now compute the equivalent expression. Make a copy of INNER
7333 for the SET_DEST in case it is a MEM into which we will substitute;
7334 we don't want shared RTL in that case. */
7335 mask = gen_int_mode ((HOST_WIDE_INT_1U << len) - 1,
7336 compute_mode);
7337 cleared = simplify_gen_binary (AND, compute_mode,
7338 simplify_gen_unary (NOT, compute_mode,
7339 simplify_gen_binary (ASHIFT,
7340 compute_mode,
7341 mask, pos),
7342 compute_mode),
7343 inner);
7344 masked = simplify_gen_binary (ASHIFT, compute_mode,
7345 simplify_gen_binary (
7346 AND, compute_mode,
7347 gen_lowpart (compute_mode, SET_SRC (x)),
7348 mask),
7349 pos);
7350
7351 x = gen_rtx_SET (copy_rtx (inner),
7352 simplify_gen_binary (IOR, compute_mode,
7353 cleared, masked));
7354 }
7355
7356 return x;
7357 }
7358 \f
7359 /* Return an RTX for a reference to LEN bits of INNER. If POS_RTX is nonzero,
7360 it is an RTX that represents the (variable) starting position; otherwise,
7361 POS is the (constant) starting bit position. Both are counted from the LSB.
7362
7363 UNSIGNEDP is nonzero for an unsigned reference and zero for a signed one.
7364
7365 IN_DEST is nonzero if this is a reference in the destination of a SET.
7366 This is used when a ZERO_ or SIGN_EXTRACT isn't needed. If nonzero,
7367 a STRICT_LOW_PART will be used, if zero, ZERO_EXTEND or SIGN_EXTEND will
7368 be used.
7369
7370 IN_COMPARE is nonzero if we are in a COMPARE. This means that a
7371 ZERO_EXTRACT should be built even for bits starting at bit 0.
7372
7373 MODE is the desired mode of the result (if IN_DEST == 0).
7374
7375 The result is an RTX for the extraction or NULL_RTX if the target
7376 can't handle it. */
7377
7378 static rtx
7379 make_extraction (machine_mode mode, rtx inner, HOST_WIDE_INT pos,
7380 rtx pos_rtx, unsigned HOST_WIDE_INT len, int unsignedp,
7381 int in_dest, int in_compare)
7382 {
7383 /* This mode describes the size of the storage area
7384 to fetch the overall value from. Within that, we
7385 ignore the POS lowest bits, etc. */
7386 machine_mode is_mode = GET_MODE (inner);
7387 machine_mode inner_mode;
7388 machine_mode wanted_inner_mode;
7389 machine_mode wanted_inner_reg_mode = word_mode;
7390 machine_mode pos_mode = word_mode;
7391 machine_mode extraction_mode = word_mode;
7392 machine_mode tmode = mode_for_size (len, MODE_INT, 1);
7393 rtx new_rtx = 0;
7394 rtx orig_pos_rtx = pos_rtx;
7395 HOST_WIDE_INT orig_pos;
7396
7397 if (pos_rtx && CONST_INT_P (pos_rtx))
7398 pos = INTVAL (pos_rtx), pos_rtx = 0;
7399
7400 if (GET_CODE (inner) == SUBREG && subreg_lowpart_p (inner))
7401 {
7402 /* If going from (subreg:SI (mem:QI ...)) to (mem:QI ...),
7403 consider just the QI as the memory to extract from.
7404 The subreg adds or removes high bits; its mode is
7405 irrelevant to the meaning of this extraction,
7406 since POS and LEN count from the lsb. */
7407 if (MEM_P (SUBREG_REG (inner)))
7408 is_mode = GET_MODE (SUBREG_REG (inner));
7409 inner = SUBREG_REG (inner);
7410 }
7411 else if (GET_CODE (inner) == ASHIFT
7412 && CONST_INT_P (XEXP (inner, 1))
7413 && pos_rtx == 0 && pos == 0
7414 && len > UINTVAL (XEXP (inner, 1)))
7415 {
7416 /* We're extracting the least significant bits of an rtx
7417 (ashift X (const_int C)), where LEN > C. Extract the
7418 least significant (LEN - C) bits of X, giving an rtx
7419 whose mode is MODE, then shift it left C times. */
7420 new_rtx = make_extraction (mode, XEXP (inner, 0),
7421 0, 0, len - INTVAL (XEXP (inner, 1)),
7422 unsignedp, in_dest, in_compare);
7423 if (new_rtx != 0)
7424 return gen_rtx_ASHIFT (mode, new_rtx, XEXP (inner, 1));
7425 }
7426 else if (GET_CODE (inner) == TRUNCATE)
7427 inner = XEXP (inner, 0);
7428
7429 inner_mode = GET_MODE (inner);
7430
7431 /* See if this can be done without an extraction. We never can if the
7432 width of the field is not the same as that of some integer mode. For
7433 registers, we can only avoid the extraction if the position is at the
7434 low-order bit and this is either not in the destination or we have the
7435 appropriate STRICT_LOW_PART operation available.
7436
7437 For MEM, we can avoid an extract if the field starts on an appropriate
7438 boundary and we can change the mode of the memory reference. */
7439
7440 if (tmode != BLKmode
7441 && ((pos_rtx == 0 && (pos % BITS_PER_WORD) == 0
7442 && !MEM_P (inner)
7443 && (pos == 0 || REG_P (inner))
7444 && (inner_mode == tmode
7445 || !REG_P (inner)
7446 || TRULY_NOOP_TRUNCATION_MODES_P (tmode, inner_mode)
7447 || reg_truncated_to_mode (tmode, inner))
7448 && (! in_dest
7449 || (REG_P (inner)
7450 && have_insn_for (STRICT_LOW_PART, tmode))))
7451 || (MEM_P (inner) && pos_rtx == 0
7452 && (pos
7453 % (STRICT_ALIGNMENT ? GET_MODE_ALIGNMENT (tmode)
7454 : BITS_PER_UNIT)) == 0
7455 /* We can't do this if we are widening INNER_MODE (it
7456 may not be aligned, for one thing). */
7457 && !paradoxical_subreg_p (tmode, inner_mode)
7458 && (inner_mode == tmode
7459 || (! mode_dependent_address_p (XEXP (inner, 0),
7460 MEM_ADDR_SPACE (inner))
7461 && ! MEM_VOLATILE_P (inner))))))
7462 {
7463 /* If INNER is a MEM, make a new MEM that encompasses just the desired
7464 field. If the original and current mode are the same, we need not
7465 adjust the offset. Otherwise, we do if bytes big endian.
7466
7467 If INNER is not a MEM, get a piece consisting of just the field
7468 of interest (in this case POS % BITS_PER_WORD must be 0). */
7469
7470 if (MEM_P (inner))
7471 {
7472 HOST_WIDE_INT offset;
7473
7474 /* POS counts from lsb, but make OFFSET count in memory order. */
7475 if (BYTES_BIG_ENDIAN)
7476 offset = (GET_MODE_PRECISION (is_mode) - len - pos) / BITS_PER_UNIT;
7477 else
7478 offset = pos / BITS_PER_UNIT;
7479
7480 new_rtx = adjust_address_nv (inner, tmode, offset);
7481 }
7482 else if (REG_P (inner))
7483 {
7484 if (tmode != inner_mode)
7485 {
7486 /* We can't call gen_lowpart in a DEST since we
7487 always want a SUBREG (see below) and it would sometimes
7488 return a new hard register. */
7489 if (pos || in_dest)
7490 {
7491 HOST_WIDE_INT final_word = pos / BITS_PER_WORD;
7492
7493 if (WORDS_BIG_ENDIAN
7494 && GET_MODE_SIZE (inner_mode) > UNITS_PER_WORD)
7495 final_word = ((GET_MODE_SIZE (inner_mode)
7496 - GET_MODE_SIZE (tmode))
7497 / UNITS_PER_WORD) - final_word;
7498
7499 final_word *= UNITS_PER_WORD;
7500 if (BYTES_BIG_ENDIAN &&
7501 GET_MODE_SIZE (inner_mode) > GET_MODE_SIZE (tmode))
7502 final_word += (GET_MODE_SIZE (inner_mode)
7503 - GET_MODE_SIZE (tmode)) % UNITS_PER_WORD;
7504
7505 /* Avoid creating invalid subregs, for example when
7506 simplifying (x>>32)&255. */
7507 if (!validate_subreg (tmode, inner_mode, inner, final_word))
7508 return NULL_RTX;
7509
7510 new_rtx = gen_rtx_SUBREG (tmode, inner, final_word);
7511 }
7512 else
7513 new_rtx = gen_lowpart (tmode, inner);
7514 }
7515 else
7516 new_rtx = inner;
7517 }
7518 else
7519 new_rtx = force_to_mode (inner, tmode,
7520 len >= HOST_BITS_PER_WIDE_INT
7521 ? HOST_WIDE_INT_M1U
7522 : (HOST_WIDE_INT_1U << len) - 1, 0);
7523
7524 /* If this extraction is going into the destination of a SET,
7525 make a STRICT_LOW_PART unless we made a MEM. */
7526
7527 if (in_dest)
7528 return (MEM_P (new_rtx) ? new_rtx
7529 : (GET_CODE (new_rtx) != SUBREG
7530 ? gen_rtx_CLOBBER (tmode, const0_rtx)
7531 : gen_rtx_STRICT_LOW_PART (VOIDmode, new_rtx)));
7532
7533 if (mode == tmode)
7534 return new_rtx;
7535
7536 if (CONST_SCALAR_INT_P (new_rtx))
7537 return simplify_unary_operation (unsignedp ? ZERO_EXTEND : SIGN_EXTEND,
7538 mode, new_rtx, tmode);
7539
7540 /* If we know that no extraneous bits are set, and that the high
7541 bit is not set, convert the extraction to the cheaper of
7542 sign and zero extension, that are equivalent in these cases. */
7543 if (flag_expensive_optimizations
7544 && (HWI_COMPUTABLE_MODE_P (tmode)
7545 && ((nonzero_bits (new_rtx, tmode)
7546 & ~(((unsigned HOST_WIDE_INT)GET_MODE_MASK (tmode)) >> 1))
7547 == 0)))
7548 {
7549 rtx temp = gen_rtx_ZERO_EXTEND (mode, new_rtx);
7550 rtx temp1 = gen_rtx_SIGN_EXTEND (mode, new_rtx);
7551
7552 /* Prefer ZERO_EXTENSION, since it gives more information to
7553 backends. */
7554 if (set_src_cost (temp, mode, optimize_this_for_speed_p)
7555 <= set_src_cost (temp1, mode, optimize_this_for_speed_p))
7556 return temp;
7557 return temp1;
7558 }
7559
7560 /* Otherwise, sign- or zero-extend unless we already are in the
7561 proper mode. */
7562
7563 return (gen_rtx_fmt_e (unsignedp ? ZERO_EXTEND : SIGN_EXTEND,
7564 mode, new_rtx));
7565 }
7566
7567 /* Unless this is a COMPARE or we have a funny memory reference,
7568 don't do anything with zero-extending field extracts starting at
7569 the low-order bit since they are simple AND operations. */
7570 if (pos_rtx == 0 && pos == 0 && ! in_dest
7571 && ! in_compare && unsignedp)
7572 return 0;
7573
7574 /* Unless INNER is not MEM, reject this if we would be spanning bytes or
7575 if the position is not a constant and the length is not 1. In all
7576 other cases, we would only be going outside our object in cases when
7577 an original shift would have been undefined. */
7578 if (MEM_P (inner)
7579 && ((pos_rtx == 0 && pos + len > GET_MODE_PRECISION (is_mode))
7580 || (pos_rtx != 0 && len != 1)))
7581 return 0;
7582
7583 enum extraction_pattern pattern = (in_dest ? EP_insv
7584 : unsignedp ? EP_extzv : EP_extv);
7585
7586 /* If INNER is not from memory, we want it to have the mode of a register
7587 extraction pattern's structure operand, or word_mode if there is no
7588 such pattern. The same applies to extraction_mode and pos_mode
7589 and their respective operands.
7590
7591 For memory, assume that the desired extraction_mode and pos_mode
7592 are the same as for a register operation, since at present we don't
7593 have named patterns for aligned memory structures. */
7594 struct extraction_insn insn;
7595 if (get_best_reg_extraction_insn (&insn, pattern,
7596 GET_MODE_BITSIZE (inner_mode), mode))
7597 {
7598 wanted_inner_reg_mode = insn.struct_mode;
7599 pos_mode = insn.pos_mode;
7600 extraction_mode = insn.field_mode;
7601 }
7602
7603 /* Never narrow an object, since that might not be safe. */
7604
7605 if (mode != VOIDmode
7606 && GET_MODE_SIZE (extraction_mode) < GET_MODE_SIZE (mode))
7607 extraction_mode = mode;
7608
7609 if (!MEM_P (inner))
7610 wanted_inner_mode = wanted_inner_reg_mode;
7611 else
7612 {
7613 /* Be careful not to go beyond the extracted object and maintain the
7614 natural alignment of the memory. */
7615 wanted_inner_mode = smallest_mode_for_size (len, MODE_INT);
7616 while (pos % GET_MODE_BITSIZE (wanted_inner_mode) + len
7617 > GET_MODE_BITSIZE (wanted_inner_mode))
7618 {
7619 wanted_inner_mode = GET_MODE_WIDER_MODE (wanted_inner_mode);
7620 gcc_assert (wanted_inner_mode != VOIDmode);
7621 }
7622 }
7623
7624 orig_pos = pos;
7625
7626 if (BITS_BIG_ENDIAN)
7627 {
7628 /* POS is passed as if BITS_BIG_ENDIAN == 0, so we need to convert it to
7629 BITS_BIG_ENDIAN style. If position is constant, compute new
7630 position. Otherwise, build subtraction.
7631 Note that POS is relative to the mode of the original argument.
7632 If it's a MEM we need to recompute POS relative to that.
7633 However, if we're extracting from (or inserting into) a register,
7634 we want to recompute POS relative to wanted_inner_mode. */
7635 int width = (MEM_P (inner)
7636 ? GET_MODE_BITSIZE (is_mode)
7637 : GET_MODE_BITSIZE (wanted_inner_mode));
7638
7639 if (pos_rtx == 0)
7640 pos = width - len - pos;
7641 else
7642 pos_rtx
7643 = gen_rtx_MINUS (GET_MODE (pos_rtx),
7644 gen_int_mode (width - len, GET_MODE (pos_rtx)),
7645 pos_rtx);
7646 /* POS may be less than 0 now, but we check for that below.
7647 Note that it can only be less than 0 if !MEM_P (inner). */
7648 }
7649
7650 /* If INNER has a wider mode, and this is a constant extraction, try to
7651 make it smaller and adjust the byte to point to the byte containing
7652 the value. */
7653 if (wanted_inner_mode != VOIDmode
7654 && inner_mode != wanted_inner_mode
7655 && ! pos_rtx
7656 && GET_MODE_SIZE (wanted_inner_mode) < GET_MODE_SIZE (is_mode)
7657 && MEM_P (inner)
7658 && ! mode_dependent_address_p (XEXP (inner, 0), MEM_ADDR_SPACE (inner))
7659 && ! MEM_VOLATILE_P (inner))
7660 {
7661 int offset = 0;
7662
7663 /* The computations below will be correct if the machine is big
7664 endian in both bits and bytes or little endian in bits and bytes.
7665 If it is mixed, we must adjust. */
7666
7667 /* If bytes are big endian and we had a paradoxical SUBREG, we must
7668 adjust OFFSET to compensate. */
7669 if (BYTES_BIG_ENDIAN
7670 && paradoxical_subreg_p (is_mode, inner_mode))
7671 offset -= GET_MODE_SIZE (is_mode) - GET_MODE_SIZE (inner_mode);
7672
7673 /* We can now move to the desired byte. */
7674 offset += (pos / GET_MODE_BITSIZE (wanted_inner_mode))
7675 * GET_MODE_SIZE (wanted_inner_mode);
7676 pos %= GET_MODE_BITSIZE (wanted_inner_mode);
7677
7678 if (BYTES_BIG_ENDIAN != BITS_BIG_ENDIAN
7679 && is_mode != wanted_inner_mode)
7680 offset = (GET_MODE_SIZE (is_mode)
7681 - GET_MODE_SIZE (wanted_inner_mode) - offset);
7682
7683 inner = adjust_address_nv (inner, wanted_inner_mode, offset);
7684 }
7685
7686 /* If INNER is not memory, get it into the proper mode. If we are changing
7687 its mode, POS must be a constant and smaller than the size of the new
7688 mode. */
7689 else if (!MEM_P (inner))
7690 {
7691 /* On the LHS, don't create paradoxical subregs implicitely truncating
7692 the register unless TRULY_NOOP_TRUNCATION. */
7693 if (in_dest
7694 && !TRULY_NOOP_TRUNCATION_MODES_P (GET_MODE (inner),
7695 wanted_inner_mode))
7696 return NULL_RTX;
7697
7698 if (GET_MODE (inner) != wanted_inner_mode
7699 && (pos_rtx != 0
7700 || orig_pos + len > GET_MODE_BITSIZE (wanted_inner_mode)))
7701 return NULL_RTX;
7702
7703 if (orig_pos < 0)
7704 return NULL_RTX;
7705
7706 inner = force_to_mode (inner, wanted_inner_mode,
7707 pos_rtx
7708 || len + orig_pos >= HOST_BITS_PER_WIDE_INT
7709 ? HOST_WIDE_INT_M1U
7710 : (((HOST_WIDE_INT_1U << len) - 1)
7711 << orig_pos),
7712 0);
7713 }
7714
7715 /* Adjust mode of POS_RTX, if needed. If we want a wider mode, we
7716 have to zero extend. Otherwise, we can just use a SUBREG. */
7717 if (pos_rtx != 0
7718 && GET_MODE_SIZE (pos_mode) > GET_MODE_SIZE (GET_MODE (pos_rtx)))
7719 {
7720 rtx temp = simplify_gen_unary (ZERO_EXTEND, pos_mode, pos_rtx,
7721 GET_MODE (pos_rtx));
7722
7723 /* If we know that no extraneous bits are set, and that the high
7724 bit is not set, convert extraction to cheaper one - either
7725 SIGN_EXTENSION or ZERO_EXTENSION, that are equivalent in these
7726 cases. */
7727 if (flag_expensive_optimizations
7728 && (HWI_COMPUTABLE_MODE_P (GET_MODE (pos_rtx))
7729 && ((nonzero_bits (pos_rtx, GET_MODE (pos_rtx))
7730 & ~(((unsigned HOST_WIDE_INT)
7731 GET_MODE_MASK (GET_MODE (pos_rtx)))
7732 >> 1))
7733 == 0)))
7734 {
7735 rtx temp1 = simplify_gen_unary (SIGN_EXTEND, pos_mode, pos_rtx,
7736 GET_MODE (pos_rtx));
7737
7738 /* Prefer ZERO_EXTENSION, since it gives more information to
7739 backends. */
7740 if (set_src_cost (temp1, pos_mode, optimize_this_for_speed_p)
7741 < set_src_cost (temp, pos_mode, optimize_this_for_speed_p))
7742 temp = temp1;
7743 }
7744 pos_rtx = temp;
7745 }
7746
7747 /* Make POS_RTX unless we already have it and it is correct. If we don't
7748 have a POS_RTX but we do have an ORIG_POS_RTX, the latter must
7749 be a CONST_INT. */
7750 if (pos_rtx == 0 && orig_pos_rtx != 0 && INTVAL (orig_pos_rtx) == pos)
7751 pos_rtx = orig_pos_rtx;
7752
7753 else if (pos_rtx == 0)
7754 pos_rtx = GEN_INT (pos);
7755
7756 /* Make the required operation. See if we can use existing rtx. */
7757 new_rtx = gen_rtx_fmt_eee (unsignedp ? ZERO_EXTRACT : SIGN_EXTRACT,
7758 extraction_mode, inner, GEN_INT (len), pos_rtx);
7759 if (! in_dest)
7760 new_rtx = gen_lowpart (mode, new_rtx);
7761
7762 return new_rtx;
7763 }
7764 \f
7765 /* See if X contains an ASHIFT of COUNT or more bits that can be commuted
7766 with any other operations in X. Return X without that shift if so. */
7767
7768 static rtx
7769 extract_left_shift (rtx x, int count)
7770 {
7771 enum rtx_code code = GET_CODE (x);
7772 machine_mode mode = GET_MODE (x);
7773 rtx tem;
7774
7775 switch (code)
7776 {
7777 case ASHIFT:
7778 /* This is the shift itself. If it is wide enough, we will return
7779 either the value being shifted if the shift count is equal to
7780 COUNT or a shift for the difference. */
7781 if (CONST_INT_P (XEXP (x, 1))
7782 && INTVAL (XEXP (x, 1)) >= count)
7783 return simplify_shift_const (NULL_RTX, ASHIFT, mode, XEXP (x, 0),
7784 INTVAL (XEXP (x, 1)) - count);
7785 break;
7786
7787 case NEG: case NOT:
7788 if ((tem = extract_left_shift (XEXP (x, 0), count)) != 0)
7789 return simplify_gen_unary (code, mode, tem, mode);
7790
7791 break;
7792
7793 case PLUS: case IOR: case XOR: case AND:
7794 /* If we can safely shift this constant and we find the inner shift,
7795 make a new operation. */
7796 if (CONST_INT_P (XEXP (x, 1))
7797 && (UINTVAL (XEXP (x, 1))
7798 & (((HOST_WIDE_INT_1U << count)) - 1)) == 0
7799 && (tem = extract_left_shift (XEXP (x, 0), count)) != 0)
7800 {
7801 HOST_WIDE_INT val = INTVAL (XEXP (x, 1)) >> count;
7802 return simplify_gen_binary (code, mode, tem,
7803 gen_int_mode (val, mode));
7804 }
7805 break;
7806
7807 default:
7808 break;
7809 }
7810
7811 return 0;
7812 }
7813 \f
7814 /* Subroutine of make_compound_operation. *X_PTR is the rtx at the current
7815 level of the expression and MODE is its mode. IN_CODE is as for
7816 make_compound_operation. *NEXT_CODE_PTR is the value of IN_CODE
7817 that should be used when recursing on operands of *X_PTR.
7818
7819 There are two possible actions:
7820
7821 - Return null. This tells the caller to recurse on *X_PTR with IN_CODE
7822 equal to *NEXT_CODE_PTR, after which *X_PTR holds the final value.
7823
7824 - Return a new rtx, which the caller returns directly. */
7825
7826 static rtx
7827 make_compound_operation_int (machine_mode mode, rtx *x_ptr,
7828 enum rtx_code in_code,
7829 enum rtx_code *next_code_ptr)
7830 {
7831 rtx x = *x_ptr;
7832 enum rtx_code next_code = *next_code_ptr;
7833 enum rtx_code code = GET_CODE (x);
7834 int mode_width = GET_MODE_PRECISION (mode);
7835 rtx rhs, lhs;
7836 rtx new_rtx = 0;
7837 int i;
7838 rtx tem;
7839 bool equality_comparison = false;
7840
7841 if (in_code == EQ)
7842 {
7843 equality_comparison = true;
7844 in_code = COMPARE;
7845 }
7846
7847 /* Process depending on the code of this operation. If NEW is set
7848 nonzero, it will be returned. */
7849
7850 switch (code)
7851 {
7852 case ASHIFT:
7853 /* Convert shifts by constants into multiplications if inside
7854 an address. */
7855 if (in_code == MEM && CONST_INT_P (XEXP (x, 1))
7856 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT
7857 && INTVAL (XEXP (x, 1)) >= 0)
7858 {
7859 HOST_WIDE_INT count = INTVAL (XEXP (x, 1));
7860 HOST_WIDE_INT multval = HOST_WIDE_INT_1 << count;
7861
7862 new_rtx = make_compound_operation (XEXP (x, 0), next_code);
7863 if (GET_CODE (new_rtx) == NEG)
7864 {
7865 new_rtx = XEXP (new_rtx, 0);
7866 multval = -multval;
7867 }
7868 multval = trunc_int_for_mode (multval, mode);
7869 new_rtx = gen_rtx_MULT (mode, new_rtx, gen_int_mode (multval, mode));
7870 }
7871 break;
7872
7873 case PLUS:
7874 lhs = XEXP (x, 0);
7875 rhs = XEXP (x, 1);
7876 lhs = make_compound_operation (lhs, next_code);
7877 rhs = make_compound_operation (rhs, next_code);
7878 if (GET_CODE (lhs) == MULT && GET_CODE (XEXP (lhs, 0)) == NEG)
7879 {
7880 tem = simplify_gen_binary (MULT, mode, XEXP (XEXP (lhs, 0), 0),
7881 XEXP (lhs, 1));
7882 new_rtx = simplify_gen_binary (MINUS, mode, rhs, tem);
7883 }
7884 else if (GET_CODE (lhs) == MULT
7885 && (CONST_INT_P (XEXP (lhs, 1)) && INTVAL (XEXP (lhs, 1)) < 0))
7886 {
7887 tem = simplify_gen_binary (MULT, mode, XEXP (lhs, 0),
7888 simplify_gen_unary (NEG, mode,
7889 XEXP (lhs, 1),
7890 mode));
7891 new_rtx = simplify_gen_binary (MINUS, mode, rhs, tem);
7892 }
7893 else
7894 {
7895 SUBST (XEXP (x, 0), lhs);
7896 SUBST (XEXP (x, 1), rhs);
7897 }
7898 maybe_swap_commutative_operands (x);
7899 return x;
7900
7901 case MINUS:
7902 lhs = XEXP (x, 0);
7903 rhs = XEXP (x, 1);
7904 lhs = make_compound_operation (lhs, next_code);
7905 rhs = make_compound_operation (rhs, next_code);
7906 if (GET_CODE (rhs) == MULT && GET_CODE (XEXP (rhs, 0)) == NEG)
7907 {
7908 tem = simplify_gen_binary (MULT, mode, XEXP (XEXP (rhs, 0), 0),
7909 XEXP (rhs, 1));
7910 return simplify_gen_binary (PLUS, mode, tem, lhs);
7911 }
7912 else if (GET_CODE (rhs) == MULT
7913 && (CONST_INT_P (XEXP (rhs, 1)) && INTVAL (XEXP (rhs, 1)) < 0))
7914 {
7915 tem = simplify_gen_binary (MULT, mode, XEXP (rhs, 0),
7916 simplify_gen_unary (NEG, mode,
7917 XEXP (rhs, 1),
7918 mode));
7919 return simplify_gen_binary (PLUS, mode, tem, lhs);
7920 }
7921 else
7922 {
7923 SUBST (XEXP (x, 0), lhs);
7924 SUBST (XEXP (x, 1), rhs);
7925 return x;
7926 }
7927
7928 case AND:
7929 /* If the second operand is not a constant, we can't do anything
7930 with it. */
7931 if (!CONST_INT_P (XEXP (x, 1)))
7932 break;
7933
7934 /* If the constant is a power of two minus one and the first operand
7935 is a logical right shift, make an extraction. */
7936 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
7937 && (i = exact_log2 (UINTVAL (XEXP (x, 1)) + 1)) >= 0)
7938 {
7939 new_rtx = make_compound_operation (XEXP (XEXP (x, 0), 0), next_code);
7940 new_rtx = make_extraction (mode, new_rtx, 0, XEXP (XEXP (x, 0), 1), i, 1,
7941 0, in_code == COMPARE);
7942 }
7943
7944 /* Same as previous, but for (subreg (lshiftrt ...)) in first op. */
7945 else if (GET_CODE (XEXP (x, 0)) == SUBREG
7946 && subreg_lowpart_p (XEXP (x, 0))
7947 && GET_CODE (SUBREG_REG (XEXP (x, 0))) == LSHIFTRT
7948 && (i = exact_log2 (UINTVAL (XEXP (x, 1)) + 1)) >= 0)
7949 {
7950 rtx inner_x0 = SUBREG_REG (XEXP (x, 0));
7951 machine_mode inner_mode = GET_MODE (inner_x0);
7952 new_rtx = make_compound_operation (XEXP (inner_x0, 0), next_code);
7953 new_rtx = make_extraction (inner_mode, new_rtx, 0,
7954 XEXP (inner_x0, 1),
7955 i, 1, 0, in_code == COMPARE);
7956
7957 /* If we narrowed the mode when dropping the subreg, then we lose. */
7958 if (GET_MODE_SIZE (inner_mode) < GET_MODE_SIZE (mode))
7959 new_rtx = NULL;
7960
7961 /* If that didn't give anything, see if the AND simplifies on
7962 its own. */
7963 if (!new_rtx && i >= 0)
7964 {
7965 new_rtx = make_compound_operation (XEXP (x, 0), next_code);
7966 new_rtx = make_extraction (mode, new_rtx, 0, NULL_RTX, i, 1,
7967 0, in_code == COMPARE);
7968 }
7969 }
7970 /* Same as previous, but for (xor/ior (lshiftrt...) (lshiftrt...)). */
7971 else if ((GET_CODE (XEXP (x, 0)) == XOR
7972 || GET_CODE (XEXP (x, 0)) == IOR)
7973 && GET_CODE (XEXP (XEXP (x, 0), 0)) == LSHIFTRT
7974 && GET_CODE (XEXP (XEXP (x, 0), 1)) == LSHIFTRT
7975 && (i = exact_log2 (UINTVAL (XEXP (x, 1)) + 1)) >= 0)
7976 {
7977 /* Apply the distributive law, and then try to make extractions. */
7978 new_rtx = gen_rtx_fmt_ee (GET_CODE (XEXP (x, 0)), mode,
7979 gen_rtx_AND (mode, XEXP (XEXP (x, 0), 0),
7980 XEXP (x, 1)),
7981 gen_rtx_AND (mode, XEXP (XEXP (x, 0), 1),
7982 XEXP (x, 1)));
7983 new_rtx = make_compound_operation (new_rtx, in_code);
7984 }
7985
7986 /* If we are have (and (rotate X C) M) and C is larger than the number
7987 of bits in M, this is an extraction. */
7988
7989 else if (GET_CODE (XEXP (x, 0)) == ROTATE
7990 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
7991 && (i = exact_log2 (UINTVAL (XEXP (x, 1)) + 1)) >= 0
7992 && i <= INTVAL (XEXP (XEXP (x, 0), 1)))
7993 {
7994 new_rtx = make_compound_operation (XEXP (XEXP (x, 0), 0), next_code);
7995 new_rtx = make_extraction (mode, new_rtx,
7996 (GET_MODE_PRECISION (mode)
7997 - INTVAL (XEXP (XEXP (x, 0), 1))),
7998 NULL_RTX, i, 1, 0, in_code == COMPARE);
7999 }
8000
8001 /* On machines without logical shifts, if the operand of the AND is
8002 a logical shift and our mask turns off all the propagated sign
8003 bits, we can replace the logical shift with an arithmetic shift. */
8004 else if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
8005 && !have_insn_for (LSHIFTRT, mode)
8006 && have_insn_for (ASHIFTRT, mode)
8007 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
8008 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
8009 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT
8010 && mode_width <= HOST_BITS_PER_WIDE_INT)
8011 {
8012 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
8013
8014 mask >>= INTVAL (XEXP (XEXP (x, 0), 1));
8015 if ((INTVAL (XEXP (x, 1)) & ~mask) == 0)
8016 SUBST (XEXP (x, 0),
8017 gen_rtx_ASHIFTRT (mode,
8018 make_compound_operation
8019 (XEXP (XEXP (x, 0), 0), next_code),
8020 XEXP (XEXP (x, 0), 1)));
8021 }
8022
8023 /* If the constant is one less than a power of two, this might be
8024 representable by an extraction even if no shift is present.
8025 If it doesn't end up being a ZERO_EXTEND, we will ignore it unless
8026 we are in a COMPARE. */
8027 else if ((i = exact_log2 (UINTVAL (XEXP (x, 1)) + 1)) >= 0)
8028 new_rtx = make_extraction (mode,
8029 make_compound_operation (XEXP (x, 0),
8030 next_code),
8031 0, NULL_RTX, i, 1, 0, in_code == COMPARE);
8032
8033 /* If we are in a comparison and this is an AND with a power of two,
8034 convert this into the appropriate bit extract. */
8035 else if (in_code == COMPARE
8036 && (i = exact_log2 (UINTVAL (XEXP (x, 1)))) >= 0
8037 && (equality_comparison || i < GET_MODE_PRECISION (mode) - 1))
8038 new_rtx = make_extraction (mode,
8039 make_compound_operation (XEXP (x, 0),
8040 next_code),
8041 i, NULL_RTX, 1, 1, 0, 1);
8042
8043 /* If the one operand is a paradoxical subreg of a register or memory and
8044 the constant (limited to the smaller mode) has only zero bits where
8045 the sub expression has known zero bits, this can be expressed as
8046 a zero_extend. */
8047 else if (GET_CODE (XEXP (x, 0)) == SUBREG)
8048 {
8049 rtx sub;
8050
8051 sub = XEXP (XEXP (x, 0), 0);
8052 machine_mode sub_mode = GET_MODE (sub);
8053 if ((REG_P (sub) || MEM_P (sub))
8054 && GET_MODE_PRECISION (sub_mode) < mode_width)
8055 {
8056 unsigned HOST_WIDE_INT mode_mask = GET_MODE_MASK (sub_mode);
8057 unsigned HOST_WIDE_INT mask;
8058
8059 /* original AND constant with all the known zero bits set */
8060 mask = UINTVAL (XEXP (x, 1)) | (~nonzero_bits (sub, sub_mode));
8061 if ((mask & mode_mask) == mode_mask)
8062 {
8063 new_rtx = make_compound_operation (sub, next_code);
8064 new_rtx = make_extraction (mode, new_rtx, 0, 0,
8065 GET_MODE_PRECISION (sub_mode),
8066 1, 0, in_code == COMPARE);
8067 }
8068 }
8069 }
8070
8071 break;
8072
8073 case LSHIFTRT:
8074 /* If the sign bit is known to be zero, replace this with an
8075 arithmetic shift. */
8076 if (have_insn_for (ASHIFTRT, mode)
8077 && ! have_insn_for (LSHIFTRT, mode)
8078 && mode_width <= HOST_BITS_PER_WIDE_INT
8079 && (nonzero_bits (XEXP (x, 0), mode) & (1 << (mode_width - 1))) == 0)
8080 {
8081 new_rtx = gen_rtx_ASHIFTRT (mode,
8082 make_compound_operation (XEXP (x, 0),
8083 next_code),
8084 XEXP (x, 1));
8085 break;
8086 }
8087
8088 /* fall through */
8089
8090 case ASHIFTRT:
8091 lhs = XEXP (x, 0);
8092 rhs = XEXP (x, 1);
8093
8094 /* If we have (ashiftrt (ashift foo C1) C2) with C2 >= C1,
8095 this is a SIGN_EXTRACT. */
8096 if (CONST_INT_P (rhs)
8097 && GET_CODE (lhs) == ASHIFT
8098 && CONST_INT_P (XEXP (lhs, 1))
8099 && INTVAL (rhs) >= INTVAL (XEXP (lhs, 1))
8100 && INTVAL (XEXP (lhs, 1)) >= 0
8101 && INTVAL (rhs) < mode_width)
8102 {
8103 new_rtx = make_compound_operation (XEXP (lhs, 0), next_code);
8104 new_rtx = make_extraction (mode, new_rtx,
8105 INTVAL (rhs) - INTVAL (XEXP (lhs, 1)),
8106 NULL_RTX, mode_width - INTVAL (rhs),
8107 code == LSHIFTRT, 0, in_code == COMPARE);
8108 break;
8109 }
8110
8111 /* See if we have operations between an ASHIFTRT and an ASHIFT.
8112 If so, try to merge the shifts into a SIGN_EXTEND. We could
8113 also do this for some cases of SIGN_EXTRACT, but it doesn't
8114 seem worth the effort; the case checked for occurs on Alpha. */
8115
8116 if (!OBJECT_P (lhs)
8117 && ! (GET_CODE (lhs) == SUBREG
8118 && (OBJECT_P (SUBREG_REG (lhs))))
8119 && CONST_INT_P (rhs)
8120 && INTVAL (rhs) >= 0
8121 && INTVAL (rhs) < HOST_BITS_PER_WIDE_INT
8122 && INTVAL (rhs) < mode_width
8123 && (new_rtx = extract_left_shift (lhs, INTVAL (rhs))) != 0)
8124 new_rtx = make_extraction (mode, make_compound_operation (new_rtx, next_code),
8125 0, NULL_RTX, mode_width - INTVAL (rhs),
8126 code == LSHIFTRT, 0, in_code == COMPARE);
8127
8128 break;
8129
8130 case SUBREG:
8131 /* Call ourselves recursively on the inner expression. If we are
8132 narrowing the object and it has a different RTL code from
8133 what it originally did, do this SUBREG as a force_to_mode. */
8134 {
8135 rtx inner = SUBREG_REG (x), simplified;
8136 enum rtx_code subreg_code = in_code;
8137
8138 /* If the SUBREG is masking of a logical right shift,
8139 make an extraction. */
8140 if (GET_CODE (inner) == LSHIFTRT
8141 && CONST_INT_P (XEXP (inner, 1))
8142 && GET_MODE_SIZE (mode) < GET_MODE_SIZE (GET_MODE (inner))
8143 && (UINTVAL (XEXP (inner, 1))
8144 < GET_MODE_PRECISION (GET_MODE (inner)))
8145 && subreg_lowpart_p (x))
8146 {
8147 new_rtx = make_compound_operation (XEXP (inner, 0), next_code);
8148 int width = GET_MODE_PRECISION (GET_MODE (inner))
8149 - INTVAL (XEXP (inner, 1));
8150 if (width > mode_width)
8151 width = mode_width;
8152 new_rtx = make_extraction (mode, new_rtx, 0, XEXP (inner, 1),
8153 width, 1, 0, in_code == COMPARE);
8154 break;
8155 }
8156
8157 /* If in_code is COMPARE, it isn't always safe to pass it through
8158 to the recursive make_compound_operation call. */
8159 if (subreg_code == COMPARE
8160 && (!subreg_lowpart_p (x)
8161 || GET_CODE (inner) == SUBREG
8162 /* (subreg:SI (and:DI (reg:DI) (const_int 0x800000000)) 0)
8163 is (const_int 0), rather than
8164 (subreg:SI (lshiftrt:DI (reg:DI) (const_int 35)) 0).
