combine: Do not call simplify from inside change_zero_ext (PR78232)
[gcc.git] / gcc / combine.c
1 /* Optimize by combining instructions for GNU compiler.
2 Copyright (C) 1987-2016 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 /* This module is essentially the "combiner" phase of the U. of Arizona
21 Portable Optimizer, but redone to work on our list-structured
22 representation for RTL instead of their string representation.
23
24 The LOG_LINKS of each insn identify the most recent assignment
25 to each REG used in the insn. It is a list of previous insns,
26 each of which contains a SET for a REG that is used in this insn
27 and not used or set in between. LOG_LINKs never cross basic blocks.
28 They were set up by the preceding pass (lifetime analysis).
29
30 We try to combine each pair of insns joined by a logical link.
31 We also try to combine triplets of insns A, B and C when C has
32 a link back to B and B has a link back to A. Likewise for a
33 small number of quadruplets of insns A, B, C and D for which
34 there's high likelihood of success.
35
36 LOG_LINKS does not have links for use of the CC0. They don't
37 need to, because the insn that sets the CC0 is always immediately
38 before the insn that tests it. So we always regard a branch
39 insn as having a logical link to the preceding insn. The same is true
40 for an insn explicitly using CC0.
41
42 We check (with use_crosses_set_p) to avoid combining in such a way
43 as to move a computation to a place where its value would be different.
44
45 Combination is done by mathematically substituting the previous
46 insn(s) values for the regs they set into the expressions in
47 the later insns that refer to these regs. If the result is a valid insn
48 for our target machine, according to the machine description,
49 we install it, delete the earlier insns, and update the data flow
50 information (LOG_LINKS and REG_NOTES) for what we did.
51
52 There are a few exceptions where the dataflow information isn't
53 completely updated (however this is only a local issue since it is
54 regenerated before the next pass that uses it):
55
56 - reg_live_length is not updated
57 - reg_n_refs is not adjusted in the rare case when a register is
58 no longer required in a computation
59 - there are extremely rare cases (see distribute_notes) when a
60 REG_DEAD note is lost
61 - a LOG_LINKS entry that refers to an insn with multiple SETs may be
62 removed because there is no way to know which register it was
63 linking
64
65 To simplify substitution, we combine only when the earlier insn(s)
66 consist of only a single assignment. To simplify updating afterward,
67 we never combine when a subroutine call appears in the middle.
68
69 Since we do not represent assignments to CC0 explicitly except when that
70 is all an insn does, there is no LOG_LINKS entry in an insn that uses
71 the condition code for the insn that set the condition code.
72 Fortunately, these two insns must be consecutive.
73 Therefore, every JUMP_INSN is taken to have an implicit logical link
74 to the preceding insn. This is not quite right, since non-jumps can
75 also use the condition code; but in practice such insns would not
76 combine anyway. */
77
78 #include "config.h"
79 #include "system.h"
80 #include "coretypes.h"
81 #include "backend.h"
82 #include "target.h"
83 #include "rtl.h"
84 #include "tree.h"
85 #include "predict.h"
86 #include "df.h"
87 #include "memmodel.h"
88 #include "tm_p.h"
89 #include "optabs.h"
90 #include "regs.h"
91 #include "emit-rtl.h"
92 #include "recog.h"
93 #include "cgraph.h"
94 #include "stor-layout.h"
95 #include "cfgrtl.h"
96 #include "cfgcleanup.h"
97 /* Include expr.h after insn-config.h so we get HAVE_conditional_move. */
98 #include "explow.h"
99 #include "insn-attr.h"
100 #include "rtlhooks-def.h"
101 #include "params.h"
102 #include "tree-pass.h"
103 #include "valtrack.h"
104 #include "rtl-iter.h"
105 #include "print-rtl.h"
106
107 /* Number of attempts to combine instructions in this function. */
108
109 static int combine_attempts;
110
111 /* Number of attempts that got as far as substitution in this function. */
112
113 static int combine_merges;
114
115 /* Number of instructions combined with added SETs in this function. */
116
117 static int combine_extras;
118
119 /* Number of instructions combined in this function. */
120
121 static int combine_successes;
122
123 /* Totals over entire compilation. */
124
125 static int total_attempts, total_merges, total_extras, total_successes;
126
127 /* combine_instructions may try to replace the right hand side of the
128 second instruction with the value of an associated REG_EQUAL note
129 before throwing it at try_combine. That is problematic when there
130 is a REG_DEAD note for a register used in the old right hand side
131 and can cause distribute_notes to do wrong things. This is the
132 second instruction if it has been so modified, null otherwise. */
133
134 static rtx_insn *i2mod;
135
136 /* When I2MOD is nonnull, this is a copy of the old right hand side. */
137
138 static rtx i2mod_old_rhs;
139
140 /* When I2MOD is nonnull, this is a copy of the new right hand side. */
141
142 static rtx i2mod_new_rhs;
143 \f
144 struct reg_stat_type {
145 /* Record last point of death of (hard or pseudo) register n. */
146 rtx_insn *last_death;
147
148 /* Record last point of modification of (hard or pseudo) register n. */
149 rtx_insn *last_set;
150
151 /* The next group of fields allows the recording of the last value assigned
152 to (hard or pseudo) register n. We use this information to see if an
153 operation being processed is redundant given a prior operation performed
154 on the register. For example, an `and' with a constant is redundant if
155 all the zero bits are already known to be turned off.
156
157 We use an approach similar to that used by cse, but change it in the
158 following ways:
159
160 (1) We do not want to reinitialize at each label.
161 (2) It is useful, but not critical, to know the actual value assigned
162 to a register. Often just its form is helpful.
163
164 Therefore, we maintain the following fields:
165
166 last_set_value the last value assigned
167 last_set_label records the value of label_tick when the
168 register was assigned
169 last_set_table_tick records the value of label_tick when a
170 value using the register is assigned
171 last_set_invalid set to nonzero when it is not valid
172 to use the value of this register in some
173 register's value
174
175 To understand the usage of these tables, it is important to understand
176 the distinction between the value in last_set_value being valid and
177 the register being validly contained in some other expression in the
178 table.
179
180 (The next two parameters are out of date).
181
182 reg_stat[i].last_set_value is valid if it is nonzero, and either
183 reg_n_sets[i] is 1 or reg_stat[i].last_set_label == label_tick.
184
185 Register I may validly appear in any expression returned for the value
186 of another register if reg_n_sets[i] is 1. It may also appear in the
187 value for register J if reg_stat[j].last_set_invalid is zero, or
188 reg_stat[i].last_set_label < reg_stat[j].last_set_label.
189
190 If an expression is found in the table containing a register which may
191 not validly appear in an expression, the register is replaced by
192 something that won't match, (clobber (const_int 0)). */
193
194 /* Record last value assigned to (hard or pseudo) register n. */
195
196 rtx last_set_value;
197
198 /* Record the value of label_tick when an expression involving register n
199 is placed in last_set_value. */
200
201 int last_set_table_tick;
202
203 /* Record the value of label_tick when the value for register n is placed in
204 last_set_value. */
205
206 int last_set_label;
207
208 /* These fields are maintained in parallel with last_set_value and are
209 used to store the mode in which the register was last set, the bits
210 that were known to be zero when it was last set, and the number of
211 sign bits copies it was known to have when it was last set. */
212
213 unsigned HOST_WIDE_INT last_set_nonzero_bits;
214 char last_set_sign_bit_copies;
215 ENUM_BITFIELD(machine_mode) last_set_mode : 8;
216
217 /* Set nonzero if references to register n in expressions should not be
218 used. last_set_invalid is set nonzero when this register is being
219 assigned to and last_set_table_tick == label_tick. */
220
221 char last_set_invalid;
222
223 /* Some registers that are set more than once and used in more than one
224 basic block are nevertheless always set in similar ways. For example,
225 a QImode register may be loaded from memory in two places on a machine
226 where byte loads zero extend.
227
228 We record in the following fields if a register has some leading bits
229 that are always equal to the sign bit, and what we know about the
230 nonzero bits of a register, specifically which bits are known to be
231 zero.
232
233 If an entry is zero, it means that we don't know anything special. */
234
235 unsigned char sign_bit_copies;
236
237 unsigned HOST_WIDE_INT nonzero_bits;
238
239 /* Record the value of the label_tick when the last truncation
240 happened. The field truncated_to_mode is only valid if
241 truncation_label == label_tick. */
242
243 int truncation_label;
244
245 /* Record the last truncation seen for this register. If truncation
246 is not a nop to this mode we might be able to save an explicit
247 truncation if we know that value already contains a truncated
248 value. */
249
250 ENUM_BITFIELD(machine_mode) truncated_to_mode : 8;
251 };
252
253
254 static vec<reg_stat_type> reg_stat;
255
256 /* One plus the highest pseudo for which we track REG_N_SETS.
257 regstat_init_n_sets_and_refs allocates the array for REG_N_SETS just once,
258 but during combine_split_insns new pseudos can be created. As we don't have
259 updated DF information in that case, it is hard to initialize the array
260 after growing. The combiner only cares about REG_N_SETS (regno) == 1,
261 so instead of growing the arrays, just assume all newly created pseudos
262 during combine might be set multiple times. */
263
264 static unsigned int reg_n_sets_max;
265
266 /* Record the luid of the last insn that invalidated memory
267 (anything that writes memory, and subroutine calls, but not pushes). */
268
269 static int mem_last_set;
270
271 /* Record the luid of the last CALL_INSN
272 so we can tell whether a potential combination crosses any calls. */
273
274 static int last_call_luid;
275
276 /* When `subst' is called, this is the insn that is being modified
277 (by combining in a previous insn). The PATTERN of this insn
278 is still the old pattern partially modified and it should not be
279 looked at, but this may be used to examine the successors of the insn
280 to judge whether a simplification is valid. */
281
282 static rtx_insn *subst_insn;
283
284 /* This is the lowest LUID that `subst' is currently dealing with.
285 get_last_value will not return a value if the register was set at or
286 after this LUID. If not for this mechanism, we could get confused if
287 I2 or I1 in try_combine were an insn that used the old value of a register
288 to obtain a new value. In that case, we might erroneously get the
289 new value of the register when we wanted the old one. */
290
291 static int subst_low_luid;
292
293 /* This contains any hard registers that are used in newpat; reg_dead_at_p
294 must consider all these registers to be always live. */
295
296 static HARD_REG_SET newpat_used_regs;
297
298 /* This is an insn to which a LOG_LINKS entry has been added. If this
299 insn is the earlier than I2 or I3, combine should rescan starting at
300 that location. */
301
302 static rtx_insn *added_links_insn;
303
304 /* Basic block in which we are performing combines. */
305 static basic_block this_basic_block;
306 static bool optimize_this_for_speed_p;
307
308 \f
309 /* Length of the currently allocated uid_insn_cost array. */
310
311 static int max_uid_known;
312
313 /* The following array records the insn_rtx_cost for every insn
314 in the instruction stream. */
315
316 static int *uid_insn_cost;
317
318 /* The following array records the LOG_LINKS for every insn in the
319 instruction stream as struct insn_link pointers. */
320
321 struct insn_link {
322 rtx_insn *insn;
323 unsigned int regno;
324 struct insn_link *next;
325 };
326
327 static struct insn_link **uid_log_links;
328
329 #define INSN_COST(INSN) (uid_insn_cost[INSN_UID (INSN)])
330 #define LOG_LINKS(INSN) (uid_log_links[INSN_UID (INSN)])
331
332 #define FOR_EACH_LOG_LINK(L, INSN) \
333 for ((L) = LOG_LINKS (INSN); (L); (L) = (L)->next)
334
335 /* Links for LOG_LINKS are allocated from this obstack. */
336
337 static struct obstack insn_link_obstack;
338
339 /* Allocate a link. */
340
341 static inline struct insn_link *
342 alloc_insn_link (rtx_insn *insn, unsigned int regno, struct insn_link *next)
343 {
344 struct insn_link *l
345 = (struct insn_link *) obstack_alloc (&insn_link_obstack,
346 sizeof (struct insn_link));
347 l->insn = insn;
348 l->regno = regno;
349 l->next = next;
350 return l;
351 }
352
353 /* Incremented for each basic block. */
354
355 static int label_tick;
356
357 /* Reset to label_tick for each extended basic block in scanning order. */
358
359 static int label_tick_ebb_start;
360
361 /* Mode used to compute significance in reg_stat[].nonzero_bits. It is the
362 largest integer mode that can fit in HOST_BITS_PER_WIDE_INT. */
363
364 static machine_mode nonzero_bits_mode;
365
366 /* Nonzero when reg_stat[].nonzero_bits and reg_stat[].sign_bit_copies can
367 be safely used. It is zero while computing them and after combine has
368 completed. This former test prevents propagating values based on
369 previously set values, which can be incorrect if a variable is modified
370 in a loop. */
371
372 static int nonzero_sign_valid;
373
374 \f
375 /* Record one modification to rtl structure
376 to be undone by storing old_contents into *where. */
377
378 enum undo_kind { UNDO_RTX, UNDO_INT, UNDO_MODE, UNDO_LINKS };
379
380 struct undo
381 {
382 struct undo *next;
383 enum undo_kind kind;
384 union { rtx r; int i; machine_mode m; struct insn_link *l; } old_contents;
385 union { rtx *r; int *i; struct insn_link **l; } where;
386 };
387
388 /* Record a bunch of changes to be undone, up to MAX_UNDO of them.
389 num_undo says how many are currently recorded.
390
391 other_insn is nonzero if we have modified some other insn in the process
392 of working on subst_insn. It must be verified too. */
393
394 struct undobuf
395 {
396 struct undo *undos;
397 struct undo *frees;
398 rtx_insn *other_insn;
399 };
400
401 static struct undobuf undobuf;
402
403 /* Number of times the pseudo being substituted for
404 was found and replaced. */
405
406 static int n_occurrences;
407
408 static rtx reg_nonzero_bits_for_combine (const_rtx, machine_mode, const_rtx,
409 machine_mode,
410 unsigned HOST_WIDE_INT,
411 unsigned HOST_WIDE_INT *);
412 static rtx reg_num_sign_bit_copies_for_combine (const_rtx, machine_mode, const_rtx,
413 machine_mode,
414 unsigned int, unsigned int *);
415 static void do_SUBST (rtx *, rtx);
416 static void do_SUBST_INT (int *, int);
417 static void init_reg_last (void);
418 static void setup_incoming_promotions (rtx_insn *);
419 static void set_nonzero_bits_and_sign_copies (rtx, const_rtx, void *);
420 static int cant_combine_insn_p (rtx_insn *);
421 static int can_combine_p (rtx_insn *, rtx_insn *, rtx_insn *, rtx_insn *,
422 rtx_insn *, rtx_insn *, rtx *, rtx *);
423 static int combinable_i3pat (rtx_insn *, rtx *, rtx, rtx, rtx, int, int, rtx *);
424 static int contains_muldiv (rtx);
425 static rtx_insn *try_combine (rtx_insn *, rtx_insn *, rtx_insn *, rtx_insn *,
426 int *, rtx_insn *);
427 static void undo_all (void);
428 static void undo_commit (void);
429 static rtx *find_split_point (rtx *, rtx_insn *, bool);
430 static rtx subst (rtx, rtx, rtx, int, int, int);
431 static rtx combine_simplify_rtx (rtx, machine_mode, int, int);
432 static rtx simplify_if_then_else (rtx);
433 static rtx simplify_set (rtx);
434 static rtx simplify_logical (rtx);
435 static rtx expand_compound_operation (rtx);
436 static const_rtx expand_field_assignment (const_rtx);
437 static rtx make_extraction (machine_mode, rtx, HOST_WIDE_INT,
438 rtx, unsigned HOST_WIDE_INT, int, int, int);
439 static rtx extract_left_shift (rtx, int);
440 static int get_pos_from_mask (unsigned HOST_WIDE_INT,
441 unsigned HOST_WIDE_INT *);
442 static rtx canon_reg_for_combine (rtx, rtx);
443 static rtx force_to_mode (rtx, machine_mode,
444 unsigned HOST_WIDE_INT, int);
445 static rtx if_then_else_cond (rtx, rtx *, rtx *);
446 static rtx known_cond (rtx, enum rtx_code, rtx, rtx);
447 static int rtx_equal_for_field_assignment_p (rtx, rtx, bool = false);
448 static rtx make_field_assignment (rtx);
449 static rtx apply_distributive_law (rtx);
450 static rtx distribute_and_simplify_rtx (rtx, int);
451 static rtx simplify_and_const_int_1 (machine_mode, rtx,
452 unsigned HOST_WIDE_INT);
453 static rtx simplify_and_const_int (rtx, machine_mode, rtx,
454 unsigned HOST_WIDE_INT);
455 static int merge_outer_ops (enum rtx_code *, HOST_WIDE_INT *, enum rtx_code,
456 HOST_WIDE_INT, machine_mode, int *);
457 static rtx simplify_shift_const_1 (enum rtx_code, machine_mode, rtx, int);
458 static rtx simplify_shift_const (rtx, enum rtx_code, machine_mode, rtx,
459 int);
460 static int recog_for_combine (rtx *, rtx_insn *, rtx *);
461 static rtx gen_lowpart_for_combine (machine_mode, rtx);
462 static enum rtx_code simplify_compare_const (enum rtx_code, machine_mode,
463 rtx, rtx *);
464 static enum rtx_code simplify_comparison (enum rtx_code, rtx *, rtx *);
465 static void update_table_tick (rtx);
466 static void record_value_for_reg (rtx, rtx_insn *, rtx);
467 static void check_promoted_subreg (rtx_insn *, rtx);
468 static void record_dead_and_set_regs_1 (rtx, const_rtx, void *);
469 static void record_dead_and_set_regs (rtx_insn *);
470 static int get_last_value_validate (rtx *, rtx_insn *, int, int);
471 static rtx get_last_value (const_rtx);
472 static int use_crosses_set_p (const_rtx, int);
473 static void reg_dead_at_p_1 (rtx, const_rtx, void *);
474 static int reg_dead_at_p (rtx, rtx_insn *);
475 static void move_deaths (rtx, rtx, int, rtx_insn *, rtx *);
476 static int reg_bitfield_target_p (rtx, rtx);
477 static void distribute_notes (rtx, rtx_insn *, rtx_insn *, rtx_insn *, rtx, rtx, rtx);
478 static void distribute_links (struct insn_link *);
479 static void mark_used_regs_combine (rtx);
480 static void record_promoted_value (rtx_insn *, rtx);
481 static bool unmentioned_reg_p (rtx, rtx);
482 static void record_truncated_values (rtx *, void *);
483 static bool reg_truncated_to_mode (machine_mode, const_rtx);
484 static rtx gen_lowpart_or_truncate (machine_mode, rtx);
485 \f
486
487 /* It is not safe to use ordinary gen_lowpart in combine.
488 See comments in gen_lowpart_for_combine. */
489 #undef RTL_HOOKS_GEN_LOWPART
490 #define RTL_HOOKS_GEN_LOWPART gen_lowpart_for_combine
491
492 /* Our implementation of gen_lowpart never emits a new pseudo. */
493 #undef RTL_HOOKS_GEN_LOWPART_NO_EMIT
494 #define RTL_HOOKS_GEN_LOWPART_NO_EMIT gen_lowpart_for_combine
495
496 #undef RTL_HOOKS_REG_NONZERO_REG_BITS
497 #define RTL_HOOKS_REG_NONZERO_REG_BITS reg_nonzero_bits_for_combine
498
499 #undef RTL_HOOKS_REG_NUM_SIGN_BIT_COPIES
500 #define RTL_HOOKS_REG_NUM_SIGN_BIT_COPIES reg_num_sign_bit_copies_for_combine
501
502 #undef RTL_HOOKS_REG_TRUNCATED_TO_MODE
503 #define RTL_HOOKS_REG_TRUNCATED_TO_MODE reg_truncated_to_mode
504
505 static const struct rtl_hooks combine_rtl_hooks = RTL_HOOKS_INITIALIZER;
506
507 \f
508 /* Convenience wrapper for the canonicalize_comparison target hook.
509 Target hooks cannot use enum rtx_code. */
510 static inline void
511 target_canonicalize_comparison (enum rtx_code *code, rtx *op0, rtx *op1,
512 bool op0_preserve_value)
513 {
514 int code_int = (int)*code;
515 targetm.canonicalize_comparison (&code_int, op0, op1, op0_preserve_value);
516 *code = (enum rtx_code)code_int;
517 }
518
519 /* Try to split PATTERN found in INSN. This returns NULL_RTX if
520 PATTERN can not be split. Otherwise, it returns an insn sequence.
521 This is a wrapper around split_insns which ensures that the
522 reg_stat vector is made larger if the splitter creates a new
523 register. */
524
525 static rtx_insn *
526 combine_split_insns (rtx pattern, rtx_insn *insn)
527 {
528 rtx_insn *ret;
529 unsigned int nregs;
530
531 ret = split_insns (pattern, insn);
532 nregs = max_reg_num ();
533 if (nregs > reg_stat.length ())
534 reg_stat.safe_grow_cleared (nregs);
535 return ret;
536 }
537
538 /* This is used by find_single_use to locate an rtx in LOC that
539 contains exactly one use of DEST, which is typically either a REG
540 or CC0. It returns a pointer to the innermost rtx expression
541 containing DEST. Appearances of DEST that are being used to
542 totally replace it are not counted. */
543
544 static rtx *
545 find_single_use_1 (rtx dest, rtx *loc)
546 {
547 rtx x = *loc;
548 enum rtx_code code = GET_CODE (x);
549 rtx *result = NULL;
550 rtx *this_result;
551 int i;
552 const char *fmt;
553
554 switch (code)
555 {
556 case CONST:
557 case LABEL_REF:
558 case SYMBOL_REF:
559 CASE_CONST_ANY:
560 case CLOBBER:
561 return 0;
562
563 case SET:
564 /* If the destination is anything other than CC0, PC, a REG or a SUBREG
565 of a REG that occupies all of the REG, the insn uses DEST if
566 it is mentioned in the destination or the source. Otherwise, we
567 need just check the source. */
568 if (GET_CODE (SET_DEST (x)) != CC0
569 && GET_CODE (SET_DEST (x)) != PC
570 && !REG_P (SET_DEST (x))
571 && ! (GET_CODE (SET_DEST (x)) == SUBREG
572 && REG_P (SUBREG_REG (SET_DEST (x)))
573 && (((GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (x))))
574 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
575 == ((GET_MODE_SIZE (GET_MODE (SET_DEST (x)))
576 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))))
577 break;
578
579 return find_single_use_1 (dest, &SET_SRC (x));
580
581 case MEM:
582 case SUBREG:
583 return find_single_use_1 (dest, &XEXP (x, 0));
584
585 default:
586 break;
587 }
588
589 /* If it wasn't one of the common cases above, check each expression and
590 vector of this code. Look for a unique usage of DEST. */
591
592 fmt = GET_RTX_FORMAT (code);
593 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
594 {
595 if (fmt[i] == 'e')
596 {
597 if (dest == XEXP (x, i)
598 || (REG_P (dest) && REG_P (XEXP (x, i))
599 && REGNO (dest) == REGNO (XEXP (x, i))))
600 this_result = loc;
601 else
602 this_result = find_single_use_1 (dest, &XEXP (x, i));
603
604 if (result == NULL)
605 result = this_result;
606 else if (this_result)
607 /* Duplicate usage. */
608 return NULL;
609 }
610 else if (fmt[i] == 'E')
611 {
612 int j;
613
614 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
615 {
616 if (XVECEXP (x, i, j) == dest
617 || (REG_P (dest)
618 && REG_P (XVECEXP (x, i, j))
619 && REGNO (XVECEXP (x, i, j)) == REGNO (dest)))
620 this_result = loc;
621 else
622 this_result = find_single_use_1 (dest, &XVECEXP (x, i, j));
623
624 if (result == NULL)
625 result = this_result;
626 else if (this_result)
627 return NULL;
628 }
629 }
630 }
631
632 return result;
633 }
634
635
636 /* See if DEST, produced in INSN, is used only a single time in the
637 sequel. If so, return a pointer to the innermost rtx expression in which
638 it is used.
639
640 If PLOC is nonzero, *PLOC is set to the insn containing the single use.
641
642 If DEST is cc0_rtx, we look only at the next insn. In that case, we don't
643 care about REG_DEAD notes or LOG_LINKS.
644
645 Otherwise, we find the single use by finding an insn that has a
646 LOG_LINKS pointing at INSN and has a REG_DEAD note for DEST. If DEST is
647 only referenced once in that insn, we know that it must be the first
648 and last insn referencing DEST. */
649
650 static rtx *
651 find_single_use (rtx dest, rtx_insn *insn, rtx_insn **ploc)
652 {
653 basic_block bb;
654 rtx_insn *next;
655 rtx *result;
656 struct insn_link *link;
657
658 if (dest == cc0_rtx)
659 {
660 next = NEXT_INSN (insn);
661 if (next == 0
662 || (!NONJUMP_INSN_P (next) && !JUMP_P (next)))
663 return 0;
664
665 result = find_single_use_1 (dest, &PATTERN (next));
666 if (result && ploc)
667 *ploc = next;
668 return result;
669 }
670
671 if (!REG_P (dest))
672 return 0;
673
674 bb = BLOCK_FOR_INSN (insn);
675 for (next = NEXT_INSN (insn);
676 next && BLOCK_FOR_INSN (next) == bb;
677 next = NEXT_INSN (next))
678 if (INSN_P (next) && dead_or_set_p (next, dest))
679 {
680 FOR_EACH_LOG_LINK (link, next)
681 if (link->insn == insn && link->regno == REGNO (dest))
682 break;
683
684 if (link)
685 {
686 result = find_single_use_1 (dest, &PATTERN (next));
687 if (ploc)
688 *ploc = next;
689 return result;
690 }
691 }
692
693 return 0;
694 }
695 \f
696 /* Substitute NEWVAL, an rtx expression, into INTO, a place in some
697 insn. The substitution can be undone by undo_all. If INTO is already
698 set to NEWVAL, do not record this change. Because computing NEWVAL might
699 also call SUBST, we have to compute it before we put anything into
700 the undo table. */
701
702 static void
703 do_SUBST (rtx *into, rtx newval)
704 {
705 struct undo *buf;
706 rtx oldval = *into;
707
708 if (oldval == newval)
709 return;
710
711 /* We'd like to catch as many invalid transformations here as
712 possible. Unfortunately, there are way too many mode changes
713 that are perfectly valid, so we'd waste too much effort for
714 little gain doing the checks here. Focus on catching invalid
715 transformations involving integer constants. */
716 if (GET_MODE_CLASS (GET_MODE (oldval)) == MODE_INT
717 && CONST_INT_P (newval))
718 {
719 /* Sanity check that we're replacing oldval with a CONST_INT
720 that is a valid sign-extension for the original mode. */
721 gcc_assert (INTVAL (newval)
722 == trunc_int_for_mode (INTVAL (newval), GET_MODE (oldval)));
723
724 /* Replacing the operand of a SUBREG or a ZERO_EXTEND with a
725 CONST_INT is not valid, because after the replacement, the
726 original mode would be gone. Unfortunately, we can't tell
727 when do_SUBST is called to replace the operand thereof, so we
728 perform this test on oldval instead, checking whether an
729 invalid replacement took place before we got here. */
730 gcc_assert (!(GET_CODE (oldval) == SUBREG
731 && CONST_INT_P (SUBREG_REG (oldval))));
732 gcc_assert (!(GET_CODE (oldval) == ZERO_EXTEND
733 && CONST_INT_P (XEXP (oldval, 0))));
734 }
735
736 if (undobuf.frees)
737 buf = undobuf.frees, undobuf.frees = buf->next;
738 else
739 buf = XNEW (struct undo);
740
741 buf->kind = UNDO_RTX;
742 buf->where.r = into;
743 buf->old_contents.r = oldval;
744 *into = newval;
745
746 buf->next = undobuf.undos, undobuf.undos = buf;
747 }
748
749 #define SUBST(INTO, NEWVAL) do_SUBST (&(INTO), (NEWVAL))
750
751 /* Similar to SUBST, but NEWVAL is an int expression. Note that substitution
752 for the value of a HOST_WIDE_INT value (including CONST_INT) is
753 not safe. */
754
755 static void
756 do_SUBST_INT (int *into, int newval)
757 {
758 struct undo *buf;
759 int oldval = *into;
760
761 if (oldval == newval)
762 return;
763
764 if (undobuf.frees)
765 buf = undobuf.frees, undobuf.frees = buf->next;
766 else
767 buf = XNEW (struct undo);
768
769 buf->kind = UNDO_INT;
770 buf->where.i = into;
771 buf->old_contents.i = oldval;
772 *into = newval;
773
774 buf->next = undobuf.undos, undobuf.undos = buf;
775 }
776
777 #define SUBST_INT(INTO, NEWVAL) do_SUBST_INT (&(INTO), (NEWVAL))
778
779 /* Similar to SUBST, but just substitute the mode. This is used when
780 changing the mode of a pseudo-register, so that any other
781 references to the entry in the regno_reg_rtx array will change as
782 well. */
783
784 static void
785 do_SUBST_MODE (rtx *into, machine_mode newval)
786 {
787 struct undo *buf;
788 machine_mode oldval = GET_MODE (*into);
789
790 if (oldval == newval)
791 return;
792
793 if (undobuf.frees)
794 buf = undobuf.frees, undobuf.frees = buf->next;
795 else
796 buf = XNEW (struct undo);
797
798 buf->kind = UNDO_MODE;
799 buf->where.r = into;
800 buf->old_contents.m = oldval;
801 adjust_reg_mode (*into, newval);
802
803 buf->next = undobuf.undos, undobuf.undos = buf;
804 }
805
806 #define SUBST_MODE(INTO, NEWVAL) do_SUBST_MODE (&(INTO), (NEWVAL))
807
808 /* Similar to SUBST, but NEWVAL is a LOG_LINKS expression. */
809
810 static void
811 do_SUBST_LINK (struct insn_link **into, struct insn_link *newval)
812 {
813 struct undo *buf;
814 struct insn_link * oldval = *into;
815
816 if (oldval == newval)
817 return;
818
819 if (undobuf.frees)
820 buf = undobuf.frees, undobuf.frees = buf->next;
821 else
822 buf = XNEW (struct undo);
823
824 buf->kind = UNDO_LINKS;
825 buf->where.l = into;
826 buf->old_contents.l = oldval;
827 *into = newval;
828
829 buf->next = undobuf.undos, undobuf.undos = buf;
830 }
831
832 #define SUBST_LINK(oldval, newval) do_SUBST_LINK (&oldval, newval)
833 \f
834 /* Subroutine of try_combine. Determine whether the replacement patterns
835 NEWPAT, NEWI2PAT and NEWOTHERPAT are cheaper according to insn_rtx_cost
836 than the original sequence I0, I1, I2, I3 and undobuf.other_insn. Note
837 that I0, I1 and/or NEWI2PAT may be NULL_RTX. Similarly, NEWOTHERPAT and
838 undobuf.other_insn may also both be NULL_RTX. Return false if the cost
839 of all the instructions can be estimated and the replacements are more
840 expensive than the original sequence. */
841
842 static bool
843 combine_validate_cost (rtx_insn *i0, rtx_insn *i1, rtx_insn *i2, rtx_insn *i3,
844 rtx newpat, rtx newi2pat, rtx newotherpat)
845 {
846 int i0_cost, i1_cost, i2_cost, i3_cost;
847 int new_i2_cost, new_i3_cost;
848 int old_cost, new_cost;
849
850 /* Lookup the original insn_rtx_costs. */
851 i2_cost = INSN_COST (i2);
852 i3_cost = INSN_COST (i3);
853
854 if (i1)
855 {
856 i1_cost = INSN_COST (i1);
857 if (i0)
858 {
859 i0_cost = INSN_COST (i0);
860 old_cost = (i0_cost > 0 && i1_cost > 0 && i2_cost > 0 && i3_cost > 0
861 ? i0_cost + i1_cost + i2_cost + i3_cost : 0);
862 }
863 else
864 {
865 old_cost = (i1_cost > 0 && i2_cost > 0 && i3_cost > 0
866 ? i1_cost + i2_cost + i3_cost : 0);
867 i0_cost = 0;
868 }
869 }
870 else
871 {
872 old_cost = (i2_cost > 0 && i3_cost > 0) ? i2_cost + i3_cost : 0;
873 i1_cost = i0_cost = 0;
874 }
875
876 /* If we have split a PARALLEL I2 to I1,I2, we have counted its cost twice;
877 correct that. */
878 if (old_cost && i1 && INSN_UID (i1) == INSN_UID (i2))
879 old_cost -= i1_cost;
880
881
882 /* Calculate the replacement insn_rtx_costs. */
883 new_i3_cost = insn_rtx_cost (newpat, optimize_this_for_speed_p);
884 if (newi2pat)
885 {
886 new_i2_cost = insn_rtx_cost (newi2pat, optimize_this_for_speed_p);
887 new_cost = (new_i2_cost > 0 && new_i3_cost > 0)
888 ? new_i2_cost + new_i3_cost : 0;
889 }
890 else
891 {
892 new_cost = new_i3_cost;
893 new_i2_cost = 0;
894 }
895
896 if (undobuf.other_insn)
897 {
898 int old_other_cost, new_other_cost;
899
900 old_other_cost = INSN_COST (undobuf.other_insn);
901 new_other_cost = insn_rtx_cost (newotherpat, optimize_this_for_speed_p);
902 if (old_other_cost > 0 && new_other_cost > 0)
903 {
904 old_cost += old_other_cost;
905 new_cost += new_other_cost;
906 }
907 else
908 old_cost = 0;
909 }
910
911 /* Disallow this combination if both new_cost and old_cost are greater than
912 zero, and new_cost is greater than old cost. */
913 int reject = old_cost > 0 && new_cost > old_cost;
914
915 if (dump_file)
916 {
917 fprintf (dump_file, "%s combination of insns ",
918 reject ? "rejecting" : "allowing");
919 if (i0)
920 fprintf (dump_file, "%d, ", INSN_UID (i0));
921 if (i1 && INSN_UID (i1) != INSN_UID (i2))
922 fprintf (dump_file, "%d, ", INSN_UID (i1));
923 fprintf (dump_file, "%d and %d\n", INSN_UID (i2), INSN_UID (i3));
924
925 fprintf (dump_file, "original costs ");
926 if (i0)
927 fprintf (dump_file, "%d + ", i0_cost);
928 if (i1 && INSN_UID (i1) != INSN_UID (i2))
929 fprintf (dump_file, "%d + ", i1_cost);
930 fprintf (dump_file, "%d + %d = %d\n", i2_cost, i3_cost, old_cost);
931
932 if (newi2pat)
933 fprintf (dump_file, "replacement costs %d + %d = %d\n",
934 new_i2_cost, new_i3_cost, new_cost);
935 else
936 fprintf (dump_file, "replacement cost %d\n", new_cost);
937 }
938
939 if (reject)
940 return false;
941
942 /* Update the uid_insn_cost array with the replacement costs. */
943 INSN_COST (i2) = new_i2_cost;
944 INSN_COST (i3) = new_i3_cost;
945 if (i1)
946 {
947 INSN_COST (i1) = 0;
948 if (i0)
949 INSN_COST (i0) = 0;
950 }
951
952 return true;
953 }
954
955
956 /* Delete any insns that copy a register to itself. */
957
958 static void
959 delete_noop_moves (void)
960 {
961 rtx_insn *insn, *next;
962 basic_block bb;
963
964 FOR_EACH_BB_FN (bb, cfun)
965 {
966 for (insn = BB_HEAD (bb); insn != NEXT_INSN (BB_END (bb)); insn = next)
967 {
968 next = NEXT_INSN (insn);
969 if (INSN_P (insn) && noop_move_p (insn))
970 {
971 if (dump_file)
972 fprintf (dump_file, "deleting noop move %d\n", INSN_UID (insn));
973
974 delete_insn_and_edges (insn);
975 }
976 }
977 }
978 }
979
980 \f
981 /* Return false if we do not want to (or cannot) combine DEF. */
982 static bool
983 can_combine_def_p (df_ref def)
984 {
985 /* Do not consider if it is pre/post modification in MEM. */
986 if (DF_REF_FLAGS (def) & DF_REF_PRE_POST_MODIFY)
987 return false;
988
989 unsigned int regno = DF_REF_REGNO (def);
990
991 /* Do not combine frame pointer adjustments. */
992 if ((regno == FRAME_POINTER_REGNUM
993 && (!reload_completed || frame_pointer_needed))
994 || (!HARD_FRAME_POINTER_IS_FRAME_POINTER
995 && regno == HARD_FRAME_POINTER_REGNUM
996 && (!reload_completed || frame_pointer_needed))
997 || (FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
998 && regno == ARG_POINTER_REGNUM && fixed_regs[regno]))
999 return false;
1000
1001 return true;
1002 }
1003
1004 /* Return false if we do not want to (or cannot) combine USE. */
1005 static bool
1006 can_combine_use_p (df_ref use)
1007 {
1008 /* Do not consider the usage of the stack pointer by function call. */
1009 if (DF_REF_FLAGS (use) & DF_REF_CALL_STACK_USAGE)
1010 return false;
1011
1012 return true;
1013 }
1014
1015 /* Fill in log links field for all insns. */
1016
1017 static void
1018 create_log_links (void)
1019 {
1020 basic_block bb;
1021 rtx_insn **next_use;
1022 rtx_insn *insn;
1023 df_ref def, use;
1024
1025 next_use = XCNEWVEC (rtx_insn *, max_reg_num ());
1026
1027 /* Pass through each block from the end, recording the uses of each
1028 register and establishing log links when def is encountered.
1029 Note that we do not clear next_use array in order to save time,
1030 so we have to test whether the use is in the same basic block as def.
1031
1032 There are a few cases below when we do not consider the definition or
1033 usage -- these are taken from original flow.c did. Don't ask me why it is
1034 done this way; I don't know and if it works, I don't want to know. */
1035
1036 FOR_EACH_BB_FN (bb, cfun)
1037 {
1038 FOR_BB_INSNS_REVERSE (bb, insn)
1039 {
1040 if (!NONDEBUG_INSN_P (insn))
1041 continue;
1042
1043 /* Log links are created only once. */
1044 gcc_assert (!LOG_LINKS (insn));
1045
1046 FOR_EACH_INSN_DEF (def, insn)
1047 {
1048 unsigned int regno = DF_REF_REGNO (def);
1049 rtx_insn *use_insn;
1050
1051 if (!next_use[regno])
1052 continue;
1053
1054 if (!can_combine_def_p (def))
1055 continue;
1056
1057 use_insn = next_use[regno];
1058 next_use[regno] = NULL;
1059
1060 if (BLOCK_FOR_INSN (use_insn) != bb)
1061 continue;
1062
1063 /* flow.c claimed:
1064
1065 We don't build a LOG_LINK for hard registers contained
1066 in ASM_OPERANDs. If these registers get replaced,
1067 we might wind up changing the semantics of the insn,
1068 even if reload can make what appear to be valid
1069 assignments later. */
1070 if (regno < FIRST_PSEUDO_REGISTER
1071 && asm_noperands (PATTERN (use_insn)) >= 0)
1072 continue;
1073
1074 /* Don't add duplicate links between instructions. */
1075 struct insn_link *links;
1076 FOR_EACH_LOG_LINK (links, use_insn)
1077 if (insn == links->insn && regno == links->regno)
1078 break;
1079
1080 if (!links)
1081 LOG_LINKS (use_insn)
1082 = alloc_insn_link (insn, regno, LOG_LINKS (use_insn));
1083 }
1084
1085 FOR_EACH_INSN_USE (use, insn)
1086 if (can_combine_use_p (use))
1087 next_use[DF_REF_REGNO (use)] = insn;
1088 }
1089 }
1090
1091 free (next_use);
1092 }
1093
1094 /* Walk the LOG_LINKS of insn B to see if we find a reference to A. Return
1095 true if we found a LOG_LINK that proves that A feeds B. This only works
1096 if there are no instructions between A and B which could have a link
1097 depending on A, since in that case we would not record a link for B.
1098 We also check the implicit dependency created by a cc0 setter/user
1099 pair. */
1100
1101 static bool
1102 insn_a_feeds_b (rtx_insn *a, rtx_insn *b)
1103 {
1104 struct insn_link *links;
1105 FOR_EACH_LOG_LINK (links, b)
1106 if (links->insn == a)
1107 return true;
1108 if (HAVE_cc0 && sets_cc0_p (a))
1109 return true;
1110 return false;
1111 }
1112 \f
1113 /* Main entry point for combiner. F is the first insn of the function.
1114 NREGS is the first unused pseudo-reg number.
1115
1116 Return nonzero if the combiner has turned an indirect jump
1117 instruction into a direct jump. */
1118 static int
1119 combine_instructions (rtx_insn *f, unsigned int nregs)
1120 {
1121 rtx_insn *insn, *next;
1122 rtx_insn *prev;
1123 struct insn_link *links, *nextlinks;
1124 rtx_insn *first;
1125 basic_block last_bb;
1126
1127 int new_direct_jump_p = 0;
1128
1129 for (first = f; first && !INSN_P (first); )
1130 first = NEXT_INSN (first);
1131 if (!first)
1132 return 0;
1133
1134 combine_attempts = 0;
1135 combine_merges = 0;
1136 combine_extras = 0;
1137 combine_successes = 0;
1138
1139 rtl_hooks = combine_rtl_hooks;
1140
1141 reg_stat.safe_grow_cleared (nregs);
1142
1143 init_recog_no_volatile ();
1144
1145 /* Allocate array for insn info. */
1146 max_uid_known = get_max_uid ();
1147 uid_log_links = XCNEWVEC (struct insn_link *, max_uid_known + 1);
1148 uid_insn_cost = XCNEWVEC (int, max_uid_known + 1);
1149 gcc_obstack_init (&insn_link_obstack);
1150
1151 nonzero_bits_mode = mode_for_size (HOST_BITS_PER_WIDE_INT, MODE_INT, 0);
1152
1153 /* Don't use reg_stat[].nonzero_bits when computing it. This can cause
1154 problems when, for example, we have j <<= 1 in a loop. */
1155
1156 nonzero_sign_valid = 0;
1157 label_tick = label_tick_ebb_start = 1;
1158
1159 /* Scan all SETs and see if we can deduce anything about what
1160 bits are known to be zero for some registers and how many copies
1161 of the sign bit are known to exist for those registers.
1162
1163 Also set any known values so that we can use it while searching
1164 for what bits are known to be set. */
1165
1166 setup_incoming_promotions (first);
1167 /* Allow the entry block and the first block to fall into the same EBB.
1168 Conceptually the incoming promotions are assigned to the entry block. */
1169 last_bb = ENTRY_BLOCK_PTR_FOR_FN (cfun);
1170
1171 create_log_links ();
1172 FOR_EACH_BB_FN (this_basic_block, cfun)
1173 {
1174 optimize_this_for_speed_p = optimize_bb_for_speed_p (this_basic_block);
1175 last_call_luid = 0;
1176 mem_last_set = -1;
1177
1178 label_tick++;
1179 if (!single_pred_p (this_basic_block)
1180 || single_pred (this_basic_block) != last_bb)
1181 label_tick_ebb_start = label_tick;
1182 last_bb = this_basic_block;
1183
1184 FOR_BB_INSNS (this_basic_block, insn)
1185 if (INSN_P (insn) && BLOCK_FOR_INSN (insn))
1186 {
1187 rtx links;
1188
1189 subst_low_luid = DF_INSN_LUID (insn);
1190 subst_insn = insn;
1191
1192 note_stores (PATTERN (insn), set_nonzero_bits_and_sign_copies,
1193 insn);
1194 record_dead_and_set_regs (insn);
1195
1196 if (AUTO_INC_DEC)
1197 for (links = REG_NOTES (insn); links; links = XEXP (links, 1))
1198 if (REG_NOTE_KIND (links) == REG_INC)
1199 set_nonzero_bits_and_sign_copies (XEXP (links, 0), NULL_RTX,
1200 insn);
1201
1202 /* Record the current insn_rtx_cost of this instruction. */
1203 if (NONJUMP_INSN_P (insn))
1204 INSN_COST (insn) = insn_rtx_cost (PATTERN (insn),
1205 optimize_this_for_speed_p);
1206 if (dump_file)
1207 fprintf (dump_file, "insn_cost %d: %d\n",
1208 INSN_UID (insn), INSN_COST (insn));
1209 }
1210 }
1211
1212 nonzero_sign_valid = 1;
1213
1214 /* Now scan all the insns in forward order. */
1215 label_tick = label_tick_ebb_start = 1;
1216 init_reg_last ();
1217 setup_incoming_promotions (first);
1218 last_bb = ENTRY_BLOCK_PTR_FOR_FN (cfun);
1219 int max_combine = PARAM_VALUE (PARAM_MAX_COMBINE_INSNS);
1220
1221 FOR_EACH_BB_FN (this_basic_block, cfun)
1222 {
1223 rtx_insn *last_combined_insn = NULL;
1224 optimize_this_for_speed_p = optimize_bb_for_speed_p (this_basic_block);
1225 last_call_luid = 0;
1226 mem_last_set = -1;
1227
1228 label_tick++;
1229 if (!single_pred_p (this_basic_block)
1230 || single_pred (this_basic_block) != last_bb)
1231 label_tick_ebb_start = label_tick;
1232 last_bb = this_basic_block;
1233
1234 rtl_profile_for_bb (this_basic_block);
1235 for (insn = BB_HEAD (this_basic_block);
1236 insn != NEXT_INSN (BB_END (this_basic_block));
1237 insn = next ? next : NEXT_INSN (insn))
1238 {
1239 next = 0;
1240 if (!NONDEBUG_INSN_P (insn))
1241 continue;
1242
1243 while (last_combined_insn
1244 && last_combined_insn->deleted ())
1245 last_combined_insn = PREV_INSN (last_combined_insn);
1246 if (last_combined_insn == NULL_RTX
1247 || BARRIER_P (last_combined_insn)
1248 || BLOCK_FOR_INSN (last_combined_insn) != this_basic_block
1249 || DF_INSN_LUID (last_combined_insn) <= DF_INSN_LUID (insn))
1250 last_combined_insn = insn;
1251
1252 /* See if we know about function return values before this
1253 insn based upon SUBREG flags. */
1254 check_promoted_subreg (insn, PATTERN (insn));
1255
1256 /* See if we can find hardregs and subreg of pseudos in
1257 narrower modes. This could help turning TRUNCATEs
1258 into SUBREGs. */
1259 note_uses (&PATTERN (insn), record_truncated_values, NULL);
1260
1261 /* Try this insn with each insn it links back to. */
1262
1263 FOR_EACH_LOG_LINK (links, insn)
1264 if ((next = try_combine (insn, links->insn, NULL,
1265 NULL, &new_direct_jump_p,
1266 last_combined_insn)) != 0)
1267 {
1268 statistics_counter_event (cfun, "two-insn combine", 1);
1269 goto retry;
1270 }
1271
1272 /* Try each sequence of three linked insns ending with this one. */
1273
1274 if (max_combine >= 3)
1275 FOR_EACH_LOG_LINK (links, insn)
1276 {
1277 rtx_insn *link = links->insn;
1278
1279 /* If the linked insn has been replaced by a note, then there
1280 is no point in pursuing this chain any further. */
1281 if (NOTE_P (link))
1282 continue;
1283
1284 FOR_EACH_LOG_LINK (nextlinks, link)
1285 if ((next = try_combine (insn, link, nextlinks->insn,
1286 NULL, &new_direct_jump_p,
1287 last_combined_insn)) != 0)
1288 {
1289 statistics_counter_event (cfun, "three-insn combine", 1);
1290 goto retry;
1291 }
1292 }
1293
1294 /* Try to combine a jump insn that uses CC0
1295 with a preceding insn that sets CC0, and maybe with its
1296 logical predecessor as well.
1297 This is how we make decrement-and-branch insns.
1298 We need this special code because data flow connections
1299 via CC0 do not get entered in LOG_LINKS. */
1300
1301 if (HAVE_cc0
1302 && JUMP_P (insn)
1303 && (prev = prev_nonnote_insn (insn)) != 0
1304 && NONJUMP_INSN_P (prev)
1305 && sets_cc0_p (PATTERN (prev)))
1306 {
1307 if ((next = try_combine (insn, prev, NULL, NULL,
1308 &new_direct_jump_p,
1309 last_combined_insn)) != 0)
1310 goto retry;
1311
1312 FOR_EACH_LOG_LINK (nextlinks, prev)
1313 if ((next = try_combine (insn, prev, nextlinks->insn,
1314 NULL, &new_direct_jump_p,
1315 last_combined_insn)) != 0)
1316 goto retry;
1317 }
1318
1319 /* Do the same for an insn that explicitly references CC0. */
1320 if (HAVE_cc0 && NONJUMP_INSN_P (insn)
1321 && (prev = prev_nonnote_insn (insn)) != 0
1322 && NONJUMP_INSN_P (prev)
1323 && sets_cc0_p (PATTERN (prev))
1324 && GET_CODE (PATTERN (insn)) == SET
1325 && reg_mentioned_p (cc0_rtx, SET_SRC (PATTERN (insn))))
1326 {
1327 if ((next = try_combine (insn, prev, NULL, NULL,
1328 &new_direct_jump_p,
1329 last_combined_insn)) != 0)
1330 goto retry;
1331
1332 FOR_EACH_LOG_LINK (nextlinks, prev)
1333 if ((next = try_combine (insn, prev, nextlinks->insn,
1334 NULL, &new_direct_jump_p,
1335 last_combined_insn)) != 0)
1336 goto retry;
1337 }
1338
1339 /* Finally, see if any of the insns that this insn links to
1340 explicitly references CC0. If so, try this insn, that insn,
1341 and its predecessor if it sets CC0. */
1342 if (HAVE_cc0)
1343 {
1344 FOR_EACH_LOG_LINK (links, insn)
1345 if (NONJUMP_INSN_P (links->insn)
1346 && GET_CODE (PATTERN (links->insn)) == SET
1347 && reg_mentioned_p (cc0_rtx, SET_SRC (PATTERN (links->insn)))
1348 && (prev = prev_nonnote_insn (links->insn)) != 0
1349 && NONJUMP_INSN_P (prev)
1350 && sets_cc0_p (PATTERN (prev))
1351 && (next = try_combine (insn, links->insn,
1352 prev, NULL, &new_direct_jump_p,
1353 last_combined_insn)) != 0)
1354 goto retry;
1355 }
1356
1357 /* Try combining an insn with two different insns whose results it
1358 uses. */
1359 if (max_combine >= 3)
1360 FOR_EACH_LOG_LINK (links, insn)
1361 for (nextlinks = links->next; nextlinks;
1362 nextlinks = nextlinks->next)
1363 if ((next = try_combine (insn, links->insn,
1364 nextlinks->insn, NULL,
1365 &new_direct_jump_p,
1366 last_combined_insn)) != 0)
1367
1368 {
1369 statistics_counter_event (cfun, "three-insn combine", 1);
1370 goto retry;
1371 }
1372
1373 /* Try four-instruction combinations. */
1374 if (max_combine >= 4)
1375 FOR_EACH_LOG_LINK (links, insn)
1376 {
1377 struct insn_link *next1;
1378 rtx_insn *link = links->insn;
1379
1380 /* If the linked insn has been replaced by a note, then there
1381 is no point in pursuing this chain any further. */
1382 if (NOTE_P (link))
1383 continue;
1384
1385 FOR_EACH_LOG_LINK (next1, link)
1386 {
1387 rtx_insn *link1 = next1->insn;
1388 if (NOTE_P (link1))
1389 continue;
1390 /* I0 -> I1 -> I2 -> I3. */
1391 FOR_EACH_LOG_LINK (nextlinks, link1)
1392 if ((next = try_combine (insn, link, link1,
1393 nextlinks->insn,
1394 &new_direct_jump_p,
1395 last_combined_insn)) != 0)
1396 {
1397 statistics_counter_event (cfun, "four-insn combine", 1);
1398 goto retry;
1399 }
1400 /* I0, I1 -> I2, I2 -> I3. */
1401 for (nextlinks = next1->next; nextlinks;
1402 nextlinks = nextlinks->next)
1403 if ((next = try_combine (insn, link, link1,
1404 nextlinks->insn,
1405 &new_direct_jump_p,
1406 last_combined_insn)) != 0)
1407 {
1408 statistics_counter_event (cfun, "four-insn combine", 1);
1409 goto retry;
1410 }
1411 }
1412
1413 for (next1 = links->next; next1; next1 = next1->next)
1414 {
1415 rtx_insn *link1 = next1->insn;
1416 if (NOTE_P (link1))
1417 continue;
1418 /* I0 -> I2; I1, I2 -> I3. */
1419 FOR_EACH_LOG_LINK (nextlinks, link)
1420 if ((next = try_combine (insn, link, link1,
1421 nextlinks->insn,
1422 &new_direct_jump_p,
1423 last_combined_insn)) != 0)
1424 {
1425 statistics_counter_event (cfun, "four-insn combine", 1);
1426 goto retry;
1427 }
1428 /* I0 -> I1; I1, I2 -> I3. */
1429 FOR_EACH_LOG_LINK (nextlinks, link1)
1430 if ((next = try_combine (insn, link, link1,
1431 nextlinks->insn,
1432 &new_direct_jump_p,
1433 last_combined_insn)) != 0)
1434 {
1435 statistics_counter_event (cfun, "four-insn combine", 1);
1436 goto retry;
1437 }
1438 }
1439 }
1440
1441 /* Try this insn with each REG_EQUAL note it links back to. */
1442 FOR_EACH_LOG_LINK (links, insn)
1443 {
1444 rtx set, note;
1445 rtx_insn *temp = links->insn;
1446 if ((set = single_set (temp)) != 0
1447 && (note = find_reg_equal_equiv_note (temp)) != 0
1448 && (note = XEXP (note, 0), GET_CODE (note)) != EXPR_LIST
1449 /* Avoid using a register that may already been marked
1450 dead by an earlier instruction. */
1451 && ! unmentioned_reg_p (note, SET_SRC (set))
1452 && (GET_MODE (note) == VOIDmode
1453 ? SCALAR_INT_MODE_P (GET_MODE (SET_DEST (set)))
1454 : (GET_MODE (SET_DEST (set)) == GET_MODE (note)
1455 && (GET_CODE (SET_DEST (set)) != ZERO_EXTRACT
1456 || (GET_MODE (XEXP (SET_DEST (set), 0))
1457 == GET_MODE (note))))))
1458 {
1459 /* Temporarily replace the set's source with the
1460 contents of the REG_EQUAL note. The insn will
1461 be deleted or recognized by try_combine. */
1462 rtx orig_src = SET_SRC (set);
1463 rtx orig_dest = SET_DEST (set);
1464 if (GET_CODE (SET_DEST (set)) == ZERO_EXTRACT)
1465 SET_DEST (set) = XEXP (SET_DEST (set), 0);
1466 SET_SRC (set) = note;
1467 i2mod = temp;
1468 i2mod_old_rhs = copy_rtx (orig_src);
1469 i2mod_new_rhs = copy_rtx (note);
1470 next = try_combine (insn, i2mod, NULL, NULL,
1471 &new_direct_jump_p,
1472 last_combined_insn);
1473 i2mod = NULL;
1474 if (next)
1475 {
1476 statistics_counter_event (cfun, "insn-with-note combine", 1);
1477 goto retry;
1478 }
1479 SET_SRC (set) = orig_src;
1480 SET_DEST (set) = orig_dest;
1481 }
1482 }
1483
1484 if (!NOTE_P (insn))
1485 record_dead_and_set_regs (insn);
1486
1487 retry:
1488 ;
1489 }
1490 }
1491
1492 default_rtl_profile ();
1493 clear_bb_flags ();
1494 new_direct_jump_p |= purge_all_dead_edges ();
1495 delete_noop_moves ();
1496
1497 /* Clean up. */
1498 obstack_free (&insn_link_obstack, NULL);
1499 free (uid_log_links);
1500 free (uid_insn_cost);
1501 reg_stat.release ();
1502
1503 {
1504 struct undo *undo, *next;
1505 for (undo = undobuf.frees; undo; undo = next)
1506 {
1507 next = undo->next;
1508 free (undo);
1509 }
1510 undobuf.frees = 0;
1511 }
1512
1513 total_attempts += combine_attempts;
1514 total_merges += combine_merges;
1515 total_extras += combine_extras;
1516 total_successes += combine_successes;
1517
1518 nonzero_sign_valid = 0;
1519 rtl_hooks = general_rtl_hooks;
1520
1521 /* Make recognizer allow volatile MEMs again. */
1522 init_recog ();
1523
1524 return new_direct_jump_p;
1525 }
1526
1527 /* Wipe the last_xxx fields of reg_stat in preparation for another pass. */
1528
1529 static void
1530 init_reg_last (void)
1531 {
1532 unsigned int i;
1533 reg_stat_type *p;
1534
1535 FOR_EACH_VEC_ELT (reg_stat, i, p)
1536 memset (p, 0, offsetof (reg_stat_type, sign_bit_copies));
1537 }
1538 \f
1539 /* Set up any promoted values for incoming argument registers. */
1540
1541 static void
1542 setup_incoming_promotions (rtx_insn *first)
1543 {
1544 tree arg;
1545 bool strictly_local = false;
1546
1547 for (arg = DECL_ARGUMENTS (current_function_decl); arg;
1548 arg = DECL_CHAIN (arg))
1549 {
1550 rtx x, reg = DECL_INCOMING_RTL (arg);
1551 int uns1, uns3;
1552 machine_mode mode1, mode2, mode3, mode4;
1553
1554 /* Only continue if the incoming argument is in a register. */
1555 if (!REG_P (reg))
1556 continue;
1557
1558 /* Determine, if possible, whether all call sites of the current
1559 function lie within the current compilation unit. (This does
1560 take into account the exporting of a function via taking its
1561 address, and so forth.) */
1562 strictly_local = cgraph_node::local_info (current_function_decl)->local;
1563
1564 /* The mode and signedness of the argument before any promotions happen
1565 (equal to the mode of the pseudo holding it at that stage). */
1566 mode1 = TYPE_MODE (TREE_TYPE (arg));
1567 uns1 = TYPE_UNSIGNED (TREE_TYPE (arg));
1568
1569 /* The mode and signedness of the argument after any source language and
1570 TARGET_PROMOTE_PROTOTYPES-driven promotions. */
1571 mode2 = TYPE_MODE (DECL_ARG_TYPE (arg));
1572 uns3 = TYPE_UNSIGNED (DECL_ARG_TYPE (arg));
1573
1574 /* The mode and signedness of the argument as it is actually passed,
1575 see assign_parm_setup_reg in function.c. */
1576 mode3 = promote_function_mode (TREE_TYPE (arg), mode1, &uns3,
1577 TREE_TYPE (cfun->decl), 0);
1578
1579 /* The mode of the register in which the argument is being passed. */
1580 mode4 = GET_MODE (reg);
1581
1582 /* Eliminate sign extensions in the callee when:
1583 (a) A mode promotion has occurred; */
1584 if (mode1 == mode3)
1585 continue;
1586 /* (b) The mode of the register is the same as the mode of
1587 the argument as it is passed; */
1588 if (mode3 != mode4)
1589 continue;
1590 /* (c) There's no language level extension; */
1591 if (mode1 == mode2)
1592 ;
1593 /* (c.1) All callers are from the current compilation unit. If that's
1594 the case we don't have to rely on an ABI, we only have to know
1595 what we're generating right now, and we know that we will do the
1596 mode1 to mode2 promotion with the given sign. */
1597 else if (!strictly_local)
1598 continue;
1599 /* (c.2) The combination of the two promotions is useful. This is
1600 true when the signs match, or if the first promotion is unsigned.
1601 In the later case, (sign_extend (zero_extend x)) is the same as
1602 (zero_extend (zero_extend x)), so make sure to force UNS3 true. */
1603 else if (uns1)
1604 uns3 = true;
1605 else if (uns3)
1606 continue;
1607
1608 /* Record that the value was promoted from mode1 to mode3,
1609 so that any sign extension at the head of the current
1610 function may be eliminated. */
1611 x = gen_rtx_CLOBBER (mode1, const0_rtx);
1612 x = gen_rtx_fmt_e ((uns3 ? ZERO_EXTEND : SIGN_EXTEND), mode3, x);
1613 record_value_for_reg (reg, first, x);
1614 }
1615 }
1616
1617 /* If MODE has a precision lower than PREC and SRC is a non-negative constant
1618 that would appear negative in MODE, sign-extend SRC for use in nonzero_bits
1619 because some machines (maybe most) will actually do the sign-extension and
1620 this is the conservative approach.
1621
1622 ??? For 2.5, try to tighten up the MD files in this regard instead of this
1623 kludge. */
1624
1625 static rtx
1626 sign_extend_short_imm (rtx src, machine_mode mode, unsigned int prec)
1627 {
1628 if (GET_MODE_PRECISION (mode) < prec
1629 && CONST_INT_P (src)
1630 && INTVAL (src) > 0
1631 && val_signbit_known_set_p (mode, INTVAL (src)))
1632 src = GEN_INT (INTVAL (src) | ~GET_MODE_MASK (mode));
1633
1634 return src;
1635 }
1636
1637 /* Update RSP for pseudo-register X from INSN's REG_EQUAL note (if one exists)
1638 and SET. */
1639
1640 static void
1641 update_rsp_from_reg_equal (reg_stat_type *rsp, rtx_insn *insn, const_rtx set,
1642 rtx x)
1643 {
1644 rtx reg_equal_note = insn ? find_reg_equal_equiv_note (insn) : NULL_RTX;
1645 unsigned HOST_WIDE_INT bits = 0;
1646 rtx reg_equal = NULL, src = SET_SRC (set);
1647 unsigned int num = 0;
1648
1649 if (reg_equal_note)
1650 reg_equal = XEXP (reg_equal_note, 0);
1651
1652 if (SHORT_IMMEDIATES_SIGN_EXTEND)
1653 {
1654 src = sign_extend_short_imm (src, GET_MODE (x), BITS_PER_WORD);
1655 if (reg_equal)
1656 reg_equal = sign_extend_short_imm (reg_equal, GET_MODE (x), BITS_PER_WORD);
1657 }
1658
1659 /* Don't call nonzero_bits if it cannot change anything. */
1660 if (rsp->nonzero_bits != HOST_WIDE_INT_M1U)
1661 {
1662 bits = nonzero_bits (src, nonzero_bits_mode);
1663 if (reg_equal && bits)
1664 bits &= nonzero_bits (reg_equal, nonzero_bits_mode);
1665 rsp->nonzero_bits |= bits;
1666 }
1667
1668 /* Don't call num_sign_bit_copies if it cannot change anything. */
1669 if (rsp->sign_bit_copies != 1)
1670 {
1671 num = num_sign_bit_copies (SET_SRC (set), GET_MODE (x));
1672 if (reg_equal && num != GET_MODE_PRECISION (GET_MODE (x)))
1673 {
1674 unsigned int numeq = num_sign_bit_copies (reg_equal, GET_MODE (x));
1675 if (num == 0 || numeq > num)
1676 num = numeq;
1677 }
1678 if (rsp->sign_bit_copies == 0 || num < rsp->sign_bit_copies)
1679 rsp->sign_bit_copies = num;
1680 }
1681 }
1682
1683 /* Called via note_stores. If X is a pseudo that is narrower than
1684 HOST_BITS_PER_WIDE_INT and is being set, record what bits are known zero.
1685
1686 If we are setting only a portion of X and we can't figure out what
1687 portion, assume all bits will be used since we don't know what will
1688 be happening.
1689
1690 Similarly, set how many bits of X are known to be copies of the sign bit
1691 at all locations in the function. This is the smallest number implied
1692 by any set of X. */
1693
1694 static void
1695 set_nonzero_bits_and_sign_copies (rtx x, const_rtx set, void *data)
1696 {
1697 rtx_insn *insn = (rtx_insn *) data;
1698
1699 if (REG_P (x)
1700 && REGNO (x) >= FIRST_PSEUDO_REGISTER
1701 /* If this register is undefined at the start of the file, we can't
1702 say what its contents were. */
1703 && ! REGNO_REG_SET_P
1704 (DF_LR_IN (ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb), REGNO (x))
1705 && HWI_COMPUTABLE_MODE_P (GET_MODE (x)))
1706 {
1707 reg_stat_type *rsp = &reg_stat[REGNO (x)];
1708
1709 if (set == 0 || GET_CODE (set) == CLOBBER)
1710 {
1711 rsp->nonzero_bits = GET_MODE_MASK (GET_MODE (x));
1712 rsp->sign_bit_copies = 1;
1713 return;
1714 }
1715
1716 /* If this register is being initialized using itself, and the
1717 register is uninitialized in this basic block, and there are
1718 no LOG_LINKS which set the register, then part of the
1719 register is uninitialized. In that case we can't assume
1720 anything about the number of nonzero bits.
1721
1722 ??? We could do better if we checked this in
1723 reg_{nonzero_bits,num_sign_bit_copies}_for_combine. Then we
1724 could avoid making assumptions about the insn which initially
1725 sets the register, while still using the information in other
1726 insns. We would have to be careful to check every insn
1727 involved in the combination. */
1728
1729 if (insn
1730 && reg_referenced_p (x, PATTERN (insn))
1731 && !REGNO_REG_SET_P (DF_LR_IN (BLOCK_FOR_INSN (insn)),
1732 REGNO (x)))
1733 {
1734 struct insn_link *link;
1735
1736 FOR_EACH_LOG_LINK (link, insn)
1737 if (dead_or_set_p (link->insn, x))
1738 break;
1739 if (!link)
1740 {
1741 rsp->nonzero_bits = GET_MODE_MASK (GET_MODE (x));
1742 rsp->sign_bit_copies = 1;
1743 return;
1744 }
1745 }
1746
1747 /* If this is a complex assignment, see if we can convert it into a
1748 simple assignment. */
1749 set = expand_field_assignment (set);
1750
1751 /* If this is a simple assignment, or we have a paradoxical SUBREG,
1752 set what we know about X. */
1753
1754 if (SET_DEST (set) == x
1755 || (paradoxical_subreg_p (SET_DEST (set))
1756 && SUBREG_REG (SET_DEST (set)) == x))
1757 update_rsp_from_reg_equal (rsp, insn, set, x);
1758 else
1759 {
1760 rsp->nonzero_bits = GET_MODE_MASK (GET_MODE (x));
1761 rsp->sign_bit_copies = 1;
1762 }
1763 }
1764 }
1765 \f
1766 /* See if INSN can be combined into I3. PRED, PRED2, SUCC and SUCC2 are
1767 optionally insns that were previously combined into I3 or that will be
1768 combined into the merger of INSN and I3. The order is PRED, PRED2,
1769 INSN, SUCC, SUCC2, I3.
1770
1771 Return 0 if the combination is not allowed for any reason.
1772
1773 If the combination is allowed, *PDEST will be set to the single
1774 destination of INSN and *PSRC to the single source, and this function
1775 will return 1. */
1776
1777 static int
1778 can_combine_p (rtx_insn *insn, rtx_insn *i3, rtx_insn *pred ATTRIBUTE_UNUSED,
1779 rtx_insn *pred2 ATTRIBUTE_UNUSED, rtx_insn *succ, rtx_insn *succ2,
1780 rtx *pdest, rtx *psrc)
1781 {
1782 int i;
1783 const_rtx set = 0;
1784 rtx src, dest;
1785 rtx_insn *p;
1786 rtx link;
1787 bool all_adjacent = true;
1788 int (*is_volatile_p) (const_rtx);
1789
1790 if (succ)
1791 {
1792 if (succ2)
1793 {
1794 if (next_active_insn (succ2) != i3)
1795 all_adjacent = false;
1796 if (next_active_insn (succ) != succ2)
1797 all_adjacent = false;
1798 }
1799 else if (next_active_insn (succ) != i3)
1800 all_adjacent = false;
1801 if (next_active_insn (insn) != succ)
1802 all_adjacent = false;
1803 }
1804 else if (next_active_insn (insn) != i3)
1805 all_adjacent = false;
1806
1807 /* Can combine only if previous insn is a SET of a REG, a SUBREG or CC0.
1808 or a PARALLEL consisting of such a SET and CLOBBERs.
1809
1810 If INSN has CLOBBER parallel parts, ignore them for our processing.
1811 By definition, these happen during the execution of the insn. When it
1812 is merged with another insn, all bets are off. If they are, in fact,
1813 needed and aren't also supplied in I3, they may be added by
1814 recog_for_combine. Otherwise, it won't match.
1815
1816 We can also ignore a SET whose SET_DEST is mentioned in a REG_UNUSED
1817 note.
1818
1819 Get the source and destination of INSN. If more than one, can't
1820 combine. */
1821
1822 if (GET_CODE (PATTERN (insn)) == SET)
1823 set = PATTERN (insn);
1824 else if (GET_CODE (PATTERN (insn)) == PARALLEL
1825 && GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == SET)
1826 {
1827 for (i = 0; i < XVECLEN (PATTERN (insn), 0); i++)
1828 {
1829 rtx elt = XVECEXP (PATTERN (insn), 0, i);
1830
1831 switch (GET_CODE (elt))
1832 {
1833 /* This is important to combine floating point insns
1834 for the SH4 port. */
1835 case USE:
1836 /* Combining an isolated USE doesn't make sense.
1837 We depend here on combinable_i3pat to reject them. */
1838 /* The code below this loop only verifies that the inputs of
1839 the SET in INSN do not change. We call reg_set_between_p
1840 to verify that the REG in the USE does not change between
1841 I3 and INSN.
1842 If the USE in INSN was for a pseudo register, the matching
1843 insn pattern will likely match any register; combining this
1844 with any other USE would only be safe if we knew that the
1845 used registers have identical values, or if there was
1846 something to tell them apart, e.g. different modes. For
1847 now, we forgo such complicated tests and simply disallow
1848 combining of USES of pseudo registers with any other USE. */
1849 if (REG_P (XEXP (elt, 0))
1850 && GET_CODE (PATTERN (i3)) == PARALLEL)
1851 {
1852 rtx i3pat = PATTERN (i3);
1853 int i = XVECLEN (i3pat, 0) - 1;
1854 unsigned int regno = REGNO (XEXP (elt, 0));
1855
1856 do
1857 {
1858 rtx i3elt = XVECEXP (i3pat, 0, i);
1859
1860 if (GET_CODE (i3elt) == USE
1861 && REG_P (XEXP (i3elt, 0))
1862 && (REGNO (XEXP (i3elt, 0)) == regno
1863 ? reg_set_between_p (XEXP (elt, 0),
1864 PREV_INSN (insn), i3)
1865 : regno >= FIRST_PSEUDO_REGISTER))
1866 return 0;
1867 }
1868 while (--i >= 0);
1869 }
1870 break;
1871
1872 /* We can ignore CLOBBERs. */
1873 case CLOBBER:
1874 break;
1875
1876 case SET:
1877 /* Ignore SETs whose result isn't used but not those that
1878 have side-effects. */
1879 if (find_reg_note (insn, REG_UNUSED, SET_DEST (elt))
1880 && insn_nothrow_p (insn)
1881 && !side_effects_p (elt))
1882 break;
1883
1884 /* If we have already found a SET, this is a second one and
1885 so we cannot combine with this insn. */
1886 if (set)
1887 return 0;
1888
1889 set = elt;
1890 break;
1891
1892 default:
1893 /* Anything else means we can't combine. */
1894 return 0;
1895 }
1896 }
1897
1898 if (set == 0
1899 /* If SET_SRC is an ASM_OPERANDS we can't throw away these CLOBBERs,
1900 so don't do anything with it. */
1901 || GET_CODE (SET_SRC (set)) == ASM_OPERANDS)
1902 return 0;
1903 }
1904 else
1905 return 0;
1906
1907 if (set == 0)
1908 return 0;
1909
1910 /* The simplification in expand_field_assignment may call back to
1911 get_last_value, so set safe guard here. */
1912 subst_low_luid = DF_INSN_LUID (insn);
1913
1914 set = expand_field_assignment (set);
1915 src = SET_SRC (set), dest = SET_DEST (set);
1916
1917 /* Do not eliminate user-specified register if it is in an
1918 asm input because we may break the register asm usage defined
1919 in GCC manual if allow to do so.
1920 Be aware that this may cover more cases than we expect but this
1921 should be harmless. */
1922 if (REG_P (dest) && REG_USERVAR_P (dest) && HARD_REGISTER_P (dest)
1923 && extract_asm_operands (PATTERN (i3)))
1924 return 0;
1925
1926 /* Don't eliminate a store in the stack pointer. */
1927 if (dest == stack_pointer_rtx
1928 /* Don't combine with an insn that sets a register to itself if it has
1929 a REG_EQUAL note. This may be part of a LIBCALL sequence. */
1930 || (rtx_equal_p (src, dest) && find_reg_note (insn, REG_EQUAL, NULL_RTX))
1931 /* Can't merge an ASM_OPERANDS. */
1932 || GET_CODE (src) == ASM_OPERANDS
1933 /* Can't merge a function call. */
1934 || GET_CODE (src) == CALL
1935 /* Don't eliminate a function call argument. */
1936 || (CALL_P (i3)
1937 && (find_reg_fusage (i3, USE, dest)
1938 || (REG_P (dest)
1939 && REGNO (dest) < FIRST_PSEUDO_REGISTER
1940 && global_regs[REGNO (dest)])))
1941 /* Don't substitute into an incremented register. */
1942 || FIND_REG_INC_NOTE (i3, dest)
1943 || (succ && FIND_REG_INC_NOTE (succ, dest))
1944 || (succ2 && FIND_REG_INC_NOTE (succ2, dest))
1945 /* Don't substitute into a non-local goto, this confuses CFG. */
1946 || (JUMP_P (i3) && find_reg_note (i3, REG_NON_LOCAL_GOTO, NULL_RTX))
1947 /* Make sure that DEST is not used after SUCC but before I3. */
1948 || (!all_adjacent
1949 && ((succ2
1950 && (reg_used_between_p (dest, succ2, i3)
1951 || reg_used_between_p (dest, succ, succ2)))
1952 || (!succ2 && succ && reg_used_between_p (dest, succ, i3))))
1953 /* Make sure that the value that is to be substituted for the register
1954 does not use any registers whose values alter in between. However,
1955 If the insns are adjacent, a use can't cross a set even though we
1956 think it might (this can happen for a sequence of insns each setting
1957 the same destination; last_set of that register might point to
1958 a NOTE). If INSN has a REG_EQUIV note, the register is always
1959 equivalent to the memory so the substitution is valid even if there
1960 are intervening stores. Also, don't move a volatile asm or
1961 UNSPEC_VOLATILE across any other insns. */
1962 || (! all_adjacent
1963 && (((!MEM_P (src)
1964 || ! find_reg_note (insn, REG_EQUIV, src))
1965 && use_crosses_set_p (src, DF_INSN_LUID (insn)))
1966 || (GET_CODE (src) == ASM_OPERANDS && MEM_VOLATILE_P (src))
1967 || GET_CODE (src) == UNSPEC_VOLATILE))
1968 /* Don't combine across a CALL_INSN, because that would possibly
1969 change whether the life span of some REGs crosses calls or not,
1970 and it is a pain to update that information.
1971 Exception: if source is a constant, moving it later can't hurt.
1972 Accept that as a special case. */
1973 || (DF_INSN_LUID (insn) < last_call_luid && ! CONSTANT_P (src)))
1974 return 0;
1975
1976 /* DEST must either be a REG or CC0. */
1977 if (REG_P (dest))
1978 {
1979 /* If register alignment is being enforced for multi-word items in all
1980 cases except for parameters, it is possible to have a register copy
1981 insn referencing a hard register that is not allowed to contain the
1982 mode being copied and which would not be valid as an operand of most
1983 insns. Eliminate this problem by not combining with such an insn.
1984
1985 Also, on some machines we don't want to extend the life of a hard
1986 register. */
1987
1988 if (REG_P (src)
1989 && ((REGNO (dest) < FIRST_PSEUDO_REGISTER
1990 && ! HARD_REGNO_MODE_OK (REGNO (dest), GET_MODE (dest)))
1991 /* Don't extend the life of a hard register unless it is
1992 user variable (if we have few registers) or it can't
1993 fit into the desired register (meaning something special
1994 is going on).
1995 Also avoid substituting a return register into I3, because
1996 reload can't handle a conflict with constraints of other
1997 inputs. */
1998 || (REGNO (src) < FIRST_PSEUDO_REGISTER
1999 && ! HARD_REGNO_MODE_OK (REGNO (src), GET_MODE (src)))))
2000 return 0;
2001 }
2002 else if (GET_CODE (dest) != CC0)
2003 return 0;
2004
2005
2006 if (GET_CODE (PATTERN (i3)) == PARALLEL)
2007 for (i = XVECLEN (PATTERN (i3), 0) - 1; i >= 0; i--)
2008 if (GET_CODE (XVECEXP (PATTERN (i3), 0, i)) == CLOBBER)
2009 {
2010 rtx reg = XEXP (XVECEXP (PATTERN (i3), 0, i), 0);
2011
2012 /* If the clobber represents an earlyclobber operand, we must not
2013 substitute an expression containing the clobbered register.
2014 As we do not analyze the constraint strings here, we have to
2015 make the conservative assumption. However, if the register is
2016 a fixed hard reg, the clobber cannot represent any operand;
2017 we leave it up to the machine description to either accept or
2018 reject use-and-clobber patterns. */
2019 if (!REG_P (reg)
2020 || REGNO (reg) >= FIRST_PSEUDO_REGISTER
2021 || !fixed_regs[REGNO (reg)])
2022 if (reg_overlap_mentioned_p (reg, src))
2023 return 0;
2024 }
2025
2026 /* If INSN contains anything volatile, or is an `asm' (whether volatile
2027 or not), reject, unless nothing volatile comes between it and I3 */
2028
2029 if (GET_CODE (src) == ASM_OPERANDS || volatile_refs_p (src))
2030 {
2031 /* Make sure neither succ nor succ2 contains a volatile reference. */
2032 if (succ2 != 0 && volatile_refs_p (PATTERN (succ2)))
2033 return 0;
2034 if (succ != 0 && volatile_refs_p (PATTERN (succ)))
2035 return 0;
2036 /* We'll check insns between INSN and I3 below. */
2037 }
2038
2039 /* If INSN is an asm, and DEST is a hard register, reject, since it has
2040 to be an explicit register variable, and was chosen for a reason. */
2041
2042 if (GET_CODE (src) == ASM_OPERANDS
2043 && REG_P (dest) && REGNO (dest) < FIRST_PSEUDO_REGISTER)
2044 return 0;
2045
2046 /* If INSN contains volatile references (specifically volatile MEMs),
2047 we cannot combine across any other volatile references.
2048 Even if INSN doesn't contain volatile references, any intervening
2049 volatile insn might affect machine state. */
2050
2051 is_volatile_p = volatile_refs_p (PATTERN (insn))
2052 ? volatile_refs_p
2053 : volatile_insn_p;
2054
2055 for (p = NEXT_INSN (insn); p != i3; p = NEXT_INSN (p))
2056 if (INSN_P (p) && p != succ && p != succ2 && is_volatile_p (PATTERN (p)))
2057 return 0;
2058
2059 /* If INSN contains an autoincrement or autodecrement, make sure that
2060 register is not used between there and I3, and not already used in
2061 I3 either. Neither must it be used in PRED or SUCC, if they exist.
2062 Also insist that I3 not be a jump; if it were one
2063 and the incremented register were spilled, we would lose. */
2064
2065 if (AUTO_INC_DEC)
2066 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
2067 if (REG_NOTE_KIND (link) == REG_INC
2068 && (JUMP_P (i3)
2069 || reg_used_between_p (XEXP (link, 0), insn, i3)
2070 || (pred != NULL_RTX
2071 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (pred)))
2072 || (pred2 != NULL_RTX
2073 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (pred2)))
2074 || (succ != NULL_RTX
2075 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (succ)))
2076 || (succ2 != NULL_RTX
2077 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (succ2)))
2078 || reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i3))))
2079 return 0;
2080
2081 /* Don't combine an insn that follows a CC0-setting insn.
2082 An insn that uses CC0 must not be separated from the one that sets it.
2083 We do, however, allow I2 to follow a CC0-setting insn if that insn
2084 is passed as I1; in that case it will be deleted also.
2085 We also allow combining in this case if all the insns are adjacent
2086 because that would leave the two CC0 insns adjacent as well.
2087 It would be more logical to test whether CC0 occurs inside I1 or I2,
2088 but that would be much slower, and this ought to be equivalent. */
2089
2090 if (HAVE_cc0)
2091 {
2092 p = prev_nonnote_insn (insn);
2093 if (p && p != pred && NONJUMP_INSN_P (p) && sets_cc0_p (PATTERN (p))
2094 && ! all_adjacent)
2095 return 0;
2096 }
2097
2098 /* If we get here, we have passed all the tests and the combination is
2099 to be allowed. */
2100
2101 *pdest = dest;
2102 *psrc = src;
2103
2104 return 1;
2105 }
2106 \f
2107 /* LOC is the location within I3 that contains its pattern or the component
2108 of a PARALLEL of the pattern. We validate that it is valid for combining.
2109
2110 One problem is if I3 modifies its output, as opposed to replacing it
2111 entirely, we can't allow the output to contain I2DEST, I1DEST or I0DEST as
2112 doing so would produce an insn that is not equivalent to the original insns.
2113
2114 Consider:
2115
2116 (set (reg:DI 101) (reg:DI 100))
2117 (set (subreg:SI (reg:DI 101) 0) <foo>)
2118
2119 This is NOT equivalent to:
2120
2121 (parallel [(set (subreg:SI (reg:DI 100) 0) <foo>)
2122 (set (reg:DI 101) (reg:DI 100))])
2123
2124 Not only does this modify 100 (in which case it might still be valid
2125 if 100 were dead in I2), it sets 101 to the ORIGINAL value of 100.
2126
2127 We can also run into a problem if I2 sets a register that I1
2128 uses and I1 gets directly substituted into I3 (not via I2). In that
2129 case, we would be getting the wrong value of I2DEST into I3, so we
2130 must reject the combination. This case occurs when I2 and I1 both
2131 feed into I3, rather than when I1 feeds into I2, which feeds into I3.
2132 If I1_NOT_IN_SRC is nonzero, it means that finding I1 in the source
2133 of a SET must prevent combination from occurring. The same situation
2134 can occur for I0, in which case I0_NOT_IN_SRC is set.
2135
2136 Before doing the above check, we first try to expand a field assignment
2137 into a set of logical operations.
2138
2139 If PI3_DEST_KILLED is nonzero, it is a pointer to a location in which
2140 we place a register that is both set and used within I3. If more than one
2141 such register is detected, we fail.
2142
2143 Return 1 if the combination is valid, zero otherwise. */
2144
2145 static int
2146 combinable_i3pat (rtx_insn *i3, rtx *loc, rtx i2dest, rtx i1dest, rtx i0dest,
2147 int i1_not_in_src, int i0_not_in_src, rtx *pi3dest_killed)
2148 {
2149 rtx x = *loc;
2150
2151 if (GET_CODE (x) == SET)
2152 {
2153 rtx set = x ;
2154 rtx dest = SET_DEST (set);
2155 rtx src = SET_SRC (set);
2156 rtx inner_dest = dest;
2157 rtx subdest;
2158
2159 while (GET_CODE (inner_dest) == STRICT_LOW_PART
2160 || GET_CODE (inner_dest) == SUBREG
2161 || GET_CODE (inner_dest) == ZERO_EXTRACT)
2162 inner_dest = XEXP (inner_dest, 0);
2163
2164 /* Check for the case where I3 modifies its output, as discussed
2165 above. We don't want to prevent pseudos from being combined
2166 into the address of a MEM, so only prevent the combination if
2167 i1 or i2 set the same MEM. */
2168 if ((inner_dest != dest &&
2169 (!MEM_P (inner_dest)
2170 || rtx_equal_p (i2dest, inner_dest)
2171 || (i1dest && rtx_equal_p (i1dest, inner_dest))
2172 || (i0dest && rtx_equal_p (i0dest, inner_dest)))
2173 && (reg_overlap_mentioned_p (i2dest, inner_dest)
2174 || (i1dest && reg_overlap_mentioned_p (i1dest, inner_dest))
2175 || (i0dest && reg_overlap_mentioned_p (i0dest, inner_dest))))
2176
2177 /* This is the same test done in can_combine_p except we can't test
2178 all_adjacent; we don't have to, since this instruction will stay
2179 in place, thus we are not considering increasing the lifetime of
2180 INNER_DEST.
2181
2182 Also, if this insn sets a function argument, combining it with
2183 something that might need a spill could clobber a previous
2184 function argument; the all_adjacent test in can_combine_p also
2185 checks this; here, we do a more specific test for this case. */
2186
2187 || (REG_P (inner_dest)
2188 && REGNO (inner_dest) < FIRST_PSEUDO_REGISTER
2189 && (! HARD_REGNO_MODE_OK (REGNO (inner_dest),
2190 GET_MODE (inner_dest))))
2191 || (i1_not_in_src && reg_overlap_mentioned_p (i1dest, src))
2192 || (i0_not_in_src && reg_overlap_mentioned_p (i0dest, src)))
2193 return 0;
2194
2195 /* If DEST is used in I3, it is being killed in this insn, so
2196 record that for later. We have to consider paradoxical
2197 subregs here, since they kill the whole register, but we
2198 ignore partial subregs, STRICT_LOW_PART, etc.
2199 Never add REG_DEAD notes for the FRAME_POINTER_REGNUM or the
2200 STACK_POINTER_REGNUM, since these are always considered to be
2201 live. Similarly for ARG_POINTER_REGNUM if it is fixed. */
2202 subdest = dest;
2203 if (GET_CODE (subdest) == SUBREG
2204 && (GET_MODE_SIZE (GET_MODE (subdest))
2205 >= GET_MODE_SIZE (GET_MODE (SUBREG_REG (subdest)))))
2206 subdest = SUBREG_REG (subdest);
2207 if (pi3dest_killed
2208 && REG_P (subdest)
2209 && reg_referenced_p (subdest, PATTERN (i3))
2210 && REGNO (subdest) != FRAME_POINTER_REGNUM
2211 && (HARD_FRAME_POINTER_IS_FRAME_POINTER
2212 || REGNO (subdest) != HARD_FRAME_POINTER_REGNUM)
2213 && (FRAME_POINTER_REGNUM == ARG_POINTER_REGNUM
2214 || (REGNO (subdest) != ARG_POINTER_REGNUM
2215 || ! fixed_regs [REGNO (subdest)]))
2216 && REGNO (subdest) != STACK_POINTER_REGNUM)
2217 {
2218 if (*pi3dest_killed)
2219 return 0;
2220
2221 *pi3dest_killed = subdest;
2222 }
2223 }
2224
2225 else if (GET_CODE (x) == PARALLEL)
2226 {
2227 int i;
2228
2229 for (i = 0; i < XVECLEN (x, 0); i++)
2230 if (! combinable_i3pat (i3, &XVECEXP (x, 0, i), i2dest, i1dest, i0dest,
2231 i1_not_in_src, i0_not_in_src, pi3dest_killed))
2232 return 0;
2233 }
2234
2235 return 1;
2236 }
2237 \f
2238 /* Return 1 if X is an arithmetic expression that contains a multiplication
2239 and division. We don't count multiplications by powers of two here. */
2240
2241 static int
2242 contains_muldiv (rtx x)
2243 {
2244 switch (GET_CODE (x))
2245 {
2246 case MOD: case DIV: case UMOD: case UDIV:
2247 return 1;
2248
2249 case MULT:
2250 return ! (CONST_INT_P (XEXP (x, 1))
2251 && pow2p_hwi (UINTVAL (XEXP (x, 1))));
2252 default:
2253 if (BINARY_P (x))
2254 return contains_muldiv (XEXP (x, 0))
2255 || contains_muldiv (XEXP (x, 1));
2256
2257 if (UNARY_P (x))
2258 return contains_muldiv (XEXP (x, 0));
2259
2260 return 0;
2261 }
2262 }
2263 \f
2264 /* Determine whether INSN can be used in a combination. Return nonzero if
2265 not. This is used in try_combine to detect early some cases where we
2266 can't perform combinations. */
2267
2268 static int
2269 cant_combine_insn_p (rtx_insn *insn)
2270 {
2271 rtx set;
2272 rtx src, dest;
2273
2274 /* If this isn't really an insn, we can't do anything.
2275 This can occur when flow deletes an insn that it has merged into an
2276 auto-increment address. */
2277 if (! INSN_P (insn))
2278 return 1;
2279
2280 /* Never combine loads and stores involving hard regs that are likely
2281 to be spilled. The register allocator can usually handle such
2282 reg-reg moves by tying. If we allow the combiner to make
2283 substitutions of likely-spilled regs, reload might die.
2284 As an exception, we allow combinations involving fixed regs; these are
2285 not available to the register allocator so there's no risk involved. */
2286
2287 set = single_set (insn);
2288 if (! set)
2289 return 0;
2290 src = SET_SRC (set);
2291 dest = SET_DEST (set);
2292 if (GET_CODE (src) == SUBREG)
2293 src = SUBREG_REG (src);
2294 if (GET_CODE (dest) == SUBREG)
2295 dest = SUBREG_REG (dest);
2296 if (REG_P (src) && REG_P (dest)
2297 && ((HARD_REGISTER_P (src)
2298 && ! TEST_HARD_REG_BIT (fixed_reg_set, REGNO (src))
2299 && targetm.class_likely_spilled_p (REGNO_REG_CLASS (REGNO (src))))
2300 || (HARD_REGISTER_P (dest)
2301 && ! TEST_HARD_REG_BIT (fixed_reg_set, REGNO (dest))
2302 && targetm.class_likely_spilled_p (REGNO_REG_CLASS (REGNO (dest))))))
2303 return 1;
2304
2305 return 0;
2306 }
2307
2308 struct likely_spilled_retval_info
2309 {
2310 unsigned regno, nregs;
2311 unsigned mask;
2312 };
2313
2314 /* Called via note_stores by likely_spilled_retval_p. Remove from info->mask
2315 hard registers that are known to be written to / clobbered in full. */
2316 static void
2317 likely_spilled_retval_1 (rtx x, const_rtx set, void *data)
2318 {
2319 struct likely_spilled_retval_info *const info =
2320 (struct likely_spilled_retval_info *) data;
2321 unsigned regno, nregs;
2322 unsigned new_mask;
2323
2324 if (!REG_P (XEXP (set, 0)))
2325 return;
2326 regno = REGNO (x);
2327 if (regno >= info->regno + info->nregs)
2328 return;
2329 nregs = REG_NREGS (x);
2330 if (regno + nregs <= info->regno)
2331 return;
2332 new_mask = (2U << (nregs - 1)) - 1;
2333 if (regno < info->regno)
2334 new_mask >>= info->regno - regno;
2335 else
2336 new_mask <<= regno - info->regno;
2337 info->mask &= ~new_mask;
2338 }
2339
2340 /* Return nonzero iff part of the return value is live during INSN, and
2341 it is likely spilled. This can happen when more than one insn is needed
2342 to copy the return value, e.g. when we consider to combine into the
2343 second copy insn for a complex value. */
2344
2345 static int
2346 likely_spilled_retval_p (rtx_insn *insn)
2347 {
2348 rtx_insn *use = BB_END (this_basic_block);
2349 rtx reg;
2350 rtx_insn *p;
2351 unsigned regno, nregs;
2352 /* We assume here that no machine mode needs more than
2353 32 hard registers when the value overlaps with a register
2354 for which TARGET_FUNCTION_VALUE_REGNO_P is true. */
2355 unsigned mask;
2356 struct likely_spilled_retval_info info;
2357
2358 if (!NONJUMP_INSN_P (use) || GET_CODE (PATTERN (use)) != USE || insn == use)
2359 return 0;
2360 reg = XEXP (PATTERN (use), 0);
2361 if (!REG_P (reg) || !targetm.calls.function_value_regno_p (REGNO (reg)))
2362 return 0;
2363 regno = REGNO (reg);
2364 nregs = REG_NREGS (reg);
2365 if (nregs == 1)
2366 return 0;
2367 mask = (2U << (nregs - 1)) - 1;
2368
2369 /* Disregard parts of the return value that are set later. */
2370 info.regno = regno;
2371 info.nregs = nregs;
2372 info.mask = mask;
2373 for (p = PREV_INSN (use); info.mask && p != insn; p = PREV_INSN (p))
2374 if (INSN_P (p))
2375 note_stores (PATTERN (p), likely_spilled_retval_1, &info);
2376 mask = info.mask;
2377
2378 /* Check if any of the (probably) live return value registers is
2379 likely spilled. */
2380 nregs --;
2381 do
2382 {
2383 if ((mask & 1 << nregs)
2384 && targetm.class_likely_spilled_p (REGNO_REG_CLASS (regno + nregs)))
2385 return 1;
2386 } while (nregs--);
2387 return 0;
2388 }
2389
2390 /* Adjust INSN after we made a change to its destination.
2391
2392 Changing the destination can invalidate notes that say something about
2393 the results of the insn and a LOG_LINK pointing to the insn. */
2394
2395 static void
2396 adjust_for_new_dest (rtx_insn *insn)
2397 {
2398 /* For notes, be conservative and simply remove them. */
2399 remove_reg_equal_equiv_notes (insn);
2400
2401 /* The new insn will have a destination that was previously the destination
2402 of an insn just above it. Call distribute_links to make a LOG_LINK from
2403 the next use of that destination. */
2404
2405 rtx set = single_set (insn);
2406 gcc_assert (set);
2407
2408 rtx reg = SET_DEST (set);
2409
2410 while (GET_CODE (reg) == ZERO_EXTRACT
2411 || GET_CODE (reg) == STRICT_LOW_PART
2412 || GET_CODE (reg) == SUBREG)
2413 reg = XEXP (reg, 0);
2414 gcc_assert (REG_P (reg));
2415
2416 distribute_links (alloc_insn_link (insn, REGNO (reg), NULL));
2417
2418 df_insn_rescan (insn);
2419 }
2420
2421 /* Return TRUE if combine can reuse reg X in mode MODE.
2422 ADDED_SETS is nonzero if the original set is still required. */
2423 static bool
2424 can_change_dest_mode (rtx x, int added_sets, machine_mode mode)
2425 {
2426 unsigned int regno;
2427
2428 if (!REG_P (x))
2429 return false;
2430
2431 regno = REGNO (x);
2432 /* Allow hard registers if the new mode is legal, and occupies no more
2433 registers than the old mode. */
2434 if (regno < FIRST_PSEUDO_REGISTER)
2435 return (HARD_REGNO_MODE_OK (regno, mode)
2436 && REG_NREGS (x) >= hard_regno_nregs[regno][mode]);
2437
2438 /* Or a pseudo that is only used once. */
2439 return (regno < reg_n_sets_max
2440 && REG_N_SETS (regno) == 1
2441 && !added_sets
2442 && !REG_USERVAR_P (x));
2443 }
2444
2445
2446 /* Check whether X, the destination of a set, refers to part of
2447 the register specified by REG. */
2448
2449 static bool
2450 reg_subword_p (rtx x, rtx reg)
2451 {
2452 /* Check that reg is an integer mode register. */
2453 if (!REG_P (reg) || GET_MODE_CLASS (GET_MODE (reg)) != MODE_INT)
2454 return false;
2455
2456 if (GET_CODE (x) == STRICT_LOW_PART
2457 || GET_CODE (x) == ZERO_EXTRACT)
2458 x = XEXP (x, 0);
2459
2460 return GET_CODE (x) == SUBREG
2461 && SUBREG_REG (x) == reg
2462 && GET_MODE_CLASS (GET_MODE (x)) == MODE_INT;
2463 }
2464
2465 /* Delete the unconditional jump INSN and adjust the CFG correspondingly.
2466 Note that the INSN should be deleted *after* removing dead edges, so
2467 that the kept edge is the fallthrough edge for a (set (pc) (pc))
2468 but not for a (set (pc) (label_ref FOO)). */
2469
2470 static void
2471 update_cfg_for_uncondjump (rtx_insn *insn)
2472 {
2473 basic_block bb = BLOCK_FOR_INSN (insn);
2474 gcc_assert (BB_END (bb) == insn);
2475
2476 purge_dead_edges (bb);
2477
2478 delete_insn (insn);
2479 if (EDGE_COUNT (bb->succs) == 1)
2480 {
2481 rtx_insn *insn;
2482
2483 single_succ_edge (bb)->flags |= EDGE_FALLTHRU;
2484
2485 /* Remove barriers from the footer if there are any. */
2486 for (insn = BB_FOOTER (bb); insn; insn = NEXT_INSN (insn))
2487 if (BARRIER_P (insn))
2488 {
2489 if (PREV_INSN (insn))
2490 SET_NEXT_INSN (PREV_INSN (insn)) = NEXT_INSN (insn);
2491 else
2492 BB_FOOTER (bb) = NEXT_INSN (insn);
2493 if (NEXT_INSN (insn))
2494 SET_PREV_INSN (NEXT_INSN (insn)) = PREV_INSN (insn);
2495 }
2496 else if (LABEL_P (insn))
2497 break;
2498 }
2499 }
2500
2501 /* Return whether PAT is a PARALLEL of exactly N register SETs followed
2502 by an arbitrary number of CLOBBERs. */
2503 static bool
2504 is_parallel_of_n_reg_sets (rtx pat, int n)
2505 {
2506 if (GET_CODE (pat) != PARALLEL)
2507 return false;
2508
2509 int len = XVECLEN (pat, 0);
2510 if (len < n)
2511 return false;
2512
2513 int i;
2514 for (i = 0; i < n; i++)
2515 if (GET_CODE (XVECEXP (pat, 0, i)) != SET
2516 || !REG_P (SET_DEST (XVECEXP (pat, 0, i))))
2517 return false;
2518 for ( ; i < len; i++)
2519 if (GET_CODE (XVECEXP (pat, 0, i)) != CLOBBER
2520 || XEXP (XVECEXP (pat, 0, i), 0) == const0_rtx)
2521 return false;
2522
2523 return true;
2524 }
2525
2526 /* Return whether INSN, a PARALLEL of N register SETs (and maybe some
2527 CLOBBERs), can be split into individual SETs in that order, without
2528 changing semantics. */
2529 static bool
2530 can_split_parallel_of_n_reg_sets (rtx_insn *insn, int n)
2531 {
2532 if (!insn_nothrow_p (insn))
2533 return false;
2534
2535 rtx pat = PATTERN (insn);
2536
2537 int i, j;
2538 for (i = 0; i < n; i++)
2539 {
2540 if (side_effects_p (SET_SRC (XVECEXP (pat, 0, i))))
2541 return false;
2542
2543 rtx reg = SET_DEST (XVECEXP (pat, 0, i));
2544
2545 for (j = i + 1; j < n; j++)
2546 if (reg_referenced_p (reg, XVECEXP (pat, 0, j)))
2547 return false;
2548 }
2549
2550 return true;
2551 }
2552
2553 /* Try to combine the insns I0, I1 and I2 into I3.
2554 Here I0, I1 and I2 appear earlier than I3.
2555 I0 and I1 can be zero; then we combine just I2 into I3, or I1 and I2 into
2556 I3.
2557
2558 If we are combining more than two insns and the resulting insn is not
2559 recognized, try splitting it into two insns. If that happens, I2 and I3
2560 are retained and I1/I0 are pseudo-deleted by turning them into a NOTE.
2561 Otherwise, I0, I1 and I2 are pseudo-deleted.
2562
2563 Return 0 if the combination does not work. Then nothing is changed.
2564 If we did the combination, return the insn at which combine should
2565 resume scanning.
2566
2567 Set NEW_DIRECT_JUMP_P to a nonzero value if try_combine creates a
2568 new direct jump instruction.
2569
2570 LAST_COMBINED_INSN is either I3, or some insn after I3 that has
2571 been I3 passed to an earlier try_combine within the same basic
2572 block. */
2573
2574 static rtx_insn *
2575 try_combine (rtx_insn *i3, rtx_insn *i2, rtx_insn *i1, rtx_insn *i0,
2576 int *new_direct_jump_p, rtx_insn *last_combined_insn)
2577 {
2578 /* New patterns for I3 and I2, respectively. */
2579 rtx newpat, newi2pat = 0;
2580 rtvec newpat_vec_with_clobbers = 0;
2581 int substed_i2 = 0, substed_i1 = 0, substed_i0 = 0;
2582 /* Indicates need to preserve SET in I0, I1 or I2 in I3 if it is not
2583 dead. */
2584 int added_sets_0, added_sets_1, added_sets_2;
2585 /* Total number of SETs to put into I3. */
2586 int total_sets;
2587 /* Nonzero if I2's or I1's body now appears in I3. */
2588 int i2_is_used = 0, i1_is_used = 0;
2589 /* INSN_CODEs for new I3, new I2, and user of condition code. */
2590 int insn_code_number, i2_code_number = 0, other_code_number = 0;
2591 /* Contains I3 if the destination of I3 is used in its source, which means
2592 that the old life of I3 is being killed. If that usage is placed into
2593 I2 and not in I3, a REG_DEAD note must be made. */
2594 rtx i3dest_killed = 0;
2595 /* SET_DEST and SET_SRC of I2, I1 and I0. */
2596 rtx i2dest = 0, i2src = 0, i1dest = 0, i1src = 0, i0dest = 0, i0src = 0;
2597 /* Copy of SET_SRC of I1 and I0, if needed. */
2598 rtx i1src_copy = 0, i0src_copy = 0, i0src_copy2 = 0;
2599 /* Set if I2DEST was reused as a scratch register. */
2600 bool i2scratch = false;
2601 /* The PATTERNs of I0, I1, and I2, or a copy of them in certain cases. */
2602 rtx i0pat = 0, i1pat = 0, i2pat = 0;
2603 /* Indicates if I2DEST or I1DEST is in I2SRC or I1_SRC. */
2604 int i2dest_in_i2src = 0, i1dest_in_i1src = 0, i2dest_in_i1src = 0;
2605 int i0dest_in_i0src = 0, i1dest_in_i0src = 0, i2dest_in_i0src = 0;
2606 int i2dest_killed = 0, i1dest_killed = 0, i0dest_killed = 0;
2607 int i1_feeds_i2_n = 0, i0_feeds_i2_n = 0, i0_feeds_i1_n = 0;
2608 /* Notes that must be added to REG_NOTES in I3 and I2. */
2609 rtx new_i3_notes, new_i2_notes;
2610 /* Notes that we substituted I3 into I2 instead of the normal case. */
2611 int i3_subst_into_i2 = 0;
2612 /* Notes that I1, I2 or I3 is a MULT operation. */
2613 int have_mult = 0;
2614 int swap_i2i3 = 0;
2615 int changed_i3_dest = 0;
2616
2617 int maxreg;
2618 rtx_insn *temp_insn;
2619 rtx temp_expr;
2620 struct insn_link *link;
2621 rtx other_pat = 0;
2622 rtx new_other_notes;
2623 int i;
2624
2625 /* Immediately return if any of I0,I1,I2 are the same insn (I3 can
2626 never be). */
2627 if (i1 == i2 || i0 == i2 || (i0 && i0 == i1))
2628 return 0;
2629
2630 /* Only try four-insn combinations when there's high likelihood of
2631 success. Look for simple insns, such as loads of constants or
2632 binary operations involving a constant. */
2633 if (i0)
2634 {
2635 int i;
2636 int ngood = 0;
2637 int nshift = 0;
2638 rtx set0, set3;
2639
2640 if (!flag_expensive_optimizations)
2641 return 0;
2642
2643 for (i = 0; i < 4; i++)
2644 {
2645 rtx_insn *insn = i == 0 ? i0 : i == 1 ? i1 : i == 2 ? i2 : i3;
2646 rtx set = single_set (insn);
2647 rtx src;
2648 if (!set)
2649 continue;
2650 src = SET_SRC (set);
2651 if (CONSTANT_P (src))
2652 {
2653 ngood += 2;
2654 break;
2655 }
2656 else if (BINARY_P (src) && CONSTANT_P (XEXP (src, 1)))
2657 ngood++;
2658 else if (GET_CODE (src) == ASHIFT || GET_CODE (src) == ASHIFTRT
2659 || GET_CODE (src) == LSHIFTRT)
2660 nshift++;
2661 }
2662
2663 /* If I0 loads a memory and I3 sets the same memory, then I1 and I2
2664 are likely manipulating its value. Ideally we'll be able to combine
2665 all four insns into a bitfield insertion of some kind.
2666
2667 Note the source in I0 might be inside a sign/zero extension and the
2668 memory modes in I0 and I3 might be different. So extract the address
2669 from the destination of I3 and search for it in the source of I0.
2670
2671 In the event that there's a match but the source/dest do not actually
2672 refer to the same memory, the worst that happens is we try some
2673 combinations that we wouldn't have otherwise. */
2674 if ((set0 = single_set (i0))
2675 /* Ensure the source of SET0 is a MEM, possibly buried inside
2676 an extension. */
2677 && (GET_CODE (SET_SRC (set0)) == MEM
2678 || ((GET_CODE (SET_SRC (set0)) == ZERO_EXTEND
2679 || GET_CODE (SET_SRC (set0)) == SIGN_EXTEND)
2680 && GET_CODE (XEXP (SET_SRC (set0), 0)) == MEM))
2681 && (set3 = single_set (i3))
2682 /* Ensure the destination of SET3 is a MEM. */
2683 && GET_CODE (SET_DEST (set3)) == MEM
2684 /* Would it be better to extract the base address for the MEM
2685 in SET3 and look for that? I don't have cases where it matters
2686 but I could envision such cases. */
2687 && rtx_referenced_p (XEXP (SET_DEST (set3), 0), SET_SRC (set0)))
2688 ngood += 2;
2689
2690 if (ngood < 2 && nshift < 2)
2691 return 0;
2692 }
2693
2694 /* Exit early if one of the insns involved can't be used for
2695 combinations. */
2696 if (CALL_P (i2)
2697 || (i1 && CALL_P (i1))
2698 || (i0 && CALL_P (i0))
2699 || cant_combine_insn_p (i3)
2700 || cant_combine_insn_p (i2)
2701 || (i1 && cant_combine_insn_p (i1))
2702 || (i0 && cant_combine_insn_p (i0))
2703 || likely_spilled_retval_p (i3))
2704 return 0;
2705
2706 combine_attempts++;
2707 undobuf.other_insn = 0;
2708
2709 /* Reset the hard register usage information. */
2710 CLEAR_HARD_REG_SET (newpat_used_regs);
2711
2712 if (dump_file && (dump_flags & TDF_DETAILS))
2713 {
2714 if (i0)
2715 fprintf (dump_file, "\nTrying %d, %d, %d -> %d:\n",
2716 INSN_UID (i0), INSN_UID (i1), INSN_UID (i2), INSN_UID (i3));
2717 else if (i1)
2718 fprintf (dump_file, "\nTrying %d, %d -> %d:\n",
2719 INSN_UID (i1), INSN_UID (i2), INSN_UID (i3));
2720 else
2721 fprintf (dump_file, "\nTrying %d -> %d:\n",
2722 INSN_UID (i2), INSN_UID (i3));
2723 }
2724
2725 /* If multiple insns feed into one of I2 or I3, they can be in any
2726 order. To simplify the code below, reorder them in sequence. */
2727 if (i0 && DF_INSN_LUID (i0) > DF_INSN_LUID (i2))
2728 std::swap (i0, i2);
2729 if (i0 && DF_INSN_LUID (i0) > DF_INSN_LUID (i1))
2730 std::swap (i0, i1);
2731 if (i1 && DF_INSN_LUID (i1) > DF_INSN_LUID (i2))
2732 std::swap (i1, i2);
2733
2734 added_links_insn = 0;
2735
2736 /* First check for one important special case that the code below will
2737 not handle. Namely, the case where I1 is zero, I2 is a PARALLEL
2738 and I3 is a SET whose SET_SRC is a SET_DEST in I2. In that case,
2739 we may be able to replace that destination with the destination of I3.
2740 This occurs in the common code where we compute both a quotient and
2741 remainder into a structure, in which case we want to do the computation
2742 directly into the structure to avoid register-register copies.
2743
2744 Note that this case handles both multiple sets in I2 and also cases
2745 where I2 has a number of CLOBBERs inside the PARALLEL.
2746
2747 We make very conservative checks below and only try to handle the
2748 most common cases of this. For example, we only handle the case
2749 where I2 and I3 are adjacent to avoid making difficult register
2750 usage tests. */
2751
2752 if (i1 == 0 && NONJUMP_INSN_P (i3) && GET_CODE (PATTERN (i3)) == SET
2753 && REG_P (SET_SRC (PATTERN (i3)))
2754 && REGNO (SET_SRC (PATTERN (i3))) >= FIRST_PSEUDO_REGISTER
2755 && find_reg_note (i3, REG_DEAD, SET_SRC (PATTERN (i3)))
2756 && GET_CODE (PATTERN (i2)) == PARALLEL
2757 && ! side_effects_p (SET_DEST (PATTERN (i3)))
2758 /* If the dest of I3 is a ZERO_EXTRACT or STRICT_LOW_PART, the code
2759 below would need to check what is inside (and reg_overlap_mentioned_p
2760 doesn't support those codes anyway). Don't allow those destinations;
2761 the resulting insn isn't likely to be recognized anyway. */
2762 && GET_CODE (SET_DEST (PATTERN (i3))) != ZERO_EXTRACT
2763 && GET_CODE (SET_DEST (PATTERN (i3))) != STRICT_LOW_PART
2764 && ! reg_overlap_mentioned_p (SET_SRC (PATTERN (i3)),
2765 SET_DEST (PATTERN (i3)))
2766 && next_active_insn (i2) == i3)
2767 {
2768 rtx p2 = PATTERN (i2);
2769
2770 /* Make sure that the destination of I3,
2771 which we are going to substitute into one output of I2,
2772 is not used within another output of I2. We must avoid making this:
2773 (parallel [(set (mem (reg 69)) ...)
2774 (set (reg 69) ...)])
2775 which is not well-defined as to order of actions.
2776 (Besides, reload can't handle output reloads for this.)
2777
2778 The problem can also happen if the dest of I3 is a memory ref,
2779 if another dest in I2 is an indirect memory ref. */
2780 for (i = 0; i < XVECLEN (p2, 0); i++)
2781 if ((GET_CODE (XVECEXP (p2, 0, i)) == SET
2782 || GET_CODE (XVECEXP (p2, 0, i)) == CLOBBER)
2783 && reg_overlap_mentioned_p (SET_DEST (PATTERN (i3)),
2784 SET_DEST (XVECEXP (p2, 0, i))))
2785 break;
2786
2787 /* Make sure this PARALLEL is not an asm. We do not allow combining
2788 that usually (see can_combine_p), so do not here either. */
2789 for (i = 0; i < XVECLEN (p2, 0); i++)
2790 if (GET_CODE (XVECEXP (p2, 0, i)) == SET
2791 && GET_CODE (SET_SRC (XVECEXP (p2, 0, i))) == ASM_OPERANDS)
2792 break;
2793
2794 if (i == XVECLEN (p2, 0))
2795 for (i = 0; i < XVECLEN (p2, 0); i++)
2796 if (GET_CODE (XVECEXP (p2, 0, i)) == SET
2797 && SET_DEST (XVECEXP (p2, 0, i)) == SET_SRC (PATTERN (i3)))
2798 {
2799 combine_merges++;
2800
2801 subst_insn = i3;
2802 subst_low_luid = DF_INSN_LUID (i2);
2803
2804 added_sets_2 = added_sets_1 = added_sets_0 = 0;
2805 i2src = SET_SRC (XVECEXP (p2, 0, i));
2806 i2dest = SET_DEST (XVECEXP (p2, 0, i));
2807 i2dest_killed = dead_or_set_p (i2, i2dest);
2808
2809 /* Replace the dest in I2 with our dest and make the resulting
2810 insn the new pattern for I3. Then skip to where we validate
2811 the pattern. Everything was set up above. */
2812 SUBST (SET_DEST (XVECEXP (p2, 0, i)), SET_DEST (PATTERN (i3)));
2813 newpat = p2;
2814 i3_subst_into_i2 = 1;
2815 goto validate_replacement;
2816 }
2817 }
2818
2819 /* If I2 is setting a pseudo to a constant and I3 is setting some
2820 sub-part of it to another constant, merge them by making a new
2821 constant. */
2822 if (i1 == 0
2823 && (temp_expr = single_set (i2)) != 0
2824 && CONST_SCALAR_INT_P (SET_SRC (temp_expr))
2825 && GET_CODE (PATTERN (i3)) == SET
2826 && CONST_SCALAR_INT_P (SET_SRC (PATTERN (i3)))
2827 && reg_subword_p (SET_DEST (PATTERN (i3)), SET_DEST (temp_expr)))
2828 {
2829 rtx dest = SET_DEST (PATTERN (i3));
2830 int offset = -1;
2831 int width = 0;
2832
2833 if (GET_CODE (dest) == ZERO_EXTRACT)
2834 {
2835 if (CONST_INT_P (XEXP (dest, 1))
2836 && CONST_INT_P (XEXP (dest, 2)))
2837 {
2838 width = INTVAL (XEXP (dest, 1));
2839 offset = INTVAL (XEXP (dest, 2));
2840 dest = XEXP (dest, 0);
2841 if (BITS_BIG_ENDIAN)
2842 offset = GET_MODE_PRECISION (GET_MODE (dest)) - width - offset;
2843 }
2844 }
2845 else
2846 {
2847 if (GET_CODE (dest) == STRICT_LOW_PART)
2848 dest = XEXP (dest, 0);
2849 width = GET_MODE_PRECISION (GET_MODE (dest));
2850 offset = 0;
2851 }
2852
2853 if (offset >= 0)
2854 {
2855 /* If this is the low part, we're done. */
2856 if (subreg_lowpart_p (dest))
2857 ;
2858 /* Handle the case where inner is twice the size of outer. */
2859 else if (GET_MODE_PRECISION (GET_MODE (SET_DEST (temp_expr)))
2860 == 2 * GET_MODE_PRECISION (GET_MODE (dest)))
2861 offset += GET_MODE_PRECISION (GET_MODE (dest));
2862 /* Otherwise give up for now. */
2863 else
2864 offset = -1;
2865 }
2866
2867 if (offset >= 0)
2868 {
2869 rtx inner = SET_SRC (PATTERN (i3));
2870 rtx outer = SET_SRC (temp_expr);
2871
2872 wide_int o
2873 = wi::insert (std::make_pair (outer, GET_MODE (SET_DEST (temp_expr))),
2874 std::make_pair (inner, GET_MODE (dest)),
2875 offset, width);
2876
2877 combine_merges++;
2878 subst_insn = i3;
2879 subst_low_luid = DF_INSN_LUID (i2);
2880 added_sets_2 = added_sets_1 = added_sets_0 = 0;
2881 i2dest = SET_DEST (temp_expr);
2882 i2dest_killed = dead_or_set_p (i2, i2dest);
2883
2884 /* Replace the source in I2 with the new constant and make the
2885 resulting insn the new pattern for I3. Then skip to where we
2886 validate the pattern. Everything was set up above. */
2887 SUBST (SET_SRC (temp_expr),
2888 immed_wide_int_const (o, GET_MODE (SET_DEST (temp_expr))));
2889
2890 newpat = PATTERN (i2);
2891
2892 /* The dest of I3 has been replaced with the dest of I2. */
2893 changed_i3_dest = 1;
2894 goto validate_replacement;
2895 }
2896 }
2897
2898 /* If we have no I1 and I2 looks like:
2899 (parallel [(set (reg:CC X) (compare:CC OP (const_int 0)))
2900 (set Y OP)])
2901 make up a dummy I1 that is
2902 (set Y OP)
2903 and change I2 to be
2904 (set (reg:CC X) (compare:CC Y (const_int 0)))
2905
2906 (We can ignore any trailing CLOBBERs.)
2907
2908 This undoes a previous combination and allows us to match a branch-and-
2909 decrement insn. */
2910
2911 if (!HAVE_cc0 && i1 == 0
2912 && is_parallel_of_n_reg_sets (PATTERN (i2), 2)
2913 && (GET_MODE_CLASS (GET_MODE (SET_DEST (XVECEXP (PATTERN (i2), 0, 0))))
2914 == MODE_CC)
2915 && GET_CODE (SET_SRC (XVECEXP (PATTERN (i2), 0, 0))) == COMPARE
2916 && XEXP (SET_SRC (XVECEXP (PATTERN (i2), 0, 0)), 1) == const0_rtx
2917 && rtx_equal_p (XEXP (SET_SRC (XVECEXP (PATTERN (i2), 0, 0)), 0),
2918 SET_SRC (XVECEXP (PATTERN (i2), 0, 1)))
2919 && !reg_used_between_p (SET_DEST (XVECEXP (PATTERN (i2), 0, 0)), i2, i3)
2920 && !reg_used_between_p (SET_DEST (XVECEXP (PATTERN (i2), 0, 1)), i2, i3))
2921 {
2922 /* We make I1 with the same INSN_UID as I2. This gives it
2923 the same DF_INSN_LUID for value tracking. Our fake I1 will
2924 never appear in the insn stream so giving it the same INSN_UID
2925 as I2 will not cause a problem. */
2926
2927 i1 = gen_rtx_INSN (VOIDmode, NULL, i2, BLOCK_FOR_INSN (i2),
2928 XVECEXP (PATTERN (i2), 0, 1), INSN_LOCATION (i2),
2929 -1, NULL_RTX);
2930 INSN_UID (i1) = INSN_UID (i2);
2931
2932 SUBST (PATTERN (i2), XVECEXP (PATTERN (i2), 0, 0));
2933 SUBST (XEXP (SET_SRC (PATTERN (i2)), 0),
2934 SET_DEST (PATTERN (i1)));
2935 unsigned int regno = REGNO (SET_DEST (PATTERN (i1)));
2936 SUBST_LINK (LOG_LINKS (i2),
2937 alloc_insn_link (i1, regno, LOG_LINKS (i2)));
2938 }
2939
2940 /* If I2 is a PARALLEL of two SETs of REGs (and perhaps some CLOBBERs),
2941 make those two SETs separate I1 and I2 insns, and make an I0 that is
2942 the original I1. */
2943 if (!HAVE_cc0 && i0 == 0
2944 && is_parallel_of_n_reg_sets (PATTERN (i2), 2)
2945 && can_split_parallel_of_n_reg_sets (i2, 2)
2946 && !reg_used_between_p (SET_DEST (XVECEXP (PATTERN (i2), 0, 0)), i2, i3)
2947 && !reg_used_between_p (SET_DEST (XVECEXP (PATTERN (i2), 0, 1)), i2, i3))
2948 {
2949 /* If there is no I1, there is no I0 either. */
2950 i0 = i1;
2951
2952 /* We make I1 with the same INSN_UID as I2. This gives it
2953 the same DF_INSN_LUID for value tracking. Our fake I1 will
2954 never appear in the insn stream so giving it the same INSN_UID
2955 as I2 will not cause a problem. */
2956
2957 i1 = gen_rtx_INSN (VOIDmode, NULL, i2, BLOCK_FOR_INSN (i2),
2958 XVECEXP (PATTERN (i2), 0, 0), INSN_LOCATION (i2),
2959 -1, NULL_RTX);
2960 INSN_UID (i1) = INSN_UID (i2);
2961
2962 SUBST (PATTERN (i2), XVECEXP (PATTERN (i2), 0, 1));
2963 }
2964
2965 /* Verify that I2 and I1 are valid for combining. */
2966 if (! can_combine_p (i2, i3, i0, i1, NULL, NULL, &i2dest, &i2src)
2967 || (i1 && ! can_combine_p (i1, i3, i0, NULL, i2, NULL,
2968 &i1dest, &i1src))
2969 || (i0 && ! can_combine_p (i0, i3, NULL, NULL, i1, i2,
2970 &i0dest, &i0src)))
2971 {
2972 undo_all ();
2973 return 0;
2974 }
2975
2976 /* Record whether I2DEST is used in I2SRC and similarly for the other
2977 cases. Knowing this will help in register status updating below. */
2978 i2dest_in_i2src = reg_overlap_mentioned_p (i2dest, i2src);
2979 i1dest_in_i1src = i1 && reg_overlap_mentioned_p (i1dest, i1src);
2980 i2dest_in_i1src = i1 && reg_overlap_mentioned_p (i2dest, i1src);
2981 i0dest_in_i0src = i0 && reg_overlap_mentioned_p (i0dest, i0src);
2982 i1dest_in_i0src = i0 && reg_overlap_mentioned_p (i1dest, i0src);
2983 i2dest_in_i0src = i0 && reg_overlap_mentioned_p (i2dest, i0src);
2984 i2dest_killed = dead_or_set_p (i2, i2dest);
2985 i1dest_killed = i1 && dead_or_set_p (i1, i1dest);
2986 i0dest_killed = i0 && dead_or_set_p (i0, i0dest);
2987
2988 /* For the earlier insns, determine which of the subsequent ones they
2989 feed. */
2990 i1_feeds_i2_n = i1 && insn_a_feeds_b (i1, i2);
2991 i0_feeds_i1_n = i0 && insn_a_feeds_b (i0, i1);
2992 i0_feeds_i2_n = (i0 && (!i0_feeds_i1_n ? insn_a_feeds_b (i0, i2)
2993 : (!reg_overlap_mentioned_p (i1dest, i0dest)
2994 && reg_overlap_mentioned_p (i0dest, i2src))));
2995
2996 /* Ensure that I3's pattern can be the destination of combines. */
2997 if (! combinable_i3pat (i3, &PATTERN (i3), i2dest, i1dest, i0dest,
2998 i1 && i2dest_in_i1src && !i1_feeds_i2_n,
2999 i0 && ((i2dest_in_i0src && !i0_feeds_i2_n)
3000 || (i1dest_in_i0src && !i0_feeds_i1_n)),
3001 &i3dest_killed))
3002 {
3003 undo_all ();
3004 return 0;
3005 }
3006
3007 /* See if any of the insns is a MULT operation. Unless one is, we will
3008 reject a combination that is, since it must be slower. Be conservative
3009 here. */
3010 if (GET_CODE (i2src) == MULT
3011 || (i1 != 0 && GET_CODE (i1src) == MULT)
3012 || (i0 != 0 && GET_CODE (i0src) == MULT)
3013 || (GET_CODE (PATTERN (i3)) == SET
3014 && GET_CODE (SET_SRC (PATTERN (i3))) == MULT))
3015 have_mult = 1;
3016
3017 /* If I3 has an inc, then give up if I1 or I2 uses the reg that is inc'd.
3018 We used to do this EXCEPT in one case: I3 has a post-inc in an
3019 output operand. However, that exception can give rise to insns like
3020 mov r3,(r3)+
3021 which is a famous insn on the PDP-11 where the value of r3 used as the
3022 source was model-dependent. Avoid this sort of thing. */
3023
3024 #if 0
3025 if (!(GET_CODE (PATTERN (i3)) == SET
3026 && REG_P (SET_SRC (PATTERN (i3)))
3027 && MEM_P (SET_DEST (PATTERN (i3)))
3028 && (GET_CODE (XEXP (SET_DEST (PATTERN (i3)), 0)) == POST_INC
3029 || GET_CODE (XEXP (SET_DEST (PATTERN (i3)), 0)) == POST_DEC)))
3030 /* It's not the exception. */
3031 #endif
3032 if (AUTO_INC_DEC)
3033 {
3034 rtx link;
3035 for (link = REG_NOTES (i3); link; link = XEXP (link, 1))
3036 if (REG_NOTE_KIND (link) == REG_INC
3037 && (reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i2))
3038 || (i1 != 0
3039 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i1)))))
3040 {
3041 undo_all ();
3042 return 0;
3043 }
3044 }
3045
3046 /* See if the SETs in I1 or I2 need to be kept around in the merged
3047 instruction: whenever the value set there is still needed past I3.
3048 For the SET in I2, this is easy: we see if I2DEST dies or is set in I3.
3049
3050 For the SET in I1, we have two cases: if I1 and I2 independently feed
3051 into I3, the set in I1 needs to be kept around unless I1DEST dies
3052 or is set in I3. Otherwise (if I1 feeds I2 which feeds I3), the set
3053 in I1 needs to be kept around unless I1DEST dies or is set in either
3054 I2 or I3. The same considerations apply to I0. */
3055
3056 added_sets_2 = !dead_or_set_p (i3, i2dest);
3057
3058 if (i1)
3059 added_sets_1 = !(dead_or_set_p (i3, i1dest)
3060 || (i1_feeds_i2_n && dead_or_set_p (i2, i1dest)));
3061 else
3062 added_sets_1 = 0;
3063
3064 if (i0)
3065 added_sets_0 = !(dead_or_set_p (i3, i0dest)
3066 || (i0_feeds_i1_n && dead_or_set_p (i1, i0dest))
3067 || ((i0_feeds_i2_n || (i0_feeds_i1_n && i1_feeds_i2_n))
3068 && dead_or_set_p (i2, i0dest)));
3069 else
3070 added_sets_0 = 0;
3071
3072 /* We are about to copy insns for the case where they need to be kept
3073 around. Check that they can be copied in the merged instruction. */
3074
3075 if (targetm.cannot_copy_insn_p
3076 && ((added_sets_2 && targetm.cannot_copy_insn_p (i2))
3077 || (i1 && added_sets_1 && targetm.cannot_copy_insn_p (i1))
3078 || (i0 && added_sets_0 && targetm.cannot_copy_insn_p (i0))))
3079 {
3080 undo_all ();
3081 return 0;
3082 }
3083
3084 /* If the set in I2 needs to be kept around, we must make a copy of
3085 PATTERN (I2), so that when we substitute I1SRC for I1DEST in
3086 PATTERN (I2), we are only substituting for the original I1DEST, not into
3087 an already-substituted copy. This also prevents making self-referential
3088 rtx. If I2 is a PARALLEL, we just need the piece that assigns I2SRC to
3089 I2DEST. */
3090
3091 if (added_sets_2)
3092 {
3093 if (GET_CODE (PATTERN (i2)) == PARALLEL)
3094 i2pat = gen_rtx_SET (i2dest, copy_rtx (i2src));
3095 else
3096 i2pat = copy_rtx (PATTERN (i2));
3097 }
3098
3099 if (added_sets_1)
3100 {
3101 if (GET_CODE (PATTERN (i1)) == PARALLEL)
3102 i1pat = gen_rtx_SET (i1dest, copy_rtx (i1src));
3103 else
3104 i1pat = copy_rtx (PATTERN (i1));
3105 }
3106
3107 if (added_sets_0)
3108 {
3109 if (GET_CODE (PATTERN (i0)) == PARALLEL)
3110 i0pat = gen_rtx_SET (i0dest, copy_rtx (i0src));
3111 else
3112 i0pat = copy_rtx (PATTERN (i0));
3113 }
3114
3115 combine_merges++;
3116
3117 /* Substitute in the latest insn for the regs set by the earlier ones. */
3118
3119 maxreg = max_reg_num ();
3120
3121 subst_insn = i3;
3122
3123 /* Many machines that don't use CC0 have insns that can both perform an
3124 arithmetic operation and set the condition code. These operations will
3125 be represented as a PARALLEL with the first element of the vector
3126 being a COMPARE of an arithmetic operation with the constant zero.
3127 The second element of the vector will set some pseudo to the result
3128 of the same arithmetic operation. If we simplify the COMPARE, we won't
3129 match such a pattern and so will generate an extra insn. Here we test
3130 for this case, where both the comparison and the operation result are
3131 needed, and make the PARALLEL by just replacing I2DEST in I3SRC with
3132 I2SRC. Later we will make the PARALLEL that contains I2. */
3133
3134 if (!HAVE_cc0 && i1 == 0 && added_sets_2 && GET_CODE (PATTERN (i3)) == SET
3135 && GET_CODE (SET_SRC (PATTERN (i3))) == COMPARE
3136 && CONST_INT_P (XEXP (SET_SRC (PATTERN (i3)), 1))
3137 && rtx_equal_p (XEXP (SET_SRC (PATTERN (i3)), 0), i2dest))
3138 {
3139 rtx newpat_dest;
3140 rtx *cc_use_loc = NULL;
3141 rtx_insn *cc_use_insn = NULL;
3142 rtx op0 = i2src, op1 = XEXP (SET_SRC (PATTERN (i3)), 1);
3143 machine_mode compare_mode, orig_compare_mode;
3144 enum rtx_code compare_code = UNKNOWN, orig_compare_code = UNKNOWN;
3145
3146 newpat = PATTERN (i3);
3147 newpat_dest = SET_DEST (newpat);
3148 compare_mode = orig_compare_mode = GET_MODE (newpat_dest);
3149
3150 if (undobuf.other_insn == 0
3151 && (cc_use_loc = find_single_use (SET_DEST (newpat), i3,
3152 &cc_use_insn)))
3153 {
3154 compare_code = orig_compare_code = GET_CODE (*cc_use_loc);
3155 compare_code = simplify_compare_const (compare_code,
3156 GET_MODE (i2dest), op0, &op1);
3157 target_canonicalize_comparison (&compare_code, &op0, &op1, 1);
3158 }
3159
3160 /* Do the rest only if op1 is const0_rtx, which may be the
3161 result of simplification. */
3162 if (op1 == const0_rtx)
3163 {
3164 /* If a single use of the CC is found, prepare to modify it
3165 when SELECT_CC_MODE returns a new CC-class mode, or when
3166 the above simplify_compare_const() returned a new comparison
3167 operator. undobuf.other_insn is assigned the CC use insn
3168 when modifying it. */
3169 if (cc_use_loc)
3170 {
3171 #ifdef SELECT_CC_MODE
3172 machine_mode new_mode
3173 = SELECT_CC_MODE (compare_code, op0, op1);
3174 if (new_mode != orig_compare_mode
3175 && can_change_dest_mode (SET_DEST (newpat),
3176 added_sets_2, new_mode))
3177 {
3178 unsigned int regno = REGNO (newpat_dest);
3179 compare_mode = new_mode;
3180 if (regno < FIRST_PSEUDO_REGISTER)
3181 newpat_dest = gen_rtx_REG (compare_mode, regno);
3182 else
3183 {
3184 SUBST_MODE (regno_reg_rtx[regno], compare_mode);
3185 newpat_dest = regno_reg_rtx[regno];
3186 }
3187 }
3188 #endif
3189 /* Cases for modifying the CC-using comparison. */
3190 if (compare_code != orig_compare_code
3191 /* ??? Do we need to verify the zero rtx? */
3192 && XEXP (*cc_use_loc, 1) == const0_rtx)
3193 {
3194 /* Replace cc_use_loc with entire new RTX. */
3195 SUBST (*cc_use_loc,
3196 gen_rtx_fmt_ee (compare_code, compare_mode,
3197 newpat_dest, const0_rtx));
3198 undobuf.other_insn = cc_use_insn;
3199 }
3200 else if (compare_mode != orig_compare_mode)
3201 {
3202 /* Just replace the CC reg with a new mode. */
3203 SUBST (XEXP (*cc_use_loc, 0), newpat_dest);
3204 undobuf.other_insn = cc_use_insn;
3205 }
3206 }
3207
3208 /* Now we modify the current newpat:
3209 First, SET_DEST(newpat) is updated if the CC mode has been
3210 altered. For targets without SELECT_CC_MODE, this should be
3211 optimized away. */
3212 if (compare_mode != orig_compare_mode)
3213 SUBST (SET_DEST (newpat), newpat_dest);
3214 /* This is always done to propagate i2src into newpat. */
3215 SUBST (SET_SRC (newpat),
3216 gen_rtx_COMPARE (compare_mode, op0, op1));
3217 /* Create new version of i2pat if needed; the below PARALLEL
3218 creation needs this to work correctly. */
3219 if (! rtx_equal_p (i2src, op0))
3220 i2pat = gen_rtx_SET (i2dest, op0);
3221 i2_is_used = 1;
3222 }
3223 }
3224
3225 if (i2_is_used == 0)
3226 {
3227 /* It is possible that the source of I2 or I1 may be performing
3228 an unneeded operation, such as a ZERO_EXTEND of something
3229 that is known to have the high part zero. Handle that case
3230 by letting subst look at the inner insns.
3231
3232 Another way to do this would be to have a function that tries
3233 to simplify a single insn instead of merging two or more
3234 insns. We don't do this because of the potential of infinite
3235 loops and because of the potential extra memory required.
3236 However, doing it the way we are is a bit of a kludge and
3237 doesn't catch all cases.
3238
3239 But only do this if -fexpensive-optimizations since it slows
3240 things down and doesn't usually win.
3241
3242 This is not done in the COMPARE case above because the
3243 unmodified I2PAT is used in the PARALLEL and so a pattern
3244 with a modified I2SRC would not match. */
3245
3246 if (flag_expensive_optimizations)
3247 {
3248 /* Pass pc_rtx so no substitutions are done, just
3249 simplifications. */
3250 if (i1)
3251 {
3252 subst_low_luid = DF_INSN_LUID (i1);
3253 i1src = subst (i1src, pc_rtx, pc_rtx, 0, 0, 0);
3254 }
3255
3256 subst_low_luid = DF_INSN_LUID (i2);
3257 i2src = subst (i2src, pc_rtx, pc_rtx, 0, 0, 0);
3258 }
3259
3260 n_occurrences = 0; /* `subst' counts here */
3261 subst_low_luid = DF_INSN_LUID (i2);
3262
3263 /* If I1 feeds into I2 and I1DEST is in I1SRC, we need to make a unique
3264 copy of I2SRC each time we substitute it, in order to avoid creating
3265 self-referential RTL when we will be substituting I1SRC for I1DEST
3266 later. Likewise if I0 feeds into I2, either directly or indirectly
3267 through I1, and I0DEST is in I0SRC. */
3268 newpat = subst (PATTERN (i3), i2dest, i2src, 0, 0,
3269 (i1_feeds_i2_n && i1dest_in_i1src)
3270 || ((i0_feeds_i2_n || (i0_feeds_i1_n && i1_feeds_i2_n))
3271 && i0dest_in_i0src));
3272 substed_i2 = 1;
3273
3274 /* Record whether I2's body now appears within I3's body. */
3275 i2_is_used = n_occurrences;
3276 }
3277
3278 /* If we already got a failure, don't try to do more. Otherwise, try to
3279 substitute I1 if we have it. */
3280
3281 if (i1 && GET_CODE (newpat) != CLOBBER)
3282 {
3283 /* Check that an autoincrement side-effect on I1 has not been lost.
3284 This happens if I1DEST is mentioned in I2 and dies there, and
3285 has disappeared from the new pattern. */
3286 if ((FIND_REG_INC_NOTE (i1, NULL_RTX) != 0
3287 && i1_feeds_i2_n
3288 && dead_or_set_p (i2, i1dest)
3289 && !reg_overlap_mentioned_p (i1dest, newpat))
3290 /* Before we can do this substitution, we must redo the test done
3291 above (see detailed comments there) that ensures I1DEST isn't
3292 mentioned in any SETs in NEWPAT that are field assignments. */
3293 || !combinable_i3pat (NULL, &newpat, i1dest, NULL_RTX, NULL_RTX,
3294 0, 0, 0))
3295 {
3296 undo_all ();
3297 return 0;
3298 }
3299
3300 n_occurrences = 0;
3301 subst_low_luid = DF_INSN_LUID (i1);
3302
3303 /* If the following substitution will modify I1SRC, make a copy of it
3304 for the case where it is substituted for I1DEST in I2PAT later. */
3305 if (added_sets_2 && i1_feeds_i2_n)
3306 i1src_copy = copy_rtx (i1src);
3307
3308 /* If I0 feeds into I1 and I0DEST is in I0SRC, we need to make a unique
3309 copy of I1SRC each time we substitute it, in order to avoid creating
3310 self-referential RTL when we will be substituting I0SRC for I0DEST
3311 later. */
3312 newpat = subst (newpat, i1dest, i1src, 0, 0,
3313 i0_feeds_i1_n && i0dest_in_i0src);
3314 substed_i1 = 1;
3315
3316 /* Record whether I1's body now appears within I3's body. */
3317 i1_is_used = n_occurrences;
3318 }
3319
3320 /* Likewise for I0 if we have it. */
3321
3322 if (i0 && GET_CODE (newpat) != CLOBBER)
3323 {
3324 if ((FIND_REG_INC_NOTE (i0, NULL_RTX) != 0
3325 && ((i0_feeds_i2_n && dead_or_set_p (i2, i0dest))
3326 || (i0_feeds_i1_n && dead_or_set_p (i1, i0dest)))
3327 && !reg_overlap_mentioned_p (i0dest, newpat))
3328 || !combinable_i3pat (NULL, &newpat, i0dest, NULL_RTX, NULL_RTX,
3329 0, 0, 0))
3330 {
3331 undo_all ();
3332 return 0;
3333 }
3334
3335 /* If the following substitution will modify I0SRC, make a copy of it
3336 for the case where it is substituted for I0DEST in I1PAT later. */
3337 if (added_sets_1 && i0_feeds_i1_n)
3338 i0src_copy = copy_rtx (i0src);
3339 /* And a copy for I0DEST in I2PAT substitution. */
3340 if (added_sets_2 && ((i0_feeds_i1_n && i1_feeds_i2_n)
3341 || (i0_feeds_i2_n)))
3342 i0src_copy2 = copy_rtx (i0src);
3343
3344 n_occurrences = 0;
3345 subst_low_luid = DF_INSN_LUID (i0);
3346 newpat = subst (newpat, i0dest, i0src, 0, 0, 0);
3347 substed_i0 = 1;
3348 }
3349
3350 /* Fail if an autoincrement side-effect has been duplicated. Be careful
3351 to count all the ways that I2SRC and I1SRC can be used. */
3352 if ((FIND_REG_INC_NOTE (i2, NULL_RTX) != 0
3353 && i2_is_used + added_sets_2 > 1)
3354 || (i1 != 0 && FIND_REG_INC_NOTE (i1, NULL_RTX) != 0
3355 && (i1_is_used + added_sets_1 + (added_sets_2 && i1_feeds_i2_n)
3356 > 1))
3357 || (i0 != 0 && FIND_REG_INC_NOTE (i0, NULL_RTX) != 0
3358 && (n_occurrences + added_sets_0
3359 + (added_sets_1 && i0_feeds_i1_n)
3360 + (added_sets_2 && i0_feeds_i2_n)
3361 > 1))
3362 /* Fail if we tried to make a new register. */
3363 || max_reg_num () != maxreg
3364 /* Fail if we couldn't do something and have a CLOBBER. */
3365 || GET_CODE (newpat) == CLOBBER
3366 /* Fail if this new pattern is a MULT and we didn't have one before
3367 at the outer level. */
3368 || (GET_CODE (newpat) == SET && GET_CODE (SET_SRC (newpat)) == MULT
3369 && ! have_mult))
3370 {
3371 undo_all ();
3372 return 0;
3373 }
3374
3375 /* If the actions of the earlier insns must be kept
3376 in addition to substituting them into the latest one,
3377 we must make a new PARALLEL for the latest insn
3378 to hold additional the SETs. */
3379
3380 if (added_sets_0 || added_sets_1 || added_sets_2)
3381 {
3382 int extra_sets = added_sets_0 + added_sets_1 + added_sets_2;
3383 combine_extras++;
3384
3385 if (GET_CODE (newpat) == PARALLEL)
3386 {
3387 rtvec old = XVEC (newpat, 0);
3388 total_sets = XVECLEN (newpat, 0) + extra_sets;
3389 newpat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (total_sets));
3390 memcpy (XVEC (newpat, 0)->elem, &old->elem[0],
3391 sizeof (old->elem[0]) * old->num_elem);
3392 }
3393 else
3394 {
3395 rtx old = newpat;
3396 total_sets = 1 + extra_sets;
3397 newpat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (total_sets));
3398 XVECEXP (newpat, 0, 0) = old;
3399 }
3400
3401 if (added_sets_0)
3402 XVECEXP (newpat, 0, --total_sets) = i0pat;
3403
3404 if (added_sets_1)
3405 {
3406 rtx t = i1pat;
3407 if (i0_feeds_i1_n)
3408 t = subst (t, i0dest, i0src_copy ? i0src_copy : i0src, 0, 0, 0);
3409
3410 XVECEXP (newpat, 0, --total_sets) = t;
3411 }
3412 if (added_sets_2)
3413 {
3414 rtx t = i2pat;
3415 if (i1_feeds_i2_n)
3416 t = subst (t, i1dest, i1src_copy ? i1src_copy : i1src, 0, 0,
3417 i0_feeds_i1_n && i0dest_in_i0src);
3418 if ((i0_feeds_i1_n && i1_feeds_i2_n) || i0_feeds_i2_n)
3419 t = subst (t, i0dest, i0src_copy2 ? i0src_copy2 : i0src, 0, 0, 0);
3420
3421 XVECEXP (newpat, 0, --total_sets) = t;
3422 }
3423 }
3424
3425 validate_replacement:
3426
3427 /* Note which hard regs this insn has as inputs. */
3428 mark_used_regs_combine (newpat);
3429
3430 /* If recog_for_combine fails, it strips existing clobbers. If we'll
3431 consider splitting this pattern, we might need these clobbers. */
3432 if (i1 && GET_CODE (newpat) == PARALLEL
3433 && GET_CODE (XVECEXP (newpat, 0, XVECLEN (newpat, 0) - 1)) == CLOBBER)
3434 {
3435 int len = XVECLEN (newpat, 0);
3436
3437 newpat_vec_with_clobbers = rtvec_alloc (len);
3438 for (i = 0; i < len; i++)
3439 RTVEC_ELT (newpat_vec_with_clobbers, i) = XVECEXP (newpat, 0, i);
3440 }
3441
3442 /* We have recognized nothing yet. */
3443 insn_code_number = -1;
3444
3445 /* See if this is a PARALLEL of two SETs where one SET's destination is
3446 a register that is unused and this isn't marked as an instruction that
3447 might trap in an EH region. In that case, we just need the other SET.
3448 We prefer this over the PARALLEL.
3449
3450 This can occur when simplifying a divmod insn. We *must* test for this
3451 case here because the code below that splits two independent SETs doesn't
3452 handle this case correctly when it updates the register status.
3453
3454 It's pointless doing this if we originally had two sets, one from
3455 i3, and one from i2. Combining then splitting the parallel results
3456 in the original i2 again plus an invalid insn (which we delete).
3457 The net effect is only to move instructions around, which makes
3458 debug info less accurate. */
3459
3460 if (!(added_sets_2 && i1 == 0)
3461 && is_parallel_of_n_reg_sets (newpat, 2)
3462 && asm_noperands (newpat) < 0)
3463 {
3464 rtx set0 = XVECEXP (newpat, 0, 0);
3465 rtx set1 = XVECEXP (newpat, 0, 1);
3466 rtx oldpat = newpat;
3467
3468 if (((REG_P (SET_DEST (set1))
3469 && find_reg_note (i3, REG_UNUSED, SET_DEST (set1)))
3470 || (GET_CODE (SET_DEST (set1)) == SUBREG
3471 && find_reg_note (i3, REG_UNUSED, SUBREG_REG (SET_DEST (set1)))))
3472 && insn_nothrow_p (i3)
3473 && !side_effects_p (SET_SRC (set1)))
3474 {
3475 newpat = set0;
3476 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3477 }
3478
3479 else if (((REG_P (SET_DEST (set0))
3480 && find_reg_note (i3, REG_UNUSED, SET_DEST (set0)))
3481 || (GET_CODE (SET_DEST (set0)) == SUBREG
3482 && find_reg_note (i3, REG_UNUSED,
3483 SUBREG_REG (SET_DEST (set0)))))
3484 && insn_nothrow_p (i3)
3485 && !side_effects_p (SET_SRC (set0)))
3486 {
3487 newpat = set1;
3488 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3489
3490 if (insn_code_number >= 0)
3491 changed_i3_dest = 1;
3492 }
3493
3494 if (insn_code_number < 0)
3495 newpat = oldpat;
3496 }
3497
3498 /* Is the result of combination a valid instruction? */
3499 if (insn_code_number < 0)
3500 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3501
3502 /* If we were combining three insns and the result is a simple SET
3503 with no ASM_OPERANDS that wasn't recognized, try to split it into two
3504 insns. There are two ways to do this. It can be split using a
3505 machine-specific method (like when you have an addition of a large
3506 constant) or by combine in the function find_split_point. */
3507
3508 if (i1 && insn_code_number < 0 && GET_CODE (newpat) == SET
3509 && asm_noperands (newpat) < 0)
3510 {
3511 rtx parallel, *split;
3512 rtx_insn *m_split_insn;
3513
3514 /* See if the MD file can split NEWPAT. If it can't, see if letting it
3515 use I2DEST as a scratch register will help. In the latter case,
3516 convert I2DEST to the mode of the source of NEWPAT if we can. */
3517
3518 m_split_insn = combine_split_insns (newpat, i3);
3519
3520 /* We can only use I2DEST as a scratch reg if it doesn't overlap any
3521 inputs of NEWPAT. */
3522
3523 /* ??? If I2DEST is not safe, and I1DEST exists, then it would be
3524 possible to try that as a scratch reg. This would require adding
3525 more code to make it work though. */
3526
3527 if (m_split_insn == 0 && ! reg_overlap_mentioned_p (i2dest, newpat))
3528 {
3529 machine_mode new_mode = GET_MODE (SET_DEST (newpat));
3530
3531 /* ??? Reusing i2dest without resetting the reg_stat entry for it
3532 (temporarily, until we are committed to this instruction
3533 combination) does not work: for example, any call to nonzero_bits
3534 on the register (from a splitter in the MD file, for example)
3535 will get the old information, which is invalid.
3536
3537 Since nowadays we can create registers during combine just fine,
3538 we should just create a new one here, not reuse i2dest. */
3539
3540 /* First try to split using the original register as a
3541 scratch register. */
3542 parallel = gen_rtx_PARALLEL (VOIDmode,
3543 gen_rtvec (2, newpat,
3544 gen_rtx_CLOBBER (VOIDmode,
3545 i2dest)));
3546 m_split_insn = combine_split_insns (parallel, i3);
3547
3548 /* If that didn't work, try changing the mode of I2DEST if
3549 we can. */
3550 if (m_split_insn == 0
3551 && new_mode != GET_MODE (i2dest)
3552 && new_mode != VOIDmode
3553 && can_change_dest_mode (i2dest, added_sets_2, new_mode))
3554 {
3555 machine_mode old_mode = GET_MODE (i2dest);
3556 rtx ni2dest;
3557
3558 if (REGNO (i2dest) < FIRST_PSEUDO_REGISTER)
3559 ni2dest = gen_rtx_REG (new_mode, REGNO (i2dest));
3560 else
3561 {
3562 SUBST_MODE (regno_reg_rtx[REGNO (i2dest)], new_mode);
3563 ni2dest = regno_reg_rtx[REGNO (i2dest)];
3564 }
3565
3566 parallel = (gen_rtx_PARALLEL
3567 (VOIDmode,
3568 gen_rtvec (2, newpat,
3569 gen_rtx_CLOBBER (VOIDmode,
3570 ni2dest))));
3571 m_split_insn = combine_split_insns (parallel, i3);
3572
3573 if (m_split_insn == 0
3574 && REGNO (i2dest) >= FIRST_PSEUDO_REGISTER)
3575 {
3576 struct undo *buf;
3577
3578 adjust_reg_mode (regno_reg_rtx[REGNO (i2dest)], old_mode);
3579 buf = undobuf.undos;
3580 undobuf.undos = buf->next;
3581 buf->next = undobuf.frees;
3582 undobuf.frees = buf;
3583 }
3584 }
3585
3586 i2scratch = m_split_insn != 0;
3587 }
3588
3589 /* If recog_for_combine has discarded clobbers, try to use them
3590 again for the split. */
3591 if (m_split_insn == 0 && newpat_vec_with_clobbers)
3592 {
3593 parallel = gen_rtx_PARALLEL (VOIDmode, newpat_vec_with_clobbers);
3594 m_split_insn = combine_split_insns (parallel, i3);
3595 }
3596
3597 if (m_split_insn && NEXT_INSN (m_split_insn) == NULL_RTX)
3598 {
3599 rtx m_split_pat = PATTERN (m_split_insn);
3600 insn_code_number = recog_for_combine (&m_split_pat, i3, &new_i3_notes);
3601 if (insn_code_number >= 0)
3602 newpat = m_split_pat;
3603 }
3604 else if (m_split_insn && NEXT_INSN (NEXT_INSN (m_split_insn)) == NULL_RTX
3605 && (next_nonnote_nondebug_insn (i2) == i3
3606 || ! use_crosses_set_p (PATTERN (m_split_insn), DF_INSN_LUID (i2))))
3607 {
3608 rtx i2set, i3set;
3609 rtx newi3pat = PATTERN (NEXT_INSN (m_split_insn));
3610 newi2pat = PATTERN (m_split_insn);
3611
3612 i3set = single_set (NEXT_INSN (m_split_insn));
3613 i2set = single_set (m_split_insn);
3614
3615 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
3616
3617 /* If I2 or I3 has multiple SETs, we won't know how to track
3618 register status, so don't use these insns. If I2's destination
3619 is used between I2 and I3, we also can't use these insns. */
3620
3621 if (i2_code_number >= 0 && i2set && i3set
3622 && (next_nonnote_nondebug_insn (i2) == i3
3623 || ! reg_used_between_p (SET_DEST (i2set), i2, i3)))
3624 insn_code_number = recog_for_combine (&newi3pat, i3,
3625 &new_i3_notes);
3626 if (insn_code_number >= 0)
3627 newpat = newi3pat;
3628
3629 /* It is possible that both insns now set the destination of I3.
3630 If so, we must show an extra use of it. */
3631
3632 if (insn_code_number >= 0)
3633 {
3634 rtx new_i3_dest = SET_DEST (i3set);
3635 rtx new_i2_dest = SET_DEST (i2set);
3636
3637 while (GET_CODE (new_i3_dest) == ZERO_EXTRACT
3638 || GET_CODE (new_i3_dest) == STRICT_LOW_PART
3639 || GET_CODE (new_i3_dest) == SUBREG)
3640 new_i3_dest = XEXP (new_i3_dest, 0);
3641
3642 while (GET_CODE (new_i2_dest) == ZERO_EXTRACT
3643 || GET_CODE (new_i2_dest) == STRICT_LOW_PART
3644 || GET_CODE (new_i2_dest) == SUBREG)
3645 new_i2_dest = XEXP (new_i2_dest, 0);
3646
3647 if (REG_P (new_i3_dest)
3648 && REG_P (new_i2_dest)
3649 && REGNO (new_i3_dest) == REGNO (new_i2_dest)
3650 && REGNO (new_i2_dest) < reg_n_sets_max)
3651 INC_REG_N_SETS (REGNO (new_i2_dest), 1);
3652 }
3653 }
3654
3655 /* If we can split it and use I2DEST, go ahead and see if that
3656 helps things be recognized. Verify that none of the registers
3657 are set between I2 and I3. */
3658 if (insn_code_number < 0
3659 && (split = find_split_point (&newpat, i3, false)) != 0
3660 && (!HAVE_cc0 || REG_P (i2dest))
3661 /* We need I2DEST in the proper mode. If it is a hard register
3662 or the only use of a pseudo, we can change its mode.
3663 Make sure we don't change a hard register to have a mode that
3664 isn't valid for it, or change the number of registers. */
3665 && (GET_MODE (*split) == GET_MODE (i2dest)
3666 || GET_MODE (*split) == VOIDmode
3667 || can_change_dest_mode (i2dest, added_sets_2,
3668 GET_MODE (*split)))
3669 && (next_nonnote_nondebug_insn (i2) == i3
3670 || ! use_crosses_set_p (*split, DF_INSN_LUID (i2)))
3671 /* We can't overwrite I2DEST if its value is still used by
3672 NEWPAT. */
3673 && ! reg_referenced_p (i2dest, newpat))
3674 {
3675 rtx newdest = i2dest;
3676 enum rtx_code split_code = GET_CODE (*split);
3677 machine_mode split_mode = GET_MODE (*split);
3678 bool subst_done = false;
3679 newi2pat = NULL_RTX;
3680
3681 i2scratch = true;
3682
3683 /* *SPLIT may be part of I2SRC, so make sure we have the
3684 original expression around for later debug processing.