8165 Similarly (subreg:QI (and:SI (reg:SI) (const_int 0x80)) 0)
8166 for non-equality comparisons against 0 is not equivalent
8167 to (subreg:QI (lshiftrt:SI (reg:SI) (const_int 7)) 0). */
8168 || (GET_CODE (inner) == AND
8169 && CONST_INT_P (XEXP (inner, 1))
8170 && GET_MODE_SIZE (mode) < GET_MODE_SIZE (GET_MODE (inner))
8171 && exact_log2 (UINTVAL (XEXP (inner, 1)))
8172 >= GET_MODE_BITSIZE (mode) - 1)))
8173 subreg_code = SET;
8174
8175 tem = make_compound_operation (inner, subreg_code);
8176
8177 simplified
8178 = simplify_subreg (mode, tem, GET_MODE (inner), SUBREG_BYTE (x));
8179 if (simplified)
8180 tem = simplified;
8181
8182 if (GET_CODE (tem) != GET_CODE (inner)
8183 && GET_MODE_SIZE (mode) < GET_MODE_SIZE (GET_MODE (inner))
8184 && subreg_lowpart_p (x))
8185 {
8186 rtx newer
8187 = force_to_mode (tem, mode, HOST_WIDE_INT_M1U, 0);
8188
8189 /* If we have something other than a SUBREG, we might have
8190 done an expansion, so rerun ourselves. */
8191 if (GET_CODE (newer) != SUBREG)
8192 newer = make_compound_operation (newer, in_code);
8193
8194 /* force_to_mode can expand compounds. If it just re-expanded the
8195 compound, use gen_lowpart to convert to the desired mode. */
8196 if (rtx_equal_p (newer, x)
8197 /* Likewise if it re-expanded the compound only partially.
8198 This happens for SUBREG of ZERO_EXTRACT if they extract
8199 the same number of bits. */
8200 || (GET_CODE (newer) == SUBREG
8201 && (GET_CODE (SUBREG_REG (newer)) == LSHIFTRT
8202 || GET_CODE (SUBREG_REG (newer)) == ASHIFTRT)
8203 && GET_CODE (inner) == AND
8204 && rtx_equal_p (SUBREG_REG (newer), XEXP (inner, 0))))
8205 return gen_lowpart (GET_MODE (x), tem);
8206
8207 return newer;
8208 }
8209
8210 if (simplified)
8211 return tem;
8212 }
8213 break;
8214
8215 default:
8216 break;
8217 }
8218
8219 if (new_rtx)
8220 *x_ptr = gen_lowpart (mode, new_rtx);
8221 *next_code_ptr = next_code;
8222 return NULL_RTX;
8223 }
8224
8225 /* Look at the expression rooted at X. Look for expressions
8226 equivalent to ZERO_EXTRACT, SIGN_EXTRACT, ZERO_EXTEND, SIGN_EXTEND.
8227 Form these expressions.
8228
8229 Return the new rtx, usually just X.
8230
8231 Also, for machines like the VAX that don't have logical shift insns,
8232 try to convert logical to arithmetic shift operations in cases where
8233 they are equivalent. This undoes the canonicalizations to logical
8234 shifts done elsewhere.
8235
8236 We try, as much as possible, to re-use rtl expressions to save memory.
8237
8238 IN_CODE says what kind of expression we are processing. Normally, it is
8239 SET. In a memory address it is MEM. When processing the arguments of
8240 a comparison or a COMPARE against zero, it is COMPARE, or EQ if more
8241 precisely it is an equality comparison against zero. */
8242
8243 rtx
8244 make_compound_operation (rtx x, enum rtx_code in_code)
8245 {
8246 enum rtx_code code = GET_CODE (x);
8247 const char *fmt;
8248 int i, j;
8249 enum rtx_code next_code;
8250 rtx new_rtx, tem;
8251
8252 /* Select the code to be used in recursive calls. Once we are inside an
8253 address, we stay there. If we have a comparison, set to COMPARE,
8254 but once inside, go back to our default of SET. */
8255
8256 next_code = (code == MEM ? MEM
8257 : ((code == COMPARE || COMPARISON_P (x))
8258 && XEXP (x, 1) == const0_rtx) ? COMPARE
8259 : in_code == COMPARE || in_code == EQ ? SET : in_code);
8260
8261 if (SCALAR_INT_MODE_P (GET_MODE (x)))
8262 {
8263 rtx new_rtx = make_compound_operation_int (GET_MODE (x), &x,
8264 in_code, &next_code);
8265 if (new_rtx)
8266 return new_rtx;
8267 code = GET_CODE (x);
8268 }
8269
8270 /* Now recursively process each operand of this operation. We need to
8271 handle ZERO_EXTEND specially so that we don't lose track of the
8272 inner mode. */
8273 if (code == ZERO_EXTEND)
8274 {
8275 new_rtx = make_compound_operation (XEXP (x, 0), next_code);
8276 tem = simplify_const_unary_operation (ZERO_EXTEND, GET_MODE (x),
8277 new_rtx, GET_MODE (XEXP (x, 0)));
8278 if (tem)
8279 return tem;
8280 SUBST (XEXP (x, 0), new_rtx);
8281 return x;
8282 }
8283
8284 fmt = GET_RTX_FORMAT (code);
8285 for (i = 0; i < GET_RTX_LENGTH (code); i++)
8286 if (fmt[i] == 'e')
8287 {
8288 new_rtx = make_compound_operation (XEXP (x, i), next_code);
8289 SUBST (XEXP (x, i), new_rtx);
8290 }
8291 else if (fmt[i] == 'E')
8292 for (j = 0; j < XVECLEN (x, i); j++)
8293 {
8294 new_rtx = make_compound_operation (XVECEXP (x, i, j), next_code);
8295 SUBST (XVECEXP (x, i, j), new_rtx);
8296 }
8297
8298 maybe_swap_commutative_operands (x);
8299 return x;
8300 }
8301 \f
8302 /* Given M see if it is a value that would select a field of bits
8303 within an item, but not the entire word. Return -1 if not.
8304 Otherwise, return the starting position of the field, where 0 is the
8305 low-order bit.
8306
8307 *PLEN is set to the length of the field. */
8308
8309 static int
8310 get_pos_from_mask (unsigned HOST_WIDE_INT m, unsigned HOST_WIDE_INT *plen)
8311 {
8312 /* Get the bit number of the first 1 bit from the right, -1 if none. */
8313 int pos = m ? ctz_hwi (m) : -1;
8314 int len = 0;
8315
8316 if (pos >= 0)
8317 /* Now shift off the low-order zero bits and see if we have a
8318 power of two minus 1. */
8319 len = exact_log2 ((m >> pos) + 1);
8320
8321 if (len <= 0)
8322 pos = -1;
8323
8324 *plen = len;
8325 return pos;
8326 }
8327 \f
8328 /* If X refers to a register that equals REG in value, replace these
8329 references with REG. */
8330 static rtx
8331 canon_reg_for_combine (rtx x, rtx reg)
8332 {
8333 rtx op0, op1, op2;
8334 const char *fmt;
8335 int i;
8336 bool copied;
8337
8338 enum rtx_code code = GET_CODE (x);
8339 switch (GET_RTX_CLASS (code))
8340 {
8341 case RTX_UNARY:
8342 op0 = canon_reg_for_combine (XEXP (x, 0), reg);
8343 if (op0 != XEXP (x, 0))
8344 return simplify_gen_unary (GET_CODE (x), GET_MODE (x), op0,
8345 GET_MODE (reg));
8346 break;
8347
8348 case RTX_BIN_ARITH:
8349 case RTX_COMM_ARITH:
8350 op0 = canon_reg_for_combine (XEXP (x, 0), reg);
8351 op1 = canon_reg_for_combine (XEXP (x, 1), reg);
8352 if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
8353 return simplify_gen_binary (GET_CODE (x), GET_MODE (x), op0, op1);
8354 break;
8355
8356 case RTX_COMPARE:
8357 case RTX_COMM_COMPARE:
8358 op0 = canon_reg_for_combine (XEXP (x, 0), reg);
8359 op1 = canon_reg_for_combine (XEXP (x, 1), reg);
8360 if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
8361 return simplify_gen_relational (GET_CODE (x), GET_MODE (x),
8362 GET_MODE (op0), op0, op1);
8363 break;
8364
8365 case RTX_TERNARY:
8366 case RTX_BITFIELD_OPS:
8367 op0 = canon_reg_for_combine (XEXP (x, 0), reg);
8368 op1 = canon_reg_for_combine (XEXP (x, 1), reg);
8369 op2 = canon_reg_for_combine (XEXP (x, 2), reg);
8370 if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1) || op2 != XEXP (x, 2))
8371 return simplify_gen_ternary (GET_CODE (x), GET_MODE (x),
8372 GET_MODE (op0), op0, op1, op2);
8373 /* FALLTHRU */
8374
8375 case RTX_OBJ:
8376 if (REG_P (x))
8377 {
8378 if (rtx_equal_p (get_last_value (reg), x)
8379 || rtx_equal_p (reg, get_last_value (x)))
8380 return reg;
8381 else
8382 break;
8383 }
8384
8385 /* fall through */
8386
8387 default:
8388 fmt = GET_RTX_FORMAT (code);
8389 copied = false;
8390 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
8391 if (fmt[i] == 'e')
8392 {
8393 rtx op = canon_reg_for_combine (XEXP (x, i), reg);
8394 if (op != XEXP (x, i))
8395 {
8396 if (!copied)
8397 {
8398 copied = true;
8399 x = copy_rtx (x);
8400 }
8401 XEXP (x, i) = op;
8402 }
8403 }
8404 else if (fmt[i] == 'E')
8405 {
8406 int j;
8407 for (j = 0; j < XVECLEN (x, i); j++)
8408 {
8409 rtx op = canon_reg_for_combine (XVECEXP (x, i, j), reg);
8410 if (op != XVECEXP (x, i, j))
8411 {
8412 if (!copied)
8413 {
8414 copied = true;
8415 x = copy_rtx (x);
8416 }
8417 XVECEXP (x, i, j) = op;
8418 }
8419 }
8420 }
8421
8422 break;
8423 }
8424
8425 return x;
8426 }
8427
8428 /* Return X converted to MODE. If the value is already truncated to
8429 MODE we can just return a subreg even though in the general case we
8430 would need an explicit truncation. */
8431
8432 static rtx
8433 gen_lowpart_or_truncate (machine_mode mode, rtx x)
8434 {
8435 if (!CONST_INT_P (x)
8436 && GET_MODE_SIZE (mode) < GET_MODE_SIZE (GET_MODE (x))
8437 && !TRULY_NOOP_TRUNCATION_MODES_P (mode, GET_MODE (x))
8438 && !(REG_P (x) && reg_truncated_to_mode (mode, x)))
8439 {
8440 /* Bit-cast X into an integer mode. */
8441 if (!SCALAR_INT_MODE_P (GET_MODE (x)))
8442 x = gen_lowpart (int_mode_for_mode (GET_MODE (x)), x);
8443 x = simplify_gen_unary (TRUNCATE, int_mode_for_mode (mode),
8444 x, GET_MODE (x));
8445 }
8446
8447 return gen_lowpart (mode, x);
8448 }
8449
8450 /* See if X can be simplified knowing that we will only refer to it in
8451 MODE and will only refer to those bits that are nonzero in MASK.
8452 If other bits are being computed or if masking operations are done
8453 that select a superset of the bits in MASK, they can sometimes be
8454 ignored.
8455
8456 Return a possibly simplified expression, but always convert X to
8457 MODE. If X is a CONST_INT, AND the CONST_INT with MASK.
8458
8459 If JUST_SELECT is nonzero, don't optimize by noticing that bits in MASK
8460 are all off in X. This is used when X will be complemented, by either
8461 NOT, NEG, or XOR. */
8462
8463 static rtx
8464 force_to_mode (rtx x, machine_mode mode, unsigned HOST_WIDE_INT mask,
8465 int just_select)
8466 {
8467 enum rtx_code code = GET_CODE (x);
8468 int next_select = just_select || code == XOR || code == NOT || code == NEG;
8469 machine_mode op_mode;
8470 unsigned HOST_WIDE_INT fuller_mask, nonzero;
8471 rtx op0, op1, temp;
8472
8473 /* If this is a CALL or ASM_OPERANDS, don't do anything. Some of the
8474 code below will do the wrong thing since the mode of such an
8475 expression is VOIDmode.
8476
8477 Also do nothing if X is a CLOBBER; this can happen if X was
8478 the return value from a call to gen_lowpart. */
8479 if (code == CALL || code == ASM_OPERANDS || code == CLOBBER)
8480 return x;
8481
8482 /* We want to perform the operation in its present mode unless we know
8483 that the operation is valid in MODE, in which case we do the operation
8484 in MODE. */
8485 op_mode = ((GET_MODE_CLASS (mode) == GET_MODE_CLASS (GET_MODE (x))
8486 && have_insn_for (code, mode))
8487 ? mode : GET_MODE (x));
8488
8489 /* It is not valid to do a right-shift in a narrower mode
8490 than the one it came in with. */
8491 if ((code == LSHIFTRT || code == ASHIFTRT)
8492 && GET_MODE_PRECISION (mode) < GET_MODE_PRECISION (GET_MODE (x)))
8493 op_mode = GET_MODE (x);
8494
8495 /* Truncate MASK to fit OP_MODE. */
8496 if (op_mode)
8497 mask &= GET_MODE_MASK (op_mode);
8498
8499 /* When we have an arithmetic operation, or a shift whose count we
8500 do not know, we need to assume that all bits up to the highest-order
8501 bit in MASK will be needed. This is how we form such a mask. */
8502 if (mask & (HOST_WIDE_INT_1U << (HOST_BITS_PER_WIDE_INT - 1)))
8503 fuller_mask = HOST_WIDE_INT_M1U;
8504 else
8505 fuller_mask = ((HOST_WIDE_INT_1U << (floor_log2 (mask) + 1))
8506 - 1);
8507
8508 /* Determine what bits of X are guaranteed to be (non)zero. */
8509 nonzero = nonzero_bits (x, mode);
8510
8511 /* If none of the bits in X are needed, return a zero. */
8512 if (!just_select && (nonzero & mask) == 0 && !side_effects_p (x))
8513 x = const0_rtx;
8514
8515 /* If X is a CONST_INT, return a new one. Do this here since the
8516 test below will fail. */
8517 if (CONST_INT_P (x))
8518 {
8519 if (SCALAR_INT_MODE_P (mode))
8520 return gen_int_mode (INTVAL (x) & mask, mode);
8521 else
8522 {
8523 x = GEN_INT (INTVAL (x) & mask);
8524 return gen_lowpart_common (mode, x);
8525 }
8526 }
8527
8528 /* If X is narrower than MODE and we want all the bits in X's mode, just
8529 get X in the proper mode. */
8530 if (paradoxical_subreg_p (mode, GET_MODE (x))
8531 && (GET_MODE_MASK (GET_MODE (x)) & ~mask) == 0)
8532 return gen_lowpart (mode, x);
8533
8534 /* We can ignore the effect of a SUBREG if it narrows the mode or
8535 if the constant masks to zero all the bits the mode doesn't have. */
8536 if (GET_CODE (x) == SUBREG
8537 && subreg_lowpart_p (x)
8538 && ((GET_MODE_SIZE (GET_MODE (x))
8539 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
8540 || (0 == (mask
8541 & GET_MODE_MASK (GET_MODE (x))
8542 & ~GET_MODE_MASK (GET_MODE (SUBREG_REG (x)))))))
8543 return force_to_mode (SUBREG_REG (x), mode, mask, next_select);
8544
8545 /* The arithmetic simplifications here only work for scalar integer modes. */
8546 if (!SCALAR_INT_MODE_P (mode) || !SCALAR_INT_MODE_P (GET_MODE (x)))
8547 return gen_lowpart_or_truncate (mode, x);
8548
8549 switch (code)
8550 {
8551 case CLOBBER:
8552 /* If X is a (clobber (const_int)), return it since we know we are
8553 generating something that won't match. */
8554 return x;
8555
8556 case SIGN_EXTEND:
8557 case ZERO_EXTEND:
8558 case ZERO_EXTRACT:
8559 case SIGN_EXTRACT:
8560 x = expand_compound_operation (x);
8561 if (GET_CODE (x) != code)
8562 return force_to_mode (x, mode, mask, next_select);
8563 break;
8564
8565 case TRUNCATE:
8566 /* Similarly for a truncate. */
8567 return force_to_mode (XEXP (x, 0), mode, mask, next_select);
8568
8569 case AND:
8570 /* If this is an AND with a constant, convert it into an AND
8571 whose constant is the AND of that constant with MASK. If it
8572 remains an AND of MASK, delete it since it is redundant. */
8573
8574 if (CONST_INT_P (XEXP (x, 1)))
8575 {
8576 x = simplify_and_const_int (x, op_mode, XEXP (x, 0),
8577 mask & INTVAL (XEXP (x, 1)));
8578
8579 /* If X is still an AND, see if it is an AND with a mask that
8580 is just some low-order bits. If so, and it is MASK, we don't
8581 need it. */
8582
8583 if (GET_CODE (x) == AND && CONST_INT_P (XEXP (x, 1))
8584 && ((INTVAL (XEXP (x, 1)) & GET_MODE_MASK (GET_MODE (x)))
8585 == mask))
8586 x = XEXP (x, 0);
8587
8588 /* If it remains an AND, try making another AND with the bits
8589 in the mode mask that aren't in MASK turned on. If the
8590 constant in the AND is wide enough, this might make a
8591 cheaper constant. */
8592
8593 if (GET_CODE (x) == AND && CONST_INT_P (XEXP (x, 1))
8594 && GET_MODE_MASK (GET_MODE (x)) != mask
8595 && HWI_COMPUTABLE_MODE_P (GET_MODE (x)))
8596 {
8597 unsigned HOST_WIDE_INT cval
8598 = UINTVAL (XEXP (x, 1))
8599 | (GET_MODE_MASK (GET_MODE (x)) & ~mask);
8600 rtx y;
8601
8602 y = simplify_gen_binary (AND, GET_MODE (x), XEXP (x, 0),
8603 gen_int_mode (cval, GET_MODE (x)));
8604 if (set_src_cost (y, GET_MODE (x), optimize_this_for_speed_p)
8605 < set_src_cost (x, GET_MODE (x), optimize_this_for_speed_p))
8606 x = y;
8607 }
8608
8609 break;
8610 }
8611
8612 goto binop;
8613
8614 case PLUS:
8615 /* In (and (plus FOO C1) M), if M is a mask that just turns off
8616 low-order bits (as in an alignment operation) and FOO is already
8617 aligned to that boundary, mask C1 to that boundary as well.
8618 This may eliminate that PLUS and, later, the AND. */
8619
8620 {
8621 unsigned int width = GET_MODE_PRECISION (mode);
8622 unsigned HOST_WIDE_INT smask = mask;
8623
8624 /* If MODE is narrower than HOST_WIDE_INT and mask is a negative
8625 number, sign extend it. */
8626
8627 if (width < HOST_BITS_PER_WIDE_INT
8628 && (smask & (HOST_WIDE_INT_1U << (width - 1))) != 0)
8629 smask |= HOST_WIDE_INT_M1U << width;
8630
8631 if (CONST_INT_P (XEXP (x, 1))
8632 && pow2p_hwi (- smask)
8633 && (nonzero_bits (XEXP (x, 0), mode) & ~smask) == 0
8634 && (INTVAL (XEXP (x, 1)) & ~smask) != 0)
8635 return force_to_mode (plus_constant (GET_MODE (x), XEXP (x, 0),
8636 (INTVAL (XEXP (x, 1)) & smask)),
8637 mode, smask, next_select);
8638 }
8639
8640 /* fall through */
8641
8642 case MULT:
8643 /* Substituting into the operands of a widening MULT is not likely to
8644 create RTL matching a machine insn. */
8645 if (code == MULT
8646 && (GET_CODE (XEXP (x, 0)) == ZERO_EXTEND
8647 || GET_CODE (XEXP (x, 0)) == SIGN_EXTEND)
8648 && (GET_CODE (XEXP (x, 1)) == ZERO_EXTEND
8649 || GET_CODE (XEXP (x, 1)) == SIGN_EXTEND)
8650 && REG_P (XEXP (XEXP (x, 0), 0))
8651 && REG_P (XEXP (XEXP (x, 1), 0)))
8652 return gen_lowpart_or_truncate (mode, x);
8653
8654 /* For PLUS, MINUS and MULT, we need any bits less significant than the
8655 most significant bit in MASK since carries from those bits will
8656 affect the bits we are interested in. */
8657 mask = fuller_mask;
8658 goto binop;
8659
8660 case MINUS:
8661 /* If X is (minus C Y) where C's least set bit is larger than any bit
8662 in the mask, then we may replace with (neg Y). */
8663 if (CONST_INT_P (XEXP (x, 0))
8664 && least_bit_hwi (UINTVAL (XEXP (x, 0))) > mask)
8665 {
8666 x = simplify_gen_unary (NEG, GET_MODE (x), XEXP (x, 1),
8667 GET_MODE (x));
8668 return force_to_mode (x, mode, mask, next_select);
8669 }
8670
8671 /* Similarly, if C contains every bit in the fuller_mask, then we may
8672 replace with (not Y). */
8673 if (CONST_INT_P (XEXP (x, 0))
8674 && ((UINTVAL (XEXP (x, 0)) | fuller_mask) == UINTVAL (XEXP (x, 0))))
8675 {
8676 x = simplify_gen_unary (NOT, GET_MODE (x),
8677 XEXP (x, 1), GET_MODE (x));
8678 return force_to_mode (x, mode, mask, next_select);
8679 }
8680
8681 mask = fuller_mask;
8682 goto binop;
8683
8684 case IOR:
8685 case XOR:
8686 /* If X is (ior (lshiftrt FOO C1) C2), try to commute the IOR and
8687 LSHIFTRT so we end up with an (and (lshiftrt (ior ...) ...) ...)
8688 operation which may be a bitfield extraction. Ensure that the
8689 constant we form is not wider than the mode of X. */
8690
8691 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
8692 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
8693 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
8694 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT
8695 && CONST_INT_P (XEXP (x, 1))
8696 && ((INTVAL (XEXP (XEXP (x, 0), 1))
8697 + floor_log2 (INTVAL (XEXP (x, 1))))
8698 < GET_MODE_PRECISION (GET_MODE (x)))
8699 && (UINTVAL (XEXP (x, 1))
8700 & ~nonzero_bits (XEXP (x, 0), GET_MODE (x))) == 0)
8701 {
8702 temp = gen_int_mode ((INTVAL (XEXP (x, 1)) & mask)
8703 << INTVAL (XEXP (XEXP (x, 0), 1)),
8704 GET_MODE (x));
8705 temp = simplify_gen_binary (GET_CODE (x), GET_MODE (x),
8706 XEXP (XEXP (x, 0), 0), temp);
8707 x = simplify_gen_binary (LSHIFTRT, GET_MODE (x), temp,
8708 XEXP (XEXP (x, 0), 1));
8709 return force_to_mode (x, mode, mask, next_select);
8710 }
8711
8712 binop:
8713 /* For most binary operations, just propagate into the operation and
8714 change the mode if we have an operation of that mode. */
8715
8716 op0 = force_to_mode (XEXP (x, 0), mode, mask, next_select);
8717 op1 = force_to_mode (XEXP (x, 1), mode, mask, next_select);
8718
8719 /* If we ended up truncating both operands, truncate the result of the
8720 operation instead. */
8721 if (GET_CODE (op0) == TRUNCATE
8722 && GET_CODE (op1) == TRUNCATE)
8723 {
8724 op0 = XEXP (op0, 0);
8725 op1 = XEXP (op1, 0);
8726 }
8727
8728 op0 = gen_lowpart_or_truncate (op_mode, op0);
8729 op1 = gen_lowpart_or_truncate (op_mode, op1);
8730
8731 if (op_mode != GET_MODE (x) || op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
8732 x = simplify_gen_binary (code, op_mode, op0, op1);
8733 break;
8734
8735 case ASHIFT:
8736 /* For left shifts, do the same, but just for the first operand.
8737 However, we cannot do anything with shifts where we cannot
8738 guarantee that the counts are smaller than the size of the mode
8739 because such a count will have a different meaning in a
8740 wider mode. */
8741
8742 if (! (CONST_INT_P (XEXP (x, 1))
8743 && INTVAL (XEXP (x, 1)) >= 0
8744 && INTVAL (XEXP (x, 1)) < GET_MODE_PRECISION (mode))
8745 && ! (GET_MODE (XEXP (x, 1)) != VOIDmode
8746 && (nonzero_bits (XEXP (x, 1), GET_MODE (XEXP (x, 1)))
8747 < (unsigned HOST_WIDE_INT) GET_MODE_PRECISION (mode))))
8748 break;
8749
8750 /* If the shift count is a constant and we can do arithmetic in
8751 the mode of the shift, refine which bits we need. Otherwise, use the
8752 conservative form of the mask. */
8753 if (CONST_INT_P (XEXP (x, 1))
8754 && INTVAL (XEXP (x, 1)) >= 0
8755 && INTVAL (XEXP (x, 1)) < GET_MODE_PRECISION (op_mode)
8756 && HWI_COMPUTABLE_MODE_P (op_mode))
8757 mask >>= INTVAL (XEXP (x, 1));
8758 else
8759 mask = fuller_mask;
8760
8761 op0 = gen_lowpart_or_truncate (op_mode,
8762 force_to_mode (XEXP (x, 0), op_mode,
8763 mask, next_select));
8764
8765 if (op_mode != GET_MODE (x) || op0 != XEXP (x, 0))
8766 x = simplify_gen_binary (code, op_mode, op0, XEXP (x, 1));
8767 break;
8768
8769 case LSHIFTRT:
8770 /* Here we can only do something if the shift count is a constant,
8771 this shift constant is valid for the host, and we can do arithmetic
8772 in OP_MODE. */
8773
8774 if (CONST_INT_P (XEXP (x, 1))
8775 && INTVAL (XEXP (x, 1)) >= 0
8776 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT
8777 && HWI_COMPUTABLE_MODE_P (op_mode))
8778 {
8779 rtx inner = XEXP (x, 0);
8780 unsigned HOST_WIDE_INT inner_mask;
8781
8782 /* Select the mask of the bits we need for the shift operand. */
8783 inner_mask = mask << INTVAL (XEXP (x, 1));
8784
8785 /* We can only change the mode of the shift if we can do arithmetic
8786 in the mode of the shift and INNER_MASK is no wider than the
8787 width of X's mode. */
8788 if ((inner_mask & ~GET_MODE_MASK (GET_MODE (x))) != 0)
8789 op_mode = GET_MODE (x);
8790
8791 inner = force_to_mode (inner, op_mode, inner_mask, next_select);
8792
8793 if (GET_MODE (x) != op_mode || inner != XEXP (x, 0))
8794 x = simplify_gen_binary (LSHIFTRT, op_mode, inner, XEXP (x, 1));
8795 }
8796
8797 /* If we have (and (lshiftrt FOO C1) C2) where the combination of the
8798 shift and AND produces only copies of the sign bit (C2 is one less
8799 than a power of two), we can do this with just a shift. */
8800
8801 if (GET_CODE (x) == LSHIFTRT
8802 && CONST_INT_P (XEXP (x, 1))
8803 /* The shift puts one of the sign bit copies in the least significant
8804 bit. */
8805 && ((INTVAL (XEXP (x, 1))
8806 + num_sign_bit_copies (XEXP (x, 0), GET_MODE (XEXP (x, 0))))
8807 >= GET_MODE_PRECISION (GET_MODE (x)))
8808 && pow2p_hwi (mask + 1)
8809 /* Number of bits left after the shift must be more than the mask
8810 needs. */
8811 && ((INTVAL (XEXP (x, 1)) + exact_log2 (mask + 1))
8812 <= GET_MODE_PRECISION (GET_MODE (x)))
8813 /* Must be more sign bit copies than the mask needs. */
8814 && ((int) num_sign_bit_copies (XEXP (x, 0), GET_MODE (XEXP (x, 0)))
8815 >= exact_log2 (mask + 1)))
8816 x = simplify_gen_binary (LSHIFTRT, GET_MODE (x), XEXP (x, 0),
8817 GEN_INT (GET_MODE_PRECISION (GET_MODE (x))
8818 - exact_log2 (mask + 1)));
8819
8820 goto shiftrt;
8821
8822 case ASHIFTRT:
8823 /* If we are just looking for the sign bit, we don't need this shift at
8824 all, even if it has a variable count. */
8825 if (val_signbit_p (GET_MODE (x), mask))
8826 return force_to_mode (XEXP (x, 0), mode, mask, next_select);
8827
8828 /* If this is a shift by a constant, get a mask that contains those bits
8829 that are not copies of the sign bit. We then have two cases: If
8830 MASK only includes those bits, this can be a logical shift, which may
8831 allow simplifications. If MASK is a single-bit field not within
8832 those bits, we are requesting a copy of the sign bit and hence can
8833 shift the sign bit to the appropriate location. */
8834
8835 if (CONST_INT_P (XEXP (x, 1)) && INTVAL (XEXP (x, 1)) >= 0
8836 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT)
8837 {
8838 int i;
8839
8840 /* If the considered data is wider than HOST_WIDE_INT, we can't
8841 represent a mask for all its bits in a single scalar.
8842 But we only care about the lower bits, so calculate these. */
8843
8844 if (GET_MODE_PRECISION (GET_MODE (x)) > HOST_BITS_PER_WIDE_INT)
8845 {
8846 nonzero = HOST_WIDE_INT_M1U;
8847
8848 /* GET_MODE_PRECISION (GET_MODE (x)) - INTVAL (XEXP (x, 1))
8849 is the number of bits a full-width mask would have set.
8850 We need only shift if these are fewer than nonzero can
8851 hold. If not, we must keep all bits set in nonzero. */
8852
8853 if (GET_MODE_PRECISION (GET_MODE (x)) - INTVAL (XEXP (x, 1))
8854 < HOST_BITS_PER_WIDE_INT)
8855 nonzero >>= INTVAL (XEXP (x, 1))
8856 + HOST_BITS_PER_WIDE_INT
8857 - GET_MODE_PRECISION (GET_MODE (x)) ;
8858 }
8859 else
8860 {
8861 nonzero = GET_MODE_MASK (GET_MODE (x));
8862 nonzero >>= INTVAL (XEXP (x, 1));
8863 }
8864
8865 if ((mask & ~nonzero) == 0)
8866 {
8867 x = simplify_shift_const (NULL_RTX, LSHIFTRT, GET_MODE (x),
8868 XEXP (x, 0), INTVAL (XEXP (x, 1)));
8869 if (GET_CODE (x) != ASHIFTRT)
8870 return force_to_mode (x, mode, mask, next_select);
8871 }
8872
8873 else if ((i = exact_log2 (mask)) >= 0)
8874 {
8875 x = simplify_shift_const
8876 (NULL_RTX, LSHIFTRT, GET_MODE (x), XEXP (x, 0),
8877 GET_MODE_PRECISION (GET_MODE (x)) - 1 - i);
8878
8879 if (GET_CODE (x) != ASHIFTRT)
8880 return force_to_mode (x, mode, mask, next_select);
8881 }
8882 }
8883
8884 /* If MASK is 1, convert this to an LSHIFTRT. This can be done
8885 even if the shift count isn't a constant. */
8886 if (mask == 1)
8887 x = simplify_gen_binary (LSHIFTRT, GET_MODE (x),
8888 XEXP (x, 0), XEXP (x, 1));
8889
8890 shiftrt:
8891
8892 /* If this is a zero- or sign-extension operation that just affects bits
8893 we don't care about, remove it. Be sure the call above returned
8894 something that is still a shift. */
8895
8896 if ((GET_CODE (x) == LSHIFTRT || GET_CODE (x) == ASHIFTRT)
8897 && CONST_INT_P (XEXP (x, 1))
8898 && INTVAL (XEXP (x, 1)) >= 0
8899 && (INTVAL (XEXP (x, 1))
8900 <= GET_MODE_PRECISION (GET_MODE (x)) - (floor_log2 (mask) + 1))
8901 && GET_CODE (XEXP (x, 0)) == ASHIFT
8902 && XEXP (XEXP (x, 0), 1) == XEXP (x, 1))
8903 return force_to_mode (XEXP (XEXP (x, 0), 0), mode, mask,
8904 next_select);
8905
8906 break;
8907
8908 case ROTATE:
8909 case ROTATERT:
8910 /* If the shift count is constant and we can do computations
8911 in the mode of X, compute where the bits we care about are.
8912 Otherwise, we can't do anything. Don't change the mode of
8913 the shift or propagate MODE into the shift, though. */
8914 if (CONST_INT_P (XEXP (x, 1))
8915 && INTVAL (XEXP (x, 1)) >= 0)
8916 {
8917 temp = simplify_binary_operation (code == ROTATE ? ROTATERT : ROTATE,
8918 GET_MODE (x),
8919 gen_int_mode (mask, GET_MODE (x)),
8920 XEXP (x, 1));
8921 if (temp && CONST_INT_P (temp))
8922 x = simplify_gen_binary (code, GET_MODE (x),
8923 force_to_mode (XEXP (x, 0), GET_MODE (x),
8924 INTVAL (temp), next_select),
8925 XEXP (x, 1));
8926 }
8927 break;
8928
8929 case NEG:
8930 /* If we just want the low-order bit, the NEG isn't needed since it
8931 won't change the low-order bit. */
8932 if (mask == 1)
8933 return force_to_mode (XEXP (x, 0), mode, mask, just_select);
8934
8935 /* We need any bits less significant than the most significant bit in
8936 MASK since carries from those bits will affect the bits we are
8937 interested in. */
8938 mask = fuller_mask;
8939 goto unop;
8940
8941 case NOT:
8942 /* (not FOO) is (xor FOO CONST), so if FOO is an LSHIFTRT, we can do the
8943 same as the XOR case above. Ensure that the constant we form is not
8944 wider than the mode of X. */
8945
8946 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
8947 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
8948 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
8949 && (INTVAL (XEXP (XEXP (x, 0), 1)) + floor_log2 (mask)
8950 < GET_MODE_PRECISION (GET_MODE (x)))
8951 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT)
8952 {
8953 temp = gen_int_mode (mask << INTVAL (XEXP (XEXP (x, 0), 1)),
8954 GET_MODE (x));
8955 temp = simplify_gen_binary (XOR, GET_MODE (x),
8956 XEXP (XEXP (x, 0), 0), temp);
8957 x = simplify_gen_binary (LSHIFTRT, GET_MODE (x),
8958 temp, XEXP (XEXP (x, 0), 1));
8959
8960 return force_to_mode (x, mode, mask, next_select);
8961 }
8962
8963 /* (and (not FOO) CONST) is (not (or FOO (not CONST))), so we must
8964 use the full mask inside the NOT. */
8965 mask = fuller_mask;
8966
8967 unop:
8968 op0 = gen_lowpart_or_truncate (op_mode,
8969 force_to_mode (XEXP (x, 0), mode, mask,
8970 next_select));
8971 if (op_mode != GET_MODE (x) || op0 != XEXP (x, 0))
8972 x = simplify_gen_unary (code, op_mode, op0, op_mode);
8973 break;
8974
8975 case NE:
8976 /* (and (ne FOO 0) CONST) can be (and FOO CONST) if CONST is included
8977 in STORE_FLAG_VALUE and FOO has a single bit that might be nonzero,
8978 which is equal to STORE_FLAG_VALUE. */
8979 if ((mask & ~STORE_FLAG_VALUE) == 0
8980 && XEXP (x, 1) == const0_rtx
8981 && GET_MODE (XEXP (x, 0)) == mode
8982 && pow2p_hwi (nonzero_bits (XEXP (x, 0), mode))
8983 && (nonzero_bits (XEXP (x, 0), mode)
8984 == (unsigned HOST_WIDE_INT) STORE_FLAG_VALUE))
8985 return force_to_mode (XEXP (x, 0), mode, mask, next_select);
8986
8987 break;
8988
8989 case IF_THEN_ELSE:
8990 /* We have no way of knowing if the IF_THEN_ELSE can itself be
8991 written in a narrower mode. We play it safe and do not do so. */
8992
8993 op0 = gen_lowpart_or_truncate (GET_MODE (x),
8994 force_to_mode (XEXP (x, 1), mode,
8995 mask, next_select));
8996 op1 = gen_lowpart_or_truncate (GET_MODE (x),
8997 force_to_mode (XEXP (x, 2), mode,
8998 mask, next_select));
8999 if (op0 != XEXP (x, 1) || op1 != XEXP (x, 2))
9000 x = simplify_gen_ternary (IF_THEN_ELSE, GET_MODE (x),
9001 GET_MODE (XEXP (x, 0)), XEXP (x, 0),
9002 op0, op1);
9003 break;
9004
9005 default:
9006 break;
9007 }
9008
9009 /* Ensure we return a value of the proper mode. */
9010 return gen_lowpart_or_truncate (mode, x);
9011 }
9012 \f
9013 /* Return nonzero if X is an expression that has one of two values depending on
9014 whether some other value is zero or nonzero. In that case, we return the
9015 value that is being tested, *PTRUE is set to the value if the rtx being
9016 returned has a nonzero value, and *PFALSE is set to the other alternative.
9017
9018 If we return zero, we set *PTRUE and *PFALSE to X. */
9019
9020 static rtx
9021 if_then_else_cond (rtx x, rtx *ptrue, rtx *pfalse)
9022 {
9023 machine_mode mode = GET_MODE (x);
9024 enum rtx_code code = GET_CODE (x);
9025 rtx cond0, cond1, true0, true1, false0, false1;
9026 unsigned HOST_WIDE_INT nz;
9027
9028 /* If we are comparing a value against zero, we are done. */
9029 if ((code == NE || code == EQ)
9030 && XEXP (x, 1) == const0_rtx)
9031 {
9032 *ptrue = (code == NE) ? const_true_rtx : const0_rtx;
9033 *pfalse = (code == NE) ? const0_rtx : const_true_rtx;
9034 return XEXP (x, 0);
9035 }
9036
9037 /* If this is a unary operation whose operand has one of two values, apply
9038 our opcode to compute those values. */
9039 else if (UNARY_P (x)
9040 && (cond0 = if_then_else_cond (XEXP (x, 0), &true0, &false0)) != 0)
9041 {
9042 *ptrue = simplify_gen_unary (code, mode, true0, GET_MODE (XEXP (x, 0)));
9043 *pfalse = simplify_gen_unary (code, mode, false0,
9044 GET_MODE (XEXP (x, 0)));
9045 return cond0;
9046 }
9047
9048 /* If this is a COMPARE, do nothing, since the IF_THEN_ELSE we would
9049 make can't possibly match and would suppress other optimizations. */
9050 else if (code == COMPARE)
9051 ;
9052
9053 /* If this is a binary operation, see if either side has only one of two
9054 values. If either one does or if both do and they are conditional on
9055 the same value, compute the new true and false values. */
9056 else if (BINARY_P (x))
9057 {
9058 rtx op0 = XEXP (x, 0);
9059 rtx op1 = XEXP (x, 1);
9060 cond0 = if_then_else_cond (op0, &true0, &false0);
9061 cond1 = if_then_else_cond (op1, &true1, &false1);
9062
9063 if ((cond0 != 0 && cond1 != 0 && !rtx_equal_p (cond0, cond1))
9064 && (REG_P (op0) || REG_P (op1)))
9065 {
9066 /* Try to enable a simplification by undoing work done by
9067 if_then_else_cond if it converted a REG into something more
9068 complex. */
9069 if (REG_P (op0))
9070 {
9071 cond0 = 0;
9072 true0 = false0 = op0;
9073 }
9074 else
9075 {
9076 cond1 = 0;
9077 true1 = false1 = op1;
9078 }
9079 }
9080
9081 if ((cond0 != 0 || cond1 != 0)
9082 && ! (cond0 != 0 && cond1 != 0 && !rtx_equal_p (cond0, cond1)))
9083 {
9084 /* If if_then_else_cond returned zero, then true/false are the
9085 same rtl. We must copy one of them to prevent invalid rtl
9086 sharing. */
9087 if (cond0 == 0)
9088 true0 = copy_rtx (true0);
9089 else if (cond1 == 0)
9090 true1 = copy_rtx (true1);
9091
9092 if (COMPARISON_P (x))
9093 {
9094 *ptrue = simplify_gen_relational (code, mode, VOIDmode,
9095 true0, true1);
9096 *pfalse = simplify_gen_relational (code, mode, VOIDmode,
9097 false0, false1);
9098 }
9099 else
9100 {
9101 *ptrue = simplify_gen_binary (code, mode, true0, true1);
9102 *pfalse = simplify_gen_binary (code, mode, false0, false1);
9103 }
9104
9105 return cond0 ? cond0 : cond1;
9106 }
9107
9108 /* See if we have PLUS, IOR, XOR, MINUS or UMAX, where one of the
9109 operands is zero when the other is nonzero, and vice-versa,
9110 and STORE_FLAG_VALUE is 1 or -1. */
9111
9112 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
9113 && (code == PLUS || code == IOR || code == XOR || code == MINUS
9114 || code == UMAX)
9115 && GET_CODE (XEXP (x, 0)) == MULT && GET_CODE (XEXP (x, 1)) == MULT)
9116 {
9117 rtx op0 = XEXP (XEXP (x, 0), 1);
9118 rtx op1 = XEXP (XEXP (x, 1), 1);
9119
9120 cond0 = XEXP (XEXP (x, 0), 0);
9121 cond1 = XEXP (XEXP (x, 1), 0);
9122
9123 if (COMPARISON_P (cond0)
9124 && COMPARISON_P (cond1)
9125 && ((GET_CODE (cond0) == reversed_comparison_code (cond1, NULL)
9126 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 0))
9127 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 1)))
9128 || ((swap_condition (GET_CODE (cond0))
9129 == reversed_comparison_code (cond1, NULL))
9130 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 1))
9131 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 0))))
9132 && ! side_effects_p (x))
9133 {
9134 *ptrue = simplify_gen_binary (MULT, mode, op0, const_true_rtx);
9135 *pfalse = simplify_gen_binary (MULT, mode,
9136 (code == MINUS
9137 ? simplify_gen_unary (NEG, mode,
9138 op1, mode)
9139 : op1),
9140 const_true_rtx);
9141 return cond0;
9142 }
9143 }
9144
9145 /* Similarly for MULT, AND and UMIN, except that for these the result
9146 is always zero. */
9147 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
9148 && (code == MULT || code == AND || code == UMIN)
9149 && GET_CODE (XEXP (x, 0)) == MULT && GET_CODE (XEXP (x, 1)) == MULT)
9150 {
9151 cond0 = XEXP (XEXP (x, 0), 0);
9152 cond1 = XEXP (XEXP (x, 1), 0);
9153
9154 if (COMPARISON_P (cond0)
9155 && COMPARISON_P (cond1)
9156 && ((GET_CODE (cond0) == reversed_comparison_code (cond1, NULL)
9157 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 0))
9158 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 1)))
9159 || ((swap_condition (GET_CODE (cond0))
9160 == reversed_comparison_code (cond1, NULL))
9161 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 1))
9162 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 0))))
9163 && ! side_effects_p (x))
9164 {
9165 *ptrue = *pfalse = const0_rtx;
9166 return cond0;
9167 }
9168 }
9169 }
9170
9171 else if (code == IF_THEN_ELSE)
9172 {
9173 /* If we have IF_THEN_ELSE already, extract the condition and
9174 canonicalize it if it is NE or EQ. */
9175 cond0 = XEXP (x, 0);
9176 *ptrue = XEXP (x, 1), *pfalse = XEXP (x, 2);
9177 if (GET_CODE (cond0) == NE && XEXP (cond0, 1) == const0_rtx)
9178 return XEXP (cond0, 0);
9179 else if (GET_CODE (cond0) == EQ && XEXP (cond0, 1) == const0_rtx)
9180 {
9181 *ptrue = XEXP (x, 2), *pfalse = XEXP (x, 1);
9182 return XEXP (cond0, 0);
9183 }
9184 else
9185 return cond0;
9186 }
9187
9188 /* If X is a SUBREG, we can narrow both the true and false values
9189 if the inner expression, if there is a condition. */
9190 else if (code == SUBREG
9191 && 0 != (cond0 = if_then_else_cond (SUBREG_REG (x),
9192 &true0, &false0)))
9193 {
9194 true0 = simplify_gen_subreg (mode, true0,
9195 GET_MODE (SUBREG_REG (x)), SUBREG_BYTE (x));
9196 false0 = simplify_gen_subreg (mode, false0,
9197 GET_MODE (SUBREG_REG (x)), SUBREG_BYTE (x));
9198 if (true0 && false0)
9199 {
9200 *ptrue = true0;
9201 *pfalse = false0;
9202 return cond0;
9203 }
9204 }
9205
9206 /* If X is a constant, this isn't special and will cause confusions
9207 if we treat it as such. Likewise if it is equivalent to a constant. */
9208 else if (CONSTANT_P (x)
9209 || ((cond0 = get_last_value (x)) != 0 && CONSTANT_P (cond0)))
9210 ;
9211
9212 /* If we're in BImode, canonicalize on 0 and STORE_FLAG_VALUE, as that
9213 will be least confusing to the rest of the compiler. */
9214 else if (mode == BImode)
9215 {
9216 *ptrue = GEN_INT (STORE_FLAG_VALUE), *pfalse = const0_rtx;
9217 return x;
9218 }
9219
9220 /* If X is known to be either 0 or -1, those are the true and
9221 false values when testing X. */
9222 else if (x == constm1_rtx || x == const0_rtx
9223 || (mode != VOIDmode && mode != BLKmode
9224 && num_sign_bit_copies (x, mode) == GET_MODE_PRECISION (mode)))
9225 {
9226 *ptrue = constm1_rtx, *pfalse = const0_rtx;
9227 return x;
9228 }
9229
9230 /* Likewise for 0 or a single bit. */
9231 else if (HWI_COMPUTABLE_MODE_P (mode)
9232 && pow2p_hwi (nz = nonzero_bits (x, mode)))
9233 {
9234 *ptrue = gen_int_mode (nz, mode), *pfalse = const0_rtx;
9235 return x;
9236 }
9237
9238 /* Otherwise fail; show no condition with true and false values the same. */
9239 *ptrue = *pfalse = x;
9240 return 0;
9241 }
9242 \f
9243 /* Return the value of expression X given the fact that condition COND
9244 is known to be true when applied to REG as its first operand and VAL
9245 as its second. X is known to not be shared and so can be modified in
9246 place.
9247
9248 We only handle the simplest cases, and specifically those cases that
9249 arise with IF_THEN_ELSE expressions. */
9250
9251 static rtx
9252 known_cond (rtx x, enum rtx_code cond, rtx reg, rtx val)
9253 {
9254 enum rtx_code code = GET_CODE (x);
9255 const char *fmt;
9256 int i, j;
9257
9258 if (side_effects_p (x))
9259 return x;
9260
9261 /* If either operand of the condition is a floating point value,
9262 then we have to avoid collapsing an EQ comparison. */
9263 if (cond == EQ
9264 && rtx_equal_p (x, reg)
9265 && ! FLOAT_MODE_P (GET_MODE (x))
9266 && ! FLOAT_MODE_P (GET_MODE (val)))
9267 return val;
9268
9269 if (cond == UNEQ && rtx_equal_p (x, reg))
9270 return val;
9271
9272 /* If X is (abs REG) and we know something about REG's relationship
9273 with zero, we may be able to simplify this. */
9274
9275 if (code == ABS && rtx_equal_p (XEXP (x, 0), reg) && val == const0_rtx)
9276 switch (cond)
9277 {
9278 case GE: case GT: case EQ:
9279 return XEXP (x, 0);
9280 case LT: case LE:
9281 return simplify_gen_unary (NEG, GET_MODE (XEXP (x, 0)),
9282 XEXP (x, 0),
9283 GET_MODE (XEXP (x, 0)));
9284 default:
9285 break;
9286 }
9287
9288 /* The only other cases we handle are MIN, MAX, and comparisons if the
9289 operands are the same as REG and VAL. */
9290
9291 else if (COMPARISON_P (x) || COMMUTATIVE_ARITH_P (x))
9292 {
9293 if (rtx_equal_p (XEXP (x, 0), val))
9294 {
9295 std::swap (val, reg);
9296 cond = swap_condition (cond);
9297 }
9298
9299 if (rtx_equal_p (XEXP (x, 0), reg) && rtx_equal_p (XEXP (x, 1), val))
9300 {
9301 if (COMPARISON_P (x))
9302 {
9303 if (comparison_dominates_p (cond, code))
9304 return const_true_rtx;
9305
9306 code = reversed_comparison_code (x, NULL);
9307 if (code != UNKNOWN
9308 && comparison_dominates_p (cond, code))
9309 return const0_rtx;
9310 else
9311 return x;
9312 }
9313 else if (code == SMAX || code == SMIN
9314 || code == UMIN || code == UMAX)
9315 {
9316 int unsignedp = (code == UMIN || code == UMAX);
9317
9318 /* Do not reverse the condition when it is NE or EQ.
9319 This is because we cannot conclude anything about
9320 the value of 'SMAX (x, y)' when x is not equal to y,
9321 but we can when x equals y. */
9322 if ((code == SMAX || code == UMAX)
9323 && ! (cond == EQ || cond == NE))
9324 cond = reverse_condition (cond);
9325
9326 switch (cond)
9327 {
9328 case GE: case GT:
9329 return unsignedp ? x : XEXP (x, 1);
9330 case LE: case LT:
9331 return unsignedp ? x : XEXP (x, 0);
9332 case GEU: case GTU:
9333 return unsignedp ? XEXP (x, 1) : x;
9334 case LEU: case LTU:
9335 return unsignedp ? XEXP (x, 0) : x;
9336 default:
9337 break;
9338 }
9339 }
9340 }
9341 }
9342 else if (code == SUBREG)
9343 {
9344 machine_mode inner_mode = GET_MODE (SUBREG_REG (x));
9345 rtx new_rtx, r = known_cond (SUBREG_REG (x), cond, reg, val);
9346
9347 if (SUBREG_REG (x) != r)
9348 {
9349 /* We must simplify subreg here, before we lose track of the
9350 original inner_mode. */
9351 new_rtx = simplify_subreg (GET_MODE (x), r,
9352 inner_mode, SUBREG_BYTE (x));
9353 if (new_rtx)
9354 return new_rtx;
9355 else
9356 SUBST (SUBREG_REG (x), r);
9357 }
9358
9359 return x;
9360 }
9361 /* We don't have to handle SIGN_EXTEND here, because even in the
9362 case of replacing something with a modeless CONST_INT, a
9363 CONST_INT is already (supposed to be) a valid sign extension for
9364 its narrower mode, which implies it's already properly
9365 sign-extended for the wider mode. Now, for ZERO_EXTEND, the
9366 story is different. */
9367 else if (code == ZERO_EXTEND)
9368 {
9369 machine_mode inner_mode = GET_MODE (XEXP (x, 0));
9370 rtx new_rtx, r = known_cond (XEXP (x, 0), cond, reg, val);
9371
9372 if (XEXP (x, 0) != r)
9373 {
9374 /* We must simplify the zero_extend here, before we lose
9375 track of the original inner_mode. */
9376 new_rtx = simplify_unary_operation (ZERO_EXTEND, GET_MODE (x),
9377 r, inner_mode);
9378 if (new_rtx)
9379 return new_rtx;
9380 else
9381 SUBST (XEXP (x, 0), r);
9382 }
9383
9384 return x;
9385 }
9386
9387 fmt = GET_RTX_FORMAT (code);
9388 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
9389 {
9390 if (fmt[i] == 'e')
9391 SUBST (XEXP (x, i), known_cond (XEXP (x, i), cond, reg, val));
9392 else if (fmt[i] == 'E')
9393 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
9394 SUBST (XVECEXP (x, i, j), known_cond (XVECEXP (x, i, j),
9395 cond, reg, val));
9396 }
9397
9398 return x;
9399 }
9400 \f
9401 /* See if X and Y are equal for the purposes of seeing if we can rewrite an
9402 assignment as a field assignment. */
9403
9404 static int
9405 rtx_equal_for_field_assignment_p (rtx x, rtx y, bool widen_x)
9406 {
9407 if (widen_x && GET_MODE (x) != GET_MODE (y))
9408 {
9409 if (paradoxical_subreg_p (GET_MODE (x), GET_MODE (y)))
9410 return 0;
9411 if (BYTES_BIG_ENDIAN != WORDS_BIG_ENDIAN)
9412 return 0;
9413 /* For big endian, adjust the memory offset. */
9414 if (BYTES_BIG_ENDIAN)
9415 x = adjust_address_nv (x, GET_MODE (y),
9416 -subreg_lowpart_offset (GET_MODE (x),
9417 GET_MODE (y)));
9418 else
9419 x = adjust_address_nv (x, GET_MODE (y), 0);
9420 }
9421
9422 if (x == y || rtx_equal_p (x, y))
9423 return 1;
9424
9425 if (x == 0 || y == 0 || GET_MODE (x) != GET_MODE (y))
9426 return 0;
9427
9428 /* Check for a paradoxical SUBREG of a MEM compared with the MEM.
9429 Note that all SUBREGs of MEM are paradoxical; otherwise they
9430 would have been rewritten. */
9431 if (MEM_P (x) && GET_CODE (y) == SUBREG
9432 && MEM_P (SUBREG_REG (y))
9433 && rtx_equal_p (SUBREG_REG (y),
9434 gen_lowpart (GET_MODE (SUBREG_REG (y)), x)))
9435 return 1;
9436
9437 if (MEM_P (y) && GET_CODE (x) == SUBREG
9438 && MEM_P (SUBREG_REG (x))
9439 && rtx_equal_p (SUBREG_REG (x),
9440 gen_lowpart (GET_MODE (SUBREG_REG (x)), y)))
9441 return 1;
9442
9443 /* We used to see if get_last_value of X and Y were the same but that's
9444 not correct. In one direction, we'll cause the assignment to have
9445 the wrong destination and in the case, we'll import a register into this
9446 insn that might have already have been dead. So fail if none of the
9447 above cases are true. */
9448 return 0;
9449 }
9450 \f
9451 /* See if X, a SET operation, can be rewritten as a bit-field assignment.
9452 Return that assignment if so.
9453
9454 We only handle the most common cases. */
9455
9456 static rtx
9457 make_field_assignment (rtx x)
9458 {
9459 rtx dest = SET_DEST (x);
9460 rtx src = SET_SRC (x);
9461 rtx assign;
9462 rtx rhs, lhs;
9463 HOST_WIDE_INT c1;
9464 HOST_WIDE_INT pos;
9465 unsigned HOST_WIDE_INT len;
9466 rtx other;
9467 machine_mode mode;
9468
9469 /* If SRC was (and (not (ashift (const_int 1) POS)) DEST), this is
9470 a clear of a one-bit field. We will have changed it to
9471 (and (rotate (const_int -2) POS) DEST), so check for that. Also check
9472 for a SUBREG. */
9473
9474 if (GET_CODE (src) == AND && GET_CODE (XEXP (src, 0)) == ROTATE
9475 && CONST_INT_P (XEXP (XEXP (src, 0), 0))
9476 && INTVAL (XEXP (XEXP (src, 0), 0)) == -2
9477 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
9478 {
9479 assign = make_extraction (VOIDmode, dest, 0, XEXP (XEXP (src, 0), 1),
9480 1, 1, 1, 0);
9481 if (assign != 0)
9482 return gen_rtx_SET (assign, const0_rtx);
9483 return x;
9484 }
9485
9486 if (GET_CODE (src) == AND && GET_CODE (XEXP (src, 0)) == SUBREG
9487 && subreg_lowpart_p (XEXP (src, 0))
9488 && (GET_MODE_SIZE (GET_MODE (XEXP (src, 0)))
9489 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (XEXP (src, 0)))))
9490 && GET_CODE (SUBREG_REG (XEXP (src, 0))) == ROTATE
9491 && CONST_INT_P (XEXP (SUBREG_REG (XEXP (src, 0)), 0))
9492 && INTVAL (XEXP (SUBREG_REG (XEXP (src, 0)), 0)) == -2
9493 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
9494 {
9495 assign = make_extraction (VOIDmode, dest, 0,
9496 XEXP (SUBREG_REG (XEXP (src, 0)), 1),
9497 1, 1, 1, 0);
9498 if (assign != 0)
9499 return gen_rtx_SET (assign, const0_rtx);
9500 return x;
9501 }
9502
9503 /* If SRC is (ior (ashift (const_int 1) POS) DEST), this is a set of a
9504 one-bit field. */
9505 if (GET_CODE (src) == IOR && GET_CODE (XEXP (src, 0)) == ASHIFT
9506 && XEXP (XEXP (src, 0), 0) == const1_rtx
9507 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
9508 {
9509 assign = make_extraction (VOIDmode, dest, 0, XEXP (XEXP (src, 0), 1),
9510 1, 1, 1, 0);
9511 if (assign != 0)
9512 return gen_rtx_SET (assign, const1_rtx);
9513 return x;
9514 }
9515
9516 /* If DEST is already a field assignment, i.e. ZERO_EXTRACT, and the
9517 SRC is an AND with all bits of that field set, then we can discard
9518 the AND. */
9519 if (GET_CODE (dest) == ZERO_EXTRACT
9520 && CONST_INT_P (XEXP (dest, 1))
9521 && GET_CODE (src) == AND
9522 && CONST_INT_P (XEXP (src, 1)))
9523 {
9524 HOST_WIDE_INT width = INTVAL (XEXP (dest, 1));
9525 unsigned HOST_WIDE_INT and_mask = INTVAL (XEXP (src, 1));
9526 unsigned HOST_WIDE_INT ze_mask;
9527
9528 if (width >= HOST_BITS_PER_WIDE_INT)
9529 ze_mask = -1;
9530 else
9531 ze_mask = ((unsigned HOST_WIDE_INT)1 << width) - 1;
9532
9533 /* Complete overlap. We can remove the source AND. */
9534 if ((and_mask & ze_mask) == ze_mask)
9535 return gen_rtx_SET (dest, XEXP (src, 0));
9536
9537 /* Partial overlap. We can reduce the source AND. */
9538 if ((and_mask & ze_mask) != and_mask)
9539 {
9540 mode = GET_MODE (src);
9541 src = gen_rtx_AND (mode, XEXP (src, 0),
9542 gen_int_mode (and_mask & ze_mask, mode));
9543 return gen_rtx_SET (dest, src);
9544 }
9545 }
9546
9547 /* The other case we handle is assignments into a constant-position
9548 field. They look like (ior/xor (and DEST C1) OTHER). If C1 represents
9549 a mask that has all one bits except for a group of zero bits and
9550 OTHER is known to have zeros where C1 has ones, this is such an
9551 assignment. Compute the position and length from C1. Shift OTHER
9552 to the appropriate position, force it to the required mode, and
9553 make the extraction. Check for the AND in both operands. */
9554
9555 /* One or more SUBREGs might obscure the constant-position field
9556 assignment. The first one we are likely to encounter is an outer
9557 narrowing SUBREG, which we can just strip for the purposes of
9558 identifying the constant-field assignment. */
9559 if (GET_CODE (src) == SUBREG && subreg_lowpart_p (src))
9560 src = SUBREG_REG (src);
9561
9562 if (GET_CODE (src) != IOR && GET_CODE (src) != XOR)
9563 return x;
9564
9565 rhs = expand_compound_operation (XEXP (src, 0));
9566 lhs = expand_compound_operation (XEXP (src, 1));
9567
9568 if (GET_CODE (rhs) == AND
9569 && CONST_INT_P (XEXP (rhs, 1))
9570 && rtx_equal_for_field_assignment_p (XEXP (rhs, 0), dest))
9571 c1 = INTVAL (XEXP (rhs, 1)), other = lhs;
9572 /* The second SUBREG that might get in the way is a paradoxical
9573 SUBREG around the first operand of the AND. We want to
9574 pretend the operand is as wide as the destination here. We
9575 do this by adjusting the MEM to wider mode for the sole
9576 purpose of the call to rtx_equal_for_field_assignment_p. Also
9577 note this trick only works for MEMs. */
9578 else if (GET_CODE (rhs) == AND
9579 && paradoxical_subreg_p (XEXP (rhs, 0))
9580 && MEM_P (SUBREG_REG (XEXP (rhs, 0)))
9581 && CONST_INT_P (XEXP (rhs, 1))
9582 && rtx_equal_for_field_assignment_p (SUBREG_REG (XEXP (rhs, 0)),
9583 dest, true))
9584 c1 = INTVAL (XEXP (rhs, 1)), other = lhs;
9585 else if (GET_CODE (lhs) == AND
9586 && CONST_INT_P (XEXP (lhs, 1))
9587 && rtx_equal_for_field_assignment_p (XEXP (lhs, 0), dest))
9588 c1 = INTVAL (XEXP (lhs, 1)), other = rhs;
9589 /* The second SUBREG that might get in the way is a paradoxical
9590 SUBREG around the first operand of the AND. We want to
9591 pretend the operand is as wide as the destination here. We
9592 do this by adjusting the MEM to wider mode for the sole
9593 purpose of the call to rtx_equal_for_field_assignment_p. Also
9594 note this trick only works for MEMs. */
9595 else if (GET_CODE (lhs) == AND
9596 && paradoxical_subreg_p (XEXP (lhs, 0))
9597 && MEM_P (SUBREG_REG (XEXP (lhs, 0)))
9598 && CONST_INT_P (XEXP (lhs, 1))
9599 && rtx_equal_for_field_assignment_p (SUBREG_REG (XEXP (lhs, 0)),
9600 dest, true))
9601 c1 = INTVAL (XEXP (lhs, 1)), other = rhs;
9602 else
9603 return x;
9604
9605 pos = get_pos_from_mask ((~c1) & GET_MODE_MASK (GET_MODE (dest)), &len);
9606 if (pos < 0 || pos + len > GET_MODE_PRECISION (GET_MODE (dest))
9607 || GET_MODE_PRECISION (GET_MODE (dest)) > HOST_BITS_PER_WIDE_INT
9608 || (c1 & nonzero_bits (other, GET_MODE (dest))) != 0)
9609 return x;
9610
9611 assign = make_extraction (VOIDmode, dest, pos, NULL_RTX, len, 1, 1, 0);
9612 if (assign == 0)
9613 return x;
9614
9615 /* The mode to use for the source is the mode of the assignment, or of
9616 what is inside a possible STRICT_LOW_PART. */
9617 mode = (GET_CODE (assign) == STRICT_LOW_PART
9618 ? GET_MODE (XEXP (assign, 0)) : GET_MODE (assign));
9619
9620 /* Shift OTHER right POS places and make it the source, restricting it
9621 to the proper length and mode. */
9622
9623 src = canon_reg_for_combine (simplify_shift_const (NULL_RTX, LSHIFTRT,
9624 GET_MODE (src),
9625 other, pos),
9626 dest);
9627 src = force_to_mode (src, mode,
9628 len >= HOST_BITS_PER_WIDE_INT
9629 ? HOST_WIDE_INT_M1U
9630 : (HOST_WIDE_INT_1U << len) - 1,
9631 0);
9632
9633 /* If SRC is masked by an AND that does not make a difference in
9634 the value being stored, strip it. */
9635 if (GET_CODE (assign) == ZERO_EXTRACT
9636 && CONST_INT_P (XEXP (assign, 1))
9637 && INTVAL (XEXP (assign, 1)) < HOST_BITS_PER_WIDE_INT
9638 && GET_CODE (src) == AND
9639 && CONST_INT_P (XEXP (src, 1))
9640 && UINTVAL (XEXP (src, 1))
9641 == (HOST_WIDE_INT_1U << INTVAL (XEXP (assign, 1))) - 1)
9642 src = XEXP (src, 0);
9643
9644 return gen_rtx_SET (assign, src);
9645 }
9646 \f
9647 /* See if X is of the form (+ (* a c) (* b c)) and convert to (* (+ a b) c)
9648 if so. */
9649
9650 static rtx
9651 apply_distributive_law (rtx x)
9652 {
9653 enum rtx_code code = GET_CODE (x);
9654 enum rtx_code inner_code;
9655 rtx lhs, rhs, other;
9656 rtx tem;
9657
9658 /* Distributivity is not true for floating point as it can change the
9659 value. So we don't do it unless -funsafe-math-optimizations. */
9660 if (FLOAT_MODE_P (GET_MODE (x))
9661 && ! flag_unsafe_math_optimizations)
9662 return x;
9663
9664 /* The outer operation can only be one of the following: */
9665 if (code != IOR && code != AND && code != XOR
9666 && code != PLUS && code != MINUS)
9667 return x;
9668
9669 lhs = XEXP (x, 0);
9670 rhs = XEXP (x, 1);
9671
9672 /* If either operand is a primitive we can't do anything, so get out
9673 fast. */
9674 if (OBJECT_P (lhs) || OBJECT_P (rhs))
9675 return x;
9676
9677 lhs = expand_compound_operation (lhs);
9678 rhs = expand_compound_operation (rhs);
9679 inner_code = GET_CODE (lhs);
9680 if (inner_code != GET_CODE (rhs))
9681 return x;
9682
9683 /* See if the inner and outer operations distribute. */
9684 switch (inner_code)
9685 {
9686 case LSHIFTRT:
9687 case ASHIFTRT:
9688 case AND:
9689 case IOR:
9690 /* These all distribute except over PLUS. */
9691 if (code == PLUS || code == MINUS)
9692 return x;
9693 break;
9694
9695 case MULT:
9696 if (code != PLUS && code != MINUS)
9697 return x;
9698 break;
9699
9700 case ASHIFT:
9701 /* This is also a multiply, so it distributes over everything. */
9702 break;
9703
9704 /* This used to handle SUBREG, but this turned out to be counter-
9705 productive, since (subreg (op ...)) usually is not handled by
9706 insn patterns, and this "optimization" therefore transformed
9707 recognizable patterns into unrecognizable ones. Therefore the
9708 SUBREG case was removed from here.
9709
9710 It is possible that distributing SUBREG over arithmetic operations
9711 leads to an intermediate result than can then be optimized further,
9712 e.g. by moving the outer SUBREG to the other side of a SET as done
9713 in simplify_set. This seems to have been the original intent of
9714 handling SUBREGs here.
9715
9716 However, with current GCC this does not appear to actually happen,
9717 at least on major platforms. If some case is found where removing
9718 the SUBREG case here prevents follow-on optimizations, distributing
9719 SUBREGs ought to be re-added at that place, e.g. in simplify_set. */
9720
9721 default:
9722 return x;
9723 }
9724
9725 /* Set LHS and RHS to the inner operands (A and B in the example
9726 above) and set OTHER to the common operand (C in the example).
9727 There is only one way to do this unless the inner operation is
9728 commutative. */
9729 if (COMMUTATIVE_ARITH_P (lhs)
9730 && rtx_equal_p (XEXP (lhs, 0), XEXP (rhs, 0)))
9731 other = XEXP (lhs, 0), lhs = XEXP (lhs, 1), rhs = XEXP (rhs, 1);
9732 else if (COMMUTATIVE_ARITH_P (lhs)
9733 && rtx_equal_p (XEXP (lhs, 0), XEXP (rhs, 1)))
9734 other = XEXP (lhs, 0), lhs = XEXP (lhs, 1), rhs = XEXP (rhs, 0);
9735 else if (COMMUTATIVE_ARITH_P (lhs)
9736 && rtx_equal_p (XEXP (lhs, 1), XEXP (rhs, 0)))
9737 other = XEXP (lhs, 1), lhs = XEXP (lhs, 0), rhs = XEXP (rhs, 1);
9738 else if (rtx_equal_p (XEXP (lhs, 1), XEXP (rhs, 1)))
9739 other = XEXP (lhs, 1), lhs = XEXP (lhs, 0), rhs = XEXP (rhs, 0);
9740 else
9741 return x;
9742
9743 /* Form the new inner operation, seeing if it simplifies first. */
9744 tem = simplify_gen_binary (code, GET_MODE (x), lhs, rhs);
9745
9746 /* There is one exception to the general way of distributing:
9747 (a | c) ^ (b | c) -> (a ^ b) & ~c */
9748 if (code == XOR && inner_code == IOR)
9749 {
9750 inner_code = AND;
9751 other = simplify_gen_unary (NOT, GET_MODE (x), other, GET_MODE (x));
9752 }
9753
9754 /* We may be able to continuing distributing the result, so call
9755 ourselves recursively on the inner operation before forming the
9756 outer operation, which we return. */
9757 return simplify_gen_binary (inner_code, GET_MODE (x),
9758 apply_distributive_law (tem), other);
9759 }
9760
9761 /* See if X is of the form (* (+ A B) C), and if so convert to
9762 (+ (* A C) (* B C)) and try to simplify.
9763
9764 Most of the time, this results in no change. However, if some of
9765 the operands are the same or inverses of each other, simplifications
9766 will result.
9767
9768 For example, (and (ior A B) (not B)) can occur as the result of
9769 expanding a bit field assignment. When we apply the distributive
9770 law to this, we get (ior (and (A (not B))) (and (B (not B)))),
9771 which then simplifies to (and (A (not B))).
9772
9773 Note that no checks happen on the validity of applying the inverse
9774 distributive law. This is pointless since we can do it in the
9775 few places where this routine is called.
9776
9777 N is the index of the term that is decomposed (the arithmetic operation,
9778 i.e. (+ A B) in the first example above). !N is the index of the term that
9779 is distributed, i.e. of C in the first example above. */
9780 static rtx
9781 distribute_and_simplify_rtx (rtx x, int n)
9782 {
9783 machine_mode mode;
9784 enum rtx_code outer_code, inner_code;
9785 rtx decomposed, distributed, inner_op0, inner_op1, new_op0, new_op1, tmp;
9786
9787 /* Distributivity is not true for floating point as it can change the
9788 value. So we don't do it unless -funsafe-math-optimizations. */
9789 if (FLOAT_MODE_P (GET_MODE (x))
9790 && ! flag_unsafe_math_optimizations)
9791 return NULL_RTX;
9792
9793 decomposed = XEXP (x, n);
9794 if (!ARITHMETIC_P (decomposed))
9795 return NULL_RTX;
9796
9797 mode = GET_MODE (x);
9798 outer_code = GET_CODE (x);
9799 distributed = XEXP (x, !n);
9800
9801 inner_code = GET_CODE (decomposed);
9802 inner_op0 = XEXP (decomposed, 0);
9803 inner_op1 = XEXP (decomposed, 1);
9804
9805 /* Special case (and (xor B C) (not A)), which is equivalent to
9806 (xor (ior A B) (ior A C)) */
9807 if (outer_code == AND && inner_code == XOR && GET_CODE (distributed) == NOT)
9808 {
9809 distributed = XEXP (distributed, 0);
9810 outer_code = IOR;
9811 }
9812
9813 if (n == 0)
9814 {
9815 /* Distribute the second term. */
9816 new_op0 = simplify_gen_binary (outer_code, mode, inner_op0, distributed);
9817 new_op1 = simplify_gen_binary (outer_code, mode, inner_op1, distributed);
9818 }
9819 else
9820 {
9821 /* Distribute the first term. */
9822 new_op0 = simplify_gen_binary (outer_code, mode, distributed, inner_op0);
9823 new_op1 = simplify_gen_binary (outer_code, mode, distributed, inner_op1);
9824 }
9825
9826 tmp = apply_distributive_law (simplify_gen_binary (inner_code, mode,
9827 new_op0, new_op1));
9828 if (GET_CODE (tmp) != outer_code
9829 && (set_src_cost (tmp, mode, optimize_this_for_speed_p)
9830 < set_src_cost (x, mode, optimize_this_for_speed_p)))
9831 return tmp;
9832
9833 return NULL_RTX;
9834 }
9835 \f
9836 /* Simplify a logical `and' of VAROP with the constant CONSTOP, to be done
9837 in MODE. Return an equivalent form, if different from (and VAROP
9838 (const_int CONSTOP)). Otherwise, return NULL_RTX. */
9839
9840 static rtx
9841 simplify_and_const_int_1 (machine_mode mode, rtx varop,
9842 unsigned HOST_WIDE_INT constop)
9843 {
9844 unsigned HOST_WIDE_INT nonzero;
9845 unsigned HOST_WIDE_INT orig_constop;
9846 rtx orig_varop;
9847 int i;
9848
9849 orig_varop = varop;
9850 orig_constop = constop;
9851 if (GET_CODE (varop) == CLOBBER)
9852 return NULL_RTX;
9853
9854 /* Simplify VAROP knowing that we will be only looking at some of the
9855 bits in it.
9856
9857 Note by passing in CONSTOP, we guarantee that the bits not set in
9858 CONSTOP are not significant and will never be examined. We must
9859 ensure that is the case by explicitly masking out those bits
9860 before returning. */
9861 varop = force_to_mode (varop, mode, constop, 0);
9862
9863 /* If VAROP is a CLOBBER, we will fail so return it. */
9864 if (GET_CODE (varop) == CLOBBER)
9865 return varop;
9866
9867 /* If VAROP is a CONST_INT, then we need to apply the mask in CONSTOP
9868 to VAROP and return the new constant. */
9869 if (CONST_INT_P (varop))
9870 return gen_int_mode (INTVAL (varop) & constop, mode);
9871
9872 /* See what bits may be nonzero in VAROP. Unlike the general case of
9873 a call to nonzero_bits, here we don't care about bits outside
9874 MODE. */
9875
9876 nonzero = nonzero_bits (varop, mode) & GET_MODE_MASK (mode);
9877
9878 /* Turn off all bits in the constant that are known to already be zero.
9879 Thus, if the AND isn't needed at all, we will have CONSTOP == NONZERO_BITS
9880 which is tested below. */
9881
9882 constop &= nonzero;
9883
9884 /* If we don't have any bits left, return zero. */
9885 if (constop == 0)
9886 return const0_rtx;
9887
9888 /* If VAROP is a NEG of something known to be zero or 1 and CONSTOP is
9889 a power of two, we can replace this with an ASHIFT. */
9890 if (GET_CODE (varop) == NEG && nonzero_bits (XEXP (varop, 0), mode) == 1
9891 && (i = exact_log2 (constop)) >= 0)
9892 return simplify_shift_const (NULL_RTX, ASHIFT, mode, XEXP (varop, 0), i);
9893
9894 /* If VAROP is an IOR or XOR, apply the AND to both branches of the IOR
9895 or XOR, then try to apply the distributive law. This may eliminate
9896 operations if either branch can be simplified because of the AND.
9897 It may also make some cases more complex, but those cases probably
9898 won't match a pattern either with or without this. */
9899
9900 if (GET_CODE (varop) == IOR || GET_CODE (varop) == XOR)
9901 return
9902 gen_lowpart
9903 (mode,
9904 apply_distributive_law
9905 (simplify_gen_binary (GET_CODE (varop), GET_MODE (varop),
9906 simplify_and_const_int (NULL_RTX,
9907 GET_MODE (varop),
9908 XEXP (varop, 0),
9909 constop),
9910 simplify_and_const_int (NULL_RTX,
9911 GET_MODE (varop),
9912 XEXP (varop, 1),
9913 constop))));
9914
9915 /* If VAROP is PLUS, and the constant is a mask of low bits, distribute
9916 the AND and see if one of the operands simplifies to zero. If so, we
9917 may eliminate it. */
9918
9919 if (GET_CODE (varop) == PLUS
9920 && pow2p_hwi (constop + 1))
9921 {
9922 rtx o0, o1;
9923
9924 o0 = simplify_and_const_int (NULL_RTX, mode, XEXP (varop, 0), constop);
9925 o1 = simplify_and_const_int (NULL_RTX, mode, XEXP (varop, 1), constop);
9926 if (o0 == const0_rtx)
9927 return o1;
9928 if (o1 == const0_rtx)
9929 return o0;
9930 }
9931
9932 /* Make a SUBREG if necessary. If we can't make it, fail. */
9933 varop = gen_lowpart (mode, varop);
9934 if (varop == NULL_RTX || GET_CODE (varop) == CLOBBER)
9935 return NULL_RTX;
9936
9937 /* If we are only masking insignificant bits, return VAROP. */
9938 if (constop == nonzero)
9939 return varop;
9940
9941 if (varop == orig_varop && constop == orig_constop)
9942 return NULL_RTX;
9943
9944 /* Otherwise, return an AND. */
9945 return simplify_gen_binary (AND, mode, varop, gen_int_mode (constop, mode));
9946 }
9947
9948
9949 /* We have X, a logical `and' of VAROP with the constant CONSTOP, to be done
9950 in MODE.