3685 We should not need I2SRC any more in other cases. */
3686 if (MAY_HAVE_DEBUG_INSNS)
3687 i2src = copy_rtx (i2src);
3688 else
3689 i2src = NULL;
3690
3691 /* Get NEWDEST as a register in the proper mode. We have already
3692 validated that we can do this. */
3693 if (GET_MODE (i2dest) != split_mode && split_mode != VOIDmode)
3694 {
3695 if (REGNO (i2dest) < FIRST_PSEUDO_REGISTER)
3696 newdest = gen_rtx_REG (split_mode, REGNO (i2dest));
3697 else
3698 {
3699 SUBST_MODE (regno_reg_rtx[REGNO (i2dest)], split_mode);
3700 newdest = regno_reg_rtx[REGNO (i2dest)];
3701 }
3702 }
3703
3704 /* If *SPLIT is a (mult FOO (const_int pow2)), convert it to
3705 an ASHIFT. This can occur if it was inside a PLUS and hence
3706 appeared to be a memory address. This is a kludge. */
3707 if (split_code == MULT
3708 && CONST_INT_P (XEXP (*split, 1))
3709 && INTVAL (XEXP (*split, 1)) > 0
3710 && (i = exact_log2 (UINTVAL (XEXP (*split, 1)))) >= 0)
3711 {
3712 SUBST (*split, gen_rtx_ASHIFT (split_mode,
3713 XEXP (*split, 0), GEN_INT (i)));
3714 /* Update split_code because we may not have a multiply
3715 anymore. */
3716 split_code = GET_CODE (*split);
3717 }
3718
3719 /* Similarly for (plus (mult FOO (const_int pow2))). */
3720 if (split_code == PLUS
3721 && GET_CODE (XEXP (*split, 0)) == MULT
3722 && CONST_INT_P (XEXP (XEXP (*split, 0), 1))
3723 && INTVAL (XEXP (XEXP (*split, 0), 1)) > 0
3724 && (i = exact_log2 (UINTVAL (XEXP (XEXP (*split, 0), 1)))) >= 0)
3725 {
3726 rtx nsplit = XEXP (*split, 0);
3727 SUBST (XEXP (*split, 0), gen_rtx_ASHIFT (GET_MODE (nsplit),
3728 XEXP (nsplit, 0), GEN_INT (i)));
3729 /* Update split_code because we may not have a multiply
3730 anymore. */
3731 split_code = GET_CODE (*split);
3732 }
3733
3734 #ifdef INSN_SCHEDULING
3735 /* If *SPLIT is a paradoxical SUBREG, when we split it, it should
3736 be written as a ZERO_EXTEND. */
3737 if (split_code == SUBREG && MEM_P (SUBREG_REG (*split)))
3738 {
3739 /* Or as a SIGN_EXTEND if LOAD_EXTEND_OP says that that's
3740 what it really is. */
3741 if (LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (*split)))
3742 == SIGN_EXTEND)
3743 SUBST (*split, gen_rtx_SIGN_EXTEND (split_mode,
3744 SUBREG_REG (*split)));
3745 else
3746 SUBST (*split, gen_rtx_ZERO_EXTEND (split_mode,
3747 SUBREG_REG (*split)));
3748 }
3749 #endif
3750
3751 /* Attempt to split binary operators using arithmetic identities. */
3752 if (BINARY_P (SET_SRC (newpat))
3753 && split_mode == GET_MODE (SET_SRC (newpat))
3754 && ! side_effects_p (SET_SRC (newpat)))
3755 {
3756 rtx setsrc = SET_SRC (newpat);
3757 machine_mode mode = GET_MODE (setsrc);
3758 enum rtx_code code = GET_CODE (setsrc);
3759 rtx src_op0 = XEXP (setsrc, 0);
3760 rtx src_op1 = XEXP (setsrc, 1);
3761
3762 /* Split "X = Y op Y" as "Z = Y; X = Z op Z". */
3763 if (rtx_equal_p (src_op0, src_op1))
3764 {
3765 newi2pat = gen_rtx_SET (newdest, src_op0);
3766 SUBST (XEXP (setsrc, 0), newdest);
3767 SUBST (XEXP (setsrc, 1), newdest);
3768 subst_done = true;
3769 }
3770 /* Split "((P op Q) op R) op S" where op is PLUS or MULT. */
3771 else if ((code == PLUS || code == MULT)
3772 && GET_CODE (src_op0) == code
3773 && GET_CODE (XEXP (src_op0, 0)) == code
3774 && (INTEGRAL_MODE_P (mode)
3775 || (FLOAT_MODE_P (mode)
3776 && flag_unsafe_math_optimizations)))
3777 {
3778 rtx p = XEXP (XEXP (src_op0, 0), 0);
3779 rtx q = XEXP (XEXP (src_op0, 0), 1);
3780 rtx r = XEXP (src_op0, 1);
3781 rtx s = src_op1;
3782
3783 /* Split both "((X op Y) op X) op Y" and
3784 "((X op Y) op Y) op X" as "T op T" where T is
3785 "X op Y". */
3786 if ((rtx_equal_p (p,r) && rtx_equal_p (q,s))
3787 || (rtx_equal_p (p,s) && rtx_equal_p (q,r)))
3788 {
3789 newi2pat = gen_rtx_SET (newdest, XEXP (src_op0, 0));
3790 SUBST (XEXP (setsrc, 0), newdest);
3791 SUBST (XEXP (setsrc, 1), newdest);
3792 subst_done = true;
3793 }
3794 /* Split "((X op X) op Y) op Y)" as "T op T" where
3795 T is "X op Y". */
3796 else if (rtx_equal_p (p,q) && rtx_equal_p (r,s))
3797 {
3798 rtx tmp = simplify_gen_binary (code, mode, p, r);
3799 newi2pat = gen_rtx_SET (newdest, tmp);
3800 SUBST (XEXP (setsrc, 0), newdest);
3801 SUBST (XEXP (setsrc, 1), newdest);
3802 subst_done = true;
3803 }
3804 }
3805 }
3806
3807 if (!subst_done)
3808 {
3809 newi2pat = gen_rtx_SET (newdest, *split);
3810 SUBST (*split, newdest);
3811 }
3812
3813 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
3814
3815 /* recog_for_combine might have added CLOBBERs to newi2pat.
3816 Make sure NEWPAT does not depend on the clobbered regs. */
3817 if (GET_CODE (newi2pat) == PARALLEL)
3818 for (i = XVECLEN (newi2pat, 0) - 1; i >= 0; i--)
3819 if (GET_CODE (XVECEXP (newi2pat, 0, i)) == CLOBBER)
3820 {
3821 rtx reg = XEXP (XVECEXP (newi2pat, 0, i), 0);
3822 if (reg_overlap_mentioned_p (reg, newpat))
3823 {
3824 undo_all ();
3825 return 0;
3826 }
3827 }
3828
3829 /* If the split point was a MULT and we didn't have one before,
3830 don't use one now. */
3831 if (i2_code_number >= 0 && ! (split_code == MULT && ! have_mult))
3832 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3833 }
3834 }
3835
3836 /* Check for a case where we loaded from memory in a narrow mode and
3837 then sign extended it, but we need both registers. In that case,
3838 we have a PARALLEL with both loads from the same memory location.
3839 We can split this into a load from memory followed by a register-register
3840 copy. This saves at least one insn, more if register allocation can
3841 eliminate the copy.
3842
3843 We cannot do this if the destination of the first assignment is a
3844 condition code register or cc0. We eliminate this case by making sure
3845 the SET_DEST and SET_SRC have the same mode.
3846
3847 We cannot do this if the destination of the second assignment is
3848 a register that we have already assumed is zero-extended. Similarly
3849 for a SUBREG of such a register. */
3850
3851 else if (i1 && insn_code_number < 0 && asm_noperands (newpat) < 0
3852 && GET_CODE (newpat) == PARALLEL
3853 && XVECLEN (newpat, 0) == 2
3854 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
3855 && GET_CODE (SET_SRC (XVECEXP (newpat, 0, 0))) == SIGN_EXTEND
3856 && (GET_MODE (SET_DEST (XVECEXP (newpat, 0, 0)))
3857 == GET_MODE (SET_SRC (XVECEXP (newpat, 0, 0))))
3858 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
3859 && rtx_equal_p (SET_SRC (XVECEXP (newpat, 0, 1)),
3860 XEXP (SET_SRC (XVECEXP (newpat, 0, 0)), 0))
3861 && ! use_crosses_set_p (SET_SRC (XVECEXP (newpat, 0, 1)),
3862 DF_INSN_LUID (i2))
3863 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != ZERO_EXTRACT
3864 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != STRICT_LOW_PART
3865 && ! (temp_expr = SET_DEST (XVECEXP (newpat, 0, 1)),
3866 (REG_P (temp_expr)
3867 && reg_stat[REGNO (temp_expr)].nonzero_bits != 0
3868 && GET_MODE_PRECISION (GET_MODE (temp_expr)) < BITS_PER_WORD
3869 && GET_MODE_PRECISION (GET_MODE (temp_expr)) < HOST_BITS_PER_INT
3870 && (reg_stat[REGNO (temp_expr)].nonzero_bits
3871 != GET_MODE_MASK (word_mode))))
3872 && ! (GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) == SUBREG
3873 && (temp_expr = SUBREG_REG (SET_DEST (XVECEXP (newpat, 0, 1))),
3874 (REG_P (temp_expr)
3875 && reg_stat[REGNO (temp_expr)].nonzero_bits != 0
3876 && GET_MODE_PRECISION (GET_MODE (temp_expr)) < BITS_PER_WORD
3877 && GET_MODE_PRECISION (GET_MODE (temp_expr)) < HOST_BITS_PER_INT
3878 && (reg_stat[REGNO (temp_expr)].nonzero_bits
3879 != GET_MODE_MASK (word_mode)))))
3880 && ! reg_overlap_mentioned_p (SET_DEST (XVECEXP (newpat, 0, 1)),
3881 SET_SRC (XVECEXP (newpat, 0, 1)))
3882 && ! find_reg_note (i3, REG_UNUSED,
3883 SET_DEST (XVECEXP (newpat, 0, 0))))
3884 {
3885 rtx ni2dest;
3886
3887 newi2pat = XVECEXP (newpat, 0, 0);
3888 ni2dest = SET_DEST (XVECEXP (newpat, 0, 0));
3889 newpat = XVECEXP (newpat, 0, 1);
3890 SUBST (SET_SRC (newpat),
3891 gen_lowpart (GET_MODE (SET_SRC (newpat)), ni2dest));
3892 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
3893
3894 if (i2_code_number >= 0)
3895 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3896
3897 if (insn_code_number >= 0)
3898 swap_i2i3 = 1;
3899 }
3900
3901 /* Similarly, check for a case where we have a PARALLEL of two independent
3902 SETs but we started with three insns. In this case, we can do the sets
3903 as two separate insns. This case occurs when some SET allows two
3904 other insns to combine, but the destination of that SET is still live.
3905
3906 Also do this if we started with two insns and (at least) one of the
3907 resulting sets is a noop; this noop will be deleted later. */
3908
3909 else if (insn_code_number < 0 && asm_noperands (newpat) < 0
3910 && GET_CODE (newpat) == PARALLEL
3911 && XVECLEN (newpat, 0) == 2
3912 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
3913 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
3914 && (i1 || set_noop_p (XVECEXP (newpat, 0, 0))
3915 || set_noop_p (XVECEXP (newpat, 0, 1)))
3916 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) != ZERO_EXTRACT
3917 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) != STRICT_LOW_PART
3918 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != ZERO_EXTRACT
3919 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != STRICT_LOW_PART
3920 && ! reg_referenced_p (SET_DEST (XVECEXP (newpat, 0, 1)),
3921 XVECEXP (newpat, 0, 0))
3922 && ! reg_referenced_p (SET_DEST (XVECEXP (newpat, 0, 0)),
3923 XVECEXP (newpat, 0, 1))
3924 && ! (contains_muldiv (SET_SRC (XVECEXP (newpat, 0, 0)))
3925 && contains_muldiv (SET_SRC (XVECEXP (newpat, 0, 1)))))
3926 {
3927 rtx set0 = XVECEXP (newpat, 0, 0);
3928 rtx set1 = XVECEXP (newpat, 0, 1);
3929
3930 /* Normally, it doesn't matter which of the two is done first,
3931 but the one that references cc0 can't be the second, and
3932 one which uses any regs/memory set in between i2 and i3 can't
3933 be first. The PARALLEL might also have been pre-existing in i3,
3934 so we need to make sure that we won't wrongly hoist a SET to i2
3935 that would conflict with a death note present in there. */
3936 if (!use_crosses_set_p (SET_SRC (set1), DF_INSN_LUID (i2))
3937 && !(REG_P (SET_DEST (set1))
3938 && find_reg_note (i2, REG_DEAD, SET_DEST (set1)))
3939 && !(GET_CODE (SET_DEST (set1)) == SUBREG
3940 && find_reg_note (i2, REG_DEAD,
3941 SUBREG_REG (SET_DEST (set1))))
3942 && (!HAVE_cc0 || !reg_referenced_p (cc0_rtx, set0))
3943 /* If I3 is a jump, ensure that set0 is a jump so that
3944 we do not create invalid RTL. */
3945 && (!JUMP_P (i3) || SET_DEST (set0) == pc_rtx)
3946 )
3947 {
3948 newi2pat = set1;
3949 newpat = set0;
3950 }
3951 else if (!use_crosses_set_p (SET_SRC (set0), DF_INSN_LUID (i2))
3952 && !(REG_P (SET_DEST (set0))
3953 && find_reg_note (i2, REG_DEAD, SET_DEST (set0)))
3954 && !(GET_CODE (SET_DEST (set0)) == SUBREG
3955 && find_reg_note (i2, REG_DEAD,
3956 SUBREG_REG (SET_DEST (set0))))
3957 && (!HAVE_cc0 || !reg_referenced_p (cc0_rtx, set1))
3958 /* If I3 is a jump, ensure that set1 is a jump so that
3959 we do not create invalid RTL. */
3960 && (!JUMP_P (i3) || SET_DEST (set1) == pc_rtx)
3961 )
3962 {
3963 newi2pat = set0;
3964 newpat = set1;
3965 }
3966 else
3967 {
3968 undo_all ();
3969 return 0;
3970 }
3971
3972 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
3973
3974 if (i2_code_number >= 0)
3975 {
3976 /* recog_for_combine might have added CLOBBERs to newi2pat.
3977 Make sure NEWPAT does not depend on the clobbered regs. */
3978 if (GET_CODE (newi2pat) == PARALLEL)
3979 {
3980 for (i = XVECLEN (newi2pat, 0) - 1; i >= 0; i--)
3981 if (GET_CODE (XVECEXP (newi2pat, 0, i)) == CLOBBER)
3982 {
3983 rtx reg = XEXP (XVECEXP (newi2pat, 0, i), 0);
3984 if (reg_overlap_mentioned_p (reg, newpat))
3985 {
3986 undo_all ();
3987 return 0;
3988 }
3989 }
3990 }
3991
3992 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3993 }
3994 }
3995
3996 /* If it still isn't recognized, fail and change things back the way they
3997 were. */
3998 if ((insn_code_number < 0
3999 /* Is the result a reasonable ASM_OPERANDS? */
4000 && (! check_asm_operands (newpat) || added_sets_1 || added_sets_2)))
4001 {
4002 undo_all ();
4003 return 0;
4004 }
4005
4006 /* If we had to change another insn, make sure it is valid also. */
4007 if (undobuf.other_insn)
4008 {
4009 CLEAR_HARD_REG_SET (newpat_used_regs);
4010
4011 other_pat = PATTERN (undobuf.other_insn);
4012 other_code_number = recog_for_combine (&other_pat, undobuf.other_insn,
4013 &new_other_notes);
4014
4015 if (other_code_number < 0 && ! check_asm_operands (other_pat))
4016 {
4017 undo_all ();
4018 return 0;
4019 }
4020 }
4021
4022 /* If I2 is the CC0 setter and I3 is the CC0 user then check whether
4023 they are adjacent to each other or not. */
4024 if (HAVE_cc0)
4025 {
4026 rtx_insn *p = prev_nonnote_insn (i3);
4027 if (p && p != i2 && NONJUMP_INSN_P (p) && newi2pat
4028 && sets_cc0_p (newi2pat))
4029 {
4030 undo_all ();
4031 return 0;
4032 }
4033 }
4034
4035 /* Only allow this combination if insn_rtx_costs reports that the
4036 replacement instructions are cheaper than the originals. */
4037 if (!combine_validate_cost (i0, i1, i2, i3, newpat, newi2pat, other_pat))
4038 {
4039 undo_all ();
4040 return 0;
4041 }
4042
4043 if (MAY_HAVE_DEBUG_INSNS)
4044 {
4045 struct undo *undo;
4046
4047 for (undo = undobuf.undos; undo; undo = undo->next)
4048 if (undo->kind == UNDO_MODE)
4049 {
4050 rtx reg = *undo->where.r;
4051 machine_mode new_mode = GET_MODE (reg);
4052 machine_mode old_mode = undo->old_contents.m;
4053
4054 /* Temporarily revert mode back. */
4055 adjust_reg_mode (reg, old_mode);
4056
4057 if (reg == i2dest && i2scratch)
4058 {
4059 /* If we used i2dest as a scratch register with a
4060 different mode, substitute it for the original
4061 i2src while its original mode is temporarily
4062 restored, and then clear i2scratch so that we don't
4063 do it again later. */
4064 propagate_for_debug (i2, last_combined_insn, reg, i2src,
4065 this_basic_block);
4066 i2scratch = false;
4067 /* Put back the new mode. */
4068 adjust_reg_mode (reg, new_mode);
4069 }
4070 else
4071 {
4072 rtx tempreg = gen_raw_REG (old_mode, REGNO (reg));
4073 rtx_insn *first, *last;
4074
4075 if (reg == i2dest)
4076 {
4077 first = i2;
4078 last = last_combined_insn;
4079 }
4080 else
4081 {
4082 first = i3;
4083 last = undobuf.other_insn;
4084 gcc_assert (last);
4085 if (DF_INSN_LUID (last)
4086 < DF_INSN_LUID (last_combined_insn))
4087 last = last_combined_insn;
4088 }
4089
4090 /* We're dealing with a reg that changed mode but not
4091 meaning, so we want to turn it into a subreg for
4092 the new mode. However, because of REG sharing and
4093 because its mode had already changed, we have to do
4094 it in two steps. First, replace any debug uses of
4095 reg, with its original mode temporarily restored,
4096 with this copy we have created; then, replace the
4097 copy with the SUBREG of the original shared reg,
4098 once again changed to the new mode. */
4099 propagate_for_debug (first, last, reg, tempreg,
4100 this_basic_block);
4101 adjust_reg_mode (reg, new_mode);
4102 propagate_for_debug (first, last, tempreg,
4103 lowpart_subreg (old_mode, reg, new_mode),
4104 this_basic_block);
4105 }
4106 }
4107 }
4108
4109 /* If we will be able to accept this, we have made a
4110 change to the destination of I3. This requires us to
4111 do a few adjustments. */
4112
4113 if (changed_i3_dest)
4114 {
4115 PATTERN (i3) = newpat;
4116 adjust_for_new_dest (i3);
4117 }
4118
4119 /* We now know that we can do this combination. Merge the insns and
4120 update the status of registers and LOG_LINKS. */
4121
4122 if (undobuf.other_insn)
4123 {
4124 rtx note, next;
4125
4126 PATTERN (undobuf.other_insn) = other_pat;
4127
4128 /* If any of the notes in OTHER_INSN were REG_DEAD or REG_UNUSED,
4129 ensure that they are still valid. Then add any non-duplicate
4130 notes added by recog_for_combine. */
4131 for (note = REG_NOTES (undobuf.other_insn); note; note = next)
4132 {
4133 next = XEXP (note, 1);
4134
4135 if ((REG_NOTE_KIND (note) == REG_DEAD
4136 && !reg_referenced_p (XEXP (note, 0),
4137 PATTERN (undobuf.other_insn)))
4138 ||(REG_NOTE_KIND (note) == REG_UNUSED
4139 && !reg_set_p (XEXP (note, 0),
4140 PATTERN (undobuf.other_insn))))
4141 remove_note (undobuf.other_insn, note);
4142 }
4143
4144 distribute_notes (new_other_notes, undobuf.other_insn,
4145 undobuf.other_insn, NULL, NULL_RTX, NULL_RTX,
4146 NULL_RTX);
4147 }
4148
4149 if (swap_i2i3)
4150 {
4151 rtx_insn *insn;
4152 struct insn_link *link;
4153 rtx ni2dest;
4154
4155 /* I3 now uses what used to be its destination and which is now
4156 I2's destination. This requires us to do a few adjustments. */
4157 PATTERN (i3) = newpat;
4158 adjust_for_new_dest (i3);
4159
4160 /* We need a LOG_LINK from I3 to I2. But we used to have one,
4161 so we still will.
4162
4163 However, some later insn might be using I2's dest and have
4164 a LOG_LINK pointing at I3. We must remove this link.
4165 The simplest way to remove the link is to point it at I1,
4166 which we know will be a NOTE. */
4167
4168 /* newi2pat is usually a SET here; however, recog_for_combine might
4169 have added some clobbers. */
4170 if (GET_CODE (newi2pat) == PARALLEL)
4171 ni2dest = SET_DEST (XVECEXP (newi2pat, 0, 0));
4172 else
4173 ni2dest = SET_DEST (newi2pat);
4174
4175 for (insn = NEXT_INSN (i3);
4176 insn && (this_basic_block->next_bb == EXIT_BLOCK_PTR_FOR_FN (cfun)
4177 || insn != BB_HEAD (this_basic_block->next_bb));
4178 insn = NEXT_INSN (insn))
4179 {
4180 if (INSN_P (insn) && reg_referenced_p (ni2dest, PATTERN (insn)))
4181 {
4182 FOR_EACH_LOG_LINK (link, insn)
4183 if (link->insn == i3)
4184 link->insn = i1;
4185
4186 break;
4187 }
4188 }
4189 }
4190
4191 {
4192 rtx i3notes, i2notes, i1notes = 0, i0notes = 0;
4193 struct insn_link *i3links, *i2links, *i1links = 0, *i0links = 0;
4194 rtx midnotes = 0;
4195 int from_luid;
4196 /* Compute which registers we expect to eliminate. newi2pat may be setting
4197 either i3dest or i2dest, so we must check it. */
4198 rtx elim_i2 = ((newi2pat && reg_set_p (i2dest, newi2pat))
4199 || i2dest_in_i2src || i2dest_in_i1src || i2dest_in_i0src
4200 || !i2dest_killed
4201 ? 0 : i2dest);
4202 /* For i1, we need to compute both local elimination and global
4203 elimination information with respect to newi2pat because i1dest
4204 may be the same as i3dest, in which case newi2pat may be setting
4205 i1dest. Global information is used when distributing REG_DEAD
4206 note for i2 and i3, in which case it does matter if newi2pat sets
4207 i1dest or not.
4208
4209 Local information is used when distributing REG_DEAD note for i1,
4210 in which case it doesn't matter if newi2pat sets i1dest or not.
4211 See PR62151, if we have four insns combination:
4212 i0: r0 <- i0src
4213 i1: r1 <- i1src (using r0)
4214 REG_DEAD (r0)
4215 i2: r0 <- i2src (using r1)
4216 i3: r3 <- i3src (using r0)
4217 ix: using r0
4218 From i1's point of view, r0 is eliminated, no matter if it is set
4219 by newi2pat or not. In other words, REG_DEAD info for r0 in i1
4220 should be discarded.
4221
4222 Note local information only affects cases in forms like "I1->I2->I3",
4223 "I0->I1->I2->I3" or "I0&I1->I2, I2->I3". For other cases like
4224 "I0->I1, I1&I2->I3" or "I1&I2->I3", newi2pat won't set i1dest or
4225 i0dest anyway. */
4226 rtx local_elim_i1 = (i1 == 0 || i1dest_in_i1src || i1dest_in_i0src
4227 || !i1dest_killed
4228 ? 0 : i1dest);
4229 rtx elim_i1 = (local_elim_i1 == 0
4230 || (newi2pat && reg_set_p (i1dest, newi2pat))
4231 ? 0 : i1dest);
4232 /* Same case as i1. */
4233 rtx local_elim_i0 = (i0 == 0 || i0dest_in_i0src || !i0dest_killed
4234 ? 0 : i0dest);
4235 rtx elim_i0 = (local_elim_i0 == 0
4236 || (newi2pat && reg_set_p (i0dest, newi2pat))
4237 ? 0 : i0dest);
4238
4239 /* Get the old REG_NOTES and LOG_LINKS from all our insns and
4240 clear them. */
4241 i3notes = REG_NOTES (i3), i3links = LOG_LINKS (i3);
4242 i2notes = REG_NOTES (i2), i2links = LOG_LINKS (i2);
4243 if (i1)
4244 i1notes = REG_NOTES (i1), i1links = LOG_LINKS (i1);
4245 if (i0)
4246 i0notes = REG_NOTES (i0), i0links = LOG_LINKS (i0);
4247
4248 /* Ensure that we do not have something that should not be shared but
4249 occurs multiple times in the new insns. Check this by first
4250 resetting all the `used' flags and then copying anything is shared. */
4251
4252 reset_used_flags (i3notes);
4253 reset_used_flags (i2notes);
4254 reset_used_flags (i1notes);
4255 reset_used_flags (i0notes);
4256 reset_used_flags (newpat);
4257 reset_used_flags (newi2pat);
4258 if (undobuf.other_insn)
4259 reset_used_flags (PATTERN (undobuf.other_insn));
4260
4261 i3notes = copy_rtx_if_shared (i3notes);
4262 i2notes = copy_rtx_if_shared (i2notes);
4263 i1notes = copy_rtx_if_shared (i1notes);
4264 i0notes = copy_rtx_if_shared (i0notes);
4265 newpat = copy_rtx_if_shared (newpat);
4266 newi2pat = copy_rtx_if_shared (newi2pat);
4267 if (undobuf.other_insn)
4268 reset_used_flags (PATTERN (undobuf.other_insn));
4269
4270 INSN_CODE (i3) = insn_code_number;
4271 PATTERN (i3) = newpat;
4272
4273 if (CALL_P (i3) && CALL_INSN_FUNCTION_USAGE (i3))
4274 {
4275 rtx call_usage = CALL_INSN_FUNCTION_USAGE (i3);
4276
4277 reset_used_flags (call_usage);
4278 call_usage = copy_rtx (call_usage);
4279
4280 if (substed_i2)
4281 {
4282 /* I2SRC must still be meaningful at this point. Some splitting
4283 operations can invalidate I2SRC, but those operations do not
4284 apply to calls. */
4285 gcc_assert (i2src);
4286 replace_rtx (call_usage, i2dest, i2src);
4287 }
4288
4289 if (substed_i1)
4290 replace_rtx (call_usage, i1dest, i1src);
4291 if (substed_i0)
4292 replace_rtx (call_usage, i0dest, i0src);
4293
4294 CALL_INSN_FUNCTION_USAGE (i3) = call_usage;
4295 }
4296
4297 if (undobuf.other_insn)
4298 INSN_CODE (undobuf.other_insn) = other_code_number;
4299
4300 /* We had one special case above where I2 had more than one set and
4301 we replaced a destination of one of those sets with the destination
4302 of I3. In that case, we have to update LOG_LINKS of insns later
4303 in this basic block. Note that this (expensive) case is rare.
4304
4305 Also, in this case, we must pretend that all REG_NOTEs for I2
4306 actually came from I3, so that REG_UNUSED notes from I2 will be
4307 properly handled. */
4308
4309 if (i3_subst_into_i2)
4310 {
4311 for (i = 0; i < XVECLEN (PATTERN (i2), 0); i++)
4312 if ((GET_CODE (XVECEXP (PATTERN (i2), 0, i)) == SET
4313 || GET_CODE (XVECEXP (PATTERN (i2), 0, i)) == CLOBBER)
4314 && REG_P (SET_DEST (XVECEXP (PATTERN (i2), 0, i)))
4315 && SET_DEST (XVECEXP (PATTERN (i2), 0, i)) != i2dest
4316 && ! find_reg_note (i2, REG_UNUSED,
4317 SET_DEST (XVECEXP (PATTERN (i2), 0, i))))
4318 for (temp_insn = NEXT_INSN (i2);
4319 temp_insn
4320 && (this_basic_block->next_bb == EXIT_BLOCK_PTR_FOR_FN (cfun)
4321 || BB_HEAD (this_basic_block) != temp_insn);
4322 temp_insn = NEXT_INSN (temp_insn))
4323 if (temp_insn != i3 && INSN_P (temp_insn))
4324 FOR_EACH_LOG_LINK (link, temp_insn)
4325 if (link->insn == i2)
4326 link->insn = i3;
4327
4328 if (i3notes)
4329 {
4330 rtx link = i3notes;
4331 while (XEXP (link, 1))
4332 link = XEXP (link, 1);
4333 XEXP (link, 1) = i2notes;
4334 }
4335 else
4336 i3notes = i2notes;
4337 i2notes = 0;
4338 }
4339
4340 LOG_LINKS (i3) = NULL;
4341 REG_NOTES (i3) = 0;
4342 LOG_LINKS (i2) = NULL;
4343 REG_NOTES (i2) = 0;
4344
4345 if (newi2pat)
4346 {
4347 if (MAY_HAVE_DEBUG_INSNS && i2scratch)
4348 propagate_for_debug (i2, last_combined_insn, i2dest, i2src,
4349 this_basic_block);
4350 INSN_CODE (i2) = i2_code_number;
4351 PATTERN (i2) = newi2pat;
4352 }
4353 else
4354 {
4355 if (MAY_HAVE_DEBUG_INSNS && i2src)
4356 propagate_for_debug (i2, last_combined_insn, i2dest, i2src,
4357 this_basic_block);
4358 SET_INSN_DELETED (i2);
4359 }
4360
4361 if (i1)
4362 {
4363 LOG_LINKS (i1) = NULL;
4364 REG_NOTES (i1) = 0;
4365 if (MAY_HAVE_DEBUG_INSNS)
4366 propagate_for_debug (i1, last_combined_insn, i1dest, i1src,
4367 this_basic_block);
4368 SET_INSN_DELETED (i1);
4369 }
4370
4371 if (i0)
4372 {
4373 LOG_LINKS (i0) = NULL;
4374 REG_NOTES (i0) = 0;
4375 if (MAY_HAVE_DEBUG_INSNS)
4376 propagate_for_debug (i0, last_combined_insn, i0dest, i0src,
4377 this_basic_block);
4378 SET_INSN_DELETED (i0);
4379 }
4380
4381 /* Get death notes for everything that is now used in either I3 or
4382 I2 and used to die in a previous insn. If we built two new
4383 patterns, move from I1 to I2 then I2 to I3 so that we get the
4384 proper movement on registers that I2 modifies. */
4385
4386 if (i0)
4387 from_luid = DF_INSN_LUID (i0);
4388 else if (i1)
4389 from_luid = DF_INSN_LUID (i1);
4390 else
4391 from_luid = DF_INSN_LUID (i2);
4392 if (newi2pat)
4393 move_deaths (newi2pat, NULL_RTX, from_luid, i2, &midnotes);
4394 move_deaths (newpat, newi2pat, from_luid, i3, &midnotes);
4395
4396 /* Distribute all the LOG_LINKS and REG_NOTES from I1, I2, and I3. */
4397 if (i3notes)
4398 distribute_notes (i3notes, i3, i3, newi2pat ? i2 : NULL,
4399 elim_i2, elim_i1, elim_i0);
4400 if (i2notes)
4401 distribute_notes (i2notes, i2, i3, newi2pat ? i2 : NULL,
4402 elim_i2, elim_i1, elim_i0);
4403 if (i1notes)
4404 distribute_notes (i1notes, i1, i3, newi2pat ? i2 : NULL,
4405 elim_i2, local_elim_i1, local_elim_i0);
4406 if (i0notes)
4407 distribute_notes (i0notes, i0, i3, newi2pat ? i2 : NULL,
4408 elim_i2, elim_i1, local_elim_i0);
4409 if (midnotes)
4410 distribute_notes (midnotes, NULL, i3, newi2pat ? i2 : NULL,
4411 elim_i2, elim_i1, elim_i0);
4412
4413 /* Distribute any notes added to I2 or I3 by recog_for_combine. We
4414 know these are REG_UNUSED and want them to go to the desired insn,
4415 so we always pass it as i3. */
4416
4417 if (newi2pat && new_i2_notes)
4418 distribute_notes (new_i2_notes, i2, i2, NULL, NULL_RTX, NULL_RTX,
4419 NULL_RTX);
4420
4421 if (new_i3_notes)
4422 distribute_notes (new_i3_notes, i3, i3, NULL, NULL_RTX, NULL_RTX,
4423 NULL_RTX);
4424
4425 /* If I3DEST was used in I3SRC, it really died in I3. We may need to
4426 put a REG_DEAD note for it somewhere. If NEWI2PAT exists and sets
4427 I3DEST, the death must be somewhere before I2, not I3. If we passed I3
4428 in that case, it might delete I2. Similarly for I2 and I1.
4429 Show an additional death due to the REG_DEAD note we make here. If
4430 we discard it in distribute_notes, we will decrement it again. */
4431
4432 if (i3dest_killed)
4433 {
4434 rtx new_note = alloc_reg_note (REG_DEAD, i3dest_killed, NULL_RTX);
4435 if (newi2pat && reg_set_p (i3dest_killed, newi2pat))
4436 distribute_notes (new_note, NULL, i2, NULL, elim_i2,
4437 elim_i1, elim_i0);
4438 else
4439 distribute_notes (new_note, NULL, i3, newi2pat ? i2 : NULL,
4440 elim_i2, elim_i1, elim_i0);
4441 }
4442
4443 if (i2dest_in_i2src)
4444 {
4445 rtx new_note = alloc_reg_note (REG_DEAD, i2dest, NULL_RTX);
4446 if (newi2pat && reg_set_p (i2dest, newi2pat))
4447 distribute_notes (new_note, NULL, i2, NULL, NULL_RTX,
4448 NULL_RTX, NULL_RTX);
4449 else
4450 distribute_notes (new_note, NULL, i3, newi2pat ? i2 : NULL,
4451 NULL_RTX, NULL_RTX, NULL_RTX);
4452 }
4453
4454 if (i1dest_in_i1src)
4455 {
4456 rtx new_note = alloc_reg_note (REG_DEAD, i1dest, NULL_RTX);
4457 if (newi2pat && reg_set_p (i1dest, newi2pat))
4458 distribute_notes (new_note, NULL, i2, NULL, NULL_RTX,
4459 NULL_RTX, NULL_RTX);
4460 else
4461 distribute_notes (new_note, NULL, i3, newi2pat ? i2 : NULL,
4462 NULL_RTX, NULL_RTX, NULL_RTX);
4463 }
4464
4465 if (i0dest_in_i0src)
4466 {
4467 rtx new_note = alloc_reg_note (REG_DEAD, i0dest, NULL_RTX);
4468 if (newi2pat && reg_set_p (i0dest, newi2pat))
4469 distribute_notes (new_note, NULL, i2, NULL, NULL_RTX,
4470 NULL_RTX, NULL_RTX);
4471 else
4472 distribute_notes (new_note, NULL, i3, newi2pat ? i2 : NULL,
4473 NULL_RTX, NULL_RTX, NULL_RTX);
4474 }
4475
4476 distribute_links (i3links);
4477 distribute_links (i2links);
4478 distribute_links (i1links);
4479 distribute_links (i0links);
4480
4481 if (REG_P (i2dest))
4482 {
4483 struct insn_link *link;
4484 rtx_insn *i2_insn = 0;
4485 rtx i2_val = 0, set;
4486
4487 /* The insn that used to set this register doesn't exist, and
4488 this life of the register may not exist either. See if one of
4489 I3's links points to an insn that sets I2DEST. If it does,
4490 that is now the last known value for I2DEST. If we don't update
4491 this and I2 set the register to a value that depended on its old
4492 contents, we will get confused. If this insn is used, thing
4493 will be set correctly in combine_instructions. */
4494 FOR_EACH_LOG_LINK (link, i3)
4495 if ((set = single_set (link->insn)) != 0
4496 && rtx_equal_p (i2dest, SET_DEST (set)))
4497 i2_insn = link->insn, i2_val = SET_SRC (set);
4498
4499 record_value_for_reg (i2dest, i2_insn, i2_val);
4500
4501 /* If the reg formerly set in I2 died only once and that was in I3,
4502 zero its use count so it won't make `reload' do any work. */
4503 if (! added_sets_2
4504 && (newi2pat == 0 || ! reg_mentioned_p (i2dest, newi2pat))
4505 && ! i2dest_in_i2src
4506 && REGNO (i2dest) < reg_n_sets_max)
4507 INC_REG_N_SETS (REGNO (i2dest), -1);
4508 }
4509
4510 if (i1 && REG_P (i1dest))
4511 {
4512 struct insn_link *link;
4513 rtx_insn *i1_insn = 0;
4514 rtx i1_val = 0, set;
4515
4516 FOR_EACH_LOG_LINK (link, i3)
4517 if ((set = single_set (link->insn)) != 0
4518 && rtx_equal_p (i1dest, SET_DEST (set)))
4519 i1_insn = link->insn, i1_val = SET_SRC (set);
4520
4521 record_value_for_reg (i1dest, i1_insn, i1_val);
4522
4523 if (! added_sets_1
4524 && ! i1dest_in_i1src
4525 && REGNO (i1dest) < reg_n_sets_max)
4526 INC_REG_N_SETS (REGNO (i1dest), -1);
4527 }
4528
4529 if (i0 && REG_P (i0dest))
4530 {
4531 struct insn_link *link;
4532 rtx_insn *i0_insn = 0;
4533 rtx i0_val = 0, set;
4534
4535 FOR_EACH_LOG_LINK (link, i3)
4536 if ((set = single_set (link->insn)) != 0
4537 && rtx_equal_p (i0dest, SET_DEST (set)))
4538 i0_insn = link->insn, i0_val = SET_SRC (set);
4539
4540 record_value_for_reg (i0dest, i0_insn, i0_val);
4541
4542 if (! added_sets_0
4543 && ! i0dest_in_i0src
4544 && REGNO (i0dest) < reg_n_sets_max)
4545 INC_REG_N_SETS (REGNO (i0dest), -1);
4546 }
4547
4548 /* Update reg_stat[].nonzero_bits et al for any changes that may have
4549 been made to this insn. The order is important, because newi2pat
4550 can affect nonzero_bits of newpat. */
4551 if (newi2pat)
4552 note_stores (newi2pat, set_nonzero_bits_and_sign_copies, NULL);
4553 note_stores (newpat, set_nonzero_bits_and_sign_copies, NULL);
4554 }
4555
4556 if (undobuf.other_insn != NULL_RTX)
4557 {
4558 if (dump_file)
4559 {
4560 fprintf (dump_file, "modifying other_insn ");
4561 dump_insn_slim (dump_file, undobuf.other_insn);
4562 }
4563 df_insn_rescan (undobuf.other_insn);
4564 }
4565
4566 if (i0 && !(NOTE_P (i0) && (NOTE_KIND (i0) == NOTE_INSN_DELETED)))
4567 {
4568 if (dump_file)
4569 {
4570 fprintf (dump_file, "modifying insn i0 ");
4571 dump_insn_slim (dump_file, i0);
4572 }
4573 df_insn_rescan (i0);
4574 }
4575
4576 if (i1 && !(NOTE_P (i1) && (NOTE_KIND (i1) == NOTE_INSN_DELETED)))
4577 {
4578 if (dump_file)
4579 {
4580 fprintf (dump_file, "modifying insn i1 ");
4581 dump_insn_slim (dump_file, i1);
4582 }
4583 df_insn_rescan (i1);
4584 }
4585
4586 if (i2 && !(NOTE_P (i2) && (NOTE_KIND (i2) == NOTE_INSN_DELETED)))
4587 {
4588 if (dump_file)
4589 {
4590 fprintf (dump_file, "modifying insn i2 ");
4591 dump_insn_slim (dump_file, i2);
4592 }
4593 df_insn_rescan (i2);
4594 }
4595
4596 if (i3 && !(NOTE_P (i3) && (NOTE_KIND (i3) == NOTE_INSN_DELETED)))
4597 {
4598 if (dump_file)
4599 {
4600 fprintf (dump_file, "modifying insn i3 ");
4601 dump_insn_slim (dump_file, i3);
4602 }
4603 df_insn_rescan (i3);
4604 }
4605
4606 /* Set new_direct_jump_p if a new return or simple jump instruction
4607 has been created. Adjust the CFG accordingly. */
4608 if (returnjump_p (i3) || any_uncondjump_p (i3))
4609 {
4610 *new_direct_jump_p = 1;
4611 mark_jump_label (PATTERN (i3), i3, 0);
4612 update_cfg_for_uncondjump (i3);
4613 }
4614
4615 if (undobuf.other_insn != NULL_RTX
4616 && (returnjump_p (undobuf.other_insn)
4617 || any_uncondjump_p (undobuf.other_insn)))
4618 {
4619 *new_direct_jump_p = 1;
4620 update_cfg_for_uncondjump (undobuf.other_insn);
4621 }
4622
4623 /* A noop might also need cleaning up of CFG, if it comes from the
4624 simplification of a jump. */
4625 if (JUMP_P (i3)
4626 && GET_CODE (newpat) == SET
4627 && SET_SRC (newpat) == pc_rtx
4628 && SET_DEST (newpat) == pc_rtx)
4629 {
4630 *new_direct_jump_p = 1;
4631 update_cfg_for_uncondjump (i3);
4632 }
4633
4634 if (undobuf.other_insn != NULL_RTX
4635 && JUMP_P (undobuf.other_insn)
4636 && GET_CODE (PATTERN (undobuf.other_insn)) == SET
4637 && SET_SRC (PATTERN (undobuf.other_insn)) == pc_rtx
4638 && SET_DEST (PATTERN (undobuf.other_insn)) == pc_rtx)
4639 {
4640 *new_direct_jump_p = 1;
4641 update_cfg_for_uncondjump (undobuf.other_insn);
4642 }
4643
4644 combine_successes++;
4645 undo_commit ();
4646
4647 if (added_links_insn
4648 && (newi2pat == 0 || DF_INSN_LUID (added_links_insn) < DF_INSN_LUID (i2))
4649 && DF_INSN_LUID (added_links_insn) < DF_INSN_LUID (i3))
4650 return added_links_insn;
4651 else
4652 return newi2pat ? i2 : i3;
4653 }
4654 \f
4655 /* Get a marker for undoing to the current state. */
4656
4657 static void *
4658 get_undo_marker (void)
4659 {
4660 return undobuf.undos;
4661 }
4662
4663 /* Undo the modifications up to the marker. */
4664
4665 static void
4666 undo_to_marker (void *marker)
4667 {
4668 struct undo *undo, *next;
4669
4670 for (undo = undobuf.undos; undo != marker; undo = next)
4671 {
4672 gcc_assert (undo);
4673
4674 next = undo->next;
4675 switch (undo->kind)
4676 {
4677 case UNDO_RTX:
4678 *undo->where.r = undo->old_contents.r;
4679 break;
4680 case UNDO_INT:
4681 *undo->where.i = undo->old_contents.i;
4682 break;
4683 case UNDO_MODE:
4684 adjust_reg_mode (*undo->where.r, undo->old_contents.m);
4685 break;
4686 case UNDO_LINKS:
4687 *undo->where.l = undo->old_contents.l;
4688 break;
4689 default:
4690 gcc_unreachable ();
4691 }
4692
4693 undo->next = undobuf.frees;
4694 undobuf.frees = undo;
4695 }
4696
4697 undobuf.undos = (struct undo *) marker;
4698 }
4699
4700 /* Undo all the modifications recorded in undobuf. */
4701
4702 static void
4703 undo_all (void)
4704 {
4705 undo_to_marker (0);
4706 }
4707
4708 /* We've committed to accepting the changes we made. Move all
4709 of the undos to the free list. */
4710
4711 static void
4712 undo_commit (void)
4713 {
4714 struct undo *undo, *next;
4715
4716 for (undo = undobuf.undos; undo; undo = next)
4717 {
4718 next = undo->next;
4719 undo->next = undobuf.frees;
4720 undobuf.frees = undo;
4721 }
4722 undobuf.undos = 0;
4723 }
4724 \f
4725 /* Find the innermost point within the rtx at LOC, possibly LOC itself,
4726 where we have an arithmetic expression and return that point. LOC will
4727 be inside INSN.
4728
4729 try_combine will call this function to see if an insn can be split into
4730 two insns. */
4731
4732 static rtx *
4733 find_split_point (rtx *loc, rtx_insn *insn, bool set_src)
4734 {
4735 rtx x = *loc;
4736 enum rtx_code code = GET_CODE (x);
4737 rtx *split;
4738 unsigned HOST_WIDE_INT len = 0;
4739 HOST_WIDE_INT pos = 0;
4740 int unsignedp = 0;
4741 rtx inner = NULL_RTX;
4742
4743 /* First special-case some codes. */
4744 switch (code)
4745 {
4746 case SUBREG:
4747 #ifdef INSN_SCHEDULING
4748 /* If we are making a paradoxical SUBREG invalid, it becomes a split
4749 point. */
4750 if (MEM_P (SUBREG_REG (x)))
4751 return loc;
4752 #endif
4753 return find_split_point (&SUBREG_REG (x), insn, false);
4754
4755 case MEM:
4756 /* If we have (mem (const ..)) or (mem (symbol_ref ...)), split it
4757 using LO_SUM and HIGH. */
4758 if (HAVE_lo_sum && (GET_CODE (XEXP (x, 0)) == CONST
4759 || GET_CODE (XEXP (x, 0)) == SYMBOL_REF))
4760 {
4761 machine_mode address_mode = get_address_mode (x);
4762
4763 SUBST (XEXP (x, 0),
4764 gen_rtx_LO_SUM (address_mode,
4765 gen_rtx_HIGH (address_mode, XEXP (x, 0)),
4766 XEXP (x, 0)));
4767 return &XEXP (XEXP (x, 0), 0);
4768 }
4769
4770 /* If we have a PLUS whose second operand is a constant and the
4771 address is not valid, perhaps will can split it up using
4772 the machine-specific way to split large constants. We use
4773 the first pseudo-reg (one of the virtual regs) as a placeholder;
4774 it will not remain in the result. */
4775 if (GET_CODE (XEXP (x, 0)) == PLUS
4776 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
4777 && ! memory_address_addr_space_p (GET_MODE (x), XEXP (x, 0),
4778 MEM_ADDR_SPACE (x)))
4779 {
4780 rtx reg = regno_reg_rtx[FIRST_PSEUDO_REGISTER];
4781 rtx_insn *seq = combine_split_insns (gen_rtx_SET (reg, XEXP (x, 0)),
4782 subst_insn);
4783
4784 /* This should have produced two insns, each of which sets our
4785 placeholder. If the source of the second is a valid address,
4786 we can make put both sources together and make a split point
4787 in the middle. */
4788
4789 if (seq
4790 && NEXT_INSN (seq) != NULL_RTX
4791 && NEXT_INSN (NEXT_INSN (seq)) == NULL_RTX
4792 && NONJUMP_INSN_P (seq)
4793 && GET_CODE (PATTERN (seq)) == SET
4794 && SET_DEST (PATTERN (seq)) == reg
4795 && ! reg_mentioned_p (reg,
4796 SET_SRC (PATTERN (seq)))
4797 && NONJUMP_INSN_P (NEXT_INSN (seq))
4798 && GET_CODE (PATTERN (NEXT_INSN (seq))) == SET
4799 && SET_DEST (PATTERN (NEXT_INSN (seq))) == reg
4800 && memory_address_addr_space_p
4801 (GET_MODE (x), SET_SRC (PATTERN (NEXT_INSN (seq))),
4802 MEM_ADDR_SPACE (x)))
4803 {
4804 rtx src1 = SET_SRC (PATTERN (seq));
4805 rtx src2 = SET_SRC (PATTERN (NEXT_INSN (seq)));
4806
4807 /* Replace the placeholder in SRC2 with SRC1. If we can
4808 find where in SRC2 it was placed, that can become our
4809 split point and we can replace this address with SRC2.
4810 Just try two obvious places. */
4811
4812 src2 = replace_rtx (src2, reg, src1);
4813 split = 0;
4814 if (XEXP (src2, 0) == src1)
4815 split = &XEXP (src2, 0);
4816 else if (GET_RTX_FORMAT (GET_CODE (XEXP (src2, 0)))[0] == 'e'
4817 && XEXP (XEXP (src2, 0), 0) == src1)
4818 split = &XEXP (XEXP (src2, 0), 0);
4819
4820 if (split)
4821 {
4822 SUBST (XEXP (x, 0), src2);
4823 return split;
4824 }
4825 }
4826
4827 /* If that didn't work, perhaps the first operand is complex and
4828 needs to be computed separately, so make a split point there.
4829 This will occur on machines that just support REG + CONST
4830 and have a constant moved through some previous computation. */
4831
4832 else if (!OBJECT_P (XEXP (XEXP (x, 0), 0))
4833 && ! (GET_CODE (XEXP (XEXP (x, 0), 0)) == SUBREG
4834 && OBJECT_P (SUBREG_REG (XEXP (XEXP (x, 0), 0)))))
4835 return &XEXP (XEXP (x, 0), 0);
4836 }
4837
4838 /* If we have a PLUS whose first operand is complex, try computing it
4839 separately by making a split there. */
4840 if (GET_CODE (XEXP (x, 0)) == PLUS
4841 && ! memory_address_addr_space_p (GET_MODE (x), XEXP (x, 0),
4842 MEM_ADDR_SPACE (x))
4843 && ! OBJECT_P (XEXP (XEXP (x, 0), 0))
4844 && ! (GET_CODE (XEXP (XEXP (x, 0), 0)) == SUBREG
4845 && OBJECT_P (SUBREG_REG (XEXP (XEXP (x, 0), 0)))))
4846 return &XEXP (XEXP (x, 0), 0);
4847 break;
4848
4849 case SET:
4850 /* If SET_DEST is CC0 and SET_SRC is not an operand, a COMPARE, or a
4851 ZERO_EXTRACT, the most likely reason why this doesn't match is that
4852 we need to put the operand into a register. So split at that
4853 point. */
4854
4855 if (SET_DEST (x) == cc0_rtx
4856 && GET_CODE (SET_SRC (x)) != COMPARE
4857 && GET_CODE (SET_SRC (x)) != ZERO_EXTRACT
4858 && !OBJECT_P (SET_SRC (x))
4859 && ! (GET_CODE (SET_SRC (x)) == SUBREG
4860 && OBJECT_P (SUBREG_REG (SET_SRC (x)))))
4861 return &SET_SRC (x);
4862
4863 /* See if we can split SET_SRC as it stands. */
4864 split = find_split_point (&SET_SRC (x), insn, true);
4865 if (split && split != &SET_SRC (x))
4866 return split;
4867
4868 /* See if we can split SET_DEST as it stands. */
4869 split = find_split_point (&SET_DEST (x), insn, false);
4870 if (split && split != &SET_DEST (x))
4871 return split;
4872
4873 /* See if this is a bitfield assignment with everything constant. If
4874 so, this is an IOR of an AND, so split it into that. */
4875 if (GET_CODE (SET_DEST (x)) == ZERO_EXTRACT
4876 && HWI_COMPUTABLE_MODE_P (GET_MODE (XEXP (SET_DEST (x), 0)))
4877 && CONST_INT_P (XEXP (SET_DEST (x), 1))
4878 && CONST_INT_P (XEXP (SET_DEST (x), 2))
4879 && CONST_INT_P (SET_SRC (x))
4880 && ((INTVAL (XEXP (SET_DEST (x), 1))
4881 + INTVAL (XEXP (SET_DEST (x), 2)))
4882 <= GET_MODE_PRECISION (GET_MODE (XEXP (SET_DEST (x), 0))))
4883 && ! side_effects_p (XEXP (SET_DEST (x), 0)))
4884 {
4885 HOST_WIDE_INT pos = INTVAL (XEXP (SET_DEST (x), 2));
4886 unsigned HOST_WIDE_INT len = INTVAL (XEXP (SET_DEST (x), 1));
4887 unsigned HOST_WIDE_INT src = INTVAL (SET_SRC (x));
4888 rtx dest = XEXP (SET_DEST (x), 0);
4889 machine_mode mode = GET_MODE (dest);
4890 unsigned HOST_WIDE_INT mask
4891 = (HOST_WIDE_INT_1U << len) - 1;
4892 rtx or_mask;
4893
4894 if (BITS_BIG_ENDIAN)
4895 pos = GET_MODE_PRECISION (mode) - len - pos;
4896
4897 or_mask = gen_int_mode (src << pos, mode);
4898 if (src == mask)
4899 SUBST (SET_SRC (x),
4900 simplify_gen_binary (IOR, mode, dest, or_mask));
4901 else
4902 {
4903 rtx negmask = gen_int_mode (~(mask << pos), mode);
4904 SUBST (SET_SRC (x),
4905 simplify_gen_binary (IOR, mode,
4906 simplify_gen_binary (AND, mode,
4907 dest, negmask),
4908 or_mask));
4909 }
4910
4911 SUBST (SET_DEST (x), dest);
4912
4913 split = find_split_point (&SET_SRC (x), insn, true);
4914 if (split && split != &SET_SRC (x))
4915 return split;
4916 }
4917
4918 /* Otherwise, see if this is an operation that we can split into two.
4919 If so, try to split that. */
4920 code = GET_CODE (SET_SRC (x));
4921
4922 switch (code)
4923 {
4924 case AND:
4925 /* If we are AND'ing with a large constant that is only a single
4926 bit and the result is only being used in a context where we
4927 need to know if it is zero or nonzero, replace it with a bit
4928 extraction. This will avoid the large constant, which might
4929 have taken more than one insn to make. If the constant were
4930 not a valid argument to the AND but took only one insn to make,
4931 this is no worse, but if it took more than one insn, it will
4932 be better. */
4933
4934 if (CONST_INT_P (XEXP (SET_SRC (x), 1))
4935 && REG_P (XEXP (SET_SRC (x), 0))
4936 && (pos = exact_log2 (UINTVAL (XEXP (SET_SRC (x), 1)))) >= 7
4937 && REG_P (SET_DEST (x))
4938 && (split = find_single_use (SET_DEST (x), insn, NULL)) != 0
4939 && (GET_CODE (*split) == EQ || GET_CODE (*split) == NE)
4940 && XEXP (*split, 0) == SET_DEST (x)
4941 && XEXP (*split, 1) == const0_rtx)
4942 {
4943 rtx extraction = make_extraction (GET_MODE (SET_DEST (x)),
4944 XEXP (SET_SRC (x), 0),
4945 pos, NULL_RTX, 1, 1, 0, 0);
4946 if (extraction != 0)
4947 {
4948 SUBST (SET_SRC (x), extraction);
4949 return find_split_point (loc, insn, false);
4950 }
4951 }
4952 break;
4953
4954 case NE:
4955 /* If STORE_FLAG_VALUE is -1, this is (NE X 0) and only one bit of X
4956 is known to be on, this can be converted into a NEG of a shift. */
4957 if (STORE_FLAG_VALUE == -1 && XEXP (SET_SRC (x), 1) == const0_rtx
4958 && GET_MODE (SET_SRC (x)) == GET_MODE (XEXP (SET_SRC (x), 0))
4959 && 1 <= (pos = exact_log2
4960 (nonzero_bits (XEXP (SET_SRC (x), 0),
4961 GET_MODE (XEXP (SET_SRC (x), 0))))))
4962 {
4963 machine_mode mode = GET_MODE (XEXP (SET_SRC (x), 0));
4964
4965 SUBST (SET_SRC (x),
4966 gen_rtx_NEG (mode,
4967 gen_rtx_LSHIFTRT (mode,
4968 XEXP (SET_SRC (x), 0),
4969 GEN_INT (pos))));
4970
4971 split = find_split_point (&SET_SRC (x), insn, true);
4972 if (split && split != &SET_SRC (x))
4973 return split;
4974 }
4975 break;
4976
4977 case SIGN_EXTEND:
4978 inner = XEXP (SET_SRC (x), 0);
4979
4980 /* We can't optimize if either mode is a partial integer
4981 mode as we don't know how many bits are significant
4982 in those modes. */
4983 if (GET_MODE_CLASS (GET_MODE (inner)) == MODE_PARTIAL_INT
4984 || GET_MODE_CLASS (GET_MODE (SET_SRC (x))) == MODE_PARTIAL_INT)
4985 break;
4986
4987 pos = 0;
4988 len = GET_MODE_PRECISION (GET_MODE (inner));
4989 unsignedp = 0;
4990 break;
4991
4992 case SIGN_EXTRACT:
4993 case ZERO_EXTRACT:
4994 if (CONST_INT_P (XEXP (SET_SRC (x), 1))
4995 && CONST_INT_P (XEXP (SET_SRC (x), 2)))
4996 {
4997 inner = XEXP (SET_SRC (x), 0);
4998 len = INTVAL (XEXP (SET_SRC (x), 1));
4999 pos = INTVAL (XEXP (SET_SRC (x), 2));
5000
5001 if (BITS_BIG_ENDIAN)
5002 pos = GET_MODE_PRECISION (GET_MODE (inner)) - len - pos;
5003 unsignedp = (code == ZERO_EXTRACT);
5004 }
5005 break;
5006
5007 default:
5008 break;
5009 }
5010
5011 if (len && pos >= 0
5012 && pos + len <= GET_MODE_PRECISION (GET_MODE (inner)))
5013 {
5014 machine_mode mode = GET_MODE (SET_SRC (x));
5015
5016 /* For unsigned, we have a choice of a shift followed by an
5017 AND or two shifts. Use two shifts for field sizes where the
5018 constant might be too large. We assume here that we can
5019 always at least get 8-bit constants in an AND insn, which is
5020 true for every current RISC. */
5021
5022 if (unsignedp && len <= 8)
5023 {
5024 unsigned HOST_WIDE_INT mask
5025 = (HOST_WIDE_INT_1U << len) - 1;
5026 SUBST (SET_SRC (x),
5027 gen_rtx_AND (mode,
5028 gen_rtx_LSHIFTRT
5029 (mode, gen_lowpart (mode, inner),
5030 GEN_INT (pos)),
5031 gen_int_mode (mask, mode)));
5032
5033 split = find_split_point (&SET_SRC (x), insn, true);
5034 if (split && split != &SET_SRC (x))
5035 return split;
5036 }
5037 else
5038 {
5039 SUBST (SET_SRC (x),
5040 gen_rtx_fmt_ee
5041 (unsignedp ? LSHIFTRT : ASHIFTRT, mode,
5042 gen_rtx_ASHIFT (mode,
5043 gen_lowpart (mode, inner),
5044 GEN_INT (GET_MODE_PRECISION (mode)
5045 - len - pos)),
5046 GEN_INT (GET_MODE_PRECISION (mode) - len)));
5047
5048 split = find_split_point (&SET_SRC (x), insn, true);
5049 if (split && split != &SET_SRC (x))
5050 return split;
5051 }
5052 }
5053
5054 /* See if this is a simple operation with a constant as the second
5055 operand. It might be that this constant is out of range and hence
5056 could be used as a split point. */
5057 if (BINARY_P (SET_SRC (x))
5058 && CONSTANT_P (XEXP (SET_SRC (x), 1))
5059 && (OBJECT_P (XEXP (SET_SRC (x), 0))
5060 || (GET_CODE (XEXP (SET_SRC (x), 0)) == SUBREG
5061 && OBJECT_P (SUBREG_REG (XEXP (SET_SRC (x), 0))))))
5062 return &XEXP (SET_SRC (x), 1);
5063
5064 /* Finally, see if this is a simple operation with its first operand
5065 not in a register. The operation might require this operand in a
5066 register, so return it as a split point. We can always do this
5067 because if the first operand were another operation, we would have
5068 already found it as a split point. */
5069 if ((BINARY_P (SET_SRC (x)) || UNARY_P (SET_SRC (x)))
5070 && ! register_operand (XEXP (SET_SRC (x), 0), VOIDmode))
5071 return &XEXP (SET_SRC (x), 0);
5072
5073 return 0;
5074
5075 case AND:
5076 case IOR:
5077 /* We write NOR as (and (not A) (not B)), but if we don't have a NOR,
5078 it is better to write this as (not (ior A B)) so we can split it.
5079 Similarly for IOR. */
5080 if (GET_CODE (XEXP (x, 0)) == NOT && GET_CODE (XEXP (x, 1)) == NOT)
5081 {
5082 SUBST (*loc,
5083 gen_rtx_NOT (GET_MODE (x),
5084 gen_rtx_fmt_ee (code == IOR ? AND : IOR,
5085 GET_MODE (x),
5086 XEXP (XEXP (x, 0), 0),
5087 XEXP (XEXP (x, 1), 0))));
5088 return find_split_point (loc, insn, set_src);
5089 }
5090
5091 /* Many RISC machines have a large set of logical insns. If the
5092 second operand is a NOT, put it first so we will try to split the
5093 other operand first. */
5094 if (GET_CODE (XEXP (x, 1)) == NOT)
5095 {
5096 rtx tem = XEXP (x, 0);
5097 SUBST (XEXP (x, 0), XEXP (x, 1));
5098 SUBST (XEXP (x, 1), tem);
5099 }
5100 break;
5101
5102 case PLUS:
5103 case MINUS:
5104 /* Canonicalization can produce (minus A (mult B C)), where C is a
5105 constant. It may be better to try splitting (plus (mult B -C) A)
5106 instead if this isn't a multiply by a power of two. */
5107 if (set_src && code == MINUS && GET_CODE (XEXP (x, 1)) == MULT
5108 && GET_CODE (XEXP (XEXP (x, 1), 1)) == CONST_INT
5109 && !pow2p_hwi (INTVAL (XEXP (XEXP (x, 1), 1))))
5110 {
5111 machine_mode mode = GET_MODE (x);
5112 unsigned HOST_WIDE_INT this_int = INTVAL (XEXP (XEXP (x, 1), 1));
5113 HOST_WIDE_INT other_int = trunc_int_for_mode (-this_int, mode);
5114 SUBST (*loc, gen_rtx_PLUS (mode,
5115 gen_rtx_MULT (mode,
5116 XEXP (XEXP (x, 1), 0),
5117 gen_int_mode (other_int,
5118 mode)),
5119 XEXP (x, 0)));
5120 return find_split_point (loc, insn, set_src);
5121 }
5122
5123 /* Split at a multiply-accumulate instruction. However if this is
5124 the SET_SRC, we likely do not have such an instruction and it's
5125 worthless to try this split. */
5126 if (!set_src
5127 && (GET_CODE (XEXP (x, 0)) == MULT
5128 || (GET_CODE (XEXP (x, 0)) == ASHIFT
5129 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT)))
5130 return loc;
5131
5132 default:
5133 break;
5134 }
5135
5136 /* Otherwise, select our actions depending on our rtx class. */
5137 switch (GET_RTX_CLASS (code))
5138 {
5139 case RTX_BITFIELD_OPS: /* This is ZERO_EXTRACT and SIGN_EXTRACT. */
5140 case RTX_TERNARY:
5141 split = find_split_point (&XEXP (x, 2), insn, false);
5142 if (split)
5143 return split;
5144 /* fall through */
5145 case RTX_BIN_ARITH:
5146 case RTX_COMM_ARITH:
5147 case RTX_COMPARE:
5148 case RTX_COMM_COMPARE:
5149 split = find_split_point (&XEXP (x, 1), insn, false);
5150 if (split)
5151 return split;
5152 /* fall through */
5153 case RTX_UNARY:
5154 /* Some machines have (and (shift ...) ...) insns. If X is not
5155 an AND, but XEXP (X, 0) is, use it as our split point. */
5156 if (GET_CODE (x) != AND && GET_CODE (XEXP (x, 0)) == AND)
5157 return &XEXP (x, 0);
5158
5159 split = find_split_point (&XEXP (x, 0), insn, false);
5160 if (split)
5161 return split;
5162 return loc;
5163
5164 default:
5165 /* Otherwise, we don't have a split point. */
5166 return 0;
5167 }
5168 }
5169 \f
5170 /* Throughout X, replace FROM with TO, and return the result.
5171 The result is TO if X is FROM;
5172 otherwise the result is X, but its contents may have been modified.
5173 If they were modified, a record was made in undobuf so that
5174 undo_all will (among other things) return X to its original state.
5175
5176 If the number of changes necessary is too much to record to undo,
5177 the excess changes are not made, so the result is invalid.
5178 The changes already made can still be undone.
5179 undobuf.num_undo is incremented for such changes, so by testing that
5180 the caller can tell whether the result is valid.
5181
5182 `n_occurrences' is incremented each time FROM is replaced.
5183
5184 IN_DEST is nonzero if we are processing the SET_DEST of a SET.
5185
5186 IN_COND is nonzero if we are at the top level of a condition.
5187
5188 UNIQUE_COPY is nonzero if each substitution must be unique. We do this
5189 by copying if `n_occurrences' is nonzero. */
5190
5191 static rtx
5192 subst (rtx x, rtx from, rtx to, int in_dest, int in_cond, int unique_copy)
5193 {
5194 enum rtx_code code = GET_CODE (x);
5195 machine_mode op0_mode = VOIDmode;
5196 const char *fmt;
5197 int len, i;
5198 rtx new_rtx;
5199
5200 /* Two expressions are equal if they are identical copies of a shared
5201 RTX or if they are both registers with the same register number
5202 and mode. */
5203
5204 #define COMBINE_RTX_EQUAL_P(X,Y) \
5205 ((X) == (Y) \
5206 || (REG_P (X) && REG_P (Y) \
5207 && REGNO (X) == REGNO (Y) && GET_MODE (X) == GET_MODE (Y)))
5208
5209 /* Do not substitute into clobbers of regs -- this will never result in
5210 valid RTL. */
5211 if (GET_CODE (x) == CLOBBER && REG_P (XEXP (x, 0)))
5212 return x;
5213
5214 if (! in_dest && COMBINE_RTX_EQUAL_P (x, from))
5215 {
5216 n_occurrences++;
5217 return (unique_copy && n_occurrences > 1 ? copy_rtx (to) : to);
5218 }
5219
5220 /* If X and FROM are the same register but different modes, they
5221 will not have been seen as equal above. However, the log links code
5222 will make a LOG_LINKS entry for that case. If we do nothing, we
5223 will try to rerecognize our original insn and, when it succeeds,
5224 we will delete the feeding insn, which is incorrect.
5225
5226 So force this insn not to match in this (rare) case. */
5227 if (! in_dest && code == REG && REG_P (from)
5228 && reg_overlap_mentioned_p (x, from))
5229 return gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
5230
5231 /* If this is an object, we are done unless it is a MEM or LO_SUM, both
5232 of which may contain things that can be combined. */
5233 if (code != MEM && code != LO_SUM && OBJECT_P (x))
5234 return x;
5235
5236 /* It is possible to have a subexpression appear twice in the insn.
5237 Suppose that FROM is a register that appears within TO.
5238 Then, after that subexpression has been scanned once by `subst',
5239 the second time it is scanned, TO may be found. If we were
5240 to scan TO here, we would find FROM within it and create a
5241 self-referent rtl structure which is completely wrong. */
5242 if (COMBINE_RTX_EQUAL_P (x, to))
5243 return to;
5244
5245 /* Parallel asm_operands need special attention because all of the
5246 inputs are shared across the arms. Furthermore, unsharing the
5247 rtl results in recognition failures. Failure to handle this case
5248 specially can result in circular rtl.
5249
5250 Solve this by doing a normal pass across the first entry of the
5251 parallel, and only processing the SET_DESTs of the subsequent
5252 entries. Ug. */
5253
5254 if (code == PARALLEL
5255 && GET_CODE (XVECEXP (x, 0, 0)) == SET
5256 && GET_CODE (SET_SRC (XVECEXP (x, 0, 0))) == ASM_OPERANDS)
5257 {
5258 new_rtx = subst (XVECEXP (x, 0, 0), from, to, 0, 0, unique_copy);
5259
5260 /* If this substitution failed, this whole thing fails. */
5261 if (GET_CODE (new_rtx) == CLOBBER
5262 && XEXP (new_rtx, 0) == const0_rtx)
5263 return new_rtx;
5264
5265 SUBST (XVECEXP (x, 0, 0), new_rtx);
5266
5267 for (i = XVECLEN (x, 0) - 1; i >= 1; i--)
5268 {
5269 rtx dest = SET_DEST (XVECEXP (x, 0, i));
5270
5271 if (!REG_P (dest)
5272 && GET_CODE (dest) != CC0
5273 && GET_CODE (dest) != PC)
5274 {
5275 new_rtx = subst (dest, from, to, 0, 0, unique_copy);
5276
5277 /* If this substitution failed, this whole thing fails. */
5278 if (GET_CODE (new_rtx) == CLOBBER
5279 && XEXP (new_rtx, 0) == const0_rtx)
5280 return new_rtx;
5281
5282 SUBST (SET_DEST (XVECEXP (x, 0, i)), new_rtx);
5283 }
5284 }
5285 }
5286 else
5287 {
5288 len = GET_RTX_LENGTH (code);
5289 fmt = GET_RTX_FORMAT (code);
5290
5291 /* We don't need to process a SET_DEST that is a register, CC0,
5292 or PC, so set up to skip this common case. All other cases
5293 where we want to suppress replacing something inside a
5294 SET_SRC are handled via the IN_DEST operand. */
5295 if (code == SET
5296 && (REG_P (SET_DEST (x))
5297 || GET_CODE (SET_DEST (x)) == CC0
5298 || GET_CODE (SET_DEST (x)) == PC))
5299 fmt = "ie";
5300
5301 /* Trying to simplify the operands of a widening MULT is not likely
5302 to create RTL matching a machine insn. */
5303 if (code == MULT
5304 && (GET_CODE (XEXP (x, 0)) == ZERO_EXTEND
5305 || GET_CODE (XEXP (x, 0)) == SIGN_EXTEND)
5306 && (GET_CODE (XEXP (x, 1)) == ZERO_EXTEND
5307 || GET_CODE (XEXP (x, 1)) == SIGN_EXTEND)
5308 && REG_P (XEXP (XEXP (x, 0), 0))
5309 && REG_P (XEXP (XEXP (x, 1), 0))
5310 && from == to)
5311 return x;
5312
5313
5314 /* Get the mode of operand 0 in case X is now a SIGN_EXTEND of a
5315 constant. */
5316 if (fmt[0] == 'e')
5317 op0_mode = GET_MODE (XEXP (x, 0));
5318
5319 for (i = 0; i < len; i++)
5320 {
5321 if (fmt[i] == 'E')
5322 {
5323 int j;
5324 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
5325 {
5326 if (COMBINE_RTX_EQUAL_P (XVECEXP (x, i, j), from))
5327 {
5328 new_rtx = (unique_copy && n_occurrences
5329 ? copy_rtx (to) : to);
5330 n_occurrences++;
5331 }
5332 else
5333 {
5334 new_rtx = subst (XVECEXP (x, i, j), from, to, 0, 0,
5335 unique_copy);
5336
5337 /* If this substitution failed, this whole thing
5338 fails. */
5339 if (GET_CODE (new_rtx) == CLOBBER
5340 && XEXP (new_rtx, 0) == const0_rtx)
5341 return new_rtx;
5342 }
5343
5344 SUBST (XVECEXP (x, i, j), new_rtx);
5345 }
5346 }
5347 else if (fmt[i] == 'e')
5348 {
5349 /* If this is a register being set, ignore it. */
5350 new_rtx = XEXP (x, i);
5351 if (in_dest
5352 && i == 0
5353 && (((code == SUBREG || code == ZERO_EXTRACT)
5354 && REG_P (new_rtx))
5355 || code == STRICT_LOW_PART))
5356 ;
5357
5358 else if (COMBINE_RTX_EQUAL_P (XEXP (x, i), from))
5359 {
5360 /* In general, don't install a subreg involving two
5361 modes not tieable. It can worsen register
5362 allocation, and can even make invalid reload
5363 insns, since the reg inside may need to be copied
5364 from in the outside mode, and that may be invalid
5365 if it is an fp reg copied in integer mode.
5366
5367 We allow two exceptions to this: It is valid if
5368 it is inside another SUBREG and the mode of that
5369 SUBREG and the mode of the inside of TO is
5370 tieable and it is valid if X is a SET that copies
5371 FROM to CC0. */
5372
5373 if (GET_CODE (to) == SUBREG
5374 && ! MODES_TIEABLE_P (GET_MODE (to),
5375 GET_MODE (SUBREG_REG (to)))
5376 && ! (code == SUBREG
5377 && MODES_TIEABLE_P (GET_MODE (x),
5378 GET_MODE (SUBREG_REG (to))))
5379 && (!HAVE_cc0
5380 || (! (code == SET
5381 && i == 1
5382 && XEXP (x, 0) == cc0_rtx))))
5383 return gen_rtx_CLOBBER (VOIDmode, const0_rtx);
5384
5385 if (code == SUBREG
5386 && REG_P (to)
5387 && REGNO (to) < FIRST_PSEUDO_REGISTER
5388 && simplify_subreg_regno (REGNO (to), GET_MODE (to),
5389 SUBREG_BYTE (x),
5390 GET_MODE (x)) < 0)
5391 return gen_rtx_CLOBBER (VOIDmode, const0_rtx);
5392
5393 new_rtx = (unique_copy && n_occurrences ? copy_rtx (to) : to);
5394 n_occurrences++;
5395 }
5396 else
5397 /* If we are in a SET_DEST, suppress most cases unless we
5398 have gone inside a MEM, in which case we want to
5399 simplify the address. We assume here that things that
5400 are actually part of the destination have their inner
5401 parts in the first expression. This is true for SUBREG,
5402 STRICT_LOW_PART, and ZERO_EXTRACT, which are the only
5403 things aside from REG and MEM that should appear in a
5404 SET_DEST. */
5405 new_rtx = subst (XEXP (x, i), from, to,
5406 (((in_dest
5407 && (code == SUBREG || code == STRICT_LOW_PART
5408 || code == ZERO_EXTRACT))
5409 || code == SET)
5410 && i == 0),
5411 code == IF_THEN_ELSE && i == 0,
5412 unique_copy);
5413
5414 /* If we found that we will have to reject this combination,
5415 indicate that by returning the CLOBBER ourselves, rather than
5416 an expression containing it. This will speed things up as
5417 well as prevent accidents where two CLOBBERs are considered
5418 to be equal, thus producing an incorrect simplification. */
5419
5420 if (GET_CODE (new_rtx) == CLOBBER && XEXP (new_rtx, 0) == const0_rtx)
5421 return new_rtx;
5422
5423 if (GET_CODE (x) == SUBREG && CONST_SCALAR_INT_P (new_rtx))
5424 {
5425 machine_mode mode = GET_MODE (x);
5426
5427 x = simplify_subreg (GET_MODE (x), new_rtx,
5428 GET_MODE (SUBREG_REG (x)),
5429 SUBREG_BYTE (x));
5430 if (! x)
5431 x = gen_rtx_CLOBBER (mode, const0_rtx);
5432 }
5433 else if (CONST_SCALAR_INT_P (new_rtx)
5434 && GET_CODE (x) == ZERO_EXTEND)
5435 {
5436 x = simplify_unary_operation (ZERO_EXTEND, GET_MODE (x),
5437 new_rtx, GET_MODE (XEXP (x, 0)));
5438 gcc_assert (x);
5439 }
5440 else
5441 SUBST (XEXP (x, i), new_rtx);
5442 }
5443 }
5444 }
5445
5446 /* Check if we are loading something from the constant pool via float
5447 extension; in this case we would undo compress_float_constant
5448 optimization and degenerate constant load to an immediate value. */
5449 if (GET_CODE (x) == FLOAT_EXTEND
5450 && MEM_P (XEXP (x, 0))
5451 && MEM_READONLY_P (XEXP (x, 0)))
5452 {
5453 rtx tmp = avoid_constant_pool_reference (x);
5454 if (x != tmp)
5455 return x;
5456 }
5457
5458 /* Try to simplify X. If the simplification changed the code, it is likely
5459 that further simplification will help, so loop, but limit the number
5460 of repetitions that will be performed. */
5461
5462 for (i = 0; i < 4; i++)
5463 {
5464 /* If X is sufficiently simple, don't bother trying to do anything
5465 with it. */
5466 if (code != CONST_INT && code != REG && code != CLOBBER)
5467 x = combine_simplify_rtx (x, op0_mode, in_dest, in_cond);
5468
5469 if (GET_CODE (x) == code)
5470 break;
5471
5472 code = GET_CODE (x);
5473
5474 /* We no longer know the original mode of operand 0 since we
5475 have changed the form of X) */
5476 op0_mode = VOIDmode;
5477 }
5478
5479 return x;
5480 }
5481 \f
5482 /* Simplify X, a piece of RTL. We just operate on the expression at the
5483 outer level; call `subst' to simplify recursively. Return the new
5484 expression.
5485
5486 OP0_MODE is the original mode of XEXP (x, 0). IN_DEST is nonzero
5487 if we are inside a SET_DEST. IN_COND is nonzero if we are at the top level
5488 of a condition. */
5489
5490 static rtx
5491 combine_simplify_rtx (rtx x, machine_mode op0_mode, int in_dest,
5492 int in_cond)
5493 {
5494 enum rtx_code code = GET_CODE (x);
5495 machine_mode mode = GET_MODE (x);
5496 rtx temp;
5497 int i;
5498
5499 /* If this is a commutative operation, put a constant last and a complex
5500 expression first. We don't need to do this for comparisons here. */
5501 if (COMMUTATIVE_ARITH_P (x)
5502 && swap_commutative_operands_p (XEXP (x, 0), XEXP (x, 1)))
5503 {
5504 temp = XEXP (x, 0);
5505 SUBST (XEXP (x, 0), XEXP (x, 1));
5506 SUBST (XEXP (x, 1), temp);
5507 }
5508
5509 /* Try to fold this expression in case we have constants that weren't
5510 present before. */
5511 temp = 0;
5512 switch (GET_RTX_CLASS (code))
5513 {
5514 case RTX_UNARY:
5515 if (op0_mode == VOIDmode)
5516 op0_mode = GET_MODE (XEXP (x, 0));
5517 temp = simplify_unary_operation (code, mode, XEXP (x, 0), op0_mode);
5518 break;
5519 case RTX_COMPARE:
5520 case RTX_COMM_COMPARE:
5521 {
5522 machine_mode cmp_mode = GET_MODE (XEXP (x, 0));
5523 if (cmp_mode == VOIDmode)
5524 {
5525 cmp_mode = GET_MODE (XEXP (x, 1));
5526 if (cmp_mode == VOIDmode)
5527 cmp_mode = op0_mode;
5528 }
5529 temp = simplify_relational_operation (code, mode, cmp_mode,
5530 XEXP (x, 0), XEXP (x, 1));
5531 }
5532 break;
5533 case RTX_COMM_ARITH:
5534 case RTX_BIN_ARITH:
5535 temp = simplify_binary_operation (code, mode, XEXP (x, 0), XEXP (x, 1));
5536 break;
5537 case RTX_BITFIELD_OPS:
5538 case RTX_TERNARY:
5539 temp = simplify_ternary_operation (code, mode, op0_mode, XEXP (x, 0),
5540 XEXP (x, 1), XEXP (x, 2));
5541 break;
5542 default:
5543 break;
5544 }
5545
5546 if (temp)
5547 {
5548 x = temp;
5549 code = GET_CODE (temp);
5550 op0_mode = VOIDmode;
5551 mode = GET_MODE (temp);
5552 }
5553
5554 /* If this is a simple operation applied to an IF_THEN_ELSE, try
5555 applying it to the arms of the IF_THEN_ELSE. This often simplifies
5556 things. Check for cases where both arms are testing the same
5557 condition.
5558
5559 Don't do anything if all operands are very simple. */
5560
5561 if ((BINARY_P (x)
5562 && ((!OBJECT_P (XEXP (x, 0))
5563 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
5564 && OBJECT_P (SUBREG_REG (XEXP (x, 0)))))
5565 || (!OBJECT_P (XEXP (x, 1))
5566 && ! (GET_CODE (XEXP (x, 1)) == SUBREG
5567 && OBJECT_P (SUBREG_REG (XEXP (x, 1)))))))
5568 || (UNARY_P (x)
5569 && (!OBJECT_P (XEXP (x, 0))
5570 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
5571 && OBJECT_P (SUBREG_REG (XEXP (x, 0)))))))
5572 {
5573 rtx cond, true_rtx, false_rtx;
5574
5575 cond = if_then_else_cond (x, &true_rtx, &false_rtx);
5576 if (cond != 0
5577 /* If everything is a comparison, what we have is highly unlikely
5578 to be simpler, so don't use it. */
5579 && ! (COMPARISON_P (x)
5580 && (COMPARISON_P (true_rtx) || COMPARISON_P (false_rtx))))
5581 {
5582 rtx cop1 = const0_rtx;
5583 enum rtx_code cond_code = simplify_comparison (NE, &cond, &cop1);
5584
5585 if (cond_code == NE && COMPARISON_P (cond))
5586 return x;
5587
5588 /* Simplify the alternative arms; this may collapse the true and
5589 false arms to store-flag values. Be careful to use copy_rtx
5590 here since true_rtx or false_rtx might share RTL with x as a
5591 result of the if_then_else_cond call above. */
5592 true_rtx = subst (copy_rtx (true_rtx), pc_rtx, pc_rtx, 0, 0, 0);
5593 false_rtx = subst (copy_rtx (false_rtx), pc_rtx, pc_rtx, 0, 0, 0);
5594
5595 /* If true_rtx and false_rtx are not general_operands, an if_then_else
5596 is unlikely to be simpler. */
5597 if (general_operand (true_rtx, VOIDmode)
5598 && general_operand (false_rtx, VOIDmode))
5599 {
5600 enum rtx_code reversed;
5601
5602 /* Restarting if we generate a store-flag expression will cause
5603 us to loop. Just drop through in this case. */
5604
5605 /* If the result values are STORE_FLAG_VALUE and zero, we can
5606 just make the comparison operation. */
5607 if (true_rtx == const_true_rtx && false_rtx == const0_rtx)
5608 x = simplify_gen_relational (cond_code, mode, VOIDmode,
5609 cond, cop1);
5610 else if (true_rtx == const0_rtx && false_rtx == const_true_rtx
5611 && ((reversed = reversed_comparison_code_parts
5612 (cond_code, cond, cop1, NULL))
5613 != UNKNOWN))
5614 x = simplify_gen_relational (reversed, mode, VOIDmode,
5615 cond, cop1);
5616
5617 /* Likewise, we can make the negate of a comparison operation
5618 if the result values are - STORE_FLAG_VALUE and zero. */
5619 else if (CONST_INT_P (true_rtx)
5620 && INTVAL (true_rtx) == - STORE_FLAG_VALUE
5621 && false_rtx == const0_rtx)
5622 x = simplify_gen_unary (NEG, mode,
5623 simplify_gen_relational (cond_code,
5624 mode, VOIDmode,
5625 cond, cop1),
5626 mode);
5627 else if (CONST_INT_P (false_rtx)
5628 && INTVAL (false_rtx) == - STORE_FLAG_VALUE
5629 && true_rtx == const0_rtx
5630 && ((reversed = reversed_comparison_code_parts
5631 (cond_code, cond, cop1, NULL))
5632 != UNKNOWN))
5633 x = simplify_gen_unary (NEG, mode,
5634 simplify_gen_relational (reversed,
5635 mode, VOIDmode,
5636 cond, cop1),
5637 mode);
5638 else
5639 return gen_rtx_IF_THEN_ELSE (mode,
5640 simplify_gen_relational (cond_code,
5641 mode,
5642 VOIDmode,
5643 cond,
5644 cop1),
5645 true_rtx, false_rtx);
5646
5647 code = GET_CODE (x);
5648 op0_mode = VOIDmode;
5649 }
5650 }
5651 }
5652
5653 /* First see if we can apply the inverse distributive law. */
5654 if (code == PLUS || code == MINUS
5655 || code == AND || code == IOR || code == XOR)
5656 {
5657 x = apply_distributive_law (x);
5658 code = GET_CODE (x);
5659 op0_mode = VOIDmode;
5660 }
5661
5662 /* If CODE is an associative operation not otherwise handled, see if we
5663 can associate some operands. This can win if they are constants or
5664 if they are logically related (i.e. (a & b) & a). */
5665 if ((code == PLUS || code == MINUS || code == MULT || code == DIV
5666 || code == AND || code == IOR || code == XOR
5667 || code == SMAX || code == SMIN || code == UMAX || code == UMIN)
5668 && ((INTEGRAL_MODE_P (mode) && code != DIV)
5669 || (flag_associative_math && FLOAT_MODE_P (mode))))
5670 {
5671 if (GET_CODE (XEXP (x, 0)) == code)
5672 {
5673 rtx other = XEXP (XEXP (x, 0), 0);
5674 rtx inner_op0 = XEXP (XEXP (x, 0), 1);
5675 rtx inner_op1 = XEXP (x, 1);
5676 rtx inner;
5677
5678 /* Make sure we pass the constant operand if any as the second
5679 one if this is a commutative operation. */
5680 if (CONSTANT_P (inner_op0) && COMMUTATIVE_ARITH_P (x))
5681 std::swap (inner_op0, inner_op1);
5682 inner = simplify_binary_operation (code == MINUS ? PLUS
5683 : code == DIV ? MULT
5684 : code,
5685 mode, inner_op0, inner_op1);
5686
5687 /* For commutative operations, try the other pair if that one
5688 didn't simplify. */
5689 if (inner == 0 && COMMUTATIVE_ARITH_P (x))
5690 {
5691 other = XEXP (XEXP (x, 0), 1);
5692 inner = simplify_binary_operation (code, mode,
5693 XEXP (XEXP (x, 0), 0),
5694 XEXP (x, 1));
5695 }
5696
5697 if (inner)
5698 return simplify_gen_binary (code, mode, other, inner);
5699 }
5700 }
5701
5702 /* A little bit of algebraic simplification here. */
5703 switch (code)
5704 {
5705 case MEM:
5706 /* Ensure that our address has any ASHIFTs converted to MULT in case
5707 address-recognizing predicates are called later. */
5708 temp = make_compound_operation (XEXP (x, 0), MEM);
5709 SUBST (XEXP (x, 0), temp);
5710 break;
5711
5712 case SUBREG:
5713 if (op0_mode == VOIDmode)
5714 op0_mode = GET_MODE (SUBREG_REG (x));
5715
5716 /* See if this can be moved to simplify_subreg. */
5717 if (CONSTANT_P (SUBREG_REG (x))
5718 && subreg_lowpart_offset (mode, op0_mode) == SUBREG_BYTE (x)
5719 /* Don't call gen_lowpart if the inner mode
5720 is VOIDmode and we cannot simplify it, as SUBREG without
5721 inner mode is invalid. */
5722 && (GET_MODE (SUBREG_REG (x)) != VOIDmode
5723 || gen_lowpart_common (mode, SUBREG_REG (x))))
5724 return gen_lowpart (mode, SUBREG_REG (x));
5725
5726 if (GET_MODE_CLASS (GET_MODE (SUBREG_REG (x))) == MODE_CC)
5727 break;
5728 {
5729 rtx temp;
5730 temp = simplify_subreg (mode, SUBREG_REG (x), op0_mode,
5731 SUBREG_BYTE (x));
5732 if (temp)
5733 return temp;
5734
5735 /* If op is known to have all lower bits zero, the result is zero. */
5736 if (!in_dest
5737 && SCALAR_INT_MODE_P (mode)
5738 && SCALAR_INT_MODE_P (op0_mode)
5739 && GET_MODE_PRECISION (mode) < GET_MODE_PRECISION (op0_mode)
5740 && subreg_lowpart_offset (mode, op0_mode) == SUBREG_BYTE (x)
5741 && HWI_COMPUTABLE_MODE_P (op0_mode)
5742 && (nonzero_bits (SUBREG_REG (x), op0_mode)
5743 & GET_MODE_MASK (mode)) == 0)
5744 return CONST0_RTX (mode);
5745 }
5746
5747 /* Don't change the mode of the MEM if that would change the meaning
5748 of the address. */
5749 if (MEM_P (SUBREG_REG (x))
5750 && (MEM_VOLATILE_P (SUBREG_REG (x))
5751 || mode_dependent_address_p (XEXP (SUBREG_REG (x), 0),
5752 MEM_ADDR_SPACE (SUBREG_REG (x)))))
5753 return gen_rtx_CLOBBER (mode, const0_rtx);
5754
5755 /* Note that we cannot do any narrowing for non-constants since
5756 we might have been counting on using the fact that some bits were
5757 zero. We now do this in the SET. */
5758
5759 break;
5760
5761 case NEG:
5762 temp = expand_compound_operation (XEXP (x, 0));
5763
5764 /* For C equal to the width of MODE minus 1, (neg (ashiftrt X C)) can be
5765 replaced by (lshiftrt X C). This will convert
5766 (neg (sign_extract X 1 Y)) to (zero_extract X 1 Y). */
5767
5768 if (GET_CODE (temp) == ASHIFTRT
5769 && CONST_INT_P (XEXP (temp, 1))
5770 && INTVAL (XEXP (temp, 1)) == GET_MODE_PRECISION (mode) - 1)
5771 return simplify_shift_const (NULL_RTX, LSHIFTRT, mode, XEXP (temp, 0),
5772 INTVAL (XEXP (temp, 1)));
5773
5774 /* If X has only a single bit that might be nonzero, say, bit I, convert
5775 (neg X) to (ashiftrt (ashift X C-I) C-I) where C is the bitsize of
5776 MODE minus 1. This will convert (neg (zero_extract X 1 Y)) to
5777 (sign_extract X 1 Y). But only do this if TEMP isn't a register
5778 or a SUBREG of one since we'd be making the expression more
5779 complex if it was just a register. */
5780
5781 if (!REG_P (temp)
5782 && ! (GET_CODE (temp) == SUBREG
5783 && REG_P (SUBREG_REG (temp)))
5784 && (i = exact_log2 (nonzero_bits (temp, mode))) >= 0)
5785 {
5786 rtx temp1 = simplify_shift_const
5787 (NULL_RTX, ASHIFTRT, mode,
5788 simplify_shift_const (NULL_RTX, ASHIFT, mode, temp,
5789 GET_MODE_PRECISION (mode) - 1 - i),
5790 GET_MODE_PRECISION (mode) - 1 - i);
5791
5792 /* If all we did was surround TEMP with the two shifts, we
5793 haven't improved anything, so don't use it. Otherwise,
5794 we are better off with TEMP1. */
5795 if (GET_CODE (temp1) != ASHIFTRT
5796 || GET_CODE (XEXP (temp1, 0)) != ASHIFT
5797 || XEXP (XEXP (temp1, 0), 0) != temp)
5798 return temp1;
5799 }
5800 break;
5801
5802 case TRUNCATE:
5803 /* We can't handle truncation to a partial integer mode here
5804 because we don't know the real bitsize of the partial
5805 integer mode. */
5806 if (GET_MODE_CLASS (mode) == MODE_PARTIAL_INT)
5807 break;
5808
5809 if (HWI_COMPUTABLE_MODE_P (mode))
5810 SUBST (XEXP (x, 0),
5811 force_to_mode (XEXP (x, 0), GET_MODE (XEXP (x, 0)),
5812 GET_MODE_MASK (mode), 0));
5813
5814 /* We can truncate a constant value and return it. */
5815 if (CONST_INT_P (XEXP (x, 0)))
5816 return gen_int_mode (INTVAL (XEXP (x, 0)), mode);
5817
5818 /* Similarly to what we do in simplify-rtx.c, a truncate of a register
5819 whose value is a comparison can be replaced with a subreg if
5820 STORE_FLAG_VALUE permits. */
5821 if (HWI_COMPUTABLE_MODE_P (mode)
5822 && (STORE_FLAG_VALUE & ~GET_MODE_MASK (mode)) == 0
5823 && (temp = get_last_value (XEXP (x, 0)))
5824 && COMPARISON_P (temp))
5825 return gen_lowpart (mode, XEXP (x, 0));
5826 break;
5827
5828 case CONST:
5829 /* (const (const X)) can become (const X). Do it this way rather than
5830 returning the inner CONST since CONST can be shared with a
5831 REG_EQUAL note. */
5832 if (GET_CODE (XEXP (x, 0)) == CONST)
5833 SUBST (XEXP (x, 0), XEXP (XEXP (x, 0), 0));
5834 break;
5835
5836 case LO_SUM:
5837 /* Convert (lo_sum (high FOO) FOO) to FOO. This is necessary so we
5838 can add in an offset. find_split_point will split this address up
5839 again if it doesn't match. */
5840 if (HAVE_lo_sum && GET_CODE (XEXP (x, 0)) == HIGH
5841 && rtx_equal_p (XEXP (XEXP (x, 0), 0), XEXP (x, 1)))
5842 return XEXP (x, 1);
5843 break;
5844
5845 case PLUS:
5846 /* (plus (xor (and <foo> (const_int pow2 - 1)) <c>) <-c>)
5847 when c is (const_int (pow2 + 1) / 2) is a sign extension of a
5848 bit-field and can be replaced by either a sign_extend or a
5849 sign_extract. The `and' may be a zero_extend and the two
5850 <c>, -<c> constants may be reversed. */
5851 if (GET_CODE (XEXP (x, 0)) == XOR
5852 && CONST_INT_P (XEXP (x, 1))
5853 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
5854 && INTVAL (XEXP (x, 1)) == -INTVAL (XEXP (XEXP (x, 0), 1))
5855 && ((i = exact_log2 (UINTVAL (XEXP (XEXP (x, 0), 1)))) >= 0
5856 || (i = exact_log2 (UINTVAL (XEXP (x, 1)))) >= 0)
5857 && HWI_COMPUTABLE_MODE_P (mode)
5858 && ((GET_CODE (XEXP (XEXP (x, 0), 0)) == AND
5859 && CONST_INT_P (XEXP (XEXP (XEXP (x, 0), 0), 1))
5860 && (UINTVAL (XEXP (XEXP (XEXP (x, 0), 0), 1))
5861 == (HOST_WIDE_INT_1U << (i + 1)) - 1))
5862 || (GET_CODE (XEXP (XEXP (x, 0), 0)) == ZERO_EXTEND
5863 && (GET_MODE_PRECISION (GET_MODE (XEXP (XEXP (XEXP (x, 0), 0), 0)))
5864 == (unsigned int) i + 1))))
5865 return simplify_shift_const
5866 (NULL_RTX, ASHIFTRT, mode,
5867 simplify_shift_const (NULL_RTX, ASHIFT, mode,
5868 XEXP (XEXP (XEXP (x, 0), 0), 0),
5869 GET_MODE_PRECISION (mode) - (i + 1)),
5870 GET_MODE_PRECISION (mode) - (i + 1));
5871
5872 /* If only the low-order bit of X is possibly nonzero, (plus x -1)
5873 can become (ashiftrt (ashift (xor x 1) C) C) where C is
5874 the bitsize of the mode - 1. This allows simplification of
5875 "a = (b & 8) == 0;" */
5876 if (XEXP (x, 1) == constm1_rtx
5877 && !REG_P (XEXP (x, 0))
5878 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
5879 && REG_P (SUBREG_REG (XEXP (x, 0))))
5880 && nonzero_bits (XEXP (x, 0), mode) == 1)
5881 return simplify_shift_const (NULL_RTX, ASHIFTRT, mode,
5882 simplify_shift_const (NULL_RTX, ASHIFT, mode,
5883 gen_rtx_XOR (mode, XEXP (x, 0), const1_rtx),
5884 GET_MODE_PRECISION (mode) - 1),
5885 GET_MODE_PRECISION (mode) - 1);
5886
5887 /* If we are adding two things that have no bits in common, convert
5888 the addition into an IOR. This will often be further simplified,
5889 for example in cases like ((a & 1) + (a & 2)), which can
5890 become a & 3. */
5891
5892 if (HWI_COMPUTABLE_MODE_P (mode)
5893 && (nonzero_bits (XEXP (x, 0), mode)
5894 & nonzero_bits (XEXP (x, 1), mode)) == 0)
5895 {
5896 /* Try to simplify the expression further. */
5897 rtx tor = simplify_gen_binary (IOR, mode, XEXP (x, 0), XEXP (x, 1));
5898 temp = combine_simplify_rtx (tor, VOIDmode, in_dest, 0);
5899
5900 /* If we could, great. If not, do not go ahead with the IOR
5901 replacement, since PLUS appears in many special purpose
5902 address arithmetic instructions. */
5903 if (GET_CODE (temp) != CLOBBER
5904 && (GET_CODE (temp) != IOR
5905 || ((XEXP (temp, 0) != XEXP (x, 0)
5906 || XEXP (temp, 1) != XEXP (x, 1))
5907 && (XEXP (temp, 0) != XEXP (x, 1)
5908 || XEXP (temp, 1) != XEXP (x, 0)))))
5909 return temp;
5910 }
5911
5912 /* Canonicalize x + x into x << 1. */
5913 if (GET_MODE_CLASS (mode) == MODE_INT
5914 && rtx_equal_p (XEXP (x, 0), XEXP (x, 1))
5915 && !side_effects_p (XEXP (x, 0)))
5916 return simplify_gen_binary (ASHIFT, mode, XEXP (x, 0), const1_rtx);
5917
5918 break;
5919
5920 case MINUS:
5921 /* (minus <foo> (and <foo> (const_int -pow2))) becomes
5922 (and <foo> (const_int pow2-1)) */
5923 if (GET_CODE (XEXP (x, 1)) == AND
5924 && CONST_INT_P (XEXP (XEXP (x, 1), 1))
5925 && pow2p_hwi (-UINTVAL (XEXP (XEXP (x, 1), 1)))
5926 && rtx_equal_p (XEXP (XEXP (x, 1), 0), XEXP (x, 0)))
5927 return simplify_and_const_int (NULL_RTX, mode, XEXP (x, 0),
5928 -INTVAL (XEXP (XEXP (x, 1), 1)) - 1);
5929 break;
5930
5931 case MULT:
5932 /* If we have (mult (plus A B) C), apply the distributive law and then
5933 the inverse distributive law to see if things simplify. This
5934 occurs mostly in addresses, often when unrolling loops. */
5935
5936 if (GET_CODE (XEXP (x, 0)) == PLUS)
5937 {
5938 rtx result = distribute_and_simplify_rtx (x, 0);
5939 if (result)
5940 return result;
5941 }
5942
5943 /* Try simplify a*(b/c) as (a*b)/c. */
5944 if (FLOAT_MODE_P (mode) && flag_associative_math
5945 && GET_CODE (XEXP (x, 0)) == DIV)
5946 {
5947 rtx tem = simplify_binary_operation (MULT, mode,
5948 XEXP (XEXP (x, 0), 0),
5949 XEXP (x, 1));
5950 if (tem)
5951 return simplify_gen_binary (DIV, mode, tem, XEXP (XEXP (x, 0), 1));
5952 }
5953 break;
5954
5955 case UDIV:
5956 /* If this is a divide by a power of two, treat it as a shift if
5957 its first operand is a shift. */
5958 if (CONST_INT_P (XEXP (x, 1))
5959 && (i = exact_log2 (UINTVAL (XEXP (x, 1)))) >= 0
5960 && (GET_CODE (XEXP (x, 0)) == ASHIFT
5961 || GET_CODE (XEXP (x, 0)) == LSHIFTRT
5962 || GET_CODE (XEXP (x, 0)) == ASHIFTRT
5963 || GET_CODE (XEXP (x, 0)) == ROTATE
5964 || GET_CODE (XEXP (x, 0)) == ROTATERT))
5965 return simplify_shift_const (NULL_RTX, LSHIFTRT, mode, XEXP (x, 0), i);
5966 break;
5967
5968 case EQ: case NE:
5969 case GT: case GTU: case GE: case GEU:
5970 case LT: case LTU: case LE: case LEU:
5971 case UNEQ: case LTGT:
5972 case UNGT: case UNGE:
5973 case UNLT: case UNLE:
5974 case UNORDERED: case ORDERED:
5975 /* If the first operand is a condition code, we can't do anything
5976 with it. */
5977 if (GET_CODE (XEXP (x, 0)) == COMPARE
5978 || (GET_MODE_CLASS (GET_MODE (XEXP (x, 0))) != MODE_CC
5979 && ! CC0_P (XEXP (x, 0))))
5980 {
5981 rtx op0 = XEXP (x, 0);
5982 rtx op1 = XEXP (x, 1);
5983 enum rtx_code new_code;
5984
5985 if (GET_CODE (op0) == COMPARE)
5986 op1 = XEXP (op0, 1), op0 = XEXP (op0, 0);
5987
5988 /* Simplify our comparison, if possible. */
5989 new_code = simplify_comparison (code, &op0, &op1);
5990
5991 /* If STORE_FLAG_VALUE is 1, we can convert (ne x 0) to simply X
5992 if only the low-order bit is possibly nonzero in X (such as when
5993 X is a ZERO_EXTRACT of one bit). Similarly, we can convert EQ to
5994 (xor X 1) or (minus 1 X); we use the former. Finally, if X is
5995 known to be either 0 or -1, NE becomes a NEG and EQ becomes
5996 (plus X 1).
5997
5998 Remove any ZERO_EXTRACT we made when thinking this was a
5999 comparison. It may now be simpler to use, e.g., an AND. If a
6000 ZERO_EXTRACT is indeed appropriate, it will be placed back by
6001 the call to make_compound_operation in the SET case.
6002
6003 Don't apply these optimizations if the caller would
6004 prefer a comparison rather than a value.
6005 E.g., for the condition in an IF_THEN_ELSE most targets need
6006 an explicit comparison. */
6007
6008 if (in_cond)
6009 ;
6010
6011 else if (STORE_FLAG_VALUE == 1
6012 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
6013 && op1 == const0_rtx
6014 && mode == GET_MODE (op0)
6015 && nonzero_bits (op0, mode) == 1)
6016 return gen_lowpart (mode,
6017 expand_compound_operation (op0));
6018
6019 else if (STORE_FLAG_VALUE == 1
6020 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
6021 && op1 == const0_rtx
6022 && mode == GET_MODE (op0)
6023 && (num_sign_bit_copies (op0, mode)
6024 == GET_MODE_PRECISION (mode)))
6025 {
6026 op0 = expand_compound_operation (op0);
6027 return simplify_gen_unary (NEG, mode,
6028 gen_lowpart (mode, op0),
6029 mode);
6030 }
6031
6032 else if (STORE_FLAG_VALUE == 1
6033 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
6034 && op1 == const0_rtx
6035 && mode == GET_MODE (op0)
6036 && nonzero_bits (op0, mode) == 1)
6037 {
6038 op0 = expand_compound_operation (op0);
6039 return simplify_gen_binary (XOR, mode,
6040 gen_lowpart (mode, op0),
6041 const1_rtx);
6042 }
6043
6044 else if (STORE_FLAG_VALUE == 1
6045 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
6046 && op1 == const0_rtx
6047 && mode == GET_MODE (op0)
6048 && (num_sign_bit_copies (op0, mode)
6049 == GET_MODE_PRECISION (mode)))
6050 {
6051 op0 = expand_compound_operation (op0);
6052 return plus_constant (mode, gen_lowpart (mode, op0), 1);
6053 }
6054
6055 /* If STORE_FLAG_VALUE is -1, we have cases similar to
6056 those above. */
6057 if (in_cond)
6058 ;
6059
6060 else if (STORE_FLAG_VALUE == -1
6061 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
6062 && op1 == const0_rtx
6063 && mode == GET_MODE (op0)
6064 && (num_sign_bit_copies (op0, mode)
6065 == GET_MODE_PRECISION (mode)))
6066 return gen_lowpart (mode,
6067 expand_compound_operation (op0));
6068
6069 else if (STORE_FLAG_VALUE == -1
6070 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
6071 && op1 == const0_rtx
6072 && mode == GET_MODE (op0)
6073 && nonzero_bits (op0, mode) == 1)
6074 {
6075 op0 = expand_compound_operation (op0);
6076 return simplify_gen_unary (NEG, mode,
6077 gen_lowpart (mode, op0),
6078 mode);
6079 }
6080
6081 else if (STORE_FLAG_VALUE == -1
6082 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
6083 && op1 == const0_rtx
6084 && mode == GET_MODE (op0)
6085 && (num_sign_bit_copies (op0, mode)
6086 == GET_MODE_PRECISION (mode)))
6087 {
6088 op0 = expand_compound_operation (op0);
6089 return simplify_gen_unary (NOT, mode,
6090 gen_lowpart (mode, op0),
6091 mode);
6092 }
6093
6094 /* If X is 0/1, (eq X 0) is X-1. */
6095 else if (STORE_FLAG_VALUE == -1
6096 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
6097 && op1 == const0_rtx
6098 && mode == GET_MODE (op0)
6099 && nonzero_bits (op0, mode) == 1)
6100 {
6101 op0 = expand_compound_operation (op0);
6102 return plus_constant (mode, gen_lowpart (mode, op0), -1);
6103 }
6104
6105 /* If STORE_FLAG_VALUE says to just test the sign bit and X has just
6106 one bit that might be nonzero, we can convert (ne x 0) to
6107 (ashift x c) where C puts the bit in the sign bit. Remove any
6108 AND with STORE_FLAG_VALUE when we are done, since we are only
6109 going to test the sign bit. */
6110 if (new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
6111 && HWI_COMPUTABLE_MODE_P (mode)
6112 && val_signbit_p (mode, STORE_FLAG_VALUE)
6113 && op1 == const0_rtx
6114 && mode == GET_MODE (op0)
6115 && (i = exact_log2 (nonzero_bits (op0, mode))) >= 0)
6116 {
6117 x = simplify_shift_const (NULL_RTX, ASHIFT, mode,
6118 expand_compound_operation (op0),
6119 GET_MODE_PRECISION (mode) - 1 - i);
6120 if (GET_CODE (x) == AND && XEXP (x, 1) == const_true_rtx)
6121 return XEXP (x, 0);
6122 else
6123 return x;
6124 }
6125
6126 /* If the code changed, return a whole new comparison.
6127 We also need to avoid using SUBST in cases where
6128 simplify_comparison has widened a comparison with a CONST_INT,
6129 since in that case the wider CONST_INT may fail the sanity
6130 checks in do_SUBST. */
6131 if (new_code != code
6132 || (CONST_INT_P (op1)
6133 && GET_MODE (op0) != GET_MODE (XEXP (x, 0))
6134 && GET_MODE (op0) != GET_MODE (XEXP (x, 1))))
6135 return gen_rtx_fmt_ee (new_code, mode, op0, op1);
6136
6137 /* Otherwise, keep this operation, but maybe change its operands.
6138 This also converts (ne (compare FOO BAR) 0) to (ne FOO BAR). */
6139 SUBST (XEXP (x, 0), op0);
6140 SUBST (XEXP (x, 1), op1);
6141 }
6142 break;
6143
6144 case IF_THEN_ELSE:
6145 return simplify_if_then_else (x);
6146
6147 case ZERO_EXTRACT:
6148 case SIGN_EXTRACT:
6149 case ZERO_EXTEND:
6150 case SIGN_EXTEND:
6151 /* If we are processing SET_DEST, we are done. */
6152 if (in_dest)
6153 return x;
6154
6155 return expand_compound_operation (x);
6156
6157 case SET:
6158 return simplify_set (x);
6159
6160 case AND:
6161 case IOR:
6162 return simplify_logical (x);
6163
6164 case ASHIFT:
6165 case LSHIFTRT:
6166 case ASHIFTRT:
6167 case ROTATE:
6168 case ROTATERT:
6169 /* If this is a shift by a constant amount, simplify it. */
6170 if (CONST_INT_P (XEXP (x, 1)))
6171 return simplify_shift_const (x, code, mode, XEXP (x, 0),
6172 INTVAL (XEXP (x, 1)));
6173
6174 else if (SHIFT_COUNT_TRUNCATED && !REG_P (XEXP (x, 1)))
6175 SUBST (XEXP (x, 1),
6176 force_to_mode (XEXP (x, 1), GET_MODE (XEXP (x, 1)),
6177 (HOST_WIDE_INT_1U
6178 << exact_log2 (GET_MODE_BITSIZE (GET_MODE (x))))
6179 - 1,
6180 0));
6181 break;
6182
6183 default:
6184 break;
6185 }
6186
6187 return x;
6188 }
6189 \f
6190 /* Simplify X, an IF_THEN_ELSE expression. Return the new expression. */
6191
6192 static rtx
6193 simplify_if_then_else (rtx x)
6194 {
6195 machine_mode mode = GET_MODE (x);
6196 rtx cond = XEXP (x, 0);
6197 rtx true_rtx = XEXP (x, 1);
6198 rtx false_rtx = XEXP (x, 2);
6199 enum rtx_code true_code = GET_CODE (cond);
6200 int comparison_p = COMPARISON_P (cond);
6201 rtx temp;
6202 int i;
6203 enum rtx_code false_code;
6204 rtx reversed;
6205
6206 /* Simplify storing of the truth value. */
6207 if (comparison_p && true_rtx == const_true_rtx && false_rtx == const0_rtx)
6208 return simplify_gen_relational (true_code, mode, VOIDmode,
6209 XEXP (cond, 0), XEXP (cond, 1));
6210
6211 /* Also when the truth value has to be reversed. */
6212 if (comparison_p
6213 && true_rtx == const0_rtx && false_rtx == const_true_rtx
6214 && (reversed = reversed_comparison (cond, mode)))
6215 return reversed;
6216
6217 /* Sometimes we can simplify the arm of an IF_THEN_ELSE if a register used
6218 in it is being compared against certain values. Get the true and false
6219 comparisons and see if that says anything about the value of each arm. */
6220
6221 if (comparison_p
6222 && ((false_code = reversed_comparison_code (cond, NULL))
6223 != UNKNOWN)
6224 && REG_P (XEXP (cond, 0)))
6225 {
6226 HOST_WIDE_INT nzb;
6227 rtx from = XEXP (cond, 0);
6228 rtx true_val = XEXP (cond, 1);
6229 rtx false_val = true_val;
6230 int swapped = 0;
6231
6232 /* If FALSE_CODE is EQ, swap the codes and arms. */
6233
6234 if (false_code == EQ)
6235 {
6236 swapped = 1, true_code = EQ, false_code = NE;
6237 std::swap (true_rtx, false_rtx);
6238 }
6239
6240 /* If we are comparing against zero and the expression being tested has
6241 only a single bit that might be nonzero, that is its value when it is
6242 not equal to zero. Similarly if it is known to be -1 or 0. */
6243
6244 if (true_code == EQ && true_val == const0_rtx
6245 && pow2p_hwi (nzb = nonzero_bits (from, GET_MODE (from))))
6246 {
6247 false_code = EQ;
6248 false_val = gen_int_mode (nzb, GET_MODE (from));
6249 }
6250 else if (true_code == EQ && true_val == const0_rtx
6251 && (num_sign_bit_copies (from, GET_MODE (from))
6252 == GET_MODE_PRECISION (GET_MODE (from))))
6253 {
6254 false_code = EQ;
6255 false_val = constm1_rtx;
6256 }
6257
6258 /* Now simplify an arm if we know the value of the register in the
6259 branch and it is used in the arm. Be careful due to the potential
6260 of locally-shared RTL. */
6261
6262 if (reg_mentioned_p (from, true_rtx))
6263 true_rtx = subst (known_cond (copy_rtx (true_rtx), true_code,
6264 from, true_val),
6265 pc_rtx, pc_rtx, 0, 0, 0);
6266 if (reg_mentioned_p (from, false_rtx))
6267 false_rtx = subst (known_cond (copy_rtx (false_rtx), false_code,
6268 from, false_val),
6269 pc_rtx, pc_rtx, 0, 0, 0);
6270
6271 SUBST (XEXP (x, 1), swapped ? false_rtx : true_rtx);
6272 SUBST (XEXP (x, 2), swapped ? true_rtx : false_rtx);
6273
6274 true_rtx = XEXP (x, 1);
6275 false_rtx = XEXP (x, 2);
6276 true_code = GET_CODE (cond);
6277 }
6278
6279 /* If we have (if_then_else FOO (pc) (label_ref BAR)) and FOO can be
6280 reversed, do so to avoid needing two sets of patterns for
6281 subtract-and-branch insns. Similarly if we have a constant in the true
6282 arm, the false arm is the same as the first operand of the comparison, or
6283 the false arm is more complicated than the true arm. */
6284
6285 if (comparison_p
6286 && reversed_comparison_code (cond, NULL) != UNKNOWN
6287 && (true_rtx == pc_rtx
6288 || (CONSTANT_P (true_rtx)
6289 && !CONST_INT_P (false_rtx) && false_rtx != pc_rtx)
6290 || true_rtx == const0_rtx
6291 || (OBJECT_P (true_rtx) && !OBJECT_P (false_rtx))
6292 || (GET_CODE (true_rtx) == SUBREG && OBJECT_P (SUBREG_REG (true_rtx))
6293 && !OBJECT_P (false_rtx))
6294 || reg_mentioned_p (true_rtx, false_rtx)
6295 || rtx_equal_p (false_rtx, XEXP (cond, 0))))
6296 {
6297 true_code = reversed_comparison_code (cond, NULL);
6298 SUBST (XEXP (x, 0), reversed_comparison (cond, GET_MODE (cond)));
6299 SUBST (XEXP (x, 1), false_rtx);
6300 SUBST (XEXP (x, 2), true_rtx);
6301
6302 std::swap (true_rtx, false_rtx);
6303 cond = XEXP (x, 0);
6304
6305 /* It is possible that the conditional has been simplified out. */
6306 true_code = GET_CODE (cond);
6307 comparison_p = COMPARISON_P (cond);
6308 }
6309
6310 /* If the two arms are identical, we don't need the comparison. */
6311
6312 if (rtx_equal_p (true_rtx, false_rtx) && ! side_effects_p (cond))
6313 return true_rtx;
6314
6315 /* Convert a == b ? b : a to "a". */
6316 if (true_code == EQ && ! side_effects_p (cond)
6317 && !HONOR_NANS (mode)
6318 && rtx_equal_p (XEXP (cond, 0), false_rtx)
6319 && rtx_equal_p (XEXP (cond, 1), true_rtx))
6320 return false_rtx;
6321 else if (true_code == NE && ! side_effects_p (cond)
6322 && !HONOR_NANS (mode)
6323 && rtx_equal_p (XEXP (cond, 0), true_rtx)
6324 && rtx_equal_p (XEXP (cond, 1), false_rtx))
6325 return true_rtx;
6326
6327 /* Look for cases where we have (abs x) or (neg (abs X)). */
6328
6329 if (GET_MODE_CLASS (mode) == MODE_INT
6330 && comparison_p
6331 && XEXP (cond, 1) == const0_rtx
6332 && GET_CODE (false_rtx) == NEG
6333 && rtx_equal_p (true_rtx, XEXP (false_rtx, 0))
6334 && rtx_equal_p (true_rtx, XEXP (cond, 0))
6335 && ! side_effects_p (true_rtx))
6336 switch (true_code)
6337 {
6338 case GT:
6339 case GE:
6340 return simplify_gen_unary (ABS, mode, true_rtx, mode);
6341 case LT:
6342 case LE:
6343 return
6344 simplify_gen_unary (NEG, mode,
6345 simplify_gen_unary (ABS, mode, true_rtx, mode),
6346 mode);
6347 default:
6348 break;
6349 }
6350
6351 /* Look for MIN or MAX. */
6352
6353 if ((! FLOAT_MODE_P (mode) || flag_unsafe_math_optimizations)
6354 && comparison_p
6355 && rtx_equal_p (XEXP (cond, 0), true_rtx)
6356 && rtx_equal_p (XEXP (cond, 1), false_rtx)
6357 && ! side_effects_p (cond))
6358 switch (true_code)
6359 {
6360 case GE:
6361 case GT:
6362 return simplify_gen_binary (SMAX, mode, true_rtx, false_rtx);
6363 case LE:
6364 case LT:
6365 return simplify_gen_binary (SMIN, mode, true_rtx, false_rtx);
6366 case GEU:
6367 case GTU:
6368 return simplify_gen_binary (UMAX, mode, true_rtx, false_rtx);
6369 case LEU:
6370 case LTU:
6371 return simplify_gen_binary (UMIN, mode, true_rtx, false_rtx);
6372 default:
6373 break;
6374 }
6375
6376 /* If we have (if_then_else COND (OP Z C1) Z) and OP is an identity when its
6377 second operand is zero, this can be done as (OP Z (mult COND C2)) where
6378 C2 = C1 * STORE_FLAG_VALUE. Similarly if OP has an outer ZERO_EXTEND or
6379 SIGN_EXTEND as long as Z is already extended (so we don't destroy it).
6380 We can do this kind of thing in some cases when STORE_FLAG_VALUE is
6381 neither 1 or -1, but it isn't worth checking for. */
6382
6383 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
6384 && comparison_p
6385 && GET_MODE_CLASS (mode) == MODE_INT
6386 && ! side_effects_p (x))
6387 {
6388 rtx t = make_compound_operation (true_rtx, SET);
6389 rtx f = make_compound_operation (false_rtx, SET);
6390 rtx cond_op0 = XEXP (cond, 0);
6391 rtx cond_op1 = XEXP (cond, 1);
6392 enum rtx_code op = UNKNOWN, extend_op = UNKNOWN;
6393 machine_mode m = mode;
6394 rtx z = 0, c1 = NULL_RTX;
6395
6396 if ((GET_CODE (t) == PLUS || GET_CODE (t) == MINUS
6397 || GET_CODE (t) == IOR || GET_CODE (t) == XOR
6398 || GET_CODE (t) == ASHIFT
6399 || GET_CODE (t) == LSHIFTRT || GET_CODE (t) == ASHIFTRT)
6400 && rtx_equal_p (XEXP (t, 0), f))
6401 c1 = XEXP (t, 1), op = GET_CODE (t), z = f;
6402
6403 /* If an identity-zero op is commutative, check whether there
6404 would be a match if we swapped the operands. */
6405 else if ((GET_CODE (t) == PLUS || GET_CODE (t) == IOR
6406 || GET_CODE (t) == XOR)
6407 && rtx_equal_p (XEXP (t, 1), f))
6408 c1 = XEXP (t, 0), op = GET_CODE (t), z = f;
6409 else if (GET_CODE (t) == SIGN_EXTEND
6410 && (GET_CODE (XEXP (t, 0)) == PLUS
6411 || GET_CODE (XEXP (t, 0)) == MINUS
6412 || GET_CODE (XEXP (t, 0)) == IOR
6413 || GET_CODE (XEXP (t, 0)) == XOR
6414 || GET_CODE (XEXP (t, 0)) == ASHIFT
6415 || GET_CODE (XEXP (t, 0)) == LSHIFTRT
6416 || GET_CODE (XEXP (t, 0)) == ASHIFTRT)
6417 && GET_CODE (XEXP (XEXP (t, 0), 0)) == SUBREG
6418 && subreg_lowpart_p (XEXP (XEXP (t, 0), 0))
6419 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 0)), f)
6420 && (num_sign_bit_copies (f, GET_MODE (f))
6421 > (unsigned int)
6422 (GET_MODE_PRECISION (mode)
6423 - GET_MODE_PRECISION (GET_MODE (XEXP (XEXP (t, 0), 0))))))
6424 {
6425 c1 = XEXP (XEXP (t, 0), 1); z = f; op = GET_CODE (XEXP (t, 0));
6426 extend_op = SIGN_EXTEND;
6427 m = GET_MODE (XEXP (t, 0));
6428 }
6429 else if (GET_CODE (t) == SIGN_EXTEND
6430 && (GET_CODE (XEXP (t, 0)) == PLUS
6431 || GET_CODE (XEXP (t, 0)) == IOR
6432 || GET_CODE (XEXP (t, 0)) == XOR)
6433 && GET_CODE (XEXP (XEXP (t, 0), 1)) == SUBREG
6434 && subreg_lowpart_p (XEXP (XEXP (t, 0), 1))
6435 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 1)), f)
6436 && (num_sign_bit_copies (f, GET_MODE (f))
6437 > (unsigned int)
6438 (GET_MODE_PRECISION (mode)
6439 - GET_MODE_PRECISION (GET_MODE (XEXP (XEXP (t, 0), 1))))))
6440 {
6441 c1 = XEXP (XEXP (t, 0), 0); z = f; op = GET_CODE (XEXP (t, 0));
6442 extend_op = SIGN_EXTEND;
6443 m = GET_MODE (XEXP (t, 0));
6444 }
6445 else if (GET_CODE (t) == ZERO_EXTEND
6446 && (GET_CODE (XEXP (t, 0)) == PLUS
6447 || GET_CODE (XEXP (t, 0)) == MINUS
6448 || GET_CODE (XEXP (t, 0)) == IOR
6449 || GET_CODE (XEXP (t, 0)) == XOR
6450 || GET_CODE (XEXP (t, 0)) == ASHIFT
6451 || GET_CODE (XEXP (t, 0)) == LSHIFTRT
6452 || GET_CODE (XEXP (t, 0)) == ASHIFTRT)
6453 && GET_CODE (XEXP (XEXP (t, 0), 0)) == SUBREG
6454 && HWI_COMPUTABLE_MODE_P (mode)
6455 && subreg_lowpart_p (XEXP (XEXP (t, 0), 0))
6456 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 0)), f)
6457 && ((nonzero_bits (f, GET_MODE (f))
6458 & ~GET_MODE_MASK (GET_MODE (XEXP (XEXP (t, 0), 0))))
6459 == 0))
6460 {
6461 c1 = XEXP (XEXP (t, 0), 1); z = f; op = GET_CODE (XEXP (t, 0));
6462 extend_op = ZERO_EXTEND;
6463 m = GET_MODE (XEXP (t, 0));
6464 }
6465 else if (GET_CODE (t) == ZERO_EXTEND
6466 && (GET_CODE (XEXP (t, 0)) == PLUS
6467 || GET_CODE (XEXP (t, 0)) == IOR
6468 || GET_CODE (XEXP (t, 0)) == XOR)
6469 && GET_CODE (XEXP (XEXP (t, 0), 1)) == SUBREG
6470 && HWI_COMPUTABLE_MODE_P (mode)
6471 && subreg_lowpart_p (XEXP (XEXP (t, 0), 1))
6472 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 1)), f)
6473 && ((nonzero_bits (f, GET_MODE (f))
6474 & ~GET_MODE_MASK (GET_MODE (XEXP (XEXP (t, 0), 1))))
6475 == 0))
6476 {
6477 c1 = XEXP (XEXP (t, 0), 0); z = f; op = GET_CODE (XEXP (t, 0));
6478 extend_op = ZERO_EXTEND;
6479 m = GET_MODE (XEXP (t, 0));
6480 }
6481
6482 if (z)
6483 {
6484 temp = subst (simplify_gen_relational (true_code, m, VOIDmode,
6485 cond_op0, cond_op1),
6486 pc_rtx, pc_rtx, 0, 0, 0);
6487 temp = simplify_gen_binary (MULT, m, temp,
6488 simplify_gen_binary (MULT, m, c1,
6489 const_true_rtx));
6490 temp = subst (temp, pc_rtx, pc_rtx, 0, 0, 0);
6491 temp = simplify_gen_binary (op, m, gen_lowpart (m, z), temp);
6492
6493 if (extend_op != UNKNOWN)
6494 temp = simplify_gen_unary (extend_op, mode, temp, m);
6495
6496 return temp;
6497 }
6498 }
6499
6500 /* If we have (if_then_else (ne A 0) C1 0) and either A is known to be 0 or
6501 1 and C1 is a single bit or A is known to be 0 or -1 and C1 is the
6502 negation of a single bit, we can convert this operation to a shift. We
6503 can actually do this more generally, but it doesn't seem worth it. */
6504
6505 if (true_code == NE && XEXP (cond, 1) == const0_rtx
6506 && false_rtx == const0_rtx && CONST_INT_P (true_rtx)
6507 && ((1 == nonzero_bits (XEXP (cond, 0), mode)
6508 && (i = exact_log2 (UINTVAL (true_rtx))) >= 0)
6509 || ((num_sign_bit_copies (XEXP (cond, 0), mode)
6510 == GET_MODE_PRECISION (mode))
6511 && (i = exact_log2 (-UINTVAL (true_rtx))) >= 0)))
6512 return
6513 simplify_shift_const (NULL_RTX, ASHIFT, mode,
6514 gen_lowpart (mode, XEXP (cond, 0)), i);
6515
6516 /* (IF_THEN_ELSE (NE REG 0) (0) (8)) is REG for nonzero_bits (REG) == 8. */
6517 if (true_code == NE && XEXP (cond, 1) == const0_rtx
6518 && false_rtx == const0_rtx && CONST_INT_P (true_rtx)
6519 && GET_MODE (XEXP (cond, 0)) == mode
6520 && (UINTVAL (true_rtx) & GET_MODE_MASK (mode))
6521 == nonzero_bits (XEXP (cond, 0), mode)
6522 && (i = exact_log2 (UINTVAL (true_rtx) & GET_MODE_MASK (mode))) >= 0)
6523 return XEXP (cond, 0);
6524
6525 return x;
6526 }
6527 \f
6528 /* Simplify X, a SET expression. Return the new expression. */
6529
6530 static rtx
6531 simplify_set (rtx x)
6532 {
6533 rtx src = SET_SRC (x);
6534 rtx dest = SET_DEST (x);
6535 machine_mode mode
6536 = GET_MODE (src) != VOIDmode ? GET_MODE (src) : GET_MODE (dest);
6537 rtx_insn *other_insn;
6538 rtx *cc_use;
6539
6540 /* (set (pc) (return)) gets written as (return). */
6541 if (GET_CODE (dest) == PC && ANY_RETURN_P (src))
6542 return src;
6543
6544 /* Now that we know for sure which bits of SRC we are using, see if we can
6545 simplify the expression for the object knowing that we only need the
6546 low-order bits. */
6547
6548 if (GET_MODE_CLASS (mode) == MODE_INT && HWI_COMPUTABLE_MODE_P (mode))
6549 {
6550 src = force_to_mode (src, mode, HOST_WIDE_INT_M1U, 0);
6551 SUBST (SET_SRC (x), src);
6552 }
6553
6554 /* If we are setting CC0 or if the source is a COMPARE, look for the use of
6555 the comparison result and try to simplify it unless we already have used
6556 undobuf.other_insn. */
6557 if ((GET_MODE_CLASS (mode) == MODE_CC
6558 || GET_CODE (src) == COMPARE
6559 || CC0_P (dest))
6560 && (cc_use = find_single_use (dest, subst_insn, &other_insn)) != 0
6561 && (undobuf.other_insn == 0 || other_insn == undobuf.other_insn)
6562 && COMPARISON_P (*cc_use)
6563 && rtx_equal_p (XEXP (*cc_use, 0), dest))
6564 {
6565 enum rtx_code old_code = GET_CODE (*cc_use);
6566 enum rtx_code new_code;
6567 rtx op0, op1, tmp;
6568 int other_changed = 0;
6569 rtx inner_compare = NULL_RTX;
6570 machine_mode compare_mode = GET_MODE (dest);
6571
6572 if (GET_CODE (src) == COMPARE)
6573 {
6574 op0 = XEXP (src, 0), op1 = XEXP (src, 1);
6575 if (GET_CODE (op0) == COMPARE && op1 == const0_rtx)
6576 {
6577 inner_compare = op0;
6578 op0 = XEXP (inner_compare, 0), op1 = XEXP (inner_compare, 1);
6579 }
6580 }
6581 else
6582 op0 = src, op1 = CONST0_RTX (GET_MODE (src));
6583
6584 tmp = simplify_relational_operation (old_code, compare_mode, VOIDmode,
6585 op0, op1);
6586 if (!tmp)
6587 new_code = old_code;
6588 else if (!CONSTANT_P (tmp))
6589 {
6590 new_code = GET_CODE (tmp);
6591 op0 = XEXP (tmp, 0);
6592 op1 = XEXP (tmp, 1);
6593 }
6594 else
6595 {
6596 rtx pat = PATTERN (other_insn);
6597 undobuf.other_insn = other_insn;
6598 SUBST (*cc_use, tmp);
6599
6600 /* Attempt to simplify CC user. */
6601 if (GET_CODE (pat) == SET)
6602 {
6603 rtx new_rtx = simplify_rtx (SET_SRC (pat));
6604 if (new_rtx != NULL_RTX)
6605 SUBST (SET_SRC (pat), new_rtx);
6606 }
6607
6608 /* Convert X into a no-op move. */
6609 SUBST (SET_DEST (x), pc_rtx);
6610 SUBST (SET_SRC (x), pc_rtx);
6611 return x;
6612 }
6613
6614 /* Simplify our comparison, if possible. */
6615 new_code = simplify_comparison (new_code, &op0, &op1);
6616
6617 #ifdef SELECT_CC_MODE
6618 /* If this machine has CC modes other than CCmode, check to see if we
6619 need to use a different CC mode here. */
6620 if (GET_MODE_CLASS (GET_MODE (op0)) == MODE_CC)
6621 compare_mode = GET_MODE (op0);
6622 else if (inner_compare
6623 && GET_MODE_CLASS (GET_MODE (inner_compare)) == MODE_CC
6624 && new_code == old_code
6625 && op0 == XEXP (inner_compare, 0)
6626 && op1 == XEXP (inner_compare, 1))
6627 compare_mode = GET_MODE (inner_compare);
6628 else
6629 compare_mode = SELECT_CC_MODE (new_code, op0, op1);
6630
6631 /* If the mode changed, we have to change SET_DEST, the mode in the
6632 compare, and the mode in the place SET_DEST is used. If SET_DEST is
6633 a hard register, just build new versions with the proper mode. If it
6634 is a pseudo, we lose unless it is only time we set the pseudo, in
6635 which case we can safely change its mode. */
6636 if (!HAVE_cc0 && compare_mode != GET_MODE (dest))
6637 {
6638 if (can_change_dest_mode (dest, 0, compare_mode))
6639 {
6640 unsigned int regno = REGNO (dest);
6641 rtx new_dest;
6642
6643 if (regno < FIRST_PSEUDO_REGISTER)
6644 new_dest = gen_rtx_REG (compare_mode, regno);
6645 else
6646 {
6647 SUBST_MODE (regno_reg_rtx[regno], compare_mode);
6648 new_dest = regno_reg_rtx[regno];
6649 }
6650
6651 SUBST (SET_DEST (x), new_dest);
6652 SUBST (XEXP (*cc_use, 0), new_dest);
6653 other_changed = 1;
6654
6655 dest = new_dest;
6656 }
6657 }
6658 #endif /* SELECT_CC_MODE */
6659
6660 /* If the code changed, we have to build a new comparison in
6661 undobuf.other_insn. */
6662 if (new_code != old_code)
6663 {
6664 int other_changed_previously = other_changed;
6665 unsigned HOST_WIDE_INT mask;
6666 rtx old_cc_use = *cc_use;
6667
6668 SUBST (*cc_use, gen_rtx_fmt_ee (new_code, GET_MODE (*cc_use),
6669 dest, const0_rtx));
6670 other_changed = 1;
6671
6672 /* If the only change we made was to change an EQ into an NE or
6673 vice versa, OP0 has only one bit that might be nonzero, and OP1
6674 is zero, check if changing the user of the condition code will
6675 produce a valid insn. If it won't, we can keep the original code
6676 in that insn by surrounding our operation with an XOR. */
6677
6678 if (((old_code == NE && new_code == EQ)
6679 || (old_code == EQ && new_code == NE))
6680 && ! other_changed_previously && op1 == const0_rtx
6681 && HWI_COMPUTABLE_MODE_P (GET_MODE (op0))
6682 && pow2p_hwi (mask = nonzero_bits (op0, GET_MODE (op0))))
6683 {
6684 rtx pat = PATTERN (other_insn), note = 0;
6685
6686 if ((recog_for_combine (&pat, other_insn, &note) < 0
6687 && ! check_asm_operands (pat)))
6688 {
6689 *cc_use = old_cc_use;
6690 other_changed = 0;
6691
6692 op0 = simplify_gen_binary (XOR, GET_MODE (op0), op0,
6693 gen_int_mode (mask,
6694 GET_MODE (op0)));
6695 }
6696 }
6697 }
6698
6699 if (other_changed)
6700 undobuf.other_insn = other_insn;
6701
6702 /* Don't generate a compare of a CC with 0, just use that CC. */
6703 if (GET_MODE (op0) == compare_mode && op1 == const0_rtx)
6704 {
6705 SUBST (SET_SRC (x), op0);
6706 src = SET_SRC (x);
6707 }
6708 /* Otherwise, if we didn't previously have the same COMPARE we
6709 want, create it from scratch. */
6710 else if (GET_CODE (src) != COMPARE || GET_MODE (src) != compare_mode
6711 || XEXP (src, 0) != op0 || XEXP (src, 1) != op1)
6712 {
6713 SUBST (SET_SRC (x), gen_rtx_COMPARE (compare_mode, op0, op1));
6714 src = SET_SRC (x);
6715 }
6716 }
6717 else
6718 {
6719 /* Get SET_SRC in a form where we have placed back any
6720 compound expressions. Then do the checks below. */
6721 src = make_compound_operation (src, SET);
6722 SUBST (SET_SRC (x), src);
6723 }
6724
6725 /* If we have (set x (subreg:m1 (op:m2 ...) 0)) with OP being some operation,
6726 and X being a REG or (subreg (reg)), we may be able to convert this to
6727 (set (subreg:m2 x) (op)).
6728
6729 We can always do this if M1 is narrower than M2 because that means that
6730 we only care about the low bits of the result.
6731
6732 However, on machines without WORD_REGISTER_OPERATIONS defined, we cannot
6733 perform a narrower operation than requested since the high-order bits will
6734 be undefined. On machine where it is defined, this transformation is safe
6735 as long as M1 and M2 have the same number of words. */
6736
6737 if (GET_CODE (src) == SUBREG && subreg_lowpart_p (src)
6738 && !OBJECT_P (SUBREG_REG (src))
6739 && (((GET_MODE_SIZE (GET_MODE (src)) + (UNITS_PER_WORD - 1))
6740 / UNITS_PER_WORD)
6741 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (src)))
6742 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))
6743 && (WORD_REGISTER_OPERATIONS
6744 || (GET_MODE_SIZE (GET_MODE (src))
6745 <= GET_MODE_SIZE (GET_MODE (SUBREG_REG (src)))))
6746 #ifdef CANNOT_CHANGE_MODE_CLASS
6747 && ! (REG_P (dest) && REGNO (dest) < FIRST_PSEUDO_REGISTER
6748 && REG_CANNOT_CHANGE_MODE_P (REGNO (dest),
6749 GET_MODE (SUBREG_REG (src)),
6750 GET_MODE (src)))
6751 #endif
6752 && (REG_P (dest)
6753 || (GET_CODE (dest) == SUBREG
6754 && REG_P (SUBREG_REG (dest)))))
6755 {
6756 SUBST (SET_DEST (x),
6757 gen_lowpart (GET_MODE (SUBREG_REG (src)),
6758 dest));
6759 SUBST (SET_SRC (x), SUBREG_REG (src));
6760
6761 src = SET_SRC (x), dest = SET_DEST (x);
6762 }
6763
6764 /* If we have (set (cc0) (subreg ...)), we try to remove the subreg
6765 in SRC. */
6766 if (dest == cc0_rtx
6767 && GET_CODE (src) == SUBREG
6768 && subreg_lowpart_p (src)
6769 && (GET_MODE_PRECISION (GET_MODE (src))
6770 < GET_MODE_PRECISION (GET_MODE (SUBREG_REG (src)))))
6771 {
6772 rtx inner = SUBREG_REG (src);
6773 machine_mode inner_mode = GET_MODE (inner);
6774
6775 /* Here we make sure that we don't have a sign bit on. */
6776 if (val_signbit_known_clear_p (GET_MODE (src),
6777 nonzero_bits (inner, inner_mode)))
6778 {
6779 SUBST (SET_SRC (x), inner);
6780 src = SET_SRC (x);
6781 }
6782 }
6783
6784 /* If we have (set FOO (subreg:M (mem:N BAR) 0)) with M wider than N, this
6785 would require a paradoxical subreg. Replace the subreg with a
6786 zero_extend to avoid the reload that would otherwise be required. */
6787
6788 if (GET_CODE (src) == SUBREG && subreg_lowpart_p (src)
6789 && INTEGRAL_MODE_P (GET_MODE (SUBREG_REG (src)))
6790 && LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (src))) != UNKNOWN
6791 && SUBREG_BYTE (src) == 0
6792 && paradoxical_subreg_p (src)
6793 && MEM_P (SUBREG_REG (src)))
6794 {
6795 SUBST (SET_SRC (x),
6796 gen_rtx_fmt_e (LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (src))),
6797 GET_MODE (src), SUBREG_REG (src)));
6798
6799 src = SET_SRC (x);
6800 }
6801
6802 /* If we don't have a conditional move, SET_SRC is an IF_THEN_ELSE, and we
6803 are comparing an item known to be 0 or -1 against 0, use a logical
6804 operation instead. Check for one of the arms being an IOR of the other
6805 arm with some value. We compute three terms to be IOR'ed together. In
6806 practice, at most two will be nonzero. Then we do the IOR's. */
6807
6808 if (GET_CODE (dest) != PC
6809 && GET_CODE (src) == IF_THEN_ELSE
6810 && GET_MODE_CLASS (GET_MODE (src)) == MODE_INT
6811 && (GET_CODE (XEXP (src, 0)) == EQ || GET_CODE (XEXP (src, 0)) == NE)
6812 && XEXP (XEXP (src, 0), 1) == const0_rtx
6813 && GET_MODE (src) == GET_MODE (XEXP (XEXP (src, 0), 0))
6814 && (!HAVE_conditional_move
6815 || ! can_conditionally_move_p (GET_MODE (src)))
6816 && (num_sign_bit_copies (XEXP (XEXP (src, 0), 0),
6817 GET_MODE (XEXP (XEXP (src, 0), 0)))
6818 == GET_MODE_PRECISION (GET_MODE (XEXP (XEXP (src, 0), 0))))
6819 && ! side_effects_p (src))
6820 {
6821 rtx true_rtx = (GET_CODE (XEXP (src, 0)) == NE
6822 ? XEXP (src, 1) : XEXP (src, 2));
6823 rtx false_rtx = (GET_CODE (XEXP (src, 0)) == NE
6824 ? XEXP (src, 2) : XEXP (src, 1));
6825 rtx term1 = const0_rtx, term2, term3;
6826
6827 if (GET_CODE (true_rtx) == IOR
6828 && rtx_equal_p (XEXP (true_rtx, 0), false_rtx))
6829 term1 = false_rtx, true_rtx = XEXP (true_rtx, 1), false_rtx = const0_rtx;
6830 else if (GET_CODE (true_rtx) == IOR
6831 && rtx_equal_p (XEXP (true_rtx, 1), false_rtx))
6832 term1 = false_rtx, true_rtx = XEXP (true_rtx, 0), false_rtx = const0_rtx;
6833 else if (GET_CODE (false_rtx) == IOR
6834 && rtx_equal_p (XEXP (false_rtx, 0), true_rtx))
6835 term1 = true_rtx, false_rtx = XEXP (false_rtx, 1), true_rtx = const0_rtx;
6836 else if (GET_CODE (false_rtx) == IOR
6837 && rtx_equal_p (XEXP (false_rtx, 1), true_rtx))
6838 term1 = true_rtx, false_rtx = XEXP (false_rtx, 0), true_rtx = const0_rtx;
6839
6840 term2 = simplify_gen_binary (AND, GET_MODE (src),
6841 XEXP (XEXP (src, 0), 0), true_rtx);
6842 term3 = simplify_gen_binary (AND, GET_MODE (src),
6843 simplify_gen_unary (NOT, GET_MODE (src),
6844 XEXP (XEXP (src, 0), 0),
6845 GET_MODE (src)),
6846 false_rtx);
6847
6848 SUBST (SET_SRC (x),
6849 simplify_gen_binary (IOR, GET_MODE (src),
6850 simplify_gen_binary (IOR, GET_MODE (src),
6851 term1, term2),
6852 term3));
6853
6854 src = SET_SRC (x);
6855 }
6856
6857 /* If either SRC or DEST is a CLOBBER of (const_int 0), make this
6858 whole thing fail. */
6859 if (GET_CODE (src) == CLOBBER && XEXP (src, 0) == const0_rtx)
6860 return src;
6861 else if (GET_CODE (dest) == CLOBBER && XEXP (dest, 0) == const0_rtx)
6862 return dest;
6863 else
6864 /* Convert this into a field assignment operation, if possible. */
6865 return make_field_assignment (x);
6866 }
6867 \f
6868 /* Simplify, X, and AND, IOR, or XOR operation, and return the simplified
6869 result. */
6870
6871 static rtx
6872 simplify_logical (rtx x)
6873 {
6874 machine_mode mode = GET_MODE (x);
6875 rtx op0 = XEXP (x, 0);
6876 rtx op1 = XEXP (x, 1);
6877
6878 switch (GET_CODE (x))
6879 {
6880 case AND:
6881 /* We can call simplify_and_const_int only if we don't lose
6882 any (sign) bits when converting INTVAL (op1) to
6883 "unsigned HOST_WIDE_INT". */
6884 if (CONST_INT_P (op1)
6885 && (HWI_COMPUTABLE_MODE_P (mode)
6886 || INTVAL (op1) > 0))
6887 {
6888 x = simplify_and_const_int (x, mode, op0, INTVAL (op1));
6889 if (GET_CODE (x) != AND)
6890 return x;
6891
6892 op0 = XEXP (x, 0);
6893 op1 = XEXP (x, 1);
6894 }
6895
6896 /* If we have any of (and (ior A B) C) or (and (xor A B) C),
6897 apply the distributive law and then the inverse distributive
6898 law to see if things simplify. */
6899 if (GET_CODE (op0) == IOR || GET_CODE (op0) == XOR)
6900 {
6901 rtx result = distribute_and_simplify_rtx (x, 0);
6902 if (result)
6903 return result;
6904 }
6905 if (GET_CODE (op1) == IOR || GET_CODE (op1) == XOR)
6906 {
6907 rtx result = distribute_and_simplify_rtx (x, 1);
6908 if (result)
6909 return result;
6910 }
6911 break;
6912
6913 case IOR:
6914 /* If we have (ior (and A B) C), apply the distributive law and then
6915 the inverse distributive law to see if things simplify. */
6916
6917 if (GET_CODE (op0) == AND)
6918 {
6919 rtx result = distribute_and_simplify_rtx (x, 0);
6920 if (result)
6921 return result;
6922 }
6923
6924 if (GET_CODE (op1) == AND)
6925 {
6926 rtx result = distribute_and_simplify_rtx (x, 1);
6927 if (result)
6928 return result;
6929 }
6930 break;
6931
6932 default:
6933 gcc_unreachable ();
6934 }
6935
6936 return x;
6937 }
6938 \f
6939 /* We consider ZERO_EXTRACT, SIGN_EXTRACT, and SIGN_EXTEND as "compound
6940 operations" because they can be replaced with two more basic operations.
6941 ZERO_EXTEND is also considered "compound" because it can be replaced with
6942 an AND operation, which is simpler, though only one operation.
6943
6944 The function expand_compound_operation is called with an rtx expression
6945 and will convert it to the appropriate shifts and AND operations,
6946 simplifying at each stage.
6947
6948 The function make_compound_operation is called to convert an expression
6949 consisting of shifts and ANDs into the equivalent compound expression.
6950 It is the inverse of this function, loosely speaking. */
6951
6952 static rtx
6953 expand_compound_operation (rtx x)
6954 {
6955 unsigned HOST_WIDE_INT pos = 0, len;
6956 int unsignedp = 0;
6957 unsigned int modewidth;
6958 rtx tem;
6959
6960 switch (GET_CODE (x))
6961 {
6962 case ZERO_EXTEND:
6963 unsignedp = 1;
6964 /* FALLTHRU */
6965 case SIGN_EXTEND:
6966 /* We can't necessarily use a const_int for a multiword mode;
6967 it depends on implicitly extending the value.
6968 Since we don't know the right way to extend it,
6969 we can't tell whether the implicit way is right.
6970
6971 Even for a mode that is no wider than a const_int,
6972 we can't win, because we need to sign extend one of its bits through
6973 the rest of it, and we don't know which bit. */
6974 if (CONST_INT_P (XEXP (x, 0)))
6975 return x;
6976
6977 /* Return if (subreg:MODE FROM 0) is not a safe replacement for
6978 (zero_extend:MODE FROM) or (sign_extend:MODE FROM). It is for any MEM
6979 because (SUBREG (MEM...)) is guaranteed to cause the MEM to be
6980 reloaded. If not for that, MEM's would very rarely be safe.
6981
6982 Reject MODEs bigger than a word, because we might not be able
6983 to reference a two-register group starting with an arbitrary register
6984 (and currently gen_lowpart might crash for a SUBREG). */
6985
6986 if (GET_MODE_SIZE (GET_MODE (XEXP (x, 0))) > UNITS_PER_WORD)
6987 return x;
6988
6989 /* Reject MODEs that aren't scalar integers because turning vector
6990 or complex modes into shifts causes problems. */
6991
6992 if (! SCALAR_INT_MODE_P (GET_MODE (XEXP (x, 0))))
6993 return x;
6994
6995 len = GET_MODE_PRECISION (GET_MODE (XEXP (x, 0)));
6996 /* If the inner object has VOIDmode (the only way this can happen
6997 is if it is an ASM_OPERANDS), we can't do anything since we don't
6998 know how much masking to do. */
6999 if (len == 0)
7000 return x;
7001
7002 break;
7003
7004 case ZERO_EXTRACT:
7005 unsignedp = 1;
7006
7007 /* fall through */
7008
7009 case SIGN_EXTRACT:
7010 /* If the operand is a CLOBBER, just return it. */
7011 if (GET_CODE (XEXP (x, 0)) == CLOBBER)
7012 return XEXP (x, 0);
7013
7014 if (!CONST_INT_P (XEXP (x, 1))
7015 || !CONST_INT_P (XEXP (x, 2))
7016 || GET_MODE (XEXP (x, 0)) == VOIDmode)
7017 return x;
7018
7019 /* Reject MODEs that aren't scalar integers because turning vector
7020 or complex modes into shifts causes problems. */
7021
7022 if (! SCALAR_INT_MODE_P (GET_MODE (XEXP (x, 0))))
7023 return x;
7024
7025 len = INTVAL (XEXP (x, 1));
7026 pos = INTVAL (XEXP (x, 2));
7027
7028 /* This should stay within the object being extracted, fail otherwise. */
7029 if (len + pos > GET_MODE_PRECISION (GET_MODE (XEXP (x, 0))))
7030 return x;
7031
7032 if (BITS_BIG_ENDIAN)
7033 pos = GET_MODE_PRECISION (GET_MODE (XEXP (x, 0))) - len - pos;
7034
7035 break;
7036
7037 default:
7038 return x;
7039 }
7040 /* Convert sign extension to zero extension, if we know that the high
7041 bit is not set, as this is easier to optimize. It will be converted
7042 back to cheaper alternative in make_extraction. */
7043 if (GET_CODE (x) == SIGN_EXTEND
7044 && (HWI_COMPUTABLE_MODE_P (GET_MODE (x))
7045 && ((nonzero_bits (XEXP (x, 0), GET_MODE (XEXP (x, 0)))
7046 & ~(((unsigned HOST_WIDE_INT)
7047 GET_MODE_MASK (GET_MODE (XEXP (x, 0))))
7048 >> 1))
7049 == 0)))
7050 {
7051 machine_mode mode = GET_MODE (x);
7052 rtx temp = gen_rtx_ZERO_EXTEND (mode, XEXP (x, 0));
7053 rtx temp2 = expand_compound_operation (temp);
7054
7055 /* Make sure this is a profitable operation. */
7056 if (set_src_cost (x, mode, optimize_this_for_speed_p)
7057 > set_src_cost (temp2, mode, optimize_this_for_speed_p))
7058 return temp2;
7059 else if (set_src_cost (x, mode, optimize_this_for_speed_p)
7060 > set_src_cost (temp, mode, optimize_this_for_speed_p))
7061 return temp;
7062 else
7063 return x;
7064 }
7065
7066 /* We can optimize some special cases of ZERO_EXTEND. */
7067 if (GET_CODE (x) == ZERO_EXTEND)
7068 {
7069 /* (zero_extend:DI (truncate:SI foo:DI)) is just foo:DI if we
7070 know that the last value didn't have any inappropriate bits
7071 set. */
7072 if (GET_CODE (XEXP (x, 0)) == TRUNCATE
7073 && GET_MODE (XEXP (XEXP (x, 0), 0)) == GET_MODE (x)
7074 && HWI_COMPUTABLE_MODE_P (GET_MODE (x))
7075 && (nonzero_bits (XEXP (XEXP (x, 0), 0), GET_MODE (x))
7076 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
7077 return XEXP (XEXP (x, 0), 0);
7078
7079 /* Likewise for (zero_extend:DI (subreg:SI foo:DI 0)). */
7080 if (GET_CODE (XEXP (x, 0)) == SUBREG
7081 && GET_MODE (SUBREG_REG (XEXP (x, 0))) == GET_MODE (x)
7082 && subreg_lowpart_p (XEXP (x, 0))
7083 && HWI_COMPUTABLE_MODE_P (GET_MODE (x))
7084 && (nonzero_bits (SUBREG_REG (XEXP (x, 0)), GET_MODE (x))
7085 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
7086 return SUBREG_REG (XEXP (x, 0));
7087
7088 /* (zero_extend:DI (truncate:SI foo:DI)) is just foo:DI when foo
7089 is a comparison and STORE_FLAG_VALUE permits. This is like
7090 the first case, but it works even when GET_MODE (x) is larger
7091 than HOST_WIDE_INT. */
7092 if (GET_CODE (XEXP (x, 0)) == TRUNCATE
7093 && GET_MODE (XEXP (XEXP (x, 0), 0)) == GET_MODE (x)
7094 && COMPARISON_P (XEXP (XEXP (x, 0), 0))
7095 && (GET_MODE_PRECISION (GET_MODE (XEXP (x, 0)))
7096 <= HOST_BITS_PER_WIDE_INT)
7097 && (STORE_FLAG_VALUE & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
7098 return XEXP (XEXP (x, 0), 0);
7099
7100 /* Likewise for (zero_extend:DI (subreg:SI foo:DI 0)). */
7101 if (GET_CODE (XEXP (x, 0)) == SUBREG
7102 && GET_MODE (SUBREG_REG (XEXP (x, 0))) == GET_MODE (x)
7103 && subreg_lowpart_p (XEXP (x, 0))
7104 && COMPARISON_P (SUBREG_REG (XEXP (x, 0)))
7105 && (GET_MODE_PRECISION (GET_MODE (XEXP (x, 0)))
7106 <= HOST_BITS_PER_WIDE_INT)
7107 && (STORE_FLAG_VALUE & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
7108 return SUBREG_REG (XEXP (x, 0));
7109
7110 }
7111
7112 /* If we reach here, we want to return a pair of shifts. The inner
7113 shift is a left shift of BITSIZE - POS - LEN bits. The outer
7114 shift is a right shift of BITSIZE - LEN bits. It is arithmetic or
7115 logical depending on the value of UNSIGNEDP.
7116
7117 If this was a ZERO_EXTEND or ZERO_EXTRACT, this pair of shifts will be
7118 converted into an AND of a shift.
7119
7120 We must check for the case where the left shift would have a negative
7121 count. This can happen in a case like (x >> 31) & 255 on machines
7122 that can't shift by a constant. On those machines, we would first
7123 combine the shift with the AND to produce a variable-position
7124 extraction. Then the constant of 31 would be substituted in
7125 to produce such a position. */
7126
7127 modewidth = GET_MODE_PRECISION (GET_MODE (x));
7128 if (modewidth >= pos + len)
7129 {
7130 machine_mode mode = GET_MODE (x);
7131 tem = gen_lowpart (mode, XEXP (x, 0));
7132 if (!tem || GET_CODE (tem) == CLOBBER)
7133 return x;
7134 tem = simplify_shift_const (NULL_RTX, ASHIFT, mode,
7135 tem, modewidth - pos - len);
7136 tem = simplify_shift_const (NULL_RTX, unsignedp ? LSHIFTRT : ASHIFTRT,
7137 mode, tem, modewidth - len);
7138 }
7139 else if (unsignedp && len < HOST_BITS_PER_WIDE_INT)
7140 tem = simplify_and_const_int (NULL_RTX, GET_MODE (x),
7141 simplify_shift_const (NULL_RTX, LSHIFTRT,
7142 GET_MODE (x),
7143 XEXP (x, 0), pos),
7144 (HOST_WIDE_INT_1U << len) - 1);
7145 else
7146 /* Any other cases we can't handle. */
7147 return x;
7148
7149 /* If we couldn't do this for some reason, return the original
7150 expression. */
7151 if (GET_CODE (tem) == CLOBBER)
7152 return x;
7153
7154 return tem;
7155 }
7156 \f
7157 /* X is a SET which contains an assignment of one object into
7158 a part of another (such as a bit-field assignment, STRICT_LOW_PART,
7159 or certain SUBREGS). If possible, convert it into a series of
7160 logical operations.