9951
9952 Return an equivalent form, if different from X. Otherwise, return X. If
9953 X is zero, we are to always construct the equivalent form. */
9954
9955 static rtx
9956 simplify_and_const_int (rtx x, machine_mode mode, rtx varop,
9957 unsigned HOST_WIDE_INT constop)
9958 {
9959 rtx tem = simplify_and_const_int_1 (mode, varop, constop);
9960 if (tem)
9961 return tem;
9962
9963 if (!x)
9964 x = simplify_gen_binary (AND, GET_MODE (varop), varop,
9965 gen_int_mode (constop, mode));
9966 if (GET_MODE (x) != mode)
9967 x = gen_lowpart (mode, x);
9968 return x;
9969 }
9970 \f
9971 /* Given a REG, X, compute which bits in X can be nonzero.
9972 We don't care about bits outside of those defined in MODE.
9973
9974 For most X this is simply GET_MODE_MASK (GET_MODE (MODE)), but if X is
9975 a shift, AND, or zero_extract, we can do better. */
9976
9977 static rtx
9978 reg_nonzero_bits_for_combine (const_rtx x, machine_mode mode,
9979 const_rtx known_x ATTRIBUTE_UNUSED,
9980 machine_mode known_mode ATTRIBUTE_UNUSED,
9981 unsigned HOST_WIDE_INT known_ret ATTRIBUTE_UNUSED,
9982 unsigned HOST_WIDE_INT *nonzero)
9983 {
9984 rtx tem;
9985 reg_stat_type *rsp;
9986
9987 /* If X is a register whose nonzero bits value is current, use it.
9988 Otherwise, if X is a register whose value we can find, use that
9989 value. Otherwise, use the previously-computed global nonzero bits
9990 for this register. */
9991
9992 rsp = &reg_stat[REGNO (x)];
9993 if (rsp->last_set_value != 0
9994 && (rsp->last_set_mode == mode
9995 || (GET_MODE_CLASS (rsp->last_set_mode) == MODE_INT
9996 && GET_MODE_CLASS (mode) == MODE_INT))
9997 && ((rsp->last_set_label >= label_tick_ebb_start
9998 && rsp->last_set_label < label_tick)
9999 || (rsp->last_set_label == label_tick
10000 && DF_INSN_LUID (rsp->last_set) < subst_low_luid)
10001 || (REGNO (x) >= FIRST_PSEUDO_REGISTER
10002 && REGNO (x) < reg_n_sets_max
10003 && REG_N_SETS (REGNO (x)) == 1
10004 && !REGNO_REG_SET_P
10005 (DF_LR_IN (ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb),
10006 REGNO (x)))))
10007 {
10008 /* Note that, even if the precision of last_set_mode is lower than that
10009 of mode, record_value_for_reg invoked nonzero_bits on the register
10010 with nonzero_bits_mode (because last_set_mode is necessarily integral
10011 and HWI_COMPUTABLE_MODE_P in this case) so bits in nonzero_bits_mode
10012 are all valid, hence in mode too since nonzero_bits_mode is defined
10013 to the largest HWI_COMPUTABLE_MODE_P mode. */
10014 *nonzero &= rsp->last_set_nonzero_bits;
10015 return NULL;
10016 }
10017
10018 tem = get_last_value (x);
10019 if (tem)
10020 {
10021 if (SHORT_IMMEDIATES_SIGN_EXTEND)
10022 tem = sign_extend_short_imm (tem, GET_MODE (x),
10023 GET_MODE_PRECISION (mode));
10024
10025 return tem;
10026 }
10027
10028 if (nonzero_sign_valid && rsp->nonzero_bits)
10029 {
10030 unsigned HOST_WIDE_INT mask = rsp->nonzero_bits;
10031
10032 if (GET_MODE_PRECISION (GET_MODE (x)) < GET_MODE_PRECISION (mode))
10033 /* We don't know anything about the upper bits. */
10034 mask |= GET_MODE_MASK (mode) ^ GET_MODE_MASK (GET_MODE (x));
10035
10036 *nonzero &= mask;
10037 }
10038
10039 return NULL;
10040 }
10041
10042 /* Return the number of bits at the high-order end of X that are known to
10043 be equal to the sign bit. X will be used in mode MODE; if MODE is
10044 VOIDmode, X will be used in its own mode. The returned value will always
10045 be between 1 and the number of bits in MODE. */
10046
10047 static rtx
10048 reg_num_sign_bit_copies_for_combine (const_rtx x, machine_mode mode,
10049 const_rtx known_x ATTRIBUTE_UNUSED,
10050 machine_mode known_mode
10051 ATTRIBUTE_UNUSED,
10052 unsigned int known_ret ATTRIBUTE_UNUSED,
10053 unsigned int *result)
10054 {
10055 rtx tem;
10056 reg_stat_type *rsp;
10057
10058 rsp = &reg_stat[REGNO (x)];
10059 if (rsp->last_set_value != 0
10060 && rsp->last_set_mode == mode
10061 && ((rsp->last_set_label >= label_tick_ebb_start
10062 && rsp->last_set_label < label_tick)
10063 || (rsp->last_set_label == label_tick
10064 && DF_INSN_LUID (rsp->last_set) < subst_low_luid)
10065 || (REGNO (x) >= FIRST_PSEUDO_REGISTER
10066 && REGNO (x) < reg_n_sets_max
10067 && REG_N_SETS (REGNO (x)) == 1
10068 && !REGNO_REG_SET_P
10069 (DF_LR_IN (ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb),
10070 REGNO (x)))))
10071 {
10072 *result = rsp->last_set_sign_bit_copies;
10073 return NULL;
10074 }
10075
10076 tem = get_last_value (x);
10077 if (tem != 0)
10078 return tem;
10079
10080 if (nonzero_sign_valid && rsp->sign_bit_copies != 0
10081 && GET_MODE_PRECISION (GET_MODE (x)) == GET_MODE_PRECISION (mode))
10082 *result = rsp->sign_bit_copies;
10083
10084 return NULL;
10085 }
10086 \f
10087 /* Return the number of "extended" bits there are in X, when interpreted
10088 as a quantity in MODE whose signedness is indicated by UNSIGNEDP. For
10089 unsigned quantities, this is the number of high-order zero bits.
10090 For signed quantities, this is the number of copies of the sign bit
10091 minus 1. In both case, this function returns the number of "spare"
10092 bits. For example, if two quantities for which this function returns
10093 at least 1 are added, the addition is known not to overflow.
10094
10095 This function will always return 0 unless called during combine, which
10096 implies that it must be called from a define_split. */
10097
10098 unsigned int
10099 extended_count (const_rtx x, machine_mode mode, int unsignedp)
10100 {
10101 if (nonzero_sign_valid == 0)
10102 return 0;
10103
10104 return (unsignedp
10105 ? (HWI_COMPUTABLE_MODE_P (mode)
10106 ? (unsigned int) (GET_MODE_PRECISION (mode) - 1
10107 - floor_log2 (nonzero_bits (x, mode)))
10108 : 0)
10109 : num_sign_bit_copies (x, mode) - 1);
10110 }
10111
10112 /* This function is called from `simplify_shift_const' to merge two
10113 outer operations. Specifically, we have already found that we need
10114 to perform operation *POP0 with constant *PCONST0 at the outermost
10115 position. We would now like to also perform OP1 with constant CONST1
10116 (with *POP0 being done last).
10117
10118 Return 1 if we can do the operation and update *POP0 and *PCONST0 with
10119 the resulting operation. *PCOMP_P is set to 1 if we would need to
10120 complement the innermost operand, otherwise it is unchanged.
10121
10122 MODE is the mode in which the operation will be done. No bits outside
10123 the width of this mode matter. It is assumed that the width of this mode
10124 is smaller than or equal to HOST_BITS_PER_WIDE_INT.
10125
10126 If *POP0 or OP1 are UNKNOWN, it means no operation is required. Only NEG, PLUS,
10127 IOR, XOR, and AND are supported. We may set *POP0 to SET if the proper
10128 result is simply *PCONST0.
10129
10130 If the resulting operation cannot be expressed as one operation, we
10131 return 0 and do not change *POP0, *PCONST0, and *PCOMP_P. */
10132
10133 static int
10134 merge_outer_ops (enum rtx_code *pop0, HOST_WIDE_INT *pconst0, enum rtx_code op1, HOST_WIDE_INT const1, machine_mode mode, int *pcomp_p)
10135 {
10136 enum rtx_code op0 = *pop0;
10137 HOST_WIDE_INT const0 = *pconst0;
10138
10139 const0 &= GET_MODE_MASK (mode);
10140 const1 &= GET_MODE_MASK (mode);
10141
10142 /* If OP0 is an AND, clear unimportant bits in CONST1. */
10143 if (op0 == AND)
10144 const1 &= const0;
10145
10146 /* If OP0 or OP1 is UNKNOWN, this is easy. Similarly if they are the same or
10147 if OP0 is SET. */
10148
10149 if (op1 == UNKNOWN || op0 == SET)
10150 return 1;
10151
10152 else if (op0 == UNKNOWN)
10153 op0 = op1, const0 = const1;
10154
10155 else if (op0 == op1)
10156 {
10157 switch (op0)
10158 {
10159 case AND:
10160 const0 &= const1;
10161 break;
10162 case IOR:
10163 const0 |= const1;
10164 break;
10165 case XOR:
10166 const0 ^= const1;
10167 break;
10168 case PLUS:
10169 const0 += const1;
10170 break;
10171 case NEG:
10172 op0 = UNKNOWN;
10173 break;
10174 default:
10175 break;
10176 }
10177 }
10178
10179 /* Otherwise, if either is a PLUS or NEG, we can't do anything. */
10180 else if (op0 == PLUS || op1 == PLUS || op0 == NEG || op1 == NEG)
10181 return 0;
10182
10183 /* If the two constants aren't the same, we can't do anything. The
10184 remaining six cases can all be done. */
10185 else if (const0 != const1)
10186 return 0;
10187
10188 else
10189 switch (op0)
10190 {
10191 case IOR:
10192 if (op1 == AND)
10193 /* (a & b) | b == b */
10194 op0 = SET;
10195 else /* op1 == XOR */
10196 /* (a ^ b) | b == a | b */
10197 {;}
10198 break;
10199
10200 case XOR:
10201 if (op1 == AND)
10202 /* (a & b) ^ b == (~a) & b */
10203 op0 = AND, *pcomp_p = 1;
10204 else /* op1 == IOR */
10205 /* (a | b) ^ b == a & ~b */
10206 op0 = AND, const0 = ~const0;
10207 break;
10208
10209 case AND:
10210 if (op1 == IOR)
10211 /* (a | b) & b == b */
10212 op0 = SET;
10213 else /* op1 == XOR */
10214 /* (a ^ b) & b) == (~a) & b */
10215 *pcomp_p = 1;
10216 break;
10217 default:
10218 break;
10219 }
10220
10221 /* Check for NO-OP cases. */
10222 const0 &= GET_MODE_MASK (mode);
10223 if (const0 == 0
10224 && (op0 == IOR || op0 == XOR || op0 == PLUS))
10225 op0 = UNKNOWN;
10226 else if (const0 == 0 && op0 == AND)
10227 op0 = SET;
10228 else if ((unsigned HOST_WIDE_INT) const0 == GET_MODE_MASK (mode)
10229 && op0 == AND)
10230 op0 = UNKNOWN;
10231
10232 *pop0 = op0;
10233
10234 /* ??? Slightly redundant with the above mask, but not entirely.
10235 Moving this above means we'd have to sign-extend the mode mask
10236 for the final test. */
10237 if (op0 != UNKNOWN && op0 != NEG)
10238 *pconst0 = trunc_int_for_mode (const0, mode);
10239
10240 return 1;
10241 }
10242 \f
10243 /* A helper to simplify_shift_const_1 to determine the mode we can perform
10244 the shift in. The original shift operation CODE is performed on OP in
10245 ORIG_MODE. Return the wider mode MODE if we can perform the operation
10246 in that mode. Return ORIG_MODE otherwise. We can also assume that the
10247 result of the shift is subject to operation OUTER_CODE with operand
10248 OUTER_CONST. */
10249
10250 static machine_mode
10251 try_widen_shift_mode (enum rtx_code code, rtx op, int count,
10252 machine_mode orig_mode, machine_mode mode,
10253 enum rtx_code outer_code, HOST_WIDE_INT outer_const)
10254 {
10255 if (orig_mode == mode)
10256 return mode;
10257 gcc_assert (GET_MODE_PRECISION (mode) > GET_MODE_PRECISION (orig_mode));
10258
10259 /* In general we can't perform in wider mode for right shift and rotate. */
10260 switch (code)
10261 {
10262 case ASHIFTRT:
10263 /* We can still widen if the bits brought in from the left are identical
10264 to the sign bit of ORIG_MODE. */
10265 if (num_sign_bit_copies (op, mode)
10266 > (unsigned) (GET_MODE_PRECISION (mode)
10267 - GET_MODE_PRECISION (orig_mode)))
10268 return mode;
10269 return orig_mode;
10270
10271 case LSHIFTRT:
10272 /* Similarly here but with zero bits. */
10273 if (HWI_COMPUTABLE_MODE_P (mode)
10274 && (nonzero_bits (op, mode) & ~GET_MODE_MASK (orig_mode)) == 0)
10275 return mode;
10276
10277 /* We can also widen if the bits brought in will be masked off. This
10278 operation is performed in ORIG_MODE. */
10279 if (outer_code == AND)
10280 {
10281 int care_bits = low_bitmask_len (orig_mode, outer_const);
10282
10283 if (care_bits >= 0
10284 && GET_MODE_PRECISION (orig_mode) - care_bits >= count)
10285 return mode;
10286 }
10287 /* fall through */
10288
10289 case ROTATE:
10290 return orig_mode;
10291
10292 case ROTATERT:
10293 gcc_unreachable ();
10294
10295 default:
10296 return mode;
10297 }
10298 }
10299
10300 /* Simplify a shift of VAROP by ORIG_COUNT bits. CODE says what kind
10301 of shift. The result of the shift is RESULT_MODE. Return NULL_RTX
10302 if we cannot simplify it. Otherwise, return a simplified value.
10303
10304 The shift is normally computed in the widest mode we find in VAROP, as
10305 long as it isn't a different number of words than RESULT_MODE. Exceptions
10306 are ASHIFTRT and ROTATE, which are always done in their original mode. */
10307
10308 static rtx
10309 simplify_shift_const_1 (enum rtx_code code, machine_mode result_mode,
10310 rtx varop, int orig_count)
10311 {
10312 enum rtx_code orig_code = code;
10313 rtx orig_varop = varop;
10314 int count;
10315 machine_mode mode = result_mode;
10316 machine_mode shift_mode, tmode;
10317 unsigned int mode_words
10318 = (GET_MODE_SIZE (mode) + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD;
10319 /* We form (outer_op (code varop count) (outer_const)). */
10320 enum rtx_code outer_op = UNKNOWN;
10321 HOST_WIDE_INT outer_const = 0;
10322 int complement_p = 0;
10323 rtx new_rtx, x;
10324
10325 /* Make sure and truncate the "natural" shift on the way in. We don't
10326 want to do this inside the loop as it makes it more difficult to
10327 combine shifts. */
10328 if (SHIFT_COUNT_TRUNCATED)
10329 orig_count &= GET_MODE_UNIT_BITSIZE (mode) - 1;
10330
10331 /* If we were given an invalid count, don't do anything except exactly
10332 what was requested. */
10333
10334 if (orig_count < 0 || orig_count >= (int) GET_MODE_UNIT_PRECISION (mode))
10335 return NULL_RTX;
10336
10337 count = orig_count;
10338
10339 /* Unless one of the branches of the `if' in this loop does a `continue',
10340 we will `break' the loop after the `if'. */
10341
10342 while (count != 0)
10343 {
10344 /* If we have an operand of (clobber (const_int 0)), fail. */
10345 if (GET_CODE (varop) == CLOBBER)
10346 return NULL_RTX;
10347
10348 /* Convert ROTATERT to ROTATE. */
10349 if (code == ROTATERT)
10350 {
10351 unsigned int bitsize = GET_MODE_UNIT_PRECISION (result_mode);
10352 code = ROTATE;
10353 count = bitsize - count;
10354 }
10355
10356 shift_mode = try_widen_shift_mode (code, varop, count, result_mode,
10357 mode, outer_op, outer_const);
10358 machine_mode shift_unit_mode = GET_MODE_INNER (shift_mode);
10359
10360 /* Handle cases where the count is greater than the size of the mode
10361 minus 1. For ASHIFT, use the size minus one as the count (this can
10362 occur when simplifying (lshiftrt (ashiftrt ..))). For rotates,
10363 take the count modulo the size. For other shifts, the result is
10364 zero.
10365
10366 Since these shifts are being produced by the compiler by combining
10367 multiple operations, each of which are defined, we know what the
10368 result is supposed to be. */
10369
10370 if (count > (GET_MODE_PRECISION (shift_unit_mode) - 1))
10371 {
10372 if (code == ASHIFTRT)
10373 count = GET_MODE_PRECISION (shift_unit_mode) - 1;
10374 else if (code == ROTATE || code == ROTATERT)
10375 count %= GET_MODE_PRECISION (shift_unit_mode);
10376 else
10377 {
10378 /* We can't simply return zero because there may be an
10379 outer op. */
10380 varop = const0_rtx;
10381 count = 0;
10382 break;
10383 }
10384 }
10385
10386 /* If we discovered we had to complement VAROP, leave. Making a NOT
10387 here would cause an infinite loop. */
10388 if (complement_p)
10389 break;
10390
10391 if (shift_mode == shift_unit_mode)
10392 {
10393 /* An arithmetic right shift of a quantity known to be -1 or 0
10394 is a no-op. */
10395 if (code == ASHIFTRT
10396 && (num_sign_bit_copies (varop, shift_unit_mode)
10397 == GET_MODE_PRECISION (shift_unit_mode)))
10398 {
10399 count = 0;
10400 break;
10401 }
10402
10403 /* If we are doing an arithmetic right shift and discarding all but
10404 the sign bit copies, this is equivalent to doing a shift by the
10405 bitsize minus one. Convert it into that shift because it will
10406 often allow other simplifications. */
10407
10408 if (code == ASHIFTRT
10409 && (count + num_sign_bit_copies (varop, shift_unit_mode)
10410 >= GET_MODE_PRECISION (shift_unit_mode)))
10411 count = GET_MODE_PRECISION (shift_unit_mode) - 1;
10412
10413 /* We simplify the tests below and elsewhere by converting
10414 ASHIFTRT to LSHIFTRT if we know the sign bit is clear.
10415 `make_compound_operation' will convert it to an ASHIFTRT for
10416 those machines (such as VAX) that don't have an LSHIFTRT. */
10417 if (code == ASHIFTRT
10418 && HWI_COMPUTABLE_MODE_P (shift_unit_mode)
10419 && val_signbit_known_clear_p (shift_unit_mode,
10420 nonzero_bits (varop,
10421 shift_unit_mode)))
10422 code = LSHIFTRT;
10423
10424 if (((code == LSHIFTRT
10425 && HWI_COMPUTABLE_MODE_P (shift_unit_mode)
10426 && !(nonzero_bits (varop, shift_unit_mode) >> count))
10427 || (code == ASHIFT
10428 && HWI_COMPUTABLE_MODE_P (shift_unit_mode)
10429 && !((nonzero_bits (varop, shift_unit_mode) << count)
10430 & GET_MODE_MASK (shift_unit_mode))))
10431 && !side_effects_p (varop))
10432 varop = const0_rtx;
10433 }
10434
10435 switch (GET_CODE (varop))
10436 {
10437 case SIGN_EXTEND:
10438 case ZERO_EXTEND:
10439 case SIGN_EXTRACT:
10440 case ZERO_EXTRACT:
10441 new_rtx = expand_compound_operation (varop);
10442 if (new_rtx != varop)
10443 {
10444 varop = new_rtx;
10445 continue;
10446 }
10447 break;
10448
10449 case MEM:
10450 /* The following rules apply only to scalars. */
10451 if (shift_mode != shift_unit_mode)
10452 break;
10453
10454 /* If we have (xshiftrt (mem ...) C) and C is MODE_WIDTH
10455 minus the width of a smaller mode, we can do this with a
10456 SIGN_EXTEND or ZERO_EXTEND from the narrower memory location. */
10457 if ((code == ASHIFTRT || code == LSHIFTRT)
10458 && ! mode_dependent_address_p (XEXP (varop, 0),
10459 MEM_ADDR_SPACE (varop))
10460 && ! MEM_VOLATILE_P (varop)
10461 && (tmode = mode_for_size (GET_MODE_BITSIZE (mode) - count,
10462 MODE_INT, 1)) != BLKmode)
10463 {
10464 new_rtx = adjust_address_nv (varop, tmode,
10465 BYTES_BIG_ENDIAN ? 0
10466 : count / BITS_PER_UNIT);
10467
10468 varop = gen_rtx_fmt_e (code == ASHIFTRT ? SIGN_EXTEND
10469 : ZERO_EXTEND, mode, new_rtx);
10470 count = 0;
10471 continue;
10472 }
10473 break;
10474
10475 case SUBREG:
10476 /* The following rules apply only to scalars. */
10477 if (shift_mode != shift_unit_mode)
10478 break;
10479
10480 /* If VAROP is a SUBREG, strip it as long as the inner operand has
10481 the same number of words as what we've seen so far. Then store
10482 the widest mode in MODE. */
10483 if (subreg_lowpart_p (varop)
10484 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (varop)))
10485 > GET_MODE_SIZE (GET_MODE (varop)))
10486 && (unsigned int) ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (varop)))
10487 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
10488 == mode_words
10489 && GET_MODE_CLASS (GET_MODE (varop)) == MODE_INT
10490 && GET_MODE_CLASS (GET_MODE (SUBREG_REG (varop))) == MODE_INT)
10491 {
10492 varop = SUBREG_REG (varop);
10493 if (GET_MODE_SIZE (GET_MODE (varop)) > GET_MODE_SIZE (mode))
10494 mode = GET_MODE (varop);
10495 continue;
10496 }
10497 break;
10498
10499 case MULT:
10500 /* Some machines use MULT instead of ASHIFT because MULT
10501 is cheaper. But it is still better on those machines to
10502 merge two shifts into one. */
10503 if (CONST_INT_P (XEXP (varop, 1))
10504 && exact_log2 (UINTVAL (XEXP (varop, 1))) >= 0)
10505 {
10506 varop
10507 = simplify_gen_binary (ASHIFT, GET_MODE (varop),
10508 XEXP (varop, 0),
10509 GEN_INT (exact_log2 (
10510 UINTVAL (XEXP (varop, 1)))));
10511 continue;
10512 }
10513 break;
10514
10515 case UDIV:
10516 /* Similar, for when divides are cheaper. */
10517 if (CONST_INT_P (XEXP (varop, 1))
10518 && exact_log2 (UINTVAL (XEXP (varop, 1))) >= 0)
10519 {
10520 varop
10521 = simplify_gen_binary (LSHIFTRT, GET_MODE (varop),
10522 XEXP (varop, 0),
10523 GEN_INT (exact_log2 (
10524 UINTVAL (XEXP (varop, 1)))));
10525 continue;
10526 }
10527 break;
10528
10529 case ASHIFTRT:
10530 /* If we are extracting just the sign bit of an arithmetic
10531 right shift, that shift is not needed. However, the sign
10532 bit of a wider mode may be different from what would be
10533 interpreted as the sign bit in a narrower mode, so, if
10534 the result is narrower, don't discard the shift. */
10535 if (code == LSHIFTRT
10536 && count == (GET_MODE_UNIT_BITSIZE (result_mode) - 1)
10537 && (GET_MODE_UNIT_BITSIZE (result_mode)
10538 >= GET_MODE_UNIT_BITSIZE (GET_MODE (varop))))
10539 {
10540 varop = XEXP (varop, 0);
10541 continue;
10542 }
10543
10544 /* fall through */
10545
10546 case LSHIFTRT:
10547 case ASHIFT:
10548 case ROTATE:
10549 /* The following rules apply only to scalars. */
10550 if (shift_mode != shift_unit_mode)
10551 break;
10552
10553 /* Here we have two nested shifts. The result is usually the
10554 AND of a new shift with a mask. We compute the result below. */
10555 if (CONST_INT_P (XEXP (varop, 1))
10556 && INTVAL (XEXP (varop, 1)) >= 0
10557 && INTVAL (XEXP (varop, 1)) < GET_MODE_PRECISION (GET_MODE (varop))
10558 && HWI_COMPUTABLE_MODE_P (result_mode)
10559 && HWI_COMPUTABLE_MODE_P (mode))
10560 {
10561 enum rtx_code first_code = GET_CODE (varop);
10562 unsigned int first_count = INTVAL (XEXP (varop, 1));
10563 unsigned HOST_WIDE_INT mask;
10564 rtx mask_rtx;
10565
10566 /* We have one common special case. We can't do any merging if
10567 the inner code is an ASHIFTRT of a smaller mode. However, if
10568 we have (ashift:M1 (subreg:M1 (ashiftrt:M2 FOO C1) 0) C2)
10569 with C2 == GET_MODE_BITSIZE (M1) - GET_MODE_BITSIZE (M2),
10570 we can convert it to
10571 (ashiftrt:M1 (ashift:M1 (and:M1 (subreg:M1 FOO 0) C3) C2) C1).
10572 This simplifies certain SIGN_EXTEND operations. */
10573 if (code == ASHIFT && first_code == ASHIFTRT
10574 && count == (GET_MODE_PRECISION (result_mode)
10575 - GET_MODE_PRECISION (GET_MODE (varop))))
10576 {
10577 /* C3 has the low-order C1 bits zero. */
10578
10579 mask = GET_MODE_MASK (mode)
10580 & ~((HOST_WIDE_INT_1U << first_count) - 1);
10581
10582 varop = simplify_and_const_int (NULL_RTX, result_mode,
10583 XEXP (varop, 0), mask);
10584 varop = simplify_shift_const (NULL_RTX, ASHIFT, result_mode,
10585 varop, count);
10586 count = first_count;
10587 code = ASHIFTRT;
10588 continue;
10589 }
10590
10591 /* If this was (ashiftrt (ashift foo C1) C2) and FOO has more
10592 than C1 high-order bits equal to the sign bit, we can convert
10593 this to either an ASHIFT or an ASHIFTRT depending on the
10594 two counts.
10595
10596 We cannot do this if VAROP's mode is not SHIFT_MODE. */
10597
10598 if (code == ASHIFTRT && first_code == ASHIFT
10599 && GET_MODE (varop) == shift_mode
10600 && (num_sign_bit_copies (XEXP (varop, 0), shift_mode)
10601 > first_count))
10602 {
10603 varop = XEXP (varop, 0);
10604 count -= first_count;
10605 if (count < 0)
10606 {
10607 count = -count;
10608 code = ASHIFT;
10609 }
10610
10611 continue;
10612 }
10613
10614 /* There are some cases we can't do. If CODE is ASHIFTRT,
10615 we can only do this if FIRST_CODE is also ASHIFTRT.
10616
10617 We can't do the case when CODE is ROTATE and FIRST_CODE is
10618 ASHIFTRT.
10619
10620 If the mode of this shift is not the mode of the outer shift,
10621 we can't do this if either shift is a right shift or ROTATE.
10622
10623 Finally, we can't do any of these if the mode is too wide
10624 unless the codes are the same.
10625
10626 Handle the case where the shift codes are the same
10627 first. */
10628
10629 if (code == first_code)
10630 {
10631 if (GET_MODE (varop) != result_mode
10632 && (code == ASHIFTRT || code == LSHIFTRT
10633 || code == ROTATE))
10634 break;
10635
10636 count += first_count;
10637 varop = XEXP (varop, 0);
10638 continue;
10639 }
10640
10641 if (code == ASHIFTRT
10642 || (code == ROTATE && first_code == ASHIFTRT)
10643 || GET_MODE_PRECISION (mode) > HOST_BITS_PER_WIDE_INT
10644 || (GET_MODE (varop) != result_mode
10645 && (first_code == ASHIFTRT || first_code == LSHIFTRT
10646 || first_code == ROTATE
10647 || code == ROTATE)))
10648 break;
10649
10650 /* To compute the mask to apply after the shift, shift the
10651 nonzero bits of the inner shift the same way the
10652 outer shift will. */
10653
10654 mask_rtx = gen_int_mode (nonzero_bits (varop, GET_MODE (varop)),
10655 result_mode);
10656
10657 mask_rtx
10658 = simplify_const_binary_operation (code, result_mode, mask_rtx,
10659 GEN_INT (count));
10660
10661 /* Give up if we can't compute an outer operation to use. */
10662 if (mask_rtx == 0
10663 || !CONST_INT_P (mask_rtx)
10664 || ! merge_outer_ops (&outer_op, &outer_const, AND,
10665 INTVAL (mask_rtx),
10666 result_mode, &complement_p))
10667 break;
10668
10669 /* If the shifts are in the same direction, we add the
10670 counts. Otherwise, we subtract them. */
10671 if ((code == ASHIFTRT || code == LSHIFTRT)
10672 == (first_code == ASHIFTRT || first_code == LSHIFTRT))
10673 count += first_count;
10674 else
10675 count -= first_count;
10676
10677 /* If COUNT is positive, the new shift is usually CODE,
10678 except for the two exceptions below, in which case it is
10679 FIRST_CODE. If the count is negative, FIRST_CODE should
10680 always be used */
10681 if (count > 0
10682 && ((first_code == ROTATE && code == ASHIFT)
10683 || (first_code == ASHIFTRT && code == LSHIFTRT)))
10684 code = first_code;
10685 else if (count < 0)
10686 code = first_code, count = -count;
10687
10688 varop = XEXP (varop, 0);
10689 continue;
10690 }
10691
10692 /* If we have (A << B << C) for any shift, we can convert this to
10693 (A << C << B). This wins if A is a constant. Only try this if
10694 B is not a constant. */
10695
10696 else if (GET_CODE (varop) == code
10697 && CONST_INT_P (XEXP (varop, 0))
10698 && !CONST_INT_P (XEXP (varop, 1)))
10699 {
10700 /* For ((unsigned) (cstULL >> count)) >> cst2 we have to make
10701 sure the result will be masked. See PR70222. */
10702 if (code == LSHIFTRT
10703 && mode != result_mode
10704 && !merge_outer_ops (&outer_op, &outer_const, AND,
10705 GET_MODE_MASK (result_mode)
10706 >> orig_count, result_mode,
10707 &complement_p))
10708 break;
10709 /* For ((int) (cstLL >> count)) >> cst2 just give up. Queuing
10710 up outer sign extension (often left and right shift) is
10711 hardly more efficient than the original. See PR70429. */
10712 if (code == ASHIFTRT && mode != result_mode)
10713 break;
10714
10715 rtx new_rtx = simplify_const_binary_operation (code, mode,
10716 XEXP (varop, 0),
10717 GEN_INT (count));
10718 varop = gen_rtx_fmt_ee (code, mode, new_rtx, XEXP (varop, 1));
10719 count = 0;
10720 continue;
10721 }
10722 break;
10723
10724 case NOT:
10725 /* The following rules apply only to scalars. */
10726 if (shift_mode != shift_unit_mode)
10727 break;
10728
10729 /* Make this fit the case below. */
10730 varop = gen_rtx_XOR (mode, XEXP (varop, 0), constm1_rtx);
10731 continue;
10732
10733 case IOR:
10734 case AND:
10735 case XOR:
10736 /* The following rules apply only to scalars. */
10737 if (shift_mode != shift_unit_mode)
10738 break;
10739
10740 /* If we have (xshiftrt (ior (plus X (const_int -1)) X) C)
10741 with C the size of VAROP - 1 and the shift is logical if
10742 STORE_FLAG_VALUE is 1 and arithmetic if STORE_FLAG_VALUE is -1,
10743 we have an (le X 0) operation. If we have an arithmetic shift
10744 and STORE_FLAG_VALUE is 1 or we have a logical shift with
10745 STORE_FLAG_VALUE of -1, we have a (neg (le X 0)) operation. */
10746
10747 if (GET_CODE (varop) == IOR && GET_CODE (XEXP (varop, 0)) == PLUS
10748 && XEXP (XEXP (varop, 0), 1) == constm1_rtx
10749 && (STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
10750 && (code == LSHIFTRT || code == ASHIFTRT)
10751 && count == (GET_MODE_PRECISION (GET_MODE (varop)) - 1)
10752 && rtx_equal_p (XEXP (XEXP (varop, 0), 0), XEXP (varop, 1)))
10753 {
10754 count = 0;
10755 varop = gen_rtx_LE (GET_MODE (varop), XEXP (varop, 1),
10756 const0_rtx);
10757
10758 if (STORE_FLAG_VALUE == 1 ? code == ASHIFTRT : code == LSHIFTRT)
10759 varop = gen_rtx_NEG (GET_MODE (varop), varop);
10760
10761 continue;
10762 }
10763
10764 /* If we have (shift (logical)), move the logical to the outside
10765 to allow it to possibly combine with another logical and the
10766 shift to combine with another shift. This also canonicalizes to
10767 what a ZERO_EXTRACT looks like. Also, some machines have
10768 (and (shift)) insns. */
10769
10770 if (CONST_INT_P (XEXP (varop, 1))
10771 /* We can't do this if we have (ashiftrt (xor)) and the
10772 constant has its sign bit set in shift_mode with shift_mode
10773 wider than result_mode. */
10774 && !(code == ASHIFTRT && GET_CODE (varop) == XOR
10775 && result_mode != shift_mode
10776 && 0 > trunc_int_for_mode (INTVAL (XEXP (varop, 1)),
10777 shift_mode))
10778 && (new_rtx = simplify_const_binary_operation
10779 (code, result_mode,
10780 gen_int_mode (INTVAL (XEXP (varop, 1)), result_mode),
10781 GEN_INT (count))) != 0
10782 && CONST_INT_P (new_rtx)
10783 && merge_outer_ops (&outer_op, &outer_const, GET_CODE (varop),
10784 INTVAL (new_rtx), result_mode, &complement_p))
10785 {
10786 varop = XEXP (varop, 0);
10787 continue;
10788 }
10789
10790 /* If we can't do that, try to simplify the shift in each arm of the
10791 logical expression, make a new logical expression, and apply
10792 the inverse distributive law. This also can't be done for
10793 (ashiftrt (xor)) where we've widened the shift and the constant
10794 changes the sign bit. */
10795 if (CONST_INT_P (XEXP (varop, 1))
10796 && !(code == ASHIFTRT && GET_CODE (varop) == XOR
10797 && result_mode != shift_mode
10798 && 0 > trunc_int_for_mode (INTVAL (XEXP (varop, 1)),
10799 shift_mode)))
10800 {
10801 rtx lhs = simplify_shift_const (NULL_RTX, code, shift_mode,
10802 XEXP (varop, 0), count);
10803 rtx rhs = simplify_shift_const (NULL_RTX, code, shift_mode,
10804 XEXP (varop, 1), count);
10805
10806 varop = simplify_gen_binary (GET_CODE (varop), shift_mode,
10807 lhs, rhs);
10808 varop = apply_distributive_law (varop);
10809
10810 count = 0;
10811 continue;
10812 }
10813 break;
10814
10815 case EQ:
10816 /* The following rules apply only to scalars. */
10817 if (shift_mode != shift_unit_mode)
10818 break;
10819
10820 /* Convert (lshiftrt (eq FOO 0) C) to (xor FOO 1) if STORE_FLAG_VALUE
10821 says that the sign bit can be tested, FOO has mode MODE, C is
10822 GET_MODE_PRECISION (MODE) - 1, and FOO has only its low-order bit
10823 that may be nonzero. */
10824 if (code == LSHIFTRT
10825 && XEXP (varop, 1) == const0_rtx
10826 && GET_MODE (XEXP (varop, 0)) == result_mode
10827 && count == (GET_MODE_PRECISION (result_mode) - 1)
10828 && HWI_COMPUTABLE_MODE_P (result_mode)
10829 && STORE_FLAG_VALUE == -1
10830 && nonzero_bits (XEXP (varop, 0), result_mode) == 1
10831 && merge_outer_ops (&outer_op, &outer_const, XOR, 1, result_mode,
10832 &complement_p))
10833 {
10834 varop = XEXP (varop, 0);
10835 count = 0;
10836 continue;
10837 }
10838 break;
10839
10840 case NEG:
10841 /* The following rules apply only to scalars. */
10842 if (shift_mode != shift_unit_mode)
10843 break;
10844
10845 /* (lshiftrt (neg A) C) where A is either 0 or 1 and C is one less
10846 than the number of bits in the mode is equivalent to A. */
10847 if (code == LSHIFTRT
10848 && count == (GET_MODE_PRECISION (result_mode) - 1)
10849 && nonzero_bits (XEXP (varop, 0), result_mode) == 1)
10850 {
10851 varop = XEXP (varop, 0);
10852 count = 0;
10853 continue;
10854 }
10855
10856 /* NEG commutes with ASHIFT since it is multiplication. Move the
10857 NEG outside to allow shifts to combine. */
10858 if (code == ASHIFT
10859 && merge_outer_ops (&outer_op, &outer_const, NEG, 0, result_mode,
10860 &complement_p))
10861 {
10862 varop = XEXP (varop, 0);
10863 continue;
10864 }
10865 break;
10866
10867 case PLUS:
10868 /* The following rules apply only to scalars. */
10869 if (shift_mode != shift_unit_mode)
10870 break;
10871
10872 /* (lshiftrt (plus A -1) C) where A is either 0 or 1 and C
10873 is one less than the number of bits in the mode is
10874 equivalent to (xor A 1). */
10875 if (code == LSHIFTRT
10876 && count == (GET_MODE_PRECISION (result_mode) - 1)
10877 && XEXP (varop, 1) == constm1_rtx
10878 && nonzero_bits (XEXP (varop, 0), result_mode) == 1
10879 && merge_outer_ops (&outer_op, &outer_const, XOR, 1, result_mode,
10880 &complement_p))
10881 {
10882 count = 0;
10883 varop = XEXP (varop, 0);
10884 continue;
10885 }
10886
10887 /* If we have (xshiftrt (plus FOO BAR) C), and the only bits
10888 that might be nonzero in BAR are those being shifted out and those
10889 bits are known zero in FOO, we can replace the PLUS with FOO.
10890 Similarly in the other operand order. This code occurs when
10891 we are computing the size of a variable-size array. */
10892
10893 if ((code == ASHIFTRT || code == LSHIFTRT)
10894 && count < HOST_BITS_PER_WIDE_INT
10895 && nonzero_bits (XEXP (varop, 1), result_mode) >> count == 0
10896 && (nonzero_bits (XEXP (varop, 1), result_mode)
10897 & nonzero_bits (XEXP (varop, 0), result_mode)) == 0)
10898 {
10899 varop = XEXP (varop, 0);
10900 continue;
10901 }
10902 else if ((code == ASHIFTRT || code == LSHIFTRT)
10903 && count < HOST_BITS_PER_WIDE_INT
10904 && HWI_COMPUTABLE_MODE_P (result_mode)
10905 && 0 == (nonzero_bits (XEXP (varop, 0), result_mode)
10906 >> count)
10907 && 0 == (nonzero_bits (XEXP (varop, 0), result_mode)
10908 & nonzero_bits (XEXP (varop, 1),
10909 result_mode)))
10910 {
10911 varop = XEXP (varop, 1);
10912 continue;
10913 }
10914
10915 /* (ashift (plus foo C) N) is (plus (ashift foo N) C'). */
10916 if (code == ASHIFT
10917 && CONST_INT_P (XEXP (varop, 1))
10918 && (new_rtx = simplify_const_binary_operation
10919 (ASHIFT, result_mode,
10920 gen_int_mode (INTVAL (XEXP (varop, 1)), result_mode),
10921 GEN_INT (count))) != 0
10922 && CONST_INT_P (new_rtx)
10923 && merge_outer_ops (&outer_op, &outer_const, PLUS,
10924 INTVAL (new_rtx), result_mode, &complement_p))
10925 {
10926 varop = XEXP (varop, 0);
10927 continue;
10928 }
10929
10930 /* Check for 'PLUS signbit', which is the canonical form of 'XOR
10931 signbit', and attempt to change the PLUS to an XOR and move it to
10932 the outer operation as is done above in the AND/IOR/XOR case
10933 leg for shift(logical). See details in logical handling above
10934 for reasoning in doing so. */
10935 if (code == LSHIFTRT
10936 && CONST_INT_P (XEXP (varop, 1))
10937 && mode_signbit_p (result_mode, XEXP (varop, 1))
10938 && (new_rtx = simplify_const_binary_operation
10939 (code, result_mode,
10940 gen_int_mode (INTVAL (XEXP (varop, 1)), result_mode),
10941 GEN_INT (count))) != 0
10942 && CONST_INT_P (new_rtx)
10943 && merge_outer_ops (&outer_op, &outer_const, XOR,
10944 INTVAL (new_rtx), result_mode, &complement_p))
10945 {
10946 varop = XEXP (varop, 0);
10947 continue;
10948 }
10949
10950 break;
10951
10952 case MINUS:
10953 /* The following rules apply only to scalars. */
10954 if (shift_mode != shift_unit_mode)
10955 break;
10956
10957 /* If we have (xshiftrt (minus (ashiftrt X C)) X) C)
10958 with C the size of VAROP - 1 and the shift is logical if
10959 STORE_FLAG_VALUE is 1 and arithmetic if STORE_FLAG_VALUE is -1,
10960 we have a (gt X 0) operation. If the shift is arithmetic with
10961 STORE_FLAG_VALUE of 1 or logical with STORE_FLAG_VALUE == -1,
10962 we have a (neg (gt X 0)) operation. */
10963
10964 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
10965 && GET_CODE (XEXP (varop, 0)) == ASHIFTRT
10966 && count == (GET_MODE_PRECISION (GET_MODE (varop)) - 1)
10967 && (code == LSHIFTRT || code == ASHIFTRT)
10968 && CONST_INT_P (XEXP (XEXP (varop, 0), 1))
10969 && INTVAL (XEXP (XEXP (varop, 0), 1)) == count
10970 && rtx_equal_p (XEXP (XEXP (varop, 0), 0), XEXP (varop, 1)))
10971 {
10972 count = 0;
10973 varop = gen_rtx_GT (GET_MODE (varop), XEXP (varop, 1),
10974 const0_rtx);
10975
10976 if (STORE_FLAG_VALUE == 1 ? code == ASHIFTRT : code == LSHIFTRT)
10977 varop = gen_rtx_NEG (GET_MODE (varop), varop);
10978
10979 continue;
10980 }
10981 break;
10982
10983 case TRUNCATE:
10984 /* Change (lshiftrt (truncate (lshiftrt))) to (truncate (lshiftrt))
10985 if the truncate does not affect the value. */
10986 if (code == LSHIFTRT
10987 && GET_CODE (XEXP (varop, 0)) == LSHIFTRT
10988 && CONST_INT_P (XEXP (XEXP (varop, 0), 1))
10989 && (INTVAL (XEXP (XEXP (varop, 0), 1))
10990 >= (GET_MODE_UNIT_PRECISION (GET_MODE (XEXP (varop, 0)))
10991 - GET_MODE_UNIT_PRECISION (GET_MODE (varop)))))
10992 {
10993 rtx varop_inner = XEXP (varop, 0);
10994
10995 varop_inner
10996 = gen_rtx_LSHIFTRT (GET_MODE (varop_inner),
10997 XEXP (varop_inner, 0),
10998 GEN_INT
10999 (count + INTVAL (XEXP (varop_inner, 1))));
11000 varop = gen_rtx_TRUNCATE (GET_MODE (varop), varop_inner);
11001 count = 0;
11002 continue;
11003 }
11004 break;
11005
11006 default:
11007 break;
11008 }
11009
11010 break;
11011 }
11012
11013 shift_mode = try_widen_shift_mode (code, varop, count, result_mode, mode,
11014 outer_op, outer_const);
11015
11016 /* We have now finished analyzing the shift. The result should be
11017 a shift of type CODE with SHIFT_MODE shifting VAROP COUNT places. If
11018 OUTER_OP is non-UNKNOWN, it is an operation that needs to be applied
11019 to the result of the shift. OUTER_CONST is the relevant constant,
11020 but we must turn off all bits turned off in the shift. */
11021
11022 if (outer_op == UNKNOWN
11023 && orig_code == code && orig_count == count
11024 && varop == orig_varop
11025 && shift_mode == GET_MODE (varop))
11026 return NULL_RTX;
11027
11028 /* Make a SUBREG if necessary. If we can't make it, fail. */
11029 varop = gen_lowpart (shift_mode, varop);
11030 if (varop == NULL_RTX || GET_CODE (varop) == CLOBBER)
11031 return NULL_RTX;
11032
11033 /* If we have an outer operation and we just made a shift, it is
11034 possible that we could have simplified the shift were it not
11035 for the outer operation. So try to do the simplification
11036 recursively. */
11037
11038 if (outer_op != UNKNOWN)
11039 x = simplify_shift_const_1 (code, shift_mode, varop, count);
11040 else
11041 x = NULL_RTX;
11042
11043 if (x == NULL_RTX)
11044 x = simplify_gen_binary (code, shift_mode, varop, GEN_INT (count));
11045
11046 /* If we were doing an LSHIFTRT in a wider mode than it was originally,
11047 turn off all the bits that the shift would have turned off. */
11048 if (orig_code == LSHIFTRT && result_mode != shift_mode)
11049 x = simplify_and_const_int (NULL_RTX, shift_mode, x,
11050 GET_MODE_MASK (result_mode) >> orig_count);
11051
11052 /* Do the remainder of the processing in RESULT_MODE. */
11053 x = gen_lowpart_or_truncate (result_mode, x);
11054
11055 /* If COMPLEMENT_P is set, we have to complement X before doing the outer
11056 operation. */
11057 if (complement_p)
11058 x = simplify_gen_unary (NOT, result_mode, x, result_mode);
11059
11060 if (outer_op != UNKNOWN)
11061 {
11062 if (GET_RTX_CLASS (outer_op) != RTX_UNARY
11063 && GET_MODE_PRECISION (result_mode) < HOST_BITS_PER_WIDE_INT)
11064 outer_const = trunc_int_for_mode (outer_const, result_mode);
11065
11066 if (outer_op == AND)
11067 x = simplify_and_const_int (NULL_RTX, result_mode, x, outer_const);
11068 else if (outer_op == SET)
11069 {
11070 /* This means that we have determined that the result is
11071 equivalent to a constant. This should be rare. */
11072 if (!side_effects_p (x))
11073 x = GEN_INT (outer_const);
11074 }
11075 else if (GET_RTX_CLASS (outer_op) == RTX_UNARY)
11076 x = simplify_gen_unary (outer_op, result_mode, x, result_mode);
11077 else
11078 x = simplify_gen_binary (outer_op, result_mode, x,
11079 GEN_INT (outer_const));
11080 }
11081
11082 return x;
11083 }
11084
11085 /* Simplify a shift of VAROP by COUNT bits. CODE says what kind of shift.
11086 The result of the shift is RESULT_MODE. If we cannot simplify it,
11087 return X or, if it is NULL, synthesize the expression with
11088 simplify_gen_binary. Otherwise, return a simplified value.
11089
11090 The shift is normally computed in the widest mode we find in VAROP, as
11091 long as it isn't a different number of words than RESULT_MODE. Exceptions
11092 are ASHIFTRT and ROTATE, which are always done in their original mode. */
11093
11094 static rtx
11095 simplify_shift_const (rtx x, enum rtx_code code, machine_mode result_mode,
11096 rtx varop, int count)
11097 {
11098 rtx tem = simplify_shift_const_1 (code, result_mode, varop, count);
11099 if (tem)
11100 return tem;
11101
11102 if (!x)
11103 x = simplify_gen_binary (code, GET_MODE (varop), varop, GEN_INT (count));
11104 if (GET_MODE (x) != result_mode)
11105 x = gen_lowpart (result_mode, x);
11106 return x;
11107 }
11108
11109 \f
11110 /* A subroutine of recog_for_combine. See there for arguments and
11111 return value. */
11112
11113 static int
11114 recog_for_combine_1 (rtx *pnewpat, rtx_insn *insn, rtx *pnotes)
11115 {
11116 rtx pat = *pnewpat;
11117 rtx pat_without_clobbers;
11118 int insn_code_number;
11119 int num_clobbers_to_add = 0;
11120 int i;
11121 rtx notes = NULL_RTX;
11122 rtx old_notes, old_pat;
11123 int old_icode;
11124
11125 /* If PAT is a PARALLEL, check to see if it contains the CLOBBER
11126 we use to indicate that something didn't match. If we find such a
11127 thing, force rejection. */
11128 if (GET_CODE (pat) == PARALLEL)
11129 for (i = XVECLEN (pat, 0) - 1; i >= 0; i--)
11130 if (GET_CODE (XVECEXP (pat, 0, i)) == CLOBBER
11131 && XEXP (XVECEXP (pat, 0, i), 0) == const0_rtx)
11132 return -1;
11133
11134 old_pat = PATTERN (insn);
11135 old_notes = REG_NOTES (insn);
11136 PATTERN (insn) = pat;
11137 REG_NOTES (insn) = NULL_RTX;
11138
11139 insn_code_number = recog (pat, insn, &num_clobbers_to_add);
11140 if (dump_file && (dump_flags & TDF_DETAILS))
11141 {
11142 if (insn_code_number < 0)
11143 fputs ("Failed to match this instruction:\n", dump_file);
11144 else
11145 fputs ("Successfully matched this instruction:\n", dump_file);
11146 print_rtl_single (dump_file, pat);
11147 }
11148
11149 /* If it isn't, there is the possibility that we previously had an insn
11150 that clobbered some register as a side effect, but the combined
11151 insn doesn't need to do that. So try once more without the clobbers
11152 unless this represents an ASM insn. */
11153
11154 if (insn_code_number < 0 && ! check_asm_operands (pat)
11155 && GET_CODE (pat) == PARALLEL)
11156 {
11157 int pos;
11158
11159 for (pos = 0, i = 0; i < XVECLEN (pat, 0); i++)
11160 if (GET_CODE (XVECEXP (pat, 0, i)) != CLOBBER)
11161 {
11162 if (i != pos)
11163 SUBST (XVECEXP (pat, 0, pos), XVECEXP (pat, 0, i));
11164 pos++;
11165 }
11166
11167 SUBST_INT (XVECLEN (pat, 0), pos);
11168
11169 if (pos == 1)
11170 pat = XVECEXP (pat, 0, 0);
11171
11172 PATTERN (insn) = pat;
11173 insn_code_number = recog (pat, insn, &num_clobbers_to_add);
11174 if (dump_file && (dump_flags & TDF_DETAILS))
11175 {
11176 if (insn_code_number < 0)
11177 fputs ("Failed to match this instruction:\n", dump_file);
11178 else
11179 fputs ("Successfully matched this instruction:\n", dump_file);
11180 print_rtl_single (dump_file, pat);
11181 }
11182 }
11183
11184 pat_without_clobbers = pat;
11185
11186 PATTERN (insn) = old_pat;
11187 REG_NOTES (insn) = old_notes;
11188
11189 /* Recognize all noop sets, these will be killed by followup pass. */
11190 if (insn_code_number < 0 && GET_CODE (pat) == SET && set_noop_p (pat))
11191 insn_code_number = NOOP_MOVE_INSN_CODE, num_clobbers_to_add = 0;
11192
11193 /* If we had any clobbers to add, make a new pattern than contains
11194 them. Then check to make sure that all of them are dead. */
11195 if (num_clobbers_to_add)
11196 {
11197 rtx newpat = gen_rtx_PARALLEL (VOIDmode,
11198 rtvec_alloc (GET_CODE (pat) == PARALLEL
11199 ? (XVECLEN (pat, 0)
11200 + num_clobbers_to_add)
11201 : num_clobbers_to_add + 1));
11202
11203 if (GET_CODE (pat) == PARALLEL)
11204 for (i = 0; i < XVECLEN (pat, 0); i++)
11205 XVECEXP (newpat, 0, i) = XVECEXP (pat, 0, i);
11206 else
11207 XVECEXP (newpat, 0, 0) = pat;
11208
11209 add_clobbers (newpat, insn_code_number);
11210
11211 for (i = XVECLEN (newpat, 0) - num_clobbers_to_add;
11212 i < XVECLEN (newpat, 0); i++)
11213 {
11214 if (REG_P (XEXP (XVECEXP (newpat, 0, i), 0))
11215 && ! reg_dead_at_p (XEXP (XVECEXP (newpat, 0, i), 0), insn))
11216 return -1;
11217 if (GET_CODE (XEXP (XVECEXP (newpat, 0, i), 0)) != SCRATCH)
11218 {
11219 gcc_assert (REG_P (XEXP (XVECEXP (newpat, 0, i), 0)));
11220 notes = alloc_reg_note (REG_UNUSED,
11221 XEXP (XVECEXP (newpat, 0, i), 0), notes);
11222 }
11223 }
11224 pat = newpat;
11225 }
11226
11227 if (insn_code_number >= 0
11228 && insn_code_number != NOOP_MOVE_INSN_CODE)
11229 {
11230 old_pat = PATTERN (insn);
11231 old_notes = REG_NOTES (insn);
11232 old_icode = INSN_CODE (insn);
11233 PATTERN (insn) = pat;
11234 REG_NOTES (insn) = notes;
11235 INSN_CODE (insn) = insn_code_number;
11236
11237 /* Allow targets to reject combined insn. */
11238 if (!targetm.legitimate_combined_insn (insn))
11239 {
11240 if (dump_file && (dump_flags & TDF_DETAILS))
11241 fputs ("Instruction not appropriate for target.",
11242 dump_file);
11243
11244 /* Callers expect recog_for_combine to strip
11245 clobbers from the pattern on failure. */
11246 pat = pat_without_clobbers;
11247 notes = NULL_RTX;
11248
11249 insn_code_number = -1;
11250 }
11251
11252 PATTERN (insn) = old_pat;
11253 REG_NOTES (insn) = old_notes;
11254 INSN_CODE (insn) = old_icode;
11255 }
11256
11257 *pnewpat = pat;
11258 *pnotes = notes;
11259
11260 return insn_code_number;
11261 }
11262
11263 /* Change every ZERO_EXTRACT and ZERO_EXTEND of a SUBREG that can be
11264 expressed as an AND and maybe an LSHIFTRT, to that formulation.
11265 Return whether anything was so changed. */
11266
11267 static bool
11268 change_zero_ext (rtx pat)
11269 {
11270 bool changed = false;
11271 rtx *src = &SET_SRC (pat);
11272
11273 subrtx_ptr_iterator::array_type array;
11274 FOR_EACH_SUBRTX_PTR (iter, array, src, NONCONST)
11275 {
11276 rtx x = **iter;
11277 machine_mode mode = GET_MODE (x);
11278 int size;
11279
11280 if (GET_CODE (x) == ZERO_EXTRACT
11281 && CONST_INT_P (XEXP (x, 1))
11282 && CONST_INT_P (XEXP (x, 2))
11283 && GET_MODE (XEXP (x, 0)) != VOIDmode
11284 && GET_MODE_PRECISION (GET_MODE (XEXP (x, 0)))
11285 <= GET_MODE_PRECISION (mode))
11286 {
11287 machine_mode inner_mode = GET_MODE (XEXP (x, 0));
11288
11289 size = INTVAL (XEXP (x, 1));
11290
11291 int start = INTVAL (XEXP (x, 2));
11292 if (BITS_BIG_ENDIAN)
11293 start = GET_MODE_PRECISION (inner_mode) - size - start;
11294
11295 if (start)
11296 x = gen_rtx_LSHIFTRT (inner_mode, XEXP (x, 0), GEN_INT (start));
11297 else
11298 x = XEXP (x, 0);
11299 if (mode != inner_mode)
11300 x = gen_lowpart_SUBREG (mode, x);
11301 }
11302 else if (GET_CODE (x) == ZERO_EXTEND
11303 && SCALAR_INT_MODE_P (mode)
11304 && GET_CODE (XEXP (x, 0)) == SUBREG
11305 && SCALAR_INT_MODE_P (GET_MODE (SUBREG_REG (XEXP (x, 0))))
11306 && !paradoxical_subreg_p (XEXP (x, 0))
11307 && subreg_lowpart_p (XEXP (x, 0)))
11308 {
11309 size = GET_MODE_PRECISION (GET_MODE (XEXP (x, 0)));
11310 x = SUBREG_REG (XEXP (x, 0));
11311 if (GET_MODE (x) != mode)
11312 x = gen_lowpart_SUBREG (mode, x);
11313 }
11314 else if (GET_CODE (x) == ZERO_EXTEND
11315 && SCALAR_INT_MODE_P (mode)
11316 && REG_P (XEXP (x, 0))
11317 && HARD_REGISTER_P (XEXP (x, 0))
11318 && can_change_dest_mode (XEXP (x, 0), 0, mode))
11319 {
11320 size = GET_MODE_PRECISION (GET_MODE (XEXP (x, 0)));
11321 x = gen_rtx_REG (mode, REGNO (XEXP (x, 0)));
11322 }
11323 else
11324 continue;
11325
11326 if (!(GET_CODE (x) == LSHIFTRT
11327 && CONST_INT_P (XEXP (x, 1))
11328 && size + INTVAL (XEXP (x, 1)) == GET_MODE_PRECISION (mode)))
11329 {
11330 wide_int mask = wi::mask (size, false, GET_MODE_PRECISION (mode));
11331 x = gen_rtx_AND (mode, x, immed_wide_int_const (mask, mode));
11332 }
11333
11334 SUBST (**iter, x);
11335 changed = true;
11336 }
11337
11338 if (changed)
11339 FOR_EACH_SUBRTX_PTR (iter, array, src, NONCONST)
11340 maybe_swap_commutative_operands (**iter);
11341
11342 rtx *dst = &SET_DEST (pat);
11343 if (GET_CODE (*dst) == ZERO_EXTRACT
11344 && REG_P (XEXP (*dst, 0))
11345 && CONST_INT_P (XEXP (*dst, 1))
11346 && CONST_INT_P (XEXP (*dst, 2)))
11347 {
11348 rtx reg = XEXP (*dst, 0);
11349 int width = INTVAL (XEXP (*dst, 1));
11350 int offset = INTVAL (XEXP (*dst, 2));
11351 machine_mode mode = GET_MODE (reg);
11352 int reg_width = GET_MODE_PRECISION (mode);
11353 if (BITS_BIG_ENDIAN)
11354 offset = reg_width - width - offset;
11355
11356 rtx x, y, z, w;
11357 wide_int mask = wi::shifted_mask (offset, width, true, reg_width);
11358 wide_int mask2 = wi::shifted_mask (offset, width, false, reg_width);
11359 x = gen_rtx_AND (mode, reg, immed_wide_int_const (mask, mode));
11360 if (offset)
11361 y = gen_rtx_ASHIFT (mode, SET_SRC (pat), GEN_INT (offset));
11362 else
11363 y = SET_SRC (pat);
11364 z = gen_rtx_AND (mode, y, immed_wide_int_const (mask2, mode));
11365 w = gen_rtx_IOR (mode, x, z);
11366 SUBST (SET_DEST (pat), reg);
11367 SUBST (SET_SRC (pat), w);
11368
11369 changed = true;
11370 }
11371
11372 return changed;
11373 }
11374
11375 /* Like recog, but we receive the address of a pointer to a new pattern.
11376 We try to match the rtx that the pointer points to.
11377 If that fails, we may try to modify or replace the pattern,
11378 storing the replacement into the same pointer object.
11379
11380 Modifications include deletion or addition of CLOBBERs. If the
11381 instruction will still not match, we change ZERO_EXTEND and ZERO_EXTRACT
11382 to the equivalent AND and perhaps LSHIFTRT patterns, and try with that
11383 (and undo if that fails).
11384
11385 PNOTES is a pointer to a location where any REG_UNUSED notes added for
11386 the CLOBBERs are placed.
11387
11388 The value is the final insn code from the pattern ultimately matched,
11389 or -1. */
11390
11391 static int
11392 recog_for_combine (rtx *pnewpat, rtx_insn *insn, rtx *pnotes)
11393 {
11394 rtx pat = *pnewpat;
11395 int insn_code_number = recog_for_combine_1 (pnewpat, insn, pnotes);
11396 if (insn_code_number >= 0 || check_asm_operands (pat))
11397 return insn_code_number;
11398
11399 void *marker = get_undo_marker ();
11400 bool changed = false;
11401
11402 if (GET_CODE (pat) == SET)
11403 changed = change_zero_ext (pat);
11404 else if (GET_CODE (pat) == PARALLEL)
11405 {
11406 int i;
11407 for (i = 0; i < XVECLEN (pat, 0); i++)
11408 {
11409 rtx set = XVECEXP (pat, 0, i);
11410 if (GET_CODE (set) == SET)
11411 changed |= change_zero_ext (set);
11412 }
11413 }
11414
11415 if (changed)
11416 {
11417 insn_code_number = recog_for_combine_1 (pnewpat, insn, pnotes);
11418
11419 if (insn_code_number < 0)
11420 undo_to_marker (marker);
11421 }
11422
11423 return insn_code_number;
11424 }
11425 \f
11426 /* Like gen_lowpart_general but for use by combine. In combine it
11427 is not possible to create any new pseudoregs. However, it is
11428 safe to create invalid memory addresses, because combine will
11429 try to recognize them and all they will do is make the combine
11430 attempt fail.
11431
11432 If for some reason this cannot do its job, an rtx
11433 (clobber (const_int 0)) is returned.
11434 An insn containing that will not be recognized. */
11435
11436 static rtx
11437 gen_lowpart_for_combine (machine_mode omode, rtx x)
11438 {
11439 machine_mode imode = GET_MODE (x);
11440 unsigned int osize = GET_MODE_SIZE (omode);
11441 unsigned int isize = GET_MODE_SIZE (imode);
11442 rtx result;
11443
11444 if (omode == imode)
11445 return x;
11446
11447 /* We can only support MODE being wider than a word if X is a
11448 constant integer or has a mode the same size. */
11449 if (GET_MODE_SIZE (omode) > UNITS_PER_WORD
11450 && ! (CONST_SCALAR_INT_P (x) || isize == osize))
11451 goto fail;
11452
11453 /* X might be a paradoxical (subreg (mem)). In that case, gen_lowpart
11454 won't know what to do. So we will strip off the SUBREG here and
11455 process normally. */
11456 if (GET_CODE (x) == SUBREG && MEM_P (SUBREG_REG (x)))
11457 {
11458 x = SUBREG_REG (x);
11459
11460 /* For use in case we fall down into the address adjustments
11461 further below, we need to adjust the known mode and size of
11462 x; imode and isize, since we just adjusted x. */
11463 imode = GET_MODE (x);
11464
11465 if (imode == omode)
11466 return x;
11467
11468 isize = GET_MODE_SIZE (imode);
11469 }
11470
11471 result = gen_lowpart_common (omode, x);
11472
11473 if (result)
11474 return result;
11475
11476 if (MEM_P (x))
11477 {
11478 int offset = 0;
11479
11480 /* Refuse to work on a volatile memory ref or one with a mode-dependent
11481 address. */
11482 if (MEM_VOLATILE_P (x)
11483 || mode_dependent_address_p (XEXP (x, 0), MEM_ADDR_SPACE (x)))
11484 goto fail;
11485
11486 /* If we want to refer to something bigger than the original memref,
11487 generate a paradoxical subreg instead. That will force a reload
11488 of the original memref X. */
11489 if (paradoxical_subreg_p (omode, imode))
11490 return gen_rtx_SUBREG (omode, x, 0);
11491
11492 if (WORDS_BIG_ENDIAN)
11493 offset = MAX (isize, UNITS_PER_WORD) - MAX (osize, UNITS_PER_WORD);
11494
11495 /* Adjust the address so that the address-after-the-data is
11496 unchanged. */
11497 if (BYTES_BIG_ENDIAN)
11498 offset -= MIN (UNITS_PER_WORD, osize) - MIN (UNITS_PER_WORD, isize);
11499
11500 return adjust_address_nv (x, omode, offset);
11501 }
11502
11503 /* If X is a comparison operator, rewrite it in a new mode. This
11504 probably won't match, but may allow further simplifications. */
11505 else if (COMPARISON_P (x))
11506 return gen_rtx_fmt_ee (GET_CODE (x), omode, XEXP (x, 0), XEXP (x, 1));
11507
11508 /* If we couldn't simplify X any other way, just enclose it in a
11509 SUBREG. Normally, this SUBREG won't match, but some patterns may
11510 include an explicit SUBREG or we may simplify it further in combine. */
11511 else
11512 {
11513 rtx res;
11514
11515 if (imode == VOIDmode)
11516 {
11517 imode = int_mode_for_mode (omode);
11518 x = gen_lowpart_common (imode, x);
11519 if (x == NULL)
11520 goto fail;
11521 }
11522 res = lowpart_subreg (omode, x, imode);
11523 if (res)
11524 return res;
11525 }
11526
11527 fail:
11528 return gen_rtx_CLOBBER (omode, const0_rtx);
11529 }
11530 \f
11531 /* Try to simplify a comparison between OP0 and a constant OP1,
11532 where CODE is the comparison code that will be tested, into a
11533 (CODE OP0 const0_rtx) form.
11534
11535 The result is a possibly different comparison code to use.
11536 *POP1 may be updated. */
11537
11538 static enum rtx_code
11539 simplify_compare_const (enum rtx_code code, machine_mode mode,
11540 rtx op0, rtx *pop1)
11541 {
11542 unsigned int mode_width = GET_MODE_PRECISION (mode);
11543 HOST_WIDE_INT const_op = INTVAL (*pop1);
11544
11545 /* Get the constant we are comparing against and turn off all bits
11546 not on in our mode. */
11547 if (mode != VOIDmode)
11548 const_op = trunc_int_for_mode (const_op, mode);
11549
11550 /* If we are comparing against a constant power of two and the value
11551 being compared can only have that single bit nonzero (e.g., it was
11552 `and'ed with that bit), we can replace this with a comparison
11553 with zero. */
11554 if (const_op
11555 && (code == EQ || code == NE || code == GE || code == GEU
11556 || code == LT || code == LTU)
11557 && mode_width - 1 < HOST_BITS_PER_WIDE_INT
11558 && pow2p_hwi (const_op & GET_MODE_MASK (mode))
11559 && (nonzero_bits (op0, mode)
11560 == (unsigned HOST_WIDE_INT) (const_op & GET_MODE_MASK (mode))))
11561 {
11562 code = (code == EQ || code == GE || code == GEU ? NE : EQ);
11563 const_op = 0;
11564 }
11565
11566 /* Similarly, if we are comparing a value known to be either -1 or
11567 0 with -1, change it to the opposite comparison against zero. */
11568 if (const_op == -1
11569 && (code == EQ || code == NE || code == GT || code == LE
11570 || code == GEU || code == LTU)
11571 && num_sign_bit_copies (op0, mode) == mode_width)
11572 {
11573 code = (code == EQ || code == LE || code == GEU ? NE : EQ);
11574 const_op = 0;
11575 }
11576
11577 /* Do some canonicalizations based on the comparison code. We prefer
11578 comparisons against zero and then prefer equality comparisons.
11579 If we can reduce the size of a constant, we will do that too. */
11580 switch (code)
11581 {
11582 case LT:
11583 /* < C is equivalent to <= (C - 1) */
11584 if (const_op > 0)
11585 {
11586 const_op -= 1;
11587 code = LE;
11588 /* ... fall through to LE case below. */
11589 gcc_fallthrough ();
11590 }
11591 else
11592 break;
11593
11594 case LE:
11595 /* <= C is equivalent to < (C + 1); we do this for C < 0 */
11596 if (const_op < 0)
11597 {
11598 const_op += 1;
11599 code = LT;
11600 }
11601
11602 /* If we are doing a <= 0 comparison on a value known to have
11603 a zero sign bit, we can replace this with == 0. */
11604 else if (const_op == 0
11605 && mode_width - 1 < HOST_BITS_PER_WIDE_INT
11606 && (nonzero_bits (op0, mode)
11607 & (HOST_WIDE_INT_1U << (mode_width - 1)))
11608 == 0)
11609 code = EQ;
11610 break;
11611
11612 case GE:
11613 /* >= C is equivalent to > (C - 1). */
11614 if (const_op > 0)
11615 {
11616 const_op -= 1;
11617 code = GT;
11618 /* ... fall through to GT below. */
11619 gcc_fallthrough ();
11620 }
11621 else
11622 break;
11623
11624 case GT:
11625 /* > C is equivalent to >= (C + 1); we do this for C < 0. */
11626 if (const_op < 0)
11627 {
11628 const_op += 1;
11629 code = GE;
11630 }
11631
11632 /* If we are doing a > 0 comparison on a value known to have
11633 a zero sign bit, we can replace this with != 0. */
11634 else if (const_op == 0
11635 && mode_width - 1 < HOST_BITS_PER_WIDE_INT
11636 && (nonzero_bits (op0, mode)
11637 & (HOST_WIDE_INT_1U << (mode_width - 1)))
11638 == 0)
11639 code = NE;
11640 break;
11641
11642 case LTU:
11643 /* < C is equivalent to <= (C - 1). */
11644 if (const_op > 0)
11645 {
11646 const_op -= 1;
11647 code = LEU;
11648 /* ... fall through ... */
11649 }
11650 /* (unsigned) < 0x80000000 is equivalent to >= 0. */
11651 else if (mode_width - 1 < HOST_BITS_PER_WIDE_INT
11652 && (unsigned HOST_WIDE_INT) const_op
11653 == HOST_WIDE_INT_1U << (mode_width - 1))
11654 {
11655 const_op = 0;
11656 code = GE;
11657 break;
11658 }
11659 else
11660 break;
11661
11662 case LEU:
11663 /* unsigned <= 0 is equivalent to == 0 */
11664 if (const_op == 0)
11665 code = EQ;
11666 /* (unsigned) <= 0x7fffffff is equivalent to >= 0. */
11667 else if (mode_width - 1 < HOST_BITS_PER_WIDE_INT
11668 && (unsigned HOST_WIDE_INT) const_op
11669 == (HOST_WIDE_INT_1U << (mode_width - 1)) - 1)
11670 {
11671 const_op = 0;
11672 code = GE;
11673 }
11674 break;
11675
11676 case GEU:
11677 /* >= C is equivalent to > (C - 1). */
11678 if (const_op > 1)
11679 {
11680 const_op -= 1;
11681 code = GTU;
11682 /* ... fall through ... */
11683 }
11684
11685 /* (unsigned) >= 0x80000000 is equivalent to < 0. */
11686 else if (mode_width - 1 < HOST_BITS_PER_WIDE_INT
11687 && (unsigned HOST_WIDE_INT) const_op
11688 == HOST_WIDE_INT_1U << (mode_width - 1))
11689 {
11690 const_op = 0;
11691 code = LT;
11692 break;
11693 }
11694 else
11695 break;
11696
11697 case GTU:
11698 /* unsigned > 0 is equivalent to != 0 */
11699 if (const_op == 0)
11700 code = NE;
11701 /* (unsigned) > 0x7fffffff is equivalent to < 0. */
11702 else if (mode_width - 1 < HOST_BITS_PER_WIDE_INT
11703 && (unsigned HOST_WIDE_INT) const_op
11704 == (HOST_WIDE_INT_1U << (mode_width - 1)) - 1)
11705 {
11706 const_op = 0;
11707 code = LT;
11708 }
11709 break;
11710
11711 default:
11712 break;
11713 }
11714
11715 *pop1 = GEN_INT (const_op);
11716 return code;
11717 }
11718 \f
11719 /* Simplify a comparison between *POP0 and *POP1 where CODE is the
11720 comparison code that will be tested.
11721
11722 The result is a possibly different comparison code to use. *POP0 and
11723 *POP1 may be updated.
11724
11725 It is possible that we might detect that a comparison is either always
11726 true or always false. However, we do not perform general constant
11727 folding in combine, so this knowledge isn't useful. Such tautologies
11728 should have been detected earlier. Hence we ignore all such cases. */
11729
11730 static enum rtx_code
11731 simplify_comparison (enum rtx_code code, rtx *pop0, rtx *pop1)
11732 {
11733 rtx op0 = *pop0;
11734 rtx op1 = *pop1;
11735 rtx tem, tem1;
11736 int i;
11737 machine_mode mode, tmode;
11738
11739 /* Try a few ways of applying the same transformation to both operands. */
11740 while (1)
11741 {
11742 /* The test below this one won't handle SIGN_EXTENDs on these machines,
11743 so check specially. */
11744 if (!WORD_REGISTER_OPERATIONS
11745 && code != GTU && code != GEU && code != LTU && code != LEU
11746 && GET_CODE (op0) == ASHIFTRT && GET_CODE (op1) == ASHIFTRT
11747 && GET_CODE (XEXP (op0, 0)) == ASHIFT
11748 && GET_CODE (XEXP (op1, 0)) == ASHIFT
11749 && GET_CODE (XEXP (XEXP (op0, 0), 0)) == SUBREG
11750 && GET_CODE (XEXP (XEXP (op1, 0), 0)) == SUBREG
11751 && (GET_MODE (SUBREG_REG (XEXP (XEXP (op0, 0), 0)))
11752 == GET_MODE (SUBREG_REG (XEXP (XEXP (op1, 0), 0))))
11753 && CONST_INT_P (XEXP (op0, 1))
11754 && XEXP (op0, 1) == XEXP (op1, 1)
11755 && XEXP (op0, 1) == XEXP (XEXP (op0, 0), 1)
11756 && XEXP (op0, 1) == XEXP (XEXP (op1, 0), 1)
11757 && (INTVAL (XEXP (op0, 1))
11758 == (GET_MODE_PRECISION (GET_MODE (op0))
11759 - (GET_MODE_PRECISION
11760 (GET_MODE (SUBREG_REG (XEXP (XEXP (op0, 0), 0))))))))
11761 {
11762 op0 = SUBREG_REG (XEXP (XEXP (op0, 0), 0));
11763 op1 = SUBREG_REG (XEXP (XEXP (op1, 0), 0));
11764 }
11765
11766 /* If both operands are the same constant shift, see if we can ignore the
11767 shift. We can if the shift is a rotate or if the bits shifted out of
11768 this shift are known to be zero for both inputs and if the type of
11769 comparison is compatible with the shift. */
11770 if (GET_CODE (op0) == GET_CODE (op1)
11771 && HWI_COMPUTABLE_MODE_P (GET_MODE (op0))
11772 && ((GET_CODE (op0) == ROTATE && (code == NE || code == EQ))
11773 || ((GET_CODE (op0) == LSHIFTRT || GET_CODE (op0) == ASHIFT)
11774 && (code != GT && code != LT && code != GE && code != LE))
11775 || (GET_CODE (op0) == ASHIFTRT
11776 && (code != GTU && code != LTU
11777 && code != GEU && code != LEU)))
11778 && CONST_INT_P (XEXP (op0, 1))
11779 && INTVAL (XEXP (op0, 1)) >= 0
11780 && INTVAL (XEXP (op0, 1)) < HOST_BITS_PER_WIDE_INT
11781 && XEXP (op0, 1) == XEXP (op1, 1))
11782 {
11783 machine_mode mode = GET_MODE (op0);
11784 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
11785 int shift_count = INTVAL (XEXP (op0, 1));
11786
11787 if (GET_CODE (op0) == LSHIFTRT || GET_CODE (op0) == ASHIFTRT)
11788 mask &= (mask >> shift_count) << shift_count;
11789 else if (GET_CODE (op0) == ASHIFT)
11790 mask = (mask & (mask << shift_count)) >> shift_count;
11791
11792 if ((nonzero_bits (XEXP (op0, 0), mode) & ~mask) == 0
11793 && (nonzero_bits (XEXP (op1, 0), mode) & ~mask) == 0)
11794 op0 = XEXP (op0, 0), op1 = XEXP (op1, 0);
11795 else
11796 break;
11797 }
11798
11799 /* If both operands are AND's of a paradoxical SUBREG by constant, the
11800 SUBREGs are of the same mode, and, in both cases, the AND would
11801 be redundant if the comparison was done in the narrower mode,
11802 do the comparison in the narrower mode (e.g., we are AND'ing with 1
11803 and the operand's possibly nonzero bits are 0xffffff01; in that case
11804 if we only care about QImode, we don't need the AND). This case
11805 occurs if the output mode of an scc insn is not SImode and
11806 STORE_FLAG_VALUE == 1 (e.g., the 386).
11807
11808 Similarly, check for a case where the AND's are ZERO_EXTEND
11809 operations from some narrower mode even though a SUBREG is not
11810 present. */
11811
11812 else if (GET_CODE (op0) == AND && GET_CODE (op1) == AND
11813 && CONST_INT_P (XEXP (op0, 1))
11814 && CONST_INT_P (XEXP (op1, 1)))
11815 {
11816 rtx inner_op0 = XEXP (op0, 0);
11817 rtx inner_op1 = XEXP (op1, 0);
11818 HOST_WIDE_INT c0 = INTVAL (XEXP (op0, 1));
11819 HOST_WIDE_INT c1 = INTVAL (XEXP (op1, 1));
11820 int changed = 0;
11821
11822 if (paradoxical_subreg_p (inner_op0)
11823 && GET_CODE (inner_op1) == SUBREG
11824 && (GET_MODE (SUBREG_REG (inner_op0))
11825 == GET_MODE (SUBREG_REG (inner_op1)))
11826 && (GET_MODE_PRECISION (GET_MODE (SUBREG_REG (inner_op0)))
11827 <= HOST_BITS_PER_WIDE_INT)
11828 && (0 == ((~c0) & nonzero_bits (SUBREG_REG (inner_op0),
11829 GET_MODE (SUBREG_REG (inner_op0)))))
11830 && (0 == ((~c1) & nonzero_bits (SUBREG_REG (inner_op1),
11831 GET_MODE (SUBREG_REG (inner_op1))))))
11832 {
11833 op0 = SUBREG_REG (inner_op0);
11834 op1 = SUBREG_REG (inner_op1);
11835
11836 /* The resulting comparison is always unsigned since we masked
11837 off the original sign bit. */
11838 code = unsigned_condition (code);
11839
11840 changed = 1;
11841 }
11842
11843 else if (c0 == c1)
11844 for (tmode = GET_CLASS_NARROWEST_MODE
11845 (GET_MODE_CLASS (GET_MODE (op0)));
11846 tmode != GET_MODE (op0); tmode = GET_MODE_WIDER_MODE (tmode))
11847 if ((unsigned HOST_WIDE_INT) c0 == GET_MODE_MASK (tmode))
11848 {
11849 op0 = gen_lowpart_or_truncate (tmode, inner_op0);
11850 op1 = gen_lowpart_or_truncate (tmode, inner_op1);
11851 code = unsigned_condition (code);
11852 changed = 1;
11853 break;
11854 }
11855
11856 if (! changed)
11857 break;
11858 }
11859
11860 /* If both operands are NOT, we can strip off the outer operation
11861 and adjust the comparison code for swapped operands; similarly for
11862 NEG, except that this must be an equality comparison. */
11863 else if ((GET_CODE (op0) == NOT && GET_CODE (op1) == NOT)
11864 || (GET_CODE (op0) == NEG && GET_CODE (op1) == NEG
11865 && (code == EQ || code == NE)))
11866 op0 = XEXP (op0, 0), op1 = XEXP (op1, 0), code = swap_condition (code);
11867
11868 else
11869 break;
11870 }
11871
11872 /* If the first operand is a constant, swap the operands and adjust the
11873 comparison code appropriately, but don't do this if the second operand
11874 is already a constant integer. */
11875 if (swap_commutative_operands_p (op0, op1))
11876 {
11877 std::swap (op0, op1);
11878 code = swap_condition (code);
11879 }
11880
11881 /* We now enter a loop during which we will try to simplify the comparison.