7161
7162 We half-heartedly support variable positions, but do not at all
7163 support variable lengths. */
7164
7165 static const_rtx
7166 expand_field_assignment (const_rtx x)
7167 {
7168 rtx inner;
7169 rtx pos; /* Always counts from low bit. */
7170 int len;
7171 rtx mask, cleared, masked;
7172 machine_mode compute_mode;
7173
7174 /* Loop until we find something we can't simplify. */
7175 while (1)
7176 {
7177 if (GET_CODE (SET_DEST (x)) == STRICT_LOW_PART
7178 && GET_CODE (XEXP (SET_DEST (x), 0)) == SUBREG)
7179 {
7180 inner = SUBREG_REG (XEXP (SET_DEST (x), 0));
7181 len = GET_MODE_PRECISION (GET_MODE (XEXP (SET_DEST (x), 0)));
7182 pos = GEN_INT (subreg_lsb (XEXP (SET_DEST (x), 0)));
7183 }
7184 else if (GET_CODE (SET_DEST (x)) == ZERO_EXTRACT
7185 && CONST_INT_P (XEXP (SET_DEST (x), 1)))
7186 {
7187 inner = XEXP (SET_DEST (x), 0);
7188 len = INTVAL (XEXP (SET_DEST (x), 1));
7189 pos = XEXP (SET_DEST (x), 2);
7190
7191 /* A constant position should stay within the width of INNER. */
7192 if (CONST_INT_P (pos)
7193 && INTVAL (pos) + len > GET_MODE_PRECISION (GET_MODE (inner)))
7194 break;
7195
7196 if (BITS_BIG_ENDIAN)
7197 {
7198 if (CONST_INT_P (pos))
7199 pos = GEN_INT (GET_MODE_PRECISION (GET_MODE (inner)) - len
7200 - INTVAL (pos));
7201 else if (GET_CODE (pos) == MINUS
7202 && CONST_INT_P (XEXP (pos, 1))
7203 && (INTVAL (XEXP (pos, 1))
7204 == GET_MODE_PRECISION (GET_MODE (inner)) - len))
7205 /* If position is ADJUST - X, new position is X. */
7206 pos = XEXP (pos, 0);
7207 else
7208 {
7209 HOST_WIDE_INT prec = GET_MODE_PRECISION (GET_MODE (inner));
7210 pos = simplify_gen_binary (MINUS, GET_MODE (pos),
7211 gen_int_mode (prec - len,
7212 GET_MODE (pos)),
7213 pos);
7214 }
7215 }
7216 }
7217
7218 /* A SUBREG between two modes that occupy the same numbers of words
7219 can be done by moving the SUBREG to the source. */
7220 else if (GET_CODE (SET_DEST (x)) == SUBREG
7221 /* We need SUBREGs to compute nonzero_bits properly. */
7222 && nonzero_sign_valid
7223 && (((GET_MODE_SIZE (GET_MODE (SET_DEST (x)))
7224 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
7225 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (x))))
7226 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)))
7227 {
7228 x = gen_rtx_SET (SUBREG_REG (SET_DEST (x)),
7229 gen_lowpart
7230 (GET_MODE (SUBREG_REG (SET_DEST (x))),
7231 SET_SRC (x)));
7232 continue;
7233 }
7234 else
7235 break;
7236
7237 while (GET_CODE (inner) == SUBREG && subreg_lowpart_p (inner))
7238 inner = SUBREG_REG (inner);
7239
7240 compute_mode = GET_MODE (inner);
7241
7242 /* Don't attempt bitwise arithmetic on non scalar integer modes. */
7243 if (! SCALAR_INT_MODE_P (compute_mode))
7244 {
7245 machine_mode imode;
7246
7247 /* Don't do anything for vector or complex integral types. */
7248 if (! FLOAT_MODE_P (compute_mode))
7249 break;
7250
7251 /* Try to find an integral mode to pun with. */
7252 imode = mode_for_size (GET_MODE_BITSIZE (compute_mode), MODE_INT, 0);
7253 if (imode == BLKmode)
7254 break;
7255
7256 compute_mode = imode;
7257 inner = gen_lowpart (imode, inner);
7258 }
7259
7260 /* Compute a mask of LEN bits, if we can do this on the host machine. */
7261 if (len >= HOST_BITS_PER_WIDE_INT)
7262 break;
7263
7264 /* Don't try to compute in too wide unsupported modes. */
7265 if (!targetm.scalar_mode_supported_p (compute_mode))
7266 break;
7267
7268 /* Now compute the equivalent expression. Make a copy of INNER
7269 for the SET_DEST in case it is a MEM into which we will substitute;
7270 we don't want shared RTL in that case. */
7271 mask = gen_int_mode ((HOST_WIDE_INT_1U << len) - 1,
7272 compute_mode);
7273 cleared = simplify_gen_binary (AND, compute_mode,
7274 simplify_gen_unary (NOT, compute_mode,
7275 simplify_gen_binary (ASHIFT,
7276 compute_mode,
7277 mask, pos),
7278 compute_mode),
7279 inner);
7280 masked = simplify_gen_binary (ASHIFT, compute_mode,
7281 simplify_gen_binary (
7282 AND, compute_mode,
7283 gen_lowpart (compute_mode, SET_SRC (x)),
7284 mask),
7285 pos);
7286
7287 x = gen_rtx_SET (copy_rtx (inner),
7288 simplify_gen_binary (IOR, compute_mode,
7289 cleared, masked));
7290 }
7291
7292 return x;
7293 }
7294 \f
7295 /* Return an RTX for a reference to LEN bits of INNER. If POS_RTX is nonzero,
7296 it is an RTX that represents the (variable) starting position; otherwise,
7297 POS is the (constant) starting bit position. Both are counted from the LSB.
7298
7299 UNSIGNEDP is nonzero for an unsigned reference and zero for a signed one.
7300
7301 IN_DEST is nonzero if this is a reference in the destination of a SET.
7302 This is used when a ZERO_ or SIGN_EXTRACT isn't needed. If nonzero,
7303 a STRICT_LOW_PART will be used, if zero, ZERO_EXTEND or SIGN_EXTEND will
7304 be used.
7305
7306 IN_COMPARE is nonzero if we are in a COMPARE. This means that a
7307 ZERO_EXTRACT should be built even for bits starting at bit 0.
7308
7309 MODE is the desired mode of the result (if IN_DEST == 0).
7310
7311 The result is an RTX for the extraction or NULL_RTX if the target
7312 can't handle it. */
7313
7314 static rtx
7315 make_extraction (machine_mode mode, rtx inner, HOST_WIDE_INT pos,
7316 rtx pos_rtx, unsigned HOST_WIDE_INT len, int unsignedp,
7317 int in_dest, int in_compare)
7318 {
7319 /* This mode describes the size of the storage area
7320 to fetch the overall value from. Within that, we
7321 ignore the POS lowest bits, etc. */
7322 machine_mode is_mode = GET_MODE (inner);
7323 machine_mode inner_mode;
7324 machine_mode wanted_inner_mode;
7325 machine_mode wanted_inner_reg_mode = word_mode;
7326 machine_mode pos_mode = word_mode;
7327 machine_mode extraction_mode = word_mode;
7328 machine_mode tmode = mode_for_size (len, MODE_INT, 1);
7329 rtx new_rtx = 0;
7330 rtx orig_pos_rtx = pos_rtx;
7331 HOST_WIDE_INT orig_pos;
7332
7333 if (pos_rtx && CONST_INT_P (pos_rtx))
7334 pos = INTVAL (pos_rtx), pos_rtx = 0;
7335
7336 if (GET_CODE (inner) == SUBREG && subreg_lowpart_p (inner))
7337 {
7338 /* If going from (subreg:SI (mem:QI ...)) to (mem:QI ...),
7339 consider just the QI as the memory to extract from.
7340 The subreg adds or removes high bits; its mode is
7341 irrelevant to the meaning of this extraction,
7342 since POS and LEN count from the lsb. */
7343 if (MEM_P (SUBREG_REG (inner)))
7344 is_mode = GET_MODE (SUBREG_REG (inner));
7345 inner = SUBREG_REG (inner);
7346 }
7347 else if (GET_CODE (inner) == ASHIFT
7348 && CONST_INT_P (XEXP (inner, 1))
7349 && pos_rtx == 0 && pos == 0
7350 && len > UINTVAL (XEXP (inner, 1)))
7351 {
7352 /* We're extracting the least significant bits of an rtx
7353 (ashift X (const_int C)), where LEN > C. Extract the
7354 least significant (LEN - C) bits of X, giving an rtx
7355 whose mode is MODE, then shift it left C times. */
7356 new_rtx = make_extraction (mode, XEXP (inner, 0),
7357 0, 0, len - INTVAL (XEXP (inner, 1)),
7358 unsignedp, in_dest, in_compare);
7359 if (new_rtx != 0)
7360 return gen_rtx_ASHIFT (mode, new_rtx, XEXP (inner, 1));
7361 }
7362 else if (GET_CODE (inner) == TRUNCATE)
7363 inner = XEXP (inner, 0);
7364
7365 inner_mode = GET_MODE (inner);
7366
7367 /* See if this can be done without an extraction. We never can if the
7368 width of the field is not the same as that of some integer mode. For
7369 registers, we can only avoid the extraction if the position is at the
7370 low-order bit and this is either not in the destination or we have the
7371 appropriate STRICT_LOW_PART operation available.
7372
7373 For MEM, we can avoid an extract if the field starts on an appropriate
7374 boundary and we can change the mode of the memory reference. */
7375
7376 if (tmode != BLKmode
7377 && ((pos_rtx == 0 && (pos % BITS_PER_WORD) == 0
7378 && !MEM_P (inner)
7379 && (inner_mode == tmode
7380 || !REG_P (inner)
7381 || TRULY_NOOP_TRUNCATION_MODES_P (tmode, inner_mode)
7382 || reg_truncated_to_mode (tmode, inner))
7383 && (! in_dest
7384 || (REG_P (inner)
7385 && have_insn_for (STRICT_LOW_PART, tmode))))
7386 || (MEM_P (inner) && pos_rtx == 0
7387 && (pos
7388 % (STRICT_ALIGNMENT ? GET_MODE_ALIGNMENT (tmode)
7389 : BITS_PER_UNIT)) == 0
7390 /* We can't do this if we are widening INNER_MODE (it
7391 may not be aligned, for one thing). */
7392 && GET_MODE_PRECISION (inner_mode) >= GET_MODE_PRECISION (tmode)
7393 && (inner_mode == tmode
7394 || (! mode_dependent_address_p (XEXP (inner, 0),
7395 MEM_ADDR_SPACE (inner))
7396 && ! MEM_VOLATILE_P (inner))))))
7397 {
7398 /* If INNER is a MEM, make a new MEM that encompasses just the desired
7399 field. If the original and current mode are the same, we need not
7400 adjust the offset. Otherwise, we do if bytes big endian.
7401
7402 If INNER is not a MEM, get a piece consisting of just the field
7403 of interest (in this case POS % BITS_PER_WORD must be 0). */
7404
7405 if (MEM_P (inner))
7406 {
7407 HOST_WIDE_INT offset;
7408
7409 /* POS counts from lsb, but make OFFSET count in memory order. */
7410 if (BYTES_BIG_ENDIAN)
7411 offset = (GET_MODE_PRECISION (is_mode) - len - pos) / BITS_PER_UNIT;
7412 else
7413 offset = pos / BITS_PER_UNIT;
7414
7415 new_rtx = adjust_address_nv (inner, tmode, offset);
7416 }
7417 else if (REG_P (inner))
7418 {
7419 if (tmode != inner_mode)
7420 {
7421 /* We can't call gen_lowpart in a DEST since we
7422 always want a SUBREG (see below) and it would sometimes
7423 return a new hard register. */
7424 if (pos || in_dest)
7425 {
7426 HOST_WIDE_INT final_word = pos / BITS_PER_WORD;
7427
7428 if (WORDS_BIG_ENDIAN
7429 && GET_MODE_SIZE (inner_mode) > UNITS_PER_WORD)
7430 final_word = ((GET_MODE_SIZE (inner_mode)
7431 - GET_MODE_SIZE (tmode))
7432 / UNITS_PER_WORD) - final_word;
7433
7434 final_word *= UNITS_PER_WORD;
7435 if (BYTES_BIG_ENDIAN &&
7436 GET_MODE_SIZE (inner_mode) > GET_MODE_SIZE (tmode))
7437 final_word += (GET_MODE_SIZE (inner_mode)
7438 - GET_MODE_SIZE (tmode)) % UNITS_PER_WORD;
7439
7440 /* Avoid creating invalid subregs, for example when
7441 simplifying (x>>32)&255. */
7442 if (!validate_subreg (tmode, inner_mode, inner, final_word))
7443 return NULL_RTX;
7444
7445 new_rtx = gen_rtx_SUBREG (tmode, inner, final_word);
7446 }
7447 else
7448 new_rtx = gen_lowpart (tmode, inner);
7449 }
7450 else
7451 new_rtx = inner;
7452 }
7453 else
7454 new_rtx = force_to_mode (inner, tmode,
7455 len >= HOST_BITS_PER_WIDE_INT
7456 ? HOST_WIDE_INT_M1U
7457 : (HOST_WIDE_INT_1U << len) - 1,
7458 0);
7459
7460 /* If this extraction is going into the destination of a SET,
7461 make a STRICT_LOW_PART unless we made a MEM. */
7462
7463 if (in_dest)
7464 return (MEM_P (new_rtx) ? new_rtx
7465 : (GET_CODE (new_rtx) != SUBREG
7466 ? gen_rtx_CLOBBER (tmode, const0_rtx)
7467 : gen_rtx_STRICT_LOW_PART (VOIDmode, new_rtx)));
7468
7469 if (mode == tmode)
7470 return new_rtx;
7471
7472 if (CONST_SCALAR_INT_P (new_rtx))
7473 return simplify_unary_operation (unsignedp ? ZERO_EXTEND : SIGN_EXTEND,
7474 mode, new_rtx, tmode);
7475
7476 /* If we know that no extraneous bits are set, and that the high
7477 bit is not set, convert the extraction to the cheaper of
7478 sign and zero extension, that are equivalent in these cases. */
7479 if (flag_expensive_optimizations
7480 && (HWI_COMPUTABLE_MODE_P (tmode)
7481 && ((nonzero_bits (new_rtx, tmode)
7482 & ~(((unsigned HOST_WIDE_INT)GET_MODE_MASK (tmode)) >> 1))
7483 == 0)))
7484 {
7485 rtx temp = gen_rtx_ZERO_EXTEND (mode, new_rtx);
7486 rtx temp1 = gen_rtx_SIGN_EXTEND (mode, new_rtx);
7487
7488 /* Prefer ZERO_EXTENSION, since it gives more information to
7489 backends. */
7490 if (set_src_cost (temp, mode, optimize_this_for_speed_p)
7491 <= set_src_cost (temp1, mode, optimize_this_for_speed_p))
7492 return temp;
7493 return temp1;
7494 }
7495
7496 /* Otherwise, sign- or zero-extend unless we already are in the
7497 proper mode. */
7498
7499 return (gen_rtx_fmt_e (unsignedp ? ZERO_EXTEND : SIGN_EXTEND,
7500 mode, new_rtx));
7501 }
7502
7503 /* Unless this is a COMPARE or we have a funny memory reference,
7504 don't do anything with zero-extending field extracts starting at
7505 the low-order bit since they are simple AND operations. */
7506 if (pos_rtx == 0 && pos == 0 && ! in_dest
7507 && ! in_compare && unsignedp)
7508 return 0;
7509
7510 /* Unless INNER is not MEM, reject this if we would be spanning bytes or
7511 if the position is not a constant and the length is not 1. In all
7512 other cases, we would only be going outside our object in cases when
7513 an original shift would have been undefined. */
7514 if (MEM_P (inner)
7515 && ((pos_rtx == 0 && pos + len > GET_MODE_PRECISION (is_mode))
7516 || (pos_rtx != 0 && len != 1)))
7517 return 0;
7518
7519 enum extraction_pattern pattern = (in_dest ? EP_insv
7520 : unsignedp ? EP_extzv : EP_extv);
7521
7522 /* If INNER is not from memory, we want it to have the mode of a register
7523 extraction pattern's structure operand, or word_mode if there is no
7524 such pattern. The same applies to extraction_mode and pos_mode
7525 and their respective operands.
7526
7527 For memory, assume that the desired extraction_mode and pos_mode
7528 are the same as for a register operation, since at present we don't
7529 have named patterns for aligned memory structures. */
7530 struct extraction_insn insn;
7531 if (get_best_reg_extraction_insn (&insn, pattern,
7532 GET_MODE_BITSIZE (inner_mode), mode))
7533 {
7534 wanted_inner_reg_mode = insn.struct_mode;
7535 pos_mode = insn.pos_mode;
7536 extraction_mode = insn.field_mode;
7537 }
7538
7539 /* Never narrow an object, since that might not be safe. */
7540
7541 if (mode != VOIDmode
7542 && GET_MODE_SIZE (extraction_mode) < GET_MODE_SIZE (mode))
7543 extraction_mode = mode;
7544
7545 if (!MEM_P (inner))
7546 wanted_inner_mode = wanted_inner_reg_mode;
7547 else
7548 {
7549 /* Be careful not to go beyond the extracted object and maintain the
7550 natural alignment of the memory. */
7551 wanted_inner_mode = smallest_mode_for_size (len, MODE_INT);
7552 while (pos % GET_MODE_BITSIZE (wanted_inner_mode) + len
7553 > GET_MODE_BITSIZE (wanted_inner_mode))
7554 {
7555 wanted_inner_mode = GET_MODE_WIDER_MODE (wanted_inner_mode);
7556 gcc_assert (wanted_inner_mode != VOIDmode);
7557 }
7558 }
7559
7560 orig_pos = pos;
7561
7562 if (BITS_BIG_ENDIAN)
7563 {
7564 /* POS is passed as if BITS_BIG_ENDIAN == 0, so we need to convert it to
7565 BITS_BIG_ENDIAN style. If position is constant, compute new
7566 position. Otherwise, build subtraction.
7567 Note that POS is relative to the mode of the original argument.
7568 If it's a MEM we need to recompute POS relative to that.
7569 However, if we're extracting from (or inserting into) a register,
7570 we want to recompute POS relative to wanted_inner_mode. */
7571 int width = (MEM_P (inner)
7572 ? GET_MODE_BITSIZE (is_mode)
7573 : GET_MODE_BITSIZE (wanted_inner_mode));
7574
7575 if (pos_rtx == 0)
7576 pos = width - len - pos;
7577 else
7578 pos_rtx
7579 = gen_rtx_MINUS (GET_MODE (pos_rtx),
7580 gen_int_mode (width - len, GET_MODE (pos_rtx)),
7581 pos_rtx);
7582 /* POS may be less than 0 now, but we check for that below.
7583 Note that it can only be less than 0 if !MEM_P (inner). */
7584 }
7585
7586 /* If INNER has a wider mode, and this is a constant extraction, try to
7587 make it smaller and adjust the byte to point to the byte containing
7588 the value. */
7589 if (wanted_inner_mode != VOIDmode
7590 && inner_mode != wanted_inner_mode
7591 && ! pos_rtx
7592 && GET_MODE_SIZE (wanted_inner_mode) < GET_MODE_SIZE (is_mode)
7593 && MEM_P (inner)
7594 && ! mode_dependent_address_p (XEXP (inner, 0), MEM_ADDR_SPACE (inner))
7595 && ! MEM_VOLATILE_P (inner))
7596 {
7597 int offset = 0;
7598
7599 /* The computations below will be correct if the machine is big
7600 endian in both bits and bytes or little endian in bits and bytes.
7601 If it is mixed, we must adjust. */
7602
7603 /* If bytes are big endian and we had a paradoxical SUBREG, we must
7604 adjust OFFSET to compensate. */
7605 if (BYTES_BIG_ENDIAN
7606 && GET_MODE_SIZE (inner_mode) < GET_MODE_SIZE (is_mode))
7607 offset -= GET_MODE_SIZE (is_mode) - GET_MODE_SIZE (inner_mode);
7608
7609 /* We can now move to the desired byte. */
7610 offset += (pos / GET_MODE_BITSIZE (wanted_inner_mode))
7611 * GET_MODE_SIZE (wanted_inner_mode);
7612 pos %= GET_MODE_BITSIZE (wanted_inner_mode);
7613
7614 if (BYTES_BIG_ENDIAN != BITS_BIG_ENDIAN
7615 && is_mode != wanted_inner_mode)
7616 offset = (GET_MODE_SIZE (is_mode)
7617 - GET_MODE_SIZE (wanted_inner_mode) - offset);
7618
7619 inner = adjust_address_nv (inner, wanted_inner_mode, offset);
7620 }
7621
7622 /* If INNER is not memory, get it into the proper mode. If we are changing
7623 its mode, POS must be a constant and smaller than the size of the new
7624 mode. */
7625 else if (!MEM_P (inner))
7626 {
7627 /* On the LHS, don't create paradoxical subregs implicitely truncating
7628 the register unless TRULY_NOOP_TRUNCATION. */
7629 if (in_dest
7630 && !TRULY_NOOP_TRUNCATION_MODES_P (GET_MODE (inner),
7631 wanted_inner_mode))
7632 return NULL_RTX;
7633
7634 if (GET_MODE (inner) != wanted_inner_mode
7635 && (pos_rtx != 0
7636 || orig_pos + len > GET_MODE_BITSIZE (wanted_inner_mode)))
7637 return NULL_RTX;
7638
7639 if (orig_pos < 0)
7640 return NULL_RTX;
7641
7642 inner = force_to_mode (inner, wanted_inner_mode,
7643 pos_rtx
7644 || len + orig_pos >= HOST_BITS_PER_WIDE_INT
7645 ? HOST_WIDE_INT_M1U
7646 : (((HOST_WIDE_INT_1U << len) - 1)
7647 << orig_pos),
7648 0);
7649 }
7650
7651 /* Adjust mode of POS_RTX, if needed. If we want a wider mode, we
7652 have to zero extend. Otherwise, we can just use a SUBREG. */
7653 if (pos_rtx != 0
7654 && GET_MODE_SIZE (pos_mode) > GET_MODE_SIZE (GET_MODE (pos_rtx)))
7655 {
7656 rtx temp = simplify_gen_unary (ZERO_EXTEND, pos_mode, pos_rtx,
7657 GET_MODE (pos_rtx));
7658
7659 /* If we know that no extraneous bits are set, and that the high
7660 bit is not set, convert extraction to cheaper one - either
7661 SIGN_EXTENSION or ZERO_EXTENSION, that are equivalent in these
7662 cases. */
7663 if (flag_expensive_optimizations
7664 && (HWI_COMPUTABLE_MODE_P (GET_MODE (pos_rtx))
7665 && ((nonzero_bits (pos_rtx, GET_MODE (pos_rtx))
7666 & ~(((unsigned HOST_WIDE_INT)
7667 GET_MODE_MASK (GET_MODE (pos_rtx)))
7668 >> 1))
7669 == 0)))
7670 {
7671 rtx temp1 = simplify_gen_unary (SIGN_EXTEND, pos_mode, pos_rtx,
7672 GET_MODE (pos_rtx));
7673
7674 /* Prefer ZERO_EXTENSION, since it gives more information to
7675 backends. */
7676 if (set_src_cost (temp1, pos_mode, optimize_this_for_speed_p)
7677 < set_src_cost (temp, pos_mode, optimize_this_for_speed_p))
7678 temp = temp1;
7679 }
7680 pos_rtx = temp;
7681 }
7682
7683 /* Make POS_RTX unless we already have it and it is correct. If we don't
7684 have a POS_RTX but we do have an ORIG_POS_RTX, the latter must
7685 be a CONST_INT. */
7686 if (pos_rtx == 0 && orig_pos_rtx != 0 && INTVAL (orig_pos_rtx) == pos)
7687 pos_rtx = orig_pos_rtx;
7688
7689 else if (pos_rtx == 0)
7690 pos_rtx = GEN_INT (pos);
7691
7692 /* Make the required operation. See if we can use existing rtx. */
7693 new_rtx = gen_rtx_fmt_eee (unsignedp ? ZERO_EXTRACT : SIGN_EXTRACT,
7694 extraction_mode, inner, GEN_INT (len), pos_rtx);
7695 if (! in_dest)
7696 new_rtx = gen_lowpart (mode, new_rtx);
7697
7698 return new_rtx;
7699 }
7700 \f
7701 /* See if X contains an ASHIFT of COUNT or more bits that can be commuted
7702 with any other operations in X. Return X without that shift if so. */
7703
7704 static rtx
7705 extract_left_shift (rtx x, int count)
7706 {
7707 enum rtx_code code = GET_CODE (x);
7708 machine_mode mode = GET_MODE (x);
7709 rtx tem;
7710
7711 switch (code)
7712 {
7713 case ASHIFT:
7714 /* This is the shift itself. If it is wide enough, we will return
7715 either the value being shifted if the shift count is equal to
7716 COUNT or a shift for the difference. */
7717 if (CONST_INT_P (XEXP (x, 1))
7718 && INTVAL (XEXP (x, 1)) >= count)
7719 return simplify_shift_const (NULL_RTX, ASHIFT, mode, XEXP (x, 0),
7720 INTVAL (XEXP (x, 1)) - count);
7721 break;
7722
7723 case NEG: case NOT:
7724 if ((tem = extract_left_shift (XEXP (x, 0), count)) != 0)
7725 return simplify_gen_unary (code, mode, tem, mode);
7726
7727 break;
7728
7729 case PLUS: case IOR: case XOR: case AND:
7730 /* If we can safely shift this constant and we find the inner shift,
7731 make a new operation. */
7732 if (CONST_INT_P (XEXP (x, 1))
7733 && (UINTVAL (XEXP (x, 1))
7734 & (((HOST_WIDE_INT_1U << count)) - 1)) == 0
7735 && (tem = extract_left_shift (XEXP (x, 0), count)) != 0)
7736 {
7737 HOST_WIDE_INT val = INTVAL (XEXP (x, 1)) >> count;
7738 return simplify_gen_binary (code, mode, tem,
7739 gen_int_mode (val, mode));
7740 }
7741 break;
7742
7743 default:
7744 break;
7745 }
7746
7747 return 0;
7748 }
7749 \f
7750 /* Look at the expression rooted at X. Look for expressions
7751 equivalent to ZERO_EXTRACT, SIGN_EXTRACT, ZERO_EXTEND, SIGN_EXTEND.
7752 Form these expressions.
7753
7754 Return the new rtx, usually just X.
7755
7756 Also, for machines like the VAX that don't have logical shift insns,
7757 try to convert logical to arithmetic shift operations in cases where
7758 they are equivalent. This undoes the canonicalizations to logical
7759 shifts done elsewhere.
7760
7761 We try, as much as possible, to re-use rtl expressions to save memory.
7762
7763 IN_CODE says what kind of expression we are processing. Normally, it is
7764 SET. In a memory address it is MEM. When processing the arguments of
7765 a comparison or a COMPARE against zero, it is COMPARE, or EQ if more
7766 precisely it is an equality comparison against zero. */
7767
7768 rtx
7769 make_compound_operation (rtx x, enum rtx_code in_code)
7770 {
7771 enum rtx_code code = GET_CODE (x);
7772 machine_mode mode = GET_MODE (x);
7773 int mode_width = GET_MODE_PRECISION (mode);
7774 rtx rhs, lhs;
7775 enum rtx_code next_code;
7776 int i, j;
7777 rtx new_rtx = 0;
7778 rtx tem;
7779 const char *fmt;
7780 bool equality_comparison = false;
7781
7782 /* PR rtl-optimization/70944. */
7783 if (VECTOR_MODE_P (mode))
7784 return x;
7785
7786 /* Select the code to be used in recursive calls. Once we are inside an
7787 address, we stay there. If we have a comparison, set to COMPARE,
7788 but once inside, go back to our default of SET. */
7789
7790 if (in_code == EQ)
7791 {
7792 equality_comparison = true;
7793 in_code = COMPARE;
7794 }
7795 next_code = (code == MEM ? MEM
7796 : ((code == COMPARE || COMPARISON_P (x))
7797 && XEXP (x, 1) == const0_rtx) ? COMPARE
7798 : in_code == COMPARE ? SET : in_code);
7799
7800 /* Process depending on the code of this operation. If NEW is set
7801 nonzero, it will be returned. */
7802
7803 switch (code)
7804 {
7805 case ASHIFT:
7806 /* Convert shifts by constants into multiplications if inside
7807 an address. */
7808 if (in_code == MEM && CONST_INT_P (XEXP (x, 1))
7809 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT
7810 && INTVAL (XEXP (x, 1)) >= 0
7811 && SCALAR_INT_MODE_P (mode))
7812 {
7813 HOST_WIDE_INT count = INTVAL (XEXP (x, 1));
7814 HOST_WIDE_INT multval = HOST_WIDE_INT_1 << count;
7815
7816 new_rtx = make_compound_operation (XEXP (x, 0), next_code);
7817 if (GET_CODE (new_rtx) == NEG)
7818 {
7819 new_rtx = XEXP (new_rtx, 0);
7820 multval = -multval;
7821 }
7822 multval = trunc_int_for_mode (multval, mode);
7823 new_rtx = gen_rtx_MULT (mode, new_rtx, gen_int_mode (multval, mode));
7824 }
7825 break;
7826
7827 case PLUS:
7828 lhs = XEXP (x, 0);
7829 rhs = XEXP (x, 1);
7830 lhs = make_compound_operation (lhs, next_code);
7831 rhs = make_compound_operation (rhs, next_code);
7832 if (GET_CODE (lhs) == MULT && GET_CODE (XEXP (lhs, 0)) == NEG
7833 && SCALAR_INT_MODE_P (mode))
7834 {
7835 tem = simplify_gen_binary (MULT, mode, XEXP (XEXP (lhs, 0), 0),
7836 XEXP (lhs, 1));
7837 new_rtx = simplify_gen_binary (MINUS, mode, rhs, tem);
7838 }
7839 else if (GET_CODE (lhs) == MULT
7840 && (CONST_INT_P (XEXP (lhs, 1)) && INTVAL (XEXP (lhs, 1)) < 0))
7841 {
7842 tem = simplify_gen_binary (MULT, mode, XEXP (lhs, 0),
7843 simplify_gen_unary (NEG, mode,
7844 XEXP (lhs, 1),
7845 mode));
7846 new_rtx = simplify_gen_binary (MINUS, mode, rhs, tem);
7847 }
7848 else
7849 {
7850 SUBST (XEXP (x, 0), lhs);
7851 SUBST (XEXP (x, 1), rhs);
7852 goto maybe_swap;
7853 }
7854 x = gen_lowpart (mode, new_rtx);
7855 goto maybe_swap;
7856
7857 case MINUS:
7858 lhs = XEXP (x, 0);
7859 rhs = XEXP (x, 1);
7860 lhs = make_compound_operation (lhs, next_code);
7861 rhs = make_compound_operation (rhs, next_code);
7862 if (GET_CODE (rhs) == MULT && GET_CODE (XEXP (rhs, 0)) == NEG
7863 && SCALAR_INT_MODE_P (mode))
7864 {
7865 tem = simplify_gen_binary (MULT, mode, XEXP (XEXP (rhs, 0), 0),
7866 XEXP (rhs, 1));
7867 new_rtx = simplify_gen_binary (PLUS, mode, tem, lhs);
7868 }
7869 else if (GET_CODE (rhs) == MULT
7870 && (CONST_INT_P (XEXP (rhs, 1)) && INTVAL (XEXP (rhs, 1)) < 0))
7871 {
7872 tem = simplify_gen_binary (MULT, mode, XEXP (rhs, 0),
7873 simplify_gen_unary (NEG, mode,
7874 XEXP (rhs, 1),
7875 mode));
7876 new_rtx = simplify_gen_binary (PLUS, mode, tem, lhs);
7877 }
7878 else
7879 {
7880 SUBST (XEXP (x, 0), lhs);
7881 SUBST (XEXP (x, 1), rhs);
7882 return x;
7883 }
7884 return gen_lowpart (mode, new_rtx);
7885
7886 case AND:
7887 /* If the second operand is not a constant, we can't do anything
7888 with it. */
7889 if (!CONST_INT_P (XEXP (x, 1)))
7890 break;
7891
7892 /* If the constant is a power of two minus one and the first operand
7893 is a logical right shift, make an extraction. */
7894 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
7895 && (i = exact_log2 (UINTVAL (XEXP (x, 1)) + 1)) >= 0)
7896 {
7897 new_rtx = make_compound_operation (XEXP (XEXP (x, 0), 0), next_code);
7898 new_rtx = make_extraction (mode, new_rtx, 0, XEXP (XEXP (x, 0), 1), i, 1,
7899 0, in_code == COMPARE);
7900 }
7901
7902 /* Same as previous, but for (subreg (lshiftrt ...)) in first op. */
7903 else if (GET_CODE (XEXP (x, 0)) == SUBREG
7904 && subreg_lowpart_p (XEXP (x, 0))
7905 && GET_CODE (SUBREG_REG (XEXP (x, 0))) == LSHIFTRT
7906 && (i = exact_log2 (UINTVAL (XEXP (x, 1)) + 1)) >= 0)
7907 {
7908 rtx inner_x0 = SUBREG_REG (XEXP (x, 0));
7909 machine_mode inner_mode = GET_MODE (inner_x0);
7910 new_rtx = make_compound_operation (XEXP (inner_x0, 0), next_code);
7911 new_rtx = make_extraction (inner_mode, new_rtx, 0,
7912 XEXP (inner_x0, 1),
7913 i, 1, 0, in_code == COMPARE);
7914
7915 if (new_rtx)
7916 {
7917 /* If we narrowed the mode when dropping the subreg, then
7918 we must zero-extend to keep the semantics of the AND. */
7919 if (GET_MODE_SIZE (inner_mode) >= GET_MODE_SIZE (mode))
7920 ;
7921 else if (SCALAR_INT_MODE_P (inner_mode))
7922 new_rtx = simplify_gen_unary (ZERO_EXTEND, mode,
7923 new_rtx, inner_mode);
7924 else
7925 new_rtx = NULL;
7926 }
7927
7928 /* If that didn't give anything, see if the AND simplifies on
7929 its own. */
7930 if (!new_rtx && i >= 0)
7931 {
7932 new_rtx = make_compound_operation (XEXP (x, 0), next_code);
7933 new_rtx = make_extraction (mode, new_rtx, 0, NULL_RTX, i, 1,
7934 0, in_code == COMPARE);
7935 }
7936 }
7937 /* Same as previous, but for (xor/ior (lshiftrt...) (lshiftrt...)). */
7938 else if ((GET_CODE (XEXP (x, 0)) == XOR
7939 || GET_CODE (XEXP (x, 0)) == IOR)
7940 && GET_CODE (XEXP (XEXP (x, 0), 0)) == LSHIFTRT
7941 && GET_CODE (XEXP (XEXP (x, 0), 1)) == LSHIFTRT
7942 && (i = exact_log2 (UINTVAL (XEXP (x, 1)) + 1)) >= 0)
7943 {
7944 /* Apply the distributive law, and then try to make extractions. */
7945 new_rtx = gen_rtx_fmt_ee (GET_CODE (XEXP (x, 0)), mode,
7946 gen_rtx_AND (mode, XEXP (XEXP (x, 0), 0),
7947 XEXP (x, 1)),
7948 gen_rtx_AND (mode, XEXP (XEXP (x, 0), 1),
7949 XEXP (x, 1)));
7950 new_rtx = make_compound_operation (new_rtx, in_code);
7951 }
7952
7953 /* If we are have (and (rotate X C) M) and C is larger than the number
7954 of bits in M, this is an extraction. */
7955
7956 else if (GET_CODE (XEXP (x, 0)) == ROTATE
7957 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
7958 && (i = exact_log2 (UINTVAL (XEXP (x, 1)) + 1)) >= 0
7959 && i <= INTVAL (XEXP (XEXP (x, 0), 1)))
7960 {
7961 new_rtx = make_compound_operation (XEXP (XEXP (x, 0), 0), next_code);
7962 new_rtx = make_extraction (mode, new_rtx,
7963 (GET_MODE_PRECISION (mode)
7964 - INTVAL (XEXP (XEXP (x, 0), 1))),
7965 NULL_RTX, i, 1, 0, in_code == COMPARE);
7966 }
7967
7968 /* On machines without logical shifts, if the operand of the AND is
7969 a logical shift and our mask turns off all the propagated sign
7970 bits, we can replace the logical shift with an arithmetic shift. */
7971 else if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
7972 && !have_insn_for (LSHIFTRT, mode)
7973 && have_insn_for (ASHIFTRT, mode)
7974 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
7975 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
7976 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT
7977 && mode_width <= HOST_BITS_PER_WIDE_INT)
7978 {
7979 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
7980
7981 mask >>= INTVAL (XEXP (XEXP (x, 0), 1));
7982 if ((INTVAL (XEXP (x, 1)) & ~mask) == 0)
7983 SUBST (XEXP (x, 0),
7984 gen_rtx_ASHIFTRT (mode,
7985 make_compound_operation
7986 (XEXP (XEXP (x, 0), 0), next_code),
7987 XEXP (XEXP (x, 0), 1)));
7988 }
7989
7990 /* If the constant is one less than a power of two, this might be
7991 representable by an extraction even if no shift is present.
7992 If it doesn't end up being a ZERO_EXTEND, we will ignore it unless
7993 we are in a COMPARE. */
7994 else if ((i = exact_log2 (UINTVAL (XEXP (x, 1)) + 1)) >= 0)
7995 new_rtx = make_extraction (mode,
7996 make_compound_operation (XEXP (x, 0),
7997 next_code),
7998 0, NULL_RTX, i, 1, 0, in_code == COMPARE);
7999
8000 /* If we are in a comparison and this is an AND with a power of two,
8001 convert this into the appropriate bit extract. */
8002 else if (in_code == COMPARE
8003 && (i = exact_log2 (UINTVAL (XEXP (x, 1)))) >= 0
8004 && (equality_comparison || i < GET_MODE_PRECISION (mode) - 1))
8005 new_rtx = make_extraction (mode,
8006 make_compound_operation (XEXP (x, 0),
8007 next_code),
8008 i, NULL_RTX, 1, 1, 0, 1);
8009
8010 /* If the one operand is a paradoxical subreg of a register or memory and
8011 the constant (limited to the smaller mode) has only zero bits where
8012 the sub expression has known zero bits, this can be expressed as
8013 a zero_extend. */
8014 else if (GET_CODE (XEXP (x, 0)) == SUBREG)
8015 {
8016 rtx sub;
8017
8018 sub = XEXP (XEXP (x, 0), 0);
8019 machine_mode sub_mode = GET_MODE (sub);
8020 if ((REG_P (sub) || MEM_P (sub))
8021 && GET_MODE_PRECISION (sub_mode) < mode_width)
8022 {
8023 unsigned HOST_WIDE_INT mode_mask = GET_MODE_MASK (sub_mode);
8024 unsigned HOST_WIDE_INT mask;
8025
8026 /* original AND constant with all the known zero bits set */
8027 mask = UINTVAL (XEXP (x, 1)) | (~nonzero_bits (sub, sub_mode));
8028 if ((mask & mode_mask) == mode_mask)
8029 {
8030 new_rtx = make_compound_operation (sub, next_code);
8031 new_rtx = make_extraction (mode, new_rtx, 0, 0,
8032 GET_MODE_PRECISION (sub_mode),
8033 1, 0, in_code == COMPARE);
8034 }
8035 }
8036 }
8037
8038 break;
8039
8040 case LSHIFTRT:
8041 /* If the sign bit is known to be zero, replace this with an
8042 arithmetic shift. */
8043 if (have_insn_for (ASHIFTRT, mode)
8044 && ! have_insn_for (LSHIFTRT, mode)
8045 && mode_width <= HOST_BITS_PER_WIDE_INT
8046 && (nonzero_bits (XEXP (x, 0), mode) & (1 << (mode_width - 1))) == 0)
8047 {
8048 new_rtx = gen_rtx_ASHIFTRT (mode,
8049 make_compound_operation (XEXP (x, 0),
8050 next_code),
8051 XEXP (x, 1));
8052 break;
8053 }
8054
8055 /* fall through */
8056
8057 case ASHIFTRT:
8058 lhs = XEXP (x, 0);
8059 rhs = XEXP (x, 1);
8060
8061 /* If we have (ashiftrt (ashift foo C1) C2) with C2 >= C1,
8062 this is a SIGN_EXTRACT. */
8063 if (CONST_INT_P (rhs)
8064 && GET_CODE (lhs) == ASHIFT
8065 && CONST_INT_P (XEXP (lhs, 1))
8066 && INTVAL (rhs) >= INTVAL (XEXP (lhs, 1))
8067 && INTVAL (XEXP (lhs, 1)) >= 0
8068 && INTVAL (rhs) < mode_width)
8069 {
8070 new_rtx = make_compound_operation (XEXP (lhs, 0), next_code);
8071 new_rtx = make_extraction (mode, new_rtx,
8072 INTVAL (rhs) - INTVAL (XEXP (lhs, 1)),
8073 NULL_RTX, mode_width - INTVAL (rhs),
8074 code == LSHIFTRT, 0, in_code == COMPARE);
8075 break;
8076 }
8077
8078 /* See if we have operations between an ASHIFTRT and an ASHIFT.
8079 If so, try to merge the shifts into a SIGN_EXTEND. We could
8080 also do this for some cases of SIGN_EXTRACT, but it doesn't
8081 seem worth the effort; the case checked for occurs on Alpha. */
8082
8083 if (!OBJECT_P (lhs)
8084 && ! (GET_CODE (lhs) == SUBREG
8085 && (OBJECT_P (SUBREG_REG (lhs))))
8086 && CONST_INT_P (rhs)
8087 && INTVAL (rhs) >= 0
8088 && INTVAL (rhs) < HOST_BITS_PER_WIDE_INT
8089 && INTVAL (rhs) < mode_width
8090 && (new_rtx = extract_left_shift (lhs, INTVAL (rhs))) != 0)
8091 new_rtx = make_extraction (mode, make_compound_operation (new_rtx, next_code),
8092 0, NULL_RTX, mode_width - INTVAL (rhs),
8093 code == LSHIFTRT, 0, in_code == COMPARE);
8094
8095 break;
8096
8097 case SUBREG:
8098 /* Call ourselves recursively on the inner expression. If we are
8099 narrowing the object and it has a different RTL code from
8100 what it originally did, do this SUBREG as a force_to_mode. */
8101 {
8102 rtx inner = SUBREG_REG (x), simplified;
8103 enum rtx_code subreg_code = in_code;
8104
8105 /* If in_code is COMPARE, it isn't always safe to pass it through
8106 to the recursive make_compound_operation call. */
8107 if (subreg_code == COMPARE
8108 && (!subreg_lowpart_p (x)
8109 || GET_CODE (inner) == SUBREG
8110 /* (subreg:SI (and:DI (reg:DI) (const_int 0x800000000)) 0)
8111 is (const_int 0), rather than
8112 (subreg:SI (lshiftrt:DI (reg:DI) (const_int 35)) 0). */
8113 || (GET_CODE (inner) == AND
8114 && CONST_INT_P (XEXP (inner, 1))
8115 && GET_MODE_SIZE (mode) < GET_MODE_SIZE (GET_MODE (inner))
8116 && exact_log2 (UINTVAL (XEXP (inner, 1)))
8117 >= GET_MODE_BITSIZE (mode))))
8118 subreg_code = SET;
8119
8120 tem = make_compound_operation (inner, subreg_code);
8121
8122 simplified
8123 = simplify_subreg (mode, tem, GET_MODE (inner), SUBREG_BYTE (x));
8124 if (simplified)
8125 tem = simplified;
8126
8127 if (GET_CODE (tem) != GET_CODE (inner)
8128 && GET_MODE_SIZE (mode) < GET_MODE_SIZE (GET_MODE (inner))
8129 && subreg_lowpart_p (x))
8130 {
8131 rtx newer
8132 = force_to_mode (tem, mode, HOST_WIDE_INT_M1U, 0);
8133
8134 /* If we have something other than a SUBREG, we might have
8135 done an expansion, so rerun ourselves. */
8136 if (GET_CODE (newer) != SUBREG)
8137 newer = make_compound_operation (newer, in_code);
8138
8139 /* force_to_mode can expand compounds. If it just re-expanded the
8140 compound, use gen_lowpart to convert to the desired mode. */
8141 if (rtx_equal_p (newer, x)
8142 /* Likewise if it re-expanded the compound only partially.
8143 This happens for SUBREG of ZERO_EXTRACT if they extract
8144 the same number of bits. */
8145 || (GET_CODE (newer) == SUBREG
8146 && (GET_CODE (SUBREG_REG (newer)) == LSHIFTRT
8147 || GET_CODE (SUBREG_REG (newer)) == ASHIFTRT)
8148 && GET_CODE (inner) == AND
8149 && rtx_equal_p (SUBREG_REG (newer), XEXP (inner, 0))))
8150 return gen_lowpart (GET_MODE (x), tem);
8151
8152 return newer;
8153 }
8154
8155 if (simplified)
8156 return tem;
8157 }
8158 break;
8159
8160 default:
8161 break;
8162 }
8163
8164 if (new_rtx)
8165 {
8166 x = gen_lowpart (mode, new_rtx);
8167 code = GET_CODE (x);
8168 }
8169
8170 /* Now recursively process each operand of this operation. We need to
8171 handle ZERO_EXTEND specially so that we don't lose track of the
8172 inner mode. */
8173 if (GET_CODE (x) == ZERO_EXTEND)
8174 {
8175 new_rtx = make_compound_operation (XEXP (x, 0), next_code);
8176 tem = simplify_const_unary_operation (ZERO_EXTEND, GET_MODE (x),
8177 new_rtx, GET_MODE (XEXP (x, 0)));
8178 if (tem)
8179 return tem;
8180 SUBST (XEXP (x, 0), new_rtx);
8181 return x;
8182 }
8183
8184 fmt = GET_RTX_FORMAT (code);
8185 for (i = 0; i < GET_RTX_LENGTH (code); i++)
8186 if (fmt[i] == 'e')
8187 {
8188 new_rtx = make_compound_operation (XEXP (x, i), next_code);
8189 SUBST (XEXP (x, i), new_rtx);
8190 }
8191 else if (fmt[i] == 'E')
8192 for (j = 0; j < XVECLEN (x, i); j++)
8193 {
8194 new_rtx = make_compound_operation (XVECEXP (x, i, j), next_code);
8195 SUBST (XVECEXP (x, i, j), new_rtx);
8196 }
8197
8198 maybe_swap:
8199 /* If this is a commutative operation, the changes to the operands
8200 may have made it noncanonical. */
8201 if (COMMUTATIVE_ARITH_P (x)
8202 && swap_commutative_operands_p (XEXP (x, 0), XEXP (x, 1)))
8203 {
8204 tem = XEXP (x, 0);
8205 SUBST (XEXP (x, 0), XEXP (x, 1));
8206 SUBST (XEXP (x, 1), tem);
8207 }
8208
8209 return x;
8210 }
8211 \f
8212 /* Given M see if it is a value that would select a field of bits
8213 within an item, but not the entire word. Return -1 if not.
8214 Otherwise, return the starting position of the field, where 0 is the
8215 low-order bit.
8216
8217 *PLEN is set to the length of the field. */
8218
8219 static int
8220 get_pos_from_mask (unsigned HOST_WIDE_INT m, unsigned HOST_WIDE_INT *plen)
8221 {
8222 /* Get the bit number of the first 1 bit from the right, -1 if none. */
8223 int pos = m ? ctz_hwi (m) : -1;
8224 int len = 0;
8225
8226 if (pos >= 0)
8227 /* Now shift off the low-order zero bits and see if we have a
8228 power of two minus 1. */
8229 len = exact_log2 ((m >> pos) + 1);
8230
8231 if (len <= 0)
8232 pos = -1;
8233
8234 *plen = len;
8235 return pos;
8236 }
8237 \f
8238 /* If X refers to a register that equals REG in value, replace these
8239 references with REG. */
8240 static rtx
8241 canon_reg_for_combine (rtx x, rtx reg)
8242 {
8243 rtx op0, op1, op2;
8244 const char *fmt;
8245 int i;
8246 bool copied;
8247
8248 enum rtx_code code = GET_CODE (x);
8249 switch (GET_RTX_CLASS (code))
8250 {
8251 case RTX_UNARY:
8252 op0 = canon_reg_for_combine (XEXP (x, 0), reg);
8253 if (op0 != XEXP (x, 0))
8254 return simplify_gen_unary (GET_CODE (x), GET_MODE (x), op0,
8255 GET_MODE (reg));
8256 break;
8257
8258 case RTX_BIN_ARITH:
8259 case RTX_COMM_ARITH:
8260 op0 = canon_reg_for_combine (XEXP (x, 0), reg);
8261 op1 = canon_reg_for_combine (XEXP (x, 1), reg);
8262 if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
8263 return simplify_gen_binary (GET_CODE (x), GET_MODE (x), op0, op1);
8264 break;
8265
8266 case RTX_COMPARE:
8267 case RTX_COMM_COMPARE:
8268 op0 = canon_reg_for_combine (XEXP (x, 0), reg);
8269 op1 = canon_reg_for_combine (XEXP (x, 1), reg);
8270 if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
8271 return simplify_gen_relational (GET_CODE (x), GET_MODE (x),
8272 GET_MODE (op0), op0, op1);
8273 break;
8274
8275 case RTX_TERNARY:
8276 case RTX_BITFIELD_OPS:
8277 op0 = canon_reg_for_combine (XEXP (x, 0), reg);
8278 op1 = canon_reg_for_combine (XEXP (x, 1), reg);
8279 op2 = canon_reg_for_combine (XEXP (x, 2), reg);
8280 if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1) || op2 != XEXP (x, 2))
8281 return simplify_gen_ternary (GET_CODE (x), GET_MODE (x),
8282 GET_MODE (op0), op0, op1, op2);
8283 /* FALLTHRU */
8284
8285 case RTX_OBJ:
8286 if (REG_P (x))
8287 {
8288 if (rtx_equal_p (get_last_value (reg), x)
8289 || rtx_equal_p (reg, get_last_value (x)))
8290 return reg;
8291 else
8292 break;
8293 }
8294
8295 /* fall through */
8296
8297 default:
8298 fmt = GET_RTX_FORMAT (code);
8299 copied = false;
8300 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
8301 if (fmt[i] == 'e')
8302 {
8303 rtx op = canon_reg_for_combine (XEXP (x, i), reg);
8304 if (op != XEXP (x, i))
8305 {
8306 if (!copied)
8307 {
8308 copied = true;
8309 x = copy_rtx (x);
8310 }
8311 XEXP (x, i) = op;
8312 }
8313 }
8314 else if (fmt[i] == 'E')
8315 {
8316 int j;
8317 for (j = 0; j < XVECLEN (x, i); j++)
8318 {
8319 rtx op = canon_reg_for_combine (XVECEXP (x, i, j), reg);
8320 if (op != XVECEXP (x, i, j))
8321 {
8322 if (!copied)
8323 {
8324 copied = true;
8325 x = copy_rtx (x);
8326 }
8327 XVECEXP (x, i, j) = op;
8328 }
8329 }
8330 }
8331
8332 break;
8333 }
8334
8335 return x;
8336 }
8337
8338 /* Return X converted to MODE. If the value is already truncated to
8339 MODE we can just return a subreg even though in the general case we
8340 would need an explicit truncation. */
8341
8342 static rtx
8343 gen_lowpart_or_truncate (machine_mode mode, rtx x)
8344 {
8345 if (!CONST_INT_P (x)
8346 && GET_MODE_SIZE (mode) < GET_MODE_SIZE (GET_MODE (x))
8347 && !TRULY_NOOP_TRUNCATION_MODES_P (mode, GET_MODE (x))
8348 && !(REG_P (x) && reg_truncated_to_mode (mode, x)))
8349 {
8350 /* Bit-cast X into an integer mode. */
8351 if (!SCALAR_INT_MODE_P (GET_MODE (x)))
8352 x = gen_lowpart (int_mode_for_mode (GET_MODE (x)), x);
8353 x = simplify_gen_unary (TRUNCATE, int_mode_for_mode (mode),
8354 x, GET_MODE (x));
8355 }
8356
8357 return gen_lowpart (mode, x);
8358 }
8359
8360 /* See if X can be simplified knowing that we will only refer to it in
8361 MODE and will only refer to those bits that are nonzero in MASK.
8362 If other bits are being computed or if masking operations are done
8363 that select a superset of the bits in MASK, they can sometimes be
8364 ignored.
8365
8366 Return a possibly simplified expression, but always convert X to
8367 MODE. If X is a CONST_INT, AND the CONST_INT with MASK.
8368
8369 If JUST_SELECT is nonzero, don't optimize by noticing that bits in MASK
8370 are all off in X. This is used when X will be complemented, by either
8371 NOT, NEG, or XOR. */
8372
8373 static rtx
8374 force_to_mode (rtx x, machine_mode mode, unsigned HOST_WIDE_INT mask,
8375 int just_select)
8376 {
8377 enum rtx_code code = GET_CODE (x);
8378 int next_select = just_select || code == XOR || code == NOT || code == NEG;
8379 machine_mode op_mode;
8380 unsigned HOST_WIDE_INT fuller_mask, nonzero;
8381 rtx op0, op1, temp;
8382
8383 /* If this is a CALL or ASM_OPERANDS, don't do anything. Some of the
8384 code below will do the wrong thing since the mode of such an
8385 expression is VOIDmode.
8386
8387 Also do nothing if X is a CLOBBER; this can happen if X was
8388 the return value from a call to gen_lowpart. */
8389 if (code == CALL || code == ASM_OPERANDS || code == CLOBBER)
8390 return x;
8391
8392 /* We want to perform the operation in its present mode unless we know
8393 that the operation is valid in MODE, in which case we do the operation
8394 in MODE. */
8395 op_mode = ((GET_MODE_CLASS (mode) == GET_MODE_CLASS (GET_MODE (x))
8396 && have_insn_for (code, mode))
8397 ? mode : GET_MODE (x));
8398
8399 /* It is not valid to do a right-shift in a narrower mode
8400 than the one it came in with. */
8401 if ((code == LSHIFTRT || code == ASHIFTRT)
8402 && GET_MODE_PRECISION (mode) < GET_MODE_PRECISION (GET_MODE (x)))
8403 op_mode = GET_MODE (x);
8404
8405 /* Truncate MASK to fit OP_MODE. */
8406 if (op_mode)
8407 mask &= GET_MODE_MASK (op_mode);
8408
8409 /* When we have an arithmetic operation, or a shift whose count we
8410 do not know, we need to assume that all bits up to the highest-order
8411 bit in MASK will be needed. This is how we form such a mask. */
8412 if (mask & (HOST_WIDE_INT_1U << (HOST_BITS_PER_WIDE_INT - 1)))
8413 fuller_mask = HOST_WIDE_INT_M1U;
8414 else
8415 fuller_mask = ((HOST_WIDE_INT_1U << (floor_log2 (mask) + 1))
8416 - 1);
8417
8418 /* Determine what bits of X are guaranteed to be (non)zero. */
8419 nonzero = nonzero_bits (x, mode);
8420
8421 /* If none of the bits in X are needed, return a zero. */
8422 if (!just_select && (nonzero & mask) == 0 && !side_effects_p (x))
8423 x = const0_rtx;
8424
8425 /* If X is a CONST_INT, return a new one. Do this here since the
8426 test below will fail. */
8427 if (CONST_INT_P (x))
8428 {
8429 if (SCALAR_INT_MODE_P (mode))
8430 return gen_int_mode (INTVAL (x) & mask, mode);
8431 else
8432 {
8433 x = GEN_INT (INTVAL (x) & mask);
8434 return gen_lowpart_common (mode, x);
8435 }
8436 }
8437
8438 /* If X is narrower than MODE and we want all the bits in X's mode, just
8439 get X in the proper mode. */
8440 if (GET_MODE_SIZE (GET_MODE (x)) < GET_MODE_SIZE (mode)
8441 && (GET_MODE_MASK (GET_MODE (x)) & ~mask) == 0)
8442 return gen_lowpart (mode, x);
8443
8444 /* We can ignore the effect of a SUBREG if it narrows the mode or
8445 if the constant masks to zero all the bits the mode doesn't have. */
8446 if (GET_CODE (x) == SUBREG
8447 && subreg_lowpart_p (x)
8448 && ((GET_MODE_SIZE (GET_MODE (x))
8449 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
8450 || (0 == (mask
8451 & GET_MODE_MASK (GET_MODE (x))
8452 & ~GET_MODE_MASK (GET_MODE (SUBREG_REG (x)))))))
8453 return force_to_mode (SUBREG_REG (x), mode, mask, next_select);
8454
8455 /* The arithmetic simplifications here only work for scalar integer modes. */
8456 if (!SCALAR_INT_MODE_P (mode) || !SCALAR_INT_MODE_P (GET_MODE (x)))
8457 return gen_lowpart_or_truncate (mode, x);
8458
8459 switch (code)
8460 {
8461 case CLOBBER:
8462 /* If X is a (clobber (const_int)), return it since we know we are
8463 generating something that won't match. */
8464 return x;
8465
8466 case SIGN_EXTEND:
8467 case ZERO_EXTEND:
8468 case ZERO_EXTRACT:
8469 case SIGN_EXTRACT:
8470 x = expand_compound_operation (x);
8471 if (GET_CODE (x) != code)
8472 return force_to_mode (x, mode, mask, next_select);
8473 break;
8474
8475 case TRUNCATE:
8476 /* Similarly for a truncate. */
8477 return force_to_mode (XEXP (x, 0), mode, mask, next_select);
8478
8479 case AND:
8480 /* If this is an AND with a constant, convert it into an AND
8481 whose constant is the AND of that constant with MASK. If it
8482 remains an AND of MASK, delete it since it is redundant. */
8483
8484 if (CONST_INT_P (XEXP (x, 1)))
8485 {
8486 x = simplify_and_const_int (x, op_mode, XEXP (x, 0),
8487 mask & INTVAL (XEXP (x, 1)));
8488
8489 /* If X is still an AND, see if it is an AND with a mask that
8490 is just some low-order bits. If so, and it is MASK, we don't
8491 need it. */
8492
8493 if (GET_CODE (x) == AND && CONST_INT_P (XEXP (x, 1))
8494 && ((INTVAL (XEXP (x, 1)) & GET_MODE_MASK (GET_MODE (x)))
8495 == mask))
8496 x = XEXP (x, 0);
8497
8498 /* If it remains an AND, try making another AND with the bits
8499 in the mode mask that aren't in MASK turned on. If the
8500 constant in the AND is wide enough, this might make a
8501 cheaper constant. */
8502
8503 if (GET_CODE (x) == AND && CONST_INT_P (XEXP (x, 1))
8504 && GET_MODE_MASK (GET_MODE (x)) != mask
8505 && HWI_COMPUTABLE_MODE_P (GET_MODE (x)))
8506 {
8507 unsigned HOST_WIDE_INT cval
8508 = UINTVAL (XEXP (x, 1))
8509 | (GET_MODE_MASK (GET_MODE (x)) & ~mask);
8510 rtx y;
8511
8512 y = simplify_gen_binary (AND, GET_MODE (x), XEXP (x, 0),
8513 gen_int_mode (cval, GET_MODE (x)));
8514 if (set_src_cost (y, GET_MODE (x), optimize_this_for_speed_p)
8515 < set_src_cost (x, GET_MODE (x), optimize_this_for_speed_p))
8516 x = y;
8517 }
8518
8519 break;
8520 }
8521
8522 goto binop;
8523
8524 case PLUS:
8525 /* In (and (plus FOO C1) M), if M is a mask that just turns off
8526 low-order bits (as in an alignment operation) and FOO is already
8527 aligned to that boundary, mask C1 to that boundary as well.
8528 This may eliminate that PLUS and, later, the AND. */
8529
8530 {
8531 unsigned int width = GET_MODE_PRECISION (mode);
8532 unsigned HOST_WIDE_INT smask = mask;
8533
8534 /* If MODE is narrower than HOST_WIDE_INT and mask is a negative
8535 number, sign extend it. */
8536
8537 if (width < HOST_BITS_PER_WIDE_INT
8538 && (smask & (HOST_WIDE_INT_1U << (width - 1))) != 0)
8539 smask |= HOST_WIDE_INT_M1U << width;
8540
8541 if (CONST_INT_P (XEXP (x, 1))
8542 && pow2p_hwi (- smask)
8543 && (nonzero_bits (XEXP (x, 0), mode) & ~smask) == 0
8544 && (INTVAL (XEXP (x, 1)) & ~smask) != 0)
8545 return force_to_mode (plus_constant (GET_MODE (x), XEXP (x, 0),
8546 (INTVAL (XEXP (x, 1)) & smask)),
8547 mode, smask, next_select);
8548 }
8549
8550 /* fall through */
8551
8552 case MULT:
8553 /* Substituting into the operands of a widening MULT is not likely to
8554 create RTL matching a machine insn. */
8555 if (code == MULT
8556 && (GET_CODE (XEXP (x, 0)) == ZERO_EXTEND
8557 || GET_CODE (XEXP (x, 0)) == SIGN_EXTEND)
8558 && (GET_CODE (XEXP (x, 1)) == ZERO_EXTEND
8559 || GET_CODE (XEXP (x, 1)) == SIGN_EXTEND)
8560 && REG_P (XEXP (XEXP (x, 0), 0))
8561 && REG_P (XEXP (XEXP (x, 1), 0)))
8562 return gen_lowpart_or_truncate (mode, x);
8563
8564 /* For PLUS, MINUS and MULT, we need any bits less significant than the
8565 most significant bit in MASK since carries from those bits will
8566 affect the bits we are interested in. */
8567 mask = fuller_mask;
8568 goto binop;
8569
8570 case MINUS:
8571 /* If X is (minus C Y) where C's least set bit is larger than any bit
8572 in the mask, then we may replace with (neg Y). */
8573 if (CONST_INT_P (XEXP (x, 0))
8574 && least_bit_hwi (UINTVAL (XEXP (x, 0))) > mask)
8575 {
8576 x = simplify_gen_unary (NEG, GET_MODE (x), XEXP (x, 1),
8577 GET_MODE (x));
8578 return force_to_mode (x, mode, mask, next_select);
8579 }
8580
8581 /* Similarly, if C contains every bit in the fuller_mask, then we may
8582 replace with (not Y). */
8583 if (CONST_INT_P (XEXP (x, 0))
8584 && ((UINTVAL (XEXP (x, 0)) | fuller_mask) == UINTVAL (XEXP (x, 0))))
8585 {
8586 x = simplify_gen_unary (NOT, GET_MODE (x),
8587 XEXP (x, 1), GET_MODE (x));
8588 return force_to_mode (x, mode, mask, next_select);
8589 }
8590
8591 mask = fuller_mask;
8592 goto binop;
8593
8594 case IOR:
8595 case XOR:
8596 /* If X is (ior (lshiftrt FOO C1) C2), try to commute the IOR and
8597 LSHIFTRT so we end up with an (and (lshiftrt (ior ...) ...) ...)
8598 operation which may be a bitfield extraction. Ensure that the
8599 constant we form is not wider than the mode of X. */
8600
8601 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
8602 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
8603 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
8604 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT
8605 && CONST_INT_P (XEXP (x, 1))
8606 && ((INTVAL (XEXP (XEXP (x, 0), 1))
8607 + floor_log2 (INTVAL (XEXP (x, 1))))
8608 < GET_MODE_PRECISION (GET_MODE (x)))
8609 && (UINTVAL (XEXP (x, 1))
8610 & ~nonzero_bits (XEXP (x, 0), GET_MODE (x))) == 0)
8611 {
8612 temp = gen_int_mode ((INTVAL (XEXP (x, 1)) & mask)
8613 << INTVAL (XEXP (XEXP (x, 0), 1)),
8614 GET_MODE (x));
8615 temp = simplify_gen_binary (GET_CODE (x), GET_MODE (x),
8616 XEXP (XEXP (x, 0), 0), temp);
8617 x = simplify_gen_binary (LSHIFTRT, GET_MODE (x), temp,
8618 XEXP (XEXP (x, 0), 1));
8619 return force_to_mode (x, mode, mask, next_select);
8620 }
8621
8622 binop:
8623 /* For most binary operations, just propagate into the operation and
8624 change the mode if we have an operation of that mode. */
8625
8626 op0 = force_to_mode (XEXP (x, 0), mode, mask, next_select);
8627 op1 = force_to_mode (XEXP (x, 1), mode, mask, next_select);
8628
8629 /* If we ended up truncating both operands, truncate the result of the
8630 operation instead. */
8631 if (GET_CODE (op0) == TRUNCATE
8632 && GET_CODE (op1) == TRUNCATE)
8633 {
8634 op0 = XEXP (op0, 0);
8635 op1 = XEXP (op1, 0);
8636 }
8637
8638 op0 = gen_lowpart_or_truncate (op_mode, op0);
8639 op1 = gen_lowpart_or_truncate (op_mode, op1);
8640
8641 if (op_mode != GET_MODE (x) || op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
8642 x = simplify_gen_binary (code, op_mode, op0, op1);
8643 break;
8644
8645 case ASHIFT:
8646 /* For left shifts, do the same, but just for the first operand.
8647 However, we cannot do anything with shifts where we cannot
8648 guarantee that the counts are smaller than the size of the mode
8649 because such a count will have a different meaning in a
8650 wider mode. */
8651
8652 if (! (CONST_INT_P (XEXP (x, 1))
8653 && INTVAL (XEXP (x, 1)) >= 0
8654 && INTVAL (XEXP (x, 1)) < GET_MODE_PRECISION (mode))
8655 && ! (GET_MODE (XEXP (x, 1)) != VOIDmode
8656 && (nonzero_bits (XEXP (x, 1), GET_MODE (XEXP (x, 1)))
8657 < (unsigned HOST_WIDE_INT) GET_MODE_PRECISION (mode))))
8658 break;
8659
8660 /* If the shift count is a constant and we can do arithmetic in
8661 the mode of the shift, refine which bits we need. Otherwise, use the
8662 conservative form of the mask. */
8663 if (CONST_INT_P (XEXP (x, 1))
8664 && INTVAL (XEXP (x, 1)) >= 0
8665 && INTVAL (XEXP (x, 1)) < GET_MODE_PRECISION (op_mode)
8666 && HWI_COMPUTABLE_MODE_P (op_mode))
8667 mask >>= INTVAL (XEXP (x, 1));
8668 else
8669 mask = fuller_mask;
8670
8671 op0 = gen_lowpart_or_truncate (op_mode,
8672 force_to_mode (XEXP (x, 0), op_mode,
8673 mask, next_select));
8674
8675 if (op_mode != GET_MODE (x) || op0 != XEXP (x, 0))
8676 x = simplify_gen_binary (code, op_mode, op0, XEXP (x, 1));
8677 break;
8678
8679 case LSHIFTRT:
8680 /* Here we can only do something if the shift count is a constant,
8681 this shift constant is valid for the host, and we can do arithmetic
8682 in OP_MODE. */
8683
8684 if (CONST_INT_P (XEXP (x, 1))
8685 && INTVAL (XEXP (x, 1)) >= 0
8686 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT
8687 && HWI_COMPUTABLE_MODE_P (op_mode))
8688 {
8689 rtx inner = XEXP (x, 0);
8690 unsigned HOST_WIDE_INT inner_mask;
8691
8692 /* Select the mask of the bits we need for the shift operand. */
8693 inner_mask = mask << INTVAL (XEXP (x, 1));
8694
8695 /* We can only change the mode of the shift if we can do arithmetic
8696 in the mode of the shift and INNER_MASK is no wider than the
8697 width of X's mode. */
8698 if ((inner_mask & ~GET_MODE_MASK (GET_MODE (x))) != 0)
8699 op_mode = GET_MODE (x);
8700
8701 inner = force_to_mode (inner, op_mode, inner_mask, next_select);
8702
8703 if (GET_MODE (x) != op_mode || inner != XEXP (x, 0))
8704 x = simplify_gen_binary (LSHIFTRT, op_mode, inner, XEXP (x, 1));
8705 }
8706
8707 /* If we have (and (lshiftrt FOO C1) C2) where the combination of the
8708 shift and AND produces only copies of the sign bit (C2 is one less
8709 than a power of two), we can do this with just a shift. */
8710
8711 if (GET_CODE (x) == LSHIFTRT
8712 && CONST_INT_P (XEXP (x, 1))
8713 /* The shift puts one of the sign bit copies in the least significant
8714 bit. */
8715 && ((INTVAL (XEXP (x, 1))
8716 + num_sign_bit_copies (XEXP (x, 0), GET_MODE (XEXP (x, 0))))
8717 >= GET_MODE_PRECISION (GET_MODE (x)))
8718 && pow2p_hwi (mask + 1)
8719 /* Number of bits left after the shift must be more than the mask
8720 needs. */
8721 && ((INTVAL (XEXP (x, 1)) + exact_log2 (mask + 1))
8722 <= GET_MODE_PRECISION (GET_MODE (x)))
8723 /* Must be more sign bit copies than the mask needs. */
8724 && ((int) num_sign_bit_copies (XEXP (x, 0), GET_MODE (XEXP (x, 0)))
8725 >= exact_log2 (mask + 1)))
8726 x = simplify_gen_binary (LSHIFTRT, GET_MODE (x), XEXP (x, 0),
8727 GEN_INT (GET_MODE_PRECISION (GET_MODE (x))
8728 - exact_log2 (mask + 1)));
8729
8730 goto shiftrt;
8731
8732 case ASHIFTRT:
8733 /* If we are just looking for the sign bit, we don't need this shift at
8734 all, even if it has a variable count. */
8735 if (val_signbit_p (GET_MODE (x), mask))
8736 return force_to_mode (XEXP (x, 0), mode, mask, next_select);
8737
8738 /* If this is a shift by a constant, get a mask that contains those bits
8739 that are not copies of the sign bit. We then have two cases: If
8740 MASK only includes those bits, this can be a logical shift, which may
8741 allow simplifications. If MASK is a single-bit field not within
8742 those bits, we are requesting a copy of the sign bit and hence can
8743 shift the sign bit to the appropriate location. */
8744
8745 if (CONST_INT_P (XEXP (x, 1)) && INTVAL (XEXP (x, 1)) >= 0
8746 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT)
8747 {
8748 int i;
8749
8750 /* If the considered data is wider than HOST_WIDE_INT, we can't
8751 represent a mask for all its bits in a single scalar.
8752 But we only care about the lower bits, so calculate these. */
8753
8754 if (GET_MODE_PRECISION (GET_MODE (x)) > HOST_BITS_PER_WIDE_INT)
8755 {
8756 nonzero = HOST_WIDE_INT_M1U;
8757
8758 /* GET_MODE_PRECISION (GET_MODE (x)) - INTVAL (XEXP (x, 1))
8759 is the number of bits a full-width mask would have set.
8760 We need only shift if these are fewer than nonzero can
8761 hold. If not, we must keep all bits set in nonzero. */
8762
8763 if (GET_MODE_PRECISION (GET_MODE (x)) - INTVAL (XEXP (x, 1))
8764 < HOST_BITS_PER_WIDE_INT)
8765 nonzero >>= INTVAL (XEXP (x, 1))
8766 + HOST_BITS_PER_WIDE_INT
8767 - GET_MODE_PRECISION (GET_MODE (x)) ;
8768 }
8769 else
8770 {
8771 nonzero = GET_MODE_MASK (GET_MODE (x));
8772 nonzero >>= INTVAL (XEXP (x, 1));
8773 }
8774
8775 if ((mask & ~nonzero) == 0)
8776 {
8777 x = simplify_shift_const (NULL_RTX, LSHIFTRT, GET_MODE (x),
8778 XEXP (x, 0), INTVAL (XEXP (x, 1)));
8779 if (GET_CODE (x) != ASHIFTRT)
8780 return force_to_mode (x, mode, mask, next_select);
8781 }
8782
8783 else if ((i = exact_log2 (mask)) >= 0)
8784 {
8785 x = simplify_shift_const
8786 (NULL_RTX, LSHIFTRT, GET_MODE (x), XEXP (x, 0),
8787 GET_MODE_PRECISION (GET_MODE (x)) - 1 - i);
8788
8789 if (GET_CODE (x) != ASHIFTRT)
8790 return force_to_mode (x, mode, mask, next_select);
8791 }
8792 }
8793
8794 /* If MASK is 1, convert this to an LSHIFTRT. This can be done
8795 even if the shift count isn't a constant. */
8796 if (mask == 1)
8797 x = simplify_gen_binary (LSHIFTRT, GET_MODE (x),
8798 XEXP (x, 0), XEXP (x, 1));
8799
8800 shiftrt:
8801
8802 /* If this is a zero- or sign-extension operation that just affects bits
8803 we don't care about, remove it. Be sure the call above returned
8804 something that is still a shift. */
8805
8806 if ((GET_CODE (x) == LSHIFTRT || GET_CODE (x) == ASHIFTRT)
8807 && CONST_INT_P (XEXP (x, 1))
8808 && INTVAL (XEXP (x, 1)) >= 0
8809 && (INTVAL (XEXP (x, 1))
8810 <= GET_MODE_PRECISION (GET_MODE (x)) - (floor_log2 (mask) + 1))
8811 && GET_CODE (XEXP (x, 0)) == ASHIFT
8812 && XEXP (XEXP (x, 0), 1) == XEXP (x, 1))
8813 return force_to_mode (XEXP (XEXP (x, 0), 0), mode, mask,
8814 next_select);
8815
8816 break;
8817
8818 case ROTATE:
8819 case ROTATERT:
8820 /* If the shift count is constant and we can do computations
8821 in the mode of X, compute where the bits we care about are.
8822 Otherwise, we can't do anything. Don't change the mode of
8823 the shift or propagate MODE into the shift, though. */
8824 if (CONST_INT_P (XEXP (x, 1))
8825 && INTVAL (XEXP (x, 1)) >= 0)
8826 {
8827 temp = simplify_binary_operation (code == ROTATE ? ROTATERT : ROTATE,
8828 GET_MODE (x),
8829 gen_int_mode (mask, GET_MODE (x)),
8830 XEXP (x, 1));
8831 if (temp && CONST_INT_P (temp))
8832 x = simplify_gen_binary (code, GET_MODE (x),
8833 force_to_mode (XEXP (x, 0), GET_MODE (x),
8834 INTVAL (temp), next_select),
8835 XEXP (x, 1));
8836 }
8837 break;
8838
8839 case NEG:
8840 /* If we just want the low-order bit, the NEG isn't needed since it
8841 won't change the low-order bit. */
8842 if (mask == 1)
8843 return force_to_mode (XEXP (x, 0), mode, mask, just_select);
8844
8845 /* We need any bits less significant than the most significant bit in
8846 MASK since carries from those bits will affect the bits we are
8847 interested in. */
8848 mask = fuller_mask;
8849 goto unop;
8850
8851 case NOT:
8852 /* (not FOO) is (xor FOO CONST), so if FOO is an LSHIFTRT, we can do the
8853 same as the XOR case above. Ensure that the constant we form is not
8854 wider than the mode of X. */
8855
8856 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
8857 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
8858 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
8859 && (INTVAL (XEXP (XEXP (x, 0), 1)) + floor_log2 (mask)
8860 < GET_MODE_PRECISION (GET_MODE (x)))
8861 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT)
8862 {
8863 temp = gen_int_mode (mask << INTVAL (XEXP (XEXP (x, 0), 1)),
8864 GET_MODE (x));
8865 temp = simplify_gen_binary (XOR, GET_MODE (x),
8866 XEXP (XEXP (x, 0), 0), temp);
8867 x = simplify_gen_binary (LSHIFTRT, GET_MODE (x),
8868 temp, XEXP (XEXP (x, 0), 1));
8869
8870 return force_to_mode (x, mode, mask, next_select);
8871 }
8872
8873 /* (and (not FOO) CONST) is (not (or FOO (not CONST))), so we must
8874 use the full mask inside the NOT. */
8875 mask = fuller_mask;
8876
8877 unop:
8878 op0 = gen_lowpart_or_truncate (op_mode,
8879 force_to_mode (XEXP (x, 0), mode, mask,
8880 next_select));
8881 if (op_mode != GET_MODE (x) || op0 != XEXP (x, 0))
8882 x = simplify_gen_unary (code, op_mode, op0, op_mode);
8883 break;
8884
8885 case NE:
8886 /* (and (ne FOO 0) CONST) can be (and FOO CONST) if CONST is included
8887 in STORE_FLAG_VALUE and FOO has a single bit that might be nonzero,
8888 which is equal to STORE_FLAG_VALUE. */
8889 if ((mask & ~STORE_FLAG_VALUE) == 0
8890 && XEXP (x, 1) == const0_rtx
8891 && GET_MODE (XEXP (x, 0)) == mode
8892 && pow2p_hwi (nonzero_bits (XEXP (x, 0), mode))
8893 && (nonzero_bits (XEXP (x, 0), mode)
8894 == (unsigned HOST_WIDE_INT) STORE_FLAG_VALUE))
8895 return force_to_mode (XEXP (x, 0), mode, mask, next_select);
8896
8897 break;
8898
8899 case IF_THEN_ELSE:
8900 /* We have no way of knowing if the IF_THEN_ELSE can itself be
8901 written in a narrower mode. We play it safe and do not do so. */
8902
8903 op0 = gen_lowpart_or_truncate (GET_MODE (x),
8904 force_to_mode (XEXP (x, 1), mode,
8905 mask, next_select));
8906 op1 = gen_lowpart_or_truncate (GET_MODE (x),
8907 force_to_mode (XEXP (x, 2), mode,
8908 mask, next_select));
8909 if (op0 != XEXP (x, 1) || op1 != XEXP (x, 2))
8910 x = simplify_gen_ternary (IF_THEN_ELSE, GET_MODE (x),
8911 GET_MODE (XEXP (x, 0)), XEXP (x, 0),
8912 op0, op1);
8913 break;
8914
8915 default:
8916 break;
8917 }
8918
8919 /* Ensure we return a value of the proper mode. */
8920 return gen_lowpart_or_truncate (mode, x);
8921 }
8922 \f
8923 /* Return nonzero if X is an expression that has one of two values depending on
8924 whether some other value is zero or nonzero. In that case, we return the
8925 value that is being tested, *PTRUE is set to the value if the rtx being
8926 returned has a nonzero value, and *PFALSE is set to the other alternative.
8927
8928 If we return zero, we set *PTRUE and *PFALSE to X. */
8929
8930 static rtx
8931 if_then_else_cond (rtx x, rtx *ptrue, rtx *pfalse)
8932 {
8933 machine_mode mode = GET_MODE (x);
8934 enum rtx_code code = GET_CODE (x);
8935 rtx cond0, cond1, true0, true1, false0, false1;
8936 unsigned HOST_WIDE_INT nz;
8937
8938 /* If we are comparing a value against zero, we are done. */
8939 if ((code == NE || code == EQ)
8940 && XEXP (x, 1) == const0_rtx)
8941 {
8942 *ptrue = (code == NE) ? const_true_rtx : const0_rtx;
8943 *pfalse = (code == NE) ? const0_rtx : const_true_rtx;
8944 return XEXP (x, 0);
8945 }
8946
8947 /* If this is a unary operation whose operand has one of two values, apply
8948 our opcode to compute those values. */
8949 else if (UNARY_P (x)
8950 && (cond0 = if_then_else_cond (XEXP (x, 0), &true0, &false0)) != 0)
8951 {
8952 *ptrue = simplify_gen_unary (code, mode, true0, GET_MODE (XEXP (x, 0)));
8953 *pfalse = simplify_gen_unary (code, mode, false0,
8954 GET_MODE (XEXP (x, 0)));
8955 return cond0;
8956 }
8957
8958 /* If this is a COMPARE, do nothing, since the IF_THEN_ELSE we would
8959 make can't possibly match and would suppress other optimizations. */
8960 else if (code == COMPARE)
8961 ;
8962
8963 /* If this is a binary operation, see if either side has only one of two
8964 values. If either one does or if both do and they are conditional on
8965 the same value, compute the new true and false values. */
8966 else if (BINARY_P (x))
8967 {
8968 cond0 = if_then_else_cond (XEXP (x, 0), &true0, &false0);
8969 cond1 = if_then_else_cond (XEXP (x, 1), &true1, &false1);
8970
8971 if ((cond0 != 0 || cond1 != 0)
8972 && ! (cond0 != 0 && cond1 != 0 && ! rtx_equal_p (cond0, cond1)))
8973 {
8974 /* If if_then_else_cond returned zero, then true/false are the
8975 same rtl. We must copy one of them to prevent invalid rtl
8976 sharing. */
8977 if (cond0 == 0)
8978 true0 = copy_rtx (true0);
8979 else if (cond1 == 0)
8980 true1 = copy_rtx (true1);
8981
8982 if (COMPARISON_P (x))
8983 {
8984 *ptrue = simplify_gen_relational (code, mode, VOIDmode,
8985 true0, true1);
8986 *pfalse = simplify_gen_relational (code, mode, VOIDmode,
8987 false0, false1);
8988 }
8989 else
8990 {
8991 *ptrue = simplify_gen_binary (code, mode, true0, true1);
8992 *pfalse = simplify_gen_binary (code, mode, false0, false1);
8993 }
8994
8995 return cond0 ? cond0 : cond1;
8996 }
8997
8998 /* See if we have PLUS, IOR, XOR, MINUS or UMAX, where one of the
8999 operands is zero when the other is nonzero, and vice-versa,
9000 and STORE_FLAG_VALUE is 1 or -1. */
9001
9002 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
9003 && (code == PLUS || code == IOR || code == XOR || code == MINUS
9004 || code == UMAX)
9005 && GET_CODE (XEXP (x, 0)) == MULT && GET_CODE (XEXP (x, 1)) == MULT)
9006 {
9007 rtx op0 = XEXP (XEXP (x, 0), 1);
9008 rtx op1 = XEXP (XEXP (x, 1), 1);
9009
9010 cond0 = XEXP (XEXP (x, 0), 0);
9011 cond1 = XEXP (XEXP (x, 1), 0);
9012
9013 if (COMPARISON_P (cond0)
9014 && COMPARISON_P (cond1)
9015 && ((GET_CODE (cond0) == reversed_comparison_code (cond1, NULL)
9016 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 0))
9017 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 1)))
9018 || ((swap_condition (GET_CODE (cond0))
9019 == reversed_comparison_code (cond1, NULL))
9020 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 1))
9021 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 0))))
9022 && ! side_effects_p (x))
9023 {
9024 *ptrue = simplify_gen_binary (MULT, mode, op0, const_true_rtx);
9025 *pfalse = simplify_gen_binary (MULT, mode,
9026 (code == MINUS
9027 ? simplify_gen_unary (NEG, mode,
9028 op1, mode)
9029 : op1),
9030 const_true_rtx);
9031 return cond0;
9032 }
9033 }
9034
9035 /* Similarly for MULT, AND and UMIN, except that for these the result
9036 is always zero. */
9037 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
9038 && (code == MULT || code == AND || code == UMIN)
9039 && GET_CODE (XEXP (x, 0)) == MULT && GET_CODE (XEXP (x, 1)) == MULT)
9040 {
9041 cond0 = XEXP (XEXP (x, 0), 0);
9042 cond1 = XEXP (XEXP (x, 1), 0);
9043
9044 if (COMPARISON_P (cond0)
9045 && COMPARISON_P (cond1)
9046 && ((GET_CODE (cond0) == reversed_comparison_code (cond1, NULL)
9047 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 0))
9048 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 1)))
9049 || ((swap_condition (GET_CODE (cond0))
9050 == reversed_comparison_code (cond1, NULL))
9051 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 1))
9052 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 0))))
9053 && ! side_effects_p (x))
9054 {
9055 *ptrue = *pfalse = const0_rtx;
9056 return cond0;
9057 }
9058 }
9059 }
9060
9061 else if (code == IF_THEN_ELSE)
9062 {
9063 /* If we have IF_THEN_ELSE already, extract the condition and
9064 canonicalize it if it is NE or EQ. */
9065 cond0 = XEXP (x, 0);
9066 *ptrue = XEXP (x, 1), *pfalse = XEXP (x, 2);
9067 if (GET_CODE (cond0) == NE && XEXP (cond0, 1) == const0_rtx)
9068 return XEXP (cond0, 0);
9069 else if (GET_CODE (cond0) == EQ && XEXP (cond0, 1) == const0_rtx)
9070 {
9071 *ptrue = XEXP (x, 2), *pfalse = XEXP (x, 1);
9072 return XEXP (cond0, 0);
9073 }
9074 else
9075 return cond0;
9076 }
9077
9078 /* If X is a SUBREG, we can narrow both the true and false values
9079 if the inner expression, if there is a condition. */
9080 else if (code == SUBREG
9081 && 0 != (cond0 = if_then_else_cond (SUBREG_REG (x),
9082 &true0, &false0)))
9083 {
9084 true0 = simplify_gen_subreg (mode, true0,
9085 GET_MODE (SUBREG_REG (x)), SUBREG_BYTE (x));
9086 false0 = simplify_gen_subreg (mode, false0,
9087 GET_MODE (SUBREG_REG (x)), SUBREG_BYTE (x));
9088 if (true0 && false0)
9089 {
9090 *ptrue = true0;
9091 *pfalse = false0;
9092 return cond0;
9093 }
9094 }
9095
9096 /* If X is a constant, this isn't special and will cause confusions
9097 if we treat it as such. Likewise if it is equivalent to a constant. */
9098 else if (CONSTANT_P (x)
9099 || ((cond0 = get_last_value (x)) != 0 && CONSTANT_P (cond0)))
9100 ;
9101
9102 /* If we're in BImode, canonicalize on 0 and STORE_FLAG_VALUE, as that
9103 will be least confusing to the rest of the compiler. */
9104 else if (mode == BImode)
9105 {
9106 *ptrue = GEN_INT (STORE_FLAG_VALUE), *pfalse = const0_rtx;
9107 return x;
9108 }
9109
9110 /* If X is known to be either 0 or -1, those are the true and
9111 false values when testing X. */
9112 else if (x == constm1_rtx || x == const0_rtx
9113 || (mode != VOIDmode
9114 && num_sign_bit_copies (x, mode) == GET_MODE_PRECISION (mode)))
9115 {
9116 *ptrue = constm1_rtx, *pfalse = const0_rtx;
9117 return x;
9118 }
9119
9120 /* Likewise for 0 or a single bit. */
9121 else if (HWI_COMPUTABLE_MODE_P (mode)
9122 && pow2p_hwi (nz = nonzero_bits (x, mode)))
9123 {
9124 *ptrue = gen_int_mode (nz, mode), *pfalse = const0_rtx;
9125 return x;
9126 }
9127
9128 /* Otherwise fail; show no condition with true and false values the same. */
9129 *ptrue = *pfalse = x;
9130 return 0;
9131 }
9132 \f
9133 /* Return the value of expression X given the fact that condition COND
9134 is known to be true when applied to REG as its first operand and VAL
9135 as its second. X is known to not be shared and so can be modified in
9136 place.
9137
9138 We only handle the simplest cases, and specifically those cases that
9139 arise with IF_THEN_ELSE expressions. */
9140
9141 static rtx
9142 known_cond (rtx x, enum rtx_code cond, rtx reg, rtx val)
9143 {
9144 enum rtx_code code = GET_CODE (x);
9145 const char *fmt;
9146 int i, j;
9147
9148 if (side_effects_p (x))
9149 return x;
9150
9151 /* If either operand of the condition is a floating point value,
9152 then we have to avoid collapsing an EQ comparison. */
9153 if (cond == EQ
9154 && rtx_equal_p (x, reg)
9155 && ! FLOAT_MODE_P (GET_MODE (x))
9156 && ! FLOAT_MODE_P (GET_MODE (val)))
9157 return val;
9158
9159 if (cond == UNEQ && rtx_equal_p (x, reg))
9160 return val;
9161
9162 /* If X is (abs REG) and we know something about REG's relationship
9163 with zero, we may be able to simplify this. */
9164
9165 if (code == ABS && rtx_equal_p (XEXP (x, 0), reg) && val == const0_rtx)
9166 switch (cond)
9167 {
9168 case GE: case GT: case EQ:
9169 return XEXP (x, 0);
9170 case LT: case LE:
9171 return simplify_gen_unary (NEG, GET_MODE (XEXP (x, 0)),
9172 XEXP (x, 0),
9173 GET_MODE (XEXP (x, 0)));
9174 default:
9175 break;
9176 }
9177
9178 /* The only other cases we handle are MIN, MAX, and comparisons if the
9179 operands are the same as REG and VAL. */
9180
9181 else if (COMPARISON_P (x) || COMMUTATIVE_ARITH_P (x))
9182 {
9183 if (rtx_equal_p (XEXP (x, 0), val))
9184 {
9185 std::swap (val, reg);
9186 cond = swap_condition (cond);
9187 }
9188
9189 if (rtx_equal_p (XEXP (x, 0), reg) && rtx_equal_p (XEXP (x, 1), val))
9190 {
9191 if (COMPARISON_P (x))
9192 {
9193 if (comparison_dominates_p (cond, code))
9194 return const_true_rtx;
9195
9196 code = reversed_comparison_code (x, NULL);
9197 if (code != UNKNOWN
9198 && comparison_dominates_p (cond, code))
9199 return const0_rtx;
9200 else
9201 return x;
9202 }
9203 else if (code == SMAX || code == SMIN
9204 || code == UMIN || code == UMAX)
9205 {
9206 int unsignedp = (code == UMIN || code == UMAX);
9207
9208 /* Do not reverse the condition when it is NE or EQ.
9209 This is because we cannot conclude anything about
9210 the value of 'SMAX (x, y)' when x is not equal to y,
9211 but we can when x equals y. */
9212 if ((code == SMAX || code == UMAX)
9213 && ! (cond == EQ || cond == NE))
9214 cond = reverse_condition (cond);
9215
9216 switch (cond)
9217 {
9218 case GE: case GT:
9219 return unsignedp ? x : XEXP (x, 1);
9220 case LE: case LT:
9221 return unsignedp ? x : XEXP (x, 0);
9222 case GEU: case GTU:
9223 return unsignedp ? XEXP (x, 1) : x;
9224 case LEU: case LTU:
9225 return unsignedp ? XEXP (x, 0) : x;
9226 default:
9227 break;
9228 }
9229 }
9230 }
9231 }
9232 else if (code == SUBREG)
9233 {
9234 machine_mode inner_mode = GET_MODE (SUBREG_REG (x));
9235 rtx new_rtx, r = known_cond (SUBREG_REG (x), cond, reg, val);
9236
9237 if (SUBREG_REG (x) != r)
9238 {
9239 /* We must simplify subreg here, before we lose track of the
9240 original inner_mode. */
9241 new_rtx = simplify_subreg (GET_MODE (x), r,
9242 inner_mode, SUBREG_BYTE (x));
9243 if (new_rtx)
9244 return new_rtx;
9245 else
9246 SUBST (SUBREG_REG (x), r);
9247 }
9248
9249 return x;
9250 }
9251 /* We don't have to handle SIGN_EXTEND here, because even in the
9252 case of replacing something with a modeless CONST_INT, a
9253 CONST_INT is already (supposed to be) a valid sign extension for
9254 its narrower mode, which implies it's already properly
9255 sign-extended for the wider mode. Now, for ZERO_EXTEND, the
9256 story is different. */
9257 else if (code == ZERO_EXTEND)
9258 {
9259 machine_mode inner_mode = GET_MODE (XEXP (x, 0));
9260 rtx new_rtx, r = known_cond (XEXP (x, 0), cond, reg, val);
9261
9262 if (XEXP (x, 0) != r)
9263 {
9264 /* We must simplify the zero_extend here, before we lose
9265 track of the original inner_mode. */
9266 new_rtx = simplify_unary_operation (ZERO_EXTEND, GET_MODE (x),
9267 r, inner_mode);
9268 if (new_rtx)
9269 return new_rtx;
9270 else
9271 SUBST (XEXP (x, 0), r);
9272 }
9273
9274 return x;
9275 }
9276
9277 fmt = GET_RTX_FORMAT (code);
9278 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
9279 {
9280 if (fmt[i] == 'e')
9281 SUBST (XEXP (x, i), known_cond (XEXP (x, i), cond, reg, val));
9282 else if (fmt[i] == 'E')
9283 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
9284 SUBST (XVECEXP (x, i, j), known_cond (XVECEXP (x, i, j),
9285 cond, reg, val));
9286 }
9287
9288 return x;
9289 }
9290 \f
9291 /* See if X and Y are equal for the purposes of seeing if we can rewrite an
9292 assignment as a field assignment. */
9293
9294 static int
9295 rtx_equal_for_field_assignment_p (rtx x, rtx y, bool widen_x)
9296 {
9297 if (widen_x && GET_MODE (x) != GET_MODE (y))
9298 {
9299 if (GET_MODE_SIZE (GET_MODE (x)) > GET_MODE_SIZE (GET_MODE (y)))
9300 return 0;
9301 if (BYTES_BIG_ENDIAN != WORDS_BIG_ENDIAN)
9302 return 0;
9303 /* For big endian, adjust the memory offset. */
9304 if (BYTES_BIG_ENDIAN)
9305 x = adjust_address_nv (x, GET_MODE (y),
9306 -subreg_lowpart_offset (GET_MODE (x),
9307 GET_MODE (y)));
9308 else
9309 x = adjust_address_nv (x, GET_MODE (y), 0);
9310 }
9311
9312 if (x == y || rtx_equal_p (x, y))
9313 return 1;
9314
9315 if (x == 0 || y == 0 || GET_MODE (x) != GET_MODE (y))
9316 return 0;
9317
9318 /* Check for a paradoxical SUBREG of a MEM compared with the MEM.
9319 Note that all SUBREGs of MEM are paradoxical; otherwise they
9320 would have been rewritten. */
9321 if (MEM_P (x) && GET_CODE (y) == SUBREG
9322 && MEM_P (SUBREG_REG (y))
9323 && rtx_equal_p (SUBREG_REG (y),
9324 gen_lowpart (GET_MODE (SUBREG_REG (y)), x)))
9325 return 1;
9326
9327 if (MEM_P (y) && GET_CODE (x) == SUBREG
9328 && MEM_P (SUBREG_REG (x))
9329 && rtx_equal_p (SUBREG_REG (x),
9330 gen_lowpart (GET_MODE (SUBREG_REG (x)), y)))
9331 return 1;
9332
9333 /* We used to see if get_last_value of X and Y were the same but that's
9334 not correct. In one direction, we'll cause the assignment to have
9335 the wrong destination and in the case, we'll import a register into this
9336 insn that might have already have been dead. So fail if none of the
9337 above cases are true. */
9338 return 0;
9339 }
9340 \f
9341 /* See if X, a SET operation, can be rewritten as a bit-field assignment.
9342 Return that assignment if so.
9343
9344 We only handle the most common cases. */
9345
9346 static rtx
9347 make_field_assignment (rtx x)
9348 {
9349 rtx dest = SET_DEST (x);
9350 rtx src = SET_SRC (x);
9351 rtx assign;
9352 rtx rhs, lhs;
9353 HOST_WIDE_INT c1;
9354 HOST_WIDE_INT pos;
9355 unsigned HOST_WIDE_INT len;
9356 rtx other;
9357 machine_mode mode;
9358
9359 /* If SRC was (and (not (ashift (const_int 1) POS)) DEST), this is
9360 a clear of a one-bit field. We will have changed it to
9361 (and (rotate (const_int -2) POS) DEST), so check for that. Also check
9362 for a SUBREG. */
9363
9364 if (GET_CODE (src) == AND && GET_CODE (XEXP (src, 0)) == ROTATE
9365 && CONST_INT_P (XEXP (XEXP (src, 0), 0))
9366 && INTVAL (XEXP (XEXP (src, 0), 0)) == -2
9367 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
9368 {
9369 assign = make_extraction (VOIDmode, dest, 0, XEXP (XEXP (src, 0), 1),
9370 1, 1, 1, 0);
9371 if (assign != 0)
9372 return gen_rtx_SET (assign, const0_rtx);
9373 return x;
9374 }
9375
9376 if (GET_CODE (src) == AND && GET_CODE (XEXP (src, 0)) == SUBREG
9377 && subreg_lowpart_p (XEXP (src, 0))
9378 && (GET_MODE_SIZE (GET_MODE (XEXP (src, 0)))
9379 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (XEXP (src, 0)))))
9380 && GET_CODE (SUBREG_REG (XEXP (src, 0))) == ROTATE
9381 && CONST_INT_P (XEXP (SUBREG_REG (XEXP (src, 0)), 0))
9382 && INTVAL (XEXP (SUBREG_REG (XEXP (src, 0)), 0)) == -2
9383 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
9384 {
9385 assign = make_extraction (VOIDmode, dest, 0,
9386 XEXP (SUBREG_REG (XEXP (src, 0)), 1),
9387 1, 1, 1, 0);
9388 if (assign != 0)
9389 return gen_rtx_SET (assign, const0_rtx);
9390 return x;
9391 }
9392
9393 /* If SRC is (ior (ashift (const_int 1) POS) DEST), this is a set of a
9394 one-bit field. */
9395 if (GET_CODE (src) == IOR && GET_CODE (XEXP (src, 0)) == ASHIFT
9396 && XEXP (XEXP (src, 0), 0) == const1_rtx
9397 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
9398 {
9399 assign = make_extraction (VOIDmode, dest, 0, XEXP (XEXP (src, 0), 1),
9400 1, 1, 1, 0);
9401 if (assign != 0)
9402 return gen_rtx_SET (assign, const1_rtx);
9403 return x;
9404 }
9405
9406 /* If DEST is already a field assignment, i.e. ZERO_EXTRACT, and the
9407 SRC is an AND with all bits of that field set, then we can discard
9408 the AND. */
9409 if (GET_CODE (dest) == ZERO_EXTRACT
9410 && CONST_INT_P (XEXP (dest, 1))
9411 && GET_CODE (src) == AND
9412 && CONST_INT_P (XEXP (src, 1)))
9413 {
9414 HOST_WIDE_INT width = INTVAL (XEXP (dest, 1));
9415 unsigned HOST_WIDE_INT and_mask = INTVAL (XEXP (src, 1));
9416 unsigned HOST_WIDE_INT ze_mask;
9417
9418 if (width >= HOST_BITS_PER_WIDE_INT)
9419 ze_mask = -1;
9420 else
9421 ze_mask = ((unsigned HOST_WIDE_INT)1 << width) - 1;
9422
9423 /* Complete overlap. We can remove the source AND. */
9424 if ((and_mask & ze_mask) == ze_mask)
9425 return gen_rtx_SET (dest, XEXP (src, 0));
9426
9427 /* Partial overlap. We can reduce the source AND. */
9428 if ((and_mask & ze_mask) != and_mask)
9429 {
9430 mode = GET_MODE (src);
9431 src = gen_rtx_AND (mode, XEXP (src, 0),
9432 gen_int_mode (and_mask & ze_mask, mode));
9433 return gen_rtx_SET (dest, src);
9434 }
9435 }
9436
9437 /* The other case we handle is assignments into a constant-position
9438 field. They look like (ior/xor (and DEST C1) OTHER). If C1 represents
9439 a mask that has all one bits except for a group of zero bits and
9440 OTHER is known to have zeros where C1 has ones, this is such an
9441 assignment. Compute the position and length from C1. Shift OTHER
9442 to the appropriate position, force it to the required mode, and
9443 make the extraction. Check for the AND in both operands. */
9444
9445 /* One or more SUBREGs might obscure the constant-position field
9446 assignment. The first one we are likely to encounter is an outer
9447 narrowing SUBREG, which we can just strip for the purposes of
9448 identifying the constant-field assignment. */
9449 if (GET_CODE (src) == SUBREG && subreg_lowpart_p (src))
9450 src = SUBREG_REG (src);
9451
9452 if (GET_CODE (src) != IOR && GET_CODE (src) != XOR)
9453 return x;
9454
9455 rhs = expand_compound_operation (XEXP (src, 0));
9456 lhs = expand_compound_operation (XEXP (src, 1));
9457
9458 if (GET_CODE (rhs) == AND
9459 && CONST_INT_P (XEXP (rhs, 1))
9460 && rtx_equal_for_field_assignment_p (XEXP (rhs, 0), dest))
9461 c1 = INTVAL (XEXP (rhs, 1)), other = lhs;
9462 /* The second SUBREG that might get in the way is a paradoxical
9463 SUBREG around the first operand of the AND. We want to
9464 pretend the operand is as wide as the destination here. We
9465 do this by adjusting the MEM to wider mode for the sole
9466 purpose of the call to rtx_equal_for_field_assignment_p. Also
9467 note this trick only works for MEMs. */
9468 else if (GET_CODE (rhs) == AND
9469 && paradoxical_subreg_p (XEXP (rhs, 0))
9470 && MEM_P (SUBREG_REG (XEXP (rhs, 0)))
9471 && CONST_INT_P (XEXP (rhs, 1))
9472 && rtx_equal_for_field_assignment_p (SUBREG_REG (XEXP (rhs, 0)),
9473 dest, true))
9474 c1 = INTVAL (XEXP (rhs, 1)), other = lhs;
9475 else if (GET_CODE (lhs) == AND
9476 && CONST_INT_P (XEXP (lhs, 1))
9477 && rtx_equal_for_field_assignment_p (XEXP (lhs, 0), dest))
9478 c1 = INTVAL (XEXP (lhs, 1)), other = rhs;
9479 /* The second SUBREG that might get in the way is a paradoxical
9480 SUBREG around the first operand of the AND. We want to
9481 pretend the operand is as wide as the destination here. We
9482 do this by adjusting the MEM to wider mode for the sole
9483 purpose of the call to rtx_equal_for_field_assignment_p. Also
9484 note this trick only works for MEMs. */
9485 else if (GET_CODE (lhs) == AND
9486 && paradoxical_subreg_p (XEXP (lhs, 0))
9487 && MEM_P (SUBREG_REG (XEXP (lhs, 0)))
9488 && CONST_INT_P (XEXP (lhs, 1))
9489 && rtx_equal_for_field_assignment_p (SUBREG_REG (XEXP (lhs, 0)),
9490 dest, true))
9491 c1 = INTVAL (XEXP (lhs, 1)), other = rhs;
9492 else
9493 return x;
9494
9495 pos = get_pos_from_mask ((~c1) & GET_MODE_MASK (GET_MODE (dest)), &len);
9496 if (pos < 0 || pos + len > GET_MODE_PRECISION (GET_MODE (dest))
9497 || GET_MODE_PRECISION (GET_MODE (dest)) > HOST_BITS_PER_WIDE_INT
9498 || (c1 & nonzero_bits (other, GET_MODE (dest))) != 0)
9499 return x;
9500
9501 assign = make_extraction (VOIDmode, dest, pos, NULL_RTX, len, 1, 1, 0);
9502 if (assign == 0)
9503 return x;
9504
9505 /* The mode to use for the source is the mode of the assignment, or of
9506 what is inside a possible STRICT_LOW_PART. */
9507 mode = (GET_CODE (assign) == STRICT_LOW_PART
9508 ? GET_MODE (XEXP (assign, 0)) : GET_MODE (assign));
9509
9510 /* Shift OTHER right POS places and make it the source, restricting it
9511 to the proper length and mode. */
9512
9513 src = canon_reg_for_combine (simplify_shift_const (NULL_RTX, LSHIFTRT,
9514 GET_MODE (src),
9515 other, pos),
9516 dest);
9517 src = force_to_mode (src, mode,
9518 GET_MODE_PRECISION (mode) >= HOST_BITS_PER_WIDE_INT
9519 ? HOST_WIDE_INT_M1U
9520 : (HOST_WIDE_INT_1U << len) - 1,
9521 0);
9522
9523 /* If SRC is masked by an AND that does not make a difference in
9524 the value being stored, strip it. */
9525 if (GET_CODE (assign) == ZERO_EXTRACT
9526 && CONST_INT_P (XEXP (assign, 1))
9527 && INTVAL (XEXP (assign, 1)) < HOST_BITS_PER_WIDE_INT
9528 && GET_CODE (src) == AND
9529 && CONST_INT_P (XEXP (src, 1))
9530 && UINTVAL (XEXP (src, 1))
9531 == (HOST_WIDE_INT_1U << INTVAL (XEXP (assign, 1))) - 1)
9532 src = XEXP (src, 0);
9533
9534 return gen_rtx_SET (assign, src);
9535 }
9536 \f
9537 /* See if X is of the form (+ (* a c) (* b c)) and convert to (* (+ a b) c)
9538 if so. */
9539
9540 static rtx
9541 apply_distributive_law (rtx x)
9542 {
9543 enum rtx_code code = GET_CODE (x);
9544 enum rtx_code inner_code;
9545 rtx lhs, rhs, other;
9546 rtx tem;
9547
9548 /* Distributivity is not true for floating point as it can change the
9549 value. So we don't do it unless -funsafe-math-optimizations. */
9550 if (FLOAT_MODE_P (GET_MODE (x))
9551 && ! flag_unsafe_math_optimizations)
9552 return x;
9553
9554 /* The outer operation can only be one of the following: */
9555 if (code != IOR && code != AND && code != XOR
9556 && code != PLUS && code != MINUS)
9557 return x;
9558
9559 lhs = XEXP (x, 0);
9560 rhs = XEXP (x, 1);
9561
9562 /* If either operand is a primitive we can't do anything, so get out
9563 fast. */
9564 if (OBJECT_P (lhs) || OBJECT_P (rhs))
9565 return x;
9566
9567 lhs = expand_compound_operation (lhs);
9568 rhs = expand_compound_operation (rhs);
9569 inner_code = GET_CODE (lhs);
9570 if (inner_code != GET_CODE (rhs))
9571 return x;
9572
9573 /* See if the inner and outer operations distribute. */
9574 switch (inner_code)
9575 {
9576 case LSHIFTRT:
9577 case ASHIFTRT:
9578 case AND:
9579 case IOR:
9580 /* These all distribute except over PLUS. */
9581 if (code == PLUS || code == MINUS)
9582 return x;
9583 break;
9584
9585 case MULT:
9586 if (code != PLUS && code != MINUS)
9587 return x;
9588 break;
9589
9590 case ASHIFT:
9591 /* This is also a multiply, so it distributes over everything. */
9592 break;
9593
9594 /* This used to handle SUBREG, but this turned out to be counter-
9595 productive, since (subreg (op ...)) usually is not handled by
9596 insn patterns, and this "optimization" therefore transformed
9597 recognizable patterns into unrecognizable ones. Therefore the
9598 SUBREG case was removed from here.
9599
9600 It is possible that distributing SUBREG over arithmetic operations
9601 leads to an intermediate result than can then be optimized further,
9602 e.g. by moving the outer SUBREG to the other side of a SET as done
9603 in simplify_set. This seems to have been the original intent of
9604 handling SUBREGs here.
9605
9606 However, with current GCC this does not appear to actually happen,
9607 at least on major platforms. If some case is found where removing
9608 the SUBREG case here prevents follow-on optimizations, distributing
9609 SUBREGs ought to be re-added at that place, e.g. in simplify_set. */
9610
9611 default:
9612 return x;
9613 }
9614
9615 /* Set LHS and RHS to the inner operands (A and B in the example
9616 above) and set OTHER to the common operand (C in the example).
9617 There is only one way to do this unless the inner operation is
9618 commutative. */
9619 if (COMMUTATIVE_ARITH_P (lhs)
9620 && rtx_equal_p (XEXP (lhs, 0), XEXP (rhs, 0)))
9621 other = XEXP (lhs, 0), lhs = XEXP (lhs, 1), rhs = XEXP (rhs, 1);
9622 else if (COMMUTATIVE_ARITH_P (lhs)
9623 && rtx_equal_p (XEXP (lhs, 0), XEXP (rhs, 1)))
9624 other = XEXP (lhs, 0), lhs = XEXP (lhs, 1), rhs = XEXP (rhs, 0);
9625 else if (COMMUTATIVE_ARITH_P (lhs)
9626 && rtx_equal_p (XEXP (lhs, 1), XEXP (rhs, 0)))
9627 other = XEXP (lhs, 1), lhs = XEXP (lhs, 0), rhs = XEXP (rhs, 1);
9628 else if (rtx_equal_p (XEXP (lhs, 1), XEXP (rhs, 1)))
9629 other = XEXP (lhs, 1), lhs = XEXP (lhs, 0), rhs = XEXP (rhs, 0);
9630 else
9631 return x;
9632
9633 /* Form the new inner operation, seeing if it simplifies first. */
9634 tem = simplify_gen_binary (code, GET_MODE (x), lhs, rhs);
9635
9636 /* There is one exception to the general way of distributing:
9637 (a | c) ^ (b | c) -> (a ^ b) & ~c */
9638 if (code == XOR && inner_code == IOR)
9639 {
9640 inner_code = AND;
9641 other = simplify_gen_unary (NOT, GET_MODE (x), other, GET_MODE (x));
9642 }
9643
9644 /* We may be able to continuing distributing the result, so call
9645 ourselves recursively on the inner operation before forming the
9646 outer operation, which we return. */
9647 return simplify_gen_binary (inner_code, GET_MODE (x),
9648 apply_distributive_law (tem), other);
9649 }
9650
9651 /* See if X is of the form (* (+ A B) C), and if so convert to
9652 (+ (* A C) (* B C)) and try to simplify.
9653
9654 Most of the time, this results in no change. However, if some of
9655 the operands are the same or inverses of each other, simplifications
9656 will result.
9657
9658 For example, (and (ior A B) (not B)) can occur as the result of
9659 expanding a bit field assignment. When we apply the distributive
9660 law to this, we get (ior (and (A (not B))) (and (B (not B)))),
9661 which then simplifies to (and (A (not B))).
9662
9663 Note that no checks happen on the validity of applying the inverse
9664 distributive law. This is pointless since we can do it in the
9665 few places where this routine is called.
9666
9667 N is the index of the term that is decomposed (the arithmetic operation,
9668 i.e. (+ A B) in the first example above). !N is the index of the term that
9669 is distributed, i.e. of C in the first example above. */
9670 static rtx
9671 distribute_and_simplify_rtx (rtx x, int n)
9672 {
9673 machine_mode mode;
9674 enum rtx_code outer_code, inner_code;
9675 rtx decomposed, distributed, inner_op0, inner_op1, new_op0, new_op1, tmp;
9676
9677 /* Distributivity is not true for floating point as it can change the
9678 value. So we don't do it unless -funsafe-math-optimizations. */
9679 if (FLOAT_MODE_P (GET_MODE (x))
9680 && ! flag_unsafe_math_optimizations)
9681 return NULL_RTX;
9682
9683 decomposed = XEXP (x, n);
9684 if (!ARITHMETIC_P (decomposed))
9685 return NULL_RTX;
9686
9687 mode = GET_MODE (x);
9688 outer_code = GET_CODE (x);
9689 distributed = XEXP (x, !n);
9690
9691 inner_code = GET_CODE (decomposed);
9692 inner_op0 = XEXP (decomposed, 0);
9693 inner_op1 = XEXP (decomposed, 1);
9694
9695 /* Special case (and (xor B C) (not A)), which is equivalent to
9696 (xor (ior A B) (ior A C)) */
9697 if (outer_code == AND && inner_code == XOR && GET_CODE (distributed) == NOT)
9698 {
9699 distributed = XEXP (distributed, 0);
9700 outer_code = IOR;
9701 }
9702
9703 if (n == 0)
9704 {
9705 /* Distribute the second term. */
9706 new_op0 = simplify_gen_binary (outer_code, mode, inner_op0, distributed);
9707 new_op1 = simplify_gen_binary (outer_code, mode, inner_op1, distributed);
9708 }
9709 else
9710 {
9711 /* Distribute the first term. */
9712 new_op0 = simplify_gen_binary (outer_code, mode, distributed, inner_op0);
9713 new_op1 = simplify_gen_binary (outer_code, mode, distributed, inner_op1);
9714 }
9715
9716 tmp = apply_distributive_law (simplify_gen_binary (inner_code, mode,
9717 new_op0, new_op1));
9718 if (GET_CODE (tmp) != outer_code
9719 && (set_src_cost (tmp, mode, optimize_this_for_speed_p)
9720 < set_src_cost (x, mode, optimize_this_for_speed_p)))
9721 return tmp;
9722
9723 return NULL_RTX;
9724 }
9725 \f
9726 /* Simplify a logical `and' of VAROP with the constant CONSTOP, to be done
9727 in MODE. Return an equivalent form, if different from (and VAROP
9728 (const_int CONSTOP)). Otherwise, return NULL_RTX. */
9729
9730 static rtx
9731 simplify_and_const_int_1 (machine_mode mode, rtx varop,
9732 unsigned HOST_WIDE_INT constop)
9733 {
9734 unsigned HOST_WIDE_INT nonzero;
9735 unsigned HOST_WIDE_INT orig_constop;
9736 rtx orig_varop;
9737 int i;
9738
9739 orig_varop = varop;
9740 orig_constop = constop;
9741 if (GET_CODE (varop) == CLOBBER)
9742 return NULL_RTX;
9743
9744 /* Simplify VAROP knowing that we will be only looking at some of the
9745 bits in it.
9746
9747 Note by passing in CONSTOP, we guarantee that the bits not set in
9748 CONSTOP are not significant and will never be examined. We must
9749 ensure that is the case by explicitly masking out those bits
9750 before returning. */
9751 varop = force_to_mode (varop, mode, constop, 0);
9752
9753 /* If VAROP is a CLOBBER, we will fail so return it. */
9754 if (GET_CODE (varop) == CLOBBER)
9755 return varop;
9756
9757 /* If VAROP is a CONST_INT, then we need to apply the mask in CONSTOP
9758 to VAROP and return the new constant. */
9759 if (CONST_INT_P (varop))
9760 return gen_int_mode (INTVAL (varop) & constop, mode);
9761
9762 /* See what bits may be nonzero in VAROP. Unlike the general case of
9763 a call to nonzero_bits, here we don't care about bits outside
9764 MODE. */
9765
9766 nonzero = nonzero_bits (varop, mode) & GET_MODE_MASK (mode);
9767
9768 /* Turn off all bits in the constant that are known to already be zero.
9769 Thus, if the AND isn't needed at all, we will have CONSTOP == NONZERO_BITS
9770 which is tested below. */
9771
9772 constop &= nonzero;
9773
9774 /* If we don't have any bits left, return zero. */
9775 if (constop == 0)
9776 return const0_rtx;
9777
9778 /* If VAROP is a NEG of something known to be zero or 1 and CONSTOP is
9779 a power of two, we can replace this with an ASHIFT. */
9780 if (GET_CODE (varop) == NEG && nonzero_bits (XEXP (varop, 0), mode) == 1
9781 && (i = exact_log2 (constop)) >= 0)
9782 return simplify_shift_const (NULL_RTX, ASHIFT, mode, XEXP (varop, 0), i);
9783
9784 /* If VAROP is an IOR or XOR, apply the AND to both branches of the IOR
9785 or XOR, then try to apply the distributive law. This may eliminate
9786 operations if either branch can be simplified because of the AND.
9787 It may also make some cases more complex, but those cases probably
9788 won't match a pattern either with or without this. */
9789
9790 if (GET_CODE (varop) == IOR || GET_CODE (varop) == XOR)
9791 return
9792 gen_lowpart
9793 (mode,
9794 apply_distributive_law
9795 (simplify_gen_binary (GET_CODE (varop), GET_MODE (varop),
9796 simplify_and_const_int (NULL_RTX,
9797 GET_MODE (varop),
9798 XEXP (varop, 0),
9799 constop),
9800 simplify_and_const_int (NULL_RTX,
9801 GET_MODE (varop),
9802 XEXP (varop, 1),
9803 constop))));
9804
9805 /* If VAROP is PLUS, and the constant is a mask of low bits, distribute
9806 the AND and see if one of the operands simplifies to zero. If so, we
9807 may eliminate it. */
9808
9809 if (GET_CODE (varop) == PLUS
9810 && pow2p_hwi (constop + 1))
9811 {
9812 rtx o0, o1;
9813
9814 o0 = simplify_and_const_int (NULL_RTX, mode, XEXP (varop, 0), constop);
9815 o1 = simplify_and_const_int (NULL_RTX, mode, XEXP (varop, 1), constop);
9816 if (o0 == const0_rtx)
9817 return o1;
9818 if (o1 == const0_rtx)
9819 return o0;
9820 }
9821
9822 /* Make a SUBREG if necessary. If we can't make it, fail. */
9823 varop = gen_lowpart (mode, varop);
9824 if (varop == NULL_RTX || GET_CODE (varop) == CLOBBER)
9825 return NULL_RTX;
9826
9827 /* If we are only masking insignificant bits, return VAROP. */
9828 if (constop == nonzero)
9829 return varop;
9830
9831 if (varop == orig_varop && constop == orig_constop)
9832 return NULL_RTX;
9833
9834 /* Otherwise, return an AND. */
9835 return simplify_gen_binary (AND, mode, varop, gen_int_mode (constop, mode));
9836 }
9837
9838
9839 /* We have X, a logical `and' of VAROP with the constant CONSTOP, to be done
9840 in MODE.
9841
9842 Return an equivalent form, if different from X. Otherwise, return X. If
9843 X is zero, we are to always construct the equivalent form. */
9844
9845 static rtx
9846 simplify_and_const_int (rtx x, machine_mode mode, rtx varop,
9847 unsigned HOST_WIDE_INT constop)
9848 {
9849 rtx tem = simplify_and_const_int_1 (mode, varop, constop);
9850 if (tem)
9851 return tem;
9852
9853 if (!x)
9854 x = simplify_gen_binary (AND, GET_MODE (varop), varop,
9855 gen_int_mode (constop, mode));
9856 if (GET_MODE (x) != mode)
9857 x = gen_lowpart (mode, x);
9858 return x;
9859 }
9860 \f
9861 /* Given a REG, X, compute which bits in X can be nonzero.
9862 We don't care about bits outside of those defined in MODE.
9863
9864 For most X this is simply GET_MODE_MASK (GET_MODE (MODE)), but if X is
9865 a shift, AND, or zero_extract, we can do better. */
9866
9867 static rtx
9868 reg_nonzero_bits_for_combine (const_rtx x, machine_mode mode,
9869 const_rtx known_x ATTRIBUTE_UNUSED,
9870 machine_mode known_mode ATTRIBUTE_UNUSED,
9871 unsigned HOST_WIDE_INT known_ret ATTRIBUTE_UNUSED,
9872 unsigned HOST_WIDE_INT *nonzero)
9873 {
9874 rtx tem;
9875 reg_stat_type *rsp;
9876
9877 /* If X is a register whose nonzero bits value is current, use it.
9878 Otherwise, if X is a register whose value we can find, use that
9879 value. Otherwise, use the previously-computed global nonzero bits
9880 for this register. */
9881
9882 rsp = &reg_stat[REGNO (x)];
9883 if (rsp->last_set_value != 0
9884 && (rsp->last_set_mode == mode
9885 || (GET_MODE_CLASS (rsp->last_set_mode) == MODE_INT
9886 && GET_MODE_CLASS (mode) == MODE_INT))
9887 && ((rsp->last_set_label >= label_tick_ebb_start
9888 && rsp->last_set_label < label_tick)
9889 || (rsp->last_set_label == label_tick
9890 && DF_INSN_LUID (rsp->last_set) < subst_low_luid)
9891 || (REGNO (x) >= FIRST_PSEUDO_REGISTER
9892 && REGNO (x) < reg_n_sets_max
9893 && REG_N_SETS (REGNO (x)) == 1
9894 && !REGNO_REG_SET_P
9895 (DF_LR_IN (ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb),
9896 REGNO (x)))))
9897 {
9898 unsigned HOST_WIDE_INT mask = rsp->last_set_nonzero_bits;
9899
9900 if (GET_MODE_PRECISION (rsp->last_set_mode) < GET_MODE_PRECISION (mode))
9901 /* We don't know anything about the upper bits. */
9902 mask |= GET_MODE_MASK (mode) ^ GET_MODE_MASK (rsp->last_set_mode);
9903
9904 *nonzero &= mask;
9905 return NULL;
9906 }
9907
9908 tem = get_last_value (x);
9909
9910 if (tem)
9911 {
9912 if (SHORT_IMMEDIATES_SIGN_EXTEND)
9913 tem = sign_extend_short_imm (tem, GET_MODE (x),
9914 GET_MODE_PRECISION (mode));
9915
9916 return tem;
9917 }
9918 else if (nonzero_sign_valid && rsp->nonzero_bits)
9919 {
9920 unsigned HOST_WIDE_INT mask = rsp->nonzero_bits;
9921
9922 if (GET_MODE_PRECISION (GET_MODE (x)) < GET_MODE_PRECISION (mode))
9923 /* We don't know anything about the upper bits. */
9924 mask |= GET_MODE_MASK (mode) ^ GET_MODE_MASK (GET_MODE (x));
9925
9926 *nonzero &= mask;
9927 }
9928
9929 return NULL;
9930 }
9931
9932 /* Return the number of bits at the high-order end of X that are known to
9933 be equal to the sign bit. X will be used in mode MODE; if MODE is
9934 VOIDmode, X will be used in its own mode. The returned value will always
9935 be between 1 and the number of bits in MODE. */
9936
9937 static rtx
9938 reg_num_sign_bit_copies_for_combine (const_rtx x, machine_mode mode,
9939 const_rtx known_x ATTRIBUTE_UNUSED,
9940 machine_mode known_mode
9941 ATTRIBUTE_UNUSED,
9942 unsigned int known_ret ATTRIBUTE_UNUSED,
9943 unsigned int *result)
9944 {
9945 rtx tem;
9946 reg_stat_type *rsp;
9947
9948 rsp = &reg_stat[REGNO (x)];
9949 if (rsp->last_set_value != 0
9950 && rsp->last_set_mode == mode
9951 && ((rsp->last_set_label >= label_tick_ebb_start
9952 && rsp->last_set_label < label_tick)
9953 || (rsp->last_set_label == label_tick
9954 && DF_INSN_LUID (rsp->last_set) < subst_low_luid)
9955 || (REGNO (x) >= FIRST_PSEUDO_REGISTER
9956 && REGNO (x) < reg_n_sets_max
9957 && REG_N_SETS (REGNO (x)) == 1
9958 && !REGNO_REG_SET_P
9959 (DF_LR_IN (ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb),
9960 REGNO (x)))))
9961 {
9962 *result = rsp->last_set_sign_bit_copies;
9963 return NULL;
9964 }
9965
9966 tem = get_last_value (x);
9967 if (tem != 0)
9968 return tem;
9969
9970 if (nonzero_sign_valid && rsp->sign_bit_copies != 0
9971 && GET_MODE_PRECISION (GET_MODE (x)) == GET_MODE_PRECISION (mode))
9972 *result = rsp->sign_bit_copies;
9973
9974 return NULL;
9975 }
9976 \f
9977 /* Return the number of "extended" bits there are in X, when interpreted
9978 as a quantity in MODE whose signedness is indicated by UNSIGNEDP. For
9979 unsigned quantities, this is the number of high-order zero bits.
9980 For signed quantities, this is the number of copies of the sign bit
9981 minus 1. In both case, this function returns the number of "spare"
9982 bits. For example, if two quantities for which this function returns
9983 at least 1 are added, the addition is known not to overflow.
9984
9985 This function will always return 0 unless called during combine, which
9986 implies that it must be called from a define_split. */
9987
9988 unsigned int
9989 extended_count (const_rtx x, machine_mode mode, int unsignedp)
9990 {
9991 if (nonzero_sign_valid == 0)
9992 return 0;
9993
9994 return (unsignedp
9995 ? (HWI_COMPUTABLE_MODE_P (mode)
9996 ? (unsigned int) (GET_MODE_PRECISION (mode) - 1
9997 - floor_log2 (nonzero_bits (x, mode)))
9998 : 0)
9999 : num_sign_bit_copies (x, mode) - 1);
10000 }
10001
10002 /* This function is called from `simplify_shift_const' to merge two
10003 outer operations. Specifically, we have already found that we need
10004 to perform operation *POP0 with constant *PCONST0 at the outermost
10005 position. We would now like to also perform OP1 with constant CONST1
10006 (with *POP0 being done last).
10007
10008 Return 1 if we can do the operation and update *POP0 and *PCONST0 with
10009 the resulting operation. *PCOMP_P is set to 1 if we would need to
10010 complement the innermost operand, otherwise it is unchanged.
10011
10012 MODE is the mode in which the operation will be done. No bits outside
10013 the width of this mode matter. It is assumed that the width of this mode
10014 is smaller than or equal to HOST_BITS_PER_WIDE_INT.
10015
10016 If *POP0 or OP1 are UNKNOWN, it means no operation is required. Only NEG, PLUS,
10017 IOR, XOR, and AND are supported. We may set *POP0 to SET if the proper
10018 result is simply *PCONST0.
10019
10020 If the resulting operation cannot be expressed as one operation, we
10021 return 0 and do not change *POP0, *PCONST0, and *PCOMP_P. */
10022
10023 static int
10024 merge_outer_ops (enum rtx_code *pop0, HOST_WIDE_INT *pconst0, enum rtx_code op1, HOST_WIDE_INT const1, machine_mode mode, int *pcomp_p)
10025 {
10026 enum rtx_code op0 = *pop0;
10027 HOST_WIDE_INT const0 = *pconst0;
10028
10029 const0 &= GET_MODE_MASK (mode);
10030 const1 &= GET_MODE_MASK (mode);
10031
10032 /* If OP0 is an AND, clear unimportant bits in CONST1. */
10033 if (op0 == AND)
10034 const1 &= const0;
10035
10036 /* If OP0 or OP1 is UNKNOWN, this is easy. Similarly if they are the same or
10037 if OP0 is SET. */
10038
10039 if (op1 == UNKNOWN || op0 == SET)
10040 return 1;
10041
10042 else if (op0 == UNKNOWN)
10043 op0 = op1, const0 = const1;
10044
10045 else if (op0 == op1)
10046 {
10047 switch (op0)
10048 {
10049 case AND:
10050 const0 &= const1;
10051 break;
10052 case IOR:
10053 const0 |= const1;
10054 break;
10055 case XOR:
10056 const0 ^= const1;
10057 break;
10058 case PLUS:
10059 const0 += const1;
10060 break;
10061 case NEG:
10062 op0 = UNKNOWN;
10063 break;
10064 default:
10065 break;
10066 }
10067 }
10068
10069 /* Otherwise, if either is a PLUS or NEG, we can't do anything. */
10070 else if (op0 == PLUS || op1 == PLUS || op0 == NEG || op1 == NEG)
10071 return 0;
10072
10073 /* If the two constants aren't the same, we can't do anything. The
10074 remaining six cases can all be done. */
10075 else if (const0 != const1)
10076 return 0;
10077
10078 else
10079 switch (op0)
10080 {
10081 case IOR:
10082 if (op1 == AND)
10083 /* (a & b) | b == b */
10084 op0 = SET;
10085 else /* op1 == XOR */
10086 /* (a ^ b) | b == a | b */
10087 {;}
10088 break;
10089
10090 case XOR:
10091 if (op1 == AND)
10092 /* (a & b) ^ b == (~a) & b */
10093 op0 = AND, *pcomp_p = 1;
10094 else /* op1 == IOR */
10095 /* (a | b) ^ b == a & ~b */
10096 op0 = AND, const0 = ~const0;
10097 break;
10098
10099 case AND:
10100 if (op1 == IOR)
10101 /* (a | b) & b == b */
10102 op0 = SET;
10103 else /* op1 == XOR */
10104 /* (a ^ b) & b) == (~a) & b */
10105 *pcomp_p = 1;
10106 break;
10107 default:
10108 break;
10109 }
10110
10111 /* Check for NO-OP cases. */
10112 const0 &= GET_MODE_MASK (mode);
10113 if (const0 == 0
10114 && (op0 == IOR || op0 == XOR || op0 == PLUS))
10115 op0 = UNKNOWN;
10116 else if (const0 == 0 && op0 == AND)
10117 op0 = SET;
10118 else if ((unsigned HOST_WIDE_INT) const0 == GET_MODE_MASK (mode)
10119 && op0 == AND)
10120 op0 = UNKNOWN;
10121
10122 *pop0 = op0;
10123
10124 /* ??? Slightly redundant with the above mask, but not entirely.
10125 Moving this above means we'd have to sign-extend the mode mask
10126 for the final test. */
10127 if (op0 != UNKNOWN && op0 != NEG)
10128 *pconst0 = trunc_int_for_mode (const0, mode);
10129
10130 return 1;
10131 }
10132 \f
10133 /* A helper to simplify_shift_const_1 to determine the mode we can perform
10134 the shift in. The original shift operation CODE is performed on OP in
10135 ORIG_MODE. Return the wider mode MODE if we can perform the operation
10136 in that mode. Return ORIG_MODE otherwise. We can also assume that the
10137 result of the shift is subject to operation OUTER_CODE with operand
10138 OUTER_CONST. */
10139
10140 static machine_mode
10141 try_widen_shift_mode (enum rtx_code code, rtx op, int count,
10142 machine_mode orig_mode, machine_mode mode,
10143 enum rtx_code outer_code, HOST_WIDE_INT outer_const)
10144 {
10145 if (orig_mode == mode)
10146 return mode;
10147 gcc_assert (GET_MODE_PRECISION (mode) > GET_MODE_PRECISION (orig_mode));
10148
10149 /* In general we can't perform in wider mode for right shift and rotate. */
10150 switch (code)
10151 {
10152 case ASHIFTRT:
10153 /* We can still widen if the bits brought in from the left are identical
10154 to the sign bit of ORIG_MODE. */
10155 if (num_sign_bit_copies (op, mode)
10156 > (unsigned) (GET_MODE_PRECISION (mode)
10157 - GET_MODE_PRECISION (orig_mode)))
10158 return mode;
10159 return orig_mode;
10160
10161 case LSHIFTRT:
10162 /* Similarly here but with zero bits. */
10163 if (HWI_COMPUTABLE_MODE_P (mode)
10164 && (nonzero_bits (op, mode) & ~GET_MODE_MASK (orig_mode)) == 0)
10165 return mode;
10166
10167 /* We can also widen if the bits brought in will be masked off. This
10168 operation is performed in ORIG_MODE. */
10169 if (outer_code == AND)
10170 {
10171 int care_bits = low_bitmask_len (orig_mode, outer_const);
10172
10173 if (care_bits >= 0
10174 && GET_MODE_PRECISION (orig_mode) - care_bits >= count)
10175 return mode;
10176 }
10177 /* fall through */
10178
10179 case ROTATE:
10180 return orig_mode;
10181
10182 case ROTATERT:
10183 gcc_unreachable ();
10184
10185 default:
10186 return mode;
10187 }
10188 }
10189
10190 /* Simplify a shift of VAROP by ORIG_COUNT bits. CODE says what kind
10191 of shift. The result of the shift is RESULT_MODE. Return NULL_RTX
10192 if we cannot simplify it. Otherwise, return a simplified value.
10193
10194 The shift is normally computed in the widest mode we find in VAROP, as
10195 long as it isn't a different number of words than RESULT_MODE. Exceptions
10196 are ASHIFTRT and ROTATE, which are always done in their original mode. */
10197
10198 static rtx
10199 simplify_shift_const_1 (enum rtx_code code, machine_mode result_mode,
10200 rtx varop, int orig_count)
10201 {
10202 enum rtx_code orig_code = code;
10203 rtx orig_varop = varop;
10204 int count;
10205 machine_mode mode = result_mode;
10206 machine_mode shift_mode, tmode;
10207 unsigned int mode_words
10208 = (GET_MODE_SIZE (mode) + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD;
10209 /* We form (outer_op (code varop count) (outer_const)). */
10210 enum rtx_code outer_op = UNKNOWN;
10211 HOST_WIDE_INT outer_const = 0;
10212 int complement_p = 0;
10213 rtx new_rtx, x;
10214
10215 /* Make sure and truncate the "natural" shift on the way in. We don't
10216 want to do this inside the loop as it makes it more difficult to
10217 combine shifts. */
10218 if (SHIFT_COUNT_TRUNCATED)
10219 orig_count &= GET_MODE_BITSIZE (mode) - 1;
10220
10221 /* If we were given an invalid count, don't do anything except exactly
10222 what was requested. */
10223
10224 if (orig_count < 0 || orig_count >= (int) GET_MODE_PRECISION (mode))
10225 return NULL_RTX;
10226
10227 count = orig_count;
10228
10229 /* Unless one of the branches of the `if' in this loop does a `continue',
10230 we will `break' the loop after the `if'. */
10231
10232 while (count != 0)
10233 {
10234 /* If we have an operand of (clobber (const_int 0)), fail. */
10235 if (GET_CODE (varop) == CLOBBER)
10236 return NULL_RTX;
10237
10238 /* Convert ROTATERT to ROTATE. */
10239 if (code == ROTATERT)
10240 {
10241 unsigned int bitsize = GET_MODE_PRECISION (result_mode);
10242 code = ROTATE;
10243 if (VECTOR_MODE_P (result_mode))
10244 count = bitsize / GET_MODE_NUNITS (result_mode) - count;
10245 else
10246 count = bitsize - count;
10247 }
10248
10249 shift_mode = try_widen_shift_mode (code, varop, count, result_mode,
10250 mode, outer_op, outer_const);
10251
10252 /* Handle cases where the count is greater than the size of the mode
10253 minus 1. For ASHIFT, use the size minus one as the count (this can
10254 occur when simplifying (lshiftrt (ashiftrt ..))). For rotates,
10255 take the count modulo the size. For other shifts, the result is
10256 zero.
10257
10258 Since these shifts are being produced by the compiler by combining
10259 multiple operations, each of which are defined, we know what the
10260 result is supposed to be. */
10261
10262 if (count > (GET_MODE_PRECISION (shift_mode) - 1))
10263 {
10264 if (code == ASHIFTRT)
10265 count = GET_MODE_PRECISION (shift_mode) - 1;
10266 else if (code == ROTATE || code == ROTATERT)
10267 count %= GET_MODE_PRECISION (shift_mode);
10268 else
10269 {
10270 /* We can't simply return zero because there may be an
10271 outer op. */
10272 varop = const0_rtx;
10273 count = 0;
10274 break;
10275 }
10276 }
10277
10278 /* If we discovered we had to complement VAROP, leave. Making a NOT
10279 here would cause an infinite loop. */
10280 if (complement_p)
10281 break;
10282
10283 /* An arithmetic right shift of a quantity known to be -1 or 0
10284 is a no-op. */
10285 if (code == ASHIFTRT
10286 && (num_sign_bit_copies (varop, shift_mode)
10287 == GET_MODE_PRECISION (shift_mode)))
10288 {
10289 count = 0;
10290 break;
10291 }
10292
10293 /* If we are doing an arithmetic right shift and discarding all but
10294 the sign bit copies, this is equivalent to doing a shift by the
10295 bitsize minus one. Convert it into that shift because it will often
10296 allow other simplifications. */
10297
10298 if (code == ASHIFTRT
10299 && (count + num_sign_bit_copies (varop, shift_mode)
10300 >= GET_MODE_PRECISION (shift_mode)))
10301 count = GET_MODE_PRECISION (shift_mode) - 1;
10302
10303 /* We simplify the tests below and elsewhere by converting
10304 ASHIFTRT to LSHIFTRT if we know the sign bit is clear.
10305 `make_compound_operation' will convert it to an ASHIFTRT for
10306 those machines (such as VAX) that don't have an LSHIFTRT. */
10307 if (code == ASHIFTRT
10308 && val_signbit_known_clear_p (shift_mode,
10309 nonzero_bits (varop, shift_mode)))
10310 code = LSHIFTRT;
10311
10312 if (((code == LSHIFTRT
10313 && HWI_COMPUTABLE_MODE_P (shift_mode)
10314 && !(nonzero_bits (varop, shift_mode) >> count))
10315 || (code == ASHIFT
10316 && HWI_COMPUTABLE_MODE_P (shift_mode)
10317 && !((nonzero_bits (varop, shift_mode) << count)
10318 & GET_MODE_MASK (shift_mode))))
10319 && !side_effects_p (varop))
10320 varop = const0_rtx;
10321
10322 switch (GET_CODE (varop))
10323 {
10324 case SIGN_EXTEND:
10325 case ZERO_EXTEND:
10326 case SIGN_EXTRACT:
10327 case ZERO_EXTRACT:
10328 new_rtx = expand_compound_operation (varop);
10329 if (new_rtx != varop)
10330 {
10331 varop = new_rtx;
10332 continue;
10333 }
10334 break;
10335
10336 case MEM:
10337 /* If we have (xshiftrt (mem ...) C) and C is MODE_WIDTH
10338 minus the width of a smaller mode, we can do this with a
10339 SIGN_EXTEND or ZERO_EXTEND from the narrower memory location. */
10340 if ((code == ASHIFTRT || code == LSHIFTRT)
10341 && ! mode_dependent_address_p (XEXP (varop, 0),
10342 MEM_ADDR_SPACE (varop))
10343 && ! MEM_VOLATILE_P (varop)
10344 && (tmode = mode_for_size (GET_MODE_BITSIZE (mode) - count,
10345 MODE_INT, 1)) != BLKmode)
10346 {
10347 new_rtx = adjust_address_nv (varop, tmode,
10348 BYTES_BIG_ENDIAN ? 0
10349 : count / BITS_PER_UNIT);
10350
10351 varop = gen_rtx_fmt_e (code == ASHIFTRT ? SIGN_EXTEND
10352 : ZERO_EXTEND, mode, new_rtx);
10353 count = 0;
10354 continue;
10355 }
10356 break;
10357
10358 case SUBREG:
10359 /* If VAROP is a SUBREG, strip it as long as the inner operand has
10360 the same number of words as what we've seen so far. Then store
10361 the widest mode in MODE. */
10362 if (subreg_lowpart_p (varop)
10363 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (varop)))
10364 > GET_MODE_SIZE (GET_MODE (varop)))
10365 && (unsigned int) ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (varop)))
10366 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
10367 == mode_words
10368 && GET_MODE_CLASS (GET_MODE (varop)) == MODE_INT
10369 && GET_MODE_CLASS (GET_MODE (SUBREG_REG (varop))) == MODE_INT)
10370 {
10371 varop = SUBREG_REG (varop);
10372 if (GET_MODE_SIZE (GET_MODE (varop)) > GET_MODE_SIZE (mode))
10373 mode = GET_MODE (varop);
10374 continue;
10375 }
10376 break;
10377
10378 case MULT:
10379 /* Some machines use MULT instead of ASHIFT because MULT
10380 is cheaper. But it is still better on those machines to
10381 merge two shifts into one. */
10382 if (CONST_INT_P (XEXP (varop, 1))
10383 && exact_log2 (UINTVAL (XEXP (varop, 1))) >= 0)
10384 {
10385 varop
10386 = simplify_gen_binary (ASHIFT, GET_MODE (varop),
10387 XEXP (varop, 0),
10388 GEN_INT (exact_log2 (
10389 UINTVAL (XEXP (varop, 1)))));
10390 continue;
10391 }
10392 break;
10393
10394 case UDIV:
10395 /* Similar, for when divides are cheaper. */
10396 if (CONST_INT_P (XEXP (varop, 1))
10397 && exact_log2 (UINTVAL (XEXP (varop, 1))) >= 0)
10398 {
10399 varop
10400 = simplify_gen_binary (LSHIFTRT, GET_MODE (varop),
10401 XEXP (varop, 0),
10402 GEN_INT (exact_log2 (
10403 UINTVAL (XEXP (varop, 1)))));
10404 continue;
10405 }
10406 break;
10407
10408 case ASHIFTRT:
10409 /* If we are extracting just the sign bit of an arithmetic
10410 right shift, that shift is not needed. However, the sign
10411 bit of a wider mode may be different from what would be
10412 interpreted as the sign bit in a narrower mode, so, if
10413 the result is narrower, don't discard the shift. */
10414 if (code == LSHIFTRT
10415 && count == (GET_MODE_BITSIZE (result_mode) - 1)
10416 && (GET_MODE_BITSIZE (result_mode)
10417 >= GET_MODE_BITSIZE (GET_MODE (varop))))
10418 {
10419 varop = XEXP (varop, 0);
10420 continue;
10421 }
10422
10423 /* fall through */
10424
10425 case LSHIFTRT:
10426 case ASHIFT:
10427 case ROTATE:
10428 /* Here we have two nested shifts. The result is usually the
10429 AND of a new shift with a mask. We compute the result below. */
10430 if (CONST_INT_P (XEXP (varop, 1))
10431 && INTVAL (XEXP (varop, 1)) >= 0
10432 && INTVAL (XEXP (varop, 1)) < GET_MODE_PRECISION (GET_MODE (varop))
10433 && HWI_COMPUTABLE_MODE_P (result_mode)
10434 && HWI_COMPUTABLE_MODE_P (mode)
10435 && !VECTOR_MODE_P (result_mode))
10436 {
10437 enum rtx_code first_code = GET_CODE (varop);
10438 unsigned int first_count = INTVAL (XEXP (varop, 1));
10439 unsigned HOST_WIDE_INT mask;
10440 rtx mask_rtx;
10441
10442 /* We have one common special case. We can't do any merging if
10443 the inner code is an ASHIFTRT of a smaller mode. However, if
10444 we have (ashift:M1 (subreg:M1 (ashiftrt:M2 FOO C1) 0) C2)
10445 with C2 == GET_MODE_BITSIZE (M1) - GET_MODE_BITSIZE (M2),
10446 we can convert it to
10447 (ashiftrt:M1 (ashift:M1 (and:M1 (subreg:M1 FOO 0) C3) C2) C1).
10448 This simplifies certain SIGN_EXTEND operations. */
10449 if (code == ASHIFT && first_code == ASHIFTRT
10450 && count == (GET_MODE_PRECISION (result_mode)
10451 - GET_MODE_PRECISION (GET_MODE (varop))))
10452 {
10453 /* C3 has the low-order C1 bits zero. */
10454
10455 mask = GET_MODE_MASK (mode)
10456 & ~((HOST_WIDE_INT_1U << first_count) - 1);
10457
10458 varop = simplify_and_const_int (NULL_RTX, result_mode,
10459 XEXP (varop, 0), mask);
10460 varop = simplify_shift_const (NULL_RTX, ASHIFT, result_mode,
10461 varop, count);
10462 count = first_count;
10463 code = ASHIFTRT;
10464 continue;
10465 }
10466
10467 /* If this was (ashiftrt (ashift foo C1) C2) and FOO has more
10468 than C1 high-order bits equal to the sign bit, we can convert
10469 this to either an ASHIFT or an ASHIFTRT depending on the
10470 two counts.
10471
10472 We cannot do this if VAROP's mode is not SHIFT_MODE. */
10473
10474 if (code == ASHIFTRT && first_code == ASHIFT
10475 && GET_MODE (varop) == shift_mode
10476 && (num_sign_bit_copies (XEXP (varop, 0), shift_mode)
10477 > first_count))
10478 {
10479 varop = XEXP (varop, 0);
10480 count -= first_count;
10481 if (count < 0)
10482 {
10483 count = -count;
10484 code = ASHIFT;
10485 }
10486
10487 continue;
10488 }
10489
10490 /* There are some cases we can't do. If CODE is ASHIFTRT,
10491 we can only do this if FIRST_CODE is also ASHIFTRT.
10492
10493 We can't do the case when CODE is ROTATE and FIRST_CODE is
10494 ASHIFTRT.
10495
10496 If the mode of this shift is not the mode of the outer shift,
10497 we can't do this if either shift is a right shift or ROTATE.
10498
10499 Finally, we can't do any of these if the mode is too wide
10500 unless the codes are the same.
10501
10502 Handle the case where the shift codes are the same
10503 first. */
10504
10505 if (code == first_code)
10506 {
10507 if (GET_MODE (varop) != result_mode
10508 && (code == ASHIFTRT || code == LSHIFTRT
10509 || code == ROTATE))
10510 break;
10511
10512 count += first_count;
10513 varop = XEXP (varop, 0);
10514 continue;
10515 }
10516
10517 if (code == ASHIFTRT
10518 || (code == ROTATE && first_code == ASHIFTRT)
10519 || GET_MODE_PRECISION (mode) > HOST_BITS_PER_WIDE_INT
10520 || (GET_MODE (varop) != result_mode
10521 && (first_code == ASHIFTRT || first_code == LSHIFTRT
10522 || first_code == ROTATE
10523 || code == ROTATE)))
10524 break;
10525
10526 /* To compute the mask to apply after the shift, shift the
10527 nonzero bits of the inner shift the same way the
10528 outer shift will. */
10529
10530 mask_rtx = gen_int_mode (nonzero_bits (varop, GET_MODE (varop)),
10531 result_mode);
10532
10533 mask_rtx
10534 = simplify_const_binary_operation (code, result_mode, mask_rtx,
10535 GEN_INT (count));
10536
10537 /* Give up if we can't compute an outer operation to use. */
10538 if (mask_rtx == 0
10539 || !CONST_INT_P (mask_rtx)
10540 || ! merge_outer_ops (&outer_op, &outer_const, AND,
10541 INTVAL (mask_rtx),
10542 result_mode, &complement_p))
10543 break;
10544
10545 /* If the shifts are in the same direction, we add the
10546 counts. Otherwise, we subtract them. */
10547 if ((code == ASHIFTRT || code == LSHIFTRT)
10548 == (first_code == ASHIFTRT || first_code == LSHIFTRT))
10549 count += first_count;
10550 else
10551 count -= first_count;
10552
10553 /* If COUNT is positive, the new shift is usually CODE,
10554 except for the two exceptions below, in which case it is
10555 FIRST_CODE. If the count is negative, FIRST_CODE should
10556 always be used */
10557 if (count > 0
10558 && ((first_code == ROTATE && code == ASHIFT)
10559 || (first_code == ASHIFTRT && code == LSHIFTRT)))
10560 code = first_code;
10561 else if (count < 0)
10562 code = first_code, count = -count;
10563
10564 varop = XEXP (varop, 0);
10565 continue;
10566 }
10567
10568 /* If we have (A << B << C) for any shift, we can convert this to
10569 (A << C << B). This wins if A is a constant. Only try this if
10570 B is not a constant. */
10571
10572 else if (GET_CODE (varop) == code
10573 && CONST_INT_P (XEXP (varop, 0))
10574 && !CONST_INT_P (XEXP (varop, 1)))
10575 {
10576 /* For ((unsigned) (cstULL >> count)) >> cst2 we have to make
10577 sure the result will be masked. See PR70222. */
10578 if (code == LSHIFTRT
10579 && mode != result_mode
10580 && !merge_outer_ops (&outer_op, &outer_const, AND,
10581 GET_MODE_MASK (result_mode)
10582 >> orig_count, result_mode,
10583 &complement_p))
10584 break;
10585 /* For ((int) (cstLL >> count)) >> cst2 just give up. Queuing
10586 up outer sign extension (often left and right shift) is
10587 hardly more efficient than the original. See PR70429. */
10588 if (code == ASHIFTRT && mode != result_mode)
10589 break;
10590
10591 rtx new_rtx = simplify_const_binary_operation (code, mode,
10592 XEXP (varop, 0),
10593 GEN_INT (count));
10594 varop = gen_rtx_fmt_ee (code, mode, new_rtx, XEXP (varop, 1));
10595 count = 0;
10596 continue;
10597 }
10598 break;
10599
10600 case NOT:
10601 if (VECTOR_MODE_P (mode))
10602 break;
10603
10604 /* Make this fit the case below. */
10605 varop = gen_rtx_XOR (mode, XEXP (varop, 0), constm1_rtx);
10606 continue;
10607
10608 case IOR:
10609 case AND:
10610 case XOR:
10611 /* If we have (xshiftrt (ior (plus X (const_int -1)) X) C)
10612 with C the size of VAROP - 1 and the shift is logical if
10613 STORE_FLAG_VALUE is 1 and arithmetic if STORE_FLAG_VALUE is -1,
10614 we have an (le X 0) operation. If we have an arithmetic shift
10615 and STORE_FLAG_VALUE is 1 or we have a logical shift with
10616 STORE_FLAG_VALUE of -1, we have a (neg (le X 0)) operation. */
10617
10618 if (GET_CODE (varop) == IOR && GET_CODE (XEXP (varop, 0)) == PLUS
10619 && XEXP (XEXP (varop, 0), 1) == constm1_rtx
10620 && (STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
10621 && (code == LSHIFTRT || code == ASHIFTRT)
10622 && count == (GET_MODE_PRECISION (GET_MODE (varop)) - 1)
10623 && rtx_equal_p (XEXP (XEXP (varop, 0), 0), XEXP (varop, 1)))
10624 {
10625 count = 0;
10626 varop = gen_rtx_LE (GET_MODE (varop), XEXP (varop, 1),
10627 const0_rtx);
10628
10629 if (STORE_FLAG_VALUE == 1 ? code == ASHIFTRT : code == LSHIFTRT)
10630 varop = gen_rtx_NEG (GET_MODE (varop), varop);
10631
10632 continue;
10633 }
10634
10635 /* If we have (shift (logical)), move the logical to the outside
10636 to allow it to possibly combine with another logical and the
10637 shift to combine with another shift. This also canonicalizes to
10638 what a ZERO_EXTRACT looks like. Also, some machines have
10639 (and (shift)) insns. */
10640
10641 if (CONST_INT_P (XEXP (varop, 1))
10642 /* We can't do this if we have (ashiftrt (xor)) and the
10643 constant has its sign bit set in shift_mode with shift_mode
10644 wider than result_mode. */
10645 && !(code == ASHIFTRT && GET_CODE (varop) == XOR
10646 && result_mode != shift_mode
10647 && 0 > trunc_int_for_mode (INTVAL (XEXP (varop, 1)),
10648 shift_mode))
10649 && (new_rtx = simplify_const_binary_operation
10650 (code, result_mode,
10651 gen_int_mode (INTVAL (XEXP (varop, 1)), result_mode),
10652 GEN_INT (count))) != 0
10653 && CONST_INT_P (new_rtx)
10654 && merge_outer_ops (&outer_op, &outer_const, GET_CODE (varop),
10655 INTVAL (new_rtx), result_mode, &complement_p))
10656 {
10657 varop = XEXP (varop, 0);
10658 continue;
10659 }
10660
10661 /* If we can't do that, try to simplify the shift in each arm of the
10662 logical expression, make a new logical expression, and apply
10663 the inverse distributive law. This also can't be done for
10664 (ashiftrt (xor)) where we've widened the shift and the constant
10665 changes the sign bit. */
10666 if (CONST_INT_P (XEXP (varop, 1))
10667 && !(code == ASHIFTRT && GET_CODE (varop) == XOR
10668 && result_mode != shift_mode
10669 && 0 > trunc_int_for_mode (INTVAL (XEXP (varop, 1)),
10670 shift_mode)))
10671 {
10672 rtx lhs = simplify_shift_const (NULL_RTX, code, shift_mode,
10673 XEXP (varop, 0), count);
10674 rtx rhs = simplify_shift_const (NULL_RTX, code, shift_mode,
10675 XEXP (varop, 1), count);
10676
10677 varop = simplify_gen_binary (GET_CODE (varop), shift_mode,
10678 lhs, rhs);
10679 varop = apply_distributive_law (varop);
10680
10681 count = 0;
10682 continue;
10683 }
10684 break;
10685
10686 case EQ:
10687 /* Convert (lshiftrt (eq FOO 0) C) to (xor FOO 1) if STORE_FLAG_VALUE
10688 says that the sign bit can be tested, FOO has mode MODE, C is
10689 GET_MODE_PRECISION (MODE) - 1, and FOO has only its low-order bit
10690 that may be nonzero. */
10691 if (code == LSHIFTRT
10692 && XEXP (varop, 1) == const0_rtx
10693 && GET_MODE (XEXP (varop, 0)) == result_mode
10694 && count == (GET_MODE_PRECISION (result_mode) - 1)
10695 && HWI_COMPUTABLE_MODE_P (result_mode)
10696 && STORE_FLAG_VALUE == -1
10697 && nonzero_bits (XEXP (varop, 0), result_mode) == 1
10698 && merge_outer_ops (&outer_op, &outer_const, XOR, 1, result_mode,
10699 &complement_p))
10700 {
10701 varop = XEXP (varop, 0);
10702 count = 0;
10703 continue;
10704 }
10705 break;
10706
10707 case NEG:
10708 /* (lshiftrt (neg A) C) where A is either 0 or 1 and C is one less
10709 than the number of bits in the mode is equivalent to A. */
10710 if (code == LSHIFTRT
10711 && count == (GET_MODE_PRECISION (result_mode) - 1)
10712 && nonzero_bits (XEXP (varop, 0), result_mode) == 1)
10713 {
10714 varop = XEXP (varop, 0);
10715 count = 0;
10716 continue;
10717 }
10718
10719 /* NEG commutes with ASHIFT since it is multiplication. Move the
10720 NEG outside to allow shifts to combine. */
10721 if (code == ASHIFT
10722 && merge_outer_ops (&outer_op, &outer_const, NEG, 0, result_mode,
10723 &complement_p))
10724 {
10725 varop = XEXP (varop, 0);
10726 continue;
10727 }
10728 break;
10729
10730 case PLUS:
10731 /* (lshiftrt (plus A -1) C) where A is either 0 or 1 and C
10732 is one less than the number of bits in the mode is
10733 equivalent to (xor A 1). */
10734 if (code == LSHIFTRT
10735 && count == (GET_MODE_PRECISION (result_mode) - 1)
10736 && XEXP (varop, 1) == constm1_rtx
10737 && nonzero_bits (XEXP (varop, 0), result_mode) == 1
10738 && merge_outer_ops (&outer_op, &outer_const, XOR, 1, result_mode,
10739 &complement_p))
10740 {
10741 count = 0;
10742 varop = XEXP (varop, 0);
10743 continue;
10744 }
10745
10746 /* If we have (xshiftrt (plus FOO BAR) C), and the only bits
10747 that might be nonzero in BAR are those being shifted out and those
10748 bits are known zero in FOO, we can replace the PLUS with FOO.