11882 For the most part, we only are concerned with comparisons with zero,
11883 but some things may really be comparisons with zero but not start
11884 out looking that way. */
11885
11886 while (CONST_INT_P (op1))
11887 {
11888 machine_mode mode = GET_MODE (op0);
11889 unsigned int mode_width = GET_MODE_PRECISION (mode);
11890 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
11891 int equality_comparison_p;
11892 int sign_bit_comparison_p;
11893 int unsigned_comparison_p;
11894 HOST_WIDE_INT const_op;
11895
11896 /* We only want to handle integral modes. This catches VOIDmode,
11897 CCmode, and the floating-point modes. An exception is that we
11898 can handle VOIDmode if OP0 is a COMPARE or a comparison
11899 operation. */
11900
11901 if (GET_MODE_CLASS (mode) != MODE_INT
11902 && ! (mode == VOIDmode
11903 && (GET_CODE (op0) == COMPARE || COMPARISON_P (op0))))
11904 break;
11905
11906 /* Try to simplify the compare to constant, possibly changing the
11907 comparison op, and/or changing op1 to zero. */
11908 code = simplify_compare_const (code, mode, op0, &op1);
11909 const_op = INTVAL (op1);
11910
11911 /* Compute some predicates to simplify code below. */
11912
11913 equality_comparison_p = (code == EQ || code == NE);
11914 sign_bit_comparison_p = ((code == LT || code == GE) && const_op == 0);
11915 unsigned_comparison_p = (code == LTU || code == LEU || code == GTU
11916 || code == GEU);
11917
11918 /* If this is a sign bit comparison and we can do arithmetic in
11919 MODE, say that we will only be needing the sign bit of OP0. */
11920 if (sign_bit_comparison_p && HWI_COMPUTABLE_MODE_P (mode))
11921 op0 = force_to_mode (op0, mode,
11922 HOST_WIDE_INT_1U
11923 << (GET_MODE_PRECISION (mode) - 1),
11924 0);
11925
11926 /* Now try cases based on the opcode of OP0. If none of the cases
11927 does a "continue", we exit this loop immediately after the
11928 switch. */
11929
11930 switch (GET_CODE (op0))
11931 {
11932 case ZERO_EXTRACT:
11933 /* If we are extracting a single bit from a variable position in
11934 a constant that has only a single bit set and are comparing it
11935 with zero, we can convert this into an equality comparison
11936 between the position and the location of the single bit. */
11937 /* Except we can't if SHIFT_COUNT_TRUNCATED is set, since we might
11938 have already reduced the shift count modulo the word size. */
11939 if (!SHIFT_COUNT_TRUNCATED
11940 && CONST_INT_P (XEXP (op0, 0))
11941 && XEXP (op0, 1) == const1_rtx
11942 && equality_comparison_p && const_op == 0
11943 && (i = exact_log2 (UINTVAL (XEXP (op0, 0)))) >= 0)
11944 {
11945 if (BITS_BIG_ENDIAN)
11946 i = BITS_PER_WORD - 1 - i;
11947
11948 op0 = XEXP (op0, 2);
11949 op1 = GEN_INT (i);
11950 const_op = i;
11951
11952 /* Result is nonzero iff shift count is equal to I. */
11953 code = reverse_condition (code);
11954 continue;
11955 }
11956
11957 /* fall through */
11958
11959 case SIGN_EXTRACT:
11960 tem = expand_compound_operation (op0);
11961 if (tem != op0)
11962 {
11963 op0 = tem;
11964 continue;
11965 }
11966 break;
11967
11968 case NOT:
11969 /* If testing for equality, we can take the NOT of the constant. */
11970 if (equality_comparison_p
11971 && (tem = simplify_unary_operation (NOT, mode, op1, mode)) != 0)
11972 {
11973 op0 = XEXP (op0, 0);
11974 op1 = tem;
11975 continue;
11976 }
11977
11978 /* If just looking at the sign bit, reverse the sense of the
11979 comparison. */
11980 if (sign_bit_comparison_p)
11981 {
11982 op0 = XEXP (op0, 0);
11983 code = (code == GE ? LT : GE);
11984 continue;
11985 }
11986 break;
11987
11988 case NEG:
11989 /* If testing for equality, we can take the NEG of the constant. */
11990 if (equality_comparison_p
11991 && (tem = simplify_unary_operation (NEG, mode, op1, mode)) != 0)
11992 {
11993 op0 = XEXP (op0, 0);
11994 op1 = tem;
11995 continue;
11996 }
11997
11998 /* The remaining cases only apply to comparisons with zero. */
11999 if (const_op != 0)
12000 break;
12001
12002 /* When X is ABS or is known positive,
12003 (neg X) is < 0 if and only if X != 0. */
12004
12005 if (sign_bit_comparison_p
12006 && (GET_CODE (XEXP (op0, 0)) == ABS
12007 || (mode_width <= HOST_BITS_PER_WIDE_INT
12008 && (nonzero_bits (XEXP (op0, 0), mode)
12009 & (HOST_WIDE_INT_1U << (mode_width - 1)))
12010 == 0)))
12011 {
12012 op0 = XEXP (op0, 0);
12013 code = (code == LT ? NE : EQ);
12014 continue;
12015 }
12016
12017 /* If we have NEG of something whose two high-order bits are the
12018 same, we know that "(-a) < 0" is equivalent to "a > 0". */
12019 if (num_sign_bit_copies (op0, mode) >= 2)
12020 {
12021 op0 = XEXP (op0, 0);
12022 code = swap_condition (code);
12023 continue;
12024 }
12025 break;
12026
12027 case ROTATE:
12028 /* If we are testing equality and our count is a constant, we
12029 can perform the inverse operation on our RHS. */
12030 if (equality_comparison_p && CONST_INT_P (XEXP (op0, 1))
12031 && (tem = simplify_binary_operation (ROTATERT, mode,
12032 op1, XEXP (op0, 1))) != 0)
12033 {
12034 op0 = XEXP (op0, 0);
12035 op1 = tem;
12036 continue;
12037 }
12038
12039 /* If we are doing a < 0 or >= 0 comparison, it means we are testing
12040 a particular bit. Convert it to an AND of a constant of that
12041 bit. This will be converted into a ZERO_EXTRACT. */
12042 if (const_op == 0 && sign_bit_comparison_p
12043 && CONST_INT_P (XEXP (op0, 1))
12044 && mode_width <= HOST_BITS_PER_WIDE_INT)
12045 {
12046 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
12047 (HOST_WIDE_INT_1U
12048 << (mode_width - 1
12049 - INTVAL (XEXP (op0, 1)))));
12050 code = (code == LT ? NE : EQ);
12051 continue;
12052 }
12053
12054 /* Fall through. */
12055
12056 case ABS:
12057 /* ABS is ignorable inside an equality comparison with zero. */
12058 if (const_op == 0 && equality_comparison_p)
12059 {
12060 op0 = XEXP (op0, 0);
12061 continue;
12062 }
12063 break;
12064
12065 case SIGN_EXTEND:
12066 /* Can simplify (compare (zero/sign_extend FOO) CONST) to
12067 (compare FOO CONST) if CONST fits in FOO's mode and we
12068 are either testing inequality or have an unsigned
12069 comparison with ZERO_EXTEND or a signed comparison with
12070 SIGN_EXTEND. But don't do it if we don't have a compare
12071 insn of the given mode, since we'd have to revert it
12072 later on, and then we wouldn't know whether to sign- or
12073 zero-extend. */
12074 mode = GET_MODE (XEXP (op0, 0));
12075 if (GET_MODE_CLASS (mode) == MODE_INT
12076 && ! unsigned_comparison_p
12077 && HWI_COMPUTABLE_MODE_P (mode)
12078 && trunc_int_for_mode (const_op, mode) == const_op
12079 && have_insn_for (COMPARE, mode))
12080 {
12081 op0 = XEXP (op0, 0);
12082 continue;
12083 }
12084 break;
12085
12086 case SUBREG:
12087 /* Check for the case where we are comparing A - C1 with C2, that is
12088
12089 (subreg:MODE (plus (A) (-C1))) op (C2)
12090
12091 with C1 a constant, and try to lift the SUBREG, i.e. to do the
12092 comparison in the wider mode. One of the following two conditions
12093 must be true in order for this to be valid:
12094
12095 1. The mode extension results in the same bit pattern being added
12096 on both sides and the comparison is equality or unsigned. As
12097 C2 has been truncated to fit in MODE, the pattern can only be
12098 all 0s or all 1s.
12099
12100 2. The mode extension results in the sign bit being copied on
12101 each side.
12102
12103 The difficulty here is that we have predicates for A but not for
12104 (A - C1) so we need to check that C1 is within proper bounds so
12105 as to perturbate A as little as possible. */
12106
12107 if (mode_width <= HOST_BITS_PER_WIDE_INT
12108 && subreg_lowpart_p (op0)
12109 && GET_MODE_PRECISION (GET_MODE (SUBREG_REG (op0))) > mode_width
12110 && GET_CODE (SUBREG_REG (op0)) == PLUS
12111 && CONST_INT_P (XEXP (SUBREG_REG (op0), 1)))
12112 {
12113 machine_mode inner_mode = GET_MODE (SUBREG_REG (op0));
12114 rtx a = XEXP (SUBREG_REG (op0), 0);
12115 HOST_WIDE_INT c1 = -INTVAL (XEXP (SUBREG_REG (op0), 1));
12116
12117 if ((c1 > 0
12118 && (unsigned HOST_WIDE_INT) c1
12119 < HOST_WIDE_INT_1U << (mode_width - 1)
12120 && (equality_comparison_p || unsigned_comparison_p)
12121 /* (A - C1) zero-extends if it is positive and sign-extends
12122 if it is negative, C2 both zero- and sign-extends. */
12123 && ((0 == (nonzero_bits (a, inner_mode)
12124 & ~GET_MODE_MASK (mode))
12125 && const_op >= 0)
12126 /* (A - C1) sign-extends if it is positive and 1-extends
12127 if it is negative, C2 both sign- and 1-extends. */
12128 || (num_sign_bit_copies (a, inner_mode)
12129 > (unsigned int) (GET_MODE_PRECISION (inner_mode)
12130 - mode_width)
12131 && const_op < 0)))
12132 || ((unsigned HOST_WIDE_INT) c1
12133 < HOST_WIDE_INT_1U << (mode_width - 2)
12134 /* (A - C1) always sign-extends, like C2. */
12135 && num_sign_bit_copies (a, inner_mode)
12136 > (unsigned int) (GET_MODE_PRECISION (inner_mode)
12137 - (mode_width - 1))))
12138 {
12139 op0 = SUBREG_REG (op0);
12140 continue;
12141 }
12142 }
12143
12144 /* If the inner mode is narrower and we are extracting the low part,
12145 we can treat the SUBREG as if it were a ZERO_EXTEND. */
12146 if (paradoxical_subreg_p (op0))
12147 ;
12148 else if (subreg_lowpart_p (op0)
12149 && GET_MODE_CLASS (GET_MODE (op0)) == MODE_INT
12150 && GET_MODE_CLASS (GET_MODE (SUBREG_REG (op0))) == MODE_INT
12151 && (code == NE || code == EQ)
12152 && (GET_MODE_PRECISION (GET_MODE (SUBREG_REG (op0)))
12153 <= HOST_BITS_PER_WIDE_INT)
12154 && !paradoxical_subreg_p (op0)
12155 && (nonzero_bits (SUBREG_REG (op0),
12156 GET_MODE (SUBREG_REG (op0)))
12157 & ~GET_MODE_MASK (GET_MODE (op0))) == 0)
12158 {
12159 /* Remove outer subregs that don't do anything. */
12160 tem = gen_lowpart (GET_MODE (SUBREG_REG (op0)), op1);
12161
12162 if ((nonzero_bits (tem, GET_MODE (SUBREG_REG (op0)))
12163 & ~GET_MODE_MASK (GET_MODE (op0))) == 0)
12164 {
12165 op0 = SUBREG_REG (op0);
12166 op1 = tem;
12167 continue;
12168 }
12169 break;
12170 }
12171 else
12172 break;
12173
12174 /* FALLTHROUGH */
12175
12176 case ZERO_EXTEND:
12177 mode = GET_MODE (XEXP (op0, 0));
12178 if (GET_MODE_CLASS (mode) == MODE_INT
12179 && (unsigned_comparison_p || equality_comparison_p)
12180 && HWI_COMPUTABLE_MODE_P (mode)
12181 && (unsigned HOST_WIDE_INT) const_op <= GET_MODE_MASK (mode)
12182 && const_op >= 0
12183 && have_insn_for (COMPARE, mode))
12184 {
12185 op0 = XEXP (op0, 0);
12186 continue;
12187 }
12188 break;
12189
12190 case PLUS:
12191 /* (eq (plus X A) B) -> (eq X (minus B A)). We can only do
12192 this for equality comparisons due to pathological cases involving
12193 overflows. */
12194 if (equality_comparison_p
12195 && 0 != (tem = simplify_binary_operation (MINUS, mode,
12196 op1, XEXP (op0, 1))))
12197 {
12198 op0 = XEXP (op0, 0);
12199 op1 = tem;
12200 continue;
12201 }
12202
12203 /* (plus (abs X) (const_int -1)) is < 0 if and only if X == 0. */
12204 if (const_op == 0 && XEXP (op0, 1) == constm1_rtx
12205 && GET_CODE (XEXP (op0, 0)) == ABS && sign_bit_comparison_p)
12206 {
12207 op0 = XEXP (XEXP (op0, 0), 0);
12208 code = (code == LT ? EQ : NE);
12209 continue;
12210 }
12211 break;
12212
12213 case MINUS:
12214 /* We used to optimize signed comparisons against zero, but that
12215 was incorrect. Unsigned comparisons against zero (GTU, LEU)
12216 arrive here as equality comparisons, or (GEU, LTU) are
12217 optimized away. No need to special-case them. */
12218
12219 /* (eq (minus A B) C) -> (eq A (plus B C)) or
12220 (eq B (minus A C)), whichever simplifies. We can only do
12221 this for equality comparisons due to pathological cases involving
12222 overflows. */
12223 if (equality_comparison_p
12224 && 0 != (tem = simplify_binary_operation (PLUS, mode,
12225 XEXP (op0, 1), op1)))
12226 {
12227 op0 = XEXP (op0, 0);
12228 op1 = tem;
12229 continue;
12230 }
12231
12232 if (equality_comparison_p
12233 && 0 != (tem = simplify_binary_operation (MINUS, mode,
12234 XEXP (op0, 0), op1)))
12235 {
12236 op0 = XEXP (op0, 1);
12237 op1 = tem;
12238 continue;
12239 }
12240
12241 /* The sign bit of (minus (ashiftrt X C) X), where C is the number
12242 of bits in X minus 1, is one iff X > 0. */
12243 if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 0)) == ASHIFTRT
12244 && CONST_INT_P (XEXP (XEXP (op0, 0), 1))
12245 && UINTVAL (XEXP (XEXP (op0, 0), 1)) == mode_width - 1
12246 && rtx_equal_p (XEXP (XEXP (op0, 0), 0), XEXP (op0, 1)))
12247 {
12248 op0 = XEXP (op0, 1);
12249 code = (code == GE ? LE : GT);
12250 continue;
12251 }
12252 break;
12253
12254 case XOR:
12255 /* (eq (xor A B) C) -> (eq A (xor B C)). This is a simplification
12256 if C is zero or B is a constant. */
12257 if (equality_comparison_p
12258 && 0 != (tem = simplify_binary_operation (XOR, mode,
12259 XEXP (op0, 1), op1)))
12260 {
12261 op0 = XEXP (op0, 0);
12262 op1 = tem;
12263 continue;
12264 }
12265 break;
12266
12267 case EQ: case NE:
12268 case UNEQ: case LTGT:
12269 case LT: case LTU: case UNLT: case LE: case LEU: case UNLE:
12270 case GT: case GTU: case UNGT: case GE: case GEU: case UNGE:
12271 case UNORDERED: case ORDERED:
12272 /* We can't do anything if OP0 is a condition code value, rather
12273 than an actual data value. */
12274 if (const_op != 0
12275 || CC0_P (XEXP (op0, 0))
12276 || GET_MODE_CLASS (GET_MODE (XEXP (op0, 0))) == MODE_CC)
12277 break;
12278
12279 /* Get the two operands being compared. */
12280 if (GET_CODE (XEXP (op0, 0)) == COMPARE)
12281 tem = XEXP (XEXP (op0, 0), 0), tem1 = XEXP (XEXP (op0, 0), 1);
12282 else
12283 tem = XEXP (op0, 0), tem1 = XEXP (op0, 1);
12284
12285 /* Check for the cases where we simply want the result of the
12286 earlier test or the opposite of that result. */
12287 if (code == NE || code == EQ
12288 || (val_signbit_known_set_p (GET_MODE (op0), STORE_FLAG_VALUE)
12289 && (code == LT || code == GE)))
12290 {
12291 enum rtx_code new_code;
12292 if (code == LT || code == NE)
12293 new_code = GET_CODE (op0);
12294 else
12295 new_code = reversed_comparison_code (op0, NULL);
12296
12297 if (new_code != UNKNOWN)
12298 {
12299 code = new_code;
12300 op0 = tem;
12301 op1 = tem1;
12302 continue;
12303 }
12304 }
12305 break;
12306
12307 case IOR:
12308 /* The sign bit of (ior (plus X (const_int -1)) X) is nonzero
12309 iff X <= 0. */
12310 if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 0)) == PLUS
12311 && XEXP (XEXP (op0, 0), 1) == constm1_rtx
12312 && rtx_equal_p (XEXP (XEXP (op0, 0), 0), XEXP (op0, 1)))
12313 {
12314 op0 = XEXP (op0, 1);
12315 code = (code == GE ? GT : LE);
12316 continue;
12317 }
12318 break;
12319
12320 case AND:
12321 /* Convert (and (xshift 1 X) Y) to (and (lshiftrt Y X) 1). This
12322 will be converted to a ZERO_EXTRACT later. */
12323 if (const_op == 0 && equality_comparison_p
12324 && GET_CODE (XEXP (op0, 0)) == ASHIFT
12325 && XEXP (XEXP (op0, 0), 0) == const1_rtx)
12326 {
12327 op0 = gen_rtx_LSHIFTRT (mode, XEXP (op0, 1),
12328 XEXP (XEXP (op0, 0), 1));
12329 op0 = simplify_and_const_int (NULL_RTX, mode, op0, 1);
12330 continue;
12331 }
12332
12333 /* If we are comparing (and (lshiftrt X C1) C2) for equality with
12334 zero and X is a comparison and C1 and C2 describe only bits set
12335 in STORE_FLAG_VALUE, we can compare with X. */
12336 if (const_op == 0 && equality_comparison_p
12337 && mode_width <= HOST_BITS_PER_WIDE_INT
12338 && CONST_INT_P (XEXP (op0, 1))
12339 && GET_CODE (XEXP (op0, 0)) == LSHIFTRT
12340 && CONST_INT_P (XEXP (XEXP (op0, 0), 1))
12341 && INTVAL (XEXP (XEXP (op0, 0), 1)) >= 0
12342 && INTVAL (XEXP (XEXP (op0, 0), 1)) < HOST_BITS_PER_WIDE_INT)
12343 {
12344 mask = ((INTVAL (XEXP (op0, 1)) & GET_MODE_MASK (mode))
12345 << INTVAL (XEXP (XEXP (op0, 0), 1)));
12346 if ((~STORE_FLAG_VALUE & mask) == 0
12347 && (COMPARISON_P (XEXP (XEXP (op0, 0), 0))
12348 || ((tem = get_last_value (XEXP (XEXP (op0, 0), 0))) != 0
12349 && COMPARISON_P (tem))))
12350 {
12351 op0 = XEXP (XEXP (op0, 0), 0);
12352 continue;
12353 }
12354 }
12355
12356 /* If we are doing an equality comparison of an AND of a bit equal
12357 to the sign bit, replace this with a LT or GE comparison of
12358 the underlying value. */
12359 if (equality_comparison_p
12360 && const_op == 0
12361 && CONST_INT_P (XEXP (op0, 1))
12362 && mode_width <= HOST_BITS_PER_WIDE_INT
12363 && ((INTVAL (XEXP (op0, 1)) & GET_MODE_MASK (mode))
12364 == HOST_WIDE_INT_1U << (mode_width - 1)))
12365 {
12366 op0 = XEXP (op0, 0);
12367 code = (code == EQ ? GE : LT);
12368 continue;
12369 }
12370
12371 /* If this AND operation is really a ZERO_EXTEND from a narrower
12372 mode, the constant fits within that mode, and this is either an
12373 equality or unsigned comparison, try to do this comparison in
12374 the narrower mode.
12375
12376 Note that in:
12377
12378 (ne:DI (and:DI (reg:DI 4) (const_int 0xffffffff)) (const_int 0))
12379 -> (ne:DI (reg:SI 4) (const_int 0))
12380
12381 unless TRULY_NOOP_TRUNCATION allows it or the register is
12382 known to hold a value of the required mode the
12383 transformation is invalid. */
12384 if ((equality_comparison_p || unsigned_comparison_p)
12385 && CONST_INT_P (XEXP (op0, 1))
12386 && (i = exact_log2 ((UINTVAL (XEXP (op0, 1))
12387 & GET_MODE_MASK (mode))
12388 + 1)) >= 0
12389 && const_op >> i == 0
12390 && (tmode = mode_for_size (i, MODE_INT, 1)) != BLKmode)
12391 {
12392 op0 = gen_lowpart_or_truncate (tmode, XEXP (op0, 0));
12393 continue;
12394 }
12395
12396 /* If this is (and:M1 (subreg:M1 X:M2 0) (const_int C1)) where C1
12397 fits in both M1 and M2 and the SUBREG is either paradoxical
12398 or represents the low part, permute the SUBREG and the AND
12399 and try again. */
12400 if (GET_CODE (XEXP (op0, 0)) == SUBREG
12401 && CONST_INT_P (XEXP (op0, 1)))
12402 {
12403 tmode = GET_MODE (SUBREG_REG (XEXP (op0, 0)));
12404 unsigned HOST_WIDE_INT c1 = INTVAL (XEXP (op0, 1));
12405 /* Require an integral mode, to avoid creating something like
12406 (AND:SF ...). */
12407 if (SCALAR_INT_MODE_P (tmode)
12408 /* It is unsafe to commute the AND into the SUBREG if the
12409 SUBREG is paradoxical and WORD_REGISTER_OPERATIONS is
12410 not defined. As originally written the upper bits
12411 have a defined value due to the AND operation.
12412 However, if we commute the AND inside the SUBREG then
12413 they no longer have defined values and the meaning of
12414 the code has been changed.
12415 Also C1 should not change value in the smaller mode,
12416 see PR67028 (a positive C1 can become negative in the
12417 smaller mode, so that the AND does no longer mask the
12418 upper bits). */
12419 && ((WORD_REGISTER_OPERATIONS
12420 && mode_width > GET_MODE_PRECISION (tmode)
12421 && mode_width <= BITS_PER_WORD
12422 && trunc_int_for_mode (c1, tmode) == (HOST_WIDE_INT) c1)
12423 || (mode_width <= GET_MODE_PRECISION (tmode)
12424 && subreg_lowpart_p (XEXP (op0, 0))))
12425 && mode_width <= HOST_BITS_PER_WIDE_INT
12426 && HWI_COMPUTABLE_MODE_P (tmode)
12427 && (c1 & ~mask) == 0
12428 && (c1 & ~GET_MODE_MASK (tmode)) == 0
12429 && c1 != mask
12430 && c1 != GET_MODE_MASK (tmode))
12431 {
12432 op0 = simplify_gen_binary (AND, tmode,
12433 SUBREG_REG (XEXP (op0, 0)),
12434 gen_int_mode (c1, tmode));
12435 op0 = gen_lowpart (mode, op0);
12436 continue;
12437 }
12438 }
12439
12440 /* Convert (ne (and (not X) 1) 0) to (eq (and X 1) 0). */
12441 if (const_op == 0 && equality_comparison_p
12442 && XEXP (op0, 1) == const1_rtx
12443 && GET_CODE (XEXP (op0, 0)) == NOT)
12444 {
12445 op0 = simplify_and_const_int (NULL_RTX, mode,
12446 XEXP (XEXP (op0, 0), 0), 1);
12447 code = (code == NE ? EQ : NE);
12448 continue;
12449 }
12450
12451 /* Convert (ne (and (lshiftrt (not X)) 1) 0) to
12452 (eq (and (lshiftrt X) 1) 0).
12453 Also handle the case where (not X) is expressed using xor. */
12454 if (const_op == 0 && equality_comparison_p
12455 && XEXP (op0, 1) == const1_rtx
12456 && GET_CODE (XEXP (op0, 0)) == LSHIFTRT)
12457 {
12458 rtx shift_op = XEXP (XEXP (op0, 0), 0);
12459 rtx shift_count = XEXP (XEXP (op0, 0), 1);
12460
12461 if (GET_CODE (shift_op) == NOT
12462 || (GET_CODE (shift_op) == XOR
12463 && CONST_INT_P (XEXP (shift_op, 1))
12464 && CONST_INT_P (shift_count)
12465 && HWI_COMPUTABLE_MODE_P (mode)
12466 && (UINTVAL (XEXP (shift_op, 1))
12467 == HOST_WIDE_INT_1U
12468 << INTVAL (shift_count))))
12469 {
12470 op0
12471 = gen_rtx_LSHIFTRT (mode, XEXP (shift_op, 0), shift_count);
12472 op0 = simplify_and_const_int (NULL_RTX, mode, op0, 1);
12473 code = (code == NE ? EQ : NE);
12474 continue;
12475 }
12476 }
12477 break;
12478
12479 case ASHIFT:
12480 /* If we have (compare (ashift FOO N) (const_int C)) and
12481 the high order N bits of FOO (N+1 if an inequality comparison)
12482 are known to be zero, we can do this by comparing FOO with C
12483 shifted right N bits so long as the low-order N bits of C are
12484 zero. */
12485 if (CONST_INT_P (XEXP (op0, 1))
12486 && INTVAL (XEXP (op0, 1)) >= 0
12487 && ((INTVAL (XEXP (op0, 1)) + ! equality_comparison_p)
12488 < HOST_BITS_PER_WIDE_INT)
12489 && (((unsigned HOST_WIDE_INT) const_op
12490 & ((HOST_WIDE_INT_1U << INTVAL (XEXP (op0, 1)))
12491 - 1)) == 0)
12492 && mode_width <= HOST_BITS_PER_WIDE_INT
12493 && (nonzero_bits (XEXP (op0, 0), mode)
12494 & ~(mask >> (INTVAL (XEXP (op0, 1))
12495 + ! equality_comparison_p))) == 0)
12496 {
12497 /* We must perform a logical shift, not an arithmetic one,
12498 as we want the top N bits of C to be zero. */
12499 unsigned HOST_WIDE_INT temp = const_op & GET_MODE_MASK (mode);
12500
12501 temp >>= INTVAL (XEXP (op0, 1));
12502 op1 = gen_int_mode (temp, mode);
12503 op0 = XEXP (op0, 0);
12504 continue;
12505 }
12506
12507 /* If we are doing a sign bit comparison, it means we are testing
12508 a particular bit. Convert it to the appropriate AND. */
12509 if (sign_bit_comparison_p && CONST_INT_P (XEXP (op0, 1))
12510 && mode_width <= HOST_BITS_PER_WIDE_INT)
12511 {
12512 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
12513 (HOST_WIDE_INT_1U
12514 << (mode_width - 1
12515 - INTVAL (XEXP (op0, 1)))));
12516 code = (code == LT ? NE : EQ);
12517 continue;
12518 }
12519
12520 /* If this an equality comparison with zero and we are shifting
12521 the low bit to the sign bit, we can convert this to an AND of the
12522 low-order bit. */
12523 if (const_op == 0 && equality_comparison_p
12524 && CONST_INT_P (XEXP (op0, 1))
12525 && UINTVAL (XEXP (op0, 1)) == mode_width - 1)
12526 {
12527 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0), 1);
12528 continue;
12529 }
12530 break;
12531
12532 case ASHIFTRT:
12533 /* If this is an equality comparison with zero, we can do this
12534 as a logical shift, which might be much simpler. */
12535 if (equality_comparison_p && const_op == 0
12536 && CONST_INT_P (XEXP (op0, 1)))
12537 {
12538 op0 = simplify_shift_const (NULL_RTX, LSHIFTRT, mode,
12539 XEXP (op0, 0),
12540 INTVAL (XEXP (op0, 1)));
12541 continue;
12542 }
12543
12544 /* If OP0 is a sign extension and CODE is not an unsigned comparison,
12545 do the comparison in a narrower mode. */
12546 if (! unsigned_comparison_p
12547 && CONST_INT_P (XEXP (op0, 1))
12548 && GET_CODE (XEXP (op0, 0)) == ASHIFT
12549 && XEXP (op0, 1) == XEXP (XEXP (op0, 0), 1)
12550 && (tmode = mode_for_size (mode_width - INTVAL (XEXP (op0, 1)),
12551 MODE_INT, 1)) != BLKmode
12552 && (((unsigned HOST_WIDE_INT) const_op
12553 + (GET_MODE_MASK (tmode) >> 1) + 1)
12554 <= GET_MODE_MASK (tmode)))
12555 {
12556 op0 = gen_lowpart (tmode, XEXP (XEXP (op0, 0), 0));
12557 continue;
12558 }
12559
12560 /* Likewise if OP0 is a PLUS of a sign extension with a
12561 constant, which is usually represented with the PLUS
12562 between the shifts. */
12563 if (! unsigned_comparison_p
12564 && CONST_INT_P (XEXP (op0, 1))
12565 && GET_CODE (XEXP (op0, 0)) == PLUS
12566 && CONST_INT_P (XEXP (XEXP (op0, 0), 1))
12567 && GET_CODE (XEXP (XEXP (op0, 0), 0)) == ASHIFT
12568 && XEXP (op0, 1) == XEXP (XEXP (XEXP (op0, 0), 0), 1)
12569 && (tmode = mode_for_size (mode_width - INTVAL (XEXP (op0, 1)),
12570 MODE_INT, 1)) != BLKmode
12571 && (((unsigned HOST_WIDE_INT) const_op
12572 + (GET_MODE_MASK (tmode) >> 1) + 1)
12573 <= GET_MODE_MASK (tmode)))
12574 {
12575 rtx inner = XEXP (XEXP (XEXP (op0, 0), 0), 0);
12576 rtx add_const = XEXP (XEXP (op0, 0), 1);
12577 rtx new_const = simplify_gen_binary (ASHIFTRT, GET_MODE (op0),
12578 add_const, XEXP (op0, 1));
12579
12580 op0 = simplify_gen_binary (PLUS, tmode,
12581 gen_lowpart (tmode, inner),
12582 new_const);
12583 continue;
12584 }
12585
12586 /* FALLTHROUGH */
12587 case LSHIFTRT:
12588 /* If we have (compare (xshiftrt FOO N) (const_int C)) and
12589 the low order N bits of FOO are known to be zero, we can do this
12590 by comparing FOO with C shifted left N bits so long as no
12591 overflow occurs. Even if the low order N bits of FOO aren't known
12592 to be zero, if the comparison is >= or < we can use the same
12593 optimization and for > or <= by setting all the low
12594 order N bits in the comparison constant. */
12595 if (CONST_INT_P (XEXP (op0, 1))
12596 && INTVAL (XEXP (op0, 1)) > 0
12597 && INTVAL (XEXP (op0, 1)) < HOST_BITS_PER_WIDE_INT
12598 && mode_width <= HOST_BITS_PER_WIDE_INT
12599 && (((unsigned HOST_WIDE_INT) const_op
12600 + (GET_CODE (op0) != LSHIFTRT
12601 ? ((GET_MODE_MASK (mode) >> INTVAL (XEXP (op0, 1)) >> 1)
12602 + 1)
12603 : 0))
12604 <= GET_MODE_MASK (mode) >> INTVAL (XEXP (op0, 1))))
12605 {
12606 unsigned HOST_WIDE_INT low_bits
12607 = (nonzero_bits (XEXP (op0, 0), mode)
12608 & ((HOST_WIDE_INT_1U
12609 << INTVAL (XEXP (op0, 1))) - 1));
12610 if (low_bits == 0 || !equality_comparison_p)
12611 {
12612 /* If the shift was logical, then we must make the condition
12613 unsigned. */
12614 if (GET_CODE (op0) == LSHIFTRT)
12615 code = unsigned_condition (code);
12616
12617 const_op = (unsigned HOST_WIDE_INT) const_op
12618 << INTVAL (XEXP (op0, 1));
12619 if (low_bits != 0
12620 && (code == GT || code == GTU
12621 || code == LE || code == LEU))
12622 const_op
12623 |= ((HOST_WIDE_INT_1 << INTVAL (XEXP (op0, 1))) - 1);
12624 op1 = GEN_INT (const_op);
12625 op0 = XEXP (op0, 0);
12626 continue;
12627 }
12628 }
12629
12630 /* If we are using this shift to extract just the sign bit, we
12631 can replace this with an LT or GE comparison. */
12632 if (const_op == 0
12633 && (equality_comparison_p || sign_bit_comparison_p)
12634 && CONST_INT_P (XEXP (op0, 1))
12635 && UINTVAL (XEXP (op0, 1)) == mode_width - 1)
12636 {
12637 op0 = XEXP (op0, 0);
12638 code = (code == NE || code == GT ? LT : GE);
12639 continue;
12640 }
12641 break;
12642
12643 default:
12644 break;
12645 }
12646
12647 break;
12648 }
12649
12650 /* Now make any compound operations involved in this comparison. Then,
12651 check for an outmost SUBREG on OP0 that is not doing anything or is
12652 paradoxical. The latter transformation must only be performed when
12653 it is known that the "extra" bits will be the same in op0 and op1 or
12654 that they don't matter. There are three cases to consider:
12655
12656 1. SUBREG_REG (op0) is a register. In this case the bits are don't
12657 care bits and we can assume they have any convenient value. So
12658 making the transformation is safe.
12659
12660 2. SUBREG_REG (op0) is a memory and LOAD_EXTEND_OP is UNKNOWN.
12661 In this case the upper bits of op0 are undefined. We should not make
12662 the simplification in that case as we do not know the contents of
12663 those bits.
12664
12665 3. SUBREG_REG (op0) is a memory and LOAD_EXTEND_OP is not UNKNOWN.
12666 In that case we know those bits are zeros or ones. We must also be
12667 sure that they are the same as the upper bits of op1.