10749 Similarly in the other operand order. This code occurs when
10750 we are computing the size of a variable-size array. */
10751
10752 if ((code == ASHIFTRT || code == LSHIFTRT)
10753 && count < HOST_BITS_PER_WIDE_INT
10754 && nonzero_bits (XEXP (varop, 1), result_mode) >> count == 0
10755 && (nonzero_bits (XEXP (varop, 1), result_mode)
10756 & nonzero_bits (XEXP (varop, 0), result_mode)) == 0)
10757 {
10758 varop = XEXP (varop, 0);
10759 continue;
10760 }
10761 else if ((code == ASHIFTRT || code == LSHIFTRT)
10762 && count < HOST_BITS_PER_WIDE_INT
10763 && HWI_COMPUTABLE_MODE_P (result_mode)
10764 && 0 == (nonzero_bits (XEXP (varop, 0), result_mode)
10765 >> count)
10766 && 0 == (nonzero_bits (XEXP (varop, 0), result_mode)
10767 & nonzero_bits (XEXP (varop, 1),
10768 result_mode)))
10769 {
10770 varop = XEXP (varop, 1);
10771 continue;
10772 }
10773
10774 /* (ashift (plus foo C) N) is (plus (ashift foo N) C'). */
10775 if (code == ASHIFT
10776 && CONST_INT_P (XEXP (varop, 1))
10777 && (new_rtx = simplify_const_binary_operation
10778 (ASHIFT, result_mode,
10779 gen_int_mode (INTVAL (XEXP (varop, 1)), result_mode),
10780 GEN_INT (count))) != 0
10781 && CONST_INT_P (new_rtx)
10782 && merge_outer_ops (&outer_op, &outer_const, PLUS,
10783 INTVAL (new_rtx), result_mode, &complement_p))
10784 {
10785 varop = XEXP (varop, 0);
10786 continue;
10787 }
10788
10789 /* Check for 'PLUS signbit', which is the canonical form of 'XOR
10790 signbit', and attempt to change the PLUS to an XOR and move it to
10791 the outer operation as is done above in the AND/IOR/XOR case
10792 leg for shift(logical). See details in logical handling above
10793 for reasoning in doing so. */
10794 if (code == LSHIFTRT
10795 && CONST_INT_P (XEXP (varop, 1))
10796 && mode_signbit_p (result_mode, XEXP (varop, 1))
10797 && (new_rtx = simplify_const_binary_operation
10798 (code, result_mode,
10799 gen_int_mode (INTVAL (XEXP (varop, 1)), result_mode),
10800 GEN_INT (count))) != 0
10801 && CONST_INT_P (new_rtx)
10802 && merge_outer_ops (&outer_op, &outer_const, XOR,
10803 INTVAL (new_rtx), result_mode, &complement_p))
10804 {
10805 varop = XEXP (varop, 0);
10806 continue;
10807 }
10808
10809 break;
10810
10811 case MINUS:
10812 /* If we have (xshiftrt (minus (ashiftrt X C)) X) C)
10813 with C the size of VAROP - 1 and the shift is logical if
10814 STORE_FLAG_VALUE is 1 and arithmetic if STORE_FLAG_VALUE is -1,
10815 we have a (gt X 0) operation. If the shift is arithmetic with
10816 STORE_FLAG_VALUE of 1 or logical with STORE_FLAG_VALUE == -1,
10817 we have a (neg (gt X 0)) operation. */
10818
10819 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
10820 && GET_CODE (XEXP (varop, 0)) == ASHIFTRT
10821 && count == (GET_MODE_PRECISION (GET_MODE (varop)) - 1)
10822 && (code == LSHIFTRT || code == ASHIFTRT)
10823 && CONST_INT_P (XEXP (XEXP (varop, 0), 1))
10824 && INTVAL (XEXP (XEXP (varop, 0), 1)) == count
10825 && rtx_equal_p (XEXP (XEXP (varop, 0), 0), XEXP (varop, 1)))
10826 {
10827 count = 0;
10828 varop = gen_rtx_GT (GET_MODE (varop), XEXP (varop, 1),
10829 const0_rtx);
10830
10831 if (STORE_FLAG_VALUE == 1 ? code == ASHIFTRT : code == LSHIFTRT)
10832 varop = gen_rtx_NEG (GET_MODE (varop), varop);
10833
10834 continue;
10835 }
10836 break;
10837
10838 case TRUNCATE:
10839 /* Change (lshiftrt (truncate (lshiftrt))) to (truncate (lshiftrt))
10840 if the truncate does not affect the value. */
10841 if (code == LSHIFTRT
10842 && GET_CODE (XEXP (varop, 0)) == LSHIFTRT
10843 && CONST_INT_P (XEXP (XEXP (varop, 0), 1))
10844 && (INTVAL (XEXP (XEXP (varop, 0), 1))
10845 >= (GET_MODE_PRECISION (GET_MODE (XEXP (varop, 0)))
10846 - GET_MODE_PRECISION (GET_MODE (varop)))))
10847 {
10848 rtx varop_inner = XEXP (varop, 0);
10849
10850 varop_inner
10851 = gen_rtx_LSHIFTRT (GET_MODE (varop_inner),
10852 XEXP (varop_inner, 0),
10853 GEN_INT
10854 (count + INTVAL (XEXP (varop_inner, 1))));
10855 varop = gen_rtx_TRUNCATE (GET_MODE (varop), varop_inner);
10856 count = 0;
10857 continue;
10858 }
10859 break;
10860
10861 default:
10862 break;
10863 }
10864
10865 break;
10866 }
10867
10868 shift_mode = try_widen_shift_mode (code, varop, count, result_mode, mode,
10869 outer_op, outer_const);
10870
10871 /* We have now finished analyzing the shift. The result should be
10872 a shift of type CODE with SHIFT_MODE shifting VAROP COUNT places. If
10873 OUTER_OP is non-UNKNOWN, it is an operation that needs to be applied
10874 to the result of the shift. OUTER_CONST is the relevant constant,
10875 but we must turn off all bits turned off in the shift. */
10876
10877 if (outer_op == UNKNOWN
10878 && orig_code == code && orig_count == count
10879 && varop == orig_varop
10880 && shift_mode == GET_MODE (varop))
10881 return NULL_RTX;
10882
10883 /* Make a SUBREG if necessary. If we can't make it, fail. */
10884 varop = gen_lowpart (shift_mode, varop);
10885 if (varop == NULL_RTX || GET_CODE (varop) == CLOBBER)
10886 return NULL_RTX;
10887
10888 /* If we have an outer operation and we just made a shift, it is
10889 possible that we could have simplified the shift were it not
10890 for the outer operation. So try to do the simplification
10891 recursively. */
10892
10893 if (outer_op != UNKNOWN)
10894 x = simplify_shift_const_1 (code, shift_mode, varop, count);
10895 else
10896 x = NULL_RTX;
10897
10898 if (x == NULL_RTX)
10899 x = simplify_gen_binary (code, shift_mode, varop, GEN_INT (count));
10900
10901 /* If we were doing an LSHIFTRT in a wider mode than it was originally,
10902 turn off all the bits that the shift would have turned off. */
10903 if (orig_code == LSHIFTRT && result_mode != shift_mode)
10904 x = simplify_and_const_int (NULL_RTX, shift_mode, x,
10905 GET_MODE_MASK (result_mode) >> orig_count);
10906
10907 /* Do the remainder of the processing in RESULT_MODE. */
10908 x = gen_lowpart_or_truncate (result_mode, x);
10909
10910 /* If COMPLEMENT_P is set, we have to complement X before doing the outer
10911 operation. */
10912 if (complement_p)
10913 x = simplify_gen_unary (NOT, result_mode, x, result_mode);
10914
10915 if (outer_op != UNKNOWN)
10916 {
10917 if (GET_RTX_CLASS (outer_op) != RTX_UNARY
10918 && GET_MODE_PRECISION (result_mode) < HOST_BITS_PER_WIDE_INT)
10919 outer_const = trunc_int_for_mode (outer_const, result_mode);
10920
10921 if (outer_op == AND)
10922 x = simplify_and_const_int (NULL_RTX, result_mode, x, outer_const);
10923 else if (outer_op == SET)
10924 {
10925 /* This means that we have determined that the result is
10926 equivalent to a constant. This should be rare. */
10927 if (!side_effects_p (x))
10928 x = GEN_INT (outer_const);
10929 }
10930 else if (GET_RTX_CLASS (outer_op) == RTX_UNARY)
10931 x = simplify_gen_unary (outer_op, result_mode, x, result_mode);
10932 else
10933 x = simplify_gen_binary (outer_op, result_mode, x,
10934 GEN_INT (outer_const));
10935 }
10936
10937 return x;
10938 }
10939
10940 /* Simplify a shift of VAROP by COUNT bits. CODE says what kind of shift.
10941 The result of the shift is RESULT_MODE. If we cannot simplify it,
10942 return X or, if it is NULL, synthesize the expression with
10943 simplify_gen_binary. Otherwise, return a simplified value.
10944
10945 The shift is normally computed in the widest mode we find in VAROP, as
10946 long as it isn't a different number of words than RESULT_MODE. Exceptions
10947 are ASHIFTRT and ROTATE, which are always done in their original mode. */
10948
10949 static rtx
10950 simplify_shift_const (rtx x, enum rtx_code code, machine_mode result_mode,
10951 rtx varop, int count)
10952 {
10953 rtx tem = simplify_shift_const_1 (code, result_mode, varop, count);
10954 if (tem)
10955 return tem;
10956
10957 if (!x)
10958 x = simplify_gen_binary (code, GET_MODE (varop), varop, GEN_INT (count));
10959 if (GET_MODE (x) != result_mode)
10960 x = gen_lowpart (result_mode, x);
10961 return x;
10962 }
10963
10964 \f
10965 /* A subroutine of recog_for_combine. See there for arguments and
10966 return value. */
10967
10968 static int
10969 recog_for_combine_1 (rtx *pnewpat, rtx_insn *insn, rtx *pnotes)
10970 {
10971 rtx pat = *pnewpat;
10972 rtx pat_without_clobbers;
10973 int insn_code_number;
10974 int num_clobbers_to_add = 0;
10975 int i;
10976 rtx notes = NULL_RTX;
10977 rtx old_notes, old_pat;
10978 int old_icode;
10979
10980 /* If PAT is a PARALLEL, check to see if it contains the CLOBBER
10981 we use to indicate that something didn't match. If we find such a
10982 thing, force rejection. */
10983 if (GET_CODE (pat) == PARALLEL)
10984 for (i = XVECLEN (pat, 0) - 1; i >= 0; i--)
10985 if (GET_CODE (XVECEXP (pat, 0, i)) == CLOBBER
10986 && XEXP (XVECEXP (pat, 0, i), 0) == const0_rtx)
10987 return -1;
10988
10989 old_pat = PATTERN (insn);
10990 old_notes = REG_NOTES (insn);
10991 PATTERN (insn) = pat;
10992 REG_NOTES (insn) = NULL_RTX;
10993
10994 insn_code_number = recog (pat, insn, &num_clobbers_to_add);
10995 if (dump_file && (dump_flags & TDF_DETAILS))
10996 {
10997 if (insn_code_number < 0)
10998 fputs ("Failed to match this instruction:\n", dump_file);
10999 else
11000 fputs ("Successfully matched this instruction:\n", dump_file);
11001 print_rtl_single (dump_file, pat);
11002 }
11003
11004 /* If it isn't, there is the possibility that we previously had an insn
11005 that clobbered some register as a side effect, but the combined
11006 insn doesn't need to do that. So try once more without the clobbers
11007 unless this represents an ASM insn. */
11008
11009 if (insn_code_number < 0 && ! check_asm_operands (pat)
11010 && GET_CODE (pat) == PARALLEL)
11011 {
11012 int pos;
11013
11014 for (pos = 0, i = 0; i < XVECLEN (pat, 0); i++)
11015 if (GET_CODE (XVECEXP (pat, 0, i)) != CLOBBER)
11016 {
11017 if (i != pos)
11018 SUBST (XVECEXP (pat, 0, pos), XVECEXP (pat, 0, i));
11019 pos++;
11020 }
11021
11022 SUBST_INT (XVECLEN (pat, 0), pos);
11023
11024 if (pos == 1)
11025 pat = XVECEXP (pat, 0, 0);
11026
11027 PATTERN (insn) = pat;
11028 insn_code_number = recog (pat, insn, &num_clobbers_to_add);
11029 if (dump_file && (dump_flags & TDF_DETAILS))
11030 {
11031 if (insn_code_number < 0)
11032 fputs ("Failed to match this instruction:\n", dump_file);
11033 else
11034 fputs ("Successfully matched this instruction:\n", dump_file);
11035 print_rtl_single (dump_file, pat);
11036 }
11037 }
11038
11039 pat_without_clobbers = pat;
11040
11041 PATTERN (insn) = old_pat;
11042 REG_NOTES (insn) = old_notes;
11043
11044 /* Recognize all noop sets, these will be killed by followup pass. */
11045 if (insn_code_number < 0 && GET_CODE (pat) == SET && set_noop_p (pat))
11046 insn_code_number = NOOP_MOVE_INSN_CODE, num_clobbers_to_add = 0;
11047
11048 /* If we had any clobbers to add, make a new pattern than contains
11049 them. Then check to make sure that all of them are dead. */
11050 if (num_clobbers_to_add)
11051 {
11052 rtx newpat = gen_rtx_PARALLEL (VOIDmode,
11053 rtvec_alloc (GET_CODE (pat) == PARALLEL
11054 ? (XVECLEN (pat, 0)
11055 + num_clobbers_to_add)
11056 : num_clobbers_to_add + 1));
11057
11058 if (GET_CODE (pat) == PARALLEL)
11059 for (i = 0; i < XVECLEN (pat, 0); i++)
11060 XVECEXP (newpat, 0, i) = XVECEXP (pat, 0, i);
11061 else
11062 XVECEXP (newpat, 0, 0) = pat;
11063
11064 add_clobbers (newpat, insn_code_number);
11065
11066 for (i = XVECLEN (newpat, 0) - num_clobbers_to_add;
11067 i < XVECLEN (newpat, 0); i++)
11068 {
11069 if (REG_P (XEXP (XVECEXP (newpat, 0, i), 0))
11070 && ! reg_dead_at_p (XEXP (XVECEXP (newpat, 0, i), 0), insn))
11071 return -1;
11072 if (GET_CODE (XEXP (XVECEXP (newpat, 0, i), 0)) != SCRATCH)
11073 {
11074 gcc_assert (REG_P (XEXP (XVECEXP (newpat, 0, i), 0)));
11075 notes = alloc_reg_note (REG_UNUSED,
11076 XEXP (XVECEXP (newpat, 0, i), 0), notes);
11077 }
11078 }
11079 pat = newpat;
11080 }
11081
11082 if (insn_code_number >= 0
11083 && insn_code_number != NOOP_MOVE_INSN_CODE)
11084 {
11085 old_pat = PATTERN (insn);
11086 old_notes = REG_NOTES (insn);
11087 old_icode = INSN_CODE (insn);
11088 PATTERN (insn) = pat;
11089 REG_NOTES (insn) = notes;
11090
11091 /* Allow targets to reject combined insn. */
11092 if (!targetm.legitimate_combined_insn (insn))
11093 {
11094 if (dump_file && (dump_flags & TDF_DETAILS))
11095 fputs ("Instruction not appropriate for target.",
11096 dump_file);
11097
11098 /* Callers expect recog_for_combine to strip
11099 clobbers from the pattern on failure. */
11100 pat = pat_without_clobbers;
11101 notes = NULL_RTX;
11102
11103 insn_code_number = -1;
11104 }
11105
11106 PATTERN (insn) = old_pat;
11107 REG_NOTES (insn) = old_notes;
11108 INSN_CODE (insn) = old_icode;
11109 }
11110
11111 *pnewpat = pat;
11112 *pnotes = notes;
11113
11114 return insn_code_number;
11115 }
11116
11117 /* Change every ZERO_EXTRACT and ZERO_EXTEND of a SUBREG that can be
11118 expressed as an AND and maybe an LSHIFTRT, to that formulation.
11119 Return whether anything was so changed. */
11120
11121 static bool
11122 change_zero_ext (rtx pat)
11123 {
11124 bool changed = false;
11125 rtx *src = &SET_SRC (pat);
11126
11127 subrtx_ptr_iterator::array_type array;
11128 FOR_EACH_SUBRTX_PTR (iter, array, src, NONCONST)
11129 {
11130 rtx x = **iter;
11131 machine_mode mode = GET_MODE (x);
11132 int size;
11133
11134 if (GET_CODE (x) == ZERO_EXTRACT
11135 && CONST_INT_P (XEXP (x, 1))
11136 && CONST_INT_P (XEXP (x, 2))
11137 && GET_MODE (XEXP (x, 0)) == mode)
11138 {
11139 size = INTVAL (XEXP (x, 1));
11140
11141 int start = INTVAL (XEXP (x, 2));
11142 if (BITS_BIG_ENDIAN)
11143 start = GET_MODE_PRECISION (mode) - size - start;
11144
11145 if (start)
11146 x = gen_rtx_LSHIFTRT (mode, XEXP (x, 0), GEN_INT (start));
11147 else
11148 x = XEXP (x, 0);
11149 }
11150 else if (GET_CODE (x) == ZERO_EXTEND
11151 && SCALAR_INT_MODE_P (mode)
11152 && GET_CODE (XEXP (x, 0)) == SUBREG
11153 && GET_MODE (SUBREG_REG (XEXP (x, 0))) == mode
11154 && subreg_lowpart_p (XEXP (x, 0)))
11155 {
11156 size = GET_MODE_PRECISION (GET_MODE (XEXP (x, 0)));
11157 x = SUBREG_REG (XEXP (x, 0));
11158 }
11159 else if (GET_CODE (x) == ZERO_EXTEND
11160 && SCALAR_INT_MODE_P (mode)
11161 && REG_P (XEXP (x, 0))
11162 && HARD_REGISTER_P (XEXP (x, 0)))
11163 {
11164 size = GET_MODE_PRECISION (GET_MODE (XEXP (x, 0)));
11165 x = gen_rtx_REG (mode, REGNO (XEXP (x, 0)));
11166 }
11167 else
11168 continue;
11169
11170 wide_int mask = wi::mask (size, false, GET_MODE_PRECISION (mode));
11171 x = gen_rtx_AND (mode, x, immed_wide_int_const (mask, mode));
11172
11173 SUBST (**iter, x);
11174 changed = true;
11175 }
11176
11177 if (changed)
11178 FOR_EACH_SUBRTX_PTR (iter, array, src, NONCONST)
11179 {
11180 rtx x = **iter;
11181 if (COMMUTATIVE_ARITH_P (x)
11182 && swap_commutative_operands_p (XEXP (x, 0), XEXP (x, 1)))
11183 {
11184 rtx tem = XEXP (x, 0);
11185 SUBST (XEXP (x, 0), XEXP (x, 1));
11186 SUBST (XEXP (x, 1), tem);
11187 }
11188 }
11189
11190 rtx *dst = &SET_DEST (pat);
11191 if (GET_CODE (*dst) == ZERO_EXTRACT
11192 && REG_P (XEXP (*dst, 0))
11193 && CONST_INT_P (XEXP (*dst, 1))
11194 && CONST_INT_P (XEXP (*dst, 2)))
11195 {
11196 rtx reg = XEXP (*dst, 0);
11197 int width = INTVAL (XEXP (*dst, 1));
11198 int offset = INTVAL (XEXP (*dst, 2));
11199 machine_mode mode = GET_MODE (reg);
11200 int reg_width = GET_MODE_PRECISION (mode);
11201 if (BITS_BIG_ENDIAN)
11202 offset = reg_width - width - offset;
11203
11204 rtx x, y, z, w;
11205 wide_int mask = wi::shifted_mask (offset, width, true, reg_width);
11206 wide_int mask2 = wi::shifted_mask (offset, width, false, reg_width);
11207 x = gen_rtx_AND (mode, reg, immed_wide_int_const (mask, mode));
11208 if (offset)
11209 y = gen_rtx_ASHIFT (mode, SET_SRC (pat), GEN_INT (offset));
11210 else
11211 y = SET_SRC (pat);
11212 z = gen_rtx_AND (mode, y, immed_wide_int_const (mask2, mode));
11213 w = gen_rtx_IOR (mode, x, z);
11214 SUBST (SET_DEST (pat), reg);
11215 SUBST (SET_SRC (pat), w);
11216
11217 changed = true;
11218 }
11219
11220 return changed;
11221 }
11222
11223 /* Like recog, but we receive the address of a pointer to a new pattern.
11224 We try to match the rtx that the pointer points to.
11225 If that fails, we may try to modify or replace the pattern,
11226 storing the replacement into the same pointer object.
11227
11228 Modifications include deletion or addition of CLOBBERs. If the
11229 instruction will still not match, we change ZERO_EXTEND and ZERO_EXTRACT
11230 to the equivalent AND and perhaps LSHIFTRT patterns, and try with that
11231 (and undo if that fails).
11232
11233 PNOTES is a pointer to a location where any REG_UNUSED notes added for
11234 the CLOBBERs are placed.
11235
11236 The value is the final insn code from the pattern ultimately matched,
11237 or -1. */
11238
11239 static int
11240 recog_for_combine (rtx *pnewpat, rtx_insn *insn, rtx *pnotes)
11241 {
11242 rtx pat = *pnewpat;
11243 int insn_code_number = recog_for_combine_1 (pnewpat, insn, pnotes);
11244 if (insn_code_number >= 0 || check_asm_operands (pat))
11245 return insn_code_number;
11246
11247 void *marker = get_undo_marker ();
11248 bool changed = false;
11249
11250 if (GET_CODE (pat) == SET)
11251 changed = change_zero_ext (pat);
11252 else if (GET_CODE (pat) == PARALLEL)
11253 {
11254 int i;
11255 for (i = 0; i < XVECLEN (pat, 0); i++)
11256 {
11257 rtx set = XVECEXP (pat, 0, i);
11258 if (GET_CODE (set) == SET)
11259 changed |= change_zero_ext (set);
11260 }
11261 }
11262
11263 if (changed)
11264 {
11265 insn_code_number = recog_for_combine_1 (pnewpat, insn, pnotes);
11266
11267 if (insn_code_number < 0)
11268 undo_to_marker (marker);
11269 }
11270
11271 return insn_code_number;
11272 }
11273 \f
11274 /* Like gen_lowpart_general but for use by combine. In combine it
11275 is not possible to create any new pseudoregs. However, it is
11276 safe to create invalid memory addresses, because combine will
11277 try to recognize them and all they will do is make the combine
11278 attempt fail.
11279
11280 If for some reason this cannot do its job, an rtx
11281 (clobber (const_int 0)) is returned.
11282 An insn containing that will not be recognized. */
11283
11284 static rtx
11285 gen_lowpart_for_combine (machine_mode omode, rtx x)
11286 {
11287 machine_mode imode = GET_MODE (x);
11288 unsigned int osize = GET_MODE_SIZE (omode);
11289 unsigned int isize = GET_MODE_SIZE (imode);
11290 rtx result;
11291
11292 if (omode == imode)
11293 return x;
11294
11295 /* We can only support MODE being wider than a word if X is a
11296 constant integer or has a mode the same size. */
11297 if (GET_MODE_SIZE (omode) > UNITS_PER_WORD
11298 && ! (CONST_SCALAR_INT_P (x) || isize == osize))
11299 goto fail;
11300
11301 /* X might be a paradoxical (subreg (mem)). In that case, gen_lowpart
11302 won't know what to do. So we will strip off the SUBREG here and
11303 process normally. */
11304 if (GET_CODE (x) == SUBREG && MEM_P (SUBREG_REG (x)))
11305 {
11306 x = SUBREG_REG (x);
11307
11308 /* For use in case we fall down into the address adjustments
11309 further below, we need to adjust the known mode and size of
11310 x; imode and isize, since we just adjusted x. */
11311 imode = GET_MODE (x);
11312
11313 if (imode == omode)
11314 return x;
11315
11316 isize = GET_MODE_SIZE (imode);
11317 }
11318
11319 result = gen_lowpart_common (omode, x);
11320
11321 if (result)
11322 return result;
11323
11324 if (MEM_P (x))
11325 {
11326 int offset = 0;
11327
11328 /* Refuse to work on a volatile memory ref or one with a mode-dependent
11329 address. */
11330 if (MEM_VOLATILE_P (x)
11331 || mode_dependent_address_p (XEXP (x, 0), MEM_ADDR_SPACE (x)))
11332 goto fail;
11333
11334 /* If we want to refer to something bigger than the original memref,
11335 generate a paradoxical subreg instead. That will force a reload
11336 of the original memref X. */
11337 if (isize < osize)
11338 return gen_rtx_SUBREG (omode, x, 0);
11339
11340 if (WORDS_BIG_ENDIAN)
11341 offset = MAX (isize, UNITS_PER_WORD) - MAX (osize, UNITS_PER_WORD);
11342
11343 /* Adjust the address so that the address-after-the-data is
11344 unchanged. */
11345 if (BYTES_BIG_ENDIAN)
11346 offset -= MIN (UNITS_PER_WORD, osize) - MIN (UNITS_PER_WORD, isize);
11347
11348 return adjust_address_nv (x, omode, offset);
11349 }
11350
11351 /* If X is a comparison operator, rewrite it in a new mode. This
11352 probably won't match, but may allow further simplifications. */
11353 else if (COMPARISON_P (x))
11354 return gen_rtx_fmt_ee (GET_CODE (x), omode, XEXP (x, 0), XEXP (x, 1));
11355
11356 /* If we couldn't simplify X any other way, just enclose it in a
11357 SUBREG. Normally, this SUBREG won't match, but some patterns may
11358 include an explicit SUBREG or we may simplify it further in combine. */
11359 else
11360 {
11361 rtx res;
11362
11363 if (imode == VOIDmode)
11364 {
11365 imode = int_mode_for_mode (omode);
11366 x = gen_lowpart_common (imode, x);
11367 if (x == NULL)
11368 goto fail;
11369 }
11370 res = lowpart_subreg (omode, x, imode);
11371 if (res)
11372 return res;
11373 }
11374
11375 fail:
11376 return gen_rtx_CLOBBER (omode, const0_rtx);
11377 }
11378 \f
11379 /* Try to simplify a comparison between OP0 and a constant OP1,
11380 where CODE is the comparison code that will be tested, into a
11381 (CODE OP0 const0_rtx) form.
11382
11383 The result is a possibly different comparison code to use.
11384 *POP1 may be updated. */
11385
11386 static enum rtx_code
11387 simplify_compare_const (enum rtx_code code, machine_mode mode,
11388 rtx op0, rtx *pop1)
11389 {
11390 unsigned int mode_width = GET_MODE_PRECISION (mode);
11391 HOST_WIDE_INT const_op = INTVAL (*pop1);
11392
11393 /* Get the constant we are comparing against and turn off all bits
11394 not on in our mode. */
11395 if (mode != VOIDmode)
11396 const_op = trunc_int_for_mode (const_op, mode);
11397
11398 /* If we are comparing against a constant power of two and the value
11399 being compared can only have that single bit nonzero (e.g., it was
11400 `and'ed with that bit), we can replace this with a comparison
11401 with zero. */
11402 if (const_op
11403 && (code == EQ || code == NE || code == GE || code == GEU
11404 || code == LT || code == LTU)
11405 && mode_width - 1 < HOST_BITS_PER_WIDE_INT
11406 && pow2p_hwi (const_op & GET_MODE_MASK (mode))
11407 && (nonzero_bits (op0, mode)
11408 == (unsigned HOST_WIDE_INT) (const_op & GET_MODE_MASK (mode))))
11409 {
11410 code = (code == EQ || code == GE || code == GEU ? NE : EQ);
11411 const_op = 0;
11412 }
11413
11414 /* Similarly, if we are comparing a value known to be either -1 or
11415 0 with -1, change it to the opposite comparison against zero. */
11416 if (const_op == -1
11417 && (code == EQ || code == NE || code == GT || code == LE
11418 || code == GEU || code == LTU)
11419 && num_sign_bit_copies (op0, mode) == mode_width)
11420 {
11421 code = (code == EQ || code == LE || code == GEU ? NE : EQ);
11422 const_op = 0;
11423 }
11424
11425 /* Do some canonicalizations based on the comparison code. We prefer
11426 comparisons against zero and then prefer equality comparisons.
11427 If we can reduce the size of a constant, we will do that too. */
11428 switch (code)
11429 {
11430 case LT:
11431 /* < C is equivalent to <= (C - 1) */
11432 if (const_op > 0)
11433 {
11434 const_op -= 1;
11435 code = LE;
11436 /* ... fall through to LE case below. */
11437 gcc_fallthrough ();
11438 }
11439 else
11440 break;
11441
11442 case LE:
11443 /* <= C is equivalent to < (C + 1); we do this for C < 0 */
11444 if (const_op < 0)
11445 {
11446 const_op += 1;
11447 code = LT;
11448 }
11449
11450 /* If we are doing a <= 0 comparison on a value known to have
11451 a zero sign bit, we can replace this with == 0. */
11452 else if (const_op == 0
11453 && mode_width - 1 < HOST_BITS_PER_WIDE_INT
11454 && (nonzero_bits (op0, mode)
11455 & (HOST_WIDE_INT_1U << (mode_width - 1)))
11456 == 0)
11457 code = EQ;
11458 break;
11459
11460 case GE:
11461 /* >= C is equivalent to > (C - 1). */
11462 if (const_op > 0)
11463 {
11464 const_op -= 1;
11465 code = GT;
11466 /* ... fall through to GT below. */
11467 gcc_fallthrough ();
11468 }
11469 else
11470 break;
11471
11472 case GT:
11473 /* > C is equivalent to >= (C + 1); we do this for C < 0. */
11474 if (const_op < 0)
11475 {
11476 const_op += 1;
11477 code = GE;
11478 }
11479
11480 /* If we are doing a > 0 comparison on a value known to have
11481 a zero sign bit, we can replace this with != 0. */
11482 else if (const_op == 0
11483 && mode_width - 1 < HOST_BITS_PER_WIDE_INT
11484 && (nonzero_bits (op0, mode)
11485 & (HOST_WIDE_INT_1U << (mode_width - 1)))
11486 == 0)
11487 code = NE;
11488 break;
11489
11490 case LTU:
11491 /* < C is equivalent to <= (C - 1). */
11492 if (const_op > 0)
11493 {
11494 const_op -= 1;
11495 code = LEU;
11496 /* ... fall through ... */
11497 }
11498 /* (unsigned) < 0x80000000 is equivalent to >= 0. */
11499 else if (mode_width - 1 < HOST_BITS_PER_WIDE_INT
11500 && (unsigned HOST_WIDE_INT) const_op
11501 == HOST_WIDE_INT_1U << (mode_width - 1))
11502 {
11503 const_op = 0;
11504 code = GE;
11505 break;
11506 }
11507 else
11508 break;
11509
11510 case LEU:
11511 /* unsigned <= 0 is equivalent to == 0 */
11512 if (const_op == 0)
11513 code = EQ;
11514 /* (unsigned) <= 0x7fffffff is equivalent to >= 0. */
11515 else if (mode_width - 1 < HOST_BITS_PER_WIDE_INT
11516 && (unsigned HOST_WIDE_INT) const_op
11517 == (HOST_WIDE_INT_1U << (mode_width - 1)) - 1)
11518 {
11519 const_op = 0;
11520 code = GE;
11521 }
11522 break;
11523
11524 case GEU:
11525 /* >= C is equivalent to > (C - 1). */
11526 if (const_op > 1)
11527 {
11528 const_op -= 1;
11529 code = GTU;
11530 /* ... fall through ... */
11531 }
11532
11533 /* (unsigned) >= 0x80000000 is equivalent to < 0. */
11534 else if (mode_width - 1 < HOST_BITS_PER_WIDE_INT
11535 && (unsigned HOST_WIDE_INT) const_op
11536 == HOST_WIDE_INT_1U << (mode_width - 1))
11537 {
11538 const_op = 0;
11539 code = LT;
11540 break;
11541 }
11542 else
11543 break;
11544
11545 case GTU:
11546 /* unsigned > 0 is equivalent to != 0 */
11547 if (const_op == 0)
11548 code = NE;
11549 /* (unsigned) > 0x7fffffff is equivalent to < 0. */
11550 else if (mode_width - 1 < HOST_BITS_PER_WIDE_INT
11551 && (unsigned HOST_WIDE_INT) const_op
11552 == (HOST_WIDE_INT_1U << (mode_width - 1)) - 1)
11553 {
11554 const_op = 0;
11555 code = LT;
11556 }
11557 break;
11558
11559 default:
11560 break;
11561 }
11562
11563 *pop1 = GEN_INT (const_op);
11564 return code;
11565 }
11566 \f
11567 /* Simplify a comparison between *POP0 and *POP1 where CODE is the
11568 comparison code that will be tested.
11569
11570 The result is a possibly different comparison code to use. *POP0 and
11571 *POP1 may be updated.
11572
11573 It is possible that we might detect that a comparison is either always
11574 true or always false. However, we do not perform general constant
11575 folding in combine, so this knowledge isn't useful. Such tautologies
11576 should have been detected earlier. Hence we ignore all such cases. */
11577
11578 static enum rtx_code
11579 simplify_comparison (enum rtx_code code, rtx *pop0, rtx *pop1)
11580 {
11581 rtx op0 = *pop0;
11582 rtx op1 = *pop1;
11583 rtx tem, tem1;
11584 int i;
11585 machine_mode mode, tmode;
11586
11587 /* Try a few ways of applying the same transformation to both operands. */
11588 while (1)
11589 {
11590 /* The test below this one won't handle SIGN_EXTENDs on these machines,
11591 so check specially. */
11592 if (!WORD_REGISTER_OPERATIONS
11593 && code != GTU && code != GEU && code != LTU && code != LEU
11594 && GET_CODE (op0) == ASHIFTRT && GET_CODE (op1) == ASHIFTRT
11595 && GET_CODE (XEXP (op0, 0)) == ASHIFT
11596 && GET_CODE (XEXP (op1, 0)) == ASHIFT
11597 && GET_CODE (XEXP (XEXP (op0, 0), 0)) == SUBREG
11598 && GET_CODE (XEXP (XEXP (op1, 0), 0)) == SUBREG
11599 && (GET_MODE (SUBREG_REG (XEXP (XEXP (op0, 0), 0)))
11600 == GET_MODE (SUBREG_REG (XEXP (XEXP (op1, 0), 0))))
11601 && CONST_INT_P (XEXP (op0, 1))
11602 && XEXP (op0, 1) == XEXP (op1, 1)
11603 && XEXP (op0, 1) == XEXP (XEXP (op0, 0), 1)
11604 && XEXP (op0, 1) == XEXP (XEXP (op1, 0), 1)
11605 && (INTVAL (XEXP (op0, 1))
11606 == (GET_MODE_PRECISION (GET_MODE (op0))
11607 - (GET_MODE_PRECISION
11608 (GET_MODE (SUBREG_REG (XEXP (XEXP (op0, 0), 0))))))))
11609 {
11610 op0 = SUBREG_REG (XEXP (XEXP (op0, 0), 0));
11611 op1 = SUBREG_REG (XEXP (XEXP (op1, 0), 0));
11612 }
11613
11614 /* If both operands are the same constant shift, see if we can ignore the
11615 shift. We can if the shift is a rotate or if the bits shifted out of
11616 this shift are known to be zero for both inputs and if the type of
11617 comparison is compatible with the shift. */
11618 if (GET_CODE (op0) == GET_CODE (op1)
11619 && HWI_COMPUTABLE_MODE_P (GET_MODE (op0))
11620 && ((GET_CODE (op0) == ROTATE && (code == NE || code == EQ))
11621 || ((GET_CODE (op0) == LSHIFTRT || GET_CODE (op0) == ASHIFT)
11622 && (code != GT && code != LT && code != GE && code != LE))
11623 || (GET_CODE (op0) == ASHIFTRT
11624 && (code != GTU && code != LTU
11625 && code != GEU && code != LEU)))
11626 && CONST_INT_P (XEXP (op0, 1))
11627 && INTVAL (XEXP (op0, 1)) >= 0
11628 && INTVAL (XEXP (op0, 1)) < HOST_BITS_PER_WIDE_INT
11629 && XEXP (op0, 1) == XEXP (op1, 1))
11630 {
11631 machine_mode mode = GET_MODE (op0);
11632 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
11633 int shift_count = INTVAL (XEXP (op0, 1));
11634
11635 if (GET_CODE (op0) == LSHIFTRT || GET_CODE (op0) == ASHIFTRT)
11636 mask &= (mask >> shift_count) << shift_count;
11637 else if (GET_CODE (op0) == ASHIFT)
11638 mask = (mask & (mask << shift_count)) >> shift_count;
11639
11640 if ((nonzero_bits (XEXP (op0, 0), mode) & ~mask) == 0
11641 && (nonzero_bits (XEXP (op1, 0), mode) & ~mask) == 0)
11642 op0 = XEXP (op0, 0), op1 = XEXP (op1, 0);
11643 else
11644 break;
11645 }
11646
11647 /* If both operands are AND's of a paradoxical SUBREG by constant, the
11648 SUBREGs are of the same mode, and, in both cases, the AND would
11649 be redundant if the comparison was done in the narrower mode,
11650 do the comparison in the narrower mode (e.g., we are AND'ing with 1
11651 and the operand's possibly nonzero bits are 0xffffff01; in that case
11652 if we only care about QImode, we don't need the AND). This case
11653 occurs if the output mode of an scc insn is not SImode and
11654 STORE_FLAG_VALUE == 1 (e.g., the 386).
11655
11656 Similarly, check for a case where the AND's are ZERO_EXTEND
11657 operations from some narrower mode even though a SUBREG is not
11658 present. */
11659
11660 else if (GET_CODE (op0) == AND && GET_CODE (op1) == AND
11661 && CONST_INT_P (XEXP (op0, 1))
11662 && CONST_INT_P (XEXP (op1, 1)))
11663 {
11664 rtx inner_op0 = XEXP (op0, 0);
11665 rtx inner_op1 = XEXP (op1, 0);
11666 HOST_WIDE_INT c0 = INTVAL (XEXP (op0, 1));
11667 HOST_WIDE_INT c1 = INTVAL (XEXP (op1, 1));
11668 int changed = 0;
11669
11670 if (paradoxical_subreg_p (inner_op0)
11671 && GET_CODE (inner_op1) == SUBREG
11672 && (GET_MODE (SUBREG_REG (inner_op0))
11673 == GET_MODE (SUBREG_REG (inner_op1)))
11674 && (GET_MODE_PRECISION (GET_MODE (SUBREG_REG (inner_op0)))
11675 <= HOST_BITS_PER_WIDE_INT)
11676 && (0 == ((~c0) & nonzero_bits (SUBREG_REG (inner_op0),
11677 GET_MODE (SUBREG_REG (inner_op0)))))
11678 && (0 == ((~c1) & nonzero_bits (SUBREG_REG (inner_op1),
11679 GET_MODE (SUBREG_REG (inner_op1))))))
11680 {
11681 op0 = SUBREG_REG (inner_op0);
11682 op1 = SUBREG_REG (inner_op1);
11683
11684 /* The resulting comparison is always unsigned since we masked
11685 off the original sign bit. */
11686 code = unsigned_condition (code);
11687
11688 changed = 1;
11689 }
11690
11691 else if (c0 == c1)
11692 for (tmode = GET_CLASS_NARROWEST_MODE
11693 (GET_MODE_CLASS (GET_MODE (op0)));
11694 tmode != GET_MODE (op0); tmode = GET_MODE_WIDER_MODE (tmode))
11695 if ((unsigned HOST_WIDE_INT) c0 == GET_MODE_MASK (tmode))
11696 {
11697 op0 = gen_lowpart_or_truncate (tmode, inner_op0);
11698 op1 = gen_lowpart_or_truncate (tmode, inner_op1);
11699 code = unsigned_condition (code);
11700 changed = 1;
11701 break;
11702 }
11703
11704 if (! changed)
11705 break;
11706 }
11707
11708 /* If both operands are NOT, we can strip off the outer operation
11709 and adjust the comparison code for swapped operands; similarly for
11710 NEG, except that this must be an equality comparison. */
11711 else if ((GET_CODE (op0) == NOT && GET_CODE (op1) == NOT)
11712 || (GET_CODE (op0) == NEG && GET_CODE (op1) == NEG
11713 && (code == EQ || code == NE)))
11714 op0 = XEXP (op0, 0), op1 = XEXP (op1, 0), code = swap_condition (code);
11715
11716 else
11717 break;
11718 }
11719
11720 /* If the first operand is a constant, swap the operands and adjust the
11721 comparison code appropriately, but don't do this if the second operand
11722 is already a constant integer. */
11723 if (swap_commutative_operands_p (op0, op1))
11724 {
11725 std::swap (op0, op1);
11726 code = swap_condition (code);
11727 }
11728
11729 /* We now enter a loop during which we will try to simplify the comparison.
11730 For the most part, we only are concerned with comparisons with zero,
11731 but some things may really be comparisons with zero but not start
11732 out looking that way. */
11733
11734 while (CONST_INT_P (op1))
11735 {
11736 machine_mode mode = GET_MODE (op0);
11737 unsigned int mode_width = GET_MODE_PRECISION (mode);
11738 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
11739 int equality_comparison_p;
11740 int sign_bit_comparison_p;
11741 int unsigned_comparison_p;
11742 HOST_WIDE_INT const_op;
11743
11744 /* We only want to handle integral modes. This catches VOIDmode,
11745 CCmode, and the floating-point modes. An exception is that we
11746 can handle VOIDmode if OP0 is a COMPARE or a comparison
11747 operation. */
11748
11749 if (GET_MODE_CLASS (mode) != MODE_INT
11750 && ! (mode == VOIDmode
11751 && (GET_CODE (op0) == COMPARE || COMPARISON_P (op0))))
11752 break;
11753
11754 /* Try to simplify the compare to constant, possibly changing the
11755 comparison op, and/or changing op1 to zero. */
11756 code = simplify_compare_const (code, mode, op0, &op1);
11757 const_op = INTVAL (op1);
11758
11759 /* Compute some predicates to simplify code below. */
11760
11761 equality_comparison_p = (code == EQ || code == NE);
11762 sign_bit_comparison_p = ((code == LT || code == GE) && const_op == 0);
11763 unsigned_comparison_p = (code == LTU || code == LEU || code == GTU
11764 || code == GEU);
11765
11766 /* If this is a sign bit comparison and we can do arithmetic in
11767 MODE, say that we will only be needing the sign bit of OP0. */
11768 if (sign_bit_comparison_p && HWI_COMPUTABLE_MODE_P (mode))
11769 op0 = force_to_mode (op0, mode,
11770 HOST_WIDE_INT_1U
11771 << (GET_MODE_PRECISION (mode) - 1),
11772 0);
11773
11774 /* Now try cases based on the opcode of OP0. If none of the cases
11775 does a "continue", we exit this loop immediately after the
11776 switch. */
11777
11778 switch (GET_CODE (op0))
11779 {
11780 case ZERO_EXTRACT:
11781 /* If we are extracting a single bit from a variable position in
11782 a constant that has only a single bit set and are comparing it
11783 with zero, we can convert this into an equality comparison
11784 between the position and the location of the single bit. */
11785 /* Except we can't if SHIFT_COUNT_TRUNCATED is set, since we might
11786 have already reduced the shift count modulo the word size. */
11787 if (!SHIFT_COUNT_TRUNCATED
11788 && CONST_INT_P (XEXP (op0, 0))
11789 && XEXP (op0, 1) == const1_rtx
11790 && equality_comparison_p && const_op == 0
11791 && (i = exact_log2 (UINTVAL (XEXP (op0, 0)))) >= 0)
11792 {
11793 if (BITS_BIG_ENDIAN)
11794 i = BITS_PER_WORD - 1 - i;
11795
11796 op0 = XEXP (op0, 2);
11797 op1 = GEN_INT (i);
11798 const_op = i;
11799
11800 /* Result is nonzero iff shift count is equal to I. */
11801 code = reverse_condition (code);
11802 continue;
11803 }
11804
11805 /* fall through */
11806
11807 case SIGN_EXTRACT:
11808 tem = expand_compound_operation (op0);
11809 if (tem != op0)
11810 {
11811 op0 = tem;
11812 continue;
11813 }
11814 break;
11815
11816 case NOT:
11817 /* If testing for equality, we can take the NOT of the constant. */
11818 if (equality_comparison_p
11819 && (tem = simplify_unary_operation (NOT, mode, op1, mode)) != 0)
11820 {
11821 op0 = XEXP (op0, 0);
11822 op1 = tem;
11823 continue;
11824 }
11825
11826 /* If just looking at the sign bit, reverse the sense of the
11827 comparison. */
11828 if (sign_bit_comparison_p)
11829 {
11830 op0 = XEXP (op0, 0);
11831 code = (code == GE ? LT : GE);
11832 continue;
11833 }
11834 break;
11835
11836 case NEG:
11837 /* If testing for equality, we can take the NEG of the constant. */
11838 if (equality_comparison_p
11839 && (tem = simplify_unary_operation (NEG, mode, op1, mode)) != 0)
11840 {
11841 op0 = XEXP (op0, 0);
11842 op1 = tem;
11843 continue;
11844 }
11845
11846 /* The remaining cases only apply to comparisons with zero. */
11847 if (const_op != 0)
11848 break;
11849
11850 /* When X is ABS or is known positive,
11851 (neg X) is < 0 if and only if X != 0. */
11852
11853 if (sign_bit_comparison_p
11854 && (GET_CODE (XEXP (op0, 0)) == ABS
11855 || (mode_width <= HOST_BITS_PER_WIDE_INT
11856 && (nonzero_bits (XEXP (op0, 0), mode)
11857 & (HOST_WIDE_INT_1U << (mode_width - 1)))
11858 == 0)))
11859 {
11860 op0 = XEXP (op0, 0);
11861 code = (code == LT ? NE : EQ);
11862 continue;
11863 }
11864
11865 /* If we have NEG of something whose two high-order bits are the
11866 same, we know that "(-a) < 0" is equivalent to "a > 0". */
11867 if (num_sign_bit_copies (op0, mode) >= 2)
11868 {
11869 op0 = XEXP (op0, 0);
11870 code = swap_condition (code);
11871 continue;
11872 }
11873 break;
11874
11875 case ROTATE:
11876 /* If we are testing equality and our count is a constant, we
11877 can perform the inverse operation on our RHS. */
11878 if (equality_comparison_p && CONST_INT_P (XEXP (op0, 1))
11879 && (tem = simplify_binary_operation (ROTATERT, mode,
11880 op1, XEXP (op0, 1))) != 0)
11881 {
11882 op0 = XEXP (op0, 0);
11883 op1 = tem;
11884 continue;
11885 }
11886
11887 /* If we are doing a < 0 or >= 0 comparison, it means we are testing
11888 a particular bit. Convert it to an AND of a constant of that
11889 bit. This will be converted into a ZERO_EXTRACT. */
11890 if (const_op == 0 && sign_bit_comparison_p
11891 && CONST_INT_P (XEXP (op0, 1))
11892 && mode_width <= HOST_BITS_PER_WIDE_INT)
11893 {
11894 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
11895 (HOST_WIDE_INT_1U
11896 << (mode_width - 1
11897 - INTVAL (XEXP (op0, 1)))));
11898 code = (code == LT ? NE : EQ);
11899 continue;
11900 }
11901
11902 /* Fall through. */
11903
11904 case ABS:
11905 /* ABS is ignorable inside an equality comparison with zero. */
11906 if (const_op == 0 && equality_comparison_p)
11907 {
11908 op0 = XEXP (op0, 0);
11909 continue;
11910 }
11911 break;
11912
11913 case SIGN_EXTEND:
11914 /* Can simplify (compare (zero/sign_extend FOO) CONST) to
11915 (compare FOO CONST) if CONST fits in FOO's mode and we
11916 are either testing inequality or have an unsigned
11917 comparison with ZERO_EXTEND or a signed comparison with
11918 SIGN_EXTEND. But don't do it if we don't have a compare
11919 insn of the given mode, since we'd have to revert it
11920 later on, and then we wouldn't know whether to sign- or
11921 zero-extend. */
11922 mode = GET_MODE (XEXP (op0, 0));
11923 if (GET_MODE_CLASS (mode) == MODE_INT
11924 && ! unsigned_comparison_p
11925 && HWI_COMPUTABLE_MODE_P (mode)
11926 && trunc_int_for_mode (const_op, mode) == const_op
11927 && have_insn_for (COMPARE, mode))
11928 {
11929 op0 = XEXP (op0, 0);
11930 continue;
11931 }
11932 break;
11933
11934 case SUBREG:
11935 /* Check for the case where we are comparing A - C1 with C2, that is
11936
11937 (subreg:MODE (plus (A) (-C1))) op (C2)
11938
11939 with C1 a constant, and try to lift the SUBREG, i.e. to do the
11940 comparison in the wider mode. One of the following two conditions
11941 must be true in order for this to be valid:
11942
11943 1. The mode extension results in the same bit pattern being added
11944 on both sides and the comparison is equality or unsigned. As
11945 C2 has been truncated to fit in MODE, the pattern can only be
11946 all 0s or all 1s.
11947
11948 2. The mode extension results in the sign bit being copied on
11949 each side.
11950
11951 The difficulty here is that we have predicates for A but not for
11952 (A - C1) so we need to check that C1 is within proper bounds so
11953 as to perturbate A as little as possible. */
11954
11955 if (mode_width <= HOST_BITS_PER_WIDE_INT
11956 && subreg_lowpart_p (op0)
11957 && GET_MODE_PRECISION (GET_MODE (SUBREG_REG (op0))) > mode_width
11958 && GET_CODE (SUBREG_REG (op0)) == PLUS
11959 && CONST_INT_P (XEXP (SUBREG_REG (op0), 1)))
11960 {
11961 machine_mode inner_mode = GET_MODE (SUBREG_REG (op0));
11962 rtx a = XEXP (SUBREG_REG (op0), 0);
11963 HOST_WIDE_INT c1 = -INTVAL (XEXP (SUBREG_REG (op0), 1));
11964
11965 if ((c1 > 0
11966 && (unsigned HOST_WIDE_INT) c1
11967 < HOST_WIDE_INT_1U << (mode_width - 1)
11968 && (equality_comparison_p || unsigned_comparison_p)
11969 /* (A - C1) zero-extends if it is positive and sign-extends
11970 if it is negative, C2 both zero- and sign-extends. */
11971 && ((0 == (nonzero_bits (a, inner_mode)
11972 & ~GET_MODE_MASK (mode))
11973 && const_op >= 0)
11974 /* (A - C1) sign-extends if it is positive and 1-extends
11975 if it is negative, C2 both sign- and 1-extends. */
11976 || (num_sign_bit_copies (a, inner_mode)
11977 > (unsigned int) (GET_MODE_PRECISION (inner_mode)
11978 - mode_width)
11979 && const_op < 0)))
11980 || ((unsigned HOST_WIDE_INT) c1
11981 < HOST_WIDE_INT_1U << (mode_width - 2)
11982 /* (A - C1) always sign-extends, like C2. */
11983 && num_sign_bit_copies (a, inner_mode)
11984 > (unsigned int) (GET_MODE_PRECISION (inner_mode)
11985 - (mode_width - 1))))
11986 {
11987 op0 = SUBREG_REG (op0);
11988 continue;
11989 }
11990 }
11991
11992 /* If the inner mode is narrower and we are extracting the low part,
11993 we can treat the SUBREG as if it were a ZERO_EXTEND. */
11994 if (subreg_lowpart_p (op0)
11995 && GET_MODE_PRECISION (GET_MODE (SUBREG_REG (op0))) < mode_width)
11996 ;
11997 else
11998 break;
11999
12000 /* FALLTHROUGH */
12001
12002 case ZERO_EXTEND:
12003 mode = GET_MODE (XEXP (op0, 0));
12004 if (GET_MODE_CLASS (mode) == MODE_INT
12005 && (unsigned_comparison_p || equality_comparison_p)
12006 && HWI_COMPUTABLE_MODE_P (mode)
12007 && (unsigned HOST_WIDE_INT) const_op <= GET_MODE_MASK (mode)
12008 && const_op >= 0
12009 && have_insn_for (COMPARE, mode))
12010 {
12011 op0 = XEXP (op0, 0);
12012 continue;
12013 }
12014 break;
12015
12016 case PLUS:
12017 /* (eq (plus X A) B) -> (eq X (minus B A)). We can only do
12018 this for equality comparisons due to pathological cases involving
12019 overflows. */
12020 if (equality_comparison_p
12021 && 0 != (tem = simplify_binary_operation (MINUS, mode,
12022 op1, XEXP (op0, 1))))
12023 {
12024 op0 = XEXP (op0, 0);
12025 op1 = tem;
12026 continue;
12027 }
12028
12029 /* (plus (abs X) (const_int -1)) is < 0 if and only if X == 0. */
12030 if (const_op == 0 && XEXP (op0, 1) == constm1_rtx
12031 && GET_CODE (XEXP (op0, 0)) == ABS && sign_bit_comparison_p)
12032 {
12033 op0 = XEXP (XEXP (op0, 0), 0);
12034 code = (code == LT ? EQ : NE);
12035 continue;
12036 }
12037 break;
12038
12039 case MINUS:
12040 /* We used to optimize signed comparisons against zero, but that
12041 was incorrect. Unsigned comparisons against zero (GTU, LEU)
12042 arrive here as equality comparisons, or (GEU, LTU) are
12043 optimized away. No need to special-case them. */
12044
12045 /* (eq (minus A B) C) -> (eq A (plus B C)) or
12046 (eq B (minus A C)), whichever simplifies. We can only do
12047 this for equality comparisons due to pathological cases involving
12048 overflows. */
12049 if (equality_comparison_p
12050 && 0 != (tem = simplify_binary_operation (PLUS, mode,
12051 XEXP (op0, 1), op1)))
12052 {
12053 op0 = XEXP (op0, 0);
12054 op1 = tem;
12055 continue;
12056 }
12057
12058 if (equality_comparison_p
12059 && 0 != (tem = simplify_binary_operation (MINUS, mode,
12060 XEXP (op0, 0), op1)))
12061 {
12062 op0 = XEXP (op0, 1);
12063 op1 = tem;
12064 continue;
12065 }
12066
12067 /* The sign bit of (minus (ashiftrt X C) X), where C is the number
12068 of bits in X minus 1, is one iff X > 0. */
12069 if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 0)) == ASHIFTRT
12070 && CONST_INT_P (XEXP (XEXP (op0, 0), 1))
12071 && UINTVAL (XEXP (XEXP (op0, 0), 1)) == mode_width - 1
12072 && rtx_equal_p (XEXP (XEXP (op0, 0), 0), XEXP (op0, 1)))
12073 {
12074 op0 = XEXP (op0, 1);
12075 code = (code == GE ? LE : GT);
12076 continue;
12077 }
12078 break;
12079
12080 case XOR:
12081 /* (eq (xor A B) C) -> (eq A (xor B C)). This is a simplification
12082 if C is zero or B is a constant. */
12083 if (equality_comparison_p
12084 && 0 != (tem = simplify_binary_operation (XOR, mode,
12085 XEXP (op0, 1), op1)))
12086 {
12087 op0 = XEXP (op0, 0);
12088 op1 = tem;
12089 continue;
12090 }
12091 break;
12092
12093 case EQ: case NE:
12094 case UNEQ: case LTGT:
12095 case LT: case LTU: case UNLT: case LE: case LEU: case UNLE:
12096 case GT: case GTU: case UNGT: case GE: case GEU: case UNGE:
12097 case UNORDERED: case ORDERED:
12098 /* We can't do anything if OP0 is a condition code value, rather
12099 than an actual data value. */
12100 if (const_op != 0
12101 || CC0_P (XEXP (op0, 0))
12102 || GET_MODE_CLASS (GET_MODE (XEXP (op0, 0))) == MODE_CC)
12103 break;
12104
12105 /* Get the two operands being compared. */
12106 if (GET_CODE (XEXP (op0, 0)) == COMPARE)
12107 tem = XEXP (XEXP (op0, 0), 0), tem1 = XEXP (XEXP (op0, 0), 1);
12108 else
12109 tem = XEXP (op0, 0), tem1 = XEXP (op0, 1);
12110
12111 /* Check for the cases where we simply want the result of the
12112 earlier test or the opposite of that result. */
12113 if (code == NE || code == EQ
12114 || (val_signbit_known_set_p (GET_MODE (op0), STORE_FLAG_VALUE)
12115 && (code == LT || code == GE)))
12116 {
12117 enum rtx_code new_code;
12118 if (code == LT || code == NE)
12119 new_code = GET_CODE (op0);
12120 else
12121 new_code = reversed_comparison_code (op0, NULL);
12122
12123 if (new_code != UNKNOWN)
12124 {
12125 code = new_code;
12126 op0 = tem;
12127 op1 = tem1;
12128 continue;
12129 }
12130 }
12131 break;
12132
12133 case IOR:
12134 /* The sign bit of (ior (plus X (const_int -1)) X) is nonzero
12135 iff X <= 0. */
12136 if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 0)) == PLUS
12137 && XEXP (XEXP (op0, 0), 1) == constm1_rtx
12138 && rtx_equal_p (XEXP (XEXP (op0, 0), 0), XEXP (op0, 1)))
12139 {
12140 op0 = XEXP (op0, 1);
12141 code = (code == GE ? GT : LE);
12142 continue;
12143 }
12144 break;
12145
12146 case AND:
12147 /* Convert (and (xshift 1 X) Y) to (and (lshiftrt Y X) 1). This
12148 will be converted to a ZERO_EXTRACT later. */
12149 if (const_op == 0 && equality_comparison_p
12150 && GET_CODE (XEXP (op0, 0)) == ASHIFT
12151 && XEXP (XEXP (op0, 0), 0) == const1_rtx)
12152 {
12153 op0 = gen_rtx_LSHIFTRT (mode, XEXP (op0, 1),
12154 XEXP (XEXP (op0, 0), 1));
12155 op0 = simplify_and_const_int (NULL_RTX, mode, op0, 1);
12156 continue;
12157 }
12158
12159 /* If we are comparing (and (lshiftrt X C1) C2) for equality with
12160 zero and X is a comparison and C1 and C2 describe only bits set
12161 in STORE_FLAG_VALUE, we can compare with X. */
12162 if (const_op == 0 && equality_comparison_p
12163 && mode_width <= HOST_BITS_PER_WIDE_INT
12164 && CONST_INT_P (XEXP (op0, 1))
12165 && GET_CODE (XEXP (op0, 0)) == LSHIFTRT
12166 && CONST_INT_P (XEXP (XEXP (op0, 0), 1))
12167 && INTVAL (XEXP (XEXP (op0, 0), 1)) >= 0
12168 && INTVAL (XEXP (XEXP (op0, 0), 1)) < HOST_BITS_PER_WIDE_INT)
12169 {
12170 mask = ((INTVAL (XEXP (op0, 1)) & GET_MODE_MASK (mode))
12171 << INTVAL (XEXP (XEXP (op0, 0), 1)));
12172 if ((~STORE_FLAG_VALUE & mask) == 0
12173 && (COMPARISON_P (XEXP (XEXP (op0, 0), 0))
12174 || ((tem = get_last_value (XEXP (XEXP (op0, 0), 0))) != 0
12175 && COMPARISON_P (tem))))
12176 {
12177 op0 = XEXP (XEXP (op0, 0), 0);
12178 continue;
12179 }
12180 }
12181
12182 /* If we are doing an equality comparison of an AND of a bit equal
12183 to the sign bit, replace this with a LT or GE comparison of
12184 the underlying value. */
12185 if (equality_comparison_p
12186 && const_op == 0
12187 && CONST_INT_P (XEXP (op0, 1))
12188 && mode_width <= HOST_BITS_PER_WIDE_INT
12189 && ((INTVAL (XEXP (op0, 1)) & GET_MODE_MASK (mode))
12190 == HOST_WIDE_INT_1U << (mode_width - 1)))
12191 {
12192 op0 = XEXP (op0, 0);
12193 code = (code == EQ ? GE : LT);
12194 continue;
12195 }
12196
12197 /* If this AND operation is really a ZERO_EXTEND from a narrower
12198 mode, the constant fits within that mode, and this is either an
12199 equality or unsigned comparison, try to do this comparison in
12200 the narrower mode.
12201
12202 Note that in:
12203
12204 (ne:DI (and:DI (reg:DI 4) (const_int 0xffffffff)) (const_int 0))
12205 -> (ne:DI (reg:SI 4) (const_int 0))
12206
12207 unless TRULY_NOOP_TRUNCATION allows it or the register is
12208 known to hold a value of the required mode the
12209 transformation is invalid. */
12210 if ((equality_comparison_p || unsigned_comparison_p)
12211 && CONST_INT_P (XEXP (op0, 1))
12212 && (i = exact_log2 ((UINTVAL (XEXP (op0, 1))
12213 & GET_MODE_MASK (mode))
12214 + 1)) >= 0
12215 && const_op >> i == 0
12216 && (tmode = mode_for_size (i, MODE_INT, 1)) != BLKmode)
12217 {
12218 op0 = gen_lowpart_or_truncate (tmode, XEXP (op0, 0));
12219 continue;
12220 }
12221
12222 /* If this is (and:M1 (subreg:M1 X:M2 0) (const_int C1)) where C1
12223 fits in both M1 and M2 and the SUBREG is either paradoxical
12224 or represents the low part, permute the SUBREG and the AND
12225 and try again. */
12226 if (GET_CODE (XEXP (op0, 0)) == SUBREG
12227 && CONST_INT_P (XEXP (op0, 1)))
12228 {
12229 tmode = GET_MODE (SUBREG_REG (XEXP (op0, 0)));
12230 unsigned HOST_WIDE_INT c1 = INTVAL (XEXP (op0, 1));
12231 /* Require an integral mode, to avoid creating something like
12232 (AND:SF ...). */
12233 if (SCALAR_INT_MODE_P (tmode)
12234 /* It is unsafe to commute the AND into the SUBREG if the
12235 SUBREG is paradoxical and WORD_REGISTER_OPERATIONS is
12236 not defined. As originally written the upper bits
12237 have a defined value due to the AND operation.
12238 However, if we commute the AND inside the SUBREG then
12239 they no longer have defined values and the meaning of
12240 the code has been changed.
12241 Also C1 should not change value in the smaller mode,
12242 see PR67028 (a positive C1 can become negative in the
12243 smaller mode, so that the AND does no longer mask the
12244 upper bits). */
12245 && ((WORD_REGISTER_OPERATIONS
12246 && mode_width > GET_MODE_PRECISION (tmode)
12247 && mode_width <= BITS_PER_WORD
12248 && trunc_int_for_mode (c1, tmode) == (HOST_WIDE_INT) c1)
12249 || (mode_width <= GET_MODE_PRECISION (tmode)
12250 && subreg_lowpart_p (XEXP (op0, 0))))
12251 && mode_width <= HOST_BITS_PER_WIDE_INT
12252 && HWI_COMPUTABLE_MODE_P (tmode)
12253 && (c1 & ~mask) == 0
12254 && (c1 & ~GET_MODE_MASK (tmode)) == 0
12255 && c1 != mask
12256 && c1 != GET_MODE_MASK (tmode))
12257 {
12258 op0 = simplify_gen_binary (AND, tmode,
12259 SUBREG_REG (XEXP (op0, 0)),
12260 gen_int_mode (c1, tmode));
12261 op0 = gen_lowpart (mode, op0);
12262 continue;
12263 }
12264 }
12265
12266 /* Convert (ne (and (not X) 1) 0) to (eq (and X 1) 0). */
12267 if (const_op == 0 && equality_comparison_p
12268 && XEXP (op0, 1) == const1_rtx
12269 && GET_CODE (XEXP (op0, 0)) == NOT)
12270 {
12271 op0 = simplify_and_const_int (NULL_RTX, mode,
12272 XEXP (XEXP (op0, 0), 0), 1);
12273 code = (code == NE ? EQ : NE);
12274 continue;
12275 }
12276
12277 /* Convert (ne (and (lshiftrt (not X)) 1) 0) to
12278 (eq (and (lshiftrt X) 1) 0).
12279 Also handle the case where (not X) is expressed using xor. */
12280 if (const_op == 0 && equality_comparison_p
12281 && XEXP (op0, 1) == const1_rtx
12282 && GET_CODE (XEXP (op0, 0)) == LSHIFTRT)
12283 {
12284 rtx shift_op = XEXP (XEXP (op0, 0), 0);
12285 rtx shift_count = XEXP (XEXP (op0, 0), 1);
12286
12287 if (GET_CODE (shift_op) == NOT
12288 || (GET_CODE (shift_op) == XOR
12289 && CONST_INT_P (XEXP (shift_op, 1))
12290 && CONST_INT_P (shift_count)
12291 && HWI_COMPUTABLE_MODE_P (mode)
12292 && (UINTVAL (XEXP (shift_op, 1))
12293 == HOST_WIDE_INT_1U
12294 << INTVAL (shift_count))))
12295 {
12296 op0
12297 = gen_rtx_LSHIFTRT (mode, XEXP (shift_op, 0), shift_count);
12298 op0 = simplify_and_const_int (NULL_RTX, mode, op0, 1);
12299 code = (code == NE ? EQ : NE);
12300 continue;
12301 }
12302 }
12303 break;
12304
12305 case ASHIFT:
12306 /* If we have (compare (ashift FOO N) (const_int C)) and
12307 the high order N bits of FOO (N+1 if an inequality comparison)
12308 are known to be zero, we can do this by comparing FOO with C
12309 shifted right N bits so long as the low-order N bits of C are
12310 zero. */
12311 if (CONST_INT_P (XEXP (op0, 1))
12312 && INTVAL (XEXP (op0, 1)) >= 0
12313 && ((INTVAL (XEXP (op0, 1)) + ! equality_comparison_p)
12314 < HOST_BITS_PER_WIDE_INT)
12315 && (((unsigned HOST_WIDE_INT) const_op
12316 & ((HOST_WIDE_INT_1U << INTVAL (XEXP (op0, 1)))
12317 - 1)) == 0)
12318 && mode_width <= HOST_BITS_PER_WIDE_INT
12319 && (nonzero_bits (XEXP (op0, 0), mode)
12320 & ~(mask >> (INTVAL (XEXP (op0, 1))
12321 + ! equality_comparison_p))) == 0)
12322 {
12323 /* We must perform a logical shift, not an arithmetic one,
12324 as we want the top N bits of C to be zero. */
12325 unsigned HOST_WIDE_INT temp = const_op & GET_MODE_MASK (mode);
12326
12327 temp >>= INTVAL (XEXP (op0, 1));
12328 op1 = gen_int_mode (temp, mode);
12329 op0 = XEXP (op0, 0);
12330 continue;
12331 }
12332
12333 /* If we are doing a sign bit comparison, it means we are testing
12334 a particular bit. Convert it to the appropriate AND. */
12335 if (sign_bit_comparison_p && CONST_INT_P (XEXP (op0, 1))
12336 && mode_width <= HOST_BITS_PER_WIDE_INT)
12337 {
12338 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
12339 (HOST_WIDE_INT_1U
12340 << (mode_width - 1
12341 - INTVAL (XEXP (op0, 1)))));
12342 code = (code == LT ? NE : EQ);
12343 continue;
12344 }
12345
12346 /* If this an equality comparison with zero and we are shifting
12347 the low bit to the sign bit, we can convert this to an AND of the
12348 low-order bit. */
12349 if (const_op == 0 && equality_comparison_p
12350 && CONST_INT_P (XEXP (op0, 1))
12351 && UINTVAL (XEXP (op0, 1)) == mode_width - 1)
12352 {
12353 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0), 1);
12354 continue;
12355 }
12356 break;
12357
12358 case ASHIFTRT:
12359 /* If this is an equality comparison with zero, we can do this
12360 as a logical shift, which might be much simpler. */
12361 if (equality_comparison_p && const_op == 0
12362 && CONST_INT_P (XEXP (op0, 1)))
12363 {
12364 op0 = simplify_shift_const (NULL_RTX, LSHIFTRT, mode,
12365 XEXP (op0, 0),
12366 INTVAL (XEXP (op0, 1)));
12367 continue;
12368 }
12369
12370 /* If OP0 is a sign extension and CODE is not an unsigned comparison,
12371 do the comparison in a narrower mode. */
12372 if (! unsigned_comparison_p
12373 && CONST_INT_P (XEXP (op0, 1))
12374 && GET_CODE (XEXP (op0, 0)) == ASHIFT
12375 && XEXP (op0, 1) == XEXP (XEXP (op0, 0), 1)
12376 && (tmode = mode_for_size (mode_width - INTVAL (XEXP (op0, 1)),
12377 MODE_INT, 1)) != BLKmode
12378 && (((unsigned HOST_WIDE_INT) const_op
12379 + (GET_MODE_MASK (tmode) >> 1) + 1)
12380 <= GET_MODE_MASK (tmode)))
12381 {
12382 op0 = gen_lowpart (tmode, XEXP (XEXP (op0, 0), 0));
12383 continue;
12384 }
12385
12386 /* Likewise if OP0 is a PLUS of a sign extension with a
12387 constant, which is usually represented with the PLUS
12388 between the shifts. */
12389 if (! unsigned_comparison_p
12390 && CONST_INT_P (XEXP (op0, 1))
12391 && GET_CODE (XEXP (op0, 0)) == PLUS
12392 && CONST_INT_P (XEXP (XEXP (op0, 0), 1))
12393 && GET_CODE (XEXP (XEXP (op0, 0), 0)) == ASHIFT
12394 && XEXP (op0, 1) == XEXP (XEXP (XEXP (op0, 0), 0), 1)
12395 && (tmode = mode_for_size (mode_width - INTVAL (XEXP (op0, 1)),
12396 MODE_INT, 1)) != BLKmode
12397 && (((unsigned HOST_WIDE_INT) const_op
12398 + (GET_MODE_MASK (tmode) >> 1) + 1)
12399 <= GET_MODE_MASK (tmode)))
12400 {
12401 rtx inner = XEXP (XEXP (XEXP (op0, 0), 0), 0);
12402 rtx add_const = XEXP (XEXP (op0, 0), 1);
12403 rtx new_const = simplify_gen_binary (ASHIFTRT, GET_MODE (op0),
12404 add_const, XEXP (op0, 1));
12405
12406 op0 = simplify_gen_binary (PLUS, tmode,
12407 gen_lowpart (tmode, inner),
12408 new_const);
12409 continue;
12410 }
12411
12412 /* FALLTHROUGH */
12413 case LSHIFTRT:
12414 /* If we have (compare (xshiftrt FOO N) (const_int C)) and
12415 the low order N bits of FOO are known to be zero, we can do this
12416 by comparing FOO with C shifted left N bits so long as no
12417 overflow occurs. Even if the low order N bits of FOO aren't known
12418 to be zero, if the comparison is >= or < we can use the same
12419 optimization and for > or <= by setting all the low
12420 order N bits in the comparison constant. */
12421 if (CONST_INT_P (XEXP (op0, 1))
12422 && INTVAL (XEXP (op0, 1)) > 0
12423 && INTVAL (XEXP (op0, 1)) < HOST_BITS_PER_WIDE_INT
12424 && mode_width <= HOST_BITS_PER_WIDE_INT
12425 && (((unsigned HOST_WIDE_INT) const_op
12426 + (GET_CODE (op0) != LSHIFTRT
12427 ? ((GET_MODE_MASK (mode) >> INTVAL (XEXP (op0, 1)) >> 1)
12428 + 1)
12429 : 0))
12430 <= GET_MODE_MASK (mode) >> INTVAL (XEXP (op0, 1))))
12431 {
12432 unsigned HOST_WIDE_INT low_bits
12433 = (nonzero_bits (XEXP (op0, 0), mode)
12434 & ((HOST_WIDE_INT_1U
12435 << INTVAL (XEXP (op0, 1))) - 1));
12436 if (low_bits == 0 || !equality_comparison_p)
12437 {
12438 /* If the shift was logical, then we must make the condition
12439 unsigned. */
12440 if (GET_CODE (op0) == LSHIFTRT)
12441 code = unsigned_condition (code);
12442
12443 const_op <<= INTVAL (XEXP (op0, 1));
12444 if (low_bits != 0
12445 && (code == GT || code == GTU
12446 || code == LE || code == LEU))
12447 const_op
12448 |= ((HOST_WIDE_INT_1 << INTVAL (XEXP (op0, 1))) - 1);
12449 op1 = GEN_INT (const_op);
12450 op0 = XEXP (op0, 0);
12451 continue;
12452 }
12453 }
12454
12455 /* If we are using this shift to extract just the sign bit, we
12456 can replace this with an LT or GE comparison. */
12457 if (const_op == 0
12458 && (equality_comparison_p || sign_bit_comparison_p)
12459 && CONST_INT_P (XEXP (op0, 1))
12460 && UINTVAL (XEXP (op0, 1)) == mode_width - 1)
12461 {
12462 op0 = XEXP (op0, 0);
12463 code = (code == NE || code == GT ? LT : GE);
12464 continue;
12465 }
12466 break;
12467
12468 default:
12469 break;
12470 }
12471
12472 break;
12473 }
12474
12475 /* Now make any compound operations involved in this comparison. Then,
12476 check for an outmost SUBREG on OP0 that is not doing anything or is
12477 paradoxical. The latter transformation must only be performed when
12478 it is known that the "extra" bits will be the same in op0 and op1 or
12479 that they don't matter. There are three cases to consider:
12480
12481 1. SUBREG_REG (op0) is a register. In this case the bits are don't
12482 care bits and we can assume they have any convenient value. So
12483 making the transformation is safe.
12484
12485 2. SUBREG_REG (op0) is a memory and LOAD_EXTEND_OP is UNKNOWN.
12486 In this case the upper bits of op0 are undefined. We should not make
12487 the simplification in that case as we do not know the contents of
12488 those bits.
12489
12490 3. SUBREG_REG (op0) is a memory and LOAD_EXTEND_OP is not UNKNOWN.
12491 In that case we know those bits are zeros or ones. We must also be
12492 sure that they are the same as the upper bits of op1.
12493
12494 We can never remove a SUBREG for a non-equality comparison because
12495 the sign bit is in a different place in the underlying object. */
12496
12497 rtx_code op0_mco_code = SET;
12498 if (op1 == const0_rtx)
12499 op0_mco_code = code == NE || code == EQ ? EQ : COMPARE;
12500
12501 op0 = make_compound_operation (op0, op0_mco_code);
12502 op1 = make_compound_operation (op1, SET);
12503
12504 if (GET_CODE (op0) == SUBREG && subreg_lowpart_p (op0)
12505 && GET_MODE_CLASS (GET_MODE (op0)) == MODE_INT
12506 && GET_MODE_CLASS (GET_MODE (SUBREG_REG (op0))) == MODE_INT
12507 && (code == NE || code == EQ))
12508 {
12509 if (paradoxical_subreg_p (op0))
12510 {
12511 /* For paradoxical subregs, allow case 1 as above. Case 3 isn't
12512 implemented. */
12513 if (REG_P (SUBREG_REG (op0)))
12514 {
12515 op0 = SUBREG_REG (op0);
12516 op1 = gen_lowpart (GET_MODE (op0), op1);
12517 }
12518 }
12519 else if ((GET_MODE_PRECISION (GET_MODE (SUBREG_REG (op0)))
12520 <= HOST_BITS_PER_WIDE_INT)
12521 && (nonzero_bits (SUBREG_REG (op0),
12522 GET_MODE (SUBREG_REG (op0)))
12523 & ~GET_MODE_MASK (GET_MODE (op0))) == 0)
12524 {
12525 tem = gen_lowpart (GET_MODE (SUBREG_REG (op0)), op1);
12526
12527 if ((nonzero_bits (tem, GET_MODE (SUBREG_REG (op0)))
12528 & ~GET_MODE_MASK (GET_MODE (op0))) == 0)
12529 op0 = SUBREG_REG (op0), op1 = tem;
12530 }
12531 }
12532
12533 /* We now do the opposite procedure: Some machines don't have compare
12534 insns in all modes. If OP0's mode is an integer mode smaller than a
12535 word and we can't do a compare in that mode, see if there is a larger
12536 mode for which we can do the compare. There are a number of cases in
12537 which we can use the wider mode. */
12538
12539 mode = GET_MODE (op0);
12540 if (mode != VOIDmode && GET_MODE_CLASS (mode) == MODE_INT
12541 && GET_MODE_SIZE (mode) < UNITS_PER_WORD
12542 && ! have_insn_for (COMPARE, mode))
12543 for (tmode = GET_MODE_WIDER_MODE (mode);
12544 (tmode != VOIDmode && HWI_COMPUTABLE_MODE_P (tmode));
12545 tmode = GET_MODE_WIDER_MODE (tmode))
12546 if (have_insn_for (COMPARE, tmode))
12547 {
12548 int zero_extended;
12549
12550 /* If this is a test for negative, we can make an explicit
12551 test of the sign bit. Test this first so we can use
12552 a paradoxical subreg to extend OP0. */
12553
12554 if (op1 == const0_rtx && (code == LT || code == GE)
12555 && HWI_COMPUTABLE_MODE_P (mode))
12556 {
12557 unsigned HOST_WIDE_INT sign
12558 = HOST_WIDE_INT_1U << (GET_MODE_BITSIZE (mode) - 1);
12559 op0 = simplify_gen_binary (AND, tmode,
12560 gen_lowpart (tmode, op0),
12561 gen_int_mode (sign, tmode));
12562 code = (code == LT) ? NE : EQ;
12563 break;
12564 }
12565
12566 /* If the only nonzero bits in OP0 and OP1 are those in the
12567 narrower mode and this is an equality or unsigned comparison,
12568 we can use the wider mode. Similarly for sign-extended
12569 values, in which case it is true for all comparisons. */
12570 zero_extended = ((code == EQ || code == NE
12571 || code == GEU || code == GTU
12572 || code == LEU || code == LTU)
12573 && (nonzero_bits (op0, tmode)
12574 & ~GET_MODE_MASK (mode)) == 0
12575 && ((CONST_INT_P (op1)
12576 || (nonzero_bits (op1, tmode)
12577 & ~GET_MODE_MASK (mode)) == 0)));
12578
12579 if (zero_extended
12580 || ((num_sign_bit_copies (op0, tmode)
12581 > (unsigned int) (GET_MODE_PRECISION (tmode)
12582 - GET_MODE_PRECISION (mode)))
12583 && (num_sign_bit_copies (op1, tmode)
12584 > (unsigned int) (GET_MODE_PRECISION (tmode)
12585 - GET_MODE_PRECISION (mode)))))
12586 {
12587 /* If OP0 is an AND and we don't have an AND in MODE either,
12588 make a new AND in the proper mode. */
12589 if (GET_CODE (op0) == AND
12590 && !have_insn_for (AND, mode))
12591 op0 = simplify_gen_binary (AND, tmode,
12592 gen_lowpart (tmode,
12593 XEXP (op0, 0)),
12594 gen_lowpart (tmode,
12595 XEXP (op0, 1)));
12596 else
12597 {
12598 if (zero_extended)
12599 {
12600 op0 = simplify_gen_unary (ZERO_EXTEND, tmode, op0, mode);
12601 op1 = simplify_gen_unary (ZERO_EXTEND, tmode, op1, mode);
12602 }
12603 else
12604 {
12605 op0 = simplify_gen_unary (SIGN_EXTEND, tmode, op0, mode);
12606 op1 = simplify_gen_unary (SIGN_EXTEND, tmode, op1, mode);
12607 }
12608 break;
12609 }
12610 }
12611 }
12612
12613 /* We may have changed the comparison operands. Re-canonicalize. */
12614 if (swap_commutative_operands_p (op0, op1))
12615 {
12616 std::swap (op0, op1);
12617 code = swap_condition (code);
12618 }
12619
12620 /* If this machine only supports a subset of valid comparisons, see if we
12621 can convert an unsupported one into a supported one. */
12622 target_canonicalize_comparison (&code, &op0, &op1, 0);
12623
12624 *pop0 = op0;
12625 *pop1 = op1;
12626
12627 return code;
12628 }
12629 \f
12630 /* Utility function for record_value_for_reg. Count number of
12631 rtxs in X. */
12632 static int
12633 count_rtxs (rtx x)
12634 {
12635 enum rtx_code code = GET_CODE (x);
12636 const char *fmt;
12637 int i, j, ret = 1;
12638
12639 if (GET_RTX_CLASS (code) == RTX_BIN_ARITH
12640 || GET_RTX_CLASS (code) == RTX_COMM_ARITH)
12641 {
12642 rtx x0 = XEXP (x, 0);
12643 rtx x1 = XEXP (x, 1);
12644
12645 if (x0 == x1)
12646 return 1 + 2 * count_rtxs (x0);
12647
12648 if ((GET_RTX_CLASS (GET_CODE (x1)) == RTX_BIN_ARITH
12649 || GET_RTX_CLASS (GET_CODE (x1)) == RTX_COMM_ARITH)
12650 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
12651 return 2 + 2 * count_rtxs (x0)
12652 + count_rtxs (x == XEXP (x1, 0)
12653 ? XEXP (x1, 1) : XEXP (x1, 0));
12654
12655 if ((GET_RTX_CLASS (GET_CODE (x0)) == RTX_BIN_ARITH
12656 || GET_RTX_CLASS (GET_CODE (x0)) == RTX_COMM_ARITH)
12657 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
12658 return 2 + 2 * count_rtxs (x1)
12659 + count_rtxs (x == XEXP (x0, 0)
12660 ? XEXP (x0, 1) : XEXP (x0, 0));
12661 }
12662
12663 fmt = GET_RTX_FORMAT (code);
12664 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
12665 if (fmt[i] == 'e')
12666 ret += count_rtxs (XEXP (x, i));
12667 else if (fmt[i] == 'E')
12668 for (j = 0; j < XVECLEN (x, i); j++)
12669 ret += count_rtxs (XVECEXP (x, i, j));
12670
12671 return ret;
12672 }
12673 \f
12674 /* Utility function for following routine. Called when X is part of a value
12675 being stored into last_set_value. Sets last_set_table_tick
12676 for each register mentioned. Similar to mention_regs in cse.c */
12677
12678 static void
12679 update_table_tick (rtx x)
12680 {
12681 enum rtx_code code = GET_CODE (x);
12682 const char *fmt = GET_RTX_FORMAT (code);
12683 int i, j;
12684
12685 if (code == REG)
12686 {
12687 unsigned int regno = REGNO (x);
12688 unsigned int endregno = END_REGNO (x);
12689 unsigned int r;
12690
12691 for (r = regno; r < endregno; r++)
12692 {
12693 reg_stat_type *rsp = &reg_stat[r];
12694 rsp->last_set_table_tick = label_tick;
12695 }
12696
12697 return;
12698 }
12699
12700 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
12701 if (fmt[i] == 'e')
12702 {
12703 /* Check for identical subexpressions. If x contains
12704 identical subexpression we only have to traverse one of
12705 them. */
12706 if (i == 0 && ARITHMETIC_P (x))
12707 {
12708 /* Note that at this point x1 has already been
12709 processed. */
12710 rtx x0 = XEXP (x, 0);
12711 rtx x1 = XEXP (x, 1);
12712
12713 /* If x0 and x1 are identical then there is no need to
12714 process x0. */
12715 if (x0 == x1)
12716 break;
12717
12718 /* If x0 is identical to a subexpression of x1 then while
12719 processing x1, x0 has already been processed. Thus we
12720 are done with x. */
12721 if (ARITHMETIC_P (x1)
12722 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
12723 break;
12724
12725 /* If x1 is identical to a subexpression of x0 then we
12726 still have to process the rest of x0. */
12727 if (ARITHMETIC_P (x0)
12728 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
12729 {
12730 update_table_tick (XEXP (x0, x1 == XEXP (x0, 0) ? 1 : 0));
12731 break;
12732 }
12733 }
12734
12735 update_table_tick (XEXP (x, i));
12736 }
12737 else if (fmt[i] == 'E')
12738 for (j = 0; j < XVECLEN (x, i); j++)
12739 update_table_tick (XVECEXP (x, i, j));
12740 }
12741
12742 /* Record that REG is set to VALUE in insn INSN. If VALUE is zero, we
12743 are saying that the register is clobbered and we no longer know its
12744 value. If INSN is zero, don't update reg_stat[].last_set; this is
12745 only permitted with VALUE also zero and is used to invalidate the
12746 register. */
12747
12748 static void
12749 record_value_for_reg (rtx reg, rtx_insn *insn, rtx value)
12750 {
12751 unsigned int regno = REGNO (reg);
12752 unsigned int endregno = END_REGNO (reg);
12753 unsigned int i;
12754 reg_stat_type *rsp;
12755
12756 /* If VALUE contains REG and we have a previous value for REG, substitute
12757 the previous value. */
12758 if (value && insn && reg_overlap_mentioned_p (reg, value))
12759 {
12760 rtx tem;
12761
12762 /* Set things up so get_last_value is allowed to see anything set up to
12763 our insn. */
12764 subst_low_luid = DF_INSN_LUID (insn);
12765 tem = get_last_value (reg);
12766
12767 /* If TEM is simply a binary operation with two CLOBBERs as operands,
12768 it isn't going to be useful and will take a lot of time to process,
12769 so just use the CLOBBER. */
12770
12771 if (tem)
12772 {
12773 if (ARITHMETIC_P (tem)
12774 && GET_CODE (XEXP (tem, 0)) == CLOBBER
12775 && GET_CODE (XEXP (tem, 1)) == CLOBBER)
12776 tem = XEXP (tem, 0);
12777 else if (count_occurrences (value, reg, 1) >= 2)
12778 {
12779 /* If there are two or more occurrences of REG in VALUE,
12780 prevent the value from growing too much. */
12781 if (count_rtxs (tem) > MAX_LAST_VALUE_RTL)
12782 tem = gen_rtx_CLOBBER (GET_MODE (tem), const0_rtx);
12783 }
12784
12785 value = replace_rtx (copy_rtx (value), reg, tem);
12786 }
12787 }
12788
12789 /* For each register modified, show we don't know its value, that
12790 we don't know about its bitwise content, that its value has been
12791 updated, and that we don't know the location of the death of the
12792 register. */
12793 for (i = regno; i < endregno; i++)
12794 {
12795 rsp = &reg_stat[i];
12796
12797 if (insn)
12798 rsp->last_set = insn;
12799
12800 rsp->last_set_value = 0;
12801 rsp->last_set_mode = VOIDmode;
12802 rsp->last_set_nonzero_bits = 0;
12803 rsp->last_set_sign_bit_copies = 0;
12804 rsp->last_death = 0;
12805 rsp->truncated_to_mode = VOIDmode;
12806 }
12807
12808 /* Mark registers that are being referenced in this value. */
12809 if (value)
12810 update_table_tick (value);
12811
12812 /* Now update the status of each register being set.
12813 If someone is using this register in this block, set this register
12814 to invalid since we will get confused between the two lives in this
12815 basic block. This makes using this register always invalid. In cse, we
12816 scan the table to invalidate all entries using this register, but this
12817 is too much work for us. */
12818
12819 for (i = regno; i < endregno; i++)
12820 {
12821 rsp = &reg_stat[i];
12822 rsp->last_set_label = label_tick;
12823 if (!insn
12824 || (value && rsp->last_set_table_tick >= label_tick_ebb_start))
12825 rsp->last_set_invalid = 1;
12826 else
12827 rsp->last_set_invalid = 0;
12828 }
12829
12830 /* The value being assigned might refer to X (like in "x++;"). In that
12831 case, we must replace it with (clobber (const_int 0)) to prevent
12832 infinite loops. */
12833 rsp = &reg_stat[regno];
12834 if (value && !get_last_value_validate (&value, insn, label_tick, 0))
12835 {
12836 value = copy_rtx (value);
12837 if (!get_last_value_validate (&value, insn, label_tick, 1))
12838 value = 0;
12839 }
12840
12841 /* For the main register being modified, update the value, the mode, the
12842 nonzero bits, and the number of sign bit copies. */
12843
12844 rsp->last_set_value = value;
12845
12846 if (value)
12847 {
12848 machine_mode mode = GET_MODE (reg);
12849 subst_low_luid = DF_INSN_LUID (insn);
12850 rsp->last_set_mode = mode;
12851 if (GET_MODE_CLASS (mode) == MODE_INT
12852 && HWI_COMPUTABLE_MODE_P (mode))
12853 mode = nonzero_bits_mode;
12854 rsp->last_set_nonzero_bits = nonzero_bits (value, mode);
12855 rsp->last_set_sign_bit_copies
12856 = num_sign_bit_copies (value, GET_MODE (reg));
12857 }
12858 }
12859
12860 /* Called via note_stores from record_dead_and_set_regs to handle one
12861 SET or CLOBBER in an insn. DATA is the instruction in which the
12862 set is occurring. */
12863
12864 static void
12865 record_dead_and_set_regs_1 (rtx dest, const_rtx setter, void *data)
12866 {
12867 rtx_insn *record_dead_insn = (rtx_insn *) data;
12868
12869 if (GET_CODE (dest) == SUBREG)
12870 dest = SUBREG_REG (dest);
12871
12872 if (!record_dead_insn)
12873 {
12874 if (REG_P (dest))
12875 record_value_for_reg (dest, NULL, NULL_RTX);
12876 return;
12877 }
12878
12879 if (REG_P (dest))
12880 {
12881 /* If we are setting the whole register, we know its value. Otherwise
12882 show that we don't know the value. We can handle SUBREG in
12883 some cases. */
12884 if (GET_CODE (setter) == SET && dest == SET_DEST (setter))
12885 record_value_for_reg (dest, record_dead_insn, SET_SRC (setter));
12886 else if (GET_CODE (setter) == SET
12887 && GET_CODE (SET_DEST (setter)) == SUBREG
12888 && SUBREG_REG (SET_DEST (setter)) == dest
12889 && GET_MODE_PRECISION (GET_MODE (dest)) <= BITS_PER_WORD
12890 && subreg_lowpart_p (SET_DEST (setter)))
12891 record_value_for_reg (dest, record_dead_insn,
12892 gen_lowpart (GET_MODE (dest),
12893 SET_SRC (setter)));
12894 else
12895 record_value_for_reg (dest, record_dead_insn, NULL_RTX);
12896 }
12897 else if (MEM_P (dest)
12898 /* Ignore pushes, they clobber nothing. */
12899 && ! push_operand (dest, GET_MODE (dest)))
12900 mem_last_set = DF_INSN_LUID (record_dead_insn);
12901 }
12902
12903 /* Update the records of when each REG was most recently set or killed
12904 for the things done by INSN. This is the last thing done in processing
12905 INSN in the combiner loop.
12906
12907 We update reg_stat[], in particular fields last_set, last_set_value,
12908 last_set_mode, last_set_nonzero_bits, last_set_sign_bit_copies,
12909 last_death, and also the similar information mem_last_set (which insn
12910 most recently modified memory) and last_call_luid (which insn was the
12911 most recent subroutine call). */
12912
12913 static void
12914 record_dead_and_set_regs (rtx_insn *insn)
12915 {
12916 rtx link;
12917 unsigned int i;
12918
12919 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
12920 {
12921 if (REG_NOTE_KIND (link) == REG_DEAD
12922 && REG_P (XEXP (link, 0)))
12923 {
12924 unsigned int regno = REGNO (XEXP (link, 0));
12925 unsigned int endregno = END_REGNO (XEXP (link, 0));
12926
12927 for (i = regno; i < endregno; i++)
12928 {
12929 reg_stat_type *rsp;
12930
12931 rsp = &reg_stat[i];
12932 rsp->last_death = insn;
12933 }
12934 }
12935 else if (REG_NOTE_KIND (link) == REG_INC)
12936 record_value_for_reg (XEXP (link, 0), insn, NULL_RTX);
12937 }
12938
12939 if (CALL_P (insn))
12940 {
12941 hard_reg_set_iterator hrsi;
12942 EXECUTE_IF_SET_IN_HARD_REG_SET (regs_invalidated_by_call, 0, i, hrsi)
12943 {
12944 reg_stat_type *rsp;
12945
12946 rsp = &reg_stat[i];
12947 rsp->last_set_invalid = 1;
12948 rsp->last_set = insn;
12949 rsp->last_set_value = 0;
12950 rsp->last_set_mode = VOIDmode;
12951 rsp->last_set_nonzero_bits = 0;
12952 rsp->last_set_sign_bit_copies = 0;
12953 rsp->last_death = 0;
12954 rsp->truncated_to_mode = VOIDmode;
12955 }
12956
12957 last_call_luid = mem_last_set = DF_INSN_LUID (insn);
12958
12959 /* We can't combine into a call pattern. Remember, though, that
12960 the return value register is set at this LUID. We could
12961 still replace a register with the return value from the
12962 wrong subroutine call! */
12963 note_stores (PATTERN (insn), record_dead_and_set_regs_1, NULL_RTX);
12964 }
12965 else
12966 note_stores (PATTERN (insn), record_dead_and_set_regs_1, insn);
12967 }
12968
12969 /* If a SUBREG has the promoted bit set, it is in fact a property of the
12970 register present in the SUBREG, so for each such SUBREG go back and
12971 adjust nonzero and sign bit information of the registers that are
12972 known to have some zero/sign bits set.
12973
12974 This is needed because when combine blows the SUBREGs away, the
12975 information on zero/sign bits is lost and further combines can be
12976 missed because of that. */
12977
12978 static void
12979 record_promoted_value (rtx_insn *insn, rtx subreg)
12980 {
12981 struct insn_link *links;
12982 rtx set;
12983 unsigned int regno = REGNO (SUBREG_REG (subreg));
12984 machine_mode mode = GET_MODE (subreg);
12985
12986 if (GET_MODE_PRECISION (mode) > HOST_BITS_PER_WIDE_INT)
12987 return;
12988
12989 for (links = LOG_LINKS (insn); links;)
12990 {
12991 reg_stat_type *rsp;
12992
12993 insn = links->insn;
12994 set = single_set (insn);
12995
12996 if (! set || !REG_P (SET_DEST (set))
12997 || REGNO (SET_DEST (set)) != regno
12998 || GET_MODE (SET_DEST (set)) != GET_MODE (SUBREG_REG (subreg)))
12999 {
13000 links = links->next;
13001 continue;
13002 }
13003
13004 rsp = &reg_stat[regno];
13005 if (rsp->last_set == insn)
13006 {
13007 if (SUBREG_PROMOTED_UNSIGNED_P (subreg))
13008 rsp->last_set_nonzero_bits &= GET_MODE_MASK (mode);
13009 }
13010
13011 if (REG_P (SET_SRC (set)))
13012 {
13013 regno = REGNO (SET_SRC (set));
13014 links = LOG_LINKS (insn);
13015 }
13016 else
13017 break;
13018 }
13019 }
13020
13021 /* Check if X, a register, is known to contain a value already
13022 truncated to MODE. In this case we can use a subreg to refer to
13023 the truncated value even though in the generic case we would need
13024 an explicit truncation. */
13025
13026 static bool
13027 reg_truncated_to_mode (machine_mode mode, const_rtx x)
13028 {
13029 reg_stat_type *rsp = &reg_stat[REGNO (x)];
13030 machine_mode truncated = rsp->truncated_to_mode;
13031
13032 if (truncated == 0
13033 || rsp->truncation_label < label_tick_ebb_start)
13034 return false;
13035 if (GET_MODE_SIZE (truncated) <= GET_MODE_SIZE (mode))
13036 return true;
13037 if (TRULY_NOOP_TRUNCATION_MODES_P (mode, truncated))
13038 return true;
13039 return false;
13040 }
13041
13042 /* If X is a hard reg or a subreg record the mode that the register is
13043 accessed in. For non-TRULY_NOOP_TRUNCATION targets we might be able
13044 to turn a truncate into a subreg using this information. Return true
13045 if traversing X is complete. */
13046
13047 static bool
13048 record_truncated_value (rtx x)
13049 {
13050 machine_mode truncated_mode;
13051 reg_stat_type *rsp;
13052
13053 if (GET_CODE (x) == SUBREG && REG_P (SUBREG_REG (x)))
13054 {
13055 machine_mode original_mode = GET_MODE (SUBREG_REG (x));
13056 truncated_mode = GET_MODE (x);
13057
13058 if (GET_MODE_SIZE (original_mode) <= GET_MODE_SIZE (truncated_mode))
13059 return true;
13060
13061 if (TRULY_NOOP_TRUNCATION_MODES_P (truncated_mode, original_mode))
13062 return true;
13063
13064 x = SUBREG_REG (x);
13065 }
13066 /* ??? For hard-regs we now record everything. We might be able to
13067 optimize this using last_set_mode. */
13068 else if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
13069 truncated_mode = GET_MODE (x);
13070 else
13071 return false;
13072
13073 rsp = &reg_stat[REGNO (x)];
13074 if (rsp->truncated_to_mode == 0
13075 || rsp->truncation_label < label_tick_ebb_start
13076 || (GET_MODE_SIZE (truncated_mode)
13077 < GET_MODE_SIZE (rsp->truncated_to_mode)))
13078 {
13079 rsp->truncated_to_mode = truncated_mode;
13080 rsp->truncation_label = label_tick;
13081 }
13082
13083 return true;
13084 }
13085
13086 /* Callback for note_uses. Find hardregs and subregs of pseudos and
13087 the modes they are used in. This can help truning TRUNCATEs into
13088 SUBREGs. */
13089
13090 static void
13091 record_truncated_values (rtx *loc, void *data ATTRIBUTE_UNUSED)
13092 {
13093 subrtx_var_iterator::array_type array;
13094 FOR_EACH_SUBRTX_VAR (iter, array, *loc, NONCONST)
13095 if (record_truncated_value (*iter))
13096 iter.skip_subrtxes ();
13097 }
13098
13099 /* Scan X for promoted SUBREGs. For each one found,
13100 note what it implies to the registers used in it. */
13101
13102 static void
13103 check_promoted_subreg (rtx_insn *insn, rtx x)
13104 {
13105 if (GET_CODE (x) == SUBREG
13106 && SUBREG_PROMOTED_VAR_P (x)
13107 && REG_P (SUBREG_REG (x)))
13108 record_promoted_value (insn, x);
13109 else
13110 {
13111 const char *format = GET_RTX_FORMAT (GET_CODE (x));
13112 int i, j;
13113
13114 for (i = 0; i < GET_RTX_LENGTH (GET_CODE (x)); i++)
13115 switch (format[i])
13116 {
13117 case 'e':
13118 check_promoted_subreg (insn, XEXP (x, i));
13119 break;
13120 case 'V':
13121 case 'E':
13122 if (XVEC (x, i) != 0)
13123 for (j = 0; j < XVECLEN (x, i); j++)
13124 check_promoted_subreg (insn, XVECEXP (x, i, j));
13125 break;
13126 }
13127 }
13128 }
13129 \f
13130 /* Verify that all the registers and memory references mentioned in *LOC are
13131 still valid. *LOC was part of a value set in INSN when label_tick was
13132 equal to TICK. Return 0 if some are not. If REPLACE is nonzero, replace
13133 the invalid references with (clobber (const_int 0)) and return 1. This
13134 replacement is useful because we often can get useful information about
13135 the form of a value (e.g., if it was produced by a shift that always
13136 produces -1 or 0) even though we don't know exactly what registers it
13137 was produced from. */
13138
13139 static int
13140 get_last_value_validate (rtx *loc, rtx_insn *insn, int tick, int replace)
13141 {
13142 rtx x = *loc;
13143 const char *fmt = GET_RTX_FORMAT (GET_CODE (x));
13144 int len = GET_RTX_LENGTH (GET_CODE (x));
13145 int i, j;
13146
13147 if (REG_P (x))
13148 {
13149 unsigned int regno = REGNO (x);
13150 unsigned int endregno = END_REGNO (x);
13151 unsigned int j;
13152
13153 for (j = regno; j < endregno; j++)
13154 {
13155 reg_stat_type *rsp = &reg_stat[j];
13156 if (rsp->last_set_invalid
13157 /* If this is a pseudo-register that was only set once and not
13158 live at the beginning of the function, it is always valid. */
13159 || (! (regno >= FIRST_PSEUDO_REGISTER
13160 && regno < reg_n_sets_max
13161 && REG_N_SETS (regno) == 1
13162 && (!REGNO_REG_SET_P
13163 (DF_LR_IN (ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb),
13164 regno)))
13165 && rsp->last_set_label > tick))
13166 {
13167 if (replace)
13168 *loc = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
13169 return replace;
13170 }
13171 }
13172
13173 return 1;
13174 }
13175 /* If this is a memory reference, make sure that there were no stores after
13176 it that might have clobbered the value. We don't have alias info, so we
13177 assume any store invalidates it. Moreover, we only have local UIDs, so
13178 we also assume that there were stores in the intervening basic blocks. */
13179 else if (MEM_P (x) && !MEM_READONLY_P (x)
13180 && (tick != label_tick || DF_INSN_LUID (insn) <= mem_last_set))
13181 {
13182 if (replace)
13183 *loc = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
13184 return replace;
13185 }
13186
13187 for (i = 0; i < len; i++)
13188 {
13189 if (fmt[i] == 'e')
13190 {
13191 /* Check for identical subexpressions. If x contains
13192 identical subexpression we only have to traverse one of
13193 them. */
13194 if (i == 1 && ARITHMETIC_P (x))
13195 {
13196 /* Note that at this point x0 has already been checked
13197 and found valid. */
13198 rtx x0 = XEXP (x, 0);
13199 rtx x1 = XEXP (x, 1);
13200
13201 /* If x0 and x1 are identical then x is also valid. */
13202 if (x0 == x1)
13203 return 1;
13204
13205 /* If x1 is identical to a subexpression of x0 then
13206 while checking x0, x1 has already been checked. Thus
13207 it is valid and so as x. */
13208 if (ARITHMETIC_P (x0)
13209 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
13210 return 1;
13211
13212 /* If x0 is identical to a subexpression of x1 then x is
13213 valid iff the rest of x1 is valid. */
13214 if (ARITHMETIC_P (x1)
13215 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
13216 return
13217 get_last_value_validate (&XEXP (x1,
13218 x0 == XEXP (x1, 0) ? 1 : 0),
13219 insn, tick, replace);
13220 }
13221
13222 if (get_last_value_validate (&XEXP (x, i), insn, tick,
13223 replace) == 0)
13224 return 0;
13225 }
13226 else if (fmt[i] == 'E')
13227 for (j = 0; j < XVECLEN (x, i); j++)
13228 if (get_last_value_validate (&XVECEXP (x, i, j),
13229 insn, tick, replace) == 0)
13230 return 0;
13231 }
13232
13233 /* If we haven't found a reason for it to be invalid, it is valid. */
13234 return 1;
13235 }
13236
13237 /* Get the last value assigned to X, if known. Some registers
13238 in the value may be replaced with (clobber (const_int 0)) if their value
13239 is known longer known reliably. */
13240
13241 static rtx
13242 get_last_value (const_rtx x)
13243 {
13244 unsigned int regno;
13245 rtx value;
13246 reg_stat_type *rsp;
13247
13248 /* If this is a non-paradoxical SUBREG, get the value of its operand and
13249 then convert it to the desired mode. If this is a paradoxical SUBREG,
13250 we cannot predict what values the "extra" bits might have. */
13251 if (GET_CODE (x) == SUBREG
13252 && subreg_lowpart_p (x)
13253 && !paradoxical_subreg_p (x)
13254 && (value = get_last_value (SUBREG_REG (x))) != 0)
13255 return gen_lowpart (GET_MODE (x), value);
13256
13257 if (!REG_P (x))
13258 return 0;
13259
13260 regno = REGNO (x);
13261 rsp = &reg_stat[regno];
13262 value = rsp->last_set_value;
13263
13264 /* If we don't have a value, or if it isn't for this basic block and
13265 it's either a hard register, set more than once, or it's a live
13266 at the beginning of the function, return 0.
13267
13268 Because if it's not live at the beginning of the function then the reg
13269 is always set before being used (is never used without being set).
13270 And, if it's set only once, and it's always set before use, then all
13271 uses must have the same last value, even if it's not from this basic
13272 block. */
13273
13274 if (value == 0
13275 || (rsp->last_set_label < label_tick_ebb_start
13276 && (regno < FIRST_PSEUDO_REGISTER
13277 || regno >= reg_n_sets_max
13278 || REG_N_SETS (regno) != 1
13279 || REGNO_REG_SET_P
13280 (DF_LR_IN (ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb), regno))))
13281 return 0;
13282
13283 /* If the value was set in a later insn than the ones we are processing,
13284 we can't use it even if the register was only set once. */
13285 if (rsp->last_set_label == label_tick
13286 && DF_INSN_LUID (rsp->last_set) >= subst_low_luid)
13287 return 0;
13288
13289 /* If fewer bits were set than what we are asked for now, we cannot use
13290 the value. */
13291 if (GET_MODE_PRECISION (rsp->last_set_mode)
13292 < GET_MODE_PRECISION (GET_MODE (x)))
13293 return 0;
13294
13295 /* If the value has all its registers valid, return it. */
13296 if (get_last_value_validate (&value, rsp->last_set, rsp->last_set_label, 0))
13297 return value;
13298
13299 /* Otherwise, make a copy and replace any invalid register with
13300 (clobber (const_int 0)). If that fails for some reason, return 0. */
13301
13302 value = copy_rtx (value);
13303 if (get_last_value_validate (&value, rsp->last_set, rsp->last_set_label, 1))
13304 return value;
13305
13306 return 0;
13307 }
13308 \f
13309 /* Return nonzero if expression X refers to a REG or to memory
13310 that is set in an instruction more recent than FROM_LUID. */
13311
13312 static int
13313 use_crosses_set_p (const_rtx x, int from_luid)
13314 {
13315 const char *fmt;
13316 int i;
13317 enum rtx_code code = GET_CODE (x);
13318
13319 if (code == REG)
13320 {
13321 unsigned int regno = REGNO (x);
13322 unsigned endreg = END_REGNO (x);
13323
13324 #ifdef PUSH_ROUNDING
13325 /* Don't allow uses of the stack pointer to be moved,
13326 because we don't know whether the move crosses a push insn. */
13327 if (regno == STACK_POINTER_REGNUM && PUSH_ARGS)
13328 return 1;
13329 #endif
13330 for (; regno < endreg; regno++)
13331 {
13332 reg_stat_type *rsp = &reg_stat[regno];
13333 if (rsp->last_set
13334 && rsp->last_set_label == label_tick
13335 && DF_INSN_LUID (rsp->last_set) > from_luid)
13336 return 1;
13337 }
13338 return 0;
13339 }
13340
13341 if (code == MEM && mem_last_set > from_luid)
13342 return 1;
13343
13344 fmt = GET_RTX_FORMAT (code);
13345
13346 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
13347 {
13348 if (fmt[i] == 'E')
13349 {
13350 int j;
13351 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
13352 if (use_crosses_set_p (XVECEXP (x, i, j), from_luid))
13353 return 1;
13354 }
13355 else if (fmt[i] == 'e'
13356 && use_crosses_set_p (XEXP (x, i), from_luid))
13357 return 1;
13358 }
13359 return 0;
13360 }
13361 \f
13362 /* Define three variables used for communication between the following
13363 routines. */
13364
13365 static unsigned int reg_dead_regno, reg_dead_endregno;
13366 static int reg_dead_flag;
13367
13368 /* Function called via note_stores from reg_dead_at_p.
13369
13370 If DEST is within [reg_dead_regno, reg_dead_endregno), set
13371 reg_dead_flag to 1 if X is a CLOBBER and to -1 it is a SET. */
13372
13373 static void
13374 reg_dead_at_p_1 (rtx dest, const_rtx x, void *data ATTRIBUTE_UNUSED)
13375 {
13376 unsigned int regno, endregno;
13377
13378 if (!REG_P (dest))
13379 return;
13380
13381 regno = REGNO (dest);
13382 endregno = END_REGNO (dest);
13383 if (reg_dead_endregno > regno && reg_dead_regno < endregno)
13384 reg_dead_flag = (GET_CODE (x) == CLOBBER) ? 1 : -1;
13385 }
13386
13387 /* Return nonzero if REG is known to be dead at INSN.
13388
13389 We scan backwards from INSN. If we hit a REG_DEAD note or a CLOBBER
13390 referencing REG, it is dead. If we hit a SET referencing REG, it is
13391 live. Otherwise, see if it is live or dead at the start of the basic
13392 block we are in. Hard regs marked as being live in NEWPAT_USED_REGS
13393 must be assumed to be always live. */
13394
13395 static int
13396 reg_dead_at_p (rtx reg, rtx_insn *insn)
13397 {
13398 basic_block block;
13399 unsigned int i;
13400
13401 /* Set variables for reg_dead_at_p_1. */
13402 reg_dead_regno = REGNO (reg);
13403 reg_dead_endregno = END_REGNO (reg);
13404
13405 reg_dead_flag = 0;
13406
13407 /* Check that reg isn't mentioned in NEWPAT_USED_REGS. For fixed registers
13408 we allow the machine description to decide whether use-and-clobber
13409 patterns are OK. */
13410 if (reg_dead_regno < FIRST_PSEUDO_REGISTER)
13411 {
13412 for (i = reg_dead_regno; i < reg_dead_endregno; i++)
13413 if (!fixed_regs[i] && TEST_HARD_REG_BIT (newpat_used_regs, i))
13414 return 0;
13415 }
13416
13417 /* Scan backwards until we find a REG_DEAD note, SET, CLOBBER, or
13418 beginning of basic block. */
13419 block = BLOCK_FOR_INSN (insn);
13420 for (;;)
13421 {
13422 if (INSN_P (insn))
13423 {
13424 if (find_regno_note (insn, REG_UNUSED, reg_dead_regno))
13425 return 1;
13426
13427 note_stores (PATTERN (insn), reg_dead_at_p_1, NULL);
13428 if (reg_dead_flag)
13429 return reg_dead_flag == 1 ? 1 : 0;
13430
13431 if (find_regno_note (insn, REG_DEAD, reg_dead_regno))
13432 return 1;
13433 }
13434
13435 if (insn == BB_HEAD (block))
13436 break;
13437
13438 insn = PREV_INSN (insn);
13439 }
13440
13441 /* Look at live-in sets for the basic block that we were in. */
13442 for (i = reg_dead_regno; i < reg_dead_endregno; i++)
13443 if (REGNO_REG_SET_P (df_get_live_in (block), i))
13444 return 0;
13445
13446 return 1;
13447 }
13448 \f
13449 /* Note hard registers in X that are used. */
13450
13451 static void
13452 mark_used_regs_combine (rtx x)
13453 {
13454 RTX_CODE code = GET_CODE (x);
13455 unsigned int regno;
13456 int i;
13457
13458 switch (code)
13459 {
13460 case LABEL_REF:
13461 case SYMBOL_REF:
13462 case CONST:
13463 CASE_CONST_ANY:
13464 case PC:
13465 case ADDR_VEC:
13466 case ADDR_DIFF_VEC:
13467 case ASM_INPUT:
13468 /* CC0 must die in the insn after it is set, so we don't need to take
13469 special note of it here. */
13470 case CC0:
13471 return;
13472
13473 case CLOBBER:
13474 /* If we are clobbering a MEM, mark any hard registers inside the
13475 address as used. */
13476 if (MEM_P (XEXP (x, 0)))
13477 mark_used_regs_combine (XEXP (XEXP (x, 0), 0));
13478 return;
13479
13480 case REG:
13481 regno = REGNO (x);
13482 /* A hard reg in a wide mode may really be multiple registers.
13483 If so, mark all of them just like the first. */
13484 if (regno < FIRST_PSEUDO_REGISTER)
13485 {
13486 /* None of this applies to the stack, frame or arg pointers. */
13487 if (regno == STACK_POINTER_REGNUM
13488 || (!HARD_FRAME_POINTER_IS_FRAME_POINTER
13489 && regno == HARD_FRAME_POINTER_REGNUM)
13490 || (FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
13491 && regno == ARG_POINTER_REGNUM && fixed_regs[regno])
13492 || regno == FRAME_POINTER_REGNUM)
13493 return;
13494
13495 add_to_hard_reg_set (&newpat_used_regs, GET_MODE (x), regno);
13496 }
13497 return;
13498
13499 case SET:
13500 {
13501 /* If setting a MEM, or a SUBREG of a MEM, then note any hard regs in
13502 the address. */
13503 rtx testreg = SET_DEST (x);
13504
13505 while (GET_CODE (testreg) == SUBREG
13506 || GET_CODE (testreg) == ZERO_EXTRACT
13507 || GET_CODE (testreg) == STRICT_LOW_PART)
13508 testreg = XEXP (testreg, 0);
13509
13510 if (MEM_P (testreg))
13511 mark_used_regs_combine (XEXP (testreg, 0));
13512
13513 mark_used_regs_combine (SET_SRC (x));
13514 }
13515 return;
13516
13517 default:
13518 break;
13519 }
13520
13521 /* Recursively scan the operands of this expression. */
13522
13523 {
13524 const char *fmt = GET_RTX_FORMAT (code);
13525
13526 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
13527 {
13528 if (fmt[i] == 'e')
13529 mark_used_regs_combine (XEXP (x, i));
13530 else if (fmt[i] == 'E')
13531 {
13532 int j;
13533
13534 for (j = 0; j < XVECLEN (x, i); j++)
13535 mark_used_regs_combine (XVECEXP (x, i, j));
13536 }
13537 }
13538 }
13539 }
13540 \f
13541 /* Remove register number REGNO from the dead registers list of INSN.
13542
13543 Return the note used to record the death, if there was one. */
13544
13545 rtx
13546 remove_death (unsigned int regno, rtx_insn *insn)
13547 {
13548 rtx note = find_regno_note (insn, REG_DEAD, regno);
13549
13550 if (note)
13551 remove_note (insn, note);
13552
13553 return note;
13554 }
13555
13556 /* For each register (hardware or pseudo) used within expression X, if its
13557 death is in an instruction with luid between FROM_LUID (inclusive) and
13558 TO_INSN (exclusive), put a REG_DEAD note for that register in the
13559 list headed by PNOTES.
13560
13561 That said, don't move registers killed by maybe_kill_insn.
13562
13563 This is done when X is being merged by combination into TO_INSN. These
13564 notes will then be distributed as needed. */
13565
13566 static void
13567 move_deaths (rtx x, rtx maybe_kill_insn, int from_luid, rtx_insn *to_insn,
13568 rtx *pnotes)
13569 {
13570 const char *fmt;
13571 int len, i;
13572 enum rtx_code code = GET_CODE (x);
13573
13574 if (code == REG)
13575 {
13576 unsigned int regno = REGNO (x);
13577 rtx_insn *where_dead = reg_stat[regno].last_death;
13578
13579 /* Don't move the register if it gets killed in between from and to. */
13580 if (maybe_kill_insn && reg_set_p (x, maybe_kill_insn)
13581 && ! reg_referenced_p (x, maybe_kill_insn))
13582 return;
13583
13584 if (where_dead
13585 && BLOCK_FOR_INSN (where_dead) == BLOCK_FOR_INSN (to_insn)
13586 && DF_INSN_LUID (where_dead) >= from_luid
13587 && DF_INSN_LUID (where_dead) < DF_INSN_LUID (to_insn))
13588 {
13589 rtx note = remove_death (regno, where_dead);
13590
13591 /* It is possible for the call above to return 0. This can occur
13592 when last_death points to I2 or I1 that we combined with.
13593 In that case make a new note.
13594
13595 We must also check for the case where X is a hard register
13596 and NOTE is a death note for a range of hard registers
13597 including X. In that case, we must put REG_DEAD notes for
13598 the remaining registers in place of NOTE. */
13599
13600 if (note != 0 && regno < FIRST_PSEUDO_REGISTER
13601 && (GET_MODE_SIZE (GET_MODE (XEXP (note, 0)))
13602 > GET_MODE_SIZE (GET_MODE (x))))
13603 {
13604 unsigned int deadregno = REGNO (XEXP (note, 0));
13605 unsigned int deadend = END_REGNO (XEXP (note, 0));
13606 unsigned int ourend = END_REGNO (x);
13607 unsigned int i;
13608
13609 for (i = deadregno; i < deadend; i++)
13610 if (i < regno || i >= ourend)
13611 add_reg_note (where_dead, REG_DEAD, regno_reg_rtx[i]);
13612 }
13613
13614 /* If we didn't find any note, or if we found a REG_DEAD note that
13615 covers only part of the given reg, and we have a multi-reg hard
13616 register, then to be safe we must check for REG_DEAD notes
13617 for each register other than the first. They could have
13618 their own REG_DEAD notes lying around. */
13619 else if ((note == 0
13620 || (note != 0
13621 && (GET_MODE_SIZE (GET_MODE (XEXP (note, 0)))
13622 < GET_MODE_SIZE (GET_MODE (x)))))
13623 && regno < FIRST_PSEUDO_REGISTER
13624 && REG_NREGS (x) > 1)
13625 {
13626 unsigned int ourend = END_REGNO (x);
13627 unsigned int i, offset;
13628 rtx oldnotes = 0;
13629
13630 if (note)
13631 offset = hard_regno_nregs[regno][GET_MODE (XEXP (note, 0))];
13632 else
13633 offset = 1;
13634
13635 for (i = regno + offset; i < ourend; i++)
13636 move_deaths (regno_reg_rtx[i],
13637 maybe_kill_insn, from_luid, to_insn, &oldnotes);
13638 }
13639
13640 if (note != 0 && GET_MODE (XEXP (note, 0)) == GET_MODE (x))
13641 {
13642 XEXP (note, 1) = *pnotes;
13643 *pnotes = note;
13644 }
13645 else
13646 *pnotes = alloc_reg_note (REG_DEAD, x, *pnotes);
13647 }
13648
13649 return;
13650 }
13651
13652 else if (GET_CODE (x) == SET)
13653 {
13654 rtx dest = SET_DEST (x);
13655
13656 move_deaths (SET_SRC (x), maybe_kill_insn, from_luid, to_insn, pnotes);
13657
13658 /* In the case of a ZERO_EXTRACT, a STRICT_LOW_PART, or a SUBREG
13659 that accesses one word of a multi-word item, some
13660 piece of everything register in the expression is used by
13661 this insn, so remove any old death. */
13662 /* ??? So why do we test for equality of the sizes? */
13663
13664 if (GET_CODE (dest) == ZERO_EXTRACT
13665 || GET_CODE (dest) == STRICT_LOW_PART
13666 || (GET_CODE (dest) == SUBREG
13667 && (((GET_MODE_SIZE (GET_MODE (dest))
13668 + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
13669 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest)))
13670 + UNITS_PER_WORD - 1) / UNITS_PER_WORD))))
13671 {
13672 move_deaths (dest, maybe_kill_insn, from_luid, to_insn, pnotes);
13673 return;
13674 }
13675
13676 /* If this is some other SUBREG, we know it replaces the entire
13677 value, so use that as the destination. */
13678 if (GET_CODE (dest) == SUBREG)
13679 dest = SUBREG_REG (dest);
13680
13681 /* If this is a MEM, adjust deaths of anything used in the address.
13682 For a REG (the only other possibility), the entire value is
13683 being replaced so the old value is not used in this insn. */
13684
13685 if (MEM_P (dest))
13686 move_deaths (XEXP (dest, 0), maybe_kill_insn, from_luid,
13687 to_insn, pnotes);
13688 return;
13689 }
13690
13691 else if (GET_CODE (x) == CLOBBER)
13692 return;
13693
13694 len = GET_RTX_LENGTH (code);
13695 fmt = GET_RTX_FORMAT (code);
13696
13697 for (i = 0; i < len; i++)
13698 {
13699 if (fmt[i] == 'E')
13700 {
13701 int j;
13702 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
13703 move_deaths (XVECEXP (x, i, j), maybe_kill_insn, from_luid,
13704 to_insn, pnotes);
13705 }
13706 else if (fmt[i] == 'e')
13707 move_deaths (XEXP (x, i), maybe_kill_insn, from_luid, to_insn, pnotes);
13708 }
13709 }
13710 \f
13711 /* Return 1 if X is the target of a bit-field assignment in BODY, the
13712 pattern of an insn. X must be a REG. */
13713
13714 static int
13715 reg_bitfield_target_p (rtx x, rtx body)
13716 {
13717 int i;
13718
13719 if (GET_CODE (body) == SET)
13720 {
13721 rtx dest = SET_DEST (body);
13722 rtx target;
13723 unsigned int regno, tregno, endregno, endtregno;
13724
13725 if (GET_CODE (dest) == ZERO_EXTRACT)
13726 target = XEXP (dest, 0);
13727 else if (GET_CODE (dest) == STRICT_LOW_PART)
13728 target = SUBREG_REG (XEXP (dest, 0));
13729 else
13730 return 0;
13731
13732 if (GET_CODE (target) == SUBREG)
13733 target = SUBREG_REG (target);
13734
13735 if (!REG_P (target))
13736 return 0;
13737
13738 tregno = REGNO (target), regno = REGNO (x);
13739 if (tregno >= FIRST_PSEUDO_REGISTER || regno >= FIRST_PSEUDO_REGISTER)
13740 return target == x;
13741
13742 endtregno = end_hard_regno (GET_MODE (target), tregno);
13743 endregno = end_hard_regno (GET_MODE (x), regno);
13744
13745 return endregno > tregno && regno < endtregno;
13746 }
13747
13748 else if (GET_CODE (body) == PARALLEL)
13749 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
13750 if (reg_bitfield_target_p (x, XVECEXP (body, 0, i)))
13751 return 1;
13752
13753 return 0;
13754 }
13755 \f
13756 /* Given a chain of REG_NOTES originally from FROM_INSN, try to place them
13757 as appropriate. I3 and I2 are the insns resulting from the combination
13758 insns including FROM (I2 may be zero).
13759
13760 ELIM_I2 and ELIM_I1 are either zero or registers that we know will
13761 not need REG_DEAD notes because they are being substituted for. This
13762 saves searching in the most common cases.
13763
13764 Each note in the list is either ignored or placed on some insns, depending
13765 on the type of note. */
13766
13767 static void
13768 distribute_notes (rtx notes, rtx_insn *from_insn, rtx_insn *i3, rtx_insn *i2,
13769 rtx elim_i2, rtx elim_i1, rtx elim_i0)
13770 {
13771 rtx note, next_note;
13772 rtx tem_note;
13773 rtx_insn *tem_insn;
13774
13775 for (note = notes; note; note = next_note)
13776 {
13777 rtx_insn *place = 0, *place2 = 0;
13778
13779 next_note = XEXP (note, 1);
13780 switch (REG_NOTE_KIND (note))
13781 {
13782 case REG_BR_PROB:
13783 case REG_BR_PRED:
13784 /* Doesn't matter much where we put this, as long as it's somewhere.
13785 It is preferable to keep these notes on branches, which is most
13786 likely to be i3. */
13787 place = i3;
13788 break;
13789
13790 case REG_NON_LOCAL_GOTO:
13791 if (JUMP_P (i3))
13792 place = i3;
13793 else
13794 {
13795 gcc_assert (i2 && JUMP_P (i2));
13796 place = i2;
13797 }
13798 break;
13799
13800 case REG_EH_REGION:
13801 /* These notes must remain with the call or trapping instruction. */
13802 if (CALL_P (i3))
13803 place = i3;
13804 else if (i2 && CALL_P (i2))
13805 place = i2;
13806 else
13807 {
13808 gcc_assert (cfun->can_throw_non_call_exceptions);
13809 if (may_trap_p (i3))
13810 place = i3;
13811 else if (i2 && may_trap_p (i2))
13812 place = i2;
13813 /* ??? Otherwise assume we've combined things such that we
13814 can now prove that the instructions can't trap. Drop the
13815 note in this case. */
13816 }
13817 break;
13818
13819 case REG_ARGS_SIZE:
13820 /* ??? How to distribute between i3-i1. Assume i3 contains the
13821 entire adjustment. Assert i3 contains at least some adjust. */
13822 if (!noop_move_p (i3))
13823 {
13824 int old_size, args_size = INTVAL (XEXP (note, 0));
13825 /* fixup_args_size_notes looks at REG_NORETURN note,
13826 so ensure the note is placed there first. */
13827 if (CALL_P (i3))
13828 {
13829 rtx *np;
13830 for (np = &next_note; *np; np = &XEXP (*np, 1))
13831 if (REG_NOTE_KIND (*np) == REG_NORETURN)
13832 {
13833 rtx n = *np;
13834 *np = XEXP (n, 1);
13835 XEXP (n, 1) = REG_NOTES (i3);
13836 REG_NOTES (i3) = n;
13837 break;
13838 }
13839 }
13840 old_size = fixup_args_size_notes (PREV_INSN (i3), i3, args_size);
13841 /* emit_call_1 adds for !ACCUMULATE_OUTGOING_ARGS
13842 REG_ARGS_SIZE note to all noreturn calls, allow that here. */
13843 gcc_assert (old_size != args_size
13844 || (CALL_P (i3)
13845 && !ACCUMULATE_OUTGOING_ARGS
13846 && find_reg_note (i3, REG_NORETURN, NULL_RTX)));
13847 }
13848 break;
13849
13850 case REG_NORETURN:
13851 case REG_SETJMP:
13852 case REG_TM:
13853 case REG_CALL_DECL:
13854 /* These notes must remain with the call. It should not be
13855 possible for both I2 and I3 to be a call. */
13856 if (CALL_P (i3))
13857 place = i3;
13858 else
13859 {
13860 gcc_assert (i2 && CALL_P (i2));
13861 place = i2;
13862 }
13863 break;
13864
13865 case REG_UNUSED:
13866 /* Any clobbers for i3 may still exist, and so we must process
13867 REG_UNUSED notes from that insn.
13868
13869 Any clobbers from i2 or i1 can only exist if they were added by
13870 recog_for_combine. In that case, recog_for_combine created the
13871 necessary REG_UNUSED notes. Trying to keep any original
13872 REG_UNUSED notes from these insns can cause incorrect output
13873 if it is for the same register as the original i3 dest.
13874 In that case, we will notice that the register is set in i3,
13875 and then add a REG_UNUSED note for the destination of i3, which
13876 is wrong. However, it is possible to have REG_UNUSED notes from
13877 i2 or i1 for register which were both used and clobbered, so
13878 we keep notes from i2 or i1 if they will turn into REG_DEAD
13879 notes. */
13880
13881 /* If this register is set or clobbered in I3, put the note there
13882 unless there is one already. */
13883 if (reg_set_p (XEXP (note, 0), PATTERN (i3)))
13884 {
13885 if (from_insn != i3)
13886 break;
13887
13888 if (! (REG_P (XEXP (note, 0))
13889 ? find_regno_note (i3, REG_UNUSED, REGNO (XEXP (note, 0)))
13890 : find_reg_note (i3, REG_UNUSED, XEXP (note, 0))))
13891 place = i3;
13892 }
13893 /* Otherwise, if this register is used by I3, then this register
13894 now dies here, so we must put a REG_DEAD note here unless there
13895 is one already. */
13896 else if (reg_referenced_p (XEXP (note, 0), PATTERN (i3))
13897 && ! (REG_P (XEXP (note, 0))
13898 ? find_regno_note (i3, REG_DEAD,
13899 REGNO (XEXP (note, 0)))
13900 : find_reg_note (i3, REG_DEAD, XEXP (note, 0))))
13901 {
13902 PUT_REG_NOTE_KIND (note, REG_DEAD);
13903 place = i3;
13904 }
13905 break;
13906
13907 case REG_EQUAL:
13908 case REG_EQUIV:
13909 case REG_NOALIAS:
13910 /* These notes say something about results of an insn. We can
13911 only support them if they used to be on I3 in which case they
13912 remain on I3. Otherwise they are ignored.
13913
13914 If the note refers to an expression that is not a constant, we
13915 must also ignore the note since we cannot tell whether the
13916 equivalence is still true. It might be possible to do
13917 slightly better than this (we only have a problem if I2DEST
13918 or I1DEST is present in the expression), but it doesn't
13919 seem worth the trouble. */
13920
13921 if (from_insn == i3
13922 && (XEXP (note, 0) == 0 || CONSTANT_P (XEXP (note, 0))))
13923 place = i3;
13924 break;
13925
13926 case REG_INC:
13927 /* These notes say something about how a register is used. They must
13928 be present on any use of the register in I2 or I3. */
13929 if (reg_mentioned_p (XEXP (note, 0), PATTERN (i3)))
13930 place = i3;
13931
13932 if (i2 && reg_mentioned_p (XEXP (note, 0), PATTERN (i2)))
13933 {
13934 if (place)
13935 place2 = i2;
13936 else
13937 place = i2;
13938 }
13939 break;
13940
13941 case REG_LABEL_TARGET:
13942 case REG_LABEL_OPERAND:
13943 /* This can show up in several ways -- either directly in the
13944 pattern, or hidden off in the constant pool with (or without?)
13945 a REG_EQUAL note. */
13946 /* ??? Ignore the without-reg_equal-note problem for now. */
13947 if (reg_mentioned_p (XEXP (note, 0), PATTERN (i3))
13948 || ((tem_note = find_reg_note (i3, REG_EQUAL, NULL_RTX))
13949 && GET_CODE (XEXP (tem_note, 0)) == LABEL_REF
13950 && label_ref_label (XEXP (tem_note, 0)) == XEXP (note, 0)))
13951 place = i3;
13952
13953 if (i2
13954 && (reg_mentioned_p (XEXP (note, 0), PATTERN (i2))
13955 || ((tem_note = find_reg_note (i2, REG_EQUAL, NULL_RTX))
13956 && GET_CODE (XEXP (tem_note, 0)) == LABEL_REF
13957 && label_ref_label (XEXP (tem_note, 0)) == XEXP (note, 0))))
13958 {
13959 if (place)
13960 place2 = i2;
13961 else
13962 place = i2;
13963 }
13964
13965 /* For REG_LABEL_TARGET on a JUMP_P, we prefer to put the note
13966 as a JUMP_LABEL or decrement LABEL_NUSES if it's already
13967 there. */
13968 if (place && JUMP_P (place)
13969 && REG_NOTE_KIND (note) == REG_LABEL_TARGET
13970 && (JUMP_LABEL (place) == NULL
13971 || JUMP_LABEL (place) == XEXP (note, 0)))
13972 {
13973 rtx label = JUMP_LABEL (place);
13974
13975 if (!label)
13976 JUMP_LABEL (place) = XEXP (note, 0);
13977 else if (LABEL_P (label))
13978 LABEL_NUSES (label)--;
13979 }
13980
13981 if (place2 && JUMP_P (place2)
13982 && REG_NOTE_KIND (note) == REG_LABEL_TARGET
13983 && (JUMP_LABEL (place2) == NULL
13984 || JUMP_LABEL (place2) == XEXP (note, 0)))
13985 {
13986 rtx label = JUMP_LABEL (place2);
13987
13988 if (!label)
13989 JUMP_LABEL (place2) = XEXP (note, 0);
13990 else if (LABEL_P (label))
13991 LABEL_NUSES (label)--;
13992 place2 = 0;
13993 }
13994 break;
13995
13996 case REG_NONNEG:
13997 /* This note says something about the value of a register prior
13998 to the execution of an insn. It is too much trouble to see
13999 if the note is still correct in all situations. It is better
14000 to simply delete it. */
14001 break;
14002
14003 case REG_DEAD:
14004 /* If we replaced the right hand side of FROM_INSN with a
14005 REG_EQUAL note, the original use of the dying register
14006 will not have been combined into I3 and I2. In such cases,
14007 FROM_INSN is guaranteed to be the first of the combined
14008 instructions, so we simply need to search back before
14009 FROM_INSN for the previous use or set of this register,
14010 then alter the notes there appropriately.
14011
14012 If the register is used as an input in I3, it dies there.
14013 Similarly for I2, if it is nonzero and adjacent to I3.
14014
14015 If the register is not used as an input in either I3 or I2
14016 and it is not one of the registers we were supposed to eliminate,
14017 there are two possibilities. We might have a non-adjacent I2
14018 or we might have somehow eliminated an additional register
14019 from a computation. For example, we might have had A & B where
14020 we discover that B will always be zero. In this case we will
14021 eliminate the reference to A.
14022
14023 In both cases, we must search to see if we can find a previous
14024 use of A and put the death note there. */
14025
14026 if (from_insn
14027 && from_insn == i2mod
14028 && !reg_overlap_mentioned_p (XEXP (note, 0), i2mod_new_rhs))
14029 tem_insn = from_insn;
14030 else
14031 {
14032 if (from_insn
14033 && CALL_P (from_insn)
14034 && find_reg_fusage (from_insn, USE, XEXP (note, 0)))
14035 place = from_insn;
14036 else if (reg_referenced_p (XEXP (note, 0), PATTERN (i3)))
14037 place = i3;
14038 else if (i2 != 0 && next_nonnote_nondebug_insn (i2) == i3
14039 && reg_referenced_p (XEXP (note, 0), PATTERN (i2)))
14040 place = i2;
14041 else if ((rtx_equal_p (XEXP (note, 0), elim_i2)
14042 && !(i2mod
14043 && reg_overlap_mentioned_p (XEXP (note, 0),
14044 i2mod_old_rhs)))
14045 || rtx_equal_p (XEXP (note, 0), elim_i1)
14046 || rtx_equal_p (XEXP (note, 0), elim_i0))
14047 break;
14048 tem_insn = i3;
14049 /* If the new I2 sets the same register that is marked dead
14050 in the note, we do not know where to put the note.
14051 Give up. */
14052 if (i2 != 0 && reg_set_p (XEXP (note, 0), PATTERN (i2)))
14053 break;
14054 }
14055
14056 if (place == 0)
14057 {
14058 basic_block bb = this_basic_block;
14059
14060 for (tem_insn = PREV_INSN (tem_insn); place == 0; tem_insn = PREV_INSN (tem_insn))
14061 {
14062 if (!NONDEBUG_INSN_P (tem_insn))
14063 {
14064 if (tem_insn == BB_HEAD (bb))
14065 break;
14066 continue;
14067 }
14068
14069 /* If the register is being set at TEM_INSN, see if that is all
14070 TEM_INSN is doing. If so, delete TEM_INSN. Otherwise, make this
14071 into a REG_UNUSED note instead. Don't delete sets to
14072 global register vars. */
14073 if ((REGNO (XEXP (note, 0)) >= FIRST_PSEUDO_REGISTER
14074 || !global_regs[REGNO (XEXP (note, 0))])
14075 && reg_set_p (XEXP (note, 0), PATTERN (tem_insn)))
14076 {
14077 rtx set = single_set (tem_insn);
14078 rtx inner_dest = 0;
14079 rtx_insn *cc0_setter = NULL;
14080
14081 if (set != 0)
14082 for (inner_dest = SET_DEST (set);
14083 (GET_CODE (inner_dest) == STRICT_LOW_PART
14084 || GET_CODE (inner_dest) == SUBREG
14085 || GET_CODE (inner_dest) == ZERO_EXTRACT);
14086 inner_dest = XEXP (inner_dest, 0))
14087 ;
14088
14089 /* Verify that it was the set, and not a clobber that
14090 modified the register.
14091
14092 CC0 targets must be careful to maintain setter/user
14093 pairs. If we cannot delete the setter due to side
14094 effects, mark the user with an UNUSED note instead
14095 of deleting it. */
14096
14097 if (set != 0 && ! side_effects_p (SET_SRC (set))
14098 && rtx_equal_p (XEXP (note, 0), inner_dest)
14099 && (!HAVE_cc0
14100 || (! reg_mentioned_p (cc0_rtx, SET_SRC (set))
14101 || ((cc0_setter = prev_cc0_setter (tem_insn)) != NULL
14102 && sets_cc0_p (PATTERN (cc0_setter)) > 0))))
14103 {
14104 /* Move the notes and links of TEM_INSN elsewhere.
14105 This might delete other dead insns recursively.
14106 First set the pattern to something that won't use
14107 any register. */
14108 rtx old_notes = REG_NOTES (tem_insn);
14109
14110 PATTERN (tem_insn) = pc_rtx;
14111 REG_NOTES (tem_insn) = NULL;
14112
14113 distribute_notes (old_notes, tem_insn, tem_insn, NULL,
14114 NULL_RTX, NULL_RTX, NULL_RTX);
14115 distribute_links (LOG_LINKS (tem_insn));
14116
14117 SET_INSN_DELETED (tem_insn);
14118 if (tem_insn == i2)
14119 i2 = NULL;
14120
14121 /* Delete the setter too. */
14122 if (cc0_setter)
14123 {
14124 PATTERN (cc0_setter) = pc_rtx;
14125 old_notes = REG_NOTES (cc0_setter);
14126 REG_NOTES (cc0_setter) = NULL;
14127
14128 distribute_notes (old_notes, cc0_setter,
14129 cc0_setter, NULL,
14130 NULL_RTX, NULL_RTX, NULL_RTX);
14131 distribute_links (LOG_LINKS (cc0_setter));
14132
14133 SET_INSN_DELETED (cc0_setter);
14134 if (cc0_setter == i2)
14135 i2 = NULL;
14136 }
14137 }
14138 else
14139 {
14140 PUT_REG_NOTE_KIND (note, REG_UNUSED);
14141
14142 /* If there isn't already a REG_UNUSED note, put one
14143 here. Do not place a REG_DEAD note, even if
14144 the register is also used here; that would not
14145 match the algorithm used in lifetime analysis
14146 and can cause the consistency check in the
14147 scheduler to fail. */
14148 if (! find_regno_note (tem_insn, REG_UNUSED,
14149 REGNO (XEXP (note, 0))))
14150 place = tem_insn;
14151 break;
14152 }
14153 }
14154 else if (reg_referenced_p (XEXP (note, 0), PATTERN (tem_insn))
14155 || (CALL_P (tem_insn)
14156 && find_reg_fusage (tem_insn, USE, XEXP (note, 0))))
14157 {
14158 place = tem_insn;
14159
14160 /* If we are doing a 3->2 combination, and we have a
14161 register which formerly died in i3 and was not used
14162 by i2, which now no longer dies in i3 and is used in
14163 i2 but does not die in i2, and place is between i2
14164 and i3, then we may need to move a link from place to
14165 i2. */
14166 if (i2 && DF_INSN_LUID (place) > DF_INSN_LUID (i2)
14167 && from_insn
14168 && DF_INSN_LUID (from_insn) > DF_INSN_LUID (i2)
14169 && reg_referenced_p (XEXP (note, 0), PATTERN (i2)))
14170 {
14171 struct insn_link *links = LOG_LINKS (place);
14172 LOG_LINKS (place) = NULL;
14173 distribute_links (links);
14174 }
14175 break;
14176 }
14177
14178 if (tem_insn == BB_HEAD (bb))
14179 break;
14180 }
14181
14182 }
14183
14184 /* If the register is set or already dead at PLACE, we needn't do
14185 anything with this note if it is still a REG_DEAD note.
14186 We check here if it is set at all, not if is it totally replaced,
14187 which is what `dead_or_set_p' checks, so also check for it being
14188 set partially. */
14189
14190 if (place && REG_NOTE_KIND (note) == REG_DEAD)
14191 {
14192 unsigned int regno = REGNO (XEXP (note, 0));
14193 reg_stat_type *rsp = &reg_stat[regno];
14194
14195 if (dead_or_set_p (place, XEXP (note, 0))
14196 || reg_bitfield_target_p (XEXP (note, 0), PATTERN (place)))
14197 {
14198 /* Unless the register previously died in PLACE, clear
14199 last_death. [I no longer understand why this is
14200 being done.] */
14201 if (rsp->last_death != place)
14202 rsp->last_death = 0;
14203 place = 0;
14204 }
14205 else
14206 rsp->last_death = place;
14207
14208 /* If this is a death note for a hard reg that is occupying
14209 multiple registers, ensure that we are still using all
14210 parts of the object. If we find a piece of the object
14211 that is unused, we must arrange for an appropriate REG_DEAD
14212 note to be added for it. However, we can't just emit a USE
14213 and tag the note to it, since the register might actually
14214 be dead; so we recourse, and the recursive call then finds
14215 the previous insn that used this register. */
14216
14217 if (place && REG_NREGS (XEXP (note, 0)) > 1)
14218 {
14219 unsigned int endregno = END_REGNO (XEXP (note, 0));
14220 bool all_used = true;
14221 unsigned int i;
14222
14223 for (i = regno; i < endregno; i++)
14224 if ((! refers_to_regno_p (i, PATTERN (place))
14225 && ! find_regno_fusage (place, USE, i))
14226 || dead_or_set_regno_p (place, i))
14227 {
14228 all_used = false;
14229 break;
14230 }
14231
14232 if (! all_used)
14233 {
14234 /* Put only REG_DEAD notes for pieces that are
14235 not already dead or set. */
14236
14237 for (i = regno; i < endregno;
14238 i += hard_regno_nregs[i][reg_raw_mode[i]])
14239 {
14240 rtx piece = regno_reg_rtx[i];
14241 basic_block bb = this_basic_block;
14242
14243 if (! dead_or_set_p (place, piece)
14244 && ! reg_bitfield_target_p (piece,
14245 PATTERN (place)))
14246 {
14247 rtx new_note = alloc_reg_note (REG_DEAD, piece,
14248 NULL_RTX);
14249
14250 distribute_notes (new_note, place, place,
14251 NULL, NULL_RTX, NULL_RTX,
14252 NULL_RTX);
14253 }
14254 else if (! refers_to_regno_p (i, PATTERN (place))
14255 && ! find_regno_fusage (place, USE, i))
14256 for (tem_insn = PREV_INSN (place); ;
14257 tem_insn = PREV_INSN (tem_insn))
14258 {
14259 if (!NONDEBUG_INSN_P (tem_insn))
14260 {
14261 if (tem_insn == BB_HEAD (bb))
14262 break;
14263 continue;
14264 }
14265 if (dead_or_set_p (tem_insn, piece)
14266 || reg_bitfield_target_p (piece,
14267 PATTERN (tem_insn)))
14268 {
14269 add_reg_note (tem_insn, REG_UNUSED, piece);
14270 break;
14271 }
14272 }
14273 }
14274
14275 place = 0;
14276 }
14277 }
14278 }
14279 break;
14280
14281 default:
14282 /* Any other notes should not be present at this point in the
14283 compilation. */
14284 gcc_unreachable ();
14285 }
14286
14287 if (place)
14288 {
14289 XEXP (note, 1) = REG_NOTES (place);
14290 REG_NOTES (place) = note;
14291 }
14292
14293 if (place2)
14294 add_shallow_copy_of_reg_note (place2, note);
14295 }
14296 }
14297 \f
14298 /* Similarly to above, distribute the LOG_LINKS that used to be present on
14299 I3, I2, and I1 to new locations. This is also called to add a link
14300 pointing at I3 when I3's destination is changed. */
14301
14302 static void
14303 distribute_links (struct insn_link *links)
14304 {
14305 struct insn_link *link, *next_link;
14306
14307 for (link = links; link; link = next_link)
14308 {
14309 rtx_insn *place = 0;
14310 rtx_insn *insn;
14311 rtx set, reg;
14312
14313 next_link = link->next;
14314
14315 /* If the insn that this link points to is a NOTE, ignore it. */
14316 if (NOTE_P (link->insn))
14317 continue;
14318
14319 set = 0;
14320 rtx pat = PATTERN (link->insn);
14321 if (GET_CODE (pat) == SET)
14322 set = pat;
14323 else if (GET_CODE (pat) == PARALLEL)
14324 {
14325 int i;
14326 for (i = 0; i < XVECLEN (pat, 0); i++)
14327 {
14328 set = XVECEXP (pat, 0, i);
14329 if (GET_CODE (set) != SET)
14330 continue;
14331
14332 reg = SET_DEST (set);
14333 while (GET_CODE (reg) == ZERO_EXTRACT
14334 || GET_CODE (reg) == STRICT_LOW_PART
14335 || GET_CODE (reg) == SUBREG)
14336 reg = XEXP (reg, 0);
14337
14338 if (!REG_P (reg))
14339 continue;
14340
14341 if (REGNO (reg) == link->regno)
14342 break;
14343 }
14344 if (i == XVECLEN (pat, 0))
14345 continue;
14346 }
14347 else
14348 continue;
14349
14350 reg = SET_DEST (set);
14351
14352 while (GET_CODE (reg) == ZERO_EXTRACT
14353 || GET_CODE (reg) == STRICT_LOW_PART
14354 || GET_CODE (reg) == SUBREG)
14355 reg = XEXP (reg, 0);
14356
14357 /* A LOG_LINK is defined as being placed on the first insn that uses
14358 a register and points to the insn that sets the register. Start
14359 searching at the next insn after the target of the link and stop
14360 when we reach a set of the register or the end of the basic block.
14361
14362 Note that this correctly handles the link that used to point from
14363 I3 to I2. Also note that not much searching is typically done here
14364 since most links don't point very far away. */
14365
14366 for (insn = NEXT_INSN (link->insn);
14367 (insn && (this_basic_block->next_bb == EXIT_BLOCK_PTR_FOR_FN (cfun)
14368 || BB_HEAD (this_basic_block->next_bb) != insn));
14369 insn = NEXT_INSN (insn))
14370 if (DEBUG_INSN_P (insn))
14371 continue;
14372 else if (INSN_P (insn) && reg_overlap_mentioned_p (reg, PATTERN (insn)))
14373 {
14374 if (reg_referenced_p (reg, PATTERN (insn)))
14375 place = insn;
14376 break;
14377 }
14378 else if (CALL_P (insn)
14379 && find_reg_fusage (insn, USE, reg))
14380 {
14381 place = insn;
14382 break;
14383 }
14384 else if (INSN_P (insn) && reg_set_p (reg, insn))
14385 break;
14386
14387 /* If we found a place to put the link, place it there unless there
14388 is already a link to the same insn as LINK at that point. */
14389
14390 if (place)
14391 {
14392 struct insn_link *link2;
14393
14394 FOR_EACH_LOG_LINK (link2, place)
14395 if (link2->insn == link->insn && link2->regno == link->regno)
14396 break;
14397
14398 if (link2 == NULL)
14399 {
14400 link->next = LOG_LINKS (place);
14401 LOG_LINKS (place) = link;
14402
14403 /* Set added_links_insn to the earliest insn we added a
14404 link to. */
14405 if (added_links_insn == 0
14406 || DF_INSN_LUID (added_links_insn) > DF_INSN_LUID (place))
14407 added_links_insn = place;
14408 }
14409 }
14410 }
14411 }
14412 \f
14413 /* Check for any register or memory mentioned in EQUIV that is not
14414 mentioned in EXPR. This is used to restrict EQUIV to "specializations"
14415 of EXPR where some registers may have been replaced by constants. */
14416
14417 static bool
14418 unmentioned_reg_p (rtx equiv, rtx expr)
14419 {
14420 subrtx_iterator::array_type array;
14421 FOR_EACH_SUBRTX (iter, array, equiv, NONCONST)
14422 {
14423 const_rtx x = *iter;
14424 if ((REG_P (x) || MEM_P (x))
14425 && !reg_mentioned_p (x, expr))
14426 return true;
14427 }
14428 return false;
14429 }
14430 \f
14431 DEBUG_FUNCTION void
14432 dump_combine_stats (FILE *file)
14433 {
14434 fprintf
14435 (file,
14436 ";; Combiner statistics: %d attempts, %d substitutions (%d requiring new space),\n;; %d successes.\n\n",
14437 combine_attempts, combine_merges, combine_extras, combine_successes);
14438 }
14439
14440 void
14441 dump_combine_total_stats (FILE *file)
14442 {
14443 fprintf
14444 (file,
14445 "\n;; Combiner totals: %d attempts, %d substitutions (%d requiring new space),\n;; %d successes.\n",
14446 total_attempts, total_merges, total_extras, total_successes);
14447 }
14448 \f
14449 /* Try combining insns through substitution. */
14450 static unsigned int
14451 rest_of_handle_combine (void)
14452 {
14453 int rebuild_jump_labels_after_combine;
14454
14455 df_set_flags (DF_LR_RUN_DCE + DF_DEFER_INSN_RESCAN);
14456 df_note_add_problem ();
14457 df_analyze ();
14458
14459 regstat_init_n_sets_and_refs ();
14460 reg_n_sets_max = max_reg_num ();
14461
14462 rebuild_jump_labels_after_combine
14463 = combine_instructions (get_insns (), max_reg_num ());
14464
14465 /* Combining insns may have turned an indirect jump into a
14466 direct jump. Rebuild the JUMP_LABEL fields of jumping
14467 instructions. */
14468 if (rebuild_jump_labels_after_combine)
14469 {
14470 if (dom_info_available_p (CDI_DOMINATORS))
14471 free_dominance_info (CDI_DOMINATORS);
14472 timevar_push (TV_JUMP);
14473 rebuild_jump_labels (get_insns ());
14474 cleanup_cfg (0);
14475 timevar_pop (TV_JUMP);
14476 }
14477
14478 regstat_free_n_sets_and_refs ();
14479 return 0;
14480 }
14481
14482 namespace {
14483
14484 const pass_data pass_data_combine =
14485 {
14486 RTL_PASS, /* type */
14487 "combine", /* name */
14488 OPTGROUP_NONE, /* optinfo_flags */
14489 TV_COMBINE, /* tv_id */
14490 PROP_cfglayout, /* properties_required */
14491 0, /* properties_provided */
14492 0, /* properties_destroyed */
14493 0, /* todo_flags_start */
14494 TODO_df_finish, /* todo_flags_finish */
14495 };
14496
14497 class pass_combine : public rtl_opt_pass
14498 {
14499 public:
14500 pass_combine (gcc::context *ctxt)
14501 : rtl_opt_pass (pass_data_combine, ctxt)
14502 {}
14503
14504 /* opt_pass methods: */
14505 virtual bool gate (function *) { return (optimize > 0); }
14506 virtual unsigned int execute (function *)
14507 {
14508 return rest_of_handle_combine ();
14509 }
14510
14511 }; // class pass_combine
14512
14513 } // anon namespace
14514
14515 rtl_opt_pass *
14516 make_pass_combine (gcc::context *ctxt)
14517 {
14518 return new pass_combine (ctxt);
14519 }