12668
12669 We can never remove a SUBREG for a non-equality comparison because
12670 the sign bit is in a different place in the underlying object. */
12671
12672 rtx_code op0_mco_code = SET;
12673 if (op1 == const0_rtx)
12674 op0_mco_code = code == NE || code == EQ ? EQ : COMPARE;
12675
12676 op0 = make_compound_operation (op0, op0_mco_code);
12677 op1 = make_compound_operation (op1, SET);
12678
12679 if (GET_CODE (op0) == SUBREG && subreg_lowpart_p (op0)
12680 && GET_MODE_CLASS (GET_MODE (op0)) == MODE_INT
12681 && GET_MODE_CLASS (GET_MODE (SUBREG_REG (op0))) == MODE_INT
12682 && (code == NE || code == EQ))
12683 {
12684 if (paradoxical_subreg_p (op0))
12685 {
12686 /* For paradoxical subregs, allow case 1 as above. Case 3 isn't
12687 implemented. */
12688 if (REG_P (SUBREG_REG (op0)))
12689 {
12690 op0 = SUBREG_REG (op0);
12691 op1 = gen_lowpart (GET_MODE (op0), op1);
12692 }
12693 }
12694 else if ((GET_MODE_PRECISION (GET_MODE (SUBREG_REG (op0)))
12695 <= HOST_BITS_PER_WIDE_INT)
12696 && (nonzero_bits (SUBREG_REG (op0),
12697 GET_MODE (SUBREG_REG (op0)))
12698 & ~GET_MODE_MASK (GET_MODE (op0))) == 0)
12699 {
12700 tem = gen_lowpart (GET_MODE (SUBREG_REG (op0)), op1);
12701
12702 if ((nonzero_bits (tem, GET_MODE (SUBREG_REG (op0)))
12703 & ~GET_MODE_MASK (GET_MODE (op0))) == 0)
12704 op0 = SUBREG_REG (op0), op1 = tem;
12705 }
12706 }
12707
12708 /* We now do the opposite procedure: Some machines don't have compare
12709 insns in all modes. If OP0's mode is an integer mode smaller than a
12710 word and we can't do a compare in that mode, see if there is a larger
12711 mode for which we can do the compare. There are a number of cases in
12712 which we can use the wider mode. */
12713
12714 mode = GET_MODE (op0);
12715 if (mode != VOIDmode && GET_MODE_CLASS (mode) == MODE_INT
12716 && GET_MODE_SIZE (mode) < UNITS_PER_WORD
12717 && ! have_insn_for (COMPARE, mode))
12718 for (tmode = GET_MODE_WIDER_MODE (mode);
12719 (tmode != VOIDmode && HWI_COMPUTABLE_MODE_P (tmode));
12720 tmode = GET_MODE_WIDER_MODE (tmode))
12721 if (have_insn_for (COMPARE, tmode))
12722 {
12723 int zero_extended;
12724
12725 /* If this is a test for negative, we can make an explicit
12726 test of the sign bit. Test this first so we can use
12727 a paradoxical subreg to extend OP0. */
12728
12729 if (op1 == const0_rtx && (code == LT || code == GE)
12730 && HWI_COMPUTABLE_MODE_P (mode))
12731 {
12732 unsigned HOST_WIDE_INT sign
12733 = HOST_WIDE_INT_1U << (GET_MODE_BITSIZE (mode) - 1);
12734 op0 = simplify_gen_binary (AND, tmode,
12735 gen_lowpart (tmode, op0),
12736 gen_int_mode (sign, tmode));
12737 code = (code == LT) ? NE : EQ;
12738 break;
12739 }
12740
12741 /* If the only nonzero bits in OP0 and OP1 are those in the
12742 narrower mode and this is an equality or unsigned comparison,
12743 we can use the wider mode. Similarly for sign-extended
12744 values, in which case it is true for all comparisons. */
12745 zero_extended = ((code == EQ || code == NE
12746 || code == GEU || code == GTU
12747 || code == LEU || code == LTU)
12748 && (nonzero_bits (op0, tmode)
12749 & ~GET_MODE_MASK (mode)) == 0
12750 && ((CONST_INT_P (op1)
12751 || (nonzero_bits (op1, tmode)
12752 & ~GET_MODE_MASK (mode)) == 0)));
12753
12754 if (zero_extended
12755 || ((num_sign_bit_copies (op0, tmode)
12756 > (unsigned int) (GET_MODE_PRECISION (tmode)
12757 - GET_MODE_PRECISION (mode)))
12758 && (num_sign_bit_copies (op1, tmode)
12759 > (unsigned int) (GET_MODE_PRECISION (tmode)
12760 - GET_MODE_PRECISION (mode)))))
12761 {
12762 /* If OP0 is an AND and we don't have an AND in MODE either,
12763 make a new AND in the proper mode. */
12764 if (GET_CODE (op0) == AND
12765 && !have_insn_for (AND, mode))
12766 op0 = simplify_gen_binary (AND, tmode,
12767 gen_lowpart (tmode,
12768 XEXP (op0, 0)),
12769 gen_lowpart (tmode,
12770 XEXP (op0, 1)));
12771 else
12772 {
12773 if (zero_extended)
12774 {
12775 op0 = simplify_gen_unary (ZERO_EXTEND, tmode, op0, mode);
12776 op1 = simplify_gen_unary (ZERO_EXTEND, tmode, op1, mode);
12777 }
12778 else
12779 {
12780 op0 = simplify_gen_unary (SIGN_EXTEND, tmode, op0, mode);
12781 op1 = simplify_gen_unary (SIGN_EXTEND, tmode, op1, mode);
12782 }
12783 break;
12784 }
12785 }
12786 }
12787
12788 /* We may have changed the comparison operands. Re-canonicalize. */
12789 if (swap_commutative_operands_p (op0, op1))
12790 {
12791 std::swap (op0, op1);
12792 code = swap_condition (code);
12793 }
12794
12795 /* If this machine only supports a subset of valid comparisons, see if we
12796 can convert an unsupported one into a supported one. */
12797 target_canonicalize_comparison (&code, &op0, &op1, 0);
12798
12799 *pop0 = op0;
12800 *pop1 = op1;
12801
12802 return code;
12803 }
12804 \f
12805 /* Utility function for record_value_for_reg. Count number of
12806 rtxs in X. */
12807 static int
12808 count_rtxs (rtx x)
12809 {
12810 enum rtx_code code = GET_CODE (x);
12811 const char *fmt;
12812 int i, j, ret = 1;
12813
12814 if (GET_RTX_CLASS (code) == RTX_BIN_ARITH
12815 || GET_RTX_CLASS (code) == RTX_COMM_ARITH)
12816 {
12817 rtx x0 = XEXP (x, 0);
12818 rtx x1 = XEXP (x, 1);
12819
12820 if (x0 == x1)
12821 return 1 + 2 * count_rtxs (x0);
12822
12823 if ((GET_RTX_CLASS (GET_CODE (x1)) == RTX_BIN_ARITH
12824 || GET_RTX_CLASS (GET_CODE (x1)) == RTX_COMM_ARITH)
12825 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
12826 return 2 + 2 * count_rtxs (x0)
12827 + count_rtxs (x == XEXP (x1, 0)
12828 ? XEXP (x1, 1) : XEXP (x1, 0));
12829
12830 if ((GET_RTX_CLASS (GET_CODE (x0)) == RTX_BIN_ARITH
12831 || GET_RTX_CLASS (GET_CODE (x0)) == RTX_COMM_ARITH)
12832 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
12833 return 2 + 2 * count_rtxs (x1)
12834 + count_rtxs (x == XEXP (x0, 0)
12835 ? XEXP (x0, 1) : XEXP (x0, 0));
12836 }
12837
12838 fmt = GET_RTX_FORMAT (code);
12839 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
12840 if (fmt[i] == 'e')
12841 ret += count_rtxs (XEXP (x, i));
12842 else if (fmt[i] == 'E')
12843 for (j = 0; j < XVECLEN (x, i); j++)
12844 ret += count_rtxs (XVECEXP (x, i, j));
12845
12846 return ret;
12847 }
12848 \f
12849 /* Utility function for following routine. Called when X is part of a value
12850 being stored into last_set_value. Sets last_set_table_tick
12851 for each register mentioned. Similar to mention_regs in cse.c */
12852
12853 static void
12854 update_table_tick (rtx x)
12855 {
12856 enum rtx_code code = GET_CODE (x);
12857 const char *fmt = GET_RTX_FORMAT (code);
12858 int i, j;
12859
12860 if (code == REG)
12861 {
12862 unsigned int regno = REGNO (x);
12863 unsigned int endregno = END_REGNO (x);
12864 unsigned int r;
12865
12866 for (r = regno; r < endregno; r++)
12867 {
12868 reg_stat_type *rsp = &reg_stat[r];
12869 rsp->last_set_table_tick = label_tick;
12870 }
12871
12872 return;
12873 }
12874
12875 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
12876 if (fmt[i] == 'e')
12877 {
12878 /* Check for identical subexpressions. If x contains
12879 identical subexpression we only have to traverse one of
12880 them. */
12881 if (i == 0 && ARITHMETIC_P (x))
12882 {
12883 /* Note that at this point x1 has already been
12884 processed. */
12885 rtx x0 = XEXP (x, 0);
12886 rtx x1 = XEXP (x, 1);
12887
12888 /* If x0 and x1 are identical then there is no need to
12889 process x0. */
12890 if (x0 == x1)
12891 break;
12892
12893 /* If x0 is identical to a subexpression of x1 then while
12894 processing x1, x0 has already been processed. Thus we
12895 are done with x. */
12896 if (ARITHMETIC_P (x1)
12897 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
12898 break;
12899
12900 /* If x1 is identical to a subexpression of x0 then we
12901 still have to process the rest of x0. */
12902 if (ARITHMETIC_P (x0)
12903 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
12904 {
12905 update_table_tick (XEXP (x0, x1 == XEXP (x0, 0) ? 1 : 0));
12906 break;
12907 }
12908 }
12909
12910 update_table_tick (XEXP (x, i));
12911 }
12912 else if (fmt[i] == 'E')
12913 for (j = 0; j < XVECLEN (x, i); j++)
12914 update_table_tick (XVECEXP (x, i, j));
12915 }
12916
12917 /* Record that REG is set to VALUE in insn INSN. If VALUE is zero, we
12918 are saying that the register is clobbered and we no longer know its
12919 value. If INSN is zero, don't update reg_stat[].last_set; this is
12920 only permitted with VALUE also zero and is used to invalidate the
12921 register. */
12922
12923 static void
12924 record_value_for_reg (rtx reg, rtx_insn *insn, rtx value)
12925 {
12926 unsigned int regno = REGNO (reg);
12927 unsigned int endregno = END_REGNO (reg);
12928 unsigned int i;
12929 reg_stat_type *rsp;
12930
12931 /* If VALUE contains REG and we have a previous value for REG, substitute
12932 the previous value. */
12933 if (value && insn && reg_overlap_mentioned_p (reg, value))
12934 {
12935 rtx tem;
12936
12937 /* Set things up so get_last_value is allowed to see anything set up to
12938 our insn. */
12939 subst_low_luid = DF_INSN_LUID (insn);
12940 tem = get_last_value (reg);
12941
12942 /* If TEM is simply a binary operation with two CLOBBERs as operands,
12943 it isn't going to be useful and will take a lot of time to process,
12944 so just use the CLOBBER. */
12945
12946 if (tem)
12947 {
12948 if (ARITHMETIC_P (tem)
12949 && GET_CODE (XEXP (tem, 0)) == CLOBBER
12950 && GET_CODE (XEXP (tem, 1)) == CLOBBER)
12951 tem = XEXP (tem, 0);
12952 else if (count_occurrences (value, reg, 1) >= 2)
12953 {
12954 /* If there are two or more occurrences of REG in VALUE,
12955 prevent the value from growing too much. */
12956 if (count_rtxs (tem) > MAX_LAST_VALUE_RTL)
12957 tem = gen_rtx_CLOBBER (GET_MODE (tem), const0_rtx);
12958 }
12959
12960 value = replace_rtx (copy_rtx (value), reg, tem);
12961 }
12962 }
12963
12964 /* For each register modified, show we don't know its value, that
12965 we don't know about its bitwise content, that its value has been
12966 updated, and that we don't know the location of the death of the
12967 register. */
12968 for (i = regno; i < endregno; i++)
12969 {
12970 rsp = &reg_stat[i];
12971
12972 if (insn)
12973 rsp->last_set = insn;
12974
12975 rsp->last_set_value = 0;
12976 rsp->last_set_mode = VOIDmode;
12977 rsp->last_set_nonzero_bits = 0;
12978 rsp->last_set_sign_bit_copies = 0;
12979 rsp->last_death = 0;
12980 rsp->truncated_to_mode = VOIDmode;
12981 }
12982
12983 /* Mark registers that are being referenced in this value. */
12984 if (value)
12985 update_table_tick (value);
12986
12987 /* Now update the status of each register being set.
12988 If someone is using this register in this block, set this register
12989 to invalid since we will get confused between the two lives in this
12990 basic block. This makes using this register always invalid. In cse, we
12991 scan the table to invalidate all entries using this register, but this
12992 is too much work for us. */
12993
12994 for (i = regno; i < endregno; i++)
12995 {
12996 rsp = &reg_stat[i];
12997 rsp->last_set_label = label_tick;
12998 if (!insn
12999 || (value && rsp->last_set_table_tick >= label_tick_ebb_start))
13000 rsp->last_set_invalid = 1;
13001 else
13002 rsp->last_set_invalid = 0;
13003 }
13004
13005 /* The value being assigned might refer to X (like in "x++;"). In that
13006 case, we must replace it with (clobber (const_int 0)) to prevent
13007 infinite loops. */
13008 rsp = &reg_stat[regno];
13009 if (value && !get_last_value_validate (&value, insn, label_tick, 0))
13010 {
13011 value = copy_rtx (value);
13012 if (!get_last_value_validate (&value, insn, label_tick, 1))
13013 value = 0;
13014 }
13015
13016 /* For the main register being modified, update the value, the mode, the
13017 nonzero bits, and the number of sign bit copies. */
13018
13019 rsp->last_set_value = value;
13020
13021 if (value)
13022 {
13023 machine_mode mode = GET_MODE (reg);
13024 subst_low_luid = DF_INSN_LUID (insn);
13025 rsp->last_set_mode = mode;
13026 if (GET_MODE_CLASS (mode) == MODE_INT
13027 && HWI_COMPUTABLE_MODE_P (mode))
13028 mode = nonzero_bits_mode;
13029 rsp->last_set_nonzero_bits = nonzero_bits (value, mode);
13030 rsp->last_set_sign_bit_copies
13031 = num_sign_bit_copies (value, GET_MODE (reg));
13032 }
13033 }
13034
13035 /* Called via note_stores from record_dead_and_set_regs to handle one
13036 SET or CLOBBER in an insn. DATA is the instruction in which the
13037 set is occurring. */
13038
13039 static void
13040 record_dead_and_set_regs_1 (rtx dest, const_rtx setter, void *data)
13041 {
13042 rtx_insn *record_dead_insn = (rtx_insn *) data;
13043
13044 if (GET_CODE (dest) == SUBREG)
13045 dest = SUBREG_REG (dest);
13046
13047 if (!record_dead_insn)
13048 {
13049 if (REG_P (dest))
13050 record_value_for_reg (dest, NULL, NULL_RTX);
13051 return;
13052 }
13053
13054 if (REG_P (dest))
13055 {
13056 /* If we are setting the whole register, we know its value. Otherwise
13057 show that we don't know the value. We can handle SUBREG in
13058 some cases. */
13059 if (GET_CODE (setter) == SET && dest == SET_DEST (setter))
13060 record_value_for_reg (dest, record_dead_insn, SET_SRC (setter));
13061 else if (GET_CODE (setter) == SET
13062 && GET_CODE (SET_DEST (setter)) == SUBREG
13063 && SUBREG_REG (SET_DEST (setter)) == dest
13064 && GET_MODE_PRECISION (GET_MODE (dest)) <= BITS_PER_WORD
13065 && subreg_lowpart_p (SET_DEST (setter)))
13066 record_value_for_reg (dest, record_dead_insn,
13067 gen_lowpart (GET_MODE (dest),
13068 SET_SRC (setter)));
13069 else
13070 record_value_for_reg (dest, record_dead_insn, NULL_RTX);
13071 }
13072 else if (MEM_P (dest)
13073 /* Ignore pushes, they clobber nothing. */
13074 && ! push_operand (dest, GET_MODE (dest)))
13075 mem_last_set = DF_INSN_LUID (record_dead_insn);
13076 }
13077
13078 /* Update the records of when each REG was most recently set or killed
13079 for the things done by INSN. This is the last thing done in processing
13080 INSN in the combiner loop.
13081
13082 We update reg_stat[], in particular fields last_set, last_set_value,
13083 last_set_mode, last_set_nonzero_bits, last_set_sign_bit_copies,
13084 last_death, and also the similar information mem_last_set (which insn
13085 most recently modified memory) and last_call_luid (which insn was the
13086 most recent subroutine call). */
13087
13088 static void
13089 record_dead_and_set_regs (rtx_insn *insn)
13090 {
13091 rtx link;
13092 unsigned int i;
13093
13094 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
13095 {
13096 if (REG_NOTE_KIND (link) == REG_DEAD
13097 && REG_P (XEXP (link, 0)))
13098 {
13099 unsigned int regno = REGNO (XEXP (link, 0));
13100 unsigned int endregno = END_REGNO (XEXP (link, 0));
13101
13102 for (i = regno; i < endregno; i++)
13103 {
13104 reg_stat_type *rsp;
13105
13106 rsp = &reg_stat[i];
13107 rsp->last_death = insn;
13108 }
13109 }
13110 else if (REG_NOTE_KIND (link) == REG_INC)
13111 record_value_for_reg (XEXP (link, 0), insn, NULL_RTX);
13112 }
13113
13114 if (CALL_P (insn))
13115 {
13116 hard_reg_set_iterator hrsi;
13117 EXECUTE_IF_SET_IN_HARD_REG_SET (regs_invalidated_by_call, 0, i, hrsi)
13118 {
13119 reg_stat_type *rsp;
13120
13121 rsp = &reg_stat[i];
13122 rsp->last_set_invalid = 1;
13123 rsp->last_set = insn;
13124 rsp->last_set_value = 0;
13125 rsp->last_set_mode = VOIDmode;
13126 rsp->last_set_nonzero_bits = 0;
13127 rsp->last_set_sign_bit_copies = 0;
13128 rsp->last_death = 0;
13129 rsp->truncated_to_mode = VOIDmode;
13130 }
13131
13132 last_call_luid = mem_last_set = DF_INSN_LUID (insn);
13133
13134 /* We can't combine into a call pattern. Remember, though, that
13135 the return value register is set at this LUID. We could
13136 still replace a register with the return value from the
13137 wrong subroutine call! */
13138 note_stores (PATTERN (insn), record_dead_and_set_regs_1, NULL_RTX);
13139 }
13140 else
13141 note_stores (PATTERN (insn), record_dead_and_set_regs_1, insn);
13142 }
13143
13144 /* If a SUBREG has the promoted bit set, it is in fact a property of the
13145 register present in the SUBREG, so for each such SUBREG go back and
13146 adjust nonzero and sign bit information of the registers that are
13147 known to have some zero/sign bits set.
13148
13149 This is needed because when combine blows the SUBREGs away, the
13150 information on zero/sign bits is lost and further combines can be
13151 missed because of that. */
13152
13153 static void
13154 record_promoted_value (rtx_insn *insn, rtx subreg)
13155 {
13156 struct insn_link *links;
13157 rtx set;
13158 unsigned int regno = REGNO (SUBREG_REG (subreg));
13159 machine_mode mode = GET_MODE (subreg);
13160
13161 if (GET_MODE_PRECISION (mode) > HOST_BITS_PER_WIDE_INT)
13162 return;
13163
13164 for (links = LOG_LINKS (insn); links;)
13165 {
13166 reg_stat_type *rsp;
13167
13168 insn = links->insn;
13169 set = single_set (insn);
13170
13171 if (! set || !REG_P (SET_DEST (set))
13172 || REGNO (SET_DEST (set)) != regno
13173 || GET_MODE (SET_DEST (set)) != GET_MODE (SUBREG_REG (subreg)))
13174 {
13175 links = links->next;
13176 continue;
13177 }
13178
13179 rsp = &reg_stat[regno];
13180 if (rsp->last_set == insn)
13181 {
13182 if (SUBREG_PROMOTED_UNSIGNED_P (subreg))
13183 rsp->last_set_nonzero_bits &= GET_MODE_MASK (mode);
13184 }
13185
13186 if (REG_P (SET_SRC (set)))
13187 {
13188 regno = REGNO (SET_SRC (set));
13189 links = LOG_LINKS (insn);
13190 }
13191 else
13192 break;
13193 }
13194 }
13195
13196 /* Check if X, a register, is known to contain a value already
13197 truncated to MODE. In this case we can use a subreg to refer to
13198 the truncated value even though in the generic case we would need
13199 an explicit truncation. */
13200
13201 static bool
13202 reg_truncated_to_mode (machine_mode mode, const_rtx x)
13203 {
13204 reg_stat_type *rsp = &reg_stat[REGNO (x)];
13205 machine_mode truncated = rsp->truncated_to_mode;
13206
13207 if (truncated == 0
13208 || rsp->truncation_label < label_tick_ebb_start)
13209 return false;
13210 if (GET_MODE_SIZE (truncated) <= GET_MODE_SIZE (mode))
13211 return true;
13212 if (TRULY_NOOP_TRUNCATION_MODES_P (mode, truncated))
13213 return true;
13214 return false;
13215 }
13216
13217 /* If X is a hard reg or a subreg record the mode that the register is
13218 accessed in. For non-TRULY_NOOP_TRUNCATION targets we might be able
13219 to turn a truncate into a subreg using this information. Return true
13220 if traversing X is complete. */
13221
13222 static bool
13223 record_truncated_value (rtx x)
13224 {
13225 machine_mode truncated_mode;
13226 reg_stat_type *rsp;
13227
13228 if (GET_CODE (x) == SUBREG && REG_P (SUBREG_REG (x)))
13229 {
13230 machine_mode original_mode = GET_MODE (SUBREG_REG (x));
13231 truncated_mode = GET_MODE (x);
13232
13233 if (GET_MODE_SIZE (original_mode) <= GET_MODE_SIZE (truncated_mode))
13234 return true;
13235
13236 if (TRULY_NOOP_TRUNCATION_MODES_P (truncated_mode, original_mode))
13237 return true;
13238
13239 x = SUBREG_REG (x);
13240 }
13241 /* ??? For hard-regs we now record everything. We might be able to
13242 optimize this using last_set_mode. */
13243 else if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
13244 truncated_mode = GET_MODE (x);
13245 else
13246 return false;
13247
13248 rsp = &reg_stat[REGNO (x)];
13249 if (rsp->truncated_to_mode == 0
13250 || rsp->truncation_label < label_tick_ebb_start
13251 || (GET_MODE_SIZE (truncated_mode)
13252 < GET_MODE_SIZE (rsp->truncated_to_mode)))
13253 {
13254 rsp->truncated_to_mode = truncated_mode;
13255 rsp->truncation_label = label_tick;
13256 }
13257
13258 return true;
13259 }
13260
13261 /* Callback for note_uses. Find hardregs and subregs of pseudos and
13262 the modes they are used in. This can help truning TRUNCATEs into
13263 SUBREGs. */
13264
13265 static void
13266 record_truncated_values (rtx *loc, void *data ATTRIBUTE_UNUSED)
13267 {
13268 subrtx_var_iterator::array_type array;
13269 FOR_EACH_SUBRTX_VAR (iter, array, *loc, NONCONST)
13270 if (record_truncated_value (*iter))
13271 iter.skip_subrtxes ();
13272 }
13273
13274 /* Scan X for promoted SUBREGs. For each one found,
13275 note what it implies to the registers used in it. */
13276
13277 static void
13278 check_promoted_subreg (rtx_insn *insn, rtx x)
13279 {
13280 if (GET_CODE (x) == SUBREG
13281 && SUBREG_PROMOTED_VAR_P (x)
13282 && REG_P (SUBREG_REG (x)))
13283 record_promoted_value (insn, x);
13284 else
13285 {
13286 const char *format = GET_RTX_FORMAT (GET_CODE (x));
13287 int i, j;
13288
13289 for (i = 0; i < GET_RTX_LENGTH (GET_CODE (x)); i++)
13290 switch (format[i])
13291 {
13292 case 'e':
13293 check_promoted_subreg (insn, XEXP (x, i));
13294 break;
13295 case 'V':
13296 case 'E':
13297 if (XVEC (x, i) != 0)
13298 for (j = 0; j < XVECLEN (x, i); j++)
13299 check_promoted_subreg (insn, XVECEXP (x, i, j));
13300 break;
13301 }
13302 }
13303 }
13304 \f
13305 /* Verify that all the registers and memory references mentioned in *LOC are
13306 still valid. *LOC was part of a value set in INSN when label_tick was
13307 equal to TICK. Return 0 if some are not. If REPLACE is nonzero, replace
13308 the invalid references with (clobber (const_int 0)) and return 1. This
13309 replacement is useful because we often can get useful information about
13310 the form of a value (e.g., if it was produced by a shift that always
13311 produces -1 or 0) even though we don't know exactly what registers it
13312 was produced from. */
13313
13314 static int
13315 get_last_value_validate (rtx *loc, rtx_insn *insn, int tick, int replace)
13316 {
13317 rtx x = *loc;
13318 const char *fmt = GET_RTX_FORMAT (GET_CODE (x));
13319 int len = GET_RTX_LENGTH (GET_CODE (x));
13320 int i, j;
13321
13322 if (REG_P (x))
13323 {
13324 unsigned int regno = REGNO (x);
13325 unsigned int endregno = END_REGNO (x);
13326 unsigned int j;
13327
13328 for (j = regno; j < endregno; j++)
13329 {
13330 reg_stat_type *rsp = &reg_stat[j];
13331 if (rsp->last_set_invalid
13332 /* If this is a pseudo-register that was only set once and not
13333 live at the beginning of the function, it is always valid. */
13334 || (! (regno >= FIRST_PSEUDO_REGISTER
13335 && regno < reg_n_sets_max
13336 && REG_N_SETS (regno) == 1
13337 && (!REGNO_REG_SET_P
13338 (DF_LR_IN (ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb),
13339 regno)))
13340 && rsp->last_set_label > tick))
13341 {
13342 if (replace)
13343 *loc = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
13344 return replace;
13345 }
13346 }
13347
13348 return 1;
13349 }
13350 /* If this is a memory reference, make sure that there were no stores after
13351 it that might have clobbered the value. We don't have alias info, so we
13352 assume any store invalidates it. Moreover, we only have local UIDs, so
13353 we also assume that there were stores in the intervening basic blocks. */
13354 else if (MEM_P (x) && !MEM_READONLY_P (x)
13355 && (tick != label_tick || DF_INSN_LUID (insn) <= mem_last_set))
13356 {
13357 if (replace)
13358 *loc = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
13359 return replace;
13360 }
13361
13362 for (i = 0; i < len; i++)
13363 {
13364 if (fmt[i] == 'e')
13365 {
13366 /* Check for identical subexpressions. If x contains
13367 identical subexpression we only have to traverse one of
13368 them. */
13369 if (i == 1 && ARITHMETIC_P (x))
13370 {
13371 /* Note that at this point x0 has already been checked
13372 and found valid. */
13373 rtx x0 = XEXP (x, 0);
13374 rtx x1 = XEXP (x, 1);
13375
13376 /* If x0 and x1 are identical then x is also valid. */
13377 if (x0 == x1)
13378 return 1;
13379
13380 /* If x1 is identical to a subexpression of x0 then
13381 while checking x0, x1 has already been checked. Thus
13382 it is valid and so as x. */
13383 if (ARITHMETIC_P (x0)
13384 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
13385 return 1;
13386
13387 /* If x0 is identical to a subexpression of x1 then x is
13388 valid iff the rest of x1 is valid. */
13389 if (ARITHMETIC_P (x1)
13390 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
13391 return
13392 get_last_value_validate (&XEXP (x1,
13393 x0 == XEXP (x1, 0) ? 1 : 0),
13394 insn, tick, replace);
13395 }
13396
13397 if (get_last_value_validate (&XEXP (x, i), insn, tick,
13398 replace) == 0)
13399 return 0;
13400 }
13401 else if (fmt[i] == 'E')
13402 for (j = 0; j < XVECLEN (x, i); j++)
13403 if (get_last_value_validate (&XVECEXP (x, i, j),
13404 insn, tick, replace) == 0)
13405 return 0;
13406 }
13407
13408 /* If we haven't found a reason for it to be invalid, it is valid. */
13409 return 1;
13410 }
13411
13412 /* Get the last value assigned to X, if known. Some registers
13413 in the value may be replaced with (clobber (const_int 0)) if their value
13414 is known longer known reliably. */
13415
13416 static rtx
13417 get_last_value (const_rtx x)
13418 {
13419 unsigned int regno;
13420 rtx value;
13421 reg_stat_type *rsp;
13422
13423 /* If this is a non-paradoxical SUBREG, get the value of its operand and
13424 then convert it to the desired mode. If this is a paradoxical SUBREG,
13425 we cannot predict what values the "extra" bits might have. */
13426 if (GET_CODE (x) == SUBREG
13427 && subreg_lowpart_p (x)
13428 && !paradoxical_subreg_p (x)
13429 && (value = get_last_value (SUBREG_REG (x))) != 0)
13430 return gen_lowpart (GET_MODE (x), value);
13431
13432 if (!REG_P (x))
13433 return 0;
13434
13435 regno = REGNO (x);
13436 rsp = &reg_stat[regno];
13437 value = rsp->last_set_value;
13438
13439 /* If we don't have a value, or if it isn't for this basic block and
13440 it's either a hard register, set more than once, or it's a live
13441 at the beginning of the function, return 0.
13442
13443 Because if it's not live at the beginning of the function then the reg
13444 is always set before being used (is never used without being set).
13445 And, if it's set only once, and it's always set before use, then all
13446 uses must have the same last value, even if it's not from this basic
13447 block. */
13448
13449 if (value == 0
13450 || (rsp->last_set_label < label_tick_ebb_start
13451 && (regno < FIRST_PSEUDO_REGISTER
13452 || regno >= reg_n_sets_max
13453 || REG_N_SETS (regno) != 1
13454 || REGNO_REG_SET_P
13455 (DF_LR_IN (ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb), regno))))
13456 return 0;
13457
13458 /* If the value was set in a later insn than the ones we are processing,
13459 we can't use it even if the register was only set once. */
13460 if (rsp->last_set_label == label_tick
13461 && DF_INSN_LUID (rsp->last_set) >= subst_low_luid)
13462 return 0;
13463
13464 /* If fewer bits were set than what we are asked for now, we cannot use
13465 the value. */
13466 if (GET_MODE_PRECISION (rsp->last_set_mode)
13467 < GET_MODE_PRECISION (GET_MODE (x)))
13468 return 0;
13469
13470 /* If the value has all its registers valid, return it. */
13471 if (get_last_value_validate (&value, rsp->last_set, rsp->last_set_label, 0))
13472 return value;
13473
13474 /* Otherwise, make a copy and replace any invalid register with
13475 (clobber (const_int 0)). If that fails for some reason, return 0. */
13476
13477 value = copy_rtx (value);
13478 if (get_last_value_validate (&value, rsp->last_set, rsp->last_set_label, 1))
13479 return value;
13480
13481 return 0;
13482 }
13483 \f
13484 /* Return nonzero if expression X refers to a REG or to memory
13485 that is set in an instruction more recent than FROM_LUID. */
13486
13487 static int
13488 use_crosses_set_p (const_rtx x, int from_luid)
13489 {
13490 const char *fmt;
13491 int i;
13492 enum rtx_code code = GET_CODE (x);
13493
13494 if (code == REG)
13495 {
13496 unsigned int regno = REGNO (x);
13497 unsigned endreg = END_REGNO (x);
13498
13499 #ifdef PUSH_ROUNDING
13500 /* Don't allow uses of the stack pointer to be moved,
13501 because we don't know whether the move crosses a push insn. */
13502 if (regno == STACK_POINTER_REGNUM && PUSH_ARGS)
13503 return 1;
13504 #endif
13505 for (; regno < endreg; regno++)
13506 {
13507 reg_stat_type *rsp = &reg_stat[regno];
13508 if (rsp->last_set
13509 && rsp->last_set_label == label_tick
13510 && DF_INSN_LUID (rsp->last_set) > from_luid)
13511 return 1;
13512 }
13513 return 0;
13514 }
13515
13516 if (code == MEM && mem_last_set > from_luid)
13517 return 1;
13518
13519 fmt = GET_RTX_FORMAT (code);
13520
13521 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
13522 {
13523 if (fmt[i] == 'E')
13524 {
13525 int j;
13526 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
13527 if (use_crosses_set_p (XVECEXP (x, i, j), from_luid))
13528 return 1;
13529 }
13530 else if (fmt[i] == 'e'
13531 && use_crosses_set_p (XEXP (x, i), from_luid))
13532 return 1;
13533 }
13534 return 0;
13535 }
13536 \f
13537 /* Define three variables used for communication between the following
13538 routines. */
13539
13540 static unsigned int reg_dead_regno, reg_dead_endregno;
13541 static int reg_dead_flag;
13542
13543 /* Function called via note_stores from reg_dead_at_p.
13544
13545 If DEST is within [reg_dead_regno, reg_dead_endregno), set
13546 reg_dead_flag to 1 if X is a CLOBBER and to -1 it is a SET. */
13547
13548 static void
13549 reg_dead_at_p_1 (rtx dest, const_rtx x, void *data ATTRIBUTE_UNUSED)
13550 {
13551 unsigned int regno, endregno;
13552
13553 if (!REG_P (dest))
13554 return;
13555
13556 regno = REGNO (dest);
13557 endregno = END_REGNO (dest);
13558 if (reg_dead_endregno > regno && reg_dead_regno < endregno)
13559 reg_dead_flag = (GET_CODE (x) == CLOBBER) ? 1 : -1;
13560 }
13561
13562 /* Return nonzero if REG is known to be dead at INSN.
13563
13564 We scan backwards from INSN. If we hit a REG_DEAD note or a CLOBBER
13565 referencing REG, it is dead. If we hit a SET referencing REG, it is
13566 live. Otherwise, see if it is live or dead at the start of the basic
13567 block we are in. Hard regs marked as being live in NEWPAT_USED_REGS
13568 must be assumed to be always live. */
13569
13570 static int
13571 reg_dead_at_p (rtx reg, rtx_insn *insn)
13572 {
13573 basic_block block;
13574 unsigned int i;
13575
13576 /* Set variables for reg_dead_at_p_1. */
13577 reg_dead_regno = REGNO (reg);
13578 reg_dead_endregno = END_REGNO (reg);
13579
13580 reg_dead_flag = 0;
13581
13582 /* Check that reg isn't mentioned in NEWPAT_USED_REGS. For fixed registers
13583 we allow the machine description to decide whether use-and-clobber
13584 patterns are OK. */
13585 if (reg_dead_regno < FIRST_PSEUDO_REGISTER)
13586 {
13587 for (i = reg_dead_regno; i < reg_dead_endregno; i++)
13588 if (!fixed_regs[i] && TEST_HARD_REG_BIT (newpat_used_regs, i))
13589 return 0;
13590 }
13591
13592 /* Scan backwards until we find a REG_DEAD note, SET, CLOBBER, or
13593 beginning of basic block. */
13594 block = BLOCK_FOR_INSN (insn);
13595 for (;;)
13596 {
13597 if (INSN_P (insn))
13598 {
13599 if (find_regno_note (insn, REG_UNUSED, reg_dead_regno))
13600 return 1;
13601
13602 note_stores (PATTERN (insn), reg_dead_at_p_1, NULL);
13603 if (reg_dead_flag)
13604 return reg_dead_flag == 1 ? 1 : 0;
13605
13606 if (find_regno_note (insn, REG_DEAD, reg_dead_regno))
13607 return 1;
13608 }
13609
13610 if (insn == BB_HEAD (block))
13611 break;
13612
13613 insn = PREV_INSN (insn);
13614 }
13615
13616 /* Look at live-in sets for the basic block that we were in. */
13617 for (i = reg_dead_regno; i < reg_dead_endregno; i++)
13618 if (REGNO_REG_SET_P (df_get_live_in (block), i))
13619 return 0;
13620
13621 return 1;
13622 }
13623 \f
13624 /* Note hard registers in X that are used. */
13625
13626 static void
13627 mark_used_regs_combine (rtx x)
13628 {
13629 RTX_CODE code = GET_CODE (x);
13630 unsigned int regno;
13631 int i;
13632
13633 switch (code)
13634 {
13635 case LABEL_REF:
13636 case SYMBOL_REF:
13637 case CONST:
13638 CASE_CONST_ANY:
13639 case PC:
13640 case ADDR_VEC:
13641 case ADDR_DIFF_VEC:
13642 case ASM_INPUT:
13643 /* CC0 must die in the insn after it is set, so we don't need to take
13644 special note of it here. */
13645 case CC0:
13646 return;
13647
13648 case CLOBBER:
13649 /* If we are clobbering a MEM, mark any hard registers inside the
13650 address as used. */
13651 if (MEM_P (XEXP (x, 0)))
13652 mark_used_regs_combine (XEXP (XEXP (x, 0), 0));
13653 return;
13654
13655 case REG:
13656 regno = REGNO (x);
13657 /* A hard reg in a wide mode may really be multiple registers.
13658 If so, mark all of them just like the first. */
13659 if (regno < FIRST_PSEUDO_REGISTER)
13660 {
13661 /* None of this applies to the stack, frame or arg pointers. */
13662 if (regno == STACK_POINTER_REGNUM
13663 || (!HARD_FRAME_POINTER_IS_FRAME_POINTER
13664 && regno == HARD_FRAME_POINTER_REGNUM)
13665 || (FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
13666 && regno == ARG_POINTER_REGNUM && fixed_regs[regno])
13667 || regno == FRAME_POINTER_REGNUM)
13668 return;
13669
13670 add_to_hard_reg_set (&newpat_used_regs, GET_MODE (x), regno);
13671 }
13672 return;
13673
13674 case SET:
13675 {
13676 /* If setting a MEM, or a SUBREG of a MEM, then note any hard regs in
13677 the address. */
13678 rtx testreg = SET_DEST (x);
13679
13680 while (GET_CODE (testreg) == SUBREG
13681 || GET_CODE (testreg) == ZERO_EXTRACT
13682 || GET_CODE (testreg) == STRICT_LOW_PART)
13683 testreg = XEXP (testreg, 0);
13684
13685 if (MEM_P (testreg))
13686 mark_used_regs_combine (XEXP (testreg, 0));
13687
13688 mark_used_regs_combine (SET_SRC (x));
13689 }
13690 return;
13691
13692 default:
13693 break;
13694 }
13695
13696 /* Recursively scan the operands of this expression. */
13697
13698 {
13699 const char *fmt = GET_RTX_FORMAT (code);
13700
13701 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
13702 {
13703 if (fmt[i] == 'e')
13704 mark_used_regs_combine (XEXP (x, i));
13705 else if (fmt[i] == 'E')
13706 {
13707 int j;
13708
13709 for (j = 0; j < XVECLEN (x, i); j++)
13710 mark_used_regs_combine (XVECEXP (x, i, j));
13711 }
13712 }
13713 }
13714 }
13715 \f
13716 /* Remove register number REGNO from the dead registers list of INSN.
13717
13718 Return the note used to record the death, if there was one. */
13719
13720 rtx
13721 remove_death (unsigned int regno, rtx_insn *insn)
13722 {
13723 rtx note = find_regno_note (insn, REG_DEAD, regno);
13724
13725 if (note)
13726 remove_note (insn, note);
13727
13728 return note;
13729 }
13730
13731 /* For each register (hardware or pseudo) used within expression X, if its
13732 death is in an instruction with luid between FROM_LUID (inclusive) and
13733 TO_INSN (exclusive), put a REG_DEAD note for that register in the
13734 list headed by PNOTES.
13735
13736 That said, don't move registers killed by maybe_kill_insn.
13737
13738 This is done when X is being merged by combination into TO_INSN. These
13739 notes will then be distributed as needed. */
13740
13741 static void
13742 move_deaths (rtx x, rtx maybe_kill_insn, int from_luid, rtx_insn *to_insn,
13743 rtx *pnotes)
13744 {
13745 const char *fmt;
13746 int len, i;
13747 enum rtx_code code = GET_CODE (x);
13748
13749 if (code == REG)
13750 {
13751 unsigned int regno = REGNO (x);
13752 rtx_insn *where_dead = reg_stat[regno].last_death;
13753
13754 /* Don't move the register if it gets killed in between from and to. */
13755 if (maybe_kill_insn && reg_set_p (x, maybe_kill_insn)
13756 && ! reg_referenced_p (x, maybe_kill_insn))
13757 return;
13758
13759 if (where_dead
13760 && BLOCK_FOR_INSN (where_dead) == BLOCK_FOR_INSN (to_insn)
13761 && DF_INSN_LUID (where_dead) >= from_luid
13762 && DF_INSN_LUID (where_dead) < DF_INSN_LUID (to_insn))
13763 {
13764 rtx note = remove_death (regno, where_dead);
13765
13766 /* It is possible for the call above to return 0. This can occur
13767 when last_death points to I2 or I1 that we combined with.
13768 In that case make a new note.
13769
13770 We must also check for the case where X is a hard register
13771 and NOTE is a death note for a range of hard registers
13772 including X. In that case, we must put REG_DEAD notes for
13773 the remaining registers in place of NOTE. */
13774
13775 if (note != 0 && regno < FIRST_PSEUDO_REGISTER
13776 && (GET_MODE_SIZE (GET_MODE (XEXP (note, 0)))
13777 > GET_MODE_SIZE (GET_MODE (x))))
13778 {
13779 unsigned int deadregno = REGNO (XEXP (note, 0));
13780 unsigned int deadend = END_REGNO (XEXP (note, 0));
13781 unsigned int ourend = END_REGNO (x);
13782 unsigned int i;
13783
13784 for (i = deadregno; i < deadend; i++)
13785 if (i < regno || i >= ourend)
13786 add_reg_note (where_dead, REG_DEAD, regno_reg_rtx[i]);
13787 }
13788
13789 /* If we didn't find any note, or if we found a REG_DEAD note that
13790 covers only part of the given reg, and we have a multi-reg hard
13791 register, then to be safe we must check for REG_DEAD notes
13792 for each register other than the first. They could have
13793 their own REG_DEAD notes lying around. */
13794 else if ((note == 0
13795 || (note != 0
13796 && (GET_MODE_SIZE (GET_MODE (XEXP (note, 0)))
13797 < GET_MODE_SIZE (GET_MODE (x)))))
13798 && regno < FIRST_PSEUDO_REGISTER
13799 && REG_NREGS (x) > 1)
13800 {
13801 unsigned int ourend = END_REGNO (x);
13802 unsigned int i, offset;
13803 rtx oldnotes = 0;
13804
13805 if (note)
13806 offset = hard_regno_nregs[regno][GET_MODE (XEXP (note, 0))];
13807 else
13808 offset = 1;
13809
13810 for (i = regno + offset; i < ourend; i++)
13811 move_deaths (regno_reg_rtx[i],
13812 maybe_kill_insn, from_luid, to_insn, &oldnotes);
13813 }
13814
13815 if (note != 0 && GET_MODE (XEXP (note, 0)) == GET_MODE (x))
13816 {
13817 XEXP (note, 1) = *pnotes;
13818 *pnotes = note;
13819 }
13820 else
13821 *pnotes = alloc_reg_note (REG_DEAD, x, *pnotes);
13822 }
13823
13824 return;
13825 }
13826
13827 else if (GET_CODE (x) == SET)
13828 {
13829 rtx dest = SET_DEST (x);
13830
13831 move_deaths (SET_SRC (x), maybe_kill_insn, from_luid, to_insn, pnotes);
13832
13833 /* In the case of a ZERO_EXTRACT, a STRICT_LOW_PART, or a SUBREG
13834 that accesses one word of a multi-word item, some
13835 piece of everything register in the expression is used by
13836 this insn, so remove any old death. */
13837 /* ??? So why do we test for equality of the sizes? */
13838
13839 if (GET_CODE (dest) == ZERO_EXTRACT
13840 || GET_CODE (dest) == STRICT_LOW_PART
13841 || (GET_CODE (dest) == SUBREG
13842 && (((GET_MODE_SIZE (GET_MODE (dest))
13843 + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
13844 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest)))
13845 + UNITS_PER_WORD - 1) / UNITS_PER_WORD))))
13846 {
13847 move_deaths (dest, maybe_kill_insn, from_luid, to_insn, pnotes);
13848 return;
13849 }
13850
13851 /* If this is some other SUBREG, we know it replaces the entire
13852 value, so use that as the destination. */
13853 if (GET_CODE (dest) == SUBREG)
13854 dest = SUBREG_REG (dest);
13855
13856 /* If this is a MEM, adjust deaths of anything used in the address.
13857 For a REG (the only other possibility), the entire value is
13858 being replaced so the old value is not used in this insn. */
13859
13860 if (MEM_P (dest))
13861 move_deaths (XEXP (dest, 0), maybe_kill_insn, from_luid,
13862 to_insn, pnotes);
13863 return;
13864 }
13865
13866 else if (GET_CODE (x) == CLOBBER)
13867 return;
13868
13869 len = GET_RTX_LENGTH (code);
13870 fmt = GET_RTX_FORMAT (code);
13871
13872 for (i = 0; i < len; i++)
13873 {
13874 if (fmt[i] == 'E')
13875 {
13876 int j;
13877 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
13878 move_deaths (XVECEXP (x, i, j), maybe_kill_insn, from_luid,
13879 to_insn, pnotes);
13880 }
13881 else if (fmt[i] == 'e')
13882 move_deaths (XEXP (x, i), maybe_kill_insn, from_luid, to_insn, pnotes);
13883 }
13884 }
13885 \f
13886 /* Return 1 if X is the target of a bit-field assignment in BODY, the
13887 pattern of an insn. X must be a REG. */
13888
13889 static int
13890 reg_bitfield_target_p (rtx x, rtx body)
13891 {
13892 int i;
13893
13894 if (GET_CODE (body) == SET)
13895 {
13896 rtx dest = SET_DEST (body);
13897 rtx target;
13898 unsigned int regno, tregno, endregno, endtregno;
13899
13900 if (GET_CODE (dest) == ZERO_EXTRACT)
13901 target = XEXP (dest, 0);
13902 else if (GET_CODE (dest) == STRICT_LOW_PART)
13903 target = SUBREG_REG (XEXP (dest, 0));
13904 else
13905 return 0;
13906
13907 if (GET_CODE (target) == SUBREG)
13908 target = SUBREG_REG (target);
13909
13910 if (!REG_P (target))
13911 return 0;
13912
13913 tregno = REGNO (target), regno = REGNO (x);
13914 if (tregno >= FIRST_PSEUDO_REGISTER || regno >= FIRST_PSEUDO_REGISTER)
13915 return target == x;
13916
13917 endtregno = end_hard_regno (GET_MODE (target), tregno);
13918 endregno = end_hard_regno (GET_MODE (x), regno);
13919
13920 return endregno > tregno && regno < endtregno;
13921 }
13922
13923 else if (GET_CODE (body) == PARALLEL)
13924 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
13925 if (reg_bitfield_target_p (x, XVECEXP (body, 0, i)))
13926 return 1;
13927
13928 return 0;
13929 }
13930 \f
13931 /* Given a chain of REG_NOTES originally from FROM_INSN, try to place them
13932 as appropriate. I3 and I2 are the insns resulting from the combination
13933 insns including FROM (I2 may be zero).
13934
13935 ELIM_I2 and ELIM_I1 are either zero or registers that we know will
13936 not need REG_DEAD notes because they are being substituted for. This
13937 saves searching in the most common cases.
13938
13939 Each note in the list is either ignored or placed on some insns, depending
13940 on the type of note. */
13941
13942 static void
13943 distribute_notes (rtx notes, rtx_insn *from_insn, rtx_insn *i3, rtx_insn *i2,
13944 rtx elim_i2, rtx elim_i1, rtx elim_i0)
13945 {
13946 rtx note, next_note;
13947 rtx tem_note;
13948 rtx_insn *tem_insn;
13949
13950 for (note = notes; note; note = next_note)
13951 {
13952 rtx_insn *place = 0, *place2 = 0;
13953
13954 next_note = XEXP (note, 1);
13955 switch (REG_NOTE_KIND (note))
13956 {
13957 case REG_BR_PROB:
13958 case REG_BR_PRED:
13959 /* Doesn't matter much where we put this, as long as it's somewhere.
13960 It is preferable to keep these notes on branches, which is most
13961 likely to be i3. */
13962 place = i3;
13963 break;
13964
13965 case REG_NON_LOCAL_GOTO:
13966 if (JUMP_P (i3))
13967 place = i3;
13968 else
13969 {
13970 gcc_assert (i2 && JUMP_P (i2));
13971 place = i2;
13972 }
13973 break;
13974
13975 case REG_EH_REGION:
13976 /* These notes must remain with the call or trapping instruction. */
13977 if (CALL_P (i3))
13978 place = i3;
13979 else if (i2 && CALL_P (i2))
13980 place = i2;
13981 else
13982 {
13983 gcc_assert (cfun->can_throw_non_call_exceptions);
13984 if (may_trap_p (i3))
13985 place = i3;
13986 else if (i2 && may_trap_p (i2))
13987 place = i2;
13988 /* ??? Otherwise assume we've combined things such that we
13989 can now prove that the instructions can't trap. Drop the
13990 note in this case. */
13991 }
13992 break;
13993
13994 case REG_ARGS_SIZE:
13995 /* ??? How to distribute between i3-i1. Assume i3 contains the
13996 entire adjustment. Assert i3 contains at least some adjust. */
13997 if (!noop_move_p (i3))
13998 {
13999 int old_size, args_size = INTVAL (XEXP (note, 0));
14000 /* fixup_args_size_notes looks at REG_NORETURN note,
14001 so ensure the note is placed there first. */
14002 if (CALL_P (i3))
14003 {
14004 rtx *np;
14005 for (np = &next_note; *np; np = &XEXP (*np, 1))
14006 if (REG_NOTE_KIND (*np) == REG_NORETURN)
14007 {
14008 rtx n = *np;
14009 *np = XEXP (n, 1);
14010 XEXP (n, 1) = REG_NOTES (i3);
14011 REG_NOTES (i3) = n;
14012 break;
14013 }
14014 }
14015 old_size = fixup_args_size_notes (PREV_INSN (i3), i3, args_size);
14016 /* emit_call_1 adds for !ACCUMULATE_OUTGOING_ARGS
14017 REG_ARGS_SIZE note to all noreturn calls, allow that here. */
14018 gcc_assert (old_size != args_size
14019 || (CALL_P (i3)
14020 && !ACCUMULATE_OUTGOING_ARGS
14021 && find_reg_note (i3, REG_NORETURN, NULL_RTX)));
14022 }
14023 break;
14024
14025 case REG_NORETURN:
14026 case REG_SETJMP:
14027 case REG_TM:
14028 case REG_CALL_DECL:
14029 /* These notes must remain with the call. It should not be
14030 possible for both I2 and I3 to be a call. */
14031 if (CALL_P (i3))
14032 place = i3;
14033 else
14034 {
14035 gcc_assert (i2 && CALL_P (i2));
14036 place = i2;
14037 }
14038 break;
14039
14040 case REG_UNUSED:
14041 /* Any clobbers for i3 may still exist, and so we must process
14042 REG_UNUSED notes from that insn.
14043
14044 Any clobbers from i2 or i1 can only exist if they were added by
14045 recog_for_combine. In that case, recog_for_combine created the
14046 necessary REG_UNUSED notes. Trying to keep any original
14047 REG_UNUSED notes from these insns can cause incorrect output
14048 if it is for the same register as the original i3 dest.
14049 In that case, we will notice that the register is set in i3,
14050 and then add a REG_UNUSED note for the destination of i3, which
14051 is wrong. However, it is possible to have REG_UNUSED notes from
14052 i2 or i1 for register which were both used and clobbered, so
14053 we keep notes from i2 or i1 if they will turn into REG_DEAD
14054 notes. */
14055
14056 /* If this register is set or clobbered in I3, put the note there
14057 unless there is one already. */
14058 if (reg_set_p (XEXP (note, 0), PATTERN (i3)))
14059 {
14060 if (from_insn != i3)
14061 break;
14062
14063 if (! (REG_P (XEXP (note, 0))
14064 ? find_regno_note (i3, REG_UNUSED, REGNO (XEXP (note, 0)))
14065 : find_reg_note (i3, REG_UNUSED, XEXP (note, 0))))
14066 place = i3;
14067 }
14068 /* Otherwise, if this register is used by I3, then this register
14069 now dies here, so we must put a REG_DEAD note here unless there
14070 is one already. */
14071 else if (reg_referenced_p (XEXP (note, 0), PATTERN (i3))
14072 && ! (REG_P (XEXP (note, 0))
14073 ? find_regno_note (i3, REG_DEAD,
14074 REGNO (XEXP (note, 0)))
14075 : find_reg_note (i3, REG_DEAD, XEXP (note, 0))))
14076 {
14077 PUT_REG_NOTE_KIND (note, REG_DEAD);
14078 place = i3;
14079 }
14080 break;
14081
14082 case REG_EQUAL:
14083 case REG_EQUIV:
14084 case REG_NOALIAS:
14085 /* These notes say something about results of an insn. We can
14086 only support them if they used to be on I3 in which case they
14087 remain on I3. Otherwise they are ignored.
14088
14089 If the note refers to an expression that is not a constant, we
14090 must also ignore the note since we cannot tell whether the
14091 equivalence is still true. It might be possible to do
14092 slightly better than this (we only have a problem if I2DEST
14093 or I1DEST is present in the expression), but it doesn't
14094 seem worth the trouble. */
14095
14096 if (from_insn == i3
14097 && (XEXP (note, 0) == 0 || CONSTANT_P (XEXP (note, 0))))
14098 place = i3;
14099 break;
14100
14101 case REG_INC:
14102 /* These notes say something about how a register is used. They must
14103 be present on any use of the register in I2 or I3. */
14104 if (reg_mentioned_p (XEXP (note, 0), PATTERN (i3)))
14105 place = i3;
14106
14107 if (i2 && reg_mentioned_p (XEXP (note, 0), PATTERN (i2)))
14108 {
14109 if (place)
14110 place2 = i2;
14111 else
14112 place = i2;
14113 }
14114 break;
14115
14116 case REG_LABEL_TARGET:
14117 case REG_LABEL_OPERAND:
14118 /* This can show up in several ways -- either directly in the
14119 pattern, or hidden off in the constant pool with (or without?)
14120 a REG_EQUAL note. */
14121 /* ??? Ignore the without-reg_equal-note problem for now. */
14122 if (reg_mentioned_p (XEXP (note, 0), PATTERN (i3))
14123 || ((tem_note = find_reg_note (i3, REG_EQUAL, NULL_RTX))
14124 && GET_CODE (XEXP (tem_note, 0)) == LABEL_REF
14125 && label_ref_label (XEXP (tem_note, 0)) == XEXP (note, 0)))
14126 place = i3;
14127
14128 if (i2
14129 && (reg_mentioned_p (XEXP (note, 0), PATTERN (i2))
14130 || ((tem_note = find_reg_note (i2, REG_EQUAL, NULL_RTX))
14131 && GET_CODE (XEXP (tem_note, 0)) == LABEL_REF
14132 && label_ref_label (XEXP (tem_note, 0)) == XEXP (note, 0))))
14133 {
14134 if (place)
14135 place2 = i2;
14136 else
14137 place = i2;
14138 }
14139
14140 /* For REG_LABEL_TARGET on a JUMP_P, we prefer to put the note
14141 as a JUMP_LABEL or decrement LABEL_NUSES if it's already
14142 there. */
14143 if (place && JUMP_P (place)
14144 && REG_NOTE_KIND (note) == REG_LABEL_TARGET
14145 && (JUMP_LABEL (place) == NULL
14146 || JUMP_LABEL (place) == XEXP (note, 0)))
14147 {
14148 rtx label = JUMP_LABEL (place);
14149
14150 if (!label)
14151 JUMP_LABEL (place) = XEXP (note, 0);
14152 else if (LABEL_P (label))
14153 LABEL_NUSES (label)--;
14154 }
14155
14156 if (place2 && JUMP_P (place2)
14157 && REG_NOTE_KIND (note) == REG_LABEL_TARGET
14158 && (JUMP_LABEL (place2) == NULL
14159 || JUMP_LABEL (place2) == XEXP (note, 0)))
14160 {
14161 rtx label = JUMP_LABEL (place2);
14162
14163 if (!label)
14164 JUMP_LABEL (place2) = XEXP (note, 0);
14165 else if (LABEL_P (label))
14166 LABEL_NUSES (label)--;
14167 place2 = 0;
14168 }
14169 break;
14170
14171 case REG_NONNEG:
14172 /* This note says something about the value of a register prior
14173 to the execution of an insn. It is too much trouble to see
14174 if the note is still correct in all situations. It is better
14175 to simply delete it. */
14176 break;
14177
14178 case REG_DEAD:
14179 /* If we replaced the right hand side of FROM_INSN with a
14180 REG_EQUAL note, the original use of the dying register
14181 will not have been combined into I3 and I2. In such cases,
14182 FROM_INSN is guaranteed to be the first of the combined
14183 instructions, so we simply need to search back before
14184 FROM_INSN for the previous use or set of this register,
14185 then alter the notes there appropriately.
14186
14187 If the register is used as an input in I3, it dies there.
14188 Similarly for I2, if it is nonzero and adjacent to I3.
14189
14190 If the register is not used as an input in either I3 or I2
14191 and it is not one of the registers we were supposed to eliminate,
14192 there are two possibilities. We might have a non-adjacent I2
14193 or we might have somehow eliminated an additional register
14194 from a computation. For example, we might have had A & B where
14195 we discover that B will always be zero. In this case we will
14196 eliminate the reference to A.
14197
14198 In both cases, we must search to see if we can find a previous
14199 use of A and put the death note there. */
14200
14201 if (from_insn
14202 && from_insn == i2mod
14203 && !reg_overlap_mentioned_p (XEXP (note, 0), i2mod_new_rhs))
14204 tem_insn = from_insn;
14205 else
14206 {
14207 if (from_insn
14208 && CALL_P (from_insn)
14209 && find_reg_fusage (from_insn, USE, XEXP (note, 0)))
14210 place = from_insn;
14211 else if (reg_referenced_p (XEXP (note, 0), PATTERN (i3)))
14212 place = i3;
14213 else if (i2 != 0 && next_nonnote_nondebug_insn (i2) == i3
14214 && reg_referenced_p (XEXP (note, 0), PATTERN (i2)))
14215 place = i2;
14216 else if ((rtx_equal_p (XEXP (note, 0), elim_i2)
14217 && !(i2mod
14218 && reg_overlap_mentioned_p (XEXP (note, 0),
14219 i2mod_old_rhs)))
14220 || rtx_equal_p (XEXP (note, 0), elim_i1)
14221 || rtx_equal_p (XEXP (note, 0), elim_i0))
14222 break;
14223 tem_insn = i3;
14224 /* If the new I2 sets the same register that is marked dead
14225 in the note, we do not know where to put the note.
14226 Give up. */
14227 if (i2 != 0 && reg_set_p (XEXP (note, 0), PATTERN (i2)))
14228 break;
14229 }
14230
14231 if (place == 0)
14232 {
14233 basic_block bb = this_basic_block;
14234
14235 for (tem_insn = PREV_INSN (tem_insn); place == 0; tem_insn = PREV_INSN (tem_insn))
14236 {
14237 if (!NONDEBUG_INSN_P (tem_insn))
14238 {
14239 if (tem_insn == BB_HEAD (bb))
14240 break;
14241 continue;
14242 }
14243
14244 /* If the register is being set at TEM_INSN, see if that is all
14245 TEM_INSN is doing. If so, delete TEM_INSN. Otherwise, make this
14246 into a REG_UNUSED note instead. Don't delete sets to
14247 global register vars. */
14248 if ((REGNO (XEXP (note, 0)) >= FIRST_PSEUDO_REGISTER
14249 || !global_regs[REGNO (XEXP (note, 0))])
14250 && reg_set_p (XEXP (note, 0), PATTERN (tem_insn)))
14251 {
14252 rtx set = single_set (tem_insn);
14253 rtx inner_dest = 0;
14254 rtx_insn *cc0_setter = NULL;
14255
14256 if (set != 0)
14257 for (inner_dest = SET_DEST (set);
14258 (GET_CODE (inner_dest) == STRICT_LOW_PART
14259 || GET_CODE (inner_dest) == SUBREG
14260 || GET_CODE (inner_dest) == ZERO_EXTRACT);
14261 inner_dest = XEXP (inner_dest, 0))
14262 ;
14263
14264 /* Verify that it was the set, and not a clobber that
14265 modified the register.
14266
14267 CC0 targets must be careful to maintain setter/user
14268 pairs. If we cannot delete the setter due to side
14269 effects, mark the user with an UNUSED note instead
14270 of deleting it. */
14271
14272 if (set != 0 && ! side_effects_p (SET_SRC (set))
14273 && rtx_equal_p (XEXP (note, 0), inner_dest)
14274 && (!HAVE_cc0
14275 || (! reg_mentioned_p (cc0_rtx, SET_SRC (set))
14276 || ((cc0_setter = prev_cc0_setter (tem_insn)) != NULL
14277 && sets_cc0_p (PATTERN (cc0_setter)) > 0))))
14278 {
14279 /* Move the notes and links of TEM_INSN elsewhere.
14280 This might delete other dead insns recursively.
14281 First set the pattern to something that won't use
14282 any register. */
14283 rtx old_notes = REG_NOTES (tem_insn);
14284
14285 PATTERN (tem_insn) = pc_rtx;
14286 REG_NOTES (tem_insn) = NULL;
14287
14288 distribute_notes (old_notes, tem_insn, tem_insn, NULL,
14289 NULL_RTX, NULL_RTX, NULL_RTX);
14290 distribute_links (LOG_LINKS (tem_insn));
14291
14292 unsigned int regno = REGNO (XEXP (note, 0));
14293 reg_stat_type *rsp = &reg_stat[regno];
14294 if (rsp->last_set == tem_insn)
14295 record_value_for_reg (XEXP (note, 0), NULL, NULL_RTX);
14296
14297 SET_INSN_DELETED (tem_insn);
14298 if (tem_insn == i2)
14299 i2 = NULL;
14300
14301 /* Delete the setter too. */
14302 if (cc0_setter)
14303 {
14304 PATTERN (cc0_setter) = pc_rtx;
14305 old_notes = REG_NOTES (cc0_setter);
14306 REG_NOTES (cc0_setter) = NULL;
14307
14308 distribute_notes (old_notes, cc0_setter,
14309 cc0_setter, NULL,
14310 NULL_RTX, NULL_RTX, NULL_RTX);
14311 distribute_links (LOG_LINKS (cc0_setter));
14312
14313 SET_INSN_DELETED (cc0_setter);
14314 if (cc0_setter == i2)
14315 i2 = NULL;
14316 }
14317 }
14318 else
14319 {
14320 PUT_REG_NOTE_KIND (note, REG_UNUSED);
14321
14322 /* If there isn't already a REG_UNUSED note, put one
14323 here. Do not place a REG_DEAD note, even if
14324 the register is also used here; that would not
14325 match the algorithm used in lifetime analysis
14326 and can cause the consistency check in the
14327 scheduler to fail. */
14328 if (! find_regno_note (tem_insn, REG_UNUSED,
14329 REGNO (XEXP (note, 0))))
14330 place = tem_insn;
14331 break;
14332 }
14333 }
14334 else if (reg_referenced_p (XEXP (note, 0), PATTERN (tem_insn))
14335 || (CALL_P (tem_insn)
14336 && find_reg_fusage (tem_insn, USE, XEXP (note, 0))))
14337 {
14338 place = tem_insn;
14339
14340 /* If we are doing a 3->2 combination, and we have a
14341 register which formerly died in i3 and was not used
14342 by i2, which now no longer dies in i3 and is used in
14343 i2 but does not die in i2, and place is between i2
14344 and i3, then we may need to move a link from place to
14345 i2. */
14346 if (i2 && DF_INSN_LUID (place) > DF_INSN_LUID (i2)
14347 && from_insn
14348 && DF_INSN_LUID (from_insn) > DF_INSN_LUID (i2)
14349 && reg_referenced_p (XEXP (note, 0), PATTERN (i2)))
14350 {
14351 struct insn_link *links = LOG_LINKS (place);
14352 LOG_LINKS (place) = NULL;
14353 distribute_links (links);
14354 }
14355 break;
14356 }
14357
14358 if (tem_insn == BB_HEAD (bb))
14359 break;
14360 }
14361
14362 }
14363
14364 /* If the register is set or already dead at PLACE, we needn't do
14365 anything with this note if it is still a REG_DEAD note.
14366 We check here if it is set at all, not if is it totally replaced,
14367 which is what `dead_or_set_p' checks, so also check for it being
14368 set partially. */
14369
14370 if (place && REG_NOTE_KIND (note) == REG_DEAD)
14371 {
14372 unsigned int regno = REGNO (XEXP (note, 0));
14373 reg_stat_type *rsp = &reg_stat[regno];
14374
14375 if (dead_or_set_p (place, XEXP (note, 0))
14376 || reg_bitfield_target_p (XEXP (note, 0), PATTERN (place)))
14377 {
14378 /* Unless the register previously died in PLACE, clear
14379 last_death. [I no longer understand why this is
14380 being done.] */
14381 if (rsp->last_death != place)
14382 rsp->last_death = 0;
14383 place = 0;
14384 }
14385 else
14386 rsp->last_death = place;
14387
14388 /* If this is a death note for a hard reg that is occupying
14389 multiple registers, ensure that we are still using all
14390 parts of the object. If we find a piece of the object
14391 that is unused, we must arrange for an appropriate REG_DEAD
14392 note to be added for it. However, we can't just emit a USE
14393 and tag the note to it, since the register might actually
14394 be dead; so we recourse, and the recursive call then finds
14395 the previous insn that used this register. */
14396
14397 if (place && REG_NREGS (XEXP (note, 0)) > 1)
14398 {
14399 unsigned int endregno = END_REGNO (XEXP (note, 0));
14400 bool all_used = true;
14401 unsigned int i;
14402
14403 for (i = regno; i < endregno; i++)
14404 if ((! refers_to_regno_p (i, PATTERN (place))
14405 && ! find_regno_fusage (place, USE, i))
14406 || dead_or_set_regno_p (place, i))
14407 {
14408 all_used = false;
14409 break;
14410 }
14411
14412 if (! all_used)
14413 {
14414 /* Put only REG_DEAD notes for pieces that are
14415 not already dead or set. */
14416
14417 for (i = regno; i < endregno;
14418 i += hard_regno_nregs[i][reg_raw_mode[i]])
14419 {
14420 rtx piece = regno_reg_rtx[i];
14421 basic_block bb = this_basic_block;
14422
14423 if (! dead_or_set_p (place, piece)
14424 && ! reg_bitfield_target_p (piece,
14425 PATTERN (place)))
14426 {
14427 rtx new_note = alloc_reg_note (REG_DEAD, piece,
14428 NULL_RTX);
14429
14430 distribute_notes (new_note, place, place,
14431 NULL, NULL_RTX, NULL_RTX,
14432 NULL_RTX);
14433 }
14434 else if (! refers_to_regno_p (i, PATTERN (place))
14435 && ! find_regno_fusage (place, USE, i))
14436 for (tem_insn = PREV_INSN (place); ;
14437 tem_insn = PREV_INSN (tem_insn))
14438 {
14439 if (!NONDEBUG_INSN_P (tem_insn))
14440 {
14441 if (tem_insn == BB_HEAD (bb))
14442 break;
14443 continue;
14444 }
14445 if (dead_or_set_p (tem_insn, piece)
14446 || reg_bitfield_target_p (piece,
14447 PATTERN (tem_insn)))
14448 {
14449 add_reg_note (tem_insn, REG_UNUSED, piece);
14450 break;
14451 }
14452 }
14453 }
14454
14455 place = 0;
14456 }
14457 }
14458 }
14459 break;
14460
14461 default:
14462 /* Any other notes should not be present at this point in the
14463 compilation. */
14464 gcc_unreachable ();
14465 }
14466
14467 if (place)
14468 {
14469 XEXP (note, 1) = REG_NOTES (place);
14470 REG_NOTES (place) = note;
14471 }
14472
14473 if (place2)
14474 add_shallow_copy_of_reg_note (place2, note);
14475 }
14476 }
14477 \f
14478 /* Similarly to above, distribute the LOG_LINKS that used to be present on
14479 I3, I2, and I1 to new locations. This is also called to add a link
14480 pointing at I3 when I3's destination is changed. */
14481
14482 static void
14483 distribute_links (struct insn_link *links)
14484 {
14485 struct insn_link *link, *next_link;
14486
14487 for (link = links; link; link = next_link)
14488 {
14489 rtx_insn *place = 0;
14490 rtx_insn *insn;
14491 rtx set, reg;
14492
14493 next_link = link->next;
14494
14495 /* If the insn that this link points to is a NOTE, ignore it. */
14496 if (NOTE_P (link->insn))
14497 continue;
14498
14499 set = 0;
14500 rtx pat = PATTERN (link->insn);
14501 if (GET_CODE (pat) == SET)
14502 set = pat;
14503 else if (GET_CODE (pat) == PARALLEL)
14504 {
14505 int i;
14506 for (i = 0; i < XVECLEN (pat, 0); i++)
14507 {
14508 set = XVECEXP (pat, 0, i);
14509 if (GET_CODE (set) != SET)
14510 continue;
14511
14512 reg = SET_DEST (set);
14513 while (GET_CODE (reg) == ZERO_EXTRACT
14514 || GET_CODE (reg) == STRICT_LOW_PART
14515 || GET_CODE (reg) == SUBREG)
14516 reg = XEXP (reg, 0);
14517
14518 if (!REG_P (reg))
14519 continue;
14520
14521 if (REGNO (reg) == link->regno)
14522 break;
14523 }
14524 if (i == XVECLEN (pat, 0))
14525 continue;
14526 }
14527 else
14528 continue;
14529
14530 reg = SET_DEST (set);
14531
14532 while (GET_CODE (reg) == ZERO_EXTRACT
14533 || GET_CODE (reg) == STRICT_LOW_PART
14534 || GET_CODE (reg) == SUBREG)
14535 reg = XEXP (reg, 0);
14536
14537 /* A LOG_LINK is defined as being placed on the first insn that uses
14538 a register and points to the insn that sets the register. Start
14539 searching at the next insn after the target of the link and stop
14540 when we reach a set of the register or the end of the basic block.
14541
14542 Note that this correctly handles the link that used to point from
14543 I3 to I2. Also note that not much searching is typically done here
14544 since most links don't point very far away. */
14545
14546 for (insn = NEXT_INSN (link->insn);
14547 (insn && (this_basic_block->next_bb == EXIT_BLOCK_PTR_FOR_FN (cfun)
14548 || BB_HEAD (this_basic_block->next_bb) != insn));
14549 insn = NEXT_INSN (insn))
14550 if (DEBUG_INSN_P (insn))
14551 continue;
14552 else if (INSN_P (insn) && reg_overlap_mentioned_p (reg, PATTERN (insn)))
14553 {
14554 if (reg_referenced_p (reg, PATTERN (insn)))
14555 place = insn;
14556 break;
14557 }
14558 else if (CALL_P (insn)
14559 && find_reg_fusage (insn, USE, reg))
14560 {
14561 place = insn;
14562 break;
14563 }
14564 else if (INSN_P (insn) && reg_set_p (reg, insn))
14565 break;
14566
14567 /* If we found a place to put the link, place it there unless there
14568 is already a link to the same insn as LINK at that point. */
14569
14570 if (place)
14571 {
14572 struct insn_link *link2;
14573
14574 FOR_EACH_LOG_LINK (link2, place)
14575 if (link2->insn == link->insn && link2->regno == link->regno)
14576 break;
14577
14578 if (link2 == NULL)
14579 {
14580 link->next = LOG_LINKS (place);
14581 LOG_LINKS (place) = link;
14582
14583 /* Set added_links_insn to the earliest insn we added a
14584 link to. */
14585 if (added_links_insn == 0
14586 || DF_INSN_LUID (added_links_insn) > DF_INSN_LUID (place))
14587 added_links_insn = place;
14588 }
14589 }
14590 }
14591 }
14592 \f
14593 /* Check for any register or memory mentioned in EQUIV that is not
14594 mentioned in EXPR. This is used to restrict EQUIV to "specializations"
14595 of EXPR where some registers may have been replaced by constants. */
14596
14597 static bool
14598 unmentioned_reg_p (rtx equiv, rtx expr)
14599 {
14600 subrtx_iterator::array_type array;
14601 FOR_EACH_SUBRTX (iter, array, equiv, NONCONST)
14602 {
14603 const_rtx x = *iter;
14604 if ((REG_P (x) || MEM_P (x))
14605 && !reg_mentioned_p (x, expr))
14606 return true;
14607 }
14608 return false;
14609 }
14610 \f
14611 DEBUG_FUNCTION void
14612 dump_combine_stats (FILE *file)
14613 {
14614 fprintf
14615 (file,
14616 ";; Combiner statistics: %d attempts, %d substitutions (%d requiring new space),\n;; %d successes.\n\n",
14617 combine_attempts, combine_merges, combine_extras, combine_successes);
14618 }
14619
14620 void
14621 dump_combine_total_stats (FILE *file)
14622 {
14623 fprintf
14624 (file,
14625 "\n;; Combiner totals: %d attempts, %d substitutions (%d requiring new space),\n;; %d successes.\n",
14626 total_attempts, total_merges, total_extras, total_successes);
14627 }
14628 \f
14629 /* Try combining insns through substitution. */
14630 static unsigned int
14631 rest_of_handle_combine (void)
14632 {
14633 int rebuild_jump_labels_after_combine;
14634
14635 df_set_flags (DF_LR_RUN_DCE + DF_DEFER_INSN_RESCAN);
14636 df_note_add_problem ();
14637 df_analyze ();
14638
14639 regstat_init_n_sets_and_refs ();
14640 reg_n_sets_max = max_reg_num ();
14641
14642 rebuild_jump_labels_after_combine
14643 = combine_instructions (get_insns (), max_reg_num ());
14644
14645 /* Combining insns may have turned an indirect jump into a
14646 direct jump. Rebuild the JUMP_LABEL fields of jumping
14647 instructions. */
14648 if (rebuild_jump_labels_after_combine)
14649 {
14650 if (dom_info_available_p (CDI_DOMINATORS))
14651 free_dominance_info (CDI_DOMINATORS);
14652 timevar_push (TV_JUMP);
14653 rebuild_jump_labels (get_insns ());
14654 cleanup_cfg (0);
14655 timevar_pop (TV_JUMP);
14656 }
14657
14658 regstat_free_n_sets_and_refs ();
14659 return 0;
14660 }
14661
14662 namespace {
14663
14664 const pass_data pass_data_combine =
14665 {
14666 RTL_PASS, /* type */
14667 "combine", /* name */
14668 OPTGROUP_NONE, /* optinfo_flags */
14669 TV_COMBINE, /* tv_id */
14670 PROP_cfglayout, /* properties_required */
14671 0, /* properties_provided */
14672 0, /* properties_destroyed */
14673 0, /* todo_flags_start */
14674 TODO_df_finish, /* todo_flags_finish */
14675 };
14676
14677 class pass_combine : public rtl_opt_pass
14678 {
14679 public:
14680 pass_combine (gcc::context *ctxt)
14681 : rtl_opt_pass (pass_data_combine, ctxt)
14682 {}
14683
14684 /* opt_pass methods: */
14685 virtual bool gate (function *) { return (optimize > 0); }
14686 virtual unsigned int execute (function *)
14687 {
14688 return rest_of_handle_combine ();
14689 }
14690
14691 }; // class pass_combine
14692
14693 } // anon namespace
14694
14695 rtl_opt_pass *
14696 make_pass_combine (gcc::context *ctxt)
14697 {
14698 return new pass_combine (ctxt);
14699 